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Abstract 
The oldest parts of continents, so-called cratons, are the focus of worldwide research not only 

because they represent primary constraints for our understanding of the early evolution of the Earth, 

but also because of their significant mineral potential. This work contributes to the understanding of 

the geological and geomorphological evolution of the West African Craton, by an integrated analysis 

of airborne geophysical and satellite remote sensing data constrained by field structural, lithological, 

geophysical, and geomorphological observations acquired around Houndé, Boromo and Banfora 

greenstone belts and associated granitoid domains in western Burkina Faso. 

The results of this integration suggest that the granitoid domains of western Burkina Faso are 

formed by numerous small- to medium-sized plutons, and the magnetic data provided a better 

definition of the actual pluton shapes. Airborne gamma ray spectrometry data aided in the mapping 

process in areas with less regolith cover. Three deformation events (D1-D3) can be distinguished 

in western Burkina Faso. A megacrystic tholeiitic basalt unit allowed us to establish stratigraphic 

correlations between the two belts and propose a crustal scale anticline (D1). The D1 penetrative 

structures, resulting from an E-W to WNW-oriented compression are generally overprinted by the D2 

transcurrent shear zones, which is well visible in the magnetic data. Previously unreported and already 

known S2 shear zones represent prospective areas for gold exploration. The regional-scale system 

geometry was controlled by coaxial shortening of stiffer volcanic units and coeval magma input. 

The last D3 N-S compression is either late-Eburnean or perhaps even Pan-African. 

The mineralogical composition of rocks and derived regolith surfaces may be assessed 

by visible and infrared spectroscopy. A new spectral library has been acquired consisting of in situ and 

laboratory 0.35 µm to 2.5 µm spectra of rocks and derived regolith materials. The reflectance spectra 

of rocks show the influence of typical arid to semi-arid weathering. Fe-OH and Mg-OH absorption 

features are observable in the mafic and intermediate volcanic rocks as well as in the granodiorites 

and tonalites. Al-OH absorptions are typical for volcano-sedimentary and sedimentary rocks, 

and regolith materials. Ferric and ferrous iron absorptions were observed in most of the sampled 

materials. The spectra of soils partially reflect the mineral composition of the weathered rock surfaces. 

Airborne gamma ray spectrometry data, ASTER, Landsat, and polarimetric radar data, along 

with morphometric parameters derived from the SRTM digital elevation model, were used 

to characterize four different regolith landform units in the Gaoua area. An artificial neural network 

classification was applied to the dataset and compared with a maximum likelihood classifier. The best 

results were obtained with a combination of gamma-ray spectrometry data and derivatives 

of the digital elevation model. The classification contributed to an increase in the accuracy 

of the distribution of the classified units and to an actualization of their respective shapes. 

The approach demonstrates the potential of neural networks for the combined analysis of airborne 

geophysical and remote sensing data in regolith landform mapping.  
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Abstrakt 
Nejstarší části kontinentů, takzvané kratony, jsou v současnosti centrem zájmu celosvětového 

výzkumu nejen proto, že jejich znalost je nezbytná pro porozumění raného vývoje Země, ale také 

vzhledem k jejich značnému významu v oblasti těžby nerostných surovin. Výsledky této práce 

přispívají k pochopení geologického a geomorfologického vývoje Západoafrického kratonu. K jejich 

získání bylo použito integrované analýzy leteckých geofyzikálních dat, satelitních dat dálkového 

průzkumu Země a dat získaných během terénních měření v západní části Burkiny Faso, v oblastech 

zelenokamenových pásů Houndé, Boromo, Banfora a přidružených granitoidních domén. 

Výsledky tohoto komplexního přístupu ukazují, že granitoidní území západní Burkiny Faso 

tvoří větší množství malých až středně velkých plutonů. Pomocí magnetometrických dat byly 

zpřesněny zejména tvary těchto intruzivních těles. V oblasti západní Burkiny Faso můžeme definovat 

tři deformační fáze (D1-D3). Stratigrafická korelace provedená mezi zmíněnými zelenokamenovými 

pásy na základě výskytu jednotky megakrystických bazaltů nasvědčuje dřívějšímu propojení obou 

pásů. Penetrativní struktury D1 vzniklé v režimu vz. až zsz. orientované komprese jsou obvykle 

přetištěny transkurentními střižnými zónami D2, což je dobře viditelné i v magnetických datech. Nově 

objevené i stávající střižné zóny S2 představují perspektivní oblasti pro průzkum ložisek zlata. 

Regionální strukturní stavba vznikala během koaxiální komprese kompetentních vulkanických hornin 

současně s vmísťováním granitoidních těles. Poslední deformační fáze D3 je zřejmě pozdně Eburnská 

nebo náleží až k Panafrické orogenezi. 

Mineralogické složení horninových a regolitových povrchů lze studovat, metodami dálkového 

průzkumu Země pomocí viditelné a infračervené spektroskopie. Spektra hornin a z nich odvozených 

regolitových materiálů naměřených v terénu a laboratoři v rozsahu 0,35–2,5 µm tvoří základ nové 

spektrální knihovny. Horninová spektra ukazují vliv typického semi-aridního zvětrávání. Fe-OH 

a Mg-OH absorpční pásy byly pozorovány u mafických a intermediárních vulkanických hornin, 

granodioritů a tonalitů. Al-OH absorpční pásy jsou typické nejen pro vulkano-sedimentární 

a sedimentární horniny, ale také pro regolitové povrchy. Absorpční pásy související s obsahem železa 

byly nalezeny téměř ve všech měřených materiálech. Spektra půd částečně odpovídají minerálnímu 

složení zvětralých hornin. 

Data letecké gamaspektrometrie, data ze senzorů ASTER, Landsat a polarimetrická radarová 

data byla, společně s parametry odvozenými z digitálního modelu reliéfu SRTM, použita pro popis 

a analýzu čtyř různých regolitových terénních jednotek v oblasti Gaoua. Ke klasifikaci bylo využito 

metody neuronových sítí, která byla srovnána s metodou maximální věrohodnosti. Nejlepšího 

výsledku bylo dosaženo kombinací dat letecké gamaspektrometrie a dat odvozených z digitálního 

modelu reliéfu. Klasifikace přispěla k celkovému zpřesnění prostorového rozdělení jednotlivých celků 

a aktualizaci jejich tvarů. Tento přístup ukazuje potenciál neuronových sítí v integrované analýze dat 

letecké geofyziky a dat dálkového průzkumu Země při mapování regolitových terénních celků. 
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Résumé 
Les parties les plus anciennes des continents, les cratons, sont au centre des recherches 

mondiales non seulement parce qu'ils représentent des contraintes primaires pour notre compréhension 

de l'évolution primitive de la Terre, mais aussi en raison de leur potentiel minier important. Ce travail 

contribue à la compréhension de l'évolution géologique et géomorphologique du craton ouest africain, 

par une analyse intégrée de géophysique aéroportée, des données de télédétection, et des observations 

acquises autour des ceintures de Houndé, Boromo et Banfora et des domaines des granitoïdes associés 

dans l'ouest du Burkina Faso. 

Les résultats de cette intégration suggèrent que les domaines de granitoïdes sont formés 

par de nombreux plutons, d’une taille petite et moyenne. Ainsi, les données magnétiques ont fourni 

une meilleure définition des formes réelles de ces plutons. Trois événements de déformation (D1-D3) 

peuvent être distingués dans l'ouest du Burkina Faso. L’unité de basalte tholéiitique à mégacristaux 

de plagioclase nous a permis d'établir des corrélations stratigraphiques entre les deux ceintures. 

Les structures D1 pénétratives, résultant d'une compression orientée EO à ONO-ESE sont 

généralement recoupées par les zones de cisaillement D2. Ces zones de cisaillement D2 représentent 

des zones de prospective pour l'exploration aurifère. La géométrie régionale du système est gouvernée 

par un raccourcissement coaxial des unités volcaniques rigides et par un rajout progressif des magmas 

granitiques. La dernière compression (D3), est tardi-éburnéene ou peut-être même panafricaine. 

La composition minéralogique des roches et de leurs surfaces d’altération peut être étudiée 

à l’aide de spectroscopie visible et infrarouge. Une nouvelle bibliothèque spectrale a été acquise, 

composée des mesures in-situ et en laboratoire (0,35–2,5 µm) des roches et des matériaux 

régolithiques. Les spectres de réflectance des roches montrent l'influence d’altérations typiques 

des zones semi-arides. Les absorptions caractéristiques de Fe-OH et Mg-OH sont observables dans 

les roches mafiques et volcaniques intermédiaires ainsi que dans les granodiorites et tonalites. 

Les absorptions Al-OH sont typiques pour les roches volcano-sédimentaires et sédimentaires, 

et les matériaux de régolithe. Les absorptions de fer ferrique et ferreux ont été observées dans la 

plupart des matériaux échantillonnés. Les spectres des sols reflètent partiellement la composition 

minérale de la surface des roches altérées. 

Les données de spectrométrie gamma aérienne, ASTER, Landsat et de radar polarimétrique, 

ainsi que les paramètres morphométriques dérivés du modèle numérique de terrain SRTM, ont été 

utilisés pour caractériser les unités de régolithe dans la zone de Gaoua. Une méthode de classification 

par réseaux de neurones a été appliquée à l'ensemble des données, et ensuite comparée 

à un classificateur par maximum de vraisemblance. Les meilleurs résultats ont été obtenus 

avec une combinaison de spectrométrie gamma et des dérivés du modèle numérique de terrain. 

L'approche démontre le potentiel des réseaux de neurones pour l'analyse combinée de géophysique 

aéroportée et de données de télédétection dans la cartographie de régolithe.  
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Introduction et contexte général 

Les parties les plus anciennes des continents, les cratons, sont au centre de recherches 

mondiales non seulement parce qu'ils représentent des contraintes primaires pour notre compréhension 

de l'évolution primitive de la Terre, mais aussi en raison de leur potentiel minier important. Sans sous-

estimer l'importance des études précédentes, le bouclier ouest-africain reste sous-étudié par rapport 

à ses équivalents géologiques en Australie et au Canada. Ce craton particulier représente un point 

tournant dans l'histoire de la terre : un changement des mécanismes de formation de la croûte 

continentale juvénile. La croûte continentale stable située dans la zone tropicale a permis 

le développement de processus d’altération superficielle prolongés, dans l'ensemble des lithologies, 

et a ainsi abouti à un épais manteau de régolithe qui couvre la plupart de la surface du craton Leo-

Man, la partie sud du craton ouest-africain. La couverture du régolithe est un obstacle à des études 

géologiques et géochimiques d'exploration, mais présente également un grand intérêt pour la recherche 

tectono-géomorphologique de l'évolution de l'Afrique occidentale. La cartographie traditionnelle de 

la géologie et du régolithe basée sur les observations de terrain est un procès long qui fait face à des 

difficultés d’extension des observations locales à l’échelle régionale ainsi que d’une couverture des 

données insuffisante.  

Les interprétations des données magnétiques, gravimétriques, de spectrométrie gamma 

et de télédétection satellitaire, contraintes par les observations de terrain, ont prouvé leur efficacité 

pour déchiffrer la hiérarchie des cadres litho-structuraux régionaux des terrains précambriens, pourtant 

presque aucune étude de telle nature n’existe pas en Afrique de l’Ouest. De façon similaire, 

l’intégration des données géophysiques et satellitaires a été appliquée pour la cartographie du régolithe 

en Australie. Cependant, très peu d’études utilisant l’approche semi-automatique ont été effectuées 

en Afrique de l’Ouest pour des fins d’évaluation de distribution et de caractérisation du régolithe 

et l’approche pleinement automatique n’a jamais été utilisé jusqu’à ce jour. Enfin, à ce jour, très peu 

d’attention a été accordée à une analyse intégrée des différents types de données avec un accent sur la 

géologie et le régolite. 

La détection des assemblages lithologiques et des corps géologiques, la définition du cadre 

structural et l’identification des unités et du relief du régolithe seront réalisés à travers une approche 

d’intégration des données multiples à l’échelle régionale, en exploitant la vue synoptique des données 

aéroportées et satellitaires. Les observations de terrain, et les mesures de terrain et de laboratoire 

serviront de contraintes et de données de validation. Le modèle géodynamique, conçu par une 

approche intégrée, abordera avec une meilleure précision la géométrie 3D du système ainsi que 

la chronologie relative de certaines structures à grande échelle. 

Avec une disponibilité croissante de nouvelles sources de données qui sont actuellement 

libérées et qui seront publiées dans les prochaines décennies, des approches similaires à celles 

proposées dans cette thèse pourront être utilisés dans d'autres régions d'Afrique occidentale et au-delà. 
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Introduction and background 

Problem statement 

The oldest parts of continents, so-called cratons, are the focus of worldwide research not only 

because they represent primary constraints for our understanding of the early evolution of the Earth, 

but also because of their significant mineral potential. Without underestimating the importance 

of previous studies, the West African shield remains an under-researched craton compared 

to its geological equivalents in Australia and Canada. This particular craton formed at a turning point 

in the Earth’s history, when the mechanisms of new continental crust formation were changing. The 

stable continental crust situated in the tropical zone allowed for prolonged weathering of all of the 

lithologies and resulted in a thick regolith mantle, which covers most of the surface of the Leo-Man 

Shield, the southern part of the West African Craton. The regolith cover hinders geological studies and 

geochemical exploration; however, knowing the distribution of different regolith landform units is 

of great interest for tectono-geomorphic research of the evolution of West Africa. Mapping the 

geology and regolith over vast areas with traditional field based methods is a lengthy process facing 

difficulties of extending local observations to regional scale features and insufficient data coverage. 

Interpretations of magnetic, gravimetric, gamma ray spectrometry and satellite remote sensing 

data constrained by field observations proved to be efficient in deciphering the regional litho-structural 

hierarchies of Precambrian terrains, yet almost no similar studies exist in West Africa. Similarly 

integrating geophysical and remote sensing data has frequently been applied in regolith landform 

mapping in Australia; however to date only several studies have been reported from West Africa using 

a semi-automated approaches in assessing the distribution and characteristics of regolith landform 

units while no fully automatic approach has been attempted. Finally, to date very little attention has 

been paid to comprehensive types of studies analyzing different types of data with a focus on both the 

bedrock geology and the regolith. 

Through an integrated approach, the detection of lithological assemblages, geological bodies, 

definition of the structural framework and identification of regolith landform units will be achieved 

at regional scales, exploiting the synoptic view of airborne and satellite data. Field mapping, field 

measurements, and laboratory measurements will serve during the interpretation as constraints 

and validation data. The geodynamic model acquired through an integrated approach will address with 

improved accuracy the 3D geometry of the system as well as the relative chronology of some of the 

large-scale structures. With an increasing availability of new data, which are currently being released, 

and will be released over the next decades, approaches similar to the proposed research may be used 

in other regions of West Africa and beyond. 
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Overview of the geology of West Africa and Burkina Faso 

The greenstone belts of western Burkina Faso represent a typical granite-greenstone terrain 

of the Paleoproterozoic Baoulé-Mossi domain in the southern part of the West African Craton (figure 

1) (Bessoles, 1977; Abouchami et al., 1990; Boher et al., 1992; Taylor et al., 1992; Béziat et al., 2000; 

Debat et al., 2003). The NNE-SSW to N-S arcuate belts stretch for more than 400 km and are host 

to multiple gold and base metal deposits (Milési et al., 1992; Béziat et al., 2008). They belong 

to a polycyclic orogen that formed around the Kénéma-Man Archean nucleus during the Eburnean 

orogeny (2200–2000 Ma) (Bonhomme, 1962; Liégeois et al., 1991; Milési et al., 1992; Ledru et al., 

1994; Egal et al., 2002). Many studies describe the polyphase litho-structural setting and propose 

in essence two distinct geotectonic models for the evolution of the Paleoproterozoic basement in West 

Africa. A traditional plate tectonic model of crustal buildup by thrust and fold belts similar 

to the modern orogens has been proposed by Boher et al. (1992), Feybesse and Milési (1994), Ledru et 

al., (1994), Hirdes et al., (1996), Debat et al., (2003), Feybesse et al., (2006), Tshibubudze et al., 

Figure 1 Simplified geological map of the West African Craton (modified after BRGM SIGAfrique); 
the Paleoproterozoic greenstones are divided into: light grey – intermediate to acid volcano-
clastics and volcano-sediments, dark grey – mafic to intermediate lavas and volcanic 
products. 
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(2009), Hein, (2010). Pons et al. (1995) or Vidal et al. (2009) on the other hand favor the dome 

and basin structures caused by gravitational processes referred to as “vertical tectonics”. 

The Baoulé-Mossi domain (figure 1) forms the eastern and northern part of the Leo-Man 

Craton (Bessoles, 1977). Typical Archean-like greenstone-granitoid assemblages (de Wit and 

Ashwall, 2006) that principally consist of volcanic, volcano-sedimentary, and sedimentary sequences, 

which are separated by extensive tonalite-trondhjemite-granodiorite and granitoid provinces, 

characterize the Paleoproterozoic domain. The volcanic and volcano-sedimentary rocks belong to the 

Birimian Supergroup, which probably formed in the context of volcanic arcs and oceanic plateaus 

(Abouchami et al., 1990; Leube et al., 1990; Boher et al., 1992; Taylor et al., 1992; Pouclet et al., 

1996; Béziat et al., 2000). Radiometric dating of the volcanic units (Davis et al., 1994; Loh and 

Hirdes, 1996; Lüdtke et al., 1998; Lüdtke et al., 1999) places the main peak of the Birimian volcanism 

at around 2190–2160 Ma, while detrital zircons from the sedimentary basins yield ages as young as 

2130 Ma (Lüdtke et al., 1999) or 2107 Ma (Doumbia et al. 1998). The Birimian volcanic and volcano-

sedimentary units are unconformably overlain at several places across the craton by detrital shallow 

water sedimentary rocks, which are known as the Tarkwaian sediments (Whitelaw, 1929; Sestini, 

1973; Leube et al., 1990; Oberthuer et al., 1998; Feybesse et al., 2006). The whole complex of 

volcanic, volcano-sedimentary, and sedimentary units was intruded by several generations of 

granitoids. The granitic plutons were emplaced during several magmatic pulses from 2180 to 1980 Ma 

(Leube et al., 1990; Pons et al., 1995; Hirdes et al., 1996; Doumbia et al., 1998; Castaing et al., 2003; 

Gasquet et al., 2003; Naba et al., 2004; Siegfried et al., 2009; Thomas et al., 2009; Agyei Duodu et al., 

2010). The general geochemistry of the granitoids evolves from Na-rich calc-alkaline to K-rich 

alkaline (Boher et al., 1992) while their shape depends on tectonic regime during their emplacement, 

ranging from undeformed circular plutons to elongate and complex interlocked bodies (Pons et al., 

1991; Pons et al., 1992; Pons et al., 1995). 

The Eburnean orogeny is generally divided into two major deformation phases. The first 

phase, which caused major crustal thickening (Boher et al., 1992; Milési et al., 1992; Allibone et al., 

2002; Feybesse et al., 2006; Vidal et al., 2009), operated approximately during 2130–2100 Ma. The 

second phase that lasted up to 1980 Ma was responsible for the formation of regional scale 

transcurrent shear zones and faults, which transect all lithologies. Gold mineralization in West Africa 

is generally related to these shear zones (e.g. Milési et al., 1989; Milési et al., 1992; Blenkinsop et al., 

1994; Bourges et al., 1998; Allibone et al., 2002; Feybesse et al., 2006). Most of the volcanic and 

sedimentary rocks underwent lower to upper greenschist facies metamorphism (Béziat et al., 2000; 

Feybesse et al., 2006; Kříbek et al., 2008). Although John et al. (1999) and Galipp et al. (2003) 

described regional MP/MT conditions (500–600°C, 5–6 kbar) in Ghana, amphibolite facies 

metamorphism is mostly restricted to the contact aureoles of granitic plutons (Debat et al., 2003). The 

consolidated Eburnean basement was then locally affected by a N-S oriented compressional event 

(Nikiéma et al., 1993; Debat et al., 2003; Hein, 2010) and unconformably overlain by the 
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Neoproterozoic sediments of the large Taoudeni, Lullemeden, and Volta basins. Dyke swarms 

crosscut the entire Proterozoic domain in several directions and belong to at least six different 

generations (Jessell et al., 2010). 

Lateritic weathering and geomorphology of West Africa and Burkina Faso 

The regolith in West Africa represents an important economic resource (Wright et al., 1985), a 

constraint on the regions tectono-geomorphic evolution (Michel, 1973; Grandin, 1976; Leprun, 1979; 

Boeglin, 1990; Tardy, 1997; Beauvais, 1999; Chardon et al., 2006), and a hindrance to geochemical 

exploration techniques (Craig, 2001; Taylor and Eggleton, 2001). The term regolith stands for all of 

the weathered and unconsolidated material from basement rock to earth surface including interbedded 

fresh rocks (Taylor and Eggleton, 2001). A simplified regolith terminology of a typical laterite 

weathering profile may be found in figure 2. The laterite profile consists of several regolith facies, 

from the bottom to the top – bedrock, saprock, saprolite, plasmic zone, mottled zone or ferruginous 

saprolite, lateritic residuum (lateritic duricrust, lateritic gravel). The facies correspond to the intensity 

of weathering processes and due to mechanical erosion or differences in parent rock materials, not all 

Figure 2 A typical lateritic profile with all regolith facies preserved. (Eggleton, 2001) 
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of the facies have to be always present. Tardy (1997) estimates that nearly one third of the area of all 

continents is covered by regolith resulting from lateritic weathering. The distribution of lateritic 

materials in Africa is depicted in figure 3. 

From a geomorphological point of view, the occurrence of different regolith facies is tied with 

several types of regolith landforms belonging to the erosional, depositional, or residual regime. The 

most common and pronounced features include residual Fe-rich duricrust plateaus, erosional 

inselbergs or rock outcrops, and depositional infill of alluvial plains. Figure 3 shows some of the 

landform features found in Western Australia and common as well in West Africa. 

 The planation surfaces of western Burkina Faso, which developed on basement rocks of the 

West African Craton, are the result of long-term deep weathering, erosion, and gradual uplift of the 

African continent under varying climatic conditions (King, 1962) mainly after the breakup of 

Gondwana in the Mesozoic (Wright et al., 1985). In all of West Africa, these surfaces are capped by 

Figure 3 Distribution of laterites, bauxites, and lateritic soils in Africa, modified from Burke and 
Gunnell (2008). 
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ferruginous or aluminous duricrusts, which are ordered in a stepped manner and correspond to a 

chronological sequence in which they were formed (Michel, 1973; Grandin, 1976; Tardy, 1997). 

Seven planation surface classes (figure 3A) have been established according to correlations between 

relative height, geochemistry, and petrology tying the oldest surface with the Gondwanian era and the 

youngest in age reaching the Quaternary period (Gunnell, 2003; Beauvais et al., 2008; Burke and 

Gunnell, 2008). The formation mechanism of the duricrusts includes a combination of processes 

where in situ formation (Leprun, 1979) down slope mechanical displacement and subsequent 

recementation acted together (Beauvais, 1999). The lateritization processes are also connected with 

residual bauxite and manganese deposits, and secondary enrichment of iron ore deposits (Wright et al., 

1985; Tardy, 1997; Lavaud et al., 2004). 

The lateritic surfaces of southwestern Burkina Faso were thoroughly studied by Boeglin and 

Mazaltarim (1989) and Boeglin (1990). According to Boeglin (1990), only three of the planation 

surfaces are present in the south of Burkina Faso. Recently Beauvais et al. (2008) reported dating of 

the surfaces from northern Burkina Faso. Relics of the highest bauxitic African surface (Eocene, 59–

45 Ma) are found at the top of the eroded sequences above 500 m. The Intermediate surface 

(Oligocene, 34–29 Ma) has not been observed and either has been completely eroded or did not exist 

in the region. The other ferruginous surfaces belong to the so-called high glacis (Late Oligocene-Early 

Figure 4 A block diagram with typical regolith landforms found in Western Australia and common to 
West Africa modified after Anand and Paine (2002). 
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Miocene, 24–18 Ma) and middle glacis (Middle to Late Miocene, 12–7 Ma). These surfaces are not 

easily separable and according to Boeglin (1990), it can be concluded that there has been probably one 

continuous inclined or undulating surface rather than two distinct levels. The area of southwestern 

Burkina Faso provides contrasting geological basement of alternating greenstone belt lithologies and 

granitic bodies. There seems to be at least some linkage between the chemical composition of the iron 

rich duricrusts and the underlying basement rocks (Boeglin, 1990). Blot et al. (1973) also evaluated 

correlations between basement geochemistry and regolith geochemistry; where again at local scale 

moderate to significant relationship exists. Tardy (1997) however states, that the petrological and 

mineralogical differences are subtle and become progressively smaller with the evolution and ageing 

of the lateritic surfaces. 

Approaches to geological mapping in deeply weathered terrains 

Geological and structural mapping is a process of creating maps where the distribution of rock 

materials, which lie near the surface and their interrelationships are portrayed and interpreted. These 

maps serve as a valuable source of information for decision-making regarding the use of our natural 

Figure 5 (A) Lateritic regolith surfaces of West Africa; (B)Variations in the spatial extent of lateritic 
regolith surfaces of West Africa modified after Burke and Gunnell (2008). 
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resources. Geological mapping is an interpretative and subjective process, and because of that, it is 

crucial to include as much data describing the geological situation as possible to eliminate errors in the 

interpreted model. In a complex landscape environment or while surveying large areas, data collection 

is hindered by lack of outcrops caused by vegetation or regolith cover and the inability to cover all of 

the area using field observations due to time or financial constraints. To overcome some of these 

problems, magnetic, gravimetric, gamma-ray spectrometry, and satellite remote sensing data 

constrained by detailed field observations collected at key areas were previously utilized (e.g. Jaques 

et al., 1997; Schetselaar et al., 2000; Betts et al., 2003; Peschler et al., 2004; Direen et al., 2005; 

Martelet et al., 2006; Peschler et al., 2006; de Souza Filho et al., 2007; Schetselaar et al., 2007; 

Schetselaar et al., 2008; Teruiya et al., 2008; Aitken and Betts, 2009a; Stewart and Betts, 2010). The 

field observations used in the process of geological mapping include lithological observations, 

petrographic, metamorphic, and geochemical analyses, while incorporating also detailed structural 

measurements. The effective application of some methods alone (e.g. multispectral satellite data or 

gamma ray spectrometry data) without an integrated approach may be difficult especially in deeply 

weathered terrains due to the complex regolith-parent rock relationships (Wilford et al., 1997; Taylor 

and Eggleton, 2001).  

Airborne magnetic data allow us to map magnetic anomalies (Boyce and Morris, 2002). 

Constrained by field structural and geological observations, these data serve as a tool for deriving both 

lithological information and structural frameworks from which kinematic relationships can be 

interpreted (Betts et al., 2003; Direen et al., 2005; Betts et al., 2007; Aitken and Betts, 2009a, b). The 

traditionally performed reduction to pole, which significantly simplifies the interpretations of magnetic 

data, becomes unstable close to the equator because of the low magnetic inclination (MacLeod et al., 

1993; Li, 2008). Moreover, N-S oriented anomalies cannot be portrayed accurately at low latitudes 

(Beard, 2000; Reeves, 2005). Different methods have been suggested for performing the reduction 

close to the equator (MacLeod et al., 1993; Li, 2008). Filters, which are routinely used in estimating 

steep gradients from potential field data (Blakely and Simpson, 1986; Miller and Singh, 1994; 

Verduzco et al., 2004; Pilkington and Keating, 2009), may be applied to magnetic datasets reduced to 

the pole. These grids, including the first vertical derivative, horizontal derivatives, and tilt derivative 

(Milligan and Gunn, 1997; Pilkington and Keating, 2009) aid in the determination of structural and 

lithological boundaries down to first hundreds of meters. Near the equator or in areas with significant 

remanent magnetization analytical signal and the total horizontal derivative of the tilt derivative are 

particularly useful when making interpretations, as these are not affected by the orientation of the 

Earth’s magnetic field (Verduzco et al., 2004; Li, 2006). 

The gamma ray spectrometry data acquired over the surface of the Earth reflect the 

concentrations and distribution of the radioactive elements in both rocks and the derived regolith 

material. Gamma ray spectrometry is therefore suited for deriving detailed lithological information but 

serves equally well as a tool for efficient regolith mapping (Jaques et al., 1997; Wilford et al., 1997; 
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Martelet et al., 2006). Unlike the magnetic data, it reveals the chemical properties of approximately 

the first 30 cm layer of the Earth’s crust (Minty, 1997). Different techniques are proposed in the 

analysis of airborne gamma ray spectrometry data ranging from the ratios of the gamma ray 

spectrometry channels (Dickson and Scott, 1997; Wilford et al., 1997), color composites, and color 

space transformations (Jaques et al., 1997) to integrations with optical and near-infrared datasets 

(Anderson and Nash, 1997; Schetselaar et al., 2000). Usually the data are analyzed as single band 

grids e.g. eTh/K, eU/K, and eU/eTh or as ternary grids of K, eTh, and eU as RGB (Red, Green, Blue) 

or HSV (Hue, Saturation, Value). 

The deep regional-scale structures and lithological boundaries are usually well defined in 

gravimetric data. Gravity anomalies are caused by contrasting densities of the crustal rocks. The 

analyses of gravity data may be subject to similar edge detecting techniques as used for the magnetic 

data (Blakely and Simpson, 1986). Gravity data often serve as input to 2-D and 3-D geophysical 

modeling for the interpretation of the geometry of lithological bodies at depth (Attoh, 1982; Peschler 

et al., 2004; Direen et al., 2005; Stewart et al., 2009). 

The recognition of the value of multispectral and hyperspectral remote sensing data in 

lithological and structural mapping dates back to the launch of the first Landsat system (Drury, 1993). 

However, successful applications are usually constrained to well exposed terrains or terrains where 

regolith may be linked directly with the underlying geology (e.g. Zumsprekel and Prinz, 2000; Rowan 

et al., 2004; Rowan et al., 2005). In deeply weathered areas, where the relationships between 

allochtonous and autochthonous regolith material are not well understood, remote sensing data are 

instead used for mapping the distribution of the weathered material and so called regolith landform 

units (Lau et al., 2003). 

Digital elevation models may be used for the determination of geomorphological parameters 

of the earth’s surface, which are to some extent controlled by the underlying geology. Typically, the 

digital elevation models stem from remote sensing systems (e.g. SPOT, ASTER, and SRTM). High 

precision and resolution DEMs acquired by LiDAR (Light Detection and Ranging) are one of the 

recent research highlights in geological and geomorphological mapping (Grebby et al., 2010; Grebby 

et al., 2011; Mulder et al., 2011) 
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In a GIS environment, layers containing different information may be readily overlain and 

analyzed as an integrated dataset (Bonham-Carter, 1994; Jaques et al., 1997). These may include 

digital images, maps, or point layers with field observations. Schetselaar et al. (2007) uses the term 

“Remote predictive mapping” for an integrated methodology where conventional mapping techniques 

are coupled with remote sensing data. The word predictive refers to the fact that the produced 

interpretations are best estimates of the geologic truth. The approach consists from several steps 

portrayed in figure 4. Similar methodologies, where different sources of data are re-compiled and 

analyzed in an integrated manner, or parts of the approach proposed by Schetselaar et al. (2007) were 

described by many others including (Jaques et al., 1997; Schetselaar et al., 2000; Direen et al., 2005; 

Figure 6 Flow Chart of Integrated analysis of remote sensing and traditional field data during geological 
or regolith landform mapping projects; object in grey belong to traditional field-based mapping, 
while white object incorporate remote sensing data, modified from Schetselaar et al. (2007). 
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Betts et al., 2007; Teruiya et al., 2008; Aitken and Betts, 2009a, b). Although the authors integrate 

different sources of data, the main idea remains similar. The interpretation may be either automatic or 

visual. Usually before the analysis itself commences different techniques described in the paragraphs 

above are used to enhance the data. In addition, to evaluate the relationships between the available 

source layers, the correlations between the source layers may be assessed. For correlated layers PCA 

(Principal Component Analysis) serves as a tool in determining uncorrelated factors (components) that 

can be obtained from the original dataset (Drury, 1993). These layers may be more informative than 

the original dataset and thus be of greater use during the subsequent interpretations. A detailed 

description of the used data and methodology applied to geological mapping and utilized in the thesis 

may be found in Appendices 1 and 2. 

Approaches to regolith landform mapping 

The term regolith stands for all of the weathered and unconsolidated material from basement 

rock to earth surface including interbedded fresh rocks (Taylor and Eggleton, 2001). Knowing the 

distribution of regolith units and understanding the processes, which led to their formation, is 

important for any kind of successful geological mapping, geochemical or geophysical survey, and 

mineral exploration. Traditional field-based regolith landform mapping can be a lengthy process, 

which can be further complicated by difficult access to remote and often large survey areas. At most 

scales, West Africa remains poorly covered by regolith landform maps such as those commonly used 

in Australia (Pain et al., 2007).  

Figure 7 The electromagnetic spectrum, with regions relevant to remote sensing techniques depicted; VIS-
visible, NIR-near infra red, SWIR-short wave infrared, TIR-thermal infrared, C,S,L,P-Band-categories 
of frequency (wavelength) ranges for radar sensors. 
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Airborne geophysical data and remote sensing data may help to overcome some of the 

limitations of traditional field-based regolith landform mapping (especially data coverage problems) 

and were already frequently employed (Wilford et al., 1997; Papp, 2002; Woolrych and Batty, 2007) 

to assess from afar the diverse physical properties of regolith materials based on the sensed 

electromagnetic energy (figure 5). One can estimate the chemical composition from airborne gamma-

ray spectrometry or spectral remote sensing (Landsat, ASTER), terrain morphology from the digital 

elevation models (SRTM), and surface roughness or prevailing geometric shapes from radar imagery 

(ALOS, Radarsat-2). 

Multispectral imagery from Landsat sensors were frequently employed in regolith mapping 

(Craig et al., 1999) including directed principal component analysis (DPCA), which is used to separate 

clay minerals and suppress the effects of vegetation (Fraser and Green, 1987). Hyperspectral 

imagery has been used to assess surficial components of regolith by Dehaan and Taylor (2004) and 

Lau et al. (2003). Cudahy et al. (2006) studied the relationship between kaolinite disorder and 

transported versus in situ regolith and found that kaolinite in transported materials tends to be poorly 

crystalline. In situ infrared spectroscopic measurements form an important component of any 

multispectral or hyperspectral remote sensing analysis regardless of the scientific discipline involved, 

providing vital data for calibration, ground truth assessment and serving as modeling input parameters 

(Milton et al., 2009). Only a relatively small portion of the worldwide measured spectral data are 

stored in spectral libraries (Christensen et al., 2000; Baldrige et al., 2009; Clark et al., 2007; Becvar et 

al., 2008; Hueni et al., 2009; ICRAF-ISRIC; 2010) and distributed to the scientific community. 

Unfortunately, data on regolith materials are almost absent in these libraries, although applications of 

imaging spectroscopy to granite greenstone terrains or regolith landform mapping have already been 

reported (Drury and Hunt, 1989; Dehaan and Taylor, 2002; Rowan et al., 2004; Hewson et al., 2005; 

Deller, 2006). 

SAR (Synthetic Aperture Radar) imagery constitutes a very useful complement to optical 

images (Baghdadi et al., 2005). For geologists, radar images provide unique information about 

structure, morphological, sedimentary features, and moisture content. This information is directly tied 

to the physical properties of terrain surfaces (Henderson and Lewis, 1998; Drury, 1993). Tapley 

(2002) showed that VV (vertical transmit – vertical receive) and HV (horizontal transmit – vertical 

receive) polarizations were better suited for the geological mapping of arid to semi-arid Australia 

where VV polarization provides increased sharpness and better discrimination between surfaces 

having similar roughness properties. Polarimetric classification is usually applied via classifying the 

four polarimetric channels, or classifications based on polarimetric decompositions of the scattering 

matrix e.g. Cloude-Pottier decomposition (Cloude, 1997), Freeman-Durden decompositions (McNairn 

et al., 2009). The Pauli decomposition is often used for visual inspection of the data and visual 

classification; however, automatic classifications based on Pauli decomposition source bands were 

reported as well (Huang, et al., 2011). 
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Gamma ray spectrometry, which is frequently used in geological studies, was as well 

recognized as a tool for efficient regolith mapping (Wilford et al., 1997; Wilford, 2002; Woolrych and 

Batty, 2007). The original data are usually smoothed by NASVD (Noise-Adjusted singular Value 

decomposition) developed by Hovgaard and Grasty (1997). The concentrations of K, eU, and eTh may 

be calibrated to absolute values using ground target calibration (Minty, 1997). Wilford et al. (1997) 

and Martelet et al. (2006) previously described the retention of especially thorium by the Fe-rich 

weathering products and thus in particular any Fe-rich duricrusts stand out as anomalous features in 

the gamma ray spectrometry images. 

Digital elevation models and its derivatives are frequently used for landform mapping in 

conjunction with other remote sensing data (Henquin and Totté, 1993; Irvin et al., 1997; Giles, 1998; 

Saadat et al., 2008; Liberti et al., 2009; Siart et al., 2009). Derivatives of the elevation data may be 

created to characterize and quantify the morphological parameters of the surfaces. These layers may 

include a variety of morphological descriptors e.g. slope, slope roughness (standard deviation of 

slope), curvature (Zeverbergen and Thorne, 1987), relative relief (elevation difference), or the 

hypsometric integral (Pike and Wilson, 1971). The derivatives are usually computed in a moving 

window of variable size. 

Dense vegetation cover or displacement of the regolith units by later erosion may limit the 

application of most of the described techniques. Indeed, the best results in mapping of the diverse 

regions in West Africa would require the integration of several data sets. Such integration is 

thematically related with the approach of Schetselaar et al. (2007) and may be facilitated by simple 

overlay of different layers in GIS and visual interpretation (Craig et al., 1999; Craig, 2001; Papp, 

2002; Woolrych and Batty, 2007) or via automated classification methods, which are not as common 

(Wilford et al., 2007). The automated classification schemes may follow either unsupervised or 

supervised classification methods (Campbell, 1996), which have been previously applied in geological 

mapping or geomorphological mapping. The pixel-based methods include iso-data clustering, 

hierarchical agglomerative clustering, maximum likelihood, artificial neural networks, or Kohonen’s 

self-organizing maps (Martelet et al., 2006; Grebby et al., 2010; Leverington, 2010). Subpixel based 

methods, which are suited for multispectral or hyperspectral data (e.g. spectral angle mapper, linear 

spectral unmixing, mixture tuned matched filtering) were used by Dehaan and Taylor (2004), Rowan 

et al, (2004), or Leverington, (2011). Recently, object-oriented classifications are also being applied 

(Dragut and Blaschke, 2006). During automated classifications, it is vital to perform an accuracy 

assessment of the resulting classified images. Such accuracy assessment is for multiclass 

classifications best achieved by constructing and examining a confusion (error) matrix as described by 

Congalton and Green (2009). The classification result should best be rechecked as well in the field. A 

detailed description of the used data and methodology applied to regolith mapping in this thesis may 

be found in Appendices 1 and 2. 
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Hypotheses 

1. Greenstone belts and associated granitoid domains form the Paleoproterozoic domain of the 

West African craton. The physical and geochemical properties of the lithological units differ. 

Airborne geophysics and remote sensing data are able to map these differences even in areas 

covered by thick regolith mantle. In addition, geological structures such as faults and folds 

produce distinct patterns visible in the above-mentioned datasets. 

2. The greenstone belts of western Burkina Faso represent either separate or once connected 

volcano-sedimentary basins. The granitoid domains associated with the greenstone belts are 

formed by large granitic bodies or numerous smaller scale plutons emplaced by interplay of 

buoyancy and regional deformation forces. The regional structural grain of the granite-

greenstone domains resulted from lateral accretion and nappe stacking or gravity driven 

processes governed by density differences. 

3. The surface properties of rocks and regolith materials covering the study area may be studied 

with the help of spectral remote sensing. Visible and infrared spectra of rocks and regolith 

materials help in interpretations of remote sensing data and understanding of surface 

weathering processes in the area of western Burkina Faso. 

4. The lateritic cover, found over most of the studied region, may be automatically or semi-

automatically classified into distinct regolith landform units with the help of integrated 

analysis of geophysical and remote sensing data. The integration of all available and relevant 

data sources will lead to better classification results. 

Objectives 

I. Perform an integrated analysis of field-based observations, geophysical, and remote sensing 

data. Determine the regional structures and major lithotectonic units utilizing all available 

data sources and create a new lithostructural map of the studied area. Evaluate the 

application of the different methods for both lithostructural mapping and regolith landform 

mapping in the zone of interest. 

II. Propose a new geotectonic scenario with the help of new geochemical data, structural 

observations, gravity modeling, and interpretations stemming from the integrated analysis of 

available data. Examine the relationships between the greenstone belts and assess the 

mechanisms of granitoid pluton emplacement. 

III. Measure the spectral properties of different lithological units, regolith landform units and 

create a spectral library. Assess the effects of weathering on spectral properties of rocks and 

determine the spectral properties of soils and regolith materials. Evaluate the possibility of 

using visible and infrared spectroscopy in mapping surface properties in the studied area. 



 
Introduction and background 

 

32 

IV. Propose a feasible method for automatic regolith landform mapping and evaluate the relative 

importance of different data sources. 

Thesis plan 

This thesis presents four chapters. The manuscript begins with a review of the geological 

evolution of the Paleoproterozoic domain of the West African Craton and lateritic weathering of the 

region. It presents as well a review of approaches applied to geological mapping in deeply weathered 

terrains and techniques used for regolith landform analyses. 

Chapter I studies the lithostructural setting of western Burkina Faso (Metelka, V., Baratoux, 

L., Naba, S., Jessell, M.W. - A geophysically constrained litho-structural analysis of the Eburnean 

greenstone belts and associated granitoid domains, Burkina Faso, West Africa – published in 

“Precambrian research”) presents a new regional scale structural and lithological map of western 

Burkina Faso, based on an integrated analysis of field observations, geophysical, and remote sensing 

data. Part of this study is formed by an overview of the advantages and drawbacks of geophysical and 

remote sensing methods in the deeply weathered terrains of West Africa and a comparison of our 

findings with similar works in other Precambrian terrains. The chapter further discusses in particular 

the significance of newly discovered structures and lithological relationships, in the light of the 

geodynamic scenario that is proposed in chapter II. 

Chapter II presents the tectonic model for western Burkina Faso (Baratoux, L., Metelka, V., 

Naba, S., Jessell, M.W., Grégoire, M., Ganne, J. - Juvenile Paleoproterozoic crust evolution during 

the Eburnean orogeny (~2.2–2.0 Ga), Burkina Faso, West Africa – published in “Precambrian 

research”). The model addresses the issues of the source and nature of the volcanic rocks of the 

greenstone belts, the growth mechanisms of continental crust from dominantly oceanic crust and 

volcanic arcs, and their transformation into a classical-type greenstone-granitoid terrain pattern. We 

also discuss the significance of their partitioning into the current greenstone belts, taking into 

consideration the pre-greenstone belt geodynamic setting of the volcanic island arcs. As the model is 

based on the integration of multiple datasets (Chapter I), it provides a good constraint on the 3D 

geometry of the system as well as on the relative chronology of some of the large-scale structures. 

Chapter III presents a new spectral library for West Africa (Metelka, V., Baratoux, L., Naba, 

S., Jessell, M.W. - Visible and infrared spectral library of Precambrian granite-greenstone terrains in 

Burkina Faso, West Africa – to be submitted to “Earth surface processes and landforms”). This 

spectral library contains 110 sampled locations and represents the first publicly available spectral data 

for West Africa. It contains spectral data of greenschist-metamorphosed lithologies of the greenstone 

belts, granites, and regolith materials derived from the basement rocks. The results discussed in this 

chapter are relevant both to geological and regolith interpretation of remote sensing data in West 

Africa but as well to the understanding of lithological controls on weathering of Precambrian granite-
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greenstone terrains in semi-arid environments. The dataset is available through the web page 

http://www.geology.cz/extranet-eng/geodata/remote-sensing. 

Chapter IV draws partially on the conclusions from chapter I and III aiming at an evaluation 

of automatic classification methodologies for regolith landform mapping (Metelka, V., Baratoux, L., 

Jessell, M.W., Barth, A., Ježek, J., Naba, S. - Regolith landform mapping using airborne geophysics 

and remote sensing data in a neural network, Burkina Faso, West Africa – to be submitted to “Remote 

sensing of environment”). The approach uses a combined analysis of airborne remote sensing data in a 

moderately to densely vegetated region of southwestern Burkina Faso near the town of Gaoua. 
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Résumé du chapitre I 

Une analyse litho-structurale des ceintures des roches vertes et des 

domaines des granitoïdes éburnéens associés contrainte par des 

données géophysiques, Burkina Faso, Afrique de l’Ouest 

 

1. Introduction 

Les terrains paléoprotérozoïques composés de granitoïdes et de ceintures des roches vertes 

représentent une cible intéressante pour l’exploration minière, mais également pour la recherche axée 

sur les mécanismes de formation des boucliers anciens. Malheureusement, il s’agit très souvent de 

régions affectées par une intense altération de surface (latéritisation) entravant la cartographie 

géologique de terrain ainsi que les études structurales. Les données géophysiques aéroportées, 

récemment acquises, intégrées avec les observations de terrain offrent une nouvelle perspective dans la 

cartographie de ces régions. L’efficacité de ces méthodes a été démontrée dans les terrains 

précambriens du Canada et de l’Australie (Betts et al., 2003 ; Peschler et al., 2004 ; Direen et al., 

2005 ; Peschler et al., 2006 ; Aitken et Betts, 2009a ; Stewart et Betts, 2010). De plus, les données 

satellitaires et radiométriques sont utilisées pour la cartographie précise du régolithe (Craig, 2001 ; 

Wilford, 2002). 

Cette étude présente une nouvelle carte litho-structurale de l’Ouest du Burkina Faso, 

contrainte par les données de terrain, les données géophysiques aéroportées et les données satellitaires 

intégrées dans un environnement SIG. Nous discutons notamment de l’importance des structures 

découvertes par cette méthodologie en cherchant à les replacer dans le scénario géodynamique 

proposé dans le chapitre II. 

2. Méthodes  

Nous avons utilisé une méthode d’intégration des observations de terrain (qui elles soient 

nouvelles ou existantes) avec des données géophysiques aéroportées, des données gravimétriques et 

des données satellitaires. L’environnement SIG (système d'information géographique) a été utilisé 

pour cette intégration de données multiples. 

Les données de terrain incluent les observations lithologiques, stratigraphiques et les mesures 

structurales. Les données magnétiques et radiométriques aéroportées que nous avons utilisées ont été 

acquises lors du projet SYSMIN (Système Minier) qui s’est déroulé entre 1998 et 1999. Les grilles, 

d’une résolution de 125 et 250 m, ont été calculées à partir des lignes de vol espacées de 500 et 1000 
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m. Localement, nous avons utilisé des données de haute résolution fournies par des compagnies 

minières. 

Une réduction au pôle des données magnétiques a été effectuée selon la méthode de MacLeod 

et al. (1993) et Li (2008). De plus, la première dérivée verticale, la dérivée horizontale et la dérivée 

d’inclinaison (Milligan et Gunn, 1997 ; Pilkington et Keating, 2009) ont été effectuées. Les données 

radiométriques ont été lissées selon la méthode NASVD (Noise-Adjusted Singular Value 

decomposition) (Hovgaard et Grasty, 1997) et les concentrations de K, eU, eTh ont été calculées 

respectivement, sur la base d’émission des éléments fils 214Bi and 208Tl. Des grilles composites de 

eTh/K, eU/K, and eU/eTh ainsi que des images d’Analyse en Composantes Principales (ACP) ont été 

réalisées. Les données Landsat et ASTER ont été utilisées conjointement avec le modèle numérique de 

terrain SRTM (Shuttle Radar Topography Mission). Ce dernier, d’une résolution de 90 m, a été intégré 

aux données radiométriques (Wilford et al., 1997). 

Les données gravimétriques sont issues d’une campagne de l’ORSTOM en Afrique de l’Ouest 

(Albouy et al., 1992). Les points de mesure sont situés le long des routes principales et leur 

espacement maximum est de 4000 m. Les corrections à l’air libre et de Bouguer ont été appliquées, 

utilisant 2,67 g/cm3 comme densité de réduction. Les données recalculées dans une grille de résolution 

de 3000 m ont servi à produire une carte d’anomalies de Bouguer. 

3. Résultats principaux de l’étude  

Cette approche, intégrant des données multiples, a mené à la découverte de structures qui 

n’avaient encore jamais été identifiées dans l’Ouest du Burkina Faso. Les données magnétiques ont 

servi pour la cartographie des structures et des unités lithologiques jusqu’à des profondeurs 

relativement importantes, alors que les données radiométriques et satellitaires ont permis de mieux 

contraindre la nature lithologique de terrains ainsi que les structures de surface. L’aspect structural de 

la carte est plus cohérent et complet car il a été établi de pair avec la conception du modèle 

géodynamique de la région étudiée (chapitre II). 

Nous avons démontré que les granitoïdes comportent quatre types d’intrusions (ME1-ME4), 

bien visibles sur les données magnétiques aéroportées. Ces quatre types correspondent aux types de 

granitoïdes observés sur le terrain : tonalite-trondhjemites-granodiorites riches en Na (ME1) ; 

granodiorites et granites riches en Na (ME2) ; granites riche en K (ME3) et gabbros (ME4). Les unités 

lithologiques des ceintures des roches vertes telles que des gabbros, basaltes, andésites et roches 

volcano-sédimentaires ont été délimitées grâce aux données magnétiques et radiométriques. Les 

sédiments de type Tarkwaien sont très faiblement magnétiques et peuvent donc être tracés dans les 

zones avec un contraste suffisant vis à vis des lithologies adjacentes. 

A plusieurs endroits, on peut distinguer la fabrique pénétrative S1 peut être distinguée de la 

fabrique cisaillant S2, tant sur le terrain que dans les données magnétiques aéroportées. Des reliques 
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de plis P1 d’échelle régionale ont été distinguées dans les ceintures de Houndé et de Boromo. On 

retrouve ces plis à l’échelle de l’affleurement dans les trois ceintures. De nombreuses zones de 

cisaillement d’échelle régionale, issues de la phase de déformation D2, ont été mises en évidence : 

Boromo-Poura, West Batié, Boni, Ouango-Fitini, Bossié, Greenville-Ferkessedougou-Bobo Dioulasso. 

Ces zones ont un fort potentiel pour l’exploration de l’or. 

Nous discutons également les points forts et points faibles de la méthodologie proposée pour 

la cartographie des zones couvertes par une épaisse couche de latérite et qui présentent très peu 

d’affleurements des roches saines. Les données magnétiques aéroportées sont très efficaces pour 

cartographier les roche du socle paléoprotérozoïques jusqu’à une profondeur de 300 m. Les données 

radiométriques et satellitaires ont moins d’utilité pour la cartographie des lithologies, notamment aux 

endroits où la couverture végétale ou latéritique est forte. Par contre, en combinaison avec le modèle 

numérique de terrain, elles ont été utilisées avec succès pour la cartographie des sols, carapace 

latéritique et sédiments alluvionnaires (chapitre IV). 

4. Conclusion 

Une nouvelle carte litho-structurale a été réalisée pour l’Ouest du Burkina Faso en utilisant 

une méthode d’intégration des données géophysiques aéroportées, des données satellitaires et des 

données géologiques de terrain dans un environnement SIG. Les unités lithologiques des ceintures des 

roches vertes ont pu, dans la limite du possible, être cartographiées sous les couvertures latéritiques. 

Quatre générations d’intrusions (ME1-ME4) ont été distinguées dans les domaines des granitoïdes, ce 

qui a des conséquences importantes pour le modèle géodynamique. De nombreuses zones de 

cisaillement à l’échelle régionale ont été découvertes. L’application de la méthologie de l’intégration 

des données multiples présente un fort potentiel pour la cartographie des régions de l’Afrique de 

l’Ouest, difficilement accessibles car couvertes par la végétation et les latérites. 
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WEST AFRICA 

Václav Metelka a,b,c, Lenka Baratoux a*, Séta Naba d, Mark W. Jessell a 

a IRD, UR 234, GET, Université Toulouse III, 14 Avenue Edouard Belin, 31400, Toulouse, France 
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Czech Republic 
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Abstract 

Interpretation of airborne geophysical data integrated with field structural and lithological 

observation was successfully employed in the creation of the litho-structural framework in a poorly 

exposed Paleoproterozoic granite-greenstone terrain of the West African Craton. The geophysical data 

portray with sufficient detail all of the lithological units and structural features present. The results 

suggest that the granitoid domains are formed by numerous small to medium-sized plutons. The 

existence of several generations of magmatic episodes has a significant impact on the development of 

a regional tectonic model. The magnetic data provided a better definition of the actual pluton shapes 

and several highly magnetic late-orogenic plutons were reliably identified. Relic F1 fold hinges were 

recognized in the Houndé and Boromo greenstone belts. The D1 penetrative structures are generally 

affected by the D2 transcurrent shear zones, which often form as well the granite-greenstone belt 

boundaries. Previously unreported S2 shear zones including the Bossié shear zone, transecting the 

Sidéradougou granitoid domain and abundant small-scale shear zones affecting all of the lithologies 

represent prospective areas for gold exploration. Airborne gamma ray spectrometry data aided in the 

mapping process in areas with less regolith cover including erosional ridges and parts of the Banfora 

greenstone belt. The magnetic data revealed at least three generations of doleritic dykes crosscutting 

the western Burkina Faso.  

 

Keywords: West Africa; Burkina Faso; Paleoproterozoic; Airborne geophysics; Remote 

sensing; Structural analysis 



 
Chapter I  

 

 39 

1. Introduction 

The greenstone belts of western Burkina Faso represent a typical granite-greenstone terrain of 

the Paleoproterozoic Baoulé-Mossi domain in the southern part of the West African Craton (figure I-1) 

(Bessoles, 1977; Abouchami et al., 1990; Boher et al., 1992; Taylor et al., 1992; Béziat et al., 2000; 

Debat et al., 2003). The NNE-SSW to N-S elongated belts stretch for more than 400 km and are host 

to multiple gold and base metal deposits (Milési et al., 1992; Béziat et al., 2008). They belong to a 

polycyclic orogen that formed around the Kénéma-Man Archean nucleus during the Eburnean orogeny 

(2200–2000 Ma) (Bonhomme, 1962; Liégeois et al., 1991; Milési et al., 1992; Ledru et al., 1994; Egal 

et al., 2002). Many studies describe the polyphase litho-structural setting and propose in essence two 

Figure I-1 Schematic maps of the study area. (a) – Simplified geological map of the Leo-Man craton 
(modified after BRGM SIGAfrique) with the zone of interest outlined; the Paleoproterozoic 
greenstones are divided into: light grey – intermediate to acid volcano-clastics and volcano-
sediments, dark grey – mafic to intermediate lavas and volcanic products. (b) – Simplified 
geological map derived during this study (Burkina Faso), Ivory Coast area modified after 
Tagini (1972) and Lüdtke et al. (1998), Ghana area modified after Agyei Duodu et al. (2010); 
names of the greenstone belts and granitoid domains discussed in the text are displayed; and 
major shear zones are outlined. 
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distinct geotectonic models for the evolution of the Paleoproterozoic basement in West Africa. A 

traditional plate tectonic model of crustal buildup by thrust and fold belts has been proposed by Boher 

et al. (1992), Feybesse and Milési (1994), Ledru et al. (1994), Hirdes et al. (1996), Debat et al. (2003), 

Feybesse et al. (2006), Tshibubudze et al. (2009), Hein (2010). Pons et al. (1995) or Vidal et al. (2009) 

favor dome and basin structures caused by vertical tectonic gravitational processes. 

Field mapping and structural studies in this region are seriously hindered by the presence of 

thick lateritic cover and scarcity of fresh outcrops. Rock exposure in the study area is about six 

percent. High-resolution airborne geophysical data have become an indispensable tool for geological 

mapping (Agyei Duodu et al., 2010) in West Africa. Interpretations of magnetic, gravimetric, gamma-

ray spectrometry and satellite remote sensing data constrained by field observations proved to be 

efficient in deciphering the regional litho-structural hierarchies in the Precambrian terrains (e.g. Jaques 

et al., 1997; Schetselaar et al., 2000; Betts et al., 2003; Peschler et al., 2004; Direen et al., 2005; 

Martelet et al., 2006; Peschler et al., 2006; de Souza Filho et al., 2007; Schetselaar et al., 2007; 

Schetselaar et al., 2008; Teruiya et al., 2008; Aitken and Betts, 2009a; Stewart and Betts, 2010). The 

effective application of some methods alone without an integrated approach may be difficult in 

geological mapping especially in deeply weathered terrains due to the complex regolith-parent rock 

relationships (Wilford et al., 1997; Taylor and Eggleton, 2001). Additionally, the application of 

gamma-ray spectrometry data or satellite remote sensing data is more appropriate for regolith 

landform mapping rather than geological mapping (Craig, 2001; Wilford, 2002). 

In this study, we present a new regional scale structural and lithological map of western 

Burkina Faso, based on an integrated analysis of field observations, geophysical, and remote sensing 

data. We will discuss in particular the significance of newly discovered structures and lithological 

relationships, in the light of the geodynamic scenario that we propose in chapter II. As a part of this 

study, we will offer an overview of the advantages and drawbacks of geophysical and remote sensing 

methods in the deeply weathered terrains of West Africa and compare our findings to similar works in 

other Precambrian terrains. 

2. Regional geological setting 

2.1. The Baoulé-Mossi Paleoproterozoic domain 

The Baoulé-Mossi domain (figure I-1) forms the eastern and northern part of the Leo-Man 

Craton (Bessoles, 1977). The Paleoproterozoic domain is characterized by the typical Archean-like 

greenstone-granitoid assemblages that principally consist of volcanic, volcano-sedimentary, and 

sedimentary sequences separated by extensive tonalite-trondhjemite-granodiorite and granitoid 

provinces. The volcanic and volcano-sedimentary rocks belong to the Birimian Supergroup, which 

was probably formed in the context of volcanic arcs and oceanic plateaus (Abouchami et al., 1990; 
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Leube et al., 1990; Boher et al., 1992; Taylor et al., 1992; Pouclet et al., 1996; Béziat et al., 2000). 

Radiometric dating of the volcanic units (Davis et al., 1994; Loh and Hirdes, 1996; Lüdtke et al., 

1998; Lüdtke et al., 1999) places the main peak of the Birimian volcanism at around 2190–2160 Ma, 

while detrital zircons from the sedimentary basins yield ages as young as 2130 Ma (Lüdtke et al., 

1999) or 2107 Ma (Doumbia et al., 1998). The Birimian volcanic and volcano-sedimentary units are 

unconformably overlain at several places across the craton by detrital shallow water sedimentary 

rocks, which are known as the Tarkwaian sediments (Whitelaw, 1929; Sestini, 1973; Leube et al., 

1990; Oberthuer et al., 1998; Feybesse et al., 2006). The whole complex of volcanic, volcano-

sedimentary and sedimentary units was intruded by several generations of granitoids, which were 

emplaced during several magmatic pulses from 2180 to 1980 Ma (Leube et al., 1990; Pons et al., 

1995; Hirdes et al., 1996; Doumbia et al., 1998; Castaing et al., 2003; Gasquet et al., 2003; Naba et al., 

2004; Siegfried et al., 2009; Thomas et al., 2009; Agyei Duodu et al., 2010). The general geochemistry 

of the granitoids evolves from Na-rich calc-alkaline to K-rich alkaline (Boher et al., 1992) while their 

shape depends on tectonic regime during their emplacement, ranging from undeformed circular 

plutons to elongate and complex interlocked bodies (Pons et al., 1991; Pons et al., 1992; Pons et al., 

1995). 

The polydeformed Baoulé-Mossi domain developed during the Eburnean orogeny 

(Bonhomme, 1962), which operated between ~2130 and 1980 Ma (Davis et al., 1994; Oberthuer et al., 

1998; Feybesse et al., 2006). Most of the volcanic and sedimentary rocks underwent lower to upper 

greenschist facies metamorphism (Béziat et al., 2000; Feybesse et al., 2006; Kříbek et al., 2008). 

Although John et al. (1999) and Galipp et al. (2003) described regional MP/MT conditions (500–

600°C, 5–6 kbar) in Ghana, amphibolite facies metamorphism is mostly restricted to the contact 

aureoles of granitic plutons (Debat et al., 2003). The Eburnean orogeny is generally divided into two 

major deformation phases. The first phase, which caused major crustal thickening (Boher et al., 1992; 

Milési et al., 1992; Allibone et al., 2002; Feybesse et al., 2006; Vidal et al., 2009), operated 

approximately during 2130–2100 Ma. The second phase that lasted up to 1980 Ma was responsible for 

the formation of regional scale transcurrent shear zones and faults, which transect all lithologies. Gold 

mineralization in West Africa is generally related to these shear zones (e.g. Milési et al., 1989; Milési 

et al., 1992; Blenkinsop et al., 1994; Bourges et al., 1998; Allibone et al., 2002; Feybesse et al., 2006). 

The consolidated Eburnean basement was then locally affected by a N-S oriented compressional event 

(Nikiéma et al., 1993; Debat et al., 2003; Hein, 2010) and unconformably overlain by the 

Neoproterozoic sediments of the Taoudeni, Lullemeden, and Volta basins. Dyke swarms cross the 

entire Proterozoic domain in several directions and are formed by at least six different generations 

(Jessell et al., 2010). 
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2.2. Western Burkina Faso 

The Paleoproterozoic basement of western Burkina Faso consists of three N-S trending 

greenstone belts, from east to west known as Boromo, Houndé, and Banfora (Castaing et al., 2003). 

The greenstone belts are separated by composite granitoid domains, which we call the Koudougou-

Tumu, Diébougou, Sidéradougou, and Niangoloko domains for the purpose of this work (figure I-1). 

The detailed stratigraphic relationships and litho-tectonic evolution are described in detail in chapter 

II. Shallow water detrital sediments, considered genetically similar to the Tarkwaian meta-sediments 

in Ghana, occur as a ~400 km long and ~1–2 km wide unit within the Houndé belt (Bossière et al., 

1996). In the west, sub-horizontal units of the Neoproterozoic Taoudeni basin overlay the 

Paleoproterozoic basement (Bronner et al., 1980). Doleritic dykes transect all of the present 

lithologies. 

The greenstone belts of western Burkina Faso and neighboring northern Ivory Coast and 

Ghana are composed of mafic tholeiitic lithologies, followed by intermediate and acid calc-alkaline 

effusive suites, typical for volcanic arc environments (Lüdtke et al., 1998; Béziat et al., 2000). U-Pb 

zircon ages in rhyolites associated to the mafic rocks yield ~2176–2160 Ma (Lüdtke et al., 1998; Le 

Métour et al., 2003). The volcanic assemblages are often intercalated with volcano-sedimentary units, 

considered as their lateral stratigraphic equivalents (Hirdes et al., 1996; Lüdtke et al., 1998; Lüdtke et 

al., 1999; Castaing et al., 2003). The Birimian sediments and volcano-sediments form belt-parallel 

units, such as the Bambéla volcano-sedimentary unit, which extends to the Ivory Coast where the unit 

is known as the Bambéla basin (Hirdes et al., 1996; Lüdtke et al., 1998; Lüdtke et al. 1999), or the 

Batié volcano-sedimentary unit situated within the Boromo belt. These sedimentary units might 

postdate the main volcanic activity in the region, as suggested by radiometric ages obtained on detrital 

zircons – 2126 Ma (Lüdtke et al., 1999). 

The granitic rocks form a complex assemblage resulting from several magmatic episodes 

(Castaing et al., 2003), for which several types of classifications have been proposed cratonwide 

(Leube et al., 1990; Davis et al., 1994; Hirdes et al., 1996; Doumbia et al., 1998; Egal et al., 2002; 

Castaing et al., 2003; Gasquet et al., 2003; Naba et al., 2004; Lompo, 2009). The petrographic 

composition of the different suites is variable. Based on field reconnaissance and the character of the 

intrusive bodies observed in the geophysical data, we will distinguish four groups of granitoid 

intrusions and associated gabbros, in accord with the previously published work. The oldest tonalites, 

trondhjemites, and granodiorites (ME1) yield ages of ~2153–2132 Ma (Hirdes et al., 1996; Lüdtke et 

al., 1998; Chèvremont et al., 2003; Koté et al., 2003) and are generally syntectonic with observable 

penetrative magmatic layering. Younger granodiorites and amphibole-biotite bearing granites (ME2), 

dated at ~2113–2097 ± 10 Ma (Hirdes et al., 1996; Chèvremont et al., 2003; Koté et al., 2003; Le 

Métour et al., 2003), are often affected by mylonitic shear zones, but may be also undeformed. Late 

potassic biotite-bearing granites (ME3) are mostly undeformed with only localized shear zones and are 
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best visible in magnetic data due to their high susceptibility. Coarse-grained undeformed gabbros of 

unknown age (ME4) are at places associated with the granitoid intrusions. More radiometric, 

petrographic, and geochemical data are needed for a more consistent classification of the plutons into 

the particular magmatic episodes. 

The structural patterns of the granite-greenstone belt contacts vary between bifurcating and 

linear patterns, as described by Kusky and Vearncombe (1997), which suggest both thrust-fold and 

strike-slip related deformations. As for the whole Paleoproterozoic domain, the deformation history of 

western Burkina Faso is polyphase, showing evidence of at least two distinct Eburnean orogenic 

phases (Ouedraogo and Prost, 1986; Castaing et al., 2003) discussed in detail in chapter II. 

3. Methodology and data use 

3.1. Airborne magnetometry 

Airborne magnetic surveys allow us to map magnetic anomalies (Boyce and Morris, 2002), 

constrained by field structural and geological observations, these data serve as a tool for deriving both 

lithological information and structural frameworks from which kinematic relationships can be 

interpreted (Betts et al., 2003; Direen et al., 2005; Betts et al., 2007; Aitken and Betts, 2009a, b).The 

magnetic data available for western Burkina Faso were acquired during the 1998–1999 SYSMIN 

(System for Mineral Products) airborne geophysics campaign with NW-SE oriented flight lines with 

500 m and 1000 m line spacing, 100 m ground separation, and 10000 m NE-SW tie lines. The IGRF 

(International Geomagnetic Reference Field) referential field corrected data were gridded with 125 

and 250 m spatial resolution (depending on the flight line spacing) and merged. The traditionally 

performed reduction to pole, which significantly simplifies the interpretation of magnetic data, 

becomes unstable close to the equator because of the low magnetic inclination (MacLeod et al., 1993; 

Li, 2008). Moreover, N-S oriented anomalies cannot be portrayed accurately at low latitudes (Beard, 

2000; Reeves, 2005). A reduction to the pole using the pseudo inclination method developed by Grant 

and Dods (in MacLeod et al., 1993) and discussed in detail by MacLeod et al. (1993) and Li (2008) 

was applied to the dataset. Subsequently, a directional cosine filter was used to remove the high 

amplitude false anomalies generated during the RTP filtering in the direction of the magnetic 

declination. At places, pre-processed high-resolution data provided by mining companies were used. 
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Filters, which are routinely used in estimating steep gradients from potential field data (Blakely and 

Simpson, 1986; Miller and Singh, 1994; Verduzco et al., 2004; Pilkington and Keating, 2009), were 

derived from the reduced to the pole magnetic residual field data set (figure I-2a). These grids, 

including the first vertical derivative (figure I-2b), horizontal derivatives, and tilt derivative (Milligan 

and Gunn, 1997; Pilkington and Keating, 2009) of the magnetic data aided in the determination 

Figure I-2 (a) – Reduced to the pole (RTP) residual magnetic intensity (RMI) grid; (b) – first vertical 
derivative of the RTP corrected RMI grid overlain by interpreted structures; (c) – Gamma 
ray ternary grid – corrected absolute concentrations displayed as RGB underlain by the 
SRTM digital elevation model; (d) – Bouguer anomaly gravimetric grid with an overlay of 
interpreted structures. 
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of structural and lithological boundaries down to first hundreds of meters. Near the equator or in areas 

with significant remanent magnetization analytical signal and the total horizontal derivative of the tilt 

derivative are particularly useful when making interpretations, as these are not affected 

by the orientation of the Earth’s magnetic field (Verduzco et al., 2004; Li, 2006). 

3.2. Airborne gamma ray spectrometry 

The gamma ray signal sensed over the surface of the Earth reflects the content and distribution 

of the radioactive elements in both rocks and the derived regolith material including anomalies created 

by geochemical alterations (mineralization, hydrothermal alterations, weathering). Gamma ray 

spectrometry is perfectly suited for deriving detailed lithological information but serves equally well 

as a tool for efficient regolith mapping (Jaques et al., 1997; Wilford et al., 1997; Martelet et al., 2006). 

Unlike the magnetic data, it reveals the chemical properties of approximately the first 30 cm layer 

of the Earth’s crust (Minty, 1997). 

The gamma ray spectrometry data were acquired along with the magnetic data during the 

1998–1999 SYSMIN project. The data were supplied as corrected, NASVD (Noise-Adjusted Singular 

Value decomposition) smoothed (Hovgaard and Grasty, 1997). K, eU, eTh concentrations (U and Th 

are calculated based on gamma ray emissions from their daughter elements 214Bi and 208Tl, 

respectively and assumed equilibrium in the decay series) and were subsequently gridded at 125 and 

250 m spatial resolution (depending on the flight line spacing). At places, high-resolution data 

provided by mining companies were used. Different techniques are proposed in the analysis of 

airborne gamma ray spectrometry data ranging from the ratios of the gamma ray spectrometry 

channels (Dickson and Scott, 1997; Wilford et al., 1997), color composites, and color space 

transformations (Jaques et al., 1997) to integrations with optical and near-infrared datasets (Anderson 

and Nash, 1997; Schetselaar et al., 2000). The eTh/K, eU/K, and eU/eTh grids were derived from the 

original bands along with the K, eTh, and eU RGB (Red, Green, Blue) color composite (figure I-2c) 

and Principal Component Analysis (PCA) images. 

3.3. Gravimetric data 

The deep regional-scale structures and lithological boundaries are usually well defined by 

gravity anomalies, which are caused by contrasting densities of the crustal rocks. The analyses of 

gravity data may be subject to similar edge detecting techniques as used for the magnetic data (Blakely 

and Simpson, 1986). Gravity data often serve as input to 2-D and 3-D geophysical modeling for the 

interpretation of the geometry of lithological bodies at depth (Attoh, 1982; Peschler et al., 2004; 

Direen et al., 2005; Stewart et al., 2009). 

The gravity data available for western Burkina Faso stem from the ORSTOM west and central 

African gravimetric data acquisition campaign and were acquired in 1958 (Albouy et al., 1992). The 
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data have a maximum spacing of 4000 m between sampling points and were mainly acquired along 

major roads. Station locations were determined from topographic maps and elevations by barometric 

leveling. The reported accuracy of the measurements is about 0.5 mGal and the positioning error is 

estimated to be less than 5 m in the vertical and about 200 m in the horizontal direction. Free air and 

Bouguer corrections were applied to the data using 2.67 g/cm3 as the reduction density. The data were 

gridded at 3000 m spatial resolution to produce a Bouguer anomaly map (figure I-2d), which shows 

deeper structures of regional importance. 

3.4. Remote sensing data 

The recognition of the value of remote sensing data in lithological and structural mapping 

dates back to the launch of the first Landsat system (Drury, 1993). However, successful applications 

are usually constrained to well exposed terrains or terrains where regolith may be linked directly with 

the underlying geology (e.g. Zumsprekel and Prinz, 2000; Rowan et al., 2004; Rowan et al., 2005). In 

deeply weathered areas, where the relationships between allochtonous and autochthonous regolith 

material are not well understood, remote sensing data are instead used for mapping the distribution of 

the weathered material and so called regolith landform units (Lau et al., 2003). After careful 

evaluation of Landsat and ASTER data available for the studied area, only weak correlations between 

the patterns in the data and the field lithological observations could be found. The data were used 

conjointly with the SRTM (Shuttle Radar Topography Mission) elevation model to assess the 

distribution and size of outcrops, vegetation, regolith cover, and the extent of the Neoproterozoic 

Taoudeni basin sediments. Digital elevation models can also be used for the determination of 

geomorphological parameters of the earth’s surface, which are controlled by the underlying geology, 

weathering, and regolith distribution. The SRTM global digital elevation processed data (Reuter et al., 

2007) was acquired from the CGIAR (Consultative Group on International Agricultural Research) 

institute (Jarvis et al., 2008). This model supplied 90 m spatial resolution elevation data over the 

studied area. Shaded relief images and derivatives of the elevation data were integrated with the 

gamma ray spectrometry data (Wilford et al., 1997) to help characterize the surface lithologies and 

regolith units and assist in differentiating regolith patterns from lithological signatures. 
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3.5 Geological outcrop data 

The basis for all of the subsequent analyses was the database of outcrop observations acquired 

during this study, which served as the first order data source.  

Figure I-3 Outcrop map of the study area. Points indicate field-observations from different source 
databases; polygons outcrop maps and high resolution geophysical data. Outcrop database 
this study – all points - lithology, detailed structural description and measurement data, 
selected points – petrography, susceptibility, density, geochemistry; BRGM/BUMIGEB 1 
database – all points lithology, selected points – structural measurements and outcrop 
description, petrography, geochemistry; BRGM/BUMIGEB 2 database – four lithological 
classes – volcanic, granitoid, sediment, quartz dykes. 
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Similarly, outcrop data from the BRGM/BUMIGEB 1/2 (Bureau de recherches géologiques et 

minières/Bureau des Mines et de la Géologie du Burkina) databases (Marcelin, 1971; Marcelin and 

Serre, 1971; Castaing et al., 2003) and outcrop maps provided by mining companies were used. The 

quality as well as the quantity of the field observation data in the databases used varies considerably 

(table I-1).The spatial distribution of the outcrop data is shown in figure I-3. The primary outcrop 

database in this study includes lithological data, detailed structural observations, and measured 

susceptibility, density and geochemistry at selected locations. The BRGM/BUMIGEB 1 database 

(Castaing et al., 2003) contains petrographic rock descriptions, geochemical analyses at selected 

locations. At some outcrops, orientations of dominant structures are given. The BRGM/BUMIGEB 2 

database (Marcelin, 1971; Marcelin and Serre, 1971) holds only outcrop stations with four basic 

lithology categories with no other parameters. The existing maps (e.g. Junner, 1940; Marcelin, 1971; 

Marcelin and Serre, 1971; Tagini, 1972; Ladmirant and Legrand, 1977; Milési et al., 1989; Lüdtke et 

al., 1998; Lüdtke et al., 1999; Castaing et al., 2003; Chèvremont et al., 2003; Koté et al., 2003; Le 

Métour et al., 2003) cover the entire study area at scales of 1:200 000 and 1:1 000 000. We have 

carefully evaluated these maps; however, the main constraining criteria were derived from the raw 

outcrop information available. 

  

O utcrop 
d atab ase

O bs. 
coun t L itho . S tru c. Susc. D ens. Ge och .

Th is study 62 6 x x x x  x 
BRGM 
BU MIGE B 1 1845 x   x* x 

BRGM 
BU MI GEB 2  

2382 x 

Min ing co. 2435 x x

 

Table I-1 Outcrop information included in the collected and used databases. Outcrops in the first three 
databases are stored as point features. BRGM/BUMIGEB 1 – Castaing et al. (2003), * at 
places contains orientations as text description, BRGM/BUMIGEB 2 – Marcelin (1971), 
Marcelin and Serre (1971).Data from mining companies contain outcrops as outcrop 
polygons and points, at places supplemented with structural measurements (points).Obs. 
count – count of observations made, Litho. – lithological data, Struc. – structural 
measurements, Susc. – magnetic susceptibility, Dens. – density, Geoch. – geochemistry (only 
for selected locations). 
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3.6 Digital data integration 

In a GIS environment, layers containing different information may be readily overlain and 

analyzed as an integrated dataset (Bonham-Carter, 1994; Jaques et al., 1997). These may include 

digital images, maps, or point layers with field observations. 

We have used the workflow described in figure I-4 to build a litho-structural framework of the 

studied region. In order to extend the observations to areas with regolith cover or areas with difficult 

access, analysis of the magnetic data was used as the principal source of information. Steep gradients 

in the magnetic field were obtained from the analysis of the vertical and horizontal derivates, the tilt 

derivative, and the analytical signal. The edges were attributed to lithological contacts or faults, 

according to the field observations and the character of the edges observed in the data (e.g. change in 

magnetic texture correlates with change in observed lithologies, orientation of structural measurements 

Figure I-4 Data analysis scheme; PCA – principal component analysis transformation of the airborne 
gamma ray data; 2¾ D modeling performed on the gravimetric data (detailed description is 
given in the companion paper (Baratoux et al., submitted). SRTM – Shuttle Radar Topography 
Mission, BRGM – Bureau de recherches géologiques et minières, BUMIGEB – Bureau de 
Mines et Géologie du Burkina Faso, ASTER – Advanced Spaceborne Thermal Emission and 
Reflection Radiometer. 
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correlates with orientation of interpreted edges). The lithological composition for the newly 

constructed polygons was mainly constrained utilizing the characteristic magnetic signatures that were 

established between the outcropping lithologies and their magnetic response. In areas with sufficient 

outcrop, where regolith related patterns in the data were found to be negligible, gamma ray 

spectrometry datasets provided a further constraint. We benefited from the additional information 

obtained from shaded relief and slope of the elevation data to evaluate the relationship between the 

gamma ray spectrometry data and regolith. The slope map showed clearly scarps of different levels of 

iron-rich duricrust plateaus while shaded relief maps revealed residual erosional ridges formed by 

outcropping geological units and the overall morphology of the area. 

To evaluate the relationships between the available source layers, Pearson’s correlations 

coefficient may be computed (James, 1988). For correlated layers PCA serves as a tool in determining 

uncorrelated factors (components) that can be obtained from the original dataset (Drury, 1993). 

Pearson’s correlation coefficients were calculated for an integrated dataset consisting of the magnetic, 

gamma ray spectrometry, digital elevation, and gravity data (table I-2). It is evident from the 

correlation matrix that only values of total count, K, eTh, eU from the gamma ray spectrometry 

datasets are moderately correlated. A weak correlation may be observed between the elevation and the 

gamma ray spectrometry data, in particular with potassium content. Based on these observations, PCA 

transformation was applied only to the gamma ray spectrometry data and the first three components 

were used in further analyses as an RGB composite complementary to the ternary K, eTh, eU grids 

and the r gamma ray spectrometry ratio grids.  

RMIRTP 1   

TC -0.09 1           

K -0.01 0.15 1

eTh -0.09 0.92 -0.15 1

eU -0.09 0.77 -0.11 0.65 1

DEM 0.11 -0.01 -0.21 0.10 -0.13 1   

GRAV -0.08 0.05 -0.09 0.12 -0.07 0.05 1

  RTPRMI TC K eTh eU DEM GR AV 

 

Table I-2 Correlation matrix between selected source layers used in the interpretation. RTPRMI –
 reduced to the pole residual magnetic intensity, TC – total count (airborne gamma ray data), 
DEM – digital elevation model, GRAV – Bouguer anomaly grid. 
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4. Structural framework 

Based on field observations we have defined three major deformation events (D1–D3) in 

western Burkina Faso, which are described in detail in chapter II. Here we present an abridged 

summary necessary for the description of the litho-structural map. 

The first observed D1 deformation phase, probably lasting from 2160–2115 Ma given by the 

ages of the syntectonic tonalites and granodiorites (ME1) and maximum deposition age of the 

Tarkwaian-type sediments, is documented in the volcanic rocks by the S1 metamorphic foliation, and 

the anastomosing shear zones or high strain zones, which strike N to NNE. During the D1, all 

lithologies were subject to intensive folding best preserved in the volcano-sedimentary sequences 

where at outcrop scale isoclinal to open folds with NNE-SSW to NE-SW oriented steeply dipping 

axial planes are observable. Magmatic foliation S1 in granitoids, corresponding generally to NNW to 

NNE trending steeply dipping compositional layering is characteristic for the ME1 granitoid bodies. 

The late stages of the D1 period are tied to the deposition of the Tarkwaian-type sediments in the 

Houndé greenstone belt. The maximum deposition age was estimated at ~2124 ± 9 Ma according to 

detrital zircon populations (Bossière et al., 1996).  

We suggest that the D2 phase occurred during 2113–2097 Ma, based on the dating of the 

syn/late tectonic granites. The D2 structures in volcanic rocks are characterized by steeply dipping 

brittle-ductile to brittle shear zones and faults, at places anastomosing. They crosscut at low angle 

(~30°) the S1 penetrative metamorphic foliation and high strain zones, where both structures are 

present. When the crosscutting relationship is lacking, the differentiation between the D1 and D2 

structures is difficult, especially in massive volcanic rocks such basalts and gabbros, because both 

deformation events produce localized high strain zones. In the granitoid domains, ENE-trending 

dextral and NW to NNE sinistral S2 localized shear zones transect the penetrative S1 magmatic 

layering and HT mylonitic zones. Microstructural observations support the overprinting relationship 

between the D1 and D2 structures. 

The D3 is marked by the development of crenulation cleavage and chevron or kink folds 

observed in mechanically anisotropic volcano-sedimentary and sedimentary sequences. NW-SE brittle 

faults and fractures as well as north and south dipping thrust faults, attributed also to the D3, are 

developed throughout the region. The age of the D3 event is either late Eburnean or Pan-African. 

At least three generations of extension related doleritic dykes and sills were emplaced 

episodically into the consolidated Paleoproterozoic basement and its Neoproterozoic sedimentary 

cover during a protracted period from 1800 Ma to 250 Ma (Marcelin and Serre, 1971; Ama Salah et 

al., 1996; Castaing et al., 2003). 

The different rheological behaviors of the lithologies govern the deformation structures. In 

fine-grained rocks such as Birimian volcano-sediments, phyllites, tuffs, and Tarkwaian-type pelites, 

penetrative metamorphic foliation develops during D1 compression, while more localized shear zones 
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related to D2 event cross-cut the previous structures at low angle. Kink folds and crenulation cleavage 

form preferentially in zones of high mechanical anisotropy (metamorphic foliation, shear zones). 

Massive lava flows of basalts and andesites, intrusions of gabbros and granitoids, rhyodacites, and the 

Tarkwaian-type conglomerates are affected by localized to penetrative shear zones or high strain zones 

during both D1 and D2 deformation events. 

5. Lithological associations and structures: their petrophysics and 

expression in geophysical data 

In the following sections, we first introduce the lithological units of the greenstone belts and 

associated granitoid domains at first, then we describe the major lithological units and structures 

portrayed in our synthetic map and briefly discuss their response in geophysical and satellite data. 

Their petrophysical properties (density, magnetic susceptibility, concentration of K, eTh, eU), 

measured in laboratory, field, or derived from airborne gamma ray data, are summarized in table I-3, 

along with the characteristic response in airborne magnetic and gamma ray spectrometry grids, 

mineralogy and typical structures. Histograms of magnetic susceptibility and box-plots of K, eTh, and 

eU concentrations are shown in figures I-5 and I-6, respectively. In order to illustrate the important 

features, we have selected four key localities (figure I-7), presented along with the magnetic residual 

field grid, overlain by the first vertical derivative grid, and the gamma ray (figures I-8a, b, and d) or 

PCA image (figure I-8c). 

The magnetic susceptibility of 238 rock samples collected across the studied area vary by 

more than four orders of magnitude, from 0.01 × 10-3 SI to 150 × 10-3 SI. Although overlaps exist 

between the measured susceptibilities, differentiation between the established rock groups is possible. 

Susceptibility measurements were made for all of the exposed rock types in the field (using a hand 

held KT-6 susceptibility meter) and in the laboratory (using a Kappabridge, Agico Ltd.). The bulk 

susceptibility in rocks is mainly a function of the ferro-magnetic minerals content, in particular 

magnetite; however, biotite has been reported as the main carrier of susceptibility in low magnetic 

granites of eastern Burkina Faso (Naba et al., 2004; Vegas et al., 2008). The magnetic susceptibility of 

the volcanic rocks is most probably controlled by the magnetite and titano-magnetite commonly 

observed in thin sections (Hein et al., 2004; Dioh et al., 2009). The distributions of radioelements in 

Figure I-5 Histograms of magnetic susceptibility of selected rock groups.
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the different lithologies have been estimated by means of spatial analysis, where 449 outcrop location 

points served as sampling locations of the processed airborne radioelement grids. Density 

measurements of 68 fresh rock samples from surface outcrops and drill cores were made at the GET 

(Géosciences Environnement Toulouse) laboratory. 

5.1. Mafic and ultramafic lithologies 

The basaltic lavas have mostly a tholeiitic composition and form the base of the stratigraphic 

pile. They are often pillowed suggesting their emplacement in a marine environment. The basalts are 

microlitic to ophitic and contain typical greenschist facies mineral assemblages (table I-3). Tholeiitic 

basalts and microgabbros with plagioclase megacrysts were found as sub-units of the basaltic suites. 

Medium to coarse grained gabbros and gabbro cumulates often accompany the basaltic rocks. In the 

Boromo greenstone belt, the basal mafic rocks also contain (strongly altered) ultramafic lenses. 

Gabbros and basalts show moderate to high susceptibilities with a bimodal distribution 

ranging from 0.01–150 × 10-3 SI (figure I-5). The concentration of the radioelements is low and 

reaches 1% K, 7 ppm of eTh, and 2 ppm of eU (figure I-6). The density of the mafic rocks averages 

approximately 3.0 g/cm3 (with a range of 2.90–3.11 g/cm3). In the geophysical grids, these rock types 

show moderate to strong responses with a pronounced texture. The gamma ray spectrometry response 

is dominated by low content of all three radioelements and the lithological units appear dark in the 

ternary grid, if minor or no regolith cover is present, which is generally the case, as outcrops of these 

rocks often stand out as ridges. In the Bouguer anomaly map, the mafic lithologies correspond to 

gravity highs with observed maxima surpassing -20 mGal. 

The stratigraphically lowermost unit of highly magnetic basalts, gabbros, and basaltic-

andesites can be found on the western side of the Boromo belt and the eastern flank of the Houndé 

belt. The quasi-continuous N-S trending lithological units show both intrusive and tectonic contacts 

Figure I-6 Box and whiskers graphs of concentrations of K, eTh and, eU extracted from the airborne 
data based on locations of selected outcrops and regolith units. bas – basalt, gbr – gabbro, 
and – andesite, pyr – pyroclastic flow, vs – volcano-sediments, Tkw – Tarkwaian-type 
sediments, me – magmatic episode, dur – Fe-rich duricrust, spe – soft pediment. 
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with the granitoid domains. The maximum thickness reaches 6 km according to our estimations. In 

both belts, the magnetic textures of these domains display similar NNE-SSW to NE-SW orientations, 

which are most probably caused by the D3 transcurrent shearing but may be tied to the original 

lithology. The mafic rocks on the eastern side of the Boromo belt bear some petrological and 

geochemical resemblance to the above-described lithologies. Even though magnetic and gamma ray 

spectrometry signatures are comparable, their genetic and structural relationship cannot be established. 

Gravimetric highs strongly suggest the presence of mafic lithologies underneath the granites near the 

SE margin of the Houndé belt and the NW segment of the Boromo belt, implying the N-S continuity 

of the mafic lithologies. 

5.2. Intermediate to acid volcanics 

The massive andesitic lithologies generally consist of intercalated units of andesitic lavas, 

pyroclastic flows, and tuffs. These lithologies lie stratigraphically above the more mafic assemblages 

that might be attributed to a more evolved calc-alkaline volcanism associated with volcanic islands 

(chapter II). The transition from mafic to intermediate volcanism is marked by suites of basaltic 

andesites. The texture of the andesites and andesitic pyroclastic flows is microlitic characterized by 

greenschist facies mineral assemblages (table I-3), with variable amounts of porphyric phenocrysts of 

plagioclase. The subangular to angular lithic fragments in pyroclastic flows range in size from one to 

twenty cm. The tuffs generally retain microlitic textures; contain rare lapilli and small lithic fragments. 

Le Métour et al. (2003) differentiate several subfacies including crystal tuffs, hyaloclastites, and 

cinerites. Dacitic and rhyolitic bodies may be found as minor lenses and bodies throughout the study 

area. The andesitic suites display generally unimodal distribution of susceptibilities spanning from 

0.01 to 30 × 10-3 SI. Rhyolites and dacites have low susceptibilities that do not exceed 0.15 × 10-3 SI. 

The concentration of K can reach 1.5%, while eTh values remain similar to the mafic rocks (7 ppm), 

and eU concentrations are slightly higher reaching almost 3 ppm. The measured densities vary from 

2.73 g/cm3 to 3.07 g/cm3. 

In the analyzed grids, the magnetic response of the andesitic lithologies ranges from 

intermediate to low. The lithological units with abundant pyroclastic flows and intercalations of 

volcano-sediments show weak responses with a less apparent magnetic grain. The less frequent ridges 

of mainly andesitic lithologies show a gamma ray spectrometry signature marked by an increased 

content of potassium, which allows their discrimination from the more mafic rocks. The size of the 

rhyolitic and dacitic bodies does not allow for their full description in the magnetic or gamma ray 

spectrometry data. In the Bouguer anomaly map, the felsic rocks are usually incorporated within the 

high to moderate amplitude anomalies. Moderately magnetic andesites, pyroclastic flows, and 

volcano-clastics, sometimes intercalated with basalts and volcano-sediments, build up significant parts 
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of the Boromo and Houndé belts and occur as well in the east of the Banfora belt. The magnetic 

textures are not so distinct compared to the mafic lithologies, but their orientation remains similar. 

5.3. Birimian sediments and volcano-sediments 

The volcano-sedimentary units comprise mainly wackestones and shales with variable 

amounts of volcanic material, with intercalations dominated by tuffs, black shales, and frequent 

ferruginous to manganiferous cherts. They crop out less frequently due to the more erosion-prone, 

fine-grained, lepidoblastic texture and intense foliation. The most common mineral assemblage 

consists generally of quartz, plagioclase, chlorite, muscovite, and carbonate. The magnetic 

susceptibility of the volcano-sediments remains low and uniform with maximum values of 0.4 × 10-3 

SI. The overall maximum concentrations of K, eTh, and eU (~1%, 5 ppm, and 2 ppm, respectively, 

figure I-6), are lower than expected from their petrological composition. This may be attributed either 

to high contribution of mafic detrital material or to the fact that the sampling points (one pixel = 125 × 

125 m) are adjacent to, or intercalated within, the outcrops of mafic rocks. The densities of the 

volcano-sedimentary assemblages span from 2.6 to 2.9 g/cm3.The volcano-sedimentary rocks are 

associated with regions of low magnetic intensity with poorly defined magnetic textures. The gamma 

ray spectrometry data do not allow for unambiguous description of these lithologies due to scarcity of 

outcrops and deep weathering profiles present over these lithological units. In general, they show 

relative enhancement of potassium with respect to the concentrations of thorium and uranium. Their 

low densities correspond to areas of moderately negative gravity anomalies on the Bouguer anomaly 

map. 

The Birimian volcano-sedimentary and sedimentary rocks stratigraphically and sometimes 

tectonically overlie the felsic and mafic volcanics. In the Boromo and Houndé belts, these units, called 

the Batié and Bambéla volcano-sedimentary units, respectively, tend to widen towards the south. The 

Banfora volcano-sedimentary unit constitutes most of the western side of the Banfora belt. At many 

places, volcano-sediments are stratigraphically or tectonically intercalated with the other volcanic 

rocks. Magnetic textures are generally smooth without visible structures due to the limited amount of 

magnetic horizons and overall low susceptibility. Although with some difficulty, abundant folds and 

shear zones observed at outcrop scale can be traced in the magnetic data. Gravimetric data modeling 

suggests that a denser basement is present underneath the volcano-sedimentary belt-parallel units 

(chapter II), which we interpret as andesites. 

5.4. Tarkwaian-type sediments 

The Tarkwaian-type sediments unconformably overlay the volcanic and volcano-sedimentary 

stack and contain facies ranging from poorly sorted, matrix supported conglomerates, sandstones and 

gritstones to arkoses and pelites with lepidoblastic textures. At places, original sedimentary structures 
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such as cross bedding with heavy mineral concentrations, or graded bedding are preserved. Apart from 

dominant quartz and muscovite, the Tarkwaian-type sediments contain plagioclase, carbonates, and 

epidote. The magnetic susceptibility of the Tarkwaian-type sediments is similar to the volcano-

sedimentary rocks attaining values of 0.1–0.12 × 10-3 SI. The concentrations of K, eTh, and eU do not 

surpass 1%, 6 ppm, and 1.9 ppm, respectively. Density measurements concentrate around 2.74 g/cm3 

(2.71–2.76 g/cm3). The magnetic intensity is usually low and textures are uniform, however adjacent 

high magnetic intensity lithological units of basalts or gabbros may alter the signature. The relatively 

high content of K explains why the Tarkwaian-type sediments appear as slightly red (K is mapped to 

the red channel) in the ternary gamma ray spectrometry grids (table I-3). This continuous but relatively 

thin sedimentary sequence does not leave an imprint in the Bouguer anomaly map. 

The Tarkwaian-type sediments stretch for 400 km in the N-S direction within the Houndé belt. 

They are tectonically bound by the Boni shear zone and separate the tholeiitic basal mafic unit in the 

east from the andesitic calc-alkaline volcanic sequences in the west. These shallow water detrital 

sediments, characterized by low susceptibilities, are hardly recognizable from the Birimian volcano-

sediments and sediments in magnetic data. The map thickness varies from 0.5 km to 2 km. This 

implies that the narrow segments are not well visible on magnetic data, while wider segments bordered 

by lithologies with higher magnetic susceptibilities (e.g. north and south of Bondigui) are easily 

traceable. In the south, near Loropéni, the Tarkwaian-type sandstones are folded, which is documented 

by inverse downward facing sedimentary bedding in the western fold limb. The hypothetical anticline 

seems to be intruded by a N-S elongate granitoid body, as suggested by magnetic gamma ray and 

gravimetric data; however, no granite outcrop was found in this area. The northernmost outcrop of the 

Tarkwaian-type sediments southwest from Saoura (Ouedraogo, L., SEMAFO Inc., pers. 

communication) indicates that this unit extends much further to the north compared to the existing 

geological maps (Castaing et al., 2003; Ouedraogo, 2004). 

5.5. Granitoids 

Tonalites, trondhjemites, and granodiorites (ME1) are often amphibole- and biotite-bearing 

and may contain minor K-feldspar. These rocks frequently display mineral layering and vary from 

medium to coarse-grained. Intrusions of granodiorites and granites (ME2) contain biotite, K-feldspar, 

and rare amphibole or muscovite. They are generally medium- to coarse-grained with some 

porphyritic varieties, affected by a mylonitic foliation. The third group (ME3) is formed by late 

granitic stocks and plutons, which are K-feldspar rich and sometimes muscovite bearing. These less 

abundant sub-circular to elliptical relatively small (5–15 km) bodies are mostly undeformed. Coarse-

grained gabbro-diorite intrusions (ME4) of unknown age are often associated with the granite and 

granodiorite intrusions (Castaing et al., 2003). In contrast to the gabbros found in the greenstone belts, 
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they are unmetamorphosed and contain clinopyroxene and hornblende as dominant minerals, with 

minor plagioclase. 

The tonalitic, granodioritic and granitic domains (ME1 and ME2) exhibit low to moderate 

susceptibility values. The histogram of susceptibilities shows a multimodal distribution where values 

range from 0.1 × 10-3 SI to 37 × 10-3 SI. The magnetically zoned late granitic stocks (ME3) are 

moderately to highly susceptible; however, the limited outcrop conditions impede realistic evaluation 

of the distribution of susceptibilities. Only one sample from central low magnetic zone was measured 

in the laboratory yielding 0.4 × 10-3 SI. The susceptibility of the ME4 gabbros varies from 0.18 × 10-3 

SI to 0.39 × 10-3 SI. The concentrations of K are lower in the ME1 group (up to 1.2%) than in the ME2 

group (up to 3%), and inversely, eU concentrations are higher in the ME1 than in the ME2 (up to 3.5 

ppm and 2.5 ppm, respectively). Thorium remains comparable (up to 10 ppm) in both (ME1 and ME2) 

types. The youngest suite of granites (ME3) and the gabbros (ME4) do not offer enough exposure to 

be included in the gamma ray spectrometry data analysis. The densities of the ME1 granitoids vary 

between 2.64 and 2.8 g/cm3. The ME2 and ME3 granites and granodiorites are slightly less dense 

ranging from 2.63 to 2.73 g/cm3. 

The ME1 granitoids appear in the magnetic grids as low to moderate intensity features with 

variably oriented magnetic fabric. Their shapes are more complex than simple oval or circular forms 

likely due to their syn- or post-emplacement deformation. The ME2 granodiorites and granites of the 

display moderate to high magnetic intensities and usually a sub-elliptical shape. The ME3 granites are 

distinctively more magnetic and appear as high intensity sub-elliptical, magnetically zoned plutons. 

The gamma ray spectrometry data portray most of the granitoids similarly due to regolith cover. In 

areas with less regolith cover, the ME1 group seems to be less enriched in radioelements, appearing 

darker in the gamma ray spectrometry grids. The ME2 have an overall higher content of radioelements 

especially K and eTh, which are responsible for their lighter red to violet and yellow colors (table I-3). 

The Bouguer anomaly map shows the granitoid domains as well-defined highly negative zones. 

Most of the granitoid intrusions are concentrated in belt-parallel domains but several 

individual plutons also intrude the greenstone belts (e.g. Dissin granite in the Boromo belt, Koumbia 

and Djigué granite in the Houndé belt, or the suite of granites along the Greenville-Ferkessedougou-

Bobo Dioulasso SZ in the Banfora belt). Although individual granitoid bodies with contrasting 

magnetic textures and intensities can be delimited, distinction between the ME1 and ME2 generations 

is delicate due to scarce gamma ray spectrometry and geochemical data. We are confident about the 

classification of granitoids in the Diébougou domain. The other three domains (Koudougou-Tumu, 

Sidéradougou, and Niangoloko) remain challenging, mainly because of less field observations and 

more complex pluton character. According to our interpretations, the granitoid domains consist of 

significant amount of individual plutons, which are more or less affected by deformation, depending 

on the timing of each intrusion with respect to the deformation and on the location of the D1 and D2 

shear zones within the granitoid domains. These domains fit the Bouguer gravity lows (figure I-2d) 
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averaging -40 mGal, and visible subdivisions of the broad gravity lows into several minima (-50 to -45 

mGal) further support our conclusion that the granitic domains are formed by several intrusive bodies. 
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5.6. Doleritic dykes and sills 

The doleritic dykes and sills form discordant crosscutting bodies with rare outcrops. The rock 

texture is ophitic, reflecting the primary magmatic mineral assemblage of orthopyroxene, 

clinopyroxene, and plagioclase. Secondary hornblende and biotite may be observed and are probably 

related to late magmatic autometamorphism caused by fluid-rock interaction. The susceptibility of the 

dykes and sills was measured at several places and vary between 15 and 77 × 10-3 SI. The dykes are 

easily traceable in the magnetic data as high intensity linear features (figure I-2b). The dykes are not 

usually visible in the gamma ray spectrometry grids nor in the gravity data; however, large sills found 

in the Taoudeni basin, might correspond to highs in the Bouguer anomaly map. At least three 

generations of doleritic dykes oriented N40°, N100°, and N120°, were identified. All three generations 

crosscut the Paleoproterozoic basement and two of them (N40°, N100°) intrude sediments of the 

Taoudeni basin, forming dykes or sills. Hence, the N120° generation pre-dates the deposition of the 

Taoudeni sediments and the other two generations post-date it. The sills occur exclusively in the 

sediments of the Taoudeni basin and intrude along the sub-horizontal bedding. 

5.7. Neoproterozoic sedimentary cover 

The present study, along with the accompanying tectonic model, is focused on the lithological 

assemblages and structures of the Paleoproterozoic basement. Therefore, the Taoudeni basin, which 

overlies the Paleoproterozoic basement in the west, is considered as one unit in the proposed map. Its 

limit was established using Landsat and ASTER images, combined with gamma ray data and SRTM 

digital elevation model. The Bouguer anomaly map suggests that the dense andesitic sequences of the 

Houndé greenstone belt continue underneath the basin. The continuation of the Banfora belt towards 

the north is uncertain, as the gravity highs might also be attributed to the numerous intrusions of 

younger doleritic sills and bodies, which accompany the doleritic dykes that crosscut the basin 

(Marcelin, 1971; Marcelin and Serre, 1971; Castaing et al., 2003). 

5.8. Lateritic weathering of the lithologies 

The regolith units may be broadly divided into two categories: the iron-rich duricrusts and the 

soft lateritic soils. The duricrusts form plateaus of various shapes extending over all lithologies. Their 

mineral composition consists mainly of goethite, haematite, kaolinite, and quartz. Soils forming the 

Table I-3 Summary table of the lithologies; their mineralogical, petrophysical characteristics, and 
expression in the airborne geophysical data. DTM – digital terrain model, andes. – andesite, 
volc.-sedim. – volcano-sediment, Qtz – quartz , Pl – plagioclase, Cpx – clinopyroxene, Hbl –
 hornblende, Act – actinolite, Chl – chlorite, Ep – epidote, Bt – biotite, Kfs – K-feldspar, Kln –
 kaolinite, Czo – clinozoisite, Carb – carbonate, Hem – hematite, Gt – goethite. Folds/Faults – 
red line – interpreted fault/shear zone, yellow line – lithological contact, turquoise line – 
interpreted fold hinge. 
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Fe-rich pediments are best developed over granitoid domains and volcano-sediments. Their mineral 

assemblage is essentially similar to that of the duricrusts although enriched in clay minerals and 

quartz. The duricrusts (table I-3) are strongly depleted in potassium (less than 0.5%) and enriched in 

both thorium (up to 40 ppm) and uranium (up to 5 ppm). The soft Fe-rich pediments show higher 

potassium contents (up to 1%) compared to the duricrust plateaus, while concentrations in thorium (up 

to 14 ppm) and uranium (up to 4 ppm) are slightly lower but still enriched with respect to the parent 

rocks. In the gamma ray spectrometry grids, the Fe-rich duricrusts display light turquoise colors while 

the soft pediment soils appear as more potassium rich in shades of red and violet. 

Regolith landform units are not represented in the proposed litho-structural map. However, 

their omnipresence hampers geological mapping in all of West Africa. Gamma ray spectrometry data 

combined with SRTM digital elevation model were used in order to delimit the lateritic duricrusts and 

soils. Presence of the lateritic cover greatly influences gamma ray spectrometry data interpretation 

because the residual Fe-rich material accumulates thorium and uranium, while potassium is generally 

leached due to weathering. The soils are richer in K compared to the ferruginous duricrusts due to 

higher kaolinite content. The erosional escarpments of the iron-rich duricrust plateaus may correspond 

to the actual lithological contacts, especially, where the duricrust is preserved on the top of granite 

plutons; however, it is eroded above the adjacent greenstones (e.g. the Gaoua batholith or the Bondigui 

pluton). Although the chemical compositions of the duricrusts and soils depend on the source rock 

(Blot et al., 1973), the differences in the radioelement concentrations are too subtle to be mapped by 

airborne gamma ray spectrometry. Moreover, according to the field observations, significant 

proportion of regolith cover in the study area was displaced and may not correspond to the underlying 

lithology. 

5.9. Structures 

D1 structures 

The calc-alkaline andesitic province of the Houndé greenstone belt presents evidence of the 

D1 folding event in the form of a magnetic horizon of basaltic andesites, which seems to form a 

synform with NNE-SSW oriented steeply dipping axial fold plane (figure I-7, north of Houndé). We 

suggest the presence of a large-scale D1 antiform in the central part of the Houndé greenstone belt 

(figure I-7, south of Koumbia), which is formed by andesites and pyroclastic flows and is elongated 

along the Ouango-Fitini shear zone. Its axial plane is NNE-SSW oriented and steeply dipping. The 

moderate magnetic intensity, Koumbia granite and the late, high magnetic intensity, granitic stock 

intrude the presumed fold. The tholeiitic mafic lithologies adjacent to the Gaoua batholith in the south 

(figure I-7, around Gaoua) display a fold-like shape in the magnetic data. Field mapping also revealed 

that the megacrystic tholeiitic basalts outline the granite in a curved shape. We interpret this structure 

as an antiform possibly related to the Gaoua batholith emplacement. 
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D2 structures 

The structural grain of the three greenstone belts and the four granitoid domains is controlled 

by the latest regional scale transcurrent D2 shear and high strain zones. The NNE to NE-trending 

structures are often localized at the contacts between the greenstones and granitoids. In the magnetic 

data, these shear zones substantially overprint the D1 structures such as folds and metamorphic 

foliation, better observable at outcrop scale. The D2 deformation intensity seems to be overall higher 

in the northern third of the study area, based on both magnetic data and field observations. 

The N-S oriented Boni shear zone, most probably seated on a deep pre-existing regional scale 

structure, delimits the Tarkwaian-type sediments in the Houndé greenstone belt from the east and 

west. Its expression in the magnetic data either coalesces with the western margin of the highly 

magnetic lithologies of basalts and gabbros or remains difficult to trace within the low magnetic 

lithological units of volcano-sediments. The overall shear sense is ambiguous being dextral in the 

northern part of the Houndé greenstone belt while sinistral movement indicators were found in the 

central part of the belt. We interpret that the Boni shear zone acted as a conduit for granitic bodies, 

which were emplaced along its length at depth. Although they do not always crop out, with the 

noticeable exception of the Bondigui pluton and of several smaller intrusions to the north of the 

Houndé greenstone belt, their presence is well documented by the gravity lows visible all along its 

length. 
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Figure I-7 Litho-structural map with the position of four key areas depicted as insets. 
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The continuation of the Ouango-Fitini shear zone (OFSZ), previously described by Pouclet et 

al. (1996), Hirdes et al. (1996), and Lüdtke et al. (1998; 1999) in northern Ivory Coast defines the 

western margin of the Houndé greenstone belt (figure I-1b). From the border with Ivory Coast in the 

south, this left-lateral high strain zone results in subparallel stratigraphic units, which continue for 

approximately 80 km to the north. Further to the north, this zone continues in a NNE direction through 

the Houndé belt and joins the Boni shear zone. The newly described Bossié shear zone transecting the 

Sidéradougou granitoid domain acts as a series of splay faults branching from the Ouango-Fitini shear 

zone. The magnetic data suggest a sinistral sense of shear along the Bossié fault zone and a 

concomitant activity with the OFSZ during the D2 transpression event. 

In the Boromo belt, the deformation is concentrated into a regional-scale anastomosing 

network of high strain zones, the Boromo-Poura shear zone corridor. The West Batié shear zone forms 

a part of this network, localized in the south at the contact between the western side of the Boromo 

belt and Diébougou granitoid domain, extending to the Ivory Coast. The Boromo-Poura shear zone 

corridor changes its orientation from ~N-S in its southern and central parts to NE-SW direction in its 

northernmost segments. 

In its central part, the Banfora greenstone belt is affected by the belt parallel Greenville-

Ferkessedougou-Bobo Dioulasso shear zone (GFBSZ) (figures I-1b and I-7) first recognized by 

Lemoine (1988). The GFBSZ appears in the magnetic data as a set of demagnetized subparallel NNE-

SSW oriented dextral shear zones intruded by elongated granitic bodies and cross-cut by late NW-SE 

apparently sinistral faults. The zone is visible in regional stitches of magnetic data all the way to Ivory 

Coast and Liberia documenting its regional scale significance. 

D3 structures 

The D3 structures such as E-W trending thrust faults or steeply dipping crenulation cleavage 

are barely visible in the regional scale geophysical data. Some of the E-W oriented small-scale 

structures observable in the magnetic data might correspond to the D3 thrust faults. A number of the 

NW-SE oriented faults and fractures, best recognized in the Banfora belt but abundant all across the 

area, might be also attributed to the D3 deformation event. 

5.10. Key sub-areas 

We have selected four key sub-areas to demonstrate the important litho-structural features and 

show their interpretation in the used datasets. The four map insets indicated in figure I-7 represent: 

1) the western margin of the Boromo belt and the eastern margin of the Houndé belt, with the 

Diébougou GD (granitoid domain) in between (figure I-8a); 2) the contact between the eastern margin 

of the Boromo belt and the Koudougou-Tumu granitoid domain (figure I-8b); 3) the Banfora belt with 

the Greenville-Ferkessedougou-Bobo Dioulasso shear zone in the center and the marginal 
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Sidéradougou and Niangoloko granitoid domains (figure I-8c); and 4) the contact zone between the 

western Houndé belt and the Sidéradougou GD (figure I-8d).  

The western margin of the Boromo belt also consists of highly magnetic tholeiitic basalts and 

gabbros (figure I-8a); characterized by high intensity ENE-trending magnetic textures. Rocks with the 

same petro-chemical, magnetic and gamma ray spectrometry characteristics can be mapped in the 

eastern flank of the Houndé belt; we suggest that these two units originally formed part of the same 

oceanic plate/plateau. The magnetic grid illustrates the difference between the strongly sheared, 

moderately magnetic ME1 granodiorites, the moderately magnetic weakly deformed ME2 Gaoua 

pluton, and the highly magnetic Bondigui ME3 granite with well-visible concentric magnetic patterns. 

The eastern margin of the Boromo belt (figure I-8b) is intruded by the sub-circular, well-

defined ME2 granitoids. The surrounding ME1 bodies are characterized by rather elongate irregular 

shapes, generally affected by N-S to NE- trending shear zones. Three plutons of high magnetic late 

ME3 granites exhibit ellipsoidal shapes with concentric magnetic zoning, documenting their late 

tectonic emplacement. Highly magnetic basalts and gabbros with pronounced NE-SW oriented 

textures  visible in gamma ray spectrometry data, are transected by the ME2 granites and clearly differ 

from other greenstone belt lithologies. Two of the three generations of doleritic dykes (N40° and 

N100°) are well visible in magnetic data. 

The NNE-trending Greenville-Ferkessedougou-Bobo Dioulasso shear zone, intruded by a syn-

kinematic ME2 granite, can be clearly traced on both magnetic and gamma ray spectrometry data as 

well as subsequent NW-SE faults truncating the shear zone (figure I-8c). Volcano-sediments of the 

Banfora basin show again uniformly low magnetic intensity, which contrast with adjacent lithological 

units of andesites and basalts. Some of the granites (e.g. the Bamako pluton) can be delimited in 

gamma ray spectrometry data, including concentric compositional patterns; on the other hand, most of 

the intrusions can only be outlined using the magnetic grids. Some of the doleritic dykes follow belt-

parallel preexisting structures, while others crosscut them. 

The southwestern margin of the Houndé belt is tectonically delimited from the Sidéradougou 

Granitoid Domain by the Ouango-Fitini shear zone, which is best visible in the PCA (principal 

component analysis) enhanced gamma ray spectrometry data (figure I-8d). The NNW-SSE oriented 

Bossié shear zone, affecting the granitoid domain appears yellow and pink in the PCA image. In 

magnetic data, clear truncation of magnetic textures confirms the fault location. Flat magnetic textures 

and abundant soils are typical for the volcano-sedimentary and sedimentary rocks, as exemplified by 

the Bambéla volcano-sedimentary unit. 
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Figure I-8 Key localities showing details from map shown in figure I- 6. Upper map: RTPRMI (Reduced 
to the pole residual magnetic intensity) color overlay over first vertical derivative (grey-
scale); Intermediate: ternary grid of the airborne gamma ray data or PCA grid; Lower map: 
geological interpretation. (a) – The western margin of the Boromo belt and the eastern 
margin of the Houndé belt; (b) – The eastern margin of the Boromo belt and the 
Koudougou-Tumu granitoid domain ; (c) – The Banfora belt; (d) – The contact zone between 
the western margin of the Houndé belt and the Sidéradougou GD. HI – high intensity, MI –
 medium intensity, LI – low intensity, BAS – basalt, GBR – gabbro, AND – andesite, VS –
 volcano-sediment, TKW – Tarkwaian-type sediments, DOL – doleritic dyke, SPE – soft 
pediment., DUR – Fe-rich duricrust, intr. – intrusion, w. lith. bnd. – with lithological 
boundary, subcirc. – subcircular, mag. – magnetic. 
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Figure I-8 continued. 
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6. Discussion 

6.1. Lithologies and structures 

The new litho-structural map was constructed using field observations integrated with 

airborne geophysical data, satellite, and SRTM images. We made a significant effort to incorporate 

existing geological data, including geological maps, outcrop database, and BRGM geochemical 

analyses database (Marcelin, 1971; Marcelin and Serre, 1971; Lüdtke et al., 1998; Castaing et al., 

2003; Chèvremont et al., 2003; Koté et al., 2003; Le Métour et al., 2003); together with unpublished 

reports and maps from mining companies (figure I-4). This integrated approach and in particular 

interpretation of airborne geophysical data, led to several important findings, previously unrecognized 

in the area of western Burkina Faso. The shape and internal structure of the large granitoid domains 

has been studied in detail and led to the observation that the igneous domains consist of several 

generations of granitoid intrusions. The structural grain is defined by S1 and S2 metamorphic fabric, 

shear zones and high strain zones. A well-constrained overprinting relationship was observed between 

the D1-D2 shear zones both in the field and in airborne magnetic data. The shape and position of these 

shear-zones was better defined and several new major structures were incorporated in the map. The S2 

shearing generally overprints the D1 NW-SE F1 folding structures; however, relic F1 folds were 

identified in the Houndé greenstone belt. The structural aspect of the geological map is more coherent 

and complete as it was defined in conjunction with the regional tectonic model presented in chapter II. 

From the lithological point of view, basalts, gabbros, and andesites can be easily distinguished 

in magnetic and gamma ray spectrometry data from volcano-sediments and granitoids. However, some 

of the highly magnetic plutonic rocks (ME2, ME3, and ME4) resemble gabbros and basalts of the 

greenstone belts and can be misinterpreted, especially where outcrop information is lacking. Volcano-

sediments when intercalated with andesites show similar magnetic response to some of the tonalites 

and granodiorites (ME1, ME2). Adjacent volcanic rocks frequently suppress the low magnetic 

intensity signature of the Tarkwaian-type sediments, in particular when the unit becomes narrow. 

The airborne magnetic data show that the granitoid domains consist of multiple generations of 

individual intrusions, which implies an important constraint on the conception of the regional 

geodynamic model. In our study, we have divided the granitoids based on their petrography, magnetic 

properties and their geometry into three groups following the schemes discussed by Pons et al. (1995), 

Doumbia et al. (1998), Castaing et al. (2003), Gasquet et al. (2003), and Naba et al. (2004). One 

additional group of gabbros of unknown age (ME4) has been designated. This group corresponds to 

the “late” gabbros and diorites reported by Castaing et al. (2003) in Burkina Faso and Hirdes et al. 

(1996), Lüdtke et al. (1998) in northern Ivory Coast. Although the shape of plutons itself cannot not 

give us unequivocally the relative age of the pluton, a better definition of granitoid shapes from 

magnetic data has contributed significantly to their classification with respect to the deformation. The 
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character of internal fabric such as magmatic layering or mylonitic foliation in conjunction with 

geochronological and petrochemical data would reduce the uncertainty in the distinction between the 

ME1 and ME2 groups. The late K-rich granites (ME3) seem to be systematically highly magnetic, 

forming small (~5–15 km) ellipsoidal bodies. The gabbros associated with granitoids (ME4) have a 

magnetic texture similar to the gabbros of the greenstone belts and only field outcrops confirm 

unambiguously their presence. 

In airborne magnetic data, S1 structures are difficult to distinguish from the S2 shear zones 

due to the similar orientation and high intensity of the D2 event. In the Houndé belt, relic F1 fold 

hinges are scarcely observed in the magnetic dataset, while isoclinal to open F1 folds with NE 

trending axial planes occur in all three belts at outcrop scale. The S2 shear zones (Boromo-Poura SZ, 

West Batié SZ, Boni SZ, Ouango-Fitini SZ, Bossié SZ, and Greenville-Ferkessedougou-Bobo 

Dioulasso SZ) could be clearly identified at various scales using the magnetic data. Regional scale 

shear zones often define lithological contacts; hence, they are sharp and linear. Small scale localized 

NE to ENE-trending S3 shear zones are best visible in individual granitoid plutons; however, they 

affect all lithologies. The newly discovered shear zones represent perspective areas for gold 

exploration (Milési et al., 1989; Milési et al., 1992; Blenkinsop et al., 1994; Allibone et al., 2002; 

Groves et al., 2003; Cox, 2005; Béziat et al., 2008), including shear zones cross-cutting granites (e.g. 

Bossié SZ), as gold was recently discovered in shear zones affecting granitoid plutons in Ghana 

(Allibone et al., 2002). Zinc and copper deposits are also found in the study area near Perkoa 

(Schwartz and Melcher, 2003; massive sulfides) and Gaoua (Sillitoe, R., unpublished reports of Volta 

Res. Inc., http://www.voltaresources.com; porphyry copper), respectively. These mineral deposits are 

related to dioritic intrusions, which are not easily discernible in the magnetic or gamma-ray 

spectrometry data. This may be caused by the fact that the gamma ray spectrometry signature of the 

dioritic intrusions is similar to the surrounding host rocks or masked by regolith cover. Unlike gold, 

the zinc and copper deposits are not bound to large-scale shear zones that are easily traceable in 

magnetic data. Given these circumstances, electromagnetic surveying may provide better results than 

magnetic or gamma ray spectrometry data when prospecting for such deposits.  

The NW-SE brittle fault system affecting the eastern margin of the Houndé belt southeast of 

the town of Houndé (Castaing et al., 2003; Le Métour et al., 2003) was not observed in either magnetic 

or gamma ray spectrometry data, which suggests no interruption of the volcanic and sedimentary units 

exists. On the other hand, a system of parallel NW-SE faults with apparent sinistral kinematics clearly 

displaces volcanic lithologies in the eastern part of the Banfora belt, including the granite intrusion 

along the GFBSZ. 
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6.2. Strengths and weaknesses of the different datasets 

The integration of the available datasets proved to be the most powerful tool in the creation of 

the new geological map. Each data type and technique is appropriate for different lithologies, 

structures, areas, depths, or other aspects we are looking for (table I-4). Airborne magnetic data were 

found to be the most accurately defining lithologies and structures of the Paleoproterozoic basement at 

all scales, to depths of approximately 100–300 m, similarly to the findings of Jaques et al. (1997) or 

Betts et al. (2007). Gamma ray spectrometry data, characterizing the first 30 cm of depth (Minty, 

1997), in combination with SRTM digital elevation model, provided good results in mapping regolith 

and outcropping lithologies, in particular basalts, gabbros, and andesites, which form morphological 

elevations. Landsat and ASTER data are complementary to gamma ray spectrometry datasets in 

regolith mapping, thanks to their fine spatial resolution. In order to assess deep structures (up to 10 

km), we have preformed 2¾ D modeling using gravity data in chapter II. 

One of the major distinguishing parameters in lithostructural mapping is magnetic texture 

(Jaques et al., 1997; Betts et al., 2003; Aitken and Betts, 2009a; Denith et al., 2009; Stewart et al., 

2009). The textural differences helped us to overcome the fact that the magnetic properties of some 

lithologies are similar (e.g. basalts and andesites, granites, and volcano-sediments). The only 

drawback of the magnetic data is the application of the reduction to the pole at low latitudes. This 

limitation was rather successfully overcome with the low-latitude reduction to the pole method 

(MacLeod et al., 1993; Li, 2008) and inspection of analytical signal grids. 

At places with relatively good outcrop conditions, gamma ray spectrometry data were 

supportive of magnetic data and allowed us to better distinguish between lithologies with similar 

magnetic properties, such as andesites, which are richer in K than basalts and gabbros. Thick regolith 

cover in West Africa hampers the use of automatic classification of lithologies based on gamma ray 

  
Magnetic data Radiometric data 

Landsat/ASTER 
data 

SRTM data 

Structural 
mapping 

Good (independent 
of regolith 
signatures) 

Poor (depends on 
regolith cover) 

Poor (with the 
exception of well 
exposed terrains) 

Limited (for regional 
structures or foliation 
patterns depends on 
exposure) 

Lithology 

Moderate 
(lithologies with 
similar 
susceptibilities may 
be misidentified)  

Moderate (depends on 
regolith cover) 

Poor (with the 
exception of well 
exposed terrains) 

Limited (depends on 
exposure and contrast in 
lithologies) 

Regolith/ 
morphology 

Not evaluated 
Good (highlights 
erosional features and 
iron-rich duricrusts)  

Moderate (depends 
on vegetation 
cover) 

Good (resolution is 
suited rather for regional 
scale studies) 

Table I-4 Strengths and weaknesses of available geophysical and remote sensing data in lithological 
and structural mapping. 
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spectrometry and remote sensing data as applied in Canadian (An et al., 1995; Kettles et al., 2000; 

Schetselaar et al., 2000) or South American shields (Martelet et al., 2006; Teruiya et al., 2008). These 

studies rely on the fact that regolith or soil units in the area of interest are in place and derived from 

the underlying basement rocks. However, in West Africa most of the regolith units experienced some 

kind of either mechanical or chemical displacement (Grandin, 1976; Tardy, 1997). The regolith was 

probably formed in situ (Leprun, 1979) and the displacement occurred during subsequent surface 

processes (Beauvais, 1999). Automatic classification combined with visual evaluation of gamma ray 

spectrometry data and digital elevation images of the study area was used to differentiate the areas 

covered by iron-rich duricrusts and lateritic soils from fresh rocks, and will be described in detail in a 

future paper.  

Spatial analysis of the K, eTh, and eU concentrations (figure I-2) highlights the mobility of 

potassium (Taylor and Eggleton, 2001) and the retention of especially thorium by the Fe-rich 

weathering products described previously by Wilford et al. (1997) and Martelet et al. (2006). Although 

geochemical analyses, which are more precise than gamma ray spectrometry, revealed moderate 

correlation of potassium content between the soil and parent rock at outcrop scale (Blot et al., 1973), 

this relationship was not fully recognized in the airborne gamma ray data. 

The use of Landsat and ASTER data for geological mapping is limited in the study area due to 

vegetation and regolith cover; nevertheless, we achieved acceptable results in delineation of iron-rich 

duricrusts and exposed clay-rich regolith units. Similar results were reported in deeply weathered 

terrains of Australia (Craig, 2001; Wilford, 2002). In well-exposed regions, remote sensing methods 

were successfully applied to geological mapping of North America (Rowan and Mars, 2003), 

Australia (Zumsprekel and Prinz, 2000; Rowan et al., 2004), and Africa (Gomez et al., 2005); 

however, this is not the case of West Africa. In West Africa, Vidal et al. (2009), Tshibubudze et al. 

(2009), and Hein (2010) have instead applied a widely used method of lineament extraction from 

SPOT and Landsat images in order to constrain the structural framework. Although this approach may 

lead to applicable results, their interpretation is often complicated due to abundant vegetation, sand, 

overall flat morphology, and human activity. Lineaments derived from satellite data may thus be 

unrelated to geological structures 

6.3 Implications for geological evolution of the West African Craton 

Establishing lithostructural relationships in the deeply weathered terrains of the West African 

craton requires links to be found between the meso-scale field observations with regional large-scale 

architecture. The integration of geophysical data interpretation especially the magnetic data with 

structural field reconnaissance provides such a connection. A well-constrained overprinting 

relationship was observed between the D1 penetrative foliation features and the D2 shear zones. At 

outcrop scale, the D1 penetrative fabrics can be frequently found, while the structural pattern visible in 
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magnetic data is dominated by the later S2 shear zones. Similarly, the late D3 discrete fabrics were 

often observed in the field but are barely recognizable in geophysical data. The recognized regional-

scale S2 high strain zones reach lengths of hundreds of kilometers suggesting crustal scale movements 

along these structures. The gamma-spectrometry data combined with digital elevation model aided in 

defining the granitoid pluton shapes and their geochemical character. This study suggests that that for 

obtaining a more complete vision of the litho-structural framework, an integrated approach is 

necessary. The revised map contributed significantly to the conception of the geodynamic scenario in 

chapter II. Our experience from this study suggests that an improved understanding of the geological 

evolution of West African craton at local but also regional scales depends on an integrated evaluation 

of all the available datasets, as each one provided distinct constraints to the overall interpretation.  

7. Conclusions 

In this paper, we present a new synthetic geological map of western Burkina Faso 

at 1:500 000 scale. The map integrates existing and new field data, airborne geophysical and remote 

sensing data in order to provide a coherent litho-structural framework for the region. Several important 

findings were obtained: 

1. We have defined four groups of granitoid intrusions and related gabbros based on 

petrochemistry and magnetic data. The granitoid domains consist of many generations of individual 

intrusions. This has significant implications for the geotectonic concept. 

2. Relic F1 fold hinges were recognized in the magnetic data within the Houndé greenstone 

belt, while field mapping has confirmed the existence of isoclinal to open folds related to the D1 event 

across the study area. The D1 structures are generally overprinted by S2 shear zones. 

3. Several new S2 shear zones were identified in magnetic data, including the Bossié shear 

zone transecting the Sidéradougou granitoid domain and abundant small-scale shear zones 

overprinting granites and other lithologies. These shear zones represent prospective areas for gold 

exploration. 

4. Airborne gamma ray spectrometry data and SRTM digital elevation models allow for 

lithological discrimination in areas where regolith cover is minimal e.g. erosional ridges formed by 

volcanic and sedimentary rocks, the regolith stripped part of the Banfora belt, and the Sidéradougou 

domain. 

5. At least three generations of doleritic dykes oriented N40°, N100°, and N120 ° were 

identified in magnetic data. All three generations crosscut the Paleoproterozoic basement and two of 

them (N40°, N100°,) intrude sediments of the Taoudeni basin. 
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Résumé du chapitre II 

Formation de la croûte Paléoprotérozoïque juvénile lors de 

l’orogenèse éburnéenne (~2.2–2.0 Ga), Burkina Faso, Afrique de 

l’Ouest 

1. Introduction 

Les mécanismes de croissance de la croûte juvénile dans l’Archéen et Paléoprotérozoïque 

demeurent un sujet de vives discussions depuis des dizaines d’années (Windley, 1992 ; de Wit et 

Ashwal, 1997 ; Condie, 1998 ; Condie et Pease, 2008). Les boucliers anciens sont typiquement 

composés d’assemblages de ceintures de roches vertes et de granitoïdes, affectés par des zones de 

cisaillement d’échelle crustale. Nombreux chercheurs proposent que la tectonique des plaques opérait 

déjà au Mésoarchéen (Cawood et al., 2006; Condie, 2008; Shirey et al., 2008; Foley, 2008) alors que 

d’autres proposent qu’une tectonique dite « verticale », gouvernée par les différences de densité entre 

les roches vertes et les granitoïdes, opérait jusqu’au Paléoprotérozoïque (Pons et al., 1995; Vidal et al., 

1996; Vidal et al., 2009; Lompo, 2010). 

Afin de répondre à ces questions et de mieux comprendre les mécanismes de la formation du 

craton ouest africain, nous avons étudié un domaine Paléoprotérozoïque de l’Ouest du Burkina Faso. 

Agé de 2200 à 2000 Ma, le craton ouest africain représente un excellent endroit pour tester si la 

transition entre la tectonique « ancienne » et la tectonique « moderne » a eu lieu progressivement ou 

s’il s’agissait d’une rupture abrupte, et à quel moment elle est éventuellement arrivée.  

L’étude a été ciblée sur trois ceintures de roches vertes (Boromo, Houndé et Banfora) et sur 

les granitoïdes adjacents. Le but de cette étude est de proposer un scénario géodynamique de la 

formation de ce domaine composé de roches vertes et de granitoïdes en combinant les données de 

terrain (structurales, lithologiques, stratigraphiques, géochimiques, métamorphiques) et les données 

géophysiques (magnétiques, radiométriques). La méthodologie, ainsi que les nouvelles structures 

découvertes ici, sont présentées dans le chapitre I. Pour mieux contraindre les structures profondes, 

nous avons réalisé trois modèles 2¾ D en utilisant des données gravimétriques. 

2. Principales lithologies et structures  

Les trois ceintures des roches vertes (Boromo, Houndé et Banfora) contiennent une série 

volcanique mafique tholéiitique à la base qui est superposée par des séries volcaniques intermédiaires 

à acides d’une composition calco-alcaline. Des bassins de sédiments à grains fins tardi-Birimiens 

apparaissent dans les trois ceintures. Une unité de sédiments de type « Tarkwaien » se trouve à 
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l’intérieur de la ceinture de Houndé et parallèle à celle-ci, délimitée par des zones de cisaillement de 

part et d’autre. 

Quatre groupes majeurs, correspondant à quatre épisodes magmatiques, ont été distingués 

dans les granitoïdes : 1) les intrusions calco-alcalines de tonalites-trondhjémites-granodiorites, à faible 

teneur en potassium et à formes irrégulières. Ces roches montrent souvent un litage ou une foliation 

magmatique bien développée ; 2) les intrusions de granites calco-alcalins potassiques. Ils sont 

caractérisés par une forme circulaire ou elliptique et transectent les lithologies plus anciennes ; et 3) 

les granites tardifs potassiques, ou de rares syénites, de forme sigmoïdale à elliptique bien visibles 

dans les données magnétiques ; enfin 4) de petites intrusions de gabbros d’âge inconnu.  

Trois phases de déformation ont été distinguées dans la zone d’étude. La première phase D1 

est caractérisée par une fabrique métamorphique pénétrative et des plis serrés à ouverts dans les 

ceintures des roches vertes. Dans les granitoïdes, une foliation magmatique pénétrative subverticale a 

été fréquemment observée. Une linéation fortement plongeante est parfois associée avec la foliation 

S1. L’orientation N-S ou NNE-SSE de ces structures S1 est cohérente dans les ceintures des roches 

vertes et dans les granitoïdes. Les sédiments de type « Tarkwaien » et une partie des sédiments 

Birimiens se sont déposés à la fin de D1, ce qui est supporté par l’obliquité angulaire de l’unité des 

sédiments « Tarkwaiens » par rapport aux niveaux plissés des roches volcaniques de la ceinture de 

Houndé.  

Les structures de la deuxième phase de déformation D2 sont caractérisées par des zones de 

cisaillements suverticaux discrets développés à plus basse température par rapport aux foliations S1. 

Localement, des plis asymétriques liés à ces cisaillements sont développés. L’orientation de ces zones 

de cisaillement dans les ceintures des roches vertes ainsi que dans les granitoïdes varie entre NNO-

SSE (senestre) à ENE-OSO (dextre). Les linéations associées aux structures S2 plongent faiblement.  

La dernière phase de déformation D3 est tardive, peut-être même Panafricaine, et affecte 

notamment les lithologies de forte anisotropie à travers toute la zone d’étude. Les structures typiques 

pour cette phase sont : le clivage de crénulation fortement penté, orienté E-O en moyenne, et les failles 

inverses de faible pendage vers le N ou le S. 

3. Caractère géochimique des roches volcaniques 

Les analyses géochimiques de roche totale ont été acquises sur les volcanites de ceintures de 

Houndé et Boromo afin de pouvoir déterminer l’origine de ces roches. Deux familles principales ont 

été trouvées dans les deux ceintures : les basaltes tholéiitiques et les basaltes et andésites calco-

alcalins, avec quelques andésites de type transitionnel. Les basaltes à grands phénocristaux de 

plagioclases qui sont observés à l’Est de la ceinture de Houndé et à l’Ouest de la ceinture de Boromo, 

ont une composition tholéiitique, identique dans les deux ceintures. Ces basaltes sont donc utilisés 

comme un niveau marqueur stratigraphique. 
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4. Résultats principaux de l’étude et discussion du modèle géodynamique 

La composition chimique des roches volcaniques, qui commence par une série des basaltes 

tholéiitiques, et qui est suivie par des séries volumineuses intermédiaires calco-alcalines, est 

compatible avec un environnement des arcs volcaniques (2200–1700 Ma). Les premières intrusions 

des tonalites-trondhjémites-granodiorites (2190–2170 Ma) ont leur source dans les plaques océaniques 

subductées (Martin, 1994 ; Martin et al., 2005) ou la croûte inférieure mafique. Les relations 

structurales, stratigraphiques, géochimiques et notamment le niveau de basaltes à mégacristaux de 

plagioclase permettent de corréler le flanc occidental de la ceinture de Houndé et le flanc oriental de la 

ceinture de Boromo, suggérant que ces deux ceintures forment des synformes reliées par une 

antiforme maintenant disparue. Le flambage puis le plissement des ceintures a commencé lors de la 

première phase de déformation D1 (~2160–2120 Ma), accompagnés d’abondantes intrusions 

syntectoniques de granitoïdes marquées par une foliation magmatique subverticale portant une 

linéation d’étirement fortement plongeante. D1 correspond à un raccourcissement E-O avec une 

déformation prédominante de cisaillement pur. Les séries volcaniques et sédimentaires plissées de la 

ceinture de Houndé sont recoupées par la faille régionale de Boni, qui contrôle le dépôt des sédiments 

de type « Tarkwaien » et une partie des sédiments Birimiens (2200–2100 Ma). Les observations de 

terrain ne fournissent pas suffisamment d’arguments pour décider si la sédimentation a eu lieu lors 

d’une extension ou s’il s’agit des bassins internes synorogéniques. La deuxième phase de déformation 

D2 est caractérisée par des zones de cisaillement d’échelle locale à régionale qui affectent de manière 

hétérogène les structures préexistantes. Le caractère de cette déformation est transpressif, avec une 

forte composante de cisaillement simple.  

Les granitoïdes ont joué un rôle important pendant toutes les étapes de l’orogénèse 

éburnéenne, en particulier par l’augmentation du volume de croûte créée durant l’orogénèse précoce, 

et au stade mature l‘accommodation d’une partie du raccourcissement latéral. A l’échelle régionale, la 

géométrie du système a été contrôlée par le raccourcissement coaxial des unités visqueuses des 

basaltes, gabbros et andésites composant les ceintures des roches vertes qui ont progressivement formé 

un pli d’une longueur de 400 km N au S. Raccourcissement et plissement à grand échelle a été 

accompagnés d’un ajout constant de magmas granitiques. 

La dernière phase de déformation D3 est tardi-éburnéenne ou peut-être même panafricaine. 

Elle correspond au raccourcissement N-S responsable de la crénulation subverticale orientée E-O et 

des failles inverses à faible pendage vers le N et le S. 

5. Conclusion 

Notre étude de trois ceintures de roches vertes et des granitoïdes associés a mis en évidence 

trois phases principales de déformation compressive qui ont contribué à la formation de la croûte 

continentale juvénile lors de l’orogénèse éburnéenne. Les arguments pétrologiques, structuraux, 
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géochimiques et métamorphiques suggèrent l’existence d’un ou plusieurs arcs volcaniques qui sont 

rentrés en collision. La tectonique des plaques opérait déjà à cette époque, même si les mécanismes de 

la croissance crustale ont été modifiés par rapport au présent. Le mécanisme de croissance crustale par 

plissement des unités mafiques rigides à grande échelle nous semble indéniable, ont en soulignant le 

rôle important des granitoïdes lors de la croissance crustale. 
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Abstract 

We have investigated three greenstone belts (Boromo, Houndé, and Banfora) and associated 

granitoid terrains, which form part of the Eburnean orogen, situated in western Burkina Faso. The 

belts expose tholeiitic basalts (basal unit) followed by calc-alkaline intermediate predominantly 

effusive volcanic and sedimentary suites geochemically reminiscent of present-day volcanic island arc 

environments. The basal mafic unit probably corresponds to a juvenile arc crust or oceanic plateau. It 

contains unusual megacrystic tholeiitic basalts, allowing us to correlate the western margin of the 

Boromo belt with the eastern margin of the Houndé belt. These two N-S trending belt-parallel 

tholeiitic units are interpreted as limbs of a crustal scale anticline, intruded and partially obliterated by 

tonalite-trondhjemite-granodiorite (TTG) and granite intrusions.  

Three deformation events (D1-D3) can be distinguished in western Burkina Faso. The first 

deformation phase (D1) operated under an E-W to WNW-oriented compression. Regional greenschist 

to lower amphibolite facies metamorphism and intense folding characterize early-Eburnean 

deformation phases, during which time the crust was thickened by lateral shortening of volcanic island 

arcs and concomitant magma input. The crustal-scale antiform between the Boromo and Houndé belts 

is attributed to the D1 event. Shallow water detrital Tarkwaian-type sediments were deposited during 

the late D1 event within the Houndé belt, in a belt-parallel basin extending for 400 km. The 

subsequent D2 phase overprints the structural grain of the study area, and is best visible in airborne 

magnetic data. It is characterized by N to NE-trending transcurrent shear zones, which are considered 

preferred host structures for gold mineralization. We suggest that the newly formed and thickened 

crust reached the maximum thickness supportable by a weak and hot mantle during the D1 phase, and 

the pure shear dominated compressional regime switched to simple shear dominated transpression 
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during the subsequent D2 phase. Granitoid diapirism played an important role at all stages of the 

Eburnean crustal growth processes in particular through volume addition to the newly formed orogen 

and through accommodating part of the lateral shortening. Pluton emplacement contributed to the 

greenstone belt structuration at local scales; however, the regional scale system geometry was 

controlled by coaxial shortening of the viscous volcanic units (basalts, gabbros, and andesites) of the 

greenstone belts, supported by coeval magma input. 

The last D3 deformation, which is either late-Eburnean or perhaps even Pan-African in age, is 

characterized by shallow N or S dipping minor thrust faults or an E-W trending steeply dipping spaced 

crenulation cleavage and kink folds, occurring mainly in highly anisotropic lithologies across the study 

region. 

 

Keywords: West Africa; Burkina Faso; Paleoproterozoic; Structural analysis; Magmatic and 

tectonic accretion; Geodynamic model 

1. Introduction 

The growth mechanisms of Archean and Paleoproterozoic juvenile continental crust have been 

a topic of scientific debate for decades (Windley, 1992; de Wit and Ashwal, 1997; Condie, 1998; 

Condie and Pease, 2008). Many authors propose that plate tectonics existed back to the Mesoarchean 

(Cawood et al., 2006; Condie, 2008; Shirey et al., 2008; Foley, 2008), nevertheless, the plate 

movements may have been much faster and slab dips shallower when compared to the present day 

subduction zones (Choukroune et al., 1997; Goscombe et al., 2009). The existence of Himalayan-type 

collisional orogens, dominated by nappe stacking along first-order thrust faults, is strongly challenged 

for Precambrian terrains, mostly due to the absence of a thick and strong continental lithosphere, 

which would be able to support the overthickened continental crust especially during the periods of 

massive juvenile crust accretion (Windley, 1995; Chardon et al., 2009; Gapais et al., 2009). Several 

authors point out that even if lateral accretion of volcanic arcs operated, other processes may have 

occurred simultaneously in the hot and weak juvenile crust (Choukroune et al., 1995; Chardon et al., 

1998; Collins et al., 1998; Rey et al., 2003; Cagnard et al., 2006a; Chardon et al., 2002). These 

processes include gravitational sinking of dense mafic domains or homogeneous thickening of the 

crust by combined downward movements of supracrustals and three-dimensional mass redistribution 

in the viscous lower crust. Archean orogens are characterized by strain patterns which often post-date 

the principal accretion period (Chardon et al., 2009), with high heat flow related either to plate 

boundaries or to mantle plume activity, which potentially contributed to crustal growth through the 

accumulation of voluminous volcanic and plutonic complexes (Sylvester et al., 1997; Arndt et al., 

1997; Benn and Moyen, 2008). Lithological assemblages of tonalite-trondhjemites-granodiorites 
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(TTG) with intercalated greenstone belts are typical for all of the Precambrian shields including the 

West African Craton (figure II-1). 

In the southern part of the West African Craton, called the Leo-Man shield (Bessoles, 1977; 

Rocci et al., 1991), Paleoproterozoic rocks are tectonically juxtaposed to the Archean nucleus, 

separated from it by the Sassandara fault (Bessoles, 1977; Feybesse et al., 1989; Feybesse and Milési, 

1994; Kouamelan et al., 1997; Caby et al., 2000; Egal et al., 2002) (figure II-1). In West Africa, two 

distinct models have been proposed for the tectonic evolution of the granite-greenstone terrains. One 

model assigns the major crustal thickening phase to nappe stacking along orogen parallel thrust faults 

(e.g. Milési et al., 1989; Ledru et al., 1991; Allibone et al., 2002; Feybesse et al., 2006). The other 

model rejects the plate tectonic paradigm and emphasizes the “dome and basin” geometry. This 

geometry would be the result of vertical movements due to gravitational instabilities (Pons et al., 

1995; Vidal et al., 1996; Vidal et al., 2009; Lompo, 2010), operating under an overall lateral 

shortening regime. Abouchami et al. (1990), Boher et al. (1992), and Taylor et al. (1992) insist on the 

juvenile character of the greenstone-granitoid terrains in West Africa. The absence of Archean 

basement under most of the Paleoproterozoic crust has been confirmed by more recent studies (Dia et 

al., 1997; Doumbia et al., 1998; Hirdes and Davis, 2002; Gasquet et al., 2003;) with some exceptions 

Figure II-1 Simplified geological map of the Leo-Man Craton (modified after the BRGM SIGAfrique map, 
Milési et al., 2004), with the study area indicated. Paleoproterozoic greenstones are divided 
into: light grey – intermediate to acid volcaniclastics and volcanosediments, dark grey – mafic 
to intermediate lavas and volcanic products. 
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along the contact zone with the Archean Kénéma-Man domain (Boher et al., 1992; Kouamelan et al., 

1997; Thiéblemont et al., 2004). On the other hand, Begg et al. (2009) conclude that reworked 

Archean crust and subcontinental lithospheric mantle are present beneath an extensive part of West 

African craton, based on tomographic data.  

The integrated interpretation of airborne geophysical and satellite remote sensing data, field 

observations, along with a 2¾ D gravity modeling is an efficient method for delimiting lithological 

units and structures in poorly exposed granite-greenstone areas (Hackney, 2004). As a part of this 

study, we have revised the existing 1:1 000 000 and 1:200 000 geological maps (Marcelin and Serre, 

1971; Marcelin, 1971; Castaing et al., 2003; Chèvremont et al., 2003; Koté et al., 2003; Le Métour et 

al., 2003). The revised litho-structural map at a scale of 1:500 000 along with detailed description of 

the assumptions and techniques we used is presented in chapter I. Field observations were combined 

with airborne magnetic and radiometric data with resolutions of 125 m and 250 m obtained during the 

System for Mineral Products (SYSMIN) project of Bureau de Recherche Géologique et Minière 

(BRGM) and Bureau de Mines et Géologie du Burkina Faso (BUMIGEB), 1998−2003. Derivatives of 

the magnetic data (first vertical, horizontal, and tilt derivatives, analytical signal) served to delineate 

large-scale structures such as shear zones and large-scale folds and the younger doleritic dykes.  

In this paper, we present a tectonic model for western Burkina Faso encompassing parts of 

three N-S trending greenstone belts and four surrounding granitoid domains of Paleoproterozoic age. 

This model addresses the issues of the source and nature of the volcanic rocks of the greenstone belts, 

the growth mechanisms of continental crust from dominantly oceanic crust and volcanic arcs, and their 

transformation into a classical-type greenstone-granitoid terrain pattern. We also discuss the 

significance of their partitioning into the current greenstone belts, taking into consideration the pre-

greenstone belt geodynamic setting of the volcanic island arcs. The tectonic model is based on the 

integration of multiple datasets. In this context, our method provides a good constraint on the 3D 

geometry of the system as well as on the relative chronology of some of the large-scale structures. 

2. Geological Setting 

2.1. Regional geological framework 

The Birimian volcano-sedimentary belts with associated granitoids belonging to the Baoulé-

Mossi domain of the West African Craton (figure II-1) formed between 2250 and 1980 Ma (Feybesse 

et al., 2006). The dominant structural grain was formed during the Eburnean orogeny (Bonhomme, 

1962). The greenstone belts consist of the so-called Birimian volcanics, and of sedimentary basins, 

sometimes considered as separate units. The volcanics were first described in the Birim valley in 

Ghana (Kitson, 1918), and are characterized by tholeiitic and/or calc-alkaline compositions. In several 

studies, the volcanic formations are considered younger than the sedimentary sequences (e.g. Junner, 



 
Chapter II 

 

 84 

1935, 1940; Ledru et al., 1991; Milési et al., 1989, 1991). Leube et al. (1990) suggested that the 

volcanic sequences and sedimentary basins are contemporaneous lateral facies equivalents, while 

others place the basalts and andesites at the base, overlain by flysch-type sedimentary sequences 

(Tagini, 1971, 1972; Bessoles, 1977; Vidal and Alric, 1994; Pouclet et al., 1996). Recent radiometric 

dates on zircons from rhyolites have shown that the volcanic units were emplaced at ~2190–2160 Ma, 

whereas some detrital zircons found in Birimian sediments are as young as 2130 Ma, supporting the 

idea that at least some of the sedimentary basins postdate the principal volcanic activity (Davis et al., 

1994; Lüdtke et al., 1999, 1998; Hirdes et al., 1996; Hirdes and Davis, 1998; Oberthuer et al., 1998; 

Le Métour et al., 2003).  

Numerous studies of Precambrian greenstone belts have concluded that the bimodal tholeiitic 

to calc-alkaline volcanism represents an immature volcanic arc setting, where slight compositional 

differences exist with respect to the present-day island arcs (Zonou, 1987; Dia, 1988; Moyen et al., 

2003, Sylvester and Attoh, 1992; Martin, 1994; Ama Salah et al., 1996; Lüdtke et al., 1998; Béziat et 

al., 2000; Schwartz and Melcher, 2003; Soumaila et al., 2004; Condie, 2005; Martin et al., 2005). 

Tholeiitic basalts are considered to pre-date calc-alkaline series in the majority of these works. Other 

authors invoke oceanic plateaus related to mantle plumes to explain the massive accumulations of 

basalts within a short period of time (Abouchami et al., 1990; Boher et al., 1992; Pouclet et al., 1996; 

Arndt et al., 1997; Lompo, 2009). The elongate character of greenstone belts could instead be the 

result of intra-continental rifting according to Leube et al. (1990), Ratomaharo et al. (1988), Alric 

(1990), and Pouclet et al. (1996). 

The Tarkwaian sediments, first defined in Ghana (Whitelaw, 1929), are regarded as the 

youngest unit in the greenstone sequence by most authors (Leube et al., 1990; Davis et al., 1994; 

Bossière et al., 1996; Castaing et al., 2003; Feybesse et al., 2006). They have been deposited after 

~2120 Ma, as suggested by ages obtained on detrital zircons. Conglomerates and fine-grained detrital 

sediments observed within calc-alkaline sequences were attributed to the Birimian volcano-

sedimentary series in northeastern Burkina Faso (Roddaz et al., 2007; Tshibubudze et al., 2009), Ivory 

Coast (Vidal et al., 1996; Doumbia et al., 1998), and Senegal (Bassot, 1987). Despite the conspicuous 

lithological similarity of the Tarkwaian-like sedimentary sequences all over the craton, their 

stratigraphic continuity cannot be proved and they might have been deposited at different times in 

separate basins. In this work, we will retain the term Tarkwaian-type metasediments in accord with the 

afore-mentioned published works, but we do not establish any spatial or temporal relationship with the 

Tarkwa stratotype. 

Birimian sedimentary basins occur abundantly across the whole Baoulé-Mossi domain. Vidal 

and Alric (1994) suggest that they unconformably overlay the older basement composed of 

predominantly tholeiitic volcanics and first generation of granitoids, while Hirdes et al. (1996) and 

Lüdtke et al. (1998) claim that they are lateral equivalents and contemporary products of the volcanic 

islands. Pouclet et al. (1996) and Pouclet et al. (2006) suggest that the intracontinental basins formed 
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quite late in the tectonic history on the consolidated TTG-greenstone basement and were 

contemporaneous with calc-alkaline magma production. 

Voluminous plutonic activity contributed significantly to the growth of continental crust 

during the Eburnean orogeny. In the West African Craton, plutonic activity spans over the whole 

period of the orogeny, and is characterized by granitoid intrusions similar to the typical late-Archean 

suites from the Dharwar, Abitibi, and Yilgarn cratons (Martin, 1994; Champion et al., 2001; Moyen et 

al., 2003, Martin et al., 2005). Although petrographic variability is large and classification of granitoid 

suites in the Baoulé-Mossi domain is complex, many authors describe long-lasting calc-alkaline Na-

rich plutonism with typical tonalite-trondhjemite-granodiorite (TTG) members, followed by more 

potassic, often biotite bearing granites, which may evolve to alkaline syenitic magmatism (e.g. 

Arnould, 1961; Leube et al., 1990; Davis et al., 1994; Hirdes et al., 1996; Doumbia et al., 1998; 

Lüdtke et al., 1999, 1998; Egal et al., 2002; Gasquet et al., 2003; Naba et al., 2004; Vegas et al., 2008; 

Lompo, 2009).  

A few TTG intrusions occurred contemporaneously with the Birimian mafic to intermediate 

volcanism at 2195−2172 Ma (U-Pb and Pb-Pb zircon ages, Hirdes et al., 1992; Oberthuer et al., 1998; 

Siegfried et al., 2009) but the main plutonic activity took place later. Several protracted pulses of syn-

tectonic to late-kinematic granitoid intrusions range in age from ~2153 Ma to 2068 Ma (U-Pb and Pb-

Pb zircon ages; Liégeois et al., 1991; Hirdes et al., 1996; Doumbia et al., 1998; Oberthuer et al., 1998; 

Egal et al., 2002; Hirdes and Davis, 2002; Castaing et al., 2003; Gasquet et al., 2003).  

Most of the volcanic suites are metamorphosed at lower (Kříbek et al., 2008) to upper 

greenschist facies (e.g. John et al., 1999; Feybesse et al., 2006). Amphibolite facies conditions are 

reported only from contact aureoles of granitoid intrusions (Debat et al., 2003; Soumaila and Garba, 

2006) or are localized along some of the shear zones (e.g. Chèvremont et al., 2003). Regional 

amphibolite facies metamorphism has been reported from Ghana (John et al., 1999; Klemd et al., 

2002; Galipp et al., 2003). A Sm-Nd isochron on whole rock including metamorphic garnets indicates 

metamorphism of the mafic volcanic rocks at 2153 ± 13 Ma (Boher et al., 1992).  

In the study area, typical metamorphic mineral assemblages consist of variable proportions of 

chlorite, actinolite/tremolite, albite, epidote, and white mica. The metasediments of the Batié volcano-

sedimentary unit are locally unmetamorphosed. Thin sections observations show no lateral field 

metamorphic gradient across the Houndé and Boromo greenstone belts. The only places where 

metamorphic conditions reach amphibolite facies (665 ± 35°C, Hbl-Pl thermometer by Holland and 

Blundy, 1994) are within pluton aureoles such as the Ponkélé shear zone (figure II-2). 

The polyphase character of the Eburnean orogeny has been noted by many workers (e.g. 

Lemoine et al., 1985; Tempier, 1986; Milési et al., 1989; Feybesse et al., 1990; Lemoine et al., 1990; 

Ledru et al., 1991; Milési et al., 1992; Hirdes et al., 1996; Vidal et al., 1996; Allibone et al., 2002; 

Feybesse et al., 2006; Pouclet et al., 2006; Vidal et al., 2009; Hein, 2010). In order to explain NW to 

NNW-trending steeply dipping structures in the north of Burkina Faso, Hein (2010) and Tshibubudze 
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et al. (2009) introduced a short-lived pre-Eburnean deformation event denominated Tangaean Event. 

Early Eoeburnean deformation event operating before 2150 Ma was also reported in northern Ghana 

(de Kock et al., 2011). The first Eburnean phase, which took place between ca. 2200−2130 Ma and 

2150−2110 Ma (U-Pb and Pb-Pb zircon ages on rhyolites and granitoids) is called Eburnean I 

(Allibone et al., 2002), D1 (Milési et al., 1989; Ledru et al., 1991; Feybesse et al., 2006) or Stage I 

(Vidal et al., 2009). It corresponds to the major phase of either crustal thickening by nappe stacking 

(Allibone et al., 2002; Feybesse et al., 2006) or “dome and basin” diapiric uprising and greenstone belt 

sinking (Delor et al., 1995; Vidal et al., 1996; Lompo, 2009; Vidal et al., 2009).  

The second phase, Eburnean II, D2-3 or Stage II, took place between ca. 2130−2110 Ma and 

2090−1980 Ma (U-Pb and Pb-Pb zircon ages on rhyolites and granitoids; Pouclet et al., 1996; Allibone 

et al., 2002; Feybesse et al., 2006; Pouclet et al., 2006; Vidal et al., 2009). It is characterized by 

regional scale N to NE-trending transcurrent faults. These faults, affecting all lithologies, are often 

localized at contacts between granites and greenstones. Gold mineralization is concentrated along 

these late-orogenic shear zones (e.g. Milési et al., 1989; Milési et al., 1992; Blenkinsop et al., 1994; 

Bourges et al., 1998; Allibone et al., 2002; Feybesse et al., 2006; Béziat et al., 2008). Some of the 

deposits are thought to be remobilized paleoplacers, in particular those situated in Tarkwaian 

sediments in Ghana (Klemd and Hirdes, 1997). 
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Figure II-2 Revised geological map of the western Burkina Faso (chapter I). The names of the greenstone 
belts, granitoid domains (GD) and major Birimian (volcano-) sedimentary units referred to in 
the text are indicated. Radiometric ages are taken from the following sources: (1) Agyei Duodu 
et al., 2010; (2) Bossière et al., 1996; (3) Castaing et al., 2003; (4) Davis in Schwartz and 
Melcher, 2003; (5) Lompo, 1991; (6) Lüdtke et al., 1998; some of these ages also published in 
Hirdes et al., 1996; (7) Siegfried et al., 2009; (8) Thomas et al., 2009. Dating methods U-Pb 
(U), Pb-Pb (P), K-Ar (K), and Ar-Ar (A) were applied on zircon (z), monazite (m), t – titanite 
(t), and amphibole (a). The following sources were used for compilation of the geological map: 
(A) this work; (B) Lüdtke et al., 1998; (C) Tagini, 1972; (D) Agyei Duodu et al., 2010. BA – 
Banfora, BO – Boromo, BOBO – Bobo-Dioulasso, BT – Batié, DA – Dano, DE – Dédougou, 
DIE – Diébougou, GA – Gaoua, HO – Houndé, MA – Mana, KA – Kampti, KO – Koudougou, 
LE – Léo, LO – Loropéni, PE – Perkoa, PK – Ponkélé, PO – Poura, SA – Safané, SID – 
Sidéradougou, TU – Tumu. GFBSZ – Greenville-Ferkessedougou-Bobo-Dioulasso shear zone 
(SZ), OFSZ – Ouango-Fitini SZ, BPSZ – Boromo-Poura shear corridor, WBSZ – West Batié 
SZ. 
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Post-Eburnean structures such as shallow N or S dipping thrust faults or E-W striking steep 

crenulation cleavage have been reported from northern Burkina Faso (Nikiéma et al., 1993; Debat et 

al., 2003; Hein, 2010). The Birimian basement is unconformably overlain by Neoproterozoic 

sediments of the Taoudeni basin (Deynoux, 1983; Bertrand-Sarfati et al., 1990) and intruded by at 

least six generations of post-Eburnean doleritic dykes cratonwide (Jessell et al., 2010). 

2.2. Distribution of the greenstone belts and granitoid domains 

The study area consists of three N-S trending greenstone belts (Boromo, Houndé, and 

Banfora) separated by granitoid domains (figure II-2). The stratigraphic sequences for the Houndé and 

Boromo belts (figure II-3a) were established using field lithological and structural data, interpretations 

of regional geophysical data, geochemistry of the volcanic rocks and three gravity models constructed 

from sections perpendicular to two of the belts. We are less confident about the proposed stratigraphic 

chart for the Banfora belt as our field observations are scarce. The interpretations are mostly based on 

the existing outcrop data, the 1:200 000 geological map (Marcelin and Serre, 1971) and on 

geophysical data. 

Geophysical data and field mapping revealed that the granitoid domains are composed of a 

significant number of 5 to 50 km (maximum dimension) granitoid bodies of variable composition, 

shape, and age. For the sake of clarity, we will use the following names for the granitoid domains in 

this work: the Koudougou-Tumu domain for the granitoids east of the Boromo belt in Burkina Faso 

(and its continuation in northern Ghana, the Lawra belt), the Diébougou domain for the band between 

the Boromo and Houndé belts, the Sidéradougou domain for the granitoid plutons situated between the 

Houndé and Banfora belts, and the Niangoloko domain for the granitoids to the west of the Banfora 

belt (figure II-2).  

Unlike other regions of the Leo-Man Craton, where the sedimentary basins can be clearly 

delineated and separated from the volcanic belts (e.g. the Bambéla-Comoé basins in Ivory Coast and 

Ghana, the Siguiri-Kankan basin in Guinea and Mali, the Kumasi basin in Ghana), the sedimentary 

basins in western Burkina Faso show complex structural relationship and frequent stratigraphic and/or 

tectonic intercalations with the adjacent volcanic and volcano-sedimentary units. This hinders 

unequivocal spatial delimitation of the basin and its distinction from the older Birimian volcaniclastics 

and sediments associated with the volcanism. The sedimentary units will be therefore described 

together with the three respective greenstone belts. The stratigraphic and tectonic position of the 

sediments suggests that they postdate the volcanic belts, which is consistent with the position of the 

Birimian sedimentary basins in the north of Ivory Coast and north of Ghana (Vidal and Alric, 1994; 

Vidal et al., 2009; Agyei Duodu et al., 2010). 
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3. Main lithologies and stratigraphy 

3.1. The Boromo belt 

The eastern and western margins of the Boromo belt (figure II-2) consist of a thick sequence 

of basalts, in places pillowed, intercalated with gabbros, and orthoamphibolites/pyroxenites. The 

eastern part of the belt consists of intermediate volcanics and several ultramafic bodies. Basic and 

intermediate volcanism in the east of the belt varies from tholeiitic to calc-alkaline in composition. No 

radiometric ages exist from basalts or andesites; however, field relationships suggest at some localities 

that tholeiitic basalts are older than the calc-alkaline series (Béziat et al., 2000). The Boromo belt 

continues without major interruption down to Ghana, where it is known as the “Lawra” belt (Leube et 

al., 1990; Agyei Duodu et al., 2010). The western margin of the belt, mostly tholeiitic in composition, 

crops out from Dano to the south and continues underneath the granites as shown by the gravity data 

further to the north. Tholeiitic basalts with large (up to 10 cm), locally corroded plagioclase 

megacrysts and occasional pillow structures (figure II-4a), were found at three localities of the western 

mafic unit (yellow stars in figure II-2). Some of them contain more than 90% plagioclase and are 

comparable to the Archean anorthosites described by Ashwal et al. (1983). We interpret these 

tholeiitic mafic units, which reach 6 km in thickness, to form the base of the complete stratigraphic 

sequence, based on their geochemistry and structural position within the belts. The litho-structural 

relationship between the mafic units forming the eastern and western margins of the Boromo belt is 

hard to verify even with the gravity data; however, a continuity of these units at depth cannot be 

excluded. 

The stratigraphic sequence changes upwards into andesitic lavas of transitional and calc-

alkaline composition, which are intercalated with thick sequences of pyroclastic flows and tuffs and 

rare layers of ferruginous cherts (figure II-2). The stratigraphic thickness of this predominantly calc-

alkaline sequence varies between 2 and 5 km. The central part of the Boromo belt referred to here as 

the Batié volcano-sedimentary unit (figure II-2) is composed of flysch-like metasediments, tuffs, and 

epiclastic volcano-sediments with occasional intercalations of andesites. The thickness of the Birimian 

sedimentary units is hard to establish due to their intense folding, but ranges from 5 to 20 km in the 

map view. 

Few radiometric ages are available for the volcanic rocks of the Boromo belt (figure II-3b). 

One rhyolite found in the westernmost unit, was dated at 2171 ± 7 Ma (U-Pb on zircon; Le Métour et 

al., 2003), whilst rhyolites and andesites situated near Perkoa (figure II-2) yield ages of 2195 ± 15 Ma 

(Pb-Pb on whole rock; Lompo, 1991). 
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Figure II-3 a) Simplified stratigraphic sequences for the Banfora, Houndé and Boromo belts with the names 
of the corresponding belts in Ivory Coast and Ghana. Katiola-Marab. – Katiola-Marabadiassa 
belt. TH – tholeiitic mafic units, THM – tholeiitic megacrystic basalts, TRAN – transitional 
mafic and intermediate volcanic sequences, CA – calc-alkaline volcanic sequences. b) 
Radiometric age frequency histograms for Boromo-Lawra-Bole-Nangodi (BLBN) and Houndé-
Téhini-Ouango-Fitini (HTOF) greenstone belts (GB) and Koudougou-Tumu (KTGD), 
Diébougou (DGD) and Sidéradougou (SGD) granotoid domains. The ages shown in the 
histograms are plotted in figure II- 2. Only U-Pb and Pb-Pb zircon and whole rock ages are 
taken into account. Note that no radiometric ages exist for the Banfora belt, the Niangoloko 
granitoid domain and adjacent areas in northern Ivory Coast. 
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3.2. The Houndé belt 

The eastern part of the Houndé belt is composed of up to 6 km thick basal unit of tholeiitic 

basalts and gabbros, revealing very similar petro-chemical properties as the western mafic unit of the 

Boromo belt. Andesites, volcano-sediments and tuffs of presumably younger age occur in the central 

and southern part of the predominantly tholeiitic mafic unit. These formations extend down to Ivory 

Coast, where they are known as the Téhini belt (Hirdes et al., 1996; Pouclet et al., 1996; Lüdtke et al., 

1998, 1999). Tholeiitic basalts with equidimensional automorphic, locally deformed plagioclase 

megacrysts similar to those occurring in the west of the Boromo belt (figures II-4a, b), were found at 

three localities along the eastern margin of the Houndé belt within the tholeiitic unit (figure II-2). We 

use them as an important lithostratigraphic marker documenting the structural and litho-stratigraphic 

continuity between the Houndé and Boromo belts. The basal mafic unit is bound to the west by the 

Boni shear zone, which defines the contact with a quasi-continuous unit of Tarkwaian-type sediments, 

described below (figure II-2). 

The western part of the Houndé belt, corresponding to the Ouango-Fitini belt in Ivory Coast 

(Pouclet et al., 1996; Vidal et al., 1996; Lüdtke et al., 1998, 1999; Vidal et al., 2009), is mostly 

composed of intermediate to acid calc-alkaline volcanic series including voluminous basaltic andesites 

and pyroclastic flows at the base. It is marked by an upwardly increasing amount of intercalated tuffs 

and epiclastic volcano-sediments. Abundant layers of cherts (ferruginous, manganiferous) and quartz 

veins are associated with the volcano-sediments. Due to intense folding of these rocks, it is unclear as 

to whether the abundant lithological alternations are a result of tectonic repetition or whether they 

reflect the original stratigraphy. The thickness of the basic to intermediate calc-alkaline volcanic suites 

may reach up to 5 km in map view. 

In the southern part of the Houndé belt, a northern continuation of the Haute Comoé or 

Bambéla basin (Vidal and Alric, 1994; Hirdes et al., 1996; Lüdtke et al., 1998, 1999), fine-grained 

sediments predominate. These sediments consist of volcaniclastics, argillites, and wackes and are 

affected by intense folding. The map thickness of the volcano-sedimentary unit attains 40 km at the 

widest zone. Strong lithological variability across and along belts is attributed to lateral facies 

evolution within the volcanic arc as shown in Ghana by Leube et al. (1990).  

Rhyodacites from the western Houndé belt were dated at 2176 ± 4 Ma using zircons (Pb-Pb) 

and 2212 ± 31 Ma using amphiboles (K-Ar) (Le Métour et al., 2003). In the Ivory Coast, two rhyolites 

and one tuff from Ouango-Fitini belt give similar U-Pb zircon ages, 2160 ± 1 Ma (Lüdtke et al., 1998) 

and 2158 ± 1 Ma, 2170 ± 5 Ma (Lüdtke et al., 1999), respectively. One rhyolite is much younger, 

yielding 2104 ± 2 Ma (zircon U-Pb; Hirdes et al., 1996; Lüdtke et al., 1998), which is an age 

consistent with the nearby granite intrusions and therefore this rhyolite might be their subvolcanic 

equivalent. Lüdtke et al. (1998) have obtained ages of 2129 ± 13 Ma for an amphibolite from the 

eastern part of the Téhini belt (Ar-Ar on amphibole), which gives a time constraint for the end of 
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syntectonic contact metamorphism. Detrital zircons (U-Pb) from the Birimian wackes of the Bambéla 

volcano-sedimentary unit reveal three clusters of ages situated around 2180 Ma, 2150 Ma, and 2126 

Ma (Lüdtke et al., 1999). 

3.3. The Banfora belt 

The eastern part of the Banfora belt consists of intercalated units of basalts, andesites, 

volcano-sediments, and rhyolites, 2 to 4 km thick, while the western part is composed of volcano-

sediments only (figure II-2). A first order regional structure, known as the Greenville-Ferkessedougou-

Bobo Dioulasso shear zone (GFBSZ) (Lemoine, 1988; Lemoine, 1990) marks the limit between the 

western and eastern parts, itself intruded by syn-kinematic granites, which are clearly discernible in 

the radiometric data. This NE-trending dextral shear zone is visible in the craton scale airborne 

magnetic data, running from Liberia in the south, crossing Ivory Coast and into the Banfora belt in 

Burkina Faso (figure II-1). As with the Houndé and Boromo belts, we consider the basalts and 

andesites as forming the base of the stratigraphic sequence, with upward increasing volumes of 

strongly folded volcano-sediments. The Banfora belt continues into Ivory Coast under the form of the 

Katiola-Marabadiassa greenstone belt and Bandama volcano-sedimentary basin (Doumbia et al., 1998; 

Gasquet et al., 2003; Pouclet et al., 2006) also known as the Ferkessedougou domain (Vidal et al., 

1996; Vidal et al., 2009). No radiometric dating has been undertaken in this greenstone belt. The only 

ages available are from granitoids intruding the belt in the Katiola-Marabadiassa area, and range 

between 2123 ± 3 and 2097 ± 3 Ma (zircon Pb-Pb; Doumbia et al., 1998). Detrital zircons from the 

sediments of the Bandama basin were dated (Pb-Pb) by these authors at ~2133 Ma and 2107 ± 7 Ma. 

The deposition age was estimated between 2108 ± 12 Ma and 2097 ± 3 Ma based on the zircon Pb-Pb 

ages of pre- and post-basin granitoid intrusions. 

3.4. Tarkwaian-type metasediments 

A N-S oriented corridor of steeply to moderately dipping shallow-water detrital Tarkwaian 

type sediments extends parallel to the Houndé belt, adjacent to the unit of tholeiitic basalts situated at 

the eastern margin of the belt. This unit consists of various types of weakly metamorphosed 

conglomerates, sandstones, gritstones, arkoses (figure II-4c), and phyllites. The proportion of pebbles 

of the adjacent greenstone belt lithologies (quartz, rhyolite, schist) decreases from the central part 

towards the north and south (Bossière et al., 1996). 
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Figure II-4 Field photographs of representative structures: a) tholeiitic basalts with plagioclase megacrysts 
forming pillow lavas, b) megacrystic basalts deformed in the ENE-oriented dextral GFBSZ 
(Greenville-Ferkessedougou-Bobo Dioulasso shear zone) in the north of the Boromo belt, near 
Ponkélé (horizontal section), c) penetrative metamorphic foliation S2 in Tarkwaian-type 
metasediments affected by late steeply dipping spaced cleavage S3, d) steeply dipping NE-
trending penetrative magmatic foliation S1 in syntectonic tonalite pluton, e) localized ENE-
WSW dextral shear zone S2 in granodiorite, filled by late pegmatite (horizontal section), f) 
NNE-oriented synkinematic S-C mylonite with dextral sense of movement in two mica granite 
localized in the GFBSZ close to Banfora (horizontal section), g) penetrative metamorphic 
foliation S1 in metabasalts folded by F1 folds, h) subvertical NNE-trending shear zone S2 
overprinting S1 metamorphic foliation in metabasalts, intruded by syntectonic granite dyke near 
the contact of the Boromo belt and Diébougou GD; all lithologies are affected by late shallow 
dipping thrust faults (TF3). 
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This unit of Tarkwaian-type sediments is shown at some places in the 1:1 000 000 geological 

map (Castaing et al., 2003); however, our field work and interpretation of geophysical data suggest 

that this unit is continuous, extending without interruption down to the Ivory Coast, where it was 

mapped by Lüdtke et al. (1998). At several places, original sedimentary structures such as cross-

bedding and graded bedding indicate a younging direction of the sequence towards the west within 

subvertical or west dipping units of Tarkwaian-type sandstones and gritstones. The whole unit of 

Tarkwaian-type sediments is approximately 400 km long and 1-2 km wide, with a map thickness of up 

to 2 km. Being the topmost stratigraphic unit, the preservation potential is limited, which may explain 

the absence of the Tarkwaian-type sediments in the Boromo and Banfora belts, rather than a change in 

tectonic style between the belts.  

Detrital zircons and zircons from rhyolite pebbles ranging between 2171 ± 7 Ma and 

2113 ± 23 Ma have been used to obtain the maximum deposition age of Tarkwaian-type sediments at 

several places in Burkina Faso (Bonkoungou, 1994; Bossière et al., 1996). In Ivory Coast, detrital 

zircon ages from Tarkwaian-type sediments span between 2170 ± 3 Ma, and 2130 ± 6 Ma (Lüdtke et 

al., 1999), similar to those found in Burkina Faso. In northern Ivory Coast, sediments resembling the 

Tarkwaian-type sediments were reported as Sambrigian by Lüdtke et al. (1999). They are included in 

the Ouango-Fitini belt and contain zircons ranging in age from 2177 ± 1 Ma to 2115 ± 2 Ma.  

3.5. Granitoids 

Abundant granitoid plutons are found not only in the domains between the three greenstone 

belts, but sometimes also intrude the greenstone belts as individual granite bodies. In accordance with 

the previous studies of granitoids in the Baoulé-Mossi domain (e.g. Leube et al., 1990; Hirdes et al., 

1992; Davis et al., 1994; Pons et al., 1995; Doumbia et al., 1998; Egal et al., 2002; Gasquet et al., 

2003; Castaing et al., 2003; Naba et al., 2004; Lompo, 2009), we distinguish multiple episodes of 

granitoid intrusions. Each petrographic group will be attributed to a Magmatic Episode (ME) 

according to the radiometric ages. The four petro-chemical groups are as follows: 

1) Calc-alkaline tonalite-trondhjemite-granodiorite intrusions. They often show high 

temperature steeply dipping magmatic foliation (figure II-4d) and are generally amphibole-biotite 

bearing, with only small amounts of K-feldspar. These rocks are also called in older literature grey 

gneisses, orthogneisses, or migmatites due to the pronounced mineral layering and compositional 

banding. The plutons are usually elongate or irregular in shape. 

2) Calc-alkaline potassic granodiorite-granite intrusions. They are undeformed or affected by 

localized shear-zones (figure II-4e, f) and are biotite and K-feldspar bearing, with rare amphibole or 

muscovite. They are generally characterized by well-defined sub-circular or elliptical bodies, clearly 

transecting older lithologies. 
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3) Potassic granites, sometimes metaluminous, and sporadic syenites. They are undeformed or 

affected by localized mylonitic zones. K-feldspar is abundant and the granites often contain biotite. 

Amphibole is scarce or absent. The elliptical to sigmoidal plutons are visible in magnetic data because 

of their high magnetization (figure II-2).  

4) Small calc-alkaline gabbro-diorite bodies of unknown age; often associated with granite, 

granodiorite, or tonalite intrusions. They are generally coarse grained and consist of amphibole, 

plagioclase, and clinopyroxene.  

Although more radiometric ages have been reported from granitoids than from greenstone belt 

rocks, reliable granitoid data are still missing in the south of the study area. The oldest granitoids were 

reported from Ghana, yielding zircon U-Pb ages of 2195 ± 4 Ma and 2187 ± 3 Ma (Siegfried et al., 

2009) (figure II-3b). In the north of Ivory Coast, Lüdtke et al. (1998, 1999) and Hirdes et al. (1996) 

obtained U-Pb zircon ages of 2152 ± 3 Ma for a granodiorite intrusion in the east of Téhini belt and 

2152 ± 2 for another one in the west of the Ouango-Fitini belt (figure II-2) for the oldest granodiorites. 

Granitoids from the Dabakala region in northern Ivory Coast yield 2162 ± 32 Ma and 2154 ± 1 Ma 

(Gasquet et al., 2003) and similar ages were obtained on granitoids in northern Ghana (figure II-2, 

Siegfried et al., 2009; Thomas et al., 2009). In western Burkina Faso, the oldest ages obtained from 

granitoids correspond to 2132 ± 6 Ma (zircon Pb-Pb; Koté et al., 2003), and 2136 ± 8 Ma (monazite 

U-Pb; Chèvremont et al., 2003) (figure II-2). Granitoids in northern Ivory Coast were dated at 2137 ± 

9 Ma (Hirdes et al., 1996) and 2123 ± 3 Ma (Doumbia et al., 1998). Ages ranging between 2134 ± 6 

Ma and 2118 ± 4 Ma were also reported from the Dabakala region (Gasquet et al., 2003) and northern 

Ghana (Siegfried et al., 2009; Thomas et al., 2009; Agyei Duodu et al., 2010). These granitoids were 

emplaced according to our scheme during the first Magmatic Episode (ME1). 

Most of the ages obtained on zircons from granitoids found between but also within the three 

studied greenstone belts, range from ~2113 Ma to 2097 ± 10 Ma (zircon U-Pb and Pb-Pb; Koté et al., 

2003; Chèvremont et al., 2003; Le Métour et al., 2003). Twelve U-Pb zircon ages (Hirdes et al., 1996; 

Lüdtke et al., 1998, 1999; Gasquet et al., 2003; Agyei Duodu et al., 2010) and three Pb-Pb ages 

(Doumbia et al., 1998) ranging between 2113 ± 2 Ma and 2097 ± 3 Ma were also obtained on 

granitoids situated in the north of Ivory Coast and Ghana. Granitoids of these ages are attributed to the 

second and third Magmatic Episodes (ME2 and ME3). Granites of the ME3 group can be easily 

distinguished from the ME2 ones in the magnetic data due to their high susceptibility and concentric 

magnetic patterns.  

No radiometric age is available for the gabbro-diorite plutons. We assign them to the ME4 

Magmatic Episode but this does not mean that they were the last to be intruded in our tectonic 

scenario. More radiometric ages and petro-chemical data are needed to attribute with confidence to 

which magmatic episode each particular pluton belongs. We are the least confident about the 

distinction between granitoids of the ME1 and ME2 groups, whose petro-chemistry and geophysical 

properties are similar in many cases. 
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4. Geochemistry of volcanic belts 

Volcanic rocks of the Houndé and Boromo belts were subdivided into three groups based on 

their lithological character and chemical composition. Moreover, the megacrystic basalts were plotted 

separately (figures II-5 and II-6) from other basalts, which show mostly homogeneous microlithic 

texture. Twenty-two samples of volcanic rocks distributed systematically across both Houndé and 

Boromo belts were analyzed for this study. Major and trace element concentrations were measured by 

ICP-AES at ALS Chemex (Spain) – 23 samples (table II-1, figures II-5 and II-6). The spatial 

distribution of these samples, classified according to their composition, is reported in figure II-7. In the 

same way, we have plotted the chemical analyses from BRGM/BUMIBEG sample database for 

comparison (Chèvremont et al., 2003; Koté et al., 2003; Le Métour et al., 2003). 

The first group (TH) consists of pillow lavas and massive basalts from both the Boromo and 

Houndé belts, including one gabbro and two amphibolites. The samples correspond to tholeiitic basalts 

in the AFM diagram (figure II-5) and to subalkaline basalts (47% < SiO2 < 53%; 1.8% < Na2O+K2O < 

2.9%) in the TAS classification of Middlemost (1994). The (La/Yb) chondrite ratio ranges from 0.7 to 

1.2, with the LREE 10 to 30 times enriched with respect to the chondrite (McDonough and Sun, 

1995). Some samples yield a slight negative Nb anomaly. Rb, Ba, Sr, Zr, and Hf show weak positive 

or negative anomalies. Such rather flat patterns of REE (normalized to chondrite) are typical for 

tholeiites and resemble spectra for similar basalts cratonwide (e.g. Abouchami et al., 1990; Ama Salah 

Figure II-5 a) AFM diagram of the analyzed volcanic rocks (Irvine and Baragar, 1971), b) TAS diagram of 
Middlemost (1994); Hb - Houndé belt, Bb - Banfora belt, TH – tholeiites, THM – megacrystic 
basalts, TRAN – transitional basalts and andesites, CA – Calc-alkaline basalts and andesites. 
The data were plotted using the GCDkit software (Janoušek et al., 2006). 
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et al., 1996; Pouclet et al., 1996; Lüdtke et al., 1998; Béziat et al., 2000; Pouclet et al., 2006; Lompo, 

2009). 

The second group (THM) consists of six porphyritic basalt and microgabbro samples with 

plagioclase megacrysts from both belts. Matrix was analyzed separately from the megacrysts where 

possible (all samples except for HO319 shown in figure II-4b). These samples correspond to tholeiites 

in the AFM diagram. In the TAS diagram, they also correspond to subalkaline basalts (47% < SiO2 < 

52%; 1.7% < Na2O+K2O < 3.2%). The REE and trace element spectra of the megacrystic basalts, 

normalized to chondrite (McDonough and Sun, 1995), are almost identical to those of the TH group 

(figure II-6) suggesting that they are of the same affinity. Two samples (HO417 and HO389) show 

slightly lower enrichment in HREE, which can be explained by higher plagioclase content in the 

analyzed matrix. The more pronounced Sr anomalies are related in the case of some samples to the 

presence of the large plagioclase megacrysts. Similarly, to the TH group, there is no difference 

between the samples of the Houndé and Boromo belts. 

 

Figure II-6 Spiderplots of the four groups a) tholeiites, b) megacrystic basalts, c) transitional basalts and 
andesites and d) calc-alkaline basalts and andesites, normalized to chondrite (McDonough 
and Sun, 1995). Black symbols are used for the Boromo belt, white symbols are used for the 
Houndé belt. 
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Table II-1 Representative geochemical analyses of mafic and intermediate volcanic rocks of the greenstone 
belts. 
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The third group (TRAN) includes four samples ranging from low alkali basalts to andesites 

(51% < SiO2 < 60%; 2% < Na2O+K2O < 3%) from the Boromo belt. In the AFM diagram, these 

samples correspond to tholeiites. However, the REE spectra show a slight enrichment of the LREE 

with respect to HREE, (La/Yb) chondrite = 1.7-4.1, and the REE are 20 to30 times higher with respect 

to the chondrite. We classify them as transitional, because they reveal a prominent negative Nb and Ti 

anomaly, similar to the calc-alkaline volcanites (CA). 

Figure II-7 Map of geographical distribution of the analysed samples within the greenstone belts. The 
acronyms are the same as in figure II-5. 
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The fourth group (CA) corresponds to calc-alkaline volcanics from both belts and includes six 

samples of subalkaline basalts and andesites with higher content of alkalis (51% < SiO2 < 62%; 4.2% 

< Na2O+K2O < 5.6%). They are characterized by high (La/Yb) chondrite ratio (3.0-6.4), REE content 

40 to 110 times higher with respect to chondrite, a high content of incompatible elements (Rb, Ba, Th, 

U) with respect to tholeiitic basalts, and a pronounced negative Nb and Ti anomaly. These calc-

alkaline basalts and andesites resemble strongly those analyzed by Béziat et al. (2000) in the Boromo 

belt and Pouclet et al. (1996) and Lüdtke et al. (1998) in the Ouango-Fitini belt in Ivory Coast (figure 

II-2). 

Note that none of the 23 analyzed samples shows an Eu anomaly. Variable Rb, Ba and Sr 

contents may be due remobilization during the pervasive greenschist to amphibolite facies 

metamorphism. As a summary, tholeiitic and calc-alkaline volcanics are present in both belts with 

more transitional members in the Boromo belt (figure II-7). We emphasize the strong resemblance 

between the eastern margin of the Houndé belt and the western margin of the Boromo belt and in 

particular between the megacrystic and normal tholeiitic basalts in both belts. The western part of the 

Houndé belt and the central part of the Boromo belt are formed of calc-alkaline basalts, with 

transitional basalts present in the Boromo belt. 

5. Structural Evolution 

We distinguish three deformation events in the Boromo, Houndé, and Banfora greenstone 

belts and in the surrounding granitoids (figures II-8, II-9, and II-10). The principal deformation 

imprint of the Eburnean orogenesis is related to the first and second deformation phases D1 and D2. 

The deposition of the Tarkwaian-type-type sediments is related to the late stages of the D1 

deformation phase. Post-Eburnean D3 deformation is recorded only in some lithologies, in particular 

highly anisotropic greenstones. For the purpose of structural analysis, we have used a combination of 

field observations and interpretations of airborne geophysical data, which allowed us to correlate 

small-scale structures with regional structures of the same generation. The deformation phases are 

summarized and compared to the published works in table II-2. 

5.1. Deformation phase D1 

The present structural grain results from the protracted deformation phase D1 that strongly 

affected the Birimian volcanic and volcano-sedimentary units and structured most of the syntectonic 

intrusions of the first magmatic episode (ME1). Given the clusters of radiometric ages of syntectonic 

granitoids, the syn-D1 magmatic activity started at around ~2160 Ma. D1 deformation is associated 

with the major regional metamorphic phase M1. 
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Figure II-8 Structural map showing the orientation S0 bedding and stratigraphic layering, S1 penetrative 
metamorphic foliation, and the S2 shear zones and high strain zones. L1/L2 lineations are also 
plotted. Rose diagrams show the strike distribution of dextral (DEX) and sinistral (SIN) shear 
zones. HO – Houndé, KO – Koumbia, DA – Dano, DI – Diébougou, GA – Gaoua, KTGD –
 Koudougou-Tumu granitoid domain, DGD – Diébougou granitoid domain, SGD –
 Sidéradougou granitoid domain, NGD –  Niangoloko granitoid domain. Three cross-sections 
shown in figure II- 12 are indicated. 
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In volcano-sedimentary rocks, pyroclastic flows, volcanic ashes and some andesitic lavas of 

the greenstone belts, the D1 event is expressed as a penetrative metamorphic foliation (S1), often sub-

parallel to the primary bedding. Localized N and NNE-oriented anastomosing S1 shear zones and high 

strain zones with no obvious displacement attributed to lack of marker horizons, developed in basalto-

andesitic massive lava flows, gabbros, and diorites. Most of these shear zones are sinistral; however, 

some dextral shear zones were also inferred from sigmoidal pressure shadows around minerals, 

asymmetric shear structures and scarce sigmoidal shapes of fragments in pyroclastic flows. The NNW 

to NNE orientation of the S1 metamorphic foliation and shear zones is uniform over the study area 

(figure II-9). The foliations display more variable dip orientations whereas the shear zones and high 

strain zones are mostly subvertical. The high strain zones do not typically show a mineral lineation, 

suggesting a high amount of flattening rather than non-coaxial shearing. The absence of a lineation 

might also be related to the initial fine grain size of the deformed lithology (Piazolo and Passchier, 

2002). When present, stretching lineations cluster around two maxima – subvertical and NE-SW 

subhorizontal orientations.  

Volcano-sediments and other highly anisotropic lithologies are affected at various scales by 

isoclinal to open F1 folds (figure II-4g). Axial planes, often coincident with a S1 schistosity, are 

steeply dipping, trending from NNE to NE. Airborne magnetic data consistently reveal tight 

kilometric-scale fold hinges with the overall N to NNE trending and probably steeply dipping fold 

axial planes (figure II-10). The basal mafic unit is structurally facing upward or towards the east in the 

Boromo belt, while in the Houndé belt (Lüdtke et al., 1998), structural facing of the pillow lavas to the 

west or downward could indicate that they were tectonically overturned. 

A well developed steeply dipping S1 compositional banding is typical for granitoid intrusions 

of the ME1 group (figure II-4d). The strikes of the S1 foliation planes concentrate in a NNE-SSW 

direction (figure II-9); in particular in the Diébougou and Sidéradougou domains (figure II-8). 

Magmatic lineation, often defined by elongation of dark co-magmatic enclaves or amphibole grains, is 

generally steeply dipping. 

5.2. Deposition of Tarkwaian-type sediments – Late D1 

The Tarkwaian-type sediments stretch for approximately 400 km in remnant basins with a 

very high length-width ratio; however, the original basin width is unknown. The sediments do not 

record the high strains associated with D1 but they are overprinted by penetrative S2 shear fabric and 

faults interpreted to have been active during D2. The entire N-S unit of Tarkwaian-type sediments is 

bound on both east and west sides by reverse/strike slip sinistral D2 faults (Boni shear zone). The 

Tarkwaian-type sedimentary unit is along most of its eastern border parallel on the east to the more or 

less continuous unit of tholeiitic basalts and gabbros. In contrast, on the western side the sediments are 

juxtaposed with a clear oblique relationship with respect to the folded calc-alkaline volcano-
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sedimentary units (figure II-2). Such relationship may represent a reworked angular unconformity. 

This basin defines therefore the boundary between D1 and D2, which presumably can be treated as 

separate orogenic events. 

5.3. Deformation phase D2 

Typical D2 structures consist of anastomosing steeply dipping NNE to ENE oriented shear 

zones (figure II-4b) and high strain zones with a seldom shallow-dipping lineation. The majority of the 

transcurrent S2 shear zones operated under lower greenschist facies conditions. This is especially true 

for those bearing gold mineralization. S2 shear zones are generally brittle to brittle-ductile compared 

to the mostly ductile S1 penetrative schistosity, suggesting that D2 shear zones operated at lower 

temperatures with respect to the D1 structures. The orientations of all discrete shear zones and 

localized high strain zones found in greenstone belts are plotted in figure II-9, even if they do not 

necessarily belong to the same deformation phase. Two clear maxima of orientations can be 

distinguished, concentrating in the NNE-SSW and NE-SW directions. Unequivocal distinction 

between the S1 and S2 shear zones can only be made at the outcrops where crosscutting relationship 

Figure II-9 Equal area lower hemisphere stereoplots of the orientation of D1-D3 structures. Rose
diagrams show the distribution of the foliation strikes and brittle fractures and faults. 
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between the two structures was found. For the same reason, the L1 and L2 lineations are plotted 

together in the same diagram. 

In granitoids, discrete ENE-trending dextral shear zones transecting the NNE penetrative 

foliation were observed at several places (figure II-4e). Some of the granites, such as the elongate 

pluton intruding along the Greenville-Ferkessedougou-Bobo Dioulasso shear zone within the Banfora 

belt (figures II-2 and II-4f) or the Dissin granite intruding into the Boromo belt, show well developed 

S-C penetrative fabric and are interpreted as being synkinematic with the D2 phase. Locally, we have 

observed syntectonic granite dykes which intruded parallel to the S2 shear zones (figure II-4h). The 

time span of the D2 event is well constrained by radiometric ages of many syn/late-tectonic granitoids 

ranging between 2113 and 2097 Ma. 

A penetrative NNE and NE-trending schistosity (figure II-10) found in fine-grained 

Tarkwaian-type pelites and arkoses (figure II-4c) is attributed to the D2 activity of the Boni shear 

Figure II-10 Simplified structural map indicating major shear zones/high strain zones and axial planes of 
the regional scale F1 folds. BPSZ – Boromo-Poura shear corridor; GFBSZ  Greenville-
Ferkessedougou-Bobo-Dioulasso Shear zone; OFSZ  Ouango-Fitini shear zone; WBSZ –
 West Batié shear zone. 
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zone. Sandstones, gritstones, and conglomerates are generally massive, affected only by sparse 

localized shear zones of the same orientation. Dextral shear sense indicators were found in the 

northern segment of the Boni shear zone near Safané (figure II-2) where the eastern contact zone with 

basalt crops out.  

The D2 high strain zones are well defined in regional magnetic data, outlining an 

anastomosing system of lens-shaped, 5-30 km wide domains (figure II-2). The shear zones either 

follow pre-existing lithological contacts or transect the units, and are clearly visible in many granitoid 

bodies where these high strain zones represent demagnetized corridors. Gold mineralization is 

frequently associated with such regional-scale S3 shear zones (Milési et al., 1989, 1991, 1992; 

Castaing et al., 2003), a typical example being the Mana mine, situated in the north of the Houndé belt 

(figure II-2).  

5.4. Deformation phase D3 and post-Eburnean doleritic dykes 

The last deformation phase is characterized by the development of crenulation cleavage and 

chevron or kink folds (figure II-4c) and reverse faults (figure II-4h) observed mostly in highly 

anisotropic lithologies of the greenstone belts. The E-W striking S3 spaced cleavage, crenulation, and 

kink fold axes are in general steeply dipping and crosscut the S1 and S2 foliations at a high angle. 

Related thrust faults are dipping to the north and south (figure II-9). 

Abundant NE-SW steeply dipping normal faults and fractures were found throughout the 

study area (figure II-9). These faults are clearly visible in geophysical data from the Banfora belt 

(figure II-2) and we attribute them to the D3 deformation event. Nevertheless, some of these faults 

might have originated during previous deformation phases and they were only re-activated during the 

D3. The structural pattern of the D3 is consistent with an overall N-S compression. We have no age 

constraints on this deformation phase, except that it post-dates all major Eburnean structures.  

All Eburnean structures are transected by at least three generations of doleritic dykes, two of 

which also intrude the Neoproterozoic sediments of the Taoudeni basin. The dykes are striking NW-

SE, WNW-ESE, and NE-SW and airborne magnetic data suggest that some of them intrude pre-

existing structures. 
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Table II-2 Synthesis of deformation events published in literature, put into the framework of the present 
study. Direction indications in italics (NE-, NW- etc.A1) stand for the strike, other direction 
indications signify "vergent" or "oriented". Following acronyms and shortcuts were used: GB - 
greenstone belt, SZ - shear zone or strike slip fault, Tkw - Tarkwaian, depo. - deposition, defo. 
- deformation, Birim. sedim. - Birimian sediments, volc. - volcanism, plut. - plutonism, met. or 
metam. fab. - metamorphic fabric, cren. clv. - crenulation cleavage, iso. - isoclinal, intracont. - 
intracontinental, comp. - compression, ext. - extension, transpres. - transpression, transten. - 
transtension, sin. - sinistral, dex. - dextral, react. - reactivation, struct. - structures, juxtapos. 
of L & H grade metam. - juxtaposition of low and high grade metamorphic terranes. 

DExt DEarly Eburnean   D1 Late D1 D2 D3 Mafic dykes
ca. 2200-2160 
M

ca. 2170-2160 M a ca. 2160-2120 
M

ca. 2120-2110 M a ca. 2110-2109 M a Post- 2109 M a Post- 2109 M a

Boromo, 
Banf . & 

Houndé 

Arc volc., 
Birimian sedim. 

deposit ion

NE-  metam. fab., 
SZ, iso. folds

Depo detrital 
sedim. (Tkw) 

steep N-S  to 

ENE-   SZ , NW- 
faults

E-W  cren. clv, 
NW- faults, 

thrusts

NE-SW , NW-SE 
and WNW-ESE 

WNW-ESE comp.
E-W 
transten./ext .

NW-SE 
t ranspres.

N-S comp. Extension

Bossière et  al., 

1996

Houndé GB Volc., Birimian 

sedim. 
depostit ion

D2: Int racont. 

ext .,  depo. of   
Tkw sedim. 

D3: NNE- met. 

fab., SZ

D4: E-W  folds & 

clv, NE- & NW- 
faults

Ouedraogo and 
Prost , 1986

Boromo GB Volc., Birimian 
sedim. 

D1: NW- metam. 
fabric, fold axes

D2: NE- met. fab. 
and fold axes

D3: NE- SZ, NE 
to ENE-  fold 

Lompo et  al., 
1991

Boromo GB Volc., Birimian 
sedim. 
depostit ion

D1: NNE-   met. 
fab., SZ, Iso. 
folds 

D2: NE-  folds 
cren. clv., ENE- 
dex. SZ

Feybesse et  al., 

1990

Boromo-

Goren GB

Volc., Birimian 

sedim. 

D1: met . fabric, 

isoclinal folds

D2: N-S & NW-
sin. SZ, drag 

D3: NE to ENE-
dex. SZ , folds

Hein, 2010 Goren GB Volc., Birimian 
sedim. 

depostit ion

D1: NW to NNW- 
folds, thrust  

faults (Tangean)

D3:  WNW- dex. 
thrusts, E-W 
folds (Wabo-
T l )

maf ic dykes     (250 
M a)

Kříbek et  al., 
2008

Kaya-Goren 
GB

Volc., Birimian 
sedim. 
depostit ion

D2: Exhumat ion 
and st rike-slip 
movements

Nikiéma et al., 

1993 

Djibo region Volc., Birimian 

sedim. 
depostit ion

D2: NNW- SZ D3: NE-vergent  

thrust ing

Debat et  al., 
2003

Djibo region Volc., Birimian 
sedim. 

D2: N-vergent  
thrust ing

Bourges et  al., 
1998

Bouroum-
Yalago GB

Volc., Birimian 
sedim. 

depostit ion

D1: N-S to NW- 
met.fab. and SZ

D2: E-W  cren. 
clv.

Tshibubudze et  

al., 2009

Essakane 

region

Volc., Birimian 

sedim. 
depostit ion

D1: NW-  fold-

thrust  belt

D2: NNE- to NE-
met. fabric, SZ, 
and folds 

Lüdtke et  al., 
1998; 1999

Téhini & 
Ouango-Fit ini 

GB

D0: volc., 
Birimian sedim. 

deposit ion

D1: Juxtapos. of  L 
& H grade metam., 

NNE-  steep SZ

D2: NE-  folds, 
NNE sin. SZ, met . 

fab.

D3: NE-, SE- & E- 
SZ, cren. clv. 

D4: React . of  
exist ing st ruct .,  

NE- dolerite dykes 

Pouclet  et al., 
1996

Téhini & 
Ouango-Fit ini 
GB

Stacking of plume 
derived oceanic 
basalts

D1: Granitoid 
emplacement, 
contact  metam.

D3: N-S  sin. 
fault, with CA 
volc. and Birm. 

D4: NW-SE 
comp., 
t ranscurrent  

Vidal et  al., 1996 Téhini & 
Ouango-Fit ini 
GB, Comoé 

Ante-Birimian 
(Dabakalian) 
deposit ion

D1: metam. fabric, 
gently dipping 
clv. (Dabakalian) 

Birimian 
deposit ion; D2: 

NE-  folds

Depo detrital 
sedim. (Tkw) 

D3: N-S  sin. and 

WNW- SZ, 
t ranspression

D4: WNW-  cren. 
clv., S vergent  
thrust ing

Pouclet  et al., 

2006

Kat iola - 

M arabadiass
a GB

Ocean crust  and 

volc. arcs 

D1: Crust  

accret ion by 
docking of 
granit ized blocks

D2: Format ion of 

int racontinental 
basins

D3: N-S  sin. SZ, 

basin closure, 
t ranspression

de Kock et al., 
2011

Bole-
Nangodi GB

Birimian 
deposit ion

D1:  metam. 
fabric, folds; 
Eoeburnean event

Cont inental 
rift ing; D2: 
metam. fabric, 

D3: NE-  SZ, 
t ranspression

Castaing et  al., 

2003

Burkina Faso 

(regional)

Arc volc., 

Birimian sedim. 
deposit ion

D1: Tonalite /  

adakite int rusions

D2: Tectonic 

accret ion, 
folding, regional 
metam., 

Dolerite dykes

Vidal et  al., 
2009

Ivory Coast  
(regional)

Birimian 
deposit ion

D1: Dome and 
basin geometries, 
no boundary 
tectonic forces

D2: Coeval 
diapiric 
movements and 
horizontal 

i l lFeybesse et  al., 
2006

Ghana 
(regional)

Volcano-
plutonism, 
deposit ion of  
Birim. flysh 

D1: Crustal 
thickening by 
nappe stacking, 
shearing to the 

D2-3: NE-  sin. 
SZ, WNW 
shortening brit tle 
shearing, steep 

Agyei Duodu et  
al., 2010

Ghana 
(regional)

Volcano-
plutonism, 
deposit ion of  

D1: Ext ., depo of  
Tkw. sediments, 
alkalic plutonism

D2: Folding, 
regional metam., 
crustal shortening

M ilési et  al., 

1989

Leo-M an 

craton 
(regional)

Birimian f lysh 

sedim. depo., 
followed by 

D1: Nappe tect ., 

ENE-  suture 
between Archean 

D2: NE- folds,  

N to NE-  SZ 
(Birimian cycle), 

Lompo, 2009, 
2010

Leo-M an 
craton 

(regional)

EI: Plume related 
tholeiitic 

volcnanism

EII: Subsidence, 
granitoid 

emplacement

EIII: Transcurrent  
tectonics, Bt-

granites

EII: Evolut ion of  subsidence, CA 
volc. & plut., Amp-bearing granitoid 

emplacement, vert ical tectonics

D1: Crustal accretion, thickening

This Study

D2: NNE to NE-  sin. SZ,  folds, met . fabric, clv., NW-
dex. SZ (Eburnean)

D1: Regional greenschist  facies metamorphism, M T/M P 
contact  metam.

D1: metamorphic fabric, folding 

D1: N-S  cleavage
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6. Deep Structure 

6.1. Construction of the models from gravity data 

Three geological cross-sections of the Houndé and Boromo belts were created and validated 

by 2¾ D gravity models (figure II-12). We have not performed gravity modeling across the Banfora 

belt, as our outcrop observations are too scarce to provide useful geological constraints. Gravity-

constrained crustal models have proved to be an efficient way to determine the architecture of large-

scale deep structures in Precambrian terrains (Hackney, 2004; Peschler et al., 2006). In additional to 

the field structural observations and interpretations of airborne magnetic data, the gravity models 

allow us to test the extent and apparent dip of dense (mafic volcanics) vs. less dense (granitoids) at 

depth. The gravity data used in the modeling procedure were acquired by ORSTOM in 1958 (Albouy, 

1992) along major roads at a maximum spacing of 4000 m between consecutive points (figure II-8). 

Bouguer corrected data were used (2.67 g/cm3 as reduction density) as input into the GM-SYS 

modeling software (Popowski et al., 2009). Altitudes of the points along the modeled profiles were 

extracted from the gravimetric stations. The gravimetric data were projected onto the modeled 

straight-line geological profiles. The modeling procedure allows for variable density parameters 

perpendicular to the profile, for up to 10 km on each side. It also accounts for the variable distances 

between the positions of the gravimetric stations situated along roads with respect to the straight 

profile lines (figure II-8). The model (figure II-12) was constrained using the densities measured in 

Figure II-11 Densities of the lithologies used in the 2¾ D gravity modeling. Bas – basalt, gbr – gabbro, 
and – andesite, pyr – pyroclastic flow, vs – volcano-sediments and Birimian sediments, 
Tkw – Tarkwaian-type sediments, grd – granodiorite, gra – granite. 
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Toulouse on representative rock samples (figure II-11), and similar densities have been reported for 

granite-greenstone terrains in Senegal (Blot, 1980) and Ghana (Attoh, 1982). We have used the same 

groups of lithologies as in the revised geological map (chapter I), taking into account the lithological 

variability and intercalations such as basalts with andesites, or andesites with volcano-sediments, 

considered as separate units. The three profiles were drawn to a depth of 20 km. The models were 

constructed so that the solutions appear geologically realistic with an acceptable fit for the modeled 

gravity. We performed several tests varying the geometry at depth and concluded that the geology 

below 10 km was poorly constrained by surface geology and gravity data. Therefore, our model 

includes 10 km of rocks corresponding to the lithologies observed at the surface and an unknown 

basement of 2.8 g/cm3 density below 10 km depth. Where necessary, bodies with low or high densities 

were placed at depth with respect to possible extension of outcropping geology perpendicularly to the 

strike of the profile. The forward modeling procedure firstly consists of creating simple polygons of 

the surface geology, for which different dip angles are tested. After determination of the dip angles, 

the geometry of the bodies is refined to shapes that are more complex. The points defining the 

lithological contacts are than adjusted in an iterative manner in order to achieve best fit with the 

measured gravity. A final adjustment was achieved by applying a constrained inversion, where only 

selected nodes of certain bodies were free to move. 

6.2. Results 

Based on the gravity modeling supported by field observations, we have made the following 

conclusions. Volcanic rocks (ρ=2.85 g/cm3) and not granitoids underlay the Taoudeni basin (figure II-

12a) in the north, while intermediate to mafic rocks of the Houndé belt (ρ=2.85 g/cm3) extend 

westwards underneath the granitoids in the central section (figure II-12b). Folds can be defined in 

basalto-andesitic units of the Houndé belt. Volcano-sediments of the central and southern Houndé belt 

(figures II-12b, c) and northern Boromo belt (figure II-12a) are underlain by a more extensive 

andesitic layer (ρ=2.85 g/cm3). Mafic rocks of the eastern margins of the Houndé (figure II-12b) and 

Boromo (figure 12a) belts are intruded by younger granitic intrusions (ρ=2.67 g/cm3) at depth, 

emplaced probably along the Boni shear zone in the case of the Houndé belt. 
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Frequent granitic dykes and smaller granitic bodies corroborating this result may be found at 

the surface near the modeled profiles. Some of these granites are affected by later deformation, which 

is supported by their tilt to the east inferred from a shift between the gravity low and the outcrop 

location. The granite intruding the Boromo belt in the east (figure II-12b) is most probably of low 

density (ρ=2.64 g/cm3), therefore rich in alkali feldspar. A high-density unit (ρ=2.95 g/cm3) occurring 

at depth was modeled at the eastern margin of the Houndé belt (figure II-12c) and in the middle of the 

Diébougou granitoid domain (figure II-12a). These units most probably represent the prolongation of 

the basalts and gabbros occurring to the north and south. A significant accumulation of dense material 

(ρ=2.95 g/cm3) is needed to explain the gravity highs in the southwest of the Boromo belt in the Gaoua 

region (figure 12c). The model shows a double thickness of mafic rocks compared to the other 

profiles, which suggests that the unit of tholeiitic basalts was either originally thicker, or tectonically 

duplicated. 

Figure II-12 Three geological cross-sections with their corresponding gravity models. The geographic 
location of the profiles as well as the stations of gravity measurements, which were 
projected onto the geological profiles for the modeling purposes, is indicated in figure II- 8. 
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All three profiles reveal that the depth of the greenstone belts is at least 10 km, if the 

lithologies observed at the surface continue without significant changes in densities to depth. In an 

attempt to model a shallower limit to the greenstone belts of 5–7 km, we had to introduce a significant 

amount of dense material (ρ>3.2 g/cm3) underneath the basalts. The systematic dip of the units to the 

east at an average angle of 70°, supported in particular by the easterly shift of gravity highs with 

respect to the high-density basalt/gabbro outcrops characterizes all three profiles. We cannot model 

precisely the extent of the Tarkwaian-type sediments because of the low contrast in density between 

the meta-sediments and the meta-volcano-sediments and granites. The gravity models show that the 

major shear zones, which transect the greenstone belts or define their boundaries, are generally steeply 

dipping to the east. Dip angles and directions of the shear zones that transect units with same density 

contrast, e.g. shear zones localized entirely within granitoids, cannot be determined. The Ouango-

Fitini shear zone, separating the Houndé belt from the Sidéradougou granitoid domain (figure II-12c), 

seems to be subvertical in the southernmost profile and steeply dipping to the east in the central profile 

(figure II-12b). 

Figure II-12 continued. 
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7. Discussion 

The applied methodology of integrating field and analytical data, interpretation of airborne 

geophysical data and 2¾ D gravity data constrained modeling allowed us to bring new insights into 

the model of the formation of juvenile Paleoproterozoic crust. Magnetic and gravity data proved to be 

very efficient in delimiting lithological units and new structures of large range of depths and scales 

while radiometric data represent a powerful tool for regolith mapping, with some use for lithology 

mapping. Combined with the field observations, the geophysical data provide satisfactorily structural 

information in areas with very limited outcrop conditions. A summary of the interpreted tectonic 

evolution is given in figure II-13. 

7.1. Origin of the greenstone belts 

 The volcanic rock compositions are overall in accordance with those obtained by the 

BRGM/BUMIGEB (figure II-7; Chèvremont et al., 2003; Koté et al., 2003; Le Métour et al., 2003) 

and published work (e.g. Sylvester and Attoh, 1992; Ama Salah et al., 1996; Pouclet et al., 1996; Vidal 

et al., 1996; Béziat et al., 2000). They range in composition from tholeiitic basalts and gabbros, 

Figure II-13 Summary table of the tectonic evolution. Ban – Banfora belt, K-M – Katiola-Marabadiassa 
belt, Ho-W – Houndé belt west of the Boni shear zone, Ho-E –Houndé belt east, OF – 
Ouango Fitini belt, Téh – Téhini belt, Bor-W –Boromo belt west of the Batié basin, Bor-E –
Boromo belt east, Law – Lawra belt. For acronyms, see also figure II- 3. Radiometric ages 
presented in the histograms are referenced in figure II-2. 
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representing oceanic crust or oceanic plateaus (Abouchami et al., 1990), to calc-alkaline bimodal 

subduction-related arc volcanism. Volcanic series of the Banfora belt were not analyzed; however, 

tholeiitic basalts and calc-alkaline suites of the Katiola-Marabadiassa belt (southern continuation of 

the Banfora belt) strongly resemble in composition to the volcanic series of the Houndé and Boromo 

belt (Pouclet et al., 2006). Associated Na-rich tonalites, trondhjemites, and granodiorites commonly 

occur in the present-day volcanic island arcs context (Drummond and Defant 1990; Sengör et al., 

1993) and are considered by many authors as one of the indirect indices of the existence of 

Precambrian subduction zones (Martin, 1994; Martin et al., 2005). 

Three hypothetical scenarios are plausible in Western Burkina Faso: 1) each of the present-day 

greenstone belts corresponds approximately to one volcanic arc (Scenario 1 in figure II-14) or 2) there 

was only one large island arc reaching at least 400 km in width (Scenario 2 in figure II-14), which was 

shortened and divided into the present belts during the Eburnean orogeny. 3) there was only one arc, 

which was dismembered during an early deformation phase, prior to the magmatic accretion and large-

scale folding (scenario proposed by Ama Salah et al. (1996) for the region of Liptako in Niger). 

However, the lateral continuity of major units, within and across the Houndé and Boromo belts, and 

absence of early faults crosscutting the greenstone belts at high angle do not support such hypothesis. 

If we suppose that the tholeiitic and calc-alkaline volcanic and plutonic assemblages are 

indeed related to subduction zone(s), the current datasets give us no constraints on their orientation(s). 

The petrographic, structural, and geochemical data support the existence of at least one major domain 

boundary between the tholeiitic and calc-alkaline crust within the Houndé belt. A major domain 

boundary, referred to as Ouango-Fitini shear zone, running parallel to the Houndé (Téhini/Ouango-

Fitini) belt, was already recognized by previous studies in Ivory Coast (Hirdes et al., 1996; Pouclet et 

al., 1996). The Baoulé Mossi domain was divided into the younger western subprovince and the older 

eastern subprovince along this shear zone (Hirdes et al., 1996) based on rhyolite and granite 

radiometric ages and contrasting geochemical compositions; however, such a subdivision is only 

partially valid in the western Burkina Faso, where rhyolites dated within the Houndé belt yield the 

same ages as those from the Boromo belt. The geochemical domain boundary roughly corresponds to 

the Boni and not the Ouango-Fitini shear zone (figure II-7). 

7.2. Origin of the sedimentary and volcano-sedimentary units 

The origin and the age of the Batié, Banfora, and Bambéla volcano-sedimentary units is 

questionable. Detrital zircons from the only sample of wacke dated in the Bambéla volcano-

sedimentary unit (Lüdtke et al., 1999) yield ages of ~2180 Ma, ~2150 Ma and ~2126 Ma suggesting 

that they were deposited posterior to or continued after the major calc-alkaline volcanic phase, in a 

tectonically controlled basin limited by the Ouango-Fitini shear zone in the west and Boni shear zone 

in the east. The Batié volcano-sedimentary unit was dated in Ghana (Agyei Duodu et al., 2010) and 
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was deposited after 2139 ± 2 Ma, posterior to the Birimian volcanism. Bambéla basin, which might be 

an extension of Banfora volcano-sedimentary units yields the youngest ages - 2107 ± 7 Ma (Doumbia 

et al., 1998). At least part of these volcano-sedimentary units must have been therefore deposited 

syntectonically in the foreland basins developed during regional shortening and folding of the 

greenstone belts or during a tectonic quiescence/extension, which implies an angular discordance 

between the sedimentary units and volcanic suites of the greenstone belts. Transtensional back-arc 

basin environment was suggested by Vidal and Alric (1994) for the Haute-Comoé basin sediments in 

Ivory Coast; however, no direct evidence for such extension has so far been found in western Burkina 

Faso.  

The 400 km long and 1-2 km wide quasi-continuous band of Tarkwaian-type shallow water 

sediments are seated on a major first-order structure, the Boni shear zone, which operated during the 

late D1 and D2 deformation phases. The Tarkwaian-type sediments were deposited after a significant 

deformation of adjacent Birimian volcanics was achieved, which is documented by the angular 

unconformity of the units visible in the map. They represent a boundary between the two distinct 

domains of the Houndé belt (tholeiitic and calc-alkaline) suggesting that the sedimentary basin was 

related to some deep-seated structure that may have followed a pre-existing crustal inhomogeneity. 

The youngest zircons found in the Tarkwaian-type sediments yield ages of 2115 ± 2 Ma and 2113 ± 23 

Ma, giving the maximum deposition age. The sediments show a shallow water depositional 

environment with short transport distances, corresponding to alluvial fans and braided river systems 

(Sestini, 1973; Bossière et al., 1996). In the Yilgarn (Krapez, 1989; Eriksson et al., 1994) and Abitibi 

cratons (Mueller et al., 1991) these intracontinental basins are attributed to transcurrent fault related 

pull-apart basins, however the typical length/width ratio for pull-apart basins is about 3 (Gürbüz, 

2010), which is not the case of the Tarkwaian-type sediments in western Burkina Faso. As for the 

Birimian sediments, no direct evidence for any extensional phase was found in the study area.  

Ledru et al. (1994) and Feybesse et al. (2006), propose a synorogenic foreland basin, which 

operated synchronously with the regional shortening. Present-day large-scale synorogenic basins 

operating under bulk compression were documented in the northern and central Tibet (Liu-Zeng et al., 

2008) or Altiplano-Puna plateau (Vandervoort et al., 1995). Internal drainage within mountain plateau 

morphology disconnected from adjacent low-lying forelands accounts for smoothing of the relief and 

for sediment deposition in the plateau interior. Given the similar maximum deposition ages of the 

Tarkwaian-type sediments and part of the Birimian sedimentary units and their tectonic position with 

respect to the deformed granite-greenstone terrains, it is plausible that these sediments were deposited 

approximately at the same time span within large intramontaneous basins, where coarser grained 

Tarkwaian-type sediments were adjacent to an active fault (Boni shear zone) while the Birimian 

sediments represent distal facies. 
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7.3. Tectonic scenario and mineralization events 

An early Eburnean deformation phase characterized by NW-trending steeply-dipping 

structures was defined and named Tangaean Event by Tshibubudze et al. (2009) and Hein (2010) in 

the Essakane and the Gorom areas (figure II-1) and might also correspond to the early deformation 

stages of Ouedraogo and Prost (1986) and McCuaig (2007) in northern Burkina Faso. Except for some 

small-scale structures, all foliations and high strain zones in western Burkina Faso have consistent N-S 

to NE-SW strikes in the three studied greenstone belts (figures II-8, II-9). This means that the early 

deformation phase was either completely overprinted by later deformation or it has not operated at all 

in the study area.  

The tectono-stratigraphic framework described in sections 3 and 5 starts with an E-W 

shortening of immature volcanic arc(s) (proto-Boromo, Houndé, and Banfora belts) contiguous to the 

pre-existing oceanic plates (tholeiitic basalts). Abundant syntectonic TTG and granite intrusions were 

coevally emplaced during this E-W compressional phase (D1), which lasted from ca 2160 to 2120 Ma. 

Penetrative NNE to NE-trending metamorphic foliation S1 in the greenstone belt lithologies has 

remarkably consistent orientation with the high temperature steeply dipping magmatic banding in 

granitoids of the ME1 group, suggesting the contemporaneous deformation and pluton emplacement. 

The compositional banding, typical for many Archean and Paleoproterozoic plutons and observed also 

within several ME1 bodies, was shown to develop already at magmatic stages operating under the 

compressional/transpressional deformation regime (Pupier et al., 2008), which corroborates the syn-

kinematic emplacement mechanism of the ME1 granitoids. Steep lineations in volcanic rocks, and 

particularly in the foliated ME1 granitoids, support the vertical growth of individual diapirs. Magnetic 

data show that regional scale shear zones frequently separate the granitoid domains from the 

greenstone bets. Outcrops of the granitoid-greenstone contacts are scarce in the study area and they 

only rarely show the unequivocal D1 deformation structures. However, in Ivory Coast, normal sense 

of movement of the greenstones with respect to the granitoids was documented at several places 

(Vidal et al., 2009), leading the authors to propose gravity driven sinking of greenstone belts as a 

major orogen-forming mechanism. Such normal sense indicators are compatible with granitoid pluton 

uprising with respect to the adjacent lithology, which is not necessarily sinking, in an overall 

compressional regime. 

The dominant structural grain represented by three elongate greenstone belts was most 

probably achieved by the time of the onset of the D2 deformation phase. In contrast to the D1 

structures, which are compatible with pure-shear dominated transpression the D2 deformation is 

characterized by a switch to the strike-slip dominated E-W to WNW-oriented transpressional regime. 

At a regional scale, the deformation was homogeneously distributed throughout the area while at local 

scales, the deformation concentrated in narrow shear zones or high strain zones with no measurable 

offset due to the lack of marker horizons. Moreover, the S2 shear zones are often localized along pre-
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existing inhomogeneities such as lithological contacts or faults. Structures may be attributed to the D1 

and D2 erroneously at the outcrops lacking a clear crosscutting relationship as S1 and S2 look similar 

and have a comparable orientation in massive lithologies such as basalts or gabbros in particular. 

Several new D2 structures of regional importance were discovered by integrated fieldwork and 

interpretation of geophysical data (chapter I). An anastomosing interconnected network of N-S to 

NNE-SSW trending S2 shear zones with variable sense of movement affects the entire Boromo and 

Houndé belts with the Poura-Boromo, Boni, and Ouango-Fitini shear zones being the most important 

ones. A dextral movement sense was also observed at several places along the Greenville-

Ferkessedougou-Bobo Dioulasso shear zone (figures II-8 and II-10). Ongoing westward vergence of 

compressional deformation would possibly explain the systematic dip of all units to the east shown by 

the gravity model as well as overturning of the central Diébougou antiform.  

The D2 deformation was accompanied by a significant input of mostly biotite and sometimes 

amphibole bearing K-rich granites and granodiorites, dated between 2113 Ma and 2097 Ma, showing 

various degrees of tectonic overprint mostly expressed as mylonitic zones or S-C fabrics.  

Three major types of mineralization can be distinguished in western Burkina Faso: 1) Zn-Ag 

Perkoa deposit, classified as a volcanic massive sulfide deposit (Schwartz and Melcher, 2003). In the 

proposed tectonic scenario, it would be related to the early volcanic island arc setting. 2) Cu-Au Gaoua 

deposit, interpreted as a porphyry-copper deposit (Sillitoe, R., unpublished reports of Volta Resources 

Inc.; http://www.voltaresources.com). Unpublished radiometric ages and geochemical composition of 

the host diorite suggest that this mineralization is also related to the early stage volcanic island arc 

setting. 3) Au deposits, most often related to the transcurrent S2 shear zones and faults (unpublished 

reports of Orezone Gold Corp., SEMAFO Inc., Volta Resources Inc., Avion Gold Corp., and other 

companies). Gold is either disseminated or concentrated in quartz veins (Béziat et al., 2008). However, 

without precise radiometric ages, we cannot place more precisely the mineralization events within the 

tectonic scenario. 
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Figure II-14 Tectonic scenario for western Burkina Faso during the Eburnean orogenesis. The surface 
corresponds to the present-day erosional level. 
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The last deformation phase (D3) is probably an equivalent to the D3 Wabo-Tampelse Shear 

Zone of Hein (2010). In contrast to her observations, our D3 structures are not concentrated into one 

shear zone but occur all across the studied region. Debat et al. (2003) suggested that south dipping 

thrust faults found in the northern and central Burkina Faso, first reported by Nikiéma et al. (1993), 

might be even of Pan-African age. Similar subvertical crenulation cleavage is described as late-

Eburnean deformation phase by Allibone et al. (2002) in Ghana.  

7.4. Geodynamic implications 

Mechanisms of the juvenile crustal growth emphasizing volcanic arc collision were proposed 

by Ama Salah et al. (1996) in Niger, by Choukroune et al. (1997) in Superior Province in Canada, by 

Pouclet et al. (2006) in Ivory Coast, and by Goscombe et al. (2009) in Yilgarn Craton in Australia. 

Finding direct evidence for nappe stacking as being the dominant crustal thickening mechanism at the 

early stages (Ledru et al., 1991; Feybesse et al., 2006) is problematic, as no inverse metamorphic 

gradient is observed in the field. The omnipresent greenschist facies conditions with local increase of 

temperatures towards the granitoids are rather compatible with isoclinal cylindrical folding and the 

present surface would thus represent a subhorizontal section through the former upper crust. Folding 

of volcanic units would occur in conjunction with continuous TTG magma input, which could have a 

source in the subducting slabs (Martin, 1986, Hastie et al., 2010) but also in the progressively 

thickened lower mafic crust (Foley, 2008; Chardon et al., 2009). Such a mechanism would lead to the 

initial homogeneously distributed crustal thickening up to a critical thickness sustainable by the hot 

and weak lithospheric mantle. At mature stages, the orogen may have deformed by the mechanism 

proposed by Choukroune et al. (1995), Cagnard et al. (2006b), Chardon et al. (2009), and Gapais et al. 

(2009), characterized by combined distributed thickening and orogen parallel flow in a transpressional 

regime. 

Most of the granitoids dated in West Africa post-date the juvenile volcanic rocks of 

greenstone belts (Hirdes et al., 1996; Doumbia et al., 1998; Oberthuer et al., 1998; Castaing et al., 

2003), only some of them are contemporaneous with the volcanism (Davis in Schwartz and Melcher, 

2003; Siegfried et al., 2009) and the presence of older Archean basement under Birimian units has 

been negated by several studies (Abouchami et al., 1990, Sylvester et Attoh, 1992; Doumbia et al., 

1998). Only thin lower crust existed during the initial stages of island arc formation and it was 

progressively thickened during the ongoing arc volcanism and D1 deformation phase. The mechanism 

of crustal scale folding with simultaneous extrusion of lower crustal gneisses (Benn and Peschler, 

2005; Peschler et al., 2006) proposed for the greenstone belts in the Abitibi Craton is therefore 

difficult to argue for in western Burkina Faso, also due to the scarcity of geochronological data. Such a 

mechanism might have operated to some extent in the study area if sufficient volume of subduction-

related TTGs underplated the volcanic arcs since the early orogenic stages (figure II-14). 
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In the Ivory Coast, Vidal et al. (2009) proposed gravity driven sinking of heavy mafic 

greenstone belts into lighter uprising granitoids in a “dome and basin” geometry, with cleavage 

trajectories concentric around the plutons. However, the deformation patterns observed in western 

Burkina Faso do not show the same characteristics. Granitoid intrusions are concentrated in elongate 

domains enclosed by the greenstone belts, reaching quite a high length-width ratio (up to 400 

km/10-60 km). If the granitoids were responsible for the sinking of the Boromo, Houndé, and Banfora 

400 km long greenstone belts, we would imagine a massive amount of magma arriving simultaneously 

along the three belts, which is inconsistent with the number of 30-50 km plutons of various shape, 

size, age and chemical composition observed in the field and in the geophysical data. Moreover, 

contact metamorphism is generally restricted to relatively narrow zones around granitoids, which is 

also compatible with small size plutons rather than a "magma ocean", which would produce a 

significant regional metamorphic overprint. 

New and existing petrographic and geochemical data show that the western margin of the 

Boromo belt and eastern margin of the Houndé belt were part of the same oceanic crust. Our mapping 

has shown that mafic unit extends over 400 km from the north to the south and represented a cold rigid 

unit of considerable original thickness (up to 7 km, as shown by the gravity data). This unit most 

probably controlled the architecture of the early Eburnean orogen. The structural setting corroborates 

that this basal mafic unit form the limbs of the N-S trending crustal scale antiform.  

Published radiometric ages document syn-volcanic-arc magmatism, which fed juvenile 

granitoid material into the system since the early orogenic stages. The tonalite-trondhjemite-

granodiorite magmas, generated by melting of the subducting slabs and/or by remelting of lower crust, 

may have cumulated at the base of the crust or intruded the volcanic islands. When the E-W 

compression (D1) initiated, the rigid mafic units deformed by early flexural bending. The granitoid 

plutons were progressively emplaced into the growing antiforms.  

The transition from an oceanic crust overlain by volcanic islands (5-7 km thickness) to a 

mature continental crust (~30 km thickness) was thus achieved through an interplay of long-

wavelength low-amplitude buckling of rigid mafic units in conjunction with voluminous magma input 

and diapirism in a volcanic arc setting. The emplacement of granitoids was structurally controlled and 

focused into the antiformal domains, which deform the pre-existing greenstone belt geometry. The 

granitoids played an important role at all stages of crustal growth, in particular through early massive 

volume addition and later accommodation of part of the lateral shortening. The regular distribution of 

greenstone belts and elongate granitoid domains, the overall structural framework, as well as the 

absence of “dome and basin” geometries in western Burkina Faso suggest that gravity instabilities, 

evoked by many authors in Precambrian terrains (e.g. Leube et al., 1990; Pons et al., 1995; Collins et 

al., 1998; Chardon et al., 2002; Vidal et al., 2009) were not the dominant driving force during the 

growth of this part of the Eburnean orogen. However, some structures (e.g., antiform related to the 

Gaoua batholith emplacement) could be interpreted as gravity-driven processes related to granitoid 
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diapirism operating at local (pluton) scales. As with other Precambrian orogens, the early fabrics were 

modified by the regional-scale transcurrent shear zones (S2), which acted as pathways during the gold 

mineralization events.  

8. Conclusions 

Three greenstone belts and associated granitoid domains of Paleoproterozoic age have been 

studied in western Burkina Faso. Four deformation events were identified in a polyphase orogenic 

cycle. Two of the events play a key role for the crustal accretion during the Eburnean orogeny. The 

principal conclusions drawn from this study are: 

1) The geochemical signature of the volcanic rocks is compatible with the evolution from 

tholeiitic oceanic crust or oceanic plateau to juvenile volcanic island arcs, which formed between 

~2200 Ma and 2160 Ma. Zinc (volcanic massive sulphides) and copper (porphyry Cu) deposits are 

related to this volcanic arc stage. 

2) Lateral compression led to the E-W shortening of volcanic arcs during the D1 deformation 

events, accompanied by syntectonic emplacement of voluminous TTG and granitoid plutons, derived 

either from the subducting slabs or from the mafic lower crust. 

3) The basal tholeiitic unit represents a crustal scale antiform between the Boromo and 

Houndé belts, which served as a structural conduit for the TTG and granite intrusions during the D1 

and D2 deformation phases. 

4) Shallow water Tarkwaian-type sediments were deposited at about 2115 Ma during the late 

stages of the D1 phase. Their deposition was structurally controlled by faults, which were later 

reactivated as the Boni shear zone. 

5) When the orogen reached a critical thickness and the weak and hot mantle was not able to 

support further thickening, the deformation mechanism switched from pure shear dominated E-W to 

WNW-oriented compression, to simple shear dominated transpression of the same orientation. The 

second stage is characterized by an interconnected network of steeply dipping regional-scale 

transcurrent high strain zones, often bearing gold mineralization. The D2 event was accompanied by 

numerous granitoid intrusions and took place between ~2115 and 2097 Ma.  

6) Pluton emplacement contributed to the structural evolution of the greenstone belt at local 

scales; however, the regional scale system geometry was controlled by coaxial shortening of the 

stronger volcanic units (basalts, gabbros, and andesites) of the greenstone belts, supported by coeval 

magma input. 

7) The late-Eburnean or Pan-African N-S compression D3 is responsible for E-W trending 

crenulation cleavage, kink folds and shallow north or south dipping thrust faults, which were recorded 

across the study area.  
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Résumé du chapitre III 

Une bibliothèque spectrale visible et infrarouge des terrains 

précambriens à granitoïdes – ceintures des roches vertes, Burkina 

Faso, l’Afrique de l’Ouest 

1. Introduction 

Les mesures spectroscopiques infrarouges in-situ représentent une importante composante de 

n’importe quelle analyse de télédétection multispectrale ou hyperspectrale, puisqu’elles fournissent les 

données nécessaires à la calibration et les paramètres d’entrée pour la modélisation (Milton et al., 

2009 ; Hueni et al., 2009). Les projets récents (Christensen et al., 2000 ; Clark et al., 2007 ; Becvar et 

al., 2008 ; Baldrige et al., 2009 ; Hueni et al., 2009) ont démontré le besoin croissant des bibliothèques 

spectrales. La majorité des données est spécifique pour le site donné et ne peux pas être transposé à un 

site géographiquement éloigné. Les bibliothèques spectrale existantes contiennent souvent des 

données acquises en laboratoire sur les poudres ou fragments des roches fraiches, ce qui limite la 

comparaison avec les roches retrouvées dans un contexte naturel souvent complexe et altéré (Cloutis, 

1992 ; Rivard et al., 1992 ; Younis et al. ; 1997 ; Rowan et al., 2004). Ce problème a été partiellement 

comblé par les nouvelles bibliothèques ASTER et Auscope National Virtual Core Library qui 

contiennent également quelques échantillons de roches (Baldrige et al., 2009 ; http://nvcl.csiro.au). 

Aucune bibliothèque spectrale ne s’adresse aux surfaces altérées et très peu de données existent sur les 

roches métamorphiques (Baldridge et al., 2009).  

Notre étude documente les effets de l’altération superficielle sur les roches magmatiques et 

métamorphiques du socle paléoprotérozoïque dans l’ouest du Burkina Faso. La bibliothèque contient 

les mesures spectrales de roches fraiches, de surfaces altérées, de matériaux de régolithe (sols, 

carapace ferrugineuse) et de la végétation dans les spectres visible et infrarouge (0,3-2,5 µm). La 

bibliothèque contient les mesures sur 110 échantillons et représente les premières données librement 

accessibles pour l’Afrique de l’Ouest (http://www.geology.cz/extranet-eng/geodata/remote-sensing). 

Ces données serviront à une interprétation avancée des données satellitaires mais à une meilleure 

compréhension du contrôle lithologique sur l’altération superficielle des terrains de granitoïdes – 

ceintures des roches vertes en milieu semi-aride. 

2. Méthodes  

La campagne de terrain s’est déroulée entre février et mars 2008, ce qui correspond en Afrique 

de l’ouest à la période sèche. Les conditions climatiques durant l’échantillonnage ont été favorables 

avec un temps clair, localement perturbé par quelques arrivées nuageuses certains jours. La visibilité a 
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été estimée entre 10 et 15 km pour des températures qui oscillaient entre 30 et 45°C. La distribution 

des échantillons récoltés avait pour objectif de couvrir toute les unités géologiques ainsi que leurs 

produits d’altération. Les échantillons de sol ont été prélevés à proximité des roches sources pour 

éviter de récolter du matériel transporté. Les spectres ont été acquis à l’aide d’un spectromètre ASD 

FieldSpec Pro FR de 0,35 µm à 2,5 µm comme les facteurs hémisphériques coniques de réflectance 

(Schaepman-Strub et al., 2006 ; Milton et al., 2009). Un panel de calibration Labsphere spectralon a 

été utilisé comme cible de référence. 

Chaque spectre acquis est constitué d’une moyenne de 25 mesures individuelles. Chaque 

échantillon a été analysé trois fois sur différents points de la roche, afin de tenir compte des variations 

naturelles de surface (géométrie rugueuse ou lisse) et de composition de la roche. L’identification des 

constituants minéraux présents dans la croûte altérée a été facilitée par la diffraction rayon-X. Un 

diffractomètre INEL CPS-120 à source de cobalt a été utilisé. Les échantillons ont été traités par 

grattage d’une couche de 0,5 à 1,0 mm de la surface. Cette couche a ensuite été broyée dans un mortier 

d’agathe pour obtenir une poudre pouvant traverser un tamis d’une maille de 200 (~0,074 mm). Une 

analyse qualitative des phases a été effectuée, basée sur les positions et hauteurs des pics de 

diffraction. 

Les données spectrales ont été corrigées pour de la dérive qui existe entre le détecteur de 

VNIR et SWIR1 en utilisant la méthode d’addition. Les spectres corrigés ont été traités de façon 

additionnelle par un filtre de lissage de type Savitzky-Golay (Savitzky and Golay, 1964) avec une 

dimension de 65 points de données et un polynôme de degré 4. Les spectres bruts et les spectres lissés 

sont conjointement enregistrés dans la base de données. Les analyses de spectres comprennent d’une 

part l’inspection de spectres dépourvus de leur enveloppe spectrale (Clark and Roush, 1984) et d’autre 

par l’application de la méthode de SFF (spectral feature fitting) pour laquelle les spectres sont 

comparés avec la bibliothèque spectrale d’USGS (Clark et al., 2007) et de ASTER 2.0 (Baldrige et al., 

2009). 

3. Résultats principaux de l’étude 

La réflectance des roches est proportionnelle à l’augmentation de leur teneur en SiO2 et 

inversement proportionnelle à leur teneur en minéraux mafiques. Les bandes d’absorption 

caractéristiques des gabbros, basaltes et andesites montrent un comportement assez similaire. Les 

différences comprennent une augmentation de réflectance dans la région infrarouge moyenne. Les 

molécules de Fe- et Mg-OH qui composent les chlorites et les amphiboles tendent à absorber l’énergie 

à proximité de 2,32 µm et de 2,25 µm. Les absorptions proches de 1,0 µm sont associées au Fer 

ferreux dans les chlorites, amphiboles et pyroxènes. Les surfaces altérées de ces lithologies montrent 

une réflectance plus élevée et une pente de profil spectral plus inclinée. Les bandes d’absorption 

typiques peuvent être encore identifiées, mais elles sont plus faibles. La présence d’une bande 
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d’absorption à proximité de 2,2 µm indique la présence d’argiles. Plusieurs bandes d’absorption au-

dessous de 1,0 µm sont reliées à l’hématite et la goethite qui sont présentes dans les couches 

d’altération.  

Les échantillons de tonalite et de granodiorite du groupe des TTG présente des caractéristiques 

spectrales similaires à celles de gabbros. Une plus grande différence peut être observée dans la 

réflectance générale entre les différentes mesures. Le groupe du granite montre une absorption Al-OH 

plus prononcée à 2,2 µm, ce qui est probablement causé par l’altération de surface des échantillons. A 

la différence du groupe des TTG, le groupe de granites ne montre pas de bandes d’absorption du fer 

ferreux. Les surfaces altérées de chacun des deux groupes sont caractérisées par les bandes 

d’absorption du groupe des phyllo-silicates kaolinite/smectite vers 2,2 µm et goethite et hématite au-

dessous de 1,0 µm.   

Les roches volcano-sédimentaires montrent une bande d’absorption Al-OH à 2,2 µm assez 

distincte, avec une forme symétrique de muscovite/illite, correspondant à la sericitisation ou à 

l’altération de la roche, jusqu'à une forme fortement asymétrique avec une deuxième absorption 

proche de 2,17 µm. D’un point de vue spectral, les surfaces altérées sont très similaires aux surfaces 

fraîches. Les surfaces fraîches des grès de Taoudeni montrent une bande d’absorption de kaolinite 

centrée à 2,2 µm avec une absorption supplémentaire à 2,17 µm.  

Les colorations rougeâtres à jaunes des grès sont liées à la présence d’hématite et de goethite 

dans la matrice, ce qui est documenté par les bandes d’absorption du fer ferrique à 0,65 µm et au-

dessous de 0.6 µm. Les surfaces altérées montrent une baisse de réflectance, de 0,7 à 1,0 µm, ce qui 

peut être expliqué par la présence d’une plus forte concentration d’hématite/goethite dans ces croûtes. 

Tous les spectres de sols montrent une bande d’absorption Al-OH à 2,2 µm très claire, qui est reliée à 

la présence de minéraux argileux. Les sols, qui se sont développés sur les basaltes, gabbros et 

andésites, montrent les plus faibles réflectance avec des absorptions de kaolinite/smectite faiblement 

développées.  

La forme générale des signatures spectrales de ces sols est très proche de celle des surfaces 

altérées des roches ayant produit ces sols. Les absorptions associées à la minéralogie originale ont été 

en revanche totalement effacées dans la région infrarouge moyenne. Les matériaux riches en fer du 

régolithe, comprennent les chapeaux de fer et les nodules ferrugineux, qui possèdent une signature 

spectrale caractéristique avec de fortes absorptions associées à la présence d’hématite et de goethite. 

4. Conclusion 

Une nouvelle bibliothèque spectrale a été créée. Elle contient plus de 700 échantillons de 

spectres de roche et de régolithe, en plus des données spectrales complémentaires sur la végétation. Le 

champ spectral de cette bibliothèque (0,35 µm–2,5 µm) permet de faire des comparaisons avec les 

données de télédétection acquises par satellites, comme celles des données Landsat, ASTER ou 
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Hyperion. Les observations de terrain et les données spectrales acquises montrent l’importance des 

phénomènes liés à l’altération sur les propriétés spectrales de roches soumises à des conditions 

climatiques semi-arides. La formation d’encroûtements ferrugineux sur les surfaces altérées est à la 

fois contrôlée par la composition lithologique, la texture et les empreintes structurales des différents 

types de roches. La variation des signatures spectrales fait qu’il doit être possible, sur la base d’une 

analyse des données hyperspectrales, de procéder à une discrimination entre les matériaux 

échantillonnés. La nouvelle bibliothèque spectrale offre une information de base essentielle pour 

l’analyse des données de télédétection en Afrique de l’ouest. 
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Abstract 

A new spectral library has been acquired in West Africa consisting of in situ and laboratory 

0.35 µm to 2.5 µm spectra of rocks from a Paleoproterozoic granite-greenstone terrain in western 

Burkina Faso along with its Neoproterozoic sedimentary cover and derived regolith materials. The 

reflectance spectra show the influence of typical arid to semi-arid weathering with the formation of 

desert varnish, iron films, and dust coatings. Fe and Mg-OH absorption features related to chlorite, 

amphibole, pyroxene, epidote, and biotite are observable in the mafic and intermediate meta-volcanic 

rocks as well as in the granodiorites and tonalites. Al-OH absorption caused by kaolinite, smectite, and 

muscovite are typical for meta-volcano-sedimentary schists, Tarkwaian-type detrital meta-sediments, 

sandstones of the Taoudeni basin, all of the weathered surfaces and regolith materials. Ferric and 

ferrous iron absorptions related to both primary rock-forming minerals and secondary weathering 

minerals (goethite, hematite) were observed in most of the sampled materials. The results show that 

although weathering alters the spectral signature of the fresh rock, indicative absorption features 

located in the short wave infrared region remain visible. In addition, spectra of soils partially reflect 

the mineral composition of the weathered rock surfaces. The analysis of the hyperspectral data shows 

the potential of differentiating between the sampled surfaces. The library presents a primary database 

for the geological and regolith analysis of remote sensing data in West Africa. 

 

Keywords: Spectral measurements, Geology, Regolith, Precambrian, West Africa 

 



 
Chapter III 

 

 127 

1. Introduction 

Infrared spectroscopic in situ measurements form an important component of any 

multispectral or hyperspectral remote sensing analysis regardless of the scientific discipline involved, 

providing vital data for calibration, ground truth assessment and modeling input parameters (Milton et 

al., 2009; Hueni et al., 2009). The growing need for spectral data is highlighted by several spectral 

library projects e.g. ASTER spectral library (Baldrige et al., 2009), ASU Thermal Emission Spectral 

Library (Christensen et al., 2000), USGS spectral library (Clark et al., 2007), or Specchio (Hueni et al., 

2009), DLR spectral archive (Becvar et al., 2008), and the globally distributed soil spectral library 

ICRAF-ISRIC (2010) that maintain and distribute such data to the scientific community. The acquired 

data are very often site-specific and cannot be easily transferred from one geographic location to 

another. Many of these libraries contain laboratory measurements, which have standardized 

procedures of acquisition and the purity of materials used is well determined; however, such pure 

materials are difficult to compare with those found in complex natural settings. Moreover, most of the 

sampled materials are powders or chips of non-altered rocks. Spectral signatures of these materials 

differ from the weathered exposed surfaces (Cloutis, 1992; Rivard et al., 1992; Younis et al.; 1997, 

Rowan et al., 2004). This limitation has partially been addressed by the new ASTER spectral library 

2.0 (Baldrige et al., 2009), which was recently updated and does now contain solid rock samples as 

well. Another source of information is the Auscope National Virtual Core Library (http://nvcl.csiro.au) 

that provides spectral information on more than 2 km of rock core samples from the Australian 

continent and will probably grow in the next few years. The spectral coverage of the accessible 

libraries spans the range between 0.4–15.4 µm as the most widely used sensors such as Landsat and 

ASTER capture this portion of the electromagnetic spectrum. 

Although several remote sensing related studies including spectral in situ measurements have 

been published for the area of West Africa (Epema and Bom, 1994; Tromp and Steenis, 1996; Tromp 

and Epema, 1999), none of them focused on the description of spectral properties of the surface 

materials. Our study presents a spectral library created during the 2008 field campaign of the AMIRA 

P934 project, the “West African Exploration Initiative”, and documents the effects of rock weathering 

on the spectral properties of rock surfaces while identifying as well the derived regolith material. The 

dataset includes spectra of rocks, their weathering crusts, regolith materials (soils, iron rich duricrusts, 

lags), and vegetation covering the visible through shortwave infrared region 0.3 to 2.5 µm. The unique 

setting of Paleoproterozoic greenstone belts, where greenschist metamorphism affected most of the 

lithologies provides the opportunity to obtain novel spectral information. In the current spectral 

libraries, such as the ASTER spectral library 2.0 (Baldridge et al., 2009), data on greenschist 

metamorphosed rocks are very sparse and data on regolith materials are absent although applications 

of imaging spectroscopy to granite greenstone terrains or regolith have already been reported and are 

not uncommon (Drury and Hunt, 1989; Dehaan and Taylor; 2004, Rowan et al.; 2004, Hewson et al.; 
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2005; Deller, 2006). The presented measurements were acquired in the semi-arid zone of western 

Burkina Faso. This spectral library of 110 sampled locations represents the first publicly available data 

for West Africa. The results are relevant both to geological and regolith interpretation of remote 

sensing data in West Africa as well as for the understanding of lithological controls on weathering of 

Precambrian granite-greenstone terrains in semi-arid environments. The dataset is available through 

the web page http://www.geology.cz/extranet-eng/geodata/remote-sensing. 

2. Description of sampling area and sampled materials 

All of the gathered samples originate from western Burkina Faso encompassing an area of 

about 21,000 km2 (figure III-1). The study area consists of typical West African lateritic landscape 

(Grandin, 1976; Brown et al., 1994; Bamba et al.; 2002) dominated by a peneplain developed over 

most of the rock types present. The average height of the studied terrain attains 300 m a.m.s.l. 

(230-570 m). The climatic conditions are Sahelo-Sudanese with a mean annual rainfall of 900 mm. 

The land cover type consists primarily of open wood savannah; however, increasing agricultural 

activity means that more than 50 percent of the total area has been turned to cultivated land (IGN, 

2005). Vegetation cover is substantial and changes both from S to N as well as according to the time 

(dry/rainy season) from nearly total cover (>80% cover) to moderate cover (<40% cover). The field 

campaign was conducted between February and March of 2008 in the dry period. Weather conditions 

during the sampling were favorable with clear skies and only few scattered cumulus clouds on some 

Figure III-1 Simplified geological map of the Leo-Man craton modified after BRGM SIGAfrique (Milési et
al., 2004) with the zone of interest outlined; the Paleoproterozoic greenstones are divided 
into: light grey – intermediate to acid volcano-clastics and volcano-sediments, dark gre –
 mafic to intermediate lavas and volcanic products. 
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days. Visibility was estimated to be between 10 and 15 km while daytime temperatures oscillated 

between 30-45°C. 

The distribution of samples aimed at covering all of the lithological units and their weathering 

products. Samples of soils were at all times gathered near the source rock to avoid sampling of 

transported material except for soils developed over iron-rich duricrusts and soils on agricultural 

fields. The samples represent mostly poorly developed mineral soils with residual weathered rock 

material. Samples located on agricultural fields or on planation surfaces developed over granitic 

terrains may represent soils with deeper weathering profiles as they are sampled further from outcrop 

and weathering fronts on granite are generally deeper. 

The macroscopic description of mineral composition and the type of hydrothermal alteration 

(if present) is available for all of the samples. Mineral assemblages of selected samples were 

confirmed by microscopic study and microprobe analyses. Throughout the study region, weathering 

crusts and desert-like coatings can be observed. Mineral composition of the weathering crusts of 

selected rock samples was determined by X-ray diffraction. Both dry and green vegetation was 

sampled, because of the substantial vegetation cover in the area of interest. 

3. Observed lithological and soil units 

Western Burkina Faso represents a typical granite-greenstone terrain of the Leo-Man Shield 

(figure III-1) in the West African Craton (Bessoles, 1977) where Paleoproterozoic meta-volcanic and 

meta-volcano-sedimentary rocks (the prefix meta- will be omitted in the following text) form 

elongated N-S to NE-SW oriented belts (Houndé belt and Boromo belt) separated by tonalite-

trondhjemite-granodiorite (TTG) and late granite intrusions (Castaing et al., 2003; Béziat et al., 2000). 

All of the lithologies of greenstone belts including Tarkwaian-type sediments (Bossière et al., 1996) 

were subject to greenschist and locally amphibolite facies metamorphism during the Eburnean 

orogenesis (~2200-2000 Ma). The sediments of the Neoproterozoic Taoudeni basin unconformably 

overlay the Paleoproterozoic rocks in the western part of the study area (figure III-2a). The studied 

rock outcrops include metamorphosed basalts, gabbros, andesites, and andesitic pyroclastic flows, 

volcano-sedimentary rocks of andesitic to dacitic composition, and detrital sediments of variable grain 

size, as well as unmetamorphosed TTGs, granites, and sandstones of the Taoudeni basin. Granitoids 

will be divided into two groups according their petro-chemical composition, to Na-rich low K tonalites 

and granodiorites and K-rich granites. A summary of the sampled lithological units with petrographic 

description is given in table II-1. The volcanic and subvolcanic units including gabbros, basalts, 

andesites, and andesitic pyroclastic flows show similar exposures in the field. They usually form 

massive non-foliated rock outcrops with only localized high strain zones. Together with some of the 

volcano-sedimentary rocks, they build up erosional ridges, which are occasionally capped by iron rich 

duricrusts. 
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Figure III-2 Lithological (a) and pedological (b) map of the study area. White stars represent spectral 
measurement locations. The maps are compiled from Castaing et al. (2003) and the IRD 
Valpedo GIS (http://www.miruram.mpl.ird.fr/valpedo/miruram/Burkina/index.html, 
respectively. TTG – tonalites-trondhjemites-granodiorites. 
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The weathering surfaces vary from those thickly varnished or coated with iron films and dust 

films to only slightly weathered ones. Unlike the massive volcanic rocks, the volcano-sedimentary 

sequences show a higher degree of deformation and are usually strongly foliated. They weather more 

easily and disintegrate into sheet-like debris. Rock coatings vary depending on the original rock 

composition. The more resistant layers with higher content of quartz may display both rock varnish 

and iron coating films while the more easily weathered chlorite and sericite rich layers display only Fe 

and Mn rich fissuresol coatings that may occasionally be exposed. The Tarkwaian-type sediments can 

be observed as a 1-2 km narrow band stretching from north to south through the study area. The 

surface exposure is partially controlled by rock composition as massive sandstones and conglomerates 

Lithology Key 
minerals 

Texture Structural 
features 

Minerals in weathering 
crusts (XRD) 

Gabbros Pl, Cpx, 
Hbl/Act, 
Chl, 
Ep/Czo, 
Qtz 

medium grained, random/ 
cumulate 

massive, localized 
high strain zones 

Qtz, Amp, Chl, Pl, + Mica, -
Czo 

Basalts Pl, 
Hbl/Act, 
Chl, 
Ep/Czo, 
Qtz 

micrograined, ophitic massive, localized 
high strain zones 

Qtz, Amp, +Kln, -Chl 

Andesites  
(a) andesites,  
(b) and. pyroclastics 
(c) andesitic tuffs 

Pl, 
Ep/Czo, 
Chl, Act, 
Qtz 

(a) microlithic, with 
porphyritic phenocrysts, (b) 
microlithic, with porphyritic 
phenocrysts and/or lithic 
fragments, (c) fine grained, 
lepidoblastic 

massive, 
penetrative 
metamorphic 
foliation, localized 
high strain zones 

a,b) Qtz, Chl, Amp, +Gth, 
Pl, Mica, Ep 
c) Qtz, Kln, +Mica, Gth, - 
Sme, Hem 

Volcano-sediments 
and sediments - 
epiclastites, 
wackestones and 
argillites 

Qtz, Pl, 
Chl, Ms, 
Carb, 
Hem 

fine grained, lepidoblastic penetrative 
metamorphic 
foliation 

Qtz, +Gth, Kln 

Tarkwaian-type 
sediments 
(a) matrix supported 
conglomerate  
(b) sandstone, 
gritstone  
c) arcoses, pelites 

Qtz, Pl, 
Ms, 
Carb, Ep 

(a) polymyctic pebbles of 
various sizes in unsorted to 
well sorted matrix, (b) Qtz 
supported matrix with 
occasional pebbles, (c) 
lepidoblastic 

(a+b) massive, 
(b+c) localized 
shear zones to 
penetrative 
metamorphic 
foliation  

a, b) Qtz, +Kln, Mica (Ms), 
Or, -Pl, Hem, Gth 
c) Qtz, +Gth, Kln, Mica, - 
Kfs 

Granodiorites, 
tonalites and 
diorites 

Pl, Qtz, 
Bt, Hbl 

porphyritic, medium to 
coarse grained, locally 
lepido- or nemato-
granoblastic, with strong 
preferred orientation of Hbl 
and Bt 

HT banding, 
mylonitic foliation 

Qtz, Pl, -Mica, -Amp, -Or 

Granites and 
granodiorites with 
biotite, amphibole 

Pl, Qtz, 
Kfs, Bt, 
Hbl 

porphyritic, medium to 
coarse grained, locally 
lepido-granoblastic 

massive, mylonitic 
foliation 

Qtz, Mica, +Pl, Or, -Kln, 
Calc 

Sediments of the 
Taoudeni basin - 
sandstones 

Qtz, Kln, 
Glt 

 Qtz supported matrix massive, brittle 
faulting 

Qtz, +Kln, Hem, Or 

Table III-1 Descriptions of principal lithologies and their weathered surfaces, based on petrological 
macroscopic,microscopic and structural observations; (Qtz - quartz , Pl - plagioclase, Cpx -
 clinopyroxene, Hbl - hornblende, Act - actinolite, Chl - chlorite, Ep - epidote, Bt - biotite, 
Kfs - K-feldspar, Kln - kaolinite, Czo - clinozoisite, Carb - carbonate, Hem - hematite, Glt -
 glauconite, Gth - goethite). 
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form erosional ridges whereas finer grained arcosic to pelitic layers erode with less difficulty and do 

not produce prominent geomorphological features except for cases where they are capped by iron rich 

duricrusts. The weathering surfaces display similar characteristics to the volcano-sedimentary rocks. 

Although granite and TTG intrusions amass around 37% of the bedrock (Castaing et al., 2003), 

outcrops are only sparsely distributed throughout the planation surface consisting of isolated boulders 

or flat lying erosional surfaces. The granitic rocks display onion like sheeted disintegration exposing 

both rather fresh rock and slightly varnished darker surfaces. Locally, thin iron films are observable 

owing to the disintegration of mafic minerals. The erosional ridge features observed throughout the 

study area stem from the differences in depths of the paleo-weathering fronts, which were probably 

higher for the more felsic volcanic rocks and volcano-sediments as well as for the granites. Clarke 

(1994) in the Kambalda region, Australia, described similar behavior of geomorphological features. 

Rock exposure in the study area is around six percent. Overall, most of Burkina Faso including the 

area of interest displays thick lateritic weathering with iron rich duricrusts formation and development 

of soil profiles. The soil types (figure III-2b) include (according to the French CPCS (1967) 

classification system for tropical soils) mainly ferruginous tropical soils, brown eutrophic tropical 

soils, and soils with little development (eroded) (http://miruram.mpl.ird.fr/). The soils developing over 

basic and intermediate volcanic rocks are usually darker, and are brown in color belonging to the 

family of brown eutrophic tropical soils. Soils sampled over granites and sediments show lighter grey 

colors with sandy texture and belong to either the family of ferruginous tropical soils or soils with 

little development (eroded). The hydromorphic soils are less common and are found around streams, 

raw mineral soils, ferralitic soils, and vertisols. The soil surfaces are very often covered by iron rich 

lag nodules, which contribute to the overall spectral reflectance. 

4. Sample measurements and sample preparation 

The spectra were acquired with an ASD FieldSpec Pro FR spectrometer from in the range 0.35 

µm to 2.5 µm as hemispherical conical reflectance factors (Schaepman-Strub et al., 2006; Milton et 

al., 2009). A total of 110 sample stations were established in situ. Samples from eight stations were 

collected and measured at the IRD laboratory in Ouagadougou. The field measurements setup of the 

instrument included no fore-optics so that the instrument field of view was 25°. A calibrated 

Labsphere spectralon panel was used as reference which was measured before each sampled station 

and after every twentieth sample measurements, or when atmospheric conditions changed abruptly. 

Each spectra acquired constitutes the average of 25 unique measurements. Each sample was captured 

at least three times at different points to account for the natural inhomogeneity in both surface 

geometry and surface composition. The viewing geometry was maintained approximately constant 

with the sensor pointed vertically. The distance between the target and detector varied from around 5 

cm to 100 cm (sampled surface diameter ~2.2 cm to 44.3 cm, respectively) depending on the target 
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size. Geographic location and time was stored with each measurement. In the laboratory, a high 

intensity contact probe with a halogen bulb light source was used on samples from eight stations. The 

area sampled had a circular diameter of 1 cm. 

Rock measurements consisted of acquiring spectra for both the weathered surface and fresh 

bare-rock surface. Fresh surface measurements were conducted on rock fragments with little or no 

visible signs of surface alteration. The same samples were used for thin section analyses, microprobe 

analyses, and subsequent petrographic descriptions. Weathered surfaces were measured as exposed 

originally in the field or on the weathered parts of rock hand samples. Examples of the differences 

between weathered and unweathered surfaces of measured rocks and an example of common Fe-rich 

duricrusts are depicted in figure III-3. 

The soils were measured using two approaches - 1) as non-disturbed surfaces along with lag 

material, rock debris, and dead vegetation matter; and 2) as clean soil surface only. The latter required 

the scraping off all detrital organic material, rock debris and lag nodules and exposing a homogeneous 

soil matrix. As described above, only the exposed top horizon of soils was measured. 

As complementary information, spectral characteristics of local vegetation were determined. 

Vegetation samples included dry vegetation material such as leafs or stems and green healthy 

vegetation represented by common type of bushes and trees. 

Identification of mineral constituents present in the weathering crusts were facilitated by X-

ray diffraction (XRD). An INEL CPS-120 difractometer with a cobalt source was used. The samples 

were taken by scraping off 0.5-1 mm of the weathered rock surface with an electric drill and ground in 

an agate bowl to pass the 200-mesh screen (~0.074 mm). A qualitative phase analysis was conducted 

based on position and intensity of the diffraction peaks. The mineral composition of the crusts is 

described in table III-1. 
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Figure III-3 Field photographs of principal lithologies with weathered and unweathered surfaces 
(displayed as insets), a - gabbro, b - andesite, c - volcano-sediments, d - Tarkwaian-type 
sediments, e - Granodiorite, f - Granite, g - Taoudeni basin sandstones, and h - common Fe-
rich duricrust plateaus with cut surface (displayed as inset). 
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5. Library description 

The spectra are stored as text files with a defined naming convention as follows. Each 

spectrum name contains the date of acquisition with a sequential measurement number, along with the 

sample site ID and an abbreviation of the sampled material. The text files are linked to a relational 

database, which includes rock and outcrop description, petrographic data, photo documentation, and 

GPS coordinates of the measured locations. For further analyses, the data were corrected for the ASD 

spectrometer drift between the VNIR and SWIR1 detector using the additive method. The corrected 

spectra were further processed with the Savitzky-Golay smoothing filter (Savitzky and Golay, 1964) 

with a filter size of 65 data points and a polynomial degree of 4 (values in the water absorption bands 

between 1.32-1.47 and 1.75-1.96 µm were replaced with linear interpolation before the application of 

the filter and bands with high noise levels above 2.4 µm were replaced with last good band values). 

The processing was aided by the AStools plug-in (Dorigo et al., 2006) and Viper tools plug-in 

(www.vipertools.org) for ENVI. Both the smoothed version of spectra and the original files are stored 

in the database. 

6. Spectra description 

Representative spectra of rock surfaces are shown in figures III-4 and III-5. The mean relative 

reflectance (hereafter referred to as “reflectance”) of all the measured surfaces along with standard 

deviations of the spectra are displayed. The analyses of the spectra included inspection of continuum 

removed spectral curves (Clark and Roush, 1984) and spectral feature fitting using the USGS spectral 

library (Clark et al., 2007), and the ASTER 2.0 spectral library (Baldrige et al., 2009). 

6.1 Mafic and intermediate rocks 

The reflectance of the rocks increases as the SiO2 content of the rock increases and less mafic 

minerals are present in the rock. The diagnostic absorption features of the gabbros, basalts, and 

andesites show similar spectral behavior differing slightly by increasing reflectance values in the 

shortwave infrared region. Fe and Mg-OH molecular vibrations in chlorites, amphiboles, pyroxenes, 

and epidotes (Hunt and Salisbury, 1970; Hunt et al., 1973a; Hunt, 1977) are centered on 2.32 µm and 

2.25 µm. A subdued absorption of Al-OH observable at 2.20 µm in gabbros may be related to the 

sericitization of plagioclase most probably related to retrograde metamorphism. A broad increase in 

absorption is visible around 1.0 µm in the basalt and gabbro spectra. This absorption is attributed to 

ferrous iron and electronic transitions in discrete ions – crystal field effect absorption (CFA) (Hunt and 

Salisbury, 1970; Hunt et al., 1973a). In this case, it is the iron contained in chlorites, amphiboles, and 

pyroxenes. The pyroxenes correspond to diopside and augite with very low/weak compositional 

variations, while amphiboles show whole range of compositions in the fields of edenite, pargasite, 
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hornblende, and actinolite. The chlorites span between diabantite and different Fe-rich varieties of 

clinochlore – ripidiolite, pycnochlorite, and brunsvigite. 

The weathered surfaces of all three lithologies show an overall increase in reflectance and a 

steeper profile of the reflectance curve. The diagnostic absorption features of Mg, Fe-OH molecular 

bonds are still recognizable but are less pronounced. Instead, the presence of an absorption peak near 

2.2 µm suggests an influence of Al-OH molecular vibrations in clay minerals (kaolinite/smectite 

group). This is supported by the field observations of dust coatings and or soiling of the surfaces as 

well as the presence of varnished surfaces. The appearance of ferric iron absorption, bellow 0.6 µm 

(CTA) caused by charge transfer (Hunt et al., 1971; Hunt, 1977), and the shift of the CFA absorptions 

to shorter wavelengths below 1.0 µm is related to hematite and goethite content in the mineral 

coatings. The diffraction analyses of the sampled coatings suggest that hematite and goethite form 

minor phases in the samples (table III-1), notwithstanding the influence of these minerals on the 

spectra.  

6.2 Granitoids 

The sampled tonalites and granodiorites of the TTG group are spectrally similar to the 

gabbros. A rather large difference may be observed in the overall reflectance between the different 

measurements. The Fe, Mg-OH absorptions at 2.25 and 2.33 µm are present and indicate amphibole 

and biotite as mineral constituents. The mean reflectance curve and the positive standard deviation 

show a third absorption at 2.2 µm related probably to the sericitization of plagioclase. There is a 

notion of a broad CFA feature related to ferrous iron content in amphiboles and pyroxenes (Hunt and 

Salisbury, 1970; Hunt et al., 1973a; Hunt, 1977) at around 1.0 µm. The granite group shows more 

pronounced Al-OH absorption at 2.2 µm, which is most probably caused by surface alteration of the 

samples. Unlike the TTG suite, it does not exhibit ferrous iron absorptions, but shows a well visible 

CTA absorption below 0.6 µm connected with surface alteration and the presence of hematite/goethite. 

The Fe, Mg-OH vibrational absorptions at 2.25 and 2.34 µm confirm the presence of amphibole and 

biotite. 

The weathered surfaces of both groups are characterized by kaolinite/smectite group 

absorptions around 2.2 µm (Hunt and Salisbury, 1970; Hunt, 1977; Clark et al., 2007). The 2.17 µm 

shoulder feature typical for kaolinite is less pronounced. The CFA iron absorption shifts to shorter 

wavelengths in the TTG group and ferric iron absorption related to hematite and goethite in the 

mineral coatings appears below 0.6 µm. 
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Figure III-4 Relative reflectance of the main lithological types - Volcanic and volcano-sedimentary 
rocks. Mean reflectance of each lithological group is drawn with solid line, plus and minus 
one standard deviation is displayed as dashed line. Absorption features are indicated with 
vertical lines and horizontal brackets. 
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Figure III-5 Relative reflectance of the main lithological types - Granitoids and sedimentary rocks. Mean 
reflectance of each lithological group is drawn with solid line, plus and minus one standard 
deviation is displayed as dashed line. Absorption features are indicated as vertical lines and 
horizontal brackets. 
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6.3 Volcano-sediments 

The Birimian volcano-sedimentary group of rocks includes mostly sericitic and chloritic 

schists, argillites, and wackestones (Castaing et al., 2003). It should be noted that the outcrops are 

most of the time strongly altered due to the mineral composition and well-developed schistosity of the 

rocks. The “fresh” rock surfaces exhibit a distinct 2.2 µm Al-OH absorption ranging from a symmetric 

muscovite/illite shape, related to the sericitization or weathering of the rock, to a kaolinite doublet 

shape with the 2.17 µm complementary absorption. Pronounced hematite/goethite related CFA iron 

absorption centered at 0.9 µm with a subdued 0.65 µm absorption and well visible CTA iron 

absorption below 0.6 µm may be observed in the visible and near infrared portion of the spectrum. In 

the spectra of exposed weathered surfaces of these volcano-sediments, the CFA absorption at 0.9 µm 

related to goethite becomes less pronounced. The 2.2 µm Al-OH absorption feature is less indicative 

of pure kaolinite and shows the influence of mixing between smectite/kaolinite and muscovite/illite 

rich surfaces reflecting the wider lithological composition range of the volcano-sedimentary group. 

6.4 Tarkwaian-type sediments 

The fresh rock samples of the Tarkwaian-type sediments show a typical Al-OH muscovite 

related absorption feature at 2.2 µm. Slight reflectance decrease may be observed at 0.9 µm followed 

by stronger absorption below 0.5 µm suggesting the presence of hematite and goethite in the matrix. 

The spectral curve of the weathered surfaces is more inclined revealing the effect of mixed 

organic/varnish and dust coated surfaces forming especially on the resistant quartz rich layers. The 

muscovite/illite absorption peak centered at 2.2 µm is still clearly visible although its minor 

asymmetry implies the presence of kaolinite/smectite minerals in the weathering crusts. Hematite and 

goethite absorption features below 1.0 µm are subdued. 

6.5 Taoudeni basin sediments 

The sampled sandstones belonging to the Neoproterozoic sedimentary cover of the Taoudeni 

basin range from a pure quartzite to an admixture of quartztose and argilitic compositions (Castaing et 

al., 2003; Le Métour et al., 2003). The fresh surfaces of the sandstones show a well-expressed 

kaolinite doublet centered at 2.2 µm with the complementary 1.7 µm left-shoulder absorption. The 

reddish to yellowish color of the sandstones results from the hematite and goethite content in the 

matrix of the sandstones (Le Métour et al., 2003) and is documented by CFA and CTA ferric iron 

absorptions at 0.65 and below 0.6 µm. The weathered surfaces show a decrease in reflectance from 0.7 

to 1.0 µm that can be attributed to more hematite/goethite rich weathering crusts. Apart from this 

difference, the spectra of weathered and fresh sandstones are similar. 
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6.6 Soils and regolith 

The spectra of the different top soil horizons, which formed over different lithologies, are 

shown in figure III-6. The shapes of the spectra are very similar and differ for the most part only in the 

overall reflectance. All spectra show a clear Al-OH absorption peak at 2.2 µm related to the content of 

clay minerals. The soils, which formed over basalts, gabbros, and andesites (figure III-6A, B); display 

the lowest reflectance with subdued kaolinite/smectite absorptions at 2.2 µm, and the complementary 

absorption peak of kaolinite at 2.17 µm becomes visible only in continuum-removed spectra. The 

overall shape of the spectral signatures of the soils is very close to the respective mean spectra of the 

weathered surfaces of the parent rocks. However, indicative absorptions of original mineralogy, 

especially in the short-wave infrared region, disappeared completely. The relatively small depth of the 

absorption indicates that the amount of clay minerals is not high and the shape suggests the presence 

of a mixture of kaolinite and smectite. The most profound clay absorption may be observed within the 

spectra of soils over andesites. A minor absorption at around 0.9 µm followed by a decrease in 

reflectance under 0.5 µm documents the presence of Fe oxides and hydroxides in these soils. The 

reflectance values for soils developed over volcano-sedimentary rocks differ from the soils developed 

over the volcanic rocks with overall higher reflectance, but keep similar diagnostic features of clay 

minerals and iron oxides and hydroxides. Soils sampled near the outcrops of Tarkwaian-type 

sediments (figure III-6C) reflect the original mineralogy of the parent rock and its weathered surfaces. 

The 2.2 µm Al-OH symmetric absorption peak is indicative of muscovite. Unlike the weathered parent 

rock surfaces, CFA absorption is not observable, leaving the absorption centered at around 0.5 µm 

related to ferric iron to be the dominant feature. Spectra of soils derived over granitic lithologies show 

a resemblance with the mean reflectance of the weathered surfaces. The Al-OH absorption doublet at 

Figure III-6 Relative reflectance of the main soil types (spectra are offset for clarity and sorted by 
increasing reflectance), A - soil formed over basalts and gabbros, B - soil formed over 
andesites and andesitic pyroclastites, C - soil formed over Tarkwaian-type sediments, D - 
soil formed over granites and TTGs, E - soil formed over sediments - sandstones, F - soil 
formed over volcano-sediments. 
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2.2 µm and 2.17 µm is well defined and indicates the prevalence of kaolinite as the main clay mineral 

constituent. Indices of hematite or goethite are recognizable by the ferric iron absorption below 0.6 

µm. Soils sampled over the Neoproterozoic sandstones (figure III-6E) have, unlike all the other soils, 

lower reflectance than the weathered surfaces of the parent lithology. The Al-OH kaolinite doublet is 

subdued and the CFA absorption centered near 1.0 µm has disappeared. CTA absorption related to the 

presence of goethite and hematite in the soil is responsible for the increased absorption below 0.6 µm. 

The Fe-rich regolith materials including the duricrusts and lag nodules have a characteristic 

signature with pronounced absorptions related to iron rich secondary weathering minerals and 

kaolinite. The cut surfaces of the duricrusts (figure III-7A) offers the best example, where both CFA 

related absorption centered at 0.9 and 0.65 µm and CTA absorption below 0.6 µm are the most 

pronounced features in the spectral curve. The Al-OH doublet centered at 2.2 µm with the secondary 

absorption band at 2.17 µm confirms the presence of kaolinite as the main clay constituent. Weathered 

surfaces (figure III-7B) display less pronounced hematite/goethite features especially the main 0.9 µm 

absorption. The spectra of Fe-rich lag nodules (figure III-7C) show again CFA and CTA absorptions, 

which are more intense similarly to the cut, surface of the duricrust material. The depth of the Al-OH 

absorption is smaller for both the exposed surfaces and the lag nodules. Complementary mean spectra 

of measured green and dry vegetation are displayed in figure III-7D, E along with the regolith 

material. 

 

  

Figure III-7 Relative reflectance of Fe-rich regolith materials and vegetation (spectra are offset for 
clarity), A - Fe-rich duricrust cut surface, B - Fe-rich duricrust exposed surface, C - Fe-rich 
lag, D - dry vegetation, E - green vegetation. 
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7. Discussion 

The steeper profiles of the reflectance curves observed for weathered surfaces may be 

attributed to the formation of rock coatings and varnish, which are commonly encountered in semi-

arid to arid environments (Rivard et al., 1992; Dorn, 2009). The effects of the weathering process on 

an intermediate andesitic rock are illustrated in figure III-8. The weathering disintegrates the less 

resistive rock forming a mixture of clays, quartz and secondary iron oxides and hydroxides which have 

an overall higher reflectance and produce distinct ferric iron absorption features as well Al-OH 

molecular vibration features related to the formation of clays (Cloutis, 1992; Younis et al. 1997). 

Some surfaces show higher content of hematite/goethite (figure III-8G, F) and strongly resemble the 

response of lateritic duricrusts and associated lag nodules. The mineral coatings related to weathering 

of rocks in arid environments are consistent with the observations discussed by Dorn (2009). Their 

effect on spectral reflectance of the rocks is evident and should not be disregarded. Although the 

absorption features in the short wave infrared region of the primary minerals are still recognizable, 

which was also noted by Rivard et al. (1992) or Younis et al. (1997), the overall shape of the 

reflectance curve changes and several new absorption features related to secondary iron rich minerals 

and clays appear. Imaging spectroscopy is able to discern hematite or goethite in very low contents in 

soils (Madeira et al., 1997; Ben-Dor et al., 2009); however in our samples of weathered rock surfaces 

we observed that the influence of these minerals on the measured spectra (figures III-4 and III-5) is not 

so obvious in the XRD phase analysis (table III-1). These discrepancies  may either be attributed to the 

fact that rock varnish is mainly composed of clay minerals (Dorn, 2009), or to the fact that the goethite 

and hematite minerals are contained mostly in the top most layer as a very thin sheet and hence 

Figure III-8 Relative reflectance of surface materials derived from andesites (spectra are offset for clarity), 
A - Relative reflectance of andesitic rock, B, F - its weathered surfaces, C - associated soil 
found close to outcrops and on agricultural fields - E, the effect of vegetation residues and 
lag material - D, G on the soil spectra. 
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became less abundant in the volume of the scraped XRD sample. Alternatively, the absence of 

hematite/goethite in the XRD spectra could be affected by the crystalinity of these phases. The soils 

forming around the weathered rocks display similar characteristics as the weathered surfaces. The 

difference between the weathered rocks and the soils is mainly related to the clay content. This is well 

documented by deeper or better-developed Al-OH absorption features around 2.2 µm. The spectra of 

soils acquired over tonalites and granites match well with the top soil horizon spectra, found over 

granitic rocks in the Gourma plain in eastern Burkina Faso, in the recently published soil spectral 

library (ICRAF-ISRIC, 2010). The form of the 2.2 µm Al-OH absorption feature reflects the 

composition of the clay minerals and generally three components can be recognized, namely smectite, 

illite, and kaolinite (Chabrillat et al., 2002). The discrimination between the soils in the remote sensing 

data will most probably have to be based on the overall reflectance, which varies for the different 

lithologies. Broader groups can be established based on the reflectance difference, where soils over 

basic to intermediate volcanic materials have generally lower reflectance (~8% basic to intermediate 

volcanics, ~5% volcano-sediments) than the soils derived from granitic materials. The difference 

becomes more pronounced in the short wave infrared region, where reflectance of soils developing 

over basalts and gabbros is up to 20% lower than the soils derived from granitic lithologies. Another 

useful determinant feature could be the absence of hematite/goethite absorption at around 0.9 µm in 

the spectra of soils from granitic domains; although detection of these features may be compromised 

by the omnipresence of Fe-rich lag material. 

It should be noted that the presence of organic material has a large impact on the measured 

surfaces (Siegal and Goetz, 1977; Murphy and Wedge 1994; Serbin et al., 2009). Figure III-8D shows 

that the reflectance curve is modified by the presence of dry organic matter especially in the 2.0–

2.3 µm range where the broad absorptions related to lignin and cellulose content may be found 

(Elvidge, 1990; Serbin et al., 2009). In a similar way, the measured reflectance is affected by green 

vegetation; nevertheless, some studies show that mapping of lithologies, soils or regolith material is 

possible, even when substantial vegetation cover is present, either directly or indirectly (Siegal and 

Goetz, 1977; Rivard et al., 2009; Rodger and Cudahy, 2009).  

Because most of the rocks of the greenstone belts contain greenschist mineral metamorphic 

assemblages their spectra differ considerably from the spectra of their unmetamorphosed protoliths 

(Baldridge et al., 2009) owing mainly to the transformation of the main rock forming minerals to 

chlorite, epidote, and actinolite. The effect of retrograde metamorphism and formation of sericite is 

also very common. In the case of the basic and intermediate rocks, the 1.0 µm broad absorptions 

related to primary pyroxene, and amphibole contents in the protolith (Hunt and Salisbury, 1970; Hunt 

et al., 1973b; Hunt et al., 1974; Hunt, 1977; Baldridge et al., 2009) become less evident. The overall 

increase in the short wave infrared region is typical for rocks containing chlorite or epidote and so are 

the 2.25 µm and 2.32–2.34 µm absorption features. The large differences in the overall reflectance of 

the fresh rock in the group of tonalites and granodiorites (figure III-5) may be explained by the 
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presence of banding and dominance of mafic minerals such as amphibole and biotite in the 

melanocrate layers. Furthermore, the less evident 1.0 µm broad absorption for the group of granitic 

rocks may suggest the presence of less abundant amphibole and biotite in the measured samples. In the 

Birimian volcano-sediments, the observed CFA and CTA iron absorption suggest an important 

component of iron minerals in the matrix. The presence of disseminated iron oxides and hydroxides 

was confirmed by microscopy and was reported by Le Métour et al. (2003). This phenomenon may 

also be attributed to a secondary alteration of iron rich minerals, as the volcano-sedimentary rocks 

seem to be deeply weathered. The spectra of Tarkwaian-type sediments are similar to sandstones or 

conglomerates, which contain sericite in their matrix whereas the sandstones of the Taoudeni basin 

resemble more to sandstones or conglomerates where the cement constitutes of some amount of 

argillaceous material (Baldridge et al., 2009). The spectra of Fe-rich duricrusts contain as expected 

less kaolinite when measured at the exposed surfaces, as the clay material is washed away and only 

resistant hematite and goethite remains. Under the surface remnants of kaolinite rich spots related to 

the development of the lateritic profile (Taylor and Eggleton, 2001; Deller, 2006) remain and affect 

the measured spectra. 

8. Conclusions 

The collected spectral library contains over 700 spectra of rock and regolith surfaces (soils, 

Fe-rich duricrusts, and lag) with complementary spectra of vegetation. The spectral range of the 

library (0.35 µm to 2.5 µm) allows direct comparisons with remote sensing data acquired by satellites 

such as Landsat, ASTER, or Hyperion. The field observations and acquired spectral data show the 

importance of weathering related phenomena on the spectral properties of rock under semi-arid 

conditions. The lithological composition, texture, and structural features of the different rock types 

control the formation of rock varnish and iron coatings on the weathered surfaces. The exposures of 

the lithologies are controlled in a similar manner, where massive volcanic rocks and quartztose 

sediments crop out more often than foliated volcano-sediments or granitic rocks. 

The sampled surfaces show considerable spectral diversity. The Fe, Mg-OH absorption 

features related to the content of chlorite, amphibole, pyroxene, and epidote in mafic to intermediate 

volcanic rocks and the TTGs produce distinct spectral features centered at 2.33–2.34 µm and 2.25 µm. 

These features are still recognizable in the spectra of the weathered surfaces covered by varnish, iron 

films, and dust coatings.  

Al-OH absorptions around 2.2 µm related to kaolinite, smectite, and muscovite/illite minerals 

are observable in the spectra of granitic rocks, sediments, sediments and all of the weathered surfaces 

as well as the surfaces of the sampled soils. Ferrous iron and ferric iron absorptions situated around 

1.0 µm, 0.9–0.8 µm, 0.65 µm, and below 0.6 µm are indicative of iron rich minerals. In the case of 

fresh rock surfaces of the gabbros, basalts, andesites and the TTGs these absorptions are tied to 
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chlorite, amphibole, pyroxene, and biotite content. Weathered surfaces of all rocks as well as the fresh 

surfaces of sediments and volcano-sediments display similar absorptions. These are, related to iron 

oxides and hydroxides, which are formed as secondary weathering minerals. An abundance of 

hematite and goethite may be observed in most of the sampled soils and Fe-rich duricrusts as well. 

The variation in spectral signatures implies that discrimination between the sampled materials 

based on hyperspectral data analysis should be possible. The newly acquired spectral library provides 

primary information for the analysis of remote sensing data in West Africa. These results show that 

the application of multi- and hyperspectral remote sensing in these terrains and climates will not be 

hindered by the surficial alteration of the fresh rocks. Nevertheless, an equivalent spectral database for 

the flora will need to be assembled before its full potential can be realized 
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Résumé du chapitre IV 

La cartographie des unités de régolithe par la méthode des 

réseaux des neurones en utilisant des données de géophysique 

aéroportée et de la télédétection, Burkina Faso, Afrique de l’Ouest 

1. Introduction 

Les roches du craton ouest africain sont couvertes d’une couche épaisse de régolithe résultant 

de l’altération latéritique prolongée. Le régolithe peut être caractérisé comme tout le matériel entre la 

surface de la terre et la roche fraîche (Taylor et Eggleton, 2001). En Afrique de l'Ouest le régolithe est 

une source importante de matières premières (Wright et al., 1985), il est relié avec l’évolution tectono-

geomorphique (Michel, 1973 ; Grandin, 1976 ; Leprun, 1979 ; Boeglin, 1990 ; Chardon et al., 2009), 

mais il rend également difficile la cartographie géologique (Jaques et al., 1997) ainsi que la 

prospection géochimique (Craig, 2001 ; Taylor et Eggleton, 2001). Les cartes de régolithe 

couramment utilisées par exemple en Australie (Pain et al., 2007), sont en Afrique de l'Ouest presque 

inexistantes.  

Pour caractériser la composition minéralogique des surfaces de régolithe on peut utiliser des 

données multispectrales ou hyperspectrales (Craig et al., 1999 ; Dehaan et Taylor ; 2004). La 

micromorphologie de surface et le mécanisme prédominant de réflexion des ondes de radar peuvent 

être analysés en utilisant la polarimétrie radar (Henderson et Lewis, 1998 ; Tapley, 2002). 

L'enrichissement ou l'appauvrissement relatif des surfaces individuelles des éléments radioactifs ont 

déjà été discutées par Wilford et al. (1997) et Martelet et al. (2006). La spectrométrie gamma aérienne 

représente donc une autre méthode qui peut être utilisée pour caractériser des unités de régolithe. 

L’analyse du modèle numérique de terrain aide à la cartographie des formes du relief (Henquin et 

Totté, 1993 ; Irvin, 1997 ; Saadat et al., 2008). L’analyse intégrée des données peut se faire 

visuellement dans l'environnement le SIG (Craig et al., 1999 ; Woolrych et Batty, 2007) ou à l’aide de 

la classification automatique (Wilford et al., 2007). Cette étude se concentre sur l'évaluation des 

méthodes de classification automatisées de régolithe en utilisant une analyse combinée des données de 

la géophysique aérienne et de la télédétection dans le région du Gaoua, modérément à densément 

couverte par la végétation au sud-ouest du Burkina Faso. 

2. Méthodes 

Avant les classifications les données ont été préparées. Toutes les données ont été ré-

échantillonnées à la résolution spatiale de 30 m. Les données du capteur Landsat ont servi comme une 

couche de base à laquelle toutes les autres données ont été enregistrées.  
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Les bandes visibles et proches infrarouges des capteurs Landsat et ASTER ont été calibrées 

dans le logiciel ATCOR (Richter, 1996) en utilisant des mesures de terrain (Richter, 1997) et 

enregistrées comme la réflectance. Les bandes thermiques du capteur ASTER ont été calibrées en 

émissivité à l'aide de l’algorithme de TES (Gillespie et al., 1998). 

Pour les données du radar polarimétrique à partir de capteurs RADARSAT-2 et ALOS 

PALSAR, une rééchantillonnage « multilooking » a été réalisé pour obtenir des pixels cadrés. Les 

données de matrice de diffusion ont été transformées en utilisant la décomposition de Pauli (Cloude et 

Pottier, 1996) en trois bandes, qui ont servi en tant que couches d'entrée pour les classements suivants. 

La correction géométrique a été réalisée en utilisant l'algorithme de correction du terrain par la 

simulation de SAR (Schreier, 1993).  

Les données de modèle numérique du terrain SRTM ont été ré-interpolées à l'aide de la 

méthode de Hutchinson (1989) en incréments de 30 m. Le modèle nouvellement obtenu a été utilisé 

pour dériver des couches comme pente, la rugosité de la pente (déviation standard de la pente), la 

courbure de la surface (Zeverbergen et Thorne, 1987), l'altitude relative (gamme de hauteurs) 

et l’intégrale hypsométrique (Pike et Wilson, 1971) en une fenêtre de 3x3 pixels. En outre, un réseau 

hydrographique a été dérivé avec une couche de distance des fleuves principaux et de la hauteur 

relative du relief au-dessus des fleuves principales.  

Les données de spectrométrie gamma aérienne, calibrées comme valeurs de concentrations 

absolues et corrigées pour le bruit en utilisant NASVD (Hovgaard et Grasty, 1997), ont été interpolées 

en utilisant la courbure minimale (Briggs, 1974). De plus les couches eTh/K et eU/K en ont été 

dérivées.  

Comme données d’apprentissage et de validation, 56 449 pixels ont été sélectionnées ce qui 

représente d’environ 13% de la superficie totale étudiée. La moitié des points a été choisi au hasard 

pour l’apprentissage et l'autre moitié pour la validation. Les méthodes de classification des réseaux de 

neurones (RN) (An et al., 1995 ; Zhang et al., 2009 ; Leverington, 2011) et du maximum de 

vraisemblance (MV) (Campbell, 1996) ont été comparées. L’algorithme ADVANGEO de 

classification qui est base sur RN, a été mis en œuvre dans ArcGIS (Barth et al., 2009). Pour chaque 

catégorie classée un nouveau réseau a été conçu. Les résultats de la classification ont ensuite été 

combinées de telle sorte que chaque pixel est attribué une classe en fonction de la plus forte 

probabilité d'inclusion dans la classe. Globalement, quatre scénarios ont été testés avec 24, 20, 14 et 11 

couches d'entrée. On a ensuite évalué l'évaluation de l'exactitude de classification en utilisant une 

matrice d'erreur (Congalton et Green, 2009). 

3. Résultats principaux de l’étude 

Les meilleurs résultats de classement ont été obtenus pour le scénario de 11 couches d'entrée 

contenant les données de spectrométrie gamma aérienne et les données issues du modèle numérique de 
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terrain. Dans ce scénario, une précision globale de classement de 95,71% a été obtenue avec une 

valeur du coefficient kappa de 0.94. La classe de bas glacis a été classée avec la moindre précision. 

Cette catégorie comprend un mélange des surfaces différentes avec des propriétés variables, non 

seulement en termes de morphométrie, mais aussi en termes de contenu des éléments radiogéniques. 

Sur le terrain, ces surfaces peuvent souvent être recouvertes d'un matériel provenant d'unités 

morphologiquement supérieures (les Hauts/Moyens glacis, le Relief résiduel). La classe des sédiments 

alluviaux est la plus précisément classée et définissable grâce à la base des couches dérivées du 

modèle numérique de terrain. Les Hauts/Moyens glacis et le Relief résiduel ont été classés 

constamment bien. La divisibilité des Hauts/Moyens glacis est généralement plus élevée à cause de 

leurs caractéristiques typiques en spectrométrie gamma (des hautes valeurs d’eTh et eTh/K). Dans la 

classe des surfaces résiduelles, les crêtes d'érosion et les inselbergs y ont été classés correctement. 

Pour le même scénario analysé à l'aide de la méthode de maximum de vraisemblance on a obtenu une 

précision globale de 91,55% avec une valeur du coefficient kappa de 0,88. Les résultats de 

classification en utilisant les réseaux de neurones ont toujours été meilleurs que ceux issus de 

classement de la méthode du maximum de vraisemblance, dans tous les scénarios correspondants. 

Dans le cadre de classement des scénarios analysés par les réseaux de neurones les résultats de 

classification n'ont pas amélioré même en incluant un plus grand nombre de couches d'entrée. 

Toutefois, il convient de noter que tous les résultats diffèrent d'un maximum de cinq pour cent. Une 

exception est la classification basée sur le MV avec des couches d'entrée, qui comprennent les données 

de polarimétrie radar. Ici, la précision globale a diminué à 88,78% avec un coefficient kappa de 0,84. 

4. Conclusion 

L'étude a présenté une procédure de classement automatique des unités de régolithe. Quatre 

unités de terrain régolithique - Hauts/Moyens glacis, le Relief résiduel, Sédiments alluviaux et Bas 

glacis ont été cartographies. Le meilleur résultat a été obtenu en utilisant la classification des réseaux 

de neurones pour un scénario composé de 11 couches d'entrée comprenant la spectrométrie gamma 

aérienne et les dérivations de modèle numérique de terrain. L’ajout d’outres couches d'entrée n’affecte 

pas de manière significative les résultats de la classification. La méthode de réseaux de neurones a 

donné des résultats meilleurs que celle du maximum de vraisemblance. Les résultats représentent une 

amélioration des cartes existantes, en particulier en termes de précision spatiale pour les surfaces 

riches en Fe des Hauts/Moyens glacis et le Relief résiduelle. Les résultats de la cartographie peuvent 

être utilisés pour la prospection géochimique et l'analyse de l'évolution géomorphologique. 
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Abstract 

We have studied the regolith landform distribution in the area of Gaoua, western Burkina Faso 

using an integration of geophysical and remote sensing data. Concentration maps of K, eTh and eU 

and their ratios were computed from airborne gamma ray spectrometry data. In situ spectral 

measurements were used to calibrate ASTER and Landsat scenes. Pauli-decomposition data retrieved 

from polarimetric radar images were included as additional source data. Morphometric variables such 

as slope, curvature, and aspect were derived from the freely available SRTM digital elevation model to 

characterize the topographic parameters of the different regolith landform units. An artificial neural 

network, ADVANGEO, was then applied to classify the regolith landform units according to the 

variables obtained from satellite and airborne data. Ferruginous duricrusts rich in hematite and 

goethite belonging to the High and Middle glacis, relic erosional surfaces and rock outcrops, alluvial 

sediments, and soft pediment materials of the Low glacis were mapped successfully in the region. The 

results were compared with existing geomorphological maps, pedo-geomorphological maps, and field 

observations. We found that in particular, the distribution and shape of the iron rich duricrust is more 

accurate than in the current maps. The best results were obtained for a combination of gamma-ray 

spectrometry data and derivatives of the SRTM digital elevation model. The approach demonstrates 

the potential of neural networks for the combined analysis of airborne geophysics and remote sensing 

data in regolith landform mapping. 

 

Keywords: Regolith, Remote sensing, Airborne geophysics, SRTM, Neural networks 
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1. Introduction 

The regolith in West Africa represents an important economic resource (Wright et al., 1985), a 

constraint on the regions tectono-geomorphic evolution (Chardon et al., 2006), and a hindrance to 

geochemical exploration techniques (Taylor and Eggleton, 2001). The term regolith stands for all of 

the weathered and unconsolidated material from basement rock to earth surface including interbedded 

fresh rocks (Taylor and Eggleton, 2001).Knowing the distribution of regolith units and understanding 

the processes, which led to their formation, is important for any kind of successful geological 

mapping, geochemical or geophysical survey, and minerals exploration. Traditional field-based 

regolith landform mapping can be a lengthy process, which can be further complicated by difficult 

access to remote and often large survey areas. At most scales, West Africa remains poorly covered by 

regolith landform maps such as those commonly used in Australia (Pain et al., 2007). Airborne 

geophysical data and remote sensing data are frequently employed in regolith mapping (Wilford et al., 

1997; Papp, 2002; Woolrych and Batty, 2007) to assess the diverse physical properties of regolith 

materials. Martelet et al. (2006) used an Agglomerative Hierarchical Clustering algorithm to classify 

airborne gamma spectrometry data in French Guyana and noticed that ferralitic and bauxitic duricrusts 

display elevated U, Th content relative to K. These areas correspond to lateritic plateaus. One can 

estimate the chemical composition from airborne gamma-ray spectrometry or 

multispectral/hyperspectral remote sensing (provided the terrain is not extensively covered by 

vegetation), terrain morphology from the digital elevation models (SRTM), and surface roughness or 

prevailing geometric shapes from radar imagery (ALOS PALSAR, Radarsat-2). Landsat imagery was 

commonly employed in regolith mapping (Craig et al., 1999) including directed principal component 

analysis (DPCA), which is used to separate clay minerals and suppress the effects of vegetation 

(Fraser and Green, 1987). Hyperspectral remote sensing has been used to assess surficial components 

of regolith by Dehaan and Taylor (2004), Lau et al. (2003), while Cudahy et al. (2006) studied the 

relationship between kaolinite disorder, transported versus in situ regolith, and observed that poorly 

crystalline kaolinite is found mostly in transported regolithic material. SAR (Synthetic Aperture 

Radar) imagery constitutes a very useful complement to optical images (Baghdadi et al., 2005). For 

geologists, radar images provide unique information about structure, morphological, sedimentary 

features, and moisture content. This information is directly tied to the physical properties of terrain 

surfaces (Henderson and Lewis, 1998; Drury, 1993). Tapley (2002) showed that VV (vertical transmit-

vertical receive) and HV (horizontal transmit-horizontal receive) (VH) polarizations were better suited 

for the geological mapping of arid to semi-arid Australia where VV polarization provides increased 

sharpness and better discrimination between surfaces having similar roughness properties. Digital 

elevation models and its derivatives are frequently used for landform mapping in conjunction with 

other remote sensing data (Henquin and Totté, 1993; Irvin et al., 1997; Giles, 1998; Saadat et al., 

2008; Liberti et al., 2009; Siart et al., 2009). Dense vegetation cover or displacement of the regolith 
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units may limit the application of most of the described techniques. Indeed, the best results in mapping 

of the diverse regions in West Africa require the integration of several data sets. Such integration may 

be facilitated by simple overlay of different layers in GIS and visual interpretation (Craig et al., 1999; 

Craig, 2001; Papp, 2002; Woolrych and Batty, 2007) or via automated classification methods, which 

are not as common (Wilford et al., 2007). 

This study aims at evaluating automatic classification of regolith landform units in West 

Africa through combined analysis of airborne geophysical and remote sensing data, in a region 

moderately to densely covered by vegetation. 

2. Study area description 

The planation surfaces of western Burkina Faso, which developed on basement rocks of the 

West African Craton (figure IV-1), are the result of long term deep weathering, erosion and gradual 

uplift of the African continent under varying climatic conditions (King, 1962) mainly after the breakup 

Figure IV-1 Schematic map of the study area. Geological map of the Northeastern part of the 
Paleoproterozoic Baoule Mossi domain in the West African Craton (modified after BRGM 
SIGAfrique) with study area marked by a rectangle. The Paleoproterozoic greenstones are 
divided into: light grey – intermediate to acid volcano-clastics and volcano-sediments, dark 
grey – mafic to intermediate lavas and volcanic products. 
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of Gondwana in the Mesozoic (Wright et al., 1985). In all of West Africa, these surfaces are capped by 

ferruginous or aluminous duricrusts, which are ordered in a stepped manner and correspond to a 

chronological order in which they were formed (Michel, 1973; Grandin, 1976; Tardy, 1997). Seven 

classes have been established according to correlation between relative height, geochemistry, and 

petrology tying the oldest surface with the Gondwanian era and the youngest in age reaching the 

Quaternary period (figure IV-2). The formation mechanism of the duricrusts includes a combination of 

processes where in situ formation (Leprun, 1979), down slope mechanical displacement, and 

subsequent recementation acted together (Beauvais, 1999). 

The study area is located near the town of Gaoua (figure IV-1) in the southwest of Burkina 

Faso and encompasses 686 km2. The Gaoua region was intensively eroded to the extent that basement 

rocks are exposed to a considerable extent creating a variable surface with duricrust plateaus and 

buttes, inselbergs and rock ridges, flat lying or lightly inclined pediments of the Low glacis and 

alluvial sediments. The average height attains 300 m a. s. l. while varying between 200 m a. s. l and 

560 m a. s. l. The area around Gaoua was previously thoroughly studied by Boeglin and Mazaltarim 

(1989) and Boeglin (1990) as a region that suites well the investigations of relationships between the 

lateritic profiles and the parent rocks. According to Boeglin (1990) and our field observations only 

three of the planation surfaces are present. Relics of the highest bauxitic African surface (Eocene, 59–

45 Ma) are found at the top of the eroded sequences above 500 m. The Intermediate surface 

(Oligocene, 34–29 Ma) has not been observed and either has been completely eroded or did not exist 

in the region. The other ferruginous surfaces belong to the so-called High glacis (Late Oligocene-Early 

Miocene, 24–18 Ma) and Middle glacis (Late Miocene, 12–7 Ma). These surfaces are not easily 

distinguished and according to Boeglin (1990), there has been probably one continuous inclined or 

undulating surface rather than two distinct levels. The Low glacis, which are also called functional 

Figure IV-2 Regolith landforms found in the area with chronological and petro-geochemical 
characteristics given, figure modified after Michel (1973), Grandin (1976) and Gunnel 
(2003). 
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glacis, referring to the fact that these surfaces are still developing, are not capped by duricrust cover 

nevertheless their formation started probably already in Late Miocene (6 Ma). The age estimations of 

formation of the different duricrust levels were derived from Beauvais et al. (2008), who dated the 

corresponding surfaces in the area of Tambao (North Burkina Faso). The area of Gaoua provides 

contrasting geological basement of alternating greenstone belt lithologies and granitic bodies. The 

belts constitute mainly volcanic and volcano-sedimentary sequences of Paleoproterozoic age 

(Marcelin, 1971; chapter I), which were later intruded by younger granitic rocks – TTGs (tonalite, 

trondhjemites, granodiorites), and granites. There seems to be some linkage between the chemical 

composition of the iron rich duricrusts and the underlying basement rocks (Boeglin, 1990). Tardy 

(1997) states the petrological and mineralogical differences are subtle and become progressively 

smaller with the evolution and ageing of the duricrusts. The composition of the parent rock correlates 

especially with the content of quartz and several elements such as P, Ba, Cr, Sc, Ni, Zn, Cu, Ce, and 

La. The existing maps at 1:500 000 scale, which describe the geomorphological (IGN, 2005) and 

pedo-geomorphological (Brossard, 2006) units that characterize the regolith units, are shown in figure 

IV-3. 

Four main regolith landform units can be mapped in the study area. The iron rich duricrusts 

may be found on both of the maps. They form flat to slightly inclined plateaus with usually steep 

edges. The plateaus disintegrate by mechanical erosion into blocks and nodules. Most of the duricrust 

surfaces belong to the High and Middle glacis. Only one remnant of the bauxitic African surface has 

Figure IV-3 Existing 1:500 000 scale pedo-geomorphological and morphological maps of the region, a) 
pedogeomorphological map (Brossard, 2006), b) geomorphological map (IGN, 2005). 
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been preserved in the southwest of the area. The largest duricrusts are found over granitic rocks, 

whereas the basaltic and andesitic volcanites and volcano-sedimentary rocks mostly represent other 

geomorphological units of Rock outcrops and Residual relief, which may be covered by thin pediment. 

The slopes and partially flattened surfaces between these two units belong to the class of Low glacis 

also called functional glacis – glacis in development. At the base of valleys, alluvial infill is deposited 

and represents the last unit. 

3. Methodology and data use 

3.1 Data preprocessing 

In order to classify all of the four basic regolith landform units that can be synthesized from 

the existing maps (Figures IV-3a, b) and field observations a multivariate dataset was formed 

constituting data layers from Landsat 7 ETM+(Enhanced Thematic Mapper), ASTER (Advanced 

Spaceborne Thermal Emission and Reflection Radiometer), ALOS PALSAR (Advanced Land 

Observing Satellite Phased Array type L-band Synthetic Aperture Radar), Radarsat-2, SRTM (Shuttle 

Radar Topography mission), and airborne gamma-ray spectrometry data. 

ASTER and Landsat data 

One ASTER scene and one Landsat scene were selected for subsequent processing with 

respect to the seasonal variation in vegetation cover during wet and dry periods. The acquisition dates 

and specific information is given in table IV-1. The Landsat dataset was used as base layer to which 

all data were georeferenced. The Landsat and ASTER visible and near infrared bands were calibrated 

to reflectance using the ATCOR algorithm (Richter, 1996). Field-acquired spectral signatures of 

vegetation and road construction lateritic material were employed to enhance the calibration results 

during in-flight calibration (Richter, 1997). Only the five thermal bands of ASTER, calibrated to 

emissivity by the algorithm of Gillespie et al. (1998), were used for subsequent classifications. The 

source layers were all resampled to 30 m spatial resolution utilizing the nearest neighbor method to 

Dataset Date acquired Spatial 
resolution

Spectral 
coverage

Processing 
product 

Landsat 1-02-2003 15-60 m* 0.45 – 12.5 μm L1G 
ASTER 3-01-2001 15-90 m* 0.5 – 11.6 μm L1B, AST05 
ALOS 
PALSAR 

26-03-2009 30 L-band P1.1 fine pol. 

Radarsat-2 11-01-2010 12 C-band Fine quad pol. 
SRTM-3 2000 90 m C-band V4, CGIAR 
Gamma-ray. 1998 - 1999 125 m NA abs. calibration 

Table IV-1 Utilized datasets with detailed description on original processing, spatial resolution, and 
spectral coverage. *Landsat – only 30 m bands used, bands 1-5, 7; **all 14 bands used and 
resampled to 30m, pol. – polarimetric, abs. – absolute. 
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preserve the spectral information. Various techniques are applied in the classification of optical data. 

Four basic approaches may be followed visual (Zumsprekel and Prinz, 2000; Deller, 2006), pixel 

based, subpixel based (Dehaan and Taylor, 2004; Cudahy et al., 2006) and object-oriented 

classification. 

ALOS PALSAR and Radarsat-2 data 

The full-polarimetric Radarsat-2 and ALOS PALSAR data were newly acquired (table IV-1) 

in 2009 and 2010 (ESA project – SOAR 6788). The data were processed using the Polsarpro, Nest, 

and ASF MapReady software. The Radarsat 2 Fine Quad polarization data were multilooked with 

three azimuth to one range looks. The ALOS PALSAR data multilooking parameters were set at seven 

azimuth looks to one range look. The data scattering matrix was transformed into three band Pauli 

decomposition channels (Cloude and Pottier, 1996). The three channels correspond to elements of the 

scattering matrix such that RGB color bands correspond to the components Shh-Svv, 2*Shv, and Shh+Svv, 

respectively of the scattering matrix S. The Pauli decomposition is often used for visual inspection of 

the data and visual classification; however, automated classifications based on Pauli decomposition 

source bands were reported as well (Huang et al., 2011). The Pauli decomposition images were then 

terrain corrected with the SAR simulation terrain correction algorithm (Schreier, 1993) utilizing the 

SRTM-3 as DEM source and 14.5 m and 30 m pixel spacing for Radarsat-2 and ALOS PALSAR 

respectively. The Radarsat-2 terrain corrected data were resampled to 30 m spatial resolution using a 

bilinear resampling method. Polarimetric classification is usually applied via classifying the four 

polarimetric channels, or classification based on polarimetric decompositions of the scattering matrix 

e.g. Cloude-Pottier decomposition (Cloude, 1997) or Freeman-Durden decompositions (McNairn et 

al., 2009). 

SRTM data 

The SRTM (Shuttle Radar Topography Mission) elevation model was accessed for the 

determination of geomorphological parameters of the earth’s surface, which are controlled by the 

underlying geology, weathering, and regolith distribution. The SRTM global digital elevation 

processed data (Reuter et al., 2007) was acquired from the CGIAR (Consultative Group on 

International Agricultural Research) institute (Jarvis et al., 2008). This model supplied 90 m spatial 

resolution elevation data over the studied area. The data were reinterpolated using the method of 

Hutchinson (1989) at 30 m resolution. Derivatives of the elevation data were created to characterize 

the morphological parameters of the surfaces. These layers include slope, slope roughness (standard 

deviation of slope), curvature (Zeverbergen and Thorne, 1987), relative relief (elevation difference), 

and hypsometric integral (Pike and Wilson, 1971) in a 3x3 pixel window. Hydrologic network was 

derived as well using flow direction and flow accumulation raster where threshold of 6000 was 

selected to pick the main streams in the area. Euclidean distance to the streams was calculated and 
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relative height above the streams was derived in order to characterize the relative height of the 

surfaces above the current erosional base level. Landform mapping or geological mapping based on 

feature extraction from digital elevation models is a standard procedure and is becoming with the 

advent high precision and resolution DEMs acquired by LiDAR (Light Detection and Ranging) one of 

the recent research highlights (Grebby et al., 2010, Grebby et al., 2011; Mulder et al., 2011). 

Gamma ray spectrometry data 

The gamma ray signal sensed over the surface of the Earth reflects the content and distribution 

of the radioactive elements in both rocks and the derived regolith material including anomalies created 

by geochemical alterations (mineralization, hydrothermal alterations, weathering). Gamma ray 

spectrometry serves well as a tool for efficient regolith mapping (Jaques et al., 1997; Wilford et al., 

1997; Martelet et al., 2006). It reveals the chemical properties of approximately the first 30 cm layer of 

the Earth’s crust (Minty, 1997). The gamma ray spectrometry data were acquired during the 1998–

1999 SYSMIN project. The data were supplied as corrected, NASVD (Noise-Adjusted Singular Value 

decomposition) smoothed (Hovgaard and Grasty, 1997) K, eU, eTh concentrations (U and Th are 

calculated based on gamma ray emissions from their daughter elements 214Bi and 208Tl, respectively 

and assumed equilibrium in the decay series) and were subsequently gridded at 125 m spatial 

resolution using the minimum curvature interpolation (Briggs, 1974). For the purposes of 

classification, the data were resampled to 30 m with the bilinear resampling method. Different 

techniques are proposed in the analysis of airborne gamma ray spectrometry data ranging from the 

ratios of the radiometric channels (Dickson and Scott, 1997; Wilford et al., 1997), color composites, 

and color space transformations (Jaques et al., 1997) to integrations with optical and near-infrared 

datasets (Anderson and Nash, 1997; Schetselaar et al., 2000). The eTh/K, eU/K, and eU/eTh images 

were derived from the original data in order to reduce the regional trends that might exist in the data. 

3.2 Training-testing data selection 

Optimal determination of training data is a crucial element during any classification 

(Campbell, 1996; Congalton and Green, 2009). For the application of neural networks, the normality 

and homogeneity of the training classes should not be as important for the classification is not 

necessarily linear. The training samples should generally cover the whole range of input values, so that 

optimal classification rules may be set. It is also beneficial to include boundary pixels, which was also 

one of the criteria for the sample selection. 
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The training data were selected based on visual analysis of the data, field observations, and 

existing geomorphological maps and data (IGN, 2005; Brossard, 2006). A total of 56449 pixels (table 

IV-2) have been selected from the full 762733 pixels covering the study area representing 13% of the 

total area. An et al. (1995) demonstrated that increase in the number of training samples does not 

result in a significant change of the classification accuracy while using 0.23% and 0.76% of total 

Table IV-2 Training and testing pixels for the mapped classes, N. – number. 

Figure IV-4 An overview map with normalized slope values draped over shaded relief of the SRTM digital 
elevation model; the distribution of the training/testing polygons used in the classifications is 
given. 

Class N. of  
Training 
pixels

N. of 
Testing 
pixels

High/Middle glacis 8665 8665
Residual relief 8447 8446
Alluvium 2719 2718
Low glacis 8395 8394
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pixels for training. The areas selected for training and testing are depicted in figure IV-4. Random 

sampling was used to select half of the data applied to training and half for accuracy assessment. The 

training/testing areas are evenly distributed (figure IV-4) through the study area and appropriate 

coverage for each class should be satisfied. The number of training/testing pixels complies with the 

requirement for the quantity of training/testing samples for classification and subsequent accuracy 

assessment as discussed by (Congalton and Green, 2009). 

Figure IV-5 ASTER VNIR image showing the study area. Geomorphological units are marked along with 
examples of burn scars. Small white rectangular patches correspond to agricultural fields. 
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3.3 Variable definition 

Lateritic duricrusts of the High and Middle glacis 

The lateritic duricrusts form gently inclined or flat plateaus. In the SRTM data, these surfaces 

form elevated areas with sharp edges well visible in the slope image (figure IV-4). The relative relief 

and relative height above stream network show uniform distribution of values without large 

differences in the values. The visible and infrared spectral signatures of the plateaus show typical 

haematite, goethite absorption features causing an overall lower reflectance (figure IV-5) with a 

decreasing trend towards the shorter wavelengths bands 1-4 Landsat and 1-3 ASTER. Usually a 

second weaker absorption in band 7 Landsat and bands 6 and 7 ASTER connected with kaolinite 

content may be observable for some surfaces. There is usually no visible soil development. The 

thermal infrared data do not reveal a particular signature for the duricrust layers. Vegetation cover may 

mask the visible and infrared signature of the duricrust surfaces. In the gamma-ray spectrometry 

(figure IV-6) data, lateritic duricrusts accumulate both thorium and uranium, which makes them easily 

separable especially in the eTh/K ratio image. In the polarimetric data (figure IV-7), these surfaces are 

usually uniform with low backscatter the prevailing scattering mechanism is even bounce. All of the 

discussed variables show potential as descriptor variables for the classification. 

Residual relief and rock outcrops 

The Residual relief including also rock outcrops is best characterized by SRTM data and its 

derivatives. The unit consists of erosional ridges, where slope, relief, and curvature values reach high 

values compared to the other rather flat units. The spectral properties of the surfaces are again highly 

variable due to different proportions of vegetation cover, exposed soil, and outcropping basement 

rocks. All of the inselbergs in the Gaoua area belong to the greenstone belt lithologies including both 

volcano-sedimentary and volcanic rocks. The spectra of exposed rock surfaces might contain specific 

absorptions related especially to chlorite due to regional greenschist metamorphism. The 

unmetamorphosed granitic rocks usually form flat outcrops, which have a limited extent and do not 

crop out well in the study area. The radiometric data show relatively lower values for most of the 

radioelements over the basic rocks. Some of the andesitic layers show an increase in potassium levels 

visible in the RGB color composite of K, eTh, eU channels. The polarimetric data show high 

backscatter and no apparent affinity to particular scattering mechanism; however, volume scattering 

may play a significant role due to vegetation cover. 

 

 

 



 
Chapter IV 

 

161 

 

 

 

Figure IV-6 Combined image with ratio eTh/K image (upper half of the image) and ternary radiometric 
image K, eTh, eU as RGB (lower half of the image) draped over shaded relief of the SRTM 
digital elavation model; the geomorphological units are marked with arrows, elev - elevated. 
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Alluvial sediments of the valleys 

The alluvial sediments that fill the bottom of the valleys form flat surfaces with distinct 

parameters in the SRTM elevation data and the derived datasets. Additionally the infill abundantly 

exposes clay rich surfaces and thus generates spectrally distinct properties. Rather dense tree lines also 

follow the current stream network and their spectral signatures may be as well accounted for as 

Figure IV-7 Pauli decomposition of ALOS PALSAR data with the geomorphological units marked 
where possible. Blue areas correspond to single bounce scattering, red around the Town 
of Gaoua – double bounce scattering (buildings), green channel-volume scattering 
related to vegetation, high intensity, white color – residual ridges. 
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indirect indication of the alluvial sediment class. In the radiometric data, the sediments do exhibit 

elevated values for all radioelements even, as the source materials stem from all of the previously 

mentioned regolith landform classes. A relative height above the streams and distance to stream layer, 

derived from the SRTM dataset, has been calculated to constrain the occurrence of the alluvial 

sediment class to the current stream network.  

Soft pediments of the Low glacis 

The Low glacis posses rather complicated signatures in most of the examined source data, as 

the characteristics of these surfaces are highly variable. This might be ascribed to the fact that the 

surface is similarly to the alluvial sediments a surface which incorporates material from both the above 

lying duricrusts and erosional relief. Unlike the alluvial sediments, the Low glacis are variably 

inclined however, no sharp edges are found and the slope is rather uniform. In the gamma ray data 

these surfaces show again variable contents of the radioelements probably due to soil formation, where 

the soil horizon is thick a relative increase in potassium content may be observed. Due to patchy 

vegetation cover, the spectrometry signature varies accordingly. The soil types vary according to the 

basement rocks however the variation and the differences between the mainly granitic and greenstone 

belt lithologies is low. In the radar images, the backscatter is dominated by volume scattering owing to 

abundant vegetation. 

3.4 Classification 

Different classification methods have been proposed in the past for regolith landform mapping 

using remote sensing data and geophysics (Papp, 2002; Wilford et al., 2007; Woolrych and Batty, 

2007). The majority of regolith landform maps are still a product of visual analysis of the digitally 

enhanced data. During the process, we have evaluated spectral classifications based on the analysis of 

visible and infrared spectral information. The presence of vegetation; however, did not allow for 

accurate classification results. The main classification method of interest was a non-linear 

classification approach. Different types of artificial neural network (ANN) algorithms were applied in 

remote sensing data analysis including, multiperceptron networks (An et al. 1995), probabilistic 

networks (Zhang et al., 2009), or Kohonen’s self-organizing maps (Grebby et al., 2010, 2011). A 

multiperceptron feedforward neural network classification implemented in ArcGIS environment 

ADVANGEO (Barth et al., 2009) has been tested. The RPROP backpropagation algorithm (Riedmiller 

and Braun, 1993) was used to train the network via a non-linear hyperbolic tangent error function. The 

networks were set up for each class separately and then resulting probability images were combined so 

that highest probability was assigned to each respective class. The neural networks were designed as 

three layer networks consisting of one input layer with the number of neurons corresponding to the 

number of input source layers (N input neurons), one hidden layer with 2N + 1 neurons and one output 
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neuron. The transfer functions were set to logistic sigmoid function with a steepness (bias) parameter 

of 0.5. The initialization of the network was tested for both random initializations and using the 

Nguyen-Widrow algorithm (Nguyen and Widrow, 1990) with no significant differences in 

classification results. The input layers were linearly normalized between zero and one using the min-

max normalization prior to the classification. A limit of 1000 epochs or 0.001 MSE was selected for 

the termination of the particular training run. Four different scenarios were tested. The base dataset 

was formed by gamma-ray spectrometry data and SRTM data. Additionally three scenarios 

incorporating the polarimetric radar, Landsat, and ASTER data were tested. For comparisons a 

Bayesian maximum likelihood (ML) classification (Campbell, 1996) has been applied to the tested 

scenarios. The classification was based on the same training data as the neural network classification. 

3.5 Accuracy assessment 

For accuracy assessment, the traditional approach of confusion matrices (Congalton, 1991; 

Congalton and Green, 2009) was used employing the testing portion of the training/testing dataset. 

The decision had been made not to use the existing maps as validation data as obvious errors were 

noted and the difference in the scale of the mapping may be noted. The concept of confusion matrices 

is frequently used during classifications of remote sensing data and provides several statistical 

measures, which can be used to quantify the accuracy of the classification. The overall accuracy gives 

the percentage of correctly classified pixels and the producers and users accuracies help in assessing 

individual class accuracies. An important measure is the kappa coefficient, which compares the 

classification with a result of a random assignment of pixels to the classes of interest.  
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4. Results 

4.1 Neural network classification 

The best result was obtained for the classification of 11 bands including the derivatives of the 

SRTM digital elevation model and the gamma-spectrometry data (figure IV-8). For this classification, 

Figure IV-8 Result of the neural network classification based on 11 input layers. red – Fe-rich duricrusts 
of the High/Middle glacis, blue – Residual relief, yellow – Alluvium, magenta – Low glacis. 
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all of the gamma-spectrometry images computed was used although correlation exists especially 

between K and eTh values. All of the classes seem to be correctly classified in this experiment 

(table IV-3). The lowest producer accuracy 93.52% was achieved for the class of Low glacis, which 

also shares the second lowest users’ accuracy of 92.87%. The Low glacis represent a class of mixed 

surfaces with variable characteristics in both morphometry and gamma spectrometry. In the terrain, 

the surfaces may often be covered by material derived from the higher situated units (High/Middle 

glacis, Residual relief) and the surfaces show undulating surface. The highest producer accuracy 

overall holds the Alluvium class (97.5%). The class is rather well defined especially in the SRTM 

elevation data. The Alluvium also represents the smallest area compared to the other three classes. 

This also resulted in smaller amount of training/testing pixels used for this category. The user’s 

accuracy is rather low (92.4%), which means that less pixels are actually classified as Alluvium than 

those included in the validation dataset. Most of the incorrectly classified pixels belong to the Low 

glacis, which is the most frequent neighboring class. The difference between the two categories is 

subtle and depends mostly on the distance to the current stream network and the relative elevation 

above the pixels defining the streams. The most consistent both in terms of producers and users 

accuracy are the High/Middle glacis and Residual relief. Both of these classes present accuracy values 

above 96%. The High and Middle glacis are rather well separable from the other classes thanks to its 

particular signature in the gamma-ray spectrometry data. Some confusion exists between this category 

and the Low glacis. When inspecting the resulting image we may encounter obvious misclassifications 

of the High/Middle glacis and the Residual relief especially for the boundary pixels of the glacis, 

which often form sharp escarpments. Even though we did not include the bauxitic African surface in 

the training/testing samples, because of its small spatial extent, the bauxitic surface in the southern 

part of the study area (figure IV-6) has been assigned in the High/Middle glacis class (figures IV-8, 

IV-9). This does not hold true for all of the classifications, which include additional input layers 

Table IV-3 Confusion matrix for neural network classification compared with the validation data using 11 
source data layers including only SRTM derivatives and gamma-ray spectrometry data. 

Validation 
Class 

Predicted class
High/ 
Mid. gl. 

Res  
relief

Alluv. Low  
glacis

Total Prod. 
Acc. %

High/Mid. gl. 8377 17 17 254 8665 96.68 
Res. relief 27 8138 0 281 8446 96.35 
Alluvium 0 0 2650 68 2718 97.50 
Low glacis 189 154 201 7850 8394 93.52 
Total 8593 8309 2868 8453 28223
User  Acc. % 97.49 97.94 92.40 92.87
Overall accuracy = 95.71 %, K = 0.94
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(figure IV-10). The Residual relief was mapped correctly and all of the inselbergs and most of the 

smaller erosional ridges were recognized. 

4.2 Comparison between all classification scenarios 

The classification experiments were constructed consecutively with increasing number of 

input classes. The full confusion matrix with the number of pixels belonging to each class, the overall, 

users and producers accuracy along with the kappa coefficient is presented for the best classification in 

table. Two matrices describing the differences in the outcome of ANN classifier and ML classifier 

using 24 input layers are displayed in tables 4 and 5. An abbreviated outcome stating the overall 

accuracy and kappa coefficient for all of the classification experiments is then presented in table IV-6. 

The neural network classifier performed consistently better than the maximum-likelihood classifier in 

all of the four scenarios. Important is the fact that the overall classification accuracy generally 

Figure IV-9 Result of the maximum likelihood classification based on 11 input layers; red – Fe rich 
duricrusts of the High/Middle glacis, blue – Residual relief, yellow – Alluvium, magenta -  
Low glacis. 
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decreases with the inclusion of more input layers. The highest overall accuracy and kappa coefficient 

was obtained for the combination of gamma-ray spectrometry images and derivatives of the SRTM 

elevation data. Nonetheless, the differences between the classifications are small within 5 percent with 

the exception of maximum likelihood classifier applied to the combination of gamma-ray spectrometry 

data, SRTM data, and polarimetric radar data. Here the classification accuracy falls below 90%. 

When we further compare the results of the 11-layer neural network classification and the 20 

or 24 layer (figure IV-10) classification, which includes all of the available data, we have to conclude 

that the later produces apparently noisier data. The confusion between the High/Middle glacis and the 

Residual relief increases quite significantly which results in a drop of both producers and users 

accuracy. The effect of this misclassification is obvious especially for the boundary pixels as has been 

already described for the edged of the duricrust plateaus. The duricrust-covered glacis seem to be 

however better defined from the Low glacis especially in the NW corner of the study area. 

Figure IV-10 Result of the neural network classification based on 24 input layers; red – Fe rich duricrusts 
of the High/Middle glacis, blue – Residual relief, yellow – Alluvium, magenta – Low glacis. 
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Although the maximum likelihood classification provides in terms of classification accuracies 

satisfactory results for the validation sites when the whole image is compared with the result, 

stemming from neural network classification of the same input layers considerable differences may be 

found. The extent of Residual relief class is greatly increased throughout the study area (figure IV-9) 

and the effect is especially noticeable in the central eastern section east of Gaoua town. Confusion also 

increases between the Residual relief class and High/Middle glacis. Several high peaks become 

misclassified as High/Middle glacis. An increase in class of the Alluvium at the expense of reduction 

of the Low glacis is also obvious. The maximum likelihood classification result incorporating 24 input 

layers is again noisier than the 11 layer classifications (figure IV-11). A particular feature, which can 

be observed, is the confusion of lower slopes of the Residual relief class with the High/Middle glacis 

and vice versa mapping of some of the glacis escarpments in Residual relief class. 

Table IV-5 Confusion matrix for maximum likelihood classification compared with the validation 
dataset using 24 source data layers. Layers are the same as in table IV-4. 

Table IV-4 Confusion matrix for Neural network classification compared with the validation dataset using 
24 source data layers - first 10 PCA bands ASTER, slope, slope roughness, hypsometric 
integral, residual relief, curvature, height above stream, 6 ALOS PALSAR and Radarsat – 2 
Pauli decomposition bands, and two ratio grids eTh/K, eU/K. 

Validation 
Class 

Predicted class
High/ 
Mid. gl.

Res  
relief

Alluv. Low  
glacis

Total Prod. 
Acc. % 

High/Mid. gl. 7951 148 7 559 8665 91.76 
Res. relief 550 7376 0 520 8446 87.33 
Alluvium 11 8 2441 258 2718 89.81 
Low glacis 247 151 105 7891 8394 94.01 
Total 8759 7683 2553 9228 28223
User  Acc. % 90.78 96 95.61 85.51
Overall accuracy = 90.91 %, K = 0.87

Validation 
Class 

Predicted class
High/ 
Mid. gl.

Res. 
relief

Alluv. Low  
glacis

Total Prod. 
Acc. % 

High/Mid. gl. 8131 173 13 348 8665 93.84 
Res. relief 55 8110 0 281 8446 96.02 
Alluvium 0 0 2613 105 2718 96.14 
Low glacis 242 170 211 7771 8394 92.58 
Total 8428 8453 2837 8505 28223
User  Acc. % 96.48 95.94 92.1 91.37
Overall accuracy = 94.33 %, K = 0.92
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5. Discussion 

5.1 Comparison with the existing maps 

The neural network classification, which is based on an integrated dataset formed by gamma-

ray spectrometry data and derivatives of the SRTM elevation model, provides the best classification 

result that might be compared with the existing maps. The differences between the pedo-

geomorphological map (Brossard, 2006) and the results of the classifications are evidently tied with 

the level of detail. A number of the smaller plateaus and buttes of the High/Middle glacis, which were 

correctly mapped by the neural network classifier and were verified by field mapping and work of 

Boeglin (1990), are not shown on either of the existing maps. In addition, the geomorphological map 

lacks completely even larger plateaus especially in the western part of the study area (see figures IV-3, 

IV-8, IV-9, and IV-10). The Residual relief class is in the existing maps divided into two or three 

classes based on the lithology forming the basement, yet the division is highly questionable especially 

in the geomorphological map. The pedo-geomorphological map draws on the knowledge of existing 

geological maps. From pedological point of view, the overlying soils are of the same type. Blot et al. 

(1973) showed that the chemical compositions of the duricrusts and soils depends on the source rock, 

nonetheless the differences in the radioelement concentrations are too subtle to be mapped by airborne 

or satellite data. It would be certainly possible to use the existing geological maps to divide the 

Residual relief class or the Low glacis class and assign an appropriate attribute from the geological 

map. Based on the result of the automatic classification little or no difference exists between Residual 

relief over different type of volcanic or volcano-sedimentary rocks. The Low glacis face the same 

 SRTM(6) 
Gamma-
ray(5*) 

Radarsat-2(3) 
ALOS 
PALSAR(3) 
Gamma-ray(2) 
SRTM(5) 

Landsat 7 ETM+(6) 
Radarsat-2(3) 
ALOS PALSAR(3) 
Gamma-ray(2) 
SRTM(5) 

ASTER(10**) 
Radarsat-2(3) 
ALOS PALSAR(3) 
Gamma-ray(2) 
SRTM(5) 

N. of layers 11 14 20 24 
ANN O.A. 95.71 % 93.20 % 94.4 % 94.33 % 
Kappa 0.94 0.90 0.92 0.92 
ML  O.A. 91.55 % 88.78 % 91.04 % 90.91 % 
Kappa 0.88 0.84 0.87 0.87 

Table IV-6 Summary of classification results according to the used layers. SRTM – derivative layers 
(slope, slope roughness, curvature, relative relief, hypsometric integral, height above 
closest stream), Gamma ray – eTh/K, eU/K,*(K, eTh, eU), Radarsat-2 – 3 Pauli 
decomposition channels, ALOS PALSAR – 3 Pauli decomposition channels, Landsat – 6 
bands, ASTER – **first 10 PCA bands. ANN – artificial neural network classification, 
O. A. – overall accuracy, ML – maximum likelihood classification. 
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difficulties. It might be concluded that this class could probably be divided into two classes into Low 

glacis developing over granitic rocks and the rocks of the greenstone belts; however, differences are 

subtle and confusion between such two classes would probably be high. The alluvial sediments are 

defined by the active deposition of material by stream action. The stream network is intermittent in 

most of the study area while the channels are quite narrow. During the rainy season, frequent floods do 

occur and alluvial deposits may cover even areas situated further from the stream network and 

relatively higher from the active stream due to the overall flat morphology. The fact that the eleven 

source bands perform better than more input bands might be partially explained by the influence of 

vegetation cover on spectral characteristics of the regolith or rock surfaces (Siegal and Goetz, 1977; 

Murphy and Wedge, 1994; Serbin et al., 2009). Radar polarimetry is affected in a similar manner. 

Although longer wavelength L-band radars are partially able to penetrate vegetation cover the effect of 

volume scattering is quite apparent both in the Pauli decomposition or in Freeman-Durden 

decomposed data or when examining the H-α plane (Cloude and Pottier, 1996). A large problem noted 

already by Simpson (1990), Wilford (2002), or Hewson et al. (2006) are burn scars and the cultural 

activity. Burn scars might be seen in figure IV-4. In spectral data, these areas stand out as anomalous 

patches where one cannot determine the nature of the underlying material easily. Better results for 

classifications containing the radar and multispectral data might be expected further to the north in the 

Sahel zone where less vegetation may be found. 

5.2 Perspectives for automated regolith landform mapping 

The results obtained favor the neural network classifier over the maximum likelihood. ANN 

classifications usually outperform standard classification procedures especially while using complex 

datasets when analyzing geomorphology or geological units (An et al., 1995; Ehsani and Quiel, 2008; 

Grebby et al., 2011). The prediction of class probability outside of the selected training/testing areas 

seems to be better for the neural network classifier. Important is also the ability of the network to act 

as a robust classifier capable of generalization and the ability to suppress layers that do not add 

information to the classification process. The neural network classification of gamma-ray spectrometry 

and digital elevation data provides rather uniform units, which are well suited for further post 

processing and conversion into polygon layers often utilized in regolith landform mapping (Pain et al., 

2007). Even better results, in terms of later conversion to standard polygon based maps, would 

probably be obtained by object oriented classification as described for example by Dragut and 

Blaschke (2006). The results show that moderate resolution geophysical data and a freely available 

digital elevation model data provide feasible classification results. The importance of the information 

from elevation models stresses the requirements on the precision of these models and the level of 

detail that one can obtain. The application of finer resolution DEMs would probably further improve 

the accuracy of the classification. A similar effect would most probably have the utilization of high-



 
Chapter IV 

 

172 

resolution gamma ray spectrometry (20–30 m pixel spacing). Visual interpretation of remote sensing 

and geophysical data certainly plays an important role in today’s regolith mapping (Wilford et al., 

1997; Craig, 2001; Deller, 2006; Woolrych and Batty, 2007). Automated approaches may provide a 

more objective interpretation of the spatial distribution of regolith landform units. 

6. Conclusions 

An automatic approach to regolith landform mapping has been presented in a moderately 

vegetated region of southwestern Burkina Faso in the Gaoua area. Four main regolith landform units 

have been mapped with success and thirty-three input layers have been evaluated as candidate input 

layers for best classification results. 

1) Best result was obtained for neural network classification with input layers constituting 

gamma-ray spectrometry data and derivatives of the SRTM digital elevation model. 

2) Additional input layers including multispectral data and polarimetric data did not enhance 

the classification. 

3) The neural network classifier provided overall better result than the standard maximum –

likelihood classifier. 

4) The results improve the current mapping as they supply higher spatial resolution and 

correctly identify especially the Fe-rich duricrust plateaus of the High and Middle glacis and areas 

exposing Residual relief, where erosion has partially uncovered the basement rocks. 

5) The map may be employed in guiding geochemical exploration or accessing tectono-

geomorphic evolution of the area. 
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Conclusions générales 

L’objectif de cette thèse était double. Il s’agit d’une part de contribuer à la compréhension de 

l’évolution géodynamique du craton ouest africain à partir des données géologiques situées dans 

l’ouest du Burkina Faso. Il s’agit d’autre part d’appréhender la distribution du régolithe dans cette 

même région grâce à l’aide de la géophysique et de la télédétection. La zone d’étude géologique 

comprenait trois ceintures de roches vertes : Houndé, Boromo, Banfora et les domaines de granitoïdes 

associés. L'étude consistait en l’acquisition de nouvelles bases de données géologiques, 

pétrophysiques, et en particulier de données spectrales. Finalement le régolite de la zone Boromo a été 

investi au moyen d’un système automatique de télédétection.  

Une nouvelle carte litho-structurale a été réalisée en utilisant une méthode d’intégration des 

données de géophysiques aéroportées, des données satellitaires et des données géologiques de terrain 

dans un environnement SIG. Les unités lithologiques des ceintures des roches vertes ont été 

cartographiées, même sous une couverture latéritique. Quatres générations d’intrusions (ME1-ME4) 

ont été distinguées dans les domaines de granitoïdes, ce qui a des conséquences importantes pour le 

modèle géodynamique. De nombreuses zones de cisaillement à l’échelle régionale ont été 

nouvellement découvertes. L’application de la méthologie de l’intégration des données multiples a un 

fort potentiel pour la cartographie des régions de l’Afrique de l’Ouest, mal accessibles et couvertes par 

la végétation et les latérites. 

Notre étude de trois ceintures de roches vertes et des granitoïdes associés a mis en évidence 

trois phases principales de déformation compressive avec une phase potentiellement extensive qui ont 

contribué à la formation de la croûte continentale juvénile lors de l’orogénèse éburnéenne. Les 

arguments pétrologiques, structuraux, géochimiques et métamorphiques suggèrent l’existence d’un ou 

de plusieurs arcs volcaniques qui sont rentrés en collision. La tectonique des plaques opérait déjà à 

cette époque, même si les mécanismes de croissance crustale étaient modifiés par rapport au présent. 

Nous proposons un mécanisme par plissement des unités mafiques rigides à grande échelle, mais nous 

soulignons également le rôle important des granitoïdes dans cette croissance crustale. 

Afin d’améliorer les interprétations des données multispectrales et hyperspectrales, une 

nouvelle bibliothèque spectrale comprenant plus de 700 spectres des roches et surfaces de régolithe, 

ainsi que des spectres végétaux complémentaires a été crée. L’échelle spectrale de la bibliothèque 

couvre une gamme entre 0,35 µm et 2,5 µm. Les observations in-situ et les données spectrales 

acquises montrent l’importance des phénomènes d’altérations météorologiques sur les propriétés 

spectrales des roches sous des conditions semi-arides. La formation du vernis de roche et des couches 

ferreuses sur la surface d’altération est contrôlée par la composition lithologique, par la texture et par 

les caractéristiques structurales des différents types de roches. La variété des signatures spectrales 

suggère une discrimination possible entre les matériaux échantillonnés, basée sur l’analyse 
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hyperspectrale. La nouvelle bibliothèque spectrale acquise fournit les informations primaires pour 

l’analyse des données de télédétection en Afrique de l’Ouest. 

Une procédure automatique de classement des unités de régolithe a été présentée. Quatre 

unités de terrain régolithique - haut/moyen glacis, le relief résiduel, sédiments alluviaux et bas glacis 

ont été cartographiées. Le meilleur résultat a été obtenu en utilisant la classification des réseaux de 

neurones pour un scénario composé de 11 couches d'entrée comprenant la spectrométrie gamma 

aérienne et les dérivations de modèle numérique de terrain. Un ajout de couches d'entrée n’affecte pas 

de manière significative les résultats de la classification. La méthode de réseaux de neurones a donné 

de meilleurs résultats que la méthode de vraisemblance maximum. Les résultats représentent une 

amélioration des cartes existantes, en particulier en termes de précision spatiale et surtout pour les 

surfaces riches en Fe des haut/moyen glacis et le relief résiduel. Les résultats de cartographie peuvent 

être utilisés pour la prospection géochimique et l'analyse de l'évolution géomorphologique. 

La recherche décrite dans cette thèse démontre l'importance de l’intégration de toutes les 

sources d'informations disponibles au cours des analyses géologiques et géomorphologiques de 

régolite menées dans des terrains anciens de l'Afrique. Les études géologiques effectuées dans ces 

régions peuvent bénéficier de la couverture à grande échelle qui caractérise ces méthodes, mais aussi 

de leur potentiel à pénétrer sous la couverture régolithique. Le modèle géotectonique proposé présente 

une nouvelle vue sur l’évolution précoce de la croûte continentale du craton ouest-africain. Le modèle 

étant basé sur l’intégration de plusieurs méthodologies, apporte une précision améliorée sur la 

géométrie 3D du système ainsi que la chronologie relative de certaines structures à grande échelle. Les 

mêmes méthodes fournissent également des données appropriées pour la cartographie et la 

caractérisation des unités régolithiques développées au dessus du socle. 

Avec une disponibilité croissante de nouvelles sources de données qui sont actuellement 

libérées et qui seront publiées dans les prochaines décennies, des approches similaires à celles 

proposées dans cette thèse pourront être utilisées dans d'autres régions d'Afrique occidentale et au-

delà.  
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GENERAL CONCLUSIONS 

This thesis focuses on enhancing our understanding of geological evolution and regolith 

distribution, using geophysical and remote sensing methodologies in western Burkina Faso. The area 

of geological investigations encompassed three greenstone belts, the Houndé, Boromo, Banfora and 

associated granitoid domains. The study involved the acquisition of new geological, petrophysical and 

in particular spectral property databases; finally, the regolith of part of the Boromo belt was 

investigated using an automatic regolith landform mapping system. 

As a part of this work, a new synthetic geological map of western Burkina Faso at 1:500 000 

scale was created. The map integrates existing and new field data, airborne geophysical and remote 

sensing data in order to provide a coherent litho-structural framework for the region. We have defined 

four groups of granitoid intrusions and related gabbros based on petrochemistry and magnetic data. 

The granitoid domains consist of many generations of individual intrusions. This has significant 

implications for the overall geotectonic model. Relic F1 fold hinges were recognized in the magnetic 

data within the Houndé and Banfora greenstone belts. The D1 structures are generally overprinted by 

S2 shear zones. Several new S2 shear zones were identified in magnetic data, including the Bossié 

shear zone transecting the Sidéradougou granitoid domain and abundant small-scale shear zones 

overprinting granites and other lithologies. Airborne gamma ray spectrometry data and SRTM digital 

elevation models allow for lithological discrimination in areas where regolith cover is minimal. At 

least three generations of doleritic dykes, oriented N40°, N100°, N120°, were identified in magnetic 

data. All three generations crosscut the Paleoproterozoic basement and two of them (N40°, N100°) 

intrude the sediments of the Taoudeni basin. 

In total, three deformation events were identified in the polyphase orogenic cycle that has 

taken place in the study area. Two of the events play a key role in the crustal accretion during the 

Eburnean orogeny. The geochemical signature of the volcanic rocks is compatible with the evolution 

from tholeiitic oceanic crust or oceanic plateau to juvenile volcanic island arcs. Zinc and copper 

deposits are related to this volcanic arc stage. Lateral compression led to an E-W shortening of 

volcanic arcs during the D1 deformation events, accompanied by syntectonic emplacement of 

voluminous TTG and granitoid plutons. A megacrystic tholeiitic basalt unit allowed us to establish 

stratigraphic correlations between the Houndé and Boromo greenstone belts and propose a crustal 

scale anticline (D1). Shallow water Tarkwaian-type sediments were deposited during the late stages of 

the D1 phase. Their deposition was structurally controlled by faults, which were later reactivated as 

the Boni shear zone. When the orogen reached a critical thickness and the weak and hot mantle was 

not able to support further thickening, the deformation mechanism switched from E-W to WNW-

oriented compression, to a transpression of the same orientation. An interconnected network of steeply 

dipping regional-scale transcurrent high strain zones, often bearing gold mineralization, characterizes 

the D2 deformation. Pluton emplacement contributed to the structural evolution of the greenstone belts 
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at local scales; however, coaxial shortening of the stiffer volcanic units supported by coeval magma 

input controlled the regional scale system geometry. The late-Eburnean or Pan-African N-S 

compression D3 is responsible for E-W trending crenulation cleavage, kink folds and shallow north or 

south dipping thrust faults. 

In order to improve interpretations based on multispectral and hyperspectral remote sensing 

data, a new spectral library, containing over 700 spectra of rock and regolith surfaces with 

complementary spectra of vegetation, was created. The spectral range of the library (0.35 µm to 2.5 

µm) allows direct comparisons with remote sensing data acquired by satellites such as Landsat, 

ASTER, or Hyperion. The field observations and acquired spectral data show the importance of 

weathering related phenomena on the spectral properties of rock under semi-arid conditions. The 

lithological composition, texture, and structural features of the different rock types control the 

formation of rock varnish and iron coatings on the weathered surfaces. The Fe, Mg-OH absorption 

features related to the content of chlorite, amphibole, pyroxene, and epidote in mafic to intermediate 

volcanic rocks and the TTGs produce distinct spectral features centered at 2.33–2.34 µm and 2.25 µm. 

Al-OH absorptions around 2.2 µm related to kaolinite, smectite, and muscovite/illite minerals are 

observable in the spectra of granitic rocks, sediments, and all of the weathered rock and soil surfaces. 

Ferrous iron and ferric iron absorptions situated around 1.0 µm, 0.9-0.8 µm, 0.65 µm, and below 0.6 

µm are indicative of iron rich minerals. In the case of fresh rock surfaces of the gabbros, basalts, 

andesites and the TTGs these absorptions are tied to chlorite, amphibole, pyroxene, and biotite 

content. An abundance of hematite and goethite may be observed in most of the sampled weathered 

surfaces of rocks, soils, and Fe-rich duricrusts. The variation in spectral signatures implies that 

discrimination between the sampled materials based on hyperspectral data analysis should be possible. 

The newly acquired spectral library provides primary information for the analysis of remote sensing 

data in West Africa and other regions with similar combinations of climate and geology such as 

Australia. 

An automatic approach to regolith landform mapping has been presented in a moderately 

vegetated region of southwestern Burkina Faso near the town of Gaoua. Four main regolith landform 

units constituting the High/Middle glacis, Residual relief, Alluvial sediments, and soft pediments of 

the Low glacis have been mapped in the area. Thirty-three input layers have been evaluated as 

candidate input layers during the classifications including data from airborne gamma-ray 

spectrometry, SRTM elevation model, Landsat, ASTER, Radarsat-2, and ALOS PALSAR sensor 

systems. The best results were obtained for neural network classification with input layers consisting 

of gamma-ray spectrometry data and derivatives of the SRTM digital elevation model. Classification 

based on additional input layers including multispectral data and polarimetric radar data did not 

enhance the classifications. This stresses the importance of high-resolution digital elevation data and 

gamma-ray spectrometry data for the analysis of regolith terrains similar to the Gaoua area. The neural 

network classifier provided an overall better result than the standard maximum -likelihood classifier in 
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all of the tested classifications scenarios. The results improve the current results of geomorphological 

or pedo-geomorphological regolith landform mapping as they furnish higher spatial resolution of the 

regolith landform units and correctly identified especially the Fe-rich duricrust plateaus of the high 

and Middle glacis as well as areas exposing Residual relief, where erosion has partially uncovered the 

basement rocks. The resulting classification map may be employed in guiding geochemical 

exploration or accessing tectono-geomorphic evolution of the area. 

The research described in this thesis demonstrates the importance of integrating all available 

information sources during geological and regolith analyses conducted in ancient terrains of Africa. 

Geological studies performed in these regions may profit from the large-scale view supplied by the 

methods and from the ability to penetrate regolith cover. The derived geotectonic model presents a 

new view on the early development of continental crust in the West African Craton. As the model is 

based on an integration of several methodologies, it supplies improved accuracy of the 3D geometry of 

the system as well as the relative chronology of some of the large-scale structures. In order to 

characterize and map the regolith landform units, which developed over the basement lithologies same 

methods provide sufficient data for successful automatic classifications.  

In the future further investigations related especially to absolute dating of the major types of 

lithologies will answer some of the uncertainties regarding the timing of pluton emplacement and 

timing of the deformation events described. The automatic method of regolith landform mapping may 

be easily extended to the remaining area of Burkina Faso and other countries of the West African 

Craton, where coverage of at least moderate resolution gamma spectrometry and elevation data exists. 

In order to utilize fully the spectral measurements, further data of vegetation species may be collected. 

Automatic classifications of the rock and regolith surfaces may be attempted provided hyperspectral 

data of sufficient spatial resolution will become available. With an increasing availability of new 

sources of data, which are currently being released and will be released over the next decades, similar 

approaches that integrate multiple data sources or use state of the art geophysical methods and remote 

sensing sensors may be used in other regions of West Africa and beyond. 
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ANNEX 1 

DATA DESCRIPTION 

Magnetometry and Gamma ray spectrometry data 

The used data were acquired as part of the SYSMIN project, which was financed by the 

European Union. The data were delivered to the Ministry of Energy and Mineral Resources of Burkina 

Faso and are distributed by the Bureau of Mineral Resources and Geology of Burkina Faso. The 

acquisition of the data was performed during a joint magnetometry and gamma-ray spectrometry 

survey by CGG France. Two aircraft (Cessna 404 and Cessna 208) equipped with a dynamically 

compensated magnetometer (Scintrex CS2 cesium vapor) installed on a beam extended from the tail of 

the aircraft on a stinger and an auto-stabilized gamma-ray spectrometer (Exploranium GR-820) with 

two NaI(Tl) detectors (33.6 liters downward-looking and 8.4 upward looking) located inside of the 

aircraft. The first part of the survey took place between September 1998 and January 1999 while 

second part was flown during June and July 1999. The sampling rate was 10 Hz for the magnetometry 

measurements and 1 Hz for the gamma-ray spectrometry readings. The position of the readings was 

determined with the help of Differential GPS system. The GPS base stations were installed at 

Ouagadougou and Bobo-Dioulasso. The aircraft was also equipped with auxiliary instruments such as 

radar altimeter, barometric altimeter, and temperature and pressure sensors. 

 

Spacing between lines 500 m and 1000 m 

Flight line direction NW-SE 

Spacing between tie-lines 10000 m 

Tie-line direction NE-SW 

Flight altitude 100 m ground clearance 

Average speed 70-80 m/s 

 

Table 1 Design and characteristics of the SYSMIN 1998-1999 airborne geophysical survey performed in 
Burkina Faso 

Preprocessing of the magnetometry data 

The magnetometry data were subject to standard pre-processing procedures (Telford, 1990; 

Reeves, 2005). The raw readings were corrected for instrument noise and lag (time-space discrepancy 

between measurements and geographic position reading). The lag corrected data were compensated for 

the effects of aircraft magnetization and the diurnal variation of the magnetic field was subtracted from 
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the readings using a ground based measuring station. The data were then leveled with the help of the 

tie lines. Finally, the regional magnetic field was subtracted from the data employing the IGRF 1995 

model adjusted for the date and the altitude of the survey. The data were gridded with 125 and 250 m 

spatial resolution using the bi-directional gridding method (Reeves, 2005). The two grids were then 

merged together to a single grid while the coarser was resampled to 125 m. 

 Preprocessing of the gamma-ray spectrometry data 

The gamma-spectrometric readings were derived from the 256 channels using the 

characteristic spectrometric bands corresponding to potassium (1.37–1.57 MeV), uranium (1.66–1.86 

MeV), and thorium (2.41–2.81 MeV). The Uranium and Thorium measurements are actually referred 

to as the equivalent of U, Th or eU, eTh, respectively. This convention results from the fact that the 

amount of the emitted gamma rays from U and Th are calculated based on emissions from, further 

down the decay series, daughter elements 214Bi and 208Tl, respectively and assumed in equilibrium. 

The total count readings correspond to an energy spectrum spanning 0.41–2.81 MeV. The data were 

subject to standard pre-processing procedures (Telford et al., 1990; Minty, 1997). The readings were 

first corrected for background noise caused by the aircraft and the cosmic radiation. The Compton 

scattering correction was applied along with the altitude compensation utilizing the coefficients 

gathered during calibration flights. The data were also corrected for the presence of atmospheric radon 

using the upward looking detector. Finally, the data were normalized according to the measured 

sensitivity of the system established during a calibration survey. The corrected data were then 

smoothed using the NASVD algorithm (Noise-Adjusted singular Value decomposition) developed by 

Hovgaard and Grasty (1997). The minimum curvature gridding procedure (Reeves, 2005) was utilized 

to produce two grids at 125 m and 250 m spatial resolution. The grids were ultimately merged to one 

single grid retaining a 125 m spatial resolution. 

Gravimetric data 

The gravity data available for western Burkina Faso stem from the ORSTOM west and central 

African gravimetric data acquisition campaign and were acquired in 1958 (Albouy et al., 1992). The 

data have a maximum spacing of 4000 m between sampling points and were mainly acquired along 

major roads. The data density is about 220 stations per square degree. Station locations were 

determined from topographic maps and elevations by barometric leveling, using Wallace and Tiernan 

altimeters. The Gravimeters were North American, Worden, or Lacoste and Romberg, with a 

resolution of 0.01 mGal. The reported accuracy of the gravity measurements after earth-tide and 

instrument drift correction is about 0.5 mGal. The positioning error is estimated to be less than 5 m in 

the vertical and about 200 m in the horizontal direction. Free air and Bouguer corrections were applied 
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to the data using 2.67 g/cm3 as the reduction density. The Bouguer anomaly was computed at each 

location according to equation 1. 

 

(equation 1)  𝑔𝐵 = 𝑔𝑜𝑏𝑠 − (𝑔𝑡 − ∆𝑔𝐹𝐴 +  ∆𝑔𝐵 +  ∆𝑔𝑇), 

  
 where: gobs  measured gravity 
  Gt   Theoretical gravity (2 different reference systems: Potsdam and  
    IGSN71) 
  ΔgFA  Free air correction 
  ΔgB   Bouguer correction 

 ΔgT   Topographic correction 

 

For Burkina Faso, the topographic correction was not accounted for, as errors were less than 

0.5 mGal. The largest source of errors is tied to the correct determination of ΔgB, which is linearly 

dependant on the altitude errors and thus 1 mGal corresponds to 5 m error in altitude. 

The data were gridded at 3000 m spatial resolution to produce a Bouguer anomaly map using 

the minimum curvature gridding method. 

SRTM-3 Digital elevation data 

SRTM datasets were produced by a collaborative effort of NASA and NIMA (National 

Imagery and Mapping Agency), and German and Italian space agencies. The goal was to generate a 

near-global digital elevation model (DEM) of the Earth using radar interferometry. The data collection 

took place during the STS-99 mission of the space shuttle Endeavour while using modified SIR-C 

sensor. The SRTM-30 data with 90 m spatial resolution at the equator are available from a number of 

sources with different processing steps applied to the original data published by NASA. The vertical 

error was reported to be less than 16 m (Rodriguez et al., 2006). The original data contain no-data 

holes where water or radar shadow effect did not allow for correct height estimation. The CGIAR 

SRTM database version 4 (Jarvis et al., 2008) offers the SRTM-3 global dataset as void-filled data 

using the method described by Reuter et al. (2007). The interpolation of the data voids utilizes several 

interpolation methods based on the size of the void and the availability of auxiliary height information 

from other sources. The data are provided in ARC GRID, ARC ASCII, and GeoTiff format as 

unprojected 5 by 5 degrees data tiles with WGS84 datum. 
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Landsat 7 ETM+ data 

Landsat 7 was launched on April 15, 1999 under the cooperation of NASA and USGS as a 

prolongation of the 33 years long and successful Landsat Program. The exact specifications of the 

satellite’s orbit and characteristics are provided in Table 1.  

 

Swath width: 185 kilometers 

Repeat coverage interval: 16 days (233 orbits) 

Altitude: 705 kilometers 

Quantization: Best 8 of 9 bits 

Orbit and Inclination: Sun-synchronous, 98.2 degrees 

Equatorial crossing: Descending node; 10:00 A.M. 

 

Table 2 Landsat 7 ETM+ satellite and data specifications 

 

The earth observing instrument on Landsat 7, the Enhanced Thematic Mapper Plus has the 

capabilities of the previous Thematic Mapper sensors aboard Landsat 4 – 5 systems, but it also 

includes new features, which further enhance the potential of the sensor in global change studies, land 

cover monitoring and assessment, and large area mapping. The new features are primarily the 

incorporation of a 15 meters ground resolution panchromatic band, 5% radiometric calibration with 

full aperture and a thermal IR channel with 60 meters spatial resolution (NASA, 2008). The 

specifications of the satellite and sensor onboard are provided in Table 3. 

 

Spectral Band 
Half Amplitude 
Bandwidth (μm) 

Nominal Ground 
Sample Distance (m) 

Panchromatic 0.522-0.90 15 

1 0.45-0.52 30 

2 0.52-0.60 30 

3 0.63-0.69 30 

4 0.76-0.90 30 

5 1.55-1.75 30 

6 10.4-12.5 60 

7 2.08-2.35 30 

 

Table 3 Spectral and spatial resolution of the bands captured by the Enhanced Thematic Mapper Plus sensor 
aboard the Landsat 7 satellite 
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The main site for receiving data streams is the EROS data center maintained by USGS in 

Sioux Falls, South Dakota. There are also other receiving sites including international ground stations 

(e.g. ESA in Europe). The data can be obtained in different formats depending on the processing 

facility. The USGS L1T product consists of geometrically and radiometrically corrected Landsat data, 

where the geometric correction employs ground control points and digital elevation models. The 

scenes that were utilized in our study included seven Landsat-7 L1T images provided as courtesy of 

the USGS. 

ASTER data 

The ASTER instrument is a cooperative effort between NASA; Japan's Ministry of Economy, 

Trade and Industry (METI); and Japan's Earth Remote Sensing Data Analysis Center (ERSDAC). The 

instrument provides spectral coverage in fourteen bands (see Table 4) with three subsystems (VNIR, 

SWIR, and TIR). ASTER VNIR optical system further includes a backward pointing telescope for 

registration of stereoscopic images, which are used, for generating Digital Elevation Models (Abrams 

et al, 2002). 

 

Subsystem Band Number 
Spectral range 
(μm) 

Nominal ground sample 
distance (m) 

VNIR 

1 0,520-0,600 

15 
2 0,630-0,690 
3N 0,780-0,860 
3B 0,780-0,860 

SWIR 

4 1,600-1,700 

30 

5 2,145-2,185 
6 2,185-2,225 
7 2,235-2,285 
8 2,295-2,365 
9 2,360-2,430 

TIR 

10 8,125-8,475 

90 
11 8,475-8,825 
12 8,925-9,275 
13 10,250-10,950 
14 10,950-11,650 

 

Table 4 Spectral and spatial resolution of the bands captured by the ASTER sensor aboard the EO-1 TERRA 
satellite 

 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of 

the instruments present on the platform TERRA that was launched on December 18, 1999. TERRA 

also called EOS-AM1 is the flagship of the large multinational, multi-disciplinary project EOS (Earth 

Observation System) involving partnerships with the aerospace agencies of Canada and Japan 
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(Abrams et al, 2002). Data coverage of ASTER is not continuous, instead only a number of selected 

scenes are acquired during one orbit of the platform. The orbit was designed to follow that of Landsat 

(see table 5). The main receiving station is located in White Sands, New Mexico. The data are 

distributed in HDF (Hierarchical Data File) format, a standard data format for all NASA Earth 

Observing System (EOS) data products. There are several processing options available on demand. 

The L1B data product contains radiometrically and geometrically corrected data (Abrams et al., 2002). 

Before further processing the data were corrected for the cross-talk phenomenon (Iwasaki et al., 2001). 

For the study area, 30 scenes were made available as courtesy of JAXA and NASA. 

 

Swath width: 60 kilometers 

Repeat coverage interval: 16 days (233 orbits) 

Altitude: 705 kilometers 

Quantization: VNIR, SWIR 8 bits; TIR 12 bits 

Orbit and Inclination: Sun-synchronous, 98.3 degrees 

Equatorial crossing: Descending node; 10:30 A.M. 

 

Table 5 EO-1 TERRA satellite orbit specifications and ASTER sensor data specifications 

  



 
Annex I  

 
 7 

ALOS PALSAR data 

The Advanced Land Observing Satellite (ALOS) was launched on January 24, 2006 by the 

Japanese Aerospace Exploration Agency (JAXA). The PALSAR L-band sensor was developed in 

cooperation with the Japan Resources Observation System Organization (JAROS). The PALSAR 

sensor represented the only space-borne operational L-band SAR system until its power failure in 

2011.  

 

Repeat coverage interval 46 days (296 orbits) 

Swath width 20–350 km 

Look direction right-looking 

Incidence angle 8–60 deg  

Altitude 691 km 

Quantization 5 bits 

Spatial resolution 7 to 100 m 

Orbit and inclination Sun-synchronous 98.1 deg 

Frequency/Wavelength 1.270 GHz (L-band)/23.6 cm 

Equatorial crossing Descending node; 6:00 A.M. 

Polarization HH, VV, HV, VH 

 

Table 6 ALOS PALSAR satellite sensor system and its specifications 

 

The experimental polarimetric mode of the PALSAR sensor allows for acquisition of full-

polarimetric data. Specifications of the product (JAXA, 2009) are given in table 7. The data are 

provided in several processing levels. The level 1.1 processing includes calibration and compression 

of the data, which are then provided in standard CEOS format where each polarimetric band is stored 

separately with pixel type being complex integer. A leader file containing all of the data necessary for 

further processing is provided with the data set. The two scenes processed for the Gaoua area were 

provided as a courtesy of ESA and JAXA for the SOAR project 6788. 
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Nominal pixel spacing 4.7 x 5.1 m (Range x Azimuth) 

Resolution 5.2 x 7.6 m (Range x Azimuth) 

Nominal scene size 25 x 25 km (Range x Azimuth) 

Range of incidence angles 18 to 49 degrees 

Number of looks 1 x 1 (Range x Azimuth) 

 

Table 7 PALSAR polarimetry mode L1.1 SLC (single look complex) product specifications 

 

Radarsat-2 data 

The Radarsat-2 satellite is the second radar system satellite launched by the Canadian Space 

Agency in cooperation with MDA (MacDonald, Dettwiller and Associates Ltd.) a privately owned 

geospatial information company on December 14, 2007. This next generation radar system has full 

polarimetric capability and adjustable imaging geometry for increased re-visit time (satellite and 

sensor specifications are given in table 8). 

 

Repeat coverage interval 24 days (296 orbits) 

Swath width 5–500 km 

Look direction left- and right-looking 

Incidence angle 10–60 deg  

Altitude 798 km 

Quantization 8 bits (block-adaptive quantizer) 

Spatial resolution 3 to 100 m 

Orbit and inclination Sun-synchronous 98.6 deg 

Frequency/Wavelength 5.405 GHz (C-band)/5.55 cm 

Equatorial crossing Descending node; 6:00 A.M. 

Polarization HH, VV, HV, VH 

Table 8 Radarsat-2 satellite sensor system and its specifications 

 

The Fine Quad Polarization data product (Slade, 2011) provides fully polarimetric images. 

The specifications of the data and imaging geometry are given in table 9. The complex-valued Quad 

polarization products contain the inter-channel phase information, which enables complex-valued 

polarimetry to be performed. The data is provided in standard GeoTiff format, where each pixel is 
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represented by a complex I/Q (In phase/Quadrature) signed integer value. Along with the image files 

is stored and xml product information file containing all of the data necessary for further processing 

and LUT tables which are used for radiometric calibration of the digital numbers. The scene processed 

from the Gaoua area was provided as courtesy of CSA, MDA, and ESA for the SOAR project 6788. 

 

Nominal pixel spacing 4.7 x 5.1 m (Range x Azimuth) 

Resolution 5.2 x 7.6 m (Range x Azimuth) 

Nominal scene size 25 x 25 km (Range x Azimuth) 

Range of incidence angles 18 to 49 degrees 

Number of Looks 1 x 1 (Range x Azimuth) 

 

Table 9 Radarsat-2 fine quad-pol SLC (single look complex) product specifications 

 

ASD PRO FR infra-red spectrometric data 

The ASD Pro FR field-portable visible and infrared spectroradiometer collects data in the 

35 µm to 2.5 µm spectral range with 10 nm nominal spectral resolution (3 nm @ 0.7 µm, 1.0 µm at 

1.4/ 2.1 nm. The field of view of the instrument is 25 degrees but can be adjusted using fore optic 

elements. The instrument allows for acquisition of raw digital numbers, reflectance, radiance, or 

irradiance measurements. The spectroradiometer combines three sensors. A Si photodiode array VNIR 

spectrometer is used to cover the 0.35 to 1 um range. Two separate, thermoelectrically cooled, graded 

index InGaAs photodiode spectrometers provide the coverage from 1 um to 1.75 um and 1.75 um to 

2.5 um. The spectrometer allows for direct relative reflectance estimation when known white reference 

(total reflection) material is used. A spectralon Labsphere calibration panel was used for such 

purposes. The preprocessing of the spectra consisted of correcting detector offsets using the additive 

method (Dorigo et al., 2006) and data smoothing, including averaging of the measurements. The data 

collected for the spectral library is separated into three folders:  

Spectra_original_field - averaged spectra corrected only for detector offset. 

Spectra original lab - averaged spectra corrected for detector offset. 

Spectra_smooth_field - averaged and smoothed spectra corrected for detector offset. 

The spectra are saved as text files containing an 18-line header and measured wavelength and 

reflectance as two columns of data. The name is set up from the spectral measurement site number, an 

abbreviation of the measured material followed by an abbreviation for measured surface(C-cut surface 

rock, W-weathered surface rock, M-mixed surfaces, S-soil surface, G-green vegetation, D-dry 

vegetation). It also contains the date of measurement and a sequential number of measurements made 

during the day.  
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ANNEX 2 

METHODS DESCRIPTION 

Magnetometry and Gamma ray spectrometry data processing 

The processing of the magnetometry and gamma ray spectrometry grids contains several steps 

that are used to enhance different aspects of the acquired data or are necessary steps to obtain better 

interpretable data. 

 

Fourier transform filtering 

Fourier Transform filtering is routinely used in image processing (Pratt, 2007) and is well 

suited for potential field data filtering (Telford et al., 1990; Li and Oldenburg, 1998), especially 

because the wavenumber (frequency) content of the potential field grids can be easily analyzed. The 

filtering process makes use of the Fourier transform of 2D spatial data to the wavenumber domain 

(equation 1 and 2; 2D example) 

(equation 1) 𝑓(𝑥,𝑦) = ∬ 𝐹(𝑢, 𝑣)𝑒𝑖2𝜋(𝑢𝑥+𝑣𝑦)𝑑𝑢𝑑𝑣∞
−∞   

(equation 2) 𝐹(𝑢, 𝑣) = ∬ 𝑓(𝑥,𝑦)𝑒−𝑖2𝜋(𝑢𝑥+𝑣𝑦)𝑑𝑥𝑑𝑦∞
−∞   

and its properties when conducting operations such as convolutions of the original data with filter 

functions e.g. equation 3 becomes simple multiplication (equation 4) in frequency domain. 

(equation 3) 𝑔(𝑥,𝑦) =  ∬ 𝑓(𝑥 − 𝛼,𝑦 − 𝛽)𝑤(𝛼,𝛽)𝑑𝛼𝑑𝛽∞
−∞   

(equation 4) 𝐺(𝑢, 𝑣) = ∬ 𝐹(𝑢, 𝑣)𝑊(𝑢, 𝑣)∞
−∞   

The transform into wavenumber domain is usually implemented in most computer systems as 

Fast Fourier Transform (FFT) of discrete 2D grids. The operation requires pretreatment of the data 

including trend removal, grid expansion to produce a smoothly periodic square grid, and grid filling of 

data voids within the grid. The filter functions are simply multiplied by the transformed grid to 

produce a filtered transformed grid, which is then transformed back to space domain. 

Reduction to the pole of the magnetic data is used to simplify the interpretation of the 

magnetic anomalies as it centers the peaks of the anomalies over their sources and eliminates the 

dipolar effect that magnetic anomalies exhibit because of the orientation of the Earth’s magnetic field. 

The filter function for the reduction to the pole is given in equation 5. 
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(equation 5) 

𝑊(𝜃) = [sin(𝐼)−𝑖.cos(𝐼).cos(𝐷−𝜃)]2

[sin2(𝐼𝑎)+cos2(𝐼𝑎).cos2(𝐷−𝜃)].[sin2(𝐼)+cos2(𝐼).cos2(𝐷−𝜃)] , 𝑖𝑓(|𝐼𝑎| < |𝐼|), 𝐼𝑎 = 𝐼  

 

where: θ  θ = tan-1(u/v) wavenumber direction in degrees of azimuth 

I   geomagnetic inclination 

Ia  inclination for magnitude correction (never less than I) 

D  geomagnetic declination  

i   i =√-1 

 

The reduction to the pole was applied to the magnetometry data before further filtering 

processes. As the study area lies close to the equator the magnitude correction for N-S oriented 

features would be exaggerated and thus a magnitude inclination of 90 degrees was used, which meant 

that only the phase component was applied to the original data. The correction still resulted in 

enhancing the inherent noise in the data and caused declination oriented striping, thus a directional 

cosine filter was applied (equation 6) in order to remove the high frequency artifacts oriented along 

the declination (~-5.4 degrees). 

 

(equation 6) 𝑊(𝜃) = �cos𝑛 �𝛼 − 𝜃 + 𝜋
2
�� , where α is the direction to reject and n is a 

parameter controlling the falloff rate of the filter 

 

Subsequently derivatives in the X, Y, and Z directions were computed using the following 

filter functions W(u) = (ui), W(v) = (vi), and W(r) = r, where u is the X component of the 

wavenumber, v is the Y component of the wavenumber, and r corresponds to the wavenumber 

(radians/unit). These filtered grids were used to enhance shallow geologic sources in the data such as 

lithological boundaries and structural features (Blakely and Simpson, 1986; Miller and Singh, 1994) 

sought for in the litho-structural map. 

The analytical signal (AS) corresponds to complex field intensity due to a complex potential 

(Nabighian, 1972). Its absolute amplitude  

(equation7) |𝐴(𝑥,𝑦)| = ��𝜕𝑓
𝜕𝑥
�
2

+ �𝜕𝑓
𝜕𝑦
�
2

+ �𝜕𝑓
𝜕𝑧
�
2
 

was shown to be independent of field inclination and declination, the dip of the contacts, and 

any remanent magnetization. In low latitudes the AS provides means for centering the anomaly over 

its source and eliminating the dipolar effect, which may prove beneficial during the interpretation. 

The drawbacks are that the centers are in fact broader and less well defined and thus may result in 

positional errors. 
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The potential field tilt derivative and its total horizontal derivative (Miller and Singh, 1994; 

Verduzco et al., 2004; and Pilkington, 2008) were also computed as these enhance equally well low 

and high amplitude anomalies. The tilt and its derivative were computed according to (equations 8 

and 9). 

 

(equation 8) 𝑇𝐷𝑅 = tan−1

⎣
⎢
⎢
⎢
⎡ 𝜕𝑓

𝑑𝑧

��𝜕𝑓𝜕𝑥�
2
+�𝜕𝑓𝜕𝑦�

2

⎦
⎥
⎥
⎥
⎤
 

(equation 9) 𝑇𝐻𝐷𝑅𝑇𝐷𝑅 =  ��𝜕𝑇𝐷𝑅
𝜕𝑥

�
2

+ �𝜕𝑇𝐷𝑅
𝜕𝑦

�
2
 

 

To most of the grids, shading was applied to produce shaded relief grids (Burrough and 

McDonnel, 1988) in order to enhance features oriented in different directions. The amplitude or 

intensity of the derived values was usually displayed with the help of color scales. 

 

Principal component analysis 

Principal component analysis (PCA) is frequently used in dimension reduction and 

interpretation of multivariate data in statistics and geostatistics (Davis, 2002; Wackernagel, 2003) and 

is well known and utilized in remote sensing (Campbell, 1996; Pratt, 2007) or geophysical data 

interpretation (Harris et al., 1987). The primary goal of the PCA is a linear transformation of a set of 

correlated variables Z into a set of uncorrelated components Y, which are formed in the order of 

decreasing explained variance of the original set of variables. The method is based on the analysis of 

the variance-covariance matrix V and the determination of a matrix of eigenvectors Q and eigenvalues 

Λ such that  

(equation 10) VQ = QΛ , where QTQ = I and I corresponds to the identity matrix.  

 

The corresponding uncorrelated components are then defined as in  

(equation 11) Y = ZQ. 

 

When data are of different scales, the correlation matrix is used instead of the variance-

covariance matrix. The Principal components were computed for the gamma-ray spectrometric data 

after the analysis of correlation matrix, which revealed the mutual dependence of the gamma-ray 

spectrometric channels. A color combination of the resulting first three principal components was 

used for the interpretation. 
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Landsat 7 ETM+ and ASTER data processing  

The optical remote sensing data from the Landsat 7 ETM+ and ASTER sensors required both 

similar processing steps. The Landsat 7 ETM+ L1T product has been received already orthorectified 

using an elevation model (SRTM) (NASA, 2008). The accuracy of the orthorectified image proved to 

be acceptable after inspection of the image in the field and comparisons with GPS measurements of 

known features and thus it was decided to use the Landsat images as base data to which all of the 

other data were georeferenced. 

The orthorectification of the ASTER data was conducted using the rational polynomial 

coefficient (RPC) orthorectification model (Grodecki and Dial, 2003), which was enhanced by 

selecting 5 ground control points per an ASTER scene from the Landsat 7 images and introduction of 

the SRTM-3 digital elevation model data. The root mean square error (RMSE), which describes the fit 

of the transformation at the selected ground control points, was maintained below 15 m for all of the 

orthorectified ASTER scenes. 

 

Atmospheric correction 

The atmospheric correction of the data was completed using the ATCOR-2 software (Richter, 

1996), which builds on the MODTRAN-4 radiative transfer model code (Berk et al., 1998) and uses 

LUTs (lookup tables) of selected model atmospheres to conduct the correction. The radiance signal 

gathered by a remote sensing system consists of three components  

(equation 10) 𝐿 = 𝐿𝑝𝑎𝑡ℎ + 𝐿𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 + 𝐿𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦.  

The radiance at sensor L usually has to be computed from the recorded digital number (DN), 

as calibrations, digitizing and data compression occurs during the acquisition of the data. The radiance 

is than derived with the help of  

 

(equation 11) 𝐿 = 𝑐0 + 𝑐1.𝐷𝑁, where c0 and c1 correspond to radiometric calibration 

coefficients. To obtain the surface reflectance ρ from the acquired data, the following equation has to 

be solved 

 

(equation 12) 𝜌 = 𝜋{𝑑2(𝑐0+𝑐1.𝐷𝑁)−𝐿𝑝𝑎𝑡ℎ}
𝜏𝐸𝑔

, where d corresponds to the sun to earth distance, τ to 

the ground-to-sensor atmospheric transmittance, and Eg to global flux on the ground. The atmospheric 

correction was enhanced using acquired ground spectra during in-flight calibration (Richter, 1997). 
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ALOS PALSAR and Radarsat 2 data processing 

Both ALOS PALSAR and Radarsat 2 data represent fully polarimetric radar data and require 

slightly different processing steps than regular radar data. Radar polarimetry examines the 

polarization state of an electromagnetic field. Before actual image analysis, the data need to be 

extracted into the elements of the scattering (Sinclair) matrix  

(equation 13)[S] = �𝑆𝐻𝐻 𝑆𝐻𝑉
𝑆𝑉𝐻 𝑆𝑉𝑉

� expressed in the linear (H,V) basis or coherency matrix  

(equation 14) [T] = 𝑘 ∙ 𝑘∗𝑇, where the Pauli spin elements 𝑘 are expressed in vector form as  

(equation 15) 𝑘 = 1
√2

[𝑆𝐻𝐻 + 𝑆𝑉𝑉 𝑆𝐻𝐻 − 𝑆𝑉𝑉 2𝑆𝐻𝑉]𝑇 (when reciprocity is assumed, i.e. 

SHV = SVH). 

These matrices thoroughly describe the scattering process. Advanced concepts in polarimetry 

may be found by consulting the works of Lee and Pottier (2009) or van Zyl (2011). During the 

extraction of the components multilooking may be performed. Multilooking uses the fact that the 

radar system obtains more observations in the azimuth direction (along track direction of the satellite) 

than in the range direction (across track direction of the satellite). The multilooking procedure 

averages the observations in the azimuth direction. 

 

Polarimetric decompositions 

Polarimetric decompositions are used in order to express the measured scattering matrix, i.e. 

[S] or [T], as a combination scattering responses of simpler objects, according to  

(equation 13) [S] = ∑ 𝑐𝑖[S]𝑖𝑘
𝑖=1  

, where [S]𝑖 represents the scattering response of the objects and ci stands for a weighting 

parameter. A number of decompositions has been proposed by different authors for a review see 

Cloude and Pottier (1996) or van Zyl (2011). 

One of the frequently used decompositions, the Pauli decomposition, was produced during the 

processing of the polarimetric radar and used for further classifications. The Pauli decomposition 

expresses the scattering matrix in the so-called Pauli basis (Cloude and Pottier, 1996), which is given 

by four 2x2 matrices 

[S]𝑎 = 1
√2
�1 0
0 1�, 

[S]𝑏 = 1
√2
�1 0
0 −1�, 

[S]𝑐 = 1
√2
�0 1
1 0�, 

[S]𝑎 = 1
√2
�0 −1
1 0 �, under the 

concept of reciprocity, only first three matrices are needed. Consequently, the scattering matrix [S] 

may be expressed as span (absolute power) of [S],  

(equation 14) 𝑆𝑃𝐴𝑁 = |S𝐻𝐻|2 + |S𝑉𝑉|2 + 2|S𝐻𝑉|2 =  |𝛼|2 + |𝛽|2 + |𝛾|2.  

The interpretation of the Pauli decomposition is straightforward. In a RGB color image, the 

three intensities from (equation 14) are used. The physical meaning of the three intensities is as 

follows the |𝛼|2 corresponds to targets characterized by single- bounce (e.g. flat surfaces), the |𝛽|2 
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stands for double-bounce scattering (e.g. corner reflectors), and |𝛾|2 represents volume scattering (e.g. 

forest canopy). 

  

Classification methodology 

Two classification approaches were tested during the evaluation of an automatic approach to 

the classification of the regolith. The classifications present two different approaches to the decision 

boundary definition in feature space. The maximum likelihood classification represents the linear 

approach while the neural network algorithm the non-linear approach. 

 

Maximum likelihood classification 

The maximum likelihood/Bayesian classifier is based on the probability that a pixel belongs 

to a specific class. The equations used in this method assume that all of the input variables have 

normal distributions. The Bayesian decision rules represent essentially linear hyperplanes that 

separate the feature space into classes. The maximum likelihood/Bayesian classifier used in the 

classification process utilized the following discriminant function  

(equation 13) 𝐷 = ln(𝑎𝑖) − �1
2

ln(|Vi|)� − �1
2

(x − mi)T�Vc−1�(x − mi)�  

 

Where: 

D  weighted distance 

x  the measurement vector of the candidate pixel 

mi  the mean vector of the sample of class i 

ai  percent probability that any candidate pixel is a member of class i 

Vi  the variance-covariance matrix of the pixels in the sample of class i 

|Vi|  determinant of Vi 

Vi
-1  inverse of Vi 

 

to assign a pixel to the class i, for which D is the lowest. The maximum likelihood 

classification is one of the most powerful classification techniques, but it is strongly affected by the 

quality of the training patterns and the assumption that the input variables have normal distributions 

(Campbell, 1996). It takes into account the variability of classes by using the variance-covariance 

matrix in the computation. 

 

Neural networks 

An artificial neural network can be described as classification tool, which is mapping an input 

space into an output space (Priddy and Keller, 2005), using interconnected sets of mathematical 
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functions. The networks are composed of neurons, which are modeled by neurons whose input 

variables are assigned weights and outputs are transformed by transfer functions so that the net output 

of a neuron corresponds to 

 

(equation 14) 𝑜𝑗𝑙 = 𝑓𝑗𝑙�𝑛𝑒𝑡𝑗𝑙� = 𝑓𝑗𝑙 �∑ 𝑤𝑗𝑖𝑙 𝑜𝑖𝑙−1 + 𝑤𝑗0𝑙𝑁𝑙−1
𝑖=1 �,  

 

where: 

𝑜𝑗𝑙  output of ith neuron in lth layer 

𝑓𝑗𝑙 activation function for the jth neuron in lth layer 

𝑛𝑒𝑡𝑗𝑙  net stimulus to the ith neuron in lth layer 

Nl  number of neurons in the lth layer 

𝑤𝑗0𝑙   neuron bias term written as a weight to a unitary input 

𝑤𝑗𝑖𝑙   weights linking the ith neuron in the l-1st layer to the jth neuron in the lth layer

  

 

The commonly used transfer functions are for example the sigmoid function, which was used 

during the classification process, 

(equation 15) 𝑧 = 1

1+𝑒−�∑ 𝑤𝑖𝑖 𝑥𝑖+𝑤0�
  

or the logistic function. Both of these functions are monotonous, continuous, and differentiable. These 

properties are important in the course of training of the network with error backpropagation (Verbos, 

1994). The used classification used a multiperceptron 3-layer feedforward network with one input 

layer, one hidden layer and one output layer. Feedforward networks are formed by layers of neurons, 

which directly feed inputs to the next layer in the network. The data were first normalized between 

zero and one using the min-max normalization given by  

 (equation 16) ′𝑥𝑖 = (𝑥𝑖−𝑚𝑖𝑛𝑥)
(𝑚𝑎𝑥𝑥−𝑚𝑖𝑛𝑥)

  

to form the input layers to the network. The network was trained during supervised training using the 

error backpropagation. The training consisted of several steps: (1) input training vector x was passed 

into the network while the weights were initialized using the Nguyen-Widrow algorithm (1990). (2) 

The network computed the first mapping using the initialized weights and calculated the error 

between the target and actual output according to  

 (equation 17) 𝐸𝑝 = 1
2
∑ (𝑡𝑝𝑗 − 𝑦𝑝𝑗𝑁𝐿
𝑗=1 )2.  

The error was then backpropagated through the network and the weights were updated in an iterative 

manner according to  
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(equation 19) ∆𝑤𝑝𝑗𝑖𝑙 (𝑛) =  𝜇𝑜𝑝𝑗𝑙 𝑜𝑝𝑖𝑙−1 + 𝜑∆𝑤𝑝𝑗𝑖𝑙 (𝑛 − 1) 

where: 

Ep  total output error when pattern p is presented 

Nl  number of neurons in the lth layer 

tpj  target output for the jth neuron in the final layer when pattern pa is presented 

ypj  output of the jth neuron in the final layer when pattern p is presented 

∆𝑤𝑝𝑗𝑖𝑙   weight update for the connection linking the ith neuron in the l-1st layer to the 

   jth neuron in the lth layer, when training pattern p is presented 

µ  learning rate 

𝑜𝑝𝑗𝑙   output of the jth neuron in the lth layer 

n  the iteration number 

φ  the momentum 

 

The learning rate µ of the network was supplied to the network during training, to control the 

speed of the convergence rate of the algorithm, while the momentum parameter assured that the 

network did not terminate in a local minimum due to the nature of the iterative process. (3) The 

training process terminated by meeting a criterion imposed on the error parameter E, which is the sum 

of the errors for all presented patterns  

(equation 19) 𝐸 = ∑ 𝐸𝑝𝑃
𝑝=1 .  

The actual classification was performed for each pixel value by passing through the trained network. 

 

Accuracy assessment 

During classification of remote sensing data, it is often necessary to quantify the accuracy of 

the process. Accuracy assessment requires comparisons to be made between the results of a 

classification and available reference data. The reference data should not be used during the training 

of the classifier. For multiclass classifications, performed during the regolith landform mapping, the 

accuracy assessment utilized the concept of confusion or error matrices (figure 1), which was 

proposed by Congalton (1991). A confusion matrix thoroughly summarizes the agreement between 

the produced classification and the reference data. The overall accuracy (OA), the sum of the diagonal 

divided by number of samples, is one of the most commonly used values when describing the 

accuracy assessment results. However, both the producer’s accuracy (PA) and user’s accuracy (UA) 

are useful measures, which explain how well the classification performed for the individual classes. 
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  j = Columns 

(Reference) 

Row 

Total 

  1 2 k ni+ 

i = Rows 

(Classification result) 

1 n11 n12 n1k n1+ 

2 n21 n22 n2k n2+ 

k nk1 nk2 nkk nk+ 

Column Total n+j n+1 n+2 n+k n 

 

where: 

𝑛𝑖+ = ∑ 𝑛𝑖𝑗𝑘
𝑗=1   number of samples classified into category i in the performed  

    classification 

𝑛+𝑗 = ∑ 𝑛𝑖𝑗𝑘
𝑖=1    number of samples classified into category j in the reference  

    data set 

𝑂𝐴 = ∑ 𝑛𝑖𝑖𝑘
𝑖=1
𝑛

   overall accuracy  

𝑃𝐴 = 𝑛𝑗𝑗
𝑛+𝑗

   producer’s accuracy of category j 

𝑈𝐴 = 
𝑛𝑖𝑖
𝑛𝑖+

  user’s accuracy of category i 

 

The Kappa analysis, actually an estimate of kappa, a KHAT statistic (𝐾�), which was also used 

in the accuracy assessment draws on the properties of the error matrix and can be computed according 

to 

(equation 20) 𝐾� = 𝑛∑ 𝑛𝑖𝑖−∑ 𝑛𝑖+𝑛+𝑗𝑘
𝑖=1

𝑘
𝑖=1
𝑛2−∑ 𝑛𝑖+𝑛+𝑗𝑘

𝑖=1
. 

 

The KHAT statistic is a measure for determining if one error matrix is significantly different 

from another (Cohen, 1960). The quantification of agreement is based on the difference between the 

actual agreement in the error matrix (the major diagonal) and the chance agreement, the row and 

column totals (marginals) (Congalton and Green, 2009). The “Kappa coefficient” (as it is often called) 

is usually presented as the percent of reduction in error generated by a classification when compared 

with the error of a completely random classification. 

Figure 1 Mathematical concept of a confusion/error matrix modified from Congalton and Green (2008). 
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