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Abstract

Visual lifelog indexing by content has emerged as a high reward application. Enabled by the re-
cent availability of miniaturized recording devices, the demand for automatic extraction of relevant
information from wearable sensors generated content has grown. Among many other applications,
indoor localization is one challenging problem to be addressed.

Many standard solutions perform unreliably in indoors conditions or require significant inter-
vention. In this thesis we address the problem of localization from the perspective of image-based
approach using wearable video camera sensors. The key contribution of this work is the development
and the study of a location estimation system composed of diverse modules, which perform tasks
ranging from low-level visual information extraction to final topological location estimation with the
aid of automatic indexing algorithms. Within this framework, important contributions have been
made by efficiently leveraging information brought by multiple visual features, unlabeled image data
and the temporal continuity of the video.

Early and late data fusion were considered, and shown to take advantage of the complementarities
of multiple visual features describing the images. Due to the difficulty in obtaining annotated data
in our context, semi-supervised approaches were investigated, to use unlabeled data as additional
source of information, both for non-linear data-adaptive dimensionality reduction, and for improving
classification. Herein we have developed a time-aware co-training approach that combines late data-
fusion with the semi-supervised exploitation of both unlabeled data and time information. Finally,
we have proposed to apply transformation invariant learning to adapt non-invariant descriptors to
our localization framework.

The methods have been tested on controlled publicly available data sets to evaluate the gain of
each contribution. This work has also been applied to the IMMED project, dealing with activity
recognition and monitoring of the daily living using a wearable camera. In this context, the developed
framework has been used to estimate localization on the real world IMMED project video corpus,
which showed the potential of the approaches in such challenging conditions.
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Résumé

L’indexation par le contenu de lifelogs issus de capteurs portés a émergé comme un enjeu à forte
valeur ajoutée, permettant l’exploitation de ces nouveaux types de donnés. Rendu plus accessible
par la récente disponibilité de dispositifs miniaturisés d’enregistrement, les besoins se sont accrus
pour l’extraction automatique d’informations pertinentes à partir de contenus générés par de tels
dispositifs. Entre autres applications, la localisation en environnement intérieur est l’un des verrous
que nous abordons dans cette thèse.

Beaucoup des solutions existantes pour la localisation fonctionnent insuffisamment bien ou né-
cessitent une intervention manuelle importante. Dans cette thèse, nous abordons le problème de
la localisation topologique à partir de séquences vidéo issues d’une camera portée en utilisant une
approche purement visuelle. Ce travail complète d’extraction des descripteurs visuels de bas niveaux
jusqu’à l’estimation finale de la localisation à l’aide d’algorithmes automatiques.

Dans ce cadre, les contributions principales de ce travail concernent l’exploitation efficace des
informations apportées par des descripteurs visuels multiples, par les images non étiquetées et par la
continuité temporelle de la vidéo. Ainsi, la fusion précoce et la fusion tardive des données visuelles
ont été examinées et l’avantage apporté par la complémentarité des descripteurs visuels a été mis en
évidence sur le problème de la localisation. En raison de difficulté à obtenir des données étiquetées
en quantités suffisantes, l’ensemble des données a été exploité ; d’une part les approches de réduction
de dimensionnalité non-linéaire ont été appliquées, afin d’améliorer la taille des données à traiter
et la complexité associée; d’autre part des approches semi-supervisés ont été étudiées pour utiliser
l’information supplémentaire apportée par les images non étiquetées lors de la classification. Ces
éléments ont été analysé séparément et ont été mis en œuvre ensemble sous la forme d’une nou-
velle méthode par co-apprentissage avec information temporelle. Finalement nous avons également
exploré la question de l’invariance des descripteurs, en proposant l’utilisation d’un apprentissage
invariant à la transformation spatiale, comme une autre réponse possible au manque de données
annotées et à la variabilité visuelle.

Ces méthodes ont été évaluées sur des séquences vidéo en environnement contrôlé accessibles
publiquement pour évaluer le gain spécifique de chaque contribution. Ce travail a également été
appliqué dans le cadre du projet IMMED, qui concerne l’observation et l’indexation d’activités de
la vie quotidienne dans un objectif d’aide au diagnostic médical, à l’aide d’une caméra vidéo portée.
Nous avons ainsi pu mettre en œuvre le dispositif d’acquisition vidéo portée et montrer le potentiel
de notre approche pour l’estimation de la localisation topologique sur un corpus présentant des
conditions difficiles représentatives des données réelles.
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12 CHAPTER 1. INTRODUCTION

1.1 General Background

Recent growth of image, video and sound recordings resulted in the explosion of different multime-
dia applications. Large quantities of image and video materials are generated every day which is a
wealth of information that can be utilized in different domains such as education, social, healthcare,
security and many others. Indeed, image and audio data carries a substantial amount of informa-
tion remaining however largely unexploited. Many problems to address concern object recognition,
face detection and recognition, optical character recognition, visual scene semantic analysis, among
others.

A particular place occupies image and video retrieval solutions. The challenge lies in abundant
and ever increasing amounts of materials as well as in the efficient understanding and semantic de-
scription of the content. The former calls for efficiency while the latter involves a difficult problem
of image and video understanding. The area is in active phase of research and promises exciting
possibilities for information retrieval from large corpuses of videos. The applications are numerous
among them the news video search, film archive exploration, surveillance video browsing, medical ap-
plications, sports video analysis, distant learning and video conferencing. The main challenge apart
from the issue of efficient large to very large video corpus processing is the learning of semantically
rich content.

With the advent of digital computers and ever increasing computing powers, special place is
devoted to increase the wellfare of population. Computer aided medical assistance and treatment
now became a mainstream in many hospitals and clinics. Visual lifelogs have emerged as a practical
aid for the daily activity recording and monitoring of the every day life. One of the practical utilities
of the visual lifelogs is that the wearer’s position and activities can be effectively refreshed in person’s
memory from the recorded wearable video or used as a monitoring device for analysing the activities
of patients in a medical context. With time, such recording archives tend to grow in size making it
more and more difficult for browsing efficient navigation. It is therefore clear that computerized aid
for automatic organization of visual lifelogs is crucial for the succesful exploitation of such data.

1.2 Problem Statement

Automatic video lifelog indexing is a very broad topic, which covers image analysis and character-
ization, video processing, scalability issues with large data corpuses, and practical hardware design
details.

Knowing the localization at each moment of the lifelog is an important information with potential
semantics concerning the type of activities or the structure of the lifelog. In turn this information
can be used as an input for video content structuration. Once the video content has been structured,
a video browsing or navigation can then be implemented as a special browsing interface.

When there is a need for localization services, one very often thinks about GPS (Global Posi-
tioning System). The GPS is a system widely used for navigation outdoors but is of very limited use
indoors due to the loss of precision caused primarily by the loss or strong attenuation of the signal.
Solutions such as Ultra-wide Band localization and RFID for localization indoors may require an
exhaustive coverage of the areas of interest with transmitters or base stations (e.g. WiFi access
points) to be sufficiently precise. Together with fixed installation videosurveillance cameras and
presence sensors installed in pre-defined areas, considerable intervention and material support may
be required for these solutions. In cases when minimum intervention and high portability is required,
these solutions may not be well suited. A potential solution is to use vision-based approaches since
a considerable progress has been achieved in recording device compactness and in the quality of the
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Figure 1.1: General components and workflow in a medical evaluation context

Figure 1.2: Video lifelog recording device used in the IMMED project, which is one applicative
context of this work: (left) vest with autonomous video camera; (right) detachable video camera
composed of camera, battery and memory card
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recordings. This approach presents the advantage of exploiting directly the video data captured for
the visual lifelog, thus simplifying the logistics related to the acquisition.

In this thesis we therefore propose to tackle the problem of image-based indoors localization.
We are interested in topological localization of a wearable camera monitored person within a house
or in its limited neighborhood, where GPS or similar techniques do not apply. Practically, such
localization is related to the indexing of the lifelog stream with a spatial location such as “living
room”, “kitchen”, “bathroom” and similar. This work will find applications in the context of the
IMMED project (described in more details in Chapter 6), where patients are monitored using a
wearable camera. The final goal of this project is to record patient activities in their ecological
environment in order to help medical specialists better understand and diagnose the signs of early
dementia, such as found in the Alzheimer disease.

1.3 Objectives

A complete processing chain representative of lifelog exploitation is depicted in Fig. 1.1 using the
context of the IMMED project as an example. The whole path from video recording creation to the
exploitation of the results is demonstrated. Four major phases or stages are shown in the workflow:

1. audio/video material acquisition;

2. annotation;

3. automatic video indexing;

4. indexed content navigation and analysis using a specialized interface.

The main body of our work concerns the third point: automatic video indexing. The goal of this
thesis is to build algorithms for automatic indexing of visual lifelog, taking as input annotated and
un-annotated videos, and compute the topological localization indexing on the latter.

There are multiple objectives in order to solve the image-based localization problem. In general,
the whole process can be summarized from data acquisition and pre-processing to computation result
storage. The following objectives have been established:

1. Acquire test video materials and extract visual features;

2. Study the related image-based localization solutions that apply to our context;

3. Develop image-based localization algorithms and perform validation on controlled environment
visual data;

4. Evaluate the developed algorithms on audio-visual data of practical interest.

1.4 Challenges and Problems

Video content indexing by content is an extremely challenging problem. Natural scenes are very rich
and very complex sources of information featuring large variability. Nowadays, indexation of events
captured using video and audio recording devices in weakly constrained environments is one of the
hardest tasks in the multimedia community. As part of the study and development of solutions to
the stated objectives, in this thesis we outline two big challenges to which we attempt to answer:

1. How to perform automatic video indexing in low supervision conditions;
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2. What additional information or knowledge is available and if it can be used.

The performance of any indexing system is first of all directly linked to the amount of available
training data. In the present study we focus on learning from annotated videos in rather low
supervision scenarios. The challenge lies in the efficient exploitation of all the available data and a
priori knowledge.

1.5 Overview of the Related Work

Image-based approaches Still image data is a rich source of information which has been
widely used in many areas. Particular attention from image and multimedia processing communities
is given to content-based image retrieval (CBIR) [121, 19, 152, 50], object detection and recognition
[149, 122, 18, 20, 48, 96, 159, 49, 79, 14, 63], robotics [114, 113, 112, 116], and more recently,
image-based localization [142, 168, 173, 151, 123, 185, 177, 149, 117].

The CBIR systems working with large image databases are typically working in two scenarios:
query by example and relevance feedback. The goals of such systems are different from those of
image-based localization. CBIR systems require good precision of retrieval and use image data in
their queries while for localization we need good recall and keyword based search. Such systems
are usually relatively complex and should answer the challenge of efficient database exploration,
multimodality of distributions in the feature space as well as relevant visual information extraction.
The system proposed in [33] answers the challenge with their system RETIN, featuring adaptive
quantization for image signature computation, efficient image exploration in interactive setup with
relevance feedback loop and adaptive similarity measure which evolves as a user works with the
system.

Robotics is a large domain where one of its tasks is environment understanding, analysis, local-
ization and inference to make robot integration more autonomous in accomplishing practical tasks.
The goals and employed methodologies can be similar to those of our tasks, though the requirements
as computation power, memory needs and certain robustness properties may be relaxed.

We position this thesis in the group of image-based localization where the related techniques and
methods will be discussed in the following chapters.

Video indexing Proliferation of video recording devices resulted in large and mostly unex-
plored archives from which even more valuable information can be extracted than from still images.
Video specific applications include video retrieval [127, 63, 134] from large databases, event recog-
nition [25, 80, 83, 62, 141, 170, 169, 45, 8] in general and in particular human activity recognition
[75, 126, 137, 82] from video. We would like to mention the TRECVid [135, 119] which is a yearly
competition where video indexing methods are regularly evaluated. One of its tasks is to identify
the high level concepts such as “classroom”, “airplane flying”, “two people” and other. The goal is
to return a ranked list of image shots from the test collection such that possibility of a high level
concept is the highest.

In this thesis the primary data source are video recordings. Our goal is not to extract high
level concepts as in very briefly reviewed works but rather to perform image-based localization from
wearable video.

Semantic place classification Place classification can be seen as a pattern recognition prob-
lem where a scene is assigned to a class learned by a model. Two large groups can be identified
for image-based localization: place recognition and place categorization. In the former, the trained
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model is applied on the testing data captured in the same environment as the training data whereas
in the latter the testing data may have been acquired in a new environment.

Image-based localization approaches can also be differentiated by the source such as spatial
reference point, scale or abstraction of image data. Metric map [41, 167] uses a set of coordinates
to define the location of a particular shot and topological localization [151, 93, 117, 142] uses an
abstract metric space composed of discrete units. The approaches using both localization types are
termed hybrid [148, 22, 177].

In this thesis we do not attempt to generalize the class concepts such as “living room”, “corridor”,
neither we use precise reference coordinate systems for each image of the video.

Use of prior information in machine learning Success of any non-trivial learning is highly
dependent on the a priori knowledge of the problem. In a nutshell, prior information allows to
restrict the space of possible solutions. For example, large variability of visual appearance, lighting
and the noise has been countered in face recognition by enforcing scale and rotation invariance [108].
It is similar for Optical Character Recognition (OCR) task [30, 58] and for object classification
[110, 53] using tangent approximation approach.

In this thesis, we contribute a novel translation invariant descriptor, which improves a state-of-
the-art descriptor in scene classification and recognition. Its usefulness was demonstrated in low
supervision conditions.

1.6 Contributions

In this thesis we make multiple contributions to answer the challenges within image-based localization
problem from wearable video. We adopt the point of view of pattern recognition to solve this problem
and evaluate how to take into account prior knowledge that is specific to the problem. The work is
organized around a complete processing chain comprised of multiple modules. The processing chain
consists of algorithms starting from low level visual data extraction up to the final system output,
which is estimation of topological location of the wearable camera wearer. Several contributions were
made in the decision part of the processing chain: profiting from large quantities of un-annotated
video frames, complementarity of visual descriptors and temporal continuity of the video content.
Another contribution concerns the exploitation of the available knowledge where we demonstrate an
improved performance of the system by constructing a new visual descriptor with this information
taken into account.

1.7 Thesis Outline

The thesis is composed of the following chapters :

Chapter 1: Introduction In the current chapter the problem of image-based localization is
introduced. We show how it relates to the general context of lifelog analysis and what objectives
and challenges are faced.

Chapter 2: Baseline location estimation One of the first steps for visual place recognition is
to extract relevant visual features. State-of-the-art visual features are often of high dimensionality.
From a Statistical Learning perspective this poses a serious learning problem, especially in low
supervision scenarios and from a computational point of view. We investigate the relevance of
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unsupervised dimensionality reduction known also as feature selection which render numerical image
representations more compact, and the use of classification approaches.

Chapter 3: Multiple Information Source Fusion Experimental results showed the efficiency
and confirmed the usefulness of pre-processing unsupervised data on simple test databases. However,
none of the state-of-the-art visual features provides sufficient discriminant power. To tackle this
problem, early and late fusion approaches are thoroughly evaluated in the task of indexing.

Chapter 4: Time-Aware Co-Training Framework for Image-based Localization Suffi-
cient amount of annotation is crucial to succeed with real-world video indexing. Unfortunately it
is costly and therefore we investigated in this chapter how to benefit from both labeled, unlabeled
and a priori information to improve the baselines. We evaluated several semi-supervised learning
methods and contributed with a unifying learning framework based on the co-training paradigm,
that leverages multiple visual features, unlabeled data and takes into account the temporal structure
of the visual content.

Chapter 5: Invariant Visual Features for Semi-Supervised Localization Apart from tem-
poral information inherent to every video recording, there is some additional prior information that
can be exploited. We contribute with original idea and application by introducing translation invari-
ant visual features based on discriminant non-invariant features and show the gain of this approach
in the context of localization.

Chapter 6: Experimental Results on IMMED Project Data We devote this chapter to
evaluate the best performing indexing algorithm on the video recordings carrying practical interest.
These recordings were carried in ecological environment by multiple volunteers and potential patients
to provide some valuable test data having also practical interest for the medical specialist. The data
is considered as challenging and is seen as a great opportunity to validate the top performing baseline
algorithms as well as proposed algorithms to point out any undisclosed difficulties.
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Figure 2.1: Baseline processing flow: from video to topological localization

2.1 Introduction

In this chapter we introduce all the necessary elements for image-based localization in visual lifelogs
that will serve as baseline for the localization problem. These elements will be further developed
and extended throughout the thesis with new methods and modules.

A whole chain of diverse algorithms should be presented such that the raw numerical video
sequence data could be translated into semantically high level decision of video camera wearer’s
topological localization using indexing algorithms. This yields a baseline processing chain, which
takes as input video data and returns a final topological localization output. The processing chain
consists of visual feature extraction algorithms followed by compact image representation computa-
tion and decision making module.

2.2 Overview

To achieve the task of image-based localization, several components or elements are necessary. First,
video sequence data should be prepared and provided with a small but sufficient annotation. Sec-
ondly, relevant information extraction should be conducted from the raw video data and prepared
for the decision making stage. Finally, based on numerical representations of the visual content and
given annotation for a part of the data, the decision module should provide the final topological
localization output. The output can be seen as a human-readable tag or index for the video data
such that it can enable video content browsing.

In Fig. 2.1 a common processing work flow is shown where two important aspects are shown:
manual high-level annotation creation and automatic indexing algorithm. The automatic algorithm
may basically contain only visual feature extraction and decision module.

In the current chapter we address briefly visual feature extraction in Section 2.3 and then pro-
ceed with discussion on feature selection in Section 2.4 and decision module in Section 2.5. The
experimental evaluation for the baseline localization is presented in Section 4.5.



2.3. VISUAL FEATURE EXTRACTION 21

2.3 Visual Feature Extraction

Classically all image data is stored in a numeric format in the memory of a computer. The image is
represented as an ordered collection of pixels composed usually of red, green and blue components
or channels. Numerically, the components of each color are three values ranging from 0 (dark) to
255 (light) and only after displaying on a screen give familiar perception of the color. In case of gray
level images, there is a single component with each pixel value ranging numerically from 0 (black)
to 255 (white).

2.3.1 From raw pixel values to higher level information

Given two or more images and asked to compare the content, the straightforward approach is to
compare the corresponding pixel values. Unfortunately, this approach is highly unreliable since it
can detect only duplicate images and is computationally very costly. Therefore, certain assumptions
should be made and only relevant numerical information should be extracted. The numerical rep-
resentation is required to be compact and when compared to similar content images should return
high similarity measure, and low measure for different content images.

It is important to outline the fact that the visual feature extraction process attempts to capture
relevant information from images which is often high level (objects, scene, action) to be of practical
utility. An attempt in transition from raw numerical pixel values to higher level information can
be color, shape, region and texture description. Specific descriptors may capture edge or dominant
direction information. This gives a rise to a large variety of description approaches, which are often
application specific. We now review descriptors that have proven to be useful for location recognition
and for image recognition in general.

2.3.2 Local descriptors

Local invariant descriptors has received particular interest from the multimedia community. The
power of these descriptors in in their repeatability and robustness properties to various transfor-
mations. The well known Scale Invariant Feature Transform (SIFT) [84] descriptor has been used
widely for object and scene recognition in multiple contexts where it demonstrated its robustness to
scale, rotation and affine transformations to certain degree. Enhancements such as to capture the
information about color were proposed using different methods in [122]. Comprehensive study com-
paring different descriptors with respect to different interest regions types and matching approaches
was carried out in [92]. Issues of imaging conditions such as light changes were studied in [24] and
comparing standard grey-color descriptors to color descriptors.

The visual information of an image is captured when a set of local descriptors is found in pre-
defined (e.g. regular or dense sampling) or in automatically detected (e.g. feature detectors) regions.
Owing to their repeatability property, a straightforward approach to image comparison would be to
compare every possible pair of descriptors also known as matching. The idea is to count the number
of matches linking the local descriptors in two images. Larger number of links suggests for similar
visual content images. The false matches are usually removed by removing ambiguous matches
and enforcing additional spatial constraints. To remove the ambiguous matches, [84] proposed to
compute the ratio between the the best and the second best match and impose that the ratio of
these descriptor affinities should exceed some threshold [84]. Spatial constraints were enforced in
[134] to be able to detect the region or object of interest in the video.

To speedup the query process of an image with respect to the database of images, a vocabulary
tree approach has been proposed in [32] for localization estimation with an extension to inverted files
such that the tree provides also the votes from which image the matching descriptor takes its origins.
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Object search in video was proposed in [134] where the vocabulary tree serves to detect the matches
between the regions automatically and the spatial constraints helps to remove false matches.

2.3.3 Global image descriptors

Local feature matching-based approaches are simple but also computationally expensive since many
local feature comparisons could be necessary. The scalability of these approaches become quickly an
issue and renders it unfeasible in large-scale applications if applied directly. To address this issue,
images can be also represented by global descriptors. The selection of the global descriptors include:

• Bag of Visual Words (BOVW)

• Composite Receptive Field Histograms (CRFH)

• Spatial Pyramid of Histogram (SPH)

Attempts to build global image descriptors or signatures had been actively researched as early as in
[88] and [51] in the context of image retrieval. These works investigated Gabor filter features, color
features to build color histograms and others.

Bag of Visual Words The Bag of Visual Words (BOVW) global descriptor [100] stems from the
domain of text retrieval domain by counting occurrences of visual words found in an image. Visual
words are obtained from invariant local features (SIFT or SURF using a feature detector) that are
quantized into a finite set of words according to a common vocabulary. The vocabulary is commonly
built from a large set of available local features using a clustering approach. Clustering effectively
reduces the number of available words and provides a restricted set of available “words” that can
be found in an image. Therefore, an image numerical representation is a histogram of visual word
occurrences. Due to local feature stability and repeatability property, visually similar content images
will result in similar histograms.

In our application, the BOVW histograms are 1111 dimensional vectors. The visual vocabulary
was built in a hierarchical manner [100] with 3 levels and 10 sibling nodes to speed up the search
of the tree. This allows to introduce visual words ranging from more general (higher level nodes)
to more specific (leaf nodes). The effect of overly frequent visual words is addressed with the use of
common normalization procedure tf-idf [100] from text classification.

Composite Receptive Field Histograms The CRFH [79] global descriptor describe a scene
globally counting responses produced by a specific filter being applied on an image. Every dimension
of this descriptor effectively counts the number of pixels sharing similar responses to a particular
filter. The filter can be a color histogram, first or second order partial derivatives at different scales,
gradient magnitudes and directions among multiple other possibilities. Attractiveness of such a
descriptor is that different properties of a scene can be captured.

Due to multidimensional nature and the size of an image, such descriptor often results in a very
high dimensionality vector. In our experimental evaluations we used second order derivatives filter
in three directions, at two scales with 28 bins per histogram. The total size of global descriptor
resulted in very sparse up to 400 million dimension vectors.

Spatial Pyramid Histograms The SPH [1, 77] global descriptor harnesses the power of the
BOVW descriptor but addresses its weakness when it comes to spatial structure of the image. This
is done by constructing a pyramid where each level defines coarse to fine sampling grid for histogram
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extraction. Additionally, each grid histogram is obtained by constructing a BOVW histogram with
local features SIFT sampled in a dense manner. The final global descriptor is composed of concate-
nated individual region and level histograms.

We empirically set the number of pyramid levels to 3 with the dictionary size of 200 visual words,
which yielded in 4,200 dimensional vectors per image.

2.4 Feature Conditioning

Real world data is often high dimensional and there are often redundant measurements mainly due
to the lack of the knowledge about the data. The simplest approach to reduce redundancy and
select the most meaningful features is using a linear transformation. We introduce and discuss the
suitability of Principal Component Analysis (PCA) [66, 130] for image-based localization.

Compared to linear approaches, non-linear methods are usually more powerful since the repre-
sentation using latent variables may exploit non-linear relationships between observed values. Often
this is true for complex data like visual information. The non-linearity in input space is addressed
elegantly with the use of kernels. Prohibitively high computation demands and complexity of mod-
eling the input space are alleviated with the use of implicit non-linear mapping. Mapped patterns
in the feature space are then used for feature extraction, classification and novelty detection. We
introduce Kernel Principal Component Analysis (KPCA) as well as Laplacian Eigenmaps (LapEig)
and demonstrate their use for conditioning the features.

Linear transformation Let X = (xi)
n
i=1 ∈ Rd×n be a matrix with its patterns organized in

columns. Given a transformation matrix Ak×n (with the coefficients of the linear mapping for each
output dimension in columns A = (a1, . . . ,ak)) and k < d, linear transformation for a pattern xi
writes as

zi = ATxi (2.1)

or in matrix form

Z = ATX (2.2)

where the columns in the matrix Z = (zi)
k×n
i=1 are the pattern embeddings zi ∈ Rk. Therefore,

a pattern xi living in a d-dimensional space is now represented by a pattern zi in k < d dimen-
sions. Methods using linear transformation differ in the criterion used to assess the fitness of the
transformation matrix A to a particular task.

2.4.1 Principal Component Analysis

The method of Principal Component Analysis (PCA) [66, 130] is a linear and unsupervised method
often used for data dimensionality reduction. PCA is one of the simplest methods and is often used
when no prior knowledge on the data is known.

The goal of PCA is to recover the hidden low dimensional structure of the complex data with
respect to variance. More precisely, it finds an orthogonal projection subspace such that the variance
of the data is maximized

arg max
a

aTSa s.t. ‖a‖2 = 1 (2.3)
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where the a is a mapping vector and the S is a sample covariance matrix.
PCA is a linear method where such data transformation can be seen in the framework of Eq.

2.2. In particular, highly correlated dimensions can be reduced by keeping only a linear combination
of them, thus reducing redundancy of the data.

The technical details on linear dimensionality reduction using the PCA method are presented in
Annex A, in Section A.1.

2.4.2 Kernel Principal Component Analysis

KPCA [136] is a non-linear extension of linear PCA. An appropriate selection of a kernel function
k, that computes affinities between the patterns, allows to define a feature space H in which linear
operations can be performed, and that is related to the original space by a non-linear mapping
function Φ. Finding the largest variance directions can be defined inside linear space H.

As for linear PCA, the goal is to obtain the pattern embeddings in less dimensions such that the
data is represented the best in terms of variance.

There is a need to introduce some definitions such as the concepts of kernel and Reproducing
Kernel Hilbert Space (RKHS).

The notion of kernel and its positive definiteness property Given two patterns x,x′ ∈ Rd,
a simple similarity measure can be that of dot product

〈
x,x′

〉
=

d∑
i=1

x (i)x′ (i) (2.4)

In general, a similarity measure (kernel) can be seen as an output of a two argument function

k : X × X → R (2.5)

which returns a real value for two given objects from a set X . In the following it is assumed that
it is also symmetric such that k (x,x′) = k (x′,x) for all x ∈ X .

Although there are no restrictions on the mapping functions Φ, not any kernel function is valid.
Acceptable kernels satisfy Mercer conditions of positive definiteness. For any two patterns x,x′ ∈ X .
A kernel function k that is symmetric k (x,x′) = k (x′,x) is also positive definite iff

ˆ
k
(
x,x′

)
f (x) f

(
x′
)
dxdx′ ≥ 0 (2.6)

for all functions f : X → R such that
ˆ
f2 (x) dx <∞ (2.7)

In practice this has the following consequence: if x1, . . . ,xn ∈ X , then for any ∀c1, . . . , cn ∈ R,
the following condition holds ∑

i

∑
j

cik (xi,xj) cj ≥ 0 (2.8)

A Gram matrix K = (k (xi,xj))ij computed using this kernel function k is called semi-positive
definite (SPD). In practical applications only Gram matrices which are at least SPD are admissible
to use with kernel learning methods.
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The property of RKHS is important in kernel learning since it uniquely determines a kernel
function k (x, ·) in some particular Hilbert space H (see [125] for more details). In practice H can
be abstracted as the image Φ (x) with a non-linear, possibly infinite dimensional, mapping function
with the property such

k
(
x,x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉

(2.9)

which is also known as the kernel trick. This property allows considering non-linear similarities
as bi-linear dot-products in the associated RKHS and compute linear operations in the infinite
dimensional H as corresponding operations using the kernel function k, which is computable using
the available data

Φ : X → H (2.10)
x 7→ Φ (x) (2.11)

Solving for principal components and embedding creation The non-linear PCA uses the
same approach for covariance matrix diagonalization. Due to potentially high dimensionality space
induced by the non-linear mapping functions, computation of the covariance matrix and its diago-
nalization is computationally unfeasible. Fortunately, it is possible to compute compact embeddings
using the Gram kernel matrix computed from all the available data patterns.

The derivation details and functionality are described in Annex A, section A.2.

Computational efficiency Dimensionality reduction with KPCA poses several practical issues.
The first and evident issue is the computation and storage of the kernel matrix K. Its compu-

tational and storage demands grow quadratically with the number of patterns. Although the kernel
matrix can be rendered sparse by some heuristics, the kernel centering procedure in Kernel PCA
will render it dense.

The second issue is the eigenproblem resolving issue. It involves an eigendecomposition of a
dense n×n kernel matrix K. It is known that computational complexity is of O

(
n3
)
to find all the

eigenvalues and eigenvectors. Modern numerical methods use efficient iterative algorithms to find
k largest eigenvalues eigenvectors. A small number of leading eigenvectors can be computed using
an efficient Nystrom approximation [52] where the computation of the whole Gram kernel matrix is
not necessary.

2.4.3 Laplacian Eigenmaps

Laplacian Eigenmaps (LapEig) [11] is a spectral unsupervised learning method which aims to pre-
serve the local geometry of the data represented by a graph. A graph is a set of ordered pairs
G = (V,E), where V is a set of vertices (nodes) and E is a set of vertices pairs, also called edges.
In the following discussions we use only uni-directed graphs.

Building a graph The graph is reflecting a prior knowledge on the data. The nodes represent
the objects or entities and the links reflect the similarity between any two objects. In the case of
limited knowledge about the domain, one often tries a selection of commonly used graphs as a a
starting point:

1. Fully connected graph
All graph nodes are interconnected to all others. Typically for this graph an edge has higher
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weight for a pair of nodes which are more similar. Disadvantage of a complete graph is a
high computational cost of construction which grows quadratically with new nodes added. It
was observed empirically [183] that graph-based methods are less performing for this kind of
graphs.

2. Sparse graph
Using some selection criteria, only a subset of possible edges are used in this kind of graph.
Evidently there is an advantage in lower computational and storage demands. Disadvantage
is in the node selection criterion (domain knowledge) and learning of graph any necessary
parameters.

3. k-Nearest Neighbor graph
A special variant of sparse graph family where nodes vi and vj are connected if vi is one of k
nearest neighbors of vj or vice versa. This is a common choice of sparse graphs as its hyper-
parameter k controls the density of the graph. Attention should be exercised since a graph
may get disconnected for too low values of k. Weighted graphs with small k perform relatively
well which may be due to removal of many noisy links compared to a fully connected graph.

A graph with n nodes is often represented in computer memory as an adjacency or affinity matrix
W of size n × n. For the reasons that will be presented in the following discussions, graph edge
weights wij ∈ R+ and the matrix W needs to be non-negative and symmetric.

Creation of graph embeddings The idea of Laplacian Eigenmaps is to compute a new compact
embeddings z such that node affinities of the graph are respected. The following energy functions
should be maximized

E (z) =
1

2

∑
i,j

wij ‖zi − zj‖2

The technical details for Laplacian Eigenmaps and the notion of graph Laplacian, and its role is
presented in Annex A, section A.3.

2.5 Classification

Once low level visual features have been extracted from each image and relevant features have been
selected, the final task is to produce a decision concerning localization. In this section we turn to
the problem of classification, which given the training data and an unlabeled image representation
estimates its class. The class in our context is seen as a particular topological location in indoors
environment.

Classification of patterns occupies an important part in machine learning. Suppose a binary
classification algorithm is given a set of training patterns {xi}mi=1 ∈ Rd together with their labels or
targets {yi}mi=1 ∈ {−1,+1}. For an unlabeled pattern xnew, a classification algorithm should assign
it to one of the two classes. This task is known as a supervised learning problem.

Widely used methods of classification include but are not limited to neural networks, Gaussian
Mixture models, Hidden Markov models, decision trees and Bayesian approaches like Naive Bayes
(reviewed in Annex A, section A.4) to name few. In this work we will make use of support vector
machines classifier.

Supervised learning methods can be divided in two large groups : generative and discriminative
approaches. Generative approaches model each class density distribution and using maximum pos-
terior, provide class estimates. Discriminative approaches are more direct, since they attempt to
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find a function of parameters that models the separation between the classes. In case of complex
data such as visual content, density estimation of the class-specific density distributions necessary
for generative model classifiers can be a more complex task than finding separating hyperplane for
two classes. For this reason, we selected discriminative family Support Vector Classifier, which we
introduce in the next section and with more details given in Annex A, Section A.5.

2.5.1 Support Vector Machine classifier

The SVM classifier operates in a mapped and possibly infinite dimensionality space where a sepa-
rating hyperplane can be found easier than in original space.

Historically, Support Vector Machine classifiers were defined in three phases. First it has been
proposed that an optimal hyperplane should be constructed such that the training patterns are
separated with the largest margin [154]. Then [21] proposed to construct a hyperplane in feature
space induced by a kernel function (See Subsection A.5.1 for Hard Margin classifier). Previous two
approaches are linear and work for linearly separable data only. In [34] authors propose to address
this problem by allowing some patterns to violate the optimal margin constraints (See Subsection
A.5.2 for Soft Margin classifier), thus allowing the control of classifier generalization capacity.

Definition of hyperplane and margin From a geometrical point of view a pattern xi can be
seen as a point in some d-dimensional space. For two class data, one might be able to draw a
hyperplane that separates different class patterns. Considering the class of hyper-planes in some dot
product space H

〈w,x〉H + b = 0 (2.12)

where w ∈ H is a normal of a hyperplane and b ∈ R an offset from the origin. For points lying
on a hyperplane the equality holds as in Eq. 2.12.

Every hyperplane has a positive and a negative side. Such a hyperplane explicitly partitions the
space H in two parts that divides patterns in two groups. It may serve as a criterion two classify a
pattern in one or another class by constructing the following decision function

f (x) = sign (〈w,x〉H + b) (2.13)

A separating hyperplane, for a given training set {(xi, yi)ni=1}, is one that produces correct
estimates f (xi) = yi ∈ {+1,−1} for all patterns of the training set.

Lets define two parallel hyper-planes on both sides of a hyperplane in the form as in Eq. 2.12.
With fixed w,x, b by incrementing (positive side) and decrementing (negative side) the variable b
by some value, two parallel hyper-planes can be defined. The distance between two parallel hyper-
planes corresponds to a margin. It is maximal when one pattern of class +1 belongs on positive
side hyperplane and a pattern of class −1 to the negative side hyperplane. If 〈w,x〉 + b = 1 and
〈w,x〉 = −1 are such a pair of separating hyper-planes, the margin of the central hyperplane is

min {‖xi − x‖ |x ∈ H, 〈w,x〉+ b = 0} =
1

‖w‖ (2.14)

From statistical learning point of view, the choice of the hyperplane and the decision is based on
two facts:

• for linearly separable data, among all hyperplane separating the data, there exists one unique
hyperplane with a maximum margin between any training pattern and the separating hyper-
plane;
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• there is a link between the generalization performance of a hyperplane classifier and a hyper-
plane with maximal margin;

Thus our goal is to find a separating hyperplane with a maximal margin ∆max which is at the core
of Support Vector Machine classifier.

∆max = max
w∈H,b∈R

min {‖x− xi‖ |x ∈ H, 〈w,x〉+ b = 0, i = 1, . . . ,m} (2.15)

The technical details to estimate an optimal decision function taking into account these principles,
the soft margin SVM are reviewed in Annex A, Section A.5.

Multi-class Classification Classification with a hyperplane implies only two class classification
problems. Location recognition is rather a multi-class classification problem. There are three main
approaches to extend a two class classifier to a multi-class setup [44] : one-vs-all, one-vs-one and
multi-class SVM. Suppose that our data has M classes with at least one pattern per class.

In one-vs-all approach one trains M binary classifiers. For each class ωi a decision function is
built f i (x). Classification rule is following

j = arg max
i

{
f i (x)

}
=⇒ assign x to class ωj (2.16)

This approach has two issues:

1. It is possible that more than one binary classifier return a positive value which defines am-
biguous regions.

2. This technique is dealing with rather asymmetric problem where one class may have much
more pattern than another.

One-vs-one is an alternative approach where M(M−1)
2 binary classifiers are trained to separate any

combination of two classes. The final decision is based on the basis of majority vote. The disadvan-
tage of this approach is that a relatively large number of classes may render this approach expensive
due to the high number of class pairs to be considered.

The third approach attempts to solve the problem of simultaneous multi-class separation by
modifying the objective function of SVM. Authors in [27] and others have noted that in general no
multi-class approach outperforms the others. The choice is often determined by practical reasons
like training time, number of classes etc. For more multi-class approaches or their variations, see
[44, 139].

Link between SVM, RKHS and the kernel function The linear kernel SVM classifier can
be extended to work directly with a data adapted kernel. This will correspond to find a hyperplane
in the possibly infinite dimensional space H but with mapped patterns Φ (x) induced by a non-
linear kernel. The advantage is that no unsupervised processing is needed. We briefly introduce
the necessary elements to show that a solution to the classification problem with a linear kernel
corresponds to an expansion using the computed kernel values.

In learning problems, the function f to be learned cannot be of any form even if it agrees with
the training data. It is necessary to specify precisely what is goal is to be achieved or what criteria
to be maximized. This leads to a notion of loss function which attributes some loss to an erroneous
decision.
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Definition : Denote by (x, y, f (x)) ∈ X × Y × Y the triplet consisting of a pattern x, an
observation y and a prediction f (x). The the map c : X × Y × Y ∈ [0,+∞) with the property
(x, y, y) = 0, ∀x ∈ X and ∀y ∈ Y which corresponds to a case if a correct decision has been made.

It is natural to select a function which incurs the least possible loss (that is, zero loss) given
some training data {(xi, yi)}ni=1 where xi ∈ X are the inputs and yi ∈ Y are the expected outputs.
In statistical learning the problem then is formulated as minimization of functional of regularized
risk

R (f) = min
f∈H

1

n

n∑
i=1

c (xi, yi, f (xi)) + λΩ (‖f‖H) (2.17)

First part of the equation reflects the goal to find a function f that commits least possible errors
on the training set. Second part of the equation is called a regularization term which is weighted
by a parameter λ > 0. With regularization term in place, this renders the learning problem better
conditioned. That is, not all functions f that perform very well (small or zero loss) on the training
set may predict equally well on new unseen patterns. This is called generalization property. Thereof,
with regularization parameter λ > 0 one trades between minimization of loss and the simplicity or
smoothness which is enforced by Ω (‖f‖H). With larger parameter λ, smoother or simpler functions
will be preferred that is linked to generalization property.

With these elements in place, the Representer theorem states that the minimizer of the regular-
ized risk can take particular form given a kernel function k and its induced RKHS H.

Definition : Denote by Ω : [0,∞)→ R a strictly monotonic increasing function, a set X and an
arbitrary loss function c : (X × Y × Y)n → R∪ {∞}. Each minimizer f ∈ H of the regularized risk

c ((x1, y1, f (x1)) , . . . , (xn, yn, f (xn))) + Ω (‖f‖H) (2.18)

admits the following representation of the function

f (x) =
n∑
i=1

αiyik (xi,x) (2.19)

This result is important since it allows to express a function f , which lives in infinite dimensional
space, in a form involving training patterns only. In other words, the solution lies in the span of n
particular kernels that are centered on training patterns from the set X . It has particular interest
for support vector machines. For more complete treatment of the elements of statistical learning
and functional analysis on the subject, please refer to [125].

2.6 Experiments

In this section we demonstrate the performance of the image-based localization system using the
extracted visual descriptors, feature selection and classification module.

Given the visual descriptors, we study the effects and properties of the dimensionality reduction
applied on the visual data since the goal is to find the best representation of the visual data contained
within images. The experiments range from purely illustrative to the best localization results possible
with the available methods.

2.6.1 Image database

For this experimental part we chose a publicly available video database KTH IDOL2 [86]. The
database features the recordings from two mobile robot platforms (“dumbo” and “minnie”) in well
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controlled conditions indoors. We arbitrarily limit the choice video sequences taken by the robot
platform called “minnie” due to its higher position of the recording camera. There are three different
lighting conditions and approximately six month time span between the recordings. The trajectory
made by the mobile platform was practically the same throughout different factor changes.

In addition to its public status, these properties make the choice of this database motivated
for the experimental part. Refer to [86] for more exhaustive properties and complete technical
specification of the database. In Annex E information about the database in the light of test setup
is provided.

2.6.2 Choice of visual features

For the evaluation purposes we use the following global image descriptors (reviewed in Section 2.3):

• Bag of Visual Words (BOVW)

• Composite Receptive Field Histograms (CRFH)

• Spatial Pyramid of Histograms (SPH)

The goal of these experiments is to show the advantages and limitations of different dimensionality
reduction approaches in an illustrative and comparative study.

2.6.3 Visualization of the data

If we limit to a rigid transformation of the camera in the environment, it might be possible to find
as low as six dimensional representation of the data. Data points representing individual images
should form a smooth manifold reflecting local similarities and evolution of the visual information
in time.

One of the basic and principal assumption of dimensionality reduction is that of data lying on a
low dimensional subspace. Though different methods employ different criteria, one should be able to
find lower dimensionality representation. We therefore use unsupervised learning methods to project
the descriptor data onto 3D space in order to visualize it.

First, we attempt to visualize a short excerpt from the video recording. The recording is several
second long and shows the displacement of the robot platform in the selected location labelled “Cor-
ridor”. For visual comparison, the same visual data was visualized with two different unsupervised
methods - Kernel PCA and Laplacian Eigenmaps using as input the BOVW signatures. The Fig.
2.2 visualizes the data cloud for methods KPCA and LapEig respectively. The ensemble of the data
points correspond to all the embeddings from the class “Corridor” while the outlined track (green
path) outlines the selected video recording with temporal continuity. Two interesting aspects arise
from these visualizations:

1. Locality and Compactness
There is a compact point cloud with relatively small variability that corresponds to scenes
depicting the corridor. For example, in bottom panel of Figure 2.2 the main portion of the class
“Corridor” is in the compact cloud. In fact, such scenes represent the best the class “Corridor”
that we want to be learned for classification task. This is true for both dimensionality reduction
methods.

2. Visual Variability
Apart from the compact point cloud we note a connected trail which evolves relatively far
away from it. Corresponding scenes reveal the fact of specific or even confusing information
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contained therein. For example, in top panel of Figure 2.2 images C, D and E show the
visual content that may not be associated with the class “Corridor” cleanly. Rather, such data
points can be considered as noisy and will likely be the cause of the class overlap during the
learning and classification. Nevertheless, such data points may be needed for the discovery
of the smooth data manifold which is crucial for semi-supervised learning methods in the low
supervision conditions.

Secondly, our goal is data preparation for the task of classification. In Fig. 2.3 we visualize the
reduced dimensionality representation of whole sequence “minnie_night2” in 3 dimensions using
two dimensionality reduction methods. The first insight of the visualization is that of intra-class
compactness. Compared to KPCA, LapEig tends to build smaller and more compact class clusters
with relatively few distant data points. From previous visualization experience, we may confirm
that these distant points form a set of visually very different scenes. Relative size and compactness
of the cluster may hint about the visual variability within a class. For example, the class “Corridor”
is relatively compact and shows a low degree of overlap with other classes. On the contrary, the
class “Two_Person_Office” is rather dispersed and is overlapping with several classes which may be
a difficulty for the classifier. This preliminary analysis of the data is limited only three dimensions
and the class overlap may get less severe as more dimensions are added.

2.6.4 Unsupervised manifold learning for classification

In order to feed the classifiers with the data of manageable complexity, we now evaluate dimen-
sionality reduction approaches to obtain reduced size embeddings to be using for classification. The
methods include linear PCA and its non-linear version KPCA with different kernels as well as Lapla-
cian Eigenmaps using the same kernels. First, we observe the effect of varying the dimensionality of
the data. Second, we vary amount of training data supplied for the manifold learning. The former
allows to speak about intrinsic data dimensionality while the former informs about the necessary
amount of training data to discover such low dimensional manifold.

Intrinsic data dimensionality In this experiment the goal is to discover the intrinsic dimension-
ality of the data. The whole database was split into three parts : training, testing and validation
sets, in the proportions from the total size of the database 50%, 25% and 25% respectively. In total
5 random splits were created. Parameter C for SVM was learned using validation set and the best
one was applied on the testing set. Pattern embeddings were computed on the whole database in a
transductive setting.

In Fig. 2.4 we depict the classification results using four visual features (BOVW, CRFH, SPH
and Match) after KPCA pre-processing with χ2 kernel and then classified using Nearest Neighbor
classifier. At the relatively high supervision level (50% training) and remaining half left for validation
(25%) and testing (25%), we note the effect of reduced data dimensionality and the impact of Nearest
Neighbor classifier parameter k. First, there exists a certain number of dimensions that describes
the data best for classification task - around 100 dimensions. Second, the choice of k for the classifier
is not very influential. Basically it reflects the compactness of the classes since the performance does
not deteriorate too rapidly as the neighborhood is increased.

The results for dimensionality reduction followed by SVM classifier are summarized in Fig. 2.5.
At the current 50% labeling rate we are able to achieve remarkable results.

A simple classifier is the Nearest Neighbor classifier with only one parameter to tune. The
performance of such classifier is a good indicator of the relevance of the features used. When
applied after dimensionality reduction, it can help us assert if some relevant features were removed
or enhances, thus helping to tune the number of dimensions.
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Figure 2.3: KPCA (left), LapEig (right) : Sequence “minnie_night2” with class information

First of all, we note the increase of classification performance as more dimensions are kept. From
the results, the underlying manifold is of relatively high dimensionality (around 1000 dimensions)
and adding more dimensions is beneficial though less effective once saturation point has been reached.

Secondly, we note the very similar performance of different kernels together with different visual
features. Similar performance of three kernels may be explained by the simplicity of the data
or generalization capabilities of the classifier though Chi-Square and Intersection kernels tend to
perform slightly better. Performances are rather comparable for BOVW, CRFH and Match kernel
features.

In the similar setup we employ SVM classifier using the same four visual features with respective
performances shown in Fig. 2.5. The results show interesting similarity between the two dimension-
ality reduction methods and the choice of the kernel. Regardless the feature type, the intrinsic data
dimensionality is higher than for Nearest Neighbor classifier result and reaches 1000 dimensions for
the best performance. In all cases, a completely linked graph was used with no link pruning in place.

From the results point of view, a simpler Nearest Neighbor classifier outperforms the more
complex SVM. The explanation may lie in the complexity of the data. Recall the number of intrinsic
dimension for each of the classifiers - it was much higher for SVM than for Nearest Neighbor.
It appears that the best separating margin was found in comparably higher dimensional space.
Summarizing, the issue may lie in the selection of the kernel used in SVM.

Finally, we note an interesting similarity of performances using KPCA and LapEig dimensionality
reduction methods. Recalling the criteria of the dimensionality reduction for both methods and
observing the similarity of the results, we may draw a conclusion of equality of the approaches. It
seems that criteria of finding the largest variance axes (KPCA) in feature space is comparable to
locality preserving properties of the LapEig method in the context of a graph.

SVM : Amount of training data One may argue that in real world conditions it may be
difficult to obtain that large labeled data-set. To address this issue, we use the same data and fix
its dimensionality to 500 dimensions. Then we vary labeling rate from as low as 1% to 50% in
the training set while keeping remaining data as testing and validation sets in equal proportions.
Performances are expected to vary for low labeling rates, therefore 10-fold cross-validation procedure
was used at validation stage. For the sake of brevity, we use KPCA as a dimensionality reduction
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method.
The Fig. 2.6 depicts the global accuracy as the amount of training data supplied to SVM is

changed. Starting with as low as 1% of labeled data, we note a relatively low performance of around
60% of correct classification. Such performance drop is characteristic for all visual feature types
with low supervision levels. In our application the method should be able to deal with low labelling
rates since the annotation provided is very sparse. This problem can be potentially solved by using
multiple visual features or semi-supervised learning methods. Low supervision cases are the subject
for further discussions in the next chapters.

Sparsification of the affinity matrix Throughout all experiments we used full affinity matrices
which correspond to fully connected graphs. Supported by empirical evidence, it might not be
necessary to preserve all the links unless we use a very discriminative image descriptor. Moreover,
each image in the video can be similar or related to a relatively small part of the whole database.
Hence, the full graph may get pruned by preserving the strongest links.

In the current experiment we used 10% of the database as training set and remaining part in two
halves - validation and testing. During cross-validation phase both best data dimensionality and
best complexity parameter C was used. The study consists in observing the impact of increasing
sparcification of the affinity matrix. In our case, we varied the k from full affinity matrix to k = 10
and recorded the global accuracy measure. The sparsification procedure uses k-Nearest Neighbor
pruning to retain k largest affinity links for each node of the graph then symmetries the affinities by
adding missing reciprocal links.

The results are summarized in the right panel of Fig. 2.7. First we observe that the best perfor-
mance can be obtained using either fully connected affinity matrix either by severe sparsification (up
to k = 10). The drop of performance induced by removal of lower similarity links can be explained by
the fact that largest similarity values does not strictly follow real image similarities. The “valley” of
lower classification indicates that relevant links in the graph had been removed, which is due to the
difficulty to select a priori affinities solely on their raw pairwise values (see left panel of the Fig. 2.7
illustrating overlap of link weights linking same and different class nodes). The best performance is
obtained due to most extreme graph sparcification. Such observation may be supported by the fact
that absolutely largest affinity values (close to 1) are representative (e.g. two temporally neighbor
image signatures) and meaningful. From histogram we see that lowest affinity value ever found in
the kernel matrix is around 0.5 while during sparcification we threshold lower affinities to 0. This
may create dis-balance in the graph and thus impair the final performance.

2.7 Conclusion

In this chapter we established a baseline for image-based localization using state-of-the-art visual
features, dimensionality reduction techniques and SVM classification. We introduced and discussed
several methods such as linear and non-linear approaches and their utility for visual content rep-
resentation in lower dimensionality space. A graph perspective to represent the data both in fully
connected and in sparse graphs was reviewed and evaluated. The non-linear kernels were also consid-
ered for comparing descriptors such as BOVW, CRFH and SPH in order to evaluate the similarities
between the images. In the following studies we consider dimensionality reduction step as a pre-
processing aimed to render high-dimensional descriptions more compact and taking into account the
non-linear nature of the data itself by the use of appropriate kernel.

The image-based localization results presented in this chapter can be considered as baseline and
shall be compared to when introducing and discussing more advanced methods.
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Figure 2.4: KPCA + NN : Changing the number of dimensions and number of neighbors for k-NN
classifier (top: BOVW and CRFH; bottom: Pyramid Histograms and Match kernel)
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3.1 Introduction

3.1.1 Motivation

In this chapter we investigate utility of multiple visual cues for the task of image-based localization.
Due to multiple reasons, in real world applications a single feature is often insufficient for the

task of classification. Different visual features capture different aspects of the scene and their choice
is not always optimal for the task to solve. It is often unclear what visual features are most useful
to extract the meaningful information for classification. As pointed out in a study [168] comparing
several visual features, there is no optimal choice for all situations. Even humans perform poorly if
using only one information source of perception [23]. To this end, instead of designing a specific and
adapted descriptor for the task at hand, several existing state-of-the-art visual descriptors could be
combined thus yielding increased discrimination power. For instance, one descriptor captures local
salient features on a gray image, another may capture color histograms for each hue channel. A
scene recognition algorithm would perform more likely better when using information captured by
both such descriptors.

Kernel methods for supervised and semi-supervised classification are powerful method when
dealing with real-world data. As confirmed by numerous practical applications in bioinformatics,
computer vision and others, kernel methods work well if an appropriate kernel is used. Basically,
the choice of kernel is data dependent. In practice, it is rarely known which kernel function should
be used as well as how to choose the kernel parameters (if any). Together with the aforementioned
weakness of single feature approach, the need for more robust learning method, while staying in the
same framework, is evident. Therefore, we are left with a problem how to learn a kernel which is
well suited for the task to solve.

3.1.2 Outline

This chapter is organized in four major sections. The first section 3.1 introduces to the subject and
gives the motivation and brief review of the existing work. In section 3.2 and 3.3 two major strategies
and their techniques for information fusion are presented. The former discusses the possibility of
fusion at the feature level whereas the latter postpones the fusion to the late stage of classification.
The chapter concludes with the section 3.4 devoted to the experimental part.

3.1.3 Strategies

There exist two major strategies on how to learn from multiple cue data: early and late fusion
strategies.

Early Fusion strategies focus on the combination of input features before using them in a classifier.
In the case of kernelized classifiers, the features can be seen as defining a new kernel that takes into
account several features at once, thus defining a new RKHS fused space. Such methods receive
the generic name Multiple Kernel Learning (MKL) where the objective is to estimate the optimal
parameters for kernel combination. Earliest works of [35] and [36] on MKL focused on optimization
of some loss function like kernel target alignment.

Classification problem was addressed in influential work of [74] showing that a new kernel can
be learned using a linear combination of the base kernels. The problem was formulated as a Semi-
Definite Program (SDP) or Quadratic Program with Quadratic Constraints (QCQP) if kernel weights
are non-negative. Due to complexity, such approach does not scale well for larger data sets. Issue
of scalability was addressed in the work of [7] by the new formulation of the problem in which an
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efficient Sequential Minimal Optimization (SMO) algorithm [105] was used allowing to work with
large-scale problems.

More efficiency was achieved in [138] by showing that the Semi-Infinite Linear Program (SILP)
can be efficiently solved using off-shelf standard SVM solvers thus allowing to train on tens of
thousand examples and 20 kernels in reasonable time. Gradient descent optimization was used in
[118] with SimpleMKL and in a study of descriptor discriminability power and invariance in [158].

Utility of the norm inducing sparsity directly in the feature space was studied in [6]. Latest
advances show more generality learning from large kernel spaces by using non-sparse regularization
[157]. Finally, authors in [160] showed that it is possible to reuse standard SMO optimization
algorithm for efficient optimization of `p MKL formulation.

Sparse `1 and non-sparse `p multiple kernel learning methods were compared and studied in the
context of object classification [96]. An interesting result shows that an optimal p is dependent on
the data and yields the best performance only if correctly tuned. The large values of p work best in
the case of kernels bringing similar amounts of independent information. In contrast, smaller values
or even p→ 1 works best for redundant or similarly informative kernels.

Late fusion strategy consists in training one or several base classifiers and feed their outputs to
a second and decision maker layer.

In literature the approaches where the outputs of classifiers are fed into the next layer of classifiers,
are called stacking methods. Refer to comprehensive and in-depth discussion on Multiple Classifier
Systems in [2, 69, 73, 150, 97].

Such strategy can employ SVM as a base classifier. Following the work of [98], it was shown
that SVM outputs, in the form of decision values, can be combined linearly using Discriminative
Accumulation Scheme (DAS) [112] with the use of confidence measure. The following work evolved
by relaxing the constraint of linearity of combination using a kernel function on the outputs of
individual single feature outputs giving rise to Generalized DAS [116]. Other examples follow a
similar path by respectively using combination rules (max, product etc) [85] and a comprehensive
comparison of different fusion methods in [54] in the context of object classification.

3.1.4 Application to visual data

MKL was used for object detection within the challenge PASCAL VOC 2009 in the work of [159].
Very good performance was obtained on Caltech 101 database with the use of group sensitive multiple
kernel learning [171] for object recognition. A computationally attractive for feature fusion [85]
leverages individually trained SVM classifier outputs and applies four different strategies for result
fusion. Besides of comparison of different visual descriptors (SIFT, CENTRIST, CT, SSIM, PATCH
and OG) within Bag-of-Features framework and two popular kernels (intersection and χ2) for image
classification, authors show comparable and superior performances on databases Scene-{8, 13, 15}
[77] and Caltech-{6, 101} [48].

Late fusion strategy for robot localization was used in [113, 112, 116].

3.2 Early Fusion at Feature Level

In this section we review the multiple kernel learning method [118] as a representative tool for
multiple visual cue exploitation. The review of the method and experimental part show the place
and fitness of multiple kernel learning for visual place recognition task.
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3.2.1 Kernel Combination Rules

In Chapter 2 we reviewed the necessary elements of kernel learning methods for dimensionality
reduction and classification. The central part in kernel methods is devoted to the proper selection
of a kernel function k (x,x′) which induces the corresponding feature space H and is crucial for
successful learning of the problem.

Suppose that a training set is given {(xi, yi)}ni=1 composed of d-dimensional patterns xi and the
corresponding label yi. Then by an explicit usage of proper user selected kernel function k (x,x′), a
positive definite Gram matrix (K)ij = k (xi,xj) is constructed. Recall the result of the Representer
Theorem that a decision function f ∈ H can expressed in form

f (x) =
n∑
i=1

αiyiK (xi,x) + b (3.1)

where the vector α ∈ Rn and the bias term b ∈ R are learned by an SVM solver. The task is to
build the Gram matrix K and learn the parameters α, b.

Suppose a sum or averaging kernel. This kernel combination is one of most widely used in MKL
due to its natural interpretation and conformity of the combined kernel with Mercer conditions.
Intuition is to assign each kernel Gram matrix Kk a weight βk > 0 which is larger if the respective
kernel is useful for supervised classification task. Learning the SVM model parameters α, b together
with kernel weights βi is known as Multiple Kernel Learning.

A new Gram matrix K can be constructed from m multiple base Gram matrices Kk using a
summing rule

(K)ij =
m∑
k=1

βk (Kk)ij (3.2)

where
∑m

i=1 βi = 1 and βi ≥ 0. It can be shown [125] that a weighted sum of Mercer kernels is
also a valid Mercer kernel.

An useful insight can be gained if we examine the underlying functional framework. Let m be
a number of weighted positive definite kernels k1 (x,x′) , . . . , km (x,x′) with their respective weight
β1, . . . ,βm. Each kernel function kk (x,x′) induces an associated Hilbert space Hk whereas the
weighted kernel function βkkk (x,x′) respectively a Hilbert space H̃k ⊂ Hk. Let f ∈ H̃k, the
respective RKHS can be simply written using linearity property of dot product

f (x) =
1

βk
〈f (·) ,βkkk (x, ·)〉Hk

= 〈f (·) ,βkkk (x, ·)〉H̃k
(3.3)

such that the Hilbert space H̃k contains the functions

H̃k =

{
f |f ∈ Hk :

‖f‖Hk

βk
<∞

}
(3.4)

endowed with a dot product

〈f, g〉H̃k
=
〈f, g〉Hk

βk
(3.5)

Hence we see that the power of the MKL lies in its adaptability of the dot product metric for
the classification task. A small positive kernel weight will render the functions f, g ∈ H̃k dissimilar
which is due to this modification of the scalar product.
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Finally, the individual Hilbert spaces H̃k can be combined into a Hilbert spaceH using orthogonal
or direct sum [47] operation

H = ⊕mk=1H̃k (3.6)

where standard result on RKHS states that there exists a function k (x, ·) ∈ H such that the
corresponding Gram matrix of Eq. 3.2.

Finding the the weights to improve the discrimination between the classes can be done using
supervised MKL method, which is reviewed in detail in Annex B.

3.2.2 Feature space of the weighted kernel sum

Weighted linear sum of kernels has an interesting interpretation in functional framework. It can
be shown that a weighted linear sum of Mercer kernels corresponds to an augmented feature space
where individual mapping vectors are concatenated.

Sum kernel for MKL Suppose that xi,xj ∈ X and m kernel functions k1 (·, ·) , . . . , km (·, ·) are
given. Each kernel function kk induces a corresponding RKHS space Hk such that

kk (xi,xj) = 〈Φk (xi) ,Φ (xj)〉Hk
(3.7)

Given kernel weights vector β, a new kernel function can created

kMKL (xi,xj) =

m∑
k=1

βkkk (xi,xj) =

m∑
k=1

βk 〈Φk (xi) ,Φk (xj)〉 (3.8)

where βk ≥ 0.

Functional framework for sum kernel We can show that a mapping function ΦMKL composed
of m weighted mapping functions Φi, i = 1, . . . ,m

ΦMKL (x) =


√
β1Φ1 (x)√
β2Φ2 (x)

...√
βmΦm (x)

 (3.9)

corresponds to a weighted sum of kernel functions k1 (·, ·) , . . . , km (·, ·). The new kernel function
can be written such that

kMKL (xi,xj) = 〈ΦMKL (xi) ,ΦMKL (xj)〉 = (3.10)

=

〈
√
β1Φ1 (xi)√
β2Φ2 (xi)

...√
βmΦm (xi)

 ,


√
β1Φ1 (xj)√
β2Φ2 (xj)

...√
βmΦm (xj)


〉

= (3.11)

=

m∑
k=1

〈√
βkΦk (xi) ,

√
βkΦk (xj)

〉
Hk

= (3.12)

=

m∑
k=1

βkkk (xi,xj) (3.13)
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where we used Eq. 3.9 and linearity property of dot product. We see that a weight βk for a
kernel function kk has an effect of scaling by a factor of

√
βk of the kernel mapping function Φk (x).

Practical considerations The previous property has a practical utility. Suppose that multiple
Gram kernel matrices are given and the goal is to compute low dimensional representations of the
corresponding graph. Instead of computing a new weighted kernel for every new β and launching
Kernel PCA on it, following steps can be run :

1. Compute low-dimensional embeddings Zk for each Gram matrix Kk separately;

2. Weight each embeddings vector zki ∈ Zk with
√
βk

z̃ki =
√
βkz

k
i (3.14)

3. Construct final embeddings vector as a concatenation

zMKL
i =


z̃1i
z̃2i
...
z̃mi

 (3.15)

The procedure allows efficient computation of low-dimensional graph embeddings in the case of
Kernel PCA acting on graph represented by a kernel matrix. Although, there may be a risk of
overfitting because of concatenation of embeddings.

3.3 Late Fusion at Classification Level

Similarly to the previous statement that there is no single best performing feature for all recognition
task, there is also no reason to believe that one particular classification method outperforms the
others. Indeed, as the familiarly called “No Free Launch Theorem” [46] states, “if there is no prior
knowledge about the nature of the classification problem, the best classification method will be
dependent on the data”.

Leaving the vast subject of algorithm-independent machine learning [46] to the interested reader,
in this section we are interested in high level classifier combination. According to [69], there are two
major scenarios for classifier combination: multiple classifiers trained on the same data representa-
tion and multiple (not necessarily the same methods) classifiers trained on different representations
of the same object or phenomena. As in [69], we shall discuss the methods and present the experi-
mental results using the second scenario if not stated otherwise.

3.3.1 Brief Categorization of Fusion Architectures

According to [73], there are four general fusion architectures or topologies : parallel, serial, hierar-
chical and hybrid. In pattern classification literature [73] these are called classifier ensembles which
include type and number of base classifier in the ensemble. Refer to the comprehensive study [97]
for more details on so-called topic Multiple Classifier Systems.

In a parallel architecture multiple base classifiers operate independently. Outputs of the base
classifiers are merged with the help of a fuser function providing the final result. Base classifiers
should not necessarily be of the same type. This architecture was used for SVM output fusion into
a single result using an accumulation scheme in [98, 116, 113] for robot localization task indoors.

A fuser function can be further categorized in two categories:
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1. Integration
Each base classifier contributes for a final decision. This implies competition of base classifiers.

2. Selection
The final decision for each pattern depends on one or a selection of base classifiers. This implies
complementarity of base classifiers.

Serial architectures In a serial architecture a succession of base classifiers are used with each
classifier providing a reduced set of possible classes. Often used for data with many classes such as
character recognition [68] and in biometrics [150] where parallel architecture proved to be too costly
to employ. In [94] authors used sequential architecture for robot topological place recognition by
building probability like decision histograms from the outputs of base classifiers.

Hierarchical architectures In a hierarchical architecture two or more layers of base classifiers
feed their outputs to the next layer of classifiers. This architecture is often application specific
and has been used for hyperspectral data classification [72] and high dimensional data classification
[72, 2].

Hybrid architectures Hybrid architectures represent base classifier combinations that do not
belong fully to any of the mentioned categories. Hybrid architectures are investigated and used less
often than serial and hierarchical architectures.

The choice of the architecture In our context, the number of places is limited (less than 10)
and we favorize a simple architecture for easy inclusion of multiple visual features.

3.3.2 Notion

Suppose that we are given a set of n patterns with their respective labels
{(

xti, yi
)}n

i=1
and with

descriptor types t = 1, . . . , T . Therefore, each image {Ii}ni=1 belongs to one of disjoint classes {ωj}mj=1
and is represented simultaneously by T different descriptor vectors. In Fig. 3.1 we depict multi-class
SVM scores computed for a set of images.

Consider also a trained classifier ht
(
xt,θt

)
which accepts type t patterns xt ∈ Rdt , a parameter

vector θt and returns a vector of real-valued outputs st =
[
st1, . . . , s

t
p

]
. Finally, output of some rule

ŷti = P
(
sti
)

(3.16)

is used to obtain class estimation ŷti for an image Ii.
In case of an SVM classifier, the parameter vector θ is called a model and an output vector s

contains the scores. For one-vs-all setup the dimensionality of scores vector s is p = m while for
one-vs-one it equals to p = m(m−1)

2 . The standard one-vs-all rule works as follows

ŷti = arg max
j
st (3.17)

where index j runs through all scores vector elements stj .
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Figure 3.1: SVM scores returned for a set of images (I1, . . . , In) . There are m topological locations
and in one-vs-all setup m real-valued scores are obtained for each image.

3.3.3 Baseline : Majority Voting

Majority voting [46, 73] is one of simplest rules for multiple classifier output fusion. It assumes that
each base classifiers provide their estimations and that the majority is right.

Suppose that an test image Inew gets computed descriptor vectors
{
xtnew

}T
t=1

. Then using some
training set

{
Xt
}T
t=1

, a number of base classifiers
{
ht
(
·,θt

)}T
t=1

was constructed. Each of these
base classifiers provides an output vector

stnew = ht
(
xtnew,θ

t
)

(3.18)

where application of rule P would produce class estimations

ŷtnew = P
(
stnew

)
(3.19)

Majority voting rule simply counts the number of votes for each class ωj , j = 1, . . . ,m and
returns the final estimation for which there were most votes. Ties are usually broken at random.

In practice, majority voting performs well if each classifier is an expert on some part of input
space. However, this method usually performs poorly when some classifiers are either very good or
very bad at classification [97].

3.3.4 Discriminative Accumulation Scheme

A discriminative accumulation scheme (DAS) was initially proposed in [98] and then generalized to
confidence measure exploitation [112] to resolve ambiguous cases for application of robot localization
indoors. This scheme belongs to an architecture of parallel base classifier combination followed by
a fuser. Advantage of this scheme is two folds [115]:

1. Less sensitivity to misleading individual base classifier estimates
If one of the base classifiers in majority voting scheme provide incorrect estimates, the final
class estimation is at risk.

2. Lessened risk of curse of dimensionality
One of the straightforward approaches for early multiple cue fusion is to concatenate respective
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descriptor vectors which is reminiscent of what MKL is doing in the RKHS. Unfortunately,
this implies a risk of overfitting. The effect is more pronounced for the small training sets with
large dimensionality of description space.

Authors of DAS in [98] used the SVMs as base classifiers. Linearly weighted sum of corresponding
scores produced a final set of scores from which class estimation took place and which we review
here.

Linear model for SVM score combination Recall that a binary SVM classifier provides real-
valued outputs (See Chapter 2 for details)

f (xnew) =
n∑
i=1

αiyik (xi,xnew) + b (3.20)

For data with classes ω1, . . . , ωm and One-vs-All setup, m decision functions fj will be trained.
For a pattern xnew evaluation of j decision functions produces an output that can be summarized
in a vector

snew = [f1 (xnew) , . . . , fm (xnew)] (3.21)

The standard one-vs-all class estimation scheme reduces to find the largest decision value

ĵ = arg max
j
{fj (x)}

Suppose now that T SVM classifiers were trained and produced T m-dimensional vectors in
output for the test pattern

stnew =
[
f t1 (xnew) , . . . , f tm (xnew)

]
(3.22)

At this point cue estimations are independent and there is a need to produce a merged result.
DAS creates a linear weighted sum of binary decision functions across multiple cues. That is, for a

fixed decision function fj across the cues
{
f tj (·)

}T
t=1

, a combined output writes as a weighted linear
sum

fDAS
j (xnew) =

T∑
t=1

βtf
t
j (xnew) (3.23)

Repeating the same weighted summation procedure for all binary classifiers, the DAS output is
of same format as a single cue SVM output

sDAS
new =

[
fDAS
1 (xnew) , . . . , fDAS

m (xnew)
]

(3.24)

from which the estimated class can be computed

ĵDAS = arg max
j

{
fDAS
j (xnew)

}
(3.25)
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Figure 3.2: DAS scores combined from base classifiers over T visual cues

Graphical view of linear SVM score combination For illustration purposes we can graphi-
cally represent in Fig. 3.2 the DAS method for cue fusion as a two layer architecture.

Indeed, the first layer is composed of classifiers
{
ht
(
·,θt

)}T
t=1

which provide the outputs in form
of scores stnew = ht

(
xtnew,θ

t
)
for every test pattern. The second layer consists of a single fuser

function which linearly combines all the scores in the final output. It is clear from the diagram
that functions f ti , i = 1, . . . ,m outputs for each cue type t are combined independently with respect
to other functions. This architecture can resemble a simplified neural network [46] with two layers
using independent and linear feature combination.

We will compare this architecture with a more general scheme which we review in the next
subsection.

3.3.5 Support Vector Machine DAS (SVM-DAS)

DAS procedure effectively merges the individual base classifier outputs and experimentally showed
[98, 112] to give the results of at least the best base classifier performance. However, this is true only
in the case of correct selection of weights for each base classifier. While providing improvement, the
method has two weaknesses:

1. Linear combination
Potentially limiting factor is the model for base classifier fusion using a linear combination.
While simple and intuitive, this may not be optimal rule for result fusion for real-world prob-
lems.

2. Optimizing the weights
The weights used in linear combination should be optimized in order to get the best results.
In all references [98, 112], the weights were found using a cross-validation procedure. While
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being increasing costly for more cues, it also requires to have a separate validation set that
may be wasteful of valuable training data.

Generalized model for SVM score combination SVM-DAS [116, 115] addressed these issues
by using a non-linear kernel on individual base classifier outputs within a SVM framework. Suppose
that the T base classifiers produced outputs as in Eq. 3.22. For a particular type of feature t, the
m-dimensional vector stnew can be regarded as a part of a new pattern znew of dimension T ×m

znew =
[
s1new, s

2
new, . . . , s

T
new
]

(3.26)

which is obtained by the concatenation of scores. At this point, a new classifier can be built for
each binary classification problem

fSVMDAS
j (znew) =

n∑
i=1

αijyik (zi, znew) + bj (3.27)

and the class estimations can be computed from the new vector of scores

sSVMDAS
new =

[
fSVMDAS
1 (znew) , . . . , fSVMDAS

m (znew)
]

(3.28)

using the rule of largest score

ĵSVMDAS = arg max
j

{
fSVMDAS
j (znew)

}
(3.29)

One should note that an appropriate kernel function should be selected.

Graphical view of generalized SVM score combination At closer inspection, the SVM-DAS
scheme can be seen as generalization of DAS if a linear kernel is used. Recall that a SVM-DAS
pattern z is constructed from concatenation of multiple SVM classifier outputs s1, . . . , sT . It is
straightforward to show that with linear kernel the dot product

kSVMDAS (zi, zj) = 〈zi, zj〉 =
T∑
t=1

〈
sti, s

t
j

〉
(3.30)

Substituting Eq. 3.30 into the expression of decision function Eq. 3.27 and exchanging the sums
we get

fSVMDAS
j (znew) =

n∑
i=1

αijyikSVMDAS (znew, z) + b (3.31)

=
n∑
i=1

αijyi

T∑
t=1

〈
sti, s

t
j

〉
+ b (3.32)

=
T∑
t=1

〈
sti, s

t
j

〉 n∑
i=1

αijyi + b (3.33)

Denote

wt
j =

n∑
i=1

αijyis
t (3.34)
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Figure 3.3: SVM-DAS scores combined from base classifiers over T visual cues and compared using
linear kernel

where wt
jk is kth element of the vector wt

j . Then the SVM-DAS decision function takes the form

fSVMDAS
j (znew) =

T∑
t=1

n∑
k=1

wt
jkf

t (xnew) (3.35)

where we have used the fact that stnew = f t (xnew) is simply a vector of SVM scores for a pattern
xnew. From the result in Eq. 3.35 is evident that all multiple cues as well as all other pattern scores
are contributing for every new decision function value. Note the summing over all the cues and the
summing over all the patterns. Graphically the effect of using a linear kernel on concatenated SVM
scores over multiple cues is depicted in Fig. 3.3.

Comparing Fig. 3.2 for DAS and Fig. 3.3 for SVM-DAS we can notice the similarities in terms
of score accumulation (summation rule) and difference in the links used to combine them. The DAS
scheme can be easily seen as special case of SVM-DAS using the linear kernel. The different choices
of kernel function may lead to various and probably non-linear relationships between the cues and
binary classifiers.

3.4 Experiments

In this section we present the results of multiple cue fusion using the two presented strategies : early
and late fusion. The former is the MKL method which learns a new kernel that is more adapted for
a specific classification problem depending on the data. The latter is the SVM-DAS method that
builds a final decision based on SVM decision on base classifier scores.

First we compare both strategies with respect to the baseline - standard single feature approaches.
Secondly we compare the two strategies and point out differences and advantages.

3.4.1 Image Database and Experimental Setup

For the experimental part of this chapter we selected the IDOL2 image database [86].
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Set / Split Training (%) Validation (%) Testing (%)
1 1 49.5 49.5
2 2 49 49
3 3 48.5 48.5
4 5 47.5 47.5
5 10 45 45
6 20 40 40
7 30 35 35
8 50 25 25

Table 3.1: IDOL2 supervision levels

Visual Feature Original Dim. Kernel Fnc Reduced Dim. Ref.
Bag of Visual Words (BOVW) 1111 χ2 2000 [100]
Comp. Rec. Field Hist. (CRFH) 439 191 718 (sparse) χ2 2000 [79]

Lowe Match (Match) - Lowe match 2000 [32]
SPH Level 3 4200 χ2 2000 [77]

Table 3.2: Low level visual features

Test setup The corpus containing 12 video sequences for the “minnie” part of the database is
considered as a global set of images discarding the information about sequences, lighting conditions
and time span. This allows us to focus on the intrinsic properties of the features and their best
combination.

To simulate different supervision levels, we sampled randomly 8 sets comprised of training,
validation and testing as described in Table 3.1. To assess the stability of classification performance,
10 different folds were created for each set.

In all experiments we used the training set solely for the training of the model and the validation
set for the estimation of the model parameters. The performance was assessed only on the testing
set. The final classification performance was averaged over 10 folds within each set of supervision.

Choice of Visual Features Image contents were described using 4 visual features - Bag of
Visual Words, Composite Receptive Field Histograms, Matching information and Spatial Pyramid
Histograms at level 3.

Dimensionality of each feature was reduced to 2000 dimension using the Kernel PCA method,
thus generalizing embedding considered to belong to an Euclidean space on which the linear kernel
is applied. A summary of the feature properties, used kernels and other information is given in Table
3.2.

Note on the use of MKL SimpleMKL method is a supervised classification method that learns
a new weighted kernel from k base kernels. Due to 8 supervision levels and 10 folds within each
of them, computation of the best kernel weights and then computation of embeddings for the new
weighted kernels was considered too high. To alleviate this issue, we launched the SimpleMKL
method to find the best kernel weights on the validation set and created the embedding vectors
for the tests by concatenation of weighted base kernel embeddings as described in subsection 3.2.2.
Notice that concatenation yielded in increasingly higher dimensional embeddings.
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Truth : KT, Estimation : PA Truth : CR, Estimation : PA Truth : PA, Estimation : CR Truth : CR, Estimation : 2pO

Truth : KT, Estimation : PA Truth : 1pO, Estimation : 2pO Truth : KT, Estimation : 2pO Truth : CR, Estimation : 2pO

Truth : CR, Estimation : PA Truth : CR, Estimation : KT Truth : PA, Estimation : 2pO Truth : CR, Estimation : 2pO

Figure 3.4: BOVW (top row), SimpleMKL (middle row) and SVM-DAS (bottom row) misclassifi-
cation samples : (a) misclassification, (b) poor light, (c) non-informative, (d) label noise

The choice of the classifier In all experiments in the current chapter we used a soft margin SVM
classifier (See Chapter 2) with linear kernel. The only free parameter C controlling the complexity
of the learned model was estimated using the validation set.

3.4.2 Performance comparison of Early and Late fusion approaches

Single feature performance Using the established test setup with 8 supervision levels, we
present an averaged global accuracy for each of the visual features in Fig. 3.5.

The results show a steady increase of classification performance for all the single visual features
as more labeled samples are provided for training. Confusion matrices are depicted for the low
supervision set in top line of Fig. 3.7.

We are interested in the region of low supervision rates, for example, that is, 1% and 10% of
the current data set. Comparison of the performances provided by diverse methods in this region
is interesting because real-world application is expected to work on sparsely annotated data. Note
that different visual features exhibit different performance.

Early feature fusion using MKL In this experiment we are interested to assess the performance
of the early feature fusion using SimpleMKL, where the kernel weights are learned by the algorithm,
and the EvenMKL using same kernel weights.

We compare the two MKL approaches with respect to single feature baselines. Note an overall
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Figure 3.5: Average performance of single feature approaches and multiple information source fusion
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Figure 3.7: Confusion matrices (1% of supervision): (top) BOVW, (middle) SimpleMKL, (bottom)
SVM-DAS

superiority of both MKL methods over all baselines. This is true at all levels of supervision. Preci-
sion and recall normalized confusion matrices, selected at lowest supervision rate, Fig. 3.7 middle
line, shows that the classes like “Printer_Area”, “Kitchen” and “One_Person_Office” are hardest to
classify.

It is interesting to visualize the kernel selection weights βk. Since the MKLmethod is a supervised
learning method and endorses sparse selection of kernels, it may be expected that most relevant
kernels are selected for the classification task. In Fig. 3.6 kernel weights are displayed as they were
found at each supervision level independently. We note that the Match kernel was never selected
despite its relatively higher performance with respect features such as BOVW.

From the same figure we can observe different kernel weights found using the supervised approach
at varying supervision levels. This may indicate the lack of available training data which in turn
may hinder to learn a new combined kernel with improved discrimination power.

If we validate the results of MKL, we note that even weighted kernel combination performs as
good as the more sophisticated method. Therefore, a simple feature concatenation proves to be
beneficial for the classification task for this data.

Late feature fusion using SVM-DAS In the second part of experimentation we perform the
comparison between late fusion approach and baselines. The results are presented in Figure 3.5.

Recall that late fusion approach named SVM-DAS effectively constructs new patterns from
baseline classifier outputs as described in Subsection 3.3.5.

We note that classifier result fusion using SVM-DAS method is superior to all of the baselines.
Its performance is comparable to that of SimpleMKL for this data set. Its confusion matrix for 1%
supervision is depicted in Fig. 3.7.

In present experiments no sequence information nor time information was exploited. Due to
random data sampling for testing purposes, these results can be seen as optimistic estimates when
all visual information is used and the training data is sampled uniformly from all possible weather
and time conditions.

Misclassification patterns Global classification accuracy is one of indicators of the classification
performance. It may be interesting to analyze the individual image label estimates to understand
the reasons of misclassification.

From Fig. 3.5 we note a good performance of all methods at 50% of labeling rate. It is expected
that few errors will be made by any of the methods since the training and testing samples are
interleaved. The reason to select this supervision rate (50% of training) and the test setup is to
observe the principal difficulties that may arise in real life conditions. The problem of low supervision
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is not covered here.
We selected three methods to analyze the estimates:

1. Baseline BOVW

2. Early fusion SimpleMKL

3. Late fusion SVM-DAS

The analysis of the classification estimates revealed several types of misclassification regardless the
method used. We identified four groups:

1. Generic misclassification
This group of misclassification appeared rarely and typically hints for insufficient supervision,
class overlap or imperfections of the visual features used. Images in this group are expected to
be classified correctly because of good image quality and characteristic contents for a particular
place and class. This type of error can be fixed.

2. Poor light conditions
Images in this group feature over or underexposed scenes, such that visual feature detectors
fail to capture relevant discriminant information. For example, local visual features like SIFT
[84] and SURF [10] exhibit poor performance when light conditions are bad. This type of error
can be fixed by using features that are more robust to poor light conditions or take advantage
of temporal consistency where inference from good quality temporal neighbors can be made.

3. Non-informative image contents
This group of misclassifications concerns the images of generally good lighting but contain
no characteristic information that would help to attribute it to any of classes. Such image
examples are: blurred contents, close-up of some scene or object. This type of error could be
fixed using temporal context or by detecting low confidence estimations for later exclusion or
post-processing.

4. Label noise
Due to arbitrary class label assignment for images that occur when the mobile robot platform
changed the room, the effect of label noise shall be always present. The robot camera might
have captured the visual information depicting the class “One Person Office” while the ground
truth information indicates the class “Corridor”. This type of error cannot be avoided altogether
but its effect can be diminished by a class boundary detection procedure for example.

Some typical misclassification examples are depicted in Fig. 3.4 for BOVW, SimpleMKL and SVM-
DAS methods. Empirically we observed that poor light condition and label noise type errors of
misclassification dominated for this data set.

3.4.3 Conclusions

In this chapter we studied two major information source fusion approaches - early and late fusion.
Early fusion aimed to combine multiple visual cues at image similarity level whereas the late fusion
counterpart attempted to provide decision at higher level from multiple independent base classifier
outputs.

The experimental evaluation of the baseline methods has shown that both fusion strategies
exceed all single feature baselines. The ranking of the methods with respect to performance is
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the same at different supervision levels. However, for the database at hand, no cue fusion scheme
clearly outperforms the others. We therefore will consider in the next chapter the gain of additional
complementary information stemming from unlabeled data, temporal structure of the video and the
notion of confidence of classification.
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4.1 Introduction

In this chapter we introduce the framework that combines multiple information sources in a semi-
supervised setup including unlabeled data and temporal continuity of the video.

4.1.1 Motivation

In Chapter 2 we reviewed the methods of dimensionality reduction and their practical utility for the
classification task. In Chapter 3 we showed the usefulness of the fusion of several visual features.
The former can be seen as data preparation step where high-dimensional data is represented in a
compact form while taking into account non-linearities in the original feature space. The latter
provides more discriminative power due to the complementarity of various visual features.

In this chapter we turn to the problem of semi-supervised learning from weakly annotated videos.
We stress the point that information brought by unlabeled data has been implicitly taken into
account only in unsupervised manner - through dimensionality reduction. In this chapter we are
interested to study and compare several semi-supervised learning methods where unlabeled data is
leveraged during the learning stage. Going one step further, we also study the question of using
multiple information sources in the same framework.

4.1.2 Outline

The outline of the current chapter is following:

1. Introduction of the State-of-the-Art from semi-supervised method family

2. Contributions

(a) semi-supervised learning method fusing multiple visual features (CO-DAS);

(b) enhanced semi-supervised learning method including temporal information (CO-DAS +
TA);

(c) proposed confidence measure with comparison to state-of-the-art;

3. Experimental part confirming the correctness of the selected semi-supervised learning approach

4.2 Learning from labeled and unlabeled data

In this section we attempt to provide a brief review of semi-supervised methods that exploits both
labeled and unlabeled data during the learning process. Our goal is not to make an exhaustive
review but rather show the place of the co-training method in the field of semi-supervised learning.

Throughout the chapter we will use the notion introduced by [181] for semi-supervised learning.
Suppose that we are given a training set L = {(xi, yi)}li=1 and an unlabeled set of patterns

U = {xj}l+uj=l+1 where x ∈ X and the problem of classification is binary: y ∈ {−1,+1}.
Our visual data may have p multiple cues describing the same image Ii. Suppose that p cues has

been extracted from an image Ii

xi →
(
x
(1)
i ,x

(2)
i , . . . ,x

(p)
i

)
(4.1)

where each cue x
(j)
i belongs to an associated descriptor space X (j).
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Denote also p decision functions f (1), f (2), . . . , f (p), where f (j) ∈ F (j), that are trained on the
respective visual cues and are providing estimation ŷ(j)k on the pattern x

(j)
k .

Additionally, we are interested in obtaining a confidence measure zi ∈ R+ of the estimation.

4.2.1 Motivation and Definitions

Semi-supervised learning can be seen as an answer to a problem how to learn from large data sets
where only a small part of it is labeled by an expert. The scenario with scarce labeling is common
in real-world applications where additional labeling is costly or requires significant human labour.
The models learned using classic supervised method may suffer from over-fitting or incapability to
generalize on the unlabeled data which is direct consequence of the lack of training data. Unsuper-
vised methods do not use label information. They may detect a structure of the data, however, a
prior knowledge and correct assumptions about the data is necessary to be able to characterize a
structure that is relevant for the task.

Therefore, one needs to employ the methods that are able to learn from labeled and unlabeled
parts of the data sets. In the literature there are three major groups of methods:

1. Transductive learning
Given a labeled set L and an unlabeled set U , the goal is to provide direct predictions for the
latter. The usual hypothesis is that the two sets are sampled i.i.d. according to the same joint
distribution p (x, y) to render learning possible. There are no intentions to provide estimations
on the data outside the sets L and U . Refer to [27] for more details and references.

2. Semi-Supervised learning
In similar setup as transductive learning, semi-supervised learning methods are called inductive
methods since a function f : X 7→ Y is also learned. Function f ∈ F , where F is a hypothesis
space, is learned such that predictions can be made on the entire space X , not only on U ⊂
X . The success of learning depends on an important assumption such that the labeled and
unlabeled data comes from the same distribution p (x). Refer to a survey [181] on semi-
supervised method and a book [27] devoted to the subject. Short but concise introduction to
a subject with brief description and discussion of different methods can be found in [183].

3. Active learning
Active learning includes the models that build a strong learner interactively from annotations
provided by human experts. Usually the methods try to minimize the number of such queries
for human annotation while learning the strong learner. Refer to a survey [128] on active
learning. Active learning methods are out of the scope of the current study, as in our applicative
context annotation is done before automatic processing on the servers such that interactive
queries are not possible. It could nevertheless provide interesting avenues to our work in a
different annotation context.

In the following subsection we introduce briefly the major approaches for transductive and semi-
supervised learning: for transductive learning we present Label Propagation on graphs in Subsection
4.2.2, for semi-supervised learning, semi-supervised SVM in Subsection 4.2.3, self-training in Sub-
section 4.2.4 and the related co-training method that also combines multiple features in Subsection
4.2.5.

4.2.2 Label Propagation on Graphs

Graph-based semi-supervised learning methods have enjoyed increased popularity. The idea relies
on the notion of graph G = (V,E) whose nodes in V are the data points and similarities among
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Figure 4.1: Illustration of Label Propagation

them are expressed as links in E. Some of the nodes can be labeled explicitly by a label whereas
the labelling is unknown for the remaining unlabeled nodes.

Assuming that the graph is connected or at least one node per connected component is present,
the idea is to propagate the labels from labeled to unlabeled nodes. The methods exploiting graph
structure to label the remaining part of the graph are classic examples of transductive learning since
no direct extension to future patterns is possible. However, several extensions exist [15][146] that
allow to provide estimates on additional patterns without rebuilding the whole graph.

Assumptions The key to success using graph-based learning lies in the conformity to one of these
two general assumptions:

1. Neighbor nodes carry the same label
This assumption reflect local properties of a graph since it requires to have local label consis-
tency in a neighborhood of each node.

2. Points on the same structure are likely to have the same label
This assumption reflects a more global property of a graph. If there are cluster formations or
subsets representing a low-dimensional manifold in a graph, then the node labels within them
should be consistent.

These two assumptions require a certain structure for the graph. It is clear that not all graphs will
conform to these requirements when given a partially labeled data. Therefore, graph construction
step is an important factor.

Label Propagation algorithm The idea of label propagation is to spread the labels from the
labeled nodes to the unlabeled ones until global convergence is achieved. See Fig. 4.1 for a simple
illustration.

Suppose that a labeled set L = {(xi, yi)}li=1 and unlabeled set U = {xi}l+ui=l+1 is given from
which a graph G = (V,E) is constructed. Graph structure can be completely defined by so-called
affinity matrix W where its particular element Wij = s (xi,xj) is a similarity measure between
two graph nodes. The node affinities are often required to be non-negative and Wii = 0 to avoid
self-reinforcement.
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Following [178], denote f a set of (l + u) × c matrices where c is a number of classes. Class
estimation for a pattern xi corresponds to

ŷi = arg max
k≤c

fik (4.2)

where fi· = (fi1, . . . , fic) can be seen as a scores vector in analogy to SVM scores. Similarly, the
label information is given in form of a matrix Y ∈ F such that

Yik =

{
1 if xi is labeled as yi = k

0 else
(4.3)

and for unlabeled data in U all the corresponding entries are initialized Yik ← 0. Finally, denote
Y 0 an initial labeling of the data as given by the set L.

With all necessary definitions at hand, label propagation can be written as an iterative procedure:

1. Build an affinity matrix W from both sets L and U using some similarity function between
the nodes s (·, ·) ∈ R+

2. Build a normalized affinity matrix Wsymm = D−
1
2WD−

1
2 , where Dii =

∑
jWij

3. Set a parameter α ∈ [0, 1], initial estimation f0 = Y 0 and iterate until convergence Ŷ

(a) Compute

f t+1 = αWsymmf
t + (α− 1)Y 0 (4.4)

(b) Current label estimates can be computed for each pattern xi as

ŷt+1
i = arg max

j≤c
f t+1 (4.5)

4. Use the convergence result Ŷ to compute the final estimates

Usually the labeled part of current estimate at iteration t+ 1 is clamped. However, authors in [27]
revealed that relaxing this constraint helps to work with data sets featuring class overlap.

Convergence properties of label propagation methods are proved and discussed in [178, 27]. An
important result shows that the final iteration result can be found in a closed form using the initial
annotation Y 0 and the graph Wsymm

Ŷ = (I − αWsymm)−1 Y 0 (4.6)

Note that a properly constructed graph is needed as well as minimum annotation to bootstrap
the label propagation. The balancing parameter α controls the importance of the initial labeling
(second term in Eq. 4.4) with respect to the information provided by the global graph structure
(first term in Eq. 4.4). This parameter should be set manually or using some automatic scheme
such as cross-validation, for example.
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Regularization on Graphs Label propagation method presented above uses an update Eq. 4.4
which may not be immediately clear. Recall that for successful semi-supervised learning two as-
sumptions should hold, that is, local and global properties of the graph. In semi-supervised learning
literature a cost function c is used. The function f ∈ F is selected such that the cost is minimized

f̂ = arg min
f∈F

c (x, y, f) (4.7)

Cost function that corresponds to the update step in Eq. 4.4 which takes into account the both
constraints takes the following form [178]

c (x, y, f) =
1

2

λ l∑
i=1

‖fi − Yi‖2 +
l+u∑
i,j=1

Wij

∥∥∥∥∥ fi√
Dii
− fj√

Djj

∥∥∥∥∥
2
 (4.8)

The cost function could take into account several elements. One can require the function f̂ to
be coherent with the training data, known as fitting constraint. Additionally, one can require at
the same time the fitness of the function with respect to the whole graph. This constraint is often
called in literature as a smoothness or manifold constraint. That is, labels on the whole graph are
not expected to vary greatly within certain neighborhood.

Introduction of regularization parameter λ changes the closed form solution as given in 4.6 to

Ŷ =
λ

1 + λ

(
I − 1

1 + λ
L

)−1
Y 0 (4.9)

with derivation details given in [178] and more in depth discussion in [27] on regularization
framework and links to a straight forward label propagation [182].

The regularization done in Eq. 4.8 uses a quadratic cost penalty term. A different regularization
which is based on Laplacian as an operator on the functions f was proposed in [12] together with
corresponding label propagation algorithm. The idea is to use a linear combination of k smoothest
eigenfunction of the Laplacian operator such that it fits the labeled data the best.

Building a Robust Graph For a label propagation method to succeed, a correctly built graph
is mandatory. Clearly, misleading links and their weights will direct the label propagation process
in the wrong direction and the classification results will suffer. In Chapter 2 we briefly mentioned
and evaluated two graph building strategies, when reviewing the Laplacian Eigenmap approach in
Chapter 1: full and k-Nearest Neighbor sparsened graphs. We review one additional method for
robust graph construction which will be evaluated in the experimental part of the chapter.

In [163] authors propose to build a sparse graph from pasted locally reconstructed patches. That
is, for every node xi in the graph G a small neighborhood N (xi) is found. Then the node xi is
approximated from its neighbors linearly

xi ≈
∑

j:xj∈N(xi)

wijxj (4.10)

where we constrain
∑

j wij = 1 and wij ≥ 0. A weight closer to 1 will indicate a close node while
a distant node will receive a weight which is close to zero. Therefore, the reconstruction weights can
serve as affinity values in the complete affinity matrix W representing the graph G.

For a selected neighborhood selection rule, the goal is to deduce the reconstruction weights for
each node of the graph out from its neighbors. Intuitively, the reconstruction error can be minimized
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e =
n∑
i=1

xi −
∑

j:xj∈N(xi)

wijxj

2

(4.11)

which after some transformations can be rewritten as

e =
∑

j,k:xj ,xk∈N(xi)

wijG
i
jkwik (4.12)

where Gijk = (xi − xj)
T (xi − xk) represents a patch centered on the node xi.

We note that the error function is quadratic in reconstruction weights w with its constraints. This
leads to a Quadratic Program [102] with linear constraints. Therefore, for every node xi following
problem should be solved

min
wij

∑
j,k:xj ,xk∈N(xi)

wijG
i
jkwik (4.13)

s.t.
∑

j wij = 1, wij ≥ 0 (4.14)

The final sparse affinity matrix W is built by pasting together the corresponding reconstruction
weights.

4.2.3 Semi-Supervised Support Vector Machines

We reviewed the fully supervised SVM in Chapter 2. In low supervision scenarios a decision boundary
found using only the labeled part of the data set may not be the optimal solution and inclusion of
unlabeled data may be beneficial. For example, the assumption for a decision boundary to pass in
low density regions can help to reveal the underlying manifold with class-specific clusters. A toy
example illustrating this situation is shown in Fig. 4.2. This idea motivated the development of
semi-supervised SVM, see [91] and the references therein.

Literature review In semi-supervised learning literature, the cluster [29] and manifold [13] as-
sumptions are the most often employed when staying within the SVM paradigm.

The cluster assumption states any two points will more likely have the same label if they both
lie in a dense region through which these points can be connected by a path. Therefore decision
boundaries should push in lower density regions in the feature space. Some references for Transduc-
tive SVM formulation with the cluster assumption include [65, 140] and optimization methods for
semi-supervised methods can be consulted in [28].

The manifold assumption leverages the knowledge that the data may actually lie on low-
dimensional manifold and to discover it, a smooth function respecting labeled and unlabeled data
should be used. The methods in this family are typically graph-based [12, 13, 91, 95] and exploit
the graph structure to find a regularized solution.

Including graph geometry into SVM In Chapter 2 we review the method of Laplacian Eigen-
maps for dimensionality reduction which is intrinsically an unsupervised procedure. The idea of the
method is to preserve the geometry captured by a graph when computing the lower dimensional
representations.

Information about the manifold computed from the labeled data L = {(xi, yi)}li=1 and unlabeled
data U = {xi}l+ui=l+1 can be expressed in a form of affinity matrix Wij = s (xi,xj). The Laplacian
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(a) Supervised SVM (b) Semi-Supervised SVM

Figure 4.2: Toy example with decision boundary found in (a) fully supervised setup on a limited
training set and (b) with the help of unlabeled data using Semi-Supervised SVM

SVM (LapSVM) [91] method uses a regularizer based on the Laplace-Beltrami operator that can be
effectively approximated by a graph Laplacian L. A decision function that conforms both to labeled
data and unlabeled data writes as

f̂ = arg min
f∈HK

1

l

l∑
i=1

c (xi, yi, f) + γA ‖f‖2K +
γI

(l + u)2

l+u∑
i,j=1

Wij (f (xi)− f (xj))
2 (4.15)

where three parts can be recognized :

• First term accounts for standard empirical loss in fully supervised setup. The loss function
can be, for example, the squared error, hinge, Huber loss yielding different SVM formulations;

• Second term is an ambient regularization term that controls the complexity of the learned
function. Together with the first term a standard supervised SVM formulation can be obtained;

• The third term introduces the information provided by the unlabeled data. One can recognize
up to multiplicative factor the objective function to be minimized for Laplacian Eigenmaps.

Note the similarity of the optimization problem in Eq. 4.15 with that of Label Propagation in Eq.
4.8. The framework is the same while the cost functions are different, squared loss for LP and
soft margin loss for LapSVM. Also in both cases, the regularization terms share a Laplacian type
regularizer with the difference of normalization. More discussion about the choice of loss function
can be found in [59] and the details about different types of Laplacian normalization in [162].
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Impact of the regularization Eq. 4.15 states that functions f̂ that are consistent with labeled
data and geometrical structure of the graph G may be accepted as a solution. It is interesting to
note that the solution to Eq. 4.15 can be still written using the Representer Theorem [27]

f̂ (x) =

l+u∑
i=1

αiyik̃ (xi,x) + b (4.16)

with a difference that the expansion now includes unlabeled patterns as well.
Note the kernel function k̃ in the expansion Eq. 4.16. Recall that for each kernel function k (·, ·)

there exists a corresponding RKHS with functions f, g ∈ HK endowed with dot product 〈f, g〉HK
.

Inclusion of the two additional regularization terms in Eq. 4.15 reflects on the functions f, g living
in the RKHS HK . The new space corresponding to the kernel k̃ now has a modified dot product for
f, g ∈ H̃K

〈f, g〉H̃K
= 〈f, g〉HK

+
γI
γA
fTLg (4.17)

where f , g are function evaluations, for example, f = (f (x1) , . . . , f (xl+u))T and L = D −W
is an unnormalized graph Laplacian. Finally, the new kernel corresponding to the modified dot
product can be computed using the

K̃ (xi,xj) = K (xi,xj)− kTxi

(
I +

γI
γA
LK

)−1
Lkxj (4.18)

where kxi = (k (x1,xi) , . . . , k (xl+u,xi))
T and similarly for vector kxj .

Thus, the kernel K̃ can be used in a standard supervised SVM but the solution will include also
the information brought by unlabeled data. This result allows to see what is the effect of introducing
a certain regularization in the framework. For more discussion on the subject refer to [27] and the
references therein.

The formulation of the Laplacian Semi-Supervised SVM problem and its solution is detailed in
Annex C.

Issues Semi-supervised learning may pose certain risks and even degrade the performance [133],
for example when learning from high-dimensional data spaces. It has been recently found that using
Laplacian regularizer can actually lead to degenerate solutions as unlabeled data provided for learn-
ing approaches infinity [95]. Solution to the problem was proposed in [179] by using regularization
based on an iterated Laplacian.

Direct implementation of LapSVM may suffer from scalability issues. Working with dense kernel
matrices scales as O

(
n2
)
for storage and for computation needs as high as O

(
n3
)
[27]. Clearly,

practical application of the described method is limited currently from small to moderatel size data
sets. However, if resorting to linear kernel machines or the high-dimensional data is highly sparse,
then optimization problems can be solved more efficiently in primal [91]. An efficient linear kernel
transductive method was proposed in [132] solving the problem in primal using a finite Newton
method for optimization.

4.2.4 Learning with self-training

Idea Previous approaches are based on the optimization of a global criterion, that extends and
modifies unsupervised and purely supervised classifiers. In contrast, the Self-training [172, 60, 61] is
a wrapper method that itself is based on existing classifiers. The idea is to iteratively increase the
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Figure 4.3: Self-training module

training set by including at each iteration the most confident estimations from the previous output
of the base classifier.

Literature review The self-training approach was proposed as Yarowsky algorithm in [172, 60, 61]
for text processing and for credit score inference using SVM in [89] where one needs to assess the
risk of providing a loan. A generalized iterative self-training framework with a study of conver-
gence properties was studied in detail in [38] and extended different supervised learners like kernel
smoothers, generalized additive models and classification methods into a semi-supervised learner.

Algorithm Given a labeled pattern set L and an unlabeled pattern set U , where |L| = l and
|U | = u, the algorithm consists of the following steps:

1. Define a training set L = {(xi, yi)}li=1

2. Define the training rate parameter 0 < k < l + u

3. Repeat until the unlabeled pattern set U is empty

(a) Train a classifier f (·) using the current training set L;

(b) Classify the unlabeled patterns in the set U and obtain estimations and confidence mea-
sure {(ŷi, zi)}|U |i=1;

(c) Add the k top confidence patterns together with estimation into the set L;

(d) Remove the k top confidence patterns from the set U . Go to step 3.

Graphically the method is depicted in Fig. 4.3.
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Figure 4.4: Co-Training module

Assumptions The performance of self-training algorithm depends on two implicit assumptions:

1. The training set is large and representative enough to train a good initial classifier;

2. The top confidence estimations on the unlabeled patterns are correct;

The first assumption is simple and basically requires a good start up estimations. The second
assumption is crucial since the procedure is iterative and including erroneous patterns will only
degrade the final performance of the classifier. There is a risk of error reinforcement in the early
training iterations, especially for small sized training sets. The method typically works well if the
data forms well defined class clusters.

Experiments We present and discuss the experimental results using the self-training in the section
3.4.

4.2.5 Learning with co-training

Idea Co-training [17] is another wrapper method that leverages two cues where each such set is
sufficient to train a classifier. In this setup one classifier “teaches” another classifier by supplying it
with high confidence estimations on the unlabeled samples.

Literature review The method of co-training was proposed in [17] as a solution to classify Web
pages using both links between the pages and both the words present in the web pages. The
same method was applied to the problem of Web image annotation [175, 147] and automatic video
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annotation [164]. Generalization capacity of co-training on different initial labeled training sets was
studied in [153]. More analysis on theoretical properties of co-training method can be found in
[165] for rough estimates of maximal number of iterations. A review on different variants of the
co-training algorithm is given [42] together with their comparative analysis.

It interesting to note the link of both self-training and co-training methods to label propagation
in a graph as discussed in [3, 172]. Similarly, the co-training method was presented in [166] as a
label propagation method on a combined graph built from individual views. Sufficient and necessary
conditions for the co-training to succeed were discussed in the same works in details as well.

Algorithm Suppose that a pattern consists of two parts where each part corresponds to one view

x =
(
x(1),x(2)

)
(4.19)

Given a labeled pattern set L and an unlabeled pattern set U , where |L| = l and |U | = u, the
algorithm consists of the following steps:

1. Define two sets : L1 =
{(

x
(1)
i , yi

)}l
i=1

and L2 =
{(

x
(2)
i , yi

)}l
i=1

2. Define the training rate parameter 0 < k < l + u

3. Repeat until the unlabeled pattern set U is empty

(a) Train the classifier f (1) (·) using the set L1;
(b) Train the classifier f (2) (·) using the set L2;
(c) Classify the patterns in the set U using the classifiers f (1) (·) and f (1) (·) independently;
(d) Add the k top confidence estimations from the classifier f (1) (·) into the set L2;
(e) Add the k top confidence estimations from the classifier f (2) (·) into the set L1;
(f) Remove the k top confidence patterns from the set U . Go to the step 3

Graphically the method is depicted in Fig. 4.4.

Assumptions Clearly, the performance of such approach is dependent on the quality and the
amount of available training data, usefulness of unlabeled data at hand and the measure of confi-
dence. Indeed, authors in [17] state two assumptions which are necessary for the method to work:

1. The classifiers f (1) and f (2) trained on initial training sets L1 and L2 should provide good
enough initial estimations;

2. The two cues should be conditionally independent

P
(
x(1)|y,x(2)

)
= P

(
x(1)|y

)
(4.20)

P
(
x(2)|y,x(1)

)
= P

(
x(2)|y,

)
(4.21)

The first assumption is necessary to have the algorithm bootstrapped. Provided a reliable confidence
measure, few but correct estimations can be sufficient for the algorithm to label the rest of the
unlabeled set iteratively.

The second assumption is important due to complementary nature of the two cues. If this
assumption does not hold, then, for example, a classifier f (1) may provide new training patterns
that are highly similar and thus non-informative for the classifier f (2).



4.3. CONFIDENCE MEASURES 69

Experiments The results using co-training method are presented and discussed in section 3.4.

4.2.6 Conclusion

In this section we reviewed three approaches for semi-supervised learning: semi-supervised SVM,
Label Propagation in a Graph and Co-Training. These methods will serve as a baseline for the
experimental part of this chapter.

4.3 Confidence measures

The primary interest in classification methods is to obtain the class estimates. Some applications
also require or can benefit from also estimating a confidence measure that expresses a belief in
the correctness of the prediction. Therefore, classification outputs can be treated differently, for
example, divided into accepted and rejected groups.

4.3.1 Literature review

The performance of a refined classifier after applying self-training or co-training round will strongly
depend on the quality of confidence measure used to augment the training set with new labeled
patterns. Without claim to be comprehensive and complete, we can group the methods using or
providing the notion of confidence:

1. Using classic Bayesian decision theory
The idea is to model the posterior probabilities in a Bayesian framework such that they can be
used as confidence measure. In [17] used Naive Bayes approach for classification [46] to derive
posterior outputs as a confidence measure. For more classical decision theory refer to broad
literature [46, 59, 156, 155].

2. Derivation from SVM scores
A classical and empirically well performing result for turning SVM scores into probabilities
was proposed in [104] with implementation details in [78]. Very competing performance was
demonstrated using a theoretically motivated non-parametric method in [120] which uses a
simple linear relationship for a region between margins and a simple counting outside. A
binning approach was used in [43] where score values are discretized into pre-defined bins and
the conditional probabilities are computed on per bin basis.
A body of work was done in [4, 5, 90, 9] for speech recognition application with SVM decision
values converted into posterior probabilities or confidence measure by a simple Neural Network.
We separately note the definition of confidence measures in [112]. A modified One-vs-All setup
was proposed such that a test pattern is not compared to the margins in the feature space but
rather to class means found from the training set.

3. Cross-Validation
A principally different approach uses cross-validation to infer confidence measure in [55, 180].
Recently, the labeling confidence was measured in [176] using data editing techniques that
improves the training set by removing probably incorrectly labeled training patterns.

4.3.2 Derivation of confidence measures in the context of the SVM classifier

An SVM-based classifier does not provide the confidence measure of classification out-of-the-box.
Recall that an one-vs-all SVM classifier provides the scores based on the values of the decision
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function assigned to each class

fk (x) =

l∑
i=1

αiyik (xi,x) + b, k = 1, . . . , c (4.22)

where c is the number of classes, l is the number of training patterns and fk (x) > 0 if the pattern
x belongs to the k-th class. The estimated class is usually estimated from the largest positive score
for one-vs-all setup

ŷi = arg max
k=1,...,c

fk (xi) (4.23)

A majority voting is used instead for one-vs-one setups. The scores
(
f1 (x) , . . . , f c (x)

)T are not
normalized and cannot directly be used as confidence estimates. The goal is to provide probability
P (y|x) or a confidence measure z ∈ R+ classifying a pattern x in a class y.

We review several methods computing a confidence measure out of the SVM outputs.

Logistic model (“Logistic”) Following [59], class probabilities can be computed using the logistic
model that generalizes naturally to multi-class classification problem. Suppose that in one-vs-all
setup with c classes, the scores

{
fk (x)

}c
k=1

are given. Then probability or classification confidence
is computed as

P (y = k|x) =
exp

(
fk (x)

)∑c
i=1 exp (f i (x))

(4.24)

which ensures that probability is larger for larger positive score values and sum to 1 over all
scores. In this model, uncertainty can be detected when several classes obtain the scores of similar
values. Unbalanced scores, even all negatives, can yield a high probability for the best class.

Modeling posterior class probabilities (“Ruping”) In [120] a parameter-less method was
proposed which assigns score value

z =


p+ f (x) > 1
1+f(x)

2 −1 ≤ f (x) ≤ 1

p− f (x) < 1

(4.25)

where p+ and p− are the fractions of positive and negative score values respectively.

Score difference (“Tommasi”) A method that does not require additional pre-processing for
confidence estimation was proposed in [145]. The idea is to use the contrast between the two top
uncalibrated score values. Suppose that in a multi-class classification problem with c classes, the
maximal uncalibrated distance for a pattern x was found

k∗ = arg max
k=1,...,c

fk (x) (4.26)

The maximum score estimation should be confident, meaning that other score values are relatively
smaller. This leads to a confidence measure using the contrast between the two maximum scores

z = fk
∗

(x)− max
k=1,...,c,k 6=k∗

fk (x) (4.27)
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Since only the contrast is used, a high confidence could be assigned to a class with a high score,
even if another class has also a positive score. The same could happen to a class with negative score
if other classes receive much lower scores.

In [145] this measure was thresholded to obtain a decision corresponding to “no action”, “reject”
or “don’t know” situation for medical image annotation.

Conclusion These three confidence measures are deduced from discriminative nature SVM clas-
sifier. We noticed that class overlap and reject situations are not actually taken into account. From
this analysis, we will propose a class overlap sensitive confidence measure in Subsection 4.4.4.

4.4 Proposed Time-Aware Co-Training Framework

Introduction We successfully confirmed the utility of multiple feature fusion in Chapter 3. Nev-
ertheless, two aspects were omitted: temporal continuity of the video and relatively small amounts
of annotation.

We now propose an unified framework to combine multiple visual features while leveraging the
available unlabeled data and integrate the temporal constraints implicitly provided by the video.

4.4.1 Temporal Accumulation: Enforcing Temporal Video Continuity con-
straints

Idea Video content has a temporal nature such that the visual content does not change much for
a short period of time. In the case of topological localization indoors this constraint may be useful
as localization changes are encountered relatively rarely with respect to the frame rate of the video.

We therefore propose to modify the classifier output such that rapid class changes are discouraged
in a relatively short period of time. This leads to lower proliferation of occasional temporally localized
misclassifications.

Principle of Temporal Accumulation (TA) Let sti = f (t) (xi) be the output of a binary
classifier for visual cue t and h a temporal window of size 2τ + 1. Then temporal accumulation can
be written as
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(
σ =
√

2
)

sti,TA =

τ∑
k=−τ

h (k) sti+k (4.28)

and can be easily generalized to multiple feature classification by applying it separately to the
output of the classifiers associated to each feature st, where t = 1, . . . , p is the feature type. An
open question is how to select the window h and its size. Natural choices may be:

1. Averaging filter

h (k) =
1

2τ + 1
, k = −τ, . . . , τ (4.29)

An example window with k = 15 is shown in Fig. 4.7 in the left panel.

2. Gaussian filter

h (k) =
1√

2πσ2
exp

(
− k2

2σ2

)
, with τ ≥ 3σ (4.30)

where σ is the standard deviation of the Gaussian. Example window with k = 15 and σ =
√

2
is shown in Fig. 4.7 in the right panel.

Parameters The Temporal Accumulation (TA) module requires setting the size τ for the averaging
filter or the bandwidth σ for the Gaussian filter (σ). By adding the TA module to the baseline SVM,
we define the TA method as shown in right panel in Fig. 4.5. By adding the TA module before the
DAS fusion scheme (see Section 3.3.4), we define the TA-DAS module as depicted in right panel in
Fig. 4.6.

4.4.2 CO-DAS : Semi-Supervised learning from multiple visual features and
classifier fusion

Idea The standard Co-Training method introduced in Section 4.2.5 allows to benefit from the
information in the unlabeled part of the corpus by using it in a feedback loop to augment the training
set. Often it is not known beforehand which classifier performs the best and if the complementarity
properties between the two has been leveraged to its maximum. The proposed method addresses
this issue by providing a single output using late classifier fusion.
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In principle the method consists of two modules: Co-Training and DAS. The two visual cues are
efficiently exploited in the semi-supervised setting of the co-training module while the DAS module
ensures the fusion of the two decision functions. The co-training module can be iterated for multiple
rounds prior the final fusion. Graphically the method is portrayed in Fig. 4.4.

The power and assumptions of the method The power of the method lies in its capability
of learning from small training sets and grow eventually its discriminative properties on the large
unlabeled data set as more confident estimations are added into the training set. The following
assumptions are made:

1. the two distinct visual cues bring complementary information;

2. the initially labeled set is sufficient to bootstrap the iterative learning process;

3. the confident estimations on unlabeled data are helpful to predict the labels of the remaining
unlabeled data;

An attractive property of the co-training method is that the confidence is estimated using the
discriminative classifier and not directly from the raw features. Graph-based methods are indeed
limited by the low-level type of the links that are taken into account. The co-training method uses a
discriminative model that can be adaptive to the data, thus achieving a higher level of discrimination.

Parameters The method is inherently of high level since any confidence-rated classifier {si, zi} =
h (xi,θ) can be used where we denote

• xi - a test pattern;

• θ - a vector of parameters for the classifier;

• si - classifier output;
• zi - a confidence score associated to the classification result;

In the case of the SVM classifier, parameter vector θ represents the learned SVM model: α ∈ Rn
and b ∈ R. To learn a model, a Gram kernel matrix K is needed which is computed from the
training set L and regularization parameter C for soft-margin SVM.

The co-training method requires a number of iterations N or a stopping criterion. Stopping
criteria may be a rule that stops the iterative learning process when there are no confident estimations
to add or there have been relatively small difference between iterations t−1 and t. The parameter-less
version of co-training works till the complete exhaustion of the pool of unlabeled samples.

The method is compared to the baseline semi-supervised learning methods in section 3.4 devoted
to the experiments.

4.4.3 Time-Aware CO-DAS : Injection of temporal information into the learning
loop

Idea The proposed CO-DAS method does not take into account the temporal structure of the
video. We show that the temporal information can be efficiently leveraged while learning a new
appearance model.

The method consists of three modules: co-training, temporal accumulation and DAS. Similarly
to the CO-DAS, the method exploits two visual cues in semi-supervised setup and final decision
fusion. The difference lies in exploitation of the temporal information. Temporal information can
be injected in different parts of the learning chain:
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Figure 4.8: Time-Aware CO-DAS module

1. inside the learning loop of co-training, denoted as the TA-CO-DAS method
We consider the TA module inserted inside the CO module between SVM score computation
and confidence computation, as depicted in Fig. 4.8.

2. after co-training and before the DAS module, denoted as the CO-TA-DAS method

3. in both places, denoted as the TA-CO-TA-DAS method

All three proposed methods are represented schematically in Fig. 4.9.

The power and assumptions of the method These methods can be seen as an evolution of
CO-DAS, therefore the same assumptions and considerations apply. The improvement stems from
intelligent temporal information utilization which is not limited to a mere result post-processing.
When a small portion of test patterns with top confidence estimates are added to the training set,
temporal accumulation applied at this point injects also their temporal neighbor information.

The method is compared to the CO-DAS method as well as baseline semi-supervised learning
methods in section 3.4.

4.4.4 Proposition of a new Class overlap sensitive confidence measure

The one-vs-all setup for multiple class classification is prone to yield ambiguous decisions. That is,
it is possible to obtain several positive scores or even all positive or all negative scores.

Following the analysis from Section 4.3, we propose a confidence measure that penalizes class
overlap (ambiguous decisions) at several degrees and also treats both degenerate cases. By conven-
tion, confidence should be higher if a sample is classified with less class overlap (fewer positive score
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Method / Module Score fusion (DAS) TA in the loop TA before DAS Co-Training module
DAS baseline X

TA-DAS X X
CO-DAS X X

CO-TA-DAS X X X
TA-CO-DAS X X X

TA-CO-TA-DAS X X X X

Table 4.1: Compositions of various time-aware co-training methods

values) and further from the margin (larger positive value of a score). Cases with all positive or
negative scores may be considered as degenerate zi ← 0.

The computation is divided in two steps. First we define the contrast between the best score
and the rest

z0i = f j
∗

(xi)− max
i=1,...,c,i 6=j∗

f i (x)

Then the measure z0i is modified to account for class overlap

zi = z0i max

(
0, 1− pi − 1

C

)
where pi = Card

({
k = 1, . . . , c|fk (xi) > 0

})
represents the number of classes for which xi has

positive scores (class overlap). In case of ∀k, fk (xi) > 0 or fk (xi) < 0, we set zi ← 0.
Compared to the Tommasi measure, the proposed measure specifically penalizes class overlap in

order to avoid assigning a high confidence to a sample that would have several positive score values.
Conversely, compared to the logistic measure, samples with no positive scores yield zero confidence,
which allows to exclude them and not assign doubtful probability values.

4.4.5 Strategies for Visual and Temporal Information Fusion

With necessary methods defined, we can therefore list three big groups of methods:

1. Standard base classifier fusion
The framework simplifies to baseline DAS [116] (See Fig. 4.6 in left panel) and its variant with
temporal score accumulation : TA-DAS (See Fig. 4.6 in right panel).

2. Co-Training enabled
The framework also includes the co-training module as shown in Fig. 4.9 in (a) and (c) panels.
The respective methods are CO-DAS and CO-TA-DAS.

3. Temporal information injection into the learning loop
In addition to Co-Training and DAS fusion, we inject temporal information in the feedback
loop. This gives a rise to the TA-CO-DAS and TA-CO-TA-DAS methods (See Fig. 4.9 in (b)
and (d) panels).

Note that all inputs and outputs of the modules operate with SVM outputs (scores), though it may
not be the case using a different base classifier. See Table 4.1 for a summary of the named methods
and which modules were used to build each of them.
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4.5 Experiments

In this section we conduct the experiments related to the methods introduced in this chapter.
Initially, the goal is to show the baseline performances obtained using label propagation in the
graph, semi-supervised SVM and co-training. Then these results are compared to the contribution
framework featuring multiple modality data fusion in semi-supervised setup enhanced with temporal
constraints.

This section is organized as follows:

1. Data and test setup;

2. Study of confidence measures;

3. Baseline semi-supervised method results;

4. Preliminary results with Temporal Accumulation scheme;

5. Presentation and discussion of results using time-aware co-training method;

6. Conclusions and final remarks

4.5.1 Data and test setup

To show the potential of different semi-supervised learning methods, we selected the IDOL2 database
[86].

From our previous experience in Chapter 3, the Spatial Pyramid Histogram (level 3) features are
the single best performing visual features; this visual feature type is selected wherever we use single
feature classification.

To give more insight about the methods, we follow the same testing setup as in Chapter 3 with
8 supervision levels with training, validation and testing patterns selected at random. In certain
experiments we will explicitly mention and use three supervision levels:

1. Low supervision: 1% of labeling

2. Medium supervision: 10% of labeling

3. High supervision: 50% of labeling

Data pre-processing The data pre-processing step is used to yield compact image representations
from high to very high low level visual descriptors. As described and motivated more in detail in
Chapter 2, high dimensional representations are usually redundant and also pose a risk of over-
fitting from statistical learning point of view. We will use the Kernel PCA [136] for dimensionality
reduction with the use of χ2 kernel [52]. The reduced dimensionality of the embeddings is set to
2’000 dimensions.

4.5.2 Study of confidence measures

Good quality confidence measure is essential for self-training and co-training methods to work. The
quality of the confidence measures might be assessed in different ways. In the present study the
following questions are answered:

1. Which confidence measure performs the best?
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Figure 4.10: Precision of classification for the top confidence estimates: (left) 1%, (middle) 10% and
(right) 50% of supervision

2. What is the impact of supervision level?

3. What kind of errors are the cause for erroneous top confidence estimations?

Two properties of the confidence measures derived from the SVM classifier: acceptance and rejection
capabilities [3] are studied as well.

Acceptance: Top confidence estimates Intuitively, it is expected that the highest confidence
estimates are correct with more errors as this measure gets lower. Therefore, one can compare
different measures by evaluating the correctness of the p highest confidence estimates. In Fig. 4.10
the four confidence measures are compared at three supervision levels. The results show that for
this data the proportion of the top confidence estimates increases as the amount of labeled patterns
is raising from 1% to 50% of the total size of the database. The confidence measures perform very
similarly with exception of Ruping measure which seem to degrade at higher supervision levels.

Erroneous estimations may be caused by different factors: poor discriminability of the descrip-
tors, large class overlap, small training set and due to label noise. Each depicted frame in Fig. 4.11
show the latter type of misclassification: label noise or the class boundary problem. The problem
cannot be resolved by a confidence measure alone, since visual content may not correspond to the
labeling. This kind of error should be expected in all practical indexing setups.

This experiment allows to conclude that a certain amount of training data should be provided for
the training of the visual appearance model for the score-based confidence measures to be reliable.

Rejection: Leave-one-out class A different aspect of a classifier is its rejection capabilities.
Such situation may arise if the training set is of not sufficiently large or even missing some classes
altogether. In practical applications it may be useful to put aside these patterns, for example leaving
them for a post-processing stage or requiring explicit labeling by a human expert. This behavior
requires abstention or no decision from a classifier [3].

Recall that we use c-class SVM classifier in one-vs-rest setup such that every unlabeled pattern
xi from class ωk is expected to receive a score

s =

{
sij > 0 j = k

sij ≤ 0 j 6= k
(4.31)
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Figure 4.11: High confidence misclassification examples : (left) low, (middle) medium and (right)
high supervision levels

If every class data has been presented for the training phase, in the ideal case only one binary
classifier should return positive score. However, this is not the case if some class is too small or even
missing during the training phase.

Suppose that the class ωk is excluded, leaving the training set composed of data from (c− 1)
classes. One cannot expect that the (c− 1) trained binary classifiers should all return negative scores
for a pattern xi ∈ ωk since the information about the class ωk is missing in the model. The only
available information are the scores returned by the (c− 1) binary classifiers.

In Fig. 4.12 an attempt to infer the rejection is made through the use of confidence measures.
We compare the confidence measures returned for all samples of one class in two configurations:
when the class was present or when it was missing during the training. In the experiment, every
class has been excluded in turn and four confidence measures computed on the excluded class testing
patterns. The final result is shown as a histogram of all confidence estimates over the 5 classes. Each
row of the figure corresponds to a lowest supervision level to highest.

The results show that score-based confidence measures in general are not always a reliable esti-
mate for the rejection. Simple use of the maximum score is not informative as for Logistic measure.
Situation is different for the “Tommasi” and the proposed measures where relatively more rejected
class patterns receive close to zero confidence. This can be explained by the usage of score contrast
in the computation of the measure. If a pattern belongs to the excluded class, its scores tend to be
more uniform over the binary decision functions and hence results in a small contrast and perhaps
in random class overlaps. Enforcing the constraint of non overlap of the classes with the use of
the proposed confidence measure, even more patterns from excluded class receive a close to zero
confidence.

Comparison of the histogram reveals the problem of reliable rejection for small-sized training
sets. As shown in top panel in Fig. 4.12, a high confidence measure (z > 1) can indicate reliable
estimate. Rejection can be inferred for z < 0.5 using the “Tommasi” and the proposed measures.

4.5.3 Baseline semi-supervised method results

In this subsection we build the basis of the results obtained using four approaches for semi-supervised
learning. Namely, label propagation, self-training, co-training and semi-supervised SVM (Laplacian
regularized SVM). Our goal is two-folds: compare their best performances and point out their strong
and weak sides. The comparison is always done with respect to baseline SVM. The parameters are
estimated from the validation set as discussed earlier.
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Figure 4.12: Confidence measure for rejection : rows (low, medium and high supervision), columns
(Logistic, Ruping, Tommasi and the proposed class-overlap sensitive confidence measures)
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Figure 4.13: Class imbalance issue for Label Propagation method
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Figure 4.14: Label Propagation in a sparse patch graph
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Figure 4.15: Label Propagation : influence of labeled nodes in label propagation process
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Figure 4.16: Label Propagation - Graph links found using the LNP algorithm (top) EASY: from
cloudy1 to cloud2 (bottom) HARD: from cloudy1 to sunny3; Best viewed in color.
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Label Propagation Label Propagation is an intuitive method in semi-supervised method family.
We introduced the method in subsection 4.2.2 and apply it to our test database.

We show that the method can yield very competitive performances compared to other semi-
supervised learning but is also very sensitive to the way how the graph is built and the choice of
parameters.

Recall that in all graph-based methods (e.g. dimensionality reduction) we used a full graph
capturing all possible affinities. The empirical results using such full graphs with Label Propagation
showed a serious problem of class imbalance. Indeed, consider a fully connected graph and an image
which is similar only to a subset of the database. It is clear, that contributions of irrelevant links,
though expected to be weaker individually than for similar image links, will be overwhelming. In
Fig. 4.13 we show relative labeled image proportions in three supervision scenarios. The empirical
results with Label Propagation using this realistic scenario and a full graph confirmed the problem:
all unlabeled images receive class “CO” label which is clearly incorrect. That is, the global accuracy
of such classification resulted in probability of picking the largest class from the training set.

These results show that a choice of graph is critical compared to other graph-based learning
methods. Motivated by temporal continuity of the video and assumptions of locality, we built a
sparse graph (reviewed in subsection 4.2.2) using the locally linear patches method [163]. The graph
construction is governed by a parameter k which is the size of neighborhood for each node. The
classification results for different patch sizes and three supervision levels are shown in Fig. 4.14.

In attempt to visualize the graph connectivity properties for two pairs of videos, we show in
Fig. 4.16 the discovered reconstruction weights in two typical cases : EASY (the links from
“minnie_cloudy1” to “minnie_cloudy2”) and HARD (the links from “minnie_cloudy1” to “min-
nie_sunny3”) respectively. The colors on abscissa axis represent some class frames and larger than
zero stem elements as positive matches between the two video sequences. We observed empirically
that for two same light and close time video sequences (top pair), the links are highly consistent and
almost never link different class images of the two videos. Moreover, occasionally more potentially
useful links in the same class segments are found that is clearly advantageous for label propaga-
tion algorithm. Different situation is revealed for different light and distant video sequences. Often
there are almost no links from video 1 to video 2 and occasionally erroneous links are found that is
clearly harmful for label propagation algorithms. These considerations can explain relatively high
classification rate for EASY cases and considerably lower performance for HARD cases.

Clearly, a properly built graph yields in very good classification performance. Keeping in mind
that video labeling has been done in a sparse manner and that graph approximation with small
local patches results in a sparse graph, the results are not very surprising. Even for as low as 1% of
sparse video annotation resulted in 90% of correct class estimations on the rest of video. We outline
the importance of the size of the local patch which seems to be more important for low supervision
levels. For supervision of 10% and up to 50%, the classification results appears to be insensitive to
the size of the local patch.

Finally, we study the impact of Label Propagation method parameter α that controls amount of
label information that a particular node receives from its neighbors. In Fig. 4.15 we show the global
classification accuracy on validation data with respect to the parameter. The impact of the patch
size is also shown. We see that the parameter has little influence for small patch sizes and gets more
important as its size gets larger (e.g. k = 200) and supervision level is lower. Remarkably, in most
cases the best selection of the parameter is in the region α ∈ [0.8; 0.9]. Recall that for

1. α is close to 1, label propagation is mostly governed by the propagation process by taking into
account the graph globally; the influence of labeled nodes is small;
Therefore, if the graph is correctly built, accent put with a large α will ensure correct label



84 CHAPTER 4. TIME-AWARE CO-TRAINING FRAMEWORK

10
0

10
1

60

70

80

90

100

Supervision level (%)

G
lo

ba
l a

cc
ur

ac
y 

(%
)

 

 

Standard SVM

Laplacian SVM

Figure 4.17: Semi-Supervised learning Laplacian SVM

propagation even with few labeled nodes.

2. α is close to 0, large weight is given to the initially labeled nodes and the global graph structure;
In this opposite case, more accent is put on the labeled nodes of the graph. The labels are
aggressively propagated to their neighbors which may pose a risk in the case of class imbalance
and noisy labels.

For the data at hand, we note that a large value for α performs the best (selecting α = 1 leads to
a degenerate situation where no labeled information is taken into account). Thus, it indicates that
the graph is modelling well the data and that relatively few labels are needed for mostly correct
classification. We stress the point that for different labeling scenarios (for example, one labeled and
one unlabeled video sequence), the selected graph construction method may not be optimal which
may be due to problematic inter-video linking issues as depicted in Fig. 4.16.

Semi-Supervised SVM (Laplacian SVM) Semi-supervised SVM is an extension of standard
supervised SVM and is reviewed in subsection 4.2.3. The idea is to leverage the unlabeled part of the
data set in order to learn a better discriminative large margin classifier. In this experiment we com-
pare the baseline soft-margin SVM and Semi-Supervised Laplacian SVM [91] classifier performances
on image data. The goal is two-folds since we attempt to answer two questions:

1. Can we learn a better large margin classifier taking into account the unlabeled information?

2. Can we obtain performance increase at low supervision levels?

We summarize the classification results in Fig. 4.17 comparing standard supervised SVM and semi-
supervised SVM. Cross-validation was used at each supervision level separately to obtain the best
parameters.

The comparison reveals that at very low supervision levels (less than 3-5%) the semi-supervised
SVM performs worse than standard SVM while substantial gain is achieved for higher than 5%-10%
of supervision. The performance decrease can be explained by tedious parameter selection and the
selected kernel function. Due to very costly cross-validation procedure for Laplacian SVM, we fixed



4.5. EXPERIMENTS 85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
65

70

75

80

85

90

95

α

G
lo

b
a

l 
a

c
c
u

ra
c
y
 (

%
)

 

 
1%

2%

3%

5%

10%

20%

30%

50%

Figure 4.18: Effect of selecting fusion parameter α for DAS fusion

the ambient regularization parameter γA = 0.01, used very restricted list of intrinsic regularization
parameters γI and finally used RBF kernel with its parameter σ set using Gehler’s heuristic [54].

We conclude that for image classification task the usage of semi-supervised SVM can be useful
to learn a better discriminative separating margin while practical difficulties of setting multiple
parameters may be encountered, especially for larger data sets. Our practical results hint that
parameter setting is more sensitive, and thus expensive, for low and very low supervision scenarios.
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DAS; (middle) cross-validation procedure selected amount of top confidence patterns to be added;
(right) cross-validation procedure selected DAS mixing parameter α
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Figure 4.20: Summary of time-aware co-training methods: (left) same light, close time, (center)
different light, close time, (right) all pairs of videos

4.5.4 Presentation and discussion of results using time-aware co-training
method

In this subsection we study several variants of multiple cue learning methods on the base of co-
training framework. Contrary to previous labeling scenarios, we test all possible video pairs (labeled
and unlabeled video sequence) and report the averaged results. These results are summarized in
Fig. 4.20 and show the performance of respective baselines in comparison to co-training enabled
methods. The global accuracy measure is plotted versus percentage of added top confidence patterns
in one iteration of feedback in co-training.

We start with simple methods and build right up to the complete multiple cue fusion method in
the following order:

1. High level fusion, Co-Training disabled learning
We consider two methods: DAS and TA-DAS.

2. Co-Training enabled learning
We consider one methods: CO-DAS

3. Co-Training enabled with temporal information injection
We consider two methods: TA-CO-DAS and TA-CO-TA-DAS

Co-Training disabled learning Standard DAS and temporal accumulation enabled DAS meth-
ods are the two baselines which are shown in Fig. 4.20. Performance of standard DAS performs
is rather insensitive to mixing parameter selection. If two distinct visual features are relevant for
classification then their linear combination performs at least as good as the weakest classifier. See
left panel of Fig. 4.18 depicting influence of the mixing parameter at different supervision levels.
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Figure 4.21: Performance of the proposed methods in low supervision scenario: (a) 5%, (b) 10%, (c)
20% and (d) 100% annotation of the training video

The DAS scheme can be boosted using the temporal accumulation scheme (TA-DAS) and ex-
perimental results confirm this. We argue that this is possible thanks to the smoothing procedure
which eliminates random score error and finally a proper selection of the mixing parameter allows
to profit from two visual cues using the DAS fusion module.

Co-Training enabled learning We believe that injection of top confidence estimations of one
classifier into the training set of another one (one iteration of co-training feedback loop) may boost
the performance. Indeed, empirical results show that relatively small amount (see Fig. 4.20) of top
confidence estimates can boost the performance in one co-training loop.

Our experiments showed that often the overall performance increases over the baseline DAS
method within the few very first iterations, afterwards it starts to decrease slowly towards the
baseline. This behavior only reflects the overall quality of the confidence measure - it is capable to
correctly classify the initial top confidence patterns, then more errors are introduced and the overall
performance suffers.

In Fig. 4.19 we present the results obtained using CO-DAS method in the random sampling
scenario of labeling. We performed only one co-training iteration in order to portray the efficiency
of one feedback loop. Together with global accuracy measure of classification (left panel), the best
parameters selected by the cross-validation procedure are reported as well (middle and right panels).
In first place, we note an overall classification performance improvement at all supervision levels
with improvement being the largest at higher supervision levels. Analysis of the best validation
performance parameters reveal that relatively large amount of top confidence patterns are added to
the training set. As well, notice the large DAS method α values which reflects the fact that at lower
supervision levels the best performing single feature (SPH features) should be attributed the largest
weight. Finally, notice the very low amounts of top confidence patterns selected to be added at high
supervision levels by cross-validation procedure.
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Co-Training enabled learning with temporal information injection One step further to
achieve higher accuracy levels can be inclusion of temporal structure of the video which has not been
taken into account. Empirical results using direct application of temporal accumulation scheme show
that substantial performance gain can be obtained.

Motivated by success of the co-training method, an attentive reader may notice that the top
confident patterns can be detected all across the video. At this point, the temporal accumulation
scheme can be applied and temporal neighbors of the high confidence estimations can be included
into the training set.

The idea to use co-training to detect high confidence estimates and then feed temporal accumu-
lation result can be implemented in various ways. Immediately it may not be clear in which part of
the processing chain the temporal accumulation should be performed. We evaluate two possibilities
of inclusion of temporal information:

1. within the co-training feedback loop;

2. within the co-training feedback loop and prior classifier fusion using DAS module;

The classification results for all conditions show remarkable performance gain for both methods in
comparison to baseline DAS, TA-DAS and also CO-DAS. Notice also the striking difference between
both time-aware co-training methods. The results for the top performing method TA-CO-TA-DAS
hints that temporal accumulation should be done both in co-training feedback loop and also prior
classification fusion.

Low supervision scenario In real world applications it is not rare to possess a very limited
amount of training data. To assess the performance of the proposed methods in the case of low
amounts of annotation, we artificially lower the amount of provided ground truth from 100% to
20%, 10% and 5% percent per video sequence respectively while staying in the video versus video
test setup. The average amount of frames in one video sequence is 945 frames so the respective
amounts of labeled images is in average 945, 189, 95 and 47 images respectively. The amount of
labeled images per class would be then even lower by roughly dividing these figures by the number
of classes, which is 5 for this database.

In Fig. 4.21 the performance obtained on all 132 pairs of videos of the proposed methods and
their respective baselines is shown. At 5% supervision we see that the time-aware co-training method
does not provide any significant performance increase neither it harms the final performance perfor-
mance. The major performance increase has bee achieved using temporal accumulation scheme only.
As only one co-training feedback loop was performed and in the light of very low supervision, the
lack of significant performance increase is not surprising. Qualitatively different picture is obtained
when increasing supervision level up to 10% and 20% respectively. There the power of temporal
accumulation scheme combined with the co-training method begins to bring the fruits. Finally, at
100% annotated training video we obtain a clear demonstration of leveraging both temporal struc-
ture of the video and confident estimations from the testing video to boost the final recognition
performance. Notice that for most supervision levels cases around 20% of the test video images re-
ceive correct high confidence estimations and provide a consistent performance improvement. This
was made possible by temporal accumulation scheme effectively removing occasional misclassifica-
tions and by the capacity of the proposed confidence measure to detect the high confidence test
patterns to improve the quality of learned visual appearance model for location estimation.
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4.5.5 Conclusion

In this chapter a time-aware semi-supervised learning method for image-based localization was pro-
posed. The developed method was shown to be an attractive alternative to state-of-the-art semi-
supervised learning methods such as Label Propagation in a graphs, Semi-Supervised SVM and
standard co-training for video content indexing with respect to topological localization problem. We
argue the interest of using the method for topological localization from the video based on the use
of unlabeled information during the appearance model learning, temporal structure of the video as
well as advanced discriminability power of the usage of two complementary global descriptors. Eval-
uated on the controlled environment database, these considerations explain the superior recognition
performance of the method compared to the baselines as well as more advanced methods which we
evaluated in the current study.

We would like also to outline the modular nature of the method which consists of diverse standard
building blocks. New building blocks such as novel visual features, dimensionality reduction, classifier
or any other processing module can be easily integrated. This modularity leaves room for future
extensions and improvements.

Finally, the method features far more efficiency compared to the state-of-the-art methods for
semi-supervised classification. Computation and especially memory demands are much lower when
working on large-scale databases. This matter will be considered in Chapter 6, where evaluation of
the method is conducted on a large corpus of videos.
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5.1 Introduction

For visual object and scene recognition multiple visual features were developed. One of state-of-the-
art features for scene recognition uses spatial pyramid representation initially proposed in [77]. Our
main contribution of this chapter is to render these visual features invariant to spatial translation
and evaluate them in our standard benchmarks. The objective is to evaluate if such descriptors can
be improved with the goal of making them more appropriate for low supervision scenarios.

The chapter is organized in several sections. A brief literature review is given in Section 5.2
and followed by discussion on several state-of-the-art methods of interest in Section 5.3. In Section
5.4 we formalize supervised and semi-supervised SVM approaches and conclude with experimental
results in Section 5.5.

5.2 Literature Review

5.2.1 Translation invariant Spatial Pyramid Histograms

In this chapter we review state-of-the-art Spatial Pyramid Histograms [77] and contribute with novel
derived visual features featuring spatial translation invariance.

Brief literature review Spatial Pyramid Histograms [77] has enjoyed particular interest from
pattern recognition community. Created to remedy the lack of spatial information in Bag of Visual
Words [37, 100, 134], the visual features resulted in a rich and discriminative source of information
for scene and object classification. Numerous studies were then conducted to improve further the
discriminability of the visual features. In [129] the more sophisticated image region division rules
were studied and combined with the power of multi-resolution histograms. Spatial pyramid coding
together with improved word weighting schemes was studied in [174]. Significantly more compact
features, while being as performing as original Spatial Pyramid Histograms, were proposed in [70].

Review of Spatial Pyramid Histograms The features belong to a global image descriptor
family. Spatial Pyramid Histograms are created over a grid of segments of an image at different
scales and where the resulting Bag of Visual Words histograms are concatenated.

The power of the approach possibly lies in the fact that both local and global information is
captured by the use of fine to coarse grid of regions. Order-less statistics of the region as histogram
of local features effectively captures the information at particular scale and spatial locality.

The choice of the low level features can be arbitrary and may be be as well as simple intensity or
gradient values and up to sophisticated local features as SIFT, SURF and others. In original paper
[77] authors use densely sampled gradient magnitudes at two different scales and at 8 orientations
as well as densely sampled SIFT over 16 × 16 size patches with 8 pixel spacing. This is done in
order to capture also information from relatively homogeneous regions of an image.

Indeed, a study in [103] reveals that humans are able to recognize scenes not paying attention
to details. Importance of both global and local information for scene recognition was discovered in
[161].

Perspectives of improvement Numerous evaluation of the Pyramid Histogram visual features
proved the capacity to capture relevant low level visual information on challenging databases as on
Caltech-101 in [77, 129], Caltech-256 in [129], on 15-scene in [174] and many others. In previous
chapters we evaluated a selection of visual features among which this feature type was found to be
the top performing single visual feature.
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Figure 5.1: Issue with translated region of interest (translation occurred from red to blue region of
interest)

Nevertheless, in the context of video indexing we are constantly facing the problem of the lack
of training data which lead us to explore various complex semi-supervised learning techniques. Re-
call that the displacement of a wearable video camera are basically of horizontal nature when the
person turns, therefore we propose to provide a translation accounting version of Spatial Pyramid
Histograms which may reduce excessively large variability of the low level features. Indeed, suppose
that a small horizontal translation occurs as portrayed in Fig. 5.1. It is evident that some regions
are shifted with respect to the initial placement of the region of interest and result in different rep-
resentations of basically same visual content scene. The effect may be more pronounced at finer grid
sampling as some regions may end up in different parts of the concatenated histogram.

In this chapter we propose to exploit the kernel learning framework to achieve a certain level of
invariance with respect to such translations.

5.2.2 Methods and applications incorporating invariance

Brief literature review Practical applications of invariance enforcement were found for EEG
signal reading classification [107, 111] where imaginary movements of the left and right hands are
supposed to be detected. Scaling and rotation invariance [108] is useful for face recognition due
to large variability of the visual appearance, light conditions and in the presence of noise. Optical
Character Recognition (OCR) is one of applications enjoying particular attention because of high
reliability and robustness requirements in practical applications. The performances of multiple
methods incorporating invariances for OCR [109, 57, 26, 30, 81, 58] showed promising results. A
challenging problem is that of object classification [110, 53] where local transformation invariant
descriptors provided an interesting gain of performance using tangent approximation.
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Common methods enforcing invariance The transformation invariance can reduce excessively
variable input space and therefore render learning of the separating hyperplane in the context of
SVM an easier task.

Following [125], there are three large groups of methods using transformation invariance in the
context of SVM:

1. Virtual examples [101, 124]

2. Jittered samples [39]

3. Building transformation invariant kernel [110, 111, 131, 26]

The first method augments the training set with artificially crafted patterns in a hope that transfor-
mation invariance will be taken into account. In the context of SVM, support vectors patterns are
considered and then new virtual support vectors are obtained after a certain transformation. The
intuition is to expect the new virtual patterns to become support vectors after another iteration of
learning. If so, the decision hyperplane may take the desired shape. Despite its ease of interpreta-
tion, this approach may not be appropriate in practical applications due to its increasingly growing
computational demands.

The jittered sample method is similar to virtual support vector creation method. In this method
the transformations take place at kernel level by moving the inputs of the kernel function using some
transformation. The best match is kept. The advantage over virtual support vector method is that
training time can be in some cases considerably reduced. A disadvantage may be noticed in the
testing phase, since the jittering should be carried out here too.

The last method uses an elegant formulation such that a change of representation or a mapping
to a more suitable space of the data yields invariance properties. Remarkably, the transformation
invariance enforced using this method will be seen as a design of a new kernel without changing
the internals of the underlying learning machine. In this chapter we consider the methods from this
group.

See [106] and [76] for a more complete and detailed review of the methods and related works
incorporating invariance.

5.3 Prior information

Prior information in SVM framework Lets introduce the invariance property in general terms
in the context of Support Vector Machines (SVM). Recall that the solution to the regularized learning
problem in the context of linear kernel SVM is a function

f (x) =
l∑

i=1

αiyi 〈xi,x〉+ b (5.1)

or equivalently

f (x) = wTx + b (5.2)

using separating hyperplane notion where x,xi,w ∈ Rd and αi, b ∈ R. As previously, we call the
output f (x) ∈ R as decision value.

Invariance property can be seen as the invariance of output f (x) with respect to a small pertur-
bation of a pattern x along a specific path. In more general terms, the decision value can remain
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Figure 5.2: Illustrating invariance : (left) standard SVM, (middle) Semi-Supervised SVM, (right)
Invariant SVM

unchanged when the pattern is transformed by some operator L. The transformation can be gov-
erned by several local transformations v = 1, . . . , p giving a rise to an operator Lv. In the following
discussion we will use 1-parameter operator which we denote as Lt corresponding to horizontal
displacement.

Graphical intuition The property of invariance can be useful for the classification task in the
context of SVM. Let us consider a simple classification problem depicted in Fig. 5.2.

The problem consists of two distinct class patterns and the goal is to find the simple model
corresponding to Eq. 5.1. In standard supervised SVM setup the separating hyperplane can be drawn
midway between two points as depicted in left panel. Notice that without additional data patterns
or some other prior information about the data, there is no reason to prefer another hyperplane
which does not maximize the margin.

Given also some unlabeled data, one can resort to semi-supervised SVM which can find a margin
passing through low density regions. Notice the change of the hyperplane and the margin around it
from the standard supervised SVM.

Finally, suppose that there exist a tangent subspace around each training patterns such that the
decision value is locally invariant on that manifold.

This intuitive analysis shows that a better model can be learned with less training data if a prior
knowledge is leveraged properly.

5.4 Invariant Support Vector Machine Formulation

Consider a standard classification problem with a training set L = {(xi, yi)}li=1 and unlabeled set
U = {xi}l+ui=l+1 where x ∈ Rd and y ∈ {−1,+1}. Given a valid kernel function

k (xi,xj) = 〈Φ (xi) ,Φ (xj)〉 (5.3)

a non-linear mapping function Φ : R → H is implicitly induced in RKHS (See Chapter 2 for a
review and references). In the case of SVM, the decision function can be written as follows

f (x) =
l∑

i=1

αiyik (xi,x) + b (5.4)

where the real-valued coefficients {αi}li=1 and b ∈ vR are found solving the Quadratic Program
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J (α) =

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjk (xi,xj) (5.5)

subject to the constraints
∑l

i=1 αiyi = 0 and αi = 0, i = 1, . . . , l. See Chapter 2 for a review on
SVM classifier.

5.4.1 Incorporating invariance

As suggested early in [155] and more recently in [26], we consider that the local transformation
operator Lt applied on the data should not affect the class label.

Suppose that a pattern z is locally transformed in Ltz by some pre-defined 1-parameter trans-
formation t. Then we can assume that a tangent vector

δzi = lim
t→0

1

t
(Ltzi − zi) =

∂

∂t

∣∣∣∣
t=0

Ltzi (5.6)

associated to the pattern xi defines a direction in the input space along which the decision
value ideally should not change. Following [26], we can therefore require that the maximum margin
separating hyperplane w ∈ Rd to be orthogonal to the tangent vectors in Eq. 5.6. An important
point is that the possible margins which cross the tangent vectors are penalized therefore resulting
in a restricted space of solutions in the form of Eq. 5.4.

This leads to a regularized formulation of the standard hard-margin SVM

arg min
w

(1− γ) ‖w‖2 + γ
l∑

i=1

〈w, δzi〉2 (5.7)

subject to the constraints yi (〈w, zi〉+ b) ≥ 1 and where the parameter 0 ≤ γ < 1 governs the
amount of invariance incorporated in the solution. Notice that for γ = 0 a standard hard-margin
SVM is obtained.

Following [26], a regularized covariance matrix is computed from all tangent vectors

Sγ = (1− γ) I + γ
n∑
i=1

δzi · δzTi (5.8)

can be used to transform the patterns

zγi = S
− 1

2
γ zi (5.9)

and then used in the standard SVM classifier. Hence, incorporating invariance using tangent
vector approach can be as well seen as a pre-processing step.

5.4.2 Linearization of the input space

The previous analysis is valid for linear feature space. As reviewed in Chapter 2, the non-linear
nature of the input space can be accounted for by a appropriate change of representation. Assuming
that the relevant dynamics of the data is described by its variance, then the change of representation
can be done using PCA or its kernelized version Kernel PCA [125]. Idea is to project the data onto
the maximum variance directions which is linear for PCA and non-linear depending on the choice
of the kernel for Kernel PCA.
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After the computation of perturbed patterns, Out-of-Sample extension of the Kernel PCA em-
bedding may be done on Ltz

zi = ATkK (xi) (5.10)

where K (xi) = [k (xi,x1) , . . . , k (xi,xn)]T and Ak is a matrix with k largest eigenvector expan-
sion coefficients (See Chapter 2).

Note that the proper kernel function should be used and that the projection operation can result
in a loss of information.

5.4.3 Algorithmic perspective

In practice, little modifications to standard kernel learning methods are necessary to include de-
scribed 1-parameter invariance. We consider here the non-linear SVM case.

Suppose that our goal is to enforce horizontal translation invariance for Spatial Pyramid His-
togram [77] visual features (see section 5.2.1). The following steps can be taken:

1. Compute multi-level Spatial Histogram signatures xL and xR for two horizontally overlapping
regions of an image

2. Build the χ2 kernel Gram matrix KLL from left region patterns xL

3. Compute the m-dimensional embeddings zLL for Gram matrix KLL

(a) Compute m top eigenvalue {λi}mi=1 and eigenvectors {ei}mi=1 of the Gram matrix KLL;
(b) Populate the matrix Ak with k largest eigenvalue whitened eigenvectors ẽi = ei√

λi
;

(c) Construct embeddings matrix ZL = ATkKLL;

4. Use Out-of-Sample Extension to compute embeddings for right region patterns

(a) Build the χ2 kernel Gram matrix KLR comparing left and right region patterns xL and
xR;

(b) Construct embeddings matrix ZR = ATkKLR;

5. Compute embedding difference ∆Z = ZR − ZL

6. Estimate sample covariance matrix S = ∆Z · (∆Z)T

7. Inject invariance by setting 0 < γ ≤ 1 and building Rγ = (1− γ) I + γS

8. Compute translation invariant embeddings ZTI = R
− 1

2
γ ZL

9. Train and the standard SVM classifier on the translation invariant embeddings ZTI

5.5 Experimental Results

In this section we present the experimental results for the IDOL2 database [86] using Spatial Pyramid
Histogram visual features. The main goal is to assess the usefulness of the invariance enforcement
and reveal the test cases when it is effective.

We emphasize the choice of horizontal translation invariance by the matter of fact that the
principal movement of the robot platform is horizontal displacement.
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Figure 5.3: Random sampling scenario: (left) performance of standard and invariant SVM at varying
supervision levels; (right) effect of the invariance regularization parameter
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time pairs; (right) all video pairs
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Evaluation setup The comparison between standard soft-margin SVM and invariance enforced
SVM is done using two annotation scenarios. In the first scenario we follow the random sampling
strategy as in all previous experiments, while in the second video versus video strategy for all the
possible pairs is employed. In the latter scenario, one video sequence is divided in training and
validation parts, while the second video sequence is left for testing purposes only.

Discussion of results In this basic evaluation the main accent was put on validation of spatially
translation invariant visual features in low supervision situations. Lets review the two labeling
scenarios in turn.

The random labeling scenario has been widely used in the previous chapters and can be considered
as a standard classification problem. In Fig. 5.3 in the left panel we compare classification accuracy
of standard soft-margin SVM (on BOVW and SPH features) and invariance enabled SVM (SPH
features) classifier results. We can notice the overall superiority of SPH over BOVW features which
is clearly due to spatial information encapsulated in the former. Therefore in the following discussion
we focus only on improvement of the SPH while the same invariance enforcement can be carried out
also for the BOVW.

Both methods (standard and invariant SVM on SPH features) provide relatively good perfor-
mance for as low as 1-5% of labeled data with invariant SVM being superior. However, we notice
that there is a room of improvement since with 10%-20% of training data the classification accuracy
achieves around 90% which is a good result. Spatial translation invariance is clearly useful at very
low supervision levels. The effect diminishes as the training set grows in size past by 10-20% of the
total size of the data set. These results suggest that it is possible to find a good separating hyperplane
even at very low supervision levels given that the invariance property is enforced correctly.

A different aspect concerns the amount or the strength of invariance injected which in our
exampled is controlled by increasing regularization parameter γ from 0 to 1. From the right panel
of Fig. 5.3 it is clear that a stronger emphasis on invariance is necessary for small training sets
which is around 1-5% of the data for our test example. Notice that no gain can be brought at
higher supervision levels where apparently the training set is large enough to bring information
about invariance properties useful for classification task. Authors in [107, 111] arrived at the same
conclusions in face recognition task where scale and rotation invariance was incorporated.

For video-vs-video scenario we tested all possible pairs of the database consisting of 12 video
sequences. The training set is sampled from the first video, while the testing set corresponds to
the second video. We divided the video pairs in two large groups: same light and close time pairs,
as well as different lighting condition and different time pairs. The summary of this evaluation is
shown in Fig. 5.4 where the right figure is averaged performance over all pairs. First of all we can
notice that the best performance is lower in comparison to the random labeling scenario. Secondly,
notice in the middle panel of the figure the harmful impact of the light conditions and new visually
different content. We observe a clear and constant improvement of invariant SVM at all supervision
levels, lighting and new visual information introduced by a time span between some pairs of videos.
All these observation in video versus video scenario allow us to observe a typical lack of training
data and practical utility of translation invariant visual features.

5.6 Conclusion

In this chapter, a promising avenue of efficient exploitation of invariance properties and thus limiting
excessive variability of the visual information has been discussed and evaluated for the task of image-
based localization. We note a particular usefulness of invariance in the cases of small or insufficiently
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representative training sets which is more likely to occur in real-world automatic indexing conditions.
Our demonstration on the publicly available data shows that the prior knowledge can be taken

into account as a mere pre-processing step in the familiar framework of kernel learning. Therefore,
the approach has an interesting modular nature that could be exploited to speed up to computation.
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6.1 Introduction

In the previous chapters we evaluated our own methods for image-based localization compared to
baseline and state-of-the-art methods on the IDOL2 [86] database. The database has been captured
by a mobile robot platform in a well controlled environment which may not be always the case
for the video captured by a conventional person. The goal of this chapter is to evaluate the best
performing methods on a large corpus of video data captured in a realistic setup.

6.2 Context

Introducing the project With rapidly increasing proportion of elderly population in Europe,
severe health-care problems emerged. In a near future a large percentage of the elderly people will
be touched by the Alzheimer disease. Some estimates even claim that each tenth of the population
can be concerned by the disease. The disease is supposedly best treated if detected in early stages.
A recent study [40] claims that the first signs of the disease can be detected using MRI by measuring
structural changes in the brain.

To answer this challenge, an unique project IMMED was launched in 2009 as a continuation of
the PEPS project. The project occupies unique place among other projects solving the problem
of aging population and enjoys particular interest in the sphere of research and development at
national and European levels. The originality of the project lies in early detection of instrumental
and memory disorders in ecological environments of potential patients without the need to install
additional equipment and systems as in [99, 184].

Project tasks and the place of the study There are three main tasks of the project:

1. Specification and development of the wearable recording device;

2. Develop the algorithms for video content structuring by detecting the localization and the
activities carried out by a person;

3. Develop efficient cross-media fusion algorithms for joint audio and visual information exploita-
tion;

The place of the current work is in the task for topological localization indoors. The main efforts
were focused to develop the algorithms capable to localize the potential patient using only visual
information recorded by the wearable video camera. The computed localization output is then used
as an input for action recognition framework being researched and developed by the project partners.

Wearable video camera acquisition device As a part of the project, a light and highly portable
acquisition device prototype was developed. The prototype contains the lightweight GoPro video
camera (See Fig. 6.1) to be worn by a potential patient in his or her casual environment at home.
When attached to the person’s shoulder, the prototype records the instrumental area in front of
patient and the local context using a fish-eye High Definition video camera. A short technical
specification of the video camera is given in Table 6.1.

6.3 Description of the corpus

After multiple recording sessions in realistic setup, a large corpus of 26 videos acquired using a
wearable video camera worn by different patients and volunteers in their ecological environment has



6.3. DESCRIPTION OF THE CORPUS 103

Lens Type Fixed focus, 0.6m - ∞
Aperture f / 2.8

Angle of View 127◦ at 1080p, 170◦ at 960p and lower
Recording Resolution 960p - 1280 x 960 @ 30 fps

Sensor Type 1 / 2.5”, HD CMOS
Light Sensitivity > 1.4 V / lux-sec
Exposure Control automatic

Storage SD card, up to 32 GB
Battery Lithium-Ion, 1100 mAh
Size 4.2 x 6.2 x 3.0 cm

Weight 150 g

Table 6.1: Wearable video camera technical specifications

Figure 6.1: GoPro video camera (Half Moon Bay Company, California, Woodman Labs)

been created, starting in 2011. The corpus consists of 24 sequences sets representing each one house
of a patient or a volunteer and contains typically two video sequences: a short annotated bootstrap
and a longer unlabeled video with actual activities.

Experience with this challenging corpus of videos is presented in two parts. In Section 6.5 we
evaluate and analyze the performance of the methods used in previous chapters on a selected pair
of bootstrap and unlabeled video. In Section 6.7 we present the results on the rest of the corpus by
evaluating of single feature approaches.

In Annex E more information about the corpus is provided.

Topological locations The ground truth of the corpus has been created manually and uses an
uniform list of possible topological locations. Of course, there can be a larger diversity of the classes
but we limit ourselves to the most common locations found in a typical house and use these class
names while annotating all the videos in the corpus. In Table 6.2 six topological location names are

“bathroom” “bedroom” “kitchen” “living_room” “outside” “other”
Hygiene,
teeth
brushing

Sleep, Rest Food prepa-
ration, dish
washing,
complex
machines

Eating,
watching
TV, reading

Outdoors Other lo-
cations
indoors

Table 6.2: Uniform topological location names
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given as well as short description for each of them.

6.4 Experimental protocol

The whole processing pipeline consists of two visual feature BOVW and SPH descriptor extraction,
dimensionality reduction and followed by a classification method. Five classification methods are
evaluated:

1. Standard single feature SVM (SVM)

2. Temporal Accumulation followed by SVM (TA-SVM)

3. Temporal Accumulation for two features followed by DAS fusion (TA-DAS)

4. Standard Co-Training followed by DAS fusion (CO-DAS)

5. Time-Aware Co-Training with DAS fusion (TA-CO-TA-DAS)

The Co-Training method is a method that can re-define its learned model iteratively after each step.
In all experiments we use only one step of Co-Training to ease the evaluation and comparison to
other methods. One step is defined as an addition of certain percentage of top confidence estimates
from the unlabeled set into the training set. The percentage measures as a portion of the total size
of the current testing set (top confidence estimates from the testing set are removed after being
added to the training set).

The performance of a method is measured using global accuracy metric.

6.4.1 Visual features

Low level visual information from image data has been extracted using two methods: Bag of Visual
Words (BOVW) [37, 100, 134] and Spatial Pyramid Histograms (SPH) [77]. Dimensionality of these
global descriptors are 1111 and 4200 dimensions respectively, and were reduced to a maximum of
500 dimensions using Kernel PCA with χ2-kernel on each sequence set using all data.

6.4.2 Exploitation of annotation

Evaluation follows the path: training the appearance-based model on the annotated bootstrap video
then apply location estimation on the un-annotated video sequence. For several databases only one
unlabeled video was provided hence we simulate a sparse annotation by labeling every 60 seconds
(1800 frames) a window of 3 seconds (90 frames) which is then used in place of the bootstrap.

For proper evaluation in a realistic context, some of the methods depend on parameters that
need to be adapted to the data processed. To this end, the bootstrap video sequence is divided in
training and validation sets where the patterns are selected randomly into 5 folds. We devote 20%
of the bootstrap for the validation purposes.

6.5 Evaluation on a test case

We selected one pair of annotated bootstrap and unlabeled video from the corpus of videos to analyze
the performance of the algorithms reviewed and evaluated previously only on a database taken in
controlled environment. The length of the annotated bootstrap video is 6 minutes and the length
of unlabeled video is 33 minutes. More information about the data is given in Table 6.3 and in Fig.
6.2.



6.5. EVALUATION ON A TEST CASE 105

Bootstrap Video Testing Video Number of classes
11’709 frames (6 min) 59’784 frames (33 min) 6

Table 6.3: Description of the database
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Figure 6.2: Class proportions in (a) bootstrap and (b) testing videos

6.5.1 Supervised classification

The baseline results presented in Fig. 6.3 show clearly the challenging nature of image-based lo-
calization for real world data. Both visual feature SVM classifiers trained on the bootstrap video
and applied to the un-annotated video yield rather mediocre baseline performance, around 43% and
35% of global accuracy for BOVW and SPH features respectively. This is not surprising since many
visual scenes appearing in the unlabeled video has not been observed in the annotated bootstrap.
In Fig. 6.2 it is evident that some classes may not be covered enough in bootstrap even though they
are dominant in the unlabeled video (e.g. class “kitchen”).

Compared to experimental evaluations of the methods on the IDOL2 database, we notice a
surprisingly low performance of the SPH visual descriptor compared to its simpler version BOVW.
A possible explanation to this phenomena can be linked to substantially richer SPH descriptor than
BOVW. In conditions of low and insufficient supervision, this may lead to more severe overfitting
and thus lower performance on new testing data.

In the left panel of the same figure we depict the effect of temporal accumulation using the
TA module. Performance increase is rather substantial for both visual features and achieve up to
53% and 41% of global accuracy for Temporal Accumulation applied on BOVW and SPH features
respectively. Notice a rapid increase of performance and then decline as the averaging window gets
larger. We explain this effect by the fact that most of the temporally close images in the video
are assigned a correct estimated class label and the temporal smoothing effectively removes the
occasional misclassifications.

In the right panel we show the classification results obtained by late fusion using DAS module.
A gain of performance of up to 47% of global accuracy can be achieved by setting the α parameter
properly. This increase of performance can be attributed to the complementarity property of the
BOVW and SPH visual features. It interesting to note that without knowing a priori the performance
of the global descriptors, one may select approximately α = 0.5 and still get an improved final
performance without knowing explicitly which feature performs the best. Compared to the temporal
accumulation strategy shown in left panel, the improvement is more modest for classifier fusion.

Finally, in Fig. 6.3 in bottom panel we present the results for the combination of temporal
accumulation (using hBOF = 100 and hSPH = 500) and late fusion strategies. Curiously, we do
not observe performance increase, which possibly means that Temporal Accumulation defeated the
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Figure 6.3: Baseline performances and effect of Temporal Accumulation: (left) Temporal; (right)
Effect of Late Fusion; (bottom) Temporal accumulation followed by Late Fusion

complementarity of the features such that no additional improvement is possible.
The analysis of the current results showed that substantial performance increase is possible

using straightforward temporal averaging and high-level classifier fusion strategies. In the next part
of experiments we present the method capable leveraging both improvements.

6.5.2 Semi-supervised classification

The Co-Training based approach introduced in Chapter 4 includes an additional source of infor-
mation corresponding to the exploration of unlabeled data for improving the training of visual
appearance model.

The results for the CO-DAS method (using αDAS = 0.7) are shown in left panel of Fig. 6.4.
Compared to the baseline methods BOVW-SVM and SPH-SVM on this particular data, we notice
an increase in performance when less than 1% of ranked test set patterns are added to the training
set (Fig. 6.4 left panel). Note that the increase of performance was made possible by an addition of
a small part of the testing set. Going beyond this amount increases the risk of including incorrect
estimates back into the training.

In right panel of Fig. 6.4 we compare the TA-CO-TA-DAS method to the rest by varying
the internal temporal accumulation window size. Classification performance for this data clearly
outperforms all the baselines and the individual methods exploiting solely feature complementarity
or temporal structure. In this particular case we can recognize the majority of the improvement
which is due to temporal accumulation done at basic level for the BOVW visual feature classifier
since the improvement over TA-BOVW method is only 2% of global accuracy. All the results are
summarized in Table 6.4.

The TA-CO-TA-DAS method requires two additional parameters in comparison to the CO-DAS
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Figure 6.4: Semi-Supervised performance: (left) Co-Training and High-Level Classifier fusion; (right)
Time-Aware Co-Training with High-Level Classifier fusion

BOVW-SVM SPH-SVM TA-BOVW-SVM TA-SPH-SVM TA-DAS CO-DAS TA-CO-TA-DAS
43 % 36 % 53 % 41 % 53 % 45 % 55 %

Table 6.4: Summary of the results on the selected video

method. We separate temporal accumulation in the inner feedback loop of the Co-Training method
and the temporal accumulation before DAS fusion. The current best results were obtained using
the window of size hint = 10 in the internal feedback loop and hpost = 100 in the final stage.

6.6 Computational Cost

When dealing with large-scale applications, computation and storage requirements should be con-
sidered in addition to pure recognition performance. In the current study we work with 26 video
sequences with an equivalent length of 10.8 hours. The video recordings are of High Definition
(1280x960) with the frame rate of 30 frames per second which amounts to 1’171’508 images for the
entire corpus of videos.

We separate two important factors: computation time and storage demands for visual features.
The provided time estimates were obtained using 1 core in the HP Z800 machine with Intel Xeon
E5520 processor, equipped with 12GB of RAM and a total amount of 2.7TB of disk space.

In Table 6.6 the cost of extraction of the three visual descriptors for 1 hour long video sequence
is provided. We see that the computational time for the BOVW global descriptor is the shortest (10
hours) opposed to Spatial Pyramid Histogram global descriptor (40 hours). The latter is primarily
due to the SIFT descriptor extraction using a dense and regular grid covering entire image.

According to these estimates, it would require 108, 324 and 442 hours to extract the global
descriptors for BOVW, CRFH and SPH respectively. Equivalently, this amounts to 4.5, 13.5 and 18
days for the respective global descriptors.

Visual Feature Processing time per 1 hour video
Bag of Visual Words (BOVW) 10 hours

Composite Receptive Field Histograms (CRFH) 30 hours
Spatial Pyramid Histograms (SPH) 40 hours

Table 6.5: Computational time requirements
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Figure 6.5: Principal issues: (left) dark scenes; (right) camera occlusion

6.7 Baseline image-based localization results

In this section we provide the image-based localization results on the large-scale by processing the
remaining video sequence from the corpus. Based on the computational time considerations carried
out in Section 6.6, we consider single feature approach methods for topological localization. The
BOVW global descriptor was used as it yields comparably good recognition performance while being
the fastest to compute.

The results for the baseline BOVW-SVM and the TA-BOVW-SVM method are depicted in Fig.
6.6 and 6.7. Generally we can note rather variable classification performance as a function of the
patient or volunteer house. This variability can be explained mainly due to the quality of the the
annotated bootstrap video and the complexity of the scenes found in the unlabeled videos. For
example, in both bootstrap and unlabeled videos from the “P13” database (Fig. 6.6), the extracted
frames feature very dark environment and considerable occlusion of the field of view of the camera.
The sample frames are shown for this database in Fig. 6.5.

The main issue however is in the availability of sufficient amounts of training data. Basically,
there is a difference between the information captured by the annotated bootstrap (global context)
and unlabeled videos (specific activities). Of course, it is a challenging problem to recognize a
location that has not been seen in the bootstrap video (e.g. close-up on the sink, reading a book)
in a completely supervised fashion, although the former is expected to cover at least partially all
the major places of interest. This difference in difficulty can be seen from the results obtained in
realistic benchmark in video versus video setup (Fig. 6.6) and from in-video annotation strategy
setup in left panel of Fig. 6.7.

Using a single feature for automatic place classification, we can partially alleviate the problem
by applying the temporal accumulation scheme. The improvement for the vast majority of videos is
evident. We argue that for starting performances higher than a chance and more or less temporally
distributed correct location estimation, the temporal accumulation is a simple yet powerful method
which can be used to bootstrap more advanced methods.

6.8 Conclusion

In this chapter we investigated application of the image-based localization methods on visual data
captured in realistic setup and also revealed the challenges of large-scale processing. The study on
a larger corpus of videos taken in realistic setup permitted to draw several conclusions when using
our best performing method:

1. Leveraging temporal information is crucial when working with challenging video data;

2. Two or more visual descriptors may maximize the discriminative power on a frame basis but
may not bring additional information after temporal consistency has been enforced;
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Figure 6.6: Patients: Image-based localization results
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Figure 6.7: Image-based localization results: (left) Patients w/o bootstrap video; (right) Volunteers
videos
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3. Building iteratively the appearance model using most confident estimates may help to fill the
discrepancies and missing parts between the bootstrap and unlabeled video content;



Chapter 7

Conclusion

7.1 Overview of the work

In this thesis a framework for image-based topological localization from wearable video has been
proposed. The approach is purely image-based such that topological localization indoors of a camera
wearer should be found bootstrapping the learning system using a small manually annotated video
sequence. The problem of location estimation is turned into classification problem as every frame
(or a subset) from the video sequence is expected to carry an index or tag of topological location.

The studied framework is based on extraction of one or several visual features from every frame
of the video and constructing a global image representation using visual descriptors. The high
dimensionality of descriptors is inherent to such global descriptors, and it is reduced using feature
selection or dimensionality reduction methods. Dimensionality reduction effectively extracts the
information in a data-dependent way such that the following decision stage receives all the class-
specific information while removing irrelevant variability.

We have seen the discriminative power can be improved by exploiting the complementarity
properties of several descriptors.

Another difficulty is the lack of training data. This led us to investigate semi-supervised learning
methods such that information brought by unlabeled video sequence frames also are taken into
account when learning the visual appearance model. Additionally, video sequences have the property
that location estimation cannot be independent from frame to frame of the video sequence. Temporal
continuity of the video is an additional constraint, which restricts the variability of possible location
estimations. This information as integrated in the framework of the proposed time-aware co-training
methods.

Finally we investigated a last type of prior knowledge that can stem from the knowledge about
the possible visual information changes. Small horizontal displacement or rotation should result in
no change to the localization result. These considerations were taken into account when creating a
translation invariant descriptor.

In this thesis we have therefore investigated multiple ideas to answer the initial problematic of
indoors localization estimation from wearable camera video data. In the next section we provide
more details on the corresponding contributions.
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7.2 Contributions

7.2.1 Place of feature selection in location estimation

In initial stages of the location recognition, it is crucial to extract relevant location-specific informa-
tion. The global image descriptors often carry a lot of redundant information which poses a risk of
overfitting when learning the visual appearance model for localization. We studied several dimen-
sionality reduction methods which effectively restrict the variability of the visual descriptors. The
compact image representations were created using an adapted intersection or χ2 kernel in Kernel
PCA or Laplacian Eigenmaps. The former discovers and projects the data in new axis dictated by
the largest variance, while the latter preserves the locality property in reduced dimensionality space.
We have shown the interest and applicability of the both methods when using the data-adapted
kernel. The Laplacian Eigenmaps method also allows to represent the data in graph form where
intuitive operations such as node pruning allow to remove erroneous links. We have shown that
such pruning could improve the performances, but with the constraint of using a low number of
neighbors. An arbitrary value will possibly decrease the performance if is not selected properly.

Ideal global image descriptors encoding the topological location can be very simple such that
no sophisticated method for classification is necessary. The remaining complexity of the data af-
ter dimensionality reduction is effectively treated using an SVM classifier, which is known for its
generalization capabilities.

7.2.2 Evaluating early and late fusion strategies with multiple features for lo-
calization

For successful localization estimation, discriminative power of the existing global descriptors should
make difference between same and different topological locations. Unfortunately, without knowing
what measurements from the image correspond exactly to the place “kitchen” and “living room”,
often low level information is extracted from which then global descriptors are created. Global
descriptors also are different and may describe the color, shape, texture, corners, stable regions.
This said, no global descriptor is absolutely superior for a specific task.

We evaluated an early and late fusion strategies, where the main idea is to exploit information
contained within two or more descriptors. An example of early fusion is Multiple Kernel Learning
method, which effectively selects the features and builds a new kernel. Late fusion strategy using
individual visual feature classifier output merging follows a different way by combing SVM score
outputs using either linear or non-linear kernel. We have shown experimentally on a controlled envi-
ronment database of video sequences that both strategies bring an improvement therefore confirming
the usefulness of complementary information visual features. Therefore, a novel discriminant visual
feature can be seamlessly integrated into the framework and improve the recognition performance.

7.2.3 Exploiting unlabeled data and temporal continuity of the video

Indoor localization in real conditions is a typical scenario, where the lack of training data can impair
the quality of the results. Indeed, to record all possible scenes and situations in house, and perform
this video annotation and processing may be very costly. The idea is to leverage unlabeled data when
learning the visual appearance model. State-of-the-art methods working in this paradigm are label
propagation in the graph and Semi-Supervised SVM exploiting low density separation assumption.

Both methods perform relatively well when certain conditions are met. A properly constructed
graph is very important for label propagation in the graph, and often suffers from class imbalance
problem. Semi-supervised SVM requires an adapted kernel and careful parameter tuning.



7.3. FUTURE PERSPECTIVES 113

We proposed a time-aware co-training method performing in semi-supervised paradigm, exploit-
ing two visual features and also enforcing temporal continuity constraints. The novel theoretically
motivated confidence measure is used in this framework to enrich the training set with confident
estimates from the unlabeled video, whereas temporal accumulation effectively uses the information
that frames in a small time interval should have similar class labels. Therefore, we have shown that
in in small increments of the training set with novel patterns allows to avoid tackling the difficult
problem of learning a possibly complex visual appearance model at once. The final fusion stage with
prior temporal accumulation provides that both visual feature information is used and localized mis-
classifications are removed from the final localization estimation. Practical evaluation on real world
data with typically small and incomplete bootstrap videos have shown that such learning strategy
pays off, when using small additions of confident estimates to the training set.

7.2.4 Proposing a translation invariant global descriptor

The Spatial Pyramid Histogram (PH) global descriptor was shown to be one of the best discriminant
descriptors for our task of image-based localization. The wearable camera is subject to motion and
can exhibit some movements, which can result in the change of the class or not. The nature of how
the PH descriptor is built is that spatial translation, which typically does not result in topological
location change, nevertheless modify the descriptor. Enforcing the invariance of the classifier to
horizontal spatial translations, which is also a principal type of displacement found in the videos,
we showed how such a descriptor could be improved for the use in low supervision scenarios.

7.3 Future perspectives

In this thesis we have studied an image-based approach for topological localization indoors. Several
other attractive research directions exist that can complement or improve the current recognition
performance.

The current annotation strategy is limited to annotation of a bootstrap video. This corresponds
to, in the context of the IMMED project, a 5 minute presentation of the places supervised by a
medical assistant, which is the same person annotating the places from their knowledge, which is
then used in an automatic indexing algorithm to learn the places models. This approach limits the
final performance due to the quality and the representativity of the annotated bootstrap video. In
a different annotation context, a pre-analysis of the data could be done before the annotation step.
The quality of the bootstrap then could be improved by allowing the system to suggest image to be
annotated in the bootstrap as well as in the unlabeled video. This alternative paradigm, referred to as
active learning [128], has received particular attention for image retrieval from large unordered image
databases. Unlabeled images automatically selected by an algorithm and annotated interactively
could boost the performance of the overall location recognition. An example of such system from
image retrieval domain is the RETIN system [56] and features noisy classifcation result removal as
well as batch selection of relevant images in each relevenace feedback loop. A similar approach can
be done also for location estimation where initial small annotation is gradually improved by a user
providing his opinion on the estimated locations, which in turn could help to bootstrap the rest of
the framework.

Another perspective for improvement is linked to the computational efficiency of the aforemen-
tioned kernel methods. Typically, large kernel matrix computation is required thus making the
memory and computation burden heavier. Online kernel learning [64, 67] might be implemented
thus opening the possibility to work with even larger scale video corpuses.
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Appendix A

Feature Conditioning and Classification

A.1 Details on Principal Component Analysis

In this section the technical details for the Principal Component Analysis is provided, introduced in
Subsection 2.4.1.

Variance and its maximization Lets define a sample covariance matrix of the input patterns

SX =
1

n− 1

n∑
i=1

(xi − x̄) (xi − x̄)T (A.1)

=
1

n− 1

(
X − X̄

) (
X − X̄

)T (A.2)

with x̄ = 1
n

∑d
i=1 xi being sample mean and X̄ = x̄1n in a matrix form. Similarly, the sample

mean for the projected data writes as z̄ = 1
n

∑n
i=1 zi and the variance for the projected data as

SZ =
1

n− 1

n∑
i=1

(zi − z̄) (zi − z̄)T (A.3)

In a case of mapping to one dimension (one mapping vector a), the variance of the data projected
expresses

J (a) =
1

n− 1

n∑
i=1

(zi − z̄)2 =
1

n− 1

n∑
i=1

(
aTxi − aT x̄

)2
= aTSXa (A.4)

with the use of Eq. 2.1.
In PCA, the quantity to be maximized is the expression J (a). To avoid arbitrarily large scaling

of the data, the projection vector should be constrained. Typically the restriction is usually taken
in the form of a constraint on the Euclidean norm ‖a‖2 = 1.

Optimization problem With all these elements, the one dimensional case for dimensionality
reduction reduces to the constrained maximization problem

arg max
a

aTSa s.t. ‖a‖2 = 1 (A.5)

Mapping vectors maximizing the the objective are found by solving the eigenproblem
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Sa = λa (A.6)

Largest eigenvalue eigenvector correspond to a direction which maximizes expression in Eq. A.4.

Generalizing to multiple dimensions The multi-dimensional case transformation involves k
linear mappings A = (ai)

k
i=1. Following Eq. A.4 and requirement for the basis to be orthonormal

ATA = 1, the optimization problem easily generalizes to multiple dimension case

arg max
A

Tr
(
ATSA

)
Tr (ATA)

(A.7)

According to the Rayleigh-Ritz theorem [87], solution of the problem amounts to find the k
largest eigenvalue eigenvectors of the covariance matrix S in Eq. A.6. In general, there are n
solutions {(ai, λi)ni=1} for a covariance matrix S of size d × d. The eigenvalue λi describes the
variance of the projected data on a particular projection direction ai.

For data of intrinsic linear dimensionality of k < d dimensions, the top k eigenvalues will be
the largest in the sorted list of eigenvalues. Typically, there will be a sharp difference between top
valued eigenvalues and the remaining ones. Taking the top k valued eigenvectors ai, and using them
in linear transformation manner, makes it possible in dimensionality reduction with PCA.

Pattern embedding Keeping the top k eigenvectors Ak = (ai)
k
i=1, any new pattern xnew can be

embedded in k dimensions by applying the linear transformation

znew = ATk xnew (A.8)

A.2 Details on Kernel PCA

In this section the technical details for the Kernel PCA dimensionality reduction method is provided,
introduced in Subsection 2.4.2.

Covariance matrix diagonalization in the RKHS Given a set of patterns X = {xi}ni=1 ∈ X
and an appropriate kernel function k, a Gram matrix (K)ij = k (xi,xj) can be computed. KPCA
tries to find maximum variance directions in the high dimensional space H obtained by non-linear
mapping of the data. Following [136], covariance matrix can be written using mapped patterns

SH =
1

n

n∑
i=1

Φ (xi) Φ (xi)
T (A.9)

where the mapping function Φ is induced by an explicit choice of kernel function. As in the case
of linear PCA, a covariance matrix is diagonalized by its eigenvectors

SH = UΛUT (A.10)

which is equivalent to solve an eigenproblem

SHei = λiei (A.11)

where U = (ei)
n
i=1 and Λ = diag (λi)

n
i=1 are the matrices of eigenvectors and eigenvalues respec-

tively.
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Solving for principal components In practice, the covariance matrix SH cannot be computed
due to unknown mapping function Φ. The eigenproblem in Eq.A.11 therefore cannot be solved
explicitly. However, the eigenvectors of this matrix can expressed in terms of mapped patterns
Φ (x). By plugging Equation A.9 into A.11, the eigenvector ei can be expressed in the basis of
Φ (xj)

ei = [Φ (x1) , . . . ,Φ (xn)]ai (A.12)

where A = (ai)
n
i=1 are the expansion coefficient vectors. It can be shown that the eigenproblem

in Eq. A.11 can be expressed purely in terms of the expansion coefficients ai and the kernel matrix
K. Then the eigenproblem writes

Kai = λinai (A.13)

Refer to [26] and [16] for in-depth discussion and derivation details.
To this end, the problem has been reduced to an eigenproblem involving the kernel matrix and

expansion coefficients.

Transductive pattern embedding The best representation of the data in KPCA sense means to
project it onto the directions of the largest variance. Suppose that a selection of k < n eigenvectors
Uk was done corresponding to the largest eigenvalues. Embedding of a d-dimensional pattern x in
k dimensions would correspond to a projection

z = UTk Φ (x) (A.14)

As in case with covariance matrix and the eigenproblem, in practice such projection cannot
be computed due to unknown mapping function and the eigenvectors. However, the eigenvector
expansion in Eq. A.12 can be used. Using this result, a k-dimensional embedding can be expressed
using the computed expansion coefficients and the kernel matrix as follows

zi = ATkK (xi) (A.15)

where the matrix Ak corresponds to a selection of k expansion vectors ai corresponding to
the largest eigenvalues found by solving A.13 and K (xi) = [k (xi,x1) , . . . , k (xi,xn)]T is a column
vector. Refer to [136] for detailed derivation.

Out-of-Sample Extension Embedding of an unseen pattern xnew can be carried out into the
embedding space. Suppose that an additional kernel matrix column has been computed

K (xnew) = [k (x1,xnew) , . . . , k (xn,xnew)]T (A.16)

and the same expansion coefficient matrix Ak is reused from the transductive embedding step.
Then embedding of the pattern xnew can be found from

znew = ATkK (xnew) (A.17)
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Kernel matrix centering As in linear PCA, the centering of mapped patterns Φ (x) is also
required to find largest variance projection directions in the feature space. In general this is not
assured when using a proper kernel function k. Centered mappings

Φ̃ (xi) = Φ (xi)−
1

n

n∑
j=1

Φ (xj) (A.18)

yield a centered kernel K̃ij =
〈

Φ̃ (xi) , Φ̃ (xj)
〉
H

that is still PSD. Denoting a matrix (1n)ij = 1
n ,

the centered kernel matrix can be expressed in its non-centered version

K̃ij = K − 1nK −K1n + 1nK1n (A.19)

Refer to [136] for derivation of this result. In practical applications using KPCA, the kernel
matrix should be always centered regardless the kernel function.

A.3 Details on Laplacian Eigenmaps

In this section we provide the technical details for dimensionality reduction with the Laplacian
Eigenmaps method, introduced in Subsection 2.4.3. The place and the role of graph Laplacian is
also discussed.

Definition of Graph Laplacian Lets define a function defined on a graph f : V → R which
returns a real value for any node in the graph. Regularizing according to the graph structure should
enforce similar values for nodes with strong affinities Wij . Such intuition is used in regularization
for semi-supervised methods, see [27] for excellent work devoted to diverse methods and [181] for
extensive review of the subject. The following energy function has the required properties [162][31]

E (f) =
1

2

∑
i,j

wij (f (xi)− f (xj))
2 (A.20)

Lets define a diagonal degree matrix Dii =
∑

jWij . Then non-normalized graph Laplacian
[31, 162] is defined as

L = D −W (A.21)

and it can be shown that Eq. A.20 takes the following form

E (f) = fTLf (A.22)

In practical application for dimensionality reduction, the function f is finite dimensional.

Embedding problem The method utilizes the notion of the graph which is constructed from a
data set X = {xi}ni=1 ∈ Rd and represented by an affinity matrix W . Suppose that one wants to
find a mapping vector e such that an element e (k) can be seen as one dimensional embedding of a
pattern xk. Those one dimensional embeddings should respect the similarities in matrix W in the
sense that patterns with strong affinities should be matched close. Such mapping can be found if
one manages to minimize the following energy function

J (e) =
1

2

n∑
j=1

n∑
k=1

(e (j)− e (k))2Wjk = eT (D −W ) e = eTLe (A.23)
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This objective function states that for similar patterns xj and xk (according to Wjk) a penalty
will be incurred if their respective embeddings e (j) and e (k) are mapped far apart. To this end,
minimization involves a quantity termed Laplacian of the graph.

Minimization problem The quantity in Eq. A.23 should be minimized together with a constraint
that removes arbitrary scaling of the data. Together with the constraint eTe = 1, this corresponds
to the non-normalized Laplacian Eigenmap [11]

Le = λe (A.24)

Each solution vector ei to this eigenproblem contains all pattern embeddings in one dimension.
Dimension i corresponds to a degree of smoothness (or coarsity) of a function f which is measured
by an eigenvalue λi.

Graph Laplacian L has two interesting properties that will be exploited in further discussions:

1. Clustering property
If a graph has p disjoint components, eigendecomposition of this graph Laplacian will amount
exactly p zero eigenvalue eigenvectors. The corresponding eigenvectors will indicate the inter-
connected nodes with non-zero elements. This property can be useful for data clustering.

2. Label Smoothness property
If eigenvalues are sorted in ascending order, then smaller eigenvalues will correspond to
smoother eigenvectors (functions f). It is interesting to note that if there are large weight
paths between some nodes in a graph, the respective elements in the smooth function (eigen-
vector) will have similar value. This property is useful for semi-supervised learning.

These properties are useful for the task of dimensionality reduction where input space feature vectors
are of very high dimensionality and with complex class boundaries. A regularizer exhibiting such
properties can restrict the complexity of the learned model [91].

Refer to [162, 31] for more comprehensive reference about graph relationships with graph Lapla-
cian, eigendecomposition, adjacency matrix and related subjects in spectral graph theory.

Normalized and un-normalized graph Laplacians From literature [162] there are three types
of graph Laplacian:

1. Un-normalized L = D −W

2. Random walk Lrw = I −D−1W

3. Symmetric Lsym = I −D− 1
2WD−

1
2

Although all of them have been used for clustering, there are subtle differences in their properties.
According to [162], if node degree distributions vary broadly, then both normalized Laplacians Lrw
or Lsym would take that into account.

In clustering the goal is to achieve separation between different clusters and optionally to find
a partition such that points within one cluster are close to each other. Un-normalized Laplacian
satisfies the former but does not support the latter. A normalized graph Laplacian supports both
requirements which may be preferable for some applications.

The difference between two normalized versions of Laplacian is in an additive multiplicative term
in eigenvectors for Lsym which may be a problem. Besides, from a computational point of view there
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are advantages using Lrw Laplacian. The eigenproblem for this Laplacian is equivalent to solving a
generalized eigenproblem

W ẽ = λ̃Dẽ (A.25)

where one needs to find largest eigenvalue λ̃ = 1 − λ eigenvectors. Such formulation does
not require explicit computation of graph Laplacian matrix. Many software packages implement
the methods where it is numerically more efficient as Nystrom approximation [52] to find largest
eigenvalue eigenvectors than the smallest ones.

Transductive pattern embedding The solution of an eigenproblem is a set of eigenvectors
which approximate the eigenfunctions of Laplace Beltrami operator [11] defined on some manifold
M. If sorted the eigenvalues in ascending order 0 = λ1 < λ2 < . . ., the corresponding eigenvectors
will range from the smoothest to less smooth functions. Smooth functions correspond to large and
coarse graph representation while less smooth functions correspond to small variations in the graph.

This is the key in dimensionality reduction using the spectral properties of the graph. In this
framework a pattern xi correponds to an embedding with k < d dimensions by taking i-th element
from the first k most smooth eigenvectors Û = (e1, . . . ek). Thus k-dimensional embedding for a
pattern xi respecting locality information takes the form

zi = [e1 (i) , . . . , ek (i)]T (A.26)

A.4 Elements of Bayesian decision theory

Bayesian decision theory is a field in statistical learning that applies probabilistic treatment to the
problem of pattern classification. We do not aim to provide comprehensive insight into the field but
rather as an introduction into the field of pattern classification. Many tools and frameworks not
necessarily stem from probabilistic domain can be cast or analyzed using Bayesian view.

Basic elements Suppose that a binary classification problem is given. We denote the two classes
as y = ω1 and y = ω2. Usually some prior information about the problem is available, such as prior
probabilities

0 ≤ P (y = ω1) ≤ 1 (A.27)
0 ≤ P (y = ω2) ≤ 1 (A.28)

With only this information, it makes sense to classify an object x to a class

ŷ =

{
ω1 if P (ω1) > P (ω2)

ω2 if P (ω1) < P (ω2)
(A.29)

For real world classification problems this would not be enough. Usually a training set L =
{(xi, yi)}li=1 is given. Then the problem is defined as how to find the missing labels for the set
U = {xi}l+ui=l+1.

The cues useful for classification can be found from class conditional probability densities p (x|y).
If class conditional densities are generally different (e.g. not overlapping), we can say that informa-
tion contained in xi is characteristic or more probable for the class yi.
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Recall that the goal is to obtain a class label y for an object xj ∈ U . This can be expressed as
a probability

0 ≤ P (y|xj) ≤ 1 (A.30)

also known as posterior probability. For example, one may ask : what is a probability of given
object xj belonging to the class, say y = ω1? Naturally, the object belongs to a class which is more
probable

ŷj = arg max
y
P (y|xj) (A.31)

Bayes formula All the data together with its corresponding class labels can be seen as samples
from joint probability density p (x, y). From the assumption of independence, the joint distribution
can be decomposed in two ways

p (x, y) = p (x|y)P (y) = P (y|x) p (x) (A.32)

We are interested in posterior P (y|x) which can be obtained from equality of the two decompo-
sitions of the joint probability

P (y|x) =
p (x|y)P (y)

p (x)
(A.33)

This result is known as Bayes formula. Knowing class conditional distribution p (x|y) and priors
probabilities P (y), it is possible to infer the probability of an object belonging to any of the two
classes. Note that the denominator can be obtained from the joint distribution by marginalizing or
summing over variable y

p (x) =

2∑
k=1

p (x|y)P (y) (A.34)

Final remarks The presented classifier is often known as Naive Bayes classifier. However, there
are two principal difficulties : independence assumption and density estimation problem.

Naivety comes from the independence assumption between the features in the object x =
(x1, . . . , xd)

T and the label

p (x, y) = P (y)

d∏
k=1

p (xk|y) (A.35)

In many problems this assumption is false although it greatly simplifies the computation.
Note that for application of Bayes formula the class conditional densities are necessary. The

problem of density estimation is not trivial and is further complicated by the matter of many
variables or features in object x. In practical application the models of density functions can be
very complex or completely unknown.

For more details on the subject, refer to standard texts [16, 46] and a good review about Bayesian
inference [144].
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A.5 Linearly separably and non-separable data

In this section, we detail on how to learn the SVM classifier introduced in Section 2.5.1, in both
separable and non-separable cases.

A.5.1 Problem for Linearly separable data

The margin should be maximized in order to get the best generalization performance of a classifier.
A classifier with poor generalization properties will perform poorly on new unlabeled patterns.
Similarly, a classifier with good generalization properties will more likely classify correctly unseen
patterns. To maximize a margin and taking into account the training data, the following constrained
problem should be solved, which minimizes the inverse of the margin under constraint that the pair
of shifted hyper-planes are separating hyper-planes.

min
w∈H,b∈R

1

2
‖w‖2 (A.36)

yi (〈w,xi〉H + b) ≥ 1, i = 1, . . . ,m (A.37)

This optimization problem is usually solved using the method of unknown Lagrange coefficients
where objective function and constraints are present in one expression. The method defines Lagrange
coefficients αi, i = 1, . . . ,m and Lagrangian

L (w, b, α) =
1

2
‖w‖2 −

m∑
i=1

αi (yi [〈xi,w〉H + b]− 1) (A.38)

which should be minimized with respect to the so-called primal variables w, b and maximized
with respect to αi, i = 1, . . . ,m. It is important to note that if inequality constraints in Eq. A.37
is not met for some pattern xi, the corresponding αi is set to zero thus ensuring that the Lagrangian
is maximized. This is one of Karush-Kuhn-Tucker (KKT) conditions [71] stating that derivatives of
L with respect to the primal variables should vanish.

∂

∂b
L (w, b, α) = 0 and

∂

∂w
L (w, b, α) = 0 (A.39)

which leads to

m∑
i=1

αiyi = 0 (A.40)

and a solution defining a normal vector of a maximal margin hyperplane defined by its normal
vector w

w =
m∑
i=1

αiyixi (A.41)

Another interesting property is that the expansion of w in Equation A.41 contains only the
terms with αi 6= 0. Patterns with corresponding non-zero αi are called support vectors. From KKT
conditions support vectors lie on the margin and render other patterns irrelevant for the optimization.
Other patterns could have been as well left out. It follows that the hyperplane is determined by the
support vectors since the solution does not depend on other patterns.
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Substituting back Eq. A.40 and A.41 into the expression of the Lagrangian in Eq. A.38, the
dual problem of the optimization is obtained. Note that the primal variables are eliminated.

max
α∈Rm

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj 〈xi,xj〉H (A.42)

s.t. αi ≥ 0, i = 1, . . . ,m and
m∑
i=1

αiyi = 0 (A.43)

The decision function f can now be written. Note that only support vectors contribute to the
estimation of the class for a new pattern. Offset variable b is computed by exploiting KKT conditions.
Using the notion of kernel defined in Subsection 2.5.1

f (x) = sign

(
m∑
i=1

yiαi 〈xi,x〉H + b

)
= sign

(
m∑
i=1

yiαik (xi,x) + b

)
(A.44)

A.5.2 Non-separable case of SVM

In real world conditions a separating hyperplane may not exist. There will be no solution to the
problem defined in Eq. A.36 if there is a class overlap.

From literature, a classifier defined in Section A.5.1 is known as hard margin classifier since the
patterns violating inequality constraints in Eq. A.37 may influence the solution strongly. Allowing
some patterns to violate the inequality conditions increases the chance to find a solution that is more
robust to noisy patterns. This gives a rise to soft-margin classifier by introducing slack variables ξ

ξi ≥ 0 and i = 1, . . . ,m (A.45)

that relax the constraints

yi (〈w,xi〉H + b) ≥ 1− ξi, i = 1, . . . ,m (A.46)

Depending on the data, there may be a different proportion of noisy patterns. By keeping some
amount of noisy patterns (corresponding ξi 6= 0) control of generalization properties of a classifier is
done. With no or few noisy patterns renders a classifier to have a margin with low tolerance of error.
Such classifier will classify correctly most of the training patterns but may fail on new unlabeled
patterns. A classifier with greater generalization capabilities may tolerate more erroneous patterns
in the training set but may classify the unlabeled patterns correctly with a higher chance.

Therefore, the maximal margin is found by minimizing the norm of w and by tolerating some
errors in the training set. Pulling all the elements together soft-margin classifier emerges as

min
w∈H

1

2
‖w‖2 + C

m∑
i=1

ξi (A.47)

s.t. yi (〈w,xi〉H + b) ≥ 1− ξi and ξi ≥ 0, i = 1, . . . ,m (A.48)

where the parameter C controls the trade-off between margin maximization and training error
minimization.The Lagrangian for soft-margin classifier leads to a similar formulation the quadratic
problem as in Eq. A.42 and A.43 but subject to additional constraints

0 ≤ αi ≤ C, i = 1, . . . ,m (A.49)
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Solution in form of decision function is the same as in Eq. A.44 but the influence of individual
(and possibly outlier) patterns used for training is now limited.



Appendix B

Multiple Feature exploitation

In this annex we provide technical details on Multiple Kernel Learning method, introduced in Section
3.2.

B.1 Details on Multiple Kernel Learning

Multiple Kernel Learning is often cast in SVM framework. Recall that standard single kernel SVM
has a following primal problem (see Chapter 2 for review)

min
f

1
2

∑n
i=1 ‖f‖2 + C

∑n
i=1 ξi (B.1)

s.t. yif (xi) ≥ 1− ξi (B.2)
∀i, ξi ≥ 0 (B.3)

where f ∈ H and the solution complies with 3.1. Using sum rule to build a new kernel, a richer
model (function fMKL) can be learned. Substituting Eq. 3.8 into Eq. 3.1 we obtain

fMKL (x) =

m∑
k=1

βkfk (x) =

m∑
k=1

βk

n∑
i=1

αiKk (xi,x) + b (B.4)

The solution to the problem now includes three parameters - α ∈ Rn, b ∈ R,β ∈ Rm.

Primal Problem Following [118], the primal problem for multiple kernel case changes from Eq.
B.1 to

min
{fi},β

1
2

∑m
k=1

‖fk‖2Hk
βk

+ C
∑n

i=1 ξi (B.5)

s.t. yi
∑m

k=1 fk (xi) ≥ 1− ξi (B.6)
ξi ≥ 0 ∀i (B.7)∑m

k=1 βk = 1,βk ≥ 0 ∀k (B.8)

An important property of this formulation is that the minimization problem remains convex and
smooth which allows to use a standard SVM solver. This property can be attributed to a chain
depicted in Fig. B.1.
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Positive definite 
base kernels

SVM dual is strictly 
concave problem

Solution to primal 
SVM problem is 

unique

Objective function is 
differentiable

Figure B.1: Chain of reasoning leading to well-posed optimization problem for MKL

If solved in primal, a gradient descent method to minimize the objective function can be used.
Smoothness of the function fk is measured by the norm ‖fk‖Hk

weighted by a coefficient βk. Con-
vention used in [118] assumes that if βk = 0, then the ‖fk‖Hk

= 0 (f is a zero element of Hk) to
obtain a finite final objective function value. This formulation endorses weighted sparsity in kernel
selection.

Dual Problem The primal problem B.5 can be rewritten in Lagrangian dual representation.
This representation is interesting since the inequality constraints from the primal problem are now
equality constraints which makes the problem easier to handle. Another important improvement is
that now training patterns enter in pairs in form of dot products. Finally, the cost function is not
dependent upon the dimensionality of the input space [143].

Omitting the derivation details, we write the new optimization problem as

max
α,λ

∑n
α=1 αi − λ (B.9)

s.t. 0 ≤ αi ≤ C i = 1, . . . , n (B.10)∑n
i=1 αiyi = 0 (B.11)

1
2

∑n
i=1 αiyi

∑n
j=1 αjyjkk (xi,xj) ≤ λ k = 1, . . . ,m (B.12)

In spite of aforementioned properties of dual problems, the problem in Eq. B.9 is difficult to
optimize due to the last inequality constraint. Instead, one can write the Lagrangian of the MKL
problem and set the derivatives with respect to its variables to zero. This operation yields a number
of conditions from which a dual problem can be found (see [118] for more details). It is interesting to
note that the objective function for primal and dual problems are the same due to duality property
and strongly resembles the standard single kernel objective function

max
α,β

∑n
i=1 αi − 1

2

∑n
i=1

∑n
j=1 αiαjyiyj

m∑
k=1

βkkk (xi,xj)︸ ︷︷ ︸
(K)ij

(B.13)

∑n
i=1 αiyi = 0, 0 ≤ αi ≤ C i = 1, . . . .n (B.14)∑m

k=1 βk = 1,βk ≥ 0 k = 1, . . . ,m (B.15)

where the new combined kernel Gram matrix K enters as an internal weighted sum of individual
base kernel functions. As stated previously, to solve the maximization problem, the algorithm must
find the coefficients {αi}ni=1 and the kernel weights {βk}mk=1. Note that a new constraint has been
added : the kernel weights should sum up to 1.

Refer to Chapter 2 for review on primal and dual problem formulations.
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Details on Semi-Supervised Learning

C.1 Semi-Supervised Laplacian SVM

In this section we provide the technical details for the Laplacian Semi-Superivsed SVM classifier,
introduced in Subsection 4.2.3.

Solving LapSVM Following [13], optimization problem in Eq. 4.15 can be written as a quadratic
program in dual formulation

J (β) = max
β∈Rl

l∑
i=1

βi −
1

2
βTQβ (C.1)

subject to constraints
∑l

i=1 yiβi = 0, 0 ≤ β ≤ 1
l , i = 1, . . . , l and we denote

Q = Y TK

(
2γAI + 2

γI

(l + u)2
LK

)−1
T TY (C.2)

where we denote

• K - a Gram matrix over labeled and unlabeled data;

• Y - a diagonal matrix with labeled data information Yii = yi;

• L - a graph Laplacian over labeled and unlabeled data;

• T - label indicator matrix of size l × (l + u) and is built such that Tij = 1 if i = j and xi is a
labeled pattern;

The goal is to find the expansion coefficients α̂i ∈ R(l+u) and the new data-dependent Gram kernel
K̃ conforming to Eq. 4.16. Knowing the solution β̂ for Eq. C.1, the expansion coefficients can be
found by solving

α̂ =

(
2γAI + 2

γI

(l + u)2
LK

)−1
T TY β̂ (C.3)

With all these elements, the algorithm for Laplacian SVM using soft margin loss function can
be expressed as an algorithm following [13, 27]:

1. Build an affinity matrix W from labeled and unlabeled data;
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2. Build a Gram matrix K;

3. Compute the graph Laplacian matrix L;

4. Select regularization parameters γA and γI ;

5. Solve quadratic program in Eq. C.1 for β̂;

6. Solve for expansion coefficients α̂ using Eq. C.3;

7. Use the function f (x) =
∑l+u

i=1 α̂iK (xi,x) to obtain predictions on the future data;



Appendix D

The IDOL2 database

Overview

In this annex we provide more detailed description of the KTH-IDOL2 or shortly the IDOL2
database. The database consists of video sequences captured by two robot platforms with a goal
to evaluate the robustness and suitability of the image-based localization algorithms in real-world
conditions. The video sequences were captured in The Computational Vision and Active Perception
Laboratory at the Royal Institute of Technology, Sweden.

The database consists of 24 short video sequences recorded with the perspective camera Canon
VC-C4 camera at the framerate of 5 fps. The effective resolution of the extracted images is 309 x
240. Half of the video sequences were recorded by the “minnie” robot with a height of the camera
above the ground of 98 cm, and a half by the “dumbo” robot with respective height of 36 cm above
the floor.

Typical size of the image database extracted from one video sequence is 800-1100 images.

Topological locations

The both robot platforms were manually driven in the same indoors environment following approx-
imately the same path through 5 different functionality localizations and visual, laser scans and
odometry data was recorded. We use these 5 locations for topological localization (see Fig. D.1 for
sample images). The names of the locations are given in the Table:

One-Person Office Two-Person Office Corridor Kitchen Printer Area

It should be noted the “Printer Area” is actually a mere prolongation of the “Corridor” and some
of the doors separating two different functionality areas are made of transparent glass. Moreover,
groundtruth of the images occuring on a transition between two functional areas was attributed to
one of the classes arbitrary thus creating labeling noise issue.

Visual data variability

The video recordings has been recorded in 3 different lighting conditions:

Cloudy Night Sunny
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Figure D.1: Sample images: (a) Printer Area, (b) Corridor, (c) Two-Person Office, (d) One-Person
Office and (e) Kitchen

with two video recordings per condition. The artificial lighting indoors was always kept on.
Additional two video sequences per lighing condition and the robot platform were made across a
span of 6 months. Therefore, both lighting conditions and natural scene changes (moved furniture,
people walking etc).

The video camera was equipped with a sensor featuring automatic exposure control. This resulted
occasionally in overly dark regions in the presence of large light contrasts and some blur due to rapid
robot rotations.

Evaluation protocols

The evaluation of the image-based localization was made on the “minnie” robot platform only. The
12 video sequences from this robot platform compose an image database with 11’363 images.

The annotation was performed in two annotation setups: random and video-vs-video. In both
setup three image sets were always considered: labeled training and validation sets and an unlabeled
set.

Random sampling

In the first setup, the random sampling was used by dividing the database in three sets. We simulated
8 supervision levels by setting the size of the training set to a percentage of the full corpus

1% 2% 3% 5% 10% 20% 30% 50%

The remaining images were split in two random halves and used respectively for validation and
testing purposes. In order to account for the effects of random sampling, 10 fold sampling was made
at each supervision level.

Video vs Video

In the second setup, two video sequences were considerated. One video was completely annotated
while the second was used for evaluation purposes. The validation set was sampled randomly from
the annotated video sequence.

With 12 video sequences under consideration, 12 pairs featuring the same video sequences were
excluded from evaluation, thus resulting in 132 video pairs. We differentiate three sets of pairs:
“SAME”, “HARD” and “AVERAGE” result cases. The “SAME” set contains only the video sequence
pairs where the light conditions are same and the recordings were made in a very short span of
time. Countrary is for the set “HARD” by considering only different lighting condition and video
sequences recorded with a large time span. The last set effectively contains all the 132 video pairs
to provide an overall averaged performance.
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The IMMED corpus

E.1 Overview

In this annex we describe the video corpus taken during the recording sessions of the IMMED project.
The database consists of video sequences recorded using wearable video camera, which was attached
to the right shoulder of a person. All the recordings were made indoors with occasional scenes of
surrounding area outside of a house location.

The database of consists of various length video sequences recorded by patients and several
volunteers in their ecological environment. There are 14 patient house locations with bootstrap and
unlabeled video recordings, and 3 patient houses without bootstrap video sequence. Conversely, from
7 volunteer house locations, only one location has been recorded without bootstrap video sequence.

All recordings were carried out using the GoPro video camera with framerate of 30 fps which
was then down-sampled to 5 fps. The average size of patients and volunteer video sequences used
for bootstrap and testing is given in the table:

Bootstrap Unlabeled
Patients 6’400 images (3.5 min) 36’000 images (20 min)

Volunteers 3’000 images (1.6 min) 52’100 images (29 min)

The resolution of extracted images is 1280 x 960.

E.2 Acquisition protocol

The video recordings within the IMMED project have been captured in different houses. There are
typically two video recordings from one house, which are available after such acquisition: a short
bootstrap video and a longer unlabeled video with actual activites.

The bootstrap video is usually several minutes long as the patient records the representative
topological locations in the house. This is the only supervised information available for the automatic
localization estimation algorithms. The bootstrap video is annotated manually by the accompanying
medical specialist using a specialized interface.

The unlabeled video captures actual activities and displacements of the patient in the house,
and no manual annotation is performed for it.

We would like to outline the fact that the boostrap, its annotation and unlabeled videos are made
available after the recording session such that no manual human effort is carried out afterwards.
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Figure E.1: Sample images depicting different topological locations

E.3 Topological locations

Uniform location annotation was done for all the houses and yielded 6 topological locations (see Fig.
E.1 for sample images):

bathroom bedroom kitchen living room outside other

where the class “other” was used to designate specific and rarely visited topological locations in
a house. The ground truth information for the frames found in transition between the topological
locations was assigned arbitrary manner.

E.4 Evaluation protocols

The evaluation protocol for the IMMED corpus followed video versus video setup. For several
locations the bootstrap video was not provided, thus a random part of such videos was used for
training.
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