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Abstract

Anomaly detection has become a vital component of any network in today’s Inter-
net. Ranging from non-malicious unexpected events such as flash-crowds and failures, to
network attacks such as denials-of-service and network scans, network traffic anomalies
can have serious detrimental effects on the performance and integrity of the network.
The continuous arising of new anomalies and attacks create a continuous challenge to
cope with events that put the network integrity at risk. Moreover, the inner polymorphic
nature of traffic caused, among other things, by a highly changing protocol landscape,
complicates anomaly detection system’s task. In fact, most network anomaly detection
systems proposed so far employ knowledge-dependent techniques, using either misuse
detection signature-based detection methods or anomaly detection relying on supervised-
learning techniques. However, both approaches present major limitations: the former
fails to detect and characterize unknown anomalies (letting the network unprotected for
long periods) and the latter requires training over labeled normal traffic, which is a dif-
ficult and expensive stage that need to be updated on a regular basis to follow network
traffic evolution. Such limitations impose a serious bottleneck to the previously presented
problem.

We introduce an unsupervised approach to detect and characterize network anoma-
lies, without relying on signatures, statistical training, or labeled traffic, which represents
a significant step towards the autonomy of networks. Unsupervised detection is accom-
plished by means of robust data-clustering techniques, combining Sub-Space clustering
with Evidence Accumulation or Inter-Clustering Results Association, to blindly identify
anomalies in traffic flows. Correlating the results of several unsupervised detections is
also performed to improve detection robustness. The correlation results are further used
along other anomaly characteristics to build an anomaly hierarchy in terms of danger-
ousness. Characterization is then achieved by building efficient filtering rules to describe
a detected anomaly. The detection and characterization performances and sensitivities
to parameters are evaluated over a substantial subset of the MAWI repository which
contains real network traffic traces.

Our work shows that unsupervised learning techniques allow anomaly detection sys-
tems to isolate anomalous traffic without any previous knowledge. We think that this
contribution constitutes a great step towards autonomous network anomaly detection.

This PhD thesis has been funded through the ECODE project by the European Com-
mission under the Framework Programme 7. The goal of this project is to develop,
implement, and validate experimentally a cognitive routing system that meet the chal-
lenges experienced by the Internet in terms of manageability and security, availability
and accountability, as well as routing system scalability and quality. The concerned use
case inside the ECODE project is network anomaly detection.

Keywords: anomaly detection, network traffic, unsupervised learning



Résumé

La détection d’anomalies est une tâche critique de l’administration des réseaux. L’ap-
parition continue de nouvelles anomalies et la nature changeante du trafic réseau com-
pliquent de fait la détection d’anomalies. Les méthodes existantes de détection d’anoma-
lies s’appuient sur une connaissance préalable du trafic : soit via des signatures créées
à partir d’anomalies connues, soit via un profil de normalité. Ces deux approches sont
limitées : la première ne peut détecter les nouvelles anomalies et la seconde requiert une
constante mise à jour de son profil de normalité. Ces deux aspects limitent de façon
importante l’efficacité des méthodes de détection existantes.

Nous présentons une approche non-supervisée qui permet de détecter et caractéri-
ser les anomalies réseaux de façon autonome. Notre approche utilise des techniques de
partitionnement afin d’identifier les flux anormaux. Nous proposons également plusieurs
techniques qui permettent de traiter les anomalies extraites pour faciliter la tâche des
opérateurs. Nous évaluons les performances de notre système sur des traces de trafic réel
issues de la base de trace MAWI. Les résultats obtenus mettent en évidence la possibilité
de mettre en place des systèmes de détection d’anomalies autonomes et fonctionnant sans
connaissance préalable.

Mots-clés : détection d’anomalies, trafic réseau, apprentissage non-supervisé
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E.2.2 Résultats préliminaires . . . . . . . . . . . . . . . . . . . . . . . . 23
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Chapter 1

Introduction

Anomaly detection in networks has constituted a constant interest for every player of the
networking game. From Internet Service Provider (ISP) to security researchers, many
players have been trying to find efficient techniques to detect network anomalies. Network
anomalies can be defined as events that represent a deviation from the normal state of
the network. On one hand, security researchers find interests in anomalies, such as scans
that can sometimes be viewed as signs of incoming attacks such as Denial of Service
(DoS) or Distributed Denial of Service (DDoS). On the other hand, ISPs see anomalies,
such as DoS, as threats to their day-to-day operations since they can impact customers
experience or even worse, disrupt the offered service. The attack targeting Georgia’s
IT systems during the summer 2008 proved how vulnerable such Information technology
(IT) systems are to DoS attacks 1. A more recent example of such events is the “Avenge
Assange” campaign that took place in December 2010. This campaign was organized by a
group of online activists calling themselves Anonymous. It targeted several corporations
that refused to support donations for the Wikileaks website.2 , 3 Anomalies can thus be
roughly defined as defined as events that leads a part of network trafic to deviate from its
normal or usual state. These examples clearly motivate the need to detect such events.

Several techniques have been used to detect such events. The first one is host anomaly
detection. In this case, a detection system analyzes the behavior of an host and tries to
assess the abnormality of its actions. The second type of detection systems is network
anomaly detection systems. These systems instead rely on network traffic analysis in
order to decide if a specific part of network traffic is anomalous or not. We focus our
work on this particular type of detection systems.

Network anomaly detection systems however face many problems. The main challenge
in automatically detecting traffic anomalies is that these are moving targets. In fact, it
is extremely difficult to precisely and permanently define the set of possible anomalies
that may arise, especially in the case of network attacks, because new attacks as well
as new variants to already known attacks are continuously emerging. This problem is
even worsened by the fact that anomalies appear inside a traffic landscape that is itself
changing. Network traffic is in fact continuously evolving under many influences: increase
in volume, topology changes, changes in application uses, etc.

1http://www.nytimes.com/2008/08/13/technology/13cyber.html
2http://www.guardian.co.uk/media/2010/dec/08/operation-payback-mastercard-website-wikileaks
3http://pandalabs.pandasecurity.com/operationpayback-Broadens-to-operation-avenge-assange/
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This dissertation aims at designing a general anomaly detection system that would be
able to detect a wide range of anomalies with diverse structures, using the least amount
of previous knowledge and information, ideally none. The remaining of this chapter is
composed of two sections. The first one introduces the different reasons that lead us to
think that network anomaly detection systems needs to be more autonomous and how
we plan to achieve this goal. The second section of this chapter present our contributions
towards the design of such systems.

1.1 Motivating problems

There are several motivations for the introduction of knowledge-independent network
anomaly detection systems. These reasons are presented in the next two sections. First,
legitimate and illegitimate network traffics display several types of changes along time
and space. Second, current anomaly detection systems experience difficulties to cope with
these behaviors. The next two sections address these topics.

1.1.1 Changing traffic in an evolving Internet

We address the mutating nature of traffic from two points of view: the changes of network
traffic in general and the changes in terms of network anomalies.

1.1.1.1 Changing traffic

Network traffic is changing. These changes can be classified into three distinct phe-
nomenons. We here provide a short taxonomy of these phenomenons. First, network
traffic evolves along time, and according to several time-scales, concerning its volume in
terms of number of packet and number of bytes. We name this characteristic the traffic
evolution. The second phenomenon is traffic changes due to “spatial” variation. Traffic at
the ingress router of an Autonomous System (AS) is different than traffic in a backbone
link. Traffic also varies between two physical links or regions (country, continent, etc.).
We call this phenomenon the traffic disparity. Third, traffic inner nature changes over
time through the creation or mutation of applications, and the emergence of new data
exchange paradigm. We call this phenomenon traffic mutability. The next paragraphs
detail these three phenomenons.

• The first evolving property of Internet network traffic is its variation in terms of
volume along time. This variation can be divided into two distinct sub-phenomena:
first, the cyclic oscillations, and second, the ever-increasing volume. The first of
these sub-phenomenons is the daily and weekly variation of traffic. In [1], Roughan
et al. study Simple Network Management Protocol (SNMP) data from one of the
largest operational Internet backbones in North America (AT&T). In [2], Papa-
giannaki et al. process SNMP measurements from an IP backbone network. In
[3], Cho et al. analyze both aggregated traffic from several Japanese Internet Ser-
vice Providers (ISPs) and detailed records on a single ISP. All works quoted above
observe the previously presented daily and weekly variations.

6



The second of these sub-phenomenons is the constant increase of traffic in terms of
volume. We investigate this by looking at network traffic of the Wide repository
[4]. We consider traffic captured at samplepoints B and F that are located on a
trans-pacific transit link between Japan and the United States of America. We
are thus able to assess the bandwidth increase on this particular link. A simple
analysis reveals that, between 2001 and 2008, the average throughput evolved from
approximately 10Mbps in January 2001 to more than 250Mbps in September 2011.
This demonstrates the increases in terms of traffic increase along time. In [2],
Papagiannaki et al. observe that, for 2 out of 3 Points of Presence (PoPs), traffic
volume increase from October 2000 to July 2002. Traffic volume in the third Point of
Presence (PoP) remains constant over the years. In [5], Cho et al. shows that traffic
at Japanese major Internet exchange points has constantly increased over the last
ten years. From 2005 to the start of 2008, network traffic has roughly doubled every
two years. In [6], the Cisco company declares that the traffic increased eightfold
over the last five years.

Two main reasons of this constant growth can be identified. On one hand, the
number of Internet users constantly increase. Figure 1.1 4 , 5 clearly exposes this
trend over the years.
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Figure 1.1: Number of internet users in the world (a) and proportion of households
connected to Internet in Europe (b) (UE15 stands the 15 European Union members
between 1995 and 2004, UE25 for the 25 members between 2004 and 2007 and UE27 for
the 27 members between 2007 and up to now).

On the other hand, a race towards a greater bandwidth available for the end-user
is happening as we speak. In [5], Cho et al. show that the number of Fiber-To-
The-Home (FTTH) subscribers and cable TV subscribers in Japan have constantly
increased from 2000 to 2008. The number of Asymmetric Digital Subscriber Line
(ADSL) subscribers displays a steeper increase but reach a peak approximately lo-
cated at the start of 2006 and shows a slow decay afterwards. Figure 1.2 6 displays

4http://data.un.org/Data.aspx?q=internet&d=MDG&f=seriesRowID%3a608
5http://epp.eurostat.ec.europa.eu/portal/page/portal/information society/data/
6http://epp.eurostat.ec.europa.eu/portal/page/portal/information society/introduction
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the broadband penetration rate per inhabitant and household for three sets of Eu-
ropean Union member (cf. caption). Figure 1.3 7 displays the increase in terms of
number of broadband users worldwide. Both these figures show that the number of
broadband connections increases along time in Europe and thus causes an increase
in terms of traffic.
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Figure 1.2: Broadband penetration rate in Europe for inhabitant (a) and households (b)
(UE15 stands the 15 European Union members between 1995 and 2004, UE25 for the 25
members between 2004 and 2007 and UE27 for the 27 members between 2007 and up to
now).
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Figure 1.3: Number of broadband users in the world.

This demonstrates that the traffic volume has constantly increased over the last ten
years.

• The second phenomenon exposed in our taxonomy is disparity. It names the dif-
ference of traffic when it is observed from different physical points of view. In
[7], Ringberg et al. expose the difference in terms of average number of packets by
flows between traffic aggregated by input links, ingress routers or Origin-Destination

7http://data.worldbank.org/indicator
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flows. They also advances that traffic variability is highly changing. In [2], Papa-
giannaki et al. find that the traffic displays different evolutions between three PoPs:
traffic increases in two PoPs while it remains constant for another one. Such differ-
ence in terms of temporal evolution implicitly confirms that there are difference in
of traffic nature between these PoPs.

• Network traffic, in its inner nature, has been highly changing along Internet evolu-
tion. As exposed before, we call this phenomenon traffic mutation. We illustrate
this through two examples. First, the emergence of new protocols or applications
that modify the shape of traffic. And second, the impact of civil society over net-
works through legislation.

The first factor that causes change in Internet traffic is the emergence of new proto-
cols or services. Their progression can be extremely fast, unpredictable and impact-
ing on traffic structure. For example, the Netflix Video on Demand (VoD) service
in Canada is a good illustration of this fact. It has been launched on September
22nd 2010 and has experienced a constant growth of its number of users [8]. By
the end of march 2011, Netflix traffic consumes 13.5 percents of downstream traffic
during evening peak hours in Canada [9]. This percentage of traffic has appeared
in only 6 months. This illustrates the highly changing nature of network traffic
composition on a relatively short time scale. On a bigger scale and for information
purpose, Netflix accounts for almost a quarter of total bytes and nearly 30% of the
downward traffic of peak period in North America traffic [9]. Another example of
the changing protocol landscape is the constant increase in use of web radios and
web televisions. Figure 1.4 8 shows the increase of the number of individuals using
Internet to listen web radios or watch web televisions. This proves that the pro-
tocols associated these (relatively new) uses have been and continue to grow thus
changing the protocol landscape.
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Figure 1.4: Percentage of individuals using the Internet for listening to web radio or
watching web television (UE25 for the 25 members between 2004 and 2007 and UE27 for
the 27 members between 2007 and up to now).

The exchange of copyrighted data and the rise of the associated techniques is another
example of the fast mutation of network traffic. Up to now, these exchanges have

8http://epp.eurostat.ec.europa.eu/portal/page/portal/information society/data/
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been using peer-to-peer protocols. The first episode of this phenomenon is the rise
and fall of Napster between June 1999 and July 2001. 9 Its lifetime was short.
But it quickly represented a significant share of traffic since its traffic was close to
Hypertext Transfer Protocol (HTTP) traffic in terms of volume in certain conditions
[10].

Peer-to-peer protocols can also be used as example for the second cause for the
changing nature of traffic: the direct impact of the civil society over networks
through legislation. In fact, in the Napster case, illegal file exchange of copyrighted
material through its infrastructure initiated a series of lawsuits that directly caused
the end of Napster. It is the very centralized nature of Napster that caused its death
by offering a single easy target. The pressure over peer-to-peer traffic and protocols
then directly induced the mutation of peer-to-peer protocols toward a new decen-
tralized paradigm illustrated by Gnutella-like protocols [11]. As a consequence,
port-based traffic classification tools were introduced to identify this second gener-
ation of peer-to-peer protocols through port number profiles. A third generation of
peer-to-peer protocols then emerged to cope with port-based traffic classification.
These protocols use random ports in order to avoid detection [11, 12]. During the
past years, several countries have introduced new laws (Loi Création et Internet in
France 10 and amended Copyright Act in Japan 11) in order to drastically reduce the
exchange of copyrighted data through peer-to-peer protocols. The probable conse-
quence of these events has been a reduction of peer-to-peer traffic exchange and an
increase of HTTP traffic from one-click file hosting websites to end-users [13]. This
evolution is corroborated by the fact, in [14], Maier et al. analyze ADSL traffic and
find that 15% of HTTP traffic is composed of RAR archive files that can be sus-
pected of containing copyrighted data. During the night, this proportion increases
as every other HTTP traffic components’ proportions decrease [14]. Furthermore,
in [15], the Cisco company says that P2P file sharing decreases its worldwide share
of overall traffic volume from 38% to 25% which represents a decrease of 34% per-
cents. Peer-to-peer protocols and traffic followed a complicated path with multiple
deep changes in their structure. Their use seems even to decrease under pressure
from legislations.

1.1.1.2 Mutating anomalies

Network anomalies can be of very different types. Some anomalies such as scans are
mostly harmless by themselves. They however are generally signs of a possible incoming
attack. On one hand, host scans target a single machine. On the other hand, network
scans aim at either mapping a particular network and acquire knowledge about its struc-
ture or finding machines sharing a particular vulnerability. Other anomalies such as
floods or DoS/DDoS aim at degrading a particular service on a restrained set of targets.
They saturate their target(s) by sending a huge number of packets that effectively forbids
legitimate users to access the considered service. These anomalies are sometimes called
attacks because of their deliberate intent to harm their target(s).

9http://www.businessweek.com/2000/00 33/b3694003.htm
10http://www.legifrance.gouv.fr/
11http://www.mext.go.jp/b menu/houan/an/171/1251917.htm
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Similarly to traffic itself, these anomalies also exhibit a mutating behavior. In their
longitudinal analysis of the MAWI [4] traffic repository [12], Borgnat et al. state that
some anomalies, like SYN scans and floods are recurrent over the years. However other
anomalies are very localized in the time line of the repository: Network News Transfer
Protocol (NNTP) anomalies during the first years, Secure Shell (SSH) since 2004 and
Microsoft security holes from August 2003. Furthermore, some anomalies can be accu-
rately located in time and sometimes represent the majority of network traffic. One can
here quote two events. First, a continuous Ping flood from August 2003 to December
2003 represented more than 50% of traffic volume from Japan to the USA in terms of
number of packets. Second, several outbursts of traffic due to the Sasser worm in August
2004, December 2004 and march 2005 accounted for more than 50% of traffic volume
from the USA to Japan regarding the number of packets. The constant worm emergence,
from the Sasser worm, and many before, to the latest example of spreading worm, the
Morto Worm 12 constitutes another example of anomaly mutations. All these examples
demonstrate that anomalies are always present in traffic and mutate along time. In [16],
Allman et al. study scans targeting the Lawrence Berkeley National Laboratory (LBNL)
network from June 1 1994 to December 23 2006. The authors show that scanning greatly
evolved along the years. All great increases in terms of scanning connections coincide with
the emergence of new worms. The increase in 2001 reflects the appearance of CoreRed
and Nimda worms. The scan surge of 2004 seems to be linked with the emergence of
MyDoom, Sasser, Welchia, Bobax and Gaobot worms. The service or port number also
evolves along time. For example, the 9898 port starts to be targeted when the Sasser
worm appears. This is coherent since port 9898 was a port number used by the Sasser
worm as backdoor.

Congestions and anomalies also have an impact on traffic characteristics. For example,
they modify the protocol mix which influence marginal distributions of aggregated packet
and byte count and long-range dependence possibly estimated through Hurst parameter
[12]. Since the appearance and nature of such phenomenons are not predictable, traffic
characteristics for the considered statistical indexes are corollary unpredictable. This
impact over traffic further increases the traffic mutation phenomenon explained above.

1.1.2 Weaknesses of current network anomaly detection approa-

ches

The problem of network anomaly detection has been extensively studied during the last
decade. Two different approaches are by far dominant in current research literature and
commercial detection systems: signature-based and anomaly detection. Both approaches
require some kind of guidance to work, hence they are generally referred to as knowledge-
based approaches. Signature-based detection systems, such as Bro and Snort, are highly
effective to detect those anomalies which are programmed to alert on. When a new
anomaly is discovered, generally after its occurrence, the associated signature is coded
by human experts, which is then used to detect a new occurrence of the same anomaly.
Such a detection approach is powerful and very easy to understand, because the operator
can directly relate the detected anomaly to its specific signature. However, these systems

12http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?Name=Worm%3AWin
32%2FMorto.A
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cannot defend the network against new anomalies, simply because they cannot recognize
what they do not know. Furthermore, building new signatures is expensive, as it involves
manual inspection by human experts.

On the other hand, anomaly detection detects anomalies as patterns that deviate from
a previously built model [17, 18]. Such methods can detect new kinds of anomalies not
seen before, because they will naturally deviate from the baseline. In order to build their
model, anomaly detection either requires fine tuning in order to only captures anomalous
events, or supervised learning to automatize model building step as in [19]. This training
however depends on the availability of purely anomaly-free traffic data-sets. Labeling
traffic as anomaly-free is expensive and hard to achieve in practice, since it is difficult to
guarantee that no anomalies are hidden inside the traffic. Additionally, it is not easy to
maintain an accurate and up-to-date model for anomaly-free traffic, particularly when new
services and applications are constantly emerging (cf. section 1.1.1). However, provided
that anomaly free traffic is available, supervised-learning and anomaly detection-based
system provides a first solution to cope with the changing nature of traffic.

Supervised-learning has also been applied to signature-based detection systems. It
uses labeled anomalies to train a model for anomalous traffic as in [20]. Such systems
however suffer from the same weaknesses of signature-based models. They cannot recog-
nize unknown events. They however provide an automated technique to produce anomaly
signatures.

Apart from detection, and in order to take accurate countermeasures, operators need
to analyze and characterize network anomalies. However, network anomaly detection
systems often only give an alarm of an occurring anomaly without any further descrip-
tion of the occurring anomaly. These systems force operators to proceed to an hard and
time-consuming task of anomaly characterization. The analysis may become a particu-
lar bottleneck when new anomalies are detected, because the network operator has to
manually dig into many traffic descriptors to understand its nature. The high number of
alarms and hence possible anomalies can also increase the amount of work. In current
traffic scenario, even expert operators can be quickly overwhelmed if further information
is not provided to prioritize the time spent in the analysis.

1.1.3 The need for an autonomous anomaly detection

The original hypothesis used in anomaly detection is:

Hypothesis 1.1 The anomalous traffic is statistically different from normal traf-
fic. [21, 22]

As we stated in section 1.1.2, current anomaly detection systems use two main de-
tection approaches: signature-based or misuse detection and anomaly detection. Both
of these approaches use hypothesis 1.1 and build either signatures on anomalous traffic
(signature-based detection) or normal traffic (anomaly-based detection). However as we
showed in section 1.1.1, network traffic exhibits several type of changing behaviors, evolu-
tion, disparity and mutability. Current anomaly detection systems have troubles dealing
with these phenomenons.

We therefore think that anomaly detection needs to cope with the changes in both
anomalous and normal network traffic. Anomaly detection system shall not use detailed
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knowledge about traffic or anomaly structure. They shall instead only use a single hy-
pothesis to separate anomalous traffic from normal one:

Hypothesis 1.2 The majority of traffic representation instances is normal.
Which is equivalent to: only X% of traffic representation in-
stances are malicious with X < 50%. [23]

Efficient anomaly detection systems should therefore use hypothesis 1.1 and 1.2 in
order to autonomously find anomalies. Unsupervised learning techniques offers us tools
to create classes of similar patterns and isolate classes of patterns different from each
other without previous knowledege on patterns. These techniques therefore allow anomaly
detection systems to separate anomalous traffic from normal one provided that hypothesis
1.1 is verified. Once anomalous and normal traffic are separated, hypothesis 1.2 provides
us with a criterion to identify normal traffic and by extension anomalous traffic.

This unsupervised approach allows us to autonomously extract abnormal traffic with-
out any predefined models of either normal or abnormal traffic. However, this approach
only work provided that both hypothesis are verified. Hypothesis 1.1 is a classic hypothe-
sis of the network anomaly detection field. While 1.2 has never been used in this context.
This approach also a need an unsupervised technique that will be able to efficiently per-
forms the extraction. It is only the final evaluation of our tool that will enable us to assess
the pertinence of the hypothesis and the efficiency of the chosen unsupervised method.

We think that unsupervised anomaly detection is the scheme to follow in order to
build knowledge-independent and robust anomaly detection systems regarding network
traffic evolution, disparity and mutability.

1.1.4 Summary

Normal and abnormal network traffics change over time and across measuring point. We
state that current anomaly detection approaches relying on a one-time-built model for
legitimate or illegitimate traffics is inefficient regarding these phenomena. The building
and maintenance costs of these models further confirm that these techniques should be
avoided. We therefore think that modern anomaly detection systems should be able to
autonomously cope with traffic evolution, disparity and mutability through unsupervised
learning. Such use of unsupervised learning allows network anomaly detection systems
to be immune to these phenomenoms at the cost of using hypotheses on network traffic.

1.2 Contributions

Our contribution is twofold. The first part is an anomaly detection method relying on
unsupervised learning. The second part is a post-processing step that correlates, ranks
and characterizes found anomalies.

1.2.1 Unsupervised anomaly detection

In the first part of the thesis, we first propose several techniques to process traffic and
generate meaningful attributes. We then describe how anomalies behave for the built
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attributes provided that anomalies are statistically different from normal traffic (cf. hy-
pothesis 1.1). We finally propose a robust method that relies on unsupervised learning
to discover traffic flows containing network traffic of similar nature. By using hypothesis
1.2, we are able to determine the normal traffic and corollary the potentially anomalous
one. Our method is based on clustering techniques and especially subspace-clustering.
This method allows us to blindly find anomalous traffic while using the two hypothesis
quoted above.

1.2.2 Anomaly post-processing

We present several methods to process results of anomaly mining.
We first propose a correlation technique in order to reduce the number of alarms. In

order to do so, we use the sets of source and destination of an anomaly as its unique
identifiers. We then use the similarity between source and destination of anomalies in
order to assess anomaly similarity.

After the correlation, we introduce a dangerousness assessment metric. This metric
allows us to rank anomalies, easily discriminating harmless anomalies from dangerous
one.

We also propose a method to characterize previously mined anomalies. This method
is able to build signatures that isolate anomalous traffic from normal one. This step is
critical in the sense that it allows operators to easily understand the considered anomalous
traffic nature. The built signature also allows operators to quickly cope with the anomaly
through deployment of the considered signature on any network security device (Intrusion
Detection Systems (IDS), Intrusion Protection Systems (IPS), firewall, etc.) and hence
greatly improves the global autonomy of our system.

1.2.3 Summary

Our contribution is composed of two main components. The first part is an unsupervised
technique to detect anomaly relying on subspace clustering, anomaly correlation and
anomaly ranking. The second part is a post-processing step technique which allows us to
correlate, rank and characterize anomalies.

1.3 Summary

Network anomaly detection is a critical component of modern network management sys-
tems used by ISPs. Anomaly detection systems use one-time-built and expensive-to-build
models to assess the presence of an anomalous event. Current anomaly detection systems
are therefore extremely vulnerable to novelty which is an inner characteristics of network
traffic as we show in section 1.1.1. We therefore think that anomaly detection should use
the hypothesis presented in the section 1.1.3 and unsupervised learning tools in order to
isolate anomalies. We think that our proposition constitutes a major first step toward
autonomous network anomaly detection.
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1.4 Context inside the ECODE project

This thesis has been realized in the framework of the ECODE project. This project is
funded by the European Commission under grant FP7-ICT-2007-2/223936. It aims at
introducing cognitive capacities in routing systems. The partners are: Alcatel-Lucent
BELL, Université Catholique de Louvain, Université de Liège, the Interdisciplinair in-
stituut voor BreedBand Technologie (IBBT), the Institut National de Recherche en In-
formatique et en Automatique (INRIA), Lancaster University (ULANC) and the Centre
National de la Recherche Scientifique (CNRS).

First, we present the goals of the ECODE project. Second, we address use cases inside
the project. Finally, we present the proposed architecture for future routing systems.

1.4.1 Overview

The goal of the ECODE project is to develop, implement, and validate experimentally a
cognitive routing system that can meet the challenges experienced by the Internet in terms
of manageability and security, availability and accountability, as well as routing system
scalability and quality. By combining both networking and machine learning research
fields, the resulting cognitive routing system fundamentally revisits the capabilities of the
Internet networking layer so as to address these challenges altogether.

For this purpose, the project investigates and elaborates novel, on line, and distributed
machine learning techniques kernel of the cognitive routing system. During the building
phase, the cognitive routing system is both designed and prototyped. In the second
phase, three sets of use cases are experimented to evaluate the benefits of the developed
machine learning techniques. The experimentation and the validation of these techniques
are carried out on physical (iLAB) and virtual (e.g. OneLab) experimental facilities.

1.4.2 Use cases

The ECODE project targets all the routing problematics. Those are: adaptive traffic
sampling and management, path performance monitoring, intrusion and attack/anomaly
detection, path availability, network recovery and resiliency, profile-based accountabil-
ity, routing system scalability and quality. Our work is part of the intrusion and at-
tack/anomaly detection use case. Our role as an ECODE partner was to devise new
and innovative ways to use cognitive techniques such as supervised, semi-supervised or
unsupervised machine learning in our field, i.e. network anomaly detection.

1.4.3 Proposed architecture

Figure 1.5 exposes the paradigm change proposed by the ECODE project concerning
routing systems. The rationale is to improve existing routing and control lower-level data
collection and decision making with a cognitive engine. This cognitive engine would be
able to enable systems and network to learn about its own behavior and environment
over time and analyze problems, tune its operation and increase its functionality and
performances.
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Figure 1.5: High-level architecture of proposed ECODE routing system.

1.4.4 Summary

This thesis has been lead inside the ECODE project. This project is financed by the Eu-
ropean Commission. Its goal is to introduce machine learning capabilities inside routing
systems in order to improve their autonomy. It targets the whole functionality sets of
routing systems including network anomaly detection.

1.5 Dissertation outline

This dissertation is composed of five chapters:

• Chapter 2 addresses related work in unsupervised learning, network anomaly de-
tection and intrusion detection fields.

• Chapter 3 addresses the design of our unsupervised learning-based anomaly detec-
tion method.

• Chapter 4 exposes several techniques that process the results of our detection
method in order to ease the work of the network operator.

• Chapter 5 presents an evaluation of our algorithm on real traces.

• Chapter 6 concludes this dissertation by summarizing our contributions and propos-
ing several ideas to improve our proposal in the future.
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Chapter 2

Related work

This chapter introduces some related work previously done in the fields of unsupervised
machine learning and network anomaly and intrusion detection. The first section intro-
duces machine learning methods dedicated to unsupervised learning. The second sec-
tion then addresses network anomaly detection systems and intrusion detection systems.
These systems can be classified in two categories: knowledge based detection systems,
either using misuse detection or anomaly detection, and knowledge-independent or unsu-
pervised detection systems. Another classification of network anomaly detection systems
and intrusion detection systems is based upon the use, or lack of use, of machine learn-
ing technique. We will use this second distinction to present network anomaly detection
systems and intrusion detection systems.

Note: references are presented by chronological order inside each section or item.

2.1 Unsupervised machine learning

Unsupervised machine learning aims at exposing structure inside data. Several techniques
are commonly used in literature in order to perform unsupervised learning. A non ex-
haustive list of these techniques is: blind signal separation, neural network models and
clustering. We will present blind signal separation, neural network models and cluster-
ing in the next two sections. We put a special emphasis the technique that we chose:
clustering.

2.1.1 Blind signal separation

Blind Signal Separation (BSS) consists in extracting a set of signals from a set of mixed
signals with very few or no information on the nature of the signals. The standard prac-
tical use case of BSS is the cocktail party problem where one wants to extract the speech
of several persons in the room from several observations. Methods that can be used for
this goal include Independent Component Analysis, Principal Components Analysis, etc.
Independent Component Analysis (ICA) makes the assumption that signals to isolate
are independent. There is two main independence definitions: through minimization of
mutual information or through the maximization of non-Gaussianity. Principal Compo-
nent Analysis (PCA) [24, 25] is a mathematical procedure that maps a set of points to
a new sets of axis. The underlying idea is that many of the original axis are correlated.
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The method therefore aims at finding a reduced set of uncorrelated axis. The axis that
PCA extracts are called principal axes or principal components. These obtained principal
components are oriented according to the maximum variance direction in the data. The
principal components obtained by PCA are ranked by the amount of variance that they
capture. Furthermore, the set of principal components form an orthogonal basis. By
using PCA, one is thus able to perform dimensional reduction and project data in a more
meaningful space.

2.1.2 Neural networks

Neural networks are also used to perform unsupervised learning. The term neural net-
work actually has two different meanings: biological neural networks and artificial neural
networks. Biological neural networks are constituted of real biological neurons in the ner-
vous systems. Artificial neural networks are mathematical or computational models that
mimic the structure and/or functional aspects of biological neural networks. An artificial
neural network is constituted of interconnected artificial neurons. Artificial neural net-
works are thus able to model relations between inputs and outputs and to find patterns
in data. Among artificial neural network models, one can quote Self-Organizing Maps
(SOM) that build a discretized representation of the input space. Adaptive Resonance
Theory (ART) has also been used. ART is mainly used in form recognition. Its principle
is to compare expected observation to real input. If the input is too far from the expected
pattern according to a “vigilance parameter”, a new expected observation is added. In
our particular use case, a partition could be obtained by using clustering algorithms over
SOMs as presented in [26]. This partition would separate abnormal traffic from normal
one.

2.1.3 Clustering algorithms

Clustering algorithms aim at grouping instances similar between each other according
to a similarity measure between instances. Our presentation of clustering is split in two
parts. First, we will present several classic clustering algorithms. Then we will specifically
address the challenges of clustering high-dimensional data and the algorithms designed
to cope with these problems.

2.1.3.1 General purpose clustering algorithms

Clustering algorithms can be roughly classified into two main categories: hierarchical
clustering and partitional clustering.

Hierarchical clustering aims at building a hierarchy between clusters. Two strategies
are to be used: either agglomerative or divisive. Agglomerative hierarchical clustering
uses a bottom-up approach: each instance or group of instances is successively aggregated
with its closest neighbor. Divisive hierarchical clustering is a top-down strategy. At the
beginning of the procedure, the whole set of instances forms a single cluster 1 that is
separated into smaller instances down to each individual instance. The usual representa-
tion of the final result of these aggregative or divisive strategy is dendrogram (cf. Figure

1A cluster is a group of instances similar according to a similarity measure.
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2.1 2 and [27]). The dendrogram in Figure 2.1b is built by successively grouping simi-
lar atomic instances (e.g. the grouping between Canada (CAN) and USA), or grouping
atomic instances similar with previously grouped instances (e.g. the grouping between
Russia (RUS) on one hand, and China (CHN) and Japan (JPN) on the other hand). The
final partition of instances is built over the dendrogram by simply keeping the aggregated
instances at a specified level.
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Figure 2.1: Examples of dendrogram obtained from hierarchical clustering.

Partitional clustering is designed to build partitions on space in a single pass, i.e.
separate instances groups according to a similarity measure between instances. Many
algorithms have been proposed. Among these algorithms, one can quote k-means cluster-
ing algorithm [28] which aims at partitioning instances into a previously fixed number of
cluster k. Each instance is associated with a cluster center. The underlying hypothesis of
k-means is that every cluster is a circle or an ellipse (depending on the used distance and
property of data (normalization, zero-mean, etc.)). DBSCAN [29] is another clustering
algorithm that relies on the concept of density. Its parameters are the minimal number
of points in a cluster and the distance that defines the density threshold.

2.1.3.2 Clustering data in high-dimensional space

Clustering in high-dimensional data is a special use case of clustering where data to
be processed contains many dimension ranging from several dozen to thousands. This
amount of dimensions creates a new set of challenges called the “curse of dimensionality”.

2http://en.wikipedia.org/wiki/File:Hierarchical clustering simple diagram.svg
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According to Kriegel et al. [30], this so-called curse is actually constituted of 4 main
different problems.

• Multiple dimensions create problems very hard to comprehend. The high number
of dimensions makes it impossible to directly tabularize, visualize or enumerate the
whole feature space.

• Distance and neighborhood meaning decrease with the increase in dimensionality.
The relative distance of the farthest point and the nearest point converges to 0
when the dimensionality d increases. We thus have:

limd→∞
distmax−distmin

distmin
→ 0

In other words, when one consider a point, the discrimination between the clos-
est and the farthest neighbor become more and more tenuous as the number of
considered dimensions increases.

• A cluster groups objects that are related regarding their attribute’s values. However,
the relevance of each attribute may vary for each possible cluster. This problem is
known as the “local feature relevance”: different clusters might be found in different
subspaces, so that a global attribute filtering is inefficient.

• High dimensional data means a high number of attributes. Therefore, it is likely
that some attributes or some sets of attributes are correlated. Hence, clusters might
exist in arbitrarily oriented subspaces.

In order to cope with these challenges, several techniques have been introduced.
Kriegel et al. classify techniques for high-dimensional data in three categories: clustering
in axis-parallel subspaces, correlation clustering and pattern-based clustering. Clustering
in axis-parallel subspaces aims at finding clusters in axis-parallel subspaces. Correlation
clustering intends to find clusters in arbitrary oriented subspaces. Pattern-based clus-
tering targets clusters constituted of rows and/or columns. Each of these categories are
presented in each of the following parts.

Axis-parallel clustering Clustering in axis-parallel subspaces can itself be separated
into four subcategories: projected clustering, soft-projected clustering, subspace
clustering and hybrid clustering. Kriegel et al. and Parsons et al., in [31], also
separate top-down and bottom-up algorithms. Top-down algorithms try to find
clusters from the whole feature space while bottom-up algorithms first search clus-
ters in low-dimensional space and aggregate them to form global clusters. We will
not use this distinction to classify algorithms of this category and just use the four
subcategories listed above.

The first subcategory is projected clustering. As stated in [30], projected clustering
aims at “finding an unique assignment of points to subspace clusters”. Noise is also
taken into account by some algorithms. They use a dedicated distance function in a
clustering procedure applied on the whole space. PROCLUS [32] (improved later by
FINDIT [33] and SSPC [34]) and PreDeCon (subspace PREference weighted DEn-
sity CONnected clustering) [35] are all projected clustering algorithms. PROCLUS
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is a k-medoid-like 3 clustering algorithm. In the clustering phase, the subspace of
each medoid is determined by minimizing the standard deviation of the distance of
points in the neighborhood of the medoids to the corresponding medoid for each
dimension. The algorithm is able to detect noise as points too far from medoids.
FINDIT employs several heuristics that improve efficiency and accuracy. SSPC
adds further improvements that enhance accuracy by using domain knowledge in
the form of labeled objects and/or labeled attributes. PreDeCon applies DBSCAN
to the whole feature space. However, it uses a specialized distance that captures the
subspace of each cluster. In order to do so, the algorithm defines a subspace pref-
erence for each point that is determined through the variance of the points located
in the neighborhood of the considered point.

The second subcategory is soft-projected clustering. It presents a k-means-like ap-
proach that takes as parameter the expected number of clusters. It then tries to
optimize a function that guarantees a pertinent clustering result regarding the spec-
ified number of clusters by adjusting the attribute weights. The Locally Adaptive
Clustering (LAC) [36] and Clustering Objects in Subsets of Attributes (COSA) [37]
are both soft-projected clustering methods. LAC aims at finding k centroids and
k sets of d weights for each cluster (d being the number of dimensions). The algo-
rithm approximates k clusters by adjusting the centroids and weights. COSA uses
an approach similar to PreDeCon. It aims at building a matrix that contains, for
each point, a subspace preference. A simple clustering can then be used on the
matrix to build the global partition.

The third subcategory is subspace clustering. In [30], Kriegel et al. defines subspace
clustering as “aiming at finding all clusters in all subspaces of the entire feature
space”. The CLIQUE method [38] is the pioneering work in this subcategory. It
uses a grid-based algorithm and proceed in a bottom-up fashion to aggregate dense
unit. A dense unit is a part of the feature space, for one or several attributes, defined
by the grid, that is dense regarding a threshold. Figure 2.2a displays such a grid.
One can notice that each cell of this grid has a fixed size. We thus call grids used
by CLIQUE, fixed grids. MAFIA [39] is an incremental version of CLIQUE that
uses adaptive grids (cf. Figure 2.2b). In this type of grid, each cell dimensions are
determined by analyzing density along dimensions. Each cell therefore contains an
homogeneous density that is different in its neighbor(s). ENCLUS [40] is a variant
of CLIQUE that searches for several clusters instead of dense units.

SUBCLU [41] relies on DBSCAN [29] to find clusters in each subspace in a bottom-
up manner. From a general point of view, the global density threshold used by grid-
based algorithms or algorithms such as SUBCLU however induces a dimensional
bias: a low threshold that performs well in low-dimensional space will induce error
in subspaces of higher dimension and vice-versa. In order to cope with this problem,
Dimensionality UnbiaSed Cluster model (DUSC) [42] has been later introduced. In
[43], Liao et al. expose a grid-based clustering algorithm that copes with density
variability in feature space which can lead to nested clusters. Their algorithm uses
an Adaptive Mesh Refinement (AMR) technique that first applies a grid clustering

3A medoid is a value that represents the elements of a cluster or a subset of a set. Its value is always
one of the original set.
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(a) Fixed grid (b) Adaptive grid

Figure 2.2: Examples of grids.

method to the whole feature space. It then builds finer grids onto dense regions
in order to find nested clusters. Each node in the produced hierarchical tree is a
spatial subdomain of its father. Each node child represents a cluster located inside
the considered node. This algorithm is useful for highly irregular datasets. Figure
2.3 displays an example of several nested clusters and their associated AMR tree
containing several grids. In this particular case, a first grid, here called “grid 0”,
is applied over the whole the feature space. This grid contains two clusters. The
first one is subdivided again into “grid 1”. This particular grid does not contain any
clusters. The second cluster found in “grid 0” is then analyzed through “grid 2”. In
this grid, the algorithm finds two clusters that are analyzed through “grid 3” and
“grid 4”. These two grids however do not contain any other clusters. The tree on
the right part of Figure 2.3 displays the cluster “genealogy” or the cluster inclusions
obtained from the algorithm.

In [44], Akodjenou-Jeannin et al. propose a flexible grid method similar to k-means
in the sense that it needs to know the number k of cluster to find. Starting on a single
cell containing the whole feature space, it successively builds random hyperplanes
in the successive most dense cell in order to create two cells. This process stops
when M non-empty cells have been created. Their algorithm then builds a weighted
graph. Each edge weight represents the similarity between two cells. This similarity
takes into account both density and spatial similarity. The final partition is built
by removing the lowest weighted edges until k clusters remain.

The fourth and last subcategory is hybrid clustering. Hybrid clustering algorithms
do not aim at “finding an unique assignment of points to subspace clusters” neither
at finding all clusters in all subspaces. Density-based Optimal projective Clustering
(DOC) [45], MineClus [46, 47], Detecting Subspace cluster Hierarchies (DiSH) [48],
Hierarchical approach with Automatic Relevant dimension selection for Projected
clustering (HARP) [49], Support and Chernoff-Hoeffding bound-based Interesting
Subspace Miner (SCHISM) [50], FIlter REfinement Subspace clustering (FIRES)
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Figure 2.3: Examples of AMR.

[51] and Projected Clustering via Cluster Cores (P3C) [52, 53] can all be classified
as hybrid clustering algorithms. DOC uses a global density threshold defined by
the side-length w of standard hypercube and the number of point α located in the
hypercube. It also uses a third parameter β which specifies the balance between
the number of points and the dimensionality of a cluster. It is randomly initialized.
Each of its run may find a single cluster. If one wants to find k clusters, DOC
has to be run at least k times. MineClus follows a similar idea but proposes a
deterministic method to find an optimal projected cluster, given a sample point
seed. Mineclus addresses the problem as a frequent item set mining through a
modified frequent pattern tree growth. DiSH uses an approach close to PreDeCon
in terms of attribute weighting. It however uses a hierarchical clustering algorithm
that is able to find clusters with multiple inclusions. HARP is a single-link-like
clustering algorithm that uses a modified distance and does not produce a hierarchy
of subspace cluster. It successively merges points or clusters provided that the
resulting cluster displays a minimum number of relevant attributes. A relevance
index that takes into account the cluster size is thus introduced. SCHISM aims
at finding interesting subspaces instead of pertinent clusters. In order to achieve
this goal, it uses grid-like discretization of the feature-space and a depth-first search
with backtracking to find pertinent subspaces. FIRES first computes cluster search
in single dimensions. It then defines the similarity of clusters as the number of
intersecting points. A global partition can then be obtained by clustering these
values. P3C computes one-dimensional intervals that are likely to approximate
higher-dimensional subspace clusters. These intervals are then merged through an
APRIORI-like bottom-up search strategy. The search result is then refined and
the final output is a matrix that specifies the probability of membership of point
for each cluster. P3C thus allows both single and multiple clusters membership of
points.

Correlation clustering The second category defined in [30] is correlation clustering.
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The rationale of this category of clustering algorithms is that clusters can be found
inside subspaces where correlations between original attributes are removed. Such
subspaces are thus built on arbitrary-oriented axis. Many of the algorithms belong-
ing to this category use PCA. ORCLUS (arbitrarily ORiented projected CLUSter
generation) [54] and 4C (Computing Correlation Connected Clusters) [55] both use
PCA combined with other clustering algorithms (respectively k-means and density-
based) to tackle the considered problem. HiCO (HIerachical Correlation Clustering)
[56] uses a hierarchical approach according to a distance based on correlation di-
mensionality and subspace orientation. A final hierarchy of correlation clusters is
built through hierarchical density-based clustering. Another approach is adopted
by the algorithm CASH (Clustering in Arbitrary Sub-spaces based on the Hough
transform) [57]. Other mathematical tools have been used such as self-similarity
[58, 59, 60] and sampling [61, 62].

Pattern-based clustering The third category according to the classification of Kriegel
et al. is pattern-based clustering also called biclustering. A common representa-
tion for the data in a clustering problem is a matrix where rows represent objects
and columns attributes. Pattern-based clustering algorithms seek clusters of in-
stances/rows or/and attributes/columns while classical approaches like clustering in
axis-parallel subspaces and correlation clustering only attempt to group rows. The
term biclustering comes from the search of both similar row and similar columns.
Four subcategories of clusters seeked by pattern-based clustering or biclustering are
identified: constant biclusters, biclusters with constant rows or columns, biclusters
with coherent values and biclusters with coherent evolutions.

Constant biclusters are clusters where several objects have the same values for each
of them and for several attributes. The pioneering work for the search of this type
of clusters has been accomplished by Hartigan et al. in [63].

Biclusters with constant rows are constituted of several objects exhibiting a con-
stant value for several attributes (this value being different between the objects).
Biclusters with constant columns have the same value for one or several attributes
across several objects (the values may differ between attributes). In [64, 65, 66],
the authors tackle the search of this particular type of clusters.

Biclusters with coherent values exhibit a particular covariance between rows and
columns. The first work in this field has been realized by Cheng and Church [67].
The FLOC algorithm, which stands for FLexible Overlapped Clustering [68] and
CoClus [69] algorithm tries to find biclusters of this type. FLOC first chose several
seed-clusters that are further optimized by randomly removing or adding a row or
a column. CoClus can be described as a k-means-like biclustering algorithm.

Finally, biclusters with coherent evolution are clusters exhibiting correlation in the
way values change among all objects. In [70, 71], the authors try to find this type
of biclusters.

Table 2.1 summarizes this clustering algorithm classification and details each of the
four categories presented and their respective subcategories.
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Categories Subcategories Algorithms

Projected clustering
PROCLUS [32], FINDIT [33],
SSPC [34] and PreDeCon [35]

Soft-projected clustering LAC [36] and COSA [37]
Axis parallel

Subspace clustering
CLIQUE [38], MAFIA [39],

clustering ENCLUS [40] and SUBCLU [41]

Hybrid clustering
DOC [45], MineClus [46, 47],
DiSH [48], HARP [49], SCHISM [50],
FIRES [51] and P3C [52, 53]

Correlation PCA-based ORCLUS [54], 4C [55]
clustering Other HiCO [56], CASH [57]

Constant biclusters Block clustering [63]
Biclusters with constant

[64, 65, 66]
Pattern-based

rows or columns

clustering
Biclusters with δ-bicluster [67], FLOC [68]
coherent values and CoClus [69]
Biclusters with

OP-Cluster [71]
coherent evolution

Table 2.1: Clustering algorithm classification

2.1.3.3 Clustering evaluations

Many attempts have been conducted in order to compare and evaluate clustering algo-
rithms. In [30], Kriegel et al. group and classify many clustering techniques. The global
structure of our section 2.1.3.2 comes from this work. Clustering algorithm evaluation can
however be complicated to realize, especially over a single reference dataset. The main
problem being that some of these algorithms target different problems and therefore,
cannot be compared (e.g. bi-clustering and axis-parallel clustering).

Several evaluations of clustering algorithms exist in the literature. In [31], Parsons et
al. compare several clustering approaches and classify them according to their nature:
either top-down or bottom-up. They present CLIQUE, ENCLUS, MAFIA, CBF [72],
CLTREE [73], DOC [45], PROCLUS, ORCLUS, FINDIT, δ-Clusters [68] and COSA and
evaluate MAFIA and FINDIT. They use a different taxonomy than [30]: they do not
separate axis-parallel and arbitrary-oriented clustering algorithms, they instead consider
that “Subspace clustering algorithms localize the search for relevant dimensions allowing
them to find clusters that exist in multiple, possibly overlapping subspaces”. MAFIA
exhibits better overall performance than FINDIT. In [74], Muller et al. evaluate several
clustering algorithms. They present and test the following algorithms: CLIQUE, DOC,
MineClus, SCHISM, SUBCLU, FIRES, INSCY [75], PROCLUS, P3C and STATPC [76].
In [77], Moise et al. analyze and evaluate several axis-parallel clustering algorithms.
Following the taxonomy of [30], studied subspace clustering algorithms are MAFIA and
DiSH, projected clustering algorithms are PROCLUS, SSPC, HARP, MineClus, P3C,
PreDeCon and FIRES. They also include STATPC “which propose a statistical-based
approach to projected and subspace clustering”. They include several full-dimensional
clustering algorithms: k-means [28], EM [78], BAHC [79], DIANA [80], CLARANS [81]
and DBSCAN.

Table 2.2 presents each clustering algorithm evaluation work quoted above.
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Title Authors Reference Presented Evaluated

algorithms algorithms

[31]

CLIQUE, ENCLUS,
Evaluating Lance Parson, MAFIA, CBF,
Subspace Ehtesham Haque, CLTREE, DOC, MAFIA
Clustering Huan Liu PROCLUS, FINDIT
Algorithms ORCLUS, FINDIT,

δ-Clusters, COSA
Evaluating Emmanuel Müller,

[74]

CLIQUE, DOC,

All
clustering in Stephan Günnemann, MineClus, SCHISM,
subspace Ira Assent, SUBCLU, FIRES,

projections of high Thomas Seidl INSCY, PROCLUS,
dimensional data P3C, STATPC

[77]

k-means, DBSCAN,

All

Subspace and Gabriela Moise, BAHC, DIANA,
projected Arthur Zimek, CLARANS, EM,
clustering: Peer Kröger, MAFIA, DiSH,

experimental Hans-Peter Kriegel, PROCLUS, SSPC,
evaluation Jörg Sander HARP, MineClus,
and analysis P3C, PreDeCon,

FIRES, STATPC

Table 2.2: Clustering evaluations.

2.2 Network anomaly detection and intrusion detec-

tion

The work presented here reflects advances in designing network anomalies and intrusion
detection techniques. Approaches targeting the correlation or combination of network
anomaly detection systems such as [82], [83] or [84] are not presented here because they
intend to reuse results of network anomaly detection techniques instead of directly moni-
toring traffic measurements (either packet-based or flow-based). As such, their problem-
atic is located at a higher abstraction level.

2.2.1 Classic network anomaly and intrusion detection

This section addresses the two main classical approaches used by commercial and aca-
demic anomaly detection systems: misuse detection based on signatures and anomaly-
based detection.

A little reminder of notions addressed in chapter 1.1.2 is needed here. Anomaly-based
detection relies on the detection of a deviation from a normal state or profile. Network
anomaly detection represents the detection of network anomalies. The use of the“anomaly
detection” words in both terms introduces here confusion. These two terms shall not be
confused.

2.2.1.1 Misuse detection-based intrusion and network anomaly detection

Misuse detection-based systems detect anomalous events through comparison of occurring
events with a sets of anomaly signatures. The two most famous IDS or IPS relying on
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misuse detection are Snort and Bro [85]. Snort relies on packet inspection to detect
intrusions. Snort provides an up-to-date, well-documented, and tested set of rules or
signatures. Bro performs a state-full inspection of traffic in order to rebuild 5-tuple flows
(source and destination IP addresses, source and destination port numbers and protocol)
and to find intrusions among these flows. They both use signatures to detect and signal
events to network operators. URCA [86] aims at finding the root cause of an anomaly.
It can be plugged to any network anomaly detection algorithm. It then uses 10 features:
source and destination Internet Protocol (IP) addresses, source and destination port
numbers, input and output router interfaces, previous and next-hop AS numbers, source
and destination AS numbers. Identification of anomalous flows is realized by finding
flows sharing feature values that impact the used anomaly detection algorithm. Once
anomalous flows are identified, the algorithm builds several new features or coordinates.
These features are the average flow size in terms of packets, the average packet size in
number of bytes, for each of the 10 flow features, the entropy of the distribution of packets
per feature value and for each of the 10 flow features, the fraction of feature values in the
full link traffic that also appears in the root cause traffic. URCA then uses the feature
space constituted by all these coordinates to project both known anomalies and anomalies
to classify. It then uses hierarchical clustering to group unclassified anomalies with known
ones.

2.2.1.2 Anomaly detection-based network anomaly detection

In order to cope with unknown anomalies, researchers have designed anomaly detection-
based systems relying on the search of a deviation from a normal state.

In [87], Zhang et al present a unified framework for anomaly detection. They propose
to separate anomaly detection in two categories: systems using either temporal correlation
(among link or nodes) or spatial correlation in order to identify normal traffic. We will
follow the same classification.

• We subdivide temporal correlation methods into three families: methods relying
on forecasting, techniques relying on signal processing and systems using inner
characteristics of traffic and associated hypotheses. The first family of temporal
correlation methods associates anomalies with deviation from forecasted behaviors.
The standard techniques include the following models: Auto-Regressive Integrated
Moving Average or ARIMA models and deltoids [88]. An ARIMA model is noted
ARIMA(p,d,q). The values p, d and q are the autoregressive, integrated, and mov-
ing average orders of the three corresponding terms of ARIMA models. Famous
ARIMA models include Exponentially Weighted Moving Average, EWMA, which
actually is ARIMA(0,1,1) and linear exponential smoothing or Holt-Winters which
is equivalent to ARIMA(0,2,2). The seminal work in this family is [17] which ap-
plies Holt-Winters forecasting to byte counts. In [89], the authors apply several
ARIMA models on traffic-based sketches to detect anomalies. In their work, the
use of sketches is motivated by the need to avoid per-flow statistics and only use
ARIMA models on a few subspaces/sketches. In [90], Roughan et al. introduce
a correlation mechanism to use both SNMP and Border Gateway Protocol (BGP)
time-series in order to find anomalies. They respectively apply Holt-Winters and
EWMA over these data. In [91], Soule et al. use Kalman filters to extract normal
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traffic from the traffic matrix. They then use several other tools such as variance,
Cummulative Summation and Generalized Likelihood Ratio test, multi-scale anal-
ysis using variance and multi-scale variance shift. In [88], Cormode et al. introduce
novel algorithms to find significant changes in network stream data. They introduce
the concepts of deltoids which can measure absolute differences, relative differences
and variational differences inside network metrics time-series. In [92], the authors
use a non-Gaussian multi-resolution models applied to sketches in order to detect
anomalies on single-link traffic. Their correlation technique is here not spatial but
among sketches. This multi-resolution model detects changes in the short-time
correlation structure instead of volume changes detected by change-based anomaly
detection system. In [93], Brauckhoff et al. associate anomalies with a variation
on flow features distributions in two successive time bins. The variation is mea-
sured through the Kullback-Leibler divergence. The used flow features are source
IP address, destination IP address, source port number, destination port number
and flow size in packet. Once anomalies are detected, they are characterized with
association rule mining [94].

The second family of techniques in the temporal correlation category are relying
on signal processing. Barford et al. in [95] use wavelet filters to detect anomalies
on single-link network traffic. They first split traffic into three components (low,
medium and high frequency bands) and then find anomalies in medium and high fre-
quency bands by applying a threshold over the local deviation of variance. A great
number of work have also tried to use PCA [25, 24] in order to extract anomalous
traffic. As explained in section 2.1.1, PCA is an unsupervised learning technique
that aims at finding correlated signals. It uses linear combination of original axis
of a space to generate new axis in which each uncorrelated signals (called princi-
pal components) are successively projected by order of decreasing variance. The
characteristics of normal traffic can be captured by a fixed number of components
built by PCA. Anomalous traffic is then supposed to be located outside of these
components. Methods relying on several measurements made from different points
use spatial correlation to extract normal traffic. These methods are presented in
the next item. Techniques presented here use mathematical tools to create different
point of views from traffic captured on a single measurement point. They thus use
the correlation between these “artificial” points of view to extract normal traffic. In
[96], Brauckhoff et al. use a Karhunen-Loeve expansion to improve PCA in order
to take into account temporal correlations on single-link traffic. In [97], Kanda et
al. propose a PCA-based detector designed to work on single-link backbone traf-
fic. The used metric is packet counts. Their method has 4 stages. First, they
build N subparts of traffic through sketches using source IP addresses. Secondly,
they use sketches to build a second levels of N’ traffic subparts out of each of the
N traffic subparts. Thirdly, they apply PCA on N groups of N’ traffic subparts.
Fourthly, they identify anomalous source IP addresses by taking the intersections
of anomalous source IP addresses sets. They compare their algorithm with the one
of Dewaele et al. in [92] using ground truth provided by heuristics. They show
that their algorithm finds different anomalies from the ones found by Dewaele et
al. They also introduce an heuristic to automatically determine the number of first
components of PCA. They chose to use the number of component that allows them
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to capture 70% of the cumulative proportion of the first components. The 70%
threshold is empirically chosen.

In [87], Zhang et al. present and compare several methods from these two first
families: EWMA, Holt-Winters, Fourier analysis through Fast Fourier Transform
(FFT), Wavelet analysis as in [98] and temporal PCA. They find that ARIMA
and Sparsity-L1 are the best methods to respectively forecast traffic volumes and
inferences Origin-Destination flows (OD-flows) from traffic matrix.

The third family contains methods which detect anomalies by making hypothesis
over traffic flows nature. ASTUTE (A Short-Timescale Uncorrelated-Traffic Equi-
librium) presented in [99] relies on equilibrium properties over traffic flows. In the
ASTUTE model, flows crossing a link of interest are generated by a discrete-time
marked point process [100], where the mark process determines both the flow’s dura-
tion and its volume per time bin. Considered flows are standard 5-tuple flows. The
used equilibrium properties are the following: independence between flows charac-
teristics (start time, duration and volumes) and stationarity over time regarding the
distribution of the flow arrival process and the mark process. The former property
is backed by Barakat et al. in [101] and Hohn et al. in [102] while the latter is
experimentally verified on real traffic. ASTUTE is thus able to identify anomaly
that methods such as Kalman filters or Wavelet are unable to find.

• The other category of anomaly detection system relies on the spatial correlation of
traffic. The pioneering contribution in this category are the papers published by
Lakhina, Crovella et Diot in [18, 103, 104] on network-wide traffic anomaly detec-
tion. The rationale of this technique is that while anomalies only affect few links,
normal traffic has the same characteristics across links. Thus, by applying PCA
to the whole traffic matrix, the normal traffic characteristics are captured by the
first components extracted by PCA. The number of the first principal components
used that represent normal traffic is determined through careful traffic analysis.
The metrics or features successively used in these papers are: byte counts in [104],
packets counts, byte counts and IP flow counts in [103] and entropy values for distri-
butions of several features (source IP address, destination IP address, source port,
and destination port) in [18]. In [104], the authors show that this technique is able
to detect anomalies, identify anomalous OD-flows and quantify them in terms of
byte counts. In [18], they introduce an anomaly classification technique relying on
clustering that enables them to group similar anomalous OD-flows. In [105], Li
et al. extend this work by adding a sketch-based processing step that is capable
to identify anomalous IP flows. In [106], Chhabra et al. use a spatial correlation
method to process byte counts at two levels: first, between links on a router, and
second, between adjacent routers. This avoids the use of a central processing where
the traffic matrix is processed. Anomalies are detected by the generalized quantile
sets and false discovery rate, and are associated with outliers 4.

However, PCA exhibits several limitations. For example, “normal” principal com-
ponents can be poisoned and thus allow anomalies to stay undetected [7, 107, 108].

4An outlier belonging to a point set is a point isolated from the majority of the points of this point
set.
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Moreover, in [7], Ringberg et al. expose three other weaknesses of PCA-based
anomaly detection. First, the false-positive rate 5 is very sensitive regarding the
number of normal components. The lack of reliable heuristics to devise this number
of components increases the overall lack of robustness. Second, they state that PCA
effectiveness is very sensitive to the used traffic aggregation: input links, OD-flows
or ingress routers. Finally, they prove that anomalous flow identification relying on
PCA only is difficult because of the very nature of PCA. In [109], Rubinstein et al.
introduce ANTIDOTE in order to improve poisoning resilience. It uses a modified
version of the PCA-subspace method called PCA-Grid. Another attempt toward
the same goal is presented in [110]. Abdelkefi et al. use Principal Component
Pursuit and show that it is more robust than the classic PCA and the extension
presented in [96].

PCA is an unsupervised method per se (cf. section 2.1). In the case of anomaly
detection, and as stated in [7], the number of principal component that represents
traffic is a critical parameter. In [18, 103, 104], Lakhina et al. use an empirically
determined number of principal components. In [97], Kanda et al. use cumula-
tive variance captured by the first principal components as a criterion to find this
number. In the light of the sensitivity of PCA towards the number of principal
components, an unsupervised use of PCA would require heuristics (such as the one
used in [97]) to automatically determine the number of principal components. How-
ever, Ringberg et al. quote the cumulative variance captured by the first principal
components as a criterion to avoid. According to them, this heuristic shall not be
used because different networks exhibits different disparity. This result is consistent
with the conclusions of [97]. In fact, Kanda et al. used this criterion on the MAWI
dataset only. Cumulative variance may therefore be used to determine the number
of principal components when used traffic is consistent. This allows one to keep the
same threshold on the cumulative variance and thus use PCA in an unsupervised
way. We therefore choose to classify PCA-based systems as anomaly-based network
anomaly detection systems.

2.2.2 Machine learning applied to network anomaly detection

and intrusion detection

Work in the anomaly detection and intrusion detection fields have been trying to apply
machine learning in order to improve performance of classical approaches. The first of the
next three sections covers supervised network anomaly detection. Compared to network
anomaly detection, the intrusion field has had a much more prolific application of machine
learning. They embraced both supervised and unsupervised learning in order to build
intrusion detection algorithms.

Several papers provides comparison between such algorithms. In [111], Sadoddin et
al. provides a good introduction to machine learning applied to intrusion detection and
compares several algorithms (K-means, C-means, Expectation Maximization (EM), Self-

5The false positive rate is a statistical measure of the performance of a binary classification test. In
the network anomaly detection case, it is the ratio of the number of normal instances falsely classified as
anomalous over the total number of normal instances.
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Organizing Maps (SOM), Y-means, Improved Competitive Learning Network (ICLN)
[112]. This work also introduces the two possible modes of clustering techniques, indirect
and direct modes, which respectively are supervised mode and unsupervised mode. In
[113], Gogoi et al. survey outlier detection techniques applied to anomaly detection-
based intrusion detection. They address work using both supervised and unsupervised
approaches. They present work from different authors, among them [114], that we also
present later.

It is interesting to note that every intrusion detection technique presented here is
evaluated on the KDD dataset [115] (at the notable exception of [116] which targets
Address Resolution Protocol (ARP) traffic). The KDD dataset contains both network
and system call traces with ground truth labeled anomalies and intrusions. It thus allows
one to use both supervised and unsupervised techniques. The availability of such dataset
may explain the wide use of machine learning in the intrusion detection field. It also
provides a possible cause for the emergence of unsupervised techniques in the intrusion
detection field.

The next sections successively address supervised learning-based network anomaly
detection, supervised learning-based intrusion detection and unsupervised learning-based
intrusion detection.

2.2.2.1 Misuse and anomaly-based supervised network anomaly detection

Literature contains several examples of work applying machine learning to the network
anomaly detection problem. In [19], Shon et al. apply several machine learning techniques
to anomaly-based network anomaly detection systems. They use several techniques such
as Self-Organizing Feature Map (SOFM), Genetic Algorithms (GA), and Support Vector
Machine (SVM) in order to first build a profile of normal traffic and then detect novel
anomaly deviating from this profile. In [20], Duffield et al. demonstrate that a misuse
detection system using flow features and trained with Snort alarms can be as efficient as
Snort itself without the expensive payload inspection. In [117], Zi et al. use a modified
version of the k-means clustering algorithm called Modified Global K-Means (MGKM) to
characterize DDoS attacks. They first inspect traffic in order to select variables that will
be used for the clustering. The selected variables are entropy of source IP address and
port number, entropy of destination IP address and port number, entropy of packet type,
number of packets, occurrence rate of packet type (Internet Control Message Protocol
(ICMP), User Datagram Protocol (UDP), Transmission Control Protocol (TCP), SYN).
They then apply the MGKM algorithm over the KDD data set. Feature ranking is applied
on the clustering results knowing the expected result of the clustering algorithm. The
result from this step are then used to recalculate the clusters in a more efficient manner.
The system is thus able to find an optimal set of features that characterizes the targeted
anomaly (here DDoS).

The use of machine learning for both subcategories of network anomaly detection
(misuse and anomaly detection) proves that machine learning can be very useful in order
to automate the tuning of the previously exposed algorithm. However, as stated in 1.1.2,
they all rely on the availability of training data for either normal or anomalous traffic
which in both cases is difficult to obtain.
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2.2.2.2 Supervised intrusion detection

Many contributions in the intrusion detection field use supervised learning in order to
characterize both normal and anomalous traffics. The majority of work use a two steps
technique to proceed to supervised learning. They first train their algorithm in order to
build normal and anomalous profiles. Then, they apply the built profile to the dataset to
test. In [118], Kuang et al. apply an algorithm called Combined Strangeness and Isolation
measure K-Nearest Neighbor (CSI-KNN) on normal and anomalous training sets. In
[119, 120], the authors present a method called CCA-S (Clustering and Classification
Algorithm - Supervised) to incrementally build models of anomalous and normal traffic.
In [121], Burbeck et al. use a customized version of the clustering algorithm BIRCH [122]
to first built a model of normality and then incrementally update this model in order to
cope with normality changes. In [116], the authors train their algorithm composed of k-
means and ID-3 tree over normal ARP traffic and then identify anomalous behavior The
Audit Data Analysis and Mining (ADAM) presented in [123] applies a slightly different
method over the KDD dataset. Instead of using a two steps method relying on training
and testing on normal or anomalous labeled datasets, they use a three steps method:
they first train their normal models on anomaly-free data, then, they build anomalous
models by using the normal model as a negative over real data, and finally they test their
system on real traffic.

2.2.2.3 Unsupervised intrusion detection

The other axis of machine learning use for intrusion detection is their direct application
in the sense of [111], i.e. through unsupervised learning. The seminal work in this field
are the articles by Portnoy et al. [23] and Eskin et al. [124]. In [23], the authors build
a system that uses the unlabeled training data from KDD in order to train their system.
The anomalousness of each data segment is assessed by the hypothesis 1.2. This is
the first fundamental advance towards unsupervised training-independent IDS: it allows
their system to avoid the use of expensive-to-produce labels in order to work. They then
improve this first advance with a new system [124] that does not require training at all.
In [124], they compare three different algorithms, cluster based estimation, K-Nearest
Neighbor and one class SVM, to build partitions over test data on-the-fly.

In [125, 126], the authors also attempt to apply unsupervised technique to intru-
sion detection. In [126], Oldmeadow et al. adapt fixed-width clustering to time-varying
traffic characteristics in order to cope with traffic variability. They also introduce a fea-
ture weighting mechanisms based on manual inspection. In [125], Leung et al. modify
the pMAFIA [39] clustering algorithm (previously presented in section 2.1.3.2) to cre-
ate fpMAFIA (frequent pattern in pMAFIA) algorithm. They thus provides a greater
scalability at the expenses of accuracy.

In [114], Zhang et al. use outlier detection to find intrusion inside the KDD dataset.
They add an outlier detection capacity to the random forest clustering algorithm.
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2.3 Summary

Unsupervised learning techniques have been created and designed for a very long time.
They aim at extracting information from data with using little knowledge about its struc-
ture. Three family of such methods exists: blind signal separation, neural network models
and clustering. We present each of these methods in this chapter. We put a special em-
phasis on clustering since it is the the method that we later chose to use. The following
chapter further motivates this choice.

We also presented a non exhaustive picture of previously proposed network anomaly
detection algorithms. We classify these systems into two categories: temporal correlation-
based and spatial correlation-based. We also list several work that apply machine learning
techniques in the network anomaly detection field but also in the intrusion detection field.
Machine learning applications in the intrusion detection field are interesting in the sense
that contrary to network anomaly detection, they use unsupervised techniques.

The following chapter presents our own application of unsupervised learning to the
network anomaly detection field.

33



Chapter 3

Unsupervised network anomaly
detection

This chapter addresses the design of our network anomaly detection algorithm. We named
it UNADA which stands for Unsupervised Network Anomaly Detection Algorithm. As
previously exposed in sections 1.1.3 and 1.2, it aims at finding or mining anomalies inside
traffic without using any previous knowledge about its structure. In order to accomplish
this task, it relies on unsupervised learning and especially clustering and on the two
simple hypothesis presented in section 1.1.3.

The algorithm runs in three consecutive stages. Firstly, a pre-processing step is applied
on network traffic. During this step, a time series based change detection algorithm is
applied on several simple metrics such as number of bytes, packets or flows. Any time
slot flagged as anomalous is then processed through multi-resolution flow aggregation
and feature computation to build traffic features on aggregated flows. This first step
is depicted on the upper part of Figure 3.1 and inside the dotted frame with indice 1.
The unsupervised learning based detection algorithm is depicted on the lower part of
Figure 3.1 and is located inside the dotted frame with indice 2. This step begins in the
second stage, using as input the set of flows built by the first step. Concepts presented in
this section have been published or accepted in [127, 128, 129, 130, 131] and exposed in
ECODE deliverables D3.2 [132] and D3.3 [133]. The third step process anomalous flows
extracted by the second step and is detailed in the next chapter. This step is contained
inside the dotted frame with indice 2 on Figure 3.1.

• Section 3.1 describes change detection, flow aggregation and attribute computation
(part 1 in Figure 3.1).

• Section 3.2 exposes our unsupervised algorithm to detect anomalies (part 2 in Figure
3.1).

• Chapter 3.3 presents an evaluation of the computational time of our algorithm.
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Figure 3.1: High-level description of our approach.

3.1 Change-Detection, Multi-resolution Flow Aggre-

gation & Attribute computation

This first stage of UNADA aims at finding evidence of an occurring anomaly and in this
case, to process and format traffic in order to provide semantically interesting data for
the unsupervised detection step. The techniques described in this section are represented
on Figure 3.2.
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Figure 3.2: High-level description of our approach.

UNADA is designed to process single-link packet-level traffic. Our algorithm works
on traffic captured in consecutive time slots of fixed length, noted ∆T or ws. UNADA
first takes as input the whole traffic and tries to find evidences that an anomaly may be
occurring. In case of a detected anomaly, traffic is aggregated into flows through several
aggregation levels. Finally, several features or attributes are built in order to provide
insights on flow nature. The next three sections present these three steps.

3.1.1 Change detection

The first step of UNADA is the change detection step. To detect an anomalous time
slot, time-series Z i are constructed for simple traffic metrics such as number of bytes,
packets, and IP flows per time slot. Any generic change-detection algorithm F(.) based
on time-series analysis (cf. section 2.2.1.2) is then used on Z i, Z i being the time-series for
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the metric of index i and Z i
t being the value of the metric i for the tth time slot. At each

new time slot, F(.) analyzes the different time-series associated with each metric. time
slot t0 is flagged as anomalous if F(Zt0) triggers an alarm for any of the traffic metrics.

In our implementation, the change-detection algorithm F(.) used deltoids as they are
defined in [88].

3.1.2 Multi-resolution Flow Aggregation

Once an alarm has been raised by the change detection stage, multi-resolution flow ag-
gregation is applied on the traffic. IP flows can be aggregated at different flow-resolution
levels. The flexibility of our multi-resolution aggregation system allows us to use many
aggregation levels (like source Network Prefixes (l1,2,3: IPsrc/8, /16, /24) and destination
Network Prefixes (l4,5,6: IPdst/8, /16, /24) if needed.

3.1.3 Attribute building

The attribute computation step is depicted on the right of Figure 3.2. It takes as input all
packets and aggregated flows in the flagged time slot. Its goal is to generate meaningful
attributes that will further allow us to separate normal traffic from anomalous one.

We propose a framework to generate attribute over traffic. Its design aims at providing
modularity and easy modification.

The remaining of the section is structured as follows: we first define a metric, then,
we explain how metrics are built and finally, we describe the technique used to create
attribute over metrics.

3.1.3.1 Metric definition

We define two types of metrics over a set of packets. The first type of metrics is called
simple metric. It can only contain a single value. This type of metric can, for example,
be used to store the total number of packet in the set. The second type is a distribution
metric, it contains a distribution i.e., a structure that stores several values and their
respective number of occurrences. Distribution metric can be used to store the source IP
addresses.

3.1.3.2 Metric building

We identify two types of data inside network packets: meta-data and data contained in
packets. Meta-data is data that represents packets characteristics that are not embedded
in the payload, i.e.: number of packets in the set, size of the packet etc. Meta-data is
described through a simple metric. Table 3.1 gives two examples of simple metrics related
to metadata.

Metric name Type of metric
nb packets Simple metric
size of packets Simple metric

Table 3.1: Metrics built on meta-data.
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The second type is the actual data contained in the payload of the packet. Inside
the payload, we separate each field of a packet header in two categories: first, fields that
can only take two values (n = 2), which usually mean true or false. This type of field is
represented as a simple metric. This simple metric counts the number of packets in the
set that have the specific field set to true. The second type of field can have a number
of values n > 2. In this case, each field is represented by a distribution metric. Table 3.2
presents the metrics used to characterize the packet payload.

Metric name Type of field in header Type of metric

src addr Int32 Distribution metric
dest addr Int32 Distribution metric
src port Int Distribution metric
dest port Int Distribution metric
nb icmp packet Bit Simple metric
nb echorequestreply packet Bit Simple metric
nb syn packet Bit Simple metric
nb rst packet Bit Simple metric

Table 3.2: Packet fields and their associated metrics used by our algorithm.

3.1.3.3 Attributes generation over packet sets

Once metrics are built over aggregated flows 1, the UNADA algorithm builds attributes on
top of them. Each distribution (simple or distribution) generate intermediate attribute(s)
that are further used to build attributes.

A simple metric can be transformed into a single intermediate attribute called value
which contains the value of the simple metric. A distribution metric generates two
intermediate attributes. The first one is nb of elements. It represents the number
of different values in the distribution. The second intermediate attribute generated is
ratio bigst occur over nb occur. As its name states, it represents the ratio between the
biggest occurrence in the distribution and the total number of occurrences. This inter-
mediate attribute can be related to entropy: a high entropy will give a ratio value close
to 0 while a low entropy is equivalent to a value close to 1.

Used attributes are listed in table 3.3. The attribute nb destinations is built from
the intermediate attribute nb of elements of the distribution metric dest addr. The
same goes for every other attributes with different simple or distribution metrics. The
attributes presented in table 3.3 are the ones used throughout this manuscript.

It is interesting to notice that when flows are not aggregated, some of these attributes
have a very low semantic value. For example, if one considers traffic flows aggregated
according to the destination IP address, the attribute nb destinations is of poor interest.
One can also note adding a new attribute on a new metric is extremely simple thanks to
the modularity and expressiveness of our framework.

1In order to reduce the amount of processing, metrics are first built on atomic flows. Metrics of
aggregated flows are later obtained by fusionning metrics belonging to flows aggregated together.

37



Attribute Description Intermediate Metric used

attributes used

nDests # different nb of elements dest addr
destination IP addresses

nSrcs # different nb of elements src addr
source IP addresses

nPkts/ # packets divided by # nb of elements nb packet, dest port
nDiffDestPort different destination port
nDiffSrcAddr/ # different source IP nb of elements src addr, dest addr
nDiffDestAddr address divided by

# different destination
IP address

nICMP/nPkts # icmp packets value nb icmp packet,
divided by # packets nb packets

nEchoReqReply/ # ICMP echo-request or value nb echorequestreply packet,
nPkts reply packets divided nb packets

by # packets
nSYN/nPkts # syn packets value nb syn packet, nb packets

divided by # packets
nRST/nPkts # rst packets value nb rst packet, nb packets

divided by # packets
bgstDestPort/ # occurence of most ratio bigst occur dest port
tNbOccuDestPort occuring destination over nb occur

port divided by total
# of destination port

Table 3.3: Attributes of aggregated flows derived from traffic.

3.1.4 Summary

The first step of our algorithm is a pre-processing step which perform several successive
tasks. We first try to find anomalous behaviors by looking at traffic volumes time-series.
Then in case of suspected anomaly, we use a multi-resolution aggregation scheme to build
aggregated traffic flows. Finally, we create several attributes on traffic to characterize the
previously built flows.

Once a time slot has been flagged and attributes have been built, UNADA tries to find
anomalies inside the traffic. In order to achieve this goal, it uses unsupervised learning
techniques.

3.2 Finding anomalies with unsupervised learning

Following change-detection, multi-resolution flow aggregation and attribute generation,
our algorithm uses unsupervised learning technique to extract anomalies. Our problem
can be formulated like this: considering the hypotheses in 1.1.3, we want to extract normal
and anomalous traffic parts. Let Y = {y1, ..,yF} be the set of F aggregated-flows in the
flagged slot considering a specific aggregation. We note the number of hosts H . The
value of F is thus directly linked to H through F ≤ H . Each flow yf ∈ Y is described by
a set of A traffic attributes or features (cf. section 3.1.3.3 and table 3.3). Let xf ∈ R

A be
the corresponding vector of traffic features describing flow yf , and X = {x1, ..,xF} the
complete matrix of features, referred to as the feature space. The unsupervised detection
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starts after the steps presented in section 3.1 and aims at assessing abnormality of each
of yf flow using unsupervised learning.

Section 3.2.1 addresses how anomalous and normal traffic parts look like in the fea-
ture space. Section 3.2.2 explains why we chose to create our own clustering algorithm.
Section 3.2.3 details our clustering approach. The unsupervised learning-based algorithm
is then further detailed in the two final sections: section 3.2.4 exposes splitting through
subspace clustering algorithm and section 3.2.5 addresses combining through Evidence
Accumulation and Inter-Clustering Result Association.

3.2.1 Traffic representations in feature space

This section details what are the representations of anomalous and normal traffic parts
in the feature space. It is organized in two parts: we detail how the normal traffic is
represented inside the feature space, and then, we address the anomaly representations.

3.2.1.1 Normal traffic representations in feature space

Section 3.1.2 states that the used traffic representation instances are aggregated flows.
The hypothesis 1.2 is hence refined in this context:

Hypothesis 3.1 The majority of aggregated flows are normal traffic.
Which is equivalent to: Y% of aggregated flows are normal with
Y > 50%.

Hypothesis 3.1 states that the majority of the aggregated flows is normal. The hypoth-
esis 1.1 says that anomalies are statistically different from normal traffic. Considering
the whole feature space, normal traffic can then be viewed as one or several cluster(s)
containing at least half of the aggregated traffic flows. This hypothesis is refined for our
experiments in section 3.2.6 and is further discussed in section 6.2.1.

3.2.1.2 Anomalies representations in feature space

This section aims at describing how anomalies are represented inside the feature space
in terms of clusters and outliers. Anomaly characteristics and their impact on anomaly
representation inside the feature space is detailed in table 3.4. Traffic anomalies can
be roughly grouped in three different classes, depending on their spatial structure and
number of impacted IP flows: 1-to-1 anomalies, 1-to-N anomalies and N-to-1 anomalies.
1-to-1 anomalies are point-to-point anomalies such as DoS or port scan. 1-to-N anomalies
involve many IP flows from the same source towards different destinations; examples
include network scans and spreading worms/virus. On the other hand, N-to-1 anomalies
involve IP flows from different sources towards a single destination; examples include
DDoS attacks and flash-crowds.

The distributed nature of anomalies have a great impact on their representations
inside the feature space. In fact, 1-to-1 or point-to-point anomalies include a single flow
and will therefore always constitute a single outlier no matter which aggregation levels li
is used. Distributed anomalies (i.e. 1-to-N or N-to-1 ) behave differently. If, for example
a network scan targets several machines located in T /24 prefixes which are themselves
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contained in a single /16 prefix. Then, if one looks at traffic aggregated by IPsrc/8 or
/16 or /24, there will be a single flow from the source of the scan. This flow will be
represented inside the feature space as an outlier. If one looks at traffic aggregated by
IPsrc/8 or /16, he will also observe a single flow targeting all the machines located in
the same /16 prefix. This flow will also be an outlier. However, if one aggregates traffic
through IPsrc/24, the scan will be constituted by T flows, each targeting one of the T
/24 prefixes. The network scan will therefore be represented as a cluster of T points or
flows.

Clusters, by definition, contain several points and thus can be considered as a greater
evidence of anomalousness than outliers. Using IPsrc key permits to find cluster rep-
resenting 1-to-N anomalies and thus highlight them, while N-to-1 anomalies are more
easily detected with IPdst key. The choice of both keys for clustering analysis ensures
that even highly distributed anomalies, which may possibly involve a large number of IP
flows, can be represented as clusters or outliers.

Anomaly
Distributed Aggregation

Representa-
Impact on

nature type
tion in

traffic features
feature space

ICMP DoS
1-to-1 IPsrc/∗ Outlier nSrcs = nDsts = 1, nICMP/nPkts > λ1,

IPdst/∗ Outlier nEchoReqReply/nPkts > λ2

SYN DoS
1-to-1 IPsrc/∗ Outlier nSrcs = nDsts = 1, nSYN/nPkts > θ1,

IPdst/∗ Outlier bgstDestPort/tNbOccurenceDestPort > θ2
DDoS

N-to-1
IPsrc/24 (l3) Cluster nDsts = 1, nSrcs > β1,

ICMP to IPsrc/16 (l4) Outlier nICMP/nPkts > β2.
several @IP/24 IPdst/∗ Outlier nEchoReqReply/nPkts > β3,
SYN DDoS

N-to-1
IPsrc/24 (l3) Cluster nDsts = 1, nSrcs > δ1

to several IPsrc/16 (l4) Outlier nSYN/nPkts > δ2.
IP/24 IPdst/∗ Outlier bgstDestPort/tNbOccurenceDestPort > δ3
SYN DDoS attack

1-to-N
IPsrc/∗ Outlier

nSrcs = 1, nDests > α1,response to IPdst/24 (l6) Cluster
nRST/nPkts > α2several @IP/24 IPdst/16 (l7) Outlier

Port scan 1-to-1
IPsrc/∗ Outlier nSrcs = nDsts = 1,
IPdst/∗ Outlier nSYN/nPkts > ν1

Network scan to
1-to-N

IPsrc/∗ Outlier
nSrcs = 1, nDests > ρ1, nSYN/nPkts > ρ2,

several @IP/24
IPdst/24 (l6) Cluster

bgstDestPort/tNbOccurenceDestPort > ρ3IPdst/16 (l7) Outlier
Spreading worms

1-to-N
IPsrc/∗ Outlier

nSrcs = 1, nDsts > η1, nSYN/nPkts > η1,to several IPdst/24 (l6) Cluster
bgstDestPort/tNbOccurenceDestPort > η2@IP/24 IPdst/16 (l7) Outlier

Table 3.4: Anomalies detailed according to distributed nature, representations in feature
space and impact on traffic features. Anomalies of distributed nature 1-to-N or N-to-1
involve several /24 (sources or destinations) addresses contained in a single /16 address.

Table 3.4 describes the impact each anomalies on several traffic attributes or features.
All the thresholds used in the description are introduced to better explain the impact
of an anomaly over some of these features. DoS/DDoS attacks are characterized by
many packets sent from one or more source IPs towards a single destination IP. These
attacks generally use particular packets such as TCP SYN or ICMP echo-reply, echo-
request, or host-unreachable packets. Port scans involve packets from one source IP to
a single destination IP, and are usually performed with SYN packets. Network scans
are characterized as flows containing packets from one source IP to a single destination
ports towards several destinationIPs, and using SYN packets. Spreading worms differ
from network scans because they are directed towards a small specific group of ports for
which there is a known vulnerability to exploit (e.g. Blaster on TCP port 135, Slammer
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on UDP port 1434, Sasser on TCP port 455). Some of these attacks can use other types
of traffic, such as FIN, PUSH, URG TCP packets or small UDP datagrams.

3.2.2 Why we create our own clustering recipe ?

The unsupervised learning technique that we will use need to be able to:

• Detect both outliers and clusters in the feature space.

• Use the original easy-to-understand attributes in order to ease the work of network
operators.

According to our state of the art in section 2.1, three techniques are available. Tech-
niques of the Blind Signal Separation extract hidden signals in several mixed relying on
different hypotheses like correlation (PCA) or independence (ICA). Such techniques use
linear combinations between dimensions or attributes to extract correlated or uncorre-
lated signals. Since we want to keep easy-to-understand attributes, we shall avoid this
family of techniques that use linear combinations of the original features. Techniques
belonging to the neural network family like self-organizing maps do not have a clear and
established corpus of methods to extract clusters and outliers from feature space despite
work targeting this goal have been published like in [26]. On the other hand, clustering
techniques explicitly try to group similar instances and thus fit perfectly our needs.

Among the clustering techniques exposed in 2.1, axis-parallel clustering methods such
as PROCLUS, MineClus or MAFIA are the ones that best suit our constraints since they
are designed to build clusters and keep original attributes.

Chronologically, we first quickly prototype unsupervised learning in Matlab 2. We test
several classic algorithms like the Matlab built-in k-means and a freely available Matlab
implementation of DBSCAN 3. We established that these techniques are not suited for
clustering in high-dimensional data, but work well in low-dimensional spaces. At this
point, two options are available to us: either re-use these results to build partitions for
the whole feature space using our own algorithm or use any of the techniques exposed in
section 2.1. We chose the first solution.

There are several reasons that explain this choice. First, the vast majority (if not
all) of the algorithms previously exposed are implemented inside the ELKI framework
[134] or the WEKA framework [135]. These frameworks aim at easing the use of machine
learning algorithms for non-specialists by providing simple interfaces to many machine
learning techniques. They are both implemented in Java. On the other hand, our tool is
implemented in Ocaml 4. This choice has been motivated by OCaml features: conciseness
strong typing, type inference, multi-paradigm programming (functional, imperative and
class-oriented) and the fact libpcap 5 bindings already exist. A more complete advocacy
for the use of Ocaml can be found in [136]. OCaml to Java bindings are possible through
CamlJava 6. However, the use of Java introduces a potential performance problem.

2http://www.mathworks.fr/products/matlab/index.html
3https://code.google.com/p/dmfa07/downloads/detail?name=DBSCAN.M
4http://caml.inria.fr/
5http://www.tcpdump.org/
6http://forge.ocamlcore.org/projects/camljava/
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Moreover, such algorithm would have appeared to our code as a black box and thus hard
to debug (if needed) since we have limited knowledge about their internal implementation.
A solution to these problems is to re-implement the empirically determined best fitted
clustering technique in OCaml but this represents a huge amount of work.

On the contrary, the re-implementation of the DBSCAN algorithm in OCaml (while
using the MATLAB implementation that we worked on before as blueprint), and the
programming of some simple techniques to process its results represents a smaller amount
of work.

We therefore decide to build our own system that would use the good performance
of the DBSCAN algorithm in low-dimensional spaces in a splitting step as exposed in
section 3.2.4 and, on top of this, combine these clustering results with simple techniques
based on the notion of clustering ensemble [137] as addressed in section 3.2.5.

We however think that the algorithms presented in section 2.1 could be of great
interest in order to improve scalability issues (cf. section 6.2.2).

3.2.3 General presentation

UNADA is based on clustering techniques applied to the feature space X. X contains F
rows, one for each of the aggregated flows in the flagged time slot. Each row is composed
of A values that represent the A traffic features. The objective of clustering is to partition
a set of unlabeled samples into homogeneous groups of similar characteristics or clusters,
based on a measure of similarity. Samples that do not belong to any of these clusters are
classified as outliers. Our particular goal is to identify both those clusters and outliers.
The most appropriate approach to find outliers is, ironically, to properly identify clusters.

We have developed a divide and conquer clustering approach, using the notions of
clustering ensemble [137] and multiple clustering combinations. The idea is novel and
appealing: why not taking advantage of the information provided by multiple partitions
of X to improve clustering robustness and identification of clusters and outliers ? A clus-
tering ensemble P consists of a set of multiple partitions Pi produced for the same data.
Each of these partitions provides a different and independent evidence of data structure,
which can be combined to construct a global partition that reflects natural groupings,
clusters, and outliers. There are different ways to produce a clustering ensemble. We
use Sub-Space Clustering (SSC) to produce multiple data partitions, doing density-based
clustering in N different sub-spaces Xn of the original space X. We refer the reader to
the left part of Figure 3.3 to better understand this approach. Once these N partitions
have been obtained, we apply a method of our own design in order to combine them and
thus build a single general partition over the whole feature space. This method is located
on the right of Figure 3.3.

3.2.4 Splitting with Sub-Space Clustering

In order to use unbiased attribute values for clustering, we normalize X into Xnorm.
Each of the N sub-spaces Xn ⊂ Xnorm is obtained by selecting k features from the
complete set of A attributes. To deeply explore the complete feature space, the number
of sub-spaces N that are analyzed corresponds to the number of k-combinations-obtained-
from-A. Each partition Pn is obtained by applying DBSCAN [29] to sub-space Xn. The
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Figure 3.3: High-level scheme of the unsupervised learning technique used

choice of the clustering algorithm is motivated by the fact that the number of anomalies
is partially linked to the number of found clusters (cf. anomaly representations in section
3.2.1). Clustering algorithms that need an alleged number of clusters, such as k-means,
are therefore only able to find a predetermined number of anomalies. However, such
number is impossible to determine empirically because of the inner unpredictable nature
of network anomaly. DBSCAN, by not needing a-priori difficult to set parameters such as
the number of clusters to identify, thus perfectly fits our needs. DBSCAN is a powerful
clustering algorithm that discovers clusters of arbitrary shapes and sizes [138], relying
on a density-based notion of clusters: clusters are high-density regions of the space,
separated by low-density areas. Results provided by applying DBSCAN to sub-space Xn

are twofold: a set of pn clusters {Cn
1 , C

n
2 , .., C

n
pn} and a set of qn outliers {on1 , on2 , .., onqn}.

To set the number of dimensions k of each sub-space, we take a very useful property of
monotonicity in clustering sets, known as the downward closure property (cf. property
3.1).

Property 3.1 If a collection of elements is a cluster in a k-dimensional space,
then it is also part of a cluster in any (k− 1) projections of this
space. [38]

This property directly implies that, if there exists any interesting evidence of density
in Xnorm, it will certainly be present in its lowest-dimensional sub-spaces. Using small
values for k provides several advantages: firstly, doing clustering in low-dimensional spaces
is more efficient and faster than clustering in bigger dimensions. Secondly, density-based
clustering algorithms such as DBSCAN provide better results in low-dimensional spaces
[38], because high-dimensional spaces are usually sparse, making it difficult to distinguish
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between high and low density regions. Finally, clustering multiple low-dimensional sub-
spaces provides a finer-grained analysis, which improves the ability of UNADA to detect
anomalies of very different characteristics. We shall therefore use k = 2 for SSC. The
number of subspaces N is equal to k-combinations-obtained-from-A or

(

k
A

)

. This thus
gives:

N =

(

k

A

)

=
A!

k!(A− k)!

=
A!

2!(A− 2)!

=
A(A− 1)(A− 2)...(A− (A− 2))(A− (A− 1))

2(A− 2)...(A− (A− 2))(A− (A− 1))

=
A(A− 1)

2

In our case, the number N of subspace Xn is N = A(A−1)
2

.

3.2.5 Combining step

Having produced the N partitions, the question now is how to use the information pro-
vided by the partitions. We here present the two strategies that we devised in order to
achieve this goal. This step is depicted on the right of Figure 3.3.

3.2.5.1 Evidence Accumulation

A possible answer is provided in [139], where authors introduced the idea of Evidence
Accumulation Clustering (EAC). EAC uses the clustering results of multiple partitions Pn

to produce a new inter-patterns similarity measure which better reflects natural groupings.
The underlying assumption in EAC is that patterns belonging to a “natural” cluster are
likely to be co-located in the same cluster in different partitions. The rationale of EAC is
the same for outliers: patterns that are outliers in one subspace are likely to be outliers
in other subspaces. The principles of EAC have been published in [129, 130].

We shall adapt the EAC algorithm for our particular problem of unsupervised anomaly
detection. For doing so, let us think about the particular structure of any general anomaly.
According to section 3.2.1, an anomaly may consist of either outliers or small-size clusters,
depending on the aggregation level of flows in Y.

We implement two different EAC methods to isolate small-size clusters and outliers:
EA for small-Clusters identification (EA4C), and EA for Outliers identification (EA4O).
Algorithm 1 presents the pseudo-code for both methods. In EA4C, we assign a stronger
similarity weight when patterns are assigned to small-size clusters. Taking the member-
ship of pairs of patterns to the same cluster as weights for their association, N partitions
are mapped into a F × F similarity matrix S, such that S(f, g) contains the similarity
between patterns (here flows) f and g. The weighting function wd(nbn(d)) used to update
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Algorithm 1 EA4C & EA4O for Unsupervised Anomaly Detection

1: Initialization:
2: Set similarity matrix S to a null F × F matrix.
3: Set dissimilarity vector D to a null F × 1 vector.
4: for n = 1 : N do

5: Update S(f, g), ∀ pair {xf ,xg} ∈ Cd and ∀Cd ∈ Pn:

6: wd ← e
−γ (nbn(d)− nbpDBS)

F

7: S(f, g)← S(f, g) + wk
N

8: Update D(f), ∀ outlier of ∈ Pn:

9: wn ← F
(F − nbmax

n ) + ǫ

10: D(f)← D(f) + dM(of , C
max
n )wn

11: end for

S(f, g) at each iteration n takes bigger values for small values of nbn(d). nbn(d) is the
number of flows inside the dth cluster which contains the pair {xf ,xg} located in subspace
Xn. We thus have 1 ≤ d ≤ pn, pn being the number of cluster in partition Pn. wd(nbn(d))
goes to zero for big values of nbn(d). Note that if a pair of patterns {xf ,xg} is assigned
to the same cluster in each of the N partitions then S(f, g) = 1, which corresponds to
maximum similarity. The parameter nbpDBS specifies the minimum number of flows
that can be classified as a cluster by the DBSCAN algorithm. The parameter γ permits
to set the slope of wk(nbn(k)).

In the case of EA4O, we define a dissimilarity vector D where the distances from all
the different outliers to the centroid of the biggest cluster identified in each partition Pn

are accumulated. We shall use Cmax
n as a reference to this cluster. The idea is to clearly

highlight outliers that are far from the normal-operation traffic in the different partitions,
statistically represented by Cmax

n as stated in section 3.2.1. The weighting factor wn takes
bigger values when the size nbmax

n of Cmax
n is closer to the total number of patterns F ,

meaning that outliers are more rare and become consequently more important . The
parameter ǫ is simply introduced to avoid numerical errors (ǫ = 1e−3). Finally, instead of
using a simple Euclidean distance, we compute the Mahalanobis distance dM(of , C

max
n )

between the outlier and the centroid of Cmax
n .

The Euclidean distance between two points p = (p1, p2, ..., pn)
T and q = (q1, q2, ..., qn)

T

is :

DE(p, q) =
√

(q1 − p1)2 + (q2 − p2)2 + · · ·+ (qn − pn)2 =

√

√

√

√

n
∑

i=1

(qi − pi)2 (3.1)

The Mahalanobis distance of a vector x = (x1, x2, x3, . . . , xN )
T is

DM(x) =
√

(x− µ)TS−1(x− µ) (3.2)
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where :







µ = (µ1, µ2, µ3, . . . , µN)
T : the vector containing the mean of the considered

values along each N dimensions
S : the covariance matrix.

(3.3)
Figure 3.4 highlights the difference between Euclidean and Mahalanobis distances.

The Mahalanobis distance takes into account the variance of instances along a dimension.
Its value is small when points are spread along the considered dimension (cf. Figure 3.4a).
Corollary, the Mahalanobis distance is bigger when the majority of the points are more
concentrated in the feature space (cf. Figure 3.4b). While in both cases, i.e. in Figure
3.4a and 3.4b, the Euclidean distance stays the same.
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Figure 3.4: Euclidean vs. Mahalanobis distance as a measure of dissimilarity.

In the final step, any clustering algorithm can be applied to matrix S or to vector
D to obtain a final partition of Xnorm that isolates both small-size clusters and outliers.
As we are only interested in finding the smallest-size clusters and the most dissimilar
outliers, the detection consists in finding the flows with the biggest similarity in S and
the biggest dissimilarity in D. This is simply achieved by comparing the values in S
and D to a variable detection threshold. This threshold is to be further tuned by the
operator in order to obtain a satisfying trade-off between True Positive Rate (TPR) and
False Positive Rate (FPR).

3.2.5.2 Inter-Clustering Results Association

However, by reasoning over the similarities between patterns (here flows), EAC introduces
several potential errors. A first possible error is linked to the use of a wrong parameter
in a sensitive clustering algorithm over S values. Furthermore, the use of a threshold
over S and/or D can decrease the system performance in case of a wrong value used.
Another potential error in the EA4C algorithm, is due to its algorithm. Let us consider
two flow sets or clusters Cd and Ce. If the cardinality of these flow sets is close and
if they are present in a similar number of sub-spaces, then, EA4C will produce a very
close similarity value for all patterns in both flow sets. They will then likely be falsely
considered as belonging to the same cluster. This possibility is to be considered very
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seriously as it can induce a huge error: different anomalies will be merged together in
a single global cluster in P and will then likely be wrongly identified and, even more
detrimental to our system, wrongly characterized.

In order to avoid the previously exposed sources of error, we devise another way of
combining clustering results obtained from sub-spaces: Inter-Clustering Results Associa-
tion. The rationale of this new method is to address the partition combination problem
in terms of cluster of flows and outlier similarities instead of pattern (or flow) similarity.
Hence, we shift the similarity measure from the patterns to the clustering results (clus-
ters and outliers). The underlying idea is straightforward: identify clusters or outliers
present in different sub-spaces that contain the same flows. The problem can then be
split in two sub-problems: correlate clusters through Inter-CLuster Association (ICLA),
and correlate outliers through Inter-Outlier Association (IOA). These concepts have been
published in [131].

In each case, cluster similarity (ICLA) or outlier similarity (IOA), a graph is used
to express similarity between either clusters or outliers. Each vertex represents a cluster
or an outlier in any sub-space Xn and each edge represents the fact that two connected
vertices, and hence, clusters or outliers, are similar.

Let CS be the cluster similarity measure between two clusters Cd and Ce:

CS(Cd, Ce) =
|Cd ∩ Ce|

max(|Cd| , |Ce|
(3.4)

where |C| is the cardinality of the cluster C, and Cd ∩ Ce the intersection of Cd and
Ce.

Each edge in the cluster similarity graph used for ICLA between two clusters Cd and
Ce means CS(Cd, Ce) > tICSim. tICSim is the threshold on Inter-Cluster Similarity.
tICSim optimal value is further empirically evaluated on real network traffic (cf. section
5.2.3.3). IOA uses an outlier similarity graph built by linking every outlier to every other
outlier that contains the same pattern.

We now need to devise a technique to analyze the similarity graphs. Let’s first look
at ICLA. The problem definition states that we need to find clusters found in different
subspaces Xn that contain same flows sets. Considering the cluster similarity graph, we
need to find vertex sets where every vertex is linked to every other vertices. In graph
theory, a clique in an undirected graph G = (V,E), is defined as a subset C of the vertex
set V where C ⊆ V , such that for every two vertices in C, an edge connects the two
considered vertices. The searched vertex sets in our use case are thus the cliques inside
cluster similarity graphs. Concerning IOA, the rationale is the same. The only difference
is that similarity is processed over a single pattern/flow. This means that we do not use
a similarity threshold for the outlier similarity graph. The previously exposed relation
between clusters sets and cliques also applies here to outliers sets and cliques in the outlier
similarity graph.

These cliques could be easily extracted from cluster and outlier similarity graphs by
a simple heuristic that would use a maximum clique search algorithm. We could launch
several successive execution maximum clique search algorithm and remove every edges
of each found maximum clique from the considered similarity graph. This would allow
us to find every maximum cliques inside each similarity graphs. However, the maximum
clique search problem NP-complete [140]. Existing solution are thus too slow for our
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application. We then make the hypothesis that a vertex can only be part of a single
clique. The rationale behind this hypothesis is that it allows us to use a greedy algorithm
to find maximum non-intersecting cliques inside similarity graphs. Such greedy algorithm
are much faster than classic algorithm.

We verify the pertinence of use of such greedy algorithms by verifying the high proba-
bility of verification of the previously proposed hypothesis over real data graphs obtained
from several runs of our algorithm over real packet traces. First, we show that a ma-
jority of connected component inside similarity graphs are also cliques. In graph theory,
connected component of an undirected graph are subgraphs where every vertex pair is
connected through a path. This guarantees that every vertex located in a connected com-
ponent belongs to exactly one clique which is the considered connected component. We
analyze cluster and outlier similarity graphs generated by several execution of UNADA.
Our algorithm is thus applied upon the traffic traces used for sensitivity evaluation (i.e.
one trace by month from January 2001 to December 2006 of the MAWI repository [4], cf.
section 5.2.3). We here use two aggregation levels: source IP address with /24 (l3) and
destination IP address with /24 (l6). We thus obtain two graphs for each aggregation lev-
els used for every time slot flagged as anomalous by the change-detection step. UNADA
therefore build four graphs: cluster similarity graph for l3, cluster similarity graph for l6,
outlier similarity graph for l3 and outlier similarity graph for l6. Figure 3.5a displays the
proportion of connected components that are also cliques for each of the four generated
graphs. It clearly shows that an overwhelming percentage of connected components are
also cliques. One can note that connected components in the outlier similarity graphs
(the two bar chart on the left) are always cliques. This phenomenon is due to the binary
nature of outlier similarity. Outliers contain exactly one flow. A vertex representing an
outlier is thus either similar or different from any vertex of a connected component in out-
lier similarity graphs. This first analysis guarantees us that a vast majority of connected
components are also cliques. Every point in these connected components therefore only
belongs to a single clique. This verifies our initial hypothesis.

Second, we study the case of connected components which are not cliques. The classi-
cal solution would be to use exhaustive search of cliques inside the connected component
to find maximum cliques. As said in previous paragraphs, this solution is not possible
because of its complexity. We therefore run a greedy algorithm over each connected com-
ponent that is not a clique and analyze the ratio of point contained in the found clique
over the number of point in the considered connected component. Figure 3.5b is built
upon data extracted from the dataset used in section 5.2. It shows that the mean ratio
of the number of vertices in the maximum clique found inside each connected component
over the number of vertices of the considered connected component is slightly over 0.85. It
allows us to assess that, even if a connected component is not a clique, the vast majority
of its vertices are captured by the maximum clique found by our greedy algorithm.

The first of these two analyses verifies that the hypothesis quoted above (a vertex
inside a similarity graph belongs to a single clique) exhibits has a very high probability
of realization. The second analysis addresses the scenario where this hypothesis is not
verified. This analysis proves that even if a connected component is not a clique per se,
our algorithm manage to capture a vast majority of its vertices in a clique.

Finally, similar flow sets are extracted from cliques found inside similarity graphs.
Such flows sets are also called traffic segments. For cluster similarity graphs, flow sets
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Figure 3.5: Proportion of connected components who are also cliques over connected
component inside similarity graphs (a) and proportion of vertices in biggest clique inside
a connected component over number of vertices in the same connected component when
the considered connected component is not a clique inside similarity graphs (b).

contained in each traffic segments are the intersection of all the flow sets present in each
clusters of a clique. The same rationale is applied to outlier similarity graphs. The only
difference is that flow sets of traffic segment extracted from outliers contain only one
flow. We therefore do not use intersection of flow sets for cliques extracted from outlier
similarity graphs. Flows that do not belong to, neither traffic segments of clusters, nor
traffic segments of outliers, are considered as noise. They are thus not further processed
by our algorithm since we cannot asses their normality or abnormality.

3.2.6 Normal traffic representation redefinition

In the light of the clustering technique internals exposed in sections 3.2.3, 3.2.4 and
3.2.5, and in order to ease the automation of the anomaly detection process, we redefine
the representation of the normal traffic in the feature space defined in hypothesis 3.1 as
follows:

Hypothesis 3.2 The majority of aggregated flows are normal.
These normal flows form a single cluster accounting for at least
Y% of aggregated flows.

The downward closure property also allows us to extend the definition of the nor-
mal traffic representation addressed in section 3.2.1. Since we now assume that normal
traffic is represented by one cluster containing at least half of the F flows, the property
guarantees us that this cluster will also be present in each Xn subspaces. We therefore
enforce that this property is verified at two points in our algorithm and thus derive two
hypothesis from the previous one.
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Hypothesis 3.3 In each subspace Xn, the biggest cluster (in terms of number of
aggregated flows) must contain at least Y% of aggregated flows.

Hypothesis 3.4 In each feature space, the biggest traffic segment (in terms of
number of aggregated flows) must account for at least Y% of the
total aggregated flows number.

If either one of these hypotheses is not verified, we abort the analysis and resume
the execution of UNADA on the next time slot. The consequences of this hypothesis are
discussed in section 6.2.1.

3.2.7 Summary

Our algorithm uses a novel clustering technique to extract anomalous flows from the whole
traffic. Anomalies and normal traffic have specific representations inside the feature space.
According to the hypothesis 1.1 and 3.2, normal traffic is always a single cluster accounting
for at least half of the aggregated flows, anomalies, on the other hand, can be represented
as outliers or clusters according their distributed nature and the used aggregation level.
The clustering technique used relies on the notion of clustering ensemble. It applies the
DBSCAN algorithm into several subspaces of the original feature space to produce several
partitions. These partitions are then combined to build a global partition.

The analysis of the computational time presented in the next section is then critical
in order to asses the scalability of UNADA for real-world use.

3.3 Computational time analysis

This section provides insights in the behavior of our algorithm regarding the computa-
tional time. We analyze the Computational Time (CT) of UNADA. The SSC-EA/Inter-
Clustering Results Association (ICRA)-based algorithm performs multiple clusterings in
N(A) low-dimensional sub-spaces Xn ⊂ Xnorm, A being the number of attributes used.
These multiple computations impose scalability issues for on-line detection of attacks in
very-high-speed networks. Two key features of the algorithm are exploited to reduce
scalability problems in number of features A and the number of aggregated flows F to
analyze. Firstly, clustering is performed in very-low-dimensional sub-spaces, Xn ∈ R

2,
which is faster than clustering in high-dimensional spaces [138]. Secondly, each sub-space
can be clustered independently of the other sub-spaces, which is perfectly adapted for
parallel computing architectures. Parallelization can be achieved in different ways: us-
ing a single multi-processor and/or multi-core machine, using network-processor cards 7

and/or Graphic Processor Unit (GPU) capabilities, using a distributed group of machines,
or combining these techniques. We shall use the term “slice” as a reference to a single
computational entity. We first expose an insight on UNADA execution time and speedup
through parallelism, and then, we provide a computational analysis on the clustering time
of our algorithm.

7http://www.tilera.com/products/platforms
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3.3.1 UNADA execution time analysis

The UNADA implementation is made in OCaml. We use the Functory library [141] to im-
plement parallel distributed clustering of the N subspaces. This library provides a generic
interface and allows the final user to easily switch between sequential execution, locally
parallelized execution between several cores or processors on a single machine (called
“Cores” in Functory) and parallelized execution on several machines (called “Network”
in Functory). The “Network” execution mode uses two executables: one managing the
processing called “Master” and one processing the data called “Worker”. The “Network”
execution mode includes three different scenarios: same executables between “Master”
and “Worker”, different executables but same version of OCaml and different executables
and different versions of OCaml. The closer the “Master” and the “Worker” executables
are (depending on the OCaml version and the source code), the easier for OCaml to
serialize data to be transfered between master and worker. These three scenarios offer
different features to the user according to his experimental setup.

In our case, we use the network setup with different executables between master and
worker. A first machine uses an executable that runs the UNADA algorithm and manages
the clustering step. Another machine clusters the data through a very simple executable
when the first one needs to do so. We choose to use two different executables for several
reasons. First, UNADA uses many packages and some are manually built libraries such
as Admd (cf. section 5.2.1). The machine running the “Worker” executable being used
by someone on a daily basis, we want to avoid useless experimental libraries installation.
Second, the use of a different executable between the master and the worker, allow us
to modify the master executable without updating the “Worker” code. This is especially
important for debugging tasks. The “Worker” machine that proceed to the clustering is
a desktop machine constituted of an Intel i7 860 of 4 cores with Hyperthreading, and of
8GB of RAM.

Figure 3.6 shows the execution time proportions between source and destination ag-
gregated flows clustering time and other processing time according to the number of used
slice or processes. The execution time is defined as the processing of the time slot from
the 1st to the 15 th second of the trace of January 1st 2009 of the MAWI repository
[4]. The clustering time of source aggregated flows is greater than the clustering time of
destination aggregated flows for any number of used process. This is caused by the fact
that, for this particular time window, the number of source aggregated flows is greater
than the number of destination aggregated flows: 8995 to 6160. This figure clearly shows
that clustering is the most time-consuming task of the UNADA algorithm. It is therefore
pertinent to focus our computational time analysis on clustering time.

Figure 3.7 details the original and normalized clustering time for several executions
using one to eight slices. The theoretical curve represents the optimal speed-up: the
nominal clustering time (sequential clustering of the N subspaces) divided by the number
of process used. The speed-up is very close to the theoretical value for the four first
points. This proves that the parallel clustering on several slices is useful. However,
several observations can be made. First, there is a little difference for the four first
points. This can be explained by the fact that the processor may become less efficient
when more and more processes are used. Second, the speedup after the fourth point (i.e.
when we use more than four processes) is far from what is expected. the most probable
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Figure 3.6: Proportion of execution time for source aggregated flows clustering (vertical
stripes), destination aggregated flows clustering (diagonal stripes) and other processing
(horizontal stripes) regarding the number of slice (processes) used.

reason for this behavior is the inability of Hyperthreading to actually provide two fully
working cores out of a single one. The slight measured speedup may be caused by the
reduced idle time between atomic tasks caused by Functory’s communications. In fact, if
UNADA uses more than four processes, once a job is finished on one of the four processes,
any other job can immediately be processed on the free process, while it is not the case
if the program only processes four or less tasks at a time.
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Figure 3.7: Clustering time and normalized clustering time as a function of number of
processes used.
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Figure 3.8: Computational Time as a function of the number of features and number of
flows to analyze. The number of aggregated flows in (a) is F = 10000. The number of
features and slices in (b) is A = 20 and S = 190 respectively.

3.3.2 Clustering time simulation

We here analyze the clustering time of UNADA. This analysis has been published in [127].
We use a large number of aggregated flows, F = 104, and use two different numbers of
slices, M = 40 and M = 100. The analysis is done with traffic from the WIDE network,
combining different traces to attain the desired number of flows. To estimate the CT of
SSC for a given value of A and M , we proceed as follows: first, we separately cluster each
of the N = A(A−1)/2 sub-spaces Xn, and take the worst-case of the obtained clustering
time as a representative measure of the CT in a single sub-space, i.e., CT(XSSCwc

norm ) = max i

CT(Xn). Then, if N 6 M , we have enough slices to completely parallelize the SSC
algorithm, and the total CT corresponds to the worst-case, CT(XSSCwc

norm ). On the contrary,
if N > M , some slices have to cluster various sub-spaces, one after the other, and the
total CT becomes (N//M + 1) times the worst-case CT(XSSCwc

norm ), where // represents
integer division.

Figure 3.8 depicts the CT of the SSC-based algorithm, both (a) as a function of
the number of features A used to describe traffic flows and (b) as a function of the
number of flows A to analyze. Figure 3.8a compares the CT obtained when clustering
the complete feature spaceXnorm, referred to as CT(Xnorm), against the CT obtained with
SSC, varying A from 2 to 29 features. The first interesting observation from Figure 3.8b
regards the increase of CT(Xnorm) when A increases, going from about 8 seconds for A = 2
to more than 200 seconds for A = 29. As we said before, clustering in low-dimensional
spaces is faster, which reduces the overhead of multiple clusterings computation. The
second paramount observation is about parallelization: if the algorithm is implemented
in a parallel computing architecture, it can be used to analyze large volumes of traffic
using many traffic descriptors in an on-line basis; for example, if we use 20 traffic features
and a parallel architecture with 100 slices, we can analyze 10000 aggregated flows in less
than 20 seconds.

Figure 3.8b compares CT(Xnorm) against CT(XSSCwc
norm ) for an increasing number of
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flows F to analyze, using A = 20 traffic features and M = N = 190 slices (i.e., a
completely parallelized implementation of the SSC-based algorithm). As before, we can
appreciate the difference in CT when clustering the complete feature space vs. using
low-dimensional sub-spaces: the difference is more than one order of magnitude, inde-
pendently of the number of flows to analyze. Regarding the volume of traffic that can be
analyzed with this 100% parallel configuration, the SSC-based algorithm can analyze up
to 50000 flows with a reasonable CT, about 4 minutes in this experience. In the presented
evaluations, the number of aggregated flows in a time slot of ∆T = 20 seconds rounds
the 2500 flows, which represents a value of CT(XSSCwc

norm ) ≈ 0.4 seconds. For the A = 9
features that we have used (N = 36), and even without doing parallelization, the total
CT is N×CT(XSSCwc

norm ) ≈ 14.4 seconds.

3.3.3 Summary

We first use the OCaml implementation of UNADA to experimentally prove that cluster-
ing is by far the most time consuming task of our algorithm and thus, the prime concern
in order to study the scalability of our algorithm. We then demonstrate that parallelism is
possible and greatly improves the computational time of UNADA. We also show that our
algorithm displays a good scalability regarding number of flows and number of attributes.

3.4 Summary

In this chapter, we have presented our unsupervised anomaly detection algorithm. UN-
ADA uses two hypotheses: the anomalous traffic is statistically different from the normal
one and the normal traffic is bigger than the anomalous one. Our work relies on these
hypotheses to design an unsupervised learning algorithm able to isolate anomalous flows
from normal ones. We state that both normal traffic and anomalous traffic display very
specific and different characteristics in the feature space and can therefore be separated.
We developed a novel approach based on clustering that produces a global partition for
the whole feature space. Our algorithm uses two successive steps to build this global
partition: it first splits the feature space into many subspaces in order to build reliable
partitions. It then combines these partitions into a single global one.

Finally, the computational time of our algorithm is theoretically and empirically mea-
sured. UNADA scales reasonably well regarding the number of flows and the number of
attributes. Our algorithm can thus be distributed with a very good speedup.

Once anomalies are extracted, a post-processing step is needed in order to reduce
the workload of the operator. This step is addressed in the next chapter and aims at
reducing the number of anomalies, ranking anomalies by dangerousness and characterizing
anomalies.
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Chapter 4

Anomaly post-processing

The unsupervised clustering step exposed in chapter 3, allows us to extract anomalies
from a feature space X obtained from F aggregated flows according to an aggregation
level li. However the potential number of detected anomalies can be high. The danger
is here to overwhelm the operator with a storm of alarms. A post-processing step is
thus crucial to help the operator to prioritize its own work towards the most dangerous
anomalies. A more general help shall also be provided to the operator concerning tedious
tasks such as investigation on anomaly nature. Unfortunately, at this point, our algorithm
does not provide any method to cope with these problems.

We thus propose a three steps post-processing technique that reduces the amount of
work provided by the operator. First, we reduce the overall number of found anomalies
by correlating anomalies extracted from aggregated flows obtained for different aggrega-
tion levels li. Second, we provide a technique that allows the operator to prioritize its
work through ranking anomalies by dangerousness. Third, we present heuristics to build
anomaly signatures that spare to the operator the anomaly analysis. Each of these steps
are depicted by Figure 4.1.

Anomaly
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Figure 4.1: High-level scheme of the anomaly post-processing step.
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4.1 Anomaly correlation

In the previous chapter, we showed that our unsupervised algorithm is capable of ex-
tracting anomalies from flows aggregated according to a specific aggregation level li. Our
algorithm may be used on several different aggregation levels and will thus generate a
huge number of alarms. The interrogation that arises here is: why not trying to correlate
anomalies extracted from flows obtained from different aggregation levels li in order to
reduce the number of alarms while improving overall reliability ? We therefore follow this
rationale by obtaining several clustering results, each of them built from several feature
spaces related to different aggregation levels, and devising a strategy to correlate anoma-
lies extracted from these clustering results. This anomaly correlation method has been
published in [131].

In order to correlate anomalies found in different aggregation levels, we define two
unique anomaly characteristics: its source and its destination. We refine this definition by
associating an anomaly source with its source IP address set and an anomaly destination
with its destination IP address set.

Let SimIP@(S
1
IP@1, S

2
IP@2) be the similarity between two IP address sets S1

IP@ and
S2
IP@:

SimIP@(S
1
IP@, S

2
IP@) =

|S1
IP@ ∩ S2

IP@|
max(|S1

IP@| , |S2
IP@|)

(4.1)

where |S| is the cardinality of the set S.
Two anomalies T1 and T2 and their associated source IP address set, S1

srcIP@ and
S2
srcIP@, and destination IP address set, S1

dstIP@ and S2
dstIP@, are similar if the two follow-

ing equations are true:

SimsrcIP@(S
1
srcIP@, S

2
srcIP@) > tTSAddrSim (4.2)

SimdstIP@(S
1
dstIP@, S

2
dstIP@) > tTSAddrSim (4.3)

where tTSAddrSim is the threshold on address set similarity.
In other words, two anomalies are similar if both their sources and destinations are

similar regarding a threshold called tTSAddrSim.
In this work, we only correlate anomalies detected from two types of aggregation: IP

source aggregation and IP destination aggregation. We hence avoid correlating anomalies
located in the same aggregation level types (e.g. l1 and l2), that would be potentially
contained in each other. Moreover, we only use the /24 aggregation level. Both of these
choices are made in order to reduce the amount of processing. The used aggregation
levels are thus l3 and l6 (cf. aggregation levels definition in section 3.1.2). Section 6.2.3.1
provides prospectives concerning the use of more aggregation levels.

The final set of correlated anomalies is obtained from each couple of similar anomalies.

4.2 Anomaly ranking

In order to increase its own efficiency, a network operator analyzing occuring anomalies
needs to prioritize its work towards the most dangerous anomalies. In the field of network
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anomaly detection, the more an anomaly is dangerous, the more its mitigation is criti-
cal. Thus, task prioritization shall be realized by ranking anomalies according to their
dangerousness.

After the anomaly correlation step, many anomalies have been detected and some have
also been correlated. Correlated anomalies provide us with a prima facie evidence of the
anomalies hierarchy regarding their dangerousness. In fact, if an anomaly appears as such
within several aggregation levels, it means that its flows are significantly different from the
normal traffic in each of these aggregation levels, and thus, potentially dangerous in each
of them. Such anomalies can therefore be considered as more dangerous than anomalies
that are not correlated. This binary classification between correlated and uncorrelated
anomalies, provides us a simple scheme of a possible anomaly dangerousness ranking.

In order to further improve this ranking, we introduce two other anomaly character-
istics: its number of packets and its number of bytes. We thus build a dangerousness
index that uses these two characteristics. We actually do not use the absolute number
of packets and bytes but the proportion of traffic belonging to this anomaly in terms of
number of packets and bytes.

Let DI be the Dangerousness Index built according to the three previously exposed
criteria: detection in multiple feature space, proportion of packet number, proportion of
byte number.

DI(Anom1) = C ∗ (P (#pkts) + P (#bytes)) (4.4)

where :















C : number of feature space(s) aggregation level(s) where the anomaly has
been detected

P (#pkts) = #pkts in anomaly
#pkts in time−slot

P (#bytes) = #bytes in anomaly
#bytes in time−slot

(4.5)
This formula defines a basic dangerousness criterion which is the mean between the

proportion of traffic belonging to the considered anomaly in terms of number of packets
and the proportion of traffic belonging to the considered anomaly in terms of number of
bytes. The Dangerousness Index of uncorrelated anomalies uses this basic formula. The
Dangerousness Index of correlated anomalies is then obtained by simply multiplying this
base value by the number of time the considered anomaly has been correlated. This step
is designed to reflect the potential of dangerousness of an anomaly.

From a general point of view, the biggerDI(Anom1), the more dangerous the anomaly
Anom1. The Th threshold in Figure 4.1 is a threshold on the DI value for the considered
anomaly. This method has been partially published in [131].

4.3 Automatic anomaly characterization

At this stage, the algorithm has identified and ranked several anomalies constituted by a
set of traffic flows in Y far out the majority of the traffic. The network operator can thus
choose which anomalies should be processed first. However, the manual anomaly analysis
task remains to be done. We here propose a technique to extract semantically interesting
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information about anomalies through filtering rules and signatures. This technique has
been published in [130].

The first task is to automatically produce a set of K filtering rules fk(Y), k = 1, .., K
to correctly isolate and characterize anomalous flows. On one hand, such filtering rules
provide useful insights on the nature of the anomaly, easing the analysis task of the net-
work operator. On the other hand, rules can be combined to construct a signature of
the anomaly, which can be used to detect its occurrence in the future, using a tradi-
tional signature-based detection system. Even more, this signature could eventually be
compared against well-known signatures to automatically classify the anomaly [86, 142].

4.3.1 Rule building

In order to produce filtering rules fk(Y), the algorithm apprehends anomaly representa-
tion, cluster or outlier, inside the whole feature space. We define two different classes of
filtering rule: absolute rules FRA and relative rules FRR.

4.3.1.1 Relative rules

Relative filtering rules are used in the characterization of both anomalous traffic segments.
They depend on the relative separation between anomalous and normal-operation flows.
Basically, if the anomalous flows are well separated from the normal clusters in a certain
partition Pn built on a certain subspace Xn, then the features of the corresponding sub-
space Xn are good candidates to define a relative filtering rule.

A relative rule defined for feature a and the Yg flow set has the form (|| is the logical
OR operator):

FRR(Yg, a) = {∀yf ∈ Yg ⊂ Y : xf (a) < λ||xf(a) > λ} (4.6)

In other words, a filtering rule FRR is defined for a flow set Yg on attribute a, Yg

being subset of the global flow set Y. This filtering rule specifies that for each flow yf

belonging to Yg, the value of attribute a for this particular flow yf will be greater or
lower than a threshold λ.

We shall also define a covering relation between filtering rules. Let FR1
R(Yg, a) and

FR2
R(Yg, a) two filtering rules (|| is the logical OR operator):

FR1
R(Yg, a) = {∀yf ∈ Yg ⊂ Y : xf (a) < λ1||xf(a) > λ2} (4.7)

FR2
R(Yg, a) = {∀yf ∈ Yg ⊂ Y : xf (a) < λ3||xf(a) > λ4} (4.8)

We say that:

Rule FR1
R(Yg, a) covers rule FR2

R(Yg, a).
⇔ FR2

R(Yg, a) ⊂ FR1
R(Yg, a)

⇔ λ1 > λ3||λ2 < λ4

(4.9)

In others words, let’s define two filtering rules FR1
R and FR2

R. FR1
R specifies that the

flow values for attribute a are lower than λ1 (resp. greater than λ2). FR2
R specifies that

58



the flow values for attribute a are lower than λ3 (resp. greater than λ4). FR1
R covers

FR2
R if λ1 is greater than λ3 (resp. λ2 is lower than λ4).
If two or more rules from different partitions Pn overlap (i.e., they are associated to

the same feature), the algorithm keeps the one that covers the rest.
The λ thresholds are built using data from the feature space. Let us consider a relative

rule with a threshold λ1 regarding a single attribute a. The λ1 value is at half-distance
between the representation of the normal traffic (a single cluster) and the representation
of the abnormal traffic (i.e. either a cluster or an outlier). We actually use the mean of
each representation. We thus take the mean of the attribute values for the considered
attribute a for all the flows located in each representation. We then determine λ1 by
taking taking the point located at half-distance between the two means.

4.3.1.2 Absolute rules

Contrary to relative rules, absolute rules do not depend on the separation between normal
and anomalous flows. They instead correspond to the presence of dominant features in
anomalous flows. They are built upon every feature a for which no relative rule have
been built.

An absolute rule for a certain feature a characterizing a certain flow set Yg has the
form (|| is the logical OR operator):

FRA(Yg, a) = {∀yf ∈ Yg ⊂ Y : xf (a) = λ} (4.10)

One can also say that an absolute rule FRA is defined for a flow set Yg on attribute
a, Yg being subset of the global flow set Y. This absolute rule specifies that for each flow
yf belonging to Yg, the value of attribute a for this particular flow yf is equal to λ.

For example, in the case of an ICMP flooding attack, the vast majority of the associ-
ated flows use only ICMP packets, hence the absolute filtering rule {nICMP/nPkts = 1}
makes sense, nICMP being the number of ICMP packets and nPkts being the number of
packets.

4.3.2 Signature building

Once rules have been built, we intend to format them in order to ease the understanding
by the network operator. In order to do so, we devise a method to rank relative rules.
This section covers the signature building that uses as input the absolute and relative
rules previously found.

4.3.2.1 Ranking relative rules

In order to construct a meaningful and simple-to-understand signature of the anomaly,
we have to devise a procedure to rank and select the most discriminant filtering rules.
Absolute rules are important, because they define inherent characteristics of the anomaly.
As regards relatives rules, their relevance is directly tied to the degree of separation
between normal and anomalous flows. We rank the degree of separation of anomalous
traffic segments to the normal clusters using the well-known Fisher Score (FS), and select
the top-K ranked rules. The FS measures the separation between clusters, relative to
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the total variance within each cluster. Given two clusters C1 and C2, the Fisher Score
for feature a can be computed as:

F (a) =
(x̄1(a)− x̄2(a))

2

σ1(a)2 + σ2(a)2

where x̄d(a) and σd(a)
2 are the mean and variance of feature a in cluster Cd.

The more a traffic segment is far from the normal traffic, the more the behavior of its
flows deviates from “normality”. Furthermore, the more the behavior of anomalous flows
is consistent inside a considered traffic segment, the more they are to be considered as
dangerous. The same apply to normal flows. By taking into account variance of both
normal and anomalous flows, the Fisher Score perfectly suits the relative rule ranking
task.

4.3.2.2 Combining rules

To finally construct the signature, the absolute rules and the relative rules are merged
into a single inclusive predicate, using the covering relation in case of overlapping rules.
Signatures thus include both relative and absolute rules in a compact way.

4.4 Summary

This chapter addresses several techniques that we developed in order to process anomalies
after their discovery. We first reduce the amount of extracted anomalies by correlating
anomalies obtained from feature spaces built upon different aggregation levels li. We then
reuse this result and two other simple anomaly characteristics to build a dangerousness
index that allows us to rank anomalies. We finally present the characterization method
that builds a detailed signature for each anomaly that tremendously help the operator in
understanding the nature of the threat. This whole set of technique eases and reduces
the work of the network operator.

These different techniques are further partially detailed in chapter 5 through a use
case where UNADA is applied to a real network traffic trace.
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Chapter 5

Evaluation

The evaluation of a network anomaly detection algorithm is a critical step to assess the
relevance and efficiency of the algorithm design. It is the step that allows authors and
readers to assess the interest of a proposed method by revealing its shortcomings and
advantages. This chapter addresses this problematic.

In this chapter, we evaluate the ability of our algorithm to detect anomalies located in
real traffic by using traffic traces from the public MAWI repository of the WIDE project
[4]. The WIDE operational network provides interconnection between different research
institutions in Japan, as well as connections to different commercial ISPs and universities
in the U.S. The traffic repository consists of 15 minutes-long raw packet traces collected
daily since 1999. The network traffic we shall work on consists of traffic from one of the
trans-pacific links between Japan and the U.S. captured at two samplepoints named B
and F.

In order to correctly assess our algorithm behavior, we run UNADA in an offline
manner on the MAWI dataset. We first present an example of an execution of UNADA
over a single time slot in order to help the reader to apprehend rationales and principles
of our technique. We then carry out a more thorough analysis of our UNADA on subsets
of the MAWI repository while using ground truth from the MAWILab dataset [83].

Unless specified otherwise, the UNADA parameters used in the next sections are the
following ones : ws (or ∆T ) = 15s, epsDBS (DBSCAN′s parameter for neighborhood) =
0.15, nbpDBS (DBSCAN′s parameter for neighborhood) = 4, tICSim (cf; section 3.2.5.2) =
0.85 and tP ropP tsNormC (or Y, cf. section 3.2.6) = 0.6.

5.1 Single detailed case study: one time-slot in one

trace in MAWI dataset

In order to ease the understanding of our algorithm for the reader, we expose the results
of several processing steps of UNADA: from the combining step to the characterization
step.

This section presents several results of an execution of UNADA over a single time
slot. We use the MAWI trace on April 1 st 2004. This time slot lasts from the 405 th to
the 420 th seconds in the trace. We execute UNADA as specified in section 4.1 in terms
of aggregation levels used and with the parameter set specified in the introduction of
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chapter 5. We therefore only cluster flows aggregated through IP address source with /24
netmask (aggregation level l3) and IP destination with /24 netmask (aggregation level
l6). We build a feature space based on the A = 9 attributes presented in Table 3.3 for
each used aggregation level (l3 and l6) and then cluster the aggregated flows into two
clustering ensembles Pl3 and Pl6.

We here present the UNADA steps after the subspace-clustering step. We first expose
the results of the Intra-Clustering Results Association step. We then address the anomaly
post-processing step with anomaly correlation, ranking and characterization.

5.1.1 Combination step with Inter-Clustering Results Associa-
tion (ICRA)

This section presents the results of the combining step using ICRA. This step is applied
over the clustering ensembles Pl3 (cluster ensemble obtained from aggregation according
to source IP address /24, l3) in section 5.1.1.1, and Pl6 (cluster ensemble obtained from
aggregation according to destination IP address /24, l6) in section 5.1.1.2 aggregations
levels.

5.1.1.1 Combination step for clustering ensemble Pl3

Pl3 contains the cluster or outlier affiliation of each of the F l3 = 1015 flows found using
the l3 aggregation level. Inter-CLuster Association (ICLA) phase results over Pl3 are
displayed on figure 5.1. Each vertex is a cluster found in any of the generated sub-
spaces. The graph contains 76 vertices. Since each vertex represents a cluster, this value
is equal to the number of clusters found in Pl3 which is noted pl3tot. It is therefore also
equal to the size of the whole cluster set {C0, C1, .., Cp

l3
tot

} within the clustering ensemble

Pl3. Each vertex index thus has a value between 0 and pl3tot = 75. Each edge means
that the two linked clusters verify the similarity condition defined in equation 3.4. This
condition states that the ratio of the cardinality of the intersection of the point set of
the two clusters over the maximum of the cardinalities of the two clusters is greater than
a threshold called tICSim. The cluster similarity threshold (tICSim) used is 0.85. This
threshold value is used for all the graphs of the current section. It has been chosen from
the result of the sensitivity analysis presented in section 5.2.3.3. The normal traffic is
here circled and is represented by the vertex group with the highest number of vertices.

Figure 5.2 depicts the outlier similarity graph obtained over Pl3 during the Inter-
Outlier Association (IOA) phase. The graph contains 79 vertices. Since each vertex
represents an outlier, this value is equal to the number of outliers found in Pl3 which is
noted ql3tot. It is therefore also equal to the size of the whole outlier set {o0, o1, .., oql3tot}
within the clustering ensemble Pl3. Each vertex index thus has a value between 0 and
ql3tot = 78.

5.1.1.2 Combination step for clustering ensemble Pl6

Corollary to the previous section, Pl6 contains the cluster or outlier affiliation of each of
the F l6 = 1229 flows found using the l6 aggregation level. ICLA phase results over Pl6 are
depicted on figure 5.3. Each vertex is a cluster found in any of the generated sub-spaces.
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Figure 5.1: Cluster similarity graph for source address /24 aggregated data (aggregation
level l3).
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Figure 5.2: Outlier similarity graph for source address /24 aggregated data (aggregation
level l3).

The graph contains 77 vertices. Since each vertex represents a cluster, this value is equal
to the number of clusters found in Pl3 which is noted pl6tot. It is therefore also equal to the
size of the whole cluster set {C1, C2, .., Cp

l6
tot

} within the clustering ensemble Pl6. Each

vertex index thus has a value between 0 and pl6tot = 76. The normal traffic is here circled
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and is represented by the vertex group with the highest number of vertices.
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Figure 5.3: Cluster similarity graph for destination address /24 aggregated data (aggre-
gation level l6).

Figure 5.4 represent the outlier similarity graph obtained over Pl6 during the IOA
phase. The graph contains 124 vertices. Since each vertex represents an outlier, this
value is equal to the number of outliers found in Pl6 which is noted ql6tot. It is therefore
also equal to the size of the whole outlier set {o1, o2, .., oql6tot} within the clustering ensemble

Pl6. Each vertex index thus has a value between 0 and ql6tot = 123.

5.1.1.3 Similarity graph analysis

One can note that, in these four figures, every connected component is a clique. The
hypothesis presented in section 3.2.5.2 (this hypothesis specifies that each vertex belongs
to a single clique) is here completely verified.

Normal traffic can be identified in both cluster similarity graphs (cf. figure 5.1 and 5.3)
as the circled vertex group. It is interesting to note that each of these two representations
of normal traffic is a single clique that contains the biggest number of vertices. Anomalies
are easily identified inside these graphs as small cliques. Inside outlier similarity graphs
(cf. figures 5.2 and 5.4), every clique is an anomaly.

5.1.1.4 Traffic segments extraction

Once every graphs are built, here the four graphs depicted in figure 5.1, 5.2, 5.3 and 5.4,
cliques are extracted and traffic segments are built upon each clique. Each traffic segment
that contains less than 100-Y% of aggregated flows is considered as a potential anomaly.
Each potential anomaly is assigned an index. In order to ease the comprehension of read-
ers, we chose to assign one hundred anomaly indices for each of the four similarity graph
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Figure 5.4: Outlier similarity graph for destination address /24 aggregated data (aggre-
gation level l6).

(cluster/outlier and source/destination). This will allow the reader to easily associate
a traffic segment index located in a specific hundred to a specific similarity graph and
thus a specific origin. This choice is made under the assumption that there is less than
100 traffic segments in each graph and can be easily overcome if needed. The anomaly
index thus has a specific meaning. Values between 0 and 99 represent anomalies from
clusters found in source IP address aggregated data (l3). Values between 100 and 199
are associated anomalies from outliers found in source IP address aggregated data (l3).
Values between 200 and 299 index cluster found in destination IP address aggregated
data (aggregation level l6). Values between 300 and 399 are linked to anomalies from
outliers found in destination IP address aggregated data (aggregation level l6).

5.1.2 Anomaly post-processing

Once anomalies are extracted from feature spaces as traffic segments by the unsupervised
detection, we apply the anomaly post-processing step. We here only present the anomaly
correlation and characterization step. We do not show results of the anomaly dangerous-
ness assessment step and only characterize correlated anomalies in order to not overload
the reader and keep a concise and easy-to-understand outline.

5.1.2.1 Anomaly correlation

Anomaly correlation is employed in order to find flows that are different from the normal
ones in both aggregation type: source IP address with netmask /24 (aggregation level l3)
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and destination IP address with netmask /24 (aggregation level l6) . Figure 5.5 depicts
the anomalies/traffic segments similarities as a graph. In this case, anomaly correlation
extracts three edges from the graph. Each edge represents the link between two similar
anomalies. Here, three correlated anomalies are present: 101 and 300, 111 and 305,
and finally 100 and 205. The meaning of these indices are explained in section 5.1.1.4.
First, the correlated anomaly between vertices 100 and 205 is a traffic segment built from
outliers in l3 (index 100) with a traffic segment extracted from clusters in l6 (index 205).
Second, the correlated anomaly between vertices 101 and 300 represents a traffic segment
obtained from outliers in l3 (index 101) with a traffic segment built upon outliers in l6
(index 300). Finally, the correlated anomaly between vertices 111 and 305 is a traffic
segment yielded from outliers in l3 (index 111) with a traffic segment built from clusters
in l6 (index 305).

1 1 1

1 0 0

1 0 1
3 0 0

3 0 5

2 0 5

Figure 5.5: Anomaly similarity graph.

5.1.2.2 Anomaly characterization

We then apply characterization over these three correlated anomalies. Table 5.1 details
each anomaly with its type, the traffic segment indexes extracted from ICLA and IOA
and the two signatures detected from both source and destination aggregated data. The
term “Few ICMP packets” actually means that these two anomalies were containing just
a few harmless ICMP packets.

Source Destination

Source signature Destination signature
Anomaly traffic traffic
type segment segment

indice indice
Few ICMP

111 305
nSrcs = 1, nSrcs = 1,

packets nICMP/nPkts > λ1 nICMP/nPkts > λ2

Few ICMP
112 309

nSrcs = 1, nSrcs = 1,
packets nICMP/nPkts > α1 nICMP/nPkts > α2

Network
100 205

nSrcs = 1, nSrcs = 1,

scan
nDsts > β1, nDsts > β3,

nSYN/nPkts > β2 nSYN/nPkts > β4

Table 5.1: Signatures of anomalies found.

Figures 5.6.(a,b) depict the results of the characterization phase for the network scan
anomaly previously found. Each sub-figure represents a partition P l6

n for which filtering
rules were found. They involve the number of IP sources and destinations, and the
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fraction of SYN packets. Combining them produces a signature that can be expressed as
(nSrcs = 1) ∧ (nDsts > λ1) ∧ (nSYN/nPkts > λ2), where λ1 and λ2 are two thresholds
obtained by separating normal and anomalous clusters at half distance. In this particular
case, we have λ1 = 120 and λ2 = 0.75. This signature makes perfect sense: the network
scan uses SYN packets from a single attacking host to a large number of victims.
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Figure 5.6: Filtering rules for characterization of the found network scan.

5.1.3 Summary

This section details several internal steps of the UNADA algorithm. It allows the reader to
improve its comprehension of our algorithm. Several steps are detailed from the combining
step inside unsupervised detection to the final characterization step.

5.2 Performance evaluation

This section addresses the performance evaluation of UNADA over real traces from the
MAWI dataset. The evaluation of a network anomaly detection algorithm is a critical
step that allows one to assess the performance of the proposed algorithm.

Our evaluation uses Receiver operating characteristic (ROC) curves as introduced by
[91]. ROC curves are the standard statistical tool used to evaluate binary classifiers. ROC
curves allow to visualize the trade-off between the True Positive Rate (TPR) and False
Positive Rate (FPR) in a single curve. They are very interesting when few different clas-
sifier results are to be compared. They thus perfectly fit our needs. ROC curves’ points
are obtained by using several values for the threshold Th applied to the dangerousness
index processed at the anomaly ranking step (cf. section 4.2).

We first present the MAWILab dataset that provides ground-truth for the MAWI
dataset in section 5.2.1. In section 5.2.2, we expose a first set of results on a limited
subset of the MAWI dataset in order to provide preliminary results. In section 5.2.3,
we perform a sensitivity analysis of our algorithm towards several of its parameters on a
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small subset of the WIDE repository. In section 5.2.4, we finally evaluate our tool over a
wider subset of the WIDE repository.

5.2.1 MAWILab: a ground-truth for the MAWI dataset

The ground truth for our evaluation is provided by MAWILab [83]. In [83], Fontugne et al.
combine four different anomaly detectors using the SCANN algorithm to produce a single
set of anomalies. The used anomaly detection algorithm are: a PCA and sketch-based
detector [97, 105], a detector relying on sketching and multi-resolution gamma modeling
[92], a Hough Transform-based detector [143] and a detector relying on traffic feature
distribution changes [93]. Their ground truth is a set of heuristics that allows one to
label anomalous traffic. The output of their method is composed of four different labels:
anomalous, suspicious, notice and benign. Anomalous means that the considered traffic
is abnormal. Traffic labeled as suspicious is suspected to be abnormal and is situated
above an internal threshold of SCANN. The notice label means that the traffic is below
the same threshold. Traffic labeled as such has been identified as anomalous by one or
several detectors but it shall not be considered as anomalous. Benign traffic has not been
flagged as anomalous by any of the anomaly detection algorithms.

The MAWILab website 1 offers an access to the output of their method applied to
MAWI traffic from samplepoints B (from December 2000 to June 2006) and F (from
august 2006 to this day). The MAWILab output is itself divided in two files: one con-
taining the traffic anomalies labeled as anomalous and suspicious and one containing the
traffic anomalies labeled as notice. Each file is an XML file generated through the Admd
library 2. The Admd library provides a unified interface to export meta data for anomaly
detection results as XML files. Anomalies are described as an event located in time and
impacting a set of source and destination IP addresses, port and protocols.

The MAWILab authors also provide a tool called “MAWILab Evaluate” that com-
pares a reference XML file with another XML file containing the output of a detector to
evaluate. MAWILab Evaluate provides the classic statistical test results: true positive
(TP), false positive (FP), false negative (FP) and true negative (TN). It provides these
values for three different cases: flows, events and alarms. True positive flows represent
the actual number of anomalous and suspicious IP flows identified as anomalous by a
classifier. Statistical results on flows thus consider each flow atomically. On the contrary,
true positive events represents anomalies for which at least one flow has been detected
as anomalous. The number of true positive events thus represents a number of flows
belonging to one or several anomalies provided that at least one flow of each anomaly
has been detected as anomalous. The same applies for the other possible statistical test
results, alarms. Statistical test results on alarms measure the number of alarms, and thus
anomalies detected, provided that one flow of the considered anomaly has been detected.
There are no true negative for this statistical test result. We therefore only use sensitivity
or True Positive Rate (TPR) for alarms.

1http://www.fukuda-lab.org/mawilab/
2http://admd.sourceforge.net/
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5.2.2 Preliminary results

In order to expose the differences between events and flows, we first run UNADA on six
MAWI traces: September 28th 2001, April 14th 2002, November 24th 2003, July 12th 2004,
May 5th 2005 and October 13th 2006.

A perfect ROC curve would be shaped as a step, in other words, such curve would
link the three following points (0, 0), (0, 1) and (1, 1). Such ROC curve would offer a
maximal TPR (i.e. TPR = 1) with a FPR equal to 0. The point at the top right corner
represents the result where the TPR and the FPR are both equal to 1. Such result is
achieved by labeling every flows as anomalous. Figure 5.7a display a perfect ROC curve.

On the other hand, the ROC curve obtained from a random classifier would be a
diagonal, i.e. a curve that from (0, 0) to (1, 1). Figure 5.7b display such a curve.
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Figure 5.7: ROC curves for perfect and random classifiers.

In our case, UNADA always exhibits a very consistent low false positive rate. One
can thus compare our ROC curve(s) to a leg: the point at (0, 0) being the ankle and
the point at (1, 1) being the hip. The main inflexion is the knee. One can thus say that
the more bended the knee, the closer the knee is to the point (0, 1) and the better the
results. UNADA’s results can also be evaluated by measuring how high is the highest
point located on the left part of the curve or, in the other words, how high and close to
the top left corner is the knee. In fact, the FPR being always low, it is the position of
this point that indicates how good are our performance in terms of TPR. This method is
used throughout this section to assess the UNADA’s performances.

Sensitivity curves display the value of sensitivity (or TPR) regarding the value of
Dangerousness Index threshold. The shape of the sensitivity curve (the lower is the
threshold, the high is the TPR) is easily explained by the fact that the lower is threshold,
the more anomalies are reported. Since UNADA has a consistent low rate of false positive,
high values of threshold offer poor interest because they exhibits low FPR and low TPR.
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However, since the FPR is consistently low and since the lower the threshold, the higher
the FPR, the main criterion to evaluate UNADA’s performance is how high is the point
with the lowest threshold value (i.e. the point located at the left of the sensitivity curve).
Thus, the higher the point, the more anomalies are detected and the better the results.

Figures 5.8a and figure 5.8b expose the differences between events and flows. While
MAWILab’s events reflect the ability of an algorithm to find at least one flow in an
anomaly, MAWILab’s flows indicate the actual number of identified anomalous flows. Our
algorithm here exhibits limited performance in identifying the whole sets of anomalous
flows since it is only able to find 12% of anomalous flows. It however exhibits good
performance in finding at least one flow in each anomaly by detecting 93% of anomalous
events. It is also able to find 89% of the alarms.

ROC curve of events 

FPR

10.50

T
P
R

1

0.5

0

(a) ROC curves of events

ROC curve of flows

FPR

10.50

T
P
R

1

0.5

0

(b) ROC curves of flows

Sensitivity curve of alarms

Threshold
10.50

T
P
R

1

0.5

0

(c) Sensitivity curves of alarms

Figure 5.8: ROC curves for events and flows and sensitivity curve of alarms with change
detection.

70



In order to understand why we have such performance in terms of overall detection
of anomalous flows, we temporary remove the change detection step (cf. section 3.1.1)
from UNADA and hence launch the clustering and post-processing step at each time slot.
These results are displayed on figure 5.9.

The comparison between figures 5.8a and 5.9a, and figures 5.8c and 5.9c, on one hand,
and figures 5.8b and 5.9b on the other hand, leads to several observations. The amount
of detected events does not significantly increase since it only changes from 93% to 97%.
The number of detected alarms increases from 89% to 98%. However, the number of
detected flows nearly triples between figure 5.8b and 5.9b from 12% to 45%. This change
is displayed on the curve by the fact that the knee of the curve is significantly higher in
figure 5.9b than in figure 5.8b. This could be explained by the fact that some anomalies
last more than one time slot and that IP addresses involved are not active during the
whole duration of the anomaly. Thus, when we analyze every time slot, we are able to
detect anomalies inside a greater number of time slots.

Another explanation that could explain the lack of performance on flow detection is
the use of a relatively short time slot length of 15s. Anomalies that start at the end of
a time slot and that finish at the beginning of the next one may be harder to extract.
Their separation from normal traffic is indeed reduced by the fact that their packets are
located in two time slots. Anomalies’ attribute values are thus less extreme. We however
did not investigate the impact of time slot size nor the use of sliding time window.

5.2.3 UNADA sensitivity analysis towards parameters

This section addresses the sensitivity of UNADA towards several of its parameters. Sen-
sitivity analysis is critical in the sense that it allows one to verify that an algorithm is
able to perform well when used with a wide range of settings. We here use a subset of
the MAWI dataset generated by randomly selecting one trace for each month between
January 2001 and December 2006. Contrary to the end of the previous section, we here
use the change-detection step as described in chapter 3. This step allows us to obtain a
prima facie evidence of an occurring anomaly.

5.2.3.1 Time window size

We here study the influence of the time slot or time window size, noted ∆T or ws , over
the performance of UNADA.

Figure 5.10a shows that the two highest knees of all curves are the ones of the curves
for ws = 15 and ws = 20. ws = 10 and ws = 30 provide slightly degraded performance.
ws = 30 provides the worst performance. Figure 5.10b show that ws = 20 and ws = 30
offer the best performance in terms of flows detection. ws = 5, ws = 10 and ws = 15
offer slightly lower performance. Concerning alarms, performances of all settings are close
and follow this rule: the smaller the window the better the performance. The best overall
performance are obtained by either ws = 15 or ws = 20.

5.2.3.2 Subspace clustering

We here address the influence of the two parameters of the used clustering algorithm,
DBSCAN [29], over our detection results. These parameters define the cluster density:
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Figure 5.9: ROC curves of events and flows and sensitivity curve of alarms without change
detection.

minimum number of points by cluster (nbpDBS) and epsilon (epsDBS).
Epsilon or ǫ defines the neighborhood of a point. In our case, the feature space is

normalized for each attribute a and the dimension of each subspace Xn is 2. Epsilon is
thus bounded between 0 and

√
2. When ǫ = 0, each point is an outlier. On the contrary,

since the feature space is normalized between 0 and 1 and the size k of each subspace
is equal to 2, ǫ =

√
2 guarantees us that each subspace contains a single cluster and no

outliers.
Figure 5.11a shows that the highest knee of all curves is the one of the curve for

epsDBS = 0.15. epsDBS = 0.15 thus provides the best events detection performance.
epsDBS = 0.2 exhibits a slightly lower knee compared to epsDBS = 0.15 and thus
slightly degraded performance. epsDBS = 0.1 and epsDBS = 0.3 displays much worse
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Figure 5.10: ROC curves for events and flows and sensitivity curve of alarms regarding
time window size (∆T/ws).

results since their knees are even lower. The observation of figure 5.11b does not allow
one to differentiate any the parameter values in terms of flow detection. Figure 5.11c
exhibits partially coherent results with the ones of figure 5.11a concerning epsDBS = 0.15
and epsDBS = 0.3. epsDBS = 0.3 displays the worst results in terms of alarms and
epsDBS = 0.15 displays the best results. However, epsDBS = 0.1 here provides results
in terms of alarms close to the best ones (i.e. epsDBS = 0.15). These results are better
than the ones of epsDBS = 0.2. This was not the case for anomalous events. This
could be explained by the fact that epsDBS = 0.1 and epsDBS = 0.2 detect different
anomalies. epsDBS = 0.1 could be able to detect more anomalies than epsDBS = 0.2
but these anomalies could contain less flows.

The minimum number of points by cluster (nbpDBS) represents the minimum num-
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Figure 5.11: ROC curves for events and flows and sensitivity curve of alarms regarding
epsilon (epsDBS).

ber of points in the neighborhood of a considered point needed to form a cluster (this
neighborhood being by epsDBS). This minimum number of points is bounded between 2
and the total number of points (aggregated flows in our case) inside the feature space.
However, if we want to correctly find anomalous clusters, we shall use a small enough
value in order to be able to find small cluster. We here chose to test values between 2
and 20. Figure 5.12 display the lack of influence of the minimum number of points by
clusters on detected events, flows and alarms since all curves are close. There are several
reasons that explained this behavior. First, the minimum number of points by cluster
has no impact over the ability of UNADA to find a normal cluster in each subspace Xn.
Such impact would be possible if the chosen values for the minimum number of points
by cluster would be high enough to cause the absence of a normal cluster as defined by
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the condition of hypothesis 3.2. The chosen values being bounded between 2 and 20,
they never lead to the absence of a normal cluster since there are always at least one
cluster that contains more than 20 points (or flows). Second, the considered parameter
has no influence on whether an anomaly is considered as detected by MAWILab Evaluate
or not. Section 3.2.1 explains that anomalies can be represented either as clusters or as
outliers. When the minimum number of points by clusters is too high, an anomaly does
not contain enough flows to constitute a cluster (and thus a single traffic segment). In
this case, the anomaly is represented by several outliers (and several traffic segments).
But, from the point of view of MAWILab Evaluate, both cases are identical since the
same flows are tagged as anomalous. These two points explain the lack of influence of
the minimum number of points by clusters parameter on detection performance.
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Figure 5.12: ROC curves for events and flows and sensitivity curve of alarms regarding
the number of points by cluster (nbpDBS).
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5.2.3.3 Inter-Clustering Results Association parameters

We here evaluate the influence of the cluster similarity threshold (tICSim) used in the
ICRA step, and more precisely in the ICLA step (since such parameter is not needed for
the IOA step, cf. section 3.2.5.2).

The cluster similarity (tICSim) used in ICLA is bounded between 0 and 1. 0 means
that similar clusters may contain totally different aggregated flows. 1 means that the
compared clusters must contain the exact same sets of aggregated flows.

Figure 5.13 shows that values tICSim = 0.7, tICSim = 0.85 and tICSim = 0.95
yield very similar performances since their curves are very close. This is especially true for
figure 5.13b. In figure 5.13a, the highest point on the left part of the curve for tICSim =
0.5 is slightly lower than the one of the other settings. Corollary, figure 5.13c show that
when tICSim = 0.5, UNADA detect slightly less correct alarms. tICSim = 0.5 thus
exhibits a performance decrease and should therefore be avoided. Despite this slight
degradation, the overall sensitivity of UNADA towards tICSim is low.

5.2.3.4 Normal traffic representation

We here examine the influence of the proportion Y of normal traffic in each subspace Xn

and feature space (cf. hypothesis 3.2) over the performances of UNADA.
The proportion of flows in normal cluster/traffic segment (tPropPtsNormC) is bounded

between 0 and 1. 0 means that, in each subspace, the biggest cluster will always be con-
sidered as the normal traffic (the same thing applies for the biggest traffic segment inside
the feature space). 1 means that the biggest cluster must contain all aggregated flows in
the feature space (the same thing also applies for the biggest traffic segment).

Figure 5.14 shows the impact of the proportion of flows in normal clusters/traffic
segments (tPropPtsNormC) (also called the proportion Y of normal traffic in hypothesis
3.2), on events, flows and alarms. tP ropP tsNormC values 0.5, 0.6, and 0.8 exhibit very
similar and good performance since their ROC curves on both figures 5.14a and 5.14b are
close. The analysis of figure 5.14c reveals the same behavior for these three parameter
values. tP ropP tsNormC = 0.85 or 0.9 however present less bended knees on ROC
curves and a lower top-left point on the sensitivity curve. UNADA performance for these
parameter values are thus deteriorated and they shall be avoided.

This deterioration can be easily explained by the fact that the threshold on the pro-
portion of normal traffic, tP ropP tsNormC, is used to enforce hypothesis 3.2 (and thus
hypotheses 3.3 and 3.4). Therefore, when, for example, a cluster or a traffic segment
contain 82% of the aggregated flows, tP ropP tsNormC = 0.85 or 0.9 fails to find normal
traffic while tP ropP tsNormC = 0.5 or 0.6 or 0.8 manage to do so. In the former case, the
execution stops and no anomaly is found in the current time slot while in the latter, UN-
ADA continues its execution and find several anomalies. The impact of tP ropP tsNormC
is thus critical over the ability of UNADA to find a representation of the normal traffic
inside the feature space. It is however interesting to note that the range of appropriate
values for tP ropP tsNormC is relatively wide. UNADA thus seems to be easily tunable
regarding this parameter.
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Figure 5.13: ROC curves for events and flows and sensitivity curve of alarms regarding
the cluster similarity (tICSim).

5.2.4 Global evaluation on the MAWI dataset

In order to have a more thorough and reliable view of the global results of UNADA on
the MAWI dataset, we increase the number of traces randomly selected from the MAWI
dataset. We thus randomly pick four traces for each month from January 2001 to Decem-
ber 2006 (instead of one for each month in section 5.2). The UNADA parameters are those
which exhibit the best performance in the sensitivity analysis section: ws (or ∆T ) = 15s,
epsDBS = 0.15, nbpDBS = 4, tICSim = 0.85 and tP ropP tsNormC (or Y ) = 0.6.

The ROC curves show that UNADA is able to detect more than 95% of anomalous
events documented by MAWILab. Our algorithm however exhibits limited performance
in terms of anomalous flow detection. UNADA also displays a constant and very low rate
of false positive across statistical tests (events and flows). This is especially important
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Figure 5.14: ROC curves for events and flows and sensitivity curve of alarms regarding
the proportion of flows in normal cluster/traffic segment (tPropPtsNormC).

since it reduces the risk of alarms saturation for the operator.
We then proceed with an indirect comparison with the detectors used in MAWILab.

In [83], Fontugne et al. states that the detector that detected the most anomalies in
their study is the Kullback-Leibler-based [93]. This detector contributed to half of the
anomalies reported in MAWILab. Since UNADA is able to detect at least one flow in
more than 50% of the anomalies of MAWILab, UNADA has better performance than any
detector used in MAWILab in terms of number of detected anomalous events. This thus
demonstrate the very good versatility of UNADA: it can detect a wide range anomalies
and obtain results close to the ones obtained in MAWILab through a strategy of anomaly
detectors results combination.
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Figure 5.15: ROC curves for events and flows and sensitivity curve of alarms from 2001
to 2006 with 4 traces by month.

5.3 Summary

This chapter addresses the evaluation of UNADA. UNADA’s performance is measured
against ground truth provided by the MAWILab work. We evaluate UNADA’s parame-
ters’ influence over the performance of our algorithm on a subset of the MAWI dataset.
UNADA exhibits a low sensitivity towards two of its parameters: nbpDBS and tICSim.
UNADA’s sensitivity towards the parameters ws, epsDBS and tP ropP tsNormC is
greater. However, the range of appropriate values for these parameters is wide enough to
offer an easy tuning.

Our algorithm exhibits a consistent very low rate of false positive. This is very inter-
esting because it guarantees that the network operator will not be overwhelmed by false
alarms. UNADA suffers from limited performance on anomalous flows identification.
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There are several factors that explain this lack of performance: first, we do not launch
the unsupervised detection at every time slot which lead us to detect only parts of long
lasting anomalies and second, we use consecutive time slots that cause short anomalous
flows to be invisible from UNADA point of view. Finally, UNADA presents consistent
and very good performances in terms of alarms and events detection. It is thus able
to detected more than 95% of anomalous events on a substantial subset of the MAWI
dataset. This ensures us that at least one flow is detected inside the vast majority of the
anomalies documented by MAWILab. As a consequence, our algorithm only misses very
few anomalies.
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Chapter 6

Conclusion

Network traffic changes. These changes can be seen through several perspectives. A first
perspective is spatial: traffic changes according to where one performs measurements.
The second possible perspective is temporal. Network traffic changes in two ways along
time. On one hand, traffic displays a constant volume increase and cyclic variations. On
the other hand, traffic nature evolves: new applications arise, macro-economic and politic
changes occur, etc. Network anomalies follow a similar path: they change along space
and time. Network anomaly detection systems shall therefore seamlessly cope with these
changes. Operators need to rely on tools that can autonomously cope with this novelty.
We aim at designing a tool that would fulfill this goal by using as little knowledge about
traffic as possible.

This chapter summarizes and comments the contributions of our work. We address
each contributions previously presented and expose its advantages and shortcomings.

6.1 Contributions

This section addresses our two major contributions that constitute our tool UNADA,
unsupervised network anomaly detection and our anomaly post-processing techniques.

6.1.1 Unsupervised network anomaly detection

The goal of UNADA is to find anomalies inside network traffic using as little knowledge
about traffic as possible. In order to do so, our algorithm only relies on two hypotheses:
anomalous traffic is statistically different from normal traffic and normal traffic represents
the majority of traffic.

We first propose a representation of network anomalies according to the flows aggrega-
tion method used: either source or destination IP addresses, both with several netmasks.
This representation allows us to model normal traffic and anomalies inside a feature space
constituted by several attributes built on each aggregated flow.

We propose a clustering method based on density-based clustering and the notion
of clustering ensemble. This method combines the clustering results in low-dimensional
spaces to form a global partition of the feature space. This method is highly reliable to
find abnormal outliers and both abnormal and normal clusters since it allows UNADA

81



to detect the majority of the anomalous events present in MAWI and documented by
MAWILab (cf. section 5.2.4).

We also show that clustering is the most time-consuming task in our current imple-
mentation. We therefore analyze the scalability of our approach and show that it scales
reasonably well regarding the number of flows and number of features or attributes used.
We state that, since the clustering step in UNADA can be parallelized, it can be used in
real-world provided that enough resources are available.

6.1.2 Anomaly post-processing

In order to process found anomalies, we propose a corpus of techniques. First, we present
an anomaly correlation step that aims at grouping similar anomalous traffic segments
found in several feature space to reduce redundancy among alarms. We also propose an
anomaly ranking technique that reuse the results of the anomaly correlation step and
use two other anomaly characteristics (proportion of traffic belonging to this anomaly in
terms of number of packets and bytes) to rank anomalies according to their dangerousness.
We finally present a method that characterizes anomalies through filtering rules that are
further combined to produce compact and easy-to-understand signatures.

6.1.3 Evaluation

Our work is evaluated over a subset of the MAWI dataset using the ground truth provided
by the MAWILab dataset. UNADA exhibits limited performances concerning the overall
detection of anomalous IP flows and a very good ability to detect anomalous events. In
other words, UNADA is only able to detect a small fraction of the flow set of each anomaly
but is also able to find at least one flow in the majority of anomalies. We show that one
of the reasons of this is the fact that the unsupervised detection and characterization is
not launched at each time slot (cf. 5.2.2).

6.2 Prospectives

We here present the prospectives concerning several UNADA’s aspects that ought to be
improved and extended in the future.

6.2.1 Hypotheses on traffic nature

UNADA uses hypotheses 1.1 and 3.2 to separate normal traffic from anomalous one.
Hypothesis 1.1 is widely used among network anomaly detection systems in literature
and is also widely accepted by the community. On the other hand hypothesis 3.2 comes
from the intrusion detection field and has never been used for network anomaly detection
up to our knowledge. It is a very restrictive hypothesis since it forbids the existence
of both several mid-size normal cluster inside each feature-space and several mid-size
normal traffic segments in the whole feature space. The evaluation carried out in section
3.2.5.2 however shows that, despite the use of this very constraining hypothesis, UNADA
performs very well. This can be considered as an“a posteriori”validation of the hypothesis
validity.
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If one chooses to not use this hypothesis, the problem of identification of normal
traffic remains. This problem seems very hard to solve since one has to devise a method
to separate normal clusters from anomalous ones. Such heuristics may be based upon
thresholds on the size and number of clusters. However, they may appear as very difficult
to properly tune when used in real world.

6.2.2 Clustering technique

We think that future work shall aim at integrating state-of-the-art high-dimensional data
clustering algorithms similar to those presented in [30] and evaluated in [74] and [77].
Some of the algorithms evaluated in such work seem very promising regarding their scal-
ability towards the number of points (in our case aggregated flows) and attributes used.
Such algorithm would allow us to use a much bigger amount of aggregated flows and a
much wider set of attributes. This would improve both the unsupervised detection step,
by easing the separation from normal traffic, and the characterization step, by providing
a greater number of attributes to build rules on. This may also allow us to use unsuper-
vised learning at each time slot and at a reduced cost thus improving our performance
in terms of number of anomalous flows detected (cf. section 5.2.2). A multi-resolution
time-slot scheme would also be less expensive to use.

The use of such clustering algorithms and of new attributes may require the reexami-
nation and adaptation of the hypothesis on the proportion of normal traffic according to
the behavior of the considered clustering algorithm.

6.2.3 Anomaly post-processing

This section present prospectives on our three anomaly post-processing methods: anomaly
correlation, anomaly ranking and anomaly characterization.

6.2.3.1 Anomaly correlation

Prospectives about anomaly correlation in terms of functionality rely in the extension to
clustering results built upon aggregation levels different than the two aggregation levels
presented in 4.1: IP source/24 (l3) and IP destination/24and l6). Clustering results built
on all the aggregation levels presented in section 3.1.2: l1,2,3 (IPsrc/8, /16, /24) and l4,5,6
(IPdst/8, /16, /24) could for example be correlated between each other. One can also
imagine to create new aggregation levels based on port, type of port (less than 1024 and
over 1024).

In terms of evaluation, anomaly correlation is partially analyzed through a single
example in section 5.1. A more thorough evaluation could have been lead if we had been
able to automatically analyze the anomaly groupings done by our anomaly correlation
method. However, this is not possible since MAWILab Evaluate cannot compare the
actual inclusion between reference anomalies and anomalies found by the tool to evaluate.
Furthermore and from a more general point of view, partial manual analysis of the global
results reveals that the alarms generated by our tool are different than the ones in the
MAWILab dataset. This means that there is a high probability that alarms from either
systems are included in the alarms of the other system. Unfortunately, MAWILab does
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not provides such information yet. Future improvements of our anomaly correlation
method and its evaluation shall therefore first find a way to obtain this information.

6.2.3.2 Anomaly ranking

Future work shall intend to improve anomaly ranking by adding an assessment of the
separation of anomalous traffic representations from normal traffic in the feature space
to the formula of the dangerousness index. Such separation could for example reuse the
Fisher Score built upon traffic segments for ranking of relative rules. The rationale would
be to assess a greater anomalousness for anomalous traffic segments far from normal
traffic.

6.2.3.3 Anomaly characterization

Future work in terms of anomaly characterization relies on improvement of the filtering
rule building method. Up to now, it uses very simple heuristics based on two types of
rules: relative and absolute rules. A future work, could reformalize the building of these
rules through a supervised learning-based approach. In fact, since hypothesis 1.1 and 3.2
allow us to identify normal traffic, we are able to provide labels for normal and anomalous
traffic. A supervised learning technique could then be applied to automatically find rules
that separate anomalous flows from normal ones. Decision tree algorithm such as ID3
[144] or C4.5 [145] would perfectly fit this task.

Section 5.1 provides an insight of the result of our characterization method. However,
we have not been able to experimentally and thoroughly assess the efficiency of our char-
acterization step. Such assessment could have been realized by comparing our generated
signatures with signatures that match real anomalies detected by signature-based sys-
tems. The MAWILab repository however does not provide classification of the detected
anomalies. Its XML-based anomaly annotation method already provides a field called
type. This field is however used to store the four different types of output of MAWILab:
anomalous, suspicious, notice and benign. A new field containing anomaly nature could
easily be added. We thus let the characterization method evaluation to future work.

6.3 Summary

UNADA constitutes an original and new application of unsupervised machine learning in
the field of network anomaly detection. We use clustering techniques to extract anomalies
from traffic while only relying on two hypotheses, anomalies statistically deviates from
normal traffic and they represent less than half of the traffic. We thus build a system that
autonomously cope with traffic changes. We also propose a set a techniques to automat-
ically and autonomously correlate, rank and characterize anomalies that process found
anomalies. We verify that our algorithm is able to find anomalies against documented
network traces from the MAWI repository.

In the context of our work, we also want to emphasize on the interest of datasets
that provides ground-truth for networking problems (network anomalies with MAWILab
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1, traffic classification through the UNIBS dataset 2, etc.). These dataset are critical
to automatically and easily evaluate work, especially when the considered work include
machine learning techniques.

We apprehend our work as a significant proof of the interest of the use of machine
learning in networking. Our work especially emphasizes the interest of unsupervised
learning application to cope with use cases that face changing environment and need to
autonomously adapt themselves.

1http://www.fukuda-lab.org/mawilab/
2http://www.ing.unibs.it/ntw/tools/traces/
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Chapitre A

Introduction

La détection d’anomalies dans l’Internet actuel est une tâche aussi compliquée que fas-
tidieuse. Les attaques de déni de service (Denial of Service, DoS), de déni de service
distribué (Distributed Denial of Service, DDoS) et les scans menacent l’intégrité et le
fonctionnement quotidien du réseau. La principale difficulté liée à la détection et à l’ana-
lyse de ces différentes anomalies dans les réseaux est leur capacité à évoluer et à s’amplifier
[146].

Le principal problème des systèmes de détection d’anomalies réseaux est que ces ano-
malies évoluent. Il est ainsi impossible de définir un ensemble d’anomalies existantes. De
nouvelles anomalies apparaissent chaque jour. Ce problème est accentué par le fait que le
trafic de fond, légitime, évolue lui-aussi dans le temps.

Ce travail de thèse vise à trouver concevoir un système de détection d’anomalie du
réseau capable de détecter une vaste palette d’anomalies et utilisant le moins possible
d’information. Le reste de ce chapitre est composé de deux sections. La première de
ces sections expose les raisons qui nous amènent à penser que les systèmes de détection
d’anomalies doivent être plus autonomes et comment nous atteindrons ce but. La seconde
section détaille nos contributions.

A.1 Problèmes initiaux

A.1.1 Trafic changeant dans l’Internet

A.1.1.1 Trafic changeant

Le trafic réseau change. Ce changement s’opère suivant 3 axes que nous détaillons ci-
après. Le premier de ces axes est le changement du trafic dans le temps, suivant plusieurs
échelles et à travers plusieurs métriques comme le nombre de paquet ou d’octets. Nous
appelons ce changement l’évolution du trafic. Ces changements d’ordre temporels sont
de deux types : cycliques selon plusieurs échelles (journalières, hebdomadaires, etc) ou
cohérentes en termes de tendances dans le temps : constante augmentation du traffic. Les
variabilités journalières et hebdomadaires ont par exemple été mises en évidence dans [1]
et [2]. Dans [2], Papagiannaki et al. observent que le trafic dans 2 des 3 Points de Présence
(PdP) augmente entre Octobre 2000 et Juillet 2002. Dans [5], Cho et al. montrent que le
trafic dans les principaux points d’échange Internet du Japon a constamment augmenté
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au cours des dix dernières années.
Le second axe de changement est la disparité. Ce terme recouvre les différences de

structure du trafic lorsqu’on l’observe depuis différents points de vues. Ce phénomène est
mis en évidence par plusieurs travaux. Dans [7], Ringberg et al. exposent la différence du
nombre moyen de paquets par flux selon la méthode d’agrégation du trafic : par liens, par
routeurs d’entrée ou par flux origine-destination. Dans [2], Papagiannaki et al. montrent
que l’évolution du trafic est différente sur les trois PdP observés.

Le troisième et dernier axe de changement du trafic est son changement de nature.
Nous appelons ce phénomène la mutation du trafic. Un premier exemple de ce phénomène
est la soudaine apparition du service Netflix. Le cas particulier de Netflix au Canada est
un bon exemple. Netflix y a été lancé le 22 septembre 2010. Ce service représentait, fin
mars 2011, 13.5% du trafic descendant aux heures de pointes [9].

A.1.1.2 Anomalies changeantes

Les anomalies connues sont nombreuses de nature très différentes. Certaines anomalies ne
sont pas dangereuses en tant que telles mais peuvent être vues comme des indices d’une
attaque future. Les balayages de port entrent dans cette catégorie. Les anomalies visant
le déni de service comme les SYN flood ou ICMP flood sont dangereuses dans la mesure
où elles cherchent à dégrader le service offert par leur cible.

Dans [12], Borgant et al. réalisent une étude longitudinale de la base de traces du
projet WIDE [4]. Les auteurs montrent que certaines anomalies comme les SYN flood
sont récurrentes alors que d’autres anomalies sont plus localisées dans le temps. Dans
[16], Allman et al. analysent le trafic entrant du réseau du LBNL et plus particulièrement
les balayage de ports du 1 er Juin 1994 au 23 Décembre 2006. Les auteurs montrent que
les balayages de ports évoluent tout au long de leur étude. Ceux-ci augmentent lorsque
de nouveaux vers apparaissent. Les numéros de ports, et donc les services visés, évoluent
aussi.

A.1.2 Pourquoi les systèmes de détection d’anomalies du trafic

actuels sont déficients ?

Deux approches existent dans la littérature et dans les outils existants : la détection par
signature (misuse detection) et la détection d’anomalie (anomaly detection). Les systèmes
basés sur des signatures sont très efficaces pour détecter les anomalies dont les signatures
sont connues. Cependant, ils ne peuvent défendre les réseaux contre des anomalies incon-
nues. De plus, la construction et la mise à jour des signatures sont coûteuses et fastidieuses
car nécessitant une intervention humaine.

Les systèmes de détection d’anomalie du trafic basés sur la détection d’anomalie uti-
lisent un trafic dépourvu d’anomalie afin de construire un modèle de trafic normal [17, 18].
Ce modèle permet alors d’isoler les anomalies en tant qu’instances déviant du modèle pré-
cédemment construit. Ce type de détection est capable de mettre en évidence de nouvelles
anomalies. Cependant, la construction du profil de trafic normal peut être compliquée et
elle suppose que l’on ait accès à du trafic dépourvu d’anomalie. De plus, l’évolution conti-
nue des caractéristiques du trafic complique la mise à jour du profil de trafic normal.
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L’apprentissage supervisé a parfois été utilisé afin d’automatiser la construction des
signatures [20] et du profil de trafic normal [19]. Les méthodes présentées dans ces travaux
permettent d’automatiser partiellement l’acquisition de connaissance sur le trafic. Elles
sont cependant tributaires de l’existence de données nécessaires pour l’apprentissage.

En dehors de la simple problématique de la détection des anomalies du trafic, ces
systèmes ne fournissent que peu d’informations sur les anomalies détectées. L’opérateur
en charge de la surveillance du réseau ne possède pas d’information quant à la hiérarchie
en termes de dangerosité des anomalies détectées. Il doit aussi procéder à une fastidieuse
tâche d’analyse et de caractérisation des anomalies détectées. Ces deux tâches de traite-
ment d’anomalies ne sont pas traitées par les systèmes de détection d’anomalies du trafic
existants.

A.1.3 Détection autonome d’anomalies du trafic

L’hypothèse originale utilisée dans les systèmes de détection d’anomalies du trafic est la
suivante :

Hypothesis A.1 Le trafic anormal est différent statistiquement du trafic normal.
[21, 22]

Comme nous l’avons énoncé dans la section A.1.2, les systèmes de détection d’anoma-
lies existants utilise deux approches : la détection par signatures et la détection d’anoma-
lie. Ces deux approches utilisent l’hypothèse A.1 pour construire des modèles du trafic
anormal (détection basée sur les signatures) ou du trafic normal (détection d’anomalie).
Cependant, et comme nous l’avons vu dans la section A.1.1, le trafic réseau est extrême-
ment changeant. Les systèmes de détection d’anomalie du trafic sont vulnérables à ces
changements.

Nous pensons donc que les systèmes de détection d’anomalie du trafic doivent être
efficaces malgré ces changements. Ces systèmes ne doivent pas utiliser de connaissances
détaillées sur le trafic ou la structure des anomalies. Ils doivent plutôt utiliser une seule
hypothèse pour séparer le trafic normal du trafic anormal :

Hypothesis A.2 La majorité du trafic est normal.
Ce qui est équivalent à : seulement X% des représentations du
trafic sont anormales avec X < 50%. [23]

Les systèmes de détection d’anomalies efficaces doivent donc utiliser les hypothèses
A.1 et A.2 afin de trouver les anomalies du trafic de façon autonome. Les techniques
d’apprentissage non-supervisé permettent d’extraire des groupes d’instances similaires
et de séparer les groupes d’instances différentes entre elles. Ces techniques permettent
donc aux systèmes de détections d’anomalies du trafic de séparer les trafics anormaux et
normaux sous réserve que l’hypothèse A.1 soit vérifiée. Une fois que les trafic normaux et
anormaux sont séparés, l’hypothèse A.2 nous fournit une critère pour identifier le trafic
normal et par extension le trafic anormal.

Nous pensons que ce principe de détection d’anomalies du trafic est la voie à suivre
pour construire des systèmes de détection d’anomalie du trafic ne reposant pas sur des
connaissance acquises et robuste vis-à-vis de l’évolution, la disparité et la mutation du
trafic.
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A.1.4 Résumé

Le trafic change au cours du temps selon les points de mesure utilisés. Nous pensons que
les systèmes de détection d’anomalies existants qui s’appuient sur des modèles pour le
trafic normal ou anormal sont inefficaces vis-à-vis de ces phénomènes. Les coûts de mise
au point et de mise à jour de ces modèles compliquent leur utilisation dans le monde réel.
Nous pensons donc que les systèmes de détection des anomalies du trafic doivent être
capables de s’adapter de manière autonome au changement du trafic via l’apprentissage
non-supervisé.

A.2 Contributions

Notre contribution comprend deux parties. La première partie est l’application des tech-
niques de partitionnement à la détection d’anomalies. La deuxième partie est constituée
par un ensemble de techniques de traitement des anomalies.

A.2.1 Détection non-supervisée des anomalies du trafic

Cette partie propose tout d’abord plusieurs techniques pour traiter le trafic réseau :
l’agréger en flux et construire des attributs. Nous expliquons ensuite comment les dif-
férentes parties du trafic sont représentées au sein de l’espace constitué des attributs
précédemment construits. Nous proposons ensuite un technique de partitionnement qui
nous permet d’extraire les flux anormaux du reste du trafic.

A.2.2 Traitement des anomalies

Cette partie propose différentes techniques qui traitent le résultat de l’étape précédente.
La première de ces techniques corrèle les anomalies extraites lors de la détection non-
supervisée. La seconde technique utilise les résultats de l’étape de corrélation et deux
caractéristiques de chaque anomalie pour les classer. La troisième et dernière technique
caractérise les anomalies extraites via la construction de signature.

A.3 Contexte au sein du projet ECODE

Cette thèse a été réalisée dans le cadre du projet ECODE. Ce projet est financé par la
Commission Européenne via le contrat FP7-ICT-2007-2/223936. Le but de ce projet est
d’introduire des capacités cognitives dans les équipements réseaux.

A.4 Plan du manuscrit

Ce manuscrit est composé de cinq chapitres :

• Le chapitre B présente un état de l’art dans les domaines de l’apprentissage non-
supervisé et de la détection d’anomalies du trafic.
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• Le chapitre C aborde le principe de notre technique de détection d’anomalies du
trafic basée sur l’apprentissage non-supervisé.

• Le chapitre D présente plusieurs techniques qui traitent les résultats de notre dé-
tection dans le but de faciliter le travail de l’opérateur.

• Le chapitre E expose l’évaluation de notre algorithme sur du trafic réel.

• Le chapitre F conclut ce manuscrit en résumant notre contribution et en proposant
plusieurs pistes quant à l’amélioration de notre algorithme.
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Chapitre B

État de l’art

Ce chapitre introduit différents travaux réalisés dans les domaines de l’apprentissage
non-supervisé et de la détection d’anomalie. La première section aborde les techniques
d’apprentissage non-supervisée. La seconde section présente différents algorithmes dédiés
à la détection des anomalies du trafic.

B.1 Apprentissage non-supervisé

Les techniques d’apprentissage non-supervisé visent à extraire une structure cachée à
l’intérieur de données inconnues. Les méthodes de séparation aveugle de source, les réseaux
de neurones et le partitionnement sont des techniques permettant l’apprentissage non-
supervisé.

Séparation aveugle de source Les méthodes de séparation aveugle de source visent
à extraire un ensemble de signaux à partir d’un ensemble de signaux mixés. Plu-
sieurs techniques traitent ce problème : Analyse en Composantes Principales (ACP),
Analyse en Composantes Indépendantes (ACI).

Réseaux de neurones Les réseaux de neurones constituent le second type de méthodes
d’apprentissage non-supervisé présentées dans ce manuscrit. Une liste non-exhaustive
des réseaux de neurones utilisés pour l’apprentissage non-supervisé est : la Théorie
de la Résonance Adaptative (TRA) et les Cartes Auto-Adaptatives (CAA).

Partitionnement Les techniques de partitionnement visent à grouper des éléments si-
milaires entre eux selon une mesure de similarité. Les techniques de partitionnement
se divisent en deux grandes catégories principales.

La première catégorie contient les algorithmes de partitionnement hiérarchique. Ces
algorithmes visent à créer une hiérarchie entre les groupes d’instances (ou cluster).
Le partitionnement final est obtenu en fixant un niveau dans la hiérarchie et en
gardant les groupements existants au niveau considéré.

La seconde catégorie regroupes les algorithmes de partitionnement dit ”de partition”
par opposition au partitionnement hiérarchique. Ces algorithmes visent à construire
une partition globale en une seule passe. Parmi les algortihmes existants de cette
famille, nous pouvons citer : k-means [28], DBSCAN [29], etc. Plusieurs travaux
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récents ont tenté d’appliquer le partitionnement à des données de grandes dimen-
sions. Nous pouvons ici citer MAFIA [39] ou MineClus [46, 47]. Dans [30], Kriegel
et al. réalisent un état de l’art plus détaillé de ces techniques. Dans [31], [77] et [74],
les auteurs évaluent plusieurs algorithmes de cette catégorie.

B.2 Détection des anomalies du trafic réseau

La problématique de la détection d’anomalies a donné lieu a un grand nombre de publi-
cations au cours de la dernière décennie. La plupart des approches existantes analysent
les variations statistiques de métriques simples (e.g. : nombre de paquets, d’octets, ou de
flux) et/ou d’autres attributs du trafic (e.g. : distribution des adresses IP et des ports)
et ce, sur des données issues d’un seul lien ou de l’ensemble d’un réseau. Parmi les ou-
tils utilisés, nous pouvons citer les techniques d’analyse du signal (e.g. : Auto-Regressive
Integrated Moving Average, ondelettes) sur des données issues d’un seul lien [95, 17], la
PCA [104, 18] et les filtres de Kalman [91] pour la détection sur l’ensemble d’un réseau
et les sketches appliqués aux flux IP [89, 92].

Notre approche peut être classifiée dans le champ de la détection non-supervisée.
La plupart des travaux existants utilisant des techniques non-supervisées ont traité le
domaine de la détection d’intrusions à travers la base de données KDD’99. La plupart
des méthodes de détection non-supervisées utilisent le clustering et la détection d’outliers
(points isolés) [23, 124, 125]. Dans [23], Portnoy et al. utilisent du single-linkage hierarchi-
cal clustering pour partitionner les données KDD’99 en utilisant une distance euclidienne.
Dans [124], Eskin et al. présentent des résultats améliorés sur les mêmes données obtenus
avec trois algorithmes de partitionnement : un fixed-width clustering, une version optimi-
sée de k-NN, et un one class support vector machine (machine à vecteurs de support).
Dans [125], Leung et al. utilisent un algorithme de density-grid-based clustering (partion-
nement basé sur la densité et sur les grilles) pour améliorer l’extensibilité du clustering
et obtient des résultats équivalents.

B.3 Résumé

Les techniques d’apprentissage supervisé existent depuis longtemps. Elles visent a extraire
de l’information sur des données sans avoir aucune connaissance préalable sur ces même
données.

Nous avons aussi présenté les techniques existantes en matière de détection des anoma-
lies du trafic. Nous présentons plusieurs algorithmes existants qui utilisent l’apprentissage
non-supervisé dans le domaine de la détection d’intrusion.

Le chapitre suivant présente notre propre application de l’apprentissage non-supervisé
à la problématique de la détection des anomalies du trafic.
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Chapitre C

Détection non-supervisée des
anomalies

Ce chapitre présente notre algorithme de détection non-supervisé des anomalies du trafic.
Comme cela est annoncé dans les sections A.1.3 et A.2, notre système vise à extraire
les flux anormaux en utilisant peu de connaissance sur la structure du trafic. Ce but est
atteint via l’utilisation d’algorithmes de partitionnement et des hypothèses énoncés dans
la section A.1.3.

Notre algorithme est divisé en trois étapes. La première étape est une étape de trai-
tement des données qui est directement appliquée au trafic réseau. Cette étape applique
tout d’abord un algorithme de détection de changement à des séries basées sur le trafic.
Les fenêtres temporelles jugées anormales sont ensuite traitées afin de construire des flux
et attributs sur ces mêmes flux. Cette partie de notre algorithme est située en haut de
la figure C.1 et à l’intérieur du cadre en pointillé d’indice 1. La détection non-supervisée
constitue la seconde étape de notre algorithme. Cette étape est visible sur la partie basse
de la figure C.1 et est entourée par le cadre en pointillé d’indice 2. Les concepts présentés
dans ce chapitre ont été publiés dans [127, 128, 129, 130, 131] et exposés dans les rap-
ports ECODE D3.2 [132] et D3.3 [133]. La troisième étape de notre algorithme traite les
flux anormaux extraits par la détection non-supervisée. Cette étape est présentée dans le
chapitre suivant. Elle est située à l’intérieur du cadre d’indice 3 dans la figure C.1.

C.1 Détection de changement, agrégation en flux multi-

résolution et construction d’attributs

La première phase de l’analyse est la détection de changement. Pour ce faire, les séries
temporelles Z i sont construites pour trois métriques : le nombre de paquets, le nombre
d’octets et le nombre de paquets SYN.

Un algorithme de détection d’anomalies F(.) basé sur l’analyse de séries temporelles
est utilisé sur les Z i afin d’identifier une fenêtre anormale. Z i représente la série temporelle
pour la métrique i. Z i

t représente la valeur de la métrique i pour la fenêtre t. Une fenêtre
tj est déclarée anormale si F(Z i

t) déclenche une alarme. F(.) utilise ici des deltöıdes tels
que Cormode et al. les ont définis dans [88].

Le trafic est ensuite agrégé suivants 9 niveaux li : adresse IP source (l1 : IPsrc), adresse

9



Network Operator

Network Traffic
Monitoring

Network Security Device
IDS, IPS, Firewall, etc.

Multi
Resolution

Flow
Aggregation

Change
Detection

Attribute
building

.   .   .   .   .

.   .   .   .   .
SSC

Evidence
Accumulation

||
Inter-Clustering

Results
Association

Density-based
Clustering

�� �

Anomaly
correlation

detection
threshold

1

2

3

Network
Anomalies

Anomaly
characterization

Signatures

Anomaly
ranking

1

2

3

ZnPkts
t

ZnBts
t

ZnSYN
t

X

Y

(Y,X)

4

n

Th

F(Zi
t )

X1 X2 XN

P1

P2

PN

Figure C.1 – Schéma global de notre approche.

IP destination (l2 : IPdst), préfixe réseau source (l3,4,5 : IPsrc/24, /16, /8), préfixe réseau
destination (l6,7,8 : IPdst/24, /16, /8), et trafic par fenêtre (l9 : tpTS).

Des attributs sont ensuite construits pour chacun des flux afin de les caractériser. Le
tableau C.1 liste ces attributs.

Attribute Description

nDests # adresses IP destination différentes
nSrcs # adresses IP source différentes
nPkts/nDiffDestPort # paquets divisé par # ports destination différents
nDiffSrcAddr/nDiffDestAddr # adresses IP source différentes divisé par #

adresses IP destination différentes
nICMP/nPkts # paquets icmp divisé par # paquets
nEchoReqReply/nPkts # paquets ICMP echo-request ou reply divisé par # paquets
nSYN/nPkts # paquets syn divisé par # paquets
nRST/nPkts # paquets rst divisé par # paquets
bgstDestPort/tNbOccuDestPort # occurrence du port destination avec la plus grand occurrence

divisé par # total de port destination

Table C.1 – Attributs sur les flux agrégés dérivés du trafic.

C.2 Comment détecter des anomalies du trafic via

l’apprentissage non-supervisé ?

La deuxième étape de l’algorithme consiste à détecter et caractériser de manière non-
supervisée les flux anormaux. L’algorithme utilise pour cela l’ensemble Y = {y1, ..,yF}
des F flux capturés dans l’ intervalle anormal, agrégés suivant l’un des niveaux d’agré-
gation li utilisés dans la première phase. Chaque flux yf ∈ Y est décrit par un ensemble
de A attributs de trafic sur lesquels l’analyse est faite. xf = (xf (1), .., xf(A)) ∈ R

A est
le vecteur des attributs décrivant le flux de trafic yf , et X = {x1; ..;xF} la matrice des
attributs appelée aussi espace d’attributs.
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C.2.1 Représentations du trafic réseau

Cette section abord les représentations du trafic dans la matrice d’attributs. Les deux
sous-parties détaillent respectivement les représentations des trafics normaux et anor-
maux.

C.2.1.1 Représentations du trafic normal

La section C.1 spécifie que la représentation atomique du trafic est un flux agrégé. C’est
dans ce contexte que l’hypothèse A.2 est raffinée :

Hypothesis C.1 La majorité de flux agrégés contient du trafic normal.
Ce qui est équivalent à : Y% des flux agrégés sont normaux avec
Y > 50%.

L’hypothèse C.1 spécifie que la majorité des flux agrégés sont normaux. L’hypothèse
A.1 dit que les anomalies sont statiquement différentes du trafic normal. Si l’on considère
la matrice d’attributs en entier, le trafic normal peut être vu comme un ou plusieurs
cluster(s) qui contiennent au moins la moitié des flux agrégés. Cette hypothèse est raffinée
dans la section C.3.

C.2.1.2 Représentations du trafic anormal

Pour cela, nous faisons l’hypothèse que l’anomalie est contenue dans un petit nombre de
flux. Ainsi, une anomalie peut apparâıtre comme un outlier (i.e. un flux isolé) ou un cluster
de petite taille (quelques flux similaires), et ce, selon le type d’agrégation et le masque
réseau utilisés. Le tableau C.2 détaille les caractéristiques de différentes anomalies : nature
distribuée, type d’agrégation et masque de réseau utilisés et signature construite. Une
anomalie de type SYN DDos (SYN Distributed Denial of Service ou attaque de déni de
service distribuée) qui vise une seule cible depuis un grand nombre d’adresses IP situées
dans plusieurs domaines /24 formera un cluster si le trafic est agrégé avec une IP source.
En effet, chacun des domaines /24 représentera un flux avec des valeurs d’attributs très
éloignées de celles de la majorité du trafic : un nombre important de paquets envoyés, une
seule destination et une très forte proportion de paquet SYN. C’est l’ensemble de ces flux
qui formera un cluster. Si le trafic est agrégé via l’adresse IP destination, quelque soit le
masque, l’unique adresse destination (i.e. la cible) formera un outlier qui se caractérisera
notamment par un grand nombre de sources et une forte proportion de paquets SYN.

C.2.2 Présentation générale

Nous avons développé une approche de clustering de type « division et conquête » qui
se base sur les notions de clustering ensemble [137] et de clustering combination. Cette
approche combine le density-based clustering [29], le sub-space clustering (SSC)[31] et
l’evidence accumulation (EA) [139]. Nous présentons ici l’idée générale de l’approche.

Au lieu de directement partitionner l’espace des attributs X en entier en utilisant
une distance classique comme la distance euclidienne, l’algorithme partitionne N sous-
espaces différents Xn ⊂ X, ce qui permet ainsi d’obtenir N résultats de partitionnement
Pn des flux de Y. Chaque sous-espace Xn est construit à partir de R < A attributs.
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Table C.2 – Attributs utilisés pour la détection de DoS, DDoS, balayage de ports et de réseaux (port scan and
network scan), et propagation de vers. (NB : les anomalies de nature distribuée impliquent ici plusieurs @IP/24, elles-
mêmes contenues dans une seule @IP/16)

Exemple Nature Type d’agrégat. Résultat de
Impact sur les attributs de trafic

d’anomalie distribuée /masque réseau clustering
DoS

1-vers-1
IPsrc/∗ Outlier nSrcs = nDsts = 1, nPkts/sec > λ1, avgPktsSize < λ2,

(ICMP∨SYN) IPdst/∗ Outlier (nICMP/nPkts > λ3 ∨ nSYN/nPkts > λ4).
DDoS (ICMP

N-vers-1
IPsrc/24 (l3) Cluster nDsts = 1, nSrcs > α1, nPkts/sec > α2,

∨ SYN) depuis IPsrc/16 (l4) Outlier avgPktsSize < α3,
plus. @IP/24 IPdst/∗ Outlier (nICMP/nPkts > α4 ∨ nSYN/nPkts > α5).

Port scan 1-vers-1
IPsrc/∗ Outlier nSrcs = nDsts = 1, nDstPorts > β1,
IPdst/∗ Outlier avgPktsSize < β2, nSYN/nPkts > β3.

Network scan
1-vers-N

IPsrc/∗ Outlier nSrcs = 1, nDsts > δ1,
vers plusieurs IPdst/24 (l6) Cluster nDstPorts > δ2, avgPktsSize < δ3,
@IP/24 IPdst/16 (l7) Outlier nSYN/nPkts > δ4.
Propagation

1-vers-N
IPsrc/∗ Outlier

nSrcs = 1, nDsts > η1, nDstPorts < η2,de ver sur IPdst/24 (l6) Cluster
avgPktsSize < η3, nSYN/nPkts > η4.plusieurs @IP/24 IPdst/16 (l7) Outlier

Cela permet d’analyser la structure de X depuis R-parmi-A différents points de vue tout
en utilisant une bien meilleure résolution. Pour déterminer le nombre R de dimensions
utilisées par sous-espace, nous utilisons la propriété monotone des ensembles de résultats
de partitionnement appelée downward closure property : ”si un ensemble de points forme
un cluster dans un espace de dimension d, alors, ce même ensemble de points forme aussi
un cluster dans chacune des projections de dimension d − 1 de ce même espace”. Cela
implique que, s’il existe des clusters dans X, alors, ils existeront dans des sous-espaces de
dimensions inférieures. L’utilisation de petites valeurs de e (ou R dans notre cas) présente
alors plusieurs avantages : premièrement, le partitionnement est plus rapide dans des
espaces de faibles dimensions. Deuxièmement, les algorithmes de partitionnement basés
sur la densité sont plus efficaces dans des espaces de dimensions réduites [38]. Enfin,
les résultats de partitionnement obtenus sont plus faciles à visualiser. Cet ensemble de
contraintes nous a amené à choisir un nombre R de dimensions utilisées égal à 2, et ainsi
N(m) = CA

R = A(A− 1)/2.

Accumulation de Preuves L’information obtenue entre les différents résultats de par-
titionnement construits pour Xn est ensuite combinée afin de produire une nouvelle
mesure de similarité entre les flux de Y. Ces valeurs sont stockées dans une matrice
S de taille F × F qui sert à détecter les petits clusters et un vecteur D qui est
utilisé pour classer les outliers. L’élément S(o, p) représente le degré de similitude
entre les flux o et p. Cette valeur reflète le nombre de fois où les flux o et p consi-
dérés sont dans le même cluster. Elle tient aussi compte de la taille du cluster en
question afin de privilégier les petits clusters. L’élément D(d) reflète quant à lui
l’anormalité d’un outlier. Cette anormalité tiens compte du nombre de fois où le
flux a été classé outlier et de la séparation entre cet outlier et le reste du trafic.
Cela permet de séparer les outliers de flux et les clusters de flux simultanément
identifiés dans différents sous-espaces du reste du trafic. Ces nouvelles mesures de
similarité permettent donc d’extraire les flux anormaux de l’ensemble du trafic. En
d’autres termes, si nous pouvons extraire des flux qui se démarquent de la majorité
du trafic, alors, ces flux forment une anomalie, sinon, cela signifie que l’alarme sur
la fenêtre temporelle considérée Z li

tj était une fausse alarme.

Association Inter-Résultats de Partitionnement Cependant, en raisonnant sur les

12



similarités entre instances (ici flux), l’accumulation de preuve introduit plusieurs
sources d’erreurs. Si l’on considère deux ensembles d’instances Pi et Pj , si la car-
dinalité de ces deux ensembles est proches et si ils sont présents dans un nombre
similaires de sous-espace, alors, l’accumulation de preuves produira des valeurs de
similarités très proches pour chacun des flux appartenant aux deux ensembles. Ces
flux seront alors considérés comme appartenant au même cluster. Ce cas de figure
peut être dangereux dans la mesure ou deux anomalies pourraient être groupées
ensemble et donc être mal identifiées et par la suite, mal caractérisées. Un autre
type d’erreur peut survenir si l’utilisation d’une algorithme de partitionnement sur
les valeurs de S est faite avec de mauvais paramètres. De plus, l’utilisation de seuils
sur S et/ou D peut sensiblement dégrader les performances de notre système si de
mauvaises valeurs sont utilisées.

Afin d’éviter ces problèmes, nous proposons une nouvelle approche pour combiner
les résultats de partitionnement obtenu dans chaque sous-espace : Association Inter-
Résultats de Partitionnement. L’idée est ici d’aborder le problème en termes de
similarité de cluster et d’outlier au lieu d’utiliser la similarité entre les instances
(ici les flux). Nous déplaçons ainsi la mesure de similarité des instances vers les
résultats de partitionnement. Le problème peut donc être sub-divisé en deux sous-
problèmes : corréler les clusters via l’Association INter-Cluster (AINC) et corréler
les outliers via l’Association INter-Outlier (AINO).

Dans chacun de ces cas, nous exprimons la similarité entre résultats de partitionne-
ment via un graphe. Chaque sommet est un cluster ou un outlier issu de n’importe
lequel des sous-espace Un et l’existence d’un arc entre deux sommets veut dire que
les résultats de partitionnement représentés par ces sommet sont similaires. Une
fois construits, nous devons analyser ces graphes afin de trouver des ensembles de
résultats de partitionnement similaires entre eux. En termes de sommets, ces en-
sembles de résultats de partitionnement similaires entre eux se traduisent par des
ensembles de sommets pour lesquels chaque sommet est lié à tous les autres som-
mets de l’ensemble considéré. La théorie des graphes assigne le terme de clique à ce
type d’ensemble de sommets. Le problème de la recherche de la clique maximale est
NP-complet. La plupart des solutions existantes utilisent une recherche exhaustive
de sous-graphes à l’intérieur du graphe. Cette solution est malheureusement trop
lente pour nos besoins. Nous utilisons donc un algorithme glouton pour identifier
les cliques au sein des graphes de similarité. Chaque ensemble de flux est appelé un
segment de trafic. Il est construit à partir de l’intersection des flux contenus dans
chaque cluster ou outlier de la clique considérée.

C.3 Redéfinition de la représentation du trafic nor-

mal

A la lumière de la présentation de notre technique de partitionnement, dans les sections
C.2.2, et pour faciliter l’automatisation du processus de détection d’anomalie, nous redé-
finissons la représentation du trafic normal de l’hypothèse A.2 :
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Hypothesis C.2 La majorité des flux agrégés sont normaux.
Ces flux forment un seul cluster qui contient au moins Y% des
flux agrégés.

La downward closure property [38], nous permet d’étendre la définition de la représen-
tation du trafic normal présenté dans la section C.2.1. Étant donné que le trafic normal
est représenté par un seul cluster qui contient au moins la moitié des F flux, la propriété
énoncée plus haut garantit que ce cluster sera aussi présent dans chacun des Xn sous-
espaces. Nous vérifions donc ce constat en deux points de notre algorithme et faisons
donc deux nouvelles hypothèses.

Hypothesis C.3 Dans chaque sous-espace Xn, le plus gros cluster (en termes de
nombre de flux agrégés) doit contenir au moins Y% des flux
agrégés.

Hypothesis C.4 Dans chaque matrice d’attributs, le plus gros segment de trafic
(en termes de nombre de flux agrégés) doit contenir au moins
Y% des flux agrégés.

Si une de ces deux hypothèses n’est pas vérifiée, la détection s’arrête et UNADA
recommence sur la fenêtre temporelle suivante.

C.4 Temps de calcul et parallélisation

Nous abordons maintenant le temps de calcul (TC) de l’algorithme. Notre algorithme
réalise plusieurs partitionnements sur N(m) sous-espaces Xn ⊂ X de petite dimension.
Ces multiples calculs posent le problème de l’extensibilité pour une détection temps-réel
sur des cœurs de réseaux à très hauts débits. Deux caractéristiques de notre algorithme
sont utilisées pour améliorer ces problèmes d’extensibilité vis-à-vis du nombre d’attributs
m et du nombre de flux agrégés n à analyser. D’une part, le clustering est réalisé dans des
sous-espaces de très petites dimensions, Xn ∈ R

R avec ici R = 2 (cf. section C.2.2), ce qui
est plus rapide qu’un clustering réalisé dans un espace de grande dimension [138]. D’autre
part, chaque sous-espace peut être partitionné indépendamment des autres sous-espaces,
ce qui rend l’algorithme de subspace clustering particulièrement adapté à la paralléli-
sation. Cette parallélisation peut être réalisée de différentes façons : via une machine
multi-cœurs et/ou multi-processeurs, via une ou des carte(s) réseaux avec processeurs de
traitement intégré, via un ou des GPU(s) (Graphic Processor Unit), via plusieurs ma-
chines ou via une combinaison de n’importe lesquelles de ces techniques. Nous utiliserons
désormais le terme tranche pour nommer une entité de calcul.

La figure C.2 représente le temps de calcul de notre algorithme, en fonction du nombre
d’attributsm utilisés pour décrire les flux (a) et en fonction du nombre n de flux à analyser
(b). La figure C.2.(a) compare le temps de calcul obtenu lorsque l’on partitionne l’espace
d’attributs X, noté TC(X) avec le temps de calcul nécessaire au sub-space clustering, en
faisant varier A de 2 à 29 attributs. Un grand nombre de flux N , ici 104, est analysé
en utilisant deux nombres de tranches T = 40 et T = 100. Pour estimer le temps de
calcul de notre algorithme de sub-space clustering avec des valeurs données de m et
T , nous procédons de la façon suivante : premièrement, nous partitionnons chacun des
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(a) Temps vs. n attributs. (b) Temps vs. n flux.

Figure C.2 – Temps de calcul en fonction du nombre d’attributs et de flux à analyser.
Le nombre de flux dans (a) est n = 10000. Le nombre d’attributs et de tranches pour (b)
est m = 20 et M = 190.

N = m(m − 1)/2 sous-espaces Xn et le plus mauvais résultat en terme de temps de
calcul pour un seul sous-espace TC(XSSCwc) = maxn TC(Xn) est conservé en tant que
référence. Si N 6 T , le nombre de tranches couvre la totalité des partitionnements à
réaliser, l’algorithme va donc s’exécuter de manière complètement parallèle. Le temps
de calcul total correspond au plus mauvais résultat TC(XSSCwc). Par contre, si N > T ,
certaines tranches doivent partitionner plusieurs sous-espaces, le temps de calcul devient
égal à (N%T+1) fois le plus mauvais cas TC(XSSCwc), où % représente la division entière.
La première observation intéressante sur la figure C.2.(a) concerne l’augmentation de
TC(X) quand m augmente ; TC vaut 8 secondes pour m = 2 et plus de 200 secondes for
m = 29. La diminution du TC pour des petites valeurs de m permet de compenser en
partie le grand nombre de partitionnements réalisés. La seconde observation concerne le
parallélisme : si l’algorithme est déployé dans une architecture parallèle, il peut être utilisé
pour analyser de grandes quantités de trafic en utilisant un grand nombre d’attributs en
temps-réel. Par exemple, l’analyse de 20 attributs sur une architecture avec 100 tranches
permet de traiter 10000 flux en moins de 20 secondes.

La figure C.2.(b) compare TC(X) et TC(XSSCwc) en fonction du nombre de flux n à
analyser en utilisant m = 20 attributs et M = N = 190 tranches (i.e. notre algorithme est
complètement parallélisé). La différence en termes de temps de calcul entre le clustering
dans l’espace entier et le clustering dans les sous-espaces est toujours présente : le gain
est de plus d’un ordre de magnitude, indépendamment du nombre de flux à analyser.
En ce qui concerne la quantité de trafic analysable dans une configuration complètement
parallèle, l’algorithme est capable de traiter plus de 50000 flux avec un temps de calcul
relativement limité : 4 minutes environ. Ces évaluations ont été réalisées avec un nombre
de flux agrégés égal à environ 2500 dans une fenêtre temporelle de durée ∆T = 20s, ce qui
représente un temps de calcul de TC(XSSCwc) ≈ 0.4 secondes. Si l’on considère les m = 9
attributs utilisés précédemment (N = 36), le temps de calcul total sans parallélisation
est de N×TC(XSSCwc) ≈ 14.4 secondes.
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C.5 Résumé

Dans ce chapitre, nous avons présenté notre algorithme de détection non-supervisé. UNADA
utilise deux hypothèses : le trafic anormal est différent du trafic normal et le trafic normal
est plus important que le trafic anormal. Nous utilisons du partitionnement afin d’isoler
les composantes normales et anormales du trafic réseau. L’évaluation du temps d’exécu-
tion de notre algorithme prouve que son extensibilité est bonne. Notre algorithme peut
donc être efficacement parallélisé.

Une fois que les anomalies ont été extraites, une étape de traitement est nécessaire
afin de réduire la charge de travail de l’opérateur. Cette étape est abordée dans le chapitre
suivant.
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Chapitre D

Traitement des anomalies

Le partionnement non-supervisé utilisé dans le chapitre C nous permet d’extraire les flux
anormaux parmi les F flux agrégés construits selon un niveau d’agrégation li. Cependant
cette étape peut potentiellement extraire un grand nombre de flux. Le danger est ici
de submerger l’opérateur avec un grand nombre d’alarmes. Une étape de traitement des
anomalies extraites se justifie donc pleinement dans le but d’aider l’opérateur à traiter en
priorité les anomalies les plus dangereuses. Une aide doit aussi être apportée à l’opérateur
dans le domaine de l’analyse des anomalies.

Nous proposons donc une technique de traitement des anomalies en trois étapes afin de
réduire le travail de l’opérateur. Tout d’abord, nous réduisons le nombre total d’anomalies
en corrélant les anomalies extraites de flux agrégés suivant plusieurs niveaux d’agrégation
li. Ensuite, nous utilisons une technique qui construit une hiérarchie entre les anomalies en
termes de dangerosité et permet donc à l’opérateur de prioritiser son travail. Enfin, nous
appliquons plusieurs heuristiques pour construire des signatures d’anomalies. Chacune de
ces étapes sont définies sur la figure D.1.
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2
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Anomaly
ranking
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4

n

Th

Figure D.1 – Schéma de l’étape de traitement des anomalies.
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D.1 Correlation d’anomalies

Dans le chapitre précédent nous avons vu que notre algorithme non-supervisé est capable
d’extraire les anomalies des flux agrégés selon un certain niveau d’agrégation li. La pos-
sibilité d’utiliser notre algorithme sur plusieurs niveaux d’agrégations nous amènent à
penser qu’utilisé ainsi, il générera un grand nombre d’alarmes. Une interrogation émerge
donc : pourquoi ne pas corréler les anomalies extraites d’ensembles de flux construits sur
différents niveaux d’agrégation li afin de de réduire le nombre d’alarmes tout en amélio-
rant la fiabilité de nos résultats ? Nous suivons donc ce raisonnement en obtenant plusieurs
résultats de partitionnement, chacun étant construit à partir de plusieurs niveaux d’agré-
gations, et en élaborant une stratégie pour corréler les anomalies extraites de ces résultats
de partitionnement. Cette méthode a été publiée dans [131].

Pour corréler les anomalies trouvées dans différents niveaux d’agrégations, nous défi-
nissons deux caractéristiques uniques d’une anomalie : son ensemble d’adresses source et
son ensemble d’adresses destination. Deux anomalies sont considérées comme similaires
si ces deux ensembles d’adresses sont similaires.

Dans ce travail, nous nous limitons à la corrélation d’anomalies détectées selon deux
types d’agrégations : adresse IP source et adresse IP destination. Nous n’utilisons donc pas
d’anomalies trouvées dans les même types de niveaux d’agrégation (l1 et l2 par exemple)
car ces anomalies pourraient être incluses entre elles. De plus, nous nous limitons à un
masque réseau de /24 pour les niveaux d’agrégations. Ces deux choix ont été faits afin de
réduire la quantité de calcul nécessaire. Les niveaux d’agrégations utilisés sont donc l3 et
l6 (cf. niveaux d’agrégations dans la section C.1).

L’ensemble des anomalies corrélées est obtenu à partir des couples d’anomalies simi-
laires.

D.2 Hiérarchisation des anomalies

L’opérateur a besoin de prioritiser ses différentes tâches afin d’augmenter son efficacité.
Dans le domaine de la détection d’anomalie du trafic, plus une anomalie est dangereuse,
plus son analyse est critique. La prioritisation des tâches dans ce contexte requiert donc
une hiérarchisation des anomalies en fonction de leur dangerosité.

A la suite de l’étape de corrélation d’anomalies, plusieurs anomalies ont été corrélées.
Ces anomalies nous fournissent un indice prima facie d’une hiérarchie entre les anomalies
en termes de dangerosité. En effet, si une anomalie apparâıt en tant que telle dans plu-
sieurs niveaux d’agrégations, cela veut dire que ses flux sont différents du trafic normal
dans chacun de ces niveaux d’agrégations, et donc, que l’anomalie en question est po-
tentiellement dangereuse dans chacun d’entre eux. Les anomalies corrélées peuvent donc
être considérées comme étant plus dangereuses.

Nous introduisons donc un indice de dangerosité basé sur le nombre de niveaux d’agré-
gation dans lesquels une anomalie est détectée. Cet indice tiens également compte de la
proportion de trafic contenu dans les flux anormaux de l’anomalie considérée en termes
de nombres de paquets et de nombre d’octets.

Le seuil Th dans la figure D.1 est un seuil sur la valeur de l’indice de dangerosité de
l’anomalie considérée. Cette méthode a été partiellement publiée dans [131].
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D.3 Caractérisation automatique des anomalies

A la fin de l’étape précédente, l’algorithme non supervisé a identifié un ou plusieurs flux
similaires dans Y et éloignés de la majorité des flux du trafic. La tâche suivante consiste
à produire automatiquement un ensemble de règles de filtrage pour isoler et caractériser
ce(s) flux. Ces règles de filtrage permettent deux choses : obtenir une image précise de la
nature de l’anomalie pour faciliter l’analyse par l’opérateur réseau et construire une si-
gnature de l’anomalie par combinaison de règles. La signature ainsi produite peut ensuite
être utilisée pour détecter l’anomalie via un très classique système de détection par signa-
ture. Pour produire les règles de filtrage, l’algorithme conserve les sous-espaces Xn dans
lesquels le ou les flux anormaux sont éloignés du reste du trafic. Nous définissons deux
classes de filtrage différentes : les règles absolues notées AFR(Y) et les règles relatives
notées RFR(Y). Les règles absolues ne dépendent pas de la séparation entre clusters, et
correspondent à la présence de valeurs dominantes pour les attributs des flux anormaux.
Une règle absolue sur l’attribut a qui caractérise un ensemble de flux Yg ⊂ Y avec Yg

contenant une anomalie est de la forme AFRa(Yg) = {∀yf ∈ Yg ⊂ Y : xf (a) == λ}.
Par exemple, dans le cas d’une attaque ICMP flooding, la majorité des flux comportent
uniquement des paquets ICMP. La règle de filtrage absolue {nICMP/nPkts == 1} s’ap-
plique. Les règles de filtrage relatives dépendent de la séparation entre les flux normaux
et anormaux. Si les flux anormaux sont séparés du reste du trafic dans un résultat de
partitionnement Pn, alors les attributs du sous-espace correspondant Xn peuvent être
utilisés pour définir une règle relative. Une règle relative sur l’attribut a qui caracté-
rise un ensemble de flux Yg ⊂ Y avec Yg contenant une anomalie est de la forme
RFRa(Yg) = {∀yf ∈ Yg ⊂ Y : xf (a) < λ||xf(a) > λ}. Une relation de couverture
entre deux règles relatives est définie dans le cas où deux règles énoncent une rela-
tion sur le même attribut et selon le même position par rapport au seuil (inférieure
ou supérieure). E.g. : soient les règle fa(Yg) = {∀yf ∈ Yg ⊂ Y : xf(a) < λ1} et
fa(Yg) = {∀yf ∈ Yg ⊂ Y : xf (a) < λ2}, la règle fa(Yg) couvre la règle fa(Yg) si et
seulement si λ1 < λ2. Si deux règles ou plus se couvrent, l’algorithme conserve celle qui
couvre les autres. Pour construire une signature concise de l’anomalie, la règle de filtrage
la plus discriminante est choisie. Les règles absolues sont importantes, car elles définissent
des caractéristiques inhérentes aux anomalies. Les règles relatives ont un intérêt qui dé-
pend du degré de séparation des flux anormaux entre eux. Dans le cas d’outliers, nous
choisissons les K attributs pour lesquels la distance normalisée au trafic normal (repré-
senté par le cluster le plus grand dans chaque sous-espace) est parmi les K distances les
plus importantes. Dans le cas de clusters de petites tailles, le degré de séparation avec le
reste des clusters est ordonné en utilisant le score de Fisher (FS) [147], et les K règles les
mieux classées sont sélectionnées. Le score de Fisher mesure la séparation entre clusters,
en fonction de la variance totale à l’intérieur de chaque cluster. Enfin, pour construire
une signature, les règles absolues et les K principales règles relatives sont combinées en
un seul prédicat, en utilisant la règle de couverture en cas de superposition. Cet ensemble
de méthodes pour construire les règles et composer une signature permet au système
de caractériser de façon efficace les anomalies détectées et de fournir une mise en forme
simple, concise et facile à comprendre.
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D.4 Résumé

Ce chapitre présente plusieurs techniques que nous avons développées dans le but de
traiter les anomalies après leur découverte. Nous réduisons tout d’abord le nombre d’ano-
malies en corrélant les anomalies issues de différents niveaux d’agrégations li. Nous réuti-
lisons ce résultat et deux autres caractéristiques des anomalies pour construire un indice
de dangerosité qui nous permet de hiérarchiser les anomalies. Nous caractérisons enfin les
anomalies via une méthode qui construit une signature détaillée de chaque anomalie qui
permette à l’opérateur de facilement comprendre la nature de l’anomalie. Cet ensemble
de techniques facilite et réduit le travail de l’opérateur.

Ces différentes techniques sont partiellement détaillées dans le chapitre E à travers un
cas pratique où UNADA est appliqué à du trafic réseau réel.
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Chapitre E

Evaluation

Nous évaluons ici la capacité de notre algorithme non supervisé à détecter et caractériser
plusieurs anomalies contenues dans des traces de trafic réel de la base de traces MAWI du
projet WIDE [4]. Le réseau opérationnel WIDE interconnecte des institutions de recherche
au Japon, des fournisseurs d’accès internet et des universités aux Etats-Unis. Cette base
contient des traces de paquets de 15 minutes collectées depuis 1999 et documentées de
manière parcellaire [83].

E.1 Cas d’étude : une fenêtre temporelle dans une

trace de la base de trace MAWI

Tout d’abord, nous avons analysé manuellement une trace WIDE choisie arbitrairement.
Nous avons détecté et caractérisé un scan réseau de type SYN en direction de plusieurs
machines appartenant au même réseau /16. Les paquets sont agrégés en flux IPdst/24
dans Y. La longueur de la fenêtre temporelle est ∆T=15 secondes.
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Figure E.1 – Règles de filtrage pour la caractérisation des attaques de la trace WIDE.

Si on s’intéresse aux règles de filtrage et à la signature associée à l’anomalie, les
figures E.1a et E.1b montrent certains résultats de clustering Pn pour lesquels les règles
absolues et les K règles relatives ont été produites. L’anomalie est ici représentée par un
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cluster. Les règles sont construites sur les attributs suivants : nombre de sources et de
destinations et proportion de paquets SYN. En les combinant, on obtient la signature
(nSrcs == 1) ∧ (nDsts > λ1) ∧ (nSYN/nPkts > λ2) où λ1 et λ2 sont deux seuils obtenus
en séparant les clusters à mi distance de la moyenne de chaque cluster pour l’attribut
considéré. L’utilisation de la moyenne permet d’avoir une approximation des valeurs du
cluster pour l’attribut en question. Cette signature et le résultat du partitionnement sont
parfaitement cohérents avec ce qu’annonce le tableau C.2 : le scan réseau forme un cluster,
il émet des paquets d’une source unique vers un grand nombre de cibles et la majorité des
paquets sont de type SYN. L’immense nouveauté avec cette approche se situe au niveau
de la génération de cette signature sans aucune connaissance préalable sur l’anomalie et
le trafic de fond.

E.2 Évaluation des performance d’UNADA

Cette section aborde l’évaluation de notre algorithme sur des traces de trafic réel extraites
de la base de trace MAWI. Cette étape est critique dans la mesure où elle permet de
mesurer l’efficacité de notre algorithme.

E.2.1 MAWILab : une documentation pour les anomalies conte-

nues dans MAWI

Nous considérons les données de MAWILab [83] comme référence pour l’évaluation de
notre travail. Dans [83], Fontugne et al. combinent quatre algorithmes de détection des
anomalies du trafic via l’algorithme SCANN afin d’obtenir un seul ensemble d’anomalies.
Les algortihmes de détection utilisés sont : un algorithme basé sur la PCA et les sketchs
[97, 105], un algorithme basé sur les sketchs et la modélisation gamma multi-résolution
[92], un algorithme basé sur la transformée de Hough [143] et un algorithme basé sur la
détection de changement sur les distributions d’attributs du trafic [93].

Le site MAWILab 1 offre un accès aux résultats de la méthode sur le trafic de la base
de trace MAWI sur les points de mesure B (de décembre 2000 à juin 2006) et F (d’août
2006 à aujourd’hui). Chaque fichier est au format XML et a été générée via la librairie
admd 2.

Les auteurs de MAWILab fournissent également un outil appelé“MAWILab Evaluate”
qui compare un fichier XML de référence avec un autre fichier contenant le résultat d’un
algorithme à évaluer. MAWILab Evaluate fournit les quatre résultats classiques de test
statistique : vrai positif (VP), faux positif (FP), faux négatif (FN) et vrai négatif (VN).
Cet outil fournit ces quatre valeurs pour trois cas différents : event ou événements, flows
ou flux et alarms ou alarmes. Les résultats de tests statistiques pour les flux considèrent
chaque flux de manière atomique. Par contre, le taux de vrais positifs pour les événements
représentent des anomalies pour lesquelles au moins un flux a été détecté comme étant
anormal. Le nombre d’évènements vrais positifs représente donc un nombre de flux ap-
partenant à des anomalies dont au moins un des flux est considéré comme anormal. Ceci
est aussi valable pour les alarmes. À la différence près que les nombre d’alarmes vraies

1http ://www.fukuda-lab.org/mawilab/
2http ://admd.sourceforge.net/
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positives représentent un nombre d’alarmes et non de flux. Par définition, il n’existe pas
de vrai négatif pour les alarmes.

E.2.2 Résultats préliminaires

Nous procédons à une évaluation préliminaire sur la base de trace MAWI en utilisant une
trace par année de 2001 à 2006. Notre algorithme présente un taux de faux positifs (FP)
qui reste constamment bas tout au long des expérimentations de cette section. UNADA
détecte seulement 12% des flux. Il détecte cependant 95% des événements et 89% des
alarmes. Nous démontrons ensuite que si l’on enlève l’étape de détection de changement
(cf. section C.1) afin de lancer la détection non-supervisée à chaque fenêtre temporelle,
les performances s’améliorent. UNADA est désormais capable de détecter 45% des flux
anormaux, 97% des événements et 98% des alarmes.

E.2.3 Analyse de sensibilité

Nous menons une analyse de sensibilité d’UNADA envers les paramètres suivants : epsDBS,
nbpDBS, tICSim et tPropPtsNormC.

epsDBS est un paramètre de l’algorithme de partitionnement DBSCAN qui définit
le voisinage d’un point. L’analyse de résultats montre que epsDBS = 0.15 offre les
meilleures performances pour les trois critères offerts par MAWILab (événements, flux
et alarmes). epsDBS = 0.1 offre de mauvaises performances en termes d’événements et
des performances moyennes en termes d’alarmes. epsDBS = 0.2 offre des performances
moyennes pour les événements mais quelque peu dégradées pour les alarmes. epsDBS =
0.3 offre de mauvaise performances pour les événements et alarmes . Les performances de
chacun de ces réglages sont proches en termes de flux.

nbpDBS est l’autre paramètre de DBSCAN qui définit le voisinage. Les valeurs testées
mettent en évidence une très faible sensibilité d’UNADA envers ce paramètre. Les raisons
de cette faible sensibilité sont au nombre de deux. Premièrement, les valeurs testées n’em-
pêchent pas l’apparition d’un cluster représentant le trafic normal (ce qui dégraderait les
performances en bloquant l’analyse de certaines fenêtres temporelles, cf. hypothèses C.3
et C.4). Enfin, MAWILab Evaluate a un point de vue global sur les anomalies identifiées.
Il ne tient pas compte des éventuelles inclusions et/ou complémentarités entre éléments
détectées. nbpDBS déterminant la représentation d’une anomalie, soit un cluster soit plu-
sieurs outliers (cf. section C.2.1), il n’a pas d’influences sur les performances du système.

tICSim est le seuil appliqué au critère de similarité entre cluster utilisé pour ICRA.
Les valeurs tICSim = 0.7, tICSim = 0.85 et tICSim = 0.95 produisent des résultats
très proches. tICSim = 0.5 produit des résultats légèrement inférieurs. La sensibilité
d’UNADA envers tICSim est cependant globalement faible.

tP ropP tsNormC, noté aussi Y , représente le seuil appliqué à la proportion de tra-
fic normal (cf. hypothèses C.3 et C.4). Nos analyses démontrent que les valeurs 0.5, 0.6
et 0.8 donnent de bonnes performances. Les valeurs 0.85 et 0.95 présentent des perfor-
mances dégradées. UNADA présente donc de bonnes performances pour une large plage
de réglages possible.
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E.2.4 Analyse globale

Afin d’avoir une idée plus précise quant à l’efficacité de notre algorithme, nous utilisons
un sous-ensemble plus important de la base de trace MAWI. Nous utilisons ainsi 4 traces
par mois de 2001 à 2006. Les valeurs de paramètres utilisés sont les suivantes : epsDBS
= 0.15, nbpDBS = 4, tICSim = 0.85 and tPropPtsNormC (or Y ) = 0.6.

Les résultats montrent qu’UNADA détecte une faible proportion de flux anormaux.
UNADA est cependant capable de détecter plus de 95% des événements anormaux.

E.3 Résumé

Ce chapitre présente l’évaluation d’UNADA. Cette évaluation est réalisée en utilisant les
données fournies par le projet MAWILab comme référence. La sensibilité d’UNADA est
faible vis-à-vis des paramètres nbpDBS et tICSim. Cette sensibilité est plus importante
vis-à-vis des paramètres epsDBS et tP ropP tsNormC. L’étendue de la plage de réglages
donnant de bons résultats est suffisamment grande pour permettre de facilement régler
UNADA.

Notre algorithme présente un faible taux de faux positifs. Ceci est très intéressant
dans la mesure où cela garantit que l’opérateur ne sera pas submergé par les alarmes.
Notre algorithme est de plus capable de détecter une écrasante majorité des événements
anormaux répertoriés par MAWILab.
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Chapitre F

Conclusion

Notre algorithme non supervisé de détection et de caractérisation d’anomalies supplante
les méthodes précédemment proposées dans ce domaine, et ce, sans nécessiter de connais-
sance préalable des anomalies et du trafic de fond. L’algorithme proposé parvient, grâce
aux techniques de partitionnement proposées d’extraire les flux anormaux. Il est aussi ca-
pable de corréler, hiérarchiser et caractériser les anomalies préalablement extraites. Ces
signatures peuvent alors être traduites dans le langage des équipements de sécurité (sys-
tèmes de détection d’intrusion, firewalls, ...) et y être utilisées automatiquement. Notre
algorithme peut donc être implanté à l’intérieur de systèmes de sécurité autonomes dans
lequel la détection/caractérisation non-supervisée fonctionne en parallèle avec un système
à base de signature afin d’identifier les événements anormaux inconnus et être capable de
les détecter immédiatement après.

Les perspectives de notre travail sont vastes. Une première amélioration consisterait
à utiliser un plus grand nombre de niveaux d’agrégation afin d’améliorer la phase de
corrélation. Les techniques de classement d’anomalies pourraient aussi être améliorées en
réutilisant les résultats de partitionnement et essayant d’incorporer l’éloignement au trafic
normal à l’indice de dangerosité. L’étape de caractérisation pourrait elle être améliorée
via l’utilisation d’algorithmes d’apprentissage supervisé (tels que les arbres de décisions)
en lieu et place des heuristiques actuelles.

Notre travail nous semble donc représenter une première étape déterminante vers
l’introduction de systèmes de détection d’anomalies autonomes qui peuvent ainsi parfai-
tement s’intégrer à des systèmes de gestion des réseaux autonomes.
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Acronyms

ADSL Asymmetric Digital Subscriber Line. 6, 9

AMR Adaptive Mesh Refinement. 20

ARP Address Resolution Protocol. 30, 31

ART Adaptive Resonance Theory. 17

AS Autonomous System. 5, 26

BGP Border Gateway Protocol. 26

BSS Blind Signal Separation. 16

DDoS Distributed Denial of Service. 4, 9, 30, 38

DoS Denial of Service. 4, 9, 38

EA4C EA for small-Clusters identification. 43, 45

EA4O EA for Outliers identification. 43

EAC Evidence Accumulation Clustering. 43, 45

FFT Fast Fourier Transform. 28

FPR False Positive Rate. 45, 68

FTTH Fiber-To-The-Home. 6

GA Genetic Algorithms. 30

GPU Graphic Processor Unit. 49

HTTP Hypertext Transfer Protocol. 9

ICA Independent Component Analysis. 16, 40

ICLA Inter-CLuster Association. 46, 61, 65, 75

ICMP Internet Control Message Protocol. 30, 58
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ICRA Inter-Clustering Results Association. 49, 61, 75

IDS Intrusion Detection Systems. 13, 25

IOA Inter-Outlier Association. 46, 63, 65, 75

IP Internet Protocol. 26–28, 30, 34–39, 47, 55, 61, 64, 65, 67, 70, 81, 82

IPS Intrusion Protection Systems. 13, 25

ISP Internet Service Provider. 4, 5, 13, 60

ISPs Internet Service Providers. 5

LBNL Lawrence Berkeley National Laboratory. 10

NNTP Network News Transfer Protocol. 10

OD-flows Origin-Destination flows. 28, 29

PCA Principal Component Analysis. 16, 17, 23, 24, 27–29, 40, 67

PoP Point of Presence. 6

PoPs Points of Presence. 6, 8

ROC Receiver operating characteristic. 66

SNMP Simple Network Management Protocol. 5, 26

SOFM Self-Organizing Feature Map. 30

SOM Self-Organizing Maps. 17

SSC Sub-Space Clustering. 41, 43, 49

SSH Secure Shell. 10

SVM Support Vector Machine. 30, 31

TCP Transmission Control Protocol. 30

TPR True Positive Rate. 45, 68

UDP User Datagram Protocol. 30

VoD Video on Demand. 8
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“Detection and visualization of subspace cluster hierarchies,” in Proceedings of the
12th international conference on Database systems for advanced applications, DAS-
FAA’07, (Berlin, Heidelberg), pp. 152–163, Springer-Verlag, 2007.

[49] K. Y.-L. Yip, D. Cheung, and M. Ng, “Harp: a practical projected clustering algo-
rithm,”Knowledge and Data Engineering, IEEE Transactions on, vol. 16, pp. 1387
– 1397, nov. 2004.

[50] K. Sequeira and M. Zaki, “Schism&#58; a new approach to interesting subspace
mining,” Int. J. Bus. Intell. Data Min., vol. 1, pp. 137–160, December 2005.
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