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Samir M. PERLAZA

Le Partage du Spectre dans les Réseaux
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Directeurs de thèse Prof. Pierre Duhamel, CNRS-LSS-SUPELEC (Gif Sur Yvette, France).

Prof. Samson Lasaulce , CNRS-LSS-SUPELEC (Gif Sur Yvette, France).
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Abstract
This thesis deals with the analysis and design of techniques for spectrum sharing

in decentralized self-configuring networks (DSCN). For such networks, spectrum

sharing can be broadly divided into two consecutive phases that radio devices im-

plement autonomously, and often individually. In the first phase, radio devices

identify their available spectrum access opportunities (SAO). For instance, unused

frequency bands, time slots, or spatial directions over which their transmissions are

allowed to take place. In the second phase, radio devices determine the optimal

transmit/receive configurations for exploiting the available SAOs while guarantee-

ing a reliable communication. Here, such configurations are described in terms of

power allocation policies, modulation-coding schemes, scheduling policies, decoding

orders, etc.

For the first phase, we introduce a novel notion of SAO. The main idea consist in

exploiting the unused spatial directions (SD) associated with the singular values of

the channel matrix of a given primary link using a water-filling power allocation

(PA) policy. The method proposed in this thesis for exploiting such opportunities

is called opportunistic interference alignment (OIA) and relies on the existence of

multiple antennas at both transmitters and receivers. This novel spectrum sharing

technique is particularly useful in highly dense networks where classical SAOs such

as unused time slots and/or unused frequency bands are short-lasting rare events.

For the second phase, it is well known that the main problem lies in the mutual

interference arising from the simultaneous exploitation of the same set of available

SAOs. Therefore, to study such a competitive interaction between the radio devices,

we make use of tools from game theory. Within this framework, we adopt a particular

network topology (parallel multiple access channel) to study the existence and the

multiplicity of Nash equilibria (NE). The relevance of NE stems from the fact that

it represents a network state where each radio device’s configuration is optimal with

respect to the configuration of all the other devices. In particular, we show that,

paradoxically, an important gain in the global performance at the NE is observed by

reducing the number of possible configurations a radio device is allowed use. Later,

we introduce a novel technique that allows radio devices to achieve NE in a fully

decentralized fashion based only on the periodical observation of their individual

performance. This (learning) technique is independent of both the network topology

and the performance metric of the radio devices. More importantly, we show that

it converges to epsilon-NE in relevant types of games in wireless communications,

namely potential games among others.

We finally tackle the quality of service provisioning in DCSNs. We thus formalize an

alternative notion of equilibrium, namely satisfaction equilibrium (SE). Contrary to

the existing equilibrium concepts, we show that the SE properly models the problem

of QoS in DCSNs. More importantly, we introduce learning techniques that allow

achieving a SE relying only on a periodical 1-bit message from the receivers. In

particular, as long as the SE exists, these techniques achieve a SE in finite time and

are shown to be computationally simpler than those used to achieve NE.



Résumé
Les travaux de cette thèse s’inscrivent tous dans la thématique traitement du signal

pour les réseaux de communications distribués. Le réseau est dit distribué au sens

de la décision. Dans ce cadre, le problème générique et important que nous avons

approfondi est le suivant. Comment un terminal, qui a accès à plusieurs canaux

de communications, doit-il répartir (de manière autonome) sa puissance d’émission

entre ses canaux et l’adapter dans le temps en fonction de la variabilité des conditions

de communications? C’est le problème de l’allocation de ressources adaptative et

distribuée. Nous avons développé 4 axes de travail qui ont tous conduits à des

réponses originales à ce problème; la forte corrélation entre ces axes est expliquée

dans le manuscrit de thèse.

Le premier axe a été l’alignement opportuniste d’interférence. Un des scénarios de

référence est le cas où deux couples émetteur-récepteur communiquent en interférant

(sur la même bande, en même temps, au même endroit, etc.), où les 4 terminaux

sont équipés de plusieurs antennes et où un émetteur est contraint de ne pas (ou

peu) interférer sur l’autre (canal à interférence dit MIMO). Nous avons conçu une

technique d’émission de signal multi-antennaire qui exploite l’observation-clé suiv-

ante et jamais exploitée auparavant: même lorsqu’un émetteur est égöıste au sens

de ses performances individuelles, celui-ci laisse des ressources spatiales (dans le

bon espace de signal et que nous avons identifié) vacantes pour l’autre émetteur.

L’apport en performances en termes de débit par rapport aux algorithmes existants

a été quantifié grâce à la théorie des matrices aléatoires et des simulations Monte

Carlo. Ces résultats sont particulièrement importants pour le scénario de la radio

cognitive en milieu dense.

Dans un second temps, nous avons supposé que tous les émetteurs d’un réseau sont

libres d’utiliser leurs ressources de manière égöıste. Les ressources sont données ici

par les canaux fréquentiels et la métrique individuelle de performance est le débit.

Ce problème peut être modélisé par un jeu dont les joueurs sont les émetteurs. Une

de nos contributions a été de montrer que ce jeu est un jeu de potentiel, ce qui est

fondamental pour la convergence des algorithmes distribués et l’existence d’équilibre

de Nash. De plus, nous avons montré l’existence d’un paradoxe de Braess: si l’espace

d’optimisation d’un joueur grandit, les performances individuelles et globales peu-

vent s’en trouver réduites. Cette conclusion a une conséquence pratique immédiate:

il peut y a voir intérêt de restreindre le nombre de canaux fréquentiels utilisables

dans un réseau à interférence distribué.

Dans le jeu précédent, nous avions constaté que les algorithmes distribués d’allocation

de ressources (les algorithmes d’apprentissage par renforcement typiquement) de-

mandent un grand nombre d’itérations pour converger vers un état stable tel qu’un

équilibre de Nash. Nous avons ainsi proposé un nouveau concept de solution d’un

jeu, à savoir l’équilibre de satisfaction; les joueurs ne modifient pas leur action, même

si celle-ci ne maximise pas leur gain, pourvu qu’un niveau minimal de performance

soit atteint. Nous avons alors développé une méthodologie d’étude de cette solution

(existence, unicité, convergence, ). Une de nos contributions a aussi été de donner des



v

algorithmes d’apprentissage qui convergent vers cette solution en un temps fini (et

même court génériquement). De nombreux résultats numériques réalisés dans des

scénarios imposés par Orange ont confirmé la pertinence de cette nouvelle approche.

Le quatrième axe de travail a été la conception de nouveaux algorithmes d’apprentissa-

ge qui convergent vers des solutions de type équilibre logit, epsilon-équilibre ou

équilibre de Nash. Notre apport a été de montrer comment modifier les algorithmes

existants pour que ceux-ci évitent les phénomènes de cycles et convergent vers un

équilibre présélectionné au départ de la dynamique. Une idée importante a été

d’introduire une dynamique d’apprentissage de la fonction métrique de performances

en couplage avec la dynamique principale qui régit l’évolution de la distribution de

probabilité sur les actions possibles d’un joueur. Le cadre de ces travaux est par-

faitement réaliste d’un point de vue informatif au niveau des terminaux en pratique.

Il est montré une voie possible pour améliorer l’efficacité des points de convergence,

ce qui constitue un problème encore ouvert dans ce domaine.



Présentation en Français

Dans ce chapitre, nous présentons, en français, une description générale du problème

de partage du spectre dans les réseaux décentralisés auto-configurables (decentral-

ized self-configuring network, DSCN). En particulier, nous identifions les principaux

défis technologiques et nous décrivons les principales contributions de cette thèse.

Enfin, nous exposons nos conclusions et perspectives.

Contexte et Défis Technologiques

Un système de communications décentralisé auto-configurable est essentiellement un

réseau sans infrastructure fixe où les appareils radio sont autonomes et déterminent

eux mêmes leurs propres configurations de transmission/réception afin de garantir

une communication fiable. Pour atteindre cet objectif, les dispositifs radio sont

souvent équipés avec des systèmes de détection de spectre et d’auto-configuration.

En conséquence, ce type d’appareils radio, souvent appelés radios cognitives (CR),

sont capables d’identifier les ressources radio inutilisées et d’adapter leur configu-

rations de transmission/réception pour exploiter plus efficacement ces ressources.

Cette configuration est typiquement décrite en termes des politiques d’allocation de

puissance, sélection de canaux, schémas de modulation-codage, etc.

La caractéristique à souligner dans le contexte du DCSN est le fait que les émetteurs

communiquent avec leurs récepteurs respectifs, sans le contrôle d’une autorité cen-

trale, par exemple, une station de base. Ainsi, la principale limitation de ces réseaux

est l’interférence mutuelle résultante de l’interaction sans aucune coordination d’un

groupe d’émetteurs exploitant un ensemble commun de ressources radio. En ef-

fet, c’est la raison pour laquelle l’analyse et la conception de techniques de partage

du spectre joue un rôle central dans ce scénario. Ici, parmi toutes les contraintes

pour parvenir à une exploitation optimale du spectre, on mentionne deux faits. Tout

d’abord, les appareils radio doivent déterminer leurs propres configurations de trans-

mission/réception basés sur des informations uniquement locales. Deuxièmement,

la topologie du réseau est en constant changement. En plus, ces réseaux doivent être

rapidement déployables, ainsi que robustes aux attaques et aux pannes dans des en-

vironnements critiques. Ces dernières exigences proviennent du fait que les DSCN

sont typiquement utilisés dans de nombreuses applications militaires, de secours et

commerciales.

En général, le partage des fréquences dans le contexte des DSCN pourrait suivre

deux ensembles de règles différentes selon les bandes de fréquences où ils opèrent,

vi
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par exemple, des bandes d’accès libre ou des bandes d’accès restreint [122]. Dans le

cas des bandes d’accès restreint, nous disons que le DCSN suit un accès hiérarchique

au spectre (hierarchical spectrum access, HSA) et dans le cas des bandes d’accès

libre, on dit qu’il suit un accès ouvert au spectre (open spectrum access OSA).

En HSA, les DCSNs opérèrent sous la condition que l’interférence supplémentaire

produite sur les systèmes pré-existants peut être considérée comme inexistante ou en

dessous d’un seuil spécifique [17]. Un exemple typique de HSA est précisément l’idée

derrière la radio cognitive, où seulement les ressources spectrales laissées libres par

les systèmes préexistants (opportunités d’accès au spectre) sont utilisées, et donc,

aucune interférence supplémentaire n’est générée. Dans la suite, nous appelons ces

ressources libres : opportunités d’accès au spectre (spectrum access opportunities,

SAO). Selon la technique d’accès multiple du système primaire, une SAO peut se

concevoir comme une période de temps dans l’accès multiple par répartition tem-

porelle (time division multiple access, TDMA), une bande de fréquence dans l’accès

multiple par répartition en fréquence (frequency division multiple access, FDMA),

une direction spatiale dans l’accès multiple par répartition spatiale (space division

multiple access, SDMA), un ton de fréquence dans l’accès multiple à répartition en

fréquences orthogonales (orthogonal frequency division multiple access, OFDMA),

un code d’étalement dans l’accès multiple par répartition en code (code division

multiple access, CDMA) ou une quelconque combinaison de ceux-ci. Un autre ex-

emple classique de HSA est la modulation en bande ultra-large (ultra-wide band,

UWB). Ici, les interférences produites par les appareils radio en utilisant la mod-

ulation UWB ne représentent pas une interférence significative supplémentaire aux

anciens systèmes, et donc, une telle coexistence est tolérée.

En OSA, chaque appareil radio a les mêmes droits d’accès au spectre à tout moment.

Ceci est particulièrement le cas des bandes sans licence (par exemple, la bande pour

les applications industrielles, scientifiques et médicales (ISM) [2,400, 2,500] GHz).

Les appareils radio fonctionnant dans ces bandes, sont par exemple, des téléphones

sans fil, des capteurs sans fil et les appareils fonctionnant sous les normes du Wi-Fi

(IEEE 802.11), Zig-Bee (IEEE 802.15.4), et le Bluetooth (IEEE 802.15.1).

Dans cette thèse, nous nous concentrons sur les deux cas, HSA et OSA. En partic-

ulier, nous soulignons le fait que dans le HSA, une fois les SAO disponibles sont

identifiées de façon fiable ou le niveau d’interférence instantanée produit sur le

système primaire est connu par tous les appareils radio dans le DCSN, l’analyse

du partage de spectre est identique dans les deux cas HSA et OSA. La remarque

importante ici est que, deux ou plusieurs appareils radio qui exploitent les mêmes

ressources radio sont soumis aux interférences mutuelles, indépendamment du fait

qu’ils opèrent sous politiques de HSA ou SAO. La différence principale entre HSA

et OSA est que dans le premier cas, les ressources radio sont disponibles unique-

ment pendant la période où le système primaire ne les utilise pas, tandis que dans le

deuxième cas, les ressources radio sont toujours accessibles. Cependant, dans cette

thèse, nous ne considérons pas cette contrainte, et nous supposons que les ressources

radio disponibles, en HSA, restent disponibles une période plus longue que la durée

de la communication dans la DSCN. Sous cette hypothèse, le problème commun avec
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HSA et OSA peut s’exprimer tout simplement comme un groupe d’appareils radio

qui exploitent simultanément les mêmes ressources radio et donc, ils sont soumis

à des interférences mutuelles. Dans la suite, nous utilisons le terme générique de

partage de spectre pour désigner les deux scénarios HSA et OSA dans les conditions

indiquées ci-dessus.

Dans ce contexte, le problème d’accès au spectre, comme traité dans cette thèse,

peut être décrit par l’ensemble des questions suivantes: (i) Quel est la performance

optimale individuelle des appareils radio qui peut être observée dans un DSCN?

(ii) Quel est le comportement optimal q’un dispositif radio doit adopter pour at-

teindre une performance optimale individuelle étant donné l’environnement et la

configuration de tous les autres appareils?

Pour faire face à la première question, la théorie des jeux, une branche des mathémati-

ques qui étudie les interactions entre plusieurs preneurs de décisions, est le paradigme

dominant suivi dans cette thèse [46, 50, 51, 79, 106]. En particulier, nous utilisons

l’idée d’équilibre [46] pour déterminer fondamentalement les états stables d’un DSCN

donné. Ici, la stabilité est interprétée comme un état où la configuration de trans-

mission/réception de chaque appareil radio est optimale par rapport aux configu-

rations de l’ensemble des autres dispositifs radio. Ainsi, aucun des dispositifs ra-

dio améliore ses performances en déviant de façon unilatérale de l’état d’équilibre.

Concernant la question (ii), par le terme comportement, nous nous référons à la

politique qu’un appareil radio utilise pour sélectionner la configuration de transmis-

sion/réception en fonction de l’information disponible. Ici, une remarque importante

est que certains équilibres peuvent être obtenus comme le résultat d’un processus

itératif d’interaction, similaire à un processus d’apprentissage. Ainsi, comme un outil

supplémentaire pour faire face à la question (ii), nous utilisons certains éléments de

la théorie de l’apprentissage de machines.

Les contributions faites dans cette thèse peuvent être classifiées dans trois do-

maines principaux: (i) analyse des performances et conception de techniques d’accès

hiérarchique au spectre (HSA), (ii) analyse des performances et conception de tech-

niques d’accès ouvert au spectre (OSA), et (iii) mécanismes pour l’approvisionnement

de la qualité de service en HSA et OSA.

Dans le contexte du HSA, deux contributions sont présentées. La première concerne

un système opportuniste de l’alignement d’inférence dans les réseaux MIMO cogni-

tives [77, 78, 87]. La deuxième contribution concerne une technique pour améliorer

l’efficacité spectrale des réseaux cognitifs en utilisant une modification stratégique

du nombre de canaux que les appareils radio sont autorisés à utiliser [75].

Dans le contexte du OSA, deux contributions sont présentées dans cette thèse.

Premièrement, l’analyse des équilibres (de Nash) d’un canal à accès multiple décentra-

lisé et en parallèle [73,80,86]. Ce scénario suppose le cas où plusieurs émetteurs sont

destinés à communiquer avec le récepteur à la plus haute efficacité spectrale possi-

ble au même temps qu’ils partagent un ensemble commun de bandes de fréquences

disponibles. La deuxième contribution consiste en une méthodologie pour la con-

ception de règles de comportement qui permettent aux appareils radio d’atteindre

un équilibre comme le résultat d’une interaction itérative similaire à un processus
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d’apprentissage [81,82,84].

Dans le contexte de l’approvisionnement de qualité de service, la contribution prin-

cipale consiste en la formalisation d’un concept d’équilibre particulier, à savoir

l’équilibre de satisfaction (SE). Contrairement aux notions d’équilibre existants, par

exemple l’équilibre de Nash (Nash equilibrium, NE) ou le NE généralisé (general-

ized Nash equilibrium, GNE), dans la SE, l’idée d’optimisation des performances

dans le sens de la maximisation d’une utilité ou la minimisation d’un coût n’existe

pas. Le concept de SE repose sur le fait que les joueurs peuvent être satisfaits ou

insatisfaits de leur performance. Au SE, si il existe, tous les joueurs sont satisfaits.

Cette notion d’équilibre est très bien adaptée pour la modélisation du problème de

l’approvisionnement décentralisé de qualité de service dans les DSCN [85].

D’autres contributions faites dans cette thèse consistent en quelques applications

des résultats théoriques présentés dans les chapitres à venir. Ces contributions ont

été publiées en collaboration avec d’autres auteurs dans le cadre de collaborations

avec d’autres laboratoires. Le reste des contributions faites dans cette thèse ont été

conservées sous la forme de brevets et elles sont propriété de France Télécom.

Dans la suite, nous décrivons, avec un plus haut niveau de détail, les contributions

plus importantes de cette thèse.

Alignement Opportuniste d’Interférence

Un lien multi-entrées-multi-sorties (MIMO) sans interférences avec une connaissance

parfaite de l’état du canal à l’émetteur et au récepteur peut être rendu équivalent

à plusieurs sous-canaux orthogonaux où ses gains sont les valeurs propres de la ma-

trice de transfert du canal [108]. En utilisant ce modèle équivalent, il est possible

d’atteindre la capacité de Shannon en mettant en oeuvre l’allocation de puissance

(AP) nommée water-filling [23] entre les différents sous-canaux équivalents. Cepen-

dant, les limitations de puissance mènent généralement les émetteurs primaires à

laisser certains de ses sous-canaux inutilisés. En fait, les sous-canaux inutilisés,

appelés dorénavant ressources spatiales, peuvent donc être réutilisées ou recyclées

par un autre système fonctionnant sur la même bande de fréquences [76, 78]. Pour

profiter de ces ressources, un certain schéma de construction de signal est exigé :

l’émetteur secondaire doit “aligner” son interférence avec les sous-canaux inutilisés

de l’émetteur primaire. Il faut noter que dans le domaine fréquentiel, cet alignement

s’atteint très simplement avec la transformée de Fourier qui représente une base de

décomposition fréquentielle universelle. Avec cela les utilisateurs opportunistes peu-

vent tout simplement identifier les différentes bandes de fréquences et transmettre à

travers celles qui se trouvent libres. Au contraire, dans le domaine spatial, il n’existe

pas de base de décomposition spatiale universelle pour tous les utilisateurs. Donc,

les utilisateurs secondaires sont sensés connâıtre le canal du système primaire (au

minimum) et traiter leurs signaux pour les aligner avec les mêmes directions spa-

tiales de ce dernier. Les premiers pas vers le concept d’alignement d’interférence

sont décris dans [20,32,53,116].

Dans cette thèse, nous proposons une nouvelle technique de construction de
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signal pour recycler les ressources spatiales. C’est-à-dire, une nouvelle technique

d’alignement d’interférence qui exploite les directions spatiales inutilisées par une li-

aison primaire qui vise à maximiser son débit. Nous proposons également un schéma

d’allocation de puissance qui maximise le débit opportuniste. Cette technique est

appelée alignement d’interférence car chaque ressource spatiale du système primaire

peut être interprétée comme une direction de l’espace. Le lien secondaire doit donc

aligner son interférence avec les directions inutilisées. Cette technique est aussi ap-

pelée opportuniste car elle profite des limitations de puissance du système primaire

et de la réalisation du canal qui l’obligent à concentrer sa puissance dans quelques

directions et laisser quelques unes libres.

Cette section est organisée comme suit. Dans la première partie, la conception

du système primaire qui vise a maximiser sont débit est décrite. La deuxième partie

traite le système opportuniste, plus précisément, le traitement du signal requis au

émetteur pour aligner son interférence avec les directions inutilisées du système

primaire. Nous décrivons également, l’allocation optimale de puissance. La troisième

partie se concentre sur l’estimation du débit asymptotique du système opportuniste.

Les conclusions de cette étude sont présentées dans la dernière section.

Modélisation du Système

Nous considérons deux liaisons MIMO point-à-point unidirectionnelles fonctionnant

simultanément sur la même bande de fréquence et donc sujettes à des interférences

mutuelles. Les liaisons sont supposées indépendantes et non-coopératives, c’est-à-

dire qu’aucun échange de messages entre les deux émetteurs n’a lieu avant ou pen-

dant la transmission. Chaque émetteur envoie des messages privés à son récepteur

respectif uniquement. Dans notre modèle, les deux émetteurs et les deux récepteurs

sont respectivement équipés de Nt antennes et Nr antennes. La première paire

émetteur-récepteur, Tx1 et Rx1, est la liaison primaire autorisée à exploiter une

bande de fréquence donnée de manière exclusive. La paire Tx2 − Rx2 est une li-

aison opportuniste pouvant exploiter la même bande de fréquence à la condition

stricte qu’aucune interférence ne doit être produite sur la liaison primaire. Chaque

émetteur est limité en puissance moyenne par un niveau maximal noté pi,max pour

l’émetteur i. Dans cette étude, nous considérons que les deux émetteurs sont limités

par le même niveau de puissance pmax, c’est-à-dire ∀i ∈ {1, 2}, pi,max = pmax.

La matrice de transfert du canal entre l’émetteur j ∈ {1, 2} et le récepteur

i ∈ {1, 2} est une matrice Nr × Nt, notée Hij, dont les éléments sont des variables

aléatoires complexes et circulaires indépendantes et identiquement distribuées (i.i.d.)

selon une loi Gaussienne de moyenne nulle et de variance 1
Nt

. Les matrices de trans-

fert des canaux sont supposées statiques pendant toute la durée de la transmission.

Le vecteur regroupant les ζi symboles transmis par l’émetteur i est noté

si = (si,1, . . . , si,ζi). Dans notre modèle, l’émetteur i précode linéairement ses sym-

boles en utilisant une matrice Nt×ζi notée Vi. Dans le cas de la liaison primaire, V1

est utilisé pour maximiser son débit. Pour la liaison secondaire, V2 est utilisé pour

effectuer l’alignement d’interférence. La variable ζi, avec i ∈ {1, 2} est décrite dans
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Figure 1: Canal à interférence avec entrées et sorties multi dimensionelles (MIMO).

la section Sec. . Les signaux r1 et r2 reçus par les récepteurs primaire et secondaire

s’écrivent respectivement

(
r1

r2

)
=

(
H11 H12

H21 H22

)(
V1s1

V2s2

)
+

(
n1

n2

)
, (1)

où ni est un vecteur de dimension Nr représentant les effets du bruit thermique au

récepteur i, dont les éléments sont modélisés par un processus aléatoire Gaussien

complexe de moyenne nulle et de matrice de covariance E
î
nin

H
i

ó
= σ2

i INr , ∀i ∈
{1, 2}. La matrice d’allocation de puissance Pi, de taille ζi×ζi, est définie comme la

matrice de covariance Pi = E
î
sis

H
i

ó
. Nous supposons les contraintes de puissance

suivantes:

∀i ∈ {1, 2} , Trace
Ä
ViPiV

H
i

ä
6 Ntpmax. (2)

À chaque récepteur i, les signaux reçus ri sont traités par une matrice de taille

Nr × Nr, notée Di. Ainsi, le signal au récepteur après traitement, noté yi, est

représenté par un vecteur de dimension Nr défini comme yi = Diri ∀i ∈ {1, 2}.
Nous décrivons la configuration de la liaison primaires dans la section suivante.

La configuration de la liaison opportuniste est décrite dans la section Sec. .

Conception de la Liaison Primaire

Le système primaire est modélisé par une liaison MIMO Nt×Nr sans interférences.

La stratégie optimale d’allocation de puissance pour ce modèle a été étudiée par

Telatar [108]. Nous décrivons une telle stratégie par le théorème suivant.

Théorème 0.0.1 (Telatar-1995 [108]) Soit H11 = UH11ΛH11V
H
H11

avec

Λ = diag (λH11,1, . . . , λH11,ζ2) ,
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la décomçposition en valeurs singulières de la matrice de transfert du canal H11 de

dimensions Nr ×Nt. La liaison primaire atteint la capacité de Shannon en utilisant

la configuration V1 = VH11 , D1 = UH
H11

, P1 = diag(p1,1, . . . , p1,Nt), où

∀i ∈ {1, . . . , Nt} , p1,i =


β − σ2

1

λHH
11H11,i




+

, (3)

avec, ΛHH
11H11

= ΛH
H11

ΛH11 =
Ä
λHH

11H11,1, . . . , λHH
11H11,Nt

ä
. La constante β est déterminée

pour satisfaire la condition (2).

Les puissances de transmission (3) peuvent être déterminées de manière itérative

en utilisant l’algorithme d’allocation de puissance nommé water-filling [23].

Conception de la Liaison Secondaire

Dans cette section, le fonctionnement de la liaison secondaire est décrit. Aupara-

vant, on assume que les valeurs propres de toutes les matrices sont notées par ordre

decroissant. C’est-à-dire, si une matrice quelconque, notée X a N valeurs propres,

nous les notons λX,1, . . . , λX,N et en plus, λX,1 > λX,2 > . . . > λX,N .

En accord, avec l’idée initiale de ne pas produire de l’interférence dans le système

primaire, nous considérons que le système secondaire doit fonctionner sous la con-

trainte suivante:

Définition 0.0.1 (Condition d’Alignement d’Interférence) Le système secondaire

satisfait la condition d’alignement d’interférence (AI) si le système primaire atteint

le débit qu’il atteindrait quand le système secondaire ne transmet pas. Nous expri-

mons cette condition plus formellement comme

log2

∣∣∣INrσ
2
1 + ΛH11P1Λ

H
H11

∣∣∣− log2

∣∣∣INrσ
2
1

∣∣∣ =

log2

∣∣∣R + ΛH11P1Λ
H
H11

∣∣∣− log2 |R| (4)

où la matrice R , σ2
1INr+UH

H11
H12V2P2V

H
2 HH

12UH11 est la matrice de covariance du

signal d’interference produite par l’émetteur secondaire ajoutée au bruit du recepteur

primaire.

La condition suffisante d’alignement d’interférence est satisfaite si la matrice de

pré-traitement V2 est telle que

H12V2 = 0Nr×ζ2 . (5)

Cette solution est connue comme formation de faisceaux à forçage de zéro (Zero-

Forcing beamforming) [72]. Cependant, cette solution n’exploite pas le fait que la

liaison primaire laisse inutilisées certaines directions spatiales à cause de ses limita-

tions de puissance de transmission. En fait, chaque direction inutilisée du système

primaire peut être interprétée comme une opportunité additionnelle de transmission

pour le système secondaire.
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Définition 0.0.2 (Opportunités de Transmission (OT) supplémentaires) Nous

disons que le système opportuniste a S opportunités de transmission (OT) s’il ex-

iste un ensemble S ⊂ {1, . . . ,min(Nt, Nr)} tel que |S| = S et pour tout s ∈ S,

λHH
11H11,s 6= 0 et p1,s = 0.

Schéma Optimal de Pré et Post-Traitement du Signal

Pour profiter des OT identifiées dans la section précédente, l’émetteur opportuniste

doit déterminer sa matrice de pré-traitement V2 pour satisfaire la condition (Def.

0.0.1) indépendamment de la matrice d’allocation de puissance P2. Ce résultat est

fourni par le théorème suivant:

Théorème 0.0.2 (Matrice optimale de pré-traitement V2) Nous considérons

la matrice H̃ = UH
H11

H12 et sa structure de blocs

H̃ = Nr − S
xy

S
xy

(
H̃1

H̃2

)
.

(6)

La condition d’AI (Def. 0.0.1) est satisfaite indépendamment de la matrice d’allocation

de puissance P2 quand la matrice de pré-traitement V2 satisfait la condition:

H̃1V2 = 0Nr×ζ2 . (7)

Il est important de remarquer que n’importe quelle solution différente de celle du

théorème (Th. 0.0.2) implique une matrice d’allocation de puissance particulière.

Dans notre cas, le but est précisément de satisfaire la condition d’AI en ajustant

seulement la matrice de pré-traitement. De cette manière, la matrice d’allocation

de puissance reste libre pour être ajustée en cherchant la maximisation du débit

du système secondaire. La matrice de post-traitement du signal est choisie tout

simplement comme un filtre blanchisseur du signal d’entrée. Ce choix est optimal

dans le sens qu’il n’existe aucune perte d’information mutuelle entre le signal d’entrée

et le signal après le filtrage. Donc,

D2 = Q−
1
2 , (8)

où Q = H21VH11P1V
H
H11

HH
21+σ2

2INr est la matrice de covariance du signal d’interférence

produit par le système primaire ajoutée au bruit du récepteur secondaire.

La section suivante s’occupe du problème d’optimisation qui vise la maximisation

du débit opportuniste.

Schéma d’Allocation de Puissance

Le problème d’intérêt dans cette section peut être écrit comme:

max
P2

log2

∣∣∣INr + Q−1H22V2P2V
H
2 HH

22

∣∣∣

s.t. Trace
Ä
V2P2V

H
2

ä
6 pmax.

(9)



xiv

Avant de résoudre le problème d’optimisation dans (9), nous décrivons brièvement

l’allocation uniforme de puissance (AUP). Dans quelques situations, AUP peut être

préférée à la solution optimale (Allocation Optimale de Puissance, AOP) pour sa

simplicité de calcul. En effet, pour un petit nombre de OTs, par exemple S < 3, le

gain en débit obtenu avec AOP n’est pas très significatif par rapport à celui d’AUP.

Allocation Uniforme de Puissance

Dans le cas d’AUP, l’émetteur divise la totalité de sa puissance entre toutes les TOs

ayant été identifiées, i.e., P2,UPA = γIζ2 où

γ =
Nt pmax

Trace (V2VH
2 )
. (10)

Allocation Optimale de Puissance

La puissance de transmission qui maximise le débit du système secondaire, i.e. la

solution au problème d’optimisation (9), est aussi une allocation de puissance sous

la forme du water-filling.

Théorème 0.0.3 (Allocation Optimal de Puissance) Nous considérons la ma-

trice K
4
= Q−

1
2 H22V2 et sa décomposition en valeurs singulières K = UKΛKVH

K ,

avec ΛK = diag (λK,1, . . . , λK,ζ2). La matrice d’allocation optimale de puissance est

P2 = VKP̃VH
K , (11)

où P̃ = diag (p̃1, . . . , p̃ζ2) est une matrice diagonale avec entrées données par

∀i ∈ {1, . . . , ζ2} , p̃2,i =

[
βo −

1

λKHK,i

]+

. (12)

La matrice λKHK = λKHλK = diag
Ä
λKHK,1, . . . , λKHK,ζ2

ä
et βo est une constante

qui satisfait les contraintes de puissance du système secondaire (2).

La Fig. 2 montre les débits atteignables du système secondaire pour un nombre

arbitraire d’antennes quand Nt = Nr + 1. Il faut noter que la performance de la

technique d’IA est toujour superiéure ou égale à celle de la technique de formation

de faisceaux à forçage de zero (Zero-Forcing Beamforming) [72].

Débit Asymptotique de la Liaison Secondaire

Le débit asymptotique du système secondaire peut-être déterminée sous l’hypothèse

d’un grand nombre d’antennes, i.e. Nt, Nr → ∞, avec Nr
Nt

= α < ∞ en utilisant le

théorème suivant:

Théorème 0.0.4 (Débit Asymptotique de la Liaison Secondaire) Nous con-

sidérons un système primaire et secondaire qui utilisent leurs configurations opti-

males. Nous assumons queNr, Nt →∞, avec Nr
Nt
→ α <∞, et M1

4
= H12VH11P1V

H
H11

HH
12,
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Liaison Primaire. Nr = 3 et Nt = 4.

AI-AOP Nr = 3 et Nt = 4.

AI-AUP Nr = 3 et Nt = 4.

FF-AOP Nr = 3 et Nt = 4.

Liaison Primaire. Nr = 9 et Nt = 10.

AI-AOP Nr = 9 et Nt = 10.

AI-AUP Nr = 9 et Nt = 10.

FF-AOP Nr = 9 et Nt = 10.

Figure 2: Débit du système opportuniste comme fonction du rapport signal sur

bruit RSB1 = pmax

σ2
1

. Le nombre d’antennes satisfait Nt = Nr + 1, avec Nr ∈ {3, 9}
et RSB1 = RSB2. La technique de formation de faisceaux (FF) à forçage de zero

suit l’equation 5 avec puissance optimale.

M2
4
= H22V2P2V

H
2 HH

22, M
4
= M1 + M2. Alors, le débit asymptotique par antenne

du système opportuniste (Tx2-Rx2) est donnée par

R̄2(pmax, σ
2
2) =

1

ln 2

∫ +∞

σ2
2

GM1

Ä
−σ2

2

ä
−GM

Ä
−σ2

2

ä
dσ2

2, (13)

où, GM(z) et GM1(z) sont les transformées de Stieltjes des distributions empiriques

des valeurs propres des matrices M et M1, respectivement. Le deux GM(z) et

GM1(z) sont obtenus comme solutions des équations de point fixe (avec solution

unique quand z ∈ R−), GM(z) = −1
z−g(GM (z))−h(GM (z))

, et GM1(z) = −1
z−g(GM1

(z))
,

respectivement. Les fonctions g(z) et h(z) sont définies comme

g(u) , E

[
p1

1 + 1
α
p1u

]
, and (14)

h(u) , E

[
p2

1 + 1
α
p2u

]
. (15)

(16)

Dans les expressions 14) et 15 l’espérance est calculée avec la distribution de prob-

abilité des variables p1 et p2, i.e., FPj (λ), où

∀j ∈ {1, 2}, FPj(λ)
4
=

1

ζj

ζj∑

i=1

µ(λ− pj,i). (17)
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La Fig. 3 montre le débit asymptotique obtenue avec le théorème (Th. 0.0.4)

et le débit obtenu en utilisant un grand nombre d’antennes quand Nr = Nt. Ces

résultats montrent que dans le régime asymptotique, le système opportuniste arrive

à atteindre des débits du même ordre de ceux du système primaire. Plus important,

la figure montre comme le rapport signal sur bruit (RSB) du système primaire joue

un role important dans le débit atteignable du système secondaire.
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Liaison Primaire. AOP RSB = 10 dB.

Liaison Primaire. Asymptote. BSR = 10 dB.

Liaison Secondaire. AUP. RSB = −10 dB.

Liaison Secondaire . Asymptote. RSB = −10 dB.

Liaison Secondaire. AUP. RSB = 0 dB.

Liasion Secondaire. Asymptote. RSB = 0 dB.

Liaison Secondaire. AUP. RSB = 5 dB.

Liason Secondaire. Asymptote. RSB = 5 dB.

Liaison Secondaire. AUP. RSB = 10 dB.

Liaison Secondaire. Asymptote. BSR = 10 dB.

Figure 3: Débit Asymptotique du système opportuniste avec AUP observé par sim-

ulation comme fonction du nombre d’antennes quand Nr = Nt à différents niveaux

de RSB. RSB = pmax

σ2 . Les lignes noires sont des asymptotes déterminées par le Th.

0.0.4. Les asymptotes du système primaire sont données par [30].

Conclusions

Nous avons proposé une nouvelle technique qui permet aux liaisons point-à-point

MIMO opportunistes de recycler les ressources spatiales laissées inutilisées par des

liaisons point-à-point MIMO primaires. Nous avons fourni la technique de construc-

tion de signal pour exploiter ces ressources spatiales et aussi un schéma d’allocation

de puissance qui maximise le débit des liaisons opportunistes. Une analyse sous

l’hypothèse d’un grand nombre d’antennes permet de déterminer asymptotique-

ment le débit maximal du système secondaire. D’après cette analyse on trouve que

le système secondaire est capable d’atteindre des débits de transmission du même

ordre que la liaison primaire.
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Nash Equilibria in Parallel Multiple Access Chan-

nel

Un canal à accès multiple (Multiple Access Channel, MAC) correspond à un scénario

dans lequel il y a plusieurs émetteurs et un seul récepteur. Dans le cas du canal à

accès multiple en parallèle, chaque émetteur peut exploiter plusieurs canaux orthog-

onaux pour communiquer avec le récepteur. Ce modèle de canal permet l’analyse

de la macro-diversité dans la liaison montante des réseaux cellulaires (dans ce cas,

les stations de base sont supposées être connectées à une entité centrale commune),

l’allocation de puissance dans les canaux d’accès multiples sélectives en fréquence

lorsque un multiplexage par division en fréquences orthogonales (Orthogonal Fre-

quency Division Multiplexing, OFDM ) est utilisée, ou la sélection de point d’accès

dans les réseaux locaux sans fil. En termes de canaux multi-utilisateurs, le MAC

en parallèle correspond à un cas particulier du MAC vectoriel [121], mais ici, le

système est supposé décentralisé, c’est-à-dire, tous les émetteurs peuvent choisir

librement leur politique d’accès au spectre. Ce choix peut être soit une des poli-

tiques d’allocation de puissance (Power Allocation, PA) entre les canaux disponibles

ou une politique de sélection de canal (Channel Selection, CS). La métrique de

performance pour chaque terminal dans cet étude est son efficacité spectrale in-

dividuelle. Nous nous référerons à ces problèmes comme le problème/jeu (a) et

problème/jeu (b), respectivement. Les problèmes (a) et (b) peuvent être modélisés

par des jeux sous forme stratégique où les joueurs sont les émetteurs, la fonction

de paiement/récompense/utilité des joueurs est l’efficacité spectrale individuelle, et

l’ensemble des actions est l’ensemble des politiques d’allocation de puissance ou

de sélection de canal. Le concept de solution utilisé dans cette thèse est celle

de l’équilibre de Nash [66]. Cet équilibre peut être atteint comme le résultat

d’un processus dynamique d’apprentissage impliquant des hypothèses d’informations

raisonnables, ce qui fait de cette notion la plus adaptée pour le sujet traité dans cette

thèse est le fait que. En particulier, cette propriété permet la conception des algo-

rithmes distribués pour l’exploitation du spectre.

Modèle du Jeu

Les problèmes de PA et CS décrits ci-dessus peuvent être modélisés respectivement

par les deux jeux sous forme stratégique (avec i ∈ {a, b}):

G(i) =
Å
K,
(
P(i)
k

)
k∈K

, (uk)k∈K

ã
. (18)

Dans les deux jeux, l’ensemble des émetteurs K est l’ensemble des joueurs. Une

action d’un émetteur donné k ∈ K est un schéma particulier de PA, c’est-à-dire un

vecteur de PA de dimension S, noté par pk = (pk,1, . . . , pk,S) ∈ P(i)
K , où P(i)

K est

l’ensemble de tous les vecteurs de PA possibles que l’émetteur k peut utiliser, soit

dans le jeux G(a) (i = a) ou dans le jeu G(b) (i = b). Nous appelons un vecteur de la

forme

p = (p1, . . . ,pK) ∈ P(i),
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un profil d’action du jeu i ∈ {a, b} où P(i) est un ensemble obtenu du produit

Cartésien des ensembles des actions P(i)
k , pour tout k ∈ K, i.e., P(i) = P(i)

1 ×. . .×P(i)
K ,

où,

P(a)
k =

¶
(pk,1, . . . pk,S) ∈ RS : ∀s ∈ S, pk,s > 0,

∑

s∈S
pk,s 6 pk,max

}
, et (19)

P(b)
k = {pk,max es : ∀s ∈ S, es = (es,1, . . . , es,S) ,

∀r ∈ S \ s, es,r = 0, and es,s = 1} . (20)

Dans la suite, nous nous référons aux jeux G(a) et G(b) comme le jeu PA et le jeu SC.

Nous noterons par p−k tout vecteur dans l’ensemble

P(i)
−k
4
= P(i)

1 × . . .× P(i)
k−1 × P(i)

k+1 × . . .× P(i)
K (21)

avec (i, k) ∈ {a, b} × K. Pour un k ∈ K donné, le vecteur noté par p−k représente

les stratégies adoptés par tous les autres joueurs différents au joueur k. Avec un

léger abus de notation, nous écrivons parfois tout vecteur p ∈ P(i) comme (pk,p−k),

afin de souligner la k-ème composante du super vecteur p. La fonction d’utilité du

joueur k dans le jeu G(i) est l’efficacité spectrale uk : P(i) → R+, et

uk(pk,p−k) =
∑

s∈S

Bs

B
log2 (1 + γk,s) [bps/Hz] (22)

où γk,s est le rapport signal sur bruit plus interférence (RSBI) vu par le joueur k

dans le canal s, i.e.,

γk,s =
pk,sgk,s

σ2
s +

∑

j∈K\{k}
pj,sgj,s

, (23)

et gk,s , |hk,s|2. Nous assumons un décodage du type “single-user decoding” (SUD)

en réception. De toute évidence, nous ne cherchons pas l’optimalité du système,

mais tout simplement, un choix de décodage qui puisse être escaladé et équitable

avec tous les utilisateurs. Les jeux G(i), i ∈ {a, b} correspondent à un conflit d’intérêt

entre décideurs égöıstes. Ici, l’interaction est due à l’interférence d’accès multiple

et les décisions consistent dans le choix des vecteurs de PA. À partir de certaines

hypothèses sur l’informations et comportement des émetteurs, une question naturelle

est de savoir si ce conflit a des résultats prévisibles. Ainsi, suivant ce raisonnement,

nous nous concentrons sur l’équilibre de Nash [66] comme un concept de solution de

ce conflit. Un NE pure est définie comme suit.

Définition 0.0.3 (Équilibre de Nash Pur) Dans les jeux non-coopératifs sous

forme stratégique G(i), avec i ∈ {a, b}, un profil d’action p ∈ P(i) est un NE pur si,

pour tout k ∈ K et pour tout p′k ∈ P(i)
k , que

uk(pk,p−k) > uk(p
′
k,p−k). (24)
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Lorsque au moins un NE existe dans les jeux G(a) et G(b), il peut être atteint comme

le résultat d’une interaction à long terme entre des joueurs qui suivent une règle

particulière de comportement (voir Sec. ) avec un échange d’information réduit

entre le récepteur et les émetteurs.

Les jeux de potentiel (GP) [64] sont une classe de jeux pour lesquels l’existence d’au

moins un équilibre pur de Nash est garantie. En outre, de nombreuses procédures

d’apprentissage, telles que la dynamique de meilleure réponse, le jeu fictif et certaines

dynamiques d’apprentissage par renforcement convergent vers un NE dans les GP.

Un des buts de cette thèse est de montrer que les jeux G(i), i ∈ {a, b} sont des jeux

de potentiel [64, 96].

Définition 0.0.4 (Jeux Exact de Potentiel) Tout jeu sous forme stratégique

définie par le triplet
Ä
K, (Pk)k∈K , (uk)k∈K

ä
est un jeu exact de potentiel s’il existe

une fonction φ (p) pour tout p ∈ P = P1 × . . .×PK telle que pour tous les joueurs

k ∈ K et pour tous les vecteurs d’allocation de puissance p′k ∈ Pk,

uk(pk,p−k)− uk(p′k,p−k) = φ(pk,p−k)− φ(p′k,p−k).

De la définition de la fonction d’utilité (22), la proposition suivante peut être facile-

ment démontrée [73].

Proposition 0.0.1 Les jeux sous forme stratégique G(i), avec i ∈ {a, b}, sont des

jeux exacts de potentiel avec fonction de potentiel,

φ(p) =
∑

s∈S

Bs

B
log2

(
σ2
s +

K∑

k=1

pk,sgk,s

)
. (25)

Dans la suite, nous présentons les principaux résultats de cette thèse par rapport

au canal d’accès multiple en parallèle en utilisant le cas plus simple. C’est-à-dire,

nous ne considérons que deux joueurs et deux canaux pour des raisons de simplicité

dans la présentation. Dans les chapitres à venir, des scénarios plus généraux sont

étudiés.

Le Cas de 2-Transmetteurs et 2-Canaux

Considérons les jeux G(a) et G(b) avec K = 2 et S = 2. Considérons aussi ∀k ∈ K,

pk,max = pmax et ∀s ∈ S, σ2
s = σ2 et Bs = B

S
. Notons par SNR = pmax

σ2 le RSB de

chaque lien de communication.

Le Jeux d’Allocation de Puissance

Notons par p† =
Ä
p†1,p

†
2

ä
l’equilibre du jeu G(a). Ansi, en suivant la Déf. 0.0.3, nous

écrivons l’ensemble d’équations suivant,

∀k ∈ K, p†k ∈ BRk

Ä
p†−k
ä
. (26)

Il est important de remarquer que pour tout k ∈ K et pour tout p−k ∈ P(a),

l’ensemble BRk (p−k) est un singleton (Déf. 3.3.3) et alors, (26) représente un



xx

système d’équations. En résolvant ce système d’équations (26) pour une réalisation

donnée des canaux {gi,j}∀(i,j)∈K×P , nous déterminons l’équilibre du jeu G(a). Nous

présentons cette solution dans la proposition suivante.

Proposition 0.0.2 (Équilibre de Nash dans le jeu G(a)) Notons par p† =
Ä
p†1,p

†
2

ä
∈

P(a), avec p†1 =
Ä
p†11, pmax − p†11

ä
et p†2 =

Ä
pmax − p†22, p

†
22

ä
un des équilibres du jeu

G(a). Alors, avec probabilité un, p† est l’unique équilibre du jeu et peut être écrit

comme:

• Équilibre 1: lorsque g ∈ B1 = {g ∈ R4
+ : g11

g12
> 1+SNRg11

1+SNRg22
, g21

g22
6 1+SNRg11

1+SNRg22
},

p†11 = pmax et p†22 = pmax.

• Équilibre 2: lorsque g ∈ B2 = {g ∈ R4
+ : g11

g12
> 1 + SNR (g11 + g21) , g21

g22
>

1 + SNR (g11 + g21)}, p†11 = pmax et p†22 = 0.

• Équilibre 3: lorsque g ∈ B3 = {g ∈ R4
+ : g11

g12
6 1

1+SNR(g12+g22)
, g21

g22
6 1

1+SNR(g12+g22)
},

p†11 = 0 et p†22 = pmax.

• Équilibre 4: lorsque g ∈ B4 = {g ∈ R4
+ : g11

g12
6 1+SNRg21

1+SNRg12
, g21

g22
> 1+SNRg21

1+SNRg12
},

p†11 = 0 et p†22 = 0.

• Équilibre 5: lorsque g ∈ B5{g ∈ R4
+ : g11

g12
> g21

g22
, 1+SNRg11

1+SNRg22
< g21

g22
< 1 +

SNR (g11 + g21)}, p†11 = pmax et p†22 = 1
2

(
pmax − σ2

g22
+ σ2+g11pmax

g21

)
.

• Équilibre 6: lorsque g ∈ B6{g ∈ R4
+ : g11

g12
> g21

g22
, 1

1+SNR(g12+g22)
< g11

g12
<

1+SNRg11

1+SNRg22
}, p†11 = 1

2

(
pmax − σ2

g11
+ σ2+pmaxg22

g12

)
et p†22 = pmax.

• Équilibre 7: lorsque g ∈ B7 = {g ∈ R4
+ : g11

g12
6 g21

g22
, 1+SNRg21

1+SNRg12
< g11

g12
< 1 +

SNR (g11 + g21)}, p†11 = 1
2

(
pmax − σ2+pmaxg21

g11
+ σ2

g12

)
et p†22 = 0.

• Équilibre 8: lorsque g ∈ B8{g ∈ R4
+ : g11

g12
6 g21

g22
, 1

1+SNR(g12+g22)
< g21

g22
<

1+SNRg21

1+SNRg12
}; p†11 = 0 et p†22 = 1

2

(
pmax − σ2+g12pmax

g22
+ σ2

g21

)
.

Proof : Voir l’annexe D 2

Dans la Fig. 4 nous avons tracé les différents types d’équilibres du jeu G(a) en

fonction des rapports de canaux g11

g12
et g21

g22
. L’unicité de l’équilibre n’est pas assurée,

sous certaines conditions comme nous le montrons dans la proposition suivante. En

fait, dans ces conditions un nombre infini d’équilibres peut être observé, toutefois,

ces conditions sont observées avec une probabilité nulle.

Proposition 0.0.3 Supposons que l’ensemble des canaux {gi,j}∀(i,j)∈K×P vérifie les

conditions suivantes

1

1+
pmax
σ2 (g12+g22)

<
g11
g12

=
g21
g22

<1+ pmax
σ2 (g11+g21), (27)
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Figure 4: Équilibres de Nash comme fonction des rapports des canaux g11

g12
et g21

g22
pour

le cas de deux joueurs et deux canaux dans les jeu G(a). La fonction ψ : R+ → R+

est définie comme: ψ(x) = 1 + SNR x. La correspondance de meilleure réponse

BRk(p−k), pour tout k ∈ K, est définie par (3.14). Dans cet exemple, nous avons

choisi arbitrairement ψ(g21)
ψ(g12)

< ψ(g11)
ψ(g22)

.
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Alors, tout vecteur d’allocation de puissance p = (p11, pmax − p11, pmax − p22, p22) ∈
P(a), tel que

p11 = 1
2

(
pmax (1− α) + σ2

(
1
g12
− 1

g11

))
+ αp22

avec α
4
= g11

g21
= g12

g22
, est un profil d’équilibre de Nash du jeu G(a).

La preuve de la Prop 0.0.3 est la première partie de la preuve de la Prop. 0.0.2.

Dans le paragraphe suivant, nous réalisons la même analyse présentée ci-dessus pour

le jeu G(b).

Le Jeu de Sélection de Canal

Lorsque K = 2 et S = 2, le jeu G(b) a quatre états possibles , i.e.,
∣∣∣P(b)

∣∣∣ = 4. Nous

décrivons ces états et la fonction de potentiel correspondante dans la Fig. 5.

Tx1\Tx2 p2=(pmax,0) p2=(0,pmax)

p1=(pmax,0) 1
2 log2(σ2+pmax(g11+g21))+ 1

2 log2(σ2) 1
2 log2(σ2+pmaxg11)+ 1

2 log2(σ2+pmaxg22)
p1=(0,pmax) 1

2 log2(σ2+pmaxg12)+ 1
2 log2(σ2+pmaxg21) 1

2 log2(σ2+pmax(g12+g22))+ 1
2 log2(σ2)

Figure 5: La fonction potentiel φ du jeu G(b), avec K = 2 et S = 2. Le joueur 1

choisit les lignes et le joueur 2 choisit les colonnes.

Nous remarquons que la Déf. 0.0.3 implique que chacun de ces résultats peut être

potentiellement un équilibre de Nash selon les réalisations des canaux {gi,j}∀(i,j)∈K×P ,

comme indiqué dans la proposition suivante.

Proposition 0.0.4 (Équilibre de Nash dans le jeu G(b)) Notons par p∗ = (p∗1,p
∗
2) ∈

P(b) un des équilibres du jeu G(b). Ensuite, en fonction des gains de canaux {gi,j}∀(i,j)∈K×P ,

le vecteur p∗ peut être écrit comme:

• Équilibre 1: lorsque g ∈ A1 = {g ∈ R4
+ : g11

g12
> 1

1+SNRg22
and g21

g22
6 1 +

SNRg11}, p∗1 = (pmax, 0) et p∗2 = (0, pmax).

• Équilibre 2: lorsque g ∈ A2 = {g ∈ R4
+ : g11

g12
> 1 + SNRg21 et g21

g22
> 1 +

SNRg11 }, p∗1 = (pmax, 0) and p∗2 = (pmax, 0).

• Équilibre 3: lorsque g = (g11, g12, g21, g22) ∈ A3{g ∈ R4
+ : g11

g12
6 1

1+SNRg22
et g21

g22
6

1
1+SNRg12

}, p∗1 = (0, pmax) et p∗2 = (0, pmax).

• Équilibre 4: lorsque g ∈ A4 = {g ∈ R4
+ : g11

g12
6 1+SNRg12 et g21

g22
> 1

1+SNRg12
},

p∗1 = (0, pmax) et p∗2 = (pmax, 0).

Proof : La preuve suit de la Déf. 0.0.3 et la Fig. 5. 2

Dans la Fig. 6, nous avons tracé les différents types de équilibres de Nash en

fonction des rapport de canaux g11

g12
et g21

g22
. Nous soulignons comment les profils

p∗ = (pmax, 0, 0, pmax) et p+ = (0, pmax, pmax, 0) sont, les deux, des équilibres de Nash

lorsque les réalisations de canaux satisfont la condition: g ∈ A5 = A1∩A4, i.e., A5 =
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Figure 6: Équilibres de Nash comme fonction des rapports de canaux g11

g12
et g21

g22

pour le jeu à deux joueurs et deux canaux G(b). La fonction ψ : R+ → R+ est

définie comme suit: ψ(x) = 1 + SNRx. Dans cet exemple, nous avons accordé

arbitrairement ψ(g11) < ψ(g21).
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{g ∈ R4
+ : 1

1+SNRg22
6 g11

g12
6 1 + SNRg21 and 1

1+SNRg12
6 g21

g22
6 1 + SNRg11}. Cela

confirme que plusieurs équilibres peuvent exister dans le jeu G(b) selon la réalisation

exacte des canaux, comme indique la Prop: 3.4.2. Par ailleurs, on peut aussi observer

qu’il pourrait exister un profil d’action correspondant à un équilibre de Nash qui n’est

pas un optimum global de la fonction de potentiel (25) [113] (e.g., φ (p∗) < φ
Ä
p+

2

ä
).

Maintenant, après le résultat dans [117], il peut être conclu que lorsqu’il existe deux

NE en stratégies pures, il en existe un troisième en stratégies mixtes. Quand il existe

un équilibre unique en stratégies pures, l’équilibre en stratégies mixtes cöıncide avec

celui en stratégies pures. Dans la suite, les performances atteintes par les deux

émetteurs à l’équilibre de Nash dans les deux jeux de PA et CS sont comparées.

Un Paradoxe de Braess

Dans le jeu G(b), l’ensemble d’actions du joueur k est un sous-ensemble de son en-

semble d’actions dans le jeu G(a), i.e., ∀k ∈ K, P(b)
k ⊆ P(a)

k . On pourrait donc

näıvement imaginer qu’un plus grand ensemble d’actions conduit à une meilleure

performance globale, par exemple, une plus grande efficacité spectrale. Dans cette

thèse, nous montrons que, contrairement à l’intuition, la réduction de l’ensemble

d’actions de chaque joueur conduit à une meilleure performance globale. Cet effet

(souvent associé à un paradoxe de Braess [15]) a été observé dans le canal à in-

terférence en parallèle [90] et dans le canal à accès multiple en parallèle [75] pour le

cas d’annulation successive d’interférence. Dans la suite, nous comparons l’efficacité

spectrale globale obtenue dans les jeux G(a) et G(b) à l’équilibre de Nash.

Nous notons par p
(†,n)
k , l’unique équilibre du jeu G(a), lorsque le vecteur

g = (g11, g12, g21, g22) ∈ Bn,

pour tout n ∈ {1 . . . , 8}. Notons aussi par p(∗,n) un des équilibres du jeu G(b) lorsque

(g11, g12, g21, g22) ∈ An, pour tout n ∈ {1, . . . 4}. Les ensembles An et Bn sont définis

dans les Prop. 0.0.2 et Prop.0.0.4. Ansi, pour un niveau de RSB, SNR > 0, nous

observons que ∀n ∈ {1, . . . , 4}, An∩Bn = Bn et ∀g = (g11, g12, g21, g22) ∈ Bn, l’égalité

suivante est toujours satisfaite p
(†,n)
k = p

(∗,n)
k , ce qui implique la même performance

dans les deux jeux. Toutefois, lorsque les équilibres des deux jeux sont différents,

nous ne pouvons pas comparer facilement les utilités atteintes par chaque joueur,

car elles dépendent des réalisations exactes des canaux. Heureusement, l’analyse

simplifie largement en considérant soit un régime à faible RSB ou un régime à fort

RSB.

Proposition 0.0.5 Dans un régime à faible RSB, les deux jeux G(a) et G(b) possèdent

un unique équilibre. Nous notons cet équilibre pour k ∈ K et nk ∈ S comme,

p∗k,nk = pmax1
ß
nk= arg max

`∈S
gk,`
™ (28)

p∗k,−nk = pmax − pk,nk . (29)
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Proof : Voir l’annexe F 2

De même, la comparaison des performances entre les jeux G(a) et G(b) pour le régime

à fort RSB est présentée dans la proposition suivante.

Proposition 0.0.6 (Existence d’un Paradoxe de Braess) Dans le régime à fort

RSB, le jeu G(a) a un unique équilibre pur que nous notons p† et le jeu G(b) a deux

équilibres purs que nous notons p(∗,1) et p(∗,4). Alors, il existe au moins un n ∈ {1, 4}
et une valeur SNR0 > 0, telle que ∀SNR > SNR0

2∑

k=1

uk(p(∗,n))−
2∑

k=1

uk(p†)>δ, (30)

et δ > 0.

Pour la preuve voir App. G. À partir de la Prop. 0.0.5 et la Prop. 0.0.6, nous pou-

vons conclure que dans le régime à faible RSB, les deux jeux G(a) and G(b) induisent

la même efficacité spectrale globale. Au contraire, le jeu G(b) induit toujours une

efficacité spectrale égale ou supérieure à cela induite par le jeu G(b) dans le régime

à fort RSB. Ce résultat contre-intuitif implique un paradoxe de Braess, puisque

P(b) ⊂ P(a).

Conclusions

Dans cette thèse, il est clairement montré dans quelle mesure l’analyse des équilibres

de Nash dans les canaux à accès multiple décentralisés en parallèle diffère de celle

réalisée pour d’autres canaux comme les canaux MIMO Gaussien à interférence. La

structure particulière des canaux à accès multiple décentralisés en parallèle (qui sont

des modèles de canal important dans la pratique) sous l’hypothèse d’un décodage à

unique utilisateur au récepteur conduit à la propriété des jeux de potentiel. Le jeu de

sélection de canal avait été traité dans la littérature vaguement mais jamais avec le

niveau de détail avec lequel il a été présenté dans cette thèse. En particulier, une in-

terprétation en théorie des graphes est utilisée pour caractériser le nombre d’équilibre

et la propriété des jeux de potentiel est exploitée pour développer des procédures

d’apprentissage. Néanmoins, bien que tous ces résultats soient encourageants quant

à la pertinence de la théorie des jeux pour l’analyse des problèmes d’allocation de

puissance, d’importantes questions d’ordre pratique ont été délibérément ignorées.

Par exemple, l’impact de l’estimation de canal n’est pas évalué dans cette thèse.

Apprentissage d’un Équilibre

Dans la section précédente, nous avons montré que la pertinence de la notion

d’équilibre de Nash provient du fait qu’une fois qu’il est atteint, la configuration de

transmission de chaque appareil radio est optimale par rapport aux configurations de

transmission adoptées par tous les autres appareils. Ainsi, cette notion d’équilibre

est clairement une solution désirée du point de vue de chaque appareil radio et semble
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être pertinent dans les réseaux sans fil où ni la coordination ni la coopération entre

tous les éléments du réseau n’est possible. Néanmoins, atteindre un équilibre dans

un réseau décentralisé n’est pas une tâche facile. Comme une des principales con-

traintes, nous mettons en évidence le fait que les appareils radio ne sont pas capables

d’observer ni la configuration de transmission (par exemple, le niveau de puissance

d’émission ou canal sélectionné) des autres appareils, ni l’état global instantané du

réseau, à savoir, les réalisations des canaux, les contraintes d’énergie et la qualité

de service exigée par tous les appareils radio. Ainsi, le manque d’information de

chaque appareil radio à tout instant donné devient naturellement une contrainte

pour déterminer une règle de comportement qui lui permet d’atteindre un équilibre.

Dans cette perspective, un intérêt croissant a été observé dans la conception de

règles de comportement pour permettre aux appareils radio d’atteindre une con-

figuration d’équilibre comme un résultat d’une interaction de courte durée avec les

autres appareils, semblable à un processus d’apprentissage [47]. Dans ce sens, la

dynamique meilleure réponse (best response dynamics, BRD) [31] et le jeu fictif

(Fictitious Play, FP) [16] ont été largement utilisés dans les communications sans

fil [71, 73, 97, 98, 100] et il a été prouvé qu’ils convergent vers un équilibre dans des

réseaux de certaines topologies.

La principale contrainte de la BRD, le FP et ses variantes est le fait que chaque

appareil radio doit connaitre les configurations de transmission de tous les autres

appareils, l’état du jeu instantané et en plus, ils doivent posséder une expression

analytique de la fonction d’utilité, ce qui est clairement une condition très exigeante

dans un scénario pratique. Dans certaines topologies de réseau et en fonction de la

métrique de performance, cette condition peut être affaiblie et un simple message

de diffusion à partir de chaque récepteur peut être suffisant pour mettre en oeuvre

soit le BRD ou le FP [98]. Toutefois, le nombre de messages de signalisation requis

pourrait être très élevé selon le nombre de dimensions du scénario, par exemple, le

nombre de bandes de fréquences ou les antennes de transmission.

Des règles de comportement plus élaborées pour atteindre des équilibres sont basées

sur l’apprentissage par renforcement (AR) [18, 95, 120]. Dans le AR, l’information

requise par chaque appareil radio est tout simplement une observation de ses pro-

pres performances atteintes au moins chaque fois qu’il change sa configuration de

transmission. Le principe de la RL est la suivante. Après avoir observé la valeur

actuelle de son utilité, chaque appareil radio met à jour une distribution de prob-

abilité sur l’ensemble de toutes ses configurations possibles (ou actions). À chaque

mise à jour, la probabilité d’augmenter ou diminuer la probabilité d’utiliser une con-

figuration en particulier dépend de l’utilité observée chaque fois qu’elle a été jouée.

Dans le domaine des communications sans fil, cette idée a été utilisée dans certains

scénarios, en particulier dans l’allocation dynamique des ressources radio [118,123].

Les principaux avantages de l’AR à l’égard de la BRD et FP sont nombreux (à con-

dition qu’elle converge vers NE). Par exemple, l’AR est moins exigeant en termes

d’information: seulement une observation de la l’utilité atteinte à chaque étape de

jeu est suffisant pour appliquer la règle de l’AR.

Cependant, en dehors de tous les avantages attrayants de l’AR, il a un inconvénient
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essentiel: chaque observation de l’utilitaire est utilisé pour mettre à jour directement

la distribution de probabilité de chaque appareil, sans le maintien d’une estimation

de la performance atteinte avec chacune des configurations de transmission. Ce

fait pourrait conduire le réseau à converger vers un état stationnaire qui n’est pas

un équilibre. Nous disons stationnaire, dans le sens où aucun des appareil radio

change sa configuration car il est incapable d’identifier d’autres configurations qui

pourraient apporter une meilleure performance.

Motivés par cette observation, dans cette thèse, nous introduisons une sorte de

règles de comportement qui sont connues dans le domaine des processus de décision

de Markov comme des algorithmes d’acteur critique [43, 44, 107]. Ici, chaque ap-

pareil radio apprend simultanément la performance moyenne temporelle obtenue

avec chacune de ses configurations de transmission et la distribution de probabilité

d’équilibre. Cette estimation permet de résoudre le problème rencontré dans les

règles de comportement fondées sur l’apprentissage par renforcement, où la conver-

gence est observée, mais la configuration finale du réseau ne correspond pas à un

véritable équilibre de Nash. En particulier, contrairement aux algorithmes de l’AR

décrits ci-dessus, chaque fois que ces règles de comportement conduisent à une con-

figuration de réseau stationnaire, cela correspond à un équilibre logit (EL), qui est

en effet, un concept proche d’epsilon-équilibre de Nash.

Formulation du Jeu

Considérons le jeu G(b) décrit dans la Sec. et supposons qu’il est joué de manière

répété à l’infini. Chaque étape est considérée indépendante de toutes les étapes

précédentes. À chaque étape n, chaque joueur k adopte une action, par exem-

ple, un vecteur d’allocation de puissance pk(n) ∈ Ak. A la fin de l’étape n, le

joueur k observe une valeur numérique ũk(n) de sa performance individuelle instan-

tanée, c’est-à-dire, son efficacité spectrale ũk(n) = uk (h(n),pk(n),p−k(n)). Nous

soulignons que ces observations peuvent être bruitées [74]. Toutefois, ce cas n’est

pas considéré dans cette thèse.

Nous noterons par θk(n) toute l’information rassemblée par le joueur k jusqu’à

l’étape n, i.e.,

θk(n) = {(ak(0), ũk(0)), . . . , (ak(n− 1), ũk(n− 1))}. (31)

À chaque étape de jeu, les émetteurs choisissent leurs vecteurs d’allocation de puis-

sance respectifs en suivant une distribution de probabilité

πk(n) =
Å
π
k,A

(1)
k

(n), . . . , π
k,A

(Nk)

k

(n)
ã
∈ 4 (Ak)

qui est construite en fonction de son histoire privée θk(n). Ici, ∀nk ∈ {1, . . . , Nk},
π
k,p

(nk)

k

(n) représente la probabilité que le joueur k joue l’action p
(nk)
k ∈ Ak à l’étape

n, i.e.,

π
k,A

(nk)

k

(n) = Pr
(
pk(n) = p

(nk)
k

)
. (32)
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Cette probabilité, nommée en théorie de jeux comme stratégie, est dynamiquement

mise à jour pour atteindre un équilibre. Dans la section suivante nous décrivons

la notion d’équilibre que nous pouvons apprendre avec les utiles décrites dans cette

section.

Équilibre Logit

Avant de fournir une définition formelle de l’équilibre logit, nous introduisons la

notion de meilleure réponse logit.

Définition 0.0.5 (Meilleure Réponse logit) Considérons le jeu G et notons la

strategie du joueur k par π−k ∈ 4 (A1)× . . .×4 (Ak−1)×4 (Ak+1)× . . .×4 (AK),

avec k ∈ K. Ansi, la meilleure réponse logit du joueur k, avec parametre γk > 0, est

une distribution de probabilité β
(γk)
k (ūk(·, π−k)) ∈ 4 (Ak) telle que, β

(γk)
k : RNk →

4 (Ak) est une fonction de logit,

β
(γk)

k
(ūk(·,π−k)) =

Ç
β

(γk)

k,A
(1)
k

(ūk(·,π−k)),...,β
(γk)

k,A
(Nk)

k

(ūk(·,π−k))

å
et ∀nk ∈ {1, . . . , Nk},

β
(γk)

k,A
(nk)

k

(ūk(·, π−k)) =
exp

(
γkūk(e

(nk)
k , π−k)

)

Nk∑

m=1

exp
(
γkūk(e

(m)
k , π−k)

) . (33)

À partir de la Déf. 0.0.5, il peut être conclu que, à chaque étape du jeu, chaque

vecteur d’allocation de puissance d’un émetteur donné a une probabilité non nulle

d’être joué, i.e., ∀k ∈ K and ∀nk ∈ {1, . . . , Nk} et ∀γk ∈ R+, nous observons

que β
(γk)

k,A
(nk)

k

(ūk (·, π−k)) > 0. Plus généralement, on peut affirmer que la meilleure

réponse logit est représentée par une distribution de probabilité qui assigne des

probabilités élevées aux vecteurs d’allocation de puissance associés à une haute

efficacité spectrale et une faible probabilité aux vecteurs d’allocations de puissance

associés à une faible efficacité spectrale

Enfin, nous signalons que contrairement à la meilleure réponse dans le cas général,

la meilleure réponse logit du joueur k est unique pour toutes les stratégies que les

autres joueurs pourraient adopter.

En utilisant la Déf. 0.0.5, nous introduisons la définition de l’équilibre logit:

Définition 0.0.6 (Équilibre Logit) Considérons le jeu G et notons par π∗ =

(π∗1, . . . , π
∗
K) ∈ 4 (A1)× . . .×4 (AK) un prolife de strategies en particulier. Ansi,

le profil π∗ est un équilibre logit avec parametre γ = (γ1, . . . , γK), si pour tout k ∈ K,

π∗k = β
(γk)
k

(
ūk
(
e

(Nk)
1 , π∗−k

)
, . . . , ūk

(
e

(Nk)
Nk

, π∗−k
))
. (34)

À l’équilibre logit, puisque toutes les actions sont jouées avec une probabilité non

nulle, les actions jouées par le joueur k dans certaines étapes ne maximisent pas sa
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performance instantanée uk, ce qui affecte négativement la performance à long terme

ūK . Dans cette thèse, nous allons montrer que la perte maximale en performance

du joueur k n’est pas plus élevée que 1
γk

ln(Nk), ce qui confirme que l’équilibre logit

est dans la classe de ε-équilibre décrit dans la Déf. 4.2.1. Les aspects d’existence et

unicité de l’équilibre logit sont aussi traités dans cette thèse dans le chapitre 4.

Apprentisage d’un Èquilibre Logit

Dans cette section, nous concevons des règles de comportement tels qu’étant donné

l’informations recueillie par le joueur k à chaque étape n, i.e., les ensembles {θk(n)}n>0,

tous les joueurs sont capables de produire une séquence {πk(n)}n>0, telle que,

limn→∞ ||πk (n)− π∗k|| = 0, où

π∗ = (π∗1, . . . , π
∗
K) ∈ 4 (A1)× . . .×4 (AK)

est un équilibre logit du jeu G (Déf. 0.0.6).

Une remarque importante à partir de la Déf. 0.0.6 est le fait que nous supposons que

tous les joueurs sont capables de construire leurs meilleurs réponses logit. Néanmoins,

la construction d’une telle distribution de probabilité exige à chaque joueur k de

connaitre le vecteur ūk(·, π−k(n)). Ainsi, les dispositifs radio doivent estimer leur

vecteur correspondant ūk(·, π−k(n)) à chaque étape n du jeu en fonction de leur

l’histoire actuelle θk(n) afin de générer leur meilleure réponse logit.

Nous notons par

ûk(n) =
Å
û
k,A

(1)
k

(n), . . . , û
k,A

(Nk)

k

(n)
ã

(35)

la version estimée par le joueur k du vecteur ūk(·, π−k(n)) à l’étape n du jeu.

Dans la suite, nous présentons un résultat initialement introduit dans [82], qui per-

met aux appareils radio d’estimer simultanément leurs vecteurs ūk(·, π−k(n)) et de

déterminer la distribution de probabilité πk(n), avec laquelle le joueur choisit le

vecteur d’allocation de puissance pk(n).

Théorème 0.0.5 (Règle de Comportement) Considérons le jeu G et assumons

que pour tout k ∈ K et pour tout nk ∈ {1, . . . , Nk} nous définissons pour tout n ∈ N,





û
k,p

(nk)

k

(n) = û
k,p

(nk)

k

(n−1)+

αk(n)

1¶
pk(n−1)=p

(nk)

k

©
π
k,p

(nk)

k

(n)

Å
ũk(n−1)−û

k,p
(nk)

k

(n−1)

ã
,

π
k,p

(nk)

k

(n) = π
k,p

(nk)

k

(n−1)+

λk(n)

Ç
β

(γk)

k,p
(nk)

k

(ûk(n))−π
k,p

(nk)

k

(n−1)

å
,

(36)

où, pk(0) ∈ Ak, ûk(0) ∈ RNk and πk(0) ∈ 4 (Ak) sont les valuers initiales.

Considérons aussi les hypotheses suivantes tel que pour tout (j, k) ∈ K2, le taux
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d’apprentissage αk et λj satisfont les contraintes :

(B0) lim
T→∞

T∑

n=0

αk(n) = +∞ and lim
T→∞

T∑

n=0

αk(n)2 < +∞,

(B1) lim
T→∞

T∑

n=0

λk(n) = +∞ and lim
T→∞

T∑

n=0

λk(n)2 < +∞,

et,

(B2) lim
n→∞

λj(n)

αk(n)
= 0.

Ansi, si l’ensemble des algorithmes couplés (36) d’approximation stochastique con-

vergent, il résulte que :

lim
n→∞

πk(n) = π∗k, (37)

lim
n→∞

û
k,p

(nk)

k

(n) = ūk(e
(Nk)
nk

, π∗−k), (38)

où π∗k ∈ 4 (Ak) satisfait que

π∗k =β
(γk)

k

Ä
ūk

Ä
e

(Nk)

1 ,π∗−k

ä
,...,ūk

Ä
e

(Nk)

Nk
,π∗−k

ää
. (39)

La preuve du théorème 0.0.5 est présentée dans le cas le plus général du jeu G dans

le chapitre 4. Cette preuve utilise des résultats antérieurs sur des approximations

stochastiques [12,48]. Dans cette thèse, nous prouvons que la règle de comportement

dans le théorème 0.0.5 converge dans plusieurs classes de jeux, par exemple, des jeux

de potentiels [64]. Cependant, en général, pour un jeu que n’appartient pas une de

ces classes de jeux, la convergence vers un équilibre doit être prouvée.

Conclusions

Dans cette thèse, une dynamique d’apprentissage bien adaptée aux contraintes

réelles des systèmes de communications a été introduite afin de permettre aux

réseaux sans fil entièrement décentralisés d’atteindre un équilibre. Par exemple,

il a été supposé que la seule information qu’un dispositif radio peut obtenir à partir

du réseau est une mesure de sa performance instantanée, et, chaque appareil radio

est complètement ignorant de l’existence de tous les autres appareils radio. Dans

ces conditions, nos dynamiques d’apprentissage permettent que chaque appareil ra-

dio soit capable d’apprendre simultanément la stratégie et la performance atteinte

avec chacune de ses actions à l’équilibre. Ici, nous avons utilisé des outils récents

d’approximations stochastiques pour étudier la convergence d’une telle dynamique.

En particulier, nous montrons qu’il existe plusieurs classes de jeux où ces dynamiques

d’apprentissage convergent toujours vers un équilibre Logit.

Équilibrie de Satisfactions

Dans le contexte de réseaux auto-configurables, un équilibre de Nash (NE) est un

état du réseau auquel les dispositifs radios ne peuvent pas améliorer leur qualité
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de service en changeant unilatéralement leur configuration de transmission. À

l’équilibre de Nash, chaque appareil radio atteint le plus haut niveau possible de

qualité de service étant donné les configurations de transmission de ses homologues.

Cependant, d’un point de vue pratique, n’importe quel élément du réseau pour-

rait être plus intéressé à garantir un niveau minimum de qualité de service au lieu

du niveau le plus élevé possible. Nous avons plusieurs raisons pour justifier cette

affirmation. Tout d’abord, une communication devient possible lorsque certaines

conditions spécifiques sont satisfaites, par exemple, un niveau minimum du RSBI,

un délai minimum, etc. En plus, des niveaux plus élevés de qualité de service im-

pliquent souvent des efforts plus importants, par exemple, des niveaux plus élevés de

puissance de transmission, de traitement du signal plus complexe, etc. Finalement,

nous signalons qu’en augmentant la qualité de service pour une communication par-

ticulière nous diminuons significativement la qualité des autres communications. Ce

raisonnement implique que, en termes pratiques, le concept d’équilibre de Nash n’est

pas la notion d’équilibre la plus adaptée pour modéliser un réseau décentralisé de

communications. En présence de contraintes, en termes des niveaux de qualité de

service minimum, une solution plus adaptée pour les réseaux décentralisés de com-

munications est le concept d’équilibre introduit par Debreu dans [24] et aujourd’hui

connu sous le nom de équilibre de Nash généralisé (GNE). Dans le contexte de

réseaux décentralisés, un GNE est un état dans lequel les émetteurs satisfont leurs

contraintes de qualité de service et leur performance ne peut pas être améliorée par

des déviations unilatérales (comme dans le NE). Néanmoins, selon les paramètres

utilisés pour mesurer la qualité de service et de la topologie du réseau, le GEN pour-

rait ne pas exister [46]. Dans le cas où, au moins un GNE existe, un émetteur finit

toujours par atteindre le niveau plus élevé de qualité de service possible, ce qui est

souvent coûteux comme mentionné ci-dessus. Dans le cas le plus général, on peut

considérer que les émetteurs visent à satisfaire uniquement leurs contraintes au lieu

de considérer qu’ils visent à maximiser leur performance au même temps qu’ils visent

à satisfaire leurs contraintes. Ce raisonnement conduit à un autre type de concept

d’équilibre: tout état d’un jeu donné où tous les joueurs satisfont leurs propres con-

traintes est un équilibre. Récemment, Ross et al. [93] ont formalisé ce concept pour

un type particulier de contraintes. Un tel équilibre est appelé équilibre de satisfac-

tion (SE) par les auteurs de [93]. Dans notre scénario, un SE représente tout état

du réseau où tous les émetteurs satisfont leurs contraintes de QoS, indépendamment

de leur performance atteinte.

Dans ce cadre, les contributions présentées dans cette thèse sont les suivants:

• Les notions de SF et SE sont formalisées dans le contexte des stratégies pures

(pure strategies, PS) et des stratégies mixtes (mixed strategies, MS) pour des

jeux finis. Quelques conditions pour l’existence de la SE en PS et MS sont

établies.

• Nous introduisons la notion d’epsilon équilibre de satisfaction (ε-SE), qui est

tout simplement une stratégie mixte qui permet à tous les joueurs d’être sat-

isfait avec une probabilité d’au moins 1− ε. Ce concept d’équilibre est moins
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restrictif en termes d’existence que le SE et donc, très importante pour le

domaine des réseaux de communications décentralisés.

• Un raffinement de la notion de SE à laquelle nous nous référons comme

équilibre efficace de satisfaction (efficient satisfaction equilibrium, ESE) est

présenté comme un mécanisme de sélection d’équilibre impliquant l’idée d’effort

de satisfaction.

• Un algorithme d’apprentissage simple à mettre en oeuvre pour atteindre le

SE, basé sur les algorithmes proposés dans [94], est présenté.

Jeux Sous Forme de Satisfaction et Équilibre de Satisfaction

Dans cette section, nous présentons une nouvelle formulation de jeu où, contraire-

ment aux formulations existantes (par exemple, la forme normale [66] et la forme nor-

male avec des contraintes sous les ensembles d’actions [24]), l’idée d’optimisation des

performances, i.e., maximisation de l’utilité ou la minimisation des coûts, n’existe

pas. Dans notre formulation, à laquelle nous nous référons comme forme de satisfac-

tion, le but des joueurs est d’adopter l’une des actions qui leur permet de satisfaire

ses contraintes individuelles étant données les actions adoptées par tous les autres

joueurs. Selon cette formulation de jeu, nous introduisons le concept d’équilibre de

satisfaction.

Jeux sous Forme de Satisfaction

En général, un jeu sous la forme de satisfaction peut être décrit par les trois éléments

suivants: ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
. (40)

Ici, l’ensemble K = {1, . . . , K} répresente l’ensemble de joueurs et l’ensemble Ak =

{A(1)
k , . . . , A

(Nk)
k } répresente l’ensemble de Nk actions disponibles pour un transmet-

teur donné k. Un profil d’action est un vecteur a = (a1, . . . , aK) ∈ A, où,

A = A1 × . . .×AK . (41)

Dans cette analyse, les ensembles K and {Ak}k∈K sont supposés finis et non vides.

Nous notons par a−k = (a1, . . . , ak−1, ak+1, . . . , aK) ∈ A−k,où,

A−k = A1 × . . .×Ak−1 ×Ak+1 × . . . ,×AK . (42)

La correspondance fk : A−k → 2Ak détermine l’ensemble des actions du joueur

k qui permet sa satisfaction en prenant en compte les actions jouées par tous les

autres joueurs. Ici, la notation 2Ak désigne l’ensemble de tous les sous-ensembles

possibles de l’ensemble Ak, y compris Ak. Nous soulignons que 2Ak inclut également

l’ensemble vide, qui modélise le cas où un joueur se retrouve sans une action qui

lui permet de satisfaire ses contraintes individuelles étant données les actions des

autres joueurs. Souvent, c’est une contrainte forte en mathématiques et donc, dans
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certaines sections de cette thèse, nous supposons qu’aucune des correspondances fk
n’est vide.

En général, un résultat important d’un jeu sous forme de satisfaction est celui où

tous les joueurs sont satisfaits. Nous nous référons à ce résultat comme l’équilibre

de satisfaction (SE).

Définition 0.0.7 (Équilibre de Satisfaction [83]) Un profil d’action a+ est un

équilibre de satisfaction du jeu ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
, si

∀k ∈ K, a+
k ∈ fk

Ä
a+
−k
ä
. (43)

Nous remarquons que sous cette formulation, les résultats où tous les joueurs sont

satisfaits est naturellement un équilibre. Ici, puisque le but de chaque joueur est

d’être satisfait, aucun d’entre eux a un intérêt particulier à changer son action

actuelle. Une remarque importante ici est que, dans cette formulation, les joueurs

sont supposés n’est pas se préocuper du fait que les autres joueurs puissent ou non

satisfaire leurs contraintes individuelles. Une analyse intéressante de l’impact de

cette hypothèse dans la définition de l’équilibre Nash peut être trouvée dans [2].

Dans ce contexte, quand les réseaux décentralisés sont modélisés en utilisant la forme

de satisfaction, les appareils radio sont indifférents au fait qu’il pourrait exister une

autre configuration de transmission avec laquelle une meilleure performance peut

être atteinte. Ici, lorsque chaque appareil radio est en mesure de satisfaire ses

conditions individuelles de QoS, il n’a aucune incitation à modifier unilatéralement

sa configuration de transmission ou réception.

Existence et Unicité de l’Équilibre de Satisfaction

Dans cette section, nous étudions l’existence et l’unicité d’un équilibre de satisfaction

dans les jeux sous forme de satisfaction et dans son extension correspondante en

stratégies mixtes. Une attention particulière est donnée à l’existence du ε-SE dans

le cas où il n’existe pas un SE ni en stratégies pures ni en stratégies mixtes.

Existence du SE en Stratégies Pures

Afin d’étudier l’existence du SE dans le jeu ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
, notons par

F : A → 2A la correspondance définie comme suit:

F (a) = f1 (a−1)× . . .× fK (a−K) . (44)

Alors, un SE existe si et seulement si

∃a ∈ A : a ∈ F (a). (45)

Nous soulignons que cette formulation nous permet d’utiliser les théorèmes de point

fixe (FP) pour déterminer les conditions suffisantes pour l’existence d’au moins un

SE. Par exemple, on peut compter sur le théorème de point fixe de Knaster et

Tarski [42] pour énoncer le théorème suivant.
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Théorème 0.0.6 (Existence d’un SE dans les jeux finis) Considérons le jeuÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
et supposons que l’ensemble A a une relation binaire

notée par �. Assumons aussi que: (i) V = 〈A,�〉 est un treillis complet;

(ii) F (a) est non vide pour tout a ∈ A;

(iii) la correspondence F (44) satisfait que ∀ (a, a′) ∈ A2, avec a � a′,

∀ (b,b′) ∈ F (a)× F (a′) , b � b′. (46)

Puis le jeu a au moins un SE en stratégies pures.

Notez que le théorème 0.0.6 exige que pour tout a ∈ A, l’ensemble F (a) est non

vide, i.e.,

∀k ∈ K and ∀a−k ∈ A−k, ∃ak ∈ Ak : ak ∈ fk (a−k) . (47)

Dans certains cas, cette condition peut parâıtre restrictive. Toutefois, dans le con-

texte général des communications sans fil, quand un appareil radio n’est pas capable

de satisfaire ses contraintes de QoS, l’action par défaut est tout simplement la mise

en veille. Cela pourrait impliquer l’existence d’une action “ ne rien faire (do noth-

ing, DN)” qui pourrait être considérée pour éviter que fk(a−k) soit vide, lorsque

cela est nécessaire. L’interprétation de l’existence de l’action DN dépend fortement

du scénario. Par exemple, dans le cas des jeux d’allocation de puissance, une telle

action peut être le vecteur nul, c’est-à-dire, l’équivalent à une puissance d’émission

zéro.

En général, il est difficile de fournir les conditions nécessaires pour observer un

SE unique pour un ensemble général de correspondances {fk}k∈K. Comme nous le

verrons dans la suite de cette thèse, l’ensemble des SE n’est souvent pas unitaire

dans les jeux qui modélisent des réseaux décentralisés. Dans ce contexte, nous avons

fourni un mécanisme de sélection d’équilibres.

Apprentissage de l’Équilibre de Satisfaction

Dans cette section, nous étudions une règle de comportement qui permet aux ap-

pareils radio d’apprendre l’équilibre de satisfaction d’une manière totalement décentralisée.

Ici, l’hypothèse à souligner est que les joueurs n’ont pas besoin d’observer la valeur

exacte de l’utilité instantanée atteinte, à savoir, le taux de transmission, l’efficacité

énergétique, etc, mais seulement de savoir s’ils sont satisfaits ou non à chaque étape

du processus d’apprentissage. Cela implique seulement en échange de messages de

longueur 1-bit entre les correspondants émetteur-récepteur. Dans la suite, nous for-

mulons le problème d’apprentissage correspondant et, plus tard, nous introduisons

des règles comportementales qui permettent aux joueurs d’apprendre la SE.

Formulation du Problème d’Apprentissage

Nous décrivons le processus d’apprentissage d’un SE en termes d’éléments du jeuÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
comme suit. Supposons que le temps est divisé en

étapes notées par l’indice n ∈ N. Chaque étape se termine quand chaque joueur a

joué une fois. Nous notons les actions prises par le joueur k à l’étape n par ak(n).
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À chaque intervalle de n, le joueur k observe s’il est satisfait ou non, c’est-à-dire, il

observe une variable binaire

ṽk(n) = 1{ak(n)∈fk(a−k(n))}. (48)

Notre intention est d’apprendre au moins un SE en laissant les joueurs interagir

en suivant des règles de comportement particulières. Nous disons que les joueurs

apprennent un équilibre de satisfaction en stratégies pures si, après un nombre fini

d’intervalles de temps donnée, tous les joueurs ont choisi une action qui atteint sa

satisfaction, et donc, aucune mise à jour des actions n’a lieu à partir de ce moment.

Apprentissage du SE en Strategies Pures

Avant de présenter la règle de comportement qui permet aux joueurs d’atteindre

l’un des équilibres du jeu ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
, nous déclarons l’hypothèse

suivante:

(i) Le jeu ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
a au moins un SE en stratégies pures.

(ii) Pour tout k ∈ K et pour tout a−k ∈ A−k, l’ensemble fk (a−k) n’est pas vide.

(iii) Les ensembles K et {Ak}k∈K sont finis.

La première hypothèse garantit que le problème d’apprentissage SE est bien posé,

à savoir, les appareils radio sont assignés une tâche réalisable. La seconde hy-

pothèse fait référence au fait que, chaque appareil radio est toujours en mesure de

trouver une configuration d’émission/réception avec laquelle il peut être considéré

comme satisfait étant données les configurations d’émission/réception de tous les

autres appareils radio. Cette hypothèse peut sembler restrictive, mais ce n’est pas

nécessairement le cas, voir la discussion sur l’action “ne rien faire” dans la Sec. . La

troisième hypothèse est considérée afin de s’assurer que notre algorithme est capable

de converger dans un temps fini.

Sous la condition que toutes les hypothèses sont vraies pour un jeu en particulier,

chaque joueur choisit ses actions comme suit. La première action du joueur k, notée

ak(0), est prise en considérant une distribution de probabilité arbitraire π̂k(0) ∈
4 (Ak). Souvent, cette probabilité π̂k(0) est la distribution uniforme. À l’étape

n > 0, le joueur k change son action si et seulement si il n’est pas satisfait, c’est-

à-dire, si ṽk(n − 1) = 0. Dans ce cas, la prochaine action est choisi en suivant une

distribution de probabilité π̂k(n) à laquelle nous nous référons comme la distribution

de probabilité de l’exploration. Si le joueur k est satisfait à l’étape n, c’est-à-dire,

ṽk(n− 1) = 1, il continue à jouer la même action. Ainsi, on peut écrire que,

ak(n) =

{
ak(n− 1) if ṽk(n− 1) = 1

ak(n) ∼ π̂k(n) if ṽk(n− 1) = 0
. (49)

La règle de comportement (49) est basée sur la proposition présentée en [94]. Nous

remarquons que dans cette formulation, la seule amélioration possible est sur la
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conception de π̂k(n) et son évolution au fil du temps. Toutefois, nous avons laissé

cette question hors de la portée de cette thèse et aucune distribution de probabilité

particulière est supposé. Ici nous utilisons la distribution uniforme. Nous formal-

isons la règle de comportement (49) dans l’algorithme présenté dans Alg. 1, dans

le Chapitre 5. En ce qui concerne la convergence de cette règle de comportement,

nous fournissons la proposition suivante.

Proposition 0.0.7 La règle de comportement (49) avec une distribution de prob-

abilité πk =
Å
π
k,A

(1)
k

, . . . , π
k,A

(Nk)

k

ã
∈ 4 (Ak), avec k ∈ K, converge vers un SE

du jeu ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
en temps fini si pour tout k ∈ K et pour tout

nk ∈ {1, . . . , Nk},
π
k,A

(nk)

k

(n) > 0, (50)

à chaque étape n ∈ N, et sous la condition que les hypothèses (i), (ii) and (iii) sont

toujours vraies.

Les Strategies de Clipping et le SE

La règle de comportement (49) converge vers un SE en stratégies pures en un temps

fini. Toutefois, dans les scénarios du système réel, il est souvent observé qu’il pourrait

y exister une action d’un joueur donné, qui atteint la satisfaction de ce joueur en

particulier indépendamment des actions adoptées par tous les autres joueurs. Nous

nous référons à ce type d’actions comment actions de clipping (actions de clippings,

CA) [83].

Définition 0.0.8 (Clipping Action) Nous disons que un joueur k dans le jeuÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
a une action de clipping ak ∈ Ak si

∀a−k ∈ A−k, ak ∈ fk (a−k) . (51)

Comme le montre la proposition suivante, l’existence d’une action de clippings dans

le jeu ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
pourrait contraindre la convergence de la règle

de comportement dans (49).

Proposition 0.0.8 Considérons le jeu ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
sous la forme

de satisfaction. Assumons l’existence d’au moins une actions de clippings que nous

noterons par a∗k ∈ Ak pour le joueur k, avec k ∈ K. S’il existe un joueur j ∈ K\{k}
pour lequel fj

Ä
a∗k, a−{j,k}

ä
= ∅, ∀a−{j,k} ∈

∏

i∈K\{j,k}
Ai, la règle de comportement dans

(49) ne converge pas vers un SE, avec une probabilité strictement positive.

Il existe des alternatives simples qui peuvent être utilisés pour résoudre ce problème

de convergence. Par exemple, la règle de comportement dans (49) peut être modifié

de telle sorte que un joueur change son action en cours (en utilisant une distribu-

tion de probabilité donnée sur les actions), même si elle est satisfaite lorsque ce

joueur voit les autres joueurs pas satisfait pendant une longue période. Néanmoins,

dans ce cas, les joueurs auraient besoin d’avoir plus de 1-bit de rétroalimentation
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en vue de détecter la non-satisfaction des autres. Par exemple, les valeurs instan-

tanées de la métrique de performance. Cette approche peut être comparée avec

l’idée d’expérimentation epsilon discuté dans [120].

Conclusions

La formulation sous forme de satisfaction (SF) et la notion d’équilibre de satisfaction

(SE) introduits dans cette thèse sont, comme nous le montrons dans les chapitres

qui suivent, parfaitement adaptés pour modéliser le problème de l’approvisionnement

décentralisé de qualité de service. Lorsque le réseau est dans un état d’équilibre de

satisfaction, tous les joueurs sont satisfaits. Au contraire, lorsque le problème de

QoS est modélisé par un jeux sous forme normale classique ou sous forme normale

avec des spaces d’actions contraints, il possible d’observer des équilibres où tous les

joueurs ne sont pas satisfait, même quand il existe des profils d’action qui permettent

la satisfaction simultanée des tous les joueurs. La notion de SE a été formalisée dans

le cadre de stratégies pures et mixtes et de son existence et unicité a été étudiée. En

particulier, lorsque aucune SE existe ni en stratégies pures, ni mixtes, les conditions

nécessaires et suffisantes pour l’existence d’un epsilon-SE a été présenté. Enfin, une

dynamique d’apprentissage a été proposé pour atteindre le SE. En particulier, on

remarque que pour implementer tels algorithmes il suffit seulement de permettre

des échanges de messages de maximum 1-bit entre les correspondants émetteur-

récepteur. Néanmoins, la convergence reste toujours conditionnée. Cela suggère

que la conception d’algorithmes tels qu’au moins un SE est atteint dans en un

temps fini et d’une façon totalement distribuée reste étant un problème ouvert.

Perspectives

Dans la suite, nous décrivons les perspectives que nous avons identifiées pour donner

continuité aux travaux présentés dans cette thèse.

En ce qui concerne les extensions de notre schéma d’alignement opportuniste

d’interférence, nous rappelons que notre solution est proposée pour un contexte

où il y a que deux liens MIMO uniquement. C’est-à-dire, un unique lien primaire

et un unique lien secondaire. Le cas où il y a plusieurs liens opportunistes et/ou

plusieurs liens primaires reste à être étudié en détail. Par ailleurs, d’autres auteurs

ont récemment montré que la notion d’alignement opportuniste d’interférence peut

être utilisée dans autres topologies de réseau. Par exemple, sur le lien montant

de systèmes de communication cellulaires, ce qui élargisse énormément les applica-

tions de cette technique. Ici, nous n’avons traité que le cas du canal à interférence.

Un autre point également important regarde les hypothèses d’information. Ces

hypothèses pourraient être assouplies pour rendre l’approche proposée plus pra-

tique. Cette remarque concerne les hypothèses sur l’état du canal (channel state

information, CSI) et aussi des hypothèses de comportement du système primaire.

Dans le cas du CSI, la manque d’information dans le système secondaire peut

être abordé en utilisant des algorithmes d’apprentissage. Toutefois, une procédure
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d’apprentisage implique que le système primaire doit être tolérant à une certaine

quantité d’interférence du système opportuniste au cours de la période d’apprentissage.

Dans le cas des hypothèses de comportement, il a été supposé que le régime de

précodage utilisé par l’émetteur principal atteint la capacité du canal, ce qui per-

met à l’émetteur secondaire de prédire comment l’émetteur secondaire va exploiter

ses ressources spatiales. Cette hypothèse comportementale pourrait être assouplie,

mais certains mécanismes de détection doivent être conçus pour savoir quels modes

spatiaux peuvent être utilisés efficacement par l’émetteur secondaire. Cette dernière

idée pourrait être une extension très intéressante du schéma proposé.

Dans le contexte des études des équilibres de Nash présentés dans cette thèse,

nous soulignons que l’intérêt sur ces équilibres repose sur le fait qu’ils permetent de

fournir une prévision de la performance du réseau. Toutefois, nous avons montré

que cet analyse dépend fortement de la topologie du réseau. Ici, un cadre unifié pour

l’analyse des réseaux décentralisés indépendamment de leur topologies reste man-

quante. L’importance de la recherche dans ce sens, repose sur le fait que la topologie

des ce sort de réseau est en constante évolution. Ainsi, une analyse telle que celle

présentée dans cette thèse, est limitée aux hypothèses sur le temps de cohérence des

canaux. Idéalement, un cadre général pour cet analyse doit prendre en considération

ces faits. Nous accordons aussi une attention particulière au fait que les appareils

radio fonctionnent que pendant la période dont un besoin de communication existe.

En conséquence, le nombre d’émetteurs actifs est aussi variable. Une autre direction

de recherche est de considérer qu’il existe un sous-ensemble des appareils radio qui

ne sont pas très fiables. Par exemple, nous pouvons considérer qu’il existent des

dispositifs radio visant à rompre les communications, soit parce qu’il est dans son

propre intérêt ou tout simplement parce que les éléments extérieurs sont conçus pour

attaquer le réseau. Ce comportement malveillant n’a pas été pris en compte dans

cette analyse.

L’apprentissage des équilibres est l’une des lignes les plus intéressantes pour

donner une continuité aux travaux présentés dans cette thèse. Comme nous l’avons

mentionné précédemment, les différents concepts d’équilibre, par exemple l’équilibre

de Nash, l’équilibre corrélé, l’équilibre de satisfaction nous ont permit de fournir

une estimation de la performance du réseau. Toutefois, atteindre cet équilibre

dans un réseau entièrement décentralisé reste une question ouverte. Comme nous

l’avons montré dans cette thèse, dans certaines topologies de réseau, des règles de

comportement très simples, par exemple, la dynamique de meilleure réponse (best

response dinamics, BRD) ou un jeu fictif (fictitious play, FP), conduisent à un

équilibre. Cependant, la convergence ou la non-convergence de ces algorithmes est

fortement dépendante de la topologie de réseau. Par exemple, lorsque les appareil

radio visent à maximiser leurs taux de transmission, la BRD et le FP convergent

vers un NE dans le canal à accès multiple parallèle, contrairement au cas du canal

à interférence parallèle, où une telle convergence n’est pas assurée. En général,

une règle de comportement qui permet à tous les appareils radio d’atteindre un

équilibre en temps fini, indépendamment de la topologie, n’existe pas. Souvent,

les algorithmes atteignent des performances epsilon-près de l’équilibre après certain
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nombre d’itérations. Toutefois, en fonction de l’application, la performance globale

du réseau pourrait être très sensible à ce temps d’apprentissage. Ainsi, la concep-

tion d’algorithmes qui permettent d’atteindre des performances d’équilibre dans une

courte période de temps avec un minimum d’information reste un problème ouvert.

Dans cette thèse, le concept d’équilibre de satisfaction (satisfaction equlibrium,

SE) a été formalisé et nous avons montré que cette notion d’équilibre est partic-

ulièrement adapté pour modéliser le problème de l’approvisionnement de qualité de

service. Dans ce sens, nous avons présenté quelques applications. Cependant, des

nombreux aspects théoriques restent à compléter. Par exemple, l’exploitation de la

formulation de l’équilibre de satisfaction comme une inclusion de point fixe pour

obtenir des résultats plus généraux sur l’existence ou l’unicité. Plus intéressant,

une généralisation de la SE et le concept d’équilibre de satisfaction efficace (efficient

satisfaction équilibre, ESE) à des jeux dynamiques, par exemple, des jeux stochas-

tiques, reste à être formulée. Cette formulation dans les jeux dynamiques nous

permettrait de modéliser la nature variante dans le temps de ce type de réseaux.

D’un point de vue pratique, les algorithmes pour atteindre le SE et l’ESE d’une

manière totalement décentralisée restent également à être conçus.
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Chapter 1

Introduction

In this chapter, we present a general description of the problem of spectrum sharing

in decentralized self-configuring networks. In particular, we identify the main tech-

nological challenges and we describe the main contributions presented in this thesis.

Finally, we conclude by describing the notation used in the sequel.

1.1 Technological Context and Challenges

A decentralized self-configuring network (DSCN) is basically an infrastructure-less

network where radio devices autonomously determine their own transmit/receive

configuration in order to guarantee a reliable communication. For this purpose,

radio devices are often equipped with spectrum sensing and self-configuring capa-

bilities. Therefore, this kind of radio devices, often called cognitive radios (CR), are

able to identify the unused radio resources and tune their transmit/receive config-

uration to efficiently exploit such resources. For instance, transmission parameters

such as power allocation policies, modulation-coding schemes and antenna array con-

figurations can be dynamically tuned by each radio device to adapt to its current

environment.

The underlying feature of DCSNs is that transmitters communicate with their re-

spective receivers without the control of a central authority, for instance, a base

station. Thus, the main limitation of these networks is the mutual interference aris-

ing from the uncoordinated interaction of a set of transmitters exploiting a common

set of radio resources. Indeed, this is the reason why the analysis and design of

spectrum sharing techniques plays a central role in this scenario. Here, among all

the constraints for achieving an optimal exploitation of the spectrum, we mention

two facts. First, radio devices must determine their own transmit/receive config-

uration relying only on local information. Second, the global network topology is

constantly changing. Additionally, these networks must be quickly deployable, as

well as robust to attack and failure in critic application environments. These last

requirements arise from the fact that DSCN are typically used in many military, law

enforcement, disaster relief, space, and indoor/outdoor commercial applications.

In general, spectrum sharing in the context of DSCN might follow two different sets

1
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of rules depending on whether they operate over licensed or unlicensed bands [122].

In the case of licensed bands, we say that the DCSN follows a hierarchical spectrum

access (HSA) and in the case of non-licensed bands, we say it follows an open

spectrum access (OSA).

In HSA, DCSNs operate under the condition that the additional interference it gen-

erates over the pre-existing systems is either inexistent (spectrum overlay) or below

a specific threshold (spectrum underlay) [17]. A typical example of spectrum over-

lay is precisely the idea behind of CR, where only spectral resources left over by

pre-existing systems (spectrum access opportunities, SAO) are used, and thus, no

additional interference is generated. Depending on the multiple access technique

of the primary system, a SAO consists of non-occupied time slots in time divi-

sion multiple access (TDMA), frequency bands in frequency division multiple access

(FDMA), spatial directions in spatial division multiple access (SDMA), tones in

orthogonal frequency division multiple access (OFDMA), spreading codes in code

division multiple access (CDMA) or a combination of any of those. In the context of

spectrum underlay, a classical example is the ultra-wide band (UWB) modulation.

Here, the interference produced by the radio devices using UWB modulation does

not represent a significant additional interference to the legacy system, and thus,

such coexistence is tolerated.

In OSA, each radio device has the same rights to access the spectrum at any time.

This is particularly the case of unlicensed bands (e.g., the industrial, scientific and

medical (ISM) band [2.400, 2.500] GHz). Radio devices operating in unlicensed

bands include cordless telephones, wireless sensors and devices operating under the

standards of Wi-Fi (IEEE 802.11), Zig-Bee (IEEE 802.15.4), and Bluetooth (IEEE

802.15.1).

In this thesis, we focus on the case of both HSA and OSA. In particular, we highlight

the fact that in HSA, once either the available SAOs are reliably identified (spectrum

overlay) or the instantaneous interference level produced over the primary system is

known by all the radio devices in the DCSN (spectrum underlay), the analysis of the

spectrum sharing is identical in both HSA and OSA. The important remark here is

that, two or more radio devices in the DCSN exploiting the same radio resources are

subject to mutual interference, independently of whether they operate under HSA

or OSA policies. The main difference between HSA and OSA is that in the former,

the radio resources are available only the period the primary system does not use

it, while in the latter, radio resources are always available. However, in this thesis,

we do not consider this constraint, and we assume that available radio resources,

in HSA, remain available a period longer than the communication duration in the

DSCN. Under this assumption, the common problem with either HSA (overlay and

underlay spectrum) and OSA is that there is a group of terminals simultaneously

exploiting the same radio resources and thus, subject to mutual interference. In the

following, we use the generic term spectrum sharing to refer to both HSA and OSA

under the conditions stated above.

Within this framework, the spectrum access problem, as treated in this thesis, can

be summarized by the following set of questions:
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(i) What is the optimal individual performance radio devices can observe in DSCN?

(ii) What is the optimal behavior a radio device must adopt to achieve an optimal

individual performance given the environment and actual configuration of all the

other devices?

To tackle the first question, game theory, a branch of mathematics which studies the

interaction between several decision-makers, is the dominant paradigm followed in

this thesis [46,50,51,79,106]. In particular, we use the idea of equilibrium [46], which

basically determines the stable states of a given DSCN. Here, stability is interpreted

as a network state where the transmit/receive configuration of each radio device

is optimal with respect to all the other radio devices. Thus, none of the radio

devices improves its performance by unilaterally deviating from the equilibrium

state. Regarding question (ii), by the term behavior, we refer to the policy a radio

device uses to select the transmit configuration based on its available information

about the network. Here, an important remark is that some of the network equilibria

can be achieved as a result of an iterative interacting process, similar to a learning

process. Thus, as an additional tool to deal with question (ii), we use some elements

from machine learning theory.

In the following, we describe the main contributions made in this thesis.

1.2 Contributions and Organization of the Thesis

The contributions made in this thesis fall into three main areas: (i) performance

analysis and design of techniques for hierarchical spectrum access (HSA), (ii) per-

formance analysis and design of techniques for open spectrum access (OSA), and

(iii) mechanisms for quality of service (QoS) provisioning in both HSA and OSA

networks. The contributions in HSA are presented in Chapter 2. The contributions

in OSA are presented in both Chapter 3 and Chapter 4. The contributions regard-

ing the QoS provisioning are presented in Chapter 5. In the following, we provide a

brief description of each of these contributions.

1.2.1 Contributions on Hierarchical Spectrum Access

In the context of HSA, two contributions are presented. The first one, in Sec.

2.1, concerns an opportunistic scheme for inference alignment in MIMO cognitive

networks [77,78,87]. The second contribution, in Sec. 2.2, consists in a technique for

improving the spectral efficiency of cognitive networks by strategically modifying the

number of channels cognitive radios are let to use [75]. In the following, we describe

in detail each contribution.

An Opportunisitic Inteference Alignment Strategy

The opportunistic interference alignment (OIA) technique presented in this thesis

allows an opportunistic multiple input multiple output (MIMO) link (secondary) to

harmlessly coexist with another MIMO link (primary) in the same frequency band.
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This contribution is presented in the context of the interference channel. However, as

recently shown in [45], it easily extends to other network topologies. The main idea

behind this novel technique is the following. Assuming perfect channel knowledge

at the primary receiver and transmitter, capacity is achieved by transmitting along

the spatial directions (SD) associated with the singular values of its channel matrix

using a water-filling power allocation (PA) scheme. Often, power limitations lead

the primary transmitter to leave some of its SD unused. Here, it is shown that the

opportunistic link can transmit its own data if it is possible to align the interference

produced on the primary link with such unused SDs. Both the processing scheme

to perform IA and the corresponding PA scheme which maximizes the transmission

rate of the opportunistic link are presented. The asymptotes of the achievable

transmission rates of the opportunistic link are obtained in the regime of large

numbers of antennas. Using this result, it is proved that depending on the signal-

to-noise ratio and the number of transmit and receive antennas of the primary and

opportunistic links, both systems can achieve transmission rates of the same order.

The publications concerning this contribution are listed hereunder:

• Perlaza, S. M. and Fawaz, N. and Lasaulce, S. and Debbah, M., “From

Spectrum Pooling to Space Pooling: Opportunistic Interference Alignment

in MIMO Cognitive Networks”. IEEE Trans. in Signal Processing, vol.58,

no.7, pp.3728-3741, July 2010.

• Perlaza, S. M., and Debbah, M. and Lasaulce, S. and Chaufray, J-M., “Oppor-

tunistic interference alignment in MIMO interference channels”, in IEEE Intl.

Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),

Cannes, France, September, 2008. (invited paper).

• Perlaza, S. M. and Fawaz, N. and Lasaulce, S. and Debbah, M., “Alignement

d’interférence opportuniste avec des terminaux multi-antennes”, in proc. of

the Gretsi Conference. Dijon, France, 2009.

A Bandwidth Limiting Strategy

The second contribution of this thesis, in the context of HSA, is a technique that

consists in strategically limiting the number of frequency bands that transmitters

can use, in order to increase the network spectral efficiency. This contribution is

presented in the context of parallel multiple channels, however, it easily extends to

other network topologies. This technique, to which we refer as bandwidth limiting

(BL), applies to networks where the priority of each transmitter depends on its order

of arrival. For instance, the first arrived radio device can use the whole available

bandwidth, the second uses what is left by the first one, and so on. Assuming

that each transmitter maximizes its own data rate by water-filling over the available

frequency bands, we show the existence of an optimal number of dimensions that

a transmitter must use in order to maximize the network performance measured in

terms of spectral efficiency. We provide a closed form expression for the optimal

number of accessible bands. Such an optimum point, depends on the number of
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active transmitters, the number of available frequency bands and the different signal-

to-noise ratios. The impact of each of this parameters over the network spectral

efficiency is studied using numerical examples.

The publications concerning this contribution are listed hereunder:

• Perlaza, S. M., and Debbah, M. and Lasaulce, S. and Bogucka, H. “On

the benefits of bandwidth limiting in vector multiple access channels”, in

EURASIP/IEEE Intl. Conf. on Cognitive Radio Oriented Wireless Net-

works and Communications(CROWNCOM), Hannover, Germany, June, 2009.

(Best Student Paper Award)

• Corvino, V. and Moretti, M. and Perlaza, S. M. and Debbah, M. and Lasaulce,

S. and Jouini, W. and Palicot, J. and Moy, C. and Serrador, A. and Bogucka, H.

and Sroka, P. and Rodrigues, E. B. and López-Beńıtez, M. and Umbert, A. and

Casadevall, F. and Pérez-Romero, J. “Definition and evaluation of Joint Radio

Resource Management and Advanced Spectrum Management Algorithms”,

NEWCOM++ Network of Excellence, Deliverable DR9.2, January 12, 2010.

1.2.2 Contributions on Open Spectrum Access

In the context of OSA, two contributions are presented in this thesis. First, in

Chapter 3, the (Nash) equilibrium analysis of a decentralized parallel multiple ac-

cess channel is presented [73, 80, 86]. This scenario models the case where several

transmitters aim to communicate with a single receiver at the maximum spectral

efficiency sharing a common set of available frequency bands. The second contri-

bution, in Chapter 4, consists in a methodology for designing behavioral rules or

learning dynamics that allow radio devices to achieve equilibrium as a result of an

iterative interaction similar to a learning process [81, 82, 84]. These contributions

are detailed here under.

Nash Equilibrium in Open Spectrum Access Games

The first contribution in the context of OSA consists of the analysis of two spec-

trum sharing problems, namely the power allocation (PA) and channel selection

(CS) problems. The former considers the spectrum sharing case where transmitters

can simultaneously use several channels, while the latter considers the case where

transmitters use only one channel at a time. These problems are studied in the

context of parallel multiple access channels, where transmitters selfishly maximize

their individual spectral efficiency. In the context of parallel MAC, both problems

are modeled by non-cooperative games and a thorough Nash equilibrium (NE) anal-

ysis is conducted. The corresponding games have some attractive properties not

available for other channels like multiple input multiple output interference chan-

nels. For instance, the studied games are potential games and thus, the existence

of at least one NE is guaranteed. Moreover, a unique NE is observed almost surely

in the PA game. In the CS game, by using a graph-theoretic interpretation of the
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set of NE, it is shown that multiple pure NE exist and their multiplicity is stud-

ied. Convergence of certain important dynamics like the best-response dynamics

and fictitious-play are discussed. Comparing the performance at the NE of both

games in a special case, the existence of a Braess-type paradox is proved: having

more choices in terms of power allocation policies for the transmitters can lead to

a worse outcome in terms of network spectral efficiency. The results presented here

are network topology dependent. A similar analysis has been carried out for the

case of parallel interference channels [90,91], however, these results are not included

in this thesis.

The publications concerning this contribution are listed hereunder:

• Perlaza, S. M. and Florez, V. Q. and Tembine, H. and Lasaulce, S., “On

the Convergence of Fictitious Play in Channel Selection Games”, IEEE Latin

America Transactions. April 2011. (Invited paper)

• Perlaza, S. M. and Tembine, H. and Lasaulce, S. and Florez, V. Q., “On

the Fictitious Play and Channel Selection Games”, in proc. of the Latin-

American Conference on Communications (LATINCOM), Bogotá, Colombia,

September, 2010.

• Perlaza, S. M., and Belmega, E. V. and Lasaulce, S. and Debbah, M., ”On the

base station selection and base station sharing in self-configuring networks”,

in Fourth International Conference on Performance Evaluation Methodologies

and Tools, Pisa, italy, October, 2009. (Invited paper).

Learning Techniques for Achieving NE in Open Spectrum Sharing Games

The second contribution in the context of OSA consists in a general framework

for designing behavioral rules for radio devices aiming to achieve individually opti-

mal performance. The underlying assumptions of this framework are the following:

(i) the state of the network is time-varying and it is modeled by a set of random

variables; (ii) radio devices are interested in their long-term average performance

rather than instantaneous performance; (iii) the information that each radio de-

vice possesses about the network at a given instant is a numerical observation of

its own performance. Following these assumptions, we present a generic stochastic

game which models most of radio resource sharing scenarios in interference limited

systems. Our main contribution consists of a family of behavioral rules that allow

radio devices to simultaneously perform two tasks. First, to build an estimation of

their own individual average performance associated with each of their actions. Sec-

ond, to achieve an epsilon-Nash equilibrium of the corresponding stochastic game

by using such estimations. The additional performance estimation helps to solve

the problem encountered in behavioral rules based on reinforcement learning, where

convergence is observed but the final network configuration does not correspond to

an NE. Following the proposed rules, if convergence is observed, the final configu-

ration corresponds to a logit equilibrium. A thorough analysis of the convergence
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properties of these behavioral rules is presented. In particular, a simple parallel in-

terference channel scenario is used to compare the proposed algorithm with existing

learning dynamics such as best response dynamics, fictitious play dynamics, regret

matching learning and reinforcement learning.

The publications concerning this contribution are listed hereunder:

• Rose, L. and Perlaza, S. M. and Lasaulce, S. and Debbah, M., “Learning

Equilibria with Partial Information in Wireless Networks”, Submitted to the

IEEE Communications Magazine, Special Issue in Game Theory for Wireless

Communications, August, 2011.

• Perlaza, S. M. and Lasaulce, S. and Tembine, H. and Debbah, M., “Learning

to Use the Spectrum in Self-Configuring Heterogeneous Networks: A Logit

Equilibrium Approach”, in proc. of the 4th International ICST Workshop on

Game Theory in Communication Networks (GAMECOMM), Paris, France,

May, 2011.

• Perlaza, S. M. and Tembine, H. and Lasaulce, S., “How can Ignorant but Pa-

tient Cognitive Terminals Learn Their Strategy and Utility?”, in proc. of the

IEEE Intl. Workshop on Signal Processing Advances for Wireless Communi-

cations (SPAWC), Marrakesh, Morroco, June, 2010.

1.2.3 Contributions on the QoS Provisioning

In the context of QoS provisioning, the main contribution is presented in Chapter

5 and it consists in the formalization of a particular equilibrium concept, namely

the satisfaction equilibrium (SE). In contrast to existing equilibrium notions, for

instance Nash equilibrium (NE) and generalized NE (GNE), in the SE, the idea of

performance optimization in the sense of utility maximization or cost minimization

does not exist. The concept of SE relies on the fact that players might be either

satisfied or unsatisfied with their achieved performance. At the SE, if it exists,

all players are satisfied. This notion of equilibrium perfectly models the problem

of QoS provisioning in decentralized self-configuring networks. Here, radio devices

are satisfied if they are able to provide the requested QoS. Within this framework,

the concept of SE is formalized for both pure and mixed strategies. In both cases,

sufficient conditions for the existence and uniqueness of the SE are presented. When

multiple SE exist, we introduce the idea of effort or cost of satisfaction and we

propose a refinement of the SE, namely the efficient SE (ESE). At the ESE, all

players adopt the action which requires the lowest effort for satisfaction. A learning

method that allows radio devices to achieve a SE in pure strategies in finite time

is also presented. In contrast to existing methods for achieving (Nash) equilibria,

this method only requires one bit feedback from the receiver at every learning stage.

Finally, the advantages of the SE with respect to NE and GNE are highlighted using

a simple power control game in the interference channel.

The publications concerning this contribution are listed hereunder:
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• Perlaza, S. M. and Tembine, H. and Lasaulce, S. and Debbah, M., “A General

Framework for Quality-Of-Service Provisioning in Decentralized Networks”.

Submitted to the IEEE Journal in Selected Topics in Signal Processing. Spe-

cial Issue in Game Theory for Signal Processing. 2011

• Perlaza, S. M. and Tembine, H. and Lasaulce, S. and Debbah, M., “QoS Pro-

visioning in Self-Configuring Wireless Networks: Beyond Nash Equilibrium”.

IEEE Communications Society R-Letters, vol. 2, no. 1, February 2011. (In-

vited Paper)

• Perlaza, S. M. and Tembine, H. and Lasaulce, S. and Debbah, M., “Sat-

isfaction Equilibrium: A General Framework for QoS Provisioning in Self-

Configuring Networks”, in proc. of the IEEE Global Communications Confer-

ence (GLOBECOM),Miami, USA, December, 2010. (Candidate for Best

Conference Paper Award of the IEEE MMTC Review Board Chair

in 2011)

1.2.4 Other Contributions

Other contributions consist of applications of the theoretical frameworks presented

in this thesis. Such contributions have been published in cooperation with other

authors in the context of collaborations or short-term visits to other laboratories.

Other contributions have been kept in the form of patents and they are held by

France Telecom. Hereunder, we present the list of publications which are not in-

cluded in this thesis.

• Bennis, M. and Perlaza, S. M.,“Decentralized Cross-Tier Interference Mitiga-

tion in Cognitive Femtocell Networks”, in proc. of the IEEE International

Conference on Communications (ICC), Kioto, Japan, June, 2011.

• Rose, L. and Perlaza, S. M., and Debbah, M., “On the Nash Equilibria in

Decentralized Parallel Interference Channels”, in proc. of the IEEE ICC 2011

Workshop on Game Theory and Resource Allocation for 4G, Kioto, Japan,

June, 2011.

• Bennis, M. and Perlaza, S.M. and Debbah, M. “Game Theory and Femtocell

Communications: Making Network Deployment Feasible” in Saeed, R. A. and

Chaudhari, B. S. (Editors), “Femtocell Communications: Business Opportu-

nities and Deployment Challenges”. IGI Global, USA, 2011.

• Perlaza, S. M. and Lasaulce, S. and Debbah, M. and Chaufray, J-M., “Game

Theory for Dynamic Spectrum Access”, in Y. Zhang, J. Zheng, and H.-H. Chen

(Eds.), Cognitive Radio Networks: Architectures, Protocols and Standards,
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“Communications between self-configuring radios using dynamic updates of

the transmission configuration”, France, 2010

1.3 Notations

In the sequel of this thesis, matrices and vectors are respectively denoted by boldface

upper case symbols and boldface lower case symbols. An N×K matrix with ones on

its main diagonal and zeros on its off-diagonal entries is denoted by IN×K , while the

identity matrix of size N is simply denoted by IN . An N×K matrix with zeros in all

its entries (null matrix) is denoted by 0N×K . Matrices XT and XH are the transpose

and Hermitian transpose of matrix X, respectively. The determinant of matrix X is

denoted by |X|. The expectation operator is denoted by E [.]. The indicator function

associated with a given setA is denoted by 1A(.), and defined by 1A(x) = 1 (resp. 0)

if x ∈ A (resp. x /∈ A). The indicator function associated to a condition is denoted

by 1{condition} and it equals 1 (resp. 0) when condition is true (resp. false). The

Heaviside step function and the Dirac delta function are respectively denoted by µ(·)
and δ(·). The symbols N, R, and C denote the sets of non-negative integers, real

numbers, and complex numbers, respectively. The subsets [0,+∞[ and ]−∞, 0] are

denoted by R+ and R−, respectively. The operator (x)+ with x ∈ R is equivalent

to the operation max (0, x). Let A be an n-dimensional square matrix with real

eigenvalues λA,1, . . . , λA,n. We define the empirical eigenvalue distribution of A by

F
(n)
A (·) , 1

n

∑n
i=1 µ(λ − λA,i), and, when it exists, we denote f

(n)
A (λ) the associated

eigenvalue probability density function, where FA(·) and fA(·) are respectively the

associated limiting eigenvalue distribution and probability density function when

n→ +∞.

The sets are denoted by calligraphic letters. Let X be a finite set. We denote by

4 (X ) the unit simplex over the elements of X , that is, the set of all probability

distributions over the elements of the set X . The cardinality of X is denoted by

|X | ∈ N and the set of all subsets of X including the set X itself is denoted by 2X . We

denote by {e(N)
1 , . . . e

(N)
N } the set of vectors of the canonical base spanning the space

of the N -dimensional real vectors. Here, ∀n ∈ {1, . . . , N}, e(N)
n =

(
e

(N)
n,1 , . . . , e

(N)
n,N

)
,

and ∀s ∈ {1, . . . , N} \ {n}, e(N)
n,s = 0 and e(N)

n,n = 1. Given a vector a = (a1, . . . , aN)

in a given space of dimension N ∈ N, we denoted by a−n, with n ∈ {1, . . . , N}, the

vector a−n = (a1, . . . , an−1, an+1, . . . , aN) in the corresponding space of dimension
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N − 1. With a slight abuse of notation, we often write a = (an, a−n) to highlight

the n-th component of the vector a.



Chapter 2

Techniques for Hierarchical

Spectrum Sharing

In this chapter, we study the performance of two different HSA schemes. In the

first case, we consider a two-level hierarchy and in the second one, we consider a

multi-level hierarchy. In both cases, the underlying assumptions of our analysis are

the following: (i) a radio device coexists in the same spectrum block with a higher

priority radio device, only if the additional interference it generates is zero, (ii) all

radio devices have different priorities. The first scenario is studied in the context of

the multiple input multiple output (MIMO) cognitive interference channel and the

second one is studied in the context of a parallel multiple access channel. However,

the same analysis holds for other network topologies. Here, the assumption of a par-

ticular scenario is done in order to facilitate the presentation and the interpretation

of the obtained results.

In the case of the two-level hierarchy scenario, a non-cooperative interference align-

ment (IA) technique. This novel IA technique allows an opportunistic MIMO link

(low priority) to harmlessly coexist with another MIMO link (top priority) in the

same frequency band. The asymptotes of the achievable transmission rates of the

opportunistic link are obtained in the regime of large numbers of antennas. Using

this result, it is proved that depending on the signal-to-noise ratio (SNR) and the

number of transmit and receive antennas of both links, non-negligible transmission

rates can be obtained by the opportunistic link.

In the case of the multi-level hierarchy, it is shown that the network spectral ef-

ficiency can be improved by limiting the number of channels each transmitter is

allowed to use. We refer to this technique as bandwidth limiting (BL). In the con-

text of a parallel multiple access channel, the asymptotes of the individual and

network spectral efficiency are obtained in the regime of large number of channels.

Later, based on such asymptotical analysis, the optimal number of channels each

transmitter must access to maximize the network spectral efficiency is determined.

In this case, such an optimum operating point depends mainly on the network load

(transmitters per channel) and the different signal to noise ratios of the different

communications. Our numerical analysis shows that, the asymptotic results hold

even for a finite number of radio devices and available channels.

11
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2.1 Opportunistic Interference Alignment Strat-

egy

The concept of HSA has been described in Sec. 1.1. The main idea is to let a class

of radio devices, called secondary systems, opportunistically access certain portions

of spectrum left unused by the primary system, at a given time or geographical

area [36]. These pieces of unused spectrum, known as white-spaces, appear mainly

when either transmissions in the primary network are sporadic, i.e., there are periods

over which no transmission takes place, or there is no network infrastructure for the

primary system in a given area, for instance, when there is no primary network

coverage in a certain region. In the case of dense networks, observing a white-space

might be a rare and short-lasting event. In fact, the idea of cognitive radio as

presented in [36] (i.e., spectrum pooling), depends on the existence of such white-

spaces [33]. In the absence of those spectrum holes, secondary systems are unable

to transmit without producing additional interference on the primary systems. One

solution to this situation has been provided recently under the name of interference

alignment (IA). Basically, IA refers to the construction of signals such that the

resulting interference signal lies in a subspace orthogonal to the one spanned by the

signal of interest at each receiver. The IA concept was independently introduced by

several authors [20,52,53,116]. Recently, IA has become an important tool to study

several aspects of the interference channel, namely its degrees of freedom [19, 20,

38]. The feasibility and implementation issues of IA regarding mainly the required

channel state information (CSI) has been also extensively studied [32,88,110,111].

In this section, we study an IA scheme named opportunistic IA (OIA) [76]. The idea

behind OIA can be briefly described as follows. The primary link is modeled by a

single-user MIMO channel since it must operate free of any additional interference

produced by secondary systems. Then, assuming perfect CSI at both transmitter

and receiver ends, capacity is achieved by implementing a water-filling power al-

location (PA) scheme [109] over the spatial directions associated with the singular

values of its channel transfer matrix. Interestingly, even if the primary transmitters

maximize their transmission rates, power limitations generally lead them to leave

some of their spatial directions (SD) unused. The unused SD can therefore be reused

by another system operating in the same frequency band. Indeed, an opportunistic

transmitter can send its own data to its respective receiver by processing its signal

in such a way that the interference produced on the primary link impairs only the

unused SDs. Hence, these spatial resources can be very useful for a secondary system

when the available spectral resources are fully exploited over a certain period in a

geographical area. The idea of OIA, as described above, was first introduced in [76]

considering a very restrictive scenario, e.g., both primary and secondary devices

have the same number of antennas and same power budget. Here, we consider a

more general framework where devices have different number of antennas, different

power budgets and no conditions are impossed over the channel transfer matrices

(In [76], full rank condition was impossed over certain matrices).

The rest of this section is structured as follows. First, the system model, which
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consists of an interference channel with MIMO links, is introduced in Sec. 2.1.1.

Then, our aim in Sec. 2.1.2 is twofold. First, an analysis of the feasibility of the

OIA scheme is provided. For this purpose, the existence of transmit opportuni-

ties (SD left unused by the primary system) is studied. The average number of

transmit opportunities is expressed as a function of the number of antennas at both

the primary and secondary terminals. Second, the proposed interference alignment

technique and power allocation (PA) policy at the secondary transmitter are de-

scribed. In Sec. 2.1.3, tools from random matrix theory for large systems are used

to analyze the achievable transmission rate of the opportunistic transmitter when

no optimization is performed over its input covariance matrix. We illustrate our

theoretical results by simulations in Sec. 2.1.4. Therein, it is shown that our ap-

proach allows the secondary link to achieve transmission rates of the same order as

those of the primary link. Finally, in Sec. 2.3 we state our conclusions and provide

possible extensions of this work.

2.1.1 System Model

We consider two unidirectional links simultaneously operating in the same frequency

band and producing mutual interference as shown in Fig. 2.1. The first transmitter-

receiver pair (Tx1,Rx1) is the primary link. The pair (Tx2,Rx2) is an opportunistic

link subject to the strict constraint that the primary link must transmit at a rate

equivalent to its single-user capacity. Denote by Ni and Mi, with i = 1 (resp.

i = 2), the number of antennas at the primary (resp. secondary) receiver and

transmitter, respectively. Each transmitter sends independent messages only to

its respective receiver and no cooperation between them is allowed, i.e., there is

no message exchange between transmitters. This scenario is known as the MIMO

interference channel (IC) [102, 114] with private messages. A private message is a

message from a given source to a given destination: only one destination node is

able to decode it. Indeed, we do not consider the case of common messages which

would be generated by a given source in order to be decoded by several destination

nodes.

Here, we assume the channel transfer matrices between different nodes to be fixed

over the whole duration of the transmission. The channel transfer matrix from

transmitter j ∈ {1, 2} to receiver i ∈ {1, 2} is an Ni × Mj matrix denoted by

Hij which corresponds to the realization of a random matrix with independent and

identically distributed (i.i.d.) complex Gaussian circularly symmetric entries with

zero mean and variance 1
Mj

, which implies

∀(i, j) ∈ {1, 2}2, Trace
Ä
E
î
Hij HH

ij

óä
= Ni. (2.1)

The Li symbols transmitter i is able to simultaneously transmit, denoted by si,1, . . . , si,Li ,

are represented by the vector si = (si,1, . . . , si,Li)
T . We assume that ∀i ∈ {1, 2} sym-

bols si,1, . . . , si,Li are i.i.d. zero-mean circularly-symmetric complex Gaussian vari-

ables. In our model, transmitter i processes its symbols using a matrix Vi to con-

struct its transmitted signal Visi. Therefore, the matrix Vi is called pre-processing
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Figure 2.1: Two-user MIMO interference channel.
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matrix. Following a matrix notation, the primary and secondary received signals,

represented by the Ni × 1 column-vectors ri, with i ∈ {1, 2}, can be written as

(
r1

r2

)
=

(
H11 H12

H21 H22

)(
V1s1

V2s2

)
+

(
n1

n2

)
, (2.2)

where ni is an Ni-dimensional vector representing noise effects at receiver i with

entries modeled by an additive white Gaussian noise (AWGN) process with zero

mean and variance σ2
i , i.e.,∀i ∈ {1, 2}, E

î
nin

H
i

ó
= σ2

i INi . At transmitter i ∈ {1, 2},
the Li × Li power allocation matrix Pi is defined by the input covariance matrix

Pi = E
î
sis

H
i

ó
. Note that symbols si,1 . . . , si,Li , ∀i ∈ {1, 2} are mutually independent

and zero-mean, thus, the PA matrices can be written as diagonal matrices, i.e.,

Pi = diag (pi,1, . . . , pi,Li). Choosing Pi therefore means selecting a PA policy. The

power constraints on the transmitted signals Visi can be written as

∀i ∈ {1, 2} , Trace
Ä
ViPiV

H
i

ä
6Mi pi,max. (2.3)

Here, we have assumed that the i.i.d. entries of matrices Hij, for all (i, j) ∈ {1, 2}2,

are Gaussian random variables with zero mean and variance 1
Mj

. This assumption

together with the power constraints in (2.3) is equivalent to considering a system

where the entries of matrices Hij for all (i, j) ∈ {1, 2}2 are Gaussian random vari-

ables with zero mean and unit variance, and the transmitted signal Visi are con-

strained by a finite transmit power pi,max. Nonetheless, the first assumption allows

us to increase the dimension of the system (number of antennas) while maintain-

ing the same average received signal to noise ratio (SNR) level pi,max

σ2
i

, ∀i ∈ {1, 2}.
Moreover, most of the tools from random matrix theory used in the asymptotic

analysis of the achievable data rate of the opportunistic link in Sec. 2.1.3, require

the variance of the entries of channel matrices to be normalized by their size. That

is the reason why the normalized model, i.e., channel transfer matrices and power

constraints respectively satisfying (2.1) and (2.3), was adopted.

At receiver i ∈ {1, 2}, the signal ri is processed using an Ni×Ni matrix Di to form

the Ni-dimensional vector yi = Diri. All along this section, we refer to Di as the

post-processing matrix at receiver i. Regarding channel knowledge assumptions at

the different nodes, we assume that the primary terminals (transmitter and receiver)

have perfect knowledge of the matrix H11 while the secondary terminals have perfect

knowledge of all channel transfer matrices Hij, ∀(i, j) ∈ {1, 2}2. One might ask

whether this setup is highly demanding in terms of information assumptions. In

fact, there are several technical arguments making this setup relatively realistic:

(a) in some contexts channel reciprocity can be exploited to acquire CSI at the

transmitters; (b) feedback channels are often available in wireless communications

[110], and (c) learning mechanisms [32] can be exploited to iteratively learn the

required CSI. In any case, the perfect information assumptions provide us with an

upper bound on the achievable transmission rate for the secondary link.
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2.1.2 Interference Alignment Strategy

In this section, we describe how both links introduced in Sec. 2.1.1 can simultane-

ously operate under the constraint that no additional interference is generated by

the opportunistic transmitter on the primary receiver. First, we revisit the transmit-

ting scheme implemented by the primary system [109], then we present the concept

of transmit opportunity, and finally we introduce the proposed opportunistic IA

technique.

Primary Link Performance

According to our initial assumptions (Sec. 2.1.1) the primary link must operate at

its highest transmission rate in the absence of interference. Hence, following the

results in [108, 109] and using our own notation, the optimal pre-processing and

post-processing schemes for the primary link are given by the following theorem.

Theorem 2.1.1 Let H11 = UH11ΛH11V
H
H11

be a singular value decomposition (SVD)

of the N1 ×M1 channel transfer matrix H11, with UH11 and VH11, two unitary ma-

trices with dimension N1 × N1 and M1 ×M1, respectively, and ΛH11 an N1 ×M1

matrix with main diagonal
Ä
λH11,1, . . . , λH11,min(N1,M1)

ä
and zeros on its off-diagonal.

The primary link achieves capacity by choosing V1 = VH11, D1 = UH
H11

, P1 =

diag(p1,1, . . . , p1,M1), where

∀n ∈ {1, . . . ,M1} , p1,n =

Ñ
β − σ2

1

λHH
11H11,n

é+

, (2.4)

with, ΛHH
11H11

= ΛH
H11

ΛH11 = diag
Ä
λHH

11H11,1, . . . , λHH
11H11,M1

ä
and the constant β

(water-level) is set to saturate the power constraint (2.3).

Let N , min(N1,M1). When implementing its capacity-achieving transmission

scheme, the primary transmitter allocates its transmit power over an equivalent

channel D1H11V1 = ΛH11 which consists of at most rank(HH
11H11) ≤ N parallel

sub-channels with non-zero channel gains λHH
11H11,n, respectively. These non-zero

channel gains to which we refer as transmit dimensions, correspond to the non-zero

eigenvalues of matrix HH
11H11. The transmit dimension n ∈ {1, . . . ,M1} is said to

be used by the primary transmitter if p1,n > 0. Interestingly, (2.4) shows that some

of the transmit dimensions can be left unused. Let m1 ∈ {1, . . . ,M1} denote the

number of transmit dimensions used by the primary user:

m1 ,
M1∑

n=1

1{]0,M1p1,max]}(p1,n) (2.5)

=
M1∑

n=1

1]σ2
1
β
,+∞

[(λHH
11H11,n). (2.6)

As p1,max > 0, the primary link transmits at least over dimension

n∗ = arg max
m∈{1,...,min(N1,M1)}

¶
λHH

11H11,m

©
(2.7)
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regardless of its SNR, and moreover, there exist at most N transmit dimensions,

thus

1 ≤ m1 ≤ rank(HH
11H11) ≤ N. (2.8)

In the following subsection, we show how those unused dimensions of the primary

system can be seen by the secondary system as opportunities to transmit.

Transmit Opportunities

Once the PA matrix is set up following Th. 2.1.1, the primary equivalent channel

D1H11V1P
1/2
1 = ΛH11P

1/2
1 is an N1 × M1 diagonal matrix whose main diagonal

contains m1 non-zero entries and N − m1 zero entries. This equivalent channel

transforms the set of m1 used and M1 −m1 unused transmit dimensions into a set

of m1 receive dimensions containing a noisy version of the primary signal, and a set

of N1 −m1 unused receive dimensions containing no primary signal. The m1 used

dimensions are called primary reserved dimensions, while the remaining N1 − m1

dimensions are named secondary transmit opportunities (TO). The IA strategy,

described in Section 2.1.2, allows the secondary user to exploit these N1−m1 receive

dimensions left unused by the primary link, while avoiding to interfere with the m1

receive dimensions used by the primary link.

Definition 2.1.2 (Transmit Opportunities) Let λHH
11H11,1, . . . λHH

11H11,M1
be the

eigenvalues of matrix HH
11H11 and β be the water-level in (Th. 2.1.1). Let m1, as

defined in (2.6), be the number of primary reserved dimensions. Then the number

of transmit opportunities S available to the opportunistic terminal is given by

S , N1 −m1 = N1 −
M1∑

n=1

1]σ2
1
β
,+∞

[(λHH
11H11,n). (2.9)

Note that in this definition it is implicitly assumed that the number of TOs is

constant over a duration equal to the channel coherence time.

Combining (2.8) and (2.9) yields the bounds on the number of transmit opportunities

N1 −N ≤ S ≤ N1 − 1. (2.10)

A natural question arises as to whether the number of TOs is sufficiently high for

the secondary link to achieve a significant transmission rate. In order to provide

an element of response to this question, a method to find an approximation of the

number of TOs per primary transmit antenna, S∞, is proposed in Section 2.1.3.

In any case, as we shall see in the next subsection, to take advantage of the TOs

described here, a specific signal processing scheme is required in the secondary link.

Pre-processing Matrix

In this subsection, we define the interference alignment condition to be met by

the secondary transmitter and determine a pre-processing matrix satisfying this

condition.
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Definition 2.1.3 (IA condition) Let H11 = UH11ΛH11V
H
H11

be an SVD of H11

and

R = σ2
1IN1 + UH

H11
H12V2P2V

H
2 HH

12UH11 , (2.11)

be the covariance matrix of the co-channel interference (CCI) plus noise signal in

the primary link. The opportunistic link is said to satisfy the IA condition if its

opportunistic transmission is such that the primary link achieves the transmission

rate of the equivalent single-user system, which translates mathematically as

log2

∣∣∣∣IN1 + 1
σ2

1
ΛH11P1Λ

H
H11

∣∣∣∣ =

log2

∣∣∣IN1 + R−1ΛH11P1Λ
H
H11

∣∣∣ .
(2.12)

Our objective is first to find a pre-processing matrix V2 that satisfies the IA condi-

tion and then, to tune the PA matrix P2 and post-processing matrix D2 in order to

maximize the transmission rate for the secondary link.

Lemma 2.1.4 (Pre-processing matrix V2) Let H11 = UH11ΛH11V
H
H11

be an

ordered SVD of H11, with UH11 and VH11, two unitary matrices of size N1 ×
N1 and M1 ×M1, respectively, and ΛH11 an N1 ×M1 matrix with main diagonalÄ
λH11,1, . . . , λH11,min(N1,M1)

ä
and zeros on its off-diagonal, such that λ2

H11,1
> λ2

H11,2
>

. . . > λ2
H11,min(N1,M1). Let also the N1 × M2 matrix H̃

4
= UH

H11
H12 have a block

structure,

H̃ =

M2←→
m1

xy

N1 −m1

xy

(
H̃1

H̃2

)
. (2.13)

The IA condition (Def. 2.1.3) is satisfied independently of the PA matrix P2, when

the pre-processing matrix V2 satisfies the condition:

H̃1V2 = 0m1×L2 , (2.14)

where L2 is the dimension of the null space of matrix H̃1.

Proof : See Appendix B. 2

Another solution to the IA condition was given in [76], namely V2 = H−1
12 UH11P̄1 for

a given diagonal matrix P̄1 = diag (p̄1,1, . . . , p̄1,M1), with p̄1,n =

Ç
σ2

2

λ
HH

11
H11,n

− β
å+

,

where β is the water-level of the primary system (Th. 2.1.1) and n ∈ {1, . . . ,M1}.
However, such a solution is more restrictive than (2.14) as it requires H12 to be

invertible and does not hold for the case when Ni 6= Mj, ∀(i, j) ∈ {1, 2}2.

Plugging V2 from (2.14) into (2.11) shows that to guarantee the IA condition (2.1.3),

the opportunistic transmitter has to avoid interfering with the m1 dimensions used

by the primary transmitter. That is the reason why we refer to our technique as

OIA: interference from the secondary user is made orthogonal to the m1 receive

dimensions used by the primary link. This is achieved by aligning the interference
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from the secondary user with the N1−m1 non-used receive dimensions of the primary

link.

From Lemma 2.1.4, it appears that the L2 columns of matrix V2 have to be-

long to the null space Ker(H̃1) of H̃1 and therefore to the space spanned by the

dim Ker(H̃1) = M2−rank(H̃1) last columns of matrix VH̃1
. Here, H̃1 = UH̃1

ΛH̃1
VH
H̃1

is an SVD of H̃11with UH̃1
and VH̃1

being two unitary matrices with dimension m1

and M2, respectively, and ΛH̃1
being an m1×M2 matrix containing the vector with

main diagonal (λH̃11,1
, . . . , λH̃1,min(m1,M2)). Moreover, λ2

H̃11,1
> . . . > λ2

H̃1,min(m1,M2)
.

i.e.,

V2 ∈ Span
Å
v

(rank(H̃1)+1)

H̃1
, . . . ,v

(M2)

H̃1

ã
. (2.15)

Here, for all i ∈ {1, . . . ,M2}, the column vector vH̃1
represents the ith column of

matrix VH̃1
from the left to the right.

In the following, we assume that the L2 columns of the matrix V2 form an orthonor-

mal basis of the corresponding subspace (2.15), and thus, VH
2 V2 = IL2 . Moreover,

recalling that H̃1 is of size m1 ×M2, we would like to point out that:

• When m1 < M2, rank(H̃1) ≤ m1 and dim Ker(H̃1) ≥M2−m1 with equality if

and only if H̃1 is full row-rank. This means that there are always at least M2−
m1 > 0 non-null orthogonal vectors in Ker(H̃1), and thus, L2 = dim Ker(H̃1).

Consequently, V2 can always be chosen to be different from the null matrix

0M2×L2 .

• When, M2 6 m1, rank(H̃1) ≤ M2 and dim Ker(H̃1) ≥ 0, with equality if and

only if H̃1 is full column-rank. This means that there are non-zero vectors

in Ker(H̃1) if and only if H̃1 is not full column-rank. Consequently, V2 is a

non-zero matrix if and only if H̃1 is not full column-rank, and again L2 =

dim Ker(H̃1).

Therefore, the rank of V2 is given by L2 = dim Ker(H̃1) ≤ M2, and it represents

the number of transmit dimensions on which the secondary transmitter can allocate

power without affecting the performance of the primary user. The following lower

bound on L2 holds

L2 = dim Ker(H̃1) = M2 − rank(H̃1)

≥M2 −min(M2,m1)

= max(0,M2 −m1).

(2.16)

Note that by processing s2 with V2 the resulting signal V2s2 becomes orthogonal to

the space spanned by a subset of m1 rows of the cross-interference channel matrix

H̃ = UH
H11

H12. This is the main difference between the proposed OIA technique and

the classical zero-forcing beamforming (ZFBF) [72], for which the transmit signal

must be orthogonal to the whole row space of matrix H̃. In the ZFBF case, the

number of transmit dimensions, on which the secondary transmitter can allocate

power without affecting the performance of the primary user, is given by L2,BF =

dim Ker(H̃) = M2 − rank(H̃). Since rank(H̃1) ≤ rank(H̃), we have L2,BF ≤ L2.
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This inequality, along with the observation that Ker(H̃) ⊆ Ker(H̃1), shows that

any opportunity to use a secondary transmit dimension provided by ZFBF is also

provided by OIA, thus OIA outperforms ZFBF. In the next subsection we tackle

the problem of optimizing the post-processing matrix D2 to maximize the achievable

transmission rate for the opportunistic transmitter.

Post-processing Matrix

Once the pre-processing matrix V2 has been adapted to perform IA according to

(2.15), no harmful interference impairs the primary link. However, the secondary

receiver undergoes the co-channel interference (CCI) from the primary transmitter.

Then, the joint effect of the CCI and noise signals can be seen as a colored Gaussian

noise with covariance matrix

Q = H21VH11P1V
H
H11

HH
21 + σ2

2IN2 . (2.17)

We recall that the opportunistic receiver has full CSI of all channel matrices, i.e.,

Hi,j, ∀(i, j) ∈ {1, 2}2. Given an input covariance matrix P2, the mutual information

between the input s2 and the output y2 = D2r2 is

R2(P2,σ2
2) = log2

∣∣∣IN2
+D2H22V2P2VH

2 HH
22DH

2 (D2QDH
2 )
−1
∣∣∣

6 log2

∣∣∣IN2
+Q−

1
2 H22V2P2VH

2 HH
22Q−

1
2

∣∣∣, (2.18)

where equality is achieved by a whitening post-processing filter D2 = Q−
1
2 [67]. i.e.,

the mutual information between the transmitted signal s2 and r2, is the same as

that between s2 and y2 = D2r2. Note also that expression (2.18) is maximized by a

zero-mean circularly-symmetric complex Gaussian input s2 [109].

Power Allocation Matrix Optimization

In this subsection, we are interested in finding the input covariance matrix P2 which

maximizes the achievable transmission rate for the opportunistic link, R2(P2, σ
2
2)

assuming that both matrices V2 and D2 have been set up as discussed in Sec. 2.1.2

and 2.1.2, respectively. More specifically, the problem of interest in this subsection

is:
max

P2

log2

∣∣∣IN2
+Q−

1
2 H22V2P2VH

2 HH
22Q−

1
2

∣∣∣
s.t. Trace(V2P2VH

2 )6M2p2,max.

(2.19)

Before solving the optimization problem (OP) in (2.19), we briefly describe the

uniform PA scheme (UPA). The UPA policy can be very useful not only to relax some

information assumptions and decrease computational complexity at the transmitter

but also because it corresponds to the limit of the optimal PA policy in the high

SNR regime.
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Uniform Power Allocation In this case, the opportunistic transmitter does not

perform any optimization on its own transmit power. It rather uniformly spreads

its total power among the previously identified TOs. Thus, the PA matrix P2 is

assumed to be of the form

P2,UPA = γIL2 , (2.20)

where the constant γ is chosen to saturate the transmit power constraint (2.3),

γ =
M2 p2,max

Trace (V2VH
2 )

=
M2p2,max

L2

. (2.21)

Optimal Power Allocation Here, we tackle the OP formulated in (2.19). For

this purpose, we assume that the columns of matrix V2 are unitary and mutually

orthogonal. We define the matrix K
4
= Q−

1
2 H22V2, where K is an N2 × L2 matrix.

Let K = UKΛKVH
K be an SVD of matrix K, where the matrices UK and VK are

unitary matrices with dimensions N2 × N2 and L2 × L2 respectively. The matrix

ΛK is an N2 × L2 matrix with at most min (N2, L2) non-zero singular values on its

main diagonal and zeros in its off-diagonal entries. The entries in the diagonal of

the matrix ΛK are denoted by λK,1, . . . , λK,min(N2,L2). Finally, the original OP (2.19)

can be rewritten as

arg max
P2

log2|IN2
+ΛKVH

KP2VKΛH
K|

s.t.
Trace(P2) = Trace(VH

KP2VK)
6M2 p2,max.

(2.22)

Here, we define the square matrices of dimension L2,

P̃2
4
= VH

KP2VK , (2.23)

and ΛKHK
4
= ΛH

KΛK = diag
Ä
λKHK,1, . . . , λKHK,L2

ä
. Using the new variables P̃2 and

ΛKHK , we can write that

|IN2
+ΛKVH

KP2VKΛH
K| = |IL2

+Λ
KHK

P̃2|
6

L2∏

n=1

(1+λ
KHK,n

p̃2,n)
(2.24)

where p̃2,n, with n ∈ {1, . . . , L2} are the entries of the main diagonal of matrix P̃2.

Note that in (2.24) equality holds if P̃2 is a diagonal matrix [54]. Thus, choosing

P̃2 to be diagonal maximizes the transmission rate. Hence, the OP simplifies to

max
p̃2,1...p̃2,L2

L2∑

n=1

log2

Ä
1 + λKHK,n p̃2,n

ä
s.t.

L2∑

n=1

p̃2,n 6M2p2,max.

(2.25)

The simplified optimization problem (2.25) has a water-filling solution of the form

∀n ∈ {1, . . . , L2} , p̃2,n =

(
β2 −

1

λKHK,n

)+

, (2.26)
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where, the water-level β2 is determined to saturate the power constraints in the

optimization problem (2.25). Once the matrix P̃2 (2.23) has been obtained using

water-filling (2.26), we define the optimal PA matrix P2,OPA by

P2,OPA = diag (p̃2,i, . . . , p̃2,L2) , (2.27)

while the left and right hand factors, VK and VH
K , of matrix P̃2 in (2.23) are included

in the pre-processing matrix:

V2,OPA = V2VK . (2.28)

In the next section, we study the achievable transmission rates of the opportunistic

link.

2.1.3 Asymptotic Performance of the Secondary link

In this section, the performance of the secondary link is analyzed in the regime of

large number of antennas, which is defined as follows:

Definition 2.1.5 (Regime of Large Numbers of Antennas) The regime of large

numbers of antennas (RLNA) is defined as follows:

• ∀i ∈ {1, 2}, Ni → +∞;

• ∀j ∈ {1, 2}, Mj → +∞;

• ∀(i, j) ∈ {1, 2}2, lim
Mj→+∞
Ni→+∞

Mj

Ni
= αij < +∞, and αij > 0 is constant.

Asymptotic Number of Transmit Opportunities

In Sec. 2.1.2, two relevant parameters regarding the performance of the opportunis-

tic system can be identified: the number of TOs (S) and the number of transmit

dimensions to which the secondary user can allocate power without affecting the

performance of the primary user (L2). Indeed, L2 is equivalent to the number of

independent symbols the opportunistic system is able to simultaneously transmit.

In the following, we analyze both parameters S and L2 in the RLNA by studying

the fractions

S∞ , lim
N1→+∞
M1→+∞

S

M1

and, (2.29)

L2,∞ , lim
N1→+∞
M2→+∞

L2

M2

. (2.30)

Using (2.9), the fraction S∞ can be re-written as follows

S∞ = lim
N1→+∞
M2→+∞

1

M1

(N1 −m1)

=

Ç
1

α11

−m1,∞

å
, (2.31)
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where,

m1,∞ , lim
N1→+∞
M1→+∞

m1

M1

. (2.32)

As a preliminary step towards determining the expressions of S∞ and L2,∞, we first

show how to find the asymptotic water-level β∞ in the RLNA, and the expression

of m1,∞. First, recall from the water-filling solution (2.4) and the power constraint

(2.3) that

1

M1

M1∑

n=1

p1,n =
1

M1

M1∑

n=1

Ñ
β − σ2

1

λHH
11H11,n

é+

. (2.33)

Define the real function q by

q(λ) =

∣∣∣∣∣∣
0, if λ = 0,(
β − σ2

1

λ

)+
, if λ > 0,

(2.34)

which is continuous and bounded on R+. Expression (2.33) can be rewritten as

1

M1

M1∑

n=1

q(λHH
11H11,n) =

∫ ∞

−∞
q(λ) f

(M1)

HH
11H11

(λ) dλ, (2.35)

where f
(M1)

HH
11H11

is the probability density function associated with the empirical eigen-

value distribution F
(M1)

HH
11H11

of matrix HH
11H11. In the RLNA, the empirical eigenvalue

distribution F
(M1)

HH
11H11

converges almost surely to the deterministic limiting eigenvalue

distribution FHH
11H11

. This distribution is known as the Marčenko-Pastur law [55]

whose associated density is

fHH
11H11

(λ) =
Ä
1− 1

α11

ä+
δ(λ) +

√
(λ−a)+(b−λ)+

2πλ
, (2.36)

where, a =
Ä

1− 1√
α11

ä2
and b =

Ä
1+ 1√

α11

ä2
. Note that the Marčenko-Pastur law has a

bounded real positive support {{0} ∪ [a, b]} and q is continuous and bounded on

R+. Consequently, in the RLNA, we have the almost sure convergence of (2.35),

i.e.,

∫ ∞

−∞
q(λ) f

(M1)

HH
11H11

(λ) dλ
a.s.−→

∫ ∞

−∞
q(λ)fHH

11H11
(λ)dλ.

Thus, in the RLNA (Def. 2.1.5), the water-level β∞ is the unique solution [22] to

the equation ∫ b

max(
σ2

1
β
,a)

(
β−

σ2
1
λ

)√
(λ−a)(b−λ)

2πλ
dλ−p1,max=0, (2.37)

and it does not depend on any specific realization of the channel transfer matrix

H11, but only on the maximum power p1,max and the receiver noise power σ2
1.
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We can now derive m1,∞. From (2.6), we have

m1,∞ = lim
N1→+∞
M1→+∞

1

M1

M1∑

n=1

1]σ2
1
β
,+∞

[(λHH
11H11,n)

= lim
N1→+∞
M1→+∞

∫ ∞

−∞
1]σ2

1
β
,+∞

[(λ) f
(M1)

HH
11H11

(λ) dλ

a.s.−→
∫ b

max(a,
σ2

1
β∞

)

√
(λ−a)(b−λ)

2πλ
dλ. (2.38)

Thus, given the asymptotic number of transmist dimensions used by the primary link

per primary transmit antenna m1,∞, we obtain the asymptotic number of transmit

opportunities per primary transmit antenna S∞ by following (2.29), i.e.,

S∞ =
1

α11

−
∫ b

max(a,
σ2

1
β∞

)

√
(λ−a)(b−λ)

2πλ
dλ. (2.39)

From (2.10), the following bounds on S∞ hold in the RLNA:Ç
1

α11

− 1

å+

≤ S∞ ≤
1

α12

. (2.40)

Finally, we give the expression of L2,∞. Recall that L2 = dim Ker(H̃1) = M2 −
rank(H̃1). The rank of H̃1 is given by its number of non-zero singular values, or

equivalently by the number of non-zero eigenvalues of matrix H̃H
1 H̃1. Let

λH̃H
1 H̃1,1

, . . . , λH̃H
1 H̃1,M2

denote the eigenvalues of matrix H̃H
1 H̃1. We have

L2,∞ = 1− lim
N1,M2→+∞

rank(H̃1)

M2

= 1− lim
N1,M2→+∞

1

M2

M2∑

n=1

1]0,+∞[(λH̃H
1 H̃1,n

)

= 1− lim
N1,M2→+∞

∫ +∞

−∞
1]0,+∞[(λ)f

(M2)

H̃H
1 H̃1

(λ)dλ,

(2.41)

where f
(M2)

H̃H
1 H̃1

(λ) is the probability density function associated with the empirical

eigenvalue distribution F
(M2)

H̃H
1 H̃1

. H̃1 is of size m1 ×M2, and the ratio M2

m1
converges

in the RLNA to

α̃1 , lim
N1,M1,M2→∞

M2

m1

=
α12

α11m1,∞
<∞. (2.42)

Thus, in the RLNA, the empirical eigenvalue distribution F
(M2)

H̃H
1 H̃1

converges almost

surely to the Marčenko-Pastur law [55] FH̃H
1 H̃1

with associated density

fH̃H
1 H̃1

(λ) =

Ç
1− 1

α̃1

å+

δ(λ) +

»
(λ− c)+ (d− λ)+

2πλ
,

where c =

Ç
1− 1√

α̃1

å2

and d =

Ç
1 +

1√
α̃1

å2

.

(2.43)



2.1. Opportunistic Interference Alignment Strategy 25

Using (2.43) in (2.41) yields

L2,∞
a.s.−→ 1−

∫ +∞

−∞
1]0,+∞[(λ)fH̃H

1 H̃1
(λ)dλ

=
∫ +∞

−∞
1{]−∞,0]}(λ)fH̃H

1 H̃1
(λ)dλ

=

Ç
1− 1

α̃1

å+

.

(2.44)

Thus, given the asymptotic water-level β∞ for the primary link, the asymptotic

number of TOs per transmit antenna is given by the following expression

L2,∞ =

Ç
1− α11

α12

m1,∞

å+

(2.45)

=

(
1− α11

α12

∫ b

max(a,
σ2

1
β∞

)

√
(λ−a)(b−λ)

2πλ
dλ

)+

.

Note that the number (S) of TOs as well as the number (L2) of independent symbols

that the secondary link can simultaneously transmit are basically determined by the

number of antennas and the SNR of the primary system. From (2.29), it becomes

clear that the higher the SNR of the primary link, the lower the number of TOs.

Nonetheless, as we shall see in the numerical examples in Sec. 2.1.4, for practical

values of SNR, there exist a non-zero number of TOs that the secondary can always

exploit.

Asymptotic Transmission Rate of the Opportunistic Link

In this subsection, we analyze the behavior of the opportunistic rate per antenna

R̄2(P2,σ2
2), 1

N2
log2|IN2

+Q−1H22V2P2VH
2 HH

22| (2.46)

in the RLNA. Interestingly, this quantity can be shown to converge to a limit, the

latter being independent of the realization of H22. In the present work, we essentially

use this limit to conduct a performance analysis of the system under investigation but

it is important to know that it can be further exploited, for instance, to prove some

properties, or simplify optimization problems [25]. A key transform for analyzing

quantities associated with large systems is the Stieltjes transform, which we define

in App. A. By exploiting the Stieltjes transform and results from random matrix

theory for large systems (See App. A), it is possible to find the limit of (2.46) in

the RLNA. The corresponding result is as follows.

Proposition 2.1.1 (Asymptotic Transmission Rate) Define the matrices

M1
4
= H21VH11P1V

H
H11

HH
21 (2.47)

M2
4
= H22V2P2V

H
2 HH

22 (2.48)

M
4
= M1 + M2, (2.49)
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and consider the system model described in Sec. 2.1.1 with primary and secondary

links using the configuration (V1, D1, P1) and (V2, D2, P2) described in Sec.

2.1.2, with P2 being any PA matrix independent from the noise level σ2
2. Then, in

the RLNA (Def. 2.1.5), under the assumption that P1 and V2P2V
H
2 have limiting

eigenvalue distributions FP1 and FV2P2V H2
with compact support, the transmission

rate per antenna of the opportunistic link (Tx2-Rx2) converges almost surely to

R̄2,∞ =
1

ln 2

∫ +∞

σ2
2

GM1 (−z)−GM (−z) dz, (2.50)

where, GM(z) and GM1(z) are the Stieltjes transforms of the limiting eigenvalue

distribution of matrices M and M1, respectively. GM(z) and GM1(z) are obtained

by solving the fixed point equations (with unique solution when z ∈ R− [104]):

GM1(z) =
−1

z − g(GM1(z))
(2.51)

and

GM(z) =
−1

z − g(GM(z))− h(GM(z))
, (2.52)

respectively, where the functions g(u) and h(u) are defined as follows

g(u) , E

[
p1

1 + 1
α21
p1u

]
, (2.53)

h(u) , E

[
p2

1 + 1
α22
p2u

]
, (2.54)

with the expectations in (2.53) and (2.54) taken on the random variables p1 and p2

with distribution FP1 and FV2P2V H2
, respectively.

Proof : For the proof, see Appendix C. 2

The (non-trivial) result in Prop. 2.1.1 holds for any power allocation matrix P2

independent of σ2
2. In particular, the case of the uniform power allocation policy

perfectly meets this assumption. This also means that it holds for the optimum

PA policy in the high SNR regime. For low and medium SNRs, the authors have

noticed that the matrix P2,OPA is in general not independent of σ2
2. This is because

P2 is obtained from a water-filling procedure. The corresponding technical problem

is not trivial and is therefore left as an extension of the present work.

2.1.4 Numerical Results

The Number S of Transmit Opportunities

As shown in (2.29), the number of TOs is a function of the number of antennas

and the SNR of the primary link. In Fig. 2.2, we plot the number of TOs per

transmit antenna S∞ as a function of the SNR for different number of antennas

in the receiver and transmitter of the primary link. Interestingly, even though the
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Figure 2.2: Fraction of transmit opportunities in the RLNA (Def. 2.1.5), i.e., S∞
(2.29) as function of the SNR = p1,max

σ2
1

and α11 = M1

N1
. Simulation results are obtained

by using one realization of the matrix H11 when N1 = 10.

number of TOs is a non-increasing function of the SNR, Fig. 2.2 shows that for

practical values of the SNR (10 - 20 dBs.) there exists a non-zero number of TOs.

Note also that the number of TOs is an increasing function of the ratio (α11 = M1

N1
).

For instance, in the case N1 > M1, i.e., α11 > 1 the secondary transmitter always

sees a non-zero number of TOs independently of the SNR of the primary link, and

thus, opportunistic communications are always feasible. On the contrary, when

α11 6 1, the feasibility of opportunistic communications depends on the SNR of the

primary link.

Finally, it is important to remark that, even though the analysis of the number of

TOs has been done in the RLNA (Def. 2.1.5), the model is also valid for finite

number of antennas. In Fig. 2.2, we have also ploted the number of TOs observed

for a given realization of the channel transfer matrix H11 when N1 = 10 and α11 ∈
{1

2
, 1, 2}. Therein, it can be seen how the theoretical results from (2.29) match the

simulation results.

Comparison between OIA and ZFBF

We compare our OIA scheme with the zero-forcing beamforming (ZFBF) scheme

[72]. Within this scheme, the pre-processing matrix V2, denoted by V2,ZFBF , satis-

fies the condition

H12V2,ZFBF = 0Nr,L2 , (2.55)

which implies that ZFBF is feasible only in some particular cases depending on the

rank of matrix H12. For instance, when M2 6 N1 and H12 is full column rank,

the pre-processing matrix is the null matrix, i.e., V2,ZFBF = 0M2,L2 and thus, no
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transmission takes place. On the contrary, in the case of OIA when M2 6 N1, it is

still possible to opportunistically transmit with a non-null matrix V2 in two cases

as shown in Sec. 2.1.2:

• if m1 < M2,

• or if m1 ≥M2 and H̃1 is not full column rank.

Another remark is that when using ZFBF, if both primary and secondary receivers

come close, the opportunistic link will observe a significant power reduction since

both the targeted and nulling directions become difficult to distinguish. This power

reduction will be less significant in the case of OIA since it always holds that

rank(V2) > rank(V2,ZFBF ) thanks to the existence of the additional TOs. Strict

equality holds only when S =
Ä

1
α11
− 1
ä+

. As discussed in Sec. 2.1.2, the number of

TOs (S) is independent of the position of one receiver with respect to the other. In

fact, it depends on the channel realization H11 and the SNR of the primary link.

In the following, for the ease of presentation, we consider that both primary and

secondary devices are equipped with the same number of antennas Nr = N1 = N2

and Nt = M1 = M2, respectively. In this scenario, we consider the cases where

Nt > Nr and Nt 6 Nr.

Case Nt > Nr In Fig. 2.3, we consider the case where α ≈ 5
4
, with Nr ∈ {3, 9}. In

this case, we observe that even for a small number of antennas, the OIA technique

is superior to the classical ZFBF. Moreover, the higher the number of antennas, the

higher the difference between the performance of both techniques. An important

remark here is that, at high SNR, the performance of ZFBF and OIA is almost

identical. This is basically because at high SNR, the number of TOs tends to its

lower bound Nt − Nr (from (2.10)), which coincides with the number of spatial

directions to which ZFBF can avoid intefering. Another remark is that both UPA

and OPA schemes perform identically at high SNR.

Case Nt 6 Nr In this case, the ZFBF solution is not feasible and thus, we focus

only on the OIA solution. In Fig. 2.4, we plot the transmission rate for the case

where Nr = Nt ∈ {3, 6, 9}. We observe that at high SNR for the primary link and

small number of antennas, the uniform PA performs similarly as the optimal PA.

For a higher number of antennas and low SNR in the primary link, the difference

between the uniform and optimal PA is significant. To show the impact of the

SINR of both primary and secondary links on the opportunistic transmission rate,

we present Fig.2.5. Therein, it can be seen clearly that the transmission rate in

the opportunistic link is inversely proportional to the SNR level at the primary link.

This is due to the lack of TOs as stated in Sec. 2.1.2. For the case whenNr < Nt with

strict inequality, an opportunistic transmission takes place only if Nr −Nt 6 S and

H̃11 is not full column rank. Here, the behaviour of the opportunistic transmission

rate is similar to the case Nr = Nt with the particularity that the opportunistic

transmission rate reaches zero at a lower SNR level. As in the previous case, this is

also a consequence of the number of available TOs.



2.1. Opportunistic Interference Alignment Strategy 29

−20 −15 −10 −5 0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

SNR1 = SNR2

T
ra
n
sm

is
si
o
n
R
a
te

in
b
p
s/
H
z

 

 

Primary Link. Nr = 3 and Nt = 4.

IA-OPA Nr = 3 and Nt = 4.

IA-UPA Nr = 3 and Nt = 4.

ZFBF-OPA Nr = 3 and Nt = 4.

Primary Link. Nr = 9 and Nt = 11.

IA-OPA Nr = 9 and Nt = 11.

IA-UPA Nr = 9 and Nt = 11.

ZFBF-OPA Nr = 9 and Nt = 11.

Figure 2.3: Transmission rate of the opportunistic link obtained by Monte Carlo

simulations as a function of the SNR1 = SNR2 when IA and ZFBF are implemented.

The number of antennas satisfy α = Nt
Nr
≈ 5

4
, with M1 = M2 = Nt and N1 = N2 =

Nr ∈ {3, 9} and SNRi = pi,max

σ2
1

, for all i ∈ {1, 2}.
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Figure 2.4: Transmission rate of the opportunistic link obtained by Monte Carlo

simulations as a function of the SNR1 = SNR2. The number of antennas satisfy

M1 = M2 = Nt and N1 = N2 = Nr, with Nt = Nr, and Nr ∈ {3, 6, 9} and

SNRi = pi,max

σ2
i

, for all i ∈ {1, 2}.
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Figure 2.5: Transmission rate of the opportunistic link obtained by Monte Carlo

simulations as a function of the SNRi = pi,max

σ2
i

, with i ∈ {1, 2}. The number of

antennas satisfy M1 = M2 = Nt and N1 = N2 = Nr, with Nr = Nt = 4.

Asymptotic Transmission Rate

In Fig. 2.6, we plot both primary and secondary transmission rates for a given

realization of matrices Hi,j ∀(i, j) ∈ {1, 2}2. We also plot the asymptotes obtained

from Prop. 2.1.1 considering UPA in the secondary link and the optimal PA of the

primary link (2.4). We observe that in both cases the transmission rate converges

rapidly to the asymptotes even for a small number of antennas. This shows that

Prop. 2.1.1 constitutes a good estimation of the achievable transmission rate for

the secondary link even for finite number of antennas. We use Prop. 2.1.1 to

compare the asymptotic transmission rates of the secondary and primary link. The

asymptotic transmission rate of the primary receiver corresponds to the capacity of

a single user Nt×Nr MIMO link whose asymptotes are provided in [30]. From Fig.

2.6, it becomes evident how the secondary link is able to achieve transmission rates

of the same order as the primary link depending on both its own SNR and that of

the primary link.

2.2 Dynamic Bandwidth Limiting Strategy

Consider now that the priority to access the spectrum is given by the order of

arrival. For instance, the first to arrive can access all the available frequency bands,

the second uses those left unused by the first one, and so on. Within this framework,

we study the network spectral efficiency of a wireless network when the number of

accessible frequency bands per transmitter is strategically limited. More specifically,
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Figure 2.6: Asymptotic transmission rates per antenna of the opportunistic link as a

function of the number of antennas when Nr = Nt using uniform PA at different SNR

levels SNRi = pi,max

σ2
i

. Simulation results are obtained using one channel realization

for matrices Hij ∀(i, j) ∈ {1, 2}2 and theoretical results using Prop. 2.1.1,

we provide an answer to the following question: is it worth to limit the number of

frequency bands each transmitter can use to improve the network spectral efficiency?

And if so, how? For the ease of the presentation, we tackle these questions in the

context of a parallel multiple access channel. However, the same reasoning holds for

other scenarios.

In the following, particular emphasis is given to the fact that transmitters use non-

intersecting sets of frequency bands (channels). That is, radio devices arriving to the

network do not interfere with the existing communications. Under this condition,

the optimal power allocation policy for each transmitter, regarding its individual

spectral efficiency, is the water-filling power allocation over its corresponding avail-

able channels. Nonetheless, the fact that a transmitter uses several channels out of a

finite set significantly reduces the total number of active transmitters. For instance,

in the high signal to noise ratio (SNR) regime, few transmitters might occupy all the

available channels. Following a water-filling power allocation, a given transmitter

allocates the highest power levels to the channels with the highest gains. Then, the

channels being used with low powers might have a negligible impact on its individual

data rate. However, no other transmitter can access those channels, even though, a

higher rate can be obtained by the other. This reasoning implies that there is still

room for improvements in the managed spectrum access scheme, where priorities

are granted by the order of arrival.

In the following, we study the benefits of limiting the number of channels each

transmitter can use regarding the network spectral efficiency, i.e., the sum of all
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individual spectral efficiencies. All along this section, we refer to this technique

as bandwidth limiting (BL). In particular, we show the existence of an optimal

BL point. Such optimal number of channels is a function of the total number of

active transmitters, the total number of channels, and the different signal to noise

ratios (SNR). We present simulations where we observe a significant gain in terms

of spectral efficiency.

The rest of this section is structured as follows. First, the system model, which

consists of a parallel multiple access channel, is introduced in Sec. 2.2.1. Then, in

Sec. 2.2.2, we determine the individual and network spectral efficiency. In Sec. 2.2.3,

the asymptotic network spectral efficiency is calculated and a closed form expression

is obtained. In Sec. 2.2.4, we introduce the idea of bandwidth limiting. Therein, we

use the asymptotic model to determine the optimal BL. Finally, numerical results

are presented in Sec. 2.2.5 in order to validate our theoretical results.

2.2.1 System Model

Consider a set K = {1, . . . , K} of transmitters communicating with a unique receiver

using a set N = {1, . . . , N} of equally spaced frequency bands (channels) as shown

in Fig. 2.7. In information theory, this network topology is known as parallel

MAC [23]. Transmitters arrive sequentially to the network and their index in the

set K shows the order of arrival. All the radio devices are equipped with a unique

antenna and are able to simultaneously transmit over all the channels subject to a

power limitation,

∀k ∈ K, 1

N

N∑

n=1

pk,n 6 pk,max, (2.56)

where pk,n and pk,max denote the transmit power over channel n and the maximum

(average) transmittable power of transmitter k. In the following, we assume that

all transmitters are limited by the same maximum transmittable power level, i.e.,

∀k ∈ K, pk,max = pmax.

We denote the channel coefficients in the frequency domain between the receiver

and transmitter k over channel n by hk,n. We assume that for the entire transmis-

sion duration, all the channel realizations remain constant. For all n ∈ N and for

all k ∈ K, hk,n is a realization of a complex random variable h with independent

and identically distributed (i.i.d) Gaussian real and imaginary parts with zero mean

and variance 1
2
. The channel gain is denoted by gk,n = ||hk,n||2. Then, the channel

gains can be modeled by realizations of a random variable g with exponential dis-

tributions with parameter ρ = 1, whose cumulative distribution function (c.d.f) and

probability density function (p.d.f) are denoted by Fg(λ) = 1−e−λ and fg(λ) = e−λ,

respectively. The received signals sampled at symbol rate can be written as a vector

y = (y1, . . . , yN) where the entries yn for all n ∈ N represent the received signal

over channel n. Hence,

y =
K∑

k=1

Hksk + w, (2.57)

where Hk is an N -dimensional diagonal matrix with main diagonal (hk,1, . . . , hk,N).



2.2. Dynamic Bandwidth Limiting Strategy 33

Tx1

Tx2

Tx3

TxK

hKh1

h2 h3

Figure 2.7: Vector multiple access channel with K transmitters and N available

channels with hk = (hk,1, . . . , hk,N) for all k ∈ K.

The N -dimensional vector sk = (sk,1, . . . , sk,N) represents the symbols transmitted

by transmitter k over each channel. The power allocation profile of transmitter k,

the vector (pk,1, . . . , pk,N), is the diagonal of the diagonal matrix Pk = E
î
sks

H
k

ó
.

The N -dimensional vector w represents the noise at the receiver. Its entries, wn for

all n ∈ N , are modeled by a complex circularly symmetric additive white Gaussian

noise (AWGN) process with zero mean and variance σ2.

Regarding the channel state information (CSI), we assume that each transmit-

ter perfectly knows its own channel coefficients and the noise at each channel (no

mutual interference exists). This is the case when transmitters are able to sense its

environment or the receiver feeds back this parameter as a signaling message to all

the transmitters.

We denote the set of channels being used by transmitter k by Lk, i.e., ∀k ∈ K
and ∀n ∈ Lk, pk,n 6= 0, and ∀m ∈ N \ Lk, pk,m = 0. Here, a given channel cannot

be used by more than one transmitter. Thus, this is equivalent to defining the sets

Lk for all k ∈ K as a partition of the set N , i.e.,

• ∀(j, k) ∈ K2 and j 6= k, Lj ∩ Lk = ∅,

• ∀(j, k) ∈ K2 and j 6= k, Lj ∪ Lk ⊆ N .

The SINR for transmitter k over channel n is denoted by γk,n. Here, ∀k ∈ K and ∀n ∈
N ,

γk,n =
pk,ngk,n
σ2

. (2.58)
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Hence, the data rate Rk(γk) is,

Rk(γk) =
N∑

n=1

log2 (1 + γk,n) , (2.59)

with γk = (γk,1, . . . , γk,N).

2.2.2 Individual and Network Spectral Efficiency

Assume that each channel bandwidth is normalized to 1 Hz. A given transmitter k

sets out its transmit power levels pk,n, ∀n ∈ N by solving the optimization problem

(OP)
max

{pk,n}∀n∈Zk

∑

n∈Zk
log2 (1 + γk,n)

s.t. 1
N

∑

n∈Zk
pk,n 6 pmax,

(2.60)

where, for all k ∈ K, the set Zk = N \ L1 ∪ . . . ∪ Lk−1, with L0 = ∅. Thus, Zk is

the set of channels available for user k.

The solution to the OP in (2.60) is given in [23] and thus, we only provide the

solution hereafter; ∀k ∈ K and ∀n ∈ Zk,

pk,n =

Ç
β − σ2

gk,n

å+

, (2.61)

and, ∀n ∈ N \ Zk,
pk,n = 0. (2.62)

The term β is a Lagrangian multiplier, known as water-level, chosen to satisfy (2.56).

The transmit power levels in (2.61) can be iteratively obtained by using the water-

filling algorithm described in [23]. From expression (2.61), it can be implied that

Lk ⊆ Zk.
Once the OP in (2.60) has been solved, the (average) data rate per channel of

transmitter k ∈ K, is

R̄k(γk) =
1

|Zk|
∑

n∈Zk
log2 (1 + γk,n) , (2.63)

and then, its spectral efficiency Φk(γk) is

Φk(γk) =
|Zk|
N︸ ︷︷ ︸
Ωk

R̄k(γk), (2.64)

where, Ωk represents the fraction of spectrum accessible for transmitter k.
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2.2.3 Asymptotic Network Spectral Efficiency

We define the network spectral efficiency (NSE) Φ(γ) as

Φ(γ) =
K∑

k=1

Φk(γk)

Φ(γ) =
K∑

k=1

ΩkR̄k(γk), (2.65)

with γ = (γ1, . . . , γK).

In the following, we analyze the ISE in the asymptotic regime, i.e., we assume that

the number of channels (N) grows to infinity. Using this result, we determine the

NSE with and without bandwidth limiting. In both cases, we provide closed form

expressions. Note that in this scenario, the number of transmitters K can be kept

finite in the asymptotic analysis, since it does not exist any mutual interference.

Thus, each transmitter can be analyzed independently. A first result on the analysis

of NSE in the absence of BL for the case of spectral resource partition is presented

in [33,34,75]. Following the same line of the analysis presented in [33], we have that

in the asymptotic regime, the data rate per channel for a given transmitter k is

R̄k(γk)
N→∞−→

∫ ∞

0
log2

Ç
1 +

pk(λ)λ

σ2

å
dFg(λ)

︸ ︷︷ ︸
R̄k,∞

, (2.66)

where the functions pk(λ) for all k ∈ K, satisfy the power constraints,
∫ ∞

0
pk(λ)dFg(λ) = pmax. (2.67)

The function pk(λ), ∀k ∈ K, which maximizes expression (2.66) subject to expression

(2.67) is also a water-filling solution, i.e.,

pk(λ) =

Ç
βk −

σ2

λ

å+

. (2.68)

Note that since all the channel coefficients are drawn from the same probability

distribution fg(λ) described in Sec. 2.2.1 and all the transmitters have the same

maximum transmittable power level, we can write that ∀k ∈ K, R̄k,∞ = R̄∞. Hence,

the water-level βk satisfying the condition 2.68 is the same for all the transmitters.

By combining expression (2.68) and (2.67), we obtain the water-level βk = β∗, in

the asymptotic regime by solving the equation
∫ ∞
β∗
σ2

Ç
β∗ − σ2

λ

å
dFg(λ)− pmax = 0. (2.69)

Using the same reasoning, the fraction Ωk, for all k ∈ K, can be approximated

in the asymptotic regime by

Ωk,∞ = Pr

Ç
β∗ <

σ2

λ

å
(2.70)

=
∫ β∗

σ2

0
dFg(λ) 6 1, (2.71)
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which is independent of the identity of the transmitter, since all channels follow the

same probability distribution. Thus, we drop the subindex k and we write,

∀k ∈ K Ωk,∞ = Ω∞. (2.72)

Then, the NSE (2.65) in the asymptotic regime Φ∞ is

Φ∞ =
K∑

i=1

(Ω∞)i−1 R̄∞ =
1− (Ω∞)K

1− Ω∞
R̄∞. (2.73)

2.2.4 Bandwidth Limiting Strategy

Now, we limit the number of channels each transmitter can use. When the number

of accessible channels for the transmitters is limited to L ∈ N channels, the fraction

of accessible spectrum Ω(BL) for each transmitter is

Ω(BL) = min

®
Pr

Ç
β∗ <

σ2

λ

å
,
L

N

´
. (2.74)

Then, BL has an effect only if L
N
< Pr

Ä
β∗ 6 σ2

λ

ä
. This condition is equivalent to

stating that we should limit the transmitters to use a smaller number of channels

than that used on the absence of BL. Hence,

Ω(BL) 6
L

N
. (2.75)

Thus, when using BL, the network spectral efficiency is,

Φ(BL)(γk) =
K∑

k=1

Ω(BL)R̄k(γk) 6
K∑

k=1

L

N
R̄k (γk) . (2.76)

Assume now that both K and N grow to infinity at the same rate, i.e., N → ∞,

and K →∞, and N
K

= α <∞. Thus, the NSE using BL, denoted by Φ(BL)
∞ , in the

asymptotic regime can be written as follows,

Φ(BL)
∞ = lim

N,K→∞
Φ(BL)(γk) (2.77)

= lim
N,K→∞

K∑

k=1

L

N
R̄k (γk) (2.78)

=
1

α
LR̄∞, (2.79)

where R̄∞ is given by (2.66). Now, we investigate the existence of an optimal BL

point, i.e., optimal values of the fractions Ω(BL), such that Φ(BL)
∞ > Φ∞. Thus,

lim
N,K→∞

K∑

k=1

ΩkR̄k(γk) 6 lim
N,K→∞

K∑

k=1

L

N
R̄k (γk)

1

1− Ω∞
R̄∞ 6

1

α
LR̄∞

L >
α

1− Ω∞
. (2.80)
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Figure 2.8: Asymptotic transmission rate per channel (2.66) in bps/Hz as a function

of the number of available channels N . Dashed lines are obtained from simulations

considering pmax

σ2 = 20dB .

Thus, the optimal BL parameter, which we denote by L∗ is

L∗ = min

Ç
N,

α

1− Ω∞

å
. (2.81)

In the expression above we show that the optimal BL parameter L∗ depends mainly

on the network load (transmitters per channel, α = K
N

) and the SNR of the trans-

mitters. Note that the factor Ω∞ is a function of pmax, σ2 and the probability

distribution of the channels gains fg(λ) described in (2.70).

2.2.5 Numerical Results

In this section, we provide numerical results of our mathematical model. First, we

compare the asymptotical expressions of the NSE with those obtained by simula-

tions. In Fig. 2.8, we plot the ISE of a given transmitter. Therein, we observe that

our asymptotic model (2.66) perfectly describes the system even in the finite case

i.e., when K and N are small numbers. We also present simulations of the NSE

obtained as a function of the BL parameter L for different network loads. In Fig.

2.9, we observe the existence of an optimum BL point. We compare the optimal BL

parameter L obtained from simulations with that obtained from expression (2.80).

In Fig. 2.10 we plot both results. Therein, we show that the asymptotical approx-

imation (2.80) is a precise approximation of the optimal number of channels each

transmitter must use to maximize the NSE. Finally, we show in Fig. 2.11 the NSE

obtained in the absence and presence of BL. Therein, we observe a significant gain

in NSE when BL is used. This gain is more important for non-overloaded networks,
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Figure 2.9: Network Spectral Efficiency (2.65) in bps/Hz as a function of the maxi-

mum number of accessible channels L. Total number of available channels N = 50,

and pmax

σ2 = 10dB.
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2.3. Conclusions 39

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

Transmitters per Channel Ratio - K
N

N
et
w
o
rk

S
p
ec
tr
al

E
ffi
ci
en

cy
in

b
p
s/
H
z.

 

 

Optimal BL. SNR = 0 dB.

L = 1 band, SNR = 0 dB.

No BL. SNR = 0 dB.

Optimal BL. SNR = 10 dB.

L = 1 band, SNR = 10 dB.

No BL. SNR = 10 dB.

Figure 2.11: Network Spectral Efficiency (2.65) in bps/Hz as a function of the

network load (K
N

). Total number of available channels N = 50.

whereas for quasi full-loaded or overloaded networks (K > N), the gain obtained

by BL approaches that of limiting the transmitters to use a unique channel. In the

same figure, we observe that the NSE appears to be constant for certain intervals.

This is due to the fact that inside those intervals the optimal BL parameter remains

constant, as shown in Fig. 2.10. Moreover, the gain in NSE is quite significant at

high SNR (SNR = pmax

σ2 ) levels. On the contrary, for low SNR levels, small gains in

NSE are obtained when the network is low loaded.

2.3 Conclusions

In this section, two different hierarchical spectrum access scenarios were studied. In

the first scenario, we consider a two-layer hierarchy. One layer for the legacy system

(top priority) and another one for the opportunistic system (low priority). In the

second scenario, a multi-layer hierarchy was considered. Here, the order of arrival of

the radio devices determines their position in the hierarchy. For instance, the first

to arrive gets the top priority and the last one the gets lowest priority for accessing

the spectrum.

In the first scenario, we proposed a technique to recycle spatial directions left un-

used by a primary MIMO link, so that they can be re-used by secondary links.

Interestingly, the number of spatial directions can be evaluated analytically, and it

is shown to be sufficiently high to allow a secondary system to achieve a significant

transmission rate. We provided a signal construction technique to exploit those

spatial resources and a power allocation policy which maximizes the opportunistic
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transmission rate. Based on our asymptotical analysis, we show that this technique

allows a secondary link to achieve transmission rates of the same order as those of

the primary link, depending on their respective SNRs.

In the second scenario, we showed (at least in the context of a parallel multiple

access channel) that the network spectral efficiency can be improved by limiting

the number of available channels each transmitter can use (bandwidth limiting).

We provided closed form expressions for the optimal maximum number of channels

each transmitter must access in the case where transmitters use non-intersecting

sets of channels. In this case, such an optimum operating point depends mainly on

the network load (transmitters per channel) and the different signal to noise ratios.



Chapter 3

Equilibrium Analysis in Open

Spectrum Sharing Games

In this chapter, the open spectrum access scheme described in Chapter 1 is studied

using tools from game theory. In particular, this analysis is carried out considering

a specific network topology, namely, the parallel multiple access channel (parallel-

MAC). Multiple access channels (MAC) correspond to a scenario in which there are

several transmitters and one receiver. In parallel MAC, each transmitter can exploit

several orthogonal channels. This model allows the analysis of macro-diversity in

the uplink of cellular networks (in this case, base stations are assumed to be con-

nected to a common central entity), power allocation in frequency-selective multiple

access channels when orthogonal frequency division multiplexing (OFDM) is used,

or access point selection in wireless local area networks. In terms of multi-user chan-

nels, the channel under study corresponds to a special case of the vector Gaussian

MAC [121] but here, the system is assumed to be decentralized, that is, transmitters

can freely choose their spectrum access policy. This choice can be either a power al-

location (PA) policy among the available channels or a channel selection (CS) policy.

The performance metric for each terminal is assumed to be its individual spectral

efficiency (ISE). We will refer to these problems as problem/game (a) and prob-

lem/game (b) respectively. Problems (a) and (b) can be modeled by strategic-form

games where the players are the transmitters, the payoff/reward/utility function of

the players is the ISE, and the set of actions consists of the possible power allocation

or channel selection policies. The solution concept used in this chapter is that of

Nash equilibrium (NE) [66]. One of the important reasons for making this concept

relevant is that it can be the result of many evolution or dynamic processes involving

reasonable information assumptions.

The most relevant existing contributions related to the problems addressed in this

chapter are [6, 8, 99, 100]. The two works by Scutari et al. [99, 100] concern power

allocation games in Gaussian multiple input multiple output (MIMO) interference

channels while the one by Belmega et al. [6] focuses on fast fading MIMO MAC. In

terms of signal model, the parallel Gaussian MAC is a special case of the Gaussian

MIMO interference channels (IC) and the Gaussian MIMO MAC. However, the

study of the decentralized parallel Gaussian MAC deserves some relevance due to

41
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the following reasons.

(i) The Nash equilibrium analysis of the power allocation games in parallel MAC

is not a special case of those presented in [99, 100]. In particular, the sufficient

condition provided in [100] is not necessary in general [90]. The (more explicit)

sufficient conditions for uniqueness given by [99] are generally not verified in parallel

MAC. More precisely, from [99] it is implied that there exists a unique pure NE with

high probability when for each point-to-point communication the signal dominates

the interference. This condition is clearly not verified in parallel MAC. For instance,

in a 2-user parallel MAC, if one user’s signal is dominated by the interference, the

converse holds for the other user.

(ii) The Nash equilibrium analysis of the power allocation games in fast fading

MIMO MAC is not a special case of the one conducted by [6]. Indeed, in [6] the key

of unconditional uniqueness is not only due to the validity of a trace inequality [5]

but also to the fact that ergodic rates are considered. The latter argument does not

hold in the Gaussian MIMO MAC and therefore, in parallel MAC, when channels

are considered static.

(iii) The channel selection problem and corresponding (finite) game are not studied

in [6,8,99,100] while it is of practical interest (hard handovers in cellular networks,

access point selection in wireless local area networks, etc). Although it corresponds

to a special case of power allocation policy, the equilibrium analysis of this problem

is different. As we shall see, there exists a Braess paradox [15]: the network sum rate

or network spectral efficiency can be higher when implementing channel selection

instead of a general power allocation.

(iv) In parallel MAC, when single-user decoding (SUD) is assumed at the receiver(s),

both the power allocation and channel selection games have a special structure,

namely, they are (best-response) potential games [115]. This attractive feature, in

terms of existence of the NE and the convergence of some dynamics toward the

NE [82, 86], has not been exploited in [8], where both the power allocation and

channel selection games were introduced. More importantly, the games studied

in [99,100] are not potential games.

(v) A detailed study of two special cases is conducted: the 2−transmitter 2−channel

case (small networks) and the case of large networks. The former allows one to prove

the existence of a Braess paradox, while the latter allows one to predict the fraction

of users using a specific channel.

The content of this chapter can be briefly summarized as follows. In Sec. 3.1, the

system and game models are provided. In Sec. 3.2, it is shown that both the power

allocation and channel selection games are potential games. Based on this result,

the existence and uniqueness issues for Nash equilibrium in the power allocation

game are studied in Sec. 3.3. The channel selection game is analyzed in Sec. 3.4.

Therein, the existence of a Nash equilibrium is studied; the number of possible

pure Nash equilibria is upper bounded by using an interpretation borrowed from

graph theory; examples of converging dynamics are given and discussed. Sec. 3.5

provides a detailed analysis for two special cases: the 2−transmitter−2−channel

model and the large system model where both the numbers of transmitters and
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available channels are large. The chapter is concluded by Sec. 3.7.

3.1 Models

3.1.1 Signal Model

Let us define the sets K 4= {1, . . . , K} and S 4= {1, . . . , S}. Consider a parallel multi-

ple access channel with K transmitters and S subchannels (namely non-overlapping

bands). Denote by y = (y1, . . . , yS)T the S-dimensional vector representing the

received signal, which can be written in the baseband at the symbol rate as follows

y =
K∑

k=1

Hkxk + w. (3.1)

Here, ∀k ∈ K, Hk is the channel transfer matrix from transmitter k to the receiver,

xk is the vector of symbols transmitted by transmitter k, and vector w represents

the noise observed at the receiver. We will exclusively deal with the scenario where

∀k ∈ K, matrix Hk is an S-dimensional diagonal matrix (parallel MAC), i.e., Hk =

diag (hk,1, . . . , hk,S). In our analysis, block fading channels are assumed. Hence,

for each channel use, the entries hk,s, for all (k, s) ∈ K × S, are time-invariant

realizations of a complex circularly symmetric Gaussian random variable with zero

mean and unit variance. Here, it is also assumed that each transmitter k ∈ K is

able to perfectly estimate its own channel realizations (coherent communications),

i.e., the channels hk,1 . . . hk,S. The vector of transmitted symbols xk, ∀k ∈ K, is an

S-dimensional complex circularly symmetric Gaussian random variable with zero

mean and covariance matrix Pk = E
Ä
xkx

H
k

ä
= diag (pk,1, . . . , pk,S). Assuming the

input data flows to be Gaussian and independent is optimal in terms of spectral

efficiency, as shown in [108,109]. For all (k, s) ∈ K×S, pk,s represents the transmit

power allocated by transmitter k over channel s. Transmitters are power-limited,

that is,

∀k ∈ K,
S∑

s=1

pk,s 6 pk,max, (3.2)

where pk,max is the maximum transmit power of transmitter k. A power alloca-

tion (PA) vector for transmitter k ∈ K is any vector pk = (pk,1, . . . , pk,S) with

non-negative entries satisfying (3.2). The noise vector w is an S-dimensional zero

mean Gaussian random variable with independent, equal variance real and imag-

inary parts. Here, E
Ä
wwH

ä
= diag (σ2

1, . . . , σ
2
S), where, σ2

s represents the noise

power over channel s. We respectively denote the noise spectral density and the

bandwidth of channel s ∈ S by N0 and Bs, and thus, σ2
s = N0Bs. The total

bandwidth is denoted by B =
∑S
s=1 Bs.
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3.1.2 Game Model

The PA and CS problems described above can be respectively modeled by the fol-

lowing two non-cooperative static games in strategic form (with i ∈ {a, b}):

G(i) =
Å
K,
(
P(i)
k

)
k∈K

, (uk)k∈K

ã
. (3.3)

In both games, the set of transmitters K is the set of players. An action of a given

transmitter k ∈ K is a particular PA scheme, i.e., an S-dimensional PA vector

pk = (pk,1, . . . , pk,S) ∈ P(i)
k , where P(i)

k is the set of all possible PA vectors which

transmitter k can use either in the game G(a) (i = a) or in the game G(b) (i = b). An

action profile of the game i ∈ {a, b} is a super vector

p = (p1, . . . ,pK) ∈ P(i),

where P(i) is a set obtained from the Cartesian product of the action sets P(i)
k , for

all k ∈ K, i.e., P(i) = P(i)
1 × . . .× P(i)

K , where,

P(a)
k =

¶
(pk,1, . . . pk,S) ∈ RS : ∀s ∈ S, pk,s > 0,

∑

s∈S
pk,s 6 pk,max

}
, and (3.4)

P(b)
k = {pk,max es : ∀s ∈ S, es = (es,1, . . . , es,S) ,

∀r ∈ S \ s, es,r = 0, and es,s = 1} . (3.5)

In the sequel, we respectively refer to the games G(a) and G(b) as the PA game and

CS game. Let us denote by p−k any vector in the set

P(i)
−k
4
= P(i)

1 × . . .× P(i)
k−1 × P(i)

k+1 × . . .× P(i)
K (3.6)

with (i, k) ∈ {a, b} × K. For a given k ∈ K, the vector denoted by p−k represents

the strategies adopted by all the players other than player k. With a slight abuse of

notation, sometimes we write any vector p ∈ P(i) as (pk,p−k), in order to emphasize

the k-th vector component of the super vector p. The utility for player k in the

game G(i) is its spectral efficiency uk : P(i) → R+, and

uk(pk,p−k) =
∑

s∈S

Bs

B
log2 (1 + γk,s) [bps/Hz] (3.7)

where γk,s is the signal-to-interference plus noise ratio (SINR) seen by player k over

its channel s, i.e.,

γk,s =
pk,sgk,s

σ2
s +

∑

j∈K\{k}
pj,sgj,s

, (3.8)

and gk,s , |hk,s|2. Note that we assume that single-user decoding (SUD) is used at

the receiver(s). Clearly, optimality is not sought here. Rather, a scalable (in terms

of signaling cost) and fair choice for the decoding scheme is made. Additionally, this

choice allows the games under investigation to be potential games [64], which is a

very attractive feature to implement dynamic procedures aiming at converging to a

Nash equilibrium.
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3.2 A Note on the Parallel Multiple Access Chan-

nel

The games G(i), i ∈ {a, b}, correspond to a conflict of interest between selfish

decision-makers. Here, interaction is due to multiple access interference and deci-

sions consist of the choice of the PA vectors. Based on certain information/behavior

assumptions at/for the transmitters, a natural question is to know whether this

conflict has some predictable outcomes. Thus, following this reasoning, we focus on

the Nash equilibrium (NE) [66] as a solution concept of this conflict. Pure NE are

defined as follows.

Definition 3.2.1 (Pure Nash Equilibrium) In the non-cooperative games in strate-

gic form G(i), with i ∈ {a, b}, an action profile p ∈ P(i) is a pure NE if it satisfies,

for all k ∈ K and for all p′k ∈ P(i)
k , that

uk(pk,p−k) > uk(p
′
k,p−k). (3.9)

When at least one NE exists in the games G(a) and G(b), it can be achieved as the

result of long-term interaction of the players following a particular behavioral rule

(see Sec. 3.3 and 3.4) with reduced feedback (receiver - transmitter).

Potential games (PG) [64] is a class of games for which existence of pure NE is

guaranteed. Additionally, many known learning procedures, such as, best response

dynamics, fictitious play and some reinforcement learning dynamics converge in PG.

One of the purposes of this section is to show that the games G(i), i ∈ {a, b} can

be checked to be potential games [64, 96] and more generally, best response PG

(BRPG) [115]. First, let us define an exact potential game.

Definition 3.2.2 (Exact Potential Game) Any game in strategic form defined

by the triplet
Ä
K, (Pk)k∈K , (uk)k∈K

ä
is an exact potential game if there exists a func-

tion φ (p) for all p ∈ P = P1 × . . .×PK such that for all players k ∈ K and for all

p′k ∈ Pk, it holds that

uk(pk,p−k)− uk(p′k,p−k) = φ(pk,p−k)− φ(p′k,p−k).

From the definition of the utility functions (3.7), the following proposition can be

easily shown [73].

Proposition 3.2.1 The strategic form games G(i), with i ∈ {a, b}, are exact poten-

tial games with potential function

φ(p) =
∑

s∈S

Bs

B
log2

(
σ2
s +

K∑

k=1

pk,sgk,s

)
. (3.10)

In fact, the games G(i), i ∈ {a, b}, are not only potential games but also best-response

potential games [115]. A game in normal form
Ä
K, (Pk)k∈K , (uk)k∈K

ä
is a BRPG if

there exists a function θ : P1 × . . .× PK → R, which verifies, for all k ∈ K,

arg max
qk∈P

(i)
k

uk (qk,p−k) = arg max
qk∈P

(i)
k

θ (qk,p−k) . (3.11)
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Indeed, the utility function (3.7) can be written in terms of the potential function

(3.10) as follows

∀k ∈ K, uk (pk,p−k) = φ (pk,p−k)− υk (p−k) , (3.12)

where υk (p−k) =
∑

s∈S

Bs

B
log2

Ñ
σ2
s +

∑

j∈K\{k}
pj,sgj,s

é
, and by inspection, it becomes

clear that both G(a) and G(b) satisfy the condition (3.11). The technical point to

be noticed here is that in general an NE point does not necessarily maximizes the

potential function (the converse is always true, see e.g., [97]) but here, due to (3.12),

the set of NE and the set of maximum of the potential coincide. This result could

also be proved alternatively by using [97] since the potential game is also concave in

the sense of Theorem 1 in [92]. Thus, the individual utility maximization problem

is equivalent to maximizing a common function (independently of the transmitter

index). This reasoning leads to the following proposition.

Proposition 3.2.2 (Lemma 2.2 in [63]) Denote by N(i) and N ′(i) the sets of pure

NE for the games G(i) and G ′(i) =
Ä
K, (Pk)k∈K , (φ)k∈K

ä
, with i ∈ {a, b}. Then, for

all i ∈ {a, b}, the sets N(i) and N ′(i) are identical.

Prop. 3.2.1 and Prop. 3.2.2 will be exploited in Sec. 3.3 and Sec. 3.4 to solve the

pure NE existence and uniqueness problems.

3.3 The Power Allocation Game G(a)

The PA game G(a) models the scenario where transmitters can allocate any power

level to any of its own channels subject to the power constraints (3.2). First, the NE

existence and uniqueness problems are tackled. Second, the PA game is considered to

be played several times and the convergence issue for two known dynamics (namely

the sequential and simultaneous BR dynamics) under partial information on the

game is discussed.

3.3.1 Existence of a Pure NE

Our main interest is to find NE in pure strategies, i.e., a PA vector which will

be played once and for all by the transmitters during a time window shorter than

the channel coherence time (the PA policies have to be updated for each channel

realization). First of all, note that the existence of a mixed NE (i.e., a probability

distribution on the possible actions which verifies Definition 3.2.1) is guaranteed.

This is because the action spaces, P(a)
k for all k ∈ K are compact spaces and the

utility functions are continuous with respect to the action profile [28]. However, in

compact strategy spaces, mixed strategies are generally less attractive in the wireless

communications (e.g. think of how to implement such strategies). Interestingly, the

PG property allows one to assert the existence of at least one pure NE. The following

proposition is an immediate consequence of Lemma 4.3 in [64].
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Proposition 3.3.1 (Existence of a pure NE) The game G(a) has always at least

one NE in pure strategies.

Here, it is important to remark that more general concepts of equilibrium, such as

correlated equilibrium [3], can coincide with the NE in some PG. This is the case in

games where the potential is a strictly concave function [69]. The potential function

(3.10) is concave but not strictly concave. Strict concavity would be obtained by

considering ergodic transmission rates, which is relevant in fast fading parallel MAC.

3.3.2 Uniqueness of the Pure NE

As previously mentioned, the equilibrium analysis of the game G(a) is not a special

case of the studies conducted in [99] [100] [6]. In [99, 100] sufficient conditions are

assumed to ensure uniqueness in Gaussian MIMO IC whereas in [6] ergodicity is

exploited in fast fading MIMO MAC to have unconditional uniqueness. In the

case of the Gaussian parallel MAC, uniqueness is guaranteed almost surely and

the argument used to prove uniqueness is based on the concept of degeneracy which

allows one to characterize the directions along which the potential remains constant.

The following result is due to a recent work from Mertikopoulos et al. [59].

Theorem 3.3.1 (NE uniqueness in parallel MAC) The game G(a) has almost

surely a unique pure NE.

A formal proof of Theorem 3.3.1 is provided in [59]. Here, we provide a corollary of

Theorem 3.3.1 which can be proved without using the concept of degeneracy. This

result will be used later in Sec. 3.5.1.

Corollary 3.3.2 (Uniqueness in 2× 2 systems) Let (K,S) = (2, 2). Then, the

game G(a) has a unique pure NE with probability 1.

The 2 × 2 power allocation game is analyzed later in this chapter in Sec. 3.5.1.

Here, we use Prop. 3.5.1 from Sec. 3.5.1 to give a proof of Corollary 3.3.2. Based

on Prop. 3.5.1, it can be implied that a necessary (but not sufficient) condition for

observing multiple NE in the game G(a) is that the vector of channel realizations

g = (g11, g12, g21, g22) ∈ G satisfies g11g22 = g21g12. However, considering that the

channel gains {gi,j}∀(i,j)∈K×P are drawn from continuous probability distributions,

observing a channel realization such that g11g22 = g12g21 is a zero-probability event.

Thus, we conclude that the NE of the game G(a) is unique with probability 1.

In general, from Prop. 3.2.2 and Def. 3.2.1, the (unique pure) NE of the game G(a),

denoted by p† =
Ä
p†1, . . . ,p

†
K

ä
is the unique solution of the following optimization

problem:

∀k ∈ K, p†k ∈ arg max
pk∈P

(a)
k

φ
Ä
pk,p

†
−k
ä
. (3.13)

The components of the vector p† in (3.13) are for all (k, s) ∈ K × S,
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p†k,s =



Bs

B

1

βk
−
σ2
s +

∑

j∈K\{k}
p†j,sgj,s

gk,s




+

, (3.14)

where, βk is a Lagrangian multiplier chosen to saturate the power constraints (3.2).

In the wireless communications domain, this particular power allocation scheme is

known as water-filling and the constant βk is known as the water level [121].

3.3.3 Dynamics Arising from the Best Response

From the preceding section, we know that there is a unique pure NE in G(a). This

allows one to predict the unique outcome of the static game G(a) with complete

information or for some scenarios where the game is played several times but with

partial information. In a cognitive radio setting, it is typically more realistic to

assume that a transmitter can sense the actions played by the others, react to it,

the others sense this, update their actions, and so on. This is the idea of the best

response dynamics (BRD). As dynamics come into play, the question is to know

whether these dynamics converge, which is the purpose of this section.

Let us define the best response correspondence and best response dynamics.

Definition 3.3.3 (Best-Response Correspondence) In a non-cooperative game

described by the 3-tuple
Ä
K, (Pk)∀k∈K , (uk)∀k∈K

ä
, the relation BRk : P−k → Pk such

that

BRk (p−k) = arg max
qk∈Pk

uk (qk,p−k) , (3.15)

is defined as the best-response correspondence of player k ∈ K, given the actions p−k
adopted by all the other players.

Definition 3.3.4 (Best Response Dynamics) Let the action profile

p(t) = (p1(t), . . . ,pK(t))

be the result of a best-response dynamics at time t. Then, for all k ∈ K, and for all

t ∈ N, the vector pk(t) can be obtained as follows: (1) In the sequential best-response

dynamics (round-Robin order):

pk(t) ∈ BRk (p1(t), . . . ,pk−1(t),pk+1(t− 1), . . . ,pK(t− 1)) , (3.16)

(2) in the simultaneous best-response dynamics:

pk(t) ∈ BRk (p−k(t− 1)) , (3.17)

where p(0) can be any vector p ∈ P.

Now, based on both definitions above and Theorem 6.2 in [120], the following result

can be stated.
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Proposition 3.3.2 (Convergence of BRD) The sequential best response dynam-

ics of any potential game converges to an NE.

Assuming that each transmitter knows its actual channel gains gk = (gk,1, . . . , gk,S),

the bandwidth of all channels b = (B1, . . . , BS), and its own actual PA vector pk,

which is a realistic assumption, each transmitter can determine its best response

(3.17) based on a common message from the receiver (e.g. the multiple access

interference value on each channel, κ = (κ1, . . . , κS), with κs = σ2
s +

∑K
k=1 pk,sgk,s).

Note that the sequential BRD in the game G(a) leads to the same result as the

iterative water-filling algorithm (IWFA) presented in [121]. However, the IWFA

has been obtained in a context where the receiver performs successive interference

cancellation (SIC) and the objective was to maximize the sum rate of the network. In

this work, single-user decoding is considered and each transmitter aims to maximize

its own data rate. Hence, even the mathematical expressions are similar the concepts

do not necessarily have the same meaning and the achieved sum rates in each case

are different from each other.

One of the main drawbacks of the iterative BRD (and IWFA) is its large time

for convergence as well as its required signaling (message κ(t)). To overcome this

problem, other algorithms such as the simultaneous water-filling algorithm (SWFA),

which follows the simultaneous best-response dynamics (Def. 3.3.4) have been pro-

posed [101].

3.4 The Channel Selection Game G(b)

In this section, a constraint is imposed to the transmitters: they can only transmit

over one channel at a time. Considering this constraint, it is easy to check that every

transmitter has to saturate its transmit power to maximize its utility. Indeed, ∀k ∈
K and ∀p−k ∈ P(b)

−k, φ (pk es,p−k) < φ (pk,max es,p−k) where es = (es,1, . . . , es,S) ∈
RS, ∀r ∈ S \ s, es,r = 0, and es,s = 1. The problem under investigation is therefore

a channel selection problem. Technically, the main difference between G(a) and G(b)

is that the latter is a finite game (|K × S| < +∞). As a consequence, the number

of pure NE is generally more than 1.

3.4.1 Existence of a Pure NE

The game G(b) is an exact potential game (Prop. 3.2.1) and thus, following Lemma

2.3 in [64], we introduce the following proposition.

Proposition 3.4.1 (Existence of a pure NE) The game G(b) has always at least

one NE in pure strategies.

Here again, even though the focus is on pure strategy NE, it is useful to remark that

given that the actions sets are discrete and finite, then the existence of at least one

NE in mixed strategies is ensured [66]. In the case of 2 players and 2 channels, the

NE in mixed-strategies has been analyzed in [86].
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3.4.2 Bounding the Number of Pure NE

To identify an upper-bound of the number of NE in G(b), we exploit basic tools from

graph theory. Let us index the elements of the action set P(b) in any given order

using the index n ∈ I =
¶
1, . . . , SK

©
. Denote by p(n) the n-th element of the action

set P(b). We write each vector p(n) with n ∈ I, as p(n) =
(
p

(n)
1 , . . . ,p

(n)
K

)
, where

for all j ∈ K, p
(n)
j ∈ P(b)

j . Consider that each action profile p(n) is associated with

a vertex vn in a given non-directed graph G. Each vertex vn is adjacent to the

K(S− 1) vertices associated with the action profiles resulting when only one player

deviates from the action profile p(n), i.e., if two vertices vn and vm, with (n,m) ∈ I2

and n 6= m, are adjacent, then there exists one and only one k ∈ K, such that

∀j ∈ K \ {k}, p
(n)
j = p

(m)
j , and p

(n)
k 6= p

(m)
k .

More precisely, the graph G can be defined by the pair G = (V ,A), where the set

V = {v1, . . . , vSK} (nodes) represents the SK possible actions profiles of the game

and A (edges) is a symmetric matrix (adjacency matrix of G) with dimensions

SK × SK and entries defined as follows ∀(n,m) ∈ I2 and n 6= m,

an,m = am,n =

{
1 if n ∈ Vm
0 otherwise ,

(3.18)

and an,n = 0 for all n ∈ I, where the set Vn is the set of indices of the adjacent

vertices of vertex vn. In the following, we use the concept of distance between two

vertices of the graph G. We define this concept using our notation:

Definition 3.4.1 (Shortest Path) The distance (shortest path) between vertices

vn and vm, with (n,m) ∈ I2 in a given non-directed graph G = (V , A), denoted by

dn,m(G) ∈ N is:

dn,m(G) = dm,n(G) =
K∑

k=1

1¶
p

(n)
k
6=p

(m)
k

©. (3.19)

A realistic assumption is to consider that for any pair of action profiles p(n) and

p(m), with (n,m) ∈ I2 and n 6= m, we have that φ(p(n)) 6= φ(p(m)) with probability

one. This is because channel gains are random variables drawn from continuous

probability distributions and thus, Pr
Ä
φ(p(n)) = φ(p(m)) | n 6= m

ä
= 0. Hence, fol-

lowing Def. 3.2.1, one can state that if the action profile p(n∗), with n∗ ∈ I, is an

NE of the game G(b), then, it follows that

∀m ∈ V(n∗), φ(p(n∗)) > φ(p(m)), (3.20)

and vice versa with probability one. However, several action profiles might simul-

taneously satisfy the condition (3.20), which implies the non-uniqueness of the NE,

as shown in the following proposition.
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Proposition 3.4.2 Let K̂ ∈ N be the highest even number inferior to K. Then,

the game G(b) has L pure NE strategy profiles, where,

1 6 L 6 1 +
∑

i∈{2,4,...,K̂}

(
K

i

)
(S − 1) . (3.21)

Proof : From Prop. 3.4.1 it is ensured that L > 1. Then, assume that a given

action profile p(n) (vertex vn) with n ∈ I is an NE. Given condition (3.20), it follows

that none of the vertices in the set Vn is an NE. Nonetheless, if there exists another

action profile p(m), with m ∈ I \ {n ∪ Vn}, which satisfies (3.20), then p(m) can be

also an NE. Thus, for the action profile p(m), with n 6= m, to be an NE candidate,

it must be (at least) at distance two of p(n) and any other NE candidate, i.e.,

dn,m(G) = dm,n(G) ∈ {2, 4, . . . , K̂}. An action profile at distance ` ∈ {2, 4, . . . , K̂}
from p(n), is a vector where ` players have simultaneously deviated from p(n). Hence,

for each `-tuple of players, there always exists S − 1 action profiles at distance `

from p(n) and at distance 2 from each other. Thus, aside from the initial NE action

profile p(n), there might exists at most

1 +
∑

i∈{2,4,...,K̂}

(
K

i

)
(S − 1) (3.22)

other NE candidates. This establishes an upper bound for L and completes the

proof. 2

The graph-theoretic interpretation of the channel selection problem allows one

to see how big the number of pure NE can be. Note that this upper bound does not

depend on the realizations of the channel gains whereas the number of NE generally

depends on the latter. Interestingly, this upper bound (21) can be reached in the

case K = 2 and S = 2, i.e., for certain channel realizations [86]. By contrast, in

the case K = 3 and S = 2, the number of NE candidates is 4 (See Fig. 1 in [73]),

however, as we shall see in Sec. 3.6, only 3 NE are observed. This is basically because

in this case, there are some action profiles which are mutually exclusive from the set

of NE. In any case, the upper-bound provided by Prop. 3.4.2 is tighter than the one

in [73]. As in other games in the related literature (see e.g., the work by Scutari et

al. [99]), expressing the number of NE for a given set of channel realizations is not

easy. This is the reason why we will follow the approach of [99] by computing the

probability of having a certain number of NE, which is done in Sec. 3.6.

3.4.3 Dynamics Arising from the Best Response

In order to fully identify the action profiles corresponding to an NE, we convert

the non-directed graph G into an oriented graph Ĝ whose adjacency matrix is the

non-symmetric square matrix Â whose entries are ∀(i, j) ∈ I2 and i 6= j,

âi,j =

{
1 if i ∈ Vj and φ

Ä
p(j)
ä
> φ

Ä
p(i)
ä

0 otherwise ,
(3.23)
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and âi,i = 0 for all i ∈ I.

From the definition of the matrix Â, we have that a necessary and sufficient condition

for a vertex vi to represent an NE action profile is to have a null out-degree in the

oriented graph Ĝ, i.e., there are no outgoing edges from the node vi (sink vertex).

Finally, one can conclude that determining the set of NE in the game G(b) boils down

to identifying all the sink vertices in the oriented graph Ĝ. However, this task might

be highly computationally demanding and requires complete information.

Assuming that the game is played repeatedly, it is known that the BRD converges

to an NE in potential games [64]. The best response of transmitter k ∈ K in the

game G(b) is

BRk (p−k) =
{
pk ∈ P(b)

k : pk = pk,maxen∗
k

and n∗k =

arg max
s∈S

BS

B
log2

(
1 +

pk,maxgk,s
σ2
s +

∑
j∈K\{k} pj,maxgj,s

)}
,

and can be determined locally by each transmitter as described in Sec. 3.3.3.

Additionally to the BRD (iterative and sequential, Def. 3.3.4), since the set of

actions is discrete, other dynamics such as fictitious play [16] [86] can also be used.

3.4.4 Dynamics Arising from the Fictitious Play

The fictitious play can be described as follows. Assume that transmitters have

complete and perfect information, i.e., they know the structure of the game G(b) and

observe at each time t ∈ N the PA vectors taken by all players. Each transmitter

k ∈ K assumes that all its counterparts play independent and stationary (time-

invariant) mixed strategies πj ∈ 4
(
P(b)
j

)
, ∀j ∈ K \ {k}. Under these conditions,

player k is able to build an empirical probability distribution over each set P(b)
j ,

∀j ∈ K \ {k}. Let fk,pk(t) = 1
t

∑t
s=1 1{pk(s)=pk} be the (empirical) probability with

which players j ∈ K \ {k} observe that player k plays action pk ∈ P(b)
k . Hence,

∀k ∈ K and ∀pk ∈ P(b)
k , the following recursive expression holds,

fk,pk(t+ 1) = fk,pk(t) +
1

t+ 1

Ä
1{pk(t)=pk} − fk,pk(t)

ä
. (3.24)

Let f̄k,p−k(t) =
∏

j 6=k
fj,pj(t) be the probability with which player k observes the action

profile p−k ∈ P(b)
−k at time t > 0, for all k ∈ K. Let the

∣∣∣P(b)
−k

∣∣∣−dimensional vector

fk(t) =
Ä
f̄k,p−k

ä
∀p−k∈P

(b)
−k
∈ 4

(
P(b)
−k

)
be the empirical probability distribution over

the set P(b)
−k observed by player k. In the following, we refer to the vector fk(t)

as the beliefs of player k over the strategies of all its corresponding counterparts.

Hence, based on its own beliefs fk(t), each player k chooses its action at time t,

pk(t) = p
(nk(t))
k , where nk(t) satisfies that:

nk(t) ∈ arg max
s∈S

ūk (es, fk(t)) , (3.25)
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where, for all k ∈ K, ūk : 4
(
P(b)

1

)
× . . .×4

(
P(b)
K

)
→ R is

ūk (π) = Eπ [uk (pk,p−k)] . (3.26)

From (3.24), it can be implied that playing FP, players become myopic, i.e., they

build beliefs on the strategies being used by all the other players, and at each time

t > 0, players choose the action that maximizes the instantaneous expected utility.

Convergence of the FP Dynamics

The game G(b) is a potential game, and thus, it is said to have the fictitious play

property (FPP) [63], i.e., for all k ∈ K, and for all pk ∈ P(b)
k ,

lim
t→∞

fk,pk(t) = f ∗k,pk , (3.27)

where, f̄ ∗k,p−k =
∏

j∈K\{k}
f ∗j,pj , ∀p−k ∈ P

(b)
−k, is a time-invariant probability distribution

over the set P(b)
−k, which correspond to an NE in mixed strategies. An NE in mixed

strategies, is defined as follows,

Definition 3.4.2 (Nash Equilibrium) A mixed-strategy profile π∗ is an NE of

the game G(b) if, for all players k ∈ K and ∀π′k ∈ 4
(
P(b)
k

)

ūk(π
∗
k, π

∗
−k) > ūk(pi′k, π

∗
−k). (3.28)

Here, for all k ∈ K, πk =
Å
π
k,p

(1)
k

, . . . , π
k,p

(S)
k

ã
∈ 4

(
P(b)
k

)
, where ∀(k, s) ∈ K × S,

π
k,p

(s)
k

represents the probability that player k uses channel s.

Following this reasoning, we write the following proposition

Proposition 3.4.3 (Convergence of FP in CS) The fictitious play converges

empirically to the set of Nash equilibrium in the game G(b).

Practical Limitations of Fictitious Play

As presented in its original version [16], the FP requires complete and perfect in-

formation. This is the same as stating that each transmitter, at each time t > 0, is

aware of the number of active transmitters in the network, their set of actions, their

utility function and moreover, it is able to observe the action played by each one

of all the other transmitters. Clearly, this assumption is not practically appealing

since it would require a massive signaling between transmitters, which reduces the

spectral efficiency of the whole network. Additionally, as we shall see, in the high

SNR regime, the CS problem has the same structure of a potential coordination

game [119]. In this kind of games, the set of probability distributions fk, ∀k ∈ K,

converges but not necessarily the actions, i.e., fictitious play might converge to a

strictly mixed strategy profile. When FP converges to a mixed strategy, it is pos-

sible that players cycle around a subset of action profiles, which might lead to an

expected utility which is worse that the worst expected utility at the NE in pure

and mixed strategies. In the following section, we present a simple study case where

it is easy to evidence this cycling effect.
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3.5 Analysis of Special Cases

In this section, we study two special cases of relevant interest to understand previous

conclusions. First, the games G(a) and G(b) are studied assuming that there exist only

K = 2 transmitters and S = 2 available channels. In particular, we analyze the set

of NE action profiles of both games and compare the network spectral efficiency

(NSE) U : P(b) → R, that is obtained by playing both games. Here,

U(p1, . . . ,pK) =
K∑

k=1

uk(p1, . . . ,pK) [bps/Hz]. (3.29)

From this analysis, it is concluded that from a network performance point of view,

limiting the transmitters to use a unique channel brings a better result in terms of

network spectral efficiency (3.29). Second, we consider the case of a large number of

transmitters and channels assuming a finite ratio of transmitters per channel. This

study leads to conclude that, the fraction of players using a given channel depends

mainly on the bandwidth of each channel.

3.5.1 The 2-Transmitter 2-Channel Case

Consider the games G(a) and G(b) with K = 2 and S = 2. Assume also that ∀k ∈ K,

pk,max = pmax and ∀s ∈ S, σ2
s = σ2 and Bs = B

S
. Denote by SNR = pmax

σ2 the average

signal to noise ratio (SNR) of each active communication.

The Power Allocation Game

Let us denote by p† =
Ä
p†1,p

†
2

ä
the NE of the game G(a). Then, following Def. 3.2.1,

one can write the following set of inclusions,

∀k ∈ K, p†k ∈ BRk

Ä
p†−k
ä
. (3.30)

Note that, for all k ∈ K and for all p−k ∈ P(a), the set BRk (p−k) is a singleton (Def.

3.3.3) and thus, (3.30) represents a system of equations. By solving the resulting

system of equations (3.30) for a given realization of the channels {gi,j}∀(i,j)∈K×P , one

can determine the NE of the game G(a). We present such a solution in the following

proposition.

Proposition 3.5.1 (Nash Equilibrium in G(a)) Let the action profile p† =
Ä
p†1,p

†
2

ä
∈

P(a), with p†1 =
Ä
p†11, pmax − p†11

ä
and p†2 =

Ä
pmax − p†22, p

†
22

ä
be an NE action profile

of the game G(a). Then, with probability one, p† is the unique NE and it can be

written as follows:

• Equilibrium 1: if g ∈ B1 = {g ∈ R4
+ : g11

g12
> 1+SNRg11

1+SNRg22
, g21

g22
6 1+SNRg11

1+SNRg22
}, then,

p†11 = pmax and p†22 = pmax.

• Equilibrium 2: if g ∈ B2 = {g ∈ R4
+ : g11

g12
> 1 + SNR (g11 + g21) , g21

g22
>

1 + SNR (g11 + g21)}, then, p†11 = pmax and p†22 = 0.
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• Equilibrium 3: if g ∈ B3 = {g ∈ R4
+ : g11

g12
6 1

1+SNR(g12+g22)
, g21

g22
6 1

1+SNR(g12+g22)
}

then, p†11 = 0 and p†22 = pmax.

• Equilibrium 4: if g ∈ B4 = {g ∈ R4
+ : g11

g12
6 1+SNRg21

1+SNRg12
, g21

g22
> 1+SNRg21

1+SNRg12
}, then,

p†11 = 0 and p†22 = 0.

• Equilibrium 5: if g ∈ B5{g ∈ R4
+ : g11

g12
> g21

g22
, 1+SNRg11

1+SNRg22
< g21

g22
< 1 +

SNR (g11 + g21)}, then, p†11 = pmax and p†22 = 1
2

(
pmax − σ2

g22
+ σ2+g11pmax

g21

)
.

• Equilibrium 6: if g ∈ B6{g ∈ R4
+ : g11

g12
> g21

g22
, 1

1+SNR(g12+g22)
< g11

g12
< 1+SNRg11

1+SNRg22
},

then, p†11 = 1
2

(
pmax − σ2

g11
+ σ2+pmaxg22

g12

)
and p†22 = pmax.

• Equilibrium 7: if g ∈ B7 = {g ∈ R4
+ : g11

g12
6 g21

g22
, 1+SNRg21

1+SNRg12
< g11

g12
< 1 +

SNR (g11 + g21)}, then, p†11 = 1
2

(
pmax − σ2+pmaxg21

g11
+ σ2

g12

)
and p†22 = 0.

• Equilibrium 8: if g ∈ B8{g ∈ R4
+ : g11

g12
6 g21

g22
, 1

1+SNR(g12+g22)
< g21

g22
< 1+SNRg21

1+SNRg12
},

then, p†11 = 0 and p†22 = 1
2

(
pmax − σ2+g12pmax

g22
+ σ2

g21

)
.

Proof : See Appendix D 2

In Fig. 3.1 we plot the different types of NE of the game G(a) as a function of the

channel ratios g11

g12
and g21

g22
. The uniqueness of the NE is not ensured under certain

conditions as we show in the following proposition. In fact, under those conditions

infinitely many NE can be observed, however, such conditions are observed with

zero probability.

Proposition 3.5.2 Assume that the set of channels {gi,j}∀(i,j)∈K×P satisfies the fol-

lowing conditions

1

1+
pmax
σ2 (g12+g22)

<
g11
g12

=
g21
g22

<1+ pmax
σ2 (g11+g21), (3.31)

Then, any PA vector p = (p11, pmax − p11, pmax − p22, p22) ∈ P(a), such that

p11 = 1
2

(
pmax (1− α) + σ2

(
1
g12
− 1

g11

))
+ αp22

with α
4
= g11

g21
= g12

g22
, is an NE action profile of the game G(a).

The proof of Prop. 3.5.2 is the first part of the proof of Prop. 3.5.1.

In the next subsection, we perform the same analysis presented above for the game

G(b).

The Channel Selection Game

When K = 2 and S = 2, the game G(b) has four possible outcomes, i.e.,
∣∣∣P(b)

∣∣∣ = 4.

We detail such outcomes and its respective potential in Fig. 3.2.

Following Def. 3.2.1, each of those outcomes can be an NE depending on the channel

realizations {gi,j}∀(i,j)∈K×P , as shown in the following proposition.
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Figure 3.1: Nash equilibrium action profiles as a function of the channel ratios g11

g12

and g21

g22
for the two-player-two-channel game G(a). The function ψ : R+ → R+ is

defined as follows: ψ(x) = 1 + SNRx. The best response function BRk(p−k), for all

k ∈ K, is defined by (3.14). Here, it has been arbitrarly assumed that ψ(g21)
ψ(g12)

< ψ(g11)
ψ(g22)

.



3.5. Analysis of Special Cases 57

Tx1\Tx2 p2=(pmax,0) p2=(0,pmax)

p1=(pmax,0) 1
2 log2(σ2+pmax(g11+g21))+ 1

2 log2(σ2) 1
2 log2(σ2+pmaxg11)+ 1

2 log2(σ2+pmaxg22)
p1=(0,pmax) 1

2 log2(σ2+pmaxg12)+ 1
2 log2(σ2+pmaxg21) 1

2 log2(σ2+pmax(g12+g22))+ 1
2 log2(σ2)

Figure 3.2: Potential function φ of the game G(b), with K = 2 and S = 2. Player 1

chooses rows and player 2 chooses columns.

Proposition 3.5.3 (Nash Equilibria in G(b)) Let the PA vector p∗ = (p∗1,p
∗
2) ∈

P(b) be one NE in the game G(b). Then, depending on the channel gains {gi,j}∀(i,j)∈K×P ,

the NE p∗ can be written as follows:

• Equilibrium 1: when g ∈ A1 = {g ∈ R4
+ : g11

g12
> 1

1+SNRg22
and g21

g22
6 1 +

SNRg11}, then, p∗1 = (pmax, 0) and p∗2 = (0, pmax).

• Equilibrium 2: When g ∈ A2 = {g ∈ R4
+ : g11

g12
> 1 + SNRg21 and g21

g22
>

1 + SNRg11 }, then, p∗1 = (pmax, 0) and p∗2 = (pmax, 0).

• Equilibrium 3: when g = (g11, g12, g21, g22) ∈ A3{g ∈ R4
+ : g11

g12
6 1

1+SNRg22
and g21

g22
6

1
1+SNRg12

}, then, p∗1 = (0, pmax) and p∗2 = (0, pmax).

• Equilibrium 4: when g ∈ A4 = {g ∈ R4
+ : g11

g12
6 1 + SNRg12 and g21

g22
>

1
1+SNRg12

}, then, p∗1 = (0, pmax) and p∗2 = (pmax, 0).

Proof : The proof follows immediately from Def. 3.2.1 and Fig. 3.2. 2

In Fig. 3.3, we plot the different types of NE action profiles as a function of the

channel ratios g11

g12
and g21

g22
. Note how the action profiles p∗ = (pmax, 0, 0, pmax)

and p+ = (0, pmax, pmax, 0) are both NE, when the channel realizations satisfy that

g ∈ A5 = A1∩A4, i.e., A5 = {g ∈ R4
+ : 1

1+SNRg22
6 g11

g12
6 1+SNRg21 and 1

1+SNRg12
6

g21

g22
6 1 + SNRg11}. This confirms the fact that several NE might exists in the game

G(b) depending on the exact channel realization, as stated in Prop. 3.4.2. Moreover,

one can also observe that there might exist an NE action profile which is not a global

maximizer of the potential function (3.10) [113] (e.g., φ (p∗) < φ
Ä
p+

2

ä
).

Now, following the result in [117], it can be implied that when there exist two NE

in pure strategies, there exists a third NE in mixed strategies. When, there exists a

unique NE in pure strategies, the NE in mixed strategies coincides with the NE in

pure strategies. We summarize this observation in the following proposition.

Proposition 3.5.4 (NE in Mixed Strategies) Let π∗k ∈ 4
(
P(b)
k

)
be a mixed

strategy of player k, ∀k ∈ K. Then, π∗ = (π∗1, . . . , π
∗
K) is an NE in strict mixed

strategies of the game G(b), if and only if, the channel realizations {gi,j}∀(i,j)∈K×P
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Figure 3.3: Nash equilibrium action profiles as a function of the ratios g11

g12
and g21

g22

of the channel realizations for the two-player-two-channel game G(b). The function

ψ : R+ → R+ is defined as follows: ψ(x) = 1 + SNRx. Here, it has been arbitrarily

assumed that ψ(g11) < ψ(g21).
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satisfy that g ∈ A1 ∩ A4 and,

π∗1,p(1) =
φ
Ä
p(2),p(1)

ä
− φ

Ä
p(2),p(2)

ä
φ (p(1),p(2)) + φ (p(2),p(1))− φ (p(1),p(1))− φ (p(2),p(2))

, (3.32)

π∗1,p(2) =
φ
Ä
p(1),p(2)

ä
− φ

Ä
p(1),p(1)

ä
φ (p(1),p(2)) + φ (p(2),p(1))− φ (p(1),p(1))− φ (p(2),p(2))

, (3.33)

π∗2,p(1) =
φ
Ä
p(1),p(2)

ä
− φ

Ä
p(2),p(2)

ä
φ (p(1),p(2)) + φ (p(2),p(1))− φ (p(1),p(1))− φ (p(2),p(2))

, (3.34)

π∗2,p(2) =
φ
Ä
p(2),p(1)

ä
− φ

Ä
p(1),p(1)

ä
φ (p(1),p(2)) + φ (p(2),p(1))− φ (p(1),p(1))− φ (p(2),p(2))

. (3.35)

where, p(1) = (0, pmax) and p(2) = (pmax, 0)

In the sequel, the performance achieved by the transmitters at the equilibrium

in both games are compared.

A note on the Convergence of Fictitious Play

In the case the NE is unique in the CS game G(b), the FP converges to the unique

NE in pure strategies (Prop. 3.4.3). Nonetheless, when several NE simultaneously

exist, the FP converges to the NE either in pure strategies or mixed strategies. In

the following, we show a case of convergence in mixed strategies using the FP.

Assume that both players starts the game with the initial beliefs

fj(t0) =
Ä
fj,p(1)(t0), fj,p(2)(t0)

ä
,

such that fj,p(1)(t0) = ξj
1+ξj

and fj,p(2)(t0) = 1
1+ξj

, with 0 < ξj < 1, for all j ∈ K.

Hence, based on these beliefs, both players coincide choosing the action p(1) at

t = t0. Following (3.24), it yields, ∀k ∈ K, and ∀n ∈ {1, . . . ,∞},




f
k,p(1) (t0+2n−1) = 1

2n−1

Ä
nξk+(n−1)

1+ξk

ä
f
k,p(2) (t0+2n−1) = 1

2n−1

Ä
(n−1)ξk+n

1+ξk

ä
f
k,p(1) (t0+2n) = 1

2n

Ä
(n+1)ξk+n

1+ξk

ä
f
k,p(2) (t0+2n) = 1

2n

Ä
(n−1)ξk+n

1+ξk

ä . (3.36)

Here, as long as the following condition holds ∀k ∈ K and a given n ∈ {1, . . . ,∞},

n(ξk+1)−1

n(ξk+1)−ξk
6
φ(p(2),p(1))−φ(p(2),p(2))
φ(p(1),p(2))−φ(p(1),p(1))

6
n(ξk+1)+ξk
n(ξk+1)−ξk

, (3.37)

then, the following outcomes are observed,

pk(2n− 1) = p(1) and pk(2n) = p(2).

This implies that transmitters will cycle around the outcomes
Ä
p(1),p(1)

ä
and

Ä
p(2),p(2)

ä
.

Note that if

φ(p(2),p(1))−φ(p(2),p(2))=φ(p(1),p(2))−φ(p(1),p(1)), (3.38)
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then, the beliefs of each player converge to πk,p(s) = 1
2
, for all (k, s) ∈ K × S and

players perpetually iterate between actions
Ä
p(1),p(1)

ä
and

Ä
p(2),p(2)

ä
. Here, even

though πk =
Ä

1
2
, 1

2

ä
, for all k ∈ K, is an NE in mixed strategies according to Prop.

3.5.4, the achieved expected utility can be worse than the worst expected utility

at NE in pure and mixed strategies. This can be explained by the fact that the

pure strategies corresponding to the NE, i.e., p† =
Ä
p(1),p(2)

ä
and p†† =

Ä
p(2),p(1)

ä
,

are never played. Hence, if the channel realizations are those such that sharing the

same channel is always worse than using orthogonal channels, i.e., φ
Ä
p(2),p(1)

ä
>>

φ
Ä
p(2),p(2)

ä
and φ

Ä
p(1),p(2)

ä
>> φ

Ä
p(1),p(1)

ä
, then, a worse utility than the worst

NE either in pure or mixed strategies is observed.

Interestingly, if the differences φ
Ä
p(2),p(1)

ä
−φ
Ä
p(2),p(2)

ä
and φ

Ä
p(1),p(2)

ä
−φ
Ä
p(1),p(1)

ä
are sufficiently close, then, a large number n in (3.37) is required for the FP to quit

the cycle mentioned above. This implies that a long time is required for play-

ers to play the four actions profiles and thus, obtain the expected utility corre-

sponding to the NE in mixed strategies. Here, as long as φ(p(2),p(1))−φ(p(2),p(2)) 6=

φ(p(1),p(2))−φ(p(1),p(1)), there always exists an n0 < ∞, such that ∀n > n0, condition

(3.38) does not hold, and thus, the cycling effect is not longer observed.

3.5.2 A Braess Type Paradox

In the game G(b), the set of actions for player k is a subset of its set of actions in

the game G(a), i.e., ∀k ∈ K, P(b)
k ⊆ P(a)

k . Thus one might think that having a larger

set of actions might lead to a better global performance, for instance, a higher NSE.

In this section, we show that contrary to intuition, reducing the set of actions of

each player might lead to a better global performance. This effect (often associated

with a Braess paradox [15]) has been reported in the parallel interference channel

in [90] and in the parallel MAC for the case of successive interference cancellation

(SIC) in [75]. In the following, we do not impose any condition on the channel gains

and compare the NSE obtained by either playing the game G(a) or G(b) at the NE to

study this counter intuitive result.

Let us denote by p
(†,n)
k , the unique NE action profile of game G(a), when the vector

g = (g11, g12, g21, g22) ∈ Bn, for all n ∈ {1 . . . , 8}. Let us also denote by p(∗,n)

one of the NE action profiles of game G(b) when (g11, g12, g21, g22) ∈ An, for all

n ∈ {1, . . . 4}. The sets An and Bn are defined in Prop. 3.5.1 and 3.5.3. Then, for

a finite SNR level, SNR > 0, one can observe that ∀n ∈ {1, . . . , 4}, An ∩ Bn = Bn
and ∀g = (g11, g12, g21, g22) ∈ Bn, the following equality always holds p

(†,n)
k = p

(∗,n)
k ,

which implies the same network performance. However, when the NE of both games

are different, one can not easily compare the utilities achieved by each player since

they depend on the exact channel realizations. Fortunately, the analysis largely

simplifies by considering either a low SNR regime or a high SNR regime and more

general conclusions can be stated. The performance comparison between games G(a)

and G(b) for the low SNR regime is presented in the following proposition.

Proposition 3.5.5 In the low SNR regime, both games G(a) and G(b) possess a
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unique NE, denoted by p∗. Here, for all k ∈ K and nk ∈ S,

p∗k,nk = pmax1
ß
nk= arg max

`∈S
gk,`
™ (3.39)

p∗k,−nk = pmax − pk,nk . (3.40)

Proof : See App. F 2

Similarly, the performance comparison between games G(a) and G(b) for the high SNR

regime is presented in the following proposition.

Proposition 3.5.6 (Existence of a Braess paradox) In the high SNR regime,

the game G(a) has a unique pure NE (denoted by p†) and the game G(b) has two pure

NE (denoted by p(∗,1) and p(∗,4)). Then, at least for one n ∈ {1, 4}, ∃SNR0 > 0,

such that ∀SNR > SNR0,

2∑

k=1

uk(p(∗,n))−
2∑

k=1

uk(p†)>δ, (3.41)

and δ > 0.

For the proof see App. G. Note that from Prop. 3.5.5 and Prop. 3.5.6, it can

be concluded that at low SNR both games G(a) and G(b) induce the same network

spectral efficiency. On the contrary, the game G(b) always induce a higher or equal

network spectral efficiency than the game G(a) in the high SNR regime. This counter-

intuitive result implies a Braess type paradox, since P(b) ⊂ P(a).

3.5.3 The Case of Large Systems

In this section, we exclusively deal with the game G(b) for the case of large networks,

i.e., networks with a large number of transmitters and available channels. Typically,

under this condition, the dominant parameter is the number of transmitters per

channel η = K
S

. As we shall see, contrary to the case of small number of transmit-

ters and channels analyzed in the preceding section, in the case of large networks,

each player becomes indifferent to the action adopted by each of the other players.

Here, each player is rather concerned with the fractions of players simultaneously

playing the same action. Hence, one of the interesting issues to be solved is the

determination of the repartition of the users between the different channels at the

NE. Like in routing problems, transmitters are attracted by the best channels (the

highest channel gains and largest bands) but the corresponding channels can turn

out to be “too crowded”. As a first step towards identifying the fractions of trans-

mitters per channel at the NE, we first re-write the potential (3.10) as a function of

the vector x(p) = (x1(p), . . . , xS(p)), where xs(p), with s ∈ S, denotes the fraction

of players transmitting over channel s given the action profile p ∈ P(b). Hence,

∀s ∈ Sk, xs(p) = |Ks(p)|
K

S∑

i=1

xi(p) = 1,
(3.42)
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where Ks(p) ⊆ K is the set of players using channel s given the action profile

p ∈ P(b), i.e., Ks(p) = {k ∈ K : pk,s 6= 0}. Let bs = Bs
B

denote the fraction of

bandwidth associated with channel s, such that
∑S
s=1 bs = 1 and let B̄ = B

S
denote

the mean bandwidth per channel. Then, one can write the potential as follows

φ(p) =
S∑

s=1

bs log2

Ñ
N0Bs + pmax

∑

k∈Ks(p)

gk,s

é
=

S∑

s=1

bs log2

Ñ
No B̄
η bs+xs(p) pmax

Ñ
1

|Ks(p)|

∑

k∈Ks(p)

gk,s

éé
+

S∑

s=1

bs log2(K). (3.43)

Note that under the assumption of large number of transmitters, the following ap-

proximation holds, independently of the action profile p,

∀s ∈ S, 1

|Ks(p)|
∑

k∈Ks(p)

gk,s ≈
∫ ∞

0
λdFgs(λ) = Ωs,

where Fgs is the cumulative probability function associated with the channel gains

over dimension s. Hence, independently of the exact action profile p ∈ P(b) adopted

by the players,

φ (p) ≈ φ̃ (x(p)) =
S∑

s=1

log2(No B̄η bs+xs(p) pmax Ωs)

+

S∑

s=1

bs log2(K). (3.44)

Finally, finding an NE in the non-atomic extension of the game G(b), i.e., the set

of fractions x1, . . . , xS, which maximizes the potential of the game, boils down to

solving the following OP (Def. 3.2.2),




max
x∈RS+

S∑

s=1

bs log2

Ä
N0 B̄

η
bs+xspmaxΩs

ä
,

s.t.
S∑

i=1

xi=1 and ∀i∈S, xi>0,

. (3.45)

The optimization problem (3.45) has a unique solution of the form,

∀s ∈ S, xs = bs

Ç
1

β
− N0B̄

ηpmaxΩs

å+

, (3.46)

where βk is Lagrangian multiplier to satisfy the optimization constraints. Inter-

estingly, in the case when ∀s ∈ S, Fgs(λ) = Fg(λ), (∀s ∈ S, Ωs = Ω) it holds

that,

∀s ∈ S, xs =
Bs

B
. (3.47)

In this case, the solution does not depend on the fraction of players per channel

η = K
S

, but only in the distribution of the bandwidth among all the channels. For

instance, assuming ∀(k, s) ∈ K × S, gk,s = 1 and ∀s ∈ S, Bs = B
S

, the same result

presented in [8] is obtained.
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 Game G(b). SNR = 5 dB.
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Figure 3.4: (a) Network spectral efficiency as a function of the system load η = K
S

for different SNR = pmax

σ2 levels in dBs. (b) Network spectral efficiency as a function

of the SNR = pmax

σ2 in dBs. for the case of η = K
S
∈ {1

2
, 1, 3

2
}, with K = 10.

3.6 Numerical Examples

In the previous sections, a mathematical argument has been provided to show that

at the low and high SNR regime, transmitting over a single channel at the maximum

power yields a higher NSE, at least for the case of K = 2 transmitters and S = 2

channels. Nonetheless, a formal proof for an arbitrary number of transmittersK ∈ N
and channels S ∈ N at a finite SNR becomes a hard task since it will require to

calculate all the types of NE depending on the exact channel realizations. Hence,

for the case of arbitrary parameters K, S, and SNR, we provide only numerical

examples to give an insight of the general behavior. First, we evaluate the impact of

the SNR for a network with a fixed number of transmitters and channels. Second,

we evaluate the impact of the network load, i.e., the number of transmitters per

channel for a given fixed SNR.

3.6.1 Impact of the SNR pmax

σ2

In Fig. 3.4 (left), we plot the network spectral efficiency as a function of the average

SNR of the transmitters. Here, it is shown that in fully-loaded and over-loaded

networks, i.e., η = K
S
> 1, the gain in NSE obtained by using a discrete action set

(game G(a)) increases with the SNR. Similarly, at low SNR, the NSE is the same in

both cases. Conversely, for weakly loaded networks η < 1, letting all transmitters

to use all the available channels is the optimal choice due to the fact that, limiting

them to use only one, necessarily implies letting some channels unused.

In Fig. 3.5, we plot the probability of observing a specific number of NE in the
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Figure 3.5: Probability of observing a specific number of NE in the game G(b).

game G(b) for different values of SNR. In the first case (Fig. 3.5 (left)) we consider

S = 2 and K = 3, whereas in the second case (Fig. 3.5 (right)), K = 3 and

S = 3. Note that from Prop. 3.4.2, the maximum number of NE is 4 and 7 in each

case. However, only 3 and 6 are respectively observed with non-zero probability.

Interestingly, in both cases, low SNR levels are associated with a unique NE (with

high probability), whereas, high SNR levels are associated with multiple NE (with

high probability).

3.6.2 Impact of Number of Transmitters per Dimension (KS )

In Fig. 3.4 (right), we plot the NSE as a function of the number of transmitters

per channel, i.e., the system load η = K
S

. Therein, one can observe that for weakly

loaded systems η < 1, playing G(a) always leads to higher NSE than playing G(b).

On the contrary, for fully-loaded and over-loaded systems, the NSE of the game

G(a) is at least equal or better than that of the game G(b). Interestingly, the fact

that for high system loads η > 2, the NSE obtained by playing either the game

G(a) or G(b) becomes identical implies that the analysis in Sec. 3.5.3 is also valid for

the game G(a). Finally, in Fig. 3.6, we show the fractions xs of transmitters using

channel s, with s ∈ S, obtained by Monte-Carlo simulations and using (3.47) for a

large network with an asymptotic ratio of players per channel equivalent to η = 10.

Therein, it becomes clear that (3.47) is a precise estimation of the outcome of the

non-atomic version of the game G(b).
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Figure 3.6: Fraction of players transmitting over channel s, with s ∈ S, cal-

culated using Monte-Carlo simulations and using Eq. (3.47) for a network

with S = 6 channels, η = 10 players per channel, with b = (bs)∀s∈S =

(0.25, 0.11, 0.20, 0.05, 0.25, 0.14), and SNR = pmax

N0B
= 10 dB.

3.7 Conclusions

In this chapter, it is clearly shown to what extent the equilibrium analysis of the

decentralized parallel MAC differs from those conducted for other channels like

Gaussian MIMO interference channels and fast fading MIMO MAC. In particular,

the special structure of parallel MAC (which are important channel models in prac-

tice) and the assumption of single-user decoding at the receiver leads to the best

response potential game property. The channel selection game was merely intro-

duced in the literature but not investigated in details as it is in this chapter. In

particular, a graph-theoretic interpretation is used to characterize the number of

NE and the potential game property is exploited to apply learning procedures. Al-

though all of these results are encouraging about the relevance of game-theoretic

analyses of power allocation problems, important practical issues have been delib-

erately ignored. For example, the impact of channel estimation is not assessed at

all.



Chapter 4

Learning Equilibria in Open

Spectrum Sharing Games

In this chapter, we focus on the design of behavioral rules to allow radio devices

to achieve an NE configuration as a result of a short interaction with its counter-

parts, similar to a learning process. In chapter 3, we have studied the best response

dynamics (BRD) [31] and fictitious play (FP) [16]. The BRD is a behavioral rule

where each radio device chooses its best transmit configuration given the configu-

rations currently adopted by all the other devices and the current network state.

Here, each radio device updates its transmit configuration either simultaneously or

sequentially. In recent literature, many algorithms based on this idea have been in-

troduced to tackle the problem of power allocation in decentralized self-configuring

networks [71,73,80,97,98,100] and have been shown to converge to NE.

In the case of FP, radio devices update their transmit configuration sequentially

or simultaneously as in the BRD. Here, each radio device determines the transmit

configuration which maximizes its expected performance given the empirical mea-

sures of the frequencies with which the other radio devices use each of their transmit

configurations. This behavioral rule has been proved to converge to NE in several

types of games relevant for wireless communications [86].

In general, the main constraint in BRD and FP and its variants is the fact that each

radio device must be able to determine the (expected or instantaneous) performance

obtained with each of its own transmit configurations given those adopted by all the

other devices in order to choose its own optimal transmit configuration. This implies

that radio devices must observe the transmit configurations of all the other devices,

which is clearly a very demanding condition in practical scenarios. Nonetheless,

in some network topologies and depending on the performance metric, a simple

broadcast message from each receiver might be enough to implement either BRD

or FP [80, 86]. However, it is not the case for most of the network topologies and

performance metrics.

More advanced behavioral rules for achieving equilibria are based on reinforcement

learning (RL) [18, 120]. In RL, the information required by each radio device is

an observation of its own achieved performance at least every time it changes its

transmit configuration. The principle of RL is as follows. After each performance

66
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observation, each radio device builds a probability distribution over all its feasible

transmit configurations based on the current and all previous observations. Such

probability distribution grants higher probabilities to transmit configurations lead-

ing to high performances and lower probabilities to transmit configurations leading

to lower performances. At a given time, each radio device adopts a particular

transmit configuration following its current probability distribution. In the wireless

communication domain, this idea has been largely used and has been proved to

converge to NE in some particular radio resource allocation scenarios [89, 95, 123].

The advantages of RL with respect to BRD and FP are manifold (if it converges

to NE). First, the notion of synchronization in terms of round robin sequences or

simultaneous transmission configuration updates is no longer relevant. This implies

that each radio device can update its configuration at any time regardless of the

updating timing of all the other radio devices. Second, each radio device is unaware

of the presence of other radio devices and global network states. Indeed, the effect

of the other radio devices’ existence as well as the network state is captured by each

performance observation. Note that is not the case neither in BRD nor FP, where

each radio device must be able to observe the current transmit configurations of all

the other devices and the current network state.

However, aside from all the attractive advantages of RL, it has an enormous draw-

back: each performance observation is used to directly update the probability dis-

tributions without maintaining an estimate of the performance achieved with each

transmit configuration. This fact might lead the network to converge to a stationary

state which is not an NE. In fact, convergence can be observed to action profiles

which are suboptimal from both individual and global standpoints. We say station-

ary, in the sense that none of the radio devices changes its transmit configuration

since it is unable to identify that other transmit configurations might bring a higher

performance. In fact, any network whose normal-form game equivalent has the same

structure of the classical Jordan’s matching pennies game [39] and Shapley’s variant

of rock-scissors-paper game [103] exhibit this non-convergence effect. Consider for

instance, the simple power allocation game described in [82].

In this chapter, we introduce a kind of behavioral rules which are known in the do-

main of Markov decision processes as actor-critic algorithms [43,44,107]. Here, each

radio device simultaneously learns both the time-average performance achieved with

each of its transmit configurations and the equilibrium probability distribution. In

the domain of dynamic games, this approach was first introduced in [13] and lately

in [48]. In the wireless communications domain, the idea has been recently intro-

duced in [82]. In particular, contrary to the RL algorithms described above, when-

ever these behavioral rules lead to a stationary network configuration, it corresponds

to a logit equilibrium (LE), which is indeed, an epsilon-close Nash equilibrium con-

cept. In particular, we show that there exist several classes of games relevant for

wireless communications where these learning dynamics always converge.

This chapter is organized as follows. In Sec. 4.1 and Sec. 4.2, the minimum require-

ments of a given wireless network for our approach to be valid and its corresponding

game formulation are presented, respectively. In Sec. 4.3, we introduce the idea
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of stationary state-independent behavioral strategies, and we justify its practical

relevance in the context of self-configuring networks. In Sec. 4.4, we extend the

existing idea of LE to the context of stochastic games. In Sec. 4.5 and Sec. 4.6,

the main contributions of the chapter is presented. First, behavioral rules allow-

ing to learn a LE are introduced and its corresponding convergence properties are

thoroughly studied. In Sec. 4.7, numerical results are presented using a multi-cell

scenario where radio devices must choose the frequency band to transmit to the

corresponding receiver. This chapter is concluded by Sec. 4.8.

4.1 System Model

The learning dynamics presented in this chapter apply for a large number of wireless

communications scenarios. In the following, we describe the minimum conditions

required to the network such that our scheme remains valid.

(i) The network is decentralized in the sense that each transmitter must autonomously

determine its optimal transmission configuration. Here, a central entity able to

gather complete information of the network and optimize the global network per-

formance does not exist.

(ii) Each transmitter autonomously chooses its transmission parameters from a fi-

nite set of choices, e.g., power allocation polices, coding-modulation schemes or

any combination of those, etc., in order to optimize a given individual performance

metric. We underline the fact that the individual performance metric of a given

transmitter must depend on its own choices and those of a non-empty subset of all

the other transmitters, e.g., transmission rate, bit error rate, outage probability, etc.

(iii) Each transmitter is able to obtain a measure of its own instantaneous individual

performance, at least once every time it changes its transmit configuration. A prac-

tical example is the frame success rate. If the transmitter is acknowledged by the

receiver frame by frame by an ACK/NACK (acknowledgment/non-acknowledgment)

message, then the transmitter is able to know the instantaneous value of the number

of successfully received frames.

4.2 Game Theoretic Model

The aim of this section is two-fold. First, we formulate the game which describes the

wireless networks possessing the features described in the previous section. Second,

we describe the desidered outcome of the corresponding game, i.e., we introduce the

definition of the equilibrium we are expecting to observe in the network.

4.2.1 Game Formulation

Consider the stochastic game G described by the 5-tuple

G = (K, {Ak}k∈K, {ūk}k∈K,H, {ρh}h∈H) . (4.1)
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The sets K = {1, . . . , K}, H =
¶
h(1), . . . ,h(H)

©
and Ak = {A(1)

k , . . . , A
(Nk)
k }, ∀k ∈ K,

represent the set of players, the set of network states and the set of actions of player

k, respectively. In this analysis, such sets are assumed finite, non-empty, non-unitary

and time-invariant sets. In the game G, each player represents an active transmitter

of the network, and thus, we indifferently use the terms transmitter and player. The

set of actions of a given transmitter corresponds to the set of all its feasible trans-

mission configurations, for instance, power allocation policy, modulation scheme,

constellation size, etc. The set H contains all the possible states of the network

under analysis. A particular network state is assumed to be fully described by the

channel realizations between all transmitters and all receivers, instantaneous quality

of service requests, instantaneous energy consumption constraints, etc. The finite-

ness assumption over the set H might appear restrictive. However, all the network

parameters are described by a finite set of information bits. Hence, in practical

scenarios, there always exists a finite set of possible states.

The stochastic game G is played stage by stage. Each stage n lasts the time the

network can be described by a given network state vector h(n) ∈ H, with n ∈ N.

In the following, without lost of generality, we assume that each state lasts a fixed

time unit, e.g., the channel coherence time, and all players play at each stage. The

particular network state at stage n, h(n) ∈ H is a random variable. In the following

of this chapter, we assume that for all stages (n,m) ∈ N2, the network states

h(n) and h(m) are independent and identically distributed. Hence, it follows that

Pr (h(n) = h |h(m) = h′ ) = Pr (h(n) = h) = ρh, where (ρh(1) , . . . , ρh(H)) ∈ 4 (H).

In particular, this assumption follows from the fact that the network state can be

fully described by the channel realizations. However, in the case when the network

state is determined by the channel realizations and other network parameter, e.g.,

a QoS request, this condition does not necessarily hold.

At each stage n, every player k adopts an action (transmission configuration), which

we denote by ak(n) ∈ Ak. An action profile at stage n is a vector denoted by

a(n) = (a1(n), . . . , aK(n)) ∈ A, where

A 4
= A1 × . . .×AK . (4.2)

The instantaneous performance achieved by player k is determined by the function

uk : H×A → R+, (4.3)

which measures the benefit (in the sense of Morgenstern-Neumann [68]) transmitter

k obtains when it chooses a specific action ak(n) given the actions adopted by all

the other transmitters a−k(n) and the current state of the network h(n). At the end

of each stage, player k observes a noisy sample ũk(n) of its achieved performance

uk (h(n), ak(n), a−k(n)). More specifically,

ũk(n) = uk(h(n), ak(n), a−k(n)) + εk,ak(n)(n), (4.4)

where, ∀nk ∈ {1, . . . , Nk}, εk,A(nk)

k

(n) is the realization at time n of a random variable

ε
k,A

(nk)

k

which represents the additive noise on the observation of the instantaneous
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performance when transmitter k plays action A
(nk)
k . This noise can be associated to

imperfect feedback or quantization distortion. Here, we assume that ∀k ∈ K and

nk ∈ {1, . . . , Nk}, it holds that E
ï
ε
k,A

(nk)

k

ò
= 0.

Note that all the information gathered by player k at stage n is the 2-tuple (ak(n), ũk(n))

∈ Ak × R. We denote by θk(n) the available information gathered by player k up

to interval n, i.e.,

θk(n) = {(ak(0), ũk(0)), . . . , (ak(n− 1), ũk(n− 1))}. (4.5)

We refer to θk(n) as the private history of player k at time n. The set of all possible

private histories of player k at time n is denoted by Θk(n), and,

Θk(n) = (Ak ×R)n . (4.6)

The set of all possible private histories of player k in the infinite play is denoted by

Θk = (Ak ×R)N . (4.7)

Now, using the above definition of private history, we introduce the idea of behavioral

strategy (BS). A BS of player k is an infinite sequence of functions

σk = {σk,n}n>0 , (4.8)

such that for all n > 0, the function

σk,n : Θk(n)→4 (Ak) (4.9)

determines the probability distribution with which player k takes the action ak(n)

given the private history θk(n). Denote by Σk, the set of all possible BS of player k

and let Σ = Σ1 × . . .× ΣK be the set of all BS profiles.

Following this idea, given any behavioral strategy σ = (σ1, . . . , σK), the initial action

profile a(0) ∈ A and the corresponding observations ũ1(0), . . . , ũK(0) induce a set

of sequences of probability distributions {πk(n)}n>0, for all k ∈ K, where

πk(n) =
Å
π
k,A

(1)
k

(n), . . . , π
k,A

(Nk)

k

(n)
ã
∈ 4 (Ak) (4.10)

and ∀nk ∈ {1, . . . , Nk}, πk,A(nk)

k

(n) represents the probability that player k plays

action A
(nk)
k ∈ Ak at time n, i.e.,

π
k,A

(nk)

k

(n) = Pr
(
ak(n) = A

(nk)
k

)
. (4.11)

Hence the set of sequences {πk(n)}n>0 induced by a(0) ∈ A and the vector ũ(0) =

(ũ1(0), . . . , ũK(0)), together with the initial probability distributions π(0) = (π1(0), . . . , πK(0))

induce a probability distribution over all the possible sequences of action profiles

{a(0), a(1), . . . , }. We denote the expectation with respect to such probability dis-

tribution by E(a(0),û(0),σ). Then, given the available information for player k, its long-

term expected performance can be measured by the function, ūk : Σ1× . . .×ΣK →
R+, where,

ūk(σk, σ−k) = lim
n→∞

E(a(0),ũ(0),σ)

[
1

n

n∑

i=1

ũk(i)

]
. (4.12)
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The function (4.12) captures the situation in which the interaction between all trans-

mitters in the network lasts many time intervals and the instantaneous performance

is insignificant as compared with the performance in all the other time intervals.

In the following, the game G is analyzed assuming that the aim of each player k

is to choose a BS σk ∈ Σk such that it maximizes its performance metric (4.12)

given the BS σ−k ∈ Σ−k adopted by all the other players. In particular, we look

for a BS profile σ∗ = (σ∗1, . . . , σ
∗
K) ∈ Σ1 × . . .ΣK such that none of the players

can obtain a performance improvement by unilaterally using other BS. We provide

a more precise concept of this expected solution of the stochastic game G in the

following subsection.

4.2.2 Nash Equilibrium and ε-Equilibrium

In the following, we describe the concept of ε-equilibrium and Nash equilibrium in

the context of the stochastic game G in (4.1). First, let us define the ε-equilibrium

as follows,

Definition 4.2.1 (ε-Equilibrium in the game G) Let ε > 0. In the game G, a

strategy profile σ∗ ∈ Σ1 × . . . × ΣK is an ε-equilibrium if it satisfies, for all k ∈ K
and for all σk ∈ Σk, that

ūk(σ
∗
k, σ

∗
−k) > ūk(σk, σ

∗
−k)− ε, (4.13)

independently of the initial action profile and observation vector, a(0) ∈ A and

ũ(0) ∈ RK, respectively.

An ε-equilibrium can be interpreted as a BS profile such that, none of the players

can obtain an improvement superior to ε by unilaterally changing its own BS. Note

also that by letting ε = 0 in Def. 4.2.1, the classical definition of Nash equilibrium

is obtained.

In the following section, we discuss the feasibility of achieving these equilibrium

concepts in the game G.

4.3 A Note on Stationary State-Independent Be-

havioral Strategies

The aim of this section is twofold. First, it aims to introduce the concept of sta-

tionary state independent behavioral strategies (SSI-BS), which are considered the

simplest class of behavioral strategies (BS) in stochastic games [70, 105]. Second,

it aims to identify the expected performance which can be achieved using both BS

and SSI-BS. We conclude this section by presenting the justification for restricting

the analysis of the game G to the set of SSI-BS.
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4.3.1 Stationary State Independent Behavioral Strategies

(SSI-BS)

Let the set of stationary state independent behavioral strategy (SSI-BS) profiles be

denoted by Σ̄ and let a given SSI-BS profile be defined as follows,

Definition 4.3.1 (Stationary State Independent BS) Consider the game G
and let σ ∈ Σ be a behavioral strategy. Then, σ is said to be stationary state-

independent (SSI) if for all k ∈ K and any two private histories θk(n) ∈ Θk(n) and

θk(m) ∈ Θk(m), with n 6= m, it follows that

σk,n (θk(n)) = σk,m (θk(m)) , (4.14)

independently of the states h(n) and h(m).

From Def. 4.3.1, it can be implied that for a player k, a SSI-BS does not depend

on any of the previous actions ak(0), . . . , ak(n− 1) and neither on the previous nor

current states h(0), . . . ,h(n). Thus, a SSI-BS σk ∈ Σ̄ can be identified by a vector

π = (π1, . . . , πK) ∈ 4 (A1)× . . .×4 (AK), such that, ∀k ∈ K and ∀ (θk(n),h(n)) ∈
Θk(n)×H, it holds that σk,n(θk(n)) = πk. In the following, we indifferently use the

infinite set of sequences σk = {πk(n) = πk}n>0 or the vectors πk, with k ∈ K, to

refer to the SSI-BS σ. Moreover, with a slight abuse of notation, we indifferently

write either ūk (σk, σ−k) or ūk (πk, π−k) to denote the achieved performance of player

k given the SSI-BS σ.

4.3.2 Achievable Performance with SSI-BS

A vector of individual performance r = (r1, . . . , rK) ∈ RK is achievable in the game

G with the set of behavioral strategies Σ if there exists a strategy profile σ ∈ Σ and

an initialization (a(0), û(0)) ∈ A × RK
+ , such that for all k ∈ K, rk = ūk (σk, σ−k).

In order to determine the set of achievable individual performance vectors with the

set of BS Σ and the set of SSI-BS Σ̄, we first introduce the concept of asymptotic

average strategic behavior (AASB) [120].

Definition 4.3.2 (Asymptotic Average Strategic Behavior (AASB)) Con-

sider the game G and let (a(0), û(0)) ∈ A×RK
+ and σ ∈ Σ be an initialization and a

strategy profile, respectively. Assume that (a(0), û(0)) together with σ induce the in-

finite sequence of probability distributions {πk(n)}n>0, for all k ∈ K, such that for all

n ∈ N, πk(n) ∈ 4 (Ak). Then, the asymptotic average strategic behavior associated

with the triplet (a(0), û(0), σ) is a probability distribution κ∗ = (κ∗a)∀a∈A ∈ 4 (A),

such that, ∀a ∈ A,

lim
N→∞

1

N

N−1∑

n=0

K∏

j=1

πj,aj(n) = κ∗a. (4.15)

The Def. 4.3.2 leads us to the following lemma.
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Lemma 4.3.3 Consider the game G and let (a(0), û(0)) ∈ A×R+ and σ∗ ∈ Σ be

an initialization and a BS profile, respectively. Assume that the asymptotic average

strategic behavior induced by (a(0), û(0), σ∗) is κ∗ ∈ 4 (A). Then, the performance

achieved by player k, with k ∈ K, is

ūk
Ä
σ∗k, σ

∗
−k
ä

=
∑

a∈A

∑

h∈H
uk(h, ak, a−k)ρhκ

∗
a. (4.16)

The proof of Lemma 4.3.3 is presented in App. H. The relevance of Lemma 4.3.3

stems from the fact that it allows to express the performance achievable with the

behavioral strategy σ∗ and the initialization pair (a(0), û(0)) by a static probability

distribution which coincides with the corresponding AASB κ∗ (Def. 4.3.2). This

implies that it might exist a loss of optimality by studying the equilibria of the

game G only on the set of SSI-BS. More precisely, the following can be stated.

Proposition 4.3.1 Consider the game G and let (a(0), û(0)) ∈ A×R+ and σ∗ ∈
Σ be an initialization and a strategy profile, respectively. Denote by κ∗ ∈ 4 (A)

the AASB induced by the triplet (a(0), û(0), σ∗). Then, there exists a static state-

independent behavioral strategy σ′ ∈ Σ̄ which satisfies

ūk(σ
∗
k, σ

∗
−k) = ūk(σ

′
k, σ

′
−k), (4.17)

if and only if there exists a vector π∗ = (π∗1, . . . , π
∗
K) ∈ 4 (A1)× . . .×4 (AK), such

that, for all a ∈ A, κ∗a =
K∏

k=1

π∗k,ak .

The proof of Prop. 4.3.1 is immediately from Lemma 4.3.3. The relevance of this

proposition stems from the fact that it proves that any expected performance vector

r of the game G is achievable with both BS and SSI-BS, as long as the corresponding

AASB is a product distribution, i.e., ∀a ∈ A, κ∗a =
K∏

k=1

πk,ak . Behavioral strategies

leading to a correlated AASB, e.g., regret matching, are described in [120], [35]. In

the following, we focus the analysis of the game G on the set of SSI-BS.

4.3.3 Pertinence of the SSI-BS

The motivations for restricting the set of BS to the set of SSI-BS are several. First,

note that none of the players is able to identify the current network state at each

stage of the game. Moreover, given the information gathered by player k up to stage

n−1, i.e., θk(n−1), with k ∈ K and n > 1, it is not possible to infer any information

about the network state h(n). This implies that, player k is unable to calculate an

optimal probability distribution πk(n) at each stage n, since the ignorance of the

network state at each stage implies the ignorance of a closed form expression of

the instantaneous performance metric uk and the long-term performance metric ūk.

Thus, regardless of the stage n and all the information gathered up to such stage n,

all players face the same scenario.
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A second justification can be given considering that at a given stage, a behavioral

strategy might condition the determination of the probability distribution πk(n) ∈
4 (Ak) on the entire history θk(n), which from an implementation point of view is

a huge task. Moreover, it might require a massive amount of memory for storing

θk(n) as long as n→∞.

In the following of this chapter, we restrict the analysis of equilibria of the game G
to the set of SSI-BS and we accept the eventual loss of performance which implies

the non-correlation between the individual actions.

4.4 Logit Equilibrium

The concept of logit equilibrium (LE) is a particular case of a more general class

of equilibria known as quantal response equilibria introduced by McKelvey and

Palfrey in the context of strategic games in normal form [57] and extensive form [58].

The concept of logit equilibrium and the ideas on which it relies on have many

interpretations. The interested reader is referred to [49,56–58,120] for more general

discussions.

In this section, we adapt the concept of LE to the game G. Here, we do not give

any particular interpretation to the LE other than the simple idea of ε-equilibrium

described in Def. 4.2.1. In particular, we discuss the existence and uniqueness of

the LE in the game G in the set of SSI-BS.

4.4.1 Logit Equilibrium in SSI-BS

Before we provide a formal definition of the logit equilibrium, we introduce the idea

of logit best response. For doing so, consider the game G and assume that player k

is able to obtain an estimate of its own performance (4.3) in the hypothetical case it

played the same action A
(nk)
k , with nk ∈ {1, . . . , Nk}, during the whole realization of

the game, while all the other players play the SSI-BS πj ∈ 4 (Aj), with j ∈ K\{k},
respectively. More specifically, assume that each player k ∈ K is able to calculate

the vector,

ūk(·, π−k) =
(
ūk
(
e

(1)
k , π−k

)
, . . . , ūk

(
e

(Nk)
k , π−k

))
, (4.18)

for all π−k ∈ 4 (A−k). Then, the logit best response can be defined as follows.

Definition 4.4.1 (Logit Best Response) Consider the game G and let the vec-

tor π−k ∈ 4 (A1) × . . . × 4 (Ak−1) × 4 (Ak+1) × . . . × 4 (AK) represent a given

SSI-BS profile, with k ∈ K. Then, the logit best response of player k, with param-

eter γk > 0, is the probability distribution β
(γk)
k (ūk(·, π−k)) ∈ 4 (Ak) such that,

β
(γk)
k : RNk →4 (Ak) is the logit function,

β
(γk)
k (ūk(·, π−k)) =

Ç
β

(γk)

k,A
(1)
k

(ūk (·, π−k)) , . . . , β(γk)

k,A
(Nk)

k

(ūk (·, π−k))
å

(4.19)
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and ∀nk ∈ {1, . . . , Nk},

β
(γk)

k,A
(nk)

k

(ūk(·, π−k)) =
exp

(
γkūk(e

(nk)
k , π−k)

)

Nk∑

m=1

exp
(
γkūk(e

(m)
k , π−k)

) . (4.20)

Note Def. 4.4.1 does not state anything about the selection of the parameter γk for

player k. The impact of this parameter is studied later in this chapter. From Def.

4.4.1, it can be implied that at each stage of the game, every action of a given player

has a (stationary state-independent) non-zero probability of being played, i.e., ∀k ∈
K and ∀nk ∈ {1, . . . , Nk} and ∀γk ∈ R+, it holds that, β

(γk)

k,A
(nk)

k

(ūk (·, π−k)) > 0. More

generally, it can be stated that the logit best response in SSI-BS is represented by a

probability distribution that assigns high probabilities to the actions associated to

a high average performance and low probability to actions associated to low average

performance. For instance, let exist a couple (m,n) ∈ {1, . . . , Nk}2, such that

ūk(e
(n)
k , π−k) < ūk(e

(m)
k , π−k), then 0 < β

(γk)

k,A
(n)
k

(ūk (·, π−k)) < β
(γk)

k,A
(m)
k

(ūk (·, π−k)).
Finally, note that conversely to the case of the best response in the case of Nash

equilibrium [66], the logit best response of player k is unique for all the SSI-BS

profiles the other players might adopt.

Using Def. 4.4.1, we define the logit equilibrium as follows,

Definition 4.4.2 (Logit Equilibrium in SSI-BS) Consider the game G and let

the vector π∗ = (π∗1, . . . , π
∗
K) ∈ 4 (A1)× . . .×4 (AK) represent a stationary state-

independent behavioral strategy (SSI-BS). Then, π∗ is a logit equilibrium SSI-BS

profile with parameter γ = (γ1, . . . , γK) if for all k ∈ K, it holds that,

π∗k = β
(γk)
k

(
ūk
(
e

(Nk)
1 , π∗−k

)
, . . . , ūk

(
e

(Nk)
Nk

, π∗−k
))
. (4.21)

At a logit equilibrium, each player plays during the whole game realization, the

logit best response (Def. 4.4.1) to all the other players SSI-BS. This implies that,

at some given game stages, the actions taken by player k do not maximize the

instantaneous performance uk and thus, other strategy profile might bring a higher

long-term performance ūk. In the following proposition, we determine the impact

of playing actions which are not performance-maximizers.

Proposition 4.4.1 Let the vector π∗ ∈ 4 (A1)× . . .×4 (AK) be a LE in SSI-BS

of the game G, with parameter γ = (γ1, . . . , γK). Hence, ∀k ∈ K and ∀π′k ∈ 4 (Ak),

it holds that,

ūk
Ä
π∗k, π

∗
−k
ä
> ūk

Ä
π′k, π

∗
−k
ä
− 1

γk
ln

Ç
1

Nk

å
. (4.22)

Thus, π∗ is an ε-equilibrium (Def. 4.2.1) and ε = max
k∈K

Ç
1

γk
ln (Nk)

å
.

The Prop. 4.4.1 is a well known result [120] and has been included here for the

sake of completeness. From Prop. 4.4.1, it becomes clear that the maximum loss

of performance player k might experience is bounded by 1
γk

ln(Nk). In the following

subsections we discuss the existence and uniqueness of the LE in the game G.
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4.4.2 Existence in SSI-BS

It is important to remark that Def. 4.4.2 implies a fixed point equation. For instance,

let ζ : 4 (A1)×, . . .×4 (AK)→4 (A1)× . . .×4 (AK) be defined as follows,

ζ(π) =
(
β

(γ1)
1 (ū1 (·, π−1)) , . . . , β

(γK)
K (ūK (·, π−K))

)
. (4.23)

Then, if π∗ is a logit equilibrium it holds that π∗ = ζ (π∗). This observation leads

to the following result (Theorem 1 in [57]),

Theorem 4.4.3 (Existence of the LE) The stochastic game G has at least one

logit equilibrium in the set of stationary state-independent behavioral strategies.

The proof of Theorem 4.4.3 relies on the fact that the multi-dimensional function ζ

is continuous in 4 (A1) × . . . ×4 (AK). Thus, by Brouwer’s fixed point theorem,

there exists at least one π∗ such that π∗ = ζ (π∗).

4.4.3 Uniqueness in SSI-BS

The uniqueness of the LE in the game G in SSI-BS is strongly related to the param-

eters γk, with k ∈ K. For instance, when ∀k ∈ K, γk → 0, there exits a unique LE

in SSI-BS and corresponds to the vectors πk = 1
Nk

(1, . . . , 1) ∈ 4 (Ak). This LE is

unique, independently of the number of NE the game G might possess. Conversely,

when ∀k ∈ K, γk → ∞, the set of LE becomes identical to the set of NE in pure

strategies and thus, the game G exhibits as many LE as NE in pure strategies might

exist in G. More precisely, let the set 4(γ)
LE ⊂ 4 (A1)× . . .×4 (AK) contain all the

vectors representing SSI-BS profiles leading to an LE in the game G, i.e.,

4(γ)
LE =

{
π ∈ 4 (A1)× . . .×4 (AK) : ∀k ∈ K, πk = β

(γk)
k (ūk (·, π−k))

}
. (4.24)

Hence, from Theorem 4.4.3, it holds that ∀γ ∈ RK
+ ,
∣∣∣4(γ)

LE

∣∣∣ > 0. Other properties of

the set 4(γ)
LE are described by the following theorem (Theorem 3 in [58]).

Theorem 4.4.4 (Properties of the LE) Consider the stochastic game G. Then,

•
∣∣∣4(γ)

LE

∣∣∣ is odd number for almost all γ ∈ RK
+ .

• The graph of 4(γ)
LE contains a unique branch which starts at the centroid, for

γ = (0, . . . , 0) ∈ RK, and converges to a unique NE as ∀k ∈ K, γk →∞.

The first property in Theorem 4.4.4 states that the number of LE in the game G is

odd. Interestingly, the same property has been claimed for the NE [117]. Property

two is in particular very interesting since it implies that the concept of LE can

be used as an NE selection method if the parameters γk, for all k ∈ K, are left

to be time-variant. However, we do not exploit this property and we assume the

parameters γk are fixed.

In the next section, we study behavioral strategies which allows transmitters to

achieve an LE for a given set of fixed parameters γ1, . . . , γK .
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4.5 Learning Logit Equilibria

In this section, we design behavioral strategy profiles σ = (σ1, . . . , σK) ∈ Σ such

that given the information gathered by player k at each stage n, i.e., given the sets

{θk(n)}n>0 for all k ∈ K, it is able to generate infinite sequences {πk(n)}n>0, such

that, limn→∞ ||πk (n)− π∗k|| = 0, where π∗ = (π∗1, . . . , π
∗
K) ∈ 4 (A1)× . . .×4 (AK)

is a logit equilibrium in SSI-BS of the game G (Def. 4.4.2). Our interest in this kind

of strategies is justified by the following proposition.

Proposition 4.5.1 Consider the game G and let the vector π∗ = (π∗1, . . . , π
∗
K) ∈

4 (A1)×. . .×4 (AK) be a SSI-BS profile corresponding to a logit equilibrium. Then,

any BS profile σ ∈ Σ which generates infinite sequences {πk(n)}n>0, with k ∈ K, for

all a(0) ∈ A and

lim
n→∞

||πk (n)− π∗k|| = 0, (4.25)

is an ε-equilibrium of the game G.

The proof of Prop. 4.5.1 follows from Def. 4.2.1. From Prop. 4.5.1, it can be implied

that any behavioral strategy satisfying (4.25) is an ε-equilibrium and achieves the

same performance corresponding to one of the logit equilibrium in SSI-BS discussed

in the previous section.

The remaining of this section is divided in three parts. In the first part, we study

learning processes aiming to calculate the expected performance obtained by player k

with each of its actions given its available information {θk(n)}n>0. That is, the vector

ūk(·, π−k(n)) (described in (4.18)) at each game stage n. The relevance of letting

player k to learn the vector ūk(·, π−k(n)) stems from the fact that it allows it calculate

the logit best response at each time n. Second, we study the learning processes

aiming to learn the probability distribution corresponding to a logit equilibrium. In

this part, the underlying assumption is that player k possesses perfect knowledge

of the vector ūk(·, π−k(n)), with k ∈ K. Finally, we join the previous results and

we introduce a family of behavioral strategies which are ε-equilibrium in the game

G. Such families of strategies achieve the performance corresponding to at least

one of the logit equilibria of the game G in SSI-BS for a given constant parameter

γ = (γ1, . . . , γK) ∈ RK .

4.5.1 Learning the Expected Performance

Let T
k,A

(nk)

k

(n) ∈ N, with k ∈ K and nk ∈ {1, . . . , Nk}, be the number of times that

player k has played action A
(nk)
k up to the game stage n ∈ N, i.e.,

T
k,A

(nk)

k

(n) =
n−1∑

s=0

1¶
ak(s)=A

(nk)

k

©. (4.26)

Let also π̂
k,A

(nk)

k

(n) be the empirical frequency with which player k has used action

A
(nk)
k up to time n, i.e.,

π̂
k,A

(nk)

k

(n) =
T
k,A

(nk)

k

(n)

n
. (4.27)
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Now, consider the following assumption.

(A0) For all k ∈ K and for all nk ∈ {1, . . . , Nk}, it holds that

lim
n→∞

π̂
k,A

(nk)

k

(n) = π+

k,A
(nk)

k

, (4.28)

where π+
k =

Ç
π+

k,A
(1)
k

, . . . , π+

k,A
(Nk)

k

å
∈ 4 (Ak) and π+

k,A
(nk)

k

> 0.

Let the Nk−dimensional vector ûk(n) =
Å
û
k,A

(1)
k

(n), . . . , û
k,A

(Nk)

k

(n)
ã

be the esti-

mation at the game stage n that player k possesses of the vector ūk(·, π+
−k) =(

ūk
(
e

(1)
k , π+

−k

)
, . . . , ūk

(
e

(Nk)
k , π+

−k

))
described in (4.18). Hence, assuming that as-

sumption (A0) holds, the main result of this subsection is presented in the following

lemma.

Lemma 4.5.1 (Learning the Achieved Utility) Consider the game G and let

assumption (A0) hold. Then, ∀k ∈ K and ∀nk ∈ {1, . . . , Nk} and n ∈ N, the

time-averaging of the observations ũk(n), i.e.,

û
k,A

(nk)

k

(n) = 1
T
k,A

(nk)

k

(n)

n−1∑

s=0

ũk(s)1¶ak(s)=A
(nk)

k

©, (4.29)

or any iterative algorithm of the form,

û
k,A

(nk)

k

(n) = û
k,A

(nk)

k

(n− 1) +

αk(n)

1¶
ak(n−1)=A

(nk)

k

©
π+

k,A
(nk)

k

Å
ũk(n− 1)− û

k,A
(nk)

k

(n− 1)
ã
, (4.30)

where,

lim
T→∞

T∑

n=0

αk(n) = +∞ and lim
T→∞

T∑

n=0

αk(n)2 < +∞, (4.31)

satisfies that,

lim
n→∞

û
k,A

(nk)

k

(n) = ūk(e
(Nk)
nk

, π+
−k). (4.32)

The proof of Lemma 4.5.1 is presented in Appendix I. It is important to remark

that under assumption (A0), both the time-average (4.29) or the iterative algorithm

(4.30) converge asymptotically to the expected performance in (4.32). However,

there exists a difference in the convergence time.

Theorem 4.5.2 Consider the game G and let the assumption (A0) hold. For all

k ∈ K and for all nk ∈ {1, . . . , Nk}, denote by η
k,A

(nk)

k

(n) the performance estimation

error of transmitter k with respect to the action A
(nk)
k at game stage n ∈ N, i.e.,

η
k,A

(nk)

k

(n) =
∣∣∣∣ûk,A(nk)

k

(n)− ūk
Ä
e(Nk)
nk

, π∗−k
ä∣∣∣∣ . (4.33)
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Let η > 0 be an error threshold and denote by m†
k,A

(nk)

k

∈ N and m+

k,A
(nk)

k

∈ N two

stage indices such that ∀m > m†
k,A

(nk)

k

, η
k,A

(nk)

k

(m) < η, when û
k,A

(nk)

k

follows the

rule (4.29) and ∀m > m+

k,A
(nk)

k

, η
k,A

(nk)

k

(m) < η when û
k,A

(nk)

k

follows the rule (4.30).

Then, the following holds for a sufficiently small η,

m†
k,A

(nk)

k

>
1

π+

k,A
(nk)

k

ln

Ü ∣∣∣∣ūk
Ä
e(Nk)
nk

, π+
−k
ä
− û

k,A
(nk)

k

(0)
∣∣∣∣

η

ê
, (4.34)

m+

k,A
(nk)

k

> ln

Ü ∣∣∣∣ūk
Ä
e(Nk)
nk

, π+
−k
ä
− û

k,A
(nk)

k

(0)
∣∣∣∣

η

ê
. (4.35)

The proof of Theorem 4.5.2 is presented in the appendix J. From Theorem 4.5.2 it

can be easily concluded that the learning dynamics given by (4.30) converges faster

than the time-averaging rule (4.29) under assumption (A0).

4.5.2 Learning the Equilibrium Probability Distributions

In this subsection, we focus on the design of the sequences {πk(n)}n>0, with k ∈ K,

which correspond to a ε-equilibrium according to Prop. 4.5.1. As a first step in this

direction, we consider the following assumption.

(B0) For all k ∈ K, at each time interval n ∈ N, a perfect estimation of the expected

performance of player k can be obtained, i.e., ∀nk ∈ {1, . . . , Nk}, ûk,A(nk)

k

(n) =

ūk
Ä
e(Nk)
nk

, π−k(n)
ä
.

An intuitive interpretation of the nk-th component of the vector ûk(·, π−k(n)), at

a given game stage n, is the following. The value ûk
Ä
e(Nk)
nk

, π−k(n)
ä

represents the

expected performance of player k when it has played the action A
(nk)
k during the

whole game realization while the other players have played a SSI-BS represented

by the vector π−k(n). Thus, given the vector ûk(·, π−k(n)), the optimal probabil-

ity distribution at time n is the one which assigns unit probability to the action

associated to the maximum expected utility. This behavioral strategy is known as

fictitious play [16] and it is proved to converge to Nash equilibria in several classes of

games [120]. However, it is not compatible to the assumption (A0), since it assigns

zero probability to the actions associated to the lowest expected utility. This implies

that actions associated with low expected performance are never played, and thus,

its associated expected performance cannot be estimated. An ε-optimal behavioral

strategy is the one which generates the probability distributions {β(γk)
k (ûk(n))}n>0

in (4.19). This behavioral strategy is known as smoothed fictitious play [41], [9] and

it is in line with assumption (A0). This behavioral rule is proved to converge to

ε-equilibrium in several classes of games [9] under assumption (B0). In the follow-

ing, we study the behavioral strategy which generates the sequence of probability

distributions {πk(n)}n>0, for all k ∈ K, where the probability distribution of player
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k at time n is given by the following stochastic approximation algorithm (SAA),

πk(n) = πk(n− 1) + λk(n)
(
β

(γk)
k (ûk(n))− πk(n− 1)

)
. (4.36)

Here, λk is a learning rate which is described later on in this section. As we shall

see, the motivation of using the SAA in (4.36) is the fact that it allows to control

the variation that player k makes of its probability distribution πk(n) from the game

stage n to game stage n + 1 by modifying the value of λk. Note that as λk → 0,

player k tends to be conservative. Conversely, when λk → 1, player k approaches

the smoothed fictitious play.

The main result of this subsection considering the assumption (B0) is presented in

the following lemma.

Lemma 4.5.3 (Learning the Strategy Profile) Consider the game G and as-

sume that assumption (B0) holds. Assume also that for all k ∈ K, it holds that

lim
T→∞

T∑

t=1

λk(t) = +∞ and lim
T→∞

T∑

t=1

λk(t)
2 < +∞. (4.37)

Then, if for all k ∈ K, the SAA

πk(n) = πk(n− 1) + λk(n)
(
β

(γk)
k (ûk(n))− πk(n− 1)

)
, (4.38)

converges asymptotically to a vector π∗ = (π∗1, . . . , π
∗
K) given the initial probability

distributions π(0) = (π1(0), . . . , πK(0)) ∈ 4 (A1)× . . .×4 (A1), it holds that, ∀k ∈
K, π∗k = βk

Ä
ūk
Ä
·, π∗−k

ää
.

The proof of lemma 4.5.3 is presented in appendix K. Note also that Lemma 4.5.3

does not ensure the convergence. It rather states that if convergence is observed,

then, the limiting probability distribution π∗k represents a LE of the game G in SSI-

BS. More specifically, from Prop. 4.5.1 it states that the behavioral strategy profile

σ ∈ Σ which generates the sequences {β(γk)
k (ūk (·, π−k(n)))}n>0, is an ε-equilibrium

of the game G if the resulting SAA given by (4.38) converges asymptotically. Note

that the randomness in (4.38) comes from the fact that other players are also up-

dating their own strategies. The conditions for observing convergence are analyzed

later in Sec. 4.6.

4.5.3 Joint Learning of the Expected Performance and ε-

equilibrium Strategies

Now, we drop both conditions (A0) and (B0) and we simultaneously analyze for

all k ∈ K and for all nk ∈ {1, . . . , Nk}, the resulting coupled SAAs û
k,A

(nk)

k

(n) and
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π
k,A

(nk)

k

(n), with n > 0, i.e.,





û
k,A

(nk)

k

(n) = û
k,A

(nk)

k

(n− 1)+

αk(n)

1¶
ak(n−1)=A

(nk)

k

©
π
k,A

(nk)

k

(n)

Å
ũk(n−1)− û

k,A
(nk)

k

(n−1)

ã
,

π
k,A

(nk)

k

(n) = π
k,A

(nk)

k

(n− 1)

+λk(n)

Ç
β

(γk)

k,A
(nk)

k

(ûk(n))− π
k,A

(nk)

k

(n− 1)

å
.

(4.39)

In the following, we rely on the following assumption.

(B1) For all (j, k) ∈ K2, the learning rates αk and λj satisfy that

lim
n→∞

λj(n)

αk(n)
= 0. (4.40)

Note that for all (j, k) ∈ K2 and for all (nj, nk) ∈ {1, . . . , Nj} × {1, . . . , Nk}, the

expected variation between two consecutive updates n and n − 1 of the sthocastic

approximation processes π
j,A

(nj)

j

(n) and û
k,A

(nk)

k

(n) with respect to the learning rate

αk can be written as follows

Eh,ξ



û
k,A

(nk)

k

(n)− û
k,A

(nk)

k

(n− 1)

αk(n)

∣∣∣∣∣∣
ûk(n− 1), π(n)


 =

Eh,ξ



1¶

ak=A
(nk)

k

©
π+

k,A
(nk)

k

Å
ũk − ûk,A(nk)

k

ã∣∣∣∣∣∣∣ ûk(n− 1), π(n)


 =

ūk
(
e

(Nk)
k , π−k(n)

)
− û

k,A
(nk)

k

(n− 1).

and,

Eh,ξ



π

j,A
(nj)

j

(n)−π
j,A

(nj)

j

(n−1)

αk(n)

∣∣∣∣∣∣
πj(n−1),ûj(n)


 =Ç

λj(n)

αk(n)

å
Eh,ξ

ñ
β

(γj)

j,A
(nj)

j

(ûj(n))− π
j,A

(nk)

j

(n− 1)

∣∣∣∣∣ πj(n− 1), ûj(n)

ô
, =Ç

λj(n)

αk(n)

åÇ
β

(γj)

j,A
(nj)

j

(ûj(n))− π
j,A

(nk)

j

(n− 1)

å
.

respectively. From assumption (B1), it can be stated that asymptotically, the SAA

πj(n) can be seen as a time-invariant process by the performance-learning process

ûk(n). That is, as long as n −→ ∞, the expected variation of the SAA πj(n) with

respect to the learning rate of the SAA ûk(n) approaches zero. Following the same

analysis, it can be also concluded that the SAA πk(n) sees the SAA ûk(n) as a

fast transient. Hence, it becomes natural to analyze the system of SAA in (4.39)

considering the following hypothesis:

(i) For all k ∈ K, the SAAs π1(n), . . . , πK(n) see the SAA ûk(n) as always calibrated

to the current vector π(n) = (π1(n), . . . , πK(n)), for all n ∈ N.



4.6. Convergence Analysis 82

(ii) For all k ∈ K, the SAAs û1(n), . . . , ûK(n) see the SAA πk(n), as a time-invariant

process.

These hypotheses imply that for all k ∈ K, player k is able to learn their expected

performance vector ūk(·, π−k(n)) before that all players change their corresponding

probability distributions πk(n). The idea of using different learning rates, such that

one SAA can be seen as a faster or slower than another one was originally introduced

in [12] for the case of two coupled SAA. Few years after, it was extended to more

than two coupled SAA in [48]. In this subsection, we follow the line of the work

presented in [48].

The main result of this subsection is presented in the following theorem.

Theorem 4.5.4 Consider the game G and assume that for all k ∈ K and for all

nk ∈ {1, . . . , Nk}, it holds that for all n ∈ N,





û
k,A

(nk)

k

(n) = û
k,A

(nk)

k

(n− 1)+

αk(n)

1¶
ak(n−1)=A

(nk)

k

©
π
k,A

(nk)

k

(n)

Å
ũk(n−1)− û

k,A
(nk)

k

(n−1)

ã
,

π
k,A

(nk)

k

(n) = πk,nk(n− 1)+

λk(n)
(
β

(γk)
k,nk

(ûk(n))− πk,nk(n− 1)
)
,

(4.41)

where, ak(0) ∈ Ak, ûk(0) ∈ RNk and πk(0) ∈ 4 (Ak) are arbitrary initializations.

Hence, under assumption (B1), if the set of SAAs (4.41) converge, it holds that,

lim
n→∞

πk(n) = π∗k, (4.42)

lim
n→∞

û
k,A

(nk)

k

(n) = ūk(e
(Nk)
nk

, π∗−k), (4.43)

where π∗k ∈ 4 (Ak) satisfies that,

π∗k = β
(γk)
k

(
ūk
(
e

(Nk)
1 , π∗−k

)
, . . . , ūk

(
e

(Nk)
Nk

, π∗−k
))
. (4.44)

The proof of Theorem 4.5.4 is an immediate result from Lemma 4.5.1 and Lemma

4.5.3. Prop. 4.5.1 states that the behavioral strategy profile σ ∈ Σ which generates

the sequences {πk(n)}n>0, is an ε-equilibrium of the game G if the resulting SAAs

given by (4.41) converges asymptotically.

In the following section, we study the conditions over which convergence is observed.

4.6 Convergence Analysis

In this section, we study the convergence of the coupled learning dynamics presented

in Theorem 4.5.4, under two particular scenarios. First, we consider that all players

use comparable learning rates, i.e.,

(B2) For any (j, k) ∈ K2 and n > 0, it holds that λj(n) = bj,kλk(n), where bj,k > 0.

Second, we consider that for all k ∈ K \ {K}, the set K \ {k} can be portioned into

two non-empty subsets. The first subset K(1)
k contains players whose corresponding
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learning rate λj, with j ∈ K(1)
k , is slower that the learning rate λk, i.e., λk > λj

and thus, the SAA πj(n) can be considered as static with respect to the learning

dynamics πk(n). The other set K(2)
k contains players whose learning rate λj, with

j ∈ K(2)
k is faster that the learning rate λk, i.e., λk < λj and thus, the SSA πj(n)

can be considered as a fast transient with respect to the SAA πk(n). Without any

loss of generality, we assume that K(1)
k = {1, . . . , k − 1} and K(2)

k = {k + 1, . . . , K}.
That is,

(B3) For any k ∈ K \ {K}, it holds that

lim
n→∞

λk(n)

λk+1(n)
= 0. (4.45)

4.6.1 Scenario 1: Homogeneous Learning Rates

From the assumption (B1), we have that, for all k ∈ K, the SAAs ûk(n) can be

studied by considering all the SAAs π1(n), . . . , πK(n) as time-invariant. Thus, from

Lemma 4.5.1, it is known that for all k ∈ K, the SAA ûk(n) always converges to the

limiting expected performance ūk
Ä
·, π∗−k

ä
, where the vector π∗ is the vector of lim-

iting probability distributions to which the stochastic algorithms π1(n), . . . , πK(n)

converge to. Hence, under assumption (B1), the convergence analysis of the coupled

SAA in (4.41) reduces to the analysis of convergence of the SAAs π1(n), . . . , πK(n).

For doing such an analysis, we rely on the ordinary differential equation (ODE)

approximations obtained in the proof of Lemma 4.5.3, i.e.,





d
dt
Ûπ1(t) = β

(γ1)
1 (ū1 (·, Ûπ−1(t)))− Ûπ1(t),

d
dt
Ûπ2(t) = b2,1

(
β

(γ2)
2 (ū2 (·, Ûπ−2(t)))− Ûπ2(t)

)
,

...
d
dt
ÛπK(t) = bK,1

(
β

(γK)
K (ūK (·, Ûπ−K(t)))− ÛπK(t)

)
.

(4.46)

The set of ODEs in (4.46) turns out to be the same set of ODEs describing the

smooth fictitious play [9]. Such a system of differential equations has been studied

in [37] and therein, it has been shown that there exists a Lyapunov function for

two-player zero-sum games, which implies that the trajectories described by (4.46)

are globally convergent. Using the same reasoning, potential games also possess a

Lyapunov function, which is indeed, the potential function of the game [84]. Hence,

the following proposition holds.

Theorem 4.6.1 (Sufficient Conditions for Convergence) Consider the game

G and assume that assumptions (B1) and (B2) hold. Then, the coupled SAAs in

Theorem 4.5.4 converge if the game G belongs to one of the following classes,

• Potential games,

• Zero-sum game with K = 2 players.
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• Dominance solvable games,

• Games with unique evolutionary stable strategy.

It is important to remark that many of the problems found in wireless com-

munications are potential games [64], thus the behavioral strategies described in

the previous section are naturally ε-equilibrium behavioral strategies in this class of

games. The interest reader is referred to [10,73,80,96].

4.6.2 Scenario 2: Heterogeneous Learning Rates

Following the same reasoning of the previous section, under the assumption (B1) and

(B3), it becomes natural to analyze the coupled SAAs in Theorem 4.5.4 considering

the hypotheses (i) and (ii) described in Sec. 4.5.3 and the following hypothesis:

(iii) For all k ∈ K, the SAA πk(n) sees the SAA πj(n), with j ∈ K\{k+ 1, . . . , K},
as time-invariant processes.

(iv) For all k ∈ K, the SAA πk(n) sees the SAA πj(n), with j ∈ K \ {1, . . . , k − 1},
as always calibrated to the current values π1(n), . . . , πk(n).

Under hypothesis (iii), we can analyze the SAA πK(n), n > 0, assuming that

players 1, . . . , K − 1 play a given SSI-BS profile represented by the vector π+
−K =Ä

π+
1 , . . . , π

+
K−1

ä
∈ 4 (A1)× . . .×4 (AK−1). For any mixed strategy π+

−K , the SSA

πK(n) in Theorem 4.5.4 asymptotically approximates the solution of the following

ODE,

d

dt
ÛπK(t) = β

(γK)
K

Ä
ūK
Ä
·, π+

1 , . . . , π
+
K−1

ää
− ÛπK(t). (4.47)

Thus, independently of the initial probability distribution πk(0), the unique asymp-

totically stable point of the ODE in (4.47) is

πK = β
(γK)
K

Ä
ūK
Ä
·, π+

1 , . . . , π
+
K−1

ää
. (4.48)

Following the hypotheses (iii) and (iv), the SAA πK−1(n) can be analyzed using the

continuous time process ÛπK−1(t), t ∈ [0,∞[, which approximates the ODE,

d
dt
ÛπK−1(t) =

β
(γK−1)
K−1

(
ūK−1

(
·, π+

1 , . . . , π
+
K−2, β

(γK)
K

Ä
ūK
Ä
·, π+

1 , . . . , π
+
K−2, ÛπK−1(t)

ää))
−ÛπK−1(t). (4.49)

Note that if the trajectory described by the ODE (4.49) converges to a given stable

equilibrium denoted by bK−1 (π1, . . . , πK−2), where the mapping

bK−1 : 4(A1)×, . . . ,×4(AK−2)→4(AK−1) (4.50)

is Lipchitz, then the SAA πK−2(n) can be studied following the same methodology

used for the SAA πK(n), i.e., ODE approximation. Hence, in order to study all the

following strategy-learning processes πj(n), for all j ∈ {2, . . . , K − 1}, the following

general assumption is stated.
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(B4) For all j ∈ {2, . . . , K−1}, there exists a mapping bj : 4(A1)×. . .×4(Aj−1)→
4(Aj) which is Lipschitz and bj

Ä
π+

1 , . . . , π
+
j−1

ä
is the globally asymptotically stable

equilibrium point of the ODE

d

dt
Ûπj(t) = β

(γj)
j

Ä
ūj
Ä
·, π+

1 , . . . , π
+
j−1,Bj

ää
− Ûπj(t), (4.51)

where the vector Bj = (Bj+1, . . . , BK) ∈ 4 (Aj+1) × . . . × 4 (AK) is defined as

follows,

Bj+1 = bj+1

Ä
π+

1 , . . . , π
+
j−1, Ûπj(t)ä

(4.52)

and ∀m ∈ {2, . . . , K − j − 1},

Bj+m = bj+m
Ä
π+

1 , . . . , π
+
j−1, Ûπj(t), Bj+1, . . . , Bj+m−1

ä
and

BK = β
(γK)
K

Ä
π+

1 , . . . , π
+
j−1, Ûπj(t), Bj+1, . . . , BK−1

ä
.

Note that if the assumption (B4) holds, the analysis of the coupled strategy learning

in (4.36) reduces to the study of the following ODE,

d

dt
Ûπ1(t) = β

(γ1)
1 (ū1 (·,B1 (Ûπ1(t))))− Ûπ1(t). (4.53)

If the trajectory described by the ODE (4.53) converges to a given vector π∗1 ∈
4 (A1), it follows from (4.51) that

π∗1 = β1 (ū1 (·,B1 (π∗1))) . (4.54)

Moreover, from assumption (B4), it holds that ∀j ∈ {2, . . . , K − 1},

π∗j = β
(γj)
j

Ä
ūj
Ä
·, π∗1, . . . , π∗j−1,Bj

Ä
π∗1, . . . , π

∗
j

äää
,

which together with (4.48) prove the following Theorem.

Theorem 4.6.2 (Sufficient Conditions for Convergence) Consider the game

G and assume that assumptions (B1), (B3) and (B4) hold. Then, the coupled SSAs

in Theorem 4.5.4 converges if the following ODE,

d

dt
Ûπ1(t) = βj (ūj (·,B1 (Ûπ1(t))))− Ûπ1(t) (4.55)

has a stable solution.

From theorem 4.6.2, it can be implied that to show the convergence of the coupled

SAAs in Theorem 4.5.4, it suffices to show that conditions (B1), (B3) and (B4)

are satisfied and to analyze the convergence of the SSA π1(n) by following the ODE

(4.55), i.e., the slowest learner. It is important to note that in [48], it has been shown
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that the coupled SAAs π1(n), . . . , πK(n) are described by the system of differential

equations given by (4.41) when the coefficients cj,1, for all j ∈ K satisfies that

∀j ∈ {1, . . . , K − 1},
cj+1,1 = o (cj,1) as cj,1 → 0. (4.56)

This result implies that the coupled SAA in (4.41) under conditions (B1) and (B3)

inherits the same convergence properties that the SAA in (4.41) under conditions

(B1) and (B2). However, there exist two classes of games known as Jordan’s match-

ing pennies game [39] and Shapley’s variant of rock-scissors-paper game [103] where

the coupled SAA in (4.41), following assumptions (B1) and (B2), does not converge.

On the contrary, following assumptions (B1) and(B3) convergence is observed [48].

In the following section, we provide another example where convergence depend on

the assumptions over the learning rates, i.e., the pairs (B1,B2) or (B1, B3).

4.7 Applications

In this section, we provide a numerical analysis of the performance achieved by radio

devices following the behavioral rule proposed in this chapter. First, we focus on the

achieved performance in limited time. Here, our interest focuses in determining the

sum spectral efficiency when the learning period is limited. Note that the theoretical

analysis requires infinite time for convergence, which is not practically appealing.

Second, we focus on the impact of the number of choices each radio devices might

possess at a given time. Here, we verify the counter intuitive result which states

that increasing the set of choices each radio device possesses during the whole game

realization might lead to worse global performance. In the following, we describe

the scenarios used to highlight these findings.

4.7.1 Logit Equilibrium and Interference Channels

Consider a set K = {1, . . . , K} of transmitter-receiver pairs. Each transmitter sends

private information to its respective receiver trough a set S 4= {1, . . . , S} of orthog-

onal channels. Here, the orthogonality is assumed in the frequency domain. All

transmitters simultaneously use the same set S of channels and thus, communica-

tions are subject to mutual interference. Let h
(s)
j,k(n) represent the channel realization

between transmitter k and receiver j over channel s at time n. In our analysis, flat

fading channels are assumed during the symbol period, i.e., the channel realization is

assumed time-invariant during the transmission of one symbol, however, the channel

might vary from symbol to symbol period. Denote by h(n) =
(
h

(s)
j,k(n)

)
∈ CJ ·K·S

the vector of channel realizations at interval n and let H be the finite set of all pos-

sible channel realization vectors (in practice, relevant quantities like channel quality

indicators in 3G cellular systems are quantized). Let h(i) be the i-th element of

the set H, with i ∈ {1, . . . , |H|}. For each channel use, the vector h(n) is drawn

from the set H following a probability distribution ρ = (ρh(1) , . . . , ρh(|H|)) ∈ 4 (H).

That is, ρh(i) = Pr
Ä
h(n) = h(i)

ä
, for all n ∈ N. The vector of transmitted symbols
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xk(n) is an S-dimensional random variable with zero mean and covariance matrix

Pk(n) = E
Ä
xk(n)xHk (n)

ä
= diag (pk,1(n), . . . , pk,S(n)). For all (k, s) ∈ K×S, pk,s(n)

represents the transmit power allocated by transmitter k over channel s. A power

allocation (PA) vector for transmitter k ∈ K is any vector

pk(n) = (pk,1(n), . . . , pk,S(n)) ∈ Ak,

where,

Ak =
{
p

(s)
k = pk,max es : ∀s ∈ S, es = (es,1, . . . , es,S) ,

∀r ∈ S \ s, es,r = 0, and es,s = 1} . (4.57)

and pk,max is the maximum transmit power of transmitter k. Following this notation,

the power allocation vector p
(s)
k represents the s-th element of the set Ak. We denote

by Nk = |Ak| the cardinality of the set Ak. We respectively denote the noise spectral

density and the bandwidth of channel s ∈ S by N0 and Bs. The total bandwidth is

denoted by B =
∑S
s=1 Bs, independently of the receiver. We denote the individual

spectral efficiency of transmitter k ∈ K as follows,

uk(h(n),pk(n),p−k(n)) =
∑

s∈S

Bs

B
log2 (1 + γk,s(n)) [bps/Hz], (4.58)

where γk,s(n) is the signal-to-interference plus noise ratio (SINR) seen by player k

over its channel s at time n, i.e.,

γk,s(n) =
pk,s(n)g

(s)
j,k(n)

N0Bs +
∑

i∈K\{k}
pi,s(n)g

(s)
j,i (n)

. (4.59)

Here, for all (j, k) ∈ K2 and n ∈ N, g
(s)
j,k(n) ,

∣∣∣h(s)
j,k(n)

∣∣∣
2
.

4.7.2 Convergence in Finite Time

In order to run a fair comparison of the behavioral rule in Theorem 4.5.4 with existing

results, e.g., best response dynamics, fictitious play, regret matching learning, and

cumulative payoff matching reinforcement learning (CPM-RL), we consider the set

H is unitary. This implies that the stochastic game reduces to play the same one-

shot game repeatedly ad infinitum. At each stage, the corresponding one-shot game

might have either one NE in pure strategies or two NE in pure strategies plus one NE

in mixed strategies [90], depending on the particular channel realization. Here, we

generate 10, 000 channel realizations. For each channel realization, we calculate the

sum of individual spectral efficiencies at the NE, using the theoretical results in [90].

We consider the average network spectral efficiency (NSE) at the best NE and the

worst NE. That is, the average NSE at the NE with the highest NSE and lowest

NSE, respectively. Similarly, for each channel realization, we determine the sum of

individual spectral efficiencies achieved by both transmitters using the BRD, FR,
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Figure 4.1: Average sum spectral efficiency in the two-transmitter two-receiver two-

channel game, when transmitters are limited to channel selection. Here α1(n) =

α2(n) = 1

n( 3
4 )

, α2(n) = 1

n( 2
3 )

and λ1(n) = 1
n
. Moreover, SNR =

pk,max

σ2 = 10 dBs.

CPM-RL and the proposed behavioral rule in Theorem 4.5.4, when their learning

time is limited to a fixed number of time intervals (game repetitions).

In Fig. 4.1, we plot the average sum of individual spectral efficiencies as a function of

the number of time intervals the players are let to interact. Naturally, the algorithm

in Theorem 4.5.4 performs better with higher number of iterations. However, an

important observation here is that it achieves a higher performance than the classical

(simultaneous) best response dynamics (Def. 3.3.4) and cumulative payoff matching

reinforcement learning (CPM-RL) [120]. This confirms the intuition presented in

this chapter that BRD and reinforcement learning, in general, converge to action

profiles which might not be an equilibrium, or even worst, action profiles which are

suboptimal from an individual and global point of view. Particular attention must

be put to the fact that in the case of the algorithm in Theorem 4.5.4 and CPM-RL,

both algorithms require the same amount of information. However, the algorithm

presented in Theorem 4.5.4 performs better.

Another important remark in Fig. 4.1 is the fact that, fictitious play (See Sec. 3.4.4)

and regret matching learning [35,90] outperform the algorithm proposed in Theorem

4.5.4. However, those algorithms require both the observation of the actions of the

other player and the knowledge of the explicit expression of the utility function at

each game stage.

In Fig. 4.2, we plot the average sum spectral efficiency as a function of the SNR,

when the number of iterations has been fixed to 40 iterations. Note that in terms

of performance, the behavior is the same described in the previous figure. However,

an important remark here is the fact that at high SNR, the game possesses two NE

in pure strategies [90]. Thus, the increasing gap between the NE with the highest
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Figure 4.2: Average sum spectral efficiency in the two-transmitter two-receiver two-

channel game, when transmitters are limited to channel selection. Here α1(n) =

α2(n) = 1

n( 3
4 )

, α2(n) = 1

n( 2
3 )

and λ1(n) = 1
n
. Moreover, SNR =

pk,max

σ2 = 10 dBs.

average performance and the actually achieved performance is due to the fact that

the algorithm in might converge to any of both equilibria, i.e., not always to the best

NE. In the case of BRD and CPM-RL, they can converge to action profiles which

perform worse than the worst NE. Hence, their average performance is always worst

that the algorithm presented in (4.39). On the contrary, regret matching learning

and FP seems to converge always to the best NE. However, it does not exist a formal

proof of this observation.

4.7.3 Impact of the Number of Choices

In this subsection, we increase the number of available channels and we let each

transmitter to use either a unique channel or any subset of adjacent channels. Thus,

if we consider S channels, the cardinality of the sets Ak is S
2

(1 + S), for all k ∈
K. Here, we generate 10000 channel realizations and we let radio devices to learn

through 100 game repetitions. In Fig. 4.3, it is shown that increasing the number of

available channels leads to a loss of spectral efficiency. This observation is due to the

fact that letting each radio device to use an additional channel implies increasing

the number of actions. Then, the radio devices must spend more time on testing all

their actions to build the vector of utility estimations rather that using the optimal

action. This effect, significantly reduces the average individual spectral efficiency.

However, the converging point is still a logit equilibrium (Def. 4.4.2).
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Figure 4.3: Achieved sum spectral efficiency in the two-transmitter two-receiver

N-channel game, when transmitters are limited to use only one channel or any

combination of adjacent channels. Here α1(n) = α2(n) = 1

n( 3
4 )

, α2(n) = 1

n( 2
3 )

and

λ1(n) = 1
n
. Moreover, SNR =

pk,max

σ2 = 10 dBs.

4.8 Conclusions

In this chapter, learning dynamics adapted to real-system implementation con-

straints have been introduced to learn equilibrium in fully decentralized wireless

networks. For instance, it has been assumed that the only information a radio de-

vice can obtain from the network is a measure of its instantaneous performance,

and, each radio device is completely unaware of the existence of all the other radio

devices. Under these conditions, we introduced novel learning dynamics such that

each radio device is able to simultaneously learn both the optimal mixed strategy

at the equilibrium and the expected performance achieved with each of its actions.

Here, we have used recent tools from stochastic approximations to study the con-

vergence of such dynamics. In particular, we show that there exist several classes

of games where these learning dynamics always converge to LE. Using a numerical

analysis, we show that the proposed dynamics perform better than cumulative payoff

matching reinforcement learning, which requires the same information knowledge.

It also outperforms the classical BRD, which is in general more demanding in terms

of information. We also observed that the proposed technique is outperformed by

classical FP and regret matching learning. However, both techniques require the

knowledge of a closed form expression of the utility function and the observation of

the actions of all the other players at each learning stage.



Chapter 5

QoS Provisioning in Spectrum

Sharing Games

In this chapter, we study an equilibrium concept, namely the satisfaction equilibrium

(SE), where in contrast to existing equilibrium notions, for instance Nash equilib-

rium (NE) and generalized NE (GNE), the idea of performance optimization in the

sense of utility maximization or cost minimization does not exist. The concept of

SE relies on the fact that players might be either satisfied or unsatisfied with their

achieved performance. At the SE, if it exists, all players are satisfied. This no-

tion of equilibrium perfectly models the problem of QoS provisioning in unmanaged

spectrum access. Here, radio devices are satisfied if they are able to provide the

requested QoS.

In the context of unmanaged spectrum access, many equilibrium concepts have been

studied and proved to be interesting game outcomes [91], e.g., coarse correlated equi-

librium (CCE) [120], correlated equilibrium (CE) [3], Nash equilibrium (NE) [66] and

generalized NE (GNE) [24]. For instance, the notion of NE has been used to deter-

mine individually optimal power allocation policies in decentralized self-configuring

networks where radio devices are interested in maximizing their individual trans-

mission rates [27,80,97,99,100], energy efficiency [60,61] , or minimizing the outage

probability [7]. The idea of GNE has been used in [71] to minimize the transmit

power consumption while guaranteeing some individual minimum signal to interfer-

ence plus noise ratios (SINR). The concept of correlated equilibrium has been used

in [1] to analyze the multiple access in wireless networks.

In particular, all the equilibrium notions mentioned above rely on the idea of individ-

ual utility maximization or individual payoff minimization. The difference between

those equilibrium concepts depends mostly in the degree of correlation between the

actions of the players (See [120] and references therein). However, from a practical

point of view, a network operator, service provider or even the final user might be

more interested in profiting from a minimum performance required to communicate

(Quality of Service (QoS) requirement) rather than attaining the highest achievable

performance. For instance, if a voice message is to be transmitted, a typical utility

function (assuming the network latency is shorter than 200 ms) for such a device is

the transmission rate. In any case, once the radio device has achieved a transmission

91
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configuration such that it is possible to ensure a minimum of 8000 samples/sec [62],

there is no particular interest from such a device in changing its own transmission

configuration. This is basically because the voice sampling rate is fixed and beyond

a given threshold, human ears cannot detect any difference. The same reasoning

can be applied to most of the communications services (with its corresponding QoS

metric), e.g., data and video streaming, considering latency, transmission rate, etc.

Thus, this might imply that, in practical terms, the classical game formulation with

utility maximization or cost minimization might not properly model the QoS pro-

visioning problem in self-configuring wireless communications.

In this chapter, we present a notion of equilibrium, namely satisfaction equilibrium

(SE), which models more precisely the effect that in decentralized self-configuring

networks, a communication takes place successfully if certain (minimum QoS) con-

ditions are guaranteed. The notion behind the SE relies on the fact that players are

either satisfied or unsatisfied with their actual performance. One player is said to be

satisfied, if it plays an action which satisfies certain conditions given the actions of

all the other players. A game is said to be in SE, if the game possesses one, when all

players are satisfied. The idea behind SE was originally introduced in [93, 94] for a

particular class of conditions in pure strategies. Later, the concept was formulated

in terms of a fixed point inclusion for the case of pure strategies in [83,85]. As stated

in [85], the advantages of the notion of SE over the classical notions such as NE and

GNE, at least in the domain of signal processing for wireless communications are

manifold. Here, we highlight the fact that, (i) the existence of the SE is less restric-

tive than the notion of GNE. That is, the network can possess an equilibrium in the

sense of satisfaction but not in the sense of utility maximization. (ii) The behavioral

rules needed for radio devices to learn a SE are by far simpler that behavioral rules

to learn NE or GNE [91]. As we shall see, the only information required by each

radio device at each time slot is whether it is satisfied or not (1-bit message). (iii)

Using particular behavioral rules, convergence to SE can be achieved in finite time.

This drastically contrast with the behavioral rules required to learn other equilib-

rium concepts. Here, at least a numerical value (several bits) of the instantaneous

achieved utility is required and convergence is observed asymptotically. Within this

framework, the contributions presented in this chapter are the followings:

• The notion of SE is formalized as a fixed point inclusion for both pure strategies

(PS) and mixed strategies (MS). Conditions for the existence of the SE in PS

and MS are established. Finally, the notion of SE is compared with existing

equilibrium concepts, mainly, the NE [66] and generalized NE (GNE) [24].

• We introduce the notion of epsilon-satisfaction equilibrium (ε-SE), which con-

sists of a mixed strategy which allows all players to be satisfied with probability

not less than a given positive epsilon. This equilibrium concept turns out to

be less restrictive in terms of existence. However, it is shown that not every

game possesses an ε-SE.

• A refinement of the notion of SE to which we refer as efficient SE (ESE) is

presented. The ESE relies on the idea of effort or cost of satisfaction. Here,



5.1. Problem Formulation 93

each player independently ranks its own actions in terms of effort. At the ESE,

if it exists, all players achieve satisfaction by using the transmit configuration

which requires the lowest effort. Sufficient conditions for the existence and

uniqueness of the ESE are also presented.

• A behavioral rule that allows radio devices to achieve the SE in PS, when it

exists, is presented. Interestingly, following this rule, the convergence to the

SE is observed in finite time and it requires only 1-bit feedback between the

corresponding transmitter-receiver pairs at each game stage.

The sequel of the chapter is organized as follows. In Sec. 5.1, the QoS provisioning

problem in decentralized self-configuring networks is formulated. In Sec. 5.2, a novel

game formulation, called satisfaction form, is introduced as well as its extension in

mixed strategies. The concept of SE and ε-SE is presented in the context of games in

satisfaction form. Therein, a simple example is used to evidence the relevance of this

concepts the context of QoS provisioning. In Sec. 5.3, the existence and uniqueness

of the SE is analyzed. In Sec. 5.5, a refinement of the SE, which we call efficient SE,

is introduced. In Sec. 5.4, we compare the notion of SE with existing equilibrium

notions, such as NE and GNE in the context of the QoS provisioning problem. In

Sec. 5.6, behavioral rules that allow radio devices to learn a SE are described. In

Sec. 5.7, the notion of SE is used in the context of the interference channel where

transmitters must guarantee a minimum transmission rate. Therein, it is shown

that contrary to the notions of SE and ESE, classical equilibrium concepts fail to

simultaneously satisfy both transmitters. The chapter is concluded by Sec. 5.8.

5.1 Problem Formulation

In general, the term QoS provisioning refers to all the procedures carried out by the

radio devices aiming to guarantee a satisfying final user communication experience.

That is, guaranteeing that communications take place with acceptable data rates,

frame delays, spectral efficiency, energy efficiency, etc. In order to achieve such a

goal, radio devices adjust their transmit and/or receive configurations. For instance,

transmitters might tune parameters such as their channel selection and power al-

location policy, modulation and error correction schemes, constellation sizes, etc.

Similarly, receivers might tune their scheduling, decoding order, etc. The key point

in this transmit/receive configuration tuning is that any change of a particular ra-

dio device on its own configuration influences the performance (QoS) of other radio

devices. In the physical layer, this is basically, due to the mutual interference.

In the particular case of decentralized self-configuring networks, message exchanging

between radio devices for establishing a sort of coordination to jointly improve the

individual or global performance is highly constrained. This is basically because

of the amount of signaling it might require and also because of the use of different

physical layer technologies. Within this framework, it is common to model the radio

devices as selfish entities concerned only with their own individual performance.

In the sequel of this chapter, we study a particular QoS policy where all radio
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devices aim to satisfy a given QoS condition, for instance, a minimum data rate

and packet delay. Here, none of the radio devices is interested in maximizing any

of its performance metrics. Our goal then, is to provide a mathematical framework

for the study of this scenario and designing the behavioral strategies that allow, if

possible, the QoS satisfaction of all the radio devices.

5.2 Games in Satisfaction Form and Satisfaction

Equilibrium

In this section, we introduce a novel game formulation where in contrast to exist-

ing formulations (e.g., normal form [66] and normal form with constrained action

sets [24]), the idea of performance optimization, i.e., utility maximization or cost

minimization, does not exist. In our formulation, to which we refer as satisfaction-

form, the aim of the players is to adopt any of the actions which allows them to

satisfy a specific condition given the actions adopted by all the other players. Under

this game formulation, we introduce the concept of satisfaction equilibrium.

5.2.1 Games in Satisfaction Form

In general, a game in satisfaction-form can be described by the following tripletÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
. (5.1)

Here, the set K = {1, . . . , K} represents the set of players and the set Ak =

{A(1)
k , . . . , A

(Nk)
k } represents the set of Nk actions available for transmitter k. An

action profile is a vector a = (a1, . . . , aK) ∈ A, where,

A = A1 × . . .×AK . (5.2)

In this analysis, the set K is assumed finite, non-empty and non-unitary. The set A
can be either finite or compact and convex. When necessary, the distinction is done

explicitly. We denote by a−k = (a1, . . . , ak−1, ak+1, . . . , aK) ∈ A−k, where

A−k = A1 × . . .×Ak−1 ×Ak+1 × . . . ,×AK , (5.3)

the vector obtained by dropping off the k-th component of the vector a. With a

slight abuse of notation, we write the vector a as (ak, a−k), in order to emphasize its

k-th component. The correspondence fk : A−k → 2Ak determines the set of actions

of player k which allows its satisfaction given the actions played by all the other

players. Here, the notation 2Ak refers to the set of all possible subsets of the set Ak,
including Ak.
In the following example, we show how a given decentralized self-configuring network

can be modeled by a game in satisfaction form.

Example 5.2.1 Consider a decentralized and self-configuring network made of a

set K = {1, . . . , K} of transmitter-receiver pairs. For all k ∈ K, let Ak be the
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set of transmit configurations available for transmitter k and let the function uk :

A1 × . . . × AK → R denote its (Shannon) transmission rate. Transmitter k must

guarantee a data rate higher than Γk bps. Hence, the set of configurations it must

adopt, given the configurations a−k of all the other transmitters, is determined by

the correspondence fk : A−k → 2Ak , which we define as follows,

fk (a−k) = {ak ∈ Ak : uk (ak, a−k) > Γk} . (5.4)

Thus, the behavior of this network can be modeled by the game in satisfaction formÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
.

In Sec. 5.4, we use this example to show the differences between the satisfaction

form and the normal form.

In general, an important outcome of a game in satisfaction form is the one where

all players are satisfied. We refer to this game outcome as a satisfaction equilibrium

(SE).

Definition 5.2.1 (Satisfaction Equilibrium in PS [85]) An action profile a+

is an equilibrium for the game ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
if

∀k ∈ K, a+
k ∈ fk

Ä
a+
−k
ä
. (5.5)

Note that in this formulation, radio devices are indifferent to the fact that there

might exist another transmit configuration with which a higher utility e.g., trans-

mission rate, can be obtained. Here, as long as each player is able to satisfy its

individual conditions, it has no incentive to deviate from the current action profile.

In the following, we describe the extension in mixed strategies of the game in satis-

faction form.

5.2.2 Extension in Mixed Strategies of the Satisfaction Form

The concept of mixed strategies was introduced by Borel in [26]. A mixed strategy of

player k is a probability distribution over the set of actions Ak. We denote the set of

all possible probability distributions over the set Ak by4 (Ak), i.e., the unit simplex

over the elements of Ak. We denote by πk =
Å
π
k,A

(1)
k

, . . . , π
k,A

(Nk)

k

ã
the probability

distribution (mixed strategy) chosen by player k. Here, for all nk ∈ {1, . . . , Nk},
π
k,A

(nk)

k

represents the probability that player k plays action A
(nk)
k ∈ Ak.

Following this notation, we denote by ÙG ′ =
{
K, {4 (Ak)}k∈K ,

¶
f̄k
©
k∈K

}
the ex-

tension in mixed strategies of the game ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
, where the

correspondence

f̄k :
∏

j∈K\{k}
4 (Aj)→ 24(Ak), (5.6)

determines the set of all possible probability distributions that allow player k to

always choose an action which satisfies its individual conditions, that is,

f̄k (π−k) = {πk ∈ 4 (Ak) : Pr (ak ∈ fk (a−k)) (πk, π−k) = 1} . (5.7)

In this context, we define the SE as follows.
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Definition 5.2.2 (Satisfaction Equilibrium in MS) The mixed strategy profile

π∗ ∈ 4 (A1)× . . .×4 (AK) is a SE of the game ÙG ′ = {
K, {4 (Ak)}k∈K ,

¶
f̄k
©
k∈K

}
,

if for all k ∈ K,

π∗k ∈ f̄k
Ä
π∗−k
ä
. (5.8)

From Def. 5.2.2 and (5.7), it can be implied that if π∗ ∈ 4 (A1)× . . .×4 (AK) is

a SE, then the following holds, for all k ∈ K,

Pr (ak ∈ fk (a−k))
Ä
π∗k, π

∗
−k
ä

= 1. (5.9)

Note that it can be stated that the set of equilibria of the game ÙG is a subset of

the set of equilibria of the mixed extension ÙG ′, if we establish an injective map from

the action set Ak to the set of vectors corresponding to the canonical basis of the

space of Nk-dimensional vectors RNk . For instance, let the nk-th action of player k,

i.e., A
(nk)
k , be associated with the unitary vector e(Nk)

nk
=
(
e

(Nk)
nk,1

, . . . , e
(Nk)
nk,Nk

)
∈ R(Nk),

where, all the components of the vector e(Nk)
nk

are zero except its nk-th component,

which is unitary. The vector e(Nk)
nk

represents a degenerated probability distribution,

where the action A
(nk)
k is deterministically chosen. Using this argument, it becomes

clear that every SE of the game ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
is also a SE in the gameÙG ′ = {

K, {4 (Ak)}k∈K ,
¶
f̄k
©
k∈K

}
.

As we shall see in the next section, games in satisfaction form might not nec-

essarily have a SE neither in pure strategies nor in mixed strategies. Thus, in the

following we present a less restrictive notion of equilibrium to which we refer as

epsilon-satisfaction equilibrium (ε-SE).

5.2.3 Epsilon-Satisfaction Equilibrium

At the SE of the game ÙG ′ =
{
K, {4 (Ak)}k∈K ,

¶
f̄k
©
k∈K

}
, players choose their ac-

tions following a probability distribution such that only action profiles that allow all

players to simultaneously satisfy their individual conditions are played with pos-

itive probability. This interpretation leads immediately to the conclusion that

if there does not exist at least one action profile that allows all players to be

simultaneously satisfied, then, there does not exist any SE in the game ÙG ′ ={
K, {4 (Ak)}k∈K ,

¶
f̄k
©
k∈K

}
. However, under certain conditions, it is always pos-

sible to build mixed strategies that allow players to be satisfied with a probability

which is close to 1 , i.e., 1− ε, for a sufficiently small ε > 0.

Definition 5.2.3 (Epsilon-Satisfaction Equilibrium) Let ε ∈ ]0, 1]. The mixed

strategy profile π∗ ∈ 4 (A1) × . . . × 4 (AK) is an epsilon-satisfaction equilibrium

(ε-SE) of the game ÙG ′ = {
K, {4 (Ak)}k∈K ,

¶
f̄k
©
k∈K

}
, if for all k ∈ K,

π∗k = ¯̄fk (π−k) , (5.10)

where

¯̄fk
Ä
π∗−k
ä

=
¶
πk ∈ 4 (Ak) : Pr (ak ∈ fk (a−k))

Ä
πk, π

∗
−k
ä
> 1− ε

©
. (5.11)
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From Def. 5.2.3, it can be implied that if the mixed strategy profile π∗ is an ε-SE,

it holds that,

Pr (ak ∈ fk (a−k))
Ä
π∗k, π

∗
−k
ä
> 1− ε. (5.12)

That is, players are unsatisfied with probability ε. The relevance of the ε-SE is that

it models the fact that players can be tolerant to a non-satisfaction level. At a given

ε-SE, none of the players is interested in changing its mixed strategy profile as long

as it is satisfied with a probability higher than certain threshold 1− ε. As we shall

see, a game might not possess a SE neither in pure nor in mixed strategies, but it

might possess an ε-SE.

The relevance of this result, for instance in terms of the example 5.2.1, is that

when all the radio devices cannot be simultaneously satisfied, i.e., the required

transmission rates cannot be simultaneously achieved, there may exist a way to let

them achieve their required transmission rates with certain probability. In this case,

ε corresponds to the maximum outage probability tolerated by all radio devices.

Note that in none of the cases, we state that the ε is related to the minimum

achievable outage probability. Here, radio devices are not interested in minimizing

their outage probability, but rather to achieve a tolerable outage probability.

A thorough analysis on the existence and uniqueness of the SE in pure strategies

and mixed strategies is presented in the next section. Similarly, the conditions for

the existence of an ε-SE are also discussed.

5.3 Existence and Uniqueness of the Satisfaction

Equilibrium

In this section, we study the existence and uniqueness of a satisfaction equilibrium

in games in satisfaction form and their corresponding extension in mixed strategies.

Particular attention is given to the existence of ε-SE in the case where there does

not exist at least one SE neither in pure nor in mixed strategies.

5.3.1 Existence of SE in Pure Strategies

In order to study the existence of a SE in the game ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
, let

the correspondence F : A → 2A be defined as follows:

F (a) = f1 (a−1)× . . .× fK (a−K) . (5.13)

Then, a SE exists if and only if

∃a ∈ A : a ∈ F (a). (5.14)

This formulation allows us to use existing fixed point (FP) theorems to provide

sufficient conditions for the existence of the SE. For instance, in the case of compact

and convex sets of actions, from Kakutani’s FP theorem [40], we can write the

following proposition.
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Theorem 5.3.1 (Existence of the SE in compact games) In the game ÙG =¶
K, {Ak}k∈K , {fk}k∈K

©
, let the set of actions A be a non-empty, convex and compact

set. Let also the correspondence F have a closed graph and for all a ∈ A, let F (a)

be non-empty and convex. Then, the game ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
has at least

one SE.

In the case of finite sets of actions, one can rely on the fixed point theorem of Knaster

and Tarski [42] to state the following theorem.

Theorem 5.3.2 (Existence of SE in finite games) Consider the game ÙG =¶
K, {Ak}k∈K , {fk}k∈K

©
and let the set A have a binary relation denoted by �. Let

also

(i) V = 〈A,�〉 be a complete lattice;

(ii) F (a) be non-empty for all a ∈ A;

(iii) the correspondence F in (5.13) satisfies that ∀ (a, a′) ∈ A, such that a � a′, it

holds that

∀ (b,b′) ∈ F (a)× F (a′) , b � b′. (5.15)

Then the game has at least one SE in pure strategies.

Note that both theorem 5.3.1 and theorem 5.3.2 require the following assumptions

that for all a ∈ A, the set F (a) is non-empty, i.e.,

∀k ∈ K and ∀a−k ∈ A−k, ∃ak ∈ Ak : ak ∈ fk (a−k) . (5.16)

However, this condition is highly demanding. In practical terms, it implies that for

all the radio devices, there always exists a transmit/receive configuration such that

their QoS requirement are satisfied. Nonetheless, this is not always the case.

In the following, we study the existence of an equilibrium in mixed strategies.

5.3.2 Existence of the SE in Mixed Strategies

As in the case of pure strategies, the condition for the existence of a SE in the mixed

extension ÙG ′ = {
K, {4 (Ak)}k∈K ,

¶
f̄k
©
k∈K

}
boils down to the study of a fixed point

inclusion. Let the correspondence F̄ : 4 (A1)× . . .×4 (AK)→ 24(A1)×...×4(AK) be

defined as follows:

F̄ (π) = f̄1 (π−1)× . . .× f̄K (π−K) . (5.17)

Then, a SE exists if and only if

∃π ∈ 4 (A1)× . . .×4 (AK) : π ∈ F̄ (π). (5.18)

Thus, all the results of fixed point theory [11], in the case of the compact and

convex sets, are valid for the study of the existence of the SE in the game ÙG ′ ={
K, {4 (Ak)}k∈K ,

¶
f̄k
©
k∈K

}
. Nonetheless, some results are immediate from Def.

5.2.2. For instance, note that if a game in satisfaction form does not have a SE

in pure strategies, then, it does not have a SE in mixed strategies neither. This

is basically due to the fact that players mix only the actions that guarantee their
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satisfaction with probability one. That is, player k mixes a subset of its actions

A′k ⊆ Ak, i.e., ∀ak ∈ A′k, πk,ak > 0, only if the following condition holds,

∀a∗k ∈ A′k, Pr (a∗k ∈ fk (a−k)) π−k = 1 (5.19)
∑

∀a−k∈A−k
1{a∗k∈fk(a−k)}

∏

j∈K\{k}
πj,aj = 1. (5.20)

This implies that player k assigns a strictly positive probability to more than one

action, i.e., it plays strictly mixed strategies, only if such a set of actions guar-

antees its satisfaction for all the action profiles a−k ∈ A−k, which are played

with non-zero probability. This reasoning might imply that, there might exist

several SE in pure strategies but no SE in strictly mixed strategies in the gameÙG ′ = {
K, {4 (Ak)}k∈K ,

¶
f̄k
©
k∈K

}
.

5.3.3 Existence of the Epsilon-Satisfaction Equilibrium

As shown in the previous subsection, the existence of at least one SE in the extension

in mixed strategies of the game ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
remains very strict.

Indeed, the game has a SE in mixed strategies if and only if it has a SE in pure

strategies. On the contrary, the existence of at least one ε-SE is less strict and it

does not require the existence of a pure SE. A sufficient and necessary condition for

the existence of at least one ε-SE is the following.

Proposition 5.3.1 Let ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
be a finite game in satisfaction

form. Then, if the following condition holds,

∀k ∈ K, ∃a ∈ A : ak ∈ fk (a−k) , (5.21)

there always exists a strategy profile π∗ ∈ 4 (A1)× . . .×4 (AK) and an 1 > ε > 0,

such that, π∗ is an ε-SE.

Proof : Assume that the condition (5.21) holds. Then, for all j ∈ K, it holds that

the set

A∗j = {a ∈ A : aj ∈ fj (a−j)} (5.22)

is non-empty. Denote by a∗j =
Ä
a∗j,1, . . . , a

∗
j,K

ä
a particular element of the set A∗j .

Any mixed strategy π+ ∈ 4 (A1)× . . .×4 (AK), such that

∀(j, k) ∈ K2, π+
k,a∗

j,k
> 0 (5.23)

guarantees that ∀j ∈ K, the action a∗j is played with non-zero probability, thus,

∀k ∈ K, Pr (ak ∈ fk (a−k))π
+ =

∑

a∈A
1{ak∈fk(a−k)}

K∏

j=1

π+
j,aj

= εk, (5.24)

where 1 > εk >
K∏

j=1

π+
j,a∗

k,j
> 0, which proves the existence of a mixed strategy profile

such that,

∀k ∈ K, Pr (ak ∈ fk (a−k))π
+ > 1− ε, (5.25)
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where, ε = 1−max
j∈K

εj, which completes the proof. 2

Note that for all k ∈ K, the condition (5.21) only requires the existence of at

least one action profile where player k is satisfied, which is less restrictive than

conditions (5.14) and (5.18). Note also that, as long as (5.21) holds, a simple uniform

distribution over each individual set of actions Ak is an ε-SE, where ε = 1−
K∏

j=1

1

Nj

.

5.3.4 Uniqueness of the SE

In general, it is difficult to provide the conditions to observe a unique SE for a

general set of correspondences {fk}k∈K. As we shall see in Sec. 5.7, the set of

SE is often non-unique in games modeling decentralized self-configuring wireless

networks, and thus, an equilibrium selection process might be required. In Sec.

5.5, we propose a methodology for equilibrium selection, but first, we focus on

establishing the differences between the notion of SE and the notions of NE and

GNE.

5.4 Satisfaction Equilibrium and other Equilib-

rium Concepts

In the following, we highlight the main differences between the SE and other equi-

librium notions such as NE and GNE. However, before we start, we point out the

differences between the normal form and the satisfaction form formulations.

5.4.1 Games in Normal Form and Satisfaction Form

The main difference between the normal form G =
¶
K, {Ak}k∈K , {uk}k∈K

©
and

satisfaction form ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
is that the former defines a utility

function uk in the sense of Neumann - Morgenstern [68], i.e., given an action profile

a−k ∈ A−k, player k can rank any pair of its actions (ak, a
′
k) ∈ A2

k such that either

uk(ak, a−k) < uk(a
′
k, a−k), uk(ak, a−k) = uk(a

′
k, a−k) or uk(ak, a−k) > uk(a

′
k, a−k).

In the latter, player k determines only whether an action satisfies its individual

conditions or not, i.e., ak ∈ fk (a−k) or ak /∈ fk (a−k), respectively.

In the following, we present a simple example that allows us to identify the differ-

ences between modeling the QoS problem using a normal-form formulation and a

satisfaction formulation. Here, we model the scenario described in Ex. 5.2.1 by a

game in satisfaction form ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
, where fk is defined by (5.4),

and a game in normal form G =
¶
K, {Ak}k∈K , {vk}k∈K

©
. In the normal form, we

assume that a player gets 1 if it is able to achieve satisfaction or 0 otherwise. Hence,

the function vk : A1 × . . .×AK → {0, 1} is defined as follows, for all k ∈ K,

vk (ak, a−k) = 1{ak∈fk(a−k)}. (5.26)
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Now, we compare both the set of SE ASE of the game ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
and the set of NE ANE of the game G =

¶
K, {Ak}k∈K , {vk}k∈K

©
. Note that from

Def. 5.4.1 and Def. 5.2.1, it can be immediately implied that any SE of the gameÙG is an NE of the game G. This is basically, because at the SE, all players obtain

a unitary utility, and since the range of the utility function is binary {0, 1}, no

other action is able to give a higher utility. The converse is not true, that is, an

NE of the game G =
¶
K, {Ak}k∈K , {vk}k∈K

©
is not necessarily a SE of the gameÙG =

¶
K, {Ak}k∈K , {fk}k∈K

©
. Consider for instance the game realization (K = 2,

N1 = N2 = 2) in Fig. 5.1. Note that therein, the game G =
¶
K, {Ak}k∈K , {vk}k∈K

©
has 2 NE in pure strategies, which are the action profiles (A

(2)
1 , A

(1)
2 ) and (A

(1)
1 , A

(2)
2 ),

while the game ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
has only one SE, which is the action

profile (A
(1)
1 , A

(2)
2 ). This simple example shows that, the game formulation following

P1\P2 A
(1)
2 A

(2)
2

A
(1)
1 (0, 0) (1, 1)

A
(2)
1 (1, 0) (0, 0)

Figure 5.1: Game in normal form G =
¶
K, {Ak}k∈K , {vk}k∈K

©
, with K = {1, 2},

Ak = {A(1)
k , A

(2)
k }, for all k ∈ K. Player 1 chooses rows and player 2 chooses

columns. In a pair (v1, v2) ∈ {0, 1}2, v1 and v2 are the utilities obtained by player 1

and 2, respectively.

the idea of a utility function of the form vk : A → R+, for all k ∈ K, might

lead to equilibria where not all the players are satisfied. This shows that games in

normal-form do not properly model the case where players are interested only in

the satisfaction of individual conditions. We conclude the comparison between the

games G =
¶
K, {Ak}k∈K , {vk}k∈K

©
and ÙG =

¶
K, {Ak}k∈K , {fk}k∈K

©
, by establishing

the following condition between their sets of equilibria.

ASE ⊆ ANE ⊆ A. (5.27)

This confirms the intuition that the notion of SE is more restrictive than the notion

of NE, that is, an SE in the game ÙG is an NE in the game G, where all players are

satisfied.

5.4.2 Satisfaction Equilibrium and Nash Equilibrium

The NE in pure strategies in the context of games in normal form [31] can be defined

as follows.

Definition 5.4.1 (Nash Equilibrium in PS [66]) Consider a game in normal

form G =
¶
K, {Ak}k∈K , {uk}k∈K

©
. An action profile a ∈ A is an NE in pure

strategies if it satisfies, for all k ∈ K and for all a′k ∈ Ak,

uk(ak, a−k) > uk(a
′
k, a−k). (5.28)
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Note that the definition of NE (Def. 5.4.1) can be obtained from the definition of

SE (Def. 5.2.1) by assuming that, for all k ∈ K, the satisfaction correspondence fk
is defined as follows,

fk (a−k) = arg max
a∗
k
∈Ak

uk (a∗k, a−k) . (5.29)

The satisfaction correspondence fk as defined in (5.29) is known in the game theo-

retic literature as the best response correspondence [31]. Then, under this formula-

tion, the set of SE of the game in satisfaction form ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
is

identical to the set of NE of the game in normal form G =
¶
K, {Ak}k∈K , {uk}k∈K

©
.

This reasoning might lead us to think that the satisfaction form as well as the no-

tion of SE are generalizations of the classical normal form and the notion of Nash

equilibrium [66], respectively.

5.4.3 Satisfaction Equilibrium and Generalized Nash Equi-

librium

The GNE in pure strategies (PS) in games in normal form with constrained set of

actions, as introduced by Debreu in [24] and later by Rosen in [92], can be defined

as follows.

Definition 5.4.2 (Generalized NE in PS [24]) An action profile a∗ ∈ A is a

generalized Nash equilibrium (GNE) of the game Ĝ =
¶
K, {Ak}k∈K , {uk}k∈K , {fk}k∈K

©
if and only if

∀k ∈ K, a∗k ∈ fk
Ä
a∗−k
ä

and

∀ak ∈ fk
Ä
a∗−k
ä
, uk(a

∗
k, a
∗
−k) > uk(ak, a

∗
−k).

Note that the definition of SE (Def. 5.2.1) can be obtained from the definition of

GNE (Def. 5.4.2) by assuming the following condition, ∀k ∈ K and ∀a ∈ A

uk(ak, a−k) = c, with c ∈ R+. (5.30)

Under assumption (5.30), the set of GNE of the game in normal form with con-

strained set of actions Ĝ =
¶
K, {Ak}k∈K , {uk}k∈K , {fk}k∈K

©
and the set of SE of

the game ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
in satisfaction form are identical. This obser-

vation does not necessarily imply that the satisfaction form as well as the notion of

SE are particular cases of the classical normal form with constrained set of actions

and the notion of GNE [24], respectively. Note that, in the game Ĝ the action pro-

file a ∈ A can be a possible game outcome, if and only if, it satisfies that for all

k ∈ K, ak ∈ fk (a−k). Conversely, in the game ÙG any action profile of the set A is a

possible game outcome. That is, the game formulation ÙG is not a formulation with

constrained set of actions.

In the following, we compare the set of equilibria of both games Ĝ and ÙG, for a

general definition of the utility functions uk, for all k ∈ K. Let the sets of GNE

of the game Ĝ and the set of SE of the game ÙG be denoted by AGNE and ASE,
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respectively. Now, note that from Def. 5.4.2 and Def. 5.2.1, it follows that any

GNE in Ĝ is a SE in ÙG, i.e.,

AGNE ⊆ ASE ⊆ A. (5.31)

The condition in (5.31) verifies the intuition that the notion of SE in games in

satisfaction form, is less restrictive than the notion of GNE in games in normal form

with constrained action sets. Note also that from Def. 5.2.1, it might be implied

that several SE might exist, while no GNE necessarily exists. This is basically due

to the fact that the existence of a GNE depends on both the functions uk and fk,

while the existence of a SE depends uniquely on the correspondences fk, with k ∈ K.

Conversely, the existence of a GNE implies the existence of a SE.

5.5 Equilibrium Selection and Efficient Satisfac-

tion Equilibria

In this section, we tackle the equilibrium selection process when a game in satisfac-

tion form possesses several (satisfaction) equilibria. We start our analysis pointing

the fact that at the SE, all radio devices are able to provide the required QoS.

Hence, none of them has an interest in unilaterally changing the actual transmit

configuration. However, using a higher transmit power level or using a more com-

plex modulation scheme (e.g., in the sense of the size of the constellation) might

require a higher energy consumption and thus, reduce the battery life time of the

transmitters. In this scenario, one might imply that radio devices are interested in

satisfying their required QoS with the lowest effort. Here, we can express the effort,

for instance, in terms of energy consumption or signal processing complexity. Any

action profile which allows all the players to be satisfied with the lowest effort is an

efficient satisfaction equilibrium.

In the sequel of this section, we formulate a game where its set of (generalized Nash)

equilibria coincide with the notion of efficient satisfaction equilibrium (ESE). Later,

we analyze the existence and uniqueness of the equilibrium of such game.

5.5.1 Games in Efficient Satisfaction Form

In the following, we assume that ever player k is able to built a binary relation

denoted by ≺k on its own set of actions Ak such that the partially ordered set

〈Ak,≺k〉 is a complete lattice. The ordering is as follows: ∀(ak, a′k) ∈ A2, ak ≺k
a′k implies that ak requires less effort than a′k when it is played by player k. An

important remark here is that, the effort assigning process, i.e., the definition of the

binary relation ≺k, is independent of the other players’ choice.

The game where each player aims to satisfy its QoS with the minimum effort can

be formulated as a game in normal form with constrained set of actions,

G̃ =
Ä
K, {Ak}k∈K , {ck}k∈K , {fk}k∈K

ä
. (5.32)
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Here, for all k ∈ K, the utility function ck : Ak → [0, 1] of player k satisfies the

following condition, ∀(ak, a′k) ∈ A2
k,

ak ≺k a′k ⇐⇒ ck (ak) < ck (a′k) . (5.33)

We refer to this particular game formulation and its set of (generalized) NE as the

efficient satisfaction form (ESF) and set of ESE, respectively.

Definition 5.5.1 (Efficient SE) Consider the game ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
in satisfaction form. An action profile a∗ ∈ A is an efficient SE, with respect to the

cost functions {ck}∀k∈K, if it is a (generalized) NE of the game in normal form with

constrained set of actions G̃ =
Ä
K, {Ak}k∈K , {ck}k∈K , {fk}k∈K

ä
, i.e.,

∀k ∈ K, a∗k ∈ fk
Ä
a∗−k
ä

and

∀ak ∈ fk
Ä
a∗−k
ä
, ck(a

∗
k) 6 ck(ak).

It is important to note that in the game G̃ =
Ä
K, {Ak}k∈K , {ck}k∈K , {fk}k∈K

ä
, the

competitive interaction between all players is not modeled by the cost functions

{ck}k∈K. For instance, the cost function of player k, ck, depends only on its chosen

action ak. In this game formulation G̃, the interaction between players is modeled

by the correspondence fk, which is defined over the set of action profiles A−k.
An important remark on Def. 5.5.1 is that if all players assign the same cost (or

effort) to all their actions, then the sets of ESE and the set of SE are identical. This

implies that the interest of the formulation G̃ is precisely that players can differen-

tiate the effort of playing one action or another in order to select one (satisfaction)

equilibrium among all the existing equilibria of the game ÙG. Thus, the existence and

uniqueness of this efficient SE plays an important role in the equilibrium selection.

We analyze this two properties in the sequel of this section.

5.5.2 Existence of an ESE

Before giving a formal result on the existence of the ESE, we introduce a gen-

eralization of a class of games known as exact potential games (PG) [64]. We

refer to this new class of games as constrained exact potential games. First, con-

sider a game in normal form with constrained strategies and denote it by G̃ =Ä
K, {Ak}k∈K , {ck}k∈K , {fk}k∈K

ä
. Let the set Fk ⊂ A be the graph of the correspon-

dence fk, hence,

Fk = {(ak, a−k) ∈ A : ak ∈ fk (a−k)} . (5.34)

The set Fk determines the action profiles which can be observed as outcomes of

the game G̃, when only player k is allowed to play given any action profile a−k for

which the set fk (a−k) is not empty. Following this reasoning, the set of all possible

outcomes of the game ÙG corresponds to the following set

F =
K⋂

j=1

Fj, (5.35)
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which is the set of action profiles such that ∀a ∈ F , it holds that ∀k ∈ K, ak ∈
fk (a−k). However, unilateral deviations of a set of players from any action profile

a ∈ F might lead to action profiles which do not belong to F . The following setÙF =
K⋃

j=1

Fj, (5.36)

contains all possible unilateral deviations one can observe from any action in the

set F . Using both sets F and ÙF , we introduce the definition of exact constrained

potential game.

Definition 5.5.2 (Exact Constrained PG (ECPG)) Any game in normal form

with constrained set of actions G =
Ä
K, {Ak}k∈K , {uk}k∈K , {fk}k∈K

ä
is an exact con-

strained potential game (ECPG) if there exists a function φ : ÙF → R such that for

all a ∈ ÙF , it holds that, for all k ∈ K and for all a′k ∈ fk (a−k),

uk(ak, a−k)− uk(a′k, a−k) = φ(ak, a−k)− φ(a′k, a−k).

Before we continue, we clearly state that not all the the properties of potential

games [64] hold for the constrained potential games. For instance, not all exact

constrained PG have an equilibrium. In the following, we introduce two results

regarding the existence of an equilibrium in pure strategies in ECPG.

Theorem 5.5.3 (Existence of an equilibrium in ECPG) The finite exact con-

strained potential game G =
Ä
K, {Ak}k∈K , {uk}k∈K , {fk}k∈K

ä
, with potential func-

tion φ : ÙF → R+, has at least one equilibrium in pure strategies, if the sets F (5.35)

and ÙF (5.36) are non-empty and identical.

Proof : By assumption, the set F (5.35) is non-empty. Thus, there exists at least

one feasible outcome a∗ ∈ F for the game G. Now, for all k ∈ K, any unilateral

deviation of player k from an action profile a∗ leads to an action profile of the formÄ
ak, a

∗
−k
ä
∈ ÙF . Similarly, by assumption, both sets F and ÙF are identical, thus,

any unilateral deviation from a feasible action profile is also a feasible action profile.

Now, without any loss of generality, let the elements of the sets F =
¶
Ã(1), . . . , Ã(N)

©
be indexed following any particular order such that the following holds,

φ
Ä
Ã(1)

ä
6 φ

Ä
Ã(2)

ä
6 . . . 6 φ

Ä
Ã(N)

ä
, (5.37)

with N = |F|. Thus, from Def. 5.4.2, it holds that Ã(N) is an equilibrium of the

game G , which completes the proof. 2

Theorem 5.5.4 (Existence of Equilibrium in ECPG) Let

G =
Ä
K, {Ak}k∈K , {uk}k∈K , {fk}k∈K

ä
be an exact constrained potential game, with potential function φ : ÙF → R+ con-

tinuous over a finite dimensional linear space containing the set ÙF (5.35). Let the

sets F and ÙF (5.36) be two identical non-empty compact and convex sets. Then, the

game G has at least one equilibrium in pure strategies.
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Proof : By assumption, the set F (5.35) is non-empty. Thus, there exists at least

one feasible outcome a∗ ∈ F for the game G. Now, for all k ∈ K, any unilateral

deviation of player k from an action profile a∗ leads to an action profile of the

form
Ä
ak, a

∗
−k
ä
∈ ÙF . Similarly, by assumption, both sets F and ÙF are identical

convex and compact, thus, any unilateral deviation from a feasible action profile

is also a feasible action profile. Now, from the fact that any continuous function

defined over a compact and convex set achieves a maximum and any maximum of

the potential function is an equilibrium, it follows that the game G has always at

least one equilibrium, which completes the proof. 2

Now, using Def. 5.5.2, we introduce the following proposition.

Proposition 5.5.1 Every game G̃ =
Ä
K, {Ak}k∈K , {ck}k∈K , {fk}k∈K

ä
in efficient-

satisfaction form is an exact constrained potential game, with potential function

φ : A → R, such that, ∀a ∈ A,

φ (a) =
K∑

k=1

ck (ak) . (5.38)

Note that Prop. 5.5.1 is an immediate result from Def. 5.5.2. The following two

corollaries are immediately obtained from both Th. 5.5.3 and Th. 5.5.4, respectively.

Corollary 5.5.5 (Existence of the ESE) A finite game in efficient satisfaction

form G̃ =
Ä
K, {Ak}k∈K , {ck}k∈K , {fk}k∈K

ä
, with non-empty and identical sets F

(5.35) and ÙF (5.36) , always has at least one (efficient satisfaction) equilibrium.

Corollary 5.5.6 (Existence of the ESE) The game in efficient satisfaction form

G̃ =
Ä
K, {Ak}k∈K , {ck}k∈K , {fk}k∈K

ä
, with the sets F (5.35) and ÙF (5.36) identi-

cal, non-empty, compact and convex, and ck continuous over a finite dimensional

linear space containing the set F , for all k ∈ K, always has at least one (efficient

satisfaction) equilibrium.

In corollary 5.5.5 and corollary 5.5.6, we have established sufficient but not nec-

essary conditions for the existence of an efficient SE. In the following, we study the

uniqueness of such ESE, when it exists.

5.5.3 Uniqueness of the ESE

In the following, we study the uniqueness of the equilibrium of the potential game

with constrained strategies G̃ =
Ä
K, {Ak}k∈K , {ck}k∈K , {fk}k∈K

ä
. For doing so, we

analyze the auxiliary game defined by the game in normal form with constrained

action sets G̃ ′ =
Ä
K, {Ak}k∈K , {φ}k∈K , {fk}k∈K

ä
. The interest on adopting this ap-

proach stems from the fact that the set of equilibria of both games are identical

(Prop. 5.5.1) and the existence of the potential φ facilitates our analysis. Fol-

lowing this reasoning, a strategy profile a∗ ∈ A is an equilibrium of the game G̃ ′ =Ä
K, {Ak}k∈K , {φ}k∈K , {fk}k∈K

ä
, and thus, an ESE of G̃ =

Ä
K, {Ak}k∈K , {ck}k∈K , {fk}k∈K

ä
,

if

∀k ∈ K, a∗k ∈ arg max
ak∈fk(a−k)

φ
Ä
ak, a

∗
−k
ä
. (5.39)
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Hence, the proof of the uniqueness of the equilibria of the game G̃, in the case of

compact and convex action sets, reduces to prove that the optimization problem

(5.39) has a unique solution. Hence, we state the following proposition.

Proposition 5.5.2 (ESE in compact set of actions) The game in efficient sat-

isfaction form G̃ =
Ä
K, {Ak}k∈K , {ck}k∈K , {fk}k∈K

ä
, with the sets F (5.35) and ÙF

(5.36) identical, non-empty, compact and convex and the functions {ck}k∈K contin-

uous and strictly convex over a finite dimensional linear space containing the set F
has a unique efficient satisfaction equilibrium in pure strategies.

Proof : For all action profile a∗ ∈ F and for all k ∈ K any unilateral deviation of

player k from an action profile a∗ leads to the action profile of the form
Ä
ak, a

∗
−k
ä
,

with ak ∈ fk (a−k). Now, since both sets F and ÙF are identical convex and compact,

it holds that
Ä
ak, a

∗
−k
ä
∈ F . This implies that any unilateral deviation from a feasible

action profile yields a feasible action profile. Now, from the fact that the potential

is continuous and strictly convex (sum of continuos and strictly convex functions

{ck}∀k∈K,) over the set F , it holds that there exists a minimum of the potential and

it is unique, which completes the proof. 2

In the case of discrete sets of actions, it is easy to show that the ESE might

not be unique. In the following, we use some tools from graph theory to deter-

mine the number of ESE which a given game in efficient-satisfaction form G̃ =Ä
K, {Ak}k∈K , {ck}k∈K , {fk}k∈K

ä
can possess. We start by indexing the elements of

the action set A in any given order using the index n ∈ I = {1, . . . , |A|}. Denote

by a(n) =
(
a

(n)
1 , . . . , a

(n)
K

)
the n-th element of the action set A. Consider that each

action profile a(n) is associated with a vertex xn in a given directed graph G. There

exists an arc from vertex xn to another vertex xm, if the action profile represented

by the latter a(m) can be obtained from the former a(n) by changing the action

of only one player and lower potential (sum of efforts) is obtained. For instance,

if the unique deviator is player k, then, a
(m)
k ∈ fk

(
a

(n)
−k

)
and φ

Ä
a(n)
ä
> φ

Ä
a(m)

ä
.

More precisely, the graph G can be defined by the pair G = (X ,B), where the set

X =
¶
x1, . . . , x|A|

©
(nodes) contains the nodes representing the action profiles in

the set A and B (edges) is a non-symmetric matrix with dimensions |A| × |A| and

entries defined as follows ∀(n,m) ∈ I2 and n 6= m,

bn,m =





1 if (i) ∃! k ∈ K : a
(n)
k 6= a

(m)
k , and a

(m)
k ∈ fk

(
a

(n)
−k

)

(ii) φ
Ä
a(m)

ä
< φ

Ä
a(n)
ä

0 otherwise ,

(5.40)

and bi,i = 0 for all i ∈ I.

A realistic assumption is to consider that for any pair of action profiles a(n) and

a(m) which are adjacent, we have that φ(a(n)) 6= φ(a(m)). This is because players

assign different effort values to their actions. From the definition of the matrix B,

we have that a necessary and sufficient condition for a vertex xn to represent an ESE

action profile is to have a null out-degree in the oriented graph G, i.e., there are

no outgoing edges from the node xn (sink vertex). Finally, one can conclude that
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determining the set of ESE in the game G̃ =
Ä
K, {Ak}k∈K , {ck}k∈K , {fk}k∈K

ä
boils

down to identifying all the sink vertices in the oriented graph G. That is, exploiting

the fact that, if the n-th row of the matrix B is a null-vector, then the action a(n)

is an ESE of the game G̃. Interestingly, a particular case arises when the resulting

graph is an edgeless graph, i.e., the corresponding matrix B is a null matrix. In this

case, the set of SE would be identical to the set of ESE, which implies that the idea

of associating an effort to each action is not enough to select an ESE among the set

of SE. In any case, determining the exact set of SE would require the analysis of the

matrix B, which might be highly demanding and requires complete information.

In the following, we focus on designing behavioral rules for the radio devices in order

to let them to learn one satisfaction equilibrium in decentralized self-configuring

networks.

5.6 Learning Satisfaction Equilibrium

In this section, we study a behavioral rule that allows radio devices to learn a satis-

faction equilibrium in a fully decentralized fashion. Here, the underlying assumption

is that players do not need to observe the value of its achieved utility, i.e., transmis-

sion rate, energy efficiency, etc., but only to know whether they are satisfied or not

at each stage of the learning process, which implies a 1-bit length message exchange

between the corresponding transmitter-receiver pairs. In the following, we formulate

the corresponding learning problem and later, we introduce the behavioral rules that

allow players to learn the SE.

5.6.1 The Learning Problem Formulation

We describe the SE learning process in terms of elements of the game in satisfaction

form ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
as follows. Assume that time is divided in intervals

and denote each interval by the index n ∈ N. Each interval ends when each player

has played at most once. Denote the action taken by player k at interval n by ak(n).

At each interval n, player k observes whether it is satisfied or not, i.e., it observes a

binary variable

ṽk(n) = 1{ak(n)∈fk(a−k(n))}. (5.41)

Note that this observation requires only a 1-bit message exchange between the cor-

responding transmitter and receiver pair. Our intention is to learn at least one SE

by letting the players to interact following particular behavioral rules. We say that

players learn an equilibrium in pure strategies if, after a given finite number of time

intervals, all players have chosen an action which achieves satisfaction, and thus,

no other action update takes place. We say that players learn an ε-SE if during a

large observation period of T intervals, player k has been satisfied during at least t

intervals, with t
T
> ε, for all k ∈ K.
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5.6.2 Learning the SE in Pure Strategies

Before we present the behavioral rule which allows players to achieve one of the

equilibrium of the game ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
, we state the following hypoth-

esis:

(i) The game ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
has at least one SE in pure strategies.

(ii) For all k ∈ K, it holds that ∀a−k ∈ A−k, there exists at least one ak ∈ Ak
such that ak ∈ fk (a−k).

(iii) The sets K and {Ak}k∈K, are finite.

The first hypothesis ensures that the SE learning problem is well-posed, i.e., radio

devices are assigned a feasible task. The second hypothesis refers to the fact that,

each radio device is always able to find a transmit/receive configuration such that it

can satisfy its individual QoS requirement given the transmit/receive configuration

of all the other radio devices. The third hypothesis is considered in order to ensure

that our algorithm is able to converge in finite time.

Under the assumption that all hypothesis hold, each player chooses its own action

as follows. The first action of player k, denoted by ak(0), is taken following an

arbitrary probability distribution π̂k(0) ∈ 4 (Ak). Often, such a probability π̂k(0)

is the uniform probability distribution. At time interval n > 0, player k changes

its action if and only if it is not satisfied, i.e, ṽk(n − 1) = 0. In this case, the next

action is chosen following a probability distribution π̂k(n). If player k is satisfied i.e,

ṽk(n− 1) = 1, then, it keeps playing the same action. Hence, we can write that,

ak(n) =

{
ak(n− 1) if ṽk(n− 1) = 1

ak(n) ∼ π̂k(n) if ṽk(n− 1) = 0
. (5.42)

The behavioral rule (5.42) was first proposed in [94]. Therein, two particular ways

for building the probability distribution π̂k(n) were proposed. In the first case, a

uniform probability distribution during the whole learning process was used. That

is, for all k ∈ K and for all nk ∈ {1, . . . , K},

π̂
k,A

(nk)

k

(n) =
1

Nk

. (5.43)

In the second case, at time interval n, higher probabilities are assigned to actions

which have been played a smaller number of times during all time intervals between

0 and n− 1. Let T
k,A

(nk)

k

(n) ∈ N, with k ∈ K and nk ∈ {1, . . . , Nk}, be the number

of times that player k has played action A
(nk)
k up to time interval n, i.e.,

T
k,A

(nk)

k

(n) =
n−1∑

s=0

1¶
ak(s)=A

(nk)

k

©. (5.44)
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Then, the probability distribution to select the next action is the following:

π̂
k,A

(nk)

k

(n) =

1
T
k,A

(nk)

k

(n)

Nk∑

m=1

1

T
k,A

(m)
k

(n)

, (5.45)

where T
k,A

(nk)

k

(0) = δ, with δ > 0. We formalize the behavioral rule (5.42) in the

Alg. 1, and we state its main property in the following proposition.

Algorithm 1 Learning the SE of the Game ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
[Player

k ∈ K]

Require: At each instant n > 0: ṽk(n).

1: n = 0;

2: ∀nk ∈ {1, . . . , Nk},

v̂
k,A

(nk)

k

(0) = 0,

π̂
k,A

(nk)

k

(0) =
1

Nk

.

3: ak(0) ∼ π̂k(0);

4: for all n > 0 do

5: ∀nk ∈ {1, . . . , Nk}, update π̂k(n).

6:

ak(n) =

{
ak(n− 1) if ṽk(n− 1) = 1

ak(n) ∼ π̂k(n) otherwise.

end

Proposition 5.6.1 The behavioral rule (5.42) converges to a SE of the game ÙG =¶
K, {Ak}k∈K , {fk}k∈K

©
in finite time if for all k ∈ K and for all nk ∈ {1, . . . , Nk},

it holds that,

π̂
k,A

(nk)

k

(n) > 0, (5.46)

at each time interval n ∈ N, and assumptions (i), (ii) and (iii) always hold.

The proof of Prop. 5.6.1 is as follows. Note that from (5.42), it can be concluded

that if at a given time n, players play a SE action profile, then none of the players

changes its own action in the following time intervals, i.e, the algorithm converges.

Otherwise, unsatisfied players keep trying other actions. Now, from assumption

(i), it is known that there always exists at least one SE. From assumption (ii) and

(5.46), it can be concluded that all action profiles in the set A are played with a

non-zero probability. Thus, since the set of actions is finite (assumption (iii)), one

SE is certainly played during a finite number of time intervals.
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From the reasoning above, it can be concluded that any probability distribution

π̂k(n) such that all actions have a non-zero probability of being played can be chosen

as the probability distribution at time interval n for player k. However, as we shall

see in the next section, the choice of this probability distributions might impact the

convergence time.

5.6.3 Clipping Actions and SE

The behavioral rule (5.42) converges to a SE in pure strategies in finite time. How-

ever, condition (i) and (ii) are highly demanding. In real system scenarios, it is

often observed that there might exists an action from a given player, which achieves

satisfaction regardless of the actions adopted by all the other players. We refer to

this kind of actions as clipping actions [85].

Definition 5.6.1 (Clipping Action) In the game ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
, a

player k ∈ K is said to have a clipping action ak ∈ Ak if

∀a−k ∈ A−k, ak ∈ fk (a−k) . (5.47)

As shown in the following proposition, the existence of clipping actions (assump-

tion (ii) does not hold) in the game ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
might inhibit the

convergence of the behavioral rule in (5.42).

Proposition 5.6.2 Consider the game ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
in satisfaction

form. Assume the existence of at least one clipping action and denote it by a∗k ∈ Ak
for player k, with k ∈ K. Then, if there exists a player j ∈ K \ {k}, for which

fj
Ä
a∗k, a−{j,k}

ä
= ∅, ∀a−{j,k} ∈

∏

i∈K\{j,k}
Ai. Then, the behavioral rule in (5.42) does

not converge to a SE with strictly positive probability.

The proof of Prop. 5.6.2 follows from the fact that at time n > 0 before convergence,

the probability that player k plays the clipping action a∗k is strictly positive (5.46).

If player k plays a∗k, by definition, there exist a player j 6= k which would never be

satisfied. Then, the behavioral rule does not converge to any SE.

5.7 Applications

In this section, we apply the concept of SE and ESE to the case of a classical in-

terference channel [21] with 2 pairs of transmitter-receiver pairs sharing a common

bandwidth. Here, the notions of SE and ESE are compared with the existing equi-

librium notions such as NE and GNE. At the same time, the performance of the

behavioral rules presented in Sec. 5.6 is evaluated in terms of convergence time to

a satisfaction equilibrium.
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5.7.1 QoS Provisioning in the Interference Channel

Consider a set K = {1, 2} of two transmitter-receiver pairs simultaneously operat-

ing over the same frequency band and thus, subject to mutual interference. Each

transmitter communicates only with its corresponding receiver and any kind of mes-

sage exchange aiming to achieve transmit cooperation is not considered. For all

(j, k) ∈ K2, denote by gj,k and p
(nk)
k the channel gain between transmitter k and

receiver j, and the nk-th transmit power level of transmitter k, respectively. We

denote by Ak =
{
p

(1)
k , . . . , p

(Nk)
k

}
, the set of all possible transmit power levels of

player k. For all k ∈ K, the minimum transmit power is p
(1)
k = 0 and the maximum

transmit power is p
(Nk)
k = pk,max. The QoS metric, denoted by uk : A1×A2 → R+, of

the transmitter-reciever pair k is its (Shannon) transmission rate in bits per second

(bps). Thus, for all (pk, p−k) ∈ Ak ×A−k, we write that,

uk (pk, p−k) = log2




1 +
pkgk,k

σ2
k +

K∑

j 6=k
pjgk,j




[bps/Hz]. (5.48)

Here, σ2
k is the noise level at receiver k and we denote the signal to noise ratio

at the transmitter k by SNRk =
pk,max

σ2
k

. The QoS requirement for player k is to

provide a transmission rate higher than Γk bps. Thus, we model the satisfaction

correspondence fk, as follows,

fk (p−k) = {pk ∈ Ak : uk (pk, p−k) > Γk} . (5.49)

We assume also that transmitters associate different effort measures to each of their

power levels. The higher the transmit power, the higher the effort.

This scenario is modeled by a game in classical normal form G =
¶
K, {Ak}k∈K , {uk}k∈K

©
and a game in satisfaction form ÙG =

¶
K, {Ak}k∈K , {fk}k∈K

©
. We also model this

scenario with a game Ĝ =
¶
K, {Ak}k∈K , {uk}k∈K , {f ′k}k∈K

©
in normal form with con-

strained action sets and a game in efficient satisfaction form G̃ =
Ä
K, {Ak}k∈K , {ck}k∈K , {f ′k}k∈K

ä
,

where, for all k ∈ K, the cost or effort function ck is defined as follows

ck (pk) =




pk,max + δ if pk = p

(1)
k

pk if pk ∈ {p(2)
k , . . . , p

(Nk)
k }, (5.50)

where δ > 0. Note that the most costly action is not to transmit. This choice is

made to force the radio devices to transmit any time it is possible. The satisfaction

correspondence f ′k is defined as follows:

f ′k (p−k) =
{
p

(1)
k

}
∪ {pk ∈ Ak : uk (pk, p−k) > Γk} . (5.51)

Here, we include the non-transmission action p
(1)
k = 0 in order to avoid an empty

set of actions for players k, when there does not exist an action able to achieve the

required minimum rate.
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Figure 5.2: Achievable (Shannon) transmission rates (u1(p1, p2), u2(p1, p2)), for all

(p1, p2) ∈ A1 × A2, with SNR =
pk,max

σ2
k

= 10 dBs, (Γ1,Γ2) = (1.5, 1.5) bps and

N1 = N2 = 32 power levels.

In Fig. 5.2, we plot (in red circles) all the achievable (Shannon) transmission rates

for both transmitters, i.e., the pairs (u1(p1, p2), u2(p1, p2)), for all (p1, p2) ∈ A1×A2

and a particular channel realization. All the equilibria of the games G, ÙG, Ĝ and

G̃ are plotted. The unique NE of the game G is the action profile (p1,max, p2,max)

(Def. 5.4.1). The game Ĝ has two equilibria: the pairs (0, p2,max) and (p1,max, 0)

(Def. 5.4.2). The game ÙG has multiple equilibria (Def. 5.2.1). In particular, note

that in none of the equilibria of the games in classical normal form and normal

form with constrained strategies, it is possible to simultaneously satisfy the QoS of

both transmitters. In both cases, at most, only one transmitter can be satisfied.

On the contrary, at the equilibrium of both games in satisfaction form and efficient

satisfaction form, all players are able to satisfy their QoS demands. Importantly,

the ESE satisfies the QoS condition for both transmitters with the lowest transmit

power, while all the other SE require a higher transmission power. In particular,

note that the set of GNE is not unitary while the set of ESE of G̃ appear to be

unitary. However, as shown before, the existence and uniqueness of the ESE and

GNE are conditioned.

5.7.2 Clipping Actions in the Interference Channel

Note that the game ÙG with the particular channel realization used in Fig. 5.2

possess at least one clipping action. For instance, when transmitter 2 transmits at

the maximum power p2,max, it is always satisfied even if player 1 transmits at the

maximum power (see the NE of the game G in Fig. 5.2 ). At the same time, if

player 2 transmits at the maximum power, player 1 is unable to achieve satisfaction.
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Figure 5.3: Histogram of the event of convergence or non-convergence of the learning

algorithm (Alg. 1) in the game ÙG =
¶
K, {Ak}k∈K , {fk}k∈K

©
. Here, SNR =

pk,max

σ2
k

=

10 dBs, (Γ1,Γ2) = (1.5, 1.5) bps and N1 = N2 = 32 power levels.

Hence, if before observing convergence, transmitter 2 uses its maximum transmit

power, then convergence to a SE is not observed neither in finite nor infinite time.

In Fig. 5.3, we show an histogram of the convergence or not convergence of the

algorithm. Here, we say that the algorithm does not convergence if during 100

consecutive time intervals, a given player does not change its current action, while

the other still does (this implies that a clipping action might be being played). At

each trial of the algorithm, we use the same channel realization used in Fig. 5.2.

Note that independently of the probability distributions π̂k(n) adopted by player

k to try new actions, the event of one player playing a clipping strategy is non-

negligible (0.3). In the particular case of the interference channel as treated here,

the corresponding game is free of clipping actions if the simultaneous transmission at

maximum power allows satisfaction. However, in this case, the distinction between

SE and NE looses its importance since both equilibrium concepts would be able

to give a satisfactory solution to the QoS problem. This observation leaves open

the way for further research on learning algorithms in the context of the SE in the

presence of clipping actions.

5.7.3 Convergence Time to the SE

Now, our interest focuses on the average time for converging to one SE of the gameÙG, when convergence is observed in the previous experiment. The convergence time

is measured as the number of action updates required to each transmitter before

convergence. In Fig. 5.4, we show an histogram of the convergence time when players

try new actions with the probability distribution in (5.43) and (5.45). Note that in
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Figure 5.4: Histogram of the convergence time to a SE in the game ÙG =¶
K, {Ak}k∈K , {fk}k∈K

©
using the algorithm (Alg. 1). Here, SNR =

pk,max

σ2
k

= 10

dBs, (Γ1,Γ2) = (1.5, 1.5) bps and N1 = N2 = 32 power levels.

this particular scenario, using a probability different from the uniform distribution

does not bring a significant improvement. Interestingly, the histogram shows that

if convergence is observed, most of the time (80%), satisfaction is achieved in less

than 20 time intervals (action updates).

In Fig. 5.5, we plot the achieved transmission rate of both links at each instant

n when the behavioral rule (5.42) is used. Therein, it can be observed that even

though a transmitter is satisfied, and thus does not change its transmission power

level, its instantaneous transmission rate changes due to the action updates of the

other transmitters. Once both transmitters are satisfied, then, none of them changes

its transmit powers.

5.8 Conclusions

The game formulation in satisfaction form (SF) and the notion of satisfaction equilib-

rium (SE) introduced in this chapter have been shown to be neatly adapted to model

the problem of QoS provisioning in decentralized self-configuring networks. At the

SE, all players are satisfied. On the contrary, when the QoS provisioning problem is

modeled by games in classical normal form or normal form with constrained set of

actions, equilibria where not all the players achieves satisfaction might be observed,

even when there exist action profiles that allow the simultaneous satisfaction of all

players. The notion of SE has been formalized in the context of pure and mixed

strategies and its existence and uniqueness has been studied. In particular, when no

SE exists neither in pure nor in mixed strategies, necessary and sufficient conditions
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Figure 5.5: Instantaneous achieved rates of transmitter 1 (red) and 2 (blue).Here,

SNR =
pk,max

σ2
k

= 10 dBs, (Γ1,Γ2) = (1.5, 1.5) bps and N1 = N2 = 32 power levels.

for the existence of an epsilon-SE has been presented. However, not all games in

SF possess an ε-SE. Finally, a learning dynamics has been proposed to achieve SE.

In particular, we remark that it requires only 1-bit feedback messages between the

corresponding transmitter-receiver pairs. Nonetheless, the conditions for observing

convergence to a pure SE are highly demanding and not practically appealing. This

suggests that the design of algorithms such that at least one SE is learned in finite

time and in a fully distributed fashion remains being an open problem.



Chapter 6

Conclusions and Perspectives

6.1 Conclusions

The contributions in this thesis can be classified in three main areas: (a) perfor-

mance analysis and design of techniques for hierarchical spectrum access (HSA), (b)

performance analysis and design of techniques for open spectrum access (OSA), and

(c) mechanisms for quality of service (QoS) provisioning in both HSA and OSA.

In the context of HSA, the main contributions are the idea of opportunistic in-

terference alignment (OIA) and bandwidth limiting (BL). The interest of the OIA

scheme proposed in this thesis is that it provides a new concept of spectrum access

opportunity (SAO). This novel idea of SAO corresponds to the unused spatial di-

rections (SD) associated with the singular values of the channel matrix of a given

transmitter-receiver primary pair using a water-filling power allocation (PA) scheme.

In particular, this new type of SAO plays an important role in highly dense net-

works where classical SAOs are short-lasting and rare events. Interestingly, OIA

has been shown to outperform the classical zero-forcing beamforming (ZFBF). The

advantages of the OIA over the classical ZF techniques stem from the fact that it

allows some interference to impair the primary signal space, while the ZF techniques

avoid any interference in such space. In particular, the interference-free condition

is not violated as long as the impaired dimensions of the primary signal space are

those left over by the primary system due to limitations in the transmit power when

it uses the water-filling power allocation. These additional degrees of freedom al-

low secondary systems to operate following a spectrum overlay policy even when

all transmitters are equipped with the same number of antennas and the primary

system achieves the highest achievable rate. This is in fact, the main advantage of

OIA. Nonetheless, an important remark here is that for exploiting these new SAOs,

the classical spectrum sensing does not suffice. Here, secondary systems must know,

the exact channel matrix of the transmitter-receiver primary pair, which is possible

only under certain cases. In the case of BL, the notion behind it is based on the

idea of forcing the opportunistic systems to use a limited portion of the spectrum

instead of all the available spectrum at a given time. By using an optimal BL, it is

shown that it is possible to increase the network spectral efficiency. As shown in this

thesis, depending on the topology of the network, there exists an optimal fraction
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of spectrum that transmitters must use to maximize the network spectral efficiency.

Such optimal fraction depends mainly on the number of active transmitters and its

corresponding signal to noise ratios. The main drawback of this technique turns out

to be the fact that, the calculation of the optimal spectrum fractions requires infor-

mation that is not always available for each transmitter and thus, extra signaling

might be required for its implementation.

In the context of OSA, the contribution presented in this thesis is basically the equi-

librium analysis, in particular Nash equilibrium, of one of the simplest scenarios in

spectrum sharing, i.e., the case where several transmitters communicate with the

same receiver using a common set of frequency bands available for all the trans-

mitters. This analysis is carried out considering that radio devices might either use

several channels and use a water-filling power allocation scheme or use a unique

channel at the maximum transmit power. Note that both the water-filling PA and

the transmission at maximum power, in the corresponding scenarios, have a game-

theoretic justification. Here, they correspond to the idea of best response. In both

cases, the set of NE has been analyzed at it is shown that at least one NE always

exists. The interest of the NE relies on the fact that once the network has achieved

such a point, the transmit configuration of each radio device is optimal with respect

to all the other radio devices’ transmit configurations. In particular, in the case

where the transmitters are limited to use only one channel, several NE are often ob-

served, while in the other case, it is unique with probability one. More interestingly,

it shown that the spectral efficiency observed by limiting the number of channels

is better that the one observed when transmitters are left to use all the available

channels, at least in average. This result is in line with the one described above for

the case of HSA and suggests the paradoxical idea that in decentralized networks,

reducing the amount of transmit configurations of radio devices, increases the net-

work spectral efficiency. This result might appear limited due to the fact that it is

strongly dependent on the topology of the network, however, it has been shown that

the same effect is also observed in other topologies such as the classical interference

channel. Another important remark is that an equilibrium, at least in the case of the

multiple-transmitter unique-receiver scenario, can be achieved by simple dynamics

such as best response dynamics and fictitious play. In fact, the best response can be

implemented by a simple feedback message of the receiver containing the multiple

access interference plus noise level on each of the frequency bands. On the contrary,

fictitious play turns out to be more demanding in terms of required information.

The second contribution in OSA tackles precisely the design of techniques for achiev-

ing equilibrium independently of the topology of the network and with the minimum

information each radio might possess about the network. Our main result in this

scenario is a method to simultaneously estimate the average utility function achieved

with each of its actions given the behavior of all the other players. This estimation

is shown to be useful to calculate a soft-best response, which up to certain point can

be interpreted as the best response in the sense of Nash. A soft-best response is a

probability distribution that assigns high (resp. low) probabilities to the actions as-

sociated with high (resp. high) probability estimations. Here, we show that learning



6.1. Conclusions 119

dynamics using such a soft-best response can be used to achieve performances which

are close to equilibrium. At each learning step, such estimations are improved and

at the same time used to tune the strategy of all radio devices. The advantage of the

learning dynamics based on the utility estimation is that contrary to other learning

dynamics, such as reinforcement learning, when convergence is observed, the con-

verging point is an epsilon-close equilibrium. Another important remark is that this

dynamics require only the knowledge of the achieved utility at each learning stage,

which is very practically appealing. Interestingly, these dynamics have been shown

to convergence in particular classes of games with a wide range of applications in

self-configuring networks.

In the context of quality of service (QoS), the main contribution of this thesis is

the formalization of the idea of satisfaction equilibrium (SE). Here, the existing idea

of SE is put in terms of a fixed point inclusion, which facilitates the analysis of

existence and uniqueness of the SE. As shown in this this thesis, classical concepts

of equilibrium fail to properly model the QoS provisioning problem. For instance, it

is shown that even when the QoS provisioning task is feasible, classical equilibrium

concepts, such as GNE and NE, might lead to stable network states where some

of the QoS requirement are not satisfied. On the contrary, the notion of SE has

been shown to neatly model the QoS provisioning problem. Here, it is shown that

at the SE, if it exists, any set of individual transmit configurations where the QoS

requirement is satisfied is a stable point of the network. An interesting refinement

of the SE, namely the efficient satisfaction equilibrium (ESE), is presented aiming

to provide an equilibrium selection method. This refinement defines the concept

of effort for satisfaction, for instance, the effort can be measured in terms of the

transmit power. At the ESE, if it exists, all radio devices are able to satisfy their

own QoS requirements by using the transmit configuration which requires the lowest

effort. Another important contribution in this direction is a learning dynamics which

allows radio devices to achieve SE using only one-bit feedback message at each stage

of the learning process. Nonetheless, the convergence of this dynamics might be

constrained depending on the network topology.

To conclude, we state that game theory has been shown to be a powerful tool

to the analysis of DSCN. However, this theory might not be fully adapted to the

scenarios encountered in wireless networks. Thus, some adaptations of the existing

concepts are required. For instance, the idea of SE was motivated by real system

needs encountered in DCSN. As in this case, many other concepts must be brought

or adapted to the wireless communication domain to advance in the analysis and

design of tools for optimal dynamic spectrum sharing in the context of DCSN.
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6.2 Perspectives

6.2.1 On the Opportunistic Interference Alignment Strat-

egy

Regarding the extensions of our opportunistic interference alignment scheme, we

recall that our solution concerns only two MIMO links. The case where there exists

several opportunistic devices and/or several primary devices remains to be studied in

detail. Moreover, as recently shown by other authors, the OIA concept can be used

in other network topologies, which broaden the applications of this technique. More

importantly, some information assumptions could be relaxed to make the proposed

approach more practical. This remark concerns CSI assumptions but also behavioral

assumptions. In the first case, the lack of information in the secondary system can

be tackled by using learning algorithms that allow cognitive radios to achieve IA

using an iterative interacting process during a given period. However, this implies

that the primary system must be tolerant to some amount of interference from the

opportunistic system during the learning period. In the second case, it was assumed

that the precoding scheme used by the primary transmitter is capacity-achieving,

which allows the secondary transmitter to predict how the secondary transmitter is

going to exploit its spatial resources. This behavioral assumption could be relaxed

but some spatial sensing mechanisms should be designed to know which spatial

modes can be effectively used by the secondary transmitter, which could be an

interesting extension of the proposed scheme.

6.2.2 On the Bandwidth Limiting Strategy

Regarding the bandwidth limiting strategy, it has been shown that reducing the

portion of spectrum that each radio device can use increases the spectral efficiency

of the network. This result has been obtained considering certain topology and

particular conditions on the channel statistics. Moreover, it has been assumed that

the optimal fraction of spectrum is the same for all radio devices. The first extension

of this work is then, to evaluate how the topology of the network influences this

result. For instance, it must be determined if there exists a loss of optimality by

imposing that all the radio devices must use the same fraction of spectrum. Here, the

heterogeneity of the network might lead to a result where each radio device must use

a different spectrum portion. Another important direction concerns the relaxation

of the information required to implement it. A very interesting extension would

be to design behavioral rules that allow radio devices to individually determine the

optimal fraction of spectrum to be used with their local information.

6.2.3 On the Equilibrium Analysis of Spectrum Sharing Games

In this thesis, the interest on the Nash equilibria of DSCN relies on the fact that

it allows to provide some prediction of its performance. However, we have shown

that the NE analysis highly depends on the topology of the network. Here, a unified
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framework for the analysis of DCSN independently of the topology is missing. The

importance of the research in this direction, relies on the fact that in DCSN, the

topology is constantly changing. Thus, an analysis such as the one presented in this

thesis, is limited to the time the channels remain constant and the topology remains

unchanged. Ideally, a general framework for the analysis of DSCN must take into

consideration these facts. Indeed, particular attention must be given to the fact

that radio devices operate during the time their need of communication exists, that

is, the number of active transmitters is constantly changing, all the elements of the

network might be constantly moving, etc. Another direction for further research is

to consider that not all the radio devices are equally reliable. For instance, the fact

that there might exist radio devices aiming to break off the communications, either

because it is in its own benefit or simply because external elements are designed to

attack the network under study. This malicious behavior has not been taken into

account in this analysis.

6.2.4 On the Schemes for Learning Equilibria

Learning equilibrium in DCSN is one of the most interesting lines for further re-

search. As we mentioned before, the different concepts of equilibrium, for instance

Nash equilibrium, correlated equilibrium, satisfaction equilibrium, provide an esti-

mation of the performance of the network. However, achieving such equilibrium in

a fully decentralized network remains an open issue. As shown in this thesis, in

some network topologies, very simple behavioral rules, e.g., best response dynamics

or fictitious play, lead to equilibrium. However, the convergence or non-convergence

of these algorithms is strongly dependent on the topology. For instance, when radio

devices aim to maximize their Shannon rates, both BRD and FP converge to an NE

in the parallel multiple access channel, while in the case of the parallel interference

channel, such a convergence is not ensured. In general, a behavioral rule that al-

lows all radio devices to achieve NE in finite time, independently of the topology,

does not exist. Often, algorithms achieve epsilon-close equilibrium performance af-

ter certain number of iterations. However, depending on the application, the global

performance of the network might be highly sensitive to this learning time. Thus,

the design of algorithms that allow DCSN to achieve equilibrium performance in a

short time with minimum feedback remains an open problem.

6.2.5 On the Quality of Service Provisioning

In this thesis, the concept of SE has been formalized and has been shown to be

particularly suited to model the problem of QoS provisioning. In this direction, only

few applications have been presented. However, many theoretical aspects remain to

be completed. For instance, exploiting the formulation as a fixed point inclusion

of the SE to obtain more general results on the existence or uniqueness of the SE

and ESE is one interesting research direction. More interesting, a generalization

of the SE and ESE concept to dynamic games e.g., stochastic games, remains to

be formulated. This formulation in dynamic games would allow us to model the
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time varying nature of wireless communications networks. From a practical point of

view, general algorithms for achieving SE and ESE in a fully decentralized fashion

remain also to be designed. Here, a particular class of actions has been identified to

be very complicated to deal with. This is the case of the clipping strategies, which

at a given point of time can make standard algorithms not to converge even when

the existence of at least one SE is ensured. The design of behavioral rules such that

SE, ESE or at least epsilon-SE can be achieved in the presence of clipping strategies

remains being an open issue and so far, the main constraint on the application of

SE to the spectrum sharing games.
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[42] B. Knaster and A. Tarski, “Un théorème sur les fonctions d’ensembles,” Ann.

Soc. Polon. Math., vol. 6, pp. 133–134, 1928.

[43] V. R. Konda, John, and J. N. Tsitsiklis, “Actor-critic algorithms,” in SIAM

Journal on Control and Optimization. MIT Press, 2001, pp. 1008–1014.

[44] V. R. Konda and V. Borkar, “Actor-critic–type learning algorithms for Markov

decision processes,” SIAM J. Control Optim., vol. 38, no. 1, pp. 94–123, 1999.

[45] I. Krikidis, “Space alignment for cognitive transmission in MIMO uplink chan-

nels,” EURASIP J. Wireless Comm. and Networking, vol. 2010, 2010.

[46] S. Lasaulce, M. Debbah, and E. Altman, “Methodologies for analyzing equi-

libria in wireless games,” IEEE Signal Processing Magazine, Special issue on

Game Theory for Signal Processing, vol. 26, no. 5, pp. 41–52, Sep. 2009.

[47] S. Lasaulce and H. Tembine, Game Theory and Learning in Wireless Networks:

Fundamentals and Applications. Elsevier Academic Press, 2011.

[48] S. D. Leslie and E. J. Collins, “Convergent multiple-timescales reinforcement

learning algorithms in normal form games,” Ann. Appl. Probab., vol. 13, no. 4,

pp. 1231–1251, 2003.

[49] R. D. Luce, Individual Choice Behavior: A Theoretical Analysis. New York:

Wiley, 1959.

[50] A. B. Mackenzie and L. Da Silva, Game Theory for Wireless Engineers (Syn-

thesis Lectures on Communications), 1st ed. Morgan & Claypool Publishers,

May 2006.

[51] A. B. Mackenzie and S. B. Wicker, “Game theory and the design of self-

configuring, adaptive wireless networks,” IEEE Communications Magazine,

vol. 39, no. 11, pp. 126–131, 2001.

[52] M. Maddah-Ali, A. Motahari, and A. Khandani, “UW-ECE-2006-12 - com-

munication over X channel: Signalling and multiplexing gain,” University of

Waterloo, Tech. Rep., 2006.

[53] ——, “Communication over MIMO X channels: Interference alignment, de-

composition, and performance analysis,” IEEE Trans. Inform. Theory, vol. 54,

no. 8, pp. 3457–3470, Aug. 2008.



Bibliography 127

[54] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its

Applications. Academic Press, 1979.

[55] V. A. Marčenko and L. A. Pastur, “Distribution of eigenvalues for some sets

of random matrices,” Mathematics of the USSR-Sbornik, vol. 1, no. 4, pp.

457–483, 1967.

[56] D. McFadden, “Quantal choice analysis: A survey,” Annals of Economic and

Social Measurement, vol. 5, no. 4, pp. 363–390, June 1976.

[57] R. D. McKelvey and T. R. Palfrey, “Quantal response equilibria for normal

form games,” Games and Economic Behavior, vol. 10, no. 1, pp. 6 – 38, 1995.

[58] ——, “Quantal response equilibria for extensive form games,” Experimental

Economics, vol. 1, no. 1, pp. 9–41, June 1998.

[59] P. Mertikopolous, E. V. Belmega, A. Moustakas, and S. Lasaulce, “Dynamic

power allocation in parallel multiple access channels,” in 5th International

ICST Conference on Performance Evaluation Methodologies and Tools (VAL-

UETOOLS), Paris, France, May 2011.

[60] F. Meshkati, M. Chiang, H. V. Poor, and S. C. Schwartz, “A game-theoretic

approach to energy-efficient power control in multi-carrier CDMA systems,”

IEEE Journal on Selected Areas in Communications, vol. 24, no. 6, pp. 1115–

1129, 2006.

[61] F. Meshkati, H. V. Poor, S. C. Schwartz, and N. B. Mandayam, “An energy-

efficient approach to power control and receiver design in wireless data net-

works,” IEEE Transactions on Communications, vol. 53, no. 11, pp. 1885–

1894, 2005.

[62] D. Minoli and E. Minoli, Delivering voice over IP networks. New York, NY,

USA: John Wiley & Sons, Inc., 1998.

[63] D. Monderer and L. S. Shapley, “Fictitious play property for games with

identical interests,” Int. J. Economic Theory, vol. 68, pp. 258–265, 1996.

[64] ——, “Potential games,” Games and Economic Behavior, vol. 14, pp. 124–143,

1996.

[65] R. Müller, “On the asymptotic eigenvalue distribution of concatenated vector-

valued fading channels,” IEEE Trans. Inform. Theory, vol. 48, no. 7, pp.

2086–2091, Jul. 2002.

[66] J. F. Nash, “Equilibrium points in n-person games,” Proceedings of the Na-

tional Academy of Sciences of the United States of America, vol. 36, no. 1, pp.

48–49, 1950.



Bibliography 128

[67] F. Neeser and J. Massey, “Proper complex random processes with applications

to information theory,” IEEE Trans. Inform. Theory, vol. 39, no. 4, pp. 1293–

1302, Jul. 1993.

[68] J. V. Neumann and O. Morgenstern, “Theory of games and economic behav-

ior,” Princeton University Press, 1944.

[69] A. Neyman, “Correlated equilibrium and potential games,” International

Journal of Game Theory, vol. 26, no. 2, pp. 223–227, 1997.

[70] A. Neyman and S. Sorin, Stochastic Games and Applications. NATO Science

Series, 1999.

[71] J.-S. Pang, G. Scutari, F. Facchinei, and C. Wang, “Distributed power allo-

cation with rate constraints in Gaussian parallel interference channels,” IEEE

Trans. on Info. Theory, vol. 54, no. 8, pp. 3471–3489, Aug. 2008.

[72] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Com-

munications. Cambridge Univ. Press, 2003.

[73] S. M. Perlaza, E. V. Belmega, S. Lasaulce, and M. Debbah, “On the base

station selection and base station sharing in self-configuring networks,” in

3rd ICST/ACM International Workshop on Game Theory in Communication

Networks, Pisa, Italy, Oct. 2009.

[74] S. M. Perlaza and M. Debbah, “Modeling noisy feedback in decentralized

self-configuring networks,” in 45th Annual Asilomar Conference on Signals,

Systems, and Computers (Asilomar2011), Asilomar, Pacific Grove, 2011.

[75] S. M. Perlaza, M. Debbah, S. Lasaulce, and H. Bogucka, “On the benefits

of bandwidth limiting in decentralized vector multiple access channels,” in

4th Intl. Conf. on Cognitive Radio Oriented Wireless Networks and Comm.

(CROWNCOM), Hanover, Germany, May 2009.

[76] S. M. Perlaza, M. Debbah, S. Lasaulce, and J.-M. Chaufray, “Opportunistic

interference alignment in MIMO interference channels,” in Proc. IEEE 19th

Intl. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC),

Cannes, France, Sept. 2008.

[77] S. M. Perlaza, N. Fawaz, M. Debbah, and S. Lasaulce, “Alignement
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Appendix A

Definitions

In this appendix, we present useful definitions and previous results used in the proofs

of Appendix C.

Definition A.0.1 Let X be an n × n random matrix with empirical eigenvalue

distribution function F
(n)
X . We define the following transforms associated with the

distribution F
(n)
X , for z ∈ C+ = {z ∈ C : Im(z) > 0}:

Stieltjes transform: GX(z)
4
=

∫ ∞

−∞
1
t−z dF

(n)
X (t), (A.0.1)

ΥX(z)
4
=

∫ ∞

−∞
zt

1−ztdF
(n)
X (t), (A.0.2)

S-transform: SX(z)
4
= 1+z

z
Υ−1
X (z), (A.0.3)

where the function Υ−1
X (z) is the reciprocal function of ΥX(z), i.e.,

Υ−1
X (ΥX(z)) = ΥX(Υ−1

X (z)) = z. (A.0.4)

From (A.0.1) and (A.0.2), we obtain the following relationship between the function

ΥX(z) (named Υ-transform in [112]) and the Stieltjes transform GX(z),

ΥX(z) = −1− 1

z
GX

Ç
1

z

å
. (A.0.5)
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Appendix B

Proof of Lemma 2.1.4

Here, we prove Lemma 2.1.4 which states that: if a matrix V2 satisfies the condition

H̃1V2 = 0(N1−S)×L2 then it meets the IA condition (2.1.3).

Proof : Let H11 = UH11ΛH11V
H
H11

be a sorted SVD of matrix H11, with UH11 and

VH11 , two unitary matrices of sizes N1 × N1 and M1 ×M1, respectively, and ΛH11

an N1 × M1 matrix with main diagonal
Ä
λH11,1, . . . , λH11,min(N1,M1)

ä
and zeros on

its off-diagonal, such that λ2
H11,1

> λ2
H11,2

> . . . > λ2
H11,min(N1,M1). Given that the

singular values of the matrix H11 are sorted, we can write matrix ΛH11P1Λ
H
H11

as a

block matrix,

ΛH11
P1ΛH

H11
=

(
Ψ 0m1×(N1−m1)

0(N1−m1)×m1
0(N1−m1)×(N1−m1)

)
, (B.0.1)

where the diagonal matrix Ψ of sizem1×m1 is Ψ = diag
Ä
λ2
H11,1

p1,1, . . . , λ
2
H11,m1

p1,m1

ä
.

Now let us split the interference-plus-noise covariance matrix (2.11) as:

R=

m1←−−→ N1−m1←−−−→
m1

xy

N1−m1

xy

(
R1+σ2

1Im1

RH
2

R2

R3+σ2
1IN1−m1

)
,

(B.0.2)

where (R1 + σ2
1Im1) and (R3 + σ2

1IN1−m1) are invertible Hermitian matrices, and

matrices R1, R2 and R3 are defined from (2.11) and (2.13) as

R1 , H̃1V2P2V
H
2 H̃H

1 , (B.0.3)

R2 , H̃1V2P2V
H
2 H̃H

2 , (B.0.4)

R3 , H̃2V2P2V
H
2 H̃H

2 . (B.0.5)

Now, by plugging expressions (B.0.1) and (B.0.2) in (2.12), the IA condition can be

rewritten as follows:

log2|σ2
1Im1+Ψ|−log2|σ2

1IN1|=log2|R1+σ2
1Im1+Ψ|

− log2|R1+σ2
1Im1|−

log2

Ñ ∣∣∣R3+σ2
1IN1−m1

−RH2 (R1+σ2
1Im1)

−1
R2

∣∣∣∣∣∣R3+σ2
1
IN1−m1

−RH
2 (R1+σ2

1
Im1+Ψ)

−1
R2

∣∣∣

é
.

(B.0.6)
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Note that there exists several choices for the submatrices R1, R2, and R3 allowing

the equality in (B.0.6) to be met. We see that a possible choice in order to meet the

IA condition is R1 = 0, R2 = 0, independently of the matrix R3. Thus, from (B.0.3)

and (B.0.4) we have R1 = 0 and R2 = 0 by imposing the condition H̃1V2 = 0m1×L2 ,

for any given PA matrix P2, which concludes the proof. 2



Appendix C

Proof of Proposition 2.1.1

In this appendix, we provide a proof of Prop. 2.1.1 on the asymptotic expression of

the opportunistic transmission rate per antenna, defined by

R̄2,∞(P2, σ
2) , lim

∀(i,j)∈{1,2}2, Ni,Mj→∞
∀(i,j)∈{1,2}2,

Mj
Ni
→αij<∞

R̄2(P2, σ
2).

First, we list the steps of the proof and then we present a detailed development for

each of them:

1. Step 1: Express
∂R̄2,∞(P2,σ2

2)

∂σ2
2

as function of the Stieltjes transforms GM1(z) and

GM(z),

2. Step 2: Obtain GM1(z),

3. Step 3: Obtain GM(z),

4. Step 4: Integrate
∂R̄2,∞(P2,σ2

2)

∂σ2
2

to obtain R̄2,∞(P2, σ
2
2).

Step 1: Express
∂R̄2,∞(P2,σ2

2)

∂σ2
2

as a function of the Stieltjes transforms GM1(z)

and GM(z).

Using (2.18) and (2.17), the opportunistic rate per receive antenna R̄2 can be re-

written as follows

R̄2(P2,σ2
2) = 1

N2
log2

∣∣∣IN2
+Q−

1
2 H22V2P2VH

2 HH
22Q−

1
2

∣∣∣ (C.0.1)

= 1
N2

log2|σ2
2IN2

+M1+M2|− 1
N2

log2|σ2
2IN2

+M1|,

with M1
4
= H21VH11P1V

H
H11

HH
21, M2

4
= H22V2P2V

H
2 HH

22, and M = M1 + M2.

Matrices M and M1 are Hermitian Gramian matrices with eigenvalue decompo-

sition M = UMΛMUH
M and M1 = UM1ΛM1U

H
M1

, respectively. Matrix UM and

UM1 are N2 × N2 unitary matrices, and ΛM = diag(λM,1, . . . , λM,N2) and ΛM1 =

diag(λM1,1, . . . , λM1,N2) are square diagonal matrices containing the eigenvalues of
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the matrices M and M1 in decreasing order. Expression (C.0.1) can be written as

R̄2(P2,σ2
2) = 1

N2

N2∑

i=1

log2(σ2
2+λM,i)−log2(σ2

2+λM1,i) (C.0.2)

=
∫

log2(λ+σ2
2)dF

(N2)
M (λ)−log2(λ+σ2

2)dF
(N2)
M1

(λ)

a.s→
∫

log2(λ+σ2
2)dFM (λ)−

∫
log2(λ+σ2

2)dFM1
(λ),

where F
(N2)
M and F

(N2)
M1

are respectively the empirical eigenvalue distributions of

matrices M and M1 of size N2, that converge almost surely to the asymptotic

eigenvalue distributions FM and FM1 , respectively. FM and FM1 have a compact

support. Indeed the empirical eigenvalue distribution of Wishart matrices HijH
H
ij

converges almost surely to the compactly supported Marčenko-Pastur law, and by

assumption, matrices ViPiV
H
i , i ∈ {1, 2} have a limit eigenvalue distribution with a

compact support. Then by Lemma 5 in [29], the asymptotic eigenvalue distribution

of M1 and M2 have a compact support. The logarithm function being continuous,

it is bounded on the compact supports of the asymptotic eigenvalue distributions of

M1 and M, therefore, the almost sure convergence in (C.0.2) could be obtained by

using the bounded convergence theorem [4].

From (C.0.2), the derivative of the asymptotic rate R̄2,∞(P2, σ
2) with respect to the

noise power σ2
2 can be written as

∂

∂σ2
2

R̄2,∞(P2,σ2
2) = 1

ln 2

Å∫
1

σ2
2

+λ
dFM (λ)−

∫
1

σ2
2

+λ
dFM1

(λ)

ã
= 1

ln 2(GM(−σ2
2)−GM1(−σ2

2)), (C.0.3)

where GM (z) and GM1 (z) are the Stieltjes transforms of the asymptotic eigenvalue

distributions FM and FM1 , respectively.

Step 2: Obtain GM1(z)

Matrix M1 can be written as

M1 =
√
α21H21VH11

P1

α21

VH
H11

HH
21

√
α21. (C.0.4)

The entries of the N2 ×M1 matrix
√
α21H21 are zero-mean i.i.d. complex Gaus-

sian with variance α21

M1
= 1

N2
, thus

√
α21H21 is bi-unitarily invariant. Matrix VH11

is unitary, consequently
√
α21H21VH11 has the same distribution as

√
α21H21, in

particular its entries are i.i.d. with mean zero and variance 1
N2

. From (2.4), P1

α21
is

diagonal, and by assumption it has a limit eigenvalue distribution F P1
α21

. Thus we

can apply Theorem 1.1 in [104] to M1, in the particular case where A = 0N2 to

obtain the Stieltjes transform of the asymptotic eigenvalue distribution of matrix
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M1

GM1
(z) = G0N2

Å
z−α21

∫
λ

1+λGM1
(z)

dF P1
α21

(λ)

ã
= G0N2

Å
z−α21

∫ ∞

−∞
λ

1+λGM1
(z)
α21fP1

(α21λ)dλ

ã
= G0N2

Å
z−

∫ ∞

−∞
t

1+ t
α21

GM1
(z)
fP1

(t)dt

ã
= G0N2

( z−g(GM1
(z)) ), (C.0.5)

where the function g(u) is defined by

g(u) ,
∫ ∞

−∞
t

1+ t
α21

u
fP1(t)dt = E

ï
t

1+ 1
α21

tu

ò
,

where the random variable t follows the c.d.f. FP1 .

The square null matrix 0 has an asymptotic eigenvalue distribution F0(λ) = µ(λ).

Thus, its Stieltjes transform is

G0(z) =
∫ ∞

−∞

1

λ− z δ(λ)dλ = −1

z
. (C.0.6)

Then, using expressions (C.0.5) and (C.0.6), we obtain

GM1(z) =
−1

z − g(GM1(z))
. (C.0.7)

Expression (C.0.7) is a fixed-point equation with unique solution when z ∈ R− [104].

Step 3: Obtain GM(z) Recall that

M , H22V2P2V
H
2 HH

22 + H21VH11P1V
H
H11

HH
21 (C.0.8)

To obtain the Stieltjes transform GM , we apply Theorem 1.1 in [104] as in Step 2:

GM (z) = GM2 ( z − g(GM(z)) ) . (C.0.9)

To obtain the Stieltjes transform GM2 of the asymptotic eigenvalue distribution

function of the matrix M2 = H22V2P2V
H
2 HH

22, we first express its S-transform as

SM2(z) = SH22V2P2V H2 HH
22

(z)

= S√
α22H22V2

P2
α22

V H2 HH
22

√
α22

(z),

and by Lemma 1 in [29] :

SM2
(z) =

Ä
z+1
z+α22

ä
S√

α22H
H
22
H22
√
α22V2

P2
α22

VH
2

( z
α22

),

and by Theorem 1 in [65] :

SM2
(z) =

Ä
z+1
z+α22

ä
S√

α22H
H
22
H22
√
α22

Ä
z
α22

ä
S
V2

P2
α22

VH
2

Ä
z
α22

ä
=
Ä

z+1
z+α22

ä(
1

1+α22
z
α22

)
S
V2

P2
α22

VH
2

Ä
z
α22

ä
=
Ä

1
z+α22

ä
S
V2

P2
α22

VH
2

Ä
z
α22

ä
. (C.0.10)
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The S-transforms SM2(z) and SV2P2V H2

Ä
z
α

ä
in expression (C.0.10) can be written as

functions of their Υ-transforms:

SM2
(z) = 1+z

z
Υ−1
M2

(z), from (A.0.3) (C.0.11)

S
V2

P2
α22

VH
2

Ä
z
α22

ä
=

1+ z
α22
z
α22

Υ−1

V2
P2
α22

VH
2

Ä
z
α22

ä
, from (A.0.3)

= α22+z

z
Υ−1

V2
P2
α22

VH
2

Ä
z
α22

ä
. (C.0.12)

Then, plugging (C.0.11) and (C.0.12) into (C.0.10) yields

Υ−1
M2

(z) =

Ç
1

1 + z

å
Υ−1

V2
P2
α22

V H2

Ç
z

α22

å
. (C.0.13)

Now, using the relation (A.0.5) between the Υ-transform and the Stieltjes transform,

we write

GM2(z) =

Ç−1

z

åÇ
ΥM2

Ç
1

z

å
+ 1

å
, (C.0.14)

and from (C.0.9), we obtain

GM(z) =
(

−1
z−g(GM (z))

) (
ΥM2

(
1

z−g(GM (z))

)
+ 1

)
. (C.0.15)

We handle (C.0.15) to obtain GM(z) as a function of ΥV2P2V H2
(z):

ΥM2

Ä
1

z−g(GM (z))

ä
= −1−( z−g(GM (z)) )GM (z) (C.0.16)

1
z−g(GM (z))

= Υ−1
M2

(−1−( z−g(GM (z)) )GM (z))

1
z−g(GM (z))

= −1
( z−g(GM (z)) )GM (z)

Υ−1

V2
P2
α22

VH
2

Ä
− 1+( z−g(GM (z)) )GM (z)

α22

ä
−GM(z) = Υ−1

V2
P2
α22

VH
2

Ä
− 1+( z−g(GM (z)) )GM (z)

α22

ä
Υ
V2

P2
α22

VH
2

(−GM (z)) = − 1+( z−g(GM (z)) )GM (z)

α22

GM (z) =
Ä
− 1
z−g(GM (z))

äÅ
1+α22Υ

V2
P2
α22

VH
2

(−GM (z))

ã
.

From the definition of the Υ-transform (A.0.2), it follows that

α22Υ
V2

P2
α22

VH
2

(−GM (z)) = α22

∫ −GM (z)λ

1+GM (z)λ
dF

V2
P2
α22

VH
2

(λ)

=
∫ −α22GM (z)λ

1+GM (z)λ
α22fV2P2V

H
2

(α22λ)dλ

=
∫ −GM (z)t

1+GM (z) t
α22

f
V2P2V

H
2

(t)dt. (C.0.17)

Using (C.0.17) in (C.0.16), we have

GM (z)=
Ä
− 1
z−g(GM (z))

ä
(1−GM (z) h(GM (z)) ), (C.0.18)

with the function h(u) defined as follows

h(u) ,
∫

t

1 + u
α22
t
dFV2P2V H2

(t) = E

[
p2

1 + 1
α22
p2u

]
,
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where the random variable p2 follows the distribution FV2P2V H2
.

Factorizing GM(z) in (C.0.18) finally yields

GM(z) =
−1

z − g(GM(z))− h(GM(z))
. (C.0.19)

Expression (C.0.19) is a fixed point equation with unique solution when z ∈ R− [104].

Step 4: Integrate
∂R̄2(P2,σ2

2)

∂σ2
2

to obtain R̄2(P2, σ
2
2) in the RLNA.

From (C.0.3), we have that

∂

∂σ2
2

R̄2,∞(P2,σ2
2)= 1

ln 2(GM(−σ2
2)−GM1(−σ2

2)). (C.0.20)

Moreover, it is know that if σ2
2 →∞ no reliable communication is possible and thus,

R̄2,∞ = 0. Hence, the asymptotic rate of the opportunistic link can be obtained by

integrating expression (C.0.20)

R̄2,∞ =
−1

ln 2

∫ ∞

σ2
2

(GM (−z)−GM1 (−z)) dz, (C.0.21)

which ends the proof.



Appendix D

Proof of Prop. 3.5.1

In this appendix we provide a proof of Prop. 3.5.1. The proof is separated in two

steps. First, we show that a power allocation vector p = (p1,p2) ∈ P of the form

p1 = (p11, pmax − p11) and p2 = (pmax − p22, p22) ,

where, p11 ∈ ]0, pmax[ and p22 ∈ ]0, pmax[ is never observed at the NE of the game

G(a). Second, we show that if a given PA vector p† is an NE, then depending

on the channel gain vector g = (g11, g12, g21, g22), p† ∈ Pn, where each set Pn,

n ∈ {1, . . . , 4}, is described hereunder. Proof : First Step: Assume that the

action profile p = (p1,p2), with p1 = (p11, p12) and p2 = (p21, p22) is an NE of the

game G(a), and assume that for all (k, s) ∈ K × S, pk,s > 0, with strict inequality.

Then, from (3.14), it can be implied that ∀(k, s) ∈ K × S,

1

βk
>
σ2 + p−k,sg−k,s

gk,s
and

1

βk
>
σ2 + p−k,−sg−k,−s

gk,−s
, (D.0.1)

where βk is the water-level of player k at the NE. Hence, the action profile pk, with

k ∈ K, can be written as follows:

p1 = (p11, pmax − p11) and p2 = (pmax − p22, p22)

where, p11 ∈ ]0, pmax[ and p22 ∈ ]0, pmax[. More specifically, we have that: ∀k ∈ K,

pk,k = 1
2

Å
pmax −

σ2+g−k,k(pmax−p−k,−k)
gk,k

+
σ2+g−k,−kp−k,−k

gk,−k

ã
pk,−k = pmax − pk,k.

(D.0.2)

Using a matrix notation, the system of equations (D.0.2) can be written as follows:

(
2g11g12 −(g22g11+g21g12)

−(g22g11+g21g12) 2g11g12

)(
p11

p22

)
=A,

where, the matrix A is

A =

(
pmaxg12 (g11 − g21) + σ2 (g11 − g12)

pmaxg21 (g22 − g12) + σ2 (g22 − g21)

)
. (D.0.3)
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Assuming that the set of channels {g11, g12, g21, g22} always satisfy the condition:

g12g21 − g11g22 6= 0, (D.0.4)

the system of equations (D.0.2) has the following unique solution: ∀k ∈ K,

pk,k =
pmaxg−k,k(gk,−k+g−k,−k)+σ2(g−k,k+g−k,−k)

g12g21−g11g22
. (D.0.5)

Note that if g12g21−g11g22 < 0, then ∀k ∈ K, pk,k < 0, and, if g12g21−g11g22 > 0, then

∀k ∈ K, pk,k > pmax, which contradicts the initial power constraints (2.3). Hence,

any vector p = (p1,p2), with p1 = (p11, pmax − p11) and p2 = (pmax − p22, p22), such

that

p11 ∈ ]0, pmax[ and p22 ∈ ]0, pmax[ , (D.0.6)

is not an NE for the game G(a).

Second Step: If the condition (D.0.6) is never observed at the NE, any action

profile p† =
Ä
p†1,p

†
2

ä
, which is an NE, satisfies that p† ∈ P†, where,

P† = P \ {p = (p11, pmax − p11, pmax − p22, p22) ∈ R4
+ :

p11 ∈ ]0, pmax[ and p22 ∈ ]0, pmax[ }

=
8⋃

n=1

P†i ,
(D.0.7)

where the sets P†n ⊂ P , for all n ∈ {1, . . . , 4} are described as follows

P†1 = {p = (p11, pmax − p11, pmax − p22, p22) ∈ R4
+ : p11 = 0, and p22 ∈ ]0, pmax[},

P†2 = {p = (p11, pmax − p11, pmax − p22, p22) ∈ R4
+ : p11 = pmax, and p22 ∈ ]0, pmax[},

P†3 = {p = (p11, pmax − p11, pmax − p22, p22) ∈ R4
+ : p11 ∈ ]0, pmax[ and p22 = 0},

P†4 = {p = (p11, pmax − p11, pmax − p22, p22) ∈ R4
+ : p11 ∈ ]0, pmax[ and p22 = pmax},

whereas, the sets P†n ⊂ P , for all n ∈ {5, . . . , 8}, are the singletons: P†5 = {p =

(pmax, 0, 0, pmax)}, P†6 = {p = (pmax, 0, pmax, 0)}, P†7 = {p = (0, pmax, 0, pmax)},
P†8 = {p = (0, pmax, pmax, 0)}.

If p† is an NE, then it satisfies that

∀k ∈ K, BRk

Ä
p†−k
ä

= p†k, (D.0.8)

where the best response function of player k ∈ K, denoted by BRk is given by (3.14).

For instance, assume that p† ∈ P†1 , i.e., p†1 = (0, pmax) and p†2 =
Ä
pmax − p†22, p

†
22

ä
,

with p†22 ∈ ]0, pmax[. Then, from (D.0.8) with k = 2, we have that:

1

β2

>
σ2 + g12pmax

g11

and
1

β2

>
σ2

g21

, (D.0.9)

which implies that

p22 =
1

2

Ç
pmax −

σ2 + g12pmax

g11

+
σ2

g21

å
> 0 (D.0.10)
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and

p22 =
1

2

Ç
pmax −

σ2 + g12pmax

g11

+
σ2

g21

å
< pmax. (D.0.11)

The inequality (D.0.10), holds only if:g21

g22
<

1+
pmaxg12

σ2

1+
pmaxg21

σ2
, whereas inequality (D.0.11)

holds only if g21

g22
> 1

1+SNR(g12+g22)
.

Similarly, from (D.0.8) with k = 1, we have that:

1

β1

6
σ2 + g21 (pmax − p22)

g11

and
1

β1

>
σ2 + g22p22

g12

, (D.0.12)

where β1 is the water-level of player 1 at the NE and p22 is given by (D.0.10). Now,

since β1 saturates the power constraint (2.3), (D.0.12) implies that:

σ2 + g21 (pmax − p22)

g11

− σ2 + g22p22

g12

6 pmax. (D.0.13)

Then, replacing (D.0.10) in (D.0.13), we obtain that expressions (D.0.12) are satis-

fied only if:
g11

g12

6
g21

g22

. (D.0.14)

Hence, we can conclude that when the vector g = (g11, g12, g21, g22) ∈ B1, the NE is

of the form (p11, pmax − p11, pmax − p22, p22), with

p11 = 0 and (D.0.15)

p22 =
1

2

Ç
pmax −

σ2 + g12pmax

g11

+
σ2

g21

å
, (D.0.16)

as stated in Prop. 3.5.1. Now, assuming that p† ∈ P†n, with n ∈ {2, 3, 4}, leads to

the conditions of the other types of NE, i.e., the sets Bn. To complete the proof,

assume now that p† ∈ P†5 , i.e., p1 = (pmax, 0) and p2 = (0, pmax). Then, from (D.0.8)

with k = 1, we have that:

σ2 + g22pmax

g12

6
1

β1

6
σ2

g11

, (D.0.17)

whereas with k = 2,

σ2 + g11pmax

g21

6
1

β2

6
σ2

g22

. (D.0.18)

Hence, from (D.0.17) - (D.0.18) and assuming that βk, for all k ∈ K, saturates the

power constraints (2.3), we have that

σ2 + g22pmax

g12

− σ2

g11

> pmax, (D.0.19)

σ2 + g11pmax

g21

− σ2

g22

> pmax. (D.0.20)

The inequality (D.0.19) holds only if g11

g12
> 1+SNRg11

1+SNRg22
and inequality (D.0.20) holds

only if g21

g22
> 1+SNRg11

1+SNRg22
. Then, finally, when the vector g = (g11, g12, g21, g22) ∈ B5, the

NE is of the form p1 = (pmax, 0) and p2 = (0, pmax). Assuming that p† ∈ Pn, with

n ∈ {6, 7, 8}, and carrying out a similar analysis as presented above for n = 4 will

lead us to the conditions to observe the other types of NE, which ends the proof. 2



Appendix E

Proof of Prop. 3.5.2

Proof : By solving the system of equations (3.30) according to the conditions in Prop

3.5.2, one can immediately imply that none of the players transmits at maximum

power over a single channel. On the contrary, each player will always allocate a

non-zero power to both of its channels. Hence, one can write the best response for

player k = 1 as follows,

p11 =
1

β1

− σ2

g11

− 1

α
p2,1 > 0 (E.0.1)

p12 =
1

β1

− σ2

g12

− 1

α
p2,2 > 0. (E.0.2)

Now, using the fact that for all k ∈ K, pk,1 + pk,2 = pmax, we have that:

1

β1

=
1

2

Ç
pmax

Ç
1 +

1

α

å
+ σ2

Ç
1

g11

+
1

g12

åå
, (E.0.3)

and thus, from (E.0.1) and (E.0.2) it yields,

{
p11 = 1

2

Ä
pmax(1− 1

α)+σ2
Ä

1
g12
− 1
g11

ää
+ 1
α
p22

p12 = pmax−p11.
(E.0.4)

One can verify that solving the system of equations (3.30) subject to the conditions

in Prop. 3.5.2 and following the same reasoning as above for player k = 2 leads us

to the following equalities:

{
p22 = 1

2

Ä
pmax(1+α)+σ2

Ä
1
g21
− 1
g22

ää
+αp11,

p21 = pmax−p22,
(E.0.5)

where the first equations in both (E.0.4) and (E.0.5) are identical, which implies that

any two PA vectors p1 = (p11, pmax − p11) ∈ P(a)
1 and p2 = (pmax − p22, p22) ∈ P(a)

2

satisfying the conditions in Prop. 3.5.2 are one NE of the game G(a). 2
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Appendix F

Proof of Prop. 3.5.5

Proof : The proof follows from the fact that in the low SNR regime, i.e., SNR→ 0,

one can write that:

lim
SNR→0

A1 = lim
SNR→0

B1 = {g ∈ R4
+ :

g11

g12

> 1 and
g21

g22

6 1} (F.0.1)

lim
SNR→0

A2 = lim
SNR→0

B2 = {g ∈ R4
+ :

g11

g12

> 1 and
g21

g22

> 1} (F.0.2)

lim
SNR→0

A3 = lim
SNR→0

B3 = {g ∈ R4
+ :

g11

g12

6 1 and
g21

g22

6 1} (F.0.3)

lim
SNR→0

A4 = lim
SNR→0

B4 = {g ∈ R4
+ :

g11

g12

6 1 and
g21

g22

> 1} (F.0.4)

and moreover,

∀n ∈ {5, . . . , 8}, lim
SNR→0

An = ∅, (F.0.5)

Thus, from (F.0.1) - (F.0.5), Prop. 3.5.1 and Prop. 3.5.3, one can immediately

conclude that the PA vector given by (3.39) and (3.40) is the NE of both games G(a)

and G(b). The uniqueness of the NE in the game G(a) holds with probability one,

independently of SNR level (Prop. 3.5.1). Conversely, in the game G(b), the NE is

unique in the low SNR regime, due to the fact that

lim
SNR→0

A5 = {g ∈ R4
+ :

g11

g12

= 1 and
g21

g22

= 1},

and since for all (k, s) ∈ K×S, gk,s is a realization of a random variable drawn from

a continuous probability distribution, we have that

∃SNR0, ∀SNR 6 SNR0, Pr (g ∈ A5) 6 ε (SNR) , (F.0.6)

where, limSNR→∞ ε (SNR) = 0. Thus, since the NE of the game G(b) is not unique

only if g ∈ A5, we have that in the high SNR regime, the NE in the game G(b) is

unique with probability one, which completes the proof. 2
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Appendix G

Proof of Prop. 3.5.6

In this appendix, we provide the proof of Prop. 3.5.6, which states that at the high

SNR regime there always exists an NE action profile in the game G(b), which leads

to a better global performance than the unique NE of the game G(a).

Before a formal proof, we introduce two lemmas which are used in the proof.

Lemma G.0.2 In the high SNR regime, the game G(a) possesses a unique NE, which

can be of six different types depending on the channel realizations {gi,j}∀(i,j)∈K×P :

• Equilibrium 1: if g ∈ B′1 = {g ∈ R4
+ : g11

g12
> g11

g22
, and g21

g22
6 g11

g22
}, then,

p†11 = pmax and p†22 = pmax.

• Equilibrium 4: if g ∈ B′4{g ∈ R4
+ : g11

g12
6 g21

g12
, and g21

g22
> g21

g12
}, then, p†11 = 0

and p†22 = 0.

• Equilibrium 5: if g ∈ B′5 = {g ∈ R4
+ : g11

g12
> g21

g22
, and g21

g22
> g11

g22
}, then,

p†11 = pmax and p†22 = 1
2

(
pmax − σ2

g22
+ σ2+g11pmax

g21

)
.

• Equilibrium 6: if g ∈ B′6 = {g ∈ R4
+ : g11

g12
> g21

g22
, and g11

g12
< g11

g22
}, then,

p†11 = 1
2

(
pmax − σ2

g11
+ σ2+pmaxg22

g12

)
and p†22 = pmax.

• Equilibrium 7: if g ∈ B′7 = {g ∈ R4
+ : g11

g12
< g21

g22
, and g11

g12
> g21

g12
}, then,

p†11 = 1
2

(
pmax − σ2+pmaxg21

g11
+ σ2

g12

)
and p†22 = 0.

• Equilibrium 8: if g ∈ B′8 = {g ∈ R4
+ : g11

g12
< g21

g22
, and g21

g22
< g21

g12
}, then,

p†11 = 0 and p†22 = 1
2

(
pmax − σ2+g12pmax

g22
+ σ2

g21

)
.

The proof of Prop. G.0.2 follows the same reasoning of the proof of Prop 3.5.1

assuming that SNR→∞.

In Lemma G.0.2, we have deliberately indexed the different types of NE using

the set {1, 4, . . . , 8}, for the ease of notation. In the following lemma, we describe

the set of NE of the game G(b) in the high SNR regime.
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Lemma G.0.3 In the high SNR regime, the game G(b) always possesses two NE

action profiles:

p∗,11 = (0, pmax) and p∗,12 = (pmax, 0) (G.0.1)

and

p∗,41 = (pmax, 0) and p∗,42 = (0, pmax), (G.0.2)

independently of the channel realizations.

Proof : In the high SNR, i.e., SNR→∞, one can write

lim
SNR→+∞

A1 = {g∈R4
+:

g11
g12

>0 and
g21
g22

6+∞} (G.0.3)

lim
SNR→+∞

A2 = {g∈R4
+:

g11
g12

>+∞ and
g21
g22

>+∞} (G.0.4)

lim
SNR→+∞

A3 = {g∈R4
+:

g11
g12

60 and
g21
g22

60} (G.0.5)

lim
SNR→+∞

A4 = {g∈R4
+:

g11
g12

6+∞ and
g21
g22

>0}. (G.0.6)

Note that from (G.0.4) and (G.0.5), one immediately imply that

Pr
Å
g ∈ lim

SNR→+∞
A2

ã
= Pr

Å
g ∈ lim

SNR→+∞
A3

ã
= 0,

since channel gains are random variables drawn from continuous probability distri-

butions. Conversely,

Pr
Å
g ∈ lim

SNR→+∞
A1

ã
= Pr

Å
g ∈ lim

SNR→+∞
A4

ã
= 1.

Hence, from Prop. 3.5.3, we imply that both p(∗,1) and p(∗,4) are NE action profiles

of the game G(b) in the high SNR regime regardless of the exact channel realizations

{gi,j}∀(i,j)∈K×P , which completes the proof. 2

From Lemma G.0.2 and Lemma G.0.3, it is easy to see that if g = (g11, g12, g21, g22) ∈
B′n, with n ∈ {1, 4}, then (3.41) holds since p† and at least one of the NE action pro-

files p∗,n, with n ∈ {1, 4} are identical. In the cases where g = (g11, g12, g21, g22) ∈
B′n, with n ∈ {5, . . . , 8}, we prove by inspection that in all the cases condition

(3.41) always holds for both NE action profiles p(∗,1) and p(∗,4). For instance,

assume that g ∈ B′5. Then, we have that the unique NE of the game G(b) is

p† = (pmax − p22, p22), with p22 = 1
2

(
pmax + σ2+pmaxg11

g21
− σ2

g22

)
(Prop. 3.5.1). Define

the function ψ : R+ → R+ a s follows: ψ(x) = 1 + SNRx and denote by ∆1 (SNR),

the difference between the sum transmission rates achieved by playing G(a) and G(b),

with respect to the NE p∗,1 at SNR level SNR, i.e.,

∆1 (SNR) = u1

Ä
p∗,1
ä

+ u2

Ä
p∗,1
ä
−
Ä
u1

Ä
p†
ä

+ u2

Ä
p†
ää

= 2 log2 (2)− 2 log2

Ç
1 +

g21

g22

ψ(g22)

ψ(g11)

å
− log2

Ç
1 +

g22

g21

ψ(g11)

ψ(g22)

å
+ log2

Ç
g21

g22

+ ψ(g21 − g11)

å
. (G.0.7)
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Note that if g ∈ B′5, then g21 > g11. Hence,

lim
SNR→∞

∆1 (SNR) = 2 log2(2)−2 log2

Ä
1+

g21
g11

ä
−log2

Ä
1+

g11
g21

ä
+log2

Ä
1+

g21
g22

+∞
ä

=∞,

which justifies (3.41). Similarly, denote ∆4 (SNR), the difference between the sum

transmission rates achieved by playing G(a) and G(b), with respect to the NE p∗,4,

i.e.,

∆4 (SNR) = u1 (p∗,4) + u2 (p∗,4)−
Ä
u1

Ä
p†
ä

+ u2

Ä
p†
ää

= 2 log2 (2)− 2 log2

Ç
1 +

g22

g21

ψ(g21)

ψ(g12)

å
− log2

Ç
1 +

g21

g22

ψ(g12)

ψ(g21)

å
+ log2

Ç
g22

g21

+ ψ(g22 − g12)

å
. (G.0.8)

Note that if g ∈ B′5, then g22 > g12. Hence,

lim
SNR→∞

∆4 (SNR) = 2 log2(2)−2 log2

Ä
1+

g22
g12

ä
−log2

Ä
1+

g12
g22

ä
+log2

Ä
1+

g22
g21

+∞
ä

=∞,

which justifies (3.41). Hence, one can imply that in the high SNR regime both NE

action profiles p∗,1 and p∗,2, satisfy (3.41) when g ∈ B′5. The same result as the one

obtained when g ∈ B′5, is also obtained when g ∈ B′n, with n ∈ {6, . . . , 8}, which

completes the proof.



Appendix H

Proof of Lemma 4.3.3

In this appendix, we provide the proof of Lemma 4.3.3, which states that the per-

formance achieved by the players using a behavioral strategy σ ∈ Σ, given a partic-

ular initialization a(0) = (a1(0), . . . , aK(0)) ∈ A and its corresponding observation

ũ(0) = (ũk(0), . . . , ũK(0)) ∈ RK , for all k ∈ K, can be written as a function of its

corresponding AASB, denoted by κ∗ ∈ 4 (A).

As a first step, let the performance achieved by the player k (4.12) be written as

follows,

ūk(σk, σ−k) = lim
N→∞

1

N
E(a(0),ũ(0),σ)

[
N−1∑

n=0

uk(h(n), ak(n), a−k(n))

]

+ lim
N→∞

1

N

N−1∑

n=0

εk,ak(n)(n),

= lim
N→∞

1

N
E(a(0),ũ(0),σ)

[
N−1∑

n=0

uk(h(n), ak(n), a−k(n))

]
, (H.0.1)

= lim
N→∞

1

N

N∑

n=1

∑

a∈A
uk(h(n), ak, a−k)

K∏

j=1

πj,aj(n) (H.0.2)

= lim
N→∞

1

N

N∑

n=1

∑

a∈A

∑

h∈H
uk(h, ak, a−k)1{h(n)=h}

K∏

j=1

πj,aj(n).(H.0.3)

Now, let the i-th element of the set H be denoted by h(i), with i ∈ {1, . . . , H}. Let

also the sets I1(n), . . . , IH(n) be a partition of the set {1, . . . , n} ⊂ N, such that,

for all i ∈ {1, . . . , H} and ∀m ∈ Ii(n), it holds that h(m) = h(i). Then, it follows

that for all i ∈ {1, . . . , H} and for all a = (a1, . . . , aK) ∈ A,

1

n

n∑

m=1

Å
1{h(m)=h(i)}κa(m)

ã
=
|Ii(n)|
n

Ñ
1

|Ii(n)|
∑

m∈Ii(n)

κa(m)

é
, (H.0.4)

lim
n→∞

1

n

n∑

m=1

Å
1{h(m)=h(i)}κa(m)

ã
=

Ç
lim
n→∞

|Ii(n)|
n

åÑ
lim
n→∞

1

|Ii(n)|
∑

m∈Ii(n)

κa(m)

é
,

149
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where, κ∗ = (κa)∀a∈A ∈ 4 (A)

κa(n) =
K∏

j=1

πj,aj(n). (H.0.5)

Note that at each interval n, h(n) is a realization of a random variable following

an ergodic probability distribution (ρh(1) , . . . , ρh(H)) ∈ 4 (H). Then, by the law of

large numbers (LLN), it follows that

lim
n→∞

|Ii(n)|
n

= lim
n→∞

1

n

n∑

m=1

1{h(m)=h(i)} = ρh(i) . (H.0.6)

Now, define the functions Fi,a : N→ [0, 1] and Fa : N→ [0, 1] as follows,

Fi,a(m) =
1

|Ii(m)|
∑

j∈Ii(m)

κa(j) (H.0.7)

Fa(m) =
1

m

m∑

j=1

κa(j). (H.0.8)

Note, that for all (n,m) ∈ N2, it holds that

Fi,a(n)−Fi,a(n+m)=

(
|Ii(n+m)|−|Ii(n)|

|Ii(n)|

)(
Fi,a(n)− 1

|Ii(n+m)|−|Ii(n)|

∑

`∈Ii(n+m)\Ii(n)

κa(`)

)
. (H.0.9)

Thus, we can write that,

|Fi,a(n)− Fi,a(n+m)| 6
Ç

m

|Ii(n)|

å
.

and thus, for all m ∈ N, it holds that

lim
n→∞

|Fi,a(n)− Fi,a(n+m)| = 0. (H.0.10)

This result implies that for all δ > 0 and for all m ∈ N, there always exists a number

n ∈ N such that

|Fi,a(n)− Fi,a(n+m)| < δ, (H.0.11)

and thus, the limit lim
n→∞

1

|Ii(n)|
∑

j∈Ii(n)

κa(j) exists. Note that the same hold for the

function Fa, for all a ∈ A. Now, note that for all (i, a) ∈ {1, . . . , K}×A, the terms

Fi,a(n) and Fa(n), n ∈ N can be written as to stochastic approximation algorithms,

Fi,a(n) = Fi,a(n− 1) +
1{h(n)=h(i)}
|Ii(m)|

Ä
κa(n) − Fi,a(n− 1)

ä
(H.0.12)

Fa(n) = Fa(n− 1) +
1

t

Ä
κa(n) − Fi,a(n− 1)

ä
, (H.0.13)
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respectively. Then, since both dynamics can be asymptotically described by the

same ordinal differential equation [14], we have that,

lim
n→∞

1

|Ii(n)|
∑

j∈Ii(n)

κa(j) = lim
n→∞

1

n

n∑

j=1

κa(j) = κ∗a, (H.0.14)

where κ∗ ∈ 4 (A) is the AASB induced by the behavioral strategy σ, given the

initialization a(0) and its respective observation ũ. Then, it allows us to write,

ūk(σk, σ−k) =
∑

a∈A

∑

h∈H
uk(h, ak, a−k)ρhκ

∗
a,

which completes the proof.



Appendix I

Proof of Lemma 4.5.1

In this appendix, we provide the proof of the Lemma 4.5.1. As a first step, we

rewrite equation (4.29) as follows,
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ũk(n− 1),

=
1

T
k,A

(nk)

k

(n)

Ñ
T
k,A

(nk)

k

(n− 1)

T
k,A

(nk)

k

(n− 1)

é
n−2∑

s=0
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ũk(n− 1),

= û
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+
1

T
k,A

(nk)

k

(n)
1¶

ak(n−1)=A
(nk)

k

© Åũk(n− 1)− û
k,A

(nk)

k

(n− 1)
ã

Now, let the function G
(1)
k : Ak ×RNk+1 → RNk be defined as follows for all k ∈ K,

G
(1)
k

(ak,ûk,ũk)=

Ç
1{ak=A

(1)
k }
Å
ũk−û

k,A
(1)
k

ã
,...,1¶
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(Nk)

k

©Åũk−û
k,A

(Nk)

k

ãå
, (I.0.2)
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where, ak ∈ Ak, ûk ∈ RNk , and ũk ∈ R, for all n > 0. Let also the function

U
(1)
k : RNk → RNk be defined as follows,

U
(1)
k (ûk) = Eh,π+,εk

î
G(1)(ak, ûk, uk(h, ak, a−k) + εk,ak)

ó
. (I.0.3)

Denote by U
(1)
k,nk

(ûk), with nk ∈ {1, . . . , Nk}, the nk-th component of the vec-

tor U
(1)
k (ûk) such that, U

(1)
k (ûk) =

(
U

(1)
k,1(ûk), . . . , U

(1)
k,Nk

(ûk)
)

and for all nk ∈
{1, . . . , Nk}, it follows from (I.0.3) that,

U
(1)
k,nk

(ûk) = Eh,π∗,εk

ñ
1¶

ak=A
(nk)

k

© Åuk (h, A(nk)
k , a−k

)
+ ε

k,A
(nk)

k

− û
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(nk)

k

ãô
= Eπ∗

k

ñ
1¶

ak=A
(nk)

k

©ô ÅEh,π∗−k

[
uk
(
h, A

(nk)
k , a−k

)]
+ Eεk

ï
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(nk)

k

ò
− û

k,A
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k

ã
= π+

k,A
(nk)

k

Å
ūk
Ä
e(Nk)
nk

, π∗−k
ä
− û

k,A
(nk)

k

ã
. (I.0.4)

Define the function V
(1)
k : N \ {0} → R as follows,

V
(1)
k (n) = G

(1)
k (ak(n− 1), ûk(n− 1), ũk(n− 1))− U (1)

k (ûk(n− 1)). (I.0.5)

Hence, using the equations (I.0.3) and (I.0.5), we can write equation (I.0.1) as fol-

lows.

ûk(n) = ûk(n− 1) +
1

T
k,A

(nk)

k

(n)

(
U

(1)
k (ûk(n− 1))− V (1)

k (n)
)
. (I.0.6)

Now, we introduce the following lemmas.

Lemma I.0.4 For all k ∈ K, the function U
(1)
k is Lipschitz with Lipschitz constant

L = 1.

Proof : For all k ∈ K, let xk = (xk,1, . . . , xk,Nk) and yk = (yk,1, . . . , yk,Nk) be two

vectors in RNk . Then,
∣∣∣
∣∣∣U (1)

k (x)− U (1)
k (y)

∣∣∣
∣∣∣ 6 L ||x− y|| (I.0.7)

∣∣∣∣∣

∣∣∣∣∣

Ç
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k,A
(Nk)

k

(xk,Nk − yk,Nk)
å∣∣∣∣∣∣∣∣∣∣ 6 L ||x− y|| . (I.0.8)

Now, we recall that for all nk ∈ {1, . . . , Nk}, 0 < π
k,A

(nk)

k

< 1. Hence, (I.0.8) holds

for any L > 1. 2

Lemma I.0.5 For all k ∈ K and for all nk ∈ {1, . . . , Nk}, the term T
k,A

(nk)

k

(n)

defined by (4.26), satisfies that
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T
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< +∞. (I.0.10)



Appendix I. Proof of Lemma 4.5.1 154

Proof : From assumption (A0), it holds that, for all k ∈ K, the asymptotic probabil-

ity π+

k,A
(nk)

k

of playing any action nk ∈ {1, . . . , Nk} is non-zero. Then, all actions are

played infinitely many times, and thus (I.0.9) holds ∀k ∈ K and ∀nk ∈ {1, . . . , Nk}.
Now, for all k ∈ K and ∀nk ∈ {1, . . . , Nk} let us write the empirical measure

π̂
k,A

(nk)

k

(n) = 1
n
T
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(nk)

k

(n) = π+

k,A
(nk)

k

+ ε
k,A

(nk)

k

(n), (I.0.11)

where, for all n > 0, the term ε
k,A

(nk)

k

(n) represents the estimation error at interval

n. Note that from assumption (A0), it holds that lim
n→∞

ε
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(nk)

k
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n ∈ N, it follows that
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Thus, we can write that
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where, 0 < δ < 1 +
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k

(n)

π+

k,A
(nk)

k

is a positive real number. Thus,
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which completes the proof. 2

Lemma I.0.6 The sequence {V(n)
k }n>0 is a martingale difference sequence with

respect to the increasing family of σ-fields,

F (1)
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ûk(n), π(n), V

(1)
k (n),h(n), ε(n)

))
,

(I.0.18)

Proof : From the definition of the mapping V
(1)
k in (I.0.5), it holds ∀k ∈ K,

E
[
V

(1)
k (n)

∣∣∣F (1)
k,n−1

]
n→∞−→ 0. (I.0.19)
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2

From Lemmas I.0.4, I.0.5, I.0.6 and Theorem 2 in [14], we have that the inho-

mogeneous, discrete, random time process {ûk(n)}n∈N in (I.0.6) asymptotically ap-

proaches the autonomous, continuous, deterministic time dynamical system Ûuk(t),
t ∈ [0,∞[ determined by the ordinary differential equation (ODE),

d

dt
Ûuk(t) = U

(1)
k (Ûuk(t)) , t ∈ [0,∞[, (I.0.20)

and the initialization values ûk(0), ∀k ∈ K. In the following, we arbitrarily assume

that Ûuk(0) = ûk(0). Now, focus on the nk-th component of the ODE (I.0.20) of

player k, with k ∈ K, and nk ∈ {1, . . . , Nk}, i.e.,

d
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ä
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The solution of the ODE (I.0.21) is,
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(I.0.22)

From (I.0.22), it follows that,

lim
t→∞

Ûuk,nk(t) = ūk
Ä
e(Nk)
nk
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ä
, (I.0.23)

which proves that if û
k,A

(nk)

k

follows the time-averaging rule (4.29), Lemma 4.5.1

holds.

Now, we focus, on the iterative algorithm of the form

û
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Let the function G
(2)
k : Ak ×RNk+1 → RNk be defined as follows for all k ∈ K,
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where, ak ∈ Ak, ûk ∈ RNk , and ũk ∈ R, for all n > 0. Let also the function

U
(2)
k : RNk → RNk be defined as follows,

U
(2)
k (ûk(n)) = Eh,π+,εk

î
G(2)(ak, ûk(n), uk(h, ak, a−k) + εk,ak)

ó
. (I.0.26)

Denote by U
(2)
k,nk

(ûk(n)), with nk ∈ {1, . . . , Nk}, the nk-th component of the vec-

tor U
(2)
k (ûk(n)) such that, U

(2)
k (ûk) =

(
U

(1)
k,1(ûk), . . . , U

(1)
k,Nk

(ûk)
)

and for all nk ∈
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{1, . . . , Nk}, it follows from (I.0.26) that,
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Define the function V
(2)
k : N \ {0} → R as follows,

V
(2)
k (n) = G

(2)
k (ak(n), ûk(n− 1), ũk(n))− U (2)

k (ûk(n− 1)). (I.0.28)

Hence, using the equations (I.0.26) and (I.0.28), we can write equation (I.0.1) as

follows.

ûk(n) = ûk(n− 1) + αk(n)
(
U

(2)
k (ûk(n− 1))− V (2)

k (n)
)
. (I.0.29)

Now, we introduce the following lemmas.

Lemma I.0.7 For all k ∈ K, the function U
(2)
k is Lipschitz with Lipschitz constant

L = 1.

The proof of Lemma I.0.7 follows the same steps of the proof of Lemma I.0.7.

Lemma I.0.8 The sequence {V(2)(n)k}n>0 is a martingale difference sequence with

respect to the increasing family of σ-fields,

F (2)
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4
= σ

((
ûk(0), π(0), V
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k (0),h(0), ε(0)

)
, . . . ,

(
ûk(n), π(n), V

(2)
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,

(I.0.30)

The proof of Lemma I.0.8 follows the same steps of the proof of Lemma I.0.6.

From Lemmas I.0.7, I.0.8 and the conditions in (4.31), and Theorem 2 in [14], we

have that the inhomogeneous, discrete, random time process {ûk(n)}n∈N in (I.0.24)

asymptotically approaches the autonomous, continuous, deterministic time dynami-

cal system Ûuk(t), t ∈ [0,∞[ determined by the ordinary differential equation (ODE),

d

dt
Ûuk(t) = U

(2)
k (Ûuk(t)) , t ∈ [0,∞[, (I.0.31)

and the initialization values ûk(0), ∀k ∈ K. In the following, we arbitrarily assume

that Ûuk(0) = ûk(0). Now, focus on the nk-th component of the ODE (I.0.31) of
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player k, with k ∈ K and nk ∈ {1, . . . , Nk}, i.e.,

d

dt
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The solution of the ODE (I.0.32) is,Ûuk,nk(t) = ūk
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From (I.0.33), it follows that,

lim
t→∞

Ûuk,nk(t) = ūk
Ä
e(Nk)
nk

, π∗−k
ä
. (I.0.34)

Finally, since ûk(n) asymptotically tracks Ûuk,nk(t), we have proved Lemma 4.5.1
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Proof of Theorem 4.5.2

In this appendix, we present the proof of Theorem 4.5.2. As a first step, we recall

that in Lemma 4.5.1 it has been shown that

lim
t→∞
||ûk(btc)− Ûuk(t)|| = 0, (J.0.1)

where ∀x ∈ R+, such that n 6 x 6 n + 1, with n ∈ N, bxc = n. Thus, for a

sufficiently large t > 0, the following equality can be accepted,
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Then, from the solution of the ODE (I.0.20) given by (I.0.22), we have that

η
k,A

(nk)

k

(t) =
∣∣∣∣ūk(e
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Now from the condition η
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−k)− ûk,A(nk)

k

(0)
∣∣∣∣

η

ê
. (J.0.4)

Similarly, from the solution to the ODE (I.0.31) given by (I.0.33), we have that

η
k,A

(nk)

k

(t) =
∣∣∣∣ūk(e

(Nk)
nk

, π+
−k)− ûk,A(nk)

k

(0)
∣∣∣∣ exp (−t) . (J.0.5)

From the condition η
k,A

(nk)

k

(t) < η, it yields,,

t > ln

Ü ∣∣∣∣ūk(e(Nk)
nk

, π+
−k)− ûk,A(nk)

k

(0)
∣∣∣∣

η

ê
, (J.0.6)

which ends the proof of Theorem 4.5.2.

158



Appendix K

Proof of Lemma 4.5.3

In this appendix, we provide the proof of Lemma 4.5.3. This proof is divided in two

parts. First, we show that the learning dynamics in (4.38) can be approximated by

a system of ODEs. Second, we show that that the zeros of such system of ODEs

corresponds to a Logit Equilibrium.

Part i: ODE Approximation .

The learning dynamics in (4.38) under assumption (B1) can be written, for all

k ∈ K, as follows,

πk(n) = πk(n− 1) + λk(n) (βk (ūk(·, π−k(n)))− πk(n− 1)) . (K.0.1)

Let the function U
(3)
k : R

K∑

j=1

Nj

→ RNk , with k ∈ K, be defined as follows,

U
(3)
k (πk, π−k) = βk (ūk(·, π−k(n)))− πk(n− 1). (K.0.2)

Note that for all n > 0, it holds that ||πk(n)|| < ∞, since it is a probability distri-

bution, and ||uk(n)|| < ∞ since it is the mean of finite values ũk(0), . . . , ũk(n − 1).

Note also that the functions βk and ūk are continous over the spaces RNk and

4 (A1) × . . . × 4 (AK), respectively. Thus, the function U
(3)
k is continous with

bounded gradient at least over the space 4 (A1)× . . .×4 (AK). Hence, the func-

tion U
(3)
k is Lipchitz. Now, since for all k ∈ K and n > 0, the learning rates follows

the condition in (4.37), it holds from Theorem 2 in [14] that the coupled learning

dynamics in (4.38) can be approximated by the system of ODEs,




d
dt
Ûπ1(t) = β1 (ū1 (·, Ûπ−1(t)))− Ûπ1(t),

d
dt
Ûπ2(t) = β2 (ū2 (·, Ûπ−2(t)))− Ûπ2(t),

...
d
dt
ÛπK(t) = βK (ūK (·, Ûπ−K(t)))− ÛπK(t).

(K.0.3)

Part ii: The Zeros of the system of ODEs.

Note that if convergence occurs, then the limit point π∗ must be a zero of the system

of ODEs (K.0.3). Hence, it follows that ∀k ∈ K,

d

dt
Ûπk(t) = 0, (K.0.4)
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implies that

π∗k = βk
Ä
ūk
Ä
·, π∗−k

ää
, (K.0.5)

which corresponds to the definition of LE (Def. 4.4.2). This completes the proof of

Lemma 4.5.3.


