N
N

N

HAL

open science

Probabilistic methods for point tracking and biological
image analysis
Magél Primet

» To cite this version:

Maél Primet. Probabilistic methods for point tracking and biological image analysis. Signal and Image
Processing. Université René Descartes - Paris V, 2011. English. NNT: . tel-00669220

HAL Id: tel-00669220
https://theses.hal.science/tel-00669220
Submitted on 12 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00669220
https://hal.archives-ouvertes.fr

MAEL PRIMET

PROBABILISTIC METHODS FOR POINT TRACKING
AND BIOLOGICAL IMAGE ANALYSIS

METHODES PROBABILISTES POUR LE SUIVI DE POINTS
ET L'ANALYSE D'IMAGES BIOLOGIQUES

THESE DE MATHEMATIQUES

pour obtenir le grade de

Docteur de 'Université Paris Descartes

dans la spécialité Mathématiques appliquées

soutenue le 25 novembre 2011 devant le jury composé de

Patrick Bouthemy rapporteur INRIA Rennes
Francois Fleuret rapporteur IDIAP Research Institute
Isabelle Bloch examinatrice Télécom Paristech
Julie Delon examinatrice Télécom Paristech
Joan Glaunés examinateur Université Paris Descartes
Ariel Lindner examinateur Université Paris Descartes

Lionel Moisan directeur de thése Université Paris Descartes

Université Paris Descartes
UFR Mathématiques Informatique
Ecole Doctorale Mathématiques Paris-Centre

Probabilistic methods for point tracking and biological image analysis
Maél Primet, 25 novembre 2011.

RESUME

Nous nous intéressons dans cette thése au probleme du suivi d’objets, que
nous abordons par des méthodes statistiques. La premiere contribution de
cette these est la conception d'un algorithme de suivi de bactéries dans une
séquence d’image et de reconstruction de leur lignage, travail ayant donné lieu
a la réalisation d’une suite logicielle aujourd’hui utilisée dans un laboratoire
de recherche en biologie. La deuxiéme contribution est une étude théorique
du probleme de la détection de trajectoires dans un nuage de points. Nous
définissons un détecteur de trajectoires utilisant le cadre statistique des méth-
odes a contrario, qui ne requiert essentiellement aucun parametre pour fonc-
tionner. Ce détecteur fournit des résultats remarquables, et permet notamment
de retrouver des trajectoires dans des séquences contenant un grand nombre
de points de bruit, tout en conservant un taux de fausses détections de tra-
jectoires tres faible. Nous étudions ensuite plus spécifiquement le probléeme
de l'affectation de nuages de points entre deux images, probleme rencontré
notamment pour la détection de trajectoires ou 'appariement d’images stéréo-
graphiques. Nous proposons d’abord un modeéle théoriquement optimal pour
l'affectation de points qui nous permet d’étudier les performances de plusieurs
algorithmes classiques dans différentes conditions. Nous formulons ensuite un
algorithme sans parametre en utilisant le cadre a contrario, ce qui nous permet
ensuite d’obtenir un nouvel algorithme de suivi de trajectoires.

ABSTRACT

The subject of this thesis is the problem of object tracking, that we approached
using statistical methods. The first contribution of this work is the conception
of a tracking algorithm of bacterial cells in a sequence of image, to recover
their lineage; this work has led to the implementation of a software suite that
is currently in use in a research laboratory. The second contribution is a theo-
retical study of the detection of trajectories in a cloud of points. We define a
trajectory detector using the a-contrario statistical framework, which requires
essentially no parameter to run. This detector yields remarkable results, and is
in particular able to detect trajectories in sequences containing a large number
of noise points, while keeping a very low number of false detections. We then
study more specifically the correspondence problem between two point clouds,
a problem often encountered for the detection of trajectories or the matching of
stereographic images. We first introduce a theoretically optimal model for the
point correspondence problem that makes it possible to study the performances
of several classical algorithms in a variety of conditions. We then formulate a
parameterless point correspondence algorithm using the a-contrario framework,
that enables us to define a new trajectory tracking algorithm.

Quand on ne sait rien,
on peut tout de méme trouver des choses,
avec de I'imagination.

— Boris Vian

Remerciements

Il est bien entendu qu’il faut étre malade pour faire de la recherche. Cette maladie vitale,
c’est I’optimisme. Je suis heureux que Lionel en ait développé un cas fort contagieux.

Je remercie donc Lionel Moisan, mon directeur de thése, pour son soutien : je dois cer-
tainement plus a lui qu’a quiconque, et peut-étre méme qu’a moi, que ce projet ait pu aboutir.
Nos échanges et ses enseignements ont été la source d’une riche stimulation ; pour moi cer-
tainement, pour lui je l'espere. Sa recherche systématique de la clarté et de la précision m’a
beaucoup aidé, moi qui me satisfait souvent de dessins rigolos et de mots qu’on gribouille au
coin d'une enveloppe. Lionel, donc, merci pour ce voyage en Terre des nombres, des symboles,
des points, des images ; ce fut bien agréable, et je ne le regretterai pas : l'air est pur a ces
altitudes et permet de voir loin. J’ai pour ma part choisi d’aller voir ailleurs, mais tout ce que
j’ai trouvé ici, tout ce que j’ai compris ici, je I'emporte avec moi.

Je suis reconnaissant a Patrick Bouthemy et a Francois Fleuret d’avoir accepté d’étre rappor-
teurs de ma these. Leurs commentaires apportent un regard neuf sur mes travaux et suggerent
des prolongements originaux pour en densifier la substance et en élargir la portée.

Je remercie tous les membres de mon jury de these, Isabelle Bloch, Julie Delon, Joan Glaunes
et Ariel Lindner, de me faire I’honneur d’assister 8 ma soutenance.

Je remercie mes amis codoctorants du laboratoire de Paris Descartes, mes amis corigolants
de Normale Sup’, mes amis coétudiants du Corps des Mines.

Je remercie enfin toute ma famille, Florence, Gilbert et Romain, et mes amis Antonin et
Aude, Anika, Lucile, Emma, Guigui et Irene, Carlos et Céline, Dude et Claire, Matthieu et
Typhaine, Axel, Demichou, Samuel, Denis, Alexandre et Caroline, Bruno et Laetitia, Benoit,
Thomas, Benjamin, Jacky, Philippe et Keiko, Oussama. Je veux croire que vous m’avez tous
tour a tour porté sur vos épaules pour m’aider a poser cette petite pierre tout en haut d'un
mur. Un mur qui doit forcément soutenir quelque chose...

...mais quoi ?

— Maél Primet
rue de la Lune, a Paris,
le 25 novembre 2011

vil

1 INTRODUCTION 1

2 CELESTE 15

2.1 Introduction 15
2.1.1 Aging of Escherichia coli bacteria 16
2.1.2 Automated cell movie analysis 17
2.1.3 Céleste 21
2.2 Image simplification by over-segmentation 22
2.2.1 Image renormalization 22
2.2.2 Non-uniform dilation 26
2.2.3 Blobs and connection graph simplification
2.3 Cell segmentation and tracking 32

2.3.1 Cell transition likelihood 33

2.3.2 Likelihood versus risk 35

2.3.3 Tracking segmented cells 36
2.3.4 Tracking over-segmented cells 37
2.3.5 Software 39

2.3.6 Current results 39

Contents

30

3 ASTRE: A-CONTRARIO SINGLE TRAJECTORY EXTRACTION 47

3.1 Introduction 47
3.1.1 Related work 48

3.1.2 Trajectory estimation versus trajectory detection 50

3.2 Trajectories without holes 51
3.2.1 Principles of the a-contrario framework
3.2.2 Trajectory detection 52
3.2.3 Data quantization 54
3.2.4 Algorithm 55
3.2.5 Variable number of points 58
3.2.6 Theoretical analysis 59
3.3 Trajectories with holes 63
3.3.1 Number of false alarms 63
3.3.2 Algorithm 66

3.3.3 Variable number of points and rectangular images 67

3.3.4 Theoretical results 68

4 ASTRE PERFORMANCES 73
4.1 The ROADS tracking algorithm 73
4.2 Experimental setup 76

4.2.1 Comparison criteria 79
4.3 Trajectories without holes 8o
4.3.1 Variable number of spurious points experiment 80

4.3.2 Variable density experiment 81

X

i Contents

4.3.3 Sensitivity to data smoothness 83

4.3.4 Parameter tuning 84

4.3.5 NFA as a criterion for trajectory selection 86
4.4 Trajectories with holes 88

4.5 Trajectories of real-world images 88
4.5.1 The snow sequence 88
4.5.2 Parameter tuning 90

4.5.3 Comparison of ROADS and NFA algorithms 92
4.6 Conclusion 95

THE WRAP ALGORITHM 97
5.1 General definitions and classical approaches
for the point correspondence problem 99
5.1.1 Classical approaches for the point correspondence problem
in a simple setting 99
5.1.2 Classical approaches in presence of spurious and missing detections 100
5.1.3 Modeling data 102
5.1.4 The maximum likelihood and maximum a posteriori detectors 104
5.1.5 Algorithms 105
5.2 WRAP (weighted recall and precision) 105
5.2.1 The WRAP optimal criterion 106
5.2.2 The WRAP algorithm 108
5.2.3 Behavior of WRAP 110
5.2.4 WRAP assignment maps 112
5.2.5 WRAP computation using MCMC 115
5.3 Experiments 125
5.3.1 Performances of classical algorithms 125
5.3.2 Modified nearest neighbor algorithm 127
5.3.3 WRAP as an algorithm 129
5.4 Conclusion 130

PARAMETERLESS ALGORITHMS
FOR THE POINT CORRESPONDENCE PROBLEM 137
6.1 Meaningful pairings and meaningful assignments 138
6.1.1 Meaningful pairings 138
6.1.2 Meaningful assignments 139
6.1.3 Most meaningful assignment extraction,
largest meaningful assignment extraction 142
6.1.4 Asymptotic behaviors 143
6.2 Experiments 147
6.2.1 Most meaningful assignment and largest meaningful assignment 147
6.2.2 Choice of the NFA parameter 147
6.2.3 Performance of the NFA algorithms 150
6.2.4 Filtering and parameterless algorithms 151
6.3 Application to parameterless tracking, and use with quantized data 155
6.3.1 Parameterless trajectory tracking 155
6.3.2 Application to aggregate tracking 158
6.3.3 Quantization 158

CONTENTS | 1

7 CONCLUSION 165

A CLASSICAL ALGORITHMS FOR THE ASSIGNMENT PROBLEM 173
A.1 The linear assignment problem 173
A.2 The bottleneck assignment problem 177

B INSTALLATION AND USAGE OF THE ASTRE SOFTWARE 181
B.1 Requirements 181
B.2 Installation of the dependencies 181
B.2.1 cbase 181
B.2.2 argtable2 182
B.2.3 Install ASTRE 182
B.2.4 Install the visualization tools [optional] 182
B.3 Usage of ASTRE and visualization of the results 183
B.3.1 Visualize points description files 183
B.3.2 Run ASTRE on the snow sequence 183
B.4 Evaluation of ASTRE results 185
B.4.1 Algorithm evaluation on real data 185
B.4.2 Systematic algorithm evaluation using synthetic trajectories 187

C USER REFERENCE FOR THE ASTRE SOFTWARE 191

c.1 ASTRE points and trajectories data file format 191

c.2 User reference 192
c.2.1 ASTRE (astre-noholes and astre-holes) 192
c.2.2 Recall and precision computation (tstats) 193
c.2.3 PSMG Point Set Motion Generator (tpsmg) 194
c.2.4 Point set crippling (tcripple) 195
c.2.5 Viewer (tview.py) 195
c.2.6 Naive ASTRE implementation in Python (naive_astre.py) 196

BIBLIOGRAPHY 197

Introduction

ES TRAVAUX PRESENTES DANS CETTE THESE ont comme lien 1'étude du probléeme du suivi
d’objets — probleme fondamental en vision par ordinateur, qui se nourrit aujourd’hui
de l’accroissement des capacités de calcul et de la multiplication des capteurs vidéo.

Nous demandons en permanence aux ordinateurs d’effectuer des taches pour lesquelles il
est essentiel d’analyser un mouvement : I'interaction avec les machines se fait couramment au
travers de tablettes tactiles qui suivent le déplacement simultané de nos doigts sur leur surface,
ou grace a une caméra capable d’interpréter nos gestes. Nos appareils photographiques savent
mettre en correspondance des images pour reconstruire un panorama, et certains logiciels spé-
cialisés savent recréer une scéne en trois dimensions a partir de quelques prises de vues faites
sous des angles différents. Des prototypes de voitures sont déja capables de se conduire de
maniere autonome, en observant leur environnement pour prévenir tout danger ; et couplées
a un réseau de caméras qui mesurent la fluidité du trafic en temps réel, elles plannifient leur
route pour choisir le trajet le plus rapide. En analysant des scénes complexes et en interpré-
tant nos gestes et nos émotions, les machines rendent possible I'indexation automatique de
contenu vidéo par des moteurs de recherche, ou la conception de robots de compagnie capa-
bles de nous reconnaitre et de nous divertir. Le suivi d’objets est devenu par ailleurs un outil
incontournable de la science, qui nous permet de découvrir I’existence de nouvelles partic-
ules en reconstruisant les trajectoires des électrons dans des accélérateurs, et de comprendre

2

| INTRODUCTION

les mécanismes fondamentaux du vivant grace a l'observation de cultures de cellules ou des
échanges de molécules entre les neurones.

Le nombre de scénarios contemporains ou d’un futur proche dans lesquels apparait le suivi
d’objets est gigantesque. L'ubiquité du probléeme du suivi est facile a comprendre : dés qu’il
est question de l'analyse d"une scéne sous plusieurs angles de vue, ou a partir de plusieurs
clichés successifs, le besoin de reconnaitre un méme objet dans les différentes images apparait.

*

La segmentation et le suivi de cellules

Les applications du suivi d’objets aux images biologiques en particulier ont connu une crois-
sance extraordinaire ces derniéres années qui s’explique par le fait que la recherche en biologie
se fonde aujourd’hui largement sur 1’observation, I'enregistrement et ’analyse systématiques
des mécanismes du vivant dans ses moindres détails, et devient ainsi dépendante de la disponi-
bilité de méthodes automatisées capable de traiter des jeux de données de plus en plus grands
et de plus en plus complexes. Outre l'intérét de travailler dans un domaine dont les avancées
peuvent avoir un impact considérable sur notre connaissance du vivant et sur 'amélioration
de nos vies, les images biologiques présentent une variété et des défis qui en font une cible de
choix pour les algorithmes de suivi : que ce soit pour observer les interactions des animaux ou
des insectes dans un écosystéme, les déformations des organes en mouvement, 1’organisation
des cellules pendant la morphogénese, ou les mécanismes de signalisation intracellulaire, des
problemes de suivi d’objets se posent qui possedent une large palette de formes, de com-
portements et de densités d’objets, et se présentent sous des modalités variées — données
multi-canaux (microscopie et fluorescence) ou tridimensionnelles, par exemple.

Nous nous sommes tout particulierement intéressés pendant cette theése, en collaboration
avec I'équipe de biologistes du laboratoire TaMaRa de I'INSERM, a la segmentation et au suivi
automatiques de cellules dans des séquences d’images pour en extraire les contours précis
ainsi que le lignage — c’est-a-dire la relation mere-fille des cellules. Quelques extraits d'une
séquence type obtenue grace a un microscope a contraste de phase sont présentés dans la
figure 2 ; les images sont souvent de médiocre qualité, les cellules collées les unes aux autres,
et leur mouvement est parfois difficile a prévoir — autant de caractéristiques qui en font un
probleme complexe a résoudre.

Le nombre de publications sur la segmentation et le suivi de cellules augmente & un rythme
effréné, et celles-ci couvrent tout le spectre des méthodes de suivi. Un certain nombre de
solutions logicielles sont d’ailleurs déja disponibles — mais elles sont malheureusement souvent
spécifiques a un seul type de cellules et de conditions d’acquisition des images ; le lecteur
trouvera une revue trés complete des méthodes générales pour le suivi dans Yilmaz, Javed,
and Shah, 2006, et une revue récente et détaillée des méthodes dédiées au suivi des cellules et
des particules sub-cellulaires dans Meijering et al., 2009 ; le lecteur pourra également consulter
Hand et al., 2009 pour sa comparaison de différentes solutions logicielles.

Les méthodes de suivi d’objets comportent deux étapes, qui peuvent suivant les cas étre
effectuées I'une apres 'autre ou étre combinées :

e la détection des objets dans les images — sous une forme appropriée a l'application visée
(voir figure 3) et a laquelle il est possible d’adjoindre des descripteurs pour aider a iden-
tifier les objets (couleur ou texture, par exemple),

e et le suivi des objets a proprement parler, consistant a associer entre les images toutes les
détections qui correspondent au méme objet.

INTRODUCTION | 3

(1) Suivre des cellules qui se divisent (2) Reconnaitre des objets dans deux images pour
reconstruire une scéne en trois dimensions

(5) Suivre plusieurs doigts simultanément
pour l'interaction tactile

(3) Reconstruire les trajectoires des (4) Suivre des marqueurs sur un
particules dans un accélérateur costume pour I'animation de personnages

(6) Suivre des individus sous plusieurs angles de vue

Figure 1: Exemples d’applications du suivi d’objets. (1) Suivi de cellules se déplagant, croissant et se
divisant dans une colonie, (2) reconstruction tridimensionnelle d"une scéne apres appariement
des objets entre deux images, (3) détection de trajectoires dans un accélérateur de particules
(ATLAS Experiment, © 2011 CERN), (4) suivi de marqueurs sur un costume pour l’animation de
personnages de cinéma, (5) suivi simultané de doigts sur une surface pour l'interaction tactile,
(6) suivi d'individus sous plusieurs angles de vue (image from Fleuret et al., 2008).

4

| INTRODUCTION

Figure 2: Croissance d’une colonie bactérienne. Quelques images acquises pendant la croissance d"une
colonie bactérienne (les intervalles de temps entre les images ci-dessus ne sont pas constants).
De nombreux probléemes adviennent lors de I'analyse de ces images et la rendent difficile :
les images soient souvent d"une qualité médiocre, les conditions d’illumination changent entre

les images et a l'intérieur des images, et les bactéries croissent, se meuvent et se divisent
rapidement, tout en restant collées les unes aux autres.

(1) Un oiseau vu de loin (2) un visage est localisé (3) un squelette articulé (4) et un contour polygonal
est représenté par un point, par une forme simple, permet d'analyser un geste, fournit une forme précise.

Figure 3: Exemples de représentations d’objets. Selon l’application, la représentation géométrique des
objets doit étre adaptée : avec des points au barycentre des oiseaux migrateurs, I'ethnologue
pourra suivre le trajet des fuyants volatiles ; grace a de simples formes géométriques comme
des rectangles ou des ellipses un appareil photographique localisera les visages de ses sujets
et s’assurera de leur sourire avant de les immortaliser ; un squelette articulé permettra a un
réalisateur de capturer le mouvement d’un danseur pour une scéne de cinéma ; et en suivant ses
formes de pres grace a des contours actifs ou des ensembles de niveaux, le robot de compagnie
du futur « Nestor-2000 » pourra caresser le chat de la maison sans lui hérisser le poil. Miaou.
Crédits photographiques : (1) Nate Chute, Post Register, (2) Selvin Kurian.

Les premiéres méthodes de segmentation et de suivi de cellules dont nous avons connais-
sance se restreignaient pour des raisons de cofit de calcul & des décisions simples et locales,
qui fonctionnent bien lorsque les cellules sont isolées et que leur mouvement est de faible
amplitude. Dans Liu and Warme, 1977 par exemple, les auteurs partent d'une segmentation

INTRODUCTION |

statique de chaque image en isolation, et reconstituent la trajectoire des cellules d’une image a
I'autre par une méthode locale gloutonne de type plus proche voisin.

Mais, comme c’est le cas de nos séquences, des que la qualité des images se dégrade, ou que
la densité des cellules augmente trop, les ambiguités de segmentation et de suivi se multiplient
— les cellules se touchent et il devient difficile de les séparer en ne regardant qu'une image, ou
leur mouvement est trop rapide pour qu'un simple raisonnement sur la distance permette de
retrouver les correspondances entre les détections.

I1 devient alors nécessaire de combiner la segmentation et le suivi des cellules, et d’utiliser
des méthodes globales pour lever les ambiguités : idéalement, nous souhaiterions définir un
modele probabiliste complet de la séquence, incluant a la fois I'apparence des cellules, leur
mouvement et leur lignage ; et chercher parmi toutes les explications possibles des images en
terme de ce modele celle qui est la plus probable. Un tel modele reste malheureusement tres
théorique, et un grand nombre de simplifications doivent étre envisagées pour conserver des
temps de calcul raisonnables en pratique.

Les approches récentes essaient donc toutes d'une fagon ou d’une autre d’intégrer des con-
traintes globales pour améliorer la fiabilité de la segmentation et du suivi, tout en restant
praticables sur des données réelles. Afin de lever les ambiguités de segmentation, Li ef al.,
2008 proposent de combiner la segmentation et le suivi des cellules. Ils peuvent ainsi suivre
une colonie tres dense en s’aidant, pour détecter les cellules dans une image, des cellules
détectées dans les images précédentes et de leur vitesse. En faisant évoluer simultanément
les ensembles de niveau définissant les contours des bactéries qui se touchent grace a une
énergie qui comporte un terme de répulsion, ils évitent de fusionner a tort deux cellules dis-
tinctes en un seul contour — ce qui ne manquerait d’arriver si la segmentation des cellules se
faisait isolément. Une alternative est proposée dans Padfield, Rittscher, and Roysam, 2008,
qui reformule le probleme complet comme une segmentation directe dans le volume spatio-
temporel tridimensionnel obtenu en empilant les images. Afin de lever les ambiguités de suivi,
il est fréquent d’introduire des contraintes temporelles ou spatiales globales — dans Delgado-
Gonzalo et al., 2010 par exemple, les auteurs forcent les cellules voisines qui se touchent a avoir
un mouvement cohérent, et Smith and Lepetit, 2008 integrent la dépendance entre la forme et
le mouvement des objets dans leur modéle pour améliorer la précision du suivi dans le cas de
cellules qui s’allongent dans la direction de leur déplacement.

*

Un probleme subsiste : chaque séquence a analyser contient plusieurs centaines d’images,
une cellule se divisant en moyenne toutes les dix images, ce qui implique qu’elle contient glob-
alement plusieurs dizaines de milliers de traces de bactéries a segmenter et a suivre dans le
temps pour analyser les films completement, et ces opérations doivent étre répétées sur des
dizaines de séquences, rendant nécessaire 1'utilisation d’outils d’analyse complétement automa-
tisés et efficaces. Ceci est loin d’étre un cas isolé dans la recherche, et la tendance actuelle est
a I'examen d’énormes ensembles de données pour en extraire les motifs et les régularités qui
permettront de conjecturer le fonctionnement des mécanismes biologiques par des analyses
statistiques automatisées.

Il est alors crucial de s’interroger sur les ingrédients nécessaires a la construction de méth-
odes d’analyse complétement automatisées. Celles-ci doivent évidemment pouvoir s’appliquer
sans modification, ni paramétrage excessif, a de larges jeux de données dont la taille fait qu’ils au-
ront souvent une variabilité interne naturelle. Il faut donc construire un algorithme robuste aux
variations des données, qui s’appuiera sur des constantes physiques intrinseques aux données
étudiées plutdt que sur des parametres abstraits définis implicitement par une ou plusieurs
étapes algorithmiques de traitement. Par exemple, il semble préférable d’étudier une image

5

6

| INTRODUCTION

au travers des propriétés physiques des objets qu’elle contient (la taille d'une cellule par exem-
ple) et de ses propriétés géométriques intrinseques (ses ensembles de niveaux), plutoét que de
s’attacher a traiter directement les intensités des pixels, trop sensibles au bruit et aux variations
de conditions de prise de vue.

Nous pensons qu’un algorithme completement automatisé doit également étre suffisam-
ment simple a comprendre et a modéliser, pour qu’il soit possible d’étudier théoriquement ses
limites et ses performances, et ainsi connaitre a priori les cas d’utilisation dans lesquels il est
possible de l'appliquer avec succes. 1l faut donc préférer une analyse par des étapes simples et
séquentielles — que 1’'on peut définir et étudier en isolation — a une cathédrale de processus im-
briqués s’exécutant en boucle ou en parallele, chacun perturbant ou complétant les décisions
des autres, pour rendre I'analyse des résultats, 1’étude théorique des cas d’utilisation et des
performances, ainsi que 1’adaptation de 1’algorithme pour corriger les erreurs le cas échéant,
complétement impraticables.

Choisissant d’appliquer ces principes autant que possible, nous avons proposé un algo-
rithme de suivi simple et robuste, et qui ne s’appuie que sur des parametres physiques
des cellules, donc facilement adaptables & de nouvelles conditions d’acquisition des images.
Notre analyse s’appuie sur une notion de risque, défini a partir d’'un modele probabiliste de
I'évolution des cellules, qui quantifie mathématiquement I'ambiguité de chaque décision de
l'algorithme. Celles-ci sont alors prises de maniere globale dans la séquence — et non pas
séquentiellement de la premiere a la derniere image — afin d’éliminer les incertitudes sur les
choix en commengcant par les décisions les plus évidentes d’abord et ainsi graduellement con-
traindre les cas pour lesquels il y avait une ambiguité.

Notre travail — réalisé en collaboration avec Alice Demarez — a donné lieu a publication dans
I'International Symposium on Biological Imaging (2008) et a une réalisation logicielle (appelée
Céleste — pour Cell Segmentation and Tracking) qui est utilisée avec succés depuis deux ans
dans I'équipe, et qui a permis de diminuer significativement le temps nécessaire au traitement
d’un film — de plusieurs jours a quelques heures — et d’améliorer la qualité de la segmentation
et du suivi des séquences.

Détection de trajectoires dans des nuages de points

Afin d’explorer mathématiquement le probleme du suivi d’objets et de pouvoir comprendre
plus précisément les questions mises en jeu, nous avons choisi de nous restreindre au probleme
du suivi d’objets détectés comme de simples points sans attribut dans les images, les détections
ayant été réalisées au préalable comme une premiere étape.

Ce modele simplifié est bien loin d’étre une abstraction futile : le suivi de points apparait
naturellement dans un grand nombre d’applications deés lors que les objets sont d’apparence
identique ou qu’ils sont vus de loin, et que seuls leur position et leur mouvement sont impor-
tants pour les distinguer — par exemple pour l'analyse de détections radar [Reid, 1979], ’étude
d’un écosystéme de chauves-souris [Betke et al., 2007], ou celle des mécanismes de régulation
et de signalisation dans les cellules grace a des marqueurs fluorescents [Godinez ef al., 2011].

Et autant qu’il puisse étre simplifié — car il omet bien des difficultés qui peuvent se présenter
dans des cas généraux, comme le suivi de I'évolution de formes complexes par exemple, ou des
objets qui se divisent ou fusionnent — le probléme du suivi de points contient déja 1’essence de
la complexité combinatoire des problémes de suivi d’objets. Supposons pouvoir définir un cotit
pour chaque trajectoire envisageable — en fonction de son accélération moyenne ou maximale,
par exemple — et supposons méme que la détection des objets soit parfaite et que chaque objet

INTRODUCTION | 7

soit en correspondance unique avec un point de chaque image : le probleme de joindre entre
elles les détections pour reconstruire I’'ensemble de trajectoires optimisant la somme totale des
colits est en réalité terriblement complexe ! Il est précisément NP-difficile puisqu’il permet de
résoudre le probleme de I'appariement des triplets, qui est lui-méme NP-complet [Karp, 1972].

L’algorithme MHT de Reid, 1979 — pour Multiple Hypothesis Tracker, I'un des premiers algo-
rithmes de suivi de points et probablement le plus connu — tente justement de résoudre ce
probléme exactement en explorant I'ensemble complet de toutes les explications simultanées
des points détectés en terme de trajectoires, avant d’extraire celle qui optimise un modéle
probabiliste du mouvement des objets.

Pour réduire la complexité combinatoire, une approche fréquente consiste a limiter I'exploration
de I'arbre de recherche en se limitant a optimiser les trajectoires sur un petit nombre d’images.
Le cas le plus célebre étant celui de 'algorithme Hongrois [Kuhn, 1955] qui résout le probleme
exactement — et efficacement ! — dans le cas de deux images. Cet approche est la base de nom-
breux algorithmes, et a été par exemple étendue — avec des approximations, qui deviennent
alors nécessaires — a un petit nombre d’images dans Veenman, Reinders, and Backer, 2003b.

Une solution orthogonale consiste a restreindre le probléme localement « en espace » (voir
figure 4), en ne cherchant plus & optimiser toutes les trajectoires simultanément, mais a les
détecter de maniere gloutonne les unes apres les autres ; en d’autre termes, étant donné un
ensemble de points détectés dans des images, on se pose la question de détecter une trajectoire
qui semble réelle, et on itere ce procédé. Fleuret ef al., 2008 proposent une telle approche se
basant sur un modele simple d’apparence et de mouvement, qui est résolue efficacement par
un algorithme de programmation dynamique.

1 2 -
P —— I AR
[) [)
2 ¢ . * N * . — * N * .
. ° . . ° . .
. —

temps — % % % % — temps — % % % % —
(1) Suivi de points "dans le temps d'abord" (2) Suivi de points "dans I'espace d'abord"

Figure 4: Illustration des approches en temps d’abord et en espace d’abord. Les images successives
sont représentées en une dimension le long de 1’axe temporel. (1) L'approche « dans le temps
d’abord » extraie les trajectoires les unes apres les autres en considérant chaque trajectoire
globalement dans le temps, mais en isolation par rapport aux autres, et (2) I’approche « dans
'espace d’abord » considere toutes les trajectoires simultanément, mais les optimise localement
dans le temps.

Notons finalement qu’il est fréquent, afin d’optimiser les performances d"un algorithme dans
un cas particulier ou de limiter les cas raisonnables d’exploration, d’introduire des modéles
de mouvement et d’interaction complexes, des parametres probabilistes pour modéliser les
fausses détections ou les détections manquantes, ou des limites physiques — comme une vitesse
ou une accélération maximale par exemple. Ceci est agréable en théorie, car 1’algorithme peut
étre optimisé pour un cas particulier ; mais dans la pratique, la présence de parametres devient
un casse-téte : le réglage est souvent loin d’étre intuitif, et doit étre souvent modifié entre deux
jeux de données, ce qui est contraire aux principes méthodologiques d’analyse automatisée
énoncés plus haut.

8

| INTRODUCTION

Nous avons exploré dans cette thése ces deux approches orthogonales — chercher les trajec-
toires dans le temps d’abord ou dans I’espace d’abord — en gardant a l'esprit notre démarche
de trouver des algorithmes completement automatisés, et nous chercherons donc a construire
des méthodes de suivi sans parameétre.

Pour cela, nous avons construit des algorithmes en utilisant la méthodologie a contrario,
introduite dans [Desolneux, Moisan, and Morel, 2003] et se basant sur une idée simple : un
algorithme de détection ne doit rien détecter dans du bruit. Souvent, ce critére suffit & obtenir
un critére de détection et un algorithme efficace associé, dont le seul parametre a une valeur
naturelle et intuitive a choisir.

Nous construisons deux critéres a contrario pour le suivi de trajectoires « dans le temps
d’abord », dans le cas de trajectoires sans trous, et I’autre dans le cas général, qui se traduisent
en algorithmes simples et efficaces par programmation dynamique, que nous avons appelé
ASTRE (pour « A-contrario Single TRajectory Extraction »). Ces algorithmes sont publiés sur
le site http://www.math-info.univ-paris5.fr/~moisan/astre/ avec des données d’exemple,
des instructions d’installation et un manuel d’utilisation.

Nous explorons ensuite le probleme orthogonal de 1’appariement simultané de points dans
le cas de deux images ; d’abord en construisant un observateur idéal, WRAP, qui définit une
borne optimale pour les algorithmes résolvants ce probléme et nous permet d’étudier les per-
formances de quelques approches classiques ; et ensuite grace a deux nouveaux criteres a con-
trario, qui nous permettent de définir un nouvel algorithme de suivi de points sans parametre.

Par leur simplicité, ces criteres mathématiques nous permettent de faire des prédictions sur
le comportement des algorithmes, ce qui est une propriété souhaitable des analyses complete-
ment automatisées qui est rarement rencontrée dans la littérature sur le suivi de points a notre
connaissance. Nous pouvons par exemple déterminer le nombre d’observations minimales
d’un objet pour étre capable de le détecter, ce qui dans une application peut avoir une réalité
pratique forte.

Enfin, nous verrons que les critéres a contrario peuvent également agir en tant que fil-
tres, et ainsi améliorer la précision de n'importe quel autre algorithme de suivi, ou méme
d’automatiser son choix de parametres.

ORGANISATION DE LA THESE

Les chapitres de these s’articulent selon le plan suivant :

DANS LE DEUXIEME CHAPITRE nous présentons le fonctionnement de 1’algorithme Céleste pour
la segmentation et le suivi de colonies de bactéries, puis nous discutons ses performances
et ses limites.

DANS LE TROISIEME CHAPITRE nous introduisons l'algorithme a contrario ASTRE pour la dé-
tection de trajectoires sans parametre dans un nuage de points, et nous analysons son
comportement théorique.

DANS LE QUATRIEME CHAPITRE nous comparons les performances de I'algorithme ASTRE a
un algorithme représentant I'état de 1’art pour le probléme du suivi de points.

DANS LE CINQUIEME CHAPITRE nous présentons WRAP, I'observateur idéal pour le probleme
de la correspondance de points, qui nous permet d’apprécier les performances de quelques
algorithmes d’affectation classiques, puis nous étudions la possibilité d'utiliser WRAP
comme un algorithme a part entiére.

http://www.math-info.univ-paris5.fr/~moisan/astre/

INTRODUCTION | 9

DANS LE SIXIEME CHAPITRE nous définissons un algorithme a contrario pour le probleme de
la correspondance de points, qui nous fournit un algorithme d’affectation sans parametre,
que nous utilisons ensuite pour construire un nouvel algorithme de suivi de points sans
parametre.

DANS L'’ANNEXE A nous détaillons deux algorithmes qui résolvent le probleme de I’affectation
linéaire et de l'affectation goulot, et qui sont utilisés directement ou sous une forme
légerement modifiée pour construire les algorithmes d’affectation présentés dans les
chapitres 5 et 6

DANS L'ANNEXE B nous présentons le manuel d’utilisation de la suite logicielle ASTRE pour
la détection et le suivi de trajectoires, disponible & l'adresse http://www.math-info.
univ-paris5.fr/~moisan/astre/.

DANS L'ANNEXE € nous présentons la référence détaillée des programmes de la suite logicielle
ASTRE.

http://www.math-info.univ-paris5.fr/~moisan/astre/
http://www.math-info.univ-paris5.fr/~moisan/astre/

10

| INTRODUCTION

CELESTE : SEGMENTATION ET SUIVI DE BACTERIES

Nous avons cherché a définir une approche de segmentation et de suivi des cellules util-
isant les principes méthodologiques que nous avons annoncés plus haut : la robustesse aux
variations des données, et la simplicité de 1’algorithme,

e nous n’utilisons donc que des constantes physiques et des propriétés géométriques intrin-
seéques des images pour se passer de parametres abstraits qu’il faudrait régler sur chaque
séquence ou chaque image. Plus précisément, nous faisons les quelques hypotheses sim-
ples suivantes : les cellules ont une épaisseur comprise entre deux réels m et M, et leur
aire est supérieure a A, et les artefacts d’illumination varient lentement ;

e et nous avons voulu construire un algorithme simple pour que 1’on soit capable de com-
prendre d’out proviennent les erreurs pour pouvoir les corriger le cas échéant : nous
choisissons donc une méthode hybride dans laquelle nous segmentons partiellement les
images de maniere statique — les cellules sont divisées en blobs, parfois appelés « super-
pixels » — avant d’utiliser la redondance temporelle pour simultanément les segmenter
en fusionnant les blobs, et les suivre en reconstruisant leur lignage.

Par exemple, le prétraitement des images n'utilise que des constantes sur la taille des cel-
lules, et utilise les lignes de niveaux des images pour renormaliser leurs intensités, ce qui
permet ensuite de fixer les parametres algorithmiques de 1’analyse une seule fois pour toutes
les images, et de les réutiliser pour toutes les séquences.

Afin de conserver un algorithme simple, ’algorithme fait des choix locaux, en les ordonnant
de facon a faire les choix les plus évidents d’abord — 1'idée étant que certains choix sont tres
simples, et d’autres plus complexes ; si I’'on commence par faire les choix ne présentant aucun
risque, on pourra rapidement contraindre les choix plus ambigus — car on léve graduellement
les ambiguités en fixant définitivement les choix pour les cellules voisines — qui deviendront
alors eux-mémes des choix évidents.

Pour modéliser cette notion de « choix évident », nous introduisons le risque associé a une
transition de la cellule A de I'image k vers la cellule B de I'image k + 1, défini par

TA X
PA—-B =mMaxX ———,
X#B TTA B

ol ma_,p est la probabilité de la transition, le maximum étant pris sur tous les successeurs
potentiels X de A (B excepté), et le risque étant nul par convention s’il n’y a qu'un successeur
potentiel. Intuitivement, le risque est faible lorsqu'un choix n’a pas d’alternative crédible, et
est élevé lorsqu’il y a un doute sur le choix d'un successeur pour la cellule.

La probabilité d’une transition est obtenue a partir d’'un modele probabiliste simple de
I'évolution des cellules dont les parametres ont été appris sur quelques séquences segmen-
tées manuellement.

L’algorithme Céleste permet de segmenter sans intervention humaine jusqu’a 7 ou 8 généra-
tions de cellules. Nous discutons quelques erreurs de segmentations et de suivis classiques et
une modification de l'algorithme pour les corriger.

INTRODUCTION |

ASTRE : DETECTION DE TRAJECTOIRES SANS PARAMETRE

La définition d’algorithmes compléetement automatisés pose la question de la construction
d’algorithmes sans parametre pour l’analyse du mouvement. Ces algorithmes doivent étre
capables de définir les limites de ’analyse qui sont intrinseques aux données en les observant
directement, et non en demandant a 1'utilisateur de fournir des seuils et autres parametres.

Nous nous plagons dans le formalisme des méthodes a contrario qui consistent a constru-
ire un modele probabiliste naif d'une séquence dans laquelle il n'y a aucune structure — une
séquence constituée simplement de points aléatoires — et de se poser la question : comment
construire un algorithme de détection de trajectoires intéressant qui ne détecte rien dans cette
séquence ?

Nous construisons ainsi deux critéeres pour la détection de trajectoires, 1'un plus simple dans
le cas o1 il ny a pas de détection manquante dans les données, et ’autre un peu plus cotiteux
en mémoire et en temps de calcul, dans le cas général.

Ces critéres mesurent pour chaque trajectoire la probabilité qu’elle apparaisse par chance
dans une séquence de bruit, et sont intéressants a plusieurs titres. Les critéres combinent en
un seul terme le nombre de détections de chaque image, la longueur de la trajectoire et son
accélération maximale et s’adaptent ainsi automatiquement a chaque condition d’acquisition
des images et a chaque trajectoire individuelle.

En détectant les trajectoires dont le critere associé est inférieur a un seuil donné — le nombre
de fausses détections moyen ¢ que l'on autorise — on obtient un algorithme efficace de détec-
tion se basant sur de la programmation dynamique. Bien que le seuil ¢ sur le critere maximal
autorisé d’une trajectoire détecté soit formellement un parametre, il s’avere en pratique — com-
ment souvent dans les méthodes a contrario — qu’il est bien conditionné et robuste, et qu’il
posséde une valeur naturelle ¢ = 1 fonctionnant presque optimalement dans la plupart des
cas ; nous pouvons donc considérer que les algorithmes de détection de trajectoires obtenus
sont sans parametre.

Nous faisons 1’étude théorique du comportement de 1’algorithme pour en déduire des lim-
ites a ses performances, et donc des conditions requises pour que l'algorithme puisse détecter
des trajectoires dans les cas pratiques.

Nous le comparons ensuite a 1’état de l'art, pour montrer que notre algorithme est partic-
ulierement robuste lorsqu’on l'utilise sur des séquences contenant un grand nombre de points
de bruit, et qu’il se compare tres favorablement a 1’état de 1’art dans le cas général, alors méme
qu’il est sans parametre.

Enfin, nous examinons dans quelle mesure ces criteres peuvent servir de filtre sur le résultat
d’un algorithme de détection de trajectoires quelconque pour éliminer les fausses détections
et améliorer la précision de leurs résultats.

11

12

| INTRODUCTION

WRAP : OPTIMUM POUR LA CORRESPONDANCE DE POINTS

De nombreux algorithmes en vision par ordinateur cherchent a résoudre le probleme de
la correspondance de points, aussi appelé probleme de l'affectation, qui consiste a mettre en
relation des détections d’objets qui se correspondent dans deux images légerement différentes
— prises a un instant différent ou sous un angle différent par exemple. Ils utilisent généralement
pour cela l'algorithme Hongrois, ou une variante modifiée pour prendre en compte certains
caracteres pratiques de chaque application — la présence de points de bruit ou de détections
manquantes par exemple. Dans le cas d’objets représentés par des points, et sans informa-
tions complémentaires sur leur apparence (comme une texture ou une couleur), la plupart
des méthodes d’affectation semblent équivalentes. Les algorithmes gloutons les plus simples
réussissent aussi bien que les algorithmes globaux plus complexes sur des probléemes simples,
et ces derniers ont des résultats aussi peu robustes que les premiers dans les cas difficiles.

Nous avons cherché a définir, sur un modele simple et assez général de génération des don-
nées, un observateur idéal — WRAP, pour Weighted Recall And Precision — qui fournit la limite
théorique aux performances des algorithmes de correspondance de points, afin de pouvoir
les étudier plus précisément. Ce critere fonctionne en détectant les affectations de maniére a
maximiser 1’'espérance d"une combinaison linéaire entre le rappel et la précision des résultats,
E[r + Ap] pour chaque A > 0.

Apres avoir présenté quelques algorithmes classiques pour la mise en correspondance de
points, notamment 1’algorithme par maximum de vraisemblance, par maximum a posteriori
et l'algorithme des plus proches voisins, nous étudions le comportement de ces algorithmes
et nous le comparons a celui du critére optimal WRAP pour mettre en évidence leur faib-
lesse principale : les algorithmes classiques ne prennent souvent pas en compte la présence
d’ambiguités. Nous proposons une modification simple de l'algorithme des plus proches
voisins pour améliorer ses performances.

Nous examinons ensuite la possibilité d’utiliser le critere optimal WRAP comme un algo-
rithme (que 1’on peut calculer efficacement par une méthode MCMC) et comparons ses perfor-
mances a l’algorithme par maximum de vraisemblance.

INTRODUCTION |

CORRESPONDANCE DE POINTS SANS PARAMETRE

En nous replagant dans le cadre a contrario, nous définissons trois algorithmes de détection
d’affectations en présence de points manquants ou erronés : un algorithme glouton qui consid-
ere chaque couple de points, et deux algorithmes qui considérent les affectations globalement,
en optimisant respectivement leur cotit maximal et leur cott total.

Ces criteres a contrario permettent a nouveau d’effectuer des prédictions théoriques sur le
comportement des algorithmes, et peuvent étre utilisés avec un parametre naturel, ¢ = 1, qui
les rend essentiellement sans parameétre.

Nous comparons ces algorithmes sans parametre avec quelques algorithmes classiques pour
le probleme de l'affectation, puis nous appliquons ce probleme a celui de la détection de
trajectoires, en comparant un algorithme de suivi de points trés simple qui utilise 1’algorithme
Hongrois avec celui obtenu en remplagant simplement cet algorithme par notre version sans
parametre. Nous montrons que ce nouvel algorithme de suivi sans parameétre se compare
favorablement a l’algorithme initial pour lequel un parametre optimal est choisi.

13

7% 7
(>
Composition of cells,

aggregates and their trajectories

Céleste

CONTENTS
2.1 Introduction 15
2.1.1 Aging of Escherichia coli bacteria 16
2.1.2 Automated cell movie analysis 17
2.1.3 Céleste 21
2.2 Image simplification by over-segmentation 22
2.2.1 Image renormalization 22
2.2.2 Non-uniform dilation 26
2.2.3 Blobs and connection graph simplification 30
2.3 Cell segmentation and tracking 32

2.3.1 Cell transition likelihood 33
2.3.2 Likelihood versus risk 35
2.3.3 Tracking segmented cells 36

2.3.4 Tracking over-segmented cells 37
2.3.5 Software 39
2.3.6 Current results 39

21 INTRODUCTION

of a cell or inside a cell, is a current challenge that may bring a new understanding to

the functioning of life and lead to major discoveries in numerous scientific fields. Recent
technological advances in imaging devices [Stephens and Allan, 2003] and memory storage
capacities [Hilbert and Loépez, 2011; Science, 2011] have enabled scientists to observe those
mechanisms in detail and collect unprecedented amounts of data on them. As recently dis-
cussed in Gough and Yaffe, 2011, there is a need for software dedicated to the analysis of cell
images to leverage the increasing computational power at the researchers disposal to process
these data automatically, and gain a novel insight on the behavior of the living. The Computer
Vision literature on this subject is now flourishing (see Meijering ef al., 2009, Bhaskar and Singh,
2007 and Zimmer et al., 2006 for recent and detailed reviews) and many software solutions are
readily available (see Hand ef al., 2009 for a comparison of several solutions), although they

VISUALIZING AND QUANTIFYING the mechanisms of biology, at the level of an organism,

15

16

| CELESTE

are often tuned for specific families of cells and imaging conditions and an ad-hoc combina-
tion of algorithms must still often be crafted manually for each particular application. Such
an in-house solution adapted to phase-contrast microscopy images had been developed in the
TaMaRa’s lab, the biology research unit U1oo1 from INSERM and Université Paris Descartes,
to study the aging mechanism of the bacteria Escherichia coli. Their analysis tools had some
limitations, and our goal was to provide them with an improved image analysis solution to
ease their future research on E. coli.

2.1.1 Aging of Escherichia coli bacteria

The aging of E. coli was until recently still subject to question [Stewart et al., 2005]. Indeed,
although many cells like the yeast Saccharomyces cerevisiae divide asymmetrically, producing a
smaller offspring cell which goes through a juvenile phase, and then differentiates and ages
visibly, some other cells, like E. coli, grow and divide symmetrically, providing with two appar-
ently identical offspring that do not undergo such a juvenile phase (see Figure 5). This raises
the question of whether these bacteria age, or endlessly rejuvenate?

juvenile
daughter cell

\ identical

———— daughter cells

mother cell

(1) Saccharomyces cerevisiae (2) Escherichia coli

Figure 5: When a cell divides asymmetrically like the yeast Saccharomyces cerevisiae (1), with a daughter
cell undergoing a juvenile phase, the aging process is obvious, but when the cell divides sym-
metrically and yields two seemingly identical daughter cells like the bacteria Escherichia coli (2),
the question of whether the cells age or rejuvenate naturally arises.

In order to find evidence for the existence of an aging process, the researchers have recorded
the growth of bacterial colonies (see Figure 6) and used their own automated image processing
software to segment and track the bacteria and extract meaningful characteristics supporting
their hypothesis — growth speed or reproduction rates for instance. They where thusly able
to prove the existence of an aging mechanism for E. coli cells. More precisely, a dividing cell
splits in two new cells, both having an “old pole” and a “new pole” — one of the extremities of
the daughter cell was also an extremity of the mother cell, and the other was created during
the mitosis. We can thus attribute an “age” to each pole: the number of cells in the lineage
that it has belonged to (see Figure 7).

It is known that chemical compounds tend to accumulate in the poles as the cells divide,
and therefore, old poles tend to contain “cell garbage”. The researchers at TaMaRa’s lab have
found that cells having an old pole exhibit an aging behavior — growing and reproducing less,
while cells having new poles seem to have been “rejuvenated”.

In order to complete this research, it was crucially important to be able to observe each
cell individually with great precision. The movies of colony growth span several hundreds of

Figure 6: Sample preprocessed images taken from a bacterial colony growth movie, and an inset contain-
ing a zoomed image. The initial bacteria regularly divides and grow into a colony of several
hundreds of cells, thus resulting in an image sequence consisting of dozens of thousands of cell
traces to analyze. The cells are packed together and the border between two touching bacteria
is not always discernible, resulting in a challenging problem for computer vision algorithms.

images, and a cell would typically divide every 10 frames, resulting in tens of thousands of
bacteria to segment and track in all the combined images, and this had to be repeated for sev-
eral dozens of movies, in order to obtain statistically significant measurements of differences in
cell growth and reproduction rate, for instance. This underlines the importance of automated
image analysis tools.

2.1.2 Automated cell movie analysis

The analysis of image sequences of cells is often rendered complex by numerous factors:
the poor quality of the images, the density of the cells in the image, the variability of the cell
appearance and its inherent combinatorial nature due to cell divisions, to name a few.

Although some image analysis solutions exist, the sheer diversity of cell shapes, imaging
conditions and particular application requirements often require to craft a specific solution
for each application. For instance, some applications require a real-time analysis of the cells
to influence on the growth substrate, and some applications require only a rough idea of
the number and position of the cells, while other require a precise outline for each cell. Some
applications only request the location and shape of the cells in one isolated image, while others

17

18

| CELESTE

E 11E 2 (2 11E 3))

Figure 7: Definition of the age of a bacteria. Two successive divisions of a bacteria. Each division
propagates an old pole (red) to the daughter cell, and create a new pole (blue). The poles can
thus be attributed an age, and researchers have shown that the behavior of the cells is related to
the age of their poles — cells having old poles exhibit an aging behavior, while cells with young
poles rejuvenate.

also want to track the cells through time and reconstruct their complete lineage. An algorithm
capable of correctly segmenting and tracking any type of cell is today not a reality. Most of the
algorithms have been designed for a specific family of cells, in order to use the particularities
of each cell, whether a prior on its shape helps decide its contours in an image, or the fact that
it can divide help us disambiguate a tracking decision.

There are two main steps in the analysis of biological image sequences:

1. segmenting the images to define the spatial boundaries representing the objects to measure
in each image,

2. and tracking the objects to follow the evolution of the objects through time and observe
the variation of their measurements.

Note that in some applications requiring only a rough idea of the position and number of cells,
the segmentation step is replaced by a simple detection of the cells (see for instance Debeir
et al., 2005).

Before segmenting images, one will often want to correct for uneven shading of the images
(see for instance Li and Kanade, 2009; Tomazevi¢, Likar, and Pernus, 2002) and normalize them
in order to obtain homogeneous intensities inside images and across the sequence.

Segmentation

The simplest segmentation algorithm is the intensity thresholding, which separates a brighter
foreground from a darker background (or the opposite). This crude segmentation approach is
popular because of its simplicity, but will fail in many situations where the cells are to close
from each other, or their borders are too dim for instance, leading to over-segmentation (a cell
is broken in several parts) or under-segmentation (two cells are merged in one). The Otsu
thresholding algorithm [Otsu, 1979] uses a local thresholding value and might be used when
the lighting conditions vary inside the images.

2.1 INTRODUCTION |

A widespread and more robust approach is the watershed algorithm [Vincent and Soille, 1991]
that consists in segmenting the shapes having a bright contour by seeing the intensities of the
pixels as the height levels of a map — the shapes are thus “catchment basins” in this map, and
flooding the basins with water until two adjacent basins join, implicitly defining a separating
“watershed line”. When the shapes do not have a bright contour but are only contrasting with
the background, the watershed algorithm might be applied to the gradient image. Usually,
a direct application of the watershed algorithm will lead to an over-segmentation of the cells
since images are noisy and thus many basins are present inside the cells. However, by defin-
ing an isolated marker inside each cell and flooding the shapes only at the location of those
markers, one achieves reasonable segmentation results (see Beucher and Meyer, 1992).

Deformable models like active contours [Blake and Isard, 1998; Kass, Witkin, and Terzopou-
los, 1988] (or “snakes”) and level-sets also stir considerable interest (see for instance Shen et al.,
2006). They work by explicitly or implicitly defining a contour that they evolve using an en-
ergy functional that depends both on the image and on a prior on the shape. These approaches
might be prone to under-segmentation, and might thus be problematic when cells are packed
together.

Most of the time, the segmentation algorithms are tuned to take advantage of the particulari-
ties of the type of cells. For instance, a cell might have a minimum area, or an elongated shape,
etc. (see Fernandez, Kunt, and Zryd, 1995; Xie, Khan, and Shah, 2008; Zhang et al., 2006).

Tracking

Once the shapes of the cells in each frame have been found, one usually wants to track each
cell through the sequence, and reconstruct its complete track, or even lineage if it happens that
the cells divide or merge.

Ideally, we would observe each possible complete lineage and choose the one that best
describes the cells in each frame. Most of the time, however, the combinatorial complexity due
to the large number of frames and cells prevents us from building interesting functionals that
are to be optimized on the global sequence, and we have to make local tracking decisions.

There exists a wealth of tracking algorithms, that can usually be adapted to the problem
at hand to cope with possible divisions, merges, appearances or disappearances of the cells,
and that can use the information collected on the cells profitably to track them: their position
obviously, but also their shape and appearance if they do not change dramatically.

The simplest algorithms like Liu and Warme, 1977 will statically segment each image in isola-
tion, and reconstruct the trajectories by greedily linking each cell to its nearest neighbor in the
following image, where “nearest” can be understood as a spatial and photometric proximity.
This approach is best suited when the density and the motion of the cell is limited.

However, in some situations, the segmentation step cannot be achieved in a reliable way on
individual images (even the human eye has some difficulties), and even if it could, there might
be a complex motion resulting in many tracking ambiguities (see Figure 8).

Recent approaches thus all try in a way or another to include global constraints to ameliorate
the robustness of the segmentation and the tracking.

In order to alleviate segmentation ambiguities, Li et al., 2008 propose to combine the seg-
mentation and the tracking of the cells. They are thusly able to segment and track a dense
cell colony by using, to detect cells in an image, the cells detected in the previous images and
their speed. By simultaneously evolving the level sets defining the neighboring cell contours
with an energy containing a repulsion term, they avoid merging together two distinct cells in
one contour. An alternative is proposed in Padfield, Rittscher, and Roysam, 2008, where the

19

20

Figure 8: Segmentation ambiguities. The general borders around the cells are easy to detect, but decid-
ing on the exact frontier between two cells that are stuck together by observing one image only
is often challenging.

segmentation and tracking problem is reformulated as a direct segmentation problem in the
spatio-temporal volume obtained by stacking the images in a pile.

To resolve tracking ambiguities, it is common to introduce global temporal or spatial con-
straints — for instance, Delgado-Gonzalo et al., 2010 force neighboring cells to move coherently
in the same direction, and Smith and Lepetit, 2008 integrates the dependency between the cells
shapes and their motion to ameliorate the tracking performances when the cells elongates in
the direction of the motion.

2.1 INTRODUCTION |

One-step and two-step segmentation and tracking

When possible, analyzing image sequences in a two-steps process (segmentation, then track-
ing) has two main advantages: first, it dramatically reduces the combinatorial complexity of
tracking, since it works on the object space (the segmented objects) instead of the pixel space.
Second, it splits the overall problem in two, and thus produces intermediate results than can
be checked and used to improve each step separately.

The recent approaches discussed above (for instance Li ef al., 2008) build a model of the cell
motion in order to improve the segmentation performances. Such one-step approaches are effi-
cient to resolve segmentation ambiguities when they are localized, or when an accurate motion
model can be built. In the case of a bacterial colony, cells are constantly in contact, steadily
grow and divide, and push each other, which results in unpredictable rotations and motion.
This makes one-step approaches difficult to use, because they do not yield any intermediate
representation between image pixels and the final objects (the cells), so that in general there
is no easy way to understand what is wrong (and which parts of the algorithm have to be
modified) when mistakes are present in the final lineage.

The Bacterial Home Vision solution

As an illustration of segmentation and tracking algorithms, we briefly describe the in-house
software solution Bacterial Home Vision (BHV) developed at TaMaRa’s lab. In this case, we
want an algorithm specialized for E. coli, that has no running-time constraints since it does
not control a real-time system, but should output very precise cell outlines and record the
complete lineage of the cells throughout the sequence.

BHYV segments all the images in isolation in a first step, then tracks the bacteria across the
sequence in a separate second step. The segmentation consists in detecting local maxima in
the images to detect the cell borders (the bacteria are surrounded by a bright halo) and using
morphological operations to clean them up. This usually leads to many segmentation errors
that had to be corrected manually by the researchers using an image editing software.

The tracking is done sequentially from the first image, and each cell from the current frame
is paired to one or two (in case of division). Each cell from the current image is moved to its
predicted location (using a simple motion model) in the next image, and is associated to one
or two cells (in case of division) depending on the area on which the cell overlap.

2.1.3 Céleste

The BHV automated segmentation suite that the researchers developed for this study re-
vealed very time-consuming to use, sometimes a movie took the researchers up to one week
to completely segment and track.

We here describe an image analysis software called Céleste (an homonym of CellST, for Cell
Segmentation and Tracking) that was designed during the preparation of this thesis to assist
them in further research. Céleste tries to combine the advantages of two-steps approaches (so
that intermediate results can be checked) with the simultaneous segmentation and tracking of
cells, to disambiguate segmentation ambiguities using the temporal redundancy. The first step
is a reliable and efficient over-segmentation process (described in Section 2.2) that produces
an intermediate low-dimension image representation, a collection of small shapes called blobs.
The second step is a segmentation-and-tracking iterative algorithm (section 2.3), in which the
segmentation is performed at the blob level (a cell is a union of connected blobs), and the
tracking decisions are ordered with a notion of risk we introduce, which permits to improve

21

22

| CELESTE

the robustness of the process by a factor typically equal to 10 (see Figure 9 for an illustration
of the steps). Both steps use no intensity-based thresholds or parameters, but geometric cell
properties (minimal and maximal width, minimal area, etc.) and simple parametric cell motion
priors. We show experiments made on real data and comment the results obtained.

2.2 IMAGE SIMPLIFICATION BY OVER-SEGMENTATION

Since we would like to analyze the image sequence with a high degree of reliability, we have
to be very careful in the first step of data processing, as an error at this step will inevitably
make the whole algorithm fail. Hence, rather than trying to immediately perform a complete
segmentation of each image, we compute an “over-segmentation”, that is, a partition of the
image domain into a background domain and small regions called blobs, with the properties
that any cell of the image is a union of connected blobs, and that any blob belong to exactly
one cell. Such an over-segmentation seems to achieve a good compromise, because it manages
to simplify the images into a small number of “objects” (the blobs) without having to solve
ambiguous decisions.

2.21 |mage renormalization

Data acquisition protocol

For practical reasons, several image sequences are acquired at once, and a moving plate
places each colony in turn in front of the microscope camera (phase contrast microscopy).
The duration between two consecutive takes of a colony is not constant: as the number of
bacteria becomes large, their speed also increases, and a faster acquisition time is required to
disambiguate the cell associations. In the researchers experiments, an image was taken every
4 minutes at the beginning of the sequence, and every 2 minutes near the end. We assume that
the acquisition frequency is always such that a cell cannot divide more than once between two
successive frames.

Images are quantized with a spatial resolution of about 0.064 pm per pixel, and gray levels
are encoded on 16 bits (sample raw images from a typical movie are shown in Figure 10).

Image denoising

The first step of our image processing is naturally the denoising. In order to obtain sharper
borders for the cells, we used a simple total-variation denoising [Rudin and Osher, 1994; Rudin,
Osher, and Fatemi, 1992] with adequately chosen parameters (see Figure 11). This proved suf-
ficient for our application, but denoising methods exist that leverage the space-time redudancy
of the image sequences to obtain even better performances [Boulanger et al., 2010].

Intensity renormalization

A natural idea to define the blobs is to grow seeds obtained after some gray-level threshold-
ing (the darkest regions of the image are the inside of the cells). Since image illumination may
slowly vary inside one image, or may change across time or between experiments, we first
apply a gray-level renormalization to obtain homogeneous intensities which is based only on
geometrical and physical assumptions:

(A1) There is a minimum width m of a cell

Figure 9: Overview of the Céleste algorithm. The images are normalized and cleaned up, then they are
simplified by an over-segmentation resulting in blobs connected by a graph (blobs in red have
been statically detected as cells), and finally, a dynamic tracking and segmentation phase yields
the correct cells and lineage by merging adjacent blobs that belong to the same cell. The links
in red in the last image correspond to a cell that just divided.

23

24 | CELESTE

Figure 10: Sample raw images from a bacterial colony growth movie (the elapsed time between the
images shown above is not constant). The initial bacteria regularly divides and grow into a

colony of several hundreds of cells, resulting in an image sequence consisting of dozens of
thousands of cell traces to analyze.

)
SEANS)2
D

NS
R ‘\\ﬁ
>

Figure 11: Detail of the level lines of a cell colony (a line is shown at every 50 gray levels) before and
after denoising. The cell borders become smoother and the noise is significantly decreased.

(A2) There is a maximum width M of a cell
(A3) The illumination artifacts are slowly-varying.

The idea is to sample the gray levels at various places near the cells in the picture, and esti-
mate the local gray-level thresholds that can be used to define seeds in the cells (low threshold)
and extra-cell space (high threshold). Figure 12 illustrates this process by showing the seeds,

the high threshold, and renormalization of a sample sequence image.
We first use a Fast Level-Set Transform [Monasse and Guichard, 2000] to obtain what we call
seeds, that is, connected regions defined by the image lower level-sets with area less than tm? /4

High threshold

Renormalized

Figure 12: Grey-level renormalization. (Above) The extracted seeds (in red) and the high-threshold
image computed from those seeds that reflect the intensity variations across the image, and
(Below) the original denoised image, and its renormalization after applying the point-wise
affine transform (2.1).

(A1) (discarding the very small lower-level sets as noise). We then compute the maximum
of u (the original image) on each seed, and extrapolate these values on the whole image
domain by using a Gaussian convolution from known values (the convolution parameters

have been chosen once, and give adequate results on all the sequences we have encountered).

This process yields a smooth (A3) “low threshold image” v_.
To obtain the “high threshold image” in a similar way, we compute for each point x of each
seed, the gray value

p(x) = min max u(z),
y;x€B(y,M) z€B(y,M)

where B(y, M) denotes the disc of center y and radius M. From (A2), we deduce that if
x € B(y, M), then the disc B(y, M) necessarily contains a pixel outside the cell, so that the max
over z is an upper bound for the optimal high threshold, that we can minimize with respect to
y. We then compute the maximum of p(x) on each seed, and extrapolate these values on the
whole image domain in the same way as before, yielding a “high threshold image” v .

We finally normalize the original image by a point-wise affine transform

wix) = 2 =v-06) (21)
v (x) —v_(x)

25

26

| CELESTE

Figure 13: Grey-level renormalization. (Left) We added a sinusoidal intensity perturbation to an im-
age (amplitude of 150 gray levels, on an image whose amplitude range between the cell
inside and outside was approximately 600 gray levels), and (Right) the difference between
the high-thresholds obtained using the renormalization process on the original image and the
perturbed image. We see that we are able to recover approximately the perturbation wave, giv-
ing us confidence that our renormalization process is able to eliminate slow-varying intensity
changes.

Image recentering

A simple thresholding enables us to separate the colony from the background, and we
proceed to recenter the colony on its center of mass. This helps remove the remaining position
jitter caused by the fact that when the camera acquires several colonies at a time, it never comes
back precisely to the same position (see Figure 14).

II

Figure 14: Image recentering. Thresholding the denoised and renormalized image yields a connected
component, from which we extract a mask representing the cell colony. The background of
the image is then cleaned to remove noise, and the colony is centered in the image to attenuate
the camera motion jitter.

2.2.2 Non-uniform dilation

Now that the seeds have been found and the image renormalized, we grow the seeds into
blobs by using a concurrent dilation (ie.. blobs should not penetrate each other) that bears some
resemblance with the viscous watershed transform of Vachier and Meyer, 2005.

Rather than seeing the image as a “landscape” whose catchment basins are filled with water
as in the watershed transform, we view it as an environment of non-uniform viscosity, which
is defined by the local gray level: the blobs grow faster in dark areas, and slower in the bright

2.2 IMAGE SIMPLIFICATION BY OVER-SEGMENTATION |

regions that separate two cells, ensuring that they cannot cross cell borders as they grow (see
Figure 15). We thus obtain a correct over-segmentation of the cells, where each cell is exactly
defined by a union of neighboring blobs.

(1) Renormalized image (2) Cleaned-up seeds (3) Blobs

Figure 15: Overview of the non-uniform dilation process. (1) A renormalized colony image where
the cells are surrounded by bright halos, (2) the detected seeds that have been cleaned up
with a morphological opening, and (3) the corresponding blobs obtained using a non-uniform
dilation. Some light over-segmentation errors subsist, particularly in the areas where seeds
were not regularly spaced, but the non-uniform dilation mitigates this problem by allowing
other seeds belonging to the same cell to expand before seeds from other cells have a chance
to cross cell borders.

Let us precise a little bit the dilation process. We assume that we are given N disjoint sets
(the seeds) s1, ..., sN, and a viscosity function v : Q — [1,4+00[, where Q) is the image domain.
This viscosity function will determine the speed of the dilation at any point in space, the higher
the value, the slower the dilation. We define paths on Q as @' functions from [0, 1] to Q, and
the length of a path as

1
5(y) = L v(y(1) [(1)) dt

and the distance 5(a, b) between two points of Q) as the lower bound of the length of a path
connecting the two points, and the distance 5(a, X) between a point of Q and a set X C Q as
the lower bound of the distance between a and a point of X. We then define the non-uniform
dilation of the sets s1, ..., sN as the sets (the blobs) by, ..., by where

by ={x € Q|Vj#1i, 8(x,s1) <3(x,s5)}

We can directly translate this definition in the discrete domain, and compute the resulting
blobs efficiently using an operation akin to a shortest-path search.

Discrete non-uniform dilation

To define the non-uniform dilation on discrete images, we start by defining a discrete 8-
connected canvas, that will be the geometrical basis of our further definitions.

Definition 1 (Canvas). We define a (8-connected) canvas as a weighted undirected graph C = (V, E, ()
where the vertices set V.= [1,N] x [1,M] is a rectangular array of pixels, the edges £ connect two
distinct pixels p and q if they are 8-connected, that is, [px — qx| < 1and [py —qyl < 1, and {: E — R
are the lengths of the edges. In practice, we will choose {, 41 = || —p||-

27

28

| CELESTE

Definition 2 (Viscosity). A viscosity on a canvas C = (V, E,{) is a function v: V — [1, c0).

Definition 3 (Path). If C = (V, E,{) is a canvas, and p, q are two pixels in V, a pathy = (eq, ..., en)
from p to q (denoted vy : p ~» q) is a sequence of consecutive edges from E starting from p and ending
in g.

Definition 4 (Path length). If C = (V, E,{) is a canvas and v is a viscosity on C, we define length of
apathy = (eq,....en) by

n
H(Y) = Z eeivei/
i=1

where vip, q1 = I (vip) +v(q)).

Definition 5 (Distance). If C = (V, E,{) is a canvas and v is a viscosity on C, the distance between
two pixels p and q in V is the shortest path length from p to q, that is

8(p,q) = _inf m(y),
Yip~q

and similarly, the distance between a pixel p and a set s C V' is

8(p,s) = _inf m(y),
Yip~s
Definition 6 (Discrete non-uniform dilation). If C = (V, E,{) is a canvas, v is a viscosity on C, and
$1,..., SN are disjoint subsets of V (the seeds), we define the dilated b1, ..., b (the blobs) as

b :{P € V|V] #1’1 6(prsi) < 6(prs])}

Algorithm

Let C = (V,E,{) be a canvas, v a viscosity on C, and s7, ..., s\y be the initial seeds. We now
describe an efficient algorithm to compute the dilated by,..,byn. In what follows, we will
assume that the seeds and the viscosity are such that each pixel from V belongs to exactly one
of the by, ..., by. If this is not the case, we will randomly assign the pixel to one of the b; at
equal minimal distance from it.

The simplest way to compute the result of the non-uniform dilation takes O(N - [V|log[V])
time and O(N - [V]) space. It consists in computing the distances from each seed to all the other
pixels using the Dijkstra shortest-path computation algorithm [Dijkstra, 1959] and associating
each pixel to the closest seed. The memory requirements can be reduced to O(|V|) by updating
the labeling of the blobs and the minimal distances from the blobs to each pixel in a sequential
way.

The computational requirements can however be improved by using an algorithm akin to
a fast-marching algorithms [Sethian, 1996] modified to take into account the simultaneous
dilation of the blobs. This reduces the computational time to O(|V|log|V|) and the memory
requirements to O([V|), when using a modified heap structure with a back-pointer for the
look-up and update of pixel distance bounds (see for instance ivi).

Algorithm 1) evolves an array of labels corresponding to each blob, where the label ENs(i)
corresponds to blob bi, as well as an array of boolean that indicates which pixels have been
definitely labeled. The pixels of the image are progressively attributed a label and frozen as
the seeds are simultaneously dilated.

2.2 IMAGE SIMPLIFICATION BY OVER-SEGMENTATION | 29

Algorithm: Discrete non-uniform dilation
input : C = (V, E,{) the canvas

input :v the viscosity

input : sq,..., sN the seeds

output: by, ..., by the dilated blobs

// Initialization
Let L be an array of labels,
where L(p) = Ens(i) if p belongs to si, and L(p) = NULL otherwise

Let F be an array of booleans (the frozen pixels),
where F(p) = true if p belongs to one of the s;, and F(p) = false otherwise

Let H be the set of pixels in the seeds that have at least one unfrozen neighbor, sorted by
(a bound on) the distance to the seed they belong to (initially, this is o):
H <« { (p,0) | 3i,p € s; and p has an unfrozen neighbor }

// Computation

while H is not empty do

(p,8p) < remove from H the pixel having minimal distance
F(p) < true // we freeze p, its definitive distance is dp
foreach unfrozen neighbor q of p do

if q is in H then
84 « the distance bound associated to q in H
if dp +V(p,q) < 8q then
L(q) « L(p)
Update the distance bound on pixel ¢ in H with &p + v,)
end
else
L(q) « L(p)
H+ HU {(qr 5}3 + V{p,q})}
end
end

end

return by,..., by, where by ={p | L(p) = Ens(i) }

Algorithm 1: Compute the discrete non-uniform dilation of seeds in an image

30

| CELESTE

Of course, simply dilating the seeds would completely fill the image (since the viscosity
function does not explode to infinity), and in the experiments, we limited the dilation process
to a fixed maximum distance dmax.

The viscosity function we used in the experiments was arbitrary (but reasonable) and could
be used with all the image sequences we encountered. Recall that since the images are normal-
ized, the viscosity function is not image-dependent but defined on an absolute scale.

2.23 Blobs and connection graph simplification

The initial over-segmentation thus obtained generally contains a large number of small blobs,
and can be improved by iteratively applying some conservative simplification rules to obtain
a simpler over-segmentation with larger blobs.

Clean-up of the blobs

The first step is a clean-up of the very small blobs that are due to image noise or over-
segmentation artifacts. We merge all very small blobs (in our experiments, we chose to a
threshold of 9o pixels) with the neighboring blob sharing the largest border, and which is not
itself a very small blob, and iterate this clean-up process until we reach a fixed-point where all
spurious small blobs have been eliminated (see Figure 16).

(1) Result of non-uniform dilation (2) After clean-up

Figure 16: Clean-up of small blobs. (1) Result of the non-uniform dilation, where small blobs have been
highlighted in red, and (2) after merging small blobs with their largest neighbor once.

Connection graph

By definition of an over-segmentation, each blob which is not already a complete cell, and
which is too small to be a cell by itself, must be connected to some neighboring blobs. Fol-
lowing this idea, we define a connection graph, where the blobs are the vertices, and edges
link neighboring blobs (that is, blobs that share a long enough boundary). The cells are then
“linear sub-graphs” (homeomorph to a segment) of this connection graph. In particular, if a
blob has no neighbor in the connection graph, our hypothesis implies that it must be a perfectly
segmented cell.

2.2 IMAGE SIMPLIFICATION BY OVER-SEGMENTATION |

We first eliminate blobs that are due to spuriously detected seeds (see Figure 17) by removing
all small blobs that are isolated in the connection graph (we chose a conservative threshold of
300 pixels on the data that we have been given).

Figure 17: Clean-up of spurious blobs. The bright halo around the cells has left a small patch of dark
pixels in the colony (highlighted in red), which has been detected has a small blob seed that
has no neighbor in the connection graph. Such over-segmentation artifacts are easy to detect
and eliminate.

Blob simplification

Not all edges in the remaining cleaned-up connection graph are meaningful, and many of
them can be removed using some simple conservative criteria that ensure the correctness of the
new over-segmentation. The assumptions we use are (A2) — the fact that a cell has a minimum
width — and

(A4) There is a minimum area A of a cell
(A5) The border between two blobs in the same cell has a minimum length {.

To cope with bent cells that are frequently found in the images, the definition of the width
of a cell is that of the minimal-width enclosing annulus (see Figure 18)

width (u) =inf { w > 0| 3y eR%,3s>0, Vxeu s<|x—y <s+w

Computing the exact minimal-width enclosing annulus rather complex, and we thus chose to
approximate it: we first compute the orientation 6,, of the blob u

1 2
Oy = 7 arctan ﬁ, where (2.2)

H2,0 — Ho,2

1 1 1
upg = O (mxaPly =y and (xuy) = <|u 2. Z”)

x,YyEu xEu yeu

and we restrict our search to enclosing annulus that lie on the line orthogonal to the blob
orientation 0, that passes through the blob centroid (x.,yw). In practice, we discretize a
number of points regularly spaced on this line, we compute the enclosing annulus centered on
those points, and we return the minimal width of such an annulus.

31

32

| CELESTE

Figure 18: Definition of the width of a blob. We compute the width of a blob as that of the minimal-
width enclosing annulus to cope with bent cells.

By iterating the processes of removing edges in the connection graph using assumption (Az2)
between two blobs whose union would be too wide to possibly be a cell or (A5) between two
blobs whose common border is too small for the blobs to belong to the same cell, and merging
the blobs using assumption (A4) (a blob that is too small to be a cell on its own and that only
has one neighbor must be merged with its neighbor), we achieve a significant simplification of
the over-segmentation (see Figure 19).

2.3 CELL SEGMENTATION AND TRACKING

Now that we have an over-segmentation and the connection graph, we can generate all
potential cells that are consistent with these bounds — in other words, all the unions of blobs
on “linear sub-graphs” of the connection graph described in the previous section. Some of
these potential cells are necessarily true cells, as they are isolated vertices of the connection
graph. In general, there are enough true cells after the blob simplification process, but we
can always assume that one or two images (say the first and the last) have been manually
segmented, and only contain perfectly segmented cells, so we obtain enough information to
start the segmentation and tracking algorithm.

To segment and track the cells, we will define a probabilistic cell evolution model based
on biological knowledge, and learn its parameters from manually segmented and tracked
sequences. The idea is then to segment and track cells iteratively, by choosing the most obvious
decisions first, in order to make very few errors. Once the obvious choices have been fixed,
this will hopefully greatly increase the constraints on the other decisions, which will in turn
become obvious. This notion of an obvious choice is translated in the probabilistic notion of
risk — a ratio of transition likelihoods.

We chose to process the movie in a non-sequential way, to be able to make decisions at any
time step, and not only from the first to the last frame. This constrains our cell evolution
model, but enables us to always choose the most obvious decision in the complete sequence.

2.3 CELL SEGMENTATION AND TRACKING \

Figure 19: Connection graph simplification. A typical cell image (1), the initial connection graph of
blobs (2a), and the two steps of the graph simplification process (2b and 2c), iterated until
convergence. Note that the isolated blobs of the graph (2c) necessarily are cells.

2.3.1 Cell transition likelithood

To assist us in tracking the cells, we define the likelihood of the transition of a cell A in
frame n to a cell B in frame n+ 1 (denoted A — B), as well as the likelihood of the division of
a cell A in frame n into cells B and C in frame n+ 1 (denoted A — (B, C)). Note that we are
speaking here of completely segmented cells, and not just blobs.

We have chosen simple, yet discriminant enough measurements on the cells: we extract from
each cell C the centroid position xc € R?, the area Ac € R and the orientation 8¢ € [—, 7]
as defined in equation (2.2).

We will assume that the process is Markovian, and that the transition probability only de-
pends on the state of the mother cell and the daughter or daughter cells, and not of the previ-
ous or next transitions. This is crucial in allowing us to make decisions at any time step in the
sequence, as we do not want to rely on the fact that knowledge on the cell in the previous or
next frames is readily available. We model the cell transition A — B as

XA —X A
maB = (1 —Tgiy) - Tx (A|XA|B> 19 (10a4 — OBl) - 714 <A:>

33

34

| CELESTE

where the probability that a cell divides (7g;,) is determined empirically (it depends on the
frame rate) and the probability densities 7, mg and 74 are designed according to biological
knowledge and their parameters are learned from (previously processed) reference sequences
(see Figure 20). Note that when analyzing sequences with varying frame-rates, we assume that
the learned probability laws can be scaled linearly with the frame-rate.

16 T 25 7 20
12 | 20 15 |
15
8 1 10 1
10
47 5 | 51
0 0+ / 0 : .
—0.06 0.00 0.06 0.12 0.18 0.00 047 —0.26 0.00 0.28
Log growth ratio (m4) Rotational speed (7g) Renormalized speed (77)

Figure 20: Cell evolution model. Learned probability density functions for the cell evolution model:
log growth rate (Gaussian), rotational speed (exponential) and radial component of the speed
(Laplace; the tangential component is similar up to a scale factor).

Indeed, the area of a cell is expected to grow exponentially, its orientation is often slowly-
varying, and concerning the speed (mx), we chose to measure the relative motion (xa —
xg)/|xg| instead of the absolute motion x5 — xg, as the cell motion results from the cells
in the center of the colony pushing the other ones because of their growth, so that we expect
the motion amplitude to be roughly proportional to the distance to the center of mass of the
colony (see Figure 21).

Figure 21: Motion estimation. The motion estimation relies on the hypothesis that the motion is mostly
due to the pressure exerted by the colony on the cell during its growth. Thus, we will measure
the variables vy /dm and vy /dm, where d;y is the distance from the center of the cell to the
center of the colony, and (vx, vy) is the bacteria speed expressed in the local coordinate system
shown in red.

To define a similar likelihood for the transition A — (B, C) (A divides into B and C), we
note that if the frame rate is not too small, the union of the two new cells (B and C) can be
considered as a single cell when the parameters x, A and 6 are measured, so that it is natural to

2.3 CELL SEGMENTATION AND TRACKING \

write 7tA _,(B,c) = TA—BUC * Tdiv/ (1 — Tigiv)- In practice, we also add a deterministic threshold
on the distance between the daughter cells (computed as the minimal distance between two
points in each cell), to avoid considering cells that are too far apart.

2.3.2 Likelihood versus risk

By taking the product of the likelihood of all its local transitions A — B and A — (B, C),
we can define the likelihood of a complete lineage (each cell of the lineage being a union of
blobs). Ideally, we would like to find the lineage that has the highest likelihood, with the
constraints that each blob belongs exactly to one single cell. However, this global optimization
problem seems computationally intractable, and in particular, assignment algorithms Kuhn,
1955 cannot handle such constraints.

If we aim to recover the lineage by taking only local tracking decisions, the most natural
way to define the successor of a cell is to associate it to its best match in the next frame. A
natural idea would therefore be to start with the most likely decision, then the second possible
most likely decision taking into account the first one, etc. However, the tracking decisions are
order-dependent, as the best match of a cell could also be the best match of another one, so
rather than taking first the most likely decision, we propose to take first the least ambiguous
one.

Indeed, some of the segmentation and tracking choices seem obvious, and making those
obvious decisions would help constrain the uncertainty for the rest of the decisions to take,
without taking too much risk. If we observe a typical image sequence (see Figure 22), a natural
idea would be to start by tracking the cells on the border of the colony, as they are naturally
constrained (they have fewer neighbors). Once those cells have been correctly associated, we
can “remove them” and continue the same process with the new border cells.

.“‘ >d
T

": .‘l‘fik

re |

Figure 22: Making obvious choices first. Two successive frames of a typical sequence. An human
operator tracking the cells would most likely start by associating the cells on the border, as
they are more constrained than the other (they have fewer neighbors, and there is thus much
less uncertainty on their real transition). We abstract this concept in a notion of risk for the
transitions.

35

36

| CELESTE

original 1 frame / 2 | 1 frame / 4
(1) Pmax = 0.0026 0.23 0.89
Paverage = 3.2-107° 0.001 0.03
2) Pmax = 0.0001 0.06 0.24
Paverage = 231077 0.0003 0.01
Pmax = 6.9-107° 0.004 0.11
G) Paverage = 35-1078 7-107° 0.005

Table 1: Maximum and average risks encountered by the three algorithms when extracting the lineage
from the original movie and various sub-sampled versions. We clearly see that the max and
average risks that have been taken are always lower when the "obvious-first" algorithm is used,
thus giving an increased confidence in its results.

Rather than directly using this solution, we abstracted the concept of a the risk of a transition:
given a transition A — B (or, similarly, of a cell division A — (B, C)), we define its risk by

PA B = IMmaXx LA—>X
— - 7
X#B TTA B

the maximum being taken over all potential successors X of A (B excepted), and the risk being
equal to o if there is only one potential successor. Intuitively, the risk is very low when the
transition has no credible alternative, and rises when there is a doubt on the successor of the
cell. Since most of the cells have a trivial motion, we can hope that they will be processed
early and correctly and will rule out some choices concerning other cells for which the initial
risk was high (see Fig. 23). Note that this notion of risk is also related to the robustness of
the algorithm, since the maximum risk can be understood as the level of degradation that the
algorithm can handle before changing its choices.

2.3.3 Tracking segmented cells

To quantify the benefits of using the notion of risk, we implemented three tracking algo-
rithms working on completely segmented sequences:

(1) the any-first algorithm, which orders the cells arbitrarily,

(2) the likely-first algorithm, which sorts the cells by decreasing likelihood of their best tran-
sition,

(3) and the obvious-first algorithm, which sorts the cells by increasing risk of their best tran-
sition.

Each algorithm works in the same way: to each cell in the order given by the algorithm, we
associate its best possible match in the next frame, and this process is iterated until all cells
have been tracked.

To compare the three algorithms, a sequence of manually segmented cell images was de-
graded by under-sampling it twice (keeping one frame in two) and four times (one frame in
four), and we verified that no cell divides more than once between two successive frames. The
two first movies would be relatively easy to track for a human operator, but the third becomes
more delicate, and one has to view successive frames back and forth several time to make sure

2.3 CELL SEGMENTATION AND TRACKING \

to have the correct cell association. If we subsample more than twice the sequence, the cell
association becomes difficult even for an human operator, some cells dividing several times
between two successive frames, and we do not expect an algorithm to give a correct lineage.

We tracked the cells in each sequence with each algorithm, adapting the parameters of the
probability laws to the corresponding frame rates, and we computed the average and the
maximum risk taken (see Table 1). As can be seen, the more degraded the film, the higher the
risk. Algorithm (1) makes some errors when tracking the most degraded film (one frame in
four), and the other algorithms always give correct results, although we see that algorithm (3)
leads to minimal risks, and thus gives us more confidence in the result of the tracking.

2.3.4 Tracking over-segmented cells

We apply this risk-based approach to the potential cells defined by the blobs and the con-
nection graph, as union of consecutive blobs in a linear subgraph of the connection graph (see
Figure 24).

We eliminate some of the potential cells using the conditions (Az2) and (Ag4), allowing us to
keep the number of potential cells reasonable for the first 7 or 8 generations, but this number
quickly explodes afterward, and more conservative conditions will be needed to let us process
longer sequences.

Among these potential cells are some perfectly segmented cells (isolated vertices of the con-
nection graph), that we label as initial “active” cells. For each active cell, we compute the risk
of its associated best transition to any potential cell in the next frame, and then select the tran-
sition having the minimal risk among the active cells. The target cell of the selected transition
now becomes active, all the potential cells overlapping it are deleted, and we recompute the
risks of the transitions for the new set of active cells. This process is then iterated until the com-
plete lineage has been obtained. We also consider the risks of the transitions in the backward
direction (knowing the cell, what is its best-match predecessor?) and apply the same process
to these transitions (see algorithm 2).

Segmentation errors

Some errors made by Céleste are potentially easy to correct: sometimes, a small blob is
missing from a cell (see Figure 25), and the cell it belongs to will generally be easy to guess
using post-processing heuristics.

A more difficult to solve error is depicted in Figure 26. This is caused by a previous segmen-
tation error that propagates in the sequence, cascading into several other segmentation and
tracking errors. Sometimes, such segmentation errors result in new situations where a cell has
no likely successor, yet one of them is still much higher than any other possibility (for some
reasons), yielding a very low risk for the transition. A way to avoid this kind of error would
be to only allow transitions having a low risk and a high likelihood.

This phenomenon is amplified by the fact that, contrary to the case where we were tracking
already segmented cells, we no longer make decision by considering all the cells in all images,
but only those who have already been completely segmented. In particular, when starting the
segmentation and tracking process, there are only few such completely segmented cells, and
choosing the transitions with minimal risk makes less sense.

To remedy this problem we do several successive segmentation and tracking passes, by
feeding the next segmentation and tracking pass with the cells that have been segmented
in the previous pass (we can heuristically remove some cells that are deemed to be poorly

37

38

Algorithm: Céleste

input : I = (Ij, ..., Ix) the image sequence
output: C = (Cy, ..., Ck) the segmented cells and the lineage

s =(s1,...,SN) < extract_seeds(I)
I < renormalize_intensities(I,s)

C=(Cy,...,CNn) < over —segmentation(l,s) // the over-segmentation and connection
graph

All perfectly segmented cells are activated
while true do
foreach active cell ¢ that has no successor do

‘ Compute the risk of the transition to any potential cell without predecessor in the
next frame
end

foreach active cell c that has no predecessor do

Compute the risk of the transition to any potential cell without successor in the

previous frame

end

if there is no such transitions then

| Stop

else
Choose the transition of minimal risk
Update the corresponding over-segmentation and lineage by segmenting and
linking the cells in the transition

The cells in the transition become active
end

end
return (Cq,...,Ck)

Algorithm 2: The Céleste cell segmentation and tracking algorithm

2.3 CELL SEGMENTATION AND TRACKING \

segmented if needed). Hence, in successive passes, the number of initial cells increase, and the
risk-first tracking algorithm becomes meaningful and useful.

In the first pass, we use a threshold on the risk and likelihood as suggested above, to ensure
that we only make very likely segmentation choices, and thus “bootstrap” our segmentation.
In the next passes, we successively lower the thresholds until all the cells in the images can
be successfully tracked and segmented (see Figure 27). This enables us to correct some of the
segmentation and tracking errors, as shown in Figure 28.

2.3.5 Software

We implemented in C (using the MegaWave library) a complete segmentation and tracking
suite called Céleste that has a user-friendly interface and permits to visualize and correct
the results in a straightforward and natural manner (see Figure 29). With this software, a
complete sequence requires almost no interaction for the 5-6 first generations, and about a
couple of hours for 9-10 generations, which seriously improves previously-used algorithms.
This software is planned to be revised in 2012 by a software engineer to meet open-source
standards and be made available to the research community.

2.3.6 Current results

On the films that we processed, we could handle images containing about 120 cells (about 7
generations) before the number of blobs and connections between them was too large for the
potential cells to be efficiently generated. Developing discriminatory but conservative shape
constraints on the potential cells to simplify the connections between the blobs could break
this limit, and is thus an interesting challenge. Currently, we sometimes use the graphical
user interface to segment manually a few blobs with a high number of connexions in the blob
graphs to reduce the combinatorial complexity. With the current algorithm we proposed, if we
want to handle films up to 100 frames (9-10 generations), we have to assist the connection graph
simplification algorithm by manually deleting some connection edges (or by using supervised
heuristics). Such an interaction also permits to fix some little segmentation errors, that can
propagate and induce tracking errors. On the first frames (about 5 to 6 generations on most
films), we have almost no error (see Fig. 30). In the last frame (9-10 generations), the number
of cells suddenly increases, so the connection graph becomes very large, and there are a lot
of potential cells, which slows down the computations and introduce more errors (when there
are many potential cells, there are more cells that “look like good successor”). Figure 32 shows
an extracted lineage tree, where the length of the branches are proportionnal to the duration
between two successive divisions, and the color corresponds to the distance between the cell
and the center of the colony.

Our software is in use in the TaMaRa’s lab, and further analysis at the laboratory by our
collaborator in this team, Alice Demarez, has acknowledged in her doctoral thesis that Céleste
not only decreased significantly the time that users spend on the segmentation and tracking
of cells in comparison with the previous BHV software, but also that the quality of the results
has increased. Jean-Pascal Jacob has also worked on the project to define a better model for the
bacteria shape as a skeletal segment that is recovered using energy-minimization techniques,
and subsequently dilated in the shape of a rod to recover high-quality contours of the cells
(see Figure 31).

39

40

frame n OO
L .

frame n+1

p=0.9 p=0.18

Figure 23: Illustration of the notion of risk. (First line) A sequence segmented using the legacy BHV
algorithm, used to learn the parameters of the probability laws. On this sequence, the likeli-
hood of the transitions from the red cell in the first frame to either the red or blue cell in the
second frame are equivalent, but the likelihood of the transitions from the blue cells are more
contrasted. An algorithm associating a cell to its most likely successor, and starting with the
red cell would make an error, while an algorithm ordering the cells by their transition risk
would make the correct decision, as illustrated on the second line. (Second line) Example of a
dubious (left) and an obvious (right) choice, 7 is the likelihood of the associated transition, p
is the risk of the best-match transition. If we take the most likely transition first (left), we will
make the wrong affectation, but if we take the most obvious transition first (right), the final
result we be correct.

2.3 CELL SEGMENTATION AND TRACKING \

Figure 24: Potential cells. Sample potential cells (in red) generated as linear subgraphs of the blob graph.
Only the potential cell in the second image corresponds to an actual cell of the image.

Figure 25: Missing blob. (Above) The simplified blob graph obtained by the over-segmentation process,
and (Below) a chunk of a cell corresponding to a small blob is missing from the final segmen-
tation (red vectors represent the cells speeds). Such errors should be relatively easy to detect
and correct using a post-processing.

4

42

| CELESTE

Figure 26:

Figure 27:

Cascade segmentation errors. Two segmentation errors (the red arrows are the cell speeds).
As before, a small blob is missing from the green cell. The large cell has been wrongly
divided in two (brown and cyan) just before the real cell division. In the next image, one of
the daughter cells corresponding to the real division (in blue) has been correctly segmented.
When Céleste tries to find the correct successor of the cyan cell, it has the choice to connect
the cyan cell to the blue cell (not likely, because cell have wildly varying sizes), or to move it
somewhere else. It happens that this latter choice has a much lower risk, and this will cascade
in a series of bad segmentation and tracking decision (the brown cell must then shrink).

Multiple passes. When running the Céleste algorithm on the result of the over-segmentation,
only few cells have been statically segmented, and using the risk-first tracking algorithm
makes less sense, as we only compare the risks of few cells. To remedy this problem, we iterate
the Céleste algorithm by successively feeding to the next pass the results of the previous one.
To avoid resuming the next pass with the possibly poorly segmented cells of the previous
iteration (shown in red), we use conservative thresholds on the risk and likelihood of allowed
transitions in the first passes, and successively decrease them in later passes.

Figure 28: Correct segmentation using the multiple passes algorithm. The segmentation error de-

scribed in Figure 26 has been corrected by using several passes of the algorithm that use
decreasingly conservative risk and likelihood thresholds, each successive pass taking as input
the completely segmented cells of the previous one.

= "Celeste’ - MegaWave2
rans 66/ H0. fils inazes/fO66

Figure 29: Céleste. Screenshots from the Céleste segmentation and tracking suite permitting the easy
visualization and correction of the segmentation and lineages of the cells.

Figure 30: Segmentation result. A part of the result of the tracking algorithm we propose: a completely
segmented image, where each cell is colored according to its 3rd generation ancestor. This
result was obtained in completely unsupervised way (no human interaction).

43

44 | CELESTE

Figure 31: Post-analysis. After the segmentation, a post-analysis significantly ameliorates the contour of
the cell by representing them as a dilated segment and matching their shape using energy-
minimization. [llustration from Alice Demarez

2.3 CELL SEGMENTATION AND TRACKING | 45

Figure 32: Bacteria lineage. Representation of a lineage, where nodes correspond to divisions. The color
encode the distance to the center of mass: when red, the cell is close, when blue, the cell is far

JAN
1610

FEB

MAR

w

O WV 00 N O U1 A W N

N N DN NN — — — — — — = = = —
N — 00 N 080 1 A W N — O Vv 0 N O T A W N —

EAST WEST

*
*
*

*
*
*

*
*

*
[
*

*

*
*®

L3

*

*
00000000000 0000 OO

¥
*

*
L]
*
*

*
3

*
x @
*

*
*
*

*
*

* * *Q *

* O %

Observations of the four moons of
Jupiter by Galileo Galilei from
january 7 to march 2, 1610 that
convinced him of the invalidity of
the Aristotelian view that all heavely
bodies were circling the earth.

(When several observations were
made on the same day, only one has
been retained.)

Adapted from Sidereus Nuncius,
Galileo Galilei,Venice, 1610

ASTRE:
A-contrario single trajectory extraction

CONTENTS
3.1 Introduction 47
3.1.1 Related work 48
3.1.2 Trajectory estimation versus trajectory detection 50
3.2 Trajectories without holes 51
3.2.1 Principles of the a-contrario framework 51
3.2.2 Trajectory detection 52

3.2.3 Data quantization 54
3.2.4 Algorithm 55
3.2.5 Variable number of points 58
3.2.6 Theoretical analysis 59
3.3 Trajectories with holes 63

3.3.1 Number of false alarms 63
3.3.2 Algorithm 66
3.3.3 Variable number of points and rectangular images 67

3.3.4 Theoretical results 68

selves to the simpler problem of point tracking, and to derive a statistical criterion, called

ASTRE, that could bring a useful insight on the limits of the trajectory tracking problem.
The next two chapters — the present one introducing the statistical criterion, and the second
comparing its performances to those of a state-of-the-art algorithm — have been directly ex-
tracted from a research paper that has been submitted and is waiting for approval.

IN ORDER TO BETTER UNDERSTAND the challenges of object tracking we chose to restrict our-

31 INTRODUCTION

Object tracking plays an essential role in a large variety of Computer Vision tasks, among
which, for example, particle image velocimetry [Gui and Merzkirch, 1996], monitoring cars

47

48

| ASTRE: A-CONTRARIO SINGLE TRAJECTORY EXTRACTION

[Koller, Weber, and Malik, 1994], detecting and tracking cells in microscopy sequences [Sbalzarini
and Koumoutsakos, 2005; Smal, Niessen, and Meijering, 2008], recognizing human activities
[Ali and Aggarwal, 2001], improving human-computer interfaces with head-tracking [Ash-
down, Oka, and Sato, 2005], generating special effects for movies [Pighin, Szeliski, and Salesin,
1999], or tracking particles in accelerators [Cornelissen et al., 2008].

Numerous variations on this problem have been formulated, and several algorithms have
been developed to try to solve them. A common strategy (see Yilmaz, Javed, and Shah, 2006
for a recent review) is to detect the objects in each image and associate them with an object
shape representation, such as points [Serby, Koller-Meier, and Gool, 2004; Veenman, Reinders,
and Backer, 2003b], geometric shapes [Comaniciu, Ramesh, and Meer, 2003], outlines [Yilmaz,
Li, and Shah, 2004], skeletal models [Ali and Aggarwal, 2001], etc. and with appearance
features described, for example, by templates [Fieguth and Terzopoulos, 1997], active appear-
ance models [Edwards, Taylor, and Cootes, 1998], or probability densities of object appearance
[Paragios and Deriche, 2000; Zhu and Yuille, 1996].

The detected objects are then tracked across frames using an algorithm that closely depends
on the object representation. According to Yilmaz, Javed, and Shah, 2006, tracking algorithms
can be broadly classified in three categories:

1. Point tracking [Bar-Shalom, Fortmann, and Scheffe, 1983; Reid, 1979; Shafique and Shah,
2003; Streit and Luginbuhl, 1994; Veenman, Reinders, and Backer, 2003b]. Objects are
represented as points and are generally tracked across frames by evolving their state that
consists of the object position and motion.

2. Kernel tracking [Avidan, 2001; Black and Jepson, 1998; Comaniciu, Ramesh, and Meer,
2003; Tao, Sawhney, and Kumar, 2002]. Objects are represented by a combination of shape
and appearance, for instance an ellipse with a color histogram. They are tracked by com-
puting the motion of the kernel in consecutive frames, often modeled with parametric
transforms such as translations and rotations.

3. Silhouette tracking [Bertalmio, Sapiro, and Randall, 2000; Blake and Isard, 1998; Hut-
tenlocher, Noh, and Rucklidge, 1993; Kang, Cohen, and Medioni, 2004; Ronfard, 1994;
Sato and Aggarwal, 2004]. Objects regions are estimated in each frame, and are usually
tracked by either shape matching or contour evolution.

In this work, we restrict ourselves to the tracking of objects as points, without appearance
information (even if, as we shall see later, such an information could be easily included in the
model we propose). We assume that these points have already been detected in the sequence,
but imperfectly, in the sense that we may observe both spurious points and missing detections.
Given such a sequence of frames containing the detected points in each image, the goal is to
extract the trajectories as lists of points appearing in successive frames, possibly separated by
holes (missing detections), while avoiding spurious points. As usual, we will assume that a
given point can belong to only one trajectory, which means that point collisions are ruled by
an occlusion principle.

311 Related work

The most well-known point tracking algorithm certainly is the Multiple Hypothesis Tracker
(MHT) of Reid, 1979, that, in theory, enumerates all possible trajectory combinations of the
observed points, and selects the one having the maximal likelihood (a probabilistic motion
model being given). This problem is in effect NP-hard, and leads to exponentially many

3.1 INTRODUCTION \

trajectory combination lookups (if there are n frames and m points, and we assume there is
no occlusion, noise points, or objects leaving or entering the scene, there are already m!™~!
possible trajectory combinations), and thus approximate solutions and heuristics are needed
to accelerate the search (often requiring thresholds to prune the search tree early). Moreover,
this complex model implies parameter tuning to optimize the underlying motion model and
the efficiency/coverage trade-off of the heuristics.

To overcome the exponential growth of the state space, researchers have proposed a wealth
of heuristics and approximations to the point tracking problem over the years. Such an ap-
proximation is the Joint Probabilistic Data Association Filter (JPDAF) proposed by Bar-Shalom,
Fortmann, and Scheffe, 1983, which relaxes the hypothesis that the points must be disjoint.
Instead of assigning each track ending in frame k — 1 to a particular object in frame k as in
MHT (and thus having several possible hypotheses, resulting in an increase of complexity),
the JPDAF algorithm assigns to every track ending in frame k — 1 a weighted combination of
all points of frame k, depending on a likelihood estimate with respect to a predicted position.
However, this approach assumes that the number of objects tracked in the images is tracked
in the images is constant, and the relaxation of the disjointness hypothesis leads to trajectory
merges, which is often an undesired feature.

Sethi and Jain, 1987 propose to solve the correspondence problem greedily. They initialize
the trajectories using the nearest-neighbor criterion, and then try to improve the current solu-
tion greedily by exchanging correspondences between frames in order to minimize the global
cost. They also propose a modified algorithm that alternates between forward and backward
passes through the sequence to help mitigate the problem of the nearest neighbor initialization.
Their approach is much faster than MHT, but does not permit to take noise, occlusions, entries
or exits into account.

Salari and Sethi, 1990 address some shortcomings of the previous method, namely the fact
that it assumes a constant number of points in the sequence, and that there can be no entries
or exits of objects in the scene. It therefore allows for occlusion, entry and exit of points, as
well as the presence of spurious points. Each trajectory is made of either points detected in
a frame, or “phantom points”, that correspond to added (interpolated) points when there are
missing detections. Note that their approach involves two parameters (the maximum allowed
speed and the maximum allowed acceleration) that may be difficult to set.

Rangarajan and Shah, 1991 propose to solve the problem by using a proximal uniformity
constraint, that combines requirements on the maximum speed and the acceleration of objects.
They propose to make the assignment choices in an order driven by a notion of minimal
risk, still in a greedy way. They use an optical flow algorithm to initialize the point motion
between the first two images, and deal with occlusion and missing detections by using linear
interpolation. They do not allow for spurious points, or objects leaving or entering the scene.

Veenman, Reinders, and Backer, 2003b propose a greedy tracking algorithm called ROADS,
that is capable of handling missing and spurious detections, as well as entries and exits of
objects. Rather than optimizing a global cost, they consider a restricted temporal scope (usually
two or three frames forward), and find the optimal assignments minimizing the cost on these
frames. Since the restricted problem is still NP-hard, they have some heuristics that help them
prune the search tree. They keep the assignment between the two first frames of the local
scope, and iterate the process on the following frames. The assignment between the first two
frames of the sequence is initialized using the nearest neighbor criterion, and the effect if this
approximation is mitigated as in [Sethi and Jain, 1987] by a forward and a backward pass.

Fleuret et al., 2008 propose to track multiple persons in multiple camera views using a
probabilistic map of the individuals locations, coupled with a dynamic programming tracking

49

50

| ASTRE: A-CONTRARIO SINGLE TRAJECTORY EXTRACTION

algorithm that tracks each person in isolation, rather than conjointly. The tracking uses both
an appearance model and a motion model to describe the objects to track.

In essence, the approaches above either try to bound the search space by restricting the op-
timization to local choices, or by restricting the simultaneous number of objects tracked. A
recent and promising approach introduced in Jiang, Fels, and Little, 2007 tries to do both by
optimizing a global criterion using Linear Programming, where the correspondence decisions
are not “hard” binary choices, but continuous values in [0, 1], rendering the optimization prob-
lem convex, and thus efficiently computable. In practice, the values are almost always equal
to either o or 1, and it is easy to convert them into disjoint trajectories. The algorithm assumes
that the number of objects in the images is constant, but has been later extended in Berclaz,
Fleuret, and Fua, 2009; Berclaz et al., 2011 to accommodate a variable number of objects that
can enter and leave the scene in prespecified locations. The authors also prove that when there
exists a unique global optimum, it is necessarily a boolean optimum.

3.1.2 Trajectory estimation versus trajectory detection

These algorithms have some common limitations. First, when they take a varying number
of objects into account, as well as spurious and missing detections, they face the difficulty
of choosing an appropriate global cost for their optimization problem. Indeed, they need a
penalization for spurious points, and most of the time they will simply introduce a fixed cost
for them. This creates a subtle (and quite arbitrary) interplay between the cost of spurious
points and the cost of detected trajectories, that is not easy to control and grasp. Second, these
algorithms often have many parameters, which is fine in theory, but quickly becomes a hassle
when one needs to set them for each practical use. Last, as they all try to solve an optimization
problem, these algorithms suffer from a classical flaw: they always find something, since they
try to find the best explanation of the data in terms of some structure, without trying first to
prove that the structure is present. In other terms, all these algorithms will, for some values of
the parameters, find trajectories in random data made of pure random points (without motion
coherence).

In the present work, we propose a new approach for trajectory detection, that can guarantee
that no trajectory will be found in general in such random data. This work is based on the
a-contrario framework [Desolneux, Moisan, and Morel, 2008], that permits to derive absolute
thresholds, that are then used to drive a dynamic programming algorithm. This algorithm is
able to analyze trajectories globally in time, and avoids the three aforementioned limitations.

In Section 2, we first consider trajectories without holes, that is, the case where no data point
is missing (but, of course, spurious points are expected). After recalling the basic principles
of the a-contrario statistical framework, we derive an explicit criterion for trajectory detection
and present an algorithm based on dynamic programming. We also analyze some theoretical
consequences of the a-contrario thresholds, in particular the link between the number of points,
the number of images and the maximum allowed acceleration. Then we arrive at Section 3,
where the theory and the algorithm are extended to the more general case of trajectories
that contain holes. In Section 4, the state-of-the-art ROADS algorithm [Veenman, Reinders,
and Backer, 2003b] is considered and various experiments (following, for most of them, the
methodology proposed in the original ROADS paper) are led to compare its performances with
the a-contrario algorithm we propose. Aside from a very convenient reduction of the number
of parameters (1 for the NFA algorithm, versus 4 in the ROADS experiments), the a-contrario
algorithm significantly outperforms the ROADS algorithm in terms of precision, robustness,
and sensibility to parameters, both in the no-hole and in the hole version. Experiments are
also conducted on real data, namely a snow sequence for which the ground truth has been

3.2 TRAJECTORIES WITHOUT HOLES \

manually obtained. Again, the results are clearly in favor of the a-contrario algorithm. We
finally conclude in Section 5, and comment on the strengths, limitations, and perspectives
offered by the present work.

3.2 TRAJECTORIES WITHOUT HOLES

In this part, we consider trajectories without holes, that is, we assume that there are no miss-
ing detections (but possibly spurious detections, and points leaving and entering the scene).

3.2.1 Principles of the a-contrario framework

The trajectory detection method that we propose relies on the a-contrario framework in-
troduced by Desolneux, Moisan and Morel (see Desolneux, Moisan, and Morel, 2008 for a
recent presentation). The idea underlying its development (dubbed “Helmholtz Principle”) is
that the human visual system detects structures in an image as coincidences that could not
appear purely by chance in a random setting. Conceived at first to detect structures issued
from Gestalt Theory [Kanizsa, 1980; Wertheimer, 1922], this methodology has been applied to
a large variety of image processing tasks, aiming at detecting structures like alignments [Desol-
neux, Moisan, and Morel, 2000], edges [Desolneux, Moisan, and Morel, 2001], stereo coherence
[Moisan and Stival, 2004], spots [Grosjean and Moisan, 2009], image changes [Robin, Moisan,
and Hégarat-Mascle, 2010], etc. It has also been successfully applied to the related problem of
motion detection in an image sequence [Veit, Cao, and Bouthemy, 2007] where an a-contrario
criterion is used to group together close detections that display a similar local motion.

We here recall the formalization of the a-contrario framework as it was presented in Grosjean
and Moisan, 2009. The a-contrario methodology is based on two ingredients: a naive model, and
one or several measurements defined on the structures of interest. The naive model describes
typical situations where no structure should be detected. For instance, when trying to discover
alignments of points in an image, a naive model could consist of uniform and independent
draws of the point locations, where no interesting structure would usually appear (see Fig. 33).

Figure 33: Illustration of Hemholtz principle. Why can’t we help seeing an alignment of dots on the
left image? According to Helmholtz principle, we a priori assume that the dots should have
been drawn uniformly and independently as in the right image, and we perceive a structure
(here a group of aligned dots) because such an alignment is very unlikely to happen by chance.
Alignments of four dots can be found in the right image, but they do not pop out, because
they are likely to happen by chance considering the total number of points. The formalization
of this principle is realized in a-contrario detection models.

51

52 | ASTRE: A-CONTRARIO SINGLE TRAJECTORY EXTRACTION

To detect structures (e.g. alignments of points) in data using Helmholtz Principle, we need
to define in what way an observation can be significant. If the measurement function is high
when the structure is pregnant, we can relate the “amount of surprise” when observing the
measurement x to the probability IP(X > x), where X is the random variable corresponding to
the distribution of x in the naive model. We will usually have several measurements (x;)ic1 (in
the example above, one for each possible alignment), and in the classical a-contrario framework
the amount of surprise will be measured by a number of false alarms. More formally, we have
the following

Definition 1 (Number of False Alarms). Let (X;)1<i<N be a set of random variables. A family of
functions (Fi(x))i is a NFA (number of false alarms) for the random variables (X) if

Ve>0, E(#i|Fu(Xi) <e}) <e (3.1)

A measurement x; such that F; (x;) < ¢ is said to be detected at level ¢, or e-meaningful. We say
that a measurement is meaningful if it is 1-meaningful. This number of false alarms ensures
that the average number of detections made in the naive model (that is, false detections) at
level ¢ is less than .

The classical way to construct a NFA is given by the following proposition (see Grosjean and
Moisan, 2009).

Proposition 1 (NFA construction). Let (Xi)1<igN be a set of random variables and (wi)1<igN 4
set of positive real numbers, then the function

NFA(L, xi) = wi - P(Xi = xi) (3-2)
AR
is a NFA as soon as Z o < 1 and in particular if wi = N for all i.
i=1

Remark 1 (NFA approximation). If (F;); is a NFA, then any family of functions (G;i); verifying
Fi(t) < Gi(t) for all t is still a NFA. Hence, a function satisfying

NFA(L,xi) 2 wi - P(Xq 2 x4)
will define a NFA as soon as ZiN:1 T/wi < 1.

3.2.2 Trajectory detection

We are given a sequence of K images, each containing N points (to ease the notations we
consider a constant number of points throughout the sequence for now, but everything can
be smoothly extended to the non-constant case as will be shown later), and whose support
domain is taken to be the square [0, 1] x [0, 1] (again, the method can be adapted to arbitrary
image sizes, as shown in Section 3.2.3). Following Helmholtz Principle, the naive model will
here be a random uniform draw of N points in each of the K images (intuitively, we should not
see trajectories appearing in the realizations of this model). The corresponding i.i.d. uniformly
distributed random variables corresponding to the points of image k (1 < k < K) will be
denoted by X%, .., X]]Q. We now define the structures of interest.

Definition 2 (Trajectories without holes). A trajectory T of length { starting at frame ko is a tuple
T = (ko,11,...,i¢), where 1 <ip < N forall p and 1 <€ < K—Xo + 1. We will denote by T the set
of all trajectories.

There is a natural equivalence between a trajectory T € T and the tuple of variables X1 = (X
that we shall therefore sometimes abusively call a (random) trajectory too.

ko ko+e—1
i X)

3.2 TRAJECTORIES WITHOUT HOLES \

A realization t of the random variable Xt will be called a realization of the trajectory T. We
have to keep in mind that we are working with the naive model (where points are randomly
distributed), and thus, a realization of Xt should not look like what we would intuitively call a
trajectory.

The second ingredient of the a-contrario model is the measurement function. We could
define a “good trajectory” as one that moves slowly, and take the measurement function to
be, for instance, the maximal speed of the object along the trajectory. For most applications, a
natural choice is to define a good trajectory as a smooth one, that is, a trajectory with a small
acceleration. Of course, the model could easily be adapted to a variety of other measurements
like the maximal velocity, the greatest direction change, etc.). Let us stick to the idea of good
trajectories being those bearing a small acceleration. We still have many ways to define this, the
two most obvious choices being to control the maximal acceleration, or to control the average
acceleration of a trajectory realization t = (yy,...,y¢). Again, the model can be adapted to
both, but for practical reasons we will choose to control the maximal acceleration that involve
simpler computations, thus leading to the measurement function

Definition 3 (Maximal acceleration). The maximal acceleration of a tuple of points t = (y1,...,ye)
is

Gmax(t) = max lyi+1 —2yi +yi-1]- (3-3)

We will now of course consider only trajectories having at least 3 points. Let T be a trajectory,
Proposition 1 tells us that we can define a Number of False Alarms by an appropriate weighting
of the probability IP(amax(XT1) < 8). In the naive model, this probability only depends on the
length { of the trajectory (and, of course, 8), and verifies

Proposition 2 (Probability bound). If Xt is a random trajectory of length £, and & is a positive real
number, then

IP(amax(XT) < 8) < (- 82) 2. (3.4)

Proof — Assume that T = (kg,i1,...,i¢), and call B(x,r) the closed disc with center x and
ko+p—1
ip

Plamax(X1) <9)

radius r. Writing X{, =X , we get

- PN {x;, e B(2X_, fx;,,z,m}
p=3

[4
< TIP(XpeB@X) s —X) 2,8) | X4 1%})
p=3
< (7_[.62)572

because the area of B(x,) N[0, 1]2 is bounded from above by 7 82 for all x. O

By Remark 1, we know that we can use the upper bound (3.4) to construct a NFA, as in (3.2).
There are many possibilities to define the weights (W)t subject to the constraint) + 1/wt < 1.
This gives us a way to adjust the detection thresholds for each structure. We choose to group

53

54

| ASTRE: A-CONTRARIO SINGLE TRAJECTORY EXTRACTION

trajectories together according to their length, dividing the set of trajectories into K groups
T =T;U..UTx (here, T; denotes the set of trajectories of length {), and weigh trajectories of
a group uniformly by wr = K- [T for any T € T,.

Proposition 3 (Continuous NFA for trajectories without holes). The family of functions (NFAT)TeT
defined by

Ve, VT € T, NFAT(8) =K(K— ¢+ 1)N (- 82)¢2 (3.5)
is a Number of False Alarms for the measurement amax.

Proof — Since |T;| = (K — ¢+ 1)N¢, we have

1 K 1
2 K(K—li—i—])N“:Z > Km\:]’

TEeT ¢=1 TET,

and we conclude that (3.5) defines a NFA thanks to Proposition 1. O

Let us quickly comment Proposition 3. We can rewrite (3.5) into NFA7(8) = K(K—€¢+1 INZ.
«'=2 by using the relative density o = N7td? (which corresponds to the average number of
points falling in a disc with radius §). We see that for a trajectory to be meaningful, we need
to have « < 1. In other terms, only trajectories with maximal acceleration § < 1/v/N7 might
be detected as meaningful. Such kinds of bounds will be analyzed more precisely in Section
3.2.6.

3.2.3 Data quantization

In many applications, point detection is realized on a discrete grid of integer pixel coordi-
nates, so that it may happen that three successive points in the sequence have a null acceler-
ation. This is a very strong contradiction to the naive model, since this event has probability
zero. Thus, if a long trajectory has a subtrajectory with a null acceleration, an algorithm that
detects the most meaningful trajectories first will cut the longer trajectory into chunks to isolate
the (optimal) null-NFA subtrajectory.

To avoid this kind of behavior we need to handle data quantization carefully. There are two
ways we could do this: assume that the data has been properly quantized on the integer grid
of the image and define a discrete version of the NFA, or consider a measurement impreci-
sion and always consider the “worst-case scenario” for the measurements when computing
accelerations.

First, we assume that the data has been quantized on an integer grid, say a rectangle Q of Z?
containing |Q| pixels. We can define a discrete version of the NFA by replacing the continuous
acceleration area 7t - §2 by its discrete equivalent. More precisely, we round the accelerations
components dy, &y to the nearest integers [5x], [6y], and define the discrete acceleration area by

_ ISy

ad(BX/ 69) - @/

where |S;| is the number of pixels enclosed in the discrete disc S, = Z2NB(0,r) (see Fig. 34)
and

T= [‘Sx]2+[‘sy]2~

In particular, when ([54], [8y]) = 0 we obtain a discrete area of 1/|Q| that no longer leads to a
null NFA.

3.2 TRAJECTORIES WITHOUT HOLES \

Definition 4 (Discrete maximal acceleration). The discrete maximal acceleration of a tuple of points
t= (Y1 AR yf) is

Omax(t) = max a(yir1 —2yi +yio1)- (3-6)

Proposition 4 (Discrete NFA for trajectories without holes). The family of functions (NFAS) 1
defined by
VL VT € T, NFA$(a) =K(K—{+1)N¢. o' 2 (3.7)

is a Number of False Alarms for the measurement a$,,.

.
®[o/e[e|e
o[e[e[e[o[e]e
Q000000a0
[le]e]e[e[e[eo]e]e]\
[1000000000)
\le[e[e]e[e/eeo/e[e]]
o 0 0 000 0 0o
o[o[e[e[e[e[e
olojefo]e
e r—

Figure 34: Discrete discs. A continuous disc and its corresponding discretization composed of all pixels
whose centers lie inside the continuous disc. A discrete measure of area is better suited to
the analysis of quantized data that might result in observing degenerate null-area continuous
disc (the corresponding discrete disc has a non-null area).

We now examine the “worst-case scenario” acceleration. We assume that we have a measure
n > 0 of the measurements imprecision (corresponding roughly to the radius of one pixel in
the previous example). We keep the same NFA than in the continuous case (Equation 3.5), but
we replace the measurement function by

w w
amax(t) = max a (Yi/ Yi+1,¥Yi+1)/ Where
2<i<e—1

av(x,y,z) = max_ |(x+ dx) —2(y + dy) + (z+ dz)|.
dx,dy,dzeB(0,n)
One easily shows that a™(x,y,z) = ||x — 2y + z|| + 41, and this therefore equivalently amounts
to keeping the same measurement function than in the continuous case and replacing the NFA
(3.5) with

NFAY(8) = K(K— €+)N (7 (5 +4nm)%) 2 (3.8)

We see that a null-acceleration trajectory will be counted as an acceleration of 4, thus incurring
a penalty to all accelerations. This is why in practice we use the discrete NFA.

3.2.4 Algorithm

In this section we consider the discrete NFA given in Equation (3.7). When a meaningful
trajectory is present, any slight deviation from it (removing or adding a point, for instance)
will usually also be meaningful, so that we expect to detect a large number of overlapping
meaningful trajectories. Hence, we choose to detect the trajectories greedily, by iterating the
following process:

55

56

| ASTRE: A-CONTRARIO SINGLE TRAJECTORY EXTRACTION

1. compute the most meaningful trajectory, that is, the one having the smallest NFA;
2. remove its points from the data.

To compute the most meaningful trajectory in a sequence of points, that is, K images Iy, ..., Ik,
each containing N points, we use a dynamic programming strategy. Indeed, we compute for
each point x in image I the most meaningful trajectory ending in this point (note that in the
following, we shall sometimes write x* instead of x to recall that x belongs to I). Denoting by
G(x*,y*~1,¢) the minimal acceleration of a trajectory of length { ending with points y*~! and

x¥, we obtain a Bellman equation
0 ift=2
k k=1 py _ _ ,
SOy L0 = {minzelk2 S(x,y,z,8) otherwise, (3.9)
where
5(x,y,z,0) = max (ad(x—2y+z) , Sy, z,—1)) . (3.10)

This recursive formulation translates to Algorithm 3.

Algorithm: compute_§

input : fq,..., fx the sets of {ny < N}j<r<k points contained in each frame
output: §

for2 <k <Kdo
for x in fi. do
foryin fi_7 do
S(x,y,2) + a%(0)
for3<{<kdo
9(x,y,{) « +o0
for z in fi._> do
a <+ max(ad(x —2y +2),5(y,z,L—1))
S(x,y,8) + min(a, §(x,y,{))

end
end
end
end
end
return G

Algorithm 3: Dynamic programming computation of §. We start by computing the values
of 9(xk,yk_1,€) for k = 2, then k = 3, ... each time reusing the results of the previous
round.

Now let us write
NFA$(a) = K(K—¢+T1)N¢ - at2, (3.11)

so that NFA4(a) = NFA{(a) for any trajectory T with length . Since the function a
NFA{(a) is monotone, the most meaningful trajectory with length ¢ is the one having the least
maximal acceleration. Hence we can use Algorithm 3 to compute the smallest NFA of the point

3.2 TRAJECTORIES WITHOUT HOLES \

sequence (Algorithm 4). Moreover, if B(x¥, y*~1, () represents the most meaningful trajectory
with length { ending with points y — x (where t — x denotes the concatenation of trajectory t
and point x), we can write

y—x ift=2,

k Jk—1 py _
By 0= {B(y,i,f—]) — x otherwise, (3.12)

where 2 € argmin, §(y,z, £ — 1) (strictly speaking, the most meaningful trajectory might not
be unique, so we have to choose one most meaningful trajectory arbitrarily; to simplify the
description we shall nevertheless use the term “the most meaningful trajectory” throughout
the paper). Finally, for each xK, the most meaningful trajectory ending in xK is B(xk,yk_])

where

~k—1 % : d k k—1
(y~ ') earg (yrlgllr}e)NFAz (S(X Y ,IZ)) .

An algorithm similar to Algorithm 3 can hence be used to compute a trajectory having the
smallest NFA. In practice, we choose an arbitrary tuple (x,y, {) such that there is an optimal
trajectory of length { ending on points y — x, and we extract a trajectory by backtracking,
each time selecting the predecessor that minimizes locally the maximal acceleration among all
predecessors that lead to an optimal trajectory.

Algorithm: minimal_NFA
input : §
output: m the minimal NFA of a trajectory
m <— +00
for3 <k <Kdo
for x in i, do
fory in fi_1 do
for3 << kdo
| m < min(m, NFAZ(S(x,y,0)))
end
end
end
end
return m
Algorithm 4: Find the minimal NFA value among all trajectories.

Note that we could also extract the trajectory having the minimal average acceleration (for
example) among all optimal trajectories, simply by rerunning a similar dynamic-programming
algorithm restricted to optimal trajectories.

In the end, by applying the process greedily (as mentioned above), we obtain an algorithm
that extracts all meaningful (or e-meaningful) trajectories from a sequence of points (Algorithm
5)-

Often we can save some computation time by extracting several trajectories at once without
recomputing the function § each time, because removing points from the current data set
cannot decrease any value of G. This idea can be used, for instance, when the two most
meaningful trajectories in the sequence do not share any point. The inner loop of Algorithm 6
does just that: if we have a way to define a set of disjoint minimal-NFA trajectories (for instance,

57

58 | ASTRE: A-CONTRARIO SINGLE TRAJECTORY EXTRACTION

Algorithm: trajectory_detection

input : e the maximal allowed NFA
f1,..., fx the sets of points contained in each frame
output: S = ty, ..., ty, the extracted trajectories

S« o
repeat
compute_§
m < minimal_NFA
if m < ¢ then
t < a trajectory of NFA =m
S + SU({t}, and remove all points in t from the corresponding frames
end
until m > ¢ or there are no more points
return S
Algorithm 5: Greedy trajectories extraction using the NFA criterion.

greedily), we can extract them all at once (since they are of minimal NFA, and each are non-
overlapping, we could extract them sequentially with interleaving G function recomputations,
but this would not change the NFA of those trajectories, that would still be minimal).

Then if we have been able to extract a set of disjoint trajectories of minimal NFA that covers
every point where a trajectory of minimal NFA could end, we can continue doing the extraction
for the next minimal NFA without recomputation. When this is no longer possible (because of
some point removal) we need to recompute the § function to reactualize the NFAs.

We now examine the space and time complexity of algorithm 5 for an extraction round. The
most expensive computation is that of function §. The space (memory) required is O(N2K?),
since we have to store a value for each triplet (x*,y*~',{) in each image frame k. Each value
computation takes O(N) operations because we have to consider all the points in the previ-
ous image, leading to a O(N3K?) time complexity. The search for the minimal NFA and the
extraction of the most meaningful trajectory have negligible time and space complexities. As
the extraction must be repeated as long as there is any remaining meaningful trajectory, the
global time complexity is O(sN3K?), where s denotes the number of extracted e-meaningful
trajectories. In practice, on a standard PC desktop, for K = 50 images, the number N of points
per image can go up to several hundreds (and about one thousand for K = 20).

325 Variable number of points

In real data, the number of points is hardly ever constant throughout the sequence, so that
instead of having N points in each of the K images, we have N1, N, ... Nx points on images
1,2,...K. Since the NFA is an upper bound on the average number of false alarms (Remark 1)
we can simply take N = maxj Ny and keep the NFA unchanged. However, to obtain more
accurate results, we can refine Proposition 4 with

Proposition 5 (Discrete NFA for trajectories without holes, general case). The family of functions
(NFAS) et defined, for any trajectory T with length € starting at frame ko, by

NFA¢(a) = K(K—€+1) 11 Ni | -a¥2, (3.13)
ko<k<ko+0—1

3.2 TRAJECTORIES WITHOUT HOLES \

Algorithm: trajectory_detection_accelerated

input : e the maximal allowed NFA
f1,..., fx the sets of points contained in each frame
output: S = ty, ..., ty the extracted trajectories

S+ o
repeat
compute_§
m <— minimal_NFA
stop «+ false
while m < ¢ and stop = false do
U <« { x | 3 a traj. with NFA = m ending in point x }
V « a set of disjoint trajectories of NFA = m ending on a point of U
S+ SuVv
remove all points from the trajectories in V
stop < true if not all points of U have been removed
m < minimal_NFA()
end
until m > ¢ or there are no more points
return S
Algorithm 6: Greedy trajectories extraction, accelerated by extracting several trajectories at
once.

is a Number of False Alarms for the measurement a,,,.

The proof is very similar to that of Proposition 3, except that now the set of trajectories T,
itself has to be decomposed with respect to the index of the starting frame.

3.2.6 Theoretical analysis

We now examine some theoretical consequences of Equation (3.5), that can have very practi-
cal consequences in the design of the data acquisition process. For simplicity reasons, we use
the continuous NFA formulation, with a fixed number of points per image, but (3.7) or (3.13)
would lead to the same conclusions.

Relation between the number of points and the maximal acceleration

Consider, as before, a sequence of K frames, each containing N points. We recall that the
Number of False Alarms associated to a trajectory T with length ¢ > 3 and maximal accelera-
tion 6 is (see Equation 3.5)

NFAT(8) =K(K— 0+)N (- 5%) 2.
Such trajectory is e-meaningful as soon as
K(K—t4+ 1N (- 8%)7% <,

which can be rewritten 6 < 8., where the upper bound is the critical acceleration

5 _ 1 € P
Cm<K(K—z+1)N2) ‘ (.14)

59

60

| ASTRE: A-CONTRARIO SINGLE TRAJECTORY EXTRACTION

Hence, as we already remarked at the end of Section 3.2.2, a necessary condition for trajectory

detection is 6 < A with A = ﬁ, which gives an order of magnitude of the typical acceler-

ations that can be handled by the NFA approach (and, in some sense, by any approach since
accelerations greater than A would allow detections in pure noise). Since the acceleration is
inversely proportional to the squared frame rate (by doubling the frame rate, one divides accel-
erations by 4), this absolute bound can be useful in the design of the data acquisition process.
Indeed, given the expected number of detected points in each frame (N), and the expected
physical accelerations of objects (5), one can compute the critical frame rate, under which no
trajectory detection is possible. Note, however, that the upper bound A is not very accurate
(see Table 2), thus using the exact value 6. (Equation 3.14) is probably a better idea.

] N | 15 [50 [200 [1000 |

A 146 | 80 | 40 18
. (1=5,K=20) 23 [83| 26 | o7
6c (1=10,K=20) || 74 | 35 | 15 | 54
5 1=10,K=50) || 64 | 30 | 13 4.7
5. 1=30,K=50) || 117 | 61 | 29 12

Table 2: Acceleration bounds A = \/]1\‘7 and & (Equation 3.14) in function of N, expressed in

pixel.image ™2 in a 1000 x 1000 image for some values of L and K (¢ = 1).

Influence of the trajectory length

A nice property of the a-contrario approach is that it permits to relate different parameters
by observing the way they are linked in the NFA formula. Table 2 shows that the trajectory
length has a significant impact on the critical acceleration 5. (whereas the number of frames, K,
has a much smaller impact). Thus, it could be interesting to study more precisely how the NFA
balances the trajectory length and the acceleration, that is, how the critical acceleration grows
as the trajectory length increases. Since 1 < K—{+1 < K, we can write log(K(K—£+1)) =
2B3(¢) log K with B(£) € [1/2,1], so that from (3.14) we get

log N + 3(¢) log K —log /¢
(-2 ’

Hence, log 6. grows approximately like 1/¢, and attains for { = K a value close to (and below)
log A. This is illustrated on Fig. 35.

Last, we show the monotony of the critical acceleration with respect to the trajectory length
(that is, the longer the trajectory, the looser the constraint on the acceleration).

logd. =log A —

Proposition 6. If € < 1, then the critical acceleration . given by (3.14) increases with respect to L.
Proof — Rather than using (3.14), we go back to (3.5) and write, for £ € {1,...,K},
F((,8) = N?K(K— 04 1) - (N7s?) 2

(thus, F({,6) is the NFA associated to a trajectory with size { and maximal acceleration 3).
Now, if { is such that F(¢,8) is smaller than 1 (since we suppose that ¢ < 1), then N7s2 < 1 so
that both € — (N7t8%)*~2 and € +— N2K(K — £+ 1) are decreasing with respect to ¢, and so is
¢ — F(¢,5). Hence, if £; > {,, we have, for 6 = 5. (),

F(l1,0c(£2)) < F(l2,0c(€2)) = ¢,

3.2 TRAJECTORIES WITHOUT HOLES |61

length (¢)
0 10 20 30 40 50
0 1

logyo dc

Figure 35: Asymptotic and non-asymptotic critical accelerations. The (base-10 log) critical acceleration
log;, O¢ is an increasing function of £ that approaches its upper bound (dotted line) log;, A =
log;, ﬁ when ¢ = K. Here K = 50 and the three curves correspond to N =15, N = 50, and

N = 200 respectively.

which proves that 8¢ (£1) > 8¢ (£2) since & — F({1, 8) is increasing. O

Asymptotic bounds and the importance of the combinatorial factor

Now we would like to assess the importance of the combinatorial factor in the definition
of the NFA. As was discussed above, there are several ways to define the weights of the
structures. In (3.5), we chose to weigh the trajectories uniformly with respect to their length
(that is, such that the expected number of false alarms is equally shared among all possible
trajectory lengths), that is

NFAT(8) = K(K— £+)N P(amax(X1) < 9). (3.15)

Another more classical choice would be to set a uniform weight wt = [T for all trajectories,
thus obtaining

K
NFAf(8) = (> (K—m+ nNm) PP(amax(XT) <). (3.16)

m=1

Suppose that we observe a trajectory t with length { and maximal acceleration = amax(t),
what difference will each NFA definition make? This trajectory is detected if NFAT(8) (or
NFA7(8)) is below a certain threshold ¢, hence it is interesting to estimate the ratio

NFA (5) 1 i
- K—m+1)N™
NFAT(5) K(K—t+)N m;(m+1)
1 K
2 K2N¢ Z N™
m={
NK—€
> 5

This lower bound shows that when (is small, the detection penalty incurred when using NFA’
is very large and it will thus be more difficult to detect small trajectories with this criterion.

62 | ASTRE: A-CONTRARIO SINGLE TRAJECTORY EXTRACTION

In the following, we compare more precisely NFA and NFA’ and compute asymptotic es-
timates when the number of frames (K) becomes large. Let us deal first with the function
NFA+T(8). We consider a trajectory T spanning [T| = pK images of the sequence for a fixed
p € (0, 1], with a maximal acceleration §, among N points per frame. We write & = N762, and
propose to determine, when K gets very large, if the trajectory is meaningful. We have

NFAT(8) = K- (K—pK+1) - NHK. (g52)nK=2

~ w21 = K,
K—oo

so that

1 FAT(6) ~ K1
ogN T()Kﬁoou og o

and

lim NFAT(8) <1 <= a<] (3.17)

K——+o00

This means that for any maximal acceleration & such that 6 < A (that is, o« < 1), all trajectories
spanning pK frames (0 < p < 1) will eventually become meaningful when K is large enough.
In practice, values of « near 1 are not very efficient, since they require a very large value of K
to lead to meaningful trajectories. This phenomenon is illustrated on Fig. 36.

number of frames (K)

300 T
200 +

100 1

0 1
0 02 04 06 08 1
«
Figure 36: Non-asymptotic counterpart of (3.17). Theses three curves represent, as a function of o =
N7t52, the minimum number of frames (K) required for a trajectory with length ¢ = |uK|
and maximal acceleration 6 to be 1-meaningful according to the NFA criterion (3.15). Upper

curve: g = 0.3; middle curve: u = 0.5; lower curve: u = 1. The number of points per frame is
N =100.

Now we study the asymptotic behavior of NFAT(3) (see Equation 3.16). First, we notice that

K

K+2 a 1 NK+2

K — TIN™ =N N—m=1

> (K=m1) >N
m=1 m=1

and thus

NKJerchqu
/
NEAT(), 5, (N—1)2

3.3 TRAJECTORIES WITH HOLES | 63

number of frames (K)
60 1
i —m6% = 0.005

12 + .
1 —m62 = 0.001

0

0 30 60 90 120 150
number of points (V)

Figure 37: Non-asymptotic counterpart of (3.17). Theses three curves represent, as a function of the
number of points N, the minimum number of frames (K) required for a trajectory with length
¢ = K and various values of the maximal acceleration § to be 1-meaningful according to the
NFA criterion (3.15).

Therefore,

logNFAT(8) ~ (1—p)KlogN + pKlog o«
K—o00

and
—1
lim NFAT(8) <1 <= loga< B log N. (3.18)
K—+oc0
Since *=1 — —oco as p — 0, Equation (3.18) shows that it is indeed asymptotically much

harder to detect small trajectories with NFA’ than with NFA. This fact is illustrated by Fig. 38,
on which we can see that even when p is close to 1, NFA permits to detect much more trajec-
tories than NFA’, both asymptotically and non-asymptotically.

3-3 TRAJECTORIES WITH HOLES

In many practical situations, because of occlusions or acquisition noise, some trajectory
points will not be detected in one or more frames. In this section, we generalize the previous
framework to trajectory detection in the case of missing points.

3.3-1 Number of false alarms

The naive model remains unchanged (keeping the notations of the previous section): we
are given K images Iy, ..., I, each image I} containing N points X¥, ..., XX, and we assume by
Helmholtz principle that all random points X¥ are independent and uniformly distributed in
[0,1]2.

Definition 5 (Trajectories with holes). A trajectory of size s is a sequence of pairs T ={(i1,71), ..., (is, Ts)},
such that T1 < ... < Ts. We denote by T the set of all trajectories, and by T the set of trajectories

of size s. We bijectively associate to the trajectory T the tuple of random (i.i.d., uniformly distributed)
variables X1 = (X;‘ s Xf;), that we also abusively call a (random) trajectory.

64

| ASTRE: A-CONTRARIO SINGLE TRAJECTORY EXTRACTION

maximal value of «
1 ,

0.8
0.6 1
0.4 1

0.2 1

0 =1
0 02 04 06 08 1

trajectory relative length (u)

Figure 38: Comparison between the NFA and NFA’ models (3.15, 3.16). Each curve represents, as a
function of p, the minimal value of « = N7t8? required for a trajectory with length £ = |uK|
and maximal acceleration & to be 1-meaningful in a sequence of K images, among N = 100
points per frame. The red upper curves are obtained with the criterion NFA, whereas the blue
lower curves are obtained with the criterion NFA'. The full curves correspond to K = 100, and
the dashed curves correspond to the asymptotic estimates obtained when K — +oo, that is,
log & = 0 for NFA and logx = logN - (t— 1)/ for NFA’. These curves clearly demonstrate
that not only NFA is better suited to the detection of small trajectories than NFA’ (it allows for
trajectories having a much larger maximal acceleration), but it is also more efficient even for
relatively large values of u (NFA’ being slightly better only for almost complete trajectories).
Asymptotically, NFA is always the best choice.

Since the definition above is more general than the special case of trajectories without holes
(Definition 2), we chose to keep the same word (trajectory) and the same notations (T, Ts) as
in Section 3.2. This should not lead to ambiguities, since we will only consider trajectory with
holes in this section.

As in Section 3.2, we would like to build an a-contrario detection model to detect trajectories
(here, with holes). We consider three parameters of interest for the computation of the NFA of
a trajectory Xt = (X;‘ o Xf:): the trajectory length, its size and its number of runs. The length
is the total number of frames that the trajectory spans (ts — T + 1), the size is the number of
(detected) points it contains (s), and a run is a maximal set of consecutive points. Note that if
we call hole a maximal set of consecutive missing points, then the number of runs equals the
number of holes plus one.

We first need to generalize the notion of maximal acceleration amax (Definition 3) to the case
of trajectories with holes. A natural way to do this consists in interpolating the missing points
of the trajectory and compute its maximal acceleration. Since we would like to keep using
an algorithm based on dynamic programming, we use the most local choice, that is, a simple
constant speed interpolation. This leads to the following

Definition 6 (Maximal acceleration with holes). The maximal acceleration of the realization t =
(y7', . ys®) of a trajectory T is

h _ hioTi—1 . Ti . Ti+1l
Apax(t) = Zgr{lga;(—1 la (yi5 Y Y |, (3.19)

with, for all points x',y),z* (i <j < k),

a2 = T - (3.20)

3.3 TRAJECTORIES WITH HOLES \

We now compute, as in Proposition 2, a probability bound for the maximal acceleration of a
random trajectory with holes.

Proposition 7 (Simple probability bound). If a random trajectory Xt with size s has holes of size
hy, ..., hp_1, then for any & > 0 one has

P(aghax (XT) < 8) < (7r-8%)572 - H (hi+1)2 (3.21)
1<i<p—1

Proof — We assume that T ={(i1,711), ..., (is, Ts)}, and write X{] = XIT; and

Mg = X X' =X),
qg=Rg-1 Tt Tq1 —quz(a1 —Xq-2)
so that
1P(amax(XT) < 6)
S
< PN {x;eB(Mq,(Tq Tq_1)5)}
q=3
S
<]P(Xq € B(Mg, (tq —7q-1)8) | X, 1,x{H)
q=3

O

For efficiency reasons, we want to design an algorithm that can share computations, that
is, we want to be able to reuse the computations made on subtrajectories and extend them to
obtain the results for bigger trajectories. To do this efficiently, we shall not consider, for a given
trajectory, the individual sizes h; of its holes, but simply its length {, its size s and its number
of runs p. This is why we derive from (3.21) the following

Proposition 8 (Practical probability bound). If a random trajectory Xt has length {, size s and
number of runs p, then for any & > 0 one has

h 2\s—2 l—s 22
P(amax(XT) < 6) < (7T' o) ' F +1 (3'22)

with the convention that the right-hand parenthesis equals 1 ((% +1)°) whenp = 1.

Proof — We consider the maximum value of the right-hand term of (3.21) over all possible
hole sizes hy, ..., h, 1 that are feasible for parameters {, s and p. Relaxing the constraint that
the h; have to be integers, we face the optimization problem

p—1
r(r}lLaXH(hi—i—])z ; Zhizf—s,andﬁ, hi >0,
i

Yiis

65

66 | ASTRE: A—-CONTRARIO SINGLE TRAJECTORY EXTRACTION

which, denoting &; = hy + 1, has the same solutions as the problem rgmé(E(&), with E(§) =
€

p—1
Z log(&;) and
i=1

p—1
C= {ae [,+00)P 1, 3~ Ei:(%—s—&-p—]}.

i=1

Now if £ € C has not identical coordinates, we can choose two different values, say 1 < &;, <
&i,, and replace them both by (&;, +&;,)/2 > 1 to form a new &’ € C. Then,

E(&') —E(&) = 2log((&s, + &i,)/2) —log(&q,) —log(&s,),

and this quantity is positive by strict concavity of the log function. Thus, the unique solution of
maxgec E(E) satisfies & = (£—s)/(p—1) + 1 for all i, and the maximum value of [[; (h; + 1)2
over feasible hole sizes hy, ..., h,, 1 is bounded from above by

—s P2
(=5+1)
p—1

Using this bound in (3.21) yields the announced result. O

Now we need to define the combinatorial term wy that premultiplies the NFA. Recalling
the discussion of the end of Section 3.2.2, we choose to group the trajectories by their length
and size, and to use uniform weights in each category. The number of trajectories of length ¢
and size s that can fit in K frames is bounded from above by (K —{+1) (E)NS, and since we
cluster the trajectories by their lengths and sizes, we have to count the number of such clusters.
Indeed, it is bounded from above by K, since there are less than K ways to choose the length,
and knowing that the length is { there are less than { ways to choose the size. Combining these
remarks with Proposition 8 establishes the following

Proposition 9 (NFA for trajectories with holes). The family of functions (NFAT)TcT defined for
any trajectory T of length {, size s and number of runs p by

¢ {—s Zp—2
NFAT(8) :KE(K—(’.—i—])(S)NS(néz)SZ (p]m) (3.23)

is a Number of False Alarms for the measurement alt,. .

This new function NFA7 is a kind of generalization of (3.5). Indeed, for a trajectory T
without hole (that is, such that p = 1, and consequently { = s), we have

NFAT(8) = - K(K— 0+)N (m5%)* 2
which is, up the a new factor {, the value given in (3.5). This new factor simply comes from
the fact that we do not know a priori that the number of runs of the trajectory is one.
3.3.2 Algorithm

In the practical implementation that we describe below, we use a discrete version of the
acceleration, obtained by replacing the norm involved in (3.19) by a discrete area measure,
exactly as we did in Section 3.2 (see Definition 4).

3.3 TRAJECTORIES WITH HOLES \

We want to compute, for each point x of each image I; (that we denote by x'), the most
meaningful trajectory T = N(x!) that ends in x' (or, to be more precise, one of such most
meaningful trajectories) . This information can be extracted from the function S(Xi,yj, {s,p),
which represents the least maximal acceleration of a trajectory of length ¢, size s, and having p
consecutive runs (that is, p — 1 holes), ending with the point y) in frame j < i followed by the
point x* in frame 1.

We say that a tuple (i,j,(, s, p) is undefined if there is no trajectory ending with its two last
points in frame i and j, with length {, size s and having p runs of consecutive points. For
instance, if { < s or s < 2, the tuple is undefined. We define for i > j

o +o00 if (1,j,¢ s,p) is undefined,
S(x'y, ts,p)=4 O . if s=2, (3.24)

minu%,zel).w S(x,y,2,,s,p) otherwise,

with the convention, for i > j > k, that

(x4, y), 25,45, p) = max (ah(x,y,Z), S(y,z,0—(i—j),s—1,p—Tigji)) (3.25)

and as usual 1,4, = 1 if a # b and o otherwise. Notice that as in Section 3.2.4, the superscript
k in x* simply reminds us that the point x belongs to image Iy, so we sometimes omit it and
simply write x.

We deduce from (3.25) a dynamic programming algorithm to compute G, similar to the one
we presented in Section 3.2 for the trajectories without holes. We can then backtrack to find
the most meaningful trajectory ending in each point x' by defining, for i > j, the recursive
function

o undefined if (i,j,¢, s,p) is undefined,
B(xLy, Ls,p)=q ¥y x A if s=2,
Bly, 2 ", —(i—j),s—1,p—1i441) = x otherwise,

where 20~ % realizes the minimum in the last line of (3.24). Finally, for each x!, the most
meaningful trajectory with holes ending in xt is B(xt, yi, () §,P), where
(5,§/,f3, §,p) =arg min NFAgsrp(S(xi,yj,(’,, s,p)).
j<iy A,s,p

We can analyze the spatial and temporal complexities of the algorithm. As in the case of
trajectories without holes, the most costly operation is the computation of the § function. Its
complexity is O(N?K>) in space and O(N3K®) in time. Since the extraction must be repeated
until there are no more meaningful trajectories, the global time complexity is O(sN3K®), where
s is the number of extracted e-meaningful trajectories. In practice, on a standard PC desktop,
for K = 30 images, the number N of points per image can go up to about one hundred. For
long sequences containing much more that 30 images, the algorithm cannot be used directly
(due to the N® term in the time complexity), but one could probably obtain good results by
cutting the image sequence into small parts and applying the algorithm on each part (raising
the issue of long trajectories spanning several parts).

3.3.3 Variable number of points and rectanqular images

As for the NFA of trajectories without holes (Section 3.2), we can adapt the NFA given in
Proposition 9 to the case of a variable number of points per image. Let us write Ny the number

67

68

| ASTRE: A-CONTRARIO SINGLE TRAJECTORY EXTRACTION

of points present in image k. The simplest strategy consists in applying directly the definition
of Proposition 9 with N = maxy Ng. If Ny has strong variations, a more sensitive detection
can be obtained by replacing in NFA1(9) the term N* by

~ max Ny, - oo Ny,
ko=t <iz<..<ig=ko+{—1
where T is a trajectory starting in image ko, with length { and size s. This term is easily
computed once the sequence (Ny)j<k<k has been sorted.
As in the case of trajectories without holes, the NFA can also be adapted to rectangular
images (see Section 3.2.3).

3.3.4 Theoretical results

We now analyze the asymptotic behavior of the NFA on some particular cases. They are all
composed of one trajectory spanning the K images, and N — 1 additional spurious points in
each frame. The trajectory has a maximal acceleration of 5.

Long trajectory with a single hole

We first study the case where the trajectory is composed of two parts separated by a unique
hole of length h = eK. We thus have { = K,s = (1 —¢)K,p = 2, and we write o = N782 as in
Section 3.2.6.

We study under which conditions, when K gets large, the trajectory is meaningful, and if
it is more meaningful than its first (or equivalently last) part. First we derive an asymptotic
expansion of

¢ s -

NFAT(5) — K'(KH”'(}”(S)'(W(E:Z)Z'(SK)ZW 1
oK Nallmok
- f (u—am)wzv“”

From Stirling’s Formula, one easily derives the expansion

K 1
log (ﬂK) = —Kh(n) — 3 log K + K_}OH}OH),
where 1 € (0, 1) is fixed, and
h(n) =nlog(n) + (1 —n)log(1 —n).

Hence, we have

log NFAT(8) =K ((1 —s)logoc—h(&)) + glogK—l—K 0 (1),

—+00

which proves the asymptotic equivalence

lim NFAT(5) <1 <= log(a) < &)

K—+o00 1—¢ (326)

This asymptotic condition on « is illustrated in Fig. 39. We can notice that the asymptotic limit
on log « given by the right-hand term of (3.26) is quite accurate (and almost linear) as long as

3.3 TRAJECTORIES WITH HOLES \

hole relative length (¢)
0 02 04 06 08 1
1 bttt

10721

1074+
«

Figure 39: Influence of the hole size. Plot, in function of ¢, of the maximal value of « (in log scale)
for a trajectory with a single hole of size h = |¢K] to be meaningful. The total number of
points in each frame is N = 100, and the length of the sequence is K = 100 for the green
lower curve and K = 400 for the blue middle curve. The red upper curve is the asymptotic
limit h(e)/(1 —¢) of log & corresponding to the case K = +co. We can see that when the
trajectory hole becomes fairly important, the maximal allowed acceleration for a trajectory to
be meaningful plummets.

the relative hole size ¢ is not too large. If the hole size is half the trajectory length (¢ = 1/2),
then the asymptotic condition is « < %.

Now we would like to investigate the condition under which the complete trajectory is more
meaningful than its starting or ending parts. Writing vy = (1 —¢)/2 so that each small trajectory

has a size K, this condition writes

NFAT, , (8)/NFAT, (5) < 1,

that is
K 1 K (b)) a2k (1=2y)K+1? _
N L e 1 g <
K (1—y)K+1 yK QK) oY 1

or equivalently

—Kh(Zy)+yKlogo¢+logK+K 0 (<o

—+00

Since h(2y)/y = 2h(e)/(1 — ¢), we thus have the property that the whole trajectory is asymp-
totically more meaningful than its parts when K — 400 if and only if

h(e)

T (3-27)

log(a) < 2

Note that this inequality constraint on o is stronger (the quantities are negative) than the one
obtained in (3.26), hence the case when a trajectory is 1-meaningful but less meaningful than
its parts can be encountered.

69

70

| ASTRE: A-CONTRARIO SINGLE TRAJECTORY EXTRACTION

Dotted trajectories

If the trajectory is made of a succession of single points and one-frame holes, what is the
condition as K — 400 to have a meaningful trajectory? We now have { = K, s = (K4 1)/2 (K
being odd), p = (K—1)/2, so that from (3.23) we can derive the asymptotic expansion

K 3
log NFAT (%) = zlog(160¢) + ElogK—kK_)OJroo(]). (3.28)

Hence, a dotted trajectory is asymptotically meaningful when K — +oc0 as soon as

1
& < 1 (3.29)

Dashed trajectories

In the more general setting of a dashed trajectory made of p runs of u consecutive points
separated by holes spanning v frames, we have { = K = p(u+v) —v and s = pu, so that if u
and v are fixed,

plu+v)—v
1 FAT(8) = .
og NFAT(8) 210gp+10g< pu >+pulog(x+2p10g(1+V)+pﬁo+oo(1)
Now we have
pu . u
N — —_ h -
TR) B R

so that

Pu p—+oo
and
3 2 h(n)
log NFAT(8) = 3 logp +pu <logoc+ - log(1+v) — o +p_)(9+00(1).

Hence, a dashed trajectory is asymptotically meaningful when p tends to infinity if and only
if

h(n) 2
< —" —
log o < - ulog(l +v), (3.30)

where = %5 is the asymptotic density of known points. This formula yields an interesting
relation between the density of known points and the allowed maximum acceleration, as illus-
trated in Fig. 40. When u =v =1, we have 1 = 1/2, h(n) = —log 2 and the right-hand term of
(3.30) is —log 16, in accordance with (3.29).

3.3 TRAJECTORIES WITH HOLES | 71

density of points (n) density of points (n)
0 02 04 06 08 1 0 02 04 06 08 1
+ +—+ +—+ +——+ —1 1 +——+ +—+ +—+ +———=1

Figure 40: Required precision for “dashed” trajectories. Left: The green lower curve shows the max-
imal value of « allowed (in log scale) for a trajectory to be meaningful when it is made of
repetitions of runs of length u and holes of length v, with u+v = 20 and u = [n(u+v)].
The length of the sequence is K = 100, and the total number of points in each frame is
N = 100. The upper red curve is the asymptotic limit h(n)/n —2log(1 +v)/u corresponding
to p = +o0. (note that the staircasing effect is due to the definition of u). Aslong as the density
of known points () is large enough, the critical value of log o is quite well approximated by
the asymptotic bound and the relation to 1 is almost linear. When the density 11 becomes too
small, the maximal allowed acceleration for the trajectory to be meaningful quickly plummets.
Right: The asymptotic condition on « given by (3.30), for a variety of values of u+v = 10
(lower curve), 20 and 40 (upper curve). The curves are close, hence showing that the mini-
mal required precision for dashed trajectories to be meaningful mostly depend on the density
1n =u/(u+v) and not on the period u+v of the runs.

Geometrical composition
based on a system of particles with attractors and repulsors

ASTRE performances

CONTENTS
4.1 The ROADS tracking algorithm 73
4.2 Experimental setup 76
4.2.1 Comparison criteria 79
4.3 Trajectories without holes 80
4.3.1 Variable number of spurious points experiment 8o
4.3.2 Variable density experiment 81

4.3.3 Sensitivity to data smoothness 83
4.3.4 Parameter tuning 84

4.3.5 NFA as a criterion for trajectory selection 86
4.4 Trajectories with holes 88
4.5 Trajectories of real-world images 88

4.5.1 The snow sequence 88

4.5.2 Parameter tuning 90

4.5.3 Comparison of ROADS and NFA algorithms 92
4.6 Conclusion 95

and real-world data, and compare them with those of ROADS, a state-of-the-art track-

ing algorithm which compares favorably to most of the classical tracking algorithms of

the literature presented earlier [Veenman, Reinders, and Backer, 2003b]. We then conclude on
the respective benefits and drawbacks of both approaches.

WE ANALYZE IN THIS CHAPTER THE PERFORMANCES of the ASTRE algorithm on synthetic

4.1 THE ROADS TRACKING ALGORITHM

The ROADS point tracking algorithm can handle points entering and leaving the scene, as
well as missing and spurious points. It requires the setup of several parameters, that are listed
in Table 3.

73

74

| ASTRE PERFORMANCES

w smoothness model parameter
dmax | maximal allowed speed
@max | maximal allowed smoothness criterion

s scope width parameter
amax | max. # of missing consecutive points on a track
Pmin | min. # of present consecutive points on a track
FY,FY | optimization cut-off constants
hmax | max. # of hypotheses made when optimizing

Table 3: Parameters used in the ROADS algorithm.

The criterion measuring the local smoothness of a trajectory on the consecutive points
(x,y,2) is

VIV Y- vy, 2)]]
v, y) | + vy, 2)|

v(x,y)-v(y, z)
VOG- [v(y, 2

exyz)=w|l—)”—l—(]—w) l]—Z

where v(x,y) =y —x. As we can see, this criterion combines (with a weight parameter w) an
angular variation (first term) and a speed variation (second term). Assume that My objects
are tracked until the k' frame, and Ny ;1 points are observed in frame k4 1. The trajecto-
ries already constructed can either link to one of the observed points, or to a missing “slave
measurement”, meaning the corresponding object in frame k 4 1 is missing. Additionally, a
point of frame k 4+ 1 can be tagged as spurious. All these possibilities are called individual
assignments.

Each individual assignment a has a cost c(a). The cost of linking a trajectory to a point in
frame k + 1 is the smoothness criterion as defined above (if one of the past measurements is
missing, we estimate its position through linear interpolation). The cost of considering a point
in frame k + 1 as spurious and the cost of linking a trajectory to a slave (missing) measurement
are both equal to the value of the parameter @max (eg. a missing point has the cost of the
worst possible trajectory continuation). The algorithm restricts its possible assignments using
its cut-off values, for instance, two points in consecutive frames can be linked only if they are
at most dmax pixels apart.

The local cost of all the individual assighments between two consecutive frames is obtained
by averaging their costs. Let Ak = {a;,..., ap} be the set of individual assignments between
frame k and k + 1, that is, such that every trajectory tracked in frame k appears in exactly
one of the assignments, and every measurement in frame k + 1 appears in exactly one of the
assignments:

The optimization of this cost for a fixed k is a minimum-weight perfect matching problem, and
can be solved efficiently using for instance the Hungarian algorithm [Munkres, 1957]. Finally,
the global motion model averages costs over the whole sequence,

K—1
CA",., AR —1) = kM, AY)
k=2

4.1 THE ROADS TRACKING ALGORITHM \

where A is a multi-assignment A = (A2, ..., AK=1). Other optimization objectives are: as many
points as possible should be included in a trajectory, and there should be as few trajectories
as possible. In its generality, the global motion model optimization is a NP-hard problem,
thus intractable in practice. One of the approximation made by the ROADS algorithm is to
sequentially optimize the global model on a restrained time window (typically using s = 2 or
s =3).

AKS — argmin CS(AKS)
Ak:s

where

s
Ck:s (Ak25) — Z Ck+p—1 (Mk+p—1,Ak:S[pD
p=1

and AKS = (AK, ., A*Ts71) is a multi-assignment. The approximation to the global solution
is then
A = (AZS], .., AKCTs ().,

This approach results in an initialization problem at the beginning of the sequence: the
assignment between the first two frames is considered given. To mitigate this strong require-
ment, the ROADS algorithm uses a “minimal-motion” criterion c(x,y) = ||y —x|| to initialize
the assignment between the first two frames of the sequence, and then a successive up- and
down-processing to reduce the imprecision of the initial assignments. We refer the reader to
Veenman, Reinders, and Backer, 2003b for a detailed explanation, including how tracks can be
ended and started.

The core of the ROADS algorithm (see Algo. 7) is the computation of the local scope op-
timization. In order to compute A¥* at each frame k, the algorithm recursively enumerates
all potential assignments between successive frames in the scope. Of course, this set of as-
signments is too large to be exhaustively enumerated, and therefore the algorithm uses a
branch-and-bound approximation strategy. It first makes an “optimal cost bound” guess Cy,
by initializing the global solution on the time scope with the local solutions of the minimum-
weight perfect matching between each two consecutive frames in the scope. This cost bound
is then gradually lowered.

At each recursion step (that is, each frame in the scope), the bound on the current optimal
matching cost is lowered by using a cost-bound constraint called ymax. It is derived from the
cost C‘r;in = CK(My, Al;in) of the best possible assignment Ar);in between frames k and k + 1
(which can be obtained by the Hungarian algorithm) and the current global cost bound Cy, by

Ymax = min(F} CX;p, FY Cy /s'),
where Fr > 1 is the local cost factor, Fg > 1 is the global cost factor and s’ is the length of the
remaining scope.

The intuition behind this bound is that the cost of the assignment at frame k corresponding
to the optimal solution on the time scope cannot be too far from the cost CK. of the optimal
(local) assignment between the frames k and k + 1, and that the cost of the assignment on the
time scope is more or less uniformly distributed between all pairs of frames, and thus should
not be too far from Cy/s’. To enumerate the successive best assignment between frames,
ROADS uses Murty’s algorithm [Murty, 1968] that takes a cost matrix D¥ and a set of previous

75

76

| ASTRE PERFORMANCES

assignments Y and returns the next best assignment not in Y. The set of all assignments

between frames k and k + 1 is denoted by Uk.

The costMatrix(A¥~1,k) function returns a matrix containing the cost of each possible

assignment between a trajectory of AX~! and a point of the kth image.

Algorithm: ROAD(AK1 k, Cp, AKS)
input : A*~T the previous assignment,

k the current frame number,

Cyp the current cost bound,

AK:S the current best assignment
output: AX:S the new best assignment
D* « costMatrix(A*—T, k)
if s = 1 then

Al;in = minCostAssignment (D)
if C*(M¥, Ak,) < Cy, then
| AN = (A
end
else
Y+~ o
repeat
A + nextBestAssignment(Y, D)
Y + YU{A}
Co «+ Ck(MK,A)
Too1 < AKS [2.5]
R+ ROAD(A,k+1,s—1,Cy — Cop, Tso1)
AKS — (A) =R
if Ckis(MK, AkS) < Cy, then
Cb — Ck:s(Mk’ Ak:s)
Al;(:)sl — Ak:s
end
Ymax = min(F} CK, , F¥Cp/s)
until Y = U¥ or Cy > Cy, or Co > Yimax
end
return A];éfl

Algorithm 7: Core of the ROADS algorithm

4.2 EXPERIMENTAL SETUP

In the following, we propose to compare the NFA algorithm with ROADS to evaluate its
strengths and weaknesses against a state-of-the-art solution. We start with experiments on
synthetic data, similar to those used by the authors of ROADS in their presentation papers
[Veenman, Reinders, and Backer, 2003a,b]. Let us first briefly present the way they generate
trajectories using the Point-Set Motion Generation (PSMG) algorithm (experiments having dif-

ferent parameters will be signaled):

4.2 EXPERIMENTAL SETUP | 77

e the initial position of each trajectory is chosen uniformly at random in the first image;

e the initial velocity magnitude is chosen using a normal random variable vy ~ N(p =
5,0 = 0.5) and its angle B is chosen using a uniform distribution in [0, 271];

Vit ~N(p =vy,0=0.2)
Brr1 ~N(p =By, 0=0.2).

The image domain is divided in 100 x 100 pixels, and the length of the sequence is set to 20
frames (see Fig. 41 for an illustration of the trajectories generated). Most of the experiments
are realized with 20 trajectories (like in the ROADS paper).

Since the ROADS authors were comparing their algorithm with an algorithm that did not
allow trajectories entering or leaving the scene, they required that all trajectories fit completely
inside the frames and span the whole sequence, and we will usually do the same (if a trajectory
does not fit inside the frame, we regenerate it). They also impose that in the experiments
where points are missing, all points are still detected in the first and last two frames. To
have experiments coherent with theirs we generally impose the same constraints, but in some
experiments (with a great number of trajectories in the images) constraining trajectories to stay
inside the frame seemed unnatural since it forced trajectories to have a beating and swirling
motion inside the frames. We chose to keep a constant number of trajectories, but to allow
them to leave the image, and when this happens, to generate a new random trajectory that
starts on the border of the frames (we force all trajectories to have at least three points in the
frame).

e the velocity magnitude and angle are updated in each frame using {

Figure 41: Point-Set Motion Generation (PSMG) algorithm. Here we display a sample of 20 trajectories
spanning 20 frames generated with the PSMG algorithm, that will be used to produce syn-
thetic data to assess the performance of the ROADS and NFA algorithms. The trajectories have
an homogeneous and smooth motion. The points of some trajectories have been highlighted
to show the speed.

Additionally, we impose the following constraints:

e we quantize the trajectory coordinates to the nearest integers, thus implicitly defining the
scale of the measurements to the size of one pixel;

e to avoid ambiguities when comparing the detection results to the ground truth, trajec-
tories cannot share points (otherwise we regenerate one of the trajectories) and when
adding noise points we avoid covering already existing points. See Fig. 42 for an illustra-
tion of various densities of noise points;

e when we remove points we target solely trajectory points (we do not remove noise points,
so we can make experiments with a varying number of trajectory points removed, while
keeping a constant number of noise points). We choose a certain uniform probability «
of removing a point.

78

| ASTRE PERFORMANCES

Y . v

. B .’ - * o ooep '....n'.‘ .
.o . .0.' . L . :.- et) et .,

. . P o o,
. . * [. > 1 PR S o
. . . - \ - - cesd .o 0ot o
. o . AN o, ce . .'.. o
L b e ¢ Sl o s) .
. . Ll . . - . S .’.. B3 ':.' e RS
R) A S W3

. . . ., ce. . - ’

. > o 0 PO L R

. . . o .,

. .
. H .o, . .« . . .
° .t * v . L . ve, o .

. . ETI e e [F

Figure 42: A sample of 50, 100, 200, 300 points uniformly drawn in the image plane. When sequences
contain a great number of noise points, the human eye is still capable of detecting trajecto-
ries, but, to our knowledge, most of the tracking algorithms have difficulties to extract them
correctly.

Performance estimates gathered in the experiments below are averages of a measure over
400 runs of the algorithms. However, in some experiment results, the measure that we compute
might be undefined (for instance when no trajectory was detected). In this case, we only take
experiment results that have a defined measure into account, and measurements might thus
consist of averages of less than 400 repetitions.

A well-known interest of a-contrario methods are their small number of parameters, which
simplifies their use and their study. More accurately, the NFA algorithm has exactly one ex-
plicit parameter, the maximal NFA value of a trajectory we can extract. The effect of this
threshold is simple: it drives the selection of a subsequence of the successively extracted tra-
jectories. In other words, if ¢ <1, T(e) C T(n), where T(x) is the set of trajectories extracted
by the algorithm for a maximal value of the NFA equal to x. This implies that changing the
threshold will not dramatically change the results, contrary to methods like ROADS that use
their parameters in the computations. In practice, as usually done in a-contrario methods (see
Desolneux, Moisan, and Morel, 2008) and unless otherwise specified, we set this threshold to 1.

In contrast, ROADS has many parameters, which can be tuned to set ROADS in different
“modes” that may be better suited to certain types of data. Since these parameters might (at
least in theory) be learned on data, we felt it was fair to try several sets of parameters and
show the best results that can be achieved in the comparisons.

Here is the way we proceeded: we tested six “modes” for the ROADS algorithm on a small
batch of data (40 repetitions) for each experiment. We then selected the three modes that would
compare the best with the NFA algorithm on the various experiments. Some of the modes will
have strengths and weaknesses compared to others, but they mostly have the same global
behavior. In practice, the strengths and weaknesses of the NFA method when compared to
ROADS do not dramatically change when including several modes, rather than just the most
general parameters for the ROADS algorithm (mode 1 below). However, we include the results
of the three selected modes for the sake of completeness.

To be fair with the ROADS algorithm that relies on knowing the maximal speed and maximal
smoothness criterion of the trajectories in the data, we compute these values and give them to
the algorithm. More precisely, for each experiment, and each parameter (eg. number of noise
points added), we compute the maximal speed dmax and maximal smoothness criterion @max
before crippling (eg. removing points) across the batch of 400 repetitions (rather than on a
per-file basis), and we feed them to the algorithm when processing those 400 repetitions.

The first mode is the general ROADS algorithm with the minimal number of present points
set t0 pmin = 1 and the maximal number of interpolated points equal to amax = +o0. The
second mode is ppyin = 1 and amax = 0, that is, we disallow interpolation. The third mode is

4.2 EXPERIMENTAL SETUP \

Pmin = 3 and amax = 0, we disallow interpolation and we expect to see at least 3 consecutive
points on each trajectory segment.

For the three other modes, we set pmin = 3, Amax = 3, but rather than choosing the maximal
speed and maximal smoothness criterion as given by their maximal value on the batch of 400
repetitions, we select in turn: dfnax = 0.8 dmax, (p?nax = 0.8 @max for mode 4, dISnaX = 0.5 dmax,
(pfnax = 0.5 @max for mode 5 and dgax = 0.5 dmax, (pfnax = 0.8 - @max for mode 6.

The other default ROADS parameters given in the implementation that was sent to us by
its authors were kept unchanged (w = 0.1, F; = Fg = 1.05, s = 2). We tried to make some
experiments with s = 3, but this would generally not change the results (and sometime even
have a negative impact) and be much more computationally intensive. The maximal number
of hypotheses hmax that ROADS can explore when trying to find the best assignment in the
time scope has been kept equal to 300 as in the given implementation.

After running all the ROADS modes on small batches of repetitions, we selected modes 1
(original ROADS), 3 and 4 as giving the best results. They will now be called modes A, B and
C (see Table 4). Note that these modes are not real algorithms, since their parameters depend
on true data values (dmax and @max) that are not estimated but computed from an oracle. In
that sense, the methodology we use to compare the NFA and ROADS algorithms minimizes
the issue of parameter selection that is recurrent with ROADS (but this issue will be discussed
later, in particular in Section 4.3.4). Note also that ROADS results could probably be slightly
improved by trying a larger number of parameters, however our goal is not to make a study
of ROADS, but rather to give an idea of the state of the art performances, to make it possible
for the reader to appreciate the NFA results.

mode ‘ Pmin (Qmax dmax Pmax
A 1 +00 1- dmax 1 ©max
B 3 o 1+ dmax 1 @max
C 3 3 0.8 dmax 0.8 ©max

Table 4: Parameters defining the three (best) modes of the ROADS algorithm in the experiments used for
comparison with the NFA algorithm. Note that these three modes are based on an oracle, that
observes the values of @max and dmax on the (supposedly unknown) true trajectories.

4.2.1 Comparison criteria

In the literature, tracking algorithms are generally compared using two sets of criteria: the
qualitative description of the situations that the algorithm can handle (missing points, entry of
points, etc), and the quantitative criteria given by the number of real structures found in the
sequence (eg. the number of real trajectories, of real links between points, etc.), as well as the
precision and recall of the algorithm for these different structures, defined by

of correct structures found
of structures found

precision (4.1)

of correct structures found
of actual structures

and recall (4-2)

The precision allows to measure the number of false positives (more precisely, 1 — precision
is the proportion of false positives among found structures), while the recall is linked to the

79

80

| ASTRE PERFORMANCES

number of false negatives (1 — recall represents the proportion of false negatives among ac-
tual structures). It is important to realize that the analysis of an algorithm must be done by
considering simultaneously the precision and recall (or equivalent variables), since varying
a parameter or a threshold of an algorithm generally does not improve both quantities but
sets a different trade-off between the two, resulting in a better recall and worse precision or
vice-versa.

In some experiments, the presence of noise points limits the interest of the number of real
(whole) trajectories found as a significant criterion, although it is widely used in the literature.
Indeed, a well-placed noise point can sometime better fit the trajectory than its “real” counter-
part, thus giving a realistic and usable trajectory as output, yet one that will not be counted as
a real trajectory. We therefore chose to generally use the number of correct links as a significant
structure for the precision and recall criteria. A link is simply two points that appear consecu-
tively on a trajectory (possibly separated by a hole). Thus, if a noise point better fits a trajectory
than its “real” counterpart, we will only “miss” two correct links (that include the real point),
and “create” two false links (that include the noise point). However, when using the number
of correct links, we do not account for trajectory over-segmentation, under-segmentation, or
mixing. More precisely, if we split a trajectory in halves, or if we join two distinct trajectories,
we will barely notice it from the point of view of the number of correct links criterion, but we
would have noticed it using the number of correct trajectories criterion. The same is true for
“mixed” trajectories: if two trajectories cross at a point in time, we might start by following
trajectory A, and then either choose to continue with trajectory A or to “hop” on trajectory B.
In the latter case, the number of correct links criterion will barely be affected, but the number
of correct trajectories criterion would. This particular problem of crossing trajectories appears
however to be difficult to solve properly, and would certainly requires a priori knowledge. We
believe that once the trajectories have been detected, even if they have been mixed, a simple
post-processing task might be sufficient to split crossing trajectories in part at the crossing
points, and reconstruct the real trajectories using an a priori (having the trajectories bounce if
we are following billiard balls, or having them cross if we are looking at fishes in an aquarium).

For the qualitative criteria, ROADS is able to account for missing and spurious points, as
well as points leaving and entering the scene. The NFA algorithms come in two flavors, one
that allows for missing points, and the other that does not. The latter is used for computational
reasons (it is much faster) in some of the following experiments. Both NFA algorithms allow
spurious points, as well as points leaving and entering the scene.

4.3 TRAJECTORIES WITHOUT HOLES

4.3.1 Variable number of spurious points experiment

First, we investigate the influence of noise (spurious points) on trajectory detection. We
generate sequences spanning 20 frames and having 20 trajectories, and we add o to 320 noise
points uniformly at random to each image. Since we do not remove points, we can use the
version of the NFA algorithm that does not take holes into account. We then run the NFA
(¢ = 1) and the ROADS (modes A,B,C) algorithms, and compare the results by computing
the average recall and precision over 400 repetitions. For the precision estimate, the averaging
is limited to the repetitions that lead to at least one detection, since the precision is not well
defined when no structure is found.

As we explained earlier, the precision and recall are computed for two different criteria:
the number of correct links and the number of correct trajectories. For the criterion based on

4.3 TRAJECTORIES WITHOUT HOLES \

spurious points | o 40 120 200 280 320

NFA | 201 202 189 155 7.1 6.1
ROADS(A) | 20.0 70.0 151.5 227.1 300.9 335.7

Table 5: Average number of detected trajectories depending on the level of noise. We compare the
average number of trajectories detected by the NFA and ROADS algorithms on data made of 20
real trajectories spanning the entire sequence plus a varying number of spurious points (from
0 to 320) in each frame. We see that NFA is very conservative in its detections (it only detects
the trajectories that it considers to be non-ambiguous), and this results in a high precision (see
Fig. 43). On the other hand, ROADS makes many false detections (it should not find more than
20 trajectories per sequence).

the number of correct links (Fig. 43), the NFA algorithm performs much better in terms of
precision: the precision remains very high (above 80%) for the NFA algorithm, but drops very
fast for ROADS (under 20% when the number of spurious points exceeds 140). This illustrates
a classical property of a-contrario detection models: the robustness to noise. As concerns the
recall, the NFA algorithm performs better than all versions of ROADS up to 200 spurious
points, and is slightly under the C mode of ROADS beyond this level of noise. Considering
the number of false detections made by ROADS at these levels of noise (the precision is under
10%), this is not very significant and the global comparison is clearly in favor of the NFA
algorithm. Table 5 clearly illustrates this: if ROADS manages to find a lot of correct links,
it is solely because it makes a huge number of detections when the number of noise points
increases, whereas the NFA algorithm correctly finds 20 trajectories in low noise and makes
fewer detections when the noise level increases.

When we look at the number of correct trajectories found (Fig. 44), we see that ROADS is
very good when there are no noise points, which will be confirmed below. The NFA algorithm
is a bit less efficient (both in terms of precision and recall) when the number of spurious
points is under 40, but for higher levels of noise it is much more robust than ROADS, whose
performances collapse very quickly (both in terms of precision and recall). Anyway, we argue
here that the correct number of trajectories criterion, although often used in the literature, is
not the best way to assess the quality of algorithms in the case of spurious points. As we
remarked before, there are plenty of reasons why a detected trajectory could be counted as
undetected while it is very near an actual trajectory (a missing endpoint, a noise point fitting
better the trajectory smoothness, trajectory crossings, etc.). Also, it is clear that applications
based on data corrupted by a medium or high level of noise are more interested in a high rate
of local point tracks (links) than in the unlikely perfect reconstruction of each trajectory.

4.3.2 Variable density experiment

We now test how the algorithms behave when we increase the number of points. In this ex-
periment, we do not consider spurious or missing points, so there is no noise and the difficulty
of the trajectory detection problem only comes from the ambiguities produced by the large
number of mixed trajectory points. We generate sequences of 20 frames, containing 10 to 140
points moving according to the PSMG model, where we allow trajectories to leave the image
frame (when a trajectory leaves the image frame, we generate a new trajectory starting at a
random position on the image frame, in order to keep a constant number of points throughout
the sequence). Then we compute the precision and recall for the correct links criterion (Fig. 45)
for the ROADS and NFA (without holes) algorithms.

81

82 | ASTRE PERFORMANCES

recall precision precision
1w L 17 T
1 T —NFA ' /
0.8 + 0.8 0.8 & /./
06+ 06+ 06 1 4
0471 ZNFA 04T N 041 , i
0.2 1 \'\’“\““ 502+ R %n(mm B 021l 7
T ROADS A T em I ROADS A L e
0 R S S — 0 T R S B S e) 0 +— "x‘([e
0 40 80 120160200 240 280 320 0 40 80 120160200 240 280 320 0 02 04 06 08 1
number of spurious points number of spurious points recall
Figure 43: Influence of spurious points (# correct links criterion). On synthetic data containing 20 real
trajectories spanning the entire sequence (20 frames) plus a varying number of spurious points
(from o to 320), we compute the average recall (left) and precision (middle) obtained with the
NFA and ROADS algorithms over 400 realizations, as a function of the level of noise (number
of spurious points), or together (right). The most striking result here is that the precision of
the NFA algorithm is almost constant, no matter the number of spurious points. This means
that the NFA algorithm makes very few false detections (which is how we designed it), while
keeping a recall rate that is above the one of ROADS as long as the number of spurious points
is under 200 (which is more surprising). On the contrary, the poor precision of the ROADS
algorithm in medium or high noise conditions makes its recall values quite insignificant: if
ROADS finds a large number of correct links, it is mostly because it proposes a high number
of links, most of which are false detections (see also Table 5).
recall precision precision
17 17 1.
i 1
0.8 7 0.8

0.6 T
04t

0.2 1

0 Tttt + + At + + + + ' ' ' ' ' ' ' |
0 40 80 120160 200240280 320 0 40 80 120160 200240280 320 0 02 04 06 0.8 1
number of spurious points

T 0.8
0.6 T 0.6 1
NFA NFA

04 0.4 7

ROADS B 0.2+t
ROADS A

ROADS A 021

oLy 3 ROADS B ol e

number of spurious points recall

Figure 44: Influence of spurious points (# correct trajectories criterion). The results of the experiments

conducted in Fig. 43 are now analyzed with a different criterion (the number of correct
trajectories, instead of the number of correct links) for the definition of precision and recall.
We can see that the NFA algorithm behaves better than all ROADS modes as soon as there is
a reasonable level of noise, but still behaves pretty poorly in comparison with the “number of
links” criterion (see Fig. 43). In fact, the number of exact trajectories is a questionable criterion
in the presence of noise, so we shall not use it any more in the following.

4.3 TRAJECTORIES WITHOUT HOLES | 83

recall precision precision

NFA
17 _— - — . 17 ~;\/ 17 —ee———
| - ~ _ _ JROADSB I s { 5
081 TR TT=L 0.8 | Ttteei._ “ROADS B ggl -~
i N . { \“ROADS A 1)
06 1 ROADS A | 06 1
0.4 1 —NFA 04 04
0.2 1 021 02l
— : 0 : 04—y
20 40 60 80 100 120 140 20 40 60 80 100 120 140 0 02 04 06 08 1
number of points number of points recall

Figure 45: Influence of the number of trajectories Average recall (left) and precision (middle) are com-
puted for the number of correct links criterion on 400 repetitions of synthetic data made of
a given number of random trajectories (varying from 10 to 140) in a sequence of 20 frames.
The analyzed algorithms are the three modes of ROADS (A, B, C), and two variants of the
proposed NFA algorithm: the standard variant (threshold ¢ = 1 on the expected number of
false alarms), and the no-threshold variant (¢ = +o00). As we can see, the precision of both
NFA variants is very high (like for ROADS B and C), but the recall of the standard NFA al-
gorithm is significantly worse than the one of ROADS. In this setting where no noise points
are present, these missing detections can be avoided by removing the thresholding process in
the NFA algorithm: for this ¢ = 400 variant, both recall and precision are as good as the best
modes of ROADS.

When using the standard threshold (¢ = 1) in the NFA algorithm, we obtain results that
are similar (slightly better) than ROADS in terms of precision but significantly worse in terms
of recall. However, knowing that there is no noise in these data, it makes sense to try to set
the NFA threshold to +oo (that is, no threshold), and in this case the results obtained by the
NFA algorithms are similar to the best modes of ROADS. This is an unexpected good surprise
for the NFA algorithm, that detects trajectories in a greedy way (by iterating a best-trajectory-
detection/trajectory-removal process) without considering at all the global inter-frame assign-
ment problem like ROADS. In the absence of noise points, one could have expected this as-
signment step to bring a significant edge to ROADS.

4.3.3 Sensitivity to data smoothness

The trajectories generated in the previous experiments are somehow smooth and quasi-
linear (see Fig. 41). In order to see if the algorithms can cope with trajectories that do not
completely fit the model, we try to detect trajectories having a potentially high acceleration.
For that purpose, we consider different values of o, the standard deviation of the acceleration
magnitude used in the PSMG synthesis procedure (see the very beginning of Section 4.2). The
effect of this parameter on the synthesized trajectories is illustrated in Fig. 46.

We first reproduce the last experiment (Fig. 45), in which there are no noise points and
the number of synthesized trajectories ranges from 10 to 140, and evaluate the effect of the o
parameter both for the unthresholded NFA algorithm (Fig. 47) and the ROADS B algorithm
(Fig. 48). Whereas the performance of the NFA algorithm barely depends on o (and remains
high), ROADS exhibits a high sensitivity to this parameter, and its performance quickly col-

84

| ASTRE PERFORMANCES

Figure 46: Changing the acceleration variance. A sample of 20 trajectories generated using the PSMG
algorithm, when the standard deviation of the acceleration magnitude (o) is 1 (left) and 4
(right). The points of two trajectories have been highlighted to show the speed. We study
the sensitivity of the algorithms to data variability by analyzing their performances when we
increase o.

lapses as o increases. The same conclusion arises from the analysis of data generated with 10
noise points per frame plus 20 synthetic trajectories (see Fig. 49).

Thus, the sensitivity to data smoothness is a major difference between the NFA and ROADS
algorithms. The poor results obtained by ROADS for o = 1 (see Fig. 48) could probably be
improved by a specific choice of the ROADS parameters (specially adapted to o = 1), but this
kind of optimization will not be efficient on most real-world data, since one can expect to
observe a high variability of accelerations on such data. Conversely, the robustness of the NFA
algorithm to the o parameter is an indication that it can probably handle well real-world data
containing various levels of acceleration.

4.3.4 Parameter tuning

One major interest of most a-contrario models is that they permit to obtain detection al-
gorithms “without parameters”, or, more precisely, algorithms for which there exist natural
values of the parameters that work well in all situations. Both NFA algorithms we propose
here (the no-hole and hole versions) have only one parameter: the threshold ¢ used to decide
whether a trajectory should be detected or not. Since ¢ corresponds to an upper bound on
the expected number of false alarms in pure noise data, its default value is classically set to 1
(see Desolneux, Moisan, and Morel, 2008). In Fig. 50, we examine the sensitivity of the NFA
no-hole algorithm with respect to the choice of e. We use the same experimental setting as
in Fig. 43 (20 frames containing 20 real trajectories plus several spurious points), and examine
how recall and precision are affected by different choices of e. The results clearly show that
the default value ¢ = 1 (log;, ¢ = 0) is nearly optimal, in the sense that it is small enough to
guarantee a strong precision control, and large enough to offer good recall performances. It is
nonetheless interesting to notice that slightly better performances (same precision and better
recall) can be obtained with greater values of ¢ (typically log;, ¢ = 2 or 3).

In Fig. 51, the average precision/recall curve obtained with the NFA algorithm for different
values of the threshold log, , ¢ (in the case of 160 spurious points) is displayed on the left. On
the right, we report the average performances of ROADS on the same data points, considered
for several values of the two main parameters of this algorithm, namely the maximal speed and
the maximal smoothness. The maximum speed parameter varies from the actual value in the
[—50%, +50%)] range (from one curve to another) and the maximum smoothness varies from

4.3 TRAJECTORIES WITHOUT HOLES |

recall precision
oc=04

17 — /:rr =04 17 —06
08l ————r =00 o] —_—-\U:oé

. i ka:O‘S . T \071.0
06 1 g = 10 06 T 7T
0.4 + 0.4 +
0.2 1 0.2 +

0 o ; ; ; ; ; i 0 ; ; ; ; ; ; i

20 40 60 80 100 120 140 20 40 60 80 100 120 140

number of points number of points

Figure 47: Influence of the data smoothness (unthresholded NFA algorithm). We use the same experi-

mental setting as Fig. 45, and examine the sensitivity of the unthresholded (e = co) NFA algo-
rithm to the smoothness of the analyzed synthetic data. More precisely, we consider several
values of o, the standard deviation of the acceleration magnitude (a parameter of the synthesis
algorithm, PSMG), and estimate the precision and recall (correct links criterion) as functions
of the number of synthetic trajectories. We can see that the NFA algorithm is extremely robust
to o, since both the precision and recall performance curves remain unchanged when o varies.

recall precision
17 1
0.8 7 \ 0.8 +
| —o =04 T —o =04
0.6 1 0.6 &
0.4 1 =06 0.4 1 —0=0.6
0.2+ ~o = 0.8 0.2 + ~0 =0.8
T ~o=1.0 T ~o=1.0
0 o ; ; ; ; ; i 0 ——t ; ; ; ; ; i
20 40 60 80 100 120 140 20 40 60 80 100 120 140

number of points

number of points

Figure 48: Influence of the data smoothness (ROADS B algorithm). We analyze the same data as in Fig.

47, now with the ROADS algorithm, mode B (the best mode for these data, see Fig. 45). Con-
trary to what happens for the NFA algorithm, the ROADS method exhibits a severe sensitivity
to o, since both recall and precision performances, that were at the same level as the NFA al-
gorithm for o = 0.2 (grey shadow curves), are strongly affected when o increases. As we shall
see in Section 4.5, the sensitivity /robustness to data variability has strong consequences when
real-world data are analyzed. Note incidentally the strong similarity between the recall and
the precision curves, which comes from the fact that in this set of experiments, the number of
detected links is most of the time equal to the number of actual links (see Equation (4.1) and
(4.2)), probably because there are no spurious points.

85

86

| ASTRE PERFORMANCES

recall precision precision
1 1+ 1 o
T :\\\fﬁ]m\ r /,'
0.8 t 0.8 7 N 0.8 1 s
T T R \ [. /',
1 1 \ 6+ 7.
0.6 1 __NFA 0.6 1 . \\ 0.6 [/.
041 0.4 1 RN 0.4 1 pe
1 /’ : 1 NN : | ’4,'
0.2 1 ROADS B 0.2t AN /l\‘()A\I)S B 02+ &
ol ‘ T -ROADS A T " ™==-—""ROADS A ol / S
0 05 1 2 3 4 0 05 1 2 3 4 0 0.2 04 06 08 1
acceleration standard deviation acceleration standard deviation recall

Figure 49: Sensitivity to data smoothness. The average recall and precision of the ROADS algorithm
(modes A, B, C) and the standard NFA algorithm (¢ = 1) are compared in synthetic data made
of 10 noise points per frame plus 20 random trajectories spanning 20 frames, in function of the
standard deviation of the acceleration magnitude, a parameter used in the PSMG synthesis
procedure. These results corroborate the ones obtained in Fig. 47 and 48: the performances of
the NFA algorithm are not too much affected by the increase of o (except for the recall when
the variance becomes large, probably because the problem of recovering the true trajectories
becomes objectively difficult), whereas the performances of all ROADS algorithms collapse,
both in terms of precision and recall.

the actual value in the [—95%, 50%)] range (inside each curve). Note that the best performances
of ROADS are obtained inside these ranges (—25% speed, —90% smoothness).

As we can see, not only the performances of ROADS are way under those of NFA on these
data, but also the parameter tuning is much more difficult and crucial (we have to explore
carefully a bidimensional domain, while ¢ = 1 is almost optimal for the NFA algorithm).

4.3.5 NFA as a criterion for trajectory selection

Contrary to ROADS, which is by nature an algorithm (relying in particular on some heuris-
tics), the NFA we propose here is first and foremost a criterion to compare trajectories. The
greedy algorithm we described, based on the iteration of a “best trajectory (minimal NFA)
detection / trajectory removal” process, is only one possibility to use the NFA criteria (3.5)
and (3.23), and it is possible to design other algorithms based on these criteria. In particular,
given a trajectory detection algorithm, it is always possible to use the NFA criterion as a post-
processing step, that simply keeps from the output of the considered algorithm the trajectories
having a NFA under a certain threshold e.

We tested this possibility with the ROADS algorithm, and reported in Fig. 52 the results
obtained on the synthetic data used in the previous section (parameter tuning). It appears that
the mixed ROADS+NFA algorithm we obtain this way performs much better than ROADS
alone in terms of precision (because the NFA filtering permits to eliminate most false detec-
tions), but the performances in terms of recall do not attain the ones of the NFA algorithm
alone. Hence, the “NFA filtering” strategy is efficient but does not provide a particularly in-
teresting new algorithm when applied to ROADS. It is not impossible, however, that such a
strategy could be successful, in particular in situations where only special kinds of trajectories
appear and a good detection algorithm (in terms of recall) exists. In that kind of situation, one
could expect NFA filtering to increase the precision up to a high level, without damaging to

4.3 TRAJECTORIES WITHOUT HOLES |

recall 400 precision 4
1 L %
0.8 7 0.8 +
0.6 7 0.6 7
0.4 1 0.4 +
0.2 1 0.2+
0 ; ; ; ; ; ; ; i 0 ; ; ; ; ; ; ; i
0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320
number of spurious points number of spurious points

Figure 50:

Figure 51:

Influence of the NFA threshold ("). We consider the same experiment as in Fig. 43 (that
is, 20 real trajectories spanning 20 frames, with a given number of spurious points in each
frame), and examine the influence of the threshold ¢ arising in the NFA algorithm. Recall and
precision curves are plotted in function of the number of spurious points, for different values
of log;, € (ranging from -4 to +oc0). We can see that the good precision control predicted by
the theory for ¢ < 1 (log;, ¢ < 0) is well achieved, since the first significant precision losses
occur around log;, ¢ = 3. Hence, the default value log;, ¢ = 0 is a good compromise in this
experiment, even if slightly better recalls (without significant precision losses) can be achieved
by using greater values like log;, ¢ = 2.

1=10 o 1
0.8 0.8
=1 =1
L0.6 .2 0.6 1
A Rz
o o
£0.4 £0.4 1
o o 1
0.2 0.2 \\j:
0::::::::10:: O
0 02 04 06 08 1 0 02 04 06 08 1
recall recall
NFA ROADS

Performance and parameter tuning. We consider a particular case of Fig. 50, that is, synthetic
data made of sequences of 20 frames containing 20 real sequences and 160 spurious points on
each frame. The average performances in terms of precision/recall is then evaluated for the
NFA algorithm (left) and the ROADS algorithm (right), with varying values of the algorithm
parameters. For the NFA algorithm, the only parameter is the threshold ¢ (or, log;, ¢, as
displayed on the figure), and we can see that the default value log;ye¢ = 0 is very near
to be optimal, as was remarked earlier in the comment of Fig .50. For ROADS, not only
the performances are much worse (especially in terms of precision), but they are also quite
sensitive to the choice of the maximum speed and maximal smoothness parameters.

87

88

| ASTRE PERFORMANCES

—— NFA

0.8 | e NFA,e=1

----- ROADS best

=1
S 0.6 ROADS
e — — ROADS+NFA best
504 ROADS-+NFA

0.2

0

0 02 04 06 08 1
recall

Figure 52: ROADS output filtered by the NFA algorithm. We consider the same synthetic data as in
Fig. 51, but now add to the comparison of NFA and ROADS algorithms a combination of them
that consists in detecting trajectories with ROADS and keeping only those having a NFA under
a certain threshold ¢. Since each algorithm depends on parameters (1 for NFA, 2 for ROADS,
3 for ROADS+NFA), we explore systematically all parameter values and compute the upper
performance envelope (curves named best). As we can observe, the major drawback of ROADS
(which is its high rate of false detections) can be corrected by NFA filtering, which results in
a dramatic increase of precision (up to the level of the NFA algorithm alone). However, this
correction does not permit to attain the same level of recall (around o.75 for NFA, versus 0.6 for
ROADS+NFA in the high precision zone). Note also that the mixed ROADS+NFA algorithm
would be much more complicated to use than NFA alone, in reason of the 3 parameters that
have to be set.

much the recall performances. Note that such a strategy guarantees, thanks to the properties
of the NFA criterion (3.1), the control of the number of false detections in random data.

4.4 TRAJECTORIES WITH HOLES

We now examine the performances of the second NFA algorithm (Section 3.3), that is able
to handle trajectories with holes. We compare it to ROADS using the same kind of conditions
as in Fig. 43 (20 real trajectories, 20 frame, several spurious points added in each frame),
except that we now consider incomplete trajectories (20% of the points of the true trajectories
are removed before spurious points are added). The conclusions made in the no-holes case
remain unchanged (see Fig. 53): the ROADS algorithm detects true trajectory links as well
as the NFA algorithm, but at the price of many false detections, whereas the NFA algorithm
makes almost no false detection (the precision remains above 0.9, even for 70 spurious points
per frame).

4.5 TRAJECTORIES OF REAL-WORLD IMAGES

4.5.1 The snow sequence

In this part, we evaluate the relative performances of NFA and ROADS algorithms on a real-
world sequence named snow. To produce this sequence, we filmed falling snowflakes in front

4.5 TRAJECTORIES OF REAL-WORLD IMAGES | 89

recall precision precision
15 15 1 , .
IS = ———NFA i —t
0.8 1 0.8 0.8 1 /o,
Is AN iy,
. N + h
0.6+ ;T{()ADS B 06+ N - 0.6 1 J/ ;
1 -NFA 1 RN 1 I
04 ROADS A 0.4 el S o T 0.4 44
0.2+ 0.2+ ‘~~__~_~~T .—ROADS B 0.2 1 //'
1 1 "~ROADS A v
0 ; i i | 0 f f f ' 0 A+ttt
0 10 30 50 70 0 10 30 50 70 0 02 04 06 08 1
number of spurious points number of spurious points recall

Figure 53: Influence of spurious points for trajectories with holes. We generate 20 trajectories spanning
the whole sequence (20 frames), and remove randomly 20% percent of the points, before we
add a varying number of spurious points (from o to 70). On these synthetic data (with 400
repetitions), we estimate the recall (left) and the precision (middle) of the ROADS and NFA
algorithms for the “number of correct links” criterion. The obtained results are very similar
to those of Fig. 43: the recall values are roughly the same for all algorithms, but only the NFA
algorithm manages to maintain a high precision (above 0.9) as the number of spurious points
increases, while all ROADS variants make lots of false detections.

of a dark metal door with a high-speed (210 fps) camera, and then subsampled the high speed
sequence at 30 fps by taking 1/7 of the original frames. This way, we obtained a classical 30
fps sequence of 40 images, on which we ran a simple point extraction process that we describe
below. The high-speed version was used in the same way in order to build a hand-made
ground truth for trajectories.

We purposefully used a very simple extraction process to produce data as objectively as
possible, without trying to adapt the detection algorithm in a way that would affect (and ease)
the tracking part. The snowflakes (but also some stains on the metal door background) were
detected in the following way: we smoothed the images using a simple Gaussian kernel, and
we computed the mean background image on a few frames of the subsampled (30 fps) se-
quence. We then thresholded the image differences, processed the result with a morphological
closing, and extracted the connected components. For each connected component, we kept the
centroid position, rounded to the nearest point on the integer grid, as a trajectory data point.

In the resulting point sequence, many objects were detected as several close points in the
sequence (in particular the stains on the background and some big snowflakes). This made it
sometimes hard to define the ground truth trajectories. To alleviate this difficulty, we removed
all points in the sequence that were in a certain radius of another point (we chose the smallest
radius that would resolve almost all ambiguities). An example of detections on one frame
of the sequence is displayed on Fig. 54. We finally extracted the ground truth trajectories by
hand.

The resulting point sequence is interesting because it presents a mix of difficulties: there are
widely varying trajectory types (points in the background that practically do not move, very
slow snowflakes with curvy trajectories, very fast snowflakes with almost linear trajectories).
There are missing points (missing detections or detections removed because of the windowing
process), and a few noise points (but the relatively high detection threshold gave more missing
points and fewer noise points).

90

| ASTRE PERFORMANCES

0@
&
PSR, (]
®
O @
i ® © ®
o ®
g fe)
© g
@] o) @ ®
0 48
o) (€]
O ° L
A o]

Figure 54: An image of the snow sequence (inverted grayscale), with overlaid detections.

Finally, we subsampled the high-speed point sequence by keeping only 1/7 of the frames,
and subsampled accordingly the ground truth trajectories. The resulting trajectories containing
less than 3 points were eliminated from the ground truth reference, but the corresponding
points were kept in the data (thus becoming noise points). The final result of this process
(30 fps snow point sequence and associated ground truth) is available on the web site http:
//www.mi.parisdescartes.fr/~moisan/astre/ The first row of Fig. 59 gives an idea of the
ground truth trajectories extracted from the snow sequence.

4.5.2 Parameter tuning

There are several parameters to set for ROADS (see Table 3), and they give varying results.
Namely, we can set the size s of the time scope (we chose 2, giving the best results), the
minimal number p,in Of consecutive present points for a trajectory to be considered (we
chose 1, 3, 5 or 7), the maximal length of interpolation amqx before we loose the trajectory
(we chose o, 4, 8 or +00), the maximal smoothness criterion @max and the maximal speed
dmax. The way to choose the best parameters is not obvious, but it appears on Fig. 55 that
the most important parameter is the maximum allowed speed dmax. The choices pmin = 1,
Amax = 0 and @max = 0.6 are among the best possible for the snow point sequence, and would
probably achieve reasonable performances on similar sequences too. As concerns the choice
of dmax, the ground truth value (160) is much too large, and much better results are obtained
with dmax = 20. This fact, that comes from the inability of ROADS to deal with a variety of
trajectory speeds at the same time, is analyzed more precisely later. Note that the ground truth
value of @max is 0.58.

On the snow sequence, extracting trajectories using the NFA algorithm with holes would
return a sequence of trajectories having a value of log,;,(NFA) varying from —40 to +10,
and the optimal precision/recall values would be obtained by thresholding this value with
log;, € = +5 (see Fig. 56). Even without access to the ground truth, finding this value is rela-
tively easy, since one simply has to look for values slightly above the (nearly optimal) default
value log;, ¢ = 0. This strategy works well in all synthetic experiments we considered earlier,
and also in the present case of the snow sequence. In view of the false detection control offered
when log;, ¢ = 0, such a strategy is probably efficient on most (not to say all) point sequences.

Thus, as we mentioned before, one great interest of the NFA algorithm is that the parameter
tuning step is much more easier than in other algorithms like ROADS, for which it can be

http://www.mi.parisdescartes.fr/~moisan/astre/
http://www.mi.parisdescartes.fr/~moisan/astre/

4.5 TRAJECTORIES OF REAL-WORLD IMAGES | 91

17 (0.40, 0.96) 1 17 171
0.8 1 0.8 t 0.8 1 0.8 t
0.6 I 0.6 1 (0.41,0.67) 0.6 1 (0.41,0.63) 0.6 1 (0.40, 0.62)
0.4 1 0.4} 0.4} 0.4}

o
[\
o
N
o
[\

0.2 :
0 OHHHHH 0 = 0 —————
0 0.5 1 0 0 0.5 1 0 .5 1
11 (0.40, 0.96) T (0.31,0.93) 11 (0.31,0.93)
06 I 0.6 1
0 HHHHH 0 i
0 0.5 1 0 05 1
1 T (0.34,0.98) (0.25,0.97) 1 T (0.25,0.97)
0.8 | 0.8 1
0.6 0.6 1
0.2} 0.2
0 s 0 e 0 0+ e
0 0.5 1 0.5 1 0 O 5 1
T (0.29, 0.98) T 7020,097) (0.20,0.97)
0”:::::::::: J b
0 0.5 1 0.5 1 0.5 1

Figure 55: ROADS parameter tuning on the snow sequence. We vary all ROADS parameters on the
snow point sequence, and show the associated performances in the (recall,precision) plane us-
ing the available ground truth for that sequence. Each column has a distinct amax = 0,4, 8, +00,
and each row has a distinct pyin = 1,3,5,7. Each curve corresponds to a different maximal
smoothness criterion value @max = 0.2,0.4,0.6 and each point of a given curve corresponds
to a different maximal speed criterion dmax = 2,5,10,15,20,25,30,40,80. The big red point
corresponds to the parameters @max = 0.6 and dmax = 20, that seem to achieve a good
precision/recall compromise for all values of amax and pmin. The numbers indicate the corre-
sponding recall and precision.

92

| ASTRE PERFORMANCES

1 _
| — NFA
08 | —40 0 O NFA best
] +oo e NFA default
06
wn
8
£04
0.2
0

0 02 04 06 08 1
recall

Figure 56: NFA parameter tuning on the snow sequence. The performances of the NFA algorithm with
holes on the snow sequence are represented in the (recall precision) plane in function of the
threshold parameter log;, e. While the precision remains merely constant, a good recall is

obtained by the default value (0) of log,, ¢, but the results can be improved by choosing a
slightly greater value (log;, ¢ = +5, that corresponds to the “NFA best” point).

a real burden, especially when dealing with complex data (with unknown ground truth) on
which the effect of a parameter change can be very difficult to evaluate. This relative parameter
sensitivity is illustrated on Fig 57.

4.5.3 Comparison of ROADS and NFA algorithms

To compare the results obtained by the ROADS and NFA algorithms on the snow sequence,
we use for each algorithm two different settings: the default setting and the best setting.

For ROADS, the default setting corresponds to amax = 409, Pmin = 1, dmax = 130, and
@max = 0.58. Note that @max = 0.58 corresponds to the oracle value, that is, the (theoretically
unknown) maximum value of ¢ on the ground truth trajectories. For dmax, we chose the
value dmax = 130 to allow ROADS to detect all the trajectories in the main bulk of trajectories
(choosing dmax as the real maximal speed (160) would give worse results). The best setting for
ROADS was chosen after a careful (and a bit cumbersome) parameter analysis (see Fig .55<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>