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Résumé

Nous abordons le développement d'une nouvelle génération de méthodes numériques pour la
résolution des EDP évolutives qui modélisent des phénomènes multi-échelles en temps et en es-
pace issus de divers domaines applicatifs. La raideur associée à ce type de problème, que ce soit
via le terme source chimique qui présente un large spectre d'échelles de temps caractéristiques
ou encore via la présence de fort gradients très localisés associés aux fronts de réaction, im-
plique en général de sévères di�cultés numériques. En conséquence, il s'agit de développer des
méthodes qui garantissent la précision des résultats en présence de forte raideur en s'appuyant
sur des outils théoriques solides, tout en permettant une implémentation aussi e�cace. Même
si nous étendons ces idées à des systèmes plus généraux par la suite, ce travail se focalise sur
les systèmes de réaction-di�usion raides. La base de la stratégie numérique s'appuie sur une
décomposition d'opérateur spéci�que, dont le pas de temps est choisi de manière à respecter un
niveau de précision donné par la physique du problème, et pour laquelle chaque sous-pas utilise
un intégrateur temporel d'ordre élevé dédié. Ce schéma numérique est ensuite couplé à une
approche de multirésolution spatiale adaptative permettant une représentation de la solution
sur un maillage dynamique adapté. L'ensemble de cette stratégie a conduit au développement
du code de simulation générique 1D/2D/3D académique MBARETE de manière à évaluer les
développements théoriques et numériques dans le contexte de con�gurations pratiques raides
issue de plusieurs domaines d'application. L'e�cacité algorithmique de la méthode est démon-
trée par la simulation d'ondes de réaction raides dans le domaine de la dynamique chimique
non-linéaire et dans celui de l'ingénierie biomédicale pour la simulation des accidents vascu-
laires cérébraux caractérisée par un terme source �chimique complexe�. Pour étendre l'approche
à des applications plus complexes et plus fortement instationnaires, nous introduisons pour la
première fois une technique de séparation d'opérateur avec pas de temps adaptatif qui permet
d'atteindre une précision donnée garantie malgré la raideur des EDP. La méthode de résolu-
tion adaptative en temps et en espace qui en résulte, étendue au cas convectif, permet une
description consistante de problèmes impliquant une très large palette d'échelles de temps et
d'espace et des scénarios physiques très di�érents, que ce soit la propagation des décharges
répétitives pulsées nanoseconde dans le domaine des plasmas ou bien l'allumage et la prop-
agation de �ammes dans celui de la combustion. L'objectif de la thèse est l'obtention d'un
solveur numérique qui permet la résolution des EDP raides avec contrôle de la précision du
calcul en se basant sur des outils d'analyse numérique rigoureux, et en utilisant des moyens
de calculs standard. Quelques études complémentaires sont aussi présentées comme la par-
allélisation temporelle, des techniques de parallélisation à mémoire partagée et des outils de
caractérisation mathématique des schémas de type séparation d'opérateur.

Mots-clés. Problèmes multi-échelles; Réaction-di�usion-convection; Séparation d'opérateur;
Multirésolution adaptative; Intégration temporelle adaptative; Contrôle d'erreur; Parallélisation
à mémoire partagée; Algorithm Pararéel; Ondes chimiques non linéaires; Accidents vasculaires
cérébraux; Flammes laminaires; Décharges plasma.



Abstract

We tackle the development of a new generation of numerical methods for the solution of
time dependent PDEs modeling general time/space multi-scale phenomena issued from var-
ious application �elds. This type of problem induces well-known numerical restrictions and
potentially large sti�ness, which stem from the broad spectrum of time scales in the nonlinear
chemical terms as well as from steep, spatially very localized, spatial gradients in the reaction
fronts. Therefore, dedicated numerical strategies are needed to ensure the accuracy of the
numerical approximations from a theoretical point of view, taking also into account adequate
practical implementations to reduce computational costs. In order to cope with these prob-
lems, this study introduces a few mathematical and numerical elements for the solution of sti�
reaction-di�usion systems, extensible in practice to more general con�gurations. The core of
the numerical strategy is thus based on a specially conceived operator splitting method with
dedicated high order time integration schemes for each subproblem. An appropriate choice
of splitting time steps allows us the simulation of the solution within a prescribed accuracy,
according to the overall physics of the problem. The resulting numerical scheme is properly
coupled with an adaptive multiresolution technique for dynamic spatial mesh representations
of the solution. Such an approach has led to the conception of the academic, generic 1D/2D/3D
MBARETE code in order to evaluate the proposed theoretical and numerical developments
in practical sti� con�gurations arising in several research �elds. The algorithmic e�ciency
of the method is assessed by the simulation of propagating sti� reaction waves issued from
nonlinear chemical dynamics and from biomedical engineering applications for a brain stroke
model with �detailed chemical mechanisms�. Moreover, in order to extend the applicability
of the method to more complex and unsteady problems, we consider for the �rst time a time
adaptive splitting scheme for sti� PDEs, that yields dynamic time stepping within the pre-
scribed accuracy. The fully time/space adaptive method allows us then a consistent description
of reaction-di�usion-convection problems disclosing a broad spectrum of time/space scales as
well as di�erent physical scenarios, such as highly nanosecond repetitively pulsed discharges or
self-ignition and propagation of �ames for, respectively, plasma and combustion applications.
The main goal of this work is hence to numerically solve sti� PDEs with reasonable, stan-
dard computational resources and based on a mathematical background that ensures robust,
general and accurate numerical schemes. Further studies are also presented that include time
parallelization strategies, parallel computing techniques for shared memory architectures and
complementary mathematical characterization of splitting schemes.

Keywords. Multi-scale problems; Reaction-di�usion-convection; Time operator splitting; Adap-
tive multiresolution; Time adaptive integration; Error control; Shared-memory parallel comput-
ing; Parareal algorithm; Nonlinear chemical waves; Brain stroke simulation; Laminar �ames;
Plasma discharges.
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General Introduction

A large variety of physical phenomena is characterized by a highly multi-scale nature given
by the interaction of several sub-processes evolving simultaneously at di�erent time rates and
space scales. The study and physical comprehension of the behavior of these mechanisms
give rise to several models with a degree of complexity directly related to the desired level
of detail of the description. These models result often from extensive research over various
scienti�c domains ranging from fundamental theoretical physics to experimental observations
and measurements. This is actually the case for di�erent applications such as combustion
[Pet09, Ech09], chemical vapor deposition [KDK+07, Mar09], nanomaterials [KC07], air pol-
lution modeling [TGHB00, DGOZ04], or plasma discharges [EMB+06, EBD+11], in which
multi-scale phenomena represent a common feature. In this context, the numerical simula-
tions of these problems through the solution of the respective mathematical models, constitute
an important tool for a better understanding of these phenomena for both industrial and scien-
ti�c purposes. Nevertheless, the resulting models that aim at mimicking the original problems,
raise several di�culties this time in terms of the computational e�ort needed to properly handle
a high number of physical variables and parameters, as well as an often broad range of tempo-
ral and spatial scales due, for instance, to large and detailed chemical kinetic mechanisms and
usually inhomogeneous spatial distributions1.
In principle, the comprehensive numerical simulation of detailed mechanisms that result from
a �ne modeling, will certainly reproduce more accurately many physical patterns disclosed
by real and complex phenomena. Such an approach is usually known as the direct numerical
simulation (DNS) of a model, where the solution of the governing equations is carried out with
a su�ciently �ne resolution such that all temporal and spatial scales are described. Neverthe-
less, such a detailed numerical description is necessarily related to important computational
resources, depending on the extent of the numerical simulation needed to represent the leading
features of a particular application. One approach to successfully overcome potential compu-
tational restrictions and carry out very accurate numerical simulations, is thus founded on the
development of performing techniques to take full advantage of parallel and massively parallel
computing architectures, taking into account the strong growth of the computer power in the
very last decades. In this way, the research e�ort is focused on the e�cient exploitation of
the computational resources to accomplish numerical simulations of problems with an increas-

1A classical example of multi-scale problem is given by the description of the dynamics of chemical waves
related to nonlinear chemical reaction processes, in which the reaction rates are several times faster than the
speed of propagation of the wavefronts, also very localized in space. For instance, as we will illustrate in the fol-
lowing chapters, the well-known Belousov-Zhabotinski reaction that models excitable media (see, e.g., [EP98]),
generates propagating waves with a speed of approximatively 0.6 with reaction rates for the fastest variable of
the order of 10−5, whereas the thickness of the moving fronts corresponds to less than 1% of the corresponding
dimension of the spatial domain occupied by the reactive medium. In particular, these nonlinear chemical
waves are often used to study and evaluate the performance of numerical methods because they mimic multi-
scale features of more complex models as the ones previously cited, like combustion fronts or highly nonlinear
ionizing waves issued from plasma discharges.
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ing degree of detail, whereas the choice of standard and rather simple but robust numerical
methods, eases the construction of the numerical implementations2.
Another alternative which is largely used for industrial and scienti�c applications, concentrates
this time on modeling issues to reduce the complexity associated with a highly detailed de-
scription of the problem. The idea seems natural since either not all time and space scales take
a leading part in the global phenomenon of a particular process, or some features of the latter
can be neglected or simpli�ed under particular physical circumstances or consistent hypothe-
ses. This kind of approach has been extensively used to overcome computing limitations in
the very beginning of numerical simulation, but has been also developed ever since to achieve
large scale simulations in modern computer architectures with consistent physical models that
retain a su�ciently accurate description of the main leading processes of the problem under
study, out of the original exhaustive formulation. Hence, the continuous research and impor-
tant investment in the development of reliable models and alternative formulations, combined
with modern computational resources, yield potentially large scale numerical simulations with
predictive capabilities of real complex phenomena, at often much lower expenses than direct
numerical solution of comprehensive models3.
In general for the referred applications, the resulting governing equations coming from either
a fully or partially detailed, or simpli�ed or reduced model formulation, inherit some or most
of the behavioral patterns associated with the general physics of the problem, that need to
be correctly represented by the numerical solutions. As a consequence, a main concern in
the domain of applied mathematics is given by the construction and development of e�cient
numerical methods for the solution of these modeling equations. In particular, a large variety
of modeling con�gurations and their related particularities, impose often an equivalently large
number of dedicated numerical methods and successive rami�cations. The e�ectiveness and
performance of a given method can be then assessed by

• Its capabilities in terms of accuracy and thus of supplying consistently good numerical
solutions. This issue is directly related to the mathematical theoretical background upon
which the numerical methods are conceived, and also to numerical analysis elements
which provide an evaluation of their numerical behavior under the particular conditions
imposed by the description of a given process; and

• Its capabilities in terms of practical implementation and thus of the degree of algorithmic
complexity and computational requirements. This second aspect accounts rather for the
e�ective realization of the methods and the related expenses in terms of computational
resources, at the interface of applied mathematics and scienti�c computing.

These two points stand for the theoretical and practical features of a given numerical method
developed for some speci�c application, and generally speaking one may consider

• Solid and highly dedicated numerical schemes from a theoretical point of view but with
also more complex or expensive numerical implementations; or

• More basic but still robust methods that yield an easier coupling with highly optimized
techniques in terms of computer representation and execution for single or multi-processor
con�gurations.

2See, e.g., in [CCdS+09, Che11] some numerical developments and accomplishments of a high performance
DNS code for combustion applications, and [SJWO11] for the use of Graphics Processing Units (GPUs) to
accelerate the evaluation of detailed chemical kinetics.

3Look, e.g., in [SGP07, SSGP08] for some reviews and achievements on massively parallel computations
for combustion problems in industrial con�gurations, with an approach called Large Eddy Simulations (LES)
[Pit06, Vey09] based on spatial �ltering of the detailed formulation to focus on the contribution of rather large
scales.
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Both a compromise and consistency between theoretical and practical aspects should be then
sought in practice, to achieve at the same time a�ordable and reasonably accurate simulations
by means of numerical methods that aim simultaneously at computational e�ciency with a
robust mathematical basis that ensures accuracy of computations. It is quite clear that an
interaction and combination of di�erent elements coming from basic mathematical �ndings up
to sophisticated code structures or programming techniques, are thus necessary in the global
conception of these numerical schemes. These are some of the main concerns regarding the
numerical methods, that along with the ones previously mentioned on physical modeling and
exploitation of the computer power, constitute part of the fundamental background of the vast
multi-disciplinary scienti�c research for numerical simulations.
In this general context, this work is rather inscribed in the conception and development of
numerical strategies for the numerical simulation of multi-scale phenomena. In particular,
our attention is focused on the numerical solution of problems mathematically modeled by
time dependent partial di�erential equations (PDEs), ultimately involving complex and de-
tailed mechanisms. The multi-scale character of these equations is numerically represented by
their inherent time sti�ness and a wide range of space scales, such that highly dedicated time
integration schemes are often needed at least for numerical simulations employing standard
computational resources, as well as su�ciently large computational domains such that the
main spatial structures of the problem are properly represented. The e�ort is thus concen-
trated on the construction of suitable numerical techniques to properly handle these issues,
based on a �rm mathematical background with the �nal objective of accuracy control of the
numerical simulations, but searching also e�cient practical implementations which will pave
the way towards more realistic applications that may fully exploit the computational resources
and hence the available computer power, to treat a wide range of physical models with di�erent
degrees of detail.

In order to numerically simulate multi-scale physical problems modeled by time dependent
PDEs, a key aspect is given by the de�nition of the numerical schemes that will be used to
describe the evolution in time of these equations. Several numerical strategies were therefore
introduced over the past years for the numerical time integration of the equations, for a given
spatial discretization of the problem. Assuming that the latter representation is su�ciently �ne
to reproduce the space multi-scale features of the physical phenomenon under study, dedicated
numerical methods should be considered to properly handle the time scale spectrum of the
problem resulting from the various phenomena like reaction, di�usion, convection and other
processes included in the model. The numerical description of the time multi-scale features
of the problem and the subproblems within, may then consider the numerical solution of the
complete and coupled governing equations for which generally speaking, there are two extreme
con�gurations:

• An explicit time discretization of the equations which involves important numerical sta-
bility restrictions and consequently very long computations for small time evolution steps,
ruled by the fastest physical or numerical time scale arising in the problem.

• A fully implicit treatment that allows us to cope with the numerical sti�ness associated
with the modeling equations, with time steps settled rather by the desired accuracy of
the simulations.

Although explicit schemes are often very simple to implement and require minimal computa-
tional resources for non sti� problems, they become completely ine�cient for the time integra-
tion of sti� equations and their use will be justi�ed only if other techniques like the extensive
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use of computer power are considered to reduce the computational costs, as we have previously
mentioned. Nevertheless, one way to reduce these computational requirements by means of
numerical techniques is based on adapted mesh representations, introduced and widely de-
veloped over the last decades. The computing e�ort is thus concentrated on some regions
of �ne spatial representation within the entire computational domain, where the phenomena
under study require a more precise description4. By this kind of procedure, important mem-
ory space can be saved and large computational domains can be thus simulated with reduced
computational resources. Although such a procedure is quite natural, new challenges are rep-
resented by the development of e�cient computational implementations, considerably more
complex than for standard meshing techniques (see, e.g., [BMV09]). Other critical issues are
given by the de�nition of appropriate criteria for local re�nement and by a reliable evalua-
tion of the accuracy of computations, considering the approximation errors introduced by the
compressed spatial representations. These techniques are easily coupled with standard explicit
time integration, even if very �ne discretizations imply higher stability constraints. Special
techniques were therefore developed to overcome the latter restriction, usually based on a local
time stepping approach that takes into account the local grid size with adequate synchro-
nization stages [BC89], and coupled, for instance, with hybrid implicit/explicit con�gurations
(see, e.g., [CNPT08, CNPT10]) or with time operator splitting (see, e.g., [DB00, BDA+06]).
Another alternative to favor the use of less expensive explicit schemes considers this time, the
reduction of the sti�ness of the equations relying on a dynamic analysis of the time scales
involved in the problem. These techniques are mainly based on the automatic identi�cation
of slow and fast variables in a general sti� system, and the consequent numerical solution of
the problem on a reduced lower dimensional equilibrium manifold characterized by the slow
time scales of the system, in which the fastest variables are assumed to be in a steady state5.
Since broad time scale spectra are usually associated with detailed complex chemical kinetics
and hence with the source term in the PDEs, di�erent methods were developed to perform
these time scale and variable reductions by numerically evaluating the Jacobians related to the
resulting dynamical systems, i.e., the original sti� systems of ordinary di�erential equations
(ODEs) coming from the modeling PDEs in the absence of transport phenomena. A large
literature has been devoted to this subject and consequently, there has been a tremendous
e�ort in de�ning e�cient and predictive numerical methods in order to reduce and to solve in
a less expensive manner complex systems of equations arising for example in combustion or air
pollution modeling applications, among others6. See, e.g., [LL09, PR09] for recent reviews on
these issues. Nevertheless, a critical aspect from a theoretical point of view (see, e.g., [Mas02])
and a delicate task in practice, is to conceive numerical techniques that allow us to measure
the accuracy of the approximate solutions issued from the reduced dynamics with respect to
the corresponding original equations.
Alternatively, the numerical solution of the governing equations with a fully implicit time
discretization allows us to properly handle the entire time scale spectrum of the problem
and furthermore, ensures accurate numerical approximations in terms of physical couplings
of the various underlying processes within the global phenomenon. Taking into considera-
tion the strong development of dedicated time integration solvers for sti� ODEs systems over

4We will further detail in this work a few key aspects of classical AMR (Adaptive Mesh Re�nement) methods
introduced by Berger & Oliger [Ber82, BO84], as well as adaptive multiresolution techniques based mainly on
the work of Harten [Har94a, Har95].

5In particular, the derivation of reduced models is usually straightforward when the modeling system is
well-partitioned and the fast scales are easily isolated [Spo99, SD00].

6Some classical examples of such techniques that have been further developed, are given by the ILDM (In-
trinsic Low-Dimensional Manifold) approach of Pope and Maas [MP92] and the CSP (Computational Singular
Perturbation) method of Lam & Goussis [LG94].
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the last decades, the implementation of these solvers showed to deliver satisfactory results in
many numerical strategies for sti� detailed formulations. Historically, the �rst, extensively
used implicit solvers for sti� ODEs were based on variable-order (up to �fth) multi-step BDF
formulae [Gea71] like LSODE [Hin80, Hin83], or VODE [BBH89], among others. Other ded-
icated schemes were also introduced based this time on one-step Runge-Kutta schemes like
diagonally or fully implicit methods (see, e.g., [HW96] and references therein), or even explicit
Runge-Kutta schemes with extended stability regions (see, e.g., [Ver96, HV03]). Furthermore,
all these solvers consider carefully conceived implementations with adaptive time-stepping tools
and hence, the chosen time steps ensure a prescribed accuracy tolerance that enhance the nu-
merical performance of the methods. The use of these solvers was often extended to PDEs
by considering ODEs systems issued from a standard semi-discretization with the method of
lines. Nevertheless, all these implicit schemes require important memory resources which re-
strict their direct implementation for large computational domains usually required for PDEs
modeling multi-scale phenomena, whereas stabilized explicit schemes that are well suited and
very performing for parabolic problems, fail to properly handle very sti� problems or operators
that arise in convection dominated �ows.
Other dedicated and even high order implicit schemes have been then conceived over the past
years for the numerical integration of time dependent PDEs, based on either one-step Runge-
Kutta or multi-step schemes (see, e.g., [BCVK02, IZ04, CKB+05]) for the spatially discretized
equations. The level of accuracy of the simulation can be directly related to the value of the
integration time step, as we have previously noted. One of the key points for the success of
implicit techniques is nevertheless related to the development of e�cient solvers, usually based
on Newton iterative methods (see, e.g., [Deu04]), for the solution of large, strongly coupled and
highly nonlinear systems, taking into account the important computational requirements in
memory and CPU time to perform these computations7. In the same way, special high or-
der space discretization schemes have also been implemented which reduce the computational
stencils and hence the size of the nonlinear systems, while also contributing to better capture
particular physical features (see, e.g., [NS05, NBS07, DS10]). Other critical concerns in prac-
tical implementations are given by the development of complementary techniques to ensure
the e�ciency and feasibility of computations such as preconditioning and correct initialization
of the Newton solvers, proper distributed meshing, data storage and representation, among
others8. Taking into account the computational costs of detailed numerical simulations with
these highly accurate but also expensive schemes, the conception of e�cient parallelization
techniques that exploit the current computer power o�er another way out to perform these
computations (see, e.g., [TBS11] for recent investigations in the �eld), as well as adaptive mesh-
ing tools (see, e.g., [ABS05]). All these topics constitute an important part of current research
that will eventually yield accurate and fully detailed 3D simulations of complex multi-scale
phenomena, not yet feasible in our days.
An intermediate numerical strategy may nevertheless exploit the advantages of dedicated im-
plicit methods, combined with less demanding explicit schemes in a hybrid implicit/explicit
time discretization structure for a spatially discretized sti� problem. In this way, one may con-
sider many types of the so-called partitioning or IMEXmethods, by associating implicit/explicit

7There is always an important research on these matters to achieve more performing solvers of nonlinear
systems at much less computational expenses. See, e.g., [KK04, ZC09] for some reviews on Newton-Krylov
methods, recently considered in [DS10] for detailed chemistry simulations.

8See, e.g., [DCS+07, BMP+09] and references therein for some e�cient implementations of implicit solvers for
the numerical simulations of �ames with detailed kinetics, furthermore compared with experimental measure-
ments, based on a numerical technique originally introduced by Smooke in [Smo83]. Some further developments
with parallel computations on distributed memory machines can be found in [DCB+09].
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schemes equation-wise to sti�/non sti� variables of the PDEs, or term-wise to di�erent phe-
nomena like reaction, di�usion or convection, or alternatively by an intelligent combination
of both alternatives. One of the �rst IMEX schemes introduced by Crouzeix in [Cro80] con-
sidered multi-step time discretizations where the implicit and explicit parts corresponded to
the linear and nonlinear terms in the equations, based on the e�ciency of implicit solvers for
linear problems (see, e.g., [ACM98]). These ideas motivated later on the conception of either
multi-step or one-step IMEX methods, this time speci�cally for the numerical solution of sti�
PDEs9. Generally speaking the main idea is that the detailed sti� dynamics associated mainly
with the reaction term is solved by an implicit method, whereas the remaining non sti� phe-
nomena usually related to spatial transport operators like convection or di�usion are solved by
a standard or possibly dedicated explicit method (a detailed review can be found in [HV03]).
Alternatively, for well-partitioned systems for which fast and slow variables can be easily iden-
ti�ed, Hofer introduced in [Hof76] another numerical alternative that considers an implicit or
explicit treatment, respectively, for each subsystem (see some recent developments in [CD11]10

and references therein for ODEs, and [WR08] for PDEs), whereas the same approach can be
also successfully implemented for more general PDEs after a dynamic decoupling technique
to identify the various time scales of the problem (see, e.g., [HW06]11), as we have previously
discussed for the explicit treatment of reduced systems12. Even though an IMEX approach
allows us in general important performance enhancements, it supposes also a few coupling con-
siderations among the di�erent evolving subproblems as well as combined stability and order
conditions for all inner implicit/explicit schemes13. Otherwise, a direct implementation with-
out considering the latter mathematical issues would not be su�cient to de�ne and settle the
accuracy of the numerical computations, specially for sti� PDEs, while it will just reduce the
numerical constraints imposed by the sti� terms down to the next consecutive most demanding
subproblem in terms of stability or accuracy14. In practice, the time steps globally imposed
over partial regions or over the entire computational domain are often limited by either the
stability restrictions of the explicit solver or by the required accuracy of the implicit scheme
to solve the fastest dynamics in the problem. Furthermore, another delicate issue deals with
the feasibility of considering implicit solvers over a discretized domain for large computational

9Some classical works on multi-step or Runge-Kutta IMEX methods were introduced by Ascher et al., re-
spectively, in [ARW95] and in [ARS97]. In particular, the stability of linear multi-step IMEX methods was
analyzed by Frank et al. in [FHV97], which proved that stable implicit and explicit schemes do not necessarily
yield stable IMEX methods.

10In particular, these authors studied a combination of IMEX and multirate techniques that consider variable-
dependent time steps with error control, and analyzed the corresponding stability domain of the method.

11These authors de�ne the slow and fast variables based on the stability domain of the explicit scheme in
order to ensure the stability of computations for a time step computed based on accuracy criteria.

12We remark than in the previous case only the resulting slow variables were actually solved in time after
the dynamic reduction of the general PDEs, even though the fast scales might be reconstructed afterwards
if needed. See some illustrations in [DS02b, DS03] for air pollution modeling applications, and in [VG01] for
combustion problems with detailed chemical kinetics.

13See, e.g., [KC03] and references therein for di�erent IMEX implementations, and in particular for the the-
oretical issues related to the construction of general high order time integration IMEX schemes for reaction-
di�usion-convection systems. This kind of study can be also found, for instance, in [LZ06] for sti� ODEs
systems or in [HR07] for dedicated high order schemes that feature adequate properties to handle steep gra-
dients or shock-like solutions for hyperbolic problems including sti� source terms. Strong stability properties
like A-stability were studied, for instance, in [Gje07] for second order multi-step IMEX schemes.

14An illustrating example was presented and discussed in [NWK98] for the numerical simulation of �ames
with detailed kinetics, in which a dedicated implicit solver succeeded to overcome highly constraining stability
conditions imposed by the reaction terms, but the global time steps remained restricted to ensure the numerical
stability of the explicit scheme used for the di�usion problem, quite limited given the �ne spatial discretization
needed for these problems.
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domains with a high number of unknowns15.
A further step in the previous direction of hybrid con�gurations built upon di�erent schemes,
is given by time operator splitting methods [Mar68, Str68, Mar75, Mar90], also called frac-
tional steps methods [Tém69a, Tém69b, Yan71]. These schemes consider also dedicated im-
plicit/explicit treatment for the numerical solution of the di�erent subproblems included in the
modeling equations, but this time the latter subsystems are completely decoupled and solved
independently during a prescribed splitting time step. Alternatively, dimensional splitting
schemes consider the independent numerical solution of 1D subproblems for multi-dimensional
con�gurations (see, e.g., [HV03] for several term-wise or dimensional splitting techniques). The
main advantage of these methods is given by an important reduction of the numerical com-
plexity since they do not require any coupling whatsoever at the intermediate stages of the
various schemes and thus dedicated numerical schemes of even completely di�erent nature can
be easily implemented for each subproblem. Nevertheless, a critical aspect for these meth-
ods is the appropriate de�nition of decoupling time steps such that the numerical solutions
reproduce with su�cient accuracy the coupled dynamics16. Several studies performed a nu-
merical evaluation of splitting techniques for PDEs and confronted them to fully implicit
schemes or more generally, to numerical solutions that take simultaneously into account the
coupled governing equations (see, e.g., [SBP00, RSO04]). These and other studies showed in
particular that the resulting splitting errors might become important if large splitting time
steps are considered for the numerical solution of sti� PDEs. Moreover, the standard nu-
merical description based on asymptotic analysis (see, e.g., [HLW06]) failed to explain these
behaviors and motivated new and more speci�c theoretical studies on these schemes for sti�
problems (see, e.g., [DM04, DDLM07]). A standard solution in practical implementations is
thus to consider splitting time steps of the order of the fastest physical or numerical scales,
or just su�ciently short to ensure negligible splitting errors, and hence hopefully accurate
results for complex problems, often unfeasible with fully coupled implicit numerical strategies
(see, e.g., [BDS+05, BDG+07]). Time operator splitting techniques and a few theoretical and
numerical related issues will be thoroughly discussed in this work.

Based on the previous discussions we can summarize some key issues to be considered during
the conception of numerical strategies to e�ciently carry out numerical simulations of multi-
scale phenomena. Generally speaking, this e�ciency might be measured in terms of numerical
accuracy and thus related to the mathematical background of the methods, and of their prac-
tical realization according to the resulting computational complexity and required resources.
In this context, the following observations can be drawn forth:

• Standard explicit time integrations would not be performing in terms of CPU time be-
cause of the sti�ness disclosed by the equations. Nevertheless, they o�er straightforward
implementations with reasonable memory requirements, easily coupled with other nu-
merical techniques like adaptive mesh re�nement or chemical reduction, as well as highly

15These are standards limitation for general IMEX schemes as seen, for instance, in [KC03] or [CD11].
Nevertheless, to ease these limitations, Verwer et al. considered in [VS04] an implicit Euler scheme to deal with
the sti� ODEs obtained at each spatial node after decoupling the numerical solution of the reaction problems.
The latter was achieved by embedding this implicit discretization in a stabilized explicit Runge-Kutta scheme,
such that the global stability domain of the method, dictated by the explicit scheme, can be enlarged for the
global time step computed within a prescribed accuracy for both the reaction and di�usion problems. This
scheme led to the IRKC code [SSV06] for sti� reaction-di�usion problems. Extensions to reaction-di�usion-
convection systems were proposed in [VSH04] by adding the corresponding stability conditions for the global
time steps.

16The resulting splitting errors can be mathematically characterized, for instance, for general reaction-
di�usion-convection problems, as described by Lanser & Verwer in [LV99].
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performing parallel computing tools. The accuracy of the simulations is often guaranteed
by the reduced time steps issued from very constraining stability restrictions.

• Fully implicit schemes overcome important stability restrictions for sti� problems and
furthermore, ensure accurate numerical approximations of the detailed dynamics of the
problem. Nevertheless, more sophisticated tools and thus an important increase of the al-
gorithmic complexity are required to build numerical techniques that remain competitive
in terms of computational resources, which become naturally much more constraining.

• An important research has been conducted to yield alternative techniques that exploit
the advantages of both explicit and implicit schemes. The main goal is to reduce com-
putational resources for the numerical solution of sti� problems by an adequate choice
and combination of dedicated numerical methods. Some general examples are given by
IMEX or splitting techniques. The key issue is nevertheless related to the accuracy of the
numerical simulations mainly related to e�cient coupling conditions among the di�erent
schemes or with an appropriate choice of splitting time steps for either IMEX or splitting
methods, respectively. A solid complementary mathematical basis is hence mandatory.

In all cases, the simultaneous development of sophisticated parallel techniques is certainly
desirable to better exploit current computational capacities, whereas the numerical methods
should be also su�ciently malleable to properly adapt themselves to the exigencies of progres-
sively more detailed modeling criteria of physical phenomena.

In this framework, this work addresses the development of e�cient numerical methods and
hence the introduction of dedicated numerical tools for the simulation of sti� reacting fronts,
which represent a vast class of multi-scale phenomena. The main goal is to numerically solve
the modeling sti� PDEs with reasonable standard computational resources and based on a
mathematical background that ensures robust, general and accurate numerical schemes. The
following study introduces then a few mathematical and numerical elements for the numerical
solution of sti� reaction-di�usion systems, extensible in practice to more general con�gurations.
The developed numerical strategy is mainly based on a specially conceived operator splitting
method that exploits recent theoretical studies such that the accuracy of the numerical approx-
imation is set by a splitting time steps which is restricted by neither the fastest scales in the
source term nor by stability constraints for the explicit schemes, but only by the physics of the
phenomenon. This technique is properly coupled in the current strategy with a multiresolution
technique, previously introduced in the literature, to dynamically build space adaptive grids
that allow us further reductions on computational requirements with a more precise knowledge
of the numerical errors introduced by the compressed data representations. The novelty of the
approach is given by an intelligent and careful conjunction of various numerical schemes based
on theoretical and practical criteria, such that the numerical simulations of these sti� problems
can be performed within a prescribed accuracy. Furthermore, a new time adaptive splitting
technique has been conceived, a fundamental and missing element in the �eld over the past
years, to extend the applicability of the method to more complex unsteady phenomena by
means of a time/space adaptive method. All these techniques has resulted into an academic
numerical code called MBARETE. The resulting algorithmic e�ciency and the capabilities of
the numerical strategy has been then evaluated through the numerical simulation of models
arising from several research domains, and hence a key aspect in this work is that theoretical
�ndings and numerical criteria have been transposed onto practical con�gurations given by sti�
problems with di�erent and numerically tough particularities, often out of reach of standard
methods. Moreover, theoretical and practical considerations associated with the addition of
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a quite recent numerical technique to enhance the numerical performance of the simulations,
such as the parallelization of the time domain, have been also analyzed and tested throughout
this study, as well as complementary issues going from mathematical descriptions of splitting
techniques to parallel implementations on shared memory structures, from a more practical
point of view. In this way, this work considers and combines theoretical aspects of numerical
analysis and applied mathematics with practical implementation issues of scienti�c computing
for current scienti�c applications within an academic framework, in order to settle a solid basis
for more detailed and complex numerical simulations.

This study is organized in four parts. Part I introduces various crucial aspects brie�y stated
in this introduction concerning the numerical solution of multi-scale PDEs, and settles the
theoretical background of the numerical methods considered throughout this work. On these
bases all the new theoretical and numerical tools developed in this study are gathered in Part
II for the numerical solution of sti� reaction-di�usion systems. Numerical simulations of prob-
lems coming from the �eld of nonlinear chemical dynamics are included throughout this part
as numerical illustrations of the methods. Part III accounts for the algorithmic description
of the numerical strategy and some other practical implementation issues in the academic
MBARETE code, whereas further analyses, evaluations and extensions of the numerical strat-
egy are conducted in the last Part IV for di�erent applications in several domains, namely
biomedical engineering, combustion and plasma applications.

Part I is composed of three chapters. Chapter 1 is about time operator splitting techniques to
numerically integrate sti� PDEs. In the �rst part, we present brie�y the main numerical context
of these methods to better characterize their advantages and limitations, and we consider the
construction of general time operator splitting methods of �rst and second order as well as
their classical mathematical description. In the second part, we establish a more precise
mathematical analysis of such techniques in the context of time/space sti� PDEs, illustrated
by sti� reaction-di�usion systems. In particular, we recall some of the main results in the
literature regarding these issues.
Chapter 2 deals with the time integration of sti� ODEs by one-step Runge-Kutta methods. We
thus detail the main aspects regarding Runge-Kutta schemes and give some insights into im-
plicit and stabilized explicit Runge-Kutta methods, two families of dedicated time integration
methods extensively used in the literature. Particular attention is given to Radau5, an implicit
Runge-Kutta solver developed by Hairer & Wanner [HW96], and ROCK4, a stabilized Runge-
Kutta scheme introduced by Abdulle [Abd02]. This sti� characterization of ODEs and their
numerical treatment allows us to complete the numerical characterization of PDEs depicted in
the previous chapter.
Finally, Chapter 3 considers space adaptive multiresolution techniques for dynamic adaptive
meshing for time dependent PDEs. A short introduction on general adaptive mesh re�ne-
ment is �rst presented based on the pioneering works of Berger & Oliger [Ber82, BO84] for
AMR techniques, to then consider multiresolution techniques for PDEs introduced by Harten
[Har94a, Har95]. The next part is thus devoted to the mathematical background of wavelet
decomposition on which these multiresolution schemes are based, to end with the description of
fully adaptive multiresolution techniques introduced by Cohen et al. [CKMP03], for the spatial
representation of time evolutionary PDEs.

There are three chapters in Part II. Chapter 4 develops a new numerical strategy for the solu-
tion of multi-scale propagating waves modeled by reaction-di�usion systems. A time operator
splitting approach is introduced that considers the high order methods Radau5 [HW96] and
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ROCK4 [Abd02], to solve the reaction and di�usion problems and to handle the numerical
di�culties associated with each one of them, in a separate manner. The global accuracy of the
time integration scheme is thus set by the splitting scheme by means of an appropriate choice
of the splitting time step dictated by the global physical coupling, possibly much larger than
the fastest time scales, for multi-scale propagating waves. The numerical strategy is then com-
plemented by a space adaptive multiresolution technique, that allows us to better control the
accuracy of the adapted and compressed spatial representation. In this way, both space and
time errors introduced by the numerical methods can be regulated for a given semi-discretized
problem. This study has been published in SIAM Journal on Scienti�c Computing [DMD+12],
and has been presented during the CLEI 36th Latin American Informatics Conference, Asun-
ción, Paraguay (2010) [DML+11].
Chapter 5 is devoted to time adaptive splitting schemes for PDEs. It introduces thus a new
adaptive splitting technique for sti� PDEs which allows us to dynamically compute the splitting
time steps of integration within a prescribed accuracy. This method is based on local error
estimates computed through the incorporation of a lower order embedded splitting scheme.
The numerical analysis of this technique is provided in a general nonlinear context as well
as for self-similar propagating waves. A complementary theoretical and numerical study on
non-asymptotic regimes allows us to extend the applicability of the method to more realistic
situations for large splitting time steps for which the asymptotic theoretical estimates might
fail. In particular, this adaptive method allows us to recast the previous numerical strategy of
Chapter 4 for the solution of more general and highly unsteady phenomena, and yields thus
a time-space adaptive numerical method with dynamic error control. This study has been
published in Con�uentes Mathematici [DDD+11].
Chapter 6 is a theoretical and numerical study on time operator splitting techniques combined
with a time parallelization method for the solution of sti� reaction waves. The main goal is
to exploit parallel computations and an e�cient splitting technique to reduce numerical costs.
The well known parareal algorithm proposed by Lions et al. in [LMT01] is considered, and a
numerical analysis of these techniques is conducted in the context of sti� PDEs characterized
by solutions with high spatial gradients. Numerical illustrations allow us to validate the the-
oretical estimates and to conduct a numerical evaluation of the performance of the method.
This study was recently published in ESAIM: Mathematical Modelling and Numerical Analysis
journal [DDM11], and it is entirely reproduced in this chapter as a self-contained part of this
work.

Part III contains two chapters. Chapter 7 focuses on the description of the adaptive mul-
tiresolution technique in the MBARETE code, with the particularities de�ned in Chapter 4
and based on the theoretical framework of Chapter 3. This part includes thus the algorithmic
representation of the several multiresolution procedures as well as the global space adaptive
scheme. Some practical issues concerning data representation and code structure are also dis-
cussed. The multiresolution technique implemented in the MBARETE code is largely based
on of the multiresolution kernel of MR CHORUS17, a code developed by Christian Tenaud18

for compressible Navier-Stokes equations. Further details on this multiresolution implementa-
tion are available in a tutorial that have been elaborated for a Summer School of CNRS GDR
Groupe Calcul on Multiresolution and Adaptive Mesh Re�nement Methods, Fréjus, France
(2010) [TD11].
Chapter 8 details the splitting techniques introduced in the MBARETE code, based on the
numerical strategy introduced in chapters 4 and 5. The data structure associated with the

17Déclaration d'Invention DI 03760-01.
18LIMSI - CNRS, B.P. 133, Campus d'Orsay, 91403 Orsay Cedex, France (tenaud@limsi.fr).
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PDEs time integration is �rst presented, as well as the coupling with the previous multireso-
lution structure. The algorithms considered for the reaction and di�usion problems are then
described as well as the splitting method with both constant and adaptive splitting time steps.
The complementary numerical procedure introduced in Chapter 5 to correct the computed
splitting time steps is also detailed.

The last Part IV includes three chapters. Chapter 9 considers the numerical simulation of
human brain stroke modeled by a sti� reaction-di�usion system. It is divided into two parts.
In the �rst part we present an article submitted for publication [DDD+12], which constitutes
a complete study on the numerical simulations of such problems. Numerical simulations on
complex brain geometry are thus presented, that were performed with a code called ZEBRE
[Dum07], developed by Thierry Dumont19. This solver considers the same time operator
splitting technique for sti� reaction-di�usion systems detailed in Chapter 4, with uniform
grid discretizations. A cross partial validation is also conducted by performing numerical
comparisons between the results of both the ZEBRE and MBARETE codes for a simpli�ed
brain geometry. In this study, the problem is modeled by a set of 19 variables describing
detailed chemical mechanism in the source term. A parallel implementation of both codes is
carried out for shared memory architectures. This work counts on the special collaboration
of Marie-Aimée Dronne20. In the second part, we conduct a detailed numerical evaluation
of the results obtained with the MBARETE code for simpli�ed 2D and 3D geometries. In
this way, we extend the numerical applicability of the numerical strategy of Chapter 4 to
more complex models with parallel computing tools. The latter study has been also presented
during the Summer School of CNRS GDR Groupe Calcul on Multiresolution and Adaptive
Mesh Re�nement Methods, Fréjus, France (2010) [DMD+11b].
Chapter 10 deals with the numerical simulation of combustion fronts. This study is performed
in the context of laminar �ames interacting with vortex �elds. A thermo-di�usive approach is
considered to decouple hydrodynamics from the transport equations and to solve only the latter
set of equations with the numerical schemes developed in chapters 4 and 5. The introduction
of the convection problem is taken into account for these reaction-di�usion-convection models,
and the time evolution of the convective operator is performed by the OSMP scheme developed
by Daru & Tenaud in [DT04]. Two kind of con�guration are studied given by the propagation of
premixed �ames and the self-ignition of reactive mixtures. The capabilities and performance of
the method are assessed for both situations featuring di�erent physical behaviors. Preliminary
results of numerical tests with a complex chemistry formulation are also reported. This work
counts on the special collaboration of Christian Tenaud and Sébastien Candel21. Some of these
results were presented during the Finite Volumes for Complex Applications VI International
Symposium, Prague, Czech Republic (2011) [DMDD11], and published in the Annual Research
Briefs 2011 of the Center for Turbulence Research, Stanford University, USA [DMD+11a].
Chapter 11 considers the numerical simulations of positive streamers, in the context of propa-
gation of highly nonlinear ionizing waves originated from plasma discharges, as well as highly
multi-scale nanosecond repetitively pulsed discharges. In the �rst part, the time adaptive
scheme introduced in Chapter 5 is evaluated for a simpli�ed reaction-di�usion model. Sec-

19Institut Camille Jordan - UMR CNRS 5208, Université de Lyon, Université Lyon 1, INSA de Lyon
69621, Ecole Centrale de Lyon, 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France
(tdumont@math.univ-lyon1.fr).

20Université de Lyon, Université Lyon 1, ISPB - Faculté de Pharmacie de Lyon 69003 Lyon, France
(marie-aimee.dronne@recherche.univ-lyon1.fr).

21Laboratoire EM2C - UPR CNRS 288, Ecole Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-
Malabry Cedex, France (candel@ecp.fr).
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ondly, a new numerical strategy was developed for plasma models given by a set of drift-
di�usion equations coupled with the electric �eld computation. The resulting second order
scheme features also dynamic time adaptation within a prescribed accuracy, whereas the same
strategy presented in Chapter 5 and extended in Chapter 10 for reaction-di�usion-convection
systems is implemented for the solution of the drift-di�usion equations. A detailed numeri-
cal evaluation of the numerical strategy is �nally conducted for problems including a broad
spectrum of space and time scales as well as di�erent physical scenarios. This study has been
recently published in Journal of Computational Physics [DBM+12], and has counted on the
special collaboration of Zden¥k Bonaventura22 and Anne Bourdon23. This article is entirely
reproduced in the second part of the chapter since it constitutes a self-contained study and a
further extension to this work.

This Ph.D. was mainly directed by Marc Massot24 (Main Advisor) and Stéphane Descombes25,
and counted on the close collaboration of Thierry Dumont, Violaine Louvet26, and Frédérique
Laurent27.

This work was supported by a Ph.D. grant from the Mathematics (INSMI) and Engineering
(INSIS) Institutes of CNRS and by INCA project (National Initiative for Advanced Combus-
tion) led by CNRS/ONERA/SAFRAN. Furthermore, it was carried out thanks to:

• an ANR Blancs project (French National Research Agency): Séchelles (project leader S.
Descombes � 2009-2013),
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• a DIGITEO RTRA project: MUSE (project leader M. Massot � 2010-2014),
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• a CNRS PEPS (project leaders A. Bourdon & F. Laurent � 2007-2008),
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22Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlá°ská 2, 611 37 Brno,
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Introduction

The numerical solution of time dependent, sti� PDEs is a delicate task. The causes of the
numerical di�culties usually range from the multiple time scales related to di�erent phenom-
ena within the governing equations, to computational domains of important size to achieve an
appropriate physical resolution of the problem. It is quite clear that the numerical strategies
must simultaneously consider many theoretical and practical aspects to yield mathematically
solid schemes at reasonable computational expenses. The objective of this part is to introduce
some numerical methods in the current literature that were developed to cope with particular
di�culties in the solution of sti� PDEs, and to settle the mathematical background of this work.

Chapter 1 refers to time operator splitting techniques to numerically integrate time dependent
PDEs. The review on these schemes is not exhaustive but aims at giving su�cient informa-
tion on the theoretical characterization of splitting methods and some important issues often
encountered in the numerical solution of sti� problems. The reader may refer to the book of
Hundsdorfer & Verwer [HV03] for further details on di�erent types of splitting technique.

Chapter 2 deals with the time integration of sti� ODEs by one-step Runge-Kutta schemes.
This description complements the previous chapter and gives a more detailed insight into the
numerical solution of sti� problems. In particular, we focus on Runge-Kutta methods given by
implicit and stabilized explicit techniques. A complete information can be found in the book
of Hairer & Wanner [HW96].

Finally, Chapter 3 introduces some adaptive mesh re�nement techniques for time dependent
PDEs by means of space adaptive multiresolution. Most of the chapter is thus given by the
mathematical description of wavelet decomposition and multiresolution techniques for grid
adaptation. The books of Cohen [Coh00] and Müller [Mül03] constitute very good references
in the domain.



Chapter 1

Time Operator Splitting for

Multi-Scale Evolutionary PDEs

In this work we are concerned with the numerical solution of time dependent PDEs involving
reactive terms and transport operators like di�usion, convection or both, issued from the math-
ematical modeling of general multi-scale phenomena. As discussed in the General Introduction,
this kind of problem is rather common in many applications so that e�cient solution schemes
are of the utmost importance. In this chapter, our attention will be focused on the so-called
time operator splitting methods for the numerical solution of such problems. A time operator
splitting procedure allows us to consider dedicated solvers for the reaction part which is nu-
merically decoupled from the other physical phenomena like convection, di�usion or others, for
which there also exist dedicated numerical methods. A completely independent optimization
of the solution of each subsystem might be hence pursued in practice. These methods have
been used for a long time and there exists a large literature showing their e�ciency for time
dependent problems, as we will brie�y detail in the following. We will then describe the general
con�guration of such methods and the classical �rst and second order, Lie and Strang, splitting
schemes. A mathematical characterization of the splitting approximation errors will be also
provided for both linear and nonlinear operators. In the second part of this chapter, we will
introduce some mathematical tools and previous theoretical results concerning the numerical
behavior of such methods for the solution of time and space multi-scale PDEs, illustrated in
the context of reaction-di�usion systems. All of these descriptions constitute a fundamental
part of the theoretical background of this work. A detailed survey and mathematical charac-
terization of di�erent types of splitting method can be found in the book of Hundsdorfer &
Verwer [HV03]. Let us remark that throughout this chapter we will describe the numerical
solutions issued from splitting techniques and the resulting splitting errors, considering neither
time nor space discretization issues in the time integration of the inner subproblems. The
latter matters will be discussed in the forthcoming chapters.

1.1 Time Operator Splitting

Operator splitting techniques [Mar68, Str68, Mar75, Mar90], also called fractional steps meth-
ods [Tém69a, Tém69b, Yan71], were �rst introduced in the late sixties with the main objective
of reducing computational resources. In this context, a complex and potentially large prob-
lem can be split into smaller parts with an important reduction of the algorithmic complexity
as well as the computational requirements. The latter characteristics were largely exploited
over the past years to carry out numerical simulations in several domains, going, for instance,
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from electrocardiology simulations [BWZ+02, TK04], to combustion [OB01, SLGS03] or air
pollution modeling [OOZ01, Spo07] applications. These methods can be thus considered as a
standard approach in numerical applications and continue to be widely used mainly because
of their simplicity of implementation and their high degree of liberty in terms of choice of
dedicated numerical solvers for the split subproblems. Other advantages of these methods are
given by the possibility of time stepping for the various subproblems since each one of them
is independently evolved in time. Additionally, the global numerical stability of the splitting
scheme is guaranteed as long as each of the inner numerical solvers ensures stability stable,
and the mathematical formulation remains valid. In the context of sti� problems, a particular
care must be addressed to choose adequate methods that properly handle and damp out fast
transients introduced by the splitting procedure in the split subproblems, for instance, in the
reaction [VBvLS96, SVdZ+98, VSBH99] or di�usion [RS05a, RS09] terms.
In most applications, �rst and second order splitting schemes are implemented, for which a gen-
eral mathematical background is available (see, e.g., [HLW06] for ODEs and [HV03] for PDEs).
Even though higher order schemes are theoretically feasible, they are usually not suitable for
the solution of PDEs and moreover sti� PDEs [HV03], which constitutes a natural drawback
to these schemes. On the other hand, the separate time evolution of each subproblem during a
given splitting time step introduces naturally the so-called splitting errors into the numerical
solutions. In the context of PDEs, Lanser & Verwer conducted in [LV99] a �ne analysis on
the splitting errors in the solution of reaction-di�usion-convection systems, and de�ned the
particular con�gurations for which splitting errors arising from the numerical separation of
convection, di�usion and reaction subproblems, can be avoided. In a similar way, the latter
kind of analysis allowed us to develop splitting techniques for some particular PDEs con�gura-
tions which resulted in no splitting errors (see, e.g., [HV95] for convection-reaction problems).
This type of study gave new insights into the use of splitting techniques for PDE problems
and furthermore, complemented the classical theoretical basis.
Nevertheless, for general problems that do not display the particular characteristics de�ned in
[LV99], the splitting errors will likely remain throughout the numerical time integration. On
the other hand, it was shown that for more complex problems involving multi-scale features,
the classical mathematical characterization based on asymptotic analysis, i.e., su�ciently small
time steps, fails often in front of time scales much faster than the considered splitting time
step. Actually, the same kind of order reduction that appears in the context of time integration
of sti� ODEs (see, e.g., [HLR88, HW96]), arise similarly when considering splitting techniques
for sti� problems. For PDEs, this sti�ness is usually induced by highly time/space multi-
scale features which furthermore are very common in the mentioned applications. All these
numerical observations motivated more rigorous studies on the splitting errors, specially for
the solution of sti� problems, as we will present in the second part of this chapter.
Another cause of possible order reduction that should be also taken into account, comes this
time from the boundary conditions considered in the time integration of PDEs with splitting
methods. The key aspect is to de�ne appropriate boundary conditions during the indepen-
dent time integration of the space transport operators, such that the numerical results and
furthermore the boundary values, are consistent with the global coupled problem. Although
there has been some numerical studies for particular con�gurations (see, e.g., [HV95]) that de-
scribed this kind of problem and suggested numerical procedures to avoid the resulting order
reduction, a general theory is still missing and thus remains an open problem in the domain
[HV03]. Such issues have not been studied in this work, and we refer to [HV03] for further
discussions and illustrations. Let us also remark that for some kind of problem characterized
by transient phases yielding convergence towards a steady state solution, a splitting technique
will naturally introduce complementary splitting errors with respect to a coupled solution of
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the entire problem (see, e.g., [VS04, VSH04]). Although these errors are naturally controlled
by the splitting time steps, in some applications for which the correct description of the steady
state becomes critical, either a combination of coupled and splitting schemes, or modi�ed split-
ting techniques might be required to relieve the necessity of using small splitting time steps1.
These issues were not explicitly analyzed in this work where we have mainly focused on time
dependent PDEs modeling unsteady problems. However, these topics represent further and
complementary studies in the future.

1.1.1 General Setting

Let us �rst consider a general linear initial value problem:

dtU = AU +BU, t > 0,

U(0) = U0,

}
(1.1)

with linear operators A, B ∈ Mm(R), whereMm(R) is the set of real square matrices of size
m, U0 ∈ Rm and U : R→ Rm, for which the exact solution is given by

U(t) = et(A+B)U0, t ≥ 0. (1.2)

A time operator splitting technique consists in successively solving the evolutionary problems
associated with each time operator in an independent way. For system (1.1) this amounts to
separately solve problems:

dtU = AU, t > 0, (1.3)

and
dtU = BU, t > 0, (1.4)

with appropriate initial conditions for each subproblem. Then, for a time discretization given
by t0 = 0 < t1 < . . . < tN , the associated time steps or splitting time steps are de�ned as
∆tn = tn+1 − tn for n = 0, 1, . . . , N − 1.
Starting from the initial condition of (1.1): U0 = U(0), the splitting numerical approximation
Un+1 of the exact values U(tn+1) is computed from the previous Un for n = 0, 1, . . . , N − 1, by
means of a composition of s ≥ 1 independent solutions of (1.3) and (1.4) with the recurrence
relation:

Un+1 = eβs∆tnBeαs∆tnA . . . eβ2∆tnBeα2∆tnAeβ1∆tnBeα1∆tnAUn, (1.5)

where etAU0 and etBU0 are, respectively, the exact solutions of (1.3) and (1.4) for t ≥ 0 from
initial condition U0. The values of the real or complex coe�cients of the scheme: (αi, βi)

s
i=1

such that
∑

i αi =
∑

i βi = 1, will then de�ne the order of approximation of the method. These
splitting schemes can be seen as composition methods for which the general order conditions
are well known (see [HLW06]).

1.1.2 First and Second Order Splitting Schemes

Taking into account the Taylor series expansion of the exact solution U(∆t) after time ∆t, if
the corresponding numerical approximation U1 is of order p, then the local error is given by

U(∆t)− U1 = O(∆tp+1). (1.6)

1As an illustration, a modi�ed splitting approach was conceived in [SLGS03] to compute steady states of
reacting �ows featuring �ames with detailed chemistry.
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For system (1.1), the exact solution is given by U(∆t) = e∆t(A+B)U0, whereas U1 is the
numerical solution at ∆t, both computed from the initial value U0.
Keeping this in mind for the splitting schemes, we introduce the �rst order Lie (or Lie-Trotter
[Tro59]) splitting formulae, for which p = 1 and

s = 1, α1 = β1 = 1, (1.7)

or alternatively,
s = 2, α1 = β2 = 0, α2 = β1 = 1, (1.8)

into (1.5). From a practical point of view and considering problem (1.1), the �rst scheme (1.7)
is performed by �rst considering the initial value problem:

dtU = AU,

U(0) = U0,

}
(1.9)

during a splitting time step ∆t, which yields U(∆t) = e∆tAU0. And then, problem:

dtU = BU,

U(0) = e∆tAU0,

}
(1.10)

also during ∆t, that yields �nally the numerical solution:

U1 = L∆t
1 U0 = e∆tBe∆tAU0, (1.11)

according to (1.5) with coe�cients given by (1.7). Alternatively, the second Lie scheme (1.8)
considers �rst problem (1.10), and then (1.9), so that

U1 = L∆t
2 U0 = e∆tAe∆tBU0. (1.12)

Considering both Lie approximations, we can see that one corresponds to the adjoint method
of the other. That is, L∆t

1 (resp., L∆t
2 ) is the inverse map of L∆t

2 (resp., L∆t
1 ) with reversed

time step ∆t:
L−∆t

1 L∆t
2 U0 = e−∆tBe−∆tAe∆tAe∆tBU0 = U0. (1.13)

In general it can be shown that composing one-step methods of order p yields a composition
method of at least order p + 1 [HLW06]. In particular, composing with half-sized steps one
method of odd order p with its adjoint, yields a symmetric p+ 1 method. In this way, we can
obtain a symmetric second order splitting scheme known as the Strang (or Marchuk [Mar68])

splitting formulae [Str63, Str68] by composing L∆t/2
1 (resp., L∆t/2

2 ) with its adjoint method

L∆t/2
2 (resp., L∆t/2

1 ):

S∆t
1 = L∆t/2

1 L∆t/2
2 , (1.14)

or alternatively,
S∆t

2 = L∆t/2
2 L∆t/2

1 . (1.15)

Symmetry is guaranteed because S∆t
1 is equal to its adjoint (the same follows for S∆t

2 ), i.e.,

S−∆t
1 S∆t

1 = L−∆t/2
2 L−∆t/2

1 L∆t/2
1 L∆t/2

2 = Id. (1.16)

Coming back to problem (1.1), we have thus the numerical solutions:

U1 = S∆t
1 U0 = e∆tB/2e∆tAe∆tB/2U0, (1.17)
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or
U1 = S∆t

2 U0 = e∆tA/2e∆tBe∆tA/2U0, (1.18)

for which p = 2, and, respectively,

s = 2, α1 = 0, α2 = 1, β1 = β2 =
1

2
, (1.19)

or

s = 2, α1 = α2 =
1

2
, β1 = 1, β2 = 0, (1.20)

into (1.5).
Higher order splitting schemes are also possible. Nevertheless, the order conditions for such
composition methods state that either negative or complex coe�cients (αi, βi)

s
i=1 in (1.5) are

necessary (see, e.g., [HLW06]). Several higher order schemes of this type were already proposed
(see, e.g., [Yos90, Des01, MQ02, Sch02, Tha08, CCDV09, HO09, DT10]). The former implies
usually important stability restrictions and more sophisticated numerical implementations in
terms of algorithmic complexity with respect to less accurate but much simpler �rst and second
order splitting schemes. In the particular case of negative time steps, they are completely
undesirable for PDEs that are ill-posed for negative time progression like parabolic equations
or very sti� terms issued, for instance, from detailed chemical kinetics [HV03].

1.1.3 Classical Numerical Analysis for Splitting Schemes

In this section, we will introduce some classical mathematical tools used for the numerical
analysis of splitting schemes that are going to be used throughout this work. In a �rst step, we
will describe the Baker-Campbell-Hausdor� (BCH) formula on composition of exponentials.
For the linear operators A and B, for which their exponentials etA and etB can be understood
as a formal series expansion2, we de�ne the commutator:

[A,B] = AB −BA, (1.21)

that we will also denote as3

∂AB = [A,B]. (1.22)

The main idea is then to �nd C(t) such that we can write

etAetB = eC(t). (1.23)

This exponential representation is known as the BCH formula for which it was demonstrated
that C(t) is the solution of the di�erential equation:

dtC = A+B +
1

2
[A−B,C] +

∑
i≥2

Bi
i!
∂iC(A+B), (1.24)

with initial value C(0) = 0 [Var74], where Bi are the Bernoulli numbers given by4∑
i≥0

Bi
i!
xi =

x

ex − 1
. (1.25)

2That is, etA =
(∑+∞

n=0
tn

n!
An
)
.

3Notice that for �xed A, the operator ∂A· de�nes also a linear operator B 7→ [A,B] which is also called the
adjoint operator [Var74].

4See [HLW06] for more details.
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Taking into account the series expansions performed in the left-hand side of (1.23), we can
infer that for su�ciently small t, C(t) can be also written as

C(t) = tC1 + t2C2 + t3C3 + t4C4 + . . . (1.26)

which should naturally satisfy (1.23):

etAetB = etC1+t2C2+t3C3+t4C4+.... (1.27)

Therefore, in order to explicitly determine the coe�cients of the series of C(t), we insert the
expansion (1.26) into (1.24), and compare like powers of t which yields

C1 = A+B,

C2 =
1

4
[A−B,C1] =

1

4
[A−B,A+B] =

1

2
[A,B],

C3 =
1

6
[A−B,C2] +

B2

6
∂2
C1

(A+B) =
1

12

[
A−B, [A,B]

]
=

1

12

[
A, [A,B]

]
+

1

12

[
B, [B,A]

]
,

C4 = . . . =
1

24

[
A,
[
B, [B,A]

]]
.


(1.28)

Using the BCH formula (1.23) and the coe�cients (1.28) for C(t), it is straightforward to see
that the �rst order Lie formulae (1.11) and (1.12) verify, respectively,

U(∆t)− L∆t
1 U0 = e∆t(A+B)U0 − e∆tBe∆tAU0 = −∆t2

2
[B,A]U0 +O(∆t3), (1.29)

and

U(∆t)− L∆t
2 U0 = e∆t(A+B)U0 − e∆tAe∆tBU0 = −∆t2

2
[A,B]U0 +O(∆t3). (1.30)

It is important to notice that if the linear operators commute: [A,B] = 0, all the coe�cients
in the series of C(t) are zero in (1.28) except for C1 = A+B, and both Lie operators L∆t

1 and
L∆t

2 act as the �ow e∆t(A+B) of the coupled system (1.1), according to (1.27).
Applying this time the BCH formula (1.23) to

etA/2etB/2 = eC(t), (1.31)

and taking into account that
etB/2etA/2 = e−C(−t), (1.32)

we can apply a second time the BCH formula (1.23) to

eC(t)e−C(−t) = etA/2etBetA/2 = eS(t), (1.33)

in order to obtain S(t):
S(t) = tS1 + t3S3 + t5S5 + . . . , (1.34)

with
S1 = A+B,

S3 = − 1

24

[
A, [A,B]

]
+

1

12

[
B, [B,A]

]
.

(1.35)
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Notice that only odd powers of t are present in (1.34) since the adjoint method of the symmetric
scheme etA/2etBetA/2 is obtained by just changing the sign of t and therefore of eS(t), according
to (1.33). In this case, eS(t) is not other than the Strang scheme St2 according to (1.18), and
we see that the local errors can be written as

U(∆t)− S∆t
1 U0 = e∆t(A+B)U0 − e∆tB/2e∆tAe∆tB/2U0

=
∆t3

24

[
B, [B,A]

]
U0 −

∆t3

12

[
A, [A,B]

]
U0 +O(∆t4),

(1.36)

and

U(∆t)− S∆t
2 U0 = e∆t(A+B)U0 − e∆tA/2e∆tBe∆tA/2U0

=
∆t3

24

[
A, [A,B]

]
U0 −

∆t3

12

[
B, [B,A]

]
U0 +O(∆t4).

(1.37)

In this way, we can formally represent the local errors of both Lie and Strang schemes. We
remark that for both cases no splitting error is introduced for commuting operators. Fur-
thermore, the latter error expressions can be easily extended to an arbitrary number of linear
operators. However, it is important to notice that these estimates are asymptotically veri�ed
for su�ciently small splitting time steps ∆t, since they are based on Taylor series expansions.
Extension to general nonlinear con�gurations is straightforward using a Lie operator formalism
[SSC94], in which case the same previous estimates remain valid with linear operators de�ned
by the Lie derivatives associated with the various nonlinear operators, as we will show in what
follows.

1.1.4 The Lie Operator Formalism

We introduce the Lie operator formalism in order to generalize the use of exponentials of
linear operators in the context of nonlinear operators. Let X be a Banach space, T > 0, and
an unbounded nonlinear operator F fromD(F ) ⊂ X toX, we consider the general autonomous
equation:

dtU = F (U(t)), 0 < t < T,

U(0) = U0, t = 0.

}
(1.38)

The exact solution of this evolutionary equation is formally given by

U(t) = T tU0, 0 ≤ t ≤ T, (1.39)

where T t is the semi�ow associated with (1.38). The Lie operator DF associated with F is
then a linear operator acting on the space of operators de�ned in X (see, e.g., [SSC94, HLW06,
DT11]). More precisely, for any unbounded nonlinear operator G from D(G) ⊂ X to X with
Fréchet derivative G′, DF maps G into a new operator DFG, such that for any v in X:

(DFG)(v) = G′(v)F (v). (1.40)

Using the chain rule for the solution U(t) of (1.38), we have that

∂tG(U(t)) = (DFG)(U(t)), (1.41)

and hence applying the Lie operator iteratively, we obtain

∂nt G(U(t)) = (Dn
FG)(U(t)). (1.42)
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A formal Taylor expansion yields5

G(U(t)) =
+∞∑
n=0

tn

n!
(∂nt G(U(t)))

∣∣∣∣
t=0

=

(
+∞∑
n=0

tn

n!
Dn
FG

)
U0 =

(
etDFG

)
U0. (1.43)

If we now assume that G is the identity operator Id, we �nally get

U(t) = T tU0 =
(
etDF Id

)
U0. (1.44)

Therefore, the Lie operator is indeed a way of writing the solution of a nonlinear ODE in terms
of a linear but di�erential operator.
Following (1.43), an important result obtained by Gröbner in [Grö67] considers the composition
of two semi�ows T t1 and T s2 associated with F1 and F2 for any v in X:

T t1T
s
2 v =

(
esDF2T t1

)
v =

(
esDF2 etDF1 Id

)
v. (1.45)

Notice that the order of the operators to the left and right are permuted for the equivalent rep-
resentations in (1.45). The latter result can naturally be extended to more than two semi�ows
T t1, T

s
2 , . . . , T

r
m associated with F1, F2, . . . , Fm:

T t1T
s
2 · · ·T rmv =

(
erDFm · · · esDF2 etDF1 Id

)
v. (1.46)

The same analysis previously detailed to estimate the splitting errors can be analogously
performed by applying the Baker-Campbell-Hausdor� formula (1.23) to (1.45):

esDF2 etDF1 = eD(s,t), (1.47)

where the di�erential operator D(s, t) is given by

D(s, t) = sDF2 + tDF1 +
st

2
[DF2 , DF1 ] +

s2t

12

[
DF2 , [DF2 , DF1 ]

]
+
st2

12

[
DF1 , [DF1 , DF2 ]

]
+
s2t2

24

[
DF2 ,

[
DF1 , [DF1 , DF2 ]

]]
+ . . .

(1.48)

according to (1.28). The Lie bracket for di�erential operators is de�ned exactly as for linear
operators (1.21):

[DF1 , DF2 ] = DF1DF2 −DF2DF1 , (1.49)

and acts again as a linear di�erential operator:

[DF1 , DF2 ] =
(
F ′2F1 − F ′1F2

)
∂v, (1.50)

for any v in X according to (1.40).
In this way, considering a general system of nonlinear ODEs

dtU = F1(U(t)) + F2(U(t)), t > 0,

U(0) = U0,

}
(1.51)

with U0 ∈ Rm, U : R → Rm, and F1, F2 : Rm → Rm, the same asymptotic expressions for
the local error estimates for the Lie and Strang formulae (1.29) and (1.30), and (1.36) and
(1.37), can be recast with the linear operators A and B replaced by the Lie operators DF1

5We remark that if F (U(t)) is not an analytic function in (1.43), but F ∈ CN (R), then the series has to be
truncated and a O(tN ) remainder must be included.



Sect. 1.2 - Splitting Errors for Time/Space Multi-Scale PDEs 23

and DF2 . The same follows for an arbitrary number of operators. Furthermore, splitting order
conditions can be then deduced by using this Lie formalism for general nonlinear operators
[Yos90, HLW06]. In particular, it was with this representation that the commuting conditions
for nonlinear or linear operators, yielding no splitting errors, were introduced in [LV99] for the
splitting solution of reaction-convection-di�usion systems (see [HV03] for more details). Exact
splitting error representations introduced in [DS02a] can be also analyzed in this framework
for general nonlinear PDEs [DDL+12].

1.2 Splitting Errors for Time/Space Multi-Scale PDEs

In this second part, we will present some theoretical results previously introduced in the liter-
ature, to characterize the numerical behavior of splitting techniques for the solution of multi-
scale PDEs. These multi-scale features might arise in time because of the presence of di�erent
numerical or physical evolution rates within a rather broad range, or in space because of the
presence of steep gradients or large higher order spatial derivatives within the computational
domain. More likely, they are coupled both in time and space throughout the numerical in-
tegration. As a consequence, there might be some perturbing e�ects in the accuracy of the
numerical approximations of the governing equations, traduced usually by an order reduction
of the splitting method. This kind of numerical di�culty might be theoretically characterized
as a direct result of the sti�ness of the time dependent equations as we will discuss in the next
chapter, and generally speaking we can say that we are dealing with the numerical solution of
sti� PDEs.
In what follows we detail some elements to describe the numerical behavior of splitting schemes
faced with the mentioned sti�ness, in the case of reaction-di�usion systems. The study of this
kind of problem allows us to illustrate the numerical di�culties encountered in general, and
the resulting conclusions might be partially extended to more complex con�gurations. Never-
theless, there is a continuous research in this �eld and more detailed mathematical descriptions
are always needed to further understand these issues.

1.2.1 Mathematical Framework: Reaction-Di�usion Systems

We focus on a class of multi-scale phenomena that can be modeled by general reaction-di�usion
systems of type:

∂tU − ∂x · (D(U)∂xU) = F (U), x ∈ Rd, t > 0,

U(0, x) = U0(x) x ∈ Rd,

}
(1.52)

where F : Rm → Rm, U0 : Rd → Rm and U : R × Rd → Rm, with the di�usion matrix D(U),
which is a tensor of order d× d×m. In case we are only considering linear diagonal di�usion,
the elements of the di�usion matrix are written as Di1i2i3(U) = Di3δi1i2 with indices i1, i2,
i3 = 1, . . . ,m, so that the di�usion operator reduces to the heat operator with scalar di�usion
coe�cient Di3 for component u(i3) of U , and the system (1.52) becomes

∂tU −D∂2
xU = F (U), x ∈ Rd, t > 0,

U(0, x) = U0(x) x ∈ Rd.

}
(1.53)

In general, the source term F into (1.52) and (1.53) models reactive chemical mechanisms
with a broad time scale spectrum. On the other hand, complementary sti�ness results from
the potentially fast scales introduced in the numerical solution when applying the di�usion
operator to localized steep spatial gradients or highly inhomogeneous distributions, as it is
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usually the case in physical phenomena characterized by the presence of fronts or irregular
space multi-scale con�gurations. In this way, the associated sti�ness will surely have an e�ect
on the numerical behavior of the splitting schemes as we will brie�y describe in the following.

1.2.2 Splitting Order Reduction for Time Multi-Scale Systems

Even though splitting schemes are usually quite e�cient for the solution of time dependent
equations, several works showed that the standard numerical analysis of splitting schemes
fails in presence of scales much faster than the splitting time step [GPMD88, D'A94, DL95a,
YP98, VS98, SBP00], and that an order reduction of the methods is numerically observed. In
particular, a �rst major step towards a rigorous study of such cases was conducted by Sportisse
in [Spo00] in the framework of a linear system of ODEs, issued from a reaction-di�usion system
with a linear source term and diagonal di�usion. In this work, a fast characteristic time was
associated with the source term by means of a multiplying factor ε−1, with small ε, to split the
original system into a sti� and a non sti� subproblem. In this context, a local order reduction
of the splitting schemes was mathematically described based on singular perturbation theory,
whereas splitting methods ending with the sti�est operator were also shown to be more accurate
than the others. Similar conclusions were obtained by Kozlov et al. in [KrO04] for nonlinear
systems of ODEs, split also into sti� and non sti� parts, using singular perturbation elements
as well. In this framework, Descombes & Massot introduced in [DM04] a general theoretical
approach for nonlinear reaction-di�usion systems with time multi-scale features issued from
more realistic physical con�gurations. We will brie�y describe in the following a few results
coming from [DM04].
Supposing that the system (1.53) shows a well partitioned structure such that U = (uε, vε)T and
thus F (U) = (f(uε, vε), g(uε, vε)/ε)T , where uε ∈ Rmslow

and vε ∈ Rmfast
stand, respectively,

for the slow and fast variables of the dynamical system associated with (1.53), and m =
mslow +mfast; we consider the following reaction-di�usion system:

∂tu
ε − ∂2

xu
ε = f(uε, vε), x ∈ Rd, t > 0,

∂tv
ε − ∂2

xv
ε =

g(uε, vε)

ε
, x ∈ Rd, t > 0,

uε(0, x) = u0(x), x ∈ Rd,

vε(0, x) = v0(x), x ∈ Rd,


(1.54)

for a small parameter ε and the identity inMm(R), as di�usion matrix. For the sake of brevity,
we will only consider this diagonal case, even though a quasi-linear non-diagonal di�usion was
also analyzed in [DM04]. We denote by (uε(t), vε(t)) = T tε (u0, v0) the solution of (1.54) at
some time t.
In order to settle an appropriate mathematical framework, we assume that this system admits
an entropic structure [Mas02] so that the source term admits a well partitioned Tikhonov
normal form [TVS85]. Therefore, there is a partial equilibrium manifold where the fast time
scales have been relaxed, which is globally stable. In particular, the entropy is a global Lya-
pounov function and we can thus perform a singular perturbation analysis with asymptotic
expansions [Mas02]. In this context, we can consider the singular perturbation analysis for the
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�nite dimensional dynamical system:

dtū
ε = f(ūε, v̄ε), t > 0,

dtv̄
ε =

g(ūε, v̄ε)

ε
, t > 0,

ūε(0) = ū0,

v̄ε(0) = v̄0,


(1.55)

which corresponds to a homogeneous system without di�usion. The corresponding reduced
system can thus be written as

dtū = G(ū), t > 0,

ū(0) = ū0,

v̄(t) = h(ū(t)), t ≥ 0,

 (1.56)

where G(ū) = f(ū, h(ū)), and g(ū, v̄) = v̄ − h(ū) = 0. The inner boundary layer, because
of the well-partitioned structure of the dynamical system, can be considered as a projection
step in an a�ne manifold onto the partial equilibrium h(ū0) in the v̄ variable. Denoting by
Π0v̄ the associated variable centered at h(ū0), the boundary layer, parametrized by the spatial
coordinate x, can be described by the following di�erential equation:

dτΠ0v̄ = g(u0, h(u0) + Π0v̄), τ > 0,

Π0v̄(0) = v0 − h(u0),

}
(1.57)

for a time scale de�ned by τ = t/ε.
Assuming that there exists a convex compact set K which contains the initial condition
(ū0, v̄0) ∈ K, and which is invariant by (1.54), (1.56) and (1.57), it has been proved in [Mas02]
that for ε su�ciently small, we have for t ∈ [0,+∞):

v̄ε(t, ε) = Π0v̄(t/ε) + v̄(t) +O(ε), (1.58)

ūε(t, ε) = ū(t) +O(ε), (1.59)

and for some κ > 0, we obtain an estimate for the inner boundary layer

Π0v̄(t/ε) = O
(

e

(
−κt/ε

))
. (1.60)

Considering now the reduced problem associated with the complete system (1.54):

∂tu− ∂2
xu = G(u), x ∈ Rd, t > 0,

u(0, x) = u0(x), x ∈ Rd,

v(t, x) = h(u(t, x)), x ∈ Rd, t ≥ 0,

 (1.61)

and based on the previous singular perturbation analysis as detailed in [DM04], if we assume
that (ū0(x), v̄0(x)) ∈ K for x ∈ Rd and that the solution T tu0 = (u(t), h(u(t)) of (1.61) leaves
also K invariant, for ε su�ciently small, we have for t ∈ [0,+∞):

‖uε(t, ε)− u(t)‖L2 = O(ε), (1.62)
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‖vε(t, ε)−Π0v̄(t/ε)− h(u(t))‖L2 = O(ε), (1.63)

and the corresponding estimate for the inner boundary layer:

‖Π0v̄(t/ε)‖L2 = O
(

e

(
−κt/ε

))
. (1.64)

With this framework, we introduce the standard decoupling of the di�usion and reaction
problems for system (1.54). Let us then denote by Xt(u0, v0) the solution of the di�usion
problem:

∂tuD − ∂2
xuD = 0, x ∈ Rd, t > 0,

∂tvD − ∂2
xvD = 0, x ∈ Rd, t > 0,

}
(1.65)

for some initial data uD(0, ·) = u0(·) and vD(0, ·) = v0(·); and by Y t
ε (u0, v0) the solution of the

reaction problem:
∂tu

ε
R = f(uεR, v

ε
R), x ∈ Rd, t > 0,

∂tv
ε
R =

g(uεR, v
ε
R)

ε
, x ∈ Rd, t > 0,

 (1.66)

with initial data uεR(0, ·) = u0(·) and vεR(0, ·) = v0(·), where the spatial coordinate x can be
considered as a parameter. The Lie and Strang splitting formulae associated with (1.54) are
given by:

Lt1,ε(u0, v0) = XtY t
ε (u0, v0), (1.67)

Lt2,ε(u0, v0) = Y t
εX

t(u0, v0), (1.68)

St1,ε(u0, v0) = Xt/2Y t
εX

t/2(u0, v0), (1.69)

St2,ε(u0, v0) = Y t/2
ε XtY t/2

ε (u0, v0). (1.70)

If we consider now the reduced problem of (1.66) when ε tends to zero:

∂tuR = f(uR, h(uR)) = G(uR), x ∈ Rd, t > 0,

uR(0, x) = u0(x), x ∈ Rd,

vR(t, x) = h(uR(t, x)), x ∈ Rd, t ≥ 0,

 (1.71)

with solution given by (uR(t), h(uR(t)) = Y tu0 as for (1.56), we de�ne the corresponding
reduced splitting schemes:

Lt1u0 = XtY tu0, (1.72)

Lt2(u0, v0) = Y tXt(u0, v0), (1.73)

St1(u0, v0) = Xt/2Y tXt/2(u0, v0), (1.74)

St2u0 = Y t/2XtY t/2u0, (1.75)

where the fast scales have been previously relaxed in the reaction part by considering the
reduced problem (1.71).
To study the order of approximation of the exact solution T tε of the coupled problem (1.54) by
the splitting schemes (1.67)-(1.70), we investigate the order of approximation of T t associated



Sect. 1.2 - Splitting Errors for Time/Space Multi-Scale PDEs 27

with the reduced problem (1.61) by the reduced splitting schemes (1.72)-(1.75). De�ning the
corresponding local errors:

(uerr1, verr1) = T tu0 − Lt1u0,

(uerr2, verr2) = T tu0 − Lt2(u0, v0),

(uerr3, verr3) = T tu0 − St1(u0, v0),

(uerr4, verr4) = T tu0 − St2u0,


(1.76)

it was demonstrated in [DM04] that the local error for the slow and fast variables of the various
splitting schemes satis�es

‖uerr1‖L2 = O(t2), ‖verr1‖L2 = O(t), (1.77)

‖uerr2‖L2 = O(t2), ‖verr2‖L2 = O(t2), (1.78)

‖uerr3‖L2 = O(t3), ‖verr3‖L2 = O(t), (1.79)

‖uerr4‖L2 = O(t3), ‖verr4‖L2 = O(t3). (1.80)

Taking into account that, for instance, for Lt1,ε(u0, v0) the error of approximation with respect
to T tε (u0, v0) is given by

T tε (u0, v0)− Lt1,ε(u0, v0) = T tε (u0, v0)− T tu0 + T tu0 − Lt1u0

+Lt1u0 − Lt1,ε(u0, v0), (1.81)

and that

‖T tε (u0, v0)− Lt1,ε(u0, v0)‖L2 ≤ ‖T tε (u0, v0)− T tu0‖L2 + ‖T tu0 − Lt1u0‖L2

+‖Lt1u0 − Lt1,ε(u0, v0)‖L2 , (1.82)

for ε su�ciently small and for t ≥ 0 su�ciently small, the local errors admit the following
asymptotic expansions [DM04]:

‖T tε (u0, v0)− Lt1,ε(u0, v0)‖L2 = O(t) +O
(

e

(
−κt/ε

))
+O(ε), (1.83)

‖T tε (u0, v0)− St1,ε(u0, v0)‖L2 = O(t) +O
(

e

(
−κt/ε

))
+O(ε), (1.84)

and

‖T tε (u0, v0)− Lt2,ε(u0, v0)‖L2 = O(t2) +O
(

e

(
−κt/ε

))
+O(ε), (1.85)

‖T tε (u0, v0)− St2,ε(u0, v0)‖L2 = O(t3) +O
(

e

(
−κt/ε

))
+O(ε), (1.86)

considering estimates (1.77)-(1.80) for the second term of the right hand side of (1.82), and
(1.62)-(1.64) for the other two terms.
Through this mathematical model and the corresponding numerical analysis, we can conclude
that no order reduction of the splitting schemes is expected for the slow variables whenever we
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consider splitting time steps much larger than the fastest scales present in the problem: t > ε,
following [DM04]. On the other hand, for a linear diagonal di�usion, if we use splitting schemes
ending with the reaction operator which includes the fastest scales, then there is no reason to
expect order reductions not even for the fast variables. In particular, in the con�guration of a
partial equilibrium manifold with non zero curvature, a situation which can only be obtained
with a nonlinear reaction source term, the splitting schemes ending with the di�usion operator
encounter an order reduction related to the Lie bracket between the Laplacian operator and
the h function de�ning the partial equilibrium manifold [DM04]. Finally, let us recall that
in practical implementations of splitting techniques, dedicated solvers must be considered to
properly handle the fast transients associated with the inner boundary layers given by (1.60),
as previously remarked [VBvLS96, SVdZ+98, VSBH99]6, and also to ensure the mathematical
framework detailed in this section in which the split reaction and di�usion subproblems were
exactly solved for estimates (1.83)-(1.86).

1.2.3 Splitting Errors with High Spatial Gradients

We have seen in the previous study that the classical error representations of splitting schemes
are not always enough to describe more precisely some important features related to the mod-
eling equations. Therefore, more rigorous studies were performed and in particular an exact
representation of the local errors of splitting schemes was achieved by Descombes & Schatzman
in [DS02a] for general linear problems like (1.1). Once again, extension to nonlinear operators
is straightforward using a Lie operator formalism as shown in [DDL+12]. These results led
to many further mathematical studies on splitting errors (see, e.g., [DT10, DT11]), and such a
precise error representation showed to be mandatory to better analyze some particular issues
like the in�uence of high spatial gradients on the solution of reaction-di�usion systems solved
by splitting techniques [DDLM07, DDM11, DDL+12]. In this way, it is possible to better de-
pict some potential numerical di�culties issued this time from the space multi-scale character
of some physical phenomena modeled by the governing equations, e.g., (1.52), as previously
remarked and as analyzed, for instance, in [RSO04, RS05a].
Let us recall the initial value problem (1.1), for some linear operators A, B ∈Mm(R), U0 ∈ Rm,
U : R→ Rm:

dtU +AU +BU = 0, t > 0,

U(0) = U0,

}
(1.87)

for which the exact solution is given by

U(t) = e−t(A+B)U0, t ≥ 0. (1.88)

The �rst order Lie and the second order Strang splitting formulae are given, for instance, by

Lt2U0 = e−tAe−tBU0, (1.89)

and
St2U0 = e−tA/2e−tBe−tA/2U0. (1.90)

In this context, it was proved in [DS02a] that the following identities hold:

Lt2 = e−t(A+B) +

∫ t

0

∫ s

0
e−(t−s)(A+B)e−(s−r)A(∂AB)e−rAe−sB dr ds, (1.91)

6The same remark is valid for the numerical integration of sti� ODEs [HLR88, HW96].
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St2 = e−t(A+B)+

1

4

∫ t

0

∫ s

0
(s− r)e−(t−s)(A+B)e−(s−r)A/2(∂2

AB
)
e−rA/2e−sBe−sA/2 dr ds

−1

2

∫ t

0

∫ s

0
(s− r)e−(t−s)(A+B)e−sA/2e−rB

(
∂2
BA
)
e−(s−r)Be−sA/2 dr ds.

(1.92)

These new estimates provide then an exact representation of the local errors, comparing with
previous estimates for Lt2 (1.30) and St2 (1.37). It follows the same for Lt1 and St1.
In order to illustrate the in�uence of space multi-space phenomena given, for instance, by high
spatial gradients in the solutions of the PDEs, we will consider a simpli�ed scalar reaction-
di�usion system coming from (1.53), with m = 1 and d = 1:

∂tu− ∂2
xu+ V (x)u = 0 x ∈ R, t > 0,

u(x, 0) = u0(x) x ∈ R,

}
(1.93)

where V : R → R is supposed to be a positive and bounded function of class C∞(R) with all
bounded derivatives, and the L2-norm of the derivative of the smooth initial condition u0 is
assumed to be very high. Similar systems were considered in [DDLM07, DDM11, DDL+12]
where in particular V can be seen as coming from the linearizion of the corresponding scalar
reaction term f(u) in (1.53). Considering that the linear operator A in (1.87) corresponds to
the multiplication by V and that B = −∂2

x (minus the second partial derivative with respect
to x in one dimension), their commutator (1.21) is given by

∂AB = [A,B] = (∂2
xV ) + 2(∂xV )∂x. (1.94)

If we now de�ne
EtL2

= et(∂
2
x−V ) − e−tV et∂

2
x , (1.95)

and consider (1.91), we can write the local error associated with the Lt2 scheme for system
(1.93) as

EtL2
u0 = −

∫ t

0

∫ s

0
e−(t−s)(∂2

x−V )e−(s−r)V (∂AB)e−rV es∂
2
xu0 dr ds, (1.96)

with commutator ∂AB given by (1.94). Taking norms, we have that in L2(R):

∥∥EtL2
u0

∥∥
L2 ≤

∫ t

0

∫ s

0

∥∥∥e−(t−s)(∂2
x−V )e−(s−r)V (∂AB)e−rV es∂

2
xu0

∥∥∥
L2

dr ds

≤
∫ t

0

∫ s

0

∥∥∥(∂AB)e−rV es∂
2
xu0

∥∥∥
L2

dr ds. (1.97)

Since (
∂AB

)
e−rV es∂

2
xu0 = (∂2

xV )e−rV es∂
2
xu0 + 2(∂xV )∂x

(
e−rV es∂

2
xu0

)
= (∂2

xV )e−rV es∂
2
xu0 − 2(∂xV )r(∂xV )e−rV es∂

2
xu0

+2(∂xV )e−rV ∂x

(
es∂

2
xu0

)
= (∂2

xV )e−rV es∂
2
xu0 − 2(∂xV )r(∂xV )e−rV es∂

2
xu0

+2(∂xV )e−rV es∂
2
x∂xu0, (1.98)
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the integration of (1.97) yields

∥∥EtL2
u0

∥∥
L2 ≤

(
t2

2
‖∂2

xV ‖∞ +
t3

3
‖∂xV ‖2∞

)
‖u0‖L2 + t2‖∂xV ‖∞‖∂xu0‖L2 . (1.99)

Nevertheless, we have supposed that the L2-norm of ∂xu0 is very high, therefore the latter
error bound is only interesting if the splitting time step t is su�ciently small. It is then
specially relevant in this sti� con�guration to obtain alternative error estimates which do not
involve the derivative of the initial condition [DDLM07]. Thanks to the regularizing e�ect of
the Laplacian, we can demonstrate through a Fourier transform of the di�usion operator, that
for all u0 ∈ L2 and for t > 0:

‖∂xet∂
2
xu0‖L2 ≤

1√
2et
‖u0‖L2 . (1.100)

Therefore, taking into account that(
∂AB

)
e−rV es∂

2
xu0 = (∂2

xV )e−rV es∂
2
xu0 − 2(∂xV )r(∂xV )e−rV es∂

2
xu0

+2(∂xV )e−rV ∂x

(
es∂

2
xu0

)
, (1.101)

into (1.97), its integration now yields

∥∥EtL2
u0

∥∥
L2 ≤

(
4

3
t
√
t
‖∂xV ‖∞√

2e
+
t2

2
‖∂2

xV ‖∞ +
t3

3
‖∂xV ‖2∞

)
‖u0‖L2 . (1.102)

An order reduction is thus shown to appear in the local error estimate [DDLM07]. Similar
conclusions are drawn considering the Lt1-Lie scheme, explicit computations of the estimates
can be found in [DDM11]. Estimates (1.99) and (1.102) describe then the behavior of the local
errors, and we see that for t > 0:∥∥EtL2

u0

∥∥
L2 ∝

(
‖∂xu0‖L2t2, ‖u0‖L2t1.5

)
. (1.103)

The �rst term is more relevant when t is su�ciently small, whereas the second one when t is
not small enough and ‖∂xu0‖L2 is very high. More precisely, there exists some constant θ > 0
such that for t ≤ θ, ‖EtL2

u0‖L2 behaves like t2 and for t ≥ θ, ‖EtL2
u0‖L2 behaves like t1.5

[DDLM07, DDM11, DDL+12].
In the same way, de�ning for the St2-Strang scheme

EtS2
= et(∂

2
x−V ) − e−tV/2et∂

2
xe−tV/2, (1.104)

and considering (1.92), we can also write the local error associated with the St2 scheme for
system (1.93). An order reduction can be once again detected and estimated for these sti�
con�gurations. The explicit computations are shown in [DDM11], that �nally yield∥∥EtS2

u0

∥∥
L2 ∝

(
‖∂xu0‖L2t3, ‖u0‖L2t2

)
, (1.105)

so that the local error ‖EtS2
u0‖L2 behaves either like t3 for small splitting time steps or like t2

with a consequent order reduction of the scheme.
It can thus be seen through these theoretical illustrations that an order reduction may arise
for both Lie and Strang schemes whenever the solution features high spatial gradients. On the
other hand, the hypothesis of a linear source term in (1.93) have just allowed us to simplify the
computations and to better target the analysis on the e�ects of the di�usion operator on the
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solution. These theoretical estimates were validated through some numerical tests presented
in [DDLM07, DDM11, DDL+12] for sti� problems coming from nonlinear chemical dynamics.
Taking into account that in the numerical applications envisioned in this work some of them
are characterized by propagating fronts with potentially steep spatial gradients, an in�uence of
the formers may be observed in the accuracy order of the splitting schemes. More precisely, an
order reduction will likely arise for both Lie and Strang formulae for su�ciently large splitting
time steps ∆t. Nevertheless, the mathematical description introduced in these studies con�rms
that from a practical point of view the splitting errors are still set by the splitting time step
even for this type of sti� con�guration, whereas on the other hand a more precise theoretical
understanding of the splitting errors for non asymptotic regimes was achieved. Finally, as in
the previous mathematical descriptions, the numerical solvers implemented in practice should
solve correctly the time evolution associated with each operator. For instance, Ropp & Shadid
showed in [RS05a, RS09] that better results are obtained when using an L-stable method for
the numerical solution of the di�usion in, respectively, reaction-di�usion and reaction-di�usion-
convection problems7.

7We will see in the following chapter that L-stability allows us to rapidly damp out fast numerical transients
associated in this particular case with high frequencies or wave numbers arising when the discretized Laplacian
operator is applied to a given solution (see, e.g., [HW96, HV03]).



Chapter 2

Runge-Kutta Methods for Time

Integration of Sti� ODEs

In the last chapter, we have �rst considered splitting techniques for the solution of linear
systems of ODEs of type (1.1), with a general mathematical description on the numerical
errors of such methods. A formal extension to general nonlinear systems was also detailed
by means of the Lie operator formalism. We have then discussed the numerical solution by
splitting methods of sti� PDEs for reaction-di�usion systems like (1.52), modeling potentially
multi-scale phenomena. A theoretical characterization of the splitting errors was thus presented
in the context of time and space sti� reaction-di�usion problems, which has introduced a few
criteria to take into account, even for more complex PDEs. Even though the latter studies
have led to the description of some numerical di�culties issued from the modeling PDEs, we
have not given any detail on the solution of the split subproblems. Actually, throughout all
these analyses we have assumed that the subsystems of equations were exactly solved in order
to characterize only numerical errors coming from the splitting scheme. In this way, we have
not considered yet either the time or space discretizations, or the numerical time integration of
the associated subproblems. Nevertheless, it is quite natural to expect that the same numerical
features of these modeling equations that in�uence the splitting accuracy, will also be present
during the numerical solution of each split subproblem.
We have seen that in the context of splitting techniques we aim at solving independently
and successively di�erent time dependent systems of equations, starting from the immediately
previous numerical solution. Hence, several initial value problems or Cauchy problems for
PDEs are to be considered within each splitting time step. Therefore, in this chapter we will
focus on the so-called one-step integration methods which contrarily to multi-step methods, do
not require initial lower order approximations to build the numerical solution of each initial
value problem. In this way, in this chapter we will �rst characterize some numerical di�culties
associated with the solution of the ODEs issued from the previous problems to then describe
some one-step Runge-Kutta methods that were developed in the past years to e�ciently cope
with these matters. In particular, we will concentrate on implicit and stabilized explicit Runge-
Kutta schemes that have shown to be very e�cient for the numerical solution of, respectively,
reaction and di�usion problems, as an illustration of proper selection criteria of time integration
solvers for the split subproblems issued from a splitting technique. For further details, an
exhaustive mathematical description and analysis on the numerical solution of sti� systems of
ODEs can be found in the book of Hairer & Wanner [HW96].
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2.1 Characterization of Sti�ness

Let us consider for t > 0, the scalar initial value problem:

dtu = f(t, u(t)),

u(0) = u0,

}
(2.1)

with some u0 ∈ R and u : R → R, f : R × R → R. We aim at obtaining a numerical
approximation un of the exact solution u(tn) of (2.1) for a time discretization given by t0 =
0 < t1 < . . . < tn < . . ., and n = 0, 1, . . ..
Nevertheless, we assume, and therefore we must take into account, that (2.1) is a sti� problem
for which a precise and simple notion of sti�ness is given in [HW96]:

�Sti� equations are problems for which explicit methods don't work.�

In order to illustrate this, we will �rst approximate the solution of (2.1) at some t1 = t0 + δt

u(δt) = u0 +

∫ t0+δt

t0

f(t, u(t)) dt, (2.2)

by
u1 = u0 + δtf(t0, u0), (2.3)

which implies an explicit time discretization solution of (2.2) and it is known as the explicit
Euler method, where δt is de�ned as the integration time step. It is straightforward to see
that this is a �rst order method according to (1.6).
Taking a very simple case for (2.1), given by

dtu = −100u,

u(0) = u0,

}
(2.4)

with exact solution u(δt) = e−100 δtu0 at t1 = δt. We have that u1 computed by (2.3) is given
by

u1 = u0 − 100 δtu0. (2.5)

If we set, for instance, an initial condition u0 = 1, and a relatively small time step of δt = 0.5
compared with 100, the exact and numerical solutions give, respectively, u(0.5) = e−50 ≈ 1.9×
10−22 and u1 = −49. And integrating over another time step δt: u(1) = e−100 ≈ 3.7 × 10−44

and u2 = 2401. It follows then that the explicit time discretization given by (2.3) is not
capable of reproducing the right dynamics given by the exact solution. However, since this
solution models a rapid transition from u0 towards a �nal equilibrium value, we can easily
identify the associated time scale τ = 1/100 = 0.01 of the transient phase and therefore, we
can expect that integration time steps δt of the order or smaller than τ will be capable to track
the right dynamics. For instance, for δt = 0.001, we have u(0.001) = e−0.1 ≈ 0.904837418
and u1 = 0.9, and u(0.002) = e−0.2 ≈ 0.818730753 and u2 = 0.81. These rapid variations
or transients associated with fast scales are typical of sti� equations, but they are neither
su�cient nor necessary to qualify them as sti�. Actually, an initial condition u0 close enough
to the equilibrium manifold of the solution will not develop such fast transients, and thus sti�
features may not be observed.
As a �rst conclusion, we can deduce that an explicit time discretization scheme to solve (2.4)
will generally fail to approach the right dynamics, unless we consider integration time steps
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smaller than the time scales disclosed by the equations. This may seem natural. Nevertheless,
if we consider the counter-part of (2.3), i.e., an implicit Euler method, also of order 1:

u1 = u0 + δtf(t1, u1), (2.6)

and the previous δt = 0.5, we obtain the numerical approximations u1 = 0.019607843 and
u2 = 0.000384468. Therefore, although solutions are not quite accurate, they show convergence
towards the right solution with a time step several times the associated time scale. As a second
conclusion, we can then add that both explicit and implicit schemes are of the same order,
and would therefore yield results of the same accuracy for su�ciently small time steps. From
a time step larger than a given value, the explicit method will not deliver any valid result.

2.1.1 Some Typical Sti� Con�gurations

If we now consider a general nonlinear system

dtU = F (U) (2.7)

with U : R→ Rm, F : Rm → Rm and de�ne a solution ϕ(t) ∈ Rm such that dtϕ(t) = F (ϕ(t)),
we can linearize F in its neighborhood:

dtU = F (ϕ(t)) + ∂UF (ϕ(t)) (U(t)− ϕ(t)) +O
(

(U(t)− ϕ(t))2
)
, (2.8)

to obtain
dtU = JU, (2.9)

where higher order terms in U(t) := U(t)−ϕ(t) are neglected, and with the Jacobian: J(U) =
∂UF (U). Supposing a constant Jacobian that is moreover diagonalizable, we can write the i-th
component u(i)(t) of U(t), solution of (2.9), as

u(i)(t) =
m∑
i=1

cie
λitu

(i)
0 , (2.10)

for some initial condition U0 ∈ Rm and constants ci, where the λi are the corresponding
eigenvalues associated with J . Therefore, we can see that the solutions u(i)(t) of (2.9) are
clearly reproduced by a linear combination of(

eλitu
(i)
0

)
i=1,2,...,m

, (2.11)

that is, solutions of the same type as for the previous linear problem (2.4), and thus the latter
simpler case mimics somehow the dynamics of more general nonlinear problems. We can then
expect the same behavior previously described for explicit and implicit schemes, depending in
this case on the spectrum of the Jacobian J and the set of initial conditions u(i)

0 , i = 1, 2, . . . ,m.
As a consequence, if (2.7) is a sti� system of ODEs, then it is very likely that some λi with
large negative real part Reλi ≤ 0, will take a leading role in the transient phase of the solution,
whenever the initial solution does not belong to a partial equilibrium manifold where the fast
scales are already relaxed. In particular, not only large eigenvalues will generate the fast varia-
tions previously discussed, but also an important dispersion of the eigenvalues in the spectrum
of J will certainly induce multi-scale dynamics issued from the composition of the various
time scales (or eigenvalues) included in (2.10). This is a typical situation for example in the
context of chemical reaction systems modeling a set of reactions with di�erent reaction scales,
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and hence time scales for which fast projection of some species onto equilibrium manifolds are
usually developed (see, e.g., [MP92]). These systems are usually very sti� and moreover, the
sti�ness increases with the precision and the detail of description of the mathematical model.
Another classical example of a sti� problem, where sti�ness is not necessarily related to the
presence of fast variables, is given by the system:

dtU = AU, (2.12)

with U : R→ Rm, A ∈Mm(R):

A =
1

∆x2



−1 1
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −1


(2.13)

and ∆x = 1/(Nx + 1), issued from the spatial discretization on a grid of Nx = m points with
second order centered �nite di�erences for the heat equation:

∂tu− ∂2
xu = 0, (2.14)

for x ∈ [0, 1] and homogeneous Neumann conditions.
As previously seen, the solution of (2.14) in in�nite dimension is given by

u(x, t) = et∂
2
xu0(x), (2.15)

for some initial condition u0(x), where the associated spectrum of the di�erential operator is
given by the whole set of numbers in the negative real axis. Furthermore, performing a Fourier
transform in the x direction

f̂(k) = F(f) :=

∫ ∞
−∞

e−ikxf(x) dx, (2.16)

of the heat equation (2.14) yields as solution:

û(k, t) = e−k
2tû0(k). (2.17)

Hence, a strong damping of the highest frequencies given by the frequency parameter1 k will
arise and will smoothen the initial condition. This is typical of di�usion problems. The
analogy with the previous linear case (2.4) can be then established by this analysis for which
in particular, we see that the frequency composition of the initial condition u0, will or will
not activate these fast decays, similar to (2.4). As a consequence, we can directly relate the
sti�ness associated with equation (2.14) to the presence of high gradients or discontinuities
in x in u0(x). For instance, if we consider an extreme case for which u0(x) = δ(x), i.e., the
Dirac delta function, all the frequency spectrum will appear on (2.17) with fast decays, since
û0(k) = 1.
Coming back to the discretized problem (2.12) which is the one that will be numerically inte-
grated, we can infer that the discretized counter-part mimics the previous theoretical analysis.
This is re�ected, for instance, by the spectrum of the matrix A:

λj = − 4

∆x2
sin2

(
πj∆x

2

)
, j = 1, . . . , Nx, (2.18)

1Also referred to as the wave number.
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or alternatively,

λj = −4(Nx + 1)2 sin2

(
πj

2(Nx + 1)

)
, j = 1, . . . , Nx, (2.19)

for which we can identify potentially large eigenvalues increasing quadratically with the number
of discretization points Nx with a maximum dispersion between −4(Nx + 1)2 and 0, which
explains the spurious patterns found in some numerical approximations for this kind of problem
(see some illustrations in[HW96]). In particular, we see that �ner discretizations that introduce
naturally more resolution scales, result also in broader spectra to represent them. Once again,
these large eigenvalues will arise in the global solution depending on the distribution of the
initial conditions. Sti�er behavior will then take place for discontinuous or large variations
within the initial distributions.
With this brief introduction and illustrations, we introduce in the following the so-called Runge-
Kutta (RK) time integrations method, as well as some dedicated RK schemes conceived to
handle sti� systems of ODEs.

2.2 Runge-Kutta Time Integration Methods

We have previously considered the explicit Euler method given by (2.3). This kind of method
is called one-step integration method because we aim at recursively approximating the exact
solution (2.2) after one time step, based on the previous one. The Euler scheme is of �rst order
but by approximating the integral in (2.2) by a higher order quadrature formula, we can build
higher order one-step methods. A second order scheme can be constructed, for instance, by
using the mid-point approximation:

u1 = u0 + δtf

(
t0 +

δt

2
, u

(
t0 +

δt

2

))
, (2.20)

and the Euler method, which leads to the Runge method:

u1 = u0 + δtf

(
t0 +

δt

2
, u0 +

δt

2
f(u0)

)
. (2.21)

Generalizing this idea with higher order quadrature formulae leads to de�ne the so-called
s-stage Runge-Kutta methods:

gi = u0 + δt
s∑
j=1

aijf (t0 + cjδt, gj) , i = 1, . . . , s;

u1 = u0 + δt
s∑
j=1

bjf (t0 + cjδt, gj) ,

 (2.22)

for which the arrays b, c ∈ Rs gather the various coe�cients b = (b1, . . . , bs)
T and c =

(c1, . . . , cs)
T , and A ∈ Ms(R) such that A = (aij)1≤i,j≤s. These coe�cients are usually

arranged in a mnemonic device, known as a Butcher tableau:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs
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For instance, for the Runge method (2.21), we have

0

1

2

1

2
0 1

When aij = 0 for j ≥ i, the scheme is explicit in time (Explicit RK methods, ERK) with

gi = u0 + δt
i−1∑
j=1

aijf (t0 + cjδt, gj) , i = 1, . . . , s, (2.23)

in (2.22), whereas the case for which aij = 0 for j > i and at least one of the diagonal coe�cients
is non-zero, aii 6= 0, is de�ned as a Diagonal Implicit RK method (DIRK). Otherwise, we are
considering Implicit RK methods (IRK). We will further describe these schemes in the following,
but �rst, we will introduce some basic theoretical and numerical properties for general RK
methods: the order and stability features, as well as the choice of the time steps of integration.

2.2.1 Order and Stability of Runge-Kutta Schemes

We now consider the Dahlquist test equation [Dah63]:

dtu = λu,

u(0) = 1,

}
(2.24)

with λ ∈ C (a particular case was given by (2.4)), and we can successively compute the gj of
the explicit RK method (2.23) for problem (2.24). We obtain

u1 = R(z)u0, z = δtλ, (2.25)

where
R(z) = 1 + z

∑
j

bj + z2
∑
j,k

bjaj,k + . . . , (2.26)

is a polynomial of degree ≤ s. If the RK method is of order p we know that u1 = R(z)u0 must
satisfy

ez −R(z) = O(δtp+1) = O(zp+1), (2.27)

where ezu0 is the exact solution of (2.24), and thus R(z) is given by

R(z) = 1 + z +
z2

2!
+ . . .+

zp

p!
+O(zp+1). (2.28)

In particular, for all explicit RK methods of order p with s = p intermediate stages, we have

R(z) = 1 + z +
z2

2!
+ . . .+

zs

s!
. (2.29)

A classical analysis based on the Dahlquist test equation (2.24) allows us to de�ne R : C→ C

given in general by (2.25), as the stability function of a given method. That is, R(z) is the
numerical solution of (2.24) given by the method itself after one time step δt. Furthermore,
the numerical solution recursively computed can be written as

un = (R(z))n u0 (2.30)
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which allows us to de�ne the stability domain of the method given by the set of z for which
un remains bounded for n→∞, i.e.,

S := {z ∈ C s.t. |R(z)| ≤ 1} . (2.31)

For instance, considering the explicit Euler method (2.3) for which

R(z) = 1 + z, (2.32)

according to (2.28), its stability domain S is given by all z ∈ C such that

|1 + z| = |z − (−1)| ≤ 1, (2.33)

which is the circle of radius 1 and center −1 in the complex plane. Coming back to the previous
example (2.4) with λ = −100, we can see that an explicit Euler method will remain stable as
long as z = δtλ ∈ S, i.e., 0 ≤ δt ≤ 2/100, which explains the previous bad results for δt = 0.5.
Alternatively, considering the implicit Euler method (2.6) yields

R(z) =
1

1− z
, (2.34)

as stability function, with stability domain given by all z ∈ C such that∣∣∣∣ 1

1− z

∣∣∣∣ ≤ 1 ⇒ |z − 1| ≥ 1, (2.35)

that is, the exterior of the circle with radius 1 and center +1 in the complex plane. For problem
(2.4), we can then see that R(z) will remain bounded for any time step δt > 0, as it is shown
by (R(z = −100 δt))n = (1 + 100 δt)−n into (2.30). This better performance of an implicit
discretization for large negative λ into (2.24), characteristic of sti� ODEs, leads us to give
more details on these schemes in a forthcoming section. In particular, it was demonstrated
that for p ≥ 5 there is no explicit RK method of order p with s = p stages [But64c, But64d].
This and other order constraints for explicit RK schemes are known as the Butcher Barriers
(see more details in [HNW87]). Finally, it is important to recall that in a general case, we
can perform the same analysis on the linearized problem (2.9), similar to the Dahlquist test
equation, taking into account the complex eigenvalues λi, i = 1, · · · ,m, of the associated
Jacobian J .

2.2.2 Time Step Selection

Whether the time discretization schemes are explicit or implicit, or if the orders of approxi-
mations are high or low, a key question for a numerical time integration method is the choice
of the time step of integration. We have seen, for instance, that for sti� problems, explicit
methods should consider rather small time steps to guarantee the stability of computations.
However, for a given problem if we suppose that we are only considering time steps contained
in the stability domain, the former ones must be chosen such that the numerical solutions
yield approximations within a desired accuracy. In this case, a constant time step might be
su�cient for some kind of problem to e�ciently solve the corresponding dynamics. In a more
general context, more sophisticated techniques must be consider to dynamically select these
time steps in order to render computations e�cient or even possible in practice. In any of both
cases, the main goal is to choose a time step δt such that the local error veri�es

‖u(δt)− u1‖ = Cδtp+1 ≤ Tol , (2.36)
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where Tol is the desired accuracy requested to the numerical computations. It is straightfor-
ward to see that higher order methods would satisfy (2.36) with larger time steps. Furthermore,
for a given scheme the expression (2.36) might be satis�ed with time steps evolving in time. For
problems describing di�erent dynamics, having an adaptive time step strategy would then in-
volve important savings of numerical work. In this context, a lot of research has been conducted
to develop time step control or adaptive time stepping techniques. A review of some explicit
solvers with automatic time step selection can be found in [HNW87] for non sti� problems.
A complementary idea developed for explicit schemes was to use these control techniques to
automatically detect sti�ness (see, e.g., [Sha77, SH77, HW96]) in order to automatically switch
to a more suitable method.
One of the most standard ways of time stepping is based on computing a numerical approx-
imation: err , of the exact local error in (2.36), by considering a solution û1 computed by a
lower order method of order p̂ < p [HNW87], such that

‖u(δt)− u1‖ / err = ‖u1 − û1‖. (2.37)

Since

u1 − û1 = (u1 − u(δt))− (û1 − u(δt)) = O(δtp+1) +O(δtp̂+1) ≈ O(δtp̂+1), (2.38)

and thus,
err ≈ C̃δtp̂+1, (2.39)

we can suppose that the optimal time step δtopt such that err ≈ Tol :

Tol ≈ C̃δtp̂+1
opt , (2.40)

is given by

δtopt = fac · δt
(
Tol

err

)1/p̂+1

, (2.41)

where fac is a safety factor usually close to 1.
In this way, we can compute the time step needed to integrate problem (2.1) with a local
accuracy given by Tol , where the p̂-order method should be embedded into the p-order method
in order to minimize the required number of operations. Additionally, we can use the expression
(2.41) to dynamically compute the time steps in time. In this case, we use the computations
at the n-th step to predict the error at the next step:

errn+1 = ‖un − ûn‖ ≈ C̃nδtp̂+1
n , (2.42)

which yields as new time step:

δtnew = fac · δtn
(

Tol

errn+1

)1/p̂+1

, (2.43)

by assuming C̃n+1 ≈ C̃n into
Tol ≈ C̃n+1δt

p̂+1
new . (2.44)

The next step δtn+1 will be then given by δtnew if errn+1 ≤ Tol . Alternatively, the current
n-th time step will be rejected if errn+1 > Tol , and in this case the procedure works as an
a posteriori veri�cation where the same n-th step will be integrated again with the new time
step δtnew.
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Based on the same ideas and on more rigorous theoretical studies carried out by Gustafsson
[Gus94], a better procedure assumes that logCn is a linear function of n, and thus logCn+1 −
logCn is constant or, equivalently [HW96]

Cn+1

Cn
≈ Cn
Cn−1

, (2.45)

which �nally yields

δtnew = fac · δtn
(

Tol

errn+1

)1/p̂+1 δtn
δtn−1

(
errn
errn+1

)1/p̂+1

. (2.46)

This technique is also known as the step size strategy with memory of Watts [Wat84] and
Gustafsson [Gus94], and usually shows better performances than the standard technique (2.43).
In particular, it allows us fast reduction of time steps without rejection in the context of sti�
problems [HW96]. There are other step size control techniques to numerically estimate or
predict local errors and therefore, to guarantee a given accuracy of computations according
to (2.36). We mention, for instance, time step computations using extrapolation techniques
[Deu83, Sha87], or theoretical or numerical estimates of the leading term of the local error
expansion [Hin80, SSV97].

2.3 Implicit Runge-Kutta Methods

Let us consider now the implicit RK scheme (2.22). We apply it to the Dahlquist test equation
(2.24), and we obtain

g = u01+ δtλAg,

u1 = u0 + δtλbT g,

}
(2.47)

with g = (g1, . . . , gs)
T and 1 = (1, . . . , 1)T . The linear system for g1, . . . , gs gives

g = (Id− λδtA)−1u01, (2.48)

and the corresponding stability function may be written as

R(z) = 1 + zbT (Id− zA)−1
1. (2.49)

However, a better representation might be obtained by considering the solution of (2.47):(
Id− zA 0

−zbT 1

)(
g

u1

)
= u0

(
1

1

)
, (2.50)

using the Cramer's rule:

u1 =

det

(
Id− zA u01

−zbT u0

)

det

(
Id− zA 0

−zbT 1

) , (2.51)

and taking into account that

det

(
Id− zA 1

−zbT 1

)
= det

(
Id− zA+ z1bT 0

−zbT 1

)
= det

(
Id− zA+ z1bT

)
. (2.52)
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This yields

R(z) =
P (z)

Q(z)
=

det
(
Id− zA+ z1bT

)
det(Id− zA)

, (2.53)

so we can see that for implicit RK schemes, the stability function R(z) becomes a rational
function with polynomial numerator P (z) and denominator Q(z) of degree less than or equal
to s.
A direct consequence of this rational stability function as seen for the implicit Euler method
(2.6), is that the associated schemes can be stable on the entire left-half plane C−. This set of
z corresponds precisely to eigenvalues of negative real part for which the exact solutions are
bounded in time |ez| ≤ 1 and for which we have seen before, the numerical method should
preserve this stability property.
A method is then called A-stable if its stability domain satis�es [Dah63]

S ⊃ {z ∈ C s.t. Re z ≤ 0} . (2.54)

For instance, the implicit Euler method (2.6) is A-stable. Even though this is a desirable and
necessary stability property to properly handle sti� problems, it is not su�cient for very sti�
problems. For eigenvalues with very large real part, the stability function R(z) of an A-stable
method will surely keep the numerical approximations bounded during the fast transients.
Nevertheless, only a R(z) much smaller that 1, can guarantee that the numerical solutions will
rapidly approach the exact solution, damping out the numerical transients phases. Numerical
methods with such a property are known as L-stable [Ehl69].
Taking into account that for rational functions

lim
z→∞

R(z) = lim
z→−∞

R(z), (2.55)

a method is called L-stable if it is A-stable and if in addition

lim
z→∞

R(z) = 0. (2.56)

Considering that for an implicit RK method we have that

R(∞) = 1− bTA−1
1, (2.57)

according to (2.49), it follows that if an A-stable implicit RK method with nonsingular A
satis�es one of the following conditions:

asj = bj , j = 1, . . . , s; (2.58)

ai1 = b1, i = 1, . . . , s, (2.59)

then R(∞) = 0 in (2.57), and the method is also L-stable. In particular, methods satisfying
(2.58) are called sti�y accurate [PR74] and are particularly important for the solution of
singular perturbation problems and for di�erential-algebraic equations [HW96].
Finally, there are some implicit schemes with large stability domains that are not A-stable.
In order to characterize these methods, A(α)-stability constitutes another stability property
for which a method is said to be A(α)-stable if a sector α is contained in the stability region
[Wid67]:

Sα = {z ∈ C s.t. | arg(−z)| < α, z 6= 0} . (2.60)

In this work, we consider only one-step integration methods. Nevertheless, dedicatedmulti-step
integration methods for the resolution of sti� problems were also developed. These schemes
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consider several time steps in order to reconstruct the numerical solution that satis�es the
di�erential equations at each considered time step. Moreover, the Second Dahlquist Barrier
states that an A-stable multi-step method must be of order p ≤ 2 [Dah63]. Nevertheless, there
are many multi-step schemes performing good A(α)-stability properties for high orders, and
L-stability for lower ones, which can be e�ciently used to solve sti� problems. Some examples
are the LSODE [Hin80, Hin83] (Livermore Solver for ODEs) or the VODE solver [BBH89]
(Variable-coe�cient ODE solver), both based on a variable-order (up to �fth) Backward Dif-
ferentiation Formulae developed by Gear [Gea71] (see [HW96] for more details on dedicated
multi-step methods for sti� problems).

2.3.1 Construction of Implicit Runge-Kutta Methods

As previously detailed for the explicit case, an implicit RK method is of order p if condition
(2.27) is satis�ed, in which case we see that R(z) is this time a rational approximation to
ez according to (2.53). In this context, the construction of fully implicit RK methods relies
heavily on the following conditions [HW96]:

B(p) :

s∑
i=1

bic
q−1
i =

1

q
, q = 1, . . . , p;

C(η) :
s∑
j=1

aijc
q−1
j =

cqi
q
, i = 1, . . . , s, q = 1, . . . , η;

D(ζ) :

s∑
i=1

bic
q−1
i aij =

bj
q

(1− cqj), j = 1, . . . , s, q = 1, . . . , ζ.


(2.61)

The �rst condition B(p) states that the quadrature formula (bi, ci)
s
i=1 is of order p, whereas it

was proved by Butcher [But64a] that if the coe�cients bi, ci, aij of a RK method satisfy B(p),
C(η), D(ζ) with p ≤ η + ζ + 1 and p ≤ 2η + 2, then the method is of order p.
With these tools, one way of building these RK schemes considers collocation methods based
on quadrature formulae. The main goal is to �nd a polynomial p(t) of degree s such that
p(tn) = un, and that for a set of collocation points 0 ≤ c1 < . . . < cs ≤ 1, it veri�es

dtp(tn + ciδt) = f (p(tn + ciδt)) , i = 1, . . . , s; (2.62)

such that u(tn+1) = u(tn+δt) will be approximated by un+1 = p(tn+δt) [GS69, Wri71]. We can
then determine the collocation points based on the quadrature formulae used to numerically
approximate ∫ t0+δt

t0

f(t) dt ≈ δt
s∑
i=1

bif(t0 + ciδt). (2.63)

If the quadrature method yields approximations of order p, an important mathematical result
is that the collocation method will also yield approximations of order p for the di�erential
problem (2.62) [GS69].
In this way, Butcher [But64b] introduced RK methods based on Radau quadrature formulae
[Rad80], for which the collocation points c1, . . . , cs, are the zeros of the polynomials

I : ds−1
x

(
xs(x− 1)s−1

)
, (2.64)

II : ds−1
x

(
xs−1(x− 1)s

)
, (2.65)

and the weights b1, . . . , bs, are computed in order to verify B(s) for the quadrature formula
(bi, ci)

s
i=1 into (2.61). Finally, we have that B(2s− 1) since p = 2s− 1 for a Radau quadrature
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formula. Both polynomials have positive zeros with c1 = 0 and ci < 1, i = 2, . . . , s for (2.64),
and ci > 0, i = 1, . . . , s − 1 and cs = 1 for (2.65), whereas the remaining coe�cients are
computed based on the order conditions (2.61). These �rst schemes were not A-stable but
based on these ideas, Ehle [Ehl69] constructed some A- and L-stable schemes which gave birth
to the families of formulae called RadauIA and RadauIIA, depending on the used quadrature
formula (2.64) or (2.65). Tables 2.1 and 2.2 show, respectively, the corresponding coe�cients
for RadauIA and RadauIIA of order p = 5 with s = 3 stages. L-stability can be retrieved in
this case for p = 5, by verifying, respectively, conditions (2.59) and (2.58).

Table 2.1: RadauIA method of order 5.

0
1

9

−1−
√

6

18

−1 +
√

6

18
6−
√

6

10

1

9

88 + 7
√

6

360

88− 43
√

6

360
6 +
√

6

10

1

9

88 + 43
√

6

360

88− 7
√

6

360

1

9

16 +
√

6

36

16−
√

6

36

Table 2.2: RadauIIA method of order 5.

4−
√

6

10

88− 7
√

6

360

296− 169
√

6

1800

−2 + 3
√

6

225
4 +
√

6

10

296 + 169
√

6

1800

88 + 7
√

6

360

−2− 3
√

6

225

1
16−

√
6

36

16 +
√

6

36

1

9

16−
√

6

36

16 +
√

6

36

1

9

Alternatively, other schemes were derived based on other quadrature formulae. For instance, a
family of s-stageGauss methods were constructed this time from Gaussian quadrature formulae,
and perform A-stability properties with the maximum possible order: p = 2s [But64a, Ehl68].
Nevertheless, these schemes are usually not L-stable. Another large group considers Lobatto
quadrature formulae which yields some A- and L-stable schemes of order p = 2s− 2 [But64a,
Ehl68, Chi71, Axe72]. In what follows, we will recall some of the previous concepts and give
some insights into the practical implementation of these implicit RK methods by considering
the Radau5 solver developed by Hairer & Wanner [HW96].
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2.3.2 The Radau5 Solver

Let us recall the general nonlinear problem (2.1), this time of dimension m, that is, u0 ∈ Rm,
u : R→ Rm, and f : R× Rm → Rm, to keep the previous notations:

dtu = f(t, u(t)),

u(0) = u0.

}
(2.66)

The solution of this problem by a s-stage fully implicit RK method (2.22) will lead to the
solution of a nonlinear system of equations of size m× s in order to determine the unknowns
g1, . . . , gs. In order to avoid solving these large systems, a family of diagonally implicit RK
schemes called SDIRK (Singly Diagonally Implicit RK) were developed, that considers a less
expensive alternative by solving s successive stages with only m-dimensional systems to be
solved at each stage. Nevertheless, more stages than the previously seen for fully implicit
RK schemes are usually needed to build A- or sti�y accurate L-stable methods, for instance,
p = s + 1 or p = s. A further simpli�cation considered the linearization of DIRK schemes
in order to replace the nonlinear systems by a sequence of linear problems. These methods
are usually called linearly implicit RK methods or simply Rosenbrock methods, and show good
A(α)-stability properties. A survey and analysis of these and other methods can be found in
[HW96].
As a consequence, we can infer that an e�cient solution of large nonlinear systems is mandatory
for practical purposes and constitutes the main di�culty in the implementation of a fully
implicit RK method [HW96]. In this context, Hairer & Wanner developed the Radau5 solver
for which they had to introduce a few performing tools to overcome the many numerical
di�culties associated with the practical implementation of implicit RK schemes. All of these
issues are discussed in details in their book [HW96], but we will present here some of them
that are usually common to various implicit RK solvers, for the sake of completeness of this
work.
Radau5 implements the �fth order, 3-stage Ehle's method RadauIIA, given in Table 2.2. This
is a high order, A- and L-stable scheme, very suitable for highly sti� problems. The solver
considers RadauIIA because among other reasons, this is a sti�y accurate scheme given by
condition (2.58). From a practical point of view and for very sti� problems such as singularly
perturbed problems, condition (2.58) implies that the numerical solution becomes also an
internal stage in the solution of the g1, . . . , gs (c3 = 1 in Table 2.2). Therefore, we can expect
that fast transients in the exact solution will be better reproduced by numerically considering
the relaxed fast variables after one time step δt [HW96].
Considering the general implicit RK scheme (2.22), we de�ne a new set o variables z1, . . . , zs,
for the computation of the g1, . . . , gs:

zi = gi − u0, (2.67)

in order to reduce the in�uence of round-o� errors [HW96]. This yields

zi = δt

s∑
j=1

aijf(t0 + cjδt, u0 + zj), i = 1, . . . , s;

u1 = u0 + δt
s∑
j=1

bjf(t0 + cjδt, u0 + zj).

 (2.68)

Therefore, knowing the solution z1, . . . , zs implies an explicit formula for u1, for which s addi-
tional function evaluations are required. These extra computation can nevertheless be avoided
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if the matrix A = (aij) is nonsingular, which is the case for RadauIIA. Actually, considering
that  z1

...
zs

 = A

 δtf(t0 + c1δt, u0 + z1)
...

δtf(t0 + csδt, u0 + zs)

 , (2.69)

the computation of u1 is equivalent to

u1 = u0 +
s∑
i=1

dizi, (2.70)

where
(d1, . . . , ds) = (b1, . . . , bs)A

−1. (2.71)

Taking into account the coe�cients in Table 2.2, we see that for RadauIIA: d = (0, 0, 1), since
bi = asi for all i according to (2.58).
To solve the nonlinear system (2.69), Radau5 considers an iterative Newton's method. This
amounts to solve at each iteration a linear system with the matrix: Id− δta11∂uf(t0 + c1δt, u0 + z1) . . . −δta1s∂uf(t0 + csδt, u0 + zs)

...
. . .

...
−δtas1∂uf(t0 + c1δt, u0 + z1) . . . Id− δtass∂uf(t0 + csδt, u0 + zs)

 . (2.72)

If we approximate all Jacobians ∂uf(t0 + ciδt, u0 + zi) by

J ≈ ∂uf(t0, u0), (2.73)

we consider a simpli�ed Newton's method for

G(Z) = Z − (Id− δtA⊗ J)F (Z) = 0, (2.74)

where Z = (z1, . . . , zs)
T , and F (Z) = (f(u0 + c1δt, u0 + z1), . . . , f(t0 + csδt, u0 + zs))

T , so that
the (k + 1)-th approximation of the solution Z is recursively computed by

(Id− δtA⊗ J)∆Zk = −Zk + δt(A⊗ Id)F (Zk),

Zk+1 = Zk + ∆Zk.

}
(2.75)

Each iteration requires then s evaluations of f to compute F (Zk), and the solution of a m× s
linear system to compute the increments ∆Zk = (∆zk1 , . . . ,∆z

k
s )T . Fortunately, the matrix

(Id − δtA ⊗ J) is the same for all iterations with the approximated Jacobians (2.73), and its
inversion by an LU-decomposition, usually quite expensive, is done only once. Furthermore,
exploiting the special structure of the matrix (Id − δtA ⊗ J), a decomposition of the linear
system into two subsystems following a procedure introduced by Butcher [But76], leads to an
important reduction of the number of operations, which is also implemented in the Radau5
solver [HW96]. If no analytical expression is available, the Jacobians can always be numerically
approximated by

Jij ≈
f (i)(t0, u

(j) + δu(j))− f (i)(t0, u
(j))

δu(j)
, i, j = 1, . . . ,m, (2.76)

for relatively small, positive perturbations: δu = (δu(1), . . . , δu(m)). Finally, Hairer & Wanner
de�ned also dedicated stopping criteria for the iterative method as well as appropriate starting
values Z0 for the Newton iterations [HW96].
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In order to select the time step and guarantee a prescribed accuracy, Radau5 uses a lower
order embedded method to numerically estimate the local error in the same spirit of section
� 2.2.2. We illustrate this procedure for this particular case. A lower order approximation of
the solution û1 according to (2.37) is computed by

û1 = u0 + δtb̂0f(t0, y0) + δt
3∑
i=1

b̂if(t0 + ciδt, gi), (2.77)

using the same collocation points c1, c2, c3 of RadauIIA (see Table 2.2), and thus the same
evaluations of f . An extra evaluation of f is needed at t0, whereas b̂0 = γ̂0, where γ̂

−1
0 is a real

eigenvalue of A−1 previously computed. In order to set the new weights b̂1, b̂2, b̂3 we consider
the di�erence:

û1 − u1 = δtγ̂0f(t0, y0) + δt
3∑
i=1

(b̂i − bi)f(t0 + ciδt, gi), (2.78)

into (2.61) for B(3) such that û1 − u1 = O(δt4). Considering the representation (2.70), this
yields �nally

û1 − u1 = δtγ̂0f(t0, y0) +

3∑
i=1

d̂iz3, (2.79)

where

(d̂1, d̂2, d̂3) =
γ̂0

3
(−13− 7

√
6,−13 + 7

√
6,−1). (2.80)

With these solutions, Radau5 computes the approximation:

err = (Id− δtγ̂0J)−1(û1 − u1), (2.81)

as error estimate in order to simultaneously guarantee that the di�erence (2.79) is bounded
for δt→ 0 and δtλ→∞ (if f(u) = λu and J = λ), for sti� problems [HW96].
The time steps are then computed by taking the minimum of

δtnew = fac · δtn
(

1

‖errn+1‖

)1/4

, (2.82)

and

δtnew = fac · δtn
(

1

‖errn+1‖

)1/4 δtn
δtn−1

(
‖errn‖
‖errn+1‖

)1/4

, (2.83)

based, respectively, on (2.43) and (2.46) with

‖err‖ =

√√√√ 1

m

m∑
i=1

(
err (i)

sci

)2

, (2.84)

with err (i) = (Id−δtγ̂0J)−1
(
û

(i)
1 − u

(i)
1

)
, and sci = Atol i+max(|u(i)

0 |, |u
(i)
1 |)·Rtol i, where Atol

and Rtol are de�ned as absolute and relative accuracy tolerances [HW96]. With the de�nition
of the error estimate given by (2.84), the current time step is accepted if ‖err‖ ≤ 1, otherwise
it is rejected. In this case as well as for the �rst step, Radau5 uses a second error estimate
instead of (2.81):

ẽrr = (Id− δtγ̂0J)−1

(
δtγ̂0f(t0, y0 + err) +

3∑
i=1

d̂iz3

)
, (2.85)

which implies an additional evaluation of f , but we have that ẽrr → 0 is satis�ed for δtλ→∞,
in the same way as the numerical solution u1 does.
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2.4 Stabilized Explicit Runge-Kutta Methods

In many cases, there are sti� problems for which A-stable methods are not necessarily required.
Some remarkable examples come from the discretization of parabolic PDEs which lead to sti�
problems with a Jacobian matrix involving (possibly large) eigenvalues close to the real negative
axis. This is the particular case of the discretized heat equation (2.14) in � 2.1.1, for which the
real negative eigenvalues (2.18) increase with �ner spatial discretizations. Therefore, instead
of A-stable but time consuming implicit procedures, stabilized explicit RK methods should be
preferred. These explicit methods avoid the solution of algebraic systems, while featuring
an extended stability domain along the negative real axis, very appropriate for this type of
problem. A detailed survey on these schemes can be found in [Ver96], and in the book of
Hundsdorfer & Verwer [HV03].
The main goal is to construct methods of order p with a family of stability polynomial Rs of
degree s:

Rs(z) = 1 + z + · · ·+ zp

p!
+

s∑
p+1

αi,sz
i, (2.86)

with s ≥ p+ 1, and αi,s ∈ C, such that Rs(z) remains bounded as much as possible along the
real negative axis, i.e.,

|Rs(z)| ≤ 1, z ∈ [−`s, 0], (2.87)

with `s as large as possible. One way of building such stability polynomials considers the
family of Chebyshev polynomials:

Ts(cos(z)) = cos(s z), (2.88)

de�ned also by the recurrence relation:

T0(z) = 1, T1(z) = z, Ts(z) = 2zTs−1(z)− Ts−2(z), (2.89)

which remain bounded between 1 and −1 for z ∈ [−1, 1], and in particular yield boundaries `s
proportional to s2.
These schemes are usually called Runge-Kutta-Chebyshev methods, and feature extended real
stability intervals proportional to s2, a good property inherited from Chebyshev-type polyno-
mials. For instance, for p = 1, the optimal polynomials that satis�es (2.86) are directly the
shifted Chebyshev polynomials:

Rs(z) = Ts

(
1 +

z

s2

)
, (2.90)

which are shown to yield the optimal `s = 2s2. However, in the points where Rs(z) = ±1 for
z ∈ R−, the stability domain has zero width and therefore, there is no damping at all of high
frequencies. The standard way to overcome this di�culty considers a small parameter ε > 0
in order to build damped Chebyshev stability functions [GL61]:

Rs(z) =
1

Ts(w)
Ts(w0 + w1z), w0 = 1 +

ε

s2
, w1 =

Ts(w0)

T ′s(w0)
. (2.91)

As a consequence, the stability domains are reduced by approximatively ε: |Rs(z)| ≤ 1 − ε,
while the stability length is shortened by approximatively (4ε/3)s2; nevertheless, the order of
the scheme is preserved and a safe distance from the real axis is guaranteed [HW96].
Based on these ideas, a �rst family of method called Lebedev-type methods [Leb89, Leb94], aims
at building RK schemes based on the optimal stability polynomials that satisfy (2.86) for a
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given p. For p = 1 we have seen that these polynomials are the shifted Chebyshev polynomials
(2.90), so the idea is to write them as [Sau60, GL61]:

Rs(z) =

s∏
i=1

(1 + δiz), δi = − 1

zi
, (2.92)

where zi are the roots of Rs(z), and to represent the RK scheme as a composition of explicit
Euler steps:

g0 = u0,

gi = gi−1 + δtδif(gi−1), i = 1, . . . , s,

u1 = gs.

 (2.93)

The main di�culty constitutes �nding the best sequence of integration of the Euler steps to
ensure stability properties of the scheme [Leb93a, Leb93b]. Formulae of order up to four were
also achieved even though there is no analytical expression for the optimal stability polynomials
of order p ≥ 2 [LM98, Med98]. The computations of these polynomials are therefore performed
numerically and yield, for instance, second order schemes with practically optimal `s ≈ 0.82 ·s2

for s� 1. These results have been implemented in the DUMKA code [Leb94, Leb00].
Based on numerical approximations of the optimal boundaries `s [vdH77], and knowing that
among all polynomials of order p and degree s satisfying (2.86), the optimal one satis�es the
so-called equal ripple property which states that there exist s − p + 1 points z0 < z1 < · · · <
zs−p < 0, with z0 = −`s, such that

R(zi) = −R(zi+1), i = 0, . . . , s− p− 1,

|R(zi)| = 1, i = 0, . . . , s− p;

}
(2.94)

another approach known as the Van der Houwen-Sommeijer methods [vdHS80], constructs the
RK schemes based on a linear combination of scaled and shifted Chebyshev polynomials that
aim at approximating the optimal polynomial by verifying (2.94), and generates about 80 %
of the optimal interval `s. First and second order schemes known as RKC methods were built
with these approximated optimal polynomials using the three-term recurrence formula (2.89):

g0 = u0,

g1 = g0 + µ̃1δtf(g0),

gi = (1− µi − νi)g0 + µigi−1 + νigi−2

+ µ̃iδtf(gi−1) + γ̃iδtf(g0), i = 2, . . . , s,

u1 = gs,


(2.95)

where all the coe�cients (µ̃i, µi, νi, γ̃i) are available in analytical form for arbitrary s ≥ 2
[SV80]. In this way, an e�cient second order solver known simply as RKC proposed by
Sommeijer et al. in [SSV97], gained notorious reputation over the last years. The RKC solver
also features local error control, with variable step sizes, computed on an approximation of
the leading term of the local error expansion, theoretically derived from a detailed stability
and convergence analysis presented in [VHS90]. The stability bound is given by `s ≈ 0.653 · s2

for the second order RKC scheme, and hence for a given time step computed according to a
prescribed accuracy tolerance, an adequate number of stages s is chosen in order to ensure the
stability of the method.
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2.4.1 The ROCK Method

A third approach that combined the previous ones by searching practically optimal stability
bounds `s, and by using a three-term recurrence relation, gave birth to the ROCK methods
(for Orthogonal-Runge-Kutta-Chebyshev) [AM01, Abd02]. A preliminary important result of
Abdulle [Abd00] was that the optimal stability polynomials satisfying (2.86) for a given p and
the equal ripple property (2.94), possess exactly p complex roots if p is even and exactly p− 1
complex roots if p is odd. Therefore, if p is even, we can then split the stability function in
the following form:

Rs(z) = wp(z)Ps−p(z), (2.96)

where wp retains the p complex roots and Ps−p, the remaining (s − p) real roots. The idea
developed by Medovikov & Abdulle in [AM01] for p = 2, and then extended to p = 4 by
Abdulle in [Abd02], was to approximate Rs(z) by

R̃s(z) = w̃p(z)P̃s−p(z), (2.97)

with the orthogonal polynomials P̃s−p, associated with the weight function w̃2
p(z)/

√
1− z2,

such that R̃s(z) results in a p-order stability polynomial which remains bounded as much as
possible along the negative real axis, taking also into account some damping. The techniques to
compute the orthogonal polynomials and the weight function are given in [AM01] and [Abd02].
Once the stability functions have been computed, a three-term recurrence relation:

P̃0(z) = 1, P̃1(z) = 1 + µ1z, P̃i(z) = (µiz − νi)P̃i−1(z)− κiP̃i−2(z), (2.98)

with i = 2, . . . , s − p, satis�ed by the orthogonal polynomials, is used to de�ne the internal
stages of the RK method following the idea of [vdHS80]:

g0 = u0,

g1 = g0 + µ̃1δtf(g0),

gi = µ̃iδtf(gi−1)− νigi−1 − κigi−2, i = 2, . . . , s− p.

 (2.99)

Considering dtu = λu and z = λδt, the resulting P̃s−p(z) is the stability function associated
with (2.99): gs−p = P̃s−p(z)u0. The coe�cients (µi, νi, κi) are computed by a procedure
introduced in [AM01].
The case p = 2 yields thus the second order ROCK2 method [AM01] for which w̃2(z) is a
two-stage �nishing procedure applied to gs−2 = P̃s−2(z)u0. For dtu = λu and z = λδt, this
implies

u1 = w̃2(z)gs−2 = w̃2(z)P̃s−2(z)u0 = R̃s(z)u0. (2.100)

The order conditions for p = 2 are classical to explicit RK schemes and allow us to compute the
coe�cients of the �nal stages. In particular for second order, the order conditions are the same
for both linear and nonlinear problems. A solution û1 of order p̂ = 1, is computed embedded
at the �nal step w̃2(z), and an estimate of the local error err = (û1− u1), is computed for the
step size selection, according to the same criteria used by Radau5 [HW96] with expressions
(2.82) and (2.83). The nearly optimal stability interval is given by ˜̀

s ≈ 0.81 · s2 (the optimal
ratio is about 0.82 [vdH77]). Therefore, with the time step �xed by the prescribed accuracy
(Atol and Rtol), the number of stages needed to guarantee stability is computed by

δtρ (∂uf(u)) ≤ 0.81 · s2, (2.101)
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where ρ is the spectral radius of the Jacobian of the system of ODEs. A dynamic computation
of this spectral radius is provided by ROCK2 using a non-linear power method which is a slight
modi�cation of the algorithm proposed in [SSV97] for the RKC code.
Just like before, for the fourth order ROCK4 (p = 4) the coe�cients of the weight function
w̃4(z) must be computed such that the order conditions of order 4 are satis�ed. As in [Med98],
a theory of composition of methods (the �Butcher group�) is applied to achieve a fourth order
method denoted WP , where the �rst method, denoted by P is given by the three-term recur-
rence relation in (2.99) this time with p = 4, whereas the coe�cients of the four stages method
W associated with w̃4(z) are computed such that the �composite� method WP is of order 4 as
shown in [Abd02]. As in the previous second order case, an embedded method Ŵ is built em-
bedded into W in order to keep the same recurrence formulae (2.98) for both the fourth order
and embedded methods. A third order embedded RK scheme is thus constructed by adding
a new stage to w̃4(z), and the coe�cients are computed with the same composition technique
such that the �composite� method ŴP is of order 3, and that the stability polynomials of the
embedded methods are bounded in the same interval as the ones of the ROCK4 scheme. The
latter feature is indispensable to guarantee stability of the lower order method, and to obtain
thus reliable error estimates.
The practically optimal stability interval is this time given by ˜̀

s ≈ 0.35 · s2 (the optimal ratio
for fourth order is about 0.34 in [vdH77] and 0.35 in [Med98]). The ROCK4 solver implements
the same tools as ROCK2 for time step selection in terms of estimates (2.82) and (2.83), as
well as the numerical computation of the spectral radius. For a given time step δt, computed
based on the prescribed accuracy (Atol and Rtol), the number of stages that ensures stability
of computations is now given by

δtρ (∂uf(u)) ≤ 0.35 · s2. (2.102)

A notorious advantage of the three-term recurrence formulae used by the RKC (2.95) and
ROCK (2.99) methods, is that even though an arbitrary number of stages s might be required
to guarantee stability, only the current three arrays in the recurrence relations need to be
saved. Considering the two-stage w̃2(z) for the second order ROCK2, �ve solution arrays
need thus to be saved to perform all the computations. The same follows for ROCK4 for
which seven arrays shall be required. Notice that the construction of the ROCK schemes
through (2.96) involves at least s = 3 and s = 5 internal stages, respectively, for ROCK2
and ROCK4 schemes. The main advantage of the ROCK schemes compared with previous
stabilized RK schemes is that it combines the best features of both Lebedev- and Van der
Houwen-Sommeijer-type methods by using the three-term recurrence formulae with practically
optimal stability polynomials. The latter implies larger stability domains in the practical
implementations considering that `s is approximated by 0.81 · s2 for ROCK2 compared with
0.65 · s2 for the also second order RKC solver [SSV97]. In particular, a higher order, stabilized
explicit scheme of easy implementation with an optimal stability interval, was achieved with
the ROCK4 solver. In this way, the stability domains of explicit RK methods are extended
without altering the orders of the numerical approximations, and furthermore without requiring
excessive supplementary memory space with respect to a standard explicit RK scheme.



Chapter 3

Space Adaptive Multiresolution for

Multi-Scale Evolutionary PDEs

The previous chapters were mainly dedicated to the numerical integration of time dependent
sti� problems. In Chapter 1 we have considered time operator splitting techniques for PDEs,
in particular for reaction-di�usion systems for which the time and space discretization errors in
the solutions of the split subproblems were neglected. On the other hand, we have considered in
Chapter 2 the time integration of sti� systems of ODEs which in our particular case, are issued
from a space discretization of the original PDEs, i.e., from the semi-discretized PDEs, and hence
the space discretization errors were not discussed. We have seen that a key aspect to e�ciently
solve all of these problems is related to the accuracy of computations. Nevertheless in many
applications the spatial representation of the phenomena, i.e., the spatial discretization of the
PDEs, plays a crucial role to properly describe the physical dynamics of the problem. Moreover,
the mathematical models and therefore the modeling equations might be neither adequate nor
valid if the spatial discretization skips some fundamental scales of the problem. Consequently,
the dedicated and possibly high order time integration methods we have previously discussed
in chapters 1 and 2, might also give wrong approximations to the physical problems even
though they are solving accurately the corresponding spatially discretized PDEs. A natural
and necessary condition to guarantee the e�ciency of the previous schemes relies then on a
su�ciently accurate spatial mesh representation.
Since for realistic applications, a uniform �ne mesh is often expensive in computational re-
sources, many high order and dedicated space discretization schemes were developed and stud-
ied over the past years (see, e.g., [LeV92, LeV02, HV03]). Another alternative to reduce these
computing requirements is to consider rather adaptive mesh re�nement techniques, with pos-
sibly high order space discretizations. In this context, a su�ciently �ne mesh to accurately
represent the physical phenomena might be built and successfully implemented, by consid-
ering a set of spatial grids that are adapted to the local space scales of the problem. The
resulting grid is thus su�ciently �ne only in partial regions of the computational domain. The
degree of re�nement in the spatial representations can be considerably enhanced with respect
to a uniform grid case, and remains limited by the available computational resources. In this
chapter we will focus on these adaptive grid techniques, and in particular on space adaptive
multiresolution techniques for the spatial representation of PDEs. A general description of
adaptive mesh re�nement schemes will be �rst introduced in order to settle the correspond-
ing framework. The general multiresolution analysis on which space adaptive multiresolution
is founded, will then be described as well as its mathematical background based on wavelet
decomposition, to then end up with the main aspects of these techniques. For further details
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on adaptive multiresolution techniques, we refer to the books of Cohen [Coh00] and Müller
[Mül03].

3.1 Adaptive Mesh Re�nement Techniques

Mesh adaptation techniques constitute a powerful tool to solve PDEs more e�ciently by avoid-
ing expensive uniform grids, according to the nature of the problem. For instance, many phys-
ical phenomena are characterized by the presence of localized fronts of steep spatial gradients
or even discontinuities into a rather smooth larger domain. For these smoother regions the
level of spatial resolution may be then loosened, whereas the major computational e�ort given
by a much �ner discretization will be concentrated on the localized singularities. The dynamic
broad spectrum of active spatial scales in realistic con�gurations motivated the development
of adaptive mesh techniques for both unstructured and structured meshes. The reduced com-
putational complexity of the latter ones contrast with the higher geometry �exibility of the
former ones to represent more complex computational domains. In this work, we will discuss
only adaptive mesh techniques on structured meshes.

Historically, adaptive discretization techniques were developed from the late seventies, such
as the Multi-Level Adaptive Techniques MLAT introduced by Brandt [Bra77], and yielded
over the past years a large family of method called AMR or SAMR (respectively, for Adaptive
Mesh Re�nement or Structured Adaptive Mesh Re�nement), conceived especially for CFD
(Computational Fluid Dynamics) applications. In this context, the �rst AMR approaches
introduced by Berger & Oliger [Ber82, BO84] considered rotated re�ned regions known usually
as patches, over a coarser underlying mesh in order to discriminate smooth and irregular
regions within the computational domain. A simpli�ed and thus much more e�cient technique
developed afterward by Berger & Collela [BC89], considered re�nement patches always aligned
with the underlying coarse mesh. The latter strategy was shown to feature very high e�ciencies
as demonstrated by Bell et al. [BBSW94], and settled the general framework for AMR methods.
In this way, several AMR variants and extensions to these initial works were developed for single
processor computing machines (see, e.g., [CW93, FGM97, BL98]) and parallel architectures
(see, e.g., [BBSW94, KB95, RBL+00]).
In general, AMR methods follow a local re�nement approach by means of re�ned patches.
Therefore, considering a uniform structured mesh over the whole computational domain, �ner
partitions or cells are considered on the regions exhibiting locally steep gradients or shock-
like structures. These �ner cells are then clustered in non-overlapping rectangular subgrids
of appropriate size aligned with the coarser mesh, and the set of �ner subgrids or patches
generates a new level of spatial discretization. This procedure is then applied successively to
generate new levels of re�nement wherever this is required, and an entire hierarchy of embedded
grids is constructed. In this way, the re�ned patches in each discretization level overlay the
coarser subgrids from which they have been created, avoiding in particular data fragmentation.
The simplicity of this approach implies an important �exibility taking into account that the
numerical schemes need to be implemented on a single rectangular subgrid, and thus patches
and consequently levels, can be successively solved using the same procedure and hopefully in
an independent way.
The variables of the new cells contained in an added patch are initialized, for instance, by
interpolation from the underlying coarser mesh, whereas the values of cells covered by re�ned
patches are overwritten by averaged �ne-grid values after each update of the solution. The
super�uous work on the coarse grid is negligible compared with the computational costs for
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integrating the overlying �ne grids. Special care must be taken when computing numerical
�uxes at the boundaries of the patches in order to avoid loss of conservation. A standard
solution replaces simply the numerical �uxes at coarser meshes by the sum of the �ne grid
�uxes along the corresponding coarse boundary [BC89]. This can be seen as an a posteriori
�ux correction in order to keep the recursion and simplicity of the scheme, since levels are
usually updated from the coarsest to the �nest one [Dei05]. With the same spirit, ghost cells
are added around each patch to computationally decouple the subgrids. These ghost cells
account also for the physical boundary conditions and otherwise, they are computed either by
interpolation from the underlying mesh or by copying the data value from neighboring patches
at the same level. Since the advancing time steps are usually de�ned level-wise according to
the corresponding space discretization [BC89], the latter procedure implies either a synchro-
nization among patches of the same level or a time-space interpolation from the underlying
mesh to de�ne the ghost cells at intermediate times. The parallelization of the previous general
technique is straightforward on shared memory architectures. It su�ces to parallelize the loop
that updates the levels, or the patches, one by one (see, e.g., [BBSW94]). The communication
costs on distributed memory machines cannot be neglected, and the parallelization strategies
with appropriate load balancing become signi�cantly more complex (see [Dei05] and references
therein).
In order to de�ne whether a cell must be re�ned, appropriate indicators must identify the
presence of steep gradients or discontinuities in the solution. Taking into account that rig-
orous error estimates are only available for scalar equations in the context of conservation
laws [KO00], and that they are usually di�cult to implement, heuristic or physical param-
eters are preferred instead. A standard procedure considers, for instance, a scaled gradient
criteria which evaluate the local gradients multiplied by the corresponding spatial step in all
directions, and re�ne cells beyond a prescribed tolerance (see, e.g., [Dei05]). Another indica-
tor is based on di�erent ways to estimate the local truncation errors of the numerical scheme
(see, e.g., [SHH94, HMSW99]), which can be heuristically computed in practice by means of a
Richardson extrapolation performed using a �ne and the corresponding coarser local solution
[Ber82, BO84, BC89]. Finally, a security layer of cells is often added in order to guarantee
that the fronts remain into the corresponding re�ned regions during the integration time step.
In general, AMR methods are largely used and show to be very performing in many ap-
plications. Some examples of freely available AMR software libraries, developed for multi-
dimensional simulations with parallel computing features, are Chombo1 by Collela et al., PA-
RAMESH2 [MOM+00], RAMSES3 [Tey02], AMROC4 [Dei05], SAMRAI5 [HWK06], among
others. Although the theoretical framework and ideas are rather common for AMR techniques,
there are several di�erences in terms of data structure, programming language, routines op-
timization, and other practical implementation issues. In this context, the strong heuristic
component of such strategies as brie�y discussed in this part, constitutes an important draw-
back to establish an appropriate mathematical framework that might allow us to describe the
approximation errors introduced in the numerical solutions.

Adaptive multiresolution methods, based on the pioneering work of Harten [Har94a, Har95],
were then developed as a new adaptive mesh re�nement technique. In particular, a family of
fully adaptive multiresolution scheme was introduced by Cohen et al. in [CKMP03]. Considering

1https://seesar.lbl.gov/anag/chombo
2http://sourceforge.net/projects/paramesh/
3http://irfu.cea.fr/Projets/Site_ramses
4http://www.cacr.caltech.edu/asc
5https://computation.llnl.gov/casc/SAMRAI
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a set of nested spatial grids from the coarsest to the �nest one, a multiresolution analysis allows
us to represent a discretized function as values on a coarser grid plus a series of local estimates
at di�erent levels of such nested grids. These estimates correspond to the wavelet coe�cients of
a wavelet decomposition obtained by inter-level operations, and retain the information on local
regularity when going from a coarse to a �ner grid. Lower wavelet coe�cients are associated
with local regular spatial con�gurations and vice-versa. A thresholding process applied to
this representation allows us to dynamically build the corresponding adapted grid on which
the solutions are represented [CKMP03, Mül03]. The main advantage of such procedure is
that, based on the mathematical basis of the multiresolution analysis, an error of the spatial
representation of the solution represented on the adapted grid can be inferred, with respect to
the solution discretized on the �nest grid.
In what follows, the theoretical framework of multiresolution techniques will be detailed. We
will then describe the space adaptive multiresolution scheme conceived as an adaptive mesh
re�nement method for time dependent PDEs. Some reviews on such topics can be found in
[Har94b, CDD04, Pos05], whereas a �rst comparison of performances between general AMR
and multiresolution methods was conducted in [DDG+09].

3.2 Basis of Multiresolution Analysis

For positive integers j ≥ j0, let us consider partitions of the interval [0, 1], given by the set of
dyadic intervals:

Ij,k := [2−jk, 2−j(k + 1)[, k = 0, . . . , 2j − 1. (3.1)

We de�ne for a given f(x) ∈ L2([0, 1]), a constant approximation Pjf |Ij,k of f on each interval
Ij,k, given by

Pjf |Ij,k := 2j
∫
Ij,k

f(x) dx = aIj,k(f), (3.2)

such that

Pjf =

2j−1∑
k=0

aIj,k(f)χIj,k(x), (3.3)

is the piecewise constant approximation of f on a dyadic mesh of size 2−j . In (3.3), χΩ(x) is
the standard characteristic function which takes values of 1 in Ω, and zero outside. Therefore,
for each6 j ∈ N0, Pjf is indeed an L2-orthogonal projection onto the space Vj of piecewise
constant functions:

Vj :=
{
f ∈ L2 s.t. f |Ij,k = constant, k = 0, . . . , 2j − 1

}
. (3.4)

3.2.1 Wavelet Decomposition

Introducing the box function or B-spline of order 1: φ(x) = χ[0,1)(x), an orthonormal basis of
Vj is given by the set of normalized φj,k that dilates and shifts

φj,k = 2j/2χIj,k(·) = 2j/2φ(2j · −k), k = 0, . . . , 2j − 1, (3.5)

of dimension dimVj = 2j , for which

〈φj,k, φj,l〉[0,1) =

∫ 1

0
φj,k(x)φj,l(x) dx = δk,l. (3.6)

6We denote the set N0 = N ∪ {0}.
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A proper de�nition of the piecewise constant approximation operator (3.3) is then given by
the orthogonal projection:

Pjf :=
2j−1∑
k=0

〈f, φj,k〉φj,k (3.7)

where
cj,k := 〈f, φj,k〉 = 2−j/2aIj,k(f), (3.8)

is the approximation coe�cient at scale 2−j and position 2−jk. This projection resolves the
function f up to the scale 2j , while �ner details are discarded.
Taking into account that the spaces Vj , j ≥ j0, are nested: Vj ⊂ Vj+1 ⊂ Vj+2 ⊂ . . ., and that
∪Vj = Lp([0, 1]), we have that if f ∈ Lp([0, 1]), then Pjf is also convergent in Lp([0, 1]), i.e.,

lim
j→+∞

‖f − Pjf‖Lp = 0, (3.9)

for 1 ≤ p <∞. The same follows for the uniform norm as long as f ∈ C0:

lim
j→+∞

‖f − Pjf‖∞ = 0. (3.10)

It is straightforward to see that if from an initial coarsest j0 scale, we add the �ner details
successively skipped at each scale j, we obtain

f = Pj0f +
∞∑
j=j0

(Pj+1 − Pj)f, (3.11)

that is, a multi-scale representation of f , where each term Qjf := (Pj+1−Pj)f represents the
details in f at scale 2−j . It is then natural to decompose the projection of f onto Vj : Pjf , as
the sum of the projection onto Vj−1: Pj−1f , plus the associated detail: (Pj−Pj−1)f . Iterating
from a �xed J > j0, leads to the following multi-scale representation:

PJf = PJ−1f + [PJf − PJ−1f ] = . . . = Pj0f +
J−1∑
j=j0

Qjf. (3.12)

Moreover, we can see from (3.2) that constant approximations at successive scales are related
by

aIj,k(f) =
1

2
(aIj+1,2k

(f) + aIj+1,2k+1
(f)), (3.13)

which means that Qjf should oscillate within each Ij,k in order to be able to reconstruct Pj+1f
from Pjf . In this way, the �ne scale values can be recovered from a coarser scale by using the
box function φ(x), and an oscillatory pro�le ψ(x). For instance, considering the Haar wavelet
given by ψ(x) := χ[0,1/2)(x)− χ[1/2,1)(x), or

ψ(x) := φ(2x)− φ(2x− 1), (3.14)

and that for the box function

φ(x) = φ(2x) + φ(2x+ 1), (3.15)

we have that

φ(2x) =
1

2
(φ(x) + ψ(x)), φ(2x− 1) =

1

2
(φ(x)− ψ(x)). (3.16)
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Thus de�ning the ψj,k = 2j/2ψ(2j · −k) that dilates and shifts on the partitions of [0, 1] yields

Qjf =

2j−1∑
k=0

〈f, ψj,k〉ψj,k, (3.17)

where
dj,k := 〈f, ψj,k〉, (3.18)

is the wavelet coe�cient at scale 2−j and position 2−jk. Following (3.12), Qj is then the
orthogonal projection of f on the orthogonal complement spaceWj of Vj into Vj+1,Wj⊕⊥Vj =
Vj+1. We see thus that (ψj,k)k=0,...,2j−1 is an orthonormal basis of Wj , and therefore

(ψj,k)k=0,...,2j−1 ∪ (φj,k)k=0,...,2j−1 , (3.19)

is an orthonormal basis of Vj+1. In the same way, Vj can be written as

Vj = Wj−1 ⊕⊥ Vj−1 = Wj−1 ⊕⊥Wj−2 ⊕⊥ Vj−2 = . . . , (3.20)

as we can infer from the multi-scale representation (3.12). In particular, when J → +∞ with
j0 = 0, PJf tends to f in L2 by (3.11), and it follows that

{φ} ∪ {ψj,k}j≥0,k=0,...,2j−1 , (3.21)

is an orthonormal basis of L2[0, 1], where (3.21) is usually known as the Haar system.
With this representation, the following two-scale relations are veri�ed according to (3.16):

φj,k =
1√
2

(φj+1,2k + φj+1,2k+1), ψj,k =
1√
2

(φj+1,2k − φj+1,2k+1),

φj+1,2k =
1√
2

(φj,k + ψj,k), φj+1,2k+1 =
1√
2

(φj,k − ψj,k),

 (3.22)

which leads to a change of basis:

2j+1−1∑
k=0

〈f, φj+1,k〉φj+1,k =

2j−1∑
k=0

〈f, φj,k〉φj,k +

2j−1∑
k=0

〈u, ψj,k〉ψj,k, (3.23)

or equivalently,
2j+1−1∑
k=0

cj+1,kφj+1,k =
2j−1∑
k=0

cj,kφj,k +
2j−1∑
k=0

dj,kψj,k, (3.24)

where

cj,k =
1√
2

(cj+1,2k + cj+1,2k+1), dj,k =
1√
2

(cj+1,2k − cj+1,2k+1),

cj+1,2k =
1√
2

(cj,k + dj,k), cj+1,2k+1 =
1√
2

(cj,k − dj,k).

 (3.25)

The representation in term of the �ne scales can be retrieved from the coarse scale averages
by adding the detail, lost through the coarse projection. A recursive change of basis based
on these two-scale coe�cients (3.25) yields a telescopic transform known as the fast wavelet
transform W.
As a consequence, for a given J > j0, a function fJ ∈ VJ can be written either on the standard
canonical basis:

fJ =

2J−1∑
k=0

cJ,kφJ,k, (3.26)
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or on a wavelet or multi-scale basis:

fJ =
2j0−1∑
k=0

cj0,kφj0,k +
J−1∑
j=j0

2j−1∑
k=0

dj,kψj,k, (3.27)

according to (3.7), (3.12), and (3.17). The change of representation from (3.26) to (3.27) is
performed by the wavelet decomposition, where W transforms a linear combination of �ne
scale box functions with an array of coe�cients cJ , into a linear combination of coarse scale
box functions with coe�cient array c0 and Haar wavelets with array of detail coe�cients dj
for each dyadic level j < J :

W : cJ → dJ := (c0,d0,d1, . . . ,dJ−1) . (3.28)

In the same way and based on the same relations (3.25), the inverse transformW−1 : dJ → cJ ,
turns the wavelets coe�cients into the single scale J . Due to the telescopic structure of these
computations and because the relations (3.25) involve only �nite coe�cients (±1/

√
2) called

usually masks, the number of operations required by both transforms is O(2J).
Taking into account the convergence of the orthogonal projections Pj in L2, and the wavelet
decomposition (3.27) with j0 = 0, we can write (3.11) as

f = P0f +

∞∑
j=0

(Pj+1 − Pj)f =

∞∑
j=−1

2j−1∑
k=0

dj,kψj,k := d(f)TΨ, (3.29)

where P−1 := 0 and ψ−1,k := φ0,k. One of the main advantages of such a wavelet representation
is that there is a tight relation between the function and the coe�cient norms [CDD04]:

‖f‖L2 =

 ∞∑
j=−1

‖(Pj+1 − Pj)f‖2L2

1/2

= ‖d(f)‖`2 , (3.30)

due to the orthonormality of ψj,k and using the Parseval's identity. This means that if in the
wavelet representation some small coe�cients are discarded, the norm of the function will be
modi�ed only by the same small amount. In particular, the size of these coe�cients can be
inferred from local properties of f . It can be demonstrated that within the support Ij,k of ψj,k:

|dj,k| = inf
c∈R
|〈f − c, ψj,k〉| ≤ inf

c∈R
‖f − c‖L2(Ij,k) ≤ 2−j‖f ′‖L2(Ij,k), (3.31)

by using a formal Taylor series expansion, and noticing that ‖ψj,k‖L2(Ij,k) = 1, and that the
Haar wavelets ψj,k are orthogonal to any constant c ∈ R, i.e., they have �rst order vanishing
moments:

〈c, ψj,k〉 = 0. (3.32)

The decay of the wavelet coe�cients is directly in�uenced by the local smoothness of f . Conse-
quently, the coe�cients dj,k get small at �ne scales when f |Ij,k is su�ciently smooth, whereas
high gradients involve more signi�cant values.
This kind of constant piecewise approximation shows to be only �rst order accurate. The
Haar's set of wavelets is therefore only suitable to e�ciently represent su�ciently smooth f .
From a practical point of view, this seldom happens and motivated further studies based on the
potential advantages inherited from this simple Haar con�guration. In particular, a family of
compactly supported orthonormal wavelets in L2(R) introduced by Daubechies [Dau88, Dau92],
o�ered the possibility of arbitrary high regularity of the multi-scale approximations.
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3.2.2 Orthonormal Wavelets

The general mathematical framework as presented before for the Haar case, was actually settled
by the multiresolution approximation introduced by Mallat [Mal89] and Meyer [Mey90], that
considers the nested spaces Vj ⊂ Vj+1 ⊂ . . . of L2(R) such that ∪Vj = L2(R), and thus Pjf
converges in L2(R) for all f ∈ L2(R), where Pj is the L2-orthogonal projector. In this context,
there exists a scaling function φ ∈ V0 such that

φj,k = 2j/2φ(2j · −k), k ∈ Z, (3.33)

is a Riesz basis of Vj, i.e., there exist positive constants, 0 < c < C <∞, such that

c‖xj,k‖2`2 ≤

∥∥∥∥∥∑
k∈Z

xj,kφj,k

∥∥∥∥∥
2

L2

≤ C‖xj,k‖2`2 , (3.34)

and hence there is a unique representation of fj ∈ Vj in this basis: fj =
∑

k∈Z xj,kφj,k.
Furthermore, if the Riesz property (3.34) is satis�ed for any j ∈ N0, for c and C independent
of j, then the set (φj,k)j∈N0 is said to be uniformly stable.
Considering now φ ∈ V0 ⊂ V1, we de�ne a two-scale relation:

φ(x) =
∑
k∈Z

akφ(2x− k), (3.35)

with �nitely supported masks: (ak)k∈Z. For instance, for the box function, a0 = a1 = 1, and
ak = 0 otherwise, following (3.15). Considering (3.33) for Vj ⊂ Vj+1 yields

φj,k =
1√
2

∑
n∈Z

anφj+1,2k+n. (3.36)

Assuming that the set (φj,k)k∈Z is an orthonormal basis of Vj such that

Pjf :=
∑
k∈Z
〈f, φj,k〉φj,k, (3.37)

the wavelet ψ is constructed by

ψ(x) =
∑
k∈Z

bkφ(2x− k), (3.38)

with bk = (−1)ka1−k. This (ψj,k)k∈Z is then conceived as an orthonormal basis of the orthog-
onal complement Wj = Vj+1 ∩ V ⊥j , de�ning the orthogonal projection:

Qjf = (Pj+1 − Pj)f =
∑
k∈Z
〈f, ψj,k〉ψj,k, (3.39)

and thus f can be written on an orthonormal basis of L2(R):

f = P0f +
∑
j∈N0

Qjf,

f =
∑
k∈Z
〈f, φ0,k〉φ0,k +

∑
j∈N0

∑
k∈Z
〈f, ψj,k〉ψj,k.

 (3.40)

With this representation, the equivalence of norms of the function and the wavelet decom-
position (3.30) previously estimated, holds naturally as a consequence of the Riesz property
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(3.34) for orthonormal basis: c = C = 1, i.e., the Parseval's identity. Nevertheless, in order to
obtain more accurate representations, the main idea is to build scaling functions (3.35) with
a composition of piecewise polynomials, i.e., B-splines, such that the set of wavelet (3.38) has
N vanishing polynomials moments:

〈P,ψj,k〉Σj,k = 0, (3.41)

for any polynomial P ∈ PN−1, where Σj,k := suppψj,k. And consequently we obtain approxi-
mations of order N [CDD04],

|〈f, ψj,k〉| = inf
P∈PN−1

|〈f − P,ψj,k〉|

≤ inf
P∈PN−1

‖f − P‖Lp(Σj,k)‖ψj,k‖Lq(Σj,k)

≤ C2
−j

(
N+ 1

2
− 1
p

)
|f |WN

p (Σj,k), (3.42)

using Hölder's inequality and thus p+ q = 1, with the assumption that

‖ψj,k‖Lq(Σj,k) ≤ C2
−j

(
1
q
− 1

2

)
= C2

−j
(

1
2
− 1
p

)
, (3.43)

when ‖ψj,k‖L2(Σj,k) ≈ 1, and based on a standard estimate on local polynomial approximation
(see, e.g., [DS84]):

inf
P∈Pn

‖f − P‖Lp(Ω) ≤ C(diam Ω)n|f |Wn
p (Ω). (3.44)

The semi-norm associated with the Sobolev space Wn
p (Ω):

Wn
p (Ω) := {f s.t. ∂αf ∈ Lp(Ω), |α| ≤ n} , (3.45)

is given by |f |Wn
p (Ω) :=

(∑
|α|=n ‖∂αf‖

p
Lp(Ω)

)1/p
.

Finally, in order to construct the scaling function φ(x), one has to compute the masks into
(3.35) such that ∑

n∈Z
anan+2k =

{
2, k = 0,

0, k 6= 0,
(3.46)

according to (3.36), to guarantee the orthonormality of (φj,k)k∈Z and (ψj,k)k∈Z; and∑
n∈Z

an = 2,
∑
n∈Z

(−1)nnman = 0, m = 0, . . . , N, (3.47)

to obtain order N , i.e.,N vanishing moments for the wavelet de�ned by (3.38). The con-
struction of orthonormal wavelets conceived by Daubechies [Dau88, Dau92] considers then for
N > 0, a set of (an) supported on {0, . . . , 2N − 1}, such that the resulting φ(N) compactly
supported on [0, 2N − 1], generates orthonormal shifts and yields approximations of order
N . However, except for φ(1) which is the �rst order Haar wavelet decomposition, no explicit
expressions exist.
The construction of this orthonormal family of wavelets of arbitrary order approximation con-
stituted a breakthrough in the domain and led, for instance, to the construction of biorthogonal
wavelets introduced by Cohen et al. [CDF92], which have succeeded to somehow improve and
establish a more appropriate framework for these techniques.
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3.2.3 Biorthogonal Wavelets

The main idea of a biorthogonal wavelet approach is to replace the orthogonality assumption
and to introduce a dual scaling function φ̃ along with φ, so that we have

φ(x) =
∑
k∈Z

akφ(2x− k), φ̃(x) =
∑
k∈Z

ãkφ̃(2x− k), (3.48)

with �nitely supported masks (ak)k∈Z, (ãk)k∈Z, and with a biorthogonal property:

〈φ, φ̃(· − k)〉 = δ0,k, k ∈ Z. (3.49)

With this dual pair of scaling functions, we can de�ne a non-orthogonal projection

Pjf :=
∑
k∈Z
〈f, φ̃j,k〉φj,k, (3.50)

onto Vj . In the same way, a dual pair of wavelets are de�ned

ψ(x) =
∑
k∈Z

bkφ(2x− k), ψ̃(x) =
∑
k∈Z

b̃kφ̃(2x− k), (3.51)

with bk = (−1)kã1−k and b̃k = (−1)ka1−k; and the pairwise biorthogonality property:

〈ψj,k, ψ̃l,m〉 = δ(j,k),(l,m), k,m ∈ Z, j, l ∈ N0. (3.52)

In particular,
〈φj,k, ψ̃j,l〉 = 〈φ̃j,k, ψj,l〉 = 0, (3.53)

and we have
Qjf = (Pj+1 − Pj)f =

∑
k∈Z
〈f, ψ̃j,k〉ψj,k, (3.54)

onto the non-orthogonal complement Wj = Vj+1 ∩ Ṽ ⊥j . The pairs (φj,k, ψj,k) and (φ̃j,k, ψ̃j,k)
are usually called the primal scaling function and wavelet, and the dual scaling function and
wavelet, respectively.
Finally, if the set (φj,k)j∈N0 is uniformly stable and the set φ0,k ∪ (ψj,k)j∈N0 is a Riesz basis of
L2(R), there exists another Riesz basis given by φ̃0,k∪ (ψ̃j,k)j∈N0 , which satis�es the biorthogo-
nality property (3.52), and such that f ∈ L2(R) has the unique expansions in the biorthogonal
bases of L2(R):

f =
∑
k∈Z
〈f, φ̃0,k〉φ0,k +

∑
j∈N0

∑
k∈Z
〈f, ψ̃j,k〉ψj,k,

f =
∑
k∈Z
〈f, φ0,k〉φ̃0,k +

∑
j∈N0

∑
k∈Z
〈f, ψj,k〉ψ̃j,k.

 (3.55)

Taking into account the Riesz property (3.34), it can be shown that

c

∞∑
j=−1

∑
k∈Z
|〈f, ψ̃j,k〉|2 ≤ ‖f‖2L2 ≤ C

∞∑
j=−1

∑
k∈Z
|〈f, ψ̃j,k〉|2,

c

∞∑
j=−1

∑
k∈Z
|〈f, ψj,k〉|2 ≤ ‖f‖2L2 ≤ C

∞∑
j=−1

∑
k∈Z
|〈f, ψj,k〉|2,

 (3.56)

where ψ−1,k := φ0,k and ψ̃−1,k := φ̃0,k, and thus a tight relation between the function and the
coe�cient norm is preserved.
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The masks are determined in a similar way as in the previous orthonormal case, accounting
this time for the duality relations:

∑
n∈Z

ãnan+2k =

{
2, k = 0,

0, k 6= 0.
(3.57)

The main advantage of such biorthogonal construction is that it allows us a higher degree of
liberty with respect to orthogonal wavelets. For instance, computing the primal scaling function
φ as any B-spline, the primal wavelet generator ψ becomes directly a spline function with an
explicit analytical expression given by the piecewise polynomials according to (3.51). One may
also require that the primal or dual scaling functions, which can be seen as a composition
of piecewise functions as in the previous case, satis�es some order conditions as given by
(3.47). In this way, the biorthogonality relations imply that the generated primal or dual
wavelets inherit arbitrary N or Ñ vanishing moments, and thus a decay of 2−jN or 2−jÑ when
f has bounded derivatives, following (3.42). From a practical point of view, this �exibility
yields simple implementations while the theoretical framework guarantees good mathematical
properties.
As in the �rst Haar's case, we can de�ne a fast wavelet transform taking into account both
the standard and wavelet representations for a given J > j0 > 0:

fJ =
∑
k∈Z

cJ,kφJ,k =
∑
k∈Z

cj0,kφj0,k +

J−1∑
j=j0

∑
k∈Z

dj,kψj,k, (3.58)

where , for instance, and similar to the two-scale relations (3.25), we can deduce more general
expressions based on biorthogonal wavelets. We can thus deduce

cj,k = 〈f, φ̃j,k〉 =

〈
f,

1√
2

∑
n∈Z

ãnφ̃j+1,2k+n

〉

=
1√
2

∑
n∈Z

ãncj+1,2k+n =
1√
2

∑
n∈Z

ãn−2kcj+1,n. (3.59)

Proceeding in the same way for the coe�cients dj,k, we �nally have

cj,k =
1√
2

∑
n∈Z

ãn−2kcj+1,n, dj,k =
1√
2

∑
n∈Z

b̃n−2kcj+1,n. (3.60)

Computing in the opposite direction

fj+1 =
∑
k∈Z

cj+1,kφj+1,k =
∑
n∈Z

cj,nφj,n +
∑
n∈Z

dj,nψj,n

=
∑
n∈Z

cj,n

(
1√
2

∑
k∈Z

ak−2nφj+1,k

)
+
∑
n∈Z

dj,n

(
1√
2

∑
k∈Z

bk−2nφj+1,k

)

=
∑
k∈Z

1√
2

(∑
n∈Z

cj,nak−2n +
∑
n∈Z

dj,nbk−2n

)
φj+1,k, (3.61)

yields

cj+1,k =
1√
2

∑
n∈Z

cj,nak−2n +
1√
2

∑
n∈Z

dj,nbk−2n. (3.62)
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The recursive operations (3.60) and (3.62), de�ne the direct and inverse wavelet transforms
W : cJ → dJ and W−1 : dJ → cJ , where all computations involve only the set of constant
coe�cients (an, ãn, bn, b̃n).

3.3 Adaptive Multiresolution Finite Volume Scheme

Let us consider a general scalar PDE:

∂tu = Φ(u), x ∈ Rd, t > 0,

u(0, x) = u0(x) x ∈ Rd,

}
(3.63)

with u : R× Rd → R, u0 ∈ R, and

Φ(u) = ∂x · (D(u)∂xu)− ∂x · g(u) + f(u), (3.64)

for g(u) = (gi(u))i=1,...,d and gi : R→ R.
Based on the wavelet decomposition theoretical framework previously described, Beylkin et al.
[BCR91] used wavelet transforms to design fast multiresolution algorithms for matrix-vector
multiplication which were later used in [EOZ94] to solve linear hyperbolic and parabolic initial
value problems. Alternatively, Liandrat & Tchamitchian [LT90] and Maday & Ravel [MR92]
introduced some multiresolution schemes with a Galerkin-type approach with respect to a
wavelet basis for the Burgers' equation, whereas Bacry et al. [BMP92] developed a wavelet
based space/time adaptive method for parabolic and hyperbolic problems. Further studies
developed collocation-based adaptive wavelet methods to solve PDEs with general boundary
conditions (see, e.g., the work of Vasilyev et al. in [VPS95, VP96, VP97]). Another wavelet-
based family of adaptive method for PDEs [VB00, Vas03], was built upon the so-called second
generation wavelets developed by Sweldens [Swe95, Swe98], which utterly led to time/space
adaptive wavelet methods (see [AKV06] and references therein). In general, the main idea
in these methods was to entirely solve the PDEs in the wavelet basis by �rst computing all
nonlinear and di�erential operators on an appropriate basis, discretized over a set of di�erent
grids. As a consequence, a sequence of algebraic problems issued from the adaptive discretized
representations, needed to be solved to advance the solution in time7. A recent review on
wavelet methods for CFD can be found in [SV10].
Nevertheless, a di�erent approach that we will present in the following, was introduced by
Harten [Har94a, Har95], and settled a more appropriate and general framework for multireso-
lution schemes for the solution of hyperbolic conservation laws, i.e.,Φ(u) = −∂x · g(u). These
developments utterly led to the introduction of fully adaptive multiresolution �nite volume
schemes, introduced by Cohen et al. [CKMP03]. Extensions to reaction-di�usion or reaction-
convection-di�usion ware later performed (see, e.g., [RS02, RSTB03, BRBSS08, BBRBS09]).
The notion of multiresolution analysis was also extended to nested unstructured grids in
[Abg95, AH98], curvilinear grid patches in [DGMM01, BGMH+03], and to cell-centered trian-
gles for more complex geometries in [CDKP00]. On the other hand, another multiresolution
approach considers point-valued algorithms instead of the cell-averaged �nite volume scheme
[Har95, CD01]. These issues will not be discussed in this work and we refer to the given
bibliography for more detailed information.
Without loss of generality, we perform then a nested �nite volume discretizations of the general
problem (3.63). For j = 0, 1, · · · , J , from the coarsest to the �nest grid, we build regular

7In [AKV06], a single algebraic system is built since both time and space operators are simultaneously
discretized.
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disjoint partitions (cells) (Ωγ)γ∈Sj of an open subset Ω ⊂ Rd, such that each Ωγ , γ ∈ Sj , is the
union of a �nite number of cells Ωµ, µ ∈ Sj+1, and thus Sj and Sj+1 are consecutive embedded
grids. The index j refers thus to the scale level and we denote

|γ| := j if γ ∈ Sj , (3.65)

with the abbreviated notation Ωγ := Ωj,k, where k ∈ Zd. For instance, we can consider the
univariate dyadic intervals in 1D, d = 1:

Ωγ = Ωj,k := [2−jk, 2−j(k + 1)], γ ∈ Sj := {(j, k) s.t. j ∈ N0, k ∈ Z}. (3.66)

The same follows for higher dimensions.

3.3.1 Multiresolution Analysis

We denote Uj := (uγ)γ∈Sj as the spatial representation of u on the grid Sj , where uγ represents
the cell-average of u : R× Rd → R in Ωγ :

uγ := |Ωγ |−1

∫
Ωγ

u(t, x) dx, x ∈ Rd. (3.67)

Data at di�erent levels of discretization are related by two inter-level transformations which
are de�ned as follows:

1. The projection operator P jj−1, which maps Uj to Uj−1. It is obtained through exact
averages computed at the �ner level by

uγ = |Ωγ |−1
∑

|µ|=|γ|+1,Ωµ⊂Ωγ

|Ωµ|uµ. (3.68)

As far as grids are nested, this projection operator is exact and unique [Coh00].

2. The prediction operator P j−1
j , which maps Uj−1 to an approximation Ûj of Uj . There

is an in�nite number of choices to de�ne P j−1
j , but at least two basic constraints are

usually imposed [CKMP03]:

(a) The prediction is local, i.e., ûµ depends on the values uγ on a �nite stencil Rµ
surrounding Ωµ, where |µ| = |γ|+ 1.

(b) The prediction is consistent with the projection in the sense that

uγ = |Ωγ |−1
∑

|µ|=|γ|+1,Ωµ⊂Ωγ

|Ωµ|ûµ; (3.69)

i.e., one can retrieve the coarse cell averages from the predicted values:

P jj−1 ◦ P
j−1
j = Id. (3.70)

In particular, this property implies that the stencil Rµ must contain the unique
index γ such that |µ| = |γ|+ 1 and Ωµ ⊂ Ωγ .
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With these operators, we de�ne for each cell Ωµ the prediction error or detail as the di�erence
between the exact and predicted values:

dµ := uµ − ûµ, (3.71)

or in terms of inter-level operations:

dµ = uµ − P |µ|−1
|µ| ◦ P |µ||µ|−1uµ. (3.72)

The consistency assumption (3.69) and the de�nitions of the projection operator (3.68) and of
the detail (3.71), imply ∑

|µ|=|γ|+1,Ωµ⊂Ωγ

|Ωµ|dµ = 0. (3.73)

We can then construct as shown in [CKMP03], a detail vector de�ned as Dj = (dµ)µ∈∇j , where
the set ∇j ⊂ Sj is obtained by removing for each γ ∈ Sj−1, one µ ∈ Sj such that Ωµ ⊂ Ωγ ,
in order to avoid redundancy from expressions (3.71) and (3.69), and to get a one-to-one
correspondence:

Uj ←→ (Uj−1,Dj), (3.74)

issued by operators P jj−1 and P
j−1
j . For instance, in the univariate dyadic case (3.66) the detail

vector is given by Dj = (dj,k)k∈Z with dj,k = uj,k − ûj,k. By iteration of this decomposition,
we �nally obtain a multi-scale representation of UJ in terms of MJ = (U0,D1,D2, · · · ,DJ):

M : UJ 7−→MJ , (3.75)

and similarly, its inverseM−1.

3.3.2 Wavelet Representation

In the case where P j−1
j is linear, we have

ûµ :=
∑
γ

cµ,γuγ , (3.76)

andM andM−1 are simply changes of basis. Based on the previous theoretical studies, we can
then identify a wavelet representation [CKMP03] by de�ning for Uj the dual scaling wavelet
φ̃γ in (3.67):

uγ := 〈u, φ̃γ〉, (3.77)

such that
φ̃γ := |Ωγ |−1χΩγ , (3.78)

and where according to (3.76)

dµ := uµ − ûµ = 〈u, φ̃µ〉 −
∑
γ

cµ,γ〈u, φ̃γ〉 = 〈u, ψ̃µ〉, (3.79)

de�nes the dual wavelet ψ̃µ:

ψ̃µ := φ̃µ −
∑
γ

cµ,γφ̃γ . (3.80)

The multiresolution representation MJ can be then written as

MJ = (dλ)λ∈∇J = (〈u, ψ̃λ〉)λ∈∇J , (3.81)
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which corresponds exactly to dJ in the de�nition of the wavelet transform (3.28), where we
have de�ned ∇J :=

⋃J
j=0∇j with ∇0 := S0, and where dλ = uλ and ψ̃λ = φ̃λ if λ ∈ ∇0. With

this representation, the multiresolution representation will be of order N if for all u ∈ PN−1

and for all λ ∈ ∇J , we have
〈u, ψ̃λ〉 = dλ = 0, (3.82)

that is, if the wavelet ψ̃λ has N vanishing moments.
We can then build a prediction operator such that the associated dual wavelet is of order N . A
standard procedure de�nes P j−1

j based on polynomial interpolations of order N . For instance,
for the univariate dyadic case (3.66), considering a centered stencil (uj,k−M , . . . , uj,k+M ) and
the unique polynomial of degree 2M such that

2j
∫

Ωj,l

pj,k(x) dx = uj,l, l = k −M, . . . , k +M, (3.83)

we can de�ne the prediction approximation taking into account the consistency property (3.69)
[CKMP03]:

ûj+1,2k = 2j+1

∫
Ωj+1,2k

pj,k(x) dx, ûj+1,2k+1 = 2j+1

∫
Ωj+1,2k+1

pj,k(x) dx. (3.84)

This procedure is exact for polynomials of degree 2M , i.e., it has accuracy order N = 2M + 1.
As an illustration, for M = 1, the prediction operator is explicitly given by:

ûj+1,2k = uj,k +
1

8
(uj,k−1 − uj,k+1), ûj+1,2k+1 = uj,k +

1

8
(uj,k+1 − uj,k−1). (3.85)

Higher order formula can be found in [Mül03], and will be introduced in Chapter 7. For
Cartesian grids, extension to multidimensional polynomial interpolations is easily obtained by a
tensorial product of the 1D operator [BH97, RSTB03]. Taking into account the estimate (3.42),
local smoothness results in a stronger size reduction of the corresponding wavelet coe�cients
for higher approximation orders. Nevertheless, more accurate approximation formulae require
also larger stencil, e.g., for the dyadic 1D case (3.66) and according to (3.83):

Rj,k = {(j − 1, bk/2c+ l) s.t. |l| ≤M} . (3.86)

3.3.3 Data Compression and Tree-Structured Data

One of the main interests of carrying out such a multi-scale decomposition is that this new
representation (3.81), de�nes a whole set of regularity estimates all over the spatial domain,
and thus a data compression might be achieved. Given a set of index Λ ⊂ ∇J , we de�ne a
truncation operator TΛ, that leaves unchanged the component dλ if λ ∈ Λ, and replaces it by
0, otherwise. In practice, we are interested in sets Λ obtained by thresholding:

λ ∈ Λ if |dλ| ≥ ε|λ|, (3.87)

with the level-dependent threshold values (ε0, ε1, . . . , εJ). Data compression is then achieved
by discarding the cells whose details are not into Λ according to (3.87). Applying TΛ on the
multi-scale decomposition MJ of UJ amounts to building an approximation AΛUJ , where the
operator AΛ is given by

AΛ :=M−1TΛM. (3.88)

Taking into account that
u =

∑
j∈N0

∑
|λ|=j

〈u, ψ̃λ〉ψλ, (3.89)



Sect. 3.3 - Adaptive Multiresolution Finite Volume Scheme 66

it can be seen that for a given J , the array ΨJ,λ with |λ| ≤ J , corresponds to the cell averages of
the primal wavelet ψλ at level J , i.e.,ΨJ,λ = (〈ψλ, φ̃γ〉)γ∈SJ . We can thus de�ne the normalized
norm `1 by

‖UJ‖ := 2−dJ
∑
λ∈SJ

|uλ|, (3.90)

which corresponds to the L1-norm of a piecewise constant function. For ΨJ,λ, this yields

‖ΨJ,λ‖ ≤ C‖ψλ‖L1 ≤ C2−d|λ|. (3.91)

And for the thresholded representation of UJ after applying AΛ [CKMP03]:

‖UJ −AΛUJ‖ =

∥∥∥∥∥∥
∑
λ 6=Λ

dλΨJ,λ

∥∥∥∥∥∥ ≤ C
∑
λ 6=Λ

|dλ|2−d|λ| = C
∑

|dλ|≤ε|λ|

|dλ|2−d|λ|, (3.92)

where we see that the approximation error is bounded by the sum of the discarded details.
Taking into account that |dλ|2−d|λ| ≤ ε|λ|2−d|λ|, and considering a level-wise threshold param-
eter:

εj := 2djη, (3.93)

the next bound follows8

‖UJ −AΛUJ‖ ≤ C#(∇J)η = C#(SJ)η ≤ C2dJη, (3.94)

with the cautious assumption that all the dλ such that λ /∈ Λ, are equal to ε|λ|, although many
of them might be much smaller. The latter estimate (3.94) justi�es the choice η = 2−dJε in
order to have

‖UJ −AΛUJ‖ ≤ Cε, (3.95)

with the level-dependent threshold values proposed by Harten [Har94a, Har95]:

εj = 2d(j−J)ε, j ∈ [0, J ], (3.96)

where ε becomes the threshold value for the �nest level J .
Nevertheless, allegedly useless details cannot be deliberately deleted because a certain data
structure must be respected in order to perform the di�erent computations associated with
the multi-scale transformation itself, mainly the prediction operator. The set Λ must then
exhibit a graded tree structure in order to guarantee the availability of cell values within the
local prediction stencil. In order to de�ne such a structure, we �rst introduce the following
terminology:

• If Ωµ ⊂ Ωλ with |µ| = |λ|+ 1, we say that Ωµ is a child of Ωγ , and that Ωγ is the parent
of Ωµ.

• By the de�nition of∇j , if Ωλ hasN(Ωλ) children, N(Ωλ)−1 of them are in∇ :=
⋃
j≥0∇j .

We call these cells the detail children of Ωλ.

• Moreover, we de�ne the leaves L(Λ) of a tree Λ as the set of Ωλ with λ ∈ L(Λ) such that
Ωλ has no children in Λ.

• Finally, we de�ne Ωλ as a root when it belongs to the coarsest grid, that is, λ ∈ S0 or
|λ| = 0, in which case, we denote λ as λ0.

8Symbol #( ) denotes the cardinality of a set.
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A set of indices Λ ∈ ∇ is a tree if the following holds [CKMP03]:

• The fundamental level ∇0 = S0 is contained in Λ.

• If Ωµ and Ωυ are detail children of the same Ωλ, then µ ∈ Λ if υ ∈ Λ.

• If Ωλ is such that its detail children are in Λ, then the parent of Ωλ has the same property.

For the 1D dyadic con�guration (3.66), Λ is a tree if ∇0 ∈ Λ and9

(j, k) ∈ Λ⇒ (j − 1, bk/2c) ∈ Λ. (3.97)

The set R(Λ) contains the tree Λ plus the missing cells Ωλ in the construction of ∇j . A tree
Λ is thus graded if for all µ ∈ R(Λ), the prediction stencil Rµ is contained in R(Λ). Coming
back to the dyadic example, Λ is a graded tree if

(j, k) ∈ R(Λ)⇒ (j − 1, bk/2 + lc) ∈ R(Λ), |l| ≤M. (3.98)

De�ning Λε as the smallest graded tree containing Λ given by (3.87), we introduce the cor-
responding tree approximation operator Aε := AΛε = M−1TΛεM, following (3.88). Since
Λ ⊂ Λε, it follows directly that

‖UJ −AεUJ‖ ≤ Cε. (3.99)

3.3.4 Fully Adaptive Multiresolution Scheme

The previous multiresolution analysis for the solution of PDEs was �rst introduced by Harten
[Har94a, Har95] in the context of hyperbolic conservation laws. Considering problem (3.63),
we represent the numerical approximation of its solution at (n+1)∆t by a �nite volume scheme
given by

Vn+1
J = Vn

J −Bn
J , (3.100)

considering a �ne spatial discretization with grid SJ . The set Vn
J := (vnλ)λ∈SJ is the array

containing the numerical solution at time n∆t, whereas Bn
J := (bnλ)λ∈SJ accounts for the nu-

merical computation between n∆t and (n+1)∆t of �uxes and source terms on the �nite volume
discretization. In the original framework [Har94a, Har95, CKMP03, Mül03], Bn

J considers only
the numerical �uxes of the hyperbolic operator.
The main idea is then to de�ne a solution Un

J that approximates Vn
J , computed this time on

the adaptive and therefore, compressed grid generated by the multiresolution transform. From
a practical point of view, this data compression implies important savings in computational
resources compared with the reference solution (3.100), performed on a uniform grid. However,
it will naturally introduce an additional error:

an := ‖Un
J −Vn

J‖, (3.101)

which should be controlled. To limit these approximation errors introduced by a multires-
olution technique, Harten [Har94a, Har95] considered originally a compressed representation
and computation only for the �uxes Bn

J , taking into account that these ones represent the
highest computational e�ort for the solution of conservation laws. Based on these ideas,
Cohen et al. [CKMP03] introduced then the appropriate mathematical background for a fully
adaptive multiresolution scheme which performs all computations on the adapted grid.

9Symbol b c denotes the �oor function, i.e., it maps a real number to the largest integer, smaller than the
given real number.
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We have previously seen that the multi-scale approach is based on a solid mathematical frame-
work that guarantees compressed representation of discretized functions within a prescribed
tolerance. Nevertheless, for the solution of time evolution PDEs we have to consider moving
meshes. The main di�culty of such a technique is thus to de�ne appropriate criteria that
guarantee the previous approximation estimates, even for time varying con�gurations. More
precisely, given the graded tree Λnε issued from the application of Aε to some Un

J , Harten
proposed to enlarge Λnε into a larger graded tree Λ̃n+1

ε which should contain both Λnε and Λn+1
ε

such that ∥∥∥Un
J −AΛ̃n+1

ε
Un
J

∥∥∥ ≤ Cε, ∥∥∥Un+1
J −AΛ̃n+1

ε
Un+1
J

∥∥∥ ≤ Cε, (3.102)

according to (3.99), where Un+1
J = EJUn

J , with the time evolution operator EJ applied on grid
SJ . The relations given in (3.102) are often referred as the Harten's heuristics and de�ne a
graded tree Λ̃n+1

ε such that the solution at both n∆t and (n+ 1)∆t are correctly represented.
In practice, Λ̃n+1

ε should not be much larger than Λnε and it is usually derived from the size of
the current detail coe�cients. A re�nement operator R is therefore introduced which allows
us to construct Λ̃n+1

ε such that TΛ̃n+1
ε

:= RTΛnε .
For the univariate dyadic case (3.66), Harten proposed the following re�nement criteria [Har94a,
Har95]:

1. If (j, k) is in Λnε , then (j, k) and its 2k̄ neighbors at the same scale j are included in Λ̃n+1
ε :

(j, k) ∈ R(Λnε )⇒ (j, k + l) ∈ R(Λ̃n+1
ε ), |l| ≤ k̄. (3.103)

2. Current values of details are used to predict details at the next scale and thus new levels
are locally added in Λ̃n+1

ε :

|dnj,k|Λnε ≥ 2N̄+1εj ⇒ (j + 1, 2k + l) ∈ R(Λ̃n+1
ε ), l = 0, 1. (3.104)

The �rst criterion takes into account a possibly moving solution where k̄ can be chosen , for
instance, as the support of the numerical �ux evaluation, or can be based on the speed of
propagation of the solutions. In particular for explicit time integration of hyperbolic problems,
k̄ = 1 is often su�cient, issued from a standard CFL condition. On the other hand, the second
criterion accounts for possible loss of smoothness during ∆t and therefore, the need of adding
scales to the tree. It is based on the estimate (3.42), for which a function u with locally Cs
smoothness in the support Σj,k of the dual wavelet, we have:

dj,k ∼

 2−js ∂sxu|Σj,k , 0 ≤ s ≤ N,

2−jN ∂Nx u
∣∣
Σj,k

, s > N,
(3.105)

and hence
|dj+1,2k| ≈ 2−N̄ |dj,k|, N̄ = min(s,N). (3.106)

Harten proposed 1 ≤ N̄ ≤ N − 1; nevertheless, N̄ = N is often considered [Mül03], where we
recall that N stands for the vanishing moments of the dual wavelet and consequently for the
accuracy order of the polynomial interpolations (3.84).
The Harten's multiresolution scheme computes then the cell averages by

Un+1
J = Un

J −AΛ̃n+1
ε

Bn
J , (3.107)

where AΛ̃n+1
ε

Bn
J is reconstructed on the �nest grid J by the prediction operator, from the

(bnλ)λ∈L(Λ̃n+1
ε ) computed at the adapted grid, i.e., at the leaves of the tree Λ̃n+1

ε : L(Λ̃n+1
ε ).
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For the �ux evaluation and since the grids are nested, the computation on the adapted grid
supposes then considering the cell averages at the �nest level (unλ)λ∈SJ but only those at the
edges of the corresponding adapted grid. For hyperbolic problems, the reduction of the number
of cells needed for �ux computations involves an important gain in CPU time. On the other
hand, the time evolution (3.107) takes place on the �nest discretization SJ , and thus implies
a complexity of O(NJ) operations for NJ = #(SJ) cells.
In this context, Harten's heuristics (3.102) implies naturally that∥∥∥Bn

J −AΛ̃n+1
ε

Bn
J

∥∥∥ ≤ Cε. (3.108)

In particular, for ε→ 0, Harten's and reference solutions become closer and thus an → 0 into
(3.101). Therefore, the error an is usually referred as the perturbation error. Furthermore,
supposing that the reference scheme satis�es for some �xed C ≥ 0 and all U, V:

‖EJU− EJV‖ ≤ (1 + C∆t)‖U−V‖, (3.109)

we can bound the error with respect to the reference �nite volume scheme (3.100) by considering

an ≤ ‖EJUn−1
J − EJVn−1

J ‖+ ‖EJUn−1
J −Un

J‖

≤ (1 + C∆t)an−1 + cn, (3.110)

where
cn :=

∥∥∥Bn−1
J −AΛ̃nε

Bn−1
J

∥∥∥ , (3.111)

represents the re�nement error that measures the error approximation of Bn−1
J on the adaptive

set Λ̃nε , re�ned from Λn−1
ε . We thus have

an ≤
n−1∑
i=0

Cε(1 + C∆t)i = Cε
(1 + C∆t)n − 1

∆t
≤ C ε

∆t

(
eCT − 1

)
, (3.112)

for some �xed time T = n∆t. In particular, if C = 0 into (3.109), we obtain [Har95]:

an ≤
n∑
i=1

ci ≤ Cnε = C
T

∆t
ε, (3.113)

which corresponds also to estimate (3.112) whenever T is small enough. In this way, the
threshold parameter ε of the multiresolution decomposition becomes an accuracy tolerance of
the corresponding adapted and compressed spatial representation.
In order to reduce the complexity of the Harten's scheme (3.107) and to further exploit the
adapted multiresolution representations, Cohen et al. [CKMP03] introduced a fully adaptive
multiresolution scheme, for which Un

J is represented this time on the adapted grid, i.e., on the
leaves of the corresponding graded tree L(Λnε ). As a consequence, the time evolution EJ is
performed only on the adapted representation. Hence, considering the graded tree Λnε and Un

J

represented by the set (unλ)λ∈L(Λnε ), or equivalently by (dnλ)λ∈Λnε , we compute Un+1
J applying

the following procedure [CKMP03]:

• Re�nement. The set Λ̃n+1
ε containing Λnε is constructed in order to predict the evolution

of the solution and guarantee (3.102). The added set of unλ with λ ∈ Λ̃n+1
ε \Λnε are then

computed by applying the inverse transformM−1, i.e., by the prediction operator.
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• Time Evolution. A numerical approximation Ũn+1
J at time (n + 1)∆t is computed on

L(Λ̃n+1
ε ) by

ũn+1
λ = unλ − b̃nλ, λ ∈ L(Λ̃n+1

ε ), (3.114)

where the set (b̃nλ)λ∈L(Λ̃n+1
ε ) is directly computed from the set (unλ)λ∈L(Λ̃n+1

ε ), on the
adapted grid.

• Thresholding. The numerical solution Un+1
J is �nally obtained by thresholding Ũn+1

J

according to
Un+1
J = AεŨn+1

J , (3.115)

which generates the new graded tree Λn+1
ε ⊂ Λ̃n+1

ε .

In this way, the time evolution considers only O
(

#
(

L(Λ̃n+1
ε )

))
operations, performed on the

adapted representation, and an important reduction of both CPU time and memory require-
ment is achieved.
While performing a fully adaptive computation, two crucial aspects must be taken into ac-
count. The �rst one is common to the standard Harten's scheme and deals with the proper
de�nition of a re�nement operator R such that the Harten's heuristics (3.102) is satis�ed.
One possibility considers , for instance, Harten's re�nement criteria (3.103) and (3.104), as
previously detailed. The second di�culty is to de�ne the computation of the (b̃nλ)λ∈L(Λ̃n+1

ε )

into (3.114), now that the unλ are not always available at the �nest level J , in opposition to the
standard Harten's technique. For the �ux evaluations (b̃nλ)λ∈L(Λ̃n+1

ε ), there are mainly three
alternatives [CKMP03, Mül03]:

• Exact �ux evaluation. It reconstructs locally by prediction operator the cell averages unλ
at the �nest level J along the edges of the adapted grids. The �uxes are then computed on
the adapted grid using data at the �nest level. This is the procedure initially proposed
in [CKMP03] as exact local reconstruction. The reconstructed cells are usually called
phantom cells and are temporarily created in order to perform the �ux evaluations. The
required number of phantoms is given by the number of cells in the �ux evaluation
stencils. The time evolution (3.114) is nevertheless computed only on the leaves. It is
important to notice that the graduation of the tree must take also into account the cells
in the prediction stencils needed to build the phantoms.

• Locally unstructured �ux evaluation. It computes the �uxes along the edges of the
adapted grids using the available data. Phantom cells are therefore not needed. This
much more economic and simple strategy denoted as direct evaluation in [CKMP03],
might nevertheless become quite inaccurate in the coarsest regions for low order �ux
computations.

• Locally structured �ux evaluation. A third hybrid strategy which combines the previous
ones, computes locally by prediction operator the phantom cells such that the �uxes can
be evaluated using data on the same re�nement level. This amounts to locally consider
uniform grids and it is thus suited to numerical �uxes corresponding to structured grids
(see, e.g., [RSTB03]). As in the �rst case, these phantoms are temporarily kept and
the graded tree must contain their corresponding prediction stencils. This strategy is
naturally less expensive than an exact local reconstruction, and in practice no signi�cant
loss of accuracy is expected for phantoms computed based on high order reconstruction
formulae and high order �ux evaluation schemes [CKMP03, Mül03].
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As for the Harten's scheme, we are interested in quantifying the additional error introduced
in the general numerical solution (3.100) by considering this time the fully adaptive multires-
olution scheme. That is, the perturbation error de�ned by (3.101), where Un

J corresponds this
time to the solution fully computed on the adapted grid and �nally reconstructed on the �nest
grid SJ . Using the same cumulative error analysis as before, we then have

an ≤ ‖EJUn−1
J − EJVn−1

J ‖+ ‖EJUn−1
J −Un

J‖

≤ (1 + C∆t)an−1 + dn, (3.116)

considering the Lipschitz condition (3.109). For a hyperbolic problem as considered in [CKMP03]
with exact local reconstruction of the �uxes, we have that (3.114) can be written as

Ũn+1
J = AΛ̃n+1

ε
EJUn

J , (3.117)

since AΛ̃n+1
ε

Un
J = Un

J , and the cumulative error dn := ‖EJUn−1
J −Un

J‖ is thus bounded by

dn ≤ ‖EJUn−1
J − Ũn

J‖+ ‖Ũn
J −Un

J‖ = cn + tn, (3.118)

where
cn := ‖EJUn−1

J −AΛ̃nε
EJUn−1

J ‖ = ‖Bn−1
J −AΛ̃nε

Bn−1
J ‖, (3.119)

corresponds exactly to the same re�nement error as in the previous Harten's scheme and it will
be bounded by Cε as long as the Harten's heuristics (3.102) is satis�ed. On the other hand,
according to (3.115)

tn := ‖Ũn
J −Un

J‖ = ‖Ũn
J −AεŨn

J‖, (3.120)

corresponds to a thresholding error which is always bounded by Cε, based on the multires-
olution decomposition, following (3.99). Under these considerations the previous error esti-
mates (3.112) and (3.113) for the standard Harten's scheme hold also for the fully adaptive
multiresolution scheme, and the perturbation error associated with the spatially compressed
representation can be consequently tuned. In particular, a rigorous setting for the Harten's
heuristics, that is, an appropriate re�nement criteria that ensures (3.102) was introduced in
[CKMP03] in order to mathematically prove that the re�nement error cn is indeed bounded
by Cε for both Harten's and the fully adaptive multiresolution schemes.
Nevertheless, although there is no rigorous mathematical proof on the reliability of the Harten's
re�nement criteria (3.103) and (3.104), they were shown to be su�cient in practice [CKMP03,
Mül03, BLM04, HM10], and hence they are often used instead of the more sophisticated cri-
teria introduced in [CKMP03]. More recently, Hovhannisyan & Müller extended the validity
of estimates (3.112) and (3.113) to fully adaptive multiresolution for inhomogeneous conser-
vation laws [HM10], by using a polynomial reconstruction of the �uxes (instead of the exact
local reconstruction in [CKMP03]), and source approximations based on a quadrature rule.
Similarly, the convergence of multiresolution approximations for nonlinear conservation laws
towards the unique entropy solution was also demonstrated by Coquel et al. in [CPT11], for
a multiresolution technique that employs local time stepping tools, introduced by Berger &
Colella in [BC89] for classical AMR applications.
Let us remark that in all cases, the perturbation errors (3.112) and (3.113) measure the nu-
merical errors associated with the multiresolution representation with respect to a reference
discretized solution Vn

J , at the �nest grid. The numerical approximations related to the space
discretization of problem (3.63) are therefore not contemplated, and hence the perturbation
errors account only for the supplementary error introduced by the spatially compressed rep-
resentation. The latter information constitutes nevertheless an indispensable tool to properly
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evaluate the e�ciency of the numerical method and to monitor the accuracy of the numerical
simulations. Moreover, it represents a major advantage of multiresolution schemes with re-
spect to other adaptive grid techniques. On the other hand, the e�ective space discretization
error in the numerical solutions is settled in this case by the �nite volume discretization, more
precisely by its order, and will proportionally decrease with �ner mesh representations for both
uniform or adapted grids.



Part II

New Mathematical and Numerical

Elements for the Solution of

Multi-Scale Evolutionary PDEs



Introduction

In this part, we introduce a few mathematical and numerical tools for the numerical solution
of sti� PDEs. Chapter 4 deals with the numerical simulation of multi-scale reacting fronts.
It considers a new numerical strategy built upon the theoretical background previously pre-
sented in Part I, and mainly based on a dedicated splitting scheme for sti� reaction-di�usion
problems coupled with a multiresolution decomposition. The performance and capabilities
of the method are evaluated through 1D, 2D, and 3D numerical simulations of, respectively,
traveling, spiral, and scroll chemical waves arising in the study of nonlinear chemical dynamics.

Chapter 5 introduces a new time stepping technique for the numerical integration of PDEs,
based on an embedded splitting method. The numerical analysis is conducted as well as com-
plementary theoretical and numerical studies. This new tool is implemented in the numerical
strategy of Chapter 4, and extends its domain of application to more complex problems.

Finally, Chapter 6 explores a new numerical strategy based on operator splitting and the
parareal algorithm, a numerical technique for parallelization of the time domain. A complete
numerical analysis of the scheme is performed in the context of multi-scale waves with high
spatial gradients. Numerical illustrations are also considered for chemical waves, and allow us
to complete the theoretical study by a practical implementation and some numerical results.



Chapter 4

New Resolution Strategy for

Multi-Scale Reactions Waves

This chapter describes a new numerical strategy that has been developed in this work for
the solution of multi-scale reaction waves, modeled by sti� reaction-di�usion systems. The
numerical tools introduced in this chapter are based on the previous mathematical and theo-
retical background presented in Part I. In this way, we consider the mathematical description
of the splitting errors discussed in Chapter 1 in the context of sti� PDEs, as well as the time
integration of the split subsystems, the reaction and di�usion problems, taking into account
the numerical methods described in Chapter 2. The space adaptive multiresolution techniques
detailed in Chapter 3 are also taken into consideration. As a consequence, this new numerical
strategy aim at merging theoretical and numerical aspects mentioned in the previous chapters
and in the referred literature, with a few new elements into a novel and robust solver for the
numerical simulation of reaction waves. The resulting method constitutes the main core of
the global numerical strategy implemented in the MBARETE code. In particular, this study
was published in SIAM Journal on Scienti�c Computing [DMD+12], and has been presented
as well during the CLEI 36th Latin American Informatics Conference, Asunción, Paraguay
(2010) [DML+11].

4.1 Context and Motivation

In this part, we tackle the numerical simulation of reaction-di�usion equations modeling multi-
scale reaction waves. This type of problem induces peculiar di�culties and potentially large
sti�ness which stem from the broad spectrum of temporal scales in the nonlinear chemical
source term, as well as from the presence of steep gradients in the reaction fronts, spatially
very localized. We have previously seen in the General Introduction that many numerical
strategies have been developed in the past years to cope with these problems. Since the nu-
merical solution of the fully coupled problem is most of the time out of reach and involves
important computational investments, and on the other hand the appropriate de�nition of
reduced models is usually di�cult to establish and furthermore is intrinsically problem de-
pendent, alternative numerical strategies has been also developed. In this context, IMEX
methods allow us to overcome some important numerical restrictions and yield very e�cient
implementation as brie�y discussed in the General Introduction. Nevertheless, in this work we
are particularly interested in time operator splitting methods described with more details in
Chapter 1. Let us remark that the main advantage of IMEX schemes with respect to splitting
techniques is that no splitting errors are introduced. On the other hand, both IMEX and split-
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ting methods are rather low order schemes since the order conditions for higher order IMEX
schemes are often cumbersome for practical implementations (see remarks in [VS04, VSH04]).

A splitting procedure allows us to consider dedicated solvers for each subproblem and thus
reduces strongly the computational complexity of the numerical implementations. From a
general theoretical point of view, to guarantee the accuracy of the solution obtained by a
splitting scheme, the splitting time steps used for the independent solution of each subproblem
should be either taken of the order of the fastest scales included in the problem, or related
to some particular stability constraint, or simply chosen su�ciently small in order to yield
negligible splitting errors. Many splitting strategies that aim at reducing the computational
resources for the numerical simulation of sti� problems, are often built such that the inner and
performing solvers for the subproblems ensure the global accuracy order of the splitting scheme.
The order is experimentally evaluated in simple con�gurations, and the splitting time steps are
then chosen in practice such that the numerical simulations deliver qualitatively good results
for more complex phenomena (see, e.g., [OB01, NK05, SPN06b, RP08]). Unfortunately, in the
context of multi-scale sti� problems for which stability constraints or the accurate resolution
of fast scales might become critical, the previous alternatives to choose the splitting time step
imply an important reduction of the potential performance and accuracy of the numerical
strategy.
We have seen in Chapter 1 that more rigorous studies for sti� con�gurations (mainly [DM04,
DDLM07]), succeeded to better characterize the behavior of splitting schemes with splitting
time steps much larger than the fastest scales of the problem, a feature that is common in
certain applications, and hence allowed us to complement the classical theoretical background
of these methods already available for asymptotic regimes. Based on these recent mathe-
matical studies, a new time operator splitting approach has been introduced in this work,
which exploits these theoretical results and enlarges their practical extent with an important
gain of e�ciency. Contrary to classical splitting strategies that consider arbitrarily small or
stability related splitting time steps, or in which the attention is rather concentrated on the
inner solvers, in the present strategy the choice of the splitting time steps assumes the leading
role in terms of accuracy of the time integration process. This choice coupled with dedicated
solvers aims at enhancing the performance of the method but within a prescribed accuracy.
In this way, the splitting time steps are explicitly de�ned to settle the overall accuracy of the
numerical solution, independent of the time scale spectrum of the problem, and on the sole
basis of the physics of the global phenomenon and its decoupling capabilities. Its choice is
therefore not related to any stability requirement of the numerical methods used to integrate
each subsystem, even if strong sti�ness is present.

In order to guarantee the validity of the mathematical background and to exploit the speci-
�cities of each split subsystem, dedicated time integration methods must be chosen to deal
with the sti�ness associated with each one of them, in a separate manner. In Chapter 2, we
have brie�y characterized this sti�ness and introduced some performing numerical methods
that have been recently developed. Based on these previous studies, the present strategy con-
siders a high order method like Radau5 [HW96], based on implicit Runge-Kutta schemes for
sti� ODEs, to solve the reaction term; and on the other hand, another high order method
like ROCK4 [Abd02], based on explicit stabilized Runge-Kutta schemes, to solve the di�usion
problem. The entire spectrum of temporal scales associated with each subproblem can be e�-
ciently solved in an independent way, while the global accuracy of the time integration scheme
is mainly set by the splitting scheme through the choice of the splitting time step. An e�ective
decoupling of the time scale spectrum is achieved with an important improvement of e�ciency
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whenever a broad decoupling is physically possible. The di�erent physical or numerical time
scales associated with each problem can be then isolated and treated independently by each
time integration method and the splitting composition.
This novel approach to choose the time integration solvers allows us also to decouple the numer-
ical errors associated with each problem and with the splitting scheme. Contrarily, most split-
ting applications consider solvers of the same order than the splitting scheme (see, e.g., [KNW99,
DB00, NK05]), for which an interaction occurs between the several numerical errors associ-
ated with each subproblem and the splitting technique. On the other hand, in many splitting
strategies (like the previously cited or [SLGS03]) dedicated implicit multi-step methods such
as VODE [BBH89] or LSODE [Hin80, Hin83] have been widely implemented with su�ciently
�ne tolerances for the numerical treatment of sti� reactive terms, also in opposition to the
current approach that considers only one-step integration schemes1. In this way, the time
integration strategy conceived in this work under the mentioned criteria is quite general and
can be implemented in principle to any sti� reaction-di�usion system, whereas the same ideas
can be naturally extended to consider other phenomena, for instance, convection, in the mod-
eling equations. In particular, the time-stepping features of both Radau5 and ROCK4 with
accuracy control allow us to properly solve the initial fast transients previously discussed. The
same follows for other splitting applications either with the less e�cient multi-step VODE or
LSODE solvers for the reaction problem2, or with a much more expensive implicit L-stable
solver as suggested by [RS05a, RS09] for the di�usion term3.

Particular advantages can be drawn in the context of self-similar propagating waves for which
constant splitting time steps are enough to capture the global dynamics of the phenomenon,
and a strong decoupling of the time spectrum can be achieved. To the best of our knowledge,
almost all the splitting implementations in the literature developed for the numerical simula-
tion of realistic sti� problems, were restricted to constant splitting time steps. Considering the
adequate choice of higher order numerical methods with adaptive time stepping based on ac-
curacy criteria, the main error of the time integration in this implementation is piloted by the
splitting scheme, and it is thus settled by the splitting time step even for sti� cases as recently
proved [DM04, DDLM07]. The latter can be computed out of numerical error estimates or
based on a physical feature such as the pro�le of the wavefront or its propagation speed, which
usually feature scales much slower than the inner reactive or di�usive characteristic times.
In practice, the estimated splitting errors are always evaluated for the semi-discretized prob-
lem, i.e., the reference coupled and split solutions are considered discretized in space, so that
the space discretization error is not taken into account and consequently there is a decoupling
of time and space numerical errors. Such an approach allows us to perform the latter nu-
merical evaluations on su�ciently representative and feasible computational domains, to then
extrapolate the results to larger domains out of reach of standard methods, mainly because
the splitting errors will no longer depend on the spatial discretization. The global numerical
error is then given by both the splitting and the space discretization errors, separately evalu-
ated, whereas from a su�ciently �ne spatial discretization it will be indeed set by the splitting
errors, controlled by the splitting time step.

1For instance, a detailed study was presented in [VG01] that demonstrated the important loss of e�ciency
of LSODE to treat sti� PDEs in splitting con�gurations, mainly because of the expensive starting procedure
of the multi-step scheme at each splitting time step.

2We recall that a multi-step method cannot be L-stable with an order higher than two [Dah63].
3Actually, Ropp & Shadid considered in [RS05a, RS09] a splitting technique in which the splitting time step

is equal to the di�usion one, without error control. Therefore, the A-stability of the numerical method chosen
to treat the di�usion problem ensures only stability but not the necessary damping for sti� con�gurations.
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Being aware of the interest of adaptive mesh techniques for problems exhibiting locally steep
spatial gradients and that consequently �ner spatial discretizations become feasible, the perfor-
mance of the time integration strategy can be notably improved by a spatial multiresolution
technique based on Harten's pioneering work [Har94a, Har95] and the fully multiresolution
schemes [CKMP03, Mül03], previously described in Chapter 3. One of the main advantages of
such a method is that for a given semi-discretized problem, the error introduced by the corre-
sponding compressed spatial representation can be better controlled. Even though a rigorous
mathematical proof of multiresolution errors for parabolic problems is not yet available, the
mathematical background of wavelet decomposition allows us to justify and validate such a
choice (see, e.g., [RS02, RSTB03, BRBSS08, BBRBS09]). We have thus de�ned in this work
a few simple criteria to properly couple for the �rst time a space adaptive multiresolution
approach with dedicated time operator splitting for sti� problems.
As a consequence, this work introduces mainly two new elements in the context of multireso-
lution applications. First, an implicit time integration apt to handle sti� problems by means
of an operator splitting approach, considering that an implicit integration over the whole com-
putational domain involves a high degree of algorithmic complexity for these spatially adapted
representations and more sophisticated data structures. Second, a new approach in terms of
decoupling of numerical errors is considered in which we have the splitting errors de�ned on
the adapted grid, the spatial multiresolution representation errors settled by the threshold-
ing parameter, and the spatial discretization errors. In this way, for a problem represented
with a spatial discretization limited mainly by the computational resources, the proposed
MR/splitting strategy allows us to track the corresponding numerical errors of the simula-
tion, introduced by the numerical methods of solution, taking into account that the space
discretization errors are di�cult to evaluate in practice unless an analytical solution is avail-
able. Furthermore, the global error of the numerical simulation will be successfully monitored
if a su�ciently �ne spatial discretization is achieved.

The main goal of the proposed numerical strategy is thus to perform computationally perform-
ing simulations of multi-scale reaction waves within a prescribed accuracy and with standard
computational resources.

4.2 Construction of the Numerical Strategy

The proposed numerical strategy handles general reaction-di�usion systems of type (1.52).
Nevertheless, in order to simplify the presentation we shall consider linear diagonal di�usion like
for system (1.53). From a practical point of view and complementing the theoretical framework
of chapters 1 and 2, we perform a spatial discretization of problem (1.53), su�ciently �ne to
guarantee a good description of the physical problem and such that the spatial discretization
errors are negligible with respect to the ones coming from the numerical time integration. We
obtain thus the semi-discretized initial value problem:

dtU− L U = F (U) , t > 0,

U(0) = U0,

}
(4.1)

where L corresponds to the discretization of the Laplacian operator with the di�usion coef-
�cients D within. U and F (U) are arranged component-wise all over the discretized spatial
domain, and stand, respectively, for the discretization of U : R×Rd → Rm, and F : Rm → Rm.
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4.2.1 Time Operator Splitting

Considering a standard decoupling of the di�usion and reaction parts of (4.1), we denote
X∆tU0 as the numerical solution of the di�usion equation4:

dtUD − L UD = 0, t > 0, (4.2)

with initial data UD(0) = U0 after an integration time step ∆t.
We also denote by Y∆tU0 the numerical solution of the reaction part:

dtUR = F (UR) , t > 0, (4.3)

with initial data UR(0) = U0. According to the de�nitions introduced in Chapter 1, the two
Lie approximation formulae of the solution of the semi-discretized system (4.1) are de�ned by

L∆t
1 U0 = X∆tY∆tU0, L∆t

2 U0 = Y∆tX∆tU0, (4.4)

whereas the two Strang approximation formulae [Str63, Str68] are given by

S∆t
1 U0 = X∆t/2Y∆tX∆t/2U0, S∆t

2 U0 = Y∆t/2X∆tY∆t/2U0, (4.5)

where ∆t stands for the splitting time step.
We recall that the Lie formulae (4.4) (resp., Strang formulae (4.5)) are approximations of order
1 (resp., 2) of the exact solution of (4.1) in the case where X∆t and Y∆t correspond to the
exact solutions X∆t and Y∆t of problems (4.2) and (4.3). We have seen in Chapter 1 that the
standard orders achieved with a Lie or Strang scheme are no longer valid when we consider very
sti� reactive or di�usive terms with large splitting time steps. Furthermore, if the fastest time
scales play a leading role in the global physics of the phenomenon, then the solution obtained
by means of a splitting composition scheme will surely fail to capture the global dynamics of
the phenomenon, unless we consider splitting time steps small enough to resolve such scales.
In the opposite case where these fast scales are not directly related to the physical evolution
of the phenomenon, larger splitting time steps might be considered, but order reductions may
then appear due to short-life transients associated with the fastest variables. This is usually
the case for propagating reaction waves where, for instance, the speed of propagation is much
slower than the chemical scales. In this context, we recall that better performances are expected
while ending the splitting scheme by the time integration of the reaction part (4.3) [DM04]:∥∥T∆tU0 − L∆t

1 U0

∥∥
L2 = O(∆t), (4.6)∥∥T∆tU0 − S∆t

1 U0

∥∥
L2 = O(∆t), (4.7)∥∥T∆tU0 − L∆t

2 U0

∥∥
L2 = O(∆t2), (4.8)∥∥T∆tU0 − S∆t

2 U0

∥∥
L2 = O(∆t3), (4.9)

where T∆tU0 stands for the exact solution of (1.53) with linear diagonal di�usion, and the
fastest scales are present in the reactive term. In a general case, the splitting scheme should
always end with the part involving the fastest time scales of the phenomenon (see a numerical
case in [DDL+12]).

4Throughout this work, a standard centered second order space discretization is considered for the di�usive
terms.



Sect. 4.2 - Construction of the Numerical Strategy 80

On the other hand, we have seen that order reductions might also arise from space multi-scale
phenomena due to steep spatial gradients whenever large splitting time steps are considered
[DDLM07, DDM11]:∥∥T∆tU0 − L∆tU0

∥∥
L2 ∝

(
‖∂xU0‖L2∆t2, ‖U0‖L2∆t1.5

)
, (4.10)∥∥T∆tU0 − S∆tU0

∥∥
L2 ∝

(
‖∂xU0‖L2∆t3, ‖U0‖L2∆t2

)
, (4.11)

for which the �rst terms are more relevant when ∆t is small and the second ones when ∆t is not
small enough and ‖∂xU0‖L2 is very high. We notice that in both cases the Lie (4.4) and Strang
(4.5) formulae are built with the exact solutions of each subproblem, as in the theoretical
framework of Chapter 1. These theoretical studies allow us to depict more precisely the
numerical behavior of the splitting techniques for a broader range of splitting time steps and
strong sti�ness, and thus help us to select among the various splitting alternatives, depending
on the nature of the problem.

4.2.2 High Order Dedicated Time Integration Methods

The choice of suitable time integration methods for subsystems (4.2) and (4.3) is mandatory not
only to guarantee the previous theoretical estimates, but also to take advantage of the particular
features of each independent subproblem and to solve them with reasonable resources, as
accurately as possible. In particular, the proposed splitting technique considers high order
dedicated integration methods for each subproblem in order to properly solve the fastest time
scales associated with each one and in such a way that the main source of error is led by the
operator splitting error. Then, the control of the accuracy of the time integration is ruled by
the splitting scheme by means of a splitting time step that is chosen to describe the global
physical phenomenon within a required level of accuracy, even for sti� con�gurations.

Time Integration of the Reaction: Radau5

We have seen in Chapter 2 that Radau5 [HW96] is a �fth order implicit Runge-Kutta method
for which order conditions proved by Butcher [But64a] are satis�ed up to the order 5. Its
stability function is generated by a collocation procedure with the Radau quadrature formulae
[Ehl73] that guarantees A- and L-stability properties, so that very sti� systems of ODEs might
be solved without any stability problem.
Nevertheless, nonlinear systems must be solved throughout the time integration process be-
cause of this implicit character. Even if the Newton's method to handle such computations
is highly optimized, these procedures become very expensive for large systems and important
memory requirements are needed in order to carry them out. As a consequence, the size of the
system of equations to be solved is strongly limited by the computing resources. In a splitting
scheme context, we easily overcome this di�culty because the reactive term (4.3) is a system
of ODEs without spatial coupling. Therefore, a local approach node by node is adopted where
the memory requirements are only set by the number of local unknowns, which usually does
not exceed conventional memory resources. This approach is also posed as an embarrassingly
parallel problem where no data exchange is needed among nodes, that therefore yields opti-
mal load balancing on shared memory architectures as we shall see in forthcoming chapters
[DMD+11b, DDD+12].
A very important feature of the Radau5 solver is that precious computing time is saved because
of its adaptive time stepping strategy. The latter guarantees a requested accuracy and at the
same time allows us to discriminate sti� zones from regular ones so that small time steps are
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only considered for sti� behaviors, related either to the modeling equations or to the spurious
transients introduced by the splitting technique [VBvLS96, SVdZ+98, VSBH99]. In a splitting
context, the reaction time integration step ∆tR will be then adapted only at nodes where the
reaction phenomenon takes place, yielding local reaction time steps potentially much smaller
than the splitting time step, whereas the global time advancement of the solution given by
the splitting time step ∆t will not be limited by these physical or numerical fast time scales.
For multi-scale reaction waves, this adaptation happens in a very low percentage of the spatial
domain, usually only in the neighborhood of the wavefront. Contrarily, larger time steps are
considered at nodes with a chemistry at (partial) equilibrium in which the splitting should
not introduce arti�cial transients5. This local time stepping with no data exchange and no
reconstruction of intermediate values would not be possible if we integrated the entire reaction-
di�usion system (4.1) at once, as in a fully implicit or IMEX coupled solution scheme.

Time Integration of the Di�usion: ROCK4

One of the most important advantages of ROCK4 [Abd02] is its explicit character and hence
the simplicity of its implementation. No sophisticated linear algebra tools are needed since no
solution of linear systems is required The numerical integration is thus based on simple matrix-
vector products. Nevertheless, the computation cost relies directly on the requested quantity
of such products, i.e., the number of internal stages s needed within one time integration step
of the di�usion problem, ∆tD, inside each splitting time step ∆t. The memory requirements
are also reduced as a consequence of its explicit scheme. Nevertheless we must keep in mind
that these requirements increase proportionally with the number of nodes considered over the
spatial domain.
The ROCK solver [Abd02] features also dynamic time step adaptation so that ∆tD is chosen in
order to guarantee a prescribed accuracy of computations. This is also a suitable characteristic
for splitting con�gurations to properly handle high frequency modes in the solution [RSO04].
As detailed in Chapter 2, ROCK4 is formally a fourth order stabilized explicit Runge-Kutta
method and such methods feature extended stability domain along the negative real axis
[Ver96]. For a general di�usion problem such as v′ = g(v), the number of stages s needed to
guarantee the stability of computations for a given time step ∆tD, is directly related to the
spectral radius ρ(∂g/∂v) as long as the latter is dominated by real negative eigenvalues. For a
given ∆tD needed to guarantee the accuracy of the integration, the minimum number of stages
s required for stability is computed by the ROCK4 solver through (2.102), written now as

0.35 · s2 ≥ ∆tD ρ

(
∂g

∂v
(v)

)
, (4.12)

which extends quadratically on s, the stability domain of the method along the negative axis.
According to the construction of the ROCK4 scheme [Abd02], at least s = 5 internal stages
are required.
The method is very appropriate for di�usion problems because of the usual predominance of
negative real eigenvalues for which the method is e�ciently stable. A very suitable example
is the linear diagonal di�usion problem (4.2) with only negative real eigenvalues and constant
spectral radius ρ(L), as analyzed in Chapter 2 for the general heat equation (2.14). An impor-
tant gain of e�ciency is obtained in this case because the discretized di�usion operator has a
sparse matrix structure that yields more performing matrix-vector products. In our particular
applications, the di�usive phenomenon has a leading role of propagator of perturbations over

5Let us notice that chemical equilibrium regions coincide usually with spatially homogeneous distributions
so that spatial operators like di�usion or convection should preserve constancy.
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the (partial) equilibrium nodes that result in excitation of the reactive schemes, and thus the
propagation of the reaction wave. The resulting self-similar character implies that the needed
number of stages will remain practically constant throughout the evolution of the phenomenon.
Finally, the spectral radius must be previously estimated (for example, using the Gershgoring
theorem or even numerically, as proposed by the ROCK4 solver by means of a nonlinear power
method).
Notice that for a general and more complex di�usion problem like the one in system (1.52), such
a stabilized explicit method will remain suitable as long as the spectral radius is dominated by
real negative eigenvalues. This may be the case in some applications6 but remains a problem
dependent feature. Otherwise, a less e�cient standard high order explicit scheme should be
considered if an implicit solver imposes excessive computational resources7. The same follows
for sti�er di�usion problems that require a high number of inner stages s to ensure stability.
Nevertheless, in this latter case the explicit formulation of ROCK4 might justify its use in terms
of memory requirements, and on the other hand, a standard explicit scheme would certainly be
more expensive in CPU time. In this work, we will mainly consider linear di�usion problems
with constant or time dependent coe�cients8. More complex con�guration like multi-species
di�usion will be certainly studied in the future.
Once again, the implementation of this di�usion solver for the entire reaction-di�usion system
(4.1) will not be appropriate under either theoretical or practical considerations, and high-
lights the inherited advantages of the time operator splitting. In particular, solving within a
prescribed tolerance the di�usion problem may also yield ∆tD much smaller than the split-
ting time step ∆t, and thus the global time advancement of the solution given by ∆t will not
be necessarily limited by the di�usive time scales but by the global features of the coupled
problem.

4.2.3 Space Adaptive Multiresolution Technique

We are concerned with the propagation of reacting wavefronts for which important reactive
activity as well as steep spatial gradients are localized phenomena. This implies that if we
consider the solution of the reactive problem (4.3), a considerable amount of computing time
is spent on nodes that are practically at (partial) equilibrium. We will see in Chapter 9 that
for a numerical simulation with complex source mechanisms on a uniform grid, 60% of the
computing time is spent on nodes with very reduced chemical activity [DDD+12]. Moreover,
there is no need to represent these quasi-stationary regions with the same spatial discretization
needed to describe the reaction front, so that the di�usion problem (4.2) might also be solved
over a smaller number of nodes. An adapted mesh obtained by the multiresolution analysis,
described in Chapter 3, allows us to discriminate the various space scales of the phenomenon,
and turns out to be a very convenient solution to overcome these di�culties.
A fully adaptive multiresolution technique based on [CKMP03, Mül03] is then coupled with
the previous dedicated time operator splitting strategy. In this way, considering a �nite volume
discretization for problem (4.1) on a �nest grid SJ , we de�ne as before a set of nested meshes Sj
on which problem (4.1) is represented, for j = 0, 1, · · · , J , from the coarsest to the �nest grid.
By performing a multiresolution analysis on the solution U, the operator AΛε = M−1TΛεM
yields an e�ective data compression because U is no longer represented on the �nest grid

6See, e.g., [NK05, SPN06b] for di�usion problems with detailed multi-species transport coming from com-
bustion modeling, solved with the RKC solver [SSV97] for which no stability problems were reported.

7In particular, the implicit scheme should be either L-stable based on the previously mentioned studies
[RS05a, RS09], or su�ciently stable with error control features.

8The di�usion problem for plasma applications detailed in Chapter 11 present, for instance, time and space
dependent coe�cients.
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SJ as UJ , but on Λε, where we recall that Λε is the smallest graded tree containing the
thresholded tree Λ, de�ned in (3.87) and constructed based on the values of the details. In
this way, the numerical solution Un at time n∆t is represented on an adapted grid by the
set (unλ)λ∈L(Λnε ), i.e., on the leaves of the adapted tree, on which the time evolution strategy is
performed.
Taking into account that the time evolution is performed on a �xed adapted grid during each
splitting time step ∆t, a crucial aspect is to de�ne an appropriate re�nement operator R. This
one must generate a set Λ̃n+1

ε containing Λnε , on which the time integration is computed, such
that Λ̃n+1

ε is adapted for describing the solution at both n∆t and (n+ 1)∆t. These conditions
are known as the Harten's heuristics (3.102). In the proposed numerical implementation, the
operator R re�nes the adapted grid based on the values of the details as follows:

• By enlarging uniformly with k̄ cells in each direction the re�ned regions of Λnε in order
to predict the propagation of the solution, according to the �rst Harten's re�nement
criterion [Har94a, Har95]; and

• By re�ning all leaves of Λnε such that |dλ| ≥ ε|λ| with λ ∈ L(Λnε ). This procedure adds
2d cells everywhere and it is hence equivalent to adding one more level all over Λnε .

The latter enlarged region is also known in the literature as the security or safety zone, and
it has been considered in many multiresolution applications (see, e.g., [RSTB03, BRBS10]).
The added unλ with λ ∈ Λ̃n+1

ε \Λnε can be constructed by the prediction operator. Comparing
with the standard Harten's re�nement criteria for the univariate dyadic case (3.66), the �rst
criterion (3.103) is kept, whereas the second one given by (3.104) is written now as

|dnj,k|L(Λnε ) ≥ εj ⇒ (j + 1, 2k + l) ∈ R(Λ̃n+1
ε ), l = 0, 1. (4.13)

Harten related the k̄ cells in each direction to the support of the numerical �ux evaluation,
and k̄ = 1 was adopted in practice since the time step is limited by a standard CFL condition
[Har95]. In our numerical strategy, there is not such a stability restriction on the splitting time
step ∆t, and the k̄ cells are rather used to allow us larger time evolution steps while ensur-
ing an appropriate spatial representation. These re�nement criteria are rather conservative.
Nevertheless, they are simple and completely avoid unre�ned resolution taking into account
the choice of the time evolution steps detailed in the following and the propagating nature of
reaction waves at �nite speed. In particular, the latter feature guarantees that a given adapted
grid propagates along with the waves and no more that one grid level needs to be added at
each time iteration.
An important theoretical result and one of the main advantages of a multiresolution approach
as detailed in Chapter 3, is that if we denote by Vn

J := (vnλ)λ∈SJ the solution fully computed
on the �nest grid, and by Un

J , the solution reconstructed on the �nest grid that used adaptive
multiresolution (keeping in mind that the time integration was really performed on the leaves
L(Λ̃nε ) of a compressed representation of Un); then, for a �xed time T = n∆t, it can be shown
that the error introduced by the compressed spatial representation or perturbation error is
given by

‖Un
J −Vn

J‖ ∝ nε. (4.14)

This result was �rst stated by Harten in [Har95] for hyperbolic problems in an L1-norm,
where the multiresolution decomposition was used to accelerate the �ux evaluations for a time
integration performed on the �nest uniform grid. Later on, (4.14) was mathematically proved in
[CKMP03] under more rigorous constraints for the re�nement criteria and for the computation
of the �uxes also for hyperbolic problems in an L1-norm, this time for a fully multiresolution
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scheme where all operations were performed on the adapted grid, as detailed in Chapter 3.
Nevertheless, in the same spirit of these works and based on the mathematical background of
wavelet decomposition, we shall consider (4.14) but with an L2-norm, more suited for parabolic
problems, as also considered, for instance, in [RS02, RSTB03, BRBSS08, BBRBS09]. Even
though a fully mathematical proof is still required for this case, numerical validations were
already provided. In this context, the level-dependent threshold values (3.96) proposed by
Harten in [Har94a, Har95], should be written as

εj = 2
d
2

(j−J)ε, j ∈ [0, J ], (4.15)

where ε is the threshold value for the �nest level J , in order to be consistent with the standard
de�nition of the L2-norm.
Concerning the �ux computations associated with the spatial operators, we consider the lo-
cally structured �ux evaluation detailed in [Mül03] and [RSTB03], and previously described
in Chapter 3. The latter takes into account ghost cells called phantoms that are locally and
temporarily added to the tree in order to always compute the numerical �uxes of di�usion
and convection operators at the highest grid level between two neighboring cells, following
the procedure introduced in [RSTB03] for �nite volume discretizations. Although there is no
rigorous mathematical analysis, this procedure constitutes a much more e�cient alternative
to the exact �ux evaluations as shown in [CKMP03, Mül03] with essentially the same accu-
racy for high order reconstruction schemes. In this implementation as in standard structured
meshes, we consider projection operators built upon polynomial interpolation of at least order
N = 3, as for the 1D case (3.84). The case of locally unstructured �ux evaluations should be
even more e�cient in terms of computational complexity and consequently, in computational
resources, but it was not implemented in this work in order to guarantee at least locally, the
accuracy order of the �ux schemes in all directions at the same level.

4.3 Summary of the Numerical Strategy

The numerical solution scheme can be summarized as follows, according to the multiresolution
terminology adopted in Chapter 3:

(unλ)λ∈L(Λ̃nε )
M−→ (unλ0

, dnλ)λ∈Λ̃nε
(4.16)

(unλ0
, dnλ)λ∈Λ̃nε

TΛnε−→ (unλ0
, dnλ)λ∈Λnε (4.17)

(unλ0
, dnλ)λ∈Λnε

R−→ (unλ0
, dnλ)λ∈Λ̃n+1

ε
(4.18)

(unλ0
, dnλ)λ∈Λ̃n+1

ε

M−1

−→ (unλ)λ∈L(Λ̃n+1
ε ) (4.19)

(unλ)λ∈L(Λ̃n+1
ε )

S∆t

−→ (un+1
λ )λ∈L(Λ̃n+1

ε ) (4.20)

We recall that the set (unλ0
)λ∈Λ is de�ned as the set of roots of some Λ, i.e., all λ ∈ Λ such

that |λ| = 0 or λ ∈ S0. Considering Un represented on the adapted grid L(Λ̃nε ), the �rst step
(4.16) performs a multiresolution transform from the physical to the wavelet basis space. A
data compression is achieved by means of the threshold operator TΛnε according to (3.87) and
respecting a graded structure. This amounts to build the smallest graded tree Λnε containing
the thresholded tree Λ de�ned into (3.87). The latter tree is enlarged to create Λ̃n+1

ε in
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(4.18) according to the re�nement criteria previously introduced. The inverse multiresolution
transform is �nally applied in (4.19) in order to retrieve the physical variables on the adapted
grid L(Λ̃n+1

ε ), on which the time integration is performed in (4.20).
The algorithm can be schematically represented as

Un+1 = S∆tM−1RTΛnεMUn, (4.21)

with the compressed representations of Un+1 and Un given by (un+1
λ )λ∈L(Λ̃n+1

ε ) and (unλ)λ∈L(Λ̃nε ),

respectively, and the Strang operator splitting S∆t given by one of the formulae (4.5) as time
evolution operator. The procedure (4.16)�(4.20) follows the standard fully adaptive multires-
olution scheme as presented in [Mül03] with a general time evolution operator in (4.20). One
might add a last thresholding step as originally proposed in [CKMP03] to perform the numer-
ical analysis (see Chapter 3), to represent the solution on L(Λn+1

ε ), instead of L(Λ̃n+1
ε ), by

applying

(un+1
λ )λ∈L(Λ̃n+1

ε )

A
Λn+1
ε−→ (un+1

λ )λ∈L(Λn+1
ε ) (4.22)

where AΛn+1
ε

= M−1TΛn+1
ε
M. This last thresholding step implies slightly higher data com-

pression for the solution outputs, and it is implicitly performed anyway into the recursive
procedure (4.16)�(4.20).
For n = 0, the initial condition should be represented on L(Λ̃0

ε) in step (4.16), which can usually
be the �nest grid, i.e., for all λ ∈ L(Λ̃0

ε), |λ| = J or equivalently λ ∈ SJ . Nevertheless, this is
not possible for large domains simulations, in which case, the initial condition is computed on
an intermediate grid level j0 such that for all λ ∈ L(Λ̃0

ε), |λ| = j0 or λ ∈ Sj0 . The solution
is then re�ned and recomputed over the next �ner level after a thresholding process. This
procedure is recursively applied until the pre-established �nest level J is reached, or until no
cell needs to be re�ned for a given threshold parameter. The general procedure is explained in
details in [Mül03], and will be presented in Chapter 7 for the current implementation.

4.4 Computation of the Splitting Time Step

The e�ciency of the previous time integration strategy both in terms of accuracy and compu-
tational resources, relies mainly on the selected splitting time step. In order to properly couple
the space adaptive multiresolution with the splitting scheme, some criteria will be introduced
in the following in the context of propagating multi-scale waves. One of the main novelties
is that the splitting time step is set by the desired level of accuracy in the resolution of the
wave speed, the wave pro�le, both, or any other parameter, depending on the problem and
considering that each split subsystem is solved exactly or su�ciently accurately. It is thus only
depending on the global physics of the phenomenon we want to describe and therefore, on the
degree of decoupling we can achieve between the various subsystems within a prescribed error
tolerance.
Considering the semi-discretized problem (4.1) with a su�ciently �ne spatial discretization, if
an accurate reference wave solution U, or the corresponding wavefront speed v, can be com-
puted either numerically or based on theoretical/analytical estimates, then the approximated
solution Usplit of speed vsplit, computed with a splitting time step ∆t and an operator splitting
technique with exact integration of the subsystems, must verify:

Ep =
∥∥U−Usplit

∥∥
L2 ≤ ηp, Ev = |v − vsplit|/v ≤ ηv, (4.23)

where ηp and ηv are accuracy tolerances for the pro�le and velocity errors: Ep and Ev, respec-
tively. The pro�le error Ep should be evaluated superposing both U and Usplit. However, a
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simpler and more practical strategy would just evaluate the L2-error at some �xed time t∗:

E =
∥∥U(t∗)−Usplit(t

∗)
∥∥
L2 ≤ η, (4.24)

in which case, both pro�le and velocity errors are simultaneously considered. For problems with
variables of di�erent order of magnitude, all these L2-norms (Ep and E) that are independently
evaluated for each variable, should be normalized by an appropriate scaling factor for the
corresponding evaluated variable. In the error evaluations conducted in this work, we have
considered a scaling factor for each variable given by the corresponding maximum value of the
variable. Sometimes, it is also useful to scale the spatial representation with another scaling
factor, given this time by the size of the computational domain.
Notice that in order to remain coherent with the previous constraints and also to guarantee
an accurate resolution of the reaction and di�usion problems, the corresponding accuracy
tolerances ηRadau5 and ηROCK4 of these solvers must verify:

ηRadau5, ηROCK4 < min{ηp, ηv, η}. (4.25)

In this way, we can isolate the various integration errors and guarantee that the overall time
integration error is practically given by the splitting scheme approximation. In particular,
an evaluation of the sole splitting error allows us to decouple the time scale spectrum of the
problem whenever this is possible, contrary to classical applications of time operator splitting
methods for which the splitting time step is directly settled by the fastest time scale of the
phenomenon. We therefore extend the use of these methods to splitting time steps de�ned by
the global coupling scales, potentially larger than the fastest physical or numerical scales. This
is a direct consequence of previous mathematical studies that demonstrated that even though
there will possibly be an order reduction for time or space sti� problems and large splitting
time steps, the splitting schemes will still consistently approximate the coupled resolution with
an error piloted by the splitting time step [DM04, DDLM07].
We have established so far the criteria to handle time integration errors given by the splitting
procedure. Nevertheless, the proposed strategy combines this splitting approach with a space
multiresolution adaptive technique so that the approximation error introduced by the latter
must be also taken into account. According to (4.14), we consider the following error bound
for a �xed time T = n∆t: ∥∥UMR

split −UJ
split

∥∥
L2 ≤ Cnε, (4.26)

for some positive C, where UMR
split is the MR/splitting solution at n∆t reconstructed on the

�nest grid J , which corresponds to the spatial discretization of the semi-discretized problem
(4.1). A basic constraint to assume the validity of (4.26), as in the hyperbolic case, is that
the propagating locally re�ned spatial gradients remain into the corresponding �ne regions
during each time step evolution ∆t, i.e., the Harten's heuristics (3.102) are satis�ed. For a
given spatial discretization (∆x,∆y,∆z) corresponding to the maximum J level, the splitting
time step must be bounded by a maximum splitting time step ∆tmax computed by:

∆t ≤ ∆tmax = min

{
k̂∆x

vx
,
k̂∆y

vy
,
k̂∆z

vz

}
, (4.27)

for the directional components (vx, vy, vz) of the wavefront speed and where k̂ = 2 + k̄ stands
for the re�ned region in which the gradients might propagate without losing spatial resolution.
The re�ned region is obtained with the re�nement criteria previously detailed for which one
�ner level is added everywhere (2 cells at J in each direction since the corresponding 2d children
are simultaneously present in the safety layer) and k̄ cells on the same level. We remark that
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the re�ned region k̂ might be even larger in practice because if one cell is a leaf, the remaining
2d − 1 �brother-cells� issued from the same parent-cell are also leaves, even if some of them
might not be necessary according to the threshold criterion (4.15).
We recall that there are no stability restrictions on the splitting time ∆t since the internal
time integration solvers deal independently with these issues, and thus the splitting time step
is uniquely associated with the numerical accuracy of the computations. In this context, the
bound ∆tmax is necessary only for adapted grids, and allows us simply to ensure an appropriate
spatial representation of the steepest gradients and to decouple time and space approximation
errors. That is, without this bound the propagating front might considerably leave the re�ned
regions and the time integration performed on the resulting coarser cells might thus introduce
complementary numerical errors into the numerical time integration process. The latter cou-
pling of space and time features usually results into qualitatively di�erent physical behaviors,
for instance, in the velocity of propagation, which in practice allows us to identify an inap-
propriate choice of the splitting time step for a given adapted grid. Finally, increasing the
parameter k̄ in the re�nement criteria allows us to further enlarge the re�ned regions if larger
splitting time steps are desired.
In the case of propagating wavefronts, a constant splitting time step based on a prescribed
accuracy is more than reasonable, whereas the bound (4.27) guarantees a proper coupling be-
tween the space and time numerical methods. If no theoretical hints of the wave pro�le or
velocity exist, the computation of a reference solution is usually very expensive but still fea-
sible for 1D or relatively smaller computational domains. These simulations might give some
insights in the behavior of the numerical methods in order to extrapolate the conclusions to
larger or multi-dimensional problems according to a standard numerical procedure in scienti�c
computing. On the other hand, the speed of the wavefront needed to establish (4.27) can be
always approximated by directional 1D measurements taken either from fully coupled 1D con-
�gurations or, for instance, from feasible multi-dimensional MR/splitting solutions for which
the accuracy tolerances are tightened.
However, if a more precise error control is required, or if we are faced with highly unsteady
problems, the previous procedure can be dynamically implemented, for instance, by estimating
the local splitting error as explained for sti� systems of ODEs in Chapter 2, without any need
to compute a reference solution. Based on these estimates, the splitting time steps can be
dynamically computed within the prescribed accuracy tolerance η into (4.24). All these issues
will be discussed in details in the next chapter. However, these procedures introduce naturally
an overhead which might not be justi�ed in the simpli�ed case of propagating waves. A hybrid
strategy that considers a constant splitting time step computed out of a local error estimate,
performed on the �y, can be seen as the most convenient solution.

4.5 Basic Features of the Algorithm Implementation

A dynamic graded tree structure is used to represent the data in the computer memory. This
kind of data structure has been used in many multiresolution applications (see, e.g., [RSTB03])
and other dedicated data structures have also been developed [BMV09, BMMS09, BBB+10].
The adapted grid corresponds to a set of nested dyadic grids generated by re�ning recursively
a given cell, depending on the local regularity of the solution. Figure 4.1 shows an example of
a graded tree structure in 1D.
This data structure is suitable for 1D, 2D and 3D Cartesian geometries, whereas the basic
element of the structure is the cell itself, which consists of a set of geometric and physical
values, along with pointers to its parent, their children, and the contiguous cells in each
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Fig. 4.1: Example of 1D graded tree structure. Cells and links to their corresponding children are
indicated (solid lines), as well as the leaves (solid bold lines) and the phantoms (dashed lines).

dimension, the neighbors. The NR roots correspond to the basis of the tree, Ωλ0 , whereas the
leaves are the upper elements with no children in the tree. In d dimensions, a parent-cell at a
level j has at most 2d children cells at level j+1. In this particular implementation, we impose
that all 2d children issued from the same parent-cell are simultaneously present if at least one
child among them is needed. The maximum number of leaves NL on which the solution might
be represented is given by NL = NR2dJ , which must correspond to the number of cells on the
�nest grid NJ . Additionally, the maximum number of cells NΛ in the tree is given by

NΛ = NR
2d(J+1) − 1

2d − 1
. (4.28)

Further details concerning the algorithm implementation will be discussed in Chapter 7.

4.5.1 Algorithm Scheme

The global algorithm can be summarized as:

1. Initialization.

• Initialization of parameters: e.g., maximum and minimum grid levels, domain
size, number of roots.

• Initialization of the mesh structure:

� creation of nested grids;

� initialization of parameters of each cell from the roots, e.g., position, coordi-
nates, level threshold value εj ;

� de�nition of children and neighbors from the roots.

• Computation of initial solution at an intermediate grid level and recursive
re�nement and computation at most up to the maximum level.

2. Loop in time.

• Computation of cell values throughout the tree: projection operator P jj−1

from leaves towards roots.

• Computation of details: operatorM from roots towards leaves.

• Thresholding and graduation: operator TΛε throughout the tree.

• Re�nement of the tree: operator R throughout the tree.

• Computation of cell values from details: operator M−1 from roots towards
leaves.



Sect. 4.6 - Numerical Simulations 89

• Creation of phantom cells: needed for di�usion time step.

• Time integration: performed only on the leaves. For Strang operator splitting
S∆t

2 in (4.5):

� reaction half time step, time integration by Radau5 cell by cell;

� di�usion time step, time integration by ROCK4 considering phantom cells at
the grid level boundaries, computed by prediction operator;

� reaction half time step, time integration by Radau5 cell by cell.

3. Output.

Save adapted grid with the corresponding cell values represented on it.

The general algorithm will be described with more details in Chapter 7, we note nevertheless
that the computation of the cell values throughout the tree as well as the details are simulta-
neously evaluated by the multiresolution transformM. The same follows for the thresholding
and re�nement operators TΛε and R, which are also simultaneously performed. Let us remark
that during the thresholding process, cells are only labeled according to (4.15), but no cell
is removed nor is its detail set to zero, because a particular cell might be retained afterward
under the re�nement or graduation criteria. The phantom cells are created before the time
integration process in the code, in order to separate the multiresolution and time integration
operations. The values on the phantoms are nevertheless computed at each internal stage of
ROCK4 by the prediction operator after locally updating their prediction stencils with the
projection operator.

4.6 Numerical Simulations

In what follows, we present some numerical illustrations of the proposed strategy. A problem
coming from nonlinear chemical dynamics is described and treated. The performance of the
method is then discussed in the context of multi-dimensional simulations. All simulations were
performed on an AMD-Shanghai 2.7 GHz processor with memory capacity of 32 GB.

4.6.1 Mathematical Model: The Belousov-Zhabotinski Reaction

We are concerned with the numerical approximation of a model for the Belousov-Zhabotinski
reaction, a catalyzed oxidation of an organic species by acid bromated ion (see [EP98] for more
details and illustrations). We thus consider the model detailed in [GS94] and coming from the
classic work of [FKN72] which takes into account three species: hypobromous acid HBrO2,
bromide ions Br−, and cerium (IV). Denoting by a = [Ce(IV)], b = [HBrO2], and c = [Br−],
we obtain a very sti� system of three PDEs:

∂ta−Da ∂
2
xa =

1

µ
(−qa− ab+ fc),

∂tb−Db ∂
2
xb =

1

ε
(qa− ab+ b(1− b)) ,

∂tc−Dc ∂
2
xc = b− c,


(4.29)

x ∈ Rd, with di�usion coe�cients Da, Db and Dc, and the real positive parameters: f , small
q, and small ε and µ, such that µ� ε� 1.
The dynamical system associated with this system models reactive excitable media with a
large time scale spectrum (see [GS94] for more details). The spatial con�guration with the
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addition of di�usion develops propagating wavefronts with steep spatial gradients. Hence,
this model presents all the di�culties associated with a sti� multi-scale con�guration. The
advantages of applying a splitting strategy to this problem have already been studied and
presented in [DDM03]. In what follows, we will brie�y consider a 1D case of (4.29) in order to
illustrate the errors of splitting schemes for sti� problems, then 2D and 3D con�gurations will
be implemented.

4.6.2 1D BZ Equation

Let us perform a short illustrating study of the behavior of splitting schemes when dealing
with sti� problems, as explained in Chapter 1. In the BZ model, sti�ness is given by fast time
scales as well as steep spatial gradients. We consider then a 1D con�guration of problem (4.29)
with homogeneous Neumann boundary conditions and the following parameters, taken from
[GS94]:

ε = 10−2, µ = 10−5, f = 3, q = 2× 10−4, (4.30)

with di�usion coe�cients:

Da = 1, Db = 1, Dc = 0.6, (4.31)

for a space region of [0, 80]. A su�ciently �ne uniform mesh of 4000 points is considered
while the exact solution T∆t is approximated by a reference or quasi-exact solution T ∆t of the
semi-discretized coupled reaction-di�usion problem (4.29), performed by Radau5 with very �ne
tolerances. The splitting schemes (4.4) and (4.5) consider Radau5 and ROCK4 as integration
methods for the reaction and di�usion problems.
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Fig. 4.2: 1D BZ equation. Local errors for Lie and Strang splitting schemes. Lines with slopes 2 and
3 are depicted (left), and slopes 1, 1.5 and 3 in the zoomed loss order region (right).

Figure 4.2 shows the local errors after one splitting time step, where fully developed and con-
verged waves are taken as initial condition. The maximum L2 errors account for the maximum
value between the computed and normalized local errors for a, b, and c variables. In these
numerical tests, the maximum error corresponds to variable b. It can be seen that both Lie and
Strang schemes have asymptoticly local order 2 and 3 for small time steps. Nevertheless, for
larger time steps, the results in [DM04] and [DDLM07] describe better the numerical behavior
of these schemes:

• For L∆t
1 in (4.4), order 2 drops to 1 as predicted by (4.6); whereas
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• For L∆t
2 , we see the in�uence of spatial gradients as predicted by (4.10), and thus order

1.5 is recovered after some transition phase.

The same conclusions are drawn for the Strang schemes (4.5):

• The order of S∆t
1 drops from 3 to 1 according to (4.7); while

• For S∆t
2 , we see the in�uence of steep spatial gradients that alter the order 3 given by

(4.9).

Finally, in all cases and for large splitting time steps, the reaction ending schemes show better
behaviors for larger splitting time steps, according to [DM04]. In particular, L∆t

2 behaves even
better than S∆t

1 , whereas S∆t
2 is the best alternative for all time steps.

4.6.3 2D BZ Equation

Let us consider the 2D con�guration of problem (4.29) with homogeneous Neumann boundary
conditions, and the following parameters taken from [JSW89] and [DDM03]:

ε = 10−2, µ = 10−5, f = 1.6, q = 2× 10−3, (4.32)

with di�usion coe�cients:

Da = 2.5× 10−3, Db = 2.5× 10−3, Dc = 1.5× 10−3. (4.33)

The phenomenon is studied over a time domain of [0, 4] and a space region of [0, 1]2. In
the following, we will �rst consider a 2D computational domain with uniform mesh of 2562,
for which the coupled and split solutions of the semi-discretized problem derived from (4.29)
are rather expensive but still feasible. The main idea is to compare these solutions with the
ones computed by the proposed MR/splitting procedure in order to analyze the splitting and
multiresolution errors regarding the corresponding accuracy tolerances previously detailed. In
a second step and based on these results, we will evaluate the performance of the method by
considering larger computational domains and 3D problems.
We thus consider 8 nested dyadic grids with NJ = 22×8 = 65536 = 2562 cells on the �nest grid
J = 8, and de�ne:

• A reference or quasi-exact solution UJ
qe as the solution of the semi-discretized coupled

reaction-di�usion problem (4.29) on the �nest mesh J , performed by ROCK4 with very
�ne tolerance ηROCK4 = 10−14; whereas

• Based on the previous 1D case, the split solution UJ
split uses the RDR Strang S∆t

2 scheme
as time integration method of the semi-discretized problem (4.29) with Radau5 for the
time integration of the reaction term and ROCK4 for the di�usive part, ηRadau5 =
ηROCK4 = 10−5.

• Finally, with the same splitting time integration strategy S∆t
2 , we consider the proposed

MR/splitting solution UMR
split.

For the coupled reaction-di�usion problem and with the previous parameters, the spectral
radius of the Jacobian of the reaction term into (4.29) is usually dominated by the negative real
parts of the associated eigenvalues, although imaginary parts are also present. Therefore only
�ne tolerances that yield su�ciently small time steps allow us to fully guarantee the stability
of the ROCK4 scheme whenever the imaginary part appears, considering the reduced stability
domains of these methods along the imaginary axis. The main limitation to directly perform
such a computation with the Radau5 solver comes from its important memory requirements.
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Data Initialization

The initialization of the problem is based on [JSW89] for the two-variable model of (4.29) with
b and c:

∂tb−Db ∂
2
xb =

1

ε

(
b(1− b) +

f(q − b)c
q + b

)
,

∂tc−Dc ∂
2
xc = b− c,

 (4.34)

by taking µ→ 0 into the evolution equation of a, and thus

a =
fc

q + b
(4.35)

into the evolution equations of b and c into (4.29). An approximation of the steady state values
of the dynamical system associated with the two-variable problem (4.34) is given by

bss = css = q
f + 1

f − 1
, (4.36)

and the initial condition can be then computed with

b =

{
0.8 if 0 < θ < arctan(0.3),

bss elsewhere,
(4.37)

c = css +
θ

8πf
, (4.38)

and (4.35), where θ is a polar coordinate angle considering as origin (0.5, 0.5) into the domain
[0, 1]2.

Computation of the Splitting Time Step

In order to illustrate the choice of the appropriate splitting time step ∆t, we set an accuracy
tolerance of η = 10−2, considering the normalized L2-errors (4.24) with the quasi-exact and
splitting solutions. Figure 4.3 shows these errors evaluated at �nal time t∗ = 4 for all three
variables.
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Fig. 4.3: 2D BZ spiral waves. Normalized L2-errors for several splitting time steps ∆t at �nal time
t∗ = 4 according to (4.24) and pre�xed accuracy tolerance of η = 10−2. Uniform grid of 2562.
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A rounded value of splitting time step of ∆t = 4/1024 ≈ 3.91 × 10−3 is �nally chosen for
which L2-errors are close to η for all three variables, and times t∗ ∈ [0, 4] into (4.24). In
general all these computations over the whole time domain are not necessary, and from a
practical point of view and for the simulation of propagating waves, we can consider a much
less expensive procedure that evaluates the local errors after one splitting time step starting
from an intermediate solution for which the waves are fully developed. A rather large accuracy
tolerance η was considered in order to show the potential decoupling of time steps for reaction,
di�usion, and the time operator splitting needed to solve the problem within the prescribed
tolerance:

• The imposed tolerance for the reaction resolution implies time steps varying from 8.88×
10−5 to ∆t/2 ≈ 1.95× 10−3, for points located, respectively, in the neighborhood of the
reactive front and the reduced chemical activity regions.

• The selected tolerance for ROCK4 yields time steps ∆tD relatively constant of about
6.5− 8× 10−4, i.e., 5 or 6 di�usion time steps within each splitting time step ∆t.
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Fig. 4.4: 2D BZ spiral waves. Top: variable b (left) and c (right) at t = 4. Bottom: variable a (left)
and its representation with four levels of mesh discretization with ε = 10−2 (right). Finest grid: 2562.
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For the spatial discretization of 2562, the spectral radius ρ(L) estimated by ROCK49 is about
1, 400, so that no more than the minimum number of stages s = 5 is required according to
(4.12) for the splitting solution UJ

split. As a consequence, a CPU time of 1029 s is needed
compared with the coupled resolution with ROCK4 that takes 23967 s. The latter considers
time steps of about 2.4×10−6 with the imposed �ne tolerance, and 5 internal stages for a larger
spectral radius of 95, 000, that includes both reaction- and di�usion-associated eigenvalues.
Even though this coupled resolution should be more accurate than a splitting technique, it will
be no longer feasible for larger computational domains and moreover not appropriate for more
complex chemical terms. For instance, for the coupled problem (4.29), ROCK4 starts showing
stability problems for ηROCK4 larger than 10−5.
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Fig. 4.5: BZ wave speed for splitting time step ∆t = 4/1024. Top left: time evolution of variable a
along y-axis (see Figure 4.4); and right, estimated wavefront speed v. Bottom: speed relative errors Ev
for all three variables according to (4.23).

We consider now the proposed strategy that combines the previous splitting solver with the
multiresolution adaptive technique. Figure 4.4 shows the spiral waves and the four di�erent
levels of spatial discretization on which they have been simulated with ε = 10−2, for the sti�est
variable a. Whenever we consider grid adaptation the bound (4.27) on the splitting time step
∆t must be taken into account. We need then to estimate the speed of propagation v of the
wavefront. This can be done by computing the propagating speed of each variable along each
direction as shown in Figure 4.5 for variable a along the y-axis. For the BZ waves, we have
estimated a maximum speed of vx = vy ≈ 0.7, which yields a maximum splitting time step of

9Although here we consider a �nite volume spatial discretization for the di�usion problem, the estimated
value of the spectral radius is coherent with 8×Da/∆x2 = 1310.72 computed with (2.18).
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∆tmax = 1.6 × 10−2 for ∆x = ∆y = 1/256, and k̂ = 3, considering one enlarging cell in each
direction k̄ = 1 in the re�nement criteria. In this particular case, we can also compute the
speed relative error Ev following (4.23) between the quasi-exact and a splitting solution with
∆t = 4/1024. These errors remain practically lower than 0.2% as seen in Figure 4.5, which
imply an accuracy tolerance of ηv = 2× 10−3 considering the speed resolution.

Data Compression and CPU Time

The proposed MR/splitting strategy represents and computes solutions only on adapted grids,
i.e., the leaves of the tree structure, throughout the time domain. Therefore, we de�ne the
data compression (DC) as 1 minus the ratio between the number of cells on the adapted grid
(AG) and those on the �nest uniform grid (FG), expressing the whole as a percentage:

DC =

(
1− AG

FG

)
× 100. (4.39)

Figure 4.6 shows di�erent data compression rates for several threshold values ε. Smaller values
of ε imply more re�nement, and thus compressions are less important. The whole �nest grid
is necessary for ε < 10−5. The corresponding CPU times for each case are included in Table
(4.1), along with the quasi-exact and the splitting solutions without any grid adaptation.

Table 4.1: 2D BZ spiral waves. CPU time in seconds for quasi-exact, splitting, and MR/splitting
solutions with di�erent threshold values ε. Finest grid: 2562.

MR/splitting ε =
splitting quasi-exact

10−1 10−2 10−3 10−4

CPU time (s) 536 886 1233 2402 1029 23967

Table 4.2: 2D BZ spiral waves. CPU time in seconds for the reaction and di�usion time integrations
for a splitting and a MR/splitting resolution with ε = 10−2. Finest grid: 2562.

splitting MR/splitting ε = 10−2

CPU time (s) % CPU time (s) %

Reaction 963 65.4 486 44.0

Di�usion 481 32.7 348 31.5

Total 1472 100.0 1104 100.0

A more precise analysis of the CPU time consumption summarized in Table (4.2) shows that:

• An adapted grid allows us to signi�cantly reduce the time cost of the reaction integration
as a consequence of the important reduction of the number of points without any chemical
activity.

• Although for ε = 10−2 we consider only 25% of the 2562 points, an important overhead
is introduced in the time integration of the di�usion because the introduction of phantom
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cells yields denser matrix representations of the discretized di�usion operator and thus
more expensive matrix-vector products.

For these sti� problems, the MR operations represent less than 15% of the total time, whereas
the construction of the di�usion matrix takes over 6% since it has to be recomputed at each
splitting time step, contrary to a uniform grid representation for which this matrix is constant.
From a practical point of view, we can see that a more e�cient strategy will directly consider
the adaptive grid for the �ux evaluations as detailed in [Mül03], without the introduction of
any phantom. An overhead is introduced in the CPU times in Table (4.2) coming from the
code pro�ling.

Numerical Accuracy of Computations

We consider now the numerical accuracy of the MR/splitting strategy UMR
split, with respect to

the reference solution UJ
qe, for the semi-discretized problem (4.29) on a uniform mesh J given

by 2562 points, taking into account that

• The accuracy of the splitting solution UJ
split, on the same uniform mesh J , is given by

an accuracy tolerance η, according to (4.24) through the proper choice of the splitting
time step ∆t (see Figure 4.3) regardless of the possible loss of order for the Strang S∆t

2

scheme.

• The multiresolution decomposition yields a compressed spatial representation whose ac-
curacy to approximate the corresponding uniform mesh representation is related to the
threshold value ε through (4.26).

At some �xed time t∗, the overall numerical accuracy of the MR/splitting solution is then set
by the previous splitting and multiresolution errors:∥∥UJ

qe −UMR
split

∥∥
L2 ≤

∥∥UJ
qe −UJ

split

∥∥
L2︸ ︷︷ ︸

O(η)

+
∥∥UJ

split −UMR
split

∥∥
L2︸ ︷︷ ︸

O(ε)

. (4.40)

The space discretization error is thus not considered since the reference solution UJ
qe is already

discretized in space. The latter error depends on the degree of spatial re�nement of the solution
and might be accessible by comparing UJ

qe with an analytical solution, if the latter is available,
or with a highly re�ned representation. In any case, (4.40) measures the numerical errors
related to the time integration procedure and the compressed spatial representations. For
su�ciently �ne spatial representations, estimate (4.40) represents the global accuracy of the
numerical simulation as well.
Figure 4.6 shows the corresponding normalized L2 errors at t∗ = 4 for several threshold values ε,
and η = 10−2 for a splitting time step of ∆t = 4/1024. Multiresolution errors are evaluated at
the �nest grid J after reconstruction from the adapted mesh solution and depend proportionally
on the imposed threshold value ε, according to (4.26). For this time multi-scale phenomenon,
the accuracy of the MR/splitting strategy should be �xed by the time integration process in
order to guarantee an appropriate resolution of the time scale spectrum of the sti� problem.
The multiresolution procedure allows us to compress the spatial representation by retaining
the desired level of re�nement only wherever it is necessary, taking into account the space
multi-scale features of the physical problem. In this case, these error estimates show that for
ε ≤ 10−2, the multiresolution errors become negligible compared with the operator splitting
ones, so that the overall accuracy is indeed given by η.
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Extension to Larger Computational Domains

We have analyzed so far the numerical behavior of the proposed strategy in terms of the
splitting method, the computational costs, and the numerical errors for a computational do-
main of 2562 points. This mesh allows us to represent accurately enough the multi-scale
phenomenon, and moreover it allows us to conduct several computations with reasonable com-
putational resources. Let us now consider a more challenging con�guration with a larger
computational domain in order to complete the present illustration. We therefore consider
the semi-discretized problem (4.29) discretized this time over 10 nested dyadic grids with
NJ = 22×10 = 1048576 = 10242 cells on the �nest grid J = 10.
In order to take into account the memory requirements of each numerical solution strategy, we
estimate the array size of the working space needed by Radau5 and ROCK4:

1. Radau5: L1 = 4×W1 ×W1 + 12×W1 + 20 (from [HW96]);

2. ROCK4: L2 = 8×W2 (from [Abd02]);

where W1 and W2 are, respectively, the number of unknowns solved by Radau5 and ROCK4.
In the case of a uniform mesh, the total number of unknowns is W = 3× 10242 ≈ 3.15× 106,
and thus the global size L required for each solver is:

1. Quasi-exact with Radau5: W1 = W ≈ 3.15× 106 and L = L1 ≈ 4× 1013.

2. Splitting: W1 = 3, W2 = W ≈ 3.15× 106 and L = L1 + L2 ≈ 2.5× 107.

3. MR/splitting with ε = 10−2: W1 = 3, W2 = 0.09×W ≈ 2.9× 105, and L = L1 + L2 ≈
2.3× 106; with an average data compression of 91%.

Considering a standard platform on which each double precision value is represented by 64
bits, we shall require 2.3 Pb, 1.5 Gb, and 140.4 Mb, respectively, for each solver. For standard
computational resources, an implicit resolution with Radau5 is completely out of reach. These
expensive memory requirements are strongly reduced with a splitting strategy but further
reductions are achieved by adding a multiresolution adaptive procedure.
Figure 4.7 (top) shows the spatial representation of variable a on the �nest level corresponding
to a 10242 spatial discretization of problem (4.29), at an intermediate time t = 2, and after
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one revolution at �nal time t = 4. The corresponding data compressions DC are, respectively,
of 92.3 % and 89.9 %, while the steepest spatial gradients of the front are always solved within
the �nest region taking into account that the splitting time step ∆t = 4/1024 remains bounded
by ∆tmax = 4.2× 10−3 for ∆x = ∆y = 1/1024 according to (4.27). For this case, six levels of
grid were used from j = 5 to the �nest grid J = 10.

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
a

72

63

54

45

36

27

18

9

0

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
a

72

63

54

45

36

27

18

9

0

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 h1

1.9x10
03

1.4x10
03

9.9x10
04

5.3x10
04

8.0x10
05

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 h1

1.9x10
03

1.4x10
03

9.9x10
04

5.3x10
04

8.0x10
05

Fig. 4.7: 2D BZ spiral waves. Variable a on the �nest grid (top) and local reaction time steps h1
(bottom) at t = 2 (left) and t = 4 (right) with ∆t = 4/1024 and ε = 10−2. Finest grid: 10242.

The bottom of Figure 4.7 shows the corresponding mean reaction time steps within ∆t/2 for
each point. We have the same distribution as in the previous 2562 case with reaction time steps
going from ∆t/2 to time steps almost 22 times smaller depending of the local chemical activity.
On the other hand, the spectral radius ρ(L) estimated by ROCK410 is larger because of the
�ner spatial discretization of the Laplacian operator and it is of the order of 23, 000. If we
consider a di�usion time step ∆tD equal to the splitting time step, s = 16 stages will be needed
according to (4.12). Nevertheless, for a given tolerance of ηROCK4 = 10−5, an initial time step
given by ∆tD = ∆t is rejected to �nally reach a relatively constant value of 2.5 − 3.5 × 10−4

10The estimate of the spectral radius (2.18) yields in this case 20, 971.52.
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for which 5 stages instead of 16 are enough to guarantee the stability of the method11. Finally,
from 11 to 15 di�usion time steps ∆tD are computed inside each splitting time step ∆t.
From a practical point of view, the general idea is that the �nest grid of computation is previ-
ously settled, and it is basically limited by the computational resources. The multiresolution
error is then indicating the numerical approximation of the compressed spatial representation
with respect to the semi-discretized problem regardless of its spatial discretization as shown
in Figure 4.8 (left) for a �ner spatial discretization of 10242 instead of 2562 in Figure 4.6. The
quasi-exact solution was computed with ROCK4 and ηROCK4 = 10−10, and took over 65072 s
compared with 13943 s and 9529 s, respectively, for the splitting solution and the MR/splitting
solution with ε = 10−2. Figure 4.8 (right) shows the dependence of the data compression on
the accuracy order of the prediction operator, as discussed in Chapter 3. For higher order
polynomial interpolations that yield more accurate and thus more compressed multiresolution
representations, larger stencils are also needed so that the resulting data compressions take
into account both opposite features. In a general case, this is a problem dependent feature
that can be turned into a useful parameter to improve the performance of the multiresolution
technique.

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

L
2
 e

r
r
o

r

ε

||a
J
qe - a

J
split||L2

||a
J
split - a

MR
split||L2

||b
J
qe - b

J
split||L2

||b
J
split - b

MR
split||L2

||c
J
qe - c

J
split||L2

||c
J
split - c

MR
split||L2

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 0  0.5  1  1.5  2  2.5  3  3.5  4

D
C

 [
%

]

t

M=1

M=2

M=3

Fig. 4.8: 2D BZ spiral waves. Right: normalized L2 errors at t∗ = 4 given by the splitting technique
on a uniform grid according to (4.24), and the MR procedure according to (4.26) for several threshold
values ε. Left: time evolution of data compressions DC for prediction operators given by polynomial
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4.6.4 3D BZ Equation

In order to extend previous applications to 3D simulations, we now consider problem (4.29) in
a 3D con�guration with the same parameters considered for the 2D case (4.32) and (4.33), for
a time domain of [0, 2], and in a space region of [0, 1]3. The initialization is made in the same
way, but with the coordinate angle θ given this time by

θ = arctan

(
(x− 0.5) sin(πz) + (y − 0.5) cos(πz)

(x− 0.5) cos(πz)− (y − 0.5) sin(πz)

)
. (4.41)

We retrieve the previous 2D case with z equal to zero.

11We recall that ROCK4 needs to save only 8 arrays of the size of the number of unknowns regardless of the
number of stages. One of these arrays contains the approximate solution used to estimate the local error in
order to adapt the time step within the prescribed tolerance.
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First, we take into account 8 nested dyadic grids with NJ = 23×8 = 16777216 = 2563 cells
on the �nest grid J = 8. Then, with a threshold value of ε = 10−2, and a splitting time
step ∆t = 4/1024, the strategy features data compressions of 92.61 % for the initial condition,
85.64 % at t = 1 when the scroll waves are fully developed, and 81.42 % at �nal time t = 2.
Figure 4.9 shows the scroll waves for variable a at two di�erent times and the adapted grid
at t = 2. The �nest regions correspond to the neighborhood of the wavefront. The CPU
computation time was of about 41.94 hours with one processor.
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Fig. 4.9: 3D BZ scroll wave. Top: evolution of variable a at t = 1 (left) and t = 2 (right). Bottom:
Adapted grid (left) and �nest grid (right) at t = 2 for ε = 10−2. Finest grid: 2563.

To explore the feasibility and potential advantages of the method, let us consider 9 nested
dyadic grids with NJ = 23×9 = 134217728 = 5123 cells on the �nest grid J = 9. The initial-
ization must take place on a intermediate grid, j0 = 8 in this example. For this con�guration,
a two times larger splitting time step of ∆t = 4/512 ≈ 7.8 × 10−3, and a threshold value of
ε = 10−1 were chosen to have splitting and multiresolution errors potentially of the same order.
Smaller threshold values yield larger simulation domains which are not longer feasible with the
considered computing resource and the current state of development of the code. Figure 4.10
shows the adapted grid at t = 2 and the corresponding �nest regions. Compared with the 2563
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case, �ner regions are added at the steepest spatial gradients of the front. Additionally, in order
to globally guarantee (4.26), more re�nement is needed at the lower levels according to (4.15)
for a given threshold ε. The multiresolution representation error (4.26) is always measured
with respect to the corresponding uniform semi-discretized problem at the �nest level J . The
latter is mainly limited by the computational resources and the desired level of accuracy of the
spatial resolution. Data compressions are now of 95.79 % for the initial condition, 91.56 % at
t = 1, and 91.20 % for �nal time t = 2, with a CPU time of 159.4 hours.
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Fig. 4.10: 3D BZ scroll wave. Adapted grid (left) and �nest grid (right) at t = 2 for ε = 10−1. Finest
grid: 5123.

Performing the same comparison concerning memory requirements, the total number of un-
knowns for this case is W = 3×512×512×512 ≈ 4.03×108, and the global size of L required
by each solver is:

1. Quasi-exact with Radau5: W1 = W ≈ 4.03× 108 and L = L1 ≈ 6.5× 1017.

2. Splitting: W1 = 3, W2 = W ≈ 4.03× 108 and L = L1 + L2 ≈ 3.2× 109.

3. MR/Splitting with ε = 10−1: W1 = 3, W2 = 0.13×W ≈ 5.3× 107, and L = L1 + L2 ≈
4.2× 108; with a data compression of 87%.

Therefore, we shall require at least 36.1 Eb, 190.7 Gb, and 25.0 Gb of memory capacity,
respectively, for each solver.

4.7 Concluding Remarks

To �nish this chapter, let us synthesize the main points discussed in details throughout the
di�erent sections. First of all, we have introduced a numerical strategy for the numerical
solution of sti� reaction-di�usion equations, based mainly on the following three blocks:

• A second order Strang time operator splitting with a splitting time step de�ned within a
prescribed accuracy, according to the global physics of the problem and the decoupling
capabilities of the governing equations.
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• High order one-step time integration methods for the independent numerical solution of
the split subproblems with adaptive time stepping tools within a prescribed accuracy.

• A space adaptive multiresolution technique that yields compressed spatial representation
within a prescribed accuracy with respect to a uniform grid space resolution.

In order to monitor the global accuracy of the numerical simulation we have decoupled the
numerical approximation errors in three constituting pieces with the following criteria:

• The space discretization error associated with the semi-discretized problem. This error
is di�cult to evaluate in practice since in most of the cases an analytical solution is not
available, and a highly re�ned spatial representation of the problem is not feasible.

• The splitting error associated with the decoupled numerical solution of each subproblem
coming from the semi-discretized problem. This error is mainly set by the choice of the
splitting time step.

• The multiresolution error associated with the spatially compressed representation of the
semi-discretized problem. This error is ruled by the choice of the threshold value during
the multiresolution decomposition.

Notice that in this context both the splitting and multiresolution errors become independent of
the space discretization of the problem. The approximation errors associated with the numer-
ical methods, i.e., the time integration and the adaptive mesh re�nement techniques, can be
hence tracked, whereas for a su�ciently �ne space discretization limited by the computational
resources, a complete evaluation of the global accuracy of the numerical simulation is also
possible. In this work we have considered second order spatial discretization for the di�usion
problem although higher order schemes might be implemented with the same time integration
solver. The numerical strategy is thus quite general and the same constructing and imple-
menting criteria can be applied to consider other phenomena in the time dependent PDEs.
An important gain of computational performance is shown to be achieved with the resulting
method mainly because of the adaptive grid features and the implementation of a dedicated
time integration strategy. Further enhancements are possible if the physical con�guration of
the problem allows us to perform an e�ective decoupling of the time scale spectrum of the
governing equations.
In this chapter, we have focused our attention on the numerical simulation of propagating
waves, and therefore the e�ciency of the previous strategy will be ensured for more general
problems as long as:

• A constant splitting time step is su�cient to describe the global physics of the simulated
phenomenon.

• The simple re�nement and coupling criteria between the time evolution of the waves
and the adaptive grid re�nement ensure a proper dynamic representation of the steepest
spatial gradients in the solution.

• The reactive activity is mainly concentrated in the wavefronts which are spatially re�ned
to avoid an important accuracy reduction in the evaluation of the source terms and thus
perturbations in the global phenomenon.

The �rst constraint reduces considerably the applicability of the method for a large number
of application featuring more general and probably highly unsteady phenomena. The natu-
ral solution to this limitation is given by the construction of an e�cient adaptive splitting
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scheme for general sti� problems. This time adaptive procedure must be performed within a
prescribed accuracy in order to ensure the previous working framework in terms of accuracy
of the numerical simulations. These key issues remained an open problem for many years, and
in the next chapter of this work we propose a theoretical and numerical solution to overcome
these di�culties.
Concerning the second constraint, a more sophisticated re�nement criteria might be required,
as the ones introduced by Cohen et al. in [CKMP03], that allow us to add more than one
re�ned level before each new time step in order to properly describe suddenly high variations
in the new numerical solution. Nevertheless, we shall see in the forthcoming chapters that an
appropriate frequency of remeshing set by the dynamic time stepping technique developed in
this work allows us also to rapidly capture the spatial dynamics of highly unsteady problems,
keeping the same and much simpler previous re�nement and coupling criteria. A combination
of more dedicated re�nement techniques and the adaptive splitting time stepping might be
however considered to further improve the numerical strategy in some particular cases. The
latter option has not been su�ciently analyzed for the moment and will not be described in the
present work. The same follows for the last constraint which might require special techniques
for the evaluation of the source terms, as the ones developed, for instance, by Hovhannisyan
& Müller in [HM10] for an e�cient numerical simulation of some particular applications.



Chapter 5

Adaptive Splitting Scheme for

Multi-Scale Evolutionary PDEs

This chapter introduces a time adaptive operator splitting scheme for the numerical integration
of sti� PDEs. Time adaptive techniques were partially mentioned in the General Introduction
and in Chapter 2, where dynamical time stepping was introduced in the context of sti� ODEs
systems. In this part, we will �rst present a brief overview of some time adaptive schemes for
PDEs in the literature. Then, we will introduce an adaptive splitting scheme that complements
the numerical strategy presented in Chapter 4. An article on the adaptive splitting strategy was
published in Con�uentes Mathematici [DDD+11], in a special issue dedicated to the memory
of Michelle Schatzman.

5.1 Time Adaptive Schemes for PDEs

Time adaptation for the solution of sti� PDEs is a critical aspect for numerical simulations
mainly because it allows us to track the numerical accuracy of the computations as usually
done for ODEs systems, and because highly unsteady PDEs can be e�ciently simulated. Either
if the solution is globally or locally advanced in time, a dynamic adaptation to the numerical
and physical scales of the problem is mandatory to overcome important numerical restrictions.
It what follows, some time stepping techniques for PDEs will be brie�y discussed.

• Time stepping for IMEX methods. Standard time stepping techniques for IMEX schemes
consider embedded lower order methods or other kind of procedure to numerically es-
timate the local error (see [HNW87, HW96]), as previously seen for some sti� ODE
solvers in Chapter 21. In general, the order conditions of IMEX methods take simulta-
neously into account the explicit and implicit schemes. Therefore, in practice, it su�ces
to consider, for instance, an embedded method with supplementary stages that satis�es
lower order conditions (see [KC03] and references therein). An estimate of the local error
can be then dynamically computed and consequently the time integration steps, as per-
formed in classical time integration of ODEs. This is also the case, for instance, for the
time integration scheme employed in the partitioning schemes presented in [HW06] for
reaction-di�usion systems, for which space grid adaption was also proposed. In the IRKC
code [SSV06] that implements an IMEX scheme based on RKC methods proposed by

1Let us remark that the same procedures are valid for any coupled solution scheme like a fully implicit one.
For instance, the leading term of the local error Taylor expansion is numerically evaluated in [DS10] to ensure a
prescribed accuracy of computations for a �rst order implicit Euler scheme used to solve the coupled governing
equations for combustion problems with detailed chemistry.
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[VS04] for reaction-di�usion systems, and then extended to convection-di�usion-reaction
problems [VSH04], the leading term in the Taylor series of the local error is numerically
evaluated taking into account that the method is of order 1 (hopefully 2 in practice)2.
In this way, the time step is chosen in order to guarantee computations within a pre-
scribed tolerance and within the stability domain of the explicit scheme in which, by
construction, the implicit scheme for the sti� terms remains stable [VS04].

• Time stepping via adjoint error representation. Other strategies take into account adjoint
operators (see, e.g., [Sül99, Ste08, SN08, SMN10]), which consider the dual problem asso-
ciated with the time dependent PDEs. The main advantage of this approach relies on its
rigorous mathematical background which allows us to better control the error of compu-
tations. The theoretical framework is mainly settled by the linear or nonlinear operators
present in the problem, and their corresponding adjoint operators. The latter ones lead
to an adjoint representation of the original problem, the dual problem, for which one can
deduce theoretical error estimates of the integration scheme. In particular, adjoint oper-
ators have been also used to describe and analyze splitting errors for reaction-di�usion
systems [EGR+08, ECG+08, Gin10]. The main di�culty of these methods is that more
sophisticated schemes are required to handle the evolution of the adjoint time operators,
which are not always well-posed. A mathematical study is therefore required and the
procedures are often di�cult to generalize. The same follows for multi-dimensional con-
�gurations. Nevertheless, for particular problems as Burgers' equation [SN08] or Euler
equations [SMN10], such a scheme might be e�ciently implemented. In general, an im-
portant overhead is introduced by the computation of the adjoint error representation
since one needs to compute the forward and dual problems plus supplementary operations
at each time step, which usually cost several times one single forward solution. These
costs are nevertheless reduced in [SMN10] by computing the adjoint errors on a coarser
mesh issued from a multiresolution analysis. In this way, a time-space adaptive was
introduced for 2D Euler equations. Another alternative combines implicit and explicit
time integrations to reduce computational requirements.

• Multirate time stepping strategies. The main idea of these schemes is to use a self-
adjusting time step for a particular component of an ODE system, instead of using a
single global time step for the whole system. In this way, potentially sti� components
with di�erent time scales are computed within a prescribed tolerance based on their own
local temporal variations. These are thus local time stepping techniques with error con-
trol, and can be adapted to general time integration strategies. In particular, the ODE
systems might come from semi-discretized PDEs. Automatic multirate schemes were �rst
introduced by [GW84] for linear multi-step methods. Further developments considered,
for instance, partitioned Runge-Kutta methods for fast and slow well-partitioned sys-
tems [GKR01]. In general, fully implicit [Log02, Log03] or linearly implicit Runge-Kutta
methods of Rosenbrock-type [BG02, SHV07] have been developed with local error esti-
mates based on lower order embedded schemes, suitable for sti� problems. Some crucial
aspects are related to the internal and �nal synchronization steps for all components of
the system, in which interpolations are usually implemented to de�ne missing data at
intermediate time steps, and the implementation complexity of fully implicit methods.
For a recent review on these methods, see [SM10] and references therein. On the other
hand, a combination of IMEX and multirate techniques have been recently introduced

2This procedure is di�erent to the one implemented in the previous RKC code [SSV97] for which there is
an estimate of the leading term of the second order RKC scheme, based on theoretical �ndings [VHS90].
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in [CD11].

In the context of adaptive meshing schemes, many local time stepping techniques have been
developed to locally adapt time steps according to the local mesh size. This idea dates back to
the original works of Berger & Oliger on AMR techniques [BO84], and were then formalized by
Berger & Collela in [BC89]. The general application framework was given by hyperbolic con-
servation laws for which the time steps of explicit schemes would be heavily constrained by the
�nest space scale of the computational domain (see, e.g., [BDA+06] and references therein).
The time steps are usually chosen based on local stability criteria and therefore allow us
to greatly improve numerical performances. Appropriate synchronization steps among cells
evolved with di�erent time steps must be de�ned, usually based on interpolation approxima-
tions, in order to limit the corresponding overhead of computations. A study on the optimal
choice of the local time steps and the synchronization stages can be found in [CNPT09]. All
these ideas were extended to multiresolution techniques for which Müller & Stiriba introduced
in [MS07] a locally varying time stepping for explicit and implicit schemes. The latter mo-
tivated many other extensions for hyperbolic (see, e.g., [CPPT06, CNPT08, CNPT10]) and
parabolic problems [DGRS08]. The latter authors introduced also embedded explicit Runge-
Kutta schemes for error control in [DRS09], which were later coupled with local time stepping
in [DGRS09]. Another multiresolution technique with local time stepping for parabolic prob-
lems was developed in [BBRBS09], and applied for excitable media problems in [BRBS10],
where a special �rst order splitting technique was also implemented to handle sti� reaction
terms with a semi-implicit scheme to improve computing performances.

In the previous chapter, we have introduced a new time splitting technique for sti� PDEs. This
approach allows us to independently treat di�erent problems and the associated time scales
according to the decoupling capabilities of the physical problem. The splitting time step is
chosen within a prescribed accuracy in order to guarantee error control of the time integration.
In this way, the time evolution of the global solution is not limited by stability restrictions as in
standard con�gurations, and an important numerical performance can be achieved whenever
a broad decoupling of the numerical and physical time scale spectrum is possible. In partic-
ular, this splitting approach considers a dedicated implicit solver for sti� reaction problems
that can be seen as a local time stepping strategy de�ned this time by accuracy criteria as
in a multirate con�guration, but without any data synchronization and interpolation errors;
whereas the explicit solvers might perform several time steps within the splitting time step in
order to guarantee numerical stability, in opposition to standard coupled schemes, like fully
implicit or consistent IMEX methods3. Additionally, the numerical complexity of the splitting
environment is rather minimum considering the successive and independent solution of the
various subproblems, and that numerical schemes specially conceived for each one of them are
implemented.
We have also seen in the previous chapter that in the context of propagating waves a constant
splitting time step is more than reasonable to precisely describe the global coupling of the
split phenomena. Fixed splitting time step schemes constitute the most standard splitting
implementation up to our days and have been largely used in the literature (see, e.g., [KNW99,
DB00, OB01, SLGS03, NK05, SPN06a, RP08]). However, such a �xed time stepping strategy
would surely lead to major di�culties and limitations for problems describing highly unsteady

3By consistent IMEX method, we mean that the numerical solution of the problem ensures the complete
coupling of the di�erent terms. This excludes, for instance, the possibility of time stepping of the implicit
solver within the explicit and global time step, in which case some sort of splitting errors would be naturally
introduced.
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models with very di�erent dynamics such as �ame ignition and propagation, or repetitively
pulsed plasmas discharges, all the more in the framework of large scale simulations. It seems
thus essential to be able to dynamically adapt splitting time steps for the simulation of such
multi-scale problems with strongly evolving dynamics.
In order to guarantee a precise description of the coupled multi-scale phenomenon, this adap-
tive splitting scheme must rely on a local error estimate which can be obtained, for instance,
by considering a lower order embedded method, as seen for ODEs in Chapter 2. The time
steps can therefore dynamically adapt according to a given tolerance. Nevertheless, it is well
known that for sti� problems and larger accuracy tolerances, the order of the methods can
degenerate, yielding non reliable error estimates and possibly, much larger global errors than
expected by the given tolerance. Such a scenario will be all the more valid in the framework
of PDE solutions, where �ne grid and large gradients coupled with sti� source terms lead to
especially sti� problems. In particular, the numerical strategy of Chapter 4 was built in such
a way that the main source of error is the splitting error. Therefore, it is essential to construct
a reliable splitting error estimate to guarantee an e�ective error control within the so claimed
accuracy tolerance.

In this context, to the best of our knowledge the �rst and only previous attempt to dynamically
adapt splitting time steps was considered by Gerisch & Verwer in [GV02] by means of a
standard Richardson extrapolation4 (see [HNW87]), for the numerical solution of PDEs issued
from chemotaxis models. Nevertheless, such a general procedure will not be suitable for sti�
PDEs mainly because it neglects order reductions, and because each time step has to be
integrated twice. Therefore, other alternatives need to be sought. A simple and general
adaptive strategy for non sti� problems is, for instance, given by the Embedded Split-Step
Formulae presented by Koch & Thalhammer in [KT11]. This approach is based on lower
order embedded methods, which combine Lie and Strang schemes, and in general allow us to
build higher order techniques with negative or complex coe�cients. Alternatively, an adaptive
splitting scheme suitable for sti� con�gurations was recently introduced in [DDD+11], and will
be detailed in the following.
This strategy aims also at estimating the local splitting error with two di�erent splitting
schemes. The �rst one is the standard second order Strang technique, whereas the second one
considers a shifted Strang formula built with a δ-shift in time of the classical Strang formula.
This latter method is thus of �rst order, and is embedded because the �rst substep is common to
both methods to reduce computational costs. It inherits from the Strang scheme its stability
properties and the same numerical behavior in the context of sti� problems, as studied in
[DM04, DDLM07]. A numerical analysis of the method will be detailed in what follows to
settle a solid mathematical background. Furthermore, a complementary numerical procedure
based on theoretical estimates will be introduced to overcome classical restrictions of adaptive
time stepping schemes whenever asymptotic estimates fail to predict the true dynamics of the
problem. The main goal is to conceive and implement a fully adaptive time stepping strategy
that guarantees an e�ective control of the errors of integration for a large range of time steps;
a key issue for problems for which splitting time steps can go beyond the fastest physical
scales of the problem. In this way, compared with a standard procedure for which accuracy is
guaranteed by considering time steps of the order of the fastest scale, this adaptive splitting
technique allows us to extend the strategy of Chapter 4 to more complex and highly unsteady
problems modeling various physical scenarios, independent of the fastest physical or numerical

4An estimate of the local error is computed with the di�erence between two numerical solutions at each time
step, in which one of the them (in general the retained solution) is obtained after two half steps. A higher order
solution can be also extrapolated (this is not used in [GV02] where the second order Strang is considered).
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time scale.

5.2 Time Adaptive Splitting Method

Throughout this part a scalar 1D case for the linear diagonal di�usion system (1.53) is con-
sidered in order to simplify the presentation, taking into account that extensions to higher
dimensions of x or u are straightforward:

∂tu− ∂2
xu = f(u), x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R,

}
(5.1)

where f and u0 are smooth functions. As usual, we denote by T tu0 the solution of (5.1), by
Xtu0 the solution of the di�usion equation:

∂tuD − ∂2
xuD = 0, x ∈ R, t > 0, (5.2)

with initial data uD(0, ·) = u0(·) after some time t; and by Y tu0, the solution of the reaction
part where the spatial coordinate x can be considered as a parameter:

∂tuR = f(uR), x ∈ R, t > 0, (5.3)

with uR(0, ·) = u0(·). The Lie and Strang approximation formulae of the solution of system
(5.1) are then de�ned by

Lt1u0 = XtY tu0, Lt2u0 = Y tXtu0, (5.4)

St1u0 = Xt/2Y tXt/2u0, St2u0 = Y t/2XtY t/2u0. (5.5)

An adaptive time stepping strategy is based on a local error estimate which can be obtained
by using two schemes of di�erent order, for instance, St1 or St2, locally of order 3, and Lt1 or Lt2,
locally of order 2. In this case, the Embedded Split-Step Formulae given in [KT11] consider
St1 and Lt2, or St2 and Lt1, noticing that5

Lt1u0 = XtY t/2Y t/2u0, (5.6)

where Y t/2u0 is also used to compute St2u0. Nevertheless, we have seen in Chapter 1 that in
the context of multi-scale phenomena, order reductions may appear due to short-life transients
associated with the fastest variables, when one considers splitting time steps larger than the
fastest scales. Furthermore, it has been proved in [DM04] that better performances are ex-
pected while ending the splitting scheme by the part involving the fastest time scales of the
phenomenon. In particular, in the case of linear diagonal di�usion problems, no order reduc-
tion is expected for the Lt2 and St2 schemes when fast scales are present in the reactive term.
Therefore, the embedding procedure must be carefully conceived taking into consideration
these theoretical studies.
We introduce a shifted Strang formula

St2,δu0 = Y (1/2−δ)tXtY (1/2+δ)tu0, (5.7)

locally of order 2, due to the lack of symmetry, for δ in [−1/2, 0)∪(0, 1/2], which likely features
the same numerical behavior as St2. In this way, a local error estimate is computed based on

5In [KT11] the central step is actually written as the common one for both Lie and Strang schemes, we
believe that this is just a printing error.
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two solutions for which orders are guaranteed, and a potential loss of order is simultaneous,
according to (

S∆t
2 u0

S∆t
2,δu0

)
=

(
Y ∆t/2X∆tY ∆t/2u0

Y (1/2−δ)∆tX∆tY (1/2+δ)∆tu0

)
, (5.8)

for some splitting time step ∆t > 0. Embedding is accomplished as long as δ is di�erent from
−1/2,, i.e.,S∆t

2,δu0 di�erent from Lt2u0. Contrarily, if δ is equal to 1/2, S∆t
2,δu0 is de�ned as Lt1u0,

which it is not suitable for sti� con�gurations as previously discussed [DM04]. Therefore, δ
should be contained in (−1/2, 0) ∪ (0, 1/2). Shifted S∆t

1,δu0 is de�ned in a similar way and
depending on the multi-scale character of the problem, it might be the appropriate choice
along with S∆t

1 u0.
Considering exactly the same time stepping procedure detailed in Chapter 2 for sti� ODEs,
we have that

S∆t
2 u0 − S∆t

2,δu0 = S∆t
2 u0 − T∆tu0 + T∆tu0 − S∆t

2,δu0

= O(∆t3) +O(∆t2) ≈ O(∆t2). (5.9)

Therefore, for a given accuracy tolerance η:∥∥S∆t
2 u0 − S∆t

2,δu0

∥∥ < η, (5.10)

must be veri�ed in order to accept the current computation with ∆t. The new time step is
then calculated by

∆tnew = υ∆t

√
η∥∥S∆t

2 u0 − S∆t
2,δu0

∥∥ , (5.11)

with security factor 0 < υ ≤ 1, close to 1. More sophisticated formulae than (5.11) like the
step size strategy with memory (2.46), can be also considered.
The error control of these adaptive methods is fully guaranteed as long as the orders of both, the
main and the embedded integration methods, remains valid and (5.9) is satis�ed. This is the
case for small enough time steps for which asymptotic theoretical estimates hold, but remains
an open problem for larger time steps for which the validity of the former orders is assumed in
any standard time-stepping scheme. This is a key point in this work because we propose not
only a new splitting strategy with adaptive time steps as described in this section, but we also
aim at applications for which splitting time steps may go beyond the fastest scales associated
with each subproblem in order to obtain important computational savings. A technique that
consistently guarantees error control for all possible splitting scales must be then pursued, but
�rst a detailed numerical analysis of the method must be performed.

5.3 Numerical Analysis of the Adaptive Scheme

In this part, we conduct the numerical analysis of the method previously detailed. It is mainly
based on the theoretical study of the approximation of the solution T t of (5.1), by the shifted
Strang formula (5.7): St2,δ. General estimates for the approximation of T t by the standard St2
can be naturally obtained by taking δ = 0. To simplify the notations in the following, we will
denote St2 by St, and St2,δ by Stδ.
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5.3.1 Linear Framework

Assume that A and B are linear bounded operators and de�ne according to (5.7),

Stδu0 = e(1/2−δ)tAetBe(1/2+δ)tAu0, (5.12)

as an approximation of et(A+B)u0. The following theorem gives the expansion in powers of t
of the di�erence between et(A+B)u0 and Stδ. We recall the de�nition of the brackets between
A and B given in (1.21): [A,B] = AB −BA.

Theorem 5.1. Assume that A and B are linear bounded operators, for t and δ small enough,
the following asymptotic holds

et(A+B)u0 − Stδu0 = −δt2[A,B]u0 +
t3

24
(
[
A, [A,B]

]
+ 2
[
B, [A,B]

]
)u0

+O(δt3) +O(t4). (5.13)

Proof. The proof is straightforward by using the Taylor formula with integral remainder for
a linear bounded operator A:

etA = Id + tA+
t2A2

2
+
t3A3

6
+

∫ t

0

(t− s)3

6
A4esA ds, (5.14)

and the Baker-Campbell-Hausdor� formula (1.23).

5.3.2 Nonlinear Framework

We extend now the previous theorem to our nonlinear framework given by system (5.1), by
using the Lie formalism introduced in Chapter 1. Furthermore, considering the spaces C∞(R)
of functions of class C∞ on R, and C∞b (R) of functions of class C∞ on R and bounded over R,
we introduce the Schwartz space S(R) de�ned by

S(R) = {g ∈ C∞(R) s.t. sup
v∈R
|vα1∂α2

v g(v)| <∞ ∀α1, α2 ∈ Z}; (5.15)

and we de�ne the space S1(R), made out of functions u belonging to C∞b (R) such that u′ belongs
to S(R):

S1(R) = {u ∈ C∞b (R) s.t. u′ ∈ S(R)}. (5.16)

Taking into account the system (5.1), we perform the expansion in powers of t of the di�erence
between T t and Stδ, given by (5.7).

Theorem 5.2. Assume that u0 belongs to S1(R), and that f belongs to C∞(R). For t and δ
small enough, the following asymptotic holds

T tu0 − Stδu0 = −δt2f ′′(u0) (∂xu0)2

+
t3

24

(
f ′(u0)f ′′(u0) + f(u0)f (3)(u0)

)
(∂xu0)2

− t
3

12
f (4)(u0) (∂xu0)4 − t3

3
f (3)(u0) (∂xu0)2 ∂2

xu0

− t
3

6
f ′′(u0)

(
∂2
xu0

)2
+O(δt3) +O(t4). (5.17)
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Proof. We introduce the two Lie operators D∆ and Df associated with ∂2
x and f , and write

T tu0 − Stδu0 =
(

et(D∆+Df )Id
)
u0 −

(
e(1/2+δ)tDf etD∆e(1/2−δ)tDf Id

)
u0. (5.18)

From Theorem 5.1, we can deduce that

T tu0 − Stδu0 = −δt2 ([Df , D∆]Id)u0 +
t3

24

([
Df , [Df , D∆]

]
Id
)
u0

+
t3

12

([
D∆, [Df , D∆]

]
Id
)
u0 +O(δt3) +O(t4). (5.19)

We are not interested in giving the exact form of the terms O(δt3) and O(t4), but these terms
can be computed following the same technique developed in [DT11]. For the term in O(t2),
we have by de�nition (1.49) and with (1.40):

([Df , D∆]Id)u0 = (Df (D∆Id)−D∆(Df Id))u0

= (D∆Id)′(u0)f(u0)− (Df Id)′(u0)∂2
xu0

= ∂2
x (f(u0))− f ′(u0)∂2

xu0. (5.20)

The last term is by de�nition the Lie bracket between ∂2
x and f , a simple computation shows

that

∂2
xf(u0)− f ′(u0)∂2

xu0 = f ′′(u0) (∂xu0)2 + f ′(u0)∂2
xu0 − f ′(u0)∂2

xu0

= f ′′(u0) (∂xu0)2 . (5.21)

Furthermore, ([
Df , [Df , D∆]

]
Id
)

(u0) =
(
f ′(u0)f ′′(u0) + f(u0)f (3)(u0)

)
(∂xu0)2 , (5.22)

and ([
D∆, [Df , D∆]

]
Id
)
u0 = −f (4)(u0) (∂xu0)4 − 4f (3)(u0) (∂xu0)2 ∂2

xu0

−2f ′′(u0)
(
∂2
xu0

)2
. (5.23)

All the terms in (5.19) are now computed and this concludes the proof of the theorem.

For δ = 0, the next corollary follows directly.

Corollary 5.3. Assume that u0 belongs to S1(R), and that f belongs to C∞(R). For t small
enough, the following asymptotic holds

T tu0 − Stu0 =
t3

24

(
f ′(u0)f ′′(u0) + f(u0)f (3)(u0)

)
(∂xu0)2

− t
3

12
f (4)(u0) (∂xu0)4 − t3

3
f (3)(u0) (∂xu0)2 ∂2

xu0

− t
3

6
f ′′(u0)

(
∂2
xu0

)2
+O(t4). (5.24)
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5.3.3 Domain of Validity of the Numerical Scheme

From (5.17) and (5.24), we can see that

Stu0 − Stδu0 = δt2f ′′(u0) (∂xu0)2 +O(δt3), (5.25)

and thus
T tu0 − Stδu0 = T tu0 − Stu0︸ ︷︷ ︸

O(t3)

+Stu0 − Stδu0︸ ︷︷ ︸
O(δt2)

. (5.26)

Therefore, we are sure that the real local error of the method, T tu0 − Stu0, will be bounded
by the local error estimate, err = Stu0 − Stδu0, when for a given δ:

T tu0 − Stδu0 ≈ O(t2), (5.27)

is veri�ed into (5.26), i.e.,when the embedded method is really of lower order as assumed in
(5.9).
The latter will be always veri�ed for su�ciently small time steps t, for which

T tu0 − Stu0 ≈ O(t3) < err = Stu0 − Stδu0 ≈ O(δt2), (5.28)

is guaranteed, and thus yields (5.27) into (5.26). Nevertheless, for larger time steps err will
fail to properly predict T tu0 − Stu0, since we will eventually have

T tu0 − Stu0 ≈ O(t3) > err = Stu0 − Stδu0 ≈ O(δt2). (5.29)

When this happens, (5.27) is no longer true and the previous estimates show that we will
rather have

T tu0 − Stδu0 ≈ O(t3), (5.30)

and assumption (5.9) will no longer hold.
In order to overcome this di�culty, we must estimate a critical time step t? > 0 such that for
all t in [0, t?], (5.27) is guaranteed for a given δ. This parameter �xes a domain of validity
of the adaptive scheme in which the Strang local error, T tu0 − Stu0, will be indeed bounded
by the local error estimate, err , and an e�ective error control will be achieved for err smaller
than a given accuracy tolerance η into (5.10). Finally, a suitable choice of δ can be also made
since t? is related to δ following (5.26). A natural strategy to predict this critical t? will rely
on the previous theoretical estimates, and on a more precise knowledge of the structure of the
solutions of the PDEs. The latter is, for instance, illustrated in the next part in the context
of traveling wave solutions similar to the application background established in Chapter 4.

5.4 Application to Traveling Waves

In this part, we will confront the previous theoretical study to a simple reaction-di�usion
problem that admits self-similar traveling wave solutions such as the KPP equation [KPP37].
The main advantages of considering this kind of problem are that analytic solutions exist and
that the featured sti�ness can be tuned using a space-time scaling. Therefore, it provides a
�rst numerical validation of the numerical estimates of the method and an evaluation of its
domain of application. Moreover, a detailed study can be conducted on the impact of the
sti�ness featured by propagating fronts with steep spatial gradients as performed, for instance,
in [DDM11]. In what follows, we recast previous estimates in the context of these reaction
traveling waves, and then deduce an estimate of the time step t? that de�nes the limit of
application of the method for which local error estimates yield e�ective error control. We end
with a numerical validation of the theoretical results in the context of the numerical solution
of the KPP model.
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5.4.1 Numerical Estimates

We consider the propagation of self-similar waves modeled by parabolic PDEs of type:

∂tu−D∂2
xu = kf(u), x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R,

}
(5.31)

with solution u(x, t) = u0(x− ct), where c is the steady speed of the wavefront, and D and k
stand, respectively, for di�usion and reaction coe�cients.
Considering Theorem 5.2, we obtain the following estimate for system (5.31).

Corollary 5.4. Assume that u0 belongs to S1(R), and that f belongs to C∞(R). For t and δ
small enough, the following asymptotic holds

T tu0 − Stδu0 = −δkDt2f ′′(u0) (∂xu0)2

+
k2Dt3

24
(f ′(u0)f ′′(u0) + f(u0)f (3)(u0)) (∂xu0)2

−kD
2t3

12
f (4)(u0) (∂xu0)4 − kD2t3

3
f (3)(u0) (∂xu0)2 ∂2

xu0

−kD
2t3

6
f ′′(u0)

(
∂2
xu0

)2
+O(δt3) +O(t4). (5.32)

Proof. The proof follows directly the demonstration of Theorem 5.2 using (5.19) and consid-
ering that

[Dkf , DD∆] = kD[Df , D∆], (5.33)[
[Dkf , DD∆], DD∆

]
= kD2

[
[Df , D∆], D∆

]
, (5.34)[

[Dkf , DD∆], Dkf

]
= k2D

[
[Df , D∆], Df

]
, (5.35)

where DD∆ and Dkf are the Lie operators associated with D∂2
x and kf .

If we now consider the system (5.31) with k = 1 and D = 1, i.e., the original problem (5.1),
the following corollary establishes t? > 0 for a given δ such that for all t in [0, t?], the condition
(5.27) is guaranteed.

Corollary 5.5. Assume that u0 belongs to S1(R), and that f belongs to C∞(R). For a given δ
small enough, de�ne

M1 =
∥∥∥f ′′(u0) (∂xu0)2

∥∥∥
L2
, (5.36)

M2 =

∥∥∥∥∥ f ′(u0)f ′′(u0) + f(u0)f (3)(u0)

24
(∂xu0)2 − f (4)(u0)

12
(∂xu0)4

−f
(3)(u0)

3
(∂xu0)2 ∂2

xu0 −
f ′′(u0)

6

(
∂2
xu0

)2∥∥∥∥∥
L2

, (5.37)

and de�ne t? by
t?M2 = δM1. (5.38)

For all t such that 0 < t ≤ t?, the following holds

‖T tu0 − Stδu0‖L2 ≈ O(t2). (5.39)
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In general, if the evaluation of the derivatives of u0 and f is feasible, it is then possible to
predict the domain of application of the method [0, t?], for a given δ, according to the previous
result.
In the particular case of traveling wave solutions for (5.31), the di�usion and reaction coef-
�cients, D and k, might be seen as scaling coe�cients in time and space. A dimensionless
analysis of a traveling wave, as shown in [GS94], can be then conducted considering a dimen-
sionless time τ and a dimensionless space r with

τ = kt, r = (k/D)1/2x. (5.40)

This analysis allows us to �nd a steady velocity of the wavefront:

c = dtx ∝ (Dk)1/2, (5.41)

whereas the sharpness of the wave pro�le is measured by

dxu|max ∝ (k/D)1/2. (5.42)

Therefore, condition Dk = 1 implies constant velocity for all k = 1/D, but greater k (or
smaller D) implies higher spatial gradients, and thus sti�er con�gurations.
This study gives complementary information on the solution of (5.31), and in particular when
condition Dk = 1 is satis�ed, it allows us to deduce from Corollary 5.5 the following expression

kt?M2 = δM1, (5.43)

with M1 and M2 given, respectively, by (5.36) and (5.37). Sti�er con�gurations with steeper
spatial gradients and thus larger k, will then restrain the application domain of the method
according to (5.43). Nevertheless, smaller time steps are also required for higher gradients for
a given level of accuracy, and hence we can expect a simultaneous reduction of both critical
and accurate splitting time steps such that t remains into the domain of application [0, t?].

5.4.2 Numerical Illustration: 1D KPP Equation

Let us recall the Kolmogorov-Petrovskii-Piskunov model. In their original paper [KPP37],
these authors introduced a model describing the propagation of a virus, and the �rst rigorous
analysis of a stable traveling wave solution of a nonlinear reaction-di�usion equation [GS94].
The equation is the following:

∂tu−D∂2
xu = k u2(1− u). (5.44)

We consider a 1D discretization with 5001 points on a [−70, 70] region with homogeneous
Neumann boundary conditions, for which we have negligible spatial discretization errors with
respect to the ones coming from the numerical time integration.
The description of the dimensionless model and the structure of the exact solution can be
found in [GS94], where a theoretical analysis shows that in the case of D = 1 and k = 1, the
velocity of the self-similar traveling wave is c = 1/

√
2 in (5.41) and the maximum gradient

value reaches 1/
√

32 in (5.42). The key point of this illustration is that the velocity of the
traveling wave is proportional to (kD)1/2, whereas the maximum gradient is proportional to
(k/D)1/2. Hence, we consider the case kD = 1 for which one may obtain steeper gradients
with the same speed of propagation.
Throughout this section, the exact solution T tu0 will be approximated by a reference or
quasi-exact solution given by the numerical solution of the coupled reaction-di�usion prob-
lem performed by the Radau5 method [HW96] with �ne tolerance, ηRadau5 = 10−10. The
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Strang approximations Stu0 and Stδu0 will be computed with the splitting technique of Chap-
ter 4, with Radau5 for the reactive term, and the ROCK4 method [Abd02] for the di�usion
problem. In order to properly discriminate the previously estimated splitting errors from
those coming from the temporal integration of the substeps, we consider also �ne tolerances,
ηRadau5 = ηROCK4 = 10−10. Figures 5.1 and 5.2 show L2 errors between the T tu0, Stu0, and
Stδu0 solutions for k = 1, k = 10, and k = 100, and several values of δ. Notice that estimates
(5.17), (5.24), and (5.25) for all three errors in (5.26), are veri�ed. In particular, for ∆t larger
than critical ∆t?, the estimated error err = ‖S∆tu0 − S∆t

δ u0‖L2 is no longer predicting the
real local error given by T tu0 − Stu0.
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Fig. 5.1: 1D KPP equation with k = 1. Local L2 errors for several splitting time steps ∆t and δ = 0.05
(top left), 0.005 (top right), and 0.0005 (bottom left). Bottom right: critical splitting time steps ∆t?

obtained when ‖T∆tu0 − S∆tu0‖L2 ≈ ‖S∆tu0 − S∆t
δ u0‖L2 , in the numerical tests.

With these results, we can also compare the real ∆t?real, obtained when ‖T∆tu0 −S∆tu0‖L2 ≈
‖S∆tu0 − S∆t

δ u0‖L2 in the numerical tests, with the theoretically estimated ∆t?est following
(5.43). Table 5.1 summarizes these results where ∆t?est is given in (5.43) by the computation
of M1 and M2 with Maple c© according to (5.36) and (5.37). A really good agreement can be
observed even though the theoretical results underestimate the real values. The loss of order
depicted by the numerical results, is due to the in�uence of spatial gradients in the solution, as
previously analyzed in Chapter 1 [DDLM07]. This explains the error of the predicted critical
∆t?est in (5.43), whenever one gets close to the order loss region.
The numerical results also show that ‖S∆tu0 − S∆t

δ u0‖L2 ∝ δ for a given ∆t according to
(5.25), and consequently ∆t? ∝ δ. Therefore, the working region or domain of application of
the method, ∆t < ∆t?, depends directly on the choice of δ, as seen in Table 5.1. In the context
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Fig. 5.2: 1D KPP equation with k = 10 (top) and k = 100 (bottom). Left: local L2 errors for
several splitting time steps ∆t and δ = 0.05. Right: critical splitting time steps ∆t? obtained when
‖T∆tu0 − S∆tu0‖L2 ≈ ‖S∆tu0 − S∆t

δ u0‖L2 , in the numerical tests.

of traveling waves, these numerical experiments show that ∆t? ∝ k−1 ∝ 1/‖∂xu0‖∞ according
to Table 5.1. Therefore, the application domains are reduced for sti�er con�gurations but the
numerical results also show that smaller time steps are required for the same level of accuracy.
These conclusions are easily extrapolated to more general self-similar propagating waves.

Table 5.1: 1D KPP equation. Comparison between the real ∆t?real, obtained when ‖T∆tu0 −
S∆tu0‖L2 ≈ ‖S∆tu0 −S∆t

δ u0‖L2 in the numerical tests, and the theoretically estimated ∆t?est following
(5.43).

δ 0.05 0.005 0.0005

k = 1
∆t?real 2.783 0.1274 1.17× 10−2

∆t?est 1.107 0.1107 1.11× 10−2

k = 10
∆t?real 0.2803 1.29× 10−2 1.19× 10−3

∆t?est 0.1107 1.11× 10−2 1.11× 10−3

k = 100
∆t?real 4.33× 10−2 2.12× 10−3 1.92× 10−4

∆t?est 1.11× 10−2 1.11× 10−3 1.11× 10−4
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5.5 Numerical Study on Non-Asymptotic Regimes

We have presented so far a time adaptive numerical scheme fully based on theoretical error
estimates. Nevertheless, some general conditions must be taken into consideration in order to
guarantee an e�ective error control. This has been shown in the case of reaction traveling waves
for which theoretical studies give us some insights into the PDE solution. Nevertheless, this
is not always possible and it is usually di�cult to carry out such an analysis for more realistic
models. Based on the theoretical analysis and previous illustrations, a general numerical
procedure that complements the adaptive scheme should be introduced. The main goal of the
following study is to settle the theoretical framework for non-asymptotic regimes, and thus an
appropriate numerical procedure to estimate t?, and a suitable shift time δ.
Let us consider the general system (5.1), we can write based on the theoretical estimates (5.24)
and (5.25):

S∆tu0 − T∆tu0 = C0∆t3, (5.45)

where C0 = C1(u0) +O(∆t4), and

S∆tu0 − S∆t
δ u0 = δCδ∆t

2, (5.46)

where Cδ = C2(u0) + O(δ,∆t3); the dependence of Cδ on δ is only given in the higher order
terms and it is thus neglected. For a given δ, in the same spirit of Corollary 5.5, we search for
a critical ∆t? such that ∥∥S∆tu0 − T∆tu0

∥∥ ≤ ∥∥S∆tu0 − S∆t
δ u0

∥∥ , (5.47)

for all ∆t ≤ ∆t?. According to (5.45) and (5.46), we have then the following estimate:

∆t? ≈ δCδ
C0

. (5.48)

The latter estimate establishes for a given δ an upper bound for the time steps for which the
local error estimate, err = ‖S∆tu0−S∆t

δ u0‖, is properly estimating the real Strang local error,∥∥S∆tu0 − T∆tu0

∥∥, following (5.47). In particular, when ∆t→ ∆t?, we have that

err ≈
∥∥S∆tu0 − T∆tu0

∥∥ , (5.49)

and the local error estimate is predicting more accurately the real error of integration. The
critical time step ∆t? is directly related to δ through (5.48), as already concluded in the previous
numerical results. Therefore, a suitable δ will de�ne a critical ∆t? such that the estimated
splitting time steps ∆t for a given tolerance η, will be su�ciently close to the critical ∆t?, and
thus an excessive overestimate of the Strang local error is avoided. In this way, larger time
steps can be chosen for a given accuracy tolerance η.
In order to compute ∆t? for a given δ, we must �rst estimate C0 in (5.48), since Cδ is computed
out of the local error estimate, err , for known ∆t and δ in (5.46). Estimating C0 amounts to
directly estimate Strang local error through (5.45), and thus the accuracy of the simulation
might be controlled in this way without relying on a local error estimate computed with a
second, embedded method. Nevertheless, as we will see in the following, in order to estimate C0

and the Strang local error, we must de�ne new local estimators and a numerical procedure that
becomes rapidly very expensive if we want to implement only such an error control technique.
Therefore, we should rather rely on a local error estimate given by a less expensive strategy for
which the computation of C0 is only performed from time to time, to guarantee the validity of
the local error estimates.
The next Lemma will be useful to de�ne the numerical procedure to estimate C0.
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Lemma 5.6. Let us consider system (5.1), and assume a local Lipschitz condition for f :

‖f(u)− f(v)‖ ≤ λ ‖u− v‖ . (5.50)

For a �nite ∆t, the following holds∥∥T∆tu0 − T∆tv0

∥∥ ≤ ω ‖u0 − v0‖ , (5.51)

with ω = 1 + κ∆t for small enough ∆t.

Proof. Using Duhamel's formula for (5.1) yields

T tu0 − T tv0 = et∂
2
x(u0 − v0) +

∫ t

0
e(t−s)∂2

x (f(T su0)− f(T sv0)) ds. (5.52)

Taking norms and applying recursively (5.52),

∥∥T tu0 − T tv0

∥∥ ≤ ‖u0 − v0‖+ λ

∫ t

0
‖T su0 − T sv0‖ ds

≤ eλt‖u0 − v0‖, (5.53)

proves (5.51) for t = ∆t �nite.

If we de�ne a local estimator:

e1 = Sa1∆tu0 − Sb1∆t(Sc1∆tu0), (5.54)

such that a1 = b1 + c1, we obtain that

Sb1∆t(Sc1∆tu0)− T a1∆tu0 = Sb1∆t(Sc1∆tu0)− T b1∆t(Sc1∆tu0)

+T b1∆t(Sc1∆tu0)− T b1∆t(T c1∆tu0)

= CSc1∆tu0
b31∆t3 + T b1∆t(Sc1∆tu0)

−T b1∆t(T c1∆tu0), (5.55)

where CSc1∆tu0
= C1(Sc1∆tu0) + O(∆t4). Assuming that CSc1∆tu0

≈ C0, and considering
Lemma 5.6, it follows from the di�erence between (5.45) at a1∆t and (5.55):

‖e1 − (a3
1 − b31)C0∆t3‖ ≤ ω‖T c1∆tu0 − Sc1∆tu0‖

≤ ωC0c
3
1∆t3. (5.56)

De�ning a second local estimator:

e2 = Sa2∆tu0 − Sb2∆t(Sc2∆tu0), (5.57)

such that a2 = b2 + c2, we obtain a second expression similar to (5.56), with e2 and (a2, b2, c2).
We can thus estimate C0 and ω. With this information we can either estimate the critical time
step ∆t? for a given δ, or a suitable δ such that ∆t ≈ ∆t? through (5.48). In particular, we
notice that

• b1 should be close to b2 in order to better approximate ω into (5.51) and (5.56); and
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• c1 and c2 should be su�ciently small to guarantee CSc1∆tu0
≈ C0 and CSc2∆tu0

≈ C0.

From a practical point of view to optimize the number of extra computations, we can consider

• Using estimator e2 to compute estimator e1 by setting a2 = c1; and

• Setting a1 = 1, so we can use Sa1∆tu0 for the time integration of the problem.

Consequently, the extra computations needed to compute local estimators e1 and e2, will be
given by

Sc2∆tu0, Sb2∆t(Sc2∆tu0), Sc1∆tu0, Sb1∆t(Sc1∆tu0), (5.58)

within a time step ∆t. We will then be able to compute ω and C0, by solving two expressions
of type (5.56).

5.5.1 Numerical Evaluation of Critical t?: 1D BZ Equation

We consider the 1D con�guration of the BZ problem (4.29) with the same parameters (4.30)
and (4.31), considered in Chapter 4, for which the spatial discretization of 4001 points is
good enough to prevent important spatial discretization errors. The reference solution and
the Strang approximations are de�ned in the same way as in the previous KPP application
with the same tolerances for the time integration solvers. First of all, we validate for this case
the theoretical order estimates (5.17), (5.24), and (5.25), and verify relation (5.26). Figure
5.3 shows L2 errors between the T tu0, Stu0, and Stδu0 solutions for several δ, and the real
∆t? obtained from the numerical results such that ‖T∆tu0 −S∆tu0‖L2 ≈ ‖S∆tu0 −S∆t

δ u0‖L2 .
The maximum L2 errors consider the maximum value between the normalized local errors for
variables a, b, and c. In these numerical tests, it corresponds usually to variable b.
Let us now de�ne the two sets (a1, b1, c1) and (a2, b2, c2), and compute local estimators e1 and
e2, in order to obtain C0 according to (5.56) with ∆t = ∆t0 = 10−5, i.e., a time step for which
there is no order loss yet, as seen in Figure 5.3. As previously detailed:

1. We consider a1 = 1 and a2 = c1, to avoid some extra computations.

2. Additionally, b2 should be set close to b1 with su�ciently small c1 and c2.

Setting b1 larger than 1/2 would yield a more di�erent b2, since c1 = a2. Alternatively, for b1
smaller than 1/2 we can even set b2 = b1, but in this case c1 will be larger than 1/2. Therefore,
we reach a compromise by setting b1 = 1/2 that yields c1 = a2 = 1/2, so we can choose, for
instance, b2 = 2/5 close to b1, and hence,

a1 = 1, b1 = 1/2, c1 = 1/2, a2 = 1/2, b2 = 2/5, c2 = 1/10. (5.59)

With the local error estimate err = ‖S∆tu0 −S∆t
δ u0‖L2 for the various time steps and several

δ shown in Figure 5.3, Figure 5.4 (left) presents the estimated critical ∆t? calculated with
(5.48) from the estimated C0(∆t0) and err . These critical time steps are in good agreement
with the ones numerically measured in Figure 5.3, and depend on the value of δ. Hence, the
domain of application or working region of the method, ∆t ≤ ∆t?, might be settled depending
on the desired level of accuracy by means of an appropriate choice of δ. For instance, if we
consider the case δ = 0.05 in Figure 5.3, for ∆t = 10−6, the local error estimate is given by
err ≈ 10−10, whereas the real Strang local error is about 10−12. This overestimate of the local
error will certainly imply an underestimate of the size of the time steps, required for a given
tolerance. Therefore, for a given tolerance η a more suitable con�guration should consider a δ
such that ∆t ≈ ∆t?, in order to reduce excessive overestimates of local errors.
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Fig. 5.3: 1D BZ equation. Maximum local L2 errors for several splitting time steps ∆t and δ = 0.05
(top left), 0.005 (top right), and 0.0005 (bottom left). Bottom right: critical splitting time steps ∆t?

obtained when ‖T∆tu0 − S∆tu0‖L2 ≈ ‖S∆tu0 − S∆t
δ u0‖L2 , in the numerical tests.
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Fig. 5.4: 1D BZ equation. Left: working region of the method ∆t ≤ ∆t?, with ∆t? calculated with C0

estimated at ∆t0 = 10−5 and err obtained for several splitting time steps ∆t and δ. Right: predicted
Strang error calculated with C0 estimated at ∆t0 = 10−5, and locally at several splitting time steps ∆t.

In the illustration shown in Figure 5.4 (left), C0 was estimated in the third order region of the
method and therefore, all values are well approximated as long as ∆t remains in this region. In
particular, critical ∆t? will be progressively underestimated for larger δ and consequently, it will
impose smaller time steps for a given tolerance. This is already the case for δ = 0.05, for which
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∆t? is in the transition zone towards the lower order region. Even though the computation of
C0 with a small time step will be less expensive, a much more accurate procedure considers the
current time step, as shown in Figure 5.4 (right). In particular, by estimating locally C0, we
are estimating the real Strang error, and thus ∆t ≤ ∆t? guarantees the prescribed accuracy
even if the asymptotic orders are no longer veri�ed. This allows us to properly extend the
domain of application of the adaptive scheme over the whole range of possible time steps for
a given accuracy. The latter is an extremely important issue for real applications for which
splitting time steps may go far beyond asymptotic behaviors, including the potential order
reduction region associated with the sti�ness of the problem, as already contemplated by the
splitting strategy of Chapter 4.

5.6 General Description of the Numerical Method

The studies conducted in the context of traveling waves and non-asymptotic regimes allow us
to properly complete the adaptive splitting strategy, initially introduced. We describe in this
part the global description of the �nal adaptive splitting scheme.
Let us consider the general problem (1.52), where U ∈ Rm, for which we use St2 in (5.5) as
numerical solution scheme. Depending on the problem, the adaptive method will be applied
considering the time evolution of l ≤ m variables: Ũ ∈ Rl. Let us denote Θl the set of
indices of these variables. In order to consider only l < m variables, the former ones must be
decoupled from the remaining m− l variables in the reactive term F (Ũ) in (1.52). To simplify
the presentation, we will only consider the set δ ∈ (0, δmax), with δmax < 1/2.
The general scheme can be summarized by

1. We set the accuracy tolerance η, an initial time step ∆t0, and an initial shift δ0.

2. We perform the time integration of (1.52) with the Strang scheme St2, and the embedded
shifted one St2,δ given by (5.7).

3. We compute the local error estimate err and the new time step ∆tnew according to (5.11).

4. If err is smaller than η, the current time step solution is accepted, and the simulation
continues with the new ∆tnew during next iteration.

5. Otherwise, the current solution is rejected and the time integration is recomputed with
the new ∆tnew.

In particular, it is better to choose rather small ∆t0 to avoid initial rejections. In order
to guarantee an e�ective error control of the previous scheme, we de�ne the working region
∆t ≤ ∆t? by estimating the corresponding ∆t? for the current δ. This is done for the �rst
time step ∆t0 and then periodically, after Nδ accepted time steps depending on the problem,
based on the numerical procedure previously detailed. The computation of the critical ∆t? is
also performed with Ũ , and a rather large initial δ0 is suitable to initially guarantee ∆t ≤ ∆t?.
A suitable working region is thus de�ned by

∆t ∈ [β∆t?, γ∆t?], (5.60)

with 0 < β < γ ≤ 1, for which splitting time steps are close to ∆t?. A new shift δ is computed
if

1. ∆t is much lower than ∆t? (∆t < β∆t?) in order to avoid unnecessary small time steps;
or
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2. ∆t is very close or possibly larger than ∆t? (∆t > γ∆t?) with γ close to 1, in order to
increase the upper bound of the application domain.

The latter criteria guarantee that δ is dynamically computed and properly adapted to the
dynamics of the phenomenon.

5.6.1 Algorithm Scheme

The numerical strategy is implemented as follows, where U ∈ Rm×Nx stands for the spatial
discretization of U over Nx points: U := (u(i,k)) such that i ∈ [1,m] and k ∈ [1, Nx]:

• Input parameters. De�ne accuracy tolerance η, time domain of study [t0, T ], initial
time step ∆t0, initial shift δ0, and period of computation of ∆t?: Nδ.

• Initialization. Set iteration counter ite = 0 and t = t0, U = U0, ∆t = ∆t0, δ = δ0.
We de�ne a �ag estimate initialized as .false.. Throughout the whole computation,
we need to save U, an array of size m×Nx.

• Time evolution. If t < T :

1. Only if
ite

Nδ
=

⌊
ite

Nδ

⌋
or estimate is .true.:

Computation of the critical ∆t? I: For the sets (a1, b1, c1) and (a2, b2, c2) with
a1 = 1 and a2 = c1, we compute successively:

� Ũ1 = Sc2∆tŨ0, where Ũ0 is built out of U, Ũ0 = (u(i,·))i∈Θl ;

� Ũ1 = Sb2∆tŨ1;

� Ũ2 = Sc1∆tŨ0;

� e2 = maxi∈Θl ‖ũ
(i,·)
2 − ũ(i,·)

1 ‖;
� Ũ2 = Sb1∆tŨ2;

� estimate is set to .true..

These operations need to save Ũ1 and Ũ2, two arrays of size l ×Nx.

2. Time integration over ∆t: We compute successively:

� for each k ∈ [1, Nx], u(·,k)
new = Y ∆t/2u(·,k);

� for each k ∈ [1, Nx], ũ(·,k)
1 = Y δ∆t u

(i,k)
new

∣∣∣
i∈Θl

;

� U? = X∆tU?, with U? = (Unew, Ũ1)T ;

� for each k ∈ [1, Nx], u(·,k)
? = Y (1/2−δ)∆tu

(·,k)
? ;

� for each k ∈ [1, Nx], u(·,k)
new = Y δ∆tu

(·,k)
new ;

� err = maxi∈Θl ‖ũ
(i,·)
new − ũ(i,·)

1 ‖.
We need to save Unew, an array of size m×Nx.

3. Only if estimate is .true.:
Computation of the critical ∆t? II: We compute successively:

� e1 = maxi∈Θl ‖ũ
(i,·)
new − ũ(i,·)

2 ‖;
� C0 using (5.56) with e1 and e2;

� estimate ∆t? out of (5.48), and set ∆t? = ζ∆t? with security factor 0 < ζ ≤ 1,
close to 1;

� estimate is set to .false..
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� If ∆t /∈ [β∆t?, γ∆t?] with 0 < β < γ ≤ 1: estimate is set to .true..

4. Only if estimate is .true. and ite > 0:
Computation of δ: According to (5.48) with err , C0, and ∆t? = ∆t:

� δ = min{θδ, δmax}, with θ ≥ 1 as security factor;

� computation of ∆t? with new δ;

� estimate is set to .false..

5. Computation of ∆tnew: According to (5.11) with security factor 0 < υ ≤ 1, close
to 1.

� If ∆t > ∆t?: set err = η + C0
δ with C0

δ > 1, used to potentially reject initial
∆t = ∆t0.

� If ∆tnew > ∆t? and δ 6= δmax: estimate is set to .true..

� If err ≤ η: t = t+ ∆t, ite = ite + 1, and U = Unew.

� ∆t = min{∆tnew,∆t?, T − t}.

In this splitting strategy, reaction is always integrated point by point if the reactive term is
modeled by an ODEs system without spatial coupling. This integration can be performed
completely in parallel as we will see in forthcoming chapters. Similarly, for linear di�usion
problems as system (1.53), a better alternative considers a variable by variable solution:

u
(i,·)
? = X∆tu

(i,·)
? , (5.61)

for each i ∈ [1,m]
⋃

Θl, that reduces the memory requirements and can be also performed in
parallel [DDD+12, DMD+11b]. Depending on the problem, either the computation of critical
∆t? (steps (1), (3), and (4)), or the computation of δ (step (4)) can be potentially removed
if one considers large enough δ0 and su�ciently �ne η. Finally, the whole strategy with all
steps needs to save at worst two arrays of size l ×Nx and other two of size m ×Nx, without
considering the memory requirements of the di�usion and reaction solvers. All these issues
will be thoroughly discussed in Chapter 8.

5.6.2 Numerical Evaluation of the Method: 1D BZ Equation Revisited

In this part, we evaluate the performance of the method in terms of accuracy of the simulation,
and show that an e�ective control of the simulation error is performed following the previous
solution scheme. Coming back to the BZ model, we perform a time integration of (4.29)
with several accuracy tolerances η. First, we consider the adaptive numerical strategy without
taking into account steps (1), (3), and (4), i.e.,without computing either critical ∆t? or δ. We
set ∆t0 = 10−7 and δ0 = 0.05 in all cases, with t ∈ [0, 2]. In this example, a rather small
initial splitting time step is chosen to avoid initial rejections even though the rejection phases
do not usually take many steps, as we will see in forthcoming examples. We have chosen an
intermediate value of δ in order to clearly distinguish the di�erent behaviors of the strategy in
terms of prediction of the local errors, depending on the tolerance.
Figure 5.5 shows the time evolution of accepted splitting time steps ∆t. As already studied
in Chapter 4, the BZ equations model propagating self-similar waves, so splitting time step
stabilizes after the overall phenomenon is solved approximately with the prescribed tolerance
η. Local error estimates err are also displayed, which naturally verify the prescribed accuracy
because we impose time steps for which err is limited by η according to (5.11).
Table 5.2 summarizes global L2 errors between the splitting and reference solutions at the end
of the time domain of study, t = 2. For a su�ciently �ne η and consequently small enough
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time steps, a precise error control is achieved by the local error control strategy, as we could
have expected from previous results in Figure 5.3 for δ = 0.05. Nevertheless, for η = 10−4

we retrieve rather high global errors even if this con�guration considers less time integration
steps and thus less accumulation of local approximation errors. If we take a look at Figure 5.3,
we note that for δ = 0.05 and local errors of about 10−4, the local error estimate err is not
predicting properly the real Strang errors, as previously discussed, since ∆t > ∆t?. Therefore,
a strategy that considers a more precise evaluation of errors must be considered for a larger
range of time steps, whenever the required accuracy casts the method away from its asymptotic
behavior. This is a standard di�culty of any time adaptive technique based on a lower order
embedded method, and to our knowledge, a common problem that has not been studied much,
and that this work tries to better investigate.
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Fig. 5.5: 1D BZ equation. Time evolution of accepted splitting time steps ∆t (left) and local L2 error

estimates err = ‖S∆tu0 − S∆t
δ u0‖L2 (right), for several tolerances η and δ = 0.05.

Table 5.2: 1D BZ equation. L2 errors at �nal time t = 2 for (a, b, c) variables and several accuracy
tolerances η.

η L2 error a L2 error b L2 error c

10−4 7.97× 10−3 1.07× 10−2 4.72× 10−3

10−6 1.71× 10−6 1.83× 10−6 7.98× 10−7

10−8 1.45× 10−8 1.54× 10−8 6.78× 10−9

10−10 1.74× 10−10 1.75× 10−10 1.08× 10−10

Let us now consider the entire strategy with all steps, for several tolerances with ∆t0 = 5×10−7,
and δ0 = 0.05. In the coming illustrations we have considered the following parameters:

• δmax = 0.999;

• a1 = 1, b1 = c1 = a2 = 1/2, b2 = 2/5, and c2 = 1/10 for the intermediate time steps, as
in (5.59);

• ζ = 0.9 as security factor of the critical ∆t? estimate;

• β = 0.1 and γ = 0.95 to de�ne the working region (5.60);
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• θ = 10 as security factor of the δ estimate;

• C0
δ = 10 to potentially reject the initial time step ∆t0; and

• υ = 0.9 as security factor of the ∆tnew estimate.

All local estimators, err , e1, and e2 are computed with normalized L2 norms as in the previous
chapter. Considering the propagating phenomenon, we set Nδ = 10, but we estimate ∆t? only
twice for ite = 0 and ite = Nδ. Figure 5.6 shows the time evolution of the splitting time steps.
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Fig. 5.6: 1D BZ equation. Time evolution of accepted splitting time steps ∆t (left) and local L2

error estimates err = ‖S∆tu0−S∆t
δ u0‖L2 (right), for several tolerances η, considering critical ∆t? and

computation of δ.

Table 5.3: 1D BZ equation. L2 errors at �nal time t = 2 for (a, b, c) variables and several tolerances
η, considering critical ∆t? and computation of δ.

η L2 error a L2 error b L2 error c

10−4 6.85× 10−5 9.04× 10−5 4.06× 10−5

10−6 1.71× 10−6 1.83× 10−6 7.98× 10−7

10−8 4.53× 10−8 4.84× 10−8 2.12× 10−8

10−10 4.48× 10−9 4.77× 10−9 2.15× 10−9

There are di�erent scenarios depending on the required accuracy:

• In all cases for δ0 = 0.05, we initially estimate ∆t? ≈ 1.4× 10−4.

• For η = 10−4, the initial ∆t? implies smaller time steps than what is required for the
prescribed tolerance. Hence, ∆t increases until ∆tnew > ∆t?, and a new δ is estimated:
δ ≈ 0.43. No substantial changes are made when ite = Nδ, since ∆t ∈ [β∆t?, γ∆t?] for
the current η.

• For η = 10−6, we keep initial ∆t? and δ0 since ∆t ∈ [β∆t?, γ∆t?], as seen in Figure 5.3.
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• Finally, for η = 10−8 and η = 10−10, we have that ∆t < β∆t? and thus δ is recomputed,
giving, respectively, δ ≈ 0.016 and 0.0016. In particular, we consider larger splitting time
steps for which Strang local errors are better predicted.

Table 5.3 shows that error control is this time guaranteed for all values of tolerance η, and thus
for a larger range of time steps. Compared with previous results in Table 5.2, we completely
correct the errors in the prediction of local errors, which yields more accurate resolutions for the
largest tolerances; whereas slightly less accurate results are obtained for the smallest tolerances
since larger splitting time steps are considered.

5.7 Numerical Simulations: 2D BZ Equation Revisited

In the past sections of the present chapter, we have always considered su�ciently �ne spatial
discretizations in order to perform an evaluation of the theoretical estimates introduced for
the proposed adaptive time integration scheme. For higher dimensional problems, �ne spa-
tial discretization becomes a critical issue in terms of computational costs and as previously
discussed, a technique of local grid re�nement becomes a good solution to overcome the lat-
ter di�culty and to guarantee the theoretical behavior of the splitting schemes in terms of
spatial representation. The splitting error estimate is dynamically evaluated in practice in a
semi-discretized con�guration and hence retains only the splitting errors. The coupling of this
adaptive technique with the MR/splitting strategy introduced in Chapter 4 becomes natural,
under the same criteria in terms of construction of the solution scheme and accuracy of the nu-
merical simulations. Moreover, the numerical implementation is straightforward. In this part,
we recast the numerical simulations considered in Chapter 4 for the 2D BZ model (4.29), with
the recently introduced adaptive splitting scheme. One of the objectives of this illustration
is to justify and validate the chosen constant splitting time step in the previous simulations,
and thus the proposed numerical strategy for sti� propagating waves. Moreover, the present
study will yield some concluding remarks that will be used in further implementations of the
combined time/space adaptive scheme in the forthcoming chapters.
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Fig. 5.7: 2D BZ spiral waves. Time evolution of splitting time steps (left) and normalized L2 errors at
t∗ = 4 (right) according to (4.24), given by the time adaptive strategy for di�erent accuracy tolerances
η into (5.11) and with constant ∆t = 4/1024. Uniform grid of 2562.

First, we consider the time adaptive scheme on a uniform grid of 2562. Figure 5.7 shows
the adaptive splitting time steps corresponding to di�erent accuracy tolerances η according to
(5.11). In all cases, the splitting time step is adapted from a chosen initial value of ∆t0 = 10−7
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to a roughly constant value that depends on the prescribed accuracy, due to the self-similar
character of the wave like in the 1D case. The global time integration error is indeed controlled
by the local error accuracy tolerance η into (5.11), as shown by the normalized L2 errors at
t∗ = 4, according to (4.24). We see thus that for this kind of propagating phenomenon, a
constant splitting time step computed based on an accuracy criterion as detailed in Chapter 4,
is appropriate to describe the corresponding multi-scale features. Furthermore, a splitting time
step of ∆t = 4/1024 yields practically the same results as the adaptive splitting strategy with
η = 10−3. The overhead of estimating the local errors of the adaptive scheme can be thus saved,
even though this overhead implies no more than 25% of additional CPU time considering the
embedded procedure. In general and for this kind of propagating phenomenon, the adaptive
scheme can be used to initially compute the corresponding constant splitting time step for a
given accuracy and therefore, preliminary computations are no longer necessary.
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Fig. 5.8: 2D BZ spiral waves. Top left: time evolution of splitting time steps with η = 10−3 and �nest
grids of 2562 and 10242, and with ∆t = 4/1024. From top right to bottom left: normalized L2 errors at
t∗ = 4 given by the adaptive splitting technique with η = 10−2 (top right), 10−3 (bottom left), and 10−4

(bottom right) on a uniform grid according to (4.24), and by the MR procedure according to (4.26), for
several threshold values ε and the adaptive splitting scheme. Finest grid: 2562.

Considering a larger computational domain of 10242, Figure 5.8 (top left) shows the adaptive
splitting time steps obtained with an accuracy tolerance of η = 10−3. Once again this is shown
to be almost equivalent to the constant splitting time step ∆t = 4/1024, as in the previous
2562 spatial discretization case, where these splitting errors are measured with respect to the
corresponding coupled solution of the same semi-discretized problem. In this way, the splitting
errors are practically independent of the spatial discretization of the problem for a su�ciently
�ne spatial representation.
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We consider now the time/space adaptive technique by introducing the adaptive splitting
scheme into the MR/splitting strategy. Figure 5.8 (from top right to bottom left) shows the
corresponding time and space approximation errors given by (4.40), where UJ

split represents
now the time adaptive splitting solution for some accuracy tolerance η into (5.11). The �nest
grid of the multiresolution representation corresponds to a 2562 mesh discretization. We see
in the representations of Figure 5.8 that:

• For η = 10−2, we have time steps of about 7×10−2 as seen in Figure 5.7, i.e., approximati-
vely 7 times the bound ∆tmax given by (4.27) in order to properly couple the splitting
integration scheme with the multiresolution representation. This case is an illustrating
counter example of a suitable coupling of the numerical methods, and highlights the
importance of satisfying condition (4.27) for the maximum splitting time step ∆tmax.

• For η ≤ 10−3, we retrieve the same numerical behavior shown in Figure 4.6, which
corresponds to the case η = 10−3 in terms of accuracy.

• The time steps in Figure 5.7 show clearly that the splitting scheme is still working
properly in the loss order region. In particular, for η = 10−4 a threshold value given
by ε ≤ 10−2 guarantees negligible spatial representation errors in front of the time
integration ones; whereas for η = 10−5, ε ≤ 10−4 is necessary.

To conclude, the time integration accuracy tolerance η describes the global accuracy of the
numerical methods as long as η ≤ 10−3, and hence, ∆t < ∆tmax for the chosen re�nement
criterion of k̄ = 1 into (4.27). Then, ε ≤ 10−2 must be veri�ed for η = 10−3 − 10−4, whereas
ε ≤ 10−4 for η = 10−5.

5.8 Concluding Remarks

In the �rst part of this chapter we have introduced an adaptive splitting technique for the
numerical solution of sti� reaction-di�usion problems. To the best of our knowledge, such
a technique was never presented in the literature before and constitutes one of the major
contributions of the present work. The mathematical analysis and description of the new
scheme were also conducted which have allowed us to build the numerical method on a solid
theoretical background. A complementary numerical procedure was also developed to ensure
the validity of the local time integration error estimates err , for any arbitrary splitting time
step ∆t, by appropriately computing the shifting parameter δ in the embedded lower order
Strang scheme, as well as the domain of application of the adaptive method de�ned by the
critical splitting time step ∆t?. In particular, a novel and general numerical procedure was
introduced to estimate the truncated leading term of the local error expansion, which can be
applied to any time integration scheme. The following remarks can be thus made related to
the resulting numerical scheme:

• Since both parameters δ and ∆t? are linked through the expression (5.48), a su�ciently
large value of δ might be su�cient in practical implementations, taking into account that
the overhead of computing the lower order solution remains the same in (5.8).

• In principle, the latter overhead is given by an extra half step integration of the reaction
problem, and one more step for the di�usion. Nevertheless, we will see in Chapter 8 how
this overhead may be reduced in the practical implementation.

• The local error estimates err account only for the splitting errors since both the Strang
and the shifted Strang schemes are applied to the same semi-discretized problem.
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As previously envisioned, such a time adaptive scheme is then used to extend the domain of
application of the numerical strategy introduced in Chapter 4, with exactly the same criteria,
to more complex time dependent phenomena. Furthermore, the adaptive time stepping implies
also a dynamic update of the local re�nement ruled by the dynamics of the numerical solution.
In this time/space adaptive technique, the accuracy of the numerical method is controlled by
the parameters η and ε, for the time integration and the spatial representation errors. In
order to better guarantee a decoupling of time- and space-related numerical errors and thus
an overall accuracy dominated rather by the time integration procedure, a necessary but not
su�cient appropriate choice will be in general given by

ε < η. (5.62)

Notice that the con�guration ε = η might also yield good results taking into account the
conservative re�nement criteria adopted in Chapter 4 for the multiresolution process, and
depending on the particular problem, even ε ≈ 10 · η, as shown in Figure 4.6 for the BZ
problem (4.29). For all cases the accuracy estimates are only valid if the time evolution and
the spatial representation of the solution are correctly coupled, as discussed in Chapter 4 and
illustrated in Figure 4.6 for η = 10−2. Therefore, criterion (5.62) becomes in general su�cient
only if the dynamic splitting time steps satisfy

∆t ≤ ∆tmax. (5.63)

From a practical point of view and in order to avoid preliminary computations to de�ne the
maximum splitting time step ∆tmax given by (4.27), a good level of coupling of the time
and space resolutions is accomplished if for a given time integration accuracy tolerance η,
numerical simulations with di�erent threshold values ε behave qualitatively in a similar way.
Since the main reactive activity is usually concentrated on the moving fronts, a de�cient
spatial representation during the time evolution step introduces severe perturbations in the
numerical solution which are easily identi�ed. Furthermore, a more conservative re�nement
criterion expressed by k̄ > 1 extra cells may be considered if larger splitting time steps are
desired, or to better ensure the decoupling of space and time numerical errors. Alternatively,
more sophisticated re�nement criteria (like in [CKMP03]) may be required for highly complex
con�gurations.
For the numerical simulation of phenomena for which a constant splitting time step ∆t is suf-
�cient, a hybrid strategy that considers a time step ∆t computed within a prescribed accuracy
with the current adaptive technique, might be the most convenient solution. The overhead of
computing the local error estimates err throughout the entire time domain of simulation is thus
avoided. Finally, considering supplementary operators like a convective term in the original
reaction-di�usion system (5.1) does not change in general the order estimates conducted in this
chapter for both the standard and shifted Strang schemes. The same follows for more general
di�usion terms like the one in (1.52), for which the theoretical computations just become more
technical.



Chapter 6

Parareal Operator Splitting for

Multi-Scale Reaction Waves

In this chapter, we analyze a time parallelization technique for the solution of PDEs modeling
sti� propagating waves, in order to improve the numerical performance of the simulations.
As described in Chapter 1, and numerically analyzed in the previous chapters 4 and 5, the
mathematical description of such problems imposes special restrictions on the numerical meth-
ods required to perform the numerical integration in time. In this context, the time operator
splitting technique introduced in Chapter 4 has been coupled with the well known parareal
algorithm initially proposed by Lions et al. in [LMT01]. A numerical analysis of the combined
strategy is then mandatory to describe the mathematical behavior of such a method, and better
explore its capabilities in the context of sti� problems. These issues motivated the following
study which was recently published in ESAIM: Mathematical Modelling and Numerical Anal-
ysis journal [DDM11]. For the sake of completeness of the present work we include the entire
article in what follows as a self-contained part.
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6.1 Introduction

Numerical simulations of multi-scale phenomena are commonly requested for modeling pur-
poses in many applications such as combustion [Gio99, DB00, NWK98, KNW99, NK05], chem-
ical vapor deposition [Gok88], or air pollution modeling [MGS82, Sun96, KC97]. The impor-
tant development of the numerical strategies in these and in other �elds such as nonlinear
chemical dynamics for excitable media [Bar91, DMB97, DMD+12] or biomedical engineering
[GDD+08b, DD08, DDD+12] is mainly due to the constant increase of the computer power
(see for instance [Ech09] for a recent review of methods applied to turbulent combustion). In
general, all these models raise several di�culties created by the large number of unknowns
and the wide range of temporal scales due to large and detailed chemical kinetic mechanisms,
as well as by steep spatial gradients or large higher order derivatives associated with very
localized fronts of high chemical activity. Therefore, there are several numerical strategies in
order to treat the induced sti�ness for time dependent problems. In this particular study, we
focus on reaction-di�usion systems which is the subsystem that normally involves the strongest
di�culties in terms of sti�ness in multi-scale phenomena, even if convection plays also a crucial
role.
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The most natural idea to overcome these di�culties is to use dedicated numerical methods
and to solve the complete models where di�usion, reaction and eventually convection are
coupled together. In this context, we aim at solving strongly coupled nonlinear systems with
either a fully implicit method, using eventually modi�ed Newton methods for ill-conditioned
problems [Deu74, Smo83, Deu04], or yet semi-implicit or linearized implicit methods instead
(see [D'A94] and references therein). However, the strong stability restrictions for the latter
when dealing with very fast temporal scales [D'A94, DL95b] as well as the computational cost
and the huge memory requirements of these methods, even if adaptive grids are used, make
these strategies di�cult to handle. Nevertheless, these kind of coupled resolutions are useful
when we need reference solutions for validation and study purposes but necessarily restricted
to low dimensional con�gurations with not too many unknowns.
An alternative numerical strategy �rst introduced in [ACM98] is then to combine implicit
and explicit schemes to discretize nonlinear evolution problems in time. Further studies into
[SSV97, VS04] settled the appropriate numerical background for these methods called IMEX,
which in particular might be conceived to solve sti� nonlinear problems as presented in [VSH04,
SSV06]. These methods are usually very e�cient (see for instance [NWK98] for a combustion
application). Nevertheless, on the one hand, the feasibility of utilizing dedicated implicit solvers
over a discretized domain become soon critical when treating large computational domains.
And on the other hand, the time steps globally imposed over partial regions or the entire
domain are strongly limited by either the stability restrictions of the explicit solver or by the
fastest scales treated by the implicit scheme.
Nevertheless, in many multi-scale problems as for example the propagation of reaction waves,
the fastest time scales do not play a leading role in the global physical phenomenon and thus,
we might consider the possibility of using reduced models where these chemical scales have
been previously relaxed [HW96]. These simpli�ed models provide reasonable predictions when
the fastest characteristic chemical times are small in comparison with the �ow time, and the
associated computational costs are signi�cantly reduced in comparison with comprehensive
chemical models. In particular, the derivation of the reduced model is usually accessible
when the system is well-partitioned and the fast scales have been isolated [Spo99, SD00].
In this case, a rigorous singular perturbation analysis can be conducted even in the context
of nonlinear source terms for numerical analysis purposes [Mas02, DM04]. Nevertheless, the
identi�cation of these fast scales in terms of reaction rates or species, which can change with
time, relies on sensitivity analysis which is most of the time di�cult to conduct and justify in
realistic con�gurations. Hence, it reveals the need for other strategies which do not rely on the
knowledge of the fast scales.
It is then natural to envision a compromise, since the fully coupled problem is most of the time
out of reach and the reduced model does not always imply straightforward implementations. In
this context, splitting methods [Mar90] also called fractional step methods [Tém69a, Tém69b,
Yan71] have been well known for a long time and there exists a large literature showing the
e�ciency of such methods for evolution problems. Yet from a theoretical point of view, they
represent a suitable framework to design even higher order methods for the integration in time
of such problems [Des01, Sch02]. In practice, it is �rstly necessary to decouple numerically the
reaction part from the rest of the physical phenomena like convection, di�usion or both, for
which there also exist dedicated numerical methods. Hence, operator splitting techniques allow
a completely independent optimization of the resolution of each subsystem which normally
yields lower requirements of computational resources.
In the context of multi-scales waves, the dedicated methods chosen for each subsystem are
then responsible for dealing with the fast scales associated to each one of them, in a separate
manner; then, the composition of the global solution based on the splitting scheme should
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guarantee the good description of the global physical coupling; therefore, in order to verify
this fundamental constraint, a rigorous numerical analysis is required. In fact, several works
[D'A94, HW96, VS98, Spo00] proved that the classical numerical analysis of splitting schemes
fails in presence of scales much faster than the splitting time step and motivated more rigorous
studies for these sti� con�gurations [DM04]. In this way, complementary works described also
the numerical behavior of these methods when spatial multi-scale phenomena arise mainly as
a consequence of large spatial gradients [DDLM07], so that the in�uence of both spatial and
time related sti�ness has been and continues to be analyzed in detail for not arbitrarily small
splitting time steps [DDL+12].
Thus, with the choice of the resolution technique properly justi�ed, we investigate the coupling
of operator splitting with a time parallelization scheme, pursuing even better performances in
time consumption for multi-scale simulations on parallel architectures. In this context, many
algorithms already proposed the solution of evolution problems in a time-parallel fashion (see
[GV07] and the references therein for a historical review). However, the parareal algorithm,
�rst presented in [LMT01], has received a lot of attention over the past few years in di�erent
applications in di�erent domains [BBM+02, FC03, FHM03, GEF03, BM03], as a promising
e�cient numerical method to solve evolution problems in parallel. The general principle of
the parareal algorithm combines a coarse and fast solver which is run sequentially, and a more
accurate and expensive �ne solver that should be run in parallel. In this way, we take advantage
of parallel computations through an iterative process which yields convergence from a coarse
initial approximation to the detailed dynamics of the system given by the accurate resolution
of the �ne solver. Several variants of the method have been also proposed (for example in
[FC03, GLFE06]).
Up to these days, many theoretical analysis of the parareal algorithm have been conducted
(see for instance [LMT01, MT02, Bal03, MT03, SR03, GV07, GH08]), which led to various
estimates of convergence rates and descriptions of the stability behavior of the method in ap-
plications involving general linear and nonlinear systems of ODEs or PDEs. Nevertheless, to
our knowledge, none of the studies previously conducted either in a linear or in a nonlinear
framework, took explicitly into account sti� phenomena. As a result, there is the need of com-
plementary studies to utterly predict the performance of the algorithm in such con�gurations
in order to propose more e�cient time parallelization schemes in multi-scale contexts.
Keeping this in mind, the present work conducts a detailed numerical analysis of parareal op-
erator splitting techniques in the context of multi-scale reaction waves. In this way, new rep-
resentation of the splitting local errors are deduced and a convergence analysis of the parareal
operator splitting algorithm is performed for general linear reaction-di�usion systems. These
results are then extended to the case of reaction waves through the associated linearized system
of the original reaction-di�usion system modeling the multi-scale phenomenon, where sti�ness
is introduced by the presence of large spatial gradients. The negative in�uence of sti�ness on
the numerical behavior of parareal operator splitting schemes is then mathematically proven.
With this theoretical characterization achieved, we are able to build a new and simple numeri-
cal strategy for multi-scale phenomena, with the parareal algorithm and the operator splitting
as �ne solver, each one of them based on their corresponding theoretical background. The time
operator splitting strategy adopted then considers on the one hand, a high order method like
Radau5 [HW96], based on implicit Runge-Kutta schemes for sti� ODEs, that solves the reac-
tion term using adaptive time integration tools and highly optimized linear systems solvers.
And on the other hand, another high order method like ROCK4 [Abd02], based on explicit sta-
bilized Runge-Kutta schemes, that solves the di�usion problem. The potential of this splitting
con�guration has already been tested and evaluated in previous studies [DDD+12, DMD+12].
The numerical simulations then performed show the in�uence of a sti� con�guration on the
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parareal performance, validating the theoretical estimates previously conducted. Finally, the
discussions inspired by these numerical results gives some insights into alternative numerical
strategies for this kind of di�cult problems.
The paper is organized as follows: in a �rst part, we formally present the parareal algorithm
as well as the splitting techniques which will be used in the proposed numerical strategy. The
complete numerical analysis of the parareal operator splitting is conducted in the second part: a
brief review on the theoretical results found in the literature is �rst presented, then the di�erent
local error estimates are carefully conducted to �nish with the theoretical convergence analysis
in a general linear reaction-di�usion con�guration and in the case of multi-scale reaction waves
through a linearized model of such con�gurations. In the last part, we �rst conduct a series
of detailed and careful numerical simulations in a one-dimensional case in order to validate
the previous theoretical results. Finally, the potential of the method is illustrated in the
framework of a two-dimensional simulation which allows a detailed discussion of the capability
and performance of the method. All the models belong to the �eld of nonlinear chemical
dynamics.

6.2 Parareal Algorithm

6.2.1 Temporal Parallelization

We �rst consider a general method in order to compute the numerical solution of a system of
ordinary di�erential equations (ODEs) of the form:

u′(t) = f (u(t)) , t ∈ [0, T ], u(0) = u0, (6.1)

where for some integer M , f : RM → RM and u : R → RM . In order to achieve a time
parallelization algorithm for (6.1), we decompose the time domain I = [0, T ] intoN subdomains
In = [Tn, Tn+1[, n = 0, . . . , N−1, with 0 = T0 < . . . < TN−1 < TN = T , and ∆Tn := Tn+1−Tn,
so, that we consider for each time subdomain the evolution problem:

u′n(t) = f (un(t)) , t ∈ In, un(Tn) = Un, (6.2)

where the initial values Un are a necessary input in order to solve each of these evolution
problems. The solutions un on the subdomains In in (6.2) should be consistent with u over I
obtained out of (6.1), this means that the initial values Un are intended to satisfy the system:

U0 = u0, Un = φ∆Tn−1(Un−1), n = 1, . . . , N, (6.3)

where the �ow φ∆Tn(U) denotes the solution of (6.1) with initial condition U after time ∆Tn.
Thus, we consider N independent evolution problems given by (6.2) for each time subdomain
In, so that each of them may be computed by a di�erent processor in a parallel environment.
Nevertheless, this can only be achieved if the initial conditions Un of (6.2) are previously known
or at least approximated, in order to have a proper Cauchy problem on each time subdomain.
Therefore, any time parallelization algorithm will aim at approximating the initial Un by the
set Ũn and then, at solving (6.2), even though condition (6.3) with Ũn is not initially veri�ed.
In this context, the parareal algorithm gives us a way to perform this kind of parallelization
in an e�cient way.
This technique extends naturally to the numerical resolution of partial di�erential equations
(PDEs), as it was initially proposed in [LMT01]. In fact, the multi-scale reaction waves that
we consider in this study are modeled by means of parabolic PDEs.
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6.2.2 Principle of the Parareal Algorithm

Considering system (6.2), the parareal algorithm is based on two propagation operators:
G∆Tn(U) and F∆Tn(U), that provide respectively a coarse and an accurate approximation
of φ∆Tn(U). In this way, the algorithm starts with an initial approximation Ũ0

n given for
example by the sequential computation:

Ũ0
0 = u0, Ũ0

n = G∆Tn−1(Ũ0
n−1), n = 1, . . . , N, (6.4)

and then performs for i = 1, . . . , iconv the correction iterations:

Ũi
0 = u0,

Ũi
n = F∆Tn−1(Ũi−1

n−1) + G∆Tn−1(Ũi
n−1)− G∆Tn−1(Ũi−1

n−1), n = 1, . . . , N.

}
(6.5)

Notice that i iterations imply i time subdomains integrated by F , since Ũi
n = F∆Tn−1(Ũi−1

n−1)

for n ≤ i and Ũi
0 = u0 with u0 taken from the original problem (6.1). Then, for i = N , where

N is the number of subdomains, the parareal algorithm (6.5) will generate a set of values Ũn

that satisfy Ũn = F∆Tn−1(Ũn−1). That is, the approximations at the time-points Tn will have
achieved the accuracy of the propagator F . Nevertheless, the main idea of the algorithm is
to choose propagators F and G in order to achieve this level of accuracy without performing
the N accurate resolutions. Therefore, after convergence of the algorithm (6.5) for i = iconv,
we shall obtain a solution Ũiconv

n with a �ne accuracy respect to Un in (6.3), for which only
iconv � N subdomains would have been integrated by propagator F . Thus from an initial
coarse approximation (6.4), we might achieve an accurate resolution of problem (6.1) with
important savings of computational time.

6.2.3 Interpretation of the Parareal Algorithm

The parareal algorithm can most naturally be interpreted as a classical deferred correction
method in which the initial values Un of (6.2) are corrected through a feedback mechanism
based on both propagators F and G, as it was presented in [BBM+02]. Therefore, for a initial
condition given by (6.4), we de�ne the correction

E∆Tn−1(Ũn−1) = F∆Tn−1(Ũn−1)− G∆Tn−1(Ũn−1) (6.6)

in order to obtain the new initial conditions for n = 1, . . . , N − 1 and the new value at n = N :

Ũ1
n = G∆Tn−1(Ũ1

n−1) + E∆Tn−1(Ũ0
n−1). (6.7)

Thus, a recursive application leads us to

Ũi
0 = u0, Ũi

n = G∆Tn−1(Ũi
n−1) + E∆Tn−1(Ũi−1

n−1), n = 1, . . . , N, (6.8)

which gives us the same scheme as (6.5).
Nevertheless, based on [CP93], the time decomposition method (6.2) can be also interpreted
as a multiple shooting method for (6.1). In fact, considering U = (U0, . . . ,UN )T as the
unknowns, the system (6.3) can be written as

F(U) =


U0 − u0

U1 − φ∆T0(U0)
...

UN − φ∆TN−1(UN−1)

 = 0, (6.9)
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where F : RM ·N+1 → RM ·N+1. In this way, we search the initial values Un of (6.2) that
correspond to the solution of original problem (6.1) through condition (6.3).
Solving this system with Newton's method, leads after a short calculation to

Ũi
0 = u0,

Ũi
n = φ∆Tn−1(Ũi−1

n−1) +
∂φ∆Tn−1(Ũi−1

n−1)

∂Ũi−1
n−1

(
Ũi
n−1 − Ũi−1

n−1

)
, n = 1, . . . , N.

 (6.10)

With this formulation, there are many ways to apply the multiple shooting algorithm to solve
(6.10) numerically, as it is detailed in [GV07], and when the approximations are close enough
to the solution, the convergence is guaranteed as shown in [CP93]. However, if we approximate
the time subdomain integration in (6.10) by

φ∆Tn−1(Ũi−1
n−1) ≈ F∆Tn−1(Ũi−1

n−1), (6.11)

and the Jacobian term by

∂φ∆Tn−1(Ũi−1
n−1)

∂Ũi−1
n−1

(
Ũi
n−1 − Ũi−1

n−1

)
≈ G∆Tn−1(Ũi

n−1)− G∆Tn−1(Ũi−1
n−1), (6.12)

then the multiple shooting method (6.10) and the parareal algorithm (6.5) coincide (see
[GV07]).
The parareal algorithm can also be seen as a time-multigrid method as it was entirely proven
in [GV07]. However, because of its clarity and simplicity, in this paper we will adopt the
multiple shooting point of view, i.e., a Newton's method approximation, even if the numerical
analysis we will perform is practically independent of this choice. In fact, from a practical
point of view, all the interpretations are equivalent and the algorithm is mainly implemented
as a deferred correction method.

6.2.4 Considerations on the Propagation Operators

The parareal algorithm relies on two solvers, the �ne and coarse propagators, F and G. On
the one hand, the �ne solver produces an accurate approximation of the solution and its
choice depends on the desired level of accuracy and on the nature of the problem (multi-scale
phenomena, sti�ness, large systems). In our particular case of multi-scale reaction waves, the
time operator splitting reveals itself as a suitable resolution technique as it was previously
discussed in the introduction. Its parallelization is then achieved via the parareal scheme. On
the other hand, the coarse solver gives a coarser approximation that needs to be computed in a
sequential way, therefore it should be as fast as possible in order to globally guarantee important
savings in time consumption. The performance of the parareal algorithm then relies directly
on the choice of this solver and an optimal balance must be found between its computational
speed and its level of accuracy, i.e., coarser approximations are faster but increase the number
of iterations needed.
Let us now set the general mathematical framework in this work; in this context, we recall
that a class of multi-scale phenomena can be modeled by general reaction-di�usion systems of
type:

∂tu− ∂x (D(u)∂xu) = f (u) , x ∈ Rd, t > 0,

u(0,x) = u0(x), x ∈ Rd, t = 0,

}
(6.13)

where f : RM → RM and u : R× Rd → RM for some integer d and with the di�usion matrix
D(u), which is a tensor of order d× d×M .



Sect. 6.2 - Parareal Algorithm 137

However, in this work we will only consider the simpli�ed case of linear diagonal di�usion, in
which case the elements of the di�usion matrix are written as Di1i2i3(u) = Di3δi1i2 , so that the
di�usion operator reduces to the heat operator with some scalar di�usion coe�cient Di3 for
component ui3 of u. Notice that as it was established in previous studies [DM04, DDLM07,
DDL+12], on the one hand, a rigorous numerical analysis of this simpler class of reaction-
di�usion systems is very useful in order to theoretically characterize the impact of sti�ness on
the numerical behavior of methods conceived to simulate these phenomena. In particular, the
original multi-scale character is not withdrawn. And on the other hand, it shall give us some
insights into more complex cases as well as complete convection-reaction-di�usion systems.
Finally, in order to simplify the presentation, we consider a one-dimensional model, taking
into account that extension into higher dimensions of x or u is straightforward. From these
considerations, we infer the following initial value problem:

∂tu−D∂2
xu = kf(u), x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R, t = 0,

}
(6.14)

where f and u0 are smooth functions, with real coe�cients D and k. Furthermore, we denote
by T t(u0) the semi�ow associated to (6.14). In what follows, we shall present both the �ne and
the coarse solvers taken into consideration to solve problem (6.14) by means of the parareal
algorithm (6.5).

Fine Solver: Time Operator Splitting

Let us �rst introduce the classical decoupling of the di�usion and reaction parts of (6.14).
More precisely, we denote Xt(u0) the solution of the di�usion equation:

∂tuD −D∂2
xuD = 0, x ∈ R, t > 0, (6.15)

with initial data uD(0, ·) = u0(·). We also denote by Y t(u0) the solution of the reaction part
where the spatial coordinate x can be considered as a parameter:

∂tuR = kf(uR), x ∈ R, t > 0, (6.16)

with initial data uR(0, ·) = u0(·).
The two Lie approximation formulae of (6.14) are de�ned by

Lt1(u0) = XtY t(u0), Lt2(u0) = Y tXt(u0), (6.17)

and the two Strang approximation formulae of (6.14) [Str63, Str68] are de�ned by

St1(u0) = Xt/2Y tXt/2(u0), St2(u0) = Y t/2XtY t/2(u0). (6.18)

It is well known that Lie formulae (6.17) (resp. Strang formulae (6.18)) are an approximation
of order 1 (resp. 2) of the exact solution of (6.14). Nevertheless, these classical orders are no
longer valid since we consider very sti� reactive or di�usive terms (see [DM04]). In fact, if
the fastest time scales play a leading role in the global physics of the phenomenon, then the
composed solution obtained by means of a splitting technique will surely fail to capture the
�nal dynamics of the phenomenon, unless we consider splitting time steps of the same order
of such scales.
In the opposite case where these fast scales are not directly related to the physical development
of the phenomenon, larger splitting time steps might be considered, but order reductions may
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then appear due to short-life transients associated to the fast variables. In particular, this is
the case for propagating reaction waves. In this context, it has been proven in [DM04] that
better performances are expected while ending the splitting scheme by the time integration of
the reaction part (6.16) or in a more general case, the part involving the fastest time scales
of the phenomenon (see the numerical application in [DDL+12]). In particular, in the case of
linear diagonal di�usion problems, no order loss is expected for the Lt2 and St2 schemes when
fast scales are present in the reactive term. Even more, as it was presented and analyzed in
[DDLM07], the presence of high spatial gradients may also degrade the performance of these
methods leading to order reductions coming from space multi-scale phenomena.
Keeping in mind these theoretical studies and considering the various numerical alternatives
previously discussed, the time operator splitting remains as the most appropriate resolution
scheme for general multi-scale problems and so far, the optimal choice for the �ne solver.
A complementary consideration is that suitable time integration methods in terms of order
and stability must be chosen for each subsystem (6.15) and (6.16), in order to guarantee the
accuracy of the estimates established by the corresponding numerical analysis. In fact, in all
splitting order estimates, the solutions associated to these systems are supposed to be known
exactly or with a su�cient accuracy (see for example [DS02a, HV03, DM04, HLW06]).

Coarse Approximation

When considering sti� problems of type (6.13) (or (6.14)), the choice of the coarse solver is not
an easy task because we must look for fast and stable methods at the same time, considering
that these computations will be performed in a sequential environment. In fact, depending on
the sti�ness of the system, we are almost constrained to choose more expensive but more stable
methods (see [HW96] for more details on integration of sti� ODEs), otherwise, we would not
be able to obtain coarser but still valid approximations.
Taking into account these requirements, several strategies might be considered. For instance,
we can solve the coupled reaction-di�usion system (6.14) with a dedicated, stable but less
accurate solver; which can be achieved by using larger integration time steps or a lower order
method respect to the �ne solver. Nevertheless, as previously discussed, the important com-
putational requirements of these dedicated methods must be taken into account and thus, this
alternative might not be always feasible.
Another technique could be the resolution of (6.14), discretized on a coarser spatial grid. Then,
the crucial aspect would be the de�nition of proper inter-grid operators; that is, the operators
allowing data exchange between the coarse and the �ne grids. On the other hand, we might
also consider the resolution of a reduced model of (6.14) instead, where the fastest scales have
been relaxed; and thus, take this solution as the coarse approximation. Nevertheless, the
previous knowledge of the fast scales is mandatory for straightforward implementations, and
at the same time, we should also conceive an e�cient reconstruction procedure of the fast
variables not estimated by the coarse solver.
However, in the context of multi-scale reaction waves, a less accurate splitting operator might
be a natural choice, conceived with larger splitting time steps or coarser time integrators of
the split subsystems in order to accelerate computations. In particular, in this work we will
be mainly focused on the detailed analysis of such splitting solvers as coarse propagators, con-
sidering their reputed pertinence on multi-scale problems. In this way, the numerical analysis
presented in the next section describes the behavior of the splitting techniques as well as the
parareal scheme itself, and shall lead us to further numerical studies and potential improve-
ments of the numerical strategy.
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6.3 Numerical Analysis of the Parareal Operator Splitting

In this section, we will �rst present important results from the literature that explain the
behavior of the parareal algorithm and detail its convergence when applied to, �rst, linear and
then, nonlinear problems. Those particularly relevant for our study will be described in details.
Complementary information can be found in the indicated references. Then, a comprehensive
numerical analysis of the parareal Lie (Strang) operator splitting will be presented in a linear
framework that mimics the eventual in�uence of high spatial gradients for reaction waves.
Throughout all this section, we will maintain the notation established in the previous one.

6.3.1 Review of the Literature and State of the Art

The Linear Case

We �rst consider a scalar linear problem of the form:

u′(t) = au, t ∈ [0, T ], u(0) = u0 with a ∈ C, (6.19)

the following proposition is taken from the �rst publication on the parareal algorithm [LMT01].

Proposition 6.1. Let ∆T = T/N , Tn = n∆T for n = 0, . . . , N . Consider (6.19) with a ∈ R.
Let F∆T (Un) be the exact solution at Tn+1 of (6.19) with u(Tn) = Un, and let G∆T (Un) be the
corresponding backward Euler approximation with time step ∆T . Then,

max
1≤n≤N

|u(Tn)− Ũ in| ≤ Pi ∆T i+1. (6.20)

Thus, the algorithm converges and behaves in ∆T like a method of order i+ 1. Nevertheless,
we must take into account that this result is only valid for a �xed iteration step i, since the
constant Pi in (6.20) grows with i in the estimate of the proof in [LMT01], i.e., the convergence
is veri�ed only for ∆T su�ciently small. Result (6.20) has been extended to more general and,
in particular, higher order time-integration schemes. In fact, it was shown in [Bal03, BM03]
that the parareal is a method of order p(i+ 1) when a method of order p is used as the coarse
propagator.
However, a very important work presented in [GV07] gives us complementary results that
describe the behavior of the algorithm for any i and a �xed ∆T . As a matter of fact, the
following corollary was stated and proven.

Corollary 6.2. Let T < ∞,∆T = T/N , and n = 0, . . . , N . Consider (6.19) with a ∈ C.
Let F∆T (Un) be the exact solution at Tn+1 of (6.19) with u(Tn) = Un, and let G∆T (Un) =
R(a∆T )Un be a one-step method in its region of absolute stability. Then, we have the bound

max
1≤n≤N

|u(Tn)− Ũ in| ≤
|ea∆T −R(a∆T )|i

i!

i∏
j=1

(N − j) max
1≤n≤N

|u(Tn)− Ũ0
n|. (6.21)

If the local truncation error of G is bounded by C∆T p+1, with p > 0 and C a constant, then
we have, for ∆T small enough,

max
1≤n≤N

|u(Tn)− Ũ in| ≤
(CT )i

i!
∆T pi max

1≤n≤N
|u(Tn)− Ũ0

n|. (6.22)

These results give us more precise information regarding constant Pi in (6.20). In fact, for �nite
T , the division by i! in (6.21) and (6.22) shows that the algorithm converges superlinearly.
Furthermore, result (6.22) presents the parareal as a method of order pi.
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A linear convergence result was also demonstrated in [GV07] for an in�nitely long time inter-
val, i.e.,T = ∞, for problem (6.19). Moreover, similar results were obtained in [GV07] while
investigating the performance of the parareal algorithm on PDEs, more precisely, a di�usion
equation and an advection one. In fact, a Fourier transform in space converts these equations
into linear systems of ODEs for each Fourier mode, and the convergence is demonstrated based
on the previous results with some complementary hypothesis.

The Nonlinear Case

Taking into account the nonlinear system of ODEs (6.1), the superlinear convergence of the
parareal algorithm has also been demonstrated in [GH08]. In fact, considering F as the exact
solution of (6.1), it has been assumed that the di�erence between the approximate solution
given by G and the exact solution can be expanded for ∆T small, in the following way:

F∆T (u)− G∆T (u) = cp+1(u)∆T p+1 + cp+2(u)∆T p+2 + . . . , (6.23)

which is possible if the right hand side function f in (6.1) is smooth enough. Notice that this
condition is no other than the series expansion of the local error of a numerical method G of
order p (where F is the exact solution of (6.1)). Then, as a consequence of (6.23), we might
assume that we have the following bound:

‖F∆T (u)− G∆T (u)−
(
F∆T (v)− G∆T (v)

)
‖ ≤ C1∆T p+1‖u− v‖, (6.24)

as it has been supposed in [GH08].
Moreover, if G satis�es the Lipschitz condition:

‖G∆T (u)− G∆T (v)‖ ≤ (1 + C2∆T )‖u− v‖, (6.25)

the following theorem was stated and proven in [GH08].

Theorem 6.3. Let F∆T (Un−1) be the exact solution on time subdomain In−1, and let G∆T (Un−1)
be an approximate solution with local truncation error bounded by C3∆T p+1, and satisfying
(6.23), where the cj, j = p + 1, p + 2, . . . are continuously di�erentiable, and assume that G
satis�es the Lipschitz condition (6.25). Then, at iteration i of the parareal algorithm (6.5), we
have the bound

‖u(Tn)− Ũi
n‖ ≤

C3

C1

(C1∆T p+1)i+1

(i+ 1)!
(1 + C2∆T )n−i−1

i∏
j=0

(n− j),

≤ C3

C1

(C1Tn)i+1

(i+ 1)!
eC2(Tn−Ti+1)∆T p(i+1). (6.26)

Finally, we see that the parareal algorithm also converges superlinearly with respect to i and
behaves as a method of order p(i+1) for a nonlinear problem and a �nite T . Hence, result (6.26)
does not contradict the previous ones but extends them to the nonlinear case. Nevertheless,
in a practical application, a more complete knowledge of the bound (6.26) might be necessary
in order to fully describe the behavior of the algorithm. More precisely, constants C1, C2 and
C3 in (6.26) (as well as C into (6.22) for a linear application) should be properly estimated.
This is one of the purposes of the present work in the case of an operator splitting strategy
and the corresponding analysis will be presented in the next subsection.
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6.3.2 Convergence Analysis of the Parareal Operator Splitting

In order to carry on our study, we will �rst present the mathematical problem that we want
to solve. The link with multi-scale reaction waves will be then established.

Mathematical Framework

We consider the initial-value problem:

∂tu−D∂2
xu+ kV (x)u = 0 x ∈ R, t > 0,

u(x, 0) = u0(x) x ∈ R, t = 0,

}
(6.27)

where V is a bounded function from R to R of class C∞ with all bounded derivatives and, D and
k are some real positive coe�cients such that Dk = 1. Moreover, u represents a dimensionless
specie concentration.
For this study, we consider problem (6.27) as coming from the associated linearized system of
(6.14) around u0 after some simple change of variables. In this context, V is no other than
the Jacobian f ′(u0) = ∂f(u0)/∂u in (6.14). The di�usion and reaction coe�cients, D and
k in (6.14) and (6.27), might be seen as scale coe�cients of time and space. In fact, in the
context of reaction waves, we can obtain a dimensionless form of system (6.14) considering a
dimensionless time τ and a dimensionless space r with

τ = kt and r = (k/D)1/2x. (6.28)

See [HV03] for details on how reaction systems of ODEs can be built from a reaction scheme,
and [GS94] for details on analysis of traveling reaction waves.
Then, without loss of generality, a dimensionless analysis of a traveling wave, as shown in
[GS94], may allow us to establish the steady state of a reaction wave. Therefore, taking into
account the scale coe�cients, the dimensionless steady velocity of the wavefront given by the
expression dr/dτ establishes that

dtx ∝ (Dk)1/2, (6.29)

while coming back to the initial representation of time t and space x. Moreover, in a general
way, the sharpness of the wave pro�le is measured by

dxu|max ∝ (k/D)1/2. (6.30)

Note that condition Dk = 1 implies constant velocity for all k = 1/D; however, greater k (or
smaller D) implies higher spatial gradients, and thus, sti�er con�gurations.
In the context of reaction waves, we have usually wavefronts of steep spatial gradient prop-
agating with a steady constant speed. Therefore, we are interested in studying this kind of
sti� con�gurations and their impact on a time parallelization algorithm such as the parareal
scheme. In particular, the latter must be coupled with an appropriate sti� solver such as the
operator splitting, considered in this work. Hence, in order to conduct a convergence analysis
of the parareal scheme, we are �rst constrained to obtain some bounds (similar to those given
by (6.23), (6.24) and (6.25)) drawn out of a more precise analysis of the operator splitting
itself, applied to problem (6.27). This is the main goal of the following section.

Analysis of the Operator Splitting

For problem (6.27), we consider the linear operator b corresponding to the multiplication by
kV and the operator a = −D∂2

x (minus D times the second partial derivative with respect to
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x in one dimension). Hence, their commutator is given by

∂ab = [a, b] = −(∂2
xV )− 2(∂xV )∂x, (6.31)

considering that Dk = 1. We �rst recall the following result which is proven in [DS02a] and
gives an exact representation of the di�erence between the exponential of a+ b, i.e., the exact
solution of (6.27), and its Lie (resp. Strang) approximation denoted by L (resp. S).

Theorem 6.4. The following identities hold

L(t) = e−tae−tb

= e−t(a+b) +

∫ t

0

∫ s

0
e−(t−s)(a+b)e−(s−r)a(∂ab)e−rae−sb dr ds, (6.32)

S(t) = e−tb/2e−tae−tb/2 = e−t(a+b)

+
1

4

∫ t

0

∫ s

0
(s− r)e−(t−s)(a+b)e−(s−r)b/2(∂2

ba
)
e−rb/2e−sae−sb/2 dr ds

−1

2

∫ t

0

∫ s

0
(s− r)e−(t−s)(a+b)e−sb/2e−ra

(
∂2
ab
)
e−(s−r)ae−sb/2 dr ds.

(6.33)

In particular, for problem (6.27) we have

∂2
ab = [a, [a, b]] = D(∂4

xV ) + 4D(∂3
xV )∂x + 4D(∂2

xV )∂2
x, (6.34)

∂2
ba = [b, [b, a]] = −2k(∂xV )2. (6.35)

Identities (6.32) and (6.33) are also valid for general nonlinear operators (or vector �elds) a and
b, in which case the commutators (6.31), (6.34) and (6.35) are computed as the Lie derivatives
of the Lie bracket of the vector �elds (see [HV03] and the complete analysis conducted in
[Lub08] and [DDL+12]).
Nevertheless, even if (6.32) and (6.33) give us the exact representation of the local error of
a Lie or Strang splitting approximation, we are more interested in de�ning some bounds on
these local errors. More precisely, we will see in the next section that the key point of the
proof of the convergence estimates for the parareal algorithm is the use of L2 to L2 estimates
of the errors.
Therefore, considering the exact solution of problem (6.27), a simple computation shows that
for t ≥ 0, ∥∥∥et(D∂

2
x−kV )

∥∥∥
L(L2,L2)

≤ ek‖V ‖∞t. (6.36)

Moreover, with the exact representation of the local errors (6.32) and (6.33), and denoting by

EL(t) = et(D∂
2
x−kV ) − L(t) and ES(t) = et(D∂

2
x−kV ) − S(t), (6.37)

it is straightforward to obtain the following bounds.

Lemma 6.5 (First estimate of the splitting local error). Consider problem (6.27) and u0 ∈
H2(R), for t ≥ 0 we have the following error bounds

‖EL(t)u0‖L2 ≤
(
t2

2
‖∂2

xV ‖∞ +
2t3

3
k‖∂xV ‖2∞

)
ek‖V ‖∞t‖u0‖L2

+t2‖∂xV ‖∞ek‖V ‖∞t‖∂xu0‖L2 , (6.38)
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and

‖ES(t)u0‖L2 ≤
(
t3

12

(
k‖∂xV ‖2∞ +D‖∂4

xV ‖∞
)

+
t4

8

(
‖∂3

xV ‖∞‖∂xV ‖∞

+‖∂2
xV ‖2∞

)
+
t5

20
k‖∂2

xV ‖∞‖∂xV ‖2∞
)

ek‖V ‖∞t‖u0‖L2

+

(
t3

3
D‖∂3

xV ‖∞ +
t4

4
‖∂2

xV ‖∞‖∂xV ‖∞
)

ek‖V ‖∞t‖∂xu0‖L2

+
t3

3
D‖∂2

xV ‖∞ek‖V ‖∞t‖∂2
xu0‖L2 . (6.39)

Proof. Using (6.32), we have in L2(R),∥∥∥et(D∂
2
x−kV )u0 − etD∂

2
xe−tkV u0

∥∥∥
L2
≤

∫ t

0

∫ s

0

∥∥∥e(t−s)(D∂2
x−kV )e(s−r)D∂2

x∂ab erD∂
2
xe−skV u0

∥∥∥
L2

dr ds. (6.40)

And with (6.36) we have∥∥∥et(D∂
2
x−kV )u0 − etD∂

2
xe−tkV u0

∥∥∥
L2
≤

∫ t

0

∫ s

0
e(t−s)k‖V ‖∞

∥∥∥∂ab erD∂
2
xe−skV u0

∥∥∥
L2

dr ds. (6.41)

Since

∂ab erD∂
2
xe−skV u0 =− (∂2

xV )erD∂
2
xe−skV u0 − 2(∂xV )∂x

(
erD∂

2
xe−skV u0

)
=− (∂2

xV )erD∂
2
xe−skV u0 − 2(∂xV )erD∂

2
x∂x

(
e−skV u0

)
=− (∂2

xV )erD∂
2
xe−skV u0 − 2(∂xV )erD∂

2
xe−skV ∂xu0

+ 2(∂xV )erD∂
2
xsk(∂xV )e−skV u0, (6.42)

we obtain (6.38), integrating (6.41) and knowing that ‖e−skV ‖L(L2,L2) ≤ esk‖V ‖∞ .
Performing the same computations, we obtain (6.39) from (6.33), (6.34) and (6.35).

However, we recall the fact that we are speci�cally searching for L2 to L2 error estimates
in order to conduct the convergence analysis of the parareal scheme. Hence, thanks to the
regularizing e�ect of the Laplacian, we have for all u0 in L2 and for t > 0,

‖∂xetD∂
2
xu0‖L2 ≤

1√
2eDt

‖u0‖L2 , (6.43)

and then, we can conduct further calculations.

Lemma 6.6 (Second estimate of the splitting local error). Consider problem (6.27), for t > 0
we have the following error bounds

‖EL(t)u0‖L2 ≤
(

8

3
t
√
t

(
‖∂xV ‖∞√

2eD

)
+
t2

2
‖∂2

xV ‖∞
)

ek‖V ‖∞t‖u0‖L2 , (6.44)
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and

‖ES(t)u0‖L2 ≤
(
t2

4

(π
e
‖∂2

xV ‖∞
)

+
t3

12

(
k‖∂xV ‖2∞

+D‖∂4
xV ‖∞

))
ek‖V ‖∞t‖u0‖L2 . (6.45)

Proof. We take into account that

∂ab erD∂
2
xe−skV u0 = −(∂2

xV )erD∂
2
xe−skV u0 − 2(∂xV )∂x

(
erD∂

2
xe−skV u0

)
. (6.46)

Coming back to (6.41), the regularizing e�ect of the Laplacian (6.43) yields∥∥∥et(D∂
2
x−kV )u0 − etD∂

2
xe−tkV u0

∥∥∥
L2
≤

∫ t

0

∫ s

0
e(t−s)k‖V ‖∞

∥∥∥∂ab erD∂
2
xe−skV u0

∥∥∥
L2

dr ds ≤

∫ t

0

∫ s

0
e(t−s)k‖V ‖∞

((
2‖∂xV ‖∞√

2eDr

)
+ ‖∂2

xV ‖∞
)
‖e−skV u0‖L2 dr ds ≤

(
8

3
t
√
t

(
‖∂xV ‖∞√

2eD

)
+
t2

2
‖∂2

xV ‖∞
)

ek‖V ‖∞t‖u0‖L2 . (6.47)

Moreover, taking into account that

∂2
ab = D(∂4

xV ) + 4D∂x
(
(∂2
xV )∂x

)
(6.48)

and if we consider

erD∂
2
x∂2
ab e(s−r)D∂2

xe−skV/2u0 = DerD∂
2
x(∂4

xV )e(s−r)D∂2
xe−skV/2u0

+ 4DerD∂
2
x∂x

(
(∂2
xV )∂x

)
e(s−r)D∂2

xe−skV/2u0

= DerD∂
2
x(∂4

xV )e(s−r)D∂2
xe−skV/2u0

+ 4D∂x

(
erD∂

2
x(∂2

xV )∂xe(s−r)D∂2
xe−skV/2u0

)
, (6.49)

we obtain with (6.43),∥∥∥erD∂
2
x∂2
ab e(s−r)D∂2

xe−skV/2u0

∥∥∥
L2
≤

D‖∂4
xV ‖∞‖e−skV/2u0‖L2 +

4D√
2eDr

‖∂2
xV ‖∞

∥∥∥∂xe(s−r)D∂2
xe−skV/2u0

∥∥∥
L2
≤

D‖∂4
xV ‖∞‖e−skV/2u0‖L2 +

2‖∂2
xV ‖∞

e
√
r(s− r)

‖e−skV/2u0‖L2 ≤

(
D‖∂4

xV ‖∞ +
2‖∂2

xV ‖∞
e
√
r(s− r)

)
esk‖V ‖∞/2‖u0‖L2 . (6.50)

Taking this into (6.33) and integrating yield (6.45).
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The main advantage of these local error bounds is that all terms in estimates (6.38), (6.39),
(6.44) and (6.45) are known. No truncated terms in t are present indeed, since we have
considered an exact representation of errors (6.32) and (6.33). Furthermore, �rst and second
estimates of the splitting local error agree perfectly with those found in the literature (see
[DDLM07]) for the case of PDEs with high spatial gradients. In particular, a more general
and complete study of the Strang method can be found in [DS02a].
Notice that as it was stated in [DDLM07], an order reduction might appear in the local error.
Thus, if we consider k = D = 1 and expand e‖V ‖∞t, we infer from the previous results that for
t > 0,

‖EL(t)u0‖L2 ∝ max
(
‖∂xu0‖L2t2, ‖u0‖L2t1.5

)
(6.51)

and
‖ES(t)u0‖L2 ∝ max

(
‖∂xu0‖L2t3, ‖u0‖L2t2

)
. (6.52)

These estimates describe the behavior of the local errors; the �rst terms are more relevant
when t is small and the second ones when t is not small enough and ‖∂xu0‖L2 is very high.
More precisely there exists an explicit constant θ > 0 such that for t ≤ θ, ‖EL(t)u0‖L2 (resp.
‖ES(t)u0‖L2) behaves like t2 (resp. t3) and for t ≥ θ, ‖EL(t)u0‖L2 (resp. ‖ES(t)u0‖L2) behaves
like t1.5 (resp. t2).
These local error estimates are valid for general linear problems of type (6.27). However, in
the context of propagating wavefronts, since the L2-norm of ∂xu0 is normally very high, it is
especially relevant to obtain alternative error estimates which do not involve the derivative of
the initial condition. In our particular case, the L2 to L2 error estimates established in Lemma
6.6 allow us to obtain the following bounds which will be necessary for the convergence analysis
of the parareal operator splitting scheme.

Lemma 6.7. Consider problem (6.27) with initial conditions u0 and v0, then for a �xed t > 0,
there exist κL, κS , CL, CS ∈ R+ such that we have the following bounds

‖L(t)u0 − L(t)v0‖L2 ≤ ek‖V ‖∞t‖u0 − v0‖L2 , (6.53)

‖EL(t)u0 − EL(t)v0‖L2 ≤ κLCLt
√
tek‖V ‖∞t‖u0 − v0‖L2 , (6.54)

and

‖S(t)u0 − S(t)v0‖L2 ≤ ek‖V ‖∞t‖u0 − v0‖L2 , (6.55)

‖ES(t)u0 − ES(t)v0‖L2 ≤ κSCSt2ek‖V ‖∞t‖u0 − v0‖L2 , (6.56)

Proof. Simple calculation of ‖etD∂2
xe−tkV (u0 − v0)‖L2 yields (6.53), as well as ‖e−tkV/2etD∂

2
x

e−tkV/2(u0 − v0)‖L2 yields (6.55). Besides, estimates (6.54) and (6.56) come from the bounds
(6.44) and (6.45) applied to (u0 − v0) with

CL = max

(
8‖∂xV ‖∞
3
√

2eD
,
‖∂2

xV ‖∞
2

)
, (6.57)

CS = max

(
π‖∂2

xV ‖∞
4e

,
k‖∂xV ‖2∞

12
,
D‖∂4

xV ‖∞
12

)
, (6.58)

κL ≥ 1 +
√
t and κS ≥ 1 + t. (6.59)
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Notice that bounds (6.54) (resp. (6.56)) and (6.53) (resp. (6.55)) correspond to estimates
(6.24) and (6.25) respectively in [GH08], i.e., the di�erence of local errors for di�erent initial
conditions and the Lipschitz condition related to the Lie (resp. Strang) approximation (we
can even consider some C ∈ R+ such that e‖V ‖∞t ≤ (1 + Ct) for t ∈ (0, 1) into the di�erent
estimates). Moreover, series expansion (6.23) can be associated to (6.44) (resp. (6.45)). In this
way, we have completely characterized the constants C1, C2 and C3 appearing into classical
bound (6.26) and a more detailed analysis of the algorithm can be performed.
The choice of the second estimate of the splitting local errors is justi�ed by the fact that
reaction waves phenomena involve usually wavefronts of high spatial gradients and that there
is no such practical interest in utilizing very small time steps in order to simulate them. Besides,
from a mathematical point of view, this allows us to obtain the necessary Lipschitz relations
from L2 to L2 spaces.

Parareal Convergence Analysis

The following theorem gives us the convergence rate of the parareal operator splitting al-
gorithm. Its demonstration is based on the preliminary lemmas stated before and on the
convergence analysis developed by [GH08]. For reasons of simplicity, we assume that all the
time subdomains are of the same size, i.e.,∆T := T/N , and Tn = n∆T for n = 0, 1, . . . , N .

Theorem 6.8. Let F∆T (Un−1) be the exact solution of problem (6.27) on time subdomain
In−1. If G∆T (Un−1) is the Lie approximate solution with local error bounded by (6.44) satisfying
(6.53) and (6.54), then at iteration i of the parareal algorithm (6.5), there exist some �nite
κL, κS , CL, CS ,ΛTn ∈ R+ such that we have the bound

‖u(Tn)− Ũ in‖L2 ≤ ΛTn
(κLCLTn)i+1

(i+ 1)!
∆T (i+1)/2 (6.60)

with ΛTn = ‖u0‖L2ek‖V ‖∞Tn. Otherwise, if G∆T (Un−1) is the Strang approximate solution with
local error bounded by (6.45) satisfying (6.55) and (6.56), then we have the bound

‖u(Tn)− Ũ in‖L2 ≤ ΛTn
(κSCSTn)i+1

(i+ 1)!
∆T (i+1). (6.61)

Proof. The proof is similar to the one conducted in [GH08]. From the parareal algorithm (6.5),
considering that F is the exact solution of (6.27) and adding and subtracting G∆T (u(Tn−1)),
we obtain

u(Tn)− Ũ i+1
n = F∆T (u(Tn−1))− G∆T (u(Tn−1))

−
(
F∆T (Ũ in−1)− G∆T (Ũ in−1)

)
+ G∆T (u(Tn−1))− G∆T (Ũ i+1

n−1). (6.62)

Hence, taking norms and considering (6.54) (or (6.56)) and (6.53) (or (6.55)), there exist some
α and β such that

‖u(Tn)− Ũ i+1
n ‖L2 ≤ α‖u(Tn−1)− Ũ in−1‖L2 + β‖u(Tn−1)− Ũ i+1

n−1‖L2 . (6.63)

The classical convergence analysis lead us to study the recurrence relation

ei+1
n = αein−1 + βei+1

n−1, e0
n = γ + βe0

n−1, (6.64)
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where ein is an upper bound on ‖u(Tn)− Ũ in‖L2 , the global error of the parareal scheme at Tn
considering the exact solution u(t). After induction and using the binomial series expansion,
we obtain the bound [GH08]

ein ≤ γαiβn−i−1

(
n

i+ 1

)
. (6.65)

If G is the Lie approximate solution,

α = κLCL∆T
√

∆T ek‖V ‖∞∆T ,

β = ek‖V ‖∞∆T ,

γ = κLCL∆T
√

∆T ek‖V ‖∞∆T ‖u0‖L2 ,

 (6.66)

then,

‖u(Tn)− Ũ in‖L2 ≤

‖u0‖L2

(κLCL∆T
√

∆T ek‖V ‖∞∆T )i+1

(i+ 1)!
(ek‖V ‖∞∆T )n−i−1

i∏
j=0

(n− j)

≤ ‖u0‖L2(ek‖V ‖∞∆T )n
(κLCLn∆T

√
∆T )i+1

(i+ 1)!

≤ ‖u0‖L2ek‖V ‖∞Tn
(κLCLTn)i+1

(i+ 1)!
∆T (i+1)/2. (6.67)

If G is the Strang approximate solution, we perform the same process to obtain (6.61) with

α = κSCS∆T 2ek‖V ‖∞∆T ,

β = ek‖V ‖∞∆T ,

γ = κSCS∆T 2ek‖V ‖∞∆T ‖u0‖L2 .

 (6.68)

These convergence results show that the parareal algorithm converges superlinearly with re-
spect to i and behaves as a method of order p(i+ 1) for a problem of type (6.27) and a �nite
T . Notice that this time p = 1/2 for the Lie formula instead of classical global order 1 and
p = 1 for Strang instead of 2, according to the order reduction previously discussed and proven
in [DDLM07]. Thus, results (6.60) and (6.61) do not contradict the classical results from the
literature but complement them, giving new and more detailed insights to the performance
of the algorithm. In fact, all the terms into bounds (6.60) and (6.61) are known or can be
calculated for a general problem of type (6.27), even more, constants CL, CS , κL and κS have
been established in the proof of Lemma 6.7. This means that more precise estimates can be
obtained for a parareal operator splitting strategy.

6.3.3 Parareal Operator Splitting for Reaction Waves

Theorem 6.8 gives us the convergence rate while applying a parareal operator splitting strat-
egy on a general problem of type (6.27). Nevertheless, we will now extend these results to
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the particular case of reaction waves phenomena. In this context, we are interested in the
propagation of steady self-similar waves, i.e., parabolic PDEs of type (6.14) with solution

u(x, t) = u0(x− ct), (6.69)

where c is the steady speed of the wavefront.
We have already showed the link between problems (6.27) and (6.14), furthermore a sim-
ple dimensionless analysis of traveling waves yield expressions (6.29) and (6.30) with scaling
constants D and k (see [GS94]). Therefore, we can easily show that for an integer s > 0,

∂sxV (x) = ∂sxf
′(u0) = ∂s−1

x (f ′′(u0)∂xu0). (6.70)

Taking norms and taking into consideration (6.30) under condition kD = 1, we obtain that

‖∂sxV (x)‖∞ = ‖∂sxf ′(u0)‖∞ = ‖∂s−1
x (f ′′(u0)∂xu0)‖∞ = ks‖∂s−1

x (f ′′(u0)∂xū0)‖∞, (6.71)

where ū(x, t) = ū0(x − ct) is a reference solution of (6.14) when k = 1. Moreover, following
(6.29), condition Dk = 1 implies constant speed c for all k. Then, we can rewrite Lemma 6.7
as follows.

Lemma 6.9. Consider problem (6.27) with initial conditions u0 and v0. Furthermore, let us as-
sume that Dk = 1 and that condition (6.71) is satis�ed. Denoting by EL(t) = et(D∂

2
x−kf ′(u0))−

L(t), ES(t) = et(D∂
2
x−kf ′(u0))−S(t) and τ = kt, then for a �xed t > 0 there exist κL, κS , CL, CS ∈

R+ such that we have the following bounds

‖EL(t)u0 − EL(t)v0‖L2 ≤ κLCLτ
√
τe‖f

′(u0)‖∞τ‖u0 − v0‖L2 , (6.72)

and

‖ES(t)u0 − ES(t)v0‖L2 ≤ κSCSτ2e‖f
′(u0)‖∞τ‖u0 − v0‖L2 . (6.73)

Proof. The proof of (6.72) and (6.73) is straightforward to obtain, considering (6.71) and
rewriting (6.44) and (6.45) as

‖EL(t)u0‖L2 ≤
(

8

3
t
√
t

(
k‖g(u0)‖∞√

2eD

)
+
t2

2
k2‖∂xg(u0)‖∞

)
ek‖f

′(u0)‖∞t‖u0‖L2 , (6.74)

‖ES(t)u0‖L2 ≤
(
t2

4

(π
e
k2‖∂xg(u0)‖∞

)
+
t3

12

(
k3‖g(u0)‖2∞ +Dk4‖∂3

xg(u0)‖∞
))

ek‖f
′(u0)‖∞t‖u0‖L2 , (6.75)

where g(u0) = f ′′(u0)∂xū0, then we take Dk = 1, τ = kt and rede�ne CL and CS as

CL = max

(
8‖g(u0)‖∞

3
√

2e
,
‖∂xg(u0)‖∞

2

)
, (6.76)

CS = max

(
π‖∂xg(u0)‖∞

4e
,
‖g(u0)‖2∞

12
,
‖∂3

xg(u0)‖∞
12

)
. (6.77)

With this lemma, the following corollary of Theorem 6.8 can be obtained.
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Corollary 6.10. Let F∆T (Un−1) be the exact solution of problem (6.27) on time subdomain
In−1. Furthermore, let us assume that Dk = 1 and that condition (6.71) is satis�ed. If
G∆T (Un−1) is the Lie approximate solution with local error bounded by (6.72) satisfying (6.53),
then at iteration i of the parareal algorithm (6.5), there exist some �nite κL, κS , CL, CS ,ΛTn ∈
R+ such that we have the bound

‖u(Tn)− Ũ in‖L2 ≤ ΛTn
(κLCLkTn)i+1

(i+ 1)!
(k∆T )(i+1)/2 (6.78)

with ΛTn = ‖u0‖L2e‖f
′(u0)‖∞kTn. Otherwise, if G∆T (Un−1) is the Strang approximate solution

with local error bounded by (6.73) satisfying (6.55), then we have the bound

‖u(Tn)− Ũ in‖L2 ≤ ΛTn
(κSCSkTn)i+1

(i+ 1)!
(k∆T )(i+1). (6.79)

Proof. The proof comes out directly from Theorem 6.8 and Lemma 6.9, considering Dk = 1
and condition (6.71).

We see that also in this case, all the terms in bounds (6.78) and (6.79) are known or can
be calculated for a general problem of type (6.27) satisfying (6.71). Moreover, constants CL,
CS , κL and κS have been established in the proof of Lemma 6.9 and this time, CL and CS
are completely independent of coe�cients k and D, so they are valid for any speed/gradient
con�guration of the wavefront. By the way, from bounds of Lemma 6.9 as well as those of
Corollary 6.10, we can consider coe�cient k as a time scaling parameter through τ = kt.
From these results we conclude that the convergence rate of the algorithm in the Lie (resp.
Strang) case behaves like k1.5 (resp. k2) for a �xed ∆T . And as established by condition
(6.30), higher k implies the propagation of wavefronts with higher spatial gradients at the same
speed. As a matter of fact, the following corollary establishes more precisely the in�uence of
high spatial gradients onto the performance of the parareal algorithm.

Corollary 6.11. Let us consider Lemma 6.9 and Corollary 6.10. Denoting by Ein = ‖u(Tn)−
Ũ in‖L2 with �xed k ≥ 1 into (6.27). Then, at iteration i of the parareal algorithm (6.5), there
exist some �nite A,B, q ∈ R+ such that we have the bound

Ein ≤ eA+(i+1)qBE
i
n, (6.80)

where E
i
n is a �xed reference value of Ein with k = D = 1 in (6.27).

Proof. From Corollary 6.10, we have

Ein ≤ ΛTnk
q(i+1) (κGCGTn)i+1

(i+ 1)!
∆T (q−1)(i+1), (6.81)

with q = 3/2, CG = CL and κG = κL (resp. q = 2, CG = CS and κG = κS) if G is the Lie
(resp. Strang) approximate solution.
After simple computations, we obtain

lnEin ≤ (k − 1)‖f ′(u0)‖∞Tn + q(i+ 1) ln k + lnE
i
n, (6.82)

that yields (6.80) with

A ≥ (k − 1)‖f ′(u0)‖∞Tn and B ≥ ln k. (6.83)
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Thus, Corollary 6.11 establishes the bound on the convergence rate of the algorithm for a �xed
k into (6.27); as a consequence, the convergence rate is directly related to the value of the
highest spatial gradient of the wavefront. In particular, the simulation of sharper wavefronts
(higher k) implies weaker convergence rates since constants A and B into (6.80) increase. This
can be easily shown from (6.80) if we consider the line rn(i):

lnEin − lnE
i
n ≤ rn(i) = A+ (i+ 1)qB, (6.84)

where we see that its slope is directly proportional to ln k through B ∝ ln k for the same
approximate solution, i.e., same q; and the convergence rate gets lower when sharper spatial
gradients are present in the solution.
Now that we have obtained these results that explain the behavior of the parareal algorithm
when we consider an operator splitting scheme as the coarse approximation technique, we need
to validate them with some numerical examples. This is the goal of the next section.

6.4 Numerical Simulations

In this section, we will present some illustrating simulations in order to �rst, validate the
theoretical results presented before, and secondly, to investigate the performance of such algo-
rithms on multi-scale reaction wave phenomena. Both mathematical models considered in the
following come from nonlinear chemical dynamics; nevertheless, the conclusions might be ex-
tended to similar reaction-di�usion models in other domains. In this way, the 1D KPP model
is a clarifying example of the deduced behavior of the parareal splitting technique applied
on such type of problems. Then, with a more e�cient operator splitting strategy inspired by
[DDD+12, DMD+12], we will consider a much more complex model, the 1D and 2D BZ system,
that will also con�rm the previous results and will give us some insights into the performance
of the algorithm and the alternative strategies for these multi-scale problems.

6.4.1 1D KPP Equation

Following the theoretical investigations we have presented, we focus in this part on the nu-
merical evidence of the convergence rate reduction associated to splitting solvers in a typical
nonlinear framework of sti� traveling waves. Let us �rst recall the Kolmogorov-Petrovskii-
Piskunov model. In their original paper dated in 1937 [KPP37], these authors introduced a
model describing the propagation of a virus and the �rst rigorous analysis of a stable traveling
wave solution of a nonlinear reaction-di�usion equation [GS94, VVV94]. The equation is the
following:

∂tu−D∆u = k u2(1− u), (6.85)

with homogeneous Neumann boundary conditions.
The description of the dimensionless model and the structure of the exact solution can be found
in [GS94]. Thus, the dimensionless analysis shows that in the case of D = 1 and k = 1, the
velocity of the self-similar traveling wave is c = 1/

√
2 and the maximal gradient value reaches

1/
√

32. The structure of the wave can be observed in Figure 6.1 with a discretization of 5001
points of the interval [−70, 70] and a time varying in [0, 30] divided into eight time intervals.
The key point of this illustration is that the velocity of the traveling wave is proportional to
(kD)1/2, whereas the maximal gradient is proportional to (k/D)1/2. Thus, switching to values
k = 10.0 and D = 0.1, the velocity is preserved, but the maximal gradient is multiplied by a
factor of 10 and introduces sti�ness in the equation, as presented in Figure 6.2. For the spatial
discretizations considered, the wave, however �sti��, is always well solved on the considered
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grid. This model is then a very suitable example because it coincides perfectly with the general
reaction-di�usion structure considered throughout our theoretical study.
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Fig. 6.1: Standard KPP traveling wave, discretization with 5001 points on the [−70, 70] region. Self-
similar solutions for eight time intervals after the initial condition.
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Fig. 6.2: �Sti�� KPP traveling wave, discretization with 5001 points on the [−70, 70] region. Self-
similar solutions for eight time intervals after the initial condition.

Application of the method of lines with a �nite di�erence second order discretization in space
implies a discretization of the Laplacian operator in (6.85) and thus, leads to a system of non-
linear ODEs. For the parareal scheme, we then need the �ne and coarse temporal integrations
of this semi-discretized problem. Based on the previous considerations, we choose a Lie (or
Strang) split scheme as the coarse solver and a very accurate Lie (or Strang) split scheme as
the �ne one, the latter considers smaller splitting time step. In all cases, each of the time
integration substeps (reaction and di�usion substeps) is integrated by an unique and very ac-
curate solver in time: LSODE with very �ne prede�ned tolerances. In this way, we decouple
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the errors originated by the operator splitting itself from the errors coming from the temporal
integration of the substeps, in order to remain coherent with the theoretical study conducted
in the paper.
We start from an already self-similar solution and evaluate the ability of the parareal solution
to reproduce the correct self-similar pro�le. The splitting time steps for both �ne and coarse
solvers, are de�ned such that the wave speed is correctly calculated. Figure 6.3 and 6.4 below
show the convergence results of the parareal algorithm considering the convergence of the
parareal iterative solutions towards the �ne solution, computed separately and sequentially by
the �ne solver. The �rst iteration corresponds to the initial coarse approximation and the time
domain is decomposed into N = 128 time subdomains.
In Figure 6.3, on the one hand we observe a clean and fast iterative evolution towards conver-
gence of the Lie splitting technique applied to the standard KPP equation. In fact, only 10 over
128 subdomains have been solved directly by the �ne solver to achieve the �ne accuracy. On
the other hand, a much more lower convergence rate of the algorithm is shown while applying
the parareal Lie scheme to the �sti�� KPP equation. In fact, after 15 iterations we are very
far from the accuracy obtained in the standard case.
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Fig. 6.3: Comparison of convergence rates of the parareal operator splitting at time t = 15 for 1D
KPP equation for the Lie splitting scheme.

The key point in this paper is the reduction of the convergence rate exhibited by the �sti��
case, where the velocity of the wave is the same, but the maximal gradient is ten times higher.
Thus, considering the line de�ned by (6.84) as a consequence of Corollary 6.11 where B = 1
since k = 10 (considering log instead of ln), we have plotted a straight line of slope q = 1.5 in
order to show the very good agreement to the bound predicted by the theory.
The same conclusions arise from the Strang case, as it is shown in Figure 6.4, where this time
q = 2, as established into Corollary 6.11. Notice that the parareal scheme applied to the
standard KPP equation converges faster than in the previous Lie case, as a Strang scheme
is naturally more accurate that a Lie one. Thus, we obtain less coarse approximations and
convergence after 5 iterations. Notice also that the sti� case practically converges after 15
iterations, which was not the case in the previous Lie application (Figure 6.3). Therefore,
let us consider a more accurate Lie application where the splitting time steps are smaller so
that the sti� case converges completely. Figure 6.5 describes this situation where once again
the theoretical results are validated and for which convergence is achieved after 5 (resp. 9)
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iterations for the standard (resp. sti�) case.
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Fig. 6.4: Comparison of convergence rates of the parareal operator splitting at time t = 15 for 1D
KPP equation for the Strang splitting scheme.
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Fig. 6.5: Comparison of convergence rates of the parareal operator splitting at time t = 15 for 1D
KPP equation for a more accurate Lie scheme.

Let us �nally see what happens with a coarse solver that considers the initial coupled reaction-
di�usion system instead of the split one. To limit important computational cost, let us consider
an explicit solver such us ROCK4 [Abd02]. This alternative might not be always feasible
because of the important stability restrictions of this method when treating problems with
important imaginary part eigenvalues (see [Abd02] for more details). We reproduce in Figure
6.6, the former convergence rates found in the Lie application of Figure 6.3 for both, the
standard and sti� KPP equation, and the new one obtained by the ROCK4-based coarse
solver for the sti� case. The latter coupled coarse resolution clearly improves the convergence
rate of the parareal scheme for the sti� KPP problem. Hence, we see that an operator splitting
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approach as coarse approximation clearly implies an important reduction of the convergence
rate of the parareal algorithm as it was proven in the previous section.
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Fig. 6.6: Comparison of convergence rates of the parareal algorithm with either the operator splitting
or the ROCK4 solver as coarse solver, at time t = 15 for 1D KPP equation.

6.4.2 BZ Equation

In this second illustration, we are concerned with the numerical approximation of another
model coming from nonlinear chemical dynamics, the Belousov-Zhabotinski reaction, a cat-
alyzed oxidation of an organic species by acid bromated ion (for more details and illustrations,
see [EP98]). We can �rst consider the two-variable Oregonator model, studied in [JSW89]; it
has solutions that represent propagation of a steep wavefront by interplay of HBrO2 (hypo-
bromous acid) di�usion with an autocatalytic reaction that quickly generates HBrO2 (using
bromide ions Br− as an intermediary species that remains always in equilibrium with local
instantaneous HBrO2). Denoting by b = [HBrO2] and c = [Br−], we consider the following
model:

∂b

∂τ
−Db∆b =

1

ε

(
b(1− b) +

f(q − b)c
q + b

)
,

∂c

∂τ
−Dc∆c = b− c,

 (6.86)

with di�usion coe�cients Db and Dc and some real positive parameters f , small q and small
ε.
Nevertheless, a more re�ned model, introduced in [GS94] and coming from the classic work
of Field, Koros and Noyes (FKN) (1972), takes into account not only the two species HBrO2

and Br− but also the cerium(IV). Denoting by a = [Ce(IV )], we obtain a very sti� system of
three partial di�erential equations:

∂a

∂τ
−Da∆a =

1

µ
(−qa− ab+ fc),

∂b

∂τ
−Db∆b =

1

ε
(qa− ab+ b(1− b)) ,

∂c

∂τ
−Dc∆c = b− c,


(6.87)
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with additional di�usion coe�cient Da and real positive parameter µ� ε.
The dynamical systems associated to systems (6.86) and (6.87) model reactive excitable media
with a large time scale spectrum (see [GS94] for more details). Moreover, the spatial con�gu-
ration with addition of di�usion generates propagating wavefronts with steep spatial gradients.
Thus, this model presents all the di�culties associated to a sti� multi-scale con�guration. The
advantages of applying a splitting strategy to these models have already been studied and pre-
sented in [DDM03, DMD+12]. In what follows, we will consider the 1D and 2D con�gurations
of problem (6.87).

1D BZ Equation

Let us �rst consider the 1D case of problem (6.87) with homogeneous Neumann boundary
conditions and the following parameters (based on [GS94]): ε = 10−2, µ = 10−5, f = 3
and q = 2.10−4, with di�usion coe�cients Da = 1, Db = 1 and Dc = 0.6. Following the
same partial discretization applied in the previous problem, the structure of the waves can be
observed in Figure 6.7 with a discretization of 4001 points of the interval [0, 80] and a time
varying in [0, 2] divided into eight time intervals.
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Fig. 6.7: 1D BZ traveling waves, discretization with 4001 points on the [0, 80] region. Self-similar
solutions for eight time intervals after the initial condition.

We then construct an optimal operator splitting con�guration already studied and validated
[DDD+12, DMD+12] based on the RDR Strang St2 scheme for which, Radau5 is used for the
time integration of the reaction term and ROCK4 for the di�usive part. In this context,
Figure 6.8 shows the iterative evolution and the convergence rate obtained with a RDR Strang
operator splitting scheme considered for both �ne and coarse solvers, the latter with larger
splitting time steps. In the same �gure, we see that once again a coupled resolution of the
initial reaction-di�usion system (6.87) as coarse solver yields better performances. Also in this
illustration, we take ROCK4 as coarse solver of the coupled system.
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Fig. 6.8: Comparison of convergence rates of the parareal algorithm with an operator splitting or
ROCK4 as coarse solver, at time t = 2 for 1D BZ equation.

2D BZ Equation

We now consider the 2D con�guration of problem (6.87) with homogeneous Neumann boundary
conditions and the following parameters (from [DDM03]): ε = 10−2, µ = 10−5, f = 1.6 and
q = 2.10−3, with di�usion coe�cients Da = 2.5× 10−3, Db = 2.5× 10−3 and Dc = 1.5× 10−3.
We follow the same partial discretization applied in the previous case and after integration
over a time domain of [0, 2], we see the developed spiral waves at �nal time t = 2 into Figure
6.9.
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Fig. 6.9: 2D BZ spiral waves on a [257× 257] grid at t = 2.
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In this illustration, we are concerned with the evaluation of the potential gains obtained in the
computational time through a partial parallel computation process. In this way, let us �rst
introduce the following notation:

Tfine: computation time of the �ne solver over the whole time domain;

Tcoarse: computation time of the coarse solver over the whole time domain;

Nproc: number of processors, i.e., number of time subdomains considered; and

Nite: number of iterations.

In a parallel environment, the computation time utilized by the parareal algorithm, Tpara,
should be equivalent to the time needed by the �ne resolution divided by the number of
processors available, that is

Tpara ≈ Nite ×
Tfine
Nproc

, (6.88)

taking into account the iterative procedure. We set this estimate as the optimal ratio, when
coarse approximations are very fast. Nevertheless, a more realistic estimate should take into
account all coarse approximations computed sequentially in order to initialize each time sub-
domain. Then, we have

Tpara ≈ (Nite + 1)× Tcoarse +Nite ×
Tfine
Nproc

, (6.89)

with the initial coarse approximation needed to start the algorithm. Thus, the choice of the
coarse solver is crucial and represents the major constraint on the success of the applications.
In this context, let us make some computations using the RDR Strang St2 operator splitting

Table 6.1: Computation time in seconds, 2D BZ.

Grid 129× 129 257× 257

Coarse solver RDR Strang ROCK4 RDR Strang ROCK4

Tfine 2769.94 2757.52 11291.36 11149.42

Tcoarse 228.53 256.07 1006.62 1177.89

Tfine/Tcoarse 12.12 10.77 11.22 9.47

Nite 4 2 4 2

Tpara 1279.81 860.30 5581.32 3869.51

established in the previous 1D case and ROCK4, as coarse solvers for two di�erent grids,
[129×129] and [257×257], where the time domain has been decomposed into N = Nproc = 64
time subdomains. Naturally, the �ne solver is an accurate RDR Strang operator splitting.
According to the parareal scheme, this �ne resolution is performed on a cluster made of 32
nodes with 2 processors AMDOpteron 64 bits dual core with speed 2.4 GHz; the numerical code
is written in Fortran 95 and uses the MPI library for the parallel features. The results related
to each con�guration are summarized in Table 6.1, where the stopping criterion is based on the
same order of di�erence between successive parareal solutions for both con�gurations. Notice
that the splitting scheme is faster than a coupled resolution even if an explicit method such
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Table 6.2: Computation time ratios, 2D BZ.

Grid 129× 129 257× 257

Coarse solver RDR Strang ROCK4 RDR Strang ROCK4

Nproc 64

Nproc/Nite 16 32 16 32

Tfine/Tpara 2.16 3.21 2.02 2.88

as ROCK4 has been utilized. Nevertheless, the coupled computation as coarse approximation
allows faster convergence and thus, a better performance of the algorithm.
This is also re�ected in Table 6.2 where the computation time ratios have been estimated.
Nproc/Nite then represents the optimal ratio described into expression (6.88): 16 for the split
coarse solver and 32 for the coupled one. Hence, the �nal ratios obtained (∼ 2-3) re�ect on
the one hand, the important cost of the coarse solvers for sti� problems, and on the other
hand, the reduction of convergence rate for an operator splitting scheme as coarse propagator,
previously deduced.

6.5 Conclusions

In this paper, we have presented a new numerical strategy that couples an optimal operator
splitting technique for multi-scale problems and the parareal algorithm, a promising time par-
allelization scheme. Considering the state of the art of the literature, we have then conducted
a detailed numerical analysis of such techniques in order to introduce complementary and nec-
essary characterization of the numerical behavior of operator splitting and parareal schemes in
the context of multi-scale reaction waves. In particular, a precise representation of the impact
of sti� con�gurations on the performance of the algorithm has been mathematically proven for
reaction-di�usion models with large spatial gradients.
Then, a set of numerical illustrations have on the one hand, validated the previous theoretical
results and explicitly showed the reduction of the convergence rate of the parareal algorithm
when an operator splitting is performed for the coarse approximations of the method. And on
the other hand, they have highlighted the need of e�cient coarse solvers for sti� problems in
order to construct more competitive methods.
Finally, it was also numerically demonstrated that a more suitable strategy considers a coupled
resolution of the initial reaction-di�usion system as coarse solver. However, this alternative
may not always be feasible and other approaches should be evaluated. For instance, the resolu-
tion of the reduced model of the BZ system or the set of slow variables for a general multi-scale
problem could be considered as a coarse approximation of the complete �ne model. Neverthe-
less, further studies that go out of the scope of this work are necessary in order to test such
alternatives; this is the topic of our current research.
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Part III

Algorithmic Description and Basic

Implementation Issues: MBARETE

Code



Introduction

In this part, we present some key aspects concerning the practical implementation of the nu-
merical strategy established in chapters 4 and 5. These techniques gave birth to an academic
numerical code called MBARETE, with time/space adaptive features for the solution of sti�
PDEs. Chapter 7 describes the most important multiresolution algorithms included in the
code and gives some details on the data and code structures.

Additionally, Chapter 8 details the main core of the time integration scheme implemented in
the MBARETE code, for reaction-di�usion systems. The time adaptive and dedicated splitting
techniques are also described as well as the complementary numerical procedure introduced
in Chapter 5. Further extensions will be considered for the simulations illustrated in the next
part.



Chapter 7

Description of Space Adaptive

Multiresolution in the MBARETE

Code

We detail in this chapter the algorithms and the main issues concerning the practical imple-
mentation of the multiresolution schemes detailed in Chapter 3, for the numerical strategy
introduced in Chapter 4. The general algorithms can be found in the original articles of
Harten [Har94a, Har95, BH97], and more details on these and other related matters in the
book of Müller [Mül03]. The multiresolution analysis was implemented in our code based on
the standard tree-structured data representation, as in the approach of Roussel et al. [RSTB03].
More e�cient and sophisticated data structures for adaptive grid representation were devel-
oped by Brix et al. [BMV09], and successfully implemented for multiresolution applications
(see, e.g., [BBB+10] and references therein). The multiresolution technique implemented in
the MBARETE code is largely based on of the multiresolution kernel of MR CHORUS, a
code developed by Christian Tenaud for compressible Navier-Stokes equations. Further details
on this multiresolution implementation are included in a tutorial that have been elaborated
for a Summer School of CNRS GDR Groupe Calcul, on Multiresolution and Adaptive Mesh
Re�nement Methods, Fréjus, France (2010) [TD11].

7.1 Multiresolution Operations

Before introducing the algorithms for the di�erent multiresolution operators, let us recall some
notations introduced in Chapter 3. Considering a computational domain Ω ⊂ Rd, we de�ne
the set of disjoint partitions (Ωγ)γ∈Sj such that

Ω =
⋃
γ∈Sj

Ωγ , (7.1)

and
Ωγ

⋂
Ωµ = ∅, γ 6= µ; γ, µ ∈ Sj . (7.2)

The abbreviated notation Ωγ := Ωj,k was de�ned with j ∈ N0
⋂

[j0, J ], and k ∈ Zd. The �rst
index j stands for the grid level from the coarsest j = j0 to the �nest grid j = J , where the
di�erent grids are generated by a successive, dyadic, and nested partition. For each cell Ωj,k,
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there are 2d subcells Ωj+1,k′ , such that Ωj+1,k′ ⊂ Ωj,k, and

Ωj,k =
⋃
k′∈Ik

Ωj+1,k′ , (7.3)

where Ik, with #(Ik) = 2d, is the set of indices k′ such that Ωj+1,k′ ⊂ Ωj,k. In a Cartesian
coordinates framework, we thus have

|Ωj,k| =
∫

Ωj,k

dx, x ∈ Rd. (7.4)

The second set of indices k ∈ Zd into (j, k) ∈ Sj , accounts for the spatial position of Ωj,k at
grid level j, as illustrated by (3.66) for the 1D case.

7.1.1 Projection Operator

Considering �nite volumes for the spatial discretization, we denote Uj := (uj,k)(j,k)∈Sj , as the
spatial representation of a given function u(t, x) on the level grid j, where uj,k represents the
cell-average of u : R× Rd → R in Ωj,k given by (3.67):

uγ := |Ωγ |−1

∫
Ωγ

u(t, x) dx, x ∈ Rd. (7.5)

The cell-average values at two successive grid levels are related by the projection operator
P jj−1, previously de�ned in (3.68):

uj,k =
1

|Ωj,k|
∑
k′∈Ik

|Ωj+1,k′ |uj+1,k′ . (7.6)

The latter procedure allows us to compute in a recursive way, all the values uj,k for all j ∈ [j0, j],
from Uj+1 at a given grid level j + 1.

7.1.2 Prediction Operator

The computations from coarse to �ne grids are performed by the prediction operator P j−1
j ,

based on polynomial interpolation. For a 1D con�guration, the interpolation stencil Rj+1,k′

(3.86) to approximate the values at grid level j+1: ûj+1,2k and ûj+1,2k+1, contains the parent-
cell uj,k and its nearest M neighbors. The centered polynomial interpolations of accuracy
order N = 2M + 1 might be written for the 1D case as

ûj+1,2k1 = uj,k1 +
M∑
d1=1

ξd1 (uj,k1+d1 − uj,k1−d1) ,

ûj+1,2k1+1 = uj,k1 −
M∑
d1=1

ξd1 (uj,k1+d1 − uj,k1−d1) ,


(7.7)

where k = k1 ∈ Z, and the coe�cients ξd1 are given in Table 7.1 up to M = 4. The case
N = 3 was already given in (3.85), whereas the case N = 1 corresponds to the Haar wavelet
decomposition (3.14) into (3.80).
Extensions to multi-dimensional interpolations is straightforward based on the 1D con�gura-
tion (7.7). De�ning the expression QM as

QM (k1, uj,k) =
M∑
d1=1

ξd1 (uj,k1+d1 − uj,k1−d1) , (7.8)
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N M ξ1 ξ2 ξ3 ξ4

1 0 0 0 0 0

3 1 −1/8 0 0 0

5 2 −22/128 3/128 0 0

7 3 −201/1024 11/256 −5/1024 0

9 4 −3461/16384 949/16384 −185/16384 35/32768

Table 7.1: Prediction operator. Coe�cients for polynomial interpolations of order N = 2M + 1
[Har94a].

the 2D polynomial interpolation, proposed by Bihari & Harten [BH97], reads

ûj+1,2k1+d1,2k2+d2 = uj,k + (−1)d1QM (k1, uj,k) + (−1)d2QM (k2, uj,k)

−(−1)(d1+d2)QM2 (k1, k2, uj,k), (7.9)

with k = (k1, k2) ∈ Z2. The integers d1 and d2 are equal to either 0 or 1 depending on the
child-cell considered, and QM (7.8) is used in both dimensions. The operator QM2 , derived
from a tensor product is given by

QM2 (k1, k2, uj,k) =
M∑
d1=1

ξd1

M∑
d2=1

ξd2(uj,k1+d1,k2+d2 − uj,k1−d1,k2+d2

−uj,k1+d1,k2−d2 + uj,k1−d1,k2−d2). (7.10)

In the same way, 3D interpolations are de�ned by introducing the operator QM3 :

QM3 (k1, k2, k3, uj,k) =
M∑
d1=1

ξd1

M∑
d2=1

ξd2

M∑
d3=1

ξd3(uj,k1+d1,k2+d2,k3+d3

−uj,k1−d1,k2+d2,k3+d3 − uj,k1+d1,k2−d2,k3+d3

−uj,k1+d1,k2+d2,k3−d3 + uj,k1−d1,k2−d2,k3+d3

+uj,k1−d1,k2+d2,k3−d3 + uj,k1+d1,k2−d2,k3−d3

−uj,k1−d1,k2−d2,k3−d3). (7.11)

Hence,

ûj+1,2k1+d1,2k2+d2,2k3+d3 = uj,k + (−1)d1QM (k1, uj,k) + (−1)d2QM (k2, uj,k)

+(−1)d3QM (k3, uj,k)

−(−1)(d1+d2)QM2 (k1, k2, uj,k)

−(−1)(d1+d3)QM2 (k1, k3, uj,k)

−(−1)(d2+d3)QM2 (k2, k3, uj,k)

+(−1)(d1+d2+d3)QM3 (k1, k2, k3, uj,k), (7.12)
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with k = (k1, k2, k3) ∈ Z3. As before, d1, d2, and d3 are equal to either 0 or 1.

7.1.3 Multiresolution Transform

With the projection and prediction inter-level operators, the solution UJ at the �nest grid
of size NJ is encoded by a multiresolution transform M into a multi-scale representation
MJ (3.75), by means of the Algorithm 7.1. In general, the sets Sj with j ∈ N0

⋂
[j0, J ]

are distributed in NR trees Λr for r = 1, . . . , NR, where NR denotes the number of roots in
the entire tree representation, and thus NJ = NR2dJ . For the moment this tree structure
is useless because all cells are considered, and the representation on the leaves L(Λr) of size
NL =

∑NR
r=1 #(L(Λr)) coincides with the discretized solution at the �nest grid, i.e.,NL = NJ .

Algorithm 7.1 Encoding by multiresolution transformM : UJ 7−→MJ .

1: Input: UJ of size NL =
∑NR

r=1 #(L(Λr)), given by cell-averaged values uj,k such that
(j, k) ∈

⋃
r∈[1,NR] L(Λr).

2: for r = 1→ NR do
3: for j = J − 1→ j0 do
4: for k s.t. (j, k) ∈ Sj

⋂
Λr do

5: Compute all uj,k at grid level j, from uj+1,k′ with k′ ∈ Ik at level j + 1, by using
the projection operator P jj−1 (7.6).

6: Compute for each Ik, 2d − 1 predicted values ûj+1,k′ by polynomial interpolation
(7.8), (7.10), or (7.11), and the corresponding details de�ned by (3.71): dj+1,k′ =
uj+1,k′ − ûj+1,k′ .

7: Save details in the array Dj+1, where #(Dj+1) = r(2d−1)2dj if NL = NJ . If needed,
the last detail can be computed from

∑
k′∈Ik

dj+1,k′ = 0, according to (3.73).
8: Encode the solution by replacing Uj+1 by (Uj ,Dj+1).
9: end for
10: end for
11: end for
12: Output: MJ = (Uj0 ,Dj0+1,Dj0+2, · · · ,DJ) of size NL.

With this new data representation on the wavelet space, the details in Dj account for the local
spatial smoothness in the solution, according to (3.105). Nevertheless, a decoding procedure is
also necessary to retrieve the representation on the physical space of the variables. The latter
is done by means of the inverse multiresolution transformM−1, following the Algorithm 7.2.

Algorithm 7.2 Decoding by inverse multiresolutionM−1 : MJ 7−→ UJ .

1: Input: MJ = (Uj0 ,Dj0+1, · · · ,DJ) of size NL, given by the representation on the coarsest
grid: Uj0 , and the set of detail arrays: (Dj0+1, · · · ,DJ).

2: for r = 1→ NR do
3: for j = j0 → J − 1 do
4: for k s.t. (j, k) ∈ Sj

⋂
Λr do

5: Compute for each uj,k, 2d − 1 predicted ûj+1,k′ such that k′ ∈ Ik, by polyno-
mial interpolation (7.8), (7.10), or (7.11), and the corresponding uj+1,k′ by (3.71):
uj+1,k′ = ûj+1,k′ + dj+1,k′ .
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6: Compute last remaining uj+1,k′ from uj,k and the 2d − 1 computed uj+1,k′ , using
the projection operator P jj−1 (7.6).

7: Save uj+1,k′ in the array Uj+1, where #(Uj+1) = r2d(j+1) if NL = NJ .
8: Decode the solution by replacing (Uj ,Dj+1) by Uj+1.
9: end for
10: end for
11: end for
12: Output: UJ of size NL =

∑NR
r=1 #(L(Λr)), given by cell-averaged values uj,k such that

(j, k) ∈
⋃
r∈[1,NR] L(Λr).

Notice that the algorithms 7.1 and 7.2 remain valid even if only some indices are retained
from the sets Sj , as long as the corresponding adapted trees Λr are graded. In this case, the
representation of UJ on the leaves

⋃
r∈[1,NR] L(Λr) does not coincide anymore with the �nest

representation, i.e.,NL 6= NJ .

7.2 Tree-Structured Data

Introducing Λr,ε, the smallest graded tree containing the adapted thresholded tree Λr obtained
by TΛr (3.87), we detail in the following the thresholding procedure and the construction of
the graded trees. The trees Λr are built based on the sets ∇j ⊂ Sj , obtained by removing for
each γ ∈ Sj−1 one µ ∈ Sj such that Ωµ ⊂ Ωγ , in order to ensure the one-to-one correspondence
(3.74). Enlarging Λr by adding the missing child-cells, generates the set R(Λr). The re�nement
operator R builds the tree Λ̃r,ε containing Λr,ε, such that the Harten's heuristics (3.102) are
guaranteed. In this part, we introduce a binary �ag tj,k which indicates whether the index
(j, k) is kept throughout the successive trees, from Λr to Λ̃r,ε. Initially, tj,k = .false., except
for j = j0, i.e., tj0,k = .true..

7.2.1 Thresholding and Graduation

The Algorithm 7.3 illustrates the thresholding procedure that de�nes the trees Λr, according
to (3.87).

Algorithm 7.3 Thresholding the multiresolution representation: TΛrMJ .

1: Input: MJ = (Uj0 ,Dj0+1, · · · ,DJ) of size NL =
∑NR

r=1 #(L(Λr)).
2: for r = 1→ NR do
3: for j = J → j0 + 1 do
4: for k s.t. (j, k) ∈ Sj

⋂
Λr do

5: if |dj,k| ≥ εj then
6: tj,k = .true.⇒ (j, l) ∈ Λr.
7: end if
8: end for
9: end for
10: end for
11: Output: MJ = (Uj0 ,Dj0+1, · · · ,DJ) of size NL =

∑NR
r=1 #(L(Λr)).

Notice that according to (3.87), for all tj,k = .false., i.e., |dj,k| < εj , we should impose dj,k = 0
into Λr. This is not done at this stage because the graduation procedure might keep some cells



Sect. 7.2 - Tree-Structured Data 167

with |dj,k| < εj , and thus imposing dj,k = 0 will introduce some errors while coming back to
the physical representation the in Algorithm 7.2.
In the original hyperbolic applications in [Har94a, Har95], the level dependent threshold values
εj were given by (3.96):

εj = 2d(j−J)ε, j ∈ [j0, J ], (7.13)

which in terms of the nonlinear approximation in (3.42), implies q = 1 and p = ∞ for the
Hölder's inequality [CDD04]. The details dj,k de�ned by (3.71) were thus evaluated in the
uniform norm |dj,k|∞, as done in (3.92) [CKMP03, Mül03]. In this implementation, we adopt
a set of εj given rather by (4.15):

εj = 2
d
2

(j−J)ε, j ∈ [j0, J ], (7.14)

in order to be consistent with the evaluation of the approximation errors in an L2-norm frame-
work. Concerning (3.42), the latter choice implies q = p = 2 as in the general orthonormal and
biorthogonal wavelets context. We must de�ne in this case the measure ‖dj,k‖L2(Σj,k), where

Σj,k stands for the support of the dual wavelet ψ̃j,k into (3.80).
In this implementation, we have thus established a discretized `2-norm:

‖dj+1,k′‖`2(χΩj,k
) = 2−d/2

∑
k′∈Ik

d2
j+1,k′

1/2

, (7.15)

which considers that supp ψ̃j+1,k′ = supp φ̃j,k = χΩj,k for the Haar wavelet into (3.80), i.e.,N =
1 and M = 0 for the polynomial interpolations in Table 7.1. In this way, according to (7.15)
all the 2d child-cells Ωj+1,k′ associated with Ωj,k involve the same ‖dj+1,k′‖`2(χΩj,k

), to compare

with εj+1 in the Algorithm 7.3. We have nevertheless kept the same estimate (7.15) for N ≥ 3
and M ≥ 1, to restrain the measure ‖dj+1,k′‖`2(χΩj,k

) to only 2d cells. In a more general case,

for a vector function U : R× Rd → Rm, given by

U(t, x) = (u(1)(t, x), u(2)(t, x), . . . , u(m)(t, x))T , (7.16)

for m variables where u(i)
j,k represents the cell-average of variable u

(i)(t, x) in Ωj,k given by (7.5),
the �nal estimate of the local detail is computed by

‖dj+1,k′‖`2(χΩj,k
) = m−1/2

m∑
i=1

‖d(i)
j+1,k′‖`2(χΩj,k

)

(
max
x∈Ω
|u(i)(t, x)|

)−1/2

, (7.17)

based on (7.15) for the estimate for each variable, and normalized by the maximum value of
the corresponding variable.
The Algorithm 7.4 allows us to consider only graded tree structures based on the stencil needed
to perform the polynomial interpolations. Additionally, we consider that if a cell (j + 1, k′) is
contained in Λr, then the same holds for the 2d − 1 (resp., 2d − 2) other cells with k′ ∈ Ik in
the extended R(Λr) (resp., in Λr).

Algorithm 7.4 Graduation of the tree structure: Λr → Λr,ε.

1: Input: MJ = (Uj0 ,Dj0+1, · · · ,DJ) of size NL =
∑NR

r=1 #(L(Λr)).
2: for r = 1→ NR do
3: for j = J − 1→ j0 do
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4: for k′ s.t. (j + 1, k′) ∈ Sj+1
⋂

Λr do
5: if tj+1,k′ = .true. then
6: for k′ ∈ Ik do
7: tj+1,k′ = .true.⇒ (j + 1, k′) ∈ R(Λr).
8: end for
9: if j ≥ j0 + 1 then
10: for d3 = −M →M do
11: for d2 = −M →M do
12: for d1 = −M →M do
13: tj,k1+d1,k2+d2,k3+d3 = .true.⇒ (j, k1 + d1, k2 + d2, k3 + d3) ∈ R(Λr).
14: end for
15: end for
16: end for
17: end if
18: end if
19: end for
20: end for
21: end for
22: Output: Λr → Λr,ε, with MJ = (Uj0 ,Dj0+1, · · · ,DJ) of size NL =

∑NR
r=1 #(L(Λr,ε)).

Algorithms 7.3 and 7.4 are �nally represented by the combined threshold-graduation operator
TΛr,ε , as seen in chapters 3 and 4.

7.2.2 Re�nement of the Tree

The re�nement operator R generates the �nal tree data structure Λ̃r,ε, on which the time
evolution of the solution u(t, x) will be performed. The main concern is to ensure Harten's
heuristics (3.102) during one time step evolution. Harten proposed in [Har94a, Har95] two
re�nement criteria given by (3.103) and (3.104) for the 1D dyadic con�guration. In this
implementation we consider the �rst Harten's criterion (3.103), and a more conservative second
criterion (4.13), as established in Chapter 4. These criteria are implemented by the Algorithm
7.5.

Algorithm 7.5 Re�nement of the tree structure: Λr,ε → Λ̃r,ε.

1: Input: MJ = (Uj0 ,Dj0+1, · · · ,DJ) of size NL =
∑NR

r=1 #(L(Λr,ε)).
2: for r = 1→ NR do
3: for j = J → j0 do
4: for k s.t. (j, k) ∈ Sj

⋂
L(Λr,ε) do

5: if tj,k = .true. then
6: if j ≥ j0 + 1 then {First re�nement criterion}
7: for id = 1→ d do
8: for l = −k̄ → k̄ do
9: tj,k(id)+l = .true.
10: if (j, k(id) + l) /∈ R(Λr,ε) then
11: Apply steps 6-17 of Algorithm 7.4 for graduation, with j = j − 1.
12: Set dj,k(id)+l = 0.
13: (j, k(id) + l) ∈ R(Λr,ε).
14: end if
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15: end for
16: end for
17: end if
18: if |dj,k| ≥ εj and j < J then {Second re�nement criterion}
19: for k′ ∈ Ik do
20: tj+1,k′ = .true..
21: if (j + 1, k′) /∈ R(Λr,ε) then
22: Apply steps 6-17 of Algorithm 7.4 for graduation.
23: Set dj+1,k′ = 0.
24: (j + 1, k′) ∈ R(Λr,ε).
25: end if
26: end for
27: end if
28: end if
29: end for
30: end for
31: end for
32: Output: Λr,ε → Λ̃r,ε, with MJ = (Uj0 ,Dj0+1, · · · ,DJ) of size NL =

∑NR
r=1 #(L(Λ̃r,ε)).

Notice that the �rst re�nement criterion in the Algorithm 7.5 can be performed only at the
highest level j = J . Then, the graduation (Algorithm 7.4) can be applied with M̄ = M+dk̄/2e
as grading parameter for dimensions x, y, and z, and M̄ = M for the remaining diagonal
cells with respect to (j, k). Alternatively, the second re�nement criterion can be directly
implemented during the thresholding (Algorithm 7.3). Eventually, the �nal step summarized
in Algorithm 7.6 deletes completely all cells that are not included in the thresholded, graded,
and re�ned tree Λ̃r,ε.

Algorithm 7.6 Deletion of super�uous cells.

1: Input: MJ = (Uj0 ,Dj0+1, · · · ,DJ) of size NL =
∑NR

r=1 #(L(Λ̃r,ε)).
2: for r = 1→ NR do
3: for j = J − 1→ j0 do
4: for k′ s.t. (j + 1, k′) ∈ Sj+1

⋂
Λ̃r,ε do

5: if tj+1,k′ = .false. then
6: for k′ ∈ Ik do
7: Delete (j + 1, k′).
8: end for
9: end if
10: end for
11: end for
12: end for
13: Output: MJ = (Uj0 ,Dj0+1, · · · ,DJ) of size NL =

∑NR
r=1 #(L(Λ̃r,ε)).

7.3 Fully Adaptive Multiresolution Scheme

In this part, we recall some issues concerning the adaptive multiresolution scheme established
in Chapter 4, and �rst presented in Chapter 3, and introduce the adaptive multiresolution
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algorithm implemented in the MBARETE code.

7.3.1 Data Initialization

Let us suppose that initially we have the function u(t, x), discretized on a uniform mesh
corresponding to the grid level j0 ∈ [j0, J ]: Uj0 , and thus L(Λr) initially coincides with Sj0

and NL = NR2dj
0
. The following Algorithm 7.7 allows us to transform an initial representation

on a uniform mesh into a compressed adapted one, over a set of grids of level j ∈ [j0, J ].

Algorithm 7.7 Data initialization.

1: Input: Uj0 of size 2dj
0
, given by cell-averaged values uj0,k with (j0, k) ∈ Sj0 .

2: for j = j0 → J − 1 do
3: Encode values by multiresolution transformM : Uj 7→Mj with Algorithm 7.1.
4: Threshold data Mj by TΛr with Algorithm 7.3.
5: Grade tree Λr → Λr,ε with Algorithm 7.4.
6: Delete super�uous cells in Λr,ε considering Λ̃r,ε ≡ Λr,ε in Algorithm 7.6.
7: Re�ne tree Λr,ε → Λ̃r,ε by locally adding cells at next grid levels by the second re�nement

criterion in Algorithm 7.5.
8: Decode values by inverse multiresolution transform M−1 : Mj+1 7→ Uj+1 with Algo-

rithm 7.2.
9: If possible, compute average values uj+1,k at grid level j + 1 within L(Λ̃r,ε).
10: end for
11: Output: UJ of size NL =

∑NR
r=1 #(L(Λ̃r,ε)), given by cell-averaged values uj,k with (j, k) ∈⋃

r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

7.3.2 Introduction of Phantom Cells

In Chapter 4 we have decided to use phantom cells for the �ux evaluations, as detailed in
[Mül03] and implemented in [RSTB03]. The adapted representation is always given on the
leaves of the adapted tree L(Λ̃r,ε), according to the procedures previously introduced. The
cell phantoms are temporarily added to R(Λ̃r,ε) to compute the �uxes, and their values are
computed by polynomial interpolations. However, no other multiresolution or time integra-
tion operation is performed on them. We represent by P (Λ̃r,ε) the set of indices containing
R(Λ̃r,ε) and the phantom cells. These cells must be introduced contiguously to the leaves
of the tree, and their number is �xed by the stencil of the �ux computation scheme on the
outer direction, denoted RF . The number of phantom cells added to the current tree is
given by: NP = #(

⋃
r∈[1,NR] P (Λ̃r,ε)\R(Λ̃r,ε)). The Algorithm 7.8 illustrates the introduc-

tion of the phantom cells in the tree structure, and the computation of their cell values.

Algorithm 7.8 Introduction of the phantom cells: R(Λ̃r,ε)→ P (Λ̃r,ε).

1: Input: MJ = (Uj0 ,Dj0+1, · · · ,DJ) of size NL =
∑NR

r=1 #(L(Λ̃r,ε)).
2: for r = 1→ NR do
3: for j = J → j0 + 1 do
4: for k s.t. (j, k) ∈ Sj

⋂
L(Λr,ε) do

5: if tj,k = .true. then
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6: for id = 1→ d do
7: for l = −RF → RF do
8: if (j, k(id) + l) /∈ R(Λr,ε) then
9: tj,k(id)+l = .true.
10: Apply steps 6-17 of Algorithm 7.4 for graduation, with j = j − 1.
11: Set dj,k(id)+l = 0.
12: (j, k(id) + l) ∈ P (Λr,ε).
13: end if
14: end for
15: end for
16: end if
17: end for
18: end for
19: end for
20: Output: MJ = (Uj0 ,Dj0+1, · · · ,DJ) of size NL =

∑NR
r=1 #(L(Λ̃r,ε)), and NP phantom

cells included in
⋃
r∈[1,NR] P (Λ̃r,ε)\R(Λ̃r,ε).

Notice that to perform the interpolations and estimate the NP cell values introduced in Al-
gorithm 7.8, the graduation of the tree must take into account the presence of phantom cells.
Therefore, if phantom cells are considered, the graduation Algorithm 7.4 might be applied with
M̄ = M + dRF /2e instead of M as grading parameter, and thus the graduation step in the
Algorithm 7.8 would not be necessary.

7.3.3 Construction of the Tree-Structured Data

The following Algorithm 7.10 takes simultaneously into account the thresholding, the gradua-
tion, and the re�nement of the data tree, considering the phantom cells and the previous discus-
sions. Nevertheless, we �rst introduce the Algorithm 7.9 that allows us to locally graduate the
tree for each cell added or kept in the tree.

Algorithm 7.9 Local graduation of the tree.

1: Input: (j + 1, k′) ∈ Λr.
2: for k′ ∈ Ik do
3: tj+1,k′ = .true.⇒ (j + 1, k′) ∈ R(Λr).
4: end for
5: if j ≥ j0 + 1 then
6: for d3 = −M̄ → M̄ do
7: for d2 = −M̄ → M̄ do
8: for d1 = −M̄ → M̄ do
9: tj,k1+d1,k2+d2,k3+d3 = .true..
10: if (j, k1 + d1, k2 + d2, k3 + d3) /∈ R(Λr) then
11: Set dj,k1+d1,k2+d2,k3+d3 = 0.
12: end if
13: (j, k1 + d1, k2 + d2, k3 + d3) ∈ R(Λr).
14: Grade locally for (j, k1 + d1, k2 + d2, k3 + d3) with Algorithm 7.9.
15: end for
16: end for
17: end for



Sect. 7.3 - Fully Adaptive Multiresolution Scheme 172

18: end if
19: Output: Graded structure for level j ∈ [j0, j + 1], related to (j + 1, k′) ∈ Λr.

The �rst step considers that if

(j + 1, k′) ∈ Λr ⇒ ∀ k′ ∈ Ik, (j + 1, k′) ∈ R(Λr), (7.18)

as previously established for this implementation. Moreover, the grading parameter is now
de�ned by

M̄ = M + dk̄/2e+ dRF /2e, (7.19)

taking into account the interpolation stencil, the �rst re�nement criterion, and the introduction
of phantom cells. For the diagonal cells with respect to (j, k), it su�ces to consider M̄ =
M + dRF /2e. Notice that condition (7.18) involves 2dk̄/2e more cells at each side and on
each dimension for the Harten's �rst re�nement criterion (3.103). The tree data structure
is �nally built by means of Algorithm 7.10, recalling that initially tj,k = .false. except for
j = j0, i.e., tj0,k = .true..

Algorithm 7.10 Construction of the tree-structured data: Λr → Λ̃r,ε.

1: Input: MJ = (Uj0 ,Dj0+1, · · · ,DJ) of size NL =
∑NR

r=1 #(L(Λr)).
2: for r = 1→ NR do
3: for j = J → j0 + 1 do
4: for k s.t. (j, k) ∈ Sj

⋂
Λr do

5: if |dj,k| ≥ εj then
6: tj,k = .true.⇒ (j, l) ∈ Λr.
7: Grade locally for (j, k) with Algorithm 7.9.
8: if j = J then {First re�nement criterion at highest level}
9: for id = 1→ d do
10: for l = −k̄ → k̄ do
11: tj,k(id)+l = .true.
12: if (j, k(id) + l) /∈ R(Λr) then
13: Set dj,k(id)+l = 0.
14: end if
15: (j, k(id) + l) ∈ R(Λr).
16: Grade locally for (j, k(id) + l) with Algorithm 7.9.
17: end for
18: end for
19: else {Second re�nement criterion}
20: for k′ ∈ Ik do
21: tj+1,k′ = .true.
22: if (j + 1, k′) /∈ R(Λr) then
23: Set dj+1,k′ = 0.
24: end if
25: (j + 1, k′) ∈ R(Λr).
26: Grade locally for (j + 1, k′) with Algorithm 7.9.
27: end for
28: end if
29: if k s.t. (j, k) ∈ Sj

⋂
L(Λr) then {Introduction of phantom cells}

30: for id = 1→ d do
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31: for l = −RF → RF do
32: if (j, k(id) + l) /∈ R(Λr) then
33: tj,k(id)+l = .true.
34: Set dj,k(id)+l = 0.
35: (j, k(id) + l) ∈ P (Λr).
36: end if
37: end for
38: end for
39: end if
40: end if
41: end for
42: end for
43: end for
44: Output: Λr → Λ̃r,ε with MJ = (Uj0 ,Dj0+1, · · · ,DJ) of size NL =

∑NR
r=1 #(L(Λ̃r,ε)), and

NP phantom cells included in
⋃
r∈[1,NR] P (Λ̃r,ε)\R(Λ̃r,ε).

7.3.4 Adaptive Multiresolution Algorithm

Based on the previous algorithms, the complete adaptive multiresolution scheme is imple-
mented following the Algorithm 7.11, that details the numerical strategy introduced in Chapter
4 concerning dynamic mesh adaptation.

Algorithm 7.11 Fully adaptive multiresolution scheme.

1: INITIALIZATION:
2: De�ne: set of grid levels [j0, J ], initialization grid j0, number of roots NR, threshold value
ε, dimension of the problem d, computational domain Ω ⊂ Rd, time domain of integration
t ∈ [t0, T ].

3: The coarsest grid is given by NR cells Ωj0,k, such that
⋃
j=j0

Ωj,k = Ω.
4: for j = j0 → j0 − 1 do {Create initial set of grids}
5: Create successive dyadic partitions Ωj+1,k′ of Ωj,k, such that (7.3) is veri�ed.
6: end for
7: Compute Uj0 at uniform grid level j0, following (7.5).
8: Data initialization with Algorithm 7.7.
9: t = t0 and n = 0.
10: Input: U0

J of size N0
L =

∑NR
r=1 #(L(Λ̃0

r,ε)), given by cell values u0
j,k such that (j, k) ∈⋃

r∈[1,NR] L(Λ̃0
r,ε) and j ∈ [j0, J ].

11: LOOP IN TIME:
12: while t ≤ T do
13: Encode values by multiresolution transformM : Un

J 7→Mn
J with Algorithm 7.1.

14: Estimate details according to (7.15) and (7.17).
15: Built the tree-structured data Λ̃nr,ε → Λ̃n+1

r,ε with Algorithm 7.10, and Nn
P phantom cells

included in
⋃
r∈[1,NR] P (Λ̃n+1

r,ε )\R(Λ̃n+1
r,ε ).

16: Delete super�uous cells in Λ̃n+1
r,ε with Algorithm 7.6.

17: Decode values by inverse multiresolution transform M−1 : Mn
J 7→ Un

J with Algorithm
7.2, and compute Nn

P phantom value cells by polynomial interpolation (7.8), (7.10), or
(7.11).
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18: Time integration of the solution on the leaves of the trees
⋃
r∈[1,NR] L(Λ̃n+1

r,ε ): Un
J →

Un+1
J , n→ n+ 1, and t→ t+ ∆t.

19: Delete the Nn
P phantom cells.

20: Un+1
J of size Nn+1

L =
∑NR

r=1 #(L(Λ̃n+1
r,ε )), given by cell values un+1

j,k such that (j, k) ∈⋃
r∈[1,NR] L(Λ̃n+1

r,ε ) and j ∈ [j0, J ].
21: end while
22: t = T and n = nT .
23: Output: UT

J of size NnT
L =

∑NR
r=1 #(L(Λ̃nTr,ε )), given by cell values unTj,k such that (j, k) ∈⋃

r∈[1,NR] L(Λ̃nTr,ε ) and j ∈ [j0, J ].

Notice that creating the initial set of grids for j ∈ [j0, j
0] implies de�ning the entire set of

cells
⋃
r∈[1,NR]R(Λr), instead of

⋃
r∈[1,NR] Λr of size NL, according to the de�nition of L(Λr)

introduced in Chapter 3. This means that we are creating more cells than needed since only
NL cells are needed to perform all the previous operations in the wavelet decomposition space,
described by algorithms 7.1-7.10. Nevertheless, the numerical code, brie�y depicted in the
following, considers NΛ cells composed of NL leaves and the cells lying at the coarser grid
levels, i.e.,NΛ =

∑NR
r=1 #(R(Λr)). The number of cells NΛ is given by (4.28) when all cells

are present in the di�erent grids. Even though these underlying cells are not needed in the
previous computations, the inclusion of all cells of the adapted tree eases the programming of
the data structure in terms of navigation and location of cells within the tree.

7.4 Basic Code Implementation

The implemented code represents the tree-structured data as a set of cells linked by pointers in
a Fortran 90/95 programming language. We present in this part the basic elements of the code
for a straightforward implementation of multiresolution techniques as illustrated in [TD11].
See, e.g., [VM99, BMV09] for details on optimization of code and data structures for these
applications.

7.4.1 Data Structure

The cell representation is de�ned as a derived type in a general Fortran environment with the
following components stocked within, as an illustration:

type cell

• A �rst �ag analogous to tj,k, to indicate whether cells are kept, added, or discarded
in Λ̃n+1

r,ε . The second optional �ag allows us to identify phantom cells included in

P (Λ̃n+1
r,ε )\R(Λ̃n+1

r,ε ), if necessary:
logical :: tree =⇒ .true. if it must belong to the tree, and .false. otherwise.
logical :: leave =⇒ .true. if it is a leaf, and .false. if it is a phantom leaf.

• The grid level j of the cell and its position (index) k on the corresponding grid for d
dimensions. The couple (j, k) allows us to de�ne an unique position of each cell into the
whole set of nested grids:
integer :: level

integer, dimension(d) :: index
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• Spatial coordinates of the center of the cell and spatial discretization. These values can
be also calculated at any time knowing the grid level, the index, and the size of the
computational domain:
double precision, dimension(d) :: x

double precision, dimension(d) :: dx

• Local threshold value εj . It depends on ε and the grid level j thought (7.14), and it can
be also calculated on the �y:
double precision :: epsilon

• Array U of size m to save the m variables u(i)
j,k′ , and the corresponding detail |dj,k′ | es-

timated according to (7.15) and (7.17). Depending on the case, 2d − 1 child-cells of the

same parent-cell will save the details d(i)
j,k′ instead of u(i)

j,k′ , while the variable values of

the parent-cell u(i)
j−1,k are saved by the remaining child-cell, during the multiresolution

operations in algorithms 7.1 and 7.2:
double precision, dimension(m) :: U

double precision :: detail

• Right/left �ux on each dimension if �ux evaluations are necessary, and need to be saved
throughout the time integration step:
double precision, dimension(m,d) :: flux

• Pointers on the parent cell, its child cells, and its neighbors on each dimension:
type(cell), pointer :: parent

type(child_cell), dimension(2**d) :: children

type(neighbor_cell), dimension(d) :: neighbors

end type cell

We de�ne some new derived type structures of Fortran 90/95, called child_cell and
neighbor_cell, to generate the array of pointers:

type child_cell

• type(cell), pointer :: child

end type child_cell

type neighbor_cell

• type(cell), pointer :: previous

• type(cell), pointer :: next

end type neighbor_cell

Other computing parameters or local physical properties might be also saved into the cell-type.
However, it is important to measure the potential bene�ts of whether saving or computing the
various parameters or variables. A compromise must be made considering the availability of
computing resources and the type of application.
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7.4.2 General Code Structure

In a Fortran 90/95 environment, a pointer is just an alias to the target. Nevertheless, we
take advantage of the fact that each pointer has a di�erent state, depending on whether it is
associated with another object. We work then with cells that lie at di�erent grids and that
are not necessarily arranged in a contiguous way. Hence, we must conceive the mechanisms
to navigate through the tree structure. In this implementation, we adopt a recursive strategy
in which one moves from one cell to another passing by the child-cell of the �rst, and by the
consecutive children, until one gets to the desired cell. At each step, the state of the pointers
tells us whether the target exists. In this recursive way, we are able to locate leaves or any
cell, and the same kind of procedure is conducted in the opposite situation from leaves towards
roots when necessary. Pointers to neighbors as well as other �ags or indicators are not strictly
necessary but eases considerably the searching process for certain routines. Notice that this is
a fully local approach because we never consider more than one cell at the same time.
In order to illustrate this, let us consider a set of routines which are successively executed
in the main program. For instance, the evaluation routine is called in the main program
and involves computations at the leaves of the tree. The tree structure was previously built,
from the roots, by similar navigating procedures. Then, each step is performed into the main
program as follows:

do i3 = 1, N_R(3)

do i2 = 1, N_R(2)

do i1 = 1, N_R(1)

current => root(i1, i2, i3)

call evaluation(current)

enddo

enddo

enddo

where

type(child_cell), dimension(N_R(1),N_R(2),N_R(3)) :: root

type(cell) :: current

Into a general routine, in this example evaluation, the recursive scheme to evaluate a function
only on the leaves, reads as follows:

recursive subroutine evaluation(current)

if (.not.associated(current%children(1))) then

! we are on a leaf

current%u = ....

else

do i = 1, 2**d

call evaluation(current%children(i))

enddo

endif

end subroutine evaluation

In this recursive way, we are able to locate the leaves by considering the state of the pointers
that link cells at di�erent levels. The same kind of procedure is conducted in the opposite case,
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from the leaves towards the roots. This is illustrated in the following example where some value
is known on the leaves and we would like to propagate the information to the roots:

recursive subroutine evaluation(current)

if (.not.associated(current%children(1))) then

! we are on a leaf, nothing is done

else

do i = 1, 2**d

call evaluation(current%children(i))

enddo

current%u = ....

endif

end subroutine evaluation

Other parameters as the indices of the cells or the pointers to the neighbors can be taken into
consideration to accelerate the research, depending on the routine.



Chapter 8

Description of Time Operator Splitting

in the MBARETE Code

In this chapter, we will discuss some particular features of the time operator splitting technique
implemented in the MBARETE code. In particular, a di�erent data structure is considered
for the time integration operations. The reaction and di�usion algorithmic implementations
will be explained in detail, and constitute the two possible con�gurations for local integration
either leaf by leaf, or over the whole set of leaves of the tree structure, where the latter set
corresponds to an adapted grid representation. Further extensions follow similar patterns.

8.1 Data Representation for Time Integration

We have seen in the previous Chapter 7 that a tree-structured data was implemented in the
code to represent the dynamically adapted grid and the underlying meshes. Nevertheless,
the time integration of the solution takes place only at the leaves of the tree, i.e., the resulting
adapted mesh. In order to avoid navigating the tree structure to locate the cells at the adapted
mesh, we de�ne ΦL = (φi)i=1,...,NL

, as the set of leaves of the tree representation:

φni ←→ Ωj,k, s.t. (j, k) ∈
⋃

r∈[1,NR]

L(Λ̃nr,ε), i = 1, . . . , NL, (8.1)

for a set of grid levels with j ∈ [j0, J ]. For the uniform mesh case, SJ is equivalent to⋃
r∈[1,NR] L(Λ̃nr,ε). We de�ne also |φni | := iL = (j, k), where iL identi�es each leaf-cell (j, k)

within the set Φn
L. Algorithm 8.1 illustrates the de�nition of Φn

L given by (8.1).

Algorithm 8.1 Construction of the set of leaves of Λ̃r,ε: ΦL.

1: Input: UJ of size NL =
∑NR

r=1 #(L(Λ̃r,ε)), given by cell values uj,k such that (j, k) ∈⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

2: i = 1.
3: for r = 1→ NR do
4: for j = j0 → J do
5: for k s.t. (j, k) ∈ Sj

⋂
L(Λ̃r,ε) do

6: iL = (j, k).
7: Ωj,k −→ φi.
8: i = i+ 1.
9: end for
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10: end for
11: end for
12: Output: UJ of size NL = #(ΦL), given by cell values uiL with iL ∈

⋃
r∈[1,NR] L(Λ̃r,ε) and

j ∈ [j0, J ].

Notice that the introduction of the set ΦL would not be necessary if we considered the trees Λr
instead of R(Λr), as tree representation in the code. The Algorithm 8.1 is performed during
the construction of the tree structure in the global Algorithm 7.11.

Basic Code Implementation

The implementation of the set ΦL is straightforward with the data structure considered for the
multiresolution technique in Chapter 7. For instance, it su�ces to consider:

type(child_cell), dimension(N_L) :: PHI

with the same cell type as for the leaves. Additionally, the recursive operations are replaced
by a single loop over the leaves of the tree. For instance:

subroutine evaluation

do i = 1, N_L

PHI(i)%u = ....

enddo

end subroutine evaluation

The same information per cell is often not needed for both multiresolution and time integration
procedures. Therefore, a better solution as �nally implemented in the code, de�nes a new leaf
type, similar to the previous cell type, such that the multiresolution or integration parameters
are, respectively, saved in the cell or leaf types, depending on the status of the cell.

8.2 Time Operator Splitting Scheme

Let us now illustrate with more details the construction of the operator splitting technique
introduced in Chapter 4. One of the key point of such an approach is that the implementation
is given by an independent assemblage of the dedicated solvers for each split subproblem.
In what follows, we illustrate the general procedure for the solution of the reaction and the
di�usion problems, which remain similar for other time integration solvers di�erent from the
ones considered in this application.

8.2.1 Time Integration of the Reaction

Let us consider the vector function U : R× Rd → Rm given by

U(t, x) = (u(1)(t, x), u(2)(t, x), . . . , u(m)(t, x))T , (8.2)

for m variables, in the general problem (1.52). The Algorithm 8.2 schematically illustrates the
time integration of the associated reaction subproblem with Radau5 [HW96], over a time step
∆t. The Radau5 solver is used with the parameters given by default (see [HW96]), except for
the initial time step ∆tR, and the absolute and relative tolerances, Atol and Rtol , previously
mentioned in Chapter 2. In particular, the cell (or leaf) type saves the last time step used in
the previous time iteration on each leaf: ∆tR,iL , if the leaf was present during the iteration. For
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the �rst time iteration, all the ∆tR,iL are set equal to ∆t. Concerning the tolerance parameters,
they are in general �xed as Atol = Rtol = ηRadau5, as previously considered in the numerical
illustrations of chapters 4 and 5. Radau5 is a fully implicit Runge-Kutta method as detailed in
Chapter 2, and it often requires an important memory space to perform the various associated
computations. For the cases that we are considering, the memory requirements are mainly set
by the work array WRK1 of size L1:

L1 = 4×m×m+ 12×m+ 20, (8.3)

which is rather minimal, compared with a coupled resolution of the problem with m × NL

variables. Other dedicated solvers for sti� ODEs might be implemented in a similar way.

Algorithm 8.2 Integration of the reaction problem with Radau5.

1: Input: UJ of size (m,NL) = (m,#(ΦL)), given by m arrays U
(i)
J with cell values u(i)

iL
,

i = 1, . . . ,m, iL ∈
⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

2: for iL = 1→ NL do
3: Set accuracy tolerances: Atol = Rtol = ηRadau5.
4: Guess initial time step integration: ∆t0R = max(∆tR,iL ,∆t).

5: Time integration of (u
(i)
iL

)mi=1 with Radau5: t→ t+ ∆t with ∆t0R, Atol , Rtol .

6: Update solution: u(i)
iL
→ ū

(i)
iL
, i = 1, . . . ,m.

7: Update leaf time step: ∆tR,iL = ∆tR.
8: end for
9: Output: ŪJ of size (m,NL) = (m,#(ΦL)), given by m arrays Ū

(i)
J with cell values ū(i)

iL
,

i = 1, . . . ,m, iL ∈
⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

The Jacobians must be computed by Radau5 either numerically according to (2.76), or ana-
lytically following a routine supplied by the user. The user must also supply the routine to
locally evaluate the function F : Rm → Rm, for instance, in (1.52), for each set (u

(i)
iL

)mi=1, within
the time integration process. Let us recall that Radau5 will adapt its integration time steps
∆tR from the initial guess ∆t0R, according to Atol and Rtol . The last time step will be then
saved as ∆tR,iL for the next iteration. The previous algorithm can be easily parallelized by
distributing the loop in iL among Nproc processors, where each iL represents an independent
system of ODEs. In shared memory architectures, the latter procedure can be implemented,
for instance, with the OpenMP library, with neither synchronization stages nor data exchange
among the processors. The load balancing is hence practically optimal for this con�guration.
The work array WRK1 must be this time of size (Nproc, L1).

8.2.2 Time Integration of the Di�usion

The time integration of the di�usion problem, for instance, (4.2), is performed by the ROCK4
solver [Abd02]. The Algorithm 8.3 illustrates this integration over a time step ∆t. Since the
ROCK method is based on an explicit Runge-Kutta scheme, there are much less parameters to
de�ne in advance. In this implementation, the solution is progressively advanced in time with
the same time step ∆tD, uniformly in space. These time steps are adapted according also to
absolute and relative tolerances, Atol and Rtol , �xed in this case as Atol = Rtol = ηROCK4.
As for the reaction integration, the last time step is saved for the next time iteration as ∆tD,ite.
For the �rst iteration, ∆tD,0 is taken equal to ∆t. The spectral radius needed to estimate the
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number of inner stages that ensures stability according to (4.12), is generally computed by
ROCK4, although it can be also approximated by (2.18) for problems with linear di�usion. In
the latter case, if we set ROCK4 to estimate the spectral radius, it is also set to do it only
once during the global time step ∆t. In a general con�guration given, for instance, by the
di�usion problem in (1.52), we have to simultaneously solve m × NL variables. The memory
requirements of the ROCK4 solver are established in this case by the work array WRK2 of size
L2:

L2 = 8×m×NL, (8.4)

in the general case in which the spectral radius is computed by ROCK4. Otherwise, L2 =
7×m×NL.

Algorithm 8.3 Integration of the di�usion problem with ROCK4.

1: Input: UJ of size (m,NL) = (m,#(ΦL)), given by m arrays U
(i)
J with cell values u(i)

iL
,

i = 1, . . . ,m, iL ∈
⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

2: Set accuracy tolerances: Atol = Rtol = ηROCK4.
3: Guess initial time step integration: ∆t0D = max(∆tD,ite,∆t).
4: Time integration of UJ with ROCK4: t→ t+ ∆t with ∆t0D, Atol , Rtol .
5: Update solution: UJ → ŪJ .
6: Update di�usion time step: ∆tD,ite+1 = ∆tD.

7: Output: ŪJ of size (m,NL) = (m,#(ΦL)), given by m arrays Ū
(i)
J with cell values ū(i)

iL
,

i = 1, . . . ,m, iL ∈
⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

In this implementation we have adopted a �nite volume discretization approach for structured
Cartesian meshes. The evaluation of the di�usion term: ∂x · (D(U)∂xU) involves the computa-
tion of �uxes through the boundaries ∂ΩiL of each leaf-cell ΩiL : F+

id
and F−id , which account for

the �uxes on the right and on the left of the cell in each direction, id = 1, . . . , d. These �uxes are
evaluated at the interfaces of the cell, as well as the di�usion coe�cients inside, on a locally uni-
form mesh with the introduction of the phantom cells, as detailed in Chapter 7. The Algorithm
8.4 illustrates the steps to evaluate the �uxes within ROCK4, i.e., at each internal stage s com-
puted by (4.12). The latter procedure is general for any explicit solver or other transport opera-
tor like convective ones, in the case where local structured meshes are considered, as mentioned
in Chapter 3. In this implementation a classical centered second order space discretization was
implemented for the di�usion problem.

Algorithm 8.4 Flux evaluation with phantom cells.

1: Input: UJ of size (m,NL) = (m,#(ΦL)), given by m arrays U
(i)
J with cell values u(i)

iL
,

i = 1, . . . ,m, iL ∈
⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

2: for r = 1→ NR do
3: for j = J − 1→ j0 − 1 do
4: for k s.t. (j, k) ∈ Sj

⋂
Λ̃r,ε do

5: for k′ ∈ Ik do
6: if j ≥ j0 and (j + 1, k′) ∈ P (Λ̃r,ε)\R(Λ̃r,ε) then {Update phantom cells}

7: Update all (u
(i)
j,k(id)+l)

m
i=1 with id = 1, . . . , d, |l| ≤ M , and such that (j, k(id) +

l) /∈ L(Λ̃r,ε) at grid level j, from (u
(i)
j+1,k′′)

m
i=1 with k′′ ∈ Ik(id)+l at level j + 1,

by using the projection operator P jj−1 (7.6).
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8: Compute (u
(i)
j+1,k′)

m
i=1 = (û

(i)
j+1,k′)

m
i=1 by polynomial interpolation (7.8), (7.10),

or (7.11).
9: end if
10: end for
11: end for
12: for k′ s.t. (j + 1, k′) ∈ Sj+1

⋂
L(Λ̃r,ε) do

13: for id = 1→ d do {Compute �uxes}

14: Compute F
+,(i)
id

and F
−,(i)
id

, for i = 1, . . . ,m at grid level j + 1.
15: end for
16: end for
17: end for
18: end for
19: Output: Numerical �uxes F

+,(i)
id

and F
−,(i)
id

, i = 1, . . . ,m, at interfaces ∂ΩiL with iL ∈⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

The �ux evaluations basically involves two stages. The �rst computations are needed to update
the interpolation stencils of the phantom cells, since the time evolution is not performed on
them. In the second part, we evaluate the �uxes direction by direction, as in a standard
uniform mesh con�guration. It can be inferred that a locally unstructured approach for the
�ux computations, i.e.,without phantom cells, will surely improve the global performance of the
strategy, although the accuracy orders of the spatial discretizations are locally reduced. We can
also conclude that a low number of stages s for the stabilized ROCK method will be advisable,
and very convenient for the global performance of the method. For high number of stages,
ROCK will however keep the advantage of being more stable than standard explicit Runge-
Kutta methods, with less memory requirements than an implicit solver. Further developments
and improvements on these issues constitute a continuous research in the �eld.
Alternatively, instead of Algorithm 8.4, another approach which was also implemented and
tested in the code, considers the construction of the discretized di�usion operator. The idea
is to accelerate the computations by performing matrix-vector products at each ROCK stage
taking into consideration that the discretized operator results often in a sparse matrix repre-
sentation, specially appropriate for linear di�usion problems as illustrated in [DDD+12]. In
this case this matrix needs to be built only once for uniform meshes and once per time iteration
for adapted grids. From the numerical tests performed with this approach, we can conclude
that the sparsity of the matrix is importantly reduced with the inclusion of the interpolation
stencils of the phantoms, specially in 3D. The phantom cells are not explicitly computed but
represented as local functions of the leaf-cells through the combined projection/prediction op-
erations used in Algorithm 8.4. These facts and the additional cost of building the matrix for
a highly irregular con�guration in terms of grid distribution, involve less important gains in
CPU time. A comparison of the performance of both schemes reveals an important problem
dependency. Alternatively, the Algorithm 8.4 has the advantage of being simpler and suitable
for a larger range of problems from linear di�usion as in (1.53), to di�usion with variable
dependent transport parameters like in (1.52).
For linear di�usion problems, the Algorithm 8.3 can be also parallelized by considering m
independent integrations of U

(i)
J with i = 1, . . . ,m. The same follows for the �ux evaluations

in Algorithm 8.4. The parallelization of the loop in m implies a reduction of the work array
WRK2, if Nproc is smaller than m, because (8.4) becomes L2 = (Nproc, 8 × NL), and the
elimination of all loops in m for both algorithms which results in gains of CPU time.
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8.2.3 Time Operator Splitting Algorithm

With the de�nition of the previous algorithms, the Algorithm 8.5 illustrates the implementation
of the splitting technique during a splitting time step ∆t, for the Strang scheme S∆t

2 in (4.5)
and (5.5).

Algorithm 8.5 Time operation splitting scheme: S∆t
2 .

1: Input: Solution UJ at t = t, of size (m,NL) = (m,#(ΦL)), given by m arrays U
(i)
J with

cell values u(i)
iL
, i = 1, . . . ,m, iL ∈

⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

2: Set accuracy tolerances for split reaction and di�usion time integration: ηRadau5 and
ηROCK4.

3: For t → t + ∆t/2: time integration of UJ for the reaction problem with Radau5 by
Algorithm 8.2.

4: Update solution: ŪJ → UJ .
5: For t→ t+∆t: time integration of UJ for the di�usion problem with ROCK4 by Algorithm

8.3. At each internal stage s of ROCK4, the �uxes are evaluated with Algorithm 8.4.
6: Update solution: ŪJ → UJ .
7: For t → t + ∆t/2: time integration of UJ for the reaction problem with Radau5 by

Algorithm 8.2.
8: Update solution: ŪJ → UJ .
9: Update time: t→ t+ ∆t.
10: Output: Strang solution UJ at t = t + ∆t, of size (m,NL) = (m,#(ΦL)), given by m

arrays U
(i)
J with cell values u(i)

iL
, i = 1, . . . ,m, iL ∈

⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

The splitting time integration scheme given by Algorithm 8.5 is hence introduced as the time
evolution operator from t to t+ ∆t, in the global multiresolution scheme de�ned by Algorithm
7.11. The choice of the splitting time step ∆t has been discussed in details in Chapter 4.

8.3 Time Adaptive Splitting Scheme

In this part, we detail the inclusion of a dynamic time stepping technique in the previous
splitting strategy, based on the method introduced in Chapter 5.

8.3.1 Implementation of a Splitting Embedded Method

Let us consider again the Strang scheme S∆t
2 in (4.5) and (5.5), de�ned by Algorithm 8.5. The

following Algorithm 8.6 considers the inclusion of the embedded shifted Strang formula (5.7):
S∆t

2,δ . We recall that the shifting time parameter δ veri�es δ ≤ |δmax| < 1/2, and that the shifted

operator will be applied on l ≤ m variables in the general problem (1.52): Ũ ∈ Rl, where Θl

denotes the set of indices of these variables.

Algorithm 8.6 Standard and embedded splitting schemes: S∆t
2 and S∆t

2,δ .

1: Input: UJ of size (m,NL) = (m,#(ΦL)), given by m arrays U
(i)
J with cell values u(i)

iL
,

i = 1, . . . ,m, iL ∈
⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

2: For given accuracy tolerances: ηRadau5 and ηROCK4.
3: For t → t + ∆t/2: time integration of UJ for the reaction problem with Radau5 by

Algorithm 8.2.
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4: New Strang solution: ŪJ → Unew
J .

5: For t→ t+ δ∆t: time integration of l arrays U
new,(i)
J with i ∈ Θl, for the reaction problem

with Radau5 by Algorithm 8.2.
6: New shifted Strang solution: Ū

(i)
J → Ũ

(i)
J for i ∈ Θl.

7: For t→ t+∆t: time integration of U?
J = (Unew

J , ŨJ)T of size (m+ l, NL), for the di�usion
problem with ROCK4 by Algorithm 8.3. At each internal stage s of ROCK4, the �uxes
are evaluated with Algorithm 8.4.

8: Update Strang solution: Ū
(i)
J → U

new,(i)
J for i = 1, . . . ,m.

9: Update shifted Strang solution: Ū
(m+i)
J → Ũ

(i)
J for i = 1, . . . , l.

10: For t→ t+ (1/2− δ)∆t: time integration of U?
J = (Unew

J , ŨJ)T of size (m+ l, NL) for the
reaction problem with Radau5 by Algorithm 8.2.

11: Update Strang solution: Ū
(i)
J → U

new,(i)
J for i = 1, . . . ,m.

12: Update shifted Strang solution: Ū
(m+i)
J → Ũ

(i)
J for i = 1, . . . , l.

13: For t → t + δ∆t: time integration of Unew
J , for the reaction problem with Radau5 by

Algorithm 8.2.
14: Update Strang solution: ŪJ → Unew

J .
15: Output: Initial UJ and Strang solution Unew

J of size (m,NL) = (m,#(ΦL)), given by m

arrays U
(i)
J and U

new,(i)
J , with cell values u(i)

iL
and unew,(i)

iL
, i = 1, . . . ,m; and shifted Strang

solution ŨJ of size (l, NL) = (l,#(ΦL)), given by l arrays Ũ
(i)
J , with cell values ũ(i)

iL
, i ∈ Θl;

iL ∈
⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

Let us make the following remarks concerning the latter algorithm:

• For the �rst reaction step: the time integration of the initial solution UJ is performed
in practice for t → t + max(1/2 + δ, 1/2) × ∆t using the Radau5 routine SOLOUT (see
[HW96]) to extract the intermediate Strang solution at t = ∆t/2 if δ > 0, and the shifted
Strang solution at t = (1/2 + δ)∆t if δ < 0.

• For the di�usion step: the advantage of integrating simultaneously both solutions U?
J =

(Unew
J , ŨJ)T , is that the navigating procedure in Algorithm 8.4 to update the phantom-

cells is performed only once for allm+l variables. Nevertheless, the memory requirements
are increased into (8.4): L2 = 8 × (m + l) × NL. In this case a parallel computation
variable by variable is advisable to overcome memory restrictions wheneverm+l is larger
than Nproc.

• For the second reaction step: the time integration of the combined solutions U?
J is also

performed for t → t + max(1/2 − δ, 1/2) × ∆t, with the intermediate Strang solution
extracted at t = ∆t/2 if δ < 0, and the shifted Strang solution at t = (1/2 − δ)∆t if
δ > 0. In order to accelerate the computations, the Jacobian associated with F(U?

J) =

F
(

(Unew
J , ŨJ)T

)
at each leaf iL, can be also approximated by

∂U?
J
F ≈

 ∂Unew
J

F

∂
U

new,(i)
J |i=∈Θl

F

 (8.5)

when δ is su�ciently small. This involves only the computation of the Jacobian associated
with Unew

J , as long as the l variables are decoupled in F (U) from the remaining m − l
variables. If l = m, the approximation (8.5) follows naturally.
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• Another alternative to accelerate computations considers larger tolerances ηRadau5 and
ηROCK4 during the shifted Strang computations, for the steps that are not used for the
second order Strang solution.

• The global procedure needs to save in memory two arrays of size (m,NL), and one of
(l, NL).

8.3.2 Computation of Splitting Time Step

The splitting time step is adapted at each time iteration in order to ensure computations
within a prescribed accuracy tolerance η according to (5.11). First, the Algorithm 8.7 de�nes
the L2-error computation between two arrays, AJ and BJ , represented on the same adapted
grid, considered throughout this work.

Algorithm 8.7 Numerical estimate of the error: ∆.

1: Input: AJ and BJ of size (l, NL) = (l,#(ΦL)), given by l arrays A
(i)
J and B

(i)
J with cell

values a(i)
iL

and b(i)iL , i = 1, . . . , l, iL ∈
⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

2: for i = 1→ l do
3: Compute

∆(i) = |Ω|−1/2

 NL∑
iL=1

(a
(i)
iL
− b(i)iL )2|ΩiL |

1/2

(8.6)

and de�ne a(i)
max = maxiL=1,...,NL

(|a(i)
iL
|).

4: end for
5: The numerical error ∆ is �nally de�ned by

∆ = max
i=1,...,l

(
∆(i)

a
(i)
max

)
. (8.7)

6: Output: Numerical estimate of the error ∆ between AJ and BJ .

The Algorithm 8.8 establishes the general procedure to compute the splitting time step ∆t,
with security factor 0 < υ ≤ 1 close to 1, based on the Strang and shifted Strang solutions
issued from Algorithm 8.6.

Algorithm 8.8 Computation of the new splitting time step: ∆t→ ∆tnew.

1: Input: Strang solution Unew
J of size (m,NL) = (m,#(ΦL)), given by m arrays U

new,(i)
J ,

with cell values unew,(i)
iL

, i = 1, . . . ,m; and shifted Strang solution ŨJ of size (l, NL) =

(l,#(ΦL)), given by l arrays Ũ
(i)
J , with cell values ũ(i)

iL
, i ∈ Θl; iL ∈

⋃
r∈[1,NR] L(Λ̃r,ε) and

j ∈ [j0, J ].

2: Evaluate error ∆ between U
new,(i)
J and Ũ

(i)
J for i ∈ Θl, with the Algorithm 8.7.

3: Estimate of time integration local error: ∆→ err .
4: For a given accuracy tolerance η and a security factor υ, compute the new splitting time

step ∆tnew:

∆tnew = υ∆t
( η

err

)1/2
. (8.8)



Sect. 8.3 - Time Adaptive Splitting Scheme 186

5: Output: New splitting time step: ∆t → ∆tnew, and estimate of time integration local
error: err .

8.3.3 Time Adaptive Splitting Algorithm

With the previous elements, the Algorithm 8.9 introduces the general time adaptive split-
ting technique developed in Chapter 5, for both uniform and adapted spatial meshes.

Algorithm 8.9 Time adaptive splitting scheme: S∆t
2 .

1: Input: Solution UJ at t = t, of size (m,NL) = (m,#(ΦL)), given by m arrays U
(i)
J with

cell values u(i)
iL
, i = 1, . . . ,m, iL ∈

⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

2: Set the time integration accuracy tolerance: η, and a security factor for time step compu-
tation: υ.

3: Set accuracy tolerances for split reaction and di�usion time integration: ηRadau5 and
ηROCK4.

4: Start time integration of the solution: integrate = .true.
5: while integrate = .true. do
6: Compute Strang and shifted Strang solutions: Unew

J and ŨJ , from initial solution UJ

with splitting time step ∆t by Algorithm 8.6.
7: Obtain the new splitting time step: ∆tnew, and the local error estimate: err , with

Algorithm 8.8.
8: if err ≤ η then {Accept current Strang solution}
9: Update solution: Unew

J → UJ .
10: Update time: t→ t+ ∆t.
11: Stop time integration: integrate = .false.
12: end if
13: Update splitting time step: ∆t→ ∆tnew.
14: Limit time domain: ∆t = min{∆t, T − t}
15: end while
16: Output: Strang solution UJ at t = t + ∆t, of size (m,NL) = (m,#(ΦL)), given by m

arrays U
(i)
J with cell values u(i)

iL
, i = 1, . . . ,m, iL ∈

⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

As for the general splitting time integration scheme in Algorithm 8.5, we might consider the
time adaptive Algorithm 8.9 for the time evolution operator from t to t + ∆t, in the mul-
tiresolution scheme (Algorithm 7.11). In this way, a time/space adaptive numerical solution
is achieved within a prescribed accuracy η, where the approximation errors introduced by the
compressed spatial representations are also monitored by the multiresolution threshold value
ε. Some numerical illustrations on this new numerical strategy are provided and discussed in
forthcoming chapters. Let us also remark that both algorithms 8.5 and 8.9 are implemented
in the same code, and that the user may �nally select the most appropriate con�guration.

8.3.4 Correction of Splitting Time Step

We have also analyzed in Chapter 5, the numerical behavior of the adaptive scheme for non-
asymptotic regimes, i.e., for larger splitting time steps ∆t, for which the numerical estimates of
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the error might become inaccurate. In the following, we detail the complementary numerical
procedure introduced in this context to e�ectively handle these situations. Let us recall that
the problem arises for relatively large tolerances η, and in particular for small time shifts δ.
Therefore, after many numerical tests and from a practical point of view, we can conclude that
by setting su�ciently large shifts δ, a compromise can be drawn, and the Algorithm 8.9 can be
applied neglecting these issues. The code includes nevertheless the following algorithms which
can be excluded by the user.
We recall that the numerical procedure is based on the approximation (5.48):

∆t? ≈ δCδ
C0

, (8.9)

where ∆t? denotes the critical splitting time step, i.e., the maximum splitting time step ∆t for
which the local error estimates are completely reliable. The coe�cient Cδ is approximated by

Cδ ≈
err

δ∆t2
, (8.10)

according to (5.46). Finally, C0 is calculated from (5.56) by means of two local estimators: e1

and e2, given by (5.54) and (5.57):

e1 = Sa1∆tu0 − Sb1∆t(Sc1∆tu0), e2 = Sa2∆tu0 − Sb2∆t(Sc2∆tu0), (8.11)

and de�ned by the sets: (a1, b1, c1) and (a2, b2, c2). Assuming the worst con�guration in which
both e1 and e2 are given by their maximum values in (5.56), some simple computations yield

e1 ≈ C0∆t3
(
ωc3

1(a3
1 − b31)

)
, (8.12)

with

ω ≈ e2(a3
1 − b31)− e1(a3

2 − b32)

e1c3
2 − e2c3

1

. (8.13)

The computation of the critical splitting time step ∆t? is �nally performed in two stages.
The idea is to save memory resources and embed the computations with an appropriate
choice of the sets (a1, b1, c1) and (a2, b2, c2), as detailed in Chapter 5. The following algo-
rithms 8.10 and 8.11 illustrate the implementation of the numerical estimates in the code.

Algorithm 8.10 Computation of the critical splitting time step I: ∆t?.

1: Input: Solution UJ of size (m,NL) = (m,#(ΦL)), given by m arrays U
(i)
J with cell values

u
(i)
iL
, i = 1, . . . ,m, iL ∈

⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

2: Build array Ũ1
J of size (l, NL), from U

(i)
J with i ∈ Θl.

3: For t→ t+ c2∆t: time integration of Ũ1
J with the standard Strang scheme by Algorithm

8.5.
4: For t→ t+ b2∆t: time integration of Ũ1

J with the standard Strang scheme by Algorithm
8.5.

5: Build array Ũ2
J of size (l, NL), from U

(i)
J with i ∈ Θl.

6: For t→ t+ c1∆t: time integration of Ũ2
J with the standard Strang scheme by Algorithm

8.5.
7: Evaluate error ∆ between Ũ2

J and Ũ1
J with Algorithm 8.7.

8: Estimate of local estimator e2: ∆→ e2.
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9: For t→ t+ b1∆t: time integration of Ũ2
J with the standard Strang scheme by Algorithm

8.5.
10: Output: Local estimator e2 and solution Ũ2

J at t = t + ∆t, of size (l, NL) = (l,#(ΦL)),

given by l arrays Ũ
2,(i)
J , with cell values ũ2,(i)

iL
, i ∈ Θl, iL ∈

⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

Algorithm 8.11 Computation of the critical splitting time step II: ∆t?.

1: Input: Strang solution UJ at t = t+∆t, of size (m,NL) = (m,#(ΦL)), given by m arrays

U
(i)
J with cell values u(i)

iL
, i = 1, . . . ,m; and solution Ũ2

J at t = t + ∆t, of size (l, NL) =

(l,#(ΦL)), given by l arrays Ũ
2,(i)
J , with cell values ũ2,(i)

iL
, i ∈ Θl; iL ∈

⋃
r∈[1,NR] L(Λ̃r,ε)

and j ∈ [j0, J ].

2: Evaluate error ∆ between U
(i)
J and Ũ

2,(i)
J for i ∈ Θl with Algorithm 8.7.

3: Estimate of local estimator e1: ∆→ e1.
4: Compute Cδ with current shift δ in (8.10), ω in (8.13), and C0 in (8.12).
5: Compute ∆t? from (8.9) and set for a given security factor ζ: ∆t? → ζ∆t?.
6: Output: Critical splitting time step: ∆t?.

A working region for the splitting time steps was also de�ned in Chapter 5 by (5.60): ∆t ∈
[β∆t?, γ∆t?], in order to ensure better predictions of the local error estimate with the ap-
propriate time shift δ. The latter parameter is estimated by the following Algorithm 8.12.

Algorithm 8.12 Computation of the time shift: δ.

1: Input: Current splitting time step ∆t, and estimates Cδ and C0.
2: Compute δ from (8.9) by considering ∆t? = ∆t.
3: Set for a given security factor θ: δ = min{θδ, δmax}.
4: Compute ∆t? from (8.9) with new δ.
5: Output: New time shift: δ, and corresponding critical splitting time step: ∆t?.

The Algorithm 8.9 is �nally rewritten with the inclusion of the previous tools in the Algorithm
8.13. With respect to the previous adaptive splitting implementation, this one needs to save
one more array, of size (l, NL). The computation of the critical splitting time step is done either
periodically with a rate given by Nδ, or whenever the splitting time steps are casted away from
the de�ned working region, indicated by the �ag estimate, initially set to .false.. Moreover,
C0
δ was introduced to reject the initial splitting time step ∆t0 at the �rst time iteration n = 0,

if necessary. The Algorithm 8.13 contains thus all the elements introduced in this chapter,
and can be coupled as well with the multiresolution scheme given by Algorithm 7.11, for the
time/space adaptive numerical strategy.

Algorithm 8.13 Time adaptive splitting scheme II: S∆t
2 .

1: Input: Solution UJ at t = t, of size (m,NL) = (m,#(ΦL)), given by m arrays U
(i)
J with

cell values u(i)
iL
, i = 1, . . . ,m, iL ∈

⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].

2: Set the time integration accuracy tolerance: η, and a security factor for time step compu-
tation: υ.
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3: Set accuracy tolerances for split reaction and di�usion time integration: ηRadau5 and
ηROCK4.

4: Set (a1, b1, c1) and (a2, b2, c2) for local estimators e1 and e2; and security factor 0 < ζ ≤ 1,
close to 1 for the critical time step ∆t?.

5: De�ne the working region for splitting time steps: 0 < β < γ ≤ 1.
6: De�ne the maximum shift: δmax, and a security factor θ ≥ 1, for computation of δ.
7: Start time integration of the solution: integrate = .true.
8: while integrate = .true. do
9: if n/Nδ = bn/Nδc or estimate = .true. then
10: Perform Algorithm 8.10 for critical splitting time step ∆t?.
11: Set estimate = .true.
12: end if
13: Compute Strang and shifted Strang solutions: Unew

J and ŨJ , from initial solution UJ

with splitting time step ∆t by Algorithm 8.6.
14: Obtain the new splitting time step: ∆tnew, and the local error estimate: err , with

Algorithm 8.8.
15: if estimate = .true. then
16: Compute critical splitting time step ∆t? with Algorithm 8.11: ∆t?.
17: Set estimate = .false.
18: if ∆t /∈ [β∆t?, γ∆t?] then
19: Compute δ with Algorithm 8.12.
20: Update δ and critical splitting time step ∆t?.
21: end if
22: end if
23: if t = t0 and ∆t > ∆t? then
24: Set err → η + C0

δ .
25: end if
26: if ∆tnew > ∆t? and δ 6= δmax then
27: Compute ∆t? at next time iteration: estimate = .true.
28: end if
29: if err ≤ η then {Accept current Strang solution}
30: Update solution: Unew

J → UJ .
31: Update time: t→ t+ ∆t.
32: Stop time integration: integrate = .false.
33: end if
34: Correct splitting time step: ∆t = min{∆tnew,∆t?}.
35: Limit time domain: ∆t = min{∆t, T − t}
36: end while
37: Output: Strang solution UJ at t = t + ∆t, of size (m,NL) = (m,#(ΦL)), given by m

arrays U
(i)
J with cell values u(i)

iL
, i = 1, . . . ,m, iL ∈

⋃
r∈[1,NR] L(Λ̃r,ε) and j ∈ [j0, J ].
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Introduction

In this last part, we present some numerical evaluations of the numerical techniques developed
mainly in chapters 4 and 5, and implemented in the MBARETE code as described in chapters
7 and 8, for several problems coming from di�erent domains. A �rst illustration was conducted
throughout chapters 4 and 5 for a series of simulations of chemical waves that are often used
to represent sti� features of general reacting fronts.

Chapter 9 is devoted to the numerical simulation of human brain strokes, modeled by reaction-
di�usion systems with complex chemical mechanisms. The study included in this chapter might
be seen as the continuation of the numerical evaluation performed in Chapter 4, this time for
a much more complex model that requires the implementation of parallel computing techniques.

Numerical simulations of combustion fronts are considered in Chapter 10 for di�erent physi-
cal con�gurations, modeled by reaction-di�usion-convection systems in a thermo-di�usive ap-
proach. The analysis of the numerical results assesses the predictive capabilities of the method
in terms of accuracy, the performance of the time/space adaptive features of the method, as
well as the potential extensions to more complex cases.

Chapter 11 is devoted to the numerical simulation of positive streamer discharges in plasma
applications. The method introduced and evaluated in the previous chapters is integrated
into a new second order method, specially conceived for the numerical solution of multi-scale
plasma models. In this way, this chapter illustrates further extensions of this work, based on
the numerical strategy developed in chapters 4 and 5. Numerical simulations are performed for
propagating ionization waves and highly unsteady plasma discharge con�gurations, for which
the capabilities of the new strategy are evaluated.



Chapter 9

Brain Stroke Simulations

We focus in this chapter on the numerical implementation of the strategy introduced in
Chapter 4, for brain stroke simulations. Multi-scale propagating waves and sti� phenomena
are associated with many biomedical applications. One example is given by electrocardiol-
ogy simulations, modeled by reaction-di�usion systems, for which many numerical strategies
were developed over the past years. The latter ones usually combine adaptive mesh re�ne-
ment techniques with dedicated sti� solvers in order to cope with the numerical di�culties
(see, e.g., [CGH00, CGH03, CFP04, CFDE+06, YRH08] and references therein). In this con-
text, splitting schemes have also proved to be very e�cient to handle such problems, and have
been largely implemented even since (see, e.g., [TSA00, BWZ+02, TK04]). Splitting techniques
were also considered to solve chemotaxis models, for instance, in [GP00, TSL00, GV02, RS09].
Let us also refer to [Mil08] and references therein for other type of application, in which the
main goal of the numerical simulations is to predict drug targeting to inhibit biological mal-
functions.
In the particular case of brain stroke simulation, the literature is much more reduced and it is
mainly limited by the lack of comprehensive models, not yet available (see, e.g., [DBG06] and
references therein). The numerical di�culties to simulate ischemic strokes were �rst studied in
[DD08], based on a stroke model introduced by Dronne et al. in [DBG06]. These studies have
led to numerical simulations on realistic 3D brain geometries, for the �rst time, based on the
splitting strategy detailed in Chapter 4. The latter scheme was implemented with satisfactory
results in a code called ZEBRE, developed by T. Dumont, which considers �nite volumes
of constant size [Dum07]. Nevertheless, in order to further reduce computational costs, the
fully MR/splitting technique introduced in [DMD+12] was also implemented and confronted
with the previous results on a simpli�ed brain geometry. All these results have been recently
submitted for publication [DDD+12].
In what follows, we will �rst reproduce the latter article, which stands as a complete study
on the subject within the present work, and in particular allows us to partially validate the
MBARETE code in terms of practical implementation, by comparing some numerical results
with those obtained with the ZEBRE code. We remark that even though both codes consider
the same time integration strategy, they are written in di�erent programming languages, with
also di�erent data and code structures. In the second part of this chapter, we will present
more details on the numerical simulations achieved with the MR/splitting numerical strat-
egy presented in Chapter 4. The latter study has been presented during a Summer School
of CNRS GDR Groupe Calcul on Multiresolution and Adaptive Mesh Re�nement Methods,
Fréjus, France (2010) [DMD+11b].



SIMULATION OF HUMAN ISCHEMIC STROKE IN REALISTIC 3D
GEOMETRY

Thierry Dumont, Max Duarte, Stéphane Descombes, Marie-Aimée Dronne,

Marc Massot, and Violaine Louvet

Abstract. In silico research in medicine is thought to reduce the need for expensive
clinical trials under the condition of reliable mathematical models and accurate and ef-
�cient numerical methods. In the present work, we tackle the numerical simulation of
reaction-di�usion equations modeling human ischemic stroke. This problem induces pe-
culiar di�culties like potentially large sti�ness which stems from the broad spectrum of
temporal scales in the nonlinear chemical source term as well as from the presence of steep
spatial gradients in the reaction fronts, spatially very localized. Furthermore, simulations
on realistic 3D geometries are mandatory in order to describe correctly this type of phe-
nomenon. The main goal of this article is to obtain, for the �rst time, 3D simulations
on realistic geometries and to show that the simulation results are consistent with those
obtain in experimental studies or observed on MRI images in stroke patients.
For this purpose, we introduce a new resolution strategy based mainly on time oper-
ator splitting that takes into account complex geometry coupled with a well-conceived
parallelization strategy for shared memory architectures. We consider then a high order
implicit time integration for the reaction and an explicit one for the di�usion term in order
to build a time operator splitting scheme that exploits e�ciently the special features of
each problem. Thus, we aim at solving complete and realistic models including all time
and space scales with conventional computing resources, that is on a reasonably powerful
workstation. Consequently and as expected, 2D and also fully 3D numerical simulations
of ischemic strokes for a realistic brain geometry, are conducted for the �rst time and
shown to reproduce the dynamics observed on MRI images in stroke patients. Beyond
this major step, in order to improve accuracy and computational e�ciency of the simula-
tions, we indicate how the present numerical strategy can be coupled with spatial adaptive
multiresolution schemes. Preliminary results in the framework of simple geometries allow
to assess the proposed strategy for further developments.

Keywords. Ischemic stroke; Reaction-di�usion equations; Operator splitting; Parallel
computing.

Mathematics Subject Classi�cation. 35A35, 35K57, 65L06, 65M08, 65M50, 65Y05,
92B05.

9.1 Introduction

Stroke is a major public health problem since it represents the second leading cause of death
worldwide and the �rst cause of acquired disability in adults. In the United States, this dis-
ease strikes once every 40 seconds and causes death every 4 minutes, with an estimated 41.6%
death rate in 2007 [LJAC+09]. Most frequently (80%) strokes result from the occlusion of one
or several brain vessels and are thus called ischemic strokes (in the other cases, strokes are
hemorrhagic strokes). Ischemic stroke involves many pathophysiological mechanisms causing
devastating neurological damage (see for review [DIM99, MLI10]). Understanding these mech-
anisms is of the most importance to develop new therapeutic strategies since no treatments
are currently available for most stroke patients. Currently, the only FDA-approved treatment
for stroke patients is a thrombolytic agent (tPA) which can only be given to less than 10%
of patients because of its narrow time-window and its hemorrhagic risks [Gra03]. Many neu-
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roprotective agents (aimed at blocking the ischemic cascade) have also been developed but,
although they had given very promising results in preclinical studies in rodent models, they
appeared ine�ective or even noxious during the clinical trials in stroke patients (see for review
[DKSL99, BABS01, WA04, DT07]). This discrepancy between the results in rodents and in
humans is partly due to the anatomic and histological di�erences between rodent and human
brains. In this case, results in rodents are thus di�cult to extrapolate to stroke patients. As a
consequence, a mathematical model and its numerical simulations can help both to test some
biological hypotheses concerning the involved mechanisms and to give new insights concerning
the e�ects of these neuroprotective agents.
Previous works have been conducted on stroke modeling. One of these models [DBG06] is
focused on the main mechanisms leading to cell death during the �rst hour of an ischemic stroke
(such as ionic movements, glutamate excitotoxicity and cytotoxic edema). This model is based
on a system of ordinary di�erential equations (ODEs) and is mainly an electrophysiological
model. It describes the dynamics of membrane potentials, cell volumes and ionic concentrations
(K+, Na+, Cl−, Ca2+ and Glu−) in brain cells and in the extracellular space during a stroke.
This model was used to study the role of various cell types during ischemia [DGD+07] and
to explore the e�ects of various neuroprotective agents in stroke patients [DDGG09]. Other
models have been developed to simulate and study spreading depressions during a stroke.
This phenomenon is characterized by a slowly propagating depolarization of brain cells along
with drastic disruption of ionic gradients [Som01]. These spreading depressions have recently
been observed in stroke patients [DSF+08] and are supposed to extent the ischemic damage
[SDJ+05]. Some models reproduce and study the behavior of spreading depressions in neuronal
cells [RRGR98, KWS00]. Others describe these depolarization waves though neuronal and glial
cells [DGC+08]. Other models study the in�uence of the human brain cortex geometry on the
propagation of these spreading depressions [DGC+08, GDD+08a]. All these models are based
on reaction-di�usion systems and in this paper we choose to use the mathematical model
[DBG06].
The �nal goal of our work is to utterly describe and reproduce precocious mechanisms of stroke
(i.e., ionic movements, glutamate excitotoxicity and cytotoxic edema) including the spreading
depressions, for a realistic brain geometry. A �rst description of the algorithms used for the
numerical solution of this stroke model on 1D and 2D geometries was presented in a previous
article [DD08]. However, since we need to take into account the anatomic and histological
speci�cities of human brain, this model must be simulated on a 3D realistic geometry, which
implies to develop powerful numerical methods able to deal with a broad spectrum of spatial
and temporal scales. This paper focuses on the methods developed for the numerical solution
of this model, with much more insights on the mathematical and numerical methods than in
[DD08]. The numerical method is based on operator splitting and explicit/implicit Runge-
Kutta methods. A very important feature of this method is that no linear system (of large
size) is solved. We then show, for the �rst time, numerical simulations in 3D obtained thanks
to a particular implementation of parallelism in the framework of shared memory machines.
Moreover, these 3D simulations are computed on realistic geometries, obtained from MRI of
the human brain, on conventional computational resources, that is on nowadays reasonably
powerful workstations; and they are shown to match the observed dynamics from MRI images
in stroke patient. Since accuracy in 3D simulations is not yet optimal, the ability of extending
the proposed numerical strategy to adaptive multiresolution is presented in the framework of
preliminary computations in simple geometries, based on a strategy introduced in [DMD+12].
The idea is to increase the level of accuracy in order to match all the spatial scales, with a
better computational e�ciency; thanks to the fact that phenomenons in strokes are spatially
localized, a local mesh adaptation (like multiresolution techniques) is the most suitable.
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The paper is organized as follows: in a �rst part, we present the reaction-di�usion model of the
precocious mechanisms. We then focus on numerical methods: we �rst mention the di�erent
approaches which can be used to discretize the system in time and explain why in the context
of such a sti� and large system only very few are relevant. We then present our numerical
strategy based on splitting methods; a grid adaptation technique is also proposed as a possible
improvement of the numerical strategy, considering particular features of the phenomena. We
present the parallel implementation on shared memory machines of the numerical strategy,
and discuss the numerical validation of the results. In the next section, 2D and 3D numerical
results of simulations with complex geometry are presented. Biological results obtained are
compared with real observations and discussed in the penultimate section. Biomarkers are
used in order to validate these computations. A brief and prospective study based on coupling
the proposed strategy with adaptive multiresolution in space is conducted, whereas conclusion
and future works are presented in the last section.

9.2 Stroke Modeling through Sti� Reaction-Di�usion Systems

In this section, we describe the model on which our study is based. This model includes ionic
movements, glutamate excitotoxicity, cytotoxic edema and spreading depressions [DBG06,
DGD+07]. It thus focuses on the �rst hour of a stroke, when the ionic exchanges are the
main mechanisms leading to cell death. This model is based on a reaction-di�usion system
(equations are given in what follows in Table 9.1).
In this model, brain tissue is composed of two cell types, namely neurons and glial cells, and of
extracellular space. Two domains are considered: the white and the gray matter which di�er
in their glial cell composition (astrocytes in gray matter and oligodendrocytes in white matter)
and in their �neuronal area� composition (neuronal somas in gray matter and neuronal axons
in white matter). Human brain cortex is exclusively composed of gray matter whereas human
brain space is mainly composed of white matter (except the gray kernels). For simplicity
reasons, we consider in the model that brain cortex contains only gray matter and brain space
contains only white matter. The ionic species considered in this model are K+, Na+, Cl−,
Ca2+ and the Glutamate (glu). They pass through neuronal and glial membranes via ionic
channels (such as voltage-gated channels, receptor-channels, stretch-channels) and via ionic
pumps and transporters (which are energy-dependent) (see Figure 9.1). The ionic exchanges
through voltage-gated channels have been �rst modeled by Hodgkin and Huxley [HH52].
The main precocious mechanisms of ischemic stroke can be described as follows (see for review
[DIM99, MLI10]): after the stroke onset, the cells in the ischemic area do not receive enough
oxygen to maintain their production of energy. As a consequence, the activity of the ionic
pumps decreases, which results in variations of ionic concentrations in the cells and in the
extracellular space. These ionic variations have several consequences:

• The alteration of membrane potentials, resulting in membrane depolarization and in the
opening of the voltage-gated channels;

• The cell swelling due to water in�ux;

• The increase of the neuronal concentration of Ca2+, resulting in enzyme activation and
leading cells towards necrosis;

• The increase of glutamate in the extracellular space, reinforcing the excitotoxic process;

• The increase of the concentration of K+ propagating in the extracellular space and
the increase of Ca2+ in the astrocytic synticium, creating waves of cortical spreading
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Fig. 9.1: Ionic exchanges in gray matter between neurons, astrocytes and the extracellular space through
voltage-gated channels, ionic transporters, receptor-channels and ionic pumps (from [DBG06]).

depressions, opening further ionic channels and thus expanding the ischemic damage far
from the ischemic core.

From this, we can understand the importance of studying these propagation phenomena and
of exploring the potential e�ects of some neuroprotectors which modulate or block speci�c
voltage-gated channels. Consequently, the model considers the following variables:

• The volume fractions fn and fa (by brain volume unit) of neurons and glial cells. The
fraction of volume remaining for the extracellular space is thus 1− fn − fa. fn and fa;

• The membrane potentials Vn and Va of neurons and glial cells (taking zero as reference
potential in the extracellular space);

• The concentrations of K+, Na+, Cl−, Ca2+ and Glutamate in the 3 spaces (neurons,
glial cells and extracellular space).

All the variables depend both from time and coordinates.
Altogether, the mean �eld model has m = 19 unknowns written as a reaction-di�usion system
of equations. However, there is no di�usion for 4 unknowns, namely fn, fa, Vn and Va and not
all ion concentrations di�use in gray matter and in white matter. Since gray matter contains
astrocytes (which are linked into an astrocytic syncytium thanks to gap-junctions), ions are
able to di�use in the astrocytic space as well as in the extracellular space in gray matter. On
the other side, as the main glial cells in white matter are oligodendrocytes (which do not have
the same properties as astrocytes), ions are considered to be only able to di�use in extracellular
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space in white matter. As a consequence, the model contains 10 reaction-di�usion equations in
gray matter (for the concentrations of K+, Na+, Cl−, Ca2+ and Glu− in astrocytes and in the
extracellular space) and 5 reaction-di�usion equations in white matter (for the concentrations
of (K+, Na+, Cl−, Ca2+ and Glu− in the extracellular space). To be more precise, in Table 9.1
we summarize the modeling equations of a human ischemic stroke, developed by Dronne et al. in
[DBG06], using the following notations:

• S stands for the ionic species (Ca2+, Na+,K+, Cl− and Glu− respectively).

• The subscript e stands for extracellular, n for neuronal and a for glial medium (astrocytes
in grey matter and oligodendrocytes in white matter).

• εs,a and εs,e are the di�usion coe�cients for each ion �S� in glial cells and in the extra-
cellular space respectively. In white matter εs,a = 0.

• Its,n and Its,a are the global ionic currents for each ion S through neuronal membrane
and through glial membrane respectively. For example in grey matter, Its,n is the sum
of all the currents concerning the transport of ion S through neuronal membrane via
the voltage-gated channels, transporters and receptor-channels represented in Figure
9.1. These current equations mainly rely on Hodgkin-Huxley equations and come from
other electrophysiological models (neuronal and glial models: [Wal92, DMS98, YKA98,
ROA00, Sha01] and cardiac models [DFN85, LRJ92] for some currents.

Other parameters are given by:
Nimp,a : number of moles of impermeant anions in the glial cells (constant)
Nimp,n : number of moles of impermeant anions in the neuron (constant)
nn : number of neurons in each volume unit
na : number of glial cells in each volume unit
σn : neuron surface
σa : glial cells surface
zs : valence of ion S
v : volume of each unit
cn : neuron capacity
ca : glial capacity
F : Faraday's constant

For αn and αa we follow [YFKP03]: αn = αa = LiRT/v, with Li = 1.21×1012 cm3/(Pa ·min),
R = 8.3145 J/(mol ·K), and T = 310.15 K.
The PDEs in Table 9.1 can be written in the following general form:

∂ui
∂t

(x, t)− div(εi(x)grad ui(x, t)) = fi(u1(x, t), . . . , um(x, t)),

ui(x, 0) = u0
i (x),

1 ≤ i ≤ m, x ∈ Ω.

 (9.1)

The domain Ω corresponds to a human brain and is divided in gray and white matter. These
two matters di�er in several coe�cients in the reaction term (corresponding to the cell compo-
sition) and in their di�usion coe�cients, as previously described. There are no �uxes of ions
in and out of the brain and thus, the boundary conditions are of Neumann homogeneous type.
For the initial conditions ui(x, 0) = u0

i (x), 1 ≤ i ≤ m, a classical medical hypothesis is that
the system is in a stable equilibrium: thus we take, and must �nd, a stable constant solution
of system (9.1).
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Table 9.1: Model equations describing the dynamics of the ionic concentrations, cell volumes and
membrane potentials with di�usion in neurons, in glial cells and in the extracellular space.

Variables Equations

Ionic concentrations

Sn
∂Sn
∂t

= −nn σn Its,n
fn zs F v

− Sn
fn

∂fn
∂t

Sa

∂Sa
∂t

= div(εs,a grad Sa)−
na σa Its,a
fa zs F v

− Sa
fa

∂fa
∂t

Se

∂Se
∂t

= div(εs,e grad Se)

+
nn σn Its,n + na σa Its,a

(1− fn − fa) zs F v

− Se
1− fn − fa

∂(1− fn − fa)
∂t

Proportions of intracel-
lular volumes

fn
∂fn
∂t

= αn

(∑
Sn −

∑
Se +

Nimp,n

v fn

)
fa

∂fa
∂t

= αa

(∑
Sa −

∑
Se +

Nimp,a

v fa

)

Membrane potentials
Vn

∂Vn
∂t

= −σn
cn

∑
s

Its,n

Va
∂Va
∂t

= −σa
ca

∑
s

Its,a

Let us mention some characteristics of the system which are very important in the choice of
numerical schemes:

• The reaction term F = (f1, ...., fm)t is extremely sti�; that is to say that if we consider
the system of di�erential equations du/dt = F (u), it is a sti� system according to the
de�nition given in [HW96]. To see this, we have performed, by numerical di�erentiation,
a computation of the Jacobian matrix (∂fi/∂uj), 1 ≤ i, j ≤ m, near a stable stationary
value F (u) = 0, and we found numerically negative eigenvalues with negligible imaginary
parts but with real parts in the range from −108 to about −1. Moreover, it is impossible
to separate fast and slow variables and even if this was possible, the voltage dependent
gates would make this separation very local in time and space. We have to deal with
the sti�ness of the reactive term F , which is the core of the model and is a program of
about 500 lines of C language.

• The di�usion coe�cients εi(x) are low: about 10−3 given by a non-dimensional analysis.
The resulting splitting time step for a proper resolution of the propagating phenomenon
resulting from the coupling with the reaction term will lead to the resolution of heat
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equation in a mildly sti� framework. Exploiting this fact turns out to be very impor-
tant: we can use stabilized explicit methods when solving the heat equation associated
with the di�usion, with the advantage of good numerical performances, and an easy
implementation of parallel computations.

The di�usion coe�cients εi(x) take two constant values in gray and white matter (respectively
εgi and ε

w
i ). The interface conditions between gray and white matter are classical:

εgi grad ui(x, t) · n = εwi grad ui(x, t) · n, (9.2)

where n is a normal unit vector to the boundary between gray and white matter. These
conditions become Neumann homogeneous boundary conditions whenever one of the di�usion
coe�cients is zero.

9.3 Numerical Strategy: Operator Splitting and Time Integra-
tors

One dimensional simulations are very useful to �t parameters such as the di�usion coe�cients
which are known in the literature only with limited accuracy; two dimensional ones are useful
to validate numerical methods and programs, but only three dimensional simulations can be
relevant from the medical point of view. From medical considerations, and also by some
considerations on reaction-di�usion systems, we know that a precise description of the brain
geometry is mandatory for the simulations, otherwise the plausible waves would be strongly
perturbed, see for example [DDGG09]. We then have to think of a strategy dedicated to three
dimensional simulations with a very �ne spatial discretization allowing to resolve the broad
spectrum of spatial and temporal scales of the system (9.1). The method developed has to be
fast, robust and must take into account the properties of the model.
We describe now the methods introduced in this work, based on a spatial discretization which
will be applied in dimension 2 and 3.
Concerning the spatial discretization, we have chosen a �nite volume approach with a 5 points
stencil in 2D, and a 7 points stencil in 3D. Our experience is that, with uniform �nite volumes,
at least ` = 107 volumes are necessary for a realistic three dimensional simulation. The
continuous unknown u is then replaced by a vector U belonging to Rm×` corresponding to the
m unknowns at each point xi, 1 ≤ i ≤ `. We use MRI pictures and we consider pixels as center
of volumes of an uniform grid. When we apply this spatial discretization to the system (9.1),
this yields a large system of ordinary di�erential equations. Let us write this system under the
form

dU

dt
= AεU + F (U), (9.3)

Aε being a matrix corresponding to the discretization of the di�usion operator; this is a classical
5 terms (resp. 7 terms) by line matrices in dimension 2 (resp. 3). We now present the di�erent
approaches which can be used to discretize this system in time and we explain why in the
context of such a sti� and large system such as (9.1), only few are e�cient.
The �rst idea is to use directly a solver of systems of ODEs, the so called method of lines,
but due to the sti�ness of the nonlinear term, a large system of algebraic equations should
be solved at each time step, which is too much time consuming. It is then better to use
di�erent discretizations in time for the linear and the nonlinear terms. A �rst method is to
use an Implicit�Explicit method by treating the linear term implicitly and the nonlinear term
explicitly. If we denote by δt the time step and Uk the approximated solution at time kδt, the



Sect. 9.4 - Numerical Software 200

simplest method is the following:

Uk+1 − Uk
δt

+AεUk+1 = F (Uk) (9.4)

One must solve a linear system at each step since di�usion is taken implicitly but the nonlinear
term is taken explicitly. This method is of order 1 in time. More accurate, but not really more
expensive, methods of the same type and of order at most 6 are described and analyzed in
[ACM98]. The main advantage of these methods is that only linear systems must be solved
but the drawback is that, due to the explicit computation of the reaction terms, these methods
are adapted only to systems with non sti� reaction terms. Let us recall that the system (9.1)
is very sti�, and these methods can only work with time steps of the same order of the fastest
time scale of the system which is about 10−8 seconds. This would result in an prohibitive
computing time, about 4 × 1011 steps for simulating the �rst hour of the evolution of the
stroke.
A better idea for the treatment of the linear and the nonlinear part in the context of a sti�
nonlinear term is to �reverse� the numerical treatments: to solve explicitly the linear part and
implicitly the nonlinear part. The discretization of the linear part is made using an explicit
Runge-Kutta method with extended stability domain along the negative real axis. The papers
[SSV97] and [VS04] settled the foundation for these methods called IMEX methods and par-
ticular methods devoted to sti� non linear problems are presented in [VSH04] and [SSV06].
The main advantage of these methods is that they treat di�usion terms explicitly and the sti�
reaction terms implicitly. Furthermore, the sti� reaction term is decoupled over space grids
and yields small sized systems. These methods are usually very e�cient; nevertheless, the com-
putational requirements associated mainly with an implicit solver over the discretized domain
with the same time step become soon critical when treating large computational domains.
Finally, the only possible methods which can solve system (9.1) seem to be the so called
splitting methods that we describe in details now1.

9.4 Numerical Software

We have developed two di�erent softwares for the solution of the system (9.1). Both implement
the time integration strategy de�ned above in Chapter 4:

FM: (Fixed Mesh) a code using a �xed spatial discretization, with �nite volumes of con-
stant size [Dum07]. This code takes into account complex geometries in the following
way: starting from MRI images, we take each pixel as the center of a �nite volume; it
aims to be a framework for testing and exploiting numerical methods for 1, 2 and 3D
reaction-di�usion systems. It will be used in order to obtain the main results of the
present contribution, that is numerical simulations of the detailed and sti� stroke model
in complex 3D geometries.

MR: (Multi Resolution) a code using an adaptive multiresolution method as de�ned above
in Chapter 4. In the framework of multiresolution, an important amount of work is
still required in order to optimally combine all the numerical methods described here,
the most di�cult aspects are related to programming features such as data and code
structures, as indicated in [DMD+12]. Nowadays, this program can only solve problems
in simple domains like squares and cubes; simulations with an adaptive multiresolution

1The following section in [DDD+12] introduces and justi�es the numerical technique detailed in Chapter 4.
We omit it in this work in order to avoid redundancy. The complete text can be found in [DDD+12].
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approach on a complex geometry are not yet available, and we will only present here
2D and 3D simulations in simpli�ed geometries for the sake of assessing our results and
perspectives in the �eld.

Let us remark that the (FM) code is a highly optimized and complete code for the simulation
of reaction-di�usion equations2. In particular, stroke simulations in complex geometry can be
performed for the �rst time, with standard computing resources, and constitutes the major
advance of our contribution. On the other hand, the second code (MR) allows to validate to
some extents the previous numerical results, and it is meant to be a potential extension to
(FM) in future developments.

9.5 Numerical Results: Implementation Checkout and Accu-
racy Evaluation of the Code

In order to check out the implementation of the method in the codes (FM) and (MR), which
use two di�erent spatial discretizations and data structures, we have conducted a detailed
comparison on a numerical test-case. Nevertheless, since we use the same numerical methods
for the sub-steps integration, this does not result in a full validation. We have considered a
2D case in a regular geometry of [0, 5]× [0, 5] (cm), using two resolutions, one on a �xed grid
computed with the code (FM) and the other on the adapted grid obtained by multiresolution
with the code (MR). Both methods, based on Strang's splitting, use Radau5 and ROCK4 as
time integrators for the reaction and for the di�usion problem. For the model parameters, we
have considered only one domain, the gray matter. The time of integration was restricted to
one hour, t ∈ [0, 3600] seconds.
The splitting time step δt was chosen experimentally in order to obtain a good approximation
of the velocity on a su�ciently 2D �ne space discretization of 10242.

Table 9.2: Minimum and maximum values of variables in the neurons, computed with the (MR) code,
and normalized L2 di�erence e of numerical results between uniform mesh and (MR). t = 3600 s.

Variable Min value Max value e

K+ 68.9338 141.6940 3.4059× 10−3

Na+ 7.0834 75.2787 6.0126× 10−3

Ca2+ 1.0558× 10−4 9.3376× 10−4 2.0559× 10−2

Cl− 11.5492 22.3907 3.1682× 10−3

glu 0.0808 9.3415 7.0681× 10−3

Vn −57.6666 −3.7338 7.0782× 10−3

fn 0.0799 0.0878 6.8508× 10−4

We thus compare both solutions with a L2-norm3 at �nal time t = 3600, and de�ne an error
estimator e given by ‖u(., t)−uMR(., t)‖L2 , where indexMR denotes the use of multiresolution

2In particular, the ZEBRE code [Dum07] uses threads for the parallelization on shared memory architectures,
based on the C++ boost-thread library [WK]. This implementation is described in [DDD+12], and is omitted
in the present work for the sake of brevity.

3The L2-norm ‖f‖L2 of f is given by
(∫

Ω
f(x)2 dx

)1/2
.
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Table 9.3: Minimum and maximum values of variables in the astrocytes, computed with the (MR)
code, and normalized L2 di�erence e of numerical results between uniform mesh and (MR). t = 3600 s.

Variable Min value Max value e

K+ 124.2309 132.6962 1.2265× 10−3

Na+ 15.0751 24.3063 6.3289× 10−3

Ca2+ 1.5921× 10−4 0.4149 3.1653× 10−2

Cl− 6.7503 10.8147 1.0143× 10−2

glu 2.5460 2.9870 1.0133× 10−3

Va −75.2476 −19.6358 1.0817× 10−2

fa 0.7128 0.8088 1.1877× 10−3

Table 9.4: Minimum and maximum values of variables in the extracellular space, computed with the
(MR) code, and L2 normalized di�erence e of numerical results between uniform mesh and (MR).
t = 3600 s.

Variable Min value Max value e

K+ 4.8682 59.4336 6.1640× 10−3

Na+ 82.7306 141.0174 2.3939× 10−3

Ca2+ 0.0740 2.0027 2.4298× 10−2

Cl− 142.3254 150.2269 4.7433× 10−4

glu 7.2590× 10−4 0.0791 2.3966× 10−3

techniques. The spatial discretization consists of an uniform mesh of 2562 points. In the case
of the spatial adaptive method, there is a set of nested grids arranged in 8 di�erent levels
from the coarsest to the �nest discretization. The latter corresponds to the uniform mesh
previously considered of 2562 points. In order to compare these results, we must consider the
same spatial discretization for both solutions: this is easily achieved with the mentioned pro-
jection/prediction operations on the adapted grid. Tables 9.2, 9.3 and 9.4 show the minimum
and maximum values of variables in the neurons, the astrocytes and in the extracellular space
respectively, as well as the normalized L2 di�erence of the numerical results e obtained by the
adaptive multiresolution strategy and our proposed numerical strategy.
Figure 9.2 shows the evolution of the propagating phenomenon on an adapted grid for variable
K+ in the neurons. The re�ned regions clearly correspond to the wavefront area where the
steep spatial gradients are present. Finally, Figure 9.3 reveals in a qualitative way the di�erent
representations of the numerical solution on an uniform mesh and on the adapted one.
All these numerical results show a great accordance between the solutions of the two di�erent
codes: (MR) and (FM), in the 2D simulations. Let us recall that both codes rely on two well
tested, robust and publicly available numerical routines: the Radau5 and ROCK4 methods;
therefore, one can consider that they only di�er by the di�erent spatial discretizations and data
structures they use: the comparison can thus be considered as a (partial) cross validation.
Besides such a level of comparisons, (MR) will be shown to pave the way towards higher levels
of re�nement for a better resolution of the details of the dynamics in 3D at a reasonable cost.
In fact, considering this 2D numerical test-case, �ner spatial discretizations yield naturally
better resolution of both the wave velocity and the dynamics of the wavefront, as seen into
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Fig. 9.2: Evolution of K+ in the neurons at t = 100 s (top left), t = 1000 s (top right), t = 2000 s
(bottom left) and t = 3000 s (bottom right).
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Fig. 9.3: K+ in the neurons at t = 3600 on a 2562 uniform mesh (left) and the corresponding adapted
grid (right).

�gure 9.4. See the corresponding (MR) adapted grids into Figure 9.5. Even if it is clear that
the wave is better resolved on the �nest grid (10242), in particular it is somewhat faster, the
qualitative value of the wave velocity is correctly captured even on the coarsest grid (2562),
which corresponds roughly to the 3D simulations with (FM). However, we can not yet simulate
with (MR) all the complex geometries of the brain we are investigating in this paper; and thus,
all the results in complex geometries will be performed with (FM).
Let us make now some comments on the performance of the numerical method on shared
memory machines for both di�usion and reaction equation solvers in (FM) used in the next
results section.
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Fig. 9.4: K+ in the neurons at 3600 s for a 2D mesh of 2562 (top), 5122 (center) and 10242 (bottom).
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Fig. 9.5: 2D adapted meshes equivalent to 2562 (left) and 10242 (right) spatial discretizations at the
�nest grid.

9.5.1 Performances of the Di�usion Equation Solver

Only a poor man's parallelism is implemented for this step, each di�usion equation being solved
by one thread. But actually, as we will see later, the computing time of this step is less than
10% of the total computing time (in dimension 2 or 3); each step, for one di�usion equation,
needs only 6 matrix vector products (5 being the minimum for the ROCK4 method, plus one
for the error estimate).

Fig. 9.6: Performances of the multithreaded reaction solver along 12 time steps. Abscissa: time step.
Ordinate: computing time in CPU clock ticks.

9.5.2 Performances of the Reaction Solver

The main question concerns the e�ciency of the multithreaded parallelism. Figure 9.6 shows
the computing time with 1, 2, 4 and 8 threads, across 12 steps. The wall clock computing time
is multiplied by the number of threads (unit is in number of CPU clock ticks); in case of perfect
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scalability, all the points with the same number of threads should be at the same ordinate.
This is roughly the case, considering that the comparison of computations obtained with 1 and
8 threads reveals a loss of scalability of only 6%. We conclude that this implementation is very
e�cient. This is a consequence of the complexity of the right hand side (the reaction term):
even one single numerical evaluation of F is much more time consuming than the overhead
introduced by the thread mechanism.
As a conclusion of this part, we can notice that our computing strategy combining splitting
techniques with dedicated integration of each sub-step and multiresolution is compatible with
parallelization.

9.6 Biological Results

We present and discuss here some simulation results obtained with the code FM on the complex
geometry of the human brain. We simulate an ischemic stroke beginning in the cortex (in gray
matter) and study the propagation of the ischemic damage. The input of the model is the
decrease of the ionic currents through the ionic pumps. Two variables have been chosen for
the model validation: the potassium concentration in the extracellular space ([K+]e) and the
ratio of apparent di�usion coe�cient of water (rADCw).

• The potassium concentration cannot be measured in vivo in the brain of stroke patients
but it can be measured ex vivo or in vitro on brain tissues. These concentration values
give some insights on the severity of the damage. The physiological value of [K+]e is
about 5 mM. It was observed to be able to increase up to 35 mM in areas of moderate
ischemia where depolarization waves can spread [KN78] and up to 75-90 mM in areas of
severe ischemia where most cells are dead [Han78]. The �rst step of the model validation
is thus to compare the values of the [K+]e obtained in the simulations with those values.

• The rADCw is a biomarker which can be estimated in the brain of stroke patients thanks
to di�usion-weighted (DW) magnetic resonance (MRI) imaging. It re�ects the severity of
the cytotoxic edema and could thus be used to predict the ischemic damage and its exten-
sion [VBvdS+94, RHMD+09]. The value of this ratio is supposed to be 1 in physiological
conditions and is known to decrease in ischemic areas. In several studies, this value in
stroke patients was shown to be between 0.75 and 0.9 in areas of moderate ischemia and
between 0.5 and 0.75 in areas of severe ischemia [DLR+01, FKR+01, ROS+01, SOG+01].
This biomarker can be related to the proportions of the intracellular volumes. It was
shown to be proportional to the volume of the extracellular space [VBvdS+94]. More-
over, since the extracellular proportion was displayed to have a value of 0.2 in physio-
logical conditions (i.e., when rADCw=1) [MTD90], rADCw can be expressed as follows:
rADCw = 5 (1− fn− fa). Since fn and fa are two variables of the model, this ratio can
be calculated for each time and for each coordinate. Another step of the model validation
is thus to compare the calculated values of rADCw obtained in the simulations to the
experimental values.

We present in Figures 9.7, 9.8, 9.9, 9.10, 9.11, and 9.12 some results of 2D and 3D simulations,
showing the values of K+ and rADCw biomarker in the extracellular space in di�erent areas.

Let us make some biological comments about these results:

• First of all, we obtained depolarization waves after the simulation of a vessel occlusion in
brain cortex and the depolarization waves spread in gray matter (i.e., in brain cortex)
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Fig. 9.7: Evolution of K+ in the extracellular space over one hour, 2D simulation (in millimolar
(mM)), from left to right, top to bottom.
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Fig. 9.8: 3D simulation; cut by two perpendicular planes of the K+ in the extracellular space �eld at
time t = 3600 s (in millimolar).

and not in white matter, which is consistent with MRI images obtained in human brain
[DSF+08].
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Fig. 9.9: Evolution of K+ in the extracellular space, 3D simulation. View in the plane P of Figure
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Fig. 9.12: Evolution of rADCw in the extracellular space over one hour, 3D simulation. View in the
plane P of Figure 9.11.

• Concerning the potassium concentration in the extracellular space, Figures 9.7, 9.8, and
9.9 show that this concentration reaches values such as 77 mM in the areas where the
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vessel was occluded, which is in accordance with the results obtained in the infarcted core
in some experimental studies [Han78]. These �gures also show that [K+]e is about 20
mM in the areas where depolarization waves are spreading, which is consistent with the
values obtained in penumbra (i.e., areas of moderate ischemia, able to recover) during
spreading depressions in several studies [KN78]. We can also notice that, in the safe
areas, [K+]e remains at its physiological value (5 mM).

• Concerning rADCw, Figures 9.10, 9.11, and 9.12 show that this ratio reaches values
such as 0.6 in the areas where the vessel was occluded, which is in accordance with the
values observed on MRI images in the infarcted core of the brain of the stroke patient
[FKR+01, ROS+01, SOG+01]. These �gures also show that rADCw has values between
0.75 and 0.9 in the areas where depolarization waves are spreading, which is consistent
with the values obtained in penumbra during spreading depressions in stroke patients
[FKR+01, SOG+01]. We can also notice that, in the safe areas, rADCw remains at its
physiological value of 1.

To conclude, the simulation results concerning the localization of spreading depressions and
the values of [K+]e and rADCw are consistent with those obtained in experimental studies or
observed on MRI images in stroke patients. These results give thus a �rst step of validation
for the model and for the numerical methods used in this study.

9.7 Toward Better Computational E�ciency and Improved Ac-
curacy: Adaptive Multiresolution

In the previous simulations, we notice that the simulated waves spread at a slightly slower
speed. In several studies, spreading depressions were shown to spread at a rate of several
millimeters per minute [MFNN00], which is not currently the case in our simulations. In
fact, it is shown in [Kee87] that traveling waves solutions of reaction-di�usion equations can
disappear in the numerical solution if the spatial discretization is too coarse; the velocity of the
traveling waves is a function of the mesh size, and coarse meshes might perturb the accuracy
of the computed wave velocity.

Fig. 9.13: Local measurement of the computational cost of the reaction (in CPU clock tics).

In particular, in the previous 3D simulations, the mesh we can use is not �ne enough to obtain
a correct level of accuracy for the wave velocities. In fact, coming back to the 2D numerical
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test-case of section 9.5, we have seen in Figure 9.4, that a high number of volumes is needed
to reproduce accurately the phenomenon, approximately 1000 per dimension.
We can also measure the computing time of the reaction at a typical step (see Figure 9.13 (one
clock tick is about 0.35× 10−9 second)). Clearly the most expensive nodes are about 37 times
more expensive than the less ones! But on the other hand, the overwhelming part of the nodes
are not expensive ones. Actually, 79% of the nodes (the less expensive ones, which cost less
than 4.5× 106 tics) takes 60% of the computing time.

Fig. 9.14: 3D simulations with (MR). K+ in the neurons (left) and corresponding adapted grid (right)
at 1000 (top) and 3600 (bottom) seconds.

Therefore, one way to improve both the performances and the accuracy of the resolution is
to use an adaptive mesh: use a �ne mesh in the ischemized zone, where the solution exhibits
large gradients and wave propagation, and a coarser mesh far from this part of the domain:
the multiresolution strategy, as implemented in the code (MR) is a step towards this goal.
In order to make this more concrete than just a statement, we eventually present here a �rst
3D multiresolution simulation in a cube, where the �nest grid available has size 2563, since
complex geometry is not yet at hand (Figure 9.14). Therefore, considering the same computing
resources, the computing time is reduced by a factor of about �ve with respect to the �xed mesh
simulation with (FM) on the �nest grid, even though trying to compare two so heterogeneous
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codes is a very delicate task. In fact, the code (MR) considers a very low percentage (≤ 10%)
of 2563, which coupled with what has been presented before, allows to explain the gain in
CPU time. Nevertheless, at the current state of development of the code (MR), a lot of work
remains to be done like taking into account complex geometry, improving performances of
multiresolution methods by using adapted data structures and optimized routines, and �nally,
a high performance distributed parallelism implementation. Once this is achieved, an adaptive
mesh approach shall overcome the natural limitations of accuracy and performance of even very
performing strategies such as the implemented in (FM), and will allow one to solve entirely
the multiscale dynamics of this kind of phenomena.
Finally, increasing the accuracy of the discretization, of the numerical methods and even of
the implementation, is not su�cient to generate more precise and predictive simulations. This
should be carefully coupled with the development of a more precise modeling of coe�cients
and boundary conditions, and it is beyond the scope of the present paper.

9.8 Conclusions and Future Work

We have presented for the �rst time numerical 3D simulations of an ischemic stroke in a
realistic brain geometry, based on the model of Dronne et al. [DBG06]. Results are encouraging
from numerical and medical points of view. This is a �rst major step towards an usable
tool for predicting the evolution of a stroke. The next steps are to improve both numerical
performances and modeling. For this, a lot of work remains to be done from the model to
practical implementations. Concerning the numerical methods, many parameters in the model
are known only with a coarse approximation. Thus, numerical simulations must be conducted
to explore the sensitivity of the model to these parameters. The ultimate way to improve the
performances is to switch from multithreaded parallelism to distributed parallelism, on massive
parallel computers.
From a medical point of view, this model is of the most importance since it could be used to
simulate on a realistic human brain geometry several neuroprotective agents aimed at blocking
the ischemic cascade and at reducing the ischemic damage. Since the model contains many
pharmacological targets (such as ionic transporters, voltage-gated channels, channel-receptors
and stretch channels), it could be used to assess and study the e�ects of various therapeutic
agents or associations of therapeutic agents. Moreover, since the model includes both ionic
movements through the cells and their di�usion, we will be able to study the e�ects of these
neuroprotective agents both on the severity and on the extension of the damage in each brain
area. Developing powerful numerical methods are thus of the most importance to be able
to simulate the time and spatial evolutions of these phenomena on a realistic human brain
geometry.
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9.9 Dedicated Splitting and Adaptive Multiresolution: Appli-
cation to Human Ischemic Stroke

In the previous sections, the splitting strategy detailed in Chapter 4 have been successfully
applied to 2D and 3D simulations of a sti� reaction-di�usion system modeling human ischemic
stroke with a 19-species detailed chemistry [DBG06], in a realistic brain geometry [DDD+12].
In this part, we reconsider the same model solved this time on simpli�ed brain geometries, with
the MR/splitting technique introduced in Chapter 4. Exploiting the splitting con�guration, a
parallel computing technique was also implemented for the time integration stage in the frame-
work of shared memory computing architectures, in order to reduce computing costs related to
�detailed chemistry� features of the model. Some preliminary results have been shown in the
previous part in another context without any detail or analysis of the numerical performance
of the method. This is the main goal of this part and we will conduct a similar analysis to
the one performed for the numerical simulations in Chapter 4 in order to extend the domain
of application of the latter numerical strategy to sti�er and more complex con�gurations.
In what follows, we consider 2D and 3D con�gurations of the same reaction-di�usion system
related to the ischemic stroke model in [DBG06] with m = 19 unknowns, recalling that there
is no di�usion for 9 variables. The only simpli�cation is that only gray matter has been taken
into account in these simulations. All the simulations were performed on an 8 core (2x4) 64
bits machine (AMD Shanghai 2.7 GHz processors) with memory capacity of 32 GB.

9.9.1 2D Con�guration

We �rst consider a computational domain of [0, 50000]2 (µm), and simulate the phenomenon
over one hour t ∈ [0, 3600] (s). As previously done, we will refer to three ways to solve the
corresponding semi-discretized system (4.1):

• The quasi-exact solution, which considers the coupled reaction-di�usion problem on a
uniform mesh, computed by Radau5 with very �ne tolerance;

• The splitting solution, which uses the RDR Strang S∆t
2 scheme with Radau5 for the time

integration of the reaction term and ROCK4 for the di�usive part, also on a uniform grid,
with tolerances set to ηRadau5 = 10−5 and ηROCK4 = 10−7 after numerical experiments;
and

• The proposed MR/splitting strategy, with the same S∆t
2 time integration scheme on an

adapted mesh.

Computation of the Splitting Time Step

Taking into account that the solution of the coupled problem, i.e., the quasi-exact solution,
with Radau5 is very expensive, and that we do not dispose any theoretical information on
the solution of the problem, a preliminary study is required to choose an appropriate splitting
time step according to the criteria established in Chapter 4. The propagating nature of the
phenomenon justi�es the choice of a constant splitting time step. In this particular application,
we are looking for a splitting time step ∆t that approximates the wavefront speed v in (4.23),
within a prescribed accuracy ηv.
Therefore, we perform 1D computations with the splitting solver on a uniform grid of 1024
points in order to de�ne a reference wave velocity v into (4.23). Figure 9.15 (top) shows the
propagation of the wavefront along the x-axis across the core of the initial perturbation (see
Figure 9.16), and the time evolution of the wave velocities for solutions computed with di�erent



Sect. 9.9 - Dedicated Splitting and Adaptive Multiresolution 214

 70

 80

 90

 100

 110

 120

 130

 140

 150

 20000  25000  30000  35000  40000  45000  50000

K
+

x

t= 500s

t=1000s

t=2400s

t=3600s
 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 500  1000  1500  2000  2500  3000  3500

v

t

∆t= 1.00

∆t= 1.25

∆t= 10.00

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1  10  100

v

∆t

t= 500s

t=1000s

t=2400s

10
-4

10
-3

10
-2

10
-1

10
0

 1  10  100

E
v

∆t

t= 500s

t=1000s

t=2400s

η
v
= 5x10

-2

Fig. 9.15: Stroke model. Top: time evolution of K+ in the neurons along x-axis (left) and of the
wave velocity v (right) for di�erent splitting time steps ∆t, computed on a uniform grid of 1024 points.
Bottom: wave velocity v (left) and velocity error Ev computed by (4.23) at di�erent times t for di�erent
splitting time steps ∆t.

splitting time steps. Smaller splitting time steps naturally involve a more accurate description
of the global phenomenon, measured in this case by means of the wavefront speed (Figure
9.15 bottom left), and show convergence towards a roughly constant value of v ≈ 5.07 once the
propagating front is fully developed (t & 700 s) and the wave speed becomes relatively constant
(Figure 9.15 top right). We take this velocity computed with ∆t = 1 as the reference one,
and we choose just for illustrating purposes a rather large splitting time step ∆t = 10 in order
to show the potential decoupling of time steps for reaction, di�usion, and the time operator
splitting for a given prescribed tolerance. This time step yields a relative velocity error of
≈ 3.8% (Figure 9.15 bottom right), or equivalently an accuracy tolerance of ηv = 5×10−2 into
(4.23).
According to the criterion (4.27) established in Chapter 4 to properly couple the splitting
technique with the multiresolution representation, this time step is bounded by the maximum
splitting time step given by ∆tmax = 28.9, for ∆x = ∆y = 50000/1024 and a re�ned region
estimated by k̂ = 3 in each direction, i.e., one extra cell (k̄ = 1) as enlarging criterion to predict
the propagation of the solution, and two cells contained in the safety layer.

Performance of the Method: Data Compression and Memory Requirements

In order to analyze the performance of the MR/splitting strategy, we consider several values
of J , that is, the number of nested dyadic grids that corresponds to a �nest space resolution
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equivalent to 2562 (J = 8), 5122 (J = 9), 10242 (J = 10), or 20482 (J = 11) grid points.
For all the simulations, we considered a multiresolution threshold value of ε = 10−2. This
value yields a normalized L2-error / 10−2 between splitting and MR/splitting solutions for
all 19 variables, as previously shown in the numerical comparison of the �rst part [DDD+12].
Higher spatial discretizations naturally yield a better resolution of both the wave velocity and
the dynamics of the wavefront. In particular, we have concluded that at least approximately
10242 points are needed to get a reasonably �ne description of the phenomenon. Figure 9.16
shows some MR/splitting results for the time evolution of the concentration of K+ on the
corresponding adapted grids, for an equivalent �nest grid of 10242 points (J = 10).
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Fig. 9.16: 2D stroke model. K+ in the neurons at 500 s (top left), 1000 s (top right), 2400 s (bottom
left), and 3600 s (bottom right) represented on a dynamic adapted grid corresponding to 10242 points
at the �nest level J = 10.

Figure 9.17 shows the time evolution of the achieved data compressions (DC) de�ned by (4.39)
and the number of points in the adapted grids (AG). Data compression increases with the
number of levels as the space scales present in the problem are better discriminated by locally
�ner spatial discretizations. For a given J , the number of points in the adapted grid AG is
increasing linearly in time according to the growing radius with constant speed of the circular
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propagation of the wavefront as seen in Figure 9.16. Moreover, at a given time, adding a new
grid layer amounts to doubling the number of cells on the adapted grid as if we were re�ning
only in one dimension, also because of the quasi axial symmetry of the phenomenon.
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Fig. 9.17: 2D stroke model. Time evolution of data compressions DC given by (4.39) (left) and the
number of points on the adapted grids AG (right) for di�erent �nest levels J .

We now compute the same estimate on the memory requirements of each numerical strategy
for a �ne spatial resolution of 10242, where W1 and W2 are the number of unknowns solved,
respectively, by Radau5 and ROCK4, and the total number of unknowns is given by W =
19× 10242 ≈ 1.99× 107. The size of the working space L required by each solver is then:

1. Quasi-exact with Radau5: W1 = W ≈ 1.99× 107 and L = L1 ≈ 1.6× 1015.

2. Splitting: W1 = 19, W2 = 10×W/19 ≈ 1.05× 107 and L = L1 + L2 ≈ 8.4× 107.

3. MR/Splitting with ε = 10−2: W1 = 19, W2 = 0.07 × 10 × W/19 ≈ 7.34 × 105, and
L = L1 + L2 ≈ 5.9× 106; with a minimum data compression of 93%.

Considering a standard platform on which each double precision value is represented by 64
bits, each solver shall require 90.9 Pb, 5.0 Gb, and 360.1 Mb. For standard computational
resources, an implicit resolution with Radau5 is completely out of reach. These expensive
memory requirements are strongly reduced with a splitting strategy but further reductions are
achieved by adding a multiresolution adaptive procedure.

Performance of the Method: Parallelization and CPU Times

Table 9.5 summarizes the CPU times (CT) of the simulations, performed with 8 cores in
parallel, and the gain of parallelization (GP) which is de�ned as the ratio between the CPU
time given by one single processor and the 8 cores in parallel. We obtain rather high GPs
(max GP = 8) even though only the time integration procedure is parallelized. Actually, for
this kind of highly localized and sti� problem the multiresolution operations take normally less
than 5% of the total time consumption. Parallelization of the reaction is practically optimal in
the context of shared memory architectures because each core takes a new node immediately
after �nishing with the previous one, without any need of synchronizing or exchanging data
with the other cores.
The integration of the sti� reaction problem is always much more expensive than any other
computation, in terms of CPU time. The latter can be inferred from Figure 9.18 (left), where
the ratios in time between the CPU times used to integrate the reaction and the di�usion
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Table 9.5: 2D stroke model. CPU times (CT) in minutes and gain of parallelization (GP), for several
�nest grids (FG).

FG 2562 5122 10242 20482

CT 10.92 31.37 82.45 214.43

GP 7.62 7.50 7.55 7.52

problems are shown for di�erent spatial discretizations. Whenever we add a new layer grid
to the computational domain, the reaction CPU integration time per number of active points
remains almost the same, as seen in Figure 9.18 (right), because most of the new points will be
naturally added at the wavefront where high chemical activity is present. Nevertheless, there
is an overhead in the time consumption for two successive �nest grid con�gurations J , as seen
in Table 9.5. We can measure an increasing ratio of ∼ 2.6, slightly higher than the ratio of
2 that we should have obtained taking into account the corresponding increasing ratio of the
size of the adapted grids.
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Fig. 9.18: 2D stroke model. Time evolution of the ratio between CPU times for the integration of the
reaction and di�usion problems (left), and the CPU time per number of points in the adapted grid for
the reaction solution (right) for di�erent �nest levels J .

Actually, as shown in Figure 9.18, the integration of the di�usion problem becomes more
expensive when the spatial discretization increases from 2562 to 20482. This is because the
di�usion time step ∆tD, dynamically chosen to guarantee the tolerance accuracy ηROCK4,
goes, respectively, from ∼ 1.25 to ∼ 0.27. Furthermore, the matrix-vector products computed
by ROCK4 become also more expensive since the matrix representation of the discretized
di�usion operator is less sparse when the computational domain includes more grid levels. This
is because we locally reconstruct the values at the interface of grids with di�erent discretization
(by means of the phantom cells) to guarantee more accurate computations (see chapters 3 and
4).

Decoupling of the Time Scale Spectrum

The latter values of ∆tD for di�erent J imply, respectively, from 8 to 36 di�usion time steps
within the splitting time step ∆t = 10, for which most of the time the minimum of s = 5
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stages are needed to guarantee the stability of the method, according to (4.12).
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Fig. 9.19: 2D stroke model. Local reaction time steps h1 at 500 s (top left), 1000 s (top right), 2400 s
(bottom left), and 3600 s (bottom right) within a half-splitting time step ∆t/2 = 5, represented on a
dynamic adapted grid corresponding to 10242 points at the �nest level J = 10.

Figure 9.19 shows the corresponding local reaction time steps averaged within ∆t/2 for each
point. The imposed tolerance for the reaction resolution ηRadau5 involves time steps varying
from ∼ 0.2 to ∆t/2 = 5 for points located, respectively, in the neighborhood of the reactive
fronts and in regions of reduced chemical activity . Considering the extension of the re�ned
regions, most of the computational domain is integrated with reaction time steps 25 time larger
than the smallest time steps at the wavefronts. In this way, an e�ective decoupling of the time
scale spectrum is achieved for the reaction, the di�usion, and the splitting schemes with an
important gain of e�ciency, whenever this is permitted by the physics of the problem, so that
di�erent physical or numerical time scales associated with each problem can be isolated and
treated independently by each numerical method.
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9.9.2 3D Con�guration

Let us give more details on the 3D con�guration previously considered in the �rst part, with
the same parameters of the 2D case, in a spatial region of [0, 50000]3 (µm).
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Fig. 9.20: 3D stroke model. K+ in the neurons (left) and dynamic adapted grids (right) corresponding
to 5123 points at the �nest level J = 9 at 1000 s (top) and 2000 s (bottom).

In order to explore the feasibility and potential advantages of the method, we consider a larger
computational domain given by J = 9 nested dyadic grids corresponding to 5123 points in
the �nest grid J . For the 2563 con�guration with J = 8 shown in the �rst part, the achieved
data compression DC were of 98.84%, 95.27%, and 87.23% at times 1080 s, 2160 s, and 3600 s,
respectively. The computing time CT was of about 16.68 hours with a gain of parallelization
GP of 7.02.
Figure 9.20 shows the concentration of K+ in the neurons and the corresponding adapted grids
at 1080 s (DC = 99.14%) and 2520 s (DC = 94.94%) for the 5123 case; CT ≈ 45.88 hours for
t ∈ [0, 2520] (s) and GP = 7.14. Longer simulations times yielded larger simulation domains
which were no longer feasible with the considered computing resource and the current state of
development of the code.
Performing the same comparison concerning memory requirements, the total number of un-
knowns for the 5123 case is W = 19× 5123 ≈ 2.55× 109, and the global size of L required by
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each solver is:

1. Quasi-exact with Radau5: W1 = W ≈ 2.55× 109 and L = L1 ≈ 2.6× 1019.

2. Splitting: W1 = 19, W2 = 10×W/19 ≈ 1.34× 109 and L = L1 + L2 ≈ 1.1× 1010.

3. MR/Splitting with ε = 10−2: W1 = 19, W2 = 0.04 × 10 × W/19 ≈ 5.37 × 107, and
L = L1 + L2 ≈ 4.3× 108; with a minimum data compression of 96%.

Therefore, each solver shall require at least 1.4 Zb, 655.7 Gb, and 25.6 Gb of memory capacity.

9.9.3 Concluding Remarks

The present numerical study has mainly illustrated two aspects of the numerical strategy
established in Chapter 4:

• The treatment of highly sti� problems, given by an important number of variables related
by detailed and computationally expensive chemical terms.

• A straightforward parallelization in shared memory architectures, that turns out to be
very e�cient at least for problems for which the computational cost is dominated by the
numerical solution of the source term.

As a consequence, these highly sti� phenomena modeling complex chemical mechanisms, pre-
viously out of reach, can be successfully simulated over large computational domains with
standard computational resources.
Nevertheless, there are still many modeling and numerical points that require further improve-
ment to e�ciently conduct numerical simulations of human ischemic brain strokes, as detailed
in the �rst part of this chapter. Regarding the present numerical strategy, we can cite, for
instance, two key issues that need to be taken into consideration:

• The development and introduction of numerical tools that will allow us to consider com-
plex computational domains to numerically represent realistic brain geometries.

• The implementation of e�cient techniques to parallelize expensive computations over
several processors, in a distributed or hybrid distributed/shared memory framework.

Both points still require an important amount of work, and constitute current topics of our
research.



Chapter 10

Numerical Simulation of Combustion

Fronts

We consider in this chapter the implementation of the numerical strategy introduced in chapters
4 and 5, for the numerical simulation of �ames issued from combustion applications. This study
will be performed in a classical context of laminar �ames interacting with vortex structures,
for propagating premixed �ames and self-ignition of reactive mixtures. The hydrodynamics
is decoupled from the transport equations by adopting a standard thermo-di�usive approach.
In this context and for the considered applications, adaptive space meshing is advantageous
because of the presence of localized fronts, whereas the important transient phases due to
the imposed velocity �elds as well as sudden physical variations given, for instance, by the
ignition of a mixture, require an adequate time adaptation in order to e�ciently describe these
phenomena. The coupling of the space and time adaptive techniques enunciated in Chapter 5,
turns out to be a powerful tool to cope with these problems.
In the �rst part of this chapter, we give a brief recapitulation of splitting methods in the
literature for combustion applications. Then, we detail the basic mathematical formulation for
the problems studied in these applications. The time/space adaptive technique is introduced
in the next part as well as the extension to reaction-di�usion-convection systems. The two last
parts are devoted to the numerical simulation of propagating premixed �ames in 2D/3D, and
the ignition and propagation of di�usion �ames in 2D. Some preliminary results are reported
considering more complex source terms as in previous Chapter 9, given this time by detailed
chemical kinetics. Part of these results were presented during the Finite Volumes for Complex
Applications VI International Symposium, Prague, Czech Republic (2011) [DMDD11], and
published in the Annual Research Briefs 2011 of the Center for Turbulence Research, Stanford
University, USA [DMD+11a].

10.1 Time Operator Splitting for Combustion Problems

Numerical simulation of combustion fronts usually involves numerous numerical di�culties
arising from the broad spectrum of time and space scales present in the problem, and the
induced sti�ness of the governing equations. In this context and with the continuous develop-
ment of dedicated sti� implicit methods, several numerical strategies consider the treatment
of sti� terms usually related to detailed chemical kinetics, with these solvers instead of more
classical and less e�cient explicit or linearized implicit methods. Since a simultaneous implicit
treatment of reaction, di�usion, and convection terms involves often prohibitive computa-
tional costs, a more e�cient numerical alternative considers a combination of implicit and
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explicit schemes, i.e., the so-called IMEX methods. Similarly, we have also seen that time
operator splitting techniques o�er the same kind of advantage with usually a more reduced
computational complexity, but with the additional constraint that appropriate criteria must
be introduced to e�ciently decouple the physical phenomena and control the splitting er-
rors. Splitting methods were thus largely implemented and studied for combustion problems
(see, e.g., [GPMD88, DL95a, YP98, OB01, SLGS03, RP08]), which resulted in several numer-
ical strategies over the past years.

Taking advantages of the particular split con�guration of these multi-scale problems, Knio et al.
introduced in [KNW99] an e�cient sti� operator splitting technique for low Mach formula-
tion of reacting �ows1. These authors considered a split numerical solution for the energy
and species concentrations transport equations, which included detailed chemical kinetics and
transport parameters. In a previous work [NWK98]2, the same authors introduced an IMEX
technique that considered implicit integration of the reactive term by the dedicated sti� solver
VODE [BBH89], based on multi-step BDF formulae [Gea71]. The latter scheme achieved much
better performances than standard explicit schemes by considering time steps much larger for
the reactive term. Nevertheless, a strong limitation was given this time by the very restrictive
stability conditions for the explicit treatment of the di�usive term for �ne spatial discretiza-
tions The stability constraints for the di�usion problem became then of the same order of those
issued from an explicit treatment of the reaction (about 2 ns).
In order to relieve this constraint, the splitting technique introduced in [KNW99] was built
such that several di�usion steps given by the stability criteria, can be performed within the
splitting time step. The method considered then a splitting time step multiple of the stability
di�usion time scale, and a Strang scheme with half step integrations of the di�usion and a
centered full step reaction integration. The reaction problem was solved by VODE, whereas
the convection and di�usion problems were integrated with a second order multi-step Adam-
Bashforth scheme. In this way, numerical experiments showed that the method was globally of
order 2 for the range of time steps considered (less than 200 ns), where the splitting time steps
were suggested to be chosen as a small fraction of the physical time scale of the �ow, to ensure
negligible splitting errors. In the numerical illustrations, a su�ciently small splitting step was
consequently chosen for which several di�usion substeps were evaluated (from 2 to 32), as well
as di�erent accuracy tolerances for the sti� solver. The resulting global error of the scheme was
then dominated either by the sti� implicit solution for small splitting (and di�usion) time steps
and large accuracy tolerances, or by the second order explicit integration for larger splitting
time steps. In the �rst case when the implicit errors were comparable with the remaining
second order errors, the global order of the method is likely lower than 2. These conclusions
were drawn in [KNW99] out of numerical tests performed on a simpli�ed reaction-di�usion
system, and on a 1D methane-air premixed �ame. A 2D case was also considered for a counter
rotating vortex pair interacting with the premixed �ame, for which better e�ciencies were
found with respect to the previous IMEX approach [NWK98], mainly because of the larger
time evolution steps.
The same solver was later enhanced in [NK05] with the inclusion of a second order RKC scheme
[vdHS80, Ver96] for the di�usion problem, and an extrapolation procedure for the computation
of the transport coe�cients. The use of approximate Jacobians was also evaluated for the sti�
implicit solver. The RKC solver with extended stability domain, brie�y described in Chapter 2,
allowed larger splitting time steps for the same previous splitting technique. The second order

1See, e.g., [PV05] for the modeling equations.
2In particular, the reader can �nd in [NWK98, KNW99] a detailed state of the art of numerical methods

considered at the time for the numerical simulation of combustion fronts.
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of the scheme was shown to be conserved for the previous range of splitting time steps (this
time for less than 100 ns), and the introduction of the second order RKC scheme showed to
keep the same previous numerical behavior in terms of global errors, but with larger splitting
time steps. In this way, the time integration errors were once again associated with the
accuracy of the inner implicit and explicit solvers, and thus the splitting errors were supposed
negligible, even though the choice of the splitting step was not explicitly discussed. In all these
works, the research e�ort was mainly focused on the numerical solution of the reaction and
di�usion problems. Stability conditions for the explicit time discretization of di�usive terms
are usually related to ∆x−2, compared with ∆x−1 for the convective ones. Furthermore, these
works considered detailed transport coe�cients which display multi-scale and potentially sti�
features (see, e.g., [Gio99]).
An interesting study in [NK05] on splitting errors showed that a time adaptive sti� solver
e�ectively handles the initial fast transients introduced in the reactive step after the di�usion
step due to the splitting procedure, as previously reported and treated in [VBvLS96, SVdZ+98,
VSBH99]. With these results, these authors justi�ed their di�usion ending splitting scheme
by arguing that the adaptive sti� solver succeeds to guarantee the prescribed accuracy even
with important transient phases, although this will not be the case after the second and last
di�usion half step. Nevertheless, the global errors are piloted by the inner time integrators in
this implementation, so that it becomes more di�cult to relate this approach with the previous
theoretical results [Spo00, DM04] discussed in Chapter 1, for which the split subproblems were
assumed to be exactly solved. Notice that these transients imply naturally an overhead in the
sti� solvers as reported also in [KNW99]. As in [KNW99], the number of constant di�usion
substeps de�nes the splitting time step, and both this number and the number of stages of the
RKC scheme needed to be de�ned in advance. The time stepping features of RKC with error
control [SSV97] were not considered.
More recently in [SPN06b], Singer et al. coupled the previous splitting scheme of [NK05] with
ISAT, an adaptive chemistry tabulation technique for detailed chemical kinetics [Pop97], to
handle the reactive terms. The capabilities of this coupling were �rst conducted in [SP04].
Numerical experiments were thus performed in [SPN06b] in the same previous context of
[KNW99, NK05], to analyze the approximation errors introduced by ISAT and to verify the
second order of the method. Splitting time steps should be considered su�ciently small
and therefore were not discussed in the paper as well as the order reduction appreciated
for splitting time steps larger than ∼ 200 ns. Order reductions were previously reported in
[GPMD88, DL95a, YP98] for �ames with complex chemistry in combustion applications. The
numerical strategy proposed in [SPN06b] showed to be very performing, and implemented hy-
brid parallel computing techniques for distributed and shared memory architectures that yield
important speed-ups in the simulations, as reported and analyzed in [SPN06a]. Complemen-
tary studies in [RP08] introduced alternative techniques like previously in [NK05], to reduce
the computational cost of the transport substeps while maintaining in practice the second or-
der accuracy of the Strang scheme.

Another e�cient numerical strategy also in the context of low Mach regimes that considers op-
erator splitting techniques, was introduced by Day & Bell in [DB00]. Even though this scheme
included some similar ideas to those of [NWK98, KNW99], it di�ers mainly in the projection
method used to solve the combined momentum and transport equations, and that the AMR
technique introduced in [Ber82, BO84, BBSW94], was implemented. The operator splitting
considered a Strang scheme with half steps of reaction integration with VODE [BBH89], and a
combined convection-di�usion centered full step. The latter step is solved on the adapted mesh
by considering local CFL time steps, according to the grid size and with a scheme developed
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in [ABC+98, PHB+98] in the framework of AMR techniques for reacting �ows. Numerical
experiments in [DB00] showed convergence order of, or close to 2, by using reference solutions
computed with the Premix code from the Chemkin library [KGM+98]. Further validations
were conducted through qualitative analysis of particular physical features of the models un-
der study. In these con�gurations the accuracy tolerance of the sti� solver is set as small
as possible (i.e., 10−16 in [DB00]), and the global time evolution step is related to the local
time stepping procedure based on local CFL conditions rather than accuracy [BDA+06]. With
these bases, further developments in terms of algorithm implementation and parallel comput-
ing techniques led to the e�ective simulation of 3D turbulent premixed �ames with detailed
chemistry (see, e.g., [BDG02, BDA+06]) and outstanding achievements for laboratory-scale tur-
bulent �ames (see, e.g., [BDS+05, BDG+07]). For instance, a 3D turbulent �ame with complex
chemistry was simulated in [BDG+07] in a computational domain of [7.5, 5, 10] (cm) over three
grid levels, with a corresponding resolution of 480× 320× 640 in the �nest mesh.

The numerical methods previously described represent some examples of splitting implemen-
tations for combustion applications, and re�ect the interest of such techniques to overcome
classical restrictions of computational resources. Such an approach allows a suitable choice of
numerical time integration solvers and a straightforward coupling with other techniques like
chemistry tabulation or grid adaptation procedures, with important gains of numerical perfor-
mance due to the reduced computational complexity, and thus higher degree of liberty with
respect to other numerical methods. In this context and with this background, the present
work has presented in Chapter 4 a new splitting scheme for this kind of multi-scale problem,
that further develops and introduces some new elements to the classical approach.
Compared with previous works, this scheme considers a new approach in the construction of
splitting schemes in which the time integration errors are uniquely related to the splitting
errors, even for large splitting time scales, based on mathematical studies conducted mainly
in [DM04, DDLM07]. The underlying idea is to decouple time integration errors by choosing
high order dedicated methods for the split subproblems, and thus the global error is mainly
piloted by the splitting time step, de�ned according to the decoupling capabilities of the phe-
nomenon. This novel point of view allows us to considerably reduce the number of simulation
parameters and to easily generalize the numerical methodology. Additionally, the numerical
accuracy of the simulation and the corresponding choice of the splitting time step, which were
often not explicitly detailed or directly related to the fastest numerical or physical time scale in
the classical literature, become the core of this numerical strategy. The independent choice of
the splitting time step settles the numerical accuracy of the simulation and yields an e�ective
decoupling of the time scale spectrum depending on the physics of the problem, with important
computational gains as illustrated in previous chapters. The latter procedure may be consid-
erably eased by the dynamic splitting error control introduced in Chapter 5, which extend
the previous strategy with constant splitting time step as in the referred literature, to a more
general framework potentially given by highly unsteady physics. With the simulation criteria
introduced in this work, we look for a further decoupling between the time integration errors
and the spatial errors introduced by the compressed spatial representations, taking into ac-
count that the mathematical background of multiresolution schemes [Har95, CKMP03, Mül03]
o�ers a better quanti�cation of such representation errors.

In the following, we implement the proposed numerical strategy for the simulation of lam-
inar �ames interacting with vortices in a thermo-di�usive approach. These con�gurations
were extensively used in the combustion domain to describe and to study several phenom-
ena (see, e.g., [RTRC00]), and even compared with experimental results (see, e.g., [TRR+96,
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RRTC99]). The �rst 2D/3D simulations with adaptive multiresolution for combustion prob-
lems were performed by Roussel et al. in [RS02, RS05b, RS06], also in a thermo-di�usive ap-
proach with standard explicit time integration solvers.

10.2 Laminar Flames Coupled with Vortex Structures

In this study, we are concerned with the numerical simulation of di�usion and premixed �ames
interacting with vortex structures. We describe in this part the general con�guration for
laminar �ames. In a �rst step and for the sake of simplicity, the chemistry is modeled by a
global, single step, irreversible reaction given by

νFF + νOO→ νPP, (10.1)

where νk, k = F,O,P, stand for the stoichiometric coe�cients for the fuel F, the oxidizer
O, and the combustion products P. The latter reaction is usually modeled by an Arrhenius
law as we shall see in the following applications. Moreover, the following standard modeling
assumptions are also considered throughout this study:

1. Mass di�usion velocities of chemical species are expressed by Fick's law.

2. Thermal di�usion of species (Soret-Dufour e�ect) is neglected.

3. Di�erent species have constant and equal di�usion coe�cients with respect to the mix-
ture, noted D.

4. Constant pressure speci�c heats of all species are constant and are given by the same
value cp.

5. Lewis numbers corresponding to all species are equal to 1.

6. The rate of pressure change in time is negligible.

7. Density variations associated with chemical heat release are neglected.

The assumption 7 is commonly known as the thermo-di�usive approach in laminar �ame theory.
In practice, this constant-density character decouples the velocity �eld computation from the
determination of species mass fractions and temperature. Known solutions of incompressible
Navier-Stokes equations may then be imposed, and the problem is reduced to solving the
following species and energy balance equations:

∂tYF + v · ∂xYF −D∂2
xYF = −νFWF

ρ
ẇ,

∂tYO + v · ∂xYO −D∂2
xYO = −νOWO

ρ
ẇ,

∂tYP + v · ∂xYP −D∂2
xYP =

νPWP

ρ
ẇ,

∂tT + v · ∂xT −D∂2
xT =

νFWFQ

ρcp
ẇ,


(10.2)

x ∈ Rd, where Wk is the molar mass, and Yk the corresponding mass fraction for k = F,O,P.
Variable T accounts for the temperature, and the reaction rate of progress ẇ is related to the
rate of consumption of fuel ẇF, oxidizer ẇO, and products ẇP by

ẇ = − ẇF

νF
= − ẇO

νO
=
ẇP

νP
. (10.3)
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The heat release per unit mass of fuel Q is de�ned by

Q = hF +
νOWO

νFWF
hO −

νPWP

νFWF
hP, (10.4)

where hk, k = F,O,P, is the corresponding species enthalpy. If we consider also a non-reacting
diluent, noted by index N, the following equation must be included in (10.2):

∂tYN + v · ∂xYN −D∂2
xYN = 0. (10.5)

In any case, mass fractions verify by de�nition

YF + YO + YP + YN = 1. (10.6)

In the thermo-di�usive approach, the velocity �eld v(x, t) is usually computed analytically
and imposed into (10.2). Throughout this study, we consider a 2D vortex con�guration which
features an azimuthal velocity of the form:

vθ(r, t) =
Γ

2πr

(
1− e−r

2/4νt
)
, (10.7)

where Γ denotes the vortex circulation; r(x, y), the distance to the vortex center; and ν,
the kinematic viscosity. This velocity �eld has a viscous core with a typical dimension of
Rν ≈ (νt)1/2. Inside the core the velocity increases linearly with the radius, and the �uid
rotates like a solid body:

vθ(r, t) ≈
Γr

8πνt
, r < Rν . (10.8)

A fast decay occurs immediately outside the core, whereas at large distances the �ow ap-
proaches that of an ideal line �ow:

vθ(r, t) ≈
Γ

2πr
, r � Rν . (10.9)

10.3 Time/Space Adaptive Technique

For the previous reaction-di�usion-convection system given by (10.2), we implement the MR/
splitting strategy introduced in Chapter 4, complemented by the adaptive splitting technique
introduced in Chapter 5. We recall that the main idea is to independently consider high order
dedicated methods for each subsystem to handle the fastest physical/numerical scales associ-
ated with each one. The solution is then reconstructed by the splitting scheme that decouples
the global physics within a prescribed accuracy. Additionally, the multiresolution analysis
yields adaptive mesh representations with important gains of computational performance.
A second order Strang scheme is considered for the general problem (10.2):

S∆tU0 = R∆t/2D∆t/2C∆tD∆t/2R∆t/2U0, (10.10)

with U = (YF, YO, YP, YN, T )T , and splitting time step ∆t. The operatorsR, D, and C indicate,
respectively, the numerical integration of the reaction, di�usion, and convection problems. The
splitting time steps are dynamically computed by

∆tnew = υ∆t

√
η∥∥S∆tU0 − S̃∆tU0

∥∥ , (10.11)
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where S̃∆t stands for the embedded and lower order Strang splitting method, introduced in
Chapter 5.
The reaction and di�usion problems are solved, respectively, by the Radau5 and ROCK4
solvers as in the previous chapters. An explicit high order in time and space, one-step mono-
tonicity preserving scheme, OSMP, developed by Daru & Tenaud in [DT04], is implemented
as convective scheme. It combines monotonicity preserving constraints for non-monotone data
to avoid extrema clipping, with TVD features to prevent spurious oscillations around discon-
tinuities or sharp spatial gradients. Considering its explicit character, standard CFL stability
restrictions are imposed within each splitting time step ∆t. In this way, adaptive time step-
ping is considered for all three operators in (10.10) within the corresponding splitting time
steps. Although this dynamic step size selection is made within a prescribed accuracy toler-
ance for Radau5 and ROCK4, this is not currently the case for the convective scheme for which
time stepping is done based on stability constraints. As previously stated and considered in
previous works (see, e.g., [NK05]), we have focused our attention on the numerical solution of
sti� reaction-di�usion systems3. We have thus extended the numerical strategy to reaction-
di�usion-convection problems in which the main constraint for the convective term is given by
the small time steps resulting from stability conditions related to quite �ne spatial discretiza-
tions. A convective scheme that guarantees at least second order should be considered, such
that the numerical errors associated with the convection problem are expected to be negligible
in front of the splitting errors taking into account the small values of the convection time
steps4. The introduction of the convection problem, and the OSMP scheme in the numerical
strategy, is discussed in the following.

10.3.1 Time Integration of the Convection

We are concerned with a general convection problem issued from the time operator splitting
scheme:

∂tUC + ∂x ·G(UC) = 0, x ∈ Rd, t > 0, (10.12)

with initial data UC(0, ·) = U0(·), where UC : R × Rd → Rm, U0 ∈ Rm, and G(UC) =
(Gi(UC))i=1,...,d with Gi : Rm → Rm. Taking into account that a general implicit solution
of problem (10.12) is usually expensive in terms of computational resources, an explicit time
integration is preferred. Moreover, explicit schemes are usually easy to implement and many
performing and dedicated methods exist (see, e.g., [LeV92, LeV02]). A review and comparison
of di�erent schemes can be found, for instance, in [DT01, LW03]. Nevertheless, a common
drawback of these techniques is that the speci�c accuracy and stability constraints, deduced
usually for 1D con�gurations, become often di�cult to extend to multi-dimensional cases,
and require more sophisticated developments similar to those encountered in coupled multi-
dimensional schemes. In this context, one way to keep the original 1D schemes with often
important gains in e�ciency, considers dimensional splitting techniques (see, e.g., [HV03]).
We de�ne then the time operators Ctx, Cty, and Ctz associated, respectively, with the solutions
at some time t of the 1D problems:

∂tUC + ∂xG1(UC) = 0,

∂tUC + ∂yG2(UC) = 0,

∂tUC + ∂zG3(UC) = 0,

 (10.13)

3In Chapter 2 we have only considered time integration solvers potentially suitable for reaction or di�usion
problems in the context of PDEs.

4We will see in the following that the convective time step is at most equal to half a splitting time step.
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issued from (10.12) for the x-, y- and, z-direction. A �rst order approximation is given, for
instance, by

C∆tCU0 = C∆tC
z C∆tC

y C∆tC
x U0; (10.14)

whereas a more suitable symmetric second order Strang scheme [Str68] considers, for example,

C∆tCU0 = C∆tC/2
x C∆tC/2

y C∆tC
z C∆tC/2

y C∆tC/2
x U0, (10.15)

where the convection steps ∆tC are limited by the stability restrictions of the numerical scheme.
Since the latter constraints take usually into account the spatial discretization steps as in the
standard CFL condition (10.30) (proportional to ∆x−1), a better solution considers

C2∆tCU0 = C∆tC
x C∆tC

y C∆tC
z C∆tC

z C∆tC
y C∆tC

x U0, (10.16)

instead of (10.15) to better ensure the same numerical di�usion in all three directions and to
preserve thus the isotropy of the computations (see also [dC09]). Furthermore, at each time
step ∆tC we need to perform three steps in (10.16) to advance the solution instead of �ve in
(10.15), with a possibly better e�ciency of the scheme.
For the splitting scheme (10.10), the operator C is then given by

C∆t =

IC∏
i=1

C2∆tC,i , (10.17)

for 2IC convection steps ∆tC,i within the global splitting step ∆t, and (10.16):

C2∆tC,iU0 = C∆tC,i
x C∆tC,i

y C∆tC,i
z C∆tC,i

z C∆tC,i
y C∆tC,i

x U0. (10.18)

The intermediate time step ∆tC,i is the same for all points over the computational domain,
and it is computed such that

∆tC,i = min

(
∆tmax

C,i ,
∆t

2
−

i−1∑
i′=1

∆tC,i′

)
, (10.19)

where ∆tmax
C,i is the current maximum convection time step within the stability domain of the

numerical scheme. The previous procedure is general and remains valid for any convective
scheme and for both linear and nonlinear transport problems, with time- and space-varying
transport velocities.
Some of the main advantages of a dimensional splitting technique are its easy implementa-
tion and the straightforward extensions to multi-dimensional con�gurations. Furthermore,
stability restrictions in 1D are usually less restrictive than for multi-dimensional con�gura-
tions, i.e.,maxi∈[1,d] κi ≤ C instead of

∑d
i=1 κi ≤ C. Usually, there are also fewer �ux eval-

uations to compute, whereas the memory requirements are settled by a 1D con�guration,
considerably lower than those for fully multi-dimensional schemes. Nevertheless, the main dis-
advantages related to dimensional splitting are that it is not suitable for unstructured mesh,
and that it is usually limited to low order schemes. Another inconvenience for some particular
applications will be discussed in the following.

Dimensional Splitting and Divergence Free Velocity Fields

For most of the con�gurations and models that we will consider in this work (and the ones we
would like to investigate in the future), the convective part is in a general conservative form like
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in (10.12). The velocity �eld is either a variable to solve such as in the compressible Navier-
Stokes or Euler equations, or a function of other variables such as in drift-di�usion equations
modeling plasma discharges. In this context, the dimensional splitting will be a performing
tool for structured meshes if coupled with a dedicated numerical method for conservation laws
that ensures an adequate treatment of steep gradients, even shocks, such as the OSMP scheme
[DT04]. In the particular context of the present chapter, we will consider a decoupled velocity
�eld which will be imposed and divergence free, according to the thermo-di�usive approach.
The scalar �elds given by the temperature and the species mass fractions will be transported by
such a velocity �eld along the �uid particles in (10.2). Hence, the relevant model is naturally
in a rather non-conservative form with a velocity �eld that preserves the measure as well as
constant temperature/species �elds.
Nevertheless, since we want to have a generic approach for the convective subproblem, we
will recast the convective system into a conservative form. A common problem that arise
when using dimensional splitting is that such an approach may introduce some unwanted
spatial deformations in the numerical solution of convection problems in conservative form like
(10.12), with divergence free velocity �elds. These issues are discussed with more details in
[HV03]; they were originally noticed in [Bot92] and further investigated in [LLM96]. A simple
example is the case of spatially constant solutions transported by a divergence free velocity
�eld. In order to better illustrate this, let us consider one of the convective problems coming
from (10.2):

∂tT + v · ∂xT = 0. (10.20)

We switch to a conservative form by making use of the zero divergence of the velocity �eld5

∂tT + ∂x · (vT ) = 0, (10.21)

taking into account that both representation are equivalent as long as the velocity �eld v is
divergence free:

∂x · v = 0. (10.22)

This is the case for the 2D velocity �eld given by (10.7), which have in particular motivated
this short and complementary study.
If we now consider a spatially constant T (x) = T ?, we can see that the numerical time inte-
gration of (10.21) should naturally yield T (x, t) = T ? after any time t. Nevertheless, this will
not be necessarily the case for the dimensional splitting solution that independently considers
problems:

∂tT + ∂x(vxT ) = 0,

∂tT + ∂y(vyT ) = 0,

∂tT + ∂z(vzT ) = 0,

 (10.23)

unless
∂xvx = ∂yvy = ∂zvz = 0. (10.24)

The resulting variations are thus arti�cial and may look as spatial deformations, but the cause
is purely related to the coupling of dimensional splitting with a conservative formulation6.
In particular, this de�ciency may result in qualitatively bad results for problems with space-
varying �ow �elds and spatially constant solutions in part of the domain, which are usually

5Notice also that the OSMP scheme was conceived for hyperbolic problems in conservative form.
6Let us underline that the use of dimensional splitting in advection form (10.20) would lead to no spatial

oscillation but the resulting scheme would be non-conservative.
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background concentration values in applications [LLM96, HV03]. Although second order di-
mensional splitting considerably reduces this problem, small oscillations may remain/appear
depending on the spatial distribution of the problem.
This kind of inconvenience might be observed in the numerical simulation of problem (10.2),
taking into account that we aim at solving localized propagating fronts in semi-equilibrium
media. We have thus implemented the following simple procedure7. Instead of considering the
convection subproblem (10.21), we apply the second order dimensional splitting technique to
the equivalent problem:

∂tT + ∂x · (vT ) = T (∂x · v). (10.25)

This amounts to consider problems:

∂tT + ∂x(vxT ) = T (∂xvx),

∂tT + ∂y(vyT ) = T (∂yvy),

∂tT + ∂z(vzT ) = T (∂zvz),

 (10.26)

for which the convective numerical scheme is implemented for the left side term as in the
standard case (10.13), whereas the right side term is introduced as a corrective source term.

10.3.2 The OSMP Scheme

The OSMP scheme is built upon a one-step approach based on a Lax-Wendro� approximation
[LW60]. Considering a linear scalar transport equation:

∂tu+ a ∂xu = 0, (10.27)

with a constant velocity a, and denoting by un+1
j the numerical solution of (10.27) at time

t = t0 + nδt and position x = x0 + jδx, the main idea is to express un+1
j by using a Taylor

series expansion where the time derivatives are substituted with space derivatives according
to the exact equation (10.27). The latter procedure applied up to order 2 with an upwind
discretization for odd derivatives and centered formulae for even derivatives, yields the second-
order Lax-Wendro� scheme:

un+1
j = unj −

δt

δx
(Flw

j+1/2 − Flw
j−1/2), (10.28)

where Flw
j+1/2 is the Lax-Wendro� numerical �ux:

Flw
j+1/2 = aunj +

(1− κ)

2
a(unj+1 − unj ), (10.29)

and κ is the local CFL number:

κ = a
δt

δx
. (10.30)

The modi�ed equation for this scheme reads

ut + a ∂xu = a
δx2

6
(κ2 − 1)∂3

xu. (10.31)

7Other corrective techniques are discussed in [LLM96] and [HV03].
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By subtracting from the Lax-Wendro� scheme an upwind term issued from the discretization
of the right hand side of (10.31), one obtains the classical third order upwind-biased scheme
with a numerical �ux given by

F3
j+1/2 = aunj +

(1− κ)

2
a

(
unj+1 − unj −

1 + κ

3
(unj+1 − 2unj + unj−1)

)
. (10.32)

Proceeding in the same way, the correction of the higher order error terms of the successive
modi�ed equations yields a recurrence relation that allows us to construct a family of schemes
with arbitrary order of accuracy in time and space [DT04]. In this case, the numerical �uxes
can be recast in a generic form:

Fpj+1/2 = aunj + φpj+1/2

(1− κ)

2
a(unj+1 − unj ), (10.33)

such that the time integration is written as

un+1
j = unj −

δt

δx
(Fpj+1/2 − Fpj−1/2). (10.34)

Hence, a scheme of order p is expressed in the usual form of a second order �ux limiter scheme,
and the φpj+1/2 plays the role of an accuracy function that settles the order of accuracy of the
scheme. For the third order, we have, for instance,

φ3
j+1/2 = 1− 1 + κ

3
(1− rj+1/2), (10.35)

with

rj+1/2 =
unj − unj−1

unj+1 − unj
. (10.36)

The φp functions up the the 7-th order of accuracy were deduced in [DT04], as well as extensions
to the nonlinear case:

∂tu+ ∂xg(u) = 0, (10.37)

by considering the Jacobian a(u) = ∂ug, and thus (10.34) holds with

Fpj+1/2 = gnj + φpj+1/2

(1− κ)j
2

(gnj+1 − gnj ). (10.38)

For the third order, (10.35) becomes

φ3
j+1/2 = 1− 1

3

(1− κ2)j+1/2 − (1− κ2)j−1/2 rj+1/2

(1− κ)j+1/2
, (10.39)

with

rj+1/2 =
gnj − gnj−1

gnj+1 − gnj
. (10.40)

These schemes have the same order of accuracy in time and space, and have the property
of giving the exact solution if the CFL number is equal to 1. In practice, a standard CFL
stability condition is considered: 0 < κ ≤ 1. This family of schemes is rather simple to
implement and considers �xed stencils for the �ux evaluations. In terms of performance, it
was shown in [DT09] that the 7th-order scheme is at least six times more e�cient in CPU time
with respect to a method of lines using a Runge-Kutta time integration or WENO schemes
for space discretizations that represent the same accuracy. For the OSMP scheme, a stencil of
eight points is required for 7-th order in time and space. In general, the stencils are constituted
of p + 1 points. Finally, the original monotonicity preserving constraints of Suresh & Huynh
[SH97] have been recast in a TVD framework in order to preserve accuracy near extrema. In
practice, these criteria are expressed in terms of �ux limitation constraints applied through φp

into (10.33) and (10.38), as developed in [DT04].
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Implementation of the OSMP Scheme

We describe in this part the practical implementation of the OSMP scheme (10.38) for subprob-
lem (10.25), following the alternative approach introduced to reduce the potential oscillations
related to the dimensional splitting procedure for these particular problems.
Considering the split convection subproblem (10.21) and the standard OSMP scheme (10.38),
the numerical solution in the x-direction after a time step ∆tC is given by

Tn+1
j = Tnj −

∆tC
∆x

(Fpj+1/2 − Fpj−1/2), (10.41)

with the �uxes

Fpj+1/2 = Froe
j+1/2 + φpj+1/2

(1− κ)j
2

|vx,j+1/2|(Tnj+1 − Tnj ), (10.42)

where Froe
j+1/2 is the standard Roe numerical �ux:

Froe
j+1/2 =

1

2

[
vx,j+1/2(Tnj+1 + Tnj )− |vx,j+1/2|(Tnj+1 − Tnj )

]
. (10.43)

All the computations are entirely evaluated on a locally uniform mesh of size ∆x. The same
follows for directions y and z.
According to (10.25), a corrective term should be introduced into the time evolution scheme
(10.41) for this particular con�guration. The scheme is thus written as

Tn+1
j = Tnj −

∆tC
∆x

(Fpj+1/2 − Fpj−1/2) +
∆tC
∆x

Tnj (vx,j+1/2 − vx,j−1/2), (10.44)

for a one-step numerical scheme, that along with (10.42) and (10.43) yields a modi�ed OSMP
scheme. The numerical simulations of problem (10.2) show that the modi�ed scheme (10.44)
allows us to considerably reduce local accumulations in spatially constant regions. The oscil-
lations introduced by the dimensional Strang splitting are however very small.

10.4 Propagation of Premixed Flames

In the framework of problem (10.2) that models laminar �ames interacting with vortices, we
conduct in the following a study on the performance of the proposed numerical strategy for the
simulation of premixed �ames in 2D and 3D con�gurations. The model under consideration
comes from a con�guration investigated by Laverdant & Candel in [LC89].

10.4.1 Model Formulation

We establish in this part the mathematical formulation of the model introduced in [LC89] for
a 2D con�guration. Extensions to 3D cases are straightforward and will be detailed afterward.
We consider a square computational domain where a mixture of fuel and oxidizer constitutes
the lower half-plane, while products occupy the upper half-plane. The chemistry is fast but
with a �nite rate, and a thin premixed laminar �ame is initially located at the mid-plane. In
this case, the reaction rate is modeled by the following Arrhenius law [LC89]:

ẇ =
B1

WOWF
ρ2YOYFT

2e−Ta/T , (10.45)

where B1 is a preexponential factor and Ta, the activation energy. For premixed laminar
�ames, the mixture may be assumed to be fuel lean with a high diluent concentration. Hence,
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the reaction rate is controlled by the fuel concentration, whereas the oxidizer mass fraction is
nearly constant and equal to its upstream value YO = YOo. Therefore, (10.45) becomes

ẇ =
B1

WOWF
ρ2YOoYFT

2e−Ta/T . (10.46)

Subscripts ( )o, ( )b, and ( )? indicate, respectively, fresh mixture zone, burnt product zone,
and dimensionless variables.
The variation of the ratios ρo/ρb = Tb/To is assumed negligible because the pressure is es-
sentially constant and hypothesis 6. With these hypotheses, the composite Schvab-Zeldo'vich
variable:

θZ = T +
Q

cp
YF, (10.47)

veri�es a time dependent equation of type (10.2) without source term like (10.5), whereas from
a simple energy balance relation in an adiabatic framework, we get

cp(Tb − To) = Q(YFo − YFb). (10.48)

By evaluating θZo and θZb in (10.47) and from (10.48), it can be seen that θZ is constant
throughout the �ame. Consequently, a progress variable c(x, y, t) can be introduced:

c =
T − To
Tb − To

=
YFo − YF

YFo − YFb
. (10.49)

Using T/Tb = 1 + τc, where τ = Tb/To − 1, the reaction rate (10.46) becomes8

ẇ = B?YFo(1− c)e−Ta/(To(1+τc)), (10.50)

with

B? =
B1

WOWF
ρ2
oYOoT

2
o . (10.51)

Therefore, for the fuel mass fraction equation in (10.2), we now have

∂tYF + vx∂xYF + vy∂yYF −D
(
∂2
xYF + ∂2

yYF

)
= −B?

ρo
YFo(1− c)e−Ta/(To(1+τc)), (10.52)

which may be written as

∂tc+ vx∂xc+ vy∂yc−D
(
∂2
xc+ ∂2

yc
)

=
B?
ρo

(1− c)e−Ta/(To(1+τc)). (10.53)

Considering a square computational domain of size 2L, a characteristic di�usion time τd =
L2/D, and a velocity V = D/L, we de�ne the following dimensionless variables:

x? =
x

L
, y? =

y

L
, vx,? =

vx
V
, vy,? =

vy
V
, t? =

t

τd
. (10.54)

We �nally obtain [LC89]:

∂t?c+ vx,?∂x?c+ vy,?∂y?c−
(
∂2
x?c+ ∂2

y?c
)

= Da (1− c)e−Ta/(To(1+τc)), (10.55)

where Da = B?τd/ρo = τd/τch is a Damköhler number and τch = B?/ρo, a chemical time.

8Taking into account that YFb = 0 into (10.49).
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The dimensionless tangential velocity induced by the viscous core vortex coming from (10.7),
becomes

vθ,?(r?, t?) =
Re Sc

r?

(
1− e−r

2
?/(4 Sc t?)

)
, (10.56)

where the Reynolds and Schmidt numbers are de�ned by

Re =
Γ

2πν
, Sc =

ν

D
. (10.57)

In Cartesian coordinates, the velocity is given by

vx,? =

(
y? − y0,?

r?

)
vθ,?,

vy,? = −
(
x? − x0,?

r?

)
vθ,?,

 (10.58)

for a counterclockwise rotating vortex with radius

r2
? = (x? − x0,?)

2 + (y? − y0,?)
2, (10.59)

where (x0,?, y0,?) is the center of the vortex.

10.4.2 Numerical Simulations: 2D Con�guration

In this application we consider two dynamic counter rotating vortices, each one modeled by
(10.56), interacting with a premixed �ame governed by (10.55) in a 2D computational domain.
All these simulations have been performed on an AMD Shanghai 2.7 GHz processor with
memory capacity of 32 GB.

Data Initialization and Simulation Parameters

We solve problem (10.55) with Neumann homogeneous boundary conditions in a 2D com-
putational dimensionless domain of [−1, 1]2, i.e.,L = 1 into (10.54). The initial condition
corresponds to a premixed �ame in the limit of large activation energy [LC89]:

c =

{
e(y?−y0,?)/∆? , y? ≤ y0,?,

1, y? > y0,?,
(10.60)

where ∆? is the preheat zone thickness. For the following computations, the following modeling
values were considered into equations (10.55), (10.56), and (10.60):

Da = 2.5× 109, Ta = 20000 K, To = 300 K τ = 6.72, (10.61)

Re = 1000, Sc = 1, (10.62)

∆? = 0.02. (10.63)

The velocity �eld is given by the superposition of two vortices with opposite signs in (10.58),
centered at (−0.25,−0.5) for the counterclockwise vortex, and (0.25,−0.5) for the clockwise
one. The velocities are computed before each time integration of the convection problem and
updated after two time steps ∆tC,i according to (10.17), as well as the maximum time step
∆tmax

C,i .
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For the numerical strategy, the adaptive splitting accuracy tolerance in (10.11) was set to
η = 10−3, unless noted otherwise, with ηROCK4 = 10−5 and ηRadau5 = 10−7 for the ROCK4
and Radau5 solvers. The third order OSMP scheme was considered for the convection problem
with a stability CFL condition equal to 1. The time domain of integration was given by t? ∈
[0, 4× 10−3]. For the multiresolution analysis and in order to be consistent with the tolerance
of the time integration solver, ε = 10−2 and ε = 10−3 were chosen as multiresolution threshold
values in the following illustrations. The �nest grid corresponds to a spatial discretization of
10242 points, i.e., J = 10 as �nest grid level.

Numerical Results

According to the de�nition of the progress variable c in (10.49), the fresh mixture is given
by c = 0, whereas c = 1 corresponds to the burnt gases. Starting from the planar premixed
�ame (10.60) at y? = −0.5, with fresh gases in the lower part (blue zone in the �gure),
Figure 10.2 shows the time evolution of c and the interaction of the two imposed vortices
with the �ame front. The velocity �eld generated by the vortices is shown in Figure 10.1,
and is characterized by high values with localized strong gradients for the considered Reynolds
number of Re = 1000. As a consequence, the fresh mixture is drawn up towards the hot
region (red zone in Figure 10.2) in the center region, beating the advance of the reacting front,
whereas hot gases propagate faster in the outer zones around the vortices cores.
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Fig. 10.1: 2D propagating �ame. Velocity �eld at t? = 10−3 (left) and vy,? at y? = −0.5, at t? = 10−3

and t? = 3× 10−3 (right).

The contour lines in Figure 10.2 account for the spatial thickness of the �ame in which the
fresh gases react and burn, and where an important numerical e�ort is usually required to
precisely describe the phenomenon. In this con�guration the �ame thickness is reduced from
about 0.05 in the standard planar con�guration, to approximatively 0.025 at regions where
the �ame surface is sheared by the locally high velocity gradients as seen in Figure 10.1. A
spatial mesh of 10242 points involves approximatively 10 discretization points throughout the
�ame front, and generates a reasonably good numerical representation of the problem. From
a numerical point of view, the latter issue imposes a �ne spatial discretization for a localized
structure, 100 times smaller than the global scale of the computational domain, and thus an
adaptive mesh re�nement technique seems natural.
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Fig. 10.2: 2D propagating �ame. Time evolution of variable c at t? = 5× 10−4 (top), 10−3 (middle),
and 1.5 × 10−3 (bottom). Left: red (resp., blue) zone corresponds to burnt (resp., fresh) gases, c = 1
(resp., c = 0). Right: contour lines with c = 0− 0.99 and ∆c = 0.11.
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Figure 10.3 shows the corresponding adapted grids. The representation involves 7 levels of
di�erent spatial discretization where the �nest regions coincide with the propagating fronts.
Notice that the highest velocity values do not necessarily correspond to the �ame front as seen
in Figure 10.1, and thus we will have constant concentration regions with strong variations of
the transport �eld. In the context of dimensional splitting, the latter feature introduces some
numerical errors as previously discussed, and the corrective term introduced in (10.44) allows
us to reduce local accumulations of c from a maximum of 1.01 to approximatively 1.0001 in
the burnt regions. The multiresolution decomposition naturally identi�es this behavior, and
consequently re�nes these zones as seen in Figures 10.1 and 10.3. In uniform grid simulations,
no accumulation was detected when using (10.44), and c is strictly lower than or equal to 1.
Finally, the data compressions DC de�ned by (4.39) and achieved in this case with ε = 10−2

and ε = 10−3, show that no more than, respectively, 10 % or 15 % of the 10242 points are
necessary to represent the �ame front within the prescribed tolerance.
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Fig. 10.3: 2D propagating �ame. Variable c at t? = 5×10−4 (top left), 10−3 (top right), and 1.5×10−3

(bottom left) represented on a dynamic adapted grid corresponding to 10242 points at the �nest level
J = 10 with ε = 10−3. Bottom right: time evolution of data compressions DC given by (4.39) for
ε = 10−2 and ε = 10−3.

In order to verify that the accuracy of the computations is settled by the accuracy tolerances,
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we de�ne for problem (10.55) discretized on a uniform mesh of 10242:

• A quasi-exact reference solution cJqe, obtained with the Strang scheme (10.10) with a
small �xed splitting time step of ∆t = 10−7;

• The splitting solution cJsplit is now obtained with the adaptive splitting scheme (10.10),
with (10.11) and accuracy tolerance of η = 10−3, computed also on the uniform grid;
and

• The time/space adaptive solution cMR
split, composed of the adaptive splitting technique and

the multiresolution representation with the equivalent of 10242 points in the �nest grid
level J = 10.

De�ning also the numerical errors:

EJsplit =
∥∥cJqe − cJsplit

∥∥
L2 , (10.64)

EJMR =
∥∥cJsplit − cMR

split

∥∥
L2 , (10.65)

EMR
split =

∥∥cJqe − cMR
split

∥∥
L2 , (10.66)

corresponding, respectively, to the time adaptive splitting, space adaptive multiresolution, and
time/space adaptive approximations, the following Table 10.1 summarizes these errors where
the solutions on adapted grids cMR

split, were reconstructed on the �nest grid.

Table 10.1: 2D propagating �ame. L2 numerical errors for the time adaptive splitting (EJsplit), space

adaptive multiresolution (EJMR), and time/space adaptive (EMR
split) strategies evaluated at di�erent times.

Finest grid: 10242.

t? [10−3] EJsplit [10−2]
EJMR [10−3] EMR

split [10−2]

ε = 10−2 ε = 10−3 ε = 10−2 ε = 10−3

0.5 1.45 5.28 1.79 1.14 1.16

1.0 2.71 6.36 1.69 2.17 2.28

1.5 4.74 7.37 3.12 4.14 4.34

2.0 5.74 7.05 3.47 5.21 5.44

With this choice of parameters, the global accuracy of the numerical strategy EMR
split is indeed

ruled by the approximation error of the time integration EJsplit, which is related to the local error
tolerance η. The latter global error will remain practically independent of the multiresolution
errors EJMR as seen in Table 10.1, as long as appropriate values of data thresholding are taken
into account (see discussions in chapters 4 and 5). Concerning the multiresolution errors, the
proportionality with respect to ε is veri�ed but with a lower rate than in previous results.
This rate reduction arises either because some error compensation takes place in the case with
ε = 10−2, or because of the spurious values introduced by the dimensional splitting which are
not present in the reference solutions on uniform grid, used to compute these errors. For this
particular problem, the global accuracy is nevertheless preserved for both thresholding values,
even for ε = 10 · η (see �nal remarks in Chapter 5).
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Table 10.2: 2D propagating �ame. CPU time in minutes for the quasi-exact, the time adaptive
splitting, and the time/space adaptive strategies for t? ∈ [0, 2× 10−3]. Finest grid: 10242.

MR/splitting ε =
splitting quasi-exact

10−2 10−3

CPU time (m) 56.27 71.05 589.00 6603.26

Table 10.2 includes the CPU times for half the time domain of study t? ∈ [0, 2 × 10−3],
taking into account that the reference quasi-exact solution is very expensive to compute. The
total CPU time for t? ∈ [0, 4 × 10−3] was about 80.73 and 98.38 minutes for ε = 10−2 and
ε = 10−3, respectively. Notice that the splitting CPU time accounts for the cost reduction
with respect to the quasi-exact solution that considers a small time step of the order of the
fastest numerical scale (the convective CFL condition in this case). Nevertheless, much more
performing strategies can be implemented to obtain the coupled reference solution, and the
previous values should be taken as one possible numerical indicator. Additionally, the CPU
times associated with the time/space adaptive technique account for the gain issued from
the compressed data representation, if one compares them with the splitting CPU time. In
this case, these gains are entirely coherent with the corresponding data compression achieved
with each threshold value in Figure 10.3. This is a sign that the most expensive part of
computations is related to the spatial representation, and thus either to the convection, the
di�usion or both problems. This is con�rmed by the CPU time per time step spent on the
solution of each problem, given in Table 10.3. We note that in this implementation and for the
di�usion problem, we do not use the previous matrix representation of the Laplacian operator,
and thus better performances might be achieved considering its sparse structure at least for
the uniform grid problem as previously discussed in this work.

Table 10.3: 2D propagating �ame. CPU time per splitting time step (in seconds) for the reaction,
di�usion, and convection time integrations for the time adaptive splitting and the time/space adaptive
techniques, t? = 1.5× 10−3, and ∆t ≈ 8.77× 10−6 for the three solutions. Finest grid: 10242.

CPU time per time step (s)

splitting
MR/splitting

ε = 10−2 ε = 10−3

Reaction 4.87 1.09 1.37

Di�usion 19.93 5.09 4.48

Convection 68.65 6.79 10.26

Finally, Figure 10.4 illustrates the adaptive time steps considered in this problem. The splitting
time steps are practically the same for both multiresolution tolerances. This indicates a good
decoupling of spatial and temporal errors and also a proper coupling of time evolution and
spatial representations. Otherwise, any de�ciency will be re�ected by the local error estimates,
and thus by the splitting time steps issued from the time adaptive scheme, as discussed in
Chapter 5. An initial value of ∆t0 = 10−8 was chosen in order to cope with the sudden
apparition of the velocity �eld with very high maximum values of about 4×105, with Re = 1000
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into (10.56). Taking into account that the global physics is piloted by the propagation of the
�ame, the splitting time steps evolve until a practically constant value of ∆t ≈ 9 × 10−6.
Nevertheless, time adaptation is needed to handle fast variations in the beginning, and for the
�nal total combustion of the fresh gases at some unknown time. In this con�guration, all gases
are burnt by t? = 3.5 × 10−3. Figure 10.4 shows that an important decoupling of time scales
is possible, where the splitting time step ∆t is globally at least 10 times larger than the inner
integration steps for the split reaction, di�usion, and convection problems. This naturally
yields important gains of computational e�ciency, always within a prescribed accuracy.
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Fig. 10.4: 2D propagating �ame. Time evolution of the splitting time step ∆t, the reactive ∆tR1 and
∆tR2, di�usive ∆tD1 and ∆tD2, and convective ∆tC substeps according to the Strang scheme (10.10)
with tolerances η = 10−3 and ε = 10−2 (left) or ε = 10−3 (right).

The reaction and di�usion time steps are chosen based on the accuracy tolerances of the
solvers ηRadau5 and ηROCK4, and for each half splitting time step we represent in Figure 10.4
the averaged values of the inner reaction and di�usion substeps. This data post treatment
serves only to obtain clearer representations of the time evolution of the time steps without
including the often much smaller �nishing substeps within the current (half) splitting time
step. Reaction steps are of the order of ∆tR ≈ 7 × 10−7 at the �ame front (shown in Figure
10.4), and they progressively increase up to ∆tR = ∆t/2 away from the highly reacting area.
Di�usion time steps are of the order of ∆tD ≈ 5× 10−6 (averaged in the representation) with
s = 6 inner stages for ROCK4, for a spectral radius of about 2.2 × 106. The convection time
steps are computed by (10.19), based on the maximum stability time steps ∆tmax

C,i which are
illustrated in Figure 10.4, to avoid the previous representation problem. This convective step
ranges from ∆tC ≈ 2 × 10−9 in the beginning to ∆tC ≈ 2 × 10−7 and ∆tC ≈ 5 × 10−6, due
mainly to the constraining high Reynolds number considered. This reasonably explains the
high cost of the convective step per splitting time step in Table 10.3. The variations in the
time evolution of the convection time step are originated by the fact that the highest velocity
values are not necessarily at the �nest grid during the whole phenomenon, as previously noted.
It is important to notice that a local time stepping strategy is not easy to implement in such
a con�guration because of the previous remark, and also because the velocity �eld is highly
nonlinear in space and evolves in time. As a consequence, a simple procedure to consistently
partition the largest convection time step and to de�ne local time steps over the whole domain,
is not straightforward. Another alternative that has not been studied in this work, considers
an adaptive mesh re�nement based not only on the unknown variables of the problem, but
also on the velocity �eld.
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10.4.3 Numerical Simulations: 3D Con�guration

The time/space adaptive technique is easily extended to 3D con�gurations. In order to illus-
trate this, we consider the solution of (10.55) over a dimensionless computational domain of
[−1, 1]3. The same data initialization is considered with z? and z0,?, instead of y? and y0,?,
respectively, into (10.60), as well as the same modeling parameters (10.61)-(10.63).

Fig. 10.5: 3D propagating �ame. Time evolution of variable c (left) and dynamic adapted grids (right)
corresponding to 2563 points at the �nest level J = 8, at t? = 5× 10−4 (top) and 1.5× 10−3 (bottom).

The adaptive splitting accuracy tolerance in (10.11) is also set to η = 10−3, with ηROCK4 =
10−5, ηRadau5 = 10−7, and ε = 10−2 for the multiresolution threshold value. The time domain
of integration is given by t? ∈ [0, 3.5× 10−3], whereas the �nest grid corresponds to a spatial
discretization of 2563 points, i.e., J = 8 as �nest grid level. A 3D velocity �eld is de�ned for
this con�guration by a toroidal vortex directly inspired by the previous 2D velocity �eld. At
each plane containing the z-axis, we consider thus a pair of counter rotating vortices computed
as usual with (10.56) with radius

r2
? = (x? − x0,?)

2 + (y? − y0,?)
2 + (z? − z0,?)

2, (10.67)

centered at
√
x2

0,? + y2
0,? = 0.25, z0,? = −0.5. Although the resulting �eld is not divergence
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free, it su�ces to construct a 3D con�guration to illustrate the numerical capabilities of the
method. The same simulations can be performed exactly in the same way with more physically
consistent velocity �elds. Figure 10.5 shows the interaction of the initial premixed �ame with
the toroidal vortex, and the corresponding adapted grids on which the solutions are computed.
Figure 10.6 shows the corresponding time steps of integration. We retrieve qualitatively a
similar behavior with respect to the previous 2D case, in terms of splitting time steps and the
time stepping for each split subproblem. The fresh gases are completely burnt this time by
t? = 3 × 10−3. Considering the obtained data compression, no more than 18 % of the 2563

points are required. This simulation took approximatively 17.26 hours of CPU time.
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Fig. 10.6: 3D propagating �ame. Left: time evolution of the splitting time step ∆t, the reactive
∆tR1 and ∆tR2, di�usive ∆tD1 and ∆tD2, and convective ∆tC substeps with tolerances η = 10−3 and
ε = 10−2. Right: time evolution of data compressions DC given by (4.39), ε = 10−2.

10.4.4 Introduction of Complex Chemistry

In this part, we consider the same previous 2D application but including detailed chemical
kinetics in the reaction term. The main goal is to illustrate the previous numerical implemen-
tation in a more complex context by considering a simple extension of the previous model.
Even though the following procedure to implement complex chemistry in the previous model-
ing framework is not completely rigorous from a physical point of view, it allows us to obtain
some preliminary results of the proposed numerical strategy, applied to combustion problems
with detailed chemistry. For more details on combustion modeling with detailed chemistry we
refer to the books of Giovangigli [Gio99] and Poinsot & Veynante [PV05].

Detailed Chemical Kinetics

Instead of the single step reaction (10.1), we now consider a system of Ns species reacting
according to NR reactions:

Ns∑
k=1

ν ′k,jχk 

Ns∑
k=1

ν ′′k,jχk j = 1, . . . , NR, (10.68)

where χk stands for species k, and ν ′k,j and ν ′′k,j are the molar stoichiometric coe�cients of
species k in reaction j. Taking into account the mass conservation yields

Ns∑
k=1

ν ′k,jWk =

Ns∑
k=1

ν ′′k,jWk, (10.69)
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and thus
Ns∑
k=1

νk,jWk = 0, j = 1, . . . , NR, (10.70)

where
νk,j = ν ′′k,j − ν ′k,j . (10.71)

In this context, the reaction rate ẇk of species k considers the rate of production of χk by all
NR reactions (10.68), and it is given by

ẇk =

NR∑
j=1

νk,jQk, (10.72)

where Qk is the rate of progress of reaction j, which is written as

Qk = Kf,j

Ns∏
k=1

(
ρYk
Wk

)ν′k,j
−Kr,j

Ns∏
k=1

(
ρYk
Wk

)ν′′k,j
, (10.73)

where Kf,j and Kr,j de�ne, respectively, the forward and reverse rates of reaction j. The
determination of these rate constants constitute a central problem in combustion modeling
[PV05], and they are usually modeled by an empirical Arrhenius law (as seen before, for
instance, for (10.45)):

Kf,j = Af,jT
βje−Ta,j/T . (10.74)

The backward rates Kr,j are then computed based on the forward ones (10.74), and thus
computing the progress rates Qk by (10.73) for each reaction j, involves providing data for the
preexponential constants Af,j , the temperature exponents βj , and the activation temperatures
Ta,j .

Implementation of Complex Chemistry in the Model

Considering the same modeling hypotheses, the general problem (10.2) can be rewritten for
k = 1, . . . , Ns, as

∂tYk + v · ∂xYk −D∂2
xYk =

Wk

ρ
ẇk,

∂tT + v · ∂xT −D∂2
xT = − 1

ρcp

Ns∑
k=1

hkWkẇk,

 (10.75)

according to (10.3) and (10.4), where the reaction rates ẇk are given now by (10.72).
The main di�culty of this problem is that the thermo-di�usive assumption 7 of constant density
is not consistent with the local variation of species concentrations, on which the reaction rates
depend. Actually, in a low Mach regime for which the previous balance equations are still valid
(see, e.g., [PV05]), the local variation of density should verify the state equation:

ρ
R

W
T = p0, (10.76)

for a constant pressure p0, where R = 8.314 J/(mol ·K) is the perfect gas constant, and W is
the mean molecular weight of the mixture expressed by

1

W
=

Ns∑
k=1

Yk
Wk

. (10.77)



Sect. 10.4 - Propagation of Premixed Flames 244

In practice, this inconsistency naturally leads to strong numerical problems. In order to over-
come this di�culty while keeping at the same time the decoupling between the velocity �eld
and the determination of species and temperature (i.e., an imposed velocity �eld into (10.75)),
we have made the following assumption. The density is supposed constant on the left hand-
side of the equations in (10.75) such that we keep exactly the previous approach, whereas it is
updated and locally computed on the right hand-side by the state equation (10.76) with the
current concentrations and temperature.
Furthermore, considering the reaction problem coming from (10.75):

ρ∂tYk = Wkẇk,

ρcp∂tT = −
Ns∑
k=1

hkWkẇk,

 (10.78)

and that by de�nition

cp =

Ns∑
k=1

cp,kYk, (10.79)

we can easily see that

ρ∂th = ρcp∂tT +

Ns∑
k=1

hkρ∂tYk = 0. (10.80)

Therefore, since the enthalpy is uniformly constant for problem (10.75)-(10.76), i.e., h = h0

throughout the �ame front, and that

h0 =

Ns∑
k=1

hkYk = Ψ(Y1, . . . , YNs , T ), (10.81)

where the species enthalpies locally depend on the temperature, we can compute the local
temperatures from (10.81) with the current set of species concentrations, rather than from the
time dependent equation for the temperature in (10.75). Although solving (10.81) implies the
numerical solution of an implicit nonlinear system at each point, this alternative allows us to
consistently solve the right hand side by locally considering the right temperature, according to
the constant and known enthalpy of the mixture, and thus the corresponding density according
to the state equation (10.76). Additionally, we can correctly couple the left and right side terms,
for which the same enthalpy is conserved in time and space.
Finally, considering the same dimensionless variables (10.54), we aim at solving

∂t?Yk + v? · ∂x?Yk −D∂2
x?Yk = τd

Wk

ρ
ẇk, (10.82)

for k = 1, . . . , Ns, where the velocity �eld v? is also based on (10.56). With the previous
assumptions, the reaction problem

∂t?Yk = τd
Wk

ρ
ẇk, (10.83)

is locally solved, by considering the uniformly constant enthalpy h0, and that

1. The local temperature T is computed from (10.81) with the current set of species con-
centrations (Y1, . . . , YNs);
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2. The density ρ is computed from the state equation (10.76) and the current values of T
and (Y1, . . . , YNs); and

3. The reaction rates ẇk are computed from (10.72) with the current values of ρ, T , and
(Y1, . . . , YNs).

Once again, this numerical procedure will not be necessary for a more consistent physical model
for the transport equations and the corresponding hydrodynamics, but allows us to perform
some numerical tests of the proposed strategy for models including detailed chemistry.

Data Initialization and Simulation Parameters

We consider the system (10.82) of Ns equations in a 2D square computational domain of 5 cm
of side, i.e., [−6.25, 6.25]2 in dimensionless units, where we have considered typical di�usion
length and time scale of L = 4× 10−3 m and τd = L2/D with D = 2.26× 10−5 m2/s.
A methane CH4 premixed �ame is taken into account for which the global reaction is written
as

CH4 + 2(O2 + 3.76N2)→ CO2 + 2H2O + 7.52N2 (10.84)

with a mass stoichiometric ratio st of 4 according to

st =
ν ′OWO

ν ′FWF
. (10.85)

The detailed kinetics (10.68) associated with the global reaction (10.84) is modeled by Ns = 49
species and NR = 299 reactions, following a reactive scheme developed by Lindstedt & Leung
(1998). The reaction rates (10.72) and in general all species or mixture related variables are
computed using the Chemkin library [KRM80].
The fresh mixture is given by

YCH4 = 0.06, YO2 = 0.3, YN2 = 0.64, (10.86)

at temperature To = 300K, and atmospheric pressure p0, which involves an adiabatic �ame
temperature of Tb = 2349.67K and a mixture enthalpy of h0 ≈ −2.8 × 109, according to
(10.81), for the given set of species and reactions. The initial mixture (10.86) corresponds to
a lean regime in which the oxidizer is in excess with respect to the fuel, and thus the mixture
equivalence ratio φM is lower than 1:

φM = st
YF

YO
. (10.87)

In order to initialize the premixed �ame we solve the general problem (10.2) for YF, YO,
and T in a 1D con�guration without convection, in a simpli�ed chemistry framework. When
the �ame front has converged and propagates in a self-similar way, the obtained pro�le is
reconstructed for all species by an interpolation technique based on the one performed initially
on YF, i.e.,YCH4 , considering the known, fresh and burnt, concentration values. A 2D plane
�ame with all Ns species is thus generated, and it is again integrated without convection with a
constant splitting time step of ∆t = 10−5 during t? ∈ [0, 10−4], in order to obtain a su�ciently
consistent �ame pro�le for all species. At t? = 10−4, the velocity �eld is turned on, as well as
the time adaptive scheme for the complete reaction-di�usion-convection problem with an initial
splitting time step of ∆t0 = 10−8, and an accuracy tolerance of η = 10−2. We keep the same
previous accuracy tolerances for ROCK4 and Radau5, i.e., ηROCK4 = 10−5 and ηRadau5 = 10−7.
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The space adaptive technique is used from the beginning of computations with a threshold
value of ε = 10−2, for which the �nest grid corresponds to a spatial discretization of 10242

points, i.e., J = 10 as �nest grid level. Another standard initialization procedure considers,
for instance, an initial 1D �ame obtained with the Premix solver of Chemkin [KRM80] for the
given kinetics, instead of the simple chemistry �ame (see, e.g., [DB00, NK05, SPN06a]).
As in the previous 2D case, the velocity �eld is given by the superposition of two vortices with
opposite signs in (10.58), centered at (−2, 2.5) for the counterclockwise vortex and (2, 2.5) for
the clockwise one, where y? = 2.5 is approximatively the initial position of the plane front.
Moreover, Re = 625 and Sc = 1 are considered for the velocity evaluation. In order to avoid
the sudden and nonphysical strong increase of local values of vθ,?, we rewrite (10.56) as

vθ,?(r?, t?) =
Re Sc

r?

(
1− e−r

2
?/(Sc(R2

?+4 t?))
)
, (10.88)

for t? ≥ 10−4, where R? = 10−1 is an initial radius for the viscous core [LC89].
As in the previous simulations of Chapter 9 with detailed chemistry, there is an important
increase of the computational cost. Therefore, the same parallel computation technique for
shared memory architectures was implemented for this con�guration. It considers parallel and
independent solutions of the reaction problem by space points, and by species for the di�usion
and convection terms. The following simulations were performed on a 12 core (2x6) 64 bits
machine (AMD-Shanghai 2.7 GHz processors) with memory capacity of 48 GB.

Numerical Results

Figure 10.7 shows the concentration of methane CH4 and an intermediate species, the OH
radical, at t? = 5×10−3. The latter one is often used to localize the �ame front in experimental
devices. The adaptive multiresolution shows also a good behavior in terms of local re�nement
even for a much larger set of variables, 49 compared with 19 in Chapter 9.
Although we have changed the dimensionless units with respect to the previous simple chem-
istry case, and that we are using a lower Reynolds number for the velocity �eld, the contour lines
for YCH4 show a much thiner �ame thickness as a result of the interaction of the premixed �ame
with the vortices. We recall that thermal expansion is neglected in this model and hence, thicker
�ames are expected otherwise. This �ame thickness is of about 0.05, i.e., approximatively 250
times smaller than the global scale of the computational domain. In order to have the same
spatial resolution as in the previous case, we should use either at least a two times �ner dis-
cretization, i.e., a spatial mesh of 20482 points, or rescale more appropriately the problem. In
particular, the representation of YOH in Figure 10.7 clearly shows that more points are needed
for a better description of the front. The data compressions achieved for the current con�gu-
ration are very high, more than 95 % according to (4.39), taking into account that the �ame
front is much more localized within the entire computational domain.
Figure 10.8 illustrates the velocity �eld computed according to (10.88) with a Reynolds number
of Re = 625. A less intense velocity �eld was considered in this case taking into account the in-
consistencies coming from the modeling assumptions that were introduced to easily implement
a detailed chemistry in the general problem (10.2)9. The splitting time step, dynamically
adapted to handle the initial vortices, is adapted from ∆t0 = 10−8 to an almost constant
value of ∆t ≈ 2 × 10−6 (≈ 1.4µs) for an accuracy tolerance of η = 10−2. For this con�gura-
tion, there were always two convection time steps within the splitting time step according to

9For instance, for Re = 1000 as in the previous cases, we observed convergence problems with the very simple
Newton's method used to solve the nonlinear system (10.81) in our implementation. As previously discussed
in the General Introduction, more sophisticated techniques are often developed and implemented for implicit
solvers to e�ciently solve these systems with complex chemistry features.
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Fig. 10.7: 2D propagating �ame with complex chemistry. Left: concentrations of CH4 (top) and OH
(bottom) at t? = 5 × 10−3, represented on an adapted grid corresponding to 10242 points at the �nest
level J = 10 with ε = 10−2. Right: contour lines for YCH4

= 0− 0.59 with ∆YCH4
= 0.059 (top), and

time evolution of data compressions DC given by (4.39) for ε = 10−2 (bottom).

(10.19), i.e.,∆tC,i = ∆t/2, i = 1, 2. For the given ηROCK4 and ηRadau5 tolerances, the di�usion
time steps were of the order of the splitting time step, i.e.,∆tD ≈ ∆t/2, whereas the minimum
reaction time steps at the front were of approximatively ∆tR ≈ 2× 10−7 (≈ 142 ns), gradually
increasing up to ∆tR = ∆t/2 elsewhere10. We recall that all these solvers are based on high
order schemes, so that much smaller time steps would be required for standard lower order
methods for each subproblem.
The CPU time for this simulation was of about 18.99 hours for t? ∈ [0, 5.5 × 10−3] with a

10Even though a detailed comparison would be completely inappropriate, mainly because we do not consider
exactly the same problem, let us give some details on the numerical simulations performed by Knio et al. in
[KNW99] for a low Mach 2D methane-air premixed �ame, interacting with a pair of counter-rotating vortices,
and with chemical kinetics modeled by 32 species and 177 reactions. These authors calculated a maximum
di�usion time step of 20 ns to ensure the stability of a second order explicit multi-step scheme and from there,
a splitting time step of 200 ns. The minimum reaction time steps were of approximatively 8ns for a tolerance
of 10−6 for the implicit multi-step VODE solver [BBH89].
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Fig. 10.8: 2D propagating �ame with complex chemistry. Velocity �eld at t? = 5 × 10−3 (left), and
vy,? at y? = 2.5, at t? = 10−3 and t? = 5× 10−3 (right).

gain of parallelization of 11.54, which is de�ned as the ratio between the computing time given
by one single processor and the 12 cores in parallel. The ratio of CPU time per splitting
time step corresponding to the reaction, di�usion, and convection time integration was of
approximatively 23 : 5 : 1, which justi�es the high performance of the parallel technique for
this particular con�guration. Nevertheless, a more detailed study should be performed based
on a more consistent model11, and considering also a better initializing procedure, for instance,
by means of Premix, as previously mentioned. These developments represent an important
amount of work that is still in progress, and that is not su�ciently �nalized to be presented
here. These results prove nevertheless that the general algorithm and the numerical code can
handle very complex reactive schemes, and in particular it can be easily coupled with Chemkin
or any other chemistry library. In this way, this study illustrates the potential capabilities of
the proposed numerical strategy, and constitutes a �rst preliminary stage towards the solution
of fully transport and hydrodynamics models for reactive media.

10.5 Ignition of Di�usion Flames

In the same framework of problem (10.2) and the previous study on propagation of premixed
�ames, we illustrate in this part the performance of the proposed strategy to numerically
describe the ignition dynamics of a di�usion �ame interacting with a vortex. The mathematical
model considered in this section was taken from a study conducted by Thévenin & Candel in
[TC95]. A complete numerical and physical study on ignition dynamics based on these models
can be found in [Thé92].

10.5.1 Model Formulation

Let us consider a 2D computational domain where pure and fresh hydrogen with mass fraction
YF,0 at temperature TF,0, occupies initially the half upper part. The remaining lower part is
occupied by hot air at TO,0 with YO,0. A single vortex modeled by (10.7) and centered on the

11In particular, we would not need to provide a numerical solver for the nonlinear system (10.81).
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planar interface between the two media, is then introduced to transport and accelerate the
mixture of both �uids. The governing equations of the physical phenomenon are thus given
by the set of equations (10.2) with (10.5), with a reaction rate modeled by

ẇ =
ρ2

νFWF
AYOYFe(−Ta/T ), (10.89)

where A is a preexponential factor [TC95].
If we construct Schvab-Zeldo'vich variables by combining the reacting species mass fractions
with proper coe�cients, one obtains a balance equation without source term, analogous to
the equation (10.5) governing YN. Thus, introducing the reduced total heat released χ; the
normalized temperature di�erence between reactants τ ; the product to fuel stoichiometric ratio
σ; and the absolute equivalence ratio corresponding to a complete mixing between reactants
in their initial state φ, de�ned, respectively, by

χ =
QYF,0

cpTO,0
, τ =

TF,0 − TO,0

TO,0
, σ =

νPWP

νFWF
, φ = st

YF,0

YO,0
, (10.90)

with the stoichiometric factor st de�ned by (10.85), one may de�ne the following variables:

Z1 =
χYF/YF,0 + τθ

χ+ τ
,

Z2 =
χYO/(φYO,0)− χ/φ+ τθ

−χ/φ+ τ
,

Z3 =
−χYP/(σYF,0) + τθ

τ
,


(10.91)

where θ is the reduced temperature given by

θ =
T − TO,0

TF,0 − TO,0
. (10.92)

The set of variables (Z1, Z2, Z3) are initially equal and follow the same balance equation without
reaction term and with the same boundary conditions. Therefore, they are equal at each point
and for all times to the same value Z. Introducing the same dimensionless variables previously
de�ned in (10.54), we obtain a reduced system of equations of the form:

∂t?Z + vx,?∂x?Z + vy,?∂y?Z −
(
∂2
x?Z + ∂2

y?Z
)

= 0,

∂t?θ + vx,?∂x?θ + vy,?∂y?θ −
(
∂2
x?θ + ∂2

y?θ
)

= F (Z, θ),

 (10.93)

with

F (Z, θ) = DaφχYO,0

[
1− Z
φτ

+
1

χ
(Z − θ)

] [
Z +

τ

χ
(Z − θ)

]
e(−τa/(1+τθ)), (10.94)

where τa = Ta/TO,0 is the reduced activation temperature, and the Damköhler number de�ned
by Da = ρAτd.

10.5.2 Numerical Simulations

We consider a 2D computational domain with initially two di�erent media, given by fresh fuel
and hot air. A single vortex modeled by (10.56) constitute the velocity �eld imposed on the
domain. The following simulations were performed on an AMD Shanghai 2.7 GHz processor
with memory capacity of 32 GB.
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Data Initialization and Simulation Parameters

We consider the numerical solution of (10.93) with Neumann homogeneous boundary conditions
in a 2D computational dimensionless domain of [−1, 1]2, i.e., L = 1 into (10.54). The following
initial condition, taken from [Thé92], is considered:

Z(x?, y?) = θ(x?, y?) =
1

2
[1 + tanh(αy?)] , (10.95)

where α = 200. Notice that according to (10.91) and (10.92), Z(x?, y?) = θ(x?, y?) = 1 in
the upper half-plane for the fresh fuel, and Z(x?, y?) = θ(x?, y?) = 0 in the lower part for the
hot air. Therefore, considering the time dependent equation for Z in (10.93), Z must verify
Z ∈ [0, 1] at any time. Similarly, θ ≤ 1 according to (10.92). The initial mass fractions and
temperatures of the gases are given by

YF,0 = 1, YO,0 = 0.23, TF,0 = 300 K, TO,0 = 1000 K. (10.96)

The following values together with (10.96) de�ne the characteristic parameters (10.90), that
allow the evaluation of the reaction rate (10.94) and the velocity �eld (10.56):

Q

cp
= 5× 104 K, st = 8, Da = 1.65× 107, Ta = 8000 K, (10.97)

Re = 1000, Sc = 1. (10.98)

The velocity �eld is given by the counterclockwise vortex computed with (10.58) and centered
at (0, 0). The accuracy parameters were �xed as for the corresponding 2D propagating �ame
with simple chemistry, i.e., η = 10−3 in (10.11) with ηROCK4 = 10−5 and ηRadau5 = 10−7. The
time domain of integration is given by t? ∈ [0, 1.5 × 10−4]. The multiresolution analysis was
performed with ε = 10−2 and ε = 10−3 for a �nest grid corresponding to a spatial discretization
of 10242 points, i.e., J = 10 as �nest grid level.

Numerical Results

Figure 10.9 shows the evolution of the temperature in the domain. The temperature is com-
puted from θ by (10.92). There is initially fresh fuel at TF,0 = 300K in the upper half-plane,
whereas the remaining lower half contains hot air at TO,0 = 1000K. A counterclockwise rotat-
ing vortex modeled by (10.58) and centered at the planar interface is introduced immediately
at t? = 0. The resulting forced transport superposes to the di�usive mechanisms and acceler-
ates the mixture of the gases. As a consequence, the local temperatures increase progressively
from the vortex braids toward the vortex core along the contact surface of both media. A
di�usion �ame ignites along the contact surface. Notice that the velocity �eld entrains ini-
tially fresh gas into the vortex core and, subsequently, delays the fuel consumption of this
central core by the di�usion �ame. This behavior clearly depends on the initial con�guration
of the gases (10.96) and on the imposed velocity �eld, as studied in details in [Thé92, TC95].
The con�guration described in this part reproduces the physics encountered in these previous
studies and it was chosen in this work because it features important numerical di�culties.
These issues are related to the severe transport conditions and the sti�ness of the governing
equations. Furthermore, this case is characterized by a sudden change of the physics at some
instants which are not known at hand.
The corresponding adapted grids are also shown in Figure 10.9. We notice that the mixture
lengths and the corresponding �ame thickness are of the order of 0.025, similar to the previous
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Fig. 10.9: 2D �ame ignition. Time evolution of the temperature T calculated from θ in (10.92) at
t? = 5 × 10−5 (top), 10−4 (middle), and 1.5 × 10−4 (bottom). Initial temperature of the fresh fuel:
TF,0 = 300K, and of the hot air: TO,0 = 1000K. Right: dynamic adapted grid corresponding to 10242

points at the �nest level J = 10 with ε = 10−3.
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propagating case with simple chemistry. A spatial discretization of 10242 points is thus rea-
sonably accurate. For this con�guration, the �nest regions dynamically identify the local rise
in temperature until the ignition of the entire contact surface. In particular, the initial fronts
do not require a full representation on the �nest grid for a threshold tolerance of ε = 10−3,
recalling that the multiresolution analysis is performed on the dimensionless variables, i.e., θ
instead of T . Notice that for lower threshold values, the front will remain in the �nest grid
during the whole time period because the ignition and the subsequent formation of steeper
gradients happens precisely at the �ame front.
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Fig. 10.10: 2D �ame ignition. Time and space adaptation given by the time evolution of splitting
time steps ∆t with accuracy tolerance η = 10−3 (left), and of data compressions DC given by (4.39)
for ε = 10−2 and ε = 10−3 (right).

Figure 10.10 illustrates the time and space adaptivity featured by the numerical strategy. An
initial splitting time step of ∆t0 = 10−8 was considered to handle the inclusion of the vortex
and avoid unnecessary rejections at the beginning of computations. The splitting step increases
until t? ≈ 6.5×10−5 (∆t ≈ 2×10−5) during the mixing phase, and then a series of rejected steps
occurs for the given accuracy tolerance. The splitting time step is thus reduced down to the
time scale needed to guarantee the prescribed accuracy: ∆t ≈ 10−7. This behavior coincides
naturally with the sudden ignition of the �ame and the subsequent fast propagation along the
contact surface, once a certain temperature is locally reached after the initial mixture of the
gases. A dynamic adaptation of the splitting time step is hence mandatory to identify these
changes in the physical behavior of the phenomenon, and to properly describe this process.
This reduction of the evolution time steps allows us to update the spatial representation and to
consequently re�ne as much as necessary the spatial con�guration of the new physical scenario,
as seen in Figure 10.10 for the time evolution of the data compressions. The capability of the
method to rapidly update the mesh is illustrated by this limit case for which the chosen
threshold parameter does not su�ce to completely re�ne the initial front. Additionally, the
high values of the achieved data compression justify a spatial adapted representation of the
problem.
Other possible scenarios are illustrated in Figure 10.11 for di�erent initial temperatures of
the air TO,0 and the same fuel temperature TF,0 = 300K. Each con�guration involves di�erent
dynamics in terms of time scales and �nal temperatures. It can be seen that for the time window
of t? ∈ [0, 1.5×10−4], there is only mixing for TO,0 = 800K, whereas for TO,0 > 1100K ignition
happens during the initial transition phase of the splitting time step so that no step reduction
is needed. The interesting cases are obviously given by those in which ignition occurs at some
unknown intermediate time. In any case, it can be seen that such an adaptive scheme can
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handle all the possibilities without any preliminary information.
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Table 10.4: 2D �ame ignition. L2 numerical errors for the time adaptive splitting (EJsplit), space

adaptive multiresolution (EJMR), and time/space adaptive (EMR
split) solutions evaluated at di�erent times.

Finest grid: 10242.

t? [10−4] EJsplit [10−3]
EJMR [10−3] EMR

split [10−3]

ε = 10−2 ε = 10−3 ε = 10−2 ε = 10−3

0.5 0.46 6.48 2.12 6.48 2.11

1.0 2.25 13.1 5.77 12.9 5.35

1.5 1.53 37.7 2.69 37.9 3.65

De�ning the splitting, multiresolution, and combined time/space adaptive approximation er-
rors, respectively, by (10.64), (10.65), and (10.66), Table 10.4 shows these estimates evaluated
for θ at di�erent times t?. It can be seen that the splitting errors EJsplit are e�ectively controlled
by the local error accuracy η, and that the global integration errors are approximatively of the
same order taking into account that for this particular case, only a few time steps are required
within the time interval of study. The multiresolution errors EJMR verify the proportionality
with the threshold value ε. We remark that this behavior would not be possible without an
adequate updating of the mesh issued from the adaptive time stepping technique during the
ignition of the �ame front, which proves the e�ciency of the coupled adaptive time/space pro-
cedure. The numerical errors introduced by the dimensional splitting are also less important
because the highest velocity gradients correspond approximatively to the spatial gradients of
the solution, and thus to important local variations of the variables. Finally, we can see that
for this con�guration the global error EMR

split of the method is mainly controlled by the multires-
olution errors for ε = 10−2, whereas for ε = 10−3 the global error is a combination of time and
space errors because both the splitting and the multiresolution errors are approximatively of
the same order. Based on these and the previous results, we can verify that considering in gen-
eral the same time and space accuracy tolerances, i.e., η = ε, constitutes a good compromise
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and yields satisfactory results in terms of accuracy and computational costs (see discussions
in Chapter 5).
Table 10.5 summarizes the CPU times in minutes for the three alternatives. Important gains
in CPU time are achieved with the adaptive splitting technique, which are moreover improved
with the time/space adaptive strategy. The reductions related to the multiresolution repre-
sentation are consistent with the achieved data compressions in Figure 10.10. Notice that the
gains related to the adaptive splitting technique are this time less important because of the
in�uence of the initialization phase in a rather short time domain. Finally, using only space
adaptive multiresolution with constant splitting time step ∆t = 10−7, as in the quasi-exact
approach, needs about 56.80 minutes of simulation.

Table 10.5: 2D �ame ignition. CPU time in minutes for the quasi-exact, the time adaptive splitting,
and the time/space adaptive strategies for t? ∈ [0, 1.5× 10−4]. Finest grid: 10242.

MR/splitting ε =
splitting quasi-exact

10−2 10−3

CPU time (m) 6.43 8.93 207.52 674.69
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Fig. 10.12: 2D �ame ignition. Top: time evolution of the splitting time step ∆t, the reactive ∆tR1 and
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The work distribution per splitting time step for the reaction, di�usion, and convection prob-
lems, is this time quite uneven in time as it can be inferred from Figure 10.12 that shows the
corresponding time integrations steps for η = 10−3, and ε = 10−2 or ε = 10−3. Actually, the
work distribution is similar to the one given in Table 10.3 during the mixture and post-ignition
phases. During the �rst ignitions and the small splitting time steps in the initial transient
phases, the charge is rather balanced. Once again, the convection time step is the most con-
straining step considering the high Reynolds values in the velocity �eld. The di�usion time
stepping performed by ROCK4 is quite similar to the previous case for we are considering
the same spatial discretization in a computational domain of the same size, i.e., the spectral
radius of the Laplacian operators are of the same order. Notice that there is a slight shift in
t? for the splitting time steps with threshold values ε = 10−2 and ε = 10−3 in Figure 10.12.
Nevertheless, the normal behavior of the multiresolution errors in Table 10.4 con�rms that
the coupling of time and space errors is still acceptable. A counter example is given by the
case with ε = 10−1 for which there is surely an important coupling of errors that results in
a di�erent and likely wrong numerical description of the physical behavior. In this way, we
illustrate that the choice of appropriate accuracy tolerances, highly problem dependent, can
be easily evaluated in practice, as explained in Chapter 5.

10.6 Concluding Remarks

In this chapter, we have implemented the time/space adaptive numerical strategy developed
in chapters 4 and 5, for the numerical simulation of combustion fronts modeled by reaction-
di�usion-convection systems. We have thus included a convective term to be handled by the
operator splitting technique. Let us summarize some key aspects of this con�guration:

• We have implemented the OSMP method for the numerical solution of the convection
subproblem, following the general precepts discussed in Chapter 4 for the operator split-
ting method. The OSMP method is a one-step high order scheme, developed by Daru &
Tenaud in [DT04].

• The extension to multi-dimensional con�gurations have been done by means of a dimen-
sional splitting, which reduces considerably the algorithmic complexity as well as the
computational requirements.

• Second order Strang dimensional splitting was implemented as well as a simple corrective
procedure to reduce potential numerical oscillations introduced by the splitting approach
for divergence free velocity �elds.

• Taking into account the �ne spatial meshes often needed to simulate propagating fronts, a
dynamic time stepping was considered for the convection time steps within each splitting
time step, computed based on stability constraints.

The numerical method has been then evaluated for di�erent problems issued from combustion
applications and studies, namely:

• The propagation of premixed �ames in 2D/3D with simpli�ed or complex chemical source
terms.

• The ignition of a reactive mixture and the subsequent propagation of the resulting dif-
fusion �ames in 2D.
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The numerical results obtained with this technique allow us to conclude that di�erent physi-
cal con�gurations can be successfully simulated with the same time/space adaptive strategy,
either in 2D or 3D, providing e�ective error control of the approximation errors related to the
numerical methods. Along with other advantages already illustrated and discussed in previous
chapters, the time adaptation procedure turns out to be a critical tool to e�ciently simulate
both general con�gurations, not only to ensure a prescribed accuracy of the computations but
also to properly handle the initial strong transients associated with the velocity �elds. Fur-
thermore, the e�ciency of the method is assessed for a di�cult problem such as the sudden
ignition of a �ame, with remarkable di�erent physics and time scale spectra with respect to the
initial and �nal con�gurations. In all cases, important gains in computational e�ciency are
achieved, related to compressed data representations as well as a dedicated splitting technique
with adequate solvers and independent time stepping procedures.
We recall that all inner solvers are based on high order schemes so that considerably smaller
time steps would have been required for standard low order schemes. Nevertheless, we can still
observe an important decoupling of the time scale spectra which allows us to overcome stability
restrictions associated with the explicit solvers, and further gains in e�ciency for splitting time
steps not limited by the numerical particularities associated with each subproblem. Preliminary
results were also presented for problems that include detailed chemical features in order to show
the capability of the method to treat more complex con�gurations. However, let us remark that
the simpli�ed chemical terms retain and mimic some fast scale features and thus numerically
sti� behaviors of the comprehensive formulation. This can be inferred, for instance, from the
rather small time steps needed to solve the reaction problem, although a �fth order scheme
like Radau5 has been implemented.
A key question in the previous numerical illustrations is related to the numerical accuracy of
the numerical results. We have seen that the present numerical strategy allows us to better
control the numerical errors of the simulations in a very easy and simple way. The level
of computational complexity can be thus illustrated by the fact that for all the problems
considered, we have only needed to settle two parameters:

• The threshold value ε of the multiresolution decomposition, which balances data com-
pression and numerical errors associated with compressed data representations; and

• The accuracy tolerance η of the splitting time integration technique, which limits the
degree of decoupling of the physical phenomena and hence, controls the numerical time
integration errors.

We have in particular illustrated how these parameters are selected in practice, based on
principles previously established in Chapter 5.
These numerical results are very satisfactory and have demonstrated that the method is ca-
pable to deal with di�erent con�gurations for general multi-scale problems modeled by time
dependent PDEs. Nevertheless, there are at least two main aspects that still require further
developments and studies:

• A time stepping procedure for the convective scheme that takes also into account the
accuracy of the computations, specially for problems with potentially large convective
time integration steps; and

• The coupling of the numerical method with a hydrodynamics solver in order to properly
evaluate the performance of the method and to extend the applicability of the strategy
to this kind of problem.

Both matters are part of our current research.



Chapter 11

Plasma Application: Positive Streamer

Simulations

We focus in this chapter on the numerical simulation of plasma discharges at atmospheric
pressure, physically modeled by highly nonlinear ionizing waves called streamers. The detailed
study and comprehensive description of such phenomena is of the utmost importance for many
modern applications, and their numerical simulation constitutes a powerful tool in this regard.
Nevertheless, the detailed physics associated with plasma discharges reveals an important
time-space multi-scale character which demands great investments in accurate mathematical
modeling as well as dedicated and e�cient numerical schemes. In this context, the study of
streamer discharges becomes an appropriate framework to evaluate and further develop the
numerical strategy introduced in this work.
Streamer discharges are usually modeled by sti� time dependent PDEs of drift-di�usion type
coupled with a Poisson's equation for the computation of the electric �eld. Therefore, the
time/space adaptive numerical strategy detailed in the previous Chapter 10 for sti� reaction-
di�usion-convection equations, can be implemented to e�ciently solve the drift-di�usion equa-
tions of the plasma model. Nevertheless, the solution of the electric �eld is also required to
simulate such models, and further developments and extensions to the present strategy are
consequently needed. In order to conduct these simulations, we have developed a new second
order strategy that couples the solution of the electric �eld with the drift-di�usion equations.
The latter scheme also features time adaptivity with error control. Important gains in the
numerical e�ciency of the method are thus achieved for highly unsteady problems, while a
prescribed accuracy is guaranteed by dynamic local error evaluations. The time/space nu-
merical strategy presented in the previous chapter was therefore embedded into a second time
adaptive scheme to solve these new set of governing equations for plasma applications.
This new solution scheme was numerically evaluated with satisfactory results for the simu-
lation of propagating streamers, and in the context of highly nanosecond repetitively pulsed
discharges in 1D. Extensions to multi-dimensional con�gurations are straightforward with an
adequate numerical solver of the Poisson's equation. This study has motivated an article which
has been recently published in Journal of Computational Physics in a special issue on Compu-
tational Plasma Physics [DBM+12]. We reproduce in what follows this article in its integral
version because it constitutes an extension to the present numerical strategy for this particular
application framework. Additionally, we �rst present a preliminary study on the solution of
a simpli�ed reaction-di�usion plasma model by the adaptive splitting technique of Chapter
5. The main goal is to evaluate the numerical capabilities of the method in the context of
multi-pulsed gas discharges involving several dynamics with very di�erent typical time scales.
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In particular, this study settled the foundations of the numerical method developed in the
article, presented in the second part of this chapter.

11.1 Adaptive Splitting on a Simpli�ed Plasma Model

We present in this part a brief study on the adaptive splitting scheme introduced in Chapter
5 for the solution of a simpli�ed plasma model. This study will also give a �rst insight into
the numerical di�culties encountered during the simulation of such multi-scale problems, and
serves as an appropriate introduction to the second part.

11.1.1 Mathematical Model

Let us consider a simpli�ed reaction-di�usion model:

∂tne −D∂2
xne = neα|ve| − neη|ve|+ nenpβep,

∂tnp −D∂2
xnp = neα|ve| − nenpβep + nnnpβnp,

∂tnn −D∂2
xnn = neη|ve| − nnnpβnp,

 (11.1)

based on the drift-di�usion equations usually de�ned to describe the motion of ions and elec-
trons in plasma models [BN96, Kul97], where ni is the density of species i =e, p, n (e: electrons,
p: positive ions, n: negative ions); ve is the electron drift velocity; α is the impact ionization
coe�cient; η stands for the electron attachment on neutral molecules; and βep and βnp ac-
counts, respectively, for the electron-positive ion and negative-positive ion recombinations. All
the coe�cients of the model are functions of the local reduced electric �eld E/Ngas, where E
is the electric �eld magnitude and Ngas is the air neutral density. The reaction parameters for
the air are taken from [ML97], with attachment coe�cients taken from [KKMS92].

11.1.2 Numerical Con�guration

In this numerical illustration, we consider as computational domain an air gap of 0.5 cm,
where we have a high initial distribution of electrons and ions over the region [0, 0.01] (cm).
A constant electric �eld of ∼ 40 kV/cm is then repetitively applied over this region during
10 ns with a period of 1µs. All parameters in (11.1) are computed with the imposed �eld.
Finally, we consider a constant di�usion coe�cient: D = 50 cm2/s, and a spatial discretization
of 1001 points for which we have negligible spatial discretization errors with respect to the
ones coming from the numerical time integration. Figure 11.1 shows the spatial distribution
of electron density just before and after each pulse. Generally speaking, there are at least two
completely di�erent physical con�gurations given either by a high reactive activity when the
electric �eld is applied, or by the propagative nature of the post-discharge phase.
For the solution of system (11.1) we consider the Strang scheme St2 in (5.5) and the embedded
one St2,δ (5.7), considering the adaptive strategy described in Chapter 5 with initial splitting
time step ∆t0 = 10−10 and δ0 = 0.05, and with the following parameters previously considered:

• δmax = 0.999;

• a1 = 1, b1 = c1 = a2 = 1/2, b2 = 2/5, and c2 = 1/10 for the intermediate time steps, as
in (5.59);

• ζ = 0.9 as security factor of the critical ∆t? estimate;

• β = 0.1 and γ = 0.95 to de�ne the working region (5.60);
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• θ = 10 as security factor of the δ estimate;

• C0
δ = 10 to potentially reject the initial time step ∆t0;

• and υ = 0.9 as security factor of the ∆tnew estimate.

The time integration is performed with the dedicated splitting technique introduced in Chapter
4, with Radau5 for the reactive term and the ROCK4 method for the di�usion problem, both
with �ne tolerances, ηRadau5 = ηROCK4 = 10−10. Let us remark that the computation must
be initialized with a time step included in the pulse duration.
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Fig. 11.1: 1D simpli�ed plasma model. Spatial distribution of electron density before (left) and after
(right) each pulse, starting from a step-like initial distribution (left) and for a duration of ten pulses.

11.1.3 Numerical Results

Figure 11.2 shows the corresponding splitting time steps for a tolerance of η = 10−3 in (5.11).
The splitting time step features a periodic behavior and succeeds to consistently adapt itself
to the discharge/post-discharge phenomena. This yields high varying time steps going from
∼ 10−10 to ∼ 10−7. Therefore, after each post-discharge phase, since the new time step is
computed based on the previous one according to (5.11), this new time step will surely skip
the next pulse. In order to avoid this, each time we get into a new period, we initialize the
time step with the length of the pulse: ∆t = 10 ns. This time step is obviously rejected as
seen in Figure 11.2, as well as the next ones, until we are able to retrieve the right dynamics
of the phenomenon for the required accuracy tolerance. No other intervention is needed either
in terms of modeling parameters or for the numerical solvers, in order to automatically adapt
the time step to the several time scales of the phenomenon within a prescribed accuracy.
For this application, we compute the critical ∆t? and possibly δ for Nδ = 10 and Nδ = 100
in each period, in order to perform these computations at least once during the discharge
and post-discharge regimes. For example, for t ∈ [5, 6]µs as in Figure 11.2, δ = δmax with
∆t? ≈ 4.3 × 10−9 during the pulse, and δ ≈ 0.26 with ∆t? ≈ 1.6 × 10−7 for the rest of the
period. Similar values are found for the other periods. Notice that after each pulse, ∆t? is
automatically updated because ∆t increases and then ∆t gets equal to ∆t?. In particular,
the important di�erence between ∆t? for each region, results naturally from the completely
di�erent modeling parameters and hence, physics description of each regime.
An e�ective error control is achieved for each phase of the phenomenon, as we can deduce from
the global error between splitting and reference solutions at the end of the pulse (t = 5.01µs),
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and at the end of the post-discharge phase (t = 6µs). The reference solution is computed by
a coupled resolution of system (11.1) with Radau5 and �ne tolerance ηRadau5 = 10−10. If we
compare these results with the ones obtained without estimating either ∆t? or δ, but with
δ = δ0 = 0.05, we can draw the same conclusions as in the BZ application in Chapter 5. For
less accurate resolutions with high tolerances, the proposed strategy corrects the local error
estimates computed δ = δ0 = 0.05. In particular, for η = 10−3 there is a ratio of about 10
between both solutions. For higher tolerances, η ≥ 10−2, both methods yield a time step equal
to the pulse duration, ∆t = 10 ns. For the smallest tolerances, slightly more accurate solutions
are obtained with a �xed δ = δ0 because smaller splitting time steps are used.
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Fig. 11.2: 1D simpli�ed plasma model. Time evolution of accepted and rejected splitting time steps,
and the imposed electric �eld for t ∈ [0, 10]µs (top left), during the pulse t ∈ [5, 5.01]µs (top right),
and the post-discharge phase t ∈ [5.01, 6]µs (bottom left). Bottom right: global L2 errors at the end of
the pulse (t = 5.01µs) and the post-discharge phase (t = 6µs), with and without computation of critical
∆t? and time shift δ.

To conclude this preliminary study, let us emphasize that compared with a standard procedure
for which the accuracy is guaranteed by considering time steps of the order of the fastest scale,
the error control featured by this adaptive method implies an e�ective accurate resolution of
problems modeling various physical scenarios, independent of the fastest physical or numerical
time scale. Additionally, an important improvement of computational e�ciency is achieved
for highly unsteady phenomena. In particular, the technique was successfully applied to this
simpli�ed model of plasma discharges that nevertheless exhibits a broad time scale spectrum
coming from the modeling equations, and also important and discontinuous variation of pa-
rameters in time and in space that notably increase the numerical complexity of the problem.
The complete drift-di�usion equations with the computation of the electric �eld will be treated
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in details in the following part, in which the same adaptive technique will be embedded into a
new one for plasma models.
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11.2 Introduction

In recent years, plasma discharges at atmospheric pressure have been studied for an increasing
list of applications such as chemical and biological decontamination, aerodynamic �ow control
and combustion [vV00, FCG05]. In all these physical con�gurations, the discharges take usu-
ally the form of thin plasma �laments driven by highly nonlinear ionizing waves, also called
streamers. These ionizing waves occur as a consequence of the high electric �eld induced by
the fast variations of the net charge density ahead of an electron avalanche with large ampli-
�cation. The streamer discharge dynamics are mainly governed by the Courant, the e�ective
ionization and the dielectric relaxation times scales [VPB94], which are usually of the order of
10−14−10−12s, whereas the typical time scale of the discharge propagation in centimeter gaps,
is about a few tens of nanoseconds. On the other hand, a large variation of space scales needs
also to be taken into account, since the Debye length at atmospheric pressure can be as small
as a few micrometers, while the inter-electrode gaps, where discharges propagate, are usually
of the order of a few centimeters. As a result, the detailed physics of the discharges reveals an
important time-space multi-scale character [UBRT10, EBD+11].
More complex applications include plasma assisted combustion or �ow control, for which the
enhancement of the gas �ow chemistry or momentum transfer during typical time scales of the
�ow of 10−4− 10−3s, is due to consecutive discharges generated by high frequency (in the kHz
range) sinusoidal or pulsed applied voltages [PGL+06, OSM+08]. Therefore, during the post-
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discharge phases of the order of tens of microseconds, not only the time scales are very di�erent
from those of the discharge phases of a few tens of nanoseconds, but a completely di�erent
physics is taking place. Then, to the rapid multi-scale con�guration during discharges, we have
to add other rather slower multi-scale phenomena in the post-discharge, such as recombination
of charged species, heavy-species chemistry, di�usion, gas heating and convection. Therefore,
it is very challenging to accurately simulate the physics of plasma/�ow interactions due to the
synergy e�ects between the consecutive discharge/post-discharge phases.
In most numerical models of streamer discharges, the motion of electrons and ions is governed
by drift-di�usion equations coupled with Poisson's equation. Early simulation studies were
limited to simpli�ed situations where the streamer is considered as a cylinder of constant
radius [DJE64, DDE71, AB80, Mor85], in which the charged particle densities are assumed
to be constant along the radial extension of the streamer: the 1.5D model approach. In this
model, the spatio-temporal evolution of the charged particle densities is solved only along one
spatial dimension in the direction of propagation, whereas the electric �eld is calculated in
two dimensions using the so-called disc method, based on a direct integration of analytical
results. A 2D model for the electric �eld is indeed essential to properly calculate the electric
�eld enhancement by the space charge in the streamer head. After the �rst 2D streamer
simulations using the Poisson's equation resolution were performed [DW87], many studies
have been carried out in 2D [VPB94, BN97, Kul00, PSS01, AEH02, CBZ+09, BBC10] and 3D
[NAK08, PSCB08, LEH08, PMG11].
Being aware of the complexity of fully coupled resolutions of these modeling equations, a
decoupling strategy is usually adopted, which considers an independent and successive nu-
merical resolution of Poisson's equation with a �xed charge distribution, and of the drift-
di�usion equations with a �xed electric �eld during each decoupling time step. These compu-
tations might be performed explicitly in time with standard �rst or even second order schemes
[MHE06, BPL+07]. In these cases, the time steps are usually limited for the sake of stability
by the various characteristic times scales (Courant, ionization, dielectric relaxation), whereas
the accuracy of simulations is assumed to be given by the resolution of the fastest physical time
scale. In order to somehow overcome the dielectric relaxation limitation, some semi-implicit
approaches were developed [VSHK93, CDW99, HK00], based on a predictive approximation
of the space charge ahead in time during the electric �eld computation, even though the other
time scale constraints remain. This gain of stability allows important improvements in terms of
computational e�ciency but the accuracy of simulations becomes rather di�cult to quantify.
Another performing technique to improve the e�ciency of simulations considers an asyn-
chronous explicit time integration of the drift-di�usion equations with self-adaptive local time-
stepping, for which the local time steps are based either on local dynamic increments of the
solution [KDOO05, OK06] or on local Courant conditions [UBRT07]. These techniques are
the subject of several studies [CNPT08, DGRS08, CNPT10] and are mainly conceived to avoid
expensive computations whenever the whole system is unnecessarily advanced in time with a
global time step prescribed by the fastest scale. Even though these methods yield e�cient
strategies, specially in terms of CPU time savings, with stable and �ux-conserving time in-
tegrations, it is rather di�cult to conduct an accuracy control on the resolution of the time
dependent equations or on their coupling with the electric �eld resolution for plasma models.
In this work, a numerical study is conducted in order to build a second order explicit in time
decoupling scheme for the resolution of the electric �eld and the electron and ion densities. A
lower order and embedded method is taken into account to dynamically compute the decoupling
time steps that guarantee an accurate description with error control of the global physical
coupling. At this stage, the only limiting time scale is the dielectric relaxation characteristic
time for stability reasons. In a second level, the drift-di�usion equations are solved using a



Sect. 11.3 - Model Formulation 264

Strang second order operator splitting scheme in order to guarantee the global order of the
strategy [DMD+12, DDD+12]. This time integration scheme considers high order dedicated
methods during each splitting time step, which is dynamically adapted by an error control
procedure [DDD+11]. In this way, even though there is a global advance in time given by
the splitting time step, the latter is determined by the desired accuracy of the global physics,
which is not necessarily related to the stability constraints associated with the mesh size or
the fastest source time scales as demonstrated in [DMDD11]. As a consequence, this technique
provides an error control procedure and stands as an alternative way to local stepping schemes
to overcome time step limitations related to the reaction, di�usion and convection phenomena.
Both the electric �eld and density resolutions are performed on an adapted mesh obtained by
a spatial multiresolution method, based on Harten's pioneering work [Har95] and further de-
veloped in [CKMP03], taking into account the spatial multi-scale features of these phenomena
with steep spatial gradients. In particular, some grid adaptation techniques for 2D structured
meshes were already used [MHE06, PSCB08, UBRT10] and extensions to 3D have been also
proposed [PSCB08, NAK08] for streamer simulations. However, one of the main advantages
of the multiresolution approach is that it is based on a wavelet representation technique and
an error of the spatial approximation can be then mathematically estimated. Consequently,
an e�ective error control is achieved for both the time and space resolution of the multi-scale
phenomena under study.
The performance of the method is �rst evaluated for a propagating streamer problem with
the multi-scale features previously discussed, for which the various simulation parameters are
studied. Once the physical con�guration is settled, a 1.5D streamer model is adopted in or-
der to obtain an electric �eld resolution strategy based on direct computations and derived
from analytical expressions, suitable for adapted �nite volume discretizations [BPB+07]. In a
second step, a more complex physical con�guration is considered for the simulation of repet-
itively pulsed discharges, for which a time-space adaptive method is required to e�ciently
overcome some highly multi-scale features in order to fully describe the various physical phe-
nomena. In this work, only a 1.5D model is considered but extensions to higher dimensions
is straightforward for instance with a Poisson's equation solver for adapted grids as it has
been implemented in [MHE06, PSCB08, UBRT10]. However, in this paper we focus on the
development and validation of new numerical methods for the resolution of the drift-di�usion
equations and its coupling with the electric �eld computation, which are independent of the
dimension of the problem. Numerical illustrations of multidimensional problems with the same
time-space adaptive strategy with error control will be the subject of future work.
The paper is organized as follows: in Section 11.3, we present the physical con�guration
and the modeling equations. The numerical strategy is presented in Section 11.4, in which
the second order adaptive time integration technique is detailed along with the resolution of
drift-di�usion equations and the electric �eld, as well as the spatial multiresolution adaptive
procedure. Numerical illustrations are summarized in Section 11.5 for two con�gurations given
by single propagating and multi-pulsed discharges. We end with some concluding remarks and
prospects on future developments and applications.

11.3 Model Formulation

In this work, we consider positive streamer discharges in air at atmospheric pressure in a
point-to-plane geometry, as shown in Figure 11.3. The tip of the anode is placed 1 cm from
the planar cathode and the radius of curvature of the anode is 324µm. The most common and
e�ective model to study streamer dynamics is based on the following drift-di�usion equations
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for electrons and ions, coupled with Poisson's equation [BN96, Kul97]:

∂tne − ∂x · ne ve − ∂x · (De ∂xne) = neα|ve| − neη|ve|+ nenpβep + nnγ,

∂tnp + ∂x · npvp − ∂x · (Dp ∂xnp) = neα|ve| − nenpβep + nnnpβnp,

∂tnn − ∂x · nnvn − ∂x · (Dn ∂xnn) = neη|ve| − nnnpβnp − nnγ,

 (11.2)

ε0 ∂
2
xV = −qe(np − nn − ne), (11.3)

where x ∈ Rd, ni is the density of species i (e: electrons, p: positive ions, n: negative ions), V
is the electric potential, vi = µiE (E being the electric �eld) is the drift velocity. Di and µi,
are the di�usion coe�cient and the absolute value of mobility of the charged species i, qe is the
absolute value of an electron charge, and ε0 is the permittivity of free space. α is the impact
ionization coe�cient, η stands for the electron attachment on neutral molecules, βep and βnp

account respectively for the electron-positive ion and the negative-positive ion recombination,
and γ is the detachment coe�cient.

Fig. 11.3: Computational domain for the studied point-to-plane geometry.

The electric �eld E and the potential V are related by

E = −∂xV, (11.4)

and thus, the Poisson's equation (11.3) becomes:

ε0 ∂x · E = qe(np − nn − ne). (11.5)

All the coe�cients of the model are assumed to be functions of the local reduced electric
�eld E/Ngas, where E is the electric �eld magnitude and Ngas is the air neutral density. For
test studies presented in this paper, the transport parameters for air are taken from [ML97];
detachment and attachment coe�cients, respectively from [BN03] and [KKMS92]; and other
reaction rates, also from [ML97]. Di�usion coe�cients for ions are derived from mobilities
using classical Einstein relations
In simulations of positive streamer discharges in air at atmospheric pressure without any preion-
ization, the photoionization term is crucial to produce seed charges in front of the streamer
head and then to ensure the streamer propagation [BPL+07]. However, in repetitive discharges,
[Pan05] and recently [WPL+10] have shown that even at low frequency, a signi�cant amount of
seed charges from previous discharges may be present in the inter-electrode gap. In this work,
we have neglected the photoionization source term and considered discharge conditions with
a preionization background to ensure a stable propagation of the discharge without impacting
the main discharge characteristics [PSS01, Pan05, Cel08, BBC10].
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11.4 Construction of the Numerical Strategy

In this section, we introduce a new numerical technique for multi-scale streamer discharge
simulations, based on a second order decoupled resolution of the electric �eld and the drift-
di�usion equations for electrons and ions, with self-adaptive decoupling time steps with error
control. The drift-di�usion equations are then solved using a dedicated Strang time operator
splitting scheme for multi-scale phenomena. On the other hand, the electric �eld is computed
based on a parallel computing method, specially conceived for the con�guration under study
in 1.5D geometry. Both resolutions are conducted on a dynamic adaptive mesh using spatial
multiresolution transformation with error control of the spatial adapted representation.

11.4.1 Second Order Adaptive Time Integration Strategy

Let us write the semi-discretized equations (11.2) and (11.5) in the following way just for
analysis purposes:

dtψ = Ψ(ψ, φ),

0 = Φ(ψ, φ),

}
(11.6)

for t > t0, where ψ : R → RN×m and φ : R → RN×d stand respectively for the spatial
discretization of (ne, np, nn), i.e.,m = 3, and of E over N points. Supposing that all functions
are su�ciently di�erentiable in all their variables and using the Taylor expansion of the true
solution, one can write after some time ∆t from initial time t0,

ψ(t0 + ∆t) = ψ0 + ∆tΨ(ψ0, φ0) +
∆t2

2
[∂ψΨ Ψ + ∂φΨ dtφ]t=t0 +O(∆t3), (11.7)

with ψ0 = ψ(t0), φ0 = φ(t0).
A second order in time resolution of system (11.6) must then verify (11.7) locally for each
∆t. However, as it was stated before, solving simultaneously (11.2) and (11.3) (or (11.5)),
or equivalently (11.6), involves important numerical di�culties, considering for instance the
di�erent nature of equations (11.2) and (11.3) (or (11.5)). Therefore, a decoupled approach
is often used in which one aims at solving the drift-di�usion equations and the electric �eld
independently. This amounts to solve

dtψ̃ = Ψ(ψ̃, φ?), t ∈ ]t0, t0 + ∆t], (11.8)

with �xed φ? = φ(t?), t? ∈ [t0, t0 + ∆t] and ψ̃(t0) = ψ0.
The most common technique considers t? = t0, that is, to previously compute the electric
�eld at t0 from Φ(ψ0, φ0) = 0, and then solve (11.8) with φ? = φ0. This can be interpreted
as a standard �rst order operator splitting method that yields an approximation of order 1,
ψ̃1(t), of the exact solution, ψ(t), based on classical numerical analysis results obtained by
confronting (11.7) with

ψ̃1(t0 + ∆t) = ψ0 + ∆tΨ(ψ0, φ0) +
∆t2

2
[∂ψΨ Ψ]t=t0 +O(∆t3). (11.9)

The same result follows for φ̃1(t0 + ∆t) computed out of Φ(ψ̃1(t0 + ∆t), φ̃1(t0 + ∆t)) = 0
or equivalently, out of its explicit representation φ̃1(t0 + ∆t) = Υ(ψ̃1(t0 + ∆t)), assuming a
Lipschitz condition:

‖Υ(ψ)−Υ(ψ?)‖ ≤ L ‖ψ − ψ?‖ . (11.10)
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Considering now any t? ∈ [t0, t0 +∆t] into (11.8), the only second order solution, (ψ̃2(t), φ̃2(t)),
will be given by resolution of (11.8) with φ? = φ 1

2
for t? = t0 + ∆t/2, for which

ψ̃2(t0 + ∆t) = ψ0 + ∆tΨ(ψ0, φ 1
2
) +

∆t2

2
[∂ψΨ Ψ]ψ→ψ0,φ 1

2

+O(∆t3), (11.11)

where

Ψ(ψ0, φ 1
2
) = Ψ

(
ψ0, φ

(
t0 +

∆t

2

))

= Ψ

(
ψ0, φ0 +

∆t

2
dtφ|t=t0 +O(∆t2)

)

= Ψ(ψ0, φ0) +
∆t

2
[∂φΨ dtφ]t=t0 +O(∆t2), (11.12)

and hence,

ψ̃2(t0 + ∆t) = ψ0 + ∆tΨ(ψ0, φ0) +
∆t2

2
[∂ψΨ Ψ + ∂φΨ dtφ]t=t0 +O(∆t3); (11.13)

and
φ̃2(t0 + ∆t) = Υ(ψ̃2(t0 + ∆t)). (11.14)

Nevertheless, this second order approximation, ψ̃2(t), is based on the previous knowledge of
φ 1

2
= φ(t0 + ∆t/2), and thus, of ψ(t0 + ∆t/2). In order to overcome this di�culty, one can

solve (11.8) with φ? = φ̃1(t0 +∆t/2) = Υ(ψ̃1(t0 +∆t/2)), that is, computing �rst ψ̃1(t0 +∆t/2)
with the �rst order method. In particular, this does not change the previous order estimates
as it follows from

ψ(t0 + ∆t)− ψ̃2(t0 + ∆t) =
∆t2

2

[
∂φΨ dt(φ− φ̃1)

]
t=t0

+O(∆t3)

=
∆t2

2

[
∂φΨ ∂ψΥ dt(ψ − ψ̃1)

]
t=t0

+O(∆t3)

= O(∆t3). (11.15)

Taking into account both methods,(
ψ̃1(t0 + ∆t)

φ̃1(t0 + ∆t)

)
= T ∆t

1

(
ψ0

φ0

)
,

(
ψ̃2(t0 + ∆t)

φ̃2(t0 + ∆t)

)
= T ∆t

2

(
ψ0

φ0

)
, (11.16)

we perform computations with a second order scheme T ∆t
2 , which uses an embedded and lower

order scheme T ∆t/2
1 , as it was previously detailed. An adaptive time step strategy is then

implemented in order to control the accuracy of computations by tuning the duration of the
decoupled resolution. It is based on a local error estimate, dynamically computed at the end
of each decoupling time step ∆t, given by∥∥T ∆t

2 (ψ0, φ0)T − T ∆t
1 (ψ0, φ0)T

∥∥ ≈ O(∆t2). (11.17)

Therefore, for a given accuracy tolerance ηT ,∥∥T ∆t
2 (ψ0, φ0)T − T ∆t

1 (ψ0, φ0)T
∥∥ < ηT (11.18)
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must be veri�ed in order to accept the current computation with ∆t, while the new time step
is calculated by

∆tnew = ∆t

√
ηT∥∥T ∆t

2 (ψ0, φ0)T − T ∆t
1 (ψ0, φ0)T

∥∥ . (11.19)

Several dedicated solvers can be then implemented for each subproblem (11.2) and (11.3) while
the theoretical error estimates of the decoupling schemes analyzed in this section remain valid.
In this way, the independent choice of appropriate numerical schemes allows to strongly reduce
the computational complexity of the global numerical strategy, and an error control procedure
such as the one proposed in this work allows to e�ectively calibrate this decoupling within a
prescribed accuracy tolerance.

11.4.2 Resolution of the Drift-Di�usion Equations

We consider now the numerical resolution of the drift-di�usion equations (11.2), that can be
written in the general form of a convection-reaction-di�usion system of equations:

∂tu− ∂x (F (u) +D(u)∂xu) = f (u) , t > t0,

u(t0, x) = u0(x), t = t0,

}
(11.20)

where F , f : Rm → Rm and u : R × Rd → Rm, with a tensor of order d × d ×m as di�usion
matrix D(u). In particular, u = (ne, np, nn)T with m = 3 in this study.
The system (11.20) corresponds to problem (11.8) for a �xed electric �eld, and it is solved
during each decoupling time step ∆t into T2 (or T1) scheme, using a Strang time operator
scheme with dedicated high order time integrators on a dynamic adaptive mesh, based on a
strategy introduced in [DMD+12]. This resolution is brie�y detailed in following sections1.

Time Operator Splitting

An operator splitting procedure allows to consider dedicated solvers for the reaction part which
is decoupled from other physical phenomena like convection, di�usion or both, for which there
also exist dedicated numerical methods. These dedicated methods chosen for each subsystem
are then responsible for dealing with the fastest scales associated with each one of them, in a
separate manner, while the reconstruction of the global solution by the splitting scheme should
guarantee an accurate description with error control of the global physical coupling, without
being related to the stability constraints of the numerical resolution of each subsystem.
Considering problem (11.20) and in order to remain consistent with the second order T2 scheme,
a second order Strang scheme is implemented [Str68]

S∆ts(u0) = R∆ts/2D∆ts/2C∆tsD∆ts/2R∆ts/2(u0), (11.21)

where operators R, D, C indicate respectively the independent resolution of the reaction,
di�usion and convection problems with a splitting time step, ∆ts, taken inside the overall
decoupling time step, ∆ts ≤ ∆t. Usually, for propagating reaction waves where for instance,
the speed of propagation is much slower than some of the chemical scales, the fastest scales
are not directly related to the global physics of the phenomenon, and thus, larger splitting

1For the sake of brevity, we will omit in what follows the description of the mesh re�nement technique by
multiresolution analysis on variables u = (ne, np, nn)T , included in [DBM+12]. The corresponding description
can be found in chapters 3 and 4. The threshold parameter ε in (4.26) will be noted as ηMR in the following.
Nevertheless, we reproduce the splitting technique described in Chapter 10 because it is particularly embedded
in the time adaptive strategy of Section 11.4.1.
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time steps might be considered [DMD+12, DDD+12]. Nevertheless, order reductions may then
appear due to short-life transients associated with fast variables and in these cases, it has been
proven in [DM04] that better performances are expected while ending the splitting scheme
by operator R or in a more general case, the part involving the fastest time scales of the
phenomenon.
The resolution of (11.20) should be precise enough to guarantee theoretical estimates given
in Section 11.4.1. Therefore, an adaptive splitting time step strategy, based on a local error
estimate at the end of each splitting time step ∆ts, is also implemented in order to control
the accuracy of computations [DMDD11]. In this context, a second, embedded and lower
order Strang splitting method S̃∆ts was developed by [DDD+11], which allows to dynamically
calculate a local error estimate that should verify∥∥S∆ts(u0)− S̃∆ts(u0)

∥∥ ≈ O(∆ts
2) < ηsplit, (11.22)

in order to accept the current computation with ∆ts, and thus, the new splitting time step is
given by

∆tnew
s = min

∆ts

√
ηsplit∥∥S∆ts(u0)− S̃∆ts(u0)

∥∥ , t0 + ∆t− t̂

 , (11.23)

with ηsplit ≤ ηT and t̂ =
∑

i ∆tsi while t̂ ∈ ]t0, t0 + ∆t].
The choice of suitable time integration methods to numerically approximate R, D and C
during each ∆ts is mandatory not only to guarantee the theoretical framework of the numerical
analysis but also to take advantage of the particular features of each independent subproblem.
A new operator splitting for reaction-di�usion systems was recently introduced [DMD+12,
DDD+12], which considers a high �fth order, A-stable, L-stable method like Radau5 [HW96],
based on implicit Runge-Kutta schemes for sti� ODEs, that solves with a local cell by cell
approach the reaction term: a system of sti� ODEs without spatial coupling in a splitting
context. For the di�usion problem, another high fourth order method like ROCK4 [Abd02] is
considered, which is based on explicit stabilized Runge-Kutta schemes that feature extended
stability domains along the negative real axis. The ROCK4 solver is then very appropriate
for di�usion problems because of the usual predominance of negative real eigenvalues. Both
methods incorporate adaptive time integration tools, similar to (11.19) and (11.23), in order
to control the accuracy of the integrations for given accuracy tolerances ηRadau5 and ηROCK4,
chosen such that ηRadau5 < ηsplit and ηROCK4 < ηsplit. In particular, in the case of multi-scale
propagating waves, it can be proven that the local treatment plus the adaptive time stepping
of the reaction solver allow to discriminate the cells of high reactive activity only present in the
neighborhood of the localized wavefront, saving as a consequence a large quantity of integration
time [DDD+12].
An explicit high order in time and in space one step monotonicity preserving scheme OSMP
[DT04] is used as convective scheme. It combines monotonicity preserving constraints for
non-monotone data to avoid extrema clipping, with TVD features to prevent spurious os-
cillations around discontinuities or sharp spatial gradients. Classical CFL stability restric-
tions are though imposed inside each splitting time step ∆ts for operator C∆ts . The overall
combination of an explicit treatment of the spatial phenomena as convection and di�usion,
with a local implicit integration of sti� reaction implies important savings in computing time
and memory resources [DMD+12], as well as an important reduction of computational com-
plexity with respect to a fully implicit coupled resolution of problem (11.20). On the other
hand an explicit coupled treatment of (11.20) will have a very limited e�ciency for sti� prob-
lems unless more sophisticated strategies as the asynchronous local time-stepping techniques



Sect. 11.4 - Construction of the Numerical Strategy 270

[KDOO05, OK06, UBRT07] are considered even though these schemes do not provide a precise
measurement of the accuracy of the integration.
Finally, the numerical errors of the splitting scheme are e�ectively handled by an error control
procedure which furthermore allows to determine the coupling time scales of the global phe-
nomenon that can be several orders of magnitude slower than the fastest time scales of each
subproblem treated by each dedicated solver. In this way a decoupling of the time scale spec-
trum of the problem is achieved that leads to more e�cient performances within a prescribed
accuracy tolerance whenever this decomposition of scales is possible.

11.4.3 Computation of the Electric Field

In this part, we are concerned with the resolution of the electric �eld according to the T2 (or T1)
scheme at some �xed time for a given distribution of charges (ne, np, nn), considering a 1.5D
model. This computation is also performed on the adapted mesh obtained by the previous
multiresolution analysis.

Discretization of the Computational Domain

According to Figure 11.3, the computational domain is limited by a planar cathode at x = 0
and the tip of a hyperbolic anode at x = Lx. The anode is not included in the domain. We
consider streamers of �xed radius Rs along the axis of symmetry. The computational domain
is divided into nx cells of di�erent size corresponding to the multiresolution adapted mesh,
with faces xif , where i ∈ [0, nx] and cell centers xjc, where j ∈ [1, nx]. The face x0

f corresponds
to the position of the cathode and xnxf corresponds to the position of the tip of the anode.
Therefore for each cell xic, there is its left face x

i−1
f , and its right face xif . For each cell xjc we

de�ne a width wj = xjf − x
j−1
f (see Figure 11.4).

Fig. 11.4: De�nition of the grid: the cell centers are located at xjc, whereas cell faces are located at xif .
The domain is bounded by faces x0

f (cathode) and xnx

f (tip of the anode).

Resolution of the Electric Field in a 1.5D Model

To determine the electric �eld during the propagation of the streamer, the space charge of
the streamer is considered as a set of �nite cylinders of width wj , bounded by cell faces xj−1

f

and xjf . As the computational domain is bounded by conducting electrodes of �xed potential,
each volume charge ρj creates an in�nite series of image charges [DJE64, DDE71]. Then the
principle of superposition is used to sum individual contributions from all the cylindrical space
charges in the domain, their image charges, and the Laplacian electric �eld (computed based on
classical results [EMM28]). An advantage of this approach dwells in the fact that the electric
�eld contributions from individual cylinders can be expressed analytically in a simple form and
the determination of the electric �eld in each point of the domain can be performed in parallel.
In the con�gurations we have studied, the cathode is grounded whereas an electric voltage
is applied on the anode. These boundary conditions are taken into account by the Laplacian
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electric �eld and by including a series of image charges of the charges in the gap. It is important
to note that the computation of the Laplacian electric �eld takes into account the real geometry
of electrodes as shown in Figure 11.3. However, in this work, to simplify the computation of
image charges we have assumed that both electrodes are planar. For a volume charge ρj
centered at xjc, there exist image charges of the �rst order with charge −ρj at x = 2Lx − xjc
mirrored through the anode, see Figure 11.5a, and at x = −xjc mirrored through the cathode,
see Figure 11.5b. And for each of these image charges there exist higher order image charges
of opposite signs and so forth. All the image charges of ρj up to order three are depicted in
Figure 11.5c.

Fig. 11.5: Image charges up to the third order: (a) charge ρj is �rst mirrored behind the anode
(x = Lx), (b) charge ρj is �rst mirrored behind the cathode (x = 0), (c) charge ρj and its images.

Fig. 11.6: Charged cylinder considered to compute the electric �eld in the 1.5D model.

Integrating the generalized Coulomb's law [Jac99] and using the principle of superposition, we
�nd that the cylinder charges of cells j ∈ [1, nx] of width wj , radius Rs, charged with densities
ρj (see Figure 11.6), and the Laplacian electric �eld EL(xif) at x

i
f [EMM28], create the electric

�eld E at position xif as follows:

E(xif) = EL(xif) +

nx∑
j=1

s
ρjwj
2ε0

1− wj + 2hi,j√
h2
i,j +R2

s +
√

(hi,j + wj)
2 +R2

s

 , (11.24)
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where

hi,j =

x
i
f − x

j
f for i ≥ j,

xj−1
f − xif for i < j,

and s =

+1 for i ≥ j,

−1 for i < j.
(11.25)

The positive sign of s accounts for the electric �eld calculated on the right from the position of
the charged cylinder and vice-versa. The same formula applies for the image charges, but an
appropriate sign of the charge has to be carefully taken into account according to Figure 11.5.
In particular, in a shared memory computing environment, a straightforward parallelization is
accomplished for equation (11.24), in which each core solves successively the electric �eld on
one single position xif , and where neither synchronization stages nor data exchange are needed
among nodes.
Note that for Rs →∞ (in�nite plane charges), equation (11.24) yields the exact electric �eld
for a planar front:

Einf =

nx∑
j=1

s
ρjwj
2ε0

. (11.26)

For �nite radius Rs the solution (11.24) is valid only on the axis of the discharge, but when
applied to a discharge of a small radius, the electric �eld will vary only negligibly over the
cross section of the discharge. This approach is expected to be more accurate for any �nite
radius than any discretization of Poisson's equation [DJE64].

11.5 Numerical Results

In this section, we present some numerical illustrations of the proposed numerical strategy for
the simulations of positive streamers using a 1.5D model in a point-to-plane geometry. First,
we will consider a discharge propagation with constant applied voltage for which di�erent
features of the numerical strategy are discussed, e.g., error estimates, data compression values
and computing time, in order to properly choose the simulation parameters. Then, the poten-
tial of the method is fully exploited for a more complex con�guration of repetitive discharges
generated by high frequency pulsed applied voltages, followed by a long time scale relaxation,
for which a complete physical description of the discharge and the post-discharge phases is
achieved.

11.5.1 Propagation of a Positive Streamer with Constant Applied Voltage

We consider a point-to-plane geometry with a 1 cm gap between the tip of the electrode and
the plane, and a constant applied voltage of 13 kV at x = Lx. For the following simulations,
the discharge is initiated by placing a neutral plasma cloud with a Gaussian distribution close
to the tip of the anode. The initial distributions of electrons and ions are then given by

ne,p(x)|t=0 = nmax exp
(
−(x− c)2/w2

)
+ n0, nn(x)|t=0 = 0, (11.27)

where w = 0.027 cm, c = 1 cm, nmax = 1014 cm−3, and with a preionization of n0 = 108 cm−3.
There are no negative ions as initial condition. The streamer radius is set to Rs = 0.05 cm
to have a typical electric �eld magnitude in the streamer head of 120 kV/cm [Kul98]. Ho-
mogeneous Neumann boundary conditions were considered for the drift-di�usion equations.

Two instances of the discharge propagation are shown in Figure 11.7, for 12 nested grids
equivalent to 4096 cells on the �nest grid, L = 12, and for accuracy tolerances of ηT = ηsplit =
ηMR = 10−4; the spatial re�nement takes place only where it is required. Fine tolerances
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Fig. 11.7: Positive streamer propagation at t = 6ns (left) and t = 10ns (right). Top: electric �eld;
middle: charged species density; and bottom: grid levels. Finest grid: 4096, ηT = ηsplit = ηMR = 10−4.

were chosen in all cases for the solvers, ηRadau5 = ηROCK4 = 10−7, to guarantee accurate
integrations. For all the simulation cases, the detail in each cell is taken as the maximum of
the details computed according to (3.72) for each variable, where the prediction operator is a
polynomial interpolation of degree 2, performed on normalized log u of the density variables
in order to properly discriminate the streamer heads from the highly ionized plasma channel;
this logarithmic scale guarantees a correct spatial representation of the phenomenon as seen
in Figure 11.7 for the density pro�les.
In order to perform an analysis of the numerical results, we de�ne the reference solution as a
�ne resolution with the T2 scheme that considers a �xed decoupling time step, ∆t = 10−14 s
and a uniform grid of 4096 cells. For this reference solution, the memory requirements are
acceptable and the simulation is still feasible, but it requires about 14 days of real simulation
time on an AMD Opteron 6136 Processor cluster, while running the electric �eld computation
in parallel on 16 CPU cores. In this case, the computation of the electric �eld, based on a
direct integration of individual contributions of the charged cylinders, represents 80% of total
CPU time per time step (about 3.2 s).
First of all, we must verify the previous order estimates for the T1 and T2 schemes given
in Section 11.4.1. We consider as initial condition the reference solution at t = 10 ns. In
order to only evaluate errors coming from the decoupling techniques, T1 and T2, we consider
a �ne splitting time step, ∆ts = 10−14 s, to solve the drift-di�usion problem (11.2) and a
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Fig. 11.8: Normalized L2 errors between the reference and the T1 (�rst order) and T2 (second order)
solutions for several decoupling time steps ∆t on a uniform grid of 4096 cells. Top: electron (left) and
positive ions (right); and bottom: negative ions.

uniform grid; then, we solve (11.6) with both schemes for several decoupling time steps ∆ti,
and calculate the normalized L2 error between the �rst/second order and reference solutions
after time t = 210∆ts = 1.024 × 10−11 s. Figure 11.8 shows results with ∆ti = 2i∆ts, where
i ∈ [1, 10], which clearly verify �rst and second order in time for the T1 and T2 schemes,
respectively, and prove important gains in accuracy for same time steps. For instance, for
∆t ≤ 10−12 s the second order scheme provides solutions with L2 errors at least 100 times
lower than those obtained with the �rst order method.
Figure 11.9 shows the time evolution of the normalized L2 error for each variable between the
time-space adapted and reference solutions for several tolerances, ηT = ηsplit = ηMR = 10−4,
10−3, and 10−2. These are rather approximations of the error since the reference and adapted
solutions are not evaluated exactly at the same time, and therefore, they are often slightly
shifted of about ∼ 10−14 − 10−13s. In these tests, the decoupling time steps ∆t were limited
by the dielectric relaxation time step, ∆tDR, after noticing an important amount of rejections
of computed time steps according to (11.19), whenever ∆t & 1.5 × ∆tDR. Otherwise, ∆t is
dynamically chosen in order to locally satisfy the required accuracy ηT , but it does not show
important variations considering the self-similar propagating phenomenon.
In Figure 11.10, we can see the corresponding adapted grid to each previous con�guration
with di�erent tolerances. The representation of the electric �eld and the densities shows that
for ηT = ηsplit = ηMR = 10−2, the streamer front propagates faster than in the reference
case, with a slightly higher peak of the electric �eld in the front. On the other hand, for
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Fig. 11.9: Time evolution of the normalized L2 errors between the reference and adapted solutions
with η = ηT = ηsplit = ηMR = 10−4, 10−3, and 10−2, and 4096 cells corresponding to the �nest
discretization. Top: electron (left) and positive ions (right); and bottom: negative ions.

ηT = ηsplit = ηMR ≤ 10−3, we observe a quite good agreement between the adapted and
reference resolutions.
We consider now an accurate enough resolution with ηT = ηsplit = ηMR = 10−4 and investigate
the in�uence of the number of grids, that is, the �nest spatial discretization at level L that
should be taken into account. Figure 11.11 shows the adapted grids for L = 10, 11 and 12,
respectively equivalent to 1024, 2048 and 4096 cells in the �nest grid; and a close-up of the
corresponding electric �elds in the discharge head at t = 8 ns. We see that for this level of
tolerances, the streamer front propagates slightly slower than the reference case for L = 10,
whereas L = 11 gives already good resolutions compared with the reference solution and with
L = 12. In particular, higher values of L would need lower tolerances in order to retain regions
at the �nest level; this is already the case for L = 13 (equivalent to 8192 cells). Therefore,
L = 11 with 2048 cells at the �nest level seems to be an appropriate choice for this level of
accuracy.
Table 11.1 summarizes the number of cells in the adapted grid (#AG) at time t = 8ns, and the
corresponding data compression (DC) de�ned as the percentage of active cells with respect to
the equivalent number of cells for the �nest discretization, in this case 2048 for L = 11. For this
propagating case, the data compression remains of the same order during the time simulation
interval. The CPU computing times correspond to a time domain of study of t ∈ [0, 10] ns
computed by one sole CPU core. If we consider for example total computing time for L = 11
and tolerances ηT = ηsplit = ηMR = 10−4, it is ∼ 44 times less expensive with respect to a
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resolution on a uniform grid with 2048 cells and ηT = ηsplit = 10−4 (CPU time of 8552 s). This
is quite reasonable, taking into account that the computing time for the electric �eld resolution
is proportional to at least O(N2) for N computing cells, after (11.24).
In conclusion, in this section we have shown that the numerical strategy developed can be
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Table 11.1: Number of cells in the adapted grid (#AG) and data compression (DC) at time t = 8ns,
CPU computing time for t ∈ [0, 10] ns, L = 11, and several tolerances η = ηT = ηsplit = ηMR.

η #AG DC% CPU(s)

10−6 724 35.35 1360

10−5 421 20.56 517

10−4 263 12.84 193

10−3 138 6.74 66

10−2 70 3.42 24

e�ciently applied to simulate the propagation of highly nonlinear ionizing waves as streamer
discharges. An important reduction of computing time results from signi�cant data compres-
sion with still accurate resolutions. In addition, this study allows to properly tune the various
simulation parameters in order to guarantee a �ne resolution of more complex con�gurations,
based on the time-space accuracy control capabilities of the method.

11.5.2 Simulation of Multi-Pulsed Discharges

In this section, we analyze the performance of the proposed numerical strategy on the sim-
ulation of nanosecond repetitively pulsed discharges [PGL+06, PLL10]. The applied voltage
pro�le for this type of discharges is a high voltage pulse followed by a zero voltage relaxation
phase. The typical pulse duration is ∼ 10−8 s, while the relaxation phase takes over ∼ 10−4 s.
The detailed experimental study of these discharges in air has shown that the cumulative e�ect
of repeated pulsing achieves a steady-state behavior [PLL10]. In the following illustrations, we
choose a pulse duration of Tp = 15 ns, which is approximately equal to the time that is needed
for the discharge to cross the inter-electrode gap. The rise time considers the time needed to
go from zero to the maximum voltage and it is set to Tr = 2 ns. The pulse repetition period is
set to TP = 10−4 s, equal to 10 kHz of repetition frequency, a typical value used in experiments
[PGL+06]. We model the voltage pulse P by using sigmoid functions

P (t, s, r, p) = 1− σ(−t,−s, r)− σ(t, s+ p, r), (11.28)

with

σ(t, s, r) =
1

1 + exp(−8(t− s)/r)
, (11.29)

for time t, where s indicates when the pulse starts; r is the rise time; and p is the pulse
duration; t, s, r, p ∈ [0, TP]. With a maximum applied voltage Vmax, the applied voltage V (t)
is computed by

V (t) = Vmax · P
(
t−
⌊
t

TP

⌋
· TP, Tr, Tr, Tp

)
. (11.30)

In repetitively pulse discharges at atmospheric pressure and 300K, as discussed in [Pan05,
WPL+10], electrons attach rapidly to O2 molecules during the interpulse to form negative
ions (characteristic time scale of 20 ns). Then, the rate of the plasma decay is determined by
ion-ion recombination [KKMS92, Pan05, WPL+10]. When the next voltage pulse is applied,
electrons are detached with a rate taken from [BN03]. Therefore, as initial condition we assume
a distribution similar to the end of the interpulse phase with a homogeneous preionization
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consisting of positive and negative ions with a density of 109 cm−3. For electrons, we consider
a low homogeneous background of 101 cm−3. This small amount of electrons as initial condition
has a negligible in�uence on the results.
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Fig. 11.12: Time evolution of the applied voltage and the decoupling time steps ∆t for a multi-pulse
simulation for the �rst 6 pulses (left) and for the 4th one (right) with its subsequent relaxation. Rejected
time steps are marked with black crosses, while the minimum time scale corresponds to the blue line.

We set the tolerances to ηT = ηsplit = ηMR = 10−4 and consider L = 11 grid levels, equivalent
to 2048 cells in the �nest grid. As in the previous con�guration, homogeneous Neumann
boundary conditions were considered for the drift-di�usion equations. Figure 11.12 shows the
time evolution of the decoupling time steps and the applied voltage for the �rst six pulses,
even though simulation was performed for 100 pulses, that is t ∈ [0, 10−2] s. This simulation
took over 8h44m while running the electric �eld computation in parallel on 6 CPU cores of the
same AMD Opteron 6136 Processor cluster; this gives an average of 5.24 minutes per pulse
period. Figure 11.12 shows also the fourth pulse for which the steady-state of the periodic
phenomenon was already reached and almost the same numerical performance is reproduced
during the rest of computations. The time steps are about ∼ 10−11 s during pulses, then
increase from ∼ 10−12 s up to about ∼ 10−6 s during a period ∼ 6000 times longer, for which
standard stability constraints are widely overcome according to the required accuracy tolerance.
Solving this problem for such di�erent scales with a constant time step is out of question and
even a standard strategy that considers the minimum of all time scales would limit considerably
the e�ciency of the method as it is shown in the representation. In this particular case, the
dielectric relaxation is the governing time scale during the discharge as in the previous case with
constant applied voltage, whereas the post-discharge phase is alternatively ruled by di�usive
or convective CFL, or by ionization time scale, with all security factors and CFL conditions
set to one in Figure 11.12.
The computation is initialized with a time step included in the pulse duration. Nevertheless,
after each relaxation phase, since the new time step is computed based on the previous one
according to (11.19), this new time step will surely skip the next pulse. In order to avoid this,
each time we get into a new period, that is when bt/TPc changes, we initialize the time step
with ∆t = 0.5Tr = 1 ns. This time step is obviously rejected as seen in Figure 11.12, as well
as the next ones, until we are able to retrieve the right dynamics of the phenomenon for the
required accuracy tolerance. No other intervention is needed neither for modeling parameters
nor for numerical solvers in order to automatically adapt the time step needed to describe the
various time scales of the phenomenon within a prescribed accuracy.
Figure 11.13 represents the time evolution of the data compression which ranges from ∼ 2% up
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to ∼ 16% during each pulse period. Regarding only the electric �eld resolution with the same
time integration strategy, a grid adaptation technique involves resolutions ∼ 39 to ∼ 2500
times faster, based on a really rough estimate for O(N2) operations.
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Fig. 11.13: Time evolution of the data compression for a multi-pulse simulation for the �rst six pulses
(left) and for the fourth one (right) with its subsequent relaxation.

Figure 11.14 presents the discharge dynamics for the �rst period. First, we observe at t =
10 ns after the beginning of the pulse, the propagation of a positive streamer in the gap. In
Section 11.5.1, a preionization of positive ions and electrons was used to ensure the positive
streamer propagation. In this section, seed electrons ahead of the streamer front are created as
the front propagates by detachment of negative ions initially present. We note that at 15 ns,
which corresponds to almost the end of the plateau before the decrease of the applied voltage,
the discharge has crossed ∼ 0.75 cm of the 1 cm gap. As a consequence, during the voltage
decrease and at the beginning of the relaxation phase where the applied voltage is zero, there
is a remaining space charge and steep gradients of charged species densities in the gap. Then
for t = 50 ns, Figure 11.14 shows that the electric �eld in the discharge is almost equal to zero
except in a small area where steep gradients of the electric �eld are observed but with peak
values of only 30V/cm. We have checked that this area corresponds to the location of the
streamer head at the end of its propagation as it is seen in the representation. We note that in
the post-discharge, electrons are attaching and then at t = 50 ns, the density of positive ions is
almost equal to the density of negative ions in the whole gap. At t = 99972 ns, the densities of
charged species have signi�cantly decreased due to charged species recombination. However,
it is interesting to note that the location of the previous streamer head can still be observed at
the same location as at t = 50 ns, but with much smaller gradients of charged species densities
and a very small electric �eld. This �nal state is the initial condition of the second pulse with
a non-uniform axial preionization with positive and negative ions and a much smaller density
of electrons.
After a few repetitive pulses, we have observed that the discharge dynamics reached a steady-
state behavior as observed in the experiments. To show the characteristics of the discharge
when the steady-state is reached, Figure 11.15 shows the discharge dynamics of the 100th
period. The sequence of images is the same as in Figure 11.14. At the end of the 99th pulse,
we have observed that the axial distribution of charged species in the gap is uniform and that
the level of preionization is 5 × 1010 cm−3 positive and negative ions and 104 cm−3 electrons.
We note that 10 ns after the beginning of the 100th pulse the propagation of the discharge is
faster than for the �rst pulse.
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Fig. 11.14: First period of pulsed discharges. Top: propagation of the discharge in the domain at
t = 10ns after the beginning of the pulse (left); and at t = 15ns (right). Bottom: relaxation on the
short time scale t = 50ns; and end of the relaxation phase after t = 99972ns (right).
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Fig. 11.15: Steady-state of pulsed discharges (last period). Top: propagation of the discharge in the
domain at t = 9900010ns after the beginning of the pulse (left); and at t = 9900015ns (right). Bottom:
relaxation on short time scale t = 9900050ns; and end of the relaxation phase t = 9999998ns (right).
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This faster propagation is mostly due to the higher preionization level of positive and negative
ions in the gap in comparison of the �rst voltage pulse. We observe that for the 100th pulse,
15 ns after the beginning of the pulse the discharge has almost completely crossed the inter-
electrode gap and then during the relaxation phase, there is no remaining space charge in the
whole gap. Consequently, 50 ns after the beginning of the 100th pulse, axial distributions of all
charged species are uniform. As already observed for the �rst pulse, at 50 ns after the beginning
of the voltage pulse most electrons have attached and then, the density of positive ions is almost
equal to the density of negative ions in the whole gap. We see that the corresponding electric
�eld distribution is not uniform at 50 ns, but no steep gradients are observed as for the �rst
voltage pulse. At t = 9999998 ns, that is to say at the end of the 100th period, we note that
a very low electric �eld is obtained in the gap. An axially uniform distribution of charges is
obtained with 5 × 1010 cm−3 for positive and negative ions and 104 cm−3 for electrons, which
was the initial condition of the 100th pulse. This demonstrates the existence of a steady-state
behavior of these nanosecond repetitively pulsed discharges.

11.6 Conclusions

The present work proposes a new numerical strategy for multi-scale streamer simulations. It is
based on an adaptive second order time integration strategy that allows to discriminate time
scales-related features of the phenomena, given a required level of accuracy of computations.
Compared with a standard procedure for which accuracy is guaranteed by considering time
steps of the order of the fastest scale, the control error approach implies on the one hand,
an e�ective accurate resolution independent of the fastest physical time scale, and on the
other hand, an important improvement of computational e�ciency whenever the required
time steps go beyond standard stability constraints. The latter is a direct consequence of
the self-adaptive time step strategy for the resolution of the drift-di�usion equations which
considers splitting time steps not limited by stability constraints for reaction, di�usion and
convection phenomena. So far, the global decoupling time steps are limited by the dielectric
relaxation stability constraint but with a second order accuracy. Nevertheless, we have also
demonstrated that the decoupling time steps are rather chosen based on an accuracy criterion.
Besides, if a technique such as a semi-implicit approach is implemented, the same ideas of the
proposed adaptive strategy remain valid.
An adaptive multiresolution technique was also proposed in order to provide error control of the
spatial adapted representation. The numerical results have proven a natural coupling between
time and space accuracy requirements and how the set of time-space accuracy tolerances tunes
the precise description of the overall time-space multi-scale phenomenon. As a consequence, the
numerical results for multi-pulsed discharge con�gurations prove that this kind of multi-scale
phenomena, previously out of reach, can be successfully simulated with conventional computing
resources by this time-space adaptive strategy. And they also show that a consistent physical
description is achieved for a broad spectrum of space and time scales as well as di�erent physical
scenarios.
In this work, we focused on a 1.5D model in order to evaluate the numerical performance
of the strategy. However, the dimension of the problem will only have an in�uence on the
computational e�ciency measurements but not on any space-time accuracy or stability as-
pects. At this stage of development, the same numerical strategy can be coupled with a
multi-dimensional Poisson's equation solver, even for adapted grid con�gurations as developed
recently in [MHE06, PSCB08, UBRT10]. Finally, an important amount of work is still in
progress concerning programming features such as data structures, optimized routines and
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parallelization strategies. On the other hand, numerical analysis of theoretical aspects is also
underway to extend and further improve the proposed numerical strategy. These issues con-
stitute particular topics of our current research.
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General Conclusion and Prospects

The general framework of this work was settled by the development of e�cient numerical
strategies for the numerical simulation of problems with an important range of time and space
scales describing real physical phenomena. In this large context, this work has particularly
introduced a few mathematical and numerical tools that have yielded a general time/space
adaptive numerical strategy for the numerical solution of sti� PDEs modeling reacting fronts.
The practical implementation of the strategy has been carried out by the development of a
numerical code, whereas the numerical simulation of several applications coming from di�er-
ent domains, namely nonlinear chemical dynamics, biomedical engineering, combustion, and
plasma �elds, has assessed the capabilities and potentials of the numerical approach. The
theoretical background and some new achievements in terms of mathematical results as well as
numerical tools, were thus put into practice to perform numerical simulations of models stud-
ied for scienti�c and technological purposes, coupling elements of applied mathematics and
scienti�c computing for problems of interest for real applications. A key issue considered and
discussed extensively in this work deals with the objective of providing valid error estimates
for the numerical simulations. A special care was thus given to this aspect in the proposed
numerical strategy in order to de�ne general criteria to monitor and likely control the approx-
imation errors introduced by the numerical methods. The latter issue is often underestimated
or vaguely referred in most of the numerical simulations presented in the literature, in which
no information is usually available concerning the accuracy achieved with the numerical meth-
ods. The numerical techniques developed in this work settle thus some fundamental bases to
perform accurate and feasible numerical simulations of varied sti� problems, for large computa-
tional domains out of reach of standard techniques, with conventional computational resources.

The main contributions of this work, previously discussed in details, are summarized in the
following:

• In terms of mathematical analysis:

� The numerical analysis of the shifted and standard Strang splitting techniques for
general nonlinear reaction-di�usion systems, published in [DDD+11]; and the theo-
retical characterization of numerical errors for self-similar solutions.

� A numerical procedure to evaluate the Strang local truncation error and the study
of non-asymptotic regimes for large splitting time steps [DDD+11].

� New error estimates of splitting techniques for reaction-di�usion systems featuring
solutions with high spatial gradients, published in [DDM11].

� The numerical analysis of a parareal operator splitting technique for reaction-
di�usion systems [DDM11]; and a theoretical characterization of numerical errors
for self-similar solutions.

� The construction of a second order scheme for plasma modeling equations, published
in [DBM+12].
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• In terms of numerical scheme:

� An original splitting scheme for reaction-di�usion systems featuring dedicated, one-
step and high order schemes for each split subproblem (introduced in [DMD+12,
DDD+12] and presented in [DML+11]), such that the time integration errors for
each split system are decoupled from the global splitting error2.

� A new parareal operator splitting scheme for PDEs modeling multi-scale reaction
waves [DDM11]. To our knowledge, the parareal algorithm was not previously
implemented and studied for sti� PDEs.

� A space multiresolution technique coupled with a dedicated splitting technique for
sti� reaction-di�usion systems [DMD+12, DML+11]. To our knowledge, this con-
stitutes the �rst combination of such methods and the �rst use of multiresolution
techniques for general sti� problems3.

� A time stepping splitting technique with local error control for sti� reaction-di�usion
systems, and extensible to more general time dependent PDEs [DDD+11]. In our
opinion, this constitutes a major contribution to the �eld because it opens a whole
new set of possibilities for the numerical simulation of highly unsteady phenomena
with splitting techniques4.

� A new time/space adaptive numerical technique with error control for sti� propa-
gating waves [DMDD11, DMD+11a]. Although dynamic error control is common
practice for sti� ODEs, this is usually not the case for time integration of PDEs. To
our knowledge, this is one of the �rst numerical strategies that accounts for such an
issue, and proposes general criteria to de�ne the level of accuracy of the numerical
simulation by decoupling and tracking time and space representation errors5.

� A new time stepping procedure with local error control for plasma modeling equa-
tions [DBM+12], based on a general second order scheme that decouples electric
�eld computation from the solution of the drift-di�usion equations6.

� A time/space general adaptive numerical strategy with error control for plasma
modeling equations [DBM+12]. To the best of our knowledge this is a novelty in
the domain for the numerical simulation of streamers.

• In terms of scienti�c computing:

� A new academic, generic 1D/2D/3D code has been developed for the numerical
solution of sti� reaction-di�usion-convection problems with time/space adaptive

2This is the opposite of standard practices that consider small splitting time steps in practice to ensure
negligible splitting errors, where the global errors are ruled by the inner time integration solvers (see, e.g., [NK05,
SPN06a] and detailed discussions in Chapter 4).

3For instance, the contemporaneous implementation of multiresolution analysis to simulate waves in excitable
media in [BRBS10], considered a time integration technique specially conceived for the particular models under
study.

4Contemporaneous works like the one in [KT11] or the Richardson extrapolation approach in [GV02], remain
suitable only for non sti� problems. However, to the best of our knowledge, no other numerical simulation of
large size or for varied applications, including this functionality, has been reported in the literature, except for
the ones illustrated in this work.

5In other type of time/space adaptive techniques, such like local time stepping techniques conceived mainly
for adaptive mesh con�gurations, the time adaptive criteria are usually based on local stability issues [CNPT08,
DGRS08, CNPT10] rather than accuracy. The numerical technique presented in [DRS09] considers time step
error control with multiresolution techniques and explicit solvers, appropriate to non sti� problems.

6Previous time adaptive procedures for these models considered local time stepping based either on local,
dynamic increments of the solution [KDOO05, OK06] or on local stability conditions [UBRT07], but not on
accuracy criteria.
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features and with parallel routines for shared memory architectures. The code con-
siders a tree-structured data for the multiresolution representation and a modular
con�guration to easily couple solvers of di�erent nature. It is coded in the Fortran
90/95 programming language, and considers the OpenMP library for parallel pro-
cedures.

Additionally, let us highlight some achievements in terms of numerical simulations that to our
knowledge, were never performed before in their respective domains:

• The numerical simulation of 3D scroll waves with an equivalent spatial discretization of
5123 on a standard workstation of 32 GB.

• The numerical simulation of a 19-variable human brain stroke model on a simpli�ed 3D
geometry with an equivalent spatial discretization of 5123 on a standard workstation of
32 GB.

• The consistent numerical simulation of di�erent physical scenarios, depicted by the self-
ignition of a reactive mixture with the subsequent generation and propagation of the
�ame, by means of dynamic time/space adaptivity tools.

• The consistent numerical simulation of highly multi-scale nanosecond repetitively pulsed
discharges, describing a broad spectrum of space and time scales as well as di�erent
physical scenarios for consecutive discharge/post-discharge phases.

Finally, let us mention some further developments envisioned in a short term:

• A straightforward extension to the practical implementation of the numerical strategy
developed for the simulation of streamers in [DBM+12], considers the inclusion of a
Poisson's equation solver for adaptive grids in order to simulate multi-dimensional cases7.
This kind of solver is available in the literature, and has been recently implemented, for
instance, in [MHE06, PSCB08] for streamer simulation on adaptive grids. We recall
that the second order method as well as the time stepping procedure in [DBM+12] are
independent of the dimension of the problem.

• In the same way, a hydrodynamic solver can be coupled with the numerical strategy
established in Chapter 10 for the simulation of combustion fronts, in order to consider
complete physical models with complex chemistry and detailed transport, without adopt-
ing a thermo-di�usive approach8.

• From a theoretical point of view, we have established some global accuracy criteria, based
on the decoupling of time and space approximation errors for, respectively, the time in-
tegration method and the compressed spatial representation. The numerical evaluation

7This is a work in progress in collaboration with Zden¥k Bonaventura and the technical support of Laurent
Series at the Computational Service Unit of Ecole Centrale Paris.

8This is a work in progress in collaboration with Violaine Louvet and Frédérique Laurent, for the practical
implementation of detailed chemistry features. In general, the whole work is part of the Séchelles project that
aims at developing a new, general, and optimized numerical code for the simulation of multi-scale problems.
Thierry Dumont is currently leading the conception and construction process of the general structure of this
code, that assembles all these recent numerical tools. We count also on the collaboration of Christian Tenaud
regarding the implementation and numerical simulation of combustion fronts in the context of the Digiteo
MUSE project.
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of the simulations showed a good agreement between the numerical results and the pre-
scribed tolerances in terms of accuracy. Nevertheless, there is naturally a certain dose of
heuristics that can be certainly improved, by considering a more detailed mathematical
analysis of the various elements of the strategy, e.g., study of global time/space errors,
characterization of coupled time/space approximation errors, mathematical description
of wave pro�le and speed approximations.
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