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R É S U M É

Nous nous intéressons dans cette thèse au problème du suivi d’objets, que
nous abordons par des méthodes statistiques. La première contribution de
cette thèse est la conception d’un algorithme de suivi de bactéries dans une
séquence d’image et de reconstruction de leur lignage, travail ayant donné lieu
à la réalisation d’une suite logicielle aujourd’hui utilisée dans un laboratoire
de recherche en biologie. La deuxième contribution est une étude théorique
du problème de la détection de trajectoires dans un nuage de points. Nous
définissons un détecteur de trajectoires utilisant le cadre statistique des méth-
odes a contrario, qui ne requiert essentiellement aucun paramètre pour fonc-
tionner. Ce détecteur fournit des résultats remarquables, et permet notamment
de retrouver des trajectoires dans des séquences contenant un grand nombre
de points de bruit, tout en conservant un taux de fausses détections de tra-
jectoires très faible. Nous étudions ensuite plus spécifiquement le problème
de l’affectation de nuages de points entre deux images, problème rencontré
notamment pour la détection de trajectoires ou l’appariement d’images stéréo-
graphiques. Nous proposons d’abord un modèle théoriquement optimal pour
l’affectation de points qui nous permet d’étudier les performances de plusieurs
algorithmes classiques dans différentes conditions. Nous formulons ensuite un
algorithme sans paramètre en utilisant le cadre a contrario, ce qui nous permet
ensuite d’obtenir un nouvel algorithme de suivi de trajectoires.

A B S T R A C T

The subject of this thesis is the problem of object tracking, that we approached
using statistical methods. The first contribution of this work is the conception
of a tracking algorithm of bacterial cells in a sequence of image, to recover
their lineage; this work has led to the implementation of a software suite that
is currently in use in a research laboratory. The second contribution is a theo-
retical study of the detection of trajectories in a cloud of points. We define a
trajectory detector using the a-contrario statistical framework, which requires
essentially no parameter to run. This detector yields remarkable results, and is
in particular able to detect trajectories in sequences containing a large number
of noise points, while keeping a very low number of false detections. We then
study more specifically the correspondence problem between two point clouds,
a problem often encountered for the detection of trajectories or the matching of
stereographic images. We first introduce a theoretically optimal model for the
point correspondence problem that makes it possible to study the performances
of several classical algorithms in a variety of conditions. We then formulate a
parameterless point correspondence algorithm using the a-contrario framework,
that enables us to define a new trajectory tracking algorithm.
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1
Introduction

L
es travaux présentés dans cette thèse ont comme lien l’étude du problème du suivi
d’objets – problème fondamental en vision par ordinateur, qui se nourrit aujourd’hui
de l’accroissement des capacités de calcul et de la multiplication des capteurs vidéo.

Nous demandons en permanence aux ordinateurs d’effectuer des tâches pour lesquelles il
est essentiel d’analyser un mouvement : l’interaction avec les machines se fait couramment au
travers de tablettes tactiles qui suivent le déplacement simultané de nos doigts sur leur surface,
ou grâce à une caméra capable d’interpréter nos gestes. Nos appareils photographiques savent
mettre en correspondance des images pour reconstruire un panorama, et certains logiciels spé-
cialisés savent recréer une scène en trois dimensions à partir de quelques prises de vues faites
sous des angles différents. Des prototypes de voitures sont déjà capables de se conduire de
manière autonome, en observant leur environnement pour prévenir tout danger ; et couplées
à un réseau de caméras qui mesurent la fluidité du trafic en temps réel, elles plannifient leur
route pour choisir le trajet le plus rapide. En analysant des scènes complexes et en interpré-
tant nos gestes et nos émotions, les machines rendent possible l’indexation automatique de
contenu vidéo par des moteurs de recherche, ou la conception de robots de compagnie capa-
bles de nous reconnaître et de nous divertir. Le suivi d’objets est devenu par ailleurs un outil
incontournable de la science, qui nous permet de découvrir l’existence de nouvelles partic-
ules en reconstruisant les trajectoires des électrons dans des accélérateurs, et de comprendre
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2 INTRODUCTION

les mécanismes fondamentaux du vivant grâce à l’observation de cultures de cellules ou des
échanges de molécules entre les neurones.

Le nombre de scénarios contemporains ou d’un futur proche dans lesquels apparaît le suivi
d’objets est gigantesque. L’ubiquité du problème du suivi est facile à comprendre : dès qu’il
est question de l’analyse d’une scène sous plusieurs angles de vue, ou à partir de plusieurs
clichés successifs, le besoin de reconnaître un même objet dans les différentes images apparaît.

*

La segmentation et le suivi de cellules

Les applications du suivi d’objets aux images biologiques en particulier ont connu une crois-
sance extraordinaire ces dernières années qui s’explique par le fait que la recherche en biologie
se fonde aujourd’hui largement sur l’observation, l’enregistrement et l’analyse systématiques
des mécanismes du vivant dans ses moindres détails, et devient ainsi dépendante de la disponi-
bilité de méthodes automatisées capable de traiter des jeux de données de plus en plus grands
et de plus en plus complexes. Outre l’intérêt de travailler dans un domaine dont les avancées
peuvent avoir un impact considérable sur notre connaissance du vivant et sur l’amélioration
de nos vies, les images biologiques présentent une variété et des défis qui en font une cible de
choix pour les algorithmes de suivi : que ce soit pour observer les interactions des animaux ou
des insectes dans un écosystème, les déformations des organes en mouvement, l’organisation
des cellules pendant la morphogénèse, ou les mécanismes de signalisation intracellulaire, des
problèmes de suivi d’objets se posent qui possèdent une large palette de formes, de com-
portements et de densités d’objets, et se présentent sous des modalités variées – données
multi-canaux (microscopie et fluorescence) ou tridimensionnelles, par exemple.

Nous nous sommes tout particulièrement intéressés pendant cette thèse, en collaboration
avec l’équipe de biologistes du laboratoire TaMaRa de l’INSERM, à la segmentation et au suivi
automatiques de cellules dans des séquences d’images pour en extraire les contours précis
ainsi que le lignage – c’est-à-dire la relation mère-fille des cellules. Quelques extraits d’une
séquence type obtenue grâce à un microscope à contraste de phase sont présentés dans la
figure 2 ; les images sont souvent de médiocre qualité, les cellules collées les unes aux autres,
et leur mouvement est parfois difficile à prévoir – autant de caractéristiques qui en font un
problème complexe à résoudre.

Le nombre de publications sur la segmentation et le suivi de cellules augmente à un rythme
effréné, et celles-ci couvrent tout le spectre des méthodes de suivi. Un certain nombre de
solutions logicielles sont d’ailleurs déjà disponibles – mais elles sont malheureusement souvent
spécifiques à un seul type de cellules et de conditions d’acquisition des images ; le lecteur
trouvera une revue très complète des méthodes générales pour le suivi dans Yilmaz, Javed,
and Shah, 2006, et une revue récente et détaillée des méthodes dédiées au suivi des cellules et
des particules sub-cellulaires dans Meijering et al., 2009 ; le lecteur pourra également consulter
Hand et al., 2009 pour sa comparaison de différentes solutions logicielles.

Les méthodes de suivi d’objets comportent deux étapes, qui peuvent suivant les cas être
effectuées l’une après l’autre ou être combinées :

• la détection des objets dans les images – sous une forme appropriée à l’application visée
(voir figure 3) et à laquelle il est possible d’adjoindre des descripteurs pour aider à iden-
tifier les objets (couleur ou texture, par exemple),

• et le suivi des objets à proprement parler, consistant à associer entre les images toutes les
détections qui correspondent au même objet.
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(1) Suivre des cellules qui se divisent (2) Reconnaître des objets dans deux images pour
reconstruire une scène en trois dimensions

(5) Suivre plusieurs doigts simultanément
pour l'interaction tactile

(4) Suivre des marqueurs sur un
costume pour l'animation de personnages

(3) Reconstruire les trajectoires des
particules dans un accélérateur

(6) Suivre des individus sous plusieurs angles de vue

Figure 1: Exemples d’applications du suivi d’objets. (1) Suivi de cellules se déplaçant, croissant et se
divisant dans une colonie, (2) reconstruction tridimensionnelle d’une scène après appariement
des objets entre deux images, (3) détection de trajectoires dans un accélérateur de particules
(ATLAS Experiment, © 2011 CERN), (4) suivi de marqueurs sur un costume pour l’animation de
personnages de cinéma, (5) suivi simultané de doigts sur une surface pour l’interaction tactile,
(6) suivi d’individus sous plusieurs angles de vue (image from Fleuret et al., 2008).
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Figure 2: Croissance d’une colonie bactérienne. Quelques images acquises pendant la croissance d’une
colonie bactérienne (les intervalles de temps entre les images ci-dessus ne sont pas constants).
De nombreux problèmes adviennent lors de l’analyse de ces images et la rendent difficile :
les images soient souvent d’une qualité médiocre, les conditions d’illumination changent entre
les images et à l’intérieur des images, et les bactéries croissent, se meuvent et se divisent
rapidement, tout en restant collées les unes aux autres.

(3) un squelette articulé
permet d'analyser un geste,

(4) et un contour polygonal
fournit une forme précise.

(2) un visage est localisé
par une forme simple,

(1) Un oiseau vu de loin
est représenté par un point,

Figure 3: Exemples de représentations d’objets. Selon l’application, la représentation géométrique des
objets doit être adaptée : avec des points au barycentre des oiseaux migrateurs, l’ethnologue
pourra suivre le trajet des fuyants volatiles ; grâce à de simples formes géométriques comme
des rectangles ou des ellipses un appareil photographique localisera les visages de ses sujets
et s’assurera de leur sourire avant de les immortaliser ; un squelette articulé permettra à un
réalisateur de capturer le mouvement d’un danseur pour une scène de cinéma ; et en suivant ses
formes de près grâce à des contours actifs ou des ensembles de niveaux, le robot de compagnie
du futur « Nestor-2000 » pourra caresser le chat de la maison sans lui hérisser le poil. Miaou.
Crédits photographiques : (1) Nate Chute, Post Register, (2) Selvin Kurian.

Les premières méthodes de segmentation et de suivi de cellules dont nous avons connais-
sance se restreignaient pour des raisons de coût de calcul à des décisions simples et locales,
qui fonctionnent bien lorsque les cellules sont isolées et que leur mouvement est de faible
amplitude. Dans Liu and Warme, 1977 par exemple, les auteurs partent d’une segmentation
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statique de chaque image en isolation, et reconstituent la trajectoire des cellules d’une image à
l’autre par une méthode locale gloutonne de type plus proche voisin.

Mais, comme c’est le cas de nos séquences, dès que la qualité des images se dégrade, ou que
la densité des cellules augmente trop, les ambiguïtés de segmentation et de suivi se multiplient
– les cellules se touchent et il devient difficile de les séparer en ne regardant qu’une image, ou
leur mouvement est trop rapide pour qu’un simple raisonnement sur la distance permette de
retrouver les correspondances entre les détections.

Il devient alors nécessaire de combiner la segmentation et le suivi des cellules, et d’utiliser
des méthodes globales pour lever les ambiguïtés : idéalement, nous souhaiterions définir un
modèle probabiliste complet de la séquence, incluant à la fois l’apparence des cellules, leur
mouvement et leur lignage ; et chercher parmi toutes les explications possibles des images en
terme de ce modèle celle qui est la plus probable. Un tel modèle reste malheureusement très
théorique, et un grand nombre de simplifications doivent être envisagées pour conserver des
temps de calcul raisonnables en pratique.

Les approches récentes essaient donc toutes d’une façon ou d’une autre d’intégrer des con-
traintes globales pour améliorer la fiabilité de la segmentation et du suivi, tout en restant
praticables sur des données réelles. Afin de lever les ambiguïtés de segmentation, Li et al.,
2008 proposent de combiner la segmentation et le suivi des cellules. Ils peuvent ainsi suivre
une colonie très dense en s’aidant, pour détecter les cellules dans une image, des cellules
détectées dans les images précédentes et de leur vitesse. En faisant évoluer simultanément
les ensembles de niveau définissant les contours des bactéries qui se touchent grâce à une
énergie qui comporte un terme de répulsion, ils évitent de fusionner à tort deux cellules dis-
tinctes en un seul contour – ce qui ne manquerait d’arriver si la segmentation des cellules se
faisait isolément. Une alternative est proposée dans Padfield, Rittscher, and Roysam, 2008,
qui reformule le problème complet comme une segmentation directe dans le volume spatio-
temporel tridimensionnel obtenu en empilant les images. Afin de lever les ambiguïtés de suivi,
il est fréquent d’introduire des contraintes temporelles ou spatiales globales – dans Delgado-
Gonzalo et al., 2010 par exemple, les auteurs forcent les cellules voisines qui se touchent à avoir
un mouvement cohérent, et Smith and Lepetit, 2008 intègrent la dépendance entre la forme et
le mouvement des objets dans leur modèle pour améliorer la précision du suivi dans le cas de
cellules qui s’allongent dans la direction de leur déplacement.

*
Un problème subsiste : chaque séquence à analyser contient plusieurs centaines d’images,

une cellule se divisant en moyenne toutes les dix images, ce qui implique qu’elle contient glob-
alement plusieurs dizaines de milliers de traces de bactéries à segmenter et à suivre dans le
temps pour analyser les films complètement, et ces opérations doivent être répétées sur des
dizaines de séquences, rendant nécessaire l’utilisation d’outils d’analyse complètement automa-
tisés et efficaces. Ceci est loin d’être un cas isolé dans la recherche, et la tendance actuelle est
à l’examen d’énormes ensembles de données pour en extraire les motifs et les régularités qui
permettront de conjecturer le fonctionnement des mécanismes biologiques par des analyses
statistiques automatisées.

Il est alors crucial de s’interroger sur les ingrédients nécessaires à la construction de méth-
odes d’analyse complètement automatisées. Celles-ci doivent évidemment pouvoir s’appliquer
sans modification, ni paramétrage excessif, à de larges jeux de données dont la taille fait qu’ils au-
ront souvent une variabilité interne naturelle. Il faut donc construire un algorithme robuste aux
variations des données, qui s’appuiera sur des constantes physiques intrinsèques aux données
étudiées plutôt que sur des paramètres abstraits définis implicitement par une ou plusieurs
étapes algorithmiques de traitement. Par exemple, il semble préférable d’étudier une image
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au travers des propriétés physiques des objets qu’elle contient (la taille d’une cellule par exem-
ple) et de ses propriétés géométriques intrinsèques (ses ensembles de niveaux), plutôt que de
s’attacher à traiter directement les intensités des pixels, trop sensibles au bruit et aux variations
de conditions de prise de vue.

Nous pensons qu’un algorithme complètement automatisé doit également être suffisam-
ment simple à comprendre et à modéliser, pour qu’il soit possible d’étudier théoriquement ses
limites et ses performances, et ainsi connaître a priori les cas d’utilisation dans lesquels il est
possible de l’appliquer avec succès. Il faut donc préférer une analyse par des étapes simples et
séquentielles – que l’on peut définir et étudier en isolation – à une cathédrale de processus im-
briqués s’exécutant en boucle ou en parallèle, chacun perturbant ou complétant les décisions
des autres, pour rendre l’analyse des résultats, l’étude théorique des cas d’utilisation et des
performances, ainsi que l’adaptation de l’algorithme pour corriger les erreurs le cas échéant,
complètement impraticables.

Choisissant d’appliquer ces principes autant que possible, nous avons proposé un algo-
rithme de suivi simple et robuste, et qui ne s’appuie que sur des paramètres physiques
des cellules, donc facilement adaptables à de nouvelles conditions d’acquisition des images.
Notre analyse s’appuie sur une notion de risque, défini à partir d’un modèle probabiliste de
l’évolution des cellules, qui quantifie mathématiquement l’ambiguïté de chaque décision de
l’algorithme. Celles-ci sont alors prises de manière globale dans la séquence – et non pas
séquentiellement de la première à la dernière image – afin d’éliminer les incertitudes sur les
choix en commençant par les décisions les plus évidentes d’abord et ainsi graduellement con-
traindre les cas pour lesquels il y avait une ambiguïté.

Notre travail – réalisé en collaboration avec Alice Demarez – a donné lieu à publication dans
l’International Symposium on Biological Imaging (2008) et à une réalisation logicielle (appelée
Céleste – pour Cell Segmentation and Tracking) qui est utilisée avec succès depuis deux ans
dans l’équipe, et qui a permis de diminuer significativement le temps nécessaire au traitement
d’un film – de plusieurs jours à quelques heures – et d’améliorer la qualité de la segmentation
et du suivi des séquences.

*

Détection de trajectoires dans des nuages de points

Afin d’explorer mathématiquement le problème du suivi d’objets et de pouvoir comprendre
plus précisément les questions mises en jeu, nous avons choisi de nous restreindre au problème
du suivi d’objets détectés comme de simples points sans attribut dans les images, les détections
ayant été réalisées au préalable comme une première étape.

Ce modèle simplifié est bien loin d’être une abstraction futile : le suivi de points apparaît
naturellement dans un grand nombre d’applications dès lors que les objets sont d’apparence
identique ou qu’ils sont vus de loin, et que seuls leur position et leur mouvement sont impor-
tants pour les distinguer – par exemple pour l’analyse de détections radar [Reid, 1979], l’étude
d’un écosystème de chauves-souris [Betke et al., 2007], ou celle des mécanismes de régulation
et de signalisation dans les cellules grâce à des marqueurs fluorescents [Godinez et al., 2011].

Et autant qu’il puisse être simplifié – car il omet bien des difficultés qui peuvent se présenter
dans des cas généraux, comme le suivi de l’évolution de formes complexes par exemple, ou des
objets qui se divisent ou fusionnent – le problème du suivi de points contient déjà l’essence de
la complexité combinatoire des problèmes de suivi d’objets. Supposons pouvoir définir un coût
pour chaque trajectoire envisageable – en fonction de son accélération moyenne ou maximale,
par exemple – et supposons même que la détection des objets soit parfaite et que chaque objet
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soit en correspondance unique avec un point de chaque image : le problème de joindre entre
elles les détections pour reconstruire l’ensemble de trajectoires optimisant la somme totale des
coûts est en réalité terriblement complexe ! Il est précisément NP-difficile puisqu’il permet de
résoudre le problème de l’appariement des triplets, qui est lui-même NP-complet [Karp, 1972].

L’algorithme MHT de Reid, 1979 – pour Multiple Hypothesis Tracker, l’un des premiers algo-
rithmes de suivi de points et probablement le plus connu – tente justement de résoudre ce
problème exactement en explorant l’ensemble complet de toutes les explications simultanées
des points détectés en terme de trajectoires, avant d’extraire celle qui optimise un modèle
probabiliste du mouvement des objets.

Pour réduire la complexité combinatoire, une approche fréquente consiste à limiter l’exploration
de l’arbre de recherche en se limitant à optimiser les trajectoires sur un petit nombre d’images.
Le cas le plus célèbre étant celui de l’algorithme Hongrois [Kuhn, 1955] qui résout le problème
exactement – et efficacement ! – dans le cas de deux images. Cet approche est la base de nom-
breux algorithmes, et a été par exemple étendue – avec des approximations, qui deviennent
alors nécessaires – à un petit nombre d’images dans Veenman, Reinders, and Backer, 2003b.

Une solution orthogonale consiste à restreindre le problème localement « en espace » (voir
figure 4), en ne cherchant plus à optimiser toutes les trajectoires simultanément, mais à les
détecter de manière gloutonne les unes après les autres ; en d’autre termes, étant donné un
ensemble de points détectés dans des images, on se pose la question de détecter une trajectoire
qui semble réelle, et on itère ce procédé. Fleuret et al., 2008 proposent une telle approche se
basant sur un modèle simple d’apparence et de mouvement, qui est résolue efficacement par
un algorithme de programmation dynamique.

(1) Suivi de points "dans le temps d'abord" (2) Suivi de points "dans l'espace d'abord"

1
2

...

...

temps temps

1 2

Figure 4: Illustration des approches en temps d’abord et en espace d’abord. Les images successives
sont représentées en une dimension le long de l’axe temporel. (1) L’approche « dans le temps
d’abord » extraie les trajectoires les unes après les autres en considérant chaque trajectoire
globalement dans le temps, mais en isolation par rapport aux autres, et (2) l’approche « dans
l’espace d’abord » considère toutes les trajectoires simultanément, mais les optimise localement
dans le temps.

Notons finalement qu’il est fréquent, afin d’optimiser les performances d’un algorithme dans
un cas particulier ou de limiter les cas raisonnables d’exploration, d’introduire des modèles
de mouvement et d’interaction complexes, des paramètres probabilistes pour modéliser les
fausses détections ou les détections manquantes, ou des limites physiques – comme une vitesse
ou une accélération maximale par exemple. Ceci est agréable en théorie, car l’algorithme peut
être optimisé pour un cas particulier ; mais dans la pratique, la présence de paramètres devient
un casse-tête : le réglage est souvent loin d’être intuitif, et doit être souvent modifié entre deux
jeux de données, ce qui est contraire aux principes méthodologiques d’analyse automatisée
énoncés plus haut.
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Nous avons exploré dans cette thèse ces deux approches orthogonales – chercher les trajec-
toires dans le temps d’abord ou dans l’espace d’abord – en gardant à l’esprit notre démarche
de trouver des algorithmes complètement automatisés, et nous chercherons donc à construire
des méthodes de suivi sans paramètre.

Pour cela, nous avons construit des algorithmes en utilisant la méthodologie a contrario,
introduite dans [Desolneux, Moisan, and Morel, 2003] et se basant sur une idée simple : un
algorithme de détection ne doit rien détecter dans du bruit. Souvent, ce critère suffit à obtenir
un critère de détection et un algorithme efficace associé, dont le seul paramètre a une valeur
naturelle et intuitive à choisir.

Nous construisons deux critères a contrario pour le suivi de trajectoires « dans le temps
d’abord », dans le cas de trajectoires sans trous, et l’autre dans le cas général, qui se traduisent
en algorithmes simples et efficaces par programmation dynamique, que nous avons appelé
ASTRE (pour « A-contrario Single TRajectory Extraction »). Ces algorithmes sont publiés sur
le site http://www.math-info.univ-paris5.fr/~moisan/astre/ avec des données d’exemple,
des instructions d’installation et un manuel d’utilisation.

Nous explorons ensuite le problème orthogonal de l’appariement simultané de points dans
le cas de deux images ; d’abord en construisant un observateur idéal, WRAP, qui définit une
borne optimale pour les algorithmes résolvants ce problème et nous permet d’étudier les per-
formances de quelques approches classiques ; et ensuite grâce à deux nouveaux critères a con-
trario, qui nous permettent de définir un nouvel algorithme de suivi de points sans paramètre.

Par leur simplicité, ces critères mathématiques nous permettent de faire des prédictions sur
le comportement des algorithmes, ce qui est une propriété souhaitable des analyses complète-
ment automatisées qui est rarement rencontrée dans la littérature sur le suivi de points à notre
connaissance. Nous pouvons par exemple déterminer le nombre d’observations minimales
d’un objet pour être capable de le détecter, ce qui dans une application peut avoir une réalité
pratique forte.

Enfin, nous verrons que les critères a contrario peuvent également agir en tant que fil-
tres, et ainsi améliorer la précision de n’importe quel autre algorithme de suivi, ou même
d’automatiser son choix de paramètres.

ORGANISATION DE LA THÈSE

Les chapitres de thèse s’articulent selon le plan suivant :

DANS LE DEUXIÈME CHAPITRE nous présentons le fonctionnement de l’algorithme Céleste pour
la segmentation et le suivi de colonies de bactéries, puis nous discutons ses performances
et ses limites.

DANS LE TROISIÈME CHAPITRE nous introduisons l’algorithme a contrario ASTRE pour la dé-
tection de trajectoires sans paramètre dans un nuage de points, et nous analysons son
comportement théorique.

DANS LE QUATRIÈME CHAPITRE nous comparons les performances de l’algorithme ASTRE à
un algorithme représentant l’état de l’art pour le problème du suivi de points.

DANS LE CINQUIÈME CHAPITRE nous présentons WRAP, l’observateur idéal pour le problème
de la correspondance de points, qui nous permet d’apprécier les performances de quelques
algorithmes d’affectation classiques, puis nous étudions la possibilité d’utiliser WRAP
comme un algorithme à part entière.

http://www.math-info.univ-paris5.fr/~moisan/astre/
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DANS LE SIXIÈME CHAPITRE nous définissons un algorithme a contrario pour le problème de
la correspondance de points, qui nous fournit un algorithme d’affectation sans paramètre,
que nous utilisons ensuite pour construire un nouvel algorithme de suivi de points sans
paramètre.

DANS L’ANNEXE A nous détaillons deux algorithmes qui résolvent le problème de l’affectation
linéaire et de l’affectation goulot, et qui sont utilisés directement ou sous une forme
légèrement modifiée pour construire les algorithmes d’affectation présentés dans les
chapitres 5 et 6

DANS L’ANNEXE B nous présentons le manuel d’utilisation de la suite logicielle ASTRE pour
la détection et le suivi de trajectoires, disponible à l’adresse http://www.math-info.

univ-paris5.fr/~moisan/astre/.

DANS L’ANNEXE C nous présentons la référence détaillée des programmes de la suite logicielle
ASTRE.

http://www.math-info.univ-paris5.fr/~moisan/astre/
http://www.math-info.univ-paris5.fr/~moisan/astre/
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CÉLESTE : SEGMENTATION ET SUIVI DE BACTÉRIES

Nous avons cherché à définir une approche de segmentation et de suivi des cellules util-
isant les principes méthodologiques que nous avons annoncés plus haut : la robustesse aux
variations des données, et la simplicité de l’algorithme,

• nous n’utilisons donc que des constantes physiques et des propriétés géométriques intrin-
sèques des images pour se passer de paramètres abstraits qu’il faudrait régler sur chaque
séquence ou chaque image. Plus précisément, nous faisons les quelques hypothèses sim-
ples suivantes : les cellules ont une épaisseur comprise entre deux réels m et M, et leur
aire est supérieure à A, et les artefacts d’illumination varient lentement ;

• et nous avons voulu construire un algorithme simple pour que l’on soit capable de com-
prendre d’où proviennent les erreurs pour pouvoir les corriger le cas échéant : nous
choisissons donc une méthode hybride dans laquelle nous segmentons partiellement les
images de manière statique – les cellules sont divisées en blobs, parfois appelés « super-
pixels » – avant d’utiliser la redondance temporelle pour simultanément les segmenter
en fusionnant les blobs, et les suivre en reconstruisant leur lignage.

Par exemple, le prétraitement des images n’utilise que des constantes sur la taille des cel-
lules, et utilise les lignes de niveaux des images pour renormaliser leurs intensités, ce qui
permet ensuite de fixer les paramètres algorithmiques de l’analyse une seule fois pour toutes
les images, et de les réutiliser pour toutes les séquences.

Afin de conserver un algorithme simple, l’algorithme fait des choix locaux, en les ordonnant
de façon à faire les choix les plus évidents d’abord – l’idée étant que certains choix sont très
simples, et d’autres plus complexes ; si l’on commence par faire les choix ne présentant aucun
risque, on pourra rapidement contraindre les choix plus ambigus – car on lève graduellement
les ambiguïtés en fixant définitivement les choix pour les cellules voisines – qui deviendront
alors eux-mêmes des choix évidents.

Pour modéliser cette notion de « choix évident », nous introduisons le risque associé à une
transition de la cellule A de l’image k vers la cellule B de l’image k+ 1, défini par

ρA→B = max
X 6=B

πA→X

πA→B
,

où πA→B est la probabilité de la transition, le maximum étant pris sur tous les successeurs
potentiels X de A (B excepté), et le risque étant nul par convention s’il n’y a qu’un successeur
potentiel. Intuitivement, le risque est faible lorsqu’un choix n’a pas d’alternative crédible, et
est élevé lorsqu’il y a un doute sur le choix d’un successeur pour la cellule.

La probabilité d’une transition est obtenue à partir d’un modèle probabiliste simple de
l’évolution des cellules dont les paramètres ont été appris sur quelques séquences segmen-
tées manuellement.

L’algorithme Céleste permet de segmenter sans intervention humaine jusqu’à 7 ou 8 généra-
tions de cellules. Nous discutons quelques erreurs de segmentations et de suivis classiques et
une modification de l’algorithme pour les corriger.
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ASTRE : DÉTECTION DE TRAJECTOIRES SANS PARAMÈTRE

La définition d’algorithmes complètement automatisés pose la question de la construction
d’algorithmes sans paramètre pour l’analyse du mouvement. Ces algorithmes doivent être
capables de définir les limites de l’analyse qui sont intrinsèques aux données en les observant
directement, et non en demandant à l’utilisateur de fournir des seuils et autres paramètres.

Nous nous plaçons dans le formalisme des méthodes a contrario qui consistent à constru-
ire un modèle probabiliste naïf d’une séquence dans laquelle il n’y a aucune structure – une
séquence constituée simplement de points aléatoires – et de se poser la question : comment
construire un algorithme de détection de trajectoires intéressant qui ne détecte rien dans cette
séquence ?

Nous construisons ainsi deux critères pour la détection de trajectoires, l’un plus simple dans
le cas où il n’y a pas de détection manquante dans les données, et l’autre un peu plus coûteux
en mémoire et en temps de calcul, dans le cas général.

Ces critères mesurent pour chaque trajectoire la probabilité qu’elle apparaisse par chance
dans une séquence de bruit, et sont intéressants à plusieurs titres. Les critères combinent en
un seul terme le nombre de détections de chaque image, la longueur de la trajectoire et son
accélération maximale et s’adaptent ainsi automatiquement à chaque condition d’acquisition
des images et à chaque trajectoire individuelle.

En détectant les trajectoires dont le critère associé est inférieur à un seuil donné – le nombre
de fausses détections moyen ε que l’on autorise – on obtient un algorithme efficace de détec-
tion se basant sur de la programmation dynamique. Bien que le seuil ε sur le critère maximal
autorisé d’une trajectoire détecté soit formellement un paramètre, il s’avère en pratique – com-
ment souvent dans les méthodes a contrario – qu’il est bien conditionné et robuste, et qu’il
possède une valeur naturelle ε = 1 fonctionnant presque optimalement dans la plupart des
cas ; nous pouvons donc considérer que les algorithmes de détection de trajectoires obtenus
sont sans paramètre.

Nous faisons l’étude théorique du comportement de l’algorithme pour en déduire des lim-
ites à ses performances, et donc des conditions requises pour que l’algorithme puisse détecter
des trajectoires dans les cas pratiques.

Nous le comparons ensuite à l’état de l’art, pour montrer que notre algorithme est partic-
ulièrement robuste lorsqu’on l’utilise sur des séquences contenant un grand nombre de points
de bruit, et qu’il se compare très favorablement à l’état de l’art dans le cas général, alors même
qu’il est sans paramètre.

Enfin, nous examinons dans quelle mesure ces critères peuvent servir de filtre sur le résultat
d’un algorithme de détection de trajectoires quelconque pour éliminer les fausses détections
et améliorer la précision de leurs résultats.
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WRAP : OPTIMUM POUR LA CORRESPONDANCE DE POINTS

De nombreux algorithmes en vision par ordinateur cherchent à résoudre le problème de
la correspondance de points, aussi appelé problème de l’affectation, qui consiste à mettre en
relation des détections d’objets qui se correspondent dans deux images légèrement différentes
– prises à un instant différent ou sous un angle différent par exemple. Ils utilisent généralement
pour cela l’algorithme Hongrois, ou une variante modifiée pour prendre en compte certains
caractères pratiques de chaque application – la présence de points de bruit ou de détections
manquantes par exemple. Dans le cas d’objets représentés par des points, et sans informa-
tions complémentaires sur leur apparence (comme une texture ou une couleur), la plupart
des méthodes d’affectation semblent équivalentes. Les algorithmes gloutons les plus simples
réussissent aussi bien que les algorithmes globaux plus complexes sur des problèmes simples,
et ces derniers ont des résultats aussi peu robustes que les premiers dans les cas difficiles.

Nous avons cherché à définir, sur un modèle simple et assez général de génération des don-
nées, un observateur idéal – WRAP, pour Weighted Recall And Precision – qui fournit la limite
théorique aux performances des algorithmes de correspondance de points, afin de pouvoir
les étudier plus précisément. Ce critère fonctionne en détectant les affectations de manière à
maximiser l’espérance d’une combinaison linéaire entre le rappel et la précision des résultats,
E[r+ λp] pour chaque λ > 0.

Après avoir présenté quelques algorithmes classiques pour la mise en correspondance de
points, notamment l’algorithme par maximum de vraisemblance, par maximum a posteriori
et l’algorithme des plus proches voisins, nous étudions le comportement de ces algorithmes
et nous le comparons à celui du critère optimal WRAP pour mettre en évidence leur faib-
lesse principale : les algorithmes classiques ne prennent souvent pas en compte la présence
d’ambiguïtés. Nous proposons une modification simple de l’algorithme des plus proches
voisins pour améliorer ses performances.

Nous examinons ensuite la possibilité d’utiliser le critère optimal WRAP comme un algo-
rithme (que l’on peut calculer efficacement par une méthode MCMC) et comparons ses perfor-
mances à l’algorithme par maximum de vraisemblance.
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CORRESPONDANCE DE POINTS SANS PARAMÈTRE

En nous replaçant dans le cadre a contrario, nous définissons trois algorithmes de détection
d’affectations en présence de points manquants ou erronés : un algorithme glouton qui consid-
ère chaque couple de points, et deux algorithmes qui considèrent les affectations globalement,
en optimisant respectivement leur coût maximal et leur coût total.

Ces critères a contrario permettent à nouveau d’effectuer des prédictions théoriques sur le
comportement des algorithmes, et peuvent être utilisés avec un paramètre naturel, ε = 1, qui
les rend essentiellement sans paramètre.

Nous comparons ces algorithmes sans paramètre avec quelques algorithmes classiques pour
le problème de l’affectation, puis nous appliquons ce problème à celui de la détection de
trajectoires, en comparant un algorithme de suivi de points très simple qui utilise l’algorithme
Hongrois avec celui obtenu en remplaçant simplement cet algorithme par notre version sans
paramètre. Nous montrons que ce nouvel algorithme de suivi sans paramètre se compare
favorablement à l’algorithme initial pour lequel un paramètre optimal est choisi.
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2.1 INTRODUCTION

V
isualizing and quantifying the mechanisms of biology, at the level of an organism,

of a cell or inside a cell, is a current challenge that may bring a new understanding to
the functioning of life and lead to major discoveries in numerous scientific fields. Recent

technological advances in imaging devices [Stephens and Allan, 2003] and memory storage
capacities [Hilbert and López, 2011; Science, 2011] have enabled scientists to observe those
mechanisms in detail and collect unprecedented amounts of data on them. As recently dis-
cussed in Gough and Yaffe, 2011, there is a need for software dedicated to the analysis of cell
images to leverage the increasing computational power at the researchers disposal to process
these data automatically, and gain a novel insight on the behavior of the living. The Computer
Vision literature on this subject is now flourishing (see Meijering et al., 2009, Bhaskar and Singh,
2007 and Zimmer et al., 2006 for recent and detailed reviews) and many software solutions are
readily available (see Hand et al., 2009 for a comparison of several solutions), although they

15
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are often tuned for specific families of cells and imaging conditions and an ad-hoc combina-
tion of algorithms must still often be crafted manually for each particular application. Such
an in-house solution adapted to phase-contrast microscopy images had been developed in the
TaMaRa’s lab, the biology research unit U1001 from INSERM and Université Paris Descartes,
to study the aging mechanism of the bacteria Escherichia coli. Their analysis tools had some
limitations, and our goal was to provide them with an improved image analysis solution to
ease their future research on E. coli.

2.1.1 Aging of Escherichia coli bacteria

The aging of E. coli was until recently still subject to question [Stewart et al., 2005]. Indeed,
although many cells like the yeast Saccharomyces cerevisiae divide asymmetrically, producing a
smaller offspring cell which goes through a juvenile phase, and then differentiates and ages
visibly, some other cells, like E. coli, grow and divide symmetrically, providing with two appar-
ently identical offspring that do not undergo such a juvenile phase (see Figure 5). This raises
the question of whether these bacteria age, or endlessly rejuvenate?

mother cell

juvenile
daughter cell

identical
daughter cells

(2) Escherichia coli(1) Saccharomyces cerevisiae

Figure 5: When a cell divides asymmetrically like the yeast Saccharomyces cerevisiae (1), with a daughter
cell undergoing a juvenile phase, the aging process is obvious, but when the cell divides sym-
metrically and yields two seemingly identical daughter cells like the bacteria Escherichia coli (2),
the question of whether the cells age or rejuvenate naturally arises.

In order to find evidence for the existence of an aging process, the researchers have recorded
the growth of bacterial colonies (see Figure 6) and used their own automated image processing
software to segment and track the bacteria and extract meaningful characteristics supporting
their hypothesis – growth speed or reproduction rates for instance. They where thusly able
to prove the existence of an aging mechanism for E. coli cells. More precisely, a dividing cell
splits in two new cells, both having an “old pole” and a “new pole” – one of the extremities of
the daughter cell was also an extremity of the mother cell, and the other was created during
the mitosis. We can thus attribute an “age” to each pole: the number of cells in the lineage
that it has belonged to (see Figure 7).

It is known that chemical compounds tend to accumulate in the poles as the cells divide,
and therefore, old poles tend to contain “cell garbage”. The researchers at TaMaRa’s lab have
found that cells having an old pole exhibit an aging behavior – growing and reproducing less,
while cells having new poles seem to have been “rejuvenated”.

In order to complete this research, it was crucially important to be able to observe each
cell individually with great precision. The movies of colony growth span several hundreds of
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Figure 6: Sample preprocessed images taken from a bacterial colony growth movie, and an inset contain-
ing a zoomed image. The initial bacteria regularly divides and grow into a colony of several
hundreds of cells, thus resulting in an image sequence consisting of dozens of thousands of cell
traces to analyze. The cells are packed together and the border between two touching bacteria
is not always discernible, resulting in a challenging problem for computer vision algorithms.

images, and a cell would typically divide every 10 frames, resulting in tens of thousands of
bacteria to segment and track in all the combined images, and this had to be repeated for sev-
eral dozens of movies, in order to obtain statistically significant measurements of differences in
cell growth and reproduction rate, for instance. This underlines the importance of automated
image analysis tools.

2.1.2 Automated cell movie analysis

The analysis of image sequences of cells is often rendered complex by numerous factors:
the poor quality of the images, the density of the cells in the image, the variability of the cell
appearance and its inherent combinatorial nature due to cell divisions, to name a few.

Although some image analysis solutions exist, the sheer diversity of cell shapes, imaging
conditions and particular application requirements often require to craft a specific solution
for each application. For instance, some applications require a real-time analysis of the cells
to influence on the growth substrate, and some applications require only a rough idea of
the number and position of the cells, while other require a precise outline for each cell. Some
applications only request the location and shape of the cells in one isolated image, while others
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Figure 7: Definition of the age of a bacteria. Two successive divisions of a bacteria. Each division
propagates an old pole (red) to the daughter cell, and create a new pole (blue). The poles can
thus be attributed an age, and researchers have shown that the behavior of the cells is related to
the age of their poles – cells having old poles exhibit an aging behavior, while cells with young
poles rejuvenate.

also want to track the cells through time and reconstruct their complete lineage. An algorithm
capable of correctly segmenting and tracking any type of cell is today not a reality. Most of the
algorithms have been designed for a specific family of cells, in order to use the particularities
of each cell, whether a prior on its shape helps decide its contours in an image, or the fact that
it can divide help us disambiguate a tracking decision.

There are two main steps in the analysis of biological image sequences:

1. segmenting the images to define the spatial boundaries representing the objects to measure
in each image,

2. and tracking the objects to follow the evolution of the objects through time and observe
the variation of their measurements.

Note that in some applications requiring only a rough idea of the position and number of cells,
the segmentation step is replaced by a simple detection of the cells (see for instance Debeir
et al., 2005).

Before segmenting images, one will often want to correct for uneven shading of the images
(see for instance Li and Kanade, 2009; Tomaževič, Likar, and Pernuš, 2002) and normalize them
in order to obtain homogeneous intensities inside images and across the sequence.

Segmentation

The simplest segmentation algorithm is the intensity thresholding, which separates a brighter
foreground from a darker background (or the opposite). This crude segmentation approach is
popular because of its simplicity, but will fail in many situations where the cells are to close
from each other, or their borders are too dim for instance, leading to over-segmentation (a cell
is broken in several parts) or under-segmentation (two cells are merged in one). The Otsu
thresholding algorithm [Otsu, 1979] uses a local thresholding value and might be used when
the lighting conditions vary inside the images.
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A widespread and more robust approach is the watershed algorithm [Vincent and Soille, 1991]
that consists in segmenting the shapes having a bright contour by seeing the intensities of the
pixels as the height levels of a map – the shapes are thus “catchment basins” in this map, and
flooding the basins with water until two adjacent basins join, implicitly defining a separating
“watershed line”. When the shapes do not have a bright contour but are only contrasting with
the background, the watershed algorithm might be applied to the gradient image. Usually,
a direct application of the watershed algorithm will lead to an over-segmentation of the cells
since images are noisy and thus many basins are present inside the cells. However, by defin-
ing an isolated marker inside each cell and flooding the shapes only at the location of those
markers, one achieves reasonable segmentation results (see Beucher and Meyer, 1992).

Deformable models like active contours [Blake and Isard, 1998; Kass, Witkin, and Terzopou-
los, 1988] (or “snakes”) and level-sets also stir considerable interest (see for instance Shen et al.,
2006). They work by explicitly or implicitly defining a contour that they evolve using an en-
ergy functional that depends both on the image and on a prior on the shape. These approaches
might be prone to under-segmentation, and might thus be problematic when cells are packed
together.

Most of the time, the segmentation algorithms are tuned to take advantage of the particulari-
ties of the type of cells. For instance, a cell might have a minimum area, or an elongated shape,
etc. (see Fernàndez, Kunt, and Zrÿd, 1995; Xie, Khan, and Shah, 2008; Zhang et al., 2006).

Tracking

Once the shapes of the cells in each frame have been found, one usually wants to track each
cell through the sequence, and reconstruct its complete track, or even lineage if it happens that
the cells divide or merge.

Ideally, we would observe each possible complete lineage and choose the one that best
describes the cells in each frame. Most of the time, however, the combinatorial complexity due
to the large number of frames and cells prevents us from building interesting functionals that
are to be optimized on the global sequence, and we have to make local tracking decisions.

There exists a wealth of tracking algorithms, that can usually be adapted to the problem
at hand to cope with possible divisions, merges, appearances or disappearances of the cells,
and that can use the information collected on the cells profitably to track them: their position
obviously, but also their shape and appearance if they do not change dramatically.

The simplest algorithms like Liu and Warme, 1977 will statically segment each image in isola-
tion, and reconstruct the trajectories by greedily linking each cell to its nearest neighbor in the
following image, where “nearest” can be understood as a spatial and photometric proximity.
This approach is best suited when the density and the motion of the cell is limited.

However, in some situations, the segmentation step cannot be achieved in a reliable way on
individual images (even the human eye has some difficulties), and even if it could, there might
be a complex motion resulting in many tracking ambiguities (see Figure 8).

Recent approaches thus all try in a way or another to include global constraints to ameliorate
the robustness of the segmentation and the tracking.

In order to alleviate segmentation ambiguities, Li et al., 2008 propose to combine the seg-
mentation and the tracking of the cells. They are thusly able to segment and track a dense
cell colony by using, to detect cells in an image, the cells detected in the previous images and
their speed. By simultaneously evolving the level sets defining the neighboring cell contours
with an energy containing a repulsion term, they avoid merging together two distinct cells in
one contour. An alternative is proposed in Padfield, Rittscher, and Roysam, 2008, where the
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Figure 8: Segmentation ambiguities. The general borders around the cells are easy to detect, but decid-
ing on the exact frontier between two cells that are stuck together by observing one image only
is often challenging.

segmentation and tracking problem is reformulated as a direct segmentation problem in the
spatio-temporal volume obtained by stacking the images in a pile.

To resolve tracking ambiguities, it is common to introduce global temporal or spatial con-
straints – for instance, Delgado-Gonzalo et al., 2010 force neighboring cells to move coherently
in the same direction, and Smith and Lepetit, 2008 integrates the dependency between the cells
shapes and their motion to ameliorate the tracking performances when the cells elongates in
the direction of the motion.
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One-step and two-step segmentation and tracking

When possible, analyzing image sequences in a two-steps process (segmentation, then track-
ing) has two main advantages: first, it dramatically reduces the combinatorial complexity of
tracking, since it works on the object space (the segmented objects) instead of the pixel space.
Second, it splits the overall problem in two, and thus produces intermediate results than can
be checked and used to improve each step separately.

The recent approaches discussed above (for instance Li et al., 2008) build a model of the cell
motion in order to improve the segmentation performances. Such one-step approaches are effi-
cient to resolve segmentation ambiguities when they are localized, or when an accurate motion
model can be built. In the case of a bacterial colony, cells are constantly in contact, steadily
grow and divide, and push each other, which results in unpredictable rotations and motion.
This makes one-step approaches difficult to use, because they do not yield any intermediate
representation between image pixels and the final objects (the cells), so that in general there
is no easy way to understand what is wrong (and which parts of the algorithm have to be
modified) when mistakes are present in the final lineage.

The Bacterial Home Vision solution

As an illustration of segmentation and tracking algorithms, we briefly describe the in-house
software solution Bacterial Home Vision (BHV) developed at TaMaRa’s lab. In this case, we
want an algorithm specialized for E. coli, that has no running-time constraints since it does
not control a real-time system, but should output very precise cell outlines and record the
complete lineage of the cells throughout the sequence.

BHV segments all the images in isolation in a first step, then tracks the bacteria across the
sequence in a separate second step. The segmentation consists in detecting local maxima in
the images to detect the cell borders (the bacteria are surrounded by a bright halo) and using
morphological operations to clean them up. This usually leads to many segmentation errors
that had to be corrected manually by the researchers using an image editing software.

The tracking is done sequentially from the first image, and each cell from the current frame
is paired to one or two (in case of division). Each cell from the current image is moved to its
predicted location (using a simple motion model) in the next image, and is associated to one
or two cells (in case of division) depending on the area on which the cell overlap.

2.1.3 Céleste

The BHV automated segmentation suite that the researchers developed for this study re-
vealed very time-consuming to use, sometimes a movie took the researchers up to one week
to completely segment and track.

We here describe an image analysis software called Céleste (an homonym of CellST, for Cell
Segmentation and Tracking) that was designed during the preparation of this thesis to assist
them in further research. Céleste tries to combine the advantages of two-steps approaches (so
that intermediate results can be checked) with the simultaneous segmentation and tracking of
cells, to disambiguate segmentation ambiguities using the temporal redundancy. The first step
is a reliable and efficient over-segmentation process (described in Section 2.2) that produces
an intermediate low-dimension image representation, a collection of small shapes called blobs.
The second step is a segmentation-and-tracking iterative algorithm (section 2.3), in which the
segmentation is performed at the blob level (a cell is a union of connected blobs), and the
tracking decisions are ordered with a notion of risk we introduce, which permits to improve
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the robustness of the process by a factor typically equal to 10 (see Figure 9 for an illustration
of the steps). Both steps use no intensity-based thresholds or parameters, but geometric cell
properties (minimal and maximal width, minimal area, etc.) and simple parametric cell motion
priors. We show experiments made on real data and comment the results obtained.

2.2 IMAGE SIMPLIFICATION BY OVER-SEGMENTATION

Since we would like to analyze the image sequence with a high degree of reliability, we have
to be very careful in the first step of data processing, as an error at this step will inevitably
make the whole algorithm fail. Hence, rather than trying to immediately perform a complete
segmentation of each image, we compute an “over-segmentation”, that is, a partition of the
image domain into a background domain and small regions called blobs, with the properties
that any cell of the image is a union of connected blobs, and that any blob belong to exactly
one cell. Such an over-segmentation seems to achieve a good compromise, because it manages
to simplify the images into a small number of “objects” (the blobs) without having to solve
ambiguous decisions.

2.2.1 Image renormalization

Data acquisition protocol

For practical reasons, several image sequences are acquired at once, and a moving plate
places each colony in turn in front of the microscope camera (phase contrast microscopy).
The duration between two consecutive takes of a colony is not constant: as the number of
bacteria becomes large, their speed also increases, and a faster acquisition time is required to
disambiguate the cell associations. In the researchers experiments, an image was taken every
4 minutes at the beginning of the sequence, and every 2 minutes near the end. We assume that
the acquisition frequency is always such that a cell cannot divide more than once between two
successive frames.

Images are quantized with a spatial resolution of about 0.064 µm per pixel, and gray levels
are encoded on 16 bits (sample raw images from a typical movie are shown in Figure 10).

Image denoising

The first step of our image processing is naturally the denoising. In order to obtain sharper
borders for the cells, we used a simple total-variation denoising [Rudin and Osher, 1994; Rudin,
Osher, and Fatemi, 1992] with adequately chosen parameters (see Figure 11). This proved suf-
ficient for our application, but denoising methods exist that leverage the space-time redudancy
of the image sequences to obtain even better performances [Boulanger et al., 2010].

Intensity renormalization

A natural idea to define the blobs is to grow seeds obtained after some gray-level threshold-
ing (the darkest regions of the image are the inside of the cells). Since image illumination may
slowly vary inside one image, or may change across time or between experiments, we first
apply a gray-level renormalization to obtain homogeneous intensities which is based only on
geometrical and physical assumptions:

(A1) There is a minimum width m of a cell
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Figure 9: Overview of the Céleste algorithm. The images are normalized and cleaned up, then they are
simplified by an over-segmentation resulting in blobs connected by a graph (blobs in red have
been statically detected as cells), and finally, a dynamic tracking and segmentation phase yields
the correct cells and lineage by merging adjacent blobs that belong to the same cell. The links
in red in the last image correspond to a cell that just divided.
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Figure 10: Sample raw images from a bacterial colony growth movie (the elapsed time between the
images shown above is not constant). The initial bacteria regularly divides and grow into a
colony of several hundreds of cells, resulting in an image sequence consisting of dozens of
thousands of cell traces to analyze.

Figure 11: Detail of the level lines of a cell colony (a line is shown at every 50 gray levels) before and
after denoising. The cell borders become smoother and the noise is significantly decreased.

(A2) There is a maximum width M of a cell

(A3) The illumination artifacts are slowly-varying.

The idea is to sample the gray levels at various places near the cells in the picture, and esti-
mate the local gray-level thresholds that can be used to define seeds in the cells (low threshold)
and extra-cell space (high threshold). Figure 12 illustrates this process by showing the seeds,
the high threshold, and renormalization of a sample sequence image.

We first use a Fast Level-Set Transform [Monasse and Guichard, 2000] to obtain what we call
seeds, that is, connected regions defined by the image lower level-sets with area less than πm2/4
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Figure 12: Grey-level renormalization. (Above) The extracted seeds (in red) and the high-threshold
image computed from those seeds that reflect the intensity variations across the image, and
(Below) the original denoised image, and its renormalization after applying the point-wise
affine transform (2.1).

(A1) (discarding the very small lower-level sets as noise). We then compute the maximum
of u (the original image) on each seed, and extrapolate these values on the whole image
domain by using a Gaussian convolution from known values (the convolution parameters
have been chosen once, and give adequate results on all the sequences we have encountered).
This process yields a smooth (A3) “low threshold image” v−.

To obtain the “high threshold image” in a similar way, we compute for each point x of each
seed, the gray value

ρ(x) = min
y;x∈B(y,M)

max
z∈B(y,M)

u(z),

where B(y,M) denotes the disc of center y and radius M. From (A2), we deduce that if
x ∈ B(y,M), then the disc B(y,M) necessarily contains a pixel outside the cell, so that the max
over z is an upper bound for the optimal high threshold, that we can minimize with respect to
y. We then compute the maximum of ρ(x) on each seed, and extrapolate these values on the
whole image domain in the same way as before, yielding a “high threshold image” v+.

We finally normalize the original image by a point-wise affine transform

w(x) =
u(x) − v−(x)

v+(x) − v−(x)
. (2.1)
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Figure 13: Grey-level renormalization. (Left) We added a sinusoidal intensity perturbation to an im-
age (amplitude of 150 gray levels, on an image whose amplitude range between the cell
inside and outside was approximately 600 gray levels), and (Right) the difference between
the high-thresholds obtained using the renormalization process on the original image and the
perturbed image. We see that we are able to recover approximately the perturbation wave, giv-
ing us confidence that our renormalization process is able to eliminate slow-varying intensity
changes.

Image recentering

A simple thresholding enables us to separate the colony from the background, and we
proceed to recenter the colony on its center of mass. This helps remove the remaining position
jitter caused by the fact that when the camera acquires several colonies at a time, it never comes
back precisely to the same position (see Figure 14).

Figure 14: Image recentering. Thresholding the denoised and renormalized image yields a connected
component, from which we extract a mask representing the cell colony. The background of
the image is then cleaned to remove noise, and the colony is centered in the image to attenuate
the camera motion jitter.

2.2.2 Non-uniform dilation

Now that the seeds have been found and the image renormalized, we grow the seeds into
blobs by using a concurrent dilation (ie.. blobs should not penetrate each other) that bears some
resemblance with the viscous watershed transform of Vachier and Meyer, 2005.

Rather than seeing the image as a “landscape” whose catchment basins are filled with water
as in the watershed transform, we view it as an environment of non-uniform viscosity, which
is defined by the local gray level: the blobs grow faster in dark areas, and slower in the bright
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regions that separate two cells, ensuring that they cannot cross cell borders as they grow (see
Figure 15). We thus obtain a correct over-segmentation of the cells, where each cell is exactly
defined by a union of neighboring blobs.

(1) Renormalized image (2) Cleaned-up seeds (3) Blobs

Figure 15: Overview of the non-uniform dilation process. (1) A renormalized colony image where
the cells are surrounded by bright halos, (2) the detected seeds that have been cleaned up
with a morphological opening, and (3) the corresponding blobs obtained using a non-uniform
dilation. Some light over-segmentation errors subsist, particularly in the areas where seeds
were not regularly spaced, but the non-uniform dilation mitigates this problem by allowing
other seeds belonging to the same cell to expand before seeds from other cells have a chance
to cross cell borders.

Let us precise a little bit the dilation process. We assume that we are given N disjoint sets
(the seeds) s1, ..., sN, and a viscosity function v : Ω → [1,+∞[, where Ω is the image domain.
This viscosity function will determine the speed of the dilation at any point in space, the higher
the value, the slower the dilation. We define paths on Ω as C1 functions from [0, 1] to Ω, and
the length of a path as

δ(γ) =

∫1

0
v(γ(t)) ‖γ ′(t)‖ dt

and the distance δ(a,b) between two points of Ω as the lower bound of the length of a path
connecting the two points, and the distance δ(a,X) between a point of Ω and a set X ⊆ Ω as
the lower bound of the distance between a and a point of X. We then define the non-uniform
dilation of the sets s1, ..., sN as the sets (the blobs) b1, ...,bN where

bi = { x ∈ Ω | ∀j 6= i, δ(x, si) < δ(x, sj)}

We can directly translate this definition in the discrete domain, and compute the resulting
blobs efficiently using an operation akin to a shortest-path search.

Discrete non-uniform dilation

To define the non-uniform dilation on discrete images, we start by defining a discrete 8-
connected canvas, that will be the geometrical basis of our further definitions.

Definition 1 (Canvas). We define a (8-connected) canvas as a weighted undirected graph C = (V ,E, ℓ)
where the vertices set V = [1,N]× [1,M] is a rectangular array of pixels, the edges E connect two
distinct pixels p and q if they are 8-connected, that is, |px−qx| 6 1 and |py−qy| 6 1, and ℓ : E→ R+

are the lengths of the edges. In practice, we will choose ℓ{p,q} = ‖q− p‖.
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Definition 2 (Viscosity). A viscosity on a canvas C = (V ,E, ℓ) is a function v : V → [1,∞).

Definition 3 (Path). If C = (V ,E, ℓ) is a canvas, and p,q are two pixels in V , a path γ = (e1, ..., en)
from p to q (denoted γ : p  q) is a sequence of consecutive edges from E starting from p and ending
in q.

Definition 4 (Path length). If C = (V ,E, ℓ) is a canvas and v is a viscosity on C, we define length of
a path γ = (e1, ..., en) by

π(γ) =

n∑

i=1

ℓei
vei

,

where v{p,q} =
1
2 ·
(

v(p) + v(q)
)

.

Definition 5 (Distance). If C = (V ,E, ℓ) is a canvas and v is a viscosity on C, the distance between
two pixels p and q in V is the shortest path length from p to q, that is

δ(p,q) = inf
γ:p q

π(γ),

and similarly, the distance between a pixel p and a set s ⊆ V is

δ(p, s) = inf
γ:p s

π(γ),

Definition 6 (Discrete non-uniform dilation). If C = (V ,E, ℓ) is a canvas, v is a viscosity on C, and
s1, ..., sN are disjoint subsets of V (the seeds), we define the dilated b1, ...,bN (the blobs) as

bi = { p ∈ V | ∀j 6= i, δ(p, si) < δ(p, sj)}

Algorithm

Let C = (V ,E, ℓ) be a canvas, v a viscosity on C, and s1, ..., sN be the initial seeds. We now
describe an efficient algorithm to compute the dilated b1, ...,bN. In what follows, we will
assume that the seeds and the viscosity are such that each pixel from V belongs to exactly one
of the b1, ...,bN. If this is not the case, we will randomly assign the pixel to one of the bi at
equal minimal distance from it.

The simplest way to compute the result of the non-uniform dilation takes O(N · |V | log|V |)
time and O(N · |V |) space. It consists in computing the distances from each seed to all the other
pixels using the Dijkstra shortest-path computation algorithm [Dijkstra, 1959] and associating
each pixel to the closest seed. The memory requirements can be reduced to O(|V |) by updating
the labeling of the blobs and the minimal distances from the blobs to each pixel in a sequential
way.

The computational requirements can however be improved by using an algorithm akin to
a fast-marching algorithms [Sethian, 1996] modified to take into account the simultaneous
dilation of the blobs. This reduces the computational time to O(|V | log|V |) and the memory
requirements to O(|V |), when using a modified heap structure with a back-pointer for the
look-up and update of pixel distance bounds (see for instance ivi).

Algorithm 1) evolves an array of labels corresponding to each blob, where the label Ens(i)
corresponds to blob bi, as well as an array of boolean that indicates which pixels have been
definitely labeled. The pixels of the image are progressively attributed a label and frozen as
the seeds are simultaneously dilated.
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Algorithm: Discrete non-uniform dilation

input : C = (V ,E, ℓ) the canvas
input : v the viscosity
input : s1, ..., sN the seeds
output: b1, ...,bN the dilated blobs

// Initialization

Let L be an array of labels,
where L(p) = Ens(i) if p belongs to si, and L(p) = Null otherwise

Let F be an array of booleans (the frozen pixels),
where F(p) = true if p belongs to one of the si, and F(p) = false otherwise

Let H be the set of pixels in the seeds that have at least one unfrozen neighbor, sorted by
(a bound on) the distance to the seed they belong to (initially, this is 0):
H←

{
(p, 0) | ∃i,p ∈ si and p has an unfrozen neighbor

}

// Computation

while H is not empty do
(p, δp)← remove from H the pixel having minimal distance
F(p)← true // we freeze p, its definitive distance is δp
foreach unfrozen neighbor q of p do

if q is in H then
δq ← the distance bound associated to q in H

if δp + v{p,q} < δq then
L(q)← L(p)

Update the distance bound on pixel q in H with δp + v{p,q}

end

else
L(q)← L(p)

H← H∪ {(q, δp + v{p,q})}

end

end

end

return b1, ...,bN, where bi = { p | L(p) = Ens(i) }

Algorithm 1: Compute the discrete non-uniform dilation of seeds in an image
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Of course, simply dilating the seeds would completely fill the image (since the viscosity
function does not explode to infinity), and in the experiments, we limited the dilation process
to a fixed maximum distance δmax.

The viscosity function we used in the experiments was arbitrary (but reasonable) and could
be used with all the image sequences we encountered. Recall that since the images are normal-
ized, the viscosity function is not image-dependent but defined on an absolute scale.

2.2.3 Blobs and connection graph simplification

The initial over-segmentation thus obtained generally contains a large number of small blobs,
and can be improved by iteratively applying some conservative simplification rules to obtain
a simpler over-segmentation with larger blobs.

Clean-up of the blobs

The first step is a clean-up of the very small blobs that are due to image noise or over-
segmentation artifacts. We merge all very small blobs (in our experiments, we chose to a
threshold of 90 pixels) with the neighboring blob sharing the largest border, and which is not
itself a very small blob, and iterate this clean-up process until we reach a fixed-point where all
spurious small blobs have been eliminated (see Figure 16).

(1) Result of non-uniform dilation (2) After clean-up

Figure 16: Clean-up of small blobs. (1) Result of the non-uniform dilation, where small blobs have been
highlighted in red, and (2) after merging small blobs with their largest neighbor once.

Connection graph

By definition of an over-segmentation, each blob which is not already a complete cell, and
which is too small to be a cell by itself, must be connected to some neighboring blobs. Fol-
lowing this idea, we define a connection graph, where the blobs are the vertices, and edges
link neighboring blobs (that is, blobs that share a long enough boundary). The cells are then
“linear sub-graphs” (homeomorph to a segment) of this connection graph. In particular, if a
blob has no neighbor in the connection graph, our hypothesis implies that it must be a perfectly
segmented cell.
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We first eliminate blobs that are due to spuriously detected seeds (see Figure 17) by removing
all small blobs that are isolated in the connection graph (we chose a conservative threshold of
300 pixels on the data that we have been given).

Figure 17: Clean-up of spurious blobs. The bright halo around the cells has left a small patch of dark
pixels in the colony (highlighted in red), which has been detected has a small blob seed that
has no neighbor in the connection graph. Such over-segmentation artifacts are easy to detect
and eliminate.

Blob simplification

Not all edges in the remaining cleaned-up connection graph are meaningful, and many of
them can be removed using some simple conservative criteria that ensure the correctness of the
new over-segmentation. The assumptions we use are (A2) – the fact that a cell has a minimum
width – and

(A4) There is a minimum area A of a cell

(A5) The border between two blobs in the same cell has a minimum length ℓ.

To cope with bent cells that are frequently found in the images, the definition of the width
of a cell is that of the minimal-width enclosing annulus (see Figure 18)

width (u) = inf
{
w > 0 | ∃y ∈ R

2, ∃s > 0, ∀x ∈ u, s 6 ‖x− y‖ 6 s+w
}

Computing the exact minimal-width enclosing annulus rather complex, and we thus chose to
approximate it: we first compute the orientation θu of the blob u

θu =
1

2
arctan

2µ1,1

µ2,0 − µ0,2
, where (2.2)

µp,q =
1

|u|

∑

x,y∈u

(x− xu)
p(y− yu)

q and (xu,yu) =

(

1

|u|

∑

x∈u

x,
1

|u|

∑

y∈u

y

)

and we restrict our search to enclosing annulus that lie on the line orthogonal to the blob
orientation θu that passes through the blob centroid (xu,yu). In practice, we discretize a
number of points regularly spaced on this line, we compute the enclosing annulus centered on
those points, and we return the minimal width of such an annulus.
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Figure 18: Definition of the width of a blob. We compute the width of a blob as that of the minimal-
width enclosing annulus to cope with bent cells.

By iterating the processes of removing edges in the connection graph using assumption (A2)
between two blobs whose union would be too wide to possibly be a cell or (A5) between two
blobs whose common border is too small for the blobs to belong to the same cell, and merging
the blobs using assumption (A4) (a blob that is too small to be a cell on its own and that only
has one neighbor must be merged with its neighbor), we achieve a significant simplification of
the over-segmentation (see Figure 19).

2.3 CELL SEGMENTATION AND TRACKING

Now that we have an over-segmentation and the connection graph, we can generate all
potential cells that are consistent with these bounds – in other words, all the unions of blobs
on “linear sub-graphs” of the connection graph described in the previous section. Some of
these potential cells are necessarily true cells, as they are isolated vertices of the connection
graph. In general, there are enough true cells after the blob simplification process, but we
can always assume that one or two images (say the first and the last) have been manually
segmented, and only contain perfectly segmented cells, so we obtain enough information to
start the segmentation and tracking algorithm.

To segment and track the cells, we will define a probabilistic cell evolution model based
on biological knowledge, and learn its parameters from manually segmented and tracked
sequences. The idea is then to segment and track cells iteratively, by choosing the most obvious
decisions first, in order to make very few errors. Once the obvious choices have been fixed,
this will hopefully greatly increase the constraints on the other decisions, which will in turn
become obvious. This notion of an obvious choice is translated in the probabilistic notion of
risk – a ratio of transition likelihoods.

We chose to process the movie in a non-sequential way, to be able to make decisions at any
time step, and not only from the first to the last frame. This constrains our cell evolution
model, but enables us to always choose the most obvious decision in the complete sequence.
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(1) Input image (2a) Initial connection graph

(2b) After edge removal (rule A2) (2c) After blob merging (rule A4)

Figure 19: Connection graph simplification. A typical cell image (1), the initial connection graph of
blobs (2a), and the two steps of the graph simplification process (2b and 2c), iterated until
convergence. Note that the isolated blobs of the graph (2c) necessarily are cells.

2.3.1 Cell transition likelihood

To assist us in tracking the cells, we define the likelihood of the transition of a cell A in
frame n to a cell B in frame n+ 1 (denoted A→ B), as well as the likelihood of the division of
a cell A in frame n into cells B and C in frame n+ 1 (denoted A → (B,C)). Note that we are
speaking here of completely segmented cells, and not just blobs.

We have chosen simple, yet discriminant enough measurements on the cells: we extract from
each cell C the centroid position xC ∈ R

2, the area AC ∈ R+ and the orientation θC ∈ [−π,π]
as defined in equation (2.2).

We will assume that the process is Markovian, and that the transition probability only de-
pends on the state of the mother cell and the daughter or daughter cells, and not of the previ-
ous or next transitions. This is crucial in allowing us to make decisions at any time step in the
sequence, as we do not want to rely on the fact that knowledge on the cell in the previous or
next frames is readily available. We model the cell transition A→ B as

πA→B = (1− πdiv) · πx

(

xA − xB
|xA|

)

· πθ (|θA − θB|) · πA

(

AA

AB

)
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where the probability that a cell divides (πdiv) is determined empirically (it depends on the
frame rate) and the probability densities πx, πθ and πA are designed according to biological
knowledge and their parameters are learned from (previously processed) reference sequences
(see Figure 20). Note that when analyzing sequences with varying frame-rates, we assume that
the learned probability laws can be scaled linearly with the frame-rate.
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Figure 20: Cell evolution model. Learned probability density functions for the cell evolution model:
log growth rate (Gaussian), rotational speed (exponential) and radial component of the speed
(Laplace; the tangential component is similar up to a scale factor).

Indeed, the area of a cell is expected to grow exponentially, its orientation is often slowly-
varying, and concerning the speed (πx), we chose to measure the relative motion (xA −

xB)/|xB| instead of the absolute motion xA − xB, as the cell motion results from the cells
in the center of the colony pushing the other ones because of their growth, so that we expect
the motion amplitude to be roughly proportional to the distance to the center of mass of the
colony (see Figure 21).

dm
vx

vy

Figure 21: Motion estimation. The motion estimation relies on the hypothesis that the motion is mostly
due to the pressure exerted by the colony on the cell during its growth. Thus, we will measure
the variables vx/dm and vy/dm, where dm is the distance from the center of the cell to the
center of the colony, and (vx, vy) is the bacteria speed expressed in the local coordinate system
shown in red.

To define a similar likelihood for the transition A → (B,C) (A divides into B and C), we
note that if the frame rate is not too small, the union of the two new cells (B and C) can be
considered as a single cell when the parameters x, A and θ are measured, so that it is natural to
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write πA→(B,C) = πA→B∪C ·πdiv/(1−πdiv). In practice, we also add a deterministic threshold
on the distance between the daughter cells (computed as the minimal distance between two
points in each cell), to avoid considering cells that are too far apart.

2.3.2 Likelihood versus risk

By taking the product of the likelihood of all its local transitions A → B and A → (B,C),
we can define the likelihood of a complete lineage (each cell of the lineage being a union of
blobs). Ideally, we would like to find the lineage that has the highest likelihood, with the
constraints that each blob belongs exactly to one single cell. However, this global optimization
problem seems computationally intractable, and in particular, assignment algorithms Kuhn,
1955 cannot handle such constraints.

If we aim to recover the lineage by taking only local tracking decisions, the most natural
way to define the successor of a cell is to associate it to its best match in the next frame. A
natural idea would therefore be to start with the most likely decision, then the second possible
most likely decision taking into account the first one, etc. However, the tracking decisions are
order-dependent, as the best match of a cell could also be the best match of another one, so
rather than taking first the most likely decision, we propose to take first the least ambiguous
one.

Indeed, some of the segmentation and tracking choices seem obvious, and making those
obvious decisions would help constrain the uncertainty for the rest of the decisions to take,
without taking too much risk. If we observe a typical image sequence (see Figure 22), a natural
idea would be to start by tracking the cells on the border of the colony, as they are naturally
constrained (they have fewer neighbors). Once those cells have been correctly associated, we
can “remove them” and continue the same process with the new border cells.

Figure 22: Making obvious choices first. Two successive frames of a typical sequence. An human
operator tracking the cells would most likely start by associating the cells on the border, as
they are more constrained than the other (they have fewer neighbors, and there is thus much
less uncertainty on their real transition). We abstract this concept in a notion of risk for the
transitions.
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original 1 frame / 2 1 frame / 4

(1)
ρmax = 0.0026
ρaverage = 3.2 · 10−6

0.23
0.001

0.89
0.03

(2)
ρmax = 0.0001
ρaverage = 2.3 · 10−7

0.06
0.0003

0.24
0.01

(3)
ρmax = 6.9 · 10−6

ρaverage = 3.5 · 10−8
0.004
7 · 10−5

0.11
0.005

Table 1: Maximum and average risks encountered by the three algorithms when extracting the lineage
from the original movie and various sub-sampled versions. We clearly see that the max and
average risks that have been taken are always lower when the "obvious-first" algorithm is used,
thus giving an increased confidence in its results.

Rather than directly using this solution, we abstracted the concept of a the risk of a transition:
given a transition A→ B (or, similarly, of a cell division A→ (B,C)), we define its risk by

ρA→B = max
X 6=B

πA→X

πA→B
,

the maximum being taken over all potential successors X of A (B excepted), and the risk being
equal to 0 if there is only one potential successor. Intuitively, the risk is very low when the
transition has no credible alternative, and rises when there is a doubt on the successor of the
cell. Since most of the cells have a trivial motion, we can hope that they will be processed
early and correctly and will rule out some choices concerning other cells for which the initial
risk was high (see Fig. 23). Note that this notion of risk is also related to the robustness of
the algorithm, since the maximum risk can be understood as the level of degradation that the
algorithm can handle before changing its choices.

2.3.3 Tracking segmented cells

To quantify the benefits of using the notion of risk, we implemented three tracking algo-
rithms working on completely segmented sequences:

(1) the any-first algorithm, which orders the cells arbitrarily,

(2) the likely-first algorithm, which sorts the cells by decreasing likelihood of their best tran-
sition,

(3) and the obvious-first algorithm, which sorts the cells by increasing risk of their best tran-
sition.

Each algorithm works in the same way: to each cell in the order given by the algorithm, we
associate its best possible match in the next frame, and this process is iterated until all cells
have been tracked.

To compare the three algorithms, a sequence of manually segmented cell images was de-
graded by under-sampling it twice (keeping one frame in two) and four times (one frame in
four), and we verified that no cell divides more than once between two successive frames. The
two first movies would be relatively easy to track for a human operator, but the third becomes
more delicate, and one has to view successive frames back and forth several time to make sure
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to have the correct cell association. If we subsample more than twice the sequence, the cell
association becomes difficult even for an human operator, some cells dividing several times
between two successive frames, and we do not expect an algorithm to give a correct lineage.

We tracked the cells in each sequence with each algorithm, adapting the parameters of the
probability laws to the corresponding frame rates, and we computed the average and the
maximum risk taken (see Table 1). As can be seen, the more degraded the film, the higher the
risk. Algorithm (1) makes some errors when tracking the most degraded film (one frame in
four), and the other algorithms always give correct results, although we see that algorithm (3)
leads to minimal risks, and thus gives us more confidence in the result of the tracking.

2.3.4 Tracking over-segmented cells

We apply this risk-based approach to the potential cells defined by the blobs and the con-
nection graph, as union of consecutive blobs in a linear subgraph of the connection graph (see
Figure 24).

We eliminate some of the potential cells using the conditions (A2) and (A4), allowing us to
keep the number of potential cells reasonable for the first 7 or 8 generations, but this number
quickly explodes afterward, and more conservative conditions will be needed to let us process
longer sequences.

Among these potential cells are some perfectly segmented cells (isolated vertices of the con-
nection graph), that we label as initial “active” cells. For each active cell, we compute the risk
of its associated best transition to any potential cell in the next frame, and then select the tran-
sition having the minimal risk among the active cells. The target cell of the selected transition
now becomes active, all the potential cells overlapping it are deleted, and we recompute the
risks of the transitions for the new set of active cells. This process is then iterated until the com-
plete lineage has been obtained. We also consider the risks of the transitions in the backward
direction (knowing the cell, what is its best-match predecessor?) and apply the same process
to these transitions (see algorithm 2).

Segmentation errors

Some errors made by Céleste are potentially easy to correct: sometimes, a small blob is
missing from a cell (see Figure 25), and the cell it belongs to will generally be easy to guess
using post-processing heuristics.

A more difficult to solve error is depicted in Figure 26. This is caused by a previous segmen-
tation error that propagates in the sequence, cascading into several other segmentation and
tracking errors. Sometimes, such segmentation errors result in new situations where a cell has
no likely successor, yet one of them is still much higher than any other possibility (for some
reasons), yielding a very low risk for the transition. A way to avoid this kind of error would
be to only allow transitions having a low risk and a high likelihood.

This phenomenon is amplified by the fact that, contrary to the case where we were tracking
already segmented cells, we no longer make decision by considering all the cells in all images,
but only those who have already been completely segmented. In particular, when starting the
segmentation and tracking process, there are only few such completely segmented cells, and
choosing the transitions with minimal risk makes less sense.

To remedy this problem we do several successive segmentation and tracking passes, by
feeding the next segmentation and tracking pass with the cells that have been segmented
in the previous pass ( we can heuristically remove some cells that are deemed to be poorly
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Algorithm: Céleste

input : I = (I1, ..., IK) the image sequence
output: C = (C1, ...,CK) the segmented cells and the lineage

s = (s1, ..., sN)← extract_seeds(I)
Ī← renormalize_intensities(I, s)
C = (C1, ...,CN)← over− segmentation(Ī, s) // the over-segmentation and connection

graph

All perfectly segmented cells are activated
while true do

foreach active cell c that has no successor do
Compute the risk of the transition to any potential cell without predecessor in the
next frame

end
foreach active cell c that has no predecessor do

Compute the risk of the transition to any potential cell without successor in the
previous frame

end
if there is no such transitions then

Stop
else

Choose the transition of minimal risk
Update the corresponding over-segmentation and lineage by segmenting and
linking the cells in the transition
The cells in the transition become active

end

end
return (C1, ...,CK)

Algorithm 2: The Céleste cell segmentation and tracking algorithm
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segmented if needed). Hence, in successive passes, the number of initial cells increase, and the
risk-first tracking algorithm becomes meaningful and useful.

In the first pass, we use a threshold on the risk and likelihood as suggested above, to ensure
that we only make very likely segmentation choices, and thus “bootstrap” our segmentation.
In the next passes, we successively lower the thresholds until all the cells in the images can
be successfully tracked and segmented (see Figure 27). This enables us to correct some of the
segmentation and tracking errors, as shown in Figure 28.

2.3.5 Software

We implemented in C (using the MegaWave library) a complete segmentation and tracking
suite called Céleste that has a user-friendly interface and permits to visualize and correct
the results in a straightforward and natural manner (see Figure 29). With this software, a
complete sequence requires almost no interaction for the 5-6 first generations, and about a
couple of hours for 9-10 generations, which seriously improves previously-used algorithms.
This software is planned to be revised in 2012 by a software engineer to meet open-source
standards and be made available to the research community.

2.3.6 Current results

On the films that we processed, we could handle images containing about 120 cells (about 7
generations) before the number of blobs and connections between them was too large for the
potential cells to be efficiently generated. Developing discriminatory but conservative shape
constraints on the potential cells to simplify the connections between the blobs could break
this limit, and is thus an interesting challenge. Currently, we sometimes use the graphical
user interface to segment manually a few blobs with a high number of connexions in the blob
graphs to reduce the combinatorial complexity. With the current algorithm we proposed, if we
want to handle films up to 100 frames (9-10 generations), we have to assist the connection graph
simplification algorithm by manually deleting some connection edges (or by using supervised
heuristics). Such an interaction also permits to fix some little segmentation errors, that can
propagate and induce tracking errors. On the first frames (about 5 to 6 generations on most
films), we have almost no error (see Fig. 30). In the last frame (9-10 generations), the number
of cells suddenly increases, so the connection graph becomes very large, and there are a lot
of potential cells, which slows down the computations and introduce more errors (when there
are many potential cells, there are more cells that “look like good successor”). Figure 32 shows
an extracted lineage tree, where the length of the branches are proportionnal to the duration
between two successive divisions, and the color corresponds to the distance between the cell
and the center of the colony.

Our software is in use in the TaMaRa’s lab, and further analysis at the laboratory by our
collaborator in this team, Alice Demarez, has acknowledged in her doctoral thesis that Céleste
not only decreased significantly the time that users spend on the segmentation and tracking
of cells in comparison with the previous BHV software, but also that the quality of the results
has increased. Jean-Pascal Jacob has also worked on the project to define a better model for the
bacteria shape as a skeletal segment that is recovered using energy-minimization techniques,
and subsequently dilated in the shape of a rod to recover high-quality contours of the cells
(see Figure 31).
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π=0.3 π=0.33

ρ = 0.9

π=0.05 π=0.28

ρ = 0.18

frame n

frame n+1

Figure 23: Illustration of the notion of risk. (First line) A sequence segmented using the legacy BHV
algorithm, used to learn the parameters of the probability laws. On this sequence, the likeli-
hood of the transitions from the red cell in the first frame to either the red or blue cell in the
second frame are equivalent, but the likelihood of the transitions from the blue cells are more
contrasted. An algorithm associating a cell to its most likely successor, and starting with the
red cell would make an error, while an algorithm ordering the cells by their transition risk
would make the correct decision, as illustrated on the second line. (Second line) Example of a
dubious (left) and an obvious (right) choice, π is the likelihood of the associated transition, ρ
is the risk of the best-match transition. If we take the most likely transition first (left), we will
make the wrong affectation, but if we take the most obvious transition first (right), the final
result we be correct.



2.3 CELL SEGMENTATION AND TRACKING 41

Figure 24: Potential cells. Sample potential cells (in red) generated as linear subgraphs of the blob graph.
Only the potential cell in the second image corresponds to an actual cell of the image.

Figure 25: Missing blob. (Above) The simplified blob graph obtained by the over-segmentation process,
and (Below) a chunk of a cell corresponding to a small blob is missing from the final segmen-
tation (red vectors represent the cells speeds). Such errors should be relatively easy to detect
and correct using a post-processing.
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Figure 26: Cascade segmentation errors. Two segmentation errors (the red arrows are the cell speeds).
As before, a small blob is missing from the green cell. The large cell has been wrongly
divided in two (brown and cyan) just before the real cell division. In the next image, one of
the daughter cells corresponding to the real division (in blue) has been correctly segmented.
When Céleste tries to find the correct successor of the cyan cell, it has the choice to connect
the cyan cell to the blue cell (not likely, because cell have wildly varying sizes), or to move it
somewhere else. It happens that this latter choice has a much lower risk, and this will cascade
in a series of bad segmentation and tracking decision (the brown cell must then shrink).

Figure 27: Multiple passes. When running the Céleste algorithm on the result of the over-segmentation,
only few cells have been statically segmented, and using the risk-first tracking algorithm
makes less sense, as we only compare the risks of few cells. To remedy this problem, we iterate
the Céleste algorithm by successively feeding to the next pass the results of the previous one.
To avoid resuming the next pass with the possibly poorly segmented cells of the previous
iteration (shown in red), we use conservative thresholds on the risk and likelihood of allowed
transitions in the first passes, and successively decrease them in later passes.

Figure 28: Correct segmentation using the multiple passes algorithm. The segmentation error de-
scribed in Figure 26 has been corrected by using several passes of the algorithm that use
decreasingly conservative risk and likelihood thresholds, each successive pass taking as input
the completely segmented cells of the previous one.
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Figure 29: Céleste. Screenshots from the Céleste segmentation and tracking suite permitting the easy
visualization and correction of the segmentation and lineages of the cells.

Figure 30: Segmentation result. A part of the result of the tracking algorithm we propose: a completely
segmented image, where each cell is colored according to its 3rd generation ancestor. This
result was obtained in completely unsupervised way (no human interaction).
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Figure 31: Post-analysis. After the segmentation, a post-analysis significantly ameliorates the contour of
the cell by representing them as a dilated segment and matching their shape using energy-
minimization. Illustration from Alice Demarez
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Figure 32: Bacteria lineage. Representation of a lineage, where nodes correspond to divisions. The color
encode the distance to the center of mass: when red, the cell is close, when blue, the cell is far
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I
n order to better understand the challenges of object tracking we chose to restrict our-
selves to the simpler problem of point tracking, and to derive a statistical criterion, called
ASTRE, that could bring a useful insight on the limits of the trajectory tracking problem.

The next two chapters – the present one introducing the statistical criterion, and the second
comparing its performances to those of a state-of-the-art algorithm – have been directly ex-
tracted from a research paper that has been submitted and is waiting for approval.

3.1 INTRODUCTION

Object tracking plays an essential role in a large variety of Computer Vision tasks, among
which, for example, particle image velocimetry [Gui and Merzkirch, 1996], monitoring cars

47
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[Koller, Weber, and Malik, 1994], detecting and tracking cells in microscopy sequences [Sbalzarini
and Koumoutsakos, 2005; Smal, Niessen, and Meijering, 2008], recognizing human activities
[Ali and Aggarwal, 2001], improving human-computer interfaces with head-tracking [Ash-
down, Oka, and Sato, 2005], generating special effects for movies [Pighin, Szeliski, and Salesin,
1999], or tracking particles in accelerators [Cornelissen et al., 2008].

Numerous variations on this problem have been formulated, and several algorithms have
been developed to try to solve them. A common strategy (see Yilmaz, Javed, and Shah, 2006
for a recent review) is to detect the objects in each image and associate them with an object
shape representation, such as points [Serby, Koller-Meier, and Gool, 2004; Veenman, Reinders,
and Backer, 2003b], geometric shapes [Comaniciu, Ramesh, and Meer, 2003], outlines [Yilmaz,
Li, and Shah, 2004], skeletal models [Ali and Aggarwal, 2001], etc. and with appearance
features described, for example, by templates [Fieguth and Terzopoulos, 1997], active appear-
ance models [Edwards, Taylor, and Cootes, 1998], or probability densities of object appearance
[Paragios and Deriche, 2000; Zhu and Yuille, 1996].

The detected objects are then tracked across frames using an algorithm that closely depends
on the object representation. According to Yilmaz, Javed, and Shah, 2006, tracking algorithms
can be broadly classified in three categories:

1. Point tracking [Bar-Shalom, Fortmann, and Scheffe, 1983; Reid, 1979; Shafique and Shah,
2003; Streit and Luginbuhl, 1994; Veenman, Reinders, and Backer, 2003b]. Objects are
represented as points and are generally tracked across frames by evolving their state that
consists of the object position and motion.

2. Kernel tracking [Avidan, 2001; Black and Jepson, 1998; Comaniciu, Ramesh, and Meer,
2003; Tao, Sawhney, and Kumar, 2002]. Objects are represented by a combination of shape
and appearance, for instance an ellipse with a color histogram. They are tracked by com-
puting the motion of the kernel in consecutive frames, often modeled with parametric
transforms such as translations and rotations.

3. Silhouette tracking [Bertalmío, Sapiro, and Randall, 2000; Blake and Isard, 1998; Hut-
tenlocher, Noh, and Rucklidge, 1993; Kang, Cohen, and Medioni, 2004; Ronfard, 1994;
Sato and Aggarwal, 2004]. Objects regions are estimated in each frame, and are usually
tracked by either shape matching or contour evolution.

In this work, we restrict ourselves to the tracking of objects as points, without appearance
information (even if, as we shall see later, such an information could be easily included in the
model we propose). We assume that these points have already been detected in the sequence,
but imperfectly, in the sense that we may observe both spurious points and missing detections.
Given such a sequence of frames containing the detected points in each image, the goal is to
extract the trajectories as lists of points appearing in successive frames, possibly separated by
holes (missing detections), while avoiding spurious points. As usual, we will assume that a
given point can belong to only one trajectory, which means that point collisions are ruled by
an occlusion principle.

3.1.1 Related work

The most well-known point tracking algorithm certainly is the Multiple Hypothesis Tracker
(MHT) of Reid, 1979, that, in theory, enumerates all possible trajectory combinations of the
observed points, and selects the one having the maximal likelihood (a probabilistic motion
model being given). This problem is in effect NP-hard, and leads to exponentially many
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trajectory combination lookups (if there are n frames and m points, and we assume there is
no occlusion, noise points, or objects leaving or entering the scene, there are already m!n−1

possible trajectory combinations), and thus approximate solutions and heuristics are needed
to accelerate the search (often requiring thresholds to prune the search tree early). Moreover,
this complex model implies parameter tuning to optimize the underlying motion model and
the efficiency/coverage trade-off of the heuristics.

To overcome the exponential growth of the state space, researchers have proposed a wealth
of heuristics and approximations to the point tracking problem over the years. Such an ap-
proximation is the Joint Probabilistic Data Association Filter (JPDAF) proposed by Bar-Shalom,
Fortmann, and Scheffe, 1983, which relaxes the hypothesis that the points must be disjoint.
Instead of assigning each track ending in frame k− 1 to a particular object in frame k as in
MHT (and thus having several possible hypotheses, resulting in an increase of complexity),
the JPDAF algorithm assigns to every track ending in frame k− 1 a weighted combination of
all points of frame k, depending on a likelihood estimate with respect to a predicted position.
However, this approach assumes that the number of objects tracked in the images is tracked
in the images is constant, and the relaxation of the disjointness hypothesis leads to trajectory
merges, which is often an undesired feature.

Sethi and Jain, 1987 propose to solve the correspondence problem greedily. They initialize
the trajectories using the nearest-neighbor criterion, and then try to improve the current solu-
tion greedily by exchanging correspondences between frames in order to minimize the global
cost. They also propose a modified algorithm that alternates between forward and backward
passes through the sequence to help mitigate the problem of the nearest neighbor initialization.
Their approach is much faster than MHT, but does not permit to take noise, occlusions, entries
or exits into account.

Salari and Sethi, 1990 address some shortcomings of the previous method, namely the fact
that it assumes a constant number of points in the sequence, and that there can be no entries
or exits of objects in the scene. It therefore allows for occlusion, entry and exit of points, as
well as the presence of spurious points. Each trajectory is made of either points detected in
a frame, or “phantom points”, that correspond to added (interpolated) points when there are
missing detections. Note that their approach involves two parameters (the maximum allowed
speed and the maximum allowed acceleration) that may be difficult to set.

Rangarajan and Shah, 1991 propose to solve the problem by using a proximal uniformity
constraint, that combines requirements on the maximum speed and the acceleration of objects.
They propose to make the assignment choices in an order driven by a notion of minimal
risk, still in a greedy way. They use an optical flow algorithm to initialize the point motion
between the first two images, and deal with occlusion and missing detections by using linear
interpolation. They do not allow for spurious points, or objects leaving or entering the scene.

Veenman, Reinders, and Backer, 2003b propose a greedy tracking algorithm called ROADS,
that is capable of handling missing and spurious detections, as well as entries and exits of
objects. Rather than optimizing a global cost, they consider a restricted temporal scope (usually
two or three frames forward), and find the optimal assignments minimizing the cost on these
frames. Since the restricted problem is still NP-hard, they have some heuristics that help them
prune the search tree. They keep the assignment between the two first frames of the local
scope, and iterate the process on the following frames. The assignment between the first two
frames of the sequence is initialized using the nearest neighbor criterion, and the effect if this
approximation is mitigated as in [Sethi and Jain, 1987] by a forward and a backward pass.

Fleuret et al., 2008 propose to track multiple persons in multiple camera views using a
probabilistic map of the individuals locations, coupled with a dynamic programming tracking
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algorithm that tracks each person in isolation, rather than conjointly. The tracking uses both
an appearance model and a motion model to describe the objects to track.

In essence, the approaches above either try to bound the search space by restricting the op-
timization to local choices, or by restricting the simultaneous number of objects tracked. A
recent and promising approach introduced in Jiang, Fels, and Little, 2007 tries to do both by
optimizing a global criterion using Linear Programming, where the correspondence decisions
are not “hard” binary choices, but continuous values in [0, 1], rendering the optimization prob-
lem convex, and thus efficiently computable. In practice, the values are almost always equal
to either 0 or 1, and it is easy to convert them into disjoint trajectories. The algorithm assumes
that the number of objects in the images is constant, but has been later extended in Berclaz,
Fleuret, and Fua, 2009; Berclaz et al., 2011 to accommodate a variable number of objects that
can enter and leave the scene in prespecified locations. The authors also prove that when there
exists a unique global optimum, it is necessarily a boolean optimum.

3.1.2 Trajectory estimation versus trajectory detection

These algorithms have some common limitations. First, when they take a varying number
of objects into account, as well as spurious and missing detections, they face the difficulty
of choosing an appropriate global cost for their optimization problem. Indeed, they need a
penalization for spurious points, and most of the time they will simply introduce a fixed cost
for them. This creates a subtle (and quite arbitrary) interplay between the cost of spurious
points and the cost of detected trajectories, that is not easy to control and grasp. Second, these
algorithms often have many parameters, which is fine in theory, but quickly becomes a hassle
when one needs to set them for each practical use. Last, as they all try to solve an optimization
problem, these algorithms suffer from a classical flaw: they always find something, since they
try to find the best explanation of the data in terms of some structure, without trying first to
prove that the structure is present. In other terms, all these algorithms will, for some values of
the parameters, find trajectories in random data made of pure random points (without motion
coherence).

In the present work, we propose a new approach for trajectory detection, that can guarantee
that no trajectory will be found in general in such random data. This work is based on the
a-contrario framework [Desolneux, Moisan, and Morel, 2008], that permits to derive absolute
thresholds, that are then used to drive a dynamic programming algorithm. This algorithm is
able to analyze trajectories globally in time, and avoids the three aforementioned limitations.

In Section 2, we first consider trajectories without holes, that is, the case where no data point
is missing (but, of course, spurious points are expected). After recalling the basic principles
of the a-contrario statistical framework, we derive an explicit criterion for trajectory detection
and present an algorithm based on dynamic programming. We also analyze some theoretical
consequences of the a-contrario thresholds, in particular the link between the number of points,
the number of images and the maximum allowed acceleration. Then we arrive at Section 3,
where the theory and the algorithm are extended to the more general case of trajectories
that contain holes. In Section 4, the state-of-the-art ROADS algorithm [Veenman, Reinders,
and Backer, 2003b] is considered and various experiments (following, for most of them, the
methodology proposed in the original ROADS paper) are led to compare its performances with
the a-contrario algorithm we propose. Aside from a very convenient reduction of the number
of parameters (1 for the NFA algorithm, versus 4 in the ROADS experiments), the a-contrario
algorithm significantly outperforms the ROADS algorithm in terms of precision, robustness,
and sensibility to parameters, both in the no-hole and in the hole version. Experiments are
also conducted on real data, namely a snow sequence for which the ground truth has been
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manually obtained. Again, the results are clearly in favor of the a-contrario algorithm. We
finally conclude in Section 5, and comment on the strengths, limitations, and perspectives
offered by the present work.

3.2 TRAJECTORIES WITHOUT HOLES

In this part, we consider trajectories without holes, that is, we assume that there are no miss-
ing detections (but possibly spurious detections, and points leaving and entering the scene).

3.2.1 Principles of the a-contrario framework

The trajectory detection method that we propose relies on the a-contrario framework in-
troduced by Desolneux, Moisan and Morel (see Desolneux, Moisan, and Morel, 2008 for a
recent presentation). The idea underlying its development (dubbed “Helmholtz Principle”) is
that the human visual system detects structures in an image as coincidences that could not
appear purely by chance in a random setting. Conceived at first to detect structures issued
from Gestalt Theory [Kanizsa, 1980; Wertheimer, 1922], this methodology has been applied to
a large variety of image processing tasks, aiming at detecting structures like alignments [Desol-
neux, Moisan, and Morel, 2000], edges [Desolneux, Moisan, and Morel, 2001], stereo coherence
[Moisan and Stival, 2004], spots [Grosjean and Moisan, 2009], image changes [Robin, Moisan,
and Hégarat-Mascle, 2010], etc. It has also been successfully applied to the related problem of
motion detection in an image sequence [Veit, Cao, and Bouthemy, 2007] where an a-contrario
criterion is used to group together close detections that display a similar local motion.

We here recall the formalization of the a-contrario framework as it was presented in Grosjean
and Moisan, 2009. The a-contrario methodology is based on two ingredients: a naive model, and
one or several measurements defined on the structures of interest. The naive model describes
typical situations where no structure should be detected. For instance, when trying to discover
alignments of points in an image, a naive model could consist of uniform and independent
draws of the point locations, where no interesting structure would usually appear (see Fig. 33).

Figure 33: Illustration of Hemholtz principle. Why can’t we help seeing an alignment of dots on the
left image? According to Helmholtz principle, we a priori assume that the dots should have
been drawn uniformly and independently as in the right image, and we perceive a structure
(here a group of aligned dots) because such an alignment is very unlikely to happen by chance.
Alignments of four dots can be found in the right image, but they do not pop out, because
they are likely to happen by chance considering the total number of points. The formalization
of this principle is realized in a-contrario detection models.
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To detect structures (e.g. alignments of points) in data using Helmholtz Principle, we need
to define in what way an observation can be significant. If the measurement function is high
when the structure is pregnant, we can relate the “amount of surprise” when observing the
measurement x to the probability P(X > x), where X is the random variable corresponding to
the distribution of x in the naive model. We will usually have several measurements (xi)i∈I (in
the example above, one for each possible alignment), and in the classical a-contrario framework
the amount of surprise will be measured by a number of false alarms. More formally, we have
the following

Definition 1 (Number of False Alarms). Let (Xi)16i6N be a set of random variables. A family of
functions

(

Fi(x)
)

i
is a NFA (number of false alarms) for the random variables (Xi)i if

∀ε > 0, E
(

#{i
∣

∣ Fi(Xi) 6 ε}
)

6 ε (3.1)

A measurement xi such that Fi(xi) 6 ε is said to be detected at level ε, or ε-meaningful. We say
that a measurement is meaningful if it is 1-meaningful. This number of false alarms ensures
that the average number of detections made in the naive model (that is, false detections) at
level ε is less than ε.

The classical way to construct a NFA is given by the following proposition (see Grosjean and
Moisan, 2009).

Proposition 1 (NFA construction). Let (Xi)16i6N be a set of random variables and (wi)16i6N a
set of positive real numbers, then the function

NFA(i, xi) = wi ·P(Xi > xi) (3.2)

is a NFA as soon as
N∑

i=1

1

wi
6 1 and in particular if wi = N for all i.

Remark 1 (NFA approximation). If (Fi)i is a NFA, then any family of functions (Gi)i verifying
Fi(t) 6 Gi(t) for all t is still a NFA. Hence, a function satisfying

NFA(i, xi) > wi ·P(Xi > xi)

will define a NFA as soon as
∑N

i=1 1/wi 6 1.

3.2.2 Trajectory detection

We are given a sequence of K images, each containing N points (to ease the notations we
consider a constant number of points throughout the sequence for now, but everything can
be smoothly extended to the non-constant case as will be shown later), and whose support
domain is taken to be the square [0, 1]× [0, 1] (again, the method can be adapted to arbitrary
image sizes, as shown in Section 3.2.3). Following Helmholtz Principle, the naive model will
here be a random uniform draw of N points in each of the K images (intuitively, we should not
see trajectories appearing in the realizations of this model). The corresponding i.i.d. uniformly
distributed random variables corresponding to the points of image k (1 6 k 6 K) will be
denoted by Xk

1 , ...,Xk
N. We now define the structures of interest.

Definition 2 (Trajectories without holes). A trajectory T of length ℓ starting at frame k0 is a tuple
T = (k0, i1, ..., iℓ), where 1 6 ip 6 N for all p and 1 6 ℓ 6 K− k0 + 1. We will denote by T the set
of all trajectories.

There is a natural equivalence between a trajectory T ∈ T and the tuple of variables XT = (X
k0
i1

, ...,Xk0+ℓ−1
iℓ

)

that we shall therefore sometimes abusively call a (random) trajectory too.
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A realization t of the random variable XT will be called a realization of the trajectory T . We
have to keep in mind that we are working with the naive model (where points are randomly
distributed), and thus, a realization of XT should not look like what we would intuitively call a
trajectory.

The second ingredient of the a-contrario model is the measurement function. We could
define a “good trajectory” as one that moves slowly, and take the measurement function to
be, for instance, the maximal speed of the object along the trajectory. For most applications, a
natural choice is to define a good trajectory as a smooth one, that is, a trajectory with a small
acceleration. Of course, the model could easily be adapted to a variety of other measurements
like the maximal velocity, the greatest direction change, etc.). Let us stick to the idea of good
trajectories being those bearing a small acceleration. We still have many ways to define this, the
two most obvious choices being to control the maximal acceleration, or to control the average
acceleration of a trajectory realization t = (y1, ..., yℓ). Again, the model can be adapted to
both, but for practical reasons we will choose to control the maximal acceleration that involve
simpler computations, thus leading to the measurement function

Definition 3 (Maximal acceleration). The maximal acceleration of a tuple of points t = (y1, ..., yℓ)

is

amax(t) = max
26i6ℓ−1

‖yi+1 − 2yi + yi−1‖. (3.3)

We will now of course consider only trajectories having at least 3 points. Let T be a trajectory,
Proposition 1 tells us that we can define a Number of False Alarms by an appropriate weighting
of the probability P(amax(XT ) 6 δ). In the naive model, this probability only depends on the
length ℓ of the trajectory (and, of course, δ), and verifies

Proposition 2 (Probability bound). If XT is a random trajectory of length ℓ, and δ is a positive real
number, then

P(amax(XT ) 6 δ) 6 (π · δ2)ℓ−2. (3.4)

Proof — Assume that T = (k0, i1, ..., iℓ), and call B̄(x, r) the closed disc with center x and

radius r. Writing X ′
p = X

k0+p−1
ip

, we get

P(amax( XT ) 6 δ)

= P





ℓ
⋂

p=3

{

X ′
p ∈ B̄(2X ′

p−1 −X ′
p−2, δ)

}




6

ℓ∏

p=3

P

(

X ′
p ∈ B̄(2X ′

p−1 −X ′
p−2, δ) | X ′

p−1,X ′
p−2

)

6 (π · δ2)ℓ−2

because the area of B̄(x, δ)∩ [0, 1]2 is bounded from above by π · δ2 for all x. �

By Remark 1, we know that we can use the upper bound (3.4) to construct a NFA, as in (3.2).
There are many possibilities to define the weights (wT )T subject to the constraint

∑
T 1/wT 6 1.

This gives us a way to adjust the detection thresholds for each structure. We choose to group
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trajectories together according to their length, dividing the set of trajectories into K groups
T = T1 ∪ ...∪TK (here, Tℓ denotes the set of trajectories of length ℓ), and weigh trajectories of
a group uniformly by wT = K · |Tℓ| for any T ∈ Tℓ.

Proposition 3 (Continuous NFA for trajectories without holes). The family of functions (NFAT )T∈T

defined by

∀ℓ, ∀T ∈ Tℓ, NFAT (δ) = K(K− ℓ+ 1)Nℓ · (π · δ2)ℓ−2 (3.5)

is a Number of False Alarms for the measurement amax.

Proof — Since |Tℓ| = (K− ℓ+ 1)Nℓ, we have

∑

T∈T

1

K(K− ℓ+ 1)Nℓ
=

K∑

ℓ=1

∑

T∈Tℓ

1

K|Tℓ|
= 1,

and we conclude that (3.5) defines a NFA thanks to Proposition 1. �

Let us quickly comment Proposition 3. We can rewrite (3.5) into NFAT (δ) = K(K− ℓ+ 1)N2 ·
αℓ−2 by using the relative density α = Nπδ2 (which corresponds to the average number of
points falling in a disc with radius δ). We see that for a trajectory to be meaningful, we need

to have α < 1. In other terms, only trajectories with maximal acceleration δ < 1/
√
Nπ might

be detected as meaningful. Such kinds of bounds will be analyzed more precisely in Section
3.2.6.

3.2.3 Data quantization

In many applications, point detection is realized on a discrete grid of integer pixel coordi-
nates, so that it may happen that three successive points in the sequence have a null acceler-
ation. This is a very strong contradiction to the naive model, since this event has probability
zero. Thus, if a long trajectory has a subtrajectory with a null acceleration, an algorithm that
detects the most meaningful trajectories first will cut the longer trajectory into chunks to isolate
the (optimal) null-NFA subtrajectory.

To avoid this kind of behavior we need to handle data quantization carefully. There are two
ways we could do this: assume that the data has been properly quantized on the integer grid
of the image and define a discrete version of the NFA, or consider a measurement impreci-
sion and always consider the “worst-case scenario” for the measurements when computing
accelerations.

First, we assume that the data has been quantized on an integer grid, say a rectangle Ω of Z
2

containing |Ω| pixels. We can define a discrete version of the NFA by replacing the continuous
acceleration area π · δ2 by its discrete equivalent. More precisely, we round the accelerations
components δx, δy to the nearest integers [δx], [δy], and define the discrete acceleration area by

ad(δx, δy) =
|Sr|

|Ω|
,

where |Sr| is the number of pixels enclosed in the discrete disc Sr = Z
2 ∩ B̄(0, r) (see Fig. 34)

and

r =

√

[δx]2 + [δy]2.

In particular, when ([δx], [δy]) = 0 we obtain a discrete area of 1/|Ω| that no longer leads to a
null NFA.
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Definition 4 (Discrete maximal acceleration). The discrete maximal acceleration of a tuple of points
t = (y1, ..., yℓ) is

ad
max(t) = max

26i6ℓ−1
ad(yi+1 − 2yi + yi−1). (3.6)

Proposition 4 (Discrete NFA for trajectories without holes). The family of functions (NFAd
T )T∈T

defined by

∀ℓ, ∀T ∈ Tℓ, NFAd
T (a) = K(K− ℓ+ 1)Nℓ · aℓ−2 (3.7)

is a Number of False Alarms for the measurement ad
max.

Figure 34: Discrete discs. A continuous disc and its corresponding discretization composed of all pixels
whose centers lie inside the continuous disc. A discrete measure of area is better suited to
the analysis of quantized data that might result in observing degenerate null-area continuous
disc (the corresponding discrete disc has a non-null area).

We now examine the “worst-case scenario” acceleration. We assume that we have a measure
η > 0 of the measurements imprecision (corresponding roughly to the radius of one pixel in
the previous example). We keep the same NFA than in the continuous case (Equation 3.5), but
we replace the measurement function by

aw
max(t) = max

26i6ℓ−1
aw(yi, yi+1, yi+1), where

aw(x, y, z) = max
dx,dy,dz∈B̄(0,η)

‖(x + dx) − 2(y + dy) + (z + dz)‖.

One easily shows that aw(x, y, z) = ‖x − 2y + z‖+ 4η, and this therefore equivalently amounts
to keeping the same measurement function than in the continuous case and replacing the NFA
(3.5) with

NFAw
T (δ) = K(K− ℓ+ 1)Nℓ · (π · (δ+ 4η)2)ℓ−2 (3.8)

We see that a null-acceleration trajectory will be counted as an acceleration of 4η, thus incurring
a penalty to all accelerations. This is why in practice we use the discrete NFA.

3.2.4 Algorithm

In this section we consider the discrete NFA given in Equation (3.7). When a meaningful
trajectory is present, any slight deviation from it (removing or adding a point, for instance)
will usually also be meaningful, so that we expect to detect a large number of overlapping
meaningful trajectories. Hence, we choose to detect the trajectories greedily, by iterating the
following process:
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1. compute the most meaningful trajectory, that is, the one having the smallest NFA;

2. remove its points from the data.

To compute the most meaningful trajectory in a sequence of points, that is, K images I1, ..., IK,
each containing N points, we use a dynamic programming strategy. Indeed, we compute for
each point x in image Ik the most meaningful trajectory ending in this point (note that in the
following, we shall sometimes write xk instead of x to recall that x belongs to Ik). Denoting by
G(xk, yk−1, ℓ) the minimal acceleration of a trajectory of length ℓ ending with points yk−1 and
xk, we obtain a Bellman equation

G(xk, yk−1, ℓ) =

{
0 if ℓ = 2,

minz∈Ik−2
G(x, y, z, ℓ) otherwise,

(3.9)

where

G(x, y, z, ℓ) = max
(

ad(x − 2y + z) , G(y, z, ℓ− 1)
)

. (3.10)

This recursive formulation translates to Algorithm 3.

Algorithm: compute_G

input : f1, ..., fK the sets of {nk 6 N}16k6K points contained in each frame
output: G

for 2 6 k 6 K do
for x in fk do

for y in fk−1 do

G(x,y, 2)← ad(0)

for 3 6 ℓ 6 k do
G(x,y, ℓ)← +∞

for z in fk−2 do

a← max(ad(x− 2y+ z),G(y, z, ℓ− 1))

G(x,y, ℓ)← min(a,G(x,y, ℓ))
end

end

end

end

end
return G

Algorithm 3: Dynamic programming computation of G. We start by computing the values
of G(xk,yk−1, ℓ) for k = 2, then k = 3, ... each time reusing the results of the previous
round.

Now let us write

NFAd
ℓ (a) = K(K− ℓ+ 1)Nℓ · aℓ−2, (3.11)

so that NFAd
T (a) = NFAd

ℓ (a) for any trajectory T with length ℓ. Since the function a 7→
NFAd

ℓ (a) is monotone, the most meaningful trajectory with length ℓ is the one having the least
maximal acceleration. Hence we can use Algorithm 3 to compute the smallest NFA of the point
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sequence (Algorithm 4). Moreover, if B(xk, yk−1, ℓ) represents the most meaningful trajectory
with length ℓ ending with points y→ x (where t→ x denotes the concatenation of trajectory t

and point x), we can write

B(xk, yk−1, ℓ) =

{
y→ x if ℓ = 2,

B(y, ẑ, ℓ− 1)→ x otherwise,
(3.12)

where ẑ ∈ arg minz G(y, z, ℓ− 1) (strictly speaking, the most meaningful trajectory might not
be unique, so we have to choose one most meaningful trajectory arbitrarily; to simplify the
description we shall nevertheless use the term “the most meaningful trajectory” throughout
the paper). Finally, for each xk, the most meaningful trajectory ending in xk is B(xk, ŷk−1, ℓ̂)
where

(ŷk−1, ℓ̂) ∈ arg min
(yk−1,ℓ)

NFAd
ℓ

(

G(xk, yk−1, ℓ)
)

.

An algorithm similar to Algorithm 3 can hence be used to compute a trajectory having the
smallest NFA. In practice, we choose an arbitrary tuple (x, y, ℓ) such that there is an optimal
trajectory of length ℓ ending on points y → x, and we extract a trajectory by backtracking,
each time selecting the predecessor that minimizes locally the maximal acceleration among all
predecessors that lead to an optimal trajectory.

Algorithm: minimal_NFA

input : G
output: m the minimal NFA of a trajectory

m← +∞

for 3 6 k 6 K do
for x in fk do

for y in fk−1 do
for 3 6 ℓ 6 k do

m← min(m, NFAd
ℓ (G(x,y, ℓ)))

end

end

end

end
return m

Algorithm 4: Find the minimal NFA value among all trajectories.

Note that we could also extract the trajectory having the minimal average acceleration (for
example) among all optimal trajectories, simply by rerunning a similar dynamic-programming
algorithm restricted to optimal trajectories.

In the end, by applying the process greedily (as mentioned above), we obtain an algorithm
that extracts all meaningful (or ε-meaningful) trajectories from a sequence of points (Algorithm
5).

Often we can save some computation time by extracting several trajectories at once without
recomputing the function G each time, because removing points from the current data set
cannot decrease any value of G. This idea can be used, for instance, when the two most
meaningful trajectories in the sequence do not share any point. The inner loop of Algorithm 6
does just that: if we have a way to define a set of disjoint minimal-NFA trajectories (for instance,
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Algorithm: trajectory_detection

input : ε the maximal allowed NFA
f1, ..., fK the sets of points contained in each frame

output: S = t1, ..., tm the extracted trajectories

S← ∅

repeat
compute_G

m← minimal_NFA

if m 6 ε then
t← a trajectory of NFA = m

S← S∪ {t}, and remove all points in t from the corresponding frames
end

until m > ε or there are no more points
return S

Algorithm 5: Greedy trajectories extraction using the NFA criterion.

greedily), we can extract them all at once (since they are of minimal NFA, and each are non-
overlapping, we could extract them sequentially with interleaving G function recomputations,
but this would not change the NFA of those trajectories, that would still be minimal).

Then if we have been able to extract a set of disjoint trajectories of minimal NFA that covers
every point where a trajectory of minimal NFA could end, we can continue doing the extraction
for the next minimal NFA without recomputation. When this is no longer possible (because of
some point removal) we need to recompute the G function to reactualize the NFAs.

We now examine the space and time complexity of algorithm 5 for an extraction round. The
most expensive computation is that of function G. The space (memory) required is O(N2K2),
since we have to store a value for each triplet (xk, yk−1, ℓ) in each image frame k. Each value
computation takes O(N) operations because we have to consider all the points in the previ-
ous image, leading to a O(N3K2) time complexity. The search for the minimal NFA and the
extraction of the most meaningful trajectory have negligible time and space complexities. As
the extraction must be repeated as long as there is any remaining meaningful trajectory, the
global time complexity is O(sN3K2), where s denotes the number of extracted ε-meaningful
trajectories. In practice, on a standard PC desktop, for K = 50 images, the number N of points
per image can go up to several hundreds (and about one thousand for K = 20).

3.2.5 Variable number of points

In real data, the number of points is hardly ever constant throughout the sequence, so that
instead of having N points in each of the K images, we have N1,N2, . . . NK points on images
1, 2, . . . K. Since the NFA is an upper bound on the average number of false alarms (Remark 1)
we can simply take N = maxkNk and keep the NFA unchanged. However, to obtain more
accurate results, we can refine Proposition 4 with

Proposition 5 (Discrete NFA for trajectories without holes, general case). The family of functions

(NFAd
T )T∈T defined, for any trajectory T with length ℓ starting at frame k0, by

NFAd
T (a) = K(K− ℓ+ 1)





∏

k06k6k0+ℓ−1

Nk



 · aℓ−2, (3.13)
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Algorithm: trajectory_detection_accelerated

input : ε the maximal allowed NFA
f1, ..., fK the sets of points contained in each frame

output: S = t1, ..., tm the extracted trajectories

S← ∅

repeat
compute_G

m← minimal_NFA

stop← false

while m 6 ε and stop = false do
U← { x

∣

∣ ∃ a traj. with NFA = m ending in point x }

V ← a set of disjoint trajectories of NFA = m ending on a point of U
S← S∪ V
remove all points from the trajectories in V

stop← true if not all points of U have been removed
m← minimal_NFA()

end

until m > ε or there are no more points
return S

Algorithm 6: Greedy trajectories extraction, accelerated by extracting several trajectories at
once.

is a Number of False Alarms for the measurement ad
max.

The proof is very similar to that of Proposition 3, except that now the set of trajectories Tℓ

itself has to be decomposed with respect to the index of the starting frame.

3.2.6 Theoretical analysis

We now examine some theoretical consequences of Equation (3.5), that can have very practi-
cal consequences in the design of the data acquisition process. For simplicity reasons, we use
the continuous NFA formulation, with a fixed number of points per image, but (3.7) or (3.13)
would lead to the same conclusions.

Relation between the number of points and the maximal acceleration

Consider, as before, a sequence of K frames, each containing N points. We recall that the
Number of False Alarms associated to a trajectory T with length ℓ > 3 and maximal accelera-
tion δ is (see Equation 3.5)

NFAT (δ) = K(K− ℓ+ 1)Nℓ · (π · δ2)ℓ−2.

Such trajectory is ε-meaningful as soon as

K(K− ℓ+ 1)Nℓ · (π · δ2)ℓ−2
6 ε,

which can be rewritten δ 6 δc, where the upper bound is the critical acceleration

δc =
1√
Nπ

(

ε

K(K− ℓ+ 1)N2

) 1
2ℓ−4

. (3.14)
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Hence, as we already remarked at the end of Section 3.2.2, a necessary condition for trajectory

detection is δ 6 ∆ with ∆ = 1√
Nπ

, which gives an order of magnitude of the typical acceler-

ations that can be handled by the NFA approach (and, in some sense, by any approach since
accelerations greater than ∆ would allow detections in pure noise). Since the acceleration is
inversely proportional to the squared frame rate (by doubling the frame rate, one divides accel-
erations by 4), this absolute bound can be useful in the design of the data acquisition process.
Indeed, given the expected number of detected points in each frame (N), and the expected
physical accelerations of objects (δ), one can compute the critical frame rate, under which no
trajectory detection is possible. Note, however, that the upper bound ∆ is not very accurate
(see Table 2), thus using the exact value δc (Equation 3.14) is probably a better idea.

N 15 50 200 1000

∆ 146 80 40 18

δc (l = 5, K = 20) 23 8.3 2.6 0.7
δc (l = 10, K = 20) 74 35 15 5.4
δc (l = 10, K = 50) 64 30 13 4.7
δc (l = 30, K = 50) 117 61 29 12

Table 2: Acceleration bounds ∆ = 1√
Nπ

and δc (Equation 3.14) in function of N, expressed in

pixel.image−2 in a 1000× 1000 image for some values of l and K (ε = 1).

Influence of the trajectory length

A nice property of the a-contrario approach is that it permits to relate different parameters
by observing the way they are linked in the NFA formula. Table 2 shows that the trajectory
length has a significant impact on the critical acceleration δc (whereas the number of frames, K,
has a much smaller impact). Thus, it could be interesting to study more precisely how the NFA
balances the trajectory length and the acceleration, that is, how the critical acceleration grows
as the trajectory length increases. Since 1 6 K− ℓ+ 1 6 K, we can write log(K(K− ℓ+ 1)) =

2β(ℓ) logK with β(ℓ) ∈ [1/2, 1], so that from (3.14) we get

log δc = log∆−
logN+β(ℓ) logK− log

√
ε

ℓ− 2
.

Hence, log δc grows approximately like 1/ℓ, and attains for ℓ = K a value close to (and below)
log∆. This is illustrated on Fig. 35.

Last, we show the monotony of the critical acceleration with respect to the trajectory length
(that is, the longer the trajectory, the looser the constraint on the acceleration).

Proposition 6. If ε 6 1, then the critical acceleration δc given by (3.14) increases with respect to ℓ.

Proof — Rather than using (3.14), we go back to (3.5) and write, for ℓ ∈ {1, . . . ,K},

F(ℓ, δ) = N2K(K− ℓ+ 1) · (Nπδ2)ℓ−2

(thus, F(ℓ, δ) is the NFA associated to a trajectory with size ℓ and maximal acceleration δ).
Now, if ℓ is such that F(ℓ, δ) is smaller than 1 (since we suppose that ε 6 1), then Nπδ2 < 1 so
that both ℓ 7→ (Nπδ2)ℓ−2 and ℓ 7→ N2K(K− ℓ+ 1) are decreasing with respect to ℓ, and so is
ℓ 7→ F(ℓ, δ). Hence, if ℓ1 > ℓ2, we have, for δ = δc(ℓ2),

F(ℓ1, δc(ℓ2)) < F(ℓ2, δc(ℓ2)) = ε,
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length (ℓ)
0 10 20 30 40 50

0

−2

−4

N = 15

N = 50

N = 200

log10 δc

Figure 35: Asymptotic and non-asymptotic critical accelerations. The (base-10 log) critical acceleration
log10 δc is an increasing function of ℓ that approaches its upper bound (dotted line) log10 ∆ =

log10
1√
Nπ

when ℓ = K. Here K = 50 and the three curves correspond to N = 15, N = 50, and

N = 200 respectively.

which proves that δc(ℓ1) > δc(ℓ2) since δ 7→ F(ℓ1, δ) is increasing. �

Asymptotic bounds and the importance of the combinatorial factor

Now we would like to assess the importance of the combinatorial factor in the definition
of the NFA. As was discussed above, there are several ways to define the weights of the
structures. In (3.5), we chose to weigh the trajectories uniformly with respect to their length
(that is, such that the expected number of false alarms is equally shared among all possible
trajectory lengths), that is

NFAT (δ) = K(K− ℓ+ 1)Nℓ ·P(amax(XT ) 6 δ). (3.15)

Another more classical choice would be to set a uniform weight wT = |T| for all trajectories,
thus obtaining

NFA ′
T (δ) =

(

K∑

m=1

(K−m+ 1)Nm

)

·P(amax(XT ) 6 δ). (3.16)

Suppose that we observe a trajectory t with length ℓ and maximal acceleration δ = amax(t),
what difference will each NFA definition make? This trajectory is detected if NFAT (δ) (or
NFA ′

T (δ)) is below a certain threshold ε, hence it is interesting to estimate the ratio

NFA ′
T (δ)

NFAT (δ)
=

1

K(K− ℓ+ 1)Nℓ

K∑

m=1

(K−m+ 1)Nm

>
1

K2Nℓ

K∑

m=ℓ

Nm

>
NK−ℓ

K2
.

This lower bound shows that when ℓ is small, the detection penalty incurred when using NFA ′

is very large and it will thus be more difficult to detect small trajectories with this criterion.
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In the following, we compare more precisely NFA and NFA ′ and compute asymptotic es-
timates when the number of frames (K) becomes large. Let us deal first with the function
NFAT (δ). We consider a trajectory T spanning |T | = µK images of the sequence for a fixed
µ ∈ (0, 1], with a maximal acceleration δ, among N points per frame. We write α = Nπδ2, and
propose to determine, when K gets very large, if the trajectory is meaningful. We have

NFAT (δ) = K · (K− µK+ 1) ·NµK · (πδ2)µK−2

∼
K→∞

π−2δ−4K2(1− µ)αµK,

so that

log NFAT (δ) ∼
K→∞

µK logα

and

lim
K→+∞

NFAT (δ) 6 1 ⇐⇒ α < 1 (3.17)

This means that for any maximal acceleration δ such that δ < ∆ (that is, α < 1), all trajectories
spanning µK frames (0 < µ 6 1) will eventually become meaningful when K is large enough.
In practice, values of α near 1 are not very efficient, since they require a very large value of K
to lead to meaningful trajectories. This phenomenon is illustrated on Fig. 36.

α
0 0.2 0.4 0.6 0.8 1
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100

200

300

number of frames (K)

Figure 36: Non-asymptotic counterpart of (3.17). Theses three curves represent, as a function of α =

Nπδ2, the minimum number of frames (K) required for a trajectory with length ℓ = ⌊µK⌋
and maximal acceleration δ to be 1-meaningful according to the NFA criterion (3.15). Upper
curve: µ = 0.3; middle curve: µ = 0.5; lower curve: µ = 1. The number of points per frame is
N = 100.

Now we study the asymptotic behavior of NFA ′
T (δ) (see Equation 3.16). First, we notice that

K∑

m=1

(K−m+ 1)Nm = NK+2
K∑

m=1

mN−m−1 ∼
K→∞

NK+2

(N− 1)2

and thus

NFA ′
T (δ) ∼

K→∞

NK+2−µKαµK

(N− 1)2
.
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Figure 37: Non-asymptotic counterpart of (3.17). Theses three curves represent, as a function of the
number of points N, the minimum number of frames (K) required for a trajectory with length
ℓ = K and various values of the maximal acceleration δ to be 1-meaningful according to the
NFA criterion (3.15).

Therefore,

log NFA ′
T (δ) ∼

K→∞
(1− µ)K logN+ µK logα

and

lim
K→+∞

NFA ′
T (δ) < 1 ⇐⇒ logα <

µ− 1

µ
logN. (3.18)

Since µ−1
µ → −∞ as µ → 0+, Equation (3.18) shows that it is indeed asymptotically much

harder to detect small trajectories with NFA ′ than with NFA. This fact is illustrated by Fig. 38,
on which we can see that even when µ is close to 1, NFA permits to detect much more trajec-
tories than NFA ′, both asymptotically and non-asymptotically.

3.3 TRAJECTORIES WITH HOLES

In many practical situations, because of occlusions or acquisition noise, some trajectory
points will not be detected in one or more frames. In this section, we generalize the previous
framework to trajectory detection in the case of missing points.

3.3.1 Number of false alarms

The naive model remains unchanged (keeping the notations of the previous section): we
are given K images I1, ..., IK, each image Ik containing N points Xk

1 , ...,Xk
N, and we assume by

Helmholtz principle that all random points Xk
i are independent and uniformly distributed in

[0, 1]2.

Definition 5 (Trajectories with holes). A trajectory of size s is a sequence of pairs T = {(i1, τ1), ..., (is, τs)},
such that τ1 < ... < τs. We denote by T the set of all trajectories, and by Ts the set of trajectories
of size s. We bijectively associate to the trajectory T the tuple of random (i.i.d., uniformly distributed)
variables XT = (X

τ1
i1

, ...,Xτs
is
), that we also abusively call a (random) trajectory.
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trajectory relative length (µ)
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Figure 38: Comparison between the NFA and NFA ′ models (3.15, 3.16). Each curve represents, as a
function of µ, the minimal value of α = Nπδ2 required for a trajectory with length ℓ = ⌊µK⌋
and maximal acceleration δ to be 1-meaningful in a sequence of K images, among N = 100

points per frame. The red upper curves are obtained with the criterion NFA, whereas the blue
lower curves are obtained with the criterion NFA ′. The full curves correspond to K = 100, and
the dashed curves correspond to the asymptotic estimates obtained when K → +∞, that is,
logα = 0 for NFA and logα = logN · (µ− 1)/µ for NFA ′. These curves clearly demonstrate
that not only NFA is better suited to the detection of small trajectories than NFA ′ (it allows for
trajectories having a much larger maximal acceleration), but it is also more efficient even for
relatively large values of µ (NFA ′ being slightly better only for almost complete trajectories).
Asymptotically, NFA is always the best choice.

Since the definition above is more general than the special case of trajectories without holes
(Definition 2), we chose to keep the same word (trajectory) and the same notations (T, Ts) as
in Section 3.2. This should not lead to ambiguities, since we will only consider trajectory with
holes in this section.

As in Section 3.2, we would like to build an a-contrario detection model to detect trajectories
(here, with holes). We consider three parameters of interest for the computation of the NFA of
a trajectory XT = (X

τ1
i1

, ...,Xτs
is
): the trajectory length, its size and its number of runs. The length

is the total number of frames that the trajectory spans (τs − τ1 + 1), the size is the number of
(detected) points it contains (s), and a run is a maximal set of consecutive points. Note that if
we call hole a maximal set of consecutive missing points, then the number of runs equals the
number of holes plus one.

We first need to generalize the notion of maximal acceleration amax (Definition 3) to the case
of trajectories with holes. A natural way to do this consists in interpolating the missing points
of the trajectory and compute its maximal acceleration. Since we would like to keep using
an algorithm based on dynamic programming, we use the most local choice, that is, a simple
constant speed interpolation. This leads to the following

Definition 6 (Maximal acceleration with holes). The maximal acceleration of the realization t =

(y
τ1
1 , ..., yτs

s ) of a trajectory T is

ah
max(t) = max

26i6s−1
‖ah(y

τi−1

i−1 , y
τi
i , y

τi+1

i+1 )‖, (3.19)

with, for all points xi, yj, zk (i < j < k),

ah(xi, yj, zk) =
z − y

k− j
−

y − x

j− i
. (3.20)
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We now compute, as in Proposition 2, a probability bound for the maximal acceleration of a
random trajectory with holes.

Proposition 7 (Simple probability bound). If a random trajectory XT with size s has holes of size
h1, ...,hp−1, then for any δ > 0 one has

P(ah
max(XT ) 6 δ) 6 (π · δ2)s−2 ·

∏

16i6p−1

(hi + 1)2. (3.21)

Proof — We assume that T = {(i1, τ1), ..., (is, τs)}, and write X ′
q = X

τq

iq
and

Mq = X ′
q−1 +

τq − τq−1

τq−1 − τq−2
(X ′

q−1 −X ′
q−2),

so that

P(amax( XT ) 6 δ)

6 P





s
⋂

q=3

{

X ′
q ∈ B̄(Mq, (τq − τq−1)δ)

}




6

s∏

q=3

P

(

X ′
q ∈ B̄(Mq, (τq − τq−1)δ) | X ′

q−1,X ′
q−2

)

6 (π · δ2)s−2
s∏

q=3

(τq − τq−1)
2

6 (π · δ2)s−2
p−1∏

i=1

(hi + 1)2.

�

For efficiency reasons, we want to design an algorithm that can share computations, that
is, we want to be able to reuse the computations made on subtrajectories and extend them to
obtain the results for bigger trajectories. To do this efficiently, we shall not consider, for a given
trajectory, the individual sizes hi of its holes, but simply its length ℓ, its size s and its number
of runs p. This is why we derive from (3.21) the following

Proposition 8 (Practical probability bound). If a random trajectory XT has length ℓ, size s and
number of runs p, then for any δ > 0 one has

P(ah
max(XT ) 6 δ) 6 (π · δ2)s−2 ·

(

ℓ− s

p− 1
+ 1

)2p−2

(3.22)

with the convention that the right-hand parenthesis equals 1 ((00 + 1)0) when p = 1.

Proof — We consider the maximum value of the right-hand term of (3.21) over all possible
hole sizes h1, ...,hp−1 that are feasible for parameters ℓ, s and p. Relaxing the constraint that
the hi have to be integers, we face the optimization problem

max
(hi)

p−1∏

i=1

(hi + 1)2 ;
∑

i

hi = ℓ− s, and ∀i, hi > 0,
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which, denoting ξi = hi + 1, has the same solutions as the problem max
ξ∈C

E(ξ), with E(ξ) =

p−1∑

i=1

log(ξi) and

C =





ξ ∈ [1,+∞)p−1,

p−1∑

i=1

ξi = ℓ− s+ p− 1





.

Now if ξ ∈ C has not identical coordinates, we can choose two different values, say 1 6 ξi1 <

ξi2 , and replace them both by (ξi1 + ξi2)/2 > 1 to form a new ξ ′ ∈ C. Then,

E(ξ ′) − E(ξ) = 2 log((ξi1 + ξi2)/2) − log(ξi1) − log(ξi2),

and this quantity is positive by strict concavity of the log function. Thus, the unique solution of
maxξ∈C E(ξ) satisfies ξi = (ℓ− s)/(p− 1) + 1 for all i, and the maximum value of

∏
i (hi + 1)2

over feasible hole sizes h1, ...,hp−1 is bounded from above by

(

ℓ− s

p− 1
+ 1

)2p−2

.

Using this bound in (3.21) yields the announced result. �

Now we need to define the combinatorial term wT that premultiplies the NFA. Recalling
the discussion of the end of Section 3.2.2, we choose to group the trajectories by their length
and size, and to use uniform weights in each category. The number of trajectories of length ℓ

and size s that can fit in K frames is bounded from above by (K− ℓ+ 1)
(

ℓ
s

)

Ns, and since we
cluster the trajectories by their lengths and sizes, we have to count the number of such clusters.
Indeed, it is bounded from above by Kℓ, since there are less than K ways to choose the length,
and knowing that the length is ℓ there are less than ℓ ways to choose the size. Combining these
remarks with Proposition 8 establishes the following

Proposition 9 (NFA for trajectories with holes). The family of functions (NFAT )T∈T defined for
any trajectory T of length ℓ, size s and number of runs p by

NFAT (δ) = Kℓ(K− ℓ+ 1)

(

ℓ

s

)

Ns(πδ2)s−2

(

ℓ− s

p− 1
+ 1

)2p−2

(3.23)

is a Number of False Alarms for the measurement ah
max.

This new function NFAT is a kind of generalization of (3.5). Indeed, for a trajectory T

without hole (that is, such that p = 1, and consequently ℓ = s), we have

NFAT (δ) = ℓ ·K(K− ℓ+ 1)Nℓ(πδ2)ℓ−2

which is, up the a new factor ℓ, the value given in (3.5). This new factor simply comes from
the fact that we do not know a priori that the number of runs of the trajectory is one.

3.3.2 Algorithm

In the practical implementation that we describe below, we use a discrete version of the
acceleration, obtained by replacing the norm involved in (3.19) by a discrete area measure,
exactly as we did in Section 3.2 (see Definition 4).
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We want to compute, for each point x of each image Ii (that we denote by xi), the most
meaningful trajectory T = N(xi) that ends in xi (or, to be more precise, one of such most
meaningful trajectories) . This information can be extracted from the function G(xi, yj, ℓ, s,p),
which represents the least maximal acceleration of a trajectory of length ℓ, size s, and having p

consecutive runs (that is, p− 1 holes), ending with the point yj in frame j < i followed by the
point xi in frame i.

We say that a tuple (i, j, ℓ, s,p) is undefined if there is no trajectory ending with its two last
points in frame i and j, with length ℓ, size s and having p runs of consecutive points. For
instance, if ℓ < s or s < 2, the tuple is undefined. We define for i > j

G(xi, yj, ℓ, s,p) =






+∞ if (i, j, ℓ, s,p) is undefined,
0 if s = 2,
minu>1,z∈Ij−u

Ḡ(x, y, z, ℓ, s,p) otherwise,
(3.24)

with the convention, for i > j > k, that

Ḡ(xi, yj, zk, ℓ, s,p) = max
(

ah(x, y, z), G(y, z, ℓ− (i− j), s− 1,p− 1i 6=j+1)
)

(3.25)

and as usual 1a 6=b = 1 if a 6= b and 0 otherwise. Notice that as in Section 3.2.4, the superscript

k in xk simply reminds us that the point x belongs to image Ik, so we sometimes omit it and
simply write x.

We deduce from (3.25) a dynamic programming algorithm to compute G, similar to the one
we presented in Section 3.2 for the trajectories without holes. We can then backtrack to find
the most meaningful trajectory ending in each point xi by defining, for i > j, the recursive
function

B(xi, yj, ℓ, s,p) =






undefined if (i, j, ℓ, s,p) is undefined,
y→ x if s = 2,
B(y, ẑj−û, ℓ− (i− j), s− 1,p− 1i 6=j+1)→ x otherwise,

where ẑj−û realizes the minimum in the last line of (3.24). Finally, for each xi, the most

meaningful trajectory with holes ending in xi is B(xi, ŷĵ, ℓ̂, ŝ, p̂), where

(ĵ, ŷĵ, ℓ̂, ŝ, p̂) = arg min
j<i,yj,ℓ,s,p

NFAd
ℓ,s,p(G(x

i, yj, ℓ, s,p)).

We can analyze the spatial and temporal complexities of the algorithm. As in the case of
trajectories without holes, the most costly operation is the computation of the G function. Its
complexity is O(N2K5) in space and O(N3K6) in time. Since the extraction must be repeated
until there are no more meaningful trajectories, the global time complexity is O(sN3K6), where
s is the number of extracted ε-meaningful trajectories. In practice, on a standard PC desktop,
for K = 30 images, the number N of points per image can go up to about one hundred. For
long sequences containing much more that 30 images, the algorithm cannot be used directly
(due to the N6 term in the time complexity), but one could probably obtain good results by
cutting the image sequence into small parts and applying the algorithm on each part (raising
the issue of long trajectories spanning several parts).

3.3.3 Variable number of points and rectangular images

As for the NFA of trajectories without holes (Section 3.2), we can adapt the NFA given in
Proposition 9 to the case of a variable number of points per image. Let us write Nk the number
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of points present in image k. The simplest strategy consists in applying directly the definition
of Proposition 9 with N = maxkNK. If Nk has strong variations, a more sensitive detection
can be obtained by replacing in NFAT (δ) the term Ns by

max
k0=i1<i2<...<is=k0+ℓ−1

Ni1 · ... ·Nis ,

where T is a trajectory starting in image k0, with length ℓ and size s. This term is easily
computed once the sequence (Nk)16k6K has been sorted.

As in the case of trajectories without holes, the NFA can also be adapted to rectangular
images (see Section 3.2.3).

3.3.4 Theoretical results

We now analyze the asymptotic behavior of the NFA on some particular cases. They are all
composed of one trajectory spanning the K images, and N− 1 additional spurious points in
each frame. The trajectory has a maximal acceleration of δ.

Long trajectory with a single hole

We first study the case where the trajectory is composed of two parts separated by a unique
hole of length h = εK. We thus have ℓ = K, s = (1− ε)K,p = 2, and we write α = Nπδ2 as in
Section 3.2.6.

We study under which conditions, when K gets large, the trajectory is meaningful, and if
it is more meaningful than its first (or equivalently last) part. First we derive an asymptotic
expansion of

NFAT (δ) = K · (K− ℓ+ 1) · ℓ ·
(

ℓ

s

)

· αs

(πδ2)2
· (εK)2(p−1)

= K2

(

K

(1− ε)K

)

α(1−ε)K

(πδ2)2
(εK)2.

From Stirling’s Formula, one easily derives the expansion

log

(

K

ηK

)

= −Kh(η) −
1

2
logK+ O

K→+∞
(1),

where η ∈ (0, 1) is fixed, and

h(η) = η log(η) + (1− η) log(1− η).

Hence, we have

log NFAT (δ) = K
(

(1− ε) logα− h(ε)
)

+
7

2
logK+ O

K→+∞
(1),

which proves the asymptotic equivalence

lim
K→+∞

NFAT (δ) 6 1 ⇐⇒ log(α) <
h(ε)

1− ε
. (3.26)

This asymptotic condition on α is illustrated in Fig. 39. We can notice that the asymptotic limit
on logα given by the right-hand term of (3.26) is quite accurate (and almost linear) as long as
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Figure 39: Influence of the hole size. Plot, in function of ε, of the maximal value of α (in log scale)
for a trajectory with a single hole of size h = ⌊εK⌋ to be meaningful. The total number of
points in each frame is N = 100, and the length of the sequence is K = 100 for the green
lower curve and K = 400 for the blue middle curve. The red upper curve is the asymptotic
limit h(ε)/(1 − ε) of logα corresponding to the case K = +∞. We can see that when the
trajectory hole becomes fairly important, the maximal allowed acceleration for a trajectory to
be meaningful plummets.

the relative hole size ε is not too large. If the hole size is half the trajectory length (ε = 1/2),

then the asymptotic condition is α < 1
4 .

Now we would like to investigate the condition under which the complete trajectory is more
meaningful than its starting or ending parts. Writing γ = (1− ε)/2 so that each small trajectory
has a size γK, this condition writes

NFAT1+2
(δ)/NFAT1(δ) 6 1,

that is

K

K
· 1

(1− γ)K+ 1
· K

γK
·
(

K
2γK

)

(

γK
γK

) · α
2γK

αγK
· ((1− 2γ)K+ 1)2

1
6 1

or equivalently

−Kh(2γ) + γK logα+ logK+ O
K→+∞

(1) 6 0.

Since h(2γ)/γ = 2h(ε)/(1− ε), we thus have the property that the whole trajectory is asymp-
totically more meaningful than its parts when K→ +∞ if and only if

log(α) < 2
h(ε)

1− ε
. (3.27)

Note that this inequality constraint on α is stronger (the quantities are negative) than the one
obtained in (3.26), hence the case when a trajectory is 1-meaningful but less meaningful than
its parts can be encountered.



70 ASTRE: A-CONTRARIO SINGLE TRAJECTORY EXTRACTION

Dotted trajectories

If the trajectory is made of a succession of single points and one-frame holes, what is the
condition as K → +∞ to have a meaningful trajectory? We now have ℓ = K, s = (K+ 1)/2 (K
being odd), p = (K− 1)/2, so that from (3.23) we can derive the asymptotic expansion

log NFAT (δ) =
K

2
log(16α) +

3

2
logK+ O

K→+∞
(1). (3.28)

Hence, a dotted trajectory is asymptotically meaningful when K→ +∞ as soon as

α <
1

16
. (3.29)

Dashed trajectories

In the more general setting of a dashed trajectory made of p runs of u consecutive points
separated by holes spanning v frames, we have ℓ = K = p(u+ v) − v and s = pu, so that if u
and v are fixed,

log NFAT (δ) = 2 logp+ log

(

p(u+ v) − v

pu

)

+ pu logα+ 2p log(1+ v) + O
p→+∞

(1).

Now we have

pu

p(u+ v) − v
= η+ O

p→+∞

(

1

p

)

with η =
u

u+ v
,

so that

log

(

p(u+ v) − v

pu

)

= −p(u+ v)h(η) −
1

2
logp+ O

p→+∞
(1)

and

log NFAT (δ) =
3

2
logp+ pu

(

logα+
2

u
log(1+ v) −

h(η)

η

)

+ O
p→+∞

(1).

Hence, a dashed trajectory is asymptotically meaningful when p tends to infinity if and only
if

logα 6
h(η)

η
−

2

u
log(1+ v), (3.30)

where η = u
u+v is the asymptotic density of known points. This formula yields an interesting

relation between the density of known points and the allowed maximum acceleration, as illus-
trated in Fig. 40. When u = v = 1, we have η = 1/2, h(η) = − log 2 and the right-hand term of
(3.30) is − log 16, in accordance with (3.29).
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Figure 40: Required precision for “dashed” trajectories. Left: The green lower curve shows the max-
imal value of α allowed (in log scale) for a trajectory to be meaningful when it is made of
repetitions of runs of length u and holes of length v, with u + v = 20 and u = ⌊η(u+ v)⌋.
The length of the sequence is K = 100, and the total number of points in each frame is
N = 100. The upper red curve is the asymptotic limit h(η)/η− 2 log(1+ v)/u corresponding
to p = +∞. (note that the staircasing effect is due to the definition of u). As long as the density
of known points (η) is large enough, the critical value of logα is quite well approximated by
the asymptotic bound and the relation to η is almost linear. When the density η becomes too
small, the maximal allowed acceleration for the trajectory to be meaningful quickly plummets.
Right: The asymptotic condition on α given by (3.30), for a variety of values of u+ v = 10

(lower curve), 20 and 40 (upper curve). The curves are close, hence showing that the mini-
mal required precision for dashed trajectories to be meaningful mostly depend on the density
η = u/(u+ v) and not on the period u+ v of the runs.
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W
e analyze in this chapter the performances of the ASTRE algorithm on synthetic

and real-world data, and compare them with those of ROADS, a state-of-the-art track-
ing algorithm which compares favorably to most of the classical tracking algorithms of

the literature presented earlier [Veenman, Reinders, and Backer, 2003b]. We then conclude on
the respective benefits and drawbacks of both approaches.

4.1 THE ROADS TRACKING ALGORITHM

The ROADS point tracking algorithm can handle points entering and leaving the scene, as
well as missing and spurious points. It requires the setup of several parameters, that are listed
in Table 3.

73
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w smoothness model parameter
dmax maximal allowed speed
ϕmax maximal allowed smoothness criterion
s scope width parameter

amax max. # of missing consecutive points on a track
pmin min. # of present consecutive points on a track
F
γ
g , Fγl optimization cut-off constants
hmax max. # of hypotheses made when optimizing

Table 3: Parameters used in the ROADS algorithm.

The criterion measuring the local smoothness of a trajectory on the consecutive points
(x, y, z) is

ϕ(x, y, z) = w

[

1−
v(x, y) · v(y, z)

‖v(x, y)‖ · ‖v(y, z)‖

]

+ (1−w)

[

1− 2

√

‖v(x, y)‖ · ‖v(y, z)‖
‖v(x, y)‖+ ‖v(y, z)‖

]

where v(x, y) = y − x. As we can see, this criterion combines (with a weight parameter w) an
angular variation (first term) and a speed variation (second term). Assume that Mk objects
are tracked until the kth frame, and Nk+1 points are observed in frame k+ 1. The trajecto-
ries already constructed can either link to one of the observed points, or to a missing “slave
measurement”, meaning the corresponding object in frame k+ 1 is missing. Additionally, a
point of frame k + 1 can be tagged as spurious. All these possibilities are called individual
assignments.

Each individual assignment a has a cost c(a). The cost of linking a trajectory to a point in
frame k+ 1 is the smoothness criterion as defined above (if one of the past measurements is
missing, we estimate its position through linear interpolation). The cost of considering a point
in frame k+ 1 as spurious and the cost of linking a trajectory to a slave (missing) measurement
are both equal to the value of the parameter ϕmax (eg. a missing point has the cost of the
worst possible trajectory continuation). The algorithm restricts its possible assignments using
its cut-off values, for instance, two points in consecutive frames can be linked only if they are
at most dmax pixels apart.

The local cost of all the individual assignments between two consecutive frames is obtained
by averaging their costs. Let Ak = {a1, ...,ap} be the set of individual assignments between
frame k and k + 1, that is, such that every trajectory tracked in frame k appears in exactly
one of the assignments, and every measurement in frame k+ 1 appears in exactly one of the
assignments:

Ck(Mk,Ak) =
1

Mk

p∑

i=1

c(ai)

The optimization of this cost for a fixed k is a minimum-weight perfect matching problem, and
can be solved efficiently using for instance the Hungarian algorithm [Munkres, 1957]. Finally,
the global motion model averages costs over the whole sequence,

C(A1, ...,AK − 1) =

K−1∑

k=2

Ck(Mk,Ak)
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where A is a multi-assignment A = (A2, ...,AK−1). Other optimization objectives are: as many
points as possible should be included in a trajectory, and there should be as few trajectories
as possible. In its generality, the global motion model optimization is a NP-hard problem,
thus intractable in practice. One of the approximation made by the ROADS algorithm is to
sequentially optimize the global model on a restrained time window (typically using s = 2 or
s = 3).

Ak:s
min = argmin

Ak:s

Ck:s(Ak:s)

where

Ck:s(Ak:s) =

s∑

p=1

Ck+p−1(Mk+p−1,Ak:s[p])

and Ak:s = (Ak, ...,Ak+s−1) is a multi-assignment. The approximation to the global solution
is then

A = (A2:s
min[1], ...,AK−1:s

min [1]).

This approach results in an initialization problem at the beginning of the sequence: the
assignment between the first two frames is considered given. To mitigate this strong require-
ment, the ROADS algorithm uses a “minimal-motion” criterion c(x, y) = ‖y − x‖ to initialize
the assignment between the first two frames of the sequence, and then a successive up- and
down-processing to reduce the imprecision of the initial assignments. We refer the reader to
Veenman, Reinders, and Backer, 2003b for a detailed explanation, including how tracks can be
ended and started.

The core of the ROADS algorithm (see Algo. 7) is the computation of the local scope op-
timization. In order to compute Ak:s at each frame k, the algorithm recursively enumerates
all potential assignments between successive frames in the scope. Of course, this set of as-
signments is too large to be exhaustively enumerated, and therefore the algorithm uses a
branch-and-bound approximation strategy. It first makes an “optimal cost bound” guess Cb

by initializing the global solution on the time scope with the local solutions of the minimum-
weight perfect matching between each two consecutive frames in the scope. This cost bound
is then gradually lowered.

At each recursion step (that is, each frame in the scope), the bound on the current optimal
matching cost is lowered by using a cost-bound constraint called γmax. It is derived from the
cost Ck

min = Ck(Mk,Ak
min) of the best possible assignment Ak

min between frames k and k+ 1

(which can be obtained by the Hungarian algorithm) and the current global cost bound Cb by

γmax = min(Fγl C
k
min, FγgCb/s

′),

where F
γ
l > 1 is the local cost factor, Fγg > 1 is the global cost factor and s ′ is the length of the

remaining scope.
The intuition behind this bound is that the cost of the assignment at frame k corresponding

to the optimal solution on the time scope cannot be too far from the cost Ck
min of the optimal

(local) assignment between the frames k and k+ 1, and that the cost of the assignment on the
time scope is more or less uniformly distributed between all pairs of frames, and thus should
not be too far from Cb/s

′. To enumerate the successive best assignment between frames,
ROADS uses Murty’s algorithm [Murty, 1968] that takes a cost matrix Dk and a set of previous
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assignments Y and returns the next best assignment not in Y. The set of all assignments
between frames k and k+ 1 is denoted by Uk.

The costMatrix(Ak−1, k) function returns a matrix containing the cost of each possible
assignment between a trajectory of Ak−1 and a point of the kth image.

Algorithm: ROAD(Ak−1, k,Cb,Ak:s
sol)

input : Ak−1 the previous assignment,
k the current frame number,
Cb the current cost bound,
Ak:s

sol the current best assignment

output: Ak:s
sol the new best assignment

Dk ← costMatrix(Ak−1, k)
if s = 1 then

Ak
min = minCostAssignment(Dk)

if Ck(Mk,Ak
min) < Cb then

Ak:s
sol ← (Ak

min)

end

else
Y ← ∅

repeat

A← nextBestAssignment(Y,Dk)

Y ← Y ∪ {A}

C0 ← Ck(Mk,A)

Tsol ← Ak:s
sol[2..s]

R← ROAD(A, k+ 1, s− 1,Cb −C0, Tsol)
Ak:s = (A) :: R

if Ck:s(Mk,Ak:s) < Cb then

Cb ← Ck:s(Mk,Ak:s)

Ak:s
sol ← Ak:s

end

γmax = min(Fγl C
k
min, FγgCb/s)

until Y = Uk or C0 > Cb or C0 > γmax

end

return Ak:s
sol

Algorithm 7: Core of the ROADS algorithm

4.2 EXPERIMENTAL SETUP

In the following, we propose to compare the NFA algorithm with ROADS to evaluate its
strengths and weaknesses against a state-of-the-art solution. We start with experiments on
synthetic data, similar to those used by the authors of ROADS in their presentation papers
[Veenman, Reinders, and Backer, 2003a,b]. Let us first briefly present the way they generate
trajectories using the Point-Set Motion Generation (PSMG) algorithm (experiments having dif-
ferent parameters will be signaled):
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• the initial position of each trajectory is chosen uniformly at random in the first image;

• the initial velocity magnitude is chosen using a normal random variable v0 ∼ N(µ =

5,σ = 0.5) and its angle β0 is chosen using a uniform distribution in [0, 2π];

• the velocity magnitude and angle are updated in each frame using

{
vk+1 ∼ N(µ = vk,σ = 0.2)
βk+1 ∼ N(µ = βk,σ = 0.2).

The image domain is divided in 100× 100 pixels, and the length of the sequence is set to 20
frames (see Fig. 41 for an illustration of the trajectories generated). Most of the experiments
are realized with 20 trajectories (like in the ROADS paper).

Since the ROADS authors were comparing their algorithm with an algorithm that did not
allow trajectories entering or leaving the scene, they required that all trajectories fit completely
inside the frames and span the whole sequence, and we will usually do the same (if a trajectory
does not fit inside the frame, we regenerate it). They also impose that in the experiments
where points are missing, all points are still detected in the first and last two frames. To
have experiments coherent with theirs we generally impose the same constraints, but in some
experiments (with a great number of trajectories in the images) constraining trajectories to stay
inside the frame seemed unnatural since it forced trajectories to have a beating and swirling
motion inside the frames. We chose to keep a constant number of trajectories, but to allow
them to leave the image, and when this happens, to generate a new random trajectory that
starts on the border of the frames (we force all trajectories to have at least three points in the
frame).

Figure 41: Point-Set Motion Generation (PSMG) algorithm. Here we display a sample of 20 trajectories
spanning 20 frames generated with the PSMG algorithm, that will be used to produce syn-
thetic data to assess the performance of the ROADS and NFA algorithms. The trajectories have
an homogeneous and smooth motion. The points of some trajectories have been highlighted
to show the speed.

Additionally, we impose the following constraints:

• we quantize the trajectory coordinates to the nearest integers, thus implicitly defining the
scale of the measurements to the size of one pixel;

• to avoid ambiguities when comparing the detection results to the ground truth, trajec-
tories cannot share points (otherwise we regenerate one of the trajectories) and when
adding noise points we avoid covering already existing points. See Fig. 42 for an illustra-
tion of various densities of noise points;

• when we remove points we target solely trajectory points (we do not remove noise points,
so we can make experiments with a varying number of trajectory points removed, while
keeping a constant number of noise points). We choose a certain uniform probability α

of removing a point.
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Figure 42: A sample of 50, 100, 200, 300 points uniformly drawn in the image plane. When sequences
contain a great number of noise points, the human eye is still capable of detecting trajecto-
ries, but, to our knowledge, most of the tracking algorithms have difficulties to extract them
correctly.

Performance estimates gathered in the experiments below are averages of a measure over
400 runs of the algorithms. However, in some experiment results, the measure that we compute
might be undefined (for instance when no trajectory was detected). In this case, we only take
experiment results that have a defined measure into account, and measurements might thus
consist of averages of less than 400 repetitions.

A well-known interest of a-contrario methods are their small number of parameters, which
simplifies their use and their study. More accurately, the NFA algorithm has exactly one ex-
plicit parameter, the maximal NFA value of a trajectory we can extract. The effect of this
threshold is simple: it drives the selection of a subsequence of the successively extracted tra-
jectories. In other words, if ε < η, T(ε) ⊆ T(η), where T(x) is the set of trajectories extracted
by the algorithm for a maximal value of the NFA equal to x. This implies that changing the
threshold will not dramatically change the results, contrary to methods like ROADS that use
their parameters in the computations. In practice, as usually done in a-contrario methods (see
Desolneux, Moisan, and Morel, 2008) and unless otherwise specified, we set this threshold to 1.

In contrast, ROADS has many parameters, which can be tuned to set ROADS in different
“modes” that may be better suited to certain types of data. Since these parameters might (at
least in theory) be learned on data, we felt it was fair to try several sets of parameters and
show the best results that can be achieved in the comparisons.

Here is the way we proceeded: we tested six “modes” for the ROADS algorithm on a small
batch of data (40 repetitions) for each experiment. We then selected the three modes that would
compare the best with the NFA algorithm on the various experiments. Some of the modes will
have strengths and weaknesses compared to others, but they mostly have the same global
behavior. In practice, the strengths and weaknesses of the NFA method when compared to
ROADS do not dramatically change when including several modes, rather than just the most
general parameters for the ROADS algorithm (mode 1 below). However, we include the results
of the three selected modes for the sake of completeness.

To be fair with the ROADS algorithm that relies on knowing the maximal speed and maximal
smoothness criterion of the trajectories in the data, we compute these values and give them to
the algorithm. More precisely, for each experiment, and each parameter (eg. number of noise
points added), we compute the maximal speed dmax and maximal smoothness criterion ϕmax

before crippling (eg. removing points) across the batch of 400 repetitions (rather than on a
per-file basis), and we feed them to the algorithm when processing those 400 repetitions.

The first mode is the general ROADS algorithm with the minimal number of present points
set to pmin = 1 and the maximal number of interpolated points equal to amax = +∞. The
second mode is pmin = 1 and amax = 0, that is, we disallow interpolation. The third mode is
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pmin = 3 and amax = 0, we disallow interpolation and we expect to see at least 3 consecutive
points on each trajectory segment.

For the three other modes, we set pmin = 3, amax = 3, but rather than choosing the maximal
speed and maximal smoothness criterion as given by their maximal value on the batch of 400
repetitions, we select in turn: d4

max = 0.8 ·dmax, ϕ4
max = 0.8 ·ϕmax for mode 4, d5

max = 0.5 ·dmax,
ϕ5

max = 0.5 ·ϕmax for mode 5 and d6
max = 0.5 · dmax, ϕ6

max = 0.8 ·ϕmax for mode 6.
The other default ROADS parameters given in the implementation that was sent to us by

its authors were kept unchanged (w = 0.1, Fℓ = Fg = 1.05, s = 2). We tried to make some
experiments with s = 3, but this would generally not change the results (and sometime even
have a negative impact) and be much more computationally intensive. The maximal number
of hypotheses hmax that ROADS can explore when trying to find the best assignment in the
time scope has been kept equal to 300 as in the given implementation.

After running all the ROADS modes on small batches of repetitions, we selected modes 1
(original ROADS), 3 and 4 as giving the best results. They will now be called modes A, B and
C (see Table 4). Note that these modes are not real algorithms, since their parameters depend
on true data values (dmax and ϕmax) that are not estimated but computed from an oracle. In
that sense, the methodology we use to compare the NFA and ROADS algorithms minimizes
the issue of parameter selection that is recurrent with ROADS (but this issue will be discussed
later, in particular in Section 4.3.4). Note also that ROADS results could probably be slightly
improved by trying a larger number of parameters, however our goal is not to make a study
of ROADS, but rather to give an idea of the state of the art performances, to make it possible
for the reader to appreciate the NFA results.

mode pmin amax dmax ϕmax

A 1 +∞ 1 · dmax 1 ·ϕmax

B 3 0 1 · dmax 1 ·ϕmax

C 3 3 0.8 · dmax 0.8 ·ϕmax

Table 4: Parameters defining the three (best) modes of the ROADS algorithm in the experiments used for
comparison with the NFA algorithm. Note that these three modes are based on an oracle, that
observes the values of ϕmax and dmax on the (supposedly unknown) true trajectories.

4.2.1 Comparison criteria

In the literature, tracking algorithms are generally compared using two sets of criteria: the
qualitative description of the situations that the algorithm can handle (missing points, entry of
points, etc), and the quantitative criteria given by the number of real structures found in the
sequence (eg. the number of real trajectories, of real links between points, etc.), as well as the
precision and recall of the algorithm for these different structures, defined by

precision =
# of correct structures found

# of structures found
, (4.1)

and recall =
# of correct structures found

# of actual structures
. (4.2)

The precision allows to measure the number of false positives (more precisely, 1− precision
is the proportion of false positives among found structures), while the recall is linked to the
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number of false negatives (1 − recall represents the proportion of false negatives among ac-
tual structures). It is important to realize that the analysis of an algorithm must be done by
considering simultaneously the precision and recall (or equivalent variables), since varying
a parameter or a threshold of an algorithm generally does not improve both quantities but
sets a different trade-off between the two, resulting in a better recall and worse precision or
vice-versa.

In some experiments, the presence of noise points limits the interest of the number of real
(whole) trajectories found as a significant criterion, although it is widely used in the literature.
Indeed, a well-placed noise point can sometime better fit the trajectory than its “real” counter-
part, thus giving a realistic and usable trajectory as output, yet one that will not be counted as
a real trajectory. We therefore chose to generally use the number of correct links as a significant
structure for the precision and recall criteria. A link is simply two points that appear consecu-
tively on a trajectory (possibly separated by a hole). Thus, if a noise point better fits a trajectory
than its “real” counterpart, we will only “miss” two correct links (that include the real point),
and “create” two false links (that include the noise point). However, when using the number
of correct links, we do not account for trajectory over-segmentation, under-segmentation, or
mixing. More precisely, if we split a trajectory in halves, or if we join two distinct trajectories,
we will barely notice it from the point of view of the number of correct links criterion, but we
would have noticed it using the number of correct trajectories criterion. The same is true for
“mixed” trajectories: if two trajectories cross at a point in time, we might start by following
trajectory A, and then either choose to continue with trajectory A or to “hop” on trajectory B.
In the latter case, the number of correct links criterion will barely be affected, but the number
of correct trajectories criterion would. This particular problem of crossing trajectories appears
however to be difficult to solve properly, and would certainly requires a priori knowledge. We
believe that once the trajectories have been detected, even if they have been mixed, a simple
post-processing task might be sufficient to split crossing trajectories in part at the crossing
points, and reconstruct the real trajectories using an a priori (having the trajectories bounce if
we are following billiard balls, or having them cross if we are looking at fishes in an aquarium).

For the qualitative criteria, ROADS is able to account for missing and spurious points, as
well as points leaving and entering the scene. The NFA algorithms come in two flavors, one
that allows for missing points, and the other that does not. The latter is used for computational
reasons (it is much faster) in some of the following experiments. Both NFA algorithms allow
spurious points, as well as points leaving and entering the scene.

4.3 TRAJECTORIES WITHOUT HOLES

4.3.1 Variable number of spurious points experiment

First, we investigate the influence of noise (spurious points) on trajectory detection. We
generate sequences spanning 20 frames and having 20 trajectories, and we add 0 to 320 noise
points uniformly at random to each image. Since we do not remove points, we can use the
version of the NFA algorithm that does not take holes into account. We then run the NFA
(ε = 1) and the ROADS (modes A,B,C) algorithms, and compare the results by computing
the average recall and precision over 400 repetitions. For the precision estimate, the averaging
is limited to the repetitions that lead to at least one detection, since the precision is not well
defined when no structure is found.

As we explained earlier, the precision and recall are computed for two different criteria:
the number of correct links and the number of correct trajectories. For the criterion based on
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# spurious points 0 40 120 200 280 320

NFA 20.1 20.2 18.9 15.5 7.1 6.1

ROADS(A) 20.0 70.0 151.5 227.1 300.9 335.7

Table 5: Average number of detected trajectories depending on the level of noise. We compare the
average number of trajectories detected by the NFA and ROADS algorithms on data made of 20

real trajectories spanning the entire sequence plus a varying number of spurious points (from
0 to 320) in each frame. We see that NFA is very conservative in its detections (it only detects
the trajectories that it considers to be non-ambiguous), and this results in a high precision (see
Fig. 43). On the other hand, ROADS makes many false detections (it should not find more than
20 trajectories per sequence).

the number of correct links (Fig. 43), the NFA algorithm performs much better in terms of
precision: the precision remains very high (above 80%) for the NFA algorithm, but drops very
fast for ROADS (under 20% when the number of spurious points exceeds 140). This illustrates
a classical property of a-contrario detection models: the robustness to noise. As concerns the
recall, the NFA algorithm performs better than all versions of ROADS up to 200 spurious
points, and is slightly under the C mode of ROADS beyond this level of noise. Considering
the number of false detections made by ROADS at these levels of noise (the precision is under
10%), this is not very significant and the global comparison is clearly in favor of the NFA
algorithm. Table 5 clearly illustrates this: if ROADS manages to find a lot of correct links,
it is solely because it makes a huge number of detections when the number of noise points
increases, whereas the NFA algorithm correctly finds 20 trajectories in low noise and makes
fewer detections when the noise level increases.

When we look at the number of correct trajectories found (Fig. 44), we see that ROADS is
very good when there are no noise points, which will be confirmed below. The NFA algorithm
is a bit less efficient (both in terms of precision and recall) when the number of spurious
points is under 40, but for higher levels of noise it is much more robust than ROADS, whose
performances collapse very quickly (both in terms of precision and recall). Anyway, we argue
here that the correct number of trajectories criterion, although often used in the literature, is
not the best way to assess the quality of algorithms in the case of spurious points. As we
remarked before, there are plenty of reasons why a detected trajectory could be counted as
undetected while it is very near an actual trajectory (a missing endpoint, a noise point fitting
better the trajectory smoothness, trajectory crossings, etc.). Also, it is clear that applications
based on data corrupted by a medium or high level of noise are more interested in a high rate
of local point tracks (links) than in the unlikely perfect reconstruction of each trajectory.

4.3.2 Variable density experiment

We now test how the algorithms behave when we increase the number of points. In this ex-
periment, we do not consider spurious or missing points, so there is no noise and the difficulty
of the trajectory detection problem only comes from the ambiguities produced by the large
number of mixed trajectory points. We generate sequences of 20 frames, containing 10 to 140
points moving according to the PSMG model, where we allow trajectories to leave the image
frame (when a trajectory leaves the image frame, we generate a new trajectory starting at a
random position on the image frame, in order to keep a constant number of points throughout
the sequence). Then we compute the precision and recall for the correct links criterion (Fig. 45)
for the ROADS and NFA (without holes) algorithms.
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Figure 43: Influence of spurious points (# correct links criterion). On synthetic data containing 20 real
trajectories spanning the entire sequence (20 frames) plus a varying number of spurious points
(from 0 to 320), we compute the average recall (left) and precision (middle) obtained with the
NFA and ROADS algorithms over 400 realizations, as a function of the level of noise (number
of spurious points), or together (right). The most striking result here is that the precision of
the NFA algorithm is almost constant, no matter the number of spurious points. This means
that the NFA algorithm makes very few false detections (which is how we designed it), while
keeping a recall rate that is above the one of ROADS as long as the number of spurious points
is under 200 (which is more surprising). On the contrary, the poor precision of the ROADS
algorithm in medium or high noise conditions makes its recall values quite insignificant: if
ROADS finds a large number of correct links, it is mostly because it proposes a high number
of links, most of which are false detections (see also Table 5).
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Figure 44: Influence of spurious points (# correct trajectories criterion). The results of the experiments
conducted in Fig. 43 are now analyzed with a different criterion (the number of correct
trajectories, instead of the number of correct links) for the definition of precision and recall.
We can see that the NFA algorithm behaves better than all ROADS modes as soon as there is
a reasonable level of noise, but still behaves pretty poorly in comparison with the “number of
links” criterion (see Fig. 43). In fact, the number of exact trajectories is a questionable criterion
in the presence of noise, so we shall not use it any more in the following.
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Figure 45: Influence of the number of trajectories Average recall (left) and precision (middle) are com-
puted for the number of correct links criterion on 400 repetitions of synthetic data made of
a given number of random trajectories (varying from 10 to 140) in a sequence of 20 frames.
The analyzed algorithms are the three modes of ROADS (A, B, C), and two variants of the
proposed NFA algorithm: the standard variant (threshold ε = 1 on the expected number of
false alarms), and the no-threshold variant (ε = +∞). As we can see, the precision of both
NFA variants is very high (like for ROADS B and C), but the recall of the standard NFA al-
gorithm is significantly worse than the one of ROADS. In this setting where no noise points
are present, these missing detections can be avoided by removing the thresholding process in
the NFA algorithm: for this ε = +∞ variant, both recall and precision are as good as the best
modes of ROADS.

When using the standard threshold (ε = 1) in the NFA algorithm, we obtain results that
are similar (slightly better) than ROADS in terms of precision but significantly worse in terms
of recall. However, knowing that there is no noise in these data, it makes sense to try to set
the NFA threshold to +∞ (that is, no threshold), and in this case the results obtained by the
NFA algorithms are similar to the best modes of ROADS. This is an unexpected good surprise
for the NFA algorithm, that detects trajectories in a greedy way (by iterating a best-trajectory-
detection/trajectory-removal process) without considering at all the global inter-frame assign-
ment problem like ROADS. In the absence of noise points, one could have expected this as-
signment step to bring a significant edge to ROADS.

4.3.3 Sensitivity to data smoothness

The trajectories generated in the previous experiments are somehow smooth and quasi-
linear (see Fig. 41). In order to see if the algorithms can cope with trajectories that do not
completely fit the model, we try to detect trajectories having a potentially high acceleration.
For that purpose, we consider different values of σ, the standard deviation of the acceleration
magnitude used in the PSMG synthesis procedure (see the very beginning of Section 4.2). The
effect of this parameter on the synthesized trajectories is illustrated in Fig. 46.

We first reproduce the last experiment (Fig. 45), in which there are no noise points and
the number of synthesized trajectories ranges from 10 to 140, and evaluate the effect of the σ

parameter both for the unthresholded NFA algorithm (Fig. 47) and the ROADS B algorithm
(Fig. 48). Whereas the performance of the NFA algorithm barely depends on σ (and remains
high), ROADS exhibits a high sensitivity to this parameter, and its performance quickly col-
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Figure 46: Changing the acceleration variance. A sample of 20 trajectories generated using the PSMG
algorithm, when the standard deviation of the acceleration magnitude (σ) is 1 (left) and 4

(right). The points of two trajectories have been highlighted to show the speed. We study
the sensitivity of the algorithms to data variability by analyzing their performances when we
increase σ.

lapses as σ increases. The same conclusion arises from the analysis of data generated with 10
noise points per frame plus 20 synthetic trajectories (see Fig. 49).

Thus, the sensitivity to data smoothness is a major difference between the NFA and ROADS
algorithms. The poor results obtained by ROADS for σ = 1 (see Fig. 48) could probably be
improved by a specific choice of the ROADS parameters (specially adapted to σ = 1), but this
kind of optimization will not be efficient on most real-world data, since one can expect to
observe a high variability of accelerations on such data. Conversely, the robustness of the NFA
algorithm to the σ parameter is an indication that it can probably handle well real-world data
containing various levels of acceleration.

4.3.4 Parameter tuning

One major interest of most a-contrario models is that they permit to obtain detection al-
gorithms “without parameters”, or, more precisely, algorithms for which there exist natural
values of the parameters that work well in all situations. Both NFA algorithms we propose
here (the no-hole and hole versions) have only one parameter: the threshold ε used to decide
whether a trajectory should be detected or not. Since ε corresponds to an upper bound on
the expected number of false alarms in pure noise data, its default value is classically set to 1
(see Desolneux, Moisan, and Morel, 2008). In Fig. 50, we examine the sensitivity of the NFA
no-hole algorithm with respect to the choice of ε. We use the same experimental setting as
in Fig. 43 (20 frames containing 20 real trajectories plus several spurious points), and examine
how recall and precision are affected by different choices of ε. The results clearly show that
the default value ε = 1 (log10 ε = 0) is nearly optimal, in the sense that it is small enough to
guarantee a strong precision control, and large enough to offer good recall performances. It is
nonetheless interesting to notice that slightly better performances (same precision and better
recall) can be obtained with greater values of ε (typically log10 ε = 2 or 3).

In Fig. 51, the average precision/recall curve obtained with the NFA algorithm for different
values of the threshold log10 ε (in the case of 160 spurious points) is displayed on the left. On
the right, we report the average performances of ROADS on the same data points, considered
for several values of the two main parameters of this algorithm, namely the maximal speed and
the maximal smoothness. The maximum speed parameter varies from the actual value in the
[−50%,+50%] range (from one curve to another) and the maximum smoothness varies from
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Figure 47: Influence of the data smoothness (unthresholded NFA algorithm). We use the same experi-
mental setting as Fig. 45, and examine the sensitivity of the unthresholded (ε = ∞) NFA algo-
rithm to the smoothness of the analyzed synthetic data. More precisely, we consider several
values of σ, the standard deviation of the acceleration magnitude (a parameter of the synthesis
algorithm, PSMG), and estimate the precision and recall (correct links criterion) as functions
of the number of synthetic trajectories. We can see that the NFA algorithm is extremely robust
to σ, since both the precision and recall performance curves remain unchanged when σ varies.

number of points

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

σ = 1.0

σ = 0.8

σ = 0.6

σ = 0.4

σ = 0.2

recall

number of points

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

σ = 1.0

σ = 0.8

σ = 0.6

σ = 0.4

σ = 0.2

precision

Figure 48: Influence of the data smoothness (ROADS B algorithm). We analyze the same data as in Fig.
47, now with the ROADS algorithm, mode B (the best mode for these data, see Fig. 45). Con-
trary to what happens for the NFA algorithm, the ROADS method exhibits a severe sensitivity
to σ, since both recall and precision performances, that were at the same level as the NFA al-
gorithm for σ = 0.2 (grey shadow curves), are strongly affected when σ increases. As we shall
see in Section 4.5, the sensitivity/robustness to data variability has strong consequences when
real-world data are analyzed. Note incidentally the strong similarity between the recall and
the precision curves, which comes from the fact that in this set of experiments, the number of
detected links is most of the time equal to the number of actual links (see Equation (4.1) and
(4.2)), probably because there are no spurious points.
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Figure 49: Sensitivity to data smoothness. The average recall and precision of the ROADS algorithm
(modes A, B, C) and the standard NFA algorithm (ε = 1) are compared in synthetic data made
of 10 noise points per frame plus 20 random trajectories spanning 20 frames, in function of the
standard deviation of the acceleration magnitude, a parameter used in the PSMG synthesis
procedure. These results corroborate the ones obtained in Fig. 47 and 48: the performances of
the NFA algorithm are not too much affected by the increase of σ (except for the recall when
the variance becomes large, probably because the problem of recovering the true trajectories
becomes objectively difficult), whereas the performances of all ROADS algorithms collapse,
both in terms of precision and recall.

the actual value in the [−95%, 50%] range (inside each curve). Note that the best performances
of ROADS are obtained inside these ranges (−25% speed, −90% smoothness).

As we can see, not only the performances of ROADS are way under those of NFA on these
data, but also the parameter tuning is much more difficult and crucial (we have to explore
carefully a bidimensional domain, while ε = 1 is almost optimal for the NFA algorithm).

4.3.5 NFA as a criterion for trajectory selection

Contrary to ROADS, which is by nature an algorithm (relying in particular on some heuris-
tics), the NFA we propose here is first and foremost a criterion to compare trajectories. The
greedy algorithm we described, based on the iteration of a “best trajectory (minimal NFA)
detection / trajectory removal” process, is only one possibility to use the NFA criteria (3.5)
and (3.23), and it is possible to design other algorithms based on these criteria. In particular,
given a trajectory detection algorithm, it is always possible to use the NFA criterion as a post-
processing step, that simply keeps from the output of the considered algorithm the trajectories
having a NFA under a certain threshold ε.

We tested this possibility with the ROADS algorithm, and reported in Fig. 52 the results
obtained on the synthetic data used in the previous section (parameter tuning). It appears that
the mixed ROADS+NFA algorithm we obtain this way performs much better than ROADS
alone in terms of precision (because the NFA filtering permits to eliminate most false detec-
tions), but the performances in terms of recall do not attain the ones of the NFA algorithm
alone. Hence, the “NFA filtering” strategy is efficient but does not provide a particularly in-
teresting new algorithm when applied to ROADS. It is not impossible, however, that such a
strategy could be successful, in particular in situations where only special kinds of trajectories
appear and a good detection algorithm (in terms of recall) exists. In that kind of situation, one
could expect NFA filtering to increase the precision up to a high level, without damaging to
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Figure 50: Influence of the NFA threshold ("). We consider the same experiment as in Fig. 43 (that
is, 20 real trajectories spanning 20 frames, with a given number of spurious points in each
frame), and examine the influence of the threshold ε arising in the NFA algorithm. Recall and
precision curves are plotted in function of the number of spurious points, for different values
of log10 ε (ranging from -4 to +∞). We can see that the good precision control predicted by
the theory for ε 6 1 (log10 ε 6 0) is well achieved, since the first significant precision losses
occur around log10 ε = 3. Hence, the default value log10 ε = 0 is a good compromise in this
experiment, even if slightly better recalls (without significant precision losses) can be achieved
by using greater values like log10 ε = 2.
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Figure 51: Performance and parameter tuning. We consider a particular case of Fig. 50, that is, synthetic
data made of sequences of 20 frames containing 20 real sequences and 160 spurious points on
each frame. The average performances in terms of precision/recall is then evaluated for the
NFA algorithm (left) and the ROADS algorithm (right), with varying values of the algorithm
parameters. For the NFA algorithm, the only parameter is the threshold ε (or, log10 ε, as
displayed on the figure), and we can see that the default value log10 ε = 0 is very near
to be optimal, as was remarked earlier in the comment of Fig .50. For ROADS, not only
the performances are much worse (especially in terms of precision), but they are also quite
sensitive to the choice of the maximum speed and maximal smoothness parameters.
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Figure 52: ROADS output filtered by the NFA algorithm. We consider the same synthetic data as in
Fig. 51, but now add to the comparison of NFA and ROADS algorithms a combination of them
that consists in detecting trajectories with ROADS and keeping only those having a NFA under
a certain threshold ε. Since each algorithm depends on parameters (1 for NFA, 2 for ROADS,
3 for ROADS+NFA), we explore systematically all parameter values and compute the upper
performance envelope (curves named best). As we can observe, the major drawback of ROADS
(which is its high rate of false detections) can be corrected by NFA filtering, which results in
a dramatic increase of precision (up to the level of the NFA algorithm alone). However, this
correction does not permit to attain the same level of recall (around 0.75 for NFA, versus 0.6 for
ROADS+NFA in the high precision zone). Note also that the mixed ROADS+NFA algorithm
would be much more complicated to use than NFA alone, in reason of the 3 parameters that
have to be set.

much the recall performances. Note that such a strategy guarantees, thanks to the properties
of the NFA criterion (3.1), the control of the number of false detections in random data.

4.4 TRAJECTORIES WITH HOLES

We now examine the performances of the second NFA algorithm (Section 3.3), that is able
to handle trajectories with holes. We compare it to ROADS using the same kind of conditions
as in Fig. 43 (20 real trajectories, 20 frame, several spurious points added in each frame),
except that we now consider incomplete trajectories (20% of the points of the true trajectories
are removed before spurious points are added). The conclusions made in the no-holes case
remain unchanged (see Fig. 53): the ROADS algorithm detects true trajectory links as well
as the NFA algorithm, but at the price of many false detections, whereas the NFA algorithm
makes almost no false detection (the precision remains above 0.9, even for 70 spurious points
per frame).

4.5 TRAJECTORIES OF REAL-WORLD IMAGES

4.5.1 The snow sequence

In this part, we evaluate the relative performances of NFA and ROADS algorithms on a real-
world sequence named snow. To produce this sequence, we filmed falling snowflakes in front
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Figure 53: Influence of spurious points for trajectories with holes. We generate 20 trajectories spanning
the whole sequence (20 frames), and remove randomly 20% percent of the points, before we
add a varying number of spurious points (from 0 to 70). On these synthetic data (with 400

repetitions), we estimate the recall (left) and the precision (middle) of the ROADS and NFA
algorithms for the “number of correct links” criterion. The obtained results are very similar
to those of Fig. 43: the recall values are roughly the same for all algorithms, but only the NFA
algorithm manages to maintain a high precision (above 0.9) as the number of spurious points
increases, while all ROADS variants make lots of false detections.

of a dark metal door with a high-speed (210 fps) camera, and then subsampled the high speed
sequence at 30 fps by taking 1/7 of the original frames. This way, we obtained a classical 30
fps sequence of 40 images, on which we ran a simple point extraction process that we describe
below. The high-speed version was used in the same way in order to build a hand-made
ground truth for trajectories.

We purposefully used a very simple extraction process to produce data as objectively as
possible, without trying to adapt the detection algorithm in a way that would affect (and ease)
the tracking part. The snowflakes (but also some stains on the metal door background) were
detected in the following way: we smoothed the images using a simple Gaussian kernel, and
we computed the mean background image on a few frames of the subsampled (30 fps) se-
quence. We then thresholded the image differences, processed the result with a morphological
closing, and extracted the connected components. For each connected component, we kept the
centroid position, rounded to the nearest point on the integer grid, as a trajectory data point.

In the resulting point sequence, many objects were detected as several close points in the
sequence (in particular the stains on the background and some big snowflakes). This made it
sometimes hard to define the ground truth trajectories. To alleviate this difficulty, we removed
all points in the sequence that were in a certain radius of another point (we chose the smallest
radius that would resolve almost all ambiguities). An example of detections on one frame
of the sequence is displayed on Fig. 54. We finally extracted the ground truth trajectories by
hand.

The resulting point sequence is interesting because it presents a mix of difficulties: there are
widely varying trajectory types (points in the background that practically do not move, very
slow snowflakes with curvy trajectories, very fast snowflakes with almost linear trajectories).
There are missing points (missing detections or detections removed because of the windowing
process), and a few noise points (but the relatively high detection threshold gave more missing
points and fewer noise points).
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Figure 54: An image of the snow sequence (inverted grayscale), with overlaid detections.

Finally, we subsampled the high-speed point sequence by keeping only 1/7 of the frames,
and subsampled accordingly the ground truth trajectories. The resulting trajectories containing
less than 3 points were eliminated from the ground truth reference, but the corresponding
points were kept in the data (thus becoming noise points). The final result of this process
(30 fps snow point sequence and associated ground truth) is available on the web site http:

//www.mi.parisdescartes.fr/~moisan/astre/ The first row of Fig. 59 gives an idea of the
ground truth trajectories extracted from the snow sequence.

4.5.2 Parameter tuning

There are several parameters to set for ROADS (see Table 3), and they give varying results.
Namely, we can set the size s of the time scope (we chose 2, giving the best results), the
minimal number pmin of consecutive present points for a trajectory to be considered (we
chose 1, 3, 5 or 7), the maximal length of interpolation amax before we loose the trajectory
(we chose 0, 4, 8 or +∞), the maximal smoothness criterion ϕmax and the maximal speed
dmax. The way to choose the best parameters is not obvious, but it appears on Fig. 55 that
the most important parameter is the maximum allowed speed dmax. The choices pmin = 1,
amax = 0 and ϕmax = 0.6 are among the best possible for the snow point sequence, and would
probably achieve reasonable performances on similar sequences too. As concerns the choice
of dmax, the ground truth value (160) is much too large, and much better results are obtained
with dmax = 20. This fact, that comes from the inability of ROADS to deal with a variety of
trajectory speeds at the same time, is analyzed more precisely later. Note that the ground truth
value of ϕmax is 0.58.

On the snow sequence, extracting trajectories using the NFA algorithm with holes would
return a sequence of trajectories having a value of log10(NFA) varying from −40 to +10,
and the optimal precision/recall values would be obtained by thresholding this value with
log10 ε = +5 (see Fig. 56). Even without access to the ground truth, finding this value is rela-
tively easy, since one simply has to look for values slightly above the (nearly optimal) default
value log10 ε = 0. This strategy works well in all synthetic experiments we considered earlier,
and also in the present case of the snow sequence. In view of the false detection control offered
when log10 ε = 0, such a strategy is probably efficient on most (not to say all) point sequences.

Thus, as we mentioned before, one great interest of the NFA algorithm is that the parameter
tuning step is much more easier than in other algorithms like ROADS, for which it can be

http://www.mi.parisdescartes.fr/~moisan/astre/
http://www.mi.parisdescartes.fr/~moisan/astre/
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Figure 55: ROADS parameter tuning on the snow sequence. We vary all ROADS parameters on the
snow point sequence, and show the associated performances in the (recall,precision) plane us-
ing the available ground truth for that sequence. Each column has a distinct amax = 0, 4, 8,+∞,
and each row has a distinct pmin = 1, 3, 5, 7. Each curve corresponds to a different maximal
smoothness criterion value ϕmax = 0.2, 0.4, 0.6 and each point of a given curve corresponds
to a different maximal speed criterion dmax = 2, 5, 10, 15, 20, 25, 30, 40, 80. The big red point
corresponds to the parameters ϕmax = 0.6 and dmax = 20, that seem to achieve a good
precision/recall compromise for all values of amax and pmin. The numbers indicate the corre-
sponding recall and precision.
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Figure 56: NFA parameter tuning on the snow sequence. The performances of the NFA algorithm with
holes on the snow sequence are represented in the (recall,precision) plane in function of the
threshold parameter log10 ε. While the precision remains merely constant, a good recall is
obtained by the default value (0) of log10 ε, but the results can be improved by choosing a
slightly greater value (log10 ε = +5, that corresponds to the “NFA best” point).

a real burden, especially when dealing with complex data (with unknown ground truth) on
which the effect of a parameter change can be very difficult to evaluate. This relative parameter
sensitivity is illustrated on Fig 57.

4.5.3 Comparison of ROADS and NFA algorithms

To compare the results obtained by the ROADS and NFA algorithms on the snow sequence,
we use for each algorithm two different settings: the default setting and the best setting.

For ROADS, the default setting corresponds to amax = +∞, pmin = 1, dmax = 130, and
ϕmax = 0.58. Note that ϕmax = 0.58 corresponds to the oracle value, that is, the (theoretically
unknown) maximum value of ϕ on the ground truth trajectories. For dmax, we chose the
value dmax = 130 to allow ROADS to detect all the trajectories in the main bulk of trajectories
(choosing dmax as the real maximal speed (160) would give worse results). The best setting for
ROADS was chosen after a careful (and a bit cumbersome) parameter analysis (see Fig .55),
that lead to amax = 0, pmin = 1, ϕmax = 0.6, and dmax = 20.

Concerning the NFA algorithm, the default and best settings simply correspond to log10 ε = 0

and log10 ε = +5 respectively (see Fig. 56). As for ROADS, the best setting was chosen a bit
arbitrarily, as one of the best recall values avoiding a significant loss of precision. The strong
L-shaped aspect of the precision-recall curves made that choice quite easy (in the sense that
other possible choices would not differ much).

The precision-recall performances obtained for ROADS and NFA algorithms (for both default
and best settings) are given in Table 6. In the best configuration, the two algorithms attain
similar performances in terms of precision, but at the price of a high number of false detections
(poor recall) for the ROADS algorithm. Moreover, the default parameter setting of ROADS
gives very poor results, while the default parameter setting of NFA (ε = 1) achieves a better
performance than the best ROAD settings. These results are analyzed in greater details in
Fig. 58, where it appears that the main limiting factor of the ROADS algorithm seems to be
its inability to handle simultaneously (that is, with a same set of parameters) trajectories with
various lengths and speeds.

Finally, we display the results on Fig. 59.
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Figure 57: Comparison of NFA and ROADS algorithms on the snow sequence. All results obtained
on the snow sequence with the NFA (with holes) and ROADS algorithms (both with varying
parameters) are represented in the (recall,precision) plane, with a point for each set of pa-
rameters (thus, the performance of each algorithm is the curve obtained as the upper-right
envelope of its points). We can see not only that ROADS is much more sensitive to the param-
eter choice than the NFA algorithm, but also that its overall performance in terms of recall is
significantly worse, even with an optimal choice of its parameters.
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Figure 58: Detailed analysis of ROAD and NFA recall performances. The recall performances of
ROADS and NFA algorithms on the snow sequence (as given in Table 6) are analyzed in
function of the maximal trajectory speed, for both best (left) and default parameter settings.
The possible values of the maximal trajectory speeds are divided into bins (horizontal axis),
and the blue histograms indicate the number of corresponding actual trajectories. Then, the
recall of each algorithm is analyzed inside each bin, in red for NFA and in dashed green for
ROADS. As we can see, the ROADS algorithm does not manage to handle simultaneously tra-
jectories with various speeds: the detection is focused either on trajectories with middle-range
speeds (default setting), or on very slow trajectories (best setting). The NFA algorithm, which
combines the trajectory smoothness and length into a single NFA criterion (hence avoiding
a speed threshold), does not suffer from this dilemma, as it clearly appears on the left (best
setting) graph.
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(1a) Sample trajectories from ground truth (1b) Ground truth

(2a) NFA default (2b) NFA best

(3a) ROADS default (3b) ROADS best

Figure 59: The two first figures represent the ground truth for the real data sequence. The first image is
a subset of trajectories that have been extracted and whose successive points are represented
as dots to give an idea of the objects speeds. The next two figures are the trajectories found
by the NFA algorithm when using the best parameter (left) and the default one (right), and
the last two figures are the trajectories found by ROADS when using the best parameters (left)
and the default one (right). Clearly, the ROADS algorithm makes many false detections with
default parameters, and very few detections with best parameters. On the contrary, the NFA
algorithm already finds a large part of the real trajectories and almost no false detections (see
Fig. 56) with the default parameter, and find many additional trajectories when using the best
parameter.
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mode algorithm recall (fg, bg) precision

default
ROADS 0.09 (0.19, 0.00) 0.08
NFA 0.58 (0.48, 0.68) 0.91

best
ROADS 0.43 (0.22, 0.63) 0.91

NFA 0.76 (0.79, 0.74) 0.90

Table 6: Performances of ROADS and NFA algorithms on the snow sequence. The ROADS and NFA
algorithms are run on the snow sequence, both with their default and best settings, and their
performances are analyzed in terms of recall and precision. In order to permit a more accurate
analysis, separate recall scores are also computed by considering separately fast foreground (fg)
objects (snowflakes) and the almost static background (bg) objects (stains on the background
door). As we can see, the comparison is clearly in favor of the NFA algorithm. With the best
settings, the obtained precision is roughly the same, but the ROADS algorithm is unable to
achieve an interesting detection rate on the foreground objects, which results in a poor overall
recall.

4.6 CONCLUSION

The NFA algorithms allow the detection trajectories in very high levels of noise when low
false detections rates are required. Their only parameter, the NFA threshold, has a natural
value ε = 1 that renders these algorithms almost parameterless.

The presentation of the algorithms on two-dimensional data is in no way a limitation, and
the NFA algorithms extend smoothly to data in any dimension.

The high computational and memory costs – particularly in the presence of holes – might
be mitigated by the easily parallelizable nature of the algorithm, or by developing a set of
heuristics to limit the number of trajectories to check.

The NFA criteria might also be used to filter the output of any algorithm, thus filtering out
many false detections.

There remains two main limitations to the proposed algorithms. First, the greedy nature of
the algorithms does not allow to find a global optimum in space for the trajectories, since they
have to be considered in isolation, and second, non-uniform noise will lead to false detections,
that might or might not be easy to filter out after processing.

A main contribution of this work, beside giving algorithms to extract trajectories in noisy
sequences, is to give an objective criterion to measure the quality of a particular trajectory in
a sequence, that might be used as a filter to ameliorate the results of any trajectory detection
method.

A possible way to improve detection results would be to use additional information to make
the decision, for instance, if the points have intensities. However, we found that adapting the
NFA criterion to handle the position and an intensity uniformly is not straightforward, and
this might be a future development. It is also possible to develop a criterion for the sum-cost
rather than the max-cost of accelerations.

Open-source code for the algorithms is available on the website of the authors, containing
both a simple Python implementation and an optimized one in C.
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E
xtracting the optimal trajectory set that explains a sequence frames containing points
is a difficult combinatorial problem – NP-hard in effect, and no algorithm is able to solve
it efficiently without approximations.

As we remarked earlier however, the problem can be simplified by dropping some con-
straints: in the previous chapter, we described the ASTRE algorithm that sequentially detect
trajectories, extracting each one in isolation and thus alleviating the computational cost of the
simultaneous optimization of all the trajectories. An orthogonal approach consists in tracking
all trajectories at once but only on a short time span – by optimizing the point correspondences
between two frames for example.

We will now focus on the two-frame point correspondence problem – assigning to each detected
point in a frame its corresponding point in the next frame – which has been a very well studied
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problem in computer vision. This problem however always seems to be either very simple or
very complex: in simple cases (very few objects that move slowly and are far apart from each
other), even the most basic algorithm will give the correct answer, whereas in complex cases
(many objects moving quickly, close to each other and in presence of spurious detections),
close objects do not always correspond to each other, and one needs additional clues to recover
the assignment: considering an extended temporal scope to observe the coherence of the object
motion on several frames to eliminate spurious measurements for instance, or adding some
features to the point, as an object shape, color or texture for example (see Figure 60).

Figure 60: The left figure shows a simple assignment problem (squares and circles represents the points
in each image, and the correct pairings are linked by an edge). On this kind of problems, even
the most basic correspondence algorithm will usually find the correct underlying assignment
when given the points in each frame. The middle figure shows a more complex assignment
problem: many points moving quickly and some spurious detections. In this case, additional
information is required to correctly solve the problem (one might for instance add the ob-
served color of the objects to the data as in the right picture to disambiguate some choices).

The most obvious candidate algorithm for the point correspondence problem, when no
prior on the point displacement is known, is that associating each point to its nearest neighbor.
When the motion of the points is centered and Gaussian, the most likely assignment can
be recovered efficiently as the one minimizing the sum of squared displacements thanks to
the Hungarian algorithm introduced in Kuhn, 1955. In practical applications however, one
often has to cope with missing and spurious detections. For instance, Salari and Sethi, 1990
propose to use placeholders for the missing points and use thresholds on the distances to
allow spurious detections. Rangarajan and Shah, 1991 use a nearest neighbor approach with
a prioritization of the decisions to start by linking points who only have one possible good
successor.

In order to better understand the limits of the two-frame point correspondence problem,
and to measure the performances of the classical algorithms, we introduce the WRAP criterion
– for Weighted Recall And Precision – that maximizes the weighted sum (recall + λ · precision)
for some λ > 0, assuming a general probability model of the input data. When λ varies, this
criterion defines the optimal curve of a point correspondence algorithm in the (recall, precision)
space.

The point correspondence problem and some classical algorithms to solve it are introduced
in Section 5.1, followed in section 5.2 by the description of the optimal WRAP criterion and of
its behavior on typical use cases, as well as an efficient MCMC-based algorithm to approximate
it. In Section 5.3, we compare the performances of the classical algorithms to the WRAP
optimal performance, and we study the feasibility of using WRAP as a practical algorithm.
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5.1 GENERAL DEFINITIONS AND CLASSICAL APPROACHES

FOR THE POINT CORRESPONDENCE PROBLEM

We assume that objects have been detected in the images as points (without features) in
the domain Ω = [0, 1]× [0, 1] using a possibly imperfect detector, and the task is to find the
correspondences between the points detected in two images representing the same scene with
a slight variation in the camera pose or in the objects locations.

Hypothesis 1 (Correspondence uniqueness). We assume that an object corresponds to at most one
detected point, and a detected point corresponds to at most one object (but there might also be some
spuriously detected points or some missing detections).

To alleviate the notations we will now fix the N detections in the first image sX = (x1, ..., xN) ∈
ΩN and the M detections in the second image sY = (y1, ..., yM) ∈ ΩM.

Definition 7 (Assignment). An assignment a of size |a| = k between sX and sY is a set of k pairs
a = {i1 → j1, ..., ik → jk}, where ∀p, 1 6 ip 6 N and 1 6 jp 6 M, such that the pairings are
disjoint: for any two distinct indices p and q, ip 6= iq and jp 6= jq. The assignment might sometimes
be abusively denoted a = {xi1 → yj1 , ..., xik → yjk } to make it clear that we are pairing the points
{xi}i to the points {yj}j. The domain of the assignment is dom(a) = {i1, ..., ik}, and its image is
im(a) = {j1, ..., jk}. We denote by A the set of all assignments, and Ak is the set of assignments of
size k.

Definition 8 (Pairing costs). The pairing costs between sX and sY is a set of positive real numbers

{cij ∈ R
+}

16i6N
16j6M that measures the similarity between the points, where a low value of cij indicates a

similarity between the detections xi and yj.

If we are tracking points slowly moving across an image sequence, the cost of each pairing
xi → yj will usually be related to the distance cij = ‖yj − xi‖ that the underlying point has
traveled between the two frames.

Given such pairing costs {cij}ij, the point correspondence problem consists in reconstructing
the assignment a such that the detection xi corresponds to (the same underlying object as) the
detection ya(i). To assert that a does indeed link the detections corresponding to the same
object in both images, it is usually required that it optimizes a global criterion on the costs,
some classical examples of which we will now discuss.

5.1.1 Classical approaches for the point correspondence problem in a simple setting

The most commonly found criterion, when there are no spurious nor missing detections
(and hence N = M), is to find an assignment of size N minimizing the sum of the individual
pairing costs, which is known as the linear assignment problem (LAP, see Kuhn, 1955):

a ∈ arg min
a∈Ast.|a|=N

N∑

i=1

cia(i).

In the case where the motion of the points is Gaussian and the costs are the squared distances,
this would return the most likely assignment.

An alternate possibility is to minimize the maximum of individual pairing costs, which is
known as the bottleneck assignment problem (BAP, see Gross, 1959 and Garfinkel, 1971):

a ∈ arg min
a∈Ast.|a|=N

max
16i6N

cia(i).
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Since the sum of the pairings cost and the maximal pairing cost will be used often in the
next chapters, we give them a simple notation:

Definition 9 (Linear assignment cost). We denote csum(a) =
∑

i→j∈a cij the linear cost of the
assignment a.

Definition 10 (Bottleneck assignment cost). We denote cmax(a) = maxi→j∈a cij the bottleneck
cost of the assignment a.

Efficient algorithms that compute an optimal solution to those problems have been devel-
oped. For the linear assignment problem, the most famous are certainly the Hungarian al-
gorithm[Kuhn, 1955] of complexity O(N4) and the shortest-path augmenting algorithms (see
Jonker and Volgenant, 1987) of complexity O(N3), whereas for the bottleneck assignment prob-
lem, the threshold algorithm (see Garfinkel, 1971) provides a solution in O(N4) time.

5.1.2 Classical approaches in presence of spurious and missing detections

In practical applications, the points detected in an image generally do not correspond
uniquely to the points detected in the other because of missing and spurious detections. The
assignment problem solvers as presented above are not tailored for such general situations as
they look for a one-to-one correspondence between points in the two images, and will therefore
find correspondences where there are none, for instance between two (necessarily unrelated)
spurious detections.

To mitigate this problem, one might want to use additional knowledge: if there are reasons
to discard all pairings that have a cost greater than a certain value cthre (for instance, physical
reasons like a limited speed), the number of matching possibilities might be greatly restricted.
Similarly, if an estimate of the true number of points detected in both images is available, it
might be used to limit the search to the optimal assignments having this particular size.

Thresholded costs

If some pairings can be discarded because of physical reasons for instance, the correspon-
dence problem can be solved in the presence of outliers by transforming it into a minimal-cost
maximal-cardinality assignment problem, that is, denoting kmax the size of a maximal-cardinality
assignment (the largest possible size of an assignment between the two images containing only
possible pairings), finding an assignment a of size kmax minimizing

a ∈ arg min
a∈A st. |a|=kmax

∑

i∈dom(a)

cia(i),

where the arg min is on assignments a containing only possible pairings.
Given a scalar cthre, the thresholded-costs assignment problem is the minimal-cost maximal-

cardinality assignment problem where all pairings of cost greater than cthre have been dis-
carded. The classical algorithms solving the linear assignment problem can be adapted to
solve the thresholded-costs assignment problem, and there is a similar definition in the case of
the bottleneck assignment problem.

Phantom points

Another widespread approach to alleviate the shortcomings of the assignment problem in
the presence of spurious or missing detections consists in adding a “phantom point” [Salari
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and Sethi, 1990] x̃ in the second image for each point x in the first image, and conversely a
phantom point ỹ in the first image for each point y in the second image.

Usually, for a given cthre > 0, the pairing costs of the initial problem are extended to the
pairings of the new problem by setting the cost of a pairing involving a phantom point to cthre.

Thus, if a point appears, disappears, or is a spurious detection having no realistic correspon-
dence in the other image (ie. there is no matching point at a distance less than cthre), rather
than trying to assign it to any other existing point, this solution will assign it to its phantom
for a cost of cthre, effectively discarding it from the assignment (see Figure 61).

first image point

second image point

phantom point

Figure 61: The phantom-point assignment enables us to alleviate some shortcomings of the general as-
signment problem in presence of spurious and missing points. For each detected point in an
image, a “phantom point” is added in the other image, that can be linked to any point for
a given cost cthre (for clarity only the phantom points for the first image points have been
shown on this figure; they are represented by a disc of area cthre). Thus, if a point in an image
is missing in the other, the solution will tend to link the point to its phantom (see the left first
image point for example), rather than to an arbitrary point in the other image.

We thus obtain the phantom assignment problem: given a cost threshold cthre, find an assign-
ment a minimizing

a ∈ arg min
a∈A

∑

i∈dom(a)

cia(i) + (N+M− |a|) · cthre

= arg min
a∈A

∑

i∈dom(a)

(

cia(i) − cthre

)

How do the thresholded-costs and phantom assignment problems relate? Denoting at the
solution to the thresholded-costs assignment problem with maximal cost cthre and ap the
solution to the phantom assignment problem with phantom costs cthre, we necessarily have
|ap| 6 |at| (because ap contains only edges having a cost less than cthre and at is such
an assignment of maximal cardinality) and csum(ap) 6 csum(at) (because at is a candidate
solution to the phantom assignment problem). The phantom approach thus permits to re-
move some edges deemed unrealistic from the assignment using the value of the parameter
cthre, adaptively selecting the correct size of a realistic assignment (which might often be less
than the maximal-cardinality of an assignment). We illustrate this on a toy example (see Fig-
ure 62), where the thresholded-costs assignment will give a maximal-size solution, whereas
under some circumstances, the phantom solution will choose to remove a pairing from the
assignment.

k-cardinality assignments

If an estimate of the true number k of corresponding points in both images (that is, ignoring
spurious points and occlusions) is available, one can assume that the correct pairings are
those of minimal cost, and that there is exactly k correct pairings. Thus, a good guess at
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a

b
c

original problem thresholded-costs phantom

Figure 62: The squares are the point of the first image, the dots are the point of the second image. The
blue disc has a radius of cthre, and a, b and c are the costs of the corresponding edges. The
illustration above is in the case where b+ cthre < a+ c (otherwise both solutions are equal to
the middle figure).

solving the problem might be to find the solution of the k-cardinality assignment problem: find
an assignment a of size k minimizing

a ∈ arg min
a∈A st. |a|=k

∑

i∈a

cia(i)

Nearest neighbor

Let us end this brief review of classical approaches to the point correspondence problem
with probably the simplest and most widespread of all algorithms: assigning each point to its
nearest neighbor in the other image. However simple the idea might be, giving it a mathemat-
ical definition that is both clear and has a unique meaning actually proves to be cumbersome.
Indeed, if x is some point in the first image, and y its nearest neighbor in the second image, it
might very well be the case that the nearest neighbor of y in the first image is not x, breaking
the apparent symmetry of the definition. Furthermore, there might actually be more than one
point in the first image whose nearest neighbor is y, resulting in an assignment conflict for y.

We therefore give an algorithmic definition to the nearest-neighbor solution, thus avoiding
complex mathematical notations to alleviate definition problems: sorting the pairings xi → yj

by increasing cost cij, we consider them in order, and we add in turn each pairing xi → yj to
the assignment if neither xi nor yj appear in a previously added pairing.

When using this algorithm on data containing spurious and missing detections, one will
often restrict the allowed pairings using a threshold on their cost.

5.1.3 Modeling data

In order to understand the performances and the limits of the point correspondence algo-
rithms, we need to define a model of the input data.

We suggested above that in the case of point tracking, the distance between the points might
be a good indicator of the fact that they represent the same detected object. However, we might
as well choose the squared distance, or any function thereof. Similarly, for some applications
the choice of the algorithms parameters might be obvious: in the case of point tracking again,
a physical bound on the speed of the objects motion gives a physical meaning to the parameter
cthre of the thresholded-costs algorithm. The meaning of this parameter becomes however less
obvious when using the phantom assignment algorithm, as there exists an interplay between
the roles of cthre as a maximal cost for a pairing and as a penalty for spurious detections. In



5.1 GENERAL DEFINITIONS AND CLASSICAL APPROACHESFOR THE POINT CORRESPONDENCE PROBLEM 103

this case, a proper model of the input data might help us decide which pairing costs and which
parameter settings suit the data best.

The model that appeared the most natural to us to generate data pairs of N and M detections
consists in drawing uniformly at random N points in the first image, splitting them randomly
in two sets representing the correct feature points and the spurious detections, and displacing
the feature points slightly to obtain the corresponding detections in the second image. Finally,
we complete the second image up to M points by uniformly drawing additional spurious
detections. There are at most min(N,M) points that are paired in both images, and for a given
application, we might have a rough idea of the proportion of those min(N,M) points that are
indeed paired, as well as a rough idea of the magnitude of the displacement. We formalize
precisely this generative model below:

Definition 11 (Generative model). Let Ω = [0, 1] × [0, 1] be the domain of the images. We are
given two parameters, pR the ratio of correctly detected points, and σ2 the variance of the displacement
magnitude,

1. choose an integer K following a binomial distribution B(min(N,M),pR),

2. draw X1, ...,XK uniformly in Ω,

3. for 1 6 i 6 K, displace the point Xi by defining Yi = Xi +Ni, where Ni is a Gaussian variable
of null mean and variance σ2,

4. draw XK+1, ...,XN and YK+1, ...,YM uniformly in Ω.

The result of the generative model is the tuple G = (K, X̄, Ȳ) where X̄ = (X1, ...,XN) and Ȳ =

(Y1, ...,YM).

Of course, when we are given a pair of point sets, we do not know the order in which the
points have been generated in each one (and thus the correspondences), nor the number of real
points K that correspond to each other in the images, and we thus introduce an observational
model describing this loss of information:

Definition 12 (Observational model). Assuming G = (K, X̄, Ȳ) has been generated using the model
of definition 11,

1. we randomly choose σX a permutation of [1,N] and σY a permutation of [1,M],

2. we define SX = (XσX(1)
, ...,XσX(N)) and SY = (YσY(1)

, ...,YσY(M)),

The result of the observational model is O = (K,σX,σY ,SX,SY).

Definition 13 (Generated assignment). Given O = (K,σX,σY ,SX,SY) observed by the above model,
we define A = {σX(1) → σY(1), ...,σX(K) → σY(K)} the generated assignment (of size |A| = K)
between SX and SY .

Given two point sets sX and sY generated by the above model (realizations of SX and SY),
we want to recover the underlying generated assignment a by using our knowledge on the
generational model. We now show that we can interpret two classical ways of so doing – the
maximum likelihood and the maximum a posteriori approaches – as the solutions to variants
of the phantom assignment problem described in the previous section.
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5.1.4 The maximum likelihood and maximum a posteriori detectors

Maximum likelihood

Given two point sets sX and sY , the maximum likelihood approach to assignment detection
consists in choosing the assignment a that maximizes the likelihood

ℓ(SX = sX,SY = sY | A = a) =
∏

i→j∈a

1

2πσ2
e−‖yj−xi‖2/2σ2

,

which, equivalently, is the assignment minimizing

∑

i→j∈a

(

‖yj − xi‖2 − 2σ2 ln
1

2πσ2

)

(5.1)

and is hence the solution of the phantom assignment problem with parameter

cthre = 2σ2 ln(1/2πσ2),

where the pairing costs are the squared distances cij = ‖yj − xi‖2. We note that the value of
pR does not come into play, as the assignments are considered a priori equally probable in the
maximum likelihood approach.

Maximum a posteriori

The maximum a posteriori approach makes use of the likelihood of each particular assign-
ment size, and detects the assignment a that maximizes

ℓ(A = a | SX = sX,SY = sY) =
ℓ(SX = sX,SY = sY | A = a) ·P(A = a)

ℓ(SX = sX,SY = sY)
,

where ℓ(SX = sX,SY = sY) is a constant that we can ignore. Observing that

P(A = a) =

(

N∧M

|a|

)

· pR|a|(1− pR)
N∧M−|a|

︸ ︷︷ ︸
P(|A|=|a|)

· |a|!(N− |a|)!(M− |a|)!

N!M!︸ ︷︷ ︸
P(A=a | |A|=|a|)

this amounts to detecting the assignment a maximizing (for 0 < pR < 1)

P(a) · ℓ(sX, sY | a) ∝ (N∨M− |a|)!

(

pR
2πσ2(1− pR)

)|a|

· exp



−
∑

i→j∈a

‖yj − xi‖2
2σ2





where the proportionality constant only depends on the values of N,M and pR, which amounts
again to minimizing over all possible a

∑

i→j∈a

(

‖yj − xi‖2 − 2σ2 ln
pR

2πσ2(1− pR)

)

− 2σ2 ln
(

(N∨M− |a|)!
)

. (5.2)

This criterion resembles the phantom assignment problem, with an added penalty that is
not increasing linearly with the size of a.

If pR = 0 (ie. all the points are noisy detections), the only possibility is obviously the
empty assignment. If pR = 1 (ie. no noise points), the maximum a posteriori assignment is
the maximum cardinality assignment minimizing the sum of squared distances, and thus it
is the assignment found by the linear assignment problem in the case where the costs are the
squared distances.
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5.1.5 Algorithms

Most of the algorithms we described above, and those we will describe later, share a com-
mon building block: an algorithm solving the k-cardinality linear assignment problem, that is,
returning a0, ...,aN∧M such that

∀0 6 k 6 N∧M, |ak| = k and ak ∈ arg min
a∈Ak

∑

i→j∈a

cij.

Such an algorithm is detailed in appendix A that has computational complexity O(min(N,M)NM).
Similarly, an algorithm solving the k-cardinality bottleneck assignment problem is described
in the same appendix and has computational complexity O(N2M2).

Using these algorithms, we obtain immediately the solution aN∧M to the general linear
(resp. bottleneck) assignment problem. A slight variation of the aforementioned algorithm
enables us to disallow some pairings and thus solve the thresholded-costs assignment problem
without an increase in complexity. Finally, solving the phantom assignment problem with
parameter cthre consists simply in returning the assignment ak̂ such that

k̂ = arg min
k

∑

i→j∈ak

cij − k · cthre.

5.2 WRAP (WEIGHTED RECALL AND PRECISION)

In order to measure the performances of the assignment algorithms and to define an optimal
bound on those performances, we use the precision and the recall criteria: given a pair of point
sets for which the real underlying assignment is a, an algorithm detecting the assignment ã
has a recall and a precision defined by

recall =
# of correct pairings

# of real pairings
and precision =

# of correct pairings

# of found pairings
,

where a pairing is real if it belongs to a, is found if it belongs to ã and is correct if it belongs to
a∩ ã. The recall measures how much of the real assignment has been detected by the method,
and the precision tells whether most of the extracted pairings are correct or not. More precisely,
and extending this definition to empty assignments,

r(ã,a) = 1a=∅1ã=∅ + 1a 6=∅

|a∩ ã|
|a|

, p(ã,a) = 1ã=∅1a=∅ + 1ã 6=∅

|a∩ ã|
|ã|

.

Using the fairly general data generation model described in the previous section, and this
performance measure, we are now able to give a quantified meaning to our intuition that
the point correspondence problem is always too simple or too complex. By comparing the
performances of the most local greedy algorithm like the Nearest-Neighbor, and those of the
global Maximum-Likelihood criterion for instance, we observe in Figure 63 that no matter the
complexity of the underlying assignment problem (as measured by the variance of the point
displacement), both criteria have essentially the same performances, and it seems thus mostly
useless to use a global criterion.

To study whether those algorithms are indeed optimal or not, we now introduce the opti-
mal WRAP criterion, that will give us a theoretical bound on the performances of the point
correspondence algorithms.
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Figure 63: (Equivalence of algorithms performances) Mean precision and recall of the Maximum Likeli-
hood (brown) and Nearest-Neighbor (green) algorithms on the generative model with param-
eters N = M = 20, pR = 0.8 and various values of σ2. We vary the algorithms parameters cthre

of NN and σ2 of ML, and the values are averages of 500 runs. We observe that no matter the
complexity of the problem (the variance of the point displacement amplitude), the global ML
algorithm and the greedy local NN algorithm yield similar performances. The performances
of the Maximum A Posteriori algorithm are equivalent.

5.2.1 The WRAP optimal criterion

We will now always assume that the input data has been obtained through the genera-
tive and observational models of definitions 11 and 12: we remind the reader that the gen-
erative model results in a tuple G = (K, X̄, Ȳ) describing the points in the assignment as
the first K points of the sequences X̄ and Ȳ, the other points being spurious detections ;
the observational model simulates the loss of information by transforming this tuple into
O = (K,σX,σY ,SX,SY), where SX and SY are shuffled versions of the points in each point
set, obtained using the permutations σX and σY ; and finally the generated assignment is
A = {σX(1)→ σY(1), ...,σX(K)→ σY(K)}.

Given the observed points sX = (x1, ..., xN) and sY = (y1, ..., yM) in both images – a realiza-
tion of SX and SY , we are able to compute for each possible assignment a the probability that it
is indeed the realization of the real underlying generated assignment A. Any completely spec-
ified algorithm running on this data would return an assignment ã, and we can now compute
the expected recall and precision of the algorithm on all possible generated data that results
in the exact same observed points (from now on in this section, expectations are computed on
observations O of generated data G that result exactly in the observed point sets sX and sY ,
and we will denote E[X]sX,sY = E[δSX=sX,SY=sY ·X](G,O))

E[r(ã,A)]sX,sY =
∑

a∈A

ℓ(A = a | SX = sX,SY = sY) · r(ã,a), and

E[p(ã,A)]sX,sY =
∑

a∈A

ℓ(A = a | SX = sX,SY = sY) · p(ã,a),

Now, assuming the realization of the input data is still fixed, let S be the (finite) set of all
such points E[(r(ã,A),p(ã,A)]sX,sY . Using Lagrange multipliers, we know that maximizing r

when we fix the value of p to a given α is equivalent to maximizing r+ λp for a certain λ (that
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depends on the value of α). This essentially corresponds to drawing a line (whose orientation
depends on λ) above the point set, and to pull it towards the origin until it crosses a point (see
figure 64). Thus, the pairs (r,p) that are obtained when maximizing r+ λp as λ varies in R+

define a boundary on the pairs that can be reached by any assignment algorithm.
Of course, the WRAP criterion is only able to attain the points on the hull, and not any

arbitrary location on the segments that join them, but a simple modification of the WRAP
criterion to a probabilistic criterion would enable us to do so: let λ1 and λ2 be two values
of λ such that (rλ1

,pλ1
) and (rλ2

,pλ2
) are two consecutive points on the hull ; by choosing

a real number θ ∈ [0, 1], and defining a probabilistic algorithm that returns with probability
θ the assignment detected by WRAP with the parameter λ1, and with probability 1− θ the
assignment detected by WRAP with the parameter λ2, we are obviously able to attain an
average performance at any location on the segment joining (rλ1

,pλ1
) and (rλ2

,pλ2
).

orthogonal to (1, λ)

(rλ, pλ)
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Figure 64: Given observed data sX and sY generated using the generative model of definition 11, the
points (r,p) displayed above represent the possible expected recall and precision of any as-
signment detection algorithm: r = E[r(ã,A)]sX,sY

and p = E[p(ã,A)]sX,sY
where ã is the

detection made by the algorithm on sX and sY , and the expectation is taken on all the real
underlying generated assignments A that can explain sX and sY . The points on the “hull”
(green dashed line) are optimal in the sense that for any point in the set, there is a point
in the hull having both a larger recall and a larger precision. They correspond to the set of
points {E[(r(ãλ,A),p(ãλ,A)]sX,sY

}λ>0, where ãλ maximizes the expected value E[r(ãλ,A) +

λp(ãλ,A)]sX,sY
– that is, the dot product of (1, λ) and (E[r(ãλ,A)]sX,sY

, E[p(ãλ,A)]sX,sY
). Ge-

ometrically, the point (rλ,pλ) = (E[r(ãλ,A)], E[p(ãλ,A)]sX,sY
) is the first one that is crossed

by a line perpendicular to the vector (1, λ) placed above the points, when that line is pulled
toward the origin.

This idea can be translated mathematically to yield the optimal WRAP criterion that de-
scribes this boundary: for any λ > 0, the line perpendicular to the vector (1, λ) crosses the point
(rλ,pλ) when it is pulled towards the origin, where rλ and pλ are the recall and precision of the
assignment ãλ maximizing the dot product of (1, λ) and (E[r(ãλ,A)]sX,sY , E[p(ãλ,A)]sX,sY ) ; in
other words, the “hull” of the set S is the set of points {E[(r(ãλ,A),p(ãλ,A)]sX,sY }λ>0, where
ãλ maximizes the expected value of the WRAP (Weighted Recall And Precision) criterion

Eλ(ãλ) = E[r(ãλ,A) + λ · p(ãλ,A)]sX,sY . (5.3)

By both optimizing for the recall and the precision, WRAP is thus an optimal criterion, in
the sense that for any algorithm whose average performance on data sets generated using
the generative and observational models is (r,p), there exists a value λ such that the WRAP
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algorithm with parameter λ would subsume this result: it would yield an average performance
rλ > r and pλ > p.

5.2.2 The WRAP algorithm

In order to define an algorithm to compute the WRAP criterion, let us rewrite it in the form
of a sum cost on the pairings in ãλ:

Eλ(ãλ) = E[rλ(ãλ,A) + λpλ(ãλ,A)]sX,sY

= E

[

1A=∅1ãλ=∅ + 1A 6=∅

|ãλ ∩A|

|A|
+ λ

(

1A=∅1ãλ=∅ + 1ãλ 6=∅

|ãλ ∩A|

|ãλ|

)]

sX,sY

= 1ãλ=∅ · (1+ λ)E[1A=∅]sX,sY +

1ãλ 6=∅E



1A 6=∅

∑

p∈ãλ

1p∈A

|A|
+

λ

|ãλ|

∑

p∈ãλ

1p∈A





sX,sY

= 1ãλ=∅ · (1+ λ)E[1A=∅]sX,sY +

∑

p∈ãλ

E

[

1A 6=∅

1p∈A

|A|

]

sX,sY

+
λ

|ãλ|

∑

p∈ãλ

E
[

1p∈A

]

sX,sY

= 1ãλ=∅ · (1+ λ)E[1A=∅]sX,sY +
∑

p∈ãλ

(

rp +
λ

|ãλ|
pp

)

where

rp = E

[

1A 6=∅

1p∈A

|A|

]

sX,sY

=
∑

a∋p

1

|a|
· ℓ(A = a | SX = sX,SY = sY),

pp = E
[

1p∈A

]

sX,sY
=

∑

a∋p

ℓ(A = a | SX = sX,SY = sY),
(5.4)

and (using lighter notations)

ℓ(a | sX, sY) ∝ pR
|a|(1− pR)

N∧M−|a| · (N∨M− |a|)!

(N∨M)!
·

∏

i→j∈a

1

2πσ2
e−‖yj−xi‖2/2σ2

.

Maximizing the expectation Eλ(ãλ) thus amounts to solving min(N,M) optimization prob-
lems {Pk}16k6N∧M where the solution of the problem Pk is the assignment of size k between

sX and sY of maximal sum cost, and the cost of each pairing p = (i→ j) is ckij = rp + (λ/k)pp
(see Algorithm 8).

The routine maximum_cost_kcard_assignment solving the optimization problems {Pk}k is an
immediate modification of the k-cardinality (minimum-cost) linear assignment problem solver
described in appendix A.

Remark 2 (Modified precision for simpler computations). We could replace the precision

p(ã,a) =
# of correct pairings

# of found pairings
= 1ã=∅1a=∅ + 1ã 6=∅

|a∩ ã|
|ã|

by the variant

p ′(ã,a) = 1−
# of incorrect pairings

N∧M
= 1−

|a|− |a∩ ã|
N∧M

,
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Algorithm: WRAP

input : sX, sY the points detected in each image
input : pR,σ2 the parameters of the generative model
input : λ the WRAP parameter
output: ãλ the optimal assignment for parameter λ

A ← set of assignments between sX and sY

foreach pairing p between sX and sY do

rp ←
∑

a∈A s.t. a∋p
1
|a|

ℓ(a | sX, sY)

pp ←
∑

a∈A s.t. a∋p ℓ(a | sX, sY)

end

for k = 1→ min(N,M) do

{ckp}p = {rp + (λ/k)pp}p

ak ← maximum_cost_kcard_assignment(k, {ckp}p)

ck ←
∑

p∈ak
ckp

end

if maxk ck < (1+ λ)ℓ(A = ∅ | sX, sY) then
ãλ ← ∅

else

k̂← arg maxk ck
ãλ ← ak̂

end

return ãλ

Algorithm 8: Computation of the optimal WRAP assignment. The computation of the
coefficients rp and pp is exact, making the algorithm unpractically slow when the size of
the point sets sX and sY becomes too large.



110 THE WRAP ALGORITHM

in which case the expression of Eλ(ãλ) becomes

Eλ(ãλ) = λE[1]sX,sY + 1ãλ=∅ ·E[1A=∅]sX,sY +
∑

p∈ãλ

E

[

1A 6=∅

1p∈A

|A|
−

λ

N∧M
1p 6∈A

]

sX,sY

and results in a somewhat less complex algorithm requiring only the computation of one maximum cost
assignment problem, since the costs of the pairings no longer depend on the size of ãλ. We will however
not use this variant, as the original definition of the precision is the most widely accepted one.

5.2.3 Behavior of WRAP

To better understand what makes WRAP an optimal criterion, let us study its behavior on
some simple cases, and compare it with the behavior of the classical approaches like ML and
MAP.

1 point vs. k points

First, in the simple case where both point sets contain exactly one point, sX = {A} and
sY = {a}, the only two possible assignments are {∅, (A→ a)}, and the corresponding values of
Eλ are

Eλ(∅) = (1+ λ) · ℓ(A = ∅ | sX, sY), and

Eλ(A→ a) = (1+ λ) · ℓ(A = {1→ 1} | sX, sY).

Thus, ãλ maximizes Eλ whenever it maximizes ℓ(A = ãλ | sX, sY) ; in other words – and
not surprisingly – λ has no effect, and WRAP and MAP have exactly the same behavior in this
case, and so does ML up to a multiplicative factor. More precisely, WRAP and MAP associate

the two points if and only if they are separated by a distance δ 6 (2σ2 ln pR

2πσ2(1−pR)
)1/2, and

ML associates them if and only if δ 6 (−2σ2 ln 2πσ2)1/2.

Generally, the WRAP and MAP behavior are the same for all the assignments between one
point in the first image and k points in the second image (or the converse).

2 points vs. 2 points

When the point sets both contain several points however, the WRAP algorithm adopts a
much more complex behavior, by taking into account the fact that pairings can belong to
several different assignments or variable probability. This allows WRAP in essence to define
which pairings have inherently more risk – are more ambiguous – than others, and choose
whether or not to detect them.
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Let us observe what happens when both sets contain two points sX = {A,B} and sY = {a,b},
using abbreviated notations:

Eλ(∅) = (1+ λ) · ℓ(A = ∅)

Eλ(A→ a) = (1+ λ) · ℓ(A = {A→ a}) + (1/2+ λ) · ℓ(A = {A→ a,B→ b})

Eλ(A→ b) = (1+ λ) · ℓ(A = {A→ b}) + (1/2+ λ) · ℓ(A = {A→ b,B→ a})

Eλ(B→ a) = (1+ λ) · ℓ(A = {B→ a}) + (1/2+ λ) · ℓ(A = {A→ b,B→ a})

Eλ(B→ b) = (1+ λ) · ℓ(A = {B→ b}) + (1/2+ λ) · ℓ(A = {A→ b,B→ a})

Eλ(A→ a,B→ b) = (1+ λ/2) ·
[

ℓ(A = {A→ a}) + ℓ(A = {B→ b})
]

+(1+ λ) · ℓ(A = {A→ a,B→ b})

Eλ(A→ b,B→ a) = (1+ λ/2) ·
[

ℓ(A = {A→ b}) + ℓ(A = {B→ a})
]

+(1+ λ) · ℓ(A = {A→ b,B→ a})

As is obvious from the criterion r+ λp that we optimize, small values of λ will favor large
assignments to increase the recall, while large values of λ will favor smaller assignments. We
now detail the above equations in the case where λ = 0, λ≫ 1 and λ = 1 to show this clearly.

We assume here for the clarity of the explanation that the configuration of the points in both
sets is such that only the assignments {A→ a} and {A→ a,B→ b} are possible solutions of the
problem, the other assignments having a smaller Eλ value, and we only discuss when WRAP
will include one or two pairings in the optimal solution.

• If λ = 0, we have:

E0(A→ a) = ℓ(A = {A→ a}) +
1

2
· ℓ(A = {A→ a,B→ b})

E0(A→ a,B→ b) = ℓ(A = {A→ a}) + ℓ(A = {B→ b}) + ℓ(A = {A→ a,B→ b})

and since E0(A → a,B → b) > E0(A → a), WRAP will always detect both pairings
when they are more likely than the empty assignment, hence yielding a high recall.

• If λ≫ 1, we have:

Eλ(A→ a) = λ ·
[

ℓ(A = {A→ a}) + ℓ(A = {A→ a,B→ b})
]

+Oλ→+∞(1)

Eλ(A→ a,B→ b) = λ ·
[1

2
ℓ(A = {A→ a}) +

1

2
ℓ(A = {B→ b}) + ℓ(A = {A→ a,B→ b})

]

+Oλ→+∞(1)

and WRAP will tend to detect only one pairing when λ grows very large, as either ℓ(A =

{A → a}) or ℓ(A = {B → b}) will be greater than 1
2 ℓ(A = {A → a}) + 1

2 ℓ(A = {B → b}),
thus yielding a high precision.

• If λ = 1, we have:

E1(A→ a) = 2 · ℓ(A = {A→ a}) +
3

2
· ℓ(A = {A→ aB→ b})

E1(A→ a,B→ b) =
3

2
·
[

ℓ(A = {A→ a}) + ℓ(A = {B→ b})
]

+ 2 · ℓ(A = {A→ a,B→ b})
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and WRAP will try to find a compromise between detecting one or two pairings ; more
precisely, E1(A→ a) > E1(A→ a,B→ b) if and only if ℓ(A = {A→ a,B→ b}) 6 ℓ(A =

{A → a}) − 3 · ℓ(A = {B → b}). Thus, if ℓ(A = {B → b}) > 1
3 ℓ(A = {A → a}), WRAP will

prefer to detect both pairings to maximize E[r+ p].

• And generally for any λ > 0, Eλ(A→ a) > Eλ(A→ a,B→ b) if and only if

ℓ(A = {A→ a,B→ b}) 6 λ · ℓ(A = {A→ a}) − (2+ λ) · ℓ(A = {B→ b})

and thus, the pairings that WRAP will choose depends on the value of ℓ(A = {A →
a,B → b}) in relation to a combination of the values of ℓ(A = {A → a}) and ℓ(A = {B →
b}).

Visualizing the effect of λ

As we marked above, optimizing the expected value r+λp can be interpreted as maximizing
the expected projection of the point (r,p) on the vector (1, λ). We can visualize this by gener-
ating random assignment problems that we solve using the WRAP algorithm, and project the
solution on the (recall, precision) plane for different values of λ (see Figure 65).

We observe very concretely that, as expected, the WRAP criterion tends to detect high-
precision assignments when λ is large, and high-recall assignments when it is small.
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Figure 65: We generated 400 random assignment problems using the generative model where N = M =

7, pR = 0.5 and σ2 = 10−2, we recovered the corresponding assignments using the WRAP
algorithm with λ = 10 (left), λ = 1 (middle), λ = 0.1 (right) and the exact parameters pR
and σ2, and we plot the recall and precision in each case. Note that the points have been
randomized by adding a small displacement to their coordinates to show their density. The
red circle shows the mean recall and precision, and the vector shows the direction of (1, λ).
The WRAP algorithm maximizes the expected value of r+ λ · p, that is, the projection of the
mean on the vector (1, λ). We observe that most of the projected assignments are in the upper
left part when λ is high (high precision, low recall), and in the lower right part when λ is small
(low precision, high recall). As a reference, we show in gray the recall and precision obtained
using the MAP algorithm with the correct pR and σ2 (they are the same points in all images).

5.2.4 WRAP assignment maps

Although the behavior of WRAP is easy to understand in very simple cases, it becomes more
difficult to predict when the number of points increase, or when there are ambiguities leading
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to many possible assignments to be candidate solutions, rather than just two as we assumed
when discussing the effect of λ for simplicity in the previous section.

To better understand the behavior of the WRAP criterion in more general cases, it is useful to
observe concrete results on several point configurations and to compare it to the MAP criterion.
To get a sense of the changes in the decisions as the point configurations are locally modified,
we display “assignment maps” where all the points but one are fixed, and observe how the
WRAP and MAP decisions evolve as the free point moves in the image.

For example, the assignment map of Figure 66 compares the behavior of the WRAP algo-
rithm for several values of λ, and for two points in each image. The two points detected in the
first image are the red dots A and B, and the first point detected in the second image is the blue
dot a ; Those points are fixed, while the second point of the second image – denoted b – is free,
and for each of its possible positions on a discrete grid, the color of the map represents the
corresponding found assignment. Keep in mind that there is no ground truth for the assignment
in those assignment maps. Although we assume that the two point sets have been generated
using the generative model, we don’t know the true underlying generated assignment. Rather,
WRAP assumes that any possible underlying generated assignment could be the real one, each
having a certain probability of being the real one that can be computed from the position of
the points. The goal of WRAP is not to find the assignment maximizing the expectation of a
function of the recall and the precision.

We observe here that, as predicted, a small value for λ will always yield an assignment
containing a maximal number of pairings, while a large value will always yield an assignment
containing only one pairing. When λ = 1, the WRAP and MAP behavior are essentially similar.
In this case, the area around B where WRAP chooses to include the two pairings is slightly
larger than that of MAP, but this might no longer be the case for a slightly higher value of λ.

In Figure 67, we observe the behavior of WRAP for several values of λ as the point a comes
closer to A. We note several interesting features.

First, no matter the value of λ, the area of the images where the WRAP criterion makes a
detection rather than returning the empty assignment is essentially the same – although as we
noted above, a small λ favors detections with many pairings, and a large λ favors detections
with only one pairing.

When λ is small, and when a and A are close (last row), the blue disc representing the
assignment {A→ a,B→ b} starts enclosing the red region {A→ b,B→ a}, and in some cases
– for instance when the point b is in the position denoted by c – the most likely assignment
in the probabilistic generative model is the latter, but WRAP will still select the former. This
can be explained because individually, the pairing A → a is still more likely than A → c, and
is thus chosen to favor a (more likely) real detection, but since the precision is not relevant, we
can still add the pairing B→ c in case it also happens to be real.

When λ is very large, other interesting phenomena appear. First, notice the change that
happens when b takes the positions d and e (third line, last column). When b is far from B,
at location b for instance, WRAP naturally pairs {A → a} only. But when a stays in place and
b moves closer to B (at location e for instance), WRAP will not add the pairing B → b to the
assignment, but detect this pairing alone – because it is very likely, and thus helps improve
the precision. If we now observe what happens when b takes the position f in the last row,
we see that WRAP counter-intuitively detects {B → a} rather than {A → a}, although it is less
likely. This can be explained because WRAP detects an ambiguity: it does not know whether
f is a spurious detection, or is an abnormally high motion of one of the points ; and in this
latter case, it most likely comes from A. Thus in order to favor the precision, WRAP decides
to leave this ambiguous pairing out of the assignment, but it also decides that, since if it is the
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Figure 66: (Effect of λ) Assignment maps of WRAP and MAP where the computations have been made
assuming that the generative model has parameters pR = 0.5 and σ2 = 0.01, for various values
of λ. The two red dots A and B are the points in the first image, the blue dot a is the first
point of the second image, and we visualize how the assignments change when the second
point of the second image b moves across image, by displaying the assignment found for each
possible position. The first WRAP map is read this way: when b is in the green disc around
A, and thus closer from it than a, WRAP pairs {A → b}, when b is in the blue disc, WRAP
pairs {A→ a,B→ b}, and when b is outside these discs, WRAP pairs {A→ a}. The difference
figure shows in dark gray the regions where the criteria differ. We observe that, as predicted,
when λ is very small, WRAP tends to always detect both pairings to favor the recall, when λ

is very large, WRAP tends to detect only one pairing to favor the precision, and when λ = 1,
there is a compromise between detecting only one or both pairings. In this latter case we
observe in the area for which the two pairings are detected is slightly larger for WRAP than
for MAP, but this might no longer be the case for a slightly higher value of λ.
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case that f comes from one of the point it must be A, it must also be less risky to assume that
a comes from B.

The assignment maps of Figure 68 and 69 show the behavior of WRAP (λ = 1) when the
parameter pR of the generative model varies, and the behavior of WRAP when A and B are
close, and a moves closer to A.

In particular, we observe that the behavior of WRAP evolves continuously, while the changes
for MAP seem to happen by steps. Indeed, between the first and third row of Figure 69, the
detection areas for MAP have barely changed, and only the assignment detected around B

has evolved. In the meantime in the WRAP maps, the purple area around B has gradually
shrunk, while the blue area has continuously expanded, to finally become even larger than the
corresponding area in the MAP assignment map. This is shown clearly in Figure 70, where
the areas of each assignment region is displayed as the point a of Figure 69 moves from the
first row to the last.

Figure 71 shows examples of point configurations on which the WRAP criterion and the
classical algorithms like MAP exhibit major differences. In many instances in those maps,
WRAP makes a seemingly counter-intuitive choice because it takes into account the ambiguity
in order to maximize both the recall and the precision. Note that in this case, the free point is
e. Let us discuss for example the first row. If e is in the purple region around A, the pairing
{A → e} is detected, but if e moves farther to the brown area for instance, this has not the
expected effect of detecting less pairings, but more. In essence, WRAP says: if e is very close
to A, I detect only this pairing in order to increase the precision, but if it gets farther, there is
an ambiguity, because A might equally likely be displaced to e, b or a, and since I don’t want
to avoid making a detection because I want to optimize the recall, but I am not sure about my
decision, I might as well add another decision which I am not sure of, as {B→ c}.

In other cases, the argument is essentially the same: for instance, still when e is in the brown
area around A, one would expect that WRAP would detect the pairing B → b rather than
B → c, as the former is more likely in the probabilistic generative model. However, there is
an ambiguity on the real motion of the point A, and although in the brown region it is more
likely that A has moved to e, it could as well have moved to b or to a ; but certainly not c. It is
thus less risky to assume that c comes from B. The same argument explains why in the second
row, WRAP detects {A → a,B → c} rather than {A → a,B → b} when e is far from the other
points.

Many other examples of the WRAP ambiguity handling can be found in the maps, and it is
left as an amusement to the reader to find and explain them.

Overall, we see that the WRAP criterion tends to be able to arbitrate finely between ambigui-
ties, in order to make the best decision, leading to more complex assignment maps that evolve
gradually when the point locations are varying, while MAP tends to make simpler predictions,
that are nonetheless close to those of WRAP.

5.2.5 WRAP computation using MCMC

Of course, the WRAP algorithm requires the computation of the weights {(rp,pp)}p from

equation 5.4, and this is intractable in practice, as it takes O(|A|) time, where A is the set
of assignments between sX and sY , which is very large for typical values of N and M (see
Table 7).

It seems difficult to compute these coefficients efficiently, as they closely resemble the com-
putation of a permanent – which is a #P-complete problem.
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Figure 67: (Effect of λ) We observe the behavior of the WRAP algorithm for a generative model with
parameters pR = 0.5 and σ2 = 0.01, when the configuration of the points varies, for various
values of the parameter λ. As noted before, the WRAP criterion tends to detect many pairings
when λ is small and fewer when λ is high, but it is interesting to note that the area where
WRAP makes a detection stays essentially the same no matter the value of λ. We note other
interesting effects taking place when b occupies some locations pinpointed by green labels.
When λ is small, WRAP prefers to detect {A → a,B → b} than {A → b,B → a} although the
latter is more likely in the probabilistic generative model, because it favors the recall (position
c). When λ is large, WRAP will favor the precision in two counter-intuitive ways: when b

occupies the position marked by d, WRAP detects the pairing A → a, but when it occupies
the position e, WRAP does not detect the two pairings as one would expect, but only the
pairing B → b. Finally, when b occupies the position f, WRAP detects {B → a} rather than
{A→ a}, because f might be a statistically abnormal motion of the point A, and it is thus less
risky to assume that a corresponds to B.
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Figure 68: (Effect of pR) Assignment maps for WRAP (λ = 1) and MAP where σ2 = 0.01, as pR varies.
The changes of WRAP are continuous and gradual with respect to ‖A−a‖, while the changes
of MAP happen abruptly for specific values of ‖A− a‖;
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Figure 69: (Assignment ambiguities) Assignment maps for WRAP (λ = 1) and MAP where pR = 0.5
and σ2 = 0.01, as a moves closer to A. The changes of WRAP are continuous and gradual
with respect to ‖A − a‖, while the changes of MAP happen abruptly for specific values of
‖A− a‖;
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Figure 70: (Continuous and discrete evolution of the assignment maps) Evolution of the area of each
assignment region for WRAP (λ = 1) and MAP where pR = 0.5 and σ2 = 0.01, as a moves
closer to A (see Figure 69). The changes of WRAP are continuous and gradual, while the
changes of MAP happen at discrete points in time.

N 2 4 8 16 32

|A| 7 209 ≈ 1.4× 106 ≈ 6.2× 1015 ≈ 1.7× 1039

Table 7: Number of assignments |A| =
∑N

k=0

(

N
k

)(

N
k

)

k! between two sets containing N points.

However, noting that only a few assignments have a high probability and contribute to
almost all of the probability mass (see table 8), it might be possible to obtain a good approxi-
mation of the coefficients by enumerating only the high probability assignments.

r = 0.95 0.99 0.999 0.9999 0.99999

n = 259 (257) 496 (491) 965 (964) 1617 (1634) 2456 (2474)
n/|A| ≈ 0.2% 0.4% 0.7% 1.2% 1.9%

u = 106 (95) 218 (194) 463 (403) 818 (698) 1298 (1083)
u/|A| ≈ 0.1% 0.2% 0.4% 0.6% 1.0%

Table 8: Displayed is the mean (standard variation) number n of the highest-probability assignments
required to obtain various ratios r of the total probability mass for a problem with N = M = 7,
pR = 0.5 and σ2 = 10−2 (the total number of possible assignments in this case is |A| = 130 922).
These values are averages computed on 500 random problems. As a reference, we also display
the mean (standard deviation) number u of the highest-probability assignments required to
obtain those ratios when the points detected in both images have been drawn uniformly at
random (the same parameters pR and σ2 have been used to compute the probabilities). Although
the standard variation is relatively high, the mass of the probability is still concentrated in a few
of the highest probability assignments.

In the related case of the computation of a permanent, some recent work propose to approx-
imate the value of the permanent in polynomial time using a Markov Chain Monte-Carlo algo-
rithm [Jerrum, Sinclair, and Vigoda, 2004]. Although their work does not apply immediately
to our specific problem, we will use a similar approach to compute the WRAP coefficients.
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Figure 71: Assignment maps for WRAP and MAP between two point sets containing two points (A and
B) and five points (a,b, c,d and the point e that defines the color of the map as it moves
over the image area) where pR = 0.8, σ2 = 0.01 and λ = 1, as a moves toward A. In many
instances in those maps, WRAP makes a seemingly counter-intuitive choice because it takes
into account the ambiguity in order to maximize both the recall and the precision. Note that
in this case, the free point is e. For instance, in the first row, one would expect WRAP to detect
the pairing B → b rather than B → c when e is in the brown region around A ; but there is
an ambiguity on the real displacement of the point A, and, although it might very well be the
case that the real pairing is A→ a, it is most certainly not the case that A has moved to c, and
thus, WRAP considers it less risky to propose the pairing B→ c.
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We remind the reader that ãλ maximizes

Eλ(ãλ) = 1ãλ=∅ · (1+ λ)E[1A=∅]sX,sY +
∑

p∈ãλ

(

rp +
λ

|ãλ|
pp

)

where rp = E

[

1A 6=∅

1p∈A

|A|

]

sX,sY
and pp = E

[

1p∈A

]

sX,sY
.

The WRAP algorithm computes ãλ by first computing the values of rp and pp for all pairing
p between sX and sY and then solving a series of fixed cardinality maximum-cost assignment
problems, and comparing their cost to (1+ λ)E[1A=∅]sX,sY .

Here, rather than computing exactly the values of E[1A=∅]sX,sY , rp = E

[

1A 6=∅

1p∈A

|A|

]

sX,sY
and pp = E

[

1p∈A

]

sX,sY
, which is very costly, we will approximate them by sampling from

the assignments distribution using the Metropolis-Hastings algorithm [Metropolis et al., 1953,
Hastings, 1970]. More precisely, we will approximate the values of E[1A=∅]sX,sY/E[1]sX,sY ,
rp/E[1]sX,sY and pp/E[1]sX,sY which are proportional to the values we are looking for, by
sampling assignments A from the distribution

ℓ0(A = a) =
(N∨M− |a|)!

(

pR
1−pR

)|a|
·
∏

i→j∈a
1

2πσ2 e
−‖yj−xi‖/2σ2

∑
a∈A

(N∨M− |a|)!
(

pR
1−pR

)|a|
·
∏

i→j∈a
1

2πσ2 e
−‖yj−xi‖/2σ2

where the sum is taken on all the assignments a between sX and sY . We thus have

Eλ(ãλ)

E[1]sX,sY

=

{
ℓ0(A = ∅) if ãλ = ∅
∑

a∈A
ℓ0(A = a)

∑
p∈ãλ

(

1a 6=∅

1p∈a

|a|
+ λ

|ãλ|
1p∈a

)

otherwise

The Metropolis-Hastings algorithm assumes given a probability function Q(a→ ·) such that
Q(a → a ′) is the probability of a transition from a to a ′, as well as an initial assignment a0,
and defines a Markov Chain {ak}k by iterating the following steps:

1. draw a ′ ∼ Q(ak → ·)

2. let ρ =
ℓ0(A = a ′)
ℓ0(A = ak)

Q(a ′ → ak)

Q(ak → a ′)

3. accept the transition with probability min(r, 1)

4. if the transition is accepted, define ak+1 = a ′, otherwise let ak+1 = ak.

For integrable functions h, we then know that

E[h(A)]sX,sY

E[1]sX,sY

= lim
N→+∞

1

N

∑

16k6N

h(ak),

and in practice, we will “burn” a small number b of steps to avoid transitional effects and
approximate the expectation after (b+N) transition steps by the formula

E[h(A)]sX,sY

E[1]sX,sY

≈ 1

N

∑

b+16k6b+N

h(ak)
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for some large N. In the present case we use the family of functions

h∅(a) = 1a=∅

hrp(a) = 1a 6=∅

1p∈a

|a|
for each pairing p between sX and sY

hpp(a) = 1p∈a for each pairing p between sX and sY

In Dellaert et al., 2003, the authors propose several ways to define such a transition proba-
bility Q in a setting where assignments have a fixed length. We here follow their construct,
extending it to the case of variable-length assignments. For a given assignment a between sX
and sY , define

wij = ‖yj − xi‖2/2σ2, and

qa(i, j) =

{
e−wij/

∑
j ′ 6=a(i) e

−wij ′ if i ∈ dom(a) and j 6= a(i)

0 otherwise

Definition 14 (Free points, paired points). If a is an assignment, we will denote Fa(sX) (resp.
Pa(sX)) the set of free (resp. paired) points of sX in the assignment, that is, the set of points from sX
not appearing (resp. appearing) in a, and we define similarly Fa(sY) and Pa(sY).

Hypothesis 2 (Number of points in the data). We assume that min(N,M) > 1 for the following
definitions to be correct, but in no way is this a limitation, as the problem is solved easily if N or M

contains only one point.

We now present two possible MCMC models, M0 and M1, to sample the assignments dis-
tribution.

Model M0

Let a be the current assignment, we define the transition to a ′ in the following way:

• with probability 1|a|>1/2, we permute two pairings: we choose two distinct indices i0
and i1 uniformly in Pa(sX), and we replace {(i0 → j0), (i1 → j1)} with {(i0 → j1), (i1 →
j0)}.

• with probability (1− 1|a|>1/2) · k/(N∧M) we remove a pairing: we choose i uniformly
in Pa(sX), and we remove the pairing (i→ a(i)).

• with probability (1− 1|a|>1/2) · (1−k/(N∧M)) we add a pairing: we choose i uniformly

in Fa(sX), we draw j from the distribution j ∼ e−wij/
∑

j ′∈Fa(sY)
e−wij ′ , and we add the

pairing (i→ j).



5.2 WRAP (WEIGHTED RECALL AND PRECISION) 123

We only need to compute the ratio r in each case. If a ′ is obtained from a by adding the
pairing (i→ j), we obtain

ρ =
ℓ0(A = a ′)
ℓ0(A = a)

Q(a ′ → a)

Q(a→ a ′)

=
1

N∨M− |a|

pR
1− pR

1

2πσ2
e−wij ·

1− 1|a|+1>1/2

1− 1|a|>1/2

|a|+1
N∧M

1−
|a|

N∧M

· 1

|a|+ 1
· (N− |a|)

∑
j ′∈Fa(sY)

e−wij ′

e−wij

=
pR

1− pR

1

2πσ2
· (1− 1|a|=1/2)

1

M− |a|
·

∑

j ′∈Fa(sY)

e−wij ′

Similarly, if a ′ is obtained from a by removing the pairing (i → j), by exchanging a ′ and a

in the above equation and taking the inverse, we have

ρ =
1− pR
pR

(2πσ2) · 1

1− 1|a ′|=1/2
(M− |a ′|) · 1

∑
j ′∈Fa ′(sY) e

−wij ′

=
1− pR
pR

(2πσ2) · 1

1− 1|a|=2/2
(M− |a|+ 1) · 1

e−wij +
∑

j ′∈Fa(sY)
e−wij ′

Finally, if a ′ is obtained from a by permuting (i0 → j0) and (i1 → j1), we have

ρ =
e−wi0j1 e−wi1j0

e−wi0j0 e−wi1j1
.

The irreducibility property of the transition kernel Q is obvious, since we can transition
from any assignment a to any other assignment a ′ in a finite number of steps with a non-null
probability by removing all the pairings from a, and then adding all the pairings from a ′.

Model M1

To have the Markov chain converge faster to the expected distribution, a possible optimiza-
tion is to choose the edge permutations more cleverly, as noted in ivi. We regard the assignment
a as a directed bipartite graph Ga where the nodes are the points in each image and the edges
link the points i in the first image and j in the second image, directed from i → j if (i → j)

is not in a, and directed from j → i otherwise. Let C be an oriented cycle in this graph. If
a ′ is the assignment corresponding to the graph Ga where all the directions of the edges on
the cycle have been reversed, we obtain a new assignment of the same cardinality, where the
pairings of a have been permuted. We use this property to define a new model similar to the
previous one except for the permutation of the edges, that is now defined as:

1. choose i0 uniformly in Pa(sX)

2. draw j0 ∈ Pa(sY)r a(i0) from the distribution j0 ∼ e−wi0j0 /
∑

j ′∈Pa(sY)ra(i0)
e
−wi0j

′ ,

3. choose i1 = a−1(j0),

4. iterate to construct the path π = i0 → j0 → i1 → ... until a cycle is formed
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we thus obtain the path π = T +C, where + denotes the concatenation of paths, T is called the
transient path and C is the cycle. We will denote CX = sX ∩C.

If a ′ is obtained from a by permuting the pairings along the cycle C, we have

ρ =
ℓ0(A = a ′)
ℓ0(A = a)

Q(a ′ → a)

Q(a→ a ′)

=
∏

i∈CX

e
−wia ′(i)

e−wia(i)
·
∏

i∈CX

e−wia(i)/
∑

j ′∈Pa ′(sY)ra ′(i) e
−wij ′

e
−wia ′(i)/

∑
j ′∈Pa(sY)ra(i) e

−wij ′
·
∑

t∈Ta(C) P(t)
∑

t∈Ta ′(C) P(t)
︸ ︷︷ ︸

=1

=
∏

i∈CX

∑
j ′∈Pa(sY)ra(i) e

−wij ′

∑
j ′∈Pa ′(sY)ra ′(i) e

−wij ′

where Ta(C) is the set of transient paths in G(a) that end on a point of the cycle C (and contain
only one point in C). Since the pairings not appearing in C are the same in a and a ′, the
transient paths leading to C are the same and have the same probability, the ratio of the sums
over Ta and Ta ′ is equal to one.

Comparison of MCMC models

Table 9 displays the acceptance rates (proportion of accepted transitions) for both transition
models. The transition model M1 exhibits a consistently higher acceptance rate than the tran-
sition model M0, yet this does not necessarily indicates that the MCMC chains will converge
faster. In both cases, the acceptance rates seem reasonable to us.

pR = 0.25 0.5 0.75

ar(M0) = 0.25 0.29 0.16
ar(M1) = 0.28 0.39 0.31

Table 9: Acceptance rates ar for both models M0 and M1 for different values of the parameter pR used in
the generation of the problems and as a parameter for the MCMC algorithms, with N = M = 10

and σ2 = 0.01. The values have been obtained as averages of 50 runs, where each run consists in
50 000 “burned” transitions and the acceptance rate is computed on the next 100 000 transitions.
The acceptance rate is consistently higher for the model M1, but this does not imply that the
model is better suited. Both models have reasonable acceptance rates.

We then study the convergence speed of both models. For a small number of points in
each image it is feasible to compute the exact WRAP coefficients {pp}p (for instance, see equa-
tion 5.4), and it is hence possible to show the decrease of the average error for each model
(see Figure 72). For large number of points, we instead display the decrease in variance of
the coefficient estimation (see Figure 73). In both cases, the MCMC models behave essentially
the same, and marking that the M0 model has a slightly lower computational overhead, we
recommend using the latter.

It is interesting to note that in Dellaert et al., 2003, the authors found that a model similar
to M1 in the case where the number of pairings was fixed greatly improved the performances,
while it has no significant effect when the number of pairings is allowed to change.
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Figure 72: (Small number of points, approximation error) We generated 16 problems with N = M = 7,
pR = 0.5 and σ2 = 0.01, and we ran each MCMC model 10 times on each problem for
109 steps (and 500 000 burned initial steps). For each step, we compute the criterion en =
∑

p|p
n
p − pp|/NM where the {pp}p are the exact coefficients corresponding to equation 5.4,

and the {pnp }p are the approximation obtained at iteration n. The values displayed are the
averages over all problems and all chains for each problem of log10 e

n. There is only a slight
increase in convergence speed when using M1, but this might often be offset by the fact that
M0 is computationally faster, and we would hence rather recommend using M0.
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Figure 73: (Large number of points, decrease in variance) When the number of points is high, it is
no longer feasible to compute the exact solution of WRAP, and to study the convergence
of the MCMC chains, we adopt the following protocol. We generate 20 problems with the
normal generative model with parameters N = M = 20, pR = 0.5 and σ2 = 0.005. We run
10 chains on each problem with each MCMC model for 50 000 000 steps (burning the first
1 000 000 steps) and we record at each step n the value of cn =

∑
p pnp where the {pn}p are

the approximations of the coefficients corresponding to equation 5.4 obtained at step n. For
each MCMC model, we display at each step n the logarithm of the value sn which is the
mean on all the problems of the variance on all the chains of cn. The variance decreases at the
same rate for both models, and therefore again, marking that the computational complexity
of model M0 is slightly advantageous, we recommend using the latter.

5.3 EXPERIMENTS

5.3.1 Performances of classical algorithms

We noted earlier by comparing the results of a very simple greedy local algorithm and a
global one, respectively the Nearest-Neighbor and the Maximum-Likelihood, that the problem
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of the point correspondence without features seems to be either very simple or very complex:
on simple cases, even the simplest algorithm performs almost optimally, while on complex
cases, global algorithms also have very low performances.

Now that we can compute the theoretical limit of point correspondence algorithms using
the WRAP criterion, we can answer the question of whether those algorithms are indeed close
to the optimum: we generate very simple, moderate and difficult assignment problems using
our generative model, where the difficulty is defined in terms of the mean displacement of a
point between the two images, and we plot the WRAP curve as λ varies, as well as the curves
obtained using NN and ML as their own parameter varies (figure 74).

Note that, although we compared WRAP with MAP in the previous section because they
have a similar set of parameters (pR and σ2, and WRAP also has the parameter λ), we will
use ML here because we are interested in the locations that the algorithms can attain in the
recall and precision space, and it will be easier to visualize them for ML because it has only
one parameter, and the attainable locations are thus a curve.

We observe that although NN and ML have comparable performances, and are able to attain
the point of maximum recall – and in this case attain it with the maximal possible precision –
they lie well below the optimal curve, and more importantly, they are not able to make a
compromise between the recall and the precision, as their curves are essentially flat. In other
words, it is not possible to tune the parameters to increase the precision at the expense of the
recall – although this might be a desirable feature in some applications, and we see that it is
theoretically possible, as attested by the optimal WRAP curve.
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Figure 74: (Performance of classical algorithms) Mean precision and recall of the ML (brown) and NN
(green) algorithms as their parameters σ2ML and cthre vary, compared to the WRAP (blue)
optimum on data generated by the generative model with parameters N = M = 20, pR =

0.8 and various values of σ2. The values are averages of 500 runs, and the circled point
corresponds to the WRAP performances for λ = 1. No matter the complexity of the problem
as measured by σ2, ML and NN have similar performances, and are able to attain the maximal
possible recall – yet they lie well below the optimal curve and cannot make a compromise to
improve the precision at the expense of the the recall, since their curves are essentially flat.

In this sense, the main weakness of most approaches to the point correspondence problem is
that they make decisions based on whether a pairing A→ B is very likely or belong to a very
likely assignment, but they do not take into account the existence of ambiguities – it might for
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instance be the case that the pairing A → C is also very likely, in which case WRAP would
avoid such a risky detection, because it would lower the criterion r+ λp.

Figure 75 shows an example of ambiguity that is detected by WRAP: when b occupies
the position marked by b ′, WRAP does not know how to decide between the fact that b

is a spurious detection, or that it is indeed one of the point A or B that has moved away
exceptionally far. Thus, WRAP decides to leave the point out of the assignment, but still
chooses to make a detection – and since the probability that a comes from A is only slightly
higher than the probability that it comes from B, but the probability that b comes from B is
much lower than that it comes from A, WRAP assumes that it is less risky to pair B to a.

A B
a

b′ A B
a

b′

{A→ a}
{B → a}
{A→ a,B → b}
{A→ b, B → a}

WRAP MAP difference

Figure 75: (Assignment ambiguity) WRAP is able to detect ambiguities in an assignment and thus make
recall and precision compromises: for instance, when b occupies the position marked by b ′,
one would expect WRAP to pair A → a, but it pairs B → a instead, even though this pairing
is less likely in the generative model, because WRAP does not know whether b is a spurious
point or whether it is actually the point A that was displaced exceptionally far, and thus
decides that it is less risky to assume that a comes from B. Such a strategy results in a greater
expectation for the weighted recall and precision measure.

This is even more obvious when the input data is drawn in such a way as to force ambiguities:
for instance, we draw some of the points uniformly in a small disc in the center of the image,
and the rest of the points uniformly outside this disc – and use the standard generative model
to displace the points and generate the second image (see Figure 76). Figure 77 shows the
results of NN and ML on these data, and they are still farther from the optimum. We also
mark that the point corresponding to λ = 1 on the WRAP curve (the point circled in red) has
decreased in recall if we compare it to the case with less ambiguities. The WRAP approach
makes fewer detections when there are ambiguities, resulting in a much higher precision.

5.3.2 Modified nearest neighbor algorithm

This prompts us to see whether a very simple modification of the Nearest-Neighbor algo-
rithm taking into account assignment ambiguities would fare as well as the WRAP optimal
algorithm.

We propose the NNr algorithm that uses a measure of the credibility, for a pairing xi → yj,
that either xi or yj has another credible alternative pairing:

t(i, j) = min

(

cij

minj ′ 6=j cij ′
,

cij

mini ′ 6=i ci ′j

)

> tr.
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original WRAP ML

Figure 76: We display the results of the WRAP and ML algorithms when the generated assignment has
been obtained using the generative model with parameters N = M = 20, pR = 0.8 and
σ2 = 0.05 (first row), and when it has been obtained using the same generative model except
that 10 of the points detected in the first image have been drawn uniformly in a disc of radius
0.2 and the 10 others have been drawn uniformly outside of this disc (second row). The
left figure is the generated (correct) assignment, the center figure is the result of the WRAP
algorithm with parameters pR, σ2 and λ = 1, and the right figure is the result of the maximum-
likelihood algorithm with parameter σ2. The WRAP algorithm behaves in a manner similar
to ML when the assignment is easy to detect (the points are far apart as in the first row), but
does not make pairing decisions when there are ambiguities (as in the second row), hence
making fewer false detections.

(note that changing the min of the two values into a max would not impact our results very
much).

The NNr algorithm has two parameters, the usual threshold cthre on the cost of allowed
pairings, as well as a risk threshold tr on the measure t(i, j).

More precisely, we use the standard Nearest Neighbor algorithm that sorts the pairings
xi → yj by increasing cost cij, considers them in order, and adds each pairing xi → yj in turn
to the assignment if neither xi nor yj appear in a previously added pairing, if ‖xi → yj‖ 6 cthre

and if t(i, j) > tr.

This algorithm indeed makes it possible to trade precision for recall, yet it is still far from
the optimal WRAP curve (see Figure 78). It is however a very simple algorithm, and hopefully
some more complex criterion would lead to performances on par with WRAP, with a much
lower computational cost.

Figure 79 shows a situation where the NNr algorithm recognizes a possible assignment
ambiguity and decides to not make a detection in order to improve the expected precision.
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Figure 77: (Performance of classical algorithms in presence of ambiguities) Mean precision and re-
call of the ML (brown) and NN (green) algorithms as their parameters σ2ML and cthre vary,
compared to the WRAP (blue) optimum on data generated by the generative model with pa-
rameters N = M = 20, pR = 0.8 and various values of σ2, where 10 of the points detected in
the first image have been drawn uniformly in a disc of radius 0.2, and the 10 others have been
drawn uniformly outside this disc. The values are averages of 500 runs, and the circled point
corresponds to the WRAP performances for λ = 1. Again, ML and NN are not able to make a
compromise between the recall and the precision, and they lie far below the optimum WRAP
curve, hinting at the fact that it is theoretically possible to greatly improve the precision by
lowering the recall.

5.3.3 WRAP as an algorithm

The optimality of WRAP and the fact that it is significantly superior to the classical algo-
rithms makes it very interesting as an algorithm by itself, rather than simply an optimality
criterion.

In this case however, the values of pR, σ2 and λ all become parameters, as there is no reason
to know in advance what they should be. We thus need to study the feasibility of selecting
the WRAP parameters in such a way that the resulting algorithm gives results superior to the
classical approaches.

The parameter λ controls the weight of the precision with respect to the recall. Figure 80
displays the performances of the WRAP algorithm on a sample problem for different values
of λ. The value λ = 1 seems to give reasonable results, and we will use this value from now on
as a reference.

In figures 81 and 82 we compare the performances of WRAP (λ = 1) and ML as algorithms
when feeding them the exact parameters pR and σ2 that have been used to generate the data,
respectively when the input data comes from the standard generative model, and the one
modified by drawing points uniformly in a disc to increase the ambiguities.

We note that in this case, using the WRAP algorithm does not improve the results much, but
there is a systematic bias for a greater recall for ML and a greater precision for WRAP, which
is clearly perceptible in Figure 82

The WRAP criterion is thus probably more a theoretical tool to study algorithms than it is
a practical algorithm to solve the point correspondence problem, although it might be useful
when tackling data containing many ambiguities, when it is important that only few false
detections be made.
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Figure 78: (Performance of the modified Nearest-Neighbor algorithm in presence of ambiguities)
Mean precision and recall of the NN (green) as its parameter cthre varies, and NNr (pur-
ple) algorithms as its parameter tr vary and its parameter cthre = 0.4, compared to the WRAP
(blue) optimum on data generated by the generative model with parameters N = M = 20,
pR = 0.8 and various values of σ2, where 10 of the points in the first image have been drawn
uniformly in a disc of radius 0.2, and the 10 others have been drawn uniformly outside this
disc. The values are averages of 500 runs, and the circled point corresponds to the WRAP
performances for λ = 1. Using the NNr algorithm enables to make a compromise between the
recall and the precision in a limited manner, but still does not come very close to the optimal
WRAP performances.

5.4 CONCLUSION

When the generative model is known, the WRAP optimality criterion enables us to show
that ML and MAP are already almost optimal in that when we choose their parameter to reach
the point of maximal recall, the point reached is also that of maximal precision (see figures 74
and 77).

WRAP as an optimality curve enables us to assess the performances of the algorithms and
recognize that one of the weakness of the classical algorithms is that they are ot able to trade
precision for recall (they essentially have flat curves in the recall/precision space).

In turn, this has prompted us to study the behavior of the WRAP criterion in a variety of
situations, and its ability to handle ambiguities in order to maximize the weighted recall and
precision criterion.

We have then derived a very simple algorithm based on the Nearest Neighbor that is able to
achieve a good recall/precision compromise using a simple ambiguity detection measure.
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Figure 79: (Assignment ambiguities) Assignment maps for NN where cthre = 0.28 and NNr where
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NN to NNr make its behavior much more complex, and might enable a compromise between
precision and recall. For instance, in some situation where there is an assignment ambiguity,
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Figure 80: Recall and precision of the WRAP algorithms on data generated using the normal generative
model with parameters pR = 0.8 and σ2 = 0.005, and a number of points varying from 10 to
30. The points are averages of 500 repetitions. The WRAP algorithm has exact the parameters
pR and σ2 used to generate the data, and a variety of values for parameter λ. The results have
approximately converged for λ = 0.1 and decreasing the value would not change the curve.
The results have converged in precision for λ = 10, and increasing λ would only decrease
the recall. From these observations, we choose λ = 1 as a reasonable value for the WRAP
parameter.
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Figure 81: (WRAP as an algorithm) Recall and precision of the ML and WRAP algorithms on data gen-
erated using the normal generative model with default parameters N = M = 20, pR = 0.8 and
σ2 = 0.005, but those are varied in each experiment. The first experiment varies the number
of points N from 10 to 30 to increase the density of the points, the second experiment varies
the value of σ2 from 0.001 to 0.05 to increase the amplitude of the points displacements and
the third experiment varies the value of pR from 0.8 to 0.2 to increase the ratio of noise points.
The ML and the WRAP algorithms have exact parameters (the exact σ2 used to generate the
data for ML and WRAP, the exact pR for WRAP), and WRAP is used with parameter λ = 1.
On this data set, WRAP as an algorithm with the parameter λ = 1 behaves essentially simi-
larly to ML. WRAP thus seems to be more useful as a theoretical optimality criterion to study
algorithms behaviors than as a practical algorithm.
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Figure 82: Recall and precision of the ML and WRAP algorithms on data generated using the normal
generative model with default parameters N = M = 20, pR = 0.8 and σ2 = 0.005, but those
are varied in each experiment. In the first image, half of the points are drawn uniformly
inside a disc of radius 0.2, and the other half is drawn uniformly outside this disc. The
algorithm parameters and their variations are the same as those in Figure 81 In the presence
of ambiguities, WRAP as an algorithm, with parameter λ = 1 seems to make a compromise in
order to improve the precision, while lowering the recall.
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T
he point correspondence algorithms presented in the previous chapter that handle
spurious points and occlusions require some arguably difficult to set parameters: a
threshold cthre on the costs of the pairings for the Nearest Neighbor, an expected assign-

ment cardinality k for the k-cardinality assignment problem, or the parameters of the assumed
generative model for the data, like pR and σ2 for the MAP or WRAP algorithms. Trying a
wide range of candidate parameters to extract an assignment, and manually picking the best
solution is often a time-consuming process, and many users would rather use a push-button
solution even if the results were slightly sub-optimal.

For the trajectory tracking problem, the NFA framework presented in Chapter 3 allowed
us to define an algorithm, ASTRE, with a simple to set parameter returning high quality
trajectories with few false detections ; the NFA criterion could also be used on its own to
filter the results of any other detection algorithm, and might help us circumvent the parameter
selection problem by automatically discarding poor-quality solutions.
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Likewise, in the first section, we derive three a-contrario criteria to quantify the quality of
an assignment and their associated extraction algorithms. We explore the performance of the
algorithms and the use of the criteria as filters for the parameter selection problem in the
second section. In the third section, we describe an application of the point correspondence
problem to trajectory tracking, and use the resulting algorithm to track aggregates in bacteria.
We also discuss how the NFA criteria can be adapted when the problem data is quantized.

6.1 MEANINGFUL PAIRINGS AND MEANINGFUL ASSIGNMENTS

6.1.1 Meaningful pairings

We remind the reader of the main difference between the a-contrario approach and the
classical detection algorithms such as those presented in the previous chapter: the latter use
a probabilistic model describing how the data has been generated, while the former defines a
naive model describing the background noise – that is, the structures we do not want to detect.
An assignment is then deemed meaningful and is detected when it “looks too good” to have
likely been generated by this naive model. The power of this approach is that it enables us
to define the structure we wish to detect “en creux” by defining a very simple model of what
is not a structure rather than having to define an often complex generative model sporting
many parameters.

More precisely, recall from Section 3.2.1 that the definition of an NFA criterion requires
two ingredients: the naive model representing the background noise, and a fitness function
indicating what property of the structures of interest we should measure to distinguish them
from noise.

As in the previous chapter, we assume that the domain of the images is the square Ω =

[0, 1]× [0, 1] (although our method extends smoothly to images of any shape and size). The
natural naive model is that the detections in the images are uniformly drawn in Ω, that is, we
detect SX = {X1, ...,XN} and SY = {Y1, ...,YM}, respectively the points in the first and second
images.

The first idea to detect assignments in the images is to mimic trajectory detection and se-
quentially extract individual correspondences between pairs of points in each image that are
close enough from each other. Thus, the structures of interest are the N×M pairings (i, j) – or,
equivalently, (Xi, Yj) – between the points in each image.

The last ingredient of the a-contrario model is the measurement function. In the trajectory
detection model, we assumed that trajectories were smooth, in the present case we will assume
that the points have been only slightly displaced between both images, and hence a natural
measure of the fitness of a pairing between two points is their distance

d(x, y) = ‖y − x‖.
If (i, j) is a pairing, Proposition 1 tells us that we can build a NFA by an appropriate weight-

ing of the probability P(d(Xi, Yj) 6 δ); in the present case, it obviously makes no sense to
choose different weights for different pairings as the problem is completely symmetrical – and
we therefore weigh the pairings uniformly. We now compute the probability bound and define
the NFA criterion.

Proposition 10 (Per pairing probability bound). Let (i, j) be a pairing, then the following bound
holds:

P(d(Xi, Yj) 6 δ) 6 πδ2 (6.1)
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Proof — The area of B̄(Xi, δ)∩Ω is bounded from above by πδ2. �

Proposition 11 (Per pairing NFA). The function NFAp defined by

NFAp(δ) = NM · πδ2 (6.2)

is a Number of False Alarms for the measurement d.

Definition 15 (Meaningful pairing). We say that the realization (xi, yj) of a pairing (Xi, Yj) is
ε-meaningful if NFAp(d(xi, yj)) 6 ε, and that it is meaningful if it is 1-meaningful.

The extraction of a complete assignment is then done greedily – as in the ASTRE trajectory
extraction case – by choosing a NFA threshold ε, and iteratively detecting the most meaningful
pairing in the data (among pairings whose end points do not belong to a previously extracted
pairing) until all ε-meaningful pairings have been extracted.

The above algorithm is very simple and akin to a nearest-neighbor extraction – it only re-
quires to sort the pairings, and runs in O(NM log(NM)).

6.1.2 Meaningful assignments

The greedy pairings extraction suffers from the same weakness as the nearest-neighbor al-
gorithm or the ASTRE trajectory extraction, namely, that it considers pairings individually in
the order of their NFA rather than searching for a globally optimal assignment. Most of the
correspondence algorithms (and WRAP is no exception) try to extract such a global optimum
by considering many pairings at once. Indeed, one may presume that knowing not only that
the distances between two points is small, but also that this is simultaneously the case for many
points, provides us with more information and enables us to detect more pairings, or pairings
between points that are further apart, hence increasing the recall.

Additionally, it may be the case that assignments minimizing a global criterion are intrin-
sically better than greedily extracted ones, because they resolve some ambiguities, and will
hence improve both the recall and the precision. This is what we propose to explore now, by
defining a NFA criterion on global assignments rather than individual pairings.

We keep the same naive model and notations as in the previous section, but the structures
that we now wish to detect are the assignments between the points of SX and SY (we recall the
definition 7 of an assignment):

Definition 16 (Assignment). An assignment a of size |a| = k between SX and SY is a set of k pairs
a = {i1 → j1, ..., ik → jk}, where for any index p, 1 6 ip 6 N and 1 6 jp 6M, and for any index q

such that p 6= q, we have ip 6= iq and jp 6= jq. We denote by A the set of all assignments, and by Ak

the set of assignments of size k.

There is a natural equivalence between an assignment a ∈ A and the set of pairs Xa =

{Xi1 → Yj1 , ...,Xik → Yjk } – and we shall thus abusively call such sets assignments. A realiza-
tion a of the random variable Xa will be called a realization of the assignment a. The realizations
of Xa in the naive model are hence sets of randomly drawn points and they will generally not
look like what we would want to call an assignment.

The measurement function must now be defined globally on an assignment. There are at
least two natural measures for the fitness of an assignment: the sum of the distances, and the
maximal distance between its paired points.
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Definition 17 (Sum displacement and maximal displacement). Let z = {x1 → y1, ..., xk → yk}

be a set of k pairs of points in the image domain, we define the sum displacement as

csum(z) =
∑

i

‖xi − yi‖,

and the maximal displacement as

cmax(z) = max
i
‖xi − yi‖

If a is an assignment, Proposition 1 tells us that we can build a NFA by an appropriate
weighting of the probabilities P(cmax(Xa) 6 δ) or P(csum(Xa) 6 δ), that we now compute.

Proposition 12 (Max displacement probability bound). Let a be an assignment of size k, and δ a
positive real number, we have

P(cmax(Xa) 6 δ) 6 (π · δ2)k (6.3)

Proof — Assume that a = {i1 → j1, ..., ik → jk}, and call B̄(x, r) the closed disc with center x

and radius r.

P(cmax(Xa) 6 δ) =

k∏

p=1

P
(

Yjp ∈ B̄(Xip , δ)
)

6 (π · δ2)k

because the area of B̄(x, δ)∩Ω is bounded from above by π · δ2 for all x. �

Proposition 13 (Sum displacement probability bound). Let a be an assignment of size k, and δ a
positive real number, we have

P(csum(Xa) 6 δ) 6 (2π · δ2)k/(2k)! (6.4)

Proof — Keeping the notation of the proof of proposition 12, we will show more generally that
for α > 1, and {X1, ...,Xk}, {Y1, ...,Yk} uniform iid. in [0, 1]× [0, 1],

P (‖Y1 −X1‖α + ... + ‖Yk −Xk‖α 6 δ) 6 Ck · (πδ2/α)k

where Ck = (2/α)k−1
∏k−1

i=1 β (2/α, (2/α)i+ 1) and β(x,y) =
∫1
0 tx−1(1 − t)y−1. Defining

Zp = ‖Yp −Xp‖α and Sk−1 = Z1 + ... +Zk−1, we note that

P (‖Yp −Xp‖α 6 δ) = P

(

‖Yp −Xp‖ 6 δ1/α
)

6 πδ2/α

We will denote f(δ) = P(Zp 6 δ) and g(δ) = πδ2/α. Hence, we have f(δ) 6 g(δ). The
function g defines a measure µ having density

∏
i g

′(Zi). We first prove that P(Z1 + ...+Zk 6

δ) 6 µ(Z1 + ... + Zk 6 δ) =
∫

1z1+...+zk6δg
′(z1)...g ′(zk)dz1...dzk. Let ḡ = min(g, 1), let

U1, ...,Uk be k independent uniform variables on [0, 1], let X1, ...,Xk = f−1(U1), ..., f−1(Uk)

and Y1, ...,Yk = ḡ−1(U1), ..., ḡ−1(Uk), thus Xp > Yp for all p, and

P(X1 + ... +Xk 6 δ) 6 P(Y1 + ... + Yk 6 δ)

=

∫

1y1+...+yk6δḡ
′(y1)...ḡ

′(yk)dy1...dyk

6

∫

1y1+...+yk6δg
′(y1)...g

′(yk)dy1...dyk

= µ(Y1 + ... + Yk 6 δ)
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We have µ(Y1 6 δ) 6 πδ2/α, and assuming µ(Sk−1 6 δ) 6 Ck−1(πδ
2/α)k−1, we have

∀δ > 0, µ(Sk−1 +Zk 6 δ) 6

∫δ

0
g ′(t)µ(Sk−1 6 δ− t)dt

6

∫δ

0

2

α
πt

2
α−1Ck−1

(

π(δ− t)
2
α

)k−1
dt

6
2

α
Ck−1(πδ

2
α )k

∫δ

0
(
t

δ
)
2
α−1(1−

t

δ
)
2
α (k−1)dt

δ

6
2

α
Ck−1(πδ

2
α )k

∫1

0
u

2
α−1(1− u)

2
α (k−1)du

6
2

α
·β
(

2

α
,
2

α
(k− 1) + 1

)

·Ck−1 · (πδ
2
α )k

and we deduce the sought result by induction:

P (‖Y1 −X1‖α + ... + ‖Yk −Xk‖α 6 δ) 6 Ck · (πδ2/α)k.

Using the fact that for integers p and q greater than 1, β(p,q) = (p− 1)!(q− 1)!/(p+ q− 1)!,
we easily show that when α = 1 we obtain Ck = 2k/(2k)!, and we derive the announced
probability bound (6.4)

P





k∑

p=1

‖Yp −Xp‖ 6 δ



 6
(2π · δ2)k

(2k)!
(6.5)

Similarly when α = 2, we obtain Ck = 1/k! and we can hence also derive that if we observed
the squared distances rather than the distances, the probability would become

P





k∑

p=1

‖Yp −Xp‖2 6 δ



 6
(π · δ)k

k!
(6.6)

This will be used later to compare the NFA on distances with the NFA on squared distances,
since the fact that our generative model uses a Gaussian displacement suggests that we should
measure the global error by summing up the squared distances. �

To weigh the structures, we chose to group the assignments together according to their
size, and divide the set of assignments into min(N,M) groups A = A1 ∪ ... ∪AN∧M. An
assignment a belonging to group Ak has weight wa = min(N,M) · |Ak|, where the cardinality

of the set Ak of all assignments of size k is |Ak| =
(

N
k

)

·
(

M
k

)

· k!.

Proposition 14 (Maximal displacement NFA). The family of functions (NFAm
a )a∈A defined by

∀k, ∀a ∈ Ak, NFAm
a (δ) = min(N,M) ·

(

N

k

)(

M

k

)

k! · (π · δ2)k (6.7)

is a Number of False Alarms for the measurement cmax.

Proposition 15 (Sum displacement NFA). The family of functions (NFAs
a)a∈A defined by

∀k, ∀a ∈ Ak, NFAs
a(δ) = min(N,M) ·

(

N

k

)(

M

k

)

k! · (2π · δ2)k/(2k)! (6.8)

is a Number of False Alarms for the measurement csum.
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Definition 18 (Meaningful assignment). We say that the realization z of an assignment Xa is
ε-meaningful for the sum (resp. max) displacement criterion if

NFAs
a(csum(z)) 6 ε (resp. NFAm

a (cmax(z)) 6 ε),

and that it is meaningful if it is 1-meaningful (see Figure 83).

Figure 83: The left figure depicts a meaningful assignment for the sum criterion (log NFAs = −7.3).
The points of the first image (yellow squares) are linked to their corresponding points in the
second image (green circles). The minimal number of points to add to each image such that the
assignment is no longer meaningful is computed to be 6 (then, log10 NFAs = 0.7). The second
figure depicts the same points, with 6 randomly added points to visualize a corresponding
realization. The assignment shown in the first figure would not be meaningful in the second
figure, but this does not mean that no assignment would be detected in this figure.

6.1.3 Most meaningful assignment extraction,
largest meaningful assignment extraction

The reader should make sure to mark the fundamental difference between the two ap-
proaches described above. The greedy meaningful pairings detection works like the trajec-
tories detection by iteratively extracting as many meaningful pairings as possible, while the
NFA threshold ensures that the number of false alarms is controlled. Raising the threshold
would hence increase the recall and lower the precision. On the other hand, it often makes
no sense to iteratively extract meaningful assignments, as when two assignments are compati-
ble and meaningful, their union is generally more meaningful than each of them – this is not
necessarily the case, but on experiments, we found that it almost always is the case.

We can however choose to either extract the most meaningful assignment, or the largest mean-
ingful assignment. In the former case, raising the NFA threshold will usually have no effect,
since the most meaningful assignment in the data might well already be below the threshold,
while in the latter case, raising the NFA threshold will allow us to detect larger assignments,
thus increasing the recall and lowering the precision. We now describe algorithms for these
two extraction processes.

Let sX = {xi}16i6N and sY = {yj}16j6M be the points detected respectively in the first and
second images. We would like to detect (ε−)meaningful assignments in this data for the max-
imal (resp. sum) displacement criterion, that is, detect assignments a = {i1 → j1, ..., ik → jk}
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such that za = {xi1 → yj1 , ..., xik → yjk } verifies NFAm
a (cmax(za)) 6 ε (resp. NFAs

a(csum(za) 6
ε).

The computation of a most meaningful assignment or a largest meaningful assignment for
the maximal displacement NFA amounts to compute, for all 1 6 k 6 min(N,M), the solution
(or more precisely, a solution) am

k to the k-cardinality bottleneck assignment problem

am
k ∈ arg min

a∈Ak

cmax(zA) = arg min
a∈Ak

max
i→j∈a

‖yj − xi‖.

The most meaningful assignment âm realizes

âm ∈ arg min
a∈{am

k }16k6N∧M

NFAm
a (cmax(za)),

and the largest meaningful assignment is âm,ℓ = am
k̂

, where

k̂ = max
{

k | NFAm
am
k
(cmax(zam

k
)) 6 ε

}

.

Similarly, the computation of a most meaningful assignment or a largest meaningful assign-
ment for the sum displacement NFA amounts to compute, for all 1 6 k 6 min(N,M), the
solution as

k to the k-cardinality linear assignment problem

as
k ∈ arg min

a∈Ak

csum(zA) = arg min
a∈Ak

∑

i→j∈a

‖yj − xi‖

and detect the most meaningful assignment âs, realizing

âs ∈ arg min
a∈{ak}16k6N∧M

NFAs
a(csum(za))

or the largest meaningful assignment âs,ℓ = as
k̂

, where

k̂ = max
{

k | NFAs
as
k
(csum(zas

k
)) 6 ε

}

.

Solving the k-cardinality bottleneck or linear assignment problems can be done efficiently
using the classical algorithms described in appendix A, leading to algorithms of computational
complexity O(N5) for the maximal displacement NFA, and O(N4) for the sum displacement
NFA (assuming N = M).

Remark 3 (Most meaningful assignment for the maximal displacement NFA). Generally, there
will be more than one most meaningful assignment (or largest meaningful assignment) for the maximal
displacement NFA: since the value of the NFA depends only on the size of the assignment and on the
value of the largest pairing, we may switch some other pairings without changing both the size and
maximal cost of the assignment.

In the experiments of Section 6.2 below, we usually directly choose the one returned by the k-
cardinality bottleneck assignment algorithm, but we could choose to extract the assignment having
the minimal sum-cost among all the most meaningful assignments for the max-cost, for instance.

6.1.4 Asymptotic behaviors

A strength of the a-contrario framework is that it is possible to study the behavior of the
algorithms by studying the NFA criteria equations (6.2), (6.7) and (6.8), and deduce which
algorithm is better suited for each particular type of data.
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Maximal distance between points for NFAp (pairings) and NFAm (global assignments)

We want to understand in which case one should use the NFAp greedy pairings extraction,
or the criterion NFAm on the global assignment (for the maximum distance cost).

We observe two images containing N points, and we assume that all of them are paired
between the images. For ε > 0, we denote δ

p
c the critical distance such that NFAp(δ

p
c ) = ε, and

similarly δmc the critical distance such that NFAm(δmc ) = ε, that is

logπδpc
2

= log ε− 2 logN, and (6.9)

logπδmc
2

=
1

N

(

log ε− logN− logN!
)

. (6.10)

From Stirling’s formula, one easily derives that

log
δ
p
c

δmc
=

1

2
log

ε

eN
+

3

4N
logN+ O

N→+∞
(1/N),

and therefore for large values of N, δpc is greater than δmc if and only if ε > eN, which seems
to confirm our intuition that extracting assignments globally using NFAm will enable us to
detect points further apart, since for reasonable values of ε, the critical distance of NFAp is
greater than that of NFAm only when the number of points N is very small (see Figure 84).
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Figure 84: Plot of log δ
p
c/δ

m
c for various values of the maximal NFA ε and number of points N. We

should use NFAp when the curve is above the dotted line, and NFAm when it is below.
We observe that δmc gets quickly larger than δ

p
c , reinforcing the intuition that working with

assignments globally rather than with individual pairings enables us to detect pairings that
are farther apart.

Maximal distance between points for NFAm and NFAs

We now study in what cases we should rather use NFAs than NFAm. We assume that the
two images contain N detected points, k = ηN of which are paired between the images, the
other being noise points. We denote δc the critical distance such that NFAm

a (δc) = 1, that is

logπδ2c = −
1

ηN

(

logN+ 2 log

(

N

ηN

)

+ log(ηN)!

)

(6.11)

Using Stirling’s formula again, one derives that

log

(

N

ηN

)

= −Nh(η) −
1

2
logN+ O

N→+∞
(1)
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where h(η) = η logη+ (1− η) log(1− η). Hence, as N increases,

πδ2c = O
N→+∞

(1/N).

To compare this with the detection threshold for NFAs, we assume that all the pairs in
the assignment have the same cost, that is, the cost of the assignment is kδc. Using similar
computations, we also derive that πδ2c = O(1/N) as N increases if the assignment is meaningful.
We observe however that NFAm is in practice much better in this particular case (where all
the points in the assignment have been displaced at a distance of exactly δc) than NFAs (see
Figure 85).
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Figure 85: Plot of the maximal value of πδ2c such that an assignment of size k = ηN is meaningful for
various values of η, when N varies from 10 to 100. When N grows large, πδ2c decreases
like 1/N. The left figure represents the critical value πδ2c for the max NFA, the right figure
represents πδ2c for the sum NFA, when we assume that every pairing in the assignment has
the maximal cost δc, and thus the sum assignment has total cost kδc. We see that in this
particular case, NFAm allows for a greater distance between the points.

Relation between NFAm and NFAs

When all the pairings are maximally separated, we should thus rather use NFAm, but in
practice, this is rarely the case. We now study what happens in the more general case where
the pairings all have different costs.

We observe two images, each containing N points, and k of them belonging to the underlying
assignment a. We assume that the maximal and the sum displacements of a are respectively
δm and δs (and therefore δs 6 kδm), and we study the ratio NFAm

a (δm)/NFAs
a(δs) in the case

where δs = γ · kδm, with γ ∈ [0, 1].

Proposition 16. When k is large, NFAs
a(δs) 6 NFAm

a (δm) if and only if γ <
√
2/e ≈ 0.52 (see

Figure 86).

Proof — Since NFAm
a (δm)/NFAs

a(δs) = (2k)!/(2γ2k2)k (not depending on N or δm), we easily
derive from Stirling’s formula again that

log

(

NFAm
a (δm)

NFAs
a(δs)

)

= k
(

log(2/γ2) − 2 log e
)

+ O
k→+∞

(log k),

which implies the sought result. �
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Figure 86: Plot of the ratio 1
k log

(

NFAm

a (δm)
NFAs

a(δs)

)

when k varies from 10 to 200, and δs = γ · kδm for various

values of the average cost γ of a pairing relative to the maximal cost of a pairing. The ratio
does not depend on the particular value of δm, and tends to its limit value log(2/γ2) − 2 log e

(dashed lines) when k increases. When γ 6 0.52, the curve is above 0 and thus the value of
NFAs is smaller (that is, NFAs enables more detections) than NFAm.

We have shown that theoretically, when γ <
√
2/e, one should rather use NFAs than NFAm,

but what are the expected values of γ in practice? Let us assume that we have k points in the
first image being displaced according to a certain probability distribution in the second image,

that is, δm = max16i6k‖Ni‖ and δs =
∑k

i=1‖Ni‖ where the {Ni}16i6k are the random
variables corresponding to the displacement of each point.

We have experimentally computed the expectation of γ = δs/kδm for a range of values of

k and a variety of distributions, as well as the expectation of the ratio 1
k log

(

NFAm(δm)

NFAs(δs)

)

(see

Figure 87), leading us to a choice of a particular algorithm for each displacement distribution:
we observe that NFAs is better suited for Gaussian or Laplace distributions, whereas NFAm

is superior for uniform distributions. This is verified by running both algorithms on real data
generated by these displacement models and computing the experimental average recall and
precision, although the actual difference in performance is rather small (see Table 10).

rm rs pm ps dm ds

Gaussian 0.49 0.57 0.64 0.64 80% 68%
Laplace 0.52 0.62 0.74 0.73 91% 84%
uniform 0.49 0.49 0.57 0.55 69% 50%

Table 10: Recall and precision obtained with the NFAm and NFAs algorithms for various models of
the point displacement. The parameters for the generative model are pR = 0.8 and N =

M = 10, and the parameter for the distributions is chosen such that the displacement on both
coordinates has mean 0 and variance σ2 = 0.01. The results are averages of 10 000 repetitions,
and only problems were a meaningful assignment has been detected are taken into account (the
detection ratios dm and ds are shown as a reference). The difference in recall and precision
between the models is small, but coherent with our predictions. We observe that NFAm has
higher detection ratios than NFAs on all models.
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Figure 87: Numerical approximation of E[γ] = E[δs/kδm] (left) and E

[

1
k log

(

NFAm

k (δm)
NFAs

k(δs)

)]

(right) as k

varies from 1 to 50 where δs =
∑

i‖Ni‖ and δm = maxi‖Ni‖, for various distributions of the
variables {Ni}16i6k (the Ni are either drawn uniformly in a disc centered on the origin, or
from a centered Gaussian or Laplace distribution on each coordinate, the exact parameters of
those distributions not being relevant as we study the normalized ratio δs/δm). The values
displayed are averages of 20 000 draws of the Ni. For a large k, if γ 6

√
2/e, we know

that NFAs 6 NFAm (left figure). However, in practice, even for small k, we observe that
NFAs 6 NFAm for the Gaussian and Laplace distributions, while NFAm seems to be better
suited in the case of a uniform distribution (right figure).

6.2 EXPERIMENTS

6.2.1 Most meaningful assignment and largest meaningful assignment

As we discussed in Section 6.1.3, when using the NFA criteria on complete assignments
(NFAm and NFAs) we only make one detection – and we may either extract the most mean-
ingful assignment or the largest meaningful assignment. When does it make sense to use one
or the other?

Obviously, there will be a trade-off between the recall and the precision: detecting the most
meaningful assignment will ensure a higher precision, while detecting the largest meaningful
assignment will increase the recall. To quantify these behaviors and confirm our intuition, we
show the mean recall and precision for each algorithm on data generated using the generative
model of section 5.1.3 with pR = 0.5 and N = M = 10, for various values of σ2 (see Figure 88
and table 11).

We observe that for average or large displacement variances – that is, complex problems –
one should rather extract largest meaningful assignments, as the precision is equivalent and
the recall slightly higher. For small displacement variances, on should choose the appropriate
extraction method depending on whether a high recall or a high precision is more important.

6.2.2 Choice of the NFA parameter

We often say that the NFA methods are parameterless, yet we have to choose the maximal
allowed value ε of the NFA to know when to stop extracting assignments in order to avoid
false detections. For many NFA algorithms, the value ε = 1 is, if not the best, at least a natural
choice – and they thus become essentially parameterless. To quantify the role of ε in the case
of assignment extraction, we observe the behavior of the recall and precision as we vary it for
each NFA criterion (see Figure 89).
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σ2 = 0.001 σ2 = 0.01 σ2 = 0.05

Figure 88: Illustration of the assignments obtained using the generative model of section 5.1.3 with pR =

0.5 and N = M = 10, for various values of the displacement variance σ2, which measures the
complexity of the problem. We here show assignments having exactly 5 points for illustration
purposes, but the exact percentage of points in the assignment is random (with mean pR).

NFAm rm rℓ pm pℓ d

σ2 = 0.001 0.82 0.89 0.84 0.75 97%
σ2 = 0.01 0.39 0.45 0.5 0.5 50%
σ2 = 0.05 0.13 0.14 0.22 0.22 26%

NFAs rm rℓ pm pℓ d

σ2 = 0.001 0.9 0.9 0.82 0.62 95%
σ2 = 0.01 0.4 0.47 0.5 0.48 39%
σ2 = 0.05 0.1 0.14 0.21 0.22 17%

Table 11: The recall and precision obtained using the NFAm and NFAs algorithms when extracting the
most meaningful assignment (rm) or the largest meaningful assignment (rℓ). These numbers
are the averages computed on instances where a meaningful assignment has been detected
(as a reference, we show the percentage d of the 1000 problems where the algorithms have
detected a meaningful assignment). Extracting the largest meaningful assignment generally
results in a higher recall and a lower precision. When the displacement variance is average
or high, the largest meaningful assignment exhibits a larger precision for a comparable recall.
When the displacement variance is low, the table suggests that extracting the most meaningful
assignment for NFAs is preferable.

As a general rule in NFA methods where several structures are detected in an image, in-
creasing the value of ε increases the number of detections and thus the recall, and decreasing
the value of ε reduces the number of detections and thus also the number of false detections.
This is what we observe when extracting individual pairings with NFAp (note that when ε is
really small, the number of detections is very small and therefore the precision is not reliable,
this is why the curves of Figure 89 drop for small values of ε). Indeed, in this case, ε is really
the parameter of the underlying algorithm – essentially a nearest-neighbor with a threshold
on the maximal distance for the pairings.

However, when we detect complete assignments using NFAm, increasing the NFA threshold
will usually lower both the precision and the recall. In this case indeed, increasing the NFA
threshold no longer corresponds to simply increasing the number of pairings in the assignment,
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Figure 89: (Effect of the parameter ε on NFAp and NFAm.) We display the mean recall and precision
of NFAp and NFAm (both when when extracting the most meaningful and the largest mean-
ingful assignment) as the ε parameter varies from 10−5 (marked by a gray dot on the graphs)
to 1010 ; the special value ε = 1 is indicated by a red circle. The shown values have been ob-
tained from 10 000 runs on data generated using the generative model of Section 5.1.3, where
pR = 0.5, N = M = 10, and each curve has been generated using a different value of the
displacement variance σ2, measuring the complexity of the generated assignments. Keep in
mind, and this is very important to understand the behavior of the algorithms, that the results
of the algorithms are taken into account in the graph only when a detection has been made by
the algorithm – otherwise the result is dropped from the graph. The number of detections is
shown in Table 12.
When extracting individual pairings with NFAp (left figure), increasing the threshold ε does
increase the recall and decrease the precision as one would expect. We note however that for
an average or high displacement variance, the value ε = 1 is quite far from the optimum.
On the other hand, when detecting complete assignments with NFAm (middle and right fig-
ures), increasing the value of the NFA threshold tends to lower both the recall and the preci-
sion (but also increases the number of problems where a meaningful assignments is detected
– not shown on this graph). This is because increasing the value of the threshold does not
simply results in more pairings being added, but can result in a completely different found
assignment. Note however that the amplitude of the precision and recall changes are much
smaller than those of NFAp – and thus the algorithm seems more robust to parameter varia-
tions.
When extracting the most meaningful assignment for very small or very large values of σ2,
changing the value of ε has essentially no effect. For medium values of σ2, it appears that
ε = 1 is far from the optimal value, but in practice, using smaller values of ε to increase the
precision and the recall considerably diminishes the number of detections. In order to visual-
ize this, we added a vertical bar that marks the point on the curve separating the values of ε
such that the algorithm made a decision in at least 20% and in less than 20% of the cases – the
value ε = 1 is close to this threshold. The behavior when extracting the largest meaningful
assignment (right figure) is similar. Of course, if we had shown values for ε farther below
10−5, the NFAm algorithm would have stopped making detections, and the precision and
recall would have dropped to 0.



150 PARAMETERLESS ALGORITHMSFOR THE POINT CORRESPONDENCE PROBLEM

but might completely change the pairings detected in the found assignment, because of the
global nature of the algorithm. When extracting the most meaningful assignment, increasing
ε will not even have an effect on the algorithm in the case where an assignment was already
detected for a lower value of ε – precisely because it extracts the assignment of smallest NFA!

When using NFAm, the effect of increasing the parameter ε is seen not so much on the
average performance on the cases where a detection is made, but rather because it increases the
number of those cases where an assignment is detected.

Let us explain this: a low NFA threshold will allow the detection of a meaningful assignment
only when the problem at hand is very simple, and thus only in few problems – but then the
detected assignment will often be correct, and yield both a high recall and a high precision.
On the other hand, a high NFA threshold will increase the number of problems on which a
detection is made, but will have no effect on problems where an assignment is already detected
at a lower threshold (when extracting the most meaningful assignments). Thus, problems
where assignments are now detected will tend to be more complex, the detected assignment
will be less often correct, and the overall recall and precision will decrease.

In this case, the trade-off controlled by ε is not really between the recall and precision,
but between the recall, the precision and the average number of cases where an assignment is
detected; which must be high enough for the algorithm to be useful. Table 12 shows the average
percentage of detections on the generated problems for various values of ε. The value ε = 1

seems to be a good compromise for a high recall and precision, while keeping a fairly high
number of detections for reasonably complex problems.

ε = 10−2 10−1 1 101 102

σ2 = 0.001 65% 85% 97% 100% 100%
σ2 = 0.01 5% 18% 52% 100% 100%
σ2 = 0.05 1% 5% 25% 100% 100%

Table 12: The percentage of problems where an ε-meaningful assignment has been detected by NFAm

for various values of the maximal NFA parameter ε. The problems are generated using the
Gaussian generative model, with parameters N = M = 10, pR = 0.5 and various values for the
variance of the displacement σ2; and the values are computed on 10 000 repetitions.

6.2.3 Performance of the NFA algorithms

The results obtained using NFAs and NFAm are essentially similar, and although we might
think that an NFA algorithm working on the squared distances between the points (using
Equation 6.6) might be better suited for the Gaussian generative model, it actually also exhibits
a similar behavior, as shown in Table 13.

Therefore, in order to simplify the graphs of this section, we will only compare the per-
formances of NFAp and NFAs (using the most meaningful assignment extraction) to those
of the Maximum Likelihood algorithm described in Section 5.1.3 (the Maximum A Posteriori
algorithm behaves essentially like ML). The choice of NFAs rather than NFAm is motivated by
the fact that the criterion works with the sum of the distances, just as the ML algorithm does.
Similarly, in order to improve readability, we will display the results of the algorithms for only
one parameter ε. We will use the canonical value ε = 1 for NFAs, and the value ε = 10 for
NFAp, which both seem to be good compromises between recall and precision on the synthetic
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recall precision detection ratio

NFAm 0.49 0.64 80%
NFAs 0.57 0.64 68%

NFAs2 0.56 0.64 75%

Table 13: The precision and recall obtained using the NFAm, NFAs and the NFAs2

algorithm working
on squared distances (based on Equation 6.6). We also display the detection ratio for each
algorithm. The parameters for the generative model are N = M = 10, pR = 0.8 and σ2 = 0.01.
The results are averages of 10 000 repetitions. The NFAm algorithm is slightly less suited

for Gaussian displacements, but the NFAs and NFAs2

behave essentially the same, the major
difference being the proportion of problems where a meaningful assignment is detected.

data we used. The behavior of the NFAp algorithm as ε varies is coherent with the findings of
the previous section, and an example is shown on Figure 90 as a reference.
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Figure 90: Recall and precision of the algorithm NFAp for various values of the threshold parameter ε.
The data have been generated using the Gaussian generative model, with parameters N = M

varying from 10 to 40, pR = 0.5 and σ2 = 0.005. As expected, an increase in ε increases the
recall and decreases the precision. The value ε = 10 seems to be a good compromise between
recall and precision, and we will use this value in further comparisons.

The performances are compared on data generated using the Gaussian generative model of
Section 5.1.3, where we vary the total number of points, the amplitude of the displacement or
the proportion of noise points (see Figure 91).

The results show that assignments in the problems quickly becomes indistinguishable from
pure noise as far as the NFA criterion is concerned, and hence the NFA algorithms become
much more conservative than ML. This ensures a higher precision, but the number of detec-
tions and the recall quickly drop when the complexity of the problems increases.

6.2.4 Filtering and parameterless algorithms

Simple filtering

If we are certain that there is an assignment in the data and we know how to adapt the
parameters of the ML algorithm to the data, the results from the previous section suggests that
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Figure 91: Recall and precision of the ML, NFAs and NFAp algorithms on data generated using the
Gaussian generative model with default parameters N = M = 10, pR = 0.5 and σ2 = 0.005,
but those are varied in each experiment. The first experiment varies the number of points N

from 10 to 40 to increase the density of the points, the second experiment varies the value
of σ2 from 0.001 to 0.05 to increase the amplitude of the points displacements and the third
experiment varies the value of pR from 0.8 to 0.2 to increase the ratio of noise points. The
ML algorithm has parameter σ2 (the exact σ2 used to generate the data), NFAs has parameter
ε = 1 and NFAp has parameter ε = 10. The blue bars shows the proportion of data where
NFAs has detected an assignment. When the problems get more complex, the NFA algorithms
get quickly more conservative and make very few detections, and have thus a lower recall, and
a slightly higher precision. Thus, this data seems to indicate that one should rather use the
ML criterion to detect assignments. Keep in mind however, that in this case the ML parameter
has been chosen optimally, and it might be difficult in practice to pick the best parameter
when the data has not been generated using a theoretical model.
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one should rather use the ML algorithm, or any other algorithm that expects a structure to
be found in the data, and extracts from all the possible structures the one that optimizes an
appearance criterion. On the other hand, if the fact that no assignment be detected in noise
is mandatory, or if the optimal ML parameters are difficult to find, NFA algorithms become
viable alternatives.

To illustrate this, we choose the parameter of the Maximum Likelihood algorithm in such a
way that it makes almost as few detections as the NFAs algorithm when they are presented
to pure noise data (with parameter ε = 1) and we compare the average recall and precision
for both algorithms (see table 14). In this table, the ML algorithm is deemed to have made
a detection if it has detected at least one pairing. This might seem overly conservative, but
other means of comparison, such as choosing the ML parameter to have it detect as many
pairings between two random images on average as the NFAs algorithm does not change our
results very much and we keep the exact same conclusions. Note also that if we were to
choose the parameter of the NFAp algorithm in a similar way (we would obtain ε = 0.16), it
would behaves essentially like ML – it is thus less suited than the global assignment detection
approach at avoiding detections in noise.

rNFAs rML pNFAs pML da
NFAs da

ML

σ2 = 0.001 0.89 0.32 0.83 0.90 95% 77%
σ2 = 0.005 0.59 0.16 0.63 0.68 58% 37%
σ2 = 0.01 0.40 0.12 0.49 0.50 38% 26%

Table 14: When presented to problems containing 10 random points in each images, the NFAs algorithm
with parameter ε = 1 detects an assignment in about 14% of the cases. We chose the largest
parameter σ2ML for ML such that it has the same detection ratio in pure noise (where an assign-

ment is detected if ML detected at least one pairing), yielding σ2ML ≈ 3.2 · 10−5. We display the
recall and precision, as well as the detection ratio, obtained by both algorithms on the same
data generated using the Gaussian generative model with parameters N = M = 10, pR = 0.5,
and various values for the variance of the displacement amplitude σ2. The values are averages
of 10 000 repetitions. We observe that for an equivalent level of detection in noise, the NFA
algorithm has a slightly lower precision, but a much higher recall and detection ratio than ML.

Requiring the ML algorithm to make very few detections in pure noise drastically decrease
its recall compared to NFAs, and the NFAs criterion thus appears useful to discriminate noise
from signal, while keeping a relatively high level of recall.

Another way to illustrate this difference in behavior is presented in Figure 92, where we
generate images that either contain pure noise or an assignment, and display the proportion
of instances in which NFAs and ML correctly make no detection when presented to a pure
noise problem as their parameters vary. Obviously, NFA is better at detecting the presence of
the assignments, since this is in essence why we constructed this criterion in the first place.

A benefit of the NFA criteria is that they give a way to filter the output of any other assign-
ment algorithm. Using the NFA criterion of our choice (NFAm, NFAs or NFAp), we can reject
non-meaningful assignments to improve the precision of classical algorithms when they are
presented with noisy data.

There are several ways to filter the results of a detection algorithm: directly applying the
NFA criterion to the detected assignment, and discarding it if it is not meaningful, or choosing
the sub-assignment of the detected assignment that exhibits the minimal NFA (possibly dis-
carding it if it is not meaningful), or even extracting the largest meaningful sub-assignment of
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Figure 92: We generate 1 000 problems containing pure noise, and 1 000 problems containing assignments
generated with the Gaussian generative model, with parameters N = M = 10, pR = 1.0 and
various values for σ2. We display for both algorithms NFAs and ML, and for a variety of
parameters for those algorithms, the proportion of cases where each algorithm has made a
detection when an assignment as present (no matter whether the detection is the correct as-
signment or not) and the proportion of cases where each algorithm has made no detection
when presented with a pure noise problem. A detection is made when ML returns an as-
signment containing at least one pairing, and when NFAs returns a meaningful assignment.
The gray disc shows the point corresponding to the minimal parameter for each algorithm
(ε = 10−8 for NFAs and σ2ML = 10−6 for ML), and the red circle corresponds to ε = 1 for the
NFAs algorithm. We observe that NFA is consistently better suited at detecting the presence
or absence of an assignment.

the detected assignment. The method we found to give the best results is to simply discard
the assignments that are not meaningful for the NFAs or NFAm criterion (see Table 15).

rNFAs rML rMLNFAs pNFAs pML pMLNFAs da
NFAs da

ML da
MLNFAs

σ2 = 0.001 0.89 0.88 0.9 0.83 0.61 0.67 95% 100% 74%
σ2 = 0.005 0.59 0.74 0.78 0.63 0.51 0.60 58% 100% 37%
σ2 = 0.01 0.40 0.61 0.65 0.49 0.42 0.50 38% 100% 17%

Table 15: We display the recall, precision and detection ratio of NFAs, ML with parameter σ2ML = 0.01,
and the filtered results of ML where only meaningful assignments have been kept. Filtering
ML with NFAs increases both the recall and the precision, but lowers the number of detections
significantly, which is necessary to ensure that the algorithms detect only few assignments in
pure noise (NFAs and MLNFAs detect an assignment in pure noise in about 14% of the cases,
while ML almost always detect an assignment). We observe that MLNFA has a significantly
higher recall, but lower precision and detection ratio than NFA, for equivalent detection ratios
in pure noise. Hence, the choice between using the NFA algorithm directly, or using an algo-
rithm having a high recall and filtering it to improve its precision boils down to a recall and
precision compromise.
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Parameterless algorithms

The reader should make sure to mark that the extraction of the most meaningful assignment
for the maximal displacement criterion NFAm can be seen as the selection of the parameter k

in the k-cardinality assignment problem, by choosing the k that maximizes NFAm
k (cmax(zak

))

(see section 6.1.3). We can use the same idea to derive new parameterless algorithms for any
assignment algorithm by discretizing a reasonable range of values for the parameters, solv-
ing the corresponding assignment problem for each value, and keeping the most meaningful
assignment (if it is meaningful, that is, of NFA less than 1). We explore this idea with the
ML algorithm and the NFAs criterion to see how parameter selection behaves in practice (see
Figure 93). The results suggest that parameter selection using NFA combined with a filtering
to keep only meaningful assignments results in a high-precision algorithm, but with a quickly
plummeting detection ratio. However, if it is mandatory that only few detections are made in
pure noise, this might become a promising parameterless algorithm.

6.3 APPLICATION TO PARAMETERLESS TRACKING,

AND USE WITH QUANTIZED DATA

6.3.1 Parameterless trajectory tracking

Many trajectory tracking algorithms use the point correspondence problem to link points
from frame to frame. The interest of using the parameterless NFA correspondence algorithms
in such a setting is that it would automatically yield a parameterless tracking algorithm, that
might be particularly useful when tracking points in presence of noise, since this is their main
strength.

The state-of-the-art tracking algorithm ROADS [Veenman, Reinders, and Backer, 2003b] to
which we compared ASTRE in Chapter 3 is an extension of the simpler algorithm GOA [Veen-
man, Reinders, and Backer, 2001]. They both use the point correspondence solver at their core
for frame to frame tracking – although ROADS modifies it to take into account several frames
at once (typically, a window of 2 or 3 frames). In order to focus on the simple point corre-
spondence problem and understand whether using a parameterless algorithm would affect
its performance for this application, we built a simple algorithm inspired by GOA. However,
adapting the ROADS algorithm in a similar way should not be much more complicated – in
essence, the point correspondence solver used by any algorithm can be readily replaced by any
of the NFA algorithms.

Given a sequence of K frames I1, ..., IK containing the Nk points detected in the correspond-
ing images from a video sequence, Ik = {xk1 , ..., xkNk

}, where a point can either correspond to a
real object in the sequence or to a false detection, we want to extract a set of trajectories, where
each trajectory is a sequence of pairs T = {(x1, t1), ..., (xn, tn)} with xi a point of frame Iti and
ti < ti+1.

The simple tracking algorithm that we propose has three parameters: ε > 0 corresponding
to the maximal value of the NFA in the assignment problems, pmin > 1 the minimal number
of points that must be present on a trajectory before we start tracking it and amax > 0 the
maximal number of successive frames where we lost the trajectory before we stop tracking it.
Note that the parameter ε will usually be set to the canonical value ε = 1, and setting pmin = 1

and amax = +∞ thus renders the tracking algorithm parameterless.
The tracking proceeds in the following way: assume that we have already tracked p trajecto-

ries up to frame Ik, and that we want to extend them to frame Ik+1. We use the location of the
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Figure 93: Recall and precision of the ML and MLNFAs algorithms on data generated using the Gaussian
generative model with default parameters N = M = 10, pR = 0.5 and σ2 = 0.005, but those are
varied in each experiment. The first experiment varies the number of points N from 10 to 40 to
increase the density of the points, the second experiment varies the value of σ2 from 0.001 to
0.05 to increase the amplitude of the points displacements and the third experiment varies the
value of pR from 0.8 to 0.2 to increase the ratio of noise points. The ML algorithm has been
purposedly given the wrong parameter σ2ML = 0.05 to simulate parameter approximation.

The MLNFAs chooses the best parameter σ2ML (among 0.001, 0.005, 0.01, 0.05) by keeping the
one that results in the most meaningful assignment, and the results are then filtered to keep
only 1-meaningful assignments. The bars shows the proportion of data where MLNFAs has
detected an assignment. The NFA criterion thus enables us to circumvent parameter choice
and obtain a parameterless algorithm sporting a fairly high precision.
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points in the previous frames to predict their most likely position in the frame Ik+1 (using a
simple linear interpolation). We then solve the correspondence problem between the interpo-
lated trajectories points and the observed detections in frame Ik+1 using the NFA algorithm
and use the found pairings to extend the trajectories. We then try to find candidate trajecto-
ries starting in frame Ik by solving the point correspondence problem between the points of
frame Ik and the points of frame Ik+1 that do not belong to any trajectory (we assume that
trajectories have null speed when they start). Finally, between each iteration, we end the trajec-
tories that should not be followed anymore because they don’t match the requirements from
parameters pmin and amax (see algorithm 9).

Algorithm: extract_trajectories

input : I1, ..., IK the sets of detected points in each image
output: T the set of trajectories

T ← ∅

for 1 6 k 6 K− 1 do
P ← ∅

foreach t ∈ T that is not ended do
P ← P ∪ { interpolation of t in frame k+ 1 }

end

foreach (x→ y) ∈ most_meaningful_assignment(P, Ik+1) do
extend the corresponding trajectory t with (y, k+ 1)

end

foreach t ∈ T do
if t has less than pmin points and could not be extended then

remove t from T

else if t could not be extended since more than amax frames then
end the trajectory t

end

end

Ck ← {x ∈ Ik that does not belong to a trajectory in T }

Ck+1 ← {y ∈ Ik+1 that does not belong to a trajectory in T }

foreach (x→ y) ∈ most_meaningful_assignment(Ck,Ck+1) do
T ← T ∪ { [(x, k), (y, k+ 1)] }

end

end
remove trajectories in T having less than 3 points
return T

Algorithm 9: Extract trajectories from a sequence of detected points.

Note that most_meaningful_assignment can be a routine extracting the most meaningful
assignment for any NFA criterion. In practice, the sum criterion seems to work best. Before
returning the set of trajectories T , we remove all spurious trajectories having less than 3 points
(for instance, all the candidate trajectories between the last two frames).

To assess the performance of the tracking algorithm, we generated random trajectories t =

{x1, ..., xK} by drawing x1 uniformly at random, and iteratively displacing the points using the
equation xk = 2xk−1 − xk−2 +N(0,σ2) where N(0,σ2) is a Gaussian variable of variance σ2

and x0 = x1 by convention. We then added noise points uniformly in each image. We display
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the result of the NFA tracking algorithm and that of the same algorithm where NFA has been
replaced with the Maximum Likelihood algorithm (see Table 16).

recall precision

NFAs, ε = 1 0.93 0.98

ML, σ2 = 10−2 0.77 0.5
ML, σ2 = 10−3 0.96 0.87

ML, σ2 = 10−4 0.97 0.98

ML, σ2 = 10−5 0.22 0.98

Table 16: We display the mean recall and precision (in terms of links between two successive points in a
trajectory) of the tracking algorithm where the point correspondence problem is either solved
using NFAs (most meaningful assignment extraction), or with ML with various values of σ2.
We generated 10 trajectories and added 10 noise points in each frame, the motion of each
trajectory being a constant-speed displacement plus a random Gaussian noise of variance 0.01.
The trajectories span 20 frames. The values are averages of 100 repetitions. We observe that
the results of the parameterless NFA tracking algorithm are on par with the best results that
obtained with a manually chosen parameter for ML.

The results suggest that the parameterless NFA tracking algorithm is suitable for tracking
points in noise, and is on par with the best results that can be obtained using the ML algorithm
with the best possible parameter.

6.3.2 Application to aggregate tracking

The simple tracking algorithm has been successfully applied to real data in order to track
aggregates in bacteria, where we are given the position of the detected aggregates, as well as
the bacteria shapes and their lineages (the mother to daughters relationship), and we need
to track the aggregates through the sequence and associate them to the unique bacteria they
belong to.

We could use the unmodified tracking algorithm and track aggregates with only location
information, but we chose a slightly more robust way. We associate to each aggregate all the
possible cells it can belong to (some aggregates are not precisely located, and touch several
cells). Because the motion of cells is not smooth (they can bump into each other), rather
than predicting the motion of an aggregate from its previous locations, we predict it from the
average motion of the cells it might belong to.

We also restrict the problem further by only allowing a point from a trajectory that might
possibly belong to a set of cells A to a point in frame Ik that might possibly belong to a set of
cells B if at least one cell from B is a descendant of a cell from A.

In practice, this motion model and the restrictions suffice to almost perfectly track the aggre-
gates and associate them to a unique lineage (see Figure 94).

6.3.3 Quantization

As was noted in Section 3.2.3, in practical cases, the input data to our algorithms has been
quantized (eg. the positions of the points in the images are integers) and the probability
computations like P(‖Y − X‖ 6 δ) 6 π · δ2 do not hold anymore. Indeed, the probability of
two points having the same position in both images is no longer null, and using the above
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Figure 94: Tracking of cell aggregates.

probability computation in such a case would result in a null NFA for the assignment pairing
those two points.

If we assume as in Section 3.2.3 that the data has been quantized on the finite integer grid
Ωd of Z

2 (containing |Ωd| pixels), that is, the random variables X1, ...,XM and Y1, ...,YM in
the naive model are now uniformly distributed in Ωd, we can define a discrete version of the
area π · δ2 used in the computations of the NFA, namely

πd(x,y) =
|Sr|

|Ωd|
,

where x,y ∈ Ωd, r = ‖y− x‖ and |Sr| is the number of pixels enclosed in the discrete disc
Sr = Z

2 ∩ B̄(0, r) (see Figure 34 in Section 3.2.3). It follows that

P(πd(X, Y) 6 δ) 6 δ,

and in particular, when x = y, πd(x,y) = 1/|Ωd| which no longer leads to a null NFA.

Discrete pairings NFA and maximal discrete displacement NFA

This new measure and probability translates immediately into a corresponding discrete NFA
for both the pairings NFA and the maximal displacement NFA.

Proposition 17 (Discrete pairings NFA). Assume X1, ...,XN and Y1, ...,YM are uniformly dis-

tributed on the finite integer grid Ωd of Z
2, the function NFAp,d defined by

NFAp,d(a) = NM · a (6.12)

is a Number of False Alarms for the measurement πd.

Definition 19 (Discrete maximal displacement). If a = {x1 → y1, ..., xk → yk} is an assignment,
the discrete maximal displacement of a is defined by

πd,max(a) = max
16i6k

πd(xi, yi)
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Proposition 18 (Discrete maximal displacement NFA). Assume X1, ...,XN and Y1, ...,YM are

uniformly distributed on the finite integer grid Ωd of Z
2, the family of functions (NFAm,d

A )A∈A

defined by

∀k, ∀A ∈ Ak, NFAm,d
A (a) = min(N,M)

(

N

k

)(

M

k

)

k! · ak (6.13)

is a Number of False Alarms for the measurement πd,max.

Let us now examine the performances of these discrete versions of the NFA before we study
the discrete sum displacement NFA. Table 17 compares the behaviors of the continuous NFA
to their discrete counterparts that run on the same data after it has been quantized on the
integer grid, suggesting that the performances of the continuous and discrete algorithms are
similar.

rNFAp rNFAp,d pNFAp pNFAp,d dNFAp dNFAp,d

σ2 = 0.001 0.93 0.93 0.69 0.69 100% 100%
σ2 = 0.005 0.74 0.73 0.56 0.56 100% 100%
σ2 = 0.01 0.55 0.54 0.44 0.44 100% 100%

rNFAm rNFAm,d pNFAm pNFAm,d dNFAm dNFAm,d

σ2 = 0.001 0.80 0.81 0.82 0.82 96% 97%
σ2 = 0.005 0.39 0.39 0.46 0.44 71% 70%
σ2 = 0.01 0.19 0.18 0.24 0.23 50% 47%

Table 17: Comparison of the performance of the continuous and discrete versions of the NFA. The data
is generated using the Gaussian generative model with parameters N = M = 10, pR = 0.5
and various values for σ2. The values are averages of 1 000 repetitions. NFAp has parameter
ε = 10, while NFAm has parameter ε = 1. The discrete versions of the algorithms have the
same parameters and are given a discretized version of the data on a 100 × 100 grid. The
performances of the continuous and discrete NFA are similar.

Sum discrete displacement NFA

When the random variables lie on the integer grid, an analytic formula estimating a tight

upper bound for the probability P(
∑k

i=1‖Yi − Xi‖ 6 δ) is more involved to derive, and we
hence propose to use alternative approaches. We can either derive a larger bound on this prob-
ability, alter the original data by randomizing the point location, or numerically approximate
the exact probability. We now examine each possibility.

Bound on the sum discrete displacement NFA

We know that P(‖Y − X‖ 6 δ) 6 πd(δ) = |Sδ|/|Ω
d|, we can derive an upper bound on this

probability, for instance the area of the continuous ball of radius δ+
√
2, that is, P(‖Y − X‖ 6

δ) 6 π(δ+
√
2)2/|Ω|. We can then use this bound to compute a bound on the sought probability

as in the proposition 13

P

(

k∑

i=1

‖Yi −Xi‖ 6 δ

)

6

(

2π(δ+ k
√
2)2
)k

(2k)!
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it is hence sufficient to add
√
2 to all the pairing costs and use the regular NFAs algorithm.

Proposition 19 (Discrete sum displacement NFA (NFAs,d
b )). Assume X1, ...,Xk and Y1, ...,Yk

are uniformly distributed on the finite integer grid Ω of Z
2, the family of functions (NFAs,d

b A
)A∈A

defined by

∀k, ∀A ∈ Ak, NFAs,d
b A

(a) = min(N,M)

(

N

k

)(

M

k

)

k! ·

(

2π(δ+ k
√
2)2
)k

(2k)!
(6.14)

is a Number of False Alarms for the measurement dsum.

This bound is very large and thus not useful in practice: using the Gaussian generative
model with parameters N = M = 10, pR = 0.8 and σ2 = 0.005, we generated 1 000 data and

compared the results of the NFAs algorithm on the data and of the NFAs,d
b algorithm on the

data quantized on a 100× 100 grid. The recall, precision and detection ratio drop to half their

values when using NFAs,d
b .

Data dequantization

Another approach to circumvent the quantization problem is to dequantify the data by ran-
domly adding a small real vector and using the continuous NFA, resulting in a random al-
gorithm (two runs of which might not result in the same assignment). In practice, we add
a uniform displacement in the [0, 1]× [0, 1] pixel area to each point, and we observe similar
performances as those of the NFA algorithm before quantization (see table 18). This approach
might thus be a simple way of solving the assignment problem on quantized data, although
its drawback is that the algorithm is non-deterministic.

rNFAs r
NFAs,d

r
pNFAs p

NFAs,d
r

dNFAs d
NFAs,d

r

σ2 = 0.001 0.85 0.79 0.78 0.78 95% 95%
σ2 = 0.005 0.34 0.34 0.37 0.37 58% 59%
σ2 = 0.01 0.15 0.15 0.17 0.17 38% 38%

Table 18: Comparison of the performance of the continuous and randomized versions of the NFA. The
data is generated using the Gaussian generative model with parameters N = M = 10, pR = 0.5
and various values for σ2. The values are averages of 1 000 repetitions. Both algorithms have
parameter ε = 1, and the randomized NFA is given a discretized version of the data on a
100 × 100 grid, which has then be randomized by adding a small random quantity to the
position of each point. The performances of the continuous and randomized NFA are similar
for medium or large displacement variances. For very small displacements such as σ2 = 0.001,
the recall logically drops a little, since the random perturbations are larger than the expected
point displacement.

Numerical approximations

Rather than using a bound or dequantifying the data, we can numerically compute the exact
probability of two discrete points being at a certain distance. We assume that the integer
grid is the square Ωd = [1,w]× [1,w], and let {Xi}i and {Yi}i be independent uniform random
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variables on Ωd, let Di = ‖Yi−Xi‖ and Sk = D1+ ...+Dk. The probability that an assignment
of size k has a sum of distance less than δ in the naive model is

P(Sk 6 δ) =

∣

∣{(xi, yi)16i6k ∈ (Ωd2
)k ;

∑k
i=1‖yi − xi‖ 6 δ}

∣

∣

|Ωd|2k

An exact computation of this probability is intractable and in practice we need to approximate
it. Let η > 0 be a quantification step, we compute the probability that one of the random
variables Di = ‖Yi −Xi‖ belongs to a ring of width η

∀0 6 p 6

⌊√
2w2

η

⌋

,

uη(p) = P (pη 6 Di < (p+ 1)η)

=

∣

∣{(x, y) ∈ Ωd2
; pη 6 ‖y − x‖ < (p+ 1)η}

∣

∣

|Ωd|2
,

and denoting L the set of values taken by the variables Di, we use a recursive computation to
bound the probability on the sum of k displacements by

P
η
k(j) = P(Sk 6 jη) = P(Sk−1 +Dk 6 jη)

=
∑

t∈L

P(Dk = t)P (Sk−1 6 jη− t)

6
∑

p>0

P (pη 6 Dk < (p+ 1)η)P (Sk−1 6 (j− p)η)

=
∑

p>0

uη(p)P
η
k−1(j− p)

= (uη ∗P
η
k−1)(j),

and we finally approximate

P(Sk 6 δ) 6 P
η
k(⌈δ/η⌉).

If η is chosen small enough, the probability is exact (but the time and space required for the
computation and storage increase significantly), in practice, for 100 × 100 images, η = 0.1
seems to suffice (see Figure 95).

We compare the performance of the discrete NFA with that of the continuous NFA using the
same protocol as previously (see Table 19). We observe that the performances of the discrete
NFA are slightly better than those of the continuous NFA, even though the data has been
quantized. This might be explained by the fact that the upper bound on the probability for the
continuous NFAs (Equation 6.4) is rather loose.

The proposed approximation is still computationally intensive, since the initial uη computa-

tion requires O(w4) instructions and |u| = ⌊
√
2w2/η⌋ space, and each successive P

η
j requires

O(j|u|2) time and O(j|u|) space, hence, the computation requires O(K2
√
2w2/η) space and

O(w4 + 2K2w2/η2) time, where K is the number of Pj that we want to compute. However, this
precomputation can be done once for a large K and used subsequently for several detections
(for images having the same size (w,w) and containing M,N points, where min(N,M) 6 K).

We could theoretically improve the time complexity by transforming the data in the Fourier
domain to speed up the convolution, but with the several Fourier transform implementations
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Figure 95: We display log P
η
20(ℓ) for various values of the approximation parameter η, and ℓ ranging from

1 to 100. We observe that the probability approximation has almost converged for η = 0.1.

rNFAs r
NFAs,d

n
pNFAs p

NFAs,d
n

dNFAs d
NFAs,d

n

σ2 = 0.001 0.84 0.86 0.78 0.76 95% 95%
σ2 = 0.005 0.33 0.4 0.37 0.39 58% 63%
σ2 = 0.01 0.15 0.2 0.18 0.2 38% 43%

Table 19: Comparison of the performance of the continuous and discrete versions of the NFA. The data
is generated using the Gaussian generative model with parameters N = M = 10, pR = 0.5
and various values for σ2. The values are averages of 1 000 repetitions. Both algorithms have
parameter ε = 1, and the discrete NFA is given a discretized version of the data on a 100× 100

grid. The performances of the continuous and discrete NFA are similar, and even surprisingly
slightly better for the discrete version of the NFA, although the data has been quantized. This
might be explained by the fact that the upper bound on the probability for the continuous
NFAs (Equation 6.4) is rather loose.

that we used, this quickly resulted in numerical errors and ultimately to aberrant values for
the probabilities.

Also note that we could reduce the complexity of the uη computation to O(w2) without
degrading the precision too much in practice by approximating

uη(p) = P(pη 6 Di < (p+ 1)η)

6
∑

r∈L,pη6r<(p+1)η

|Lr|/|Ω|

where Lr is the number of points on the integer grid that lie at a distance r from the origin,
which is similar to the approximation made in the continuous case, and amounts to neglect all
border effects.





7
Conclusion

T
he last decades have been marked by the astronomical growth of the storage and com-
putation capacities at our disposal. In a recent publication [Hilbert and López, 2011],
researchers from the University of South California have estimated the world capacity

of storage, communication and computational power, and the number they provide defy our
ability to picture them: the authors estimate that in 2007, mankind was able to store 2.9× 1020

optimally compressed bytes of data, to transfer almost 2× 1021 bytes and to compute at a rate
of about 6.4× 1018 instructions per second.

In this era of speed and accumulation, scientists work in a radically different way: they
record, store, sort, annotate, analyze and publish – in an automated manner if possible –
ever larger quantities of data. This scientific exploration paradigm (see Figure 96) has been
described in The Fourth Paradigm for Science (Hey, Tansley, and Tolle, 2009):

The world of science has changed, and there is no question about this. The new
model is for the data to be captured by instruments or generated by simulations
before being processed by software and for the resulting information or knowledge
to be stored in computers. Scientists only get to look at their data fairly late in this
pipeline. The techniques and technologies for such data-intensive science are so
different that it is worth distinguishing data-intensive science from computational
science as a new, fourth paradigm for scientific exploration.
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Figure 96: The Fourth Paradigm of Science. Nowadays storage, transfer and computation capacities
enable a new scientific paradigm, in which the data play a central role. Source: Illustration by
Jim Gray, excerpt from Hey, Tansley, and Tolle, 2009.

Let us give some examples of the quantities of data manipulated by nowadays scientists:
among 1 700 researchers surveyed in a study by the Science magazine [Science, 2011], 20%
regularly use or analyze datasets exceeding 100 gigabytes, and 7% handle datasets of more
than 1 terabyte (1012 bytes). The Large Hadron Collider yields around 1.8 gigabyte of data per
second in peak use, totaling about 15 petabytes (15× 1015 bytes) annually. In 2008, the servers
of Google processed more than 20 petabytes of data every day [Dean and Ghemawat, 2008].

*

This evolution translates into a strong demand for algorithms that are both completely auto-
mated – because manual processing is fastidious, time-consuming, and it is also error-prone;
and fast enough to be applied to the gigantic datasets that the scientific research produces to-
day. In order to address these latter efficiency exigencies, researchers and engineers now often
turn themselves to parallelization, enabling them to efficiently harness the graphics processing
units, the multi-core processors or the distributed computation grids at their disposal. We
have not chosen to focus our attention on this particular concern, although the algorithms
that we propose are often naturally parallelizable. We have rather aimed at understanding
what the essential requirements are that an algorithm must answer in order to be perceived
as completely automated. Such an algorithm must obviously be capable of scaling to large
datasets (whose size force them to have a natural inner variability) without modification, or ex-
cessive parametrization. The algorithms must therefore be robust to data variation, and use the
physical constants inherent to the data as well as the intrinsic geometry of the images, rather
than abstract parameters implicitly defined by one or several algorithmic processing steps. For
instance, we use the intrinsic geometrical features of the images (their level lines) in Céleste to
renormalize them without having to choose the contrast change parameters manually, the lat-
ter being too sensitive to the variability of the acquisition noise. When possible, we think that
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the algorithms should even be virtually parameterless, as the robust ASTRE trajectory tracking
algorithm derived from the a-contrario framework in Chapter 3.

We also think that a completely automated algorithm must be simple enough to understand, in
order to make it possible to predict its behavior theoretically, and to adapt and correct it easily
when changes in the acquisition conditions (or the natural variability of the datasets produce
errors).

*

The robust Céleste cell tracking algorithm is now used routinely in the biology research
laboratory at the TaMaRa’s lab from INSERM in Paris, and has increased the quality of the seg-
mentation and tracking results while lowering the data processing time. However, for longer
movies, the large number of potential cells to be considered often renders the algorithm un-
usable if a human operator does not help simplifying the data by manually segmenting some
ambiguous cells. Additionally, the presence of a model of the bacteria motion is still some-
what disturbing: we would prefer to reason only using purely photometrical clues. Indeed,
in some biological experiments, the nature of the treatment applied to the bacteria might alter
their growth or motion properties significantly, and the algorithm might then make wrong
segmentation and tracking decisions.

*

As was demonstrated in Chapter 3, the ASTRE a-contrario trajectory detection algorithm
yields very good performances in presence of noise, and matches state-of-the-art performances
on real-world data, even though it is (virtually) parameterless. This research could be extended
in a variety of directions: the fitness measure could be the sum of the accelerations, rather than
the max. It could also be adapted to a specific motion in some applications, when the prior
knowledge on the motion is more precise than simply having a low acceleration. Similarly, it
would also be interesting to be able to take feature descriptors into account in the naive model
when they are available. Our preliminary research has shown that this might however prove
difficult, and in particular, trying to track points having a scalar intensity in [0, 1] by simply
processing the feature as an additional dimension of the spatial point representation yields
poor results in practical cases; the proper way to blend the motion and the features into one
scalar criterion is yet to be found.

The ASTRE algorithm can be naturally parallelized, but might however remain slow when
the length of the sequence and the number of points is very large. It might be interesting
to find approximations that would reconstruct a whole trajectory from smaller subtrajectories
obtained by restraining the problem to smaller subsequences of the original sequence and see
if they yield almost correct results. Additionaly, the limits of the globality in time should also
be adressed. Intuitively, if we have a two-hour long video of someone, we might expect that
what he does after one hour and a half does not influence how we perceived his motion after
10 minutes. In practice, the ASTRE algorithm will often break a trajectory in two if it detects
a sudden change in the acceleration because of a change in behavior. However, a time scale
parameter might perhaps help the algorithm make some decisions in some applications.

*

The orthogonal tracking approach to tracking trajectories sequentially and globally in time
is to follow all the trajectories at once (“globally in space”) from frame to frame; this is the
multi-frame point correspondence problem. We have proposed in Chapter 6 a parameterless
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a-contrario algorithm solving the two-frame point correspondence problem that yields per-
formances on par with classical algorithms having an optimally chosen parameter, and can
readily be plugged in other algorithms as a replacement for their point correspondence prob-
lem solver, to obtain new parameterless tracking algorithms for example. As in the case of
ASTRE, it might be interesting to see whether features could be added to the points.

We have also defined an optimal criterion that bounds the performances of classical point
correspondence algorithms (the WRAP criterion in Chapter 5), and we were thus able to study
them more precisely. In particular, our analysis has underlined the fact that most of the classi-
cal algorithms are not able to detect ambiguities to properly balance their recall and precision.
It seems however that there are very few point correspondence problems that are neither very
easy or very complex to solve, and simple local algorithms and complex global algorithms
yield similar performances. It would be interesting to use this theoretical framework for the
analysis of the point correspondence problem to tackle this problem and see whether there is
a significant intermediate class of problems where global algorithms perform better than local
ones.

*
Going further, would it be possible to compute a criterion that is both global in time and in

space? Recent research introduced in Jiang, Fels, and Little, 2007 and Berclaz, Fleuret, and Fua,
2009 seems to indicate that it is possible to do so by replacing the formulation of the multi-
frame correspondence problem from a boolean “deterministic” setting where two points are
either linked by a pairing or not, to a continuous “fuzzy” version that can be efficiently solved
using linear programming – and which almost always results in a quasi-boolean assignment
between the points. It would be interesting to see whether these promising algorithms could
be adapted to handle arbitrary motion models, points entering or exiting the image at any
location, and still having only a limited set of parameters.
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T
his section describes the algorithms solving the linear and the bottleneck assignment
problems, required in the classical point correspondence solutions, in the WRAP algo-
rithm, and for the NFA assignment algorithms (see chapters 5 and 6).

The algorithms are described in the general case of the linear and the bottleneck assignment
problems where all pairings can be added to an assignment, but it is easy to adapt them to the
case where some pairings are forbidden (for instance, pairings of cost greater than a constant
cthre).

A.1 THE LINEAR ASSIGNMENT PROBLEM

We use the same notations as before: the points in the first image are the {xi}16i6N, those
of the second image are the {yj}16j6M, and the pairing costs are the cij.

We want to compute the solution to any k-cardinality linear assignment problem, that is,
given 0 6 k 6 N∧M, find

ak ∈ arg min
a∈Ak

∑

i→j∈a

cij

where Ak is the set of assignments of size k.

We will actually build the ak sequentially using a successive shortest path algorithm. More
precisely, let a0 = ∅ be the empty assignment, and suppose that optimal assignments a0, ...,ak−1

of size 0, ...,k− 1 have already been computed. We show how to compute an optimal assign-
ment ak among all assignments of size k.

173
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Definition 20 (Assignment graph). The assignment graph G is a weighted bipartite graph. The first
node set S contains the points in the first image, the second node set T contains those in the second
image. The edge between a point i ∈ S and a point j in T is oriented from T to S with cost −cij if
(i→ j) belongs to ak−1, and from S to T with cost cij otherwise (see Figure 97).

Definition 21 (Free nodes). The free nodes are the vertices of the assignment graph that do not belong
to ak−1, the free nodes from S are denoted FS, and those from T are denoted FT .

(S)

(T)

Figure 97: The bipartite graph corresponding to an assignment problem where the points in the first
image are represented by the nodes in S, the points in the second image by the points in T , the
four pairings in the assignment are the full edges directed from T to S, and the pairings not
in the assignment are the dashed edges directed from S to T (not all such pairings have been
represented for clarity reasons). The free nodes from FS and FT are the nodes (represented in
blue) that do not appear in any pairing in the assignment. In this case, there is only one node
in FS and one node in FT .

Definition 22 (Augmenting path). An augmenting path π is a path in the assignment graph from a
free node in FS to a free node in FT . We will write (i→ j) ∈ π where i ∈ S and j ∈ T if there is an edge
joining i and j in the path π (either from i to j, or from j to i).

Definition 23 (Path cost). Let π be an augmenting path. We define the path cost of π as the sum of
its edge costs.

c(π) =
∑

(i→j)∈πrak−1

cij −
∑

(i→j)∈π∩ak−1

cij

Definition 24 (Augmentation along a path). If π is an augmenting path, we define the augmentation
of ak−1 along π as the assignment

a = ak−1 ⊕ π = { (i→ j) | (i→ j) ∈ (ak−1 ∪ π)r (ak−1 ∩ π) }

The augmented assignment a has size k and cost csum(a) + c(π) (see Figure 98).

Let us show that we can obtain an optimal assignment among those of size k using an
augmentation of ak−1 along a shortest path from FS to FT the free nodes in each image.

Lemma 1. Let h ∈ Ak be an optimal assignment among assignments of size k. There exists a path πh

in the assignment graph that starts from a free node in FS appearing in h (we will say that the node is
in hr ak−1), ends in a free node in FT appearing in h, and alternates between edges belonging to h

and edges belonging to ak−1.

Proof. Indeed, since h has strictly more edges than ak−1, there exists necessarily a node x ∈ S

in hrak−1. We denote y the node that is paired with it in h, and build the path π = x→ y. If
y does not belong to ak−1, we can stop and choose πh = π. Otherwise, y is paired in ak−1 to
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(S)

(T)

Figure 98: Augmentation of an assignment along a path. Full lines: assignment, dotted lines: unused
pairings (not all unused pairings have been represented for clarity), bold lines in the second
image: augmenting path. By flipping the edges along the augmenting path, we obtain an
assignment containing one additional edge (seen as the set of edges orientated from T to S).

a node z 6= x. We can add the edge y→ z to the path π. If the node z does not appear in h, we
can remove all the nodes from the path π, which contains as many pairings in h as in ak−1,
and iterate the argument on the restrictions h̄ of h and āk−1 of ak−1 that do not contain nodes
in π, since we still have |āk−1| < |h̄| < |h|. This operation decreases the number of pairings
in the assignments, and can hence only be applied a finite number of times. If the node z

belongs to h, we continue by adding its paired node in h to π, and we iterate the process. We
must eventually find an augmenting path πh starting from a free node and ending in a free
node.

Lemma 2. Let h ∈ Ak be an optimal assignment among assignments of size k, and πh a path as
described in lemma 1. The assignment a = ak−1 ⊕ πh has size k, and is of minimal cost among
assignments of size k.

Proof. By construction, the assignment a coincides with the assignment h on the nodes appear-
ing in πh. We now consider the restrictions h̄ of h and āk of ak to the nodes not in πh. The
restriction āk coincides with the restriction āk−1. Those restrictions have the same size p, and
by optimality of h and ak−1, they are optimal among the assignments of size p that do not
contain nodes from πh, and thus have the same cost. We finally deduce that the total cost of a
is equal to the total cost of h, and thus a is optimal among assignments of size k.

Proposition 20. If we augment ak−1 along a minimal-cost path from FS to FT , we obtain an assign-
ment of size k having minimal cost among such assignments.

Proof. Let h ∈ Ak be an optimal assignment among assignments of size k, and πh a path as
described in lemma 1. Let π be a minimal-cost path from a free node in the first image to a free
node in the second image, and let ak = ak−1 ⊕ π. The assignment ak has size k, and from the
optimality of π and lemma 2, its cost is csum(ak) = csum(ak−1) + c(π) 6 csum(ak−1) + c(πh) =

csum(h). Therefore, since h is an optimal assignment of size k, csum(ak) = csum(h) and ak is
optimal.

With a naive implementation of this shortest-path augmentation approach (see Algorithm 10),
the complexity is O(min(N,M)NM(N +M)) = O(N4) (assuming N = M), since we repeat
min(N,M) times a shortest-path computation of cost O(NM(N+M)) using the Bellman-Ford
shortest-path algorithm that is suited when the edges of G can have negative values.

Note that the algorithm can easily be adapted to the case where some pairings i → j are
forbidden in the assignment, to return the k-cardinality optimal assignments among those
where such pairings do not appear.
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Algorithm: kcard-LAP

input : {cij}
16i6N
16j6M the pairing costs

output: The solutions a0, ...,aN∧M of the k-cardinality LAP

a0 ← ∅

for k = 1 to N∧M do
G← assignment graph for ak−1

FS ← free nodes in G (relative to ak−1) in the first image
FT ← free nodes in G (relative to ak−1) in the second image
π← minimal-cost path from FS to FT
ak ← ak−1 ⊕ π

end
return a0, ...,aN∧M

Algorithm 10: Algorithm computing the k-cardinality LAP solutions. The solution of the
general LAP is the solution of cardinality min(N,M).

A faster augmentation algorithm

This section presents a slight enhancement in the algorithm and can be safely skipped. By
modifying the algorithm to ensure that the edges keep positive weights, we can use the O(NM)

Dijkstra algorithm to search for minimal-cost paths, leading to a computational complexity of
O(min(N,M)NM) = O(N3).

This requires adding to the assignment graph a source node s which has a null-cost outgoing
edge to each node of the first image, and a destination node t which has a null-cost incoming
edge from each node in the second image. Clearly, the shortest paths between a free node from
the first image and a free node from the second image are in bijection with the shortest paths
from s to t in the augmented graph. If we arbitrarily define potentials σi ∈ R for each node i

in the graph, and that we replace the costs cij by c̄ij = cij + σi − σj, then we do not change
the shortest paths from s to t in the assignment graph (since we only offset their costs by the
constant σs − σt).

The initial edges costs are positive, and we can thus use Dijkstra to find for each node i the
minimal cost δi of a path from s to i. Let π = s → i1... → iℓ → t be such a minimal-cost path
from s to t. We augment the assignment along this path, and we obtain a new assignment
graph where the directions of the edges in π have been inverted and the cost c of those edges
have been replaced by −c.

Now let us choose potentials in a way that will render all costs positives, which won’t
change the set of solutions to the problem (the minimal-cost paths are the same), but makes it
possible to use the Dijkstra algorithm. We can show easily that the potentials σi = δi verify
this property, where δi is the length of the shortest path from s to i. But in order to have a
slightly faster algorithm in practice (although having the same worst-case complexity), we will
choose the potentials σi = min(0, δi − δmin), where δmin is the cost of a shortest path from s to
t.

Indeed, let (i, j) be an edge of the graph of cost c. We have δj 6 δi + c by definition of
shortest paths, and we can thus study the different cases:

• if δi < δmin and δj < δmin, we obtain c̄ = c+ δi − δj > 0,

• if δi < δmin and δj > δmin, we obtain c̄ = c+ δi− δmin, or c > δj− δi, thus c̄ > δj− δmin >

0,
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• if δi > δmin and δj < δmin, we obtain c̄ = c+ δmin − δj > 0 and finally

• if δi > δmin and δj > δmin, we obtain c̄ = c > 0.

Using this potentials definition, we only change the costs of the edges adjacent to the nodes
verifying δi < δmin, and since a node is processed by the Dijkstra algorithm in the order of
the shortest path from s to the node, we can stop the Dijkstra algorithm as soon as we have
reached the node t, and we will only need to update the potentials of nodes that have been
processed by the algorithm.

A.2 THE BOTTLENECK ASSIGNMENT PROBLEM

Keeping the same notations as in the previous section, we now want to compute the solu-
tions to the k-cardinality bottleneck assignment problem, that is, for all 1 6 k 6 min(N,M), an
assignment ak of size k minimizing

ak ∈ arg min
a∈Ak

max
i→j∈a

cij

Definition 25 (Partial graphs). Let p1, ...,pNM be the sequence of edges [1,N]× [1,M] sorted by
increasing cost cp = cij if p = (i → j). The partial graph of order q is the set of pairings Gq =

{p1, ...,pq}.

Clearly, if qk = inf {q | Gq contains an assignment of size k}, then ak ⊆ Gqk
, and

cqk
= min

a∈Ak

cmax(a)

We deduce that in order to find a most meaningful assignment of size k, it suffices to build the
graphs G1 ⊂ G2 ⊂ ... ⊂ GNM, and to look for the smallest p ∈ [1,NM] such that Gp contains
an assignment of size k.

This can be done efficiently in an iterative way. We start with the empty assignment a0

and the empty partial graph G = G0. Either the current assignment is of maximal size in the
current partial graph (this is the case for a0 and G0) and we continue with the next graph (eg.
G = G1), or we can modify the assignment to increase its size by one edge in a manner similar
to the path augmentation from the previous section. Iterating this process yields the sequence
of assignments a1, ...,aN∧M (see Algorithm 11).

Increasing the size of an assignment a ⊆ G, or checking whether the assignment is of
maximal size in G can be done in a manner similar to the path augmentation of the previous
section, as shown in lemma 3.

Lemma 3 (Assignment maximality). Let a be an assignment contained in the partial graph G. We
regard G as an directed bipartite graph between the nodes S representing the points in the first image
and the nodes T representing the points in the second image, where edges are oriented from T to S if they
are in a, and from S to T otherwise. The sets of free nodes in S and T (relative to a) are denoted FS and
FT .

If there exists a path π from FS to FT in G, then a ′ = a⊕ π is an assignment containing exactly one
more edge than a, that is contained in the graph G. If there exists no such path, a must be of maximal
cardinality in G.



178 CLASSICAL ALGORITHMS FOR THE ASSIGNMENT PROBLEM

Proof. Suppose a is not a maximal cardinality assignment, let b be a maximal cardinality as-
signment in G, and consider the directed graph G ′ containing the pairings i → j appearing
only in a or only in b but not in both, directed from S to T if the pairing belongs to b and
from T to S otherwise. Clearly, G ′ is a subgraph of G (we only remove edges that belong to
both assignments, and edges from S to T that are not in b). We consider all the connected
components of this graph. We necessarily have at least one connected component having more
edges appearing in b than in a (otherwise, the number of edges in each assignment would be
the same, and a would be maximal). Such a connected component contains an augmenting
path, and since G ′ is contained in G, it is also an augmenting path in G.

Algorithm: kcard-BAP

input : {cij}
16i6N
16j6M the pairing costs

output: The solutions a0, ...,aN∧M of the k-cardinality BAP

G← ∅

a0 ← ∅

for k = 1 to N∧M do
while ak is undefined do

FS ← free nodes in G (relative to ak−1) in the first image
FT ← free nodes in G (relative to ak−1) in the second image
if there is an augmenting path π from FS to FT in G then

ak ← ak−1 ⊕ π

else
// ak−1 is a maximal assignment in G, add an edge

G← G∪ {i→ j} where (i, j) ∈ arg min(i,j)6∈G cij

end

end

end
return a0, ...,aN∧M

Algorithm 11: Algorithm computing the k-cardinality BAP solutions. The solution of the
general BAP is the solution of cardinality min(N,M).

The algorithmic complexity of the extraction of a most meaningful assignment is thus
O(N2M2). Indeed, each augmenting path search has a O(NM) cost (we find any path from FS
to FT using Dijkstra’s algorithm), and we repeat it at most NM times.
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B.1 REQUIREMENTS

You need an environment providing

• a C compiler (tested with gcc 4.3), as well as

• Python and PyQt4 for the optional visualization tools (see below for the installation)

B.2 INSTALLATION OF THE DEPENDENCIES

B.2.1 cbase

Download and install cbase (version 1.3.5 or greater) from the website http://www.hyperrealm.
com/cbase/
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$ tar -xzf cbase-1.3.5.tar.gz

$ cd cbase-1.3.5

$ ./configure

$ make

$ sudo make install

$ cd ..

B.2.2 argtable2

Download and install argtable2 (version 1.3 or greater) from the website http://argtable.

sourceforge.net/

$ tar -xzf argtable2-13.tar.gz

$ cd argtable2-13

$ ./configure

$ make

$ sudo make install

$ cd ..

Add the library installation path to the LD_LIBRARY_PATH environment variable in your
.bash_profile or .profile file:

export LD_LIBRARY_PATH=/usr/local/lib:${LD_LIBRARY_PATH}

You can then remove the source directories cbase-1.3.5 and argtable2-13 that are no longer
needed.

B.2.3 Install ASTRE

Download ASTRE from the website http://www.math-info.univ-paris5.fr/~moisan/astre/
and compile the binaries:

$ tar -xzf astre-1.0.tar.gz

$ cd astre-1.0

$ make

Add the Python library path to your PATH environment variable in your .bash_profile or
.profile file:

export PATH=/path/to/astre-1.0/bin:${PATH}

B.2.4 Install the visualization tools [optional]

Install Python and PyQt4:

$ sudo apt-get install python python-qt4-dev

Add the Python library path to your PYTHONPATH environment variable in your .bash_profile
or .profile file:

http://argtable.sourceforge.net/
http://argtable.sourceforge.net/
http://www.math-info.univ-paris5.fr/~moisan/astre/
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export PYTHONPATH=/path/to/astre-1.0/lib/python/:${PYTHONPATH}

B.3 USAGE OF ASTRE AND VISUALIZATION OF THE RESULTS

B.3.1 Visualize points description files

If you have installed the Python libraries, you can use the tview.py points description files Trajectories
visualizationviewer. ASTRE comes bundled with sample data in the data directory. To visualize the snow

sequence, type

$ tview.py data/snow.30Hz.desc

and press f(orward) and b(ackward) to move through the sequence.

Figure 99: Visualization of the snow sequence

B.3.2 Run ASTRE on the snow sequence

We run ASTRE (without holes) on the trajectory set and visualize the found trajectories astre-noholes

using the -t option of tview.py with parameter ε = 0 (maximal value of log10(NFA))

$ astre-noholes -e 0.0 data/snow.30Hz.desc tjs

$ tview.py -t tjs

We can run ASTRE (without holes) with a larger parameter to discover more trajectories:

$ astre-noholes -e 5.0 data/snow.30Hz.desc tjs

$ tview.py -t tjs

You could do the same with astre-holes to obtain the results shown in our paper, but
this takes much more time and memory on such a large sequence. You can however use the
-h parameter of astre-holes to limit the size of the holes in a trajectory, and speed up the
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Figure 100: Detections found using the ASTRE algorithm without holes for the parameter ε = 0. Only a
few trajectories have been detected.

Figure 101: Detections found using the ASTRE algorithm without holes for the parameter ε = 5. This
time, the number of detected trajectories is much larger.

computation at the expense of finding suboptimal solutions (the computation took about 2
minutes on a standard laptop):astre-holes,

and constraint
on hole size

$ astre-holes -e 5.0 -h 1 data/snow.30Hz.desc tjs

$ tview.py -t tjs

As a reference, this is the computation times on a standard laptop for astre-holes with
parameter ε = 0 and various values of the h parameter on the snow sequence (which has 40
frames):

h 1 2 3 4 10 20 30 40
approx. time (m) 2 6 9 14 31 43 46 45

astre-noholes and astre-holes copy the input points description file to the output and addtrajectory
identifiers a column containing the trajectory identifier (or -1 if the point does not belong to a trajectory).

Note also that astre-noholes and astre-holes add a header for each detected trajectory of
the form traj:<id>:lNFA = <lNFA> showing the log10(NFA) of the corresponding trajectory
id.log10(NFA)

headers
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(a) maximal hole size h = 1 (b) maximal hole size unbounded

Figure 102: Detections found using the ASTRE algorithm without holes for the parameter ε = 5 when
the sizes of the holes (a) are limited to one frame to speed-up computations, or (b) are
unbounded. You can see that almost all the trajectories have been already correctly captured
when considering only trajectories with holes of length at most one frame.

B.4 EVALUATION OF ASTRE RESULTS

B.4.1 Algorithm evaluation on real data

A qualitative visual inspection of the found trajectories already gives a rough idea of the
algorithms performances. Yet one would sometimes rather have a way to quantify those per-
formances.

The recall and the precision of the detections can be computed using the tstats program. recall and
precisionRather than taking into account only whole trajectories (without any missing or spurious

point), we chose to compute the recall and precision in terms of the number of correct links
found, that is, two consecutive points on a trajectory, possibly separated by a hole. The recall
and precision are then

precision =
# of correct links found

# of links found
,

and recall =
# of correct links found

# of actual links
,

where a link is real if it belongs to the ground-truth, is found if it belongs to the detected
trajectories and is correct if it belongs to both.

The sample snow sequence has been originally acquired at 210Hz to make it possible to
reconstruct the ground-truth by hand on this simple to track version, and has then been sub-
sampled to 30Hz to obtain a more challenging to track sequence. The snow sequence thus
also contains the ground-truth, making it possible to compute the recall and precision of our
results:

$ astre-noholes -e 0.0 data/snow.30Hz.desc tjs

$ tstats tjs

[MD] {’recall’: 0.497377, ’precision’: 0.993711,

’num_detected_trajs’: 39, }
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(a) Ground truth (b) astre-noholes, ε = 0

(c) astre-noholes, ε = 5 (d) astre-holes, ε = 5

Figure 103: Visual inspection of the algorithms results on the neige sequence

The tstats program expects to be given a points description file with the ground truth as
the fourth column and the found trajectories as the last column, but you can also specify the
index of the column if needed, and even specify two different input files, one containing the
ground truth, the other containing the detected trajectories.

The output array of tstats is in Python format, and the results of the experiments can be
quickly processed by filtering the lines starting with [MD] (stands for metadata) and evaluating
the following data structure in Python.

>>> statistics = eval("{’recall’: 0.497377,

’precision’: 0.993711, ’num_detected_trajs’: 39, }")

We compare the performances of astre-noholes when we increase the maximal value of the
log10(NFA):

$ astre-noholes -e 5.0 data/snow.30Hz.desc tjs

$ tstats tjs

[MD] {’recall’: 0.709339, ’precision’: 0.948107,

’num_detected_trajs’: 124, }

Obviously, the number of detected trajectories (and thus the recall) has increased, while the
precision has slightly decreased (we made some false detections).



B.4 EVALUATION OF ASTRE RESULTS 187

We can now compare this last result with those of astre-holes with parameter ε = 5, both
when we constrain the maximal size of a hole to 1 and when it is unbounded:

$ astre-holes -e 5.0 -h 1 data/snow.30Hz.desc tjs

$ tstats tjs

[MD] {’recall’: 0.751312, ’precision’: 0.939633,

’num_detected_trajs’: 99, }

Since you might not want to run the computation in the unbounded case on your computer,
you might want to download the results of ASTRE on the snow sequence from the ASTRE web-
site (http://www.math-info.univ-paris5.fr/~moisan/astre/) and compute its performances.
In this case, since lNFA_5.tjs does not contain both the ground truth and the detected trajec-
tories, but only the latter, we specify both the ground truth file and the detected trajectories
file:

$ tstats snow.30Hz.desc lNFA_5.tjs

[MD] {’recall’: 0.764953, ’precision’: 0.895577,

’num_detected_trajs’: 111, }

Clearly, we have gained almost nothing in recall, but slightly lost in precision by allowing
unbounded hole lengths. However, this might be due to properties of this particular data and
might not be the case in a more general setting.

As a reference, here is a table with the recall, precision, and number of detected trajecto-
ries for astre-holes on the snow sequence with parameter ε = 0 and various values for the
maximal hole length parameter h (the sequence spans 40 frames):

h 1 2 3–6 7–40
recall 0.56 0.56 0.57 0.58
prec. 0.94 0.93 0.92 0.91
#trajs 39 38 37 39

and when ε = 5:

h 1 2 3 4–6 7–40
recall 0.76 0.77 0.76 0.77 0.76
prec. 0.92 0.91 0.90 0.90 0.90
#trajs 119 112 110 111 108

B.4.2 Systematic algorithm evaluation using synthetic trajectories

We generate 5 trajectories spanning 20 frames, add 10 random noise points in each frame synthetic
trajectories
generation

and then remove 20% of the trajectory points, and run ASTRE (with holes) with the default
parameter ε = 0

$ tpsmg -N 10 20 5 pts

$ tcripple -r 20 pts pts

$ astre-holes pts tjs

Note that when generating (integer-valued) point description files with tpsmg, we forbid two
trajectories from sharing a point (otherwise the overlapping trajectory is regenerated), and we
do not add noise points at the same location as one trajectory point. By default, all trajectories
are constrained to stay in the frame (otherwise they are regenerated), but this behavior can be

http://www.math-info.univ-paris5.fr/~moisan/astre/


188 INSTALLATION AND USAGE OF THE ASTRE SOFTWARE

changed with the -F option (see the ASTRE reference in chapter C for a description of the astre
options).

Also note that when crippling points description files with tcripple, only points belonging
to a trajectory are removed (the noise points are kept).
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C.1 ASTRE POINTS AND TRAJECTORIES DATA FILE FORMAT

The format of the files is the following

type = PointsFile v.1.0

uid = 1

width = 480

height = 360

DATA

0 292 204 4

0 247 304 51

...

All the lines before DATA are headers of the form key = value, and all the lines after DATA

are array of floats representing one point, the minimum data for a point is 3 column:

<frame> <x> <y>

but often they have a trajectory identifier trajectory
identifier

191
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<frame> <x> <y> <t>

where t is the id of the trajectory to which the point belong, or -1 if the point does not
belong to a trajectory.

The data entries can be preceded by an optional column name:

f:0 x:292 y:204 t:4

...

in which case, all the tags of one column must be the same.
If you need it, you can add other data columns to represent the intensity of the points, etc. It

is also possible to add length-varying descriptors (for instance, a polygonal shape descriptor)
by using special headers: describe each shape with a unique identifier as header entries, and
reference the corresponding identifier in your data column:

type = PointsFile v.1.0

...

shape:0 = (4.0, 18.0) (17.0, 10.0) ... (14.0, 18.0)

shape:1 = (2.0, 5.0) (14.0, 11.0) ... (5.0, 15.0)

...

DATA

<frame> <x> <y> <shape_id> <trajectory_id>

...

The required headers arepoints
description file

headers • type to identify the file format version (its value should be PointsFile v.1.0),

• width and height representing the frame size,

• uid with an integer identifier representing the data. This can be an arbitrary integer, and
from our personal experience, it sometimes proves useful to avoid accidentally mixing
data and this is why it is mandatory, although you can safely set it to 0 if you do not
plan to use it.

C.2 USER REFERENCE

C.2.1 ASTRE (astre-noholes and astre-holes)

astre-noholes
astre-holes The astre-noholes and astre-holes programs greedily detect trajectories in a points de-

scription file using the a-contrario framework. The astre-noholes can be used when the tra-
jectories do not contain holes, and its detection criterion is optimized for this case. In general,
astre-noholes is faster and more memory-efficient than astre-holes.

The basic usage to detect trajectories of log10(NFA) less than 0 is:

$ astre-noholes <in> <out>

$ astre-holes <in> <out>

The options are:

-epsilon <e> (or -e <e>) set the maximal log10(NFA) for the trajectories detec-
tion (default: 0.0)
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-max-hole-length <h>

(or -h <h>)
set the maximal size of a hole when using
astre-noholes (default: any length). This can be used
to lower the computational and memory costs, at the
expense of not considering all the possible trajectories.

ASTRE adds a column containing trajectory identifiers, or -1 if a point does not belong to
a detected trajectory. It also adds headers of the form traj:<id>:lNFA = <lNFA> that describe
the log10(NFA) of each trajectory.

Using the programs with the option -tag-NFA only tags each trajectory with its NFA and
exits. This can be useful if you have detected trajectories using another program, and want to
filter out trajectories above a certain NFA.

For long computations, you might want ASTRE to periodically save the partial detections,
to make detection backups or to monitor detected trajectories. This is possible using the
-save-partial <filename> option. Restarting a computation is done using the -restart op-
tion and using the partial detections file as input:

$ astre-holes --save-partial partial_tjs pts tjs

...[interrupt computations]

$ astre-holes --save-partial partial_tjs --restart partial_tjs tjs

Finally, the auto-crop option is not thoroughly tested but might help detecting trajectories
when image sequences have some points in the center of the images and a lot of empty space
around, by automatically cropping the empty space, which changes the implicit scale of the
images, and hence the NFA.

C.2.2 Recall and precision computation (tstats)

tstats
The tstats program outputs the recall and precision defined in terms of real, correct and

found links, as well as the number of detected trajectories.
The basic usage is:

$ tstats [<ground truth file>] <detected trajectories file>

If the ground truth file is not specified, this assumes that the detected trajectories file contains
both the ground truth and the trajectories detected by the algorithm. The ground truth and
the detected trajectories file must have the same uid header. By default, the ground truth file
should have the trajectories identifiers in the fourth column and the detected trajectories file
should have them in the last column.

A link is two successive (possibly separated by a hole) detected points in a trajectory. A link
is real if it belongs to the ground truth, it is found if it belongs to the detected trajectories, and
it is correct if it belongs to both, and we define

precision =
# of correct links found

# of links found
,

and recall =
# of correct links found

# of actual links
,

The recall corresponds to the proportion of real points that have been detected, while the
precision corresponds to the proportion of detected points that are correct, that is, it inversely
relates to the number of false detections.
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The options are:

-real-traj <r> (or -r <r>) the 0-based index of the column containing the real
trajectories in the ground truth points description file
(default: 3)

-found-traj <f> (or -f <f>) the 0-based index of the column containing the real tra-
jectories in the detected trajectories points description
file (default: -1, the last column)

C.2.3 PSMG Point Set Motion Generator (tpsmg)

tpsmg
The tpsmg program emulates the Point Set Motion Generator, that randomly draws some

points in the image frame and displace them by updating their acceleration from frame to
frame with a Gaussian variable.

The basic usage to generate n trajectories spanning K frames in the file out is:

$ tpsmg <K> <n> <out>

The options are:

-N <N> add N noise points to each image (the noise points cannot share the
location of a trajectory point)

-r the number of noise points added to each image is not constant, but
rather a number drawn uniformly between 0 and N

-F do not force trajectories to stay inside the frames
-w <w> -h <h> set the image width and height
-a <a> set the variance of the speed amplitude update (default: 0.2)
-o <o> set the variance of the speed orientation update (default: 0.2)
-v <v> set the mean initial speed of the trajectories (default: 5.0)
-V <V> set the variance of the initial speed of the trajectories (default: 0.5)

The trajectories are generated in the following way:trajectory
generation

1. the first point of each of the n trajectories is drawn uniformly in the first frame of the
sequence,

2. each trajectory is generated in turn:

a) we draw a normal variable of mean v and variance V that defines the initial speed
amplitude, and a variable drawn in [0, 2π] that defines the initial speed orientation,

b) we update the trajectory position according to the speed,

c) we add the point to the trajectory, unless it leaves the frame or it is on the location of
a previously generated trajectory, in which case we regenerate the whole trajectory,

d) we draw a normal variable of mean 0 and variance a representing the speed ampli-
tude update, and a normal variable of mean 0 and variance o representing the speed
orientation update,

e) we update the speed amplitude and orientation

3. we add N random points in each frame such that they do not share position with a
trajectory point (if the -r option is set, we add a number of noise points drawn uniformly
between 0 and N,
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4. we shuffle the position of all the points in each frame in the points description file.

If the -F option has been set, the trajectories are not forced to stay inside the frame, and
as they leave the image they are ended and a new trajectory is started in the next frame
by choosing a random point uniformly on the border of the image frame and iterating the
trajectory generation process. Note in this case that if a trajectory has less than 3 points in the
image frame, we regenerate it, and if a trajectory leaves the image frame less than 3 frames
before the end of the sequence, no new trajectory is generated, since it could not comply with
the above 3-frames constraint.

Note that for some parameters, it is possible that the tpsmg does not terminate, in particular
if the amplitude of the trajectory acceleration is too high, it is possible that no trajectory fits in
the frame, and the program keeps trying to regenerate them.

The tpsmg program also outputs metadata indicating the global maximal speed and acceler-
ation of the generated trajectories:

$ tpsmg 20 5 pts

[MD] { ’max_speed’: 5.83095, ’max_accel’: 2.82843 }

C.2.4 Point set crippling (tcripple)

tcripple
The tcripple program remove a certain amount of points from the trajectories contained in

a points description file to simulate missing detections.
Note that the number of points removed is generally not a fixed proportion of the input

points, but rather, each point from a trajectory is removed with a certain probability r.
Note also that tcripple only affects point on a trajectory, that is, points having a trajectory

tag different from −1 (and thus, points description files need to have a trajectory identifier
column when using tcripple).

The basic usage to remove points in trajectories with probability r is:

$ tcripple -r <r> <in> <out>

The options are:

-r <r> the probability that a point in a trajectory is removed
-traj-col <t> (or <tt>-t <t>) the 0-based index of the column containing the trajec-

tories (default: -1, the last column)

C.2.5 Viewer (tview.py)

tview.py
If you have installed the Python libraries, you can use the tview.py program to view points

description files and the point trajectories.
The basic usage is

$ tview.py [-t] <points description file>

The option -t indicates that we want to load the trajectories contained in the points de-
scription file, where the trajectories are defined by the last column of the points description
file. Points having the same identifier as the last column are in the same trajectory, and points
having the special identifier −1 do not belong to any trajectory.

The options are:



196 USER REFERENCE FOR THE ASTRE SOFTWARE

-trajectory-column <n> the column (index is 0-based) describing the trajecto-
ries (default is -1, the last column)

-show-trajectories (or -t) load and show trajectories using the trajectory identi-
fiers in the column trajectory-column

and the commands are:

f/b go forward or backward in the sequence
q quit the program
+/-/= zoom in/out/default
t toggle trajectory drawing (when trajectories have been loaded)
m set the current frame as the first frame from which to draw trajectories
h highlight the points that belong to a trajectory in red
x randomize the trajectory colors

C.2.6 Naive ASTRE implementation in Python (naive_astre.py)

naive_astre.py ASTRE comes with a naive implementation in the Python language for clarity, that should
however not be used with large datasets, as it is slow and requires a lot of memory.

The basic usage is

$ naive_astre.py <in> <out>

and the options are

-solver [noholes|holes] the solver (without holes or with holes)
-eps <e> (or -e <e>) the maximal value of log10(NFA)
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Tomaževič, D., B. Likar, and F. Pernuš

2002 “Comparative evaluation of retrospective shading correction methods”, Journal of Mi-
croscopy, 208, 3, pp. 212–223, issn: 1365-2818, doi: 10.1046/j.1365-2818.2002.01079.
x. (Cited on p. 18.)

Vachier, Corinne and Fernand Meyer

2005 “The Viscous Watershed Transform”, Journal of Mathematical Imaging and Vision, 22,
2-3, pp. 251–267. (Cited on p. 26.)

Veenman, Cor J., Emile A. Hendriks, and Marcel J. T. Reinders

1998 “A Fast and Robust Point Tracking Algorithm”, in International Conference on Image
Processing, vol. 3, pp. 653–657.

Veenman, Cor J., Marcel J. T. Reinders, and Eric Backer

2001 “Resolving Motion Correspondence for Densely Moving Points”, IEEE Trans. Pattern
Anal. Mach. Intell., 23, 1, pp. 54–72. (Cited on p. 155.)

2003a “Establishing motion correspondence using extended temporal scope”, Artif. Intell.,
145, 1-2, pp. 227–243. (Cited on p. 76.)

2003b “Motion tracking as a constrained optimization problem”, Pattern Recognition, 36, 9,
pp. 2049–2067. (Cited on pp. 7, 48–50, 73, 75, 76, 155.)

Veit, Thomas, Frédéric Cao, and Patrick Bouthemy

2007 “Space-time A Contrario Clustering for Detecting Coherent Motions”, in 2007 IEEE
International Conference on Robotics and Automation, ICRA 2007, 10-14 April 2007, Roma,
Italy, pp. 33–39. (Cited on p. 51.)

Vincent, Lee and Pierre Soille

1991 “Watersheds in digital spaces: An efficient algorithm based on immersion simula-
tions”, IEEE PAMI, 1991, 13, 6, pp. 583–598. (Cited on p. 19.)

Wertheimer, Max

1922 “Untersuchungen zur Lehre von der Gestalt”, Psychologische Forschung, 1, 1 [Jan.],
pp. 47–58. (Cited on p. 51.)

Xie, Jun, Shahid Khan, and Mubarak Shah

2008 “Automatic Tracking of Escherichia Coli Bacteria”, in Medical Image Computing and
Computer-Assisted Intervention - MICCAI 2008, 11th International Conference, New York,
NY, USA, September 6-10, 2008, Proceedings, Part I, ed. by Dimitris N. Metaxas, Leon
Axel, Gabor Fichtinger, and Gábor Székely, vol. 5241, Lecture Notes in Computer
Science, Springer, pp. 824–832, isbn: 978-3-540-85987-1. (Cited on p. 19.)

Yilmaz, Alper, Omar Javed, and Mubarak Shah

2006 “Object tracking: A survey”, ACM Comput. Surv., 38, 4. (Cited on pp. 2, 48.)

Yilmaz, Alper, Xin Li, and Mubarak Shah

2004 “Contour-Based Object Tracking with Occlusion Handling in Video Acquired Using
Mobile Cameras”, IEEE Trans. Pattern Anal. Mach. Intell., 26, 11, pp. 1531–1536. (Cited
on p. 48.)

http://dx.doi.org/10.1046/j.1365-2818.2002.01079.x
http://dx.doi.org/10.1046/j.1365-2818.2002.01079.x


BIBLIOGRAPHY 209

Zhang, Bo, Jost Enninga, Jean-Christophe Olivo-Marin, and Christophe Zimmer

2006 “Automated super-resolution detection of fluorescent rods in 2D”, in Proceedings of the
2006 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Arlington,
VA, USA, 6-9 April 2006, IEEE, pp. 1296–1299. (Cited on p. 19.)

Zhu, Song Chun and Alan L. Yuille

1996 “Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multi-
band Image Segmentation”, IEEE Trans. Pattern Anal. Mach. Intell., 18, 9, pp. 884–900.
(Cited on p. 48.)

Zimmer, C., B. Zhang, A. Dufour, A. Thebaud, S. Berlemont, V. Meas-Yedid, and J.-C. Olivo-
Marin

2006 “On the digital trail of mobile cells”, IEEE Signal Processing Magazine, 23 [May], pp. 54–
62, doi: 10.1109/MSP.2006.1628878. (Cited on p. 15.)

http://dx.doi.org/10.1109/MSP.2006.1628878

	Frontespizio
	Résumé
	Abstract
	Remerciements
	Contents
	1 Introduction
	2 Céleste
	2.1 Introduction
	2.1.1 Aging of Escherichia coli bacteria
	2.1.2 Automated cell movie analysis
	2.1.3 Céleste

	2.2 Image simplification by over-segmentation
	2.2.1 Image renormalization
	2.2.2 Non-uniform dilation
	2.2.3 Blobs and connection graph simplification

	2.3 Cell segmentation and tracking
	2.3.1 Cell transition likelihood
	2.3.2 Likelihood versus risk
	2.3.3 Tracking segmented cells
	2.3.4 Tracking over-segmented cells
	2.3.5 Software
	2.3.6 Current results


	3 ASTRE: A-contrario single trajectory extraction
	3.1 Introduction
	3.1.1 Related work
	3.1.2 Trajectory estimation versus trajectory detection

	3.2 Trajectories without holes
	3.2.1 Principles of the a-contrario framework
	3.2.2 Trajectory detection
	3.2.3 Data quantization
	3.2.4 Algorithm
	3.2.5 Variable number of points
	3.2.6 Theoretical analysis

	3.3 Trajectories with holes
	3.3.1 Number of false alarms
	3.3.2 Algorithm
	3.3.3 Variable number of points and rectangular images
	3.3.4 Theoretical results


	4 ASTRE performances
	4.1 The ROADS tracking algorithm
	4.2 Experimental setup
	4.2.1 Comparison criteria

	4.3 Trajectories without holes
	4.3.1 Variable number of spurious points experiment
	4.3.2 Variable density experiment
	4.3.3 Sensitivity to data smoothness
	4.3.4 Parameter tuning
	4.3.5 NFA as a criterion for trajectory selection

	4.4 Trajectories with holes
	4.5 Trajectories of real-world images
	4.5.1 The snow sequence
	4.5.2 Parameter tuning
	4.5.3 Comparison of ROADS and NFA algorithms

	4.6 Conclusion

	5 The WRAP algorithm
	5.1 General definitions and classical approachesfor the point correspondence problem
	5.1.1 Classical approaches for the point correspondence problemin a simple setting
	5.1.2 Classical approaches in presence of spurious and missing detections
	5.1.3 Modeling data
	5.1.4 The maximum likelihood and maximum a posteriori detectors
	5.1.5 Algorithms

	5.2 WRAP (weighted recall and precision)
	5.2.1 The WRAP optimal criterion
	5.2.2 The WRAP algorithm
	5.2.3 Behavior of WRAP
	5.2.4 WRAP assignment maps
	5.2.5 WRAP computation using MCMC

	5.3 Experiments
	5.3.1 Performances of classical algorithms
	5.3.2 Modified nearest neighbor algorithm
	5.3.3 WRAP as an algorithm

	5.4 Conclusion

	6 Parameterless algorithmsfor the point correspondence problem
	6.1 Meaningful pairings and meaningful assignments
	6.1.1 Meaningful pairings
	6.1.2 Meaningful assignments
	6.1.3 Most meaningful assignment extraction,largest meaningful assignment extraction
	6.1.4 Asymptotic behaviors

	6.2 Experiments
	6.2.1 Most meaningful assignment and largest meaningful assignment
	6.2.2 Choice of the NFA parameter
	6.2.3 Performance of the NFA algorithms
	6.2.4 Filtering and parameterless algorithms

	6.3 Application to parameterless tracking, and use with quantized data
	6.3.1 Parameterless trajectory tracking
	6.3.2 Application to aggregate tracking
	6.3.3 Quantization


	7 Conclusion
	A Classical algorithms for the assignment problem
	A.1 The linear assignment problem
	A.2 The bottleneck assignment problem

	B Installation and usage of the ASTRE software
	B.1 Requirements
	B.2 Installation of the dependencies
	B.2.1 cbase
	B.2.2 argtable2
	B.2.3 Install ASTRE
	B.2.4 Install the visualization tools [optional]

	B.3 Usage of ASTRE and visualization of the results
	B.3.1 Visualize points description files
	B.3.2 Run ASTRE on the snow sequence

	B.4 Evaluation of ASTRE results
	B.4.1 Algorithm evaluation on real data
	B.4.2 Systematic algorithm evaluation using synthetic trajectories


	C User reference for the ASTRE software
	C.1 ASTRE points and trajectories data file format
	C.2 User reference
	C.2.1 ASTRE (astre-noholes and astre-holes)
	C.2.2 Recall and precision computation (tstats)
	C.2.3 PSMG Point Set Motion Generator (tpsmg)
	C.2.4 Point set crippling (tcripple)
	C.2.5 Viewer (tview.py)
	C.2.6 Naive ASTRE implementation in Python (naive_astre.py)


	Bibliography

