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512 3 F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IHI
xii SFI Ih u eqution with k = 1F vol L 2 errors for severl splitting time steps ∆t nd δ = 0.05 @top leftAD 0.005 @top rightAD nd 0.0005 @ottom leftAF fottom rightX ritil splitting time steps ∆t otined when T ∆t u 0 -S ∆t u 0 L 2 ≈ S ∆t u 0 -S ∆t δ u 0 L 2 D in the numeril testsF F F F F F F F F F F F F F F F F F F F F IIS SFP Ih u eqution with k = 10 @topA nd k = 100 @ottomAF veftX lol L 2 errors for severl splitting time steps ∆t nd δ = 0.05F ightX ritil splitting time steps ∆t otined when T ∆t u 0 -S ∆t u 0 L 2 ≈ S ∆t u 0 -S ∆t δ u 0 L 2 D in the numeril testsF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IIT SFQ Ih f equtionF wximum lol L 2 errors for severl splitting time steps ∆t nd δ = 0.05 @top leftAD 0.005 @top rightAD nd 0.0005 @ottom leftAF fottom rightX ritil splitting time steps ∆t otined when T ∆t u 0 -S ∆t u 0 L 2 ≈ S ∆t u 0 -S ∆t δ u 0 L 2 D in the numeril testsF F F F F F F F F F F F F F F F F F F F F IPH SFR Ih f equtionF veftX working region of the method ∆t ≤ ∆t D with ∆t lE ulted with C 0 estimted t ∆t 0 = 10 -5 nd err otined for severl splitting time steps ∆t nd δF ightX predited trng error lulted with C 0 estimted t ∆t 0 = 10 -5 D nd lolly t severl splitting time steps ∆tF F F F F F F F F F F IPH SFS Ih f equtionF ime evolution of epted splitting time steps ∆t @leftA nd lol L 2 error estimtes err = S ∆t u 0 -S ∆t δ u 0 L 2 @rightAD for severl tolernes η nd δ = 0.05F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IPR SFT Ih f equtionF ime evolution of epted splitting time steps ∆t @leftA nd lol L 2 error estimtes err = S ∆t u 0 -S ∆t δ u 0 L 2 @rightAD for severl tolernes ηD onsidering ritil ∆t nd omputtion of δF F F F F F F F F F F F F F F F F F IPS SFU Ph f spirl wvesF ime evolution of splitting time steps @leftA nd normlized L 2 errors t t * = 4 @rightA ording to @RFPRAD given y the time dptive strtegy for di'erent ury tolernes η into @SFIIA nd with onstnt ∆t = 4/1024F niform grid of 256 2 F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IPT SFV Ph f spirl wvesF op leftX time evolution of splitting time steps with η = 10 -3 nd (nest grids of 256 2 nd 1024 2 D nd with ∆t = 4/1024F prom top right to ottom leftX normlized L 2 errors t t * = 4 given y the dptive splitting tehnique with η = 10 -2 @top rightAD 10 -3 @ottom leftAD nd 10 -4 @ottom rightA on uniform grid ording to @RFPRAD nd y the w proedure ording to @RFPTAD for severl threshold vlues ε nd the dptive splitting shemeF pinest gridX 256 2 F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IPU TFI tndrd u trveling wveD disretiztion with 5001 points on the [-70, 70] regionF elfEsimilr solutions for eight time intervls fter the initil onditionF F ISI TFP ti' u trveling wveD disretiztion with 5001 points on the [-70, 70] regionF elfEsimilr solutions for eight time intervls fter the initil onditionF F ISI TFQ gomprison of onvergene rtes of the prrel opertor splitting t time t = 15

for Ih u eqution for the vie splitting shemeF F F F F F F F F F F F F F F F F F ISP TFR gomprison of onvergene rtes of the prrel opertor splitting t time t = 15

for Ih u eqution for the trng splitting shemeF F F F F F F F F F F F F F F F ISQ TFS gomprison of onvergene rtes of the prrel opertor splitting t time t = 15

for Ih u eqution for more urte vie shemeF F F F F F F F F F F F F F F ISQ TFT gomprison of onvergene rtes of the prrel lgorithm with either the operE tor splitting or the yguR solver s orse solverD t time t = 15 for Ih u equtionF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F ISR TFU Ih f trveling wvesD disretiztion with 4001 points on the [0, 80] regionF elfEsimilr solutions for eight time intervls fter the initil onditionF F F F F F ISS xiii TFV gomprison of onvergene rtes of the prrel lgorithm with n opertor splitting or yguR s orse solverD t time t = 2 for Ih f equtionF F F F F F IST TFW Ph f spirl wves on [257 × 257] grid t t = 2F F F F F F F F F F F F F F F F F F IST WFI soni exhnges in gry mtter etween neuronsD stroytes nd the extrellulr spe through voltgeEgted hnnelsD ioni trnsportersD reeptorEhnnels nd ioni pumps @from hfqHTAF F F F F F F F F F F F F F F F F F F F F F F F F F F F F IWT WFP ivolution of K + in the neurons t t = 100 s @top leftAD t = 1000 s @top rightAD t = 2000 s @ottom leftA nd t = 3000 s @ottom rightAF F F F F F F F F F F F F F F PHQ WFQ K + in the neurons t t = 3600 on 256 2 uniform mesh @leftA nd the orreE sponding dpted grid @rightAF F F F F F F F F F F F F F F F F F F F F F F F F F F F F PHQ WFR K + in the neurons t 3600 s for Ph mesh of 256 2 @topAD 512 2 @enterA nd 1024 2 @ottomAF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PHR WFS Ph dpted meshes equivlent to 256 2 @leftA nd 1024 2 @rightA sptil disretizE tions t the (nest gridF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PHS WFT erformnes of the multithreded retion solver long IP time stepsF esissX time stepF yrdinteX omputing time in g lok tiksF F F F F F F F F F F F F PHS WFU ivolution of K + in the extrellulr spe over one hourD Ph simultion @in millimolr @mwAAD from left to rightD top to ottomF F F F F F F F F F F F F F F F PHU WFV Qh simultionY ut y two perpendiulr plnes of the K + in the extrellulr spe (eld t time t = 3600 s @in millimolrAF F F F F F F F F F F F F F F F F F F F PHU WFW ivolution of K + in the extrellulr speD Qh simultionF iew in the plne P of pigure WFV @in mwAF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PHV WFIH ivolution of rehgw over one hourD Ph simultionD from left to rightD top to ottomD every IS minutesF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PHV WFII Qh simultionY ut y two perpendiulr plnes of the rehgw (eld t time t = 3600 sF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PHW WFIP ivolution of rehgw in the extrellulr spe over one hourD Qh simultionF iew in the plne P of pigure WFIIF F F F F F F F F F F F F F F F F F F F F F F F F F PHW WFIQ vol mesurement of the omputtionl ost of the retion @in g lok tisAFPIH WFIR Qh simultions with @wAF K + in the neurons @leftA nd orresponding dpted grid @rightA t 1000 @topA nd 3600 @ottomA seondsF F F F F F F F F F F F F F F PII WFIS troke modelF opX time evolution of K + in the neurons long xExis @leftA nd of the wve veloity v @rightA for di'erent splitting time steps ∆tD omputed on uniform grid of 1024 pointsF fottomX wve veloity v @leftA nd veloity error E v omputed y @RFPQA t di'erent times t for di'erent splitting time steps ∆tF PIR WFIT Ph stroke modelF K + in the neurons t 500 s @top leftAD 1000 s @top rightAD 2400 s @ottom leftAD nd 3600 s @ottom rightA represented on dynmi dpted grid orresponding to 1024 2 points t the (nest level J = 10F F F F F F F F F F F F F F PIS WFIU Ph stroke modelF ime evolution of dt ompressions DC given y @RFQWA @leftA nd the numer of points on the dpted grids AG @rightA for di'erent (nest levels JF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PIT WFIV Ph stroke modelF ime evolution of the rtio etween g times for the inE tegrtion of the retion nd di'usion prolems @leftAD nd the g time per numer of points in the dpted grid for the retion solution @rightA for di'erent (nest levels

JF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PIU xiv
WFIW Ph stroke modelF vol retion time steps h1 t 500 s @top leftAD 1000 s @top rightAD 2400 s @ottom leftAD nd 3600 s @ottom rightA within hlfEsplitting time step ∆t/2 = 5D represented on dynmi dpted grid orresponding to 1024 2 points t the (nest level J = 10F F F F F F F F F F F F F F F F F F F F F F F F PIV WFPH Qh stroke modelF K + in the neurons @leftA nd dynmi dpted grids @rightA orresponding to 512 3 points t the (nest level J = 9 t 1000 s @topA nd 2000 s @ottomAF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PIW IHFI Ph propgting )meF eloity (eld t t = 10 -3 @leftA nd v y, t y = -0.5D t t = 10 -3 nd t = 3 × 10 -3 @rightAF F F F F F F F F F F F F F F F F F F F F F F F PQS IHFP Ph propgting )meF ime evolution of vrile c t t = 5 × 10 -4 @topAD 10 -3 @middleAD nd 1.5 × 10 -3 @ottomAF veftX red @respFD lueA zone orresponds to urnt @respFD freshA gsesD c = 1 @respFD c = 0AF ightX ontour lines with c = 0 -0.99 nd ∆c = 0.11F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PQT IHFQ Ph propgting )meF rile c t t = 5 × 10 -4 @top leftAD 10 -3 @top rightAD nd 1.5×10 -3 @ottom leftA represented on dynmi dpted grid orrespondE ing to 1024 2 points t the (nest level J = 10 with ε = 10 -3 F fottom rightX time evolution of dt ompressions DC given y @RFQWA for ε = 10 -2 nd ε = 10 -3 F F PQU IHFR Ph propgting )meF ime evolution of the splitting time step ∆tD the retive ∆t R1 nd ∆t R2 D di'usive ∆t D1 nd ∆t D2 D nd onvetive ∆t C susteps ordE ing to the trng sheme @IHFIHA with tolernes η = 10 -3 nd ε = 10 -2 @leftA or ε = 10 -3 @rightAF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PRH IHFS Qh propgting )meF ime evolution of vrile c @leftA nd dynmi dpted grids @rightA orresponding to 256 3 points t the (nest level J = 8D t t = 5 × 10 -4 @topA nd 1.5 × 10 -3 @ottomAF F F F F F F F F F F F F F F F F F F F F F F PRI IHFT Qh propgting )meF veftX time evolution of the splitting time step ∆tD the retive ∆t R1 nd ∆t R2 D di'usive ∆t D1 nd ∆t D2 D nd onvetive ∆t C suE steps with tolernes η = 10 -3 nd ε = 10 -2 F ightX time evolution of dt ompressions DC given y @RFQWAD ε = 10 -2 F F F F F F F F F F F F F F F F F F F F F PRP IHFU Ph propgting )me with omplex hemistryF veftX onentrtions of CH 4 @topA nd OH @ottomA t t = 5 × 10 -3 D represented on n dpted grid orresponding to 1024 2 points t the (nest level J = 10 with ε = 10 -2 F ightX ontour lines for Y CH 4 = 0 -0.59 with ∆Y CH 4 = 0.059 @topAD nd time evolution of dt ompressions DC given y @RFQWA for ε = 10 -2 @ottomAF F F F F F F F F F PRU IHFV Ph propgting )me with omplex hemistryF eloity (eld t t = 5 × 10 -3 @leftAD nd v y, t y = 2.5D t t = 10 -3 nd t = 5 × 10 -3 @rightAF F F F F F F F PRV IHFW Ph )me ignitionF ime evolution of the temperture T lulted from θ in @IHFWPA t t = 5 × 10 -5 @topAD 10 -4 @middleAD nd 1.5 × 10 -4 @ottomAF snitil temperture of the fresh fuelX T F,0 = 300 uD nd of the hot irX T O,0 = 1000 uF ightX dynmi dpted grid orresponding to 1024 2 points t the (nest level J = 10 with ε = 10 -3 F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PSI IHFIHPh )me ignitionF ime nd spe dpttion given y the time evolution of splitting time steps ∆t with ury tolerne η = 10 -3 @leftAD nd of dt ompressions DC given y @RFQWA for ε = 10 -2 nd ε = 10 -3 @rightAF F F F F F F PSP IHFIIPh )me ignitionF ime evolution of the splitting time step ∆t nd the mxE imum temperture for di'erent initil tempertures of the hot ir T O,0 nd T F,0 = 300 uF olernes η = 10 -3 nd ε = 10 -3 F F F F F F F F F F F F F F F F F F PSQ xv IHFIPPh )me ignitionF opX time evolution of the splitting time step ∆tD the reE tive ∆t R1 nd ∆t R2 D di'usive ∆t D1 nd ∆t D2 D nd onvetive ∆t C susteps ording to the trng sheme @IHFIHA with tolernes η = 10 -3 nd ε = 10 -2 @leftA or ε = 10 -3 @rightAF fottomX illustrting se with oupling of time nd spe errors with η = 10 -3 nd ε = 10 -1 F F F F F F F F F F F F F F F F F F F F F F PSR IIFI Ih simpli(ed plsm modelF ptil distriution of eletron density efore @leftA nd fter @rightA eh pulseD strting from stepElike initil distriution @leftA nd for durtion of ten pulsesF F F F F F F F F F F F F F F F F F F F F F F F F F F PSW IIFP Ih simpli(ed plsm modelF ime evolution of epted nd rejeted splitting time stepsD nd the imposed eletri (eld for t ∈ [0, 10] µs @top leftAD during the pulse t ∈ [5, 5.01] µs @top rightAD nd the postEdishrge phse t ∈ [5.01, 6] µs @ottom leftAF fottom rightX glol L 2 errors t the end of the pulse @t = 5.01 µsA nd the postEdishrge phse @t = 6 µsAD with nd without omputtion of ritil ∆t nd time shift δF F F F F F F F F F F F F F F F F F F F F F F F F F F F PTH IIFQ gomputtionl domin for the studied pointEtoEplne geometryF F F F F F F F F PTS IIFR he(nition of the gridX the ell enters re loted t x j c D wheres ell fes re loted t x i f F he domin is ounded y fes x 0 f @thodeA nd x nx f @tip of the nodeAF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PUH IIFS smge hrges up to the third orderX @A hrge ρ j is (rst mirrored ehind the node @x = L x AD @A hrge ρ j is (rst mirrored ehind the thode @x = 0AD @A hrge ρ j nd its imgesF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PUI IIFT ghrged ylinder onsidered to ompute the eletri (eld in the IFSh modelF F PUI IIFU ositive stremer propgtion t t = 6 ns @leftA nd t = 10 ns @rightAF opX eletri (eldY middleX hrged speies densityY nd ottomX grid levelsF pinest gridX RHWTD η T = η split = η MR = 10 -4 F F F F F F F F F F F F F F F F F F F F F F F F PUQ IIFV xormlized L 2 errors etween the referene nd the T 1 @(rst orderA nd T 2 @seond orderA solutions for severl deoupling time steps ∆t on uniform grid of RHWT ellsF opX eletron @leftA nd positive ions @rightAY nd ottomX negtive ionsF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PUR IIFW ime evolution of the normlized L 2 errors etween the referene nd dpted solutions with η = η T = η split = η MR = 10 -4 D 10 -3 D nd 10 -2 , nd RHWT ells orresponding to the (nest disretiztionF opX eletron @leftA nd positive ions @rightAY nd ottomX negtive ionsF F F F F F F F F F F F F F F F F F F F F F F F F PUS IIFIHopX dpted grids @leftA nd eletri (elds @rightA t t = 8 ns with RHWT ells orresponding to the (nest disretiztionD nd η = η T = η split = η MR = 10 -4 D 10 -3 D nd 10 -2 F fottomX zoom on the eletron distriutions @leftA nd the eletri (eld @rightA with the sme prmetersD nd the referene solutionF F F F PUT IIFIIedpted grids @leftA nd eletri (elds @rightA t t = 8 nsD for severl (nest sptil disretiztion L = 10D II nd IPD η T = η split = η MR = 10 -4 D nd the referene solutionF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PUT IIFIPime evolution of the pplied voltge nd the deoupling time steps ∆t for multiEpulse simultion for the (rst T pulses @leftA nd for the Rth one @rightA with its susequent relxtionF ejeted time steps re mrked with lk rossesD while the minimum time sle orresponds to the lue lineF F F F F F F F F F F F PUV IIFIQime evolution of the dt ompression for multiEpulse simultion for the (rst six pulses @leftA nd for the fourth one @rightA with its susequent relxtionF F PUW xvi IIFIRpirst period of pulsed dishrgesF opX propgtion of the dishrge in the domin t t = 10 ns fter the eginning of the pulse @leftAY nd t t = 15 ns @rightAF fottomX relxtion on the short time sle t = 50 nsY nd end of the relxtion phse fter t = 99972 ns @rightAF F F F F F F F F F F F F F F F F F F F F PVH IIFIStedyEstte of pulsed dishrges @lst periodAF opX propgtion of the disE hrge in the domin t t = 9900010 ns fter the eginning of the pulse @leftAY nd t t = 9900015 ns @rightAF fottomX relxtion on short time sle t = 9900050 nsY nd end of the relxtion phse t = 9999998 ns @rightAF F F F F F F F PVI List of Tables PFI duse method of order SF F

F F F F F F F F F F F F F F F F F F F F F F F F F F F F RQ PFP dusse method of order SF F F F F F F F F F F F F F F F F F F F F F F F F F F F F RQ
RFI Ph f spirl wvesF g time in seonds for qusiEextD splittingD nd wGsplitting solutions with di'erent threshold vlues εF pinest gridX 256 2 F F F F F F F F F F F WS RFP Ph f spirl wvesF g time in seonds for the retion nd di'usion time integrtions for splitting nd wGsplitting resolution with ε = 10 -2 F pinest gridX

256 2 F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F WS
SFI Ih u equtionF gomprison etween the rel ∆t real D otined when T ∆t u 0 -S ∆t u 0 L 2 ≈ S ∆t u 0 -S ∆t δ u 0 L 2 in the numeril testsD nd the theoretilly estimted ∆t est following @SFRQAF F F F F F F F F F F F F F F F F F F F F F F F F F F F IIT SFP Ih f equtionF L 2 errors t (nl time t = 2 for (a, b, c) vriles nd severl ury tolernes ηF 

F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IPR SFQ Ih f equtionF L 2
= 2M + 1 rrWRF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F ITR
WFI wodel equtions desriing the dynmis of the ioni onentrtionsD ell volE umes nd memrne potentils with di'usion in neuronsD in glil ells nd in the extrellulr speF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IWV WFP winimum nd mximum vlues of vriles in the neuronsD omputed with the @wA odeD nd normlized L 2 di'erene e of numeril results etween uniform mesh nd @wAF t = 3600 sF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PHI WFQ winimum nd mximum vlues of vriles in the stroytesD omputed with the @wA odeD nd normlized L 2 di'erene e of numeril results etween uniform mesh nd @wAF t = 3600 sF F F F F F F F F F F F F F F F F F F F F F F F F PHP WFR winimum nd mximum vlues of vriles in the extrellulr speD omputed with the @wA odeD nd L 2 normlized di'erene e of numeril results etween uniform mesh nd @wAF t = 3600 sF F F F F F F F F F F F F F F F F F F F F F F F F PHP WFS Ph stroke modelF g times @CTA in minutes nd gin of prlleliztion @GPAD for severl (nest grids @FGAF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PIU xviii IHFI Ph propgting )meF L 2 numeril errors for the time dptive splitting @E J split AD spe dptive multiresolution @E J M R AD nd timeGspe dptive @E M R split A strtegies evluted t di'erent timesF pinest gridX 1024 2 F F F F F F F F F F F F F PQV IHFP Ph propgting )meF g time in minutes for the qusiEextD the time dpE tive splittingD nd the timeGspe dptive strtegies for t ∈ [0, 2×10 -3 ]F pinest gridX 1024 2 F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PQW IHFQ Ph propgting )meF g time per splitting time step @in seondsA for the reE tionD di'usionD nd onvetion time integrtions for the time dptive splitting nd the timeGspe dptive tehniquesD t = 1.5 × 10 -3 D nd ∆t ≈ 8.77 × 10 -6 for the three solutionsF pinest gridX 1024 2 F F F F F F F F F F F F F F F F F F F F F F PQW IHFR Ph )me ignitionF L 2 numeril errors for the time dptive splitting @E J split AD spe dptive multiresolution @E J M R AD nd timeGspe dptive @E M R split A soluE tions evluted t di'erent timesF pinest gridX 1024 2 F F F F F F F F F F F F F F F F PSQ IHFS Ph )me ignitionF g time in minutes for the qusiEextD the time dptive splittingD nd the timeGspe dptive strtegies for t ∈ [0, 1.5 × 10 -4 ]F pinest gridX

1024 2 F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PSR
IIFI xumer of ells in the dpted grid @#AGA nd dt ompression @DCA t time t = 8nsD g omputing time for t ∈ [0, 10] nsD L = 11D nd severl tolernes

η = η T = η split = η MR F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PUU
General Introduction e lrge vriety of physil phenomen is hrterized y highly multiEsle nture given y the intertion of severl suEproesses evolving simultneously t di'erent time rtes nd spe slesF he study nd physil omprehension of the ehvior of these mehnisms give rise to severl models with degree of omplexity diretly relted to the desired level of detil of the desriptionF hese models result often from extensive reserh over vrious sienti( domins rnging from fundmentl theoretil physis to experimentl oservtions nd mesurementsF his is tully the se for di'erent pplitions suh s omustion etHWD ihHWD hemil vpor deposition uhu + HUD wrHWD nnomterils ugHUD ir polE lution modeling qrfHHD hqyHRD or plsm dishrges iwf + HTD ifh + IID in whih multiEsle phenomen represent ommon fetureF sn this ontextD the numeril simulE tions of these prolems through the solution of the respetive mthemtil modelsD onstitute n importnt tool for etter understnding of these phenomen for oth industril nd sienE ti( purposesF xeverthelessD the resulting models tht im t mimiking the originl prolemsD rise severl di0ulties this time in terms of the omputtionl e'ort needed to properly hndle high numer of physil vriles nd prmetersD s well s n often rod rnge of tempoE rl nd sptil sles dueD for instneD to lrge nd detiled hemil kineti mehnisms nd usully inhomogeneous sptil distriutions 1 F sn prinipleD the omprehensive numeril simultion of detiled mehnisms tht result from (ne modelingD will ertinly reprodue more urtely mny physil ptterns dislosed y rel nd omplex phenomenF uh n pproh is usully known s the diret numeril simultion @hxA of modelD where the solution of the governing equtions is rried out with su0iently (ne resolution suh tht ll temporl nd sptil sles re desriedF xevertheE lessD suh detiled numeril desription is neessrily relted to importnt omputtionl resouresD depending on the extent of the numeril simultion needed to represent the leding fetures of prtiulr pplitionF yne pproh to suessfully overome potentil ompuE ttionl restritions nd rry out very urte numeril simultionsD is thus founded on the development of performing tehniques to tke full dvntge of prllel nd mssively prllel omputing rhiteturesD tking into ount the strong growth of the omputer power in the very lst dedesF sn this wyD the reserh e'ort is foused on the e0ient exploittion of the omputtionl resoures to omplish numeril simultions of prolems with n inresE 1 A classical example of multi-scale problem is given by the description of the dynamics of chemical waves related to nonlinear chemical reaction processes, in which the reaction rates are several times faster than the speed of propagation of the wavefronts, also very localized in space. For instance, as we will illustrate in the following chapters, the well-known Belousov-Zhabotinski reaction that models excitable media (see, e.g., [EP98]), generates propagating waves with a speed of approximatively 0.6 with reaction rates for the fastest variable of the order of 10 -5 , whereas the thickness of the moving fronts corresponds to less than 1 % of the corresponding dimension of the spatial domain occupied by the reactive medium. In particular, these nonlinear chemical waves are often used to study and evaluate the performance of numerical methods because they mimic multiscale features of more complex models as the ones previously cited, like combustion fronts or highly nonlinear ionizing waves issued from plasma discharges. P ing degree of detilD wheres the hoie of stndrd nd rther simple ut roust numeril methodsD eses the onstrution of the numeril implementtions2 F enother lterntive whih is lrgely used for industril nd sienti( pplitionsD onentrtes this time on modeling issues to redue the omplexity ssoited with highly detiled deE sription of the prolemF he ide seems nturl sine either not ll time nd spe sles tke leding prt in the glol phenomenon of prtiulr proessD or some fetures of the ltter n e negleted or simpli(ed under prtiulr physil irumstnes or onsistent hypotheE sesF his kind of pproh hs een extensively used to overome omputing limittions in the very eginning of numeril simultionD ut hs een lso developed ever sine to hieve lrge sle simultions in modern omputer rhitetures with onsistent physil models tht retin su0iently urte desription of the min leding proesses of the prolem under studyD out of the originl exhustive formultionF reneD the ontinuous reserh nd imporE tnt investment in the development of relile models nd lterntive formultionsD omined with modern omputtionl resouresD yield potentilly lrge sle numeril simultions with preditive pilities of rel omplex phenomenD t often muh lower expenses thn diret numeril solution of omprehensive models3 F sn generl for the referred pplitionsD the resulting governing equtions oming from either fully or prtilly detiledD or simpli(ed or redued model formultionD inherit some or most of the ehviorl ptterns ssoited with the generl physis of the prolemD tht need to e orretly represented y the numeril solutionsF es onsequeneD min onern in the domin of pplied mthemtis is given y the onstrution nd development of e0ient numeril methods for the solution of these modeling equtionsF sn prtiulrD lrge vriety of modeling on(gurtions nd their relted prtiulritiesD impose often n equivlently lrge numer of dedited numeril methods nd suessive rmi(tionsF he e'etiveness nd performne of given method n e then ssessed y

• sts pilities in terms of ury nd thus of supplying onsistently good numeril solutionsF his issue is diretly relted to the mthemtil theoretil kground upon whih the numeril methods re oneivedD nd lso to numeril nlysis elements whih provide n evlution of their numeril ehvior under the prtiulr onditions imposed y the desription of given proessY nd

• sts pilities in terms of prtil implementtion nd thus of the degree of lgorithmi omplexity nd omputtionl requirementsF his seond spet ounts rther for the e'etive reliztion of the methods nd the relted expenses in terms of omputtionl resouresD t the interfe of pplied mthemtis nd sienti( omputingF hese two points stnd for the theoretil nd prtil fetures of given numeril method developed for some spei( pplitionD nd generlly speking one my onsider

• olid nd highly dedited numeril shemes from theoretil point of view ut with lso more omplex or expensive numeril implementtionsY or

• wore si ut still roust methods tht yield n esier oupling with highly optimized tehniques in terms of omputer representtion nd exeution for single or multiEproessor on(gurtionsF Q foth ompromise nd onsisteny etween theoretil nd prtil spets should e then sought in prtieD to hieve t the sme time 'ordle nd resonly urte simultions y mens of numeril methods tht im simultneously t omputtionl e0ieny with roust mthemtil sis tht ensures ury of omputtionsF st is quite ler tht n intertion nd omintion of di'erent elements oming from si mthemtil (ndings up to sophistited ode strutures or progrmming tehniquesD re thus neessry in the glol oneption of these numeril shemesF hese re some of the min onerns regrding the numeril methodsD tht long with the ones previously mentioned on physil modeling nd exploittion of the omputer powerD onstitute prt of the fundmentl kground of the vst multiEdisiplinry sienti( reserh for numeril simultionsF sn this generl ontextD this work is rther insried in the oneption nd development of numeril strtegies for the numeril simultion of multiEsle phenomenF sn prtiulrD our ttention is foused on the numeril solution of prolems mthemtilly modeled y time dependent prtil di'erentil equtions @hisAD ultimtely involving omplex nd deE tiled mehnismsF he multiEsle hrter of these equtions is numerilly represented y their inherent time sti'ness nd wide rnge of spe slesD suh tht highly dedited time integrtion shemes re often needed t lest for numeril simultions employing stndrd omputtionl resouresD s well s su0iently lrge omputtionl domins suh tht the min sptil strutures of the prolem re properly representedF he e'ort is thus onenE trted on the onstrution of suitle numeril tehniques to properly hndle these issuesD sed on (rm mthemtil kground with the (nl ojetive of ury ontrol of the numeril simultionsD ut serhing lso e0ient prtil implementtions whih will pve the wy towrds more relisti pplitions tht my fully exploit the omputtionl resoures nd hene the ville omputer powerD to tret wide rnge of physil models with di'erent degrees of detilF sn order to numerilly simulte multiEsle physil prolems modeled y time dependent hisD key spet is given y the de(nition of the numeril shemes tht will e used to desrie the evolution in time of these equtionsF everl numeril strtegies were therefore introdued over the pst yers for the numeril time integrtion of the equtionsD for given sptil disretiztion of the prolemF essuming tht the ltter representtion is su0iently (ne to reprodue the spe multiEsle fetures of the physil phenomenon under studyD dedited numeril methods should e onsidered to properly hndle the time sle spetrum of the prolem resulting from the vrious phenomen like retionD di'usionD onvetion nd other proesses inluded in the modelF he numeril desription of the time multiEsle fetures of the prolem nd the suprolems withinD my then onsider the numeril solution of the omplete nd oupled governing equtions for whih generlly spekingD there re two extreme on(gurtionsX

• en expliit time disretiztion of the equtions whih involves importnt numeril stE ility restritions nd onsequently very long omputtions for smll time evolution stepsD ruled y the fstest physil or numeril time sle rising in the prolemF

• e fully impliit tretment tht llows us to ope with the numeril sti'ness ssoited with the modeling equtionsD with time steps settled rther y the desired ury of the simultionsF elthough expliit shemes re often very simple to implement nd require miniml omputE tionl resoures for non sti' prolemsD they eome ompletely ine0ient for the time integrE tion of sti' equtions nd their use will e justi(ed only if other tehniques like the extensive R use of omputer power re onsidered to redue the omputtionl ostsD s we hve previously mentionedF xeverthelessD one wy to redue these omputtionl requirements y mens of numeril tehniques is sed on dpted mesh representtionsD introdued nd widely deE veloped over the lst dedesF he omputing e'ort is thus onentrted on some regions of (ne sptil representtion within the entire omputtionl dominD where the phenomen under study require more preise desription 4 F fy this kind of proedureD importnt memE ory spe n e sved nd lrge omputtionl domins n e thus simulted with redued omputtionl resouresF elthough suh proedure is quite nturlD new hllenges re repE resented y the development of e0ient omputtionl implementtionsD onsiderly more omplex thn for stndrd meshing tehniques @seeD eFgFD fwHWAF yther ritil issues re given y the de(nition of pproprite riteri for lol re(nement nd y relile evluE tion of the ury of omputtionsD onsidering the pproximtion errors introdued y the ompressed sptil representtionsF hese tehniques re esily oupled with stndrd expliit time integrtionD even if very (ne disretiztions imply higher stility onstrintsF peil tehniques were therefore developed to overome the ltter restritionD usully sed on lol time stepping pproh tht tkes into ount the lol grid size with dequte synhroE niztion stges fgVWD nd oupledD for instneD with hyrid impliitGexpliit on(gurtions @seeD eFgFD gxHVD gxIHA or with time opertor splitting @seeD eFgFD hfHHD fhe + HTAF enother lterntive to fvor the use of less expensive expliit shemes onsiders this timeD the redution of the sti'ness of the equtions relying on dynmi nlysis of the time sles involved in the prolemF hese tehniques re minly sed on the utomti identi(tion of slow nd fst vriles in generl sti' systemD nd the onsequent numeril solution of the prolem on redued lower dimensionl equilirium mnifold hrterized y the slow time sles of the systemD in whih the fstest vriles re ssumed to e in stedy stte 5 F ine rod time sle spetr re usully ssoited with detiled omplex hemil kinetis nd hene with the soure term in the hisD di'erent methods were developed to perform these time sle nd vrile redutions y numerilly evluting the toins relted to the resulting dynmil systemsD iFeFD the originl sti' systems of ordinry di'erentil equtions @yhisA oming from the modeling his in the sene of trnsport phenomenF e lrge literture hs een devoted to this sujet nd onsequentlyD there hs een tremendous e'ort in de(ning e0ient nd preditive numeril methods in order to redue nd to solve in less expensive mnner omplex systems of equtions rising for exmple in omustion or ir pollution modeling pplitionsD mong others 6 F eeD eFgFD vvHWD HW for reent reviews on these issuesF xeverthelessD ritil spet from theoretil point of view @seeD eFgFD wsHPA nd delite tsk in prtieD is to oneive numeril tehniques tht llow us to mesure the ury of the pproximte solutions issued from the redued dynmis with respet to the orresponding originl equtionsF elterntivelyD the numeril solution of the governing equtions with fully impliit time disretiztion llows us to properly hndle the entire time sle spetrum of the prolem nd furthermoreD ensures urte numeril pproximtions in terms of physil ouplings of the vrious underlying proesses within the glol phenomenonF king into onsiderE tion the strong development of dedited time integrtion solvers for sti' yhis systems over S the lst dedesD the implementtion of these solvers showed to deliver stisftory results in mny numeril strtegies for sti' detiled formultionsF ristorillyD the (rstD extensively used impliit solvers for sti' yhis were sed on vrileEorder @up to (fthA multiEstep fhp formule qeUI like vyhi rinVHD rinVQD or yhi ffrVWD mong othersF yther dedE ited shemes were lso introdued sed this time on oneEstep ungeEuutt shemes like digonlly or fully impliit methods @seeD eFgFD rWT nd referenes thereinAD or even expliit ungeEuutt shemes with extended stility regions @seeD eFgFD erWTD rHQAF purthermoreD ll these solvers onsider refully oneived implementtions with dptive timeEstepping tools nd heneD the hosen time steps ensure presried ury tolerne tht enhne the nuE meril performne of the methodsF he use of these solvers ws often extended to his y onsidering yhis systems issued from stndrd semiEdisretiztion with the method of linesF xeverthelessD ll these impliit shemes require importnt memory resoures whih reE strit their diret implementtion for lrge omputtionl domins usully required for his modeling multiEsle phenomenD wheres stilized expliit shemes tht re well suited nd very performing for proli prolemsD fil to properly hndle very sti' prolems or opertors tht rise in onvetion dominted )owsF yther dedited nd even high order impliit shemes hve een then oneived over the pst yers for the numeril integrtion of time dependent hisD sed on either oneEstep ungeE uutt or multiEstep shemes @seeD eFgFD fguHPD sHRD guf + HSA for the sptilly disretized equtionsF he level of ury of the simultion n e diretly relted to the vlue of the integrtion time stepD s we hve previously notedF yne of the key points for the suess of impliit tehniques is nevertheless relted to the development of e0ient solversD usully sed on xewton itertive methods @seeD eFgFD heuHRAD for the solution of lrgeD strongly oupled nd highly nonliner systemsD tking into ount the importnt omputtionl requirements in memory nd g time to perform these omputtions 7 F sn the sme wyD speil high orE der spe disretiztion shemes hve lso een implemented whih redue the omputtionl stenils nd hene the size of the nonliner systemsD while lso ontriuting to etter pture prtiulr physil fetures @seeD eFgFD xHSD xfHUD hIHAF yther ritil onerns in prE til implementtions re given y the development of omplementry tehniques to ensure the e0ieny nd fesiility of omputtions suh s preonditioning nd orret initiliztion of the xewton solversD proper distriuted meshingD dt storge nd representtionD mong others 8 F king into ount the omputtionl osts of detiled numeril simultions with these highly urte ut lso expensive shemesD the oneption of e0ient prlleliztion tehniques tht exploit the urrent omputer power o'er nother wy out to perform these omputtions @seeD eFgFD fII for reent investigtions in the (eldAD s well s dptive meshE ing tools @seeD eFgFD efHSAF ell these topis onstitute n importnt prt of urrent reserh tht will eventully yield urte nd fully detiled Qh simultions of omplex multiEsle phenomenD not yet fesile in our dysF en intermedite numeril strtegy my nevertheless exploit the dvntges of dedited imE pliit methodsD omined with less demnding expliit shemes in hyrid impliitGexpliit time disretiztion struture for sptilly disretized sti' prolemF sn this wyD one my onE sider mny types of the soElled prtitioning or swi methodsD y ssoiting impliitGexpliit 7 There is always an important research on these matters to achieve more performing solvers of nonlinear systems at much less computational expenses. See, e.g., [KK04,ZC09] for some reviews on Newton-Krylov methods, recently considered in [DS10] for detailed chemistry simulations. 8 See, e.g., [DCS + 07, BMP + 09] and references therein for some ecient implementations of implicit solvers for the numerical simulations of ames with detailed kinetics, furthermore compared with experimental measurements, based on a numerical technique originally introduced by Smooke in [Smo83]. Some further developments with parallel computations on distributed memory machines can be found in [DCB + 09]. T shemes equtionEwise to sti'Gnon sti' vriles of the hisD or termEwise to di'erent pheE nomen like retionD di'usion or onvetionD or lterntively y n intelligent omintion of oth lterntivesF yne of the (rst swi shemes introdued y grouzeix in groVH onE sidered multiEstep time disretiztions where the impliit nd expliit prts orresponded to the liner nd nonliner terms in the equtionsD sed on the e0ieny of impliit solvers for liner prolems @seeD eFgFD egwWVAF hese ides motivted lter on the oneption of either multiEstep or oneEstep swi methodsD this time spei(lly for the numeril solution of sti' his 9 F qenerlly speking the min ide is tht the detiled sti' dynmis ssoited minly with the retion term is solved y n impliit methodD wheres the remining non sti' pheE nomen usully relted to sptil trnsport opertors like onvetion or di'usion re solved y stndrd or possily dedited expliit method @ detiled review n e found in rHQAF elterntivelyD for wellEprtitioned systems for whih fst nd slow vriles n e esily idenE ti(edD rofer introdued in rofUT nother numeril lterntive tht onsiders n impliit or expliit tretmentD respetivelyD for eh susystem @see some reent developments in ghII 10 nd referenes therein for yhisD nd HV for hisAD wheres the sme pproh n e lso suessfully implemented for more generl his fter dynmi deoupling tehnique to identify the vrious time sles of the prolem @seeD eFgFD rHT 11 AD s we hve previously disussed for the expliit tretment of redued systems 12 F iven though n swi pproh llows us in generl importnt performne enhnementsD it supposes lso few oupling onE sidertions mong the di'erent evolving suprolems s well s omined stility nd order onditions for ll inner impliitGexpliit shemes 13 F ytherwiseD diret implementtion withE out onsidering the ltter mthemtil issues would not e su0ient to de(ne nd settle the ury of the numeril omputtionsD speilly for sti' hisD while it will just redue the numeril onstrints imposed y the sti' terms down to the next onseutive most demnding suprolem in terms of stility or ury 14 F sn prtieD the time steps glolly imposed over prtil regions or over the entire omputtionl domin re often limited y either the stility restritions of the expliit solver or y the required ury of the impliit sheme to solve the fstest dynmis in the prolemF purthermoreD nother delite issue dels with the fesiility of onsidering impliit solvers over disretized domin for lrge omputtionl U domins with high numer of unknowns15 F e further step in the previous diretion of hyrid on(gurtions uilt upon di'erent shemesD is given y time opertor splitting methods wrTVD trTVD wrUSD wrWHD lso lled frE tionl steps methods émTWD émTWD nUIF hese shemes onsider lso dedited imE pliitGexpliit tretment for the numeril solution of the di'erent suprolems inluded in the modeling equtionsD ut this time the ltter susystems re ompletely deoupled nd solved independently during presried splitting time stepF elterntivelyD dimensionl splitting shemes onsider the independent numeril solution of Ih suprolems for multiEdimensionl on(gurtions @seeD eFgFD rHQ for severl termEwise or dimensionl splitting tehniquesAF he min dvntge of these methods is given y n importnt redution of the numeril omE plexity sine they do not require ny oupling whtsoever t the intermedite stges of the vrious shemes nd thus dedited numeril shemes of even ompletely di'erent nture n e esily implemented for eh suprolemF xeverthelessD ritil spet for these methE ods is the pproprite de(nition of deoupling time steps suh tht the numeril solutions reprodue with su0ient ury the oupled dynmis 16 F everl studies performed nuE meril evlution of splitting tehniques for his nd onfronted them to fully impliit shemes or more generllyD to numeril solutions tht tke simultneously into ount the oupled governing equtions @seeD eFgFD fHHD yHRAF hese nd other studies showed in prtiulr tht the resulting splitting errors might eome importnt if lrge splitting time steps re onsidered for the numeril solution of sti' hisF woreoverD the stndrd nuE meril desription sed on symptoti nlysis @seeD eFgFD rvHTA filed to explin these ehviors nd motivted new nd more spei( theoretil studies on these shemes for sti' prolems @seeD eFgFD hwHRD hhvwHUAF e stndrd solution in prtil implementtions is thus to onsider splitting time steps of the order of the fstest physil or numeril slesD or just su0iently short to ensure negligile splitting errorsD nd hene hopefully urte results for omplex prolemsD often unfesile with fully oupled impliit numeril strtegies @seeD eFgFD fh + HSD fhq + HUAF ime opertor splitting tehniques nd few theoretil nd numeril relted issues will e thoroughly disussed in this workF fsed on the previous disussions we n summrize some key issues to e onsidered during the oneption of numeril strtegies to e0iently rry out numeril simultions of multiE sle phenomenF qenerlly spekingD this e0ieny might e mesured in terms of numeril ury nd thus relted to the mthemtil kground of the methodsD nd of their prE til reliztion ording to the resulting omputtionl omplexity nd required resouresF sn this ontextD the following oservtions n e drwn forthX

• tndrd expliit time integrtions would not e performing in terms of g time eE use of the sti'ness dislosed y the equtionsF xeverthelessD they o'er strightforwrd implementtions with resonle memory requirementsD esily oupled with other nuE meril tehniques like dptive mesh re(nement or hemil redutionD s well s highly V performing prllel omputing toolsF he ury of the simultions is often gurnteed y the redued time steps issued from very onstrining stility restritionsF

• pully impliit shemes overome importnt stility restritions for sti' prolems nd furthermoreD ensure urte numeril pproximtions of the detiled dynmis of the prolemF xeverthelessD more sophistited tools nd thus n importnt inrese of the lE gorithmi omplexity re required to uild numeril tehniques tht remin ompetitive in terms of omputtionl resouresD whih eome nturlly muh more onstriningF

• en importnt reserh hs een onduted to yield lterntive tehniques tht exploit the dvntges of oth expliit nd impliit shemesF he min gol is to redue omE puttionl resoures for the numeril solution of sti' prolems y n dequte hoie nd omintion of dedited numeril methodsF ome generl exmples re given y swi or splitting tehniquesF he key issue is nevertheless relted to the ury of the numeril simultions minly relted to e0ient oupling onditions mong the di'erent shemes or with n pproprite hoie of splitting time steps for either swi or splitting methodsD respetivelyF e solid omplementry mthemtil sis is hene mndtoryF sn ll sesD the simultneous development of sophistited prllel tehniques is ertinly desirle to etter exploit urrent omputtionl pitiesD wheres the numeril methods should e lso su0iently mllele to properly dpt themselves to the exigenies of progresE sively more detiled modeling riteri of physil phenomenF sn this frmeworkD this work ddresses the development of e0ient numeril methods nd hene the introdution of dedited numeril tools for the simultion of sti' reting frontsD whih represent vst lss of multiEsle phenomenF he min gol is to numerilly solve the modeling sti' his with resonle stndrd omputtionl resoures nd sed on mthemtil kground tht ensures roustD generl nd urte numeril shemesF he following study introdues then few mthemtil nd numeril elements for the numeril solution of sti' retionEdi'usion systemsD extensile in prtie to more generl on(gurtionsF he developed numeril strtegy is minly sed on speilly oneived opertor splitting method tht exploits reent theoretil studies suh tht the ury of the numeril pproxE imtion is set y splitting time steps whih is restrited y neither the fstest sles in the soure term nor y stility onstrints for the expliit shemesD ut only y the physis of the phenomenonF his tehnique is properly oupled in the urrent strtegy with multiresolution tehniqueD previously introdued in the litertureD to dynmilly uild spe dptive grids tht llow us further redutions on omputtionl requirements with more preise knowledge of the numeril errors introdued y the ompressed dt representtionsF he novelty of the pproh is given y n intelligent nd reful onjuntion of vrious numeril shemes sed on theoretil nd prtil riteriD suh tht the numeril simultions of these sti' prolems n e performed within presried uryF purthermoreD new time dptive splitting tehnique hs een oneivedD fundmentl nd missing element in the (eld over the pst yersD to extend the ppliility of the method to more omplex unstedy phenomen y mens of timeGspe dptive methodF ell these tehniques hs resulted into n demi numeril ode lled wfeiiF he resulting lgorithmi e0ieny nd the pilities of the numeril strtegy hs een then evluted through the numeril simultion of models rising from severl reserh dominsD nd hene key spet in this work is tht theoretil (ndings nd numeril riteri hve een trnsposed onto prtil on(gurtions given y sti' prolems with di'erent nd numerilly tough prtiulritiesD often out of reh of stndrd methodsF woreoverD theoretil nd prtil onsidertions ssoited with the ddition of W quite reent numeril tehnique to enhne the numeril performne of the simultionsD suh s the prlleliztion of the time dominD hve een lso nlyzed nd tested throughout this studyD s well s omplementry issues going from mthemtil desriptions of splitting tehniques to prllel implementtions on shred memory struturesD from more prtil point of viewF sn this wyD this work onsiders nd omines theoretil spets of numeril nlysis nd pplied mthemtis with prtil implementtion issues of sienti( omputing for urrent sienti( pplitions within n demi frmeworkD in order to settle solid sis for more detiled nd omplex numeril simultionsF his study is orgnized in four prtsF rt s introdues vrious ruil spets rie)y stted in this introdution onerning the numeril solution of multiEsle hisD nd settles the theoretil kground of the numeril methods onsidered throughout this workF yn these ses ll the new theoretil nd numeril tools developed in this study re gthered in rt ss for the numeril solution of sti' retionEdi'usion systemsF xumeril simultions of proE lems oming from the (eld of nonliner hemil dynmis re inluded throughout this prt s numeril illustrtions of the methodsF rt sss ounts for the lgorithmi desription of the numeril strtegy nd some other prtil implementtion issues in the demi wfeii odeD wheres further nlysesD evlutions nd extensions of the numeril strtE egy re onduted in the lst rt s for di'erent pplitions in severl dominsD nmely iomedil engineeringD omustion nd plsm pplitionsF rt s is omposed of three hptersF ghpter I is out time opertor splitting tehniques to numerilly integrte sti' hisF sn the (rst prtD we present rie)y the min numeril ontext of these methods to etter hrterize their dvntges nd limittionsD nd we onsider the onstrution of generl time opertor splitting methods of (rst nd seond order s well s their lssil mthemtil desriptionF sn the seond prtD we estlish more preise mthemtil nlysis of suh tehniques in the ontext of timeGspe sti' hisD illustrted y sti' retionEdi'usion systemsF sn prtiulrD we rell some of the min results in the literture regrding these issuesF ghpter P dels with the time integrtion of sti' yhis y oneEstep ungeEuutt methodsF e thus detil the min spets regrding ungeEuutt shemes nd give some insights into imE pliit nd stilized expliit ungeEuutt methodsD two fmilies of dedited time integrtion methods extensively used in the litertureF rtiulr ttention is given to duSD n impliit ungeEuutt solver developed y rirer 8 nner rWTD nd yguRD stilized ungeE uutt sheme introdued y edulle edHPF his sti' hrteriztion of yhis nd their numeril tretment llows us to omplete the numeril hrteriztion of his depited in the previous hpterF pinllyD ghpter Q onsiders spe dptive multiresolution tehniques for dynmi dptive meshing for time dependent hisF e short introdution on generl dptive mesh re(neE ment is (rst presented sed on the pioneering works of ferger 8 yliger ferVPD fyVR for ew tehniquesD to then onsider multiresolution tehniques for his introdued y rrten rrWRD rrWSF he next prt is thus devoted to the mthemtil kground of wvelet deomposition on whih these multiresolution shemes re sedD to end with the desription of fully dptive multiresolution tehniques introdued y gohen et lF guwHQD for the sptil representtion of time evolutionry hisF here re three hpters in rt ssF ghpter R develops new numeril strtegy for the soluE tion of multiEsle propgting wves modeled y retionEdi'usion systemsF e time opertor splitting pproh is introdued tht onsiders the high order methods duS rWT nd IH yguR edHPD to solve the retion nd di'usion prolems nd to hndle the numeril di0ulties ssoited with eh one of themD in seprte mnnerF he glol ury of the time integrtion sheme is thus set y the splitting sheme y mens of n pproprite hoie of the splitting time step ditted y the glol physil ouplingD possily muh lrger thn the fstest time slesD for multiEsle propgting wvesF he numeril strtegy is then omE plemented y spe dptive multiresolution tehniqueD tht llows us to etter ontrol the ury of the dpted nd ompressed sptil representtionF sn this wyD oth spe nd time errors introdued y the numeril methods n e regulted for given semiEdisretized prolemF his study hs een pulished in sew tournl on ienti( gomputing hwh + IPD nd hs een presented during the gvis QTth vtin emerin snformtis gonfereneD esunE iónD rguy @PHIHA hwv + IIF ghpter S is devoted to time dptive splitting shemes for hisF st introdues thus new dptive splitting tehnique for sti' his whih llows us to dynmilly ompute the splitting time steps of integrtion within presried uryF his method is sed on lol error estimtes omputed through the inorportion of lower order emedded splitting shemeF he numeril nlysis of this tehnique is provided in generl nonliner ontext s well s for selfEsimilr propgting wvesF e omplementry theoretil nd numeril study on nonEsymptoti regimes llows us to extend the ppliility of the method to more relisti situtions for lrge splitting time steps for whih the symptoti theoretil estimtes might filF sn prtiulrD this dptive method llows us to rest the previous numeril strtegy of ghpter R for the solution of more generl nd highly unstedy phenomenD nd yields thus timeEspe dptive numeril method with dynmi error ontrolF his study hs een pulished in gon)uentes wthemtii hhh + IIF ghpter T is theoretil nd numeril study on time opertor splitting tehniques omined with time prlleliztion method for the solution of sti' retion wvesF he min gol is to exploit prllel omputtions nd n e0ient splitting tehnique to redue numeril ostsF he well known prrel lgorithm proposed y vions et lF in vwHI is onsideredD nd numeril nlysis of these tehniques is onduted in the ontext of sti' his hrterized y solutions with high sptil grdientsF xumeril illustrtions llow us to vlidte the theE oretil estimtes nd to ondut numeril evlution of the performne of the methodF his study ws reently pulished in ieswX wthemtil wodelling nd xumeril enlysis journl hhwIID nd it is entirely reprodued in this hpter s selfEontined prt of this workF rt sss ontins two hptersF ghpter U fouses on the desription of the dptive mulE tiresolution tehnique in the wfeii odeD with the prtiulrities de(ned in ghpter R nd sed on the theoretil frmework of ghpter QF his prt inludes thus the lgorithmi representtion of the severl multiresolution proedures s well s the glol spe dptive shemeF ome prtil issues onerning dt representtion nd ode struture re lso disE ussedF he multiresolution tehnique implemented in the wfeii ode is lrgely sed on of the multiresolution kernel of w gry 17 D ode developed y ghristin enud 18 for ompressile xvierEtokes equtionsF purther detils on this multiresolution implementE tion re ville in tutoril tht hve een elorted for ummer hool of gx qh qroupe glul on wultiresolution nd edptive wesh e(nement wethodsD préjusD prne @PHIHA hIIF ghpter V detils the splitting tehniques introdued in the wfeii odeD sed on the numeril strtegy introdued in hpters R nd SF he dt struture ssoited with the II his time integrtion is (rst presentedD s well s the oupling with the previous multiresoE lution strutureF he lgorithms onsidered for the retion nd di'usion prolems re then desried s well s the splitting method with oth onstnt nd dptive splitting time stepsF he omplementry numeril proedure introdued in ghpter S to orret the omputed splitting time steps is lso detiledF he lst rt s inludes three hptersF ghpter W onsiders the numeril simultion of humn rin stroke modeled y sti' retionEdi'usion systemF st is divided into two prtsF sn the (rst prt we present n rtile sumitted for pulition hhh + IPD whih onstitutes omplete study on the numeril simultions of suh prolemsF xumeril simultions on omplex rin geometry re thus presentedD tht were performed with ode lled ifi humHUD developed y hierry humont 19 F his solver onsiders the sme time opertor splitting tehnique for sti' retionEdi'usion systems detiled in ghpter RD with uniform grid disretiztionsF e ross prtil vlidtion is lso onduted y performing numeril omprisons etween the results of oth the ifi nd wfeii odes for simpli(ed rin geometryF sn this studyD the prolem is modeled y set of IW vriles desriing detiled hemil mehnism in the soure termF e prllel implementtion of oth odes is rried out for shred memory rhiteturesF his work ounts on the speil ollortion of wrieEeimée hronne 20 F sn the seond prtD we ondut detiled numeril evlution of the results otined with the wfeii ode for simpli(ed Ph nd Qh geometriesF sn this wyD we extend the numeril ppliility of the numeril strtegy of ghpter R to more omplex models with prllel omputing toolsF he ltter study hs een lso presented during the ummer hool of gx qh qroupe glul on wultiresolution nd edptive wesh e(nement wethodsD préjusD prne @PHIHA hwh + IIF ghpter IH dels with the numeril simultion of omustion frontsF his study is performed in the ontext of lminr )mes interting with vortex (eldsF e thermoEdi'usive pproh is onsidered to deouple hydrodynmis from the trnsport equtions nd to solve only the ltter set of equtions with the numeril shemes developed in hpters R nd SF he introdution of the onvetion prolem is tken into ount for these retionEdi'usionEonvetion modelsD nd the time evolution of the onvetive opertor is performed y the yw sheme developed y hru 8 enud in hHRF wo kind of on(gurtion re studied given y the propgtion of premixed )mes nd the selfEignition of retive mixturesF he pilities nd performne of the method re ssessed for oth situtions feturing di'erent physil ehviorsF reliminry results of numeril tests with omplex hemistry formultion re lso reportedF his work ounts on the speil ollortion of ghristin enud nd éstien gndel 21 F ome of these results were presented during the pinite olumes for gomplex epplitions s snterntionl ymposiumD rgueD gzeh epuli @PHIIA hwhhIID nd pulished in the ennul eserh friefs PHII of the genter for urulene eserhD tnford niversityD e hwh + IIF ghpter II onsiders the numeril simultions of positive stremersD in the ontext of propE gtion of highly nonliner ionizing wves originted from plsm dishrgesD s well s highly multiEsle nnoseond repetitively pulsed dishrgesF sn the (rst prtD the time dptive sheme introdued in ghpter S is evluted for simpli(ed retionEdi'usion modelF eE IP ondlyD new numeril strtegy ws developed for plsm models given y set of driftE di'usion equtions oupled with the eletri (eld omputtionF he resulting seond order sheme fetures lso dynmi time dpttion within presried uryD wheres the sme strtegy presented in ghpter S nd extended in ghpter IH for retionEdi'usionEonvetion systems is implemented for the solution of the driftEdi'usion equtionsF e detiled numeriE l evlution of the numeril strtegy is (nlly onduted for prolems inluding rod spetrum of spe nd time sles s well s di'erent physil senriosF his study hs een reently pulished in tournl of gomputtionl hysis hfw + IPD nd hs ounted on the speil ollortion of den¥k fonventur 22 nd enne fourdon 23 F his rtile is entirely reprodued in the seond prt of the hpter sine it onstitutes selfEontined study nd further extension to this workF his hFhF ws minly direted y wr wssot 24 @win edvisorA nd téphne hesomes 25 D nd ounted on the lose ollortion of hierry humontD ioline vouvet 26 D nd prédérique vurent 27 F his work ws supported y hFhF grnt from the wthemtis @sxwsA nd ingineering @sxsA snstitutes of gx nd y sxge projet @xtionl snititive for edvned gomusE tionA led y gxGyxieGepexF purthermoreD it ws rried out thnks toX

• n ex flns projet @prenh xtionl eserh egenyAX éhelles @projet leder F hesomes ! PHHWEPHIQAD

• n ex gs projetX seg @projet leder F wdy ! PHHTEPHIHAD

• hsqsiy e projetX wi @projet leder wF wssot ! PHIHEPHIRAD

• gx i wthsEPs projetX wseg @projet leder F vouvet ! PHHWEPHIHAD

• gx i @projet leders eF fourdon 8 pF vurent ! PHHUEPHHVAD

• prneEtnford projet @projet leders F woin 8 wF wssot ! PHIIEPHIPAF Introduction he numeril solution of time dependentD sti' his is delite tskF he uses of the numeril di0ulties usully rnge from the multiple time sles relted to di'erent phenomE en within the governing equtionsD to omputtionl domins of importnt size to hieve n pproprite physil resolution of the prolemF st is quite ler tht the numeril strtegies must simultneously onsider mny theoretil nd prtil spets to yield mthemtilly solid shemes t resonle omputtionl expensesF he ojetive of this prt is to introdue some numeril methods in the urrent literture tht were developed to ope with prtiulr di0ulties in the solution of sti' hisD nd to settle the mthemtil kground of this workF ghpter I refers to time opertor splitting tehniques to numerilly integrte time dependent hisF he review on these shemes is not exhustive ut ims t giving su0ient informE tion on the theoretil hrteriztion of splitting methods nd some importnt issues often enountered in the numeril solution of sti' prolemsF he reder my refer to the ook of rundsdorfer 8 erwer rHQ for further detils on di'erent types of splitting tehniqueF ghpter P dels with the time integrtion of sti' yhis y oneEstep ungeEuutt shemesF his desription omplements the previous hpter nd gives more detiled insight into the numeril solution of sti' prolemsF sn prtiulrD we fous on ungeEuutt methods given y impliit nd stilized expliit tehniquesF e omplete informtion n e found in the ook of rirer 8 nner rWTF pinllyD ghpter Q introdues some dptive mesh re(nement tehniques for time dependent his y mens of spe dptive multiresolutionF wost of the hpter is thus given y the mthemtil desription of wvelet deomposition nd multiresolution tehniques for grid dpttionF he ooks of gohen gohHH nd wüller wülHQ onstitute very good referenes in the dominF Chapter 1

Time Operator Splitting for Multi-Scale Evolutionary PDEs sn this work we re onerned with the numeril solution of time dependent his involving retive terms nd trnsport opertors like di'usionD onvetion or othD issued from the mthE emtil modeling of generl multiEsle phenomenF es disussed in the qenerl sntrodutionD this kind of prolem is rther ommon in mny pplitions so tht e0ient solution shemes re of the utmost importneF sn this hpterD our ttention will e foused on the soElled time opertor splitting methods for the numeril solution of suh prolemsF e time opertor splitting proedure llows us to onsider dedited solvers for the retion prt whih is nuE merilly deoupled from the other physil phenomen like onvetionD di'usion or othersD for whih there lso exist dedited numeril methodsF e ompletely independent optimiztion of the solution of eh susystem might e hene pursued in prtieF hese methods hve een used for long time nd there exists lrge literture showing their e0ieny for time dependent prolemsD s we will rie)y detil in the followingF e will then desrie the generl on(gurtion of suh methods nd the lssil (rst nd seond orderD vie nd trngD splitting shemesF e mthemtil hrteriztion of the splitting pproximtion errors will e lso provided for oth liner nd nonliner opertorsF sn the seond prt of this hpterD we will introdue some mthemtil tools nd previous theoretil results onerning the numeril ehvior of suh methods for the solution of time nd spe multiEsle hisD illustrted in the ontext of retionEdi'usion systemsF ell of these desriptions onstitute fundmentl prt of the theoretil kground of this workF e detiled survey nd mthemtil hrE teriztion of di'erent types of splitting method n e found in the ook of rundsdorfer 8 erwer rHQF vet us remrk tht throughout this hpter we will desrie the numeril solutions issued from splitting tehniques nd the resulting splitting errorsD onsidering neither time nor spe disretiztion issues in the time integrtion of the inner suprolemsF he ltter mtters will e disussed in the forthoming hptersF 1.1 Time Operator Splitting ypertor splitting tehniques wrTVD trTVD wrUSD wrWHD lso lled frtionl steps methE ods émTWD émTWD nUID were (rst introdued in the lte sixties with the min ojetive of reduing omputtionl resouresF sn this ontextD omplex nd potentilly lrge proE lem n e split into smller prts with n importnt redution of the lgorithmi omplexity s well s the omputtionl requirementsF he ltter hrteristis were lrgely exploited over the pst yers to rry out numeril simultions in severl dominsD goingD for instneD IT from eletrordiology simultions f + HPD uHRD to omustion yfHID vqHQ or ir pollution modeling yyHID poHU pplitionsF hese methods n e thus onsidered s stndrd pproh in numeril pplitions nd ontinue to e widely used minly euse of their simpliity of implementtion nd their high degree of lierty in terms of hoie of dedited numeril solvers for the split suprolemsF yther dvntges of these methods re given y the possiility of time stepping for the vrious suprolems sine eh one of them is independently evolved in timeF edditionllyD the glol numeril stility of the splitting sheme is gurnteed s long s eh of the inner numeril solvers ensures stility stleD nd the mthemtil formultion remins vlidF sn the ontext of sti' prolemsD prtiulr re must e ddressed to hoose dequte methods tht properly hndle nd dmp out fst trnsients introdued y the splitting proedure in the split suprolemsD for instneD in the retion fvvWTD d + WVD frWW or di'usion HSD HW termsF sn most pplitionsD (rst nd seond order splitting shemes re implementedD for whih genE erl mthemtil kground is ville @seeD eFgFD rvHT for yhis nd rHQ for hisAF iven though higher order shemes re theoretilly fesileD they re usully not suitle for the solution of his nd moreover sti' his rHQD whih onstitutes nturl drwk to these shemesF yn the other hndD the seprte time evolution of eh suprolem during given splitting time step introdues nturlly the soElled splitting errors into the numeril solutionsF sn the ontext of hisD vnser 8 erwer onduted in vWW (ne nlysis on the splitting errors in the solution of retionEdi'usionEonvetion systemsD nd de(ned the prtiulr on(gurtions for whih splitting errors rising from the numeril seprtion of onvetionD di'usion nd retion suprolemsD n e voidedF sn similr wyD the ltter kind of nlysis llowed us to develop splitting tehniques for some prtiulr his on(gurE tions whih resulted in no splitting errors @seeD eFgFD rWS for onvetionEretion prolemsAF his type of study gve new insights into the use of splitting tehniques for hi prolems nd furthermoreD omplemented the lssil theoretil sisF xeverthelessD for generl prolems tht do not disply the prtiulr hrteristis de(ned in vWWD the splitting errors will likely remin throughout the numeril time integrtionF yn the other hndD it ws shown tht for more omplex prolems involving multiEsle feturesD the lssil mthemtil hrteriztion sed on symptoti nlysisD iFeFD su0iently smll time stepsD fils often in front of time sles muh fster thn the onsidered splitting time stepF etullyD the sme kind of order redution tht ppers in the ontext of time integrtion of sti' yhis @seeD eFgFD rvVVD rWTAD rise similrly when onsidering splitting tehniques for sti' prolemsF por hisD this sti'ness is usully indued y highly timeGspe multiE sle fetures whih furthermore re very ommon in the mentioned pplitionsF ell these numeril oservtions motivted more rigorous studies on the splitting errorsD speilly for the solution of sti' prolemsD s we will present in the seond prt of this hpterF enother use of possile order redution tht should e lso tken into ountD omes this time from the oundry onditions onsidered in the time integrtion of his with splitting methodsF he key spet is to de(ne pproprite oundry onditions during the indepenE dent time integrtion of the spe trnsport opertorsD suh tht the numeril results nd furthermore the oundry vluesD re onsistent with the glol oupled prolemF elthough there hs een some numeril studies for prtiulr on(gurtions @seeD eFgFD rWSA tht deE sried this kind of prolem nd suggested numeril proedures to void the resulting order redutionD generl theory is still missing nd thus remins n open prolem in the domin rHQF uh issues hve not een studied in this workD nd we refer to rHQ for further disussions nd illustrtionsF vet us lso remrk tht for some kind of prolem hrterized y trnsient phses yielding onvergene towrds stedy stte solutionD splitting tehnique will nturlly introdue omplementry splitting errors with respet to oupled solution of IU the entire prolem @seeD eFgFD HRD rHRAF elthough these errors re nturlly ontrolled y the splitting time stepsD in some pplitions for whih the orret desription of the stedy stte eomes ritilD either omintion of oupled nd splitting shemesD or modi(ed splitE ting tehniques might e required to relieve the neessity of using smll splitting time steps1 F hese issues were not expliitly nlyzed in this work where we hve minly foused on time dependent his modeling unstedy prolemsF roweverD these topis represent further nd omplementry studies in the futureF 1.1.1 General Setting vet us (rst onsider generl liner initil vlue prolemX

d t U = AU + BU, t > 0, U (0) = U 0 , @IFIA with liner opertors A, B ∈ M m (R)D where M m (R)
is the set of rel squre mtries of size mD U 0 ∈ R m nd U : R → R m D for whih the ext solution is given y

U (t) = e t(A+B) U 0 , t ≥ 0.
@IFPA e time opertor splitting tehnique onsists in suessively solving the evolutionry prolems ssoited with eh time opertor in n independent wyF por system @IFIA this mounts to seprtely solve prolemsX

d t U = AU, t > 0, @IFQA nd d t U = BU, t > 0, @IFRA
with pproprite initil onditions for eh suprolemF henD for time disretiztion given y t 0 = 0 < t 1 < . . . < t N D the ssoited time steps or splitting time steps re de(ned s ∆t n = t n+1 -t n for n = 0, 1, . . . , N -1F trting from the initil ondition of @IFIAX U 0 = U (0)D the splitting numeril pproximtion U n+1 of the ext vlues U (t n+1 ) is omputed from the previous U n for n = 0, 1, . . . , N -1D y mens of omposition of s ≥ 1 independent solutions of @IFQA nd @IFRA with the reurrene reltionX U n+1 = e βs∆tnB e αs∆tnA . . . e β 2 ∆tnB e α 2 ∆tnA e β 1 ∆tnB e α 1 ∆tnA U n , @IFSA where e tA U 0 nd e tB U 0 reD respetivelyD the ext solutions of @IFQA nd @IFRA for t ≥ 0 from initil ondition U 0 F he vlues of the rel or omplex oe0ients of the shemeX (α i , β i ) s i=1 suh tht i α i = i β i = 1D will then de(ne the order of pproximtion of the methodF hese splitting shemes n e seen s omposition methods for whih the generl order onditions re well known @see rvHTAF 1.1.2 First and Second Order Splitting Schemes king into ount the ylor series expnsion of the ext solution U (∆t) fter time ∆tD if the orresponding numeril pproximtion U 1 is of order pD then the lol error is given y

U (∆t) -U 1 = O(∆t p+1
). @IFTA IV por system @IFIAD the ext solution is given y U (∆t) = e ∆t(A+B) U 0 D wheres U 1 is the numeril solution t ∆tD oth omputed from the initil vlue U 0 F ueeping this in mind for the splitting shemesD we introdue the (rst order vie @or vieErotter roSWA splitting formuleD for whih p = 1 nd

s = 1, α 1 = β 1 = 1, @IFUA or lterntivelyD s = 2, α 1 = β 2 = 0, α 2 = β 1 = 1, @IFVA
into @IFSAF prom prtil point of view nd onsidering prolem @IFIAD the (rst sheme @IFUA is performed y (rst onsidering the initil vlue prolemX

d t U = AU, U (0) = U 0 , @IFWA
during splitting time step ∆tD whih yields U (∆t) = e ∆tA U 0 F end thenD prolemX

d t U = BU, U (0) = e ∆tA U 0 ,
@IFIHA lso during ∆tD tht yields (nlly the numeril solutionX

U 1 = L ∆t 1 U 0 = e ∆tB e ∆tA U 0 , @IFIIA
ording to @IFSA with oe0ients given y @IFUAF elterntivelyD the seond vie sheme @IFVA onsiders (rst prolem @IFIHAD nd then @IFWAD so tht

U 1 = L ∆t 2 U 0 = e ∆tA e ∆tB U 0 . @IFIPA
gonsidering oth vie pproximtionsD we n see tht one orresponds to the djoint method of the otherF ht isD L ∆t 1 @respFD L ∆t 2 A is the inverse mp of L ∆t 2 @respFD L ∆t 1 A with reversed time step ∆tX L -∆t 1 L ∆t 2 U 0 = e -∆tB e -∆tA e ∆tA e ∆tB U 0 = U 0 . @IFIQA sn generl it n e shown tht omposing oneEstep methods of order p yields omposition method of t lest order p + 1 rvHTF sn prtiulrD omposing with hlfEsized steps one method of odd order p with its djointD yields symmetri p + 1 methodF sn this wyD we n otin symmetri seond order splitting sheme known s the trng @or wrhuk wrTVA splitting formule trTQD trTV y omposing

L ∆t/2 1 @respFD L ∆t/2 2
A with its djoint method

L ∆t/2 2 @respFD L ∆t/2 1 AX S ∆t 1 = L ∆t/2 1 L ∆t/2 2 , @IFIRA or lterntivelyD S ∆t 2 = L ∆t/2 2 L ∆t/2 1 . @IFISA
ymmetry is gurnteed euse S ∆t 1 is equl to its djoint @the sme follows for S ∆t 2 AD iFeFD

S -∆t 1 S ∆t 1 = L -∆t/2 2 L -∆t/2 1 L ∆t/2 1 L ∆t/2 2 = Id. @IFITA
goming k to prolem @IFIAD we hve thus the numeril solutionsX

U 1 = S ∆t 1 U 0 = e ∆tB/2 e ∆tA e ∆tB/2 U 0 , @IFIUA IW or U 1 = S ∆t 2 U 0 = e ∆tA/2
e ∆tB e ∆tA/2 U 0 , @IFIVA for whih p = 2D ndD respetivelyD

s = 2, α 1 = 0, α 2 = 1, β 1 = β 2 = 1 2 , @IFIWA or s = 2, α 1 = α 2 = 1 2 , β 1 = 1, β 2 = 0, @IFPHA
into @IFSAF righer order splitting shemes re lso possileF xeverthelessD the order onditions for suh omposition methods stte tht either negtive or omplex oe0ients (α i , β i ) s i=1 in @IFSA re neessry @seeD eFgFD rvHTAF everl higher order shemes of this type were lredy proposed @seeD eFgFD osWHD hesHID wHPD hHPD hHVD gghHWD ryHWD hIHAF he former implies usully importnt stility restritions nd more sophistited numeril implementtions in terms of lgorithmi omplexity with respet to less urte ut muh simpler (rst nd seond order splitting shemesF sn the prtiulr se of negtive time stepsD they re ompletely undesirle for his tht re illEposed for negtive time progression like proli equtions or very sti' terms issuedD for instneD from detiled hemil kinetis rHQF 1.1.3 Classical Numerical Analysis for Splitting Schemes sn this setionD we will introdue some lssil mthemtil tools used for the numeril nlysis of splitting shemes tht re going to e used throughout this workF sn (rst stepD we will desrie the fkerEgmpellErusdor' @fgrA formul on omposition of exponentilsF por the liner opertors A nd BD for whih their exponentils e tA nd e tB n e understood s forml series expnsion 2 D we de(ne the ommuttorX

[A, B] = AB -BA,
@IFPIA tht we will lso denote s 3

∂ A B = [A, B]. @IFPPA
he min ide is then to (nd C(t) suh tht we n write e tA e tB = e C(t) . @IFPQA his exponentil representtion is known s the fgr formul for whih it ws demonstrted tht C(t) is the solution of the di'erentil equtionX

d t C = A + B + 1 2 [A -B, C] + i≥2 B i i! ∂ i C (A + B), @IFPRA
with initil vlue C(0) = 0 rURD where B i re the fernoulli numers given y 4 i≥0

B i i! x i = x e x -1 . @IFPSA 2 That is, e tA = +∞ n=0 t n
n! A n . 3 Notice that for xed A, the operator ∂A• denes also a linear operator B → [A, B] which is also called the adjoint operator [Var74].

4 See [HLW06] for more details.

PH

king into ount the series expnsions performed in the leftEhnd side of @IFPQAD we n infer tht for su0iently smll tD C(t) n e lso written s

C(t) = tC 1 + t 2 C 2 + t 3 C 3 + t 4 C 4 + . . . @IFPTA
whih should nturlly stisfy @IFPQAX e tA e tB = e tC 1 +t 2 C 2 +t 3 C 3 +t 4 C 4 +... . @IFPUA hereforeD in order to expliitly determine the oe0ients of the series of C(t)D we insert the expnsion @IFPTA into @IFPRAD nd ompre like powers of t whih yields

C 1 = A + B, C 2 = 1 4 [A -B, C 1 ] = 1 4 [A -B, A + B] = 1 2 [A, B], C 3 = 1 6 [A -B, C 2 ] + B 2 6 ∂ 2 C 1 (A + B) = 1 12 A -B, [A, B] = 1 12 A, [A, B] + 1 12 B, [B, A] , C 4 = . . . = 1 24 A, B, [B, A] .                              @IFPVA
sing the fgr formul @IFPQA nd the oe0ients @IFPVA for C(t)D it is strightforwrd to see tht the (rst order vie formule @IFIIA nd @IFIPA verifyD respetivelyD

U (∆t) -L ∆t 1 U 0 = e ∆t(A+B) U 0 -e ∆tB e ∆tA U 0 = - ∆t 2 2 [B, A]U 0 + O(∆t 3 ), @IFPWA nd U (∆t) -L ∆t 2 U 0 = e ∆t(A+B) U 0 -e ∆tA e ∆tB U 0 = - ∆t 2 2 [A, B]U 0 + O(∆t 3 ). @IFQHA
st is importnt to notie tht if the liner opertors ommuteX [A, B] = 0D ll the oe0ients in the series of C(t) re zero in @IFPVA exept for C 1 = A + BD nd oth vie opertors L ∆t 1 nd L ∆t 2 t s the )ow e ∆t(A+B) of the oupled system @IFIAD ording to @IFPUAF epplying this time the fgr formul @IFPQA to e tA/2 e tB/2 = e C(t) , @IFQIA nd tking into ount tht e tB/2 e tA/2 = e -C(-t) , @IFQPA we n pply seond time the fgr formul @IFPQA to e C(t) e -C(-t) = e tA/2 e tB e tA/2 = e S(t) , @IFQQA in order to otin S(t)X S(t) = tS 1 + t 3 S 3 + t 5 S 5 + . . . , @IFQRA with

S 1 = A + B, S 3 = - 1 24 A, [A, B] + 1 12 B, [B, A] .

@IFQSA

Sect. 1.1 -Time Operator Splitting PI xotie tht only odd powers of t re present in @IFQRA sine the djoint method of the symmetri sheme e tA/2 e tB e tA/2 is otined y just hnging the sign of t nd therefore of e S(t) D ording to @IFQQAF sn this seD e S(t) is not other thn the trng sheme S t 2 ording to @IFIVAD nd we see tht the lol errors n e written s U (∆t) -S ∆t 1 U 0 = e ∆t(A+B) U 0 -e ∆tB/2 e ∆tA e ∆tB/2 U 0

= ∆t 3 24 B, [B, A] U 0 - ∆t 3 12 A, [A, B] U 0 + O(∆t 4 ), @IFQTA nd U (∆t) -S ∆t 2 U 0 = e ∆t(A+B) U 0 -e ∆tA/2 e ∆tB e ∆tA/2 U 0 = ∆t 3 24 A, [A, B] U 0 - ∆t 3 12 B, [B, A] U 0 + O(∆t 4 ).
@IFQUA sn this wyD we n formlly represent the lol errors of oth vie nd trng shemesF e remrk tht for oth ses no splitting error is introdued for ommuting opertorsF purE thermoreD the ltter error expressions n e esily extended to n ritrry numer of liner opertorsF roweverD it is importnt to notie tht these estimtes re symptotilly veri(ed for su0iently smll splitting time steps ∆tD sine they re sed on ylor series expnsionsF ixtension to generl nonliner on(gurtions is strightforwrd using vie opertor formlism gWRD in whih se the sme previous estimtes remin vlid with liner opertors de(ned y the vie derivtives ssoited with the vrious nonliner opertorsD s we will show in wht followsF 1.1.4 The Lie Operator Formalism e introdue the vie opertor formlism in order to generlize the use of exponentils of liner opertors in the ontext of nonliner opertorsF vet X e fnh speD T > 0D nd n unounded nonliner opertor F from D(F ) ⊂ X to XD we onsider the generl utonomous equtionX

d t U = F (U (t)), 0 < t < T, U (0) = U 0 , t = 0.
@IFQVA he ext solution of this evolutionry eqution is formlly given y

U (t) = T t U 0 , 0 ≤ t ≤ T, @IFQWA
where T t is the semi)ow ssoited with @IFQVAF he vie opertor D F ssoited with F is then liner opertor ting on the spe of opertors de(ned in X @seeD eFgFD gWRD rvHTD hIIAF wore preiselyD for ny unounded nonliner opertor

G from D(G) ⊂ X to X with préhet derivtive G D D F mps G into new opertor D F GD suh tht for ny v in XX (D F G)(v) = G (v)F (v). @IFRHA
sing the hin rule for the solution U (t) of @IFQVAD we hve tht

∂ t G(U (t)) = (D F G)(U (t)), @IFRIA
nd hene pplying the vie opertor itertivelyD we otin

∂ n t G(U (t)) = (D n F G)(U (t)). @IFRPA PP e forml ylor expnsion yields 5 G(U (t)) = +∞ n=0 t n n! (∂ n t G(U (t))) t=0 = +∞ n=0 t n n! D n F G U 0 = e tD F G U 0 . @IFRQA
sf we now ssume tht G is the identity opertor IdD we (nlly get

U (t) = T t U 0 = e tD F Id U 0 . @IFRRA
hereforeD the vie opertor is indeed wy of writing the solution of nonliner yhi in terms of liner ut di'erentil opertorF pollowing @IFRQAD n importnt result otined y qröner in qröTU onsiders the omposition of two semi)ows

T t 1 nd T s 2 ssoited with F 1 nd F 2 for ny v in XX T t 1 T s 2 v = e sD F 2 T t 1 v = e sD F 2 e tD F 1 Id v. @IFRSA
xotie tht the order of the opertors to the left nd right re permuted for the equivlent repE resenttions in @IFRSAF he ltter result n nturlly e extended to more thn two semi)ows

T t 1 , T s 2 , . . . , T r m ssoited with F 1 , F 2 , . . . , F m X T t 1 T s 2 • • • T r m v = e rD Fm • • • e sD F 2 e tD F 1 Id v. @IFRTA
he sme nlysis previously detiled to estimte the splitting errors n e nlogously performed y pplying the fkerEgmpellErusdor' formul @IFPQA to @IFRSAX e sD F 2 e tD F 1 = e D(s,t) , @IFRUA where the di'erentil opertor D(s, t) is given y

D(s, t) = sD F 2 + tD F 1 + st 2 [D F 2 , D F 1 ] + s 2 t 12 D F 2 , [D F 2 , D F 1 ] + st 2 12 D F 1 , [D F 1 , D F 2 ] + s 2 t 2 24 D F 2 , D F 1 , [D F 1 , D F 2 ] + . . . @IFRVA
ording to @IFPVAF he vie rket for di'erentil opertors is de(ned extly s for liner opertors @IFPIAX

[D F 1 , D F 2 ] = D F 1 D F 2 -D F 2 D F 1 , @IFRWA nd ts gin s liner di'erentil opertorX [D F 1 , D F 2 ] = F 2 F 1 -F 1 F 2 ∂ v , @IFSHA
for ny v in X ording to @IFRHAF sn this wyD onsidering generl system of nonliner yhis

d t U = F 1 (U (t)) + F 2 (U (t)), t > 0, U (0) = U 0 , @IFSIA with U 0 ∈ R m D U : R → R m D nd F 1 , F 2 :
R m → R m D the sme symptoti expressions for the lol error estimtes for the vie nd trng formule @IFPWA nd @IFQHAD nd @IFQTA nd @IFQUAD n e rest with the liner opertors A nd B repled y the vie opertors D F 1 PQ nd D F 2 F he sme follows for n ritrry numer of opertorsF purthermoreD splitting order onditions n e then dedued y using this vie formlism for generl nonliner opertors osWHD rvHTF sn prtiulrD it ws with this representtion tht the ommuting onditions for nonliner or liner opertorsD yielding no splitting errorsD were introdued in vWW for the splitting solution of retionEonvetionEdi'usion systems @see rHQ for more detilsAF ixt splitting error representtions introdued in hHP n e lso nlyzed in this frmework for generl nonliner his hhv + IPF 1.2 Splitting Errors for Time/Space Multi-Scale PDEs sn this seond prtD we will present some theoretil results previously introdued in the literE tureD to hrterize the numeril ehvior of splitting tehniques for the solution of multiE sle hisF hese multiEsle fetures might rise in time euse of the presene of di'erent numeril or physil evolution rtes within rther rod rngeD or in spe euse of the presene of steep grdients or lrge higher order sptil derivtives within the omputtionl dominF wore likelyD they re oupled oth in time nd spe throughout the numeril inE tegrtionF es onsequeneD there might e some perturing e'ets in the ury of the numeril pproximtions of the governing equtionsD trdued usully y n order redution of the splitting methodF his kind of numeril di0ulty might e theoretilly hrterized s diret result of the sti'ness of the time dependent equtions s we will disuss in the next hpterD nd generlly speking we n sy tht we re deling with the numeril solution of sti' hisF sn wht follows we detil some elements to desrie the numeril ehvior of splitting shemes fed with the mentioned sti'nessD in the se of retionEdi'usion systemsF he study of this kind of prolem llows us to illustrte the numeril di0ulties enountered in generlD nd the resulting onlusions might e prtilly extended to more omplex on(gurtionsF xeverE thelessD there is ontinuous reserh in this (eld nd more detiled mthemtil desriptions re lwys needed to further understnd these issuesF 1.2.1 Mathematical Framework: Reaction-Diusion Systems e fous on lss of multiEsle phenomen tht n e modeled y generl retionEdi'usion systems of typeX

∂ t U -∂ x • (D(U )∂ x U ) = F (U ), x ∈ R d , t > 0, U (0, x) = U 0 (x) x ∈ R d , @IFSPA
where

F : R m → R m D U 0 : R d → R m nd U : R × R d → R m D with the di'usion mtrix D(U )D
whih is tensor of order d × d × mF sn se we re only onsidering liner digonl di'usionD the elements of the di'usion mtrix re written s

D i 1 i 2 i 3 (U ) = D i 3 δ i 1 i 2 with indies i 1 D i 2 D i 3 = 1, .
. . , mD so tht the di'usion opertor redues to the het opertor with slr di'usion oe0ient D i 3 for omponent u (i 3 ) of U D nd the system @IFSPA eomes

∂ t U -D ∂ 2 x U = F (U ), x ∈ R d , t > 0, U (0, x) = U 0 (x) x ∈ R d .
@IFSQA sn generlD the soure term F into @IFSPA nd @IFSQA models retive hemil mehnisms with rod time sle spetrumF yn the other hndD omplementry sti'ness results from the potentilly fst sles introdued in the numeril solution when pplying the di'usion opertor to lolized steep sptil grdients or highly inhomogeneous distriutionsD s it is PR usully the se in physil phenomen hrterized y the presene of fronts or irregulr spe multiEsle on(gurtionsF sn this wyD the ssoited sti'ness will surely hve n e'et on the numeril ehvior of the splitting shemes s we will rie)y desrie in the followingF 1.2.2 Splitting Order Reduction for Time Multi-Scale Systems iven though splitting shemes re usully quite e0ient for the solution of time dependent equtionsD severl works showed tht the stndrd numeril nlysis of splitting shemes fils in presene of sles muh fster thn the splitting time step qwhVVD h9eWRD hvWSD WVD WVD fHHD nd tht n order redution of the methods is numerilly oservedF sn prtiulrD (rst mjor step towrds rigorous study of suh ses ws onduted y portisse in poHH in the frmework of liner system of yhisD issued from retionEdi'usion system with liner soure term nd digonl di'usionF sn this workD fst hrteristi time ws ssoited with the soure term y mens of multiplying ftor -1 D with smll D to split the originl system into sti' nd non sti' suprolemF sn this ontextD lol order redution of the splitting shemes ws mthemtilly desried sed on singulr perturtion theoryD wheres splitting methods ending with the sti'est opertor were lso shown to e more urte thn the othersF imilr onlusions were otined y uozlov et lF in uryHR for nonliner systems of yhisD split lso into sti' nd non sti' prtsD using singulr perturtion elements s wellF sn this frmeworkD hesomes 8 wssot introdued in hwHR generl theoretil pproh for nonliner retionEdi'usion systems with time multiEsle fetures issued from more relisti physil on(gurtionsF e will rie)y desrie in the following few results oming from hwHRF upposing tht the system @IFSQA shows well prtitioned struture suh tht

U = (u , v ) T nd thus F (U ) = (f (u , v ), g(u , v )/ ) T D where u ∈ R m slow nd v ∈ R m fast stndD respetivelyD
for the slow nd fst vriles of the dynmil system ssoited with @IFSQAD nd m = m slow + m fast Y we onsider the following retionEdi'usion systemX

∂ t u -∂ 2 x u = f (u , v ), x ∈ R d , t > 0, ∂ t v -∂ 2 x v = g(u , v ) , x ∈ R d , t > 0, u (0, x) = u 0 (x), x ∈ R d , v (0, x) = v 0 (x), x ∈ R d ,                @IFSRA
for smll prmeter nd the identity in M m (R)D s di'usion mtrixF por the ske of revityD we will only onsider this digonl seD even though qusiEliner nonEdigonl di'usion ws lso nlyzed in hwHRF e denote y (u (t), v (t)) = T t (u 0 , v 0 ) the solution of @IFSRA t some time tF sn order to settle n pproprite mthemtil frmeworkD we ssume tht this system dmits n entropi struture wsHP so tht the soure term dmits well prtitioned ikhonov norml form VSF hereforeD there is prtil equilirium mnifold where the fst time sles hve een relxedD whih is glolly stleF sn prtiulrD the entropy is glol vyE pounov funtion nd we n thus perform singulr perturtion nlysis with symptoti expnsions wsHPF sn this ontextD we n onsider the singulr perturtion nlysis for the PS (nite dimensionl dynmil systemX

d t ū = f (ū , v ), t > 0, d t v = g(ū , v ) , t > 0, ū (0) = ū0 , v (0) = v0 ,                @IFSSA
whih orresponds to homogeneous system without di'usionF he orresponding redued system n thus e written s

d t ū = G(ū), t > 0, ū(0) = ū0 , v(t) = h(ū(t)), t ≥ 0,        @IFSTA
where

G(ū) = f (ū, h(ū))D nd g(ū, v) = v -h(ū) = 0F
he inner oundry lyerD euse of the wellEprtitioned struture of the dynmil systemD n e onsidered s projetion step in n 0ne mnifold onto the prtil equilirium h(ū 0 ) in the v vrileF henoting y Π 0 v the ssoited vrile entered t h(ū 0 )D the oundry lyerD prmetrized y the sptil oordinte xD n e desried y the following di'erentil equtionX

d τ Π 0 v = g(u 0 , h(u 0 ) + Π 0 v), τ > 0, Π 0 v(0) = v 0 -h(u 0 ), @IFSUA
for time sle de(ned y τ = t/ F essuming tht there exists onvex ompt set K whih ontins the initil ondition (ū 0 , v0 ) ∈ KD nd whih is invrint y @IFSRAD @IFSTA nd @IFSUAD it hs een proved in wsHP tht for su0iently smllD we hve for t

∈ [0, +∞)X v (t, ) = Π 0 v(t/ ) + v(t) + O( ), @IFSVA ū (t, ) = ū(t) + O( ), @IFSWA
nd for some κ > 0D we otin n estimte for the inner oundry lyer

Π 0 v(t/ ) = O e -κt/ . @IFTHA
gonsidering now the redued prolem ssoited with the omplete system @IFSRAX

∂ t u -∂ 2 x u = G(u), x ∈ R d , t > 0, u(0, x) = u 0 (x), x ∈ R d , v(t, x) = h(u(t, x)), x ∈ R d , t ≥ 0,        @IFTIA
nd sed on the previous singulr perturtion nlysis s detiled in hwHRD if we ssume tht (ū 0 (x), v0 (x)) ∈ K for x ∈ R d nd tht the solution T t u 0 = (u(t), h(u(t)) of @IFTIA leves lso K invrintD for su0iently smllD we hve for t ∈ [0, +∞)X

u (t, ) -u(t) L 2 = O( ), @IFTPA v (t, ) -Π 0 v(t/ ) -h(u(t)) L 2 = O( ), @IFTQA
nd the orresponding estimte for the inner oundry lyerX

Π 0 v(t/ ) L 2 = O e -κt/ . @IFTRA
ith this frmeworkD we introdue the stndrd deoupling of the di'usion nd retion prolems for system @IFSRAF vet us then denote y X t (u 0 , v 0 ) the solution of the di'usion prolemX

∂ t u D -∂ 2 x u D = 0, x ∈ R d , t > 0, ∂ t v D -∂ 2 x v D = 0, x ∈ R d , t > 0, @IFTSA for some initil dt u D (0, •) = u 0 (•) nd v D (0, •) = v 0 (•)Y nd y Y t (u 0 , v 0 ) the solution of the retion prolemX ∂ t u R = f (u R , v R ), x ∈ R d , t > 0, ∂ t v R = g(u R , v R ) , x ∈ R d , t > 0,      @IFTTA with initil dt u R (0, •) = u 0 (•) nd v R (0, •) = v 0 (•)D
where the sptil oordinte x n e onsidered s prmeterF he vie nd trng splitting formule ssoited with @IFSRA re given yX

L t 1, (u 0 , v 0 ) = X t Y t (u 0 , v 0 ), @IFTUA L t 2, (u 0 , v 0 ) = Y t X t (u 0 , v 0 ), @IFTVA S t 1, (u 0 , v 0 ) = X t/2 Y t X t/2 (u 0 , v 0 ), @IFTWA S t 2, (u 0 , v 0 ) = Y t/2 X t Y t/2 (u 0 , v 0 ). @IFUHA
sf we onsider now the redued prolem of @IFTTA when tends to zeroX

∂ t u R = f (u R , h(u R )) = G(u R ), x ∈ R d , t > 0, u R (0, x) = u 0 (x), x ∈ R d , v R (t, x) = h(u R (t, x)), x ∈ R d , t ≥ 0,        @IFUIA
with solution given y (u R (t), h(u R (t)) = Y t u 0 s for @IFSTAD we de(ne the orresponding redued splitting shemesX

L t 1 u 0 = X t Y t u 0 , @IFUPA L t 2 (u 0 , v 0 ) = Y t X t (u 0 , v 0 ), @IFUQA S t 1 (u 0 , v 0 ) = X t/2 Y t X t/2 (u 0 , v 0 ), @IFURA S t 2 u 0 = Y t/2 X t Y t/2 u 0 , @IFUSA
where the fst sles hve een previously relxed in the retion prt y onsidering the redued prolem @IFUIAF o study the order of pproximtion of the ext solution T t of the oupled prolem @IFSRA y the splitting shemes @IFTUAE@IFUHAD we investigte the order of pproximtion of T t ssoited PU with the redued prolem @IFTIA y the redued splitting shemes @IFUPAE@IFUSAF he(ning the orresponding lol errorsX

(u err1 , v err1 ) = T t u 0 -L t 1 u 0 , (u err2 , v err2 ) = T t u 0 -L t 2 (u 0 , v 0 ), (u err3 , v err3 ) = T t u 0 -S t 1 (u 0 , v 0 ), (u err4 , v err4 ) = T t u 0 -S t 2 u 0 ,              @IFUTA
it ws demonstrted in hwHR tht the lol error for the slow nd fst vriles of the vrious splitting shemes stis(es

u err1 L 2 = O(t 2 ), v err1 L 2 = O(t), @IFUUA u err2 L 2 = O(t 2 ), v err2 L 2 = O(t 2 ), @IFUVA u err3 L 2 = O(t 3 ), v err3 L 2 = O(t), @IFUWA u err4 L 2 = O(t 3 ), v err4 L 2 = O(t 3 ). @IFVHA
king into ount thtD for instneD for L t 1, (u 0 , v 0 ) the error of pproximtion with respet to T t (u 0 , v 0 ) is given y

T t (u 0 , v 0 ) -L t 1, (u 0 , v 0 ) = T t (u 0 , v 0 ) -T t u 0 + T t u 0 -L t 1 u 0 +L t 1 u 0 -L t 1, (u 0 , v 0 ), @IFVIA nd tht T t (u 0 , v 0 ) -L t 1, (u 0 , v 0 ) L 2 ≤ T t (u 0 , v 0 ) -T t u 0 L 2 + T t u 0 -L t 1 u 0 L 2 + L t 1 u 0 -L t 1, (u 0 , v 0 ) L 2 , @IFVPA
for su0iently smll nd for t ≥ 0 su0iently smllD the lol errors dmit the following symptoti expnsions hwHRX

T t (u 0 , v 0 ) -L t 1, (u 0 , v 0 ) L 2 = O(t) + O e -κt/ + O( ), @IFVQA T t (u 0 , v 0 ) -S t 1, (u 0 , v 0 ) L 2 = O(t) + O e -κt/ + O( ), @IFVRA nd T t (u 0 , v 0 ) -L t 2, (u 0 , v 0 ) L 2 = O(t 2 ) + O e -κt/ + O( ), @IFVSA T t (u 0 , v 0 ) -S t 2, (u 0 , v 0 ) L 2 = O(t 3 ) + O e -κt/ + O( ), @IFVTA
onsidering estimtes @IFUUAE@IFVHA for the seond term of the right hnd side of @IFVPAD nd @IFTPAE@IFTRA for the other two termsF hrough this mthemtil model nd the orresponding numeril nlysisD we n onlude tht no order redution of the splitting shemes is expeted for the slow vriles whenever we PV onsider splitting time steps muh lrger thn the fstest sles present in the prolemX t > D following hwHRF yn the other hndD for liner digonl di'usionD if we use splitting shemes ending with the retion opertor whih inludes the fstest slesD then there is no reson to expet order redutions not even for the fst vrilesF sn prtiulrD in the on(gurtion of prtil equilirium mnifold with non zero urvtureD sitution whih n only e otined with nonliner retion soure termD the splitting shemes ending with the di'usion opertor enounter n order redution relted to the vie rket etween the vplin opertor nd the h funtion de(ning the prtil equilirium mnifold hwHRF pinllyD let us rell tht in prtil implementtions of splitting tehniquesD dedited solvers must e onsidered to properly hndle the fst trnsients ssoited with the inner oundry lyers given y @IFTHAD s previously remrked fvvWTD d + WVD frWW6 D nd lso to ensure the mthemtil frmework detiled in this setion in whih the split retion nd di'usion suprolems were extly solved for estimtes @IFVQAE@IFVTAF 1.2.3 Splitting Errors with High Spatial Gradients e hve seen in the previous study tht the lssil error representtions of splitting shemes re not lwys enough to desrie more preisely some importnt fetures relted to the modE eling equtionsF hereforeD more rigorous studies were performed nd in prtiulr n ext representtion of the lol errors of splitting shemes ws hieved y hesomes 8 htzmn in hHP for generl liner prolems like @IFIAF yne ginD extension to nonliner opertors is strightforwrd using vie opertor formlism s shown in hhv + IPF hese results led to mny further mthemtil studies on splitting errors @seeD eFgFD hIHD hIIAD nd suh preise error representtion showed to e mndtory to etter nlyze some prtiulr issues like the in)uene of high sptil grdients on the solution of retionEdi'usion systems solved y splitting tehniques hhvwHUD hhwIID hhv + IPF sn this wyD it is possile to etter deE pit some potentil numeril di0ulties issued this time from the spe multiEsle hrter of some physil phenomen modeled y the governing equtionsD eFgFD @IFSPAD s previously remrked nd s nlyzedD for instneD in yHRD HSF vet us rell the initil vlue prolem @IFIAD for some liner opertors

A, B ∈ M m (R)D U 0 ∈ R m D U : R → R m X d t U + AU + BU = 0, t > 0, U (0) = U 0 , @IFVUA
for whih the ext solution is given y

U (t) = e -t(A+B) U 0 , t ≥ 0. @IFVVA
he (rst order vie nd the seond order trng splitting formule re givenD for instneD y

L t 2 U 0 = e -tA e -tB U 0 , @IFVWA nd S t 2 U 0 = e -tA
/2 e -tB e -tA/2 U 0 . @IFWHA sn this ontextD it ws proved in hHP tht the following identities holdX

L t 2 = e -t(A+B) + t 0 s 0 e -(t-s)(A+B) e -(s-r)A ∂ A B e -rA e -sB dr ds, @IFWIA PW S t 2 = e -t(A+B) + 1 4 t 0 s 0 (s -r)e -(t-s)(A+B) e -(s-r)A/2 ∂ 2 A B e -rA/2 e -sB e -sA/2 dr ds - 1 2 t 0 s 0 (s -r)e -(t-s)(A+B) e -sA/2 e -rB ∂ 2 B A e -(s-r
)B e -sA/2 dr ds.

@IFWPA hese new estimtes provide then n ext representtion of the lol errorsD ompring with previous estimtes for L t 2 @IFQHA nd S t 2 @IFQUAF st follows the sme for L t 1 nd S t 1 F sn order to illustrte the in)uene of spe multiEspe phenomen givenD for instneD y high sptil grdients in the solutions of the hisD we will onsider simpli(ed slr retionE di'usion system oming from @IFSQAD with m = 1 nd d = 1X

∂ t u -∂ 2 x u + V (x)u = 0 x ∈ R, t > 0, u(x, 0) = u 0 (x) x ∈ R, @IFWQA
where V : R → R is supposed to e positive nd ounded funtion of lss C ∞ (R) with ll ounded derivtivesD nd the L 2 Enorm of the derivtive of the smooth initil ondition u 0 is ssumed to e very highF imilr systems were onsidered in hhvwHUD hhwIID hhv + IP where in prtiulr V n e seen s oming from the linerizion of the orresponding slr retion term f (u) in @IFSQAF gonsidering tht the liner opertor A in @IFVUA orresponds to the multiplition y V nd tht B = -∂ 2

x @minus the seond prtil derivtive with respet to x in one dimensionAD their ommuttor @IFPIA is given y

∂ A B = [A, B] = (∂ 2 x V ) + 2(∂ x V )∂ x .
@IFWRA sf we now de(ne

E t L 2 = e t(∂ 2 x -V ) -e -tV e t∂ 2
x , @IFWSA nd onsider @IFWIAD we n write the lol error ssoited with the L t 2 sheme for system @IFWQA s

E t L 2 u 0 = - t 0 s 0 e -(t-s)(∂ 2 x -V ) e -(s-r)V ∂ A B e -rV e s∂ 2
x u 0 dr ds, @IFWTA with ommuttor ∂ A B given y @IFWRAF king normsD we hve tht in L

2 (R)X E t L 2 u 0 L 2 ≤ t 0 s 0 e -(t-s)(∂ 2 x -V ) e -(s-r)V ∂ A B e -rV e s∂ 2 x u 0 L 2 dr ds ≤ t 0 s 0 ∂ A B e -rV e s∂ 2 x u 0 L 2 dr ds. @IFWUA ine ∂ A B e -rV e s∂ 2 x u 0 = (∂ 2 x V )e -rV e s∂ 2 x u 0 + 2(∂ x V )∂ x e -rV e s∂ 2 x u 0 = (∂ 2 x V )e -rV e s∂ 2 x u 0 -2(∂ x V )r(∂ x V )e -rV e s∂ 2 x u 0 +2(∂ x V )e -rV ∂ x e s∂ 2 x u 0 = (∂ 2 x V )e -rV e s∂ 2 x u 0 -2(∂ x V )r(∂ x V )e -rV e s∂ 2 x u 0 +2(∂ x V )e -rV e s∂ 2 x ∂ x u 0 , @IFWVA QH the integrtion of @IFWUA yields E t L 2 u 0 L 2 ≤ t 2 2 ∂ 2 x V ∞ + t 3 3 ∂ x V 2 ∞ u 0 L 2 + t 2 ∂ x V ∞ ∂ x u 0 L 2 . @IFWWA
xeverthelessD we hve supposed tht the L 2 Enorm of ∂ x u 0 is very highD therefore the ltter error ound is only interesting if the splitting time step t is su0iently smllF st is then speilly relevnt in this sti' on(gurtion to otin lterntive error estimtes whih do not involve the derivtive of the initil ondition hhvwHUF hnks to the regulrizing e'et of the vplinD we n demonstrte through pourier trnsform of the di'usion opertorD tht for ll u 0 ∈ L 2 nd for t > 0X

∂ x e t∂ 2 x u 0 L 2 ≤ 1 √ 2et u 0 L 2 . @IFIHHA
hereforeD tking into ount tht

∂ A B e -rV e s∂ 2 x u 0 = (∂ 2 x V )e -rV e s∂ 2 x u 0 -2(∂ x V )r(∂ x V )e -rV e s∂ 2 x u 0 +2(∂ x V )e -rV ∂ x e s∂ 2
x u 0 , @IFIHIA into @IFWUAD its integrtion now yields

E t L 2 u 0 L 2 ≤ 4 3 t √ t ∂ x V ∞ √ 2e + t 2 2 ∂ 2 x V ∞ + t 3 3 ∂ x V 2 ∞ u 0 L 2 . @IFIHPA
en order redution is thus shown to pper in the lol error estimte hhvwHUF imilr onlusions re drwn onsidering the L t 1 Evie shemeD expliit omputtions of the estimtes n e found in hhwIIF istimtes @IFWWA nd @IFIHPA desrie then the ehvior of the lol errorsD nd we see tht for t > 0X

E t L 2 u 0 L 2 ∝ ∂ x u 0 L 2 t 2 , u 0 L 2 t 1.5 . @IFIHQA
he (rst term is more relevnt when t is su0iently smllD wheres the seond one when t is not smll enough nd ∂ x u 0 L 2 is very highF wore preiselyD there exists some onstnt θ > 0 suh tht for t ≤ θD E t L 2 u 0 L 2 ehves like t 2 nd for t ≥ θD E t L 2 u 0 L 2 ehves like t 1.5 hhvwHUD hhwIID hhv + IPF sn the sme wyD de(ning for the S t 2 Etrng sheme

E t S 2 = e t(∂ 2 x -V ) -e -tV /2 e t∂ 2
x e -tV /2 , @IFIHRA nd onsidering @IFWPAD we n lso write the lol error ssoited with the S t 2 sheme for system @IFWQAF en order redution n e one gin deteted nd estimted for these sti' on(gurtionsF he expliit omputtions re shown in hhwIID tht (nlly yield

E t S 2 u 0 L 2 ∝ ∂ x u 0 L 2 t 3 , u 0 L 2 t 2 , @IFIHSA
so tht the lol error E t S 2 u 0 L 2 ehves either like t 3 for smll splitting time steps or like t 2 with onsequent order redution of the shemeF st n thus e seen through these theoretil illustrtions tht n order redution my rise for oth vie nd trng shemes whenever the solution fetures high sptil grdientsF yn the other hndD the hypothesis of liner soure term in @IFWQA hve just llowed us to simplify the omputtions nd to etter trget the nlysis on the e'ets of the di'usion opertor on the QI solutionF hese theoretil estimtes were vlidted through some numeril tests presented in hhvwHUD hhwIID hhv + IP for sti' prolems oming from nonliner hemil dynmisF king into ount tht in the numeril pplitions envisioned in this work some of them re hrterized y propgting fronts with potentilly steep sptil grdientsD n in)uene of the formers my e oserved in the ury order of the splitting shemesF wore preiselyD n order redution will likely rise for oth vie nd trng formule for su0iently lrge splitting time steps ∆tF xeverthelessD the mthemtil desription introdued in these studies on(rms tht from prtil point of view the splitting errors re still set y the splitting time step even for this type of sti' on(gurtionD wheres on the other hnd more preise theoretil understnding of the splitting errors for non symptoti regimes ws hievedF pinllyD s in the previous mthemtil desriptionsD the numeril solvers implemented in prtie should solve orretly the time evolution ssoited with eh opertorF por instneD opp 8 hdid showed in HSD HW tht etter results re otined when using n LEstle method for the numeril solution of the di'usion inD respetivelyD retionEdi'usion nd retionEdi'usionE onvetion prolems 7 F 7 We will see in the following chapter that L-stability allows us to rapidly damp out fast numerical transients associated in this particular case with high frequencies or wave numbers arising when the discretized Laplacian operator is applied to a given solution (see, e.g., [HW96,HV03]).

Chapter 2 Runge-Kutta Methods for Time Integration of Sti ODEs sn the lst hpterD we hve (rst onsidered splitting tehniques for the solution of liner systems of yhis of type @IFIAD with generl mthemtil desription on the numeril errors of suh methodsF e forml extension to generl nonliner systems ws lso detiled y mens of the vie opertor formlismF e hve then disussed the numeril solution y splitting methods of sti' his for retionEdi'usion systems like @IFSPAD modeling potentilly multiEsle phenomenF e theoretil hrteriztion of the splitting errors ws thus presented in the ontext of time nd spe sti' retionEdi'usion prolemsD whih hs introdued few riteri to tke into ountD even for more omplex hisF iven though the ltter studies hve led to the desription of some numeril di0ulties issued from the modeling hisD we hve not given ny detil on the solution of the split suprolemsF etullyD throughout ll these nlyses we hve ssumed tht the susystems of equtions were extly solved in order to hrterize only numeril errors oming from the splitting shemeF sn this wyD we hve not onsidered yet either the time or spe disretiztionsD or the numeril time integrtion of the ssoited suprolemsF xeverthelessD it is quite nturl to expet tht the sme numeril fetures of these modeling equtions tht in)uene the splitting uryD will lso e present during the numeril solution of eh split suprolemF e hve seen tht in the ontext of splitting tehniques we im t solving independently nd suessively di'erent time dependent systems of equtionsD strting from the immeditely previous numeril solutionF reneD severl initil vlue prolems or guhy prolems for his re to e onsidered within eh splitting time stepF hereforeD in this hpter we will fous on the soElled oneEstep integrtion methods whih ontrrily to multiEstep methodsD do not require initil lower order pproximtions to uild the numeril solution of eh initil vlue prolemF sn this wyD in this hpter we will (rst hrterize some numeril di0ulties ssoited with the solution of the yhis issued from the previous prolems to then desrie some oneEstep ungeEuutt methods tht were developed in the pst yers to e0iently ope with these mttersF sn prtiulrD we will onentrte on impliit nd stilized expliit ungeE uutt shemes tht hve shown to e very e0ient for the numeril solution ofD respetivelyD retion nd di'usion prolemsD s n illustrtion of proper seletion riteri of time integrtion solvers for the split suprolems issued from splitting tehniqueF por further detilsD n exhustive mthemtil desription nd nlysis on the numeril solution of sti' systems of yhis n e found in the ook of rirer 8 nner rWTF QQ 2.1 Characterization of Stiness vet us onsider for t > 0D the slr initil vlue prolemX

d t u = f (t, u(t)), u(0) = u 0 , @PFIA
with some u 0 ∈ R nd u : R → RD f : R × R → RF e im t otining numeril pproximtion u n of the ext solution u(t n ) of @PFIA for time disretiztion given y t 0 = 0 < t 1 < . . . < t n < . . .D nd n = 0, 1, . . .F xeverthelessD we ssumeD nd therefore we must tke into ountD tht @PFIA is sti' prolem for whih preise nd simple notion of sti'ness is given in rWTX ti' equtions re prolems for whih expliit methods don9t workF sn order to illustrte thisD we will (rst pproximte the solution of @PFIA t some

t 1 = t 0 + δt u(δt) = u 0 + t 0 +δt t 0 f (t, u(t)) dt, @PFPA y u 1 = u 0 + δtf (t 0 , u 0 ), @PFQA
whih implies n expliit time disretiztion solution of @PFPA nd it is known s the expliit iuler methodD where δt is de(ned s the integrtion time stepF st is strightforwrd to see tht this is (rst order method ording to @IFTAF king very simple se for @PFIAD given y

d t u = -100 u, u(0) = u 0 , @PFRA
with ext solution u(δt) = e -100 δt u 0 t t 1 = δtF e hve tht u 1 omputed y @PFQA is given y u 1 = u 0 -100 δtu 0 . @PFSA sf we setD for instneD n initil ondition u 0 = 1D nd reltively smll time step of δt = 0.5 ompred with 100D the ext nd numeril solutions giveD respetivelyD u(0.5) = e -50 ≈ 1.9 × 10 -22 nd u 1 = -49F end integrting over nother time step δtX u(1) = e -100 ≈ 3.7 × 10 -44 nd u 2 = 2401F st follows then tht the expliit time disretiztion given y @PFQA is not ple of reproduing the right dynmis given y the ext solutionF roweverD sine this solution models rpid trnsition from u 0 towrds (nl equilirium vlueD we n esily identify the ssoited time sle τ = 1/100 = 0.01 of the trnsient phse nd thereforeD we n expet tht integrtion time steps δt of the order or smller thn τ will e ple to trk the right dynmisF por instneD for δt = 0.001D we hve u(0.001) = e -0.1 ≈ 0.904837418 nd u 1 = 0.9D nd u(0.002) = e -0.2 ≈ 0.818730753 nd u 2 = 0.81F hese rpid vritions or trnsients ssoited with fst sles re typil of sti' equtionsD ut they re neither su0ient nor neessry to qulify them s sti'F etullyD n initil ondition u 0 lose enough to the equilirium mnifold of the solution will not develop suh fst trnsientsD nd thus sti' fetures my not e oservedF es (rst onlusionD we n dedue tht n expliit time disretiztion sheme to solve @PFRA will generlly fil to pproh the right dynmisD unless we onsider integrtion time steps QR smller thn the time sles dislosed y the equtionsF his my seem nturlF xeverthelessD if we onsider the ounterEprt of @PFQAD iFeFD n impliit iuler methodD lso of order IX

u 1 = u 0 + δtf (t 1 , u 1 ), @PFTA
nd the previous δt = 0.5D we otin the numeril pproximtions u 1 = 0.019607843 nd u 2 = 0.000384468F hereforeD lthough solutions re not quite urteD they show onvergene towrds the right solution with time step severl times the ssoited time sleF es seond onlusionD we n then dd tht oth expliit nd impliit shemes re of the sme orderD nd would therefore yield results of the sme ury for su0iently smll time stepsF prom time step lrger thn given vlueD the expliit method will not deliver ny vlid resultF 2.1.1 Some Typical Sti Congurations sf we now onsider generl nonliner system

d t U = F (U ) @PFUA with U : R → R m D F : R m → R m nd de(ne solution ϕ(t) ∈ R m suh tht d t ϕ(t) = F (ϕ(t))D
we n linerize F in its neighorhoodX

d t U = F (ϕ(t)) + ∂ U F (ϕ(t)) (U (t) -ϕ(t)) + O (U (t) -ϕ(t)) 2 , @PFVA to otin d t U = JU , @PFWA
where higher order terms in U (t) := U (t) -ϕ(t) re negletedD nd with the toinX J(U ) = ∂ U F (U )F upposing onstnt toin tht is moreover digonlizleD we n write the iEth omponent u (i) (t) of U (t)D solution of @PFWAD s

u (i) (t) = m i=1 c i e λ i t u (i) 0 , @PFIHA
for some initil ondition U 0 ∈ R m nd onstnts c i D where the λ i re the orresponding eigenvlues ssoited with JF hereforeD we n see tht the solutions u (i) (t) of @PFWA re lerly reprodued y liner omintion of

e λ i t u (i) 0 i=1,2,...,m
, @PFIIA tht isD solutions of the sme type s for the previous liner prolem @PFRAD nd thus the ltter simpler se mimis somehow the dynmis of more generl nonliner prolemsF e n then expet the sme ehvior previously desried for expliit nd impliit shemesD depending in this se on the spetrum of the toin J nd the set of initil onditions u (i) 0 D i = 1, 2, . . . , mF es onsequeneD if @PFUA is sti' system of yhisD then it is very likely tht some λ i with lrge negtive rel prt Re λ i ≤ 0D will tke leding role in the trnsient phse of the solutionD whenever the initil solution does not elong to prtil equilirium mnifold where the fst sles re lredy relxedF sn prtiulrD not only lrge eigenvlues will generte the fst vriE tions previously disussedD ut lso n importnt dispersion of the eigenvlues in the spetrum of J will ertinly indue multiEsle dynmis issued from the omposition of the vrious time sles @or eigenvluesA inluded in @PFIHAF his is typil sitution for exmple in the ontext of hemil retion systems modeling set of retions with di'erent retion slesD QS nd hene time sles for whih fst projetion of some speies onto equilirium mnifolds re usully developed @seeD eFgFD wWPAF hese systems re usully very sti' nd moreoverD the sti'ness inreses with the preision nd the detil of desription of the mthemtil modelF enother lssil exmple of sti' prolemD where sti'ness is not neessrily relted to the presene of fst vrilesD is given y the systemX

d t U = AU, @PFIPA with U : R → R m D A ∈ M m (R)X A = 1 ∆x 2          -1 1 1 -2 1 1 -2 1 F F F F F F F F F 1 -2 1 1 -1          @PFIQA
nd ∆x = 1/(N x + 1)D issued from the sptil disretiztion on grid of N x = m points with seond order entered (nite di'erenes for the het equtionX

∂ t u -∂ 2 x u = 0, @PFIRA
for x ∈ [0, 1] nd homogeneous xeumnn onditionsF es previously seenD the solution of @PFIRA in in(nite dimension is given y u(x, t) = e t∂ 2 x u 0 (x), @PFISA for some initil ondition u 0 (x)D where the ssoited spetrum of the di'erentil opertor is given y the whole set of numers in the negtive rel xisF purthermoreD performing pourier trnsform in the x diretion

f (k) = F(f ) := ∞ -∞ e -ikx f (x) dx, @PFITA
of the het eqution @PFIRA yields s solutionX û(k, t) = e -k 2 t û0 (k). @PFIUA reneD strong dmping of the highest frequenies given y the frequeny prmeter 1 k will rise nd will smoothen the initil onditionF his is typil of di'usion prolemsF he nlogy with the previous liner se @PFRA n e then estlished y this nlysis for whih in prtiulrD we see tht the frequeny omposition of the initil ondition u 0 D will or will not tivte these fst deysD similr to @PFRAF es onsequeneD we n diretly relte the sti'ness ssoited with eqution @PFIRA to the presene of high grdients or disontinuities in x in u 0 (x)F por instneD if we onsider n extreme se for whih u 0 (x) = δ(x)D iFeFD the hir delt funtionD ll the frequeny spetrum will pper on @PFIUA with fst deysD sine û0 (k) = 1F goming k to the disretized prolem @PFIPA whih is the one tht will e numerilly inteE grtedD we n infer tht the disretized ounterEprt mimis the previous theoretil nlysisF his is re)etedD for instneD y the spetrum of the mtrix AX λ j = -4 ∆x 2 sin 2 πj∆x 2 , j = 1, . . . , N x , @PFIVA 1 Also referred to as the wave number.
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or lterntivelyD λ j = -4(N x + 1) 2 sin 2 πj 2(N x + 1) , j = 1, . . . , N x , @PFIWA for whih we n identify potentilly lrge eigenvlues inresing qudrtilly with the numer of disretiztion points N x with mximum dispersion etween -4(N x + 1) 2 nd 0D whih explins the spurious ptterns found in some numeril pproximtions for this kind of prolem @see some illustrtions inrWTAF sn prtiulrD we see tht (ner disretiztions tht introdue nturlly more resolution slesD result lso in roder spetr to represent themF yne ginD these lrge eigenvlues will rise in the glol solution depending on the distriution of the initil onditionsF ti'er ehvior will then tke ple for disontinuous or lrge vritions within the initil distriutionsF ith this rief introdution nd illustrtionsD we introdue in the following the soElled ungeE uutt @uA time integrtions methodD s well s some dedited u shemes oneived to hndle sti' systems of yhisF 2.2 Runge-Kutta Time Integration Methods e hve previously onsidered the expliit iuler method given y @PFQAF his kind of method is lled oneEstep integrtion method euse we im t reursively pproximting the ext solution @PFPA fter one time stepD sed on the previous oneF he iuler sheme is of (rst order ut y pproximting the integrl in @PFPA y higher order qudrture formulD we n uild higher order oneEstep methodsF e seond order sheme n e onstrutedD for instneD y using the midEpoint pproximtionX

u 1 = u 0 + δtf t 0 + δt 2 , u t 0 + δt 2 , @PFPHA
nd the iuler methodD whih leds to the unge methodX

u 1 = u 0 + δtf t 0 + δt 2 , u 0 + δt 2 f (u 0 ) . @PFPIA
qenerlizing this ide with higher order qudrture formule leds to de(ne the soElled sEstge ungeEuutt methodsX

g i = u 0 + δt s j=1 a ij f (t 0 + c j δt, g j ) , i = 1, . . . , s; u 1 = u 0 + δt s j=1 b j f (t 0 + c j δt, g j ) ,            @PFPPA
for whih the rrys bD c ∈ R s gther the vrious oe0ients

b = (b 1 , . . . , b s ) T nd c = (c 1 , . . . , c s ) T D nd A ∈ M s (R) suh tht A = (a ij ) 1≤i
,j≤s F hese oe0ients re usully rrnged in mnemoni devieD known s futher tleuX
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por instneD for the unge method @PFPIAD we hve

0 1 2 1 2 0 1
hen a ij = 0 for j ≥ iD the sheme is expliit in time @ixpliit u methodsD iuA with

g i = u 0 + δt i-1 j=1 a ij f (t 0 + c j δt, g j ) , i = 1, . . . , s, @PFPQA
in @PFPPAD wheres the se for whih a ij = 0 for j > i nd t lest one of the digonl oe0ients is nonEzeroD a ii = 0D is de(ned s higonl smpliit u method @hsuAF ytherwiseD we re onsidering smpliit u methods @suAF e will further desrie these shemes in the followingD ut (rstD we will introdue some si theoretil nd numeril properties for generl u methodsX the order nd stility feturesD s well s the hoie of the time steps of integrtionF 2.2.1 Order and Stability of Runge-Kutta Schemes e now onsider the hhlquist test eqution hhTQX

d t u = λu, u(0) = 1, @PFPRA
with λ ∈ C @ prtiulr se ws given y @PFRAAD nd we n suessively ompute the g j of the expliit u method @PFPQA for prolem @PFPRAF e otin

u 1 = R(z)u 0 , z = δtλ, @PFPSA where R(z) = 1 + z j b j + z 2 j,k b j a j,k + . . . , @PFPTA
is polynomil of degree ≤ sF sf the u method is of order p we know tht

u 1 = R(z)u 0 must stisfy e z -R(z) = O(δt p+1 ) = O(z p+1 ), @PFPUA
where e z u 0 is the ext solution of @PFPRAD nd thus R(z) is given y

R(z) = 1 + z + z 2 2! + . . . + z p p! + O(z p+1
). @PFPVA sn prtiulrD for ll expliit u methods of order p with s = p intermedite stgesD we hve

R(z) = 1 + z + z 2 2! + . . . + z s s! .
@PFPWA e lssil nlysis sed on the hhlquist test eqution @PFPRA llows us to de(ne R : C → C

given in generl y @PFPSAD s the stility funtion of given methodF ht isD R(z) is the numeril solution of @PFPRA given y the method itself fter one time step δtF purthermoreD the numeril solution reursively omputed n e written s u n = (R(z)) n u 0 @PFQHA QV whih llows us to de(ne the stility domin of the method given y the set of z for whih u n remins ounded for n → ∞D iFeFD

S := {z ∈ C s.t. |R(z)| ≤ 1} .
@PFQIA por instneD onsidering the expliit iuler method @PFQA for whih R(z) = 1 + z, @PFQPA ording to @PFPVAD its stility domin S is given y ll z ∈ C suh tht

|1 + z| = |z -(-1)| ≤ 1, @PFQQA
whih is the irle of rdius 1 nd enter -1 in the omplex plneF goming k to the previous exmple @PFRA with λ = -100D we n see tht n expliit iuler method will remin stle s long s z = δtλ ∈ SD iFeFD 0 ≤ δt ≤ 2/100D whih explins the previous d results for δt = 0.5F elterntivelyD onsidering the impliit iuler method @PFTA yields

R(z) = 1 1 -z , @PFQRA
s stility funtionD with stility domin given y ll z ∈ C suh tht

1 1 -z ≤ 1 ⇒ |z -1| ≥ 1, @PFQSA
tht isD the exterior of the irle with rdius 1 nd enter +1 in the omplex plneF por prolem @PFRAD we n then see tht R(z) will remin ounded for ny time step δt > 0D s it is shown y (R(z = -100 δt)) n = (1 + 100 δt) -n into @PFQHAF his etter performne of n impliit disretiztion for lrge negtive λ into @PFPRAD hrteristi of sti' yhisD leds us to give more detils on these shemes in forthoming setionF sn prtiulrD it ws demonstrted tht for p ≥ 5 there is no expliit u method of order p with s = p stges futTRD futTRdF his nd other order onstrints for expliit u shemes re known s the futher frriers @see more detils in rxVUAF pinllyD it is importnt to rell tht in generl seD we n perform the sme nlysis on the linerized prolem @PFWAD similr to the hhlquist test equtionD tking into ount the omplex eigenvlues λ i , i = 1, • • • , mD of the ssoited toin JF

Time Step Selection

hether the time disretiztion shemes re expliit or impliitD or if the orders of pproxiE mtions re high or lowD key question for numeril time integrtion method is the hoie of the time step of integrtionF e hve seenD for instneD tht for sti' prolemsD expliit methods should onsider rther smll time steps to gurntee the stility of omputtionsF roweverD for given prolem if we suppose tht we re only onsidering time steps ontined in the stility dominD the former ones must e hosen suh tht the numeril solutions yield pproximtions within desired uryF sn this seD onstnt time step might e su0ient for some kind of prolem to e0iently solve the orresponding dynmisF sn more generl ontextD more sophistited tehniques must e onsider to dynmilly selet these time steps in order to render omputtions e0ient or even possile in prtieF sn ny of oth sesD the min gol is to hoose time step δt suh tht the lol error veri(es

u(δt) -u 1 = Cδt p+1 ≤ Tol , @PFQTA QW
where Tol is the desired ury requested to the numeril omputtionsF st is strightforE wrd to see tht higher order methods would stisfy @PFQTA with lrger time stepsF purthermoreD for given sheme the expression @PFQTA might e stis(ed with time steps evolving in timeF por prolems desriing di'erent dynmisD hving n dptive time step strtegy would then inE volve importnt svings of numeril workF sn this ontextD lot of reserh hs een onduted to develop time step ontrol or dptive time stepping tehniquesF e review of some expliit solvers with utomti time step seletion n e found in rxVU for non sti' prolemsF e omplementry ide developed for expliit shemes ws to use these ontrol tehniques to utomtilly detet sti'ness @seeD eFgFD hUUD rUUD rWTA in order to utomtilly swith to more suitle methodF yne of the most stndrd wys of time stepping is sed on omputing numeril pproxE imtionX err D of the ext lol error in @PFQTAD y onsidering solution û1 omputed y lower order method of order p < p rxVUD suh tht

u(δt) -u 1 err = u 1 -û1 . @PFQUA ine u 1 -û1 = (u 1 -u(δt)) -(û 1 -u(δt)) = O(δt p+1 ) + O(δt p+1 ) ≈ O(δt p+1 ), @PFQVA nd thusD err ≈ Cδt p+1 , @PFQWA
we n suppose tht the optiml time step δt opt suh tht err ≈ Tol X Tol ≈ Cδt p+1 opt , @PFRHA is given y

δt opt = fac • δt Tol err 1/p+1 , @PFRIA
where fac is sfety ftor usully lose to IF sn this wyD we n ompute the time step needed to integrte prolem @PFIA with lol ury given y Tol D where the pEorder method should e emedded into the pEorder method in order to minimize the required numer of opertionsF edditionllyD we n use the expression @PFRIA to dynmilly ompute the time steps in timeF sn this seD we use the omputtions t the nEth step to predit the error t the next stepX

err n+1 = u n -ûn ≈ Cn δt p+1 n , @PFRPA
whih yields s new time stepX 

δt new = fac • δt n Tol err n+1 1/p+1
C n+1 C n ≈ C n C n-1 , @PFRSA
whih (nlly yields

δt new = fac • δt n Tol err n+1 1/p+1 δt n δt n-1 err n err n+1 1/p+1 .
@PFRTA his tehnique is lso known s the step size strtegy with memory of tts tVR nd qustfsson qusWRD nd usully shows etter performnes thn the stndrd tehnique @PFRQAF sn prtiulrD it llows us fst redution of time steps without rejetion in the ontext of sti' prolems rWTF here re other step size ontrol tehniques to numerilly estimte or predit lol errors nd thereforeD to gurntee given ury of omputtions ording to @PFQTAF e mentionD for instneD time step omputtions using extrpoltion tehniques heuVQD hVUD or theoretil or numeril estimtes of the leding term of the lol error expnsion rinVHD WUF 2.3 Implicit Runge-Kutta Methods vet us onsider now the impliit u sheme @PFPPAF e pply it to the hhlquist test eqution @PFPRAD nd we otin

g = u 0 1 + δtλAg, u 1 = u 0 + δtλb T g, @PFRUA
with g = (g 1 , . . . , g s ) T nd 1 = (1, . . . , 1) T F he liner system for g 1 , . . . , g s gives g = (Id -λδtA) -1 u 0 1, @PFRVA nd the orresponding stility funtion my e written s R(z) = 1 + zb T (Id -zA) -1 1.

@PFRWA roweverD etter representtion might e otined y onsidering the solution of @PFRUAX Id -zA 0

-zb T 1 g u 1 = u 0 1 1 , @PFSHA
using the grmer9s ruleX

u 1 = det Id -zA u 0 1 -zb T u 0 det Id -zA 0 -zb T 1 , @PFSIA nd tking into ount tht det Id -zA 1 -zb T 1 = det Id -zA + z1b T 0 -zb T 1 = det Id -zA + z1b T . @PFSPA RI his yields R(z) = P (z) Q(z) = det Id -zA + z1b T det(Id -zA)
, @PFSQA so we n see tht for impliit u shemesD the stility funtion R(z) eomes rtionl funtion with polynomil numertor P (z) nd denomintor Q(z) of degree less thn or equl to sF e diret onsequene of this rtionl stility funtion s seen for the impliit iuler method @PFTAD is tht the ssoited shemes n e stle on the entire leftEhlf plne C -F his set of z orresponds preisely to eigenvlues of negtive rel prt for whih the ext solutions re ounded in time |e z | ≤ 1 nd for whih we hve seen eforeD the numeril method should preserve this stility propertyF e method is then lled eEstle if its stility domin stis(es hhTQ

S ⊃ {z ∈ C s.t. Re z ≤ 0} .
@PFSRA por instneD the impliit iuler method @PFTA is eEstleF iven though this is desirle nd neessry stility property to properly hndle sti' prolemsD it is not su0ient for very sti' prolemsF por eigenvlues with very lrge rel prtD the stility funtion R(z) of n eEstle method will surely keep the numeril pproximtions ounded during the fst trnsientsF xeverthelessD only R(z) muh smller tht 1D n gurntee tht the numeril solutions will rpidly pproh the ext solutionD dmping out the numeril trnsients phsesF xumeril methods with suh property re known s vEstle ihlTWF king into ount tht for rtionl funtions

lim z→∞ R(z) = lim z→-∞ R(z), @PFSSA method is lled vEstle if it is eEstle nd if in ddition lim z→∞ R(z) = 0. @PFSTA
gonsidering tht for n impliit u method we hve tht

R(∞) = 1 -b T A -1 1, @PFSUA
ording to @PFRWAD it follows tht if n eEstle impliit u method with nonsingulr A stis(es one of the following onditionsX

a sj = b j , j = 1, . . . , s; @PFSVA a i1 = b 1 , i = 1, . . . , s, @PFSWA
then R(∞) = 0 in @PFSUAD nd the method is lso vEstleF sn prtiulrD methods stisfying @PFSVA re lled sti1y urte UR nd re prtiulrly importnt for the solution of singulr perturtion prolems nd for di'erentilElgeri equtions rWTF pinllyD there re some impliit shemes with lrge stility domins tht re not AEstleF sn order to hrterize these methodsD A(α)Estility onstitutes nother stility property for whih method is sid to e A(α)Estle if setor α is ontined in the stility region idTUX

S α = {z ∈ C s.t. | arg(-z)| < α, z = 0} .
@PFTHA sn this workD we onsider only oneEstep integrtion methodsF xeverthelessD dedited multiEstep integrtion methods for the resolution of sti' prolems were lso developedF hese shemes onsider severl time steps in order to reonstrut the numeril solution tht stis(es the di'erentil equtions t eh onsidered time stepF woreoverD the eond hhlquist frrier sttes tht n AEstle multiEstep method must e of order p ≤ 2 hhTQF xeverthelessD there re mny multiEstep shemes performing good A(α)Estility properties for high ordersD nd LEstility for lower onesD whih n e e0iently used to solve sti' prolemsF ome exmples re the vyhi rinVHD rinVQ @vivermore olver for yhisA or the yhi solver ffrVW @rileEoe0ient yhi solverAD oth sed on vrileEorder @up to (fthA fkwrd hifE ferentition pormule developed y qer qeUI @see rWT for more detils on dedited multiEstep methods for sti' prolemsAF 2.3.1 Construction of Implicit Runge-Kutta Methods es previously detiled for the expliit seD n impliit u method is of order p if ondition @PFPUA is stis(edD in whih se we see tht R(z) is this time rtionl pproximtion to e z ording to @PFSQAF sn this ontextD the onstrution of fully impliit u methods relies hevily on the following onditions rWTX

B(p) : s i=1 b i c q-1 i = 1 q , q = 1, . . . , p; C(η) : s j=1 a ij c q-1 j = c q i q , i = 1, . . . , s, q = 1, . . . , η; D(ζ) : s i=1 b i c q-1 i a ij = b j q (1 -c q j ), j = 1, . . . , s, q = 1, . . . , ζ.                      @PFTIA
he (rst ondition B(p) sttes tht the qudrture formul (b i , c i ) s i=1 is of order pD wheres it ws proved y futher futTR tht if the oe0ients b i D c i D a ij of u method stisfy B(p)D C(η)D D(ζ) with p ≤ η + ζ + 1 nd p ≤ 2η + 2D then the method is of order pF ith these toolsD one wy of uilding these u shemes onsiders ollotion methods sed on qudrture formuleF he min gol is to (nd polynomil p(t) of degree s suh tht p(t n ) = u n D nd tht for set of ollotion points 0 ≤ c 1 < . . . < c s ≤ 1D it veri(es

d t p(t n + c i δt) = f (p(t n + c i δt)) , i = 1, . . . , s;
@PFTPA suh tht u(t n+1 ) = u(t n +δt) will e pproximted y u n+1 = p(t n +δt) qTWD riUIF e n then determine the ollotion points sed on the qudrture formule used to numerilly pproximte

t 0 +δt t 0 f (t) dt ≈ δt s i=1 b i f (t 0 + c i δt). @PFTQA
sf the qudrture method yields pproximtions of order pD n importnt mthemtil result is tht the ollotion method will lso yield pproximtions of order p for the di'erentil prolem @PFTPA qTWF sn this wyD futher futTR introdued u methods sed on du qudrture formule dVHD for whih the ollotion points c 1 , . . . , c s D re the zeros of the polynomils

I : d s-1 x x s (x -1) s-1 , @PFTRA II : d s-1 x x s-1 (x -1) s , @PFTSA
nd the weights b 1 , . . . , b s D re omputed in order to verify B(s) for the qudrture formul (b i , c i ) s i=1 into @PFTIAF pinllyD we hve tht B(2s -1) sine p = 2s -1 for du qudrture RQ formulF foth polynomils hve positive zeros with c 1 = 0 nd c i < 1D i = 2, . . . , s for @PFTRAD nd c i > 0D i = 1, . . . , s -1 nd c s = 1 for @PFTSAD wheres the remining oe0ients re omputed sed on the order onditions @PFTIAF hese (rst shemes were not AEstle ut sed on these idesD ihle ihlTW onstruted some AE nd LEstle shemes whih gve irth to the fmilies of formule lled duse nd dusseD depending on the used qudrture formul @PFTRA or @PFTSAF les PFI nd PFP showD respetivelyD the orresponding oe0ients for duse nd dusse of order p = 5 with s = 3 stgesF LEstility n e retrieved in this se for p = 5D y verifyingD respetivelyD onditions @PFSWA nd @PFSVAF elterntivelyD other shemes were derived sed on other qudrture formuleF por instneD fmily of sEstge quss methods were onstruted this time from qussin qudrture formuleD nd perform eEstility properties with the mximum possile orderX p = 2s futTRD ihlTVF xeverthelessD these shemes re usully not vEstleF enother lrge group onsiders votto qudrture formule whih yields some AE nd LEstle shemes of order p = 2s -2 futTRD ihlTVD ghiUID exeUPF sn wht followsD we will rell some of the previous onepts nd give some insights into the prtil implementtion of these impliit u methods y onsidering the duS solver developed y rirer & nner rWTF 2.3.2 The Radau5 Solver vet us rell the generl nonliner prolem @PFIAD this time of dimension mD tht isD u 0 ∈ R m D u : R → R m D nd f : R × R m → R m D to keep the previous nottionsX

d t u = f (t, u(t)), u(0) = u 0 .
@PFTTA he solution of this prolem y sEstge fully impliit u method @PFPPA will led to the solution of nonliner system of equtions of size m × s in order to determine the unknowns g 1 , . . . , g s F sn order to void solving these lrge systemsD fmily of digonlly impliit u shemes lled hsu @ingly higonlly smpliit uA were developedD tht onsiders less expensive lterntive y solving s suessive stges with only mEdimensionl systems to e solved t eh stgeF xeverthelessD more stges thn the previously seen for fully impliit u shemes re usully needed to uild AE or sti1y urte LEstle methodsD for instneD p = s + 1 or p = sF e further simpli(tion onsidered the lineriztion of hsu shemes in order to reple the nonliner systems y sequene of liner prolemsF hese methods re usully lled linerly impliit u methods or simply osenrok methodsD nd show good A(α)Estility propertiesF e survey nd nlysis of these nd other methods n e found in rWTF es onsequeneD we n infer tht n e0ient solution of lrge nonliner systems is mndtory for prtil purposes nd onstitutes the min di0ulty in the implementtion of fully impliit u method rWTF sn this ontextD rirer 8 nner developed the duS solver for whih they hd to introdue few performing tools to overome the mny numeril di0ulties ssoited with the prtil implementtion of impliit u shemesF ell of these issues re disussed in detils in their ook rWTD ut we will present here some of them tht re usully ommon to vrious impliit u solversD for the ske of ompleteness of this workF duS implements the (fth orderD 3Estge ihle9s method dusseD given in le PFPF his is high orderD AE nd LEstle shemeD very suitle for highly sti' prolemsF he solver onsiders dusse euse mong other resonsD this is sti1y urte sheme given y ondition @PFSVAF prom prtil point of view nd for very sti' prolems suh s singulrly pertured prolemsD ondition @PFSVA implies tht the numeril solution eomes lso n internl stge in the solution of the g 1 , . . . , g s @c 3 = 1 in le PFPAF hereforeD we n expet tht fst trnsients in the ext solution will e etter reprodued y numerilly onsidering the relxed fst vriles fter one time step δt rWTF gonsidering the generl impliit u sheme @PFPPAD we de(ne new set o vriles z 1 , . . . , z s D for the omputtion of the g 1 , . . . , g s X

z i = g i -u 0 , @PFTUA
in order to redue the in)uene of roundEo' errors rWTF his yields

z i = δt s j=1 a ij f (t 0 + c j δt, u 0 + z j ), i = 1, . . . , s; u 1 = u 0 + δt s j=1 b j f (t 0 + c j δt, u 0 + z j ).            @PFTVA
hereforeD knowing the solution z 1 , . . . , z s implies n expliit formul for u 1 D for whih s ddiE tionl funtion evlutions re requiredF hese extr omputtion n nevertheless e voided if the mtrix A = (a ij ) is nonsingulrD whih is the se for dusseF etullyD onsidering tht   

z 1 F F F z s    = A    δtf (t 0 + c 1 δt, u 0 + z 1 ) F F F δtf (t 0 + c s δt, u 0 + z s )    , @PFTWA
the omputtion of u 1 is equivlent to

u 1 = u 0 + s i=1 d i z i , @PFUHA where (d 1 , . . . , d s ) = (b 1 , . . . , b s )A -1 . @PFUIA
king into ount the oe0ients in le PFPD we see tht for dusseX d = (0, 0, 1)D sine b i = a si for ll i ording to @PFSVAF o solve the nonliner system @PFTWAD duS onsiders n itertive xewton9s methodF his mounts to solve t eh itertion liner system with the mtrixX

   Id -δta 11 ∂ u f (t 0 + c 1 δt, u 0 + z 1 ) . . . -δta 1s ∂ u f (t 0 + c s δt, u 0 + z s ) F F F F F F F F F -δta s1 ∂ u f (t 0 + c 1 δt, u 0 + z 1 ) . . . Id -δta ss ∂ u f (t 0 + c s δt, u 0 + z s )    . @PFUPA sf we pproximte ll toins ∂ u f (t 0 + c i δt, u 0 + z i ) y J ≈ ∂ u f (t 0 , u 0 ), @PFUQA
we onsider simpli(ed xewton9s method for

G(Z) = Z -(Id -δtA ⊗ J)F (Z) = 0, @PFURA
where Z = (z 1 , . . . , z s ) T D nd F (Z) = (f (u 0 + c 1 δt, u 0 + z 1 ), . . . , f (t 0 + c s δt, u 0 + z s )) T D so tht the (k + 1)Eth pproximtion of the solution Z is reursively omputed y

(Id -δtA ⊗ J)∆Z k = -Z k + δt(A ⊗ Id)F (Z k ), Z k+1 = Z k + ∆Z k .
@PFUSA ih itertion requires then s evlutions of f to ompute F (Z k )D nd the solution of m × s liner system to ompute the inrements ∆Z k = (∆z k 1 , . . . , ∆z k s ) T F portuntelyD the mtrix (Id -δtA ⊗ J) is the sme for ll itertions with the pproximted toins @PFUQAD nd its inversion y n vEdeompositionD usully quite expensiveD is done only oneF purthermoreD exploiting the speil struture of the mtrix (Id -δtA ⊗ J)D deomposition of the liner system into two susystems following proedure introdued y futher futUTD leds to n importnt redution of the numer of opertionsD whih is lso implemented in the duS solver rWTF sf no nlytil expression is villeD the toins n lwys e numerilly pproximted y

J ij ≈ f (i) (t 0 , u (j) + δu (j) ) -f (i) (t 0 , u (j) ) δu (j) , i, j = 1, . . . , m, @PFUTA
for reltively smllD positive perturtionsX δu = (δu (1) , . . . , δu (m) )F pinllyD rirer & nner de(ned lso dedited stopping riteri for the itertive method s well s pproprite strting vlues Z 0 for the xewton itertions rWTF RT sn order to selet the time step nd gurntee presried uryD duS uses lower order emedded method to numerilly estimte the lol error in the sme spirit of setion PFPFPF e illustrte this proedure for this prtiulr seF e lower order pproximtion of the solution û1 ording to @PFQUA is omputed y

û1 = u 0 + δt b0 f (t 0 , y 0 ) + δt 3 i=1 bi f (t 0 + c i δt, g i ),
@PFUUA using the sme ollotion points c 1 D c 2 D c 3 of dusse @see le PFPAD nd thus the sme evlutions of f F en extr evlution of f is needed t t 0 D wheres b0 = γ0 D where γ-1 0 is rel eigenvlue of A -1 previously omputedF sn order to set the new weights b1 D b2 D b3 we onsider the di'ereneX

û1 -u 1 = δtγ 0 f (t 0 , y 0 ) + δt 3 i=1 ( bi -b i )f (t 0 + c i δt, g i ),
@PFUVA into @PFTIA for B(3) suh tht û1 -u 1 = O(δt 4 )F gonsidering the representtion @PFUHAD this yields (nlly

û1 -u 1 = δtγ 0 f (t 0 , y 0 ) + 3 i=1 di z 3 , @PFUWA
where

( d1 , d2 , d3 ) = γ0 3 (-13 -7 √ 6, -13 + 7 √ 6, -1). @PFVHA
ith these solutionsD duS omputes the pproximtionX err = (Id -δtγ 0 J) -1 (û 1 -u 1 ), @PFVIA s error estimte in order to simultneously gurntee tht the di'erene @PFUWA is ounded for δt → 0 nd δtλ → ∞ @if f (u) = λu nd J = λAD for sti' prolems rWTF he time steps re then omputed y tking the minimum of

δt new = fac • δt n 1 err n+1 1/4 , @PFVPA nd δt new = fac • δt n 1 err n+1 1/4 δt n δt n-1 err n err n+1 1/4
, @PFVQA sedD respetivelyD on @PFRQA nd @PFRTA with

err = 1 m m i=1 err (i) sc i 2 , @PFVRA with err (i) = (Id-δtγ 0 J) -1 û(i) 1 -u (i) 1 D nd sc i = Atol i +max(|u (i) 0 |, |u (i) 1 |)•Rtol i D
where Atol nd Rtol re de(ned s solute nd reltive ury tolernes rWTF ith the de(nition of the error estimte given y @PFVRAD the urrent time step is epted if err ≤ 1D otherwise it is rejetedF sn this se s well s for the (rst stepD duS uses seond error estimte insted of @PFVIAX err = (Id -δtγ 0 J) -1 δtγ 0 f (t 0 , y 0 + err ) + 3 i=1 di z 3 , @PFVSA whih implies n dditionl evlution of f D ut we hve tht err → 0 is stis(ed for δtλ → ∞D in the sme wy s the numeril solution u 1 doesF 2.4 Stabilized Explicit Runge-Kutta Methods sn mny sesD there re sti' prolems for whih AEstle methods re not neessrily requiredF ome remrkle exmples ome from the disretiztion of proli his whih led to sti' prolems with toin mtrix involving @possily lrgeA eigenvlues lose to the rel negtive xisF his is the prtiulr se of the disretized het eqution @PFIRA in PFIFID for whih the rel negtive eigenvlues @PFIVA inrese with (ner sptil disretiztionsF hereforeD insted of AEstle ut time onsuming impliit proeduresD stilized expliit u methods should e preferredF hese expliit methods void the solution of lgeri systemsD while feturing n extended stility domin long the negtive rel xisD very pproprite for this type of prolemF e detiled survey on these shemes n e found in erWTD nd in the ook of rundsdorfer 8 erwer rHQF he min gol is to onstrut methods of order p with fmily of stility polynomil R s of degree sX

R s (z) = 1 + z + • • • + z p p! + s p+1 α i,s z i , @PFVTA with s ≥ p + 1D nd α i,s ∈ CD suh tht R s (z) remins ounded s muh s possile long the rel negtive xisD iFeFD |R s (z)| ≤ 1, z ∈ [-s , 0], @PFVUA
with s s lrge s possileF yne wy of uilding suh stility polynomils onsiders the fmily of gheyshev polynomilsX T s (cos(z)) = cos(s z), @PFVVA de(ned lso y the reurrene reltionX

T 0 (z) = 1, T 1 (z) = z, T s (z) = 2zT s-1 (z) -T s-2 (z), @PFVWA
whih remin ounded etween 1 nd -1 for z ∈ [-1, 1]D nd in prtiulr yield oundries s proportionl to s 2 F hese shemes re usully lled ungeEuuttEgheyshev methodsD nd feture extended rel stility intervls proportionl to s 2 D good property inherited from gheyshevEtype polynoE milsF por instneD for p = 1D the optiml polynomils tht stis(es @PFVTA re diretly the shifted gheyshev polynomilsX

R s (z) = T s 1 + z s 2 , @PFWHA
whih re shown to yield the optiml s = 2s 2 F roweverD in the points where R s (z) = ±1 for z ∈ R -D the stility domin hs zero width nd thereforeD there is no dmping t ll of high frequeniesF he stndrd wy to overome this di0ulty onsiders smll prmeter ε > 0 in order to uild dmped gheyshev stility funtions qvTIX

R s (z) = 1 T s (w) T s (w 0 + w 1 z), w 0 = 1 + ε s 2 , w 1 = T s (w 0 ) T s (w 0 ) . @PFWIA
es onsequeneD the stility domins re redued y pproximtively εX |R s (z)| ≤ 1 -εD while the stility length is shortened y pproximtively (4ε/3)s 2 Y neverthelessD the order of the sheme is preserved nd sfe distne from the rel xis is gurnteed rWTF fsed on these idesD (rst fmily of method lled veedevEtype methods veVWD veWRD ims t uilding u shemes sed on the optiml stility polynomils tht stisfy @PFVTA for RV given pF por p = 1 we hve seen tht these polynomils re the shifted gheyshev polynomils @PFWHAD so the ide is to write them s uTHD qvTIX

R s (z) = s i=1 (1 + δ i z), δ i = - 1 z i , @PFWPA
where z i re the roots of R s (z)D nd to represent the u sheme s omposition of expliit iuler stepsX g 0 = u 0 ,

g i = g i-1 + δtδ i f (g i-1 ), i = 1, . . . , s, u 1 = g s .        @PFWQA
he min di0ulty onstitutes (nding the est sequene of integrtion of the iuler steps to ensure stility properties of the sheme veWQD veWQF pormule of order up to four were lso hieved even though there is no nlytil expression for the optiml stility polynomils of order p ≥ 2 vwWVD wedWVF he omputtions of these polynomils re therefore performed numerilly nd yieldD for instneD seond order shemes with prtilly optiml s ≈ 0.82•s 2 for s 1F hese results hve een implemented in the hwue ode veWRD veHHF fsed on numeril pproximtions of the optiml oundries s vdrUUD nd knowing tht mong ll polynomils of order p nd degree s stisfying @PFVTAD the optiml one stis(es the soElled equl ripple property whih sttes tht there exist s -p + 1 points z

0 < z 1 < • • • < z s-p < 0D with z 0 = -s D suh tht R(z i ) = -R(z i+1 ), i = 0, . . . , s -p -1, |R(z i )| = 1, i = 0, . . . , s -p;
@PFWRA nother pproh known s the n der rouwenEommeijer methods vdrVHD onstruts the u shemes sed on liner omintion of sled nd shifted gheyshev polynomils tht im t pproximting the optiml polynomil y verifying @PFWRAD nd genertes out 80 % of the optiml intervl s F pirst nd seond order shemes known s ug methods were uilt with these pproximted optiml polynomils using the threeEterm reurrene formul @PFVWAX g 0 = u 0 , g 1 = g 0 + μ1 δtf (g 0 ),

g i = (1 -µ i -ν i )g 0 + µ i g i-1 + ν i g i-2 + μi δtf (g i-1 ) + γi δtf (g 0 ), i = 2, . . . , s, u 1 = g s ,                    @PFWSA
where ll the oe0ients (μ i , µ i , ν i , γi ) re ville in nlytil form for ritrry s ≥ 2 VHF sn this wyD n e0ient seond order solver known simply s ug proposed y ommeijer et lF in WUD gined notorious reputtion over the lst yersF he ug solver lso fetures lol error ontrolD with vrile step sizesD omputed on n pproximtion of the leding term of the lol error expnsionD theoretilly derived from detiled stility nd onvergene nlysis presented in rWHF he stility ound is given y s ≈ 0.653 • s 2 for the seond order ug shemeD nd hene for given time step omputed ording to presried ury tolerneD n dequte numer of stges s is hosen in order to ensure the stility of the methodF 2.4.1 The ROCK Method e third pproh tht omined the previous ones y serhing prtilly optiml stility ounds s D nd y using threeEterm reurrene reltionD gve irth to the ygu methods @for yrthogonlEungeEuuttEgheyshevA ewHID edHPF e preliminry importnt result of edulle edHH ws tht the optiml stility polynomils stisfying @PFVTA for given p nd the equl ripple property @PFWRAD possess extly p omplex roots if p is even nd extly p -1 omplex roots if p is oddF hereforeD if p is evenD we n then split the stility funtion in the following formX R s (z) = w p (z)P s-p (z), @PFWTA where w p retins the p omplex roots nd P s-p D the remining (s -p) rel rootsF he ide developed y wedovikov 8 edulle in ewHI for p = 2D nd then extended to p = 4 y edulle in edHPD ws to pproximte R s (z) y Rs (z) = wp (z) Ps-p (z), @PFWUA with the orthogonl polynomils Ps-p D ssoited with the weight funtion w2 p (z)/ √ 1 -z 2 D suh tht Rs (z) results in pEorder stility polynomil whih remins ounded s muh s possile long the negtive rel xisD tking lso into ount some dmpingF he tehniques to ompute the orthogonl polynomils nd the weight funtion re given in ewHI nd edHPF yne the stility funtions hve een omputedD threeEterm reurrene reltionX

P0 (z) = 1, P1 (z) = 1 + µ 1 z, Pi (z) = (µ i z -ν i ) Pi-1 (z) -κ i Pi-2 (z),
@PFWVA with i = 2, . . . , s -pD stis(ed y the orthogonl polynomilsD is used to de(ne the internl stges of the u method following the ide of vdrVHX g 0 = u 0 , g 1 = g 0 + μ1 δtf (g 0 ),

g i = μi δtf (g i-1 ) -ν i g i-1 -κ i g i-2 , i = 2, . . . , s -p.        @PFWWA
gonsidering d t u = λu nd z = λδtD the resulting Ps-p (z) is the stility funtion ssoited with @PFWWAX g s-p = Ps-p (z)u 0 F he oe0ients (µ i , ν i , κ i ) re omputed y proedure introdued in ewHIF he se p = 2 yields thus the seond order yguP method ewHI for whih w2 (z) is twoEstge (nishing proedure pplied to g s-2 = Ps-2 (z)u 0 F por d t u = λu nd z = λδtD this implies u 1 = w2 (z)g s-2 = w2 (z) Ps-2 (z)u 0 = Rs (z)u 0 . @PFIHHA he order onditions for p = 2 re lssil to expliit u shemes nd llow us to ompute the oe0ients of the (nl stgesF sn prtiulr for seond orderD the order onditions re the sme for oth liner nd nonliner prolemsF e solution û1 of order p = 1D is omputed emedded t the (nl step w2 (z)D nd n estimte of the lol error err = (û 1 -u 1 )D is omputed for the step size seletionD ording to the sme riteri used y duS rWT with expressions @PFVPA nd @PFVQAF he nerly optiml stility intervl is given y ˜ s ≈ 0.81 • s 2 @the optiml rtio is out 0.82 vdrUUAF hereforeD with the time step (xed y the presried ury @Atol nd Rtol AD the numer of stges needed to gurntee stility is omputed y

δtρ (∂ u f (u)) ≤ 0.81 • s 2 , @PFIHIA SH
where ρ is the spetrl rdius of the toin of the system of yhisF e dynmi omputtion of this spetrl rdius is provided y yguP using nonEliner power method whih is slight modi(tion of the lgorithm proposed in WU for the ug odeF tust like eforeD for the fourth order yguR @p = 4A the oe0ients of the weight funtion w4 (z) must e omputed suh tht the order onditions of order 4 re stis(edF es in wedWVD theory of omposition of methods @the futher groupA is pplied to hieve fourth order method denoted W P D where the (rst methodD denoted y P is given y the threeEterm reurE rene reltion in @PFWWA this time with p = 4D wheres the oe0ients of the four stges method W ssoited with w4 (z) re omputed suh tht the omposite method W P is of order 4 s shown in edHPF es in the previous seond order seD n emedded method Ŵ is uilt emE edded into W in order to keep the sme reurrene formule @PFWVA for oth the fourth order nd emedded methodsF e third order emedded u sheme is thus onstruted y dding new stge to w4 (z)D nd the oe0ients re omputed with the sme omposition tehnique suh tht the omposite method Ŵ P is of order 3D nd tht the stility polynomils of the emedded methods re ounded in the sme intervl s the ones of the yguR shemeF he ltter feture is indispensle to gurntee stility of the lower order methodD nd to otin thus relile error estimtesF he prtilly optiml stility intervl is this time given y ˜ s ≈ 0.35 • s 2 @the optiml rtio for fourth order is out 0.34 in vdrUU nd 0.35 in wedWVAF he yguR solver implements the sme tools s yguP for time step seletion in terms of estimtes @PFVPA nd @PFVQAD s well s the numeril omputtion of the spetrl rdiusF por given time step δtD omputed sed on the presried ury @Atol nd Rtol AD the numer of stges tht ensures stility of omputtions is now given y

δtρ (∂ u f (u)) ≤ 0.35 • s 2 .
@PFIHPA e notorious dvntge of the threeEterm reurrene formule used y the ug @PFWSA nd ygu @PFWWA methodsD is tht even though n ritrry numer of stges s might e required to gurntee stilityD only the urrent three rrys in the reurrene reltions need to e svedF gonsidering the twoEstge w2 (z) for the seond order yguPD (ve solution rrys need thus to e sved to perform ll the omputtionsF he sme follows for yguR for whih seven rrys shll e requiredF xotie tht the onstrution of the ygu shemes through @PFWTA involves t lest s = 3 nd s = 5 internl stgesD respetivelyD for yguP nd yguR shemesF he min dvntge of the ygu shemes ompred with previous stilized u shemes is tht it omines the est fetures of oth veedevE nd n der rouwenEommeijerEtype methods y using the threeEterm reurrene formule with prtilly optiml stility polynomilsF he ltter implies lrger stility domins in the prtil implementtions onsidering tht s is pproximted y 0.81 • s 2 for yguP ompred with 0.65 • s 2 for the lso seond order ug solver WUF sn prtiulrD higher orderD stilized expliit sheme of esy implementtion with n optiml stility intervlD ws hieved with the yguR solverF sn this wyD the stility domins of expliit u methods re extended without ltering the orders of the numeril pproximtionsD nd furthermore without requiring exessive supplementry memory spe with respet to stndrd expliit u shemeF Chapter 3

Space Adaptive Multiresolution for Multi-Scale Evolutionary PDEs he previous hpters were minly dedited to the numeril integrtion of time dependent sti' prolemsF sn ghpter I we hve onsidered time opertor splitting tehniques for hisD in prtiulr for retionEdi'usion systems for whih the time nd spe disretiztion errors in the solutions of the split suprolems were negletedF yn the other hndD we hve onsidered in ghpter P the time integrtion of sti' systems of yhis whih in our prtiulr seD re issued from spe disretiztion of the originl hisD iFeFD from the semiEdisretized hisD nd hene the spe disretiztion errors were not disussedF e hve seen tht key spet to e0iently solve ll of these prolems is relted to the ury of omputtionsF xevertheless in mny pplitions the sptil representtion of the phenomenD iFeFD the sptil disretiztion of the hisD plys ruil role to properly desrie the physil dynmis of the prolemF woreoverD the mthemtil models nd therefore the modeling equtions might e neither dequte nor vlid if the sptil disretiztion skips some fundmentl sles of the prolemF gonsequentlyD the dedited nd possily high order time integrtion methods we hve previously disussed in hpters I nd PD might lso give wrong pproximtions to the physil prolems even though they re solving urtely the orresponding sptilly disretized hisF e nturl nd neessry ondition to gurntee the e0ieny of the previous shemes relies then on su0iently urte sptil mesh representtionF ine for relisti pplitionsD uniform (ne mesh is often expensive in omputtionl reE souresD mny high order nd dedited spe disretiztion shemes were developed nd studE ied over the pst yers @seeD eFgFD veWPD veHPD rHQAF enother lterntive to redue these omputing requirements is to onsider rther dptive mesh re(nement tehniquesD with posE sily high order spe disretiztionsF sn this ontextD su0iently (ne mesh to urtely represent the physil phenomen might e uilt nd suessfully implementedD y onsidE ering set of sptil grids tht re dpted to the lol spe sles of the prolemF he resulting grid is thus su0iently (ne only in prtil regions of the omputtionl dominF he degree of re(nement in the sptil representtions n e onsiderly enhned with respet to uniform grid seD nd remins limited y the ville omputtionl resouresF sn this hpter we will fous on these dptive grid tehniquesD nd in prtiulr on spe dptive multiresolution tehniques for the sptil representtion of hisF e generl desription of dptive mesh re(nement shemes will e (rst introdued in order to settle the orrespondE ing frmeworkF he generl multiresolution nlysis on whih spe dptive multiresolution is foundedD will then e desried s well s its mthemtil kground sed on wvelet deompositionD to then end up with the min spets of these tehniquesF por further detils SP on dptive multiresolution tehniquesD we refer to the ooks of gohen gohHH nd wüller wülHQF 3.1 Adaptive Mesh Renement Techniques wesh dpttion tehniques onstitute powerful tool to solve his more e0iently y voidE ing expensive uniform gridsD ording to the nture of the prolemF por instneD mny physE il phenomen re hrterized y the presene of lolized fronts of steep sptil grdients or even disontinuities into rther smooth lrger dominF por these smoother regions the level of sptil resolution my e then loosenedD wheres the mjor omputtionl e'ort given y muh (ner disretiztion will e onentrted on the lolized singulritiesF he dynmi rod spetrum of tive sptil sles in relisti on(gurtions motivted the development of dptive mesh tehniques for oth unstrutured nd strutured meshesF he redued omE puttionl omplexity of the ltter ones ontrst with the higher geometry )exiility of the former ones to represent more omplex omputtionl dominsF sn this workD we will disuss only dptive mesh tehniques on strutured meshesF ristorillyD dptive disretiztion tehniques were developed from the lte seventiesD suh s the wultiEvevel edptive ehniques wve introdued y frndt frUUD nd yielded over the pst yers lrge fmily of method lled ew or ew @respetivelyD for edptive wesh e(nement or trutured edptive wesh e(nementAD oneived espeilly for gph @gomputtionl pluid hynmisA pplitionsF sn this ontextD the (rst ew pprohes introdued y ferger 8 yliger ferVPD fyVR onsidered rotted re(ned regions known usully s pthesD over orser underlying mesh in order to disriminte smooth nd irregulr regions within the omputtionl dominF e simpli(ed nd thus muh more e0ient tehnique developed fterwrd y ferger 8 gollel fgVWD onsidered re(nement pthes lwys ligned with the underlying orse meshF he ltter strtegy ws shown to feture very high e0ienies s demonstrted y fell et lF ffWRD nd settled the generl frmework for ew methodsF sn this wyD severl ew vrints nd extensions to these initil works were developed for single proessor omputing mhines @seeD eFgFD gWQD pqwWUD fvWVA nd prllel rhitetures @seeD eFgFD ffWRD ufWSD fv + HHAF sn generlD ew methods follow lol re(nement pproh y mens of re(ned pthesF hereforeD onsidering uniform strutured mesh over the whole omputtionl dominD (ner prtitions or ells re onsidered on the regions exhiiting lolly steep grdients or shokE like struturesF hese (ner ells re then lustered in nonEoverlpping retngulr sugrids of pproprite size ligned with the orser meshD nd the set of (ner sugrids or pthes genertes new level of sptil disretiztionF his proedure is then pplied suessively to generte new levels of re(nement wherever this is requiredD nd n entire hierrhy of emedded grids is onstrutedF sn this wyD the re(ned pthes in eh disretiztion level overly the orser sugrids from whih they hve een retedD voiding in prtiulr dt frgmenttionF he simpliity of this pproh implies n importnt )exiility tking into ount tht the numeril shemes need to e implemented on single retngulr sugridD nd thus pthes nd onsequently levelsD n e suessively solved using the sme proedure nd hopefully in n independent wyF he vriles of the new ells ontined in n dded pth re initilizedD for instneD y interpoltion from the underlying orser meshD wheres the vlues of ells overed y re(ned pthes re overwritten y verged (neEgrid vlues fter eh updte of the solutionF he super)uous work on the orse grid is negligile ompred with the omputtionl osts for SQ integrting the overlying (ne gridsF peil re must e tken when omputing numeril )uxes t the oundries of the pthes in order to void loss of onservtionF e stndrd solution reples simply the numeril )uxes t orser meshes y the sum of the (ne grid )uxes long the orresponding orse oundry fgVWF his n e seen s n posteriori )ux orretion in order to keep the reursion nd simpliity of the shemeD sine levels re usully updted from the orsest to the (nest one heiHSF ith the sme spiritD ghost ells re dded round eh pth to omputtionlly deouple the sugridsF hese ghost ells ount lso for the physil oundry onditions nd otherwiseD they re omputed either y interpoltion from the underlying mesh or y opying the dt vlue from neighoring pthes t the sme levelF ine the dvning time steps re usully de(ned levelEwise ording to the orresponding spe disretiztion fgVWD the ltter proedure implies either synhroE niztion mong pthes of the sme level or timeEspe interpoltion from the underlying mesh to de(ne the ghost ells t intermedite timesF he prlleliztion of the previous generl tehnique is strightforwrd on shred memory rhiteturesF st su0es to prllelize the loop tht updtes the levelsD or the pthesD one y one @seeD eFgFD ffWRAF he ommunition osts on distriuted memory mhines nnot e negletedD nd the prlleliztion strtegies with pproprite lod lning eome signi(ntly more omplex @see heiHS nd referenes thereinAF sn order to de(ne whether ell must e re(nedD pproprite inditors must identify the presene of steep grdients or disontinuities in the solutionF king into ount tht rigE orous error estimtes re only ville for slr equtions in the ontext of onservtion lws uyHHD nd tht they re usully di0ult to implementD heuristi or physil prmE eters re preferred instedF e stndrd proedure onsidersD for instneD sled grdient riteri whih evlute the lol grdients multiplied y the orresponding sptil step in ll diretionsD nd re(ne ells eyond presried tolerne @seeD eFgFD heiHSAF enother indiE tor is sed on di'erent wys to estimte the lol truntion errors of the numeril sheme @seeD eFgFD rrWRD rwWWAD whih n e heuristilly omputed in prtie y mens of ihrdson extrpoltion performed using (ne nd the orresponding orser lol solution ferVPD fyVRD fgVWF pinllyD seurity lyer of ells is often dded in order to gurntee tht the fronts remin into the orresponding re(ned regions during the integrtion time stepF sn generlD ew methods re lrgely used nd show to e very performing in mny pE plitionsF ome exmples of freely ville ew softwre lirriesD developed for multiE dimensionl simultions with prllel omputing feturesD re ghomo 1 y gollel et lFD eE ewir 2 wyw + HHD ewi 3 eyHPD ewyg 4 heiHSD ewes 5 ruHTD mong othersF elthough the theoretil frmework nd ides re rther ommon for ew tehniquesD there re severl di'erenes in terms of dt strutureD progrmming lngugeD routines opE timiztionD nd other prtil implementtion issuesF sn this ontextD the strong heuristi omponent of suh strtegies s rie)y disussed in this prtD onstitutes n importnt drwE k to estlish n pproprite mthemtil frmework tht might llow us to desrie the pproximtion errors introdued in the numeril solutionsF edptive multiresolution methodsD sed on the pioneering work of rrten rrWRD rrWSD were then developed s new dptive mesh re(nement tehniqueF sn prtiulrD fmily of fully dptive multiresolution sheme ws introdued y gohen et lF in guwHQF gonsidering SR set of nested sptil grids from the orsest to the (nest oneD multiresolution nlysis llows us to represent disretized funtion s vlues on orser grid plus series of lol estimtes t di'erent levels of suh nested gridsF hese estimtes orrespond to the wvelet oe0ients of wvelet deomposition otined y interElevel opertionsD nd retin the informtion on lol regulrity when going from orse to (ner gridF vower wvelet oe0ients re ssoited with lol regulr sptil on(gurtions nd vieEversF e thresholding proess pplied to this representtion llows us to dynmilly uild the orresponding dpted grid on whih the solutions re represented guwHQD wülHQF he min dvntge of suh proedure is thtD sed on the mthemtil sis of the multiresolution nlysisD n error of the sptil representtion of the solution represented on the dpted grid n e inferredD with respet to the solution disretized on the (nest gridF sn wht followsD the theoretil frmework of multiresolution tehniques will e detiledF e will then desrie the spe dptive multiresolution sheme oneived s n dptive mesh re(nement method for time dependent hisF ome reviews on suh topis n e found in rrWRD ghhHRD osHSD wheres (rst omprison of performnes etween generl ew nd multiresolution methods ws onduted in hhq + HWF

Basis of Multiresolution Analysis

por positive integers j ≥ j 0 D let us onsider prtitions of the intervl [0, 1]D given y the set of dydi intervlsX

I j,k := [2 -j k, 2 -j (k + 1)[, k = 0, . . . , 2 j -1. @QFIA e de(ne for given f (x) ∈ L 2 ([0, 1])D onstnt pproximtion P j f | I j,k of f on eh intervl I j,k D given y P j f | I j,k := 2 j I j,k f (x) dx = a I j,k (f ), @QFPA
suh tht

P j f = 2 j -1 k=0 a I j,k (f )χ I j,k (x), @QFQA
is the pieewise onstnt pproximtion of f on dydi mesh of size 2 -j F sn @QFQAD χ Ω (x) is the stndrd hrteristi funtion whih tkes vlues of 1 in ΩD nd zero outsideF hereforeD for eh6 j ∈ N 0 D P j f is indeed n L 2 Eorthogonl projetion onto the spe V j of pieewise onstnt funtionsX

V j := f ∈ L 2 s.t. f | I j,k = constant, k = 0, . . . , 2 j -1 . @QFRA

Wavelet Decomposition

sntroduing the ox funtion or fEspline of order 1X φ(x) = χ [0,1) (x)D n orthonorml sis of V j is given y the set of normlized φ j,k tht diltes nd shifts

φ j,k = 2 j/2 χ I j,k (•) = 2 j/2 φ(2 j • -k), k = 0, . . . , 2 j -1, @QFSA of dimension dim V j = 2 j D for whih φ j,k , φ j,l [0,1) = 1 0 φ j,k (x)φ j,l (x) dx = δ k,l .
@QFTA SS e proper de(nition of the pieewise onstnt pproximtion opertor @QFQA is then given y the orthogonl projetionX

P j f := 2 j -1 k=0 f, φ j,k φ j,k @QFUA where c j,k := f, φ j,k = 2 -j/2 a I j,k (f ), @QFVA
is the pproximtion oe0ient t sle 2 -j nd position 2 -j kF his projetion resolves the funtion f up to the sle 2 j D while (ner detils re disrdedF king into ount tht the spes

V j D j ≥ j 0 D re nestedX V j ⊂ V j+1 ⊂ V j+2 ⊂ . . .D nd tht ∪V j = L p ([0, 1])D we hve tht if f ∈ L p ([0, 1])D then P j f is lso onvergent in L p ([0, 1])D iFeFD lim j→+∞ f -P j f L p = 0, @QFWA for 1 ≤ p < ∞F he sme follows for the uniform norm s long s f ∈ C 0 X lim j→+∞ f -P j f ∞ = 0. @QFIHA
st is strightforwrd to see tht if from n initil orsest j 0 sleD we dd the (ner detils suessively skipped t eh sle jD we otin

f = P j 0 f + ∞ j=j 0 (P j+1 -P j )f, @QFIIA
tht isD multiEsle representtion of f D where eh term Q j f := (P j+1 -P j )f represents the detils in f t sle 2 -j F st is then nturl to deompose the projetion of f onto V j X P j f D s the sum of the projetion onto V j-1 X P j-1 f D plus the ssoited detilX (P j -P j-1 )f F sterting from (xed J > j 0 D leds to the following multiEsle representtionX

P J f = P J-1 f + [P J f -P J-1 f ] = . . . = P j 0 f + J-1 j=j 0 Q j f. @QFIPA
woreoverD we n see from @QFPA tht onstnt pproximtions t suessive sles re relted y

a I j,k (f ) = 1 2 (a I j+1,2k (f ) + a I j+1,2k+1 (f )), @QFIQA
whih mens tht Q j f should osillte within eh I j,k in order to e le to reonstrut P j+1 f from P j f F sn this wyD the (ne sle vlues n e reovered from orser sle y using the ox funtion φ(x)D nd n osilltory pro(le ψ(x)F por instneD onsidering the rr wvelet given y ψ(x)

:= χ [0,1/2) (x) -χ [1/2,1) (x)D or ψ(x) := φ(2x) -φ(2x -1), @QFIRA
nd tht for the ox funtion

φ(x) = φ(2x) + φ(2x + 1), @QFISA we hve tht φ(2x) = 1 2 (φ(x) + ψ(x)), φ(2x -1) = 1 2 (φ(x) -ψ(x)).
@QFITA ST hus de(ning the ψ j,k = 2 j/2 ψ(2 j • -k) tht diltes nd shifts on the prtitions of [0, 1] yields

Q j f = 2 j -1 k=0 f, ψ j,k ψ j,k , @QFIUA where d j,k := f, ψ j,k , @QFIVA
is the wvelet oe0ient t sle 2 -j nd position 2 -j kF pollowing @QFIPAD Q j is then the orthogonl projetion of f on the orthogonl omplement spe

W j of V j into V j+1 D W j ⊕ ⊥ V j = V j+1 F e see thus tht (ψ j,k ) k=0,...,2 j -1 is n orthonorml sis of W j D nd therefore (ψ j,k ) k=0,...,2 j -1 ∪ (φ j,k ) k=0,...,2 j -1 , @QFIWA
is n orthonorml sis of V j+1 F sn the sme wyD V j n e written s

V j = W j-1 ⊕ ⊥ V j-1 = W j-1 ⊕ ⊥ W j-2 ⊕ ⊥ V j-2 = . . . , @QFPHA
s we n infer from the multiEsle representtion @QFIPAF sn prtiulrD when J → +∞ with j 0 = 0D P J f tends to f in L 2 y @QFIIAD nd it follows tht {φ} ∪ {ψ j,k } j≥0,k=0,...,2 j -1 , @QFPIA is n orthonorml sis of L 2 [0, 1]D where @QFPIA is usully known s the rr systemF ith this representtionD the following twoEsle reltions re veri(ed ording to @QFITAX

φ j,k = 1 √ 2 (φ j+1,2k + φ j+1,2k+1 ), ψ j,k = 1 √ 2 (φ j+1,2k -φ j+1,2k+1 ), φ j+1,2k = 1 √ 2 (φ j,k + ψ j,k ), φ j+1,2k+1 = 1 √ 2 (φ j,k -ψ j,k ),      @QFPPA
whih leds to hnge of sisX

2 j+1 -1 k=0 f, φ j+1,k φ j+1,k = 2 j -1 k=0 f, φ j,k φ j,k + 2 j -1 k=0 u, ψ j,k ψ j,k , @QFPQA or equivlentlyD 2 j+1 -1 k=0 c j+1,k φ j+1,k = 2 j -1 k=0 c j,k φ j,k + 2 j -1 k=0 d j,k ψ j,k , @QFPRA where c j,k = 1 √ 2 (c j+1,2k + c j+1,2k+1 ), d j,k = 1 √ 2 (c j+1,2k -c j+1,2k+1 ), c j+1,2k = 1 √ 2 (c j,k + d j,k ), c j+1,2k+1 = 1 √ 2 (c j,k -d j,k ).      @QFPSA
he representtion in term of the (ne sles n e retrieved from the orse sle verges y dding the detilD lost through the orse projetionF e reursive hnge of sis sed on these twoEsle oe0ients @QFPSA yields telesopi trnsform known s the fst wvelet trnsform WF es onsequeneD for given J > j 0 D funtion f J ∈ V J n e written either on the stndrd nonil sisX

f J = 2 J -1 k=0 c J,k φ J,k , @QFPTA SU
or on wvelet or multiEsle sisX

f J = 2 j 0 -1 k=0 c j 0 ,k φ j 0 ,k + J-1 j=j 0 2 j -1 k=0 d j,k ψ j,k , @QFPUA
ording to @QFUAD @QFIPAD nd @QFIUAF he hnge of representtion from @QFPTA to @QFPUA is performed y the wvelet deompositionD where W trnsforms liner omintion of (ne sle ox funtions with n rry of oe0ients c J D into liner omintion of orse sle ox funtions with oe0ient rry c 0 nd rr wvelets with rry of detil oe0ients d j for eh dydi level j < JX

W : c J → d J := (c 0 , d 0 , d 1 , . . . , d J-1 ) . @QFPVA
sn the sme wy nd sed on the sme reltions @QFPSAD the inverse trnsform W -1 : d J → c J D turns the wvelets oe0ients into the single sle JF hue to the telesopi struture of these omputtions nd euse the reltions @QFPSA involve only (nite oe0ients @±1/ √ 2A lled usully msksD the numer of opertions required y oth trnsforms is O(2 J )F king into ount the onvergene of the orthogonl projetions P j in L 2 D nd the wvelet deomposition @QFPUA with j 0 = 0D we n write @QFIIA s

f = P 0 f + ∞ j=0 (P j+1 -P j )f = ∞ j=-1 2 j -1 k=0 d j,k ψ j,k := d(f ) T Ψ, @QFPWA
where P -1 := 0 nd ψ -1,k := φ 0,k F yne of the min dvntges of suh wvelet representtion is tht there is tight reltion etween the funtion nd the oe0ient norms ghhHRX

f L 2 =   ∞ j=-1 (P j+1 -P j )f 2 L 2   1/2 = d(f ) 2 , @QFQHA
due to the orthonormlity of ψ j,k nd using the rsevl9s identityF his mens tht if in the wvelet representtion some smll oe0ients re disrdedD the norm of the funtion will e modi(ed only y the sme smll mountF sn prtiulrD the size of these oe0ients n e inferred from lol properties of f F st n e demonstrted tht within the support

I j,k of ψ j,k X |d j,k | = inf c∈R | f -c, ψ j,k | ≤ inf c∈R f -c L 2 (I j,k ) ≤ 2 -j f L 2 (I j,k
) , @QFQIA y using forml ylor series expnsionD nd notiing tht ψ j,k L 2 (I j,k ) = 1D nd tht the rr wvelets ψ j,k re orthogonl to ny onstnt c ∈ RD iFeFD they hve (rst order vnishing momentsX c, ψ j,k = 0. @QFQPA he dey of the wvelet oe0ients is diretly in)uened y the lol smoothness of f F gonseE quentlyD the oe0ients d j,k get smll t (ne sles when f | I j,k is su0iently smoothD wheres high grdients involve more signi(nt vluesF his kind of onstnt pieewise pproximtion shows to e only (rst order urteF he rr9s set of wvelets is therefore only suitle to e0iently represent su0iently smooth f F prom prtil point of viewD this seldom hppens nd motivted further studies sed on the potentil dvntges inherited from this simple rr on(gurtionF sn prtiulrD fmily of omptly supported orthonorml wvelets in L 2 (R) introdued y huehies huVVD huWPD o'ered the possiility of ritrry high regulrity of the multiEsle pproximtionsF

Orthonormal Wavelets

he generl mthemtil frmework s presented efore for the rr seD ws tully settled y the multiresolution pproximtion introdued y wllt wlVW nd weyer weyWHD tht onsiders the nested spes

V j ⊂ V j+1 ⊂ . . . of L 2 (R) suh tht ∪V j = L 2 (R)D nd thus P j f onverges in L 2 (R) for ll f ∈ L 2 (R)
D where P j is the L 2 Eorthogonl projetorF sn this ontextD there exists sling funtion φ ∈ V 0 suh tht

φ j,k = 2 j/2 φ(2 j • -k), k ∈ Z, @QFQQA is iesz sis of V j D iFeFD there exist positive onstntsD 0 < c < C < ∞D suh tht c x j,k 2 2 ≤ k∈Z x j,k φ j,k 2 L 2 ≤ C x j,k 2 2 , @QFQRA
nd hene there is unique representtion of f j ∈ V j in this sisX f j = k∈Z x j,k φ j,k F purthermoreD if the iesz property @QFQRA is stis(ed for ny j ∈ N 0 D for c nd C independent of jD then the set (φ j,k ) j∈N 0 is sid to e uniformly stleF gonsidering now φ ∈ V 0 ⊂ V 1 D we de(ne twoEsle reltionX

φ(x) = k∈Z a k φ(2x -k), @QFQSA
with (nitely supported msksX (a k ) k∈Z F por instneD for the ox funtionD a 0 = a 1 = 1D nd a k = 0 otherwiseD following @QFISAF gonsidering @QFQQA for V j ⊂ V j+1 yields

φ j,k = 1 √ 2 n∈Z a n φ j+1,2k+n . @QFQTA
essuming tht the set (φ j,k ) k∈Z is n orthonorml sis of V j suh tht

P j f := k∈Z f, φ j,k φ j,k , @QFQUA
the wvelet ψ is onstruted y

ψ(x) = k∈Z b k φ(2x -k), @QFQVA with b k = (-1) k a 1-k F his (ψ j,k
) k∈Z is then oneived s n orthonorml sis of the orthogE onl omplement W j = V j+1 ∩ V ⊥ j D de(ning the orthogonl projetionX

Q j f = (P j+1 -P j )f = k∈Z f, ψ j,k ψ j,k , @QFQWA
nd thus f n e written on n orthonorml sis of L 2 (R)X

f = P 0 f + j∈N 0 Q j f, f = k∈Z f, φ 0,k φ 0,k + j∈N 0 k∈Z f, ψ j,k ψ j,k .        @QFRHA
ith this representtionD the equivlene of norms of the funtion nd the wvelet deomE position @QFQHA previously estimtedD holds nturlly s onsequene of the iesz property SW @QFQRA for orthonorml sisX c = C = 1D iFeFD the rsevl9s identityF xeverthelessD in order to otin more urte representtionsD the min ide is to uild sling funtions @QFQSA with omposition of pieewise polynomilsD iFeFD fEsplinesD suh tht the set of wvelet @QFQVA hs N vnishing polynomils momentsX P, ψ j,k Σ j,k = 0, @QFRIA for ny polynomil P ∈ P N -1 D where Σ j,k := supp ψ j,k F end onsequently we otin pproxiE mtions of order N ghhHRD

| f, ψ j,k | = inf P ∈P N -1 | f -P, ψ j,k | ≤ inf P ∈P N -1 f -P L p (Σ j,k ) ψ j,k L q (Σ j,k ) ≤ C2 -j N + 1 2 -1 p |f | W N p (Σ j,k
) , @QFRPA using rölder9s inequlity nd thus p + q = 1D with the ssumption tht

ψ j,k L q (Σ j,k ) ≤ C2 -j 1 q -1 2 = C2 -j 1 2 -1 p , @QFRQA when ψ j,k L 2 (Σ j,k
) ≈ 1D nd sed on stndrd estimte on lol polynomil pproximtion @seeD eFgFD hVRAX inf

P ∈Pn f -P L p (Ω) ≤ C(diam Ω) n |f | W n p (Ω) .
@QFRRA he semiEnorm ssoited with the oolev spe W n p (Ω)X

W n p (Ω) := {f s.t. ∂ α f ∈ L p (Ω), |α| ≤ n} , @QFRSA is given y |f | W n p (Ω) := |α|=n ∂ α f p L p (Ω)
1/p F pinllyD in order to onstrut the sling funtion φ(x)D one hs to ompute the msks into @QFQSA suh tht n∈Z a n a n+2k = 2, k = 0, 0, k = 0, @QFRTA ording to @QFQTAD to gurntee the orthonormlity of (φ j,k

) k∈Z nd (ψ j,k ) k∈Z Y nd n∈Z a n = 2, n∈Z (-1) n n m a n = 0, m = 0, . . . , N, @QFRUA
to otin order N D iFeFD N vnishing moments for the wvelet de(ned y @QFQVAF he onE strution of orthonorml wvelets oneived y huehies huVVD huWP onsiders then for N > 0D set of (a n ) supported on {0, . . . , 2N -1}D suh tht the resulting φ (N ) omptly supported on [0, 2N -1]D genertes orthonorml shifts nd yields pproximtions of order N F roweverD exept for φ (1) whih is the (rst order rr wvelet deompositionD no expliit expressions existF he onstrution of this orthonorml fmily of wvelets of ritrry order pproximtion onE stituted rekthrough in the domin nd ledD for instneD to the onstrution of iorthogonl wvelets introdued y gohen et lF ghpWPD whih hve sueeded to somehow improve nd estlish more pproprite frmework for these tehniquesF

Biorthogonal Wavelets

he min ide of iorthogonl wvelet pproh is to reple the orthogonlity ssumption nd to introdue dul sling funtion φ long with φD so tht we hve

φ(x) = k∈Z a k φ(2x -k), φ(x) = k∈Z ãk φ(2x -k), @QFRVA with (nitely supported msks (a k ) k∈Z D (ã k ) k∈Z D nd with iorthogonl propertyX φ, φ(• -k) = δ 0,k , k ∈ Z. @QFRWA
ith this dul pir of sling funtionsD we n de(ne nonEorthogonl projetion

P j f := k∈Z f, φj,k φ j,k , @QFSHA
onto V j F sn the sme wyD dul pir of wvelets re de(ned

ψ(x) = k∈Z b k φ(2x -k), ψ(x) = k∈Z bk φ(2x -k), @QFSIA with b k = (-1) k ã1-k nd bk = (-1) k a 1-k Y nd the pirwise iorthogonlity propertyX ψ j,k , ψl,m = δ (j,k),(l,m) , k, m ∈ Z, j, l ∈ N 0 .
@QFSPA sn prtiulrD φ j,k , ψj,l = φj,k , ψ j,l = 0, @QFSQA nd we hve

Q j f = (P j+1 -P j )f = k∈Z f, ψj,k ψ j,k , @QFSRA
onto the nonEorthogonl omplement W j = V j+1 ∩ Ṽ ⊥ j F he pirs (φ j,k , ψ j,k ) nd ( φj,k , ψj,k ) re usully lled the priml sling funtion nd wveletD nd the dul sling funtion nd wveletD respetivelyF pinllyD if the set (φ j,k ) j∈N 0 is uniformly stle nd the set φ 0,k ∪ (ψ j,k ) j∈N 0 is iesz sis of L 2 (R)D there exists nother iesz sis given y φ0,k ∪ ( ψj,k ) j∈N 0 D whih stis(es the iorthogoE nlity property @QFSPAD nd suh tht f ∈ L 2 (R) hs the unique expnsions in the iorthogonl ses of L

2 (R)X f = k∈Z f, φ0,k φ 0,k + j∈N 0 k∈Z f, ψj,k ψ j,k , f = k∈Z f, φ 0,k φ0,k + j∈N 0 k∈Z f, ψ j,k ψj,k .        @QFSSA
king into ount the iesz property @QFQRAD it n e shown tht

c ∞ j=-1 k∈Z | f, ψj,k | 2 ≤ f 2 L 2 ≤ C ∞ j=-1 k∈Z | f, ψj,k | 2 , c ∞ j=-1 k∈Z | f, ψ j,k | 2 ≤ f 2 L 2 ≤ C ∞ j=-1 k∈Z | f, ψ j,k | 2 ,            @QFSTA
where ψ -1,k := φ 0,k nd ψ-1,k := φ0,k D nd thus tight reltion etween the funtion nd the oe0ient norm is preservedF TI he msks re determined in similr wy s in the previous orthonorml seD ounting this time for the dulity reltionsX

n∈Z ãn a n+2k = 2, k = 0, 0, k = 0.
@QFSUA he min dvntge of suh iorthogonl onstrution is tht it llows us higher degree of lierty with respet to orthogonl wveletsF por instneD omputing the priml sling funtion φ s ny fEsplineD the priml wvelet genertor ψ eomes diretly spline funtion with n expliit nlytil expression given y the pieewise polynomils ording to @QFSIAF yne my lso require tht the priml or dul sling funtionsD whih n e seen s omposition of pieewise funtions s in the previous seD stis(es some order onditions s given y @QFRUAF sn this wyD the iorthogonlity reltions imply tht the generted priml or dul wvelets inherit ritrry N or Ñ vnishing momentsD nd thus dey of 2 -jN or 2 -j Ñ when f hs ounded derivtivesD following @QFRPAF prom prtil point of viewD this )exiility yields simple implementtions while the theoretil frmework gurntees good mthemtil propertiesF es in the (rst rr9s seD we n de(ne fst wvelet trnsform tking into ount oth the stndrd nd wvelet representtions for given J > j 0 > 0X

f J = k∈Z c J,k φ J,k = k∈Z c j 0 ,k φ j 0 ,k + J-1 j=j 0 k∈Z d j,k ψ j,k , @QFSVA
where D for instneD nd similr to the twoEsle reltions @QFPSAD we n dedue more generl expressions sed on iorthogonl wveletsF e n thus dedue

c j,k = f, φj,k = f, 1 √ 2 n∈Z ãn φj+1,2k+n = 1 √ 2 n∈Z ãn c j+1,2k+n = 1 √ 2 n∈Z ãn-2k c j+1,n . @QFSWA
roeeding in the sme wy for the oe0ients d j,k D we (nlly hve

c j,k = 1 √ 2 n∈Z ãn-2k c j+1,n , d j,k = 1 √ 2 n∈Z bn-2k c j+1,n . @QFTHA
gomputing in the opposite diretion

f j+1 = k∈Z c j+1,k φ j+1,k = n∈Z c j,n φ j,n + n∈Z d j,n ψ j,n = n∈Z c j,n 1 √ 2 k∈Z a k-2n φ j+1,k + n∈Z d j,n 1 √ 2 k∈Z b k-2n φ j+1,k = k∈Z 1 √ 2 n∈Z c j,n a k-2n + n∈Z d j,n b k-2n φ j+1,k , @QFTIA yields c j+1,k = 1 √ 2 n∈Z c j,n a k-2n + 1 √ 2 n∈Z d j,n b k-2n .
@QFTPA TP he reursive opertions @QFTHA nd @QFTPAD de(ne the diret nd inverse wvelet trnsforms 

W : c J → d J nd W -1 : d J → c J D
∂ t u = Φ(u), x ∈ R d , t > 0, u(0, x) = u 0 (x) x ∈ R d , @QFTQA with u : R × R d → RD u 0 ∈ RD nd Φ(u) = ∂ x • (D(u)∂ x u) -∂ x • g(u) + f (u), @QFTRA
for g(u) = (g i (u)) i=1,...,d nd g i : R → RF fsed on the wvelet deomposition theoretil frmework previously desriedD feylkin et lF fgWI used wvelet trnsforms to design fst multiresolution lgorithms for mtrixEvetor multiplition whih were lter used in iyWR to solve liner hyperoli nd proli initil vlue prolemsF elterntivelyD vindrt 8 hmithin vWH nd wdy 8 vel wWP introdued some multiresolution shemes with qlerkinEtype pproh with respet to wvelet sis for the furgers9 equtionD wheres fry et lF fwWP developed wvelet sed speGtime dptive method for proli nd hyperoli prolemsF purther studies developed ollotionEsed dptive wvelet methods to solve his with generl oundry onditions @seeD eFgFD the work of silyev et lF in WSD WTD WUAF enother wveletE sed fmily of dptive method for his fHHD sHQD ws uilt upon the soElled seond genertion wvelets developed y weldens weWSD weWVD whih utterly led to timeGspe dptive wvelet methods @see euHT nd referenes thereinAF sn generlD the min ide in these methods ws to entirely solve the his in the wvelet sis y (rst omputing ll nonliner nd di'erentil opertors on n pproprite sisD disretized over set of di'erent gridsF es onsequeneD sequene of lgeri prolems issued from the dptive disretized representtionsD needed to e solved to dvne the solution in time7 F e reent review on wvelet methods for gph n e found in IHF xeverthelessD di'erent pproh tht we will present in the followingD ws introdued y rrten rrWRD rrWSD nd settled more pproprite nd generl frmework for multiresoE lution shemes for the solution of hyperoli onservtion lwsD iFeFD Φ(u) = -∂ x • g(u)F hese developments utterly led to the introdution of fully dptive multiresolution (nite volume shemesD introdued y gohen et lF guwHQF ixtensions to retionEdi'usion or retionE onvetionEdi'usion wre lter performed @seeD eFgFD HPD fHQD ffHVD fffHWAF he notion of multiresolution nlysis ws lso extended to nested unstrutured grids in egWSD erWVD urviliner grid pthes in hqwwHID fqwr + HQD nd to ellEentered trinE gles for more omplex geometries in ghuHHF yn the other hndD nother multiresolution pproh onsiders pointEvlued lgorithms insted of the ellEverged (nite volume sheme rrWSD ghHIF hese issues will not e disussed in this work nd we refer to the given iliogrphy for more detiled informtionF ithout loss of generlityD we perform then nested (nite volume disretiztions of the generl prolem @QFTQAF por j = 0, 1, • • • , JD from the orsest to the (nest gridD we uild regulr

TQ disjoint prtitions @ellsA (Ω γ ) γ∈S j of n open suset Ω ⊂ R d D suh tht eh Ω γ D γ ∈ S j D is the
union of (nite numer of ells Ω µ D µ ∈ S j+1 D nd thus S j nd S j+1 re onseutive emedded gridsF he index j refers thus to the sle level nd we denote

|γ| := j if γ ∈ S j , @QFTSA
with the revited nottion

Ω γ := Ω j,k D where k ∈ Z d F por instneD we n onsider the univrite dydi intervls in IhD d = 1X Ω γ = Ω j,k := [2 -j k, 2 -j (k + 1)], γ ∈ S j := {(j, k) s.t. j ∈ N 0 , k ∈ Z}.
@QFTTA he sme follows for higher dimensionsF

Multiresolution Analysis

e denote U j := (u γ ) γ∈S j s the sptil representtion of u on the grid S j D where u γ represents the ellEverge of u :

R × R d → R in Ω γ X u γ := |Ω γ | -1 Ωγ u(t, x) dx, x ∈ R d .
@QFTUA ht t di'erent levels of disretiztion re relted y two interElevel trnsformtions whih re de(ned s followsX IF he projetion opertor P j j-1 D whih mps U j to U j-1 F st is otined through ext verges omputed t the (ner level y

u γ = |Ω γ | -1 |µ|=|γ|+1,Ωµ⊂Ωγ |Ω µ |u µ .
@QFTVA es fr s grids re nestedD this projetion opertor is ext nd unique gohHHF PF he predition opertor P j-1 j D whih mps U j-1 to n pproximtion Ûj of U j F here is n in(nite numer of hoies to de(ne P j-1 j D ut t lest two si onstrints re usully imposed guwHQX @A he predition is lolD iFeFD ûµ depends on the vlues u γ on (nite stenil R µ

surrounding Ω µ D where |µ| = |γ| + 1F @A he predition is onsistent with the projetion in the sense tht

u γ = |Ω γ | -1 |µ|=|γ|+1,Ωµ⊂Ωγ |Ω µ |û µ ; @QFTWA
iFeFD one n retrieve the orse ell verges from the predited vluesX

P j j-1 • P j-1 j = Id. @QFUHA
sn prtiulrD this property implies tht the stenil R µ must ontin the unique index γ suh tht

|µ| = |γ| + 1 nd Ω µ ⊂ Ω γ F
TR ith these opertorsD we de(ne for eh ell Ω µ the predition error or detil s the di'erene etween the ext nd predited vluesX

d µ := u µ -ûµ , @QFUIA
or in terms of interElevel opertionsX

d µ = u µ -P |µ|-1 |µ| • P |µ| |µ|-1 u µ . @QFUPA
he onsisteny ssumption @QFTWA nd the de(nitions of the projetion opertor @QFTVA nd of the detil @QFUIAD imply

|µ|=|γ|+1,Ωµ⊂Ωγ |Ω µ |d µ = 0.
@QFUQA e n then onstrut s shown in guwHQD detil vetor de(ned s D j = (d µ ) µ∈∇ j D where the set ∇ j ⊂ S j is otined y removing for eh γ ∈ S j-1 D one µ ∈ S j suh tht Ω µ ⊂ Ω γ D in order to void redundny from expressions @QFUIA nd @QFTWAD nd to get oneEtoEone orrespondeneX U j ←→ (U j-1 , D j ), @QFURA issued y opertors P j j-1 nd P j-1 j F por instneD in the univrite dydi se @QFTTA the detil vetor is given y

D j = (d j,k ) k∈Z with d j,k = u j,k -ûj,k F fy itertion of this deompositionD we (nlly otin multiEsle representtion of U J in terms of M J = (U 0 , D 1 , D 2 , • • • , D J )X M : U J -→ M J , @QFUSA nd similrlyD its inverse M -1 F

Wavelet Representation

sn the se where P j-1 j is linerD we hve

ûµ := γ c µ,γ u γ , @QFUTA
nd M nd M -1 re simply hnges of sisF fsed on the previous theoretil studiesD we n then identify wvelet representtion guwHQ y de(ning for U j the dul sling wvelet φγ in @QFTUAX

u γ := u, φγ , @QFUUA suh tht φγ := |Ω γ | -1 χ Ωγ , @QFUVA
nd where ording to @QFUTA

d µ := u µ -ûµ = u, φµ - γ c µ,γ u, φγ = u, ψµ , @QFUWA de(nes the dul wvelet ψµ X ψµ := φµ - γ c µ,γ φγ . @QFVHA
he multiresolution representtion M J n e then written s

M J = (d λ ) λ∈∇ J = ( u, ψλ ) λ∈∇ J , @QFVIA
TS whih orresponds extly to d J in the de(nition of the wvelet trnsform @QFPVAD where we hve de(ned ∇ J := J j=0 ∇ j with ∇ 0 := S 0 D nd where d λ = u λ nd ψλ = φλ if λ ∈ ∇ 0 F ith this representtionD the multiresolution representtion will e of order N if for ll u ∈ P N -1 nd for ll λ ∈ ∇ J D we hve u, ψλ = d λ = 0, @QFVPA tht isD if the wvelet ψλ hs N vnishing momentsF e n then uild predition opertor suh tht the ssoited dul wvelet is of order N F e stndrd proedure de(nes P j-1 j sed on polynomil interpoltions of order N F por instneD for the univrite dydi se @QFTTAD onsidering entered stenil (u j,k-M , . . . , u j,k+M ) nd the unique polynomil of degree 2M suh tht

2 j Ω j,l p j,k (x) dx = u j,l , l = k -M, . . . , k + M, @QFVQA
we n de(ne the predition pproximtion tking into ount the onsisteny property @QFTWA guwHQX

ûj+1,2k = 2 j+1 Ω j+1,2k p j,k (x) dx, ûj+1,2k+1 = 2 j+1 Ω j+1,2k+1 p j,k (x) dx. @QFVRA
his proedure is ext for polynomils of degree 2M D iFeFD it hs ury order N = 2M + 1F es n illustrtionD for M = 1D the predition opertor is expliitly given yX

ûj+1,2k = u j,k + 1 8 (u j,k-1 -u j,k+1 ), ûj+1,2k+1 = u j,k + 1 8 (u j,k+1 -u j,k-1 ). @QFVSA
righer order formul n e found in wülHQD nd will e introdued in ghpter UF por grtesin gridsD extension to multidimensionl polynomil interpoltions is esily otined y tensoril produt of the Ih opertor frWUD fHQF king into ount the estimte @QFRPAD lol smoothness results in stronger size redution of the orresponding wvelet oe0ients for higher pproximtion ordersF xeverthelessD more urte pproximtion formule require lso lrger stenilD eFgFD for the dydi Ih se @QFTTA nd ording to @QFVQAX

R j,k = {(j -1, k/2 + l) s.t. |l| ≤ M } . @QFVTA

Data Compression and Tree-Structured Data

yne of the min interests of rrying out suh multiEsle deomposition is tht this new representtion @QFVIAD de(nes whole set of regulrity estimtes ll over the sptil dominD nd thus dt ompression might e hievedF qiven set of index Λ ⊂ ∇ J D we de(ne truntion opertor T Λ D tht leves unhnged the omponent d λ if λ ∈ ΛD nd reples it y 0D otherwiseF sn prtieD we re interested in sets Λ otined y thresholdingX

λ ∈ Λ if |d λ | ≥ ε |λ| , @QFVUA
with the levelEdependent threshold vlues (ε 0 , ε 1 , . . . , ε J )F ht ompression is then hieved y disrding the ells whose detils re not into Λ ording to @QFVUAF epplying T Λ on the multiEsle deomposition M J of U J mounts to uilding n pproximtion A Λ U J D where the opertor A Λ is given y

A Λ := M -1 T Λ M. @QFVVA king into ount tht u = j∈N 0 |λ|=j u, ψλ ψ λ , @QFVWA TT
it n e seen tht for given JD the rry Ψ J,λ with |λ| ≤ JD orresponds to the ell verges of the priml wvelet ψ λ t level JD iFeFD Ψ J,λ = ( ψ λ , φγ ) γ∈S J F e n thus de(ne the normlized norm 1 y

U J := 2 -dJ λ∈S J |u λ |, @QFWHA
whih orresponds to the L 1 Enorm of pieewise onstnt funtionF por Ψ J,λ D this yields

Ψ J,λ ≤ C ψ λ L 1 ≤ C2 -d|λ| . @QFWIA end for the thresholded representtion of U J fter pplying A Λ guwHQX U J -A Λ U J = λ =Λ d λ Ψ J,λ ≤ C λ =Λ |d λ |2 -d|λ| = C |d λ |≤ε |λ| |d λ |2 -d|λ| , @QFWPA
where we see tht the pproximtion error is ounded y the sum of the disrded detilsF king into ount tht

|d λ |2 -d|λ| ≤ ε |λ| 2 -d|λ| D nd onsidering levelEwise threshold prmE eterX ε j := 2 dj η, @QFWQA the next ound follows 8 U J -A Λ U J ≤ C#(∇ J )η = C#(S J )η ≤ C2 dJ η, @QFWRA
with the utious ssumption tht ll the d λ suh tht λ / ∈ ΛD re equl to ε |λ| D lthough mny of them might e muh smllerF he ltter estimte @QFWRA justi(es the hoie η = 2 -dJ ε in order to hve

U J -A Λ U J ≤ Cε, @QFWSA
with the levelEdependent threshold vlues proposed y rrten rrWRD rrWSX

ε j = 2 d(j-J) ε, j ∈ [0, J], @QFWTA
where ε eomes the threshold vlue for the (nest level JF xeverthelessD llegedly useless detils nnot e deliertely deleted euse ertin dt struture must e respeted in order to perform the di'erent omputtions ssoited with the multiEsle trnsformtion itselfD minly the predition opertorF he set Λ must then exhiit grded tree struture in order to gurntee the vilility of ell vlues within the lol predition stenilF sn order to de(ne suh strutureD we (rst introdue the following terminologyX

• sf Ω µ ⊂ Ω λ with |µ| = |λ| + 1D we sy tht Ω µ is hild of Ω γ D nd tht Ω γ is the prent of Ω µ F • fy the de(nition of ∇ j D if Ω λ hs N (Ω λ ) hildrenD N (Ω λ )-1 of them re in ∇ := j≥0 ∇ j F
e ll these ells the detil hildren of Ω λ F

• woreoverD we de(ne the leves L(Λ) of tree Λ s the set of Ω λ with λ ∈ L(Λ) suh tht Ω λ hs no hildren in ΛF

• pinllyD we de(ne Ω λ s root when it elongs to the orsest gridD tht isD λ ∈ S 0 or |λ| = 0D in whih seD we denote λ s λ 0 F TU e set of indies Λ ∈ ∇ is tree if the following holds guwHQX

• he fundmentl level ∇ 0 = S 0 is ontined in ΛF • sf Ω µ nd Ω υ re detil hildren of the sme Ω λ D then µ ∈ Λ if υ ∈ ΛF
• sf Ω λ is suh tht its detil hildren re in ΛD then the prent of Ω λ hs the sme propertyF por the Ih dydi on(gurtion @QFTTAD Λ is tree if

∇ 0 ∈ Λ nd 9 (j, k) ∈ Λ ⇒ (j -1, k/2 ) ∈ Λ. @QFWUA he set R(Λ) ontins the tree Λ plus the missing ells Ω λ in the onstrution of ∇ j F e tree Λ is thus grded if for ll µ ∈ R(Λ)D the predition stenil R µ is ontined in R(Λ)F goming k to the dydi exmpleD Λ is grded tree if (j, k) ∈ R(Λ) ⇒ (j -1, k/2 + l ) ∈ R(Λ), |l| ≤ M. @QFWVA
he(ning Λ ε s the smllest grded tree ontining Λ given y @QFVUAD we introdue the orE responding tree pproximtion opertor

A ε := A Λε = M -1 T Λε MD following @QFVVAF ine Λ ⊂ Λ ε D it follows diretly tht U J -A ε U J ≤ Cε. @QFWWA

Fully Adaptive Multiresolution Scheme

he previous multiresolution nlysis for the solution of his ws (rst introdued y rrten rrWRD rrWS in the ontext of hyperoli onservtion lwsF gonsidering prolem @QFTQAD we represent the numeril pproximtion of its solution t (n+1)∆t y (nite volume sheme given y

V n+1 J = V n J -B n J , @QFIHHA
onsidering (ne sptil disretiztion with grid S J F he set V n J := (v n λ ) λ∈S J is the rry ontining the numeril solution t time n∆tD wheres B n J := (b n λ ) λ∈S J ounts for the nuE meril omputtion etween n∆t nd (n+1)∆t of )uxes nd soure terms on the (nite volume disretiztionF sn the originl frmework rrWRD rrWSD guwHQD wülHQD B n J onsiders only the numeril )uxes of the hyperoli opertorF he min ide is then to de(ne solution U n J tht pproximtes V n J D omputed this time on the dptive nd thereforeD ompressed grid generted y the multiresolution trnsformF prom prtil point of viewD this dt ompression implies importnt svings in omputtionl resoures ompred with the referene solution @QFIHHAD performed on uniform gridF roweverD it will nturlly introdue n dditionl errorX

a n := U n J -V n J , @QFIHIA
whih should e ontrolledF o limit these pproximtion errors introdued y multiresE olution tehniqueD rrten rrWRD rrWS onsidered originlly ompressed representtion nd omputtion only for the )uxes B n J D tking into ount tht these ones represent the highest omputtionl e'ort for the solution of onservtion lwsF fsed on these idesD gohen et lF guwHQ introdued then the pproprite mthemtil kground for fully dptive multiresolution sheme whih performs ll omputtions on the dpted gridF TV e hve previously seen tht the multiEsle pproh is sed on solid mthemtil frmeE work tht gurntees ompressed representtion of disretized funtions within presried tolerneF xeverthelessD for the solution of time evolution his we hve to onsider moving meshesF he min di0ulty of suh tehnique is thus to de(ne pproprite riteri tht gurntee the previous pproximtion estimtesD even for time vrying on(gurtionsF wore preiselyD given the grded tree Λ n ε issued from the pplition of A ε to some U n J D rrten proposed to enlrge Λ n ε into lrger grded tree Λn+1

ε whih should ontin oth Λ n ε nd Λ n+1 ε suh tht U n J -A Λn+1 ε U n J ≤ Cε, U n+1 J -A Λn+1 ε U n+1 J ≤ Cε, @QFIHPA
ording to @QFWWAD where U n+1 J = E J U n J D with the time evolution opertor E J pplied on grid S J F he reltions given in @QFIHPA re often referred s the rrten9s heuristis nd de(ne grded tree Λn+1 ε suh tht the solution t oth n∆t nd (n + 1)∆t re orretly representedF sn prtieD Λn+1 ε should not e muh lrger thn Λ n ε nd it is usully derived from the size of the urrent detil oe0ientsF e re(nement opertor R is therefore introdued whih llows us to onstrut Λn+1

ε suh tht T Λn+1 ε := RT Λ n
ε F por the univrite dydi se @QFTTAD rrten proposed the following re(nement riteri rrWRD rrWSX

IF sf (j, k) is in Λ n ε D then (j, k) nd its 2 k neighors t the sme sle j re inluded in Λn+1 ε X (j, k) ∈ R(Λ n ε ) ⇒ (j, k + l) ∈ R( Λn+1 ε ), |l| ≤ k. @QFIHQA
PF gurrent vlues of detils re used to predit detils t the next sle nd thus new levels re lolly dded in Λn+1

ε X |d n j,k | Λ n ε ≥ 2 N +1 ε j ⇒ (j + 1, 2k + l) ∈ R( Λn+1 ε
), l = 0, 1. @QFIHRA he (rst riterion tkes into ount possily moving solution where k n e hosen D for instneD s the support of the numeril )ux evlutionD or n e sed on the speed of propgtion of the solutionsF sn prtiulr for expliit time integrtion of hyperoli prolemsD k = 1 is often su0ientD issued from stndrd gpv onditionF yn the other hndD the seond riterion ounts for possile loss of smoothness during ∆t nd thereforeD the need of dding sles to the treeF st is sed on the estimte @QFRPAD for whih funtion u with lolly C s smoothness in the support Σ j,k of the dul wveletD we hveX

d j,k ∼    2 -js ∂ s x u| Σ j,k , 0 ≤ s ≤ N, 2 -jN ∂ N x u Σ j,k , s > N, @QFIHSA nd hene |d j+1,2k | ≈ 2 -N |d j,k |, N = min(s, N ). @QFIHTA rrten proposed 1 ≤ N ≤ N -1Y neverthelessD N =
N is often onsidered wülHQD where we rell tht N stnds for the vnishing moments of the dul wvelet nd onsequently for the ury order of the polynomil interpoltions @QFVRAF he rrten9s multiresolution sheme omputes then the ell verges y

U n+1 J = U n J -A Λn+1 ε B n J , @QFIHUA
where A Λn+1 ε B n J is reonstruted on the (nest grid J y the predition opertorD from the (b n λ ) λ∈L( Λn+1 ε ) omputed t the dpted gridD iFeFD t the leves of the tree Λn+1

ε X L( Λn+1 ε )F Sect. 3.3 -Adaptive Multiresolution Finite Volume Scheme TW
por the )ux evlution nd sine the grids re nestedD the omputtion on the dpted grid supposes then onsidering the ell verges t the (nest level (u n λ ) λ∈S J ut only those t the edges of the orresponding dpted gridF por hyperoli prolemsD the redution of the numer of ells needed for )ux omputtions involves n importnt gin in g timeF yn the other hndD the time evolution @QFIHUA tkes ple on the (nest disretiztion S J D nd thus implies omplexity of O(N J ) opertions for N J = #(S J ) ellsF sn this ontextD rrten9s heuristis @QFIHPA implies nturlly tht

B n J -A Λn+1 ε B n J ≤ Cε. @QFIHVA
sn prtiulrD for ε → 0D rrten9s nd referene solutions eome loser nd thus a n → 0 into @QFIHIAF hereforeD the error a n is usully referred s the perturtion errorF purthermoreD supposing tht the referene sheme stis(es for some (xed C ≥ 0 nd ll UD VX

E J U -E J V ≤ (1 + C∆t) U -V , @QFIHWA
we n ound the error with respet to the referene (nite volume sheme @QFIHHA y onsidering

a n ≤ E J U n-1 J -E J V n-1 J + E J U n-1 J -U n J ≤ (1 + C∆t)a n-1 + c n , @QFIIHA where c n := B n-1 J -A Λn ε B n-1 J , @QFIIIA
represents the re(nement error tht mesures the error pproximtion of

B n-1 J on the dptive set Λn ε D re(ned from Λ n-1 ε F e thus hve a n ≤ n-1 i=0 Cε(1 + C∆t) i = Cε (1 + C∆t) n -1 ∆t ≤ C ε ∆t e CT -1 , @QFIIPA
for some (xed time T = n∆tF sn prtiulrD if C = 0 into @QFIHWAD we otin rrWSX

a n ≤ n i=1 c i ≤ Cnε = C T ∆t ε, @QFIIQA
whih orresponds lso to estimte @QFIIPA whenever T is smll enoughF sn this wyD the threshold prmeter ε of the multiresolution deomposition eomes n ury tolerne of the orresponding dpted nd ompressed sptil representtionF sn order to redue the omplexity of the rrten9s sheme @QFIHUA nd to further exploit the dpted multiresolution representtionsD gohen et lF guwHQ introdued fully dptive multiresolution shemeD for whih U n J is represented this time on the dpted gridD iFeFD on the leves of the orresponding grded tree L(Λ n ε )F es onsequeneD the time evolution E J is performed only on the dpted representtionF reneD onsidering the grded tree 

Λ n ε nd U n J represented y the set (u n λ ) λ∈L(Λ n ε ) D or equivlently y (d n λ ) λ∈Λ n ε D we ompute U n+1
t time (n + 1)∆t is omputed on L( Λn+1 ε ) y ũn+1 λ = u n λ -bn λ , λ ∈ L( Λn+1 ε ), @QFIIRA
where the set ( bn ) opertionsD performed on the dpted representtionD nd n importnt redution of oth g time nd memory requireE ment is hievedF hile performing fully dptive omputtionD two ruil spets must e tken into E ountF he (rst one is ommon to the stndrd rrten9s sheme nd dels with the proper de(nition of re(nement opertor R suh tht the rrten9s heuristis @QFIHPA is stis(edF yne possiility onsiders D for instneD rrten9s re(nement riteri @QFIHQA nd @QFIHRAD s previously detiledF he seond di0ulty is to de(ne the omputtion of the ( bn

λ ) λ∈L( Λn+1 ε ) is diretly omputed from the set (u n λ ) λ∈L( Λn+1 ε ) D on the dpted gridF • hresholdingF he numeril solution U n+1 J is (nlly otined y thresholding Ũn+1 J ording to U n+1 J = A ε Ũn+1 J , @QFIISA
λ ) λ∈L( Λn+1 ε )
into @QFIIRAD now tht the u n λ re not lwys ville t the (nest level JD in opposition to the stndrd rrten9s tehniqueF por the )ux evlutions ( bn λ ) λ∈L( Λn+1 ε ) D there re minly three lterntives guwHQD wülHQX

• ixt )ux evlutionF st reonstruts lolly y predition opertor the ell verges u n λ t the (nest level J long the edges of the dpted gridsF he )uxes re then omputed on the dpted grid using dt t the (nest levelF his is the proedure initilly proposed in guwHQ s ext lol reonstrutionF he reonstruted ells re usully lled phntom ells nd re temporrily reted in order to perform the )ux evlutionsF he required numer of phntoms is given y the numer of ells in the )ux evlution stenilsF he time evolution @QFIIRA is nevertheless omputed only on the levesF st is importnt to notie tht the grdution of the tree must tke lso into ount the ells in the predition stenils needed to uild the phntomsF • volly unstrutured )ux evlutionF st omputes the )uxes long the edges of the dpted grids using the ville dtF hntom ells re therefore not neededF his muh more eonomi nd simple strtegy denoted s diret evlution in guwHQD might nevertheless eome quite inurte in the orsest regions for low order )ux omputtionsF

• volly strutured )ux evlutionF e third hyrid strtegy whih omines the previous onesD omputes lolly y predition opertor the phntom ells suh tht the )uxes n e evluted using dt on the sme re(nement levelF his mounts to lolly onsider uniform grids nd it is thus suited to numeril )uxes orresponding to strutured grids @seeD eFgFD fHQAF es in the (rst seD these phntoms re temporrily kept nd the grded tree must ontin their orresponding predition stenilsF his strtegy is nturlly less expensive thn n ext lol reonstrutionD nd in prtie no signi(nt loss of ury is expeted for phntoms omputed sed on high order reonstrution formule nd high order )ux evlution shemes guwHQD wülHQF UI es for the rrten9s shemeD we re interested in quntifying the dditionl error introdued in the generl numeril solution @QFIHHA y onsidering this time the fully dptive multiresE olution shemeF ht isD the perturtion error de(ned y @QFIHIAD where U n J orresponds this time to the solution fully omputed on the dpted grid nd (nlly reonstruted on the (nest grid S J F sing the sme umultive error nlysis s eforeD we then hve

a n ≤ E J U n-1 J -E J V n-1 J + E J U n-1 J -U n J ≤ (1 + C∆t)a n-1 + d n , @QFIITA
onsidering the vipshitz ondition @QFIHWAF por hyperoli prolem s onsidered in guwHQ with ext lol reonstrution of the )uxesD we hve tht @QFIIRA n e written s

Ũn+1 J = A Λn+1 ε E J U n J , @QFIIUA sine A Λn+1 ε U n J = U n J D nd the umultive error d n := E J U n-1 J -U n J is thus ounded y d n ≤ E J U n-1 J -Ũn J + Ũn J -U n J = c n + t n , @QFIIVA
where

c n := E J U n-1 J -A Λn ε E J U n-1 J = B n-1 J -A Λn ε B n-1 J , @QFIIWA
orresponds extly to the sme re(nement error s in the previous rrten9s sheme nd it will e ounded y Cε s long s the rrten9s heuristis @QFIHPA is stis(edF yn the other hndD ording to @QFIISA

t n := Ũn J -U n J = Ũn J -A ε Ũn J , @QFIPHA
orresponds to thresholding error whih is lwys ounded y CεD sed on the multiresE olution deompositionD following @QFWWAF nder these onsidertions the previous error estiE mtes @QFIIPA nd @QFIIQA for the stndrd rrten9s sheme hold lso for the fully dptive multiresolution shemeD nd the perturtion error ssoited with the sptilly ompressed representtion n e onsequently tunedF sn prtiulrD rigorous setting for the rrten9s heuristisD tht isD n pproprite re(nement riteri tht ensures @QFIHPA ws introdued in guwHQ in order to mthemtilly prove tht the re(nement error c n is indeed ounded y Cε for oth rrten9s nd the fully dptive multiresolution shemesF xeverthelessD lthough there is no rigorous mthemtil proof on the reliility of the rrten9s re(nement riteri @QFIHQA nd @QFIHRAD they were shown to e su0ient in prtie guwHQD wülHQD fvwHRD rwIHD nd hene they re often used insted of the more sophistited riE teri introdued in guwHQF wore reentlyD rovhnnisyn 8 wüller extended the vlidity of estimtes @QFIIPA nd @QFIIQA to fully dptive multiresolution for inhomogeneous onserE vtion lws rwIHD y using polynomil reonstrution of the )uxes @insted of the ext lol reonstrution in guwHQAD nd soure pproximtions sed on qudrture ruleF imilrlyD the onvergene of multiresolution pproximtions for nonliner onservtion lws towrds the unique entropy solution ws lso demonstrted y goquel et lF in gIID for multiresolution tehnique tht employs lol time stepping toolsD introdued y ferger 8 golell in fgVW for lssil ew pplitionsF vet us remrk tht in ll sesD the perturtion errors @QFIIPA nd @QFIIQA mesure the nuE meril errors ssoited with the multiresolution representtion with respet to referene disretized solution V n J D t the (nest gridF he numeril pproximtions relted to the spe disretiztion of prolem @QFTQA re therefore not ontempltedD nd hene the perturtion errors ount only for the supplementry error introdued y the sptilly ompressed repE resenttionF he ltter informtion onstitutes nevertheless n indispensle tool to properly evlute the e0ieny of the numeril method nd to monitor the ury of the numeril simultionsF woreoverD it represents mjor dvntge of multiresolution shemes with reE spet to other dptive grid tehniquesF yn the other hndD the e'etive spe disretiztion error in the numeril solutions is settled in this se y the (nite volume disretiztionD more preisely y its orderD nd will proportionlly derese with (ner mesh representtions for oth uniform or dpted gridsF sn this prtD we introdue few mthemtil nd numeril tools for the numeril solution of sti' hisF ghpter R dels with the numeril simultion of multiEsle reting frontsF st onsiders new numeril strtegy uilt upon the theoretil kground previously preE sented in rt sD nd minly sed on dedited splitting sheme for sti' retionEdi'usion prolems oupled with multiresolution deompositionF he performne nd pilities of the method re evluted through IhD PhD nd Qh numeril simultions ofD respetivelyD trvelingD spirlD nd sroll hemil wves rising in the study of nonliner hemil dynmisF ghpter S introdues new time stepping tehnique for the numeril integrtion of hisD sed on n emedded splitting methodF he numeril nlysis is onduted s well s omE plementry theoretil nd numeril studiesF his new tool is implemented in the numeril strtegy of ghpter RD nd extends its domin of pplition to more omplex prolemsF pinllyD ghpter T explores new numeril strtegy sed on opertor splitting nd the prrel lgorithmD numeril tehnique for prlleliztion of the time dominF e omplete numeril nlysis of the sheme is performed in the ontext of multiEsle wves with high sptil grdientsF xumeril illustrtions re lso onsidered for hemil wvesD nd llow us to omplete the theoretil study y prtil implementtion nd some numeril resultsF Chapter 4

New Resolution Strategy for Multi-Scale Reactions Waves his hpter desries new numeril strtegy tht hs een developed in this work for the solution of multiEsle retion wvesD modeled y sti' retionEdi'usion systemsF he numeril tools introdued in this hpter re sed on the previous mthemtil nd theoE retil kground presented in rt sF sn this wyD we onsider the mthemtil desription of the splitting errors disussed in ghpter I in the ontext of sti' hisD s well s the time integrtion of the split susystemsD the retion nd di'usion prolemsD tking into ount the numeril methods desried in ghpter PF he spe dptive multiresolution tehniques detiled in ghpter Q re lso tken into onsidertionF es onsequeneD this new numeril strtegy im t merging theoretil nd numeril spets mentioned in the previous hpters nd in the referred litertureD with few new elements into novel nd roust solver for the numeril simultion of retion wvesF he resulting method onstitutes the min ore of the glol numeril strtegy implemented in the wfeii odeF sn prtiulrD this study ws pulished in sew tournl on ienti( gomputing hwh + IPD nd hs een presented s well during the gvis QTth vtin emerin snformtis gonfereneD esuniónD rguy @PHIHA hwv + IIF

Context and Motivation

sn this prtD we tkle the numeril simultion of retionEdi'usion equtions modeling multiE sle retion wvesF his type of prolem indues peulir di0ulties nd potentilly lrge sti'ness whih stem from the rod spetrum of temporl sles in the nonliner hemil soure termD s well s from the presene of steep grdients in the retion frontsD sptilly very lolizedF e hve previously seen in the qenerl sntrodution tht mny numeril strtegies hve een developed in the pst yers to ope with these prolemsF ine the nuE meril solution of the fully oupled prolem is most of the time out of reh nd involves importnt omputtionl investmentsD nd on the other hnd the pproprite de(nition of redued models is usully di0ult to estlish nd furthermore is intrinsilly prolem deE pendentD lterntive numeril strtegies hs een lso developedF sn this ontextD swi methods llow us to overome some importnt numeril restritions nd yield very e0ient implementtion s rie)y disussed in the qenerl sntrodutionF xeverthelessD in this work we re prtiulrly interested in time opertor splitting methods desried with more detils in ghpter IF vet us remrk tht the min dvntge of swi shemes with respet to splitting tehniques is tht no splitting errors re introduedF yn the other hndD oth swi nd splitE UT ting methods re rther low order shemes sine the order onditions for higher order swi shemes re often umersome for prtil implementtions @see remrks in HRD rHRAF e splitting proedure llows us to onsider dedited solvers for eh suprolem nd thus redues strongly the omputtionl omplexity of the numeril implementtionsF prom generl theoretil point of viewD to gurntee the ury of the solution otined y splitting shemeD the splitting time steps used for the independent solution of eh suprolem should e either tken of the order of the fstest sles inluded in the prolemD or relted to some prtiulr stility onstrintD or simply hosen su0iently smll in order to yield negligile splitting errorsF wny splitting strtegies tht im t reduing the omputtionl resoures for the numeril simultion of sti' prolemsD re often uilt suh tht the inner nd performing solvers for the suprolems ensure the glol ury order of the splitting shemeF he order is experimentlly evluted in simple on(gurtionsD nd the splitting time steps re then hosen in prtie suh tht the numeril simultions deliver qulittively good results for more omplex phenomen @seeD eFgFD yfHID xuHSD xHTD HVAF nfortuntelyD in the ontext of multiEsle sti' prolems for whih stility onstrints or the urte resolution of fst sles might eome ritilD the previous lterntives to hoose the splitting time step imply n importnt redution of the potentil performne nd ury of the numeril strtegyF e hve seen in ghpter I tht more rigorous studies for sti' on(gurtions @minly hwHRD hhvwHUAD sueeded to etter hrterize the ehvior of splitting shemes with splitting time steps muh lrger thn the fstest sles of the prolemD feture tht is ommon in ertin pplitionsD nd hene llowed us to omplement the lssil theoretil kground of these methods lredy ville for symptoti regimesF fsed on these reent mtheE mtil studiesD new time opertor splitting pproh hs een introdued in this workD whih exploits these theoretil results nd enlrges their prtil extent with n importnt gin of e0ienyF gontrry to lssil splitting strtegies tht onsider ritrrily smll or stility relted splitting time stepsD or in whih the ttention is rther onentrted on the inner solversD in the present strtegy the hoie of the splitting time steps ssumes the leding role in terms of ury of the time integrtion proessF his hoie oupled with dedited solvers ims t enhning the performne of the method ut within presried uryF sn this wyD the splitting time steps re expliitly de(ned to settle the overll ury of the numeril solutionD independent of the time sle spetrum of the prolemD nd on the sole sis of the physis of the glol phenomenon nd its deoupling pilitiesF sts hoie is therefore not relted to ny stility requirement of the numeril methods used to integrte eh susystemD even if strong sti'ness is presentF sn order to gurntee the vlidity of the mthemtil kground nd to exploit the speiE (ities of eh split susystemD dedited time integrtion methods must e hosen to del with the sti'ness ssoited with eh one of themD in seprte mnnerF sn ghpter PD we hve rie)y hrterized this sti'ness nd introdued some performing numeril methods tht hve een reently developedF fsed on these previous studiesD the present strtegy onE siders high order method like duS rWTD sed on impliit ungeEuutt shemes for sti' yhisD to solve the retion termY nd on the other hndD nother high order method like yguR edHPD sed on expliit stilized ungeEuutt shemesD to solve the di'usion prolemF he entire spetrum of temporl sles ssoited with eh suprolem n e e0E iently solved in n independent wyD while the glol ury of the time integrtion sheme is minly set y the splitting sheme through the hoie of the splitting time stepF en e'etive deoupling of the time sle spetrum is hieved with n importnt improvement of e0ieny UU whenever rod deoupling is physilly possileF he di'erent physil or numeril time sles ssoited with eh prolem n e then isolted nd treted independently y eh time integrtion method nd the splitting ompositionF his novel pproh to hoose the time integrtion solvers llows us lso to deouple the numerE il errors ssoited with eh prolem nd with the splitting shemeF gontrrilyD most splitE ting pplitions onsider solvers of the sme order thn the splitting sheme @seeD eFgFD uxWWD hfHHD xuHSAD for whih n intertion ours etween the severl numeril errors ssoiE ted with eh suprolem nd the splitting tehniqueF yn the other hndD in mny splitting strtegies @like the previously ited or vqHQA dedited impliit multiEstep methods suh s yhi ffrVW or vyhi rinVHD rinVQ hve een widely implemented with su0iently (ne tolernes for the numeril tretment of sti' retive termsD lso in opposition to the urrent pproh tht onsiders only oneEstep integrtion shemes 1 F sn this wyD the time integrtion strtegy oneived in this work under the mentioned riteri is quite generl nd n e implemented in priniple to ny sti' retionEdi'usion systemD wheres the sme ides n e nturlly extended to onsider other phenomenD for instneD onvetionD in the modE eling equtionsF sn prtiulrD the timeEstepping fetures of oth duS nd yguR with ury ontrol llow us to properly solve the initil fst trnsients previously disussedF he sme follows for other splitting pplitions either with the less e0ient multiEstep yhi or vyhi solvers for the retion prolem 2 D or with muh more expensive impliit LEstle solver s suggested y HSD HW for the di'usion term 3 F rtiulr dvntges n e drwn in the ontext of selfEsimilr propgting wves for whih onstnt splitting time steps re enough to pture the glol dynmis of the phenomenonD nd strong deoupling of the time spetrum n e hievedF o the est of our knowledgeD lmost ll the splitting implementtions in the literture developed for the numeril simulE tion of relisti sti' prolemsD were restrited to onstnt splitting time stepsF gonsidering the dequte hoie of higher order numeril methods with dptive time stepping sed on E ury riteriD the min error of the time integrtion in this implementtion is piloted y the splitting shemeD nd it is thus settled y the splitting time step even for sti' ses s reently proved hwHRD hhvwHUF he ltter n e omputed out of numeril error estimtes or sed on physil feture suh s the pro(le of the wvefront or its propgtion speedD whih usully feture sles muh slower thn the inner retive or di'usive hrteristi timesF sn prtieD the estimted splitting errors re lwys evluted for the semiEdisretized proE lemD iFeFD the referene oupled nd split solutions re onsidered disretized in speD so tht the spe disretiztion error is not tken into ount nd onsequently there is deoupling of time nd spe numeril errorsF uh n pproh llows us to perform the ltter nuE meril evlutions on su0iently representtive nd fesile omputtionl dominsD to then extrpolte the results to lrger domins out of reh of stndrd methodsD minly euse the splitting errors will no longer depend on the sptil disretiztionF he glol numeril error is then given y oth the splitting nd the spe disretiztion errorsD seprtely evluE tedD wheres from su0iently (ne sptil disretiztion it will e indeed set y the splitting errorsD ontrolled y the splitting time stepF UV feing wre of the interest of dptive mesh tehniques for prolems exhiiting lolly steep sptil grdients nd tht onsequently (ner sptil disretiztions eome fesileD the perforE mne of the time integrtion strtegy n e notly improved y sptil multiresolution tehnique sed on rrten9s pioneering work rrWRD rrWS nd the fully multiresolution shemes guwHQD wülHQD previously desried in ghpter QF yne of the min dvntges of suh method is tht for given semiEdisretized prolemD the error introdued y the orreE sponding ompressed sptil representtion n e etter ontrolledF iven though rigorous mthemtil proof of multiresolution errors for proli prolems is not yet villeD the mthemtil kground of wvelet deomposition llows us to justify nd vlidte suh hoie @seeD eFgFD HPD fHQD ffHVD fffHWAF e hve thus de(ned in this work few simple riteri to properly ouple for the (rst time spe dptive multiresolution pproh with dedited time opertor splitting for sti' prolemsF es onsequeneD this work introdues minly two new elements in the ontext of multiresoE lution pplitionsF pirstD n impliit time integrtion pt to hndle sti' prolems y mens of n opertor splitting pprohD onsidering tht n impliit integrtion over the whole omE puttionl domin involves high degree of lgorithmi omplexity for these sptilly dpted representtions nd more sophistited dt struturesF eondD new pproh in terms of deoupling of numeril errors is onsidered in whih we hve the splitting errors de(ned on the dpted gridD the sptil multiresolution representtion errors settled y the thresholdE ing prmeterD nd the sptil disretiztion errorsF sn this wyD for prolem represented with sptil disretiztion limited minly y the omputtionl resouresD the proposed wGsplitting strtegy llows us to trk the orresponding numeril errors of the simulE tionD introdued y the numeril methods of solutionD tking into ount tht the spe disretiztion errors re di0ult to evlute in prtie unless n nlytil solution is vilE leF purthermoreD the glol error of the numeril simultion will e suessfully monitored if su0iently (ne sptil disretiztion is hievedF he min gol of the proposed numeril strtegy is thus to perform omputtionlly performE ing simultions of multiEsle retion wves within presried ury nd with stndrd omputtionl resouresF 4.2 Construction of the Numerical Strategy he proposed numeril strtegy hndles generl retionEdi'usion systems of type @IFSPAF xeverthelessD in order to simplify the presenttion we shll onsider liner digonl di'usion like for system @IFSQAF prom prtil point of view nd omplementing the theoretil frmework of hpters I nd PD we perform sptil disretiztion of prolem @IFSQAD su0iently (ne to gurntee good desription of the physil prolem nd suh tht the sptil disretiztion errors re negligile with respet to the ones oming from the numeril time integrtionF e otin thus the semiEdisretized initil vlue prolemX

d t U -L U = F (U) , t > 0, U(0) = U 0 , @RFIA
where L orresponds to the disretiztion of the vplin opertor with the di'usion oefE (ients D withinF U nd F (U) re rrnged omponentEwise ll over the disretized sptil dominD nd stndD respetivelyD for the disretiztion of

U : R × R d → R m D nd F : R m → R m F

Time Operator Splitting

gonsidering stndrd deoupling of the di'usion nd retion prts of @RFIAD we denote X ∆t U 0 s the numeril solution of the di'usion eqution4 X

d t U D -L U D = 0, t > 0, @RFPA
with initil dt U D (0) = U 0 fter n integrtion time step ∆tF e lso denote y Y ∆t U 0 the numeril solution of the retion prtX

d t U R = F (U R ) , t > 0, @RFQA
with initil dt U R (0) = U 0 F eording to the de(nitions introdued in ghpter ID the two vie pproximtion formule of the solution of the semiEdisretized system @RFIA re de(ned y

L ∆t 1 U 0 = X ∆t Y ∆t U 0 , L ∆t 2 U 0 = Y ∆t X ∆t U 0 , @RFRA
wheres the two trng pproximtion formule trTQD trTV re given y

S ∆t 1 U 0 = X ∆t/2 Y ∆t X ∆t/2 U 0 , S ∆t 2 U 0 = Y ∆t/2 X ∆t Y ∆t/2 U 0 , @RFSA
where ∆t stnds for the splitting time stepF e rell tht the vie formule @RFRA @respFD trng formule @RFSAA re pproximtions of order 1 @respFD 2A of the ext solution of @RFIA in the se where X ∆t nd Y ∆t orrespond to the ext solutions X ∆t nd Y ∆t of prolems @RFPA nd @RFQAF e hve seen in ghpter I tht the stndrd orders hieved with vie or trng sheme re no longer vlid when we onsider very sti' retive or di'usive terms with lrge splitting time stepsF purthermoreD if the fstest time sles ply leding role in the glol physis of the phenomenonD then the solution otined y mens of splitting omposition sheme will surely fil to pture the glol dynmis of the phenomenonD unless we onsider splitting time steps smll enough to resolve suh slesF sn the opposite se where these fst sles re not diretly relted to the physil evolution of the phenomenonD lrger splitting time steps might e onsideredD ut order redutions my then pper due to shortElife trnsients ssoited with the fstest vrilesF his is usully the se for propgting retion wves whereD for instneD the speed of propgtion is muh slower thn the hemil slesF sn this ontextD we rell tht etter performnes re expeted while ending the splitting sheme y the time integrtion of the retion prt @RFQA hwHRX

T ∆t U 0 -L ∆t 1 U 0 L 2 = O(∆t), @RFTA T ∆t U 0 -S ∆t 1 U 0 L 2 = O(∆t), @RFUA T ∆t U 0 -L ∆t 2 U 0 L 2 = O(∆t 2 ), @RFVA T ∆t U 0 -S ∆t 2 U 0 L 2 = O(∆t 3 ), @RFWA
where T ∆t U 0 stnds for the ext solution of @IFSQA with liner digonl di'usionD nd the fstest sles re present in the retive termF sn generl seD the splitting sheme should lwys end with the prt involving the fstest time sles of the phenomenon @see numeril se in hhv + IPAF VH yn the other hndD we hve seen tht order redutions might lso rise from spe multiEsle phenomen due to steep sptil grdients whenever lrge splitting time steps re onsidered hhvwHUD hhwIIX

T ∆t U 0 -L ∆t U 0 L 2 ∝ ∂ x U 0 L 2 ∆t 2 , U 0 L 2 ∆t 1.5 , @RFIHA T ∆t U 0 -S ∆t U 0 L 2 ∝ ∂ x U 0 L 2 ∆t 3 , U 0 L 2 ∆t 2 , @RFIIA
for whih the (rst terms re more relevnt when ∆t is smll nd the seond ones when ∆t is not smll enough nd ∂ x U 0 L 2 is very highF e notie tht in oth ses the vie @RFRA nd trng @RFSA formule re uilt with the ext solutions of eh suprolemD s in the theoretil frmework of ghpter IF hese theoretil studies llow us to depit more preisely the numeril ehvior of the splitting tehniques for roder rnge of splitting time steps nd strong sti'nessD nd thus help us to selet mong the vrious splitting lterntivesD depending on the nture of the prolemF 4.2.2 High Order Dedicated Time Integration Methods he hoie of suitle time integrtion methods for susystems @RFPA nd @RFQA is mndtory not only to gurntee the previous theoretil estimtesD ut lso to tke dvntge of the prtiulr fetures of eh independent suprolem nd to solve them with resonle resouresD s urtely s possileF sn prtiulrD the proposed splitting tehnique onsiders high order dedited integrtion methods for eh suprolem in order to properly solve the fstest time sles ssoited with eh one nd in suh wy tht the min soure of error is led y the opertor splitting errorF henD the ontrol of the ury of the time integrtion is ruled y the splitting sheme y mens of splitting time step tht is hosen to desrie the glol physil phenomenon within required level of uryD even for sti' on(gurtionsF Time Integration of the Reaction: Radau5 e hve seen in ghpter P tht duS rWT is (fth order impliit ungeEuutt method for whih order onditions proved y futher futTR re stis(ed up to the order SF sts stility funtion is generted y ollotion proedure with the du qudrture formule ihlUQ tht gurntees eE nd vEstility propertiesD so tht very sti' systems of yhis might e solved without ny stility prolemF xeverthelessD nonliner systems must e solved throughout the time integrtion proess eE use of this impliit hrterF iven if the xewton9s method to hndle suh omputtions is highly optimizedD these proedures eome very expensive for lrge systems nd importnt memory requirements re needed in order to rry them outF es onsequeneD the size of the system of equtions to e solved is strongly limited y the omputing resouresF sn splitting sheme ontextD we esily overome this di0ulty euse the retive term @RFQA is system of yhis without sptil ouplingF hereforeD lol pproh node y node is dopted where the memory requirements re only set y the numer of lol unknownsD whih usully does not exeed onventionl memory resouresF his pproh is lso posed s n emrrssingly prllel prolem where no dt exhnge is needed mong nodesD tht therefore yields optiE ml lod lning on shred memory rhitetures s we shll see in forthoming hpters hwh + IID hhh + IPF e very importnt feture of the duS solver is tht preious omputing time is sved euse of its dptive time stepping strtegyF he ltter gurntees requested ury nd t the sme time llows us to disriminte sti' zones from regulr ones so tht smll time steps re only onsidered for sti' ehviorsD relted either to the modeling equtions or to the spurious trnsients introdued y the splitting tehnique fvvWTD d + WVD frWWF sn splitting ontextD the retion time integrtion step ∆t R will e then dpted only t nodes where the retion phenomenon tkes pleD yielding lol retion time steps potentilly muh smller thn the splitting time stepD wheres the glol time dvnement of the solution given y the splitting time step ∆t will not e limited y these physil or numeril fst time slesF por multiEsle retion wvesD this dpttion hppens in very low perentge of the sptil dominD usully only in the neighorhood of the wvefrontF gontrrilyD lrger time steps re onsidered t nodes with hemistry t @prtilA equilirium in whih the splitting should not introdue rti(il trnsients5 F his lol time stepping with no dt exhnge nd no reonstrution of intermedite vlues would not e possile if we integrted the entire retionE di'usion system @RFIA t oneD s in fully impliit or swi oupled solution shemeF Time Integration of the Diusion: ROCK4 yne of the most importnt dvntges of yguR edHP is its expliit hrter nd hene the simpliity of its implementtionF xo sophistited liner lger tools re needed sine no solution of liner systems is required he numeril integrtion is thus sed on simple mtrixE vetor produtsF xeverthelessD the omputtion ost relies diretly on the requested quntity of suh produtsD iFeFD the numer of internl stges s needed within one time integrtion step of the di'usion prolemD ∆t D D inside eh splitting time step ∆tF he memory requirements re lso redued s onsequene of its expliit shemeF xevertheless we must keep in mind tht these requirements inrese proportionlly with the numer of nodes onsidered over the sptil dominF he ygu solver edHP fetures lso dynmi time step dpttion so tht ∆t D is hosen in order to gurntee presried ury of omputtionsF his is lso suitle hrteristi for splitting on(gurtions to properly hndle high frequeny modes in the solution yHRF es detiled in ghpter PD yguR is formlly fourth order stilized expliit ungeEuutt method nd suh methods feture extended stility domin long the negtive rel xis erWTF por generl di'usion prolem suh s v = g(v)D the numer of stges s needed to gurntee the stility of omputtions for given time step ∆t D D is diretly relted to the spetrl rdius ρ(∂g/∂v) s long s the ltter is dominted y rel negtive eigenvluesF por given ∆t D needed to gurntee the ury of the integrtionD the minimum numer of stges s required for stility is omputed y the yguR solver through @PFIHPAD written now s

0.35 • s 2 ≥ ∆t D ρ ∂g ∂v (v) , @RFIPA
whih extends qudrtilly on sD the stility domin of the method long the negtive xisF eording to the onstrution of the yguR sheme edHPD t lest s = 5 internl stges re requiredF he method is very pproprite for di'usion prolems euse of the usul predominne of negtive rel eigenvlues for whih the method is e0iently stleF e very suitle exmple is the liner digonl di'usion prolem @RFPA with only negtive rel eigenvlues nd onstnt spetrl rdius ρ(L)D s nlyzed in ghpter P for the generl het eqution @PFIRAF en imporE tnt gin of e0ieny is otined in this se euse the disretized di'usion opertor hs sprse mtrix struture tht yields more performing mtrixEvetor produtsF sn our prtiulr pplitionsD the di'usive phenomenon hs leding role of propgtor of perturtions over VP the @prtilA equilirium nodes tht result in exittion of the retive shemesD nd thus the propgtion of the retion wveF he resulting selfEsimilr hrter implies tht the needed numer of stges will remin prtilly onstnt throughout the evolution of the phenomenonF pinllyD the spetrl rdius must e previously estimted @for exmpleD using the qershgoring theorem or even numerillyD s proposed y the yguR solver y mens of nonliner power methodAF xotie tht for generl nd more omplex di'usion prolem like the one in system @IFSPAD suh stilized expliit method will remin suitle s long s the spetrl rdius is dominted y rel negtive eigenvluesF his my e the se in some pplitions6 ut remins prolem dependent fetureF ytherwiseD less e0ient stndrd high order expliit sheme should e onsidered if n impliit solver imposes exessive omputtionl resoures7 F he sme follows for sti'er di'usion prolems tht require high numer of inner stges s to ensure stilityF xeverthelessD in this ltter se the expliit formultion of yguR might justify its use in terms of memory requirementsD nd on the other hndD stndrd expliit sheme would ertinly e more expensive in g timeF sn this workD we will minly onsider liner di'usion prolems with onstnt or time dependent oe0ients8 F wore omplex on(gurtion like multiEspeies di'usion will e ertinly studied in the futureF yne ginD the implementtion of this di'usion solver for the entire retionEdi'usion system @RFIA will not e pproprite under either theoretil or prtil onsidertionsD nd highE lights the inherited dvntges of the time opertor splittingF sn prtiulrD solving within presried tolerne the di'usion prolem my lso yield ∆t D muh smller thn the splitE ting time step ∆tD nd thus the glol time dvnement of the solution given y ∆t will not e neessrily limited y the di'usive time sles ut y the glol fetures of the oupled prolemF

Space Adaptive Multiresolution Technique

e re onerned with the propgtion of reting wvefronts for whih importnt retive tivity s well s steep sptil grdients re lolized phenomenF his implies tht if we onsider the solution of the retive prolem @RFQAD onsiderle mount of omputing time is spent on nodes tht re prtilly t @prtilA equiliriumF e will see in ghpter W tht for numeril simultion with omplex soure mehnisms on uniform gridD 60 7 of the omputing time is spent on nodes with very redued hemil tivity hhh + IPF woreoverD there is no need to represent these qusiEsttionry regions with the sme sptil disretiztion needed to desrie the retion frontD so tht the di'usion prolem @RFPA might lso e solved over smller numer of nodesF en dpted mesh otined y the multiresolution nlysisD desried in ghpter QD llows us to disriminte the vrious spe sles of the phenomenonD nd turns out to e very onvenient solution to overome these di0ultiesF e fully dptive multiresolution tehnique sed on guwHQD wülHQ is then oupled with the previous dedited time opertor splitting strtegyF sn this wyD onsidering (nite volume disretiztion for prolem @RFIA on (nest grid S J D we de(ne s efore set of nested meshes S j on whih prolem @RFIA is representedD for j = 0, 1, • • • , JD from the orsest to the (nest gridF fy performing multiresolution nlysis on the solution UD the opertor A Λε = M -1 T Λε M yields n e'etive dt ompression euse U is no longer represented on the (nest grid S J s U J D ut on Λ ε D where we rell tht Λ ε is the smllest grded tree ontining the thresholded tree ΛD de(ned in @QFVUA nd onstruted sed on the vlues of the detilsF sn this wyD the numeril solution U n t time n∆t is represented on n dpted grid y the set (u n λ ) λ∈L(Λ n ε ) D iFeFD on the leves of the dpted treeD on whih the time evolution strtegy is performedF king into ount tht the time evolution is performed on (xed dpted grid during eh splitting time step ∆tD ruil spet is to de(ne n pproprite re(nement opertor RF his one must generte set Λn+1 ε ontining Λ n ε D on whih the time integrtion is omputedD suh tht Λn+1 ε is dpted for desriing the solution t oth n∆t nd (n + 1)∆tF hese onditions re known s the rrten9s heuristis @QFIHPAF sn the proposed numeril implementtionD the opertor R re(nes the dpted grid sed on the vlues of the detils s followsX

• fy enlrging uniformly with k ells in eh diretion the re(ned regions of Λ n ε in order to predit the propgtion of the solutionD ording to the (rst rrten9s re(nement riterion rrWRD rrWSY nd

• fy re(ning ll leves of Λ n ε suh tht |d λ | ≥ ε |λ| with λ ∈ L(Λ n ε )
F his proedure dds 2 d ells everywhere nd it is hene equivlent to dding one more level ll over Λ n ε F he ltter enlrged region is lso known in the literture s the seurity or sfety zoneD nd it hs een onsidered in mny multiresolution pplitions @seeD eFgFD fHQD ffIHAF he dded u n λ with λ ∈ Λn+1 ε \Λ n ε n e onstruted y the predition opertorF gompring with the stndrd rrten9s re(nement riteri for the univrite dydi se @QFTTAD the (rst riterion @QFIHQA is keptD wheres the seond one given y @QFIHRA is written now s

|d n j,k | L(Λ n ε ) ≥ ε j ⇒ (j + 1, 2k + l) ∈ R( Λn+1 ε ), l = 0, 1. @RFIQA
rrten relted the k ells in eh diretion to the support of the numeril )ux evlutionD nd k = 1 ws dopted in prtie sine the time step is limited y stndrd gpv ondition rrWSF sn our numeril strtegyD there is not suh stility restrition on the splitting time step ∆tD nd the k ells re rther used to llow us lrger time evolution steps while ensurE ing n pproprite sptil representtionF hese re(nement riteri re rther onservtiveF xeverthelessD they re simple nd ompletely void unre(ned resolution tking into ount the hoie of the time evolution steps detiled in the following nd the propgting nture of retion wves t (nite speedF sn prtiulrD the ltter feture gurntees tht given dpted grid propgtes long with the wves nd no more tht one grid level needs to e dded t eh time itertionF en importnt theoretil result nd one of the min dvntges of multiresolution pproh s detiled in ghpter QD is tht if we denote y V n J := (v n λ ) λ∈S J the solution fully omputed on the (nest gridD nd y U n J D the solution reonstruted on the (nest grid tht used dptive multiresolution @keeping in mind tht the time integrtion ws relly performed on the leves L( Λn ε ) of ompressed representtion of U n AY thenD for (xed time T = n∆tD it n e shown tht the error introdued y the ompressed sptil representtion or perturtion error is given y

U n J -V n J ∝ nε. @RFIRA
his result ws (rst stted y rrten in rrWS for hyperoli prolems in n L 1 EnormD where the multiresolution deomposition ws used to elerte the )ux evlutions for time integrtion performed on the (nest uniform gridF vter onD @RFIRA ws mthemtilly proved in guwHQ under more rigorous onstrints for the re(nement riteri nd for the omputtion of the )uxes lso for hyperoli prolems in n L 1 EnormD this time for fully multiresolution Sect. 4.3 -Summary of the Numerical Strategy VR sheme where ll opertions were performed on the dpted gridD s detiled in ghpter QF xeverthelessD in the sme spirit of these works nd sed on the mthemtil kground of wvelet deompositionD we shll onsider @RFIRA ut with n L 2 EnormD more suited for proli prolemsD s lso onsideredD for instneD in HPD fHQD ffHVD fffHWF iven though fully mthemtil proof is still required for this seD numeril vlidtions were lredy providedF sn this ontextD the levelEdependent threshold vlues @QFWTA proposed y rrten in rrWRD rrWSD should e written s

ε j = 2 d 2 (j-J) ε, j ∈ [0, J], @RFISA
where ε is the threshold vlue for the (nest level JD in order to e onsistent with the stndrd de(nition of the L 2 EnormF gonerning the )ux omputtions ssoited with the sptil opertorsD we onsider the loE lly strutured )ux evlution detiled in wülHQ nd fHQD nd previously desried in ghpter QF he ltter tkes into ount ghost ells lled phntoms tht re lolly nd temporrily dded to the tree in order to lwys ompute the numeril )uxes of di'usion nd onvetion opertors t the highest grid level etween two neighoring ellsD following the proedure introdued in fHQ for (nite volume disretiztionsF elthough there is no rigorous mthemtil nlysisD this proedure onstitutes muh more e0ient lterntive to the ext )ux evlutions s shown in guwHQD wülHQ with essentilly the sme uE ry for high order reonstrution shemesF sn this implementtion s in stndrd strutured meshesD we onsider projetion opertors uilt upon polynomil interpoltion of t lest order N = 3D s for the Ih se @QFVRAF he se of lolly unstrutured )ux evlutions should e even more e0ient in terms of omputtionl omplexity nd onsequentlyD in omputtionl resouresD ut it ws not implemented in this work in order to gurntee t lest lollyD the ury order of the )ux shemes in ll diretions t the sme levelF

Summary of the Numerical Strategy

he numeril solution sheme n e summrized s followsD ording to the multiresolution terminology dopted in ghpter QX

(u n λ ) λ∈L( Λn ε ) M -→ (u n λ 0 , d n λ ) λ∈ Λn ε @RFITA (u n λ 0 , d n λ ) λ∈ Λn ε T Λ n ε -→ (u n λ 0 , d n λ ) λ∈Λ n ε @RFIUA (u n λ 0 , d n λ ) λ∈Λ n ε R -→ (u n λ 0 , d n λ ) λ∈ Λn+1 ε @RFIVA (u n λ 0 , d n λ ) λ∈ Λn+1 ε M -1 -→ (u n λ ) λ∈L( Λn+1 ε ) @RFIWA (u n λ ) λ∈L( Λn+1 ε ) S ∆t -→ (u n+1 λ ) λ∈L( Λn+1 ε )
@RFPHA e rell tht the set (u n λ 0 ) λ∈Λ is de(ned s the set of roots of some ΛD iFeFD ll λ ∈ Λ suh tht |λ| = 0 or λ ∈ S 0 F gonsidering U n represented on the dpted grid L( Λn ε )D the (rst step @RFITA performs multiresolution trnsform from the physil to the wvelet sis speF e dt ompression is hieved y mens of the threshold opertor T Λ n ε ording to @QFVUA nd respeting grded strutureF his mounts to uild the smllest grded tree Λ n ε ontining the thresholded tree Λ de(ned into @QFVUAF he ltter tree is enlrged to rete Λn+1 ε in VS @RFIVA ording to the re(nement riteri previously introduedF he inverse multiresolution trnsform is (nlly pplied in @RFIWA in order to retrieve the physil vriles on the dpted grid L( Λn+1 ε )D on whih the time integrtion is performed in @RFPHAF he lgorithm n e shemtilly represented s

U n+1 = S ∆t M -1 RT Λ n ε MU n , @RFPIA with the ompressed representtions of U n+1 nd U n given y (u n+1 λ ) λ∈L( Λn+1 ε ) nd (u n λ ) λ∈L( Λn ε )
D respetivelyD nd the trng opertor splitting S ∆t given y one of the formule @RFSA s time evolution opertorF he proedure @RFITA!@RFPHA follows the stndrd fully dptive multiresE olution sheme s presented in wülHQ with generl time evolution opertor in @RFPHAF yne might dd lst thresholding step s originlly proposed in guwHQ to perform the numerE il nlysis @see ghpter QAD to represent the solution on

L(Λ n+1 ε )D insted of L( Λn+1 ε )D y pplying (u n+1 λ ) λ∈L( Λn+1 ε ) A Λ n+1 ε -→ (u n+1 λ ) λ∈L(Λ n+1 ε ) @RFPPA
where

A Λ n+1 ε = M -1 T Λ n+1 ε
MF his lst thresholding step implies slightly higher dt omE pression for the solution outputsD nd it is impliitly performed nywy into the reursive proedure @RFITA!@RFPHAF por n = 0D the initil ondition should e represented on L( Λ0 ε ) in step @RFITAD whih n usully e the (nest gridD iFeFD for ll λ ∈ L( Λ0 ε )D |λ| = J or equivlently λ ∈ S J F xeverthelessD this is not possile for lrge domins simultionsD in whih seD the initil ondition is omputed on n intermedite grid level j 0 suh tht for ll λ ∈ L( Λ0 ε )D |λ| = j 0 or λ ∈ S j 0 F he solution is then re(ned nd reomputed over the next (ner level fter thresholding proessF his proedure is reursively pplied until the preEestlished (nest level J is rehedD or until no ell needs to e re(ned for given threshold prmeterF he generl proedure is explined in detils in wülHQD nd will e presented in ghpter U for the urrent implementtionF

Computation of the Splitting Time

Step he e0ieny of the previous time integrtion strtegy oth in terms of ury nd ompuE ttionl resouresD relies minly on the seleted splitting time stepF sn order to properly ouple the spe dptive multiresolution with the splitting shemeD some riteri will e introdued in the following in the ontext of propgting multiEsle wvesF yne of the min novelties is tht the splitting time step is set y the desired level of ury in the resolution of the wve speedD the wve pro(leD othD or ny other prmeterD depending on the prolem nd onsidering tht eh split susystem is solved extly or su0iently urtelyF st is thus only depending on the glol physis of the phenomenon we wnt to desrie nd thereforeD on the degree of deoupling we n hieve etween the vrious susystems within presried error tolerneF gonsidering the semiEdisretized prolem @RFIA with su0iently (ne sptil disretiztionD if n urte referene wve solution UD or the orresponding wvefront speed vD n e omE puted either numerilly or sed on theoretilGnlytil estimtesD then the pproximted solution U split of speed v split D omputed with splitting time step ∆t nd n opertor splitting tehnique with ext integrtion of the susystemsD must verifyX

E p = U -U split L 2 ≤ η p , E v = |v -v split |/v ≤ η v , @RFPQA
where η p nd η v re ury tolernes for the pro(le nd veloity errorsX E p nd E v D respeE tivelyF he pro(le error E p should e evluted superposing oth U nd U split F roweverD VT simpler nd more prtil strtegy would just evlute the L 2 Eerror t some (xed time t

* X E = U(t * ) -U split (t * ) L 2 ≤ η, @RFPRA
in whih seD oth pro(le nd veloity errors re simultneously onsideredF por prolems with vriles of di'erent order of mgnitudeD ll these L 2 Enorms @E p nd EA tht re independently evluted for eh vrileD should e normlized y n pproprite sling ftor for the orresponding evluted vrileF sn the error evlutions onduted in this workD we hve onsidered sling ftor for eh vrile given y the orresponding mximum vlue of the vrileF ometimesD it is lso useful to sle the sptil representtion with nother sling ftorD given this time y the size of the omputtionl dominF xotie tht in order to remin oherent with the previous onstrints nd lso to gurntee n urte resolution of the retion nd di'usion prolemsD the orresponding ury tolernes η Radau5 nd η ROCK4 of these solvers must verifyX

η Radau5 , η ROCK4 < min{η p , η v , η}. @RFPSA
sn this wyD we n isolte the vrious integrtion errors nd gurntee tht the overll time integrtion error is prtilly given y the splitting sheme pproximtionF sn prtiulrD n evlution of the sole splitting error llows us to deouple the time sle spetrum of the prolem whenever this is possileD ontrry to lssil pplitions of time opertor splitting methods for whih the splitting time step is diretly settled y the fstest time sle of the phenomenonF e therefore extend the use of these methods to splitting time steps de(ned y the glol oupling slesD potentilly lrger thn the fstest physil or numeril slesF his is diret onsequene of previous mthemtil studies tht demonstrted tht even though there will possily e n order redution for time or spe sti' prolems nd lrge splitting time stepsD the splitting shemes will still onsistently pproximte the oupled resolution with n error piloted y the splitting time step hwHRD hhvwHUF e hve estlished so fr the riteri to hndle time integrtion errors given y the splitting proedureF xeverthelessD the proposed strtegy omines this splitting pproh with spe multiresolution dptive tehnique so tht the pproximtion error introdued y the ltter must e lso tken into ountF eording to @RFIRAD we onsider the following error ound for (xed time

T = n∆tX U M R split -U J split L 2 ≤ Cnε, @RFPTA
for some positive CD where U M R split is the wGsplitting solution t n∆t reonstruted on the (nest grid JD whih orresponds to the sptil disretiztion of the semiEdisretized prolem @RFIAF e si onstrint to ssume the vlidity of @RFPTAD s in the hyperoli seD is tht the propgting lolly re(ned sptil grdients remin into the orresponding (ne regions during eh time step evolution ∆tD iFeFD the rrten9s heuristis @QFIHPA re stis(edF por given sptil disretiztion (∆x, ∆y, ∆z) orresponding to the mximum J levelD the splitting time step must e ounded y mximum splitting time step ∆t max omputed yX

∆t ≤ ∆t max = min k∆x v x , k∆y v y , k∆z v z , @RFPUA
for the diretionl omponents (v x , v y , v z ) of the wvefront speed nd where k = 2 + k stnds for the re(ned region in whih the grdients might propgte without losing sptil resolutionF he re(ned region is otined with the re(nement riteri previously detiled for whih one (ner level is dded everywhere @P ells t J in eh diretion sine the orresponding 2 d hildren re simultneously present in the sfety lyerA nd k ells on the sme levelF e remrk tht VU the re(ned region k might e even lrger in prtie euse if one ell is lefD the remining 2 d -1 rotherEells issued from the sme prentEell re lso levesD even if some of them might not e neessry ording to the threshold riterion @RFISAF e rell tht there re no stility restritions on the splitting time ∆t sine the internl time integrtion solvers del independently with these issuesD nd thus the splitting time step is uniquely ssoited with the numeril ury of the omputtionsF sn this ontextD the ound ∆t max is neessry only for dpted gridsD nd llows us simply to ensure n pproprite sptil representtion of the steepest grdients nd to deouple time nd spe pproximtion errorsF ht isD without this ound the propgting front might onsiderly leve the re(ned regions nd the time integrtion performed on the resulting orser ells might thus introdue omplementry numeril errors into the numeril time integrtion proessF he ltter ouE pling of spe nd time fetures usully results into qulittively di'erent physil ehviorsD for instneD in the veloity of propgtionD whih in prtie llows us to identify n inpE proprite hoie of the splitting time step for given dpted gridF pinllyD inresing the prmeter k in the re(nement riteri llows us to further enlrge the re(ned regions if lrger splitting time steps re desiredF sn the se of propgting wvefrontsD onstnt splitting time step sed on presried ury is more thn resonleD wheres the ound @RFPUA gurntees proper oupling eE tween the spe nd time numeril methodsF sf no theoretil hints of the wve pro(le or veloity existD the omputtion of referene solution is usully very expensive ut still feE sile for Ih or reltively smller omputtionl dominsF hese simultions might give some insights in the ehvior of the numeril methods in order to extrpolte the onlusions to lrger or multiEdimensionl prolems ording to stndrd numeril proedure in sienti( omputingF yn the other hndD the speed of the wvefront needed to estlish @RFPUA n e lwys pproximted y diretionl Ih mesurements tken either from fully oupled Ih onE (gurtions orD for instneD from fesile multiEdimensionl wGsplitting solutions for whih the ury tolernes re tightenedF roweverD if more preise error ontrol is requiredD or if we re fed with highly unstedy prolemsD the previous proedure n e dynmilly implementedD for instneD y estimting the lol splitting error s explined for sti' systems of yhis in ghpter PD without ny need to ompute referene solutionF fsed on these estimtesD the splitting time steps n e dynmilly omputed within the presried ury tolerne η into @RFPRAF ell these issues will e disussed in detils in the next hpterF roweverD these proedures introdue nturlly n overhed whih might not e justi(ed in the simpli(ed se of propgting wvesF e hyrid strtegy tht onsiders onstnt splitting time step omputed out of lol error estimteD performed on the )yD n e seen s the most onvenient solutionF 4.5 Basic Features of the Algorithm Implementation e dynmi grded tree struture is used to represent the dt in the omputer memoryF his kind of dt struture hs een used in mny multiresolution pplitions @seeD eFgFD fHQA nd other dedited dt strutures hve lso een developed fwHWD fwwHWD fff + IHF he dpted grid orresponds to set of nested dydi grids generted y re(ning reursively given ellD depending on the lol regulrity of the solutionF pigure RFI shows n exmple of grded tree struture in IhF his dt struture is suitle for IhD Ph nd Qh grtesin geometriesD wheres the si element of the struture is the ell itselfD whih onsists of set of geometri nd physil vluesD long with pointers to its prentD their hildrenD nd the ontiguous ells in eh Example of 1D graded tree structure. Cells and links to their corresponding children are indicated (solid lines), as well as the leaves (solid bold lines) and the phantoms (dashed lines).

dimensionD the neighorsF he N R roots orrespond to the sis of the treeD Ω λ 0 D wheres the leves re the upper elements with no hildren in the treeF sn d dimensionsD prentEell t level j hs t most 2 d hildren ells t level j + 1F sn this prtiulr implementtionD we impose tht ll 2 d hildren issued from the sme prentEell re simultneously present if t lest one hild mong them is neededF he mximum numer of leves N L on whih the solution might e represented is given y N L = N R 2 dJ D whih must orrespond to the numer of ells on the (nest grid N J F edditionllyD the mximum numer of ells N Λ in the tree is given y

N Λ = N R 2 d(J+1) -1 2 d -1 . @RFPVA
purther detils onerning the lgorithm implementtion will e disussed in ghpter UF ve dpted grid with the orresponding ell vlues represented on itF he generl lgorithm will e desried with more detils in ghpter UD we note nevertheless tht the omputtion of the ell vlues throughout the tree s well s the detils re simultE neously evluted y the multiresolution trnsform MF he sme follows for the thresholding nd re(nement opertors T Λε nd RD whih re lso simultneously performedF vet us remrk tht during the thresholding proessD ells re only leled ording to @RFISAD ut no ell is removed nor is its detil set to zeroD euse prtiulr ell might e retined fterwrd under the re(nement or grdution riteriF he phntom ells re reted efore the time integrtion proess in the odeD in order to seprte the multiresolution nd time integrtion opertionsF he vlues on the phntoms re nevertheless omputed t eh internl stge of yguR y the predition opertor fter lolly updting their predition stenils with the projetion opertorF

Numerical Simulations

sn wht followsD we present some numeril illustrtions of the proposed strtegyF e prolem oming from nonliner hemil dynmis is desried nd tretedF he performne of the method is then disussed in the ontext of multiEdimensionl simultionsF ell simultions were performed on n ewhEhnghi PFU qrz proessor with memory pity of QP qfF 4.6.1 Mathematical Model: The Belousov-Zhabotinski Reaction e re onerned with the numeril pproximtion of model for the felousovEhotinski retionD tlyzed oxidtion of n orgni speies y id romted ion @see iWV for more detils nd illustrtionsAF e thus onsider the model detiled in qWR nd oming from the lssi work of puxUP whih tkes into ount three speiesX hyporomous id HBrO 2 D romide ions Br -D nd erium @sAF henoting y a

= [Ce(IV)]D b = [HBrO 2 ]D nd c = [Br -]D
we otin very sti' system of three hisX

∂ t a -D a ∂ 2 x a = 1 µ (-qa -ab + f c), ∂ t b -D b ∂ 2 x b = 1 (qa -ab + b(1 -b)) , ∂ t c -D c ∂ 2 x c = b -c,              @RFPWA x ∈ R d D with di'usion oe0ients D a D D b nd D c D nd the rel positive prmetersX f D smll
qD nd smll nd µD suh tht µ 1F he dynmil system ssoited with this system models retive exitle medi with lrge time sle spetrum @see qWR for more detilsAF he sptil on(gurtion with the WH ddition of di'usion develops propgting wvefronts with steep sptil grdientsF reneD this model presents ll the di0ulties ssoited with sti' multiEsle on(gurtionF he dvntges of pplying splitting strtegy to this prolem hve lredy een studied nd presented in hhwHQF sn wht followsD we will rie)y onsider Ih se of @RFPWA in order to illustrte the errors of splitting shemes for sti' prolemsD then Ph nd Qh on(gurtions will e implementedF 4.6.2 1D BZ Equation vet us perform short illustrting study of the ehvior of splitting shemes when deling with sti' prolemsD s explined in ghpter IF sn the f modelD sti'ness is given y fst time sles s well s steep sptil grdientsF e onsider then Ih on(gurtion of prolem @RFPWA with homogeneous xeumnn oundry onditions nd the following prmetersD tken from qWRX = 10 -2 , µ = 10 -5 , f = 3, q = 2 × 10 -4 , @RFQHA with di'usion oe0ientsX

D a = 1, D b = 1, D c = 0.6, @RFQIA
for spe region of [0, 80]F e su0iently (ne uniform mesh of 4000 points is onsidered while the ext solution T ∆t is pproximted y referene or qusiEext solution T ∆t of the semiEdisretized oupled retionEdi'usion prolem @RFPWAD performed y duS with very (ne tolernesF he splitting shemes @RFRA nd @RFSA onsider duS nd yguR s integrtion methods for the retion nd di'usion prolemsF pigure RFP shows the lol errors fter one splitting time stepD where fully developed nd onE verged wves re tken s initil onditionF he mximum L 2 errors ount for the mximum vlue etween the omputed nd normlized lol errors for aD bD nd c vrilesF sn these numeril testsD the mximum error orresponds to vrile bF st n e seen tht oth vie nd trng shemes hve symptotily lol order P nd Q for smll time stepsF xeverthelessD for lrger time stepsD the results in hwHR nd hhvwHU desrie etter the numeril ehvior of these shemesX

T ∆t u 0 -L ∆t 1 u 0 T ∆t u 0 -L ∆t 2 u 0 T ∆t u 0 -S ∆t 1 u 0 T ∆t u 0 -S ∆t 2 u 0
• por L ∆t 1 in @RFRAD order 2 drops to 1 s predited y @RFTAY wheres

• por L ∆t 2 D we see the in)uene of sptil grdients s predited y @RFIHAD nd thus order 1.5 is reovered fter some trnsition phseF he sme onlusions re drwn for the trng shemes @RFSAX • he order of S ∆t 1 drops from 3 to 1 ording to @RFUAY while

• por S ∆t 2 D we see the in)uene of steep sptil grdients tht lter the order 3 given y @RFWAF pinllyD in ll ses nd for lrge splitting time stepsD the retion ending shemes show etter ehviors for lrger splitting time stepsD ording to hwHRF sn prtiulrD L ∆t 2 ehves even etter thn S ∆t 1 D wheres S ∆t 2 is the est lterntive for ll time stepsF 4.6.3 2D BZ Equation vet us onsider the Ph on(gurtion of prolem @RFPWA with homogeneous xeumnn oundry onditionsD nd the following prmeters tken from tVW nd hhwHQX

= 10 -2 , µ = 10 -5 , f = 1.6, q = 2 × 10 -3 , @RFQPA with di'usion oe0ientsX D a = 2.5 × 10 -3 , D b = 2.5 × 10 -3 , D c = 1.5 × 10 -3 . @RFQQA
he phenomenon is studied over time domin of [0, 4] nd spe region of [0, 1] 2 F sn the followingD we will (rst onsider Ph omputtionl domin with uniform mesh of 256 2 D for whih the oupled nd split solutions of the semiEdisretized prolem derived from @RFPWA re rther expensive ut still fesileF he min ide is to ompre these solutions with the ones omputed y the proposed wGsplitting proedure in order to nlyze the splitting nd multiresolution errors regrding the orresponding ury tolernes previously detiledF sn seond step nd sed on these resultsD we will evlute the performne of the method y onsidering lrger omputtionl domins nd Qh prolemsF e thus onsider 8 nested dydi grids with N J = 2 2×8 = 65536 = 256 2 ells on the (nest grid J = 8D nd de(neX • e referene or qusiEext solution U J qe s the solution of the semiEdisretized oupled retionEdi'usion prolem @RFPWA on the (nest mesh JD performed y yguR with very (ne tolerne η ROCK4 = 10 -14 Y wheres

• fsed on the previous Ih seD the split solution U J split uses the h trng S ∆t 2 sheme s time integrtion method of the semiEdisretized prolem @RFPWA with duS for the time integrtion of the retion term nd yguR for the di'usive prtD η Radau5 = η ROCK4 = 10 -5 F

• pinllyD with the sme splitting time integrtion strtegy S ∆t 2 D we onsider the proposed wGsplitting solution U M R split F por the oupled retionEdi'usion prolem nd with the previous prmetersD the spetrl rdius of the toin of the retion term into @RFPWA is usully dominted y the negtive rel prts of the ssoited eigenvluesD lthough imginry prts re lso presentF herefore only (ne tolernes tht yield su0iently smll time steps llow us to fully gurntee the stility of the yguR sheme whenever the imginry prt ppersD onsidering the redued stility domins of these methods long the imginry xisF he min limittion to diretly perform suh omputtion with the duS solver omes from its importnt memory requirementsF Data Initialization he initiliztion of the prolem is sed on tVW for the twoEvrile model of @RFPWA with b nd cX

∂ t b -D b ∂ 2 x b = 1 b(1 -b) + f (q -b)c q + b , ∂ t c -D c ∂ 2 x c = b -c,      @RFQRA
y tking µ → 0 into the evolution eqution of aD nd thus

a = f c q + b @RFQSA
into the evolution equtions of b nd c into @RFPWAF en pproximtion of the stedy stte vlues of the dynmil system ssoited with the twoEvrile prolem @RFQRA is given y

b ss = c ss = q f + 1 f -1 , @RFQTA
nd the initil ondition n e then omputed with

b = 0.8 if 0 < θ < arctan(0.3), b ss elsewhere, @RFQUA c = c ss + θ 8πf
, @RFQVA nd @RFQSAD where θ is polr oordinte ngle onsidering s origin (0.5, 0.5) into the domin

[0, 1] 2 F
Computation of the Splitting Time Step sn order to illustrte the hoie of the pproprite splitting time step ∆tD we set n ury tolerne of η = 10 -2 D onsidering the normlized L 2 Eerrors @RFPRA with the qusiEext nd splitting solutionsF pigure RFQ shows these errors evluted t (nl time t * = 4 for ll three vrilesF WQ e rounded vlue of splitting time step of ∆t = 4/1024 ≈ 3.91 × 10 -3 is (nlly hosen for whih L 2 Eerrors re lose to η for ll three vrilesD nd times t * ∈ [0, 4] into @RFPRAF sn generl ll these omputtions over the whole time domin re not neessryD nd from prtil point of view nd for the simultion of propgting wvesD we n onsider muh less expensive proedure tht evlutes the lol errors fter one splitting time step strting from n intermedite solution for whih the wves re fully developedF e rther lrge ury tolerne η ws onsidered in order to show the potentil deoupling of time steps for retionD di'usionD nd the time opertor splitting needed to solve the prolem within the presried tolerneX

• he imposed tolerne for the retion resolution implies time steps vrying from 8.88 × 10 -5 to ∆t/2 ≈ 1.95 × 10 -3 D for points lotedD respetivelyD in the neighorhood of the retive front nd the redued hemil tivity regionsF 

WR

por the sptil disretiztion of 256 2 D the spetrl rdius ρ(L) estimted y yguR9 is out 1, 400D so tht no more thn the minimum numer of stges s = 5 is required ording to @RFIPA for the splitting solution U J split F es onsequeneD g time of 1029 s is needed ompred with the oupled resolution with yguR tht tkes 23967 sF he ltter onsiders time steps of out 2.4×10 -6 with the imposed (ne tolerneD nd 5 internl stges for lrger spetrl rdius of 95, 000D tht inludes oth retionE nd di'usionEssoited eigenvluesF iven though this oupled resolution should e more urte thn splitting tehniqueD it will e no longer fesile for lrger omputtionl domins nd moreover not pproprite for more omplex hemil termsF por instneD for the oupled prolem @RFPWAD yguR strts showing stility prolems for η ROCK4 lrger thn 10 e onsider now the proposed strtegy tht omines the previous splitting solver with the multiresolution dptive tehniqueF pigure RFR shows the spirl wves nd the four di'erent levels of sptil disretiztion on whih they hve een simulted with ε = 10 -2 D for the sti'est vrile aF henever we onsider grid dpttion the ound @RFPUA on the splitting time step ∆t must e tken into ountF e need then to estimte the speed of propgtion v of the wvefrontF his n e done y omputing the propgting speed of eh vrile long eh diretion s shown in pigure RFS for vrile a long the yExisF por the f wvesD we hve estimted mximum speed of v x = v y ≈ 0.7D whih yields mximum splitting time step of WS ∆t max = 1.6 × 10 -2 for ∆x = ∆y = 1/256D nd k = 3D onsidering one enlrging ell in eh diretion k = 1 in the re(nement riteriF sn this prtiulr seD we n lso ompute the speed reltive error E v following @RFPQA etween the qusiEext nd splitting solution with ∆t = 4/1024F hese errors remin prtilly lower thn 0.2% s seen in pigure RFSD whih imply n ury tolerne of η v = 2 × 10 -3 onsidering the speed resolutionF Data Compression and CPU Time he proposed wGsplitting strtegy represents nd omputes solutions only on dpted gridsD iFeFD the leves of the tree strutureD throughout the time dominF hereforeD we de(ne the dt ompression @DCA s 1 minus the rtio etween the numer of ells on the dpted grid @AGA nd those on the (nest uniform grid @FGAD expressing the whole s perentgeX

DC = 1 - AG FG × 100. @RFQWA
pigure RFT shows di'erent dt ompression rtes for severl threshold vlues εF mller vlues of ε imply more re(nementD nd thus ompressions re less importntF he whole (nest grid is neessry for ε < 10 -5 F he orresponding g times for eh se re inluded in le @RFIAD long with the qusiEext nd the splitting solutions without ny grid dpttionF wGsplitting ε = splitting qusiEext 10 -1 10 -2 10 -3 10 -4 g time @sA SQT VVT IPQQ PRHP IHPW PQWTU e more preise nlysis of the g time onsumption summrized in le @RFPA shows thtX

• en dpted grid llows us to signi(ntly redue the time ost of the retion integrtion s onsequene of the importnt redution of the numer of points without ny hemil tivityF

• elthough for ε = 10 -2 we onsider only 25 7 of the 256 2 pointsD n importnt overhed is introdued in the time integrtion of the di'usion euse the introdution of phntom WT ells yields denser mtrix representtions of the disretized di'usion opertor nd thus more expensive mtrixEvetor produtsF por these sti' prolemsD the w opertions represent less thn 15 7 of the totl timeD wheres the onstrution of the di'usion mtrix tkes over 6 7 sine it hs to e reomputed t eh splitting time stepD ontrry to uniform grid representtion for whih this mtrix is onstntF prom prtil point of viewD we n see tht more e0ient strtegy will diretly onsider the dptive grid for the )ux evlutions s detiled in wülHQD without the introdution of ny phntomF en overhed is introdued in the g times in le @RFPA oming from the ode pro(lingF Numerical Accuracy of Computations e onsider now the numeril ury of the wGsplitting strtegy U M R split D with respet to the referene solution U J qe D for the semiEdisretized prolem @RFPWA on uniform mesh J given y 256 2 pointsD tking into ount tht

• he ury of the splitting solution U J split D on the sme uniform mesh JD is given y n ury tolerne ηD ording to @RFPRA through the proper hoie of the splitting time step ∆t @see pigure RFQA regrdless of the possile loss of order for the trng S ∆t 2 shemeF • he multiresolution deomposition yields ompressed sptil representtion whose E ury to pproximte the orresponding uniform mesh representtion is relted to the threshold vlue ε through @RFPTAF et some (xed time t * D the overll numeril ury of the wGsplitting solution is then set y the previous splitting nd multiresolution errorsX

U J qe -U M R split L 2 ≤ U J qe -U J split L 2 O(η) + U J split -U M R split L 2 O(ε)
. @RFRHA he spe disretiztion error is thus not onsidered sine the referene solution U J qe is lredy disretized in speF he ltter error depends on the degree of sptil re(nement of the solution nd might e essile y ompring U J qe with n nlytil solutionD if the ltter is villeD or with highly re(ned representtionF sn ny seD @RFRHA mesures the numeril errors relted to the time integrtion proedure nd the ompressed sptil representtionsF por su0iently (ne sptil representtionsD estimte @RFRHA represents the glol ury of the numeril simultion s wellF pigure RFT shows the orresponding normlized L 2 errors t t * = 4 for severl threshold vlues εD nd η = 10 -2 for splitting time step of ∆t = 4/1024F wultiresolution errors re evluted t the (nest grid J fter reonstrution from the dpted mesh solution nd depend proportionlly on the imposed threshold vlue εD ording to @RFPTAF por this time multiEsle phenomenonD the ury of the wGsplitting strtegy should e (xed y the time integrtion proess in order to gurntee n pproprite resolution of the time sle spetrum of the sti' prolemF he multiresolution proedure llows us to ompress the sptil representtion y retining the desired level of re(nement only wherever it is neessryD tking into ount the spe multiEsle fetures of the physil prolemF sn this seD these error estimtes show tht for ε ≤ 10 -2 D the multiresolution errors eome negligile ompred with the opertor splitting onesD so tht the overll ury is indeed given y ηF Extension to Larger Computational Domains e hve nlyzed so fr the numeril ehvior of the proposed strtegy in terms of the splitting methodD the omputtionl ostsD nd the numeril errors for omputtionl doE min of 256 2 pointsF his mesh llows us to represent urtely enough the multiEsle phenomenonD nd moreover it llows us to ondut severl omputtions with resonle omE puttionl resouresF vet us now onsider more hllenging on(gurtion with lrger omputtionl domin in order to omplete the present illustrtionF e therefore onsider the semiEdisretized prolem @RFPWA disretized this time over 10 nested dydi grids with N J = 2 2×10 = 1048576 = 1024 2 ells on the (nest grid J = 10F sn order to tke into ount the memory requirements of eh numeril solution strtegyD we estimte the rry size of the working spe needed y duS nd yguRX

L 2 error ε ||a J qe -a J split || L 2 ||a J split -a MR split || L 2 ||b J qe -b J split || L 2 ||b J split -b MR split || L 2 ||c J qe -c J split || L 2 ||c J split -c MR split || L 2
IF duSX L 1 = 4 × W 1 × W 1 + 12 × W 1 + 20 @from rWTAY PF yguRX L 2 = 8 × W 2 @from edHPAY
where W 1 nd W 2 reD respetivelyD the numer of unknowns solved y duS nd yguRF sn the se of uniform meshD the totl numer of unknowns is W = 3 × 1024 2 ≈ 3.15 × 10 6 D nd thus the glol size L required for eh solver isX he ottom of pigure RFU shows the orresponding men retion time steps within ∆t/2 for eh pointF e hve the sme distriution s in the previous 256 2 se with retion time steps going from ∆t/2 to time steps lmost 22 times smller depending of the lol hemil tivityF yn the other hndD the spetrl rdius ρ(L) estimted y yguR 10 is lrger euse of the (ner sptil disretiztion of the vplin opertor nd it is of the order of 23, 000F sf we onsider di'usion time step ∆t D equl to the splitting time stepD s = 16 stges will e needed ording to @RFIPAF xeverthelessD for given tolerne of η ROCK4 = 10 -5 D n initil time step given y ∆t D = ∆t is rejeted to (nlly reh reltively onstnt vlue of 2.5 -3.5 × 10 -4 WW for whih 5 stges insted of 16 re enough to gurntee the stility of the method 11 F pinllyD from 11 to 15 di'usion time steps ∆t D re omputed inside eh splitting time step ∆tF prom prtil point of viewD the generl ide is tht the (nest grid of omputtion is previE ously settledD nd it is silly limited y the omputtionl resouresF he multiresolution error is then inditing the numeril pproximtion of the ompressed sptil representtion with respet to the semiEdisretized prolem regrdless of its sptil disretiztion s shown in pigure RFV @leftA for (ner sptil disretiztion of 1024 2 insted of 256 2 in pigure RFTF he qusiEext solution ws omputed with yguR nd η ROCK4 = 10 -10 D nd took over 65072 s ompred with 13943 s nd 9529 sD respetivelyD for the splitting solution nd the wGsplitting solution with ε = 10 -2 F pigure RFV @rightA shows the dependene of the dt ompression on the ury order of the predition opertorD s disussed in ghpter QF por higher order polynomil interpoltions tht yield more urte nd thus more ompressed multiresolution representtionsD lrger stenils re lso needed so tht the resulting dt ompressions tke into ount oth opposite feturesF sn generl seD this is prolem dependent feture tht n e turned into useful prmeter to improve the performne of the multiresolution tehniqueF 

IF usiEext with duSX W 1 = W ≈ 3.15 × 10 6 nd L = L 1 ≈ 4 × 10 13 F PF plittingX W 1 = 3D W 2 = W ≈ 3.15 × 10 6 nd L = L 1 + L 2 ≈ 2.5 × 10 7 F QF wGsplitting with ε = 10 -2 X W 1 = 3D W 2 = 0.09 × W ≈ 2.9 × 10 5 D nd L = L 1 + L 2 ≈ 2.3 ×
L 2 error ε ||a J qe -a J split || L 2 ||a J split -a MR split || L 2 ||b J qe -b J split || L 2 ||b J split -b MR split || L 2 ||c J qe -c J split || L 2 ||c J split -c MR split

3D BZ Equation

sn order to extend previous pplitions to Qh simultionsD we now onsider prolem @RFPWA in Qh on(gurtion with the sme prmeters onsidered for the Ph se @RFQPA nd @RFQQAD for time domin of [0, 2]D nd in spe region of [0, 1] 3 F he initiliztion is mde in the sme wyD ut with the oordinte ngle θ given this time y θ = arctan (x -0.5) sin(πz) + (y -0.5) cos(πz) (x -0.5) cos(πz) -(y -0.5) sin(πz) . @RFRIA e retrieve the previous Ph se with z equl to zeroF 11 We recall that ROCK4 needs to save only 8 arrays of the size of the number of unknowns regardless of the number of stages. One of these arrays contains the approximate solution used to estimate the local error in order to adapt the time step within the prescribed tolerance. IHH pirstD we tke into ount 8 nested dydi grids with N J = 2 3×8 = 16777216 = 256 3 ells on the (nest grid J = 8F henD with threshold vlue of ε = 10 -2 D nd splitting time step ∆t = 4/1024D the strtegy fetures dt ompressions of 92.61 % for the initil onditionD 85.64 % t t = 1 when the sroll wves re fully developedD nd 81.42 % t (nl time t = 2F pigure RFW shows the sroll wves for vrile a t two di'erent times nd the dpted grid t t = 2F he (nest regions orrespond to the neighorhood of the wvefrontF he g omputtion time ws of out 41.94 hours with one proessorF Fig. 4.9: 3D BZ scroll wave. Top: evolution of variable a at t = 1 (left) and t = 2 (right). Bottom: Adapted grid (left) and nest grid (right) at t = 2 for ε = 10 -2 . Finest grid: 256 3 . o explore the fesiility nd potentil dvntges of the methodD let us onsider 9 nested dydi grids with N J = 2 3×9 = 134217728 = 512 3 ells on the (nest grid J = 9F he initilE iztion must tke ple on intermedite gridD j 0 = 8 in this exmpleF por this on(gurtionD two times lrger splitting time step of ∆t = 4/512 ≈ 7.8 × 10 -3 D nd threshold vlue of ε = 10 -1 were hosen to hve splitting nd multiresolution errors potentilly of the sme orderF mller threshold vlues yield lrger simultion domins whih re not longer fesile with the onsidered omputing resoure nd the urrent stte of development of the odeF pigure RFIH shows the dpted grid t t = 2 nd the orresponding (nest regionsF gompred with the 256 3 IHI seD (ner regions re dded t the steepest sptil grdients of the frontF edditionllyD in order to glolly gurntee @RFPTAD more re(nement is needed t the lower levels ording to @RFISA for given threshold εF he multiresolution representtion error @RFPTA is lwys mesured with respet to the orresponding uniform semiEdisretized prolem t the (nest level JF he ltter is minly limited y the omputtionl resoures nd the desired level of ury of the sptil resolutionF ht ompressions re now of 95.79 % for the initil onditionD 91.56 % t t = 1D nd 91.20 % for (nl time t = 2D with g time of 159.4 hoursF 

IF usiEext with duSX W 1 = W ≈ 4.03 × 10 8 nd L = L 1 ≈ 6.5 × 10 17 F PF plittingX W 1 = 3D W 2 = W ≈ 4.03 × 10 8 nd L = L 1 + L 2 ≈ 3.2 × 10 9 F QF wGplitting with ε = 10 -1 X W 1 = 3D W 2 = 0.13 × W ≈ 5.3 × 10 7 D nd L = L 1 + L 2 ≈ 4.2 × 10 8 Y with dt ompression of 87%F
hereforeD we shll require t lest 36.1 iD 190.7 qD nd 25.0 q of memory pityD respetivelyD for eh solverF 4.7 Concluding Remarks o (nish this hpterD let us synthesize the min points disussed in detils throughout the di'erent setionsF pirst of llD we hve introdued numeril strtegy for the numeril solution of sti' retionEdi'usion equtionsD sed minly on the following three loksX

• e seond order trng time opertor splitting with splitting time step de(ned within presried uryD ording to the glol physis of the prolem nd the deoupling pilities of the governing equtionsF

• righ order oneEstep time integrtion methods for the independent numeril solution of the split suprolems with dptive time stepping tools within presried uryF

• e spe dptive multiresolution tehnique tht yields ompressed sptil representtion within presried ury with respet to uniform grid spe resolutionF sn order to monitor the glol ury of the numeril simultion we hve deoupled the numeril pproximtion errors in three onstituting piees with the following riteriX

• he spe disretiztion error ssoited with the semiEdisretized prolemF his error is di0ult to evlute in prtie sine in most of the ses n nlytil solution is not villeD nd highly re(ned sptil representtion of the prolem is not fesileF

• he splitting error ssoited with the deoupled numeril solution of eh suprolem oming from the semiEdisretized prolemF his error is minly set y the hoie of the splitting time stepF

• he multiresolution error ssoited with the sptilly ompressed representtion of the semiEdisretized prolemF his error is ruled y the hoie of the threshold vlue during the multiresolution deompositionF xotie tht in this ontext oth the splitting nd multiresolution errors eome independent of the spe disretiztion of the prolemF he pproximtion errors ssoited with the numerE il methodsD iFeFD the time integrtion nd the dptive mesh re(nement tehniquesD n e hene trkedD wheres for su0iently (ne spe disretiztion limited y the omputtionl resouresD omplete evlution of the glol ury of the numeril simultion is lso possileF sn this work we hve onsidered seond order sptil disretiztion for the di'usion prolem lthough higher order shemes might e implemented with the sme time integrtion solverF he numeril strtegy is thus quite generl nd the sme onstruting nd impleE menting riteri n e pplied to onsider other phenomen in the time dependent hisF en importnt gin of omputtionl performne is shown to e hieved with the resulting method minly euse of the dptive grid fetures nd the implementtion of dedited time integrtion strtegyF purther enhnements re possile if the physil on(gurtion of the prolem llows us to perform n e'etive deoupling of the time sle spetrum of the governing equtionsF sn this hpterD we hve foused our ttention on the numeril simultion of propgting wvesD nd therefore the e0ieny of the previous strtegy will e ensured for more generl prolems s long sX

• e onstnt splitting time step is su0ient to desrie the glol physis of the simulted phenomenonF

• he simple re(nement nd oupling riteri etween the time evolution of the wves nd the dptive grid re(nement ensure proper dynmi representtion of the steepest sptil grdients in the solutionF Adaptive Splitting Scheme for Multi-Scale Evolutionary PDEs his hpter introdues time dptive opertor splitting sheme for the numeril integrtion of sti' hisF ime dptive tehniques were prtilly mentioned in the qenerl sntrodution nd in ghpter PD where dynmil time stepping ws introdued in the ontext of sti' yhis systemsF sn this prtD we will (rst present rief overview of some time dptive shemes for his in the litertureF henD we will introdue n dptive splitting sheme tht omplements the numeril strtegy presented in ghpter RF en rtile on the dptive splitting strtegy ws pulished in gon)uentes wthemtii hhh + IID in speil issue dedited to the memory of wihelle htzmnF 5.1 Time Adaptive Schemes for PDEs ime dpttion for the solution of sti' his is ritil spet for numeril simultions minly euse it llows us to trk the numeril ury of the omputtions s usully done for yhis systemsD nd euse highly unstedy his n e e0iently simultedF iither if the solution is glolly or lolly dvned in timeD dynmi dpttion to the numeril nd physil sles of the prolem is mndtory to overome importnt numeril restritionsF st wht followsD some time stepping tehniques for his will e rie)y disussedF

• ime stepping for swi methodsF tndrd time stepping tehniques for swi shemes onsider emedded lower order methods or other kind of proedure to numerilly esE timte the lol error @see rxVUD rWTAD s previously seen for some sti' yhi solvers in ghpter P 1 F sn generlD the order onditions of swi methods tke simultE neously into ount the expliit nd impliit shemesF hereforeD in prtieD it su0es to onsiderD for instneD n emedded method with supplementry stges tht stis(es lower order onditions @see ugHQ nd referenes thereinAF en estimte of the lol error n e then dynmilly omputed nd onsequently the time integrtion stepsD s perE formed in lssil time integrtion of yhisF his is lso the seD for instneD for the time integrtion sheme employed in the prtitioning shemes presented in rHT for retionEdi'usion systemsD for whih spe grid dption ws lso proposedF sn the sug ode HT tht implements n swi sheme sed on ug methods proposed y 1 Let us remark that the same procedures are valid for any coupled solution scheme like a fully implicit one. For instance, the leading term of the local error Taylor expansion is numerically evaluated in [DS10] to ensure a prescribed accuracy of computations for a rst order implicit Euler scheme used to solve the coupled governing equations for combustion problems with detailed chemistry. IHS HR for retionEdi'usion systemsD nd then extended to onvetionEdi'usionEretion prolems rHRD the leding term in the ylor series of the lol error is numerilly evluted tking into ount tht the method is of order I @hopefully P in prtieA2 F sn this wyD the time step is hosen in order to gurntee omputtions within preE sried tolerne nd within the stility domin of the expliit sheme in whihD y onstrutionD the impliit sheme for the sti' terms remins stle HRF

• ime stepping vi djoint error representtionF yther strtegies tke into ount djoint opertors @seeD eFgFD ülWWD teHVD xHVD wxIHAD whih onsider the dul prolem ssoE ited with the time dependent hisF he min dvntge of this pproh relies on its rigorous mthemtil kground whih llows us to etter ontrol the error of ompuE ttionsF he theoretil frmework is minly settled y the liner or nonliner opertors present in the prolemD nd their orresponding djoint opertorsF he ltter ones led to n djoint representtion of the originl prolemD the dul prolemD for whih one n dedue theoretil error estimtes of the integrtion shemeF sn prtiulrD djoint operE tors hve een lso used to desrie nd nlyze splitting errors for retionEdi'usion systems iq + HVD igq + HVD qinIHF he min di0ulty of these methods is tht more sophistited shemes re required to hndle the evolution of the djoint time opertorsD whih re not lwys wellEposedF e mthemtil study is therefore required nd the proedures re often di0ult to generlizeF he sme follows for multiEdimensionl onE (gurtionsF xeverthelessD for prtiulr prolems s furgers9 eqution xHV or iuler equtions wxIHD suh sheme might e e0iently implementedF sn generlD n imE portnt overhed is introdued y the omputtion of the djoint error representtion sine one needs to ompute the forwrd nd dul prolems plus supplementry opertions t eh time stepD whih usully ost severl times one single forwrd solutionF hese osts re nevertheless redued in wxIH y omputing the djoint errors on orser mesh issued from multiresolution nlysisF sn this wyD timeEspe dptive ws introdued for Ph iuler equtionsF enother lterntive omines impliit nd expliit time integrtions to redue omputtionl requirementsF

• wultirte time stepping strtegiesF he min ide of these shemes is to use selfE djusting time step for prtiulr omponent of n yhi systemD insted of using single glol time step for the whole systemF sn this wyD potentilly sti' omponents with di'erent time sles re omputed within presried tolerne sed on their own lol temporl vritionsF hese re thus lol time stepping tehniques with error onE trolD nd n e dpted to generl time integrtion strtegiesF sn prtiulrD the yhi systems might ome from semiEdisretized hisF eutomti multirte shemes were (rst introdued y qVR for liner multiEstep methodsF purther developments onsideredD for instneD prtitioned ungeEuutt methods for fst nd slow wellEprtitioned sysE tems quHIF sn generlD fully impliit vogHPD vogHQ or linerly impliit ungeEuutt methods of osenrokEtype fqHPD rHU hve een developed with lol error estiE mtes sed on lower order emedded shemesD suitle for sti' prolemsF ome ruil spets re relted to the internl nd (nl synhroniztion steps for ll omponents of the systemD in whih interpoltions re usully implemented to de(ne missing dt t intermedite time stepsD nd the implementtion omplexity of fully impliit methodsF por reent review on these methodsD see wIH nd referenes thereinF yn the other hndD omintion of swi nd multirte tehniques hve een reently introdued IHT in ghIIF sn the ontext of dptive meshing shemesD mny lol time stepping tehniques hve een developed to lolly dpt time steps ording to the lol mesh sizeF his ide dtes k to the originl works of ferger 8 yliger on ew tehniques fyVRD nd were then formlized y ferger 8 gollel in fgVWF he generl pplition frmework ws given y hyperoli onE servtion lws for whih the time steps of expliit shemes would e hevily onstrined y the (nest spe sle of the omputtionl domin @seeD eFgFD fhe + HT nd referenes thereinAF he time steps re usully hosen sed on lol stility riteri nd therefore llow us to gretly improve numeril performnesF epproprite synhroniztion steps mong ells evolved with di'erent time steps must e de(nedD usully sed on interpoltion pproximE tionsD in order to limit the orresponding overhed of omputtionsF e study on the optiml hoie of the lol time steps nd the synhroniztion stges n e found in gxHWF ell these ides were extended to multiresolution tehniques for whih wüller 8 tiri introdued in wHU lolly vrying time stepping for expliit nd impliit shemesF he ltter moE tivted mny other extensions for hyperoli @seeD eFgFD gHTD gxHVD gxIHA nd proli prolems hqHVF he ltter uthors introdued lso emedded expliit ungeE uutt shemes for error ontrol in hHWD whih were lter oupled with lol time stepping in hqHWF enother multiresolution tehnique with lol time stepping for proli proE lems ws developed in fffHWD nd pplied for exitle medi prolems in ffIHD where speil (rst order splitting tehnique ws lso implemented to hndle sti' retion terms with semiEimpliit sheme to improve omputing performnesF sn the previous hpterD we hve introdued new time splitting tehnique for sti' hisF his pproh llows us to independently tret di'erent prolems nd the ssoited time sles ording to the deoupling pilities of the physil prolemF he splitting time step is hosen within presried ury in order to gurntee error ontrol of the time integrtionF sn this wyD the time evolution of the glol solution is not limited y stility restritions s in stndrd on(gurtionsD nd n importnt numeril performne n e hieved whenever rod deoupling of the numeril nd physil time sle spetrum is possileF sn prtiE ulrD this splitting pproh onsiders dedited impliit solver for sti' retion prolems tht n e seen s lol time stepping strtegy de(ned this time y ury riteri s in multirte on(gurtionD ut without ny dt synhroniztion nd interpoltion errorsY wheres the expliit solvers might perform severl time steps within the splitting time step in order to gurntee numeril stilityD in opposition to stndrd oupled shemesD like fully impliit or onsistent swi methods 3 F edditionllyD the numeril omplexity of the splitting environment is rther minimum onsidering the suessive nd independent solution of the vrious suprolemsD nd tht numeril shemes speilly oneived for eh one of them re implementedF e hve lso seen in the previous hpter tht in the ontext of propgting wves onstnt splitting time step is more thn resonle to preisely desrie the glol oupling of the split phenomenF pixed splitting time step shemes onstitute the most stndrd splitting implementtion up to our dys nd hve een lrgely used in the literture @seeD eFgFD uxWWD hfHHD yfHID vqHQD xuHSD xHTD HVAF roweverD suh (xed time stepping strtegy would surely led to mjor di0ulties nd limittions for prolems desriing highly unstedy IHU models with very di'erent dynmis suh s )me ignition nd propgtionD or repetitively pulsed plsms dishrgesD ll the more in the frmework of lrge sle simultionsF st seems thus essentil to e le to dynmilly dpt splitting time steps for the simultion of suh multiEsle prolems with strongly evolving dynmisF sn order to gurntee preise desription of the oupled multiEsle phenomenonD this dpE tive splitting sheme must rely on lol error estimte whih n e otinedD for instneD y onsidering lower order emedded methodD s seen for yhis in ghpter PF he time steps n therefore dynmilly dpt ording to given tolerneF xeverthelessD it is well known tht for sti' prolems nd lrger ury tolernesD the order of the methods n degenerteD yielding non relile error estimtes nd possilyD muh lrger glol errors thn expeted y the given tolerneF uh senrio will e ll the more vlid in the frmework of hi solutionsD where (ne grid nd lrge grdients oupled with sti' soure terms led to espeilly sti' prolemsF sn prtiulrD the numeril strtegy of ghpter R ws uilt in suh wy tht the min soure of error is the splitting errorF hereforeD it is essentil to onstrut relile splitting error estimte to gurntee n e'etive error ontrol within the so limed ury tolerneF sn this ontextD to the est of our knowledge the (rst nd only previous ttempt to dynmilly dpt splitting time steps ws onsidered y qerish 8 erwer in qHP y mens of stndrd ihrdson extrpoltion 4 @see rxVUAD for the numeril solution of his issued from hemotxis modelsF xeverthelessD suh generl proedure will not e suitle for sti' his minly euse it neglets order redutionsD nd euse eh time step hs to e integrted twieF hereforeD other lterntives need to e soughtF e simple nd generl dptive strtegy for non sti' prolems isD for instneD given y the imedded plitEtep pormule presented y uoh 8 hlhmmer in uIIF his pproh is sed on lower order emedded methodsD whih omine vie nd trng shemesD nd in generl llow us to uild higher order tehniques with negtive or omplex oe0ientsF elterntivelyD n dptive splitting sheme suitle for sti' on(gurtions ws reently introdued in hhh + IID nd will e detiled in the followingF his strtegy ims lso t estimting the lol splitting error with two di'erent splitting shemesF he (rst one is the stndrd seond order trng tehniqueD wheres the seond one onsiders shifted trng formul uilt with δEshift in time of the lssil trng formulF his ltter method is thus of (rst orderD nd is emedded euse the (rst sustep is ommon to oth methods to redue omputtionl ostsF st inherits from the trng sheme its stility properties nd the sme numeril ehvior in the ontext of sti' prolemsD s studied in hwHRD hhvwHUF e numeril nlysis of the method will e detiled in wht follows to settle solid mthemtil kgroundF purthermoreD omplementry numeril proedure sed on theoretil estimtes will e introdued to overome lssil restritions of dptive time stepping shemes whenever symptoti estimtes fil to predit the true dynmis of the prolemF he min gol is to oneive nd implement fully dptive time stepping strtegy tht gurntees n e'etive ontrol of the errors of integrtion for lrge rnge of time stepsY key issue for prolems for whih splitting time steps n go eyond the fstest physil sles of the prolemF sn this wyD ompred with stndrd proedure for whih ury is gurnteed y onsidering time steps of the order of the fstest sleD this dptive splitting tehnique llows us to extend the strtegy of ghpter R to more omplex nd highly unstedy prolems modeling vrious physil senriosD independent of the fstest physil or numeril IHV time sleF 5.2 Time Adaptive Splitting Method hroughout this prt slr Ih se for the liner digonl di'usion system @IFSQA is onE sidered in order to simplify the presenttionD tking into ount tht extensions to higher dimensions of x or u re strightforwrdX

∂ t u -∂ 2 x u = f (u), x ∈ R, t > 0, u(0, x) = u 0 (x), x ∈ R, @SFIA
where f nd u 0 re smooth funtionsF es usulD we denote y T t u 0 the solution of @SFIAD y X t u 0 the solution of the di'usion equtionX

∂ t u D -∂ 2 x u D = 0, x ∈ R, t > 0, @SFPA with initil dt u D (0, •) = u 0 (•)
fter some time tY nd y Y t u 0 D the solution of the retion prt where the sptil oordinte x n e onsidered s prmeterX

∂ t u R = f (u R ), x ∈ R, t > 0, @SFQA with u R (0, •) = u 0 (•)
F he vie nd trng pproximtion formule of the solution of system @SFIA re then de(ned y

L t 1 u 0 = X t Y t u 0 , L t 2 u 0 = Y t X t u 0 , @SFRA S t 1 u 0 = X t/2 Y t X t/2 u 0 , S t 2 u 0 = Y t/2 X t Y t/2 u 0 . @SFSA
en dptive time stepping strtegy is sed on lol error estimte whih n e otined y using two shemes of di'erent orderD for instneD S t 1 or S t 2 D lolly of order 3D nd L t 1 or L t 2 D lolly of order 2F sn this seD the imedded plitEtep pormule given in uII onsider

S t 1 nd L t 2 D or S t 2 nd L t 1 D notiing tht 5 L t 1 u 0 = X t Y t/2 Y t/2 u 0 , @SFTA
where Y t/2 u 0 is lso used to ompute S t 2 u 0 F xeverthelessD we hve seen in ghpter I tht in the ontext of multiEsle phenomenD order redutions my pper due to shortElife trnsients ssoited with the fstest vrilesD when one onsiders splitting time steps lrger thn the fstest slesF purthermoreD it hs een proved in hwHR tht etter performnes re exE peted while ending the splitting sheme y the prt involving the fstest time sles of the phenomenonF sn prtiulrD in the se of liner digonl di'usion prolemsD no order reduE tion is expeted for the L t 2 nd S t 2 shemes when fst sles re present in the retive termF hereforeD the emedding proedure must e refully oneived tking into onsidertion these theoretil studiesF e introdue shifted trng formul

S t 2,δ u 0 = Y (1/2-δ)t X t Y (1/2+δ)t u 0 , @SFUA
lolly of order 2D due to the lk of symmetryD for δ in [-1/2, 0)∪(0, 1/2]D whih likely fetures the sme numeril ehvior s S t 2 F sn this wyD lol error estimte is omputed sed on 5 In [KT11] the central step is actually written as the common one for both Lie and Strang schemes, we believe that this is just a printing error. IHW two solutions for whih orders re gurnteedD nd potentil loss of order is simultneousD ording to

S ∆t 2 u 0 S ∆t 2,δ u 0 = Y ∆t/2 X ∆t Y ∆t/2 u 0 Y (1/2-δ)∆t X ∆t Y (1/2+δ)∆t u 0 , @SFVA
for some splitting time step ∆t > 0F imedding is omplished s long s δ is di'erent from -1/2DD iFeFD S ∆t 2,δ u 0 di'erent from L t 2 u 0 F gontrrilyD if δ is equl to 1/2D S ∆t 2,δ u 0 is de(ned s L t 1 u 0 D whih it is not suitle for sti' on(gurtions s previously disussed hwHRF hereforeD δ should e ontined in (-1/2, 0) ∪ (0, 1/2)F hifted S ∆t 1,δ u 0 is de(ned in similr wy nd depending on the multiEsle hrter of the prolemD it might e the pproprite hoie long with S ∆t 1 u 0 F gonsidering extly the sme time stepping proedure detiled in ghpter P for sti' yhisD we hve tht

S ∆t 2 u 0 -S ∆t 2,δ u 0 = S ∆t 2 u 0 -T ∆t u 0 + T ∆t u 0 -S ∆t 2,δ u 0 = O(∆t 3 ) + O(∆t 2 ) ≈ O(∆t 2 ). @SFWA
hereforeD for given ury tolerne ηX

S ∆t 2 u 0 -S ∆t 2,δ u 0 < η, @SFIHA
must e veri(ed in order to ept the urrent omputtion with ∆tF he new time step is then lulted y

∆t new = υ ∆t η S ∆t 2 u 0 -S ∆t 2,δ u 0 , @SFIIA
with seurity ftor 0 < υ ≤ 1D lose to 1F wore sophistited formule thn @SFIIA like the step size strtegy with memory @PFRTAD n e lso onsideredF he error ontrol of these dptive methods is fully gurnteed s long s the orders of othD the min nd the emedded integrtion methodsD remins vlid nd @SFWA is stis(edF his is the se for smll enough time steps for whih symptoti theoretil estimtes holdD ut remins n open prolem for lrger time steps for whih the vlidity of the former orders is ssumed in ny stndrd timeEstepping shemeF his is key point in this work euse we propose not only new splitting strtegy with dptive time steps s desried in this setionD ut we lso im t pplitions for whih splitting time steps my go eyond the fstest sles ssoited with eh suprolem in order to otin importnt omputtionl svingsF e tehnique tht onsistently gurntees error ontrol for ll possile splitting sles must e then pursuedD ut (rst detiled numeril nlysis of the method must e performedF 5.3 Numerical Analysis of the Adaptive Scheme sn this prtD we ondut the numeril nlysis of the method previously detiledF st is minly sed on the theoretil study of the pproximtion of the solution T t of @SFIAD y the shifted trng formul @SFUAX S t 2,δ F qenerl estimtes for the pproximtion of T t y the stndrd S t 2 n e nturlly otined y tking δ = 0F o simplify the nottions in the followingD we will denote S t 2 y S t D nd S t 2,δ y S t δ F

Linear Framework

essume tht A nd B re liner ounded opertors nd de(ne ording to @SFUAD S t δ u 0 = e (1/2-δ)tA e tB e (1/2+δ)tA u 0 , @SFIPA s n pproximtion of e t(A+B) u 0 F he following theorem gives the expnsion in powers of t of the di'erene etween e t(A+B) u 0 nd S t δ F e rell the de(nition of the rkets etween A nd B given in @IFPIAX [A, B] = AB -BAF Theorem 5.1. essume tht A nd B re liner ounded opertorsD for t nd δ smll enoughD the following symptoti holds

e t(A+B) u 0 -S t δ u 0 = -δt 2 [A, B]u 0 + t 3 24 ( A, [A, B] + 2 B, [A, B] )u 0 +O(δt 3 ) + O(t 4 ). @SFIQA
Proof. he proof is strightforwrd y using the ylor formul with integrl reminder for liner ounded opertor AX

e tA = Id + tA + t 2 A 2 2 + t 3 A 3 6 + t 0 (t -s) 3 6
A 4 e sA ds, @SFIRA nd the fkerEgmpellErusdor' formul @IFPQAF 5.3.2 Nonlinear Framework e extend now the previous theorem to our nonliner frmework given y system @SFIAD y using the vie formlism introdued in ghpter IF purthermoreD onsidering the spes C ∞ (R)

of funtions of lss C ∞ on RD nd C ∞ b (R) of funtions of lss C ∞ on R nd ounded over RD we introdue the hwrtz spe S(R) de(ned y S(R) = {g ∈ C ∞ (R) s.t. sup v∈R |v α 1 ∂ α 2 v g(v)| < ∞ ∀ α 1 , α 2 ∈ Z}; @SFISA nd we de(ne the spe S 1 (R)D mde out of funtions u elonging to C ∞ b (R) suh tht u elongs to S(R)X S 1 (R) = {u ∈ C ∞ b (R) s.t. u ∈ S(R)}.
@SFITA king into ount the system @SFIAD we perform the expnsion in powers of t of the di'erene etween T t nd S t δ D given y @SFUAF Theorem 5.2. essume tht u 0 elongs to S 1 (R)D nd tht f elongs to C ∞ (R)F por t nd δ smll enoughD the following symptoti holds

T t u 0 -S t δ u 0 = -δt 2 f (u 0 ) (∂ x u 0 ) 2 + t 3 24 f (u 0 )f (u 0 ) + f (u 0 )f (3) (u 0 ) (∂ x u 0 ) 2 - t 3 12 f (4) (u 0 ) (∂ x u 0 ) 4 - t 3 3 f (3) (u 0 ) (∂ x u 0 ) 2 ∂ 2 x u 0 - t 3 6 f (u 0 ) ∂ 2 x u 0 2 + O(δt 3 ) + O(t 4 ). @SFIUA III
Proof. e introdue the two vie opertors D ∆ nd D f ssoited with ∂ 2

x nd f D nd write

T t u 0 -S t δ u 0 = e t(D ∆ +D f ) Id u 0 -e (1/2+δ)tD f e tD ∆ e (1/2-δ)tD f Id u 0 . @SFIVA
prom heorem SFID we n dedue tht

T t u 0 -S t δ u 0 = -δt 2 ([D f , D ∆ ]Id) u 0 + t 3 24 D f , [D f , D ∆ ] Id u 0 + t 3 12 D ∆ , [D f , D ∆ ] Id u 0 + O(δt 3 ) + O(t 4 ).
@SFIWA e re not interested in giving the ext form of the terms O(δt 3 ) nd O(t 4 )D ut these terms n e omputed following the sme tehnique developed in hIIF por the term in O(t 2 )D we hve y de(nition @IFRWA nd with @IFRHAX

([D f , D ∆ ]Id) u 0 = (D f (D ∆ Id) -D ∆ (D f Id)) u 0 = (D ∆ Id) (u 0 )f (u 0 ) -(D f Id) (u 0 )∂ 2 x u 0 = ∂ 2 x (f (u 0 )) -f (u 0 )∂ 2 x u 0 . @SFPHA he lst term is y de(nition the vie rket etween ∂ 2 x nd f D simple omputtion shows tht ∂ 2 x f (u 0 ) -f (u 0 )∂ 2 x u 0 = f (u 0 ) (∂ x u 0 ) 2 + f (u 0 )∂ 2 x u 0 -f (u 0 )∂ 2 x u 0 = f (u 0 ) (∂ x u 0 ) 2 . @SFPIA purthermoreD D f , [D f , D ∆ ] Id (u 0 ) = f (u 0 )f (u 0 ) + f (u 0 )f (3) (u 0 ) (∂ x u 0 ) 2 , @SFPPA nd D ∆ , [D f , D ∆ ] Id u 0 = -f (4) (u 0 ) (∂ x u 0 ) 4 -4f (3) (u 0 ) (∂ x u 0 ) 2 ∂ 2 x u 0 -2f (u 0 ) ∂ 2 x u 0 2 . @SFPQA
ell the terms in @SFIWA re now omputed nd this onludes the proof of the theoremF por δ = 0D the next orollry follows diretlyF Corollary 5.3. essume tht u 0 elongs to S 1 (R)D nd tht f elongs to C ∞ (R)F por t smll enoughD the following symptoti holds

T t u 0 -S t u 0 = t 3 24 f (u 0 )f (u 0 ) + f (u 0 )f (3) (u 0 ) (∂ x u 0 ) 2 - t 3 12 f (4) (u 0 ) (∂ x u 0 ) 4 - t 3 3 f (3) (u 0 ) (∂ x u 0 ) 2 ∂ 2 x u 0 - t 3 6 f (u 0 ) ∂ 2 x u 0 2 + O(t 4 ). @SFPRA

Domain of Validity of the Numerical Scheme

prom @SFIUA nd @SFPRAD we n see tht

S t u 0 -S t δ u 0 = δt 2 f (u 0 ) (∂ x u 0 ) 2 + O(δt 3 ), @SFPSA nd thus T t u 0 -S t δ u 0 = T t u 0 -S t u 0 O(t 3 ) + S t u 0 -S t δ u 0 O(δt 2 )
. @SFPTA hereforeD we re sure tht the rel lol error of the methodD T t u 0 -S t u 0 D will e ounded y the lol error estimteD err = S t u 0 -S t δ u 0 D when for given δX

T t u 0 -S t δ u 0 ≈ O(t 2 ), @SFPUA
is veri(ed into @SFPTAD iFeFD when the emedded method is relly of lower order s ssumed in @SFWAF he ltter will e lwys veri(ed for su0iently smll time steps tD for whih

T t u 0 -S t u 0 ≈ O(t 3 ) < err = S t u 0 -S t δ u 0 ≈ O(δt 2 ), @SFPVA
is gurnteedD nd thus yields @SFPUA into @SFPTAF xeverthelessD for lrger time steps err will fil to properly predit T t u 0 -S t u 0 D sine we will eventully hve

T t u 0 -S t u 0 ≈ O(t 3 ) > err = S t u 0 -S t δ u 0 ≈ O(δt 2 ). @SFPWA
hen this hppensD @SFPUA is no longer true nd the previous estimtes show tht we will rther hve

T t u 0 -S t δ u 0 ≈ O(t 3 ), @SFQHA
nd ssumption @SFWA will no longer holdF sn order to overome this di0ultyD we must estimte ritil time step t > 0 suh tht for ll t in [0, t ]D @SFPUA is gurnteed for given δF his prmeter (xes domin of vlidity of the dptive sheme in whih the trng lol errorD T t u 0 -S t u 0 D will e indeed ounded y the lol error estimteD err D nd n e'etive error ontrol will e hieved for err smller thn given ury tolerne η into @SFIHAF pinllyD suitle hoie of δ n e lso mde sine t is relted to δ following @SFPTAF e nturl strtegy to predit this ritil t will rely on the previous theoretil estimtesD nd on more preise knowledge of the struture of the solutions of the hisF he ltter isD for instneD illustrted in the next prt in the ontext of trveling wve solutions similr to the pplition kground estlished in ghpter RF

Application to Traveling Waves

sn this prtD we will onfront the previous theoretil study to simple retionEdi'usion prolem tht dmits selfEsimilr trveling wve solutions suh s the u eqution uQUF he min dvntges of onsidering this kind of prolem re tht nlyti solutions exist nd tht the fetured sti'ness n e tuned using speEtime slingF hereforeD it provides (rst numeril vlidtion of the numeril estimtes of the method nd n evlution of its domin of pplitionF woreoverD detiled study n e onduted on the impt of the sti'ness fetured y propgting fronts with steep sptil grdients s performedD for instneD in hhwIIF sn wht followsD we rest previous estimtes in the ontext of these retion trveling wvesD nd then dedue n estimte of the time step t tht de(nes the limit of pplition of the method for whih lol error estimtes yield e'etive error ontrolF e end with numeril vlidtion of the theoretil results in the ontext of the numeril solution of the u modelF IIQ 5.4.1 Numerical Estimates e onsider the propgtion of selfEsimilr wves modeled y proli his of typeX

∂ t u -D ∂ 2 x u = kf (u), x ∈ R, t > 0, u(0, x) = u 0 (x),
x ∈ R, @SFQIA with solution u(x, t) = u 0 (x -ct)D where c is the stedy speed of the wvefrontD nd D nd k stndD respetivelyD for di'usion nd retion oe0ientsF gonsidering heorem SFPD we otin the following estimte for system @SFQIAF Corollary 5.4. essume tht u 0 elongs to S 1 (R)D nd tht f elongs to C ∞ (R)F por t nd δ smll enoughD the following symptoti holds

T t u 0 -S t δ u 0 = -δkDt 2 f (u 0 ) (∂ x u 0 ) 2 + k 2 Dt 3 24 (f (u 0 )f (u 0 ) + f (u 0 )f (3) (u 0 )) (∂ x u 0 ) 2 - kD 2 t 3 12 f (4) (u 0 ) (∂ x u 0 ) 4 - kD 2 t 3 3 f (3) (u 0 ) (∂ x u 0 ) 2 ∂ 2 x u 0 - kD 2 t 3 6 f (u 0 ) ∂ 2 x u 0 2 + O(δt 3 ) + O(t 4 ). @SFQPA
Proof. he proof follows diretly the demonstrtion of heorem SFP using @SFIWA nd onsidE ering tht

[D kf , D D∆ ] = kD[D f , D ∆ ], @SFQQA [D kf , D D∆ ], D D∆ = kD 2 [D f , D ∆ ], D ∆ , @SFQRA [D kf , D D∆ ], D kf = k 2 D [D f , D ∆ ], D f , @SFQSA
where D D∆ nd D kf re the vie opertors ssoited with D∂ 2 x nd kf F sf we now onsider the system @SFQIA with k = 1 nd D = 1D iFeFD the originl prolem @SFIAD the following orollry estlishes t > 0 for given δ suh tht for ll t in [0, t ]D the ondition @SFPUA is gurnteedF Corollary 5.5. essume tht u 0 elongs to S 1 (R)D nd tht f elongs to C ∞ (R)F por given δ smll enoughD de(ne

M 1 = f (u 0 ) (∂ x u 0 ) 2 L 2 , @SFQTA M 2 = f (u 0 )f (u 0 ) + f (u 0 )f (3) (u 0 ) 24 (∂ x u 0 ) 2 - f (4) (u 0 ) 12 (∂ x u 0 ) 4 - f (3) (u 0 ) 3 (∂ x u 0 ) 2 ∂ 2 x u 0 - f (u 0 ) 6 ∂ 2 x u 0 2 L 2 , @SFQUA nd de(ne t y t M 2 = δM 1 . @SFQVA
por ll t suh tht 0 < t ≤ t D the following holds

T t u 0 -S t δ u 0 L 2 ≈ O(t 2 ).
@SFQWA IIR sn generlD if the evlution of the derivtives of u 0 nd f is fesileD it is then possile to predit the domin of pplition of the method [0, t ]D for given δD ording to the previous resultF sn the prtiulr se of trveling wve solutions for @SFQIAD the di'usion nd retion oefE (ientsD D nd kD might e seen s sling oe0ients in time nd speF e dimensionless nlysis of trveling wveD s shown in qWRD n e then onduted onsidering dimenE sionless time τ nd dimensionless spe r with τ = kt, r = (k/D) 1/2 x. @SFRHA his nlysis llows us to (nd stedy veloity of the wvefrontX

c = d t x ∝ (Dk) 1/2 , @SFRIA
wheres the shrpness of the wve pro(le is mesured y

d x u| max ∝ (k/D) 1/2 . @SFRPA
hereforeD ondition Dk = 1 implies onstnt veloity for ll k = 1/DD ut greter k @or smller DA implies higher sptil grdientsD nd thus sti'er on(gurtionsF his study gives omplementry informtion on the solution of @SFQIAD nd in prtiulr when ondition Dk = 1 is stis(edD it llows us to dedue from gorollry SFS the following expression

kt M 2 = δM 1 , @SFRQA
with M 1 nd M 2 givenD respetivelyD y @SFQTA nd @SFQUAF ti'er on(gurtions with steeper sptil grdients nd thus lrger kD will then restrin the pplition domin of the method ording to @SFRQAF xeverthelessD smller time steps re lso required for higher grdients for given level of uryD nd hene we n expet simultneous redution of oth ritil nd urte splitting time steps suh tht t remins into the domin of pplition [0, t ]F

Numerical Illustration: 1D KPP Equation

vet us rell the uolmogorovEetrovskiiEiskunov modelF sn their originl pper uQUD these uthors introdued model desriing the propgtion of virusD nd the (rst rigorous nlysis of stle trveling wve solution of nonliner retionEdi'usion eqution qWRF he eqution is the followingX

∂ t u -D ∂ 2 x u = k u 2 (1 -u).
@SFRRA e onsider Ih disretiztion with 5001 points on [-70, 70] region with homogeneous xeumnn oundry onditionsD for whih we hve negligile sptil disretiztion errors with respet to the ones oming from the numeril time integrtionF he desription of the dimensionless model nd the struture of the ext solution n e found in qWRD where theoretil nlysis shows tht in the se of D = 1 nd k = 1D the veloity of the selfEsimilr trveling wve is c = 1/ √ 2 in @SFRIA nd the mximum grdient vlue rehes 1/ √ 32 in @SFRPAF he key point of this illustrtion is tht the veloity of the trveling wve is proportionl to (k D) 1/2 D wheres the mximum grdient is proportionl to (k/D) 1/2 F reneD we onsider the se kD = 1 for whih one my otin steeper grdients with the sme speed of propgtionF hroughout this setionD the ext solution T t u 0 will e pproximted y referene or qusiEext solution given y the numeril solution of the oupled retionEdi'usion proE lem performed y the duS method rWT with (ne tolerneD η Radau5 = 10 -10 F he IIS trng pproximtions S t u 0 nd S t δ u 0 will e omputed with the splitting tehnique of ghpE ter RD with duS for the retive termD nd the yguR method edHP for the di'usion prolemF sn order to properly disriminte the previously estimted splitting errors from those oming from the temporl integrtion of the sustepsD we onsider lso (ne tolernesD η Radau5 = η ROCK4 = 10 -10 F pigures SFI nd SFP show L 2 errors etween the T t u 0 D S t u 0 D nd S t δ u 0 solutions for k = 1D k = 10D nd k = 100D nd severl vlues of δF xotie tht estimtes @SFIUAD @SFPRAD nd @SFPSA for ll three errors in @SFPTAD re veri(edF sn prtiulrD for ∆t lrger thn ritil ∆t D the estimted error err = S ∆t u 0 -S ∆t δ u 0 L 2 is no longer prediting the rel lol error given y T t u 0 -S t u 0 F ith these resultsD we n lso ompre the rel ∆t real D otined when T ∆t u 0 -S ∆t u 0 L 2 ≈ S ∆t u 0 -S ∆t δ u 0 L 2 in the numeril testsD with the theoretilly estimted ∆t est following @SFRQAF le SFI summrizes these results where ∆t est is given in @SFRQA y the omputtion of M 1 nd M 2 with wple c ording to @SFQTA nd @SFQUAF e relly good greement n e oserved even though the theoretil results underestimte the rel vluesF he loss of order depited y the numeril resultsD is due to the in)uene of sptil grdients in the solutionD s previously nlyzed in ghpter I hhvwHUF his explins the error of the predited ritil ∆t est in @SFRQAD whenever one gets lose to the order loss regionF he numeril results lso show tht S ∆t u 0 -S ∆t δ u 0 L 2 ∝ δ for given ∆t ording to @SFPSAD nd onsequently ∆t ∝ δF hereforeD the working region or domin of pplition of the methodD ∆t < ∆t D depends diretly on the hoie of δD s seen in le SFIF sn the ontext of trveling wvesD these numeril experiments show tht ∆t ∝ k -1 ∝ 1/ ∂ x u 0 ∞ ording to le SFIF hereforeD the pplition domins re redued for sti'er on(gurtions ut the numeril results lso show tht smller time steps re required for the sme level of uryF hese onlusions re esily extrpolted to more generl selfEsimilr propgting wvesF Comparison between the real ∆t real , obtained when 5.5 Numerical Study on Non-Asymptotic Regimes e hve presented so fr time dptive numeril sheme fully sed on theoretil error estimtesF xeverthelessD some generl onditions must e tken into onsidertion in order to gurntee n e'etive error ontrolF his hs een shown in the se of retion trveling wves for whih theoretil studies give us some insights into the hi solutionF xeverthelessD this is not lwys possile nd it is usully di0ult to rry out suh n nlysis for more relisti modelsF fsed on the theoretil nlysis nd previous illustrtionsD generl numeril proedure tht omplements the dptive sheme should e introduedF he min gol of the following study is to settle the theoretil frmework for nonEsymptoti regimesD nd thus n pproprite numeril proedure to estimte t D nd suitle shift time δF vet us onsider the generl system @SFIAD we n write sed on the theoretil estimtes @SFPRA nd @SFPSAX S ∆t u 0 -

T ∆t u 0 - S ∆t u 0 L 2 ≈ S ∆t u 0 -S ∆t δ u 0 L 2 in
T ∆t u 0 = C 0 ∆t 3 , @SFRSA
where

C 0 = C 1 (u 0 ) + O(∆t 4 )D nd S ∆t u 0 -S ∆t δ u 0 = δC δ ∆t 2 , @SFRTA
where

C δ = C 2 (u 0 ) + O(δ, ∆t 3
)Y the dependene of C δ on δ is only given in the higher order terms nd it is thus negletedF por given δD in the sme spirit of gorollry SFSD we serh for ritil ∆t suh tht

S ∆t u 0 -T ∆t u 0 ≤ S ∆t u 0 -S ∆t δ u 0 , @SFRUA
for ll ∆t ≤ ∆t F eording to @SFRSA nd @SFRTAD we hve then the following estimteX ∆t ≈ δC δ C 0 . @SFRVA he ltter estimte estlishes for given δ n upper ound for the time steps for whih the lol error estimteD err = S ∆t u 0 -S ∆t δ u 0 D is properly estimting the rel trng lol errorD S ∆t u 0 -T ∆t u 0 D following @SFRUAF sn prtiulrD when ∆t → ∆t D we hve tht err ≈ S ∆t u 0 -T ∆t u 0 , @SFRWA nd the lol error estimte is prediting more urtely the rel error of integrtionF he ritil time step ∆t is diretly relted to δ through @SFRVAD s lredy onluded in the previous numeril resultsF hereforeD suitle δ will de(ne ritil ∆t suh tht the estimted splitting time steps ∆t for given tolerne ηD will e su0iently lose to the ritil ∆t D nd thus n exessive overestimte of the trng lol error is voidedF sn this wyD lrger time steps n e hosen for given ury tolerne ηF sn order to ompute ∆t for given δD we must (rst estimte C 0 in @SFRVAD sine C δ is omputed out of the lol error estimteD err D for known ∆t nd δ in @SFRTAF istimting C 0 mounts to diretly estimte trng lol error through @SFRSAD nd thus the ury of the simultion might e ontrolled in this wy without relying on lol error estimte omputed with seondD emedded methodF xeverthelessD s we will see in the followingD in order to estimte C 0 nd the trng lol errorD we must de(ne new lol estimtors nd numeril proedure tht eomes rpidly very expensive if we wnt to implement only suh n error ontrol tehniqueF hereforeD we should rther rely on lol error estimte given y less expensive strtegy for whih the omputtion of C 0 is only performed from time to timeD to gurntee the vlidity of the lol error estimtesF he next vemm will e useful to de(ne the numeril proedure to estimte C 0 F IIV Lemma 5.6. vet us onsider system @SFIAD nd ssume lol vipshitz ondition for f X

f (u) -f (v) ≤ λ u -v . @SFSHA
por (nite ∆tD the following holds

T ∆t u 0 -T ∆t v 0 ≤ ω u 0 -v 0 , @SFSIA
with ω = 1 + κ∆t for smll enough ∆tF

Proof. sing huhmel9s formul for @SFIA yields

T t u 0 -T t v 0 = e t∂ 2 x (u 0 -v 0 ) + t 0 e (t-s)∂ 2 x (f (T s u 0 ) -f (T s v 0 )) ds. @SFSPA
king norms nd pplying reursively @SFSPAD

T t u 0 -T t v 0 ≤ u 0 -v 0 + λ t 0 T s u 0 -T s v 0 ds ≤ e λt u 0 -v 0 , @SFSQA
proves @SFSIA for t = ∆t (niteF sf we de(ne lol estimtorX

e 1 = S a 1 ∆t u 0 -S b 1 ∆t (S c 1 ∆t u 0 ), @SFSRA suh tht a 1 = b 1 + c 1 D we otin tht S b 1 ∆t (S c 1 ∆t u 0 ) -T a 1 ∆t u 0 = S b 1 ∆t (S c 1 ∆t u 0 ) -T b 1 ∆t (S c 1 ∆t u 0 ) +T b 1 ∆t (S c 1 ∆t u 0 ) -T b 1 ∆t (T c 1 ∆t u 0 ) = C S c 1 ∆t u 0 b 3 1 ∆t 3 + T b 1 ∆t (S c 1 ∆t u 0 ) -T b 1 ∆t (T c 1 ∆t u 0 ), @SFSSA where C S c 1 ∆t u 0 = C 1 (S c 1 ∆t u 0 ) + O(∆t 4 )F essuming tht C S c 1 ∆t u 0 ≈ C 0 D nd onsidering vemm SFTD it follows from the di'erene etween @SFRSA t a 1 ∆t nd @SFSSAX e 1 -(a 3 1 -b 3 1 )C 0 ∆t 3 ≤ ω T c 1 ∆t u 0 -S c 1 ∆t u 0 ≤ ωC 0 c 3 1 ∆t 3 . @SFSTA he(ning seond lol estimtorX e 2 = S a 2 ∆t u 0 -S b 2 ∆t (S c 2 ∆t u 0 ), @SFSUA
suh tht a 2 = b 2 + c 2 D we otin seond expression similr to @SFSTAD with e 2 nd (a 2 , b 2 , c 2 )F e n thus estimte C 0 nd ωF ith this informtion we n either estimte the ritil time step ∆t for given δD or suitle δ suh tht ∆t ≈ ∆t through @SFRVAF sn prtiulrD we notie tht

• b 1 should e lose to b 2 in order to etter pproximte ω into @SFSIA nd @SFSTAY nd

• c 1 nd c 2 should e su0iently smll to gurntee

C S c 1 ∆t u 0 ≈ C 0 nd C S c 2 ∆t u 0 ≈ C 0 F
prom prtil point of view to optimize the numer of extr omputtionsD we n onsider

• sing estimtor e 2 to ompute estimtor e 1 y setting a 2 = c 1 Y nd

• etting a 1 = 1D so we n use S a 1 ∆t u 0 for the time integrtion of the prolemF gonsequentlyD the extr omputtions needed to ompute lol estimtors e 1 nd e 2 D will e given y S c 2 ∆t u 0 , S b 2 ∆t (S c 2 ∆t u 0 ), S c 1 ∆t u 0 , S b 1 ∆t (S c 1 ∆t u 0 ), @SFSVA within time step ∆tF e will then e le to ompute ω nd C 0 D y solving two expressions of type @SFSTAF 5.5.1 Numerical Evaluation of Critical t : 1D BZ Equation e onsider the Ih on(gurtion of the f prolem @RFPWA with the sme prmeters @RFQHA nd @RFQIAD onsidered in ghpter RD for whih the sptil disretiztion of 4001 points is good enough to prevent importnt sptil disretiztion errorsF he referene solution nd the trng pproximtions re de(ned in the sme wy s in the previous u pplition with the sme tolernes for the time integrtion solversF pirst of llD we vlidte for this se the theoretil order estimtes @SFIUAD @SFPRAD nd @SFPSAD nd verify reltion @SFPTAF pigure SFQ shows L 2 errors etween the T t u 0 D S t u 0 D nd S t δ u 0 solutions for severl δD nd the rel ∆t otined from the numeril results suh tht T ∆t u 0 -S ∆t u 0 L 2 ≈ S ∆t u 0 -S ∆t δ u 0 L 2 F he mximum L 2 errors onsider the mximum vlue etween the normlized lol errors for vriles aD bD nd cF sn these numeril testsD it orresponds usully to vrile bF vet us now de(ne the two sets (a 1 , b 1 , c 1 ) nd (a 2 , b 2 , c 2 )D nd ompute lol estimtors e 1 nd e 2 D in order to otin C 0 ording to @SFSTA with ∆t = ∆t 0 = 10 -5 D iFeFD time step for whih there is no order loss yetD s seen in pigure SFQF es previously detiledX IF e onsider a 1 = 1 nd a 2 = c 1 D to void some extr omputtionsF PF edditionllyD b 2 should e set lose to b 1 with su0iently smll c 1 nd c 2 F etting b 1 lrger thn 1/2 would yield more di'erent b 2 D sine c 1 = a 2 F elterntivelyD for b 1 smller thn 1/2 we n even set b 2 = b 1 D ut in this se c 1 will e lrger thn 1/2F hereforeD we reh ompromise y setting b 1 = 1/2 tht yields c 1 = a 2 = 1/2D so we n hooseD for instneD b 2 = 2/5 lose to b 1 D nd heneD

a 1 = 1, b 1 = 1/2, c 1 = 1/2, a 2 = 1/2, b 2 = 2/5, c 2 = 1/10. @SFSWA
ith the lol error estimte err = S ∆t u 0 -S ∆t δ u 0 L 2 for the vrious time steps nd severl δ shown in pigure SFQD pigure SFR @leftA presents the estimted ritil ∆t lulted with @SFRVA from the estimted C 0 (∆t 0 ) nd err F hese ritil time steps re in good greement with the ones numerilly mesured in pigure SFQD nd depend on the vlue of δF reneD the domin of pplition or working region of the methodD ∆t ≤ ∆t D might e settled depending on the desired level of ury y mens of n pproprite hoie of δF por instneD if we onsider the se δ = 0.05 in pigure SFQD for ∆t = 10 -6 D the lol error estimte is given y err ≈ 10 -10 D wheres the rel trng lol error is out 10 -12 F his overestimte of the lol error will ertinly imply n underestimte of the size of the time stepsD required for given tolerneF hereforeD for given tolerne η more suitle on(gurtion should onsider δ suh tht ∆t ≈ ∆t D in order to redue exessive overestimtes of lol errorsF sn the illustrtion shown in pigure SFR @leftAD C 0 ws estimted in the third order region of the method nd thereforeD ll vlues re well pproximted s long s ∆t remins in this regionF sn prtiulrD ritil ∆t will e progressively underestimted for lrger δ nd onsequentlyD it will impose smller time steps for given tolerneF his is lredy the se for δ = 0.05D for whih IPI ∆t is in the trnsition zone towrds the lower order regionF iven though the omputtion of C 0 with smll time step will e less expensiveD muh more urte proedure onsiders the urrent time stepD s shown in pigure SFR @rightAF sn prtiulrD y estimting lolly C 0 D we re estimting the rel trng errorD nd thus ∆t ≤ ∆t gurntees the presried ury even if the symptoti orders re no longer veri(edF his llows us to properly extend the domin of pplition of the dptive sheme over the whole rnge of possile time steps for given uryF he ltter is n extremely importnt issue for rel pplitions for whih splitting time steps my go fr eyond symptoti ehviorsD inluding the potentil order redution region ssoited with the sti'ness of the prolemD s lredy ontemplted y the splitting strtegy of ghpter RF 5.6 General Description of the Numerical Method he studies onduted in the ontext of trveling wves nd nonEsymptoti regimes llow us to properly omplete the dptive splitting strtegyD initilly introduedF e desrie in this prt the glol desription of the (nl dptive splitting shemeF vet us onsider the generl prolem @IFSPAD where U ∈ R m D for whih we use S t 2 in @SFSA s numeril solution shemeF hepending on the prolemD the dptive method will e pplied onsidering the time evolution of l ≤ m vrilesX Ũ ∈ R l F vet us denote Θ l the set of indies of these vrilesF sn order to onsider only l < m vrilesD the former ones must e deoupled from the remining m -l vriles in the retive term F ( Ũ ) in @IFSPAF o simplify the presenttionD we will only onsider the set δ ∈ (0, δ max )D with δ max < 1/2F he generl sheme n e summrized y IF e set the ury tolerne ηD n initil time step ∆t 0 D nd n initil shift δ 0 F PF e perform the time integrtion of @IFSPA with the trng sheme S t 2 D nd the emedded shifted one S t 2,δ given y @SFUAF QF e ompute the lol error estimte err nd the new time step ∆t new ording to @SFIIAF RF sf err is smller thn ηD the urrent time step solution is eptedD nd the simultion ontinues with the new ∆t new during next itertionF SF ytherwiseD the urrent solution is rejeted nd the time integrtion is reomputed with the new ∆t new F sn prtiulrD it is etter to hoose rther smll ∆t 0 to void initil rejetionsF sn order to gurntee n e'etive error ontrol of the previous shemeD we de(ne the working region ∆t ≤ ∆t y estimting the orresponding ∆t for the urrent δF his is done for the (rst time step ∆t 0 nd then periodillyD fter N δ epted time steps depending on the prolemD sed on the numeril proedure previously detiledF he omputtion of the ritil ∆t is lso performed with Ũ D nd rther lrge initil δ 0 is suitle to initilly gurntee ∆t ≤ ∆t F e suitle working region is thus de(ned y ∆t ∈ [β∆t , γ∆t ], @SFTHA with 0 < β < γ ≤ 1D for whih splitting time steps re lose to ∆t F e new shift δ is omputed if IF ∆t is muh lower thn ∆t @∆t < β∆t A in order to void unneessry smll time stepsY or IPP PF ∆t is very lose or possily lrger thn ∆t @∆t > γ∆t A with γ lose to 1D in order to inrese the upper ound of the pplition dominF he ltter riteri gurntee tht δ is dynmilly omputed nd properly dpted to the dynmis of the phenomenonF 5.6.1 Algorithm Scheme he numeril strtegy is implemented s followsD where U ∈ R m×Nx stnds for the sptil

disretiztion of U over N x pointsX U := (u (i,k) ) suh tht i ∈ [1, m] nd k ∈ [1, N x ]X
• Input parameters. he(ne ury tolerne ηD time domin of study

[t 0 , T ]D initil time step ∆t 0 D initil shift δ 0 D nd period of omputtion of ∆t X N δ F • Initialization. et itertion ounter ite = 0 nd t = t 0 D U = U 0 D ∆t = ∆t 0 D δ = δ 0 F
e de(ne )g estimate initilized s .false.F hroughout the whole omputtionD we need to sve UD n rry of size m × N x F

• Time evolution. sf t < T X IF ynly if ite N δ = ite N δ or estimate is .true.X
Computation of the critical ∆t I: por the sets

(a 1 , b 1 , c 1 ) nd (a 2 , b 2 , c 2 ) with a 1 = 1 nd a 2 = c 1 D we ompute suessivelyX Ũ1 = S c 2 ∆t Ũ0 D where Ũ0 is uilt out of UD Ũ0 = (u (i,•) ) i∈Θ l Y Ũ1 = S b 2 ∆t Ũ1 Y Ũ2 = S c 1 ∆t Ũ0 Y e 2 = max i∈Θ l ũ(i,•) 2 - ũ(i,•) 1 Y Ũ2 = S b 1 ∆t Ũ2 Y estimate is set to .true.F
hese opertions need to sve Ũ1 nd Ũ2 D two rrys of size l × N x F PF Time integration over ∆t: e ompute suessivelyX for eh

k ∈ [1, N x ]D u (•,k) new = Y ∆t/2 u (•,k) Y for eh k ∈ [1, N x ]D ũ(•,k) 1 = Y δ∆t u (i,k) new i∈Θ l Y U = X ∆t U D with U = (U new , Ũ1 ) T Y for eh k ∈ [1, N x ]D u (•,k) = Y (1/2-δ)∆t u (•,k) Y for eh k ∈ [1, N x ]D u (•,k) new = Y δ∆t u (•,k) new Y err = max i∈Θ l ũ(i,•) new - ũ(i,•) 1 F e need to sve U new D n rry of size m × N x F QF ynly if estimate is .true.X
Computation of the critical ∆t II: e ompute suessivelyX 

e 1 = max i∈Θ l ũ(i,•) new - ũ(i,•) 2 Y C 0 using @SFSTA
< υ ≤ 1D lose to 1F sf ∆t > ∆t X set err = η + C 0 δ with C 0 δ > 1D used to potentilly rejet initil ∆t = ∆t 0 F sf ∆t new > ∆t nd δ = δ max X estimate is set to .true.F sf err ≤ ηX t = t + ∆tD ite = ite + 1D nd U = U new F ∆t = min{∆t new , ∆t , T -t}F
sn this splitting strtegyD retion is lwys integrted point y point if the retive term is modeled y n yhis system without sptil ouplingF his integrtion n e performed ompletely in prllel s we will see in forthoming hptersF imilrlyD for liner di'usion prolems s system @IFSQAD etter lterntive onsiders vrile y vrile solutionX

u (i,•) = X ∆t u (i,•) , @SFTIA
for eh i ∈ [1, m] Θ l D tht redues the memory requirements nd n e lso performed in prllel hhh + IPD hwh + IIF hepending on the prolemD either the omputtion of ritil ∆t @steps @IAD @QAD nd @RAAD or the omputtion of δ @step @RAA n e potentilly removed if one onsiders lrge enough δ 0 nd su0iently (ne ηF pinllyD the whole strtegy with ll steps needs to sve t worst two rrys of size l × N x nd other two of size m × N x D without onsidering the memory requirements of the di'usion nd retion solversF ell these issues will e thoroughly disussed in ghpter VF 5.6.2 Numerical Evaluation of the Method: 1D BZ Equation Revisited sn this prtD we evlute the performne of the method in terms of ury of the simultionD nd show tht n e'etive ontrol of the simultion error is performed following the previous solution shemeF goming k to the f modelD we perform time integrtion of @RFPWA with severl ury tolernes ηF pirstD we onsider the dptive numeril strtegy without tking into ount steps @IAD @QAD nd @RAD iFeFD without omputing either ritil ∆t or δF e set ∆t 0 = 10 -7 nd δ 0 = 0.05 in ll sesD with t ∈ [0, 2]F sn this exmpleD rther smll initil splitting time step is hosen to void initil rejetions even though the rejetion phses do not usully tke mny stepsD s we will see in forthoming exmplesF e hve hosen n intermedite vlue of δ in order to lerly distinguish the di'erent ehviors of the strtegy in terms of predition of the lol errorsD depending on the tolerneF pigure SFS shows the time evolution of epted splitting time steps ∆tF es lredy studied in ghpter RD the f equtions model propgting selfEsimilr wvesD so splitting time step stilizes fter the overll phenomenon is solved pproximtely with the presried tolerne ηF vol error estimtes err re lso displyedD whih nturlly verify the presried ury euse we impose time steps for whih err is limited y η ording to @SFIIAF le SFP summrizes glol L 2 errors etween the splitting nd referene solutions t the end of the time domin of studyD t = 2F por su0iently (ne η nd onsequently smll enough IPR time stepsD preise error ontrol is hieved y the lol error ontrol strtegyD s we ould hve expeted from previous results in pigure SFQ for δ = 0.05F xeverthelessD for η = 10 -4 we retrieve rther high glol errors even if this on(gurtion onsiders less time integrtion steps nd thus less umultion of lol pproximtion errorsF sf we tke look t pigure SFQD we note tht for δ = 0.05 nd lol errors of out 10 -4 D the lol error estimte err is not prediting properly the rel trng errorsD s previously disussedD sine ∆t > ∆t F hereforeD strtegy tht onsiders more preise evlution of errors must e onsidered for lrger rnge of time stepsD whenever the required ury sts the method wy from its symptoti ehviorF his is stndrd di0ulty of ny time dptive tehnique sed on lower order emedded methodD nd to our knowledgeD ommon prolem tht hs not een studied muhD nd tht this work tries to etter investigteF 1.71 × 10 -6 1.83 × 10 -6 7.98 × 10 -7 10 -8

1.45 × 10 -8 1.54 × 10 -8 6.78 × 10 -9 10 -10 1.74 × 10 -10 1.75 × 10 -10 1.08 × 10 -10 vet us now onsider the entire strtegy with ll stepsD for severl tolernes with ∆t 0 = 5×10 -7 D nd δ 0 = 0.05F sn the oming illustrtions we hve onsidered the following prmetersX 

• δ max = 0.999Y • a 1 = 1D b 1 = c 1 = a 2 = 1/2D b 2 = 2/5D nd c 2 = 1/

η

L 2 error a L 2 error b L 2 error c 10 -4 6.85 × 10 -5 9.04 × 10 -5 4.06 × 10 -5 10 -6 1.71 × 10 -6 1.83 × 10 -6 7.98 × 10 -7 10 -8 4.53 × 10 -8 4.84 × 10 -8 2.12 × 10 -8 10 -10 4.48 × 10 -9 4.77 × 10 -9 2.15 × 10 -9

here re di'erent senrios depending on the required uryX

• sn ll ses for δ 0 = 0.05D we initilly estimte ∆t ≈ 1.4 × 10 -4 F

• por η = 10 -4 D the initil ∆t implies smller time steps thn wht is required for the presried tolerneF reneD ∆t inreses until ∆t new > ∆t D nd new δ is estimtedX δ ≈ 0.43F xo sustntil hnges re mde when ite = N δ D sine ∆t ∈ [β∆t , γ∆t ] for the urrent ηF

• por η = 10 -6 D we keep initil ∆t nd δ 0 sine ∆t ∈ [β∆t , γ∆t ]D s seen in pigure SFQF

• pinllyD for η = 10 -8 nd η = 10 -10 D we hve tht ∆t < β∆t nd thus δ is reomputedD givingD respetivelyD δ ≈ 0.016 nd 0.0016F sn prtiulrD we onsider lrger splitting time steps for whih trng lol errors re etter preditedF le SFQ shows tht error ontrol is this time gurnteed for ll vlues of tolerne ηD nd thus for lrger rnge of time stepsF gompred with previous results in le SFPD we ompletely orret the errors in the predition of lol errorsD whih yields more urte resolutions for the lrgest tolernesY wheres slightly less urte results re otined for the smllest tolernes sine lrger splitting time steps re onsideredF 5.7 Numerical Simulations: 2D BZ Equation Revisited sn the pst setions of the present hpterD we hve lwys onsidered su0iently (ne sptil disretiztions in order to perform n evlution of the theoretil estimtes introdued for the proposed dptive time integrtion shemeF por higher dimensionl prolemsD (ne spE til disretiztion eomes ritil issue in terms of omputtionl osts nd s previously disussedD tehnique of lol grid re(nement eomes good solution to overome the ltE ter di0ulty nd to gurntee the theoretil ehvior of the splitting shemes in terms of sptil representtionF he splitting error estimte is dynmilly evluted in prtie in semiEdisretized on(gurtion nd hene retins only the splitting errorsF he oupling of this dptive tehnique with the wGsplitting strtegy introdued in ghpter R eomes nturlD under the sme riteri in terms of onstrution of the solution sheme nd ury of the nuE meril simultionsF woreoverD the numeril implementtion is strightforwrdF sn this prtD we rest the numeril simultions onsidered in ghpter R for the Ph f model @RFPWAD with the reently introdued dptive splitting shemeF yne of the ojetives of this illustrtion is to justify nd vlidte the hosen onstnt splitting time step in the previous simultionsD nd thus the proposed numeril strtegy for sti' propgting wvesF woreoverD the present study will yield some onluding remrks tht will e used in further implementtions of the omined timeGspe dptive sheme in the forthoming hptersF pirstD we onsider the time dptive sheme on uniform grid of 256 2 F pigure SFU shows the dptive splitting time steps orresponding to di'erent ury tolernes η ording to @SFIIAF sn ll sesD the splitting time step is dpted from hosen initil vlue of ∆t 0 = 10 -7 IPU to roughly onstnt vlue tht depends on the presried uryD due to the selfEsimilr hrter of the wve like in the Ih seF he glol time integrtion error is indeed ontrolled y the lol error ury tolerne η into @SFIIAD s shown y the normlized L 2 errors t t * = 4D ording to @RFPRAF e see thus tht for this kind of propgting phenomenonD onstnt splitting time step omputed sed on n ury riterion s detiled in ghpter RD is pproprite to desrie the orresponding multiEsle feturesF purthermoreD splitting time step of ∆t = 4/1024 yields prtilly the sme results s the dptive splitting strtegy with η = 10 -3 F he overhed of estimting the lol errors of the dptive sheme n e thus svedD even though this overhed implies no more thn 25 7 of dditionl g time onsidering the emedded proedureF sn generl nd for this kind of propgting phenomenonD the dptive sheme n e used to initilly ompute the orresponding onstnt splitting time step for given ury nd thereforeD preliminry omputtions re no longer neessryF 10 -4 10 -3 10 -2 10 -1 10 -1 10 -5 10 -4 10 -3 10 -2 10 -1 gonsidering lrger omputtionl domin of 1024 2 D pigure SFV @top leftA shows the dptive splitting time steps otined with n ury tolerne of η = 10 -3 F yne gin this is shown to e lmost equivlent to the onstnt splitting time step ∆t = 4/1024D s in the previous 256 2 sptil disretiztion seD where these splitting errors re mesured with respet to the orresponding oupled solution of the sme semiEdisretized prolemF sn this wyD the splitting errors re prtilly independent of the sptil disretiztion of the prolem for su0iently (ne sptil representtionF IPV e onsider now the timeGspe dptive tehnique y introduing the dptive splitting sheme into the wGsplitting strtegyF pigure SFV @from top right to ottom leftA shows the orresponding time nd spe pproximtion errors given y @RFRHAD where U J split represents now the time dptive splitting solution for some ury tolerne η into @SFIIAF he (nest grid of the multiresolution representtion orresponds to 256 2 mesh disretiztionF e see in the representtions of pigure SFV thtX

L 2 error ε ||a J qe -a J split || L 2 ||a J split -a MR split || L 2 ||b J qe -b J split || L 2 ||b J split -b MR split || L 2 ||c J qe -c J split || L 2 ||c J split -c MR split || L 2 η=10 -2
L 2 error ε ||a J qe -a J split || L 2 ||a J split -a MR split || L 2 ||b J qe -b J split || L 2 ||b J split -b MR split || L 2 ||c J qe -c J split || L 2 ||c J split -c MR split || L 2
L 2 error ε ||a J qe -a J split || L 2 ||a J split -a MR split || L 2 ||b J qe -b J split || L 2 ||b J split -b MR split || L 2 ||c J qe -c J split || L 2 ||c J split -c MR split || L 2 η=10 -4
• por η = 10 -2 D we hve time steps of out 7×10 -2 s seen in pigure SFUD iFeFD pproximtiE vely 7 times the ound ∆t max given y @RFPUA in order to properly ouple the splitting integrtion sheme with the multiresolution representtionF his se is n illustrting ounter exmple of suitle oupling of the numeril methodsD nd highlights the importne of stisfying ondition @RFPUA for the mximum splitting time step ∆t max F

• por η ≤ 10 -3 D we retrieve the sme numeril ehvior shown in pigure RFTD whih orresponds to the se η = 10 -3 in terms of uryF

• he time steps in pigure SFU show lerly tht the splitting sheme is still working properly in the loss order regionF sn prtiulrD for η = 10 -4 threshold vlue given y ε ≤ 10 -2 gurntees negligile sptil representtion errors in front of the time integrtion onesY wheres for η = 10 -5 D ε ≤ 10 -4 is neessryF o onludeD the time integrtion ury tolerne η desries the glol ury of the numeril methods s long s η ≤ 10 -3 D nd heneD ∆t < ∆t max for the hosen re(nement riterion of k = 1 into @RFPUAF henD ε ≤ 10 -2 must e veri(ed for η = 10 -3 -10 -4 D wheres ε ≤ 10 -4 for η = 10 -5 F

Concluding Remarks

sn the (rst prt of this hpter we hve introdued n dptive splitting tehnique for the numeril solution of sti' retionEdi'usion prolemsF o the est of our knowledgeD suh tehnique ws never presented in the literture efore nd onstitutes one of the mjor ontriutions of the present workF he mthemtil nlysis nd desription of the new sheme were lso onduted whih hve llowed us to uild the numeril method on solid theoretil kgroundF e omplementry numeril proedure ws lso developed to ensure the vlidity of the lol time integrtion error estimtes err D for ny ritrry splitting time step ∆tD y ppropritely omputing the shifting prmeter δ in the emedded lower order trng shemeD s well s the domin of pplition of the dptive method de(ned y the ritil splitting time step ∆t F sn prtiulrD novel nd generl numeril proedure ws introdued to estimte the trunted leding term of the lol error expnsionD whih n e pplied to ny time integrtion shemeF he following remrks n e thus mde relted to the resulting numeril shemeX

• ine oth prmeters δ nd ∆t re linked through the expression @SFRVAD su0iently lrge vlue of δ might e su0ient in prtil implementtionsD tking into ount tht the overhed of omputing the lower order solution remins the sme in @SFVAF

• sn prinipleD the ltter overhed is given y n extr hlf step integrtion of the retion prolemD nd one more step for the di'usionF xeverthelessD we will see in ghpter V how this overhed my e redued in the prtil implementtionF

• he lol error estimtes err ount only for the splitting errors sine oth the trng nd the shifted trng shemes re pplied to the sme semiEdisretized prolemF IPW es previously envisionedD suh time dptive sheme is then used to extend the domin of pplition of the numeril strtegy introdued in ghpter RD with extly the sme riteriD to more omplex time dependent phenomenF purthermoreD the dptive time stepping implies lso dynmi updte of the lol re(nement ruled y the dynmis of the numeril solutionF sn this timeGspe dptive tehniqueD the ury of the numeril method is ontrolled y the prmeters η nd εD for the time integrtion nd the sptil representtion errorsF sn order to etter gurntee deoupling of timeE nd speErelted numeril errors nd thus n overll ury dominted rther y the time integrtion proedureD neessry ut not su0ient pproprite hoie will e in generl given y ε < η. @SFTPA xotie tht the on(gurtion ε = η might lso yield good results tking into ount the onservtive re(nement riteri dopted in ghpter R for the multiresolution proessD nd depending on the prtiulr prolemD even ε ≈ 10 • ηD s shown in pigure RFT for the f prolem @RFPWAF por ll ses the ury estimtes re only vlid if the time evolution nd the sptil representtion of the solution re orretly oupledD s disussed in ghpter R nd illustrted in pigure RFT for η = 10 -2 F hereforeD riterion @SFTPA eomes in generl su0ient only if the dynmi splitting time steps stisfy ∆t ≤ ∆t max . @SFTQA prom prtil point of view nd in order to void preliminry omputtions to de(ne the mximum splitting time step ∆t max given y @RFPUAD good level of oupling of the time nd spe resolutions is omplished if for given time integrtion ury tolerne ηD numeril simultions with di'erent threshold vlues ε ehve qulittively in similr wyF ine the min retive tivity is usully onentrted on the moving frontsD de(ient sptil representtion during the time evolution step introdues severe perturtions in the numeril solution whih re esily identi(edF purthermoreD more onservtive re(nement riterion expressed y k > 1 extr ells my e onsidered if lrger splitting time steps re desiredD or to etter ensure the deoupling of spe nd time numeril errorsF elterntivelyD more sophistited re(nement riteri @like in guwHQA my e required for highly omplex on(gurtionsF por the numeril simultion of phenomen for whih onstnt splitting time step ∆t is sufE (ientD hyrid strtegy tht onsiders time step ∆t omputed within presried ury with the urrent dptive tehniqueD might e the most onvenient solutionF he overhed of omputing the lol error estimtes err throughout the entire time domin of simultion is thus voidedF pinllyD onsidering supplementry opertors like onvetive term in the originl retionEdi'usion system @SFIA does not hnge in generl the order estimtes onduted in this hpter for oth the stndrd nd shifted trng shemesF he sme follows for more generl di'usion terms like the one in @IFSPAD for whih the theoretil omputtions just eome more tehnilF Chapter 6

Parareal Operator Splitting for Multi-Scale Reaction Waves sn this hpterD we nlyze time prlleliztion tehnique for the solution of his modeling sti' propgting wvesD in order to improve the numeril performne of the simultionsF es desried in ghpter ID nd numerilly nlyzed in the previous hpters R nd SD the mthemtil desription of suh prolems imposes speil restritions on the numeril methE ods required to perform the numeril integrtion in timeF sn this ontextD the time opertor splitting tehnique introdued in ghpter R hs een oupled with the well known prrel lgorithm initilly proposed y vions et lF in vwHIF e numeril nlysis of the omined strtegy is then mndtory to desrie the mthemtil ehvior of suh methodD nd etter explore its pilities in the ontext of sti' prolemsF hese issues motivted the following study whih ws reently pulished in ieswX wthemtil wodelling nd xumeril enlE ysis journl hhwIIF por the ske of ompleteness of the present work we inlude the entire rtile in wht follows s selfEontined prtF Abstract. sn this pperD we investigte the oupling etween opertor splitting tehE niques nd time prlleliztion shemeD the prrel lgorithmD s numeril strtegy for the simultion of retionEdi'usion equtions modeling multiEsle retion wvesF his type of prolems indues peulir di0ulties nd potentilly lrge sti'ness whih stem from the rod spetrum of temporl sles in the nonliner hemil soure term s well s from the presene of lrge sptil grdients in the retive frontsD sptilly very lolizedF sn series of previous studiesD the numeril nlysis of the opertor splitting s well s the prrel lgorithm hs een onduted nd suh pprohes hve shown gret potentil in the frmework of retionEdi'usion nd onvetionEdi'usionEretion systemsF roweverD omplementry studies re needed for more omplete hrterizE tion of suh tehniques for these sti' on(gurtionsF hereforeD we ondut in this work preise numeril nlysis tht onsiders the omintion of time opertor splitting nd the prrel lgorithm in the ontext of sti' retion frontsF he impt of the sti'ness fetured y these fronts on the onvergene of the method is thus qunti(edD nd llows to onlude on n optiml strtegy for the resolution of suh prolemsF e (nlly perform some numeril simultions in the (eld of nonliner hemil dynmis tht vlidte the theoretil estimtes nd exmine the performne of suh strtegies in the ontext of demil oneEdimensionl test ses s well s multiEdimensionl on(gurtions simuE lted on prllel rhitetureF Keywords. rrel lgorithmY ypertor splittingY gonvergene nlysisY etionE di'usionY wultiEsle wvesF Mathematics Subject Classication. TSHSD TSwIPD TSvHRD QSeQSD QSuSUD QSgHUF ieswX wPex RS @PHIIA VPS!VSP hysX IHFIHSIGmPnGPHIHIHR eeived wy TD PHIHF ulished online perury PQD PHIIF 6.1 Introduction xumeril simultions of multiEsle phenomen re ommonly requested for modeling purE poses in mny pplitions suh s omustion qioWWD hfHHD xuWVD uxWWD xuHSD hemE il vpor deposition qokVVD or ir pollution modeling wqVPD unWTD ugWUF he imporE tnt development of the numeril strtegies in these nd in other (elds suh s nonliner hemil dynmis for exitle medi frWID hwfWUD hwh + IP or iomedil engineering qhh + HVD hhHVD hhh + IP is minly due to the onstnt inrese of the omputer power @see for instne ihHW for reent review of methods pplied to turulent omustionAF sn generlD ll these models rise severl di0ulties reted y the lrge numer of unknowns nd the wide rnge of temporl sles due to lrge nd detiled hemil kineti mehnismsD s well s y steep sptil grdients or lrge higher order derivtives ssoited with very lolized fronts of high hemil tivityF hereforeD there re severl numeril strtegies in order to tret the indued sti'ness for time dependent prolemsF sn this prtiulr studyD we fous on retionEdi'usion systems whih is the susystem tht normlly involves the strongest di0ulties in terms of sti'ness in multiEsle phenomenD even if onvetion plys lso ruil roleF IQP he most nturl ide to overome these di0ulties is to use dedited numeril methods nd to solve the omplete models where di'usionD retion nd eventully onvetion re oupled togetherF sn this ontextD we im t solving strongly oupled nonliner systems with either fully impliit methodD using eventully modi(ed xewton methods for illEonditioned prolems heuURD moVQD heuHRD or yet semiEimpliit or linerized impliit methods insted @see h9eWR nd referenes thereinAF roweverD the strong stility restritions for the ltter when deling with very fst temporl sles h9eWRD hvWS s well s the omputtionl ost nd the huge memory requirements of these methodsD even if dptive grids re usedD mke these strtegies di0ult to hndleF xeverthelessD these kind of oupled resolutions re useful when we need referene solutions for vlidtion nd study purposes ut neessrily restrited to low dimensionl on(gurtions with not too mny unknownsF en lterntive numeril strtegy (rst introdued in egwWV is then to omine impliit nd expliit shemes to disretize nonliner evolution prolems in timeF purther studies into WUD HR settled the pproprite numeril kground for these methods lled swiD whih in prtiulr might e oneived to solve sti' nonliner prolems s presented in rHRD HTF hese methods re usully very e0ient @see for instne xuWV for omustion pplitionAF xeverthelessD on the one hndD the fesiility of utilizing dedited impliit solvers over disretized domin eome soon ritil when treting lrge omputtionl dominsF end on the other hndD the time steps glolly imposed over prtil regions or the entire domin re strongly limited y either the stility restritions of the expliit solver or y the fstest sles treted y the impliit shemeF xeverthelessD in mny multiEsle prolems s for exmple the propgtion of retion wvesD the fstest time sles do not ply leding role in the glol physil phenomenon nd thusD we might onsider the possiility of using redued models where these hemil sles hve een previously relxed rWTF hese simpli(ed models provide resonle preditions when the fstest hrteristi hemil times re smll in omprison with the )ow timeD nd the ssoited omputtionl osts re signi(ntly redued in omprison with omprehensive hemil modelsF sn prtiulrD the derivtion of the redued model is usully essile when the system is wellEprtitioned nd the fst sles hve een isolted poWWD hHHF sn this seD rigorous singulr perturtion nlysis n e onduted even in the ontext of nonliner soure terms for numeril nlysis purposes wsHPD hwHRF xeverthelessD the identi(tion of these fst sles in terms of retion rtes or speiesD whih n hnge with timeD relies on sensitivity nlysis whih is most of the time di0ult to ondut nd justify in relisti on(gurtionsF reneD it revels the need for other strtegies whih do not rely on the knowledge of the fst slesF st is then nturl to envision ompromiseD sine the fully oupled prolem is most of the time out of reh nd the redued model does not lwys imply strightforwrd implementtionsF sn this ontextD splitting methods wrWH lso lled frtionl step methods émTWD émTWD nUI hve een well known for long time nd there exists lrge literture showing the e0ieny of suh methods for evolution prolemsF et from theoretil point of viewD they represent suitle frmework to design even higher order methods for the integrtion in time of suh prolems hesHID hHPF sn prtieD it is (rstly neessry to deouple numerilly the retion prt from the rest of the physil phenomen like onvetionD di'usion or othD for whih there lso exist dedited numeril methodsF reneD opertor splitting tehniques llow ompletely independent optimiztion of the resolution of eh susystem whih normlly yields lower requirements of omputtionl resouresF sn the ontext of multiEsles wvesD the dedited methods hosen for eh susystem re then responsile for deling with the fst sles ssoited to eh one of themD in seprte mnnerY thenD the omposition of the glol solution sed on the splitting sheme should IQQ gurntee the good desription of the glol physil ouplingY thereforeD in order to verify this fundmentl onstrintD rigorous numeril nlysis is requiredF sn ftD severl works h9eWRD rWTD WVD poHH proved tht the lssil numeril nlysis of splitting shemes fils in presene of sles muh fster thn the splitting time step nd motivted more rigorous studies for these sti' on(gurtions hwHRF sn this wyD omplementry works desried lso the numeril ehvior of these methods when sptil multiEsle phenomen rise minly s onsequene of lrge sptil grdients hhvwHUD so tht the in)uene of oth sptil nd time relted sti'ness hs een nd ontinues to e nlyzed in detil for not ritrrily smll splitting time steps hhv + IPF husD with the hoie of the resolution tehnique properly justi(edD we investigte the oupling of opertor splitting with time prlleliztion shemeD pursuing even etter performnes in time onsumption for multiEsle simultions on prllel rhiteturesF sn this ontextD mny lgorithms lredy proposed the solution of evolution prolems in timeEprllel fshion @see qHU nd the referenes therein for historil reviewAF roweverD the prrel lgorithmD (rst presented in vwHID hs reeived lot of ttention over the pst few yers in di'erent pplitions in di'erent domins ffw + HPD pgHQD prwHQD qipHQD fwHQD s promising e0ient numeril method to solve evolution prolems in prllelF he generl priniple of the prrel lgorithm omines orse nd fst solver whih is run sequentillyD nd more urte nd expensive (ne solver tht should e run in prllelF sn this wyD we tke dvntge of prllel omputtions through n itertive proess whih yields onvergene from orse initil pproximtion to the detiled dynmis of the system given y the urte resolution of the (ne solverF everl vrints of the method hve een lso proposed @for exmple in pgHQD qvpiHTAF p to these dysD mny theoretil nlysis of the prrel lgorithm hve een onduted @see for instne vwHID wHPD flHQD wHQD HQD qHUD qrHVAD whih led to vrious estimtes of onvergene rtes nd desriptions of the stility ehvior of the method in pE plitions involving generl liner nd nonliner systems of yhis or hisF xeverthelessD to our knowledgeD none of the studies previously onduted either in liner or in nonliner frmeworkD took expliitly into ount sti' phenomenF es resultD there is the need of omE plementry studies to utterly predit the performne of the lgorithm in suh on(gurtions in order to propose more e0ient time prlleliztion shemes in multiEsle ontextsF ueeping this in mindD the present work onduts detiled numeril nlysis of prrel opE ertor splitting tehniques in the ontext of multiEsle retion wvesF sn this wyD new repE resenttion of the splitting lol errors re dedued nd onvergene nlysis of the prrel opertor splitting lgorithm is performed for generl liner retionEdi'usion systemsF hese results re then extended to the se of retion wves through the ssoited linerized system of the originl retionEdi'usion system modeling the multiEsle phenomenonD where sti'ness is introdued y the presene of lrge sptil grdientsF he negtive in)uene of sti'ness on the numeril ehvior of prrel opertor splitting shemes is then mthemtilly provenF ith this theoretil hrteriztion hievedD we re le to uild new nd simple numeriE l strtegy for multiEsle phenomenD with the prrel lgorithm nd the opertor splitting s (ne solverD eh one of them sed on their orresponding theoretil kgroundF he time opertor splitting strtegy dopted then onsiders on the one hndD high order method like duS rWTD sed on impliit ungeEuutt shemes for sti' yhisD tht solves the reE tion term using dptive time integrtion tools nd highly optimized liner systems solversF end on the other hndD nother high order method like yguR edHPD sed on expliit stE ilized ungeEuutt shemesD tht solves the di'usion prolemF he potentil of this splitting on(gurtion hs lredy een tested nd evluted in previous studies hhh + IPD hwh + IPF he numeril simultions then performed show the in)uene of sti' on(gurtion on the IQR prrel performneD vlidting the theoretil estimtes previously ondutedF pinllyD the disussions inspired y these numeril results gives some insights into lterntive numeril strtegies for this kind of di0ult prolemsF he pper is orgnized s followsX in (rst prtD we formlly present the prrel lgorithm s well s the splitting tehniques whih will e used in the proposed numeril strtegyF he omplete numeril nlysis of the prrel opertor splitting is onduted in the seond prtX rief review on the theoretil results found in the literture is (rst presentedD then the di'erent lol error estimtes re refully onduted to (nish with the theoretil onvergene nlysis in generl liner retionEdi'usion on(gurtion nd in the se of multiEsle retion wves through linerized model of suh on(gurtionsF sn the lst prtD we (rst ondut series of detiled nd reful numeril simultions in oneEdimensionl se in order to vlidte the previous theoretil resultsF pinllyD the potentil of the method is illustrted in the frmework of twoEdimensionl simultion whih llows detiled disussion of the pility nd performne of the methodF ell the models elong to the (eld of nonliner hemil dynmisF 6.2 Parareal Algorithm 6.2.1 Temporal Parallelization e (rst onsider generl method in order to ompute the numeril solution of system of ordinry di'erentil equtions @yhisA of the formX

u (t) = f (u(t)) , t ∈ [0, T ], u(0) = u 0 , @TFIA
where for some integer M D f : R M → R M nd u : R → R M F sn order to hieve time prlleliztion lgorithm for @TFIAD we deompose the time domin I = [0, T ] into N sudomins

I n = [T n , T n+1 [, n = 0, . . . , N -1D with 0 = T 0 < . . . < T N -1 < T N = T D nd ∆T n := T n+1 -T n D
soD tht we onsider for eh time sudomin the evolution prolemX

u n (t) = f (u n (t)) , t ∈ I n , u n (T n ) = U n , @TFPA
where the initil vlues U n re neessry input in order to solve eh of these evolution prolemsF he solutions u n on the sudomins I n in @TFPA should e onsistent with u over I otined out of @TFIAD this mens tht the initil vlues U n re intended to stisfy the systemX

U 0 = u 0 , U n = φ ∆T n-1 (U n-1 ), n = 1, . . . , N, @TFQA
where the )ow φ ∆Tn (U) denotes the solution of @TFIA with initil ondition U fter time ∆T n F husD we onsider N independent evolution prolems given y @TFPA for eh time sudomin I n D so tht eh of them my e omputed y di'erent proessor in prllel environmentF xeverthelessD this n only e hieved if the initil onditions U n of @TFPA re previously known or t lest pproximtedD in order to hve proper guhy prolem on eh time sudominF hereforeD ny time prlleliztion lgorithm will im t pproximting the initil U n y the set Ũn nd thenD t solving @TFPAD even though ondition @TFQA with Ũn is not initilly veri(edF sn this ontextD the prrel lgorithm gives us wy to perform this kind of prlleliztion in n e0ient wyF his tehnique extends nturlly to the numeril resolution of prtil di'erentil equtions @hisAD s it ws initilly proposed in vwHIF sn ftD the multiEsle retion wves tht we onsider in this study re modeled y mens of proli hisF 6.2.2 Principle of the Parareal Algorithm gonsidering system @TFPAD the prrel lgorithm is sed on two propgtion opertorsX G ∆Tn (U) nd F ∆Tn (U)D tht provide respetively orse nd n urte pproximtion of φ ∆Tn (U)F sn this wyD the lgorithm strts with n initil pproximtion Ũ0 n given for exmple y the sequentil omputtionX

Ũ0 0 = u 0 , Ũ0 n = G ∆T n-1 ( Ũ0 n-1 ), n = 1, . . . , N, @TFRA
nd then performs for i = 1, . . . , i conv the orretion itertionsX

Ũi 0 = u 0 , Ũi n = F ∆T n-1 ( Ũi-1 n-1 ) + G ∆T n-1 ( Ũi n-1 ) -G ∆T n-1 ( Ũi-1 n-1 ), n = 1, . . . , N.
@TFSA xotie tht i itertions imply i time sudomins integrted y FD sine Ũi n = F ∆T n-1 ( Ũi-1 n-1 ) for n ≤ i nd Ũi 0 = u 0 with u 0 tken from the originl prolem @TFIAF henD for i = N D where N is the numer of sudominsD the prrel lgorithm @TFSA will generte set of vlues Ũn tht stisfy Ũn = F ∆T n-1 ( Ũn-1 )F ht isD the pproximtions t the timeEpoints T n will hve hieved the ury of the propgtor FF xeverthelessD the min ide of the lgorithm is to hoose propgtors F nd G in order to hieve this level of ury without performing the N urte resolutionsF hereforeD fter onvergene of the lgorithm @TFSA for i = i conv D we shll otin solution Ũiconv n with (ne ury respet to U n in @TFQAD for whih only i conv N sudomins would hve een integrted y propgtor FF hus from n initil orse pproximtion @TFRAD we might hieve n urte resolution of prolem @TFIA with importnt svings of omputtionl timeF 6.2.3 Interpretation of the Parareal Algorithm he prrel lgorithm n most nturlly e interpreted s lssil deferred orretion method in whih the initil vlues U n of @TFPA re orreted through feedk mehnism sed on oth propgtors F nd GD s it ws presented in ffw + HPF hereforeD for initil ondition given y @TFRAD we de(ne the orretion

E ∆T n-1 ( Ũn-1 ) = F ∆T n-1 ( Ũn-1 ) -G ∆T n-1 ( Ũn-1 )
@TFTA in order to otin the new initil onditions for n = 1, . . . , N -1 nd the new vlue t n = N X

Ũ1 n = G ∆T n-1 ( Ũ1 n-1 ) + E ∆T n-1 ( Ũ0 n-1
). @TFUA husD reursive pplition leds us to

Ũi 0 = u 0 , Ũi n = G ∆T n-1 ( Ũi n-1 ) + E ∆T n-1 ( Ũi-1 n-1 ), n = 1, . . . , N, @TFVA
whih gives us the sme sheme s @TFSAF xeverthelessD sed on gWQD the time deomposition method @TFPA n e lso interpreted s multiple shooting method for @TFIAF sn ftD onsidering U = (U 0 , . . . , U N ) T s the unknownsD the system @TFQA n e written s

F(U) =      U 0 -u 0 U 1 -φ ∆T 0 (U 0 ) F F F U N -φ ∆T N -1 (U N -1 )      = 0, @TFWA
where F : R M •N +1 → R M •N +1 F sn this wyD we serh the initil vlues U n of @TFPA tht orrespond to the solution of originl prolem @TFIA through ondition @TFQAF olving this system with xewton9s methodD leds fter short lultion to

Ũi 0 = u 0 , Ũi n = φ ∆T n-1 ( Ũi-1 n-1 ) + ∂φ ∆T n-1 ( Ũi-1 n-1 ) ∂ Ũi-1 n-1 Ũi n-1 -Ũi-1 n-1 , n = 1, . . . , N.        @TFIHA
ith this formultionD there re mny wys to pply the multiple shooting lgorithm to solve @TFIHA numerillyD s it is detiled in qHUD nd when the pproximtions re lose enough to the solutionD the onvergene is gurnteed s shown in gWQF roweverD if we pproximte the time sudomin integrtion in @TFIHA y

φ ∆T n-1 ( Ũi-1 n-1 ) ≈ F ∆T n-1 ( Ũi-1 n-1 ), @TFIIA
nd the toin term y

∂φ ∆T n-1 ( Ũi-1 n-1 ) ∂ Ũi-1 n-1 Ũi n-1 -Ũi-1 n-1 ≈ G ∆T n-1 ( Ũi n-1 ) -G ∆T n-1 ( Ũi-1 n-1 ), @TFIPA
then the multiple shooting method @TFIHA nd the prrel lgorithm @TFSA oinide @see qHUAF he prrel lgorithm n lso e seen s timeEmultigrid method s it ws entirely proven in qHUF roweverD euse of its lrity nd simpliityD in this pper we will dopt the multiple shooting point of viewD iFeFD xewton9s method pproximtionD even if the numeril nlysis we will perform is prtilly independent of this hoieF sn ftD from prtil point of viewD ll the interprettions re equivlent nd the lgorithm is minly implemented s deferred orretion methodF 6.2.4 Considerations on the Propagation Operators he prrel lgorithm relies on two solversD the (ne nd orse propgtorsD F nd GF yn the one hndD the (ne solver produes n urte pproximtion of the solution nd its hoie depends on the desired level of ury nd on the nture of the prolem @multiEsle phenomenD sti'nessD lrge systemsAF sn our prtiulr se of multiEsle retion wvesD the time opertor splitting revels itself s suitle resolution tehnique s it ws previously disussed in the introdutionF sts prlleliztion is then hieved vi the prrel shemeF yn the other hndD the orse solver gives orser pproximtion tht needs to e omputed in sequentil wyD therefore it should e s fst s possile in order to glolly gurntee importnt svings in time onsumptionF he performne of the prrel lgorithm then relies diretly on the hoie of this solver nd n optiml lne must e found etween its omputtionl speed nd its level of uryD iFeFD orser pproximtions re fster ut inrese the numer of itertions neededF vet us now set the generl mthemtil frmework in this workY in this ontextD we rell tht lss of multiEsle phenomen n e modeled y generl retionEdi'usion systems of typeX

∂ t u -∂ x (D(u)∂ x u) = f (u) , x ∈ R d , t > 0, u(0, x) = u 0 (x), x ∈ R d , t = 0, @TFIQA
where f : R M → R M nd u : R × R d → R M for some integer d nd with the di'usion mtrix

D(u)D whih is tensor of order d × d × M F IQU
roweverD in this work we will only onsider the simpli(ed se of liner digonl di'usionD in whih se the elements of the di'usion mtrix re written s D i 1 i 2 i 3 (u) = D i 3 δ i 1 i 2 D so tht the di'usion opertor redues to the het opertor with some slr di'usion oe0ient D i 3 for omponent u i 3 of uF xotie tht s it ws estlished in previous studies hwHRD hhvwHUD hhv + IPD on the one hndD rigorous numeril nlysis of this simpler lss of retionE di'usion systems is very useful in order to theoretilly hrterize the impt of sti'ness on the numeril ehvior of methods oneived to simulte these phenomenF sn prtiulrD the originl multiEsle hrter is not withdrwnF end on the other hndD it shll give us some insights into more omplex ses s well s omplete onvetionEretionEdi'usion systemsF pinllyD in order to simplify the presenttionD we onsider oneEdimensionl modelD tking into ount tht extension into higher dimensions of x or u is strightforwrdF prom these onsidertionsD we infer the following initil vlue prolemX

∂ t u -D ∂ 2 x u = kf (u), x ∈ R, t > 0, u(0, x) = u 0 (x), x ∈ R, t = 0, @TFIRA
where f nd u 0 re smooth funtionsD with rel oe0ients D nd kF purthermoreD we denote y T t (u 0 ) the semi)ow ssoited to @TFIRAF sn wht followsD we shll present oth the (ne nd the orse solvers tken into onsidertion to solve prolem @TFIRA y mens of the prrel lgorithm @TFSAF Fine Solver: Time Operator Splitting vet us (rst introdue the lssil deoupling of the di'usion nd retion prts of @TFIRAF wore preiselyD we denote X t (u 0 ) the solution of the di'usion equtionX

∂ t u D -D ∂ 2 x u D = 0, x ∈ R, t > 0,
@TFISA with initil dt u D (0, •) = u 0 (•)F e lso denote y Y t (u 0 ) the solution of the retion prt where the sptil oordinte x n e onsidered s prmeterX

∂ t u R = kf (u R ), x ∈ R, t > 0, @TFITA with initil dt u R (0, •) = u 0 (•)F
he two vie pproximtion formule of @TFIRA re de(ned y

L t 1 (u 0 ) = X t Y t (u 0 ), L t 2 (u 0 ) = Y t X t (u 0 ), @TFIUA
nd the two trng pproximtion formule of @TFIRA trTQD trTV re de(ned y

S t 1 (u 0 ) = X t/2 Y t X t/2 (u 0 ), S t 2 (u 0 ) = Y t/2 X t Y t/2 (u 0 ). @TFIVA
st is well known tht vie formule @TFIUA @respF trng formule @TFIVAA re n pproximtion of order 1 @respF 2A of the ext solution of @TFIRAF xeverthelessD these lssil orders re no longer vlid sine we onsider very sti' retive or di'usive terms @see hwHRAF sn ftD if the fstest time sles ply leding role in the glol physis of the phenomenonD then the omposed solution otined y mens of splitting tehnique will surely fil to pture the (nl dynmis of the phenomenonD unless we onsider splitting time steps of the sme order of suh slesF sn the opposite se where these fst sles re not diretly relted to the physil development of the phenomenonD lrger splitting time steps might e onsideredD ut order redutions my IQV then pper due to shortElife trnsients ssoited to the fst vrilesF sn prtiulrD this is the se for propgting retion wvesF sn this ontextD it hs een proven in hwHR tht etter performnes re expeted while ending the splitting sheme y the time integrtion of the retion prt @TFITA or in more generl seD the prt involving the fstest time sles of the phenomenon @see the numeril pplition in hhv + IPAF sn prtiulrD in the se of liner digonl di'usion prolemsD no order loss is expeted for the L t 2 nd S t 2 shemes when fst sles re present in the retive termF iven moreD s it ws presented nd nlyzed in hhvwHUD the presene of high sptil grdients my lso degrde the performne of these methods leding to order redutions oming from spe multiEsle phenomenF ueeping in mind these theoretil studies nd onsidering the vrious numeril lterntives previously disussedD the time opertor splitting remins s the most pproprite resolution sheme for generl multiEsle prolems nd so frD the optiml hoie for the (ne solverF e omplementry onsidertion is tht suitle time integrtion methods in terms of order nd stility must e hosen for eh susystem @TFISA nd @TFITAD in order to gurntee the ury of the estimtes estlished y the orresponding numeril nlysisF sn ftD in ll splitting order estimtesD the solutions ssoited to these systems re supposed to e known extly or with su0ient ury @see for exmple hHPD rHQD hwHRD rvHTAF Coarse Approximation hen onsidering sti' prolems of type @TFIQA @or @TFIRAAD the hoie of the orse solver is not n esy tsk euse we must look for fst nd stle methods t the sme timeD onsidering tht these omputtions will e performed in sequentil environmentF sn ftD depending on the sti'ness of the systemD we re lmost onstrined to hoose more expensive ut more stle methods @see rWT for more detils on integrtion of sti' yhisAD otherwiseD we would not e le to otin orser ut still vlid pproximtionsF king into ount these requirementsD severl strtegies might e onsideredF por instneD we n solve the oupled retionEdi'usion system @TFIRA with deditedD stle ut less urte solverY whih n e hieved y using lrger integrtion time steps or lower order method respet to the (ne solverF xeverthelessD s previously disussedD the importnt omE puttionl requirements of these dedited methods must e tken into ount nd thusD this lterntive might not e lwys fesileF enother tehnique ould e the resolution of @TFIRAD disretized on orser sptil gridF henD the ruil spet would e the de(nition of proper interEgrid opertorsY tht isD the opertors llowing dt exhnge etween the orse nd the (ne gridsF yn the other hndD we might lso onsider the resolution of redued model of @TFIRA instedD where the fstest sles hve een relxedY nd thusD tke this solution s the orse pproximtionF xeverthelessD the previous knowledge of the fst sles is mndtory for strightforwrd implementtionsD nd t the sme timeD we should lso oneive n e0ient reonstrution proedure of the fst vriles not estimted y the orse solverF roweverD in the ontext of multiEsle retion wvesD less urte splitting opertor might e nturl hoieD oneived with lrger splitting time steps or orser time integrtors of the split susystems in order to elerte omputtionsF sn prtiulrD in this work we will e minly foused on the detiled nlysis of suh splitting solvers s orse propgtorsD onE sidering their reputed pertinene on multiEsle prolemsF sn this wyD the numeril nlysis presented in the next setion desries the ehvior of the splitting tehniques s well s the prrel sheme itselfD nd shll led us to further numeril studies nd potentil improveE ments of the numeril strtegyF IQW 6.3 Numerical Analysis of the Parareal Operator Splitting sn this setionD we will (rst present importnt results from the literture tht explin the ehvior of the prrel lgorithm nd detil its onvergene when pplied toD (rstD liner nd thenD nonliner prolemsF hose prtiulrly relevnt for our study will e desried in detilsF gomplementry informtion n e found in the indited referenesF henD omprehensive numeril nlysis of the prrel vie @trngA opertor splitting will e presented in liner frmework tht mimis the eventul in)uene of high sptil grdients for retion wvesF hroughout ll this setionD we will mintin the nottion estlished in the previous oneF

Review of the Literature and State of the Art

The Linear Case e (rst onsider slr liner prolem of the formX

u (t) = au, t ∈ [0, T ], u(0) = u 0 with a ∈ C, @TFIWA
the following proposition is tken from the (rst pulition on the prrel lgorithm vwHIF Proposition 6.1. vet ∆T = T /N D T n = n∆T for n = 0, . . . , N F gonsider @TFIWA with a ∈ RF vet F ∆T (U n ) e the ext solution t T n+1 of @TFIWA with u(T n ) = U n D nd let G ∆T (U n ) e the orresponding kwrd iuler pproximtion with time step ∆T F henD

max 1≤n≤N |u(T n ) -Ũ i n | ≤ P i ∆T i+1 . @TFPHA
husD the lgorithm onverges nd ehves in ∆T like method of order i + 1F xeverthelessD we must tke into ount tht this result is only vlid for (xed itertion step iD sine the onstnt P i in @TFPHA grows with i in the estimte of the proof in vwHID iFeFD the onvergene is veri(ed only for ∆T su0iently smllF esult @TFPHA hs een extended to more generl ndD in prtiulrD higher order timeEintegrtion shemesF sn ftD it ws shown in flHQD fwHQ tht the prrel is method of order p(i + 1) when method of order p is used s the orse propgtorF roweverD very importnt work presented in qHU gives us omplementry results tht desrie the ehvior of the lgorithm for ny i nd (xed ∆T F es mtter of ftD the following orollry ws stted nd provenF Corollary 6.2. vet T < ∞D∆T = T /N D nd n = 0, . . . , N F gonsider @TFIWA with a ∈ CF

vet F ∆T (U n ) e the ext solution t T n+1 of @TFIWA with u(T n ) = U n D nd let G ∆T (U n ) = R(a∆T )
U n e oneEstep method in its region of solute stilityF henD we hve the ound

max 1≤n≤N |u(T n ) -Ũ i n | ≤ |e a∆T -R(a∆T )| i i! i j=1 (N -j) max 1≤n≤N |u(T n ) -Ũ 0 n |. @TFPIA
sf the lol truntion error of G is ounded y C∆T p+1 D with p > 0 nd C onstntD then we hveD for ∆T smll enoughD

max 1≤n≤N |u(T n ) -Ũ i n | ≤ (CT ) i i! ∆T pi max 1≤n≤N |u(T n ) -Ũ 0 n |. @TFPPA
hese results give us more preise informtion regrding onstnt P i in @TFPHAF sn ftD for (nite T D the division y i! in @TFPIA nd @TFPPA shows tht the lgorithm onverges superlinerlyF purthermoreD result @TFPPA presents the prrel s method of order piF IRH e liner onvergene result ws lso demonstrted in qHU for n in(nitely long time interE vlD iFeFD T = ∞D for prolem @TFIWAF woreoverD similr results were otined in qHU while investigting the performne of the prrel lgorithm on hisD more preiselyD di'usion eqution nd n dvetion oneF sn ftD pourier trnsform in spe onverts these equtions into liner systems of yhis for eh pourier modeD nd the onvergene is demonstrted sed on the previous results with some omplementry hypothesisF

The Nonlinear Case king into ount the nonliner system of yhis @TFIAD the superliner onvergene of the prrel lgorithm hs lso een demonstrted in qrHVF sn ftD onsidering F s the ext solution of @TFIAD it hs een ssumed tht the di'erene etween the pproximte solution given y G nd the ext solution n e expnded for ∆T smllD in the following wyX

F ∆T (u) -G ∆T (u) = c p+1 (u)∆T p+1 + c p+2 (u)∆T p+2 + . . . , @TFPQA
whih is possile if the right hnd side funtion f in @TFIA is smooth enoughF xotie tht this ondition is no other thn the series expnsion of the lol error of numeril method G of order p @where F is the ext solution of @TFIAAF henD s onsequene of @TFPQAD we might ssume tht we hve the following oundX

F ∆T (u) -G ∆T (u) -F ∆T (v) -G ∆T (v) ≤ C 1 ∆T p+1 u -v , @TFPRA
s it hs een supposed in qrHVF woreoverD if G stis(es the vipshitz onditionX

G ∆T (u) -G ∆T (v) ≤ (1 + C 2 ∆T ) u -v , @TFPSA
the following theorem ws stted nd proven in qrHVF Theorem 6.3. vet F ∆T (U n-1 ) e the ext solution on time sudomin

I n-1 D nd let G ∆T (U n-1 )
e n pproximte solution with lol truntion error ounded y C 3 ∆T p+1 D nd stisfying @TFPQAD where the c j D j = p + 1, p + 2, . . . re ontinuously di'erentileD nd ssume tht G stis(es the vipshitz ondition @TFPSAF henD t itertion i of the prrel lgorithm @TFSAD we hve the ound i+1) . @TFPTA pinllyD we see tht the prrel lgorithm lso onverges superlinerly with respet to i nd ehves s method of order p(i+1) for nonliner prolem nd (nite T F reneD result @TFPTA does not ontrdit the previous ones ut extends them to the nonliner seF xeverthelessD in prtil pplitionD more omplete knowledge of the ound @TFPTA might e neessry in order to fully desrie the ehvior of the lgorithmF wore preiselyD onstnts C 1 D C 2 nd C 3 in @TFPTA @s well s C into @TFPPA for liner pplitionA should e properly estimtedF his is one of the purposes of the present work in the se of n opertor splitting strtegy nd the orresponding nlysis will e presented in the next susetionF 6.3.2 Convergence Analysis of the Parareal Operator Splitting sn order to rry on our studyD we will (rst present the mthemtil prolem tht we wnt to solveF he link with multiEsle retion wves will e then estlishedF

u(T n ) -Ũi n ≤ C 3 C 1 (C 1 ∆T p+1 ) i+1 (i + 1)! (1 + C 2 ∆T ) n-i-1 i j=0 (n -j), ≤ C 3 C 1 (C 1 T n ) i+1 (i + 1)! e C 2 (Tn-T i+1 ) ∆T p(
Mathematical Framework e onsider the initilEvlue prolemX

∂ t u -D ∂ 2 x u + kV (x)u = 0 x ∈ R, t > 0, u(x, 0) = u 0 (x) x ∈ R, t = 0, @TFPUA
where V is ounded funtion from R to R of lss C ∞ with ll ounded derivtives ndD D nd k re some rel positive oe0ients suh tht Dk = 1F woreoverD u represents dimensionless speie onentrtionF por this studyD we onsider prolem @TFPUA s oming from the ssoited linerized system of @TFIRA round u 0 fter some simple hnge of vrilesF sn this ontextD V is no other thn the toin f (u 0 ) = ∂f (u 0 )/∂u in @TFIRAF he di'usion nd retion oe0ientsD D nd k in @TFIRA nd @TFPUAD might e seen s sle oe0ients of time nd speF sn ftD in the ontext of retion wvesD we n otin dimensionless form of system @TFIRA onsidering dimensionless time τ nd dimensionless spe r with τ = kt nd r = (k/D) 1/2 x. @TFPVA ee rHQ for detils on how retion systems of yhis n e uilt from retion shemeD nd qWR for detils on nlysis of trveling retion wvesF henD without loss of generlityD dimensionless nlysis of trveling wveD s shown in qWRD my llow us to estlish the stedy stte of retion wveF hereforeD tking into ount the sle oe0ientsD the dimensionless stedy veloity of the wvefront given y the expression dr/dτ estlishes tht d t x ∝ (Dk) 1/2 , @TFPWA while oming k to the initil representtion of time t nd spe xF woreoverD in generl wyD the shrpness of the wve pro(le is mesured y

d x u| max ∝ (k/D) 1/2 . @TFQHA
xote tht ondition Dk = 1 implies onstnt veloity for ll k = 1/DY howeverD greter k @or smller DA implies higher sptil grdientsD nd thusD sti'er on(gurtionsF sn the ontext of retion wvesD we hve usully wvefronts of steep sptil grdient propE gting with stedy onstnt speedF hereforeD we re interested in studying this kind of sti' on(gurtions nd their impt on time prlleliztion lgorithm suh s the prrel shemeF sn prtiulrD the ltter must e oupled with n pproprite sti' solver suh s the opertor splittingD onsidered in this workF reneD in order to ondut onvergene nlysis of the prrel shemeD we re (rst onstrined to otin some ounds @similr to those given y @TFPQAD @TFPRA nd @TFPSAA drwn out of more preise nlysis of the opertor splitting itselfD pplied to prolem @TFPUAF his is the min gol of the following setionF Analysis of the Operator Splitting por prolem @TFPUAD we onsider the liner opertor b orresponding to the multiplition y kV nd the opertor a = -D∂ 2 x @minus D times the seond prtil derivtive with respet to

IRP

x in one dimensionAF reneD their ommuttor is given y

∂ a b = [a, b] = -(∂ 2 x V ) -2(∂ x V )∂ x , @TFQIA
onsidering tht Dk = 1F e (rst rell the following result whih is proven in hHP nd gives n ext representtion of the di'erene etween the exponentil of a + bD iFeFD the ext solution of @TFPUAD nd its vie @respF trngA pproximtion denoted y L @respF SAF Theorem 6.4. he following identities hold @TFQQA sn prtiulrD for prolem @TFPUA we hve

L(t) = e -ta e -tb
∂ 2 a b = [a, [a, b]] = D(∂ 4 x V ) + 4D(∂ 3 x V )∂ x + 4D(∂ 2 x V )∂ 2 x , @TFQRA ∂ 2 b a = [b, [b, a]] = -2k(∂ x V ) 2 .
@TFQSA sdentities @TFQPA nd @TFQQA re lso vlid for generl nonliner opertors @or vetor (eldsA a nd bD in whih se the ommuttors @TFQIAD @TFQRA nd @TFQSA re omputed s the vie derivtives of the vie rket of the vetor (elds @see rHQ nd the omplete nlysis onduted in vuHV nd hhv + IPAF xeverthelessD even if @TFQPA nd @TFQQA give us the ext representtion of the lol error of vie or trng splitting pproximtionD we re more interested in de(ning some ounds on these lol errorsF wore preiselyD we will see in the next setion tht the key point of the proof of the onvergene estimtes for the prrel lgorithm is the use of L 2 to L 2 estimtes of the errorsF hereforeD onsidering the ext solution of prolem @TFPUAD simple omputtion shows tht for t ≥ 0D e t(D∂ 2

x -kV ) L(L 2 ,L 2 )
≤ e k V ∞t . @TFQTA woreoverD with the ext representtion of the lol errors @TFQPA nd @TFQQAD nd denoting y

E L (t) = e t(D∂ 2 x -kV ) -L(t) nd E S (t) = e t(D∂ 2 x -kV ) -S(t), @TFQUA
it is strightforwrd to otin the following oundsF Lemma 6.5 @pirst estimte of the splitting lol errorA. gonsider prolem @TFPUA nd u 0 ∈ H 2 (R)D for t ≥ 0 we hve the following error ounds

E L (t)u 0 L 2 ≤ t 2 2 ∂ 2 x V ∞ + 2t 3 3 k ∂ x V 2 ∞ e k V ∞t u 0 L 2 +t 2 ∂ x V ∞ e k V ∞t ∂ x u 0 L 2 , @TFQVA IRQ nd E S (t)u 0 L 2 ≤ t 3 12 k ∂ x V 2 ∞ + D ∂ 4 x V ∞ + t 4 8 ∂ 3 x V ∞ ∂ x V ∞ + ∂ 2 x V 2 ∞ + t 5 20 k ∂ 2 x V ∞ ∂ x V 2 ∞ e k V ∞t u 0 L 2 + t 3 3 D ∂ 3 x V ∞ + t 4 4 ∂ 2 x V ∞ ∂ x V ∞ e k V ∞t ∂ x u 0 L 2 + t 3 3 D ∂ 2 x V ∞ e k V ∞t ∂ 2 x u 0 L 2 . @TFQWA Proof. sing @TFQPAD we hve in L 2 (R)D e t(D∂ 2 x -kV ) u 0 -e tD∂ 2 x e -tkV u 0 L 2 ≤ t 0 s 0 e (t-s)(D∂ 2 x -kV ) e (s-r)D∂ 2 x ∂ a b e rD∂ 2
x e -skV u 0 L 2 dr ds. @TFRHA end with @TFQTA we hve

e t(D∂ 2 x -kV ) u 0 -e tD∂ 2 x e -tkV u 0 L 2 ≤ t 0 s 0 e (t-s)k V ∞ ∂ a b e rD∂ 2 x e -skV u 0 L 2 dr ds. @TFRIA ine ∂ a b e rD∂ 2 x e -skV u 0 = -(∂ 2 x V )e rD∂ 2 x e -skV u 0 -2(∂ x V )∂ x e rD∂ 2 x e -skV u 0 = -(∂ 2 x V )e rD∂ 2 x e -skV u 0 -2(∂ x V )e rD∂ 2 x ∂ x e -skV u 0 = -(∂ 2 x V )e rD∂ 2 x e -skV u 0 -2(∂ x V )e rD∂ 2 x e -skV ∂ x u 0 + 2(∂ x V )e rD∂ 2
x sk(∂ x V )e -skV u 0 , @TFRPA we otin @TFQVAD integrting @TFRIA nd knowing tht e -skV L(L 2 ,L 2 ) ≤ e sk V ∞ F erforming the sme omputtionsD we otin @TFQWA from @TFQQAD @TFQRA nd @TFQSAF roweverD we rell the ft tht we re spei(lly serhing for L 2 to L 2 error estimtes in order to ondut the onvergene nlysis of the prrel shemeF reneD thnks to the regulrizing e'et of the vplinD we hve for ll u 0 in L 2 nd for t > 0D

∂ x e tD∂ 2 x u 0 L 2 ≤ 1 √ 2eDt u 0 L 2 , @TFRQA
nd thenD we n ondut further lultionsF Lemma 6.6 @eond estimte of the splitting lol errorA. gonsider prolem @TFPUAD for t > 0 we hve the following error ounds

E L (t)u 0 L 2 ≤ 8 3 t √ t ∂ x V ∞ √ 2eD + t 2 2 ∂ 2 x V ∞ e k V ∞t u 0 L 2 , @TFRRA nd E S (t)u 0 L 2 ≤ t 2 4 π e ∂ 2 x V ∞ + t 3 12 k ∂ x V 2 ∞ +D ∂ 4 x V ∞ e k V ∞t u 0 L 2 . @TFRSA
Proof. e tke into ount tht

∂ a b e rD∂ 2 x e -skV u 0 = -(∂ 2 x V )e rD∂ 2 x e -skV u 0 -2(∂ x V )∂ x e rD∂ 2
x e -skV u 0 . @TFRTA goming k to @TFRIAD the regulrizing e'et of the vplin @TFRQA yields

e t(D∂ 2 x -kV ) u 0 -e tD∂ 2 x e -tkV u 0 L 2 ≤ t 0 s 0 e (t-s)k V ∞ ∂ a b e rD∂ 2 x e -skV u 0 L 2 dr ds ≤ t 0 s 0 e (t-s)k V ∞ 2 ∂ x V ∞ √ 2eDr + ∂ 2 x V ∞ e -skV u 0 L 2 dr ds ≤ 8 3 t √ t ∂ x V ∞ √ 2eD + t 2 2 ∂ 2 x V ∞ e k V ∞t u 0 L 2 . @TFRUA woreoverD tking into ount tht ∂ 2 a b = D(∂ 4 x V ) + 4D∂ x (∂ 2 x V )∂ x @TFRVA nd if we onsider e rD∂ 2 x ∂ 2 a b e (s-r)D∂ 2 x e -skV /2 u 0 = De rD∂ 2 x (∂ 4 x V )e (s-r)D∂ 2 x e -skV /2 u 0 + 4De rD∂ 2 x ∂ x (∂ 2 x V )∂ x e (s-r)D∂ 2 x e -skV /2 u 0 = De rD∂ 2 x (∂ 4 x V )e (s-r)D∂ 2 x e -skV /2 u 0 + 4D∂ x e rD∂ 2 x (∂ 2 x V )∂ x e (s-r)D∂ 2
x e -skV /2 u 0 , @TFRWA we otin with @TFRQAD

e rD∂ 2 x ∂ 2 a b e (s-r)D∂ 2 x e -skV /2 u 0 L 2 ≤ D ∂ 4 x V ∞ e -skV /2 u 0 L 2 + 4D √ 2eDr ∂ 2 x V ∞ ∂ x e (s-r)D∂ 2 x e -skV /2 u 0 L 2 ≤ D ∂ 4 x V ∞ e -skV /2 u 0 L 2 + 2 ∂ 2 x V ∞ e r(s -r) e -skV /2 u 0 L 2 ≤ D ∂ 4 x V ∞ + 2 ∂ 2 x V ∞ e r(s -r)
e sk V ∞/2 u 0 L 2 . @TFSHA king this into @TFQQA nd integrting yield @TFRSAF IRS he min dvntge of these lol error ounds is tht ll terms in estimtes @TFQVAD @TFQWAD @TFRRA nd @TFRSA re knownF xo trunted terms in t re present indeedD sine we hve onsidered n ext representtion of errors @TFQPA nd @TFQQAF purthermoreD (rst nd seond estimtes of the splitting lol error gree perfetly with those found in the literture @see hhvwHUA for the se of his with high sptil grdientsF sn prtiulrD more generl nd omplete study of the trng method n e found in hHPF xotie tht s it ws stted in hhvwHUD n order redution might pper in the lol errorF husD if we onsider k = D = 1 nd expnd e V ∞t D we infer from the previous results tht for

t > 0D E L (t)u 0 L 2 ∝ max ∂ x u 0 L 2 t 2 , u 0 L 2 t 1.5 @TFSIA nd E S (t)u 0 L 2 ∝ max ∂ x u 0 L 2 t 3 , u 0 L 2 t 2 . @TFSPA
hese estimtes desrie the ehvior of the lol errorsY the (rst terms re more relevnt when t is smll nd the seond ones when t is not smll enough nd ∂ x u 0 L 2 is very highF wore preisely there exists n expliit onstnt θ > 0 suh tht for t ≤ θD E L (t)u 0 L 2 @respF E S (t)u 0 L 2 A ehves like t 2 @respF t 3 A nd for t ≥ θD E L (t)u 0 L 2 @respF E S (t)u 0 L 2 A ehves like t 1.5 @respF t 2 AF hese lol error estimtes re vlid for generl liner prolems of type @TFPUAF roweverD in the ontext of propgting wvefrontsD sine the L 2 Enorm of ∂ x u 0 is normlly very highD it is espeilly relevnt to otin lterntive error estimtes whih do not involve the derivtive of the initil onditionF sn our prtiulr seD the L 2 to L 2 error estimtes estlished in vemm TFT llow us to otin the following ounds whih will e neessry for the onvergene nlysis of the prrel opertor splitting shemeF Lemma 6.7. gonsider prolem @TFPUA with initil onditions u 0 nd v 0 D then for (xed t > 0D there exist κ L , κ S , C L , C S ∈ R + suh tht we hve the following ounds

L(t)u 0 -L(t)v 0 L 2 ≤ e k V ∞t u 0 -v 0 L 2 , @TFSQA E L (t)u 0 -E L (t)v 0 L 2 ≤ κ L C L t √ te k V ∞t u 0 -v 0 L 2 , @TFSRA nd S(t)u 0 -S(t)v 0 L 2 ≤ e k V ∞t u 0 -v 0 L 2 , @TFSSA E S (t)u 0 -E S (t)v 0 L 2 ≤ κ S C S t 2 e k V ∞t u 0 -v 0 L 2 , @TFSTA
Proof. imple lultion of e tD∂ 2

x e -tkV (u 0 -v 0 ) L 2 yields @TFSQAD s well s e -tkV /2 e tD∂ 2 x e -tkV /2 (u 0 -v 0 ) L 2 yields @TFSSAF fesidesD estimtes @TFSRA nd @TFSTA ome from the ounds @TFRRA nd @TFRSA pplied to (u 0 -v 0 ) with

C L = max 8 ∂ x V ∞ 3 √ 2eD , ∂ 2 x V ∞ 2 , @TFSUA C S = max π ∂ 2 x V ∞ 4e , k ∂ x V 2 ∞ 12 , D ∂ 4 x V ∞ 12 , @TFSVA κ L ≥ 1 + √ t nd κ S ≥ 1 + t.
@TFSWA IRT xotie tht ounds @TFSRA @respF @TFSTAA nd @TFSQA @respF @TFSSAA orrespond to estimtes @TFPRA nd @TFPSA respetively in qrHVD iFeFD the di'erene of lol errors for di'erent initil onditions nd the vipshitz ondition relted to the vie @respF trngA pproximtion @we n even onsider some C ∈ R + suh tht e V ∞t ≤ (1 + Ct) for t ∈ (0, 1) into the di'erent estimtesAF woreoverD series expnsion @TFPQA n e ssoited to @TFRRA @respF @TFRSAAF sn this wyD we hve ompletely hrterized the onstnts C 1 D C 2 nd C 3 ppering into lssil ound @TFPTA nd more detiled nlysis of the lgorithm n e performedF he hoie of the seond estimte of the splitting lol errors is justi(ed y the ft tht retion wves phenomen involve usully wvefronts of high sptil grdients nd tht there is no suh prtil interest in utilizing very smll time steps in order to simulte themF fesidesD from mthemtil point of viewD this llows us to otin the neessry vipshitz reltions from L 2 to L 2 spesF Parareal Convergence Analysis he following theorem gives us the onvergene rte of the prrel opertor splitting lE gorithmF sts demonstrtion is sed on the preliminry lemms stted efore nd on the onvergene nlysis developed y qrHVF por resons of simpliityD we ssume tht ll the time sudomins re of the sme sizeD iFeFD ∆T := T /N D nd T n = n∆T for n = 0, 1, . . . , N F Theorem 6.8. vet F ∆T (U n-1 ) e the ext solution of prolem @TFPUA on time sudomin

I n-1 F sf G ∆T (U n-1 )
is the vie pproximte solution with lol error ounded y @TFRRA stisfying @TFSQA nd @TFSRAD then t itertion i of the prrel lgorithm @TFSAD there exist some (nite κ L , κ S , C L , C S , Λ Tn ∈ R + suh tht we hve the ound

u(T n ) -Ũ i n L 2 ≤ Λ Tn (κ L C L T n ) i+1 (i + 1)! ∆T (i+1)/2 @TFTHA with Λ Tn = u 0 L 2 e k V ∞Tn F ytherwiseD if G ∆T (U n-1 )
is the trng pproximte solution with lol error ounded y @TFRSA stisfying @TFSSA nd @TFSTAD then we hve the ound i+1) . @TFTIA Proof. he proof is similr to the one onduted in qrHVF prom the prrel lgorithm @TFSAD onsidering tht F is the ext solution of @TFPUA nd dding nd sutrting G ∆T (u(T n-1 ))D we otin

u(T n ) -Ũ i n L 2 ≤ Λ Tn (κ S C S T n ) i+1 (i + 1)! ∆T ( 
u(T n ) -Ũ i+1 n = F ∆T (u(T n-1 )) -G ∆T (u(T n-1 )) -F ∆T ( Ũ i n-1 ) -G ∆T ( Ũ i n-1 ) + G ∆T (u(T n-1 )) -G ∆T ( Ũ i+1 n-1
). @TFTPA reneD tking norms nd onsidering @TFSRA @or @TFSTAA nd @TFSQA @or @TFSSAAD there exist some α nd β suh tht

u(T n ) -Ũ i+1 n L 2 ≤ α u(T n-1 ) -Ũ i n-1 L 2 + β u(T n-1 ) -Ũ i+1 n-1 L 2 . @TFTQA
he lssil onvergene nlysis led us to study the reurrene reltion

e i+1 n = αe i n-1 + βe i+1 n-1 , e 0 n = γ + βe 0 n-1 , @TFTRA
IRU where e i n is n upper ound on u(T n ) -Ũ i n L 2 D the glol error of the prrel sheme t T n onsidering the ext solution u(t)F efter indution nd using the inomil series expnsionD we otin the ound qrHV

e i n ≤ γα i β n-i-1 n i + 1 . @TFTSA sf G is the vie pproximte solutionD α = κ L C L ∆T √ ∆T e k V ∞∆T , β = e k V ∞∆T , γ = κ L C L ∆T √ ∆T e k V ∞∆T u 0 L 2 ,        @TFTTA thenD u(T n ) -Ũ i n L 2 ≤ u 0 L 2 (κ L C L ∆T √ ∆T e k V ∞∆T ) i+1 (i + 1)! (e k V ∞∆T ) n-i-1 i j=0 (n -j) ≤ u 0 L 2 (e k V ∞∆T ) n (κ L C L n∆T √ ∆T ) i+1 (i + 1)! ≤ u 0 L 2 e k V ∞Tn (κ L C L T n ) i+1 (i + 1)! ∆T (i+1)/2 . @TFTUA
sf G is the trng pproximte solutionD we perform the sme proess to otin @TFTIA with

α = κ S C S ∆T 2 e k V ∞∆T , β = e k V ∞∆T , γ = κ S C S ∆T 2 e k V ∞∆T u 0 L 2 .        @TFTVA
hese onvergene results show tht the prrel lgorithm onverges superlinerly with reE spet to i nd ehves s method of order p(i + 1) for prolem of type @TFPUA nd (nite T F xotie tht this time p = 1/2 for the vie formul insted of lssil glol order 1 nd p = 1 for trng insted of 2D ording to the order redution previously disussed nd proven in hhvwHUF husD results @TFTHA nd @TFTIA do not ontrdit the lssil results from the literture ut omplement themD giving new nd more detiled insights to the performne of the lgorithmF sn ftD ll the terms into ounds @TFTHA nd @TFTIA re known or n e lulted for generl prolem of type @TFPUAD even moreD onstnts C L D C S D κ L nd κ S hve een estlished in the proof of vemm TFUF his mens tht more preise estimtes n e otined for prrel opertor splitting strtegyF

Parareal Operator Splitting for Reaction Waves

heorem TFV gives us the onvergene rte while pplying prrel opertor splitting strtE egy on generl prolem of type @TFPUAF xeverthelessD we will now extend these results to IRV the prtiulr se of retion wves phenomenF sn this ontextD we re interested in the propgtion of stedy selfEsimilr wvesD iFeFD proli his of type @TFIRA with solution u(x, t) = u 0 (x -ct), @TFTWA where c is the stedy speed of the wvefrontF e hve lredy showed the link etween prolems @TFPUA nd @TFIRAD furthermore simE ple dimensionless nlysis of trveling wves yield expressions @TFPWA nd @TFQHA with sling onstnts D nd k @see qWRAF hereforeD we n esily show tht for n integer s > 0D

∂ s x V (x) = ∂ s x f (u 0 ) = ∂ s-1 x (f (u 0 )∂ x u 0 ). @TFUHA
king norms nd tking into onsidertion @TFQHA under ondition kD = 1D we otin tht

∂ s x V (x) ∞ = ∂ s x f (u 0 ) ∞ = ∂ s-1 x (f (u 0 )∂ x u 0 ) ∞ = k s ∂ s-1 x (f (u 0 )∂ x ū0 ) ∞ , @TFUIA
where ū(x, t) = ū0 (x -ct) is referene solution of @TFIRA when k = 1F woreoverD following @TFPWAD ondition Dk = 1 implies onstnt speed c for ll kF henD we n rewrite vemm TFU s followsF Lemma 6.9. gonsider prolem @TFPUA with initil onditions u 0 nd v 0 F purthermoreD let us sE sume tht Dk = 1 nd tht ondition @TFUIA is stis(edF henoting y

E L (t) = e t(D∂ 2 x -kf (u 0 )) - L(t)D E S (t) = e t(D∂ 2 x -kf (u 0 )) -S(t) nd τ = ktD then for (xed t > 0 there exist κ L , κ S , C L , C S ∈
R + suh tht we hve the following ounds

E L (t)u 0 -E L (t)v 0 L 2 ≤ κ L C L τ √ τ e f (u 0 ) ∞τ u 0 -v 0 L 2 , @TFUPA nd E S (t)u 0 -E S (t)v 0 L 2 ≤ κ S C S τ 2 e f (u 0 ) ∞τ u 0 -v 0 L 2 . @TFUQA
Proof. he proof of @TFUPA nd @TFUQA is strightforwrd to otinD onsidering @TFUIA nd rewriting @TFRRA nd @TFRSA s

E L (t)u 0 L 2 ≤ 8 3 t √ t k g(u 0 ) ∞ √ 2eD + t 2 2 k 2 ∂ x g(u 0 ) ∞ e k f (u 0 ) ∞t u 0 L 2 , @TFURA E S (t)u 0 L 2 ≤ t 2 4 π e k 2 ∂ x g(u 0 ) ∞ + t 3 12 k 3 g(u 0 ) 2 ∞ + Dk 4 ∂ 3 x g(u 0 ) ∞ e k f (u 0 ) ∞t u 0 L 2 , @TFUSA where g(u 0 ) = f (u 0 )∂ x ū0 D then we tke Dk = 1D τ = kt nd rede(ne C L nd C S s C L = max 8 g(u 0 ) ∞ 3 √ 2e , ∂ x g(u 0 ) ∞ 2 , @TFUTA C S = max π ∂ x g(u 0 ) ∞ 4e , g(u 0 ) 2 ∞ 12 , ∂ 3 x g(u 0 ) ∞ 12 .
@TFUUA ith this lemmD the following orollry of heorem TFV n e otinedF IRW Corollary 6.10. vet F ∆T (U n-1 ) e the ext solution of prolem @TFPUA on time sudomin

I n-1 F purthermoreD let us ssume tht Dk = 1 nd tht ondition @TFUIA is stis(edF sf G ∆T (U n-1 ) is the vie pproximte solution with lol error ounded y @TFUPA stisfying @TFSQAD then t itertion i of the prrel lgorithm @TFSAD there exist some (nite κ L , κ S , C L , C S , Λ Tn ∈ R + suh tht we hve the ound

u(T n ) -Ũ i n L 2 ≤ Λ Tn (κ L C L kT n ) i+1 (i + 1)! (k∆T ) (i+1)/2 @TFUVA with Λ Tn = u 0 L 2 e f (u 0 ) ∞kTn F ytherwiseD if G ∆T (U n-1 )
is the trng pproximte solution with lol error ounded y @TFUQA stisfying @TFSSAD then we hve the ound

u(T n ) -Ũ i n L 2 ≤ Λ Tn (κ S C S kT n ) i+1 (i + 1)! (k∆T ) (i+1) . @TFUWA
Proof. he proof omes out diretly from heorem TFV nd vemm TFWD onsidering Dk = 1 nd ondition @TFUIAF e see tht lso in this seD ll the terms in ounds @TFUVA nd @TFUWA re known or n e lulted for generl prolem of type @TFPUA stisfying @TFUIAF woreoverD onstnts C L D C S D κ L nd κ S hve een estlished in the proof of vemm TFW nd this timeD C L nd C S re ompletely independent of oe0ients k nd DD so they re vlid for ny speedGgrdient on(gurtion of the wvefrontF fy the wyD from ounds of vemm TFW s well s those of gorollry TFIHD we n onsider oe0ient k s time sling prmeter through τ = ktF prom these results we onlude tht the onvergene rte of the lgorithm in the vie @respF trngA se ehves like k 1.5 @respF k 2 A for (xed ∆T F end s estlished y ondition @TFQHAD higher k implies the propgtion of wvefronts with higher sptil grdients t the sme speedF es mtter of ftD the following orollry estlishes more preisely the in)uene of high sptil grdients onto the performne of the prrel lgorithmF Corollary 6.11. vet us onsider vemm TFW nd gorollry TFIHF henoting y E i n = u(T n ) -Ũ i n L 2 with (xed k ≥ 1 into @TFPUAF henD t itertion i of the prrel lgorithm @TFSAD there exist some (nite A, B, q ∈ R + suh tht we hve the ound

E i n ≤ e A+(i+1)qB E i n , @TFVHA
where

E i n is (xed referene vlue of E i n with k = D = 1 in @TFPUAF
Proof. prom gorollry TFIHD we hve

E i n ≤ Λ Tn k q(i+1) (κ G C G T n ) i+1 (i + 1)! ∆T (q-1)(i+1) , @TFVIA with q = 3/2D C G = C L nd κ G = κ L @respF q = 2D C G = C S nd κ G = κ S A if G
is the vie @respF trngA pproximte solutionF efter simple omputtionsD we otin

ln E i n ≤ (k -1) f (u 0 ) ∞ T n + q(i + 1) ln k + ln E i n , @TFVPA tht yields @TFVHA with A ≥ (k -1) f (u 0 ) ∞ T n nd B ≥ ln k. @TFVQA
ISH husD gorollry TFII estlishes the ound on the onvergene rte of the lgorithm for (xed k into @TFPUAY s onsequeneD the onvergene rte is diretly relted to the vlue of the highest sptil grdient of the wvefrontF sn prtiulrD the simultion of shrper wvefronts @higher kA implies weker onvergene rtes sine onstnts A nd B into @TFVHA inreseF his n e esily shown from @TFVHA if we onsider the line r n (i)X

ln E i n -ln E i n ≤ r n (i) = A + (i + 1)qB, @TFVRA
where we see tht its slope is diretly proportionl to ln k through B ∝ ln k for the sme pproximte solutionD iFeFD sme qY nd the onvergene rte gets lower when shrper sptil grdients re present in the solutionF xow tht we hve otined these results tht explin the ehvior of the prrel lgorithm when we onsider n opertor splitting sheme s the orse pproximtion tehniqueD we need to vlidte them with some numeril exmplesF his is the gol of the next setionF 6.4 Numerical Simulations sn this setionD we will present some illustrting simultions in order to (rstD vlidte the theoretil results presented eforeD nd seondlyD to investigte the performne of suh lgoE rithms on multiEsle retion wve phenomenF foth mthemtil models onsidered in the following ome from nonliner hemil dynmisY neverthelessD the onlusions might e exE tended to similr retionEdi'usion models in other dominsF sn this wyD the Ih u model is lrifying exmple of the dedued ehvior of the prrel splitting tehnique pplied on suh type of prolemsF henD with more e0ient opertor splitting strtegy inspired y hhh + IPD hwh + IPD we will onsider muh more omplex modelD the Ih nd Ph f systemD tht will lso on(rm the previous results nd will give us some insights into the performne of the lgorithm nd the lterntive strtegies for these multiEsle prolemsF

1D KPP Equation

pollowing the theoretil investigtions we hve presentedD we fous in this prt on the nuE meril evidene of the onvergene rte redution ssoited to splitting solvers in typil nonliner frmework of sti' trveling wvesF vet us (rst rell the uolmogorovEetrovskiiE iskunov modelF sn their originl pper dted in IWQU uQUD these uthors introdued model desriing the propgtion of virus nd the (rst rigorous nlysis of stle trveling wve solution of nonliner retionEdi'usion eqution qWRD WRF he eqution is the followingX

∂ t u -D ∆u = k u 2 (1 -u), @TFVSA
with homogeneous xeumnn oundry onditionsF he desription of the dimensionless model nd the struture of the ext solution n e found in qWRF husD the dimensionless nlysis shows tht in the se of D = 1 nd k = 1D the veloity of the selfEsimilr trveling wve is c = 1/ √ 2 nd the mximl grdient vlue rehes 1/ √ 32F he struture of the wve n e oserved in pigure TFI with disretiztion of 5001 points of the intervl [-70, 70] nd time vrying in [0, 30] divided into eight time intervlsF he key point of this illustrtion is tht the veloity of the trveling wve is proportionl to (k D) 1/2 D wheres the mximl grdient is proportionl to (k/D) 1/2 F husD swithing to vlues k = 10.0 nd D = 0.1D the veloity is preservedD ut the mximl grdient is multiplied y ftor of 10 nd introdues sti'ness in the equtionD s presented in pigure TFPF por the sptil disretiztions onsideredD the wveD however sti'D is lwys well solved on the onsidered ISI gridF his model is then very suitle exmple euse it oinides perfetly with the generl retionEdi'usion struture onsidered throughout our theoretil studyF epplition of the method of lines with (nite di'erene seond order disretiztion in spe implies disretiztion of the vplin opertor in @TFVSA nd thusD leds to system of nonE liner yhisF por the prrel shemeD we then need the (ne nd orse temporl integrtions of this semiEdisretized prolemF fsed on the previous onsidertionsD we hoose vie @or trngA split sheme s the orse solver nd very urte vie @or trngA split sheme s the (ne oneD the ltter onsiders smller splitting time stepF sn ll sesD eh of the time integrtion susteps @retion nd di'usion sustepsA is integrted y n unique nd very E urte solver in timeX vyhi with very (ne prede(ned tolernesF sn this wyD we deouple ISP the errors originted y the opertor splitting itself from the errors oming from the temporl integrtion of the sustepsD in order to remin oherent with the theoretil study onduted in the pperF e strt from n lredy selfEsimilr solution nd evlute the ility of the prrel solution to reprodue the orret selfEsimilr pro(leF he splitting time steps for oth (ne nd orse solversD re de(ned suh tht the wve speed is orretly lultedF pigure TFQ nd TFR elow show the onvergene results of the prrel lgorithm onsidering the onvergene of the prrel itertive solutions towrds the (ne solutionD omputed seprtely nd sequentilly y the (ne solverF he (rst itertion orresponds to the initil orse pproximtion nd the time domin is deomposed into N = 128 time sudominsF sn pigure TFQD on the one hnd we oserve len nd fst itertive evolution towrds onverE gene of the vie splitting tehnique pplied to the stndrd u equtionF sn ftD only 10 over 128 sudomins hve een solved diretly y the (ne solver to hieve the (ne uryF yn the other hndD muh more lower onvergene rte of the lgorithm is shown while pplying the prrel vie sheme to the sti' u equtionF sn ftD fter 15 itertions we re very fr from the ury otined in the stndrd seF he key point in this pper is the redution of the onvergene rte exhiited y the sti' seD where the veloity of the wve is the smeD ut the mximl grdient is ten times higherF husD onsidering the line de(ned y @TFVRA s onsequene of gorollry TFII where B = 1 sine k = 10 @onsidering log insted of lnAD we hve plotted stright line of slope q = 1.5 in order to show the very good greement to the ound predited y the theoryF he sme onlusions rise from the trng seD s it is shown in pigure TFRD where this time q = 2D s estlished into gorollry TFIIF xotie tht the prrel sheme pplied to the stndrd u eqution onverges fster thn in the previous vie seD s trng sheme is nturlly more urte tht vie oneF husD we otin less orse pproximtions nd onvergene fter 5 itertionsF xotie lso tht the sti' se prtilly onverges fter 15 itertionsD whih ws not the se in the previous vie pplition @pigure TFQAF hereforeD let us onsider more urte vie pplition where the splitting time steps re smller so tht the sti' se onverges ompletelyF pigure TFS desries this sitution where one gin the theoretil results re vlidted nd for whih onvergene is hieved fter 5 @respF 9A ISQ itertions for the stndrd @respF sti'A seF vet us (nlly see wht hppens with orse solver tht onsiders the initil oupled retionE di'usion system insted of the split oneF o limit importnt omputtionl ostD let us onsider n expliit solver suh us yguR edHPF his lterntive might not e lwys fesile euse of the importnt stility restritions of this method when treting prolems with importnt imginry prt eigenvlues @see edHP for more detilsAF e reprodue in pigure TFTD the former onvergene rtes found in the vie pplition of pigure TFQ for othD the stndrd nd sti' u equtionD nd the new one otined y the yguREsed orse solver for the sti' seF he ltter oupled orse resolution lerly improves the onvergene rte of the prrel sheme for the sti' u prolemF reneD we see tht n opertor splitting ISR pproh s orse pproximtion lerly implies n importnt redution of the onvergene rte of the prrel lgorithm s it ws proven in the previous setionF 

BZ Equation

sn this seond illustrtionD we re onerned with the numeril pproximtion of nother model oming from nonliner hemil dynmisD the felousovEhotinski retionD tE lyzed oxidtion of n orgni speies y id romted ion @for more detils nd illustrtionsD see iWVAF e n (rst onsider the twoEvrile yregontor modelD studied in tVWY it hs solutions tht represent propgtion of steep wvefront y interply of HBrO 2 @hypoE romous idA di'usion with n utotlyti retion tht quikly genertes HBrO 2 @using romide ions Br -s n intermediry speies tht remins lwys in equilirium with lol instntneous HBrO 2 AF henoting y b = [HBrO 2 ] nd c = [Br -]D we onsider the following modelX ∂b ∂τ

-D b ∆b = 1 ε b(1 -b) + f (q -b)c q + b , ∂c ∂τ -D c ∆c = b -c,      @TFVTA
with di'usion oe0ients D b nd D c nd some rel positive prmeters f D smll q nd smll εF xeverthelessD more re(ned modelD introdued in qWR nd oming from the lssi work of pieldD uoros nd xoyes @puxA @IWUPAD tkes into ount not only the two speies HBrO 2 nd Br -ut lso the erium@sAF henoting y a = [Ce(IV )]D we otin very sti' system of three prtil di'erentil equtionsX

∂a ∂τ -D a ∆a = 1 µ (-qa -ab + f c), ∂b ∂τ -D b ∆b = 1 ε (qa -ab + b(1 -b)) , ∂c ∂τ -D c ∆c = b -c,              @TFVUA

ISS

with dditionl di'usion oe0ient D a nd rel positive prmeter µ εF he dynmil systems ssoited to systems @TFVTA nd @TFVUA model retive exitle medi with lrge time sle spetrum @see qWR for more detilsAF woreoverD the sptil on(guE rtion with ddition of di'usion genertes propgting wvefronts with steep sptil grdientsF husD this model presents ll the di0ulties ssoited to sti' multiEsle on(gurtionF he dvntges of pplying splitting strtegy to these models hve lredy een studied nd preE sented in hhwHQD hwh + IPF sn wht followsD we will onsider the Ih nd Ph on(gurtions of prolem @TFVUAF 1D BZ Equation vet us (rst onsider the Ih se of prolem @TFVUA with homogeneous xeumnn oundry onditions nd the following prmeters @sed on qWRAX ε = 10 -2 D µ = 10 -5 D f = 3 nd q = 2.10 e then onstrut n optiml opertor splitting on(gurtion lredy studied nd vlidted hhh + IPD hwh + IP sed on the h trng S t 2 sheme for whihD duS is used for the time integrtion of the retion term nd yguR for the di'usive prtF sn this ontextD pigure TFV shows the itertive evolution nd the onvergene rte otined with h trng opertor splitting sheme onsidered for oth (ne nd orse solversD the ltter with lrger splitting time stepsF sn the sme (gureD we see tht one gin oupled resolution of the initil retionEdi'usion system @TFVUA s orse solver yields etter performnesF elso in this illustrtionD we tke yguR s orse solver of the oupled systemF 

2D BZ Equation

e now onsider the Ph on(gurtion of prolem @TFVUA with homogeneous xeumnn oundry onditions nd the following prmeters @from hhwHQAX ε = 10 -2 D µ = 10 -5 D f = 1.6 nd q = 2.10 -3 D with di'usion oe0ients D a = 2.5 × 10 -3 D D b = 2.5 × 10 -3 nd D c = 1.5 × 10 -3 F e follow the sme prtil disretiztion pplied in the previous se nd fter integrtion over time domin of [0, 2]D we see the developed spirl wves t (nl time t = 2 into pigure TFWF 

T para ≈ N ite × T f ine N proc , @TFVVA
tking into ount the itertive proedureF e set this estimte s the optiml rtioD when orse pproximtions re very fstF xeverthelessD more relisti estimte should tke into ount ll orse pproximtions omputed sequentilly in order to initilize eh time suE dominF henD we hve

T para ≈ (N ite + 1) × T coarse + N ite × T f ine N proc , @TFVWA
with the initil orse pproximtion needed to strt the lgorithmF husD the hoie of the orse solver is ruil nd represents the mjor onstrint on the suess of the pplitionsF sn this ontextD let us mke some omputtions using the h trng S t 2 opertor splitting s yguR hs een utilizedF xeverthelessD the oupled omputtion s orse pproximtion llows fster onvergene nd thusD etter performne of the lgorithmF his is lso re)eted in le TFP where the omputtion time rtios hve een estimtedF N proc /N ite then represents the optiml rtio desried into expression @TFVVAX 16 for the split orse solver nd 32 for the oupled oneF reneD the (nl rtios otined @∼ 2E3A re)et on the one hndD the importnt ost of the orse solvers for sti' prolemsD nd on the other hndD the redution of onvergene rte for n opertor splitting sheme s orse propgtorD previously deduedF 6.5 Conclusions sn this pperD we hve presented new numeril strtegy tht ouples n optiml opertor splitting tehnique for multiEsle prolems nd the prrel lgorithmD promising time prE lleliztion shemeF gonsidering the stte of the rt of the litertureD we hve then onduted detiled numeril nlysis of suh tehniques in order to introdue omplementry nd neE essry hrteriztion of the numeril ehvior of opertor splitting nd prrel shemes in the ontext of multiEsle retion wvesF sn prtiulrD preise representtion of the impt of sti' on(gurtions on the performne of the lgorithm hs een mthemtilly proven for retionEdi'usion models with lrge sptil grdientsF henD set of numeril illustrtions hve on the one hndD vlidted the previous theoretil results nd expliitly showed the redution of the onvergene rte of the prrel lgorithm when n opertor splitting is performed for the orse pproximtions of the methodF end on the other hndD they hve highlighted the need of e0ient orse solvers for sti' prolems in order to onstrut more ompetitive methodsF pinllyD it ws lso numerilly demonstrted tht more suitle strtegy onsiders oupled resolution of the initil retionEdi'usion system s orse solverF roweverD this lterntive my not lwys e fesile nd other pprohes should e evlutedF por instneD the resoluE tion of the redued model of the f system or the set of slow vriles for generl multiEsle prolem ould e onsidered s orse pproximtion of the omplete (ne modelF xevertheE lessD further studies tht go out of the sope of this work re neessry in order to test suh lterntivesY this is the topi of our urrent reserhF Acknowledgements. his reserh ws supported y fundmentl projet grnt from ex @prenh xtionl eserh egeny E ex gsA seg @rojet leder F wdyAD nd y gx hFhF grnt for wF hurte from the wthemtis @sxwsA nd ingineering @sxsA snstitutes of gxF his work ws grnted ess to the rg resoures of shs ISW @gx snstitute of ienti( gomputingA under the llotion PHHWEiPHHWHTTIUQ mde y qixgs @qrnd iquipement xtionl de glul sntensifA where some of the simultions were performedF he uthors re grteful to téphne de ghisemrtinD hierry humontD ioline vouvet nd prédérique vurent for vlule disussions nd importnt ssistne throughout this projetF Introduction sn this prtD we present some key spets onerning the prtil implementtion of the nuE meril strtegy estlished in hpters R nd SF hese tehniques gve irth to n demi numeril ode lled wfeiiD with timeGspe dptive fetures for the solution of sti' hisF ghpter U desries the most importnt multiresolution lgorithms inluded in the ode nd gives some detils on the dt nd ode struturesF edditionllyD ghpter V detils the min ore of the time integrtion sheme implemented in the wfeii odeD for retionEdi'usion systemsF he time dptive nd dedited splitting tehniques re lso desried s well s the omplementry numeril proedure introdued in ghpter SF purther extensions will e onsidered for the simultions illustrted in the next prtF Chapter 7

Description of Space Adaptive Multiresolution in the MBARETE Code e detil in this hpter the lgorithms nd the min issues onerning the prtil impleE menttion of the multiresolution shemes detiled in ghpter QD for the numeril strtegy introdued in ghpter RF he generl lgorithms n e found in the originl rtiles of rrten rrWRD rrWSD frWUD nd more detils on these nd other relted mtters in the ook of wüller wülHQF he multiresolution nlysis ws implemented in our ode sed on the stndrd treeEstrutured dt representtionD s in the pproh of oussel et lF fHQF wore e0ient nd sophistited dt strutures for dptive grid representtion were develE oped y frix et lF fwHWD nd suessfully implemented for multiresolution pplitions @seeD eFgFD fff + IH nd referenes thereinAF he multiresolution tehnique implemented in the wfeii ode is lrgely sed on of the multiresolution kernel of w gryD ode developed y ghristin enud for ompressile xvierEtokes equtionsF purther detils on this multiresolution implementtion re inluded in tutoril tht hve een elorted for ummer hool of gx qh qroupe glulD on wultiresolution nd edptive wesh e(nement wethodsD préjusD prne @PHIHA hIIF 7.1 Multiresolution Operations fefore introduing the lgorithms for the di'erent multiresolution opertorsD let us rell some nottions introdued in ghpter QF gonsidering omputtionl domin Ω ⊂ R d D we de(ne the set of disjoint prtitions (Ω γ ) γ∈S j suh tht

Ω = γ∈S j Ω γ , @UFIA nd Ω γ Ω µ = ∅, γ = µ; γ, µ ∈ S j . @UFPA
he revited nottion Ω γ := Ω j,k ws de(ned with j ∈ N 0 [j 0 , J]D nd k ∈ Z d F he (rst index j stnds for the grid level from the orsest j = j 0 to the (nest grid j = JD where the di'erent grids re generted y suessiveD dydiD nd nested prtitionF por eh ell Ω j,k D ITQ there re

2 d suells Ω j+1,k D suh tht Ω j+1,k ⊂ Ω j,k D nd Ω j,k = k ∈I k Ω j+1,k , @UFQA
where I k D with #(I k ) = 2 d D is the set of indies k suh tht Ω j+1,k ⊂ Ω j,k F sn grtesin oordintes frmeworkD we thus hve

|Ω j,k | = Ω j,k dx, x ∈ R d .
@UFRA he seond set of indies k ∈ Z d into (j, k) ∈ S j D ounts for the sptil position of Ω j,k t grid level jD s illustrted y @QFTTA for the Ih seF 7.1.1 Projection Operator gonsidering (nite volumes for the sptil disretiztionD we denote U j := (u j,k ) (j,k)∈S j D s the sptil representtion of given funtion u(t, x) on the level grid jD where u j,k represents the ellEverge of u : R × R d → R in Ω j,k given y @QFTUAX

u γ := |Ω γ | -1 Ωγ u(t, x) dx, x ∈ R d .
@UFSA he ellEverge vlues t two suessive grid levels re relted y the projetion opertor P j j-1 D previously de(ned in @QFTVAX

u j,k = 1 |Ω j,k | k ∈I k |Ω j+1,k |u j+1,k .
@UFTA he ltter proedure llows us to ompute in reursive wyD ll the vlues u j,k for ll j ∈ [j 0 , j]D from U j+1 t given grid level j + 1F

Prediction Operator

he omputtions from orse to (ne grids re performed y the predition opertor P j-1 j D sed on polynomil interpoltionF por Ih on(gurtionD the interpoltion stenil R j+1,k @QFVTA to pproximte the vlues t grid level j + 1X ûj+1,2k nd ûj+1,2k+1 D ontins the prentE ell u j,k nd its nerest M neighorsF he entered polynomil interpoltions of ury order N = 2M + 1 might e written for the Ih se s

ûj+1,2k 1 = u j,k 1 + M d 1 =1 ξ d 1 (u j,k 1 +d 1 -u j,k 1 -d 1 ) , ûj+1,2k 1 +1 = u j,k 1 - M d 1 =1 ξ d 1 (u j,k 1 +d 1 -u j,k 1 -d 1 ) ,              @UFUA
where k = k 1 ∈ ZD nd the oe0ients ξ d 1 re given in le UFI up to M = 4F he se N = 3 ws lredy given in @QFVSAD wheres the se N = 1 orresponds to the rr wvelet deomposition @QFIRA into @QFVHAF ixtensions to multiEdimensionl interpoltions is strightforwrd sed on the Ih on(gurE tion @UFUAF he(ning the expression the Ph polynomil interpoltionD proposed y fihri 8 rrten frWUD reds

Q M s Q M (k 1 , u j,k ) = M d 1 =1 ξ d 1 (u j,k 1 +d 1 -u j,k 1 -d 1 ) , @UFVA ITR N M ξ 1 ξ 2 ξ 3 ξ 4 I H H H H H Q I -1/
ûj+1,2k 1 +d 1 ,2k 2 +d 2 = u j,k + (-1) d 1 Q M (k 1 , u j,k ) + (-1) d 2 Q M (k 2 , u j,k ) -(-1) (d 1 +d 2 ) Q M 2 (k 1 , k 2 , u j,k ), @UFWA with k = (k 1 , k 2 ) ∈ Z 2 F he integers d 1 nd d 2 re equl to either 0 or 1 depending on the hildEell onsideredD nd Q M @UFVA is used in oth dimensionsF he opertor Q M 2 D derived from tensor produt is given y Q M 2 (k 1 , k 2 , u j,k ) = M d 1 =1 ξ d 1 M d 2 =1 ξ d 2 (u j,k 1 +d 1 ,k 2 +d 2 -u j,k 1 -d 1 ,k 2 +d 2 -u j,k 1 +d 1 ,k 2 -d 2 + u j,k 1 -d 1 ,k 2 -d 2 ). @UFIHA
sn the sme wyD Qh interpoltions re de(ned y introduing the opertor

Q M 3 X Q M 3 (k 1 , k 2 , k 3 , u j,k ) = M d 1 =1 ξ d 1 M d 2 =1 ξ d 2 M d 3 =1 ξ d 3 (u j,k 1 +d 1 ,k 2 +d 2 ,k 3 +d 3 -u j,k 1 -d 1 ,k 2 +d 2 ,k 3 +d 3 -u j,k 1 +d 1 ,k 2 -d 2 ,k 3 +d 3 -u j,k 1 +d 1 ,k 2 +d 2 ,k 3 -d 3 + u j,k 1 -d 1 ,k 2 -d 2 ,k 3 +d 3 +u j,k 1 -d 1 ,k 2 +d 2 ,k 3 -d 3 + u j,k 1 +d 1 ,k 2 -d 2 ,k 3 -d 3 -u j,k 1 -d 1 ,k 2 -d 2 ,k 3 -d 3 ). @UFIIA reneD ûj+1,2k 1 +d 1 ,2k 2 +d 2 ,2k 3 +d 3 = u j,k + (-1) d 1 Q M (k 1 , u j,k ) + (-1) d 2 Q M (k 2 , u j,k ) +(-1) d 3 Q M (k 3 , u j,k ) -(-1) (d 1 +d 2 ) Q M 2 (k 1 , k 2 , u j,k ) -(-1) (d 1 +d 3 ) Q M 2 (k 1 , k 3 , u j,k ) -(-1) (d 2 +d 3 ) Q M 2 (k 2 , k 3 , u j,k ) +(-1) (d 1 +d 2 +d 3 ) Q M 3 (k 1 , k 2 , k 3 , u j,k ), @UFIPA ITS with k = (k 1 , k 2 , k 3 ) ∈ Z 3 F es eforeD d 1 D d 2 D nd d 3 re equl to either 0 or 1F

Multiresolution Transform

ith the projetion nd predition interElevel opertorsD the solution U J t the (nest grid of size N J is enoded y multiresolution trnsform M into multiEsle representtion M J @QFUSAD y mens of the elgorithm UFIF sn generlD the sets S j with j ∈ N 0 [j 0 , J] re distriuted in N R trees Λ r for r = 1, . . . , N R D where N R denotes the numer of roots in the entire tree representtionD nd thus N J = N R 2 dJ F por the moment this tree struture is useless euse ll ells re onsideredD nd the representtion on the leves L(Λ r ) of size

N L = N R r=1 #(L(Λ r ))
oinides with the disretized solution t the (nest gridD iFeFD

N L = N J F Algorithm 7.1 inoding y multiresolution trnsform M : U J -→ M J F 1: Input: U J of size N L = N R r=1 #(L(Λ r ))D given y ellEverged vlues u j,k suh tht (j, k) ∈ r∈[1,N R ] L(Λ r )F 2: for r = 1 → N R do 3: for j = J -1 → j 0 do 4: for k s.t. (j, k) ∈ S j Λ r do 5:
gompute ll u j,k t grid level jD from u j+1,k with k ∈ I k t level j + 1D y using the projetion opertor P j j-1 @UFTAF 6: gompute for eh I k D 2 d -1 predited vlues ûj+1,k y polynomil interpoltion @UFVAD @UFIHAD or @UFIIAD nd the orresponding detils de(ned y @QFUIAX d j+1,k = u j+1,k -ûj+1,k F 7:

ve detils in the rry D j+1 D where #(D j+1 ) = r(2 d -1)2 dj if N L = N J F sf neededD the lst detil n e omputed from k ∈I k d j+1,k = 0D ording to @QFUQAF 8:

inode the solution y repling U j+1 y (U j , D j+1 )F 9: end for 10: end for 11: end for 12: Output:

M J = (U j 0 , D j 0 +1 , D j 0 +2 , • • • , D J ) of size N L F
ith this new dt representtion on the wvelet speD the detils in D j ount for the lol sptil smoothness in the solutionD ording to @QFIHSAF xeverthelessD deoding proedure is lso neessry to retrieve the representtion on the physil spe of the vrilesF he ltter is done y mens of the inverse multiresolution trnsform M -1 D following the elgorithm UFPF Algorithm 7.2 heoding y inverse multiresolution

M -1 : M J -→ U J F 1: Input: M J = (U j 0 , D j 0 +1 , • • • , D J ) of size N L D given y the representtion on the orsest gridX U j 0 D nd the set of detil rrysX (D j 0 +1 , • • • , D J )F 2: for r = 1 → N R do 3: for j = j 0 → J -1 do 4: for k s.t. (j, k) ∈ S j Λ r do 5:
gompute for eh u j,k D 2 d -1 predited ûj+1,k suh tht k ∈ I k D y polynoE mil interpoltion @UFVAD @UFIHAD or @UFIIAD nd the orresponding u j+1,k y @QFUIAX u j+1,k = ûj+1,k + d j+1,k F ITT 6: gompute lst remining u j+1,k from u j,k nd the 2 d -1 omputed u j+1,k D using the projetion opertor P j j-1 @UFTAF 7:

ve u j+1,k in the rry U j+1 D where

#(U j+1 ) = r2 d(j+1) if N L = N J F 8:
heode the solution y repling (U j , D j+1 ) y U j+1 F 9: end for 10: end for 11: end for 12: Output:

U J of size N L = N R r=1 #(L(Λ r ))D given y ellEverged vlues u j,k suh tht (j, k) ∈ r∈[1,N R ] L(Λ r )F
xotie tht the lgorithms UFI nd UFP remin vlid even if only some indies re retined from the sets S j D s long s the orresponding dpted trees Λ r re grdedF sn this seD the representtion of U J on the leves r∈[1,N R ] L(Λ r ) does not oinide nymore with the (nest representtionD iFeFD N L = N J F 7.2 Tree-Structured Data sntroduing Λ r,ε D the smllest grded tree ontining the dpted thresholded tree Λ r otined y T Λr @QFVUAD we detil in the following the thresholding proedure nd the onstrution of the grded treesF he trees Λ r re uilt sed on the sets ∇ j ⊂ S j D otined y removing for eh γ ∈ S j-1 one µ ∈ S j suh tht Ω µ ⊂ Ω γ D in order to ensure the oneEtoEone orrespondene @QFURAF inlrging Λ r y dding the missing hildEellsD genertes the set R(Λ r )F he re(nement opertor R uilds the tree Λr,ε ontining Λ r,ε D suh tht the rrten9s heuristis @QFIHPA re gurnteedF sn this prtD we introdue inry )g t j,k whih indites whether the index (j, k) is kept throughout the suessive treesD from Λ r to Λr,ε F snitillyD t j,k = .false.D exept for j = j 0 D iFeFD t j 0 ,k = .true.F

Thresholding and Graduation

he elgorithm UFQ illustrtes the thresholding proedure tht de(nes the trees Λ r D ording to @QFVUAF Algorithm 7.3 hresholding the multiresolution representtionX T Λr M J F 1: Input:

M J = (U j 0 , D j 0 +1 , • • • , D J ) of size N L = N R r=1 #(L(Λ r ))F 2: for r = 1 → N R do 3: for j = J → j 0 + 1 do 4: for k s.t. (j, k) ∈ S j Λ r do 5: if |d j,k | ≥ ε j then 6: t j,k = .true. ⇒ (j, l) ∈ Λ r F 7: end if 8:
end for 9: end for 10: end for 11: Output:

M J = (U j 0 , D j 0 +1 , • • • , D J ) of size N L = N R r=1 #(L(Λ r ))F
xotie tht ording to @QFVUAD for ll t j,k = .false.D iFeFD |d j,k | < ε j D we should impose d j,k = 0 into Λ r F his is not done t this stge euse the grdution proedure might keep some ells ITU with |d j,k | < ε j D nd thus imposing d j,k = 0 will introdue some errors while oming k to the physil representtion the in elgorithm UFPF sn the originl hyperoli pplitions in rrWRD rrWSD the level dependent threshold vlues ε j were given y @QFWTAX ε j = 2 d(j-J) ε, j ∈ [j 0 , J], @UFIQA whih in terms of the nonliner pproximtion in @QFRPAD implies q = 1 nd p = ∞ for the rölder9s inequlity ghhHRF he detils d j,k de(ned y @QFUIA were thus evluted in the uniform norm |d j,k | ∞ D s done in @QFWPA guwHQD wülHQF sn this implementtionD we dopt set of ε j given rther y @RFISAX

ε j = 2 d 2 (j-J) ε, j ∈ [j 0 , J], @UFIRA
in order to e onsistent with the evlution of the pproximtion errors in n L 2 Enorm frmeE workF gonerning @QFRPAD the ltter hoie implies q = p = 2 s in the generl orthonorml nd iorthogonl wvelets ontextF e must de(ne in this se the mesure d j,k L 2 (Σ j,k ) D where Σ j,k stnds for the support of the dul wvelet ψj,k into @QFVHAF sn this implementtionD we hve thus estlished disretized 2 EnormX

d j+1,k 2 (χ Ω j,k ) = 2 -d/2   k ∈I k d 2 j+1,k   1/2
, @UFISA whih onsiders tht supp ψj+1,k = supp φj,k = χ Ω j,k for the rr wvelet into @QFVHAD iFeFD N = 1 nd M = 0 for the polynomil interpoltions in le UFIF sn this wyD ording to @UFISA ll the 2 d hildEells Ω j+1,k ssoited with Ω j,k involve the sme d j+1,k 2 (χ Ω j,k ) D to ompre with ε j+1 in the elgorithm UFQF e hve nevertheless kept the sme estimte @UFISA for N ≥ 3 nd M ≥ 1D to restrin the mesure d j+1,k 2 (χ Ω j,k ) to only 2 d ellsF sn more generl seD for vetor funtion U : R × R d → R m D given y

U (t, x) = (u (1) (t, x), u (2) (t, x), . . . , u (m) (t, x)) T , @UFITA
for m vriles where u (i) j,k represents the ellEverge of vrile u (i) (t, x) in Ω j,k given y @UFSAD the (nl estimte of the lol detil is omputed y

d j+1,k 2 (χ Ω j,k ) = m -1/2 m i=1 d (i) j+1,k 2 (χ Ω j,k ) max x∈Ω |u (i) (t, x)| -1/2
, @UFIUA sed on @UFISA for the estimte for eh vrileD nd normlized y the mximum vlue of the orresponding vrileF he elgorithm UFR llows us to onsider only grded tree strutures sed on the stenil needed to perform the polynomil interpoltionsF edditionllyD we onsider tht if ell (j + 1, k ) is ontined in Λ r D then the sme holds for the 2 d -1 @respFD 2 d -2A other ells with k ∈ I k in the extended R(Λ r ) @respFD in Λ r AF Algorithm 7.4 qrdution of the tree strutureX Λ r → Λ r,ε F 1: Input: if j ≥ j 0 + 1 then 10: 

M J = (U j 0 , D j 0 +1 , • • • , D J ) of size N L = N R r=1 #(L(Λ r ))F 2: for r = 1 → N R do 3: for j = J -1 → j 0 do
for d 3 = -M → M do 11: for d 2 = -M → M do 12: for d 1 = -M → M do 13: t j,k 1 +d 1 ,k 2 +d 2 ,k 3 +d 3 = .true. ⇒ (j, k 1 + d 1 , k 2 + d 2 , k 3 + d 3 ) ∈ R(Λ
Output: Λ r → Λ r,ε D with M J = (U j 0 , D j 0 +1 , • • • , D J ) of size N L = N R r=1 #(L(Λ r,ε ))F
elgorithms UFQ nd UFR re (nlly represented y the omined thresholdEgrdution opertor T Λr,ε D s seen in hpters Q nd RF 7.2.2 Renement of the Tree he re(nement opertor R genertes the (nl tree dt struture Λr,ε D on whih the time evolution of the solution u(t, x) will e performedF he min onern is to ensure rrten9s heuristis @QFIHPA during one time step evolutionF rrten proposed in rrWRD rrWS two re(nement riteri given y @QFIHQA nd @QFIHRA for the Ih dydi on(gurtionF sn this implementtion we onsider the (rst rrten9s riterion @QFIHQAD nd more onservtive seond riterion @RFIQAD s estlished in ghpter RF hese riteri re implemented y the elgorithm UFSF Algorithm 7.5 e(nement of the tree strutureX Λ r,ε → Λr,ε F 1: Input:

M J = (U j 0 , D j 0 +1 , • • • , D J ) of size N L = N R r=1 #(L(Λ r,ε ))F 2: for r = 1 → N R do 3: for j = J → j 0 do 4: for k s.t. (j, k) ∈ S j L(Λ r,ε ) do 5: if t j,k = .true. then 6:
if j ≥ j 0 + 1 then {pirst re(nement riterion} 7: 

for i d = 1 → d do 8: for l = -k → k do 9: t j,k(i d )+l = .true. 10: if (j, k(i d ) + l) / ∈ R(Λ
Output: Λ r,ε → Λr,ε D with M J = (U j 0 , D j 0 +1 , • • • , D J ) of size N L = N R r=1 #(L( Λr,ε ))F
xotie tht the (rst re(nement riterion in the elgorithm UFS n e performed only t the highest level j = JF henD the grdution @elgorithm UFRA n e pplied with M = M + k/2 s grding prmeter for dimensions xD yD nd zD nd M = M for the remining digonl ells with respet to (j, k)F elterntivelyD the seond re(nement riterion n e diretly implemented during the thresholding @elgorithm UFQAF iventullyD the (nl step summrized in elgorithm UFT deletes ompletely ll ells tht re not inluded in the thresholdedD grdedD nd re(ned tree Λr,ε F Algorithm 7.6 heletion of super)uous ellsF 1: Input: end for 12: end for 13: Output:

M J = (U j 0 , D j 0 +1 , • • • , D J ) of size N L = N R r=1 #(L( Λr,ε ))F 2: for r = 1 → N R do 3: for j = J -1 → j 0 do 4: for k s.t. (j + 1, k ) ∈ S
M J = (U j 0 , D j 0 +1 , • • • , D J ) of size N L = N R r=1 #(L( Λr,ε ))F

Fully Adaptive Multiresolution Scheme

sn this prtD we rell some issues onerning the dptive multiresolution sheme estlished in ghpter RD nd (rst presented in ghpter QD nd introdue the dptive multiresolution IUH lgorithm implemented in the wfeii odeF 7.3.1 Data Initialization vet us suppose tht initilly we hve the funtion u(t, x)D disretized on uniform mesh orresponding to the grid level j 0 ∈ [j 0 , J]X U j 0 D nd thus L(Λ r ) initilly oinides with S j 0 nd N L = N R 2 dj 0 F he following elgorithm UFU llows us to trnsform n initil representtion on uniform mesh into ompressed dpted oneD over set of grids of level j ∈ [j 0 , J]F Algorithm 7.7 ht initiliztionF 1: Input: U j 0 of size 2 dj 0 D given y ellEverged vlues u j 0 ,k with (j 0 , k) ∈ S j 0 F 2: for j = j 0 → J -1 do 3:

inode vlues y multiresolution trnsform M : U j → M j with elgorithm UFIF 4:

hreshold dt M j y T Λr with elgorithm UFQF 5:

qrde tree Λ r → Λ r,ε with elgorithm UFRF 6:

helete super)uous ells in Λ r,ε onsidering Λr,ε ≡ Λ r,ε in elgorithm UFTF 7:

e(ne tree Λ r,ε → Λr,ε y lolly dding ells t next grid levels y the seond re(nement riterion in elgorithm UFSF 8:

heode vlues y inverse multiresolution trnsform M -1 : M j+1 → U j+1 with elgoE rithm UFPF 9:

sf possileD ompute verge vlues u j+1,k t grid level j + 1 within L( Λr,ε )F 10: end for 11: Output:

U J of size N L = N R r=1 #(L( Λr,ε ))D given y ellEverged vlues u j,k with (j, k) ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J]F

Introduction of Phantom Cells

sn ghpter R we hve deided to use phntom ells for the )ux evlutionsD s detiled in wülHQ nd implemented in fHQF he dpted representtion is lwys given on the leves of the dpted tree L( Λr,ε )D ording to the proedures previously introduedF he ell phntoms re temporrily dded to R( Λr,ε ) to ompute the )uxesD nd their vlues re omputed y polynomil interpoltionsF roweverD no other multiresolution or time integrE tion opertion is performed on themF e represent y P ( Λr,ε ) the set of indies ontining R( Λr,ε ) nd the phntom ellsF hese ells must e introdued ontiguously to the leves of the treeD nd their numer is (xed y the stenil of the )ux omputtion sheme on the outer diretionD denoted R F F he numer of phntom ells dded to the urrent tree is given yX N P = #( r∈[1,N R ] P ( Λr,ε )\R( Λr,ε ))F he elgorithm UFV illustrtes the introduE tion of the phntom ells in the tree strutureD nd the omputtion of their ell vluesF Algorithm 7.8 sntrodution of the phntom ellsX R( Λr,ε ) → P ( Λr,ε )F

1: Input: M J = (U j 0 , D j 0 +1 , • • • , D J ) of size N L = N R r=1 #(L( Λr,ε ))F 2: for r = 1 → N R do 3: for j = J → j 0 + 1 do 4: for k s.t. (j, k) ∈ S j L(Λ r,ε ) do 5:
if t j,k = .true. then Sect. 7.3 -Fully Adaptive Multiresolution Scheme IUI 6: 

for i d = 1 → d do 7: for l = -R F → R F do 8: if (j, k(i d ) + l) / ∈ R(Λ r
M J = (U j 0 , D j 0 +1 , • • • , D J ) of size N L = N R r=1 #(L( Λr,ε ))D nd N P phntom ells inluded in r∈[1,N R ] P ( Λr,ε )\R( Λr,ε )F
xotie tht to perform the interpoltions nd estimte the N P ell vlues introdued in elE gorithm UFVD the grdution of the tree must tke into ount the presene of phntom ellsF hereforeD if phntom ells re onsideredD the grdution elgorithm UFR might e pplied with M = M + R F /2 insted of M s grding prmeterD nd thus the grdution step in the elgorithm UFV would not e neessryF 7.3.3 Construction of the Tree-Structured Data he following elgorithm UFIH tkes simultneously into ount the thresholdingD the grduE tionD nd the re(nement of the dt treeD onsidering the phntom ells nd the previous disusE sionsF xeverthelessD we (rst introdue the elgorithm UFW tht llows us to lolly grdute the tree for eh ell dded or kept in the treeF Algorithm 7.9 vol grdution of the treeF 1: Input:

(j + 1, k ) ∈ Λ r F 2: for k ∈ I k do 3: t j+1,k = .true. ⇒ (j + 1, k ) ∈ R(Λ r )F 4: end for 5: if j ≥ j 0 + 1 then 6:
for

d 3 = -M → M do 7:
for

d 2 = -M → M do 8:
for

d 1 = -M → M do 9: t j,k 1 +d 1 ,k 2 +d 2 ,k 3 +d 3 = .true.F 10: if (j, k 1 + d 1 , k 2 + d 2 , k 3 + d 3 ) / ∈ R(Λ r ) then 11: et d j,k 1 +d 1 ,k 2 +d 2 ,k 3 +d 3 = 0F 12: end if 13: (j, k 1 + d 1 , k 2 + d 2 , k 3 + d 3 ) ∈ R(Λ r )F 14:
qrde lolly for (j, 

k 1 + d 1 , k 2 + d 2 , k 3 + d 3 )
, j + 1]D relted to (j + 1, k ) ∈ Λ r F he (rst step onsiders tht if (j + 1, k ) ∈ Λ r ⇒ ∀ k ∈ I k , (j + 1, k ) ∈ R(Λ r ), @UFIVA
s previously estlished for this implementtionF woreoverD the grding prmeter is now de(ned y

M = M + k/2 + R F /2 , @UFIWA
tking into ount the interpoltion stenilD the (rst re(nement riterionD nd the introdution of phntom ellsF por the digonl ells with respet to (j, k)D it su0es to onsider M = M + R F /2 F xotie tht ondition @UFIVA involves 2 k/2 more ells t eh side nd on eh dimension for the rrten9s (rst re(nement riterion @QFIHQAF he tree dt struture is (nlly uilt y mens of elgorithm UFIHD relling tht initilly t j,k = .false. exept for j = j 0 D iFeFD t j 0 ,k = .true.F Algorithm 7.10 gonstrution of the treeEstrutured dtX Λ r → Λr,ε F 1: Input:

M J = (U j 0 , D j 0 +1 , • • • , D J ) of size N L = N R r=1 #(L(Λ r ))F 2: for r = 1 → N R do 3: for j = J → j 0 + 1 do 4: for k s.t. (j, k) ∈ S j Λ r do 5: if |d j,k | ≥ ε j then 6: t j,k = .true. ⇒ (j, l) ∈ Λ r F 7:
qrde lolly for (j, k) with elgorithm UFWF 8: if j = J then {pirst re(nement riterion t highest level} 9: t ∈ [t 0 , T ]F 3: he orsest grid is given y N R ells Ω j 0 ,k D suh tht j=j 0 Ω j,k = ΩF 4: for j = j 0 → j 0 -1 do {grete initil set of grids} 5:

for i d = 1 → d do 10: for l = -k → k do 11: t j,k(i d )+l = .true. 12: if (j, k(i d ) + l) / ∈ R(Λ r ) then 13: et d j,k(i d )+l = 0F 14: end if 15: (j, k(i d ) + l) ∈ R(Λ
for i d = 1 → d do IUQ 31: for l = -R F → R F do 32: if (j, k(i d ) + l) / ∈ R(Λ
Output: Λ r → Λr,ε with M J = (U j 0 , D j 0 +1 , • • • , D J ) of size N L = N R r=1 #(L( Λr,ε ))D nd N P phntom ells inluded in r∈[1,N R ] P ( Λr,ε )\R( Λr,ε )F

Adaptive Multiresolution Algorithm

grete suessive dydi prtitions Ω j+1,k of Ω j,k D suh tht @UFQA is veri(edF 6: end for 7: gompute U j 0 t uniform grid level j 0 D following @UFSAF 8: ht initiliztion with elgorithm UFUF 9: heode vlues y inverse multiresolution trnsform M -1 : M n J → U n J with elgorithm UFPD nd ompute N n P phntom vlue ells y polynomil interpoltion @UFVAD @UFIHAD or @UFIIAF IUR 18:

t = t 0 nd n = 0F 10: Input: U 0 J of size N 0 L = N R r=1 #(L( Λ0 r,ε ))D given y ell vlues u 0 j,k suh tht (j, k) ∈ r∈[1,N R ] L( Λ0 r,ε ) nd j ∈ [j 0 , J
ime integrtion of the solution on the leves of the trees r∈

[1,N R ] L( Λn+1 r,ε )X U n J → U n+1 J D n → n + 1D nd t → t + ∆tF 19: helete the N n P phntom ellsF 20: U n+1 J of size N n+1 L = N R r=1 #(L( Λn+1 r,ε ))D given y ell vlues u n+1 j,k suh tht (j, k) ∈ r∈[1,N R ] L( Λn+1 r,ε ) nd j ∈ [j 0 , J]F 21: end while 22: t = T nd n = n T F 23: Output: U T J of size N n T L = N R r=1 #(L( Λn T r,ε ))D given y ell vlues u n T j,k suh tht (j, k) ∈ r∈[1,N R ] L( Λn T r,ε ) nd j ∈ [j 0 , J]F
xotie tht reting the initil set of grids for j ∈ [j 0 , j 0 ] implies de(ning the entire set of

ells r∈[1,N R ] R(Λ r )D insted of r∈[1,N R ] Λ r of size N L D ording to the de(nition of L(Λ r )
introdued in ghpter QF his mens tht we re reting more ells thn needed sine only N L ells re needed to perform ll the previous opertions in the wvelet deomposition speD desried y lgorithms UFIEUFIHF xeverthelessD the numeril odeD rie)y depited in the followingD onsiders N Λ ells omposed of N L leves nd the ells lying t the orser grid levelsD iFeFD N Λ = N R r=1 #(R(Λ r ))F he numer of ells N Λ is given y @RFPVA when ll ells re present in the di'erent gridsF iven though these underlying ells re not needed in the previous omputtionsD the inlusion of ll ells of the dpted tree eses the progrmming of the dt struture in terms of nvigtion nd lotion of ells within the treeF 7.4 Basic Code Implementation he implemented ode represents the treeEstrutured dt s set of ells linked y pointers in portrn WHGWS progrmming lngugeF e present in this prt the si elements of the ode for strightforwrd implementtion of multiresolution tehniques s illustrted in hIIF eeD eFgFD wWWD fwHW for detils on optimiztion of ode nd dt strutures for these pplitionsF 7.4.1 Data Structure he ell representtion is de(ned s derived type in generl portrn environment with the following omponents stoked withinD s n illustrtionX type cell

• e (rst )g nlogous to t j,k D to indite whether ells re keptD ddedD or disrded in Λn+1 r,ε F he seond optionl )g llows us to identify phntom ells inluded in P ( Λn+1 r,ε )\R( Λn+1 r,ε )D if neessryX logical :: tree =⇒ .true. if it must elong to the treeD nd .false. otherwiseF logical :: leave =⇒ .true. if it is lefD nd .false. if it is phntom lefF

• he grid level j of the ell nd its position @indexA k on the orresponding grid for d dimensionsF he ouple (j, k) llows us to de(ne n unique position of eh ell into the whole set of nested gridsX integer :: level integer, dimension(d) :: index

• ptil oordintes of the enter of the ell nd sptil disretiztionF hese vlues n e lso lulted t ny time knowing the grid levelD the indexD nd the size of the omputtionl dominX double precision, dimension(d) :: x double precision, dimension(d) :: dx

• vol threshold vlue ε j F st depends on ε nd the grid level j thought @UFIRAD nd it n e lso lulted on the )yX double precision :: epsilon

• erry U of size m to sve the m vriles u (i) j,k D nd the orresponding detil |d j,k | esE timted ording to @UFISA nd @UFIUAF hepending on the seD 2 d -1 hildEells of the sme prentEell will sve the detils d sn portrn WHGWS environmentD pointer is just n lis to the trgetF xeverthelessD we tke dvntge of the ft tht eh pointer hs di'erent stteD depending on whether it is ssoited with nother ojetF e work then with ells tht lie t di'erent grids nd tht re not neessrily rrnged in ontiguous wyF reneD we must oneive the mehnisms to nvigte through the tree strutureF sn this implementtionD we dopt reursive strtegy in whih one moves from one ell to nother pssing y the hildEell of the (rstD nd y the onseutive hildrenD until one gets to the desired ellF et eh stepD the stte of the pointers tells us whether the trget existsF sn this reursive wyD we re le to lote leves or ny ellD nd the sme kind of proedure is onduted in the opposite sitution from leves towrds roots when neessryF ointers to neighors s well s other )gs or inditors re not stritly neessry ut eses onsiderly the serhing proess for ertin routinesF xotie tht this is fully lol pproh euse we never onsider more thn one ell t the sme timeF sn order to illustrte thisD let us onsider set of routines whih re suessively exeuted in the min progrmF por instneD the evaluation routine is lled in the min progrm nd involves omputtions t the leves of the treeF he tree struture ws previously uiltD from the rootsD y similr nvigting proeduresF henD eh step is performed into the min progrm s followsX

do i3 = 1, N_R(3) do i2 = 1, N_R(2) do i1 = 1, N_R(1) current => root(i1, i2, i3) call evaluation(current) enddo enddo enddo
where type(child_cell), dimension(N_R(1),N_R(2),N_R(3)) :: root type(cell) :: current snto generl routineD in this exmple evaluationD the reursive sheme to evlute funtion only on the levesD reds s followsX recursive subroutine evaluation(current) if (.not.associated(current%children(1))) then ! we are on a leaf current%u = .... else do i = 1, 2**d call evaluation(current%children(i)) enddo endif end subroutine evaluation sn this reursive wyD we re le to lote the leves y onsidering the stte of the pointers tht link ells t di'erent levelsF he sme kind of proedure is onduted in the opposite seD IUU from the leves towrds the rootsF his is illustrted in the following exmple where some vlue is known on the leves nd we would like to propgte the informtion to the rootsX recursive subroutine evaluation(current) if (.not.associated(current%children(1))) then ! we are on a leaf, nothing is done else do i = 1, 2**d call evaluation(current%children(i)) enddo current%u = .... endif end subroutine evaluation yther prmeters s the indies of the ells or the pointers to the neighors n e tken into onsidertion to elerte the reserhD depending on the routineF Chapter 8

Description of Time Operator Splitting in the MBARETE Code sn this hpterD we will disuss some prtiulr fetures of the time opertor splitting tehnique implemented in the wfeii odeF sn prtiulrD di'erent dt struture is onsidered for the time integrtion opertionsF he retion nd di'usion lgorithmi implementtions will e explined in detilD nd onstitute the two possile on(gurtions for lol integrtion either lef y lefD or over the whole set of leves of the tree strutureD where the ltter set orresponds to n dpted grid representtionF purther extensions follow similr ptternsF 8.1 Data Representation for Time Integration e hve seen in the previous ghpter U tht treeEstrutured dt ws implemented in the ode to represent the dynmilly dpted grid nd the underlying meshesF xeverthelessD the time integrtion of the solution tkes ple only t the leves of the treeD iFeFD the resulting dpted meshF sn order to void nvigting the tree struture to lote the ells t the dpted meshD we de(ne Φ L = (φ i ) i=1,...,N L D s the set of leves of the tree representtionX

φ n i ←→ Ω j,k , s.t. (j, k) ∈ r∈[1,N R ] L( Λn r,ε ), i = 1, . . . , N L , @VFIA
for set of grid levels with j ∈ [j 0 , J]F por the uniform mesh seD S J is equivlent to

r∈[1,N R ] L( Λn r,ε
)F e de(ne lso |φ n i | := i L = (j, k)D where i L identi(es eh lefEell (j, k) within the set Φ n L F elgorithm VFI illustrtes the de(nition of Φ n L given y @VFIAF Algorithm 8.1 gonstrution of the set of leves of Λr,ε

X Φ L F 1: Input: U J of size N L = N R r=1 #(L( Λr,ε ))D given y ell vlues u j,k suh tht (j, k) ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J]F 2: i = 1F 3: for r = 1 → N R do 4: for j = j 0 → J do 5: for k s.t. (j, k) ∈ S j L( Λr,ε ) do 6: i L = (j, k)F 7: Ω j,k -→ φ i F 8: i = i + 1F 9:
end for IUW 10: end for 11: end for 12: Output:

U J of size N L = #(Φ L )D given y ell vlues u i L with i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J]F
xotie tht the introdution of the set Φ L would not e neessry if we onsidered the trees Λ r insted of R(Λ r )D s tree representtion in the odeF he elgorithm VFI is performed during the onstrution of the tree struture in the glol elgorithm UFIIF Basic Code Implementation he implementtion of the set Φ L is strightforwrd with the dt struture onsidered for the multiresolution tehnique in ghpter UF por instneD it su0es to onsiderX type(child_cell), dimension(N_L) :: PHI with the sme ell type s for the levesF edditionllyD the reursive opertions re repled y single loop over the leves of the treeF por instneX subroutine evaluation do i = 1, N_L PHI(i)%u = .... enddo end subroutine evaluation he sme informtion per ell is often not needed for oth multiresolution nd time integrtion proeduresF hereforeD etter solution s (nlly implemented in the odeD de(nes new lef typeD similr to the previous ell typeD suh tht the multiresolution or integrtion prmeters reD respetivelyD sved in the ell or lef typesD depending on the sttus of the ellF 8.2 Time Operator Splitting Scheme vet us now illustrte with more detils the onstrution of the opertor splitting tehnique introdued in ghpter RF yne of the key point of suh n pproh is tht the implementtion is given y n independent ssemlge of the dedited solvers for eh split suprolemF sn wht followsD we illustrte the generl proedure for the solution of the retion nd the di'usion prolemsD whih remin similr for other time integrtion solvers di'erent from the ones onsidered in this pplitionF

Time Integration of the Reaction vet us onsider the vetor funtion

U : R × R d → R m given y U (t, x) = (u (1) (t, x), u (2) (t, x), . . . , u (m) (t, x)) T , @VFPA
for m vrilesD in the generl prolem @IFSPAF he elgorithm VFP shemtilly illustrtes the time integrtion of the ssoited retion suprolem with duS rWTD over time step ∆tF he duS solver is used with the prmeters given y defult @see rWTAD exept for the initil time step ∆t R D nd the solute nd reltive tolernesD Atol nd Rtol D previously mentioned in ghpter PF sn prtiulrD the ell @or lefA type sves the lst time step used in the previous time itertion on eh lefX ∆t R,i L D if the lef ws present during the itertionF por IVH the (rst time itertionD ll the ∆t R,i L re set equl to ∆tF gonerning the tolerne prmetersD they re in generl (xed s Atol = Rtol = η Radau5 D s previously onsidered in the numeril illustrtions of hpters R nd SF duS is fully impliit ungeEuutt method s detiled in ghpter PD nd it often requires n importnt memory spe to perform the vrious ssoited omputtionsF por the ses tht we re onsideringD the memory requirements re minly set y the work rry WRK 1 of size L 1 X

L 1 = 4 × m × m + 12 × m + 20, @VFQA
whih is rther minimlD ompred with oupled resolution of the prolem with m × N L vrilesF yther dedited solvers for sti' yhis might e implemented in similr wyF Algorithm 8.2 sntegrtion of the retion prolem with duSF 1: Input:

U J of size (m, N L ) = (m, #(Φ L ))D given y m rrys U (i)
J with ell vlues u

(i) i L D i = 1, . . . , mD i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J]F 2: for i L = 1 → N L do 3: et ury tolernesX Atol = Rtol = η Radau5 F 4: quess initil time step integrtionX ∆t 0 R = max(∆t R,i L , ∆t)F 5:
ime integrtion of (u

(i) i L ) m i=1 with duSX t → t + ∆t with ∆t 0 R D Atol D Rtol F 6: pdte solutionX u (i) i L → ū(i) i L D i = 1, . . . , mF 7: pdte lef time stepX ∆t R,i L = ∆t R F 8: end for 9: Output: ŪJ of size (m, N L ) = (m, #(Φ L ))D given y m rrys Ū(i) J with ell vlues ū(i) i L D i = 1, . . . , mD i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J]F
he toins must e omputed y duS either numerilly ording to @PFUTAD or nE lytilly following routine supplied y the userF he user must lso supply the routine to lolly evlute the funtion F : R m → R m D for instneD in @IFSPAD for eh set (u (i) i L ) m i=1 D within the time integrtion proessF vet us rell tht duS will dpt its integrtion time steps ∆t R from the initil guess ∆t 0 R D ording to Atol nd Rtol F he lst time step will e then sved s ∆t R,i L for the next itertionF he previous lgorithm n e esily prllelized y distriuting the loop in i L mong N proc proessorsD where eh i L represents n independent system of yhisF sn shred memory rhiteturesD the ltter proedure n e implementedD for instneD with the ypenw lirryD with neither synhroniztion stges nor dt exhnge mong the proessorsF he lod lning is hene prtilly optiml for this on(gurtionF he work rry WRK 1 must e this time of size (N proc , L 1 )F

Time Integration of the Diusion

he time integrtion of the di'usion prolemD for instneD @RFPAD is performed y the yguR solver edHPF he elgorithm VFQ illustrtes this integrtion over time step ∆tF ine the ygu method is sed on n expliit ungeEuutt shemeD there re muh less prmeters to de(ne in dvneF sn this implementtionD the solution is progressively dvned in time with the sme time step ∆t D D uniformly in speF hese time steps re dpted ording lso to solute nd reltive tolernesD Atol nd Rtol D (xed in this se s Atol = Rtol = η ROCK4 F es for the retion integrtionD the lst time step is sved for the next time itertion s ∆t D,ite F por the (rst itertionD ∆t D,0 is tken equl to ∆tF he spetrl rdius needed to estimte the IVI numer of inner stges tht ensures stility ording to @RFIPAD is generlly omputed y yguRD lthough it n e lso pproximted y @PFIVA for prolems with liner di'usionF sn the ltter seD if we set yguR to estimte the spetrl rdiusD it is lso set to do it only one during the glol time step ∆tF sn generl on(gurtion givenD for instneD y the di'usion prolem in @IFSPAD we hve to simultneously solve m × N L vrilesF he memory requirements of the yguR solver re estlished in this se y the work rry WRK 2 of size

L 2 X L 2 = 8 × m × N L , @VFRA
in the generl se in whih the spetrl rdius is omputed y yguRF ytherwiseD

L 2 = 7 × m × N L F
Algorithm 8.3 sntegrtion of the di'usion prolem with yguRF 1: Input:

U J of size (m, N L ) = (m, #(Φ L ))D given y m rrys U (i)
J with ell vlues u

(i) i L D i = 1, . . . , mD i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J]F 2: et ury tolernesX Atol = Rtol = η ROCK4 F 3: quess initil time step integrtionX ∆t 0 D = max(∆t D,ite , ∆t)F 4: ime integrtion of U J with yguRX t → t + ∆t with ∆t 0 D D Atol D Rtol F 5: pdte solutionX U J → ŪJ F 6: pdte di'usion time stepX ∆t D,ite+1 = ∆t D F 7: Output: ŪJ of size (m, N L ) = (m, #(Φ L ))D given y m rrys Ū(i) J with ell vlues ū(i) i L D i = 1, . . . , mD i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J]F
sn this implementtion we hve dopted (nite volume disretiztion pproh for strutured grtesin meshesF he evlution of the di'usion termX ∂ x • (D(U )∂ x U ) involves the omputE tion of )uxes through the oundries ∂Ω i L of eh lefEell Ω i L X F + i d nd F - i d D whih ount for the )uxes on the right nd on the left of the ell in eh diretionD i d = 1, . . . , dF hese )uxes re evluted t the interfes of the ellD s well s the di'usion oe0ients insideD on lolly uniE form mesh with the introdution of the phntom ellsD s detiled in ghpter UF he elgorithm VFR illustrtes the steps to evlute the )uxes within yguRD iFeFD t eh internl stge s omE puted y @RFIPAF he ltter proedure is generl for ny expliit solver or other trnsport operE tor like onvetive onesD in the se where lol strutured meshes re onsideredD s mentioned in ghpter QF sn this implementtion lssil entered seond order spe disretiztion ws implemented for the di'usion prolemF Algorithm 8.4 plux evlution with phntom ellsF 1: Input:

U J of size (m, N L ) = (m, #(Φ L ))D given y m rrys U (i) J with ell vlues u (i) i L D i = 1, . . . , mD i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J]F 2: for r = 1 → N R do 3: for j = J -1 → j 0 -1 do 4: for k s.t. (j, k) ∈ S j Λr,ε do 5: for k ∈ I k do 6:
if j ≥ j 0 and (j + 1, k ) ∈ P ( Λr,ε )\R( Λr,ε ) then {pdte phntom ells} 7: pdte ll (u

(i) j,k(i d )+l ) m i=1 with i d = 1, . . . , dD |l| ≤ M D nd suh tht (j, k(i d ) + l) / ∈ L( Λr,ε ) t grid level jD from (u (i) j+1,k ) m i=1 with k ∈ I k(i d
)+l t level j + 1D y using the projetion opertor P j j-1 @UFTAF IVP 8: gompute (u

(i) j+1,k ) m i=1 = (û (i)
j+1,k ) m i=1 y polynomil interpoltion @UFVAD @UFIHAD or @UFIIAF 9: end if 

i d nd F -,(i) i d D i = 1, . . . , mD t interfes ∂Ω i L with i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J]F
he )ux evlutions silly involves two stgesF he (rst omputtions re needed to updte the interpoltion stenils of the phntom ellsD sine the time evolution is not performed on themF sn the seond prtD we evlute the )uxes diretion y diretionD s in stndrd uniform mesh on(gurtionF st n e inferred tht lolly unstrutured pproh for the )ux omputtionsD iFeFD without phntom ellsD will surely improve the glol performne of the strtegyD lthough the ury orders of the sptil disretiztions re lolly reduedF e n lso onlude tht low numer of stges s for the stilized ygu method will e dvisleD nd very onvenient for the glol performne of the methodF por high numer of stgesD ygu will however keep the dvntge of eing more stle thn stndrd expliit ungeE uutt methodsD with less memory requirements thn n impliit solverF purther developments nd improvements on these issues onstitute ontinuous reserh in the (eldF elterntivelyD insted of elgorithm VFRD nother pproh whih ws lso implemented nd tested in the odeD onsiders the onstrution of the disretized di'usion opertorF he ide is to elerte the omputtions y performing mtrixEvetor produts t eh ygu stge tking into onsidertion tht the disretized opertor results often in sprse mtrix repreE senttionD speilly pproprite for liner di'usion prolems s illustrted in hhh + IPF sn this se this mtrix needs to e uilt only one for uniform meshes nd one per time itertion for dpted gridsF prom the numeril tests performed with this pprohD we n onlude tht the sprsity of the mtrix is importntly redued with the inlusion of the interpoltion stenils of the phntomsD speilly in QhF he phntom ells re not expliitly omputed ut represented s lol funtions of the lefEells through the omined projetionGpredition opE ertions used in elgorithm VFRF hese fts nd the dditionl ost of uilding the mtrix for highly irregulr on(gurtion in terms of grid distriutionD involve less importnt gins in g timeF e omprison of the performne of oth shemes revels n importnt prolem dependenyF elterntivelyD the elgorithm VFR hs the dvntge of eing simpler nd suitle for lrger rnge of prolems from liner di'usion s in @IFSQAD to di'usion with vrile dependent trnsport prmeters like in @IFSPAF por liner di'usion prolemsD the elgorithm VFQ n e lso prllelized y onsidering m independent integrtions of U (i)

J with i = 1, . . . , mF he sme follows for the )ux evlutions in elgorithm VFRF he prlleliztion of the loop in m implies redution of the work rry WRK 2 D if N proc is smller thn mD euse @VFRA eomes L 2 = (N proc , 8 × N L )D nd the elimintion of ll loops in m for oth lgorithms whih results in gins of g timeF 8.2.3 Time Operator Splitting Algorithm ith the de(nition of the previous lgorithmsD the elgorithm VFS illustrtes the implementtion of the splitting tehnique during splitting time step ∆tD for the trng sheme S ∆t 2 in @RFSA nd @SFSAF Algorithm 8.5 ime opertion splitting shemeX S ∆t 2 F 1: Input: olution

U J t t = tD of size (m, N L ) = (m, #(Φ L ))D given y m rrys U (i) J with ell vlues u (i) i L D i = 1, . . . , mD i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 ,
J]F 2: et ury tolernes for split retion nd di'usion time integrtionX η Radau5 nd η ROCK4 F 3: por t → t + ∆t/2X time integrtion of U J for the retion prolem with duS y elgorithm VFPF 4: pdte solutionX ŪJ → U J F 5: por t → t+∆tX time integrtion of U J for the di'usion prolem with yguR y elgorithm VFQF et eh internl stge s of yguRD the )uxes re evluted with elgorithm VFRF 6: pdte solutionX ŪJ → U J F 7: por t → t + ∆t/2X time integrtion of U J for the retion prolem with duS y elgorithm VFPF 8: pdte solutionX ŪJ → U J F 9: pdte timeX t → t + ∆tF 10: Output: trng solution

U J t t = t + ∆tD of size (m, N L ) = (m, #(Φ L ))D given y m rrys U (i) J with ell vlues u (i) i L D i = 1, . . . , mD i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J]F
he splitting time integrtion sheme given y elgorithm VFS is hene introdued s the time evolution opertor from t to t + ∆tD in the glol multiresolution sheme de(ned y elgorithm UFIIF he hoie of the splitting time step ∆t hs een disussed in detils in ghpter RF 8.3 Time Adaptive Splitting Scheme sn this prtD we detil the inlusion of dynmi time stepping tehnique in the previous splitting strtegyD sed on the method introdued in ghpter SF 8.3.1 Implementation of a Splitting Embedded Method vet us onsider gin the trng sheme S ∆t 2 in @RFSA nd @SFSAD de(ned y elgorithm VFSF he following elgorithm VFT onsiders the inlusion of the emedded shifted trng formul @SFUAX S ∆t 2,δ F e rell tht the shifting time prmeter δ veri(es δ ≤ |δ max | < 1/2D nd tht the shifted opertor will e pplied on l ≤ m vriles in the generl prolem @IFSPAX Ũ ∈ R l D where Θ l denotes the set of indies of these vrilesF Algorithm 8.6 tndrd nd emedded splitting shemesX S ∆t

2 nd S ∆t 2,δ F 1: Input: U J of size (m, N L ) = (m, #(Φ L ))D given y m rrys U (i)
J with ell vlues u 

(i) i L D i = 1, . . . , mD i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J
Output: snitil U J nd trng solution U new J of size (m, N L ) = (m, #(Φ L ))D given y m rrys U (i) J nd U new,(i) J D with ell vlues u (i) i L nd u new,(i) i L D i = 1, . . . , mY nd shifted trng solution ŨJ of size (l, N L ) = (l, #(Φ L ))D given y l rrys Ũ(i) J D with ell vlues ũ(i) i L D i ∈ Θ l Y i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J]F
vet us mke the following remrks onerning the ltter lgorithmX

• por the (rst retion stepX the time integrtion of the initil solution U J is performed in prtie for t → t + max(1/2 + δ, 1/2) × ∆t using the duS routine SOLOUT @see rWTA to extrt the intermedite trng solution t t = ∆t/2 if δ > 0D nd the shifted trng solution t t = (1/2 + δ)∆t if δ < 0F

• por the di'usion stepX the dvntge of integrting simultneously oth solutions U J = (U new J , ŨJ ) T D is tht the nvigting proedure in elgorithm VFR to updte the phntomE ells is performed only one for ll m+l vrilesF xeverthelessD the memory requirements re inresed into @VFRAX L 2 = 8 × (m + l) × N L F sn this se prllel omputtion vrile y vrile is dvisle to overome memory restritions whenever m+l is lrger thn N proc F

• por the seond retion stepX the time integrtion of the omined solutions U J is lso performed for t → t + max(1/2 -δ, 1/2) × ∆tD with the intermedite trng solution extrted t t = ∆t/2 if δ < 0D nd the shifted trng solution t t = (1/2 -δ)∆t if δ > 0F sn order to elerte the omputtionsD the toin ssoited with F(U J ) = F (U new J , ŨJ ) T t eh lef i L D n e lso pproximted y

∂ U J F ≈   ∂ U new J F ∂ U new,(i) J | i=∈Θ l F   @VFSA
when δ is su0iently smllF his involves only the omputtion of the toin ssoited with U new J D s long s the l vriles re deoupled in F (U ) from the remining m -l vrilesF sf l = mD the pproximtion @VFSA follows nturllyF IVS • enother lterntive to elerte omputtions onsiders lrger tolernes η Radau5 nd η ROCK4 during the shifted trng omputtionsD for the steps tht re not used for the seond order trng solutionF

• he glol proedure needs to sve in memory two rrys of size (m, N L )D nd one of (l, N L )F

Computation of Splitting Time

Step he splitting time step is dpted t eh time itertion in order to ensure omputtions within presried ury tolerne η ording to @SFIIAF pirstD the elgorithm VFU de(nes the L 2 Eerror omputtion etween two rrysD A J nd B J D represented on the sme dpted gridD onsidered throughout this workF Algorithm 8.7 xumeril estimte of the errorX ∆F

1: Input: A J nd B J of size (l, N L ) = (l, #(Φ L ))D given y l rrys A (i) J nd B (i) J with ell vlues a (i) i L nd b (i) i L D i = 1, . . . , lD i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J]F 2: for i = 1 → l do 3:
gompute 

∆ (i) = |Ω| -1/2   N L i L =1 (a (i) i L -b (i) i L ) 2 |Ω i L |   1/2 @VFTA nd de(ne a (i) max = max i L =1,...,N L (|a (i) i L |)
Input: trng solution U new J of size (m, N L ) = (m, #(Φ L ))D given y m rrys U new,(i) J D with ell vlues u new,(i) i L D i = 1, . . . , mY nd shifted trng solution ŨJ of size (l, N L ) = (l, #(Φ L ))D given y l rrys Ũ(i) J D with ell vlues ũ(i) i L D i ∈ Θ l Y i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J]F 2: ivlute error ∆ etween U new,(i) J nd Ũ(i) J for i ∈ Θ l D
U J t t = tD of size (m, N L ) = (m, #(Φ L ))D given y m rrys U (i)
J with ell vlues u 

(i) i L D i = 1, . . . , mD i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J
U J t t = t + ∆tD of size (m, N L ) = (m, #(Φ L ))D given y m rrys U (i) J with ell vlues u (i) i L D i = 1, . . . , mD i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J]F
es for the generl splitting time integrtion sheme in elgorithm VFSD we might onsider the time dptive elgorithm VFW for the time evolution opertor from t to t + ∆tD in the mulE tiresolution sheme @elgorithm UFIIAF sn this wyD timeGspe dptive numeril solution is hieved within presried ury ηD where the pproximtion errors introdued y the ompressed sptil representtions re lso monitored y the multiresolution threshold vlue εF ome numeril illustrtions on this new numeril strtegy re provided nd disussed in forthoming hptersF vet us lso remrk tht oth lgorithms VFS nd VFW re implemented in the sme odeD nd tht the user my (nlly selet the most pproprite on(gurtionF

Correction of Splitting Time

Step e hve lso nlyzed in ghpter SD the numeril ehvior of the dptive sheme for nonE symptoti regimesD iFeFD for lrger splitting time steps ∆tD for whih the numeril estimtes of IVU the error might eome inurteF sn the followingD we detil the omplementry numeril proedure introdued in this ontext to e'etively hndle these situtionsF vet us rell tht the prolem rises for reltively lrge tolernes ηD nd in prtiulr for smll time shifts δF hereforeD fter mny numeril tests nd from prtil point of viewD we n onlude tht y setting su0iently lrge shifts δD ompromise n e drwnD nd the elgorithm VFW n e pplied negleting these issuesF he ode inludes nevertheless the following lgorithms whih n e exluded y the userF e rell tht the numeril proedure is sed on the pproximtion @SFRVAX

∆t ≈ δC δ C 0 , @VFWA
where ∆t denotes the ritil splitting time stepD iFeFD the mximum splitting time step ∆t for whih the lol error estimtes re ompletely relileF he oe0ient C δ is pproximted y

C δ ≈ err δ∆t 2 , @VFIHA
ording to @SFRTAF pinllyD C 0 is lulted from @SFSTA y mens of two lol estimtorsX e 1 nd e 2 D given y @SFSRA nd @SFSUAX

e 1 = S a 1 ∆t u 0 -S b 1 ∆t (S c 1 ∆t u 0 ), e 2 = S a 2 ∆t u 0 -S b 2 ∆t (S c 2 ∆t u 0 ), @VFIIA nd de(ned y the setsX (a 1 , b 1 , c 1 ) nd (a 2 , b 2 , c
2 )F essuming the worst on(gurtion in whih oth e 1 nd e 2 re given y their mximum vlues in @SFSTAD some simple omputtions yield 

e 1 ≈ C 0 ∆t 3 ωc 3 1 (a 3 1 -b 3 1 ) , @VFIPA with ω ≈ e 2 (a 3 1 -b 3 1 ) -e 1 (a 3 2 -b 3 2 ) e 1 c 3 2 -e 2 c
Input: olution U J of size (m, N L ) = (m, #(Φ L ))D given y m rrys U (i)
J with ell vlues u

(i) i L D i = 1, . . . , mD i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J]F 2: fuild rry Ũ1 J of size (l, N L )D from U (i) J with i ∈ Θ l F 3: por t → t + c 2 ∆tX time integrtion of Ũ1
J with the stndrd trng sheme y elgorithm VFSF 4: por t → t + b 2 ∆tX time integrtion of Ũ1

J with the stndrd trng sheme y elgorithm VFSF 5: fuild rry Ũ2

J of size (l, N L )D from U (i)

J with i ∈ Θ l F 6: por t → t + c 1 ∆tX time integrtion of Ũ2
J with the stndrd trng sheme y elgorithm VFSF 7: ivlute error ∆ etween Ũ2

J nd Ũ1 J with elgorithm VFUF 8: istimte of lol estimtor e 2 X ∆ → e 2 F IVV 9: por t → t + b 1 ∆tX time integrtion of Ũ2

J with the stndrd trng sheme y elgorithm VFSF 10: Output: vol estimtor e 2 nd solution Ũ2

J t t = t + ∆tD of size (l, N L ) = (l, #(Φ L ))D given y l rrys Ũ2,(i) J D with ell vlues ũ2,(i) i L D i ∈ Θ l D i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J]F
Algorithm 8.11 gomputtion of the ritil splitting time step ssX ∆t F 1: Input: trng solution

U J t t = t + ∆tD of size (m, N L ) = (m, #(Φ L ))D given y m rrys U (i)
J with ell vlues u

(i) i L D i = 1, . . . , mY nd solution Ũ2 J t t = t + ∆tD of size (l, N L ) = (l, #(Φ L ))D given y l rrys Ũ2,(i) J D with ell vlues ũ2,(i) i L D i ∈ Θ l Y i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J]F 2: ivlute error ∆ etween U (i) J nd
Ũ2,(i)

J
for i ∈ Θ l with elgorithm VFUF 3: istimte of lol estimtor e 1 X ∆ → e 1 F 4: gompute C δ with urrent shift δ in @VFIHAD ω in @VFIQAD nd C 0 in @VFIPAF 5: gompute ∆t from @VFWA nd set for given seurity ftor ζX ∆t → ζ∆t F 6: Output: gritil splitting time stepX ∆t F e working region for the splitting time steps ws lso de(ned in ghpter S y @SFTHAX ∆t ∈ [β∆t , γ∆t ]D in order to ensure etter preditions of the lol error estimte with the pE proprite time shift δF he ltter prmeter is estimted y the following elgorithm VFIPF Algorithm 8.12 gomputtion of the time shiftX δF 1: Input: gurrent splitting time step ∆tD nd estimtes C δ nd C 0 F 2: gompute δ from @VFWA y onsidering ∆t = ∆tF 3: et for given seurity ftor θX δ = min{θδ, δ max }F 4: gompute ∆t from @VFWA with new δF 5: Output: xew time shiftX δD nd orresponding ritil splitting time stepX ∆t F he elgorithm VFW is (nlly rewritten with the inlusion of the previous tools in the elgorithm VFIQF ith respet to the previous dptive splitting implementtionD this one needs to sve one more rryD of size (l, N L )F he omputtion of the ritil splitting time step is done either periodilly with rte given y N δ D or whenever the splitting time steps re sted wy from the de(ned working regionD indited y the )g estimateD initilly set to .false.F woreoverD C 0 δ ws introdued to rejet the initil splitting time step ∆t 0 t the (rst time itertion n = 0D if neessryF he elgorithm VFIQ ontins thus ll the elements introdued in this hpterD nd n e oupled s well with the multiresolution sheme given y elgorithm UFIID for the timeGspe dptive numeril strtegyF Algorithm 8.13 ime dptive splitting sheme ssX S ∆t 2 F 1: Input: olution Brain Stroke Simulations e fous in this hpter on the numeril implementtion of the strtegy introdued in ghpter RD for rin stroke simultionsF wultiEsle propgting wves nd sti' phenomen re ssoited with mny iomedil pplitionsF yne exmple is given y eletrordiolE ogy simultionsD modeled y retionEdi'usion systemsD for whih mny numeril strtegies were developed over the pst yersF he ltter ones usully omine dptive mesh re(neE ment tehniques with dedited sti' solvers in order to ope with the numeril di0ulties @seeD eFgFD gqrHHD gqrHQD gpHRD gphi + HTD rHV nd referenes thereinAF sn this onE textD splitting shemes hve lso proved to e very e0ient to hndle suh prolemsD nd hve een lrgely implemented even sine @seeD eFgFD eHHD f + HPD uHRAF plitting tehniques were lso onsidered to solve hemotxis modelsD for instneD in qHHD vHHD qHPD HWF vet us lso refer to wilHV nd referenes therein for other type of pplitionD in whih the min gol of the numeril simultions is to predit drug trgeting to inhiit iologil mlE funtionsF sn the prtiulr se of rin stroke simultionD the literture is muh more redued nd it is minly limited y the lk of omprehensive modelsD not yet ville @seeD eFgFD hfqHT nd referenes thereinAF he numeril di0ulties to simulte ishemi strokes were (rst studied in hhHVD sed on stroke model introdued y hronne et lF in hfqHTF hese studies hve led to numeril simultions on relisti Qh rin geometriesD for the (rst timeD sed on the splitting strtegy detiled in ghpter RF he ltter sheme ws implemented with stisftory results in ode lled ifiD developed y F humontD whih onsiders (nite volumes of onstnt size humHUF xeverthelessD in order to further redue omputtionl ostsD the fully wGsplitting tehnique introdued in hwh + IP ws lso implemented nd onfronted with the previous results on simpli(ed rin geometryF ell these results hve een reently sumitted for pulition hhh + IPF sn wht followsD we will (rst reprodue the ltter rtileD whih stnds s omplete study on the sujet within the present workD nd in prtiulr llows us to prtilly vlidte the wfeii ode in terms of prtil implementtionD y ompring some numeril results with those otined with the ifi odeF e remrk tht even though oth odes onsider the sme time integrtion strtegyD they re written in di'erent progrmming lngugesD with lso di'erent dt nd ode struturesF sn the seond prt of this hpterD we will present more detils on the numeril simultions hieved with the wGsplitting numeril strtE egy presented in ghpter RF he ltter study hs een presented during ummer hool of gx qh qroupe glul on wultiresolution nd edptive wesh e(nement wethodsD préjusD prne @PHIHA hwh deth rte in PHHU vteg + HWF wost frequently @VH7A strokes result from the olusion of one or severl rin vessels nd re thus lled ishemi strokes @in the other sesD strokes re hemorrhgi strokesAF sshemi stroke involves mny pthophysiologil mehnisms using devstting neurologil dmge @see for review hswWWD wvsIHAF nderstnding these mehE nisms is of the most importne to develop new therpeuti strtegies sine no tretments re urrently ville for most stroke ptientsF gurrentlyD the only pheEpproved tretment for stroke ptients is thromolyti gent @teA whih n only e given to less thn IH7 of ptients euse of its nrrow timeEwindow nd its hemorrhgi risks qrHQF wny neuE IWR roprotetive gents @imed t loking the ishemi sdeA hve lso een developed utD lthough they hd given very promising results in prelinil studies in rodent modelsD they ppered ine'etive or even noxious during the linil trils in stroke ptients @see for review huvWWD fefHID eHRD hHUAF his disrepny etween the results in rodents nd in humns is prtly due to the ntomi nd histologil di'erenes etween rodent nd humn rinsF sn this seD results in rodents re thus di0ult to extrpolte to stroke ptientsF es onsequeneD mthemtil model nd its numeril simultions n help oth to test some iologil hypotheses onerning the involved mehnisms nd to give new insights onerning the e'ets of these neuroprotetive gentsF revious works hve een onduted on stroke modelingF yne of these models hfqHT is foused on the min mehnisms leding to ell deth during the (rst hour of n ishemi stroke @suh s ioni movementsD glutmte exitotoxiity nd ytotoxi edemAF his model is sed on system of ordinry di'erentil equtions @yhisA nd is minly n eletrophysiologil modelF st desries the dynmis of memrne potentilsD ell volumes nd ioni onentrtions @K + D N a + D Cl -D Ca 2+ nd Glu -A in rin ells nd in the extrellulr spe during strokeF his model ws used to study the role of vrious ell types during ishemi hqh + HU nd to explore the e'ets of vrious neuroprotetive gents in stroke ptients hhqqHWF yther models hve een developed to simulte nd study spreding depressions during strokeF his phenomenon is hrterized y slowly propgting depolriztion of rin ells long with drsti disruption of ioni grdients omHIF hese spreding depressions hve reently een oserved in stroke ptients hp + HV nd re supposed to extent the ishemi dmge ht + HSF ome models reprodue nd study the ehvior of spreding depressions in neuronl ells qWVD uHHF ythers desrie these depolriztion wves though neuronl nd glil ells hqg + HVF yther models study the in)uene of the humn rin ortex geometry on the propgtion of these spreding depressions hqg + HVD qhh + HVF ell these models re sed on retionEdi'usion systems nd in this pper we hoose to use the mthemtil model hfqHTF he (nl gol of our work is to utterly desrie nd reprodue preoious mehnisms of stroke @iFeFD ioni movementsD glutmte exitotoxiity nd ytotoxi edemA inluding the spreding depressionsD for relisti rin geometryF e (rst desription of the lgorithms used for the numeril solution of this stroke model on Ih nd Ph geometries ws presented in previous rtile hhHVF roweverD sine we need to tke into ount the ntomi nd histologil spei(ities of humn rinD this model must e simulted on Qh relisti geometryD whih implies to develop powerful numeril methods le to del with rod spetrum of sptil nd temporl slesF his pper fouses on the methods developed for the numeril solution of this modelD with muh more insights on the mthemtil nd numeril methods thn in hhHVF he numeril method is sed on opertor splitting nd expliitGimpliit ungeE uutt methodsF e very importnt feture of this method is tht no liner system @of lrge sizeA is solvedF e then showD for the (rst timeD numeril simultions in Qh otined thnks to prtiulr implementtion of prllelism in the frmework of shred memory mhinesF woreoverD these Qh simultions re omputed on relisti geometriesD otined from ws of the humn rinD on onventionl omputtionl resouresD tht is on nowdys resonly powerful worksttionsY nd they re shown to mth the oserved dynmis from ws imges in stroke ptientF ine ury in Qh simultions is not yet optimlD the ility of extending the proposed numeril strtegy to dptive multiresolution is presented in the frmework of preliminry omputtions in simple geometriesD sed on strtegy introdued in hwh + IPF he ide is to inrese the level of ury in order to mth ll the sptil slesD with etter omputtionl e0ienyY thnks to the ft tht phenomenons in strokes re sptilly lolizedD lol mesh dpttion @like multiresolution tehniquesA is the most suitleF IWS he pper is orgnized s followsX in (rst prtD we present the retionEdi'usion model of the preoious mehnismsF e then fous on numeril methodsX we (rst mention the di'erent pprohes whih n e used to disretize the system in time nd explin why in the ontext of suh sti' nd lrge system only very few re relevntF e then present our numeril strtegy sed on splitting methodsY grid dpttion tehnique is lso proposed s possile improvement of the numeril strtegyD onsidering prtiulr fetures of the phenomenF e present the prllel implementtion on shred memory mhines of the numeril strtegyD nd disuss the numeril vlidtion of the resultsF sn the next setionD Ph nd Qh numeril results of simultions with omplex geometry re presentedF fiologil results otined re ompred with rel oservtions nd disussed in the penultimte setionF fiomrkers re used in order to vlidte these omputtionsF e rief nd prospetive study sed on oupling the proposed strtegy with dptive multiresolution in spe is ondutedD wheres onlusion nd future works re presented in the lst setionF

U J t t = tD of size (m, N L ) = (m, #(Φ L ))D given y m rrys U (i) J with ell vlues u (i) i L D i = 1, . . . , mD i L ∈ r∈[1,N R ] L( Λr,ε ) nd j ∈ [j 0 , J

Stroke Modeling through Sti Reaction-Diusion Systems

sn this setionD we desrie the model on whih our study is sedF his model inludes ioni movementsD glutmte exitotoxiityD ytotoxi edem nd spreding depressions hfqHTD hqh + HUF st thus fouses on the (rst hour of strokeD when the ioni exhnges re the min mehnisms leding to ell dethF his model is sed on retionEdi'usion system @equtions re given in wht follows in le WFIAF sn this modelD rin tissue is omposed of two ell typesD nmely neurons nd glil ellsD nd of extrellulr speF wo domins re onsideredX the white nd the gry mtter whih di'er in their glil ell omposition @stroytes in gry mtter nd oligodendroytes in white mtterA nd in their neuronl re omposition @neuronl soms in gry mtter nd neuronl xons in white mtterAF rumn rin ortex is exlusively omposed of gry mtter wheres humn rin spe is minly omposed of white mtter @exept the gry kernelsAF por simpliity resonsD we onsider in the model tht rin ortex ontins only gry mtter nd rin spe ontins only white mtterF he ioni speies onsidered in this model re K + D N a + D Cl -D Ca 2+ nd the qlutmte @gluAF hey pss through neuronl nd glil memrnes vi ioni hnnels @suh s voltgeEgted hnnelsD reeptorEhnnelsD strethEhnnelsA nd vi ioni pumps nd trnsporters @whih re energyEdependentA @see pigure WFIAF he ioni exhnges through voltgeEgted hnnels hve een (rst modeled y rodgkin nd ruxley rrSPF he min preoious mehnisms of ishemi stroke n e desried s follows @see for review hswWWD wvsIHAX fter the stroke onsetD the ells in the ishemi re do not reeive enough oxygen to mintin their prodution of energyF es onsequeneD the tivity of the ioni pumps deresesD whih results in vritions of ioni onentrtions in the ells nd in the extrellulr speF hese ioni vritions hve severl onsequenesX

• he ltertion of memrne potentilsD resulting in memrne depolriztion nd in the opening of the voltgeEgted hnnelsY

• he ell swelling due to wter in)uxY

• he inrese of the neuronl onentrtion of Ca 2+ D resulting in enzyme tivtion nd leding ells towrds nerosisY

• he inrese of glutmte in the extrellulr speD reinforing the exitotoxi proessY

• he inrese of the onentrtion of K + propgting in the extrellulr spe nd the inrese of Ca 2+ in the stroyti syntiiumD reting wves of ortil spreding 

ATP ATP

Grey matter

gapjunctions Fig. 9.1: Ionic exchanges in gray matter between neurons, astrocytes and the extracellular space through voltage-gated channels, ionic transporters, receptor-channels and ionic pumps (from [DBG06]). depressionsD opening further ioni hnnels nd thus expnding the ishemi dmge fr from the ishemi oreF prom thisD we n understnd the importne of studying these propgtion phenomen nd of exploring the potentil e'ets of some neuroprotetors whih modulte or lok spei( voltgeEgted hnnelsF gonsequentlyD the model onsiders the following vrilesX

• he volume frtions f n nd f a @y rin volume unitA of neurons nd glil ellsF he frtion of volume remining for the extrellulr spe is thus

1 -f n -f a F f n nd f a Y
• he memrne potentils V n nd V a of neurons nd glil ells @tking zero s referene potentil in the extrellulr speAY

• he onentrtions of K + D N a + D Cl -D Ca 2+
nd qlutmte in the Q spes @neuronsD glil ells nd extrellulr speAF ell the vriles depend oth from time nd oordintesF eltogetherD the men (eld model hs m = 19 unknowns written s retionEdi'usion system of equtionsF roweverD there is no di'usion for R unknownsD nmely f n D f a D V n nd V a nd not ll ion onentrtions di'use in gry mtter nd in white mtterF ine gry mtter ontins stroytes @whih re linked into n stroyti synytium thnks to gpEjuntionsAD ions re le to di'use in the stroyti spe s well s in the extrellulr spe in gry mtterF yn the other sideD s the min glil ells in white mtter re oligodendroytes @whih do not hve the sme properties s stroytesAD ions re onsidered to e only le to di'use in extrellulr IWU spe in white mtterF es onsequeneD the model ontins IH retionEdi'usion equtions in gry mtter @for the onentrtions of K + D N a + D Cl -D Ca 2+ nd Glu -in stroytes nd in the extrellulr speA nd S retionEdi'usion equtions in white mtter @for the onentrtions of @K + D N a + D Cl -D Ca 2+ nd Glu -in the extrellulr speAF o e more preiseD in le WFI we summrize the modeling equtions of humn ishemi strokeD developed y hronne et lF in hfqHTD using the following nottionsX

• S stnds for the ioni speies @Ca 2+ , N a + , K + , Cl -nd Glu -respetivelyAF

• he susript e stnds for extrellulrD n for neuronl nd a for glil medium @stroytes in grey mtter nd oligodendroytes in white mtterAF

• ε s,a nd ε s,e re the di'usion oe0ients for eh ion S in glil ells nd in the extrE ellulr spe respetivelyF sn white mtter ε s,a = 0.

• It s,n nd It s,a re the glol ioni urrents for eh ion S through neuronl memrne nd through glil memrne respetivelyF por exmple in grey mtterD It s,n is the sum of ll the urrents onerning the trnsport of ion S through neuronl memrne vi the voltgeEgted hnnelsD trnsporters nd reeptorEhnnels represented in pigure WFIF hese urrent equtions minly rely on rodgkinEruxley equtions nd ome from other eletrophysiologil models @neuronl nd glil modelsX lWPD hwWVD ueWVD yeHHD hHI nd rdi models hpxVSD vtWP for some urrentsF yther prmeters re given yX N imp,a X numer of moles of imperment nions in the glil ells @onstntA N imp,n X numer of moles of imperment nions in the neuron @onstntA n n X numer of neurons in eh volume unit n a X numer of glil ells in eh volume unit σ n X neuron surfe σ a X glil ells surfe z s X vlene of ion v X volume of eh unit c n X neuron pity c a X glil pity F X prdy9s onstnt por α n nd α a we follow puHQX α n = α a = L i RT /vD with L i = 1.21 × 10 12 cm 3 /(Pa • min)D R = 8.3145 J/(mol • K)D nd T = 310.15 KF he his in le WFI n e written in the following generl formX

∂u i ∂t (x, t) -div(ε i (x)grad u i (x, t)) = f i (u 1 (x, t), . . . , u m (x, t)), u i (x, 0) = u 0 i (x), 1 ≤ i ≤ m, x ∈ Ω.          @WFIA
he domin Ω orresponds to humn rin nd is divided in gry nd white mtterF hese two mtters di'er in severl oe0ients in the retion term @orresponding to the ell ompoE sitionA nd in their di'usion oe0ientsD s previously desriedF here re no )uxes of ions in nd out of the rin nd thusD the oundry onditions re of xeumnn homogeneous typeF por the initil onditions u i (x, 0) = u 0 i (x)D 1 ≤ i ≤ mD lssil medil hypothesis is tht the system is in stle equiliriumX thus we tkeD nd must (ndD stle onstnt solution of system @WFIAF IWV Model equations describing the dynamics of the ionic concentrations, cell volumes and membrane potentials with diusion in neurons, in glial cells and in the extracellular space.

riles iqutions soni onentrtions

S n ∂S n ∂t = - n n σ n It s,n f n z s F v - S n f n ∂f n ∂t S a ∂S a ∂t = div(ε s,a grad S a ) - n a σ a It s,a f a z s F v - S a f a ∂f a ∂t S e ∂S e ∂t = div(ε s,e grad S e ) + n n σ n It s,n + n a σ a It s,a (1 -f n -f a ) z s F v - S e 1 -f n -f a ∂(1 -f n -f a ) ∂t roportions of intrelE lulr volumes f n ∂f n ∂t = α n S n - S e + N imp,n v f n f a ∂f a ∂t = α a S a - S e + N imp,a v f a wemrne potentils V n ∂V n ∂t = - σ n c n s It s,n V a ∂V a ∂t = - σ a c a s It s,a
vet us mention some hrteristis of the system whih re very importnt in the hoie of numeril shemesX

• he retion term F = (f 1 , ...., f m ) t is extremely sti'Y tht is to sy tht if we onsider the system of di'erentil equtions du/dt = F (u)D it is sti' system ording to the de(nition given in rWTF o see thisD we hve performedD y numeril di'erentitionD omputtion of the toin mtrix (∂f i /∂u j )D 1 ≤ i, j ≤ mD ner stle sttionry vlue F (u) = 0D nd we found numerilly negtive eigenvlues with negligile imginry prts ut with rel prts in the rnge from -10 8 to out -1F woreoverD it is impossile to seprte fst nd slow vriles nd even if this ws possileD the voltge dependent gtes would mke this seprtion very lol in time nd speF e hve to del with the sti'ness of the retive term F D whih is the ore of the model nd is progrm of out SHH lines of g lngugeF • he di'usion oe0ients ε i (x) re lowX out 10 -3 given y nonEdimensionl nlysisF he resulting splitting time step for proper resolution of the propgting phenomenon resulting from the oupling with the retion term will led to the resolution of het eqution in mildly sti' frmeworkF ixploiting this ft turns out to e very imporE tntX we n use stilized expliit methods when solving the het eqution ssoited with the di'usionD with the dvntge of good numeril performnesD nd n esy implementtion of prllel omputtionsF he di'usion oe0ients ε i (x) tke two onstnt vlues in gry nd white mtter @respetively ε g i nd ε w i AF he interfe onditions etween gry nd white mtter re lssilX

ε g i grad u i (x, t) • n = ε w i grad u i (x, t) • n, @WFPA
where n is norml unit vetor to the oundry etween gry nd white mtterF hese onditions eome xeumnn homogeneous oundry onditions whenever one of the di'usion oe0ients is zeroF 9.3 Numerical Strategy: Operator Splitting and Time Integrators yne dimensionl simultions re very useful to (t prmeters suh s the di'usion oe0ients whih re known in the literture only with limited uryY two dimensionl ones re useful to vlidte numeril methods nd progrmsD ut only three dimensionl simultions n e relevnt from the medil point of viewF prom medil onsidertionsD nd lso y some onsidertions on retionEdi'usion systemsD we know tht preise desription of the rin geometry is mndtory for the simultionsD otherwise the plusile wves would e strongly perturedD see for exmple hhqqHWF e then hve to think of strtegy dedited to three dimensionl simultions with very (ne sptil disretiztion llowing to resolve the rod spetrum of sptil nd temporl sles of the system @WFIAF he method developed hs to e fstD roust nd must tke into ount the properties of the modelF e desrie now the methods introdued in this workD sed on sptil disretiztion whih will e pplied in dimension P nd QF gonerning the sptil disretiztionD we hve hosen (nite volume pproh with S points stenil in PhD nd U points stenil in QhF yur experiene is thtD with uniform (nite volumesD t lest = 10 7 volumes re neessry for relisti three dimensionl simultionF he ontinuous unknown u is then repled y vetor U elonging to R m× orresponding to the m unknowns t eh point x i D 1 ≤ i ≤ F e use ws pitures nd we onsider pixels s enter of volumes of n uniform gridF hen we pply this sptil disretiztion to the system @WFIAD this yields lrge system of ordinry di'erentil equtionsF vet us write this system under the form

dU dt = A ε U + F (U ), @WFQA
A ε eing mtrix orresponding to the disretiztion of the di'usion opertorY this is lssil S terms @respF U termsA y line mtries in dimension P @respF QAF e now present the di'erent pprohes whih n e used to disretize this system in time nd we explin why in the ontext of suh sti' nd lrge system suh s @WFIAD only few re e0ientF he (rst ide is to use diretly solver of systems of yhisD the so lled method of linesD ut due to the sti'ness of the nonliner termD lrge system of lgeri equtions should e solved t eh time stepD whih is too muh time onsumingF st is then etter to use di'erent disretiztions in time for the liner nd the nonliner termsF e (rst method is to use n smpliit!ixpliit method y treting the liner term impliitly nd the nonliner term expliitlyF sf we denote y δt the time step nd U k the pproximted solution t time kδtD the Sect. 9.4 -Numerical Software PHH simplest method is the followingX

U k+1 -U k δt + A ε U k+1 = F (U k ) @WFRA
yne must solve liner system t eh step sine di'usion is tken impliitly ut the nonliner term is tken expliitlyF his method is of order 1 in timeF wore urteD ut not relly more expensiveD methods of the sme type nd of order t most 6 re desried nd nlyzed in egwWVF he min dvntge of these methods is tht only liner systems must e solved ut the drwk is thtD due to the expliit omputtion of the retion termsD these methods re dpted only to systems with non sti' retion termsF vet us rell tht the system @WFIA is very sti'D nd these methods n only work with time steps of the sme order of the fstest time sle of the system whih is out 10 -8 seondsF his would result in n prohiitive omputing timeD out 4 × 10 11 steps for simulting the (rst hour of the evolution of the strokeF e etter ide for the tretment of the liner nd the nonliner prt in the ontext of sti' nonliner term is to reverse the numeril tretmentsX to solve expliitly the liner prt nd impliitly the nonliner prtF he disretiztion of the liner prt is mde using n expliit ungeEuutt method with extended stility domin long the negtive rel xisF he ppers WU nd HR settled the foundtion for these methods lled swi methods nd prE tiulr methods devoted to sti' non liner prolems re presented in rHR nd HTF he min dvntge of these methods is tht they tret di'usion terms expliitly nd the sti' retion terms impliitlyF purthermoreD the sti' retion term is deoupled over spe grids nd yields smll sized systemsF hese methods re usully very e0ientY neverthelessD the omE puttionl requirements ssoited minly with n impliit solver over the disretized domin with the sme time step eome soon ritil when treting lrge omputtionl dominsF pinllyD the only possile methods whih n solve system @WFIA seem to e the so lled splitting methods tht we desrie in detils now 1 F 9.4 Numerical Software e hve developed two di'erent softwres for the solution of the system @WFIAF foth implement the time integrtion strtegy de(ned ove in ghpter RX pwX @pixed weshA ode using (xed sptil disretiztionD with (nite volumes of onE stnt size humHUF his ode tkes into ount omplex geometries in the following wyX strting from ws imgesD we tke eh pixel s the enter of (nite volumeY it ims to e frmework for testing nd exploiting numeril methods for ID P nd Qh retionEdi'usion systemsF st will e used in order to otin the min results of the present ontriutionD tht is numeril simultions of the detiled nd sti' stroke model in omplex Qh geometriesF wX @wulti esolutionA ode using n dptive multiresolution method s de(ned ove in ghpter RF sn the frmework of multiresolutionD n importnt mount of work is still required in order to optimlly omine ll the numeril methods desried hereD the most di0ult spets re relted to progrmming fetures suh s dt nd ode struturesD s indited in hwh + IPF xowdysD this progrm n only solve prolems in simple domins like squres nd uesY simultions with n dptive multiresolution PHI pproh on omplex geometry re not yet villeD nd we will only present here Ph nd Qh simultions in simpli(ed geometries for the ske of ssessing our results nd perspetives in the (eldF vet us remrk tht the @pwA ode is highly optimized nd omplete ode for the simultion of retionEdi'usion equtions2 F sn prtiulrD stroke simultions in omplex geometry n e performed for the (rst timeD with stndrd omputing resouresD nd onstitutes the mjor dvne of our ontriutionF yn the other hndD the seond ode @wA llows to vlidte to some extents the previous numeril resultsD nd it is ment to e potentil extension to @pwA in future developmentsF 9.5 Numerical Results: Implementation Checkout and Accuracy Evaluation of the Code sn order to hek out the implementtion of the method in the odes @pwA nd @wAD whih use two di'erent sptil disretiztions nd dt struturesD we hve onduted detiled omprison on numeril testEseF xeverthelessD sine we use the sme numeril methods for the suEsteps integrtionD this does not result in full vlidtionF e hve onsidered Ph se in regulr geometry of [0, 5] × [0, 5] @mAD using two resolutionsD one on (xed grid omputed with the ode @pwA nd the other on the dpted grid otined y multiresolution with the ode @wAF foth methodsD sed on trng9s splittingD use duS nd yguR s time integrtors for the retion nd for the di'usion prolemF por the model prmetersD we hve onsidered only one dominD the gry mtterF he time of integrtion ws restrited to one hourD t ∈ [0, 3600] seondsF he splitting time step δt ws hosen experimentlly in order to otin good pproximtion of the veloity on su0iently Ph (ne spe disretiztion of 1024 2 F e thus ompre oth solutions with L 2 Enorm3 t (nl time t = 3600D nd de(ne n error estimtor e given y u(., t)-u M R (., t) L 2 D where index M R denotes the use of multiresolution tehniquesF he sptil disretiztion onsists of n uniform mesh of 256 2 pointsF sn the se of the sptil dptive methodD there is set of nested grids rrnged in 8 di'erent levels from the orsest to the (nest disretiztionF he ltter orresponds to the uniform mesh previously onsidered of 256 2 pointsF sn order to ompre these resultsD we must onsider the sme sptil disretiztion for oth solutionsX this is esily hieved with the mentioned proE jetionGpredition opertions on the dpted gridF les WFPD WFQ nd WFR show the minimum nd mximum vlues of vriles in the neuronsD the stroytes nd in the extrellulr spe respetivelyD s well s the normlized L 2 di'erene of the numeril results e otined y the dptive multiresolution strtegy nd our proposed numeril strtegyF pigure WFP shows the evolution of the propgting phenomenon on n dpted grid for vrile K + in the neuronsF he re(ned regions lerly orrespond to the wvefront re where the steep sptil grdients re presentF pinllyD pigure WFQ revels in qulittive wy the di'erent representtions of the numeril solution on n uniform mesh nd on the dpted oneF ell these numeril results show gret ordne etween the solutions of the two di'erent odesX @wA nd @pwAD in the Ph simultionsF vet us rell tht oth odes rely on two well testedD roust nd pulily ville numeril routinesX the duS nd yguR methodsY thereforeD one n onsider tht they only di'er y the di'erent sptil disretiztions nd dt strutures they useX the omprison n thus e onsidered s @prtilA ross vlidtionF fesides suh level of omprisonsD @wA will e shown to pve the wy towrds higher levels of re(nement for etter resolution of the detils of the dynmis in Qh t resonle ostF sn ftD onsidering this Ph numeril testEseD (ner sptil disretiztions yield nturlly etter resolution of oth the wve veloity nd the dynmis of the wvefrontD s seen into (gure WFRF ee the orresponding @wA dpted grids into pigure WFSF iven if it is ler tht the wve is etter resolved on the (nest grid @1024 2 AD in prtiulr it is somewht fsterD the qulittive vlue of the wve veloity is orretly ptured even on the orsest grid @256 2 AD whih orresponds roughly to the Qh simultions with @pwAF roweverD we n not yet simulte with @wA ll the omplex geometries of the rin we re investigting in this pperY nd thusD ll the results in omplex geometries will e performed with @pwAF vet us mke now some omments on the performne of the numeril method on shred memory mhines for oth di'usion nd retion eqution solvers in @pwA used in the next results setionF PHT slilityD ll the points with the sme numer of threds should e t the sme ordinteF his is roughly the seD onsidering tht the omprison of omputtions otined with I nd V threds revels loss of slility of only T7F e onlude tht this implementtion is very e0ientF his is onsequene of the omplexity of the right hnd side @the retion termAX even one single numeril evlution of F is muh more time onsuming thn the overhed introdued y the thred mehnismF es onlusion of this prtD we n notie tht our omputing strtegy omining splitting tehniques with dedited integrtion of eh suEstep nd multiresolution is omptile with prlleliztionF

Biological Results

e present nd disuss here some simultion results otined with the ode pw on the omplex geometry of the humn rinF e simulte n ishemi stroke eginning in the ortex @in gry mtterA nd study the propgtion of the ishemi dmgeF he input of the model is the derese of the ioni urrents through the ioni pumpsF wo vriles hve een hosen for the model vlidtionX the potssium onentrtion in the extrellulr spe @[K + ] e A nd the rtio of pprent di'usion oe0ient of wter @rehgwAF • he potssium onentrtion nnot e mesured in vivo in the rin of stroke ptients ut it n e mesured ex vivo or in vitro on rin tissuesF hese onentrtion vlues give some insights on the severity of the dmgeF he physiologil vlue of [K + ] e is out S mwF st ws oserved to e le to inrese up to QS mw in res of moderte ishemi where depolriztion wves n spred uxUV nd up to USEWH mw in res of severe ishemi where most ells re ded rnUVF he (rst step of the model vlidtion is thus to ompre the vlues of the [K + ] e otined in the simultions with those vluesF

• he rehgw is iomrker whih n e estimted in the rin of stroke ptients thnks to di'usionEweighted @hA mgneti resonne @wsA imgingF st re)ets the severity of the ytotoxi edem nd ould thus e used to predit the ishemi dmge nd its extenE sion fvd + WRD rwh + HWF he vlue of this rtio is supposed to e I in physiologil onditions nd is known to derese in ishemi resF sn severl studiesD this vlue in stroke ptients ws shown to e etween HFUS nd HFW in res of moderte ishemi nd etween HFS nd HFUS in res of severe ishemi hv + HID pu + HID y + HID yq + HIF his iomrker n e relted to the proportions of the intrellulr volumesF st ws shown to e proportionl to the volume of the extrellulr spe fvd + WRF woreE overD sine the extrellulr proportion ws displyed to hve vlue of HFP in physioE logil onditions @iFeFD when rehgwaIA whWHD rehgw n e expressed s followsX rADCw = 5 (1 -f n -f a )F ine f n nd f a re two vriles of the modelD this rtio n e lulted for eh time nd for eh oordinteF enother step of the model vlidtion is thus to ompre the lulted vlues of rehgw otined in the simultions to the experimentl vluesF e present in pigures WFUD WFVD WFWD WFIHD WFIID nd WFIP some results of Ph nd Qh simultionsD showing the vlues of K + nd rehgw iomrker in the extrellulr spe in di'erent resF vet us mke some iologil omments out these resultsX

• pirst of llD we otined depolriztion wves fter the simultion of vessel olusion in rin ortex nd the depolriztion wves spred in gry mtter @iFeFD in rin ortexA • gonerning the potssium onentrtion in the extrellulr speD pigures WFUD WFVD nd WFW show tht this onentrtion rehes vlues suh s UU mw in the res where the PIH vessel ws oludedD whih is in ordne with the results otined in the infrted ore in some experimentl studies rnUVF hese (gures lso show tht [K + ] e is out PH mw in the res where depolriztion wves re spredingD whih is onsistent with the vlues otined in penumr @iFeFD res of moderte ishemiD le to reoverA during spreding depressions in severl studies uxUVF e n lso notie thtD in the sfe resD [K + ] e remins t its physiologil vlue @S mwAF

• gonerning rehgwD pigures WFIHD WFIID nd WFIP show tht this rtio rehes vlues suh s HFT in the res where the vessel ws oludedD whih is in ordne with the vlues oserved on ws imges in the infrted ore of the rin of the stroke ptient pu + HID y + HID yq + HIF hese (gures lso show tht rehgw hs vlues etween HFUS nd HFW in the res where depolriztion wves re spredingD whih is onsistent with the vlues otined in penumr during spreding depressions in stroke ptients pu + HID yq + HIF e n lso notie thtD in the sfe resD rehgw remins t its physiologil vlue of 1F o onludeD the simultion results onerning the loliztion of spreding depressions nd the vlues of [K + ] e nd rehgw re onsistent with those otined in experimentl studies or oserved on ws imges in stroke ptientsF hese results give thus (rst step of vlidtion for the model nd for the numeril methods used in this studyF 9.7 Toward Better Computational Eciency and Improved Accuracy: Adaptive Multiresolution sn the previous simultionsD we notie tht the simulted wves spred t slightly slower speedF sn severl studiesD spreding depressions were shown to spred t rte of severl millimeters per minute wpxxHHD whih is not urrently the se in our simultionsF sn ftD it is shown in ueeVU tht trveling wves solutions of retionEdi'usion equtions n dispper in the numeril solution if the sptil disretiztion is too orseY the veloity of the trveling wves is funtion of the mesh sizeD nd orse meshes might pertur the ury of the omputed wve veloityF sn prtiulrD in the previous Qh simultionsD the mesh we n use is not (ne enough to otin orret level of ury for the wve veloitiesF sn ftD oming k to the Ph numeril PII testEse of setion WFSD we hve seen in pigure WFRD tht high numer of volumes is needed to reprodue urtely the phenomenonD pproximtely 1000 per dimensionF e n lso mesure the omputing time of the retion t typil step @see pigure WFIQ @one lok tik is out 0.35 × 10 -9 seondAAF glerly the most expensive nodes re out QU times more expensive thn the less ones3 fut on the other hndD the overwhelming prt of the nodes re not expensive onesF etullyD UW7 of the nodes @the less expensive onesD whih ost less thn 4.5 × 10 6 tisA tkes TH7 of the omputing timeF hereforeD one wy to improve oth the performnes nd the ury of the resolution is to use n dptive meshX use (ne mesh in the ishemized zoneD where the solution exhiits lrge grdients nd wve propgtionD nd orser mesh fr from this prt of the dominX the multiresolution strtegyD s implemented in the ode @wA is step towrds this golF sn order to mke this more onrete thn just sttementD we eventully present here (rst Qh multiresolution simultion in ueD where the (nest grid ville hs size 256 3 D sine omplex geometry is not yet t hnd @pigure WFIRAF hereforeD onsidering the sme omputing resouresD the omputing time is redued y ftor of out (ve with respet to the (xed mesh simultion with @pwA on the (nest gridD even though trying to ompre two so heterogeneous PIP odes is very delite tskF sn ftD the ode @wA onsiders very low perentge @≤ 10%A of 256 3 D whih oupled with wht hs een presented eforeD llows to explin the gin in g timeF xeverthelessD t the urrent stte of development of the ode @wAD lot of work remins to e done like tking into ount omplex geometryD improving performnes of multiresolution methods y using dpted dt strutures nd optimized routinesD nd (nllyD high performne distriuted prllelism implementtionF yne this is hievedD n dptive mesh pproh shll overome the nturl limittions of ury nd performne of even very performing strtegies suh s the implemented in @pwAD nd will llow one to solve entirely the multisle dynmis of this kind of phenomenF pinllyD inresing the ury of the disretiztionD of the numeril methods nd even of the implementtionD is not su0ient to generte more preise nd preditive simultionsF his should e refully oupled with the development of more preise modeling of oe0ients nd oundry onditionsD nd it is eyond the sope of the present pperF 9.8 Conclusions and Future Work e hve presented for the (rst time numeril Qh simultions of n ishemi stroke in relisti rin geometryD sed on the model of hronne et lF hfqHTF esults re enourging from numeril nd medil points of viewF his is (rst mjor step towrds n usle tool for prediting the evolution of strokeF he next steps re to improve oth numeril performnes nd modelingF por thisD lot of work remins to e done from the model to prtil implementtionsF gonerning the numeril methodsD mny prmeters in the model re known only with orse pproximtionF husD numeril simultions must e onduted to explore the sensitivity of the model to these prmetersF he ultimte wy to improve the performnes is to swith from multithreded prllelism to distriuted prllelismD on mssive prllel omputersF prom medil point of viewD this model is of the most importne sine it ould e used to simulte on relisti humn rin geometry severl neuroprotetive gents imed t loking the ishemi sde nd t reduing the ishemi dmgeF ine the model ontins mny phrmologil trgets @suh s ioni trnsportersD voltgeEgted hnnelsD hnnelEreeptors nd streth hnnelsAD it ould e used to ssess nd study the e'ets of vrious therpeuti gents or ssoitions of therpeuti gentsF woreoverD sine the model inludes oth ioni movements through the ells nd their di'usionD we will e le to study the e'ets of these neuroprotetive gents oth on the severity nd on the extension of the dmge in eh rin reF heveloping powerful numeril methods re thus of the most importne to e le to simulte the time nd sptil evolutions of these phenomen on relisti humn rin geometryF Acknowledgements. his reserh ws supported y two ex grnts @prenh xtionl eE serh egenyAX eg in silio @exEHTEfyEHHHPEHP E projets ledersX wFEeF hronne nd iF qrenier E PHHTEPHHWA nd éhelles @exEHWEfvexEHHUSEHI E projet lederX F hesomes E PHHWEPHIQAF e would like to thnk ghristin enud @vsws E gxA for providing the sis of the multiresolution kernel of wgryD ode tht he developed t vsws for ompressile xvierEtokes equtionsF PIQ 9.9 Dedicated Splitting and Adaptive Multiresolution: Application to Human Ischemic Stroke sn the previous setionsD the splitting strtegy detiled in ghpter R hve een suessfully pplied to Ph nd Qh simultions of sti' retionEdi'usion system modeling humn ishemi stroke with 19Espeies detiled hemistry hfqHTD in relisti rin geometry hhh + IPF sn this prtD we reonsider the sme model solved this time on simpli(ed rin geometriesD with the wGsplitting tehnique introdued in ghpter RF ixploiting the splitting on(gurtionD prllel omputing tehnique ws lso implemented for the time integrtion stge in the frmeE work of shred memory omputing rhiteturesD in order to redue omputing osts relted to detiled hemistry fetures of the modelF ome preliminry results hve een shown in the previous prt in nother ontext without ny detil or nlysis of the numeril performne of the methodF his is the min gol of this prt nd we will ondut similr nlysis to the one performed for the numeril simultions in ghpter R in order to extend the domin of pplition of the ltter numeril strtegy to sti'er nd more omplex on(gurtionsF sn wht followsD we onsider Ph nd Qh on(gurtions of the sme retionEdi'usion system relted to the ishemi stroke model in hfqHT with m = 19 unknownsD relling tht there is no di'usion for 9 vrilesF he only simpli(tion is tht only gry mtter hs een tken into ount in these simultionsF ell the simultions were performed on n V ore @PxRA TR its mhine @ewh hnghi PFU qrz proessorsA with memory pity of QP qfF 9.9.1 2D Conguration e (rst onsider omputtionl domin of [0, 50000] 2 @µmAD nd simulte the phenomenon over one hour t ∈ [0, 3600] @sAF es previously doneD we will refer to three wys to solve the orresponding semiEdisretized system @RFIAX

• he qusiEext solutionD whih onsiders the oupled retionEdi'usion prolem on uniform meshD omputed y duS with very (ne tolerneY

• he splitting solutionD whih uses the h trng S ∆t 2 sheme with duS for the time integrtion of the retion term nd yguR for the di'usive prtD lso on uniform gridD with tolernes set to η Radau5 = 10 -5 nd η ROCK4 = 10 -7 fter numeril experimentsY nd

• he proposed wGsplitting strtegyD with the sme S ∆t 2 time integrtion sheme on n dpted meshF Computation of the Splitting Time Step king into ount tht the solution of the oupled prolemD iFeFD the qusiEext solutionD with duS is very expensiveD nd tht we do not dispose ny theoretil informtion on the solution of the prolemD preliminry study is required to hoose n pproprite splitting time step ording to the riteri estlished in ghpter RF he propgting nture of the phenomenon justi(es the hoie of onstnt splitting time stepF sn this prtiulr pplitionD we re looking for splitting time step ∆t tht pproximtes the wvefront speed v in @RFPQAD within presried ury η v F hereforeD we perform Ih omputtions with the splitting solver on uniform grid of 1024 points in order to de(ne referene wve veloity v into @RFPQAF pigure WFIS @topA shows the propgtion of the wvefront long the xExis ross the ore of the initil perturtion @see pigure WFITAD nd the time evolution of the wve veloities for solutions omputed with di'erent splitting time stepsF mller splitting time steps nturlly involve more urte desription of the glol phenomenonD mesured in this se y mens of the wvefront speed @pigure WFIS ottom leftAD nd show onvergene towrds roughly onstnt vlue of v ≈ 5.07 one the propgting front is fully developed @t 700 sA nd the wve speed eomes reltively onstnt @pigure WFIS top rightAF e tke this veloity omputed with ∆t = 1 s the referene oneD nd we hoose just for illustrting purposes rther lrge splitting time step ∆t = 10 in order to show the potentil deoupling of time steps for retionD di'usionD nd the time opertor splitting for given presried tolerneF his time step yields reltive veloity error of ≈ 3.8% @pigure WFIS ottom rightAD or equivlently n ury tolerne of η v = 5 × 10 -2 into @RFPQAF eording to the riterion @RFPUA estlished in ghpter R to properly ouple the splitting tehnique with the multiresolution representtionD this time step is ounded y the mximum splitting time step given y ∆t max = 28.9D for ∆x = ∆y = 50000/1024 nd re(ned region estimted y k = 3 in eh diretionD iFeFD one extr ell @ k = 1A s enlrging riterion to predit the propgtion of the solutionD nd two ells ontined in the sfety lyerF Performance of the Method: Data Compression and Memory Requirements sn order to nlyze the performne of the wGsplitting strtegyD we onsider severl vlues of JD tht isD the numer of nested dydi grids tht orresponds to (nest spe resolution PIS equivlent to 256 2 @J = 8AD 512 2 @J = 9AD 1024 2 @J = 10AD or 2048 2 @J = 11A grid pointsF por ll the simultionsD we onsidered multiresolution threshold vlue of ε = 10 -2 F his vlue yields normlized L 2 Eerror 10 -2 etween splitting nd wGsplitting solutions for ll 19 vrilesD s previously shown in the numeril omprison of the (rst prt hhh + IPF righer sptil disretiztions nturlly yield etter resolution of oth the wve veloity nd the dynmis of the wvefrontF sn prtiulrD we hve onluded tht t lest pproximtely 1024 2 points re needed to get resonly (ne desription of the phenomenonF pigure WFIT shows some wGsplitting results for the time evolution of the onentrtion of K + on the orresponding dpted gridsD for n equivlent (nest grid of 1024 2 points @J = 10AF pigure WFIU shows the time evolution of the hieved dt ompressions @DCA de(ned y @RFQWA nd the numer of points in the dpted grids @AGAF ht ompression inreses with the numer of levels s the spe sles present in the prolem re etter disriminted y lolly (ner sptil disretiztionsF por given JD the numer of points in the dpted grid AG is inresing linerly in time ording to the growing rdius with onstnt speed of the irulr PIT propgtion of the wvefront s seen in pigure WFITF woreoverD t given timeD dding new grid lyer mounts to douling the numer of ells on the dpted grid s if we were re(ning only in one dimensionD lso euse of the qusi xil symmetry of the phenomenonF .17: 2D stroke model. Time evolution of data compressions DC given by (4.39) (left) and the number of points on the adapted grids AG (right) for dierent nest levels J.

e now ompute the sme estimte on the memory requirements of eh numeril strtegy for (ne sptil resolution of 1024 2 D where W 1 nd W 2 re the numer of unknowns solvedD respetivelyD y duS nd yguRD nd the totl numer of unknowns is given y W = 19 × 1024 2 ≈ 1.99 × 10 7 F he size of the working spe L required y eh solver is thenX

IF usiEext with duSX W 1 = W ≈ 1.99 × 10 7 nd L = L 1 ≈ 1.6 × 10 15 F PF plittingX W 1 = 19D W 2 = 10 × W/19 ≈ 1.05 × 10 7 nd L = L 1 + L 2 ≈ 8.4 × 10 7 F QF wGplitting with ε = 10 -2 X W 1 = 19D W 2 = 0.07 × 10 × W/19 ≈ 7.34 × 10 5 D nd L = L 1 + L 2 ≈ 5.9 × 10 6 Y with minimum dt ompression of 93%F
gonsidering stndrd pltform on whih eh doule preision vlue is represented y 64 itsD eh solver shll require 90.9 D 5.0 qD nd 360.1 wF por stndrd omputtionl resouresD n impliit resolution with duS is ompletely out of rehF hese expensive memory requirements re strongly redued with splitting strtegy ut further redutions re hieved y dding multiresolution dptive proedureF Performance of the Method: Parallelization and CPU Times le WFS summrizes the g times @CTA of the simultionsD performed with V ores in prllelD nd the gin of prlleliztion @GPA whih is de(ned s the rtio etween the g time given y one single proessor nd the V ores in prllelF e otin rther high GPs @max GP = 8A even though only the time integrtion proedure is prllelizedF etullyD for this kind of highly lolized nd sti' prolem the multiresolution opertions tke normlly less thn 5 7 of the totl time onsumptionF rlleliztion of the retion is prtilly optiml in the ontext of shred memory rhitetures euse eh ore tkes new node immeditely fter (nishing with the previous oneD without ny need of synhronizing or exhnging dt with the other oresF he integrtion of the sti' retion prolem is lwys muh more expensive thn ny other omputtionD in terms of g timeF he ltter n e inferred from pigure WFIV @leftAD where the rtios in time etween the g times used to integrte the retion nd the di'usion PIU prolems re shown for di'erent sptil disretiztionsF henever we dd new lyer grid to the omputtionl dominD the retion g integrtion time per numer of tive points remins lmost the smeD s seen in pigure WFIV @rightAD euse most of the new points will e nturlly dded t the wvefront where high hemil tivity is presentF xeverthelessD there is n overhed in the time onsumption for two suessive (nest grid on(gurtions JD s seen in le WFSF e n mesure n inresing rtio of ∼ 2.6D slightly higher thn the rtio of P tht we should hve otined tking into ount the orresponding inresing rtio of the size of the dpted gridsF etullyD s shown in pigure WFIVD the integrtion of the di'usion prolem eomes more expensive when the sptil disretiztion inreses from 256 2 to 2048 2 F his is euse the di'usion time step ∆t D D dynmilly hosen to gurntee the tolerne ury η ROCK4 D goesD respetivelyD from ∼ 1.25 to ∼ 0.27F purthermoreD the mtrixEvetor produts omputed y yguR eome lso more expensive sine the mtrix representtion of the disretized di'usion opertor is less sprse when the omputtionl domin inludes more grid levelsF his is euse we lolly reonstrut the vlues t the interfe of grids with di'erent disretiztion @y mens of the phntom ellsA to gurntee more urte omputtions @see hpters Q nd RAF Decoupling of the Time Scale Spectrum pigure WFIW shows the orresponding lol retion time steps verged within ∆t/2 for eh pointF he imposed tolerne for the retion resolution η Radau5 involves time steps vrying from ∼ 0.2 to ∆t/2 = 5 for points lotedD respetivelyD in the neighorhood of the retive fronts nd in regions of redued hemil tivity F gonsidering the extension of the re(ned regionsD most of the omputtionl domin is integrted with retion time steps 25 time lrger thn the smllest time steps t the wvefrontsF sn this wyD n e'etive deoupling of the time sle spetrum is hieved for the retionD the di'usionD nd the splitting shemes with n importnt gin of e0ienyD whenever this is permitted y the physis of the prolemD so tht di'erent physil or numeril time sles ssoited with eh prolem n e isolted nd treted independently y eh numeril methodF PIW 9.9.2 3D Conguration vet us give more detils on the Qh on(gurtion previously onsidered in the (rst prtD with the sme prmeters of the Ph seD in sptil region of [0, 50000] 3 @µmAF sn order to explore the fesiility nd potentil dvntges of the methodD we onsider lrger omputtionl domin given y J = 9 nested dydi grids orresponding to 512 3 points in the (nest grid JF por the 256 3 on(gurtion with J = 8 shown in the (rst prtD the hieved dt ompression DC were of 98.84 7D 95.27 7D nd 87.23 7 t times 1080 sD 2160 sD nd 3600 sD respetivelyF he omputing time CT ws of out 16.68 hours with gin of prlleliztion GP of 7.02F pigure WFPH shows the onentrtion of K + in the neurons nd the orresponding dpted grids t 1080 s @DC = 99.14 7A nd 2520 s @DC = 94.94 7A for the 512 3 seY CT ≈ 45.88 hours for t ∈ [0, 2520] @sA nd GP = 7.14F vonger simultions times yielded lrger simultion domins whih were no longer fesile with the onsidered omputing resoure nd the urrent stte of development of the odeF erforming the sme omprison onerning memory requirementsD the totl numer of unE knowns for the 512 3 se is W = 19 × 512 3 ≈ 2.55 × 10 9 D nd the glol size of L required y PPH eh solver isX

IF usiEext with duSX W 1 = W ≈ 2.55 × 10 9 nd L = L 1 ≈ 2.6 × 10 19 F PF plittingX W 1 = 19D W 2 = 10 × W/19 ≈ 1.34 × 10 9 nd L = L 1 + L 2 ≈ 1.1 × 10 10 F QF wGplitting with ε = 10 -2 X W 1 = 19D W 2 = 0.04 × 10 × W/19 ≈ 5.37 × 10 7 D nd L = L 1 + L 2 ≈ 4.3 × 10 8 Y with minimum dt ompression of 96%F
hereforeD eh solver shll require t lest 1.4 D 655.7 qD nd 25.6 q of memory pityF 9.9.3 Concluding Remarks he present numeril study hs minly illustrted two spets of the numeril strtegy estlished in ghpter RX

• he tretment of highly sti' prolemsD given y n importnt numer of vriles relted y detiled nd omputtionlly expensive hemil termsF

• e strightforwrd prlleliztion in shred memory rhiteturesD tht turns out to e very e0ient t lest for prolems for whih the omputtionl ost is dominted y the numeril solution of the soure termF es onsequeneD these highly sti' phenomen modeling omplex hemil mehnismsD preE viously out of rehD n e suessfully simulted over lrge omputtionl domins with stndrd omputtionl resouresF xeverthelessD there re still mny modeling nd numeril points tht require further improveE ment to e0iently ondut numeril simultions of humn ishemi rin strokesD s detiled in the (rst prt of this hpterF egrding the present numeril strtegyD we n iteD for instneD two key issues tht need to e tken into onsidertionX

• he development nd introdution of numeril tools tht will llow us to onsider omE plex omputtionl domins to numerilly represent relisti rin geometriesF

• he implementtion of e0ient tehniques to prllelize expensive omputtions over severl proessorsD in distriuted or hyrid distriutedGshred memory frmeworkF foth points still require n importnt mount of workD nd onstitute urrent topis of our reserhF

Chapter 10

Numerical Simulation of Combustion Fronts e onsider in this hpter the implementtion of the numeril strtegy introdued in hpters R nd SD for the numeril simultion of )mes issued from omustion pplitionsF his study will e performed in lssil ontext of lminr )mes interting with vortex struturesD for propgting premixed )mes nd selfEignition of retive mixturesF he hydrodynmis is deoupled from the trnsport equtions y dopting stndrd thermoEdi'usive pprohF sn this ontext nd for the onsidered pplitionsD dptive spe meshing is dvntgeous euse of the presene of lolized frontsD wheres the importnt trnsient phses due to the imposed veloity (elds s well s sudden physil vritions givenD for instneD y the ignition of mixtureD require n dequte time dpttion in order to e0iently desrie these phenomenF he oupling of the spe nd time dptive tehniques enunited in ghpter SD turns out to e powerful tool to ope with these prolemsF sn the (rst prt of this hpterD we give rief repitultion of splitting methods in the literture for omustion pplitionsF henD we detil the si mthemtil formultion for the prolems studied in these pplitionsF he timeGspe dptive tehnique is introdued in the next prt s well s the extension to retionEdi'usionEonvetion systemsF he two lst prts re devoted to the numeril simultion of propgting premixed )mes in PhGQhD nd the ignition nd propgtion of di'usion )mes in PhF ome preliminry results re reported onsidering more omplex soure terms s in previous ghpter WD given this time y detiled hemil kinetisF rt of these results were presented during the pinite olumes for gomplex epplitions s snterntionl ymposiumD rgueD gzeh epuli @PHIIA hwhhIID nd pulished in the ennul eserh friefs PHII of the genter for urulene eserhD tnford niversityD e hwh + IIF 10.1 Time Operator Splitting for Combustion Problems xumeril simultion of omustion fronts usully involves numerous numeril di0ulties rising from the rod spetrum of time nd spe sles present in the prolemD nd the indued sti'ness of the governing equtionsF sn this ontext nd with the ontinuous developE ment of dedited sti' impliit methodsD severl numeril strtegies onsider the tretment of sti' terms usully relted to detiled hemil kinetisD with these solvers insted of more lssil nd less e0ient expliit or linerized impliit methodsF ine simultneous impliit tretment of retionD di'usionD nd onvetion terms involves often prohiitive omputE tionl ostsD more e0ient numeril lterntive onsiders omintion of impliit nd PPP expliit shemesD iFeFD the soElled swi methodsF imilrlyD we hve lso seen tht time opertor splitting tehniques o'er the sme kind of dvntge with usully more redued omputtionl omplexityD ut with the dditionl onstrint tht pproprite riteri must e introdued to e0iently deouple the physil phenomen nd ontrol the splitting erE rorsF plitting methods were thus lrgely implemented nd studied for omustion prolems @seeD eFgFD qwhVVD hvWSD WVD yfHID vqHQD HVAD whih resulted in severl numerE il strtegies over the pst yersF king dvntges of the prtiulr split on(gurtion of these multiEsle prolemsD unio et lF introdued in uxWW n e0ient sti' opertor splitting tehnique for low wh formulE tion of reting )ows 1 F hese uthors onsidered split numeril solution for the energy nd speies onentrtions trnsport equtionsD whih inluded detiled hemil kinetis nd trnsport prmetersF sn previous work xuWV 2 D the sme uthors introdued n swi tehnique tht onsidered impliit integrtion of the retive term y the dedited sti' solver yhi ffrVWD sed on multiEstep fhp formule qeUIF he ltter sheme hieved muh etter performnes thn stndrd expliit shemes y onsidering time steps muh lrger for the retive termF xeverthelessD strong limittion ws given this time y the very restritive stility onditions for the expliit tretment of the di'usive term for (ne sptil disretizE tions he stility onstrints for the di'usion prolem eme then of the sme order of those issued from n expliit tretment of the retion @out 2 nsAF sn order to relieve this onstrintD the splitting tehnique introdued in uxWW ws uilt suh tht severl di'usion steps given y the stility riteriD n e performed within the splitting time stepF he method onsidered then splitting time step multiple of the stility di'usion time sleD nd trng sheme with hlf step integrtions of the di'usion nd entered full step retion integrtionF he retion prolem ws solved y yhiD wheres the onvetion nd di'usion prolems were integrted with seond order multiEstep edmE fshforth shemeF sn this wyD numeril experiments showed tht the method ws glolly of order 2 for the rnge of time steps onsidered @less thn 200 nsAD where the splitting time steps were suggested to e hosen s smll frtion of the physil time sle of the )owD to ensure negligile splitting errorsF sn the numeril illustrtionsD su0iently smll splitting step ws onsequently hosen for whih severl di'usion susteps were evluted @from P to QPAD s well s di'erent ury tolernes for the sti' solverF he resulting glol error of the sheme ws then dominted either y the sti' impliit solution for smll splitting @nd di'usionA time steps nd lrge ury tolernesD or y the seond order expliit integrtion for lrger splitting time stepsF sn the (rst se when the impliit errors were omprle with the remining seond order errorsD the glol order of the method is likely lower thn 2F hese onlusions were drwn in uxWW out of numeril tests performed on simpli(ed retionEdi'usion systemD nd on Ih methneEir premixed )meF e Ph se ws lso onsidered for ounter rotting vortex pir interting with the premixed )meD for whih etter e0ienies were found with respet to the previous swi pproh xuWVD minly euse of the lrger time evolution stepsF he sme solver ws lter enhned in xuHS with the inlusion of seond order ug sheme vdrVHD erWT for the di'usion prolemD nd n extrpoltion proedure for the omputtion of the trnsport oe0ientsF he use of pproximte toins ws lso evluted for the sti' impliit solverF he ug solver with extended stility dominD rie)y desried in ghpter PD llowed lrger splitting time steps for the sme previous splitting tehniqueF he seond order PPQ of the sheme ws shown to e onserved for the previous rnge of splitting time steps @this time for less thn 100 nsAD nd the introdution of the seond order ug sheme showed to keep the sme previous numeril ehvior in terms of glol errorsD ut with lrger splitting time stepsF sn this wyD the time integrtion errors were one gin ssoited with the ury of the inner impliit nd expliit solversD nd thus the splitting errors were supposed negligileD even though the hoie of the splitting step ws not expliitly disussedF sn ll these worksD the reserh e'ort ws minly foused on the numeril solution of the retion nd di'usion prolemsF tility onditions for the expliit time disretiztion of di'usive terms re usully relted to ∆x -2 D ompred with ∆x -1 for the onvetive onesF purthermoreD these works onsidered detiled trnsport oe0ients whih disply multiEsle nd potentilly sti' fetures @seeD eFgFD qioWWAF en interesting study in xuHS on splitting errors showed tht time dptive sti' solver e'etively hndles the initil fst trnsients introdued in the retive step fter the di'usion step due to the splitting proedureD s previously reported nd treted in fvvWTD d + WVD frWWF ith these resultsD these uthors justi(ed their di'usion ending splitting sheme y rguing tht the dptive sti' solver sueeds to gurntee the presried ury even with importnt trnsient phsesD lthough this will not e the se fter the seond nd lst di'usion hlf stepF xeverthelessD the glol errors re piloted y the inner time integrtors in this implementtionD so tht it eomes more di0ult to relte this pproh with the previous theoretil results poHHD hwHR disussed in ghpter ID for whih the split suprolems were ssumed to e extly solvedF xotie tht these trnsients imply nturlly n overhed in the sti' solvers s reported lso in uxWWF es in uxWWD the numer of onstnt di'usion susteps de(nes the splitting time stepD nd oth this numer nd the numer of stges of the ug sheme needed to e de(ned in dvneF he time stepping fetures of ug with error ontrol WU were not onsideredF wore reently in xHTD inger et lF oupled the previous splitting sheme of xuHS with seD n dptive hemistry tultion tehnique for detiled hemil kinetis opWUD to hndle the retive termsF he pilities of this oupling were (rst onduted in HRF xumeril experiments were thus performed in xHT in the sme previous ontext of uxWWD xuHSD to nlyze the pproximtion errors introdued y se nd to verify the seond order of the methodF plitting time steps should e onsidered su0iently smll nd therefore were not disussed in the pper s well s the order redution ppreited for splitting time steps lrger thn ∼ 200 nsF yrder redutions were previously reported in qwhVVD hvWSD WV for )mes with omplex hemistry in omustion pplitionsF he numeril strtegy proposed in xHT showed to e very performingD nd implemented hyE rid prllel omputing tehniques for distriuted nd shred memory rhitetures tht yield importnt speedEups in the simultionsD s reported nd nlyzed in xHTF gomplemenE try studies in HV introdued lterntive tehniques like previously in xuHSD to redue the omputtionl ost of the trnsport susteps while mintining in prtie the seond orE der ury of the trng shemeF enother e0ient numeril strtegy lso in the ontext of low wh regimes tht onsiders opE ertor splitting tehniquesD ws introdued y hy 8 fell in hfHHF iven though this sheme inluded some similr ides to those of xuWVD uxWWD it di'ers minly in the projetion method used to solve the omined momentum nd trnsport equtionsD nd tht the ew tehnique introdued in ferVPD fyVRD ffWRD ws implementedF he opertor splitting onsidered trng sheme with hlf steps of retion integrtion with yhi ffrVWD nd omined onvetionEdi'usion entered full stepF he ltter step is solved on the dpted mesh y onsidering lol gpv time stepsD ording to the grid size nd with sheme developed PPR in efg + WVD rf + WV in the frmework of ew tehniques for reting )owsF xumeril experiments in hfHH showed onvergene order ofD or lose to 2D y using referene solutions omputed with the remix ode from the ghemkin lirry uqw + WVF purther vlidtions were onduted through qulittive nlysis of prtiulr physil fetures of the models unE der studyF sn these on(gurtions the ury tolerne of the sti' solver is set s smll s possile @iFeFD 10 -16 in hfHHAD nd the glol time evolution step is relted to the lol time stepping proedure sed on lol gpv onditions rther thn ury fhe + HTF ith these sesD further developments in terms of lgorithm implementtion nd prllel omputE ing tehniques led to the e'etive simultion of Qh turulent premixed )mes with detiled hemistry @seeD eFgFD fhqHPD fhe + HTA nd outstnding hievements for lortoryEsle turE ulent )mes @seeD eFgFD fh + HSD fhq + HUAF por instneD Qh turulent )me with omplex hemistry ws simulted in fhq + HU in omputtionl domin of [7.5, 5, 10] @mA over three grid levelsD with orresponding resolution of 480 × 320 × 640 in the (nest meshF he numeril methods previously desried represent some exmples of splitting implemenE ttions for omustion pplitionsD nd re)et the interest of suh tehniques to overome lssil restritions of omputtionl resouresF uh n pproh llows suitle hoie of numeril time integrtion solvers nd strightforwrd oupling with other tehniques like hemistry tultion or grid dpttion proeduresD with importnt gins of numeril perforE mne due to the redued omputtionl omplexityD nd thus higher degree of lierty with respet to other numeril methodsF sn this ontext nd with this kgroundD the present work hs presented in ghpter R new splitting sheme for this kind of multiEsle prolemD tht further develops nd introdues some new elements to the lssil pprohF gompred with previous worksD this sheme onsiders new pproh in the onstrution of splitting shemes in whih the time integrtion errors re uniquely relted to the splitting errorsD even for lrge splitting time slesD sed on mthemtil studies onduted minly in hwHRD hhvwHUF he underlying ide is to deouple time integrtion errors y hoosing high order dedited methods for the split suprolemsD nd thus the glol error is minly piloted y the splitting time stepD de(ned ording to the deoupling pilities of the pheE nomenonF his novel point of view llows us to onsiderly redue the numer of simultion prmeters nd to esily generlize the numeril methodologyF edditionllyD the numeril ury of the simultion nd the orresponding hoie of the splitting time stepD whih were often not expliitly detiled or diretly relted to the fstest numeril or physil time sle in the lssil litertureD eome the ore of this numeril strtegyF he independent hoie of the splitting time step settles the numeril ury of the simultion nd yields n e'etive deoupling of the time sle spetrum depending on the physis of the prolemD with importnt omputtionl gins s illustrted in previous hptersF he ltter proedure my e onsidE erly esed y the dynmi splitting error ontrol introdued in ghpter SD whih extend the previous strtegy with onstnt splitting time step s in the referred litertureD to more generl frmework potentilly given y highly unstedy physisF ith the simultion riteri introdued in this workD we look for further deoupling etween the time integrtion errors nd the sptil errors introdued y the ompressed sptil representtionsD tking into E ount tht the mthemtil kground of multiresolution shemes rrWSD guwHQD wülHQ o'ers etter qunti(tion of suh representtion errorsF sn the followingD we implement the proposed numeril strtegy for the simultion of lmE inr )mes interting with vorties in thermoEdi'usive pprohF hese on(gurtions were extensively used in the omustion domin to desrie nd to study severl phenomE en @seeD eFgFD gHHAD nd even ompred with experimentl results @seeD eFgFD + WTD Sect. 10.2 -Laminar Flames Coupled with Vortex Structures PPS gWWAF he (rst PhGQh simultions with dptive multiresolution for omustion proE lems were performed y oussel et lF in HPD HSD HTD lso in thermoEdi'usive pE proh with stndrd expliit time integrtion solversF 10.2 Laminar Flames Coupled with Vortex Structures sn this studyD we re onerned with the numeril simultion of di'usion nd premixed )mes interting with vortex struturesF e desrie in this prt the generl on(gurtion for lminr )mesF sn (rst step nd for the ske of simpliityD the hemistry is modeled y glolD single stepD irreversile retion given y

ν F F + ν O O → ν P P, @IHFIA
where ν k , k = F, O, PD stnd for the stoihiometri oe0ients for the fuel FD the oxidizer OD nd the omustion produts PF he ltter retion is usully modeled y n errhenius lw s we shll see in the following pplitionsF woreoverD the following stndrd modeling ssumptions re lso onsidered throughout this studyX IF wss di'usion veloities of hemil speies re expressed y pik9s lwF PF herml di'usion of speies @oretEhufour e'etA is negletedF QF hi'erent speies hve onstnt nd equl di'usion oe0ients with respet to the mixE tureD noted DF RF gonstnt pressure spei( hets of ll speies re onstnt nd re given y the sme vlue c p F SF vewis numers orresponding to ll speies re equl to 1F

TF he rte of pressure hnge in time is negligileF UF hensity vritions ssoited with hemil het relese re negletedF he ssumption U is ommonly known s the thermoEdi'usive pproh in lminr )me theoryF sn prtieD this onstntEdensity hrter deouples the veloity (eld omputtion from the determintion of speies mss frtions nd tempertureF unown solutions of inompressile xvierEtokes equtions my then e imposedD nd the prolem is redued to solving the following speies nd energy lne equtionsX

∂ t Y F + v • ∂ x Y F -D ∂ 2 x Y F = - ν F W F ρ ẇ, ∂ t Y O + v • ∂ x Y O -D ∂ 2 x Y O = - ν O W O ρ ẇ, ∂ t Y P + v • ∂ x Y P -D ∂ 2 x Y P = ν P W P ρ ẇ, ∂ t T + v • ∂ x T -D ∂ 2 x T = ν F W F Q ρc p ẇ,                            @IHFPA
x ∈ R d D where W k is the molr mssD nd Y k the orresponding mss frtion for k = F, O, PF rile T ounts for the tempertureD nd the retion rte of progress ẇ is relted to the rte of onsumption of fuel ẇF D oxidizer ẇO D nd produts ẇP y

ẇ = - ẇF ν F = - ẇO ν O = ẇP ν P . @IHFQA PPT he het relese per unit mss of fuel Q is de(ned y Q = h F + ν O W O ν F W F h O - ν P W P ν F W F h P , @IHFRA
where h k D k = F, O, PD is the orresponding speies enthlpyF sf we onsider lso nonEreting diluentD noted y index ND the following eqution must e inluded in @IHFPAX

∂ t Y N + v • ∂ x Y N -D ∂ 2 x Y N = 0. @IHFSA
sn ny seD mss frtions verify y de(nition

Y F + Y O + Y P + Y N = 1. @IHFTA
sn the thermoEdi'usive pprohD the veloity (eld v(x, t) is usully omputed nlytilly nd imposed into @IHFPAF hroughout this studyD we onsider Ph vortex on(gurtion whih fetures n zimuthl veloity of the formX

v θ (r, t) = Γ 2πr 1 -e -r 2 /4νt , @IHFUA
where Γ denotes the vortex irultionY r(x, y)D the distne to the vortex enterY nd νD the kinemti visosityF his veloity (eld hs visous ore with typil dimension of R ν ≈ (νt) 1/2 F snside the ore the veloity inreses linerly with the rdiusD nd the )uid rottes like solid odyX

v θ (r, t) ≈ Γr 8πνt , r < R ν .
@IHFVA e fst dey ours immeditely outside the oreD wheres t lrge distnes the )ow pE prohes tht of n idel line )owX

v θ (r, t) ≈ Γ 2πr , r R ν . @IHFWA
10.3 Time/Space Adaptive Technique por the previous retionEdi'usionEonvetion system given y @IHFPAD we implement the wG splitting strtegy introdued in ghpter RD omplemented y the dptive splitting tehnique introdued in ghpter SF e rell tht the min ide is to independently onsider high order dedited methods for eh susystem to hndle the fstest physilGnumeril sles ssoiE ted with eh oneF he solution is then reonstruted y the splitting sheme tht deouples the glol physis within presried uryF edditionllyD the multiresolution nlysis yields dptive mesh representtions with importnt gins of omputtionl performneF e seond order trng sheme is onsidered for the generl prolem @IHFPAX 

S ∆t U 0 = R ∆t/2 D ∆t/2 C ∆t D ∆t/2 R ∆t/2 U 0 , @IHFIHA with U = (Y F , Y O , Y P , Y N , T ) T D nd
∆t new = υ ∆t η S ∆t U 0 -S ∆t U 0 , @IHFIIA PPU
where S ∆t stnds for the emedded nd lower order trng splitting methodD introdued in ghpter SF he retion nd di'usion prolems re solvedD respetivelyD y the duS nd yguR solvers s in the previous hptersF en expliit high order in time nd speD oneEstep monoE toniity preserving shemeD ywD developed y hru 8 enud in hHRD is implemented s onvetive shemeF st omines monotoniity preserving onstrints for nonEmonotone dt to void extrem lippingD with h fetures to prevent spurious osilltions round disonE tinuities or shrp sptil grdientsF gonsidering its expliit hrterD stndrd gpv stility restritions re imposed within eh splitting time step ∆tF sn this wyD dptive time stepE ping is onsidered for ll three opertors in @IHFIHA within the orresponding splitting time stepsF elthough this dynmi step size seletion is mde within presried ury tolerE ne for duS nd yguRD this is not urrently the se for the onvetive sheme for whih time stepping is done sed on stility onstrintsF es previously stted nd onsidered in previous works @seeD eFgFD xuHSAD we hve foused our ttention on the numeril solution of sti' retionEdi'usion systems3 F e hve thus extended the numeril strtegy to retionE di'usionEonvetion prolems in whih the min onstrint for the onvetive term is given y the smll time steps resulting from stility onditions relted to quite (ne sptil disretizE tionsF e onvetive sheme tht gurntees t lest seond order should e onsideredD suh tht the numeril errors ssoited with the onvetion prolem re expeted to e negligile in front of the splitting errors tking into ount the smll vlues of the onvetion time steps4 F he introdution of the onvetion prolemD nd the yw sheme in the numeril strtegyD is disussed in the followingF 10.3.1 Time Integration of the Convection e re onerned with generl onvetion prolem issued from the time opertor splitting shemeX

∂ t U C + ∂ x • G(U C ) = 0, x ∈ R d , t > 0, @IHFIPA with initil dt U C (0, •) = U 0 (•)D where U C : R × R d → R m D U 0 ∈ R m D nd G(U C ) = (G i (U C )) i=1,.
..,d with G i : R m → R m F king into ount tht generl impliit solution of prolem @IHFIPA is usully expensive in terms of omputtionl resouresD n expliit time integrtion is preferredF woreoverD expliit shemes re usully esy to implement nd mny performing nd dedited methods exist @seeD eFgFD veWPD veHPAF e review nd omprison of di'erent shemes n e foundD for instneD in hHID vHQF xeverthelessD ommon drwk of these tehniques is tht the spei( ury nd stility onstrintsD dedued usully for Ih on(gurtionsD eome often di0ult to extend to multiEdimensionl sesD nd require more sophistited developments similr to those enountered in oupled multiE dimensionl shemesF sn this ontextD one wy to keep the originl Ih shemes with often importnt gins in e0ienyD onsiders dimensionl splitting tehniques @seeD eFgFD rHQAF e de(ne then the time opertors C t x D C t y D nd C t z ssoitedD respetivelyD with the solutions t some time t of the Ih prolemsX

∂ t U C + ∂ x G 1 (U C ) = 0, ∂ t U C + ∂ y G 2 (U C ) = 0, ∂ t U C + ∂ z G 3 (U C ) = 0,        @IHFIQA
PPV issued from @IHFIPA for the xED yE ndD zEdiretionF e (rst order pproximtion is givenD for instneD y

C ∆t C U 0 = C ∆t C z C ∆t C y C ∆t C x U 0 ; @IHFIRA
wheres more suitle symmetri seond order trng sheme trTV onsidersD for exmpleD

C ∆t C U 0 = C ∆t C /2 x C ∆t C /2 y C ∆t C z C ∆t C /2 y C ∆t C /2 x U 0 , @IHFISA
where the onvetion steps ∆t C re limited y the stility restritions of the numeril shemeF ine the ltter onstrints tke usully into ount the sptil disretiztion steps s in the stndrd gpv ondition @IHFQHA @proportionl to ∆x -1 AD etter solution onsiders

C 2∆t C U 0 = C ∆t C x C ∆t C y C ∆t C z C ∆t C z C ∆t C y C ∆t C x U 0 , @IHFITA
insted of @IHFISA to etter ensure the sme numeril di'usion in ll three diretions nd to preserve thus the isotropy of the omputtions @see lso dgHWAF purthermoreD t eh time step ∆t C we need to perform three steps in @IHFITA to dvne the solution insted of (ve in @IHFISAD with possily etter e0ieny of the shemeF por the splitting sheme @IHFIHAD the opertor C is then given y

C ∆t = I C i=1 C 2∆t C,i , @IHFIUA
for 2I C onvetion steps ∆t C,i within the glol splitting step ∆tD nd @IHFITAX

C 2∆t C,i U 0 = C ∆t C,i x C ∆t C,i y C ∆t C,i z C ∆t C,i z C ∆t C,i y C ∆t C,i x U 0 . @IHFIVA
he intermedite time step ∆t C,i is the sme for ll points over the omputtionl dominD nd it is omputed suh tht

∆t C,i = min ∆t max C,i , ∆t 2 - i-1 i =1 ∆t C,i , @IHFIWA
where ∆t max C,i is the urrent mximum onvetion time step within the stility domin of the numeril shemeF he previous proedure is generl nd remins vlid for ny onvetive sheme nd for oth liner nd nonliner trnsport prolemsD with timeE nd speEvrying trnsport veloitiesF ome of the min dvntges of dimensionl splitting tehnique re its esy implementE tion nd the strightforwrd extensions to multiEdimensionl on(gurtionsF purthermoreD stility restritions in Ih re usully less restritive thn for multiEdimensionl on(gurE tionsD iFeFD max i∈[1,d] κ i ≤ C insted of d i=1 κ i ≤ CF sullyD there re lso fewer )ux evlE utions to omputeD wheres the memory requirements re settled y Ih on(gurtionD onsiderly lower thn those for fully multiEdimensionl shemesF xeverthelessD the min disE dvntges relted to dimensionl splitting re tht it is not suitle for unstrutured meshD nd tht it is usully limited to low order shemesF enother inonveniene for some prtiulr pplitions will e disussed in the followingF Dimensional Splitting and Divergence Free Velocity Fields por most of the on(gurtions nd models tht we will onsider in this work @nd the ones we would like to investigte in the futureAD the onvetive prt is in generl onservtive form like PPW in @IHFIPAF he veloity (eld is either vrile to solve suh s in the ompressile xvierE tokes or iuler equtionsD or funtion of other vriles suh s in driftEdi'usion equtions modeling plsm dishrgesF sn this ontextD the dimensionl splitting will e performing tool for strutured meshes if oupled with dedited numeril method for onservtion lws tht ensures n dequte tretment of steep grdientsD even shoksD suh s the yw sheme hHRF sn the prtiulr ontext of the present hpterD we will onsider deoupled veloity (eld whih will e imposed nd divergene freeD ording to the thermoEdi'usive pprohF he slr (elds given y the temperture nd the speies mss frtions will e trnsported y suh veloity (eld long the )uid prtiles in @IHFPAF reneD the relevnt model is nturlly in rther nonEonservtive form with veloity (eld tht preserves the mesure s well s onstnt tempertureGspeies (eldsF xeverthelessD sine we wnt to hve generi pproh for the onvetive suprolemD we will rest the onvetive system into onservtive formF e ommon prolem tht rise when using dimensionl splitting is tht suh n pproh my introdue some unwnted sptil deformtions in the numeril solution of onvetion prolems in onservtive form like @IHFIPAD with divergene free veloity (eldsF hese issues re disussed with more detils in rHQY they were originlly notied in fotWP nd further investigted in vvwWTF e simple exmple is the se of sptilly onstnt solutions trnsported y divergene free veloity (eldF sn order to etter illustrte thisD let us onsider one of the onvetive prolems oming from @IHFPAX

∂ t T + v • ∂ x T = 0.
@IHFPHA e swith to onservtive form y mking use of the zero divergene of the veloity (eld5 

∂ t T + ∂ x • (vT ) = 0, @IHFPIA
tking into ount tht oth representtion re equivlent s long s the veloity (eld v is divergene freeX

∂ x • v = 0. @IHFPPA
his is the se for the Ph veloity (eld given y @IHFUAD whih hve in prtiulr motivted this short nd omplementry studyF sf we now onsider sptilly onstnt T (x) = T D we n see tht the numeril time inteE grtion of @IHFPIA should nturlly yield T (x, t) = T fter ny time tF xeverthelessD this will not e neessrily the se for the dimensionl splitting solution tht independently onsiders prolemsX

∂ t T + ∂ x (v x T ) = 0, ∂ t T + ∂ y (v y T ) = 0, ∂ t T + ∂ z (v z T ) = 0,        @IHFPQA unless ∂ x v x = ∂ y v y = ∂ z v z = 0. @IHFPRA
he resulting vritions re thus rti(il nd my look s sptil deformtionsD ut the use is purely relted to the oupling of dimensionl splitting with onservtive formultion 6 F sn prtiulrD this de(ieny my result in qulittively d results for prolems with speE vrying )ow (elds nd sptilly onstnt solutions in prt of the dominD whih re usully PQH kground onentrtion vlues in pplitions vvwWTD rHQF elthough seond order diE mensionl splitting onsiderly redues this prolemD smll osilltions my reminGpper depending on the sptil distriution of the prolemF his kind of inonveniene might e oserved in the numeril simultion of prolem @IHFPAD tking into ount tht we im t solving lolized propgting fronts in semiEequilirium mediF e hve thus implemented the following simple proedure7 F snsted of onsidering the onvetion suprolem @IHFPIAD we pply the seond order dimensionl splitting tehnique to the equivlent prolemX

∂ t T + ∂ x • (vT ) = T (∂ x • v). @IHFPSA
his mounts to onsider prolemsX

∂ t T + ∂ x (v x T ) = T (∂ x v x ), ∂ t T + ∂ y (v y T ) = T (∂ y v y ), ∂ t T + ∂ z (v z T ) = T (∂ z v z ),        @IHFPTA
for whih the onvetive numeril sheme is implemented for the left side term s in the stndrd se @IHFIQAD wheres the right side term is introdued s orretive soure termF 10.3.2 The OSMP Scheme he yw sheme is uilt upon oneEstep pproh sed on vxEendro' pproximtion vTHF gonsidering liner slr trnsport equtionX

∂ t u + a ∂ x u = 0, @IHFPUA
with onstnt veloity aD nd denoting y u n+1 j the numeril solution of @IHFPUA t time t = t 0 + nδt nd position x = x 0 + jδxD the min ide is to express u n+1 j y using ylor series expnsion where the time derivtives re sustituted with spe derivtives ording to the ext eqution @IHFPUAF he ltter proedure pplied up to order 2 with n upwind disretiztion for odd derivtives nd entered formule for even derivtivesD yields the seondE order vxEendro' shemeX

u n+1 j = u n j - δt δx (F lw j+1/2 -F lw j-1/2 ), @IHFPVA
where F lw j+1/2 is the vxEendro' numeril )uxX

F lw j+1/2 = au n j + (1 -κ) 2 a(u n j+1 -u n j ), @IHFPWA nd κ is the lol gpv numerX κ = a δt δx .
@IHFQHA he modi(ed eqution for this sheme reds

u t + a ∂ x u = a δx 2 6 (κ 2 -1)∂ 3 x u.
@IHFQIA PQI fy sutrting from the vxEendro' sheme n upwind term issued from the disretiztion of the right hnd side of @IHFQIAD one otins the lssil third order upwindEised sheme with numeril )ux given y

F 3 j+1/2 = au n j + (1 -κ) 2 a u n j+1 -u n j - 1 + κ 3 (u n j+1 -2u n j + u n j-1 ) . @IHFQPA
roeeding in the sme wyD the orretion of the higher order error terms of the suessive modi(ed equtions yields reurrene reltion tht llows us to onstrut fmily of shemes with ritrry order of ury in time nd spe hHRF sn this seD the numeril )uxes n e rest in generi formX

F p j+1/2 = au n j + φ p j+1/2 (1 -κ) 2 a(u n j+1 -u n j ), @IHFQQA
suh tht the time integrtion is written s

u n+1 j = u n j - δt δx (F p j+1/2 -F p j-1/2 ).
@IHFQRA reneD sheme of order p is expressed in the usul form of seond order )ux limiter shemeD nd the φ p j+1/2 plys the role of n ury funtion tht settles the order of ury of the shemeF por the third orderD we hveD for instneD

φ 3 j+1/2 = 1 - 1 + κ 3 (1 -r j+1/2 ), @IHFQSA with r j+1/2 = u n j -u n j-1 u n j+1 -u n j .
@IHFQTA he φ p funtions up the the UEth order of ury were dedued in hHRD s well s extensions to the nonliner seX ∂ t u + ∂ x g(u) = 0, @IHFQUA y onsidering the toin a(u) = ∂ u gD nd thus @IHFQRA holds with

F p j+1/2 = g n j + φ p j+1/2
(1 -κ) j 2 (g n j+1 -g n j ). @IHFQVA por the third orderD @IHFQSA eomes

φ 3 j+1/2 = 1 - 1 3 (1 -κ 2 ) j+1/2 -(1 -κ 2 ) j-1/2 r j+1/2 (1 -κ) j+1/2 , @IHFQWA with r j+1/2 = g n j -g n j-1 g n j+1 -g n j .
@IHFRHA hese shemes hve the sme order of ury in time nd speD nd hve the property of giving the ext solution if the gpv numer is equl to IF sn prtieD stndrd gpv stility ondition is onsideredX 0 < κ ≤ 1F his fmily of shemes is rther simple to implement nd onsiders (xed stenils for the )ux evlutionsF sn terms of performneD it ws shown in hHW tht the UthEorder sheme is t lest six times more e0ient in g time with respet to method of lines using ungeEuutt time integrtion or ixy shemes for spe disretiztions tht represent the sme uryF por the yw shemeD stenil of eight points is required for UEth order in time nd speF sn generlD the stenils re onstituted of p + 1 pointsF pinllyD the originl monotoniity preserving onstrints of uresh 8 ruynh rWU hve een rest in h frmework in order to preserve ury ner extremF sn prtieD these riteri re expressed in terms of )ux limittion onstrints pplied through φ p into @IHFQQA nd @IHFQVAD s developed in hHRF PQP Implementation of the OSMP Scheme e desrie in this prt the prtil implementtion of the yw sheme @IHFQVA for suproE lem @IHFPSAD following the lterntive pproh introdued to redue the potentil osilltions relted to the dimensionl splitting proedure for these prtiulr prolemsF gonsidering the split onvetion suprolem @IHFPIA nd the stndrd yw sheme @IHFQVAD the numeril solution in the xEdiretion fter time step ∆t C is given y

T n+1 j = T n j - ∆t C ∆x (F p j+1/2 -F p j-1/2 ), @IHFRIA
with the )uxes

F p j+1/2 = F roe j+1/2 + φ p j+1/2 (1 -κ) j 2 |v x,j+1/2 |(T n j+1 -T n j ), @IHFRPA
where F roe j+1/2 is the stndrd oe numeril )uxX

F roe j+1/2 = 1 2 v x,j+1/2 (T n j+1 + T n j ) -|v x,j+1/2 |(T n j+1 -T n j ) . @IHFRQA
ell the omputtions re entirely evluted on lolly uniform mesh of size ∆xF he sme follows for diretions y nd zF eording to @IHFPSAD orretive term should e introdued into the time evolution sheme @IHFRIA for this prtiulr on(gurtionF he sheme is thus written s

T n+1 j = T n j - ∆t C ∆x (F p j+1/2 -F p j-1/2 ) + ∆t C ∆x T n j (v x,j+1/2 -v x,j-1/2 ), @IHFRRA
for oneEstep numeril shemeD tht long with @IHFRPA nd @IHFRQA yields modi(ed yw shemeF he numeril simultions of prolem @IHFPA show tht the modi(ed sheme @IHFRRA llows us to onsiderly redue lol umultions in sptilly onstnt regionsF he osilE ltions introdued y the dimensionl trng splitting re however very smllF 10.4 Propagation of Premixed Flames sn the frmework of prolem @IHFPA tht models lminr )mes interting with vortiesD we ondut in the following study on the performne of the proposed numeril strtegy for the simultion of premixed )mes in Ph nd Qh on(gurtionsF he model under onsidertion omes from on(gurtion investigted y vverdnt 8 gndel in vgVWF 10.4.1 Model Formulation e estlish in this prt the mthemtil formultion of the model introdued in vgVW for Ph on(gurtionF ixtensions to Qh ses re strightforwrd nd will e detiled fterwrdF e onsider squre omputtionl domin where mixture of fuel nd oxidizer onstitutes the lower hlfEplneD while produts oupy the upper hlfEplneF he hemistry is fst ut with (nite rteD nd thin premixed lminr )me is initilly loted t the midEplneF sn this seD the retion rte is modeled y the following errhenius lw vgVWX

ẇ = B 1 W O W F ρ 2 Y O Y F T 2 e -Ta/T , @IHFRSA
where B 1 is preexponentil ftor nd T a D the tivtion energyF por premixed lminr )mesD the mixture my e ssumed to e fuel len with high diluent onentrtionF reneD PQQ the retion rte is ontrolled y the fuel onentrtionD wheres the oxidizer mss frtion is nerly onstnt nd equl to its upstrem vlue Y O = Y Oo F hereforeD @IHFRSA eomes 

ẇ = B 1 W O W F ρ 2 Y Oo Y F T 2 e -
θ Z = T + Q c p Y F , @IHFRUA
veri(es time dependent eqution of type @IHFPA without soure term like @IHFSAD wheres from simple energy lne reltion in n diti frmeworkD we get

c p (T b -T o ) = Q(Y Fo -Y Fb ). @IHFRVA
fy evluting θ Zo nd θ Zb in @IHFRUA nd from @IHFRVAD it n e seen tht θ Z is onstnt throughout the )meF gonsequentlyD progress vrile c(x, y, t) n e introduedX

c = T -T o T b -T o = Y Fo -Y F Y Fo -Y Fb . @IHFRWA
sing T /T o = 1 + τ cD where τ = T b /T o -1D the retion rte @IHFRTA eomes 8 ẇ = B Y Fo (1 -c)e -Ta/(To(1+τ c)) , @IHFSHA with

B = B 1 W O W F ρ 2 o Y Oo T 2 o .
@IHFSIA hereforeD for the fuel mss frtion eqution in @IHFPAD we now hve

∂ t Y F + v x ∂ x Y F + v y ∂ y Y F -D ∂ 2 x Y F + ∂ 2 y Y F = - B ρ o Y Fo (1 -c)e -Ta/(To(1+τ c)) , @IHFSPA
whih my e written s

∂ t c + v x ∂ x c + v y ∂ y c -D ∂ 2 x c + ∂ 2 y c = B ρ o (1 -c)e -Ta/(To(1+τ c)) . @IHFSQA
gonsidering squre omputtionl domin of size 2LD hrteristi di'usion time τ d = L 2 /DD nd veloity V = D/LD we de(ne the following dimensionless vrilesX

x = x L , y = y L , v x, = v x V , v y, = v y V , t = t τ d .
@IHFSRA e (nlly otin vgVWX @IHFSUA sn grtesin oordintesD the veloity is given y

∂ t c + v x, ∂ x c + v y, ∂ y c -∂ 2 x c + ∂ 2 y c =
v x, = y -y 0, r v θ, , v y, = - x -x 0, r v θ, ,          @IHFSVA
for ounterlokwise rotting vortex with rdius

r 2 = (x -x 0, ) 2 + (y -y 0, ) 2 , @IHFSWA
where (x 0, , y 0, ) is the enter of the vortexF 10.4.2 Numerical Simulations: 2D Conguration sn this pplition we onsider two dynmi ounter rotting vortiesD eh one modeled y @IHFSTAD interting with premixed )me governed y @IHFSSA in Ph omputtionl dominF ell these simultions hve een performed on n ewh hnghi PFU qrz proessor with memory pity of QP qfF Data Initialization and Simulation Parameters e solve prolem @IHFSSA with xeumnn homogeneous oundry onditions in Ph omE puttionl dimensionless domin of [-1, 1] 2 D iFeFD L = 1 into @IHFSRAF he initil ondition orresponds to premixed )me in the limit of lrge tivtion energy vgVWX c = e (y -y 0, )/∆ , y ≤ y 0, , 1, y > y 0, , @IHFTHA where ∆ is the prehet zone thiknessF por the following omputtionsD the following modeling vlues were onsidered into equtions @IHFSSAD @IHFSTAD nd @IHFTHAX Da = 2.5 × 10 9 , T a = 20000 K, T o = 300 K τ = 6.72, @IHFTIA Re = 1000, Sc = 1, @IHFTPA ∆ = 0.02. @IHFTQA he veloity (eld is given y the superposition of two vorties with opposite signs in @IHFSVAD entered t (-0.25, -0.5) for the ounterlokwise vortexD nd (0.25, -0.5) for the lokwise oneF he veloities re omputed efore eh time integrtion of the onvetion prolem nd updted fter two time steps ∆t C,i ording to @IHFIUAD s well s the mximum time step ∆t max C,i F PQS por the numeril strtegyD the dptive splitting ury tolerne in @IHFIIA ws set to η = 10 -3 D unless noted otherwiseD with η ROCK4 = 10 -5 nd η Radau5 = 10 -7 for the yguR nd duS solversF he third order yw sheme ws onsidered for the onvetion prolem with stility gpv ondition equl to 1F he time domin of integrtion ws given y t ∈ [0, 4 × 10 -3 ]F por the multiresolution nlysis nd in order to e onsistent with the tolerne of the time integrtion solverD ε = 10 -2 nd ε = 10 -3 were hosen s multiresolution threshold vlues in the following illustrtionsF he (nest grid orresponds to sptil disretiztion of 1024 2 pointsD iFeFD J = 10 s (nest grid levelF

Numerical Results

eording to the de(nition of the progress vrile c in @IHFRWAD the fresh mixture is given y c = 0D wheres c = 1 orresponds to the urnt gsesF trting from the plnr premixed )me @IHFTHA t y = -0.5D with fresh gses in the lower prt @lue zone in the (gureAD pigure IHFP shows the time evolution of c nd the intertion of the two imposed vorties with the )me frontF he veloity (eld generted y the vorties is shown in pigure IHFID nd is hrterized y high vlues with lolized strong grdients for the onsidered eynolds numer of Re = 1000F es onsequeneD the fresh mixture is drwn up towrds the hot region @red zone in pigure IHFPA in the enter regionD eting the dvne of the reting frontD wheres hot gses propgte fster in the outer zones round the vorties oresF he ontour lines in pigure IHFP ount for the sptil thikness of the )me in whih the fresh gses ret nd urnD nd where n importnt numeril e'ort is usully required to preisely desrie the phenomenonF sn this on(gurtion the )me thikness is redued from out 0.05 in the stndrd plnr on(gurtionD to pproximtively 0.025 t regions where the )me surfe is shered y the lolly high veloity grdients s seen in pigure IHFIF e sptil mesh of 1024 2 points involves pproximtively 10 disretiztion points throughout the )me frontD nd genertes resonly good numeril representtion of the prolemF prom numeril point of viewD the ltter issue imposes (ne sptil disretiztion for lolized strutureD 100 times smller thn the glol sle of the omputtionl dominD nd thus n dptive mesh re(nement tehnique seems nturlF Fig. 10.2: 2D propagating ame. Time evolution of variable c at t = 5 × 10 -4 (top), 10 -3 (middle), and 1.5 × 10 -3 (bottom). Left: red (resp., blue) zone corresponds to burnt (resp., fresh) gases, c = 1 (resp., c = 0). Right: contour lines with c = 0 -0.99 and ∆c = 0.11.

Sect. 10.4 -Propagation of Premixed Flames PQU pigure IHFQ shows the orresponding dpted gridsF he representtion involves 7 levels of di'erent sptil disretiztion where the (nest regions oinide with the propgting frontsF xotie tht the highest veloity vlues do not neessrily orrespond to the )me front s seen in pigure IHFID nd thus we will hve onstnt onentrtion regions with strong vritions of the trnsport (eldF sn the ontext of dimensionl splittingD the ltter feture introdues some numeril errors s previously disussedD nd the orretive term introdued in @IHFRRA llows us to redue lol umultions of c from mximum of 1.01 to pproximtively 1.0001 in the urnt regionsF he multiresolution deomposition nturlly identi(es this ehviorD nd onsequently re(nes these zones s seen in pigures IHFI nd IHFQF sn uniform grid simultionsD no umultion ws deteted when using @IHFRRAD nd c is stritly lower thn or equl to 1F pinllyD the dt ompressions DC de(ned y @RFQWA nd hieved in this se with ε = 10 -2 nd ε = 10 -3 D show tht no more thnD respetivelyD 10 % or 15 % of the 1024 2 points re neessry to represent the )me front within the presried tolerneF sn order to verify tht the ury of the omputtions is settled y the ury tolernesD Sect. 10.4 -Propagation of Premixed Flames PQV we de(ne for prolem @IHFSSA disretized on uniform mesh of 1024 2 X

• e qusiEext referene solution c J qe D otined with the trng sheme @IHFIHA with smll (xed splitting time step of ∆t = 10 -7 Y

• he splitting solution c J split is now otined with the dptive splitting sheme @IHFIHAD with @IHFIIA nd ury tolerne of η = 10 -3 D omputed lso on the uniform gridY nd

• he timeGspe dptive solution c M R split D omposed of the dptive splitting tehnique nd the multiresolution representtion with the equivlent of 1024 2 points in the (nest grid level J = 10F he(ning lso the numeril errorsX

E J split = c J qe -c J split L 2 , @IHFTRA E J M R = c J split -c M R split L 2 , @IHFTSA E M R split = c J qe -c M R split L 2 , @IHFTTA
orrespondingD respetivelyD to the time dptive splittingD spe dptive multiresolutionD nd timeGspe dptive pproximtionsD the following le IHFI summrizes these errors where the solutions on dpted grids c M R split D were reonstruted on the (nest gridF ith this hoie of prmetersD the glol ury of the numeril strtegy E M R split is indeed ruled y the pproximtion error of the time integrtion E J split D whih is relted to the lol error tolerne ηF he ltter glol error will remin prtilly independent of the multiresolution errors E J M R s seen in le IHFID s long s pproprite vlues of dt thresholding re tken into ount @see disussions in hpters R nd SAF gonerning the multiresolution errorsD the proportionlity with respet to ε is veri(ed ut with lower rte thn in previous resultsF his rte redution rises either euse some error ompenstion tkes ple in the se with ε = 10 -2 D or euse of the spurious vlues introdued y the dimensionl splitting whih re not present in the referene solutions on uniform gridD used to ompute these errorsF por this prtiulr prolemD the glol ury is nevertheless preserved for oth thresholding vluesD even for ε = 10 • η @see (nl remrks in ghpter SAF pinllyD pigure IHFR illustrtes the dptive time steps onsidered in this prolemF he splitting time steps re prtilly the sme for oth multiresolution tolernesF his indites good deoupling of sptil nd temporl errors nd lso proper oupling of time evolution nd sptil representtionsF ytherwiseD ny de(ieny will e re)eted y the lol error estimtesD nd thus y the splitting time steps issued from the time dptive shemeD s disussed in ghpter SF en initil vlue of ∆t 0 = 10 -8 ws hosen in order to ope with the sudden pprition of the veloity (eld with very high mximum vlues of out 4×10 5 D with Re = 1000 PRH into @IHFSTAF king into ount tht the glol physis is piloted y the propgtion of the )meD the splitting time steps evolve until prtilly onstnt vlue of ∆t ≈ 9 × 10 -6 F xeverthelessD time dpttion is needed to hndle fst vritions in the eginningD nd for the (nl totl omustion of the fresh gses t some unknown timeF sn this on(gurtionD ll gses re urnt y t = 3.5 × 10 -3 F pigure IHFR shows tht n importnt deoupling of time sles is possileD where the splitting time step ∆t is glolly t lest 10 times lrger thn the inner integrtion steps for the split retionD di'usionD nd onvetion prolemsF his nturlly yields importnt gins of omputtionl e0ienyD lwys within presried uryF he retion nd di'usion time steps re hosen sed on the ury tolernes of the solvers η Radau5 nd η ROCK4 D nd for eh hlf splitting time step we represent in pigure IHFR the verged vlues of the inner retion nd di'usion sustepsF his dt post tretment serves only to otin lerer representtions of the time evolution of the time steps without inluding the often muh smller (nishing susteps within the urrent @hlfA splitting time stepF etion steps re of the order of ∆t R ≈ 7 × 10 -7 t the )me front @shown in pigure IHFRAD nd they progressively inrese up to ∆t R = ∆t/2 wy from the highly reting reF hi'usion time steps re of the order of ∆t D ≈ 5 × 10 -6 @verged in the representtionA with s = 6 inner stges for yguRD for spetrl rdius of out 2.2 × 10 6 F he onvetion time steps re omputed y @IHFIWAD sed on the mximum stility time steps ∆t max C,i whih re illustrted in pigure IHFRD to void the previous representtion prolemF his onvetive step rnges from ∆t C ≈ 2 × 10 -9 in the eginning to ∆t C ≈ 2 × 10 -7 nd ∆t C ≈ 5 × 10 -6 D due minly to the onstrining high eynolds numer onsideredF his resonly explins the high ost of the onvetive step per splitting time step in le IHFQF he vritions in the time evolution of the onvetion time step re originted y the ft tht the highest veloity vlues re not neessrily t the (nest grid during the whole phenomenonD s previously notedF st is importnt to notie tht lol time stepping strtegy is not esy to implement in suh on(gurtion euse of the previous remrkD nd lso euse the veloity (eld is highly nonliner in spe nd evolves in timeF es onsequeneD simple proedure to onsistently prtition the lrgest onvetion time step nd to de(ne lol time steps over the whole dominD is not strightforwrdF enother lterntive tht hs not een studied in this workD onsiders n dptive mesh re(nement sed not only on the unknown vriles of the prolemD ut lso on the veloity (eldF 10.4.3 Numerical Simulations: 3D Conguration he timeGspe dptive tehnique is esily extended to Qh on(gurtionsF sn order to illusE trte thisD we onsider the solution of @IHFSSA over dimensionless omputtionl domin of [-1, 1] 3 F he sme dt initiliztion is onsidered with z nd z 0, D insted of y nd y 0, D respetivelyD into @IHFTHAD s well s the sme modeling prmeters @IHFTIAE@IHFTQAF Fig. 10.5: 3D propagating ame. Time evolution of variable c (left) and dynamic adapted grids (right) corresponding to 256 3 points at the nest level J = 8, at t = 5 × 10 -4 (top) and 1.5 × 10 -3 (bottom).

] E J split [10 -2 ] E J M R [10 -3 ] E M R split [10 -2 ] ε = 10 -2 ε = 10 -3 ε = 10 -2 ε = 10 -3 0.
he dptive splitting ury tolerne in @IHFIIA is lso set to η = 10 -3 D with η ROCK4 = 10 -5 D η Radau5 = 10 -7 D nd ε = 10 -2 for the multiresolution threshold vlueF he time domin of integrtion is given y t ∈ [0, 3.5 × 10 -3 ]D wheres the (nest grid orresponds to sptil disretiztion of 256 3 pointsD iFeFD J = 8 s (nest grid levelF e Qh veloity (eld is de(ned for this on(gurtion y toroidl vortex diretly inspired y the previous Ph veloity (eldF et eh plne ontining the zExisD we onsider thus pir of ounter rotting vorties omputed s usul with @IHFSTA with rdius r 2 = (x -x 0, ) 2 + (y -y 0, ) 2 + (z -z 0, ) 2 , @IHFTUA entered t x 2 0, + y 2 0, = 0.25D z 0, = -0.5F elthough the resulting (eld is not divergene PRP freeD it su0es to onstrut Qh on(gurtion to illustrte the numeril pilities of the methodF he sme simultions n e performed extly in the sme wy with more physilly onsistent veloity (eldsF pigure IHFS shows the intertion of the initil premixed )me with the toroidl vortexD nd the orresponding dpted grids on whih the solutions re omputedF pigure IHFT shows the orresponding time steps of integrtionF e retrieve qulittively similr ehvior with respet to the previous Ph seD in terms of splitting time steps nd the time stepping for eh split suprolemF he fresh gses re ompletely urnt this time y t = 3 × 10 -3 F gonsidering the otined dt ompressionD no more thn 18 % of the 256 3 points re requiredF his simultion took pproximtively 17.26 hours of g timeF ν k,j W k = 0, j = 1, . . . , N R , @IHFUHA where ν k,j = ν k,j -ν k,j . @IHFUIA sn this ontextD the retion rte ẇk of speies k onsiders the rte of prodution of χ k y ll N R retions @IHFTVAD nd it is given y

ẇk = N R j=1 ν k,j Q k , @IHFUPA
where Q k is the rte of progress of retion jD whih is written s

Q k = K f,j Ns k=1 ρY k W k ν k,j -K r,j Ns k=1 ρY k W k ν k,j , @IHFUQA
where K f,j nd K r,j de(neD respetivelyD the forwrd nd reverse rtes of retion jF he determintion of these rte onstnts onstitute entrl prolem in omustion modeling HSD nd they re usully modeled y n empiril errhenius lw @s seen eforeD for instneD for @IHFRSAAX K f,j = A f,j T β j e -T a,j /T . @IHFURA he kwrd rtes K r,j re then omputed sed on the forwrd ones @IHFURAD nd thus omputing the progress rtes Q k y @IHFUQA for eh retion jD involves providing dt for the preexponentil onstnts A f,j D the temperture exponents β j D nd the tivtion tempertures T a,j F Implementation of Complex Chemistry in the Model gonsidering the sme modeling hypothesesD the generl prolem @IHFPA n e rewritten for k = 1, . . . , N s D s

∂ t Y k + v • ∂ x Y k -D ∂ 2 x Y k = W k ρ ẇk , ∂ t T + v • ∂ x T -D ∂ 2 x T = - 1 ρc p Ns k=1 h k W k ẇk ,            @IHFUSA
ording to @IHFQA nd @IHFRAD where the retion rtes ẇk re given now y @IHFUPAF he min di0ulty of this prolem is tht the thermoEdi'usive ssumption U of onstnt density is not onsistent with the lol vrition of speies onentrtionsD on whih the retion rtes dependF etullyD in low wh regime for whih the previous lne equtions re still vlid @seeD eFgFD HSAD the lol vrition of density should verify the stte equtionX ρ R W T = p 0 , @IHFUTA for onstnt pressure p 0 D where R = 8.314 J/(mol • K) is the perfet gs onstntD nd W is the men moleulr weight of the mixture expressed y

1 W = Ns k=1 Y k W k . @IHFUUA
PRR sn prtieD this inonsisteny nturlly leds to strong numeril prolemsF sn order to overE ome this di0ulty while keeping t the sme time the deoupling etween the veloity (eld nd the determintion of speies nd temperture @iFeFD n imposed veloity (eld into @IHFUSAAD we hve mde the following ssumptionF he density is supposed onstnt on the left hndE side of the equtions in @IHFUSA suh tht we keep extly the previous pprohD wheres it is updted nd lolly omputed on the right hndEside y the stte eqution @IHFUTA with the urrent onentrtions nd tempertureF purthermoreD onsidering the retion prolem oming from @IHFUSAX

ρ∂ t Y k = W k ẇk , ρc p ∂ t T = - Ns k=1 h k W k ẇk ,          @IHFUVA
nd tht y de(nition

c p = Ns k=1 c p,k Y k , @IHFUWA
we n esily see tht

ρ∂ t h = ρc p ∂ t T + Ns k=1 h k ρ∂ t Y k = 0. @IHFVHA
hereforeD sine the enthlpy is uniformly onstnt for prolem @IHFUSAE@IHFUTAD iFeFD h = h 0 throughout the )me frontD nd tht

h 0 = Ns k=1 h k Y k = Ψ(Y 1 , . . . , Y Ns , T ), @IHFVIA
where the speies enthlpies lolly depend on the tempertureD we n ompute the lol tempertures from @IHFVIA with the urrent set of speies onentrtionsD rther thn from the time dependent eqution for the temperture in @IHFUSAF elthough solving @IHFVIA implies the numeril solution of n impliit nonliner system t eh pointD this lterntive llows us to onsistently solve the right hnd side y lolly onsidering the right tempertureD ording to the onstnt nd known enthlpy of the mixtureD nd thus the orresponding density ording to the stte eqution @IHFUTAF edditionllyD we n orretly ouple the left nd right side termsD for whih the sme enthlpy is onserved in time nd speF pinllyD onsidering the sme dimensionless vriles @IHFSRAD we im t solving

∂ t Y k + v • ∂ x Y k -D ∂ 2 x Y k = τ d W k ρ ẇk , @IHFVPA
for k = 1, . . . , N s D where the veloity (eld v is lso sed on @IHFSTAF ith the previous ssumptionsD the retion prolem

∂ t Y k = τ d W k ρ ẇk , @IHFVQA
is lolly solvedD y onsidering the uniformly onstnt enthlpy h 0 D nd tht IF he lol temperture T is omputed from @IHFVIA with the urrent set of speies onE entrtions (Y 1 , . . . , Y Ns )Y PRS PF he density ρ is omputed from the stte eqution @IHFUTA nd the urrent vlues of T nd (Y 1 , . . . , Y Ns )Y nd QF he retion rtes ẇk re omputed from @IHFUPA with the urrent vlues of ρD T D nd (Y 1 , . . . , Y Ns )F yne ginD this numeril proedure will not e neessry for more onsistent physil model for the trnsport equtions nd the orresponding hydrodynmisD ut llows us to perform some numeril tests of the proposed strtegy for models inluding detiled hemistryF Data Initialization and Simulation Parameters e onsider the system @IHFVPA of N s equtions in Ph squre omputtionl domin of 5 m of sideD iFeFD [-6.25, 6.25] 2 in dimensionless unitsD where we hve onsidered typil di'usion length nd time sle of L = 4 × 10 -3 m nd τ d = L 2 /D with D = 2.26 × 10 -5 m 2 /sF e methne CH 4 premixed )me is tken into ount for whih the glol retion is written s

CH 4 + 2(O 2 + 3.76N 2 ) → CO 2 + 2H 2 O + 7.52N 2 @IHFVRA
with mss stoihiometri rtio st of R ording to

st = ν O W O ν F W F . @IHFVSA
he detiled kinetis @IHFTVA ssoited with the glol retion @IHFVRA is modeled y N s = 49 speies nd N R = 299 retionsD following retive sheme developed y vindstedt 8 veung @IWWVAF he retion rtes @IHFUPA nd in generl ll speies or mixture relted vriles re omputed using the ghemkin lirry uwVHF he fresh mixture is given y

Y CH 4 = 0.06, Y O 2 = 0.3, Y N 2 = 0.64, @IHFVTA
t temperture T o = 300 KD nd tmospheri pressure p 0 D whih involves n diti )me temperture of T b = 2349.67 K nd mixture enthlpy of h 0 ≈ -2.8 × 10 9 D ording to @IHFVIAD for the given set of speies nd retionsF he initil mixture @IHFVTA orresponds to len regime in whih the oxidizer is in exess with respet to the fuelD nd thus the mixture equivlene rtio φ M is lower thn 1X

φ M = st Y F Y O . @IHFVUA
sn order to initilize the premixed )me we solve the generl prolem @IHFPA for Y F D Y O D nd T in Ih on(gurtion without onvetionD in simpli(ed hemistry frmeworkF hen the )me front hs onverged nd propgtes in selfEsimilr wyD the otined pro(le is reonstruted for ll speies y n interpoltion tehnique sed on the one performed initilly on Y F D iFeFD Y CH 4 D onsidering the knownD fresh nd urntD onentrtion vluesF e Ph plne )me with ll N s speies is thus genertedD nd it is gin integrted without onvetion with onstnt splitting time step of ∆t = 10 -5 during t ∈ [0, 10 -4 ]D in order to otin su0iently onsistent )me pro(le for ll speiesF et t = 10 -4 D the veloity (eld is turned onD s well s the time dptive sheme for the omplete retionEdi'usionEonvetion prolem with n initil splitting time step of ∆t 0 = 10 -8 D nd n ury tolerne of η = 10 -2 F e keep the sme previous ury tolernes for yguR nd duSD iFeFD η ROCK4 = 10 -5 nd η Radau5 = 10 -7 F PRT he spe dptive tehnique is used from the eginning of omputtions with threshold vlue of ε = 10 -2 D for whih the (nest grid orresponds to sptil disretiztion of 1024 2 pointsD iFeFD J = 10 s (nest grid levelF enother stndrd initiliztion proedure onsidersD for instneD n initil Ih )me otined with the remix solver of ghemkin uwVH for the given kinetisD insted of the simple hemistry )me @seeD eFgFD hfHHD xuHSD xHTAF es in the previous Ph seD the veloity (eld is given y the superposition of two vorties with opposite signs in @IHFSVAD entered t (-2, 2.5) for the ounterlokwise vortex nd (2, 2.5) for the lokwise oneD where y = 2.5 is pproximtively the initil position of the plne frontF woreoverD Re = 625 nd Sc = 1 re onsidered for the veloity evlutionF sn order to void the sudden nd nonphysil strong inrese of lol vlues of v θ, D we rewrite @IHFSTA s v θ, (r , t ) = Re Sc r 1 -e -r 2 /(Sc(R 2 +4 t )) , @IHFVVA for t ≥ 10 -4 D where R = 10 -1 is n initil rdius for the visous ore vgVWF es in the previous simultions of ghpter W with detiled hemistryD there is n importnt inrese of the omputtionl ostF hereforeD the sme prllel omputtion tehnique for shred memory rhitetures ws implemented for this on(gurtionF st onsiders prllel nd independent solutions of the retion prolem y spe pointsD nd y speies for the di'usion nd onvetion termsF he following simultions were performed on IP ore @PxTA TR its mhine @ewhEhnghi PFU qrz proessorsA with memory pity of RV qfF

Numerical Results

pigure IHFU shows the onentrtion of methne CH 4 nd n intermedite speiesD the OH rdilD t t = 5×10 -3 F he ltter one is often used to lolize the )me front in experimentl deviesF he dptive multiresolution shows lso good ehvior in terms of lol re(nement even for muh lrger set of vrilesD 49 ompred with 19 in ghpter WF elthough we hve hnged the dimensionless units with respet to the previous simple hemE istry seD nd tht we re using lower eynolds numer for the veloity (eldD the ontour lines for Y CH 4 show muh thiner )me thikness s result of the intertion of the premixed )me with the vortiesF e rell tht therml expnsion is negleted in this model nd heneD thiker )mes re expeted otherwiseF his )me thikness is of out 0.05D iFeFD pproximtively 250 times smller thn the glol sle of the omputtionl dominF sn order to hve the sme sptil resolution s in the previous seD we should use either t lest two times (ner disE retiztionD iFeFD sptil mesh of 2048 2 pointsD or resle more ppropritely the prolemF sn prtiulrD the representtion of Y OH in pigure IHFU lerly shows tht more points re needed for etter desription of the frontF he dt ompressions hieved for the urrent on(guE rtion re very highD more thn 95 % ording to @RFQWAD tking into ount tht the )me front is muh more lolized within the entire omputtionl dominF pigure IHFV illustrtes the veloity (eld omputed ording to @IHFVVA with eynolds numer of Re = 625F e less intense veloity (eld ws onsidered in this se tking into ount the inE onsistenies oming from the modeling ssumptions tht were introdued to esily implement detiled hemistry in the generl prolem @IHFPA9 F he splitting time stepD dynmilly dpted to hndle the initil vortiesD is dpted from ∆t 0 = 10 -8 to n lmost onstnt vlue of ∆t ≈ 2 × 10 -6 @≈ 1.4 µsA for n ury tolerne of η = 10 -2 F por this on(gurE tionD there were lwys two onvetion time steps within the splitting time step ording to @IHFIWAD iFeFD ∆t C,i = ∆t/2D i = 1, 2F por the given η ROCK4 nd η Radau5 tolernesD the di'usion time steps were of the order of the splitting time stepD iFeFD ∆t D ≈ ∆t/2D wheres the minimum retion time steps t the front were of pproximtively ∆t R ≈ 2 × 10 -7 @≈ 142 nsAD grdully inresing up to ∆t R = ∆t/2 elsewhere 10 F e rell tht ll these solvers re sed on high order shemesD so tht muh smller time steps would e required for stndrd lower order methods for eh suprolemF he g time for this simultion ws of out 18.99 hours for t ∈ [0, 5.5 × 10 -3 ] with 10 Even though a detailed comparison would be completely inappropriate, mainly because we do not consider exactly the same problem, let us give some details on the numerical simulations performed by Knio et al. in [KNW99] for a low Mach 2D methane-air premixed ame, interacting with a pair of counter-rotating vortices, and with chemical kinetics modeled by 32 species and 177 reactions. These authors calculated a maximum diusion time step of 20 ns to ensure the stability of a second order explicit multi-step scheme and from there, a splitting time step of 200 ns. The minimum reaction time steps were of approximatively 8 ns for a tolerance of 10 -6 for the implicit multi-step VODE solver [BBH89]. sn the sme frmework of prolem @IHFPA nd the previous study on propgtion of premixed )mesD we illustrte in this prt the performne of the proposed strtegy to numerilly desrie the ignition dynmis of di'usion )me interting with vortexF he mthemtil model onsidered in this setion ws tken from study onduted y hévenin 8 gndel in gWSF e omplete numeril nd physil study on ignition dynmis sed on these models n e found in héWPF 10.5.1 Model Formulation vet us onsider Ph omputtionl domin where pure nd fresh hydrogen with mss frtion Y F,0 t temperture T F,0 D oupies initilly the hlf upper prtF he remining lower prt is oupied y hot ir t T O,0 with Y O,0 F e single vortex modeled y @IHFUA nd entered on the PRW plnr interfe etween the two mediD is then introdued to trnsport nd elerte the mixture of oth )uidsF he governing equtions of the physil phenomenon re thus given y the set of equtions @IHFPA with @IHFSAD with retion rte modeled y

ẇ = ρ 2 ν F W F AY O Y F e (-Ta/T ) , @IHFVWA
where A is preexponentil ftor gWSF sf we onstrut hvEeldo9vih vriles y omining the reting speies mss frtions with proper oe0ientsD one otins lne eqution without soure termD nlogous to the eqution @IHFSA governing Y N F husD introduing the redued totl het relesed χY the normlized temperture di'erene etween retnts τ Y the produt to fuel stoihiometri rtio σY nd the solute equivlene rtio orresponding to omplete mixing etween retnts in their initil stte φD de(nedD respetivelyD y

χ = QY F,0 c p T O,0 , τ = T F,0 -T O,0 T O,0 , σ = ν P W P ν F W F , φ = st Y F,0 Y O,0 , @IHFWHA
with the stoihiometri ftor st de(ned y @IHFVSAD one my de(ne the following vrilesX

Z 1 = χY F /Y F,0 + τ θ χ + τ , Z 2 = χY O /(φY O,0 ) -χ/φ + τ θ -χ/φ + τ , Z 3 = -χY P /(σY F,0 ) + τ θ τ ,                  @IHFWIA
where θ is the redued temperture given y

θ = T -T O,0 T F,0 -T O,0 . @IHFWPA
he set of vriles (Z 1 , Z 2 , Z 3 ) re initilly equl nd follow the sme lne eqution without retion term nd with the sme oundry onditionsF hereforeD they re equl t eh point nd for ll times to the sme vlue ZF sntroduing the sme dimensionless vriles previously de(ned in @IHFSRAD we otin redued system of equtions of the formX

∂ t Z + v x, ∂ x Z + v y, ∂ y Z -∂ 2 x Z + ∂ 2 y Z = 0, ∂ t θ + v x, ∂ x θ + v y, ∂ y θ -∂ 2 x θ + ∂ 2 y θ = F (Z, θ),    @IHFWQA with F (Z, θ) = Da φχY O,0 1 -Z φτ + 1 χ (Z -θ) Z + τ χ (Z -θ) e (-τa/(1+τ θ)) , @IHFWRA
where τ a = T a /T O,0 is the redued tivtion tempertureD nd the hmköhler numer de(ned y Da = ρAτ d F 10.5.2 Numerical Simulations e onsider Ph omputtionl domin with initilly two di'erent mediD given y fresh fuel nd hot irF e single vortex modeled y @IHFSTA onstitute the veloity (eld imposed on the dominF he following simultions were performed on n ewh hnghi PFU qrz proessor with memory pity of QP qfF PSH Data Initialization and Simulation Parameters e onsider the numeril solution of @IHFWQA with xeumnn homogeneous oundry onditions in Ph omputtionl dimensionless domin of [-1, 1] 2 D iFeFD L = 1 into @IHFSRAF he following initil onditionD tken from héWPD is onsideredX

Z(x , y ) = θ(x , y ) = 1 2 [1 + tanh(αy )] , @IHFWSA
where α = 200F xotie tht ording to @IHFWIA nd @IHFWPAD Z(x , y ) = θ(x , y ) = 1 in the upper hlfEplne for the fresh fuelD nd Z(x , y ) = θ(x , y ) = 0 in the lower prt for the hot irF hereforeD onsidering the time dependent eqution for Z in @IHFWQAD Z must verify Z ∈ [0, 1] t ny timeF imilrlyD θ ≤ 1 ording to @IHFWPAF he initil mss frtions nd tempertures of the gses re given y

Y F,0 = 1, Y O,0 = 0.23, T F,0 = 300 K, T O,0 = 1000 K. @IHFWTA
he following vlues together with @IHFWTA de(ne the hrteristi prmeters @IHFWHAD tht llow the evlution of the retion rte @IHFWRA nd the veloity (eld @IHFSTAX Q c p = 5 × 10 4 K, st = 8, Da = 1.65 × 10 7 , T a = 8000 K, @IHFWUA Re = 1000, Sc = 1. @IHFWVA he veloity (eld is given y the ounterlokwise vortex omputed with @IHFSVA nd entered t (0, 0)F he ury prmeters were (xed s for the orresponding Ph propgting )me with simple hemistryD iFeFD η = 10 -3 in @IHFIIA with η ROCK4 = 10 -5 nd η Radau5 = 10 -7 F he time domin of integrtion is given y t ∈ [0, 1.5 × 10 -4 ]F he multiresolution nlysis ws performed with ε = 10 -2 nd ε = 10 -3 for (nest grid orresponding to sptil disretiztion of 1024 2 pointsD iFeFD J = 10 s (nest grid levelF

Numerical Results

pigure IHFW shows the evolution of the temperture in the dominF he temperture is omE puted from θ y @IHFWPAF here is initilly fresh fuel t T F,0 = 300 u in the upper hlfEplneD wheres the remining lower hlf ontins hot ir t T O,0 = 1000 uF e ounterlokwise rottE ing vortex modeled y @IHFSVA nd entered t the plnr interfe is introdued immeditely t t = 0F he resulting fored trnsport superposes to the di'usive mehnisms nd elerE tes the mixture of the gsesF es onsequeneD the lol tempertures inrese progressively from the vortex rids towrd the vortex ore long the ontt surfe of oth mediF e di'usion )me ignites long the ontt surfeF xotie tht the veloity (eld entrins iniE tilly fresh gs into the vortex ore ndD susequentlyD delys the fuel onsumption of this entrl ore y the di'usion )meF his ehvior lerly depends on the initil on(gurtion of the gses @IHFWTA nd on the imposed veloity (eldD s studied in detils in héWPD gWSF he on(gurtion desried in this prt reprodues the physis enountered in these previous studies nd it ws hosen in this work euse it fetures importnt numeril di0ultiesF hese issues re relted to the severe trnsport onditions nd the sti'ness of the governing equtionsF purthermoreD this se is hrterized y sudden hnge of the physis t some instnts whih re not known t hndF he orresponding dpted grids re lso shown in pigure IHFWF e notie tht the mixture lengths nd the orresponding )me thikness re of the order of 0.025D similr to the previous 

PSP

propgting se with simple hemistryF e sptil disretiztion of 1024 2 points is thus reE sonly urteF por this on(gurtionD the (nest regions dynmilly identify the lol rise in temperture until the ignition of the entire ontt surfeF sn prtiulrD the initil fronts do not require full representtion on the (nest grid for threshold tolerne of ε = 10 -3 D relling tht the multiresolution nlysis is performed on the dimensionless vrilesD iFeFD θ insted of T F xotie tht for lower threshold vluesD the front will remin in the (nest grid during the whole time period euse the ignition nd the susequent formtion of steeper grdients hppens preisely t the )me frontF pigure IHFIH illustrtes the time nd spe dptivity fetured y the numeril strtegyF en initil splitting time step of ∆t 0 = 10 -8 ws onsidered to hndle the inlusion of the vortex nd void unneessry rejetions t the eginning of omputtionsF he splitting step inreses until t ≈ 6.5×10 -5 (∆t ≈ 2×10 -5 ) during the mixing phseD nd then series of rejeted steps ours for the given ury tolerneF he splitting time step is thus redued down to the time sle needed to gurntee the presried uryX ∆t ≈ 10 -7 F his ehvior oinides nturlly with the sudden ignition of the )me nd the susequent fst propgtion long the ontt surfeD one ertin temperture is lolly rehed fter the initil mixture of the gsesF e dynmi dpttion of the splitting time step is hene mndtory to identify these hnges in the physil ehvior of the phenomenonD nd to properly desrie this proessF his redution of the evolution time steps llows us to updte the sptil representtion nd to onsequently re(ne s muh s neessry the sptil on(gurtion of the new physil senrioD s seen in pigure IHFIH for the time evolution of the dt ompressionsF he pility of the method to rpidly updte the mesh is illustrted y this limit se for whih the hosen threshold prmeter does not su0e to ompletely re(ne the initil frontF edditionllyD the high vlues of the hieved dt ompression justify sptil dpted representtion of the prolemF yther possile senrios re illustrted in pigure IHFII for di'erent initil tempertures of the ir T O,0 nd the sme fuel temperture T F,0 = 300 uF ih on(gurtion involves di'erent dynmis in terms of time sles nd (nl temperturesF st n e seen tht for the time window of t ∈ [0, 1.5×10 -4 ]D there is only mixing for T O,0 = 800 uD wheres for T O,0 > 1100 u ignition hppens during the initil trnsition phse of the splitting time step so tht no step redution is neededF he interesting ses re oviously given y those in whih ignition ours t some unknown intermedite timeF sn ny seD it n e seen tht suh n dptive sheme n PSQ hndle ll the possiilities without ny preliminry informtionF he(ning the splittingD multiresolutionD nd omined timeGspe dptive pproximtion erE rorsD respetivelyD y @IHFTRAD @IHFTSAD nd @IHFTTAD le IHFR shows these estimtes evluted for θ t di'erent times t F st n e seen tht the splitting errors E J split re e'etively ontrolled y the lol error ury ηD nd tht the glol integrtion errors re pproximtively of the sme order tking into ount tht for this prtiulr seD only few time steps re required within the time intervl of studyF he multiresolution errors E J M R verify the proportionlity with the threshold vlue εF e remrk tht this ehvior would not e possile without n dequte updting of the mesh issued from the dptive time stepping tehnique during the ignition of the )me frontD whih proves the e0ieny of the oupled dptive timeGspe proE edureF he numeril errors introdued y the dimensionl splitting re lso less importnt euse the highest veloity grdients orrespond pproximtively to the sptil grdients of the solutionD nd thus to importnt lol vritions of the vrilesF pinllyD we n see tht for this on(gurtion the glol error E M R split of the method is minly ontrolled y the multiresE olution errors for ε = 10 -2 D wheres for ε = 10 -3 the glol error is omintion of time nd spe errors euse oth the splitting nd the multiresolution errors re pproximtively of the sme orderF fsed on these nd the previous resultsD we n verify tht onsidering in genE erl the sme time nd spe ury tolernesD iFeFD η = εD onstitutes good ompromise PSR nd yields stisftory results in terms of ury nd omputtionl osts @see disussions in ghpter SAF le IHFS summrizes the g times in minutes for the three lterntivesF smportnt gins in g time re hieved with the dptive splitting tehniqueD whih re moreover improved with the timeGspe dptive strtegyF he redutions relted to the multiresolution repreE senttion re onsistent with the hieved dt ompressions in pigure IHFIHF xotie tht the gins relted to the dptive splitting tehnique re this time less importnt euse of the in)uene of the initiliztion phse in rther short time dominF pinllyD using only spe dptive multiresolution with onstnt splitting time step ∆t = 10 -7 D s in the qusiEext pprohD needs out 56.80 minutes of simultionF 

] E J split [10 -3 ] E J M R [10 -3 ] E M R split [10 -3 ] ε = 10 -2 ε = 10 -3 ε = 10 -2 ε = 10 -3 0.
∆t ∆t R1 ∆t D1 ∆t C ∆t D2 ∆t R2 η=10 -3 -ε=10 -1
Fig. 10.12: 2D ame ignition. Top: time evolution of the splitting time step ∆t, the reactive ∆t R1 and ∆t R2 , diusive ∆t D1 and ∆t D2 , and convective ∆t C substeps according to the Strang scheme (10.10) with tolerances η = 10 -3 and ε = 10 -2 (left) or ε = 10 -3 (right). Bottom: illustrating case with coupling of time and space errors with η = 10 -3 and ε = 10 -1 .

PSS he work distriution per splitting time step for the retionD di'usionD nd onvetion proE lemsD is this time quite uneven in time s it n e inferred from pigure IHFIP tht shows the orresponding time integrtions steps for η = 10 -3 D nd ε = 10 -2 or ε = 10 -3 F etullyD the work distriution is similr to the one given in le IHFQ during the mixture nd postEignition phsesF huring the (rst ignitions nd the smll splitting time steps in the initil trnsient phsesD the hrge is rther lnedF yne ginD the onvetion time step is the most onE strining step onsidering the high eynolds vlues in the veloity (eldF he di'usion time stepping performed y yguR is quite similr to the previous se for we re onsidering the sme sptil disretiztion in omputtionl domin of the sme sizeD iFeFD the spetrl rdius of the vplin opertors re of the sme orderF xotie tht there is slight shift in t for the splitting time steps with threshold vlues ε = 10 -2 nd ε = 10 -3 in pigure IHFIPF xeverthelessD the norml ehvior of the multiresolution errors in le IHFR on(rms tht the oupling of time nd spe errors is still eptleF e ounter exmple is given y the se with ε = 10 -1 for whih there is surely n importnt oupling of errors tht results in di'erent nd likely wrong numeril desription of the physil ehviorF sn this wyD we illustrte tht the hoie of pproprite ury tolernesD highly prolem dependentD n e esily evluted in prtieD s explined in ghpter SF 10.6 Concluding Remarks sn this hpterD we hve implemented the timeGspe dptive numeril strtegy developed in hpters R nd SD for the numeril simultion of omustion fronts modeled y retionE di'usionEonvetion systemsF e hve thus inluded onvetive term to e hndled y the opertor splitting tehniqueF vet us summrize some key spets of this on(gurtionX • e hve implemented the yw method for the numeril solution of the onvetion suprolemD following the generl preepts disussed in ghpter R for the opertor splitE ting methodF he yw method is oneEstep high order shemeD developed y hru 8 enud in hHRF

• he extension to multiEdimensionl on(gurtions hve een done y mens of dimenE sionl splittingD whih redues onsiderly the lgorithmi omplexity s well s the omputtionl requirementsF

• eond order trng dimensionl splitting ws implemented s well s simple orretive proedure to redue potentil numeril osilltions introdued y the splitting pproh for divergene free veloity (eldsF

• king into ount the (ne sptil meshes often needed to simulte propgting frontsD dynmi time stepping ws onsidered for the onvetion time steps within eh splitting time stepD omputed sed on stility onstrintsF he numeril method hs een then evluted for di'erent prolems issued from omustion pplitions nd studiesD nmelyX

• he propgtion of premixed )mes in PhGQh with simpli(ed or omplex hemil soure termsF

• he ignition of retive mixture nd the susequent propgtion of the resulting difE fusion )mes in PhF PST he numeril results otined with this tehnique llow us to onlude tht di'erent physiE l on(gurtions n e suessfully simulted with the sme timeGspe dptive strtegyD either in Ph or QhD providing e'etive error ontrol of the pproximtion errors relted to the numeril methodsF elong with other dvntges lredy illustrted nd disussed in previous hptersD the time dpttion proedure turns out to e ritil tool to e0iently simulte oth generl on(gurtionsD not only to ensure presried ury of the omputtions ut lso to properly hndle the initil strong trnsients ssoited with the veloity (eldsF purE thermoreD the e0ieny of the method is ssessed for di0ult prolem suh s the sudden ignition of )meD with remrkle di'erent physis nd time sle spetr with respet to the initil nd (nl on(gurtionsF sn ll sesD importnt gins in omputtionl e0ieny re hievedD relted to ompressed dt representtions s well s dedited splitting tehnique with dequte solvers nd independent time stepping proeduresF e rell tht ll inner solvers re sed on high order shemes so tht onsiderly smller time steps would hve een required for stndrd low order shemesF xeverthelessD we n still oserve n importnt deoupling of the time sle spetr whih llows us to overome stility restritions ssoited with the expliit solversD nd further gins in e0ieny for splitting time steps not limited y the numeril prtiulrities ssoited with eh suprolemF reliminry results were lso presented for prolems tht inlude detiled hemil fetures in order to show the pility of the method to tret more omplex on(gurtionsF roweverD let us remrk tht the simpli(ed hemil terms retin nd mimi some fst sle fetures nd thus numerilly sti' ehviors of the omprehensive formultionF his n e inferredD for instneD from the rther smll time steps needed to solve the retion prolemD lthough (fth order sheme like duS hs een implementedF e key question in the previous numeril illustrtions is relted to the numeril ury of the numeril resultsF e hve seen tht the present numeril strtegy llows us to etter ontrol the numeril errors of the simultions in very esy nd simple wyF he level of omputtionl omplexity n e thus illustrted y the ft tht for ll the prolems onsideredD we hve only needed to settle two prmetersX

• he threshold vlue ε of the multiresolution deompositionD whih lnes dt omE pression nd numeril errors ssoited with ompressed dt representtionsY nd

• he ury tolerne η of the splitting time integrtion tehniqueD whih limits the degree of deoupling of the physil phenomen nd heneD ontrols the numeril time integrtion errorsF e hve in prtiulr illustrted how these prmeters re seleted in prtieD sed on priniples previously estlished in ghpter SF hese numeril results re very stisftory nd hve demonstrted tht the method is E ple to del with di'erent on(gurtions for generl multiEsle prolems modeled y time dependent hisF xeverthelessD there re t lest two min spets tht still require further developments nd studiesX

• e time stepping proedure for the onvetive sheme tht tkes lso into ount the ury of the omputtionsD speilly for prolems with potentilly lrge onvetive time integrtion stepsY nd

• he oupling of the numeril method with hydrodynmis solver in order to properly evlute the performne of the method nd to extend the ppliility of the strtegy to this kind of prolemF foth mtters re prt of our urrent reserhF Chapter 11

Plasma Application: Positive Streamer Simulations e fous in this hpter on the numeril simultion of plsm dishrges t tmospheri pressureD physilly modeled y highly nonliner ionizing wves lled stremersF he detiled study nd omprehensive desription of suh phenomen is of the utmost importne for mny modern pplitionsD nd their numeril simultion onstitutes powerful tool in this regrdF xeverthelessD the detiled physis ssoited with plsm dishrges revels n importnt timeEspe multiEsle hrter whih demnds gret investments in urte mthemtil modeling s well s dedited nd e0ient numeril shemesF sn this ontextD the study of stremer dishrges eomes n pproprite frmework to evlute nd further develop the numeril strtegy introdued in this workF tremer dishrges re usully modeled y sti' time dependent his of driftEdi'usion type oupled with oisson9s eqution for the omputtion of the eletri (eldF hereforeD the timeGspe dptive numeril strtegy detiled in the previous ghpter IH for sti' retionE di'usionEonvetion equtionsD n e implemented to e0iently solve the driftEdi'usion equE tions of the plsm modelF xeverthelessD the solution of the eletri (eld is lso required to simulte suh modelsD nd further developments nd extensions to the present strtegy re onsequently neededF sn order to ondut these simultionsD we hve developed new seond order strtegy tht ouples the solution of the eletri (eld with the driftEdi'usion equtionsF he ltter sheme lso fetures time dptivity with error ontrolF smportnt gins in the numeril e0ieny of the method re thus hieved for highly unstedy prolemsD while presried ury is gurnteed y dynmi lol error evlutionsF he timeGspe nuE meril strtegy presented in the previous hpter ws therefore emedded into seond time dptive sheme to solve these new set of governing equtions for plsm pplitionsF his new solution sheme ws numerilly evluted with stisftory results for the simuE ltion of propgting stremersD nd in the ontext of highly nnoseond repetitively pulsed dishrges in IhF ixtensions to multiEdimensionl on(gurtions re strightforwrd with n dequte numeril solver of the oisson9s equtionF his study hs motivted n rtile whih hs een reently pulished in tournl of gomputtionl hysis in speil issue on gompuE ttionl lsm hysis hfw + IPF e reprodue in wht follows this rtile in its integrl version euse it onstitutes n extension to the present numeril strtegy for this prtiulr pplition frmeworkF edditionllyD we (rst present preliminry study on the solution of simpli(ed retionEdi'usion plsm model y the dptive splitting tehnique of ghpter SF he min gol is to evlute the numeril pilities of the method in the ontext of multiEpulsed gs dishrges involving severl dynmis with very di'erent typil time slesF PSV sn prtiulrD this study settled the foundtions of the numeril method developed in the rtileD presented in the seond prt of this hpterF 11.1 Adaptive Splitting on a Simplied Plasma Model e present in this prt rief study on the dptive splitting sheme introdued in ghpter S for the solution of simpli(ed plsm modelF his study will lso give (rst insight into the numeril di0ulties enountered during the simultion of suh multiEsle prolemsD nd serves s n pproprite introdution to the seond prtF 

       @IIFIA
sed on the driftEdi'usion equtions usully de(ned to desrie the motion of ions nd eleE trons in plsm models fxWTD uulWUD where n i is the density of speies i =eD pD n @eX eletronsD pX positive ionsD nX negtive ionsAY v e is the eletron drift veloityY α is the impt ioniztion oe0ientY η stnds for the eletron tthment on neutrl moleulesY nd β ep nd β np E ountsD respetivelyD for the eletronEpositive ion nd negtiveEpositive ion reomintionsF ell the oe0ients of the model re funtions of the lol redued eletri (eld E/N gas D where E is the eletri (eld mgnitude nd N gas is the ir neutrl densityF he retion prmeters for the ir re tken from wvWUD with tthment oe0ients tken from uuwWPF 11.1.2 Numerical Conguration sn this numeril illustrtionD we onsider s omputtionl domin n ir gp of 0.5 mD where we hve high initil distriution of eletrons nd ions over the region [0, 0.01] @mAF e onstnt eletri (eld of ∼ 40 kGm is then repetitively pplied over this region during 10 ns with period of 1 µsF ell prmeters in @IIFIA re omputed with the imposed (eldF pinllyD we onsider onstnt di'usion oe0ientX D = 50 m 2 GsD nd sptil disretiztion of 1001 points for whih we hve negligile sptil disretiztion errors with respet to the ones oming from the numeril time integrtionF pigure IIFI shows the sptil distriution of eletron density just efore nd fter eh pulseF qenerlly spekingD there re t lest two ompletely di'erent physil on(gurtions given either y high retive tivity when the eletri (eld is ppliedD or y the propgtive nture of the postEdishrge phseF por the solution of system @IIFIA we onsider the trng sheme S t 2 in @SFSA nd the emedded one S t 2,δ @SFUAD onsidering the dptive strtegy desried in ghpter S with initil splitting time step ∆t 0 = 10 -10 nd δ 0 = 0.05D nd with the following prmeters previously onsideredX 

• δ max = 0.999Y • a 1 = 1D b 1 = c 1 = a 2 = 1/2D b 2 = 2/5D nd c 2 = 1/

Numerical Results

pigure IIFP shows the orresponding splitting time steps for tolerne of η = 10 -3 in @SFIIAF he splitting time step fetures periodi ehvior nd sueeds to onsistently dpt itself to the dishrgeGpostEdishrge phenomenF his yields high vrying time steps going from ∼ 10 -10 to ∼ 10 -7 F hereforeD fter eh postEdishrge phseD sine the new time step is omputed sed on the previous one ording to @SFIIAD this new time step will surely skip the next pulseF sn order to void thisD eh time we get into new periodD we initilize the time step with the length of the pulseX ∆t = 10 nsF his time step is oviously rejeted s seen in pigure IIFPD s well s the next onesD until we re le to retrieve the right dynmis of the phenomenon for the required ury tolerneF xo other intervention is needed either in terms of modeling prmeters or for the numeril solversD in order to utomtilly dpt the time step to the severl time sles of the phenomenon within presried uryF por this pplitionD we ompute the ritil ∆t nd possily δ for N δ = 10 nd N δ = 100 in eh periodD in order to perform these omputtions t lest one during the dishrge nd postEdishrge regimesF por exmpleD for t ∈ [5, 6] µs s in pigure IIFPD δ = δ max with ∆t ≈ 4.3 × 10 -9 during the pulseD nd δ ≈ 0.26 with ∆t ≈ 1.6 × 10 -7 for the rest of the periodF imilr vlues re found for the other periodsF xotie tht fter eh pulseD ∆t is utomtilly updted euse ∆t inreses nd then ∆t gets equl to ∆t F sn prtiulrD the importnt di'erene etween ∆t for eh regionD results nturlly from the ompletely di'erent modeling prmeters nd heneD physis desription of eh regimeF en e'etive error ontrol is hieved for eh phse of the phenomenonD s we n dedue from the glol error etween splitting nd referene solutions t the end of the pulse @t = 5.01 µsAD PTH nd t the end of the postEdishrge phse @t = 6 µsAF he referene solution is omputed y oupled resolution of system @IIFIA with duS nd (ne tolerne η Radau5 = 10 -10 F sf we ompre these results with the ones otined without estimting either ∆t or δD ut with δ = δ 0 = 0.05D we n drw the sme onlusions s in the f pplition in ghpter SF por less urte resolutions with high tolernesD the proposed strtegy orrets the lol error estimtes omputed δ = δ 0 = 0.05F sn prtiulrD for η = 10 -3 there is rtio of out 10 etween oth solutionsF por higher tolernesD η ≥ 10 -2 D oth methods yield time step equl to the pulse durtionD ∆t = 10 nsF por the smllest tolernesD slightly more urte solutions re otined with (xed δ = δ 0 euse smller splitting time steps re usedF o onlude this preliminry studyD let us emphsize tht ompred with stndrd proedure for whih the ury is gurnteed y onsidering time steps of the order of the fstest sleD the error ontrol fetured y this dptive method implies n e'etive urte resolution of prolems modeling vrious physil senriosD independent of the fstest physil or numeril time sleF edditionllyD n importnt improvement of omputtionl e0ieny is hieved for highly unstedy phenomenF sn prtiulrD the tehnique ws suessfully pplied to this simpli(ed model of plsm dishrges tht nevertheless exhiits rod time sle spetrum oming from the modeling equtionsD nd lso importnt nd disontinuous vrition of pE rmeters in time nd in spe tht notly inrese the numeril omplexity of the prolemF he omplete driftEdi'usion equtions with the omputtion of the eletri (eld will e treted PTI in detils in the following prtD in whih the sme dptive tehnique will e emedded into new one for plsm modelsF 

Introduction

sn reent yersD plsm dishrges t tmospheri pressure hve een studied for n inresing list of pplitions suh s hemil nd iologil deontmintionD erodynmi )ow ontrol nd omustion vHHD pgqHSF sn ll these physil on(gurtionsD the dishrges tke usuE lly the form of thin plsm (lments driven y highly nonliner ionizing wvesD lso lled stremersF hese ionizing wves our s onsequene of the high eletri (eld indued y the fst vritions of the net hrge density hed of n eletron vlnhe with lrge mpliE (tionF he stremer dishrge dynmis re minly governed y the gourntD the e'etive ioniztion nd the dieletri relxtion times sles fWRD whih re usully of the order of 10 -14 -10 -12 sD wheres the typil time sle of the dishrge propgtion in entimeter gpsD is out few tens of nnoseondsF yn the other hndD lrge vrition of spe sles needs lso to e tken into ountD sine the heye length t tmospheri pressure n e s smll s few mirometersD while the interEeletrode gpsD where dishrges propgteD re usully of the order of few entimetersF es resultD the detiled physis of the dishrges revels n importnt timeEspe multiEsle hrter fIHD ifh + IIF wore omplex pplitions inlude plsm ssisted omustion or )ow ontrolD for whih the enhnement of the gs )ow hemistry or momentum trnsfer during typil time sles of the )ow of 10 -4 -10 -3 sD is due to onseutive dishrges generted y high frequeny @in the krz rngeA sinusoidl or pulsed pplied voltges qv + HTD yw + HVF hereforeD during the postE PTQ dishrge phses of the order of tens of miroseondsD not only the time sles re very di'erent from those of the dishrge phses of few tens of nnoseondsD ut ompletely di'erent physis is tking pleF henD to the rpid multiEsle on(gurtion during dishrgesD we hve to dd other rther slower multiEsle phenomen in the postEdishrgeD suh s reomintion of hrged speiesD hevyEspeies hemistryD di'usionD gs heting nd onvetionF hereforeD it is very hllenging to urtely simulte the physis of plsmG)ow intertions due to the synergy e'ets etween the onseutive dishrgeGpostEdishrge phsesF sn most numeril models of stremer dishrgesD the motion of eletrons nd ions is governed y driftEdi'usion equtions oupled with oisson9s equtionF irly simultion studies were limited to simpli(ed situtions where the stremer is onsidered s ylinder of onstnt rdius htiTRD hhiUID efVHD worVSD in whih the hrged prtile densities re ssumed to e onstnt long the rdil extension of the stremerX the IFSh model pprohF sn this modelD the sptioEtemporl evolution of the hrged prtile densities is solved only long one sptil dimension in the diretion of propgtionD wheres the eletri (eld is lulted in two dimensions using the soElled dis methodD sed on diret integrtion of nlytil resultsF e Ph model for the eletri (eld is indeed essentil to properly lulte the eletri (eld enhnement y the spe hrge in the stremer hedF efter the (rst Ph stremer simultions using the oisson9s eqution resolution were performed hVUD mny studies hve een rried out in Ph fWRD fxWUD uulHHD HID eirHPD gf + HWD ffgIH nd Qh xeuHVD gfHVD virHVD wqIIF feing wre of the omplexity of fully oupled resolutions of these modeling equtionsD deoupling strtegy is usully doptedD whih onsiders n independent nd suessive nuE meril resolution of oisson9s eqution with (xed hrge distriutionD nd of the driftE di'usion equtions with (xed eletri (eld during eh deoupling time stepF hese ompuE ttions might e performed expliitly in time with stndrd (rst or even seond order shemes wriHTD fv + HUF sn these sesD the time steps re usully limited for the ske of stility y the vrious hrteristi times sles @gourntD ioniztionD dieletri relxtionAD wheres the ury of simultions is ssumed to e given y the resolution of the fstest physil time sleF sn order to somehow overome the dieletri relxtion limittionD some semiEimpliit pprohes were developed ruWQD ghWWD ruHHD sed on preditive pproximtion of the spe hrge hed in time during the eletri (eld omputtionD even though the other time sle onstrints reminF his gin of stility llows importnt improvements in terms of omputtionl e0ieny ut the ury of simultions eomes rther di0ult to quntifyF enother performing tehnique to improve the e0ieny of simultions onsiders n synE hronous expliit time integrtion of the driftEdi'usion equtions with selfEdptive lol timeE steppingD for whih the lol time steps re sed either on lol dynmi inrements of the solution uhyyHSD yuHT or on lol gournt onditions fHUF hese tehniques re the sujet of severl studies gxHVD hqHVD gxIH nd re minly oneived to void expensive omputtions whenever the whole system is unneessrily dvned in time with glol time step presried y the fstest sleF iven though these methods yield e0ient strtegiesD speilly in terms of g time svingsD with stle nd )uxEonserving time inE tegrtionsD it is rther di0ult to ondut n ury ontrol on the resolution of the time dependent equtions or on their oupling with the eletri (eld resolution for plsm modelsF sn this workD numeril study is onduted in order to uild seond order expliit in time deoupling sheme for the resolution of the eletri (eld nd the eletron nd ion densitiesF e lower order nd emedded method is tken into ount to dynmilly ompute the deoupling time steps tht gurntee n urte desription with error ontrol of the glol physil ouplingF et this stgeD the only limiting time sle is the dieletri relxtion hrteristi time for stility resonsF sn seond levelD the driftEdi'usion equtions re solved using PTR trng seond order opertor splitting sheme in order to gurntee the glol order of the strtegy hwh + IPD hhh + IPF his time integrtion sheme onsiders high order dedited methods during eh splitting time stepD whih is dynmilly dpted y n error ontrol proedure hhh + IIF sn this wyD even though there is glol dvne in time given y the splitting time stepD the ltter is determined y the desired ury of the glol physisD whih is not neessrily relted to the stility onstrints ssoited with the mesh size or the fstest soure time sles s demonstrted in hwhhIIF es onsequeneD this tehnique provides n error ontrol proedure nd stnds s n lterntive wy to lol stepping shemes to overome time step limittions relted to the retionD di'usion nd onvetion phenomenF foth the eletri (eld nd density resolutions re performed on n dpted mesh otined y sptil multiresolution methodD sed on rrten9s pioneering work rrWS nd further deE veloped in guwHQD tking into ount the sptil multiEsle fetures of these phenomen with steep sptil grdientsF sn prtiulrD some grid dpttion tehniques for Ph strutured meshes were lredy used wriHTD gfHVD fIH nd extensions to Qh hve een lso proposed gfHVD xeuHV for stremer simultionsF roweverD one of the min dvntges of the multiresolution pproh is tht it is sed on wvelet representtion tehnique nd n error of the sptil pproximtion n e then mthemtilly estimtedF gonsequentlyD n e'etive error ontrol is hieved for oth the time nd spe resolution of the multiEsle phenomen under studyF he performne of the method is (rst evluted for propgting stremer prolem with the multiEsle fetures previously disussedD for whih the vrious simultion prmeters re studiedF yne the physil on(gurtion is settledD IFSh stremer model is dopted in orE der to otin n eletri (eld resolution strtegy sed on diret omputtions nd derived from nlytil expressionsD suitle for dpted (nite volume disretiztions ff + HUF sn seond stepD more omplex physil on(gurtion is onsidered for the simultion of repetE itively pulsed dishrgesD for whih timeEspe dptive method is required to e0iently overome some highly multiEsle fetures in order to fully desrie the vrious physil pheE nomenF sn this workD only IFSh model is onsidered ut extensions to higher dimensions is strightforwrd for instne with oisson9s eqution solver for dpted grids s it hs een implemented in wriHTD gfHVD fIHF roweverD in this pper we fous on the development nd vlidtion of new numeril methods for the resolution of the driftEdi'usion equtions nd its oupling with the eletri (eld omputtionD whih re independent of the dimension of the prolemF xumeril illustrtions of multidimensionl prolems with the sme timeEspe dptive strtegy with error ontrol will e the sujet of future workF he pper is orgnized s followsX in etion IIFQD we present the physil on(gurtion nd the modeling equtionsF he numeril strtegy is presented in etion IIFRD in whih the seond order dptive time integrtion tehnique is detiled long with the resolution of driftEdi'usion equtions nd the eletri (eldD s well s the sptil multiresolution dptive proedureF xumeril illustrtions re summrized in etion IIFS for two on(gurtions given y single propgting nd multiEpulsed dishrgesF e end with some onluding remrks nd prospets on future developments nd pplitionsF 11.3 Model Formulation sn this workD we onsider positive stremer dishrges in ir t tmospheri pressure in pointEtoEplne geometryD s shown in pigure IIFQF he tip of the node is pled 1 m from the plnr thode nd the rdius of urvture of the node is 324 µmF he most ommon nd e'etive model to study stremer dynmis is sed on the following driftEdi'usion equtions PTS for eletrons nd ionsD oupled with oisson9s eqution fxWTD uulWUX

∂ t n e -∂ x • n e v e -∂ x • (D e ∂ x n e ) = n e α|v e | -n e η|v e | + n e n p β ep + n n γ, ∂ t n p + ∂ x • n p v p -∂ x • (D p ∂ x n p ) = n e α|v e | -n e n p β ep + n n n p β np , ∂ t n n -∂ x • n n v n -∂ x • (D n ∂ x n n ) = n e η|v e | -n n n p β np -n n γ,        @IIFPA ε 0 ∂ 2 x V = -q e (n p -n n -n e ), @IIFQA
where x ∈ R d D n i is the density of speies i @eX eletronsD pX positive ionsD nX negtive ionsAD V is the eletri potentilD v i = µ i E @E eing the eletri (eldA is the drift veloityF D i nd µ i D re the di'usion oe0ient nd the solute vlue of moility of the hrged speies iD q e is the solute vlue of n eletron hrgeD nd ε 0 is the permittivity of free speF α is the impt ioniztion oe0ientD η stnds for the eletron tthment on neutrl moleulesD β ep nd β np ount respetively for the eletronEpositive ion nd the negtiveEpositive ion reomintionD nd γ is the dethment oe0ientF he eletri (eld E nd the potentil V re relted y

E = -∂ x V, @IIFRA
nd thusD the oisson9s eqution @IIFQA eomesX

ε 0 ∂ x • E = q e (n p -n n -n e ). @IIFSA
ell the oe0ients of the model re ssumed to e funtions of the lol redued eletri (eld E/N gas D where E is the eletri (eld mgnitude nd N gas is the ir neutrl densityF por test studies presented in this pperD the trnsport prmeters for ir re tken from wvWUY dethment nd tthment oe0ientsD respetively from fxHQ nd uuwWPY nd other retion rtesD lso from wvWUF hi'usion oe0ients for ions re derived from moilities using lssil iinstein reltions sn simultions of positive stremer dishrges in ir t tmospheri pressure without ny preionE iztionD the photoioniztion term is ruil to produe seed hrges in front of the stremer hed nd then to ensure the stremer propgtion fv + HUF roweverD in repetitive dishrgesD nHS nd reently v + IH hve shown tht even t low frequenyD signi(nt mount of seed hrges from previous dishrges my e present in the interEeletrode gpF sn this workD we hve negleted the photoioniztion soure term nd onsidered dishrge onditions with preioniztion kground to ensure stle propgtion of the dishrge without impting the min dishrge hrteristis HID nHSD gelHVD ffgIHF PTT 11.4 Construction of the Numerical Strategy sn this setionD we introdue new numeril tehnique for multiEsle stremer dishrge simultionsD sed on seond order deoupled resolution of the eletri (eld nd the driftE di'usion equtions for eletrons nd ionsD with selfEdptive deoupling time steps with error ontrolF he driftEdi'usion equtions re then solved using dedited trng time opertor splitting sheme for multiEsle phenomenF yn the other hndD the eletri (eld is omputed sed on prllel omputing methodD speilly oneived for the on(gurtion under study in IFSh geometryF foth resolutions re onduted on dynmi dptive mesh using sptil multiresolution trnsformtion with error ontrol of the sptil dpted representtionF 11.4.1 Second Order Adaptive Time Integration Strategy vet us write the semiEdisretized equtions @IIFPA nd @IIFSA in the following wy just for nlysis purposesX

d t ψ = Ψ(ψ, φ), 0 = Φ(ψ, φ), @IIFTA
for t > t 0 D where ψ : R → R N ×m nd φ : R → R N ×d stnd respetively for the sptil disretiztion of (n e , n p , n n )D iFeFD m = 3D nd of E over N pointsF upposing tht ll funtions re su0iently di'erentile in ll their vriles nd using the ylor expnsion of the true solutionD one n write fter some time ∆t from initil time t 0 D

ψ(t 0 + ∆t) = ψ 0 + ∆tΨ(ψ 0 , φ 0 ) + ∆t 2 2 [∂ ψ Ψ Ψ + ∂ φ Ψ d t φ] t=t 0 + O(∆t 3 ), @IIFUA
with ψ 0 = ψ(t 0 )D φ 0 = φ(t 0 )F e seond order in time resolution of system @IIFTA must then verify @IIFUA lolly for eh ∆tF roweverD s it ws stted eforeD solving simultneously @IIFPA nd @IIFQA @or @IIFSAAD or equivlently @IIFTAD involves importnt numeril di0ultiesD onsidering for instne the di'erent nture of equtions @IIFPA nd @IIFQA @or @IIFSAAF hereforeD deoupled pproh is often used in whih one ims t solving the driftEdi'usion equtions nd the eletri (eld independentlyF his mounts to solve

d t ψ = Ψ( ψ, φ ), t ∈ ]t 0 , t 0 + ∆t], @IIFVA with (xed φ = φ(t )D t ∈ [t 0 , t 0 + ∆t] nd ψ(t 0 ) = ψ 0 F
he most ommon tehnique onsiders t = t 0 D tht isD to previously ompute the eletri (eld t t 0 from Φ(ψ 0 , φ 0 ) = 0D nd then solve @IIFVA with φ = φ 0 F his n e interpreted s stndrd (rst order opertor splitting method tht yields n pproximtion of order ID ψ1 (t)D of the ext solutionD ψ(t)D sed on lssil numeril nlysis results otined y onfronting @IIFUA with

ψ1 (t 0 + ∆t) = ψ 0 + ∆tΨ(ψ 0 , φ 0 ) + ∆t 2 2 [∂ ψ Ψ Ψ] t=t 0 + O(∆t 3 ). @IIFWA
he sme result follows for φ1 (t 0 + ∆t) omputed out of Φ( ψ1 (t 0 + ∆t), φ1 (t 0 + ∆t)) = 0 or equivlentlyD out of its expliit representtion φ1 (t 0 + ∆t) = Υ( ψ1 (t 0 + ∆t))D ssuming vipshitz onditionX Υ(ψ) -Υ(ψ ) ≤ L ψ -ψ . @IIFIHA PTU gonsidering now ny t ∈ [t 0 , t 0 +∆t] into @IIFVAD the only seond order solutionD ( ψ2 (t), φ2 (t))D will e given y resolution of @IIFVA with φ = φ 1 2 for t = t 0 + ∆t/2D for whih

ψ2 (t 0 + ∆t) = ψ 0 + ∆tΨ(ψ 0 , φ 1 2 ) + ∆t 2 2 [∂ ψ Ψ Ψ] ψ→ψ 0 ,φ 1 2 + O(∆t 3 ), @IIFIIA
where

Ψ(ψ 0 , φ 1 2 ) = Ψ ψ 0 , φ t 0 + ∆t 2 = Ψ ψ 0 , φ 0 + ∆t 2 d t φ| t=t 0 + O(∆t 2 ) = Ψ(ψ 0 , φ 0 ) + ∆t 2 [∂ φ Ψ d t φ] t=t 0 + O(∆t 2 ), @IIFIPA nd heneD ψ2 (t 0 + ∆t) = ψ 0 + ∆tΨ(ψ 0 , φ 0 ) + ∆t 2 2 [∂ ψ Ψ Ψ + ∂ φ Ψ d t φ] t=t 0 + O(∆t 3 ); @IIFIQA nd φ2 (t 0 + ∆t) = Υ( ψ2 (t 0 + ∆t)). @IIFIRA
xeverthelessD this seond order pproximtionD ψ2 (t)D is sed on the previous knowledge of φ 1 2 = φ(t 0 + ∆t/2)D nd thusD of ψ(t 0 + ∆t/2)F sn order to overome this di0ultyD one n solve @IIFVA with φ = φ1 (t 0 +∆t/2) = Υ( ψ1 (t 0 +∆t/2))D tht isD omputing (rst ψ1 (t 0 +∆t/2) with the (rst order methodF sn prtiulrD this does not hnge the previous order estimtes s it follows from

ψ(t 0 + ∆t) -ψ2 (t 0 + ∆t) = ∆t 2 2 ∂ φ Ψ d t (φ -φ1 ) t=t 0 + O(∆t 3 ) = ∆t 2 2 ∂ φ Ψ ∂ ψ Υ d t (ψ -ψ1 ) t=t 0 + O(∆t 3 ) = O(∆t 3 ). @IIFISA king into ount oth methodsD ψ1 (t 0 + ∆t) φ1 (t 0 + ∆t) = T ∆t 1 ψ 0 φ 0 , ψ2 (t 0 + ∆t) φ2 (t 0 + ∆t) = T ∆t 2 ψ 0 φ 0 , @IIFITA
we perform omputtions with seond order sheme T ∆t 2 D whih uses n emedded nd lower order sheme T ∆t/2 1 D s it ws previously detiledF en dptive time step strtegy is then implemented in order to ontrol the ury of omputtions y tuning the durtion of the deoupled resolutionF st is sed on lol error estimteD dynmilly omputed t the end of eh deoupling time step ∆tD given y

T ∆t 2 (ψ 0 , φ 0 ) T -T ∆t 1 (ψ 0 , φ 0 ) T ≈ O(∆t 2 ). @IIFIUA hereforeD for given ury tolerne η T D T ∆t 2 (ψ 0 , φ 0 ) T -T ∆t 1 (ψ 0 , φ 0 ) T < η T @IIFIVA
PTV must e veri(ed in order to ept the urrent omputtion with ∆tD while the new time step is lulted y

∆t new = ∆t η T T ∆t 2 (ψ 0 , φ 0 ) T -T ∆t 1 (ψ 0 , φ 0 ) T .
@IIFIWA everl dedited solvers n e then implemented for eh suprolem @IIFPA nd @IIFQA while the theoretil error estimtes of the deoupling shemes nlyzed in this setion remin vlidF sn this wyD the independent hoie of pproprite numeril shemes llows to strongly redue the omputtionl omplexity of the glol numeril strtegyD nd n error ontrol proedure suh s the one proposed in this work llows to e'etively lirte this deoupling within presried ury tolerneF 11.4.2 Resolution of the Drift-Diusion Equations e onsider now the numeril resolution of the driftEdi'usion equtions @IIFPAD tht n e written in the generl form of onvetionEretionEdi'usion system of equtionsX

∂ t u -∂ x (F (u) + D(u)∂ x u) = f (u) , t > t 0 , u(t 0 , x) = u 0 (x), t = t 0 , @IIFPHA where F D f : R m → R m nd u : R × R d → R m D with tensor of order d × d × m s di'usion mtrix D(u)F sn prtiulrD u = (n e , n p , n n )
T with m = 3 in this studyF he system @IIFPHA orresponds to prolem @IIFVA for (xed eletri (eldD nd it is solved during eh deoupling time step ∆t into T 2 @or T 1 A shemeD using trng time opertor sheme with dedited high order time integrtors on dynmi dptive meshD sed on strtegy introdued in hwh + IPF his resolution is rie)y detiled in following setions1 F Time Operator Splitting en opertor splitting proedure llows to onsider dedited solvers for the retion prt whih is deoupled from other physil phenomen like onvetionD di'usion or othD for whih there lso exist dedited numeril methodsF hese dedited methods hosen for eh susystem re then responsile for deling with the fstest sles ssoited with eh one of themD in seprte mnnerD while the reonstrution of the glol solution y the splitting sheme should gurntee n urte desription with error ontrol of the glol physil ouplingD without eing relted to the stility onstrints of the numeril resolution of eh susystemF gonsidering prolem @IIFPHA nd in order to remin onsistent with the seond order T 2 shemeD seond order trng sheme is implemented trTV

S ∆ts (u 0 ) = R ∆ts/2 D ∆ts/2 C ∆ts D ∆ts/2 R ∆ts/2 (u 0 ), @IIFPIA
where opertors RD DD C indite respetively the independent resolution of the retionD di'usion nd onvetion prolems with splitting time stepD ∆t s D tken inside the overll deoupling time stepD ∆t s ≤ ∆tF sullyD for propgting retion wves where for instneD the speed of propgtion is muh slower thn some of the hemil slesD the fstest sles re not diretly relted to the glol physis of the phenomenonD nd thusD lrger splitting PTW time steps might e onsidered hwh + IPD hhh + IPF xeverthelessD order redutions my then pper due to shortElife trnsients ssoited with fst vriles nd in these sesD it hs een proven in hwHR tht etter performnes re expeted while ending the splitting sheme y opertor R or in more generl seD the prt involving the fstest time sles of the phenomenonF he resolution of @IIFPHA should e preise enough to gurntee theoretil estimtes given in etion IIFRFIF hereforeD n dptive splitting time step strtegyD sed on lol error estimte t the end of eh splitting time step ∆t s D is lso implemented in order to ontrol the ury of omputtions hwhhIIF sn this ontextD seondD emedded nd lower order trng splitting method S ∆ts ws developed y hhh + IID whih llows to dynmilly lulte lol error estimte tht should verify

S ∆ts (u 0 ) -S ∆ts (u 0 ) ≈ O(∆t s 2 ) < η split , @IIFPPA
in order to ept the urrent omputtion with ∆t s D nd thusD the new splitting time step is given y

∆t new s = min   ∆t s η split S ∆ts (u 0 ) -S ∆ts (u 0 ) , t 0 + ∆t - t  , @IIFPQA with η split ≤ η T nd t = i ∆t s i while t ∈ ]t 0 , t 0 + ∆t]F
he hoie of suitle time integrtion methods to numerilly pproximte RD D nd C during eh ∆t s is mndtory not only to gurntee the theoretil frmework of the numeril nlysis ut lso to tke dvntge of the prtiulr fetures of eh independent suprolemF e new opertor splitting for retionEdi'usion systems ws reently introdued hwh + IPD hhh + IPD whih onsiders high (fth orderD eEstleD vEstle method like duS rWTD sed on impliit ungeEuutt shemes for sti' yhisD tht solves with lol ell y ell pproh the retion termX system of sti' yhis without sptil oupling in splitting ontextF por the di'usion prolemD nother high fourth order method like yguR edHP is onsideredD whih is sed on expliit stilized ungeEuutt shemes tht feture extended stility domins long the negtive rel xisF he yguR solver is then very pproprite for di'usion prolems euse of the usul predominne of negtive rel eigenvluesF foth methods inorporte dptive time integrtion toolsD similr to @IIFIWA nd @IIFPQAD in order to ontrol the ury of the integrtions for given ury tolernes η Radau5 nd η ROCK4 D hosen suh tht η Radau5 < η split nd η ROCK4 < η split F sn prtiulrD in the se of multiEsle propgting wvesD it n e proven tht the lol tretment plus the dptive time stepping of the retion solver llow to disriminte the ells of high retive tivity only present in the neighorhood of the lolized wvefrontD sving s onsequene lrge quntity of integrtion time hhh + IPF en expliit high order in time nd in spe one step monotoniity preserving sheme yw hHR is used s onvetive shemeF st omines monotoniity preserving onstrints for nonEmonotone dt to void extrem lippingD with h fetures to prevent spurious osE illtions round disontinuities or shrp sptil grdientsF glssil gpv stility restriE tions re though imposed inside eh splitting time step ∆t s for opertor C ∆ts F he overll omintion of n expliit tretment of the sptil phenomen s onvetion nd di'usionD with lol impliit integrtion of sti' retion implies importnt svings in omputing time nd memory resoures hwh + IPD s well s n importnt redution of omputtionl omE plexity with respet to fully impliit oupled resolution of prolem @IIFPHAF yn the other hnd n expliit oupled tretment of @IIFPHA will hve very limited e0ieny for sti' proE lems unless more sophistited strtegies s the synhronous lol timeEstepping tehniques PUH uhyyHSD yuHTD fHU re onsidered even though these shemes do not provide preise mesurement of the ury of the integrtionF pinllyD the numeril errors of the splitting sheme re e'etively hndled y n error ontrol proedure whih furthermore llows to determine the oupling time sles of the glol pheE nomenon tht n e severl orders of mgnitude slower thn the fstest time sles of eh suprolem treted y eh dedited solverF sn this wy deoupling of the time sle speE trum of the prolem is hieved tht leds to more e0ient performnes within presried ury tolerne whenever this deomposition of sles is possileF 11.4.3 Computation of the Electric Field sn this prtD we re onerned with the resolution of the eletri (eld ording to the T 2 @or T 1 A sheme t some (xed time for given distriution of hrges (n e , n p , n n )D onsidering IFSh modelF his omputtion is lso performed on the dpted mesh otined y the previous multiresolution nlysisF

Discretization of the Computational Domain eording to pigure IIFQD the omputtionl domin is limited y plnr thode t x = 0 nd the tip of hyperoli node t x = L x F he node is not inluded in the dominF e onsider stremers of (xed rdius R s long the xis of symmetryF he omputtionl domin is divided into n x ells of di'erent size orresponding to the multiresolution dpted meshD with fes x i f D where i ∈ [0, n x ] nd ell enters x j c D where j ∈ [1, n x ]F he fe x 0 f orresponds to the position of the thode nd x nx f orresponds to the position of the tip of the nodeF herefore for eh ell x i c D there is its left fe x i-1 f D nd its right fe x i f F por eh ell x j c we de(ne width w j = x j f -x j-1 f @see pigure IIFRAF Resolution of the Electric Field in a 1.5D Model o determine the eletri (eld during the propgtion of the stremerD the spe hrge of the stremer is onsidered s set of (nite ylinders of width w j D ounded y ell fes x j-1 f nd x j f F es the omputtionl domin is ounded y onduting eletrodes of (xed potentilD eh volume hrge ρ j retes n in(nite series of imge hrges htiTRD hhiUIF hen the priniple of superposition is used to sum individul ontriutions from ll the ylindril spe hrges in the dominD their imge hrgesD nd the vplin eletri (eld @omputed sed on lssil results iwwPVAF en dvntge of this pproh dwells in the ft tht the eletri (eld ontriutions from individul ylinders n e expressed nlytilly in simple form nd the determintion of the eletri (eld in eh point of the domin n e performed in prllelF sn the on(gurtions we hve studiedD the thode is grounded wheres n eletri voltge is pplied on the nodeF hese oundry onditions re tken into ount y the vplin PUI eletri (eld nd y inluding series of imge hrges of the hrges in the gpF st is importnt to note tht the omputtion of the vplin eletri (eld tkes into ount the rel geometry of eletrodes s shown in pigure IIFQF roweverD in this workD to simplify the omputtion of imge hrges we hve ssumed tht oth eletrodes re plnrF por volume hrge ρ j entered t x j c D there exist imge hrges of the (rst order with hrge -ρ j t x = 2L x -x j c mirrored through the nodeD see pigure IIFSD nd t x = -x j c mirrored through the thodeD see pigure IIFSF end for eh of these imge hrges there exist higher order imge hrges of opposite signs nd so forthF ell the imge hrges of ρ j up to order three re depited in pigure IIFSF Fig. 11.5: Image charges up to the third order: (a) charge ρ j is rst mirrored behind the anode (x = L x ), (b) charge ρ j is rst mirrored behind the cathode (x = 0), (c) charge ρ j and its images. sntegrting the generlized goulom9s lw tWW nd using the priniple of superpositionD we (nd tht the ylinder hrges of ells j ∈ [1, n x ] of width w j D rdius R s D hrged with densities ρ j @see pigure IIFTAD nd the vplin eletri (eld

E L (x i f ) t x i f iwwPVD rete the eletri (eld E t position x i f s followsX E(x i f ) = E L (x i f ) + nx j=1 s ρ j w j 2ε 0   1 - w j + 2h i,j h 2 i,j + R 2 s + (h i,j + w j ) 2 + R 2 s    , @IIFPRA PUP where h i,j =    x i f -x j f for i ≥ j, x j-1 f -x i f for i < j, nd s =    +1 for i ≥ j,
-1 for i < j.

@IIFPSA he positive sign of s ounts for the eletri (eld lulted on the right from the position of the hrged ylinder nd vieEversF he sme formul pplies for the imge hrgesD ut n pproprite sign of the hrge hs to e refully tken into ount ording to pigure IIFSF sn prtiulrD in shred memory omputing environmentD strightforwrd prlleliztion is omplished for eqution @IIFPRAD in whih eh ore solves suessively the eletri (eld on one single position x i f D nd where neither synhroniztion stges nor dt exhnge re needed mong nodesF xote tht for R s → ∞ @in(nite plne hrgesAD eqution @IIFPRA yields the ext eletri (eld for plnr frontX

E inf = nx j=1 s ρ j w j 2ε 0 . @IIFPTA
por (nite rdius R s the solution @IIFPRA is vlid only on the xis of the dishrgeD ut when pplied to dishrge of smll rdiusD the eletri (eld will vry only negligily over the ross setion of the dishrgeF his pproh is expeted to e more urte for ny (nite rdius thn ny disretiztion of oisson9s eqution htiTRF

Numerical Results

sn this setionD we present some numeril illustrtions of the proposed numeril strtegy for the simultions of positive stremers using IFSh model in pointEtoEplne geometryF pirstD we will onsider dishrge propgtion with onstnt pplied voltge for whih di'erent fetures of the numeril strtegy re disussedD eFgFD error estimtesD dt ompression vlues nd omputing timeD in order to properly hoose the simultion prmetersF henD the potenE til of the method is fully exploited for more omplex on(gurtion of repetitive dishrges generted y high frequeny pulsed pplied voltgesD followed y long time sle relxtionD for whih omplete physil desription of the dishrge nd the postEdishrge phses is hievedF were hosen in ll ses for the solversD η Radau5 = η ROCK4 = 10 -7 D to gurntee urte integrtionsF por ll the simultion sesD the detil in eh ell is tken s the mximum of the detils omputed ording to @QFUPA for eh vrileD where the predition opertor is polynomil interpoltion of degree 2D performed on normlized log u of the density vriles in order to properly disriminte the stremer heds from the highly ionized plsm hnnelY this logrithmi sle gurntees orret sptil representtion of the phenomenon s seen in pigure IIFU for the density pro(lesF sn order to perform n nlysis of the numeril resultsD we de(ne the referene solution s (ne resolution with the T 2 sheme tht onsiders (xed deoupling time stepD ∆t = 10 -14 s nd uniform grid of 4096 ellsF por this referene solutionD the memory requirements re eptle nd the simultion is still fesileD ut it requires out IR dys of rel simultion time on n ewh ypteron TIQT roessor lusterD while running the eletri (eld omputtion in prllel on IT g oresF sn this seD the omputtion of the eletri (eldD sed on diret integrtion of individul ontriutions of the hrged ylindersD represents VH7 of totl g time per time step @out 3.2 sAF pirst of llD we must verify the previous order estimtes for the T 1 nd T 2 shemes given in etion IIFRFIF e onsider s initil ondition the referene solution t t = 10 nsF sn order to only evlute errors oming from the deoupling tehniquesD T 1 nd T 2 D we onsider (ne splitting time stepD ∆t s = 10 -14 sD to solve the driftEdi'usion prolem @IIFPA nd η T = η split = η MR ≤ 10 -3 D we oserve quite good greement etween the dpted nd referene resolutionsF e onsider now n urte enough resolution with η T = η split = η MR = 10 -4 nd investigte the in)uene of the numer of gridsD tht isD the (nest sptil disretiztion t level L tht should e tken into ountF pigure IIFII shows the dpted grids for L = 10D 11 nd 12D respetively equivlent to 1024D 2048 nd 4096 ells in the (nest gridY nd loseEup of the orresponding eletri (elds in the dishrge hed t t = 8 nsF e see tht for this level of tolernesD the stremer front propgtes slightly slower thn the referene se for L = 10D wheres L = 11 gives lredy good resolutions ompred with the referene solution nd with L = 12F sn prtiulrD higher vlues of L would need lower tolernes in order to retin regions t the (nest levelY this is lredy the se for L = 13 @equivlent to 8192 ellsAF hereforeD L = 11 with 2048 ells t the (nest level seems to e n pproprite hoie for this level of uryF le IIFI summrizes the numer of ells in the dpted grid @#AGA t time t = 8nsD nd the orresponding dt ompression @DCA de(ned s the perentge of tive ells with respet to the equivlent numer of ells for the (nest disretiztionD in this se 2048 for L = 11F por this propgting seD the dt ompression remins of the sme order during the time simultion intervlF he g omputing times orrespond to time domin of study of t ∈ [0, 10] ns omputed y one sole g oreF sf we onsider for exmple totl omputing time for L = 11 nd tolernes η T = η split = η MR = 10 -4 D it is ∼ 44 times less expensive with respet to resolution on uniform grid with 2048 ells nd η T = η split = 10 -4 @g time of 8552 sAF his is quite resonleD tking into ount tht the omputing time for the eletri (eld resolution is proportionl to t lest O(N 2 ) for N omputing ellsD fter @IIFPRAF sn onlusionD in this setion we hve shown tht the numeril strtegy developed n e sn this setionD we nlyze the performne of the proposed numeril strtegy on the simE ultion of nnoseond repetitively pulsed dishrges qv + HTD vvIHF he pplied voltge pro(le for this type of dishrges is high voltge pulse followed y zero voltge relxtion phseF he typil pulse durtion is ∼ 10 -8 sD while the relxtion phse tkes over ∼ 10 -4 sF he detiled experimentl study of these dishrges in ir hs shown tht the umultive e'et of repeted pulsing hieves stedyEstte ehvior vvIHF sn the following illustrtionsD we hoose pulse durtion of T p = 15 nsD whih is pproximtely equl to the time tht is needed for the dishrge to ross the interEeletrode gpF he rise time onsiders the time needed to go from zero to the mximum voltge nd it is set to T r = 2 nsF he pulse repetition period is set to T P = 10 -4 sD equl to 10 krz of repetition frequenyD typil vlue used in experiments qv + HTF e model the voltge pulse P y using sigmoid funtions

P (t, s, r, p) = 1 -σ(-t, -s, r) -σ(t, s + p, r), @IIFPVA with σ(t, s, r) = 1 1 + exp(-8(t -s)/r) , @IIFPWA
for time tD where s indites when the pulse strtsY r is the rise timeY nd p is the pulse durtionY tD sD rD p ∈ [0, T P ]F ith mximum pplied voltge V max D the pplied voltge V (t) is omputed y

V (t) = V max • P t - t T P • T P , T r , T r , T p . @IIFQHA
sn repetitively pulse dishrges t tmospheri pressure nd 300 uD s disussed in nHSD v + IHD eletrons tth rpidly to O 2 moleules during the interpulse to form negtive ions @hrteristi time sle of 20 nsAF henD the rte of the plsm dey is determined y ionEion reomintion uuwWPD nHSD v + IHF hen the next voltge pulse is ppliedD eletrons re dethed with rte tken from fxHQF hereforeD s initil ondition we ssume distriution similr to the end of the interpulse phse with homogeneous preioniztion PUV onsisting of positive nd negtive ions with density of 10 9 m -3 F por eletronsD we onsider low homogeneous kground of 10 1 m -3 F his smll mount of eletrons s initil ondition hs negligile in)uene on the resultsF e set the tolernes to η T = η split = η MR = 10 -4 nd onsider L = 11 grid levelsD equivlent to 2048 ells in the (nest gridF es in the previous on(gurtionD homogeneous xeumnn oundry onditions were onsidered for the driftEdi'usion equtionsF pigure IIFIP shows the time evolution of the deoupling time steps nd the pplied voltge for the (rst six pulsesD even though simultion ws performed for IHH pulsesD tht is t ∈ [0, 10 -2 ] sF his simultion took over 8h44m while running the eletri (eld omputtion in prllel on 6 g ores of the sme ewh ypteron TIQT roessor lusterY this gives n verge of 5.24 minutes per pulse periodF pigure IIFIP shows lso the fourth pulse for whih the stedyEstte of the periodi phenomenon ws lredy rehed nd lmost the sme numeril performne is reprodued during the rest of omputtionsF he time steps re out ∼ 10 -11 s during pulsesD then inrese from ∼ 10 -12 s up to out ∼ 10 -6 s during period ∼ 6000 times longerD for whih stndrd stility onstrints re widely overome ording to the required ury tolerneF olving this prolem for suh di'erent sles with onstnt time step is out of question nd even stndrd strtegy tht onsiders the minimum of ll time sles would limit onsiderly the e0ieny of the method s it is shown in the representtionF sn this prtiulr seD the dieletri relxtion is the governing time sle during the dishrge s in the previous se with onstnt pplied voltgeD wheres the postEdishrge phse is lterntively ruled y di'usive or onvetive gpvD or y ioniztion time sleD with ll seurity ftors nd gpv onditions set to one in pigure IIFIPF he omputtion is initilized with time step inluded in the pulse durtionF xeverthelessD fter eh relxtion phseD sine the new time step is omputed sed on the previous one ording to @IIFIWAD this new time step will surely skip the next pulseF sn order to void thisD eh time we get into new periodD tht is when t/T P hngesD we initilize the time step with ∆t = 0.5T r = 1 nsF his time step is oviously rejeted s seen in pigure IIFIPD s well s the next onesD until we re le to retrieve the right dynmis of the phenomenon for the required ury tolerneF xo other intervention is needed neither for modeling prmeters nor for numeril solvers in order to utomtilly dpt the time step needed to desrie the vrious time sles of the phenomenon within presried uryF pigure IIFIQ represents the time evolution of the dt ompression whih rnges from ∼ 2% up pigure IIFIR presents the dishrge dynmis for the (rst periodF pirstD we oserve t t = 10 ns fter the eginning of the pulseD the propgtion of positive stremer in the gpF sn etion IIFSFID preioniztion of positive ions nd eletrons ws used to ensure the positive stremer propgtionF sn this setionD seed eletrons hed of the stremer front re reted s the front propgtes y dethment of negtive ions initilly presentF e note tht t 15 nsD whih orresponds to lmost the end of the plteu efore the derese of the pplied voltgeD the dishrge hs rossed ∼ 0.75 m of the 1 m gpF es onsequeneD during the voltge derese nd t the eginning of the relxtion phse where the pplied voltge is zeroD there is remining spe hrge nd steep grdients of hrged speies densities in the gpF hen for t = 50 nsD pigure IIFIR shows tht the eletri (eld in the dishrge is lmost equl to zero exept in smll re where steep grdients of the eletri (eld re oserved ut with pek vlues of only 30 GmF e hve heked tht this re orresponds to the lotion of the stremer hed t the end of its propgtion s it is seen in the representtionF e note tht in the postEdishrgeD eletrons re tthing nd then t t = 50 nsD the density of positive ions is lmost equl to the density of negtive ions in the whole gpF et t = 99972 nsD the densities of hrged speies hve signi(ntly deresed due to hrged speies reomintionF roweverD it is interesting to note tht the lotion of the previous stremer hed n still e oserved t the sme lotion s t t = 50 nsD ut with muh smller grdients of hrged speies densities nd very smll eletri (eldF his (nl stte is the initil ondition of the seond pulse with nonEuniform xil preioniztion with positive nd negtive ions nd muh smller density of eletronsF efter few repetitive pulsesD we hve oserved tht the dishrge dynmis rehed stedyE stte ehvior s oserved in the experimentsF o show the hrteristis of the dishrge when the stedyEstte is rehedD pigure IIFIS shows the dishrge dynmis of the IHHth periodF he sequene of imges is the sme s in pigure IIFIRF et the end of the WWth pulseD we hve oserved tht the xil distriution of hrged speies in the gp is uniform nd tht the level of preioniztion is 5 × 10 10 m -3 positive nd negtive ions nd 10 4 m -3 eletronsF e note tht 10 ns fter the eginning of the IHHth pulse the propgtion of the dishrge is fster thn for the (rst pulseF PVP his fster propgtion is mostly due to the higher preioniztion level of positive nd negtive ions in the gp in omprison of the (rst voltge pulseF e oserve tht for the IHHth pulseD 15 ns fter the eginning of the pulse the dishrge hs lmost ompletely rossed the interE eletrode gp nd then during the relxtion phseD there is no remining spe hrge in the whole gpF gonsequentlyD 50 ns fter the eginning of the IHHth pulseD xil distriutions of ll hrged speies re uniformF es lredy oserved for the (rst pulseD t 50 ns fter the eginning of the voltge pulse most eletrons hve tthed nd thenD the density of positive ions is lmost equl to the density of negtive ions in the whole gpF e see tht the orresponding eletri (eld distriution is not uniform t 50 nsD ut no steep grdients re oserved s for the (rst voltge pulseF et t = 9999998 nsD tht is to sy t the end of the IHHth periodD we note tht very low eletri (eld is otined in the gpF en xilly uniform distriution of hrges is otined with 5 × 10 10 m -3 for positive nd negtive ions nd 10 4 m -3 for eletronsD whih ws the initil ondition of the IHHth pulseF his demonstrtes the existene of stedyEstte ehvior of these nnoseond repetitively pulsed dishrgesF 11.6 Conclusions he present work proposes new numeril strtegy for multiEsle stremer simultionsF st is sed on n dptive seond order time integrtion strtegy tht llows to disriminte time slesErelted fetures of the phenomenD given required level of ury of omputtionsF gompred with stndrd proedure for whih ury is gurnteed y onsidering time steps of the order of the fstest sleD the ontrol error pproh implies on the one hndD n e'etive urte resolution independent of the fstest physil time sleD nd on the other hndD n importnt improvement of omputtionl e0ieny whenever the required time steps go eyond stndrd stility onstrintsF he ltter is diret onsequene of the selfEdptive time step strtegy for the resolution of the driftEdi'usion equtions whih onsiders splitting time steps not limited y stility onstrints for retionD di'usion nd onvetion phenomenF o frD the glol deoupling time steps re limited y the dieletri relxtion stility onstrint ut with seond order uryF xeverthelessD we hve lso demonstrted tht the deoupling time steps re rther hosen sed on n ury riterionF fesidesD if tehnique suh s semiEimpliit pproh is implementedD the sme ides of the proposed dptive strtegy remin vlidF en dptive multiresolution tehnique ws lso proposed in order to provide error ontrol of the sptil dpted representtionF he numeril results hve proven nturl oupling etween time nd spe ury requirements nd how the set of timeEspe ury tolernes tunes the preise desription of the overll timeEspe multiEsle phenomenonF es onsequeneD the numeril results for multiEpulsed dishrge on(gurtions prove tht this kind of multiEsle phenomenD previously out of rehD n e suessfully simulted with onventionl omputing resoures y this timeEspe dptive strtegyF end they lso show tht onsistent physil desription is hieved for rod spetrum of spe nd time sles s well s di'erent physil senriosF sn this workD we foused on IFSh model in order to evlute the numeril performne of the strtegyF roweverD the dimension of the prolem will only hve n in)uene on the omputtionl e0ieny mesurements ut not on ny speEtime ury or stility sE petsF et this stge of developmentD the sme numeril strtegy n e oupled with multiEdimensionl oisson9s eqution solverD even for dpted grid on(gurtions s developed reently in wriHTD gfHVD fIHF pinllyD n importnt mount of work is still in progress onerning progrmming fetures suh s dt struturesD optimized routines nd PVQ prlleliztion strtegiesF yn the other hndD numeril nlysis of theoretil spets is lso underwy to extend nd further improve the proposed numeril strtegyF hese issues onE stitute prtiulr topis of our urrent reserhF Acknowledgements. his reserh ws supported y fundmentl projet grnt from ex @prenh xtionl eserh egeny E ex flnsAX éhelles @projet leder F hesomesAD nd y hsqsiy e projetX wi @projet leder wF wssotAF euthors express speil thnks to ghristin enud @vswsEgxA for providing the sis of the multiresolution kernel of wgryD ode developed for ompressile xvierEtokes equtions @hélrtion d9snvention hs HQUTHEHIAF upport of iole gentrle ris is grtefully knowledged for severl month sty of F fonventur t vortory iwPg s visiting roE fessorF F fonventur is lso grteful to the winistry of idutionD outh nd ports of the gzeh epuli under projet gFIFHSGPFIFHHGHQFHHVT nd projet ww HHPITPPRIIF General Conclusion and Prospects he generl frmework of this work ws settled y the development of e0ient numeril strtegies for the numeril simultion of prolems with n importnt rnge of time nd spe sles desriing rel physil phenomenF sn this lrge ontextD this work hs prtiulrly introdued few mthemtil nd numeril tools tht hve yielded generl timeGspe dptive numeril strtegy for the numeril solution of sti' his modeling reting frontsF he prtil implementtion of the strtegy hs een rried out y the development of numeril odeD wheres the numeril simultion of severl pplitions oming from di'erE ent dominsD nmely nonliner hemil dynmisD iomedil engineeringD omustionD nd plsm (eldsD hs ssessed the pilities nd potentils of the numeril pprohF he theoretil kground nd some new hievements in terms of mthemtil results s well s numeril toolsD were thus put into prtie to perform numeril simultions of models studE ied for sienti( nd tehnologil purposesD oupling elements of pplied mthemtis nd sienti( omputing for prolems of interest for rel pplitionsF e key issue onsidered nd disussed extensively in this work dels with the ojetive of providing vlid error estimtes for the numeril simultionsF e speil re ws thus given to this spet in the proposed numeril strtegy in order to de(ne generl riteri to monitor nd likely ontrol the pproxE imtion errors introdued y the numeril methodsF he ltter issue is often underestimted or vguely referred in most of the numeril simultions presented in the litertureD in whih no informtion is usully ville onerning the ury hieved with the numeril methE odsF he numeril tehniques developed in this work settle thus some fundmentl ses to perform urte nd fesile numeril simultions of vried sti' prolemsD for lrge omputE tionl domins out of reh of stndrd tehniquesD with onventionl omputtionl resouresF he min ontriutions of this workD previously disussed in detilsD re summrized in the followingX 

PVS

• sn terms of numeril shemeX en originl splitting sheme for retionEdi'usion systems feturing deditedD oneE step nd high order shemes for eh split suprolem @introdued in hwh + IPD hhh + IP nd presented in hwv + IIAD suh tht the time integrtion errors for eh split system re deoupled from the glol splitting error2 F e new prrel opertor splitting sheme for his modeling multiEsle retion wves hhwIIF o our knowledgeD the prrel lgorithm ws not previously implemented nd studied for sti' hisF e spe multiresolution tehnique oupled with dedited splitting tehnique for sti' retionEdi'usion systems hwh + IPD hwv + IIF o our knowledgeD this onE stitutes the (rst omintion of suh methods nd the (rst use of multiresolution tehniques for generl sti' prolems3 F e time stepping splitting tehnique with lol error ontrol for sti' retionEdi'usion systemsD nd extensile to more generl time dependent his hhh + IIF sn our opinionD this onstitutes mjor ontriution to the (eld euse it opens whole new set of possiilities for the numeril simultion of highly unstedy phenomen with splitting tehniques4 F e new timeGspe dptive numeril tehnique with error ontrol for sti' propE gting wves hwhhIID hwh + IIF elthough dynmi error ontrol is ommon prtie for sti' yhisD this is usully not the se for time integrtion of hisF o our knowledgeD this is one of the (rst numeril strtegies tht ounts for suh n issueD nd proposes generl riteri to de(ne the level of ury of the numeril simultion y deoupling nd trking time nd spe representtion errors5 F e new time stepping proedure with lol error ontrol for plsm modeling equE tions hfw + IPD sed on generl seond order sheme tht deouples eletri (eld omputtion from the solution of the driftEdi'usion equtions6 F e timeGspe generl dptive numeril strtegy with error ontrol for plsm modeling equtions hfw + IPF o the est of our knowledge this is novelty in the domin for the numeril simultion of stremersF
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• he numeril simultion of Qh sroll wves with n equivlent sptil disretiztion of 512 3 on stndrd worksttion of 32 qfF

• he numeril simultion of IWEvrile humn rin stroke model on simpli(ed Qh geometry with n equivlent sptil disretiztion of 512 3 on stndrd worksttion of 32 qfF

• he onsistent numeril simultion of di'erent physil senriosD depited y the selfE ignition of retive mixture with the susequent genertion nd propgtion of the )meD y mens of dynmi timeGspe dptivity toolsF

• he onsistent numeril simultion of highly multiEsle nnoseond repetitively pulsed dishrgesD desriing rod spetrum of spe nd time sles s well s di'erent physil senrios for onseutive dishrgeGpostEdishrge phsesF pinllyD let us mention some further developments envisioned in short termX

• e strightforwrd extension to the prtil implementtion of the numeril strtegy developed for the simultion of stremers in hfw + IPD onsiders the inlusion of oisson9s eqution solver for dptive grids in order to simulte multiEdimensionl ses7 F his kind of solver is ville in the litertureD nd hs een reently implementedD for instneD in wriHTD gfHV for stremer simultion on dptive gridsF e rell tht the seond order method s well s the time stepping proedure in hfw + IP re independent of the dimension of the prolemF 
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J

  

  the time evolution onsiders only O # L( Λn+1 ε

  Fig. 4.1:
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  Initialization of parameters: eFgFD mximum nd minimum grid levelsD domin sizeD numer of rootsF • Initialization of the mesh structure: retion of nested gridsY initiliztion of prmeters of eh ell from the rootsD eFgFD positionD oordiE ntesD level threshold vlue ε j Y de(nition of hildren nd neighors from the rootsF • Computation of initial solution t n intermedite grid level nd reursive re(nement nd omputtion t most up to the mximum levelF PF Loop in time. • Computation of cell values throughout the tree: projetion opertor P j j-1 from leves towrds rootsF • Computation of details: opertor M from roots towrds levesF • Thresholding and graduation: opertor T Λε throughout the treeF • Renement of the tree: opertor R throughout the treeF • Computation of cell values from details: opertor M -1 from roots towrds levesF • Creation of phantom cells: needed for di'usion time stepF • Time integration: performed only on the levesF por trng opertor splitting S ∆t 2 in @RFSAX retion hlf time stepD time integrtion y duS ell y ellY di'usion time stepD time integrtion y yguR onsidering phntom ells t the grid level oundriesD omputed y predition opertorY retion hlf time stepD time integrtion y duS ell y ellF QF Output.

Fig. 4

 4 Fig. 4.2: 1D BZ equation. Local errors for Lie and Strang splitting schemes. Lines with slopes 2 and 3 are depicted (left), and slopes 1, 1.5 and 3 in the zoomed loss order region (right).

Fig

  Fig. 4.3: 2D BZ spiral waves. Normalized L 2 -errors for several splitting time steps ∆t at nal time t * = 4 according to (4.24) and prexed accuracy tolerance of η = 10 -2 . Uniform grid of 256 2 .

  Fig. 4.5: BZ wave speed for splitting time step ∆t = 4/1024. Top left: time evolution of variable a along y-axis (see Figure 4.4); and right, estimated wavefront speed v. Bottom: speed relative errors E v for all three variables according to (4.23).

Fig. 4

 4 Fig.4.6: 2D BZ spiral waves. Left: time evolution of the data compression DC given by (4.39), in percentage. Right: normalized L 2 errors at t * = 4 given by the splitting technique on a uniform grid according to (4.24), and by the MR procedure according to (4.26), for several threshold values ε and a splitting time step of ∆t = 4/1024. Finest grid: 256 2 .

Fig

  Fig. 4.7: 2D BZ spiral waves. Variable a on the nest grid (top) and local reaction time steps h1 (bottom) at t = 2 (left) and t = 4 (right) with ∆t = 4/1024 and ε = 10 -2 . Finest grid: 1024 2 .

Fig

  Fig. 4.10: 3D BZ scroll wave. Adapted grid (left) and nest grid (right) at t = 2 for ε = 10 -1 . Finest grid: 512 3 .

Fig

  Fig. 5.1: 1D KPP equation with k = 1. Local L 2 errors for several splitting time steps ∆t and δ = 0.05 (top left), 0.005 (top right), and 0.0005 (bottom left). Bottom right: critical splitting time steps ∆t obtained when T ∆t u 0 -S ∆t u 0 L 2 ≈ S ∆t u 0 -S ∆t δ u 0 L 2 , in the numerical tests.

  Fig. 5.2: 1D KPP equation with k = 10 (top) and k = 100 (bottom). Left: local L 2 errors for several splitting time steps ∆t and δ = 0.05. Right: critical splitting time steps ∆t obtained when T ∆t u 0 -S ∆t u 0 L 2 ≈ S ∆t u 0 -S ∆t δ u 0 L 2 , in the numerical tests.

  Fig. 5.3: 1D BZ equation. Maximum local L 2 errors for several splitting time steps ∆t and δ = 0.05 (top left), 0.005 (top right), and 0.0005 (bottom left). Bottom right: critical splitting time steps ∆t obtained when T ∆t u 0 -S ∆t u 0 L 2 ≈ S ∆t u 0 -S ∆t δ u 0 L 2 , in the numerical tests.

  Fig. 5.5: 1D BZ equation. Time evolution of accepted splitting time steps ∆t (left) and local L 2 error estimates err = S ∆t u 0 -S ∆t δ u 0 L 2 (right), for several tolerances η and δ = 0.05.

  Fig. 5.6: 1D BZ equation. Time evolution of accepted splitting time steps ∆t (left) and local L 2 error estimates err = S ∆t u 0 -S ∆t δ u 0 L 2 (right), for several tolerances η, considering critical ∆t and computation of δ.

  Fig. 5.7: 2D BZ spiral waves. Time evolution of splitting time steps (left) and normalized L 2 errors at t * = 4 (right) according to (4.24), given by the time adaptive strategy for dierent accuracy tolerances η into (5.11) and with constant ∆t = 4/1024. Uniform grid of 256 2 .

Fig. 5

 5 Fig. 5.8: 2D BZ spiral waves. Top left: time evolution of splitting time steps with η = 10 -3 and nest grids of 256 2 and 1024 2 , and with ∆t = 4/1024. From top right to bottom left: normalized L 2 errors at t * = 4 given by the adaptive splitting technique with η = 10 -2 (top right), 10 -3 (bottom left), and 10 -4(bottom right) on a uniform grid according to (4.24), and by the MR procedure according to (4.26), for several threshold values ε and the adaptive splitting scheme. Finest grid: 256 2 .
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  Fig. 6.1: Standard KPP traveling wave, discretization with 5001 points on the [-70, 70] region. Selfsimilar solutions for eight time intervals after the initial condition.

Fig

  Fig. 6.3: Comparison of convergence rates of the parareal operator splitting at time t = 15 for 1D KPP equation for the Lie splitting scheme.

Fig

  Fig. 6.4: Comparison of convergence rates of the parareal operator splitting at time t = 15 for 1D KPP equation for the Strang splitting scheme.

  Fig. 6.6: Comparison of convergence rates of the parareal algorithm with either the operator splitting or the ROCK4 solver as coarse solver, at time t = 15 for 1D KPP equation.

  Fig. 6.7: 1D BZ traveling waves, discretization with 4001 points on the [0, 80] region. Self-similar solutions for eight time intervals after the initial condition.

  Fig. 6.8: Comparison of convergence rates of the parareal algorithm with an operator splitting or ROCK4 as coarse solver, at time t = 2 for 1D BZ equation.

  Fig.6.9: 2D BZ spiral waves on a [257 × 257] grid at t = 2.
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  Fig. 9.2: Evolution of K + in the neurons at t = 100 s (top left), t = 1000 s (top right), t = 2000 s (bottom left) and t = 3000 s (bottom right).

  Fig. 9.3: K + in the neurons at t = 3600 on a 256 2 uniform mesh (left) and the corresponding adapted grid (right).

Fig. 9

 9 Fig. 9.4: K + in the neurons at 3600 s for a 2D mesh of 256 2 (top), 512 2 (center) and 1024 2 (bottom).

  Fig. 9.7: Evolution of K + in the extracellular space over one hour, 2D simulation (in millimolar (mM)), from left to right, top to bottom.

Fig. 9 .

 9 Fig. 9.13: Local measurement of the computational cost of the reaction (in CPU clock tics).

Fig. 9 .

 9 Fig. 9.14: 3D simulations with (MR). K + in the neurons (left) and corresponding adapted grid (right) at 1000 (top) and 3600 (bottom) seconds.

  Fig. 9.15: Stroke model. Top: time evolution of K + in the neurons along x-axis (left) and of the wave velocity v (right) for dierent splitting time steps ∆t, computed on a uniform grid of 1024 points. Bottom: wave velocity v (left) and velocity error E v computed by (4.23) at dierent times t for dierent splitting time steps ∆t.

Fig. 9 .

 9 Fig.9.16: 2D stroke model. K + in the neurons at 500 s (top left), 1000 s (top right), 2400 s (bottom left), and 3600 s (bottom right) represented on a dynamic adapted grid corresponding to 1024 2 points at the nest level J = 10.

  Fig.9.17: 2D stroke model. Time evolution of data compressions DC given by (4.39) (left) and the number of points on the adapted grids AG (right) for dierent nest levels J.

  Fig.9.18: 2D stroke model. Time evolution of the ratio between CPU times for the integration of the reaction and diusion problems (left), and the CPU time per number of points in the adapted grid for the reaction solution (right) for dierent nest levels J.

Fig

  Fig. 9.19: 2D stroke model. Local reaction time steps h1 at 500 s (top left), 1000 s (top right), 2400 s (bottom left), and 3600 s (bottom right) within a half-splitting time step ∆t/2 = 5, represented on a dynamic adapted grid corresponding to 1024 2 points at the nest level J = 10.

Fig. 9 .

 9 Fig.9.20: 3D stroke model. K + in the neurons (left) and dynamic adapted grids (right) corresponding to 512 3 points at the nest level J = 9 at 1000 s (top) and 2000 s (bottom).

  splitting time step ∆tF he opertors RD DD nd C inditeD respetivelyD the numeril integrtion of the retionD di'usionD nd onvetion prolemsF he splitting time steps re dynmilly omputed y
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  Fig. 10.1: 2D propagating ame. Velocity eld at t = 10 -3 (left) and v y, at y = -0.5, at t = 10 -3 and t = 3 × 10 -3 (right).

Fig

  Fig. 10.3: 2D propagating ame. Variable c at t = 5×10 -4 (top left), 10 -3 (top right), and 1.5×10 -3(bottom left) represented on a dynamic adapted grid corresponding to 1024 2 points at the nest level J = 10 with ε = 10 -3 . Bottom right: time evolution of data compressions DC given by (4.39) for ε = 10 -2 and ε = 10 -3 .

Fig

  Fig.10.4: 2D propagating ame. Time evolution of the splitting time step ∆t, the reactive ∆t R1 and ∆t R2 , diusive ∆t D1 and ∆t D2 , and convective ∆t C substeps according to the Strang scheme (10.10) with tolerances η = 10 -3 and ε = 10 -2 (left) or ε = 10 -3 (right).

  Fig.10.6: 3D propagating ame. Left: time evolution of the splitting time step ∆t, the reactive ∆t R1 and ∆t R2 , diusive ∆t D1 and ∆t D2 , and convective ∆t C substeps with tolerances η = 10 -3 and ε = 10 -2 . Right: time evolution of data compressions DC given by (4.39), ε = 10 -2 .

Fig

  Fig.10.7: 2D propagating ame with complex chemistry. Left: concentrations of CH 4 (top) and OH (bottom) at t = 5 × 10 -3 , represented on an adapted grid corresponding to 1024 2 points at the nest level J = 10 with ε = 10 -2 . Right: contour lines for Y CH4 = 0 -0.59 with ∆Y CH4 = 0.059 (top), and time evolution of data compressions DC given by (4.39) for ε = 10 -2 (bottom).

Fig

  Fig.10.8: 2D propagating ame with complex chemistry. Velocity eld at t = 5 × 10 -3 (left), and v y, at y = 2.5, at t = 10 -3 and t = 5 × 10 -3 (right).

  Fig.10.9: 2D ame ignition. Time evolution of the temperature T calculated from θ in (10.92) at t = 5 × 10 -5 (top), 10 -4 (middle), and 1.5 × 10 -4 (bottom). Initial temperature of the fresh fuel: T F,0 = 300 K, and of the hot air: T O,0 = 1000 K. Right: dynamic adapted grid corresponding to 1024 2 points at the nest level J = 10 with ε = 10 -3 .

  Fig.10.10: 2D ame ignition. Time and space adaptation given by the time evolution of splitting time steps ∆t with accuracy tolerance η = 10 -3 (left), and of data compressions DC given by (4.39) for ε = 10 -2 and ε = 10 -3 (right).

Fig

  Fig. 10.11: 2D ame ignition. Time evolution of the splitting time step ∆t and the maximum temperature for dierent initial temperatures of the hot air T O,0 and T F,0 = 300 K. Tolerances η = 10 -3 and ε = 10 -3 .

  Fig. 11.1: 1D simplied plasma model. Spatial distribution of electron density before (left) and after (right) each pulse, starting from a step-like initial distribution (left) and for a duration of ten pulses.

Fig

  Fig. 11.2: 1D simplied plasma model. Time evolution of accepted and rejected splitting time steps, and the imposed electric eld for t ∈ [0, 10] µs (top left), during the pulse t ∈ [5, 5.01] µs (top right), and the post-discharge phase t ∈ [5.01, 6] µs (bottom left). Bottom right: global L 2 errors at the end of the pulse (t = 5.01 µs) and the post-discharge phase (t = 6 µs), with and without computation of critical ∆t and time shift δ.
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 11 Fig. 11.3: Computational domain for the studied point-to-plane geometry.

Fig. 11

 11 Fig. 11.4: Denition of the grid: the cell centers are located at x j c , whereas cell faces are located at x i f .

Fig. 11

 11 Fig. 11.6: Charged cylinder considered to compute the electric eld in the 1.5D model.

  11.5.1 Propagation of a Positive Streamer with Constant Applied Voltagee onsider pointEtoEplne geometry with 1 m gp etween the tip of the eletrode nd the plneD nd onstnt pplied voltge of 13 k t x = L x F por the following simultionsD the dishrge is initited y pling neutrl plsm loud with qussin distriution lose to the tip of the nodeF he initil distriutions of eletrons nd ions re then given yn e,p (x)| t=0 = n max exp -(x -c) 2 /w 2 + n 0 , n n (x)| t=0 = 0, @IIFPUAwhere w = 0.027 mD c = 1 mD n max = 10 14 m -3 D nd with preioniztion of n 0 = 10 8 m -3 F here re no negtive ions s initil onditionF he stremer rdius is set to R s = 0.05 m to hve typil eletri (eld mgnitude in the stremer hed of 120 kGm uulWVF roE mogeneous xeumnn oundry onditions were onsidered for the driftEdi'usion equtionsF wo instnes of the dishrge propgtion re shown in pigure IIFUD for 12 nested grids equivlent to 4096 ells on the (nest gridD L = 12D nd for ury tolernes of η T = η split = η MR = 10 -4 Y the sptil re(nement tkes ple only where it is requiredF pine tolernes PUQ

Fig. 11. 7 :

 7 Fig. 11.7: Positive streamer propagation at t = 6 ns (left) and t = 10 ns (right). Top: electric eld; middle: charged species density; and bottom: grid levels. Finest grid: 4096, η T = η split = η MR = 10 -4 .

  Fig. 11.9: Time evolution of the normalized L 2 errors between the reference and adapted solutions with η = η T = η split = η MR = 10 -4 , 10 -3 , and 10 -2 , and 4096 cells corresponding to the nest discretization. Top: electron (left) and positive ions (right); and bottom: negative ions.

Fig. 11 .

 11 Fig. 11.10: Top: adapted grids (left) and electric elds (right) at t = 8 ns with 4096 cells corresponding to the nest discretization, and η = η T = η split = η MR = 10 -4 , 10 -3 , and 10 -2 . Bottom: zoom on the electron distributions (left) and the electric eld (right) with the same parameters, and the reference solution.

Fig. 11 .

 11 Fig. 11.12: Time evolution of the applied voltage and the decoupling time steps ∆t for a multi-pulse simulation for the rst 6 pulses (left) and for the 4th one (right) with its subsequent relaxation. Rejected time steps are marked with black crosses, while the minimum time scale corresponds to the blue line.

PUWto∼

  16% during eh pulse periodF egrding only the eletri (eld resolution with the sme time integrtion strtegyD grid dpttion tehnique involves resolutions ∼ 39 to ∼ 2500 times fsterD sed on relly rough estimte for O(N 2 ) opertionsF

Fig. 11

 11 Fig. 11.13: Time evolution of the data compression for a multi-pulse simulation for the rst six pulses (left) and for the fourth one (right) with its subsequent relaxation.

Fig. 11

 11 Fig. 11.14: First period of pulsed discharges. Top: propagation of the discharge in the domain at t = 10 ns after the beginning of the pulse (left); and at t = 15 ns (right). Bottom: relaxation on the short time scale t = 50 ns; and end of the relaxation phase after t = 99972 ns (right).

Fig. 11

 11 Fig. 11.15: Steady-state of pulsed discharges (last period). Top: propagation of the discharge in the domain at t = 9900010 ns after the beginning of the pulse (left); and at t = 9900015 ns (right). Bottom: relaxation on short time scale t = 9900050 ns; and end of the relaxation phase t = 9999998 ns (right).
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  sn terms of mthemtil nlysisX he numeril nlysis of the shifted nd stndrd trng splitting tehniques for generl nonliner retionEdi'usion systemsD pulished in hhh + IIY nd the theoE retil hrteriztion of numeril errors for selfEsimilr solutionsF e numeril proedure to evlute the trng lol truntion error nd the study of nonEsymptoti regimes for lrge splitting time steps hhh + IIF xew error estimtes of splitting tehniques for retionEdi'usion systems feturing solutions with high sptil grdientsD pulished in hhwIIF he numeril nlysis of prrel opertor splitting tehnique for retionE di'usion systems hhwIIY nd theoretil hrteriztion of numeril errors for selfEsimilr solutionsF he onstrution of seond order sheme for plsm modeling equtionsD pulished in hfw + IPF General Conclusion and Prospects

  

  δt n+1 will e then given y δt new if err n+1 ≤ Tol F elterntivelyD the urrent nEth time step will e rejeted if err n+1 > Tol D nd in this se the proedure works s n posteriori veri(tion where the sme nEth step will e integrted gin with the new time step δt new F RH fsed on the sme ides nd on more rigorous theoretil studies rried out y qustfsson qusWRD etter proedure ssumes tht log C n is liner funtion of nD nd thus log C n+1log C n is onstnt orD equivlently rWT

	,	@PFRQA
	y ssuming Cn+1 ≈ Cn into	
	Tol ≈ Cn+1 δt p+1 new .	@PFRRA
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	3.3 Adaptive Multiresolution Finite Volume Scheme
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Fig. 4.4: 2D BZ spiral waves. Top: variable b (left) and c (right) at t = 4. Bottom: variable a (left) and its representation with four levels of mesh discretization with ε = 10 -2 (right). Finest grid: 256 2 . Sect. 4.6 -Numerical Simulations
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 4 

.1: 2D BZ spiral waves. CPU time in seconds for quasi-exact, splitting, and MR/splitting solutions with dierent threshold values ε. Finest grid: 256 2 .

Table 4

 4 

		splitting		wGsplitting ε = 10 -2
		g time @sA	7	g time @sA	7
	etion	WTQ	TSFR	RVT	RRFH
	hi'usion	RVI	QPFU	QRV	QIFS
	Total	IRUP	IHHFH	IIHR	IHHFH

.2: 2D BZ spiral waves. CPU time in seconds for the reaction and diusion time integrations for a splitting and a MR/splitting resolution with ε = 10 -2 . Finest grid: 256 2 .

  10 6 Y with n verge dt ompression of 91%F gonsidering stndrd pltform on whih eh doule preision vlue is represented y 64 itsD we shll require 2.3 D 1.5 qD nd 140.4 wD respetivelyD for eh solverF por stndrd omputtionl resouresD n impliit resolution with duS is ompletely out of rehF hese = 4F he orresponding dt ompressions DC reD respetivelyD of 92.3 % nd 89.9 %D while the steepest sptil grdients of the front re lwys solved within the (nest region tking into ount tht the splitting time step ∆t = 4/1024 remins ounded y ∆t max = 4.2 × 10 -3 for ∆x = ∆y = 1/1024 ording to @RFPUAF por this seD six levels of grid were used from j = 5 to the (nest grid J = 10F
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expensive memory requirements re strongly redued with splitting strtegy ut further redutions re hieved y dding multiresolution dptive proedureF pigure RFU @topA shows the sptil representtion of vrile a on the (nest level orresponding to 1024 2 sptil disretiztion of prolem @RFPWAD t n intermedite time t = 2D nd fter WV one revolution t (nl time t

  sti' prolemsF his time dptive proedure must e performed within presried ury in order to ensure the previous working frmework in terms of ury of the numeril simultionsF hese key issues remined n open prolem for mny yersD nd in the next hpter of this work we propose theoretil nd numeril solution to overome these di0ultiesF gonerning the seond onstrintD more sophistited re(nement riteri might e requiredD s the ones introdued y gohen et lF in guwHQD tht llow us to dd more thn one re(ned level efore eh new time step in order to properly desrie suddenly high vritions in the new numeril solutionF xeverthelessD we shll see in the forthoming hpters tht n pproprite frequeny of remeshing set y the dynmi time stepping tehnique developed in this work llows us lso to rpidly pture the sptil dynmis of highly unstedy prolemsD keeping the sme nd muh simpler previous re(nement nd oupling riteriF e omintion of more dedited re(nement tehniques nd the dptive splitting time stepping might e however onsidered to further improve the numeril strtegy in some prtiulr sesF he ltter option hs not een su0iently nlyzed for the moment nd will not e desried in the present workF he sme follows for the lst onstrint whih might require speil tehniques for the evlution of the soure termsD s the ones developedD for instneD y rovhnnisyn 8 wüller in rwIH for n e0ient numeril simultion of some prtiulr pplitionsF

	Chapter 5
	• he retive tivity is minly onentrted in the wvefronts whih re sptilly re(ned
	to void n importnt ury redution in the evlution of the soure terms nd thus
	perturtions in the glol phenomenonF

he (rst onstrint redues onsiderly the ppliility of the method for lrge numer of pplition feturing more generl nd proly highly unstedy phenomenF he ntuE rl solution to this limittion is given y the onstrution of n e0ient dptive splitting IHQ sheme for generl

Table 5

 5 

.1: 1D KPP equation.

  the numerical tests, and the theoretically estimated ∆t est following

	(5.43).				
		δ	0.05	0.005	0.0005
	k = 1	∆t real ∆t est	2.783 1.107	0.1274 0.1107	1.17 × 10 -2 1.11 × 10 -2
	k = 10	∆t real ∆t est	0.2803 0.1107	1.29 × 10 -2 1.19 × 10 -3 1.11 × 10 -2 1.11 × 10 -3
	k = 100	∆t real 4.33 × 10 -2 2.12 × 10 -3 1.92 × 10 -4 ∆t

est 1.11 × 10 -2 1.11 × 10 -3 1.11 × 10 -4

  ∈ [β∆t , γ∆t ] with 0 < β < γ ≤ 1X estimate is set to .true.F RF ynly if estimate is .true. nd ite > 0X Computation of δ: eording to @SFRVA with err D C 0 D nd ∆t = ∆tX δ = min{θδ, δ max }D with θ ≥ 1 s seurity ftorY omputtion of ∆t with new δY estimate is set to .false.F SF Computation of ∆t new : eording to @SFIIA with seurity ftor 0

with e 1 nd e 2 Y estimte ∆t out of @SFRVAD nd set ∆t = ζ∆t with seurity ftor 0 < ζ ≤ 1D lose to 1Y estimate is set to .false.F IPQ sf ∆t /
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	η	L 2 error a	L 2 error b	L 2 error c
	10 -4	7.97 × 10 -3	1.07 × 10 -2	4.72 × 10 -3
	10 -6			

.2: 1D BZ equation. L 2 errors at nal time t = 2 for (a, b, c) variables and several accuracy tolerances η.

Table 5 .

 5 3: 1D BZ equation. L 2 errors at nal time t = 2 for (a, b, c) variables and several tolerances η, considering critical ∆t and computation of δ.

  PARAREAL OPERATOR SPLITTING TECHNIQUES FOR MULTI-SCALE REACTION WAVES: NUMERICAL ANALYSIS AND STRATEGIESMax Duarte, Marc Massot, and Stéphane Descombes

Table 6

 6 

		.1: Computation time in seconds, 2D BZ.	
	qrid	129 × 129	257 × 257
	gorse solver h trng yguR h trng yguR
	T f ine	2769.94	2757.52	11291.36	11149.42
	T coarse	228.53	256.07	1006.62	1177.89
	T f ine /T coarse	12.12	10.77	11.22	9.47
	N ite	4	2	4	2
	T para	1279.81	860.30	5581.32	3869.51
	estlished in the previous Ih se nd yguRD s orse solvers for two di'erent gridsD
	[129 × 129] nd [257 × 257]D where the time domin hs een deomposed into N = N proc = 64
	time sudominsF xturllyD the (ne solver is n urte h trng opertor splittingF
	eording to the prrel shemeD this (ne resolution is performed on luster mde of 32
	nodes with 2 proessors ewh ypteron TR its dul ore with speed 2.4 qrzY the numeril ode

is written in portrn WS nd uses the ws lirry for the prllel feturesF he results relted to eh on(gurtion re summrized in le TFID where the stopping riterion is sed on the sme order of di'erene etween suessive prrel solutions for oth on(gurtionsF xotie tht the splitting sheme is fster thn oupled resolution even if n expliit method suh

Table 6

 6 

		.2: Computation time ratios, 2D BZ.	
	qrid	129 × 129		257 × 257	
	gorse solver h trng yguR h trng yguR
	N proc		64		
	N proc /N ite	16	32	16	32
	T f ine /T para	2.16	3.21	2.02	2.88

  Output: qrded struture for level j ∈ [j 0

		IUP
	18: end if
	19:	
		with elgorithm UFWF
	15:	end for
	16:	end for
	17:	end for

  ]F 2: por given ury tolernesX η Radau5 nd η ROCK4 F 3: por t → t + ∆t/2X time integrtion of U J for the retion prolem with duS y elgorithm VFPF → t + δ∆tX time integrtion of l rrys U for i ∈ Θ l F 7: por t → t + ∆tX time integrtion of U J = (U new J , ŨJ ) T of size (m + l, N L )D for the di'usion prolem with yguR y elgorithm VFQF et eh internl stge s of yguRD the )uxes

	Sect. 8.3 -Time Adaptive Splitting Scheme	IVR
	4: xew trng solutionX ŪJ → U new J F 5: por t new,(i) J	with i ∈ Θ l D for the retion prolem
	with duS y elgorithm VFPF	
	6: xew shifted trng solutionX	Ū(i) J →	Ũ(i)
	re evluted with elgorithm VFRF	
	8: pdte trng solutionX	Ū(i) J → U	new,(i) J	for i = 1, . . . , mF
	9: pdte shifted trng solutionX 10: por t → t + (1/2 -δ)∆tX time integrtion of U J = (U new Ū(m+i) J → Ũ(i) J for i = 1, . . . , lF J , ŨJ ) T of size (m + l, N L ) for the
	retion prolem with duS y elgorithm VFPF
	11: pdte trng solutionX	Ū(i) J → U	new,(i) J	for i = 1, . . . , mF
	12: pdte shifted trng solutionX 13: por t → t + δ∆tX time integrtion of U new Ū(m+i) J → Ũ(i) J for i = 1, . . . , lF J D for the retion prolem with duS y
	elgorithm VFPF			
	14: pdte trng solutionX ŪJ → U new J F
	15:			

J

  with the elgorithm VFUF 3: istimte of time integrtion lol errorX ∆ → err F 4: por given ury tolerne η nd seurity ftor υD ompute the new splitting time step ∆t new X Output: xew splitting time stepX ∆t → ∆t new D nd estimte of time integrtion lol

					IVT
	5: errorX err F				
	8.3.3 Time Adaptive Splitting Algorithm			
	ith the previous elementsD the elgorithm VFW introdues the generl time dptive splitE
	ting tehnique developed in ghpter SD for oth uniform nd dpted sptil meshesF
	Algorithm 8.9 ime dptive splitting shemeX S ∆t 2 F			
	1: Input: olution				
	∆t new = υ ∆t	η err	1/2	.	@VFVA

  ]F 2: et the time integrtion ury tolerneX ηD nd seurity ftor for time step ompuE ttionX υF 3: et ury tolernes for split retion nd di'usion time integrtionX η Radau5 nd η ROCK4 F 4: trt time integrtion of the solutionX integrate = .true.

	5: while integrate = .true. do
	6:	gompute trng nd shifted trng solutionsX U new J	nd ŨJ D from initil solution U J
		with splitting time step ∆t y elgorithm VFTF
	7:	ytin the new splitting time stepX ∆t new D nd the lol error estimteX err D with
		elgorithm VFVF	
	8:	if err ≤ η then {eept urrent trng solution}
	9:	pdte solutionX U new J	→ U J F
	10:	pdte timeX t → t + ∆tF
	11:	top time integrtionX integrate = .false.
	12:	end if	
	13:	pdte splitting time stepX ∆t → ∆t new F
	14:	vimit time dominX ∆t = min{∆t, T -t}
	15: end while	
	16: Output: trng solution	

  ]F 2: et the time integrtion ury tolerneX ηD nd seurity ftor for time step ompuE ttionX υF Introduction sn this lst prtD we present some numeril evlutions of the numeril tehniques developed minly in hpters R nd SD nd implemented in the wfeii ode s desried in hpters U nd VD for severl prolems oming from di'erent dominsF e (rst illustrtion ws onduted throughout hpters R nd S for series of simultions of hemil wves tht re often used to represent sti' fetures of generl reting frontsF ghpter W is devoted to the numeril simultion of humn rin strokesD modeled y retionE di'usion systems with omplex hemil mehnismsF he study inluded in this hpter might e seen s the ontinution of the numeril evlution performed in ghpter RD this time for muh more omplex model tht requires the implementtion of prllel omputing tehniquesFxumeril simultions of omustion fronts re onsidered in ghpter IH for di'erent physiE l on(gurtionsD modeled y retionEdi'usionEonvetion systems in thermoEdi'usive pE prohF he nlysis of the numeril results ssesses the preditive pilities of the method in terms of uryD the performne of the timeGspe dptive fetures of the methodD s well s the potentil extensions to more omplex sesF ghpter II is devoted to the numeril simultion of positive stremer dishrges in plsm pplitionsF he method introdued nd evluted in the previous hpters is integrted into new seond order methodD speilly oneived for the numeril solution of multiEsle plsm modelsF sn this wyD this hpter illustrtes further extensions of this workD sed on the numeril strtegy developed in hpters R nd SF xumeril simultions re performed for propgting ioniztion wves nd highly unstedy plsm dishrge on(gurtionsD for whih the pilities of the new strtegy re evlutedF

	Chapter 9

  + IIF SIMULATION OF HUMAN ISCHEMIC STROKE IN REALISTIC 3D GEOMETRY Thierry Dumont, Max Duarte, Stéphane Descombes, Marie-Aimée Dronne, Marc Massot, and Violaine LouvetAbstract. sn silio reserh in mediine is thought to redue the need for expensive linil trils under the ondition of relile mthemtil models nd urte nd efE (ient numeril methodsF sn the present workD we tkle the numeril simultion of retionEdi'usion equtions modeling humn ishemi strokeF his prolem indues peE ulir di0ulties like potentilly lrge sti'ness whih stems from the rod spetrum of temporl sles in the nonliner hemil soure term s well s from the presene of steep sptil grdients in the retion frontsD sptilly very lolizedF purthermoreD simultions on relisti Qh geometries re mndtory in order to desrie orretly this type of pheE nomenonF he min gol of this rtile is to otinD for the (rst timeD Qh simultions on relisti geometries nd to show tht the simultion results re onsistent with those otin in experimentl studies or oserved on ws imges in stroke ptientsF por this purposeD we introdue new resolution strtegy sed minly on time operE tor splitting tht tkes into ount omplex geometry oupled with wellEoneived prlleliztion strtegy for shred memory rhiteturesF e onsider then high order impliit time integrtion for the retion nd n expliit one for the di'usion term in order to uild time opertor splitting sheme tht exploits e0iently the speil fetures of eh prolemF husD we im t solving omplete nd relisti models inluding ll time nd spe sles with onventionl omputing resouresD tht is on resonly powerful worksttionF gonsequently nd s expetedD Ph nd lso fully Qh numeril simultions of ishemi strokes for relisti rin geometryD re onduted for the (rst time nd shown to reprodue the dynmis oserved on ws imges in stroke ptientsF feyond this mjor stepD in order to improve ury nd omputtionl e0ieny of the simulE tionsD we indite how the present numeril strtegy n e oupled with sptil dptive multiresolution shemesF reliminry results in the frmework of simple geometries llow to ssess the proposed strtegy for further developmentsF is mjor puli helth prolem sine it represents the seond leding use of deth worldwide nd the (rst use of quired disility in dultsF sn the nited ttesD this disE ese strikes one every 40 seonds nd uses deth every 4 minutesD with n estimted RIFT7

	Keywords. sshemi strokeY etionEdi'usion equtionsY ypertor splittingY rllel
	omputingF
	Mathematics Subject Classication. QSeQSD QSuSUD TSvHTD TSwHVD TSwSHD TSHSD
	WPfHSF
	9.1 Introduction
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 9 1:

Table 9 .

 9 2: Minimum and maximum values of variables in the neurons, computed with the (MR) code, and normalized L 2 dierence e of numerical results between uniform mesh and (MR). t = 3600 s.

	rile	win vlue	wx vlue	e
	K +	68.9338	141.6940	3.4059 × 10 -3
	N a +	7.0834	75.2787	6.0126 × 10 -3
	Ca 2+	1.0558 × 10 -4 9.3376 × 10 -4 2.0559 × 10 -2
	Cl -	11.5492	22.3907	3.1682 × 10 -3
	glu	0.0808	9.3415	7.0681 × 10 -3
	V n	-57.6666	-3.7338	7.0782 × 10 -3
	f n	0.0799	0.0878	6.8508 × 10 -4

Table 9 .

 9 3: Minimum and maximum values of variables in the astrocytes, computed with the (MR) code, and normalized L 2 dierence e of numerical results between uniform mesh and (MR). t = 3600 s.Table9.4: Minimum and maximum values of variables in the extracellular space, computed with the (MR) code, and L 2 normalized dierence e of numerical results between uniform mesh and (MR).

	rile	win vlue	wx vlue	e
	K +	124.2309	132.6962 1.2265 × 10 -3
	N a +	15.0751	24.3063	6.3289 × 10 -3
	Ca 2+	1.5921 × 10 -4	0.4149	3.1653 × 10 -2
	Cl -	6.7503	10.8147	1.0143 × 10 -2
	glu	2.5460	2.9870	1.0133 × 10 -3
	V a	-75.2476	-19.6358 1.0817 × 10 -2
	f a	0.7128	0.8088	1.1877 × 10 -3
	t = 3600 s.			
	rile	win vlue	wx vlue	e
	K +	4.8682	59.4336	6.1640 × 10 -3
	N a +	82.7306	141.0174 2.3939 × 10 -3
	Ca 2+	0.0740	2.0027	2.4298 × 10 -2
	Cl -	142.3254	150.2269 4.7433 × 10 -4
	glu	7.2590 × 10 -4	0.0791	2.3966 × 10 -3

Table 9 .

 9 5: 2D stroke model. CPU times (CT) in minutes and gain of parallelization (GP), for several nest grids (FG).

	FG 256 2	512 2 1024 2 2048 2
	CT IHFWP QIFQU VPFRS PIRFRQ
	GP UFTP	UFSH	UFSS	UFSP

Table 10 .

 10 1: 2D propagating ame. L 2 numerical errors for the time adaptive splitting (E J

	split ), space

t [10 -3

Table 10 .

 10 2: 2D propagating ame. CPU time in minutes for the quasi-exact, the time adaptive splitting, and the time/space adaptive strategies for t ∈ [0, 2 × 10 -3 ]. Finest grid: 1024 2 . the g times for hlf the time domin of study t ∈ [0, 2 × 10 -3 ]D tking into ount tht the referene qusiEext solution is very expensive to omputeF he totl g time for t ∈ [0, 4 × 10 -3 ] ws out 80.73 nd 98.38 minutes for ε = 10 -2 nd ε = 10 -3 D respetivelyF xotie tht the splitting g time ounts for the ost redution with respet to the qusiEext solution tht onsiders smll time step of the order of the fstest numeril sle @the onvetive gpv ondition in this seAF xeverthelessD muh more performing strtegies n e implemented to otin the oupled referene solutionD nd the previous vlues should e tken s one possile numeril inditorF edditionllyD the g times ssoited with the timeGspe dptive tehnique ount for the gin issued from the ompressed dt representtionD if one ompres them with the splitting g timeF sn this seD these gins re entirely oherent with the orresponding dt ompression hieved with eh threshold vlue in pigure IHFQF his is sign tht the most expensive prt of omputtions is relted to the sptil representtionD nd thus either to the onvetionD the di'usion or oth prolemsF his is on(rmed y the g time per time step spent on the solution of eh prolemD given in le IHFQF e note tht in this implementtion nd for the di'usion prolemD we do not use the previous mtrix representtion of the vplin opertorD nd thus etter performnes might e hieved onsidering its sprse struture t lest for the uniform grid prolem s previously disussed in this workF Table10.3: 2D propagating ame. CPU time per splitting time step (in seconds) for the reaction, diusion, and convection time integrations for the time adaptive splitting and the time/space adaptive techniques, t = 1.5 × 10 -3 , and ∆t ≈ 8.77 × 10 -6 for the three solutions. Finest grid: 1024 2 .

	wGsplitting ε = splitting qusiEext 10 -2 10 -3
	g time @mA STFPU	UIFHS	SVWFHH	TTHQFPT
	le IHFP inludes			

Table 10

 10 

	.4:	2D ame ignition. L 2 numerical errors for the time adaptive splitting (E J split ), space
	adaptive multiresolution (E J M R ), and time/space adaptive (E	M R split ) solutions evaluated at dierent times.
	Finest grid: 1024 2 .

t [10 -4

Table 10 .

 10 5: 2D ame ignition. CPU time in minutes for the quasi-exact, the time adaptive splitting, and the time/space adaptive strategies for t ∈ [0, 1.5 × 10 -4 ]. Finest grid: 1024 2 .

										wGsplitting ε = splitting qusiEext 10 -2 10 -3
					g time @mA TFRQ		VFWQ			PHUFSP	TURFTW
		10 -4			η=10 -3 -ε=10 -2					10 -4		η=10 -3 -ε=10 -3
		10 -5											10 -5	
	time steps	10 10 -6 -7							∆t ∆t R1		time steps	10 10 -6 -7		∆t ∆t R1
										∆t D1							∆t D1
		10	-8							∆t C				10	-8		∆t C
										∆t D2							∆t D2
		10	-9							∆t R2				10	-9		∆t R2
			0	0.2	0.4	0.6	0.8	1	1.2	1.4				0	0.2	0.4	0.6	0.8	1	1.2	1.4
						t * [10 -4 ]									t * [10 -4 ]
								10 -4							
								10 -5							
							time steps	10 -7 10 -6							
								10	-8							
								10	-9							
									0	0.2	0.4	0.6	0.8	1	1.2	1.4
												t * [10 -4 ]		

  11.1.1 Mathematical Model vet us onsider simpli(ed retionEdi'usion modelX ∂ t n e -D ∂ 2 x n e = n e α|v e | -n e η|v e | + n e n p β ep , ∂ t n p -D ∂ 2 x n p = n e α|v e | -n e n p β ep + n n n p β np , ∂ t n n -D ∂ 2 x n n = n e η|v e | -n n n p β np ,

  equtions nd the omputtion of eletri (eldF he proposed numeril method provides timeEspe ury ontrol of the solutionD nd thusD n e'etive uE rte resolution independent of the fstest physil time sleF en importnt improvement of the omputtionl e0ieny is hieved whenever the required time steps go eyond stndrd stility onstrints ssoited with mesh size or soure time sles for the resE olution of the driftEdi'usion equtionsD wheres the stility onstrint relted to the dieletri relxtion time sle is respeted ut with seond order preisionF xumeril illustrtions show tht the strtegy n e e0iently pplied to simulte the propgtion of highly nonliner ionizing wves s stremer dishrgesD s well s highly multiEsle nnoseond repetitively pulsed dishrgesD desriing onsistently rod spetrum of spe nd time sles s well s di'erent physil senrios for onseutive dishrgeGpostE dishrge phsesD out of reh of stndrd nonEdptive methodsF Keywords. wultiEsle dishrgeY ime dptive integrtionY pe dptive multiresoE

	A NEW NUMERICAL STRATEGY WITH SPACE-TIME ADAPTIVITY AND
	ERROR CONTROL FOR MULTI-SCALE STREAMER DISCHARGE
	SIMULATIONS
	Max Duarte, Zden¥k Bonaventura, Marc Massot, Anne Bourdon, Stéphane
	Descombes, and Thierry Dumont
	Abstract. his pper presents new resolution strtegy for multiEsle stremer disE
	hrge simultions sed on seond order time dptive integrtion nd spe dptive
	multiresolutionF e lssil )uid model is used to desrie plsm dishrgesD onsidering
	driftEdi'usion lutionY irror ontrolF
	Mathematics Subject Classication. TSwHVD TSwSHD TSHSD TSqPHF
	tournl of gomputtionl hysis PQI @PHIPA IHHP!IHIW
	hysX IHFIHITGjFjpFPHIIFHUFHHP
	ulished online tuly IWD PHIIF

Table 11 .

 11 1: Number of cells in the adapted grid (#AG) and data compression (DC) at time t = 8ns, CPU computing time for t ∈ [0, 10] ns, L = 11, and several tolerances η = η T = η split = η MR .

	η	#AG DC7 g@sA
	10 -6	724	35.35	1360
	10 -5	421	20.56	517
	10 -4	263	12.84	193
	10 -3	138	6.74	66
	10 -2	70	3.42	24
	e0iently pplied to simulte the propgtion of highly nonliner ionizing wves s stremer
	dishrgesF en importnt redution of omputing time results from signi(nt dt ompresE
	sion with still urte resolutionsF sn dditionD this study llows to properly tune the vrious
	simultion prmeters in order to gurntee (ne resolution of more omplex on(gurtionsD
	sed on the timeEspe ury ontrol pilities of the methodF
	11.5.2 Simulation of Multi-Pulsed Discharges

  • sn the sme wyD hydrodynmi solver n e oupled with the numeril strtegy estlished in ghpter IH for the simultion of omustion frontsD in order to onsider omplete physil models with omplex hemistry nd detiled trnsportD without doptE ing thermoEdi'usive pproh 8 F• prom theoretil point of viewD we hve estlished some glol ury riteriD sed on the deoupling of time nd spe pproximtion errors forD respetivelyD the time inE tegrtion method nd the ompressed sptil representtionF he numeril evlution of the simultions showed good greement etween the numeril results nd the preE sried tolernes in terms of uryF xeverthelessD there is nturlly ertin dose of heuristis tht n e ertinly improvedD y onsidering more detiled mthemtil nlysis of the vrious elements of the strtegyD eFgFD study of glol timeGspe errorsD hrteriztion of oupled timeGspe pproximtion errorsD mthemtil desription of wve pro(le nd speed pproximtionsF iertD nd F rundsdorferF pontneous rnhing of nodeE direted stremers etween plnr eletrodesF hysF evF vettFD VVXIURSHP@AD PHHPF erWV F egrll nd eF rrtenF wultiresolution representtion in unstrutured meshesF sew tF xumerF enlFD QS@TAXPIPV!PIRTD IWWVF euHT tFwF elmD xFuFEF uevlhnD nd yFF silyevF imultneous speEtime dpE tive wvelet solution of nonliner proli di'erentil equtionsF tF gomputF hysFD PIR@PAXVPW!VSUD PHHTF ewHI eF edulle nd eFeF wedovikovF eond order gheyshev methods sed on orthogonl polynomilsF xumerF wthFD WH@IAXI!IVD PHHIF eWU FwF esherD FtF uuthD nd FtF piteriF smpliitEexpliit ungeEuutt methE ods for timeEdependent prtil di'erentil equtionsF epplF xumerF wthFD PS@PE QAXISI!ITUD IWWUF PVW eWS FwF esherD FtF uuthD nd fFFF ettonF smpliitEexpliit methods for timeE dependent prtil di'erentil equtionsF sew tournl on xumeril enlysisD QP@QAXUWU!VPQD IWWSF exeUP yF exelssonF e note on lss of strongly eEstle methodsF fs xumerF wthFD IPXI!RD IWUPF fefHI FeF frerD FxF euerD eFwF fuhnD nd qFF utherlndF nderstnding nd mnging ishemi strokeF gnF tF hysiolF hrmolFD UW@QAXPVQ!PWTD PHHIF flHQ qF flF yn the onvergene nd the stility of the prrel lgorithm to solve prtil di'erentil equtionsF sn roeedings of the ISth snterntionl homin heomposition gonfereneD vetF xotes gomputF iF ingF RHD pges RPT!RQPF pringerD ferlinD PHHQF frWI hF frkleyF e model for fst omputer simultion of wves in exitle mediF hysi hXxonliner henomenD RWXTI!UHD IWWIF fff + IH tF fllmnnD wF fehrD uF frixD F hhmenD gF rohnD F wssjungD F welinD F wüllerD nd qF hie'erF rllel nd dptive methods for )uidEstrutureE intertionsF sn F hröderD editorD ummry of plow wodultion nd pluidE truture sntertion pindingsD volume IHW of xotes on xumeril pluid weE hnis nd wultidisiplinry hesignD pges PTS!PWRF pringer ferlin reidelergD PHIHF ffgIH eF fourdonD F fonventurD nd F gelestinF sn)uene of the preEioniztion kground nd simultion of the optil emission of stremer dishrge in preheted ir t tmospheri pressure etween two point eletrodesF lsm oures iF ehnolFD IW@QAXHQRHIPD PHIHF ffrVW FxF frownD qFhF fyrneD nd eFgF rindmrshF yhiX e vrileEoe0ient yhi solverF sew tF iF ttF gomputFD IHXIHQV!IHSID IWVWF ffw + HP vF f0oD F fernrdD F wdyD qF uriniiD nd qF érhF rllelEinEtime moleulrEdynmis simultionsF hysil eview iD TT@HSUUHTAXI!RD PHHPF fffHW wF fendhmneD F fürgerD F uizEfierD nd uF hneiderF edptive multiresE olution shemes with lol time stepping for twoEdimensionl degenerte retionE di'usion systemsF epplF xumerF wthFD SW@UAXITTV!ITWPD PHHWF ffWR tF fellD wFtF fergerD tF ltzmnD nd wF elomeF hreeEdimensionl dptive mesh re(nement for hyperoli onservtion lwsF sew tF iF gomputFD ISXIPU! IQVD IWWRF fgVW wFtF ferger nd F golellF vol dptive mesh re(nement for shok hydrodyE nmisF tF gomputF hysFD VPXTU!VRD IWVWF fgWI qF feylkinD F goifmnD nd F okhlinF pst wvelet trnsforms nd numeril lgorithms sF gommF ure nd epplied wthFD RR@PAXIRI!IVQD IWWIF fguHP rF fijlD wFrF grpenterD FxF tsD nd gFeF uennedyF smpliit time integrtion shemes for the unstedy ompressile xvierEtokes equtionsX vminr )owF tF gomputF hysFD IUW@IAXQIQ!QPWD PHHPF PWH fhe + HT tFfF fellD wFF hyD eF elmgrenD wF vijewskiD gF endlemnD F ghengD nd sF hepherdF imultion of len premixed turulent omustionF tournl of hysisX gonferene eriesD RT@IAXID PHHTF fhqHP tFfF fellD wFF hyD nd tFpF qrrF xumeril simultion of premixed turulent methne omustionF roF gomustF snstFD PW@PAXIWVU!IWWQD PHHPF fhq + HU tFfF fellD wFF hyD tFpF qrrD wFtF vijewskiD tFpF hrisollD nd FeF piltyevF xumeril simultion of lortoryEsle turulent slot )meF roF gomustF snstFD QI@IAXIPWW!IQHUD PHHUF fh + HS tFfF fellD wFF hyD sFqF hepherdD wFF tohnsonD FuF ghengD tFpF qrrD FiF feknerD nd wFtF vijewskiF xumeril simultion of lortoryEsle turulent E)meF roF xtF edF ieneD IHPIXIHHHT!IHHIID PHHSF ferVP wFtF fergerF edptive wesh e(nement for ryperoli hi'erentil iqutionsF hh thesisD tnford niversityD IWVPF fqHP eF frtel nd wF qüntherF e multirte Emethod for eletril networks in stteEspe formultionF tF gomputF epplF wthFD IRU@PAXRII!RPSD PHHPF fqwr + HQ pF frmkmpD fF qottshlihEwüllerD wF resseD F vmyD F wüllerD tF fllE mnnD uFrF frkhgeD nd F hhmenF rEdptive multisle shemes for ompressile xvierEtokes equtions E polyhedrl disretiztionD dt ompresE sion nd mesh genertionF sn tF fllmnnD editorD plow wodultion nd pluidE truture sntertion t eirplne ingsD volume VR of xumeril notes on pluid wehnisD pges IPS!PHRF pringerD PHHQF frWU fFvF fihri nd eF rrtenF wultiresolution shemes for the numeril solution of PEh onservtion lws sF sew tF iF gomputFD IV@PAXQIS!QSRD IWWUF fvWV wFtF ferger nd FtF veequeF edptive mesh re(nement using wveEpropgtion lgorithms for hyperoli systemsF sew tF xumerF enlFD QSXPPWV!PQITD IWWVF fvwHR pF frmkmpD F vmyD nd F wüllerF en dptive multisle (nite volE ume solver for unstedy nd stedy stte )ow omputtionsF tF gomputF hysFD IWU@PAXRTH!RWHD PHHRF fwHQ qF fl nd F wdyF e prrel time disretiztion for nonEliner hi9s with pplition to the priing of n merin putF sn eent hevelopments in homin heomposition wethodsD vetF xotes gomputF iF ingF PQD pges IVW! PHPF pringerD ferlinD PHHQF fwwHW uF frixD F welinD F wüllerD nd qF hie'erF rllelistion of multisleEsed grid dpttion using speE(lling urvesF ieswX roFD PWXIHV!IPWD PHHWF fwWP iF fryD F wlltD nd qF pniolouF e wvelet sed speEtime dptive numeril method for prtil di'erentil equtionsF wthF wodelF xumerF enlFD PTXUWQ!VQRD IWWPF fw + HW fFeFF fennettD gFF winllyD vFhF fe'erleD wFhF mookeD nd wFfF golketF gomputtionl nd experimentl study of the e'ets of dding dimethyl ether nd ethnol to nonpremixed ethyleneGir )mesF gomustF nd plmeD IST@TAXIPVW! IQHPD PHHWF PWI fwHW uF frixD F wssjungD nd eF ossF e hsh dt struture for dptive hiE solvers sed on disontinuous qlerkin disretiztionsF sqwEepF QHPD r ehenD PHHWF fxWT xFF fev nd qFF xidisF woEdimensionl modelling of positive stremer dynmis in nonEuniform eletri (elds in irF tF hysF hX epplF hysFD PWXPRPQ! PRQID IWWTF fxWU xFF fev nd qFF xidisF hynmis of positive nd negtive stremers in ir in wek uniform eletri (eldsF siii rnsF lsm iFD PSXQUS!QUWD IWWUF fxHQ wFF fenilov nd qFF xidisF wodelling of lowEurrent dishrges in tmospheriEpressure ir tking ount of nonEequilirium e'etsF tF hysF hX epplF hysFD QT@ISAXIVQR!IVRID PHHQF fyVR wFtF ferger nd tF yligerF edptive mesh re(nement for hyperoli prtil di'erentil equtionsF tF gomputF hysFD SQXRVR!SIPD IWVRF fotWP eF fottF wonotone )ux limittion in the reEpreserving )uxEform dvetion lgorithmF wonthly ether eviewD IPH@IIAXPSWP!PTHPD IWWPF ff + HU hF fessieresD tF illolD eF fourdonD F egurD nd iF wrodeF e new oneE dimensionl moving mesh method pplied to the simultion of stremer disE hrgesF tF hysF hX epplF hysFD RH@PIAXTSSW!TSUHD PHHUF fv + HU eF fourdonD FF skoD xFF viuD F gelestinD F egurD nd iF wrodeF i0ient models for photoioniztion produed y nonEtherml gs dishrges in ir sed on rditive trnsfer nd the relmholtz equtionsF lsm oures iF ehnolFD IT@QAXTST!TUVD PHHUF frUU eF frndtF wultiElevel dptive solutions to oundry vlue prolemsF wthF gompFD QIXQQQ!QWHD IWUUF ffIH F fürgerD F uizEfierD nd uF hneiderF edptive multiresolution methods for the simultion of wves in exitle mediF tF ienti( gomputingD RQXPTI! PWHD PHIHF ffHV F fürgerD F uizEfierD uF hneiderD nd wF epúlvedF pully dptive mulE tiresolution shemes for strongly degenerte proli equtions in one spe dimensionF ieswX wthF wodelF xumerF enlFD RPXSQS!STQD PHHVF futTR tFgF futherF smpliit ungeEuutt proessesF wthF gompFD IVXSH!TRD IWTRF futTR tFgF futherF sntegrtion proesses sed on du qudrture formulsF wthF gompFD IVXPQQ!PRRD IWTRF futTR tFgF futherF yn ungeEuutt proesses of high orderF tF eustrlF wthF oFD RXIUW!IWRD IWTRF futTRd tFgF futherF yn the ttinle order of ungeEuutt methodsF wthF gompFD IWXRHV!RIUD IWTRF futUT tFgF futherF yn the implementtion of impliit ungeEuutt methodsF fs xumerF wthFD TXPQU!PRHD IWUTF PWP f + HP yF fernusD F ildersD gFF emlinD rF ersheldeD nd eFF n(lovzF e omputtionlly e0ient eletrophysiologil model of humn ventriulr ellsF emF tF hysiolF rert girF hysiolFD PVP@TAXrPPWT!rPQHVD PHHPF gf + HW F gelestinD F fonventurD fF eghondyD eF fourdonD nd F egurF he use of the ghost )uid method for oisson9s eqution to simulte stremer propgE tion in pointEtoEplne nd pointEtoEpoint geometriesF tF hysF hX epplF hysFD RP@TAXHTSPHQD PHHWF ggd + HW tFrF ghenD eF ghoudhryD fF de upinskiD wF heriesD iFF rwkesD F ulskyD FuF vioD uFvF wD tF wellorEgrummeyD xF odhorszkiD F nkrnD F hendeD nd gFF ooF ersle diret numeril simultions of turulent omustion using QhF gompF iene 8 hisoveryD P@IAXHISHHID PHHWF gghHW pF gstellD F ghrtierD F hesomesD nd qF ilmrtF plitting methods with omplex times for proli equtionsF fs xumerF wthFD RWXRVU!SHVD PHHWF ghHI qF ghivss nd F hontF oint vlue multisle lgorithms for Ph ompressile )owsF sew tF iF gomputFD PQXVHS!VPQD PHHIF ghII fF ghud nd F huF e hyrid impliitEexpliit dptive multirte numeril sheme for timeEdependent equtionsF tF ienti( gomputingD pges I!PQD PHIIF ghhHR eF gohenD F hhmenD nd F heoreF edptive velet ehniques in xumerE il imultionF tohn iley 8 onsD vtdFD PHHRF ghpWP eF gohenD sF huehiesD nd tFEgF peuveuF fiorthogonl ses of omptly supported wveletsF gommF ure nd epplied wthFD RS@SAXRVS!STHD IWWPF ghuHH eF gohenD xF hynD FwF uerD nd wF ostelF wultiresolution (nite volume shemes on tringlesF tF gomputF hysFD ITIXPTR!PVTD PHHHF ghWW F golellD wFF horrD nd hFhF keF e onservtive (nite di'erene method for the numeril solution of plsm )uid equtionsF tF gomputF hysFD IRW@IAXITV! IWQD IWWWF gelHV F gelestinF tudy of the stremer dynmis in ir t tmospheri pressureF hh thesisD iole gentrle risD prneD PHHVF gphi + HT F golli prnzoneD F heu)hrdD fF irdmnnD tF vngD nd vFpF vrinoF edpE tivity in spe nd time for retionEdi'usion systems in eletrordiologyF sew tF iF gomputFD PVXWRP!WTPD PHHTF gpHR F golli prnzone nd vFpF vrinoF e prllel solver for retion!di'usion systems in omputtionl eletrordiologyF wthF wodels wethods epplF iFD IRXVVQ!WIID PHHRF gqrHH iFwF gherryD rFF qreensideD nd gFF renriquezF e speEtime dptive method for simulting omplex rdi dynmisF hysF evF vettFD VR@TAXIQRQ!IQRTD PHHHF gqrHQ iFwF gherryD rFF qreensideD nd gFF renriquezF i0ient simultion of threeE dimensionl nisotropi rdi tissue using n dptive mesh re(nement methodF ghosD IQ@QAXVSQ!VTSD PHHQF PWQ gheII tFrF ghenF etsle diret numeril simultion of turulent omustionE fundmentl insights towrds preditive modelsF roF gomustF snstFD QQ@IAXWW! IPQD PHIIF ghiUI pFrF ghipmnF eEstle ungeEuutt proessesF fs xumerF wthFD IIXQVR!QVVD IWUIF guf + HS wF grpenterD gF uennedyD rF fijlD F ikenD nd F tsF pourthEorder ungeE uutt shemes for )uid mehnis pplitionsF tF ienti( gomputingD PSXISU! IWRD PHHSF guwHQ eF gohenD FwF uerD F wüllerD nd wF ostelF pully dptive multiresolution (nite volume shemes for onservtion lwsF wthF gompFD UPXIVQ!PPSD PHHQF gxHV pF goquelD FvF xguyenD wF ostelD nd FrF rnF vol time stepping for impliitEexpliit methods on time vrying gridsF sn uF uunish et lFD editorD xuE meril wthemtis nd edvned epplitionsD pges PSU!PTRF pringer ferlin reidelergD PHHVF gxHW pF goquelD FvF xguyenD wF ostelD nd FrF rnF vol time stepping with dptive time step ontrol for twoEphse )uid systemF ieswX roFD PWXUQ!VVD PHHWF gxIH pF goquelD FvF xguyenD wF ostelD nd FrF rnF vol time stepping pplied to impliitEexpliit methods for hyperoli systemsF wultisle wodelF imulFD V@PAXSRH!SUHD PHIHF gohHH eF gohenF velet wethods in xumeril enlysisD volume UF ilsevierD emsterE dmD PHHHF gWQ F ghrtier nd fF hilippeF e prllel shooting tehnique for solving dissiptive yhisF gomputingD SIXPHW!PQTD IWWQF gHT pF goquelD wF ostelD xF oussineuD nd FrF rnF wultiresolution tehnique nd expliitEimpliit sheme for multiomponent )owsF tF of xumF wthD IRXIVU! PITD PHHTF gII pF goquelD wF ostelD nd FrF rnF gonvergene of timeEspe dpE tive lgorithms for nonliner onservtion lwsF reprintD ville t httpXGGwwwFnnFjussieuFfrG£postelD PHIIF groVH wF grouzeixF ne méthode multips impliiteEexpliite pour l9pproximtion des équtions d9évolution proliquesF xumerF wthFD QSXPSU!PUTD IWVHF gWQ FF gruth(eld nd wFvF elomeF yjetEoriented implementtion of dpE tive mesh re(nement lgorithmsF iF rogrmFD PXIRS!ISTD IWWQF h9eWR F h9engeloF enlyse et simultion numérique de phénomènes liés à l omusE tion supersoniqueF hh thesisD iole xtionle des onts et ghusséesD IWWRF hhTQ qF hhlquistF e speil stility prolem for liner multistep methodsF xordisk idskrF snformtionsEfehndlingD QXPU!RQD IWTQF huVV sF huehiesF yrthonorml ses of omptly supported wveletsF gommF ure nd epplied wthFD RI@UAXWHW!WWTD IWVVF PWR huWP sF huehiesF en vetures on veletsD volume TI of gfwExp egionl gonferene eries in epplied wthemtisF oiety for sndustril nd epplied wthemtis @sewAD hildelphiD eD IWWPF hfHH wFF hy nd tFfF fellF xumeril simultion of lminr reting )ows with omplex hemistryF gomustF heory wodellingD RXSQS!SSTD PHHHF hfqHT wFEeF hronneD tFEF foisselD nd iF qrenierF e mthemtil model of ion moveE ments in grey mtter during strokeF tF of heoretil fiologyD PRH@RAXSWW!TISD PHHTF hfw + IP wF hurteD F fonventurD wF wssotD eF fourdonD F hesomesD nd F huE montF e new numeril strtegy with speEtime dptivity nd error ontrol for multiEsle stremer dishrge simultionsF tF gomputF hysFD PQIXIHHP!IHIWD PHIPF dgHW F de ghisemrtinF iulerin models nd numeril simultion of turulent disE persion for polydisperse evportion sprysF hh thesisD iole gentrle risD PHHWF hgf + HW FfF hworkinD tFeF gookeD fFeFF fennettD fFgF gonnellyD wFfF vongD wFhF mookeD FtF rllD nd wFfF golketF histriutedEmemory prllel omputtion of foredD timeEdependentD sootingD ethyleneGir o)ow di'usion )meF gomustF heory wodellingD IQ@SAXUWS!VPPD PHHWF hg + HU FfF hworkinD fFgF gonnellyD eFwF h'erD fFeFF fennettD wFfF vongD wFhF mookeD wFF uioD fF wendrewsD nd tFrF willerF gomputtionl nd exE perimentl study of foredD timeEdependentD methneEir o)ow di'usion )meF roF gomustF snstFD QI@IAXWUI!WUVD PHHUF hhHV F hesomes nd F humontF xumeril simultion of strokeX gomputE tionl prolems nd methodologyF rogress in fiophysis 8 woleulr fiologyD WU@IAXRH!SQD PHHVF hhh + II F hesomesD wF hurteD F humontD F vouvetD nd wF wssotF edptive time splitting method for multiEsle evolutionry prtil di'erentil equtionsF gon)uentes wthemtiiD Q@QAXRIQ!RRQD PHIIF hhh + IP F humontD wF hurteD F hesomesD wFeF hronneD wF wssotD nd F vouvetF imultion of humn ishemi stroke in relisti Qh geometryX e numeril strtE egyF umittedD ville t rev @httpXGGhlFrhivesEouvertesFfrGhlEHHSRTPPQAD PHIPF hhiUI eFtF hviesD gFF hviesD nd gFtF ivnsF gomputer simultion of rpidly develE oping gseous dishrgesF roF of the snstitution of iletril ingineersEvondonD IIV@TAXVIT!VPQD IWUIF hhq + HW F heiterdingD wFyF hominguesD FwF qomesD yF ousselD nd uF hneiderF edptive multiresolution or dptive mesh re(nementc e se study for Ph iuler equtionsF ieswX roFD PWXPV!RPD PHHWF hhqqHW wFEeF hronneD F hesomesD iF qrenierD nd rF qilquinF ixmples of the in)uene of the geometry on the propgtion of progressive wvesF wthF gomputF wodellingD RW@IIEIPAXPIQV!PIRRD PHHWF PWS hhv + IP F hesomesD F humontD F vouvetD wF wssotD pF vurentD nd tF feulurierF ypertor splitting tehniques for multiEsle reting wves nd pplition to low wh numer )mes with omplex hemistryX heoretil nd numeril spetsF sn preprtionD PHIPF hhvwHU F hesomesD F humontD F vouvetD nd wF wssotF yn the lol nd glol errors of splitting pproximtions of retionEdi'usion equtions with high sptil grdientsF sntF tF of gomputer wthemtisD VR@TAXURW!UTSD PHHUF hhwHQ F hesomesD F humontD nd wF wssotF ypertor splitting for sti' nonliner retionEdi'usion systemsX yrder redution nd pplition to spirl wvesF sn tterns nd wves @int etersurgD PHHPAD pges QVT!RVPF ekdemrintD tF etersurgD PHHQF hhwII wF hurteD F hesomesD nd wF wssotF rrel opertor splitting tehniques for multiEsle retion wvesX xumeril nlysis nd strtegiesF ieswX wthF wodelF xumerF enlFD RSXVPS!VSPD PHIIF heiHS F heiterdingF gonstrution nd pplition of n mr lgorithm for distriuted memory omputersF sn FtF frth et lFD editorD edptive wesh e(nement E heory nd epplitionsD volume RI of veture xotes in gomputtionl iene nd ingineeringD pges QTI!QUPF pringer ferlin reidelergD PHHSF hesHI F hesomesF gonvergene of splitting method of high order for retionE di'usion systemsF wthF gompFD UH@PQTAXIRVI!ISHID PHHIF heuUR F heu)hrdF e modi(ed xewton method for the solution of illEonditioned systems of nonliner equtions with pplition to multiple shootingF xumerF wthFD PPXPVW!QISD IWURF heuVQ F heu)hrdF yrder nd stepsize ontrol in extrpoltion methodsF xumerF wthFD RIXQWW!RPPD IWVQF heuHR F heu)hrdF xewton wethods for xonliner rolemsF pringerEerlgD PHHRF e0ne snvrine nd edptive elgorithmsF hpxVS hF hi prneso nd hF xoleF e model of rdi eletril tivity inorporting ioni pumps nd onentrtion hngesF hilosF rnsF F oF vondF f fiolF iFD QHU@IIQQAXQSQ!QWVD IWVSF hqg + HV wFEeF hronneD iF qrenierD q ghpuistD wF rommelD nd tFEF foisselF e modE elling pproh to explore some hypotheses of the filure of neuroprotetive trils in ishemi stroke ptientF rogress in fiophysis 8 woleulr fiologyD WUXTH!UVD PHHVF hqh + HU wFEeF hronneD iF qrenierD F humontD wF rommelD nd tFEF foisselF ole of stroytes in grey mtter during strokeX e modelling pprohF frin eserhD IIQVXPQI!PRPD PHHUF hqwwHI F hhmenD fF qottshlihEwüllerD nd F wüllerF wultiresolution shemes for onservtion lwsF xumerF wthFD VVXQWW!RRQD PHHIF PWT hqyHR sF himovD uF qeorgievD F ystromskyD nd F ltevF gomputtionl hllenges in the numeril tretment of lrge ir pollution modelsF iologil wodellingD IUW@PAXIVU!PHQD PHHRF hqHV wFyF hominguesD FwF qomesD yF ousselD nd uF hneiderF en dptive mulE tiresolution sheme with lol time stepping for evolutionry hisF tF gompF hysFD PPU@VAXQUSV!QUVHD PHHVF hqHW wFyF hominguesD FwF qomesD yF ousselD nd uF hneiderF peEtime dpE tive multiresolution methods for hyperoli onservtion lwsX epplitions to ompressile iuler equtionsF epplF xumerF wthFD SW@WAXPQHQ!PQPID PHHWF hswWW F hirnglD gF sdeolD nd wFeF woskowitzF thoiology of ishemi strokeX en integrted viewF rends in xeurosienesD PP@WAXQWI!QWUD IWWWF htiTR eFtF hviesD pFvF tonesD nd gFtF ivnsF iletril rekdown of gses E ptioE temporl growth of ioniztion in (elds distorted y spe hrgeF roF oyl oF vondon F eEwthF nd hysF ienFD PVI@IQVSAXITR!IVQD IWTRF huvWW tF he ueyserD qF ulterD nd F vuitenF glinil trils with neuroprotetive drugs in ute ishemi strokeX re we doing the right thingc rends in xeurosienesD PP@IPAXSQS!RHD IWWWF hvWS F h9engelo nd fF vrrouturouF gomprison nd nlysis of some numeriE l shemes for sti' omplex hemistry prolemsF esy wodélF wthF enlF xumérFD PW@QAXPSW!QHID IWWSF hvWS F h9engelo nd fF vrrouturouF gomprison nd nlysis of some numeriE l shemes for sti' omplex hemistry prolemsF esy wodélF wthF enlF xumérFD PW@QAXPSW!QHID IWWSF hv + HI FwF hesmondD eFgF vovellD eFeF wlinsonD wFF rsonsD FeF frerD ing ngD ing viD hFqF hryD FF qerrtyD FwF hvisD nd fFwF ressF he vlue of pprent di'usion oe0ient mps in erly ererl ishemiF emF tF xeurordiolFD PP@UAXIPTH!IPTUD PHHIF hwHR F hesomes nd wF wssotF ypertor splitting for nonliner retionEdi'usion systems with n entropi strutureX ingulr perturtion nd order redutionF xumerF wthFD WU@RAXTTU!TWVD PHHRF hwfWU wF howleD FwF wntelD nd hF frkleyF pst simultions of wves in threeE dimensionl exitle mediF sntF tF fifF ghosD UXPSPW!PSRSD IWWUF hwh + II wF hurteD wF wssotD F hesomesD gF enudD nd F gndelF imeEspe dptive numeril methods for the simultion of omustion frontsF sn ennul eserh friefs PHIID pges QRU!QSVF genter for urulene eserhD tnford niversityD PHIIF hwh + II wF hurteD wF wssotD F hesomesD gF enudD F humontD F vouvetD nd pF vurentF xew resolution strtegy for multiEsle retion wves using time opertor splitting nd spe dptive multiresolutionX epplition to humn ishemi strokeF ieswX roFD QRXPUU!PWHD PHIIF PWU hwh + IP wF hurteD wF wssotD F hesomesD gF enudD F humontD F vouvetD nd pF vurentF xew resolution strtegy for multiEsle retion wves using time opertor splittingD spe dptive multiresolution nd dedited high order imE pliitGexpliit time integrtorsF sew tF iF gomputFD QR@IAXeUT!eIHRD PHIPF hwhhII wF hurteD wF wssotD F hesomesD nd F humontF edptive timeEspe lgorithms for the simultion of multiEsle retion wvesF sn tF po°t et lFD editorD pinite olumes for gomplex epplitions s rolems 8 erspetivesD volume RD pges QUW!QVUF pringer ferlin reidelergD PHIIF hwv + II wF hurteD wF wssotD pF vurentD F hesomesD gF enudD F humontD nd F vouvetF xew resolution strtegies for multiEsle retion wvesX yptiml time opertor splitting nd spe dptive multiresolutionF sn vF gernuzzi et lFD editorD peil issue of est ppers presented t gvis9PHIHD esuniónD rguyD volume IRD pge IRF gvis eletroni journlD PHIIF hwWV eF hestexheD FpF winenD nd FtF ejnowskiF uineti models of synpti trnsE missionD hpter IF ws ressDgmridgeD weD IWWVF hHW wFyF hominguesD yF ousselD nd uF hneiderF en dptive multiresolution method for proli his with timeEstep ontrolF snterntionl tournl for xumeril wethods in ingineeringD UV@TAXTSP!TUHD PHHWF hVR F heore nd F hrpleyF wximl puntions wesuring moothnessD volE ume RUF wemF emF wthF oFD IWVRF hHP F hesomes nd wF htzmnF trng9s formul for holomorphi semiEgroupsF tF wthF ures epplFD VI@IAXWQ!IIRD PHHPF hHP F hjoud nd fF portisseF rtitioning tehniques nd lumping omputtion for reduing hemil kinetisF eveX en utomti prtitioning nd lumping lgorithmF epplF xumerF wthFD RQ@RAXQVQ!QWVD PHHPF hHQ F hjoud nd fF portisseF olving redued hemil models in ir pollution modellingF epplF xumerF wthFD RR@IEPAXRW!TID PHHQF hIH F hoins nd wF mookeF e fully impliitD ompt (nite di'erene method for the numeril solution of unstedy lminr )mesF epplied ienti( eserhD VS@QERAXUTQ!UWWD PHIHF hp + HV gF hohmenD yFF kowitzD wF priiusD fF fosheD F eithmeierD FEsF irnesE tusD qF frinkerD tFF hreierD tF oitzikD eFtF trongD nd F qrfF preding depolriztions our in humn ishemi stroke with high inideneF ennls of xeurologyD TQXUPH!UPVD PHHVF hHI F hru nd gF enudF ivlution of h high resolution shemes for unstedy visous shoked )owsF gomputers 8 pluidsD QHXVW!IIQD PHHIF hHR F hru nd gF enudF righ order oneEstep monotoniityEpreserving shemes for unstedy ompressile )ow lultionsF tF gomputF hysFD IWQ@PAXSTQ!SWRD PHHRF PWV hHU eF hurukn nd F tlisumkF eute ishemi strokeX yverview of mjor experE imentl rodent modelsD pthophysiologyD nd therpy of fol ererl ishemiF hrmology fiohemistry nd fehviorD VU@IAXIUW!IWUD PHHUF hHW F hru nd gF enudF xumeril simultion of the visous shok tue prolem y using high resolution monotoniityEpreserving shemeF gomputers 8 pluidsD QVXTTR!TUTD PHHWF hIH F hesomes nd wF hlhmmerF en ext lol error representtion of exE ponentil opertor splitting methods for evolutionry prolems nd pplitions to liner hrödinger equtions in the semiElssil regimeF fs xumerF wthFD SHXUPW!URWD PHIHF hII F hesomes nd wF hlhmmerF he vieErotter splitting method for nonE liner evolutionry prolems involving ritil prmetersF en ext lol error representtion nd pplition to nonliner hrödinger equtions in the semiE lssil regimeF reprintD ville t rev @httpXGGhlFrhivesEouvertesFfrGhlE HHSSUSWQAD PHIIF humHU F humontF ifiX xumeril softwre for retionEdi'usion systemsF oure ode nd doumenttion tX httpXGGmthFunivElyonIFfrG£tdumontGzereGD PHHUF hVU FuF hhli nd FpF illimsF woEdimensionl studies of stremers in gsesF tF epplF hysFD TPXRTWT!RUHUD IWVUF ifh + II F iertD pF fruD qF herksD F rundsdorferD gFEF uoD gF viD eF vuqueD fF weulenroekD F xijdmD F tushnyD vF häferD nd F nveerF wultiple sles in stremer dishrgesD with n emphsis on moving oundry pproximE tionsF xonlinerityD PR@IAXgI!gPTD PHIIF igq + HV hF istepD F greyD F qintingD F venerD nd F ildeyF e posteriori error nlysis of multisle opertor deomposition methods for multiphysis modelsF tournl of hysisX gonferene eriesD IPS@IAXHIPHUSD PHHVF ihHW F ihekkiF wultisle methods in turulent omustionX strtegies nd ompuE ttionl hllengesF gompF iene 8 hisoveryD PXHIQHHID PHHWF iq + HV hF istepD F qintingD hF oppD tFxF hdidD nd F venerF en posterioriE priori nlysis of multisle opertor splittingF sew tF xumerF enlFD RTXIIIT! IIRTD PHHVF ihlTV fFvF ihleF righ order eEstle methods for the numeril solution of systems of hisF fs xumerF wthFD VXPUT!PUVD IWTVF ihlTW fFvF ihleF yn dé pproximtions to the exponentil funtion nd eEstle methods for the numeril solution of initil vlue prolemsF eserh eport g PHIHD IWTWF ihlUQ fFvF ihleF AEstle methods nd dé pproximtions to the exponentilF sew tF wthF enlFD RXTUI!TVHD IWUQF iwf + HT F iertD gF wontijnD F wF F frielsD F rundsdorferD fF weulenroekD eF ooD nd iFwF vn eldhuizenF he multisle nture of stremersF lsm oures iF ehnolFD ISXIIV!IPWD PHHTF PWW iwwPV gFpF iyringD FF wkeownD nd FeF williknF pields urrents from pointsF hysF evFD QI@SAXWHH!WHWD IWPVF iyWR fF ingquistD F ysherD nd F hongF pst wvelet sed lgorithms for liner evolution equtionsF sew tF iF gomputFD IS@RAXUSS!UUSD IWWRF iWV sFF ipstein nd tFeF ojmnF en sntrodution to xonliner ghemil hynmisF yxford niversity ressD IWWVF ysilltionsD vesD tterns nd ghosF pgHQ gF prht nd wF ghndesrisF imeEdeomposed prllel timeEintegrtorsX heE ory nd fesiility studies for )uidD strutureD nd )uidEstruture pplitionsF sntF tF xumerF wethF ingngFD SV@WAXIQWU!IRQRD PHHQF pgqHS eF pridmnD eF ghirokovD nd eF qutsolF xonEtherml tmospheri pressure dishrgesF tF hysF hX epplF hysFD QVXI!PRD PHHSF pqwWU rF priedelD F qruerD nd gF wrliniF edptive mesh re(nement for singulr urrent sheets in inompressile mgnetohydrodynmi )owsF tF gomputF hysFD IQR@IAXIWH!IWVD IWWUF prwHQ pF pisherD pF rehtD nd F wdyF e prrel in time semiEimpliit pproxiE mtion of the xvierEtokes equtionsF sn roeedings of the ISth snterntionl homin heomposition gonfereneD vetF xotes gomputF iF ingF RHD pges RQQ!RRHF pringerD ferlinD PHHQF prWU tF prnkD F rundsdorferD nd tFqF erwerF yn the stility of impliitEexpliit liner multistep methodsF epplF xumerF wthFD PS@PEQAXIWQ!PHSD IWWUF puxUP FtF pieldD iF uorosD nd FwF xoyesF ysilltions in hemil systemsF ssF horough nlysis of temporl osilltion in the romteEeriumEmloni id systemF tF emerF ghemF oFD WR@PSAXVTRW!VTTRD IWUPF pu + HI tF piehlerD F unD tFF eihenhD gF pitzekD gF eillerD nd tF ötherF epE prent di'usion oe0ient dereses nd mgneti resonne imging perfusion prmeters re ssoited in ishemi tissue of ute stroke ptientsF tF gereF flood plow 8 wetFD WU@IAXSR!VWD PHHIF qhh + HV iF qrenierD wFEeF hronneD F hesomesD rF qilquinD eF tillrdD wF rommelD nd tFEF foisselF e numeril study of the loking of migrine y olndo sulusF rogress in fiophysis 8 woleulr fiologyD WU@IAXSR!SWD PHHVF qhh + HV iF qrenierD wFeF hronneD F hesomesD rF qilquinD eF tillrdD wF rommelD nd tFF foisselF e numeril study of the loking of migrine y olndo sulusF rogress in fiophysis nd woleulr fiologyD WUXSR!SWD PHHVF qeUI gFF qerF xumeril snitil lue rolems in yrdinry hi'erentil iqutionsF rentieErll series in utomti omputtionF rentieErllD inglewood gli'sD xtD IWUIF qipHQ sF qrridoD wFF ispedlD nd qFiF pldmrkF e onvergene lgorithm for time prlleliztion pplied to reservoir simultionF sn roeedings of the ISth snterntionl homin heomposition gonfereneD vetF xotes gomputF iF ingF RHD pges RTW!RUTF pringerD ferlinD PHHQF QHH qrHV wF qnder nd iF rirerF xonliner onvergene nlysis for the prrel lE gorithmF sn homin heomposition wethods in iene nd ingineering ssD pges RS!STF pringerD ferlinD PHHVF qinIH F qintingF en posteriori nlysis of multisle opertor deompositionF sn qF ureiss et lFD editorD xumeril wthemtis nd edvned epplitions PHHWF pringer ferlin reidelergD PHIHF qioWW F qiovngigliF wultiomponent plow wodelingF firkhäuser foston snFD fostonD weD IWWWF qjeHU F qjesdlF smpliit!expliit methods sed on strong stility preserving mulE tistep time disretiztionsF epplF xumerF wthFD SU@VAXWII!WIWD PHHUF quHI wF qüntherD eF uvaernøD nd F entropF wultirte prtitioned ungeEuutt methodsF fs xumerF wthFD RIXSHR!SIRD PHHIF qvTI eF quillou nd fF vgoF homine de stilité ssoié ux formules d9intégrtion numérique d9équtions di'érentielles à ps séprés et à ps liésF eherhe de formules à grnds ryons de stilitéF Ier gongF essoF prnF glulD epgevD qrenoleD pges RQ!STD IWTIF qvpiHT sF qrridoD fF veeD qFiF pldmrkD nd wFF ispedlF gonvergent itertive shemes for time prlleliztionF wthF gompFD @PTAXIRHQ!IRPVD PHHTF qokVV FeF qokogluF igni(ne of vpor phse hemil retions on vd rtes preE dited y hemilly frozen nd lol thermohemil equilirium oundry lyer theoriesF tF iletrohemF oFD IWVVF qHH eF qerish nd rF odhiskyF plitting methods for the simultion of tumor ngiogenesis modelsF sn roeedings of the ITth sweg orld gongressD pges Q!WSPPHUSD PHHHF qwhVV qF qoylD FtF ulD rFF wukundD nd FwF heshpndeF ime dependent opertorEsplit nd unsplit shemes for one dimensionl premixed )mesF gomE ustF iF ehnolFD THXITU!IVWD IWVVF qrHQ qFhF qrhmF issue plsminogen tivtor for ute ishemi strokeF trokeD QRXPVRU!PVSHD PHHQF qröTU F qrönerF hie viereihen und ihre enwendungenF if heutsher erlg der issFD ferlin IWTHD IWTUF Pnd iditionF qTW eF quillon nd pFvF ouléF v résolution numérique des prolèmes di'érentiels ux onditions initiles pr des méthodes de ollotionF esy enlF xumérF erF ougeD vF EQD pges IU!RRD IWTWF qWR F qry nd FuF ottF ghemil ysilltions nd snstilitesF yxford nivF ressD IWWRF qusWR uF qustfssonF gontrolEtheoreti tehniques for stepsize seletion in impliit ungeEuutt methodsF egw rnsF wthF oftwFD PHXRWT!SIUD IWWRF qHP eF qerish nd tFqF erwerF ypertor splitting nd pproximte ftoriztion for txisEdi'usionEretion modelsF epplF xumerF wthFD RP@IEQAXISW!IUTD PHHPF QHI qHU wF qnder nd F ndewlleF enlysis of the prrel timeEprllel timeE integrtion methodF sew tF iF gomputFD PW@PAXSST!SUVD PHHUF qVR gFF qer nd hFF ellsF wultirte liner multistep methodsF fs xumerF wthFD PRXRVR!SHPD IWVRF rnUV eFtF rnsenF he extrellulr potssium onentrtion in rin ortex followE ing ishemi in hypoE nd hyperglyemi rtsF et hysiologi ndinviD IHP@QAXSHH!SRRD IWUVF rrWR eF rrtenF edptive multiresolution shemes for shok omputtionsF tF gomputF hysFD IISXQIW!QQVD IWWRF rrWR eF rrtenF wultiresolution representtion nd numeril lgorithmsX e rief reviewF sgei epF WRESWD IWWRF rrWS eF rrtenF wultiresolution lgorithms for the numeril solution of hyperoli onservtion lwsF gommF ure nd epplied wthFD RVXIQHS!IQRPD IWWSF rrSP eFvF rodgkin nd eFpF ruxleyF e quntittive desription of memrne urrent nd its pplition to ondution nd exittion in nerveF tF hysiolFD IIU@RAXSHH! SRRD IWSPF rinVH eFgF rindmrshF vyhi nd vyhsD two new initil vlue ordinry di'erentil eqution solversF sqxw xewslFD ISXIH!IID IWVHF rinVQ eFgF rindmrshF yhieguD systemtized olletion of yhi solversF sn iE enti( omputing @wontrelD ueFD IWVPAD pges SS!TRF swegD xew frunswikD xtD IWVQF ruHH qFtFwF rgelr nd qFwFF uroesenF peeding up )uid models for gs disE hrges y impliit tretment of the eletron energy soure termF tF gompF hysFD ISW@IAXI!IPD PHHHF rvVV iF rirerD gF vuihD nd wF oheF irror of ungeEuutt methods for sti' prolems studied vi di'erentil lgeri equtionsF fs xumerF wthFD PVXTUV! UHHD IWVVF rvHT iF rirerD gF vuihD nd qF nnerF qeometri xumeril sntegrtionF pringerE erlgD ferlinD Pnd editionD PHHTF trutureEreserving elgorithms for yrdinry hi'erentil iqutionsF rwIH xF rovhnnisyn nd F wüllerF yn the stility of fully dptive multisle shemes for onservtion lws using pproximte )ux nd soure reonstrution strtegiesF swe tF of xumerF enlFD QH@RAXIPST!IPWSD PHIHF rwWW F roustonD tFeF wkenzieD iF üliD nd qF rnekeF e posteriori error nlysis for numeril pproximtions of priedrihs systemsF xumerF wthFD VPXRQQ!RUHD IWWWF rxVU iF rirerD F F xørsettD nd qF nnerF olving yrdinry hi'erentil iqutions sF pringerEerlgD ferlinD IWVUF xonsti' rolemsF ryHW iF rnsen nd eF ystermnnF righ order splitting methods for nlyti semiE groups existF fs xumerF wthFD RWXSPU!SRPD PHHWF QHP rofUT iF roferF e prtilly impliit method for lrge sti' systems of yhis with only few equtions introduing smll timeEonstntsF sew tournl on xumeril enlysisD IQ@SAXTRS!TTQD IWUTF rHU F rundsdorfer nd FtF uuthF swi extensions of liner multistep methE ods with generl monotoniity nd oundedness propertiesF tF gomputF hysFD PPS@PAXPHIT!PHRPD PHHUF rWS F rundsdorfer nd tFqF erwerF e note on splitting errors for dvetionEretion equtionsF epplF xumerF wthFD IV@IEQAXIWI!IWWD IWWSF rHQ F rundsdorfer nd tFqF erwerF xumeril olution of imeEhependent edvetionEhi'usionEetion iqutionsF pringerEerlgD ferlinD PHHQF rWT iF rirer nd qF nnerF olving yrdinry hi'erentil iqutions ssF pringerE erlgD ferlinD Pnd editionD IWWTF ti' nd hi'erentilEelgeri rolemsF rHT F reineken nd qF rnekeF rtitioning methods for retionEdi'usion proE lemsF epplF xumerF wthFD ST@UAXWVI!IHHHD PHHTF ruHT F rornungD eF issinkD nd F uohnF wnging omplex dt nd geometry in prllel strutured ew pplitionsF ingineering with gomputersD PPXIVI!IWSD PHHTF sHR F ssono nd hF inggF e ungeEuuttExewtonEurylov lgorithm for fourthEorder impliit time mrhing pplied to unstedy )owsF esee per PHHREHRQQD PHHRF tWW tFhF tksonF glssil iletrodynmisF tohn iley nd onsD snFD Qrd editionD IWWWF ge PTD eqution @IFSAF tVW F thnkeD FiF kggsD nd eFF infreeF ghemil vortex dynmis in the felousovEhotinsky retion nd in the twoEvrile yregontor modelF tF hysF ghemFD WQXURH!URWD IWVWF ufWS FF uohn nd FfF fdenF e prllel softwre infrstruture for strutured dptive mesh methodsF sn roF of the gonfF on uperomputing 9WSD pge QTD vos elmitosD geD eD IWWSF siii gomputer oietyF ugWU tF uim nd FF ghoF gomputtion ury nd e0ieny of the timeEsplitting method in solving tmospheri trnsportEhemistry equtionsF etmosF invironFD IWWUF ugHQ gFeF uennedy nd wFrF grpenterF edditive ungeEuutt shemes for onvetionEdi'usionEretion equtionsF epplF xumerF wthFD RR@IEPAD PHHQF ugHU FiF urksidis nd gFeF ghritidisF wultisle modeling in nnomterils sieneF wterils iene nd ingineeringX gD PU@SEVAXIHVP!IHVWD PHHUF uhu + HU gFF uleijnD F horsmnD uFtF uuijlrsD wF ykkerseD nd rF vn ntenF wultiE sle modeling of hemil vpor deposition proesses for thin (lm tehnologyF tournl of grystl qrowthD QHQ@IAXQTP!QVHD PHHUF uhyyHS rF urimdiD tF hrisollD FeF ymelhenkoD nd xF ymidiF e new synhronous methodology for modeling of physil systemsX freking the urse of ournt onditionF tF gompF hysFD PHS@PAXUSS!UUSD PHHSF QHQ ueeVU tFF ueenerF ropgtion nd its filure in oupled systems of disrete exitle ellsF sew tF epplF wthFD RU@QAXSST!SUPD IWVUF uqw + WV FtF ueeD tFpF qrrD tFeF willerD iF weeksD nd wF mookeF iws sers wnulF etion hesignD n hiegoD ge @wwwFetionhesignFomAD IWWVF uuHR hFeF unoll nd hFiF ueyesF toinEfree xewtonEurylov methodsX e survey of pprohes nd pplitionsF tF gomputF hysFD IWQ@PAXQSU!QWUD PHHRF uuwWP sFeF uossyiD eF u uostinskyD eFeF wtveyevD nd FF ilkovF uineti sheme of the nonEequilirium dishrge in nitrogenEoxygen mixturesF lsm oures iF ehnolFD I@QAXPHU!PPHD IWWPF uxUV FF urig nd gF xiholsonF ixtrellulr ioni vritions during spreding depressionF xeurosieneDD Q@IIAXIHRS!IHSWD IWUVF uxWW yFwF unioD rFxF xjmD nd FF yko'F e semiEimpliit numeril sheme for reting )owF ssF ti'D opertorEsplit formultionF tF gomputF hysFD ISRXRVP!RTUD IWWWF uyHH hF uröner nd wF yhlergerF e posteriori error estimtes for upwind (nite volE ume shemes for nonliner onservtion lws in multi dimensionsF wthF gomputFD TWXPS!QWD PHHHF uQU eFxF uolmogoro'D sFqF etrovskyD nd xFF isouno'F itude de l9éqution de l di'usion ve roissne de l quntité de mtière et son pplition un prolème iologiqueF fulletin de l9niversité d9étt wosouD érie snterntionle etion e wthémtiques et wéniqueD IXI!PSD IWQUF uwVH FtF ueeD pFwF upleyD nd tFeF willerF griwusxEssX e portrn hemil kinetE is pkge for the nlysis of gsEphse hemil kinetisF ehF epF exhVWE VHHWD ndi xtionl vFD vivermoreD geD IWVHF uryHR F uozlovD eF uvaernøD nd fF ywrenF he ehviour of the lol error in splitting methods pplied to sti' prolemsF tF gomputF hysFD IWS@PAXSUT!SWQD PHHRF uII yF uoh nd wF hlhmmerF imedded exponentil opertor splitting methods for the time integrtion of nonliner evolution equtionsF reprintD ville t httpXGGtehmthFuikFFtGmehtGreserhGpersGreprintRFpdfD PHIIF uulWU eFeF uulikovskyF ositive stremer etween prllel plte eletrodes in tmoE spheri pressure irF tF hysF hX epplF hysFD QHXRRI!RSHD IWWUF uulWV eFeF uulikovskyF ositive stremer in wek (eld in irX e moving vlnheE toEstremer trnsitionF hysF evF iD SU@TAXUHTT!UHURD IWWVF uulHH eFeF uulikovskyF he role of photoioniztion in positive stremer dynmisF tF hysF hX epplF hysFD QQXISIR!ISPRD PHHHF uHH rF ugerD FtF dmnD nd qFqF omjenF imulted seizures nd spreding depression in neuron model inorporting interstitil spe nd ion onentrE tionsF tF xeurophysiolFD VR@IAXRWS!SIPD PHHHF vgVW eF vverdnt nd F gndelF gomputtion of di'usion nd premixed )mes rolled up in vortex struturesF tF ropulsion nd owerD SXIQR!IRQD IWVWF QHR veVW FsF veedevF ixpliit di'erene shemes with timeEvrile steps for solving sti' systems of equtionsF ovF tF xumerF enlF wthF wodellingD RXIII!IQSD IWVWF veWQ FsF veedevF e new method for determining the zeros of polynomils of lest devition on segment with weight nd sujet to dditionl onditionsF prt sF ussin tF xumerF enlF wthF wodellingD VXIWS!PPPD IWWQF veWQ FsF veedevF e new method for determining the zeros of polynomils of lest devition on segment with weight nd sujet to dditionl onditionsF prt ssF ussin tF xumerF enlF wthF wodellingD VXQWU!RPTD IWWQF veWR FsF veedevF row to solve sti' systems of di'erentil equtions y expliit methodsF sn xumeril wethods nd epplitionsD pges RS!VHF fo tonXgg ressD IWWRF veHH FsF veedevF ixpliit di'erene shemes for solving sti' prolems with omplex or seprle spetrumF gomputF wthF nd wthF hysFD RH@IPAXIUPW!IURHD PHHHF virHV eF vuqueD F iertD nd F rundsdorferF sntertion of stremer dishrges in ir nd other oxygenEnitrogen mixturesF hysF evF vettFD IHI@UAXHUSHHSD PHHVF veWP FtF veequeF xumeril wethods for gonservtion vwsF firkhäuserD Pnd ediE tionD IWWPF veHP FtF veequeF pinite olume wethods for ryperoli rolemsF gmridge niE versity ressD PHHPF vqWR FrF vm nd hFeF qoussisF he g method for simplifying kinetisF snternE tionl tournl of ghemil uinetisD PT@RAXRTI!RVTD IWWRF vteg + HW hF vloydEtonesD F edmsD wF grnethonD qF he imoneD FfF pergusonD uF pleE glD iF pordD uF purieD eF qoD uF qreenlundD xF rseD F rilpernD wF roD F rowrdD fF uisselD F uittnerD hF vklndD vF visethD eF wrelliD wF wE hermottD tF weigsD hF woz'rinD qF xiholD gF y9honnellD F ogerD F osE mondD F oD F orlieD F t'ordD tF teinergerD F homD F sserthielE mollerD xF ongD tF ylieEosettD nd F rongF rert disese nd stroke sttistis!PHHW updteX e report from the emerin rert essoition ttistis gommittee nd troke ttistis uommitteeF girultionD IIW@QAXePI!IVID PHHWF vvHW F vu nd gFuF vwF owrd ommodting relisti fuel hemistry in lrgeE sle omputtionsF rogress in inergy nd gomustion ieneD QS@PAXIWP!PISD PHHWF vvwWT fFF veonrdD eFF vokD nd wFuF wenF gonservtive expliit unrestritedE timeEstep multidimensionl onstnyEpreserving dvetion shemesF wonthly ether eviewD IPRXPSVV!PTHTD IWWTF vwWV FsF veedev nd eFeF wedovikovF en expliit method of the seond order of ury for solving sti' systems of ordinry di'erentil equtionsF ussin szvF ysshF henF vedF wtFD WXSS!TQD IWWVF vwHI tFvF vionsD F wdyD nd qF uriniiF ésolution d9ih pr un shém en temps prréelF gF F edF iF ris érF s wthFD QQP@UAXTTI!TTVD PHHIF QHS vogHP eF voggF wultiEdptive qlerkin methods for yhis sF sew tF iF gomputFD PRXIVUW!IWHPD PHHPF vogHQ eF voggF wultiEdptive qlerkin methods for yhis ssX smplementtion nd pplitionsF sew tF iF gomputFD PSXIIIW!IIRID PHHQF vtWP hFF vemieuxD pFeF oergeD nd hF tolyF wodeling the dynmi fetures of the eletrogeni nDk pump of rdi ellsF tF heorF fiolFD QXQQS!QSVD IWWPF vWH tF vindrt nd F hmithinF esolution of the Ih regulrized furgers9 eqution using sptil wvelet pproximtionF sgei epF WHEVQD IWWHF vuHV gF vuihF yn splitting methods for hrödingerEoisson nd ui nonliner hrödinger equtionsF wthF gompFD UU@PTRAXPIRI!PISQD PHHVF vWW hF vnser nd tFqF erwerF enlysis of opertor splitting for dvetionEdi'usionE retion prolems from ir pollution modellingF tF gomputF epplF wthFD III@IE PAXPHI!PITD IWWWF vTH hF vx nd fF endro'F ystems of onservtion lwsF gommF ure nd epplied wthFD IQXPIU!PQUD IWTHF vHQ F visk nd fF endro'F gomprison of severl di'erene shemes on Ih nd Ph test prolems for the iuler equtionsF sew tF iF gomputFD PSXWWS!IHIUD PHHQF vHT rF viu nd tF ouF ome new dditive ungeEuutt methods nd their ppliE tionsF tF gomputF epplF wthFD IWH@IEPAXUR!WVD PHHTF wlVW F wlltF wultiresolution pproximtion nd wvelets orthonorml ses of L 2 (R)F rnsF emerF wthF oFD QISXTW!VUD IWVWF wrTV qFsF wrhukF ome pplition of splittingEup methods to the solution of mthE emtil physis prolemsF epplitions of wthemtisD IQ@PAXIHQ!IQPD IWTVF wrUS qFsF wrhukF wethods of xumeril wthemtisF epplF wthF pringerD xew orkD xD IWUSF rnsF from the ussinF wrWH qFsF wrhukF plitting nd lternting diretion methodsF sn rndook of xumeril enlysisD olF sD pges IWU!RTPF xorthErollndD emsterdmD IWWHF wrHW eFeF wrkovF wulti sle numeril simultion of dispersed reting )owD with pplition to hemil vpor deposition of luminF sn rF heonink nd iF hikD editorsD gomputtionl pluid hynmis PHHTD pges USQ!USVF pringer ferlin reidelergD PHHWF wsHP wF wssotF ingulr perturtion nlysis for the redution of omplex hemistry in gseous mixtures using the entropi strutureF hisrete gontinF hynF ystF erF fD P@QAXRQQ!RSTD PHHPF wedWV eF wedovikovF righ order expliit methods for proli equtionsF fs xumerF wthFD QVXQUP!QWHD IWWVF weyWH F weyerF yndelettes et ypérteursF rermnnD risD IWWHF QHT wpxxHH rF wrtinsEperreirD wF xedergrdD nd gF xiholsonF erspetives on spreding depressionF frin eserh eviewsD QI@IAXPIS!PQRD PHHHF wqVP qFtF weD FF qoodinD nd tFrF einfeldF xumeril solution of the tE mospheri di'usion eqution for hemilly reting )owsF tF gomputF hysFD RS@IAXI!RPD IWVPF wriHT gF wontijnD F rundsdorferD nd F iertF en dptive grid re(nement strtegy for the simultion of negtive stremersF tF gomputF hysFD PIW@PAXVHI!VQSD PHHTF wilHV hFtF willerF xew wethods in gomputtionl ystems fiologyF hh thesisD pulty of hrexel niversityD PHHVF wvWU F worrow nd tFtF vowkeF tremer propgtion in irF tF hysF hX epplF hysFD QHXTIR!TPUD IWWUF wvsIH wFeF woskowitzD iFrF voD nd gF sdeolF he siene of strokeX wehnisms in serh of tretmentsF xeuronD TU@PAXIVI!IWVD PHIHF wyw + HH F wxeieD uFwF ylsonD gF worryD F de pinhteinD nd gF kerF eewirX e prllel dptive mesh re(nement ommunity toolkitF gomE puter hysis gommunitionsD IPT@QAXQQH!QSRD PHHHF worVS F worrowF heory of negtive oron in oxygenF hysF evF eD QP@QAXIUWW!IVHWD IWVSF wWP F ws nd FfF opeF implifying hemil kinetisX sntrinsi lowEdimensionl mnifolds in omposition speF gomustF nd plmeD VV@QERAXPQW!PTRD IWWPF wHP FsF wvhln nd FF uispelF plitting methodsF et xumeriD IIXQRI! RQRD PHHPF wWP F wdy nd tFgF velF edptivité pr ondelettesX gondition ux limites et dimensions supérieuresF ehF epFD niversité ierre et wrie gurieD vF h9enlyse xumériqueD IWWPF wHU F wüller nd F tiriF pully dptive multisle shemes for onservtion lws employing lolly vrying time steppingF tF ienti( gomputingD QHXRWQ!SQID PHHUF wHP F wdy nd qF uriniiF e prrel in time proedure for the ontrol of prtil di'erentil equtionsF gF F wthF edF iF ris érF s wthFD @QQSAXQVU!QWID PHHPF wHQ F wdy nd qF uriniiF he prrel in time itertive solverX e further diretion to prllel implementtionF sn roeedings of the ISth snterntionl homin heomposition gonfereneD vetF xotes gomputF iF ingF RHD pges RRI!RRVF pringerD ferlinD PHHQF whWH gFtF wfinD FpF rynelisD nd F hingledineF egionl vrition of extrelE lulr spe in the hippompusF ieneD PRW @RWTWAD IWWHF wülHQ F wüllerF edptive wultisle hemes for gonservtion vwsD volume PUF pringerEerlgD PHHQF QHU xeuHV hFF xikndrovD FF erslnekovD nd FsF uoloovF tremer simultions with dynmilly dptive rtesin meshF siii rnsF lsm iFD QT@RAXWQP!WQQD PHHVF xfHU wF xoskovD wF fenziD nd wFhF mookeF en impliit ompt sheme solver for twoEdimensionl multiomponent )owsF gomputers 8 pluidsD QT@PAXQUT!QWUD PHHUF xuHS rFxF xjm nd yFwF unioF wodeling vow wh numer reting )ow with deE tiled hemistry nd trnsportF tF ienti( gomputingD PS@IGPAXPTQ!PVUD PHHSF xHS wF xoskov nd wFhF mookeF en impliit ompt sheme solver with pplition to hemilly reting )owsF tF gomputF hysFD PHQ@PAXUHH!UQHD PHHSF xuWV rFxF xjmD FF yko'D nd yFwF unioF e semiEimpliit numeril sheme for reting )owF sF ti' hemistryF tF gomputF hysFD IRQXQVI!RHPD IWWVF yfHI iFF yrn nd tFF forisF xumeril imultion of eting plowsF gmridge niversity ressD PHHIF eond iditionF yuHT FeF ymelhenko nd rF urimdiF elfEdptive time integrtion of )uxE onservtive equtions with souresF tF gompF hysFD PIT@IAXIUW!IWRD PHHTF yyHI F ystromskyD F ywzrzD nd F ltevF gomputtionl hllenges in lrgeE sle ir pollution modellingF sn roeedings of the ISth snterntionl gonferene on uperomputingD sg 9HID pges RHU!RIVD PHHIF yw + HV hFpF ypitsD wFxF hneiderD F fF wilesD eFF vikhnskiiD nd FyF wheretF urfe hrge in dieletri rrier dishrge plsm tutorsF hysF lsmsD IS@UAXHUQSHSD PHHVF nHS FF nheshnyiF ole of eletronegtive gs dmixtures in stremer strtD propE gtion nd rnhing phenomenF lsm oures iF ehnolFD IR@RAXTRS!TSQD PHHSF etHW xF etersF wultisle omustion nd turuleneF roF gomustF snstFD QPXI!PSD PHHWF qv + HT qF illD hF qlleyD hF vosteD pF vsD hF eynnteD nd gFyF vuxF tE iliztion of turulent premixed )me using nnoseond repetitively pulsed plsmF siii rnsF lsm iFD QR@TD rt IAXPRUI!PRUUD PHHTF rf + WV FfF emerD vFrF rowellD tFfF fellD F golellD FF gruth(eldD FeF piveE lndD nd tFF tesseeF en dptive projetion method for unstedyD lowEwh numer omustionF gomustF iF ehnolFD IRH@IETAXIPQ!ITVD IWWVF itHT rF itshF vrgeEiddy imultion of turulent omustionF ennul eview of pluid wehnisD QV@IAXRSQ!RVPD PHHTF vvIH hFF iD hFeF vosteD nd gFyF vuxF rnsitions etween oronD glowD nd sprk regimes of nnoseond repetitively pulsed dishrges in ir t tmospheri pressureF tF epplF hysFD IHU@WAXHWQQHQD PHIHF QHV wqII vF pgeorgiouD eFgF wetxsD nd qFiF qeorghiouF hreeEdimensionl numerE il modelling of gs dishrges t tmospheri pressure inorporting photoionE iztion phenomenF tF hysF hX epplF hysFD RR@RAXHRSPHQD PHIIF opWU FfF opeF gomputtionlly e0ient implementtion of omustion hemistry using in situ dptive tultionF gomustF heory wodellingD I@IAXRI!TQD IWWUF osHS wF ostelF epproximtions multiéhellesF sn xeuvième Éole wéE nique des pluides xumériqueD oso'D pges I!SWF niversité ierre et wrie gurieD vF tquesEvouis vionsD PHHSF vesson xotesD ville t httpXGGwwwFnnFjussieuFfrG£postelF UR eF rothero nd eF oinsonF yn the stility nd ury of oneEstep methE ods for solving sti' systems of ordinry di'erentil equtionsF wthF gompFD PV@IPSAXIRS!ITPD IWURF HW F ope nd F enF i0ient implementtion of hemistry in omputtionl omustionF plowD urulene nd gomustionD VPXRQU!RSQD PHHWF gfHV F nheshnyiD F egurD tF gpeillereD nd eF fourdonF xumeril simultion of (lmentry dishrges with prllel dptive mesh re(nementF tF gompF hysFD PPU@IQAXTSUR!TSWHD PHHVF HI FF nheshnyiD FwF trikovskiD nd eFF trikovskiiF ole of photoionE iztion proesses in propgtion of thodeEdireted stremerF tF hysF hX epplF hysFD QRXIHS!IISD PHHIF HS F oinsot nd hF eynnteF heoretil nd xumeril gomustionF idwrdsD Pnd edition editionD PHHSF dVH F duF Étude sur les formules d9pproximtion qui servent à luler l vleur numérique d9une intégrle de(nieF tF wthF ures epplFD TXPVQ!QQTD IVVHF fv + HH gFeF endlemnD FiF feknerD wF vijewskiD F gruth(eldD nd tFfF fellF rE lleliztion of struturedD hierrhil dptive mesh re(nement lgorithmsF gomE puting nd isuliztion in ieneD QXIRU!ISUD PHHHF rwh + HW gF ossoD xF reviEwontielD F heltourD iF frdinetD hF hormontD F grozierD F filletD nd F msonF redition of infrt growth sed on pprent difE fusion oe0ientsX penumrl ssessment without intrvenous ontrst mterilF diologyD WS@QAXRSH!RSVD PHHWF yeHH hFtF ossiD F yshimD nd hF ettwellF qlutmte relese in severe rin isE hemi is minly y reversed uptkeF xtureD RHQXQIT!QPID PHHHF y + HI vF øhlD vF ØstergrdD gFF imonsenD F estergrdEoulsenD qF endersenD wF kohD hF ve fihnD nd gF qyldenstedF iility thresholds of ishemi penumr of hyperute stroke de(ned y perfusionEweighted ws nd pprent di'usion oe0ientF trokeD QP@SAXIIRH!IIRTD PHHIF HV F en nd FfF opeF eondEorder splitting shemes for lss of retive systemsF tF gomputF hysFD PPU@IUAXVITS!VIUTD PHHVF QHW qWV uF evettD iF uppinD F qoodllD nd tFeF eggiF preding depression in fol ishemiX omputtionl studyF tF gereF flood plow 8 wetFD IV@WAXWWV!IHHUD IWWVF gWW FErF enrdD tFgF olonD hF héveninD nd F gndelF snvestigtions of het releseD extintionD nd time evolution of the )me surfeD for nonpremixed )me interting with vortexF gomustF nd plmeD IIU@IEPAXIVW!PHSD IWWWF HP yF oussel nd uF hneiderF e fully dptive multiresolution sheme for Qh retionEdi'usion equtionsF sn F rerin nd hF urönerD editorsD pinite olumes for gomplex epplitionsD volume QD pges VQQ!VRHF rermes enton ieneD PHHPF HS hFvF opp nd tFxF hdidF tility of opertor splitting methods for sysE tems with inde(nite opertorsX etionEdi'usion systemsF tF gomputF hysFD PHQ@PAXRRW!RTTD PHHSF HS yF oussel nd uF hneiderF en dptive multiresolution method for omustion prolemsX epplition to )me llEvortex intertionF gomputers 8 pluidsD QR@UAXVIU!VQID PHHSF HT yF oussel nd uF hneiderF xumeril study of thermodi'usive )me struE tures interting with diti wlls using n dptive multiresolution shemeF gomustF heory wodellingD IH@PAXPUQ!PVVD PHHTF HW hFvF opp nd tFxF hdidF tility of opertor splitting methods for sysE tems with inde(nite opertorsX edvetionEdi'usionEretion systemsF tF gomputF hysFD PPV@WAXQSHV!QSITD PHHWF yHR hFvF oppD tFxF hdidD nd gFgF yerF tudies of the ury of time integrE tion methods for retionEdi'usion equtionsF tF gomputF hysFD IWR@PAXSRR!SURD PHHRF fHQ yF ousselD uF hneiderD eF sigulinD nd rF fokhornF e onservtive fully dptive multiresolution lgorithm for proli hisF tF gomputF hysFD IVV@PAXRWQ!SPQD PHHQF gHH FErF enrdD hF héveninD tFgF olonD nd F gndelF hynmis of )meGvortex intertionsF rogress in inergy nd gomustion ieneD PT@QAXPPS!PVPD PHHHF uTH FuF ul9evF sntegrtion of proli type equtions with the method of netsF wosowD pizmtgizD IWTHF sn ussinF fHH fF portisseD qF fenteuxD nd F lionF wethod of vines versus ypertor plitE ting for retion!di'usiuon systems with fst hemistryF invironmentl wodelling 8 oftwreD IS@TEUAXTUQ!TUWD PHHHF hHP wF htzmnF owrd non ommuttive numeril nlysisX righ order inteE grtion in timeF tF ienti( gomputingD IU@IEQAXIHU!IPSD PHHPF hHH fF portisse nd F hjoudF edution of hemil kinetis in ir pollution modelingF tF gomputF hysFD ITR@PAXQSR!QUTD PHHHF QIH ht + HS rFuF hinD eFuF hunnD FfF tonesD hFeF fosD wFeF woskowitzD nd gF eytF soonstritive neurovsulr oupling during fol ishemi depolriztionsF tF gereF flood plow 8 wetFD PT@VAXIHIV!IHQHD PHHSF qHU qF t'elhD vFFwF qiquelD nd F oinsotF righly prllel lrge eddy simuE ltions of multiurner on(gurtions in industril gs turinesF sn FgF ussinos et lFD editorD gomplex i'ets in vrge iddy imultionsD volume ST of veture xotes in gomputtionl iene nd ingineeringD pges QPS!QQTF pringer ferlin reidelergD PHHUF rUU vFpF hmpine nd uFvF rieertF heteting sti'ness with the pehlerg @RDSA formulsF gomputers 8 wthemtis with epplitionsD Q@IAXRI!RTD IWUUF rWU eF uresh nd rFF ruynhF eurte monotoniityEpreserving shemes with ungeEuutt time steppingF tF gomputF hysFD IQTXVQ!WWD IWWUF hUU vFpF hmpineF ti'ness nd nonsti' di'erentil eqution solversD ssX heteting sti'ness with ungeEuutt methodsF egw rnsF wthF oftwFD QXRR!SQD IWUUF hVU vFpF hmpineF gontrol of step size nd order in extrpoltion odesF tF gomputF epplF wthFD IV@IAXQ!ITD IWVUF hHI fFiF hpiroF ysmoti fores nd gp juntions in spreding depressionX e omputtionl modelF tF gomputF xeurosiFD IHXVUU!VWTD PHHIF rrWR F onrD F rnnemnnD nd hF rempelF hynmi dptivity nd residul ontrol in unstedy ompressile )ow omputtionF wthemtil nd gomputer wodellingD PH@IHEIIAXPHI!PIQD IWWRF rHU F venoD F rundsdorferD nd tFqF erwerF e multirte time stepping strtE egy for sti' ordinry di'erentil equtionsF fs xumerF wthFD RUXIQU!ISSD PHHUF tyII F hiD FrF qreen trFD rFEF ongD nd yFyF yluwoleF edesigning omustion modeling lgorithms for the qrphis roessing nit @qAX ghemil kineti rte evlution nd ordinry di'erentil eqution integrtionF gomustF nd plmeD ISV@SAXVQT!VRUD PHIIF vqHQ hFeF hwerD F vuD FrF qreenD nd F emiãoF e onsistentEsplitting pproh to omputing sti' stedyEstte reting )ows with dptive hemistryF gomustF heory wodellingD U@PAXQVQ!QWWD PHHQF wIH F veno nd FwFwF wttheijF wultirte numeril integrtion for sti' yhisF sn rFEqF fok et lFD editorD rogress in sndustril wthemtis t igws PHHVD volume IS of wthemtis in sndustryD pges QPU!QQPF pringer ferlin reiE delergD PHIHF wxIH gF teinerD F wüllerD nd F xoelleF edptive timestep ontrol for nonsttionry solutions of the iuler equtionsF sew tF iF gomputFD QP@QAXITIU!ITSID PHIHF moVQ wFhF mookeF irror estimte for the modi(ed xewton method with pplitions to the solution of nonlinerD twoEpoint oundry vlue prolemsF tF yptimF heory epplFD QW@RAXRVW!SIID IWVQF QII xHV gF teiner nd F xoelleF yn dptive timestepping for wekly insttionry solutions of hyperoli onservtion lws vi djoint error ontrolF gommF xumerF wethF ingD PHHVF yq + HI wF kohD vF ØstergrdD eF qjeddeD vF øhlD F estergrdEoulsenD hFpF mithD hF ve fihnD F kkiD nd gF qyldenstedF redition of tissue surE vivl fter middle ererl rtery olusion sed on hnges in the pprent di'usion of wterF tF xeurosurgFD WS@QAXRSH!RSVD PHHIF omHI qFqF omjenF wehnisms of spreding depression nd hypoxi spreding depressionElike depolriztionF hysiolF evFD VI@QAXWT!IHHD PHHIF HR wFeF inger nd FfF opeF ixploiting se to solve the retion!di'usion equtionF gomustF heory wodellingD V@PAXQTI!QVQD PHHRF xHT wFeF ingerD FfF opeD nd rFxF xjmF wodeling unstedy reting )ow with opertor splitting nd seF gomustF nd plmeD IRU@IEPAXISH!ITPD PHHTF xHT wFeF ingerD FfF opeD nd rFxF xjmF ypertorEsplitting with se to model reting )ow with detiled hemistryF gomustF heory wodellingD IH@PAXIWW!PIUD PHHTF poWW fF portisseF gontriution à l modélistion des éoulements rétifsX édution des modèles de inétique himique et simultion de l pollution tmosphériqueF hh thesisD iole olytehniqueD IWWWF poHH fF portisseF en nlysis of opertor splitting tehniques in the sti' seF tF gomputF hysFD ITI@IAXIRH!ITVD PHHHF poHU fF portisseF e review of urrent issues in ir pollution modeling nd simultionF gomputtionl qeosienesD IIXISW!IVID PHHUF HQ qFeF t' nd iFwF ønquistF tility of the prrel lgorithmF sn roeedE ings of the ISth snterntionl homin heomposition gonfereneD vetF xotes gomputF iF ingF RHD pges RRW!RSTF pringerD ferlinD PHHQF gWR tFwF nzEern nd wFF glvoF xumeril rmiltonin rolemsF ghpmn 8 rllD vondonD IWWRF qHV qF t'elhD tF enonerD vF qiquelD nd F oinsotF vrge eddy simultion of omustion on mssively prllel mhinesF sn tF lm et lFD editorD righ erE formne gomputing for gomputtionl iene E ige PHHVD volume SQQT of veture xotes in gomputer ieneD pges RRR!RTRF pringer ferlin reidelergD PHHVF WU fFF ommeijerD vFpF hmpineD nd tFqF erwerF ugX en expliit solver for proli hisF tF gomputF epplF wthFD VV@PAXQIS!QPTD IWWUF HT vFpF hmpineD fFF ommeijerD nd tFqF erwerF sugX en swi solver for sti' di'usionEretion hisF tF gomputF epplF wthFD IWT@PAXRVS!RWUD PHHTF teHV gF teinerF edptive imestepping for gonservtion vws vi edjoint irror epE resenttionF hh thesisD r ehen niversityD PHHVF QIP trTQ qF trngF eurte prtil di'erene methodsF sF viner guhy prolemsF erhF tionF wehF enlFD IPXQWP!RHPD IWTQF trTV qF trngF yn the onstrution nd omprison of di'erene shemesF sew tF xumerF enlFD SXSHT!SIUD IWTVF ülWW iF üliF e posteriori error nlysis nd dptivity for (nite element pproxiE mtions of hyperoli prolemsF sn en sntrodution to eent hevelopments in heory nd xumeris for gonservtion vws @preiurgGvittenweilerD IWWUAD volE ume S of veture xotes in gomputtionl iene nd ingineeringD pges IPQ! IWRF pringer ferlinD IWWWF unWT F unF e pseudo nonEtime splitting method in ir qulity modelingF tF gomputF hysFD IWWTF VH fFF ommeijer nd tFqF erwerF e erformne ivlution of glss of ungeE uuttEgheyshev wethods for olving emidisrete roli hi'erentil iquE tionsF efdeling xumerieke iskunde heprtment of xumeril wthemtisD WIF wthemtish gentrumD emsterdmD IWVHF IH uF hneider nd yFF silyevF velet methods in omputtionl )uid dyE nmisF ennul eview of pluid wehnisD RPXRUQ!SHQD PHIHF d + WV iFtF peeD tFqF erwerD FwF de eeuwD tFqF flomD nd F rundsdorferF e nuE meril study for glol tmospheri trnsportEhemistry prolemsF wthemtis nd gomputers in imultionD RV@PAXIUU!PHRD IWWVF weWS F weldensF vifting shemeX e new philosophy in iorthogonl wvelet onE strutionsF sn eFpF vine et lFD editorD oiety of hotoEyptil snstrumenttion ingineers @siA gonferene eriesD volume PSTW of oiety of hotoEyptil snstrumenttion ingineers @siA gonferene eriesD pges TV!UWD IWWSF weWV F weldensF he lifting shemeX e onstrution of seond genertion wveletsF sew tF wthF enlFD PW@PAXSII!SRTD IWWVF fII vF osttoD fFeFF fennettD nd wFhF mookeF rlleliztion strtegies for n impliit xewtonEsed retive )ow solverF gomustF heory wodellingD IS@RAXRSS!RVTD PHIIF gWS hF hévenin nd F gndelF sgnition dynmis of di'usion )me rolled up in vortexF hysF pluidsD U@PAXRQR!RRSD IWWSF hII gF enud nd wF hurteF utorils on dptive multiresolution for mesh reE (nement pplied to )uid dynmis nd retive medi prolemsF ieswX roFD QRXIVR!PQWD PHIIF émTW F émmF ur l9pproximtion de l solution des équtions de xvierEtokes pr l méthode des ps frtionniresF sF erhF tionl wehF enlFD QPXIQS!ISQD IWTWF émTW F émmF ur l9pproximtion de l solution des équtions de xvierEtokes pr l méthode des ps frtionniresF ssF erhF tionl wehF enlFD QQXQUU!QVSD IWTWF QIQ eyHP F eyssierF gosmology hydrodynmis with dptive mesh re(nementF e new high resolution ode lled ewiF estronomy 8 estrophysisD QVSXQQU!QTRD PHHPF qrfHH eFF omlinD F qhoriD qF rrtD nd wF ferzinsF QEh multiEsle ir polluE tion modelling using dptive unstrutured meshesF invironmentl wodelling 8 oftwreD IS@TEUAXTVI!TWPD PHHHF hHV wF hlhmmerF righEorder exponentil opertor splitting methods for timeE dependent hrödinger equtionsF sew tF xumerF enlFD RT@RAXPHPP!PHQVD PHHVF héWP hF héveninF hynmique de l9llumge de )mmes de di'usion dns des éouleE ments isillés E Étude théorique et numériqueF hh thesisD iole gentrle risD IWWPF uHR tFeF rngenstein nd gF uimF ypertor splitting nd dptive mesh re(nement for the vuoEudy s modelF tF gomputF hysFD IWT@PAXTRS!TUWD PHHRF roSW rFpF rotterF yn the produt of semiEgroups of opertorsF roF emF wthF oFD IHXSRS!SSID IWSWF + WT hF héveninD tFgF olonD FErF enrdD hFF uendrikD hF eynnteD nd F gnE delF truture of nonEpremixed )me interting with ounterrotting vortiesF ymposium @snterntionlA on gomustionD PT@IAXIHUW!IHVTD IWWTF eHH tFeF rngensteinD uF kouiineD nd FuF ellrdF ypertor splitting nd dpE tive mesh re(nement for the pitzhughExgumo prolemF sn pressD ville tn httpXGGwwwFmthFdukeFeduG£johntGfhnFpsD PHHHF vHH F ysonD vFqF ternD nd FtF veequeF prtionl step methods pplied to hemotxis modelF tournl of wthemtil fiologyD RIXRSS!RUSD PHHHF VS eFxF ikhonovD eFfF sil9evD nd eFqF veshnikovF hi'erentil iqutionsF pringerEerlgD ferlinD IWVSF fHU F nferD tFEF foeufD pF ogierD nd pF hivetF en synhronous sheme with lol time stepping for multiEsle trnsport prolemsX epplition to gs disE hrgesF tF gompF hysFD PPU@PAXVWV!WIVD PHHUF fIH F nferD tFEF foeufD pF ogierD nd pF hivetF wultiEsle gs dishrge simE ultions using synhronous dptive mesh re(nementF gomputer hysis gomE munitionsD IVI@PAXPRU!PSVD PHIHF rUR FF rdrjnF vie qroupsD vie elgers nd their epresenttionsF rentieE rllD inglewood gli'sD xew terseyD IWURF sHQ yFF silyevF olving multiEdimensionl evolution prolems with lolized struE tures using seond genertion wveletsF snterntionl tournl of gomputtionl pluid hynmisD IUXISI!ITVD PHHQF fHH yFF silyev nd gF fowmnF eondEgenertion wvelet ollotion method for the solution of prtil di'erentil equtionsF tF gomputF hysFD ITS@PAXTTH!TWQD PHHHF QIR fvd + WR rFfF erheulD F flzsD tFF ferkelh vn der prenkelD gFeFpF ullekenD uF xiolyD uFF mmingD nd wF vn vookeren gmpgneF gomprison of di'usionEweighted ws with hnges in ell volume in rt model of rin injuryF xw fiomedFD U@I!PAXWT!IHHD IWWRF fvvWT tFqF erwerD tFqF flomD wF vn voonD nd iFtF peeF e omprison of sti' yhi solvers for tmospheri hemistry prolemsF etmospheri invironmentD QH@IAXRW!SVD IWWTF vdrUU FtF vn der rouwenF gonstrution of sntegrtion pormuls for snitil lue rolemsF xorthErollnd uFgoFD IWUUF vdrVH FtF vn der rouwen nd fFF ommeijerF yn the internl stility of expliitD mEstge ungeEuutt methods for lrge mEvluesF F engewF wthF wehFD TH@IHAXRUW!RVSD IWVHF erWT tFqF erwerF ixpliit ungeEuutt methods for proli prtil di'erentil equtionsF epplF xumerF wthFD PP@IEQAXQSW!QUWD IWWTF eyHW hF eynnteF vrge eddy simultions of turulent omustionF sn wF heville et lFD editorD urulene nd sntertionsD volume IHS of xotes on xumeril pluid wehnis nd wultidisiplinry hesignD pges IIQ!IQVF pringer ferlin reidelergD PHHWF qHI wF lorni nd hFeF qoussisF ixpliit timeEsle splitting lgorithm for sti' prolemsX eutoEignition of gseous mixtures ehind stedy shokF tF gomputF hysFD ITW@IAXRR!UWD PHHIF rWH tFqF erwerD FrF rundsdorferD nd fFF ommeijerF gonvergene properties of the ungeEuuttEgheyshev methodF xumerF wthFD SUXISU!IUVD IWWHF wWW eF oss nd F wüllerF e mnul for the templte lss lirry igpmtliF sqwEepF IWUD r ehenD IWWWF WT yFF silyev nd F oluiF e dynmilly dptive multilevel wvelet olE lotion method for solving prtil di'erentil equtions in (nite dominF tF gomputF hysFD IPS@PAXRWV!SIPD IWWTF WU yFF silyev nd F oluiF e fst dptive wvelet ollotion lgorithm for multidimensionl hisF tF gomputF hysFD IQV@IAXIT!STD IWWUF fWR FeF itelloD fFwF enetrnteD nd tFxF frdsleyF imultion of negtiveE stremer dynmis in nitrogenF hysF evF iD RWXSSUR!SSWVD IWWRF WS yFF silyevD F oluiD nd wF enF e multilevel wvelet ollotion method for solving prtil di'erentil equtions in (nite dominF tF gomputF hysFD IPH@IAXQQ!RUD IWWSF WV tFqF erwer nd fF portisseF xote on opertor splitting in sti' liner seF epF weEWVQHD IWWVF HR tFqF erwer nd fFF ommeijerF en impliitEexpliit ungeEuuttEgheyshev sheme for di'usionEretion equtionsF sew tF iF gomputFD PS@SAXIVPR!IVQSD PHHRF QIS frWW tFqF erwerD iFtF peeD tFqF flomD nd F rundsdorferF e seondEorder osenE rok method pplied to photohemil dispersion prolemsF sew tF iF gomE putFD PHXIRST!IRVHD IWWWF rHR tFqF erwerD fFF ommeijerD nd F rundsdorferF ug timeEstepping for dvetionEdi'usionEretion prolemsF tF gomputF hysFD PHI@IAXTI!UWD PHHRF ruWQ FvFqF entzekD FtF ommererD FtF roekstrD nd wFtF uushnerF woE dimensionl hyrid model of indutively oupled plsm soures for ethingF epplF hysF vettFD TQ@SAXTHS!THUD IWWQF vHH iFwF vn eldhuizenD editorF iletril hishrges for invironmentl urposesX pundmentls nd epplitionsF xov ieneD xew orkD PHHHF WR eFsF olpertD FeF olpertD nd FeF olpertF rveling ve olutions of roli ystemsF emerin wthemtil oietyD rovideneD sD IWWRF eHR xFqF hlgren nd xF ehmedF xeuroprotetion in ererl ishemiX pts nd fnies!the need for new pprohesF gererovsF hisFD IUXISS!ITTD PHHRF lWP F lzF ole of nGkGl otrnsport in stroytesF gnF tF hysiolF hrmolD UHXPTH!PTPD IWWPF tVR rFeF ttsF tep size ontrol in ordinry di'erentil eqution solversF rnsF oF gomputer imultionD IXIS!PSD IWVRF idTU yFfF idlundF e note on unonditionlly stle liner multistep methodsF fs xumerF wthFD UXTS!UHD IWTUF u eF illims nd F uempfF he oost thred lirryF ortle gCC multiE thredingF httpXGGwwwFoostForgGF v + IH qF ormeesterD F nheshnyiD eF vuqueD F xijdmD nd F iertF roing photoEioniztionX simultions of positive stremers in vrying xPXyP mixturesF tF hysF hX epplF hysFD RQ@SHAXSHSPHID PHIHF HV hF ng nd FtF uuthF e hyrid impliitEexpliit dptive multirte numeril sheme for timeEdependent equtionsF tF gompF wthemtisD PT@TAXVQV!VSSD PHHVF riUI u rightF ome reltionships etween impliit ungeEuuttD ollotion nd vnzos τ methodsD nd their stility propertiesF fs xumerF wthFD IHXPIU! PPUD IWUIF nUI xFxF nenkoF he wethod of prtionl tepsF he olution of rolems of wthemtil hysis in everl rilesF pringerEerlgD xew orkD IWUIF puHQ gFF iD eFvF pogelsonD tFF ueenerD nd gFF eskinF e mthemtil study of volume shifts nd ioni onentrtion hnges during ishemi nd hypoxiF t heor fiolFD PPH@IAXVQ!IHTD PHHQF ueWV FwF mdD gF uohD nd FF edmsF wethods in xeuronl wodelingX prom sons to xetworksD hpter ID pges IQU!IUHF ws ressD gmridgeD weD IWWVF QIT osWH rF oshidF gonstrution of higher order sympleti integrtorsF hysis vetters eD ISH@SEUAXPTP!PTVD IWWHF WV fF ng nd FfF opeF en investigtion of the ury of mnifold methods nd splitting shemes in the omputtionl implementtion of omustion hemistryF gomustF nd plmeD IIP@IEPAXIT!QPD IWWVF rHV F ingD hFtF oseD nd gFF renriquezF i0ient fully impliit time integrE tion methods for modeling rdi dynmisF siii rnstions on fiomedil ingineeringD SS@IPAXPUHI!PUIID PHHVF gHW hFF ingg nd FF ghisholmF toinEfree xewtonEurylov methodsX sssues nd solutionsF sn rF heonink et lFD editorD gomputtionl pluid hynmis PHHTD pges PQU!PRPF pringer ferlin reidelergD PHHWF
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See, e.g., in [CCdS + 09, Che11] some numerical developments and accomplishments of a high performance DNS code for combustion applications, and [SJWO11] for the use of Graphics Processing Units (GPUs) to accelerate the evaluation of detailed chemical kinetics.

Look, e.g., in [SGP07, SSGP08] for some reviews and achievements on massively parallel computations for combustion problems in industrial congurations, with an approach called Large Eddy Simulations (LES) [Pit06, Vey09] based on spatial ltering of the detailed formulation to focus on the contribution of rather large scales.

We will further detail in this work a few key aspects of classical AMR (Adaptive Mesh Renement) methods introduced by Berger & Oliger [Ber82, BO84], as well as adaptive multiresolution techniques based mainly on the work of Harten [Har94a, Har95].

In particular, the derivation of reduced models is usually straightforward when the modeling system is well-partitioned and the fast scales are easily isolated [Spo99, SD00].

Some classical examples of such techniques that have been further developed, are given by the ILDM (Intrinsic Low-Dimensional Manifold) approach of Pope and Maas [MP92] and the CSP (Computational Singular Perturbation) method of Lam & Goussis [LG94].

Some classical works on multi-step or Runge-Kutta IMEX methods were introduced by Ascher et al., in [ARW95] and in [ARS97]. In particular, the stability of linear multi-step IMEX methods was analyzed by Frank et al. in[FHV97], which proved that stable implicit and explicit schemes do not necessarily yield stable IMEX methods.

 10 In particular, these authors studied a combination of IMEX and multirate techniques that consider variabledependent time steps with error control, and analyzed the corresponding stability domain of the

method. 11 These authors dene the slow and fast variables based on the stability domain of the explicit scheme in order to ensure the stability of computations for a time step computed based on accuracy

criteria.12 We remark than in the previous case only the resulting slow variables were actually solved in time after the dynamic reduction of the general PDEs, even though the fast scales might be reconstructed afterwards if needed. See some illustrations in [DS02b, DS03] for air pollution modeling applications, and in [VG01] for combustion problems with detailed

chemical kinetics.13 See, e.g.,[KC03] and references therein for dierent IMEX implementations, and in particular for the theoretical issues related to the construction of general high order time integration IMEX schemes for reactiondiusion-convection systems. This kind of study can be also found, for instance, in [LZ06] for sti ODEs systems or in [HR07] for dedicated high order schemes that feature adequate properties to handle steep gradients or shock-like solutions for hyperbolic problems including sti source terms. Strong stability properties like A-stability were studied, for instance, in [Gje07] for second

order multi-step IMEX schemes.14 An illustrating example was presented and discussed in [NWK98] for the numerical simulation of ames with detailed kinetics, in which a dedicated implicit solver succeeded to overcome highly constraining stability conditions imposed by the reaction terms, but the global time steps remained restricted to ensure the numerical stability of the explicit scheme used for the diusion problem, quite limited given the ne spatial discretization needed for these problems.

These are standards limitation for general IMEX schemes as seen, for instance, in [KC03] or[CD11]. Nevertheless, to ease these limitations, Verwer et al. considered in [VS04] an implicit Euler scheme to deal with the sti ODEs obtained at each spatial node after decoupling the numerical solution of the reaction problems. The latter was achieved by embedding this implicit discretization in a stabilized explicit Runge-Kutta scheme, such that the global stability domain of the method, dictated by the explicit scheme, can be enlarged for the global time step computed within a prescribed accuracy for both the reaction and diusion problems. This scheme led to the IRKC code [SSV06] for sti reaction-diusion problems. Extensions to reaction-diusionconvection systems were proposed in [VSH04] by adding the corresponding stability conditions for the global time steps.

 16 The resulting splitting errors can be mathematically characterized, for instance, for general reactiondiusion-convection problems, as described by Lanser & Verwer in [LV99].

Déclaration d'Invention DI 03760-01.

As an illustration, a modied splitting approach was conceived in [SLGS03] to compute steady states of reacting ows featuring ames with detailed chemistry.

We remark that if F (U (t)) is not an analytic function in (1.43), but F ∈ C N (R), then the series has to be truncated and a O(t N ) remainder must be included.

The same remark is valid for the numerical integration of sti ODEs [HLR88, HW96].

https://seesar.lbl.gov/anag/chombo

http://sourceforge.net/projects/paramesh/

http://irfu.cea.fr/Projets/Site_ramses

http://www.cacr.caltech.edu/asc

https://computation.llnl.gov/casc/SAMRAI

We denote the set N0 = N ∪ {0}.

In [AKV06], a single algebraic system is built since both time and space operators are simultaneously discretized.

Symbol #( ) denotes the cardinality of a set.

Symbol denotes the oor function, i.e., it maps a real number to the largest integer, smaller than the given real number.

For instance, a detailed study was presented in [VG01] that demonstrated the important loss of eciency of LSODE to treat sti PDEs in splitting congurations, mainly because of the expensive starting procedure of the multi-step scheme at each splitting time step.

We recall that a multi-step method cannot be L-stable with an order higher than two [Dah63].

Actually, Ropp & Shadid considered in [RS05a, RS09] a splitting technique in which the splitting time step is equal to the diusion one, without error control. Therefore, the A-stability of the numerical method chosen to treat the diusion problem ensures only stability but not the necessary damping for sti congurations.

Throughout this work, a standard centered second order space discretization is considered for the diusive terms.

Let us notice that chemical equilibrium regions coincide usually with spatially homogeneous distributions so that spatial operators like diusion or convection should preserve constancy.

See, e.g.,[NK05, SPN06b] for diusion problems with detailed multi-species transport coming from combustion modeling, solved with the RKC solver [SSV97] for which no stability problems were reported.

 7 In particular, the implicit scheme should be either L-stable based on the previously mentioned studies [RS05a, RS09], or suciently stable with error control

features.8 The diusion problem for plasma applications detailed in Chapter 11 present, for instance, time and space dependent coecients.

Although here we consider a nite volume spatial discretization for the diusion problem, the estimated value of the spectral radius is coherent with 8 × Da/∆x 2 = 1310.72 computed with (2.18).

This procedure is dierent to the one implemented in the previous RKC code [SSV97] for which there is an estimate of the leading term of the second order RKC scheme, based on theoretical ndings [VHS90].

By consistent IMEX method, we mean that the numerical solution of the problem ensures the complete coupling of the dierent terms. This excludes, for instance, the possibility of time stepping of the implicit solver within the explicit and global time step, in which case some sort of splitting errors would be naturally introduced.

An estimate of the local error is computed with the dierence between two numerical solutions at each time step, in which one of the them (in general the retained solution) is obtained after two half steps. A higher order solution can be also extrapolated (this is not used in [GV02] where the second order Strang is considered).

The following section in [DDD + 12] introduces and justies the numerical technique detailed in Chapter 4. We omit it in this work in order to avoid redundancy. The complete text can be found in [DDD + 12].

In particular, the ZEBRE code [Dum07] uses threads for the parallelization on shared memory architectures, based on the C++ boost-thread library [WK]. This implementation is described in [DDD + 12], and is omitted in the present work for the sake of brevity.

The L 2 -norm f L 2 of f is given by Ω f (x) 2 dx 1/2 .

See, e.g.,[PV05] for the modeling equations.

In particular, the reader can nd in [NWK98, KNW99] a detailed state of the art of numerical methods considered at the time for the numerical simulation of combustion fronts.

In Chapter 2 we have only considered time integration solvers potentially suitable for reaction or diusion problems in the context of PDEs.

We will see in the following that the convective time step is at most equal to half a splitting time step.

Notice also that the OSMP scheme was conceived for hyperbolic problems in conservative form.

Let us underline that the use of dimensional splitting in advection form (10.20) would lead to no spatial oscillation but the resulting scheme would be non-conservative.

Other corrective techniques are discussed in [LLM96] and [HV03].

For instance, for Re =

as in the previous cases, we observed convergence problems with the very simple Newton's method used to solve the nonlinear system (10.81) in our implementation. As previously discussed in the General Introduction, more sophisticated techniques are often developed and implemented for implicit solvers to eciently solve these systems with complex chemistry features.

In particular, we would not need to provide a numerical solver for the nonlinear system (10.81).

For the sake of brevity, we will omit in what follows the description of the mesh renement technique by multiresolution analysis on variables u = (ne, np, nn) T , included in [DBM + 12]. The corresponding description can be found in chapters 3 and 4. The threshold parameter ε in (4.26) will be noted as ηMR in the following. Nevertheless, we reproduce the splitting technique described in Chapter 10 because it is particularly embedded in the time adaptive strategy of Section 11.4.1.

This is the opposite of standard practices that consider small splitting time steps in practice to ensure negligible splitting errors, where the global errors are ruled by the inner time integration solvers (see, e.g.,[NK05, SPN06a] and detailed discussions in Chapter 4).

For instance, the contemporaneous implementation of multiresolution analysis to simulate waves in excitable media in [BRBS10], considered a time integration technique specially conceived for the particular models under study.

Contemporaneous works like the one in [KT11] or the Richardson extrapolation approach in [GV02], remain suitable only for non sti problems. However, to the best of our knowledge, no other numerical simulation of large size or for varied applications, including this functionality, has been reported in the literature, except for the ones illustrated in this work.

In other type of time/space adaptive techniques, such like local time stepping techniques conceived mainly for adaptive mesh congurations, the time adaptive criteria are usually based on local stability issues [CNPT08, DGRS08, CNPT10] rather than accuracy. The numerical technique presented in [DRS09] considers time step error control with multiresolution techniques and explicit solvers, appropriate to non sti problems.

Previous time adaptive procedures for these models considered local time stepping based either on local, dynamic increments of the solution [KDOO05, OK06] or on local stability conditions [UBRT07], but not on accuracy criteria.

This is a work in progress in collaboration with Zden¥k Bonaventura and the technical support of Laurent Series at the Computational Service Unit of Ecole Centrale Paris.

This is a work in progress in collaboration with Violaine Louvet and Frédérique Laurent, for the practical implementation of detailed chemistry features. In general, the whole work is part of the Séchelles project that aims at developing a new, general, and optimized numerical code for the simulation of multi-scale problems. Thierry Dumont is currently leading the conception and construction process of the general structure of this code, that assembles all these recent numerical tools. We count also on the collaboration of Christian Tenaud regarding the implementation and numerical simulation of combustion fronts in the context of the Digiteo MUSE project.
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Application Framework PHS Fig. 9.5: 2D adapted meshes equivalent to 256 2 (left) and 1024 2 (right) spatial discretizations at the nest grid.

Performances of the Diusion Equation Solver
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