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Context: Wearable Sensors

SenseWear
Health monitoring Zeo sleep logger

Fall detection

Sports performance
evaluation
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... and many more!

“Lifelogging is the process of tracking personal data generated by our own behavioral activities. “

Wearable 
sensors



Wearable Sensors: Visual Lifelogging
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•Memory aid for recalling daily activities
•Passive creation of visual diaries
•Personal security applications

ViconRevue
Sousveillance

ExisTech

Image lifelogging

Wearable 
sensors

Visual 
Lifelogging

Video lifelogging

ZionEyez Looxcie



Wearable Video Monitoring

Light and autonomous 
video recorder
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Device developed in the IMMED project

Recording activities of a patient indoors

Wearable 
sensors

Visual 
Lifelogging

Activity 
Recognition



Application to the IMMED project
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Analysis of
results

3
Automatic indexing 

algorithms

Indexed content

4
Indexed content 

browsing

1
Recording 

session

Video & Sound

2
Annotation



Video Indexing problem

QUESTION: How to estimate topological locations?

... ...

Manually annotated bootstrap video with topological location tags
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Wearable 
sensors

Visual 
Lifelogging

Activity 
Recognition

Localization

... ...
Lobby Bedroom Saloon

Unlabeled video with unknown topological location tags

??? ??? ???

... ...... ...



Indoors Location Estimation

PA

CO

KT

OpO

TpO

Automatically annotated sample video
J. Luo, A. Pronobis, B. Caputo, and P. Jensfelt, “The KTH-IDOL2 Database”. Technical Report CVAP304, 2006.
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Challenges

Deal with great variability and complexity of visual content

Work with small amounts of manually annotated videos

Leveraging additional information about the problem
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Contributions
Answering the Challenges
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1. Relevant visual information extraction

2. Multiple information sources utilization
Comparing Early and Late information fusion strategies for topological localization

Deal with great variability and complexity of visual content

Work with small amounts of manually annotated videos

1. Utility of unlabeled image data
Study of Semi-Supervised methods for topological localization

2. Exploiting temporal continuity and unified framework
Proposition of temporal accumulation schemes

3. Exploiting invariance to spatial transformations
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Baseline Location Estimation
Visual Feature Extraction and Localization

Improving Discrimination Power
 Multiple Information Sources

Other Prior Information
Invariance

Main Proposition 
Time-Aware Co-Training Framework

Experimental Results

Overview
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Baseline Location 
Estimation

Visual Feature Extraction and Localization

ImagesVideo
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From video to descriptors

Video Extracted Frames
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Global Descriptors

Global descriptors characterize or describe image contents

Ideally, descriptors for the same topological location should be the same
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Descriptors
Three Visual Features
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[Csurka2004]

1

2

3

4 23 4 1

Image and extracted local descriptors Vocabulary Image signature

BOVW
Bag of Visual Words

Extracting local features (e.g. SIFT or 
SURF)

Quantizing local features in discrete 
classes

xBOVW ∈ R1111

Multi-dimensional representation of an image 
counting occurrences of filter responses

Histogram counts the number of pixels sharing 
the same response

CRFH
Composite Receptive Field 

Histograms

[Linde2004]
xCRFH ∈ R300

�
000

�
000

1 BOF

4 BOF

16 BOF

Coarse grid

Fine grid

Image descriptor

SPH
Spatial Pyramid Histograms

Concatenation of BOVW 
histograms for different grids

Captures spatial information 
which is missing in BOVW

[Lazebnik2006]xSPH ∈ R4
�
200



Generic location estimation

Unlabeled
video
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Similarity Measure 
Notion of a Kernel

Notion of similarity

k : X × X →R
(xi,xj) �→k (xi,xj)

- a descriptor or patternx

k (xi,xj) = �xi,xj� Dot product

k (xi,xj) = 1− 2
n�

k=1

(xi [k]− xj [k])
2

(xi [k] + xj [k])

Chi-Square - adapted measure
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x1,x2, . . . ,xn ∈ Rd



Classification - Linear Support Vector Machines
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(x1, y1) , . . . , (xn, yn) ∈ R× {±1} Idea
Maximum margin classifier 

generalizes the best for new data

For linearly separable data

Estimations

ŷ =

�
+1, if f (x) > 0

−1, if f (x) < 0

Find a function

f (x) = wTx+ b
1

�w�

1

�w�

f
(x) =

0f
(x) =

−
1

f
(x) =

+
1

w

wTxi < 0

wTxj > 0

xj

xi

w0 = 0

ω1

ω2

max
w

�w�2

yi
�
wTxi + b

�
≥ 0, ∀i



Φ (x)

descriptor space feature space

Decision function
in descriptor space

Classification - Non-Linear SVM
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f (x) =
n�

i=1

αiyik (xi,x) + b

Decision function
in feature space

f (x) =
n�

i=1

αiyi �Φ (xi) ,Φ (x)�+ b



1.Train “c” binary classifiers

2.Compute the scores for a test pattern

3.Assign a class of largest score value

Multi-class Classification

SCORES

f1 fc

Ii

One-vs-All approach for multiple class classification

SVM is a binary classifier

f1, . . . , fc

Ii - ith frame of the video
19

f (x) =
n�

i=1

αiyik (xi,x) + b

si = [f1 (xi) , . . . , fc (xi)]

ŷi = arg max
j=1,...,c

fj (xi)



Baseline approach consider the whole database as an orderless set of images

Printer Area Corridor Two Person Office One Person Office Kitchen

Test Database (IDOL2)

Three lighting conditions

Cloudy
4 videos

Sunny
4 videos

Night
4 videos

Recorded using a mobile robot platform

Half of the videos recorded across a 
span of 6 weeks

Five topological locations

20



Baseline evaluation results

➡Varying performance of different visual features
➡Need for annotated data at low supervision levels
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Outline
Principal Contributions

Multiple information 
sources

Leveraging unlabeled 
data

Integrating temporal 
information

Improving a visual 
descriptor

22



Improving 
Discrimination Power

Multiple Feature Fusion

23



Complementarity of visual descriptors

BOVW and CRFH features are 
complementary

Can we leverage the discrimination 
power of multiple features?

Different correctness patterns

Correct BOVW Correct CRFH Both are correctBoth are incorrect

S. Sonnenburg et al., “A general and efficient multiple kernel learning algorithm,” 
Advances in Neural Information Processing Systems, vol. 18, p. 1273, 2006.

M. Antenreiter et al., “Combining Classifiers for Improved Multilabel Image 
Classification,” European Conference on Machine Learning, 2009.

Two approaches
Multiple Kernel Learning

Learning a New Kernel
Late Classifier Fusion

Fusion at classifier level

Learned similarity measure Combining multiple classifiers

24



Early Fusion : Multiple Kernel Learning

Images Learning
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New Kernel

kMKL

βk - kth Kernel weight

New kernel : Sum of m individual kernels
Idea

Weight an individual 
kernel w.r.t. its 

importancekMKL (xi,xj) =
m�

�=1

β�k� (xi,xj)

A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet, “SimpleMKL,” Journal of Machine Learning Research, vol. 9, pp. 2491–2521, 2008.

n�

i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1 . . . , n

Dual SVM Objective Subject To

max
α,β

n�

i=1

αi −
1

2

n�

i,j=1

αiαjyiyj

m�

�=1

β�k� (xi,xj)

� �� �
kMKL

m�

�=1

β� = 1,β� ≥ 0, � = 1, . . . ,m

k1 = k
�
xBOVW

i ,xBOVW

j

�

k2 = k
�
xCRFH

i ,xCRFH

j

�

k3 = k
�
xSPH

i ,xSPH

j

�



Images

Train m independent multi-class SVM classifiers

Linear kernel
Combine linearly 

the scores

Learning of the weights
Using Cross-validation

Late Fusion : Classifier fusion

Fusion of results

A. Pronobis, M. Mozos, and B. Caputo, “SVM-based discriminative 
accumulation scheme for place recognition,” Robotics and Automation, 
2008. ICRA 2008. IEEE International Conference on, pp. 522–529, 2008.

Classifier ClassifierClassifier
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c

m

- # classes

- # descriptors

fDAS
j (xi) =

m�

k=1

βkf
k
j (xi)

sDAS
i =

�
fDAS
1 (xi) , . . . , f

DAS
c (xi)

�

smi = [fm
1 (xi) , . . . , f

m
c (xi)]s1i =

�
f1
1 (xi) , . . . , f

1
c (xi)

� . . .

kCRFHkBOVW kSPH

DAS

s(1) sDAS

s(2)



Experimental Evaluation

Both strategies allow to 
improve the baselines

MKL is more computationally 
expensive than high-level fusion
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Main Proposition
Time-Aware Co-Training Framework

✓Leverage unlabeled data

✓Utilize multiple visual features

✓Integrate time information

28



Leveraging unlabeled data
Idea - Visual Appearance model can be learned using also unlabeled images
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(a) Supervised SVM (b) Semi-Supervised SVM

Semi-Supervised SVM

Low Density Assumption

-Irrelevant unlabeled data can hurt
-Can be computationally expensive

S. Melacci, and M. Belkin, “Laplacian Support Vector Machines Trained 
in the Primal,” JMLR, 2011.

Label Propagation

Cluster Assumption

-Prior knowledge about graph structure
-Adapted for sparse graphs
-Sensitive to class imbalance

X. Zhu and Z. Ghahramani, “Learning from Labeled and Unlabeled Data 
with Label Propagation,” Technical Report CMU-CALD-02-107, 2003.



Standard Co-Training

CO

y(1)

y(2)

x(1)

x(2)

[1]! A. Blum and T. Mitchell, “Combining Labeled and Unlabeled Data with Co-Training,” Conference on Computational Learning Theory, Oct. 1998.

Idea (1)
High confidence patterns 
can be used to improve 

the trained model

Idea (2)
Use two independent 
views on the data to 
diversify the outputs

Idea (3)
Hard to classify images are 
left for later Co-Training 

iterations

SVM (1)
Confidence 
computation

Top confidence 
pattern selection

training and testing
data in two views

test scores

confidence
scores

test class
estimates

top confidence test patterns

SVM (2)
Confidence 
computation

Top confidence 
pattern selection

test class
estimates

confidence
scores

test scores

top confidence test patterns
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Integrating temporal continuity

TA
s sTA

31

Can we leverage the temporal 
continuity of the video?

h (k) =
1

2τ + 1
, k = −τ, . . . , τ

Averaging filter

st =
τ�

t=−τ

h (k) st+k

...

...

st =
�
f1 (xt) , f

2 (xt) , . . . , f
c (xt)

�

Temporal Accumulation Scheme

Idea
Scores for temporally close 

images should be similar

Idea
Occasional misclassifications can 
be removed using this filtering

How to take into account time information into the learning framework?



Outline of the Methods

SVMx y SVM TAx y

Single descriptor

DAS
SVM

SVM

x(1)

x(2)
y DAS

TA

TA

SVM

SVM
y

x(1)

x(2)

Multiple descriptor
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DASCO yx(1)

x(2)

Co-Training: Semi-Supervised with Multiple descriptors

DAS
TA

TA
CO yx(1)

x(2)



SVM (1)
Confidence 
computation

Top confidence 
pattern selection

training and testing
data in two views

test scores

confidence
scores

test class
estimates

top confidence test patterns

SVM (2)
Confidence 
computation

Top confidence 
pattern selection

test class
estimates

confidence
scores

test scores

top confidence test patterns

TA

TA

Time-Aware Co-Training

Idea
Internal TA introduces novel 

high-confidence patterns

V. Dovgalecs, R. Mégret, and B. Yannick, “Time-aware Co-Training for Indoors Localization in Visual Lifelogs,” ACM International Conference on Multimedia, pp. 1–4, Jul. 2011.
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TA-CO

y(1)

y(2)

x(1)

x(2)



Proposed learning framework
Idea (1)

Co-Training leverages 
multiple feature data

Idea (2)
Internal TA introduces novel 

high-confidence patterns

Idea (4)
DAS fusion provides a single 

high-level decision

Idea (3)
External TA removes 

occasional misclassifications

34

DAS
TA

TA
TA-CO yx(1)

x(2)
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video recording pairs
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Highlights of Co-Training methods

1.Unlabeled data appears to help in the localization task
➡Co-Training is adapted for the task

2.Use of multiple visual features should be encouraged
➡Late fusion scheme is adapted for the task

3.Leveraging temporal information has a significant impact
➡Use in post-processing and in the feedback loop
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Improving Visual 
Descriptor

Translation Invariant SPH

37
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Spatial Pyramid Histograms
1 BOF

4 BOF

16 BOF

Coarse grid

Fine grid

Image descriptor

How to render the descriptor 
invariant to horizontal spatial 

translation?

Frame #426 Frame #427 Frame #428 Frame #429

Variability due to spatial movement
Notice no class change

50 strongest response 
SURF descriptors per 
image.

Taken from IDOL2 
cloudy1 sequence
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xSPH



Notion of tangent vectors

Idea
There may exist directions in 

feature space along which the SVM 
decision value should not change

xi
xi−1

xi+1

δxi+1
δxi

δxi−1

ii-1 i+1

M

Spatial translation
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xi

Ltxi

δxi = lim
t→0

1

t
(Ltxi − xi) =

∂

∂t

����
t=0

Ltxi

- original pattern

- transformed pattern

f (x) =
n�

i=1

αiyik (xi,x) + b



Invariance - Intuition

Standard 
Supervised SVM

Semi-Supervised 
SVM

Invariant 
Supervised SVM

Risk of overfitting! Computationally expensive!

Invariant directions in feature 
space provide hints

-Lack of labeled data +Unlabeled data may help

40
(if low supervision)



Standard and Invariant SVM

yi �w,xi�+ b ≥ 1

IDEA

min
w

(1− γ) �w�2 + γ
l�

i=1

�w, δxi�2

B. Scholkopf and A. J. Smola, “Learning with Kernels”. MIT Press, Cambridge, 2002.

L = {(xi, yi)}li=1 U = {xi}l+u
i=l+1Training and Testing data

41

Penalize tangent vector 
margin crossing

Sγ = (1− γ) I + γ
l�

i=1

δxiδx
T
i

0 ≤ γ ≤ 1 γ - amount of invariance

Information about invariant directions

xγ
i = S

− 1
2

γ xi wγ = S
1
2
γ w

min
wγ

�wγ�2

s.t. yi (�wγ ,xγ
i �+ b) ≥ 1

Invariant SVM
min
w

�w�2

s.t. yi (�w,xi�+ b) ≥ 1

Standard SVM

fSVM (x) = �w,x�+ b



Experimental Evaluation
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Standard SVM (PH)
Invariant SVM
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Supervision 1%
Supervision 2%
Supervision 3%
Supervision 5%
Supervision 10%
Supervision 20%
Supervision 30%
Supervision 50%

Test setup : Orderless image collection

Improvement at low supervision levels Invariance already included in training

V. Dovgalecs, S. Ilcus, R. Megret and Y. Berthoumieu, “Pyramides spatiales dʼhistogrammes invariantes aux transformations pour la reconnaisance 
des lieux”, 18éme congres nationale en Reconnaisance des Formes et Intelligence Artificielle (RFIA), LIRIS, Lyon, 2012.(accepted)
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Experimental Evaluation
Test setup :  Video vs Video

Constant performance increase in 
all conditions

Better knowledge transfer to new 
videos!
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Standard SVM
Invariant SVM

10 folds of training sets

Improved discrimination power

Lack of training data



Experimental Results
Large-Scale evaluation (IMMED)
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The Database

bathroom bedroom kitchen living room outside other

hygiene,
teeth brushing sleep, rest

food preparation, 
dish washing, 

complex machines

eating, watching 
TV, reading outdoors

other indoor 
locations

Bootstrap video - 6 minutes Unlabeled video - 33 minutes

bathroom

bedroom

kitchen

living room

other

outside

BOVW
Bag of Visual Words

SPH
Spatial Pyramid Histograms

45

All parameters 
were set using 

Cross-Validation



Baselines
What are the baseline 

classification performances?
What is the impact of TA 

scheme?
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DAS SVM
BASELINE BOF
BASELINE PH

Relatively low starting performance

Visual features are complementary
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TA boosts the performance
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Time-Aware classification
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CO DAS
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Small amounts of top confidence 
estimates are reliable even for 

complicated data

Can Co-Training improve the 
performance?

We used one Co-Training iteration
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Time-Aware Co-Training

Internal TA diversifies input for the 
next round of Co-Training
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Summary

baselines time-enabled baselines proposition
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Low baseline performance Utility of temporal info The role of Co-Training



Conclusions

Multiple information 
sources

Early and Late fusion

Leveraging unlabeled 
data

Semi-Supervised Learning

Integrating temporal 
information

Temporal Accumulation

Improving visual 
descriptor

Translation Invariant SPH
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Visual content variability and complexity

✓ Study of relevant image 
content descriptors 
and similarity measures

✓ Increasing discrimination 
power using multiple 
features

✓ Building spatial 
translation invariant 
PH descriptor

➡BOVW, CRFH,SPH
➡Kernels ➡Early or late fusion ➡Improved generalization 

capacity

Small amounts of training data

✓ Study of applicability of Semi-
Supervised learning for image-based 
localization

✓ Proposed an unified learning framework

➡Unlabeled data helps to improve 
place recognition rates 
➡Proposition of a confidence measure

➡Multiple features
➡Efficient semi-supervised learning
➡Temporal constraint integration
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Perspectives

51



➡Semi-Automatic video indexing approach
Active learning for reliable bootstrapping

Expected Improve robustness and the speed of the 
learning process

➡Integration with other information sources
Coupling vision + inertial and environment sensor information

Expected Provide additional cues when pure vision is 
insufficient

52

Perspectives



Thank You! *

* Questions?



Annex



55

Indoor localization

GPS WiFi / RFID

✓Indoor localization only
✓Requires relatively high precision
✓No additional equipment to install

➡Wearable, image-based approach

do not spend too much 
time here

-> move to annex



Video Indexing Problem
Text indexing
Invention of press in 1400AD. Need for text indexing solutions.

Video indexing
Video recording devices in 20th century.
Ever growing video archives.

Challenge: images can have more interpretations than text.

56

Image indexing
Proliferation of imaging devices in 20th century.
Large photo and image collections.

Challenge: discovering semantic meaning of the text.

Challenge: videos are non-static and richer in content.

up to 6TB of structured 
text (~5 billion documents)

Flickr hosts ~6 billion 
photos (August 2011)

Facebook hosts ~3 billion 
new photos monthly (2010)

Youtube - 48/hrs of video 
uploaded every minute 

(2011)

hundreds of TB

Petabyte storage

MIssing link between 
indexing and localization

Title -> 2nd slide 
transition issue

REMOVE IT

Why we use visual localization?

It should stick well with visual 
lifelogging

Wearable sensors in intro -> 
position wrt fixed sensors to 
explain complementarity
(specificity of each)

In what the work is original?
other solutions are similar but 
the problem is not the same



Video Indexing Problem

How can we search videos by content efficiently?
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•film archives
•surveillance
•news videos
•sports video analysis
•medical applications

New video content in hrs / min
(YouTube)



Alzheimer’s Disease
AD is dementia type disease that develops cognitive 
and functional disorders mostly for elderly people 

(>65 years) in developed countries

Disability-adjusted life year for Alzheimer and other dementia’s per 100’000 inhabitants (2004)



Development of AD

The disease cannot be cured nor its cause is known.

Pre-dementia

Early

Advanced

Moderate

Mild cognitive impairments. Difficulty remembering recently 
learned facts.  Up to 8 years before clinical diagnosis.

Memory reduces to older memories and learned facts. 
Decreased oral fluency and shrinking word vocabulary.

Loss of independence as many daily activities. Loosing 
communication skills. May fail to recognize close relatives.

Completely dependent on caregivers.  Very simple daily tasks 
cannot be accomplished without help. 



Pharmaceutical Psychosocial Caregiving

Delaying and relieving certain 
AD side-effects

Cognition-oriented treatment 
aimed to reduced cognitive 

deficits

Help in daily activities by close 
relatives or professional 

caregivers

Treatment

Importance of early diagnosis

Early changes and 
adaptation of the 

lifestyle

Improved 
acceptance by 

family and close 
relative

Significantly 
reduces direct and 

indirect costs



Annotation task

Manual annotation is done only for a short bootstrap video!

2 Designed and developed at LaBRI



Automatically indexed video browsing

4

Automatically indexed visual content allows fast video browsing

Designed and developed at LaBRI



Automatic Video Indexing

➡ Classical Pattern Recognition problem - extract features and provide high-level decision

➡ Adapt Machine Learning techniques for Decision in our context

THE GOAL OF THE 

THESIS

Annotated Video

Feature Extraction

Un-Annotated Video

High-level Annotation

Decision module

Topological Localization
for un-annotated video

Low level image
representation
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Remove IT

Why I want to use visual 
approach for localization

e.g. compare to WiFi, GPS

Simple slide



Relevant Information Extraction
Extracted visual features 
are of high dimensionality 

and redundant

Can we reduce 
dimensionality of the data 
and adapt it for the task?

Unsupervised 
dimensionality reduction

k (xi,xj) = �Φ (xi) ,Φ (xj)�
Φ → H

x �→Φ (x)

Variance (Kernel PCA) Graph (Laplacian Eigenmaps)

SH =
1

n

n�

i=1

Φ (xi)Φ (xi)
T

SHei = λiei

ei = [Φ (x1) , . . . ,Φ (xn)]ai

Kai = λiai z = AT
kK

E (z) =
1

2

�

i,j

wij �zi − zj�2

Le = λe

zi = [e1 (i) , . . . , ek (i)]
T

Data-Adapted kernel 
function!

z - the new 
representation

L - Graph Laplacian

Highlight that compact 
and adapted features 
are now found!



Thesis Objective
Develop automatic algorithms for video indexing 
with the goal of topological localization indoors

Metric Localization Topological Localization

Kitchen

Entry Hall

Living Room
Terrace

Hall

Bathroom
Bedroom

Outside
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animation with a 
camera wearer moves 
around from room to 
room and show it 
symbolically

=> for INTRO



Notion of similarity

k : X × X →R
(xi,xj) �→k (xi,xj)

Passage to Feature Space

Φ : X →H

x �→Φ (x)

k (xi,xj) = �Φ (xi) ,Φ (xj)�

Φ (x)

Original space Feature space
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Experimental Evaluation

k (xi,xj) = �xi,xj�

k (xi,xj) =
n�

k=1

min (xi [k] ,xj [k])

k (xi,xj) = 1− 2
n�

k=1

(xi [k]− xj [k])
2

(xi [k] + xj [k])
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Sequence : minnie_night2

 

Corridor
Kitchen
One_Person_Office
Printer_Area
Two_Persons_Office

Linear Intersection Chi-Square

Kernel Gram Matrix values

KPCA - Data visualization in 3D

Search for adapted kernel

Using Low 
Dimensional 

Representations

(1) Attention on same-
different class Gram kernel 
matrix affinity values

(2) How data is grouped in 
the space - comment 3D 
figure

(3) Speak about adapted 
kernel for the visual 
features of the choice
=> chi-square is selected
=> KPCA is selected

(4) Point out about the 
intrinsic data 
dimensionality
=> 500-1000 dimensional 
representations are further 
used
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Leveraging unlabeled data
Idea - Visual Appearance model can be learned using also unlabeled images

(a) Supervised SVM (b) Semi-Supervised SVM

f̂ = arg min
f∈HK

1

l

l�

i=1

c (xi, yi, f)+

γA �f�2K +

γI

(l + u)2

l+u�

i,j=1

Wij (f (xi)− f (xj))
2

Empirical loss

Ambient regularization,
complexity control

Locality term

Wsymm = D− 1
2WD− 1

2

Dii =
�

j

Wij

fi = (fi1, . . . , fic)ŷt+1 = argmax
j≤c

f t+1

Se
m

i-S
up

er
vi

se
d 

SV
M

La
be

l P
ro

pa
ga

tio
n

labeled images unlabeled imagesl u

f t+1 = αWsymmf
t + (α− 1)Y 0
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Proposed Confidence Measure
fk (x) =

l�

i=1

αik (xi,x) + b

k∗ = arg max
k=1,...,c

fk (x)

z0i = f j∗ (xi)− max
k=1,...,c,k �=j∗

fk (xi)

zi = z0i max

�
0, 1− pi − 1

c

�

pi = card
��

k = 1, . . . , c|fk (xi) > 0
��

k = 1, . . . , c

V. Dovgalecs, R. Mégret, and B. Yannick, “Time-aware Co-Training for Indoors Localization in Visual Lifelogs,” ACM International Conference on Multimedia, pp. 1–4, Jul. 2011.
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Class overlap penalization allows to 
exclude confusing estimations
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