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RÉSUMÉ

L’objectif principal de la thèse a été d’identifier expérimentalement les comportements méca-
niques et rhéologiques de milieux granulaires dans un environnement de complexité croissante.
En particulier, je me suis intéressé aux phénomènes de fluage sous contrainte en essayant de mieux
comprendre l’impact des vibrations et la présence d’une faible quantité d’eau piégée entre les
grains.

Au début de ma thèse, j’ai monté un système cissométrique permettant de réaliser des tests
mécaniques de fluage. Ce dispositif a spécialement été conçu pour accéder aux domaines de très
faibles contraintes cisaillements et de déformations. En outre, c’est un système de mesure relative-
ment simple qui peut être adapté facilement aux problèmes de terrain et ainsi, à terme, permettre
d’évaluer les caractéristiques mécaniques d’un sol " réel ". Au laboratoire, j’ai étudié les propriétés
fondamentales de fluage sous contrainte d’un empilement granulaire de billes de verre de taille
d = 200µm sous le seuil de Coulomb. Une originalité de mon montage a été de mettre au point
un système de lit fluidisé qui, en alliant flux d’air et vibration, m’a permis de fabriquer des em-
pilements de compacité initiale contrôlée. En partant d’une situation très décompactée, par im-
pacts successifs, on peut obtenir des compacités plus importantes. Grâce à des mesures de perte
de charge, on accède à la perméabilité moyenne de la structure granulaire, j’ai établi une relation
d’étalonnage entre perméabilité et compacité ; cela permet de remonter précisément à la com-
pacité. Ce montage permet en outre, par injection dans le granulaire d’un gaz saturé en vapeur
d’eau, d’imposer sous un faible gradient thermique une condensation et d’obtenir une quantité
contrôlée d’eau piégée dans l’empilement. Cette méthode permettra par la suite d’aborder le cas
de granulaires cohésifs.

Cette étude a mis en évidence que les seuils de Coulomb varient fortement avec la compacité,
mais en plus , on a mis en évidence une contrainte σr appelée " contrainte de première rupture "
qui traduit des réorganisation internes dans l’empilements et qui est d’environ 1/3 de la contrainte
seuil maximale. En outre, grâce à la précision de la mesure de déformation, on a obtenu les ré-
ponses élastiques à de petits cycles en contrainte et on a établi que le module cisaillement élas-
tique G augmente linéairement en fonction de la compacité, en accord avec le modèle d’élasticité
non-linéaire de Hertz (modèle de champ moyen). En absence de vibration, nous avons réalisé une
étude paramétrique complète du fluage en variant systématiquement la compacité et la contrainte
de cisaillement. Dans tous les cas nous avons mise en évidence une dynamique de déformation lo-
garithmique pour temps longs.

Il a été montré qu’une dynamique de déformation logarithmique peut-être observée même
sous de faibles niveaux de contrainte. Elle peut être caractérisée empiriquement par un modèle de
rhéologie initialement introduit par Derec et al.[13] mettant en jeu une variable dynamique interne
appelé "fluidité". Les deux paramètres du modèle (fluidité initiale et coefficients de vieillissement)
sont mesurés en fonction de la compacité et du niveau de contrainte. De plus, bien avant le seuil
de Coulomb, un seuil dit de "micro-rupture" est observé, correspondant à des réarrangements
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vi RÉSUMÉ

granulaires qui ont pour effet d’augmenter le coefficient de vieillissement, c’est à dire de ralentir la
dynamique de fluage avant la rupture finale correspondant au seuil de Coulomb. Cette étude a été
prolongée pour des empilements sous vibration et en présence d’une quantité d’eau ajoutée.

Notre étude sur les seuils de contrainte, l’élasticité effective et la dynamique de fluage, a été
prolongée pour des empilements sous vibration générés par des transducteurs piézo-électriques
enfouis sous la surface. On a trouvé aussi que les seuils de Coulomb à différentes compacités,
pouvaient être notablement diminués en fonction du niveau de vibration même pour de faibles
accélérations moyennes. On constate que le module élastique est lui aussi diminué par la vibration
et que sa valeur est quasiment réversible pour des temps faibles d’application de la vibration. On a
étudié aussi l’influence des formes spectrales des vibrations sur la dynamique de fluage. Pour une
même fréquence d’excitation et un même niveau d’énergie élastique dans le granulaire, deux types
de sources ont été étudiés : une vibration sinusoïdale produisant une réponse très harmonique et
des créneaux produisant un spectre beaucoup plus large.

Une faible quantité d’eau peut aussi être ajoutée et ainsi modifier les propriétés mécaniques
par la présence de ponts capillaires. Nous avons mis au point et étalonné une méthode d’injec-
tion d’un air humidifié à une température légèrement supérieure à la température ambiante. On
a vérifié (par pesée avec une micro balance) que la condensation dans le granulaire augmentait
avec ce temps d’injection et que la quantité d’eau condensée dépendait faiblement de la hauteur.
C’est donc une méthode intéressante pour étudier les granulaires faiblement humides. Des expé-
riences préliminaires montrent la dépendance des seuils de Coulomb de la réponse élastique et de
la dynamique de fluage avec la quantité d’eau piégée.



ABSTRACT

The main objective of the thesis was to identify experimentally the mechanical and rheological
behavior of granular medium in an environment varying in complexity. In particular, I was interes-
ted to creep phenomenon under stress in trying to understand better the impact of vibration and
the presence of a small amount of water trapped between the grains.

At the beginning of my thesis, I set-up a system to perform mechanical creep tests. This device
has been specially designed to access to areas of very low shear stresses and deformations. In addi-
tion, it is a device that can be easily adapted to field environment, and this to assess the mechanical
properties of ’real’ soils. In the laboratory, I studied the basic properties of creep strain of a granu-
lar resulting from the packing of glass beads with means diameter d = 200µm under the Coulomb
threshold. An originality of my set-up was the fluidized bed, which uses air flow and vibration, and
this allows the control of the initial packing fraction. Starting from a very loose packing, and using
successive mechanical, a higher compacity can be reached. Through pressure difference measu-
rement, we determine the average permeability of the granular medium. Then, I established a ca-
libration relationship between the permeability and the packing fraction, which can be used to
go back precisely to the packing fraction. This setup also allows us to inject in a granular medium
air saturated with water vapor, imposed under low thermal gradient and condensation to obtain a
controlled amount of water content. It will be possible to apply this method to the case of cohesive
granular medium.

This study showed that the Coulomb thresholds varies strongly with the packing fraction. In
addition, it showed a stress σr called "the first rupture", that results from internal reorganizations
in the granular medium and which is approximated 1/3 of the maximum stress threshold. Moreo-
ver, thanks to the precision of measuring deformation, we obtained the elastic response with small
stress cycles, and we found that the shear elastic modulus G increases linearly with the packing
fraction, in agreement with the model of nonlinear elasticity of Hertz (mean field). In the absence
of vibration, we performed a parametric study of creep in varying the packing fraction and shear
stress. In all cases, we found the dynamics of logarithmic creep for long times.

The logarithmic creep can be observed even under low stress levels. It can be empirically cha-
racterized by a rheological model introduced by Derec et al.[13], involving an internal dynamic
variable called "fluidity". The two model parameters (initial fluidity and coefficient of aging) are
measured in terms of packing fraction and the stress level. Before the Coulomb threshold, the
"first-rupture" is observed, that have the effect of increasing the aging coefficient. It slows creep
dynamics before the final threshold corresponding to the Coulomb threshold. This study was ex-
tended to granular medium under vibration and in the presence of water added.

Our study on stress threshold, the elastic modulus and dynamics of creep, has been exten-
ded to granular medium under vibration generated by piezoelectric transducers buried under the
surface. We also found that the Coulomb thresholds at different packing fractions, could be signi-
ficantly reduced depending on the level of vibration even at low accelerations averages. It is found
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that the elastic modulus is also reduced by the vibration and its value is almost reversible for low-
time application of vibration. We also studied the influence of the spectral shapes of vibration. For
the same excitation frequency and the same level of elastic energy in the granular, two types of
vibration were studied : a sinusoidal vibration producing a very harmonic response and a square
vibration producing a much wider spectrum.

A small amount of water can be added and thus modifies the mechanical properties by the pre-
sence of capillary bridges. We developed and calibrated a method for injecting a humidified air at
a temperature slightly above room temperature. We checked (by weighing with a micro scale) that
in the granular medium the condensation increased with the injection time and that the amount
of water depended weakly on the height. This is an interesting method to study a wet granular.
Preliminary experiments show the dependence of the Coulomb threshold of the elastic response
and dynamic creep with the amount of water content.
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2 CHAPITRE 1. INTRODUCTION GÉNÉRALE

1.1 Introduction

This work has originated from a collaboration between the Laboratoire de Physique et Méca-
nique des Milieux Hétérogènes (PMMH) in Pierre and Marie Curie University, a physics laboratory
and the Institut des Sciences de la Terre d’Orléans (ISTO) in University of Orléans specialized in
soil-science. The objective of the current collaboration is to provide a better understanding to a
class a granular systems called "sandy soils". This type of soil is composed of a granular matrix
made of sandy grains of size reaching fractions of a millimeter. A second granular scale is mixed
to the first one and consists of fine micro particles, essentially made of clay. The fraction of clay is
very small and provides marginal cohesion to the packing. This last system is known in the soil-
science community for its inherent structural instability and all the problem it poses in the context
of agriculture and food production in deserted areas of the planet.

The results of my thesis is not directly applied to sandy-soils, however it may hopefully esta-
blish an original conceptual direction towards a better understanding of restructuration process
due to mechanical constraints in loosely cohesive granular materials.
More generally, granular materials may come in a very large variety of shapes, sizes and inter-
granular interactions. Usually, the expression "granular material" is restricted to assemblies of
macroscopic particles such that thermal processes are quite irrelevant to describe the macrosco-
pic physics and the mechanical properties. In the last decades, an intense scientific activity has
been devoted to the understanding their constitutive relations. In the physics community the ef-
fort was principally focused on the fundamental understanding of simplified granular models such
as idealized packing of spheres. In spite its relative simplicity, it was proven to be a very successful
approach to identify generic behavior and clarify fundamental mechanisms at work for example
in the rheology of an assembly of grains interacting microscopically through solid contacts. It has
helped to shed new light on much more complex systems involving non only granular materials
but also belonging to the class of complex fluids. This reductionist vision is currently evolving by
the addition of elements of increasing complexity. My thesis follows this line of thought. First, I
will consider the mechanical response of packing of dry glass beads. Then, I will study the changes
in behavior due to the addition of weak vibrations. Finally, I will consider the case where a small
amount of water is added to the packing.

The purpose of this first chapter is to present the concepts I will use in the framework of my
thesis. First, I will present the basics for the "jamming transition" of a packing of grains and its rela-
tion to other complex fluids and glassy systems. Then, I will discuss the notion of elastic response
of a granular packing. To this purpose, I will present the standart Hertz model for granular contacts
rigity and its consequence on the relationship between the shear elastic modulus and the packing
fraction.
Then, I will describe the generic response of a granular material to shear and introduce the Mohr-
Coulomb theory which is currently used to characterize the shear strength of a granular medium.
Thereafter, I will discuss the creep phenomenonology and empirical models used to describing
long time deformation in soils. To complement the description of lond time relaxation, I will present
also some notions of the recent descrition of complex fluid rheology involving internal complex
relaxation mechanisms. I will then introduce the notion of material ’fluidity’ which is a base of
analysis of my experimental results.
After that, I will review some elements describing the influence of vibration on the mechanical
responses and flow properties of a granular medium. Finally, I will present a brief summary of the
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works that have been devoted to the role of water content in a granular packing. In particular, I will
discuss how the cohesion of wet granular matter may change with an amount of water added.

1.2 Jamming et RCP d’un milieu granulaire

For a granular assembly at low packing fraction φ, the spatial distribution of grains can be
such that at zero agitation, particles do not touch each other and thus, the granular pressure is
p = 0. If energy is transfered to the system via some external driving, the particles will collide as
in a gas or in a liquid. In this last case, the square of velocity fluctuations is a good macroscopic
variable decribing the transfer of momentum and energy. This is the so-called granular gas state.
An equation of state linking the pressure to granular temperature can then be established. In the
limit of zero confining pressure and zero temperature, as φ is increased, the granular system will
reach a value φ j , at which the particles just touch and lock into a rigid but disordered structure. To
increase φ further one has to exert an external confining pressure p > 0 and compress elastically
the grains. This is the ’jamming transition’ : a transition from a liquid-like state to a rigid solid-
like state charaterize by a positive macroscopic elastic shear modulus. The critical nature of the
jammed state and the values of φ j at the jamming transition depend on the dimensionality D of
the system as well as some microscopic properties of the individual particles.

FIGURE 1.1: Jamming phase diagram proposed by Liu and Nagel [53]

In the absence of inter-granular friction (µ = 0), the jamming point will correspond to a criti-
cal number of contact : zc = 2D . For µ 6= 0, the addition of rotational degrees of freedom lead to a
drastic change in the value of the critical number of contacts : Zc = D+1. As a consequence, grains
with friction can undergo a jamming processes at much lower packing fraction [26] than friction-
less particles. For spherical, frictionless and rigid particles, the density at which a packing is jam-
med is often called the ’random close packing’ (RCP) density φr cp . From numerous experiments
and numerical simulations, one finds that for large number of particles, the random close packing
densities are [43, 82] : in 2D φr cp ≈ 0.84 and in 3D φr cp ≈ 0.64. In spite of the many consistent expe-
rimental and numerical determinations of the φr cp values, a clear mathematical definition of what
RCP means and a precise analytical calculation of it, remain elusive. In practice, a rigid assembles
of frictional spheres can experience a jammed state for a packing fraction range : 0.55 ≤φ≤ 0.635.
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In 1998, Liu and Nagel [53] sketched a speculative phase diagram suited to unify the description
of many different materials such as granular materials, pastes, dense suspensions, foams, glasses
etc... (see fig.1.1). All these systems display a severe slowing down of their dynamics leading to
quasi blockade of the flow which is usually called "jamming". These authors suggested that tem-
perature, packing fraction and stress can play a similar role as jamming would occur at low tem-
perature, low applied stress and low volume per grain. For a granular medium, as we noted, the
thermodynamic temperature plays a priori no role. However, a timely question is to understand to
which extend external mechanical vibration could play a role similar to the thermodynamic tem-
perature for glassy thermal systems.

1.3 Propriétés mécaniques et déformation par fluage d’un milieu
granulaire

1.3.1 Relation entre contrainte et déformation

FIGURE 1.2: Schematic representation of a direct shear test (left) and variation of the shear stress
as a function of shear strain as a function of the granular medium compacity (right).

A well known method for characterizing the shear-strain relation for a granular medium is for
example, the direct shear test (sketch on fig.1.2 left). In this test, the shear stress is simply calculated
by the relation :

σ= Fh/S (1.1)

where S is the contact surface area, Fh is the shear force for a confining pressure P = Fv /S. During
deformation, dense samples tend to dilate, and loose ones to contract. This is the "dilatancy ef-
fect" first noted and qualitatively explained by O.Reynolds in the X I X th century. At high packing
fractions, the shear-strain curve presents a peak of shear stress called the maximum shear stress.
If one continues to shear, the resistance of the material decreases toward a constant value called
the residual resistance of the material. On the other hand , if the packing fraction is low, one does
not observe a peak of resistance, but only the residual resistance at large deformation. These re-
sults are very generic and were found in other shear tests like : the annular shear or the triaxial test.
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Note that for all experimental tests, one observes in practice a strong localization of the deforma-
tion field called a "shear band". Typically shear bands occurs at the stresses around the peak value
for dense packing and when the stress-strain curve saturates for loose packing. In dry granular
packing, the shear-band lateral extension is of a few grain size. At low deformation, one observes
an elastic regime (fig.1.2 left). In this regime, the relations between the shear stress and the shear
strain are linear and reversible. For an ideal shear test, the slope would correspond to the shear
elastic modulus G at a given confining pressure P .

1.3.2 Réponse élastique d’un milieu granulaire

FIGURE 1.3: Empirical behavior of a large class of granular materials based on the response to shear
deformation [33]

.

In practice, the elastic domain has been tested by different experimental methods (static or
dynamic). Static experiment were performed by very small charge-discharge cycles of shear stress
or shear strain, at a low frequency, in order to determine the shear modulus G . On the other hand,
dynamic experiments, mostly using the sound wave propagation at a high frequencies (some kH z)
were performed. An elastic behavior is actually identified under very small deformations (fig.1.3).
The deformation level corresponding to the transition between the elastic and plastic behavior can
vary by one to two orders of magnitude [33] according to the material and the nature of granular
interactions. Fig.1.3 shows that, for material such as sand or clay. Measurements were performed
at very low deformation level to identify the elastic domain (below 10−4(m/m)). In this thesis, we
developed an experimental set-up suited to monitor deformations in this range (Chapter3).

1.3.3 Modèle de Hertz

First, we present the classical theory of inter-particular forces between two spheres for a linear
material elasticity. When two spheres of radius R are compressed against each other by a force F ,
they are flattened in the vicinity of the contact zone in the form of a disk of radius a as the distance
between their centers decreases of value δ. The deformation is the displacement relative to the size
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characteristic of the deformed area δ/a. From Hooke’s law, the relationship between the average
stress σ and the deformation yields :

σ=
FN

a2
∝ Eg

δ

a
(1.2)

where Eg the grain Young’s modulus, and the relationship between the radius of the contact area
and the displacement is : a2 ≈ Rδ. Then, the contact force scales in a non-linear way with δ as :

FN ∝ R2Eg (
δ

R
)3/2 (1.3)

FIGURE 1.4: Schematic representation of the contact between two spheres with a displacement δ
(left) and relation between the force and the displacement (right).

The full mechanical calculation was first carried by Hertz [45] and he found that the normal
force between two spheres of identical radii is :

FN =
8g

3(1−νg )
R2(

δ

R
)3/2 (1.4)

where Gg is the shear modulus of the material and νg the Poisson ratio. If the spheres have different

radii of curvature, it can be shown that : R = 2R1R2
R1+R2 .

The previous qualitative argument can be extended to the shear stiffness calculation. If one calls
FT , the tangential force component between two spheres, with FT < µsFN as a condition for no
slip, where µs is the coefficient of static friction, the two grains undergo a small relative tangential
displacement ∆s, the transverse deformation scale is ∆s/a. The relationship between the mean
stress and the shear deformation can be expressed as :

FT

a2
∝µg (

∆s

a
) (1.5)

where µg is the shear modulus of the grains, the tangential force is then :

FT =
8µg

2−υg
R(

δ

R
)1/2

∆s (1.6)
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when the Coulomb limit is reached, the frictional force is FT = µsFN . Many numerical model
are based on such a representation of granular interaction to account for normal and tangential
contact forces. This the so-called Hertz-Midlin model. However, as Mindlin himself noticed, there
is a mechanical issue associated with the tangential stress at contact. Shear stress can be shown to
diverge near the contact edge as in a mode II fracture [45]. This creates a plastic zone at the ou-
ter rim of the contact surface. This is an inherent source of dissipation which is rarely taken into
account. Another limitation of this description is the presence of plastic deformations at contact,
even at moderate external confining stress. These irreversible processes can be due (i) to the stress
amplificaction at contact such that the material hardness limit is reached and (ii) microscopic as-
perities that can be also be plastified (this is the origin of solid friction). So, even though the Herz-
Mindlin model provides a firm base for macroscopic calculation of elastic properties, one has to
bear in mind that for all "real" granular packing, due to the physics at nanoscopic if not microsco-
pic scales, irreversible plastic processes do indeed take place.
In the framework of the Hertz-Mindlin model, several authors have obtained expressions for the
macroscopic bulk and shear elastic modulii (see a review of models and references in [20]). For
example a derivation of the macroscopic shear modulus yields the expression :

G = (
1

1−υg
+ǫ

3

2−υg
)
µg

5π
(φz)2/3(

3π(1−υg )

2υg
P )1/3 (1.7)

This equation expresses two limits : no sliding friction between the grains (ǫ= 0) or infinite friction
between the grains (ǫ = 1). Note also that in this expression, a continuous variation of 0 ≤ ǫ ≤ 1
would correspond to the "tangential coupling model " studied numerically by Makse et al. [20].
Note importantly that this result is a Mean-Field approximation introducing a crucial assumption
in the derivation, i.e. a direct relation between the macroscopic and microscopic strains. This has
been shown to be a poor approximation to the microscopic granular displacement and leads to
quantitative failure of the theory. This failure is especially important for the shear modulus [20].
Experimentally, the relationship between the elastic modulus and the confining pressure has also
been studied by acoustic methods [22, 21, 94]. In practice, the scaling law G ∝ P 1/3 is not fully
recovered and many open questions remains such as to understand the relation between the pa-
cking fraction and the mean number of contacts per grain Z . Numerical simulations have explored
this relation for packing of frictionless spheres, near the jamming threshold. The mean number of
contacts per grain is a function of the volume fraction [25] and the relation is for φ>φc :

Z −Zc ≈ (φ−φc )1/2 (1.8)

where in 3D the critical contact number is Zc = 6 [25] and φc ≈ 0.639. For packing with friction, a
critical like behavior can be recovered near jamming with a friction dependent value for the cri-
tical number of contacts Zc (µ) [88]. Far from the jamming "critical" region, the situation is much
less clear as in general, there is no one-to-one relation between Z and φ [2] and the macroscopic
mechanical properties can be strongly preparation dependent [89].

1.3.4 Seuil de rupture, écoulement du milieu granulaire

In soil mechanics, granular material studies are motivated by the desire to understand the fai-
lure of foundations, slopes, and soils. The basic model which account for the rupture threshold is
the Mohr-Coulomb model [16]. Its phenomenlogy follows the laws of solid on solid Coulomb fric-
tion but is adapted to the fact that the rupture problem in granular matter is essentially a tensorial
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issue. This model is described by the stability condition :

σ≤σn .t anϕ (1.9)

Where σ is the shear stresses, σn the normal stress and the angle ϕ is called the internal friction
angle of the material. These stress components are taken in the reference frame corresponding
to the eigen-directions of the stress tensor. With a cohesive granular medium, one must add a
cohesion term c and the stability condition becomes :

σ≤σn .t anϕ+ c (1.10)

This law expresses that the material maintains its structure as long as the inequality is satisfied and
yield occurs when the equality is reached. The angle of internal friction depends on the packing
fraction (or the void ratio for soil-mechanicists). Many empirical models exist to account for this
dependence. A celebrated one is the study of Caquot et Kérisel [11] who proposed the following
relation to relate internal angle and compacity :

e.t anϕ= K (1.11)

where K is a constant which depends only on the nature of the material and e is the void ratio
calculated by the relation : e = (1−φ)/φ. Actually, there is no authoritative relation but the increase
of ϕ with φ is in practice a well establihed result.
The angle of internal friction depends also on the shape and the surface properties of the grains. An
interesting heuristic model is the Rowe model [67] which considers a simple piling made of a bead
A put on two beads B and C (see fig.1.5). The bead A sustain a normal force N and a tangential
force T . The rupture limit corresponds to the force T just sufficient to move the bead A under
the constant force N . Considering that the bead friction coefficient is µs = t an(ϕs) and β is the
angle between the tangential contact plane and the horizontal direction (see see fig.1.5), a simple
calculation of the mechanical conditions of rupture yields a value for the ratio of the tangential
force to the normal force :

T

N
= tanϕ= tan(β+ϕs) (1.12)

where ϕ represents the angle of internal friction. This model is certainly naive but it shows in a
simple way the combined influence on ϕ of the packing geometry and compacity (through β) and
of the granular friction (through φs).

FIGURE 1.5: Rowe model [67] for the internal friction of a packing.
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Note that the Mohr-Coulomb theory can be extented to account for the large plastic deforma-
tion of granular materials. The qualitative phenomenology described in 1.3 can be reproduced by
sophisticated incremental plasticity model [65] which are based on many experimental tests to
get empirical constitutive parameters. However, in this type of approach, which is the base for soil
mechanics calculations, no real time dependence is contained. From the Rowe formulation (see
equ.1.12), one can simply see that as long as compacity (encripted in β) and intergranular friction
do not change with time, the Coulomb limit bears no dependence with time either. However, many
tribology studies show that solid on solid friction coefficients generically display a slow ageing de-
pendence due to nanoscopic plastic processes. Immediatly one can see that at long time scale, this
could influence on the constitutive properties of granular matter [38] and also eventually change
on the long time, the structual properties of the packing.

1.3.5 Fluage

As seen previously, mechanical properties of granular packing are usually described pheno-
menologically by rate independent constitutive relations [8]. However, there are also compelling
experimental evidences that for granular assemblies in "real" environment (i.e. finite tempera-
ture, temperature variations or background noise), this limit is just a short-time approximation
and that time dependent processes are significant on the long run. In soil mechanics and enginee-
ring, where the issue of long time resistance to stress is of practical importance, standard tests do
actually reveal aging properties for a large class of granular materials [77].

FIGURE 1.6: Example of the in-situ creep deformation-Tower of Pisa, Italy. Section of the Tower of
Pisa together with the geological context below the structure (left), illustration of the tower’s mean
settlement and mass of the structure according to the time (right).

A famous example of creep is the uneven settlement of the Tower of Pisa in Italy. The construc-
tion of the tower started in 1173 and was completed in 1360. Due to creep deformation of soils in
the form of lenses in the sandy base, the tower settled and tilted on one side. The mean settlement
of the structure is a 1.5m. An illustration of the tower’s section and the mean settlement with mass
of structure can be found in fig.1.6. There are a lot of other documented examples of in-situ creep
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behavior, some of them ending with the total failure on the construction. One of the biggest di-
saster recorded in soil science was the catastrophy of the Vayont reservoir in Italy [3] where a dam
broke as a direct consequence of soil creep.

FIGURE 1.7: Strain rate as a function of time for the triaxial creep test, taken from [74].

In soil mechanics, the studies of material creep are usually done via triaxial compression tests
[31, 39, 74] where a confining pressure and a deviatoric stress can be applied independently. For
example, Murayama et al.[74] have studied the creep characteristics of sands under constant prin-
cipal stress differences at various stress levels. The variation of the creep strain rate dγ/d t0 with
time are shown in fig.1.7. On may notice at low deviatoric stresses, the relation l og (dγ/d t0) −
log (t0) ≈ t−1. The relationships at high deviatoric stresses are expressed by a curve of concave-
downwards shape probing an acceleration of the dynamics towards the material rupture. Seve-
ral experiments in the physics community, pointed out towards the central importance of nano-
metric scales where humidity and/or contact plasticity [29, 38] do impact significantly the macro-
scopic behavior. Recently, it has been shown how temperature variations may also drive important
packing reorganizations [28, 85]. Slow granular reorganization as the result of thermal cycling can
be seen in the work of Divoux et al. [85]. The authors monitor the height of a granular column as
a function of the number of thermal cycles. They observed the thermal-induced creep phenome-
non : after 7 days, the decrease in height was about 1% of the initial height.
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FIGURE 1.8: Height variation hn as a function of number of thermal cycles n, a logarithmic creep
at long time, the black curve corresponds to the a logarithmic law. Inset : Oscillations of the co-
lumn height associated with the temperature cycles (An and δn), defined to be the amplitude of
the increase and the drift of hn at the cycles n. The amplitude of the cycles ∆T = 10.8◦C and the
frequency 600s [85].

Rheological models In classical rheology, the consitutive properties of materials is often seen
a complex association of microscopic elements which express simple constitutive relations [4].
One of these "elementary brick" can be a linear Hooke’s law (fig.1.9(a)) relating stress and strain.
The second important elementary element represents viscous dissipation (fig.1.9(b)) and relates in
a linear way, stress and strain rate. Macroscopically, the combination of such elements (provided
that the underlying topology is euclidean) yields a visco-elastic behavior which can be represented
in a simple scalar form by a relation of the type :

.
σ=−

σ

τ
+G

.
γ (1.13)

FIGURE 1.9: Basic elements used in rheological models, Hook’s elastic element (a), , Newton’s vis-
cous element (b), Saint Venant plastic element (c).

Where σ is stress , γ deformation, G an elastic modulus and τ a characteristic time of stress
relaxation. Importantly, note that in general a more complex tensorial relation holds, but each
normal mode will have essentially a viscoelastic response akin to equ. 1.13. Viscoelastic rheolo-
gical behavior is shared by many complex fluids such as polymeric fluids. However this approach
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misses a large class of systems which display a threshold in stress and a plastic behavior such a gra-
nular materials. A solution is to include at the microscopic level other types of idealized elements
that display "perfect plasticity" like Saint Venant’s plastic elements (fig.1.9(c)) which above a given
stress, flow at constant stress. This, of course, allows the emergence of a macrocopic threshold and
may render a more rich elasto-visco-plastic phenomenology. However, it does not solve the fun-
damental problem of the microscopic origin for the plastic yields and fails to provide an account
for complex relaxation processes, memory effects, shear-band localization, generally observed in
many complex fluids or soft-glassy materials under shear.

Soft Glassy rheology and fluidity models .
Soft glassy materials is a generic term representing microscopically disordered systems where "slow"
relaxation and complex dynamical processes take place under shear[6]. This notion encompasses
a large class of materials, essentially disordered microscopically but widely differing from their
microscopic physical chemistry and from the values assumed by their constitutive parameters.
Note that the difference between "soft" glassy systems and "hard" glassy systems as amorphous
solids or window glass, is not really conceptual difference but essentially is a question of stress
scale at which flow can be triggered. A remarkable fact is that beyond the elastic domain, the res-
ponse to shear displays in all these systems a very similar phenomenology. These observations
have led to the proposition that only a limited number of "universal" scenario may describe plas-
ticity and the consequent rupture modes. Thermal properties and in particular the vicinity of the
glass-temperature transition, has of course a tremendous influence on the dynamics of the yield
process. However, recent numerical and theoretical efforts have focused on the zero temperature
mechanical behavior of sheared disordered solids like Lennard-Jones glasses [84, 62], with the aim
to identify localized deformation zone that could be seen at the "building bricks" of a subsequent
rupture process. Recently, it has been shown that due to the intrinsically disordered structure of
the elastic energy landscape, the primary yield modes were elastic instabilities inducing localized
irreversible deformations of few "molecular sizes" [84, 62, 30]. On Fig.1.10, I display the results of
a numerical simulation of a shearing cell by Lemaitre et al.[30] that illustrates this point. On this
figure appear highly localized regions of enhanced mobility, with a quadripolar symmetry.

FIGURE 1.10: Schematics of a numerical simulation of soft-spheres under shear (left). Non-afine
granular displacements exhibiting a localized zone of quadrupolar yield (from [30]). Arrows re-
present granular displacement (amplified for visulaization).
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These irreversible reorganizations due to elastic instabilities were found to trigger at long range,
other localized plastic processes[30]. Scaling behavior describing the spatio-temporal complexity
of such an avalanching processes were identified either in direct molecular dynamic simulations or
in mesoscopic models using these local features as elementary relaxation mechanisms [30, 19, 83].
Numerical simulations show that the spatial clustering of these zones can be the actual precursors
of shear bands [19, 83].
Coming from a different background, the theoretical description of the complex rheology of yield-
stress fluids, the "soft glassy rheology" [79, 80] and further developments, is based on ideas of a
similar flavor. This approach introduces a statistical picture for the energy relaxation process and
its spatio-temporal coupling. The simplest of these models is probably the one introduced by He-
braud and Lequeux[41]. In this model, one deals with an ensemble of sites, each of them can sus-
tain a stress σc before yield and reorganization. The central quantity is the probability distribution
function P (σ, t of the local stresses, which is assumed to evolve according to the equation :

∂

∂t
P (σ, t ) =−G0

.
γ

∂

∂σ
P (σ, t )−

H(|σ|−σc )

τ
P (σ, t )+

1

τ

∫

∣

∣σ
′ ∣
∣>σc

P (σ
′
, t )dσ

′
δ(σ)+D

∂2

∂σ2
P (σ, t )(1.14)

Eq.1.14 is a simple evolution equation for the probability distribution function. The first term des-
cribes the elastic deformation of a block under application of a macroscopic deformation γ, with
G0 a constant elastic modulus. The second and third terms reflect the fact that if the stress of a
block exceeds the critical value σc , then, a rearrangement occurs with a rate characteristic τ. Fi-
nally, the fourth term is a diffusive term which reflects the fact that the rearrangement of a block
has an effect on the stress field of its neighbor. The ’stress diffusion constant’ D is given by :

D =α
1

τ

∫

∣

∣σ
′ ∣
∣>σc

P (σ, t )dσ (1.15)

The amplitude of the mechanical noise D is proportional to the number of blocks rearranged du-
ring the time interval τ. The coupling parameter α in eq.1.15 is the control parameter of the model.
It could be interpreted as corresponding to the intensity of the elastic coupling between sites. For
small values of α, the system is jammed, with a vanishing activity D = 0. In this thesis, I will not di-
rectly use such a model for analyzing my data. I will rather focus on a simplified "mean-field" ver-
sion of it, where a local variable f (t ) emerges macroscopically and represents a time dependent
rate of stress relaxation. This variable is called "fluidity" and can be associated to the viscoelas-
tic equation (eq.1.13) where 1/ f (t ) is identified with the relaxation time τ. Different authors have
proposed a constitutive relation for the evolution of f (t ) [13, 69]. In the simplest version of this
class of "fluidity model", the constitutive relation can be written in a phenomenological form "‘a
la landau" of the type :

.
f =Ψ( f ,

.
γ) (1.16)

where Ψ( f ,
.
γ) can be expanded in the relevant powers of the local fields f and

.
γ (see details in refs

[13, 69]). This type of model can capture aging and memory effects and provides prediction on the
rheological equation at large deformation rates (Herschel-Buckley rheology). Recently, a non-local
version of this model was proposed in order to include the effect of spatial nonlocal coupling on
the relaxation process [52].

1.4 Effet des vibrations sur un milieu granulaire

In the industry, vibration is commonly used as a practical way to handle and transport parti-
culate materials such as foodstuffs, coal, and pharmaceuticals etc... Vibration in granular matter
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may also play an important role in natural events such as earthquakes and avalanches triggering.
The behavior of granular medium under vibration is complex and was the subject of many expe-
rimental and theoretical studies. The interaction of various key parameters of the system creates
a wide phenomenology such as fluidization, convection, segregation and avalanches. Here, we are
only interested in the question of weak vibration, and its consequences on the rheology in the low
shear rate regime.

FIGURE 1.11: Schematic of a sand pile in a drum under vibration. A closed cylindrical drum (left)
and the relaxation of θ in a stationary drum with glass beads. Vibration intensities increase from
top to bottom, straight lines indicate l og (t ) behavior (right) [40]

In 1989, Jaeger et al.[40] found that the slope of a sandpile may decay logarithmically when a
weak level of vibrations is introduced via the forcing of sound waves coming from a loud-speaker.
Their experimental setup, a rotating closed cylindrical drum, is shown on fig.1.11 (left). with no
vibration, the stability of the pile is characterized by the avalanche maximal angle a steady state
angle θss for a steady rotation rate Ω and a relaxation angle after an avalanche (obtained in the
limit when Ω −→ 0). For an initial preparation at an angle θ(t = 0) > θr the vibration triggers an
avalanching process. For an initial preparation at an angle θ(t = 0) < θr weaks vibrations trigger a
slow relaxation logarithmic relaxation process. At a higher vibration level the time dependence of
the relaxation process can be changed.

Furthermore, even under a low level of mechanical forcing, vibrations may influence directly
the granular rheology. Recently, Caballero et al.[72] studied the sonofluidization of a granular pa-
cking. They monitored the motion of various intruders when sound waves are injected. The resul-
ting effective friction coefficients were shown to decrease significantly with the vibration accele-
ration (see fig.1.12). Eventually, the Coulomb threshold was found to vanish and a linear relation
between force and velocity was obtained. These relations strongly depend on the shape and the
size of the intruders. On fig.1.12, is displayed the effective friction corresponding to the drag of a
thread in the packing with no vibration and with vibration (in situ RMS acceleration γ= 0.4g ).
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FIGURE 1.12: Rheology of a sonofluidized granular packing (after [72]). The driving of the intruding
thread is at a constant velocity V , the masses are such that M2 > M1, the vibration is introduced by
seven piezoelectric transducers at the bottom (left) and effective friction on the wire intruder µe f f

as a function of the pulling velocity ; no vibration (open square) and with vibration (full circular),
in the inset is the same graph but in a lin-log scale (right).

FIGURE 1.13: Experimental setup (left) and rod angular displacement ϕ(t ) for different Ω and at a
fixed applied force (right) [47].

Other means of mechanical activation were proposed [10, 49, 47]. For example Nichol et al.
[49] and Reddy et al.[47] used remoted shear bands noise as mechanical actuators for a granular
packing. In particular, Reddy et al.[47] have shown that this type of forcing may modify the gra-
nular rheology (see fig.1.13). When a shear band is activated, the intruder far from the shear band,
could move at a force F less than Fc , the force required to move the intruder in the absence of shear
band. On short times scales, the motion of the rod is highly intermittent and consists of periods
of slow creep followed by rapid moves (see the inset of fig.1.13 (right)). A linear relation between
force and velocity was established as in a viscous fluid. So, from all these experiments, it appears
that mechanical vibrations may phenomenologically play a role similar to temperature for therma-
lized states of matter. It may help to unjam a granular packing as temperature would do in the Liu
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and Nagel qualitative jamming diagram. However, the fundamental activation mechanism and its
precise role on the jamming onset as well as on the effective material rheology are still open issues.

1.5 Mécanismes de cohésion entre grains par capillarité

1.5.1 Granulaires mouillés non saturés

There are a numerous of studies on the role of the liquid content in wet granular medium
[66, 78]. With a unsaturated granular, the liquid and the gas phases coexist in the pore space. On the
basis of the amount of water trapped in a granular medium, one can distinguish different regimes
(see fig.1.14).

FIGURE 1.14: Different regimes of water trapped in a unsaturated granular packing, hygroscopic
regime (left), pendular regime (middle) and funicular regime (right).

In the hygroscopic regime, the water is essentially retained by the rough asperity present at
the granular surface. With an amount of water slightly larger, capillary bridges appear between the
grains ; this is the pendular regime. At a higher water content, air can be trapped as bubbles and
this state corresponds to the funicular regime.

1.5.2 Ponts capillaires : forces capillaires

The presence of small amount of liquid on the particle surface modifies important physical
properties of the granular medium. For two grains in contact, if the amount of liquid is sufficient to
form a liquid bridge at the contact point, the capillary cohesion force between the grains becomes :

Fcap = 2πσcos(θ)R (1.17)

where σ is the surface tension and θ the angle of partial wetting. Here we consider the case of
two spherical grains of radius R. The striking results is that as soon as the volume of liquid trapped
around the granular contacts is large enough to overflow the asperities, the capillary force becomes
independant of the volume of the liquid bridge. If a pendular bridge is established between two se-
parate grains or if two grains in contact separate due to packing reorganization, the inter-granular
force diminishes and eventually the bridge become unstable and breaks. Note that in this case,
the shape of the force curve and the breaking distance both depend on the amount of liquid in the
bridge. See on fig.1.15 as an illustration, the measurement by Willet et al. [14] of the capillary forces
arising from a microscopic pendular liquid bridges. The attractive forces is measured for two iden-
tical spheres as a function of the separation distance. They found a monotonic reduction in the
force until the bridge rupture occurs.
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FIGURE 1.15: Schematic representation of a liquid bridge of volume V between two spheres of radii
R1 and R2 separated by a distance 2S with a neck radius rN , a liquid-solid contact angle θ and half-
filling angles β1 and β2 (left). Measured capillary force (right) for different volumes in the liquid
bridge as a function of the separation distance between the spheres , where the radii are R2 = R1.
The curves represent the values calculated by a numerical solution of the Laplace-Young equation
(after [14]).

In a packing of grains, the presence of water creates a distribution of capillary bridges. The in-
creasing number of capillary bridges as a function of water content was studied by several authors
[61, 95]. Fig.1.16 are displayed results from Scheel et al.[61] who used X-ray tomography technique
and fluorescence microscopy on a wet packing to identify the number of capillary bridges and
the total number of liquid clusters (defined as connected regions of liquid wetting more than two
beads) as well as the volume of the biggest liquid cluster.

FIGURE 1.16: Images : Section through 3D X-Ray tomography of wet granular packing at water
content W = 2%, 4% and 11%, from top to bottom [61]. Main panel : Frequencies of liquid struc-
ture as extracted from X-ray tomography data. Left axis (open symbols) : Average number of capil-
lary bridges on a sphere (triangles : fluorescence microscopy ; squares : X-ray tomography). Right
axis : Average number of clusters per sphere (filled symbols) and normalized volume of the largest
cluster (haft-filled symbols).
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These quantities are shown as functions of the water content W in the packing. In this report,
W is defined as the liquid volume divided by the total sample volume. As W increases, the liquid
structures merge into larger clusters. At W = 11%, the largest cluster contains about 90% of the
liquid.

1.5.3 La cohésion macroscopique

Several studies were dedicated to the mecanical consequences of the presence of liquid in a
granular packing, either experimentally [42, 91, 81, 61] or numerically [57, 56]. These studies show
that cohesion increases with water content and eventually saturates to a value corresponding more
or less, to a constant value of the number liquid of bridges per grain (about 6 according to Scheel
et al. [61]). Then, increasing the water content will just increase the volume of the bridge but will
not affect the capillary force as seen previously. This situation will last until the whole pore space
is filled (funicular regime) and then, the cohesive force with start to decrease [81].

FIGURE 1.17: The Coulomb cohesion as a function of water content, the dashed line is drawn as a
guide to the eyes [91]

Fig.1.17 are displayed experimental measurements obtained in a direct shear cell by Richefeu
et al.[91] of the cohesion stress c of a wet granular materials as a function of water content With
their preparation method, they found that the Coulomb cohesion (see eq.1.10) increases nonli-
nearly with W and saturates for a value of W > 0.03.
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2.1 Motivations

The work presented in this thesis focuses on the identification and characterization of some
rheological properties of granular materials, whose experimental study is particularly delicate. For
this reason, the first part of this thesis is devoted to the description of the experimental set-up that
I built and developed during my thesis in the laboratory of Physics et Mécaniques des Milieux Hé-
térogènes (PMMH) at the ESPCI. The results obtained from the different experimental campaigns
are presented and summarized in the following chapters.

The device is a shear apparatus which allows us to prepare granular packing at controlled pa-
cking fractions by using a fluidized bed technique. We added to the set-up two further possibilities
in order to change the nature of the granular packing : external vibration and cohesion by chan-
ging the water content. This setup was especially designed to measure very small deformations and
shear stresses. It can perform different types of tests : elastic response, response to a stress ramp
and creep dynamics. We particularly focused on the study of the creep dynamic at a constant of
shear stress by implementing a feedback technique.

2.2 Dispositif expérimental

FIGURE 2.1: System of shear vane cell made industrially by Sols-Mesures (left) and schematics of
shear vane and fluidization bed (right). (M) : motor, (S) : torsion spring, (T) : torque probe, (D) :
induction distance probe, (A) : transversal arm, (Q) : flowmeter, P1 : differential pressure probes.

The shear exerted on the granular material is obtained by rotation of a four blades vane (see
fig.2.1 left) inserted inside the packing. The original shear vane system was bought from a com-
pany Sols-Mesures (http ://www.sols-mesures.com/ ) and we adapted this device to our needs. We
fixed a brushless motor (M) on the top to command the rotation of the torsion spring (S), the mo-
tor rotation angle β can be imposed at a 2π/10000 precision. At the end of the torsion spring, we
mounted a sensitive torque probe (T) directly connected to the shear vane (see fig.2.1). To measure
the rotation of the vane, we fixed radially an aluminum arm (A) and its displacement was moni-
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tored by an induction distance probe (D). The system is made of iron with a stiffness of 200GPa.
The whole system is well fixed on the table by a steel frame. The shear vane is in steel, the diameter
of the axis is 3,3mm, the blade height H0 = 2,54cm and the radial extension R0 = 1,27cm and the
thickness of the blades is 0,5mm.

The grain container is designed as an air fluidized bed (fig.2.1 right). It is a plastic cylinder of
inner diameter D = 10cm and the cylinder height is H = 10cm. The cylinder is connected at its
bottom to an admission chamber and is designed to produce an homogeneous flow of pressured
air at the level of the separation metal grid. The mesh of the metal grid is 10µm, small enough to
block the grains (see fig.2.2).

FIGURE 2.2: Admission chamber of the fluidization bed

Pressured air is introduced at the bottom of the admission chamber and just below the honey-
comb grid, we placed a differential pressure probe to obtain a measurements of the pressure drop
∆P = P1−P2 between the bottom and the top of the packing. In this study we used glass beads from
SiLibeads (www.sigmund-lindner.com) with a density of ρ = 2500kg /m3 and a mean diameter
d = 200µm (R.M.S. polydispersity ∆d = 30µm), we could not make any detailled characterization
of the roughness (a difficult issue indeed).

2.2.1 Compacité contrôlée par la méthode de tapping

To produce granular packing at a fixed packing fraction and obtain reproducible results on
the mechanical tests, we elaborated a well defined preparation protocol. First, to assure that the
granular medium was completely dry, we store the granular material at 50◦C in a stove. Then, for
each experiment, the granular material is removed from the stove and left in open air for about 30
minutes to come back to room temperature (about 20±5◦C ). The airflow in the fluidized bed, is
powered by the ESPCI compressed air system (5 Bar). A fixed air flow rate can be maintained and
controlled using valves and a flow-meter (range 25 L.min−1). Prior to the filling process, the contai-
ner is placed on an electronic scale and at its top, a plastic cylinder of the same inner-diameter is
adjusted so that, it just prolongates the tube. Then, the air-flow is switched-on at Q = 15 l/mi n, a
value just below the fluidization threshold. The pouring of the grains is done changing the position
of the source to spread evenly the quantity of grains on the surface (fig.2.3). The filling is stopped
at each granular height increment corresponding to 2cm roughly. Then, using a wooden stick, a
tapping of the walls is performed in order to compact the grains. At each height increment, the
number of taps is the same (10) but the energy of each tap has to be increased to reach denser
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compaction. The process is repeated until the top of the container is reached (the extension cylin-
der is partially filled). Then the air-flow is switched-off, the extension cylinder is removed and the
grains at a height larger than the container height H = 10cm are also removed using a ruler, leaving
a flat surface at he top. Finally, the mass M of grains contained in the cylinder of diameter D = 2R

and height H is measured, which provides a good and precise value for the average compaction :

φ=
M

πR2Hρ
(2.1)

FIGURE 2.3: Sample preparation, pluviation of grains to have a loose packing (left), tapping around
the cylinder to reach a higher packing fraction (middle) and removing the extension container
(right).

I found that using this method, I could obtain a range of packing fractions between 0.56 and
0.63. The relation between intensity of the tapping and the final value of the compaction remains
little bit qualitative but it is remarkable that with some practice I could reach rather predictable
values of compaction with a good accuracy. Note however that this is true in a rather dry envi-
ronment (humidity about 35 %), I noticed that with high humity the final value of compacity has
a tendency to decrease at the same tap intensity. Further more I made some trial changing the
tapping position on the container but I found no change in the final result.

2.2.2 Permeability as a function of packing fraction

.
In the following, we present a calibration curve that I established to relate the porous material
permeability K (φ) to the packing fraction. I found this relation very useful as it provides a practical
way to relate the pressure drop on both sides of the packing to the actual compaction. Then it is
quite easy to check if the mechanical tests have led to any change in compaction or in some cases,
to handle granular packing with a height which is not necessarily the container height H . From
Darcy’ Law[5], we have the relation :

K
∆P

H
= η

Q

S
(2.2)

where Q is volumetric flux, K is permeability ; H is height of column (between inlet and outlet),
S is the area of the cross section and the pressure drop ∆P as measured with the pressure probe,
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η is the dynamic viscosity of dry air. With our experiment set-up, we measured the flow rate Q by
using flow-meter and the pressure difference ∆P between the two ends of the cylinder by using
the pressure probes as a function of average velocity of air U = Q/S. Note that for these control
measurements, the fluxe values are much lower than the fludization threshold. On fig.2.4 (left), is
displayed for different packing fractions determined from the method described in the previous
section, the relation between the pressure drop and the flow rate Q. The relation is linear :

∆P =λ.Q with Q =U .S (2.3)

FIGURE 2.4: Pressure difference as a function of the flow rate, with different packing fractions
(left)and permeability as a function of the packing fraction (right).

Therefore, from the fitted slope to get λ, one can determine the permeability :

K =
ηH

Sλ
(2.4)

The value for the air viscosity at 20◦C is η = 1.8510−5. Fig.2.4 (right) is displayed the relation
between K and φ. It can be fitted using a classical Kozeny-Carman (KC) equation [5] :

K (φ) = A
(1−φ)3

φ2
d 2 (2.5)

with one adjusting parameter A = 165. This last relation determines our calibration curve. Now for
any granular mass M poured in the container, if one measures the linear pressure drop characte-
rized by the slope λ, one can compute the actual packing fraction from the relation :

K (φ) φ= η
4 M

λπD2ρ
(2.6)

This determination is displayed on fig.2.5.
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FIGURE 2.5: Relation between K (φ)φ and φ, the solid line is calculated from eq2.6 with parameter
A = 165.

Importantly, this relation is valid as long as the fluidization threshold is not reached that we
estimated at a value slightly larger that Q = 15l/mi n (flux chosen for the preparation procedure).

2.2.3 Préparation d’un échantillon avant les tests mécaniques

FIGURE 2.6: Schematics of the shear cell after installation all the probes and insertion of the shear
vane at a depth h.

The experimental procedure to prepare the granular packing before the application of the me-
chanical tests can be divided into several steps. The first one has been described in a previous
section, it consists in preparing on an electronic scale, a sample of mass M at a controlled packing
fraction using the tapping method (see eq.2.1). Then, the fluidized bed is transfered below the test
apparatus at a well defined position such that the cylinder symmetry axis corresponds to the axis
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of the shear vane. Thereafter, the air flow is switched-on at a value Q = 15(l/min) (below the fluidi-
zation threshold) to release as much as we can the compression due to gravity. This last condition
is essential as it allows the insertion of the shear vane at the right position i.e. at a depth h = 5cm

for most experiments (see fig.2.6). Furthermore, in the experimental campaign where the granular
material is vibrated, the piezo-transducers and the accelerometer are inserted during this phase. I
tested that working this way, the packing fraction did not vary and this led to reproducible mecha-
nical results. After preparation and installation, the air flux is switched-off and the system is left
still for about ten minutes before the onset of the mechanical tests.

2.2.4 Mesure de la contrainte de cisaillement

.
To measure the shear stresses applied on the sample by the shear vane, we use a torque probe of
range 0.2 Nm (http ://www.tme-france.com/ ). This probe has a high precision 10−5 N.m and is
directly connected to the shear vane and to the torsion spring (fig.2.1).

FIGURE 2.7: Calibration of the torque probe by the manufacturer. The torque T varies linearly with
output signal.

.

From the torque measurements, we defined the value of the mean shear stress σ at a radial
distance R0 over a surface corresponding to the blade height H0 :

σ=
T

2πR2
0 H0

(2.7)

By torque conservation, the mean shear stress in the granular packing varies with the distance r

from the center as :

σ(r ) =σ(
R0

r
)2 (2.8)

2.2.5 Mesure de la déformation

In this set-up configuration, we do not have a direct access to the local deformation field. Ho-
wever, the mean shear deformation γ, (fig.2.8) is related to the angular rotation α of the shear vane
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and we define it as :

γ=
αR0

R −R0
(2.9)

The rotation α is obtained using the induction probe (D) positioned close to the radial arm (A) at a
distance l from the axis (see fig.2.8 left). The displacement ∆l is measured and then :

α=
∆l

l
(2.10)

Note that the measurements are based on the position of a conductive target (the arm) in an open
magnetic circuit of high permeability (the probe) creating then an inductance change caused by
a metal object in a magnetic field. The target used in our setup is made of duralumin. The induc-
tion probe has a typical measuring range of 2mm. Note that we can vary the deformation mea-
surement range by moving the induction probe along the arm. On fig.2.8 (right), we present two
calibration curves relating the probe displacement ∆l to the electric tension V measured as the
probe signal. The first calibration points (symbols) are obtained with a linear micro-metric stage
moving the probe position. The second points (blue line) where obtained by the controlled rota-
tion of the motor (no spring, direct connection) which rotates the arm. The probe is situated at a
distance l = 19cm which corresponds to the typical range of deformation measurements. We see
that except in the two extremes of the measurement range both results agree with a linear relation
(no detectable influence of the surfaces angular position). Note that before each measurement, I
always positioned the induction probe such as its surface was parallel to the transversal arm and at
the same initial distance for all the tests ∆l0 = 0.4mm. From the linear fit and also the constructor’s
specification one can estimate the precision of the displacement to be 0.1 µm :

FIGURE 2.8: Calibration of the induction probe. Experimental setup where (D)is the induction dis-
tance probe, (A)is the transversal arm (left), relation between the displacement measured and the
output signal in two cases : the probe surface and transversal arm are parallel (red line) and not
parallel because of a rotation of the transversal arm (blue dot line) (right).

Note that the advantage of this typoe of probe are :
- A very good precision (but however a short range).
- No friction between the probe and the device.
- A fast response time, enabling the study of very short rheological transitions.
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2.2.6 Système d’acquisition

On fig.2.9, we show a schematic of the acquisition chain. The experiment is monitored and
controlled by computer using a ’LabView’ system allowing data acquisition and output transfer of
information after processing. ’LabView’ was a parallel system dedicated to acquire and to save the
signals from each probe. The system includes a data acquisition system, equipped with 12 chan-
nels. This unit enables simultaneous acquisition of a large number of channels with frequencies
from 1H z to 10kH z. In the case of standard utilization, resolution on the analog signal from 0V to
10V was 0.03mV . The tensions coming from the induction and the torque probes are input signals.
They are processed by Labview to yield the deformation γ and the stress σ (see fig.2.9). In paral-
lel, we used a software (sim 2) to control well the motor speed and to pilot the direction rotation.
Thanks to this set-up, we can acquire all the signals at the same times, which allows us to have the
relationship between the shear stress and the stress strain corresponding to each motor speed.

FIGURE 2.9: Schematic of the acquisition system, with the same times scale (H) for all the signals.

The motor is driven directly by the computer and it can be monitored by Labview to perform
a feed-back loops between the shear stress and the motor rotation (fig.2.10). The feed-back loop is
used to perform a creep tests at a constant shear stress (we present in detail in chapter.3).

FIGURE 2.10: Schematic of the acquisition system is used to perform a creep tests.

Fig.2.11 shows an example when the system is stationary and with no external stress. We find
that the noise of the deformation and shear stress is stable and very small. This noise can be inter-
preted by the electrical noise or may be by the mechanical noise in the laboratory.
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FIGURE 2.11: Output signals recorded after averaging smoothing of 0,5s with a acquisition fre-
quency of 41H z, torque probe signal (left) and induction probe signal (right) are obtained without
any external stress.

2.3 Empilement granulaire sous faible vibration

2.3.1 Activateurs piézoélectriques

FIGURE 2.12: GBF control the input signal (a), experimental set-up used for the vibration expe-
riment with two piezoelectrics are introduced at the same depth of the shear vane (b, c) and sym-
bols for two types of vibration : sinusoidal and square tension input (d).

We have seen in the introduction chapter that in previous works, several options have been
proposed to produce vibrations in a granular packing [40, 53, 72]. In the following study, we use
piezoelectric transducers as in [72] which generate easily a reproducible level of vibration indu-
ced by sound propagation. The vibration is weak and adjustable in frequency (between 100 Hz
and 10000 Hz) and in amplitude varying the voltage input between 0 and 10 Volts, all the parame-
ters are tunable by a "Générateur de basses fréquences (GBF) " (fig.2.12 a). On fig.2.12, we display a
schematic of the piezo-transducer (www.radiospares.com), the cylindrical piezo-ceramic is moun-
ted on a circular bronze foil of diameter 4.5cm. The small overall thickness of 0.2mm of the whole
device allows an easy insertion in the packing (see preparation procedure). In the study presented
in chapter 4, the vibrations were produced by inserting two transducers in a radially symmetric
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position (see fig.2.12 b, c). The activation surfaces are perpendicular to the radial direction and we
manage to activate both transducers in phase opposition.

2.3.2 Accélération

FIGURE 2.13: Two piezoelectrics are introduced at the same depth of the shear vane and the acce-
lerometer (left) and acceleration measured by the accelerometer buried in the packing for a signal
of frequency f = 200H z and square voltage V = 5V (right).

With this setup, agitation in the granular medium was completely disordered and very low in
comparison with the accelerometer gravity g . With a low excitation, the main excitation mode in
the system was the rotation of grains and the reorganization of granular contacts. To measure the
acceleration as a function of the input signal : the frequency and the electrical tension, we used
a very sensitive piezoelectric accelerometer (500 mV.g−1), (Brüel and Kjaer instruments). This is a
single-axis sensor, used as a reference to monitor the intensity of piezoelectric transducers. Accor-
ding to the model, the sensor size was 1cm square (fig.2.13). Considering grains 0.2mm in diame-
ter and a cylindrical accelerometer 1cm in diameter and 1cm in height, the number of grains in
contact with the accelerometer was about 3×104, which allows us to have a very efficient average.
There were of course some drawbacks with this type of accelerometer. In particular, we must take
extreme care for this implantation in the granular medium, in order to avoid disturbance the pre-
paration by creating heterogeneities. Fig.2.13 (right) shows a typical measure of acceleration for an
input square signal of frequency f = 200H z and voltage U = 5V .

In our study, the select parameter was the root mean squared (R.M.S) acceleration Γ induced
in the granular packing, calculated by means of the acceleration measured in the bulk. To acquire
all the signal of vibration, we must work with very high frequency of acquisition (up to 10kH z), the
value of Γ is compute by Labview from this data. We also studied the spectra of vibration with two
types of vibration : square and sinusoidal vibration. An example is shown on fig.2.14.
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FIGURE 2.14: Amplitude of signal as a function of frequency with frequency f = 1000H z, square
tension input (left) and sinusoidal tension input (right).

FIGURE 2.15: Amplitude of signal as a function of frequency with frequency f = 100H z and square
tension input 5V .

FIGURE 2.16: Amplitude of signal as a function of frequency with frequency f = 1000H z and sinu-
soidal tension input 8V .
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We found that at a same frequency input, with a square tension input, the vibration spectra was
larger than with the sinusoidal tension input. Fig.2.17 shows clearly the harmonic output signal of
acceleration according to the sinusoidal tension input 3V , a resonance frequency of f = 1000H z is
observed.

FIGURE 2.17: Sinusoidal tension input V = 3(V ) with frequency f = 1000H z (black) and corres-
pondent output of acceleration (red).

With a frequency of f = 1000H z and a sinusoidal tension input, we found that at low voltage
input the response of material is harmonic and the resonance frequency is 1000H z. When V > 6V ,
the spectra became large and the resonance frequency of packing is at 2000H z (fig.2.16). Fig.2.18
shows the relationship between the the amplitude obtained from a FFT analyze as a function of
the sinusoidal voltage input according to the frequency input f = 1000H z. We found also a transi-
tion around 6V . When V < 6V , a linear relation was observed. It is corresponding to the vibration
spectra response. With a square tension input and a frequency of 100H z, the spectra response is
very large (fig.2.15).

FIGURE 2.18: Amplitude obtained from a FFT analyze at f = 1000H z as a function of the sinusoidal
voltage input, with a frequency input at f = 1000H z. The dashed line is linear fit.
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2.3.3 Calibration du RMS d’accélération pour une tension entrée créneau

In this section, we present the calibration curve of the vibration intensity according to the
square tension input. The vibration spectra according this signal is large (see FFT on the fig2.14
(right)). We obtained, the value of r.m.s acceleration Γ, for different frequencies and voltages ap-
plied to the piezoelectric transducers. Fig.2.19 (right) shows how the r.m.s acceleration measured
in the bulk dependend on the input singal voltage. Measurements were done at f = 100H z and
packing fraction φ = 0.625. The different behavior for low and high voltage are noteworthy, with
a transition around 6V . This phenomena might correspond to the threshold voltage at which the
transducer manage to break the force network between the grains and the wall of the cylinder. With
the voltage input is inferior of 6V , we found the linear relation between Γ and voltage input.

On fig.2.19(left), we show the r.m.s acceleration as a function of the frequency with a square
voltage input of 5V . We found that the maximum value of vibration Γ = 0.17g (g is the gravity
acceleration) corresponding to the frequency around ≈ 2,5kH .

FIGURE 2.19: Roof mean square acceleration as a function of voltage according to the input signal
frequency f = 100H z, fit line : y=0.076x (left) and roof mean square acceleration as a function
of signal frequency according to the input signal voltage V = 5V (right). The packing fraction is
φ= 0.625, the accelerometer was placed at a depth of 5cm, exciting tension shape is square.

2.3.4 Calibration du RMS d’accélération pour une tension entrée sinusoïde

In this section, we present the response of a granular medium to a sinusoidal tension input.
A piezoelectric vibration provides an horizontal sinusoidal amplitude Z0 and frequency f . The
movement of the piezoelectric follows a law given by :

z = z0. sin(̟t ) (2.11)

with ̟ is pulsation (ω= 2π f ), then, we calculated the r.m.s acceleration Γ :

Γ=
∥

∥γ
∥

∥ with γ=
..
z =−z0ω

2 sin(ωt ) (2.12)

Fig.2.20 (left) shows the quad-rate relation between the r.m.s acceleration and the voltage input
for different of frequencies. Fig.2.20 (right) shows the relation between the r.m.s acceleration and
the frequency at a sinusoidal voltage input of 3V . Interestingly, the resonance frequency at f ≈
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2,5kH was observed, this is the same resonance frequency with the case of square tension input.
For a sinusoidal vibration, the relationship between and f seem to indicate also a cube relation
for f < 2500H z (see fig2.20 right).

FIGURE 2.20: Roof mean square acceleration as a function of voltage for different frequencies (left)
and roof mean square acceleration as a function of signal frequency with input signal voltage V =
3V (right). The packing fraction was φ= 0.60 and the accelerometer was placed at a depth of 5cm,
and the excited tension was sinusoidal.

2.3.5 Homogénéité du RMS d’accélération

To verify the homogeneity of vibration in the granular packing, we measured the root mean
squared acceleration Γ at different depths for different packing fractions (fig.2.21). We found vi-
bration intensive is homogeneous in the bulk from the depth of 2,5cm. We checked in two cases
of packing fraction : the densest φ= 0.623 and the loosest φ= 0.57. We did not detect the different
of r.m.s accelerations according the same input signal voltage and frequency.

FIGURE 2.21: RMS acceleration as a function of depth below the surface with input signal frequency
f = 100H Z and square voltage V = 3V for packing fraction φ= 0.623 and φ= 0.570.
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The result on the fig.2.21 allows us to use the calibration curve of r.m.s acceleration as a func-
tion of voltage input for all the value of packing fraction.

2.4 Empilement granulaire humide

It appears logical to start by investigating how the granular medium acquires its amount of wa-
ter as described by a water content, i.e how water is introduced within into the granular material.
When a dry granular material and water are brought into contact, water soaked into the granular
pile by means of capillary forces. This process is commonly called spontaneous imbibition, and
one might ask to what extent the structure of the imbibition and the final distribution of liquid oc-
cur within the granular material. The process of imbibition of a liquid into a random medium also
plays a key role in many other problems of general interest, such as oil recovery, or irrigation in
agriculture. The shaking method was already used to make wet sample [91, 61]. In our study, with
a granular packing at a well defined packing fraction φ, the process of imbibition was controled by
passing the humid air through the sample. And the humid air was produced by air through water.

2.4.1 Dispositif expérimental utilisé pour obtenir un flux d’air humide

A schematic representation of the set-up is shown on fig.2.22 : a shear vane cell installed with
two humidity probes and a flux bubble system. The bubble system constituted a ’heating element’
which heated the water and a ’bubble air container’ which allows air to pass through warm water.
One humidity probe was located inside the cylinder to measure the relative humidity (RH(%)) and
temperature before passing through the sample, the second probe was located at the top of the
sample and measure RH% of humid air flow after passing through the sample.

FIGURE 2.22: Experimental se-tup. Shear vane cell with two humidity probes(H) (left) and bubbling
system for producing the humid air flow (right).

First of all, we heated the water by using the ’heating element’ to a desired temperature bet-
ween 20◦C and 100◦C . Then, the dry air passed through this water with a very low flow Q ≈ 2l/mi n

in order to obtain the humid air flux. A stationary relative humidity was thus reached within a few
minutes. We started our calibration when this stationary level was obtained. Using the relative hu-
midity probe, we measured the RH between 80% and 100%. With a bubbling temperature of 30◦C ,
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RH = 100% already reached (fig2.23 (left)). Then, weak fluxes of humid air is set to flow through
the cylinder from the bottom to the top, maintaining a constant and homogeneous level of humi-
dity. We found that at a room temperature of about 20±5◦C , the temperature of humid air was not
changed until it reached the sample.

FIGURE 2.23: Relative humidity of humid air flow. Evolution of relative humidity of humid air flow
before and after going through the sample with a temperature of water of 30◦C (left) and depen-
dence of maximum relative humidity according to the temperature of bubbling (right).

Fig.2.23 (left) shows that a stationary RH% reached after about 10 minutes. This figure shows
also a decrease of 20% for RH between the bottom and the top of the cylinder. Moreover, the sta-
tionary value of RH also depends on the temperature of bubbling as described on fig.2.23 (right).

2.4.2 Mesure de la quantité d’eau

The water content was determined by comparing the mass of a sample of the material before
and after injection of humid air. After injection of humid air, we collected about 10g of granular
material and heated it up to 200◦C using a balance equipped with a dessicator. Thus, the total
mass of grains and water decreased with dessication times due to the evaporation of water until a
constant mass corresponding to the mass of dry grains. The analogue output of the dessicator was
connected to a PC, which continuously recorded the weight loss i.e the amount of water removed
with a precision of about 0.005% (fig.2.24). In this study, the water content is given by W = mw /ms ,
where mw and ms are the masses of water and grains, respectively.

In our study, when the desired water content is reached, we stop the humid air injection and
the experiments are performed at ambient conditions. The loss of water content never exceeds 2%
for a 2h experiment under ambient conditions. This loss was only due to evaporation, it was small
enough to assume a constant water volume in the packing.
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FIGURE 2.24: Granular sample and dessicator interior (left) and the water content W % as a function
of dessication times with 200◦C , the plateau corresponded to the mass of dry grains (right).

2.4.3 Influence du gradient de température

When we increased the temperature of water up to 80◦C , the water content was not homoge-
neous in the cylinder. We measured the water content as a function of depths for a sample with a
height of 5cm. We measured from the sample surface z = 0 to the sample bottom z = 5cm. Fig.2.25
shows that the water content increased with depth and duration of injection times. Interestingly,
the amount of water seems to increase linearly with air flux at the different depths.

FIGURE 2.25: Water content (W) as a function of air flux (Q) at different depths below the surface z,
and for different of injections times with a bubbling temperature at 80◦C (left) and water content
as a function of injections times for three different of bubbling temperatures with Q = 2l/mi n and
z = 3cm (right)

.

We found on fig.2.25 that the water content increases strongly with times for a hight bubbling
temperature. Note that, when W ≈ 16%, the granular medium is very humid. A packing of glass
beads with a packing fraction of ≈ 0.60 is saturated at W ≈ 25%.
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2.4.4 Courbe de calibration

The water content was not homogeneous in the packing at a high bubbling temperature. Thus,
we worked at a weak temperature (just above room temperature) to avoid this problem. Then, the
amount of water depended weakly on the sample height.

On fig.2.26 (left), we resume the protocol used to calibrate the water content obtained with
injections times. The value of W was measured for different of test, and W depends on two para-
meters : the bubbling temperature T and the injections times t . In fig.2.26 (right), we show the cali-
bration curve of the water content W (%) as a function of the injections time for different weak bub-
bling temperatures. Initially, there was a very small amount of water content W (%) = 0.05±0.02(%)
corresponding to the temperature and RH% in the room. This means that there was already a very
small amount of water on the grains surface. Then, the amount of water increased very slowly as a
function of injection times for three different bubbling temperatures.

FIGURE 2.26: Calibration protocol (left) and amount of water content W (%) as a fonction of the
injection times for different bubbling temperatures T ◦C (right)

For all our tests, we prepared the humid sample with a bubbling temperature at 30◦C to ob-
tain an homogeneous sample with a low water content. We assume that the weak air flux does not
perturb the system, we notice no evolution of the force when the flux is stopped. The main advan-
tage of this method was that we can control the packing fraction and the water appeared evenly
distributed with very weak temperature of bubbling (≤ 30◦C ).

2.5 Pont capillaire

From previous measurements of Hornbacker et al. [18] on rough bead packing, the relationship
between the roughness amplitude δ and the saturation bridge volume wb is given by wb ≈ 2Rδ2,
where R is the mean bead radius. Remember (see chapter.1) that the "saturation bridge volume"
is the water content where all the asperities are filled with water. Measurements with atomic force
microscopy establish in their case, a roughness amplitude of 500 nm, hence a value Wb = 0.07%.
Our preparation method leads to a maximal water content of W = 0.18%. We do not have a precise
measurements of the roughness, however if we keep a number of the same magnitude, inspection
of the curve (see fig.2.27) between the mean number of capillary bridges pergrain, N and water
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content W , shows that it is likely that I prepares samples in the "pendular state" regime and in the
rising part of the curve (1 < N < 6).

FIGURE 2.27: Average number of capillary bridges (N ) per grain as a function of the water content
W , taken from [95].

2.6 Conclusion

We presented the set-up and the different related calibration curves required to measure the
shear stress and deformation. The packing fraction is well controlled with the system developed
which uses a fluidization bed. To generate the vibration, we selected a method which uses a pie-
zoelectric transducer producing two types of vibration : square and sinusoidal input tension, the
roof mean square acceleration being controlled and calibrated for different voltages and frequency
inputs. A set-up following to add a controlled amount of water in the granular medium was also
established.
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3.1 Introduction

In this chapter, I present my results on the mechanical response of a dry granular medium, un-
der shear stress in the absence of vibration. To this purpose, we use the vane shear cell described
in the previous chapter (fig.3.1). Annular shear cell or Couette shear cells, similar to this appara-
tus are classical geometries used to study rheological properties of complex fluids. In the case of
granular materials, it has been extensively used both experimentally [37, 50, 59, 92] and also in dis-
crete particle simulations [60, 76, 73]. However, those studies were working essentially in a steady
regime at constant rotation rate of the inner cylinder. Note that in this case, one observes gene-
rically a localization of the deformation in the vicinity of the rotating cylinder. The regime where
I am working is closer to the standard quasi-static regime investigated in Soil mechanics usually
explored by triaxial tests [31].

FIGURE 3.1: Schematics of the shear cell with all the parameters that we measure : α the rotation
angle of the shear vane, β the rotation angle of the motor, σ the shear stress and ∆P the different
pressure.

With this apparatus, I designed a method for measuring the elastic response of the granular
medium and studied the evolution of the shear elastic modulus G as a function of the packing
fraction φ. Furthermore, I studied the mechanical response on the granular medium under a ramp
of shear stress to identify the yield stresses for different packing fractions. Then, I present a syste-
matic exploration of the creep dynamics, as a function of applied shear stress and packing fraction.

The rheological results are analyzed using a conceptual framework developed earlier for com-
plex fluids i.e. the fluidity parameter that represents a rate of stress relaxation [13]. On the basis of
the experimental results, we determined the model parameters based on control parameters such
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as packing fraction and shear stress.

Finally, I present an experimental analysis done in collaboration with a team at the University
of Rennes. We implemented on the rheological set-up a diffusing wave spectroscopy (DWS) tech-
nique. Hence, we could map spatially the deformation field at the top surface of the packing. We
studied in details the creep dynamics and identified localized plastic event ("‘the hot-spots"’) that
we relate to the fluidity parameter evolution.

In this chapter, all the granular sample were prepared according to the method described in
chapter 2. Note that we always worked under controlled air humidity (RH = 35±5%). It is indeed
known that this parameter may have a strong influence on the physical properties of a granular
medium, particularly because of aging properties [29, 38]. We also worked in a room with a low
background mechanical noise, we measured the residual background noise by placing an accele-
rometer in the packing and found the RMS acceleration to be of the order of 0.02m/s−2. Note im-
portantly that we place our shear vane probe in the bulk of the granular material but not to deep
to as much a we could boundary effects as well as Janssen’s effect. In most of the results, the depth
of insertion is h = 5cm (see fig.3.1), which is to be compared with the radius of the cell R = 5cm.

3.2 Réponse élastique

3.2.1 Méthode de mesure

Once the packing is prepared at a fixed compacity, we performed motor rotation cycles which
led to oscillations of the applied shear stress. The resulting deformation was monitored in parallel
(see on the fig.3.2). The oscillation frequency was chosen to be 1/12H z. The frequency of stress
and strain acquisition was 41H z. All cycles were performed under a confining pressure correspon-
ding to P0 = ρφg h and under a mean shear stress σ= 0. The amplitude of the rotation were small
enough such that resulting deformation was about 10−5.

FIGURE 3.2: Elastic response recorded for a packing fraction φ = 0.60. Response of the material
submitted to a shear stress (left) and response of the material in shear strain (right).

We found that the value of the shear stress and the shear strain did not change after successive
charges and discharges and the maximum and the minimum of shear stress and shear strains were
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always symmetric around 0. On fig.3.3, I display the relation between the shear stress to the shear
strain for different packing fractions : the lowestφ= 0.56,φ= 0.60 and the highestφ= 0.625. Within
the experimental accuracy, the cycles are closed and reversible which confirms that the response
of the material is essentially elastic. We define the effective elastic modulus G as the slope of the
dotted line in fig.3.3 (middle) :

G =
∆σ

∆γ
(3.1)

FIGURE 3.3: Relation between the shear stress and the shear strain for a packing fraction φ = 0.56
(left), φ= 0.60 (middle) and φ= 0.625 (right), straight line y =Gx.

G is displayed on fig.3.4 as a function of φ. Interestingly, the relation seems linear y =G∗x, with
a good accuracy.

FIGURE 3.4: Shear modulus G as a function of the packing fraction φ under gravity confinement
P0, straight line y =G∗x with G∗ = 2,28.106Pa.

3.2.2 Discussion sur la rigidité de la pale

A question is to relate the effective elastic modulus G to granular material shear modulus Gg r a .
If the apparatus stiffness was infinite, both quantities would be the same. We provide here two esti-
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mations of the apparatus rigidity, one is an upper value, the other is a lower bound. To estimate the
upper value, I calculated theoretically the axis rigidity. The lower bound is obtained experimen-
tally by measuring the stiffness of the whole shear vane in the absence of grain between the blades.
Once an estimation of the effective angular stiffness of the apparatus Capp is provided, we can cal-
culate the shear elastic modulus of the granular medium Gg r a from the shear elastic measured G

(the value of G is shown on fig.3.4).

Theoretical calculation of the axis rigidity.

We performed a simple theoretical estimation of the elastic compliance of a stainless steel rod
of length L and diameter r , connected to the shear vane to the torque probe (fig.3.5). We have the
rod shear stiffness (steel) Gsteel ≈ 80GPa. The rotation angle measured from the arm rotation α

(eq.2.10) is the sum of two angles :

α=α1 +α2 (3.2)

where α1 and α2 are respectively the total rotation angle of the steel rod and the granular medium
when a torque T is applied (fig.3.5). Here, we assume that the connection of the inside of the vane
filled with the granular material is very stiff, this is why this value is an upper bound. We have a
relationship between the shear elastic modulus measured G and the angle α :

T =G .2πR2
0 H0.

R0

R −R0
α (3.3)

where H0 is the height of the shear vane, R0 and R are the diameter of the shear vane and the
sample, respectively (fig.3.5). The shear elastic modulus of material Gg r a is such that :

T =Gg r a .2πR2
0 H0.

R0

R −R0
α2 (3.4)

FIGURE 3.5: Schematic representation of the shear vane
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The relation between the applied torque and the total relation angle α1 is :

T =Capp .α1 =
G steel .πr 4

2L
α1 (3.5)

where Capp is the stiffness of steel rod. Then, we have :

α1

α
=

G(φ)

Gsteel

4LR3
0 H0

πr 4(R −R0)
= 1,5.10−7.G(φ) (3.6)

From the eq.3.3, eq.3.4 and eq.3.6, the shear elastic moduli of the granular medium Gg r a is calcu-
lated from the value measured G by the following relation :

Gg r a =
α

α2
G(φ) = (1−

α1

α
)−1G(φ) =

G(φ)

1−1,5.10−7.G(φ)
(3.7)

Experimental measurement of the vane rigidity.
To verify this theoretical results experimentally, fig.3.6 shows a experimental results for which two
opposite blades were blocked rigidly and a torque equivalent to a shear stress σ = 103Pa was ap-
plied. Since this measurement is performed in the absence of granular material between the blades
and also with two blades out of 4 blocked, this is a lower bound for actual stiffness.

FIGURE 3.6: Shear vane was blocked (left) and a deformation during the shear vane blocked accor-
ding to a σ= 1000Pa (right).

The resulting deformation ∆γ was about 4,3.10−4, see fig.3.6(right). Then, the stiffness is :

Capp =
2πR3

0 H0.σ

∆γ.(R −R0)
= 20,38(N m/r ad) (3.8)

Thus, the granular sheat stiffness is :

Gg r a =
G(φ)

1−4,3.10−7.G(φ)
(3.9)
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On fig.3.7 the relationship between the granular shear elastic modulus and packing fraction
is displayed for the three different cases : infinite stiffness, lower and high apparatus stiffnesses.
Essentially, the results stays the same within the experimental uncertainties : the relation between
shear stiffness and packing fraction is linear. The difference is in a prefactor of magnitude 2.5 at the
maximum (same order of magnitude). In the rest of the study, I choose the lower bound apparatus
experimental estimation to compute the granular shear moduli.

FIGURE 3.7: Relation between the shear elastic modulus G and the packing fraction φ, in three dif-
ferent cases : experimental measurement (black cycle), with theory calculation of the axis rigidity
(red cycle) and with experiment measurement of the axis rigidity (blue cycle), dotted lines results
from linear fitting.

3.2.3 Champ moyen de l’élasticité de Hertz

At the microscopic level there is a non-linear relation between force and displacement for two
spheres in contact. This is the Hertz theory of contact [86]. For an assembly of elastic spheres under
compression, theoretical calculations established a macroscopic relationships between shear and
strain for a cubic [22] or random packing [93], this is the effective packing shear modulus. In all
these cases, mean-field approximations (MFT) were made on the contact distribution. Essentially
(within prefactor), all relations come out [43] as :

Gg r a ∝G0(φZ )2/3
(

P0

G0

)1/3

(3.10)

where Z is the mean contact number, G0 is the material Young’s modulus and P0 is the confi-
ning pressure. Following the framework of the (MFT), one can see that the macroscopic value of
the elastic modulus mainly reflects two contributions for the packing fraction. First, a density of
contacts proportional to φ which gives a contribution as Gg r a in φ2/3. Second, for gravity confi-
nement, a confining pressure term also proportional to φ which yields a φ1/3 contribution to the
shear modulus. Overall, both contributions would predict, in our case, a linear variation of shear
modulus with packing fraction , which was found experimentally (see fig.3.7). In other words, wi-
thin our experimental accuracy, we could not identify anomalous stiffness properties as expected
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in the limit when the mean number of contacts approaches the jamming threshold, i.e. when the
packing is about to loose its stiffness rigidity (see [88] and refs inside).

3.3 Réponse à une rampe de contrainte de cisaillement

Here, I describe my results about the response of the granular packing to a shear stress ramp.
The applied shear stress is changed by rotating at constant rate the motor which drives the torsion
spring. We concentrate our study on the characterization of the material resistance i.e. we deter-
mine the maximal stress that the packing can hold before yielding of reorganizing. In the this study,
we vary some important control parameters, essentially the packing fraction, but also the motor
rotation speed, the spring stiffness and the insertion depth.

3.3.1 Résistance d’un empilement soumis à une vitesse de chargement constante

FIGURE 3.8: Response to a stress ramp at
.
β= 0.00104r d/s and depth of shear vane h = 5cm. Shear

stress as a function of time for different packing fractions (left) and shear stress σ as a function of
time at packing fraction φ= 0.60, the first rupture stress σr and maximum stress σM are displayed
as horizontal dotted lines, tl d is called loading time ; Top : shear stress derivative as a function of
time (right).

Shear stress ramps were applied at a constant and a slow driving velocity (
.
β = 0.00104r d/s)

using the softest spring constant available (k = 2,45.10−3N m/r d). On fig.3.8 (left), we present the
shear stress as a function of time for different values of packing fraction. First we see that for each
packing fraction value the medium can only sustain a maximal stress value. The higher is the
packing fraction, the higher is this value that we call σM (see fig.3.8 (right)). Second, we observe
clearly the presence of shear stress drops before reaching the maximum, for all the values of pa-
cking fraction studied. Note that similar behavior was reported by Albert et al.[71], for the drag
force on an intruder near jamming.

We observe that for a higher packing fraction (φ ≥ 0.6), shear stress increases almost linearly
with time and once the maximum is reached its value decreases progressively to a steady limit.
However, for lower packing fraction (φ ≤ 0.6), the curve seems to bend until it reaches the upper



3.3. RÉPONSE À UNE RAMPE DE CONTRAINTE DE CISAILLEMENT 47

value. This type of behavior is often described in classical soil mechanic tests and is related to so-
called dilatancy effects. However in our case, we could always identify a stress maximum before the
occurrence of the steady stick-slip regime. Furthermore, I measured the global packing fraction va-
riation using the air fluidized technique described previously, but I could not detect any variation.
Note that the density variation could well occur locally but are not sensitive to it. Now we focus
on the small rupture events that seem to combine to give the overall shape of the response curve.
Essentially, we are interested here in the first part of the response i.e. for stresses below the maxi-
mum value σM . On figure 3.8 (right), we display the stress response and the shear stress derivative
as a function of time ( φ = 0.60). At first, a linear increase of the stress is observed with a slope
corresponding essentially to the spring constant. Then, at a given stress level σr , we observe the
emergence of a well marked and sudden granular material reorganization (see top view on fig.3.8
right). These events are very well marked as witnessed by the derivative curve. We define this stress
value as the "first rupture stress" : σr . Then, we observed rather equidistant events corresponding
to stress drops and large plastic deformations. The shear stress can still be increased up to a maxi-
mum value σM where the large stress jump is evidenced and a subsequent stick-slip dynamics is
observed. For each packing fraction, I determined the number of rupture events Nr corresponding
to the number of large shear stress jumps and the loading time tl d corresponding to the required
time to reach the maximum shear stress (fig.3.8 right). On fig.3.9 both quantities are plotted as a
function of packing fraction. We observed that Nr decreases strongly with φ. The overall shape
of the stress response curve is directly associated to the number of those rupture events. Howe-
ver from these data it is difficult to establish clearly if something specific happens at φ≈ 0.6 often
described as the dilatancy threshold [44].

From fig.3.9 (right), we see that the loading times increases almost linearly with the packing
fraction and by linear interpolation, the value of tld reach 0 when φ= 0.525∓0.05, hence probing
the essential fragility of the packing at low packing fraction. Note for comparison, that the compa-
city of a cubic packing of mono-disperse spheres is π/6 ≈ 0.523.

FIGURE 3.9: Event number as a function of the packing fraction (left) and loading time as a function
of the packing fraction (right).

To observe clearly these stress drops, we plotted on fig3.10, the relationship between shear
stress and shear strain for two values of packing fraction, at the level of the first yield σr . Prior
to the main rupture corresponding to a significant deformation jump (γ ≈ 10−3), one observed a
precursor plastic creep. This phenomenological behavior will become important later in section
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3.5 when the deformation field is spatially resolved using Diffusion Wave Spectroscopy technique.
Note that, the deformation 10−3 corresponds to a small blade displacement ≈ 40µm which is 1/5
of the mean diameter of the grains. The typical time-scale for these events to occurs is around 2
seconds, this value depending on our set-up rigidity.

FIGURE 3.10: Response to a stress ramp at
.
β= 0.00104r d/s. Shear stress as a function of deforma-

tion for two values of packing fraction φ= 0.615 and φ= 0.562.

On fig.3.11, the shear stresses corresponding to the first (σr ) and the last rupture (σM ) are dis-

played as a function of packing fraction for a fixed rotation rate
.
β = 0.00104r d/s. Both values in-

crease strongly with the packing fraction. Interestingly, these stress values (σr and σM ) are strongly
related since their ratio remains constant : X =σM /σr = 3.5±0.2 (see upper part of fig.3.11).

FIGURE 3.11: Response to a stress ramp for the same rotation rate, σr , σM and the ratio σM

σr
accor-

ding to the packing fraction.

Note that these results can be put in perspective with other recent experimental results obtai-
ned by Metayer et al.[44], where the maximal stress needed for pulling a thin, rough, metal plate
vertically in a granular column appeared to be a function of φ. The authors showed that the yield
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stress increases exponentially with φ above 0.595 and claim the existence of a phase transition re-
lated to dilatancy. Though a dilatancy-like transition behavior can be observed for the shape of
the response curve (see fig.3.8 left), we see no transition effect in the behavior of σM nor in σr .
Furthermore, the actual values increases monotonously with packing fraction and does not vary
of more than a factor 5 in the same range of density. This difference of behavior is not understood.
However, since in this last reference, the probe is buried deep in the column, we point out that
the presence of stiff boundaries may play a dominant role on the kinematic constraint (quasi fixed
volume condition).

For a granular non-cohesive material the rupture stress is associated with a Coulomb-like thre-
shold which means that its value of σM should be essentially proportional to the mean confining
pressure P0. On fig.3.12), I display results where the confining pressure P0 is changed by varying
the vertical position of the shear vane. In principle, the value of P0 should change linearly with the
mean depth hm : P0 = ρgφ.hm . At larger depth a linear relation of the type σM = µρgφ(hm −h0),
with h0 = 5mm is observed.

FIGURE 3.12: Maximum shear stress σM as a function of depth h with packing fraction φ = 0.615,
the drashed line is drawn as a guide to the eyes.

3.3.2 Influence de la vitesse chargement

So far, I presented results obtained at slow and fixed motor rotation rate of
.
β = 0.00104r d/s.

Now I explore the influence of the loading rate on the ramping response. At a fixed packing frac-
tion, the motor rotation speed is varied and the corresponding value of σr and σM are displayed
on fig.3.13(left) for φ = 0.6. We observe that the maximum shear stress is decreased from a va-
lue corresponding roughly to 4000Pa down to 70% of this value at higher speed. Interestingly, the
variation of yield stress with loading rate is observed for other complex fluids like Lennard Jones
glasses [54] , polymer melts [58], however in general the variation is more an increase rather than
a drecrease as recorded with our granular packing. Note that the partial ruptures events almost di-
seapear at high loading rate. On fig.3.13 (right), I displayed loading curves corresponding to 4 dif-
ferent compacity and clearly, the rupture events do not show up. So the rupture events, when they
occur, seem to consolidate the granular material. This is a notion that we will recover in the next
section when we explore the creeping properties under constant shear stress. The effect of maxi-
mum stress variations with the rotation rate, seems to occur at values of the order of 3.10−3r d/s
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FIGURE 3.13: The Coulomb yield. Maximum shear stress σM and first shear stress σr according to

the motor rotation rate
.
β for a packing fraction φ= 0.60 (left) and relation between the shear stress

and the time for different packing fractions at a constant motor rate
.
β= 0.01(r d/s) (right)

which would correspond to a shearing rates of 10−3s−1. Indeed, the rupture event of typical magni-
tude ∆γ≈ 10−3 take place in out set-up on a time scale of the order of a second, which correspond

to the right magnitude of shearing rate. So we expect that at lower
.
β values σM and σr will not

change much, this is why we choose the value
.
β= 0.00104r d/s to perform the systematic study in

the previous section.
Finally, we see that at high loading rate, the shear stress always reaches a maximum before decrea-
sing and this, for all packing fractions explored. In the granular material literature, the presence of
such a maximum is often associated to a dilatancy behavior. Here, it is surprising to observe such
an effect persists at lower packing fraction (down to φ= 0.56). It may mean that the dilatancy tran-
sition effect is not only geometrical but also, has a dynamical component. Fig3.13 (left) shows that
the difference σM −σr is about constant as long as these rupture events show up. This would still
be true for very small rotation speed.

FIGURE 3.14: Rescaled loading times tl d

.
β as a function of the packing fraction for two different

motor speeds :
.
β= 0.00104(r d/s) (black) and

.
β= 0.00104(r d/s) (red).
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For all my measurements at different packing fractions and different rotation rates, I extracted
the loading time tld , i.e. the time to reach the stress maximum σM . On fig.3.14, I display the resca-

led loading time tld

.
β as a function of packing fraction. The data points seems to rescale signifi-

cantly on an increasing linear relation. However, there is also a clear tendency to observe a higher
rescaled loading time at lower loading rates. This behavior indicates that the criterion which de-
termines the onset of a major plastic yield would be that a critical deformation value γc (φ) of the
granular packing is reached. The larger is φ the larger is γc (φ). Moreover, the actual value of γc (φ)
seems to increase as much as 20% in the limit of low loading rate.

3.3.3 Influence de la raideur du ressort

FIGURE 3.15: Using the hardest spring. Relation between the shear stress and the motor rotation

(left)and maximum shear stress σM according to the motor rotation rate
.
β for a packing fraction

φ= 0.56 (right).

In this section, we vary the apparatus stiffness. But by lack of time, we did not perform a full sys-
tematic variation of this parameter. We only present here results where we tried to get the stiffest
system we could. To this purpose, we connected a rather thick plate in steel between the motor
and the torque probe. The geometry of this steel rod junction of length L j = 5cm and rectangu-
lar cross section (3mmx5mm) provides a rotation stiffness equivalent to the one of the steel rod
composing the vane. Still by lack of time, I could not test systematically the ramp response of this
configuration with the packing fraction. I only present here results for a loose packing at φ= 0.56.

On fig.3.13 (left), are displayed ramping curves for different
.
β. On the right part of this figure is

displayed the maximum value as a function of the rotation rate. We see indeed that a decrease in
σM with the rotation rate is recorded. However the loading time (tl d ) to reach the maximal stress

is almost independent on the loading rate over two decades in
.
β. But in this case as discussed in

section 3.2, the deformation inside the granular material is equivalent to the deformation of the
apparatus shaft. Therefore, these results are consistent with the previous findings. The fact that tld

is independent of
.
β confirms the criterion for a major plastic yield based on deformation value ∆γc

on the order of 10−2. Note, however that we cannot observe clearly the first rupture corresponding
to σr , because we do have the motor angular resolution (here 2π/10000) to get a good precision on
the deformation.
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3.3.4 Influence de l’humidité relative

The influence of relative humidity RH on the rheology of a granular packing was analyzed
in different studies [38, 36, 55]. Experimentally, Ovarlez et al.[38] showed that the resistance of a
granular medium increases strongly with the relative humidity. On the other hand, dramatic in-
fluence of RH on the stability was studied by Restagno et al.[36, 55]. Their experiments showed
that the cohesion force in a humid atmosphere was related to the dynamics of nano-size water
bridges between the grains and surface asperities. I did some qualitative tests to estimate this de-
pendence by flowing humidified air in the granular packing and measuring the relative humidity
at the top of the packing. On fig.3.16, I present the evolution of σM as a function of the relative
humidity RH . Variation as large as 30% in the value of σM was observed for packing fraction at
φ= 0.60 for humidity in the range 20% < RH < 95%.

FIGURE 3.16: Maximum shear stress σM according to the relative humidity RH for a packing frac-
tion φ= 0.56.

This explains why in our study, we took special care to make experiments at a value RH =
30±5%, which was a "natural" value of RH in the room during regular climatic conditions.

3.4 Réponse à un fluage

In this section, we explore systematically the creep question of a dry granular packing at a
constant shear stress, in order to reveal and characterize the internal relaxation processes.

3.4.1 Feedback

To maintain a constant shear stress on the packing, a feedback procedure was programed on
Labview. The key of this feedback loop is that the motor will rotate the torsion spring according to
the signal provided by the torque probe such that its value is maintained within a given tolerance
∆σ. The motor can rotate step by step at precision of 1/10000 of a cycle. If stress goes beyond of
below the allowed range, after about 0.1s, a command is sent to the motor in order to rotate the
torsion spring and adjust the torque within the appropriated range.
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FIGURE 3.17: Feedback response at a creep test on the shear stress (left) and on the creep curve
derivative (right)

.

On fig3.17 (left), we zoom a response of feedback on the shear stress. Due to the feedback me-
chanism, from time to time, the motor angle changes abruptly (∆β= 6.410−4r d) to keep the shear
stress in the specified domain (σ+/−∆σ/2).

However, when monitoring the deformation, one can see that a consequence of the sudden
motor rotation is that the deformation rate displays a characteristic response which is a signifi-
cant peak followed by a damped oscillation (see fig.3.17 right). We verified that after less than 20s
the deformation rate always comes back to the value assumes before the sudden motor rotation.
This happens from time to time, may be 3-5 times in a data sequence of 6000s or more. In the
following, to compute the shear rate evolution, we filtered these artificial events. In practice, we
simply replace the values corresponding to the fast rate variations (about 20 points i.e. 20s) by the
average of the time series corresponding to one minute before the jump and one minute after the
deformation rate has comes back to its original value.

3.4.2 Déformation par fluage

In this section, we present the creep deformation of the granular packing under a constant
shear stress. We focus on the determination of the macroscopic creep dynamics when varying the
applied shear stress and the packing fraction. From results of the stress ramp tests in previous sec-
tion, we have determined the maximum shear stress σM corresponding to each packing fraction,
which allows us to work in the stress range 0 <σ< 0.8σM . Typically, the creep dynamics is monito-
red over long times (about 70000 seconds). The procedure consists in two steps : first a monotonic
loading up to the desired shear stress value σ. This initial procedure is fast with respect to the creep
dynamics (typically less than 200s at the slowest motor rotation velocity) (fig.3.18 left). Note that
we verified a posteriori that the loading time scale is much smaller than the inverse of the observed
initial shearing rate.
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FIGURE 3.18: Creep test for packing fraction φ = 0.60. Note the initial load phase lasting 200s, the
creep phase where the shear stress is maintained atφ= 930±2(pa) (left) and the creep deformation
∆γ (right). The origin of times t0 = 0 is taken at the beginning of the creep phase.

Then, the feedback mechanism is applied to control the stress value with a tolerance of ±2Pa

around the fixed stress σ. For all creep tests, t0 = 0 is the time from which creep strains are mea-
sured (fig.3.18 left). We observe, for all experiments, a creep dynamics corresponding to a slow
increase in the deformation γ(t ). With the same value of applied shear stress σ, we found logically
that the creep deformation decreases with the packing fraction (see fig.3.19 a). The creep dyna-
mics seems to increase with the value of σ (see fig. 3.19 b) these stress values smaller than the yield
stress.

FIGURE 3.19: Creep deformation ∆γ, under different packing fraction at shear stress σ= 300Pa (a)
and different shear stress as a packing fraction φ= 0.60 (b).

3.4.3 Glissement aux parois extérieures

In the creep regime that we explore, it is important to be sure that what we are indeed measu-
ring bulk properties and that the creep dynamics is not due to a significant slippage at the external
cell wall. To confirm that it is not the case, we have filmed the outer surface of the packing for one
hour in standard experimental conditions. We used a CCD camera to observe the grains horizontal



3.4. RÉPONSE À UN FLUAGE 55

motion by zooming a point corresponding to a light reflection on a glass bead visible at the vertical
wall of the cell.

FIGURE 3.20: Experimental setup (right) and creep test at σ=1600Pa and at packing fraction φ =
0.60 ; ’Top’ : slippage at the outer wall, ’Bottom’ : rotation of the granular material (left)

We worked at a packing fraction φ= 0.60 and a shear stress value of 1/2 of the maximum shear
stress is applied (see fig.3.20 (left)). Fig.3.20 (right) shows on the same scale the horizontal position
of the grain (top) and the distance variation :

∆x(t ) =∆α(t ).R (3.11)

where ∆α(t ) is the rotation angle of the shear vane and R is the sample diameter. So ∆x(t ) would
corresponds to a solid displacement the grains and thus to the maximal slippage effect one can
observe. We see indeed that ∆x(t ) is much larger than d(t ) the grain displacement, indicating that
the observed creep is essentially due to bulk deformations of the packing .

3.4.4 Déformation logarithmique par fluage

In all the tests we performed, we observed a long time creep deformation typically proportional
to the logarithm of time. To determine quantitatively this dynamics, we first filtered the deforma-
tion rate jumps due to the motor feedback (see fig.3.17). Then, we determine the initial value of the
shear rate

.
γ0 by fitting a third order polynomial over the first 1000 s (see fig.3.21).
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FIGURE 3.21: Different shear strain rates with different value of σ for creep tests with φ = 0.56,
dotted line is a third order polynomial fitting.

To establish the logarithmic creep, we computed
.

γ−1−
.
γ
−1
0 as a function of time (see on fig.3.22).

Here, we used an average of the shear rate over a time centered window of ∆T = 400s. In all cases
we obtain with good approximation, a linear relation passing through zero. Therefore, all the ex-
perimental curves were characterized using an empirical relation of the type :

.

γ−1 −
.
γ
−1
0 =C t (3.12)

with C being a constant determined by a linear fit. Thus it would correspond to a deformation
creep law of the type :

γ= γ0 +
.
γ0

C
ln(1+C t ) (3.13)

which displays a long time logarithmic dynamics.

FIGURE 3.22: Plot of
.

γ−1−
.
γ
−1
0 as a function of time for creep experiments, performed at a constant

packing fraction φ= 0.6 for different shear stresses (right), and at a constant shear stress with dif-
ferent packing fractions (right). The straight lines are linear fits : y =C t .
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The creep curves performed at different packing fractions and shear stress values, are then
characterized by an initial shear rate

.
γ0(σ,φ) and a creeping slope C (σ,φ). On fig.3.23, we display

.
γ0 as a function of σ. We see a linear relation which slope seems to increase with packing fraction.

FIGURE 3.23: Initial shear strain rate as a function of the shear stress for two different packing
fractions φ= 0.56 and φ= 0.60, the dotted lines are linear fits.

On fig.3.24, we display C as a function of σ for different packing fraction. We observe a non-
monotonic decrease with σ, the value of C is large corresponded to a large creep deformation. The
displays of non-monotonic behavior demonstrates the existence a value of σ which changes the
creep properties for each packing fraction.

FIGURE 3.24: Values of C with a function of σ for three values of packing fraction.
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3.4.5 Vibrations résiduelles

FIGURE 3.25: R.m.s acceleration measurements as a function of time during a creep experiment at
σ= 300Pa and σ= 400Pa.

As we will see in the next chapter, the mechanical vibrations have a strong influence on the
creep dynamics. Therefore, even for the experiments performed in a "quiet room" condition, I
estimated the mechanical background noise. To this purpose, I measured the r.m.s acceleration Γ

in a granular medium by placing in the packing an accelerometer. The acquisition rate is 104H z

and the average was done over 1s. Measurements done without the motor yielded a valueΓ= 0.02±
0.01m/s2. I also display on fig.3.25 the values of the RMS acceleration Γ during a creep experiment
as a function of time for φ= 0.60 under various applied stress. Our results show that the presence
of the motor hardly changes the background noise value, at least in the limit of our measurements
capacities. Note that we do not know precisely which part of this small residual noise is physical or
is due to electronic noise.

3.4.6 Modèle théorique de fluidité

Experimental results of creep test allow us to study the internal dynamical processes taking
place in a granular packing below the yield stress. To analyze quantitatively the data, we used a
theoretical model proposed by Derec et al.[13] in the context of complex fluids rheology. We pro-
pose here to adapt it to the creep flow of a granular packing.
This model introduces an internal phenomenological variable called "fluidity" f whose physical
interpretation is simple as it represents a time dependent rate of stress relaxation. It extends na-
turally the standard Maxwell visco-elastic rheology. The second (and central) issue is to provide a
constitutive relation for the dynamique of f (t ). Since the original theoretical propositions of ’Soft
Glassy Rheology’ [79] or ’Shear Transformation Zone’ [35], various models have tried to capture
the complex dynamics of energy reorganization taking place in amorphous solids or yield-stress
fluids. These models can be quite sophisticated as their describe at a microscopic level, fluctua-
tion processes which macroscopic emergence can be seen as the material "fluidity". In this thesis I
will pursue a much simpler path along the lines originally discussed by Derec et al.[13]. In this case,
the fluidity dynamics would results from the combined influence of aging and stress rejuvenation
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processes. The set of coupled dynamical equations is :

∂tσ=− f σ+G
.
γ (3.14)

∂t f =−a f 2 + r
.
γ

2
(3.15)

with G the constant elastic modulus, σ the applied shear stress,
.
γ the shear strain rate, and a pa-

rameter a which is the aging parameter and r the shear rate induced rejuvenation parameter ; a

and r are dimensionless positive parameters. The first equation is the visco-elastic relation. When
f = 0, we have an elastic relation as described in section 3.2, when G = 0 and f is a constant, the
stress response is that of a simple Newtonian fluid. The second equation is a phenomenological
equation for fluidity. Note that the steady-state solution of this model (∂tσ = 0 and ∂t f = 0) cor-
respond to a rate independent dynamical shear stress : σD = G

p
a/r . We will focus our study on

the case of a constant shear stress relaxation i.e.
.
σ= 0. Thus, in this case, one obtains the relation

f σ=G
.
γ and then :

∂t f =−a(1− (
σ

σD
)2) f 2 (3.16)

The fluidity algebraically decreases towards zero as : f ∝ 1/t : there is no other time scale than the
time lapse since the application of the shear stress (the system age).

Equivalent aging parameter

Introducing an equivalent aging parameter :

aeq = a(1− (
σ

σD
)2) (3.17)

the solution of equation 3.16 is then :

f (t ) =
f0

1+aeq t f
(3.18)

The shear rate variation is :

1
.
γ
−

1
.
γ0

=
G

σ
aeq .t (3.19)

This relation leads to a long time logarithmic creep as observed experimentally. Moreover, the ex-
perimental slopes C on fig. (3.24b) can be identified using the relation :

aeq =C .
σ

G
(3.20)
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FIGURE 3.26: Effective aging parameter aeq as a function of shear stress for different values of pa-
cking fraction (left). Comparison between σm and σr (right), straight line : y = x.

Analysis of the experimental results, based on the empirical determination of C (σ,φ) and G(φ)
show that the equivalent aging parameter aeq , depends strongly on the shear stress and the pa-
cking fraction. We point out here two important limits : when aeq increases toward infinity, the
material becomes purely elastic solid. On the other way, when aeq decreases toward 0, the mate-
rial becomes a fluid. For all packing fractions, aeq displays a non monotonic behavior as a function
of σ with a minimum value σm and a maximum value σn and reaches zero at a value σD (φ). These
results indicate a dynamical hardening taking place when σm < σ < σn (fig.3.4.6 left). In other
words, the granular material seems to strengthen as its creep dynamics is slow down. For each pa-
cking fraction, I display on fig.3.4.6 (right), the values of σm as a function of σr , the "first rupture"
stress measured, at various packing fractions, in the previous sub-chapter during the stress ramp
test. The striking results if that both values seem to be the same : the onset of creep hardening σm

can be identified with the first rupture process σr corresponding to reorganizations in the granular
packing.

Initial fluidity

The concept of initial fluidity was also found to be very useful and we believe that it is the first
time it has been used in the context of granular matter. It allows an interpretation of the linear rela-
tion found in section.3.2, where at different packing fractions, a linear relation between the initial
shear rate

.
γ0 and applied σ stress was found. Then we can compute the initial fluidity parameter :

f0 =
G(φ)

.
γ0

σ
(3.21)

Here, we calculate the value of f0 considering that G is constant and independent of σ. The linear
relation between σ and

.
γ, can be interpreted a Newtonian viscous relation where η=G/ f0 would

be an effective viscosity and f −1
0 an internal material time scale. On fig.(3.27) the initial fluidity

is displayed as a function of packing fraction, for all the values of stress studied. Interestingly, all
data seem to collapse onto a linear curve ; the denser is the packing, the lesser is the initial fluidity.
The linear extrapolation of this curve to f0 = 0 yields a value φ0 = 0.635±0.002, close to random
close packing of mono-disperse spheres. This can be interpreted as a stopping value for the creep
dynamics corresponding to the jamming limit forφ in the case of a random assembly of frictionless
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spheres [82]. The effective "‘initial viscosity", then defined as :

η0 =
G(φ)

f0(φ)
(3.22)

diverges when approaching the jamming threshold from below : η0 ∝ (φ0 −φ)−1. Indeed, in prin-
ciple, we are below any thermalized regime where the viscosity concept could apply, this result is
quite remarkable.

FIGURE 3.27: Initial fluidity f0 as a function of the packing fraction for different shear stresses. The
color index reflects the ratio σ/σM . The straight line is a linear fit y = F (φ0 −φ) with F = 0.0086±
4.7E −4 and φ0 = 0.635±0.002 .

Rescaling of the creep dynamic

Furthermore, the aging dynamics can be characterized by computing the equivalent aging
parameter aeq according to relation (3.20). If a and r are independent of the shear stress, aeq

should decrease quadratically and reach a zero value at a finite stress corresponding to the dy-
namical stress σD according to relation 3.17. However, the experimental results display a non-
monotoneous relation between aeq and σ, where σr , seems to be the onset of a "re-hardenning"
process. On the other hand, the short-time dynamics of the creeping process reveals an inter-
nal time scale f −1

0 . This is why I propose, to characterize the aging properties of the packing,
to represent a rescaled aging parameter Y = f0aeq as a function of the adimensionalized stress
X = σ/σr (see fig.(3.28)). The striking feature is that all data, at different packing fractions, col-
lapse onto a single curve for the whole range of stresses and packing fractions studied. For va-
lues above X ≈ 2, the creep dynamics increases again before reaching the dynamical stress thre-
shold (aeq = 0) at σD ≈ 2.4σr . This means that in the steady regime, the shear stress is constant at
σ = 2.4σr ≈ 0.7σM . This result is consistent with the value of shear stress determined from shear
stress ramp test at steady regime, an example is given for φ = 0.57 (see on the fig.3.8). For smaller
values of shear stress, i.e. below σr , the predictions of Derec’s model (see relation (3.17)) can still
be validated with a dynamical stress σD = 1.5σr (see dashed line on fig. (3.28)). However, from a
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phenomenological point of view there is clearly an effect missing and it would be interesting to
see in further developments of the fluidity theories how such a behavior may be accounted for by
extra terms in the fluidity equation. By extrapolation, it appears that aging is still present in the
limit of zero applied shear stress. This may point out to the role of thermal activity or background
mechanical noise in the phenomenology.

FIGURE 3.28: Rescaled aging parameter aeq f0 as a function of rescaled of shear stress σ
σr

for dif-

ferent packing fractions, dotted line is : y = 1
t∗

(

1− ( x
1.5 )2

)

with t∗ ∼= 106s.

Interestingly, on the basis of a linear relation between f0 and the packing fraction, and using
eq.3.19, we can propose the shear strain rate dynamics under the following form :

γ̇(t ) ∝
σ

G(φ)

(

φ0 −φ
)

1+Φ( σ
σD (φ) )t

(3.23)

Where φ0 ≈φRC P and Φ(X ) is a function representing the nonmonoteneous behavior of the aging
process which takes the value Φ(1) = 0

Finally, this extensive study of creep test shows that down to vanishing low applied shear and
up to the yield stress value, internal relaxation processes are present in a granular packing. The
logarithmic creep hence evidenced was analyzed under the scope of a simple visco-elastic model
introducing a time dependent rate of relaxation (the fluidity). The dynamics can be viewed as a
competition between intrinsic aging and stress rejuvenation. The model allows a dynamical cha-
racterization of the initial packing fluidity which is shown to decrease linearly with the packing
fraction and vanish at the random close packing limit. However, under finite stress, we identi-
fied the onset of major internal reorganizations, slowing down the creep process and setting the
yield stress to higher values. This process could be related to the onset of stress induced aniso-
tropy [27, 48] or shear band formation. The internal dynamical processes present in the granular
packing are the sign of a peculiar fragility for this type of solid, possibly mediated by thermal ac-
tivation or by background mechanical noise. However, it may also be intrinsically related to the
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nature of elastic instabilities leading to the plastic response in amorphous solids [30]. Indeed, the
inherent fragility of granular matter under shear presented in this work has strong similarities with
creep properties evidenced in a large class of yield stress fluids [12]. Presently, there are few propo-
sitions on how, in an amorphous solid, plastic events can be triggered and organized by thermal or
mechanical energy [87] and more generally, how under finite shear, a solid may flow [34] or break
[70].

3.5 Spectroscopie par diffusion multipe de la lumière (DWS)

This section describes the results coming from a collaboration with Axelle AMON and Jérôme
CRASSOUS at the Institut de Physique in Rennes to exploit the capabilities of our shear vane sys-
tem and their knowledge in diffusing-wave spectroscopy (DWS) applied to granular matter.

It is well known that assessing experimentally the stress and strain fields in the bulk of a granu-
lar material is quite a challenging issue. This is why, numerous experiments were designed in 2D
where in some case, a determination of the local fields was made possible. Otherwise, one has to
rely on discrete particle numerical simulations where the full information can be obtained. Howe-
ver, the results may depend on the exact choice of granular interactions and was also limited to the
computational power in terms of number of particles and computer time available. This restric-
tion is particularly crucial in our case where creep deformations effects take place over long times
and the question of the real impact of the detailled microscopic interactions is still unclarified.
This is why, there is a need to back the macroscopic measurements of the previous section by a vi-
sion of the strain spatial distribution. Recently, the group of Rennes has shown that using the DWS
backscattering technique, one could get a spatially resolved deformation map at the outer edge of
a granular packing. Thus, to obtain a quantitative vision of the actual strain spatial distribution, we
combined the mechanical tests with sample observation by back scattering DWS. Details on this
technique and tests on various diffusive materials including granular packing can be found in [63].
In the present thesis, we only recall the general principles and the main results as applied to gra-
nular matter. Experiments were done at the ESPCI with Axel Amon and Jérôme Crassous group but
the analysis of the speckle patterns was performed in Rennes using the softwares they developped.

3.5.1 Mesures locales de déformation

When a highly diffusing material, such as a packing of small glass beads is illuminated with
coherent light, photons undergo scattering and propagate inside the sample, following different
optical paths. The coherent light waves have different phases and interfere locally. As a conse-
quence, the backscattered light shows a random interference pattern called a "speckle" pattern. If
the sample is deformed, the optical paths inside the packing are modified and the resulting phases
at a given place in space is changed. As a consequence a different speckle pattern is observed. Ana-
lyzing the correlations between speckle patterns recorded for different deformations of the sample
gives information about spatial distribution of the strain field [63]. This makes the technique quite
sensitive to very small deformations. The spatial resolution of the technique is defined by the typi-
cal spatial extension of an optical path travelling inside the sample. This extension is characterized
by the so-called transport mean free path of the light, l∗ which depends on the optical properties
of the material. Typically, for a granular sample made of glass beads, l∗ ≈ 3 beads diameters [17]. In
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this work, we will essentially present analysis of the results obtained from the speckle images post-
processing done the by the Rennes group. Correlations between speckle sub-images is performed
and meta-pixel images are created where logarithm reflects the deformation field between two
moments where the speckle pattern was recorded [64, 63]. More precisely, the intensity correlation
function between two images 1 and 2 is :

g I (1,2) =
〈I1I2〉−〈I1〉〈I2〉

√

〈

I 2
1

〉

−
〈
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(3.24)

here I1 and I2 represent the intensities at a given pixel in images 1 and 2 as illustrated on fig.3.29,
〈.〉 designates an average over all the pixels in the microscopic zone.

FIGURE 3.29: Illustration of the intensity before and after deformation

For a general deformation field, the theoretical modeling of light rays interference assuming
the motion of random scattering centers, shows that the correlator g I (1,2) and the local values of
deformation are related by a relation of the type :

g I (1,2) ≃ exp(−C ε̄) (3.25)

where C ≈ 6.9
p

2πl∗/λ≈ 1.5 ·103 is a numerical constant related to the ratio between the transport
mean free path l∗ ≈ 3.3d and λ the optical wavelength [64] ; ε̄ represents a mean squared deforma-
tion which is an average of invariant elements of the deformation tensor ε.

3.5.2 Dispositif expérimental

The experimental setup is shown in fig.3.31. It combines the shear vane cell (see Chapter.2)
and the DWS back-scattering method. For all theses theses experiments, the vane is introduced
at a depth h ≈ 0 (see fig.3.31) with the protocole described before. Experiments with two upper
boundary conditions were done : free surface and loaded surface. To load the surface, we placed
a circular piece of glass on the surface. Its diameter being identical with the sample diameter and
a hole was drilled at its center to let the vane rod going through. Above the glass, we put weights
to reach a vertical pressure corresponding to P ≈ 830Pa, i.e. a load similar to the granular static
pressure of the previous experiments. To avoid friction between the blade vane and the glass, we
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introduced the blade at a depth h ≈ 2mm (fig.3.30)

FIGURE 3.30: Free surface (left) and loaded surface with a desired load P (right).

To illuminate the sample, we used a Ventus continous-wave linearly polarized laser of wave-
length λ = 633nm and maximum power ≈ 50mW . About a quarter of the top surface was illumi-
nates (processed surface S=13cm2). The scattered light was collected using an optical setup des-
cribed elsewhere [63]. The top surface was imaged with a lens on a camera operating at a frame
rate of 1 H z. This camera was a DALSA PT-41-04M60 with a 2352×1728 resolution with a 7.4µm

pixel size. An iris diaphragm allows to control the size of the coherence areas on the camera and
a polarizer was introduced to enhance the speckle pattern contrast. All the signals were acquired
at the same time to synchronize the values of stress σ, deformation γ and the speckle images. Two
types of tests were performed : the packing response to a stress ramp and creep tests at a packing
fraction φ= 0.60. No vibration was applied and dry grains were used. To comply with the symme-
try of the problem, the values of the intensity correlations are calculated from the average along a
quarter of the circle at a distance r to the center : ḡ I (r ) =

〈

g I (r,θ)
〉

θ.

FIGURE 3.31: Shear vane cell and a schematic description of the diffusing-wave spectroscopy
(DWS) method, which consist in illuminating the surface of the cell by a laser and collecting the
image reflected by the granular speckle with a camera (a). Schematics of how the shear vane is in-
serted below the surface. The observation area is limited to a quarter of a circle and taken between
the radius of the vane R0 and the radius of sample R (b) .
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3.5.3 Réponse à une rampe de contrainte

We first monitor the mechanical behavior of the granular medium submitted to a shear stress
ramp obtained by rotating the torsion spring at constant rate. The radial variation of shear stress
allows to explore the relation between the shear stress and the deformation. Then, we monitor
the relation between the stress value and the dynamics of the correlation maps which reflects the
spatial heterogeneity of the deformation distribution. In particular, we focus on the scenario when
approaching the first rupture stress.

Stress ramp

A shear stress ramp is applied on the unloaded sample prepared at φ = 0.60. The ramp is

done at a constant motor velocity
.
β= 0.00104r d/s. The speckle pattern is recorded every 1s. Post-

processing of the speckle dynamics allows to extract a relationship between the shear stress and
the deformation at the surface observed for two subsequent images. On fig.3.32 , the macroscopic
shear stress is plotted as a function of time. Below this figure the radial disribution of the correlator
(averaged over 1/4 of a circle)

_
g I (r ) is plotted. The gray code is such that g I = 1 is white and low

correlations are in black, which corresponds to important deformations. We can observe clearly
on shear stress-time curve and on the radial correlation map, the effect of the ’first rupture’ and
subsequent series of partial ruptures.

FIGURE 3.32: Response to a stress ramp on the sample surface. Shear stress as a function of times

for a packing fraction φ= 0.60 and
.
β= 0.00052r d/s with the juxtaposing of

_
g I (r )

Hot spots

The most triking feature observed on the correlation maps is the presence of localized features
corresponding to important localized deformations. For correlations between two images taken at
a time lag of δt = 1s, the intensity correlation stays at g I = 0.99 except over small areas, the hot
spots, where a significant localized correlation drop down to g I = 0.95 is observed. The extent of
these spots is typically 3mm, i.e. about 15 grain sizes. Fig.3.33 shows the correlation of a typical
event and the distribution of the events size.
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FIGURE 3.33: 3D representation of a typical event (left) and distribution of the event size ξ in units
of beads diameter d in a creep test at shear stress σ= 1200Pa for the loaded surface.

First rupture scenario

In this subsection, we focus our observations of the approach of the first rupture identified
previously at a value σr , an example of the first rupture is presented on fig.3.34.

FIGURE 3.34: (a) Part of the surface of the cell that is used for the correlation maps showing a typical
localized spot : typically, in average g I ≃ 0.99 (yellow) and g I ∼ 0.95 for the black spot. (b1) to (b6)
Correlation maps between successive images corresponding to the first stress drop. (c) Zooming of
shear stress as a function of shear strain when the first rupture appeared.

Figures 3.34.(b1) to (b6) show successive maps corresponding to the vicinity of the first rup-
ture stress σr . As the deformation is increased, more and more decorrelation events appear as
described on fig. 3.34.) with the images (b1) to (b3). These events aggregate at a radial position
fig. 3.34.(b3) and (b4). Finally, a large and totally uncorrelated zone appears at the place where
the spots had previously aggregated (fig. 3.34.(b6)). This large decorrelation zone, corresponds to
a shear band and is associated to the stress drop identified previously at the first rupture stress
value (see on fig.3.34 (c)). Thus, our results seem to indicate the existence of a precursor scenario,
here the "hot-spots" density increases in a region where a large rupture will occur. After that, the
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frequency of hot spots events resumes at a lower pace until a new similar scenario is reached for
the next large amplitude stress drop.

3.5.4 Déformation par fluage

FIGURE 3.35: Creep deformation and accumulation of events as a function of time for a packing
fraction φ = 0.60 at shear stress σ = 250Pa for the free surface. Inset : sample surface when an
event appears (before-event-after).

In order to clarify the link between these localized zone and the plastic deformation of the
material, we performed stress controlled creep experiments. In parallel with the creep deformation
measurement, the "‘hot spots"’ dynamics was monitored. In the present report, experiments were
performed for free and loaded surfaces (fig.3.30). We only focused on shear stresses of moderate
amplitude, i.e. on values smaller than the corresponding σr . After processing the correlation maps,
the spot location was identified by image analysis. Then, the cumulated number of localized events
N (t ) was counted from the time t = 0 corresponding to the moment of application of the constant
shear stress.

FIGURE 3.36: Integrated number of events in a free surface experiment for different applied
stresses : 50 Pa (�), 100 Pa (◦), 150 Pa (△), 200 Pa (▽) and 250 Pa (♦).
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On fig.3.35 the deformation ∆γ(t ) (in red) and the cumulated number of events N (t ) (in black)
are represented on the same graph. Their evolution seems to be strongly associated and in the
following, we are going to relate explicitly the rate of apparition of the "hot spots" event to the
global plastic deformation.

For a free surface loading condition, we display on fig.3.36, the relation between the cumula-
ted number of events N (t ) and the creep deformation ∆γ(t ). We see that the relation is roughly
linear and that the slope decreases with the amplitude of the applied stress. The analysis that we
propose is carried in the framework of the simple visco-elastic model presented in section 3.4. By
integrating eq.3.15 from the origin of time to a time t after creeping at constant σ, one obtains :

∆γ=
σ

G

t
∫

t0

f (t ′)d t ′ (3.26)

From fig.3.35, we found that the fluidity f was identified with the localized event.

∆γ=
σ

G

t
∫

t0

f (t ′)d t ′ ∝
σ

G
N (t ) (3.27)

FIGURE 3.37: σ∆N as a function of the creep deformation for a packing fraction φ = 0.60 and dif-
ferent shear stresses. Measured in two cases : free surface (red) and loaded surface (green).

Fig.3.37 shows the relationship between σ∆N and the creep deformation ∆γ for two types of
test : free and loaded surface. With each type of test and for all the shear stress studied, all the
data collapse onto a single curve. The slop on fig.3.37 is proportional to the shear modulus G . Due
to Hertz elasticity, the effective shear modulus G should increase with the confining pressure P .
The creep experiment results display the same quasi-linear relation between N (t )σ and ∆γ(t ) and
also the expected qualitative stiffening (a factor 20 approximatively) (fig.3.37). However, from a
simple account of the Hertz-law, we should only expect here a factor 5. This significant difference
is possibly due to the presence near the free surface of a strong stiffness gradient and a diverging
elastic susceptibility but we have no real explanation for the quantitative discrepancy. We directly
measured the elastic response of the loaded packing and found G = 1,6.106Pa. Our torque probe
was not sensitive enough to access to the elastic regime of the free surface packing.
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3.5.5 Dissipation d’énergie

The simultaneous monitoring of macroscopic mechanics response and local visulatisation using
DWS technique, established a direct relation between the rate of creep deformation and the appa-
rition of mesoscopic events. The fact that the event do cluster in the vicinity of major yield events
prior to their macroscopic apparition, reinforces the idea that they play a leading role in the plas-
ticity process. However, it is not a priori obvious that these are the only and sufficient modes of
rupture to account for the full plastic flow dynamics. Therefore, we propose a simple model to es-
timate the energy released by the events in order to compare it with the elastic energy release in
the bulk which could be at at the origin of the macroscopic irreversible deformations. The energy
dissipation of one plastic event per unit of depth is σεξ2, where σ is the local stress, ε = σ/G the
typical plastic deformation during one event and ξ = 3mm the typical in-plane extension of such
an event. During creep experiment, the density of energy release through the elastic bulk relaxa-
tion processes is σ∆γ(t ). Therefore, for N (t ) hot spots visualized during the creep process, one
can write an energy balance per unit depth, between the localized plastic dissipation and the bulk
elastic relaxation. One obtains :

Sσ∆γ(t ) =σεξ2N (t ) (3.28)

which yields a linear relation :
σN (t ) = K∆γ(t ) (3.29)

with K =GS/ξ2 which is same type with what we found experimentally. Quantitatively, the relation
can be tested on the loaded surface. We obtain K = 109 which is very close to the value obtained
in fig.3.37. Therefore, within the consistency of the model, it seems that the energy released by the
hot-spots is of an appropriate magnitude to account for macroscopic plasticity.

3.6 Conclusion

In this chapter, we presented systematically all the results recorded in the case of dry grains
without vibration. The influence of the packing fraction on the elastic response, shear stress and
creep dynamic were hence evidenced. We analyzed quantitatively the creep deformation with a
fluidity model developed by Derec et al.[13]. Thanks to this model, we evidenced the significant pa-
rameter ’initial fluidity f0’ which depends only on packing fraction. Interestingly, the creep defor-
mation and response to a stress ramp was consistent with the deformation measured by Diffusing-
Wave Spectroscopy system. Then, we provided a direct visualization of the localized deformation
events associated with the mechanical response of a granular packing under shear.
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4.1 Introduction

The behavior of a granular medium under vibration is quite complex and displays a rich phe-
nomenology. It has been the subject of numerous experimental and theoretical studies. Under
weak vibrations, the flow properties can be strongly changed. For example, several works were de-
voted to the influence of vibrations driven by a piezoelectric transducer [9, 1] which inject sound
waves in the material and modify its rheological properties. Also, the existence of a shear zone was
found to modify the rheological properties at large distances, even in a zone where the granular
medium did not display obvious agitation [47, 49]. In this chapter, I study the effect of vibrations
produced by a piezoelectric device inserted in the granular medium in the context of the three me-
chanical tests presented in the previous chapter. In all cases, the granular packing is prepared by
using the protocol defined previously for dry packing without vibration (see chapter.3). However,
by lack of time I did not vary systematically the packing fraction and present essentially results ob-
tained at φ= 0.6.

In this study, a central control parameter will be the r.m.s acceleration measured using an ac-
celerometer inserted in the packing at a given position. I will study its influence on the Coulomb
yield threshold, the elastic response and the creep dynamics. I also studied spectral distribution
of vibrations and its influence on the mechanical tests by varying the shape on the input electric
signal. I do not have a systematic exploration of all these parameters, however as a first tentative,
I will compare the results obtained for two different driving condition, i.e. square input at 100H z

and sinusoidal input at 1000H z which display a different spectral response. The idea is to verify if
the RMS acceleration is at least in first approximation, a pertinent control parameter. The spectral
distribution of accelerations in the bulk and the relation between between RMS acceleration and
input voltage was given in chapter 2 (see fig.2.14, fig.2.16, fig.2.19 and fig.2.20).

Note that for sono-fluidization at larger amplitude (typically Γ ≈ 0.35g ), Caballero et al. [72]
have shown that the packing may undergo a slow logarithmic compaction. The total packing frac-
tion after ten days had decreased by 3%. With a much stronger vibration Γ≈ 6.8g , Nowak et al. [24]
found that this variation was about 5%. Thus, with vibration of typical maximal amplitude 0.04g ,
we can assume that the packing fraction is not changed for application time of about 2 hours maxi-
mum.

4.2 Mesure du module élastique

4.2.1 Influence des vibrations

Propagation of sound waves in a granular medium is a classical technique which enables to
measure the elastic modulii of a granular packing [7, 31, 23, 51]. In soils mechanics, the ’sound ve-
locity’ and ’small cycle of shear stress-shear strain’ methods (as described in Chapter.3) were shown
to be highly correlated [23, 31, 32]. In most cases, a very weak vibration was used and elastic res-
ponse was found to be independent of the sound amplitude. However, some measurements were
made recently at larger amplitudes and indeed a weakening of the modulus was reported. Effects
of sound induced memories were invoked to explain the spatial coupling between tectonic shear
zones and earth quakes triggering [46]. One of the simple questions to be asked in this section is
how the low frequency shear elastic response is modified by the mechanical vibrations produced
by the piezoelectric transducers. Fig.4.1 shows the effect of vibration on the normalized shear elas-
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tic modulus G/G0(φ) measured by a oscillation applied deformation (at 1/12 Hz). The method is
presented in Chapter.2. The vibration is applied at the same time than the low frequency deforma-
tions and the overall measurements lasts 1 minute maximum. G0 and G are respectively the values
of shear elastic modulus with vibration and without vibration. Here, I present results obtained
with a square vibration at 100H z for three different packing fractions and a sinusoidal vibration
at 1000H z at φ = 0.60. The data show that the elastic modulus is almost unchanged under very
weak vibration Γ< Γ∗ = 0.08ms−2. So indded there might be a well defined elastic limit at low level
of vibration. Note that the measured vibration level in the room was Γ ≈ 0.02ms−2. The second
striking feature is that, even for different vibration conditions, the RMS acceleration seems a good
control parameter as it regroups all the data on the same curve. However these results as they are,
do not constitute an absolute proof and a more systematic work varying independently the dri-
ving amplitudes and frequencies is still to be done. The elastic modulus decreases quasi linearly
with Γ. I fitted a function : y = 1− (x −Γ∗)b, with b ≈ 1.5/g . Note that with the sinusoidal tension
input when V > 6V , the vibration spectrum begins to change drastically from quasi-harmonic to
strongly anharmonic (see chapter.2, fig.2.16), but G continues to decrease linearly with Γ.

FIGURE 4.1: Influence of vibration on the shear elastic modulus. Normalized shear elastic modulus
G/G0 as a function of vibration level Γ for the sinusoidal and square vibration applied, fit line :
y = 1− (x −a)b with a = 0.08 and b = 1.5/g .

4.2.2 Réversibilité

This is an important issue in seismology to know, how a granular packing goes back (or not) to
its initial structure when a vibration like a sound wave goes across a gouge zone (essentially com-
posed of shared granular material). Experimental studies in the lab with shear apparatus by Paul
et al.[68] and also field measurements of earthquakes synchronization have claimed that vibration
could lead to a memory effects lasting a significant time. I established in the previous section that
under vibration, the value of the shear elastic modulus is decreased significantly. A question is to
know whether this material weakening is reversible and contains some temporal memory of the
wave application. I established a protocol were after 1 minute of vibration and elastic response
test, the vibration is suppressed. I continued to measure the shear modulus value. In fig.4.2 (left), I
show the result for three different vibration levels. I found that the value of G was restored almost
instantaneously (within few tenth of seconds) and was almost reversible. We can see that it can
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go back 99% (fig.4.2) of its value. So no clear memory effect was detected and the action of weak
vibration on the shear modulus under no applied shear stress, is quasi-reversible.

FIGURE 4.2: Reversibility of a granular medium by measuring the shear elastic modulus G . Evolu-
tion of G/G0 as a function of the pause time, the black line is drawn as a guide to the eyes, G/G0 = 1
(left), evolution of G/G0 as a function of Γ after two minutes of pause (right).

4.3 Réponse à une rampe de contrainte

In the presence of vibrations, I performed stress ramp tests at fixed motor rotation speed
.
β =

0.00104(r d/s). The maximum shear stress was measured. The vibration was introduced from the
beginning of the ramp. In this section, we actually performed experiments for a systematic varia-
tion of compaction obtained with the same protocol as described in Chapter.3. The vibration level
was also varied.

Remember that in the case with no vibration, we identified clearly a stress of first rupture σr .
However in the same conditions with sufficient vibration, these events disappear as described
on fig.4.3. In the case described in this figure, the vibrations were driven by a square tension at
f = 100H z and Γ = 0.4m/s2. The shear stress increases smoothly as a function of time until the
maximum shear stress σM is reached. After that, the shear stress decreases smoothly and a quasi-
steady regime is established. On the top of fig.4.3, we display the stress time derivative (= 1s) and
besides noise, one does not observe the characteristic peaks as in fig. 3.8 with no noise. This curve
is not perfectly horizontal, which allow us to consider that the shear-stress increases in a non-
linear way with time. The displacement of the shear vane in then significantly larger that the grain
size. Typically 50 grain sizes for the experiment displayed on fig.4.3. It would be interesting in a
future work to study the disappearance of stick- slip motion with vibration in orderfor example to
compare theses results to the effects of acoustic waves on stick-slip in granular media by Johnson
et al. [68]. They show that the stress-drop magnitude decreases due to vibration. However, I had no
time to carry this study in detail.
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FIGURE 4.3: Response to a ramp stress showing the shear stress as a function of time with the in-
fluence of vibration, for two packing fractions with a vibration intensity Γ = 0.40ms−2 (bottom),
shear stress derivative as a function of time with packing fraction φ= 0.60 (top).

Fig.4.4 (left) shows the response of the granular medium to a stress ramp with a sinusoidal
tension input for three frequencies (600H z, 850H z and 1000H z) such that the tension yields a

similar r.m.s acceleration Γ = 0.25ms−2 (see fig.2.20), the motor rate being
.
β = 0.00104 r d/s. The

value of the maximum shear stress does not display significant differences.
Fig.4.4 (right) is a zoom at small stresses of the relationship between shear stress and defor-

mation for the three previous frequencies (see corresponding zone in Fig.4.4 (left)). Again, results
showed no large differences between the three frequencies. However, what is remarkable is the
onset of large plastic deformation jumps for deformations of the order of ∆γc ≈ 310−4. Below this
value the elastic stiffness of the system is recovered.

FIGURE 4.4: Influence of vibration with sinusoidal voltage input on shear stress at a packing frac-
tion φ= 0.60, response to a stress ramp (left), shear stress-shear strain relation (right).

I measured the maximum shear stress under vibration at different packing fractions. I used a
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driving frequency with f = 100H z and tension input being a square corresponding to a vibration
level of 0.40ms−2. I found that the maximum shear stress is reduced (see fig.4.5 left). Interestin-
gly, these stress values of the maximum shear stress in the case of vibration and no vibration are
strongly related since their ratio remains constant : ≈ 1.4 (see upper part of fig.4.5 left).

FIGURE 4.5: Maximum shear stress σM with vibration and no vibration as a function of the packing
fraction (bottom) and its ratio as a function of the packing fraction (top) (left), and its ratio as a
function of vibration level for a packing fraction φ = 0.60 with two vibration types, (fit line : y =
1− (x −a)b with a = 0.03 and b = 4.5/g ) (right).

At a fixed packing fraction φ = 0.60 and varying the vibration level, I measured the maximum
shear stress σM . I found that the maximum shear stress decreases rapidly as a function of Γ. Expe-
riments were carried for square and sinusoidal tension input as described on fig.4.5 (right). This
is consistent with the influence of vibration on the shear elastic modulus (see fig.4.1). With σM (0)
and σM (Γ) the maximum shear stress with vibration and no vibration respectively. We found that
with Γ < 0.5ms−2, the maximum shear stress decreased almost linearly with the vibration level
measured with the RMS acceleration.

4.4 Réponse du fluage à une contrainte constante

In this section, we study the creep dynamic of the granular material under vibration. Such as
for the study of the elastic response and the stress ramp, two vibration methods were used : vi-
bration with square and sinusoidal tension. The vibration was triggered from the beginning of

the test, i.e. as soon as the stress ramp started. The motor rotates at
.
β = 0.00104r d/s. The no-

minal applied stress is reached in about 3-4 minutes. The study is done at a fixed packing fraction
φ= 0.60 with various r.m.s accelerations Γ and applied shear stresses σ. With a square tension in-
put, fig.4.6 (left) shows the creep deformation at different of vibration levels for the same applied
shear stress σ = 400Pa. Note that in these conditions, the maximum stress is σM = 2800Pa. On
fig.4.6 (right), creep deformations curves are displayed at different shear stresses for an applied
vibration Γ= 0.25m/s2. We found logically that the creep deformation increases with the vibration
level and the shear stress.
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FIGURE 4.6: Creep deformation with square tension input and packing fraction φ = 0.60, for dif-
ferent vibration levels at applied shear stress σ = 400Pa (left) and for different applied shear
stresses at r.m.s vibration Γ= 0.25ms−2 (right).

We found that the creep deformation follows a long-time logarithmic law quite similar to what

was found previously. This is confirmed on fig.4.7by the linear relation between
.

γ−1−
.
γ
−1
0 and time.

The slope C is obtained from a linear fit. Note that
.
γ0 was obtained from each creep curve by a fit as

explained in chapter 3. Similar couple of parameters
.
γ0 and C were obtained for sinusoidal driving

(see fig.4.8).

FIGURE 4.7: Plot of
.

γ−1 −
.
γ
−1
0 as a function of time for square vibration, different r.m.s vibrations

(left) and different shear stresses (right).
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FIGURE 4.8: Creep deformation with different shear stresses, the packing fraction φ = 0.60 and

r.m.s vibration Γ= 0.25ms−2, sinusoidal tension input (left), plot of
.

γ−1 −
.
γ
−1
0 as a function of time

(right).

On fig. 4.9 (left), I plot the relation between
.
γ0 and σ and compare it with the relation without

vibration. It appears that contrarily to the previous chapter, the relation is not linear anymore. It
might still be linear at weak shear stress, with a slope larger than the case with no vibration. It
eventually identifies at larger stresses, with the no-vibration curve. I pursue the analyzis of theses
experimental results using the model of Derec et al.[13] as it has been done in the case of dry grains
without vibration. In this framework, two parameters were extracted from the experimental data,
the "initial fluidity", f0 and the "equivalent aging", aeq (see eqs 3.21 and 3.20). These parameters
will be compared to those obtained in the absence of vibration when varying, shear stress and RMS
acceleration.

FIGURE 4.9: Initial shear strain rate as a function of the shear stress with square vibration and no
vibration, the dotted lines are linear fits (left)and initial fluidity as a function of shear stress at r.m.s
acceleration Γ= 0.25ms−2 and packing fraction φ= 0.60 (right).

Along those lines, I represent on fig.4.9 (right) the initial fluidity f0 as a function of shear stress.
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In spite of the fact that more data point would be needed to reach a firm conclusion, it seems that
this curve reaches a low stress value close to ≈ 2,8.10−3, which characterize an initial rate of stress
relaxation higher with vibration than without vibration. Now I choose a low value of stress (σ =
400pa), to study the variation of f0 with the vibration level. On fig.4.10 (left) it appears that under
this constant applied stress, f0 increases linearly with Γ at a given packing fraction. On this plot the
value without vibration was plotted with the actual noise value measured with the accelerometer.
The curve seems to be quite linear and interestingly, interpolates at a value which is different of
zero for Γ = 0ms−2. This las result may indicate the presence of a relaxation mechanism different
from the mechanical vibrations. One can think of thermal processes activated at the level of contact
plasticity.

FIGURE 4.10: For shear stress σ = 400Pa, packing fraction φ = 0.60 and square vibration ; Initial
fluidity f0 (left) and ageing parameter aeq as a function of the RMS acceleration Γ (right).

Now in the same conditions, I display the values of the ’aging parameter’ aeq (see fig.4.10 right)
at different vibration levels. The fluidization effect is marked by an important drop of the the ageing
parameter with Γ. From fig.4.11, I find that aeq decreases monotony with the shear stress for an
acceleration r.m.s of Γ = 0.25ms−2 for the two types of vibration (square and sinusoidal tension
input). Results showed that a local minimum indicating dynamical hardening with stress cannot
be detected consistently with the response of a granular medium to a stress ramp (see section 4.3).
where the ’first rupture stress’ disappears in the presence of vibration. In both cases, vibration and
without vibration, the ’aging parameter’ aeq seems to reach a same value when σ= 0. We find that
aeq approach to 0 when σ near to σD , the packing starts to exhibit a fluidity regime. Results shown
on fig.4.11 allow us to estimate the value of σD ≈ 2800Pa. This value is the dynamical shear stress
corresponding to the steady shear rate in the case of without vibration. In presence of vibration
Γ= 0.25ms−2, the maximum shear stress is ≈ 2800Pa with φ= 0.60.

The value of aeq depends also on the applied shear stress. When we displayed aeq as a func-
tion of the vibration level, we found logically that this value decreases with a vibration level (see
fig.4.11 right). Then, we can assume that aeq decreases monotony with σ and Γ in presence of vi-
bration. From results showed in fig.4.5 (right), we can estimate that σ= 400Pa is maximum shear
stress of packing if Γ ≈ 1.8ms−2. This means that aeq = 0 when σ = 400Pa and Γ ≈ 1.8ms−2. This
is consistent with what is shown on fig.4.11 if we consider that the value of aeq decreasing linearly
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with the vibration level.

FIGURE 4.11: Evolution of the aging parameter aeq at a packing fraction φ = 0.60, as a function of
the shear stress with square (◦) and sinusoidal (•) vibration and no vibration

4.5 Conclusion

In presence of weak vibrations, we found that the mechanical properties and the creep dyna-
mics is only dependent on the r.m.s acceleration. We presented the evolution of the elastic res-
ponse and the maximum shear stress as a function of r.m.s acceleration Γ. Creep dynamics varies
strongly with vibration for both types of vibration studied : square and sinusoidal tension input.
Logarithmic creep was observed for the two types of vibration introduced. The results presented
in this chapter is consistent with what is found in the case of no vibration, the ’ageing parameter’
aeq approach to 0 when the shear stress approach to the dynamic shear stress σD . A monotony
diminution of aeq would to indicate that no existence of reorganization in the granular medium
under shear stress.
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5.1 Introduction

Most studies about granular medium are focused on dry granular medium, without any li-
quid between nearby beads. However, in various domains such as geology and many industrial
applications (e.g. food processing, pharmaceuticals, ceramics, civil engineering, constructions),
the granular medium is wet. Moreover in soil science, it is known that even sandy soil, which are
the closest of a granular packing as we model it, contain a substantial amount of water. From the
mechanical point of view, it is well known that the granular medium behavior is strongly different
for wet granular media as observed for sand castle construction which has led to several physical
studies [18, 75, 90] aiming to clarify the effects of capillary bridges between the grains on the ma-
terial yield properties.

In this chapter, I study in the context of our experimental shear cell, how water content af-
fects the mechanical properties of a granular packing. The experiments were designed to prepare
a controlled wet sample and the details of preparation were presented in Chapter. 2. The aim is to
perform mechanical test as done in Chapter.3 for dry samples. Also, the study is just preliminary
since I had no time to carry systematic measurements. I will only here present the proof of prin-
ciple that water content modifies drastically elastic, strength and creep properties of the packing.
Initial packing at a given packing fraction (essentially at φ = 0.6). Note in addition, that for every
experiment, the shear vane is always introduced in the packing before the injection of humid air.
The mechanical measurements are performed when the desire water content is obtained.

An important question is to know to which extend the addition of water may change the pa-
cking fraction. Actually, Feng et al. [15] have measured experimentally that the water content W

influences the packing fraction only at high water content (W ≈ 1%). In our experiments, we add
very small amount of water (typically W ≈ 0.2%). As a consequence, we may assume that the pa-
cking fraction stays unchanged, at least globally. Also, the room temperature could range between
the extreme values 15◦C and 25◦C , however we kept a relative humidity 30±5%. In these condi-
tions, the measured water quantity for a dry granular media was always around W = 0.05±0.02%.

5.2 Module élastique G

The experiments consist in measuring the shear modulus G for the granular medium at a given
water content. The method is described in chapter 3. On fig.5.1 (left), I represent the influence of
the water content W on the relative shear modulus G

G0
, where G0 is the shear modulus for a dry

granular medium (W ≈ 0.05%). Fig.5.1 (left) shows a slight increase of G
G0

as a function of W for
water content values below W = 0.14%. Above this water content value, the shear modulus value
does not change anymore as a function of W . The increase in material stiffness is a natural conse-
quence of the presence of capillary bridges which provides cohesion to the packing. Typically there
ate two contributions (i) stiffness increase due to the Hertz non-linear behavior, (ii) contribution of
the elastic response due to the capillary bridge deformations. The resulting contribution at the ma-
croscopic scale is a difficult issue as it depends on the geometrical distribution of capillary bridges
in the packing. Note that the non-linear Hertz contribution is potentially a strong effect in our
situation. If on estimates naively the relative increase in modulus as : δG/G = 1/3∆P/P for a ca-
pillary overpressure = γ/d ≈ 350Pa (with water) and a confining pressure of P = 103Pa one gets
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δG/G =O(1).

FIGURE 5.1: Elastic shear modulus G . Normalized shear modulus G/G0 as a function of the water
content W for different packing fraction values (left) and shear modulus as a function of the pa-
cking fraction for the dry sample and the wet sample with a water content value of W = 0.16%
(right).

The discussion on chapter 2 based on the article by Hornbacker et al. [18], indicates that, for the
water content we use, we are in the rising part of the relation between water content and the mean
number of contacts per grains. This could explain qualitatively the increase in stiffness with W .
However, we observe a saturation for value around W = 0.14. We do not have a clear explanation for
this besides the fact that we may reach a plateau in mean number of contact per grains (around 6)
as shown by Hornbacker et al. [18]. The effect is at the maximum of the order of δG/G = 10%, a little
bit smaller than what was estimated naively before. Note also, that if we follow strictly their curve
this cross-over comes a little bit early in water content. Finally, that the effect stays qualitatively
the same for different packing fractions. On Fig.5.1 (right), we see that the shear elastic modulus
increases also with the packing fraction for a water content value W = 0.16%.

5.3 Influence de la quantité d’eau sur le seuil de Coulomb

I measured the maximum shear stress σM for a wet sample using the same protocol as for
dry granular matter(see Chapter 3). On fig.5.2 (left), an example of the response to a stress ramp is
shown. The shear stress increases almost linearly as a function of time until it reaches the threshold
value σM , for which a huge drop of stress is observed. We do not observe a succession of local
ruptures as it was the case for dry granular matter. On the upper part of fig.5.2 (left), the shear stress
derivative is represented as a function of time. The curve is almost horizontal up to the maximum
shear stress.
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FIGURE 5.2: Shear stress as a function of time for a test ramp stress with parameter values W =
0.16%, φ = 0.60 (left) and the Coulomb threshold σM as a function of the water content W (%) for
two different values of the packing fraction (right).

On fig.5.2 (right), σM is displayed as a function of W for two different values of the packing
fraction. Note that on this graph, W = 0.05% corresponds to the water content measured for a
dry granular medium in standard experimental conditions. The main point is that σM increases
strongly as a function of W , with a trend almost linear. Somehow, the strong dependence with W ,
is expected, as we recall that the capillary cohesive pressure Pc ≈ γ/d ≈ 103Pa is comparable to
the hydrostatic confining pressure P = ρg hφ ≈ 103Pa. We also observe on fig.5.2 (right) that the
higher is the packing fraction value, the stronger is the increase of σM (W ). The sensitivity of this
dependence with a small change in packing fraction is indeed a remarkable effect. In our study,
if we consider that the confining pressure does not change with a very small water content W , in
the framework of a simple Mohr-Coulomb criterion, it simply means that the cohesion increases li-
nearly with W . This would correspond to the low water content identified by Scheel et al. [61] when
they measure directly the tensile strength of a wet packing. At higher water content (1% <W < 3%)
one would expect a nonlinear relation and a subsequent saturation (Wm > 3%) as measured expe-
rimentally by Richefeu et al.[91].

5.4 Fluage

The study of dynamic creep in the presence of water is an important issue in soil science, for
example the phenomenon of settlement due to a high water content or issues around root pene-
tration in sandy soils. In our study, we focus on the dynamical creep properties for very weak water
content values. After preparation of a dry sample , the shear vane h = 5cm is introduced and water
injected as described in chapter.2. The creep tests is performed under a constant applied shear
stress after a stress ramp of 3−4 min. The sample surface is covered by a light lid to prevent eva-
poration. During the creep tests, I measured a relative humidity beside the admission chamber
(fig.2.2) always superior to 90%. For the same packing fraction φ= 0.60 and at a shear stress value
σ = 2000 Pa, on fig.5.3 (left), are displayed the creep curves describing the influence of the water
content. The creep deformation decreases quite strongly with W .
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FIGURE 5.3: Creep experiments at a constant packing fraction φ = 0.60 for various water content

values. Creep deformation∆γ as a function of the water content W (left) and
.

γ−1−
.
γ
−1
0 as a function

of time (right).

I also performed creep tests for two different values of packing fraction and shear stress as
presented on fig.5.4. We can see that the logarithmic law for the creep is still observed. We found
as expected, that the creep deformation increases and decreases respectively as a function of shear
stress and packing fraction for a given value of W .

FIGURE 5.4: Creep deformation ∆γ with water content W = 0.12% under different values of shear
stress at packing fraction φ= 0.60 (left) and under different packing fraction values at shear stress
σ= 2000 Pa (right).

Fig.5.3 (right) shows that the creep deformation for a wet sample follows a logarithmic law as a

function of time, because we observe a linear relation
.

γ−1 −
.
γ
−1
0 =C t .
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FIGURE 5.5: Evolution of the initial strain rate
.
γ0’ (left) and the "‘creep slope" C (right) as a function

of water content W , at a packing fraction φ= 0.60 and a shear stress σ= 2000 Pa.

From the creep curves, I extracted the initial strain rate
.
γ0 and the "creep slope" C which are

displayed are displayed on fig.5.5 as a function of the water content W . These values are obtained
at a packing fraction φ= 0.60 and a shear stress σ= 2000Pa.

A remarkable result is that
.
γ0 decreases very strongly with W and C increases. By simple linear

interpolation one estimate the crossing of
.
γ0 = 0 when W approaches 0.2%. On the other hand, at

this value, C seems to strongly increase and possibly diverge. This would mean that the packing
"solidifies"above this value of W around 0.25±0.05%.

5.5 Conclusion

We have demonstrated that adding a very small amount of water can modify strongly the me-
chanical properties of granular packing. Furthermore, the elastic response and the Coulomb thre-
shold increases with W . We completed previous studies about the dependence of material resis-
tance at low water content values. Finally, the logarithmic law for the creep of wet sample is still
observed.



CONCLUSION ET PERSPECTIVES

In my thesis I tackled a question which had been so far, rarely considered in the physicist com-
munity : the problem of slow relaxation processes and creep, below the rupture threshold in granu-
lar packing. I considered three model situations : dry granular packing without and with vibration
and also wet packing.
To this purpose I defined a methodology consisting of three mechanical tests of a granular packing
in a shear cell. An important point was to define a protocol suited to prepare the packing at a fixed
packing fraction φ .
The set-up was built to be able to measure experimentally the shear elastic response, the rupture
threshold and the creep dynamics at fixed applied shear stress.

The major part of my work was dedicated to dry granular packing. The elastic response of such
packing was found to increase linearly with packing fraction, consistently with mean-field Hertz
elasticity. The ramp experiments allowed to define a maximum shear stress before yield which was
found to increases with packing fraction. However, in this shear geometry and for slow driving,
we identified at all packing fractions a clear "‘first rupture threshold"’ above which other ruptures
could occur but overall, the resisting stress was found to increase up to the maximum shear stress
value. For all stresses and packing fraction tested, the creep experiments displayed a slow deforma-
tion response that would yield a long time logarithmic response. We characterized this behavior by
extracting two parameters : the initial value of the shear rate and a dimensionless coefficient ex-
pressing the importance of the creep. These data were analyzed in the context of a rheological
model which introduces the concept of "fluidity", which characterizes the rate of stress relaxation
due on internal processes in the packing. This is an extension of a classical visco-elatic rheology
but with an age dependent fluidity f which is coupled to a dynamical equation for f . We proposed
a simple form for this equation based on an original proposition of Derec et al. [13] which contains
two antagonistic term : (i) an intrinsic aging parameter (ii) a shear-rate induced rejuvenation pro-
cess. This model is consistent with the experimental finding and provides an interpretation for the
empirical parameters. The linear relation between the initial shear rate and the applied stress allo-
wed to define a rate of relaxation (the initial fluidity f0) characteristic of the packing preparation. It
naturally identifies an effective "viscosity" which diverges at the random close packing limit. The
model also allows to define an effective aging coefficient characterizing the creep process. I have
shown that with a proper rescaling in f0(φ) and in stress by σr (φ) the aging curves at different stress
and packing fractions could be rescaled onto a master curve. An important feature is that at larger
stress the onset on the "first rupture threshold" is directly associated to a dynamical hardening of
the packing corresponding to a slow down of the creep before the final yield.

In the context of dry granular packing, using a light scattering technique (DWS), we also pro-
vided in collaboration with a team of the Rennes University, a direct visualization of localized
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deformation events associated with the mechanical response of a granular packing under shear.
The optical DWS technique, manages to capture in a plane perpendicular to the vorticity axis, the
emergence of the so-called "hot-spots" characterized by a spatial extension of about ten grains.
This is to my knowledge, the first time such localized events were identified experimentally and it
connects to the numerical and theoretical studies done in the context of disordered glassy solids
[30, 84, 19]. Under a stress ramp, we showed that these events increase in density with the stress
amplitude and cluster spatially as precursors of the shear banding macroscopic yield events. The
occurrence of the first rupture event is directly associated to the first clustering of the "‘hot-spots"’.
Under constant applied shear stress, the rate of apparition of these "hot-spots" at the top surface is
directly related to the rate of plastic deformation. Varying the applied shear and the surface boun-
dary conditions, we point that at first approximation - possibly corresponding to a mean-field ap-
proximate of the problem - the hot-spot dynamics is in direct relation with the "fluidity" parameter
and represents the mean rate of stress relaxation.

In the presence of weak vibration, I monitored the mechanical properties as a function the r.m.s
acceleration Γ measured in situ using a buried accelerometer. I measured a decrease of the elas-
tic shear modulus with Γ as well a decrease of the maximal shear stress the packing could sustain
in the ramp experiment. Interestingly in this case, the first rupture stress disappears but instead,
many plastic events could be evidenced along the ramp curve. The creep experiments showed also
a slow logarithmic deformation response. However, the addition of vibration is strongly increasing
the rate of deformation. I had to time to complete the experiments to test the validity of the fluidity
model and study this creep acceleration directly with the DWS technique. This is certainly some-
thing to be considered for a future work.

The study of a wet sample was really preliminary. I essentially defined an experimental proce-
dure showing that one could prepare a packing at fixed packing fraction with a controlled water
content. In the few mechanical test I performed, I have demonstrated that adding a very small
amount of water W , increased the elastic rigidity of the material. The maximal stress increases
strongly with W but no partial rupture events were observed. In the range of value for W studied,
the creep dynamics remained logarithmic but adding a small amount of water had a strong impact
on the creep deformation rate. We almost reached a complete blockade of the system for W ≈ 0.2%.
Of course an extented study of this effect would be necessary in the future.
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We study the internal dynamical processes taking place in a granular packing below yield stress. At all

packing fractions and down to vanishingly low applied shear, a logarithmic creep is observed. The

experiments are analyzed using a viscoelastic model which introduces an internal, time-dependent,

fluidity variable. For all experiments, the creep dynamics can be rescaled onto a unique curve which

displays jamming at the random-close-packing limit. At each packing fraction, we measure a stress

corresponding to the onset of internal granular reorganization and a slowing down of the creep dynamics

before the final yield.

DOI: 10.1103/PhysRevLett.107.138303 PACS numbers: 47.57.Gc, 65.60.+a, 83.80.Fg

For granular matter, it is currently accepted that a quasi-

static limit exists as for grains of macroscopic size, ther-

mally activated processes can be ignored. At low shear

rate, mechanical properties of granular packing are usually

described by rate independent constitutive relations [1].

However, there are compelling experimental evidences

that this limit is just a short-time approximation and

time-dependent processes are significant on the long run

[2]. Many numerical simulations based on soft interpartic-

ular interactions [3] have brought to the front the idea of an

‘‘universal’’ jamming transition scenario based on a me-

chanical rigidity threshold separating solid and fluid be-

havior (see a recent review and references in [4]).

However, for real grains, interparticle solid friction was

shown to affect the rigidity onset and stabilize packing at

compacity below the random-close-packing limit [5]. In

this case, experiments have pointed out the central impor-

tance of nanometric scales where humidity [6], contact

plasticity, tiny thermal variations [7] or weak mechanical

external noise [8], do impact significantly the macroscopic

dynamics and the rheology. Since the original theoretical

propositions of ‘‘soft glassy rheology’’ or ‘‘shear trans-

formation zones’’ [9] various models have tried to capture

the complex energy reorganization dynamics taking place

in amorphous solids or yield-stress fluids, in relation with

their constitutive rheological laws. Microscopically, the

emergence of plasticity is often explained via a simple

picture where localized elastic instabilities release irrevers-

ibly long range elastic constraints [10] which may be

organized spatially as shear driven avalanches [11].

Macroscopically, to account for the complex phenomenol-

ogy, an internal time-dependent variable called fluidity is

often introduced [12] to describe the rate of stress

relaxation.

In this Letter, we study the creeping dynamics of granu-

lar packing under constant shear stress, below the Coulomb

limit. In order to reveal the internal relaxation processes

and make connection with the behavior of a large class of

yield-stress fluids [13], we propose a quantitative analysis

using a phenomenological model based on the fluidity

concept.

All the mechanical tests are performed at well defined

packing fractions � (see Fig. 1). To achieve this goal, the

setup is designed as an air fluidized bed. The container is a

plastic cylinder of inner diameter D ¼ 10 cm closed at its

bottom by a metal grid supported by a honeycomb grid.

Pressurized air is introduced in an admission chamber

below the grid at a controlled overpressure �P. We use

glass beads of density � ¼ 2500 kg=m3 and mean diame-

ter d ¼ 200 �m (rms polydispersity �d ¼ 30 �m).

A mass M of grains is poured into the container such that

the typical packing height is L ¼ 10 cm. Using a flow

rate just above the fluidization value, we obtain after

stoppage, an initially loose granular packing at a compacity

� � 0:56. Then, by successive tapping on the container

side, the packing fraction can be increased up to the desired

packing fraction (maximal value � ¼ 0:625). Note that in
the present report, the relative humidity is kept at 35� 5%

FIG. 1 (color online). (a) Schematics of the shear cell. (M):

motor, (S): torsion spring, (T): torque probe, (D): induction

distance probe, (A): transversal arm, (Q): flowmeter, P1: differ-

ential pressure probes. (b) Creep deformation: ��ðtÞ under

constant shear stress at packing fraction � ¼ 0:60.
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and we work in a ‘‘quiet’’ environment characterized by a

background noise quantified by placing in the packing an

accelerometer (rms acceleration 0:02 ms�2).

Before each mechanical measurement, the packing

fraction value is evaluated from a linear fit between pres-

sure drop �P and flow rate Q: �P ¼ �Q, stemming from

Darcy’s law [14]. The relation between permeability K and

packing fraction was calibrated by a preliminary series of

experiments and a Carman-Kozeny relation was obtained:

Kð�Þ ¼ A ð1��Þ3

�2 d2, with A ¼ 1=165. Consequently, for a

mass M of grains poured in the cylinder the packing

fraction is obtained through the relation Kð�Þ� ¼

� 4M
��D2�

, where� ¼ 1:85� 10�6 Pa � s is the air viscosity.

To shear the granular packing, we use a four-blade vane in

stainless steel of height H0 ¼ 2:54 cm and diameter

2R0 ¼ 2:54 cm [see Fig. 1(a)], introduced at a depth

h ¼ 5 cm below the surface prior to the initial fluidization

process. This procedure creates reproducible initial con-

ditions. Shear stress is applied through the vane (see Fig. 1)

connected axially to a torque probe (T) itself coupled to a

brushless motor (M) via a torsion spring (S). The vane

rotation angle � is monitored via a transversal arm (A)
whose rotation is followed by a displacement induction

probe (D). The motor rotation angle 	 is imposed with a

2�=10 000 precision. Torque and displacement signals as

well as the motor command are connected to a Labview

controller board. The last one is programmed to impose a

motor rotation rate or a fixed stress using a feedback loop

on the torque signal. In the following, we ignore the stress

and strain spatial distribution due to the Couette cell

geometry and define only average values obtained

from measurements of angular rotation � and torque T.

The mean packing deformation � is defined as � ¼ �R0

R�R0

and the mean shear stress is 
 ¼ T
2�R2

0
H0

. On Fig. 1(b),

we display three examples of creep curves ��ðtÞ ¼
�ðtÞ � �ð0Þ obtained at fixed compacity and shear stress

values 
.

Elastic response.—To obtain the elastic response of the

packing initially prepared at a given packing fraction,

stress cycles were performed corresponding to sinusoidal

deformations of small amplitudes around 10�5. The cycles

were carried out under constant mean confining pressure

(hydrostatic loading). In the short-time limit, the response

is essentially reversible [see inset of Fig. 2(a)]. Accounting

for the apparatus stiffness, we extract the effective elastic

shear modulus which increases with packing fraction al-

most linearly: G ¼ G0� [see line on Fig. 2(a)], with

a value of G0 ¼ 5:38� 106 Pa. Interestingly this simple

result is consistent with a mean-field Hertz elasticity

theory (see [15] and references within) where under a

confining pressure P0 ¼ ��gh, the shear modulus scales

as Geff / E0ð�ZÞ2=3ðP0

E0
Þ1=3, where Z is a constant mean

contact number and E0 the material Young’s modulus,

meaning that, in the range of density explored, the contact

density at the origin of the �Z term varies linearly with �.

Response to a stress ramp.—To identify the maximal

stress supported by the packing before yield, shear

stress ramps were applied at a constant motor rota-

tion rate ( _	), using the softest spring constant available

(k ¼ 2:45� 10�3 Nm=rd). On Fig. 2(a), the stress re-

sponse at � ¼ 0:60 is displayed as a function of time. At

first, a linear increase of the stress is observed with a slope

corresponding to the spring constant. Then, at a given

stress level 
r, we observe the emergence of well-marked

and sudden granular material reorganizations [see top view

on Fig. 2(b)] in the form of rather equidistant events

corresponding to stress drops and large plastic deforma-

tions (�� ¼ 10�3 � 10�2). We define this stress value as

the ‘‘first rupture stress’’: 
r. However, stress can still be

increased but undergoes series of partial rupture, up to a

maximal value
M followed by a large stress jump. Then, a

subsequent stick-slip dynamics is observed. Interestingly,

such a structured fluctuation regime was also observed

by Albert et al. [16] for the drag force on an intruder

near jamming. In our case, the maximal stress value

FIG. 2 (color online). (a) Shear modulus Gð�Þ under gravity confinement. Straight line y ¼ G0x, with G0 ¼ 5:38� 106 Pa.
(b) Response to a stress ramp: shear stress 
 as a function time for _	 ¼ 0:001 04 rd=s and a packing fraction � ¼ 0:6. First rupture
stress 
r and maximal stress 
M are displayed as horizontal dotted lines. (c) For the same rotation rate, 
r, 
M and the ratio 
M


r
as a

function of packing fraction.
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corresponds to a Coulomb yield criterion as we verified

that its value increases linearly with the confining pressure.

Such experiments were performed varying packing frac-

tion and ramp velocities and we only display here stresses

obtained at the slowest driving velocity where the values

are quite insensitive to the rotation rate. On Fig. 2(b), the

rupture, maximal and dynamical stresses are displayed

as a function of packing fraction for a rotation rate

( _	 ¼ 0:001 04 rd=s). The values increase strongly with

packing fraction. Interestingly these stress values are

strongly related since their ratio stay constant with packing

fraction: X ¼ 
M=
r ¼ 3:5� 0:2 [see upper part of

Fig. 2(b)].

Creep flow.—This part is concerned with the creep re-

sponse of the granular packing under constant shear stress.

The packing fraction is varied between 0.56 and 0.625. The

procedure consists of two steps. First, a monotonic loading

up to the desired stress value. This initial step is fast with

respect to the creep dynamics, typically less than 200 s. We

verified that this loading time is much smaller than the

inverse of the initial shear rate. Second, a phase of constant

applied shear stress is obtained by a feedback procedure

where stress is maintained at a constant value within a

range less than 1%. The onset of feedback defines the

initial time t ¼ 0. If stress leaves the assigned range, a

command is sent to the motor to rotate the torsion spring

and to adjust the torque accordingly. From time to time, as

a consequence of this fast motor rotation, an acceleration

of the strain rate is observed, followed by a decay down to

the value before the jump. These dynamical phases lasting

less than 20 s were replaced by a linear interpolation of the

shear rate so that they do not artificially perturb the sub-

sequent analysis. For all the experiments, we observe a

slow increase of the deformation��ðtÞ [see Fig. 1(b)]. The
creep dynamics increases with the applied shear stress and

decreases for larger values of the packing fraction. To

quantify the creep dynamics, strain rates were computed

for a time step �t ¼ 1 s and averaged over a time window

of �T ¼ 400 s. On Fig. 3(a), we display _��1 � _��1
0 as a

function of time for a fixed packing fraction at different

applied shear stresses; _�0 being the initial shear rate. This

representation is a natural choice to probe a long-time

logarithmic dynamics (consistent with _� / 1=t). Indeed,
we observe a relation of the type: _��1 � _��1

0 ¼ Ct,
corresponding to a long-time logarithmic creep : � ¼

�0 þ
_�0

C
lnð1þ CtÞ. On Fig. 3(b), we represent the values

ofC extracted from a linear fit as a function ofGð�Þ=
, for
different packing fraction values. We observe a monotonic

increase, more prononced at larger packing fraction.

Rheological model.—To analyze quantitatively the data,

we use a theoretical model introduced by Derec et al. [12]

in the context of complex fluids rheology. We propose here

to adapt it to the creep flows of granular packing. The

model extends naturally the standard Maxwell viscoelastic

rheology. It introduces an internal phenomenological vari-

able f called fluidity whose dimension is an inverse time.

Physically, fluidity is a rate of stress relaxation. To describe

a complex dynamics displaying ageing and rejuvenation,

Derec et al. propose that fluidity should be time-dependent

and its dynamics described by a simple ‘‘à la Landau’’

phenomenological equation:

@t
 ¼ �f
þG _�; (1)

@tf ¼ �af2 þ r _�2: (2)

The second equation introduces two dimensionless and

positive parameters a and r. The first term corresponds a

fluidity decrease, i.e., an ageing process which renders the

fluid more ‘‘viscous’’ with time. We call a the ‘‘ageing

parameter.’’ The second term, corresponds a fluidity in-

crease (less viscous) due to shear. We call r the ‘‘rejuve-

nation’’ parameter. The forms assumed by the ageing and

rejuvenation terms are the most simple one can get in an

expansion consistent with a nontrivial longtime dynamics

(see discussion in [12]). At constant shear stress 
,
one obtains the relation f
 ¼ G _�, yielding : @tf ¼

�að1� ð 


D
Þ2Þf2, where 
D ¼ G

ffiffiffiffiffiffiffiffi

a=r
p

is the dynamical

shear corresponding to steady shear rate and steady fluid-

ity. Introducing an equivalent ageing parameter:

aeq ¼ a

�

1�

�





D

�

2
�

(3)

the solution of this equation is then: fðtÞ ¼ f0
1þaeqft

. The

shear rate variation is thus: _��1 � _��1
0 ¼ G



aeq:t which

leads to a long-time logarithmic creep as observed experi-

mentally. The experimental slopes C of Fig. 3(b) can then

be identified using the relation:

aeq ¼ C



G
: (4)

For all experiments performed at different stresses

and packing fractions, the initial fluidity value f0 ¼
Gð�Þ _�0=
 can be plotted as a function of �. For all

stresses, data collapse onto a quasilinear curve (see inset

FIG. 3 (color online). Creep experience. (a) plot of _��1 � _��1
0

as a function of time for creep experiments performed a constant

packing fraction � ¼ 0:6 for various shear stresses, the straight

lines are linear fits : y ¼ Ct. (b) Values of the fitted slopes C as a

function of Gð�Þ=
 for three values of packing fractions.
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of Fig. 4); the denser is the packing, the less is the initial

fluidity. The linear extrapolation of this curve to f0 ¼ 0
yields a value �0 ¼ 0:635� 0:002, close to random close

packing of monodisperse spheres. This can be interpreted

as an arrest of the creep dynamics at a packing fraction

corresponding to the jamming limit for a random assembly

of frictionless spheres [17]. Furthermore, the ageing dy-

namics can be characterized by computing the equivalent

ageing parameter aeq according to relation (4). If a and r

are independent of shear, aeq should decrease quadratically

and reach a zero value at a finite stress corresponding to the

dynamical stress 
D according to relation (3).

Interestingly, the initial fluidity f0 sets a time scale

which can also be interpreted as an effective viscosity

�0 ¼ Gð�Þ=f0ð�Þ diverging when approaching the jam-

ming threshold from below : �0 / ð�0 ��Þ�1. Since, in

principle, we are well below any thermalized regime where

the viscosity concept could apply, this result is quite re-

markable. Moreover, we can use this original time scale to

rescale the effective ageing parameter and obtain a collapse

of all the data. On Fig. 4, we plot Y ¼ f0aeq as a function

of the nondimensionalized stress: X ¼ 
=
r. The striking

feature is that all data collapse onto a single curve for the

entire range of stresses and packing fractions studied. The

second important feature is that aeq displays a non mono-

tonic behavior with a minimum value at 
 � 
r (X ¼ 1)
corresponding to the onset of the strain rate bursts identi-

fied in the stress-ramp experiments. This behavior is

clearly the signature of internal granular reorganizations

leading to a slowing down of the creep dynamics instead of

an increase as one might expect when shear is increased.

For values above X � 2, the creep dynamics increases

again before reaching the dynamical stress threshold

(aeq ¼ 0) at 
D � 2:4
r. For the smaller values of shear

stress, i.e., below
r, the predictions of Derec’s model with

constant coefficients can still be validated with a dynamical

stress 
D ¼ 1:5
r (see dashed line on Fig. 4).

This experimental study shows that down to vanishing

low applied shear and up to the yield-stress value, internal

relaxation processes are present in a granular packing. The

logarithmic creep hence observed, was analyzed using a

simple viscoelastic model which introduces a time-

dependent rate of relaxation (the fluidity). The dynamics

is viewed as a competition between intrinsic ageing and

shear stress rejuvenation. The model allows a dynamical

characterization of the initial packing fluidity which de-

creases linearly with packing fraction and vanishes at the

random-close-packing limit. Under finite stress, we iden-

tified the onset of internal reorganizations, slowing down

the creep process and setting the yield stress to higher

values. This process could be related to the onset of shear

induced anisotropy [18] or shear band formation. This

internal dynamics is the sign of a peculiar fragility of this

type of solid, possibly mediated by thermal activation or by

background mechanical noise. It may also be related to the

intrinsic nature of the plastic response in amorphous solids

[11], which are sometimes described as structurally fragile

under finite shear [19,20].
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r
, dotted line: y ¼

1
t�
ð1� ð x

1:5
Þ2Þ with t� ffi 106 s. Inset : initial fluidity f0 as a

function of packing fraction for different shear stresses, the color

index reflects the ratio 
=
M, fit line: y ¼ Fð�0 ��Þ with

F ¼ 0:0203 and �0 ¼ 0:635� 0:002.
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Clarification of the mechanisms of plasticity and rupture in amorphous ma-

terials is a timely challenge. The state of the art postulates the existence of

localized plastic events interacting through long range elastic coupling and trig-

gering irreversible macroscopic deformations [1]. Models assuming such local

features at the mesoscopic level are able to reproduce the generic rheology of

a large class of materials [2–8]. The activation, dynamics and coupling of such

zones have been intensively studied numerically and theoretically [8–14]. How-

ever, their concrete existence and their exact role in the various phases of the

yield process remain elusive experimentally. Here we visualize directly localized

deformation events (’hot spots’) in a sheared granular packing using Diffusive

Wave Spectroscopy. Their spatial clustering is shown to be linked to the emer-

gence of shear bands. In creep experiments, we relate their rate of apparition to

the global plastic deformation rate. We establish a bridge between our observa-

tions and the concept of ’fluidity’, recently used to describe nonlocal rheology

of several soft materials [15–18].

Our model of amorphous material is an assembly of glass spheres (diameter 200± 30µm,

packing fraction 0.60 ± 0.01) placed into an axisymmetric cylindrical shear cell (fig 1.a).

Shear is obtained by rotation of a four blades vane. The applied stresses and deformations

are controlled by a step motor fixed to a torsional spring. Constant motor rotation rate or

constant shear stress can be imposed. Two surface loading conditions have been investigated:

free and loaded. In addition to the mechanical measurements, we obtain spatially resolved

map of the surface deformations using a Diffusive Wave Spectroscopy (DWS) technique [19].

A laser illuminates the top of the shear cell. A camera imaging that surface at a frame

rate of 1 Hz, collects backscattered light. The correlation of scattered intensities between

two successive images, gI , are computed by zone, composing correlation maps of 370 µm

resolution (fig 1.c). Maximal correlation (light yellow) corresponds to a deformation ǫ . 10−7

and vanishing correlation (black) corresponds to ǫ & 10−5 (see Methods).

We first monitor the mechanical behavior of the system when submitted to an increasing

shear stress. Fig 1.b shows the stress as a function of time at a constant motor rotation

velocity. The stress increases linearly with the rotation as expected for an elastic material

connected to a torsion spring. As the rotation is increased, small stress drops are first

observed (precursor events) up to the maximal yield stress value σY . Then, the system
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FIG. 1. (a) Schematic of the experimental set-up. (M): motor, (S): Torsion spring, (T): Torque

probe. The feed-back loop allows to impose applied torque in creep experiments. A 633 nm HeNe

Laser beam is expanded and illuminates about a quarter of the top surface. That surface is imaged

with a lens on the camera. An iris diaphragm controls the size of the coherence areas on the

camera. A polarizer is introduced in the light path to enhance contrast of the speckle pattern. (b)

Stress response for an imposed deformation experiment in free surface boundary condition. (c)

Part of the surface of the cell that is used for the analysis (S = 13 cm2) showing a typical hot

spot: in average gI ≃ 0.99 (yellow) and gI . 0.95 for the black spot. (d) Correlation maps between

consecutive speckle images corresponding to the first stress drop at σr. The position of the first

failure zone varies from experiments to experiments, and is not systematically situated at the outer

edge of the blades as would be observed in Couette cell geometry.

reaches after few rupture events a regular stick-slip motion. This is to be expected for a soft

torsion spring, driven at constant rotation rate and coupled with a material displaying both

static and dynamic friction thresholds. Here we are only interested in the first part of the

dynamics, up to σY . The onset of precursor events was described by Nguyen et al. [20] and

a similar phenomenology was also reported in many other amorphous glassy materials [10].

The DWS imaging of the top surface is shown on fig. 1.c. In the quasi-elastic part of the

loading curves, the intensity correlation stays at gI ≃ 0.99 except over small areas, the hot

spots, where a significant localized correlation drop down to gI . 0.95 is observed (see fig 1.c

3
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FIG. 2. Characterization of hot spots (a) 3D representation of a typical spot. (b) Distribution of

hot spots sizes ξ in units of beads diameter d during a creep experiment.

and fig 2.a). The extent of these spots is typically ξ ≈ 3 mm with a duration τ ∼ 1 s. The

corresponding local deformation amplitude may be estimated from the decorrelation of the

backscattered light [21, 22]: ǫ ≃ 5× 10−6 (see Methods). Figure 1.d shows successive maps

corresponding to the first stress drop (see also the Supplementary Film). As the deformation

is increased, more and more hot spots appear (t = 105 to 107 s). These events aggregate

in clusters (t = 107 to 109 s). Finally, a large and totally uncorrelated zone supersedes the

clusters (t = 110 s). This large decorrelation zone is associated with the first macroscopic

stress drop. Therefore, the process is two-scales: the localized events occur as precursors

of the macroscopic failure inside the glassy material when such failure is itself a precursor

event of the final yield.

To link those localized plastic events to the global plastic deformation of the material,

we do now creep experiments fixing the applied shear stress and monitoring both the global

plastic deformation and the spatially resolved deformation map. On fig. 3 (blue symbols), we

display an example of a global plastic deformation ∆γ(t) obtained at low applied shear stress

σ = 1200 Pa, i.e. at a value smaller than the first precursor event σr = 1700 Pa. During this

slow plastic deformation, the DWS imaging shows that the hot spots are still present and

appear to be quite isolated at this level of applied stress. To quantify the relation between

their apparition and the creep motion, the cumulated number of their occurrence N(t) is

computed and displayed on the same graph as ∆γ(t) (fig. 3). The temporal evolution of

the two quantities are very similar. Therefore, the plastic deformation rate and the rate of
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FIG. 3. Blue symbols (right axis): Strain as function of time in a creep experiment at applied

shear σ = 1200 Pa for the loaded surface boundary condition. The origin of times is defined as the

moment of application of the constant stress, after a linear stress ramp lasting about 100 s. Solid

blue line: fit by a logarithmic creep law [20] ∆γ(t) =
.
γ0 ln(1 + Ct)/C with C = 0.007 s−1. Red

(left axis): integrated number of events.

apparition of localized event are proportional.

Such creep experiments can be interpreted using an age dependent relaxation rate [20]

reminiscent of many models derived from the ’Soft Glassy Rheology’. In this context a

simple visco-elastic scalar equation has been proposed [4] featuring an inverse characteristic

relaxation time, the so-called ’fluidity’ f(t):

.
σ = G

.
γ − f(t)σ (1)

with σ the applied shear stress and G a shear elastic modulus. To close the model, a

constitutive relation for f(t) must be provided. Many forms were suggested [4] but for the

present case, the observed creep dynamics is consistent with the relation:
.

f ∝ −f 2, i.e. a

relaxation time proportional to the actual age of the system (see fit of the strain on fig. 3).

Building on the proportional relation between the rate of occurrence of hot spots and the
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FIG. 4. Integrated number of events in a free surface experiment for different applied stress : 50

Pa (�), 100 Pa (◦), 150 Pa (△), 200 Pa (▽) and 250 Pa (♦). Inset : integrated number of events

multiply by the apply stress in two configurations. In black, free surface : data from the main

graph. In red, loaded surface (top pressure equivalent to P = 830 Pa), applied stresses : 400, 800,

1200 and 1600 Pa.

shear rate, we propose now to go one step further and to identify
.

N(t) with the fluidity

parameter (within a proportionality constant). To test this proposition, we perform series

of creep experiments at constant applied shear stresses σ for stress values below σr. Fig. 4

displays the relation between the cumulated number of events N(t) and the total plastic

strain ∆γ(t), for free surface loading condition. The relation is roughly linear, with slopes

decreasing with the amplitude of the applied stress. Using our hypothesis of proportionality

between the fluidity parameter and the hot spots rate of occurrence, integration of eq.(1) at
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constant stress gives:

G∆γ(t) = σ

∫ t

0

f(t′)dt′ ∝ σN(t) (2)

Following this relation it is then possible to collapse all the curves on a master straight line

when multiplying N(t) by the applied stress σ (inset of fig.4). To evaluate the robustness

of this relation, we varied the top surface boundary condition: due to Hertz elasticity, the

effective shear modulus G should increase with the confining pressure. Indeed, when the

surface is loaded, the linear relation between N(t)σ and ∆γ(t) hold (see inset of fig.4)

showing the expected qualitative stiffening (a factor 20 approximatively). However from a

simple account of the Hertz law, we should only expect here a factor 2. This significant

difference is possibly due to the presence near the free surface of a strong stiffness gradient

and a diverging elastic susceptibility.

So far, we have established a direct relation between the rate of plastic deformation and

the apparition of the hot spots. Their clustering in the vicinity of major yield events prior

to their macroscopic apparition, reinforces the idea that they play a leading role in the

plasticity process. However, it is not a priori obvious that these are the only and sufficient

modes of rupture which account for the full plastic flow dynamics. Therefore, we compare

an estimation of the energy released by the hot spots to the total elastic energy dissipated

in the bulk. The energy dissipation of one plastic event per unit of depth is σǫξ2, where

σ is the local stress and ǫ ≈ σ/G the typical plastic deformation during one event. We

suppose that the ’hot spots’ density is uniform in the bulk. During a creep experiment, the

density of energy release through the elastic bulk relaxation processes is σ∆γ(t). Then, the

energy balance per unit depth, between the sum of the localized plastic dissipation σǫξ2N(t)

and the bulk elastic relaxation Sσ∆γ(t) leads to the linear relation: σN(t) = K∆γ(t) with

K = GS/ξ2. Quantitatively, the relation can be tested on the surface loaded experiment

for which the elastic response G = 1.6 × 106 Pa has been measured (our torque probe was

not sensitive enough to access to the elastic regime of the free surface packing). We obtain :

K ≈ 109 Pa close to the value obtain on the inset of fig.4. Therefore, within the consistency

of the model, it seems that the energy released by the hot spots comes to the right magnitude

to account for the macroscopic plasticity.

In this letter, we provide a direct visualization of localized deformation events associated

with the mechanical response of a granular packing under shear. The optical DWS technique
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captures the emergence of the so-called ’hot-spots’, characterized by a spatial extension of

about ten grains. Under a stress ramp, we show that these events increase in density with

the stress amplitude and cluster spatially as precursors of the shear banding macroscopic

yield events. Under constant applied shear stress, the rate of apparition of these hot spots

at the top surface is proportional to the rate of plastic deformation. Varying the applied

shear and the loading boundary conditions, we point that at first approximation - possibly

corresponding to a mean-field approximate of the problem - the ’hot spot’ dynamics is

in direct relation with a parameter called fluidity defined in the context of ’Soft Glassy

Rheology’, and representing the mean rate of stress relaxation. Our study points out the

interest of clarifying this relation, by characterizing the spatio-temporal coupling of the

hot spot dynamics, in particular in the vicinity of the material yield or under sustained

mechanical noise. These results provide some substantial experimental evidences backing

many theoretical propositions made recently about zero temperature plasticity of amorphous

solids. It focuses the debate on the importance of localized precursor events participating

in the yield dynamics, a concept which can be crucial in a wide context encompassing solid

disordered system, complex fluids or even earth-quake dynamics.
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Methods

The filling height of the shear cell is ≃ 10 cm. The penetration depth of the vane is

fixed so that the upper edge reaches the surface from below within a few grain sizes. During

the insertion procedure the material is gently fluidized by an air flux in order to obtain

a controlled uniform compacity, deduced from in-situ permeability measurement (see [20]

for details). The fluidization process is stopped during each mechanical measurements.

The spring deformation and the rotation of the vane are measured, giving access to the

applied stresses and strains. The device is suited to work at an imposed motor rotation

rate or at an imposed shear stress due to a feed back loop between the torque probe and

the motor. For the loaded surface condition a circular glass lid with a hole for the axis is

placed on the glassy material and supplementary loads are added, producing a top pressure

equivalent to P = 830 Pa. The backscattering DWS technique probes the deformation field

in a plane perpendicular to the shear vorticity axis in a depth corresponding to the light

transport mean free path l∗. The correlation between the successive speckle patterns are

computed and averaged over zones of 16 × 16 pixels, corresponding to 370 µm × 370 µm

areas. Previous work on backscattering DWS technique in granular packing [21, 22] have

10



established a relation ǫ ≈ − ln(gI)/c were c ≃ 15000 is a numerical constant related to

the ratio between l∗ ≈ 3.3d and the optical wavelength. With gI ≈ 0.95, we obtain here

approximatively ǫ ≃ 5× 10−6.
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Van Bau NGUYEN

Fluage et fluidité d’un empilement granulaire sous
contrainte

Résumé :

L’objectif principal de la thèse a été d’identifié expérimentalement les comportements mécaniques et

rhéologiques de milieux granulaires dans un environnement à complexité croissante. En particulier, je me

suis intéressé aux phénomènes de fluage sous contrainte en essayant de mieux comprendre l’impact des

vibrations et la présence d’une faible quantité d’eau piégée entre les pores.

J’ai monté un système cissométrique permettant de réaliser des tests mécaniques de fluage. Une originalité

de mon montage a été de mettre au point un système de lit fluidisé qui, en alliant flux d’air et vibration, m’a

permis de fabriquer des empilements à compacité initiale contrôlée. J’ai étudié les propriétés fondamentales

de fluage sous contrainte d’un empilement granulaire de billes de verre de taille d = 200µm sous le seuil de

Coulomb. Cette étude a mis en évidence que les seuils de Coulomb varient fortement avec la compacité,

mais en plus , on a mis en évidence une contrainte σr appelée " contrainte de première rupture " qui traduit

des réorganisation internes dans l’empilements et qui est d’environ 1/3 de la contrainte seuil maximale.

En outre, grâce à la précision de la mesure de déformation, on a obtenu les réponses élastiques à de

petits cycles en contrainte et on a établi que le module cisaillement élastique G augmente linéairement en

fonction de la compacité, en accord avec le modèle d’élasticité non-linéaire de Hertz (modèle de champ

moyen). Nous avons réalisé aussi une étude paramétrique complète du fluage en variant systématiquement

la compacité et la contrainte de cisaillement. Notre étude sur les seuils de contrainte, l’élasticité effective et la

dynamique de fluage, a été prolongée pour des empilements sous vibration générés par des transducteurs

piézo-électriques enfouis sous la surface. Ce montage permet en outre par injection dans le granulaire d’un

gaz saturé en vapeur d’eau, d’imposer sous un faible gradient thermique une condensation et d’obtenir une

quantité contrôlée d’eau piégée dans l’empilement. Cette méthode permettra par la suite d’aborder le cas de

granulaires cohésifs.

Mots clés : milieux granulaire, fluage, vibration, pont capillaire ...

Creep and fluidity of a granular packing under shear stress.

Résumé :

The main objective of the thesis was to identify experimentally the mechanical and rheological beha-

vior of granular media in an environment varying in complexity. In particular, I was interested to creep

phenomenon under stress in trying to understand better the impact of vibration and the presence of a small

amount of water trapped between the grains.

I set-up a system to perform mechanical creep tests. Originality of my setup was the fluidized bed which

uses air flow and vibration, and thus allows the control of the initial packing fraction. I studied the basic

properties of creep strain of a granular resulting from a packing of glass beads of size d = 200 µm under the

Coulomb threshold. This study showed that the Coulomb thresholds vary strongly with the packing fraction.

In addition, it showed a stress σr called "the first rupture", that results from internal reorganizations in the

granular medium and which is approximately 1/3 of the maximum stress threshold. Moreover, thanks to the

precision of measuring deformation, we obtained the elastic response with small stress cycles, and we found

that the shear elastic modulus G increases linearly with the packing fraction, in agreement with the model of

nonlinear elasticity of Hertz (mean field). We performed a parametric study of creep in varying the packing

fraction and shear stress. In all cases, we found the dynamics of logarithmic strain for long times. Our study

on stress threshold, the elastic modulus and dynamics of creep, has been extended to granular medium

under vibration generated by piezoelectric transducers buried under the surface. A small amount of water

can be added and thus modifies the mechanical properties by the presence of capillary bridges. Preliminary

experiments show the dependence of the Coulomb threshold of the elastic response and dynamic creep with

an amount of water content.

Keywords : granular medium, creep, vibration, capillary bridge ...
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