
HAL Id: tel-00670221
https://theses.hal.science/tel-00670221v1

Submitted on 14 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Methodology to Develop High Performance
Applications on GPGPU Architectures: Application to

Simulation of Electrical Machines
de Oliveira Rodrigues Antonio Wendell

To cite this version:
de Oliveira Rodrigues Antonio Wendell. A Methodology to Develop High Performance Applications
on GPGPU Architectures: Application to Simulation of Electrical Machines. Electromagnetism. Uni-
versité des Sciences et Technologie de Lille - Lille I, 2012. English. �NNT : �. �tel-00670221�

https://theses.hal.science/tel-00670221v1
https://hal.archives-ouvertes.fr

Numéro d’ordre: 40762

Université des Sciences et Technologies de Lille
École Doctorale Sciences pour l’Ingérnieur

thèse

présentée pour obtenir le titre de docteur
spécialité Informatique

par

antonio wendell de oliveira rodrigues

U N E M É T H O D O L O G I E P O U R L E D É V E L O P P E M E N T
D ’ A P P L I C AT I O N S H A U T E S P E R F O R M A N C E S S U R D E S

A R C H I T E C T U R E S G P G P U : A P P L I C AT I O N À L A
S I M U L AT I O N D E S M A C H I N E S É L É C T R I Q U E S

Thèse soutenue le 26 Janvier 2012, devant la commission d’examen formée de :

1 Pierre Manneback Rapporteur/Président

2 Sven-Bodo Scholz Rapporteur

3 Yvonnick Le Menach Examinateur

4 Mamy Rakotovao Examinateur

5 Frédéric Guyomarc’h Co-Directeur

6 Jean-Luc Dekeyser Directeur

Université des Sciences et Technologies de Lille

LIFL - Cité Scientifique, Bat. M3 - 59655 Villeneuve d’Ascq Cedex

Number : 40762

Université des Sciences et Technologies de Lille
École Doctorale Sciences pour l’Ingérnieur

thesis

submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Science

by

antonio wendell de oliveira rodrigues

A M E T H O D O L O G Y T O D E V E L O P H I G H P E R F O R M A N C E
A P P L I C AT I O N S O N G P G P U A R C H I T E C T U R E S :

A P P L I C AT I O N T O S I M U L AT I O N O F E L E C T R I C A L
M A C H I N E S

January 26, 2012

Commitee in charge

1 Pierre Manneback Reviewer/President

2 Sven-Bodo Scholz Reviewer

3 Yvonnick Le Menach Examiner

4 Mamy Rakotovao Examiner

4 Frédéric Guyomarc’h Co-advisor

6 Jean-Luc Dekeyser Advisor

Université des Sciences et Technologies de Lille

LIFL - Cité Scientifique, Bat. M3 - 59655 Villeneuve d’Ascq Cedex

A M E T H O D O L O G Y T O D E V E L O P H I G H P E R F O R M A N C E
A P P L I C AT I O N S O N G P G P U A R C H I T E C T U R E S : A P P L I C AT I O N

T O S I M U L AT I O N O F E L E C T R I C A L M A C H I N E S

antonio wendell de oliveira rodrigues

Doctorate Thesis
January 2012

Antonio Wendell de Oliveira Rodrigues: A Methodology to Develop
High Performance Applications on GPGPU Architectures: Application to
Simulation of Electrical Machines, Doctorate Thesis © January 2012

This thesis is dedicated to my parents.
For their endless love, support and encouragement

R E S U M É

Les phénomènes physiques complexes peuvent être simulés numéri-
quement par des techniques mathématiques basées souvent sur la
discrétisation des équations aux dérivées partielles régissant ces phéno-
mènes. Ces simulations peuvent mener ainsi à la résolution de
très grands systèmes. La parallélisation des codes de simulation
numérique, c’est-à-dire leur adaptation aux architectures des calcula-
teurs parallèles, est alors une nécessité pour parvenir à faire ces sim-
ulations en des temps non-exorbitants. Le parallélisme s’est imposé
au niveau des architectures de processeurs et les cartes graphiques
sont maintenant utilisées pour des fins de calcul généraliste, aussi
appelé "General-Purpose computation on Graphics Processing Unit
(GPGPU)", avec comme avantage évident l’excellent rapport perfor-
mance/prix.

Cette thèse se place dans le domaine de la conception de ces applica-
tions hautes-performances pour la simulation des machines électriques.
Nous fournissons une méthodologie basée sur l’Ingénierie Dirigées
par les Modèles (IDM) qui permet de modéliser une application et
l’architecture sur laquelle l’exécuter afin de générer un code OpenCL.
Notre objectif est d’aider les spécialistes en algorithmes de simulations
numériques à créer un code efficace qui tourne sur les architectures
GPGPU. Pour cela, une chaine de compilation de modèles qui prend
en compte les plusieurs aspects du modèle de programmation OpenCL
est fournie. De plus, pour rendre le code raisonnablement efficace par
rapport à un code développé à la main, nous fournissons des trans-
formations de modèles qui regardent des niveaux d’optimisations
basées sur les caractéristiques de l’architecture (niveau de mémoire
par exemple).

Comme validation expérimentale, la méthodologie est appliquée
à la création d’une application qui résout un système linéaire issu
de la Méthode des Éléments Finis pour la simulation de machines
électriques. Dans ce cas nous montrons, entre autres, la capacité de la
méthodologie de passer à l’échelle par une simple modification de la
multiplicité des unités GPU disponibles.

Mots-clés: MDE, UML, MARTE, Transformation de Modéles, Généra-
tion Automatique de Code, GPGPU, OpenCL, Simulation Numérique,
Machines Électriques

ix

A B S T R A C T

Complex physical phenomena can be numerically simulated by
mathematical techniques. Usually, these techniques are based on
discretization of partial differential equations that govern these phe-
nomena. Hence, these simulations enable the solution of large-scale
systems. The parallelization of algorithms of numerical simulation,
i. e., their adaptation to parallel processing architectures, is an aim
to reach in order to hinder exorbitant execution times. The paral-
lelism has been imposed at the level of processor architectures and
graphics cards are now used for purposes of general calculation, also
known as "General-Purpose computation on Graphics Processing Unit
(GPGPU)". The clear benefit is the excellent performance/price ratio.

This thesis addresses the design of high-performance applications
for simulation of electrical machines. We provide a methodology based
on Model Driven Engineering (MDE) to model an application and its
execution architecture in order to generate OpenCL code. Our goal is
to assist specialists in algorithms of numerical simulations to create a
code that runs efficiently on GPGPU architectures. To ensure this, we
offer a compilation model chain that takes into account several aspects
of the OpenCL programming model. In addition, to get a code fairly
efficient compared to a code developed manually, we provide model
transformations that analyze some levels of optimizations based on
the characteristics of the architecture (e. g. memory issues).

As an experimental validation, the methodology is applied to the
creation of an application that solves a linear system resulting from the
Finite Element Method (FEM) for simulation of electrical machines. In
this case, we show, among other things, the ability of the methodology
of scaling by a simple modification of the number of available GPU
devices.

Keywords: MDE, UML, MARTE, Model Transformation, Automatic
Code Generation, GPGPU, OpenCL, Numerical Simulation, Electrical
Machines

xi

P U B L I C AT I O N S

Some proposals and figures have appeared previously in the follow-
ing publications:

journals

1. Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h,
Yvonnick Le Menach, and Jean-Luc Dekeyser. Automatic Multi-
GPU Code Generation applied to Simulation of Electrical Ma-
chines. Magnetics, IEEE Transactions on, 48(2):831 –834, Feb. 2012.
ISSN 0018-9464. doi: 10.1109/TMAG.2011.2179527

2. Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h,
and Jean-Luc Dekeyser. An MDE Approach for Automatic Code
Generation from UML/MARTE to OpenCL. IEEE Computer in
Science & Engineering - Special Edition on GPUs, Journal, Jan 2012

(to appear)

conferences and workshops

1. Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h,
Yvonnick Le Menach, and Jean-Luc Dekeyser. Parallel Sparse
Matrix Solver on the GPU Applied to Simulation of Electrical
Machines. In Compumag 2009, Florianopolis, Brazil, November
2009

2. Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h,
and Jean-Luc Dekeyser. Programming Massively Parallel Archi-
tectures using MARTE: a Case Study. In 2nd Workshop on Model
Based Engineering for Embedded Systems Design (M-BED) on Date
Conference 2011, Grenoble, France, March 2011

3. Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h,
and Jean-Luc Dekeyser. Using ArrayOL to Identify Potentially
Shareable Data in Thread Work-Groups of GPUs. In Designing
for Embedded Parallel Computing Platforms: Architectures, Design
Tools, and Applications on DATE 2011, Grenoble, France, March
2011. Work in-Progress Poster

4. Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h,
and Jean-Luc Dekeyser. A Modeling Approach based on UM-
L/MARTE for GPU Architecture. In Symposium en Architectures
nouvelles de machines (SympA’14), Saint Malo, France, May 2011

xiii

5. Jing Guo, Antonio Wendell De Oliveira Rodrigues, Jerarajan
Thiyagalingam, Frédéric Guyomarc’h, Pierre Boulet, and Sven-
Bodo Scholz. Harnessing the Power of GPUs without Losing
Abstractions in SaC and ArrayOL: A Comparative Study. In HIPS
2011, 16th International Workshop on High-Level Parallel Program-
ming Models and Supportive Environments, Anchorage (Alaska),
United States of America, May 2011

6. Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h,
Jean-Luc Dekeyser, and Yvonnick Le Menach. Automatic Multi-
GPU Code Generation applied to Simulation of Electrical Ma-
chines. In Compumag 2011, Sydney, Australia, July 2011

research report

1. Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h,
and Jean-Luc Dekeyser. An MDE Approach for Automatic Code
Generation from MARTE to OpenCL. Research Report RR-
7525, INRIA, February 2011. Research Report RR-7525 in http:

//hal.inria.fr/inria-00563411

2. Antonio Wendell De Oliveira Rodrigues, Vincent Aranega, Anne
Etien, Frédéric Guyomarc’h, and Jean-Luc Dekeyser. Enabling
Traceability in an MDE Approach to Improve Performance of
GPU Applications. Rapport de recherche RR-7720, INRIA, Au-
gust 2011. Research Report RR-7720 in http://hal.inria.fr/

inria-00617912

xiv

http://hal.inria.fr/inria-00563411
http://hal.inria.fr/inria-00563411
http://hal.inria.fr/inria-00617912
http://hal.inria.fr/inria-00617912

A C K N O W L E D G M E N T S

First and foremost, I have to thank my father, Antonio, and specially
my beloved mother, Francisca, for their love and support throughout
my life. Thank you both for giving me strength to reach for the
stars and chase my dreams. My sisters, Weidina, Weidiany, and
Weidinara, deserve my wholehearted thanks as well. To my dearly
loved fiancée (and future wife) Kamila, thank you for your assistance,
your encouragement, and your company (even if sometimes virtual). I
am very happy by your side. I owe this thesis to all of you.

I would like to sincerely thank my supervisors, Jean-Luc Dekeyser
and Frédéric Guyomarc’h (the best co-advisor ever), for their guidance
and support throughout this study, and especially for their confidence
in me. I hope to continue working with you in the future. To all re-
searchers from DaRT team, above all, Anne Etien, Abdoulaye Gamatié,
and Pierre Boulet, people with whom I discussed many points of
my work concerning their research field. I would like also to thank
Alexis Muller and Thomas Legrand, for so many times that I bothered
them to help me to fix some issues on the Gaspard’s tools, and they
kindly always helped me. To all colleagues and PhD students from
the office 111bis, the former ones: Imran, Adolf, Calin, and Meriem,
also the current ones: Chiraz, Sana, Amine, and Pamela, my sincere
thanks. Furthermore, I would like to express my gratitude to Karine
Lewandowski for her administrative support always well done. I
cannot forget to thank you, Vincent Aranega, for sharing ideas during
our researches, the pleasure working together, and foremost, your
friendship.

This thesis relies on industrial applications. I have to thank Yvonnick
Le Menach, Francis Piriou, both from L2EP laboratory, and Mamy
Rakotovao from Valeo, for giving me examples, opinions, and assis-
tance to do the experimental validation of my results.

Halfway through the journey of my thesis, I had the great opportu-
nity to work with the SAC’s team at the University of Hertfordshire.
This was really valuable to my work. In particular, thanks go to
Sven-Bodo, Jing Guo, Nil, Dan, and Jeyarajan.

Living in France allowed me to meet some new and old friends.
Raquel and Ludovic, you do not know how important you were
and are when you give me the warmest welcomes at your home,
thank you. Thanks go also to you, Alexis Deneux, Joelia (I cannot
get count how many times you gave me a hand), Cariza, Mariusa,
and Nizar. Your friendship and support were essential to my stay.
Thank you very much, Carina e Reinaldo, my former students, and
now two great friends who gave me a good time in Grenoble and

xv

Dublin. Furthermore, to Carina’s father and my previous advisor,
Mauro Oliveira, who has a valuable role in my life as a researcher,
thanks.

I have to express my gratitude to the Federal Institute of Ceara
(IFCE) and my country, Brazil. I am very grateful to all my friends
from the Telematica Department for replacing me while I was absent.
Thanks to my friend César Olavo, who gave me the opportunity to
meet the DaRT team, and consequently to work with them. I have to
mention yet some special friends that always believed in the success
of this thesis. Thank you, Joesito and Bené, for being such a good
"big brother/sister" to me. Thank you, Janaina, I know you a long
time, and I feel our friendship growing more and more, this makes
me happy. By the way, thank you for undertaking all administrative
stuff at IFCE. I am very pleased to work with you again soon.

In 2011, I lost a big friend. He was directly responsible for me
deciding to do a doctorate. Thank you, Valdson. My dear friend
Nayara, who always asked me how my work was going, and who
gave me the right words to keep my motivation, my humble thank
you. Furthermore, thanks to my dear friends Corneli Jr. and Italo for
being there whenever I took a break of my works and left to Brazil.

Thank you, Lord, for always being there for me.

Thanks to Valeo and Région Nord-Pas de Calais for supporting this
thesis with total confidence in my works.

This thesis was written in English by a Brazilian. However, I am
lucky that it had been conducted by researchers who showed me the
best principles of the French research.

Finally, I would like to thank everybody who was important to the
successful realization of this thesis, as well as expressing my apology
that I could not mention personally one by one.

xvi

C O N T E N T S

List of Figures xxiii
List of Tables xxiv
List of Listings xxv
Acronyms xxvi
Introduction 1

i state of the art 15

1 high-level modeling and code generation on hpc 17

1.1 High-Level Specification Approaches 18

1.1.1 Gaspard2: OpenMP Branch 18

1.1.2 Archi-MDE . 19

1.1.3 Simulink . 19

1.1.4 OpenModelica 20

1.1.5 Syntony . 22

1.2 Extensions for Programming Languages 23

1.2.1 Mint Programming Model 23

1.2.2 OpenHMPP . 24

1.2.3 Java OpenCL Bindings 26

1.2.4 Matlab and Matlab-like on GPU 27

1.2.5 PyOpenCL . 27

1.2.6 SAC . 29

1.3 Other Contributions . 30

1.4 Comparative Table of Features 31

1.5 Conclusion . 31

2 gaspard2 as code generation framework 33

2.1 Introduction to the Framework 35

2.1.1 Gaspard2 Extensions 36

2.2 Transformation Chain 37

2.3 Target Platforms . 37

2.3.1 Sequential C . 38

2.3.2 Pthread . 38

2.3.3 OpenMP (Fortran and C) 39

2.3.4 SystemC . 39

2.3.5 LUSTRE and SIGNAL 39

2.3.6 VHDL . 40

2.4 Deployment and IPs . 40

2.5 Model Refactoring . 40

2.6 Traceability . 42

2.7 Related Tools . 42

2.7.1 Eclipse . 43

2.7.2 Papyrus Modeling Tool 43

xvii

xviii contents

2.7.3 MDFactory . 44

2.7.4 QVTO . 44

2.7.5 Acceleo Code Generation 44

2.8 Conclusion . 44

ii methodology approach 45

3 developing applications 47

3.1 Introduction to Modeling Methodology 47

3.2 Matrix Multiplication . 48

3.2.1 Modeling the Matrix Multiplication 51

3.2.2 Generating Code 57

3.2.3 Results and Benchmarks 57

3.3 Signal Processing . 58

3.3.1 Modeling the Downscaler 59

3.3.2 Results and Benchmarks 61

3.3.3 Comparing to SAC 62

3.4 Conclusion . 65

4 metamodels and gpus 67

4.1 Metamodels for the GPU Programming Model 68

4.1.1 Coprocessor . 68

4.1.2 Host and Device Memories 68

4.1.3 Work-Groups and Work-Items Topology 68

4.1.4 Optimizations . 69

4.2 Scheduling . 69

4.2.1 Building a Task Graph 69

4.2.2 Choosing the Execution Order 74

4.3 Memory Mapping . 74

4.4 Hybrid . 76

4.5 Conclusion . 80

5 models towards code 81

5.1 Building a Transformation Module 82

5.2 Chaining Model Transformations 83

5.3 Generic Transformation Modules 84

5.3.1 UML Profile to MARTE Metamodel (1) 84

5.3.2 Instances Identification (2) 85

5.3.3 Tiler Processing (3) 86

5.3.4 Task Graph and Scheduling (4,5,6) 86

5.4 Memory Allocation and Variable Definitions (7) 87

5.5 Hybrid Conception (8) 88

5.5.1 General Structure 88

5.5.2 Identifying Kernels 89

5.5.3 Functions and Variables 90

5.5.4 The Main Function 91

5.5.5 The Relationship among Variables 91

5.5.6 Summarizing the Scheduling 91

5.6 Code Generation (9) . 92

contents xix

5.6.1 Creating the makefile and header files 93

5.6.2 Creating OpenCL Kernels Files 93

5.6.3 Creating C/C++ Files 95

5.6.4 Extending the number of available devices . . . 97

5.7 Conclusion . 99

6 optimizations 101

6.1 Memory Copies . 102

6.1.1 Avoiding Unnecesary Transfers 104

6.2 Tiler Analysis . 104

6.2.1 Observing data reuse 104

6.2.2 Detecting data reuse 105

6.2.3 Deciding which data to transfer 106

6.3 Profiling Analysis . 107

6.3.1 Managing The Whole Chain Traceability and
Avoiding Model-to-Text Traceability 109

6.3.2 From Execution to Smart Advices 110

6.3.3 Backtracking Advices in the Input Models . . . 112

6.3.4 Example and Benchmarks 112

6.4 Conclusion . 121

iii simulation of electrical systems 123

7 electromagnetic phenomenon and code_carmel 125

7.1 Laws of Electromagnetism 126

7.1.1 Continuous-time Maxwell’s Equations 126

7.2 Discretization: FEM . 129

7.2.1 Method . 130

7.2.2 Assembly and Solvers 130

7.3 The Code_CARMEL . 131

7.3.1 Introduction to Code_CARMEL 131

7.3.2 Formulations . 131

7.3.3 Running Code_CARMEL in Parallel 132

7.3.4 Global Structure 133

7.4 Conclusion . 135

8 conjugate gradient solver 137

8.1 Introduction to Conjugate Gradient 138

8.1.1 Sparse Matrix . 138

8.2 Case Study . 139

8.2.1 High-Level Specification 139

8.2.2 Expressing the Device Multiplicity 144

8.2.3 Generated Code 146

8.2.4 Tests . 146

8.2.5 Results . 147

8.2.6 Automotive Alternator Example 157

8.2.7 Overall Comparisons 158

8.3 Conclusion . 159

Conclusion and Perspectives 161

xx contents

iv appendix 167

a high performance computing 169

a.1 History . 169

a.2 Existing Approaches . 170

a.2.1 Architecture . 171

a.2.2 Parallel Programming 173

a.3 Massively Parallel Processing (MPP) 176

a.4 General-Purpose computing on Graphics Processing
Unit (GPGPU) . 177

a.4.1 Architecture of a Modern GPU 177

a.4.2 OpenCL™ as Programming Model for MPP . . 180

b model-driven engineering 187

b.1 Models and Metamodels 187

b.1.1 Abstraction and Refinement of Models 188

b.2 UML and Profiles . 188

b.2.1 Introduction to MARTE 191

b.2.2 RSM Package and Array Oriented Language
(ArrayOL) . 193

b.3 Model Transformation 197

b.3.1 Model Refactoring 199

b.3.2 Model Merge . 199

b.3.3 M2M QVT Operational Mapping Language . . 199

b.4 Code Generation . 200

Bibliography 203

L I S T O F F I G U R E S

Figure 0.1 Performance gap between GPU and CPU 4

Figure 0.2 Scope of Work . 6

Figure 1.1 Architecture of the plug-in Archi-MDE 19

Figure 1.2 Designing Models on Simulink 20

Figure 1.3 Modeling a DC Motor in OpenModelica IDE . . 21

Figure 1.4 Syntony Process 22

Figure 1.5 Mint: C-to-CUDA Translation 24

Figure 2.1 MARTE Use Case 35

Figure 2.2 Gaspard2 Extensions for MARTE 37

Figure 2.3 Gaspard2 Library of Functionalities and Chain-
ing Process . 38

Figure 2.4 An example of refactoring 41

Figure 2.5 Global Tracce: Traceability Approach on Gaspard2 43

Figure 3.1 Model Creation Process : Global View 48

Figure 3.2 Matrix Multipliation without Shared Memory . 49

Figure 3.3 Matrix Multiplication with Shared Memory . . 50

Figure 3.4 Elementary Tasks in the Eclipse Environment
with Papyrus Modeling Tool 52

Figure 3.5 Application Model for Matrix Multiplication . . 53

Figure 3.6 Architecture Model 54

Figure 3.7 Task Allocation 55

Figure 3.8 Data Allocation 56

Figure 3.9 Deployment Phase: Virtual IP and Software IP . 56

Figure 3.10 Deployment Phase: Artifacts Manifestation . . . 57

Figure 3.11 Results for Matrix Multiplication Example . . . 57

Figure 3.12 Blocked Version Model 58

Figure 3.13 Horizontal and Vertical Filter Processes 59

Figure 3.14 Elementary Tasks for the Downscaler 60

Figure 3.15 Overall Downscaler Application 61

Figure 3.16 Detail of Horizontal and Vertical Filters 61

Figure 3.17 Profiling results for Downscaler Application . . 62

Figure 3.18 SAC versus Gaspard2 Comparison 64

Figure 4.1 Tasks and Allocation 70

Figure 4.2 General form of task graph representation. . . . 70

Figure 4.3 Local Task Graph Metamodel 71

Figure 4.4 XMI Model Sample for Local Graph 72

Figure 4.5 Global Task Graph Metamodel 73

Figure 4.6 XMI Model Sample for Global Graph 73

Figure 4.7 Scheduling Metamodel 74

Figure 4.8 Memory Mapping Metamodel 75

Figure 4.9 XMI Model Sample for Memory Mapping . . . 75

xxi

xxii List of Figures

Figure 4.10 Hybrid Metamodel 78

Figure 4.11 XMI Model Sample for Hybrid Application . . 79

Figure 5.1 Gaspard2 Library of Functionalities and Chain-
ing Process . 82

Figure 5.2 Model Transformation Scheme used in Gaspard2 83

Figure 5.3 The UML/MARTE-to-OpenCL Transformation
Chain . 84

Figure 5.4 Instances Identification Metamodel 86

Figure 5.5 Transforming Tiler Connectors to Tiler Tasks . . 86

Figure 5.6 Memory Mapping Transformation 88

Figure 5.7 Hybrid Conception Transformation 89

Figure 5.8 Distinct task allocation onto available processors 90

Figure 5.9 Scheduling lists and their interconnections. . . . 92

Figure 5.10 Samples of IP and header files for the matrix
multiplication application 94

Figure 5.11 Grid Example . 96

Figure 5.12 References for Memory Transfers 96

Figure 5.13 Multi-GPU Example 98

Figure 5.14 Multi-GPU Task Distribution Process 99

Figure 6.1 Typical Approach with Memory Copy 102

Figure 6.2 Generic Application to illustrate Memory Trans-
fers Suppression 103

Figure 6.3 Generic Application for Local Memory Opti-
mization . 105

Figure 6.4 Input and Output Arrays and Patterns for Work-
Group 0 . 107

Figure 6.5 Different Polygons depending on Work-Groups 108

Figure 6.6 Performance and Profiling Integration Overview 109

Figure 6.7 Profiling Metamodel 110

Figure 6.8 GPU Device Features Metamodel 111

Figure 6.9 Vector Product Application Model 114

Figure 6.10 Task and Memory Allocations onto GPU 114

Figure 6.11 GPU Device Features Database Model 118

Figure 6.12 Sample profiling results in CSV format 118

Figure 6.13 Profiling Results Model 119

Figure 6.14 Annotated Model 120

Figure 6.15 Occupancy by Varying Block Size 120

Figure 6.16 Comparison Summary Plot from Visual Profiler 121

Figure 7.1 Continuous problem domain ΩxT . Source: Eu-
ler’s Thesis [53] . 127

Figure 7.2 Electromagnetism Division 128

Figure 7.3 An Element in a Triangular Mesh 130

Figure 7.4 code_CARMEL3d Use Case 134

Figure 7.5 code_CARMEL3D Activity Diagram 134

Figure 7.6 code_CARMEL3D Sequence Diagram 135

Figure 8.1 Usual Modules of Code_CARMEL 140

List of Figures xxiii

Figure 8.2 Conjugate Gradient Global View 141

Figure 8.3 Hybrid Metamodel 143

Figure 8.4 Dot Product Task 144

Figure 8.5 Sparse Matrix in ELLPACK-R Format 145

Figure 8.6 Mesh Models used in the Simulation 148

Figure 8.7 Cube 1 to 3: Sparse Matrices from Assembly
Process . 149

Figure 8.8 Cube 4 to 6: Sparse Matrices from Assembly
Process . 150

Figure 8.9 Convergence Charts for Cube 1 to 3 151

Figure 8.10 Convergence Charts for Cubes 4 to 6 152

Figure 8.11 Results for Cube 1 153

Figure 8.12 Results for Cubes 2 and 3 154

Figure 8.13 Results for Cubes 4 and 5 155

Figure 8.14 Results for Cubes 6 155

Figure 8.15 Speedup Evolution according to Problem Size . 156

Figure 8.16 Cube Post-processing 157

Figure 8.17 Automotive Alternator from Valeo™ 157

Figure 8.18 Alternator Post-processing 158

Figure A.1 NVIDIA’s Tegra 2 Architecture 174

Figure A.2 Nodes in a Distributed Memory System 176

Figure A.3 Tesla S1070 Card Architecture Overview 178

Figure A.4 T10 GPU Architecture 179

Figure A.5 OpenCL Platform and Memory Model 180

Figure A.6 OpenCL UML Class Diagram 181

Figure A.7 OpenCL 3d Kernel of size Gx Gy 182

Figure B.1 System, Model, and Metamodel Relationships . 189

Figure B.2 MARTE Use-Case 192

Figure B.3 MARTE Architecture 192

Figure B.4 RSM Package Overview 193

Figure B.5 ArrayOL and Downscaler 195

Figure B.6 Paving Example in ArrayOL 196

Figure B.7 Pattern Distribution in ArrayOL 197

Figure B.8 Model Transformation Pattern 198

L I S T O F TA B L E S

Table 1.1 Approaches Comparison 32

Table 3.1 Downscaler Results 62

Table 3.2 Kernel execution and data transfer times of Gas-
pard2 implementation 63

Table 3.3 Kernel execution and data transfer times of SAC
implementation 63

Table 6.1 Profiling results for the non-optimized code . . 119

Table 6.2 Profiling results for the new code 121

Table 8.1 Generated Files for the CG 146

Table 8.2 Cube 1 and 6: GPU Times Analysis 156

Table 8.3 Multi-GPU: N=132,651, NNZ=3,442,951, tol=1e-
10. Source: [41] . 157

Table A.1 Memory and Access Policy 183

Table B.1 Modeling Languages Architecture according to
MDA . 188

xxiv

L I S T I N G S

Listing 1.1 OpenHMPP example 1 25

Listing 1.2 OpenHMPP example 2 26

Listing 1.3 JOCL example . 26

Listing 1.4 Matlab GPU example 27

Listing 1.5 PyOpenCL example 28

Listing 1.6 Example CUDA-WITH-loop with data transfers
inserted. 29

Listing 1.7 Translating example CUDA-WITH-loop to ker-
nel function. 29

Listing 3.1 Usual Matrix Multiplication Program 49

Listing 3.2 Block Matrix Multiplication Program 50

Listing 5.1 QVTO snippet from UML to MARTE Metamodel
Transformation 85

Listing 5.2 launchtopology computation 91

Listing 5.3 launchtopology computation directly from task’s
shape . 92

Listing 5.4 CL Code Template 93

Listing 5.5 CL Code Template 94

Listing 5.6 Launch Topology to Grid definition 95

Listing 5.7 Memory Transfers 96

Listing 5.8 Setting Kernel Arguments 97

Listing 6.1 clCreateBuffer() function call example 103

Listing 6.2 Code Sample for Vector Product 113

Listing 6.3 Generated Kernel for Vector Product 115

Listing B.1 Launchtopology Computation directly from Task’s
Shape . 200

xxv

A C R O N Y M S

ATL Atlas Transformation Language

ArrayOL Array Oriented Language

BiCGCR BiConjugate Gradient Conjugate Residual

Code_CARMEL Code Avancé de Recherche pour les Machines
Électriques

CG Conjugate Gradient

CPU Central Processing Unit

CSR Compressed Sparse Row

DAG Directed Acyclic Graph

DSL Domain-Specific Language

EDF Électricité de France

EMF Eclipse Modeling Framework

FEM Finite Element Method

FFT Fast Fourier Transform

Gaspard2 Graphical Array Specification for Parallel and
Distribute Computing

GPGPU General-Purpose computation on Graphics
Processing Unit

GPU Graphics Processor Unit

HD-CIF High Definition Common Intermediate Format

HPC High Performance Computing

HPF High Performance Fortran

HRM Hardware Resources Modeling

IP Intellectual Property

L2EP Laboratory of Electrical and Power Electronics of Lille

M2M Model-to-Model Transformation

M2T Model-to-Text Transformation

MARTE Modeling and Analysis of Real-Time and Embedded
Systems

MDA Model-Driven Architecture

MDE Model-Driven Engineering

MIMD Multiple Instruction, Multiple Data

MoC Model of Computation

xxvi

acronyms xxvii

MOF MetaObject Facility

MPI Message Parsing Interface

MPP Massively Parallel Processing

MUMPS MUltifrontal Massively Parallel sparse direct Solver

PDE Partial Differential Equations

OCL Object Constraint Language

OMG Object Management Group

OML Operational Mapping Language

OpenCL Open Computing Language

OpenMP Open Multi-Processing

QVT Query/View/Transformation

QVTO Query/View/Transformation Operational

RSM Repetitive Structure Modeling

SMP Symmetric Multi-Processing

SIMD Single Instruction, Multiple Data

SPMD Single Program, Multiple Data

UML Unified Modeling Language

XMI XML Metadata Interchange

I N T R O D U C T I O N

context

In the recent decades, numerical simulation has become a valuable
and successful method for solving complex problems in almost all
areas of physics and human sciences. Indeed, numerical simulations
are a useful part of mathematical modeling of many natural systems
in physics, astrophysics, economics, psychology, social science, bio-
chemistry, and engineering.

Numerical simulation is fundamental to engineering advances spe-
cially in the electromagnetic fields. The application range extends
from low frequency industrial applications up to ultra-high frequency
applications. However, there are many problems that simply do not
have analytical solutions, and there are those whose exact solution
is beyond the current state of knowledge. Indeed, for many of these
real-world electromagnetic problems like scattering, radiation, wave
guiding, there is no analytical computable solution due to the com-
plexity and multitude of irregular geometries found in actual devices.
Most of these problems can not be solved manually. Therefore, devel-
opers have implemented a number of advanced numerical algorithms
specifically designed for those applications. For example, numerical
simulation techniques can overcome the inability to derive closed form
solutions of Maxwell’s equations under various constitutive relations
of media, and boundary conditions.

Throughout the years, software developers have worked on the
transformation of numerical algorithms into useable programs. There
are several options available to developers, both in terms of language
and overall approach. Often, the programming solution of numeri-
cal simulations can become as intricate and involved as the original
problems and requires almost as much refinement and care to obtain
a solution. This usually requires a twofold skill from developers (or
developing team): knowledge of the problem’s domain and the pro-
gramming language. The former belongs to physicists that have an
in-depth knowledge of physical phenomena and thus are able to pro-
pose suitable solutions according to the problem, e. g. mathematical
interpretation of physical phenomena. The latter lies in programming
languages and execution platforms, where developers are able to ex-
ploit the architecture computing power aiming high performances. In
order to promote the rapid development, many numerical libraries
have emerged in different programming languages, such as Fortran,
Java, C/C++ [122, 103, 86]. Most of these libraries relate to linear
algebra where classical functions are often used in the implementa-

1

2 introduction

tion of numerical algorithms. Moreover, there are dedicated software
packages that increase developing productivity for mathematical al-
gorithms. Packages such as Matlab [99] and Scilab [30] integrate
computation, visualization, and programming in an easy-to-use en-
vironment where problems and solutions are expressed in familiar
mathematical notation.

In numerical simulations, scientific computing programs often pro-
duce a large amount of simulation data. Consequently, this requires
more computing power than provided by sequential computers. Oth-
erwise, many of these programs can take very long time to solve a
problem. Current hardware architectures offering high performance
do not only exploit parallelism within a single processor via multiple
CPU cores but also apply a medium to large number of processors con-
currently to a single computation. However, switching from sequential
approaches to parallel approaches has been a recurring issue in pro-
gramming paradigm. Traditional de facto standards, such as Message
Parsing Interface (MPI) [56] and Open Multi-Processing (OpenMP) [121],
are often used as parallel approaches to implement high performance
applications. Nevertheless, new parallel architectures are often pro-
posed. Consequently, new programming models for those architec-
tures will require new skills from developers.

issues and motivations

Within the context described above, we take into account some
concerns related to parallel programming, emerging parallel technolo-
gies and high-level specification of numerical simulation algorithms.
Under these three aspects, we emphasize the challenges still to be
faced, and that we consider necessary for scientific and industrial
community.

Parallel Programming Paradigm

In modern execution platforms, parallelism appears at various levels
both in hardware and software: signal, circuit, component, and system
levels. For instance, at a higher level, SMP systems have multiple
CPUs that work in parallel. At an even higher level of parallelism,
one can connect several computers together and make them work as a
single machine, popularly known as cluster computing. Nevertheless,An overview on HPC

systems and clusters is
provided in Appendix A.

the main challenge to developers is deciding the lumps of code, i. e.,
the code granularity, that can be a potential candidate for parallelism.
Several solutions to granularity decision process have already been
proposed, such as those in [33, 67]. However, these solutions deal
with idealized systems and most of the overhead parameters, e. g.
communication, are ignored. Thus, we do not consider it optimal to

introduction 3

automatically define the code granularity. Hence, developers must
undertake this process.

Matson et al. [101] identify the top 10 issues concerning parallel
programming. Among these issues, we considered some major ones
as essential such as:

4© Supporting scalability, hardware: bandwidth and latencies to memory
plus interconnects between processors to help applications scale.
Although a software development methodology does not allow
changing the hardware architecture, it is possible to take advan-
tage of the available resources according to applications.

5© Supporting scalability, software: libraries, scalable algorithms, and
adaptive runtimes to map high-level software onto platform details.

7© Tools, API’s and methodologies to support the debugging process.
For instance, mechanisms for optimization and fine-tuning of
parallel applications.

9© Support for good software engineering practices: composability, incre-
mental parallelism, and code reuse.
Furthermore, support for a compact expression of parallelism at
higher levels.

10© Support for portable performance. What are the right models (or ab-
stractions) so programmers can write code once and expect it to execute
well on the important parallel platforms?

All these issues are challenges in parallel programming. Researchers
have constantly proposed solutions to bridge existing gaps.

Massively Parallel Architectures

Massively parallel architectures are computing systems that consist
of many individual nodes. The term massive is wide and connotes
hundreds if not thousands of such units. However, growth in this
area has been driven by the development of graphics cards with
massively parallel processors, resulting in commodity hardware that
is widely available, scalable and cost-effective. The adoption of general-
purpose hardware for graphics applications has opened the door for
non-graphics applications to use the potential of the graphics card
(or GPUs). Graphics Processor Unit (GPU)s, from this point, is our
aimed platform. They have led the many-core performances since 2003.
Particularly, we focus on the OpenCL programming and execution
models. In OpenCL, there is a host system that manages one or more
devices. In order to define our architecture scope, a host system is
performed by a mono-processor CPU, as well as devices are performed

4 introduction

by up to 4 GPUs that each one contains about two or three hundred
processor elements.

In summary, the two main benefits of GPUs are the following:

1. Computing Performance versus Price

Figure 0.1 shows the performance comparison between modern
GPUs and Central Processing Units (CPUs). The ratio for peak floating-
point (double precision 1) calculation throughput is about 8 to 1. This1. Here, we emphasize

rather double precision
than single precision due

to our main application
domain. If we consider

single precision
calculation, the

difference presented in
the chart is fairly larger.

ratio is merely the raw speed that the execution resources can poten-
tially support in both GPU and CPU chips. Moreover, the price is a key
aspect to consider. GPUs are graphics cards and their cost is about a
few hundred dollars 2 and they are found even in notebooks. Some

2. More expensive HPC

cards based on GPU can
reach a few thousand

dollars.

cases report an average of between 10x and 100x speed increase using
General-Purpose computation on Graphics Processing Unit (GPGPU)
for the same computations, depending on the algorithms and the
hardware used for comparison 3.

3. http://developer.

nvidia.com/

cuda-action-research-apps

Figure 0.1: Performance gap between GPU and CPU

2. Green Computing versus Price

By their nature GPU processor cores can be aggregated readily into
very dense multicore applications. There are GPUs with 1,000 cores in
a single processor package with very low power consumption factor,
maximizing performance per watt (optimizing overall costs). This
factor is more important when we deal with clusters. Thus, GPGPU

aims to use the environment efficiently and effectively. This is called
Green Computing [108].

http://developer.nvidia.com/cuda-action-research-apps
http://developer.nvidia.com/cuda-action-research-apps
http://developer.nvidia.com/cuda-action-research-apps

introduction 5

◦ Issues on GPGPU

According to [104] the adoption of GPGPU is driven by 7 issues.
Some of these issues include:

• Lack of developer expertise.
Even though GPGPU is based on existing programming languages,
it requires a different model of programming concerning general
purpose processors. Currently, developers are aiming to acquire
necessary skills in order to adapt their programs to GPGPU.

• C/C++ being the dominant starting point for GPGPU programming.
Vendor’s API is usually based on C/C++; however, bindings for
other languages have largely been disseminated.

• Half of those considering GPGPU expect a 10x increase in performance.
Many available benchmarks show speed-up of about 10x. This
is an attractive result though not always true for all applications.
On the other hand, some benchmarks show better performance.

• Debugging and designing parallel algorithms are the most difficult de-
velopment task with GPGPU. Available tools have constraints to
interact with GPU processors. Debugging programs at runtime is
hard to implement. Moreover, depending on the developing tool,
it is not simple to integrate the vendor’s profilers and program-
ming environment.

High-Level Specification

There is a lack of high-level specification for GPGPU applications.
However, the specification of parallel applications at higher levels is
not recent. Indeed, in 1992, Jong et al. [32] proposed an approach that
separates the algorithm specifications and the allocation of hardware
resources to data and computations. In their approach, algorithms are
formulated at an abstract level in a specification language having its
own ideal virtual machine, thus preserving the parallelism inherent to
the algorithm. Many others approaches appeared, and the high-level
specification world has evolved. Today, there are several standards
available to abstract specification of software depending on the ap-
plication domain. Proprietary solutions as seen in Matlab Simulink®
and Labview®, or standards as provided by Object Management
Group (OMG) are alternatives to classical software specification based
on hand written code. Therefore, the main issue, in this context, is
to find the high-level specification solution that suits well to GPGPU

developing. In summary, a solution that meets our objectives need
to provide the means to specify an application, the expression of its
parallelism, the platform architecture, and the link between logical
and physical parts. Regarding the parallelism, an interesting aspect is
conciseness. Thus, dozens as well as thousands of instances of a task
must be expressed in a compact way with minimal complexity.

6 introduction

scope and contributions

Although parallel programming has a wide application range, we
focus the work on simulation of electrical machines. More specifically,
we focus on all operations that depend on linear algebra. Most of these
operations can run in parallel and suit well to many-core architectures.
Indeed, vector and matrix operations are data independent and do not
require synchronization instructions. In addition, similar tasks as seen
in intensive signal processing applications are also met by the same
development methodology. In summary, our scope of work lies in
introducing high-level specification into GPGPU development as seen
in Figure 0.2.

Application Development

Parallel
Programming

Massively Parallel
Programming

(GPGPU)

High-Level Specification
(MDE, Visual Programming)

Scope of Work

Figure 0.2: Scope of Work

Therefore, the contribution of this thesis addresses the following
aspects:

An MDE Methodology for GPGPU Architectures�
�

�

How to specify the models of application and platform
for our target software and hardware?

We have chosen Model-Driven Engineering (MDE) as overall solu-
tion to our methodology because it aims to increase the benefit of the
software development. In summary, this benefit is delivered in two
basic ways:

1. short-term productivity: using rapid prototyping as part of a
planned iteration in establishing application requirements;

introduction 7

2. long-term productivity: growing software organically, adding
more function to systems or modifying them as they are run,
used, and tested and according to running platform.

◦Modeling

In the MDE context, we have found in the standard Unified Modeling
Language (UML) and its profile Modeling and Analysis of Real-Time
and Embedded Systems (MARTE) the elements that meet the earlier
discussed concerns regarding high-level specification. MARTE is in-
creasingly being used in academic and industrial tools to support
hardware and software development. Among the features of UML and
MARTE, the following ones are taken into account as reasons for our
choice:

• Clear separation between hardware and software specifications. It en-
ables the specialization of each component, providing a common
way of modeling both hardware and software aspects of a whole
system in order to improve communication between developers.

• Existing tools and experienced developers for high-level modeling in
UML. It enables interoperability among development tools used
for specification, design, verification, and code generation.

• Parallel expressiveness available in MARTE. With support to ArrayOL,
it is able to express in compact form the potential parallelism
of tasks and data and parallel hardware architectures, enabling
factorization of repeated elements.

◦ Code Generation

Besides modeling, we define also the strategy to analyze a model
specified with MARTE in order to produce a source code for the target
platform. This process is not monolithic and is made by various layers,
which take into account aspects previously designed.

◦ Optimization

We aim a methodology that produces an efficient code. In GPGPU,
different programming practices, we are able to achieve higher perfor-
mances. These practices include explicit cache handling, and attain
speedup of about 10x1 with respect to non-optimized codes. Thus, we 1 It is important to note

that this is not always true.
Usually, analysis by human
obtains better results than
automatic one.

integrate within the code generation engine some resources aiming at
generating efficient code.

Metamodel for Data Allocation and Distribution�
�

�

How to specify the data allocation
onto different memory address space?

We have to set a memory space and to define allocations for a host

8 introduction

and different devices without neglecting their intercommunication.
Moreover, we have to gather all data elements defined in the applica-
tion model that share the same memory address. To organize those
aspects, we define a specific metamodel for memory handling.

Metamodel for Hybrid Applications�
�

�

How to clearly separate CPU and GPU roles
in the whole application?

We propose this metamodel as being the last one in our hierarchy of
metamodels. It sums up all previous analyses aiming at creating a
model with components that match elements in a real program. More
precisely, it takes into account the hybrid structure (host and device)
found in GPGPU architecture.

Model Transformations�
�

�

How to transform higher level models to lower level models
in order to attain the target code?

The core of our code generation approach lies mainly in the model
transformations. We have defined several model transformations
modules, which now, along with other ones, compose a complete
chain of transformations for generating a functional and efficient code.
These transformations analyse the model, and define or modify struc-
tures based on available metamodels that regard aspects such as data
handling, scheduling, etc.

UML/MARTE-to-OpenCL Branch for Gaspard2�
�

�

How to integrate the whole methodology
into a single development environment?

Our methodology is inserted within a wider approach called Gaspard2.
Indeed, we propose a new branch that allows transforming a model
designed in UML/MARTE to a source code in OpenCL. The choice of
OpenCL can be summarized in one reason: it is standard and indepen-
dent of hardware vendor2 .2 CUDA is the

programming model for
NVidia’s GPU. It is older

and has a higher number of
tools and case studies.
However, it remains a

proprietary solution and, at
the moment, it cannot be
used with other vendor’s

GPU.

Increasing Performance on Heavy Simulation Applications�� ��What benefits are observed in the whole application?

Performance is our main goal. Along with hardware price and a low
curve learning methodology to develop applications, we contribute

introduction 9

to a solution to accelerate numerical algorithms on heavy problems.
Indeed, we show that is not interesting to apply GPGPU on lightweight
problems, and the turning point can be seen on benchmark results.

Fast Adaptation of Applications on Multiple Devices�� ��How scalable is the code generation?

Those who already developed applications on GPGPU know that rais-
ing scale on devices implies complex changes on code. This is more
noticeable in OpenCL programming model. We propose task alloca-
tions onto mono or multi-devices. Therefore, the complexity of the
overhead to attain the multi-GPU feature is undertaken by the model
compiling process.

Optimization Techniques taking advantage of MPP and MDE�� ��How efficient is the generated application?

At model compiling time, we are able to take into account aspects that
can be optimized. At first, knowing the GPGPU architecture allows
us checking bottlenecks in performance and providing changes to
overcome them. Second, enabling the integration between running
results (profiling) and high-level models allows us tuning our models
aiming at better results. Even if an optimized code depends mainly
on the algorithm and the way in which the designer has specified it,
we give resources to optimize the code to designers.

Application of the Methodology on Simulation of Electrical Machines�

�
	How much impact is achieved

on simulation of electrical machines?

The methodology hides details about programming GPGPU at low level.
Therefore, we focus on designers that know well their algorithms and
not necessarily the GPGPU programming model. Specifically for simu-
lation of electrical machines, we provide a methodology that relies on
replacing sequential implementation in existing simulation tools by
parallel implementations. Also, replacing heavy computation modules
by parallel solutions increases fairly performance and consequently
decreases the time-to-market of the whole project.

10 introduction

Comparing to the OpenMP branch of Gaspard2

There is a previous work developed within Gaspard2 that also aims
to provide a methodology to develop high performance applications
in order to improve numerical simulation applications. This work
involves an OpenMP transformation chain and is part of the Julien
Taillard’s thesis [137]. We present an overview of his work in Chapter 1.
However, in order to emphasize some concerns that make our work
stands out, we describe them as follow:

1. Programming Model: We focus on the OpenCL programming
model. OpenCL has wider application and target architectures
than OpenMP. Therefore, it brings new issues not addressed by
OpenMP. The main issues are related to the explicit handling of
data transfers and the grid of threads. However, Taillard did not
address this concern. Furthermore, to a certain extent, OpenCL
is capable to meet the application field of OpenMP, expanding it
to other architectures that may integrate, for instance, hardware
accelerators.

2. High-level Specification: Taillard’s work proposes the usage of
a non-standard UML profile to specify applications and archi-
tecture. Even though most concepts from this profile are now
part of the standard MARTE profile for UML, MARTE provides a
larger number of stereotypes related to embedded system do-
main. It includes the previous concepts required by the Taillard’s
approach and many other concepts aiming other applications.
Moreover, MARTE is increasingly present in modeling tools, and
its community and applications ensure future support and main-
tainability.

3. Transformation Chain: Despite the fact that Taillard’s transfor-
mation chain is not defined by standard languages for specifica-
tion of transformations, it is not structured in layers. Indeed, his
transformations keep a monolithic structure and do not involve
well defined functionalities (e. g. scheduling). In our approach,
we were able to identify his contributions in common fields,
such as task graph and task distribution. From these contribu-
tions, we redefined the structure of transformations in layers
and added all common functionalities. Then, in order to meet
the requirements of a GPGPU approach, we had to add other
essential functionalities. These functionalities address specially
data handling, performance, and the hybrid aspect of OpenCL
applications that defines roles of host and device.

The concerns discussed above justify the need to address the prob-
lem in a different way. This is not simply due to differences between
aimed execution platforms. This is above all due to choices and spe-
cific goals defined for implementation of the proposal. As a result,

introduction 11

we offer a better approach that takes into account its evolution and
adaptability to future execution platforms.

outline

This dissertation is structured into four main portions.

Part I: State of the Art

The first part deals with related works to code generation, high-level
specification for parallel programming, and basic concepts related to
the framework used as a basis for developing our methodology.

◦ Chapter 1: High-Level Modeling and Code Generation on HPC
In this chapter, some important approaches in the state of the art on
high-level modeling and code generation to High Performance Com-
puting (HPC) systems are presented regarding the features relevant to
our proposed approach.

◦ Chapter 2: Gaspard2 as Code Generation Framework
We have found in Gaspard2 framework important features which can
benefit our proposal. Therefore, in this chapter, we present the de-
sign framework Gaspard2 as a solution to the development of high
performance systems and which addresses MDE challenges.

Part II: Methodology Approach

Initially, in this part, we present the methodology itself. Moreover,
the remaining chapters deal directly with the technical details related
to code generation from a designed model.

◦ Chapter 3: Creating Applications
In this chapter, we seek to clarify our methodology to develop OpenCL
applications from high-level models. Indeed, after presenting related
works and Gaspard2 as framework for our approach, we analyze here
two examples that use MARTE to specify them. Nevertheless, the ex-
amples are generic applications and aim only to describe how the
methodology works.

◦ Chapter 4: Metamodels and GPU
In this chapter, we begin to explain technically the process behind the
methodology. Basically, we point out principles of operation of GPUs,
and then we present the main metamodels that statically provide a
structure that supports these principles. We have proposed three novel
metamodels. These metamodels focus on the different GPU features.

12 introduction

The chapter does not deal with all metamodels necessary to the whole
code generation but only the proposed ones, and those related to GPU

domain.

◦ Chapter 5: Models towards Code
In this chapter, we present several model transformations modules
which now, along with other ones, are part of that we call Gaspard2

Model Transformation Library. As an MDE approach, the new branch
proposed for Gaspard2 comprehends all models, metamodels, trans-
formation modules, and, foremost, how to determine the compiling
process layers in order to achieve all necessary model element analysis.
In this chapter, we present our model transformation chain and how
it works regarding the metamodels previously depicted in the earlier
chapter as well as metamodels introduced in this chapter.

◦ Chapter 6: Optimizations Even if our proposal is based on ab-
stract models in a very high-level programming, in this chapter, we
present some key points used to optimize the generated code. These
points are strongly linked to the running platform, i. e., CPU, GPU
under OpenCL programming. We emphasize basically two strategies
to try to optimize the code: memory issues and profiling integration.

Part III: Simulation of Electrical Systems

Our main goal is to allow creating high performance applications
to simulate electrical systems. This part is composed of two chapters
that present the simulation system CARMEL and a case study that
replaces one of its modules (solver) with a GPGPU module.

◦ Chapter 7: Electromagnetic Phenomenon and CARMEL
This chapter present the scientific computation associated to the solu-
tion of electromagnetism problems that requires numerical methods
in the discrete domain. So, in order to assure a better understanding
of the decision taken in the case study, at first, we present part of the
theory of the mathematical modeling of these problems in the contin-
uous domain. Then, we introduce the Finite Element Method (FEM) as
numerical method to solve these problems. Having this basic theory,
we present the Code_CARMEL, a software that implements numerical
methods for simulation of electrical machines.

◦ Chapter 8: Conjugate Gradient Solver
In this chapter, we present the direct application of the methodology
to the parallelism of a solver in the context of Code_CARMEL. The
objectives can be summarized into two main aspects: first, the high-
level specification of the solver’s algorithm using MARTE; second, the
expected results by applying our solver module into the Code_CARMEL.

introduction 13

Part IV: Appendices

This thesis deals with a twofold research domain: computer sci-
ence and electromagnetic phenomenon. For this reason, we added
two appendices that have basic concepts of High Performance Com-
puting (HPC) and Model-Driven Engineering (MDE). Those concepts
are often referenced in the main text whenever their definitions are
necessary.

◦ Appendix A: High Performance Computing
This appendix does not intend to be a complete study on HPC. How-
ever, the basic theory and specially the GPGPU and OpenCL worlds are
presented here as a quick reference.

◦ Appenidx B: Model-Driven Engineering
Similar to Appendix A for HPC, this appendix presents basic concepts
on MDE. More precisely, it deals with MDE philosophy and MARTE

profile for UML. Again, those concepts are referenced in the main text
and they enlighten some of MARTE packages.

Part I

S TAT E O F T H E A RT

1
H I G H - L E V E L M O D E L I N G A N D C O D E
G E N E R AT I O N O N H P C

Chapter Contents

1.1 High-Level Specification Approaches
1.1.1 Gaspard2: OpenMP Branch
1.1.2 Archi-MDE
1.1.3 Simulink
1.1.4 OpenModelica
1.1.5 Syntony

1.2 Extensions for Programming Languages
1.2.1 Mint Programming Model
1.2.2 OpenHMPP
1.2.3 Java OpenCL Bindings
1.2.4 Matlab and Matlab-like on GPU
1.2.5 PyOpenCL
1.2.6 SAC

1.3 Other Contributions
1.4 Comparative Table of Features
1.5 Conclusion

Before presenting our approach, in this chapter, we discuss some
important approaches in the state of the art on high-level modeling
and code generation dedicated to HPC systems. There are many pro-
gramming solutions available to create high performance applications.
We emphasize here a twofold category for those solutions. On the
one hand, we have languages that hide the low level from developers.
In this case, developers specify their intentions at a high abstraction
level and then a Domain-Specific Language (DSL) compiler is able
to create automatically code for the desired platform. On the other
hand, there are approaches that enable developers to use the power
of languages for parallel applications based on templates or through
directives simplifying the complex command syntax. In this chapter,
we present some of those solutions, enlightening their advantages and
drawbacks regarding the objectives seen in the introductory chapter.

17

18 high-level modeling and code generation on hpc

1.1 high-level specification approaches

In this section, we emphasize 5 approaches based on high ab-
straction level specification. Some of them aim at creating high-
performance applications, while others address modeling of systems.

1.1.1 Gaspard2: OpenMP Branch

Based on a previous version of Gaspard2, the OpenMP branch is a
result of the Taillard’s thesis [137]. His thesis’ work focuses on parallel
application development from its specification, maintenance, and code
generation for the target platform. As our proposal, this work is
result of a Model-Driven Engineering (MDE) methodology taking anOur thesis is based on

Model-Driven Engineering
methodology. Important

concepts of MDE are
present in Appendix A.

application specification from a high-level abstraction UML model to a
parallel code automatically generated by model transformations.

One of our aims is extending the Taillard’s work. However, we
are obliged to take into account some limitations of his approach, as
follow:

1. It does not use the standard Modeling and Analysis of Real-
Time and Embedded Systems (MARTE) profile to specify the
application.

2. Even if OpenMP is a parallel programming model, it has many
differences from GPU’s programming model, mainly the dis-
tributed memory aspect of CPU and GPU; OpenMP is oriented
to shared memory and usually it is not suitable to thousands of
threads management3 .3 At least in current

platforms in which
OpenMP is used. 3. The device multiplicity for OpenMP implies on a new available

processor (or a few cores) to allocate new threads. In GPGPU, a
new device implies on, for instance, 240 new cores with their
own independent memory to allocate possible thousands of
tasks instance (threads).

4. Even if every produced application can be always optimized, the
compiler within model transformations takes into account just
the model as it was designed (even if a memory management is
proposed), the model designer is responsible for possible neces-
sary changes in the model in order to attain a better performance
level.

5. Except for the thread grid definition, the management of threads
dispatching is entirely made by the GPU controller. Differently,
Taillard makes use of polyhedron models to optimize loops and
distribute sub-tasks in OpenMP.

However, the OpenMP branch is the source of inspiration for many
features available in our GPU approach. Indeed, the parallel expres-
sion based on ArrayOL concepts are found in OpenMP branch and
available on Gaspard2, as well as the conditional loop exit control

1.1 high-level specification approaches 19

necessary in applications such as Conjugate Gradient (CG) explained
in Chapter 8.

1.1.2 Archi-MDE

In [98], Lugato et al. propose UML-HPC, or UML Profile for High
Performance Computing as a set of profiles for UML that allows de-
signing models for structures, data types, and data processing. From
the user’s viewpoint, UML-HPC performs the design of a scientific
computing software package with the help of the following concepts:
modules (HPCModule), and methods (HPCMethod). These concepts
are deliberately closer to those currently envisioned by designers with
Fortran language. Archi-MDE is an environment (cf. Figure 1.1) that
proposes the integration of UML-HPC as part of a complex system that
provides several services such as model-checking and static profiling.

However, we are not able to verify any case study providing nei-
ther functional nor performance results. We suppose that this ap-
proach aims at creating applications in high performance Fortran, i. e.
OpenMP Fortran, nevertheless it is not clear what is the model of
computation or how threads can communicate in a multi-threaded
environment. As a non-standardized approach, no extension and no
compatibility are provided with current standards to design HPC
applications.

Figure 1.1: Architecture of the plug-in Archi-MDE. Source: author’s article [98].

1.1.3 Simulink

Simulink is a dynamic simulation environment that is part of the
Matlab package marketed by the Mathworks Inc [99]. Matlab was
originally written by Cleve Moller in order to aid users in using two

20 high-level modeling and code generation on hpc

Fortran subroutine libraries designed to solve linear and eigenvalue
problems. In 1984 Matlab was re-written in C; it contains powerful
visualization, differential equation solving, and matrix handling func-
tionality. Additional functionality can be added to Matlab by using
additional subroutines called Toolboxes. Though called a Matlab Tool-
box, Simulink is now an essential component of the Matlab/Simulink
suite. Simulink can be used to model and simulate dynamic systems
that are represented by differential equations, algebraic relations, and
finite state machines, using a library of standard components (called
blocks). Simulink has a large library of blocks that can be used to
model even very complex non-linear systems. As part of the stan-
dard library, Simulink includes a block intended to allow users to
develop and implement their own custom routines: the S-Function
block. Though originally intended as a dynamic systems simulator,
Simulink’s functionality has been expanded; an example of a state-of-
the-art use of Simulink is in the controlled rapid prototyping process.
However, there is a lack of resources to model the parallelism of
tasks and data, and resources to specify the running architecture. A
Simulink model is represented graphically by means of a number of
interconnected blocks. Lines between blocks connect block outputs to
block inputs. Blocks may have states, which may consist of a discrete-
time and a continuous-time part. In [80], Hooman et al. present an
approach that couples UML and Simulink. Nevertheless, some issues
related to time modeling impose constraints to the generality of the
approach. Figure 1.2 presents a typical modeling environment of
Simulink.

Figure 1.2: Designing Models on Simulink. Courtesy: MathWorks™

1.1.4 OpenModelica

OpenModelica is an open source implementation of a Modelica
compiler, simulator and development environment for research as
well as for educational and industrial purposes. OpenModelica is
developed and supported by an international effort, the Open Source

1.1 high-level specification approaches 21

Modelica Consortium (OSMC) [119]. OpenModelica consists of a Mod-
elica compiler, OMC, as well as other tools that form an environment
for creating and simulating Modelica models (cf. Figure 1.3).

Figure 1.3: Modeling a DC Motor in OpenModelica IDE

OpenModelica provides a graphic editor similar to Simulink. The
editor allows us to model a system using blocks of elements available
in its libraries. These blocks can represent power sources, adders,
transfer functions, etc. Libraries are divided in domain groups.

Regarding the compilation process, it differs quite a bit from pro-
gramming languages such as C, C++ and Java. The OpenModelica
front-end will first instantiate the model, which includes among other
things the removal of all object-oriented structure, and type check-
ing of all equations, statements, and expressions. The output from
the OpenModelica front-end is an internal data structure with sep-
arate lists for variables, equations, functions and algorithm sections.
For-equations are currently expanded into separate equations. This
means that currently each is analyzed independently. This is inef-
ficient for large arrays. From the internal data structure executable
simulation code is generated. The mapping of time-invariant parts
(algorithms and functions) into executable code is performed in a rela-
tively straightforward manner: Modelica assignments and functions
are mapped into assignments and functions respectively in the target
language of C++. For in-depth details about the compilation process
of OpenModelica refer to [123].

22 high-level modeling and code generation on hpc

1.1.5 Syntony

Dietrich et al. [46] propose an improved model-driven software
development process for numerical algorithms. Their approach is
a twofold process: first, the high-level system behavior is modeled
using UML class and activity diagrams. Then, the modules which
should be copied from the existing code base are specified in the UML
model. Typically, all hardware-specific and computationally intensive
modules will be included. The tool Syntony is able to automatically
generate a full working code from these UML models.

In detail, the process consists of several steps:

1. implementation of basic data types, low level algorithms, and
I/O routines efficiently in C++ or even on specific hardware like
GPUs;

2. design of classes in UML or auto-generate class model from
existing framework;

3. design of high level algorithms in UML activity diagrams;

4. translation of UML model into C++ code (Syntony);

5. Compilation and execution of the code on a specific platform or
from the GUI.

Figure 1.4: Overview of Syntony approach. Source: author’s article [46].

Figure 1.4 illustrates the whole process. In fact, the application
designer choose pre-defined elements such as routines, datatypes,
communication modules, referred to as Framework(C++). Syntony
generates code regarding the target architecture based on templates.
A GUI allows us to choose running specific application previously
generated in Syntony.

It is important to observe that these processes are not suitable for
generic applications. Instead, it is meant to be used for a big collec-

1.2 extensions for programming languages 23

tion of similar applications like present in the discussed framework.
Syntony is intended to be extended to generate code for different
hardware platforms, for example GPUs, even though no strategy to
achieve this goal is explicit.

1.2 extensions for programming languages

Although GPU programming is easier than before when we were
obliged to use languages for graphics operations, the new approaches
such as CUDA and OpenCL remain difficult for neophytes. Many
solutions based on directives, libraries for several languages, pragmas,
and others have been emerging to facilitate the development. These
sections intend to present some of the main approaches that use these
strategies.

1.2.1 Mint Programming Model

Mint is a programming model that enables the non-experts to enjoy
the performance benefits of hand coded CUDA without becoming Compute Unified Device

Architecture is a parallel
computing architecture
developed by Nvidia. Even
though CUDA is
platform-dependent, many
solutions use CUDA as a
target language due to its
large number of developers.
CUDA works like OpenCL.
It is slightly introduced in
Appendix A.

entangled in coding details. Mint programming model has been im-
plemented as a source-to-source translator that generates optimized
CUDA C from traditional C source. The translator relies on anno-
tations to guide translation at a high level. The set of pragmas is
small, and the model is compact and simple. Yet, Mint is able to
deliver performance competitive with hand-optimized CUDA. In the
paper [143], Unat et al. show that, for a set of widely used stencil ker-
nels, Mint realized 80% of the performance obtained from aggressively
optimized CUDA on the 200 series NVIDIA GPUs. Their optimiza-
tions target three dimensional kernels, which present a daunting array
of optimizations.

1.2.1.1 C to CUDA Translation

To construct the source-to-source translation and analysis tools,
the ROSE compiler framework [94, 127] is used. ROSE is an open
source software developed and maintained at Lawrence Livermore
National Laboratory. ROSE is a convenient tool for developing this
kind of infrastructure because it provides an API for generating and
manipulating memory representations of Abstract Syntax Trees (ASTs).

Figure 1.5 shows the modular design of the Mint translator and
the translation workflow. The input to the compiler is C source
code annotated with Mint pragmas. The Pragma Handler parses the
Mint directives and clauses. Once the translator has constructed
the AST, it queries the parallel regions containing data parallel for-
loops. Directives in a candidate parallel region go through several

24 high-level modeling and code generation on hpc

transformation steps inside the Baseline Translator: Outliner, Kernel
Conguration, Argument Handler, Memory Manager, and Thread Scheduler.

Figure 1.5: Modular design of Mint Translator and translation flow. Source:
author’s article [143]

An obvious limitation for this translator is that it is domain-specific.
Mint targets stencil computations and its optimizations are specific to
this problem domain. Although it is not a generic approach, Mint can
incorporate domain-specific optimizations into the compiler, resulting
in improved performance.

1.2.2 OpenHMPP

Based on a set of directives, OpenHMPP Standard [120] is a pro-
gramming model designed to handle hardware accelerators without
the complexity associated with GPU programming. This approach
based on directives has been implemented because they enable a loose
relationship between an application code and the use of a hardware ac-
celerator. The OpenHMPP directive-based programming model offers
a syntax to efficiently offload computations on hardware accelerators
and optimizes data movement to/from the hardware memory. The
model is based on works initialized by CAPS (Compiler and Archi-
tecture for Embedded and Superscalar Processors) [22], a common
project from INRIA, CNRS, the University of Rennes 1 and the INSA
of Rennes.

1.2 extensions for programming languages 25

OpenHMPP is based on the concept of codelets, functions that can
be remotely executed on Hardware Accelerators. A codelet has the
following properties:

• It is a pure function:
· it does not contain static or volatile variable declarations nor

refer to any global variables except if they have been declared
by a HMPP directive "resident";
· it does not contain any function calls with an invisible body

(that cannot be inlined). This includes the use of libraries and
system functions such as malloc, printf, etc.;
· every function call must refer to a static pure function (no

function pointers).
• It does not return any value (void function in C or a subroutine

in FORTRAN).
• The number of arguments should be fixed (i.e. no variable num-

ber of arguments like vararg in C).
• It is not recursive.
• Its parameters are assumed to be non-aliased.
• It does not contain callsite directives (i. e. RPC to another codelet)

or other HMPP directives.

Listing 1.1: OpenHMPP example 1

1 /* declaration of the codelet */

2 #pragma hmpp simple1 codelet, args[outv].io=inout, target=CUDA

3 static void matvec(int sn, int sm, float inv[sm], float inm[sn][sm],

float *outv){

4 int i, j;

5 for (i = 0 ; i < sm ; i++) {

6 float temp = outv[i];

7 for (j = 0 ; j < sn ; j++) {

8 temp += inv[j] * inm[i][j];

9 }

10 outv[i] = temp;

11 }

12 int main(int argc, char **argv) {

13 int n;

14

15 /* codelet use */

16 #pragma hmpp simple1 callsite, args[outv].size={n}

17 matvec(n, m, myinc, inm, myoutv);

18

19 }

In Listing 1.1, we can observe the codelet declaration (lines 1-11)
having CUDA language as target. In lines 16,17 the codelet call. The
code is a conventional C code, however pragmas are inserted just before
function call and declaration in order to ensure the settings intended
by developers.

OpenHMPP is a powerful solution for manycore platforms and it
does not imply big changes in previous existing codes. However, it

26 high-level modeling and code generation on hpc

requires low level understanding about architecture details in order
to attain better performances. For instance, in Listing 1.2 illustrates
a situation in which we have to allocate data before running the
loop. The memory allocation and upload of the input data are done
only once outside the loop and not in each iteration of the loop.
The synchronize directive (line 8) allows to wait for the asynchronous
execution of the codelet to complete before launching another iteration.
Finally the delegatedstore directive (line 10) outside the loop uploads the
sgemm result. Regarding languages such as OpenCL, these operations
remain complexes, even though they are simpler when we just need
to modify already existing C codes.

Listing 1.2: OpenHMPP example 2

1 int main(int argc, char **argv) {

2 #pragma hmpp sgemm allocate, args[vin1;vin2;vout].siez={size,size}

3 #pragma hmpp sgemm advancedload, args[vin1;vin2;vout], args[m,n,k,

alpha,beta]

4

5 for (j = 0 ; j < 2 ; j ++) {

6 #pragma hmpp sgemm callsite, asynchronous, args[vin1;vin2;vout].

advancedload=true, args[m,n,k,alpha,beta].advancedload=true

7 sgemm (size, size, size, alpha, vin1, vin2, beta, vout);

8 #pragma hmpp sgemm synchronize

9 }

10 #pragma hmpp sgemm delegatedstore, args[vout]

11 #pragma hmpp sgemm release

1.2.3 Java OpenCL Bindings

Some developers prefer Java [65] as a programming language. Java
derives much of its syntax from C and C++ but has a simpler object
model and fewer low-level facilities. There are a few libraries pro-
viding Java bindings for Open Computing Language (OpenCL). The
goal of these libraries is to provide an object-oriented abstraction of
OpenCL for Java. This simplifies the usage and may be considered more
convenient for most Java programmers. The functions are provided
as static methods, and semantics. Signatures of these methods have
been kept consistent with the original library functions, except for the
language-specific limitations of Java. The OpenCL API may be very
verbose at some points, and this is not hidden or simplified, but is
simply offered by the library as-it-is.

For instance, Listing 1.3 shows the process to obtain a device ID
in JOCL [84]. There is almost no difference in the same process in C
language. However, this code is part of a Java code and, thus, it can
be part of a large application entirely developed in Java.

Listing 1.3: JOCL example

1 // Obtain a device ID

1.2 extensions for programming languages 27

2 cl_device_id devices[] = new cl_device_id[numDevices];

3 clGetDeviceIDs(platform, deviceType, numDevices, devices, null);

4 cl_device_id device = devices[deviceIndex];

1.2.4 Matlab and Matlab-like on GPU

In recent years, several approaches have been enabling Matlab
code [100, 78, 66, 2] and open-source alternatives such as Octave [50,
139] to run on the GPU. Matlab™ GPU support is available in Parallel
Computing Toolbox™. Using Matlab for GPU computing allows us to
take advantage of GPUs without low-level C or Fortran programming.
Matlab supports Nvidia CUDA-enabled GPUs with compute capabil-
ity version 1.3 or higher, such as Tesla 10-series and 20-series GPUs. It
provides the base for GPU-accelerated Matlab operations and allows
for integrating the existing CUDA kernels into Matlab applications.

The example provided in Listing 1.4 illustrates the usage of the
power of GPU-enabled Matlab. In the line 1, we create a matrix 1000-
by-1000 of single precision elements directly in GPU memory calling
the gpuArray special function and it is referenced as Ga variable. Then,
we do the Fast Fourier Transform (FFT) on this variable in GPU and
the output is the variable Gfft also in GPU memory (as seen in lines
2,11). The following operation in the line 3 is executed by the GPU.
Finally, we gather the result to CPU memory in variable G4 as seen in 4 Single Precision=4 bytes.

1000x1000
elements=1,000,000
elements.
4x1million=4million bytes.

lines 4,8.

Listing 1.4: Matlab GPU example

1 Ga = gpuArray(rand(1000, ’ single ’));
2 Gfft = fft(Ga);

3 Gb = (real(Gfft) + Ga) * 6;

4 G = gather(Gb);

5 whos

6 Name Size Bytes Class

7

8 G 1000x1000 4000000 single

9 Ga 1000x1000 108 parallel.gpu.GPUArray

10 Gb 1000x1000 108 parallel.gpu.GPUArray

11 Gfft 1000x1000 108 parallel.gpu.GPUArray

This solution is very interesting for Matlab programmers. However,
it remains dedicated to specific available functions where the paral-
lelism is evident and, for the time being, it does not allow further
configurations such as multi-GPU.

1.2.5 PyOpenCL

Interpreted languages such as Python [125] are traditionally used
in IO-bound applications where their lack of high CPU-bound perfor-
mance does not matter. Moreover, Python is a high-level programming

28 high-level modeling and code generation on hpc

language and object-oriented. This means lower learning curve. To
add more complex operations, however, extensions written in C (or
C++) can be used to implement these computationally heavy opera-
tions that can be called from Python as if they were native functions.

The project PyOpenCL purposes adding OpenCL support to Python.
In [92], Pinto et al. introduce PyCUDA and PyOpenCL as a combi-
nation of a dynamic, high-level scripting language with the massive
performance of a GPU as a compelling two-tiered computing plat-
form, potentially offering significant performance and productivity
advantages over conventional single-tier, static systems. The concept
of GPU run-time code generation (RTCG) presented in their article
is simple and easily implemented using existing, robust infrastruc-
ture. Nonetheless it is powerful enough to support the creation of
custom application-specific tools by its users. Analyzing the code in
Listing 1.5, we can see how this approach allows us to interact with
OpenCL programming. Although, originally, Python language hides
the low-level details about memory management, in this example, in
lines 5,6 we declare explicitly two variables float32(double) with 50000

random elements, then in lines 12,13 we allocate and transfer these
variables contents to the device. The OpenCL code is provided and
built as-it-is in lines 16-23, and then executed (line 25). The function
cl.enqueue_copy (line 28) transfers the result back to host.

Listing 1.5: PyOpenCL example

1 import pyopencl as cl

2 import numpy

3 import numpy.linalg as la

4

5 a = numpy.random.rand(50000).astype(numpy.float32)

6 b = numpy.random.rand(50000).astype(numpy.float32)

7

8 ctx = cl.create_some_context()

9 queue = cl.CommandQueue(ctx)

10

11 mf = cl.mem_flags

12 a_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a)

13 b_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b)

14 dest_buf = cl.Buffer(ctx, mf.WRITE_ONLY, b.nbytes)

15

16 prg = cl.Program(ctx, """

17
__kernel void sum(__global const float *a,

18
__global const float *b, __global float *c)

19 {

20 int gid = get_global_id(0);

21 c[gid] = a[gid] + b[gid];

22 }

23 """).build()

24

25 prg.sum(queue, a.shape, None, a_buf, b_buf, dest_buf)

26

27 a_plus_b = numpy.empty_like(a)

28 cl.enqueue_copy(queue, a_plus_b, dest_buf)

1.2 extensions for programming languages 29

29

30 print la.norm(a_plus_b - (a+b))

Similarly to Java bindings, PyOpenCL offers resources to run OpenCL
code directly in a Python code. This is interesting for two reasons:
first, we can use GPUs taking advantage of a script language; second,
larger applications developed in Python can be extended to run GPU
applications. However, the approach remains only a binding between
OpenCL5 applications and Python. 5 Indeed, there is no change

in OpenCL code.

1.2.6 SAC

Single Assignment C (SAC) is a full, standalone functional and data-
parallel programming language. Most of its basic language constructs
are identical to those of C, not only with respect to their syntax but also
with respect to their semantics. Despite this rather imperative look and
feel, a side-effect free semantics is enforced by the exclusion of a few
features of C, most notably the notion of pointers. As a replacement,
the language incorporates extensive support for compiler-managed
multi-dimensional arrays.

The language features a special construct, WITH-loop, for express-
ing data-parallel operations. A complete discussion can be found
in [134]. A WITH-loop expression in SAC consists of one or more
generator parts and an operation. The latter determines the overall
behavior of a WITH-loop. Various application studies have demon-
strated that the compiler generated codes can achieve: (i) competitive
sequential runtimes comparable to those of hand-written C and FOR-
TRAN codes, and (ii) almost linear speedups from auto-parallelization
for shared memory systems.

The GPU backend of SAC allows to generate CUDA code from a
high-level functional array programming language. The compiler tar-
gets the data parallel loops, WITH-loops in SAC for parallel execution.
In addition to mapping the WITH-loops to CUDA kernels, it performs
additional transformations for improving the performance even fur-
ther. Their findings allow minimizing redundant data transfers as a
key optimization technique.

Listing 1.6: Example CUDA-WITH-loop with data transfers inserted.

1 Adev = host2device(A);

2 Bdev = cuda_with { //cuda_with are eligible WITH-loops for GPGPU

3 ([1,1] <= iv=[i,j] < [4095,4095]) {

4 res = 0.25*(Adev[i][j-1] + Adev[i][j+1] + Adev[i-1][j] + Adev

[i+1][j]);

5 }:res;

6 }:modarray(Adev);

7 B = device2host(Bdev);

30 high-level modeling and code generation on hpc

Listing 1.7: Translating example CUDA-WITH-loop to kernel function.

1 cudaMemcpy(A, Adev, size(A), cudaMemcpyHostToDevice);

2 int d0 = 4095 - 1;

3 int d1 = 4095 - 1;

4 dim3 grid(d1/BLOCKSZ+1, d0/BLOCKSZ+1);

5 dim3 block(BLOCKSZ,BLOCKSZ);

6 CUDA kernel<<<grid,block>>>(Bdev,4096,4096,1,1,4095,4095,Adev);

7 cudaMemcpy(B, Bdev, size(B), cudaMemcpyDeviceToHost);

8

9
__global__ void CUDA_kernel (float Bdev, int shp0, int shp1, int lb0,

int lb1, int ub0,int ub1,float Adev)

10 {

11 int i=blockIdx.y*blockDim.y+threadIdx.y+lb0;

12 if(i >= ub0) return;

13 int j=blockIdx.x*blockDim.x+threadIdx.x+lb1;

14 if(j >= ub1) return;

15 int wlidx = i*shp1+j;

16 res = 0.25*(Adev[i][j-1] + Adev[i][j+1] + Adev[i-1][j] + Adev[i+1][

j]);

17 Bdev[wlidx] = res;

18 }

1.3 other contributions

The following approaches are considered important but they were
not analyzed in more details.

Sadayappan et al. [132, 107] propose to develop a programming
environment for easing the development of portable high-performance
applications for GPUs and accelerators, by automatic generation of
OpenCL code from annotated C programs provided by the user. The
proposed work is motivated by recent advances in polyhedral based
approaches for powerful transformations of affine computations that
have enabled the development of the Pluto automatic paralleliza-
tion/optimization system. The developments will result in enhance-
ment of the widely used gcc compiler providing broad impact on
sciences. The education of students engaged in the work is essential
to the project. Moreover, they propose techniques for reducing the
number of unroll factors evaluated, based on the characteristics of the
program being compiled and the device being compiled to. They use
these techniques to evaluate the effect of loop unrolling on a range
of GPGPU programs and show how to correctly identify the optimal
unroll factors.

The PGI Accelerator compilers [140] are commercial tools that auto-
matically analyze whole program structure and data, split portions
of the application between the CPU and GPU as specified by user
directives, and define and generate an optimized mapping of loops
to automatically use the parallel cores, hardware threading capabil-
ities and SIMD vector capabilities of modern GPUs. In addition to
OpenMP-like directives and pragmas that specify regions of code or

1.4 comparative table of features 31

functions to be accelerated, the PGI Accelerator compilers support
user directives that give the programmer fine-grained control over
the mapping of loops, allocation of memory, and optimization for the
GPU memory hierarchy.

1.4 comparative table of features

Table 1.1 summarizes the existing approaches previously presented.
Here, we enlighten the main concerns regarding our proposal subject
of this thesis. One of the main motivations for starting a new approach
lies in the use of profile for Modeling and Analysis of Real-Time and
Embedded Systems (MARTE). MARTE is the standard that is becom-
ing adopted by many industrial and academics for real-time and
embedded systems specification. Further, in its Repetitive Structure
Modeling (RSM) package, MARTE allows us specifying the data and task
parallelism of applications compactly. In the table, first line describes
features that we consider essential in an approach of code generation
to GPGPU. Obviously, the approaches presented in this chapter have
other undeniable features and a development background that any
new proposal will probably lack. However, we aim to emphasize the
difficulty in gathering ideal solutions in one single approach.

1.5 conclusion

In summary, in this chapter, we enumerate some of the approaches
related to Model-Driven Engineering (MDE) and General-Purpose com-
putation on Graphics Processing Unit (GPGPU) available in High Per-
formance Computing (HPC) literature. Some of them enable high
level specifications (e. g. UML diagrams, visual programming) of
applications and others do code generation for GPGPU from existing
languages. Unlike our approach, they do not offer a full integration be-
tween high-level abstraction models and code generation. Afterwards,
optimization techniques based on model analysis and integration be-
tween run-time profilers and those models are key points aimed by
our approach in order to provide better applications. Furthermore,
one of the important concerns, proposed in our approach and not
found in others, is the ability of modeling details about the hardware
platform such as the device multiplicity.

32 high-level modeling and code generation on hpc

Ta
bl

e
1

.1
:A

pp
ro

ac
he

s
C

om
pa

ri
so

n
A

pp
ro

ac
h

Sp
ec

ifi
ca

ti
on

of
A

pp
li

ca
ti

on
A

rc
hi

te
ct

ur
e

D
efi

ni
ti

on
s

Pa
ra

ll
el

is
m

Su
pp

or
t

G
PG

PU
O

pt
im

iz
at

io
ns

Pr
ofi

li
ng

In
te

gr
at

io
n

D
es

ir
ed

Fe
at

ur
es

U
M

L
pr

ofi
le

fo
r

M
A

R
TE

D
efi

ni
ng

ha
rd

w
ar

e
de

ta
ils

su
ch

as
m

em
or

y
hi

er
ar

ch
y,

ho
st

an
d

de
vi

ce
se

pa
ra

ti
on

,a
nd

de
vi

ce
m

ul
ti

pl
ic

it
y

ta
ki

ng
ad

va
nt

ag
e

of
M

A
R

TE

Ye
s.

Sp
ec

ifi
ed

on
hi

gh
er

-l
ev

el
s

Ye
s

By
m

em
or

y
an

al
ys

is
an

d
pu

lli
ng

up
pr

ofi
lin

g
re

su
lt

s
Ye

s.
In

te
gr

at
in

g
pr

ofi
lin

g
an

d
ha

rd
w

ar
e

in
fo

rm
at

io
n

in
or

de
r

to
pr

ov
id

e
an

ai
de

d
de

si
gn

G
as

pa
rd

2
O

pe
nM

P
U

M
L

fo
rm

er
pr

ofi
le

fo
r

G
as

pa
rd

2

Ye
s

Ye
s.

Sp
ec

ifi
ed

co
m

pa
ct

ly
on

hi
gh

er
-l

ev
el

s
N

o
So

m
e

le
ve

lo
n

m
em

or
y

us
e

N
o

A
rc

hi
-M

D
E

U
M

L
an

d
H

PC
no

n-
st

an
da

rd
pr

ofi
le

N
o

Ye
s,

bu
t

th
er

e
is

no
in

fo
rm

at
io

n
ab

ou
t

ho
w

to
sp

ec
if

y
it

N
o

It
de

pe
nd

s
on

th
e

ap
pl

ic
at

io
n

sp
ec

ifi
ca

ti
on

N
o

Si
m

ul
in

k
To

ol
bo

xe
s(

gr
ap

hi
ca

lb
lo

ck
s)

an
d

sc
ri

pt
bi

nd
in

gs
N

o
Ye

s,
w

it
ho

ut
sp

ec
ifi

ca
ti

on
by

th
e

us
er

V
ia

Pa
ra

lle
lC

om
pu

ti
ng

To
ol

bo
x™

A
t

fu
nc

ti
on

’s
al

go
ri

th
m

le
ve

l
N

o

O
pe

nM
od

el
ic

a
G

ra
ph

ic
al

bl
oc

ks
(s

im
ila

r
to

Si
m

ul
in

k)
N

o
Ye

s,
w

it
ho

ut
sp

ec
ifi

ca
ti

on
by

th
e

us
er

N
o

fu
lly

in
te

gr
at

ed
bu

t
th

er
e

ar
e

so
m

e
w

or
ks

us
in

g
th

is
fe

at
ur

e
N

o
N

o

Sy
nt

on
y

U
M

L
m

od
el

s
fo

r
pr

e-
de

fin
ed

fu
nc

ti
on

m
od

ul
es

N
o

N
o

N
ot

ye
t

A
t

fu
nc

ti
on

’s
al

go
ri

th
m

le
ve

l
N

o

M
in

t
Pr

ag
m

as
fo

r
st

en
ci

la
pp

lic
at

io
ns

N
o

Ye
s,

us
in

g
co

de
an

no
ta

ti
on

s
on

lo
op

-n
es

ts
Ye

s
A

lr
ea

dy
op

ti
m

iz
ed

fo
r

do
m

ai
n-

sp
ec

ifi
c

N
o

O
pe

nH
M

PP
Pr

ag
m

as
fo

r
or

di
na

ry
fu

nc
ti

on
s

in
C

or
Fo

rt
ra

n
(c

od
el

et
s)

N
o

Ye
s,

us
in

g
co

de
an

no
ta

ti
on

s
Ye

s
A

t
m

em
or

y
us

e
le

ve
ls

N
o

Ja
va

O
pe

nC
L

Ja
va

N
o

Ye
s,

at
sa

m
e

O
pe

nC
L

le
ve

l
Ye

s
N

o
N

o

M
A

T
LA

B
C

om
m

an
d

lin
e

an
d

sc
ri

pt
s

M
A

TL
A

B
N

o
Ye

s,
w

it
ho

ut
sp

ec
ifi

ca
ti

on
by

th
e

us
er

V
ia

Pa
ra

lle
lC

om
pu

ti
ng

To
ol

bo
x™

A
t

fu
nc

ti
on

’s
al

go
ri

th
m

le
ve

l
N

o

Py
O

pe
nC

L
Sc

ri
pt

s
Py

th
on

N
o

Ye
s,

at
sa

m
e

O
pe

nC
L

le
ve

l
Ye

s
N

o
N

o

SA
C

N
ew

la
ng

ua
ge

fo
r

st
at

ic
as

si
gn

m
en

t
an

d
us

in
g

C
-l

ik
e

sy
nt

ax

N
o

Ye
s

Ye
s

Ye
s.

It
do

es
it

at
se

ve
ra

l
co

m
pi

la
ti

on
le

ve
ls

N
o

2
G A S PA R D 2 A S C O D E G E N E R AT I O N F R A M E W O R K

Chapter Contents

2.1 Introduction to the Framework
2.1.1 Gaspard2 Extensions

2.2 Transformation Chain
2.3 Target Platforms

2.3.1 Sequential C
2.3.2 Pthread
2.3.3 OpenMP (Fortran and C)
2.3.4 SystemC
2.3.5 LUSTRE and SIGNAL
2.3.6 VHDL

2.4 Deployment and IPs
2.5 Model Refactoring
2.6 Traceability
2.7 Related Tools

2.7.1 Eclipse
2.7.2 Papyrus Modeling Tool
2.7.3 MDFactory
2.7.4 QVTO
2.7.5 Acceleo Code Generation

2.8 Conclusion

For reasons already explicit in the introduction chapter, we have
chosen MARTE as a profile to refine our UML models and to express
our needs when specifying a Massively Parallel Processing (MPP)
application. In this field, we searched for a framework approach
which could address the following aspects:

• Modeling: using MARTE for software and hardware specifica-
tions;

• Model Transformation: providing a framework to chain trans-
formations in order to refine models and to generate code;

• Traceability: offering support to keep the link between the gen-
erated code and the high level model;

• Modular: assuring a non monolithic model compiler allowing to
add extra features that we find it necessary.

33

34 gaspard2 as code generation framework

We have found all these features in Graphical Array Specification
for Parallel and Distribute Computing (Gaspard2) and we have decided
to implement our approach as a new branch in the target platforms
tree of Gaspard2. Therefore, in this chapter, we present the design
framework Gaspard2 [59] as a solution to the development of highGaspard2 has been

developed by DaRT team of
the INRIA LILLE-NORD

EUROPE and the LIFL
(Laboratoire d’Informatique

Fondamentalle de Lille).

performance embedded systems and which addresses the following
challenges:

• Parallelism: although there are parallel approaches in program-
ming environments (cf. Appendix A), hand-coding is still widely
adopted in the development of applications. Parallelism is han-
dled at a low level by different expert teams which have a deep
knowledge of the system (both hardware and software parts) in
order to attain the performance requirements. Hand-coding is
clearly not suitable for an efficient development of large embed-
ded systems because it is very tedious, error-prone and expensive.
In order to minimize the complexity of parallel programming, it
is necessary to achieve a development degree where the design
of high performance systems needs a new expressive parallel
programming paradigms. Such paradigms have to provide some
efficient way to separately represent, at a higher level, all the
potential parallelism that is inherent to both software applica-
tions and hardware architectures. Furthermore, they must be rich
enough to explicitly express different mapping possibilities of
the application on the architecture, taking into account the paral-
lelism of the whole application. Finally, to increase performance,
the intermediate layers between the application level and the
hardware architecture should be removed as much as possible.

• Abstract Models: Nowadays, the design of most systems is fac-
ing a strong pressure to decrease the time-to-market while the
complexity of these systems increases. System developers have
to rely on some costless means allowing them to simulate and
analyze the behavior of designed systems before their realization.
Design abstraction offers a possible solution to address the above
issue concerning the time-to-market and complexity dilemma,
and the systems development cost. More concretely, one needs
models that capture the strict relevant information depending
on the required abstraction level. The global complexity of a
system is addressed from multiple viewpoints or abstraction lev-
els, so that one is able to easily focus on some specific aspects.
Abstract models grant an efficient design reuse, typically through
incremental refinements from higher level models to lower level
models. Here, by refinement, we mean a transformation that
makes a given model more concrete with regard to a target rep-
resentation (which is in general more precise than its current
representation). On the other hand, since models are often exe-
cutable and verifiable, they also serve as an interesting support

2.1 introduction to the framework 35

for both behavioral simulation and property analysis without
having necessarily the actual implementation of systems. In some
cases, they are even used to automatically synthesize this im-
plementation. Finally, abstract models enable to deal with the
heterogeneity of a system since its components can be handled at
high description levels that abstract away the specific details of
each component.

• Co-Design: the development of a complete solution usually starts
with the concurrent design, or co-design, of both software ap-
plication and hardware architecture. Then, the application part
is mapped onto the hardware part, during the allocation phase.
Therefore, simulation models from several abstraction levels are
generated for the whole system. The different aspects of this
development process are potentially handled by different domain
experts who must communicate safely in order to achieve the
expected design. In such a context, the design and analysis activi-
ties become very difficult due to the ever increasing complexity of
modern systems. As a consequence, the productivity of designers
falls down. Another critical aspect concerns the performance
improving based on changes in models, i. e., how to re-design the
system aiming better results.

2.1 introduction to the framework

Model Designer

MARTE�specification

build�Model

annotate�Model�

for�Analysis

analyze�Model

define�

Methodology

adapt�MARTE�

specification

build�Execution�

Platform�Model

provide�Execution�

Platform

Model Analyst

Methodology

Provider

Execution Platform

Provider

<<include>>

<<include>>

Figure 2.1: MARTE Use Case

Before presenting the framework, we will define the actor’s roles
according to MARTE. Figure B.2 presents the use case diagram that A more detailed

introduction to MARTE
profile is presented in
Appendix B. There is a
section which shows
MARTE and its packages’
descriptions and
relationships.

defines those roles. Based on this diagram and adopted as termi-
nology for this thesis, we call model designer the user responsible for
creating the application’s model. Conversely, Gaspard2 has the role of
methodology provider and once the execution environment is taken into
account by Gaspard2, it can be also considered the execution platform

36 gaspard2 as code generation framework

provider. The model analyst is not mandatory to us. However, the most
times when we have to analyze profiling results, the model designer
becomes the model analyst.

In Gaspard2 context, we call framework an environment that pro-
vides to designers, at least, the following means:

• a formalism for the description of a whole application and plat-
form at a high abstraction level,

• a methodology covering all system design steps,
• and a toolset that supports the entire design activity.
The design of SoCs in Gaspard specifically relies on the repetitive

Model of Computation (MoC) [20], which offers a very suitable way to
express and manage the potential parallelism in a system. This MoC is
inspired by ArrayOL(cf. Subsection B.2.2), a domain-specific language
originally dedicated to intensive signal processing applications. It ex-
tends the basic notions of this language and offers an elegant and very
expressive way to describe both task parallelism and data parallelism,
and the combination of both.

The repetitive MoC is used in Gaspard2, via the MARTE standard pro-
file and more precisely its Repetitive Structure Modeling (RSM) pack-
age(cf. Subsection A.4.2.5), to describe the parallel computations in the
application software part, the parallel structure of its hardware archi-
tecture part, and the association of both parts. The resulting abstract
models are afterwards deployed towards specific implementations.
Finally, different automatic refinements from the higher abstraction
level are defined, according to MDE paradigm, towards lower levels
for various purposes: simulation at different abstraction levels with
SystemC [13], hardware synthesis with VHDL [96], formal validation
with synchronous languages [58], high performance computing with
OpenMP Fortran and C [138]. MDE enables to clearly identify different
intermediate abstraction levels. Thus, it facilitates the decomposition
of the refinement process into successive steps.

2.1.1 Gaspard2 Extensions

One of the most important features in Gaspard2 is its ability to
extend UML to bridge a gap of concepts not provided by MARTE.
The extensions proposed are available by two ways: first, adding
the deployment concerns by a UML profile (cf. Section 2.4) along
with MARTE; second, offering an extensible library of metamodels as
extension of the MARTE metamodel.66 Originally MARTE is

implemented as a UML
profile. However, Gaspard2

proposes a MARTE
metamodel independent of
UML in order to avoid the

higher complexity handling
on models. This process is

presented in Chapter 5

In general, those extensions can be divided into two categories as
illustrated in Figure 2.2:

1. Core Extensions: they are all metamodels related to common
concerns, e. g. scheduling, tiler processing.

2.2 transformation chain 37

2. Target-Specific Extensions: they are all metamodels related to
specific-target domain concerns, e. g. VHDL datatypes adapta-
tion, OpenCL kernel topology.

Gaspard2 Core Extensions

Local and Global
Graph

Metamodel

Scheduling
Metamodel

Memory Mapping
Metamodel

Auxiliar Concepts
Metamodels

Metamodel for
MARTE

+ Gaspard2
Deployment

Gaspard2 Target-Specific Extensions

Hybrid
Metamodel

Pthread
Metamodel

SystemC
Metamodel

...

Figure 2.2: Gaspard2 Extensions for MARTE

2.2 transformation chain

The compiling process in Gaspard2 lies in transformation chains.
When we have to create a new branch, we can put various model
transformations together using MDFactory (cf. Subsection 2.7.3) avail-
able in the framework. MDFactory takes into account all necessary
procedures in order to ensure coherence among models and metamod-
els. This whole process is presented again in Chapter 5, however we
associate the global concepts to our specific branch. Figure 2.3 sum-
marizes the module transformation chain process. At first, we define
an input model instantiating a special module "read_from_file" that
reads a model stored in a file with .uml extension. Then, we choose
the available module transformations from the library of functionalities
according to our purposes. A special connector allows to adapt every
output model from a module transformation as an input model to
another module transformation.

2.3 target platforms

The available versions of Gaspard2 provide support to generate code
for the following platforms and languages:

• Sequential C;
• Pthread;
• OpenMP;
• SystemC;
• LUSTRE and SIGNAL;
• VHDL;
• OpenCL;

38 gaspard2 as code generation framework

Library of Functionalities

Transformation Module 1

Transformation + Metamodel

Transformation Module N

Transformation + Metamodel

Transformation Chain

Input
Model

Output
Model /

Text Code

Smart
Connector

Figure 2.3: Gaspard2 Library of Functionalities and Chaining Process

We call Gaspard2 branch the set of transformation modules compos-
ing the transformation chain for a specific target. Except for the target
subject of this whole thesis, OpenCL, the next subsections will present
a summary of each target above listed.

2.3.1 Sequential C

This target is the simpler code generation. It aims at generating a
code C that executes on mono-processor architectures. The generated
code can be compiled and executed on a general-purpose processor
regarding the execution order defined at model-compilation time
according a simple scheduling policy based on data-dependence.

2.3.2 Pthread

In shared memory multiprocessor architectures, such as SMPs,
threads can be used to implement parallelism. Historically, hardware
vendors have implemented their own proprietary versions of threads,
making portability a concern for software developers. For UNIX sys-
tems, a standardized C language threads programming interface has
been specified by the IEEE POSIX 1003.1c standard [83]. Implemen-
tations that adhere to this standard are referred to as POSIX threads,
or Pthreads [109]. For many architectures, including Windows, open
source implementations exist.

2.3 target platforms 39

The Pthread support in Gaspard2 allows generating code according
to POSIX threads. Indeed, tasks or their repetitions can be split into
many threads as possible in order to take advantage of multiprocessor
architectures. In this case, each core run one or more threads. It
is a responsibility of the model transformation chain to create the
partitioning of the application’s tasks into different threads in the
system. Obviously, at a higher-level model, the model designer can
express the intended partitioning. Otherwise, the model compiling
process can define a default one.

2.3.3 OpenMP (Fortran and C)

This is a result from the Julien Taillard’s thesis [137] and it is de-
scribed with more details in Chapter 1. In summary, this branch
allows for code generation for parallel applications in a shared mem-
ory model.

2.3.4 SystemC

There are Verilog, VHDL and a lot of other languages to implement
and simulate hardware. The main issue to introduce a new language,
is the increasing design complexity of systems. Like Verilog and
VHDL, SystemC [72] also supports modeling at Register Transfer
Level, however, the major reason for using it, is to work on a higher
abstraction level like Transaction-Level-Modeling (TLM). TLM is an
intermediate level which is abstract enough to allow complete system
architecture design, while being accurate enough to allow performance
analysis.

The code generated by this branch allows to simulate embedded
systems in SystemC [124, 9].

2.3.5 LUSTRE and SIGNAL

LUSTRE [23] is a synchronous data-flow language for programming
systems which interact with their environments in real-time. The main
application field is the programming of automatic control and signal
processing systems. For LUSTRE, a program is a system of equations
defining variables, which are functions from time to their domain
values. Since LUSTRE is concerned with discrete systems, time is
projected onto the set of natural numbers, making variables infinite
sequence of values. SIGNAL [74], just like LUSTRE, is a language for
synchronous systems.

This branch [146, 1] in Gaspard2 generates synchronous equations
according to the modeled system/application. These equations can
be, then, analyzed by formal methods.

40 gaspard2 as code generation framework

2.3.6 VHDL

VHDL [8] is a High Description Language (HDL) for the design
of integrated circuits at the Register Transfer Level. It can be used
in wide range of contexts such as implementation in reconfigurable
architectures, i. e. FPGAs [77]. VHDL supports modular semantics;
and abstract behavioral models can hide implementation details. A
part of VHDL is synthesizable and can be implemented on target
FPGAs. Here, Gaspard2 generates [95, 126] VHDL code in order to
create systems running on FPGAs or ASICs.

2.4 deployment and ips

In order to generate a whole system from a high level specification,
all implementation details of every elementary component have to be
declared. Low level details are much better described by using usual
programming languages instead of graphical UML models. In the SoC
industry, individual components are called Intellectual Property (IP).
IPs are also used to ease component reuse. They correspond to one
specific implementation of a given functionality, either hardware or
software. In SoC design, one functionality can be implemented in
different ways. This is necessary for testing the system with different
tools, or at different abstraction levels. For instance, different IPs can
be provided for a given application component and may correspond
to an optimized version for a specific processor or a version compliant
with a given language. Although the notion of deployment is present
in UML, the SoC design has special needs, not fulfilled by this notion.
Hence, Gaspard extends the MARTE profile to allow deploying ele-
mentary components with IPs. For this purpose, it was introduced
the concept of VirtualIP to express the behavior of a given elementary
component (either software or hardware), independently from the
usage context. A VirtualIP is implemented by one or several IPs, each
one being used to define a specific implementation at a given abstrac-
tion level and in a given language. Finally, the concept of CodeFile
is used to specify, for a given IP, the file corresponding to the source
code and its required compilation options. The used IP is selected by
the SoC designer by linking it to the elementary component through
the Implements dependency. Some IPs provided by the SoC indus-
try can be parametrized. These parameters are specified using the
Characteristic concept.

2.5 model refactoring

Gaspard2 provides resources to refactor models aiming to a better
generated code. For the time being, these resources are limited to
ArrayOL transformations [62]. ArrayOL transformations have a deter-

2.5 model refactoring 41

Repetition1
(s)1

Repetition2
(s)2

Repetition3
(s)3

Repetition4
(s)4

(a) Chain of repetitions example.

Repetition1
(s)1

Repetition2
(s)2

sub_rep3
(sb)3

sub_rep4
(sb)4

Repetition3,4
(s)3,4

(b) After an initial fusion operation.

Figure 2.4: An example of refactoring

minant role on improving MARTE based models. They can be used
not only for optimization but also as a tool for refactoring the appli-
cation. Similarly to loop transformations, ArrayOL transformations The loop transformation

technique aims at
improving the data access
regularity and locality and
removing the system-level
buffers of the application
codes.

has been designed to allow the adaptation of the application to the
execution, allowing to choose the granularity of the flows and a simple
expression of the mapping by tagging each repetition by its execution
mode: data-parallel or sequential. Currently it is just an instrument
in the hands of the designer but in the future, when the necessary
concepts will be introduced to ArrayOL, optimization algorithms using
these transformations will be designed and implemented. These opti-
mizations also depend on the execution model chosen for the ArrayOL

model and they might evolve in parallel with the evolution of the
execution models.

For instance, Figure 2.4 gives us an overview of model refactoring
in Gaspard2. Basically it implements at high model level operations
aiming at improving the way how the model was designed. Here,
we have a simple repetition fusion example: Repetion3 ⊕ Repetion4.
Figure 2.4a has 4 repetitions and we intend to fuse the repetitions
3 and 4 seen in Figure 2.4b. Mathematical analysis can transform
the repetition spaces s3 and s4 into another repetition space s3,4, i. e.,
s3,4 = LCM(s3, s4) for example. This operation, however, requires
modifying s3 and s4 in order to ensure the same local repetition space.
In this case, sb3 = s3,4/s3 and similarly sb4.

42 gaspard2 as code generation framework

2.6 traceability

Traceability is the ability to
establish degrees of

relationship between two or
more products of a

development process,
especially products having
a predecessor/successor or

master/subordinate
relationship to one

another [61].

The connection of source and target models in a model transfor-
mation is called tracing. It establishes links between a source model
element and its corresponding target element. Not all model transfor-
mation languages offer built-in support for tracing. In most languages,
there is not support to it. However, tracing can be implemented by the
developer. Even if a model to model transformation tracing exists, it
may lack a whole global trace for a given transformation chain.

To solve some problems that deal with compilation analysis (e. g.,
system debugging, transformation debugging, design alternative ex-
ploration), Gaspard2 has defined its own trace approach [63]. This
approach provides a traceability locally and globally. It relies on two
metamodels: the Local Trace metamodel corresponding to the model
to traceability and the Global Trace metamodel helping in the global
navigation. The proposed mechanism is based on traceability to locate
errors in a single model transformation or a transformation chain.
This reduces the investigation field to the rules called to create an
output element identified as erroneous in a preliminary test phase.
The localization is based on three main parts, errors observed in an
output model, our trace models and the localization algorithm. The
errors can be pointed out by an oracle whereas the traces give the
support for the localization algorithm. As the algorithm is based
on generic trace metamodels, it is language independent and can be
reused for any transformation languages as long as the local and the
global trace are generated. However, current approaches were written
in QVTO and that kept compatibility with the whole implementation.
Furthermore, it has also been successfully tested on transformations
using a dedicated Java API. Figure 2.5 summarizes the application of
traceability on Gaspard2 models. Even if having trace information
locally stored in each single model transformation (Local Trace in the
figure), a global trace (represented by a set of chained Local Model
and Trace Model) retains the necessary information which allows us to
navigate by the entire transformation chain.

We have taken advantage of the traceability defined in Gaspard2

when we need to optimize applications by using profiling tools. Fur-
ther details about this optimization is seen in Section 6.3.

2.7 related tools

As framework inspired on MDE, Gaspard2 has its basis founded on
other tools.

2.7 related tools 43

UML/MARTE
profile

(input model)

MARTE
(input model)

Target
(output model)

Local Trace Local Model Trace Model

Figure 2.5: Global Tracce: Traceability Approach on Gaspard2

2.7.1 Eclipse

Eclipse [51] is a multi-language software development environment
comprising an integrated development environment (IDE) and an
extensible plug-in system. It is written mostly in Java and can be used
to develop applications in Java and, by means of various plug-ins.
Eclipse provides a modeling platform. Indeed, the modeling project
contains all the official projects of the Eclipse Foundation focusing
on model-based development technologies. They are all compatible
with the Eclipse Modeling Framework created by IBM. Those projects
are separated in several categories: Model Transformation, Model
Development Tools, Concrete Syntax Development, Abstract Syntax
Development, Technology and Research and Amalgam.

2.7.2 Papyrus Modeling Tool

Replacing other commercial UML graphical modeling tools, e. g.,
Magicdraw UML7 , Papyrus8 allows us to create high level UML 7 www.magicdraw.com

8 www.papyrusuml.orgmodels taking advantage of included profiles, such as MARTE. It is
maintained by CEA as an opensource tool. For practical usage, Gas-
pard2 suggests two diagrams for model designing. On one hand, the
Composite structure diagram shows the internal structure of a class
and the collaborations that this structure makes possible. This diagram
is used for designing the application itself, its target architecture and

www.magicdraw.com
www.papyrusuml.org

44 gaspard2 as code generation framework

allocations. On the other hand, the Deployment diagram allows to
model the physical deployment of artifacts on nodes.An artifact in UML is the

specification of a physical
piece of information that is

used or produced by a
software development

process and deployed on
computational resources or

nodes.

2.7.3 MDFactory

MDFactory is a Model Driven Engineering environment to design,
develop and run software production chains. This tool supports all
Gaspard2 branches and it is based on localized transformation. It
provides a graphical editor to build such production chains with drag
and drop from a reusable transformation modules library. MDFactory
is based on the Eclipse platform and the Eclipse Modeling Framework
(EMF). In summary, it is the tool used to build all Gaspard2 integrated
transformation chains and it was originally developed by the DaRT
Team9 .9 Currently, MDFactory is

part of a technology
transfer project that aims at

spreading its use in other
areas of development.

2.7.4 QVTO

QVT-Operational is an imperative language designed for writingQVT and QVTO are
explained with more details

in Appendix B. QVTO
adopts the Operational

Mapping Language (OML)
as extension to Object

Constraint Language (OCL)
with side effects that allow

a more procedural style,
and a concrete syntax that

looks familiar to imperative
programmers.

unidirectional transformations. The Operational QVT project aims
to be fully compliant with the Query/View/Transformation (QVT)
standard [73] providing a powerful Eclipse IDE with feature-rich
editor (code completion, outline, navigation, etc.), project builders,
launch configurations, deployment facilities and Ant support.

2.7.5 Acceleo Code Generation

Acceleo [113] is an open source code generator of the Eclipse Foun-
dation that allow people to use a model driven approach to build
application from models. It is an implementation of the standard from
the Object Management Group (OMG) for model to text transforma-
tion named MOFM2T (cf. Section B.4).

2.8 conclusion

In this chapter, we presented the reasons behind our choice of
Gaspard2 as framework to implement our approach. We emphasized
its other branches focused in code generation and the use of MARTE as
main profile to specify software and hardware of a whole application.
Moreover, Gaspard2 provides essential tools to create a transformation
chain that is our backbone for the model compiler. The remaining
sections deal with the basic concepts associated to this framework.
In the next chapter, we present two application examples under the
point of view of the model designer in a functional code generation
approach towards OpenCL.

Part II

M E T H O D O L O G Y A P P R O A C H

3
D E V E L O P I N G A P P L I C AT I O N S

Chapter Contents

3.1 Introduction to Modeling Methodology
3.2 Matrix Multiplication

3.2.1 Modeling the Matrix Multiplication
3.2.2 Generating Code
3.2.3 Results and Benchmarks

3.3 Signal Processing
3.3.1 Modeling the Downscaler
3.3.2 Results and Benchmarks
3.3.3 Comparing to SAC

3.4 Conclusion

In this chapter, we attempt to clarify the proposed methodology
to develop OpenCL applications from high level models. Indeed, after
presenting related works and Gaspard2 as a framework for the ap-
proach, we here analyze two examples that use MARTE to specify them.
Moreover, for situations where MARTE does not propose any resource,
we describe the strategies to add the missing functionalities, essential
to the approach.

Real world examples are appropriate to express the potential of the
code generation. Additionally, they facilitate the understanding of
some issues about key concepts that we propose, seen in next chapters
of the Second Part of this thesis. Before introducing the main case
study (described in Third Part), we provide two generic application
examples from numerical method and image processing domains.
For each example, we try to put in evidence the point of view of the
model designer actor (cf. Subsection A.4.2.5) to whom the generation
process is transparent. Further, we show also the point of view of the
methodology provider actor when we explain the generation process.

3.1 introduction to modeling methodology

We can divide the methodology into two views. First, the global
view where we define the model according to Figure 3.1. Second, the
detailed view of each sub-process.

47

48 developing applications

Modeling: Global View

Application Architecture

1 1

2

Virtual IP
Software IP

Artifacts

Allocation

Deployment2

Figure 3.1: Model Creation Process : Global View

Globally, the model designer follows the steps seen in Figure 3.1 as
described below. This phase is based on directives defined by MARTE

and Gaspard2.

1. Designer defines application and architecture models. At first,
there is no link between both models. Thus, it is possible to
divide this step into two parts executed by different teams or
experts.

2. Designer places every task and data onto hardware architecture
elements. Moreover, at this moment the designer associates In-
tellectual Property (IP) to each elementary task in the application
model.

We describe the detailed view in the following sections. These
sections show two full examples.

3.2 matrix multiplication

The matrix multiplication is an application found in most part of
scientific numerical methods. For this reason and due to the high
parallelism attained in this kind of application, we decided to create
it as the first example for the overall approach. We have designed
two different models for this application. The first one (cf. Figure 3.2
and Listing 3.110) is the usual way in which the algorithm operates10 Although it is possible to

use nxm generic matrices,
in order to simplify

operations, we have chosen
to use nxn square matrices.

on individual rows and columns of each matrix. For the second
one (cf. Figure 3.3 and Listing 3.2), however, we took into account
performance improvements. In order to achieve the necessary reuse of
data in local memory, researchers have developed many new methods
for computation involving matrices and other data arrays [48, 57, 135].
Typically an algorithm that computes individual elements is replaced
by one that operates on blocks of subarrays of data. The operations
on blocks retain the usual way. The advantage of this approach is that

3.2 matrix multiplication 49

the small blocks can be moved into the fast local memory and their
elements can then be repeatedly used.

A

B

C

0

row

A.height - 1

A.width B.width

0 col B.
w

id
th

 -
1

A.
he

ig
ht

B.
he

ig
ht

Figure 3.2: Matrix Multipliation without shared memory. Adapted from OpenCL

Programming Guide [111]

Listing 3.1: Usual Matrix Multiplication Program

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; j++)

C[i][j] = C[i][j] + A[i][k] * B[k][j];

The entire computation involves 2n3 arithmetic operations, but
produces and consumes only data values. Observing the algorithm,
we can see that the computation presents a large reuse of data. In
general, however, an entire matrix will not fit in a small local memory.
The work must, therefore, be broken into small chunks of computation,
each of which uses a small piece of the data. Moreover, for each
iteration of the outer loop (i. e., for a given value of i) n2 operations are
done and n2 data is re-read. For fixed values of i and j, n computation
and n data is re-read too again. Hence, this does not take advantage
of data reuse.

Now consider a blocked matrix-multiply algorithm presented in
Listing 3.2.

50 developing applications

Listing 3.2: Block Matrix Multiplication Program

for (i0=0; i<n; i0 + BLOCKSIZE)

for (j0=0; j<n; j0 + BLOCKSIZE)

for (k0=0; k<n; j0 + BLOCKSIZE)

for (i=i0; i< min(i0 + BLOCKSIZE-1,n); i++)

for (j=j0; j< min(j0 + BLOCKSIZE-1,n); j++)

for (k=k0; k< min(k0 + BLOCKSIZE-1,n); j++)

C[i][j] = C[i][j] + A[i][k] * B[k][j];

bl
oc
kR
ow

A.width B.width

blockCol

A.
he
ig
ht

B.
he
ig
ht

A

B

C

Csub

BLOCKSIZE BLOCKSIZEBLOCKSIZE BLOCKSIZE

B
LO
C
K
SI
ZE

B
LO
C
K
SI
ZE

B
LO
C
K
SI
ZE

B
LO
C
K
SI
ZE

Figure 3.3: Matrix Multiplication by blocks using the shared memory.
Adapted from OpenCL Programming Guide [111]

First, exactly the same operations are done on the same data in
this program; even round-off error is identical. Only the sequence
in which independent operations are performed is different from the
unblocked program. There is still reuse in the whole program of
order n. But if we consider one iteration with fixed i0, j0, and k0, we
see that 2BLOCKSIZE3 operations are performed (by the three inner
loops) and 3BLOCKSIZE2 data are referred to it. Now we can choose
BLOCKSIZE small enough so that these 3BLOCKSIZE2 data will fit
in the local memory and thus achieve BLOCKSIZE-fold reuse.

3.2 matrix multiplication 51

In the first one, every work-item (in an OpenCL program) takes one
row and one column from A and B matrices and produces one point
in C matrix using scalar product. The second one is more complex; we
take advantage of the organization of work-items in work-groups that
perform the multiplication by block. The idea behind this approach is
to take advantage using shared memories within work-groups.11 11 Remind: besides,

work-items synchronization
is only possible within
work-groups.3.2.1 Modeling the Matrix Multiplication

To model this application, we create the diagrams enumerated
below. Although all elements designed in composite diagrams can share
a unique diagram, this division provides a better organization. The
order below does not necessarily represent the sequence of activities.
However, after some reflections and elaborated models, we conclude
that arranging at first the basic elements, then creating compositions
and their relationships, and finally linking their artifacts in different
diagrams lead to a clean and organized final model.

1. Elementary Tasks (composite diagram). This comprehends all
classes used as elementary tasks in the application.

2. Application (composite diagram). This comprehends the appli-
cation itself. Here we design all compound component and their
relationships.

3. Architecture (composite diagram). Depending on the applica-
tion complexity, here we specify our available running hardware
architecture. For this case and most cases, this diagram is just a
generic host CPU and device GPU separation.

4. Task Allocation (composite diagram) comprehends the asso-
ciation (allocation) between tasks designed in the Application
diagram and processor elements designed in the Architecture
diagram.

5. Memory Allocation (composite diagram). Similarly to previous
diagram, this comprehends the association between FlowPorts
(data elements) from the Application diagram and memory
elements designed in the Architecture diagram.

6. Pre-Deployment (composite diagram). This diagram contains
the association between elementary tasks and their virtual IPs
and software IPs as introduced in Chapter 2.

7. Library (deployment diagram). Here, physical IPs (external files)
are associated to special classes representing software IPs.

3.2.1.1 Defining the Elementary Tasks

In Figure 3.4, we present a composite diagram for the elementary
tasks. We define 4 elementary tasks as described below:

52 developing applications

• MA_Gen represents a single task that produces an output data
port of 4096x4096 elements of the type real. This task creates
randomly12 all elements of the matrix A.12 We have chosen random

elements, but it can also be
elements read from a file,

for instance.

• MB_Gen performs the same MA_Gen’s job13 for the matrix B.

13 Although MA_Gen and
MB_Gen run the same
operation, for the time

being we have to declare
both classes due to technical

constraints in UML.

• MB_Print is the class responsible for displaying or writing results
(the input data port) to a file.

• Multiply makes the dot product of two vectors of 4096 elements
each.

MA_Gen

MB_Gen

MC_Print

Multiply

MB_COL: Real {4096}

MA_ROW: Real {4096}

MC_PT: Real {1}

MC: Real {4096,4096}

MB: Real {4096,4096}

MA: Real {4096,4096}

Figure 3.4: Elementary Tasks in the Eclipse Environment with Papyrus Mod-
eling Tool

Next step comprehends the use of those elementary tasks to com-
pose other major tasks in a higher hierarchy. Further, we establish the
relationship among their ports.

3.2.1.2 Defining the Application

Analyzing Figure 3.5, initially we create the composed task Multi-

Task. It consists of

(
4096

4096

)
or, using the MARTE notation, {4096, 4096}

(defined with the shape stereotype) repetitions of the elementary taskThe shape is a special
stereotype from the MARTE

profile that allows us to
specify the multiplicity of

an element under the point
of view of the Repetitive

Structure Modeling (RSM)
package

MA_Gen, one repetition for each point in the resulting matrix. Glob-
ally, the MultiTask receives two complete matrices in its input ports
(A and B) and produces another complete matrix in its output port
(C). As we connect ports with different shapes, we apply the tilers
stereotypes on each connector between the composed task ports and
the repeated task’s ones.

Tilers are part of ArrayOL and we provide further explanation in
Subsection B.2.2 of Appendix B. The specifications of tilers for this
example are as following:

3.2 matrix multiplication 53

input tiler a origin=

(
0

0

)
, paving=

(
0 0

0 1

)
, fitting=

(
1

0

)
,

where

(
0

0

)
6 r <

(
4096

4096

)
and

(
0

)
6 i <

(
4096

)
.

input tiler b origin=

(
0

0

)
, paving=

(
1 0

0 0

)
, fitting=

(
0

1

)
,

where

(
0

0

)
6 r <

(
4096

4096

)
and

(
0

)
6 i <

(
4096

)
.

output tiler origin=

(
0

0

)
, paving=

(
1 0

0 1

)
, fitting=

(
0

)
,

where r is the same as input tilers and
(
0

)
6 i <

(
1

)
.

The remaining application consists in interconnecting all earlier
defined tasks. In summary, the composed task Application has an
instance mtask of the MultTask that receives a matrix nxn from the
instance magen by a simple connector. We do the same operation for
mbgen, and finally, the task instance mcprint prints out the resulting
matrix. Specially for illustrating this example, we define a loop of 5

iterations for the whole application and insert a mandatory general
application instance (appli) in the model.

MultTask

<<shaped>>
m: Multiply

Application
magen: MA_GEN

mbgen: MB_GEN

mcprint: MC_PRINTmtask: MultiTask

Loop

<<shaped>>
appliloop: Application

appli: Loop

B: Real {4096,4096}

A: Real {4096,4096}

C: Real {4096,4096} MC: Real {4096,4096}

MB: Real {4096,4096}

MA: Real {4096,4096}

B: Real {4096,4096}

A: Real {4096,4096}

MB_COL: Real {4096}

MA_ROW: Real {4096}

MC_PT: Real {1}
<<tiler>>

<<tiler>>

<<tiler>>

C: Real {4096,4096}

Figure 3.5: Application Model for Matrix Multiplication

54 developing applications

3.2.1.3 Defining the Architecture

The architecture model for this example is simple. We do not need
to express all the complexity of CPUs and GPUs in this model because
the application model uses only the basic structures. This is only to
keep the model simple. Nevertheless, depending on applications we
can add further elements, such as local memory of Streaming MultiPro-
cessors. Figure 3.6 shows the architecture model, it is composed of
two hwResource: host and device. Both host and device have a hwProces-
sor and a hwRAM representing their corresponding processor14 and14 Even if the GPU is a

many-core processor, here
we design it as a single

processor representing the
whole device.

memory. In order to distinguish host from device, we add a special
tag description as required by the hybrid transformation module (cf.
Subsection 5.5).

MARTE does not provide
any direct way to identify
the important definition of
"host" and "device" from
the OpenCL programming
model. To meet this need,
we write this information

directly on the tagged value
description. In Chapter 5

we present the way to
process this information in
order to create specific code

for "host" and "device".

<<hwResource>>
Host

<<hwProcessor>>
CPU

<<hwProcessor>>
GPU

<<hwRAM>>
Memory

p: CPU mp: Memory

<<hwResource>>
Device

gp: GPU mgp: Memory

<<hwResource>>
Architecture

h1: Host d1: Device

mainArchi: Architecture

Figure 3.6: Architecture Model

3.2.1.4 Allocating Data and Tasks

This is one of the most decisive steps in the modeling process.
Indeed, from these allocations we can identify kernels and all variables
of the system, and how they relate to each other. For this application,
we have 4 tasks instances: magen, mbgen, m, and mcprint. Producing
and printing data in the application are tasks of the host. The device
has the task of performing all operations of matrices. Consequently,
as seen in Figure 3.7, the repeated task instance m is allocated onto the
GPU(device) processor. The other ones are allocated onto the CPU(host)
processor. These allocations are implemented with the dependency
relationship "«abstraction»" that is stereotyped as "«allocate»".One important feature,

emphasized in the model
compiling process, is the

capability of using
"shaped" processors. In

this case, we can distribute
equally the instances of

repetitions of an allocated
task.

3.2 matrix multiplication 55

Application
magen: MA_Gen

mbgen: MB_Gen

mtask: MultiTask

<<shaped>>
m: Multiply

<<hwResource>>
Host

mcprint: MC_Print

p: CPU mp: Memory

<<hwResource>>
Device

gp: GPU mgp: Memory

<<abstraction>> <<allocate>>

<<abstraction>> <<allocate>>

<<abstraction>> <<allocate>>

<<abstraction>> <<allocate>>

Figure 3.7: Task Allocation

Another noteworthy allocation is the data allocation. The MARTE-
to-OpenCL branch of Gaspard2 is the first approach that take into
account the memory distributed aspect of two independent processors.
For this reason, the model designer must specify where the data will
be allocated. For instance, all flowports of each allocated task are
allocated onto the corresponding memory of each hardware resource
(cf. Figure 3.8). Not all flowports have to be explicitly allocated. Indeed,
some phases (cf. Chapters 4 and 5) in the model transformation chain
are responsible for analyzing those allocations in order to optimize
the memory space and data communication. As a result, two flowports
can have the same memory address.

3.2.1.5 Deploying Elementary Tasks

As seen in Section 2.4, although MARTE is suitable to common
modeling purposes of real-time and embedded systems, it lacks the
resources to integrate from high-level modeling specifications to low-
level concerns. Gaspard2 bridges this gap and introduces additional
concepts and semantics to fill this requirement. The methodology uses
the deployment defined in Gaspard2. In this example, MA_Gen and
MB_Gen are similar tasks. Therefore, they have the same Virtual_IP

and Software_IP. UML dependency connectors stereotyped with "«im-
plements»" establish the association for all elementary tasks. Figure 3.9
presents this process.

The second part of the deployment phase is the artifacts manifes-
tation (Figure 3.10). An artifact is a classifier that represents some

56 developing applications

Application
magen: MA_GEN

mbgen: MB_GEN

mtask: MultiTask

<<shaped>>
m: Multiply

<<hwResource>>
Host

mcprint: MC_PRINT

p: CPU mp: Memory

<<hwResource>>
Device

gp: GPU mgp: Memory

<<abstraction>> <<allocate>>

<<abstraction>> <<allocate>>

<<abstraction>> <<allocate>>

<<abstraction>> <<allocate>>

<<abstraction>> <<allocate>>
<<abstraction>> <<allocate>>

Figure 3.8: Data Allocation

physical IP (source snippet) that is used by the software develop-
ment process. The artifacts are stereotyped with "«codeFile»". This
stereotype has tagged values containing the source filename, header
filename, compilation and link directives, and the parameter order.
The IP integration is again presented in Section B.4 that deals with
code generation.

MA_Gen MB_Gen MC_Print Multiply

Vip_Gen

Sip_Gen

Vip_Print

Sip_Print

Vip_Multiply

Sip_Multiply

Sip_MB: Real{4096}

Sip_MA: Real{4096}
Sip_MC: Real {1}

Vip_MB: Real{4096}

Vip_MA: Real{4096}
Vip_MC: Real {1}

Sip_MC: Real {4096,4096}

Vip_MC: Real {4096,4096}

Sip_M: Real {4096,4096}

Vip_M: Real {4096,4096}

MB_COL: Real{4096}

MA_ROW: Real{4096}
MC_PT: Real {1}MC: Real {4096,4096}MB: Real {4096,4096}MA: Real {4096,4096}

<<implements>>

<<implements>>

<<implements>>

<<implements>><<implements>>

<<implements>>
<<implements>>

<<implements>>

<<implements>>

<<implements>>

<<implements>>

<<implements>>

<<implements>>

<<implements>><<implements>>
<<implements>>

<<implements>>

<<implements>>

Figure 3.9: Deployment Phase: Virtual IP and Software IP

3.2 matrix multiplication 57

Figure 3.10: Deployment Phase: Artifacts Manifestation

3.2.2 Generating Code

Once all previous steps are ready, the designer starts the code
generation process directly from the Eclipse interface. The internal
operations in this phase are hidden from the designer.

3.2.3 Results and Benchmarks

0

40

80

120

160

200

Scalar Product byBlock byBlockSM

1K x 1K

2K x 2K

4K x 4K

8K x 8K

G
Fl

op
s

Figure 3.11: Results for Matrix Multiplication Example

Figure 3.11 illustrates three results from the three OpenCL code
running on 4 different matrix sizes. The device used here is one of

58 developing applications

the T10 GPUs of a NVidia S1070 card. There is no performance gain
between the first and second ones. Indeed, even when having different
models, all work-items do the same computing work. However, the
third one has an expressive increasing in performance (about 8x in
double precision). This one is the implementation of the blocked
version of the matrix multiplication. Figure 3.12 shows the modifica-
tions (conform to Figure 3.3) of the multiplication task in the model
of Figure 3.5. As seen before, the blocked version take advantage of
the shared memory of work-groups (see the allocation details in the
figure), and this leads performance to higher levels. The BLOCKSIZE is
equal to 16 and each work-item goes through 256 sub-matrices in this
example. Further, we allocate each sub-matrix in the shared memory.

MultTask

<<tiler>>

A: Real{4096,4096}

B: Real{4096,4096} {4096,16}

{16,4096}

<<tiler>>

m: Multiply {256,256}

wi: WorkItem {16,16}

{256}

{256}
m: Mult {256} r: Reduc {1}

<<tiler>>

<<shaped>>

{1}

{1} {1}
{256}{1} {1}

{16,16}
C: Real{4096,4096}

Device
<<hwResource>>

sm: SharedMemorymgp: Memory

<<abstraction>> <<allocate>>
<<abstraction>> <<allocate>>

<<abstraction>> <<allocate>>

<<abstraction>> <<allocate>>

Figure 3.12: Blocked Version Model

Enabling optimization analysis in the tiler transformation, data
copies from the global memory to shared(local) memory in GPU
processors allow for fast data access and reuse by all the work- items
of the same work-group. Additionally, based on these results, different
matrix sizes do not have substantial influence on performance.

3.3 signal processing

The second case study concerned in this startup testbed of the whole
approach deals with specific aspect of pre-processing to H.263-based
video compression standard: scaling. This choice has a reason: inten-
sive signal processing suits well to massively parallel architectures.
Moreover GPGPU is increasingly being part of embedded systems.
Thus, the scaling during video-compression is essential for previews

3.3 signal processing 59

or for streaming for small form factor devices, such as mobile phones.
The application consists of a classical downscaler which transforms
a video signal, which, for instance, is expressed in 1080p or High
Definition Common Intermediate Format (HD-CIF) used in HDTV, into
a smaller size video. In this situation, the downscaler can be composed
of two components: a horizontal filter that reduces the number of pix-
els from 1080-columns to 480-columns and a vertical filter that reduces
the number of pixels from 1920-lines to 720-lines by interpolating
packets of 8 pixels both column- and row-wise.

In a typical case of handling a 25-frames-per-second video signal
lasting for 80-seconds, the downscaler may process up to 2000 frames
in HD-CIF format, with each input frame being represented by a two-
dimensional array of size 1920× 1080 and should emit 2000 output
frames of size 720× 480. Since each video pixel is encoded in 24-bit
RGB color model, the frame generation process is repeated for each
frame and for each pixel of different color space along two different
directions. The final frame is produced by using these outputs from
different color space. Depending on the composing function, a broad-
range of output colors are possible for each pixel and thus for each
frame. The Figure 3.13 illustrates this basic operation for a given frame
in high-definition format.

Figure 3.13: Horizontal and Vertical Filter Processes

As can be observed, the operations concerned with the scaling is
highly parallel and repetitive. The interpolation is repeated for each
frame, each pixel and for each color channel.

3.3.1 Modeling the Downscaler

In this subsection, we show an overview of the model for the Down-
scaler application. Even though all design steps seen in the Matrix
Multiplication example should be made for this example, to avoid
redundancies we present only the overall modeling. Different from
the initial presentation in previous Subsection, the model described
here transforms a video of size 352× 288(CIF format) into a 132× 128
one. This model is the same as the one designed to FPGA and other

60 developing applications

platforms of Gaspard2. Except for the architecture and allocation, no
change is necessary in the original model. The Downscaler itself is
composed of two components: a horizontal filter that reduces the num-
ber of pixels from a 352-lines to a 132-lines by interpolating packets of
8 pixels; and a vertical filter that reduces the number of pixels from
a 288-lines to a 128-lines by interpolating packets of 8 pixels as well.
Figure 3.15 gives us an overview of this application and Figure 3.14

shows the elementary tasks that are arranged to create the whole
application.

RHF

FrameGenerator FrameConstructor

RVF

GHF

BHF

GVF

BVF

out_bvf: Integer[4]

in_bvf: Integer[14]

out_gvf: Integer[4]

in_gvf: Integer[14]

out_bhf: Integer[3]

in_bhf: Integer[11]

out_ghf: Integer[3]

in_ghf: Integer[11]

out_rvf: Integer[4]

in_rvf: Integer[14]

cons_b: Integer{128,132}

cons_r: Integer{128,132}

cons_g: Integer{128,132}

gen_b: Integer{288,352}

gen_r: Integer{288,352}

gen_g: Integer{288,352}

out_rhf: Integer[3]

in_rhf: Integer[11]

Figure 3.14: Elementary Tasks for the Downscaler

The elementary tasks comprise a task to read an input video frame,
a task to save(or display) an output video frame, three tasks for each
color component in horizontal filter, and three tasks for each color
component in vertical filter. Although these latter tasks have same
functionality, for the time being, Gaspard2 requires an elementary task
for each one. Afterwards, we structure the whole application as seen
in Figure 3.15. In summary, each iteration of 2000 reads a frame (ifg),
performs the downscaling (id), and writes out the resulting frame(ifc).
Moreover, the downscaling component is composed of the horizontal
filter (ihf) and the vertical filter (ivf).

The composition of the horizontal and vertical filters is seen in Fig-
ure 3.16. They are composed of shaped tasks that perform elementary
operations defined in their IPs. These tasks are potentially parallel
so they are allocated onto GPUs. The defined input tilers specify over-
lapped readings and they feed each iteration with 11 pixels interleaved

3.3 signal processing 61

Downscaler

ihf: HorizontalFilter ivf: VerticalFilter

Downscaler2Frame

ifg: FrameGenerator ifc: FrameConstructorid: Downscaler

MainAppli

<<shaped>>
video: Downscaler2Frame

appli: MainAppli

down_out_b: Integer{128,132}
down_out_b: Integer{128,132}

down_out_b: Integer{128,132}

down_in_b: Integer{288,352}

down_in_g: Integer{288,352}

down_in_r: Integer{288,352}

cons_b: Integer{128,132}

cons_r: Integer{128,132}

cons_g: Integer{128,132}

gen_b: Integer{288,352}

gen_r: Integer{288,352}

gen_g: Integer{288,352}

vert_out_b: Integer{128,132}

vert_in_r: Integer{288,132}

horiz_out_b: Integer{288,132}

horiz_in_r: Integer{288,352}

Figure 3.15: Overall Downscaler Application

by 8 pixels (horizontal) and 14 pixels interleaved by 9 pixels (vertical).
The shape of tasks is appropriate to traverse the entire frame either by
columns (horizontal) or by rows (vertical).

HorizontalFilter

<<shaped>>
rhf: RHF {288,44}

<<shaped>>
ghf: GHF {288,44}

<<shaped>>
bhf: BHF {288,44}

VerticalFilter

<<shaped>>
rvf: RVF {32,132}

<<shaped>>
gvf: GVF {32,132}

<<shaped>>
bvf: BVF {32,132}

vert_out_b

vert_out_g

vert_out_r

vert_in_b

vert_in_g

vert_in_r

out_bvf: Integer[4]

in_bvf: Integer[14]

out_gvf: Integer[4]

in_gvf: Integer[14]

out_rvf: Integer[4]

in_rvf: Integer[14]

horiz_out_b

horiz_out_g

horiz_out_r

horiz_in_b

horiz_in_g

horiz_in_r

out_bhf: Integer[3]

in_bhf: Integer[11]

out_ghf: Integer[3]

in_ghf: Integer[11]

out_rhf: Integer[3]

in_rhf: Integer[11]

<<tiler>>

<<tiler>>

<<tiler>>

<<tiler>>

<<tiler>>

<<tiler>>

<<tiler>>

<<tiler>>

<<tiler>>

<<tiler>>

<<tiler>>

<<tiler>>

Figure 3.16: Detail of Horizontal and Vertical Filters

3.3.2 Results and Benchmarks

Three versions of the Downscaler were generated. Table 3.1 presents
corresponding results. As expected, OpenCL versions have high speedup
in relation to the sequential version running on CPU. Moreover, with
the suppression of surplus memory transfers (described in Chapter 6),

62 developing applications

we reduce the overall execution time. Indeed, in Figure 3.17, we offer
profiling results that clearly show the decreasing of relative GPU times
between transfers and kernel executions.

Table 3.1: Downscaler Results
Implementation Total Time(sec)

Sequential C: this version is automatically generated by Gaspard2 with
no optimization. Moreover, the CPU used is based on common desktop
computers. This execution time is only to be used as a general reference
and it does not represent the best performance that we can achieve in
CPU based systems.

36

OpenCL not-optimized code running in one GPU T10 of the NVidia
S1070 system.

4.9

OpenCL as the previous one, however we activate the memory optimiza-
tion explained in Section 6.1.

3.6

memcpyHtoDasync (12000)
memcpyDtoHasync (12000)

memcpyHtoDasync (6000)

memcpyDtoHasync (6000)

rhf_KRN (2000)
bhf_KRN (2000)
ghf_KRN (2000)

gvf_KRN (2000)
rvf_KRN (2000)
bvf_KRN (2000)

rhf_KRN (2000)
bhf_KRN (2000)
ghf_KRN (2000)

gvf_KRN (2000)
rvf_KRN (2000)
bvf_KRN (2000)

Non-Optimized Version

Optimized Version

Figure 3.17: Profiling results for Downscaler Application

3.3.3 Comparing to SAC

In order to know how to place the efficiency of our generated code
among existing code generation approaches, we provide a compari-
son that resulted in the paper [75]. A work made with the Compiler
Technology and Computer Architecture Group of the University of
Hertfordshire School of Computer Science15 , allowed to compare our15 http://ctca.feis.

herts.ac.uk results with those produced by the Downscaler implementation for
SAC. To compare the performance of the generic and non-generic
Downscaler implementations in SAC, we measure the runtimes of
both horizontal and vertical filters, each executed for 300 iterations
on an HD video. We also compare the performance of both the se-
quential and CUDA code generated by the SAC compiler (denoted
as SAC-Seq and SAC-CUDA respectively). The GPU used in these
tests is the Nvidia Fermi GTX480. The execution times of different
implementations are shown in Figure 3.18. The first point that we

http://ctca.feis.herts.ac.uk
http://ctca.feis.herts.ac.uk

3.3 signal processing 63

observe is that the CUDA code performs significantly better than its
sequential counterpart. This is because each output frame element can
be computed independently, therefore providing abundant fine-grain
parallelism for GPU’s massive parallel architecture to exploit. Another
interesting finding is that, while execution times of sequential code do
not vary significantly between generic and non-generic implementa-
tions, the non-generic filters execute 4.5x (horizontal) and 3x (vertical)
faster than the generic versions on GPU. In fact, the generic output
tiler is specified as a for-loop nest. Since the SAC compiler does not
attempt to parallelize loops apart from WITH-loops, the for-loop nest
is executed on the host. Since both the input tiler and task function
are executed on the GPU and produce intermediate results in the
GPU memory, the intermediate result has to be transferred back to the
host memory before the output tiler can access it. This device-to-host
transfer time significantly increases the total runtime of the filters. On
contrary, the input tiler, task function and output tiler are fused into
one single WITH-loop by the WLF optimization in the non-generic im-
plementation. Therefore, it is executed on the GPU completely without
any intermediate data transfers, improving performance dramatically.

3.3.3.1 Performance Comparison of SAC and Gaspard2

Table 3.2: Kernel execution and data transfer times of Gaspard2 implemen-
tation

Operation #calls GPU
time(µsec)

GPU time
(%)

H. Filter (3 kernels) 300 844185 29.51

V. Filter (3 kernels) 300 424223 14.83

memcpyHtoDasync 900 1391670 48.74

memcpyDtoHasync 900 197057 6.89

Total - 2.86sec 100.00

Table 3.3: Kernel execution and data transfer times of SAC implementation

Operation #calls GPU
time(µsec)

GPU time
(%)

H. Filter (5 kernels) 300 1015137 29.60

V. Filter (7 kernels) 300 762270 22.22

memcpyHtoDasync 900 1454400 42.40

memcpyDtoHasync 900 198000 5.77

Total - 3.43sec 100.00

64 developing applications

Table 3.3 shows a detailed breakdown of kernel execution time and
data transfer time, the non-generic SAC implementation takes to pro-
cess 300 frames. Similar to our implementation (the Gaspard2 version
results presented in Table 3.2), data transfers represent approximately
50% of the total execution time. The reason is that both approaches
transfer the same amount of frame data to the device memory be-
fore compression starts and back to the host memory afterwards for
displaying. Figure 12 shows runtime comparison between these two
approaches. As we can see, horizontal and vertical filters in Gaspard2

perform slightly better than SAC. Upon further investigation, we dis-
cover that each filter in Gaspard2 is specified as a single OpenCL kernel.
The final fused WITH-loop for horizontal filter after compiling has
5 generators (the vertical filter has 7 generators). Since the CUDA
backend creates one kernel for each generator, this means 5 kernels
have to be launched during runtime. Such large number of kernel
invocations is inefficient in two aspects and causes slowdowns of the
SAC implementation:

• Each kernel launch incurs context overheads. The more kernels a
program executes, the higher this cost will be.

• Data in certain memory of the GPU is not persistent across differ-
ent kernels, such as the on-chip L1 cache. Therefore, separating
computations of the same data array into different kernels hinders
effective data reuse.

0

0.3

0.6

0.9

1.2

1.5

Horiz. Filter Vert. Filter Host2Device Device2Host

Gaspard2

SAC

Kernel Execution and Data Transfer Times

Ex
ec

ut
io

n
Tim

e
(s

ec
on

d
s)

Figure 3.18: SAC versus Gaspard2 Comparison

3.4 conclusion 65

3.4 conclusion

To conclude, we remind that this chapter aims to present how the
methodology works on generic applications. We illustrate all phases
involved on the specification of an application and its platform. In
order to generate code, designers have to specify previously their ap-
plication, hardware, allocations and task deployments by associating
artifacts. Through results and benchmarks, it is possible to verify
the functionality and efficiency of the generated code. Further, as a
validation of the efficiency relative to existing approaches, we compare
our results for the Downscaler application facing the SAC implemen-
tation of the same application. This comparison shows a slight better
performance for the version created by our methodology. The topics
discussed in this chapter provide a basis to the following chapters that
deal with model compilation.

4
M E TA M O D E L S A N D G P U S

Chapter Contents

4.1 Metamodels for the GPU Programming Model
4.1.1 Coprocessor
4.1.2 Host and Device Memories
4.1.3 Work-Groups and Work-Items Topology
4.1.4 Optimizations

4.2 Scheduling
4.2.1 Building a Task Graph
4.2.2 Choosing the Execution Order

4.3 Memory Mapping
4.4 Hybrid
4.5 Conclusion

In this chapter, we begin to explain the technical process behind our
methodology. At first, we clarify the main points related to principles
of operation of GPUs, then we present the main metamodels that
statically provide a structure that supports these principles. Therefore,
to create models which express the main features found in GPU archi-
tecture and aimed application, we propose three novel metamodels.
These metamodels focus on the different GPU related aspects partially
presented in Chapter 3. There are other metamodels belonging to
the whole approach, but they are generic technical solutions rather
than a high-level description of an application designed to suit GPU
architectures. They will be discussed in Chapter 5.

The following sections present the challenges found in GPU pro-
gramming model, then we introduce three new proposed metamodels.
The first one deals with scheduling of tasks aiming at defining an or-
der of execution onto available resources. The second one aims to
setup variables and their allocations into available memory banks. The
third one brings up concepts closer to the target. This metamodel
provides necessary elements to create key structures used in GPU
programming.

67

68 metamodels and gpus

4.1 metamodels for the gpu programming model

4.1.1 Coprocessor

GPUs are coprocessors (cf. Appendix A). Indeed, they do not have
work autonomy and need a host, usually CPUs. As a graphics proces-
sor, the GPU worked already as coprocessor relieving the processor
from graphics tasks. Now, as GPGPU, instead of CPUs doing the
heavy parallel job, CPUs dispatch those tasks to GPUs. Although
MARTE provides the resources to specify processors and their proper-
ties, it lacks specific concerns to hardware accelerators, such as GPUs.
In the previous chapter, we present our methodology defining a GPU
as a Hardware Processor with its own memory. We propose to distinctly
separate CPU and GPU by defining their roles on the "description"
tagged value. This is mentioned on the Hybrid metamodel (Section 4.4)
and discussed in Chapters 5 regarding the metamodel semantics on
transformations.

4.1.2 Host and Device Memories

Besides the complexity of the memory hierarchy on GPU, a basic
structure is mandatory regarding to platform architecture: the inde-
pendency between host and device memories. For the most designed
applications we have to specify a host processor and a device processor
containing their corresponding global memory. Sometimes we have to
establish the memory hierarchy of GPU and to point out the local and
private memories. This is important when the model designer decides
to allocate some variables directly onto other memory address. For
instance, transfers between global memory and local memory aiming
at creating a designer-managed memory cache. Our methodology
adopts a twofold process to handle this feature: on the one hand, the
model designer specifies the platform architecture according to his
intended specification level; on the other hand the memory mapping
metamodel (Section 4.3) and corresponding transformation module
create a addressing map for each memory available on the system.

4.1.3 Work-Groups and Work-Items Topology

In Appendix A/Figure A.7, we present a typical work-items dis-
tribution topology. Functionally, this does not have any impact on
execution 1. However, this can highly impact the final performance.1. Except if the data

access depends strongly
on multidimensional

indexes

In our methodology, we have decided to give the responsibility for
this topology the model designer. Indeed, the tasks’s shape is the
information used to define the topology to launch a kernel. For con-
vention, the first dimension of the shape represents the 1D work-group
dimension and the other ones are the work-items dimensions (from

4.2 scheduling 69

1D to 3d). This process is again presented in the Hybrid metamodels
and transformation modules.

4.1.4 Optimizations

We dedicate a whole chapter (Chapter 6) to discuss the points
we have chosen to optimize in GPU programs. However, in the
metamodels described below, we emphasize often some notions that
concern to optimization aspects such as kernel launching topology and
memory copies. This is mainly verified on the Hybrid and memory
mapping metamodels.

4.2 scheduling

One of the main issues in application design is the process of
deciding how to commit resources among a variety of possible tasks.
In a model based on MARTE, the task order can be observed directly
from the data dependencies among tasks. The scheduling analysis
may start as soon as the application and the architecture models are
available. Figure 4.1 illustrates a simple application with multiple
tasks. All tasks are allocated onto only one processor and they will
run sequentially or concurrently according to a scheduling policy and
data dependency among them. For instance, the tasks vec1 and vec2
in Figure 4.1 are responsible for generating the data genarray1 and
genarray2. Both tasks do not have any data interdependency. This
means that these tasks can run concurrently according to available
resources. Globally, the part C depends on the task dev (B composed of
B.1 and B.2) which depends on the tasks vec1 and vec2 (A). Regarding
only the composed task dev that comprehends tasks ep and s, the last
one cannot start before the first one finish its job. So, for this example,
we can express an ordered list for execution as: {vec1 // vec2, ep, s,
pdot}. This is a simple example but our approach is able to handle
more complex ones and to provide a valid scheduling policy for the
application. Next subsections analyze implementation key points in
order to create a model for the task graph and to define an ordered
list (scheduling) globally and locally for each computing resource.

4.2.1 Building a Task Graph

In general, a task graph is a graph in which each node represents a
task to be performed. A directed arc from Ta to Tb indicates that task
Ta must complete before task Tb begins. Each node generally has the
form presented in Figure 4.2a. Figure 4.2b illustrates a simple example
of a task graph. Here, taking T6 as example, it begins when T1, T2,
and T3 complete. Execution times are analyzed to better manage the
scheduling policy decision. Our approach, however, does not yet take

70 metamodels and gpus

Program

 vec1: TE_genarray1

 vec2: TE_genarray2

 pdot: TE_printresult

 dev: ForDevices

 ep: TE_eprod s: TE_sum

 v1: Real

 v2: Real

 vout: Real vector: Real

 result: Real

 genarray1: Real

 a: Real

 b: Real

 dot: Real

 printresult: Real

 genarray2: Real

 «Shaped»
 shape =
{16000000}

 «Shaped»
 shape =
{16000000}

A
B.1 B.2

C

Figure 4.1: Tasks and Allocation

Task

Execution
Time

(a) Graph node form.

T1

2

T2

3

T3

1

T4

2

T5

3

T6

3

T7

1

(b) Simple graph example.

Figure 4.2: General form of task graph representation.

into account the execution time of tasks and uses task graphs to allow
some algorithm making static allocations of tasks to the processors.

4.2.1.1 Local Task Graph

The metamodel proposed for definition of task graph at the first
level of each composed component in an application model (e. g.,
Program and dev:ForDevices in Figure 4.1) is depicted in Figure 4.3. In
this metamodel, the focus is on creating a task graph for a structured
component such as composed components. For instance, analyzing a
model conforming to this metamodel we can verify:

• for a structured component sc, defined in an application by using
UML/MARTE, is created one graph gr contained by and referenced
to sc;

4.2 scheduling 71

• the graph gr, in its turn, can be composed of several nodes (repre-
senting tasks) which can have dependencies among themselves;

• the dependencies can be intra, when the task depends on tasks
allocated onto the same processor, and extra, when it depends on
tasks allocated onto different processors;

• nodes are associated to AssemblyParts (i. e., instances of task
classes) and Distribute connectors which are used in task allo-
cations onto processors.

Graph
name : EString

Node
name : EString

Dependency

IntraDependency

ExtraDependency

AssemblyPart
(from gcm)

Distribute
(from rsm)

nodes0..*

nexts
0..*

previous0..*

graph 1

to 1

from
1

software1
distribution1

node
0..1

nodes
0..*

component1

StructuredComponent
(from gcm)

graph1

Figure 4.3: Local Task Graph Metamodel

An example of model produced by the Local Task Graph metamodel
is showed in Figure 4.4. The figure emphasizes the node dev containing
three arcs as IntraDependency elements. Each arc has two endpoints
represented here by the references to and from which allow to identify
their directions.

Notice that each structured component in the application model must
have a task graph model, even components that have no hierarchy
level. This is necessary to construct the global task graph from the
many individual local task graphs.

4.2.1.2 Global Task Graph

The global task graph organizes the graphs of each structured
component of the application model. The idea behind the global
graph is gathering all sub-graphs previously created into one single
hierarchic structure whose elements reference actions in the whole
application. Figure 4.5 shows the metamodel proposed to implement
the global task graph. The main graph belongs to an application
instance and its nodes, differently from the local graph, are called tasks.
The class Task is an abstract class and has 5 derived classes which are
classifiers for tasks. Here they are:

• GlobalGraph points to task graphs that gather information at
lower hierarchy levels;

72 metamodels and gpus

vec1

Task Graph: Program

vec2

dev

v1v2

Figure 4.4: XMI Model Sample conforming for Local Task Metamodel and
its Representation

• StartTask: is a special virtual task defining an entry point to the
main graph or sub-graphs;

• EndTask: is like the previous task, however indicating the exit
point;

• IPTask: is a task directly associated to elementary tasks in the
application;

• TilerTask: is a special task usually not defined in application but
derived from tiler connectors.

Similarly to local graph, tasks can be associated to one AssemblyPart
and/or one Distribute connector. Moreover, dependencies among tasks
themselves allow to express the relationship to define a later schedul-
ing. These dependencies can be defined as TaskIntraDependency when
co-related tasks share the same processor and TaskExtraDependency
when they share independent processors.

Figure 4.6 illustrates a result model example created from the previ-
ously depicted metamodel. This example is well suited to show the
levels of the graph hierarchy. The first level contains only three tasks:
StartTask, Global Graph p1_Task, and EndTask. However, the middle task
contains another graph itself, so we can observe the second level in the
hierarchy. Although, the XMI file sample (left side in Figure 4.6) does
not show all attributes (such as next and previous) that allow to see the
dependency relationship between tasks, it contains all necessary data

4.2 scheduling 73

GlobalGraph

Task
name : EString

TaskDependency

TaskIntraDependency TaskExtraDependency

AssemblyPart
(from gcm)

Distribute
(from rsm)

Instance
(from Foundations)

IPTask StartTask

EndTask TilerTask

tasks0..*

nexts 0..*

previous 0..*

graph1

to1from1

ip1

distribution 1

task 0..*

tasks0..*

graph 0..1

Figure 4.5: Global Task Graph Metamodel

globalDependencies

StartTask

Global
Graph:

p1_Task

EndTask

p1_Task

Start
Task

IPTask
vec1

IPTask
vec2

Global
Graph
dev

IPTask
v1v2

End
Task

contains other
sub-graphs

Figure 4.6: XMI Model Sample conforming for Local Task Metamodel and
its Representation

74 metamodels and gpus

for creating the graph representation as seen in the right side of the
figure.

Once having the global task graph available in the model, we can
propose a scheduling policy according to tasks and their processors
where were allocated. The next subsection explains this policy.

4.2.2 Choosing the Execution Order

It is important to state that we were not searching an optimal
scheduling policy at this level of task execution. For our target archi-
tecture, GPU, submitted tasks (kernels) run in the microprocessors
according to the GPU scheduler and we do not have control on that.
The aim is at creating a macro calling list for tasks globally defined in
the model. Therefore, this ensures, at least, a coherence for exchanged
data by the tasks. For independent tasks, however, OpenCL allows to
define asynchronous task scheduling from host dispatcher. Thus, this
avoids blocking sequential calls (cf. Subsection A.4.2).

Instance
(from Foundations)

tasks
0..*

Task
(from GlobalTaskGraph)

Figure 4.7: Scheduling Metamodel

The metamodel seen in Figure 4.7 is, in short, only a relationship
between two external classes. An application instance contains the
attribute tasks which is an ordered list of tasks from the global task
graph. The process to define this list is explained in the Chapter 5. In
advance, it is a simple graph scanning looking for the next available
task that is not waiting for other task completing its work.

4.3 memory mapping

We have proposed a metamodel whose objective is to make easier
the variable declaration. The main problem resides in how to set a
memory space, how to define allocations to different host and devices
without forgetting the communication among them, and moreover,
how to gather all data ports (flowPorts) defined in the application
model that share the same memory address.

Figure 4.8 shows the metamodel that defines elements concerning
to memory mapping. Two classes are created to add concepts for data
allocation in a memory address space: MemoryMap and DataAllocate.
An AssemblyPart, an instance of memory HwRAM component in the
defined architecture model in this case, must have one memoryMap-
ping of MemoryMap type which is composed or not of dataAllocations
of the DataAllocate type. Each dataAllocation has its own data scope.
This scope (spaceAddress) is defined by addressSpaceQualifiers = {global,

4.3 memory mapping 75

constant, local, private}, as specified in compute device memory hierar-
chy (cf. Section A.4.1) 1. Nevertheless, this metamodel can be easily 1. Although the memory

mapping metamodel
intends to be a generic
metamodel for several
target systems, it is
strongly inspired on
GPU memory model. In
fact, we find this
memory model extensive
enough to meet most
systems.

generalized to most hardware platforms.

MemoryMap

DataAllocate
addressSpace : addressSpaceQualifiers

<<enumeration>>
addressSpaceQualifiers

global
local
constant
private

ShapeSpecification
(from shape)

ModelElement
(from Foundations)

PackageableElement
(from Foundations)

AssemblyPart
(from gcm)

dataAllocations 0..*

dimAllocation

1

dataAllocation
0..*

associatedParts

0..*

memoryMapping 1

Figure 4.8: Memory Mapping Metamodel

As a result of application of this metamodel, Figure 4.9 presents
an XML Metadata Interchange (XMI) model sample that allows us to
generate source code for variable definition.

 /* Declaring Global Variables */
 double *genarray2_vec2;

 /* Memory Allocation */
 genarray2_vec2 = malloc(sizeof(double)*16000000);

Figure 4.9: XMI Model Sample for Memory Mapping and an example of
generated source code based on this model

The example illustrated in Figure 4.9 deals with the declaration and
memory allocation of a variable in C language. The variable name was
defined based on the Data Allocate name, the addressSpace attribute is
used to define the scope. For the dynamic memory allocation, the type The variable scope depends

on the zone where it is
declared in the program.

and the occupied size are obtained from typeAllocation and from the

76 metamodels and gpus

attribute size in dimAllocation, respectively. The DataAllocate brings yet
an other attribute called associatedParts containing 12 elements. Here
we list all flowPorts and derived elements which refer to this same
memory space, using either temporal or spatial references.

4.4 hybrid

The closest metamodel to OpenCL definitions and syntax is the Hy-
brid metamodel that allows us to generate the Hybrid model. Differ-
ently from the two earlier metamodels, this one is heavily attached
to the target platform. We propose this metamodel as being the last
one in our hierarchy of metamodels. It sums up all previous analyses
aiming at creating a model with components that match with elements
in a real program. Figure 4.10 depicts this metamodel which helps
to create a real compilable application. This metamodel is strongly
inspired by GPGPU programming model seen in languages such as
OpenCL. Actually, even if OpenCL defines a generic compute device in
its platform model, GPU devices are better suitable to this metamodel
approach.

Analyzing the metamodel, we can verify that a new hierarchy of
elements is added to the application instance in the affected model.
The start element in this hierarchy is the HybridApp, the global rep-
resentation of OpenCL application itself. From this point, we split
the application into two parts: HostSide and DeviceSide. These parts
are unique instances and they characterize technically the host and
compute device roles defined by OpenCL. The HostSide and DeviceSide
inherit from ExecutionSide. Thus, both can instantiate Functions that
represent all possible tasks from application model. Kernels, a spe-
cial function in the device, are tasks with only one LaunchTopology.
Launching a kernel requires the specification of the dimension and
size of the work-groups and work-items (cf. Section A.4.2). In order
to define a dimension, we analyze three aspects: total number of
work-items, data structure organization, and the shape of the task
which is defined by the model designer. The LaunchTopology ele-
ment specified in Figure 4.10 has 3 attributes (dim, global, local). The
attribute dim is a 2-elements array containing the shape dimension of
the respective kernel and total(shape internal product) of repetitions.
The other attributes (global and local) are respectively the total number
of work-items and the number of work-items per block or work-group.
Details about how to define these values is seen in Chapter 5.

At the scheduling level, the metamodel provides an ordered list of
functions (scheduling relationship). This list is associated to each com-
posed task (hierarchical) according to function call order. Therefore,
as kernels (from device side) and main function (from host side) are
composed tasks, each one has an ordered list based on the scheduling
previously defined in the model. Another relationship, the list (func-

4.4 hybrid 77

tions), allows to enumerate other functions hierarchically as children
of the function itself.

The Memory Allocation model is used as source to define variables
in the Hybrid model. Indeed, characteristics such as scope, type, size,
reading/writing are information easily retrieved from the precedent
model of memory allocation. However, when we program in OpenCL,
it is important take into account characteristics related to variables
other than conventional ones. In order to cover every variable concern,
we propose two relationship types between variables that help to
implement the distributed aspect inherent to OpenCL memory model.
The first one is refersTo relationship. This relationship allows to find
which host variables must be transferred to device variables and vice-
versa. The second one, composed by indexin and indexout, allows to
express the tiler (cf. Subsection A.4.2.5) connector between flowPort
elements. This information is a key aspect to determine which part of
whole input data a work-item will process. In this case, tiler functions
provide, for example, how each work-item gathers or scatters data
from/into global memory.

78 metamodels and gpus

H
y
b
ri

d
A

p
p

H
o
st

S
id

e
D

e
v
ic

e
S
id

e

M
a
in

Fu
n
ct

io
n

Fu
n
ct

io
n

V
a
ri

a
b
le

is
Pa

ra
m

e
te

r
:

E
B

o
o
le

a
n

is
C

o
n
st

a
n
t

:
E
B

o
o
le

a
n

si
d
e
 :

 p
la

ci
n
g
O

p
ti

o
n
s

ty
p
e
 :

 E
S
tr

in
g

si
ze

 :
 E

In
t

K
e
rn

e
l

La
u
n
ch

To
p
o
lo

g
y

d
im

 :
 E

In
t

g
lo

b
a
l
:

E
In

t
lo

ca
l
:

E
In

t

<
<

e
n

u
m

e
ra

ti
o
n

>
>

p
la

ci
n
g
O

p
ti

o
n
s

H
o
st

D
e
v
ic

e

Fl
o
w

Po
rt

(f
ro

m
 g

cm
)

Ti
le

rF
u
n
ct

io
n

Ti
le

rT
a
sk

(f
ro

m
 L

in
kT

o
p
o
lo

g
y
Ta

sk
)

A
ss

e
m

b
ly

Pa
rt

(f
ro

m
 g

cm
)

M
o
d
e
lE

le
m

e
n
t

(f
ro

m
 F

o
u
n
d
a
ti

o
n
s)

E
xe
cu
tio
nS
id
e

h
o
st

si
d
e

1
d
e
v
ic

e
si

d
e

1
..

*

m
a
in

Fu
n
ct

io
n

1

fu
n
ct

io
n
s

0
..

*

variables0..*

ke
rn

e
ls

1
..

*

v
a
ri

a
b
le

s
0

..
*

re
fe

rs
To

0
..

*

la
u
n
ch

to
p
o
lo

g
y

1

p
o
rt

A
ss

o
ci

a
te

d
0

..
* indexin1

indexout1

ti
le

rT
a
sk

1

a
ss

e
m

b
ly

Pa
rt

1

scheduling0..*fu
n
ct

io
n
s

0
..

*

Fi
gu

re
4

.1
0

:H
yb

ri
d

M
et

am
od

el

4.4 hybrid 79

a

b

c

d

e

Figure 4.11: XMI Model Sample for Hybrid Application

To clarify this metamodel usage, Figure 4.11 shows a model sample
based on the Hybrid metamodel. Some highlighted points in the
figure illustrate the main applications of this metamodel approach.

(a) By default, a Hybrid Application is composed of two parts:
one hostside and one or more deviceside. Here we have one Ap-
plic_inst_hostside and one Applic_inst_deviceside.

(b) The previous scheduling policy defined generically in the schedul-
ing metamodel is adapted to our function list. Notice here that
we have 4 functions as an ordered list: {vec2,vec1,ep_KRN,v1v2}.
Moreover, the kernel function is seen as a function call by the
host.

(c) The deployment is indicated in this point. The whole structure
involving code snippet or, in some cases, the binary, parameters
and its order, and any additional auxiliary files are associated
here to the depoloyment model.

80 metamodels and gpus

(d) This variable attribute allows us to make one of most important
aspects in OpenCL programming: data transfers between host
and device. In this example, the variable v1_ep_KRNPAR refers
to the variable genarray1_vec1. During execution, whenever we
need to send or receive data by host and devices, this attribute
will be taken into account.

(e) The launch topology is indicated in this relationship. As an
example, globally we have 16 millions of work-items distributed
into work-groups of 16 work-items locally. Thus, we have 1

million work-groups composed of 16 work-items.

4.5 conclusion

In this chapter, we presented three key metamodels that compre-
hend three global concerns for creating an whole application: schedul-
ing policy, memory handling, and the target specificities. Although
the high level model designing aims to create parallel applications, it
remains at a high abstraction level and lacks or does not provides ex-
plicitly important information when we aim a specific target. The first
two metamodels presented here can be easily used in many other tar-
get platforms. Scheduling and Memory Allocation are generic needs
of most applications for any architecture. Nevertheless, the Hybrid
metamodel was developed to attain our code generation approach
and its understanding enlightens most aspects of our whole approach
itself.

5
M O D E L S T O WA R D S C O D E

Chapter Contents

5.1 Building a Transformation Module
5.2 Chaining Model Transformations
5.3 Generic Transformation Modules

5.3.1 UML Profile to MARTE Metamodel (1)
5.3.2 Instances Identification (2)
5.3.3 Tiler Processing (3)
5.3.4 Task Graph and Scheduling (4,5,6)

5.4 Memory Allocation and Variable Definitions (7)
5.5 Hybrid Conception (8)

5.5.1 General Structure
5.5.2 Identifying Kernels
5.5.3 Functions and Variables
5.5.4 The Main Function
5.5.5 The Relationship among Variables
5.5.6 Summarizing the Scheduling

5.6 Code Generation (9)
5.6.1 Creating the makefile and header files
5.6.2 Creating OpenCL Kernels Files
5.6.3 Creating C/C++ Files
5.6.4 Extending the number of available devices

5.7 Conclusion

The core of our code generation approach lies mainly in the model
transformations. We have defined several model transformations mod-
ules which now, along with other ones, are part of the Gaspard2

Model Transformation Library whose structure is shown in Figure 5.1,
already introduced in Chapter 2. Choosing the suitable transforma-
tions modules is part of the compiling engineering process. As an
MDE approach, the new branch proposed for Gaspard2 comprehends
all models, metamodels, transformation modules, and, foremost, how
to determine the compiling process layers in order to achieve all nec-
essary model element analysis. In this chapter, we present our model
transformation chain and how it works regarding the metamodels
previously depicted in Chapter 4 as well as metamodels introduced in
this chapter.

81

82 models towards code

Library of Functionalities

Transformation Module 1

Transformation + Metamodel

Transformation Module N

Transformation + Metamodel

Transformation Chain

Input
Model

Output
Model /

Text Code

Smart
Connector

Figure 5.1: Gaspard2 Library of Functionalities and Chaining Process

5.1 building a transformation module

Our transformations modules are unidirectional, hence, they have
only one mode of execution: i. e., they always take the same type of
input and produce the same type of output. Unidirectional model
transformations are useful in compilation-like situations, where any
produced output model is then read-only to next transformations. To
implement our transformations, we have used the OMG-standardized
model transformation language known as Query/View/Transformation
Operational (QVTO) (cf. Section B.3).

In order to facilitate the transformation chaining engine (discussed
in next section), we used the transformation scheme seen in Figure 5.2.
For each transformation module, we have only one input model and
only one output model. The reason for this is simple: we aimed to
keep the transformations the least complex possible, with fewer rules
and model affectations. However, we kept in mind the design of
transformations of full functionalities, e. g. the scheduling or memory
allocations. This avoids monolithic transformations and provides a
layered compilation scheme.

Back to Figure 5.2, "Model A" conforms to "Metamodel A" is the
input model for our transformation module example. However, as
we copy all elements from the input model into the output model
for future analysis within other transformations, we have decided

5.2 chaining model transformations 83

to create inout transformations. It means that our input model is
the same output model and both are conforming to "Metamodel B".
Actually, the "Metamodel B" is the "Metamodel A" plus "Metamodel B
Delta". Those operations running on the metamodels are more than a
simple adding. Sometimes, it is necessary to change relationships or
attributes types, for instance. In this case, no new element was added,
but it just had its relationship or attribute modified.

In order to adapt the "Model A" to "Model B", used as inout model,
the Gaspard2 team proposed the MD Factory tool allowing trans-
parently to do this adaptation when we chain two transformation
modules. This is implemented by that we call "Smart Connector" seen
in Figure 5.1.

In summary, the process of building a transformation module takes
into account that every input model A must be converted (step 1 in
Figure 5.2) into another model B which is consistent with the model
A, but it is conforming to metamodel B. The metamodel B is the
result of the fusion of metamodel A, whose model A conforms, and
the metamodel B Delta that contains the necessary modifications
which will be taken into account by the transformation rules. The
transformation takes (step 2) the model B and transforms it into the
model B’ (step 3).

Metamodel A Metamodel B
Delta+ Metamodel B

Model A

conforms to

=

Model B

Model B'

conforms to

input

output

MD Factory
Adaptation

1

2

3

Transformation
Module

Figure 5.2: Model Transformation Scheme used in Gaspard2

5.2 chaining model transformations

Chaining transformations means to put them into a sequentially
ordered list that takes into account their inter-dependencies. Figure 5.3
presents the transformation chain for our approach. Except for the
modules 8 and 9, the models do not aim any specific target platform.
Indeed, they were designed to be the most generic possible. Thus,
this guarantees the reuse feature for these modules. Some of the

84 models towards code

chosen transformation modules could run in parallel once they do
not have model dependency. However, for the time being, we did not
implement transformation chains as graphs. In fact, this has no high
impact on model compiling performance, thus, transformations are
chained sequentially.

1
#include b.h

func(a,b){
 c=a+b;
}

2

3

4

5

6

7

8

9

Transformation Modules
1: UML Profile to MARTE Metamodel
2: Instances Identification
3: Tiler Processing
4: Local Graph Generation
5: Global Graph Generation

6: Static Scheduling Policy
7: Memory Allocation and
 Variable Definition
8: Hybrid Conception
9: Code Generation

Figure 5.3: The UML/MARTE-to-OpenCL Transformation Chain

5.3 generic transformation modules

Some of transformation modules were already available in Gaspard2

library to methodology providers wanting to use them for some par-
ticular purpose. However, besides the new proposed transformation
modules, our findings affected all modules within the chain. For this
reason, and also for a better overall understanding, we present in the
next subsections all involved modules for the code generation of this
particular target, OpenCL.

5.3.1 UML Profile to MARTE Metamodel (1)

Although this transformation module’s name contains "profile to
metamodel", it does not produce a metamodel as an output. Earlier, in
Chapter 2, we explained that the choice for UML was due to its broad
application domain, its large available tools, and mainly, its MARTE
profile as standard for real-time systems and support for description

5.3 generic transformation modules 85

of parallelism. However, during the developing of the transformation
modules, we realized that converting the UML profile for MARTE
into a metamodel for MARTE would make the transformation job
easier. In fact, this process means just to adapt a model conforming to
UML into a model conforming to MARTE metamodel. Having this
model, the remaining transformations do not need to deal with all
unnecessary extra complexity of UML.

Listing 5.1: QVTO snippet from UML to MARTE Metamodel Transformation

1 mapping UML::Class::class2HW_Resource() : HRM::HW_Resource

2 when{

3 not self.getAppliedStereotype(source.MARTE_STEREOTYPE_HWRESOURCE).

oclIsUndefined()

4 }

5 {

6 init{

7 var stereotype := self.getAppliedStereotype(source.

MARTE_STEREOTYPE_HWRESOURCE);

8 }

9 description:= object nfps_types::NFP_String{

10 value := self.getValue(stereotype, ’ description ’).oclAsType(String);
11 }

12 }

Listing 5.1 shows a snippet of QVTO-language source code for this
transformation module. Obviously we do not intend to explain all the
source code (about 1700 lines), but showing this mapping rule can
illustrate how the other rules were implemented. In line 1, we declare
a special mapping rule called class2HW_Resource, this rule is applied
to UML classes and produces, as output, an element conforming to
HW_Resource defined in the Hardware Resources Modeling (HRM)
package from the MARTE metamodel (cf. Figure B.3). The when
section in lines 2-4 ensures that this mapping rule will be only applied
on classes with HW_Resource stereotype. Finally, lines 6-12 consist in
setting the value of the description attribute to the related value defined
in the stereotype from MARTE profile.

5.3.2 Instances Identification (2)

In UML 2.0, ports represent an interaction point between a compo-
nent and its environment and its internal parts. Nevertheless, parts of
components whose type is a component owning ports do not have in-
stances of those ports. The component hierarchy proposed in Gaspard2

relies on composed components whose parts must be interconnected
by their ports to assure the data flow. In order to add the instance of
ports for each part within the component, Gaspard2 proposes the trans-
formation module "Instances Idenfitication". In Figure 5.4, we present
the general view of the metamodel associated to this transformation.
It is strongly inspired on MARTE profile. However, it adds three new

86 models towards code

classes AbstractPart, InteractionPort, and PortPart that extend MARTE to
allow us to create port instances.

StructuredComponent

ownedPortConnectors

0..*

ModelElements
(From Foundations)

AbstractPort

PortConnector

AssemblyPart

PortPart

InteractionPort

LinkTopology Tiler

DelegationConnectorEndPartConnectorEnd

PortConnectorEnd

end

1

connector
1

ends2

Name : EString

local : EBoolean

connectorEnds 1..*

0..*
0..*topology

tiler

type

assemblyPart

type

1

0..*

1

Figure 5.4: Instances Identification Metamodel

5.3.3 Tiler Processing (3)

Tilers are part of ArrayOL specification language. Appendix B
presents an introduction to ArrayOL in MARTE context. The model
designer specifies tilers as stereotypes applied directly to port connec-
tors. However, if we consider tilers as data scattering and gathering
operations, it is not clear who (processing element) executes these
operations. Hence, this module transforms every tiler specified on
higher level models to tiler tasks as illustrated in Figure 5.5. Later,
these newly tiler tasks are undertaken by the same processor element
of corresponding tasks previously connected to those tilers.

MultTask

<<shaped>>
m: Multiply

B: Real{4096,4096}

A: Real{4096,4096}

MB_COL: Real{4096}

MA_ROW: Real{4096}

MC_PT: Real {1}
<<tiler>>

<<tiler>>

<<tiler>>

C: Real{4096,4096}

MultTask

<<shaped>>
m: Multiply

B: Real{4096,4096}

A: Real{4096,4096}

MB_COL: Real{4096}

MA_ROW: Real{4096}

MC_PT: Real {1}

C: Real{4096,4096}

t1:TilerTask

t2:TilerTask

t3:TilerTask

Figure 5.5: Transforming Tiler Connectors to Tiler Tasks

5.3.4 Task Graph and Scheduling (4,5,6)

The transformation modules 4,5, and 6 in Figure 5.1 are responsible
for creating task graphs and a trivial scheduling policy. They are based
on the metamodels described in earlier chapter. A first transformation
captures the tasks for each allocated processor element. Then, it

5.4 memory allocation and variable definitions (7) 87

creates a local Directed Acyclic Graph (DAG) according to their data-
dependency. Afterwards, another unique DAG is generated by a second
transformation that regards the data-dependencies under the global
point of view.

The last transformation in this set defines a static scheduling by an-
alyzing the DAG seeking any valid execution path. Due to multiplicity
of valid paths, this transformation can generate random valid lists.

Although there are many algorithms [93, 145] that provide a better
DAG analysis, this is our scheduling solution for our approach. In fact,
we do not need anything more complex because this scheduling deals
only with the sequential part of our generated code. The parallel part
is entirely managed by the scheduling controller of the GPU.

5.4 memory allocation and variable definitions (7)

From this section we start presenting an in-depth analysis of trans-
formation modules. In fact, this and the following transformation
were entirely designed during the works of our methodology ap-
proach, even if the memory mapping was thought to be a generic
transformation to many other target platforms and transformation
chains.

Figure 5.6 shows the overall structure of the memory mapping
transformation module. It uses the memory mapping metamodel
presented in previous chapter. Here, we explain the main phases of
this transformation by enumerating the key rules as follow:

1. addMemoryMap: this rule seeks all «HwRAM» elements in the
model and creates a child element memorymap that will contain
the data allocations (defineBasicDataAllocations). The basic data
allocations are created from the allocated flowports of the model.

2. defineScope: by analyzing the «HwRAM» element in the mem-
ory hierarchy, this rule allows for defining the scope, e. g. "global",
of a data allocation.

3. propagateDataAllocation: once are defined the data allocations,
this rule is able to propagate this allocation to every element re-
ferring to the same allocation. For instance, a not-allocated flow-
port shares the same allocation of a directly connected flowport
that have already an allocation. This situation can be observed
in Figure 5.8 for the output port of the task magen and the first
input port of the task mtask.

4. createTilerTaskDA: in Figure 5.5, 3 tiler tasks are created in tiler
processing transformation module. This rule propagates existing
data allocations to tiler tasks ports.

5. createVirtualIPSoftIPDA: the matrix multiplication example in
Chapter 3 shows the deployment phase when we define two new
elements in the model: the virtual IP and the software IP. Like

88 models towards code

their corresponding task components, these two new elements
have flowports that need a data allocation reference. However,
in this case, no variable reference those ports, it exists only to
ensure the link between IP parameters and the data allocation
reference in the memory map.

x. createAffectationDataAllocation: a special rule allows to create
and associate special data allocations for auxiliary variables. In
our approach, this kind of variable is handled by static alloca-
tions. Therefore, this rule does not have any effect on our code
generation process. It exists to retain the compatibility for other
branches, such as Pthread.

main

addMemoryMap defineScope propagateDataAllocation

defineBasicDataAllocations

1

createTilerTaskDA

createVirtualIPSoftIPDAcreateAffectationDataAllocation

X

2 3 4

5

Figure 5.6: Memory Mapping Transformation Module Overview

At the end, this transformation creates new elements in the model.
These elements summarize all data and the relationship among tasks
concerning data communication.

5.5 hybrid conception (8)

Despite other important transformations, this transformation can
be considered the most important one. Indeed, this transformation
summarizes all explicitly modeled or implicitly defined elements by
earlier transformations into a single structure. Moreover, as seen in
Chapter 4, the metamodel used to generate the result model defines
elements that have a terminology closer to our target platform. It
means the distinction between host and device, kernels, and so on.

In this section, we present which model elements were used to
construct each part of the result structure, as well as the reason of this
choice and mapping rules strategy.

5.5.1 General Structure

Figure 5.7 presents an overview of this transformation module. At
first, the main function starts the creation of a hybrid application call-

5.5 hybrid conception (8) 89

ing the mapping rule createHybridApp. This produces the HybridApp
element as a child of the general instance of the application. From this
point, we split the structure into two sides, even though we keep some
connection points between both sides to provide information about
relationship between elements. Next subsections emphasize how the
remaining rules work.

main

createHybridApp

toHybridApp

toDevSide toHostSide Schedule Host

Schedule DevicetoMainFunctiontoKernel

toTilerFunctionstoIPFunction mainVars

defineVars

kernelVars

optimizeTransfer

1 2 3

4

Figure 5.7: Hybrid Conception Transformation Module Overview

5.5.2 Identifying Kernels

On the device side, a transformation rule starts creating the kernels
of the application (toKernel rule). Kernels are identified by tasks
allocated onto devices as exemplified in Figure 5.8. Here, abstraction
connectors stereotyped as «allocate» from MARTE and the hardware
resource can be filtered by checking its description like in the operation:
description.value->any(true)="Host".

The generated kernel has been assigned, at this moment, its name
and its launchtopology16 . Regarding the topology, we have tested two 16 For us, the launch

topology of a kernel relies
on its grid geometry. When
a kernel is launched we
have to define how many
work-items and
work-groups will compose
its grid. Usually this grid
have up to 3 dimensions for
work-items and for
work-groups.

solutions to its specification. In general, this does not impact directly
on the code’s functionality, however this can strongly impact on perfor-
mance when we are looking for the optimal processor occupancy (cf.
Chapter 6). Listing 5.2 presents the QVTO code for the computation of
the kernel launch topology. The algorithm behind this listing aims to

90 models towards code

Application
magen: MA_Gen

mbgen: MB_Gen

mtask: MultiTask

<<shaped>>
m: Multiply

<<hwResource>>
Host

mcprint: MC_Print

p: CPU mp: Memory

<<hwResource>>
Device

gp: GPU mgp: Memory

<<abstraction>> <<allocate>>

<<abstraction>> <<allocate>>

<<abstraction>> <<allocate>>

<<abstraction>> <<allocate>>

Figure 5.8: Distinct task allocation onto available processors

provide groups of n work-items, where n respect (being a multiple)
typical warp specifications of GPU devices . After some tests and due
to dependency of this information with the modeled application, we
have decided to change this strategy to a simpler one as seen in List-
ing 5.3. Here, the launch topology is obtained directly from the tasks’
shape. Hence, model designers can decide the kernel topology by
themselves and regarding application’s constraints. Nevertheless, in
order to provide resources to analyze their decisions, we proposed an
optimization technique based on profiling results to improve processor
occupancy according to kernel topology. This technique is presented
in Chapter 6.

5.5.3 Functions and Variables

The remaining composition of a kernel is defined by the next rules:
kernelVars uses flowPorts and elements from the Memory Allocation
transformation (7) results, which belong to the original task, to define
the kernel parameters; toIPFunction creates every function regarding
the IP calls from elementary tasks in the model and that are part of the
task used to create the kernel; toTilerFunction produces special func-
tions based on tilers tasks produced in Tiler Processing transformation
(cf. Subsection 5.3.3). In OpenCL, in general each work-item gathers
its data based on its indexes directly from the device global memory.
Therefore, it is coherent to put the tilers within kernels as sub-tasks

5.5 hybrid conception (8) 91

along with IP tasks and, thus, they are part of the scheduling list of
the kernel.

Once we have functions from IPs and tilers, we can define their
variables by calling the rule defineVars. Again, the rule looks for
data from flowPorts and memory allocation model to create variables
associated to functions. The parameter order relies on the deployment
model which describes the IP behavior.

5.5.4 The Main Function

Similarly to device side, on the host side, we have to create special
functions (starting in the rule identified by the number 2 in Figure 5.7).
However, differently from kernels, on the host side we have only one
initial function called main17 created by the toMainFunction rule. For 17 In many programming

languages, the main
function is where a
program starts execution.
Thus, we keep rather this
terminology than another
more generic concept.

this special function, like for the kernels, we call the rules for creation
the IP and tiler functions, as well as the global variables produced by
the mainVars rule (similar to kernelVars).

5.5.5 The Relationship among Variables

In order to establish the link between host and device for data
transfers, the rule optimizeTransfer operates on previously defined
variables. Here, the aim is to define which variables have co-variables
in the opposite side. This is an important rule because the most part
of the code optimization lies in memory transfers. In order to achieve
this goal, the algorithm of this rule takes into account model analysis
looking for farther tasks which make use of these variables. The aim
consists in avoiding extra transfers as exemplified in Chapter 6 which
deals with optimization of the code.

5.5.6 Summarizing the Scheduling

The numbers 3 and 4 in Figure 5.7 deal with scheduling. They are
the last rules in the transformation because they need all the functions
(this includes functions from IPs and tilers) previously generated for
host and device. After running these rules, we have sequential lists of
functions. Again, a link between host and device is taken into account
in this rule. Actually, kernel functions are present in the scheduling
list of the host. All kernel launches are managed by hosts, so in order
to assure the kernel call at the right moment we have inserted kernel
functions within host’s list. Figure 5.9 illustrates the result of this
process.

Listing 5.2: launchtopology computation

1 ...//topology x,y,z

2 launchtopology := object hybridapi::HYBRIDAPI::LaunchTopology{

92 models towards code

function a
tiler
kernel k1
tiler
tiler
kernel k2
tiler
function b

tiler
funtion kk1
tiler

tiler
funtion kk2
tiler

Host Device

Figure 5.9: Scheduling lists and their interconnections.

3 dim := dims.size->size();

4 dim += dims.shapeprod();

5 var i : Integer = 1;

6 var j : Integer = dim->at(1);

7 while(i<=j) {

8 dim += dims.size->at(i);

9 if(dims.size->at(i)->notEmpty()) then {

10 switch {

11 case (j=3) local+=8;

12 case (j=2) local+=16;

13 case (j=1) local:=32;

14 };

15 global+=(dims.size->at(i)/local->at(i) + 0.49999999).

round()*(local->at(i));

16 } endif;

17 i:=i+1;

18 }

19 };

Listing 5.3: launchtopology computation directly from task’s shape

1 ...//topology x,y,z directly from the shape

2 launchtopology := object hybridapi::HYBRIDAPI::LaunchTopology{

3 dim := 1;

4 dim += dims.shapeprod();

5 local := dims.size->at(1);

6 global := dims.shapeprod();

7 };

8 ...

5.6 code generation (9)

This transformation maps an abstract model to text, i. e. the source
code. At this point, we are already able to write out the earlier

5.6 code generation (9) 93

analyzed elements directly to code. We have considered that the
source code for an OpenCL application is composed of:

1. makefile;

2. .cl files, one for each kernel;

3. .cpp file, one for the whole application;

4. .h header files;

The directory and makefile structures are based on NVidia’s API.
However, small modifications can adapt the result code source to
several vendor’s API. In this subsection, we present our strategy to
generate the code files using Acceleo. This code generation language
uses a template based approach. With this approach, a template is
a text containing dedicated part where the text will be computed
from elements provided by the inputs models. We have created one
dedicated template for each type of the files structure (makefile, .cl,
.cpp, .h).

5.6.1 Creating the makefile and header files

For the makefile, the transformation provides file names and possi-
ble links to libraries and compilation directives. That information is
gathered from the deployment model and depends on the provided
IPs.

Listing 5.4: CL Code Template

1 <%

2 metamodel /fr.inria.dart.gaspard2.metamodel.hybridapi/hybridapi.ecore

3 %>

4 <%script type="HybridApp" name="Makefile" file="generated/Makefile"%>

5 ###

6 # Tip: Copy these files on src folder in NVIDIA_GPU_COMPUTING

7 EXECUTABLE := ocl<%name%>

8 # C/C++ source files (compiled with gcc / c++)

9 CCFILES := ocl<%name%>.cpp

10 LIBUSRLNK := <%hostside.functions.software_ip.codeFile.linkDirective.

trim().sep(" ")%>

11

12 include ../../common/common_opencl.mk

The name and path of the header files are obtained from the model,
then they are copied to the same directory where the code is generated.

5.6.2 Creating OpenCL Kernels Files

All header and IP files are provided as files available in the code
generation environment. Figure 5.10 shows two samples of this kind of
files available for the matrix multiplication application modeling. The
function declared in the IP, for instance, operates on single elements of

94 models towards code

data. The parallelism and distribution and communication of data are
entirely handled by the generated code from the application model.

#define MAX_N 4096

matrix.h

/* Gaspard2 MDE
 IP name: MultInstance
 function name: mult
 Parameters: a,b,c */
void mult(
 const float* a,
 const float* b,
 float* c)
{

 c[0]=a[0]*b[0];
}

multinstance_IP.cl

Figure 5.10: Samples of IP and header files for the matrix multiplication
application

Analyzing a small part18 of the template for .cl files in Listing 5.5,18 The complete template
has about 200 lines. we can emphasize the IP functions inclusion in lines 17,37-41. The

script gets the file name and path directly from the model HybridAPI
of the functions related to the analyzed kernel. Then, all variables
(kernel and function parameters) are declared as seen in lines 22,24-26.
For the ordered function call list, the instruction in line 33 prepares
the IP and tiler calls.

Listing 5.5: CL Code Template

55 ...

56 //_________________IP Functions_____________________

57 <%functions.ip%>

58

59 //___

60 //Kernel Start

61
__kernel void <%name%>(uint iNumElements,

62 <%variables.declaration.sep(",")%>)

63 {

64 <%if (functions.variables.nSize()>0){%>

65 <%functions.variables.declarationInFct.sep(";")%>;

66 <%}%>

67 //get index into global data array (x,y,z) x + sx*y + (sx*sy)*z

68 int iGID = get_global_id(0) + get_global_size(0)*get_global_id(1)

+ get_global_size(0)*get_global_size(1)*get_global_id(2);

69

70 // bound check

71 if (iGID < iNumElements)

72 {

73 <%scheduling.schedule.sep("\n")%> //IP and Tiler functions

74 } else return;

75 }

76 ...

77 <%script type="HybridAPI.Function" name="ip"%>

78 //########<%name%>: file: <%software_ip.filePath%>##########

79 <%

5.6 code generation (9) 95

80 getFileContent("fr.inria.dart.gaspard2.codegeneration.gpu_opencl/src

/IP/"+software_ip.filePath)

81 %>

82 <%script type="HybridAPI.Function" name="schedule"%>

83 <%software_ip.entryName%>(<%for (variables) {%><%if (i()!=0){%>, <%}

%><%name%><%}%>);

84 <%script type="HybridAPI.TilerFunction" name="schedule"%>

85 <%self.calculate%>

86 ...

5.6.3 Creating C/C++ Files

The process of creating the .cpp files is similar to .cl one. However,
on the host side, we have a few extra operations. On the host side, it
is necessary to take into account: device detection, memory allocation for
variables, kernel load and compilation, parameter definition, and memory
transfers. Those operations are detailed in Chapter A. However, in
order to clarify our strategy to some of the operations, we emphasize
three important ones: launch topology definition, memory transfers,
and argument setup for kernel launching.

To define the grid of work-items for the kernel launch context, we
use the element launchtopology created in the Hybrid transformation as
seen in the previous section. To understand this process we analyze the
Listing 5.6. In lines 102,103, we define how many dimensions for work-
items group and work-groups group. In order to avoid work-items
working outside allocate data, in line 103, we define the total number
of work-items will really operate on the data. The remaining code
deals with enough memory space allocation for variables which will
define the grid parameters and the last part defines their values. As
an example, Figure 5.11 shows graphically a possible configuration.19 19 OpenCL defines that the

global size uses work-items
as unit and not
work-groups. Sometimes,
in order to fit the same
number of work-items into
every work-group, we use
some round up function. In
this case, the boundary
verification is strongly
necessary.

Listing 5.6: Launch Topology to Grid definition

445 ...

446 //threads environment setup

447 Ndimwi = <%launchtopology.dim.nGet(0)%>; //WI Dimension

448 Ndimwg = <%launchtopology.dim.nGet(1)%>; //WG Dimension

449 Nelem = <%launchtopology.dim.nGet(2)%>; //Boundery

450 free(szLocalWorkSize);

451 free(szGlobalWorkSize);

452 szLocalWorkSize = (size_t *)malloc(sizeof(size_t) *Ndimwi);

453 szGlobalWorkSize = (size_t *)malloc(sizeof(size_t) *Ndimwg);

454

455 <%for (launchtopology.local){%>

456 szLocalWorkSize[<%i()%>] = <%self%>;

457 <%}%>

458 <%for (launchtopology.global){%>

459 szGlobalWorkSize[<%i()%>] = <%self%>;

460 <%}%>

461 ...

96 models towards code

8
8

512Ndimwi = 2
Ndimwg = 1
szLocalWorkSize[0] = 8
szLocalWorkSize[1] = 8
szGlobalWorkSize[0] = 512

Figure 5.11: Grid Example

Regarding the memory transfers, to write out instructions responsi-
ble for the data copies, we have chosen the functions clEnqueueReadBuffer

and clEnqueueWriteBuffer. Besides those, we can use clCreateBuffer
during the memory allocation. However, we prefer the former ones
because we consider that all allocations are already done and the
copy actions can be made during kernel launches, wherever they were
allocated. In the next chapter, we explain some memory transfer
optimizations and we address those functions again.

Listing 5.7 presents the template segment responsible for the situ-
ation depicted in Figure 5.12. In line 482, we check the output (not
constant) variables in kernel having a reference in the host side, such
as "1" in the figure. In line 483, we define the copy instruction by
providing type, size, and the name of the involved variables, "1" to-
wards "2" in this case. The second part of the code deals with further
transfers. A variable having two or more refersTo elements must have
its data copied into referenced input(constant) variables, such as "2"
to "4". An in-depth analysis of the optimization of this process is
presented in Chapter 6 regarding transfers suppression.

HorizontalFilter
<<shaped>>

rhf: RHF {288,44}

1
«tiler»

«tiler»

VerticalFilter
<<shaped>>

rvf: RVF {32,132}

43
«tiler»

«tiler»
2

same allocation

refersTo refersTo

Figure 5.12: References for Memory Transfers

Listing 5.7: Memory Transfers

480 ...

481 <%for (variables){%>

482 <%if (!isConstant && refersTo.side=="Host"){%>

5.6 code generation (9) 97

483 dartErr1 = clEnqueueReadBuffer(cqCommandQue, cmDev_<%name%>,

CL_TRUE, 0, sizeof(cl_<%type%>)*<%size%>, <%refersTo.name%>,

0, NULL, NULL);

484 <%-- if it has more than 1 refersTo, it is also an input var --%>

485 <%for (refersTo.refersTo){%>

486 <%if (isConstant){%>

487 dartErr1 = clEnqueueWriteBuffer(cqCommandQue, cmDev_<%name%>,

CL_TRUE, 0, sizeof(cl_<%type%>)*<%size%>, <%refersTo.

name%>, 0, NULL, NULL);

488 <%}%>

489 <%}%>

490 <%}%>

491 <%}%>

492 ...

Some applications require defining the launch topology with work-
items number above the truly necessary. Indeed, if we seek perfor-
mance, we have to take into account better grid definitions in order to
assure better processor occupancy. For this reason, we always send We have masked some

information about
optimization in this chapter
because we present it in the
next one.

the total number of work-items, which will really work on data, as
argument. In Listing 5.8, we present the template for the definition
of kernel arguments. In OpenCL, it is proposed a special function to
declare the arguments and their order, clSetKernelArg. In line 461,
Nelem is always the first argument (the "0" in the second parameter).
Then, we save the respective kernel object in the stack (line 462) for
future reference and we scan its variables (line 463). In line 464, we
define the arguments. The order is random. However, this order is
consistent with the order defined in the .cl file of the corresponding
kernel.

Listing 5.8: Setting Kernel Arguments

460 ...

461 dartErr1 = clSetKernelArg(ckKernel_<%name%>, 0, sizeof(cl_int), (

void*)&Nelem);

462 <%self.push()%> <%-- kernel object in stack --%>

463 <%for (variables) {%>

464 dartErr1 |= clSetKernelArg(ckKernel_<%peek().name%>, <%i()+1%>,

sizeof(cl_mem), (void*)&cmDev_<%name%>);

465 <%}%>

466 <%self.pop()%> <%-- kernel object out of stack --%>

467 ...

5.6.4 Extending the number of available devices

Many GPGPU systems start to have multiple GPU devices to increase
two constraints: processor resource and memory resource. While
vendors release multi-GPU systems, programmers have to manually
take into account the load balance and data communication among
the available devices. Usually, this process is handled on the host
side. In addition, converting an application written for a single GPU

98 models towards code

to run on multiple devices generally requires rewriting the code,
and sometimes fairly extensive modiÞcations are required. Ensuring
consistency between the multiple copies of data makes this process
more difficult for the programmer.

For the model designer, who does not necessarily have the knowl-
edge about the device programming level, we propose a workload
distribution based on task’s shape and devices’s shape. Indeed, for
some constrained tasks, this distribution process is easier to compilers
than to programmers. Actually, for each device, the programmer
must take into account all procedures to launch a kernel. This means
context creation, parameters settings, data transfers (host to device
and vice versa), grid settings, so on. This is arduous for manually
written code, but is fairly automatized process for model compilers.

mtask: MultiTask

<<shaped>>
m: Multiply

<<hwResource>> <<shaped>>
d1: Device

gp: GPU mgp: Memory

{4}

{4096,4096}

<<abstraction>><<allocate>>

Figure 5.13: Multi-GPU Example

The process described here is part of the code generation phase and
does not require complex changes in the high level specification model.
Figure 5.13 is based on the Matrix Multiplication example presented in
Chapter 3 and emphasizes the shapes of the task m: Multuply and the
device for which this task is allocated. The task has shape value equals
{4096, 4096}. Usually, in a mono device environment, it becomes 4096
work-groups with 4096 work-items each one. Expanding the mono
device to multi devices, as seen on the shape value ({4}), allows the
model compiler creating an automatic workload distribution of the
task and its data. However, an important constraint exists for tasks
in such situation: no data overlapping among work-items must exist,
neither input (reading) nor output (writing). The host is responsible
for scattering and gathering data to/from devices and each device
works independently on its data. Usually, this is not a problem because
there are many applications that does not require data sharing among

5.7 conclusion 99

work-items. However, stencil tasks, for instance, cannot easily be used
with this distribution approach.

for (i = 0; i < numDev; i++)

for (i = 0; i < numDev; i++)

send(dataaddress + i*data/numDev)
with size data/numDev to Device i;

for (i = 0; i < numDev; i++)

Launch Kernel on Device i with grid (WG/numDev,WI)

recv(dataaddress + i*data/numDev)
with size data/numDev from Device i;

send(dataaddress)
with size data to Device;

Launch Kernel on Device with grid (WG,WI)

recv(dataaddress)
with size data from Device;

Figure 5.14: Multi-GPU Task Distribution Process

Figure 5.14 illustrates summarily the conversion from mono device
to multi device (multi-GPU). Input data are equally distributed to
numDev devices and then the kernel is launched on each device hav-
ing a grid definition according with the work-groups distribution 1. 1. The work-group

distribution uses
roundup functions to
ensure a good workload
balance.

Finally, the host gathers data within a contiguous data structure. All
operations are asynchronous among devices.

5.7 conclusion

In this chapter, we depict the 9 layers that compose the transforma-
tion chain. Each layer has a well defined function in the chain. Some
of these functions are common aspects found in the most target aimed
by the Gaspard2 framework, such as scheduling. Although we have
contributed to these common transformation modules, we empha-
size, in this chapter, the modules that deal directly with the OpenCL

programming model. Thus, memory mapping, hybrid application
conception, and the code generation are presented in detail. The
model compilation process occurs transparently to model designer.
However, this chapter attempts to enlighten essential aspects related
to code generation and optimization phases.

6
O P T I M I Z AT I O N S

Chapter Contents

6.1 Memory Copies
6.1.1 Avoiding Unnecesary Transfers

6.2 Tiler Analysis
6.2.1 Observing data reuse
6.2.2 Detecting data reuse
6.2.3 Deciding which data to transfer

6.3 Profiling Analysis
6.3.1 Managing The Whole Chain Traceability

and Avoiding Model-to-Text Traceability
6.3.2 From Execution to Smart Advices
6.3.3 Backtracking Advices in the Input Models
6.3.4 Example and Benchmarks

6.4 Conclusion

During the development of our hypothesis on code generation, we
always had in mind creating high performance solutions. It is not
interesting to be able to create applications having low performances
compared to "traditional" developing method. Even if our proposal is
based on abstract models in a very high-level programming. In this
chapter, we present some key points used to optimize the generated
code. These points are strongly linked to the running platform, i. e.,
CPU, GPU under OpenCL programming. Here, we emphasize basically
two optimization aspects of the code as described below.

1. Memory: data access and data transfers between host and device
memories are the main weak points when we work with GPUs.
For this reason, in our model compilation process we take into
account:
• possible misplaced data allocations in order to avoid extra

data transfers,
• data reuse by work-groups aiming at exploiting local shared

memory.

2. Profiling: the most part of the OpenCL APIs give to developers
profiling tools. However, there is no interaction between high-
level application specification and the results. To fill this gap, we

101

102 optimizations

have proposed a profiling feedback(helped by traceability mech-
anism) and, additionally, smart advices enlightening bottleneck
points in the model.

6.1 memory copies

GPUs have dedicated memory which has 5-10x the bandwidth of
CPU memory, this is an important advantage. However, beginners in
GPU application development are sometimes discouraged by the per-
ceived overhead of transferring data between GPU and CPU memory.
The GPU can only be used if the data is moved to it. And similarly, the
user interface can only post-process the data if it is moved from the
GPU to the CPU. Also, it must be possible to move the data rather fast
for high performance computing. In this section, we discuss how an
automatic code generator can create applications which do properly
data transfers in high throughput conditions, and reduce or eliminate
the transfer burden.

In a typical approach, data transfers occur as seen in Figure 6.1. First,
copy data from main memory to GPU memory with data throughput
of about 10Gbps; second, CPU instructs GPU to start a kernel; third,
GPU executes kernel in parallel and accesses GPU memory with
throughput about 80Gbps (for typical GPUs); finally, copy the results
from GPU memory to CPU main memory. All these events have an
expressive completion time compared to the operations on the data.
Thus, the analysis of these events become very valuable.

Copy from
Host Memory to
Device Memory

Run OpenCL
Kernel

Copy from
Device Memory to

Host Memory

Chipset
(North Bridge)

CPU

CPU
Memory

GPU

GPU
Memory

PCIe
(8GB/s)

5 - 10
GB/s

50-80
GB/s

Figure 6.1: Typical Approach with Memory Copy

6.1 memory copies 103

The OpenCL framework provides a way to package data into a mem-
ory object. Using a memory object minimizes memory transfers
from the host and device as the kernel processes data. OpenCL mem-
ory objects are categorized into two types: buffer objects and image
objects. For our approach, we restrict ourselves to buffer objects.
They are used to store one-dimensional data such as an int, float,
vector, or a user-defined structure. Listing 6.1 depicts the function
call clCreateBuffer() used to specify buffer objects in the GPU. By
using this function one can define a pointer to an allocated buffer
in the device memory. This pointer can have specified, for instance,
read-only attribute, the allocated space in memory, and where data
specified in a pointer of buffer from host will be copied to this al-
located buffer. Notice, even though this is a simple procedure, the
overhead associated to the data transfer must be taken into account. In
some cases, it is interesting to avoid multiple calls of transfer functions
such as clCreateBuffer(), and, instead, to try to join these calls into
only one.

Listing 6.1: clCreateBuffer() function call example

1 cl_mem input;

2 input = clCreateBuffer(

3 context, //a valid context

4 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, // bit-field flag to

5 // specify the usage of memory

6 sizeof(float) * DATA_SIZE, // size in bytes of the buffer

7 inputsrc, // pointer of buffer data to be copied from host

8 &err // returned error code

9)

GenericApplication

k1: Kernel1 k2: Kernel2

Kernel1 and Kernel2 are

DdcbA a

Figure 6.2: Generic Application to illustrate Memory Transfers Suppression

104 optimizations

6.1.1 Avoiding Unnecesary Transfers

In general, every GPU use by CPU(host) is based on 3 transactions:
send data, kernel call, and receive data. However, sometimes multiple
kernels can use results previously created by other kernels. Except for
the cases where there are tasks performed by the CPU that use a kernel
result, there is no need to transfer data back to CPU if subsequent
kernels make use of them. Figure 6.2 illustrates this situation. The con-
nector between the flowports b and c links two kernel tasks20 . There20 These tasks are kernels

because they are allocated
onto GPU processors (not

shown).

is no other connector that links to CPU tasks or tasks performed by
different GPU devices. Therefore, the hybrid transformation provides
a special rule (cf. Subsection 5.5.5) that suppress extra data transfers
according to model analysis. For the example depicted in Figure 6.2,
the transactions are reduced to: send data, kernel1 call, kernel2 call, and
receive data. This process is applied onto the Downscaler example
depicted in Chapter 3.

6.2 tiler analysis

It is common knowledge that the local21 memory of GPUs is much21 Reminder: in OpenCL
terminology, local memory

is the memory shared
among work-items of a

same work-group.

faster than global memory. Knowing that, we tried to answer the fol-
lowing question: "How can we use tilers from ArrayOL to detect when
it is worth transfering data from global memory to local memory?"

In order to answer this question, we analyze the example depicted
in Figure 6.3. In this example, we have a generic kernel k1 with shape
equals {5,29}. For our generated code, it will produce 5 work-groups
with 29 work-items each one. Each work-item gathers from the global
memory a data pattern composed of {2,2} elements (port a in the
figure) and it scatters {1} element (port b). Figure 6.4 presents a
diagram of data distribution based on the input and output tilers of k1.
The figure represents information of the work-items [[0,0], [0,1], [0,13],
[0,14]]. The input array (port A) has {10,29} elements and the output
array (port B) has {5,29} elements. For illustration, in Figure 6.5 right
side, we present the data collection processed by the work-items of
the work-group 1.

6.2.1 Observing data reuse

The tiler specification (origin, paving, and fitting) introduced in
Chapter B allows us to identify which elements in the input array are
processed by each work-item. As an example, for the work-item 0 of
the work-group 0, the pattern of 4 elements starting at the position
{0,0} is used as input (port a). Then, for the work-item 1 of the
work-group 0, the pattern starts at the position {0,2}, and so on.
The next pattern in the work-group always jumps 2 positions in the
second dimension. Therefore, analyzing the work-item 14 of the same

6.2 tiler analysis 105

GenericApplication

<<shaped>>
k1: Kernel1 {5,29}

b: Real {1}a: Real {2,2}
B: Real {5,29}A: Real {10,29}

<<tiler>><<tiler>>

Figure 6.3: Generic Application for Local Memory Optimization

work-group, we see a re-reading of the part of the pattern read by the
work-item 0. This fact occurs on all subsequent work-items. For the
next analysis, we consider the definitions below.

• Skrn[1..dimkrn] is the value of each dimension of the shape of
the analyzed kernel, where dimkrn is the total of dimensions of
this shape. For our example, Skrn[1..2] = {5, 29}.

• Swi[1..dimwi] is the value of each dimension of the shape of the
analyzed work-group of work-items, where dimwi is the total of
dimensions of this shape. For our example, Swi[1..1] = {29}.

• Sarray[1..dimarr] is the value of each dimension of the shape of
the input array, where dimarr is the total of dimensions of this
array. Sarray[1..2] = {10, 29} in the example.

• Spattern[1..dimpat] is the value of each dimension of the shape
of the input pattern, where dimpat is the total of dimensions of
this pattern. Spattern[1..2] = {2, 2} in the example.

6.2.2 Detecting data reuse

Our hypothesis states that: if the product between the total of work-
items and the total of elements of a pattern is greater or equal to twice the
total of elements of the input array, thus, we consider data reuse and, in this
case, it is worth transferring data from global memory to local memory.

This hypothesis can be summarized by the formula:∏dimkrn
k=1 Skrn[k]×

∏dimpat
k=1 Spattern[k]∏dimarr

k=1 Sarray[k]
> 2 (6.1)

Formula (6.1) gives us the degree of data reuse, the bigger this
degree, the higher the reuse. This indicates that work-items should
copy data from global memory to local memory before starting opera-
tions. This copy requires the work-items synchronization in order to

106 optimizations

continue working on the data consistently. In the next subsection, we
explain our strategy to specify how data will be transferred.

6.2.3 Deciding which data to transfer

Through our analysis on tilers and data reuse, we came across a
crucial question: which data must be copied and who does it? To
answer this question we developed the algorithm 1.

Algorithm 1 Optimized Fitting

1: n← cnt_pnts(Polyhedron(P̃, F, Skrn, Sarr, Spat)) . From polylib
2: F̃← 0

3: n0 ← cnt_pnts(Polyhedron(P̃, F̃, Skrn, Sarr, Spat))
4: for i← 1 to nbcol(F) do
5: Ft ←

(
F̃ Fi

)
6: nt ← cnt_pnts(Polyhedron(P̃, Ft, Skrn, Sarr, Spat))
7: if nt > n0 then
8: F̃← Ft
9: n0 ← nt

10: end if
11: end for

The idea behind this algorithm is attempting to find the minimal
fitting F̃ that ensures the reading of the total of elements of a work-
group. In each iteration, the algorithm increases the columns of the
fitting matrix. Afterwards, it stores the column which leads a change
in the number of points belonging to the polyhedron as seen in line 1,3,
and 6. To count the number of points we use the polylib library [128].

As an example for the data in Figure 6.3, Formula (6.1) gives:

(5× 29)× (2× 2)
10× 29

= 2

This result allows us considering the local(shared) memory use. Ap-
plying the algorithm 1 in the input tilers definition:

1) P̃ =

(
0 0

0 2

)
, work-group paving;

2) n = 116, all readings by a work-group;

3) n0 = 29, fitting matrix is null: F̃ =

(
0 0

0 0

)
;

4) Ft =

(
1 0

0 0

)
, only column 1 =⇒ nt = 58;

5) nt > n0 is true =⇒ F̃ = Ft;

6) Ft =

(
1 0

0 1

)
, columns 1 and 2 =⇒ nt = 58, n0 = 58;

7) nt > n0 is false;

6.3 profiling analysis 107

At the end, F̃ =

(
1 0

0 0

)
. This fitting replaces the original fitting

for each work-item within a work-group. Each work-item copies
data from global memory to local(shared) memory and executes a
synchronization operation.

That is not the general solution to the problem. Indeed, work-items
could read diagonal elements as well, but the fitting that gives the
diagonal indexes is not considered in algorithm 1. This requires in-
depth matrix analysis. However, this algorithm works in most cases
and shows the potential of ArrayOL in the study of cache handling.
This is particularly important to architectures such as GPU due to
their memory hierarchy.

Figure 6.4: Input and Output Arrays and Patterns for Work-Group 0

6.3 profiling analysis

The main goal in this analysis is to provide a high-level profiling
environment in a model design context. Performance execution feed-
backs are directly provided in the input models. In a such way, the

108 optimizations

Figure 6.5: Different Polygons depending on Work-Groups

model designers can easily understand the designed system behavior
and identify what should be fine tuned. This approach takes advan-
tage of real data from a profiling tool, instead of using performance
statically computed from performance constraints designed in the
input models.

The approach is sketched in Figure 6.6. More details of the whole
optimization approach can be found in the technical report [130].
The profiling lifecycle presented follows a classic structure generally
manually performed:

1. the software is generated from the high-level models (step 1) and
the trace models are produced according to trace mechanism
found in [6, 5, 7];

2. the software is executed, producing profiling logs (steps 2 to 4);

3. the produced logs are analyzed and returned in the input models
(steps 5 to 7).

Currently, in works available through the literature, only the first
part is an automatic process (step 1). The second part (steps 2 to 4)
which produces the logs depends strongly on the used tools. The third
part whose logs are analyzed and connected to the input elements
that should be modified remains a manual and complex process. We
have focused on this sub-process (steps 5 to 7 in Figure 6.6) aiming to
automate it.

In order to automate this analysis and the performances feedback,
we have proposed two key modules: an expert system (reported as Do-
main Specific Profiling Analysis Transformation Library in Figure 6.6) and
the Model-to-Model Transformation (M2M) traceability (Trace Model).
The expert system is used during the analysis step, whereas the trace-
ability is used for the performance feedback.

At first, we present how the traceability is managed in the compila-
tion chain and the required modifications on the model compilation

6.3 profiling analysis 109

High Level Abstraction
Model of Application,

Architecture and Allocation

Generated Code Files
(Makefile, *.cl, *.cpp, *.h)

Binaries and Runtime Files

Hybrid Execution Platform

Logs

Profiling Log
Model

Device Features
Database Model

Trace
Models

Profiling and
Advice
Model

Domain Specific Profiling Analisys
Transformation Library

Transformation
Chain1

2 SDK
Compilation

Process

3
Software
Execution

4Profiling Logs Production

Scope of
This Optimization

5UID based link Log Parser

6 Profiling and Advices
 Model Production

7

Profiling and
Optimization Hints

Annotations

Figure 6.6: Performance and Profiling Integration Overview

chain. Afterwards, we provide the expert system to create the profiling
advices and, finally, we show how these advices are reported into
input models.

6.3.1 Managing The Whole Chain Traceability and Avoiding Model-to-
Text Traceability

In order to keep the links between the input models and the soft-
ware execution, trace models are produced all along the compilation
chain, except for the model-to-text transformation. The translation
from model to text implies keeping information on text blocks and
words [118]. The granularity for this kind of trace made its manage-
ment and maintainability difficult. In our case, the code has to be
studied only in terms of the abstract concepts from the models, and
not in terms of blocks and words. Thus, we avoid the model-to-text
traceability.

To bypass the model-to-text trace, the code generation deals with
unique identifiers (UIDs) associated to each elements in the last model.
The profiling logs produced by the software execution refers to the
UID of the analyzed element. Thus, the Profiling Logs can rebound to
the model world.

Concretely, in order to generate the UIDs, we use the EMF feature
called Universal Unique IDentifier (UUID) and, consequently, we mod-

110 optimizations

ify the compilation chain. A new transformation adding the UID was
inserted as last step of the model-to-model transformation chain, just
before the code generation.

6.3.2 From Execution to Smart Advices

Once the software code is generated, the software is executed. Dur-
ing the execution, profiling logs are produced by third party tools.

6.3.2.1 Profiling Logs Parsing

According to the used Software Development Kit (SDK) and profil-
ing tools, these profiling logs are generated with a dedicated format.
This format is parsed using a shell-script that builds a profiling model
that conforms to the metamodel presented in Figure 6.7.

ProfilingModel

name : EString
archiModel : EString

UID : EString
timeStamp : EString

Parameter

kind : EString
data : EString

0..*

pars0..*

LogEntry
entries

Figure 6.7: Profiling Metamodel

The metamodel root: ProfilingModel gathers the different entries that
can be found in the profiling logs. Each profiling entry from the logs
is represented by a LogEntry gathering the hardware model (e.g. Tesla
T10 or G80) with the archiModel attribute. Each LogEntry contains
several Parameter elements owning a kind and a data representing: the
information type (e. g., occupancy, time or memory consumption), and
its value. In order to keep the link between the profiling information
and the transformation chain, each LogEntry keeps the UID from the
logs with the UID attribute. In addition, a timeStamp attribute is added
to the LogEntry in order to keep the logs sequence. This metamodel is
generic enough to produce models that can gather information that
can be found in the profiling logs.

6.3.2.2 The Expert System

In-depth knowledge of the target platform is essential to identify
which elements should be modified. Model designers do not always
have such a knowledge. Thus, more than profiling results, we propose
to provide smart advices to model designers. To reach this aim, we
integrate an expert system that uses input data from two sources:

6.3 profiling analysis 111

profiling logs and device features database. The first one gives us factual
data about execution. The second one gives us behavioral features
of the target platform. By combining both sources, it is possible to
deduce what to do to attain some optimization level. For instance,
assuming the device supports 32MB in shared memory allocation per
group of work-items and the application allocates at runtime 48MB.
The expert system is able to indicate that it is necessary to decrease
the memory allocation after analyzing profiling log results and device
constraints. In this case, the expert system provides a hint where the
problem occurs. In order to analyze the many properties of the results,
an extensible library (cf. Figure 6.6) is proposed.

The device features database gathers a set of devices from a specific
vendor. It is represented as a model that conforms to the metamodel
in Figure 6.8 in order to be properly handled by either transformation
languages or other tools based on the Eclipse Modeling Framework
(EMF). In the context of the UML/MARTE-to-OpenCL transformation
chain, the target platform is the GPU.

GPU_Device
CC : ComputeCapability
AG : AllocationGranularity

<<enumeration>>
ComputeCapability

cc10
cc11
cc12
cc13
cc20

<<enumeration>>
AllocationGranularity

block
warp

Feature
Name : EString
Literal : EString
Value : EInt
Unit : EString

DeviceFeatures
Name : EString

GPU_Models

Name : EString

FeatureDescritpion
Description : EString

features
0..*

gpus 0..*

capability1

models
0..*

models
0..*

description0..1

features
0..*

descriptions

0..*

Figure 6.8: GPU Device Features Metamodel

The model root is represented by DeviceFeratures. It gathers the
many vendors’ GPU models (e.g., Tesla T10) represented by the
GPU_Models concept. These GPU models are associated to a group
of GPU devices (represented by the GPU_Device concept) having the
same allocation granularity (AG attribute) and compute capability (CC
attribute). Their values are specified according to two enumerations:
AllocationGranularity and ComputeCapability, respectively. In the first
enumeration, each literal represents the compute capability version
of the GPU (e.g., the literal cc10 represents the 1.0 compute capability
version). In the second enumeration two choices are possible: the data
allocation is performed either by block(work-groups) or by warp22 . 22 Reminder: a warp is a

GPU related concept that
indicates the number of
work-items in a
work-group ready to
hardware scheduling. It is
also known as wavefront.

The different devices presented in the model contain various fea-
tures and their descriptions (represented by Feature and FeatureDescrip-

112 optimizations

tion). So, for instance, the GPU Tesla T10 which has compute capability
1.3 has the feature Work-Items per Warp equals 32. Figure 6.11 in Sub-
section 6.3.4 shows a model based on this metamodel.

6.3.3 Backtracking Advices in the Input Models

The advice as well as the computed value obtained during the
software execution must be reported in the input model. Thus, the
model designer can directly access the advice reported on the element
requiring the modification. For the information feedback, the reduced
trace produced during the transformation chain execution is used.

The UID contained in the computed advice refers to elements in
the last model before the code generation. This UID comes from the
Profiling Logs and it is retained even after transformations. Once the
element referred by the UID is found, the reduced trace is backward
navigated in order to recover the input elements producing the pro-
filing information. Two cases can occur: the retrieved elements are
reduced to one or to several elements. Indeed, a simple element in the
last model can be produced from either one or many elements in the
input models.

Reporting the advice on all retrieved elements makes the result
complex. To solve this issue, the expert system can be configured to
specify some element types of the input metamodel for each library.
Therefore, only the input elements of the specified types are kept.
Finally, the computed advice is connected to these elements in the
input models.

In the UML/MARTE-to-OpenCL transformation chain, we decide
to use the Comment concept from UML. Indeed, this concept element
has the ability to gather information in a string format. Moreover,
Comment can be linked to any kind of UML element what places it as
a perfect candidate for carrying the advice computed by the expert
system. As the advice representation is quite dependent from the
input metamodel and the input metamodel capabilities, it could be
provided using an other concept.

6.3.4 Example and Benchmarks

In order to illustrate the practical application of this optimization,
we describe a case study. This case study is a complete example which
presents an application design, code generation and the profiling
feedback.

In this example the goal is to offer information and compute an
advice about how to improve the processors’ occupancy. This will
help the application designers to identify input elements parameters
which they can modify aiming better results.

6.3 profiling analysis 113

6.3.4.1 Vector Product Application

The example presented in this section is a vector product. For
presentation reasons, we chose this simple operation that does not re-
quire further knowledge in more complex applications such as signal
processing or numerical analysis to be understood. Nevertheless, it
gathers all the relevant concepts to illustrate our approach. Moreover,
we have also tested our approach on large scale examples like the
classic downscaler algorithm [112]. The vector product is an algebraic
operation that takes two equal-length(N) sequences of numbers and
return another sequence obtained by multiplying corresponding en-
tries. A sequential code sample in C language for this operation is
showed in the listing 6.2.

Listing 6.2: Code Sample for Vector Product

1 for (uint i=0; i<N; i++)

2 c[i] = a[i] * b[i];

We have created the UML-MARTE model (see Figure 6.9) for this
application using the Papyrus [24] modeling tool. Elementary tasks
TE_genarray1, TE_genarray2, and TE_printarray are responsible for gen-
erating and printing vectors. As these tasks compose the application
interface (data input and output), and the CPU performs them.

The application’s vectors are arrays of 16,000,000 elements. We
have chosen this large number to take advantage of the massively
parallel processors provided by GPUs. The composed component
ForDevices instantiated in the program consists of a repetitive task
ep:TE_elemprod. In our application, this kind of task is composed by
operations on single elements. Repetitive tasks are potentially parallel
and are allocated onto GPU. The repetition shape of the task in this
case is {16,1000000}, i.e. the task operation runs 16 millions times
on one element of each vector whose size equals 16 millions. This
shape has two dimensions: 16 and 1,000,000. The total of work-items is
calculated by multiplying these two dimensions. The first one becomes
the number of work-items and the second one the number of groups.
The definition of this shape is a decision of the designers and usually
they take into account the IP interface associated to the elementary
task and its external tilers. Moreover, considering that, in compute
capability 1.x devices, memory transfers and instruction dispatch
occur at the Half-Warp(16 work-items) granularity, it is reasonable to
define groups composed by 16 work-items at a first try.

Figure 6.10 presents the allocation process for the repetitive task,
i.e. it defines which devices will manage a task. For instance, the ep:
TE_elemprod task (also visible in Figure 6.9) will be run by the GPU
(gpu: GPU instance). Similarly, the memory mapping process is also
defined for the communication ports. According to Figure 6.10, the
communication ports will be managed by the GPU memory (gpumem:
GPUMEM). Thanks to the task allocation process, the model compiler

114 optimizations

Figure 6.9: Vector Product Application Model

Figure 6.10: Task and Memory Allocations onto GPU

6.3 profiling analysis 115

identifies OpenCL kernels. The memory allocation step is also impor-
tant because it creates host and device variables and organizes the data
transfers.

Once the application is designed with all necessary well configured
elements, we generate all the source code files necessary to the target
compiler. In addition, trace models are generated for each model-to-
model transformation thanks to the traceability mechanism.

Listing 6.3 shows the code only for the kernel. This is a generated
code composed of two functions: the IP function, represented in lines
1-4, and the kernel function (lines 6 to 60). The UID value (see Section
6.3.1) is identified from the last generated model in the UML/MARTE-
to-OpenCL transformation chain and is concatenated to the kernel
name. From line 6 we identify, concatenated to kernel name, the UID
_uCQs6obGEeCiXMyak_whYg. This UID is the link between the code and
the model elements whenever they have to be referenced.

Listing 6.3: Generated Kernel for Vector Product

1 void elemprod(const float* a, const float* b, float* c)

2 {

3 c[0]=a[0]*b[0];

4 }

5

6
__kernel void ep_KRN__uCQs6obGEeCiXMyak_whYg (

7 uint iNumElements,

8 const __global float* v2_ep_KRNPAR,

9
__global float* vout_ep_KRNPAR,

10 const __global float* v1_ep_KRNPAR)

11 {

12 float v1_ep[1]; float v2_ep[1]; float vout_ep[1];

13 //get index into globaldata array

14 int iGID = get_global_id(0) +

15 get_global_size(0)*get_global_id(1) +

16 get_global_size(0)*get_global_size(1)*get_global_id(2);

17 if (iGID < iNumElements) // bound check

18 {

19 { //input tiler

20 uint tlIter[2];

21 uint tl[1];

22 uint ref[1];

23 uint index[1];

24 tlIter[0]=iGID%16;

25 tlIter[1]=abs(iGID/16);

26 ref[0] = 0 + 1*tlIter[0] + 1*tlIter[1]*tlIter[0];

27 for(tl[0]=0; tl[0] < 1; tl[0]++) {

28 index[0]= (ref[0]+ 0*tl[0])%16000000;

29 v2_ep[tl[0] * 1] = v2_ep_KRNPAR[index[0] * 1];

30 }

31 }

32 { //input tiler

33 uint tlIter[2];

34 uint tl[1];

35 uint ref[1];

36 uint index[1];

116 optimizations

37 tlIter[0]=iGID%16;

38 tlIter[1]=abs(iGID/16);

39 ref[0] = 0 + 1*tlIter[0] + 1*tlIter[1]*tlIter[0];

40 for(tl[0]=0; tl[0] < 1; tl[0]++) {

41 index[0]= (ref[0]+ 0*tl[0])%16000000;

42 v1_ep[tl[0] * 1] = v1_ep_KRNPAR[index[0] * 1];

43 }

44 }

45 elemprod(v1_ep, v2_ep, vout_ep); //IP call

46 { //output tiler uint

47 tlIter[2];

48 uint tl[1];

49 uint ref[1];

50 uint index[1];

51 tlIter[0]=iGID%16;

52 tlIter[1]=abs(iGID/16);

53 ref[0] = 0+ 1*tlIter[0] + 1*tlIter[1]*tlIter[0];

54 for(tl[0]=0; tl[0] < 1; tl[0]++) {

55 index[0]= (ref[0]+ 1*tl[0])%16000000;

56 vout_ep_KRNPAR[index[0] * 1]=vout_ep[tl[0] * 1];

57 }

58 }

59 }

60 }

The remaining code consists of private variable declarations (line
12), a limit control to avoid overlapping data bounds (lines 14-17), two
input tilers to gather the elements from global memory (lines 18-43),
the IP call (line 45); and an output tiler writing the result into global
memory (lines 47 to 56).

6.3.4.2 Profiling Feedback

We used the following configuration as platform for our tests:
• CPU AMD Opteron 8-core @2.4GHz and 64GB RAM;
• GPU NVidia S1070 4 devices Tesla T10 (4GB RAM each) - Com-

pute Capability 1.3;
• Linux, GCC 4.1.2, OpenCL 1.0.

Among all the measures coming from the profiler, the kernel occu-
pancy factor has an important impact on performance. Usually the
aim at executing a kernel is to keep the multiprocessors and, conse-
quently, the device as busy as possible. The work-items instructions
are executed sequentially in OpenCL, and, as a result, executing other
warps. When one warp is paused or stalled is the only way to hide
latencies and keep the hardware busy. Some metrics related to the
number of active warps on a multiprocessor is therefore important in
determining how effectively the hardware is kept busy. This metric is
called occupancy. The occupancy is the ratio of the number of active
warps per multiprocessor (WPM) to the maximum number of possible
active warps. Another way to view occupancy is the percentage of
the hardware ability to process warps that are actively in use. Hence,

6.3 profiling analysis 117

higher occupancy does not always equate to higher performance, there
is a point above where additional occupancy does not improve perfor-
mance. However, low occupancy always interferes with the ability to
hide memory latency, resulting in performance degradation.

The important features to compute the occupancy and that vary on
the different compute capability are:

• the number of registers available;
• the maximum number of simultaneous work-items resident on

each multiprocessor;
• and the register allocation granularity.
The number of work-items resident on a multiprocessor relies on in-

dex space as known as N-Dimensional Range (NDRange). The MARTE
to OpenCL chain obtains the information from the shape of the task
which will become a kernel. Hence, changes in the dimensions of shape
affect the occupancy. From the point of view of the proposed approach,
occupancy is a specialized module that can be included to the expert
system. For other analysis other specialized module can be added to
attain specific goals. For this example, we analyze the occupancy of
the multiprocessors. Occupancy is a function of constant parameters
(features) from device and some measures directly obtained from the
profiler.

The process of calculating occupancy is implemented in a QVT trans-
formation. This transformation takes two input models (according to
Figure 6.6): the Device Features Database and the Profiling Logs. In this
example the first one conforms to a metamodel based on NVidia GPUs
(cf. Figure 6.8). Although this metamodel was designed according
to vendor’s features, it can be modified or extended to comply with
other vendor device models. For instance, from the model presented
in Figure 6.11 we see that the GPU Tesla T10 has compute capabil-
ity equals 1.3 and is its warps contain 32 threads (or work-items in
OpenCL terminology).

6.3.4.3 Benchmark

The profiling environment creates a log file in CSV format having
some dynamic measured data (as seen in Figure 6.12). The file header
contains data about the target platform. We deal with a Tesla T10

GPU in this case. The rest of the file consists in description of fields
and log entries. The description of fields indicates in which order they
will appear in a log entry. For instance, in Figure 6.12, a log entry
begins with the timestamp field. The second field that can be retrieved
in an entry is gpustarttimestamp, then method and the 13-th field that
can be found in the log is the occupancy field. For our example, log
entries about memory copies are not important (log entry with the
method field sets to memcpyHtoDasync). The following entries in the
log correspond to kernel calls. A shell-script parser takes this text file
as input and converts it to XMI format that conforms to the profiling

118 optimizations

Figure 6.11: GPU Device Features Database Model

metamodel depicted in Figure 6.7. The model (Figure 6.13) created
from the CSV log file gathers exactly th same information. Except the
timestamp field and the UID contained in the method field that becomes
attributes of the LogEntry, all the other fields (e.g. gputime, cputime
or ndrangesizex) are transformed into Parameter with the value of the
log entry. Figure 6.12 (highlighted elements) and Figure 6.13 present
the occupancy parameter with value 0.250 for the kernel call with
timestamp equals 1283955.000.

OPENCL_PROFILE_LOG_VERSION 2.0
OPENCL_DEVICE 0 Tesla T10 Processor
OPENCL_PROFILE_CSV 1
TIMESTAMPFACTOR fffff6f3dd57cd20
timestamp,gpustarttimestamp,method,gputime,cputime,ndrangesizeX,ndranges
izeY,workgroupsizeX,workgroupsizeY,workgroupsizeZ,stapmemperworkgroup,re
gperworkitem,occupancy,streamid,local_load,local_store,gld_request,gst_r
equest,memtransfersize,memtransferdir,memtransferhostmemtype
698239.000,1220f847c305ce40,memcpyHtoDasync,40347.039,41886.000,,,,,,,,,
1,,,,,64000000,1,0
1241546.000,1220f847e367f960,memcpyHtoDasync,40539.457,41379.00
0,,,,,,,,,1,,,,,64000000,1,0
1283955.000,1220f847e5e6a2c0,ep_KRN__uCQs6obGEeCiXMyak_whYg,1238.752,147
0.000,65535,1,16,1,1,32,11,0.250,1,0,0,4370,2185
1285577.000,1220f847e5fee540,ep_KRN__uCQs6obGEeCiXMyak_whYg,1237.120,142
8.000,65535,1,16,1,1,32,11,0.250,1,0,0,4368,2184
1287138.000,1220f847e616bd40,ep_KRN__uCQs6obGEeCiXMyak_whYg,1237.600,143
7.000,65535,1,16,1,1,32,11,0.250,1,0,0,4370,2185
...

Figure 6.12: Sample profiling results in CSV format

Although the methodology that integrates profiling and high-level
models does not impose a rigid workflow, it relies on two major activ-
ities: first we run the code exactly as it is generated from the original
input model, then the application designer analyzes the runtime be-
havior based on profiling feedback annotated on the input model;

6.3 profiling analysis 119

Figure 6.13: Profiling Results Model

second, the designer, taking into account the provided information
and hints, modifies the model aiming to obtain better results. Once
the model is modified, the code is again generated and then executed
in order to verify the result of theses changes.

For this example the first running gives the results seen in Table
6.1. The application launches 1 million groups of 16 work-items
onto the device. However, a hardware limit imposes a maximum of
65535 groups by kernel. Thus, for the whole execution, 15 kernels are
launched with the maximum of 65535 groups and 1 kernel is laun-
ched with 16975 groups. Summarizing, the last line in table shows
that this configuration gives 16 kernels calls and only 25% in the
multiprocessor occupancy. Moreover, this configuration take 2.55% of
the GPU time. The other part of the time comprehends data transfers
and idle states. The launch grid (NDRange) has a two-dimensional
size (i.e., how many groups and how they are organized). Each group
has a three-dimensional size (represented by [16 1 1] on third column).
However, only the first dimension is used in this example. Our goal is
to increase the occupancy and decrease the relative GPU time.

Table 6.1: Profiling results for the non-optimized code

Calls # NDRange WGSize Occup. GPUTime

15(each one) [65535 1] [16 1 1] 25% -

1 [16975 1] [16 1 1] 25% -

16 [1000000 1] [16 1 1] 25% 2.55%

By using our approach results are combined with GPU features and
this returns a smart advice as a comment in the input UML-MARTE

120 optimizations

model (Figure 6.14). Besides the performance parameters available di-
rectly on the comment, a hint points out a possible change in the model
to improve the generated code. Additionally, the advice provides an
image reference of a chart (as seen in Figure 6.15) for all predicted
occupancies according to these results. In this case it is suggested to
change the task shape from {16, 1000000} to {128, 125000}. A simple
analysis seeks the first block size giving 100% on occupancy as seen in
Figure 6.15. For instance, the expert system automatically highlights
the first (block size=128) and second (block size=256) maximum values
in the chart.

Gaspard2 Proling and Traceability Framework
Internal Kernel Launches: 16
GPU Time: 2.55%
Grid (x,y): 1000000,1 ; Block Size (x,y,z): 16,1,1
Registers per WorkItem: 11
Occupancy: 25%
Hint: Your runtime results point out 25% on
multiprocessor occupancy. If you want to achieve
better results, try to change the task shape from
{16,1000000} to {128,125000}. Moreover, your kernel
takes 20 registers which is a high value, maybe your
IPs can be optimized regarding the variable denition.

Occupancy Chart: CHART.PNG

Figure 6.14: Annotated Model

Figure 6.15: Occupancy by Varying Block Size

6.4 conclusion 121

Table 6.2: Profiling results for the new code

Calls # NDRange WGSize Occup. GPUTime

1 [65535 1] [128 1 1] 100% -

1 [59465 1] [128 1 1] 100% -

2 [125000 1] [128 1 1] 100% 1.07%

Table 6.2 presents the profiling results for the code generated from
the modified input model. For this case, we have two kernel calls,
100% on occupancy and a reduction to 1.07% on the GPU time. As
expected, the modified model achieves better performance than the
original one. Figure 6.16, obtained from a visual profiler provided
within NVidia tools, shows us that, without modifications, the whole
execution of the kernel is about 146% slower.

Figure 6.16: Comparison Summary Plot from Visual Profiler

For each operation, the first bar is related to the time measured
from the optimized models, whereas the second bar is related to the
time measured from the initial models. The transfer times presented
in Figure 6.16 correspond to the following operations:

• memcpyDtoHasync is called once in both executions. This transfers
the result vector from device to host.

• memcpyHtoDasync is called twice in both executions. This trans-
fers the two input vectors from host to device.

As we have changed only the task shape, transfer times do not have
any expressive alteration.

6.4 conclusion

Our general objective is to provide a methodology that generates
efficient code. This depends mainly on the designed model of applica-
tion. However, we show in this chapter some optimization concerns
that the transformation chain can analyze and also propose means to
improve the generated code. In summary, the methodology provides
two resources. First, one of the most crucial concerns in GPU: memory
use. Indee, the suppression of extra data transfers and the tiler analysis

122 optimizations

on data reuse help to fill the requirements for memory issues. Second,
the integration between profiling results and high-level models allows
the model designer to understand the runtime behavior. Moreover,
advices lead designers to tune their models in order to achieve better
performances. Finally, we consider these resources helpful for the
co-design environment.

Part III

S I M U L AT I O N O F E L E C T R I C A L S Y S T E M S

7
E L E C T R O M A G N E T I C P H E N O M E N O N A N D
C O D E_CARMEL

Chapter Contents

7.1 Laws of Electromagnetism
7.1.1 Continuous-time Maxwell’s Equations

7.2 Discretization: FEM
7.2.1 Method
7.2.2 Assembly and Solvers

7.3 The Code_CARMEL
7.3.1 Introduction to Code_CARMEL

7.3.2 Formulations
7.3.3 Running Code_CARMEL in Parallel
7.3.4 Global Structure

7.4 Conclusion

We have worked with the Laboratory of Electrical and Power Elec-
tronics of Lille (L2EP) on high-level abstraction models of numerical
methods of simple problems such as an electric field induced by a
changing magnetic field or more complex problems such as the simula-
tion of electrical machines (e. g., automotive alternators). This chapter
and the next one present a case analysis of our methodology on prob-
lems of electromagnetism. The scientific computation associated to
the solution of these problems requires numerical methods in the
discrete domain. So, in order to assure a better understanding of the
decision taken in the case study, at first, we present part of the theory
of the mathematical modeling of these problems in the continuous
domain. Then, we introduce the FEM as numerical method to solve
these problems.

Having this basic theory, we present the Code Avancé de Recherche
pour les Machines Électriques (Code_CARMEL). This code was origi-
nally and is still developed in Fortran 90. However, our contributions
allowed to extend it to accept other languages such as C and, conse-
quently, OpenCL.

125

126 electromagnetic phenomenon and code_carmel

7.1 laws of electromagnetism

Electromagnetism (EM) is concerned with the study of the relation-
ship between electricity and magnetism. Classical electromagnetism
(or classical electrodynamics) is a branch of theoretical physics that
studies consequences of the electromagnetic forces between electric
charges and currents. It provides an excellent description of electro-
magnetic phenomena whenever the relevant length scales and field
strengths are large enough that quantum mechanical effects are negli-
gible. The theory of electromagnetism was developed over the course
of the 19th century, most prominently by James Clerk Maxwell. OtherJames Clerk Maxwell (13

June 1831 in Edinburgh 5
November 1879 in

Cambridge) was a Scottish
physicist and

mathematician.

great scientists played an important role in this field, for a detailed
historical account, consult [52].

7.1.1 Continuous-time Maxwell’s Equations

Maxwell unified the laws of electromagnetism into what is known
today as Maxwell’s Laws or Maxwell’s Equations. These equations
first stated in [102]. They are comprised of a set of Partial Differen-
tial Equations (PDE). Maxwell’s equations represent one of the most
elegant and concise ways to state the fundamentals of electricity and
magnetism. From them, one can develop most of the working rela-
tionships in the field. Maxwell’s equations were created by combining
the laws of Karl Friedrich Gauss, Ampere and Michael Faraday with
the discovery by the professor Hans Christian Oersted in 1820. He
also added a hypothesis of his own. The theory of electromagnetic
field founded by Faraday was mathematically completed by Maxwell.
One of the most new ideas put forward by Maxwell was the idea of
symmetry in the mutual dependence of electric and magnetic fields.
Namely, since a time-varying magnetic field (∂B/∂t) creates an electric
field, it should be expected that a time-varying electric field (∂E/∂t)
creates a magnetic field.

Maxwell’s Laws may be summarized as follow:
• The first one states that the electric field has a source called

charge.
• The second law states that the magnetic field does not have

an equivalent source; there are no single magnetic poles called
"monopoles."

• Finally, laws three and four state that a changing magnetic field
produces an electric field, and a changing electric field or current
produces a magnetic field. Law four is Maxwell’s contribution.

7.1.1.1 Space-Time Domain

The quantities in Maxwell’s equations are defined on a 4-dimensional
space-time domain. Here, we only discuss their form in an inertial

7.1 laws of electromagnetism 127

t

t

T

0 Ω

Figure 7.1: Continuous problem domain ΩxT . Source: Euler’s Thesis [53]

mode and separate the space-time into the 3-dimensional spatial do-
main Ω and the 1-dimensional temporal domain T . The problem
domain is regarded as the Cartesian product of these spaces ΩxT
as illustrated in Figure 7.1. The spatial variable will be denoted by
~r ∈ Ω and the temporal variable by t ∈ T . This setting is suitable for
most engineering applications and allows for the separate treatment
of space and time in the discretization process. The so-called local
forms of the Maxwell’s equations are the following:

∇×H = J +
∂D
∂t

(7.1)

∇× E =
−∂B
∂t

(7.2)

∇ ·B = 0 (7.3)

∇ ·D = ρ (7.4)

where,

H is vector of the magnetic field strength (A/m);

J is the current density vector (T);

D is the electric displacement vector (V/m−1);

E is the electric field strength (C/m2);

B is the magnetic induction vector (C/m3);

ρ is the charge density.

Equations (7.1), (7.2), (7.3), and (7.4) are, respectively, the generalized
Ampère’s law, Faraday’s law of induction, the Gauss’s law for magnetism,
and the Gauss’s law in their differential form. Although the electro-
magnetism phenomena were established by other scientists before
Maxwell, there was some incompatibility on the formulation and

128 electromagnetic phenomenon and code_carmel

Maxwell, by introducing an additional term to the the generalized
Ampère’s law, could synthesize the electromagnetism in 4 equations.
As an interpretation of Equations (7.1) and (7.2), the variation either
of the magnetic or electric fields in relation to time can generate each
other. This phenomenon is known as electromagnetic coupling.

7.1.1.2 Electromagnetism Division for Physical Applications

Electromagnetism (Maxwell's Equations)

Low Frequency Electromagnetism High Frequency Electromagnetism
(Waves)

Electric Magnetics

Megnetostatics MagnetodynamicsElectrostatics Electrokinetics

Stationary Quasi-Stationary

Figure 7.2: Electromagnetism division for physical applications. In each
block of this diagram, the 4 Maxwell’s equations are adapted
according to the corresponding physical situation.

The electromagnetism is divided into two parts: low frequency electro-
magnetism and high frequency electromagnetism. The last one is divided
into two parts: the stationary, where there is no time variation, and the
quasi-stationary or magnetodynamics.

For low frequencies, the 4 Maxwell equations can be simplified
omitting certain terms regarding the dynamics of the process. For
quasi-stationary fields (e. g. alternating current), for instance, where
the current J 6= 0 and the magnetic field is changing ∂B

∂t 6= 0, the rate
of changing of the electric field can be neglected ∂D

∂t ≈ 0. In this case,
Equation (7.1) can be simplified to the following form:

∇×H = J (7.5)

7.1.1.3 Constitutive Relations: Simpler Case

In order to apply Maxwell’s macroscopic equations, it is necessary to
specify the relations between displacement vector D and electric field
E, and the magnetic field H and induction vector B. These equations
specify the response of bound charge and current to the applied fields
and are called constitutive relations. These relations, also known as
behavior laws, express the material properties. If µ represents the

7.2 discretization : fem 129

permeability of free space, ε the permittivity of free space, and σ the
electrical conductivity, the behavior laws are as follow:

B = µH (7.6)

D = εE (7.7)

J = σE (7.8)

Equation (7.8) is also known as Ohm’s law. Here, we consider the
simpler case where there is absence of magnetic or dielectric materials.
Substituting these back into Maxwell’s macroscopic equations (7.1)-
(7.4) leads directly to Maxwell’s microscopic equations, except that the
currents and charges are replaced with free currents and free charges.
This is expected since there are no bound charges nor currents.

7.1.1.4 Boundary Conditions

Like all sets of differential equations, Maxwell’s equations cannot
be uniquely solved without a suitable set of boundary conditions
and initial conditions. These conditions must be specified in order to
obtain a unique solution for the fields. Maxwell’s equations, given
sources J and ρ, together with an appropriate boundary conditions,
constitute a problem that can be uniquely solved for unknown field
quantities.

Two types of boundary conditions are most currently used:
• Dirichlet boundary conditions: it specifies the values a solution

needs to take on the boundary of the domain.
• Neumann boundary condition: it specifies the values that the

derivative of a solution is to take on the boundary of the domain.
The choice between the one of the two approaches depends on the

problem.

7.2 discretization: fem

The analytical solution of Maxwell’s equations allows to obtain a
mathematical exact solution of the problem. However, it is not suitable
to more complex problems and it is limited to simpler configurations.
As an example, Dodd et al. [47] worked in direct solutions to the
differential equations using the separation of variables method. In
their work, we can find the following configuration:

1. A solution for a coil above a semi-infinite conducting slab with a
plane surface, covered with a uniform layer of another conductor.
This solution includes the special cases of a coil above a single
infinite plane conductor or above a sheet of finite thickness, as
well as the case of one metal clad on another.

2. The other solution is for a coil surrounding an infinitely long
circular conducting rod with a uniformly thick coating of another

130 electromagnetic phenomenon and code_carmel

conductor. This includes the special cases of a coil around a
conducting tube or rod, as well as one metal clad on a rod of
another metal.

As expected for an analytical solution, their conclusion claims the
agreement between the calculated and experimental values is excellent.
Although more recent works [141, 142] present solutions for a coil
with magnetic core on a plane surface or an inclined air core coil on
a plane surface, more complex configurations make the analytical
solution either impossible or they requires very high computational
resources. On the other hand, we can adopt numerical methods which
allow to provide solutions with negligible errors.

7.2.1 Method

The Finite Element Method (FEM) is a computational method to
solve boundary value problems over an unstructured mesh. FEM is
particularly well suited for modeling domains of arbitrary shape, and
efficiently modeling small features in large computational domains.

In the FEM, the solution domain is divided or discretized into small
regions called "finite elements" [11, 82]. For 2d applications these
elements can be triangles, for instance. The corners that define the
triangle (see Figure 7.3) are the nodes or degrees of freedom. The set
of these elements is called mesh.

1 (x1,y1)

2 (x2,y2)

3 (x3,y3)

Figure 7.3: An Element in a Triangular Mesh

7.2.2 Assembly and Solvers

Usually, the computation of the numerical solution involves two
steps: the assembly of matrix A and vector b , and the solution of
the linear system for x (Ax = b). The assembly process depends on
the problem. Nevertheless, usually the process takes each element
K from the mesh and builds a so-called elementary matrix of size
(Nv +Ne)× (Nv +Ne), where Nv is the number of vertices and Ne

7.3 the code_carmel 131

the number of edges. This elementary matrix AK consists of 4 blocks:

AK =

(
AK11 AK12
AK21 AK22

)
.

We build the vector b similarly the matrix A. It is composed of

elementary vectors bK of size Nv +Ne, bK =

(
bK1
bK2

)
.

To solve the resulting linear system, many direct and iterative meth-
ods are available [69, 10] as seen in lists below:

• Direct solvers: LU, MUMPS, SuperLU, Cholesky, QR, so on.
• Iterative solvers: SOR, SSOR, GMRES, Chebychev, Richardson,

conjugate gradients (Cg), CGSquared, BiCgStab, two variants of
TFQMR, conjugate residuals, Lsqr, so on.

These lists are huge. Here we are interested on the iterative solver:
Conjugate Gradient (CG). It is our case study in following chapter.

7.3 the code_carmel

7.3.1 Introduction to Code_CARMEL

Code Avancé de Recherche pour les Machines Électriques (Code_CARMEL)
is a code initially developed by the Modeling Team from L2EP lab-
oratory 1. Today, this code is also maintained by the modeling on 1. l2ep.univ-lille1.fr

electromagnetism team from Électricité de France (EDF) R&D. It is a
code based on Finite Element Method (FEM) that allows to solve elec-
trocinetics, magnetostatics, or even magnetodynamics problems. The
code is currently written in Fortran 90, and it is in constant evolution.

7.3.2 Formulations

Code_CARMEL supports two types of formulation [16]:
• (A, Φ);
• (T,Ω);

7.3.2.1 The (A, Φ) formulation

In the (A, Φ) formulation, the magnetic vector potential A and the
electric scalar potential Φ are unknown. The unknown degrees of
freedom (dofs) of A are defined on the edges of the whole model. The
unknown dofs of Φ are only defined at the vertices of the conducting
domains. There is no uniqueness in the choice of the (A, Φ) unknowns.
In order to ensure uniqueness, a gauge condition regarding A and Φ
must be imposed.

Gauge condition in Code_CARMEL for (A, Φ) formulation 2: The 2. Remark: In the current
version, it is not possible
to explicitly enforce a
gauge condition.

relationship between (A, Φ) potentials and the electric and magnetic
field is given by:

l2ep.univ-lille1.fr

132 electromagnetic phenomenon and code_carmel

{
E = −iωA −∇Φ
B = −∇×A

7.3.2.2 The (T,Ω) formulation
We consider the conducting

domain DC, of the mesh
model, as the union of all

conductors in the mesh
model. We define the

insulator domain DI by:
DI = <3 \DC. N is
global divergenceless

physical current and it is
generated by the global

vector field
K|∇×K = N ∈ <3.

In the (T,Ω) formulation, the unknowns are the current vector
potential T and the magnetic scalar potentialΩ. The unknown degrees
of freedom (dofs) of T are defined on the edges of the conducting
domains only. The unknown dofs of Ω are defined at the vertices of
the whole domain.

There is no uniqueness in the choice of the (T,Ω) unknowns. In
order to ensure uniqueness, a gauge condition must be imposed.
In the formulation, this gauge condition consists in prescribing the
continuation of the magnetic scalar potential Ω within the conducting
domains.

Gauge condition in Code_CARMEL for (T,Ω) formulation 1:1. Remark: In the current
version, it is not possible

to explicitly enforce a
gauge condition.

The relation between the (T,Ω) potentials and the electric and
magnetic fields is less straightforward than in the (A, Φ) formulation
due to the topology of the conducting domain DC plays a role. The
total magnetic field H is written as the sum of a magnetic source field
Hs and a magnetic reaction field Hr: H = Hs + Hr

The magnetic reaction field writes:

Hr =

{
−∇Ω+

∑p
j=1 κjKj in <3 \DC

T −∇Ω+
∑p
j=1 κjKj in DC

The electric field is only known in the conducting domain DC by:
E = σ−1∇×Hr.

7.3.3 Running Code_CARMEL in Parallel

Making a parallel version of Code_CARMEL was already part of the
goal of the Julien Taillard and Emmanuel Cagniot’s thesis [137, 21].

In [21], Cagniot developed two new versions of Code_CARMEL. High
Performance Fortran (HPF) [89] and Halos [14] were the tools used to
create a "light" and a "heavy" version. The light one is based on HPF

directives directly modifying the original code. This method implies
on about 1% of changes, thus called "light". The second one, the heavy
one, implies algorithm changes. This approach intends to assure the
load balance among the available processors and can be implemented
on distributed systems.

Taillard, on his turn, proposed OpenMP [121] as parallel approach
to Code_CARMEL. His approach is based on high-level models based
on UML (as already presented in Chapter 1).

7.3 the code_carmel 133

The constant evolution of Code_CARMEL and the lack of a well de-
fined methodology to integrate the parallel modules are the factors
that avoid the full parallel version portability.

The popularity and availability of GPUs and the integration method
used in the case study seen in next chapter provide means to assure
the constant evolution of the parallel code.

7.3.4 Global Structure

Code_CARMEL is composed of several phases of computation. Each
phase has an executable module for which the user can interact. Fig-
ure 7.4 presents the use case diagram of Code_CARMEL. The user can
independently call each executable module providing input data as
runtime parameters. Globally, the user has interactivity with the
modules below. We summarize them according to their function and
typical order of use based on the type of problem:

• GENDOF is responsible to build the finite elements model. It reads
a mesh file defined as input data. This file has .med format type
(produced by SALOME [25].

• GENPHYS is responsible for the definition of the physical param-
eters and the source. It reads the file generated on the earlier
module (gendof) and creates a .phys file.

• GENPARAM is responsible for the definition of the computation
parameters. Based on the previously defined files, it generates a
.param file necessary to FCARMEL.

• FCARMEL comprehends the linear system assembly and its resolu-
tion. Its output is the solution for the system (.xmat file).

• POSTPROCESS reads every file previously produced and writes out:
· global quantities (flows through the inductors, loss of energy,

magnetic energy);
· fields maps of E, J,H, and B, ohmic loss density, K and ∇×K

by source, total N+∇× K saved as 3d fields in .med format
(SALOME) for time problems only. These fields are complex or
real for harmonic or time problems, respectively;
· fields maps of E, J,H, and B, on cutting planes;
· values of fields E, J,H, and B, on cutting planes.

The modules, described above, are the same in all situations, ex-
cept the assembly/solver where we have FCARMEL(fcarmel.exe) for
harmonic problems and we replace it for TCARMEL(tcarmel.exe) for
time-dependent problems.

In Figure 7.5, we have the activity diagram for Code_CARMEL. This
diagram represents the workflows of stepwise activities and actions
of the earlier presented use cases. Here, it gives us only the right
execution order.

The sequence diagram is given in Figure 7.6. This diagram is a kind
of interaction diagram that shows how processes operate with one

134 electromagnetic phenomenon and code_carmel

Carmel3D Use Case

POSTPROCESS

FCARMEL

GENPARAM

GENPHYS

GENDOFUser

Figure 7.4: UML Use Case Model for the code_CARMEL3D

Activity Diagram

User Activity

GENDOF

GENPHYS

GENPARAM

FCARMEL

POSTPROCESS

Figure 7.5: UML Activity Diagram Model for code_CARMEL3D

7.4 conclusion 135

another and in what order. It depicts the actor and modules involved
in the execution scenario and the sequence of messages exchanged be-
tween the objects needed to carry out the functionality of the scenario.
This diagram provides also event and timing information. Indeed,
from the point of view of the user, the FCARMEL module takes more
time than the others. More precisely, this module is sub-divided into
two modules: matrix assembly and solver. Both involve many repeti-
tive tasks to achieve their objective. These modules are potentially
parallel tasks and deserve attention when deciding to reduce overall
computation times.

The user chooses the solver to be used. Currently, Code_CARMEL

offers the solvers BiConjugate Gradient Conjugate Residual (BiCGCR)
for harmonic problems and Conjugate Gradient (CG) for time problems.
Although it is necessary to do some changes on the code in order
to add other solver modules, Code_CARMEL allows to use external
solvers such as MUltifrontal Massively Parallel sparse direct Solver
(MUMPS) [28], a direct solver, GMRES [28], and the preconditioned
CG 1 [131], iterative solvers. 1. The Conjugate

Gradient in its
non-preconditioned
version is subject of the
next chapter.

sd User Actions

SolverMatrix AssemblyPOSTPROCESSFCARMELGENPARAMGENPHYSGENDOF

User

7.4: solution of the system

7.2: Ax=b

8: .xmat file

6: .param file

4: .phys file

2: .car file

10: .med file with results

7.3: Ax=b: ?x

7.1: topology and physic models

9: parameters, topology and phisic models, .xmat

7: .param file

5: input parameters

3: physical param

1: user input

Figure 7.6: UML Sequence Diagram Model for code_CARMEL3D

7.4 conclusion

In this chapter, we presented the basis of electromagnetism phe-
nomenon and the Code Avancé de Recherche pour les Machines

136 electromagnetic phenomenon and code_carmel

Électriques (Code_CARMEL). The concepts presented here are impor-
tant to the understanding the electrical machine simulation. The
simulation approach implemented on Code_CARMEL is supported by
the Maxwell’s equations. Moreover, two modules of Code_CARMEL

take a lot of time depending on the problem. For these situations,
parallel approaches are well suitable. Next chapter deals with the
application the methodology presented in this thesis to the solver
module in Code_CARMEL.

8
C O N J U G AT E G R A D I E N T S O LV E R

Chapter Contents

8.1 Introduction to Conjugate Gradient
8.1.1 Sparse Matrix

8.2 Case Study
8.2.1 High-Level Specification
8.2.2 Expressing the Device Multiplicity
8.2.3 Generated Code
8.2.4 Tests
8.2.5 Results
8.2.6 Automotive Alternator Example
8.2.7 Overall Comparisons

8.3 Conclusion

In this chapter, we present the direct application of the methodology
exposed in this work to the parallelism of a solver in the Code_CARMEL

context. The objectives can be summarized into two main aspects:
First, the high level specification of the solver’s algorithm using MARTE.
Second, the expected results by applying our solver module into the
Code_CARMEL. Further, with this case study, we can demonstrate one
of the main features of our whole approach: the integration between
software and hardware. Indeed, when specifying GPU devices, we
can modify the device multiplicity. This impacts directly the whole
code and provides an automatically generated multi-GPU code. Con-
sequently, better performances are expected.

At first, we explain the solver’s algorithm chosen for our case study
as emphasized in the previous chapter. This concerns the Conjugate
Gradient (CG) in its version without preconditioner. Afterwards, we
present its model, code generation and benchmarks. Moreover, we
describe two issues related to the CG method: parallel reduction in dot
product and sparse matrix format concerns regarding matrix vector
product.

At the end, we illustrate our approach applied to a real-world
example, an automotive alternator from Valeo23 . 23 www.valeo.fr

137

www.valeo.fr

138 conjugate gradient solver

8.1 introduction to conjugate gradient

Basically, we are interested in providing a function to solve the
linear system:

Ax = b (8.1)

where A ∈ Rnxn is large, sparse, symmetric, and nonsingular; x and
b are vectors ∈ Rn. If A is positive definite, then the linear system can
be solved using the CG method of Hestenes and Stiefel [79]. Unlike
matrix factorization, the CG method depicted here for solving (8.1)
regards A as an operator and only requires matrix-vector products,
building up x as a combination of vectors derived from a Krylov
sequence [88].

Algorithm 2 has exactly the same structure of the final code that
we are looking for. Basically, it is divided into two parts: the initial-
ization phase where we prepare auxiliary variables for the second
part, the main loop. Usually the algorithm converges in n (number
of unknowns) or less iterations. However, we stop the loop when the
error achieves an acceptable tolerance. Each iteration is composed of:

• 1 matrix x vector operation for Apk in lines 8 and 10;
• 3 scalar product (or dot product) operations in lines 8 and 11;
• 3 AXPY (y = ax+ y) operations in lines 9,10, and 12;
• some scalar operations as seen in lines 8,11, and 13.

Algorithm 2 CG without Preconditionner
1: x0 ← 0

2: r0 ← b

3: normr0 ← norm2(r0)

4: p0 ← r0
5: error← 1

6: k← 0

7: while error > ERROR_MAX do . We stop if error is sufficiently small

8: α← (rTkrk)

(pT
kApk)

9: xk+1 ← xk +αkpk
10: rk+1 ← rk −αkApk

11: β← (rTk+1rk+1)

(rTkrk)

12: pk+1 ← rk+1 −βkpk

13: error← norm(r)
normr0

14: k← k+ 1

15: end while

8.1.1 Sparse Matrix

Those operations are highly parallel, even if the product matrix x
vector uses sparse [64]24 matrix, typical from this kind of problem. Our24 Sparse matrix is a

matrix populated primarily
with zeros

sparse matrices have a special format that stores the non-zero elements
by rows according to Compressed Sparse Row (CSR) format. The CSR

8.2 case study 139

or CRS format has its column array normally stored ahead of the row
index array. CSR is represented by three arrays (val, ja, ia), where val
is an array of the (left-to-right, then top-to-bottom) non-zero values
of the matrix; ja is the column indices corresponding to the values;
and ia is the list of value indexes where each row starts. The name
is based on the fact that row index information is compressed. This
format is fairly efficient for arithmetic operations, row slicing, and
matrix-vector products.

As an example:

A matrix is given as A(nxm) =

1 2 0 0

0 3 9 0

0 1 4 0

, where n = 3 and

m = 4, the CSR format for A is:
A = [1 2 3 9 1 4]; ja = [1 2 2 3 2 3]; ia = [1 3 5 7].

The array A has nnz (total of non-zero) elements as well as array
ja. The array ia has n+ 1 elements and its last element is always
nnz+ 1. Specially for our symmetric matrices, we can see the original
matrix as only the diagonal and either the upper or lower part. This
reduces in almost 50% the storing space for this matrix. Nevertheless,
due to memory access constraints in GPU, we do not use the symmet-
ric store format.
The whole algorithm, taking into account the above presented format,
is designed as UML/MARTE model. Next section presents this case
study.

8.2 case study

This section deals with all steps involved in specification, generation
and result analysis. Particularly, we emphasize here the multi-GPU
specification and its impacts on the last example presented in this case
study.

8.2.1 High-Level Specification

As seen in Chapter 3, UMLs/MARTEs within modeling tools is used
to specify our application and architecture at high-level abstractions.
Figure 8.2 shows the global view of our application. The CG is built
as a solver module for Code_CARMEL as seen in Figure 8.1. The idea
behind the model that we will provide is that it will replace the
original solver written in Fortran90 by a GPU solver in OpenCL. This
process is a simple step in the compilation process of Code_CARMEL.
Back to Figure 8.2, we have three components: init, norm_r0, and
cg. The enlightened component norm_r0 is a repeated task and is
allocated onto the GPU processor. The init is an instance of the

140 conjugate gradient solver

Input

G
EN

D
O

F
G

EN
PH

YS
G

EN
PA

R
AM

M
AT

R
IX

 A
SS

EM
BL

Y

PO
ST

PR
O

C
ES

S

SO
LV

ER

FCARMEL
TCARMEL

Output

{
Figure 8.1: Usual Modules of Code_CARMEL

class InitVars that initializes the vector x0. The cg is the component
that implements the main loop seen in Algorithm 2. Most of its
parameters come from the external environment to CG solver and from
the Code_CARMEL environment. Moreover, this repeated task presents
some new elements provided by MARTE but not yet discussed:

• «defaultlink» stereotype allows to point out the data value used
in the first iteration of a repeated task.

• «interrepetition» stereotype allows to redefine input variables by
output variables from previous iteration. This creates a depen-
dency between iterations and avoids the parallelism. However, in
the CG application model, the repeated task is usually executed
in sequential model by the CPU.

• «NFP_Constraint» stereotype allows to add a non-functional
property to our component. Here it applies a constraint to ensure
the loop continuation: (error > ERROR_MAX). NFP_Constraint
extends the UML mechanism for applying a condition or restric-
tion to modeled elements. Specifically, NFP constraints support
textual expressions to specify assertions regarding performance,
scheduling, and other embedded systems’ features, and their re-
lationship to other features by means of variables, mathematical,
logical, and time expressions.

8.2 case study 141

C
G

_M
od

ul
e_

G
PU

in
it:

 In
itV

ar
s

<<
sh

ap
ed

>>
cg

: C
G

Lo
op

 {1
32

65
1}

no
rm

_r
0:

 n
or

m

er
ro

r :
 R

ea
l{1

}
er

ro
r :

 R
ea

l{1
}

jA
 :

R
ea

l{1
32

65
1}

iA
 :

R
ea

l{1
32

65
1}

jA
 :

In
te

ge
r{3

44
29

51
}

iA
 :

In
te

ge
r{1

32
65

2}

r_
0

: R
ea

l{1
32

65
1}

no
rm

_r
0

: R
ea

l{1
}

p_
k1

 :
 R

ea
l{1

32
65

1}

x_
k1

 :
R

ea
l{1

32
65

1}

r_
k1

 :
R

ea
l{1

32
65

1}

p_
k

: R
ea

l{1
32

65
1}

A
: R

ea
l{3

44
29

51
}

x_
k

: R
ea

l{1
32

65
1}

no
rm

_r
0

: R
ea

l{1
}

r_
k

: R
ea

l{1
32

65
1}

b
: R

ea
l {

13
26

51
}

x_
ou

t

x0
 :

R
ea

l{1
32

65
1}

A
: R

ea
l{3

44
29

51
}

<<
de

fa
ul

tli
nk

>>

<<
de

fa
ul

tli
nk

>>

<<
de

fa
ul

tli
nk

>>

<<
in

te
rre

pe
tit

io
n>

>

<<
in

te
rre

pe
tit

io
n>

>

<<
in

te
rre

pe
tit

io
n>

>

Fi
gu

re
8

.2
:C

on
ju

ga
te

G
ra

di
en

t
G

lo
ba

lV
ie

w

142 conjugate gradient solver

The internal structure of the cg composed task is seen in Figure 8.3.
This figure does not present all the designed details. Indeed, it shows
the essential information for this model. For example, the Ap task is
an instance of dgemvCSR component and it has a «shaped» stereotype.
Actually, this task takes 4 arrays and makes the matrix-vector product
for CSR matrices, where each instance of the repetition space takes
one row of matrix A and multiplies by a vector pk.

Even if all procedures for an application modeling as seen in Chap-
ter 3 are necessary, we emphasize here only the task allocation. For
this modeling approach, the model designer should allocate all shaped
tasks onto the device GPU and the scalar operations (as well as the
parallel reductions) are allocated onto the host CPU (as partially seen
in Figure 8.3). This is the fundamental principle necessary to identify
all produced kernels.

In both Figures of CG model, we emphasize the corresponding
algorithm operation. This helps in model understanding. Moreover,
dot products are considered special tasks (highlighted ones with
diagonal-lines pattern) and the following paragraph describes them in
more detail.

8.2 case study 143

C
G

Lo
op

A
rc

hi
te

ct
ur

e

rr
: d

ot
Pr

od
al

ph
a:

 S
ca

la
rD

iv

<<
sh

ap
ed

>>
A

p:
 d

ge
m

vC
SR

<<
sh

ap
ed

>>
x:

 D
A

XP
Y

m
in

us
al

ph
a:

 N
eg

at
iv

e
<<

sh
ap

ed
>>

r:
 D

A
XP

Y

be
ta

: S
ca

la
rD

iv

rr
ne

w
: d

ot
Pr

od

<<
sh

ap
ed

>>
p:

 D
A

XP
Y

pA
p:

 d
ot

Pr
od

<<
sh

ap
ed

>>
hs

t:
C

PU

{1
}

<<
sh

ap
ed

>>
de

v:
 G

PU

{1
}

er
ro

r:
 S

ca
la

rD
iv

Sq
rt

er
ro

r
: R

ea
l{1

}

jA
 :

In
te

ge
r{3

44
29

51
}

iA
 :

In
te

ge
r{1

32
65

2}

p_
k1

 :
 R

ea
l{1

32
65

1}

x_
k1

 :
R

ea
l{1

32
65

1}

r_
k1

 :
R

ea
l{1

32
65

1}

p_
k

: R
ea

l{1
32

65
1}

A
: R

ea
l{3

44
29

51
}

x_
k

: R
ea

l{1
32

65
1}

no
rm

_r
0

: R
ea

l{1
}

r_
k

: R
ea

l{1
32

65
1}

<<
al

lo
ca

te
>>

 <
<a

bs
tra

ct
>>

<<
al

lo
ca

te
>>

 <
<a

bs
tra

ct
>>

Fi
gu

re
8

.3
:H

yb
ri

d
M

et
am

od
el

144 conjugate gradient solver

parallel reduction issue Due to parallel reductions necessary
to dot product operations, we decided to remove the last reduction from
GPU (cf. Figure 8.4). Actually, once the synchronization of work-items
in GPUs is made at work-group level, this kind of operation must
be ended on the CPU. Consequently, parallel reductions and scalar
operations run on the host side. For instance, in Figure 8.4, we perform
the dot product on vectors of 1000 elements. The host launches 10
work-groups containing 100 work-items. Each work-item performs the
product between two corresponding elements. A special elementary
task (r:reduc) is deployed by a special IP that does a parallel reduction
and selects only the first iteration to write out the reduction result. At
the end, 10 reductions are produced. The best solution, in this case,
is to perform the final reduction on the host side (CPU). In such a
scenario, it is necessary to take into account the vectors’ sizes. Indeed,
for huge vectors the number of work-items per work-group can exceed
the hardware limits. We do not provide any automatic solution for
this situation. However, the profiling feedback presented in Chaper 6

can help the designer to identify this problem.

dotProd

<<tiler>>

A: Real {1000}

B: Real {1000}

<<tiler>>

m: Multiply {10}<<shaped>>

{100}

{100}

m: Mult {100} r: Reduc {100}

{100}

r2: Reduc2 {1}

{1} {10} {1}
C: Real {1}

{1}

{1}
{1}

Architecture

<<shaped>>
hst: CPU {1}

<<shaped>>
dev: GPU {1}

<<allocate>> <<abstract>>
<<allocate>> <<abstract>>

{1}

Synchronization

Figure 8.4: Dot Product Task

8.2.2 Expressing the Device Multiplicity

One of the most important aspects, already introduced in Chapter 5,
is the capability of expressing device multiplicity. In Figure 8.3, the

8.2 case study 145

device has multiplicity equals {1}. Specifically for our available archi-
tecture (Tesla S1070), the «shaped» dev: GPU can support shape value
equals {1}, {2}, {3}, and {4}. As seen in Section 5.6.4, this information is
undertaken by the code generation process and adapted automatically
to allow sharing the task among the multiple available devices (GPUs).
However, the automatic process is not suitable to dot product opera-
tions and requires small manually-written changes. Results comments
are in Subsection 8.2.5.6.

8.2.2.1 Matrix Formats and Data Sharing

* * * * * ** * * * * * ** * * * ** * * * * * * ** * * * * * ** * * * * * ** * * * * * * ** * * * * * * ** * * ** * * * * * ** * * * * * * ** * * * * * * ** * * * * ** * * * * * ** * * * ** * * * * * * ** * * * * * ** * * * * * ** * * * * * * ** * * * * * * ** * * ** * * * * * ** * * * * * * ** * * * * * * ** * * * * * *
A[]

(entries)

* * * * * ** * * * * * ** * * * ** * * * * * * ** * * * * * ** * * * * * ** * * * * * * ** * * * * * * ** * * ** * * * * * ** * * * * * * ** * * * * * * ** * * * * ** * * * * * ** * * * ** * * * * * * ** * * * * * ** * * * * * ** * * * * * * ** * * * * * * ** * * ** * * * * * ** * * * * * * ** * * * * * * ** * * * * * *
ja[]

(col index)Sparse Matrix

Figure 8.5: Sparse Matrix in ELLPACK-R Format

In order to equally divide a sparse matrix and to express it in
ArrayOL, the CSR format should be replaced by a regular format with
fixed number of rows or columns. ELLPACK or ITPACK [129] was
introduced as a format to compress a sparse matrix with the purpose
of solving large sparse linear systems with ITPACKV subroutines on
vector computers. This format stores the sparse matrix into two arrays
(as seen in Figure 8.5), one for values A[], and one integer ja[], to
save the column index of every entry. Both arrays are of dimension
N×MaxNNZ at least, where N is the number of rows and MaxNNZ
is the maximum number of non-zeros per row in the matrix, with the
maximum number being taken over all rows. Note that the size of all
rows in these compressed arrays A[] and ja[] is the same, because every
row is padded with zeros. Therefore, ELLPACK can be considered
as an approach to fit a sparse matrix in a regular data structure
similar to a dense matrix. Consequently, this format is appropriate
to compute operations with sparse matrices on vector architectures
allowing for load balancing. In our tests, we do not change the
original storage format of matrices in Code_CARMEL. Instead, we
insert an intermediate function to perform the format conversion.
As a result, this approach takes a relevant time and decreases the
overall execution time. However, some works [144, 12] have shown
good results concerning matrix-vector products into many-threaded

146 conjugate gradient solver

architectures such as GPU, when matrices are stored in regular formats
such as ELLPACK. These findings lead the perspective of changing the
Code_CARMEL matrix structure when dealing with GPGPU architecture.

8.2.3 Generated Code

As seen in Chapter 3 a single command starts the transformation
model chain UML/MARTE-to-OpenCL. The generated files for this appli-
cation are summarily presented in Table 8.1.

Table 8.1: Generated Files for the CG
File Description # Lines

Makefile Configuration file that is utilized by
the "make" tool in order to identify
the location of source files that will be
used to build this application

18

oclCG_GPUApp.cpp The host’s source file that contains all
host functions declarations and han-
dles external interface, device detec-
tion, memory transfers and kernel
launches

1018

ocldpcsr_KRN.cl Source code of the kernel that is re-
sponsible for the sparse matrix-vector
product

54

ocldprod_KRN.cl Source code of the kernel that is re-
sponsible for the partial dot product

41

ocldaxpy_KRN.cl Source code of the kernel that is re-
sponsible for the axpy operations

23

Once having these source files compiled and linked to the object
files of the main structure of Code_CARMEL, a software testbed can beObject files compiled in C

or Fortran are compatibles.
However, some small
changes to ensure the

variable types equivalency
are necessary.

prepared to start the tests.

8.2.4 Tests

8.2.4.1 Platform Configuration

Although the platform defined here was already used in previ-
ous examples, we present it again in order to clarify the hardware
configuration.

CPU - AMD Opteron: 8-core @2.4GHz and 64GB RAM.
GPU - Tesla S1070: The NVIDIA® Tesla™ S1070 Computing SystemMore details about the

internal aspects of GPUs
can be found in

Appendix A.

is a 1U rack-mount system with four Tesla T10 computing pro-
cessors. This system connects to one or two host systems via one
or two PCI Express cables. A Host Interface Card (HIC) is used
to connect each PCI Express cable to a host. The host interface
cards are compatible with both PCI Express 1x and PCI Express
2x systems.
· Four Tesla T10 GPUs

8.2 case study 147

· 16.0 GB of high speed memory, configured as 4.0 GB for each
GPU

Operating System - Linux: CentOS release 5.5.
Fortran Compiler - F95: Sun Studio Fortran 95.
C/C++ Compiler - GCC: gcc 4.1.2 20080704.
OpenCL SDK - NVIDIA GPU Computing Software Development

Kit - OpenCL 3.2 Release.

8.2.4.2 Cube Models

For this case study we created 6 models of cubes with different
mesh granularity. The cubes are made of iron and they are inserted
in air. These models are created using SALOME 1 [25]. Figure 8.6 1. SALOME is an

open-source software
that provides a generic
platform for Pre- and
Post-Processing for
numerical simulation

shows the representation of the cubes and their different meshes. Our
tests are based on Finite Element Method (FEM) principles. We divide
the domain into finite triangular subregions. For instance, cube 1 has
48 triangles and cube 6 has 49152. More we refine the triangulation,
more precise will be our simulation. However, the number of triangles
impacts directly the size of the problem to be solved. In Chapter 7,
we introduce Code_CARMEL as a set of modules. The module gendof is
responsible for reading each cube model (in .med format) and creating
a .car file used as input for the remaining modules.

8.2.4.3 Formulation and Matrix Assembly

In Code_CARMEL, the matrix assembly generates a sparse symmetric
positive-define matrix for each input model example. These matrices
are illustrated graphically in Figures 8.7 and 8.8. The size of matri-
ces depends on the mesh granularity and the adopted formulation,
either (A, Φ) or (T,Ω) 2. We emphasize here two matrices. First, the 2. It is not our goal to

discuss the reasons that
lead to smaller or larger
matrices according to the
formulation.

smaller one (cube 1), a 26× 26 matrix with 210 non-zero elements, the
formulation (T,Ω) gives slightly the same size. Second, the larger one
(cube 6), a 1, 798, 336× 1, 798, 336 matrix with 29, 089, 432 non-zero
elements. For the latter case, the formulation (T,Ω) has fairly impact
on the size of the produced matrix (≈ 15% of the (A, Φ) one).

8.2.5 Results

This section presents the running results using two types of charts.
The first chart regards the convergence of each solver module. Con-
jugate gradient algorithms converge to the extremum of quadratic
functions in a finite number of steps. The rate of convergence depends
basically on the used algorithm [29]. CG is complete after n itera-
tions. However, it is important to analyze the convergence. In practice,
accumulated floating point roundoff error causes the residual (rk)
gradually to lose accuracy, and cancellation errors cause the search
vectors to lose A-orthogonality. Nevertheless, solutions have been

148 conjugate gradient solver

Cube1 - Triangles: 48 Cube2 - Triangles: 192 Cube3 - Triangles: 768

Cube4 - Triangles: 3072 Cube5 - Triangles: 12288 Cube6 - Triangles: 49152

Figure 8.6: Mesh Models used in the Simulation

8.2 case study 149

Cube 1 A-Phi: n=26, nnz=210 Cube 1 T-Omega: n=27, nnz=223

Cube 2 A-Phi: n=316, nnz=3892 Cube 2 T-Omega: n=125, nnz=1333

Cube 3 A-Phi: n=3032, nnz=43632 Cube 3 T-Omega: n=729, nnz=9097

Figure 8.7: Cube 1 to 3: Sparse Matrices from Assembly Process

150 conjugate gradient solver

Cube 4 A-Phi: n=26416, nnz=407176 Cube 4 T-Omega: n=4913, nnz=66961

Cube 5 A-Phi: n=220256, nnz=3507000 Cube 5 T-Omega: n=35937, nnz=513313

Cube 6 A-Phi: n=1798336, nnz=29089432 Cube 6 T-Omega: n=274625, nnz=4018753

Figure 8.8: Cube 4 to 6: Sparse Matrices from Assembly Process

8.2 case study 151

proposed to successfully overcome this kind of problem [68, 76]. The
second type of chart shows execution times. We compare the available
solutions of Code_CARMEL on CPUs with the solution on GPUs.

8.2.5.1 Cube 1 to 3: Convergence

Figure 8.9 presents the convergence charts for cubes 1 to 3. The
main difference in the number of steps in convergence is seen specially
when we change the formulation. Another important aspect to note is
the convergence between the CG implemented in Fortran90 and the
one in GPU/OpenCL. They have exactly the same curve25 . 25 Minimal differences in

error, due to different
floating point processing,
exist. However, this is not
visible in the charts.

Figure 8.9: Convergence Charts for Cube 1 to 3

8.2.5.2 Cube 4 to 6 Convergence

The convergence charts for the cubes 4 to 6 is seen in Figure 8.10.
The main points to note, is regarding the slight approximation between
the two curves. Again, like the previous cubes, the curve for the both
CG versions (Fortran90 and OpenCL) are the same. Moreover, as we
can see in last chart in Figure 8.10, even using a more refined algorithm
(the BiCGCR), it does not always assure a better convergence.

152 conjugate gradient solver

Figure 8.10: Convergence Charts for Cubes 4 to 6

8.2 case study 153

8.2.5.3 Cube 1 to 3: Time Results
The times in all charts in
this chapter are given in
seconds.

Some points can be discussed regarding the results of execution
times. In order to launch a kernel on devices, it is necessary to do
an initial procedure every Code_CARMEL execution. This procedure
consists in compiling the kernel, initializing host variables and trans-
ferring these data to the device, then launching the kernel. Afterwards,
data resulting of a kernel operation should be transferred back to host.
Thus, it is normal to observe a time point of about 4 seconds in all
results from solvers executed on GPU (Figures 8.11 and 8.12). This
"setup" time is reduced expressively in cases where multiple itera-
tions of Code_CARMEL are performed. The compilation of kernels only
happens once.

0,00197&
0,00102&0,00198&

4,27803&

0,00186&
0,00112&

0&

0,5&

1&

1,5&

2&

2,5&

3&

3,5&

4&

4,5&

Assembly& Solver&

Cube%1%(T,Ω)%

Tomega&bicg&

Tomega&cg&

Tomega&cggpu&

0,00117%
0,00086%0,00119%

4,12122%

0,00118%
0,00089%

0%

0,5%

1%

1,5%

2%

2,5%

3%

3,5%

4%

4,5%

Assembly% Solver%

Cube%1%(A,Φ)%

Aphi%bicg%

Aphi%cg%

Aphi%cggpu%

Figure 8.11: Results for Cube 1

8.2.5.4 Cube 4 to 6: Time Results

From cube 4, it is remarkable that a larger problem starts to decrease
the overall advantage of the CPUs solution (see Figure 8.13). Indeed, in
cube 5, the matrix n ≈ 220, 000 for (A, Φ) formulation, we notice the
bound point when the GPUs solution starts to have better performances.
This is more emphasized in cube 6 ((A, Φ) formulation) (Figure 8.14

when the speedup achieves about 9x for the solver and about 2x for
the overall solution 1. 1. Remind that the setup

and data adaptation,
before launching the
solver, take a significant
time.

The speedup evolution is summarized in Figure 8.15. Even if the
graph shows a linear increasing curve, this was not verified. Indeed,
we should note the problem size of 220k degrees of freedom. From
this point we achieve speedup of 1.6x, which starts to become a useful
solution.

8.2.5.5 GPU Times Analysis

A more precise analysis for the cubes in examples 1 and 6 is shown
in Table 8.2. Here, we emphasize the total time for the cube 6 (A, Φ)

154 conjugate gradient solver

0,00692& 0,00234&0,0682&

4,10192&

0,00638& 0,00334&

0&

0,5&

1&

1,5&

2&

2,5&

3&

3,5&

4&

4,5&

Assembly& Solver&

Cube%2%(A,Φ)%

Aphi&bicg&

Aphi&cg&

Aphi&cggpu&

0,001182& 0,00183&0,01244&

4,01007&

0,01152& 0,0019&

0&

0,5&

1&

1,5&

2&

2,5&

3&

3,5&

4&

4,5&

Assembly& Solver&

Cube%2%(T,Ω)%

Tomega&bicg&

Tomega&cg&

Tomega&cggpu&

0,05762' 0,03175'0,05717'

4,57856'

0,04961'
0,05669'

0'

0,5'

1'

1,5'

2'

2,5'

3'

3,5'

4'

4,5'

5'

Assembly' Solver'

Cube%3%(A,Φ)%

Aphi'bicg'

Aphi'cg'

Aphi'cggpu'

0,09185' 0,0069'0,09208'

4,07257'

0,0876'
0,01069'

0'

0,5'

1'

1,5'

2'

2,5'

3'

3,5'

4'

4,5'

Assembly' Solver'

Cube%3%(T,Ω)%

Tomega'bicg'

Tomega'cg'

Tomega'cggpu'

Figure 8.12: Results for Cubes 2 and 3

8.2 case study 155

3,6633$

32,82672$

4,38913$

13,91351$

56,089$

4,52446$

8,72403$

53,403$

0$

10$

20$

30$

40$

50$

60$

Assembly$ Solver$ Total$

Cube%5%(A,Φ)%

Aphi$bicg$

Aphicg

Aphi$cggpu$

0,44992&
1,17012&0,5391& 0,7533&

6,195&

0,50996&

4,61413&

9,94&

0&

2&

4&

6&

8&

10&

12&

Assembly& Solver& Total&

Cube%4%(A,Φ)%

Aphi&bicg&

Aphi&cg&

Aphi&cggpu&

0,72775&
0,1763&

0,77285&

0,07228&

6,967&

0,75624&

4,34097&

11,127&

0&

2&

4&

6&

8&

10&

12&

Assembly& Solver& Total&

Cube%4%(T,Ω)%

Tomega&bicg&

Tomega&cg&

Tomega&cggpu&

6,00334&

1,21379&

58,832&

6,20213& 5,15703&

63,747&

5,6829&

1,99016&

0&

10&

20&

30&

40&

50&

60&

70&

Assembly& Solver& Total&

Cube%5%(T,Ω)%

Tomega&bicg&

Tomega&cg&

Tomega&cggpu&

Figure 8.13: Results for Cubes 4 and 5

32,68811'

542,70184'

39,08258'

422,27554'

803,017'

38,84475' 49,72467'

422,193'

0'

100'

200'

300'

400'

500'

600'

700'

800'

900'

Assembly' Solver' Total'

Cube%6%(A,Φ)%

Aphi'bicg'

Aphi'cg'

Aphi'cggpu'

50,35763'
9,28438'

724,175'

50,83252'
22,60974'

768,586'

46,62709'
34,16621'

0'

100'

200'

300'

400'

500'

600'

700'

800'

900'

Assembly' Solver' Total'

Cube%6%(T,Ω)%

Tomega'bicg'

Tomega'cg'

Tomega'cggpu'

Figure 8.14: Results for Cubes 6

156 conjugate gradient solver

0

2

4

6

8

10

26 316 3032 26416 220256 1798336

0.0002 0.00057 0.0069
0.1633

1.6

8.5

Problem Size

Sp
ee

du
p

(equal)

Figure 8.15: Speedup Evolution according to Problem Size

solver execution (49.72 seconds in Figure 8.14). From this execution
time, 45s are due to CG loop where data transfer is responsible for
about 39s. The kernel execution takes only about 8% of the total exe-
cution time. This shows how important is to decrease this difference
in order to achieve better results.

Table 8.2: Cube 1 and 6: GPU Times Analysis
Case Setup H2D Loop Kernels D2H #Iter. Time/Iter

Cube1:
(A,Φ)

4.09 0.0014 0.019 0.008 0.007 7

0.00017

(CPU:0.00017)

Cube1:
(T,Ω)

4.20 0.0012 0.068 0.027 0.025 25

0.000079

(CPU:0.000079)

Cube6:
(A,Φ)

4.17 0.27 45.23 3.76 39.2 814

0.061

(CPU:0.52)

Cube6:
(T,Ω)

4.12 0.047 5.09 1.08 3.28 417

0.022

(CPU:0.054)

Figure 8.16 presents the magnetic field B after post-processing phase
of Code_CARMEL.

8.2.5.6 Multidevice Results

Unfortunately, the examples shown above do not attain better per-
formances when we increase the number of devices. In fact, the
communication and kernel launch times increase about 10% for the
cube 6 example. This is due to the overhead accumulated on each extra
transfer and kernel launch. GPGPU is well known to be better in heavy
computation algorithms. Therefore, for examples where this situation
is predominant, multiple devices lead higher speedup. Nevertheless,
in [41], we overlook some setup times and, thus, multiple devices

8.2 case study 157

Figure 8.16: Post-processing results: B field for the cube

could ensure higher speedups as the number of devices increases.
Table 8.3 illustrates these speedups.

Table 8.3: Multi-GPU: N=132,651, NNZ=3,442,951, tol=1e-10. Source: [41]
conjugate gradient #iter time(s) speedup gflops

Matlab PCG (desktop PC) 117 3.17 1 .303

OpenCL (1 GPU) 116 0.659 4.81 1.45

OpenCL (2 GPU) 116 0.461 6.87 2.07

OpenCL (4 GPU) 116 0.380 8.34 2.50

8.2.6 Automotive Alternator Example

(a) Real (b) Part Model

Figure 8.17: Automotive Alternator from Valeo™

The earlier cases are academical approaches and suit well to present
the applicability of our methodology onto electromagnetism simu-
lation. They point out key aspects in which Code_CARMEL takes ad-
vantage of a high-performance solver module. Now, we present its
application on a real industrial example. Thus, we have chosen to

158 conjugate gradient solver

simulate and model an automotive alternator developed by Valeo™.
Alternators are AC electrical generators and usually the word refers
to small rotating machines driven by automotive. Subfigure 8.17a
illustrates an alternator from Valeo™ and Subfigure 8.17b shows a
basic model designed in SALOME of this system. We define a mesh
granularity for FEM and apply Code_CARMEL on this model (.med file).
From matrix assembly, this produces a linear system whose matrix A
has n = 775, 689 and nnz = 12, 502, 443.

Benchmarks for this example gives speedup of ∼ 9 with relation to
standard Fortran version on CPU. We had 10,000 iterations in about
2300 seconds on CPU against 250 seconds on GPU. This is a good result
that shows the potential increase in speedup according to complexity
of the problem26 . For illustration, Figure 8.18 presents graphically the26 The sparse matrix

produced from this
simulation proportionally

has more non-zero elements.

simulation result.

Figure 8.18: Post-processing results: B field for the alternator example

8.2.7 Overall Comparisons

We have analyzed two works [60, 26] to compare our results. Both
uses sparse matrices. Georgescu et al., in [60], study the performance
and feasibility of Conjugate Gradient (CG) on graphics processors.
While on per iteration performance basis, the GPU is up to 13x faster
than the CPU. After running the iterative refinement iterations, the
overall average speedup is about 3-5x. Under the point of view of
systems with multiple devices, Cevahir et al., in [26], present some
benchmarks of CG on multi-GPU clusters. They performed a more
complex testbed using multiple CPUs cores and multiple GPUs per
node. However, comparatively their gain, it is between 5-10x with
relation to sequential CPU version.

8.3 conclusion 159

These results show that our approach is able to provide competitive
performances for the CG solver on sparse matrices. Moreover, the
scalability of the code is obtained by simple changes in the high-level
specification models.

8.3 conclusion

In summary, in this chapter, we propose to change the solver mod-
ule of Code_CARMEL by a GPGPU one. To achieve this aim, we use
our methodology of development for massively parallel applications
based on an MDE approach. Then, with some technical changes in
makefiles and datatype compatibility, we add the generated code to
Code_CARMEL and start a testbed on some cube meshes according to
Finite Element Method (FEM). Obtained results are fairly satisfac-
tory for larger meshes in the order of tens of minutes. Furthermore,
speedups with relation to sequential versions on CPUs are comparable
to related works on CG and GPGPU. Another important aspect regards
to multi-GPU. Although we do not have an immediate performance
gain to these problems, results show that it is possible to achieve better
results when we improve the ratio kernelexecutiontime

datatransfer time . Moreover,
multi-GPU feature requires significant changes on hand coded OpenCL

programs, while our approach implements this feature by simple
tagged values in HwResource stereotypes from MARTE.

C O N C L U S I O N A N D P E R S P E C T I V E S

conclusions

The work discussed in this thesis report is placed in the domain
of parallel programming methodology. Particularly, we address high-
level specification, efficient code generation according to GPGPU pro-
gramming model, and high-level modeling for algebra linear functions
and numerical algorithms applied to simulation of electrical machines.

Through this report we presented in Chapter 1 different approaches
concerning high-level specification for HPC and frameworks that adapt
the development of applications GPGPU for several programming lan-
guages. However, these existing approaches lack one or more of the
key aspects below that we consider valuable to a complete approach.

1. Compact expression of parallelism at a high-level specification.

2. Specification of architecture at higher levels.

3. Efficient code generation.

4. Specification of allocation onto multiple devices in a same host
system.

Aiming at filling the gaps of these requirements, we choose Gaspard2 as
a framework based on Model-Driven Engineering (MDE) to specify ap-
plication and architecture. Gaspard2 uses MARTE and has several code
generation branches for different targets, including OpenMP. Indeed,
the OpenMP programming model also aims HPC, but it is different
from our proposal by the way it addresses the problem. However,
the similarities between our goals and the existing transformation
modules allowed us to propose a new branch to generate a code for
our intended platform: OpenCL as programming language for GPGPU.
MARTE is a UML profile and it suits well to specify data and task
parallelism with ArrayOL specification. Moreover, MARTE principles
implement a co-design environment to distinctly create software and
hardware models.

Initially, we presented the methodology from the point of view of
the model designer. Two applications of different domains, matrix
multiplication and video downscaling, illustrate the modus operandi
and the potential performance gain on results and benchmarks. Af-
terwards, the modeling techniques seen in the examples are often
referenced in the remaining of the second part of this report, when
we present more details about the model compilation. Optimizations
concerns are, then, discussed in order to generate an efficient code.

Regarding the simulation of electrical machines, the third part of this
report presented some theory of the electromagnetism and the Finite

161

162 conclusion

Element Method (FEM). This part aimed to show the feasibility and
performance gains when we apply the methodology onto a module
of the Code_CARMEL that deserves parallel solutions. Then, results
and benchmarks are presented as a resource to validate the approach.
For the better cases we have achieved speedup of about 9x. This
pragmatically demonstrates the real viability of the approach.

Moreover, during the elaboration of this work, the development and
application of the methodology addressed in this thesis report led us
to make some positive reflections, criticism, and perspectives in its
evolution.

◦ Development Methodology for GPGPU

This work comprehends many points of view according to the role
of the actor. From the point of view of the methodology provider,
there are many aspects to take into account at model compilation time.
However, these aspects are transparent to model designers. For them,
we offer a methodology to specify their applications and architecture
at a higher-level and generating automatically code. With this applica-
tion development methodology, we give the means to academic and
industrial researchers to specify software for GPGPU at a high-level
abstraction. Indeed, based on our defined requirements for a devel-
opment environment, our choices led to MDE as an overall solution to
produce an application. Model-Driven Engineering (MDE) leads the
software development to the world of the models, which is a higher-
level specification. Currently, researches have shown that the hardware
technology and, consequently, its programming model is evolving in
about every 4 years, while new algorithms evolve every 20 years. The
proposed methodology bridges this gap by offering resources to de-
sign the algorithm with low dependency on hardware. This allows for
software and hardware scaling of applications. However, this solution
comes with a cost. In MDE, the profile UML for MARTE was designed
to assist embedded systems specification. Moreover, many additions
were proposed to MARTE and, today, it is a standard to specify real-
time and embedded systems with resources to express the parallelism
of application and architecture in ArrayOL. Nevertheless, even though
ArrayOL provides the resources to describe compactly data and task
parallelism, it imposes constraints to the specification. This issue is
specially critical for applications whose data amount varies according
to the problem. However, this does not hinder the code generation.
Indeed, the generated code is human readable and brings even some
comments which facilitate its understanding. This allows develop-
ers to establish constants or parameters aiming for a generic problem
support. Moreover, in [34], studies have been elaborated to add param-
eterization feature in UML models. Another drawback is concerning
to code generation for libraries. In fact, our methodology is based on
the Gaspard2 framework, and, therefore, we can only generate a whole

conclusion 163

application and not individual modules. Nevertheless, some slight
modification make the code useable. In other words, even with few
concerns that can affect the generated code, they do not offer obstacles.
Furthermore, we believe that tools in this field will increasingly be
improved27 and will provide better development environments. 27 Recently, new tools,

such as Modelio from
SoftTeam™
(modelio.org), have
emerged as open-source tool
with support to MARTE.
This enforces that
community investment in
this area.

Particularly in the field that we have focused on, electrical machine
simulation, we consider that the methodology has fairly achieved its
goal. We were capable of modeling an application and architecture,
generating an efficient and functional code, and applying it directly
on industrial problems. As a result, we obtained gains in performance
within an existing tool of the order of 9x. These gains justify the adop-
tion of the methodology to other modules in a complex simulation
tool, such as Code_CARMEL, or even to develop other tools regarding
the potential parallelism and adaptation onto GPGPU. For instance,
currently, new researches in the field of electrical machine simulation
require experiments that can take more than one week to be finished
(by multiple tests of the same problem). This proposal is able to reduce
this time to less than one day.

◦ Optimizations and Device Multiplicity

In the pursuit of efficiency similar to hand coded program, we at-
tempted to adapt good practices analysis in the model transformation
chain. Proposed optimizations take into account memory access and
profiling integration. The intervention of designers is still essential
in some cases. For instance, using profiling integration designers are
asked to refactor or modify their models manually. However, these
optimizations enlighten key features according to good programming
practices.

The OpenCL programming model is not exclusive for GPGPU. In-
deed, even SMP computing power can be exploited by OpenCL ap-
plications. Thus, extending the number of devices in the same host
environment is fairly valuable to achieve higher parallelism. However,
this extension implies usually relevant code changes. The simple mod-
ification of device multiplicity facilitates the designers job whenever
they need to increase scale of their applications. However, overhead
in data communication hinders this feature in some applications. No-
tably, heavy computing applications rather than heavy data processing
ones take advantage of this feature. This is of special interest to our
target applications.

perspectives

We have addressed many aspects of GPGPU and high-level specifica-
tion of applications for this architecture. However, this research field
is in constant evolution. Besides the previous commented issues that
deserve improving, we enlighten some perspectives and future works.

modelio.org

164 conclusion

GPU Clusters

We do not deal with GPU clusters. Some issues make this environ-
ment more complex. We have worked in an environment composed
of one host and a few homogeneous devices. Clusters are much more
complex than our local structure, and they require other programming
model. In such a case, we do not have the role of the "host" from a
global view. It is a fully distributed system and the communication
becomes difficult to specify at higher levels and still to ensure a com-
petitive generated code in performance. However, currently, existing
GPU clusters clock an impressive 2.5 petaflops on the LINPACK scale.
This peak computing rate is reached by gathering, for instance, 14,336

Xeon X5670 processors and 7,168 Nvidia Tesla M2050 GPGPUs. The
programming model for this situation requires distributed memory
solutions. MPI is usually the programming model adopted by devel-
opers in cluster environments. Given the popularity of GPU clusters in
academic and industrial areas, as a perspective, we suggest enabling
the specification of clusters at architecture level and the integration
with MPI libraries. In such a situation, the synchronization, communi-
cation, and the distributed memory are the most issues to be overcome.
However, an in-depth study can generalize our localized solution for
multi-devices.

Control on Code Generation

Although the code generation process is based on a layered transfor-
mation chain, this process is not parameterized. No control structure
exists and, thus, designers cannot enable or disable some features
at generation time. We suggest integrating a generic metamodel
that allows us implementing controlled model compilation. This is
particularly interesting when specifying, for instance, optimization
levels or defining the generated code as either program or function
library. Gaspard2 does not provide a link to interact directly with its
transformation engine. This is transparent to model designers. We
propose to extend the works [34] already started in this field to fill
these requirements as a generic solution for all available chains.

Algorithms for Simulation of Electromagnetism Phenomena and GPGPU

We are convinced that it is not totally possible to separate software
from hardware when specifying them. Indeed, we have even provided
the profiling integration aiming at obtaining feedback directly on the
application model at runtime. However, we can improve it more.
Recently, a study of the fundamental obstacles to accelerate the Conju-
gate Gradient (CG) method on GPUs is presented in [44] where several
techniques are proposed to enhance its performance over the generic

conclusion 165

algorithm and that does not depend on the matrix sparsity pattern. An
advanced study to enable designers thinking about modifying their
algorithms aiming a specific target platform (e. g. GPU) is a relevant
issue in parallel programming development.

Part IV

A P P E N D I X

A
H I G H P E R F O R M A N C E C O M P U T I N G

a.1 history

The term High Performance Computing (HPC) was originally used
to describe powerful, number-crunching supercomputers. As the
range of applications for HPC has grown, however, the definition
has evolved to include systems with any combination of accelerated
computing capacity, superior data throughput, and the ability to
aggregate substantial distributed computing power.

In the last two decades, the HPC has been revolutionized by ap-
proaches based on cluster technology including high performance
nodes. Nevertheless, before clusters, the HPC used to be made by large
centralized systems. In this configuration, users shared centralized
resources and this allowed to decrease overall costs.

However, researchers realized that these large systems could not
meet the increasing computational demands over time. In other words,
even if the machines become faster, the time available for HPC re-
searchers reduced due to increasing number of users. In addition,
every time a new machine with a different architecture was available
in the market, programmers were forced to rewrite their code to adjust
them to the architecture of this machine.

Computers had a performance increasing at a pace even faster than
the centralized HPC systems. In 1993, recognizing the potential for
a new innovation, Tom Sterling and Don Becker tried to combine
computers with open source software to create a "personal" HPC
system as an alternative to large centralized systems [71]. The idea
was to put computational power with the same level available in HPC
system directly to individual user.

The first system, using 16 486DX4100 cards, Ethernet 10Mbps with
channel aggregation and Linux, proved to be a big gap in terms of
price and performance compared to the HPC systems at the time. With
the cluster "Beowulf" [15], as this system was called, researchers had
individual performance levels of HPC at their fingertips for a lower
price. Still could use centralized HPC systems for larger jobs, though
the Beowulf cluster could handle all the traditional HPC applications.

From that point, there was an explosion in the use of clusters.
Nowadays, more than 80% of the world’s fastest systems in the Top

169

170 high performance computing

500 list28 are classified as clusters. Why HPC clusters have been so28 www.top500.org

successful? There are several answers, but some basic reasons are:
• Price/Performance Relationship: HPC clusters offer an interest-

ing price/performance factor with respect to former centralized
systems.

• HPC for a single user: one of the aims of clusters was to pro-
vide computational power to more and more users, and thus,
disseminate the HPC practice.

• Cluster Scaling: it is possible to create a minimal cluster, suitable
to the application requirements or create a larger system able to
handle more complex applications.

• Open source Resources: Linux and required tools used in clus-
ters Beowulf are usually open source softwares. Researchers do
not have to buy expensive software licenses.

• Open Standards: the key of the success of HPC clusters is the
use of systems with open standards. They use standards such as
x86 processors, Ethernet, Message Parsing Interface (MPI). Hence,
in the most cases it is not necessary to re-write code when we
have to migrate or release an application.

Even if the performance of several machines working in parallel
is very interesting, researchers noticed the importance of increasing
the local performance per machine itself. With the constant evolution
of hardware, specially Central Processing Unit (CPU) and graphics
chipsets, i. e., Graphics Processor Unit (GPU), and the need for more
processing power, various researchers began to think about using GPUs
for processing generic applications and not just for specific-domain
applications. GPU is a dedicated processor, normally used for graph-
ics calculations, geometric operations and floating point operations.
When we use GPUs to implement other applications beyond graphics
ones, we call it General-Purpose computation on Graphics Processing
Unit (GPGPU). In Section A.4, we present the state of art on GPGPU.

a.2 existing approaches

There is no only one way to compute in parallel. Actually, Michael
J. Flynn [54] proposed, in 1972, the following classification based on
the magnitude of interactions of the instructions and data streams:

1. SISD: Single Instruction, Single Data stream can be considered
as the zero-parallel machine. No parallelism is exploited in
either the instruction nor the data streams. This comprehends
the traditional single-core CPU.

2. SIMD: Single Instruction, Multiple Data stream is when a sin-
gle machine instruction is executed on mulitiple data streams.
This type of parallelism is called Data Parallel and is found on
GPGPUs and array processors.Indeed, on GPGPU we

have the so-called Single
Program, Multiple

Data (SPMD). In this case,
inside a program, multiple
threads can follow different

paths with different
instructions.

www.top500.org

A.2 existing approaches 171

3. MIMD: Multiple Instruction, Multiple Data stream can be exem-
plified by clusters. Each node is independent and has its own
memory (distributed memory).

4. MISD: Multiple Instruction, Single Data stream. This is a type
of parallel computing architecture where many functional units
perform different operations on the same data. In principle,
this is not useful in practice. However, pipeline29 architectures 29 Pipeline is a set of data

processing elements
connected in series, so that
the output of one element is
the input of the next one.

belong to this type, though a purist might say that the data is
different after processing by each stage in the pipeline. If we
take into account the purist’s thought, we can consider this type
of architecture does not have any practical use in HPC. But they
are always interesting when we have fault-tolerant computers
executing the same instructions redundantly in order to detect
and mask errors, in a manner known as task replication, may be
considered to belong to this type.

Multiple Instruction, Multiple Data (MIMD) is the most flexible and
can execute any of the other modes. For this reason, it is the most
commonly used parallel architecture. Many HPC applications are
Data Parallel and, thus, they can be accelerated with GPGPUs. Never-
theless, the GPGPU architecture, has a specific design for data parallel
processing, consequently it often executes data parallel operations
much faster than a standard MIMD architecture, such as a multi-core
processor.

a.2.1 Architecture

In this subsection, we emphasize some of parallel architectures in
order to have a basis knowledge of existing technologies and their
relation with GPGPU.

a.2.1.1 SIMD

The first use of Single Instruction, Multiple Data (SIMD) architectures
was in array supercomputers and it was disseminated by Cray [31]
in 70’s. Modern high-performance hardware architectures are charac-
terized by two distinct features: parallelism through many cores/exe-
cution units, and a SIMD-way of execution inside each core. Today’s
CPUs are highly parallel processors with different levels of parallelism.
We find parallelism everywhere from the parallel execution units in a
CPU core, up to the SIMD (Single Instruction, Multiple Data) instruc-
tion set and the parallel execution of multiple threads. Intel provides
Streaming SIMD Extensions (SSE) [136] instruction set, which is an
extension to the x86 architecture and using it is called vectorization. In
Computer Science vectorization is the process of converting an algo-
rithm from a scalar implementation, which does an operation one pair
of operands at a time, to a vector process where a single instruction

172 high performance computing

can refer to a vector (series of adjacent values). SIMD instructions
operate on multiple data elements in one instruction and make use of
the 128-bit SIMD floating-point registers.

Programmers can exploit vectorization to speedup certain parts
of their code. Writing vectorized code can take additional time but
is mostly worth the effort, because the performance increase may
be substantial. One major research topic in computer science is the
search for methods of automatic vectorization: seeking methods that
would allow a compiler to convert scalar algorithms into vectorized
algorithms without human assistance. Indeed, some compilers are
able to generate automatically SSE instructions. So, if vectorization is
enabled, the compiler will use the extra unused space in the SIMD
registers to perform additional operations in a single instruction.

Regarding GPUs, they are often wide SIMD implementations, capable
of branches, loads, and stores on 128 or 256 bits at a time.

a.2.1.2 Multi-core and SMP

Multi-processing simply means putting multiple processors in one
system. Symmetric Multi-Processing (SMP) implies that all of these
processors are identical, also known as a homogeneous system. SMP
systems have been around in the x86 world for a long time, and there
are software systems that take advantage of SMP well.

From a technical standpoint, the difference between multi-core and
SMP is positive. In an SMP system, each processor plugs into a
different socket, and multiple processors are connected through some
kind of bus. In a multi-core processor, the "core" logic of a processor is
replicated multiple times on the same chip. Multiple cores may share
data through some on chip logic or shared caches. Multiple cores
are presented to applications at the OS level exactly the same way as
multiple processors in an SMP system. Furthermore, you can mix the
two together, e.g. by having an 8-core system with two processors,
each containing four cores.

For the current development of applications, SMP is a choice, that
some developers chose to (and still choose to) take advantage of.
Multi-core is a given, that all applications must react to in order to
continue to scale up performance. The reason is simple: physical
barriers relating to power and heat being reached in terms of what can
be done to increase the performance of a serially executing processor.
The SMP era is ending. Multi-core (or many-core if we refer to GPUs)
is the answer to bridge this barrier.

a.2.1.3 Cluster

In computers available to the general computing community, the
main memory is usually shared between all processing elements
(shared memory). The idea of multicomputers, often called distributed

A.2 existing approaches 173

computers, is the use of multiple computers to work on the same
application. A distributed computer is a computing system in which
the computers (processing elements with their own memory) are
connected by a network. If the computers are located in a Local
Area Network (LAN) they are called a computing cluster. For wider
extensions where machines are connected in a Wide Area Network
(WAN) such as the Internet, this is called grid computing.

Unlike SMPs, computing clusters are made of collections of zero-
sharing workstations and (even SMP) servers (nodes), with different
speeds and memory sizes, possibly from different generations. In such
systems the user is responsible to allocate the processes to the nodes
and to manage the cluster resources.

a.2.1.4 Coprocessors

General-purpose processors are good for overall applications and
not so high-performant, however, for specific applications. More and
more processors have emerged with dedicated support to interface co-
processors. For instance, the ARM [55] processor provides an interface
to 16 coprocessors. Another system, the NVIDIA’s Tegra 2 [110] (as
seen in Figure A.1), has eight purpose optimized processors. Each of
these processors is power managed at a global level through software
and locally through hardware mechanisms. For instance, Tegra 2

offers a video decode processor that is used to decode video streams
from files that are either played from the local disk or streamed off the
network. The idea behind this coprocessor is to meet the today’s needs
in mobile web navigation. Over 80% of today’s top Web sites include
video, most of which is Flash-based video content. The dedicated
video processor handles all three Flash video formats: H.264, Sorenson
and VP6-E. As a result, Flash video runs on NVIDIA Tegra at full
frame rates and consumes very low power. Other mobile solutions that
use general-purpose CPUs for Flash video deliver stuttering images
and drain battery life. The decode processor is based on several gen-
erations of NVIDIA hardware decode expertise and is able to deliver
flawless 1080p video playback while consuming less than 400 mW of
power.

GPUs are seen as coprocessors by CPUs. Actually, not all applica-
tions suit well to the increased parallelism offered by GPUs. However,
CPUs can dispatch specific tasks to GPUs aiming to achieve better
overall performances.

a.2.2 Parallel Programming

Parallel programming has been always a challenge for develop-
ers and programming languages designers. For many programmers,
sequential programming is largely less complex than parallel pro-
gramming. The main challenge can be summarized in one word:

174 high performance computing

Figure A.1: NVIDIA’s Tegra 2 Architecture. Courtesy: NVIDIA™

concurrency. Concurrency is the notion of multiple things happen-
ing at the same time. With the proliferation of multicore CPUs and
the realization that the number of cores in each processor will only
increase, software developers need new ways to take advantage of
them. Although operating systems offers support to running multiple
programs in parallel, most of those programs run in the background
and perform tasks that require little continuous processor time. It
is the current foreground application that both captures the user’s
attention and keeps the computer busy. If an application has a lot of
work to do but keeps only a fraction of the available cores occupied,
those extra processing resources are wasted.

The traditional way for an application to use multiple cores is to
create multiple threads. However, as the number of cores increases,
there are problems with threaded solutions. The biggest problem is
that threaded code does not scale very well to arbitrary numbers of
cores. We can not create as many threads as there are cores and expect
a program to run well. What we would need to know is the number
of cores that can be used efficiently, which is a challenging thing for
an application to compute on its own. Even if we manage to get the
numbers correct, there is still the challenge of programming for so
many threads, of making them run efficiently, and of keeping them
from interfering with one another.

GPGPU offers a multi-threaded environment. However, even if it
is possible to re-fit the threads distribution among its cores aiming to
achieve better performances, it hides the internal scheduling process.
Details about how GPUs deal with threads is introduced in Section A.4.

A.2 existing approaches 175

The remaining of this subsection deal with two major approaches
that envisage on one hand, OpenMP for shared memory systems, on
the other hand, MPI distributed memory systems. We emphasize
those approaches due to their large use in industry and academia and,
moreover, they have important relationship with GPUs in particular
when we integrates SMP, multi-core, and cluster computing in a same
complex system.

a.2.2.1 Shared Memory

Once the vendors had the technology to build moderately priced
SMPs, they needed to ensure that their compute power could be
exploited by individual applications. Compilers had always been
responsible for adapting a program to make best use of a machine’s
internal parallelism. Unfortunately, it is very hard for them to do so
for a computer with multiple processors or cores. The reason is that
the compilers must then identify independent streams of instructions
that can be executed in parallel. Techniques to extract such instruction
streams from a sequential program do exist, and, for very simple
programs, it may be worthwhile trying out a compiler’s automatic
(shared-memory) parallelization options. However, the compiler often
does not have enough information to decide whether it is possible
to split up a program in this way. It also can not make large-scale
changes to code, such as replacing an algorithm that is not suitable for
parallelization. Thus, most of the time the compiler will need some
help from the user.

OpenMP [27], a portable programming interface for shared memory
parallel computers, was adopted as an informal standard in 1997 by
computer scientists who wanted a unified model on which to base
programs for shared memory systems. OpenMP widely dissemi-
nated, offers significant advantages over hand-threading. OpenMP is
not a full language itself, it consists of directives and pragmas for a
shared-memory application programming interface whose features
are based on prior efforts to facilitate shared-memory parallel pro-
gramming. Rather than an officially sanctioned standard, it is an agree-
ment reached between the members of the Architecture Review Board
(ARB) [121], who share an interest in a portable, user-friendly, and
efficient approach to shared-memory parallel programming. OpenMP
is intended to be suitable for implementation on a broad range of SMP
architectures. As multicore machines and multithreading processors
spread in the marketplace, it might be increasingly used to create
programs for uniprocessor computers also.

Approaches such as OpenMP to GPGPU proposed in [97] intend
to bridge two gaps: first, translating existing application’s code in
order to make it run on GPUs; second, an integration approach taking
advantage of multi-core and many-core devices (GPUs) at the same
time.

176 high performance computing

a.2.2.2 Distributed Memory

The world of parallel multiple instruction, multiple data, or MIMD,
computers is, for the most part, divided into distributed-memory
and shared-memory systems (earlier already discussed). From a
programmer’s point of view, a distributed-memory system consists
of a collection of core-memory pairs connected by a network, and the
memory associated with a core is directly accessible only to that core,
as seen in Figure A.2. Message-passing is well suitable to this kind
of system. The implementation of message-passing that we will be
presenting is called MPI. Like OpenMP, MPI is not a new programming
language. It defines a library of functions that can be called from C,
C++, and Fortran programs (target languages also aimed by OpenMP).

Interconnect

CPU

MEMORY

CPU

MEMORY

CPU

MEMORY

CPU

MEMORY

Figure A.2: Nodes in a Distributed Memory System

Many of the HPC applications have been implemented using MPI.
Specially in a GPU cluster environment30

30 A GPU cluster is a
computer cluster in which
each node is equipped with
a GPU. As an example, the

GPU cluster at STFC
Daresbury Laboratory has
its configuration available

in http://www.cse.

scitech.ac.uk/disco/

cseht/cseht.shtml.
Many GPU clusters are

part of the Top500 list.

, the simplest way to start
building an MPI application is to integrate the vendor’s compiler (such
as NVIDIA’s nvcc) for compiling everything. Aspects of programming
languages for GPUs are similar to both MPI and OpenMP in that the
programmer manages the parallel code constructs, although OpenMP
compilers do more of the automation in managing parallel execution.
Several ongoing research efforts aim at adding more automation of
parallelism management and performance optimization to languages
used with GPUs.

a.3 massively parallel processing (mpp)

Michio Kaku, in his book [87], states that by 2020 or soon afterward,
Moore’s law [105] will gradually cease to hold true and Silicon Valley
may slowly turn into a rust belt unless a replacement technology is
found. Transistors will be so small that quantum theory or atomic
physics takes over and electrons leak out of the wires. For example,
the thinnest layer inside your computer will be about five atoms
across. At that point, according to the laws of physics, the quantum

http://www.cse.scitech.ac.uk/disco/cseht/cseht.shtml
http://www.cse.scitech.ac.uk/disco/cseht/cseht.shtml
http://www.cse.scitech.ac.uk/disco/cseht/cseht.shtml

A.4 general-purpose computing on graphics processing unit (gpgpu) 177

theory takes over. The Heisenberg uncertainty principle states that
you cannot know both the position and velocity of any particle. This
may sound counterintuitive, but at the atomic level you simply cannot
know where the electron is, so it can never be confined precisely in an
ultra-thin wire or layer and it necessarily leaks out, causing the circuit
to short-circuit. According to the laws of physics, eventually the Age
of Silicon will come to a close, as we enter the Post-Silicon Era.

Nevertheless, even though Moore’s law is no more valid, technolo-
gies based on parallelism such as Massively Parallel Processing (MPP)
can keep better performance in applications and the global speed of
processing will be continuously increased.

a.4 general-purpose computing on graphics processing

unit (gpgpu)

For more than two decades computer applications had rapid per-
formance increases driven by microprocessor based on a single CPU,
such as those in the Intel® and AMD® families. GPGPU is a fairly re-
cent trend in computer engineering research. GPUs are co-processors
that have been widely optimized for computer graphics processing.
Computer graphics processing is a field dominated by data parallel
operations, particularly linear algebra matrix operations.

In order to understand the main idea behind GPGPU, we present
the hardware details of most commonly used GPU.

a.4.1 Architecture of a Modern GPU

Although many other simpler and cheaper graphics cards are able
to provide GPGPU, we have chosen the dedicated Tesla S1070 GPU
computing system as architecture to depict in this subsection. This
choice is due to two aspects: first, the S1070 is the hardware used in
almost all of our experimental tests; second, Tesla is the first system
released by NVidia as a true system dedicated to GPGPU and it has
the most features available in modern GPUs.

The Tesla S1070 GPU (cf. Figure A.3) computing system is based
on the T10 GPU from NVIDIA. It can be connected to a single host
system via two PCI Express connections to that host, or connected to
two separate host systems via one PCI Express connection to each host.
Each NVIDIA switch and corresponding PCI Express cable connects
to two of the four GPUs in the Tesla S1070. If only one PCI Express
cable is connected to the Tesla S1070, only two of the GPUs will be
used. To connect all four GPUs in a Tesla S1070 to a single host system,
the host must have two available PCI Express slots and be configured
with two cables.

The Tesla S1070 is composed of 4 T10 GPU with 4GB DRAM each
one making a total of 16GB. The massively parallel T10 chip (cf. Fig-

178 high performance computing

Tesla
GPU

Tesla
GPU

Tesla
GPU Tesla

GPU

4GB DRAM

4GB DRAM

4GB DRAM

Power
Supply

Thermal
Management

System
Monitoring

NVIDIA
Switch

NVIDIA
Switch

4GB DRAM

PC
I -

Ex
pr

es
s

C
ab

le
s

to
 H

os
t S

ys
te

m

Figure A.3: Tesla S1070 Card Architecture Overview

ure A.4) has 30 Streaming Multiprocessors (SM) (10 Thread Processors
x 3 SM) with clock frequency of 1.45GHz. Each Streaming Multipro-
cessor contains 8 Streaming Processors. This makes a total of 240

Streaming Processors (SP), i. e. 240 cores where threads can be allo-
cated. With 240 SPs, the T10 exceeds 1 teraflops in single precision
and 87 gigaflops in double precision. Because each SP is massively
threaded, it can run thousands of threads per application. A usual
application typically runs 5000-12,000 threads simultaneously on this
chip. As an comparative example, Intel CPUs support 2 or 4 threads,
depending on the machine model, per core. The T10 supports up to
1024 threads per SM and up to about 30,000 threads for the chip. Thus,
the level of parallelism supported by GPU hardware is increasing
quickly. It is very important to strive for such levels of parallelism
when developing CPU parallel computing applications [91]. Further,
in Figure A.4, each SM owns instructions and data caches, and a small
size (about 16KB) memory shared among SP.

In summary, the T10 GPU belonging to S1070 has the following
features:

• 30 Streaming Multiprocessors @ 1.45 GHz with 4/1 GB RAM.
• 1 TFLOPS single precision (IEEE 754 floating point).
• 87 GFLOPS double precision.
• 8 SP Thread Processors.
• 16K 32-bit registers.
• 2 SFU Special Function Units.
• 1 Double Precision Unit (DP).
• Fused multiply-add.
• Scalar register-based ISA.

A.4 general-purpose computing on graphics processing unit (gpgpu) 179

Geometry Controller

SMC

Texture Units

TPC 1

Texture L1

Geometry Controller

SMC

Texture Units

TPC 10

Texture L1

512-bit Memory Interconnect

L2 ROP

DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM

ROP L2

PCI Interface Input Assembler Thread Execution Manager

I cache
SM

MT issue

C cache

SP SP

SP SP

SP SP

SP SP

Shared
Memory

SFU SFU

DP

I cache
SM

MT issue

C cache

SP SP

SP SP

SP SP

SP SP

Shared
Memory

SFU SFU

DP

I cache
SM

MT issue

C cache

SP SP

SP SP

SP SP

SP SP

Shared
Memory

SFU SFU

DP

I cache
SM

MT issue

C cache

SP SP

SP SP

SP SP

SP SP

Shared
Memory

SFU SFU

DP

I cache
SM

MT issue

C cache

SP SP

SP SP

SP SP

SP SP

Shared
Memory

SFU SFU

DP

I cache
SM

MT issue

C cache

SP SP

SP SP

SP SP

SP SP

Shared
Memory

SFU SFU

DP

Figure A.4: T10 GPU Architecture

180 high performance computing

• Multithreaded Instruction Unit.
• 1024 threads, hardware multithreaded.
• Independent thread execution.
• Hardware thread scheduling.
• 16 KB Shared Memory.
• Concurrent threads share data.
• Low latency load/store.

a.4.2 OpenCL™ as Programming Model for MPP

Compute Device 1Compute Device 1Compute Device 1

Host

Global/Constant Memory Data

Global Memory

Constant Memory

Compute Unit 1

Private
Memory 1

PE 1

Private
Memory M

PE M

Local
Memory 1

Compute Unit N

Private
Memory 1

PE 1

Private
Memory M

PE M

Local
Memory N

Compute Device K

Compute Device 1
K

Figure A.5: OpenCL Platform and Memory Model. Adapted from OpenCL
Specification [106].

Originally, was proposed by Apple, and then turned over to the
Khronos Group [10]. OpenCL is a standard for parallel computing
consisting of a language, API, libraries and a runtime system.

The diagram in Figure A.6 represents the OpenCL specification
as a class diagram using the UML31 notation. The diagram shows31 We introduces UML as

part of Model Driven
Engineering in Chapter B.

both nodes and edges which are classes and their relationships. As a
simplification it shows only classes, and no attributes or operations.
As for relationships it shows aggregations (annotated with a solid
diamond), associations (no annotation), and inheritance (annotated
with a triangular arrowhead). The cardinality of a relationship is
shown on each end of it. A cardinality of "*" represents "many", a
cardinality of "1" represents "one and only one" and a cardinality of
"0:1" represents "optionally one". The navigability of a relationship is
shown using a open regular arrowhead. Enlightening some key points
of this diagram, the three comments show that a "Program" needs the
"DeviceID" when it is built, a "Kernel" needs the "DeviceID" when it is
launche, and yet, a "Kernel" takes "MemObjects" as arguments.

To describe the core ideas behind OpenCL, we will use a hierarchy
of models:

• Platform Model

A.4 general-purpose computing on graphics processing unit (gpgpu) 181

Platform CommandQueue Event

DeviceID Context

Program
MemObject

Kernel Buffer Image

Sampler

*

*

*

*

*

*

*

* **

*

0..1

*

11

*

*

1 1

*

*

1

*

1

*

1

*

*

1

*

1..* *

*

0..1

*

1

Figure A.6: OpenCL UML Class Diagram

• Execution Model
• Memory Model
• Programming Model

a.4.2.1 OpenCL Platform Model

The Platform model for OpenCL is defined also in Figure A.5. The
model consists of a host connected to one or more OpenCL devices.
An OpenCL device is divided into one or more compute units (CUs)
which are further divided into one or more processing elements (PEs).
Computations on a device occur within the processing elements. An
OpenCL application runs on a host according to the models native to
the host platform. The OpenCL application submits commands from
the host to execute computations on the processing elements within
a device. The processing elements within a compute unit execute a
single stream of instructions as SIMD units (execute in lockstep with
a single stream of instructions) or as SPMD units (each PE maintains
its own program counter).

Platform Mixed Version
Support. OpenCL is
designed to support devices
with different capabilities
under a single platform.
This includes devices which
conform to different
versions of the OpenCL
specification. There are
three important version
identifiers to consider for
an OpenCL system: the
platform version, the
version of a device, and the
version(s) of the OpenCL C
language supported on a
device.

a.4.2.2 OpenCL Execution Model, Command Queues and Kernels

OpenCL provides both task and data parallelism. Data movements
are coordinated via com- mand queues which provide a general means
of specifying inter-task relationships and task execution order that
obeys the dependencies in the computation. OpenCL may execute
several tasks in parallel, if they are not dependent. Tasks are com-

182 high performance computing

prised by data-parallel kernels which, similarly to shaders, apply a
single function to a range of elements in parallel. Only restricted syn-
chronization and communication is allowed during kernel execution.
OpenCL kernels execute over an 1, 2 or 3 dimensional index space.
For every element in the index space a work-item is executed. As with
shaders, all work-items execute the same program (kernel) and their
execution may diverge due to branching depending on the data or
their index. The index space is regularly divided into work-groups.
See Figure 2.2. Each work- item is labelled by a global ID, unique
through the whole kernel index space and a local ID, unique in its
work-group. Each work-group is labelled by a unique group ID. A
kernel or a memory operation is first enqueued onto a command
queue. Kernels are executed asynchronously and the host application
execution may proceed right after the enqueue operation. Application
may opt to wait for an operation to complete and an operation (kernel
or memory) may be marked with a list of events that must occur before
it executes. Events are kernel completion and memory operations.
OpenCL traverses the dependence graph between the kernels and
memory transfers in a queue and ensures the correct execution order.
Multiple command queues may be constructed further enhancing
parallelism control across problems and multiple devices.

Gx

Gy

Sx

Sy

Sz

Work-Group (wx,wy)

Work-Item =
(wxSx + sx, wySy + sy, sz)

Figure A.7: OpenCL 3d Kernel of size Gx Gy, comprising of work-groups of
Sx Sy Sz work-items. Adapted from OpenCL Specification [106].

a.4.2.3 OpenCL Memory Model

Each compute device has global memory space which typically
resides in RAM (either system RAM or on the graphics board) (cf.
Table A.1). A constant memory is also global but read-only. Constant
memory residence is implementation dependent. Each compute unit
has local memory which usually resides very near the chip. Local
memory is usually much faster and smaller than global memory. This

A.4 general-purpose computing on graphics processing unit (gpgpu) 183

scarce, fast and read-write resource is useful for communication of
work-items inside their work-groups. Each processing element has
a private memory, which is shielded from other items’ access. Fi-
nally, during run-time each processing element is assigned a set of
registers, residing directly on the chip. Data that cannot be held in
registers is spilled into private memory, which can be very costly. The
OpenCL concurrent-readconcurrent-write (CRCW) memory model
has so-called relaxed consistency which means that different work-
items may see a different view of global memory as the computation
proceeds. Within individual work-items reads and writes to all mem-
ory spaces are ordered. Synchronization between work-items in a
work-group is necessary to ensure consistency. No mechanism for
synchronization between work-groups is provided. Such model en-
sures parallel scalability by requiring explicit synchronisation and
communication, thus forcing programmers to write scalable code. The
OpenCL specification does not explicitly state where each memory
space will be mapped to on individual implementations. This pro-
vides great freedom for vendors on one hand and some uncertainty
for programmers on the other. Fortunately, kernels may be compiled
just-in-time and possible differences may be tackled in run-time.

Table A.1: Memory and Access Policy

Global Constant Local Private

Host Dynamic
allocation

Dynamic
allocation

Dynamic
allocation

No allocation

Read/Write
access

Read/Write
access

No access No access

Kernel No allocation Static
allocation

Static
allocation

Static
allocation

Read/Write
access

Read-Only
access

Read/Write
access

Read/Write
access

a.4.2.4 Programming Model: OpenCL Parallelism and Synchronisation

A barrier mechanism is present for intra-work-group synchroniza-
tion of work-items inside a kernel and for event synchronization on the
host API level. A barrier instruction is an execution point, which must
be encountered by all items. OpenCL defines barriers of two types.
Command queue barriers are global synchronization points that are
enqueued onto command queues and define the events (kernels, mem-
ory operations or other barriers) which must all encounter them. Other
means of in-kernel synchronization include atomic instructions on
local memory or global memory, optionally present in some OpenCL
implementations and mandatory since OpenCL 1.1. Inter-work-group
synchronization mechanisms in kernels are not available. Task paral-

184 high performance computing

lelism and synchronization between individual kernels and memory
transfer operations are handled by the command queues in API. Barri-
ers are kernel instructions and all work-items which reach the barrier
are stalled until the arrival of the last work-item. Kernel barriers are
of two main types. The instruction barrier requires all work-items
to execute before they are allowed to continue. All work-items of a
work-group must encounter this instruction. Instructions mem_fence
, read_mem_fence and write_mem_fence order loads and/or stores,
which means that pending memory operations will be committed to
memory before the execution proceeds.

a.4.2.5 OpenCL C Language

OpenCL kernels are programmed using a ISO C99based language.
This language misses some C99 features namely standard C99 headers,
function pointers, recursion, variable length arrays and bit fields. On
the other hand, it supports some new necessary additions including
vector data types (e.g. float4 , int2) and address space qualifiers (
__constant , __local , __global and the implicit __private) and several
other keywords (e.g. __kernel). The OpenCL C Language also
includes built-in support for synchronization, work-item and work-
group indexing, whole range of mathematical functions and image
manipulation routines. Many of the functions are similar to their
GLSL counterparts. An example of an OpenCL kernel is shown in
Listing 2.2.

atomic instructions OpenCL 1.0 optional extensions include
atomic instructions. Basic atomic instructions include operations
such as addition, exchange or decrementation and extended atomic
instructions include more complex operations including a minimum,
maximum or xor. Atomic instructions2.4. OPENCL 9 operation may be
supported on global memory, local memory or both. The transactions
are guaranteed to be atomic only for the device executing them, not
across devices on OpenCL 1.0.

a.4.2.6 OpenCL Versions

The current version of OpenCL is 1.2. Some of the major enhance-
ments and new features compared to the first version are: Host-thread
safety. Now it’s safe to execute OpenCL API calls from any host thread.
Sub-buffer objects distribute buffer regions across multiple devices.
Three-component vector data types as in GLSL. Global work-offsets
enabling kernels to operate on different portions of the NDRange.
Memory destructor callback Memory operations on rectangular sub-
regions of buffers as in GLSL. Several new kernel instructions. Im-
proved OpenGL interoperability. Optional features from OpenCL 1.0

A.4 general-purpose computing on graphics processing unit (gpgpu) 185

(e.g. atomic instructions, double and half precision support) are new
part of the 1.1 core.

B
M O D E L - D R I V E N E N G I N E E R I N G

According to Stuart Kent [90], Model-Driven Engineering (MDE) [133]
is wider in scope than the Object Management Group (OMG)’s Model-
Driven Architecture (MDA). The MDA strategy envisages a world
where models play a more direct role in software production, be-
ing amenable to manipulation and transformation by machine. MDE

combines process and analysis with architecture.
As development in MDE and associated tools and technologies are

increasing, it has become a promising approach not only for software
engineering but for hardware as well as system engineering, attracting
much attention in industry and academia. Furthermore, MDE plays a
very important role, which contributes to modeling, automatic code
generation and bridging between different technologies.

The key integral concept in MDE is a model. Two core concepts
regard a model in MDE. First, the representation (a model is a rep-
resentation of a system); second, conformance (a model conforms to
a metamodel) [17]. These two concepts are distinctly presented in
Section B.1. Another key notion of MDE, model transformation is also
discussed in Section B.3.

b.1 models and metamodels

Development of complex software systems using modeling lan-
guages to specify models at high-levels of abstraction is the philosophy
underlying MDE. In this domain, there are two schools of thought
that advocate the development of such modeling languages : general-
purpose modeling and domain-specific modeling. As an example,
Unified Modeling Language (UML) (cf. next Section) is an example of
general-purpose modeling with a large number of classes and prop-
erties to model various aspects of a software system using the same
language. For domain-specific modeling, researchers have been cre-
ating Domain-Specific Language (DSL) based metamodels in order to
attain this goal. Moreover, extending UML with profiles is another way
to aim domain-specific modeling. UML and their profiles are subject
to next section. In this section, we present the concept of model and
metamodel.

187

188 model-driven engineering

In summary, Figure B.1 presents the relationship among system,
model, and metamodel. A particular view (or aspect) of a system can be
captured by a model and that each model is written in the language
of its metamodel. Systems are represented by models at an abstrac-
tion level. A metamodel is also a model. Indeed, a metamodel is a
model of a modeling language. A model conforms to a metamodel
in order to represent a system. Yet, a metamodel is presented as a
diagram that defines the concepts of the language used to model a
system. A 4-layer architecture is used to define modeling languages
as seen in Table B.1. This provides the the roles general relationship
among instances, models, metamodels, and meta-metamodels. These
concepts are recurrently referenced in this thesis. They are part of the
identification of elements in the process of abstraction and refinement
of models.

Table B.1: Modeling Languages Architecture according to MDA

Level Description MDA Termin. Example

3 Language for defin-
ing languages

meta-metamodel A MOF Class
(MetaClass)

2 Language
definition

metamodel a UML Class

1 Domain concepts /
Language elements

model Class "Task"

0 Domain/Language
instances

instance Object task =
"Multiplication"

b.1.1 Abstraction and Refinement of Models

Abstraction is a process that selectively removes some information
from a description to focus on the information that remains.

b.2 uml and profiles

The Unified Modeling Language (UML) [115] defines a notation and
a metamodel. It is a language for visualizing, specifying, constructing
and documenting the artifacts of software systems. It is also a general-
purpose modeling language that can be used with all major object
methods and applied to all application domains.

Since UML is not a methodology, it does not require any formal work
products. Yet it does provide several types of diagrams that, when
used within a given methodology, increase the ease of understanding
an application under development. There is more to UML than these
diagrams. However, we confine the UML concepts to the diagrams that
we have used in our methodology as follow:

B.2 uml and profiles 189

MetaModel

Model

System

representedBy

conformsTo

Figure B.1: System, Model, and Metamodel Relationships

• The Composite Structure Diagram is one of the artifacts added
to UML 2.0. It shows the internal structure (including parts and
connectors) of a structured classifier or collaboration. This dia-
gram visualizes the internal structure of a class or collaboration.
Composite structure diagram is a kind of component diagram
mainly used in modeling a system at micro point-of-view.

• The Deployment Diagram helps to model the physical aspect
of an Object-Oriented software system. It models the run-time
configuration in a static view and visualizes the distribution of
components in an application. In most cases, it involves mod-
eling the hardware configurations together with the software
components that lived on.

Moreover, below there is the description of some important elements
defined in UML. These elements are used in our modeling approach.

• A class describes a set of objects that share the same specifications
of features, constraints, and semantics. Class is a kind of classifier
whose features are attributes and operations. Attributes of a class
are represented by instances of Property that are owned by the
class. Some of these attributes may represent the navigable ends
of binary associations.

• A part represents a set of instances that are owned by a containing
classifier instance. When an instance of the containing classifier
is created, a set of instances corresponding to its parts may be
created either immediately or at some later time. These instances
are instances of the classifier typing the part. A part specifies that
a set of instances may exist; this set of instances is a subset of the
total set of instances specified by the classifier typing the part.

• A port is a property of a classifier that specifies a distinct interac-
tion point between that classifier and its environment or between

190 model-driven engineering

the (behavior of the) classifier and its internal parts. Ports are
connected to properties of the classifier by connectors through
which requests can be made to invoke the behavioral features of
a classifier.

• A connector specifies a link that enables communication between
two or more instances. Usually they are used to connect two
ports.

• A dependency is a relationship that signifies that a single or a
set of model elements requires other model elements for their
specification or implementation. This means that the complete
semantics of the depending elements is either semantically or
structurally dependent on the definition of the supplier element(s).
As an extension, an abstraction is a relationship that relates two
elements or sets of elements that represent the same concept at
different levels of abstraction or from different viewpoints. In the
metamodel, an Abstraction is a Dependency in which there is a
mapping between the supplier and the client.

• An artifact is the specification of a physical piece of information
that is used or produced by a software development process, or
by deployment and operation of a system. Examples of artifacts
include model files, source files, scripts, and binary executable
files, a table in a database system, a development deliverable, or
a word-processing document, a mail message.

• A manifestation is the concrete physical rendering of one or
more model elements by an artifact.

• An instance specification is extended with the capability of being
a deployment target in a deployment relationship, in the case that
it is an instance of a node. It is also extended with the capability
of being a deployed artifact, if it is an instance of an artifact.

b.2.0.1 UML Profiles

In some occasions UML may not be precise enough for modeling
specific problem domain. The UML Profile is an extension mechanism
for customizing the models for specific domains or platforms. Exten-
sion mechanisms allow refining standard semantics in strictly additive
manner, so that they cannot contradict standard semantics [4].

Indeed, the profiles package included in UML 2.0 defines a set
of UML artifacts that allows the specification of an MetaObject Fa-
cility (MOF) model to deal with the specific concepts and notation
required in particular application domains (e. g., real-time, business
process modeling, finance, etc.) or implementation technologies (e. g.,
.NET, J2EE, or CORBA). A UML profile is defined as a UML package
stereotyped ÒprofileÓ, that can extend either a metamodel or another
profile. UML Profiles are defined in terms of three basic mechanisms:
stereotypes, constraints, and tagged values.

B.2 uml and profiles 191

• Stereotype is a profile class which defines how an existing meta-
class may be extended as part of a profile. It enables the use of a
platform or domain specific terminology or notation in place of,
or in addition to, those used for the extended metaclass.

• Tagged value are the values of the properties of a stereotype
applied to a model element.

• Constraint is a packageable element representing condition, re-
striction or assertion related to some of the semantics of an ele-
ment (that owns the constraint).

b.2.1 Introduction to MARTE

The UML profile for MARTE (or MARTE profile) [116] extends the
possibilities for modeling of application and architecture and their
relations. In addition, MARTE allows to extend the performance
analysis and task scheduling based on target platform architecture.
MARTE consists in defining foundations for model-based description
of real time and embedded systems. These core concepts are then
refined for both modeling and analyzing concerns. Modeling parts
pro- vide support required from specification to detailed design of
real-time and embedded characteristics of systems. MARTE concerns
also model-based analysis. In this perspective, the intent is not to
define new techniques for analyzing real- time and embedded sys-
tems, but to support them. Hence, it provides facilities to annotate
models with information required to perform specific analysis. Espe-
cially, MARTE focuses on performance and schedulability analysis.
However, it defines also a general analysis framework which intends
to refine/specialize any other kind of analysis. Among others, the
benefits of using this profile are thus:

• providing a common way of modeling both hardware and soft-
ware aspects of a RTES in order to improve communication be-
tween developers;

• enabling interoperability between development tools used for
specification, design, verification, code generation, etc.;

• fostering the construction of models that may be used to make
quantitative predictions regarding real-time and embedded fea-
tures of systems taking into account both hardware and software
characteristics.

Allocation Modeling (Alloc) from Foundations, Generic Resource
Modeling (GRM) and Generic Component Model (GCM) from Design
Model, and Repetitive Structure Modeling (RSM) annex are packages
that provide the main resources to model and to describe our entire
application. In particular, RSM provides concepts to allow to express
the inherent parallelism of applications.

192 model-driven engineering

Model Designer

MARTE�specification

build�Model

annotate�Model�

for�Analysis

analyze�Model

define�

Methodology

adapt�MARTE�

specification

build�Execution�

Platform�Model

provide�Execution�

Platform

Model Analyst

Methodology

Provider

Execution Platform

Provider

<<include>>

<<include>>

Figure B.2: MARTE Use-Case

MARTE foundations

« profile »
CoreElements

« profile »
NFP

« profile »
Time

« profile »
GRM

« profile »
Alloc

MARTE design model

« profile »
GCM

« profile »
HLAM

« profile »
SRM

« profile »
HRM

MARTE analysis model

« profile »
GQAM

« profile »
SAM

« profile »
PAM

MARTE annexes

« profile »
VSL

« profile »
RSM

« modelLibrary »
MARTE_Library

Figure B.3: Architecture of the UML profile for MARTE

B.2 uml and profiles 193

b.2.2 RSM Package and Array Oriented Language (ArrayOL)

The RSM package of Modeling and Analysis of Real-Time and Em-
bedded Systems (MARTE) allows to describe regular parallelism in a
system: functional algorithms, hardware architectures topologies, allo-
cation of functionality on execution platforms. The main advantage
of the RSM concepts is that they provide a factorized and compact
representation of potentially large regular structures. This is very
helpful for the design scalability, typically when we work with mas-
sively parallel systems. An overview of the RSM package is shown
in Figure B.4. All its basic stereotypes inherit from the LinkTopology
stereotype, which generalizes the nature of the different kinds of links
in a regular structure. These links are Tiler, InterRepetition, Default-
Link and Reshape. RSM is strongly inspired in ArrayOL specification
language. Since ArrayOL is an important part of our code generation
approach, the remaining of this subsection is dedicated to clarify the
most key points of its concepts.

<<profile>>
RSM

<<stereotype>>
DefaultLink

<<metaclass>>
UML::Connector

<<metaclass>>
UML::ConnectorEnd

<<stereotype>>
LinkTopology

<<stereotype>>
InterRepetition

<<stereotype>>
InterRepetition

<<stereotype>>
Tiler

repetitionSpaceDependence : IntegerVector [1]
isModulo : Boolean = false

patternShape : ShapeSpecification [1]
repetitionSpace : ShapeSpecification [1]

origin : IntegerVector
paving : IntegerMatrix
fitting : IntegerMatrix
tiler : TilerSpecification

Figure B.4: RSM Package Overview

b.2.2.1 Specification Language ArrayOL
Remark: ArrayOL is only a
specification language, no
rules are provided for
executing an application
described with ArrayOL,
but a scheduling policy can
be easily computed using
this description.

ArrayOL [45, 18, 19] is a specification language developed by Alain
Demeure [3] at Thales Underwater System. This language allows us
specifying data-intensive signal processing applications taking into
account large data and the potential parallelism of tasks.

194 model-driven engineering

Initially, this language’s designers found that most of the complex-
ities of the specification of parallel applications was the way how
applications access their data. For this reason ArrayOL aims only
the data dependence specification (either in data or task parallelism),
without taking into account the task functionalities. The intended ap-
plications usually work on multidimensional arrays. The complexity
of these applications does not come from the elementary functions
they combine, but from their combination by the way they access the
intermediate arrays. Indeed, most of the elementary functions are
sums, dot products, solvers, or Fourier transforms, which are well
known and often available in functions libraries. The difficulty and
the variety of those data-intensive signal processing applications come
from the way these elementary functions access their input and output
data as parts of multidimensional arrays. The complex access patterns
lead to difficulties to schedule these applications efficiently on parallel
and distributed execution platforms. As these applications handle
large amounts of data under tight real-time constraints, the efficient
use of the potential parallelism of the application on parallel hardware
is mandatory.

ArrayOL has a single assignment formalism. No data element is
ever written twice, even it can be read several times. ArrayOL can be
considered as a first order functional language.

b.2.2.2 Task Parallelism Specification

The task parallelism is represented by a compound task. The com-
pound description is a simple Directed Acyclic Graph (DAG). Each
node represents a task and each edge a dependence connecting two
conform ports (same type and shape). There is no relation between
the shapes of the inputs and the outputs of a task. So a task can
read two two-dimensional arrays and write a three-dimensional one.
The creation of dimensions by a task is very useful, a very simple
example is the Fast Fourier Transform (FFT) algorithm which creates a
frequency dimension.

For instance, we will describe the ArrayOL usage in the Downscaler
case study seen in Chapter 3 and summarily shown in Figure B.5. The
tasks are represented by named rectangles, their ports are squares
on the border of the tasks. The shape of the ports is written as a
t-uple of positive numbers or∞. The dependences are represented by
connectors between ports and the direction is indicated by following
tasks from left to right. Sometimes we can have an additional dimen-
sion representing the time. For instance, in Figure B.5, if we change
{288, 352} to {288, 352,∞} we add the infinite (or at least undefined)
flow of frames32 .32 For this application, a

frame has the CIF format:
352 rows and 288 lines.

With ArrayOL it is not possible to express a data flow graph. Indeed,
the internal behavior of tasks is not explicit. Thus, this bounds the
scheduling definition to data dependence specifications.

B.2 uml and profiles 195

ihf: HorizontalFilter ivf: VerticalFilter

vob: Integer{128,132}

vir: Integer{288,132}

hob: Integer{288,132}

hir: Integer{288,352}

vog: Integer{128,132}

vor: Integer{128,132}

vig: Integer{288,132}

vib: Integer{288,132}

hig: Integer{288,352}

hib: Integer{288,352}

hog: Integer{288,132}

hor: Integer{288,132}

Figure B.5: The task parallelism in ArrayOL. Two tasks

b.2.2.3 Data Parallelism Specification

Currently, tasks have the repetition specification from their shapes,
ant this also provide information about the data-parallelism. Indeed,
each repetition of repeated tasks is reckoned as an independent ele-
mentary task33 . Thus, their overall order (sequential or parallel) does 33 However, there are some

cases where inter-repetition
dependence can exist.

not matter.
Moreover, each instance of the repeated task operates with sub-

arrays of the inputs and outputs of the repetition. For a given input or
output, all the sub-array instances have the same shape, and they are
composed of regularly spaced elements and are also regularly placed
in the target array. This hypothesis allows a compact representation of
the repetition and is coherent with the application domain of ArrayOL

which describes very regular algorithms.
As those sub-arrays have a regular shape, they are called patterns

when considered as the input arrays of a repeated task and tiles when
considered as a set of elements of the arrays of the repeated task. In
order to give all the necessary information to create these patterns, a
tiler is associated to each array (i. e. each edge). Actually, a tiler is able
to build the patterns from an input array, or to store the patterns in an
output array. It describes the coordinates of the elements of the tiles
from the coordinates of the elements of the patterns. It contains the
following information:

• o: origin, the global coordinates within the input array used as
reference for each gathered pattern;

• F: Fitting, is the matrix associated to each pattern in order to
obtain the elements that compose a pattern;

• P: Paving, is the matrix associated to each instance of the repeti-
tion space of a repeated task in order to point out the origin for
its corresponding pattern.

finding a reference for a given pattern. For this opera-
tion, we use the origin and paving definitions. In summary, this process
is defined in the following formula:

∀r|(zerorep 6 r < srep), refr = o+ P.r mod sarray (B.1)

196 model-driven engineering

where r is the index in the repetition space (comprised between
zerorep and srep), and sarray is the multidimensional size of the array.
Figure B.6 shows an example of application of the formula (B.1). For
each r in the repetition space srep = (4), we have a new origin point in
the array. From this point we can compute the elements of the pattern.

o = ()00 P = ()01 Sarray = ()34 Srep = ()4

0

3

0 2

r = 0

0

3

0 2

r = 1

0

3

0 2

r = 2

0

3

0 2

r = 3

Example: ref = (0,0) + (0,1).(2) = (0,2); mod (3,4) = (0,2)2

Figure B.6: Paving Example in ArrayOL

defining the elements for a given pattern. Once we have
the ref defined for each instance of the repetition space, we can point
out the elements that will fill34 the corresponding pattern. For this34 Here, it depends on the

type of tiler. For instance,
for input tilers, the

elements in the input array
are "copied" to the pattern.
However, for output tilers

elements in the pattern are
"copied" to the output

array.

operation, we use the ref previously obtained and fitting definitions.
Formula (B.2) and Figure B.7 present the general application and an
example based on this definition.

∀i|(zeropat 6 i < spat), ei = ref + F.i mod sarray (B.2)

where i is the index in the pattern (comprised between zeropat and
spat), and again sarray is the multidimensional size of the array.

Both previously defined formulas (B.1)(B.2) can be merged into only
a single one giving the index for any element in the pattern knowing
its r and its i, as seen below:

∀(r,i)|((zerorep 6 r < srep), (zeropat 6 i < spat)),

er,i = o+
(
P F

)
.

(
r

i

)
mod sarray

(B.3)

b.2.2.4 ArrayOL Execution Model

Since ArrayOL is a specification language, there is no execution
model specifically defined for it. Philippe Dumont, in his thesis [49],

B.3 model transformation 197

ref =()02 F = ()10

Spat = ()3

0 1 2

0

3

0 2

Example: e = (0,2) + (1,0).(1) =
(1,2); mod (3,4) = (1,2)

1

i
Sarray = ()34

Figure B.7: Pattern Distribution in ArrayOL

wrote a study about possible execution models supported by ArrayOL.
Here, we emphasizes three of those models:

• sequential: all tasks in a task graph as well as repetitions of tasks
execute sequentially regarding their data dependence;

• SPMD: all tasks ready to execute can do it taking advantage of
parallel systems;

• pipeline: the whole system can execute in parallel according to a
data flow, tasks are executed as soon as its input data is available.

As seen in Chapter A, GPUs are SPMD rather than SIMD since a
complete program is run on multiple values. Thus, ArrayOL is well
suitable to our execution model.

b.3 model transformation

Model Transformations [81, 70] are a key prerequisite for MDE and
therefore represent an active research area. Various model trans-
formation languages are available, whereas the languages can be
categorized into different approaches. The basic idea and coherence of
model transformation can be seen in Figure B.8. The most basic entity
is the meta-metamodel, as can be seen at the top of the illustration.
This is called 3rd level of the hierarchy. The meta-metamodel only
contains basic elements for a universal language, which is suffiient for
specifying metamodels (cf. Table B.1). In MDA, which is the model
driven engineering approach by OMG, MetaObject Facility (MOF) is
used as meta-metamodel.

Besides metamodels that describe input and output models, a spe-
cial metamodel resides at level 2, which is specific for model trans-
formation, namely MMT. MMT denotes the metamodel of the model
transformation language used. Although most transformation lan-
guages use textual syntax rather than MOF-based models, many model
transformation languages still are specified using a meta-metamodel

198 model-driven engineering

like MOF, like it is the case with Query/View/Transformation (QVT) [70,
73] and Atlas Transformation Language (ATL) [85]. In such cases, the
textual representation is interpreted as concrete syntax. At level 1, the
models themselves, in this case Model1 and Model2, can be found.
Models at the 1st level are able to use constructs defined in the meta-
models at level M2. From a model transformation point of view, a
specific transformation also resides at this level, because it is an in-
stance of a model transformation language metamodel, and therefore
uses the features provided by the metamodel. A model transforma-
tion uses models at the same level as input and output models. For
example, a model transformation written in QVT is conform to the
QVT metamodel at level 2 and operates on models at level 1, which
themselves again are conform to other metamodels at level 2. Thus, a
Model-to-Model Transformation (M2M) uses often a model as source
and/or target and sometimes the same model as inout model (source
and target at the same time).

Model 1 Model 2

Level 1

Level 2

Transformation
Code

MM 1 MM 2

Level 3

MM T

Transformation
Execution

MMM

conforms toconforms to conforms to

conforms to

conforms to conforms to

conforms to

conforms to

uses uses

input output

Figure B.8: Model Transformation Pattern.Based on [81]

In our works we do not use ATL. We have chosen QVT aiming at
retaining compatibility with previous modules and easy handling.
Furthermore, ATL has many similarities with QVT. QVT is actually a
collection of three transformation languages, but only the Operational
Mapping Language (OML) was used in our implementations.

B.3 model transformation 199

b.3.1 Model Refactoring

Model transformation can be used for model refactoring, specifically
through the use of in-place transformations. Using a transformation
defined on a model that targets the same instance as the input model,
it is possible to create complex refactorings. Model refactoring is
again mentioned in Chapter 2 as part of the refactoring and model
transformations strategies chosen by Gaspard2.

b.3.2 Model Merge

QVT Operational Mapping Language (introduced in next subsec-
tion) is capable of dealing with multiple input and output models.
One application of this is for merging models taking elements from
several input models and creating another one containing elements
transformed from different sources. This is an interesting aspect for
our approach because this allows us creating a model library of static
elements.

b.3.3 M2M QVT Operational Mapping Language

As an Object Constraint Language (OCL) [117]-based procedural lan-
guage, OML provides a full method for defining M2M transformations.
Actually, OCL is used in the "Query" from QVT. Much as with a Java
class file, an OML definition (*.qvto file) usually comprehends a list
of imported models, a main operation, and a series of mappings and
queries (like class methods). Aside from the need to be familiar with
the OCL and some extensions added to produce side effects, OML
should be fairly easy for most developers to get started using. Those
already familiar with OCL should find it much easier to use.

b.3.3.1 Mapping operations as refinements of relations

A transformation specifies a set of relations that must hold between
the model elements of a set of candidate models. These models are
named, and the types of elements they can contain are restricted to
those within a set of referenced packages. A transformation execution
is in a particular direction, which is defined as the selection of one
of the models as a target. The execution of this kind of relational
transformation proceeds by attempting to make all the relations hold
by modifying only the target model.

An Operational Transformation is defined as a refinement of a rela-
tional transformation on a given direction. It is invokable explicitly
using a signature which defines, firstly, the constraints for a model to
be a valid participant and, secondly, the role played by each model in
the transformation (input/output/inout classification). An Operational

200 model-driven engineering

Transformation, in turn, defines MappingOperations which are defined
as refinements of Relations for a given direction. In addition it defines
a main operation which provides an entry point for the execution of
the transformation.

A Mapping Operation is syntactically described by a signature, a
guard (a when clause), a mapping body and a postcondition (a where
clause). Conceptually, a mapping operation refines a relation which
is the owner of the when and where clauses. In addition, the relation
imposes constraints on the signature of the operation, which should
be consistent with the relation domain types.

A mapping may have three different sections: an initialization
section, a population section and a termination section. None of three
sections is mandatory. Also a mapping may declare a guard (when
clause) to restrict the applicability of the rule and a postcondition
(where clause). The general notation, when there is no shorthand
applying, is seen in Listing B.1:

Listing B.1: Launchtopology Computation directly from Task’s Shape

1 mapping dirkind0 X::mymapping (dirkind1 p1:P1, dirkind2 p2:P2) : r1:

R1, r2:R2

2 when { ... }

3 where { ... }

4 {

5 init { ... }

6 population { ... }

7 end { ... }

8 }

Where dirkind refers to in/inout/out direction kinds.

b.4 code generation

In order to generate code, we have to transform the world of models
to text. Model-to-Text Transformation (M2T) enables transformations
of models to various text artifacts such as code, deployment specifica-
tions, reports and application documentation.

While QVT standard addresses the needs of model-to-model transfor-
mation, the MOF Model to Text (MOFM2T) [114] standard addresses
how to translate a model to various text artifacts such as code, deploy-
ment specifications, reports, documents, etc. Essentially, the MOFM2T
standard needs to address how to transform a model into a linearized
text representation. An intuitive way to address this requirement is a
template based approach wherein the text to be generated from mod-
els is specified as a set of text templates that are parameterized with
model elements. A template-based approach is used wherein a tem-
plate specifies a text template with placeholders for data to be extracted
from models. These placeholders are essentially expressions specified
over metamodel entities with queries being the primary mechanisms

B.4 code generation 201

for selecting and extracting the values from models. These values
are then converted into text fragments using an expression language
augmented with a string manipulation library. Templates can be
composed to address complex transformation requirements. Large
transformations can be structured into modules having public and
private parts.

In 2006, the project Acceleo is born under the GNU Public Licence
(GPL). In 2009, while moving to Acceleo 3, the project has been ac-
cepted in the Eclipse Foundation. During this transition, the language
used by Acceleo to define a code generator has been changed to
use the standard from the OMG for model to text transformation,
MOFM2T. In the next chapter, we present again Acceleo, however in
the Gaspard2 context.

B I B L I O G R A P H Y

[1] Adolf Abdallah. Conception de SoC à Base d’Horloges Abstraites :
Vers l’Exploration d’Architectures en MARTE. PhD thesis, Univer-
sité des Sciences et Technologie de Lille - Lille I, March 2011. in
French. (Cited on page 39.)

[2] AccelerEyes. Jacket on Matlab. http://www.accelereyes.com/
products/jacket, 2011. (Cited on page 27.)

[3] Alain Demeure and Anne Lafage and Emmanuel Boutillon and
Didier Rozzonelli and Jean-Claude Dufourd and Jean-Louis
Marro. Array-OL : Proposition d’un Formalisme Tableau pour
le Traitement de Signal Multi-Dimensionnel. In Gretsi, Juan-Les-
Pins, France, September 1995. in French. (Cited on page 193.)

[4] S.S. Alhir. Guide to applying the UML. Springer professional
computing. Springer, 2002. (Cited on page 190.)

[5] Vincent Aranega, Jean-Marie Mottu, Anne Etien, and Jean-Luc
Dekeyser. Traceability mechanism for error localization in model
transformation. In proceedings of the ICSOFT 2009 Conference,
Sofia, Bulgaria, July 2009. (Cited on page 108.)

[6] Vincent Aranega, Anne Etien, and Jean-Luc Dekeyser. Using
an Alternative Trace for QVT. In Workshop on Multi-Paradigm
Modeling, Olso, Norway, October 2010. (Cited on page 108.)

[7] Vincent Aranega, Jean-Marie Mottu, Anne Etien, and Jean-Luc
Dekeyser. Traceability for Mutation Analysis in Model Transfor-
mation. In Juergen Dingel and Arnor Solberg, editors, Models in
Software Engineering, volume 6627 of Lecture Notes in Computer
Science, pages 259–273. Springer Berlin / Heidelberg, 2011. ISBN
978-3-642-21209-3. (Cited on page 108.)

[8] Peter J. Ashenden. The Designer’s Guide to VHDL. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edition,
2001. ISBN 1558606742. (Cited on page 40.)

[9] Rabie Ben Atitallah. Modèles et simulation de systèmes sur puce
multiprocesseurs - Estimation des performances et de la consomma-
tion d’énergie. PhD thesis, Université des Sciences et Technologie
de Lille, December 2007. in French. (Cited on page 39.)

[10] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst.

203

http://www.accelereyes.com/products/jacket
http://www.accelereyes.com/products/jacket

204 bibliography

Templates for the Solution of Linear Systems: Building Blocks for Iter-
ative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994. (Cited
on page 131.)

[11] J. Bastos and N. Sadowski. Electromagnetic modeling by finite
element methods. Electrical engineering and electronics. Marcel
Dekker, 2003. ISBN 9780824742690. (Cited on page 130.)

[12] Nathan Bell and Michael Garland. Efficient sparse matrix-vector
multiplication on CUDA. NVIDIA Technical Report NVR-2008-
004, NVIDIA Corporation, December 2008. (Cited on page 145.)

[13] Rabie Ben Atitallah, Lossan Bonde, Smail Niar, Meftali, and
Samy Jean-Luc Dekeyser. Multilevel MPSoC Performance Eval-
uation Using MDE Approach. In International Symposium on
System-on-Chip 2006 (SOC 2006), Tampere, Finland, November
2006. (Cited on page 36.)

[14] Siegfried Benkner. Optimizing irregular hpf applications using
halos. Concurrency - Practice and Experience, 12(2-3):137–155, 2000.
(Cited on page 132.)

[15] Beowulf.org. Beowulf Project. http://www.beowulf.org, 2011.
(Cited on page 169.)

[16] Natacha BEREUX. "code_Carmel3D": mise en oeuvre de la
version 1.0. Research Report H-R25-2008-03705-FR, EDF R&D,
Oct 2008. In French. (Cited on page 131.)

[17] Jean Bézivin. On the unification power of models. Software and
System Modeling, 4(2):171–188, 2005. (Cited on page 187.)

[18] Pierre Boulet. Array-OL Revisited, Multidimensional Inten-
sive Signal Processing Specification. Research Report RR-
6113, INRIA, February 2007. URL http://hal.inria.fr/

inria-00128840_v3. (Cited on page 193.)

[19] Pierre Boulet. Formal Semantics of Array-OL, a Domain Spe-
cific Language for Intensive Multidimensional Signal Process-
ing. Research Report RR-6467, INRIA, March 2008. URL http:

//hal.inria.fr/inria-00261178_v2. (Cited on page 193.)

[20] Pierre Boulet. Formal Semantics of Array-OL, a Domain Spe-
cific Language for Intensive Multidimensional Signal Process-
ing. Technical report, INRIA, march 2008. Research Report
RR-6467 in http://hal.inria.fr/inria-00261178_v2. (Cited
on page 36.)

[21] Emmanuel Cagniot. Algorithmes Data-parallèles Irréguliers Ap-
pliqués à la Simulation Éléctromagntique Tridimensionelle. PhD the-
sis, Université des Sciences et Technologie de Lille, December
2000. in French. (Cited on page 132.)

http://www.beowulf.org
http://hal.inria.fr/inria-00128840_v3
http://hal.inria.fr/inria-00128840_v3
http://hal.inria.fr/inria-00261178_v2
http://hal.inria.fr/inria-00261178_v2
http://hal.inria.fr/inria-00261178_v2

bibliography 205

[22] CAPS. HMPP. http://www.caps-enterprise.org, 2011. (Cited
on page 24.)

[23] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: a
declarative language for real-time programming. In Proceedings
of the 14th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, POPL ’87, pages 178–188, New York, NY,
USA, 1987. ACM. ISBN 0-89791-215-2. (Cited on page 39.)

[24] CEA. Papyrus - Open Source Tool for Graphical UML2 Model-
ing. http://www.papyrusuml.org, 2011. (Cited on page 113.)

[25] CEA and EDF and OpenCASCADE. SALOME - The Open
Source Integration Platform for Numerical Simulation. http://
www.salome-platform.org, 2011. (Cited on pages 133 and 147.)

[26] Ali Cevahir, Akira Nukada, and Satoshi Matsuoka. High per-
formance conjugate gradient solver on multi-gpu clusters using
hypergraph partitioning. Computer Science - Research and Devel-
opment, 25:83–91, 2010. ISSN 1865-2034. URL http://dx.doi.

org/10.1007/s00450-010-0112-6. 10.1007/s00450-010-0112-6.
(Cited on page 158.)

[27] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Us-
ing OpenMP: Portable Shared Memory Parallel Programming (Sci-
entific and Engineering Computation). The MIT Press, 2007. ISBN
0262533022, 9780262533027. (Cited on page 175.)

[28] Indranil Chowdhury and Jean-Yves L’Excellent. Some Ex-
periments and Issues to Exploit Multicore Parallelism in a
Distributed-Memory Parallel Sparse Direct Solver. Research
Report RR-7411, INRIA, 2010. Research Report RR-7411 in
http://hal.inria.fr/inria-00524249. (Cited on page 135.)

[29] Arthur I. Cohen. Rate of Convergence of Several Conjugate
Gradient Algorithms. SIAM Journal on Numerical Analysis, pages
248–259, June 1972. (Cited on page 147.)

[30] Consortium Scilab (DIGITEO). Scilab. http://www.scilab.org,
2011. (Cited on page 2.)

[31] Inc Cray Research. CRAY-1 computer system reference manual
224004. Cray Research, Inc., 1976. URL http://books.google.

com/books?id=vNliGwAACAAJ. (Cited on page 171.)

[32] E. de Jong, E.M. Paalvast, H.J. Sips, and M.R. van Steen.
High-level specification tools for parallel application develop-
ment. In CompEuro ’92 . ’Computer Systems and Software Engi-
neering’,Proceedings., pages 163 –168, may 1992. doi: 10.1109/
CMPEUR.1992.218516. (Cited on page 5.)

http://www.caps-enterprise.org
http://www.papyrusuml.org
http://www.salome-platform.org
http://www.salome-platform.org
http://dx.doi.org/10.1007/s00450-010-0112-6
http://dx.doi.org/10.1007/s00450-010-0112-6
http://hal.inria.fr/inria-00524249
http://www.scilab.org
http://books.google.com/books?id=vNliGwAACAAJ
http://books.google.com/books?id=vNliGwAACAAJ

206 bibliography

[33] Jacques Chassin de Kergommeaux and Philippe Codognet.
Parallel logic programming systems. ACM Comput. Surv., 26:
295–336, September 1994. ISSN 0360-0300. doi: http://doi.
acm.org/10.1145/185403.185453. URL http://doi.acm.org/10.

1145/185403.185453. (Cited on page 2.)

[34] César Olavo De Moura Filho, Anne Etien, Julien Taillard, Cedric
Dumoulin, and Frédéric Guyomarc’H. Component-based Mod-
els Going Generic : the MARTE Case-Study. Research Report
RR-6632, INRIA, 2008. (Cited on pages 162 and 164.)

[35] Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h,
Yvonnick Le Menach, and Jean-Luc Dekeyser. Parallel Sparse
Matrix Solver on the GPU Applied to Simulation of Electrical
Machines. In Compumag 2009, Florianopolis, Brazil, November
2009.

[36] Antonio Wendell De Oliveira Rodrigues, Vincent Aranega, Anne
Etien, Frédéric Guyomarc’h, and Jean-Luc Dekeyser. Enabling
Traceability in an MDE Approach to Improve Performance of
GPU Applications. Rapport de recherche RR-7720, INRIA, Au-
gust 2011. Research Report RR-7720 in http://hal.inria.fr/

inria-00617912.

[37] Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h,
and Jean-Luc Dekeyser. Using ArrayOL to Identify Potentially
Shareable Data in Thread Work-Groups of GPUs. In Designing
for Embedded Parallel Computing Platforms: Architectures, Design
Tools, and Applications on DATE 2011, Grenoble, France, March
2011. Work in-Progress Poster.

[38] Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h,
and Jean-Luc Dekeyser. Programming Massively Parallel Archi-
tectures using MARTE: a Case Study. In 2nd Workshop on Model
Based Engineering for Embedded Systems Design (M-BED) on Date
Conference 2011, Grenoble, France, March 2011.

[39] Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h,
and Jean-Luc Dekeyser. An MDE Approach for Automatic
Code Generation from MARTE to OpenCL. Research Report
RR-7525, INRIA, February 2011. Research Report RR-7525 in
http://hal.inria.fr/inria-00563411.

[40] Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h,
and Jean-Luc Dekeyser. A Modeling Approach based on UM-
L/MARTE for GPU Architecture. In Symposium en Architectures
nouvelles de machines (SympA’14), Saint Malo, France, May 2011.

[41] Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h,
Jean-Luc Dekeyser, and Yvonnick Le Menach. Automatic Multi-

http://doi.acm.org/10.1145/185403.185453
http://doi.acm.org/10.1145/185403.185453
http://hal.inria.fr/inria-00617912
http://hal.inria.fr/inria-00617912
http://hal.inria.fr/inria-00563411

bibliography 207

GPU Code Generation applied to Simulation of Electrical Ma-
chines. In Compumag 2011, Sydney, Australia, July 2011. (Cited
on pages xxiv, 156, and 157.)

[42] Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h,
and Jean-Luc Dekeyser. An MDE Approach for Automatic Code
Generation from UML/MARTE to OpenCL. IEEE Computer
in Science & Engineering - Special Edition on GPUs, Journal, Jan
2012.

[43] Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h,
Yvonnick Le Menach, and Jean-Luc Dekeyser. Automatic Multi-
GPU Code Generation applied to Simulation of Electrical Ma-
chines. Magnetics, IEEE Transactions on, 48(2):831 –834, Feb. 2012.
ISSN 0018-9464. doi: 10.1109/TMAG.2011.2179527.

[44] M. M. Dehnavi, D. M. Fernandez, and D. Giannacopoulos. En-
hancing the Performance of Conjugate Gradient Solvers on
Graphic Processing Units. IEEE Transactions on Magnetics, 47:
1162–1165, May 2011. doi: 10.1109/TMAG.2010.2081662. (Cited
on page 164.)

[45] A. Demeure and Y Del Gallo. An Array Approach for Signal
Processing Design. In In Sophia-Antipolis conference on MicroElec-
tronics (SAME’98): SoC Session, Sophia-Antipolis, France, 1998.
(Cited on page 193.)

[46] I. Dietrich, R. German, H. Koestler, and U. Ruede. Modeling
Multigrid Algorithms for Variational Imaging. In Software En-
gineering Conference (ASWEC), 2010 21st Australian, pages 224

–234, april 2010. doi: 10.1109/ASWEC.2010.16. (Cited on
page 22.)

[47] C. V. Dodd and W. E. Deeds. Analytical solutions to eddy-
current probe-coil problems. Journal of Applied Physics, pages
2829–2832, 1968. (Cited on page 129.)

[48] J.J. Dongarra. Numerical linear algebra for high-performance com-
puters. Software, environments, tools. Society for Industrial and
Applied Mathematics, 1998. ISBN 9780898714289. (Cited on
page 48.)

[49] Philippe Dumont. Spécification Multidimensionnelle pour le Traite-
ment du Signal Systématique. PhD thesis, Université des Sciences
et Technologie de Lille, 2005. in French. (Cited on page 196.)

[50] John W. Eaton, David Bateman, and Søren Hauberg. GNU
Octave Manual Version 3. Network Theory Ltd., 3 edition, Aug
2008. ISBN 0-9546120-6-X. (Cited on page 27.)

208 bibliography

[51] Eclipse Foundation. Eclipse Projects. http://www.eclipse.org,
2011. (Cited on page 43.)

[52] R.S. Elliott. Electromagnetics: History, Theory, and Applications.
The IEEE/OUP Series on Electromagnetic Wave Theory (For-
merly IEEE Only), Editor Series. John Wiley & Sons, 1999. ISBN
9780780353848. (Cited on page 126.)

[53] Timo Euler. Consistent Discretization of Maxwell’s Equations on
Polyhedral Grids. PhD thesis, TU Darmstadt, November 2007.
URL http://tuprints.ulb.tu-darmstadt.de/895/. (Cited on
pages xxii and 127.)

[54] Michael J. Flynn. Some Computer Organizations and Their
Effectiveness. Computers, IEEE Transactions on, C-21(9):948 –960,
sept. 1972. ISSN 0018-9340. doi: 10.1109/TC.1972.5009071. (Cited
on page 170.)

[55] Steve Furber. ARM System-on-Chip Architecture. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition,
2000. ISBN 0201675196. (Cited on page 173.)

[56] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun,
Jack J. Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan
Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain,
David J. Daniel, Richard L. Graham, and Timothy S. Woodall.
Open MPI: Goals, concept, and design of a next generation MPI
implementation. In Proceedings, 11th European PVM/MPI Users’
Group Meeting, pages 97–104, Budapest, Hungary, September
2004. (Cited on page 2.)

[57] K. A. Gallivan, R. J. Plemmons, and A. H. Sameh. Par-
allel Algorithms for Dense Linear Algebra Computations.
SIAM Rev., 32:54–135, March 1990. ISSN 0036-1445. doi:
10.1137/1032002. URL http://portal.acm.org/citation.cfm?

id=78843.78845. (Cited on page 48.)

[58] Abdoulaye Gamatié, Eric Rutten, Huafeng Yu, Pierre Boulet,
and Jean-Luc Dekeyser. Synchronous Modeling and Analysis
of Data Intensive Applications. EURASIP Journal on Embedded
Systems, 2008. (Cited on page 36.)

[59] Abdoulaye Gamatié, Sébastien Le Beux, Éric Piel, Rabie Ben Ati-
tallah, Anne Etien, Philippe Marquet, and Jean-Luc Dekeyser. A
Model Driven Design Framework for Massively Parallel Embed-
ded Systems. ACM Transactions on Embedded Computing Systems,
2011. To appear. See also the INRIA research report entitled "A
Model Driven Design Framework for High Performance Embed-
ded Systems" http://hal.inria.fr/inria-00311115. (Cited
on page 34.)

http://www.eclipse.org
http://tuprints.ulb.tu-darmstadt.de/895/
http://portal.acm.org/citation.cfm?id=78843.78845
http://portal.acm.org/citation.cfm?id=78843.78845
http://hal.inria.fr/inria-00311115

bibliography 209

[60] S. Georgescu and H. Okuda. Conjugate Gradients on Graphic
Hardware: Performance and Feasibility. Lecture Notes in Com-
puter Science, 2011. is under review and can be found in
http://para08.idi.ntnu.no/docs/submission_74.pdf. (Cited
on page 158.)

[61] Anne Geraci. IEEE Standard Computer Dictionary: Compilation of
IEEE Standard Computer Glossaries. IEEE Press, Piscataway, NJ,
USA, 1991. ISBN 1559370793. (Cited on page 42.)

[62] Calin Glitia, Pierre Boulet, Eric Lenormand, and Michel Bar-
reteau. Repetitive Model Refactoring Strategy for the De-
sign Space Exploration of Intensive Signal Processing Appli-
cations. Journal of Systems Architecture, January 2011. doi:
10.1016/j.sysarc.2010.12.002. (Cited on page 40.)

[63] Flori Glitia, Anne Etien, and Cedric Dumoulin. Fine Grained
Traceability for an MDE Approach of Embedded System Con-
ception. In ECMDA Traceability Workshop, pages 27–38, Berlin,
Germany, 2008. (Cited on page 42.)

[64] Gene H. Golub and Charles F. Van Loan. Matrix computations
(3rd ed.). Johns Hopkins University Press, Baltimore, MD, USA,
1996. ISBN 0-8018-5414-8. (Cited on page 138.)

[65] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification, Third Edition. Addison-Wesley Longman,
Amsterdam, 3 edition, June 2005. ISBN 0321246780. (Cited on
page 26.)

[66] GP-you Group. GPUmat User Guide. http://gp-you.org/

download/PDF/GPUmat_User_Guide_0.27.pdf, 2011. (Cited on
page 27.)

[67] Daniel Cabeza Gras and Manuel V. Hermenegildo. Non-
strict independence-based program parallelization using shar-
ing and freeness information. Theor. Comput. Sci., 410:4704–
4723, November 2009. ISSN 0304-3975. doi: 10.1016/j.tcs.2009.
07.044. URL http://dl.acm.org/citation.cfm?id=1628316.

1628387. (Cited on page 2.)

[68] Anne Greenbaum. Estimating the attainable accuracy of re-
cursively computed residual methods. SIAM J. Matrix Anal.
Appl., 18:535–551, July 1997. ISSN 0895-4798. doi: 10.1137/
S0895479895284944. URL http://dl.acm.org/citation.cfm?

id=263197.263199. (Cited on page 151.)

[69] J.P. Gregoire, C. Rose, and B. Thomas. Direct and iterative
solvers for finite-element problems. Numerical Algorithms, 16:39–
53, 1997. ISSN 1017-1398. URL http://dx.doi.org/10.1023/A:

1019174710859. 10.1023/A:1019174710859. (Cited on page 131.)

http://para08.idi.ntnu.no/docs/submission_74.pdf
http://gp-you.org/download/PDF/GPUmat_User_Guide_0.27.pdf
http://gp-you.org/download/PDF/GPUmat_User_Guide_0.27.pdf
http://dl.acm.org/citation.cfm?id=1628316.1628387
http://dl.acm.org/citation.cfm?id=1628316.1628387
http://dl.acm.org/citation.cfm?id=263197.263199
http://dl.acm.org/citation.cfm?id=263197.263199
http://dx.doi.org/10.1023/A:1019174710859
http://dx.doi.org/10.1023/A:1019174710859

210 bibliography

[70] Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific
Language (DSL) Toolkit. Addison-Wesley Professional, 1 edition,
2009. ISBN 0321534077, 9780321534071. (Cited on pages 197

and 198.)

[71] William Gropp, Ewing Lusk, and Thomas Sterling, editors. Be-
owulf Cluster Computing with Linux. MIT Press, 2nd edition, 2003.
(Cited on page 169.)

[72] Thorsten Grotker. System Design with SystemC. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2002. ISBN 1402070721.
(Cited on page 39.)

[73] Object Management Group. Meta object facility (mof) 2.0
query/view/transformation. Specification Version 1.0, Object
Management Group, April 2008. (Cited on pages 44 and 198.)

[74] Paul Le Guernic. Signal: A formal design environment for
real-time systems. In TAPSOFT, pages 789–790, 1995. (Cited on
page 39.)

[75] Jing Guo, Antonio Wendell De Oliveira Rodrigues, Jerarajan
Thiyagalingam, Frédéric Guyomarc’h, Pierre Boulet, and Sven-
Bodo Scholz. Harnessing the Power of GPUs without Losing Ab-
stractions in SaC and ArrayOL: A Comparative Study. In HIPS
2011, 16th International Workshop on High-Level Parallel Program-
ming Models and Supportive Environments, Anchorage (Alaska),
United States of America, May 2011. (Cited on page 62.)

[76] Martin H. Gutknecht and Zdenvek Strakos. Accuracy of
two three-term and three two-term recurrences for krylov
space solvers. SIAM J. Matrix Anal. Appl., 22:213–229, April
2000. ISSN 0895-4798. doi: 10.1137/S0895479897331862. URL
http://dl.acm.org/citation.cfm?id=587703.587731. (Cited
on page 151.)

[77] Scott Hauck and André DeHon, editors. Reconfigurable Comput-
ing: The Theory and Practice of FPGA-Based Computation. Systems-
on-Silicon. Elsevier, 2008. (Cited on page 40.)

[78] Rainer Heintzmann. CudaMAT. http://wwwuser.gwdg.de/

~rheintz/Nanoimaging/CudaMat/CudaMat.html, 2011. (Cited on
page 27.)

[79] Hestenes, M. R. and Stiefel, E. Methods of conjugate gradients
for solving linear system. J. Res. Nat. Bur. Standards, B-49:409–
436, 1952. (Cited on page 138.)

[80] Jozef Hooman, Nataliya Mulyar, and Ladislau Posta. Cou-
pling Simulink and UML Models. In Proceedings of Sympo-
sium FORMS/FORMATS 2004, Formal Methods for Automation

http://dl.acm.org/citation.cfm?id=587703.587731
http://wwwuser.gwdg.de/~rheintz/Nanoimaging/CudaMat/CudaMat.html
http://wwwuser.gwdg.de/~rheintz/Nanoimaging/CudaMat/CudaMat.html

bibliography 211

and Safety in Railway and Automotive Systems, pages 304–311,
Grenoble, France, 2004. (Cited on page 20.)

[81] Philipp Huber. The Model Transformation Language Jungle -
An Evaluation and Extension of Existing Approaches. Master’s
thesis, Business Informatics Group - Institut für Softwaretechnik
und Interaktive Systeme, Vienna, AT, 2003. (Cited on pages 197

and 198.)

[82] N. Ida and J. Bastos. Electromagnetics and calculation of fields.
Springer, 1997. ISBN 9780387948775. (Cited on page 130.)

[83] IEEE. IEEE Std. 1003.1c-1995 thread extensions. Standard, In-
stitute of Electrical and Electronics Engineers, 1996. (Cited on
page 38.)

[84] JOCL. Java bindings for OpenCL. http://www.jocl.org, 2011.
(Cited on page 26.)

[85] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev.
Atl: A model transformation tool. Sci. Comput. Program., 72:
31–39, June 2008. ISSN 0167-6423. (Cited on page 198.)

[86] JScience. Java tools and libraries for the advancement of sciences.
http://www.jscience.org, 2011. (Cited on page 1.)

[87] Michio Kaku. Physics of the Future: How Science Will Shape Hu-
man Destiny and Our Daily Lives by the Year 2100. Knopf Double-
day Publishing Group, March 2011. (Cited on page 176.)

[88] Kantorovich, L. V. and Krylov, V. I. Approximate Methods of
Higher Analysis. Interscience Publishers, New York, 1958. (Trans-
lated from the fourth Russian edition by Curtis D. Bensterl).
(Cited on page 138.)

[89] Ken Kennedy, Charles Koelbel, and Hans Zima. The rise and
fall of high performance fortran: an historical object lesson. In
Proceedings of the third ACM SIGPLAN conference on History of
programming languages, HOPL III, pages 7–1–7–22, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-766-7. doi: http://doi.
acm.org/10.1145/1238844.1238851. (Cited on page 132.)

[90] Stuart Kent. Model driven engineering. In Proceedings of the
Third International Conference on Integrated Formal Methods, IFM
’02, pages 286–298, London, UK, UK, 2002. Springer-Verlag.
ISBN 3-540-43703-7. (Cited on page 187.)

[91] David B. Kirk and Wen-mei W. Hwu. Programming Massively
Parallel Processors: A Hands-on Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 2010. ISBN
0123814723, 9780123814722. (Cited on page 178.)

http://www.jocl.org
http://www.jscience.org

212 bibliography

[92] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan C. Catan-
zaro, Paul Ivanov, and Ahmed Fasih. PyCUDA and PyOpenCL:
A Scripting-Based Approach to GPU Run-Time Code Generation.
CoRR, abs/0911.3456, 2011. (Cited on page 28.)

[93] Yu kwong Kwok, Ishfaq Ahmad, and Ishfaq Ahmad. Dynamic
Critical-Path Scheduling: An Effective Technique for Allocating
Task Graphs to Multiprocessors. IEEE Transactions on Parallel
and Distributed Systems, 7:506–521, 1996. (Cited on page 87.)

[94] Lawrence Livermore National Laboratory. ROSE Co-anchorler.
http://www.rosecompiler.org, 2011. (Cited on page 23.)

[95] Sébastien Le Beux. Un flot de conception pour applications de
traitement du signal systématique implémentées sur FPGA à base
d’Ingénierie Dirigée par les Modèles. PhD thesis, Université des
Sciences et Technologie de Lille, December 2007. in French.
(Cited on page 40.)

[96] Sébastien Le Beux, Philippe Marquet, and Jean-Luc Dekeyser. A
Design Flow to Map Parallel Applications onto FPGAs. In 17th
IEEE International Conference on Field Programmable Logic and Ap-
plications, Amsterdam, Netherlands, August 2007. (Cited on
page 36.)

[97] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. Openmp
to gpgpu: a compiler framework for automatic translation and
optimization. SIGPLAN Not., 44:101–110, February 2009. ISSN
0362-1340. (Cited on page 175.)

[98] David Lugato, Jean-Michel Bruel, and Ileana Ober. Model-
Driven Engineering for High-Performance Computing Appli-
cations. In Cakaj Shkelzen, editor, Modeling Simulation and
Optimization - Focus on Applications, pages 19–33. IN-TECH,
http://intechweb.org/, mars 2010. (Cited on page 19.)

[99] MathWorks Inc. Matlab and Simulink. http://www.mathworks.
com, 2011. (Cited on pages 2 and 19.)

[100] MathWorks Inc. MATLAB GPU Computing with NVIDIA
CUDA-Enabled GPUs. http://www.mathworks.com/discovery/
matlab-gpu.html, 2011. (Cited on page 27.)

[101] T. Mattson and M. Wrinn. Parallel programming: Can we
PLEASE get it right this time? In Design Automation Conference,
2008. DAC 2008. 45th ACM/IEEE, pages 7 –11, june 2008. (Cited
on page 3.)

[102] J.C. Maxwell. A Treatise on Electricity and Magnetism. Oxford:
Clarendon Press, 1998. (Cited on page 126.)

http://www.rosecompiler.org
http://www.mathworks.com
http://www.mathworks.com
http://www.mathworks.com/discovery/matlab-gpu.html
http://www.mathworks.com/discovery/matlab-gpu.html

bibliography 213

[103] Karl Meerbergen, Krešimir Fresl, and Toon Knapen. C++ bind-
ings to external software libraries with examples from blas,
lapack, umfpack, and mumps. ACM Trans. Math. Softw., 36:22:1–
22:23, August 2009. ISSN 0098-3500. doi: http://doi.acm.org/
10.1145/1555386.1555391. URL http://doi.acm.org/10.1145/

1555386.1555391. (Cited on page 1.)

[104] Microsoft Corp. GPGPU Computing Horizons: Developing
and Deploying for Microsoft Windows. Technical Report
MSFT_GPGPU_whitepaper_FINAL, Microsoft Research, 2010.
(Cited on page 5.)

[105] Gordon E. Moore. Progress in Digital Electronics. In Technical
Digest of the Intel Electronic Devices Meeting, page 13. IEEE Press,
1975. (Cited on page 176.)

[106] Aaftab Munshi. The OpenCL Specification 1.1. Specifica-
tion, Khronos Group, January 2011. http://www.khronos.

org/registry/cl/specs/opencl-1.1.pdf. (Cited on pages 180

and 182.)

[107] G.S. Murthy, M. Ravishankar, M.M. Baskaran, and P. Sadayap-
pan. Optimal loop unrolling for gpgpu programs. In Parallel Dis-
tributed Processing (IPDPS), 2010 IEEE International Symposium
on, pages 1 –11, april 2010. doi: 10.1109/IPDPS.2010.5470423.
(Cited on page 30.)

[108] San Murugesan. Harnessing green it: Principles and practices.
IT Professional, 10:24–33, January 2008. ISSN 1520-9202. doi: 10.
1109/MITP.2008.10. URL http://dl.acm.org/citation.cfm?

id=1344234.1344284. (Cited on page 4.)

[109] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell.
Pthreads Programming. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 1996. ISBN 1-56592-115-1. (Cited on page 38.)

[110] NVIDIA. NVIDIA’s Tegra 2 Specification. http://www.nvidia.
com/object/tegra-2.html, October 2011. (Cited on page 173.)

[111] NVIDIA Corporation. OpenCL Programming Guide, 2011. Ver-
sion 4.0. (Cited on pages 49 and 50.)

[112] A. Wendell O. Rodrigues, Frédéric Guyomarc’H, and Jean-Luc
Dekeyser. Programming Massively Parallel Architectures us-
ing MARTE: a Case Study. In 2nd Workshop on Model Based
Engineering for Embedded Systems Design (M-BED 2011) on Date
Conference 2011, Grenoble, France, March 2011. URL http:

//hal.inria.fr/inria-00578646/en/. (Cited on page 113.)

[113] Obeo. Acceleo Code Generator. http://www.acceleo.org, 2011.
(Cited on page 44.)

http://doi.acm.org/10.1145/1555386.1555391
http://doi.acm.org/10.1145/1555386.1555391
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://dl.acm.org/citation.cfm?id=1344234.1344284
http://dl.acm.org/citation.cfm?id=1344234.1344284
http://www.nvidia.com/object/tegra-2.html
http://www.nvidia.com/object/tegra-2.html
http://hal.inria.fr/inria-00578646/en/
http://hal.inria.fr/inria-00578646/en/
http://www.acceleo.org

214 bibliography

[114] Object Management Group. MOF Model To Text Transformation
Language (MOFM2T). http://www.omg.org/spec/MOFM2T/1.0,
2008. Version 1.0. (Cited on page 200.)

[115] Object Management Group. UML Version 2.1.2 Specifica-
tion. http://www.omg.org/spec/UML/2.1.2/, 2008. Version
2.1.2. (Cited on page 188.)

[116] Object Management Group. UML Profile for MARTE: Modeling
and Analisys of Real-Time Embedded Systems. http://www.omg.
org/spec/MARTE/1.1, 2011. Version 1.1. (Cited on page 191.)

[117] Object Management Group. Object Constraint Language (OCL).
http://www.omg.org/spec/OCL, 2011. Version 2.3 - Beta 2.
(Cited on page 199.)

[118] Gøran Olsen and Jon Oldevik. Scenarios of Traceability in
Model to Text Transformations. In Model Driven Architecture-
Foundations and Applications, Lecture Notes in Computer Science.
SINTEF, 2007. (Cited on page 109.)

[119] Open Source Modelica Consortium. The OpenModelica Project.
http://www.openmodelica.org, 2011. (Cited on page 21.)

[120] OpenHMPP Consortium. OpenHMPP - Open Hybrid Manycore
Parallel Programming. http://www.openhmpp.org, 2011. (Cited
on page 24.)

[121] OpenMP Architecture Review Board. The OpenMP API spec-
ification for parallel programming. http://openmp.org/, 2011.
(Cited on pages 2, 132, and 175.)

[122] S. V. Pennington and M. Berzins. New nag library software
for first-order partial differential equations. ACM Trans. Math.
Softw., 20:63–99, March 1994. ISSN 0098-3500. doi: http://doi.
acm.org/10.1145/174603.155272. URL http://doi.acm.org/10.

1145/174603.155272. (Cited on page 1.)

[123] Peter Fritzson. Principles of Object-Oriented Modeling and Simula-
tion with Modelica 2.1. IEEE Press, 2004. (Cited on page 21.)

[124] Eric Piel. Ordonnancement de systèmes parallèles temps-réel, De
la modélisation à la mise en oeuvre par l’ingénierie dirigée par les
modèles. PhD thesis, Université des Sciences et Technologie de
Lille, December 2007. in French. (Cited on page 39.)

[125] Python Software Foundation. Python Programming Language.
http://www.python.org, 2011. (Cited on page 27.)

[126] Imran Rafiq Quadri. MARTE based model driven design methodol-
ogy for targeting dynamically reconfigurable FPGA based SoCs. PhD

http://www.omg.org/spec/MOFM2T/1.0
http://www.omg.org/spec/UML/2.1.2/
http://www.omg.org/spec/MARTE/1.1
http://www.omg.org/spec/MARTE/1.1
http://www.omg.org/spec/OCL
http://www.openmodelica.org
http://www.openhmpp.org
http://openmp.org/
http://doi.acm.org/10.1145/174603.155272
http://doi.acm.org/10.1145/174603.155272
http://www.python.org

bibliography 215

thesis, Université des Sciences et Technologie de Lille, April
2010. (Cited on page 40.)

[127] D. J. Quinlan, B. Miller, B. Philip, and M. Schordan. Treating a
User-defined Parallel Library as a Domain-Specfiic Language.
In Proceedings of the 16th International Parallel and Distributed Pro-
cessing, Marriott Marina, USA, 2002. (Cited on page 23.)

[128] Fabio Remondino and Niclas Bõrlin. Polylib - a library
of polyhedral functions. http://icps.u-strasbg.fr/polylib/ or
http://www.irisa.fr/polylib. In International Archives of Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, Vol.
XXXIV, Part 5/W16, H.-G. Maas and D. Schneider (Eds, 2004.
(Cited on page 106.)

[129] Calvin J. Ribbens, Layne T. Watson, and Colin Desa. Toward par-
allel mathematical software for elliptic partial differential equa-
tions. ACM Trans. Math. Softw., 19:457–473, December 1993. ISSN
0098-3500. doi: http://doi.acm.org/10.1145/168173.168383.
(Cited on page 145.)

[130] A. Wendell O. Rodrigues, Vincent Aranega, Anne Etien, Frédéric
Guyomarc’h, and Jean-Luc Dekeyser. Enabling Traceability in an
MDE Approach to Improve Performance of GPU Applications.
Research Report RR-7720, INRIA, August 2011. URL http:

//hal.inria.fr/inria-00617912. (Cited on page 108.)

[131] Youcef Saad and Martin H. Schultz. Gmres: A generalized
minimal residual algorithm for solving non-symmetric linear
systems. SIAM, 7(3):856–869, 1986. doi: DOI:10.1137/0907058.
(Cited on page 135.)

[132] Sadayappan, P. An Environment for High-Productivity High-
Performance Computing using GPUs/Accelerators. Collabora-
tive research, NSF, 2009. (Cited on page 30.)

[133] Douglas C. Schmidt. Model-driven engineering. IEEE Computer,
39(2), February 2006. (Cited on page 187.)

[134] Sven-Bodo Scholz. With-Loop-Folding in SAC – Condensing
Consecutive Array Operations. In In Proceedings of the 9th In-
ternational Workshop on Implementation of Functional Languages,
Scotland, 1998. Springer-Verlag. (Cited on page 29.)

[135] Robert S. Schreiber. Block Algorithms for Parallel Machines. In
M. H. Schultz, editor, Numerical Algorithms for Modern Parallel
Computer Architectures, number 13 in IMA Volumes In Mathe-
matics and Its Applications, pages 197–207, 1988. (Cited on
page 48.)

http://hal.inria.fr/inria-00617912
http://hal.inria.fr/inria-00617912

216 bibliography

[136] Alfred Strey and Martin Bange. Performance Analysis of In-
tel’s MMX and SSE: A Case Study. In Proceedings of the 7th In-
ternational Euro-Par Conference Manchester on Parallel Processing,
Euro-Par ’01, pages 142–147, London, UK, 2001. Springer-Verlag.
ISBN 3-540-42495-4. (Cited on page 171.)

[137] Julien Taillard. Une approche orientée modèle pour la parallélisa-
tion d’un code de calcul éléments finis. PhD thesis, Université des
Sciences et Technologie de Lille, 2009. in French. (Cited on
pages 10, 18, 39, and 132.)

[138] Julien Taillard, Frédéric Guyomarch, and Jean-Luc Dekeyser. A
Graphical Framework for High Performance Computing using
an MDE Approach. In 16th Euromicro International Conference on
Parallel, Distributed and network-based Processing, pages 165–173,
Toulouse, France, February 2008. (Cited on page 36.)

[139] Goh Cheng Teng. Matrix Multiplication on GPU in Octave.
Research report, Institute of High Performance Computing -
A*STAR, February 2008. URL http://docs.ihpc.a-star.edu.

sg. (Cited on page 27.)

[140] The Portland Group. PGI Accelerator Compilers. http://www.
pgroup.com, 2011. (Cited on page 30.)

[141] T. P. Theodoulidis. Model of ferrite-cored probe for eddy current
nondestructive evaluation. Journal of Applied Physics, pages 3071–
3078, 2003. (Cited on page 130.)

[142] T. P. Theodoulidis. Analytical Model for Tilted Coils in Eddy-
Current Nondestructive inspection. IEEE Transactions on Mag-
netics, pages 2447–2454, 2005. (Cited on page 130.)

[143] Didem Unat, Xing Cai, and Scott B. Baden. Mint: Realizing
CUDA Performance in 3D Stencil Methods with Annotated C.
In Proceedings of the International Conference on Supercomputing,
ICS ’11, pages 214–224, New York, NY, USA, 2011. ACM. (Cited
on pages 23 and 24.)

[144] F. Vazquez, G. Ortega, J. J. Fernandez, and E. M. Garzon. Improv-
ing the performance of the sparse matrix vector product with
gpus. In Proceedings of the 2010 10th IEEE International Confer-
ence on Computer and Information Technology, CIT ’10, pages 1146–
1151, Washington, DC, USA, 2010. IEEE Computer Society. ISBN
978-0-7695-4108-2. doi: http://dx.doi.org/10.1109/CIT.2010.208.
URL http://dx.doi.org/10.1109/CIT.2010.208. (Cited on
page 145.)

[145] Min-You Wu, Wei Shu, and Jun Gu. Efficient Local Search for
DAG Scheduling. IEEE Trans. on Parallel and Distributed Systems,
2001:617–627, 2001. (Cited on page 87.)

http://docs.ihpc.a-star.edu.sg
http://docs.ihpc.a-star.edu.sg
http://www.pgroup.com
http://www.pgroup.com
http://dx.doi.org/10.1109/CIT.2010.208

bibliography 217

[146] Huafeng Yu. Un Modéle Réactif Basé sur MARTE Dédié au Calcul
Intensif à Parallélisme de Données : Transformation vers le Modèle
Synchrone. PhD thesis, Université des Sciences et Technologie
de Lille, November 2008. in French. (Cited on page 39.)

218 bibliography

	Dedication
	Resumé
	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Introduction
	State of the Art
	1 High-Level Modeling and Code Generation on HPC
	1.1 High-Level Specification Approaches
	1.1.1 Gaspard2: OpenMP Branch
	1.1.2 Archi-MDE
	1.1.3 Simulink
	1.1.4 OpenModelica
	1.1.5 Syntony

	1.2 Extensions for Programming Languages
	1.2.1 Mint Programming Model
	1.2.2 OpenHMPP
	1.2.3 Java OpenCL Bindings
	1.2.4 Matlab and Matlab-like on GPU
	1.2.5 PyOpenCL
	1.2.6 SAC

	1.3 Other Contributions
	1.4 Comparative Table of Features
	1.5 Conclusion

	2 Gaspard2 as Code Generation Framework
	2.1 Introduction to the Framework
	2.1.1 Gaspard2 Extensions

	2.2 Transformation Chain
	2.3 Target Platforms
	2.3.1 Sequential C
	2.3.2 Pthread
	2.3.3 OpenMP (Fortran and C)
	2.3.4 SystemC
	2.3.5 LUSTRE and SIGNAL
	2.3.6 VHDL

	2.4 Deployment and IPs
	2.5 Model Refactoring
	2.6 Traceability
	2.7 Related Tools
	2.7.1 Eclipse
	2.7.2 Papyrus Modeling Tool
	2.7.3 MDFactory
	2.7.4 QVTO
	2.7.5 Acceleo Code Generation

	2.8 Conclusion

	Methodology Approach
	3 Developing Applications
	3.1 Introduction to Modeling Methodology
	3.2 Matrix Multiplication
	3.2.1 Modeling the Matrix Multiplication
	3.2.2 Generating Code
	3.2.3 Results and Benchmarks

	3.3 Signal Processing
	3.3.1 Modeling the Downscaler
	3.3.2 Results and Benchmarks
	3.3.3 Comparing to SAC

	3.4 Conclusion

	4 Metamodels and GPUs
	4.1 Metamodels for the GPU Programming Model
	4.1.1 Coprocessor
	4.1.2 Host and Device Memories
	4.1.3 Work-Groups and Work-Items Topology
	4.1.4 Optimizations

	4.2 Scheduling
	4.2.1 Building a Task Graph
	4.2.2 Choosing the Execution Order

	4.3 Memory Mapping
	4.4 Hybrid
	4.5 Conclusion

	5 Models towards Code
	5.1 Building a Transformation Module
	5.2 Chaining Model Transformations
	5.3 Generic Transformation Modules
	5.3.1 UML Profile to MARTE Metamodel (1)
	5.3.2 Instances Identification (2)
	5.3.3 Tiler Processing (3)
	5.3.4 Task Graph and Scheduling (4,5,6)

	5.4 Memory Allocation and Variable Definitions (7)
	5.5 Hybrid Conception (8)
	5.5.1 General Structure
	5.5.2 Identifying Kernels
	5.5.3 Functions and Variables
	5.5.4 The Main Function
	5.5.5 The Relationship among Variables
	5.5.6 Summarizing the Scheduling

	5.6 Code Generation (9)
	5.6.1 Creating the makefile and header files
	5.6.2 Creating OpenCL Kernels Files
	5.6.3 Creating C/C++ Files
	5.6.4 Extending the number of available devices

	5.7 Conclusion

	6 Optimizations
	6.1 Memory Copies
	6.1.1 Avoiding Unnecesary Transfers

	6.2 Tiler Analysis
	6.2.1 Observing data reuse
	6.2.2 Detecting data reuse
	6.2.3 Deciding which data to transfer

	6.3 Profiling Analysis
	6.3.1 Managing The Whole Chain Traceability and Avoiding Model-to-Text Traceability
	6.3.2 From Execution to Smart Advices
	6.3.3 Backtracking Advices in the Input Models
	6.3.4 Example and Benchmarks

	6.4 Conclusion

	Simulation of Electrical Systems
	7 Electromagnetic Phenomenon and Code_Carmel
	7.1 Laws of Electromagnetism
	7.1.1 Continuous-time Maxwell's Equations

	7.2 Discretization: FEM
	7.2.1 Method
	7.2.2 Assembly and Solvers

	7.3 The Code_CARMEL
	7.3.1 Introduction to Code_CARMEL
	7.3.2 Formulations
	7.3.3 Running Code_CARMEL in Parallel
	7.3.4 Global Structure

	7.4 Conclusion

	8 Conjugate Gradient Solver
	8.1 Introduction to Conjugate Gradient
	8.1.1 Sparse Matrix

	8.2 Case Study
	8.2.1 High-Level Specification
	8.2.2 Expressing the Device Multiplicity
	8.2.3 Generated Code
	8.2.4 Tests
	8.2.5 Results
	8.2.6 Automotive Alternator Example
	8.2.7 Overall Comparisons

	8.3 Conclusion

	Conclusion and Perspectives

	Appendix
	A High Performance Computing
	A.1 History
	A.2 Existing Approaches
	A.2.1 Architecture
	A.2.2 Parallel Programming

	A.3 Massively Parallel Processing (MPP)
	A.4 General-Purpose computing on Graphics Processing Unit (GPGPU)
	A.4.1 Architecture of a Modern GPU
	A.4.2 OpenCL™ as Programming Model for MPP

	B Model-Driven Engineering
	B.1 Models and Metamodels
	B.1.1 Abstraction and Refinement of Models

	B.2 UML and Profiles
	B.2.1 Introduction to MARTE
	B.2.2 RSM Package and ArrayOL

	B.3 Model Transformation
	B.3.1 Model Refactoring
	B.3.2 Model Merge
	B.3.3 M2M QVT Operational Mapping Language

	B.4 Code Generation

	Bibliography

