Indoor Location Estimation using a Wearable Camera

with Application to the Monitoring of Persons at Home

Vladislavs DOVGALECS

Composition of jury

Atilla BASKURT François BREMOND Matthieu CORD Jenny BENOIS-PINEAU Yannick BERTHOUMIEU Rémi MÉGRET

Context: Wearable Sensors

"Lifelogging is the process of tracking personal data generated by our own behavioral activities."

Sports performance evaluation

SenseWear Health monitoring

Zeo sleep logger

Fall detection

... and many more!

Wearable Sensors: Visual Lifelogging

- •Memory aid for recalling daily activities
- Passive creation of visual diaries
- Personal security applications

ViconRevue

Sousveillance ExisTech

ZionEyez

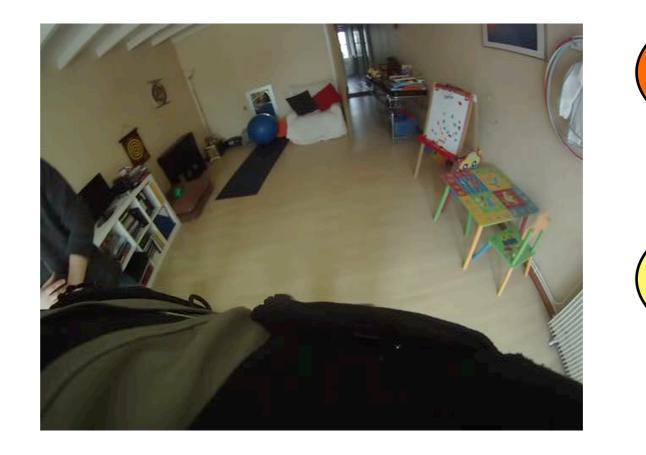
Wearable

sensors

Looxcie

Wearable Video Monitoring

Light and autonomous video recorder



Recording activities of a patient indoors Device developed in the IMMED project

Wearable

sensors

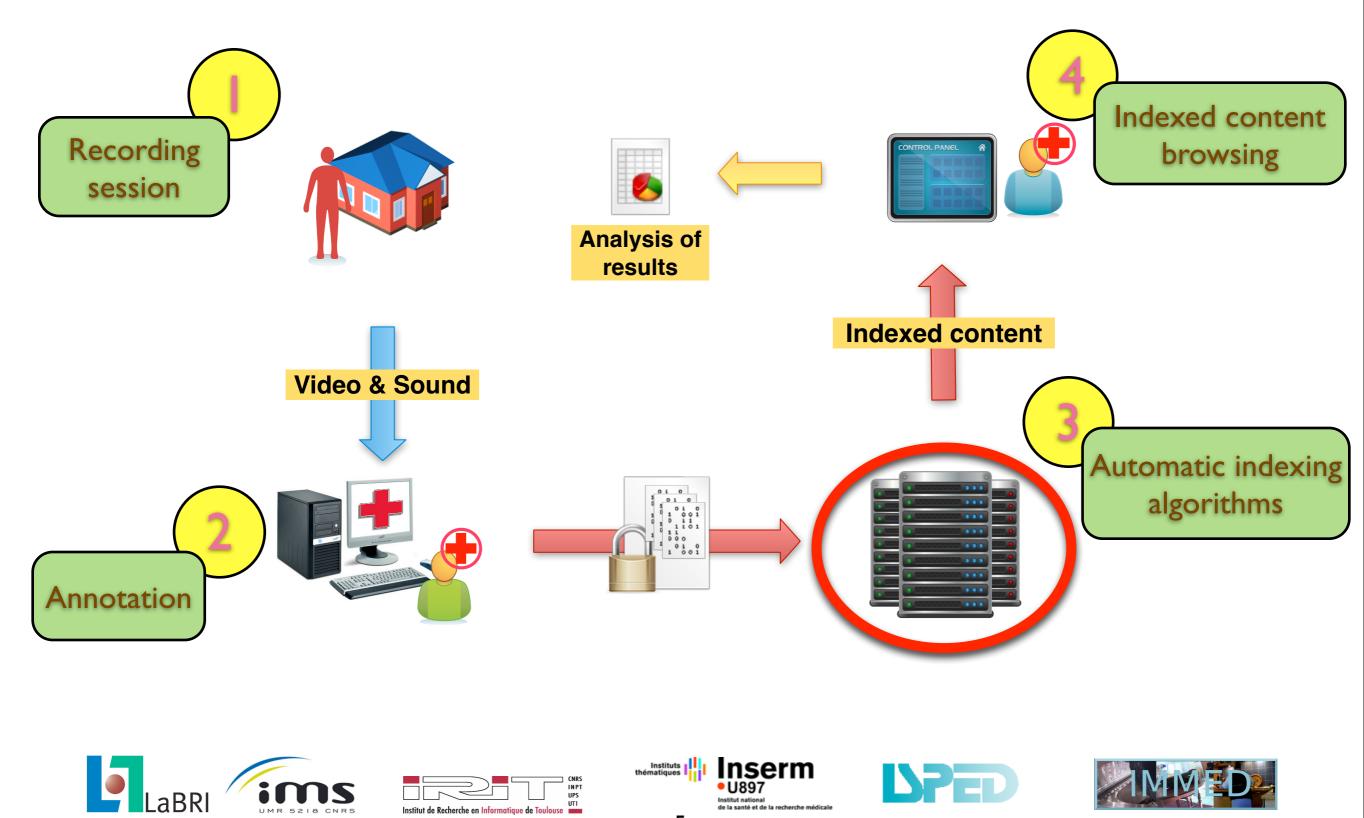
Visual

Lifelogging

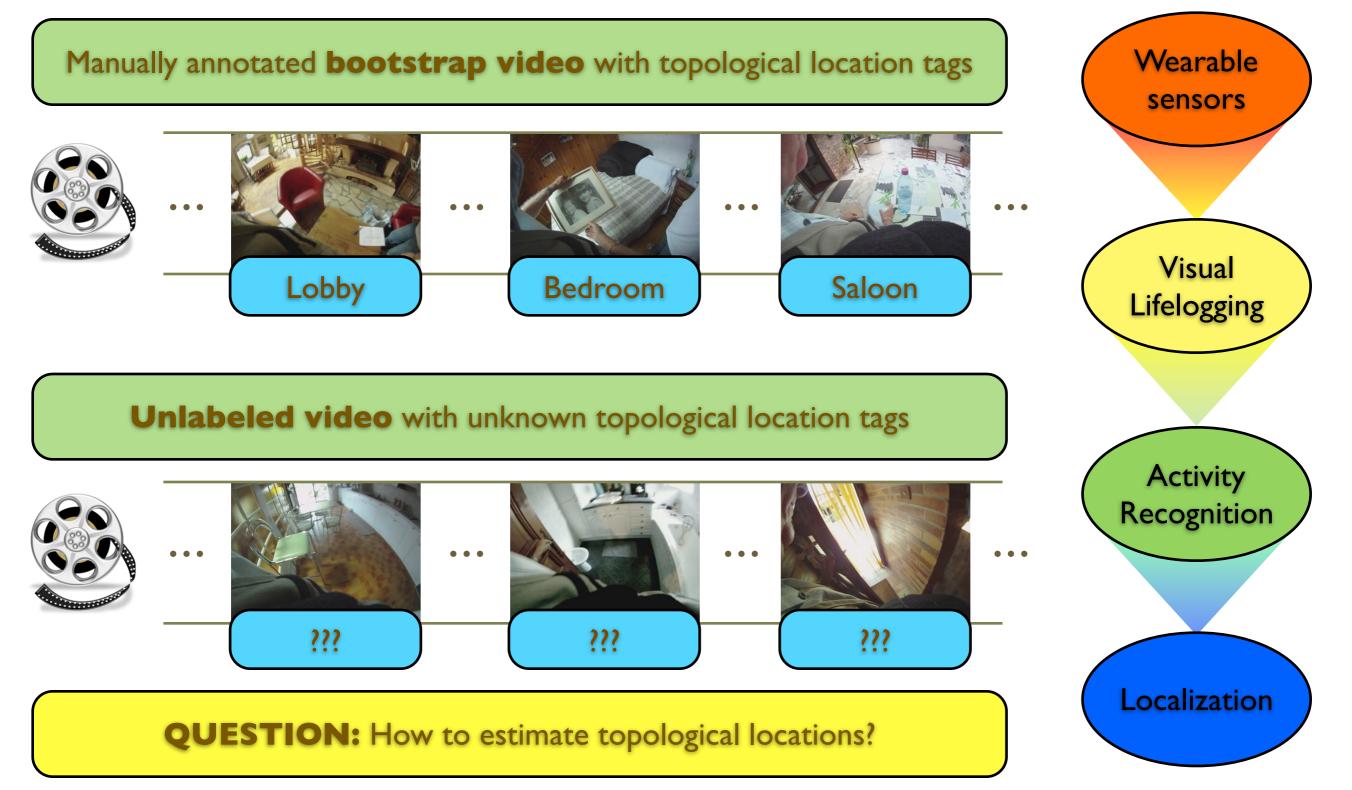
Activity

Recognition

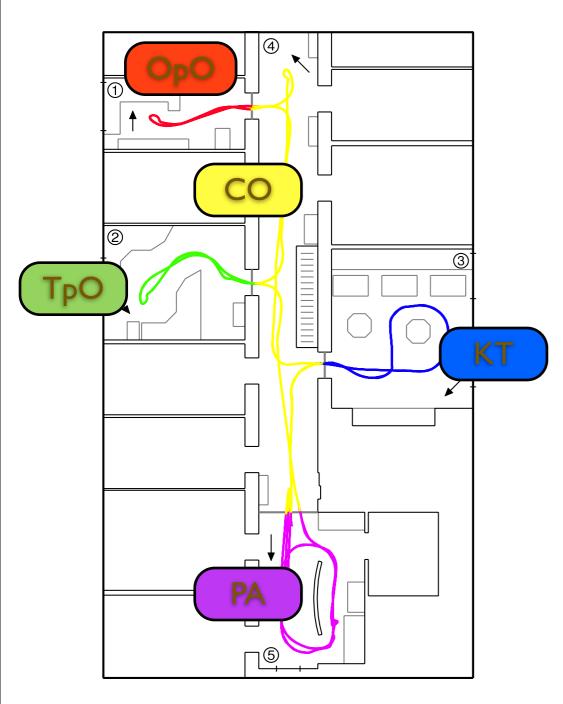
Application to the IMMED project

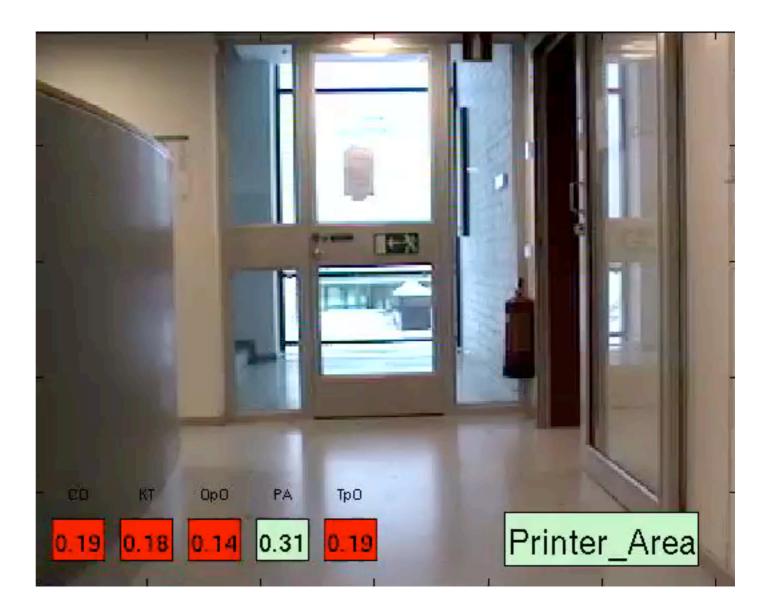


Video Indexing problem



Indoors Location Estimation





Automatically annotated sample video

J. Luo, A. Pronobis, B. Caputo, and P. Jensfelt, "The KTH-IDOL2 Database". Technical Report CVAP304, 2006.

Challenges

Deal with great variability and complexity of visual content

Work with small amounts of manually annotated videos

Leveraging additional information about the problem

Contributions Answering the Challenges

Deal with great variability and complexity of visual content

- I. Relevant visual information extraction
- 2. Multiple information sources utilization Comparing Early and Late information fusion strategies for topological localization

Work with small amounts of manually annotated videos

- I. Utility of unlabeled image data Study of Semi-Supervised methods for topological localization
- 2. Exploiting temporal continuity and unified framework Proposition of temporal accumulation schemes
- 3. Exploiting invariance to spatial transformations

Overview

Baseline Location Estimation

Visual Feature Extraction and Localization

Improving Discrimination Power

Multiple Information Sources

Main Proposition

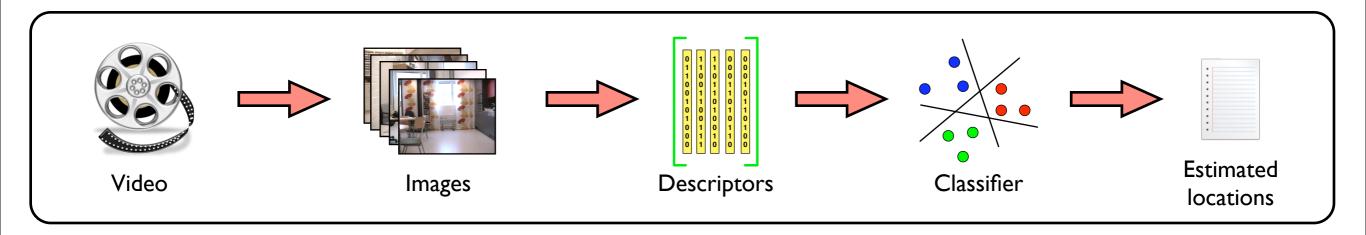
Time-Aware Co-Training Framework

Other Prior Information Invariance

Experimental Results

Baseline Location Estimation

Visual Feature Extraction and Localization



From video to descriptors

Video

Extracted Frames

Global Descriptors

Global descriptors characterize or describe image contents

Ideally, descriptors for the same topological location should be the same

Descriptors

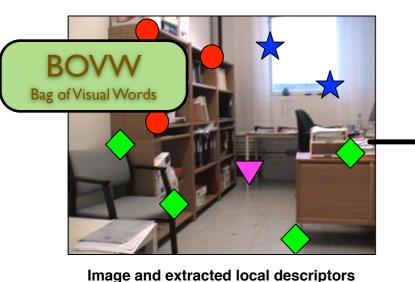
Three Visual Features

Image signature

1 BOF

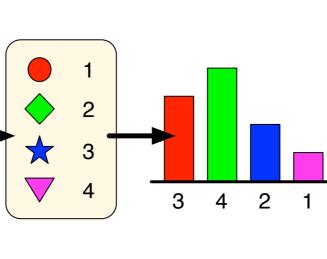
4 BOF

14



SPH

Spatial Pyramid Histograms



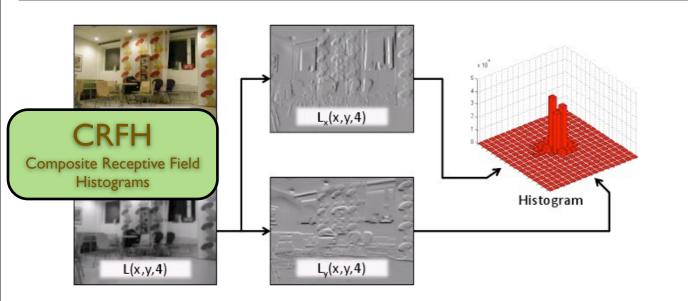
Vocabulary

Extracting local features (e.g. SIFT or SURF)

Quantizing local features in discrete classes

$$\mathbf{x}_{\mathrm{BOVW}} \in \mathbb{R}^{1111}$$

[Csurka2004]



Fine grid

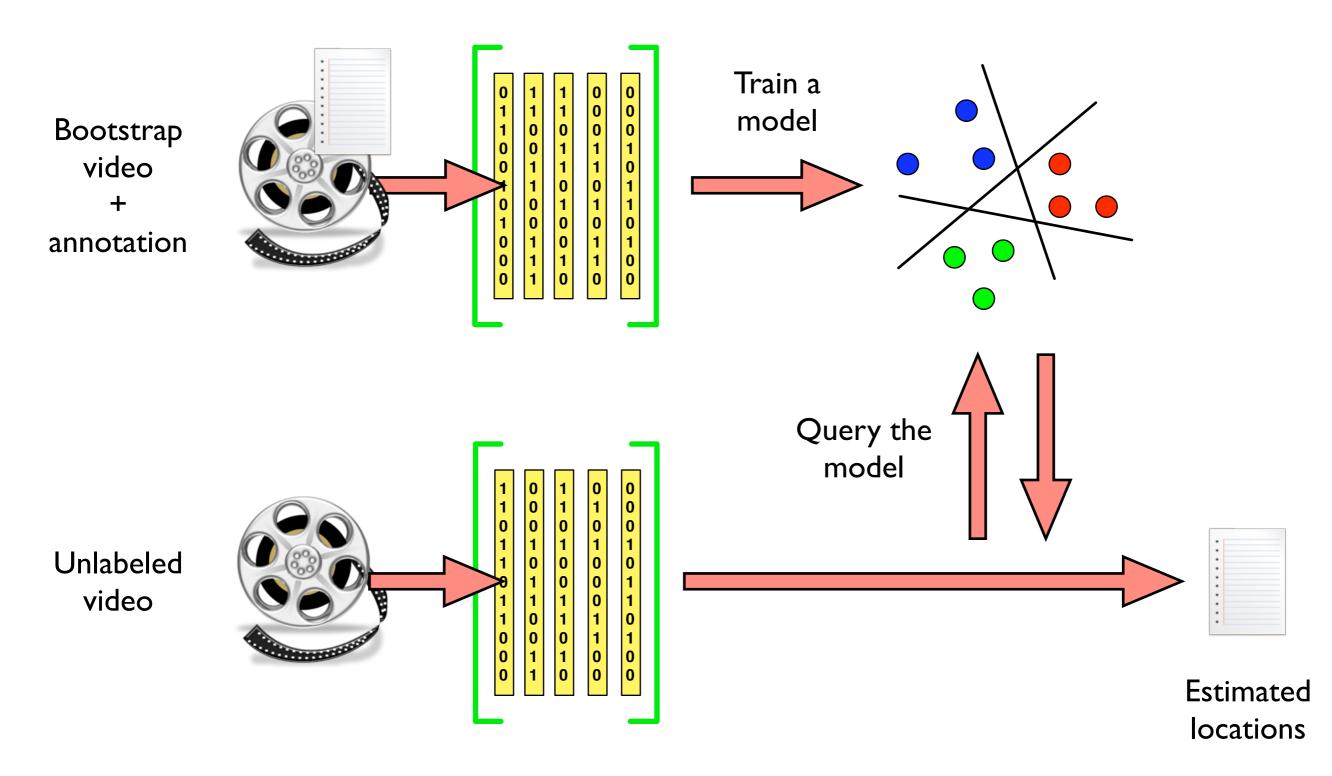
Coarse grid

Multi-dimensional representation of an image counting occurrences of filter responses

Histogram counts the number of pixels sharing the same response

 $\mathbf{x}_{\mathrm{CRFH}} \in \mathbb{R}^{300'000'000}$ [Linde2004] Concatenation of BOVW histograms for different grids Captures spatial information Image descriptor which is missing in BOVW 16 BOF $\mathbf{x}_{\rm SPH} \in \mathbb{R}^{4'200}$

Generic location estimation



Similarity Measure Notion of a Kernel

$$\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^d$$

X - a descriptor or pattern

Notion of similarity

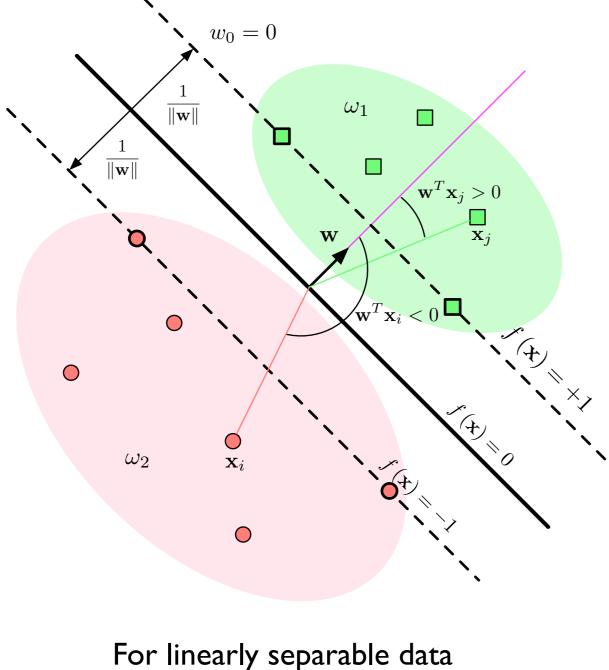
$$k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

 $(\mathbf{x}_i, \mathbf{x}_j) \mapsto k(\mathbf{x}_i, \mathbf{x}_j)$

$$k(\mathbf{x}_{i}, \mathbf{x}_{j}) = \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle$$
Dot product
$$k(\mathbf{x}_{i}, \mathbf{x}_{j}) = 1 - 2 \sum_{k=1}^{n} \frac{(\mathbf{x}_{i} [k] - \mathbf{x}_{j} [k])^{2}}{(\mathbf{x}_{i} [k] + \mathbf{x}_{j} [k])}$$
Chi-Square - adapted measure

Classification - Linear Support Vector Machines

$$(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n) \in \mathbb{R} \times \{\pm 1\}$$



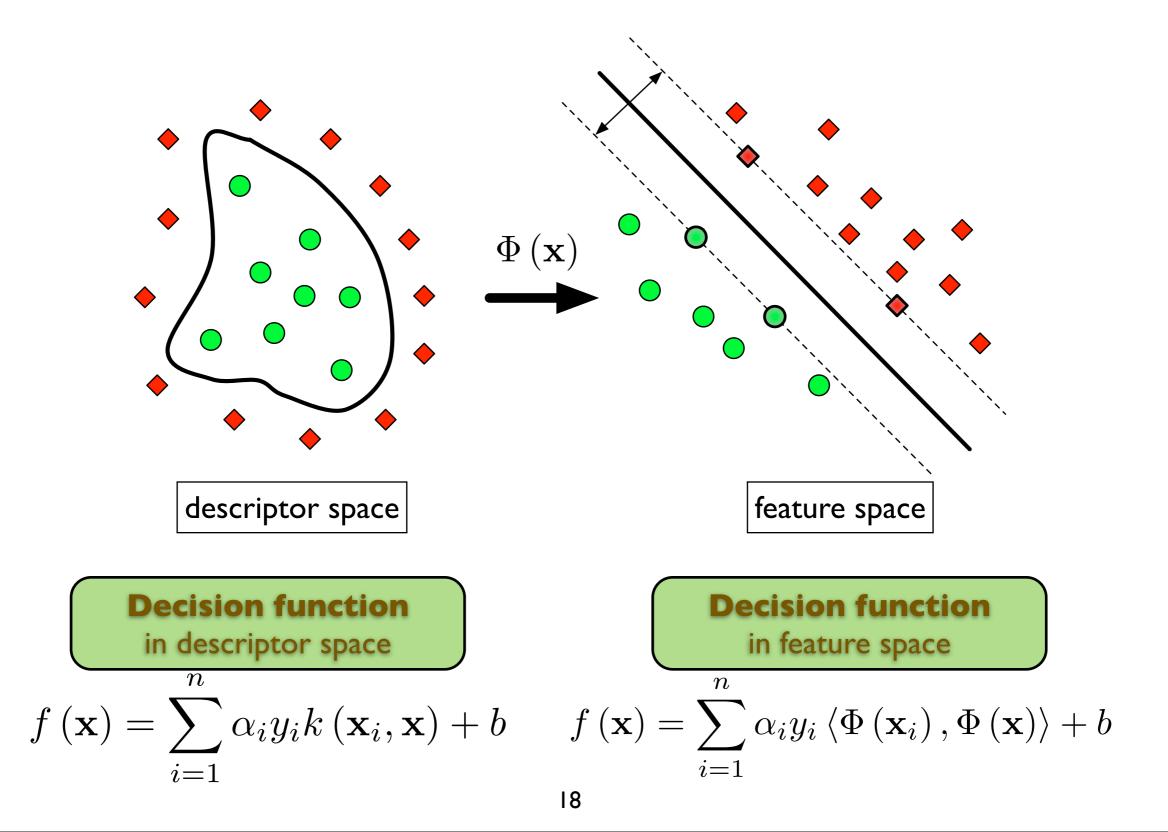
Idea Maximum margin classifier generalizes the best for new data

Find a function
$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

$$\hat{y} = \begin{cases} +1, & \text{if } f(\mathbf{x}) > 0\\ -1, & \text{if } f(\mathbf{x}) < 0 \end{cases}$$

$$\max_{\mathbf{w}} \|\mathbf{w}\|^{2}$$
$$y_{i} \left(\mathbf{w}^{T} \mathbf{x}_{i} + b\right) \geq 0, \forall i$$

Classification - Non-Linear SVM

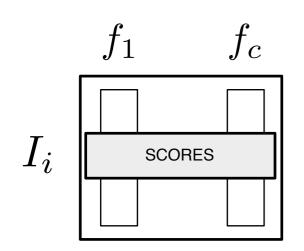


Multi-class Classification

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i k(\mathbf{x}_i, \mathbf{x}) + b$$

SVM is a binary classifier

One-vs-All approach for multiple class classification



I.Train "c" binary classifiers f_1, \ldots, f_c 2.Compute the scores for a test pattern $\mathbf{s}_i = [f_1(\mathbf{x}_i), \ldots, f_c(\mathbf{x}_i)]$ 3.Assign a class of largest score value

$$\hat{y}_i = \arg \max_{j=1,\dots,c} f_j(\mathbf{x}_i)$$

 I_i - *i*th frame of the video

Test Database (IDOL2)

Corridor

Printer Area

Two Person Office One Person Office

Kitchen

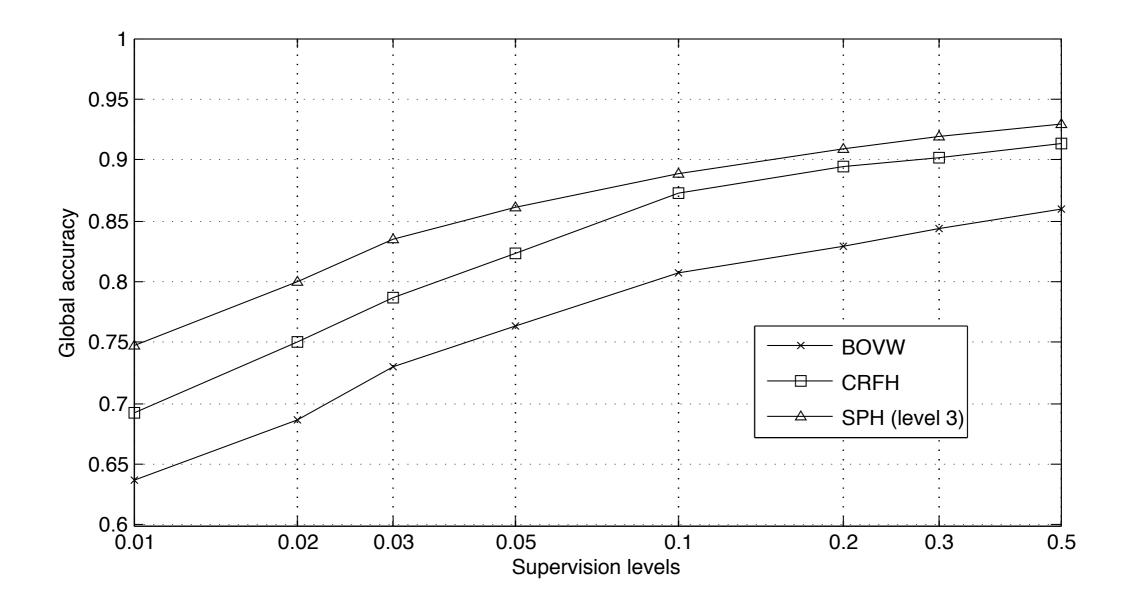
Recorded using a mobile robot platform

Three lighting conditions

Half of the videos recorded across a span of 6 weeks

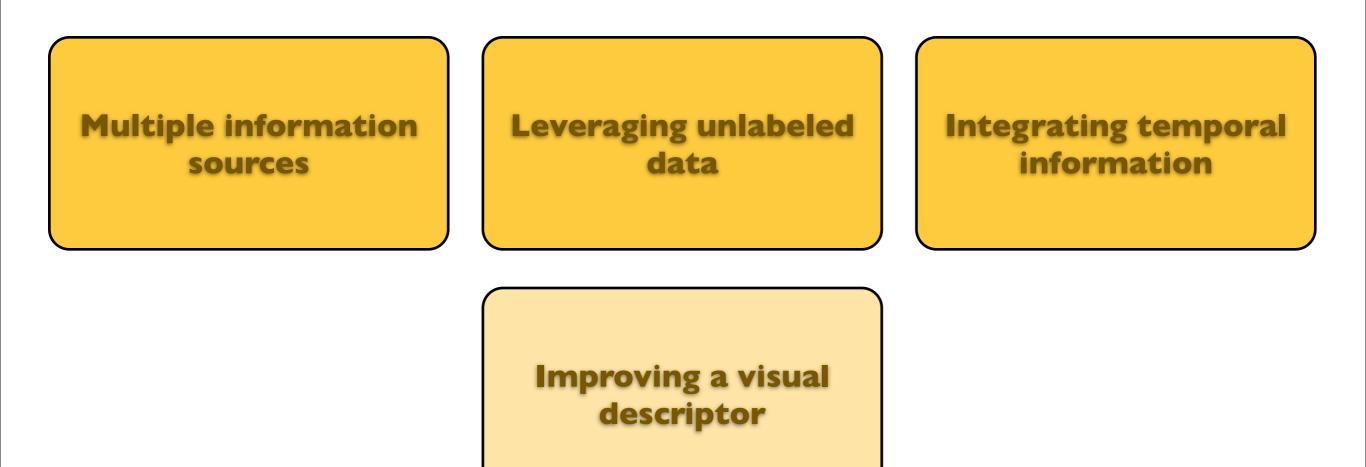
Baseline approach consider the whole database as an orderless set of images

Baseline evaluation results



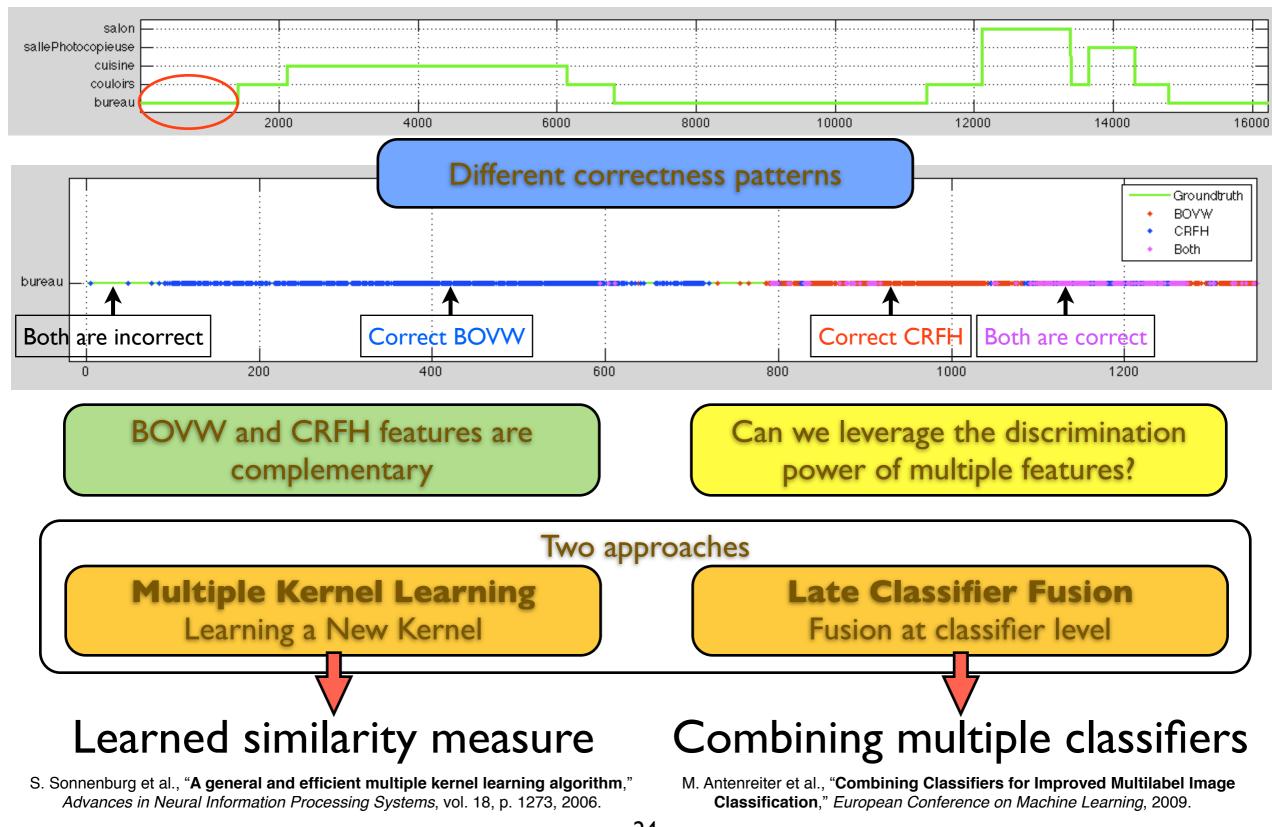
Varying performance of different visual features
 Need for annotated data at low supervision levels

Outline Principal Contributions

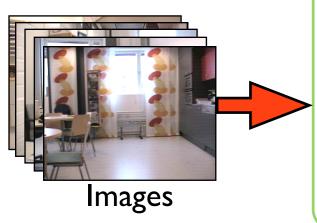


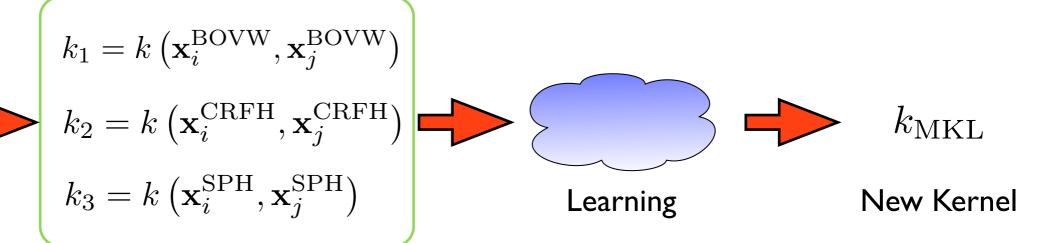
Improving Discrimination Power Multiple Feature Fusion

Complementarity of visual descriptors



Early Fusion : Multiple Kernel Learning





Idea

Weight an individual

kernel w.r.t. its

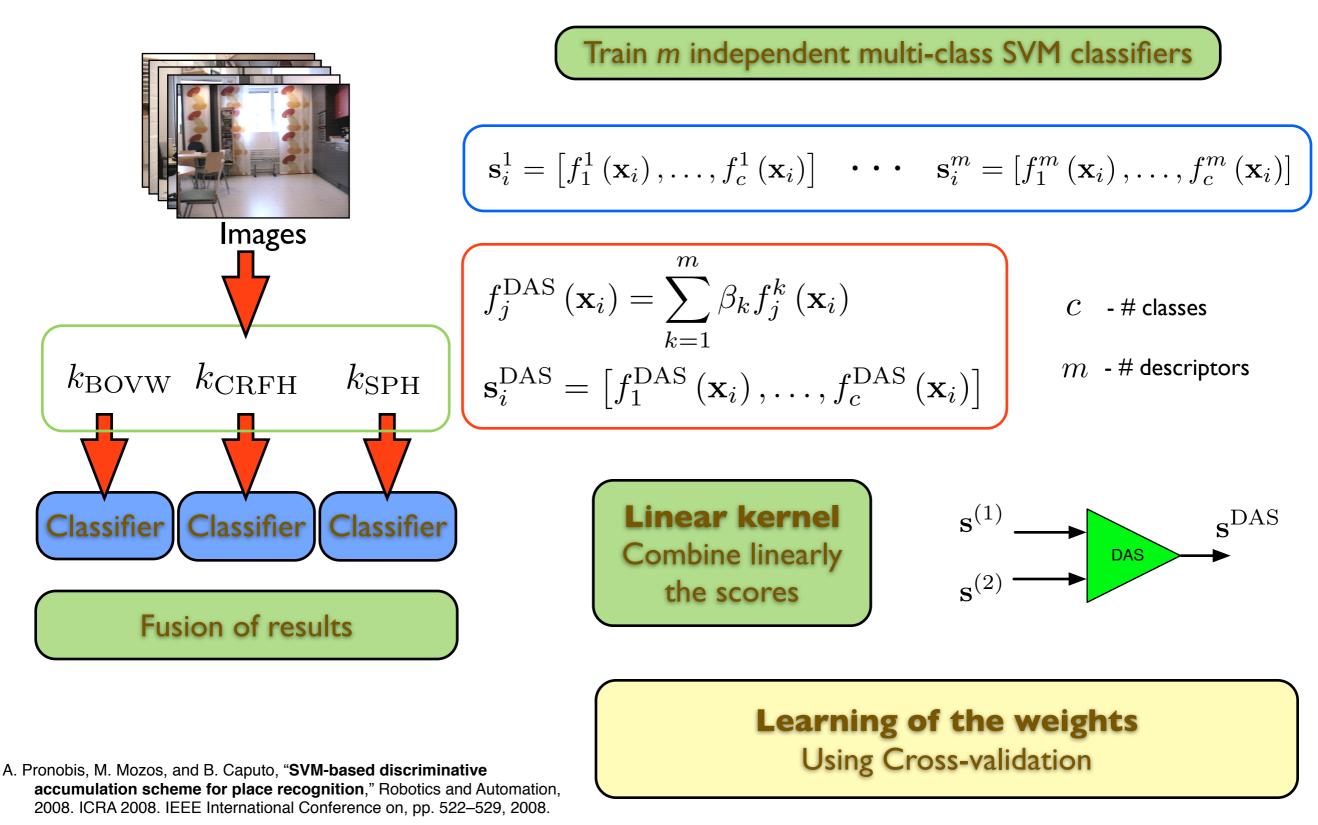
importance

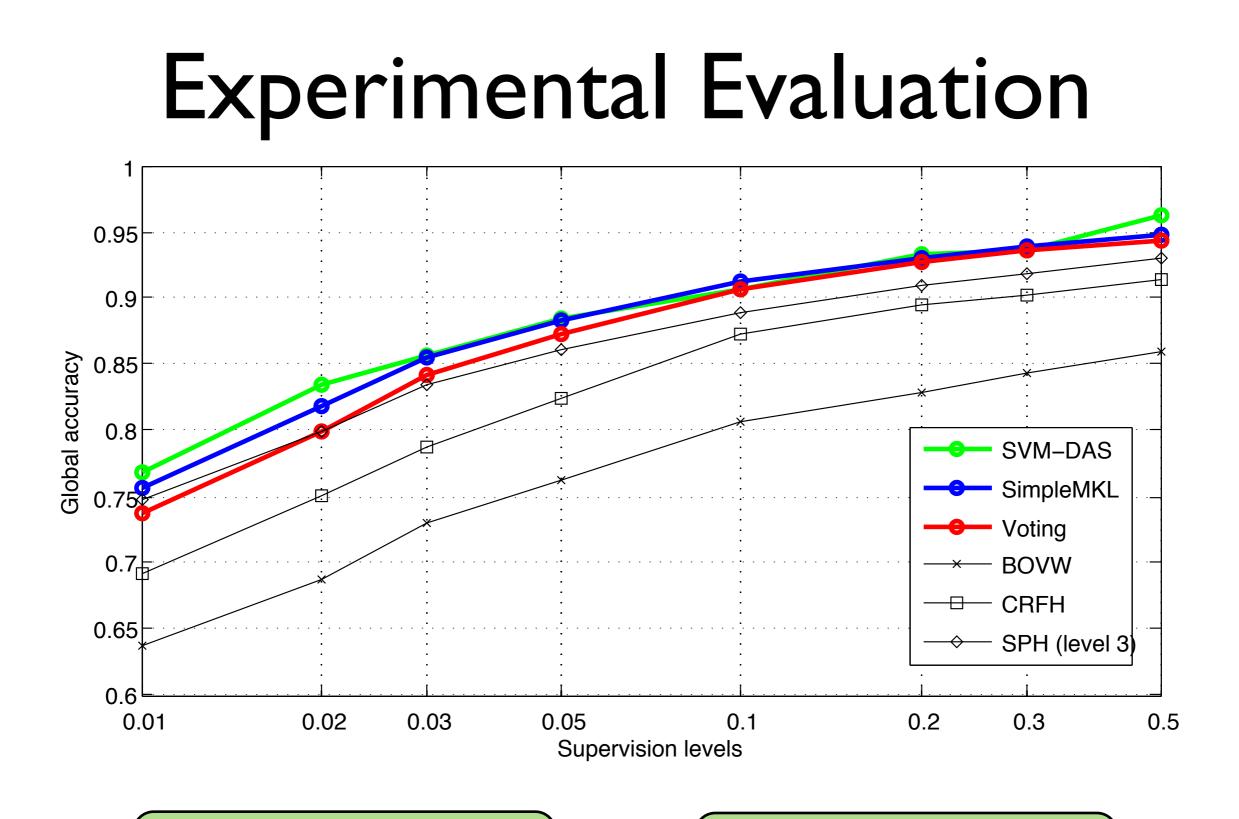
New kernel : Sum of *m* individual kernels

$$k_{\mathrm{MKL}}\left(\mathbf{x}_{i},\mathbf{x}_{j}
ight) = \sum_{\ell=1}^{m} eta_{\ell} k_{\ell}\left(\mathbf{x}_{i},\mathbf{x}_{j}
ight) \qquad eta_{k}$$
 - kth Kernel weight

A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet, "SimpleMKL," Journal of Machine Learning Research, vol. 9, pp. 2491–2521, 2008.

Late Fusion : Classifier fusion





Both strategies allow to improve the baselines

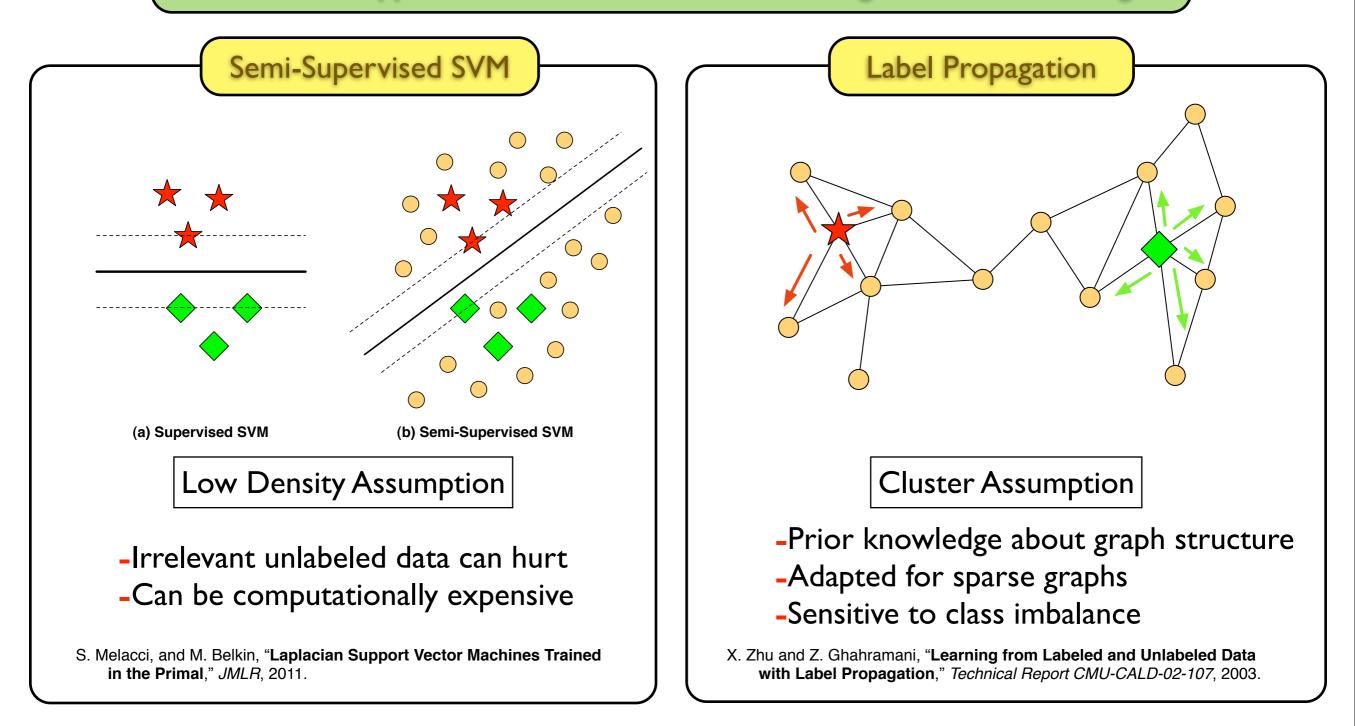
MKL is more computationally expensive than high-level fusion

Main Proposition Time-Aware Co-Training Framework

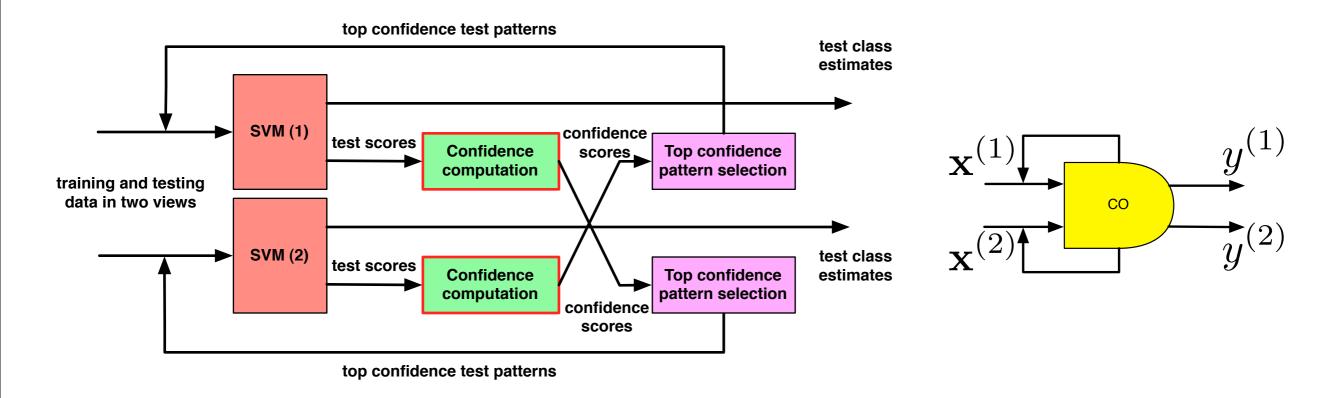
Leverage unlabeled data
 Utilize multiple visual features
 Integrate time information

Leveraging unlabeled data

Idea - Visual Appearance model can be learned using also unlabeled images



Standard Co-Training



Idea (I) High confidence patterns can be used to improve the trained model

Idea (2) Use two independent views on the data to diversify the outputs Idea (3) Hard to classify images are left for later Co-Training iterations

[1] A. Blum and T. Mitchell, "Combining Labeled and Unlabeled Data with Co-Training," Conference on Computational Learning Theory, Oct. 1998.

Integrating temporal continuity

Can we leverage the temporal continuity of the video?

$$\mathbf{s}_{t} = \left(f^{1}\left(\mathbf{x}_{t}\right), f^{2}\left(\mathbf{x}_{t}\right), \dots, f^{c}\left(\mathbf{x}_{t}\right)\right)$$

$$\mathbf{s}_{t} = \sum_{t=-\tau}^{\tau} h\left(k\right) \mathbf{s}_{t+k}$$

Averaging filter
$$h\left(k\right) = \frac{1}{2\tau + 1}, k = -\tau, \dots, \tau$$

Temporal Accumulation Scheme

Idea

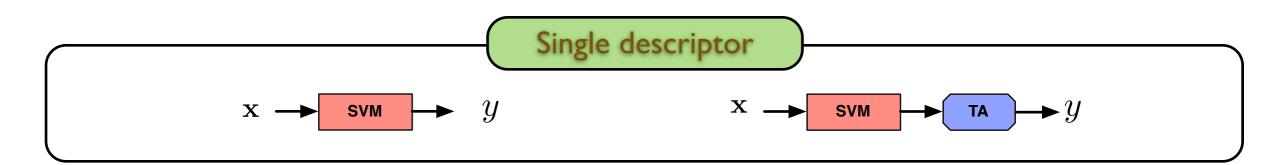
Scores for temporally close images should be similar

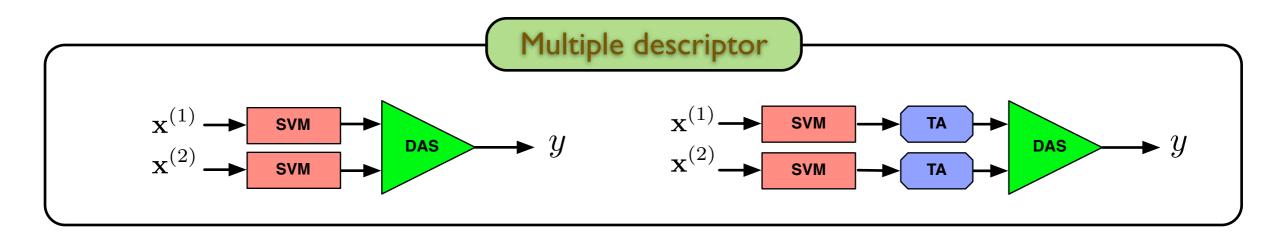
Idea

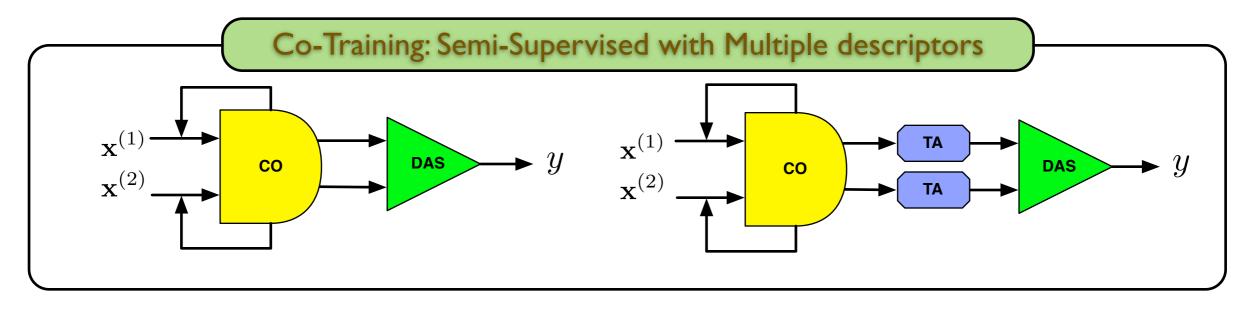
Occasional misclassifications can be removed using this filtering

How to take into account time information into the learning framework?

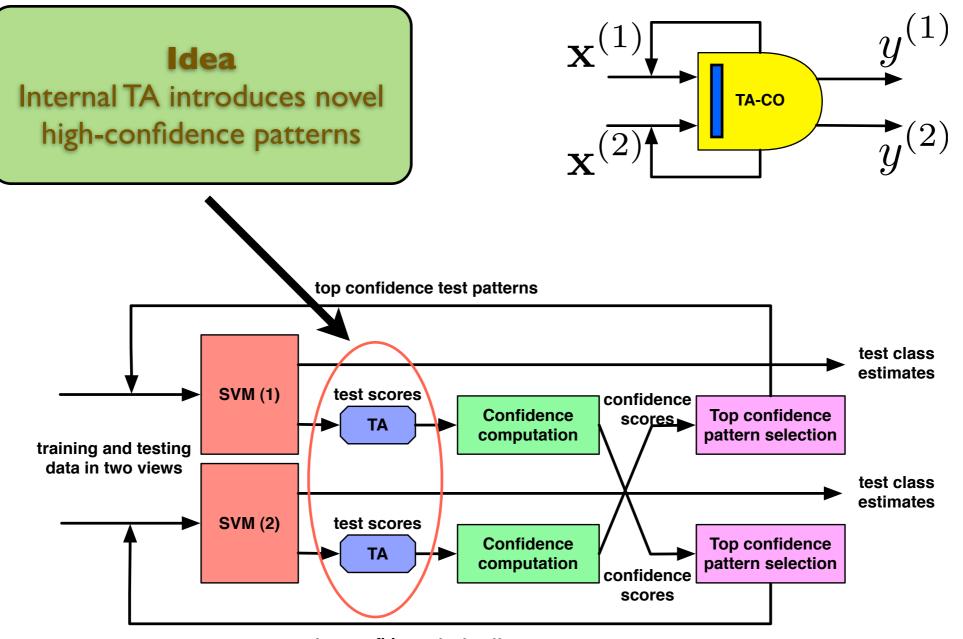
Outline of the Methods







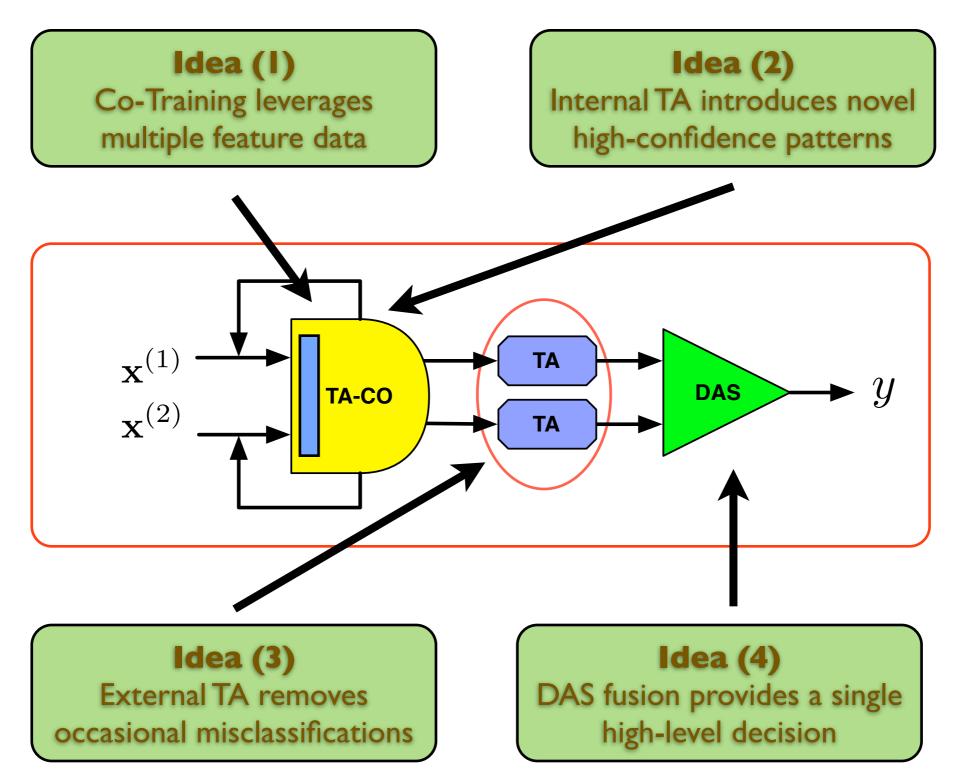
Time-Aware Co-Training



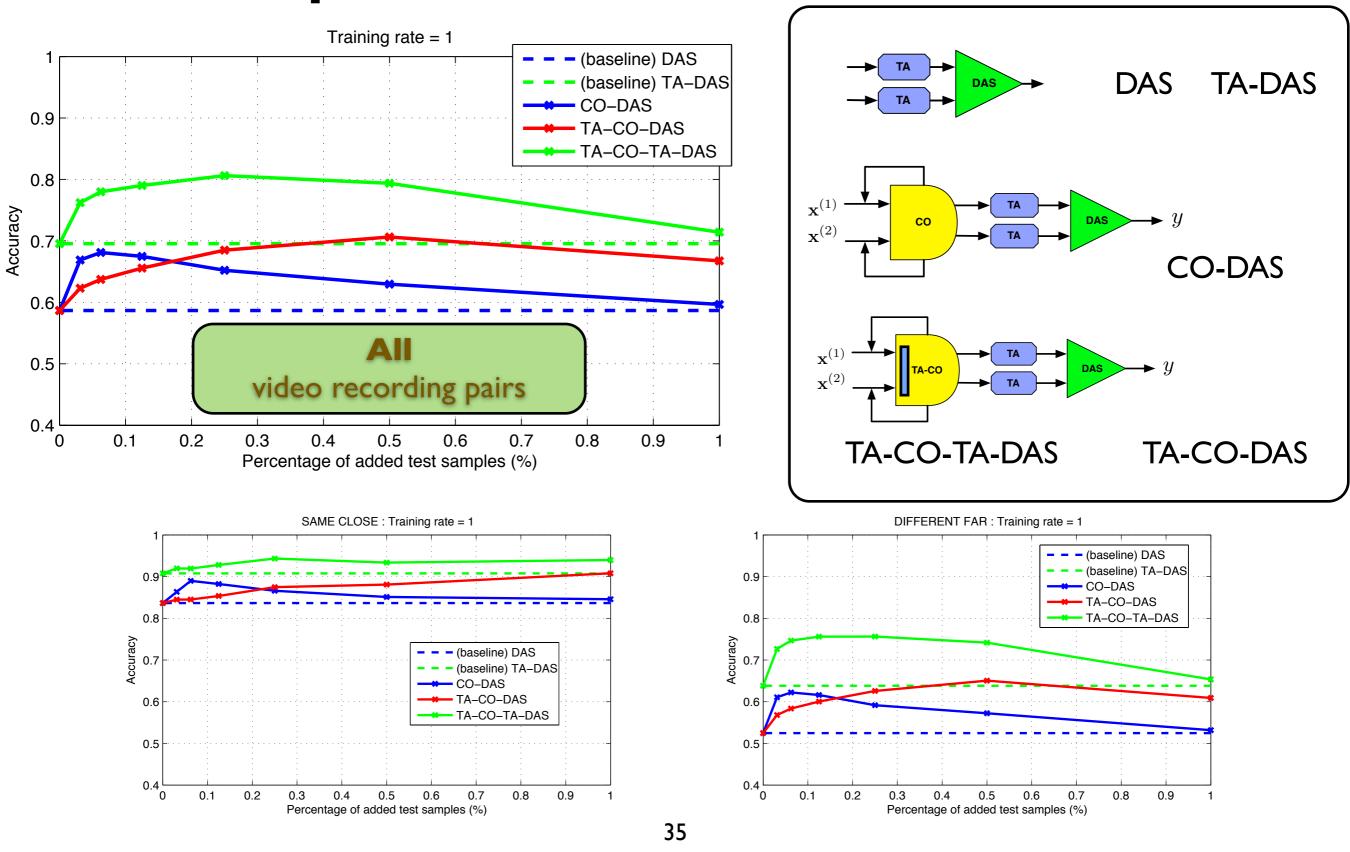
top confidence test patterns

V. Dovgalecs, R. Mégret, and B. Yannick, "Time-aware Co-Training for Indoors Localization in Visual Lifelogs," ACM International Conference on Multimedia, pp. 1–4, Jul. 2011.

Proposed learning framework



Experimental Evaluation



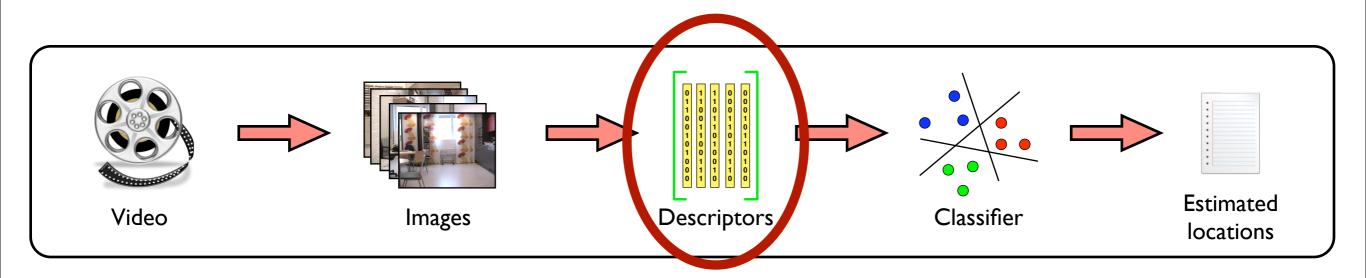
Highlights of Co-Training methods

I.Unlabeled data appears to help in the localization task
 ➡Co-Training is adapted for the task

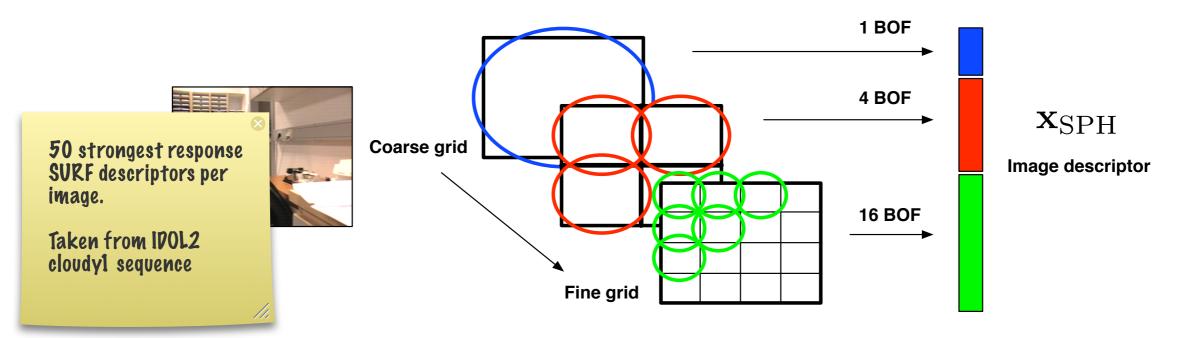
2.Use of **multiple visual features** should be encouraged →Late fusion scheme is adapted for the task

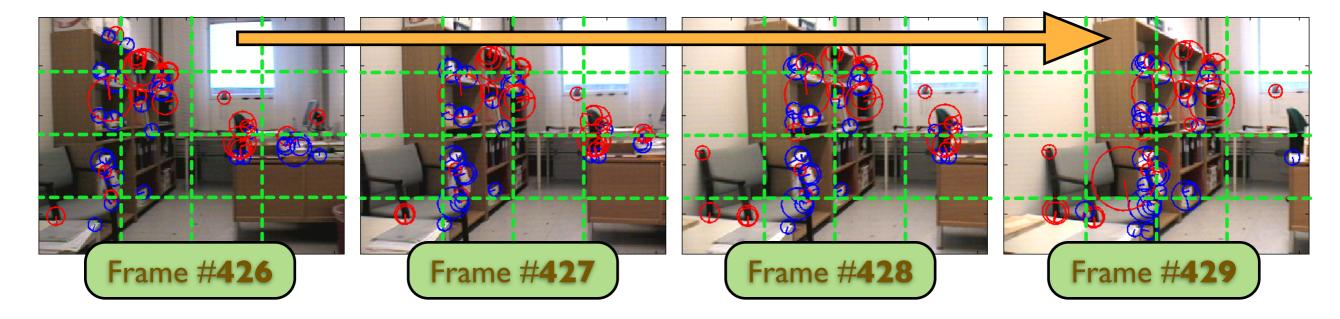
3.Leveraging **temporal information** has a significant impact →Use in post-processing and in the feedback loop

Improving Visual Descriptor Translation Invariant SPH



Spatial Pyramid Histograms

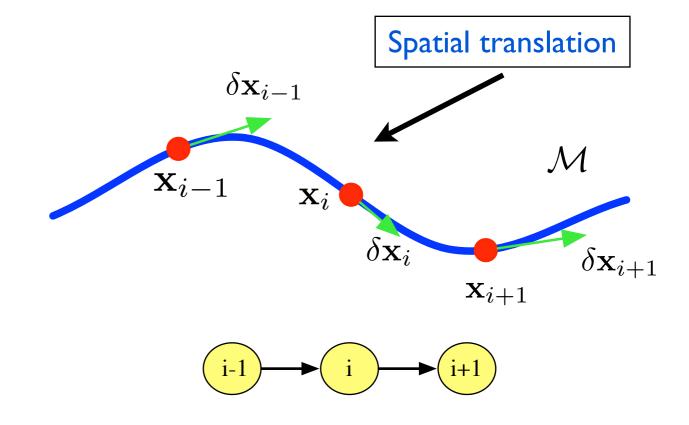




Variability due to spatial movement Notice no class change How to render the descriptor invariant to horizontal spatial translation?

Notion of tangent vectors

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i k(\mathbf{x}_i, \mathbf{x}) + b$$

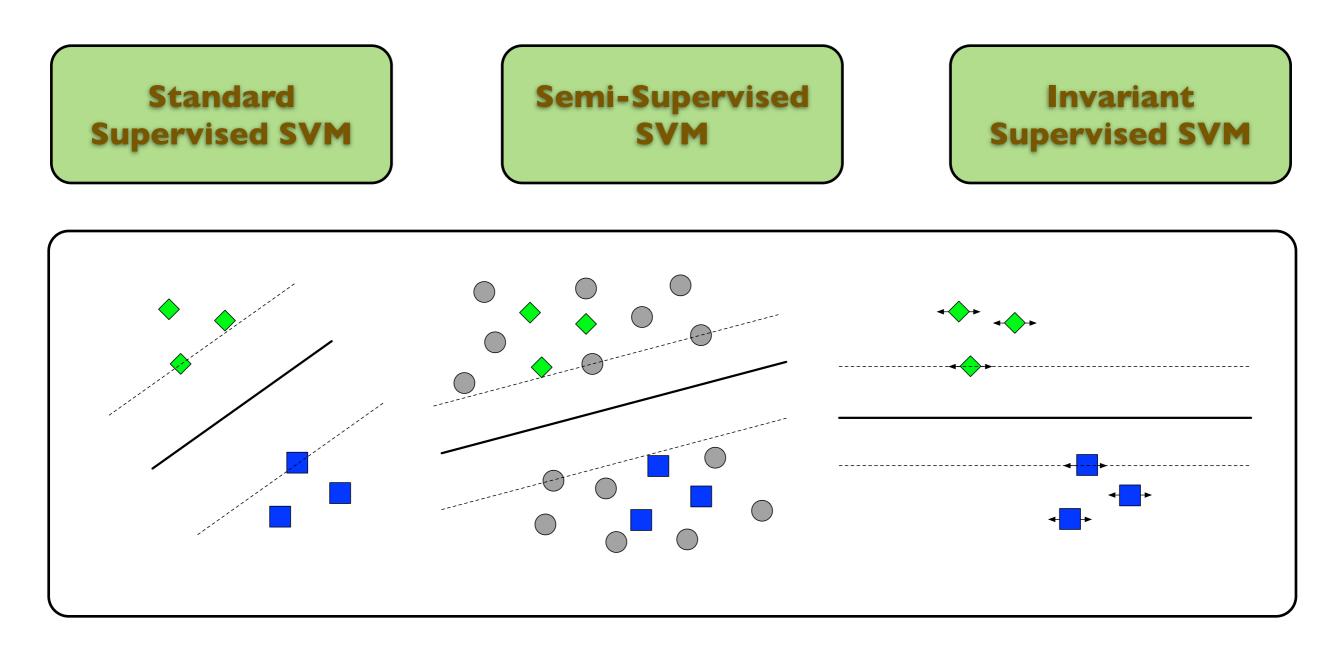


Idea

$$\delta \mathbf{x}_i = \lim_{t \to 0} \frac{1}{t} \left(\mathcal{L}_t \mathbf{x}_i - \mathbf{x}_i \right) = \left. \frac{\partial}{\partial t} \right|_{t=0} \mathcal{L}_t \mathbf{x}_i$$

- \mathbf{x}_i original pattern
- $\mathcal{L}_t \mathbf{x}_i$ transformed pattern

Invariance - Intuition



-Lack of labeled data <u>Risk of overfitting!</u> (if low supervision) +Unlabeled data may help

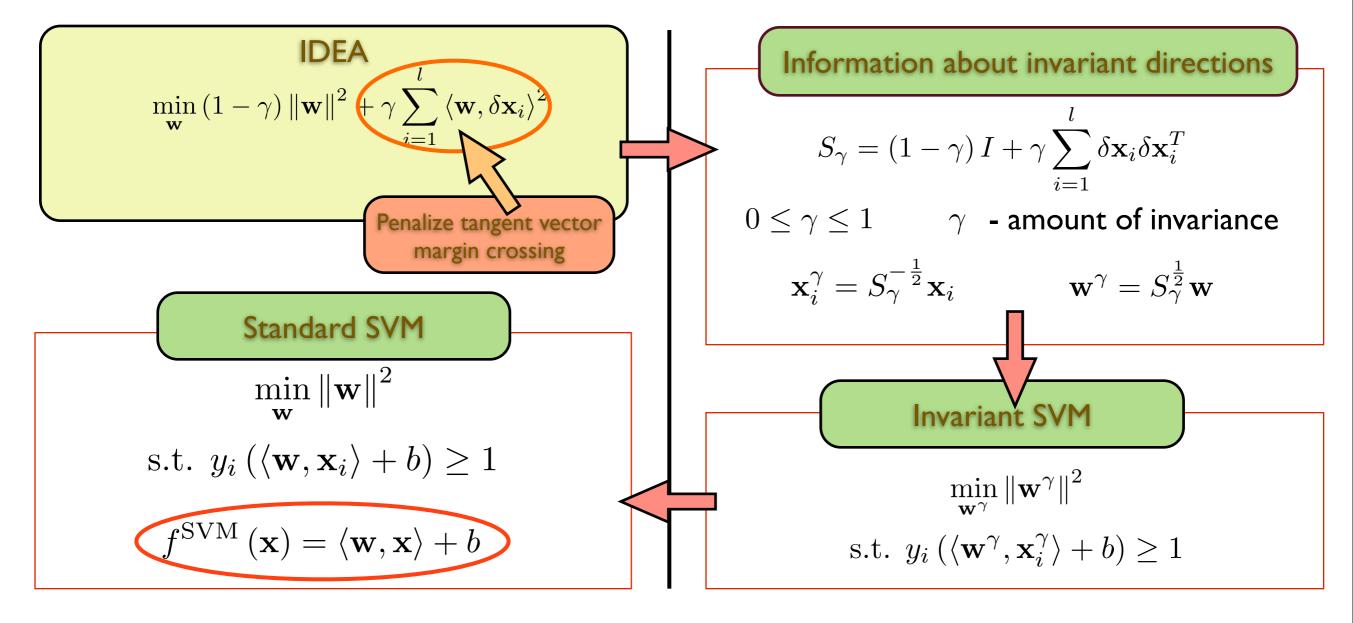
Computationally expensive!

Invariant directions in feature space provide hints

Standard and Invariant SVM

Training and Testing data

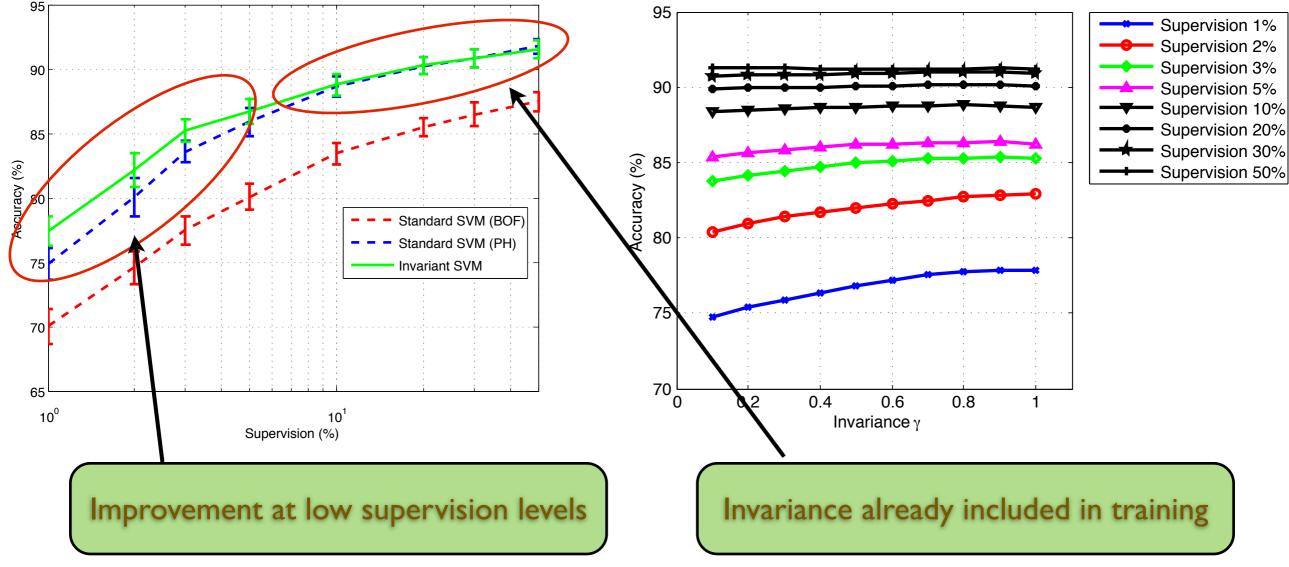
$$L = \{ (\mathbf{x}_i, y_i) \}_{i=1}^l \qquad U = \{ \mathbf{x}_i \}_{i=l+1}^{l+u}$$



B. Scholkopf and A. J. Smola, "Learning with Kernels". MIT Press, Cambridge, 2002.

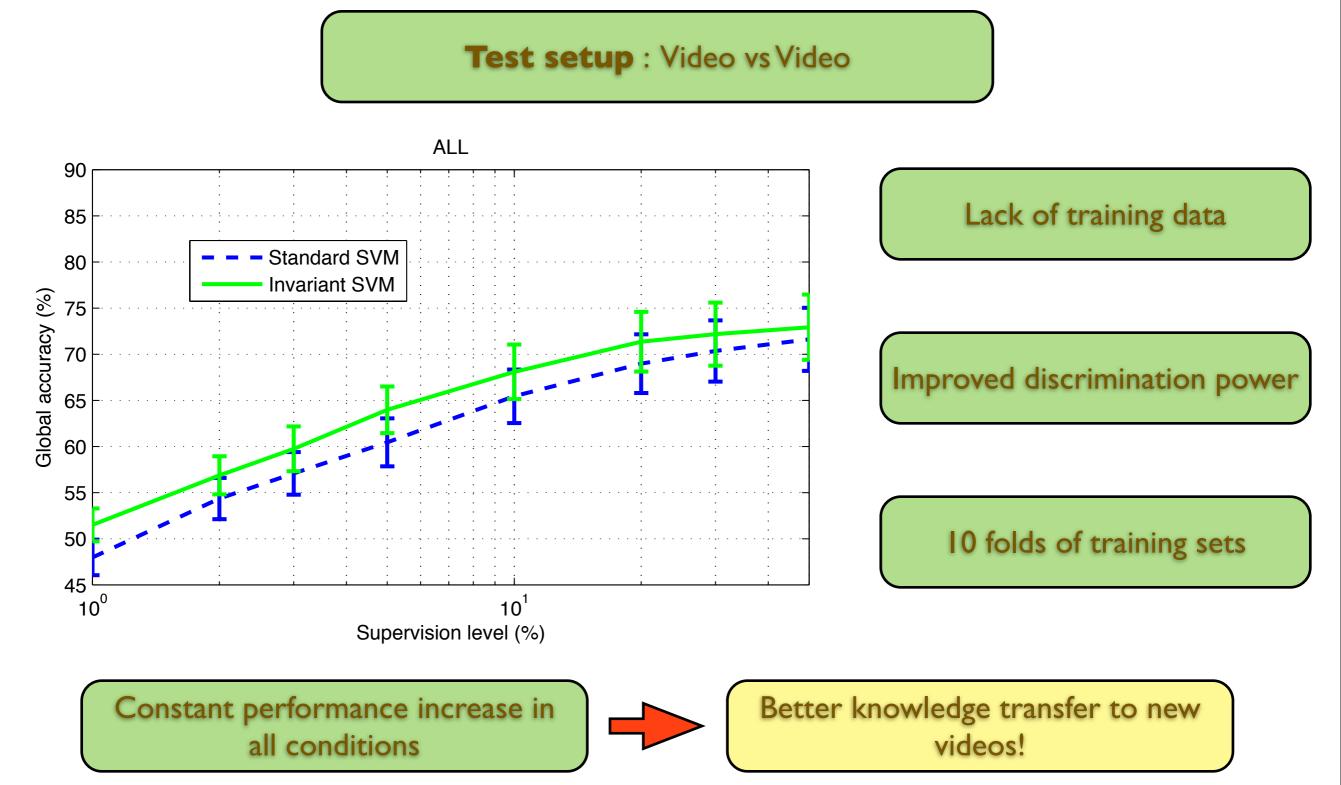
Experimental Evaluation

Test setup : Orderless image collection



V. Dovgalecs, S. Ilcus, R. Megret and Y. Berthoumieu, "Pyramides spatiales d'histogrammes invariantes aux transformations pour la reconnaisance des lieux", 18 me congres nationale en Reconnaisance des Formes et Intelligence Artificielle (RFIA), LIRIS, Lyon, 2012.(accepted)

Experimental Evaluation



Experimental Results Large-Scale evaluation (IMMED)

The Database

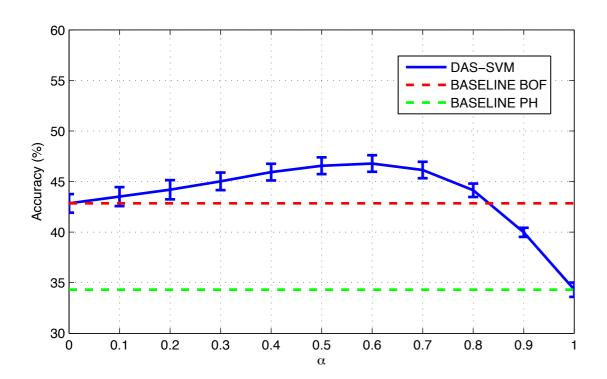
Bootstrap video - 6 minutes

Unlabeled video - 33 minutes

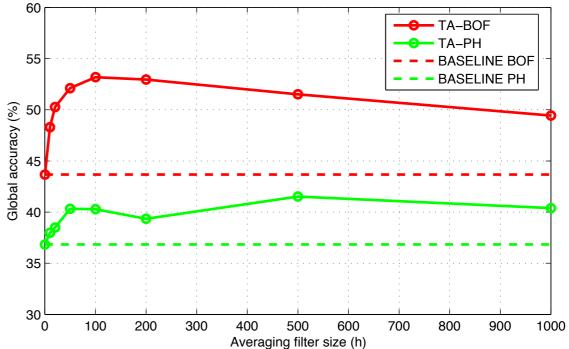
bathroom	bedroom	kitchen	living room	outside	other
hygiene, teeth brushing	sleep, rest	food preparation, dish washing, complex machines	eating, watching TV, reading	outdoors	other indoor locations

Baselines

What are the baseline classification performances?



What is the impact of TA scheme?



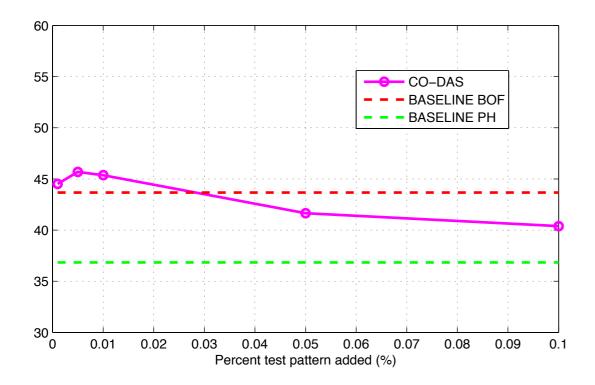
Relatively **low** starting performance

Visual features **are** complementary

TA boosts the performance

Time-Aware classification

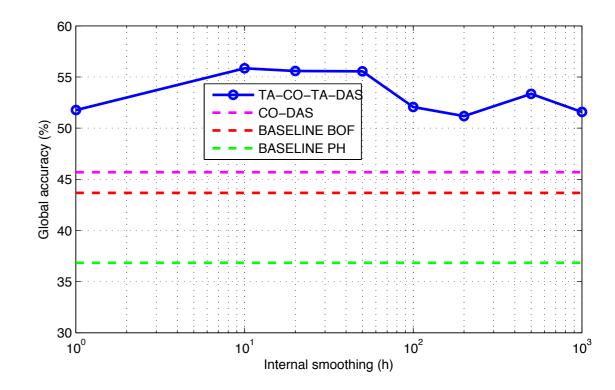
Can Co-Training improve the performance?



Small amounts of top confidence estimates are reliable even for complicated data

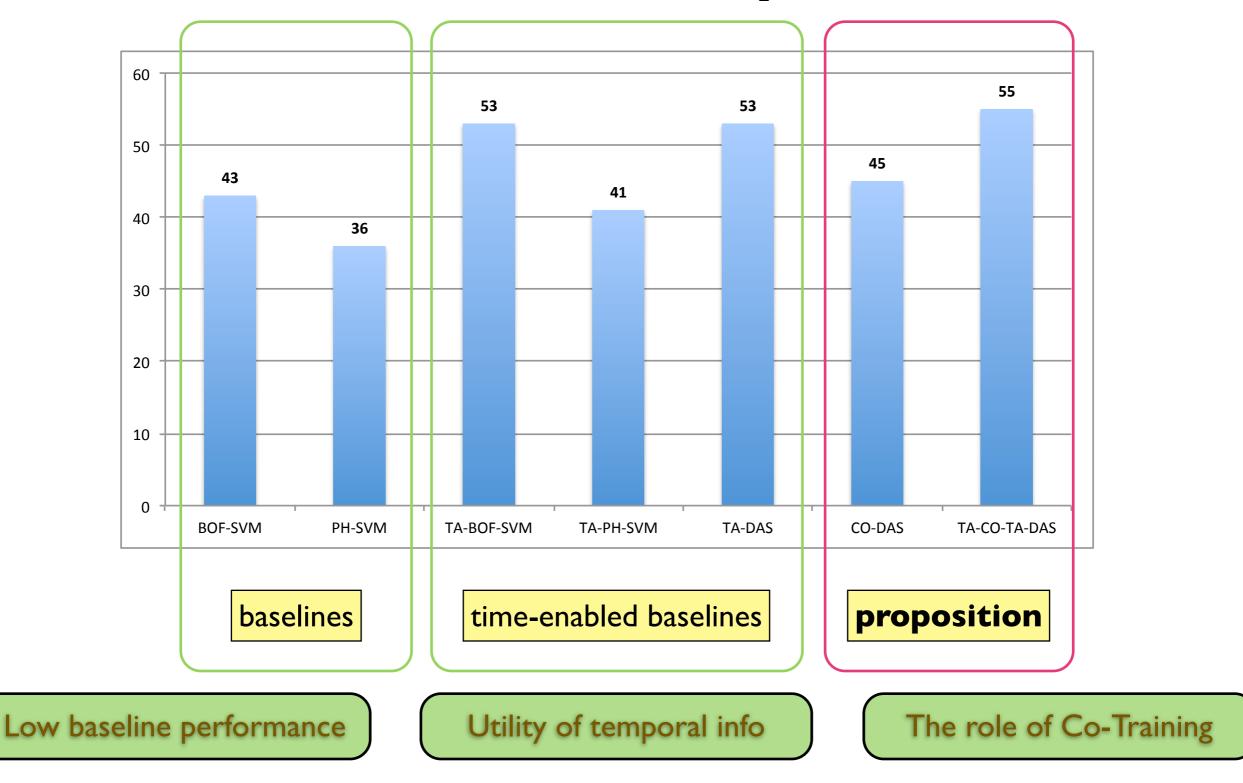
We used **one** Co-Training iteration

Time-Aware Co-Training



Internal TA **diversifies** input for the next round of Co-Training

Summary

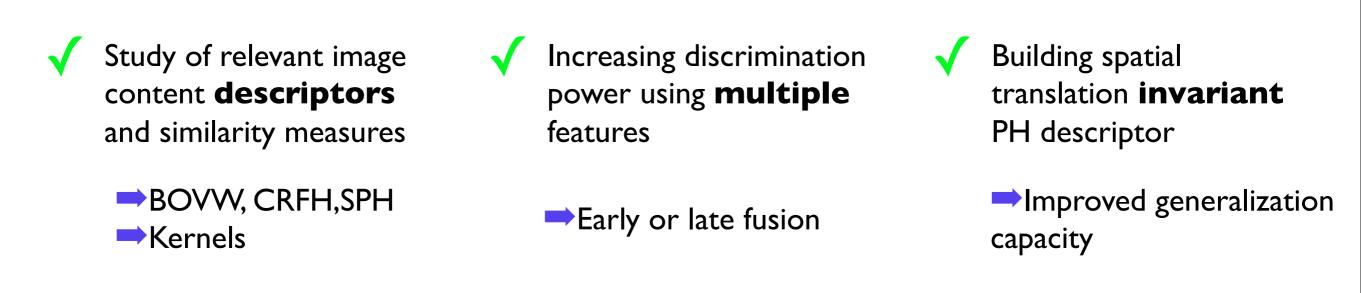


Conclusions

Multiple information sources Early and Late fusion Leveraging unlabeled data Semi-Supervised Learning Integrating temporal information Temporal Accumulation

Improving visual descriptor Translation Invariant SPH

Visual content variability and complexity



Small amounts of training data

Study of applicability of **Semi-Supervised** learning for image-based localization

 Unlabeled data helps to improve place recognition rates
 Proposition of a confidence measure

- Proposed an **unified** learning framework
 - Multiple features
 - Efficient semi-supervised learning
 - Temporal constraint integration

Perspectives

Perspectives

Semi-Automatic video indexing approach Active learning for reliable bootstrapping

Expected Improve robustness and the speed of the learning process

Integration with other information sources Coupling vision + inertial and environment sensor information Expected Provide additional cues when pure vision is insufficient

Thank You! *

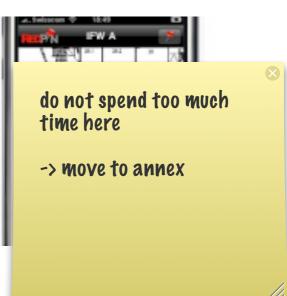
* Questions?

Annex

Indoor localization

Indoor localization only
 Requires relatively high precision
 No additional equipment to install

Wearable, image-based approach



Video Indexing Problem

Text indexing

Why we use visual localization?

Im

Prolif

Large

Chall

lifelogging

Invention of press in 1400AD. Need for text indexing solutions.

Challenge: discovering semantic meaning of the text.

up to **6TB** of structured text (~5 billion documents)

uploaded every minute

(2011)

Petabyte storage

Missing link between indexing and localization Flickr hosts ~6 billion It should stick well with visual g Title -> 2nd slide photos (August 2011) transition issue Wearable sensors in intro -> s in 20 Facebook hosts ~3 billion position wrt fixed sensors to **REMOVE IT** explain complementarity ons. new photos monthly (2010) (specificity of each) hundreds of TB re interpretations than text. In what the work is original? other solutions are similar but the problem is not the same Youtube - 48/hrs of video

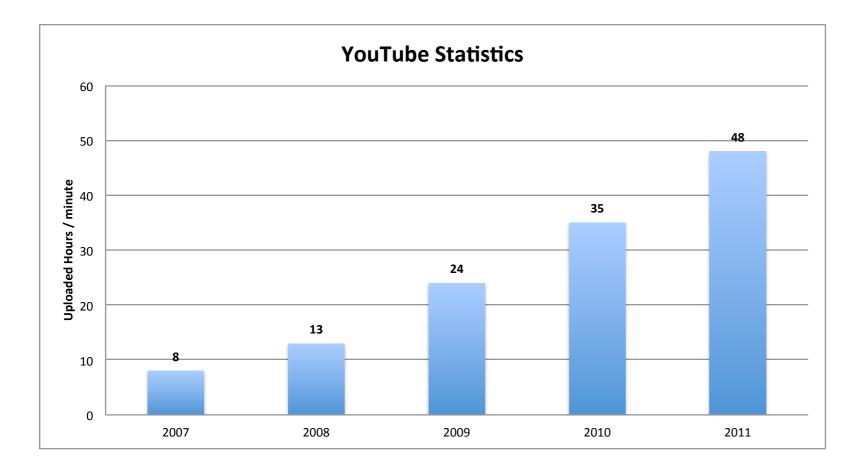
Video recording devices in 20th century. Ever growing video archives.

Challenge: videos are non-static and richer in content.

56

Video Indexing Problem

New video content in hrs / min (YouTube)



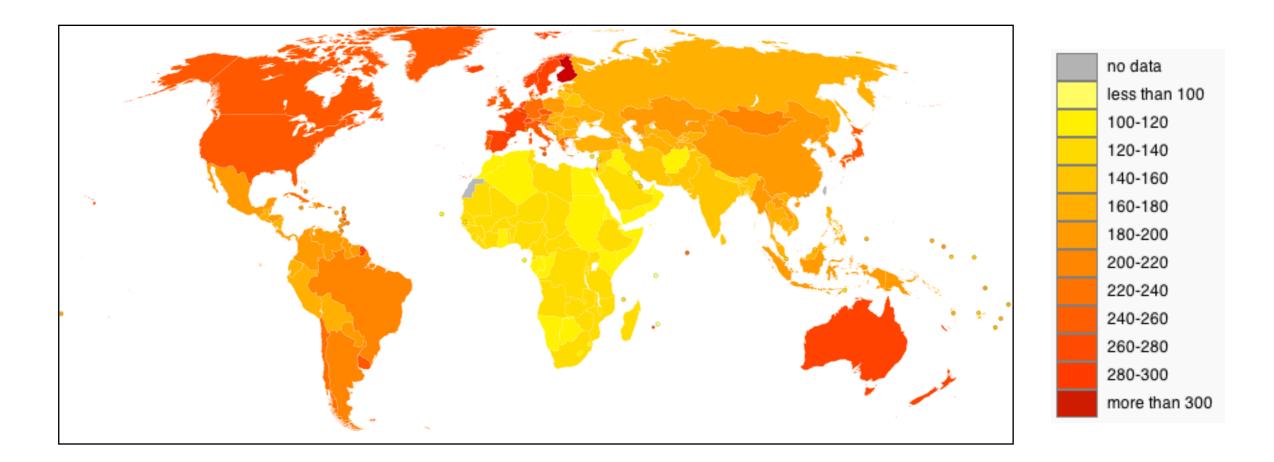
Applications

- •film archives
- surveillance
- news videos
- sports video analysis
- medical applications

How can we search videos by content efficiently?

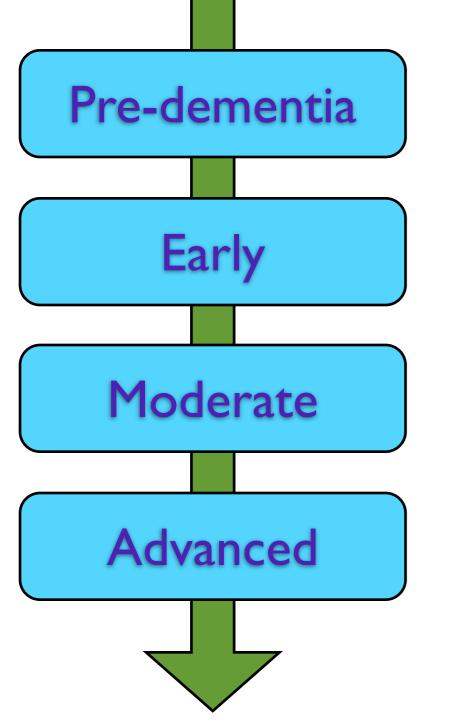
Alzheimer's Disease

AD is dementia type disease that develops cognitive and functional disorders mostly for elderly people (>65 years) in developed countries



Disability-adjusted life year for Alzheimer and other dementia's per 100'000 inhabitants (2004)

Development of AD



Mild cognitive impairments. Difficulty remembering recently learned facts. Up to 8 years before clinical diagnosis.

Memory reduces to older memories and learned facts. Decreased oral fluency and shrinking word vocabulary.

Loss of independence as many daily activities. Loosing communication skills. May fail to recognize close relatives.

Completely dependent on caregivers. Very simple daily tasks cannot be accomplished without help.

The disease cannot be cured nor its cause is known.

Treatment

Pharmaceutical

Delaying and relieving certain AD side-effects Cognition-oriented treatment aimed to reduced cognitive deficits

Psychosocial

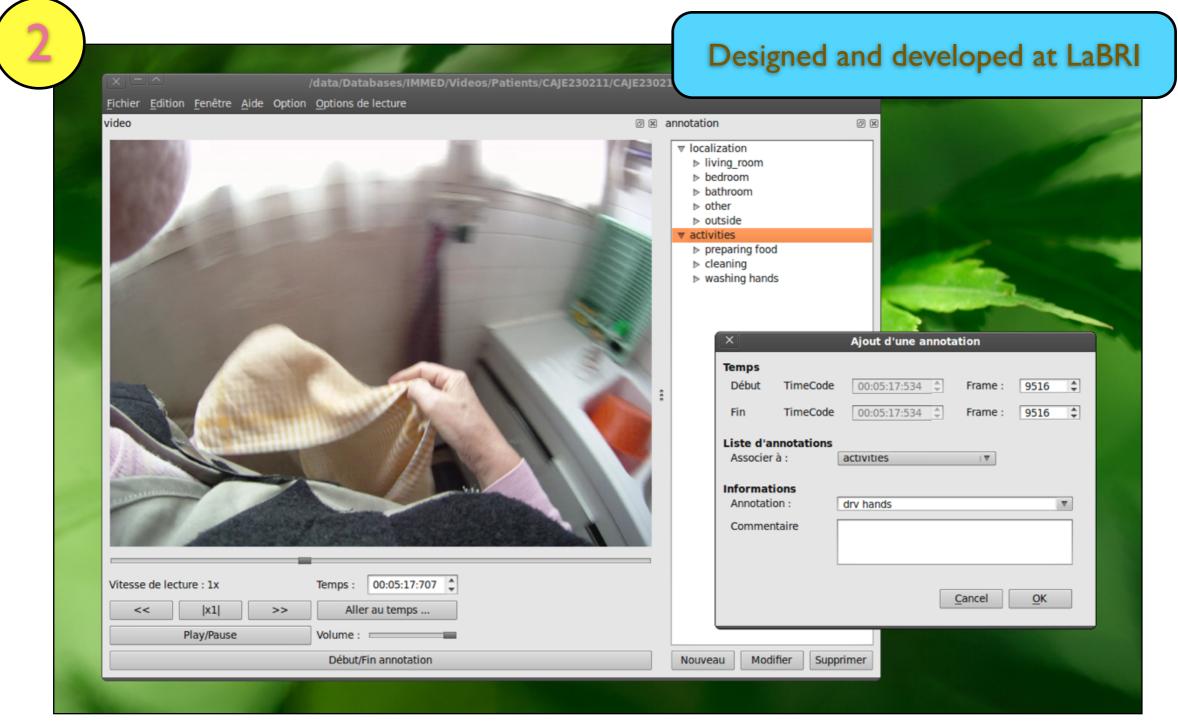
Help in daily activities by close relatives or professional caregivers

Importance of early diagnosis

Early changes and adaptation of the lifestyle Improved acceptance by family and close relative

Significantly reduces direct and indirect costs

Annotation task

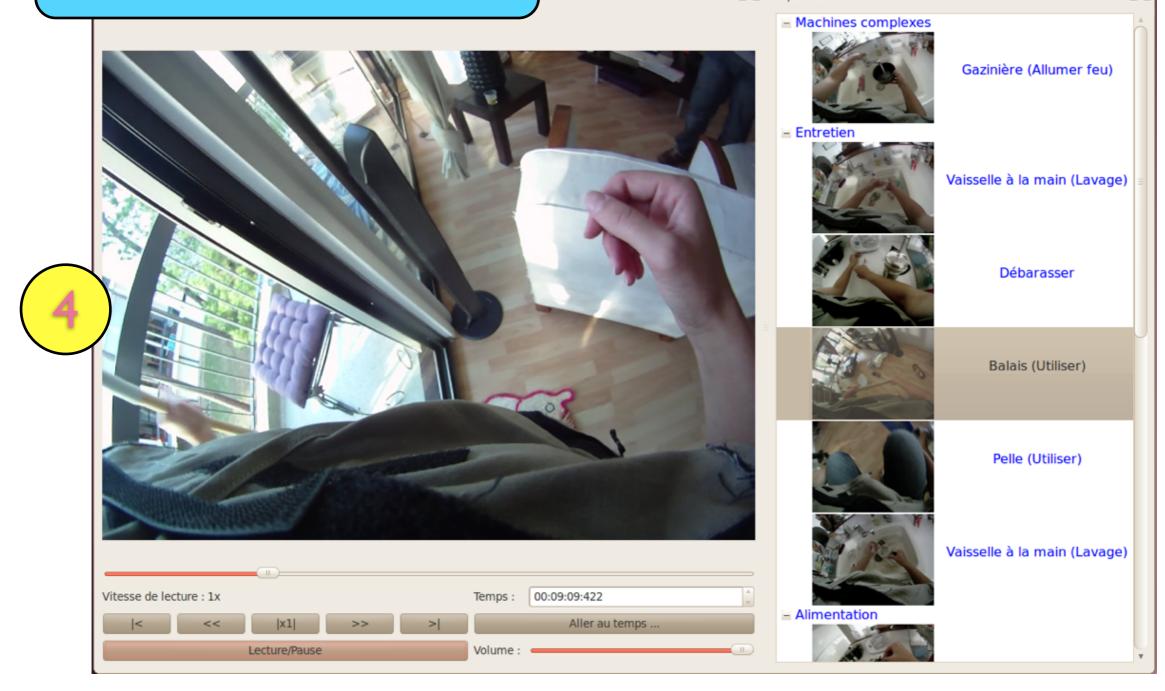


Manual annotation is done only for a short bootstrap video!

Automatically indexed video browsing

Designed and developed at LaBRI

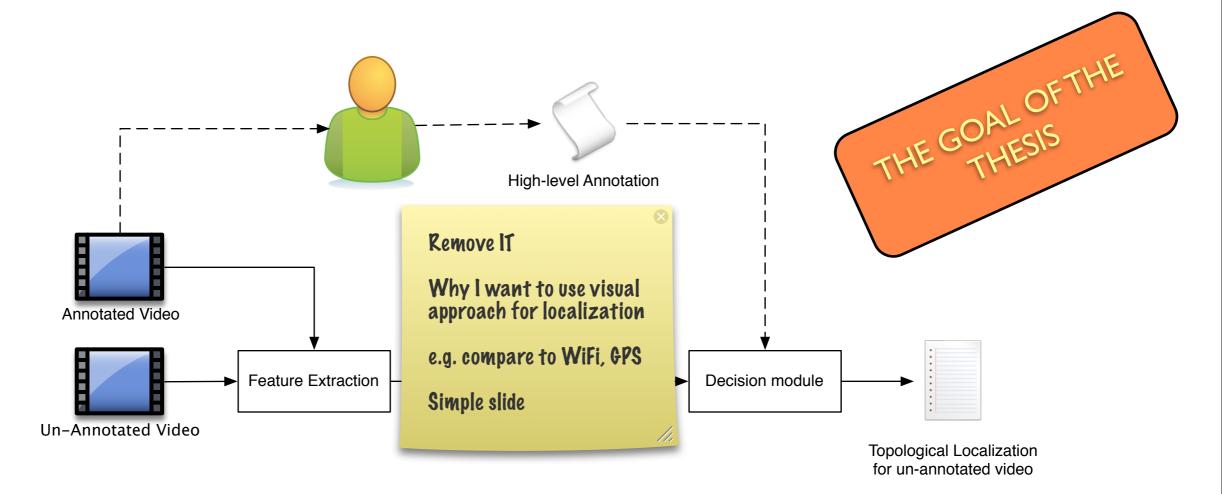
Séquences Séquences



Automatically indexed visual content allows fast video browsing

(7) (7)

Automatic Video Indexing



Classical Pattern Recognition problem - extract features and provide high-level decision

Adapt Machine Learning techniques for Decision in our context

Relevant Information Extraction

Extracted visual features are of high dimensionality and redundant

Unsupervised dimensionality reduction

n

Data-Adapted kernel function!

 $S_{\mathcal{H}}\mathbf{e}_i = \lambda_i \mathbf{e}_i$

$$k(\mathbf{x}_{i}, \mathbf{x}_{j}) = \langle \Phi(\mathbf{x}_{i}), \Phi(\mathbf{x}_{j}) \rangle \qquad \begin{array}{l} \Phi \to \mathcal{H} \\ \mathbf{x} \mapsto \Phi(\mathbf{x}) \end{array}$$

Variance (Kernel PCA)

 $S_{\mathcal{H}} = \frac{1}{n} \sum_{i=1}^{n} \Phi\left(\mathbf{x}_{i}\right) \Phi\left(\mathbf{x}_{i}\right)^{T}$

Highlight that compact and adapted features are now found!

Graph (Laplacian Eigenmaps)

$$E\left(\mathbf{z}\right) = \frac{1}{2} \sum_{i,j} w_{ij} \left\|\mathbf{z}_{i} - \mathbf{z}_{j}\right\|^{2}$$

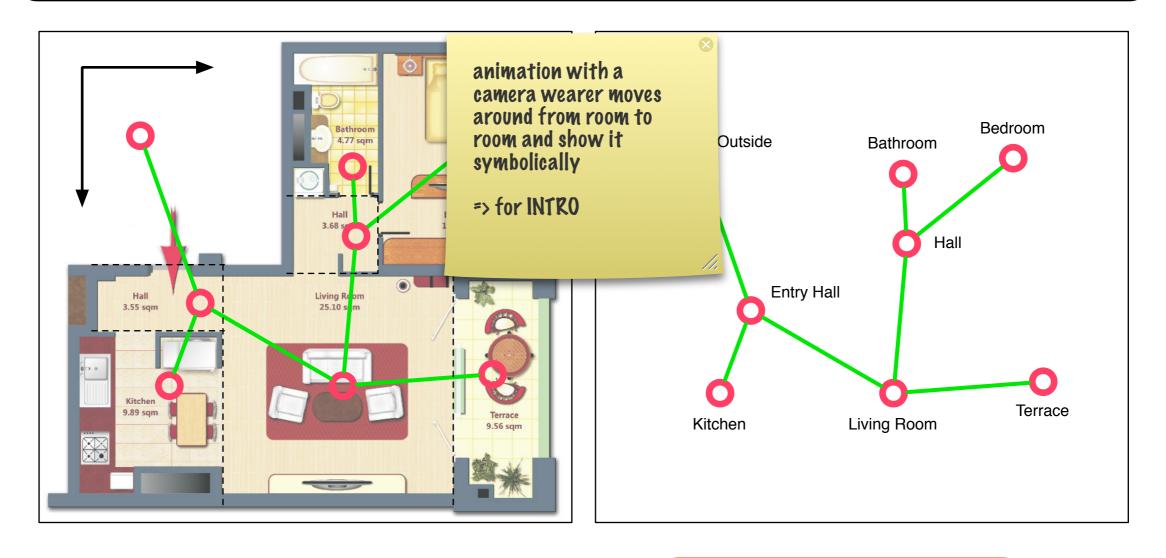
$$\mathbf{e}_{i} = \left[\Phi\left(\mathbf{x}_{1}\right), \dots, \Phi\left(\mathbf{x}_{n}\right)\right] \mathbf{a}_{i}$$

$$K\mathbf{a}_{i} = \lambda_{i} \mathbf{a}_{i} \qquad \mathbf{z} = A_{k}^{T} K$$

$$\mathbf{z} - \text{the new}$$
representation
$$\mathbf{z}_{i} = \left[\mathbf{e}_{1}\left(i\right), \dots, \mathbf{e}_{k}\left(i\right)\right]^{T}$$

Thesis Objective

Develop automatic algorithms for video indexing with the goal of <u>topological localization indoors</u>



Metric Localization

Topological Localization

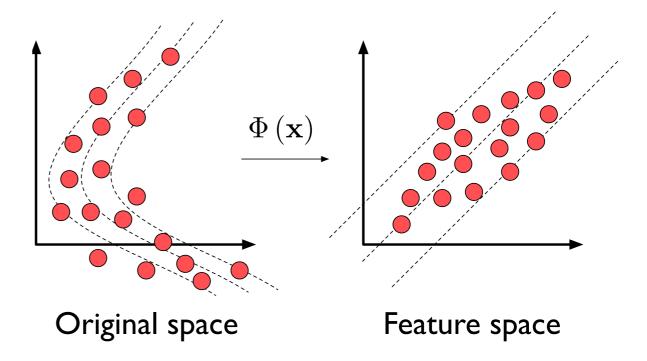
$$\begin{aligned} & \mathsf{Notion \ of \ similarity} \\ & k: \mathcal{X} \times \mathcal{X} \to \mathbb{R} \\ & (\mathbf{x}_i, \mathbf{x}_j) \mapsto k\left(\mathbf{x}_i, \mathbf{x}_j\right) \end{aligned}$$

Passage to Feature Space

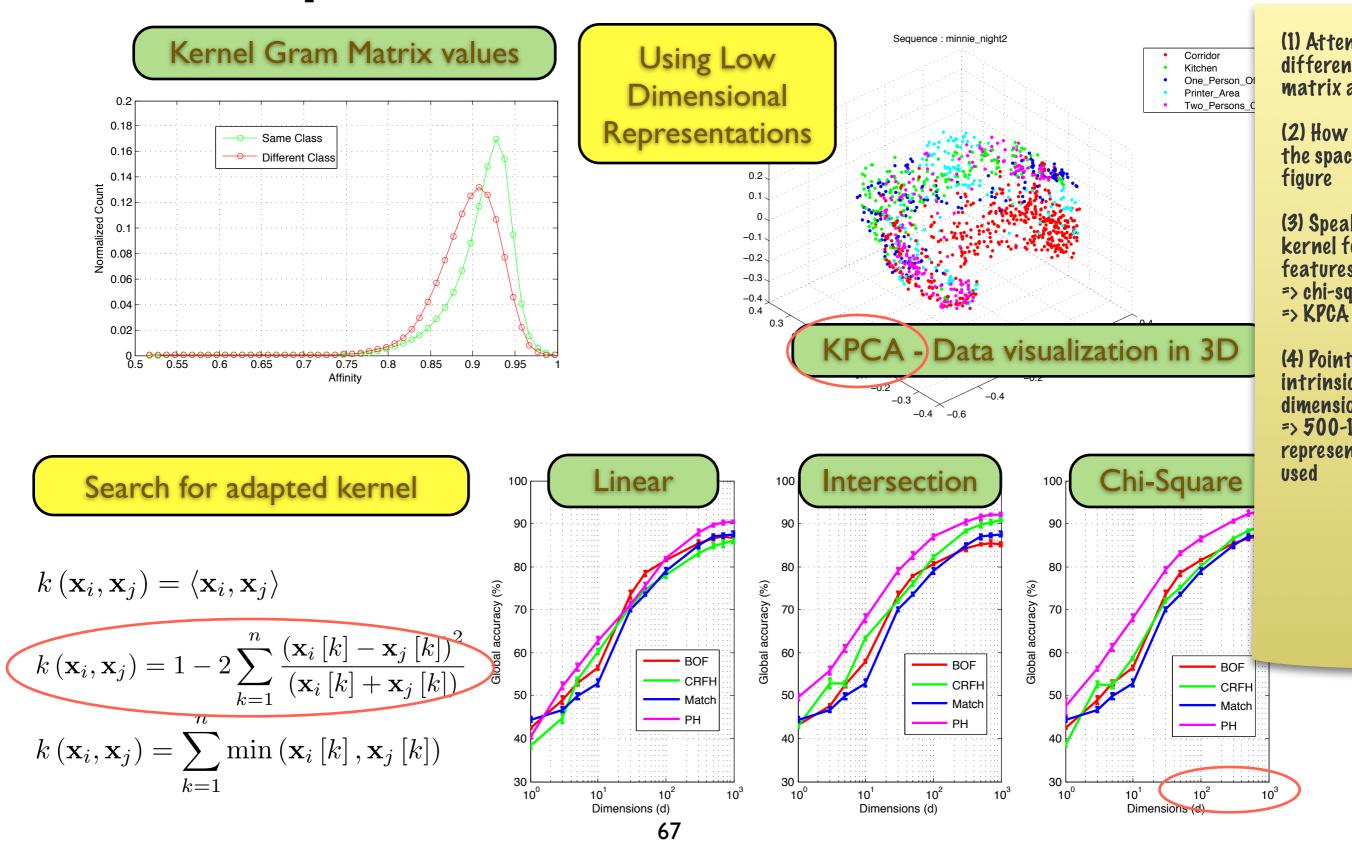
$$\Phi: \mathcal{X} \rightarrow \mathcal{H}$$

 $\mathbf{x} \mapsto \Phi(\mathbf{x})$

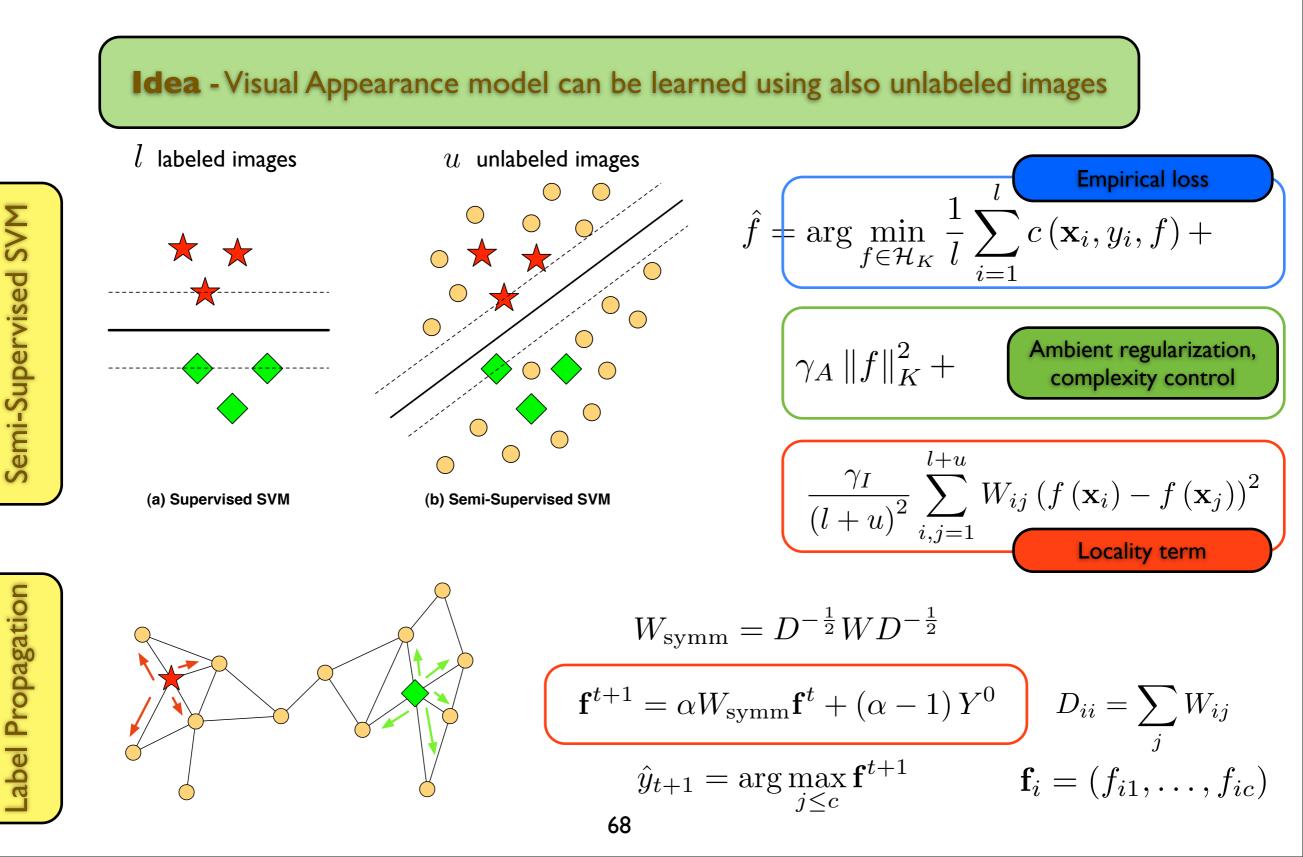
$$k\left(\mathbf{x}_{i},\mathbf{x}_{j}\right) = \left\langle \Phi\left(\mathbf{x}_{i}\right), \Phi\left(\mathbf{x}_{j}\right) \right\rangle$$



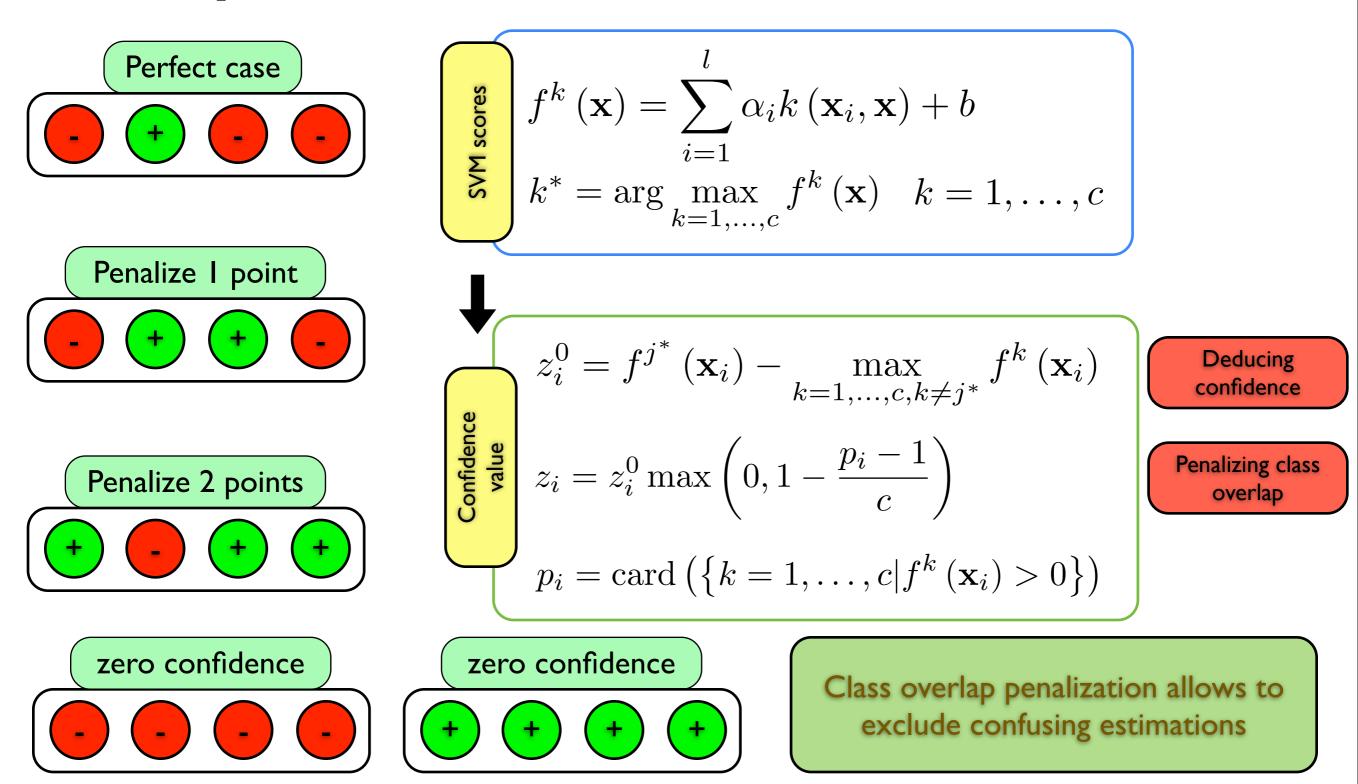
Experimental Evaluation



Leveraging unlabeled data



Proposed Confidence Measure



V. Dovgalecs, R. Mégret, and B. Yannick, "Time-aware Co-Training for Indoors Localization in Visual Lifelogs," ACM International Conference on Multimedia, pp. 1–4, Jul. 2011.