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Introduction

The ability to control individual spins in semiconductors is a key but very challenging step for
any spin-based solid-state quantum computing technology. In the last few years many tech-
niques have been developed to initialize, manipulate and read-out the spin of individual carriers
in semiconductor quantum dots. The improvement of experimental schemes allow to probe and
to understand the quantum-mechanical processes which control the dynamics of a single spin.

Schematically, single-spin systems in the semi-conductor world fall into two categories: gate-
de�ned quantum dots and optically active quantum dots. The former quantum dots are de�ned
in a two-dimensional electron gas, where single electrons are con�ned using electric �elds from
surface gate electrodes. These quantum dots are studied electrically and coherent control of a
single electron spin can be achieved using magnetic or electric �elds [1, 2]. The coherent tran-
sitions between the electron states spin-up or spin-down can be performed in a few tens of ns.
Coherent control over two-electron spin-states (two quantum dots with a tunnel coupling) has
also been achieved in these systems. Optically active quantum dots are made of direct bang-gap
semi-conductors in III-V or II-VI materials. This is the case of the samples studied in this thesis.
In these systems, the optical selection rules can be used to initialize [3] and read out the spin
of a resident carrier (electron [4] or hole). Remarkably, the spin of the resident carrier can be
coherently manipulated on a few tens of ps time-scale using a combination of optical pulses and
transverse magnetic �elds [5, 6]. The coherent control of electrons and holes has been recently
demonstrated in III-V MBE-grown quantum dots. However, in these system, the coherence is
limited by nuclear spin e�ects and the charge noise bath to decoherence times ranging from
several hundreds of ns to µs (depending on the dot) for resident holes [6] and electrons [7].

Alternatively, the spin of a magnetic impurity could be a promising candidate. A Manganese
impurity in a II-VI crystal is a 5/2 spin with a well de�ned location in the crystal matrix.
During the last decades, a number of studies have shown that, under magnetic �eld, the relax-
ation time of Manganese impurities in a II-VI crystal could reach the ms range for vanishing
manganese-concentrations [8, 9]. The idea here, is to marry the advantages of diluted magnetic
semiconductors with the atom-like optical properties of quantum dots. The manganese impurity
at the center of a II-VI quantum dot is strongly coupled to the photo-created electron-hole pair.
Compared to the case of a manganese impurity in a bulk crystal, this coupling, known as spd
exchange, is further enhanced by the con�nement of the photo-created electron-hole pair in the
quantum dot. This coupling results in a remarkable property of the Mn-doped quantum dots:
the optical spectra presents six lines, which provide a direct measurement of the Mn spin-state
(Sz = +5/2... − 5/2). Thanks to this single spin read-out, we have explored, in this thesis, the
dynamics of a single Mn spin by optical means.

This manuscript is organized as follows:

3



Introduction

In Chapter 1, we try to give a comprehensive presentation of the spectral properties of Mn-
doped CdTe/ZnTe quantum dots. In order to do so, we will start with a description of the center
of the Brillouin zone of II-VI semiconductors, non-magnetic semiconductor quantum-dots, and
bulk diluted magnetic semiconductors. The elements of theory presented in these three topics
will hopefully allow the reader to understand all the subtleties of Mn-doped quantum dots spectra.

In Chapter 2, we present our samples and the experimental techniques that were used through-
out this thesis to study dynamical properties of Mn-doped quantum dots. We will report on the
experimental evidence of photo-induced spin orientation of the localized Mn spin. In other words,
we will show that the Mn-spin can be optically initialized and read-out.

In Chapter 3, we develop pump-probe experiments and use magnetic �elds to explore the
dynamics of the Mn spin alone. We investigate on the relaxation time of the Mn spin at B = 0T ,
and on the coherent evolution of the Mn atom in a strained crystal �eld. We will demonstrate
that the coherent coupling of the Mn spin to its environment is essential to perform Mn-spin
initialization at zero magnetic �eld.

In Chapter 4, we develop PLE experiments and perform a detailed study of the photo-induced
orientation process to extract information on the microscopic mechanism controlling the initial-
ization process. We will discuss possible mechanisms. A spin-�ip of the hole is likely involved
in the orientation process; however, we will evidence other relaxation channels within the XMn
states, whose physical origin need to be clari�ed.

In Chapter 5, we will evidence strong coupling between the transition dipole of a Mn-doped
quantum dot and a resonant continuous optical �eld. The results can be well understood in
the dressed atom picture. We place ourselves in an experimental con�guration where the strong
coupling is detected from another level than the ones resonantly driven. This allows to evidence
optical Stark shift of the Mn spin-states.

In Chapter 6, at last, we will study CdTe/ZnTe quantum dots with a resident electron. We
investigate in the latter the electron-nuclear spin bath interaction. We will evidence that de-
polarization of the resident electron by a non-polarized nuclei ensemble is also an issue in this
system. However, we will show that this depolarization can be bypassed thanks to the creation
of dynamic nuclear spin polarization.

4



Introduction (French)

Notre habilité à contrôler un spin unique localisé dans un semi-conducteur est une étape clef
vers le stockage d'information quantique. Ces dernières années ont vu l'essor des techniques de
contrôle qui visent in �ne à initialiser, manipuler et lire l'état d'un seul spin. En physique du
solide ce spin individuel peut être un porteur con�né dans une boite quantique ou une impureté
du cristal comme par exemple les centres colorés dans le diamant qui ont connu un réel engoue-
ment ces dernières années, et des développements expérimentaux considérables [10]. Le progrès
de ces techniques expérimentales permet de comprendre et de sonder toujours plus �nement les
processus physiques qui régissent la dynamique d'un spin unique.

Le contrôle d'un spin individuel dans le monde des boites quantiques se classe de façon sché-
matique en deux catégories suivant que le spin est adressé par des méthodes de transport ou
par des moyens optiques. De façon générale, le con�nement des porteurs est obtenu en utilisant
deux semi-conducteurs de structure de bande di�érente: le matériau de plus petit gap agissant
comme un puits de potentiel pour les porteurs. La réduction de la taille de ce puits de potentiel
dans une direction permet de quanti�er les niveaux d'énergie des porteurs.

En transport, le contrôle cohérent sur un spin unique a été démontré [1, 2]. Dans ce système,
le con�nement d'un électron individuel dans un petit volume du cristal est obtenu en combinant
un con�nement 1D (gaz bidimensionnel d'électron créé a l'interface entre GaAs/AlGaAs) avec
des champs électriques créés par des électrodes posées sur la surface de l'échantillon typiquement
100 nm au-dessus du gaz 2D d'électrons. Par des méthodes de transport (mesure de courant
dépendant de l'état de spin de l'électron résident dans la boite 1), le contrôle cohérent sur un
spin unique a été démontré. Le moyen le plus évident pour réaliser ce contrôle est d'utiliser des
champs magnétiques: un champ magnétique statique qui lève la dégénérescence entre un état
up et un état down, et un champ magnétique radiofréquence pulsé, dont l'amplitude et la phase
permettent de créer n'importe quelle superposition d'état[2]. De façon plus indirecte, un champ
électrique peut également être utilisé pour réaliser un contrôle cohérent [1]; l'action du champ
électrique sur le spin étant médiée par l'interaction spin-orbite.

En optique, les nanostructures étudiées pour le contrôle cohérent d'un spin unique sont des
boites quantiques auto-organisées où le matériau de plus petit gap va, dans des conditions de
croissance bien choisies, spontanément former des ilots dans lesquels les porteurs sont con�nés

1La méthode d'initialisation et de lecture repose sur l'utilisation de deux boites quantique couplées: une boite
sur laquelle est réalisé le contrôle de spin, et une boite sonde. Pour la lecture, on fait tunneler l'électron résident de
la boite étudiée vers la boite quantique sonde qui contient un électron résident de spin connu. D'après le principe
de Pauli, l'énergie de l'état à deux électrons va être inferieure si les deux électrons sont de spins antiparallèles
(singulet). Cette di�érence d'énergie entraine l'existence d'un courant tunnel seulement si l'électron mesuré a un
spin opposé à celui situé dans la boite sonde
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Introduction (French)

dans les trois directions. Dans ces systèmes, les règles de sélection optiques permettent de pré-
parer par pompage optique [3] et de lire l'état de spin d'un porteur con�né dans la boite (électron
[4] ou trou). Le contrôle cohérent de l'électron et plus récemment du trou ont été démontré [5, 6].
Dans le cas d'un électron résident par exemple, un photon polarisé σ+ ne peut être absorbé que
par un électron up selon l'axe de croissance (axe z). Ainsi, une impulsion polarisée σ+ fortement
désaccordée de la transition de la boite peut être utilisée pour ajouter une phase θ à l'état de
spin up (e�et Stark optique discuté au chapitre 5). Un état Ψ = α ↑ +β ↓ devient α ↑ +eiθβ ↓:
l'impulsion optique est équivalente a un champ magnétique dirigé selon z qui permet de faire
tourner le vecteur de Bloch en quelques fs autour de l'axe de croissance. Un champ magnétique
extérieur perpendiculaire à z (notons le Bx) permet de faire précesser le spin selon l'axe x (péri-
ode pouvant typiquement atteindre 10 ps). La rotation du spin de l'électron autour de deux axes
distincts permet d'atteindre de façon contrôlée n'importe quel état de la sphère de Bloch.

Cependant, dans les systèmes décrit jusqu'ici, la cohérence est limitée par la présence de
spins nucléaires (les noyaux dépolarisés d'une boite quantique couplés par interaction hyper�ne
au spin du porteur, agissent comme un champ magnétique aléatoire qui perturbe le spin électron-
ique), de phonons (qui perturbent le spin via l'interaction spin-orbite et dont l'e�et augmente
avec la présence d'un champ magnétique extérieur en raison de l'augmentation de la densité
de phonons à l'énergie nécessaire pour passer d'un état de spin à l'autre). Ces interactions
avec l'environnement limitent la cohérence à des temps de l'ordre de quelques centaines de ns à
quelques microsecondes pour des électrons [7] ou des trous résidents [6].

Au lieu d'utiliser le spin des porteurs résidents, une alternative serait d'utiliser le spin d'une
impureté magnétique. Par exemple un atome de manganèse dans un cristal semi-conducteur II-
VI constitue un spin 5/2, localisé, avec des temps de relaxation sous champ magnétique pouvant
atteindre la ms 2[8, 9]. L'idée est de marier les propriétés de ce spin aux propriétés optiques
des boites quantiques. Le spin d'un atome de manganèse situé dans une boite quantique II-VI
(CdTe/ZnTe) est fortement couplé à la paire électron-trou photo-créée. Ce couplage vient d'une
interaction d'échange (dite spd) entre l'électron, le trou et le spin 5/2 (électrons 3d5 du Mn).
Dans une boite quantique, ce couplage, proportionnel à la probabilité de trouver l'électron ou le
trou sur le Mn est fortement exacerbé par le con�nement. Ces interactions d'échange modi�ent
l'énergie d'émission de la boite quantique suivant l'état de spin du Mn: moyenné dans le temps,
le spectre d'une boite quantique magnétique possède 6 raies : chacune correspondant, pour une
polarisation donnée, à un état de spin du Mn (Sz = +5/2...− 5/2). Allant ainsi sonder optique-
ment l'état de spin du Mn, nous avons dans cette thèse exploré la dynamique d'un spin unique.

Ce manuscrit est organisé comme suit:

Dans le premier chapitre, nous présentons les fondements théoriques et expérimentaux utiles
à la compréhension du système Manganèse dans une boite quantique. Pour ce faire, nous com-
mencerons par une description de la zone de Brillouin en nous attachant particulièrement à
l'e�et de contraintes inhérentes aux boites-quantiques auto-assemblées. Nous en déduirons les
propriétés optiques des boites quantiques (cas simple des boites sans Mn). Puis, nous présen-
terons quelques résultats du vaste sujet d'étude que sont les semiconducteurs magnétiques dilués,

2d'après des mesures d'ensembles sur des échantillons de faible concentration en Mn, ou les impuretés de
manganèse sont su�samment éloignées les unes des autres pour avoir un comportement analogue a celui d'un
spin unique dans la matrice cristalline
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pour discuter de l'interaction d'échange spd entre l'électron le trou et l'atome de manganèse. Ce
premier chapitre devrait permettre au lecteur de comprendre la richesse et la diversité des pro-
priétés spectrales de ces boites magnétiques.

Dans le deuxième chapitre, nous présentons la fabrication des échantillons et le montage de
micro-photoluminescence résolue en temps qui nous a permis d'étudier les propriétés dynamiques
des boites quantiques dopées Mn. Nous mettons en évidence la possibilité d'initialiser le spin
de Mn par l'injection de porteurs polarisés ou l'excitation résonnante sur un des états de spin
(pompage optique).

Dans le troisième chapitre, nous développons des expériences pompe-sonde résolues en temps,
et une étude en champ magnétique du processus de pompage optique, dans l'idée de mieux com-
prendre la dynamique du Mn lorsqu'il est seul dans la boite. Nous nous intéresserons à son temps
de relaxation en champ nul et à l'évolution cohérente d'un spin de Mn dans un environnement
cristallin contraint (ce qui est le cas des boites étudiées ici). Nous verrons que la prise en compte
de ce champ cristallin contraint est essentielle pour expliquer l'observation d'une initialisation
du Mn en champ nul.

Dans le quatrième chapitre, nous discutons de la dynamique du système exciton-manganèse,
qui contrôle le processus d'initialisation. A�n d'identi�er un mécanisme microscopique d'orientation,
nous réalisons une étude en puissance du mécanisme de pompage et mettons en évidence des
canaux de relaxation de spin au sein du complexe exciton-Manganèse. Nous discuterons en nous
appuyant sur ces études expérimentales, des mécanismes possibles.

Dans le chapitre 5, nous mettrons en évidence l'habillage par un champ laser d'une des tran-
sitions optiques d'une boite quantique magnétique. C'est la signature d'un couplage cohérent
entre un laser continu et la transition d'une boite quantique dopée Mn, qui est rappelons-le, liée
a un état de spin du Mn. Cette observation expérimentale implique, qu'à l'instar de l'électron
et du trou, une impulsion laser pourrait être utilisée pour contrôler la rotation du spin de Mn
selon l'axe optique. Le contrôle du manganèse par l'utilisation d'impulsions lumineuses et d'un
champ magnétique transverse a d'ailleurs été proposé théoriquement [11]. Sa réalisation expéri-
mentale est pour l'instant ardue (un problème de taille est notamment l'initialisation en champ
transverse), mais s'inscrirait dans la suite de ce travail.

En�n, dans le chapitre 6, nous étudions des boîtes CdTe/ZnTe possédant un électron résident.
Nous nous intéressons au couplage de cet électron aux spins nucléaires de la boite. Nous mon-
trons que la relaxation du spin de l'électron par un bain de noyaux non-polarisés est également
rapide dans les boites II-VI. Cependant, nous montrons que cette décohérence peut être évitée
grâce à la création d'une polarisation dynamique nucléaire dont nous étudions la dynamique
de formation et de relaxation par des mesures du taux de polarisation de la photoluminescence
résolue en temps.
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Chapitre 1

Le manganèse est un dopant iso-électronique dans les semi-conducteurs II-VI. Cette impureté
a éveillé l'intérêt de la communauté scienti�que dès les années 70, avec la découverte de l'e�et
Zeeman géant : l'évolution en champ magnétique de l'énergie d'émission de l'exciton dans un
semi-conducteur magnétique dilué présente un e�et Zeeman plus important que prévu du au
champ e�ectif créé par la polarisation sous champ des impuretés magnétiques présentent dans le
cristal. Ce champ e�ectif résulte des interactions d'échanges entre les porteurs et les électrons
localisés du Manganèse.
L'introduction d'un atome magnétique dans une boîte quantique permet de localiser des porteurs,
et o�re donc la possibilité de faire interagir de façon contrôlée un spin unique avec ces derniers.
Les boîtes quantiques sont souvent surnommées atomes arti�ciels, en raison de la quanti�cation
des niveaux d'énergie de la paire électron-trou, qui résulte en des raies d'émission et d'absorption
à des énergies discrètes. Les propriétés optiques d'une boite quantique sont intimement liées à
la structure de bande du semi-conducteur. La bande de conduction possède un moment orbital
nul : un électron est une quasi-particule de spin 1/2. En revanche, la bande de valence possède
un moment total J = 3/2, et donc le trou possède a priori quatre états de spin possible. Dans
une boîte quantique, en raison de la forme du con�nement (Hamiltonien de Luttinger) et de la
présence de contraintes biaxiales (Hamiltonien de Bir et Pikus), les états ±1/2 (trous légers)
sont rejetés à plus haute énergie. Ainsi, au degré d'approximation le plus bas (approximation du
trou lourd), le trou con�né dans une boîte quantique possède un spin anisotrope Jz = ±3/2. En
fait, cette approximation est souvent insu�sante pour expliquer les propriétés magnéto-optiques
de nos boîtes. Comme l'ont montré Y. Léger, L. Besombes et al. [12], le mélange trou lourd-trou
léger peut typiquement atteindre 20% dans les boîtes étudiées ici à cause d'une anisotropie des
contraintes et du potentiel de con�nement.
Dans l'approximation du trou lourd, le trou agit comme un champ magnétique e�ectif, �xé selon
z, qui par l'interaction d'échange électron-trou lève la dégénérescence entre des états des exci-
tons dits brillants, et des excitons noirs. Par l'interaction d'échange trou-Manganèse (et dans
une moindre mesure l'échange électron-Manganèse), l'énergie de cet exciton va aussi dépendre de
l'état de spin Sz du Manganèse. Dans cette approximation du trou lourd, une boîte magnétique
présente donc six raies, deux fois dégénérées (symétrie z ←→ −z): l'énergie du photon émis lors
de la recombinaison de la paire électron-trou dépend de l'état de spin Sz du Mn. En présence
d'un mélange de bande de valence, les boites quantiques dopées Mn présentent des raies addi-
tionnelles liées à un mélange des états exciton-Mn noirs et brillants. Alors, la correspondance
entre une raie d'émission et un état de spin du Mn n'est plus parfaite.

Chapitre 2 La croissance des boites II-VI n'est pas une croissance Stanski-Krastanov clas-
sique : la transition 1D-3D de la couche de CdTe est induite par la déposition de Te amorphe
qui modi�e l'énergie de surface et favorise la formation d'ilots. L'incorporation de Mn s'e�ectue
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durant la croissance de CdTe. La densité surfacique de Mn est ajustée pour être égale à celle
des boites, ce qui aboutit statistiquement à une proportion de boites magnétiques (un seul Mn
proche du centre de la boite) de l'ordre de quelques %. L'étude d'une boite magnétique indi-
viduelle s'e�ectue grâce à un montage de micro-spectroscopie confocale. L'échantillon est placé
dans un cryostat à doigt froid (5K), surmonté d'une lentille à immersion solide, a�n d'augmenter
l'e�cacité de collection.
A�n de mettre en évidence le contrôle optique d'un spin de Manganèse, nous avons développé
une mesure résolue en temps de la population (mesure statistique) d'un état de spin du Mn sous
excitation modulée en polarisation (σ + /σ−) ou en longueur d'onde (pompage optique par une
impulsion résonante puis lecture par une impulsion quasi-résonante). La résolution temporelle
de notre détection est �xée par le jitter de l'APD (50ps). Le temps de montée des éléments
permettant la mise en forme des trains d'onde (AOM et EOM) se situe entre 5 et 10ns ce qui
nous cantonne à des dynamiques plus lentes.
Dans la Figure 2.2 (p.43), nous considérons l'orientation du Mn par l'injection de porteurs po-
larisés, ce qui en pratique est le cas lorsque le laser est résonant avec un des états excités de la
boite. Sous excitation modulée σ+/σ−, nous détectons la luminescence d'une raie associée à un
Mn dans l'état −5/2. L'observation d'un transitoire dans ce signal de photoluminescence suite à
un changement de polarisation de l'excitation re�ète une évolution de la probabilité de détecter
le Mn dans cette état. On observe une augmentation de la probabilité de détecter −5/2 sous
excitation σ+ : le Mn se polarise selon −z, ce qui peut s'interpréter comme une polarisation du
Mn dans le champ magnétique e�ectif crée par le trou. Cependant, si ce mécanisme permet bien
d'expliquer le sens de la polarisation e�ectivement observé, il est trop lent3 pour rendre compte
de la vitesse du processus (quelques dizaines de ns), ce qui correspond plutôt à une dynamique
rapide médiée par une relaxation de spin des porteurs. Le pompage optique d'un état de spin
(excitation résonante entrainant une déplétion de 75% de sa population d'équilibre) est égale-
ment présentée dans la Fig. 2.6 (p. 49)

Chapitre 3
Ayant mis en évidence un moyen d' " initialiser " et de " lire " l'état de spin du Manganèse,

nous e�ectuons des expériences pompe-sonde pour aller mesurer le temps de relaxation (T1) du
spin du Manganèse en l'absence d'excitation optique (Fig 3.1, p.54). Nous observons que ce
temps de relaxation est supérieur à une dizaine de µs (pour des raisons expérimentales, nous
n'avons pu sonder la relaxation sur des temps plus longs.), résultat encourageant pour un éventuel
stockage d'information sur le spin du Mn.
Cela dit, les observations faites jusqu'alors-pompage optique et mémoire de spin en champ nul-
sont en fait non-triviales. Le spin électronique du Mn n'est pas parfaitement isotrope et découplé
de son environnement : d'une part, les orbitales 3d du Manganèse sont a�ectées par la présence
des atomes voisins (champ cristallin); d'autre part, le spin électronique du Manganèse est cou-
plé a son propre noyau (interaction hyper�ne). En symétrie cubique (cristal non-contraint),
l'Hamiltonien qui contrôle l'évolution du spin électronique du Mn (S) et du noyau du Mn (I) est
donné par :

HFS = A~I.~S +
1

6
a

[
S4
x + S4

y + S4
z −

1

5
S(S + 1)(3S2 + 3S − 1)

]
Où la constante hyper�ne A vaut 0.71µeV et la constante de champ cristallin vaut a =

0.36µeV . Il est clair que le nombre quantique Sz n'est pas état propre de cet Hamiltonien : la
3Le temps de spin-�ip du Mn dans le champ d'échange du trou est contrôle par l'interaction du Mn avec les

phonons, ce qui aboutit à des temps supérieurs à la µs
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polarisation créée selon z pendant la durée de vie de l'exciton est " e�acée " en quelques ns
par la précession du Mn dans le champ cristallin et le champ hyper�n. Les observations faites
jusqu'ici ne semblent alors compatibles avec la théorie que si une anisotropie magnétique (terme
de champ cristallin lié à la présence de contraintes biaxiales) bloque cette précession. Le terme
d'anisotropie magnétique que l'on doit alors ajouter à HFS s'écrit :

HAnis = D0

[
S2
z −

1

3
S(S + 1)

]
Avec D0 pouvant atteindre jusqu'à 12µeV pour une couche de CdTe parfaitement contrainte
sur ZnTe. La présence d'une anisotropie magnétique dans les boites étudiées est démontrée par
des mesures de pompage optique en champ magnétique faible. En substance, nous observons
une faible augmentation de l'e�cacité du pompage optique sous champ Faraday, ce qui indique
qu'une anisotropie magnétique domine déjà l'évolution cohérente du Mn à 0T . En champ mag-
nétique transverse (e�et Hanle), nous observons une dépolarisation du Mn contrôlée par cette
anisotropie. Ces mesures nous permettent d'évaluer l'anisotropie magnétique à 6µeV , valeur
consistante avec une relaxation partielle des contraintes dans les boites.

Chapitre 4
Nous cherchons à mettre en évidence expérimentalement un mécanisme microscopique permet-

tant d'expliquer l'orientation du Manganèse. A cette �n, nous nous intéressons aux processus de
relaxation de spin au sein du complexe XMn : une excitation laser est balayée sur les transitions
haute-énergie du complexe XMn, tandis que nous détectons la photoluminescence des transitions
basse énergies (expérience de PLE). Nous mettons ainsi en évidence que les canaux de relaxation
dominant font intervenir le spin-�ip de deux particules simultanément (électron-trou ou trou-Mn
ou encore électron-Mn). La dépendance de ces processus avec l'écart énergétique entre les deux
niveaux XMn impliqués semblent indiquer qu'ils sont médiés par les phonons. Cependant, le
calcul des taux de spin-�ips induits par l'action conjointe des phonons et de l'interaction courte-
portée conduit a des temps de spin-�ip trop longs pour expliquer nos observations, et l'origine
physique de ces processus mériterait d'être creusée.
Nous discutons ensuite des mécanismes d'orientation possibles. Récemment, la relaxation du
spin du trou a été invoquée comme pouvant être responsable du processus de photo-orientation.
Cependant, l'observation d'une dominance de processus de spin-�ips à deux particules sous exci-
tation résonante nous pousse à présenter un autre mécanisme possible pour expliquer l'orientation
du Mn sous excitation résonante. Il nous semble que de plus amples investigations sont néces-
saires pour trancher la question.
En�n, nous terminons par une étude en puissance du processus d'orientation du Mn sous ex-
citation résonante sur un des états du complexe XMn et sous excitation résonante sur un état
excité de la boite. Nous montrons que l'injection de porteurs sur un état excité conduit à une
orientation signi�cativement plus rapide que sous excitation résonante. Ce résultat peut être lie
à une relaxation du spin du trou lors de la relaxation vers le niveau fondamental de l'exciton.

Chapitre 5
Nous présentons ensuite l'habillage par un champ laser des transitions optiques d'une boite

quantique magnétique (Fig 5.2, p.92). Cette expérience a pu être réalisée grâce à l'utilisation
d'un laser monomode et peut être décrite quantitativement (étude en puissance et en fonction
du désaccord avec la transition) par le formalisme de l'atome habillé : La présence d'un champ
laser couple de façon cohérente l'état fondamental de la boite à un état XMn par absorption
et émission stimulée, ce qui résulte en un dédoublement de Rabi de chacun des deux niveaux
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de la transition. Ce dédoublement est proportionnel au couplage dipolaire électrique entre la
transition et le laser, et est donc proportionnel à l'amplitude du champ électrique i.e. à la racine
carrée de la puissance. La �uorescence résonante d'une transition habillée donne ainsi lieu au
triplet de Mollow.
Ici, nous mettons en évidence l'éclatement de Rabi à l'aide d'une seconde transition-peuplée par
un laser non-résonant- qui partage un niveau avec la transition habillée : nous détectons un
doublet d'Autler-Townes. Nous atteignons à résonance des éclatements de Rabi de l'ordre de
300 µeV . Nous montrons ainsi que chaque état de spin du manganèse peut être adressé indi-
viduellement, nonobstant le mélange noir-brillant induit par les termes non-diagonaux d'échange
trou-Mn ou électron-Mn. Ces résultats constituent, comme détaillé dans l'introduction, une dé-
monstration importante en vue du contrôle cohérent du spin du Mn dans une boite quantique
par des moyens optiques.

Chapitre 6
En�n, nous quittons les boites quantiques magnétiques pour des boites quantiques contenant

un électron résident. Ce système nous a permis d'étudier la dynamique du système électron-
noyaux, assez mal connue pour des boites II-VI. La présence d'un (seul) électron résident dans
les boites étudiées est con�rmée par la présence en PLE de la structure �ne du trion chaud résolue
en polarisation. A des énergies d'excitation supérieures, nous observons un taux de polarisation
négatif, lié à la dynamique d'injection et de relaxation des porteurs photo-créés. Nous mettons
en évidence cette dynamique par l'étude résolue en temps du taux de polarisation sous excitation
pulsée. Cette dynamique, contrôlée par les interactions d'échanges électrons-trou et des processus
de relaxation de spin, est analysée quantitativement a�n d'en extraire des grandeurs physiques.
En particulier, les constantes d'échanges trouvées sont consistantes avec celles trouvées dans la
littérature pour des systèmes analogues.
Dans un deuxième temps, nous nous focalisons plus spéci�quement sur les e�ets liés aux noyaux.
Nous mettons d'abord en évidence la relaxation du spin électronique induite par les �uctuations
du champ Overhauser, et la possibilité de l'éviter grâce à la création d'une polarisation nucléaire
dynamique ou à l'utilisation d'un champ magnétique extérieur. La construction d'une polarisa-
tion nucléaire est directement observée en champ nul et sous faible champ extérieur. Celle-ci est
plus rapide (d'un facteur 103) que dans les boites III-V. Nous imputons ceci au faible volume
de nos boites. Nous nous sommes également intéressés au temps de relaxation de la polarisation
nucléaire et à son évolution sous faible champ. Un e�ort théorique reste à faire pour comprendre
certaines de nos observations.

12



Chapter 1

A Mn spin in a CdTe/ZnTe Quantum
Dot: Single Spin Addressing
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The purpose of this chapter is to present the physical properties of CdTe/ZnTe quantum dots
containing a single Mn atom. We begin with a description of the bulk properties of CdTe and
ZnTe, focusing on the band extrema. We detail the conduction and valence states at k = 0, we
present elements of k.p theory and the Luttinger Hamiltonian and we discuss the e�ect of strains,
which are described using the Bir-Pikus Hamiltonian. Then, we describe carrier con�nement,
energy level structure and the optical properties of a semiconductor quantum dot. The energy
levels structure is strongly modi�ed by the exchange interactions between the con�ned carriers.
We present these exchange interactions and how the geometry of the con�ning potential and the
strain environment a�ect them, and a�ect the optical spectra. At last, we discuss the origin of
the interaction of photo-created carriers with the magnetic moment of an isolated manganese
atom, and present the optical spectra of a Mn-doped quantum dot. The spin operators used in
this Chapter are resumed in Appendix A.
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Chapter 1. A Mn spin in a CdTe/ZnTe Quantum Dot: Single Spin Addressing

Figure 1.1: (a) Elementary cell of a CdTe or ZnTe (Zinc-Blende structure).(b) Illustration of the
Td symmetry. (c) Brillouin zone of the CdTe crystal, and main points in 2Π/a unit: Γ = (0, 0, 0),
X = (1, 0, 0),L = (1/2, 1/2, 1/2), K = (3/4, 3/4, 0) and U = (1/4, 1, 1/4).

1.1 II-VI Semiconductors

This paragraph aims at giving a quick introduction to semiconductor physics, presenting the
band structure of CdTe. CdTe and ZnTe belong to II-VI materials, so called because they are
comprising elements of group II and group VI of the Periodic Table. They are insulators at
0K, and present a small gap (1.6eV for CdTe and 2.3eV for ZnTe). As part of direct band gap
semiconductors, radiative recombination is the dominant process for free carrier relaxation and
their physical properties can be investigated through optical experiments.

1.1.1 Band Structure of CdTe and ZnTe

These materials present a Zinc-Blende structure (Fig. 1.1): each atomic species is on a face-
centered cubic crystal, one of the lattice is shifted from the other by a quarter of the [111]
diagonal. Hence, the environment of each atom is tetrahedral and the space-group of the zinc-
blende structure is Td.

The band structure of these semi-conductors can be intuitively understood if we consider the
linear combination of atomic orbitals from the valence electrons of the cation (4d105s2 for Cd or
3d104s2 for Zn) and the anion (4d105s25p4 for Te): the s level and three p levels of each atom
hybridize to form eight levels out of which four are bonding and four are anti-bonding. A crystal
with N unit cell presents 8N valence electrons. 2N �ll the lowest band issued from s-atomic
states and 6N �ll the 3 bands issued from p-atomic states. At higher energy, the �rst empty
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1.1. II-VI Semiconductors

band (i.e. bottom of the conduction band) is issued from the anti-symmetric combination of the
s-atomic levels and 3 bands issued from the anti-bonding combination of p states at even higher
energies. At the Γ point (center of the Brillouin zone), the Td symmetry of the crystal does not
'a�ect' s and p orbitals (it does not mix them or lift up the degeneracy between the p levels,
contrary to d levels), so that we can still reason as if the symmetry was spherical, and attribute
an 'orbital momentum' L to the band-states (L = 1 for the top of the valence band and L = 0 for
the bottom of the conduction band). A more elaborate approach would be to use group theory,
the extrema of each band can be described by a representation of the Td group corresponding to
their symmetry Γ1 (resp. Γ5) for bands issued from s (resp p) atomic states.

If we now include Spin-Orbit coupling, the conduction band extrema takes the name Γ6 (now
that the 1/2 spin is included, the eigenstates acquire a π phase in a 2π rotation, contrary to
Γ1 eigenstates which are unchanged); and (similarly to angular momentum composition in atom
physics) the valence band maximum with L = 1 is split into a quadruplet with J = 3/2 (Γ8)
and at lower energy, a doublet with J = 1/2 (Γ7). The energy splitting at the Γ point between
the valence band and the split-o� band Γ7 is ≈ 0.9eV for CdTe and ZnTe. The valence band
eigenstates at the Γ point can be expressed as a function of the three electronic states |X〉, |Y 〉,
|Z〉 and the spin-states |+〉, |−〉. Eigenstates of Lz = 0,±1 are:

|+1〉 = −|X〉+ i |Y 〉√
2

|0〉 = |Z〉

|−1〉 =
|X〉 − i |Y 〉√

2
(1.1)

And composition with the 1/2 spin leads to:

Γ8 :

∣∣∣∣32 , 3

2

〉
= |+1〉 |+〉∣∣∣∣32 , 1

2

〉
=

√
2

3
|0〉 |+〉+

√
1

3
|+1〉 |−〉∣∣∣∣32 ,−1

2

〉
=

√
2

3
|0〉 |−〉+

√
1

3
|−1〉 |+〉∣∣∣∣32 ,−3

2

〉
= |−1〉 |−〉 (1.2)

Γ7 :
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〉
=
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|1〉 |−〉+

√
1

3
|0〉 |+〉∣∣∣∣12 ,−1

2

〉
=

√
2

3
|−1〉 |+〉+

√
1

3
|0〉 |−〉 (1.3)

These eigenstates give directly the optical selection rules at k = 0 in the semiconductor, but
we will come back to that later. We are now going to focus on the non-trivial behavior of the Γ8

band, near ~k = 04. Near the band edge, and for a given direction ~k the curvature of the energy
E(~k) of the bands can be described by an e�ective mass mv(~k):

4We limit our discussion to the few % of the Brillouin zone near k = 0 that are relevent k's in Quantum Dots.
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Figure 1.2: Band structure of CdTe

Ev(~k) = − (h̄k)2

2mv(~k)
(1.4)

As shown Fig. 1.2, as we move out from the Γ point, the valence band splits into two branches.
The one with the smallest curvature (and highest mass) is called the heavy-hole band, the other
is the light-hole band.

The di�erence of curvature can be understood in the so-called ~k.~p approximation, which was
�rst proposed by Kane in 1957 [13]. The Kane model permits to estimate the electronic band
structure starting from the exact solution and energy levels of the Schrödinger equation at the
center of the Brillouin zone (i.e. we suppose in the following that ψn,0 and En,0 are known). We
are looking for the solutions ψ

n,~k
to the equation:(
p2

2m0
+ U(~r)

)
ψ
n,~k

= E
n,~k
ψ
n,~k

(1.5)

where n is the band index, ~p is the −ih̄~∇ operator, U(~r) is the potential of the crystal and ψ
n,~k

is the Bloch wave, which is the product of a periodic part u
n,~k

(~r) and a plane-wave ei~k~r. The
gradient of ψ

n,~k
is:

~∇ψ
n,~k

(~r) = ei
~k~r ~∇u

n,~k
(~r) + i~kψ

n,~k
(~r) (1.6)

Therefore, equ. 1.5 is equivalent to:

Hkpun,~k(~r) =

(
p2

2m0
+ U(~r) +

h̄2k2

2m0
+

h̄

m0

~k.~p

)
u
n,~k

(~r) = E
n,~k
u
n,~k

(~r) (1.7)
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1.1. II-VI Semiconductors

Then, Kane's idea is to expand u
n,~k

on the {un,0}n basis: u
n,~k

=
∑
n′ cn′un′,0. Under the

assumption that we know the exact solutions un,0(~r), we can calculate the following matrix
elements: 〈

un,0 |Hkp|un′,0
〉

=

(
En +

h̄2k2

2m0

)
δn,n′ +

〈
un,0

∣∣∣∣ h̄m0

~k.~p

∣∣∣∣un′,0〉 (1.8)

The {un,0}n basis is in�nite. In practice, we have to consider a limited number of n. In his
original work, Kane limited his calculation to 8 bands : he calculated the matrix elements for
un,0 belonging to the Γ7, Γ8 valence band, and the Γ6 conduction band. Here, to illustrate the
di�erence of curvature within the Γ8 band, we will only consider the Γ8 and Γ6 bands5 and a ~k
in the [001] direction (equivalent to the dispersion of E(k) along the Γ → X path). A natural
basis is:

uΓ8,+3/2, uΓ8,+1/2, uΓ8,−1/2, uΓ8,−3/2, uΓ6,↑, uΓ6,↓;

where ↑, ↓ correspond to the spin of the Γ6 states, and ±3/2,±1/2, the angular momentum
projection Jz of the Γ8 states. The diagonal terms are simply equal to Ei + (h̄kz)

2/2m0 where
Ei = Ev for a Γ8 state, and Ec for a Γ6. The non-diagonal terms are given by the matrix elements
of the type:

〈
uΓ6,↓

∣∣∣∣ h̄m0
kzpz

∣∣∣∣uΓ8,+1/2

〉
=

h̄

m0
kz
〈
uΓ6,↓ |pz|uΓ8,+1/2

〉
(1.9)

These matrix elements are trivial in the basis |X〉, |Y 〉, |Z〉 and |S〉. Only one matrix element
is di�erent from zero, we name it Π:

〈S |pz|Z〉 = Π

〈S |pz|Y 〉 = 0

〈S |pz|X〉 = 0

Then, using the de�nitions given in Equs. 1.1, 1.2, the calculation of 1.9 is straightforward.
Only few non-diagonal matrix elements are di�erent from zero. These matrix elements couple the
uΓ8,±1/2 states with the conduction band states, and the problem reduces to the diagonalization
of a 2× 2 Hamiltonian H ′ in the subspaces uΓ8,−1/2, uΓ6,↓ or uΓ8,+1/2, uΓ6,↑:

H ′kzpz =

 Ev + h̄k2
z

2m0

√
2h̄√

3m0
Πkz

√
2h̄√

3m0
Π∗kz Ec + h̄k2

z
2m0

 (1.10)

Treating the non-diagonal term as a perturbation yields at the second order:

Ec(kz) = Ec +
h̄2k2

z

2m0
+

2

3

h̄2 |Π|2 k2
z

m2
0(Ec − Ev)

≡ Ec +
h̄2k2

z

2mc

Ev,± 1
2
(k) = Ec +

h̄2k2
z

2m0
− 2

3

h̄2 |Π|2 k2
z

m2
0(Ec − Ev)

≡ Ev −
h̄2k2

z

2mlh

Ev,± 3
2
(k) = Ev +

h̄2k2
z

2m0
(1.11)

5Mathematically, the Γ7 valence band cannot be neglected: its contribution to the curvature of the Γ6 band is
only ≈ 4 times smaller than the one we are about to calculate.
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We see from these equations 1.11 that due to the kzpz coupling, the |±1/2〉 doublet from Γ8

and the Γ6 band repel each other. This results in an e�ective mass mc for the electron6 which
is approximately ten times smaller than m0, and for the light hole band, an e�ective mass mlh

close to the one of the conduction electrons. In practice, the value of Π used to calculate the
e�ective mass is known experimentally (the same matrix element rules the optical properties of
the semiconductor). However, we see that the treatment at this point is too rough: the heavy-
hole band has the positive curvature of a conduction band! This is because we should take into
account the coupling between this band and higher conduction bands, which will repel it and give
a negative curvature. This curvature will be smaller (i.e. the e�ective mass will be higher) since
the levels are further away. Moreover, the ~k.~p theory permits to calculate the wave-functions at
k 6= 0. For instance, in the limit of small kz (and still neglecting the Γ7 band), the wave-function
of the conduction-band is given by:

uΓ6,kz ,↑ = uΓ6,↑ +

√
2

3

h̄Π∗kz
m0(Ec − Ev)

uΓ8,+1/2 (1.12)

The diagonalization of the Hamiltonian (like the one given in Eqn. 1.10) gives the dispersion
beyond the parabolic approximation (i.e. beyond the e�ective mass approximation). Including
more bands (typically 30), one can predict accurately the dispersion of the bands in a large region
of the Brillouin zone [14]. In particular, we see in Fig. 1.2, that the curvature of the Γ8 band is
highly anisotropic (it is quite clear if we compare the dispersion along the Γ → X and Γ → L
path). This so-called warping of the valence band is described by ~k.~p calculations.

In the previous discussion, if we had considered a ~k along the [100] axis, without changing
the spin-quantization axis (along z), we would have found a Hamiltonian Hkp much more com-
plicated. We know from symmetry that the eigenvalues would be the same, but the eigenstates
would not be simple combination of the (uΓ8,±1/2, uΓ8,±3/2). This means we cannot attribute
an e�ective mass to a given Γ8-state. Even for small ~k's, we have to describe them as a whole,
taking in account all the Γ8 wave-functions at k = 0 (i.e. using a sort of e�ective-mass matrix
in the Γ8 subspace).

1.1.2 Description of the Γ8 band around k = 0: The Luttinger Hamiltonian

Rather than diagonalizing a k.p-Hamiltonian for each ~k, the matrix describing the Γ8 can be
found using symmetry considerations. As shown by Luttinger in 1956 using group theory [15],
the only Hamiltonian ful�lling the cubic symmetry is:

HL = − h̄2

2m0

(
γ1k

2I4 − 2γ2

∑
i

k2
i

(
J2
i −

1

3
J2
)
− 2γ3 (kxky(JxJy + JyJx) + c.p.)

)
(1.13)

Where γ1, γ2, γ3 are the Luttinger parameters (we will discuss numerical values shortly after),
I4 is the 4 × 4 identity matrix, ~k is a vector of the Brillouin zone, ~J is the orbital momentum
operator (Jx, Jy, Jz are the 4× 4 matrix satisfying [Jx, Jy] = iJz etc.), x, y, z are the axis of the
Brillouin zone shown in Fig. 1.1 and 'c.p.' stands for circular permutation. Now, we introduce new
parameters (A B C) in order to re-write the Luttinger Hamiltonian in a physically transparent
way:

6It is not di�cult to see that if we had considered the Γ7 valence band, we would have found Ec(kz) =

Ec +
h̄2k2z
2m0

+ 2
3

h̄2|Π|2k2z
m2

0
(Ec−Ev)

+ 1
3

h̄2|Π|2k2z
m2

0
(Ec−(Ev−∆))

while the other equations in 1.11 are una�ected
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1.1. II-VI Semiconductors

A = γ1 +
5

2
γ2

B = 2γ2

C = 2(γ3 − γ2) (1.14)

HL = − h̄2

2m0

(
Ak2I4 −B

(
~k ~J
)2

+ C (kxky(JxJy + JyJx) + c.p.)

)
(1.15)

The �rst term alone attributes the same e�ective mass for all the Γ8 states. The addition of
the B-term lifts up the four-fold degeneracy into two sub-bands, and is invariant under arbitrary
rotation. We are in the spherical approximation: the Luttinger Hamiltonian has two eigenvalues
(that we can guess simply by taking ~k and ~J along the same axis):

Ehh = − h̄2k2

2m0(A− 2.25B)−1
=

h̄2k2

2m0(γ1 − 2γ2)−1

Elh = − h̄2k2

2m0(A− 0.25)−1
=

h̄2k2

2m0(γ1 + 2γ2)−1
(1.16)

The e�ective masses mhh = m0(γ1−2γ2)−1 and mlh = m0(γ1 + 2γ2)−1 do not depend on the
direction of ~k. The iso-energies are spheres. The C-term in Equ. 1.15 describes the warping of
the valence band.

The Luttinger Hamiltonian is usually expressed in a matrix form. In the basis (uΓ8,3/2,
uΓ8,−1/2, uΓ8,1/2, uΓ8,−3/2), the Luttinger Hamiltonian 1.15 is equivalent to:

HL = − h̄2

2m0


ahh c b 0
c∗ alh 0 −b
b∗ 0 alh c
0 −b∗ c∗ ahh

 (1.17)

with:

ahh = (γ1 − 2γ2)k2
z + (γ1 + γ2)k2

||

alh = (γ1 + 2γ2)k2
z + (γ1 − γ2)k2

||

c = −
√

3
(
γ2(k2

x − k2
y)− 2iγ3kxky

)
b = −2

√
3γ3 (kx − iky) kz (1.18)

The values of the Luttinger parameters and of the corresponding e�ective mass are given in
Table 1.1.2 for CdTe and ZnTe.

1.1.3 E�ect of strain: The Bir-Pikus Hamiltonian

Because of the lattice mismatch between CdTe and ZnTe, the e�ect of strain cannot be ignored
in nanostructures. We brie�y present the notations we use, we give Hooke's law for a cubic
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CdTe ZnTe

Eg 1606 meV 2391 meV

εr 10.6 9.7

a0 6.48Å 6.10Å

∆so 0.90 eV 0.91 eV

γ1 4.8 4.07

γ2 1.5 0.78

γ3 1.9 1.59

mhh,z 0.556 0.398

mhh,⊥ 0.159 0.206

mlh,z 0.128 0.178

mlh,⊥ 0.303 0.303

me 0.096 0.116

Table 1.1: Physical parameters in CdTe and ZnTe.

crystal, and at last, we present the Bir-Pikus Hamiltonian, which models how strains a�ect the
Γ8 band.

We consider the arbitrary transformation of an elementary cubic volume V = (x ~ux + y ~uy +
z ~uz)

3 into a volume V ′ = (x ~ux
′ + y ~uy

′ + z ~uz
′)3. While the {~ui}i=x,y,z is an ortho-normalized

basis, the
{
~ui
′}
i=x,y,z are de�ned by:

~ux
′ = (1 + ε′xx) ~ux + ε′xy ~uy + ε′xz ~uz

~uy
′ = ε′yx ~ux + (1 + ε′yy) ~uy + ε′yz ~uz

~uz
′ = ε′zx ~ux + ε′zy ~uy + (1 + ε′zz) ~uz (1.19)

The term ε′ij (� 1) describes an expansion of the vector i in the direction j. This arbitrary
transformation can be decomposed in a symmetric part and an anti-symmetric part. The sym-
metric part is the strain tensor. We note it ε (it is de�ned by εii = ε′ii and εij = 1/2(ε′ij + ε′ji)).
In the linear regime, the strain tensor is proportional to the stress tensor σ. The stress tensor
is also symmetric. σij describes a force parallel to i on a surface perpendicular to j. Hence σkk
corresponds to an elongation stress, while σkl (k 6= l) describes a shear stress. Since these tensor
are symmetric, only 6 coe�cients (out of 9) are independent. They are related in the linear
regime through Hooke's law which reads in a cubic crystal:



σxx
σyy
σzz
σyz
σzx
σxy


=



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 2C44 0 0
0 0 0 0 2C44 0
0 0 0 0 0 2C44


.



εxx
εyy
εzz
εyz
εzx
εxy


(1.20)
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1.1. II-VI Semiconductors

Physically, the use of only two diagonal coe�cients C11 and C44 is evident since x, y, z and
xy, yz, zx are equivalent. The presence of C12 means that if the cube lattice is compressed in
one direction (for e.g. εzz < 0) and that we do not allow a strain of the elementary volume in
the other directions (εyy = εxx = 0), we need to apply a stress σxx, σyy in the x and y directions
to maintain the lateral sides of the cube at the same position (while the cube tends to expand
along x and y to minimize the elastic energy). Therefore, we expect physically C12 > 0.

An important example is the presence of biaxial strains. This example corresponds to the
case of a coherently grown quantum well. For instance, we consider a 2D CdTe layer grown on
ZnTe along the z axis. The strain in the xy plane is:

εxx = εyy =
aZnTe − aCdTe

aCdTe
(1.21)

While the CdTe crystal is free to expand in the z direction in order to minimize the energy.
Mathematically, σzz = 0, from which we deduce using Hooke's law 1.20:

εzz = −2C12

C11

aZnTe − aCdTe
aCdTe

(1.22)

For a 2D CdTe layer grown over ZnTe, we have εxx = εyy < 0 and we �nd εzz > 0, as
expected physically. All the other strain terms are equal to zero. We can decompose this strain
into two components: a hydrostatic part which describes a variation of the volume that preserves
the cubic symmetry and a shear part which introduces an anisotropy (i.e. a breaking of the cubic
symmetry):

εhyd =
1

3
(εxx + εyy + εzz) I3

εsh = ε− εhyd (1.23)

The strain ε induces a shift of the energies of the bands that we can describe through a
Hamiltonian. A strain element εxy has the same symmetry as xy, or kxky. Hence, the strain-
Hamiltonian is formally identical to the quadratic terms of the Hamiltonian given by Luttinger.
To describe these e�ects in the Γ8 subspace, we just need to replace in the Luttinger Hamiltonian
(Eqn. 1.13) the kikj 's by the εij 's and the γj by the Bir and Pikus parameters called av, bv and
dv. The Bir-Pikus Hamiltonian [16] is given by:

HBP = avεI4 + bv
∑
i

εii

(
J2
i −

1

3
J2)

)
+
dv√

3
[εxy (JxJy + JyJx) + c.p.] (1.24)

with ε = εxx + εyy + εzz = trε = trεhyd
Following the convention used so far, we take an electron Hamiltonian and we have with the

chosen notation av, bv, dv > 0. In CdTe [17], the Bir-Pikus parameters are:

av = 0.91eV

bv = 0.99eV

dv = 2.76eV
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The e�ect of the hydrostatic term is to shift the Γ8 energy through the av parameter (the
gap increases with a hydrostatic compression i.e. εhyd < 0). The shear strain due to non-equal
εii lifts up the degeneracy between the two Γ8 sub-bands through the bv parameter (similarly to
the situation in ~k 6= 0 in the Luttinger Hamiltonian). So does 'pure shear' (i.e. εij with i 6= j)
through the dv parameter. The Bir-Pikus Hamiltonian is independent on ~k. The dispersion in
a strained semi-conductor is simply given by the sum of HL and HBP . But let us discuss the
e�ect of strain with an example.

In the case of biaxial strain discussed above, we see that the Bir-Pikus Hamiltonian reduces
to:

HBP = avεI4 +
bv
3

(
ε|| − εz

) (
J2
x + J2

y − 2J2
z

)
=

(
avε+

5

4
bv
(
ε|| − εz

))
I4 − bv

(
ε|| − εz

)
J2
z (1.25)

Where we have used J2
x +J2

y +J2
z = J(J + 1)I4 with J = 3/2 to simplify the �rst expression.

It is now clear that, as explained earlier, the degeneracy of the Γ8 band has been lifted at k = 0
by the anisotropy of the strains. Using 1.22, we �nd:

E± 3
2
− E± 1

2
= 2bv

(
1 +

2C12

C11

)
aCdTe − aZnTe

aCdTe
(1.26)

In a fully strained layer of CdTe over ZnTe, the heavy-mass Γ8 sub-band is 300meV above
the light-mass sub-band, so that, in �rst approximation, light-holes in these nano-structures can
be neglected. For thorough explanations on the elements of semiconductor theory developed in
this section we recommend [18].

1.2 Quantum Dots

A quantum dot is a nanometer size volume of a semiconductor (here CdTe) embedded in a larger
gap semiconductor (ZnTe). As the valence band (resp. conduction band) of CdTe is at higher
(resp. lower) energy than the one of ZnTe, the quantum dot behaves as a 3D potential well for the
free carriers. This results in a quantization of the energy levels of the carriers and a discretization
of the optical properties. Due to these features, quantum dots are often nicknamed 'arti�cial
atoms', the potential created by the barrier, being the analogue of the Coulomb potential in
atoms. However, as we will see, the analogy has its limit: when an electron is promoted from
the valence band to the conduction band, a hole is left in the valence band. Coulomb interaction
between these two (quasi-)particles plays an important role: it consists of an attractive term
that shifts the single particle energy levels and an exchange interaction (due to Pauli's exclusion
principle). Indeed, although the two particles look di�erent in a naive approach, a hole is the
absence of a valence band electron. The hole's energy, charge, spin, orbital momentum, ~k and
mass are, by de�nition, taken opposite to the missing valence electron. Hence, the promotion of
an electron from the state uΓ8,3/2 will leave in the valence band a hole with an orbital momentum
Jz = −3/2 that we will note ⇓.

1.2.1 Energy Levels and Optical Selection Rules

The wave-function of a carrier can be developed on the Bloch states:
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Ψ(~r) =
∑
n,k

cn,kun,k(~r)e
i~k·~r (1.27)

Because of con�nement, only Bloch states around ~k = 0 need to be considered. The single-
particle energy levels (for the electron or the hole) can be determined in the e�ective-mass
approximation (i.e. inter-band wave-function mixing is neglected): The periodic crystal potential
and the free-electron kinetic energy are replaced by the e�ective Hamiltonian describing the band
extrema (e�ective mass me for the conduction band or HL + HBP for the Γ8 band) and the
expansion on Bloch states is replaced by an expansion on the un,0(~r)ei

~k·~r. The valence band and
conduction band electronic wave-function can be written as a function of slowly varying envelope
functions:

Ψc(~r) ≈
∑
k

ckuΓ6,0(~r)ei
~k·~r

= uΓ6,0(~r)Fe(~r)

Ψv(~r) ≈
∑

Jz=±3/2,±1/2,k

cJz ,kuΓ8,Jz(~r)e
i~k·~r

=
∑

Jz=±3/2,±1/2

uΓ8,Jz(~r)FJz(~r) (1.28)

This allows us to work with the very intuitive picture of an e�ective mass carrier trapped in a
potential Vc,v(~r) created by the band-o�set between the two semi-conductor materials with an en-
velope function Fc for the electron or a linear combination of the envelope functions F±3/2, F±1/2

for the hole. These envelope function satisfy the Schrödinger equation:

(
h̄2

2me
∆

)
Fe(~r) + Ve(~r)Fe(~r) = EFe(~r)

[
H̃BP + H̃L + Vh(~r)

]
F3/2(~r)

F−1/2(~r)

F1/2(~r)

F−3/2(~r)

 = E


F3/2(~r)

F−1/2(~r)

F1/2(~r)

F−3/2(~r)

 (1.29)

Where in H̃L, the k-terms transform into a gradient of the envelope function (~k → −i∇). Note
that now, H̃L and H̃BP are hole Hamiltonians (i.e. opposite to the electron Hamiltonians de�ned
earlier). From now on we will drop the ,̃ although we are talking of a hole Hamiltonian. The
derivation of the e�ective mass approximation can be found in [19].

A few approximations are usually made to solve this problem:

• Approximation already made in Eqn. 1.29: we take the same e�ective mass in CdTe and
ZnTe, otherwise we would need to consider more complicated equations (the latter are
discussed in [18] for instance).

• Considering the presence of biaxial strain, non-diagonal terms in HL (coupling heavy and
light holes) can be neglected compared to the lift of degeneracy due to HBP (c.f. section
1.1.3). This is the heavy hole approximation: The four di�erential equations become
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Figure 1.3: (a) AFM Image (250nm2) of CdTe/ZnTe quantum dots before capping (quantum
dot density ≈ 3.1010). (b) TEM Image of a CdTe/ZnTe quantum dot.

uncoupled, only the ground states |±3/2〉 are considered, and their e�ective mass is given
by the diagonal term in the Luttinger Hamiltonian: mh,|| in the plane, mh,z along the
growth axis.

At this point, the problem is still too complicated for analytical resolution, but we can make
it simple by choosing a textbook potential (i.e. one we know how to solve!). The true shape
of a quantum dot is lens-like, with a height Lz much smaller than its radius ρ (c.f. Fig 1.3).
Consequently, solutions of the form χ(z)φn,m(ρ, θ) are a good approximation of the real functions.
We suppose Vc,v(~r) = Vc,v(z) + Vc,v(ρ), where Vc,v(z) is a 1D harmonic oscillator, and Vc,v(ρ) is
a 2D harmonic oscillator:

Vc,v(z) = 4∆Ec,v
z2

L2
z

Vc,v(ρ) = 4∆Ec,v
ρ2

L2
ρ

(1.30)

We introduce for the 2D harmonic oscillator the characteristic spatial width σe,hρ =
√

h̄
me,h||ωe,h

and the characteristic frequency ωe,hρ =
√

8∆Ec,vme,h||L2
ρ and their analogue σ

e,h
z , ωe,hz for Vc,v(z).

The ground state (GS) and the �rst two degenerate excited states Exc,±1 can be found in any
textbook, (e.g. [20]):

FGSc,v (z, ρ, θ) =
1

(
√
πσz)1/2

exp

(
− z2

2σ2
z

)
1√
πσρ

exp

(
− ρ2

2σ2
ρ

)

FExc,±1
c,v (z, ρ, θ) =

1

(
√
πσz)1/2

exp

(
− z2

2σ2
z

)
1√
πσρ

exp

(
− ρ2

2σ2
ρ

)
ρ

σρ
exp (±iθ) (1.31)

The ground state and the �rst two excited states have the same envelope function along the
z axis. This comes from the fact that Lz � Lρ, and consequently, a node along the z axis is
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1.2. Quantum Dots

at much higher energies that the states considered above. The �rst energy state, at an energy
ESe,h = h̄(ωe,hz +ωe,hρ )/2 for the electron or the hole, will be commonly called S state. The second
energy state, EPe,h = h̄(ωe,hz +3ωe,hρ )/2, is referred as P state and is only twice degenerate with an
angular momentum lz = ±1, contrary to atom physics (where p-states are 3-times degenerate).
This is, as we have explained already a consequence of the geometry Lz � Lρ, or in other words,
the symmetry of the dot. Each of these states has an additional degeneracy due to spin (or,
strictly speaking, atomic angular momentum regarding the hole): there are two possible spin
projection for the electron (±1/2) which we will note |↑〉 and |↓〉 and two spin projections for
the heavy-hole (±3/2) which we will note |⇑〉 and |⇓〉. A hole |⇓〉 corresponds to the absence of
a valence electron Ψv(~r) = uΓ8,3/2(~r)F3/2(~r).

The basic optical properties of a quantum dot can be determined considering the coupling
through the operator ~p. Indeed, the coupling to light in the dipole approximation is given by
H = −q~p. ~A/m or H = −~d.~E, depending on the chosen gauge. As usual, ~A is the vector potential,
~d is the dipole operator, and ~E the electrical �eld. This coupling can be calculated between the
state 'empty dot' |∅〉 and an electron-hole pair state (which we will call exciton, to keep it short).
Alternatively, we will consider the interband matrix element between the two electronic states
Ψc and Ψv introduced previously:

|〈Ψv| ~p |Ψc〉|2 = |〈Fv|Fc〉|2 |〈uΓ8,Jz | ~p |uΓ6,σ〉|
2

We see from this expression that optical transitions are a product between the overlap integral
over the envelope functions, and an interband matrix element depending on the symmetry of the
periodic Bloch wave. The latter can be calculated using the results given in subsection 1.1.1. It is
straighfoward to demonstrate that in the heavy hole approximation, there are only two optically
active transitions: between uΓ8,−3/2 and uΓ6,↓ (coupled through the p+ = px + ipy operator,
corresponding to σ+ photon absorption or emission) and the transition between uΓ8,+3/2 and
uΓ6,↑ (coupled through the p− = px − ipy operator, corresponding to σ− photon absorption or
emission). The overlap integral over the envelope functions implies that the envelope function of
the empty valence state and the conduction state have the same symmetry and forbids crossed
transition between, for instance, a valence state of the P shell to a conduction state of the S
shell.

Coming back to an electron-hole pair description, the general result is that for S-electron-hole
pair, we have two bright states (|↓⇑〉 with Jz = +1 and |↑⇓〉 with Jz = −1) optically active and
two dark states (|↑⇑〉 with Jz = +2 and |↓⇓〉 with Jz = −2) which cannot recombine radiatively.
For now, within a given shell, the states are all degenerate, but we will see this is no longer the
case if we take into account the real symmetry of the dot and Coulomb interactions.

The harmonic potential approximation overestimate greatly the single-particle energy levels,
since they overestimate the con�nement. However, the wave-functions Equ. 1.31 can be used as
trial wave-functions for variational calculation in a more realistic potential, in order to estimate
correctly the energy levels. Another improvement compared to the simple model we have pre-
sented, is to take into account the mixing between the bands, which is commonly done using ~k.~p
theory. Experimentally, in our system the P shell is typically 30 to 35meV higher than the S
shell. In between, we often �nd the LO-phonon replica, 25meV above the exciton ground-state.
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1.2.2 Corrections due to Coulomb interactions: Binding energy and Ex-

change Interactions

Fundamentally, the evaluation of Coulomb interactions is a complex many-body problem between
an electron of the conduction band and N − 1 electrons from the valence band. However, as
shown in [21], this interaction reduces to an e�ective interaction between the electron and the
hole with a direct term and an exchange term. The Hamiltonian matrix elements are:

〈
e, h |H| e′, h′

〉
= δh,h′δe,e′(εe − εh)−Kh′ee′h + Jeh′e′h (1.32)

εe and εh are the single-particle energy levels, Kh′ee′h and Jeh′e′h represent the direct and the
exchange Coulomb interaction. The latter are given by:

Kh′ee′h =
e2

4πε

∫
d~r1d~r2

Ψ∗v′(~r1)Ψ∗c(~r2)Ψc′(~r2)Ψv(~r1)

|~r1 − ~r2|

Jeh′e′h =
e2

4πε

∫
d~r1d~r2

Ψ∗c(~r1)Ψ∗v′(~r2)Ψc′(~r2)Ψv(~r1)

|~r1 − ~r2|
(1.33)

In these expressions, ε is the dielectric constant of the material. Ψc is the wave-function
of the electron in the conduction band and Ψv is the electronic wave-function of the missing
electron in the valence band. The direct term is attractive, as expected from the common pic-
ture of a positively charged hole interacting with a negatively charged electron. It lowers the
excitonic levels by a few tens of meV , depending on the envelope function of the electron-hole
pair, while the exchange term dramatically in�uences the structure of the levels within a spin-
degenerate multiplet. Indeed, Jeheh is di�erent from zero only if the spin of Ψv and Ψc are the
same (and the electron and hole spin are opposite). Hence, the exchange term can be expressed
as a spin-dependent e�ective Hamiltonian that increases the energy of bright states compared
to dark states which remain una�ected. The picture is that the Coulomb interaction between
electrons of identical spin is lower because they avoid each other due to Pauli exclusion principle.
Therefore, as a ⇑-hole is an absence of an electron with spin down, the Coulomb interaction
between the valence band and the conduction electron is lower if this conduction electron is ↑
than spin ↓. In other words, the electron-hole exchange interaction gives rise to a ferromagnetic
e�ective Hamiltonian which lifts up the degeneracy between bright and dark states.

In fact, the approach above does not take into account the true symmetry of the crystal
so that the e�ective Hamiltonian presents additional terms. Bir and Pikus have intensively
studied how the bulk-exciton exchange interaction could be modeled. They demonstrated that
the exchange integral could be decomposed into two terms.

• The short-range exchange interaction, which corresponds to the case when the electron and
the hole are in the same Wigner cell. For a 3D exciton, it can be treated by an e�ective
Hamiltonian in the Γ8, Γ6 subspace: Jsr = δsr,3D0 ~σ. ~J + δ2

∑
i=x,y,z σiJ

3
i . The �rst term

of the short-range exchange interaction lifts up the degeneracy between exciton states of
total angular momentum Jtot = 2 degenerate 5 times and Jtot = 1 degenerate 3 times.
The second term, predicted on symmetry considerations, results in a �ne-structure of the
dark states (Jtot = 2 multiplet). This dark exciton �ne structure has never been observed
experimentally for bulk semiconductors but is expected to be much smaller than δ0 which
is equal to 0.07meV in CdTe and 0.28meV in ZnTe [22].
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• A long-range exchange interaction, which depends on the envelope wave-function of the
exciton. For a 3D exciton, this lifts up of the degeneracy between transverse exciton
states (exciton dipole perpendicular to the center of mass wave-vector ~kex) and longitudinal
exciton states (exciton dipole parallel to the center of mass wave-vector ~kex), independent
of kex, for kex > 2π/λ. A 0.65meV transverse-longitudinal splitting was measured in CdTe
[23]. For kex < 2π/λ, we are in the light-matter strong-coupling regime of polariton, that we
will not discuss here. We now understand that kex 6= 0 corresponds more precisely to kex �
λ−1, where λ is the wavelength of the photon emitted during the exciton recombination.

We are now going to focus on exchange interactions in quantum dots. A general trend is
that the magnitude of the exchange energies increases with con�nement as the overlap between
the carriers wave-function is greater than in bulk semi-conductor. Regarding the symmetry of
a quantum dot, the �ne structure of the heavy hole exciton can be predicted. For the ground
state, the exchange Hamiltonian can be written:

Hex
eh = 2δ0jzσz +

δ1

2

(
e2iφ1j+σ− − e−2iφ1j−σ+

)
+
δ2

2

(
e2iφ2j+σ+ + e−2iφ1j−σ−

)
(1.34)

Where δ0, δ1 and δ2 are parameters, which represent respectively the dark/bright exciton
energy splitting, the energy splitting between bright exciton states, and the energy splitting
between dark states. ji and σi are the Pauli matrices for the electron spin and the hole pseudo-
spin. In CdTe/ZnTe quantum dots, δ0 is typically 1meV , and δ1 varies between a few tens and
a few hundreds of µeV . The splitting of dark states δ2 is governed by short-range exchange
interaction. Both short-range and long-range interactions contribute to δ0. In an anisotropic
quantum dot, δ1 is controlled by long-range exchange (we neglect strain-induced valence band
mixing that we will discuss in the next section). The eigenstates observed optically (bright
exciton states) are linearly polarized along the φ1 direction and φ1 + 90◦:

|πφ1〉 =
1√
2

(
e−iφ1 |+1〉+ eiφ1 |−1〉

)
|πφ1+90◦〉 =

1√
2

(
e−iφ1 |+1〉 − eiφ1 |−1〉

)
(1.35)

This exchange Hamiltonian results from the fact that the highest possible symmetry of a real
dot is C2v. This favors two axis, perpendicular to the growth axis. Even in an ideally lens-shaped
quantum dot, Bester, Zunger et al ([24], [25]) show using a microscopic approach that (i) interface
between the dot material and the barriers, (ii) atomic relaxation (i.e. strain) induced by the
lattice mismatch and (iii) the piezo-electric �eld arising from these strain result already in a �ne
structure splitting. For InGaAs/GaAs quantum dots with Lx = Ly = 25.2nm, Lz = 3.5nm, they
calculate a 4µeV splitting of the bright states. This can be compared to the 30µeV splitting they
calculate for a small shape anisotropy of a similar dot (Lx = 26nm, Ly = 20nm, Lz = 3.5nm)
[25]. Such �ne structure splittings are also predicted considering a potential anisotropy, and the
short and long-range interaction in the frame of ~k.~p theory [26]. However, as it is impossible to
check if the potential anisotropy chosen in the calculation corresponds to the one of the dot under
optical study, the contribution of con�nement anisotropy, strain anisotropy, interdi�usion of the
barrier material in the quantum dot, randomness at an atomic scale of this interdi�usion, and
the long range and short range exchange interaction resulting from these e�ects is still debated.
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Chapter 1. A Mn spin in a CdTe/ZnTe Quantum Dot: Single Spin Addressing

Figure 1.4: PL intensity of the lines of the biexciton, the charged excitons and the neutral exciton
of a CdTe/ZnTe quantum dot as a function of the angle of the linearly polarized detection (taken
from Yoan Leger's PhD thesis [27])

1.2.3 Polarisation anisotropy and Valence Band Mixing

Another experimental observation (Fig. 1.4) hurts the simple description of a heavy hole exciton
given in subsection 1.2.1: in the majority of CdTe/ZnTe quantum dots, we observe that the
linearly polarized bright states of the neutral exciton do not have the same intensity. More-
over, the angle between the two linearly polarized states is not 90◦, as predicted earlier. This
anisotropy of the oscillator strength is also observed in charged quantum dots, which present a
linear component in the PL emission. This appears to be in complete contradiction with what
has been stated earlier.

For instance, we consider the case of a negatively charged quantum dot. The ground state
of the dot is degenerate twice (|↑〉 or |↓〉). So are the ground excitonic states X− which are also
twice degenerate (|↑↓⇑〉, |↑↓⇓〉). In charged quantum dots, exchange interactions vanish for the
X− ground state, as the hole interacts with two electrons in the same spatial state but with
opposite spins. According to the heavy-hole approximation, the transitions are purely circularly
polarized σ+ or σ− so that no linear polarization should be observed.

28



1.2. Quantum Dots

However, we have seen that the heavy hole approximation relied on the presence of biaxial
strain. An anisotropic distribution of strains (i.e. εxx 6= εyy or εij 6= 0 with i 6= j) can break
down this hypothesis and mix the heavy-hole state Jz = +3/2 with Jz = −1/2 and Jz = −3/2
with Jz = +1/2 through the Bir-Pikus Hamiltonian. A light-hole/heavy-hole mixing (i.e. va-
lence band mixing) can also occur through the Luttinger Hamiltonian if the dot is asymmetric
(Lx 6= Ly), however, the mixing expected theoretically is too small compared to the polarization
anisotropy observed here.

To �x ideas and show how Valence Band Mixing (VBM) can a�ect the polarization properties
of the dot, we neglect the envelope function di�erence between the light and heavy hole, and
consider a phenomenological parameter ηe2iθ describing the light part of the hole state7.

∣∣∣⇑̃〉 ∝ |+3/2〉 − ηe2iθ |−1/2〉∣∣∣⇓̃〉 ∝ |−3/2〉 − ηe−2iθ |+1/2〉 (1.36)

In the hypothesis of a small strained-induced VBM:

ηe−2iθ =
idεxy − b

√
3

2 (εxx − εyy)
∆lh

(1.37)

Where ∆lh is the light-hole heavy-hole splitting given by the average in-plane bi-axial strain
b(εxx + εyy + 2εzz). In our quantum dots, ∆lh is expected to be approximately ten times smaller
than the 300meV measured in the case of fully strained CdTe layer over ZnTe, because of partial
relaxation of the strain [12]. However, this is a minimum estimate. As we will see, the only
parameter accessed experimentally is η (Eqn. 1.37), which is a ratio of the in-plane anisotropy
of the strain and light-hole/heavy hole splitting.

First, we consider the simplest case of a charged exciton where exchange interactions do not
play a role because the hole is interacting with a spin singlet. The oscillator strength Ω(α) of
the transition (where the vector ~eα = cos(α)~ex + sin(α)~ey is the polarization of the detection) is
given by:

Ω(α) ∝
∣∣∣〈↑ |cos(α)pX + sin(α)pY | ↑↓ ⇑̃

〉∣∣∣2
= 1 +

η2

3
+

2√
3
η cos(2(θ − α)) (1.38)

Contrary to what is expected in the heavy hole approximation, the charged exciton can have
a strong linear component, depending on the strength of the light/heavy hole mixing governed
by η. In our quantum dots, the linear polarization rate P de�ned by:

P =
Imax − Imin
Imax + Imin

=
4/
√

3η

2 + 2η2/3
(1.39)

7Here, we have only considered admixtures of |±3/2〉 with |∓1/2〉. This is often the case in the literature.
This is not evident at the �rst sight of HL and HBP which also present non-diagonal terms coupling |±3/2〉 with
|±1/2〉. This is because the coupling between envelope functions arising from the b term (in Eqn. 1.17) of HL
and their analogue for HBP (due to the shear strain εzx and εzy) are neglected. For HL, this comes from the
decoupling approximation, whereby the wave-function can be separated in the z and x−y coordinates. Therefore
the b term in HL does not couple envelope functions because 〈χi(z) |kz|χj(z)〉 = 0 by symmetry. For HBP , our
assumption is based on an experimental observation: the shear strain εzx and εzy was found to be negligible in
the majority of the Mn-doped quantum dots (p.88− 91 of [27]).
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can reach 40%, which corresponds to strong light/heavy hole mixing (η = 0.24). Experimentally,
there are no correlation between the polarisation axis of di�erent quantum dots, even if they are
spatially close to each other (and of course no correlation with the crystallographic axis). Such
behaviour can be explained considering the anisotropic relaxation of strain during the growth
[12]. A similar behaviour is observed in III-V compounds at low quantum dot density (near the
2D to 3D transition). Again, it is attributed to the e�ect of strains [21]. For this system, this
hypothesis is supported by AFM studies showing that, in such growth conditions, the dots are
preferentially nucleating near structural defects [28]. In the case of II-VI materials, a strained-
induced heavy/light hole mixing is not surprising: the dislocation formation energy is low in this
system [29].

For neutral excitons, the competition of the exchange interaction (which tends to favor linear
emission along φ1 and φ1 + 90◦) and the e�ect of strains (which tends to favor linear emission
along θ and θ+90◦) explains that the angle between the two linearly polarizedX lines is not equal
to 90◦. Moreover, the VBM results in a �ne structure splitting through short-range interaction
that can either enhance or decrease the �ne structure splitting due to long range interaction. In
order to illustrate our point, we continue to omit subtleties, due to envelope function overlap
and consider an isotropic short-range exchange interaction between the electron (spin σ) and the
light or heavy hole (spin J):

Hsr = − δ
sr
0

3/2
~J.~σ (1.40)

Where δsr0 still corresponds to the energy splitting between bright and dark exciton due to
the short-range exchange. The coupling between the bright states

∣∣∣↓ ⇑̃〉 and
∣∣∣↑ ⇓̃〉 through Hsr

can be calculated using eqns. 1.36:

〈
↓ ⇑̃ |Hsr| ↑ ⇓̃

〉
=

2√
3
δsr0 ηe

−2iθ (1.41)

Hence, valence-band mixing through short-range interaction splits the bright states into two
linearly polarized states along axis de�ned by the strains. As a result of the competition between
this e�ect and the long-range exchange interactions, the angle between the two linearly polarized
states is not necessarily 90◦. Also, dark states are coupled to each other to second order in
η and acquire a weak oscillator strength (with a dipole along z, that are not detected in the
con�guration of our set-up.) A thorough investigation of these e�ects has been carried out in
Yoan Leger's PhD thesis [27] and in [12], where envelope functions of the e�ective mass carriers
have been taken into account, and calculations brought beyond the perturbative limit of small
VBM.

1.3 Exchange interactions between carriers and a localized Mn

spin

1.3.1 Exchange interactions in bulk Diluted Magnetic Semi-conductors

In order to understand the e�ect of adding a Mn atom in a CdTe quantum dot, a good starting
point is to consider a Mn atom in a CdTe crystal and hence the case of Diluted Magnetic
Semiconductors (DMS) at the limit of low concentrations which have been intensively studied
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1.3. Exchange interactions between carriers and a localized Mn spin

Figure 1.5: (a) Scheme of band energy close to the band gap (k ≈ 0) as a function of a magnetic �eld Bz
along the growth axis. The spin states of electrons (σz) and holes (Jz) as well as the optical transitions

are displayed. (b) Experimental transition energies in a Zn0.95Mn0.05Te sample, as a function of the

applied magnetic �eld Bz. (Taken from [33, 34])

for the past decades. In such case, we can consider that the band states of the crystal are the
ones of a pure crystal without the Mn impurity, while the presence of the Mn atom introduces
localized d electronic states around the Mn nucleus: when the Mn atom (3d54s2) replaces a Cd
atom 3d104s2, the 2 electrons of the s shell participate to the crystal bond, while the 5 electrons
of the d shell remain localized around the Mn2+ ion. Consequently, the presence of the Mn
impurity in a II-VI crystal does not strongly modify the crystal potential seen by free carriers
contrary to a Mn impurity in a III-V semiconductor where the Mn atom is also an acceptor (The
Mn2+ ion, which is a negatively charged center in the III-V crystal, binds a hole from the valence
band to form a hydrogenic-like state [30]). The half �lled 3d shell of the Mn atom in the ground
electronic state satis�es according to Hund's rule S = 5/2 and L = 0: each electron occupies a d
orbital (Lz = −2, −1, 0, 1, 2) with parallel spins. The lowest excited state 3d5∗ with S = 3/2 and
L = 4 (which corresponds schematically to the inversion of one of the electron's spin) lies 2.2eV
above the electronic ground state. These intra-ionic optical transition (observed in ZnMnTe [31])
should be forbidden by parity rules and spin-conservation but are dipole allowed by the lack of
inversion symmetry of the tetrahedral crystal �eld and spin-orbit interaction. The same mixing
is responsible for spin-lattice relaxation of an isolated Mn atom. Since this mixing is small, we
will consider in the following that the Mn is a 5/2 pure spin.

In DMS, a strong spin-dependent coupling was discovered in 1977 [32] between the e�ective
mass-carriers (electron from the s band and holes from the p band) and the localized d electrons
of the Mn atom called spd exchange. One of the most striking consequences of these interactions
is the so-called giant Zeeman e�ect: the splitting produced by a magnetic �eld is more than an
order of magnitude larger than the intrinsic Zeeman splitting of the exciton optical transitions,
re�ecting an energy shift of the conduction and valence band edge (Fig 1.5).

In order to explain it, a shift induced by the e�ective �eld created by polarized Mn atoms
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needs to be considered. Since carriers near the band edge are delocalized, a mean �eld approx-
imation is performed (it is the so-called virtual-crystal approximation): the carriers are only
sensitive to the mean value of the Mn spins 〈Sz〉, and to their average density xN0 where x is the
percentage of Mn in the alloy, and where N0 is the number of unit cells in a normalized volume
(i.e. N0 = N

V = 4
a3 where N is the number of unit cell and V is the volume of the crystal. a

is the size of the cubic cell in the zinc-blende structure.). This spd exchange-induced shift was
found to be proportional to the Mn magnetization:

Esd = −N0xα 〈Sz〉σ

Epd = −N0x
β

3
〈Sz〉 Jz (1.42)

α (resp. β) is a coupling constant between the s carriers (resp. p carriers) and the d electrons
of the Mn spin. In CdTe, N0α ≈ 0.2eV and N0β ≈ −0.88eV . These values can be extracted
from experiments like the one shown in Fig. 1.5 thanks to the presence of both light holes and
heavy holes excitons which split proportionally to N0(α + β/3) and N0(α − β). The law equ.
1.42 is well satis�ed in II-VI DMS with moderate band gap and a Zinc-Blende structure such as
(Cd,Mn)Te, (Zn,Mn)Te or (Zn,Mn)Se. Generally, N0α is fairly independent from the material,
while N0β is large, negative and proportional to N0 (i.e. increases as the size of a unit cell
shrinks, for e.g. N0 |βCdTe| < N0 |βZnTe|).

These spin-dependent coupling result from short-range exchange interactions between the
e�ective mass-carriers (electron from the s band at a position ~re and holes from the p band, at
~rh) and the localized d electrons at ~R which take a Kondo-like form8:

Hspd = −Jsd(~R− ~re)~σe · ~S − Jpd(~R− ~rh)~σh · ~S (1.43)

Following the conventional notations, the Kondo Hamiltonian is expressed as a function of
the pure spin of the free carriers, but it can also be expressed as a function of ~J (by replacing
~σh 7→ ~J and Jpd 7→ Jpd/3).

Two mechanism contribute to this exchange coupling:

• A ferromagnetic coupling resulting from direct exchange interaction: Two electrons with
parallel spins tend to avoid each other due to the Pauli exclusion principle, thus the
Coulomb repulsive interaction is reduced compared to the case of anti-parallel spins.

• A spin-dependent hybridization of the Mn electrons with the free carriers which results
in an anti-ferromagnetic coupling between the free carrier and the Mn spin, called kinetic
exchange.

The hybridization is forbidden for an electron from the s band at k = 0 because of symmetry
(s and d wave-functions are orthogonal in zinc-blende structures). The s-d exchange is only
governed by direct exchange. But p-d hybridization is allowed, and has the main contribution to
the hole-Mn exchange. Hybridization is modeled by the Anderson Hamiltonian, which describes

8The Kondo Hamiltonian is directly linked to the energy shift discussed previously: Applying the virtual crystal

approximation to the matrix element
〈
ψn,~k |Hspd|ψn,~k

〉
, where ψn,~k is a delocalized states (ψn,~k(~r) = 1√

V
ei
~k.~run,~k,

k ≈ 0), we �nd that the energy shift is proportional to the number of Mn atom (Nx), to the probability for the
carrier to be on the Mn site 1/V , and to α =

∫
V
d~ru∗Γ6,0

(~r)Jsd(~R−~r)uΓ6,0(~r), β =
∫
V
d~ru∗Γ8,0

(~r)Jpd(~R−~r)uΓ8,0(~r).
Eqns. 1.42 are recovered.
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hopping from valence states to the Mn d-shell and vice-versa. The Anderson Hamiltonian can be
transformed into a Kondo Hamiltonian as done for the �rst time by Schrie�er and Wolf in 1966
[35]. It can be seen as a second-order perturbation-theory e�ect9 involving virtual transitions of
an electron between the d orbitals of the Mn and valence band states. Assuming the Mn spin is
in Sz = +5/2 (Mn electrons up), the energy shift of a Bloch state can be expressed as a function
of10:

• εd: the one-electron energy of a 3d orbital (≈ −3.7eV ).

• U : the Coulomb repulsion energy between opposite spin electrons located on the same d
orbital (≈ 9eV ).

• εv: the energy of the valence-band maximum (= 0eV ).

• Vpd: the transfer integral between a neighboring p orbital and the d states (= 1.1eV ).

• V : the volume of the crystal

Using these quantities, the energy shift for a given spin-projection of the valence electron are
given by:

∆E↑ ≈
V 2
pd

V

1

εv − εd
(1.44)

∆E↓ ≈
V 2
pd

V

1

εv − (εd + U)
(1.45)

Hence:

∆E↑ −∆E↓ ∝ −
V 2
pd

V

U

(εv − εd) (εv − (εd + U))
≥ 0 (1.46)

This coupling is anti-ferromagnetic, as stated earlier. It corresponds, apart from a numeri-
cal factor11, to the exchange interaction derived from the Schrie�er-Wolf transformation. The
expression of N0β in DMS can be derived from this microscopic approach:

N0β =
(4V 2

pd)

S

U

(εv − εd) (εv − (εd + U))
(1.47)

where S = 5/2.

9It can be seen, but it cannot be treated mathematically by perturbation theory. This is all the point of the
Schrie�er-Wolf transformation, which is a canonical transformation.

10The numerical values are adapted from the donor and acceptor energies and the transfer integral given in
[36].

11This factor varies in the literature, depending on how Vpd is de�ned.
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1.3.2 E�ect of Con�nement on Exchange Interactions

Knowing what are the exchange constants α and β in bulk DMS, what should we expect in
a Mn-doped quantum dot? Compared to the case of bulk materials, the hole-Mn interaction
cannot be considered isotropic, because of the strained-induced light-hole/heavy-hole splitting.
In the heavy-hole approximation, a �ip of the pure spin of the hole from Jz = 3/2 leads to a
light-hole state at a di�erent energy so hole-Mn �ip-�op are energetically forbidden. This means
we have to consider a Hamiltonian of the form:

H = −Ie−Mn~σ.~S + Ih−MnJz.Sz −
2

3
Ie−hJz.σz (1.48)

This equation gives the exciton-Mn (XMn) levels in a �rst approximation: we have neglected
anisotropic long-range exchange interaction and valence band mixing. However, this degree
of approximation is often su�cient. Typically, Ie−h ≈ 0.8meV , and the carrier-Mn exchange
constants can reach Ih−Mn ≈ 300µeV , Ie−Mn ≈ 100µeV . Considering electron-hole exchange,
bright excitons are split from dark excitons by Ie−h. Then, considering the interaction with the
Mn, these levels are further split into six levels depending on the relative projection the Mn
and the exciton spin. These six lines are equally split by 1/2(3Ih−Mn + Ie−Mn) for a bright
exciton, and 1/2(3Ih−Mn − Ie−Mn) for a dark exciton. The energy levels are twice degenerate
(as the energy does not change if we reverse simultaneously Sz, σz and Jz). This level structure
(depicted in Fig. 1.6) accounts well for the spectra observed experimentally: the Mn doped
quantum dot presents six lines, as the spin-state of the Mn atom �uctuates during the time-
averaged PL measurement. The remarkable property of this system is that the spin-state of the
Mn can be accessed optically: single-shot detection of a photon at a given energy and with a
given polarization is a measurement of the spin-state of the Mn atom. The biexciton-states are
degenerate as the Mn atom is interacting with two spin-singlets. Recombination from the X2Mn
levels to the non-degenerate XMn levels also results in a sextuplet structure of the biexciton PL.

What are the values expected for Ie−Mn and Ih−Mn? As the exchange interaction is short-
range, in �rst approximation, we can consider that the exchange constants are proportional to
the probability of presence of the carrier at the Mn site12:

Ie−Mn = α
∣∣∣Fe(~R)

∣∣∣2
Ih−Mn = −β/3

∣∣∣Fh(~R)
∣∣∣2 (1.49)

From these relation, we can derive the order of magnitude of the exchange interaction ex-
pected. We will consider that the envelope function of the carriers is given by:

Fe,h =
√

8/V cos(kxx) cos(kyy) cos(kzz)

where the quantum dot is approximated by a square-box potential with in�nite barriers. If
we take V = 2 ∗ 10 ∗ 10nm3, a Mn atom at the center of the dot (~R = 0) and knowing that
α = −15meV.nm3 and β = 50meV.nm3, we obtain Ie−Mn ≈ 60µeV and Ih−Mn ≈ 80µeV . This
simple estimation fails to predict the observed exchange constants CdTe/ZnTe quantum dots

12Such relation is straightforward to obtain using Eqn. 1.43 and the envelope function formalism (assuming
that the variation of the envelope function can be neglected on the space-scale of the exchange interaction)
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1.3. Exchange interactions between carriers and a localized Mn spin

Figure 1.6: Energy levels of the ground-state, the exciton and the biexciton in a Mn-doped quantum
dot. The levels are sketched as a function of the Mn spin Sz. Dark states are represented in grey. Optical
transitions from the bright states of the XMn complex result in a six-line PL spectra shown on the right.

[27], where Ih−Mn is typically three times larger than Ie−Mn while the ratio expected in this
simple approach is β/(3α) ≈ 4/3. The ratio is more relevant than the absolute values which
depend a lot on the quantum dot's volume.

This could be because our estimation is too rough: as pointed out earlier, the exchange
constants accessed optically result from exchange interactions between the magnetic atoms and
e�ective mass carriers from the edge of the bands that is to say ~k = 0. However, localized
carriers (in quantum dots or quantum wells) have a �nite wave-vector ~k: considering an in�nite
con�nement along z, of height L, the lowest wave-vector is kz = π/L. Now, at �nite ~k, a
mixing between the conduction and valence band occurs as we have seen from the elements of
kp-theory presented earlier. For the electron, the consequence is a decrease of the ferromagnetic
constant Je−Mn with increasing con�nement as the electron acquires a valence-band character
which interacts antiferromagnetically with the Mn. More precisely, the reduction of the coupling
constant with increasing ~k is the sum of two contributions: (i) kinetic exchange allowed by the
mixing with the valence band [37] (ii) a reduction of the direct exchange term (calculated using
a tight-binding model initially developed in [38]). But (i) dominates. In the case of a heavy
hole, it is the k-dependence of the kinetic exchange [38], and not the mixing with the conduction
band that dominates the decrease of the overall exchange. As proposed by Battacharjee [39], and
developed by L. Maingault in his PhD thesis [40], these e�ects can be included in the envelope
function formalism13:

Ie−Mn = α
∣∣∣Fe(~R)−A(∂2

zFe(~R) + ∂2
ρFe(~R))

∣∣∣2 + β

(
(C −B)

∣∣∣∂zFe(~R)
∣∣∣2 + C

∣∣∣∂ρFe(~R)
∣∣∣2)

13As k terms are included in reciprocal space, they can be expressed as derivatives of the envelope function in
real space.
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Ih−Mn = −β
∣∣∣Fh(~R)−G(∂2

zFh(~R) + ∂2
ρFh(~R))

∣∣∣2 (1.50)

with A = 10.3 Å−2, B = 0.781 Å−2, C = 19.8 Å−2 and G = 4.23 Å−2. A and G arise from the
k-dependence of the coupling constants and B and C arise from the mixing with electron states,
Fe and Fh are the electron and hole envelope functions which were calculated in [40], using
a variational calculation in a realistic energy potential, and Coulomb interaction between the
electron and the hole. The main results are that if we neglect the e�ect of the ~k dependence of
the exchange constants and mixing between the conduction and the valence band, Ih−Mn should
be two times smaller than Ie−Mn, because the hole is weakly con�ned in the quantum dots
considered here (this is so true that most of the con�nement comes from the attractive Coulomb
interaction with the electron). Then, if eqn. 1.50 are considered, the e−Mn exchange interaction
is diminished by 15% due to e− h hybridization, while Ih−Mn is mostly una�ected. Hence, even
with this elaborate approach, the expected ratio is around 0.6, which does not match with what
is observed experimentally. Further investigation is needed. However, the e�ective Hamiltonian
is still a very good tool to describe the observed magneto-optical behaviour of our quantum dots.
We have restricted ourselves to a qualitative description of the interactions between the Mn and
free-carriers but we recommend to a curious reader the book of G. D. Mahan [41] where, starting
from a microscopic description with Coulomb interactions, an e�ective spin-spin Hamiltonian is
derived. We also recommend Laurent Maingault's PhD thesis [40] where exchange interactions
with the Mn in CdTe/ZnTe quantum dots have been quantitatively studied using variational
calculations. At last, in [33], chap 13, a detailed review on DMS can be found.

The last ingredient we need to add is the light/heavy hole mixing, which has important
consequences on the spectra observed experimentally.

1.3.3 Beyond the Heavy-Hole Approximation and Isotropic Electron-Hole

Exchange

In order to take into account valence-band mixing (VBM), a projection of the ~J operator in the
heavy-hole subspace is performed. The operator J̃+ for instance is de�ned by:

J̃+ =

 〈
⇑̃ |J+| ⇑̃

〉 〈
⇑̃ |J+| ⇓̃

〉〈
⇓̃ |J+| ⇑̃

〉 〈
⇓̃ |J+| ⇓̃

〉  (1.51)

Which yields:

J̃+ = η

(
0 −2

√
3e−2iθ′s

0 0

)
+ η2

(
0 0

2e4iθ′s 0

)
(1.52)

J̃− = η

(
0 0

−2
√

3e2iθ′s 0

)
+ η2

(
0 2e−4iθ′s

0 0

)
(1.53)

J̃z =

(
3/2 0
0 −3/2

)
+ η2

(
−1/2 0

0 1/2

)
(1.54)

Using eqn. 1.36, the energy spectra is then given by:

HXMn = −2
3Ieh

(
Jzσz + 1

2

(
J̃+σ− + J̃−σ+

))
− IeMn

~S~σ

+IhMn

(
JzSz + 1

2

(
J̃−S+ + J̃+S−

))
+Hanis

LR (1.55)
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1.3. Exchange interactions between carriers and a localized Mn spin

In this expression, we have neglected the contribution of the long-range exchange interaction
in the dark-bright exciton splitting I lreh = 0. This assumption is somewhat arbitrary (there is no
general consensus on the respective contribution of long range and short-range to the exchange
term Jzσz.). Since we assume that all the diagonal electron-hole exchange comes from the short
range exchange, we overestimate the non-diagonal s-p exchange term induced by the VBM at
a given η. Hanis

LR is the non-diagonal term of the long-range exchange interaction (due to an
anisotropy of the con�nement) introduced earlier. It is given by:

Hanis
LR =

1

2

{
δ1e

2iφ1 |⇓↑〉 〈⇑↓|+ δ1e
−2iφ1 |⇑↓〉 〈⇓↑|

}
(1.56)

Experimentally, Hanis
LR is responsible for a linear polarization-rate in the emission and modi�es

the spacing between the six PL lines. Similarly to neutral non magnetic quantum dots, the
observed polarization-rate and the exact level structure also depends on the VBM through short-
range exchange. Only a detailed analysis of the anisotropy of polarization and a magneto-optical
study14 can help discriminating the two e�ects. The overall e�ect is particularly visible when the
Mn is not at the center of the dot. Then, Ih−Mn and Ie−Mn can be smaller than δ1 or ηIe−h/2,
and the latter dominate the PL structure.

The Hamiltonian HXMn presents terms in J̃−S+ et J̃+S− which admix bright and dark states
through a hole-Mn �ip-�op: the �rst order in η couples |−2, Sz〉 with |+1, Sz − 1〉. Yet, as we
see in the scheme of Fig. 1.7, for Sz < 0, these levels correspond to the highest dark levels and
the lowest bright levels, which are close in energy, leading to dark-bright mixing. Eventually,
when |−2,−1/2〉 is almost degenerate with |+1,−3/2〉 (Fig. 1.7) or when |−2,−3/2〉 is almost
degenerate with |+1,−5/2〉, the quantum dot presents an additional PL line which results from
the coherent coupling of these two states. This e�ect is particularly visible when Ih−Mn and
Ie−Mn are large, leading to an overlap between dark and bright uncoupled states. Dark-bright
mixing can also occur through electron-Mn �ip-�op (terms in σ+S−+c.h.). However, at B = 0T ,
levels coupled through an electron-Mn �ip-�op cannot be degenerate. The mixing induced by
this coupling shortens the lifetime of a dark exciton (which recombines through its bright part)
but does not modify the PL structure at B = 0T .

At last, to perfectly match the experimental spectra, an additional Hamiltonian term is
considered for the exciton:

Hv = −ζS2
z (1.57)

and for the biexciton,

H ′v = −2ζS2
z (1.58)

This term reproduces an experimental feature that is clearly observed in Fig. 1.7: the exciton
lines are unequally spaced, and a �ne analysis shows that the biexciton states are twice as much
shifted [42]. This feature results from virtual transitions of the hole towards the P-shell, which
result, in second order perturbation theory to a correction of the XMn levels in S2

z [43]. We �nd
that ζ can typically reach 20µeV in our quantum dots. These terms will be taken in account in
future experiments, where the position of the XMn levels needs to be determined with a high
precision.

14The use of a high magnetic-�eld Bz is used to evidence dark/bright exciton anti-crossing. The splitting of
the anti-crossing, either proportional to Ie−Mn or ηIh−Mn, allows to determine precisely these quantities.
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Chapter 1. A Mn spin in a CdTe/ZnTe Quantum Dot: Single Spin Addressing

Figure 1.7: XMn and X2Mn PL spectra of a Mn-doped quantum dot presenting seven lines. As
a result of VBM, |+1,−3/2〉 is coherently coupled to |−2,+1/2〉 by a hole-Mn �ip-�op. Since these
levels are degenerate (c.f. scheme displayed above) it results in two admixed states which share the
oscillator strength of the bright state |+1,−3/2〉. Recombination from the X2Mn level (|X2,−3/2〉) to
these admixed states and recombination from these admixed states to the ground state are indicated by
arrows.
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Chapter 2

Optical control of a single spin: spin
initialization and read-out
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We present in this chapter the micro-photoluminescence experiment and the samples studied
in this thesis. After that, we will present the achievement of optical orientation of the localized
Mn spin using quasi-resonant excitation and optical-pumping of a Mn spin-state using resonant
excitation. We will limit ourselves to a descriptive analysis and a qualitative explanation of the
physics ruling these two processes.

2.1 Sample Growth

The samples used in this thesis are CdTe/ZnTe quantum dots. The growth is performed on
a [001] ZnTe substrate in a II-VI Molecular Beam Epitaxy (MBE) chamber. 6.5 monolayers
of CdTe are deposited by ALE (Atomic Layer Epitaxy) at 280◦C. The 2D to 3D transition
is induced by the deposition of amorphous tellurium. The amorphous Te layer decreases the
surface-energy cost associated to the creation of 3D islands. Without this deposition, a further
increase of the CdTe layer results in a plastic relaxation of the strains (creation of dislocations)
rather than an elastic relaxation of the strains (formation of coherent 3D islands). This is due
to the low dislocation formation energy in II-VI materials.

The growth technique has slightly evolved compared to the one presented in [44, 29]:

• The Mn is now included during the growth of the CdTe layer (instead of growing a
Zn0.94Mn0.06Te bu�er and using segregation of the Mn atom in a thin ZnTe spacer be-
tween the ZnMnTe bu�er and the CdTe quantum dot layer).
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Chapter 2. Optical control of a single spin: spin initialization and read-out

• The amorphous tellurium is deposited around 150− 160◦C (instead of room temperature).

• In some samples, Mg has been included in the barriers to increase the con�nement of the
hole.

Then, the dots are capped by a 100 nm ZnTe layer. The Mn concentration is adjusted to
optimize the probability of detecting one Mn per dot, which corresponds roughly to a density of
Mn equal to the density of quantum dots.

2.2 Experimental set-up

Spatial and spectral selection are the two basic requirements to achieve micro-photoluminescence
experiments i.e. to study physical properties at a single dot level.

The spatial resolution �xed by the limit of di�raction of the microscope objective (N.A. =
0.55) is d = λ/N.A. which gives a spot diameter of d ≈ 1.1µm. The average density of quantum
dots is 50QDs/µm2. The spatial resolution obtained using a microscope objective can be further
improved. One option is to use aluminum masks obtained by electronic lithography. Optical
excitation is performed through apertures which can be as small as 0.2µm. High spatial resolution
can be achieved thanks to this technique. However, it presents a few drawbacks that pushed us
to abandon it and to develop an other technique: the use of micro-lens (i.e. solid immersion
lens). The problems with aluminum masks were that the search for Mn-doped quantum dots
was fastidious, and that re�ected laser light became a real issue when excitation and detection
were close in energy.

A micro-lens is a hemisphere with a refractive index (n ≈ 2.25) close to the one of the semi-
conductor (nZnTe ≈ 3 [45]). The focusing action allows a decrease of the di�raction limit of the
focal spot area and an increase of the collected signal by a factor of 4 [46]. The 1mm mico-lens
is held on the bare surface of the sample using a 800µm pinhole screwed on the sample-holder.
It is possible to study a given quantum dot for an arbitrary time using irregularities of the
sample surface such as silver-paint particles as points of reference. However, once the micro-lens
is dismounted, the quantum dot is lost, which is a disadvantage compared to aluminium masks.

A schematic view of the optical set-up is given in Fig. 2.1. The laser sources are two
rhodamine 6G CW dye lasers pumped by a 532nm diode-pumped solid-state laser. These were
used for the experiments in Chapter 2, 3, 4 and 6. More recently, a single mode CW dye ring laser
was installed. It was used for the experiments in Chapter 5. At last, a pulsed Ti-Sapphire laser
coupled to an OPO (Optical Parametric Oscillator) was used to perform PL decay measurements.

To realize the optical orientation and optical pumping experiments described in the following
chapters, we need to produce trains of light of controlled helicity and duration (≈ 100's of ns).
This was achieved using an Electro-Optic-Modulator (EOM) and Acousto-Optic Modulators
(AOM). The AOMs permit to switch the laser excitation ON or OFF15 with a rise time of 10 ns,

15An AOM is made of a crystal in which a high frequency generator (f = 80MHz) produces a sound-wave with
a wavelength λ = C/f ≈ 50µm, where C is the speed of sound in the crystal C ≈ 4000m.s−1. By such means, a
standing wave of pressure that creates a periodic modulation of the crystal's refractive index is generated. The
light sent trough the crystal experiences Bragg di�raction. The intensity of the di�racted light depends on the
amplitude of the sound wave. Collecting the �rst di�racted order, the light is turned ON or OFF depending if a
sound-wave is created by the high frequency generator or not. The optical rise-time is a function of the acoustic
transit time across the optical beam. Therefore, to operate at the highest speed, we focus the optical beam down
to a small spot inside the modulator.
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Figure 2.1: Schematic view of the micro-spectroscopy set-up used for time-resolved optical pumping

experiments.

while the EOM16 permits to switch the excitation polarization with a rise time of 5 ns17. Then,
the laser beams go through wave-plates depending on the desired helicity, are overlapped and are
focused on the sample using a microscope objective and a micro-lens. The circular polarization is
obtained using a λ/4 located just before the microscope objective in order to avoid any ellipticity
introduced by mirrors.

For two wavelength experiments (i.e. with two lasers), great care has to be taken so that
the two beams overlap. Two pinholes distant by one meter are used as reference points. Then,
the mode are spatially �ltered18 (not represented on Fig.2.1). The sample is either in a cold
�nger cryostat or in a helium bath cryostat, where superconductive coils can be used to apply a
magnetic �eld up to 11T in a Faraday geometry. When using the cold-�nger cryostat, a magnetic
�eld up to 150mT can also be applied using permanent magnets in a Voigt or Faraday geometry.
These magnets are mounted on a translation stage synchronized with the detection.

We work in a back-re�ection geometry: the circularly polarized signal is collected through the
same microscope objective, and converted into a linear polarization by the λ/4. Then, a λ/2 at
0 or 45◦ followed by a polarizer controls the helicity of the detection (either co or cross-circularly
polarized with the detection). After that, the signal is focused on the monochromator slits. Then,

16The principle of operation of an electro-optic modulator is based on the modi�cation of the refractive index
of a nonlinear crystal by an electric �eld in proportion to the �eld strength. It can thus be seen as a voltage-
controlled half-waveplate. Its risetime is controlled both by the crystal's capacitance and the electronic driver.
As the crystal is also piezo-electric, the applied voltage can introduce mechanical vibrations, which themselves
can a�ect the refractive index. The consequence is that around certain modulation frequencies, the EOM shows
a sinusoidal noise around the desired polarization.

17Using a polarizer on its output, the EOM can also be used as an ON/OFF switch, faster than the AOMs.
18A microscope objective is used to focus the beams on a 10µm pinhole. After the pinhole, a lens collimates

the di�raction pattern, and a pinhole only allows the Airy disk to go through.
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it is either detected on a camera for sample imaging or dispersed twice by 1800g/mm gratings
and sent on a low noise CCD camera19 or an APD20. Alternatively, the two circular polarization
of the PL can be detected simultaneously on two areas of the CCD, adding , before the λ/2 a
birefringent prism to the detection path. One of the dye lasers Lyot �lter21 is motorized and
synchronized with the CCD allowing automatized PLE measurement22. In time-resolved optical
pumping experiments, a pulse generator drives the AOMs and the EOM and gives the clock
counts to a time correlated photon-counting unit. The latter allows to integrate APD counts as
a function of the delay between the photon arrival-time and the clock signal.

Using these samples and set-up, we have developed an initialization and and read-out scheme,
demonstrating that the spin of a Mn atom embedded in a quantum dot could be manipulated
optically. In the following, we present these experiments.

2.3 Optical orientation

2.3.1 A Simple Picture of Photo-induced Spin-orientation

Photo-induced spin orientation of a Mn spin was theoretically considered in [47]. The underlying
idea in this paper to explain Mn spin-orientation, is the existence of thermalization processes
within the XMn complex. Let us imagine that the Mn spin is continuously excited with σ+ light
and that the spin of the photo-created carriers is well conserved during the relaxation to the
ground exciton state (XMn). The Mn spin coupled to the photo-injected electron-hole pair is
subject to an e�ective magnetic �eld. The direction of this magnetic �eld is controlled by the spin
of the hole (anti-ferromagnetic interaction with the Mn, giving rise to an e�ective magnetic �eld
along −~uz, if the light is σ+). Due to thermalization among the XMn levels, the Mn spin should
become polarized (down). This polarization should be understood as a dynamic equilibrium:
when an electron-hole pair is injected, the Mn spin tends to be polarized; once the electron-hole
pair has recombined, relaxation of the Mn spin tends to equilibrate the population of the six
Mn spin-states. Considering that the polarization due to spin-�ips within the XMn levels takes
place on a characteristic time-scale τXMn, while the relaxation of the Mn alone takes place on a
time-scale of τMn, the condition to obtain optical orientation of the Mn spin is τXMn < τMn.

2.3.2 Experimental Evidence of Optical Orientation

Optical orientation of the Mn spin is performed using circularly polarized light, tuned on an
excited state of the quantum dot. These conditions of excitation will be hereafter referred to as
quasi-resonant excitation (as opposed to resonant excitation, that we will use for an excitation
tuned on one of the ground-XMn levels). Experimentally, we search for excited states presenting
an important polarization-rate.

In order to observe photo-induced spin orientation, the linear polarization of the excitation
laser was modulated between two orthogonal states by switching an electro-optic modulator with
a rise time of 5ns, and converted to circular polarization with a quarter-wave plate. The circularly

19The CCD camera is 1600× 200 pixel silicium array cooled at −50◦C by a Peltier.
20The APD is a 50µm2 chip with a 50ps jitter.
21A Lyot �lter is an optical monochromatic �lter controlling the laser wavelength.
22Photoluminescence excitation spectroscopy (PLE) consists in shining laser light of well-known wavelength on

a quantum dot. When the laser energy corresponds to an optically active excited state of the system, the light
is absorbed. Then, the system relaxes and re-emits a photon at the energy of the ground exciton state. Hence,
scanning the laser wavelength while detecting the photoluminescence from the ground state allows to probe the
excited states of the system.
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Figure 2.2: (a) PL and PLE spectra of a Mn-doped quantum dot at B = 0T . The PL spectra are taken

at two di�erent energies of excitation, and detected in circular polarization under alternate σ − /σ+

excitation. For the black (resp. red) curve, the laser excitation is at 1987meV (resp. 1987.4meV ).

(b) The σ− PL of the high energy line (corresponding to Sz = −5/2) is time-resolved under σ + /σ−
modulated excitation. The excitation sequence is displayed above. The PL transient labeled (I) (resp.

(II)) was observed under resonant excitation at 1975meV (resp. 1987meV ).

polarized PL of a given XMn line is detected by a fast avalanche photodiode in conjunction with
a time correlated photon counting unit with an overall resolution of 50ps.

The time-evolution of the σ− PL of the high energy line (corresponding to Sz = −5/2) is
shown in Fig. 2.2 b) for two di�erent excitation energies: ≈ 35meV (resp. ≈ 20meV ) above the
PL energy for the curve (I) (resp. (II)).

First, we focus on the common features of these two curves. Under the conditions of excita-
tion displayed in Fig. 2.2, switching the circular polarization of the excitation produces a change
of the σ− PL intensity with two transients: �rst an abrupt one with the same sign for all six lines,
re�ecting the population change of the spin polarized excitons; then a slower transient re�ecting
an increase or a decrease of the occupation of the detected spin state. This slow transient has an
opposite sign for the two extreme PL lines (i.e., when monitoring the Mn spin states Sz = +5/2
and Sz = −5/2, Fig. 2.3). This con�rms that the slow transient observed corresponds to a
photo-induced orientation of the Mn spin.
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Figure 2.3: (a) Simpli�ed level diagram of a Mn-doped quantum dot, as a function of the Mn spin

projection Sz. Only the bright exciton are represented. (b) PL transients recorded in σ− polarization

on the high (Sz = −5/2) and low (Sz = +5/2) energy lines of the XMn complex as the laser excitation

is switched from σ+ to σ−.

Injection on the bright XMn levels of spin-polarized excitons is schematized in Fig. 2.3(a). For
the sake of simplicity, we omit the dark exciton states which should be included for a quantitative
analysis. Following the simple picture described earlier, we consider that the dynamics can be
described by two spin relaxation times, one for the Mn alone τMn and one within the X-Mn
complex τX−Mn. As spin orientation results from a cumulative e�ect of relaxation in presence
of the exciton, it can be performed only if τX−Mn is shorter than τMn. When exciting one of the
low energy excited states of the QD, spin-relaxation of the photo-created carriers is slow enough
to consider that the injected exciton is |+1〉. Considering thermalization among the XMn levels,
relaxation of the Mn spin within the X-Mn system is driven by the anti-ferromagnetic interaction
with the spin polarized carriers which have been injected. As shown in Fig. 2.3, where we focus
on the spin-transient corresponding to a σ+/σ− switch, the observed orientation of the Mn
spin is consistent with this process. We observe an increase of the |−1,+5/2〉 PL re�ecting an
increase of the population of the +5/2 Mn spin state, while the population of −5/2 decreases:
the Mn spin aligns along the e�ective �eld of the photocreated exciton (opposite to the exciton
spin |−1〉).

2.3.3 Spin Selectivity of the Excitation

The photo-induced spin orientation also depends on the energy of the quasi-resonant excitation.
As shown in Fig.2.2, the amplitude of the transient ∆I/I observed under co and cross-polarized
excitation, and the overall polarization rate of the PL line strongly vary with the laser energy.
The photo-induced Mn spin orientation is not only controlled by the polarization of the injected
carriers but also by spin selectivity (which Mn spin-states are preferentially absorbent).

To illustrate spin-selectivity, we present in Fig. 2.2 (a), two PL spectra obtained by changing
the laser excitation of only 0.4meV around the excited state (II). This energy di�erence is smaller
than the width of the excited state (II). We can see a dramatic change between the relative heights
of the six PL lines. At 1987meV (black curve), the injection is mainly on the low energy line.
As the laser is set 0.4meV above, we observe the opposite: the injection is predominantly on the
high energy XMn levels. Moreover, it appears clearly that at this energy (red curve), the spin
state ±5/2 are selectively excited: the overall PL on the high and low energy lines is higher than
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2.4. Optical pumping

Figure 2.4: Detailed circularly co-polarized PLE of the excited state labeled (I) in Fig. 2.2.

for the overall PL corresponding to ±3/2 and ±1/2. Spin selectivity is also clearly observed on
the lowest excited state (I) (Fig. 2.4): a laser excitation tuned on the low energy side of the
excited state mainly excites the low energy lines. When the laser excitation is on the high energy
side, PL from the high XMn levels is larger.

Spin selectivity is already well understood in our system [48]. It is controlled by the exchange
interaction of the photo-created carriers on an excited level with the Mn spin. The spd exchange
in the latter is considerably lower than spd exchange for an exciton in the ground state. Indeed,
the interesting quantum dots from an experimental point of view are the ones with a maximum
inter-level splitting corresponding to a Mn located close to the center of the dot. A P-shell carrier
for instance, presents a wave function with a node at the center so that it is only weakly coupled
to the Mn (and not coupled at all if the Mn is at the center of the dot). This explains that σ+
excitation on the high energy side of the excited state tends to excite selectively the quantum
dot when the Mn is in the |+5/2〉 spin state and to create a |+1; +5/2〉 exciton. However, in an
anisotropic quantum dot, the �ne structure of an excited state can be dominated by non-diagonal
terms in the electron-hole exchange due to long-range exchange in an anisotropic potential. Then,
the excited state presents an elliptically polarized �ne structure which can be an issue for the
injection of polarized excitons with a ±1 spin.

Spin selectivity leads to a dynamical process similar to optical pumping (in which, as it will
be further discussed, the selective optical excitation of a spin-state diminishes the probability to
detect it). Both mechanisms, absorption selectivity and spin injection, depend on the structure
of the excited states, resulting in a pumping signal which depends on the excitation energy (Fig.
2.2). An e�cient pumping of the Mn spin can be performed within a few tens of ns, showing
that at B = 0T , the spin relaxation time of the Mn alone is long enough compared to orientation
process within the XMn levels.

2.4 Optical pumping

2.4.1 E�cient Initialization of a Mn Spin

After demonstrating that optical orientation is achievable, the next step is naturally to head
toward a real initialization of the Mn spin. Optical initialization of resident carriers (electrons
[49] or holes [3]) has been successfully achieved in semiconductor quantum dots. Optical pumping
involves resonant excitation of a spin-selective transition. Under these conditions of excitation,
any recombination to the other spin-state (mediated by hyper�ne interaction for the optical
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Chapter 2. Optical control of a single spin: spin initialization and read-out

pumping of a hole or light/hole heavy hole mixing for the optical pumping of an electron)
initializes the spin: the quantum dot no longer absorbs light, the resident carrier has been
controllably brought to a spin-state opposite to the one coupled to the laser excitation.

To perform optical pumping on the Mn spin, we proceed similarly (Fig. 2.5). A laser tuned
on the high energy line with a σ− helicity drives resonantly the |−1, Sz = −5/2〉 transition. The
photons address the Mn only if it is in the Sz = −5/2 state. The resultant exciton can radiatively
recombine via the same channel, or a relaxation process can project the X-Mn system in a state
with Sz 6= −5/2. Hence after a certain number of absorption-emission cycles, the probability of
detecting the Mn in the Sz = −5/2 state should decrease. Again, the overall scheme depends on
the same requirements than for optical orientation: the relaxation rate of the Mn spin when the
quantum dot is empty (ΓMn,G) must be smaller than the relaxation rate of the Mn spin within
the ground XMn complex (ΓMn,X). The e�ciency of the process will be probed monitoring the
σ+ PL from the low energy line, corresponding to the same Mn spin-state. PL from this low
energy line relies on a spin relaxation of the exciton (ΓX,Mn). We expect to be able to detect
the spin initialization in real-time if ΓX,Mn > ΓMn,X (otherwise the spin initialization is faster
than the detection path).

2.4.2 Experiment

The main features of the experiment are presented in Fig. 2.6 (ii). The quantum dot is peri-
odically excited with a two color pump-probe sequence. The pump, tuned on the high energy
line depletes Sz = −5/2. Then, a linearly polarized probe pulse, tuned on an excited state of
the quantum dot injects excitons independently of the Mn spin state Sz23 , driving back the Mn
atom in a state where all spin states are roughly equiprobable. σ+ PL from the low energy line
(also corresponding to Sz = −5/2) is recorded. During the pump pulse, spin relaxation of the
exciton within its lifetime gives rise to a weak PL on the detected line. The intensity of the
detected PL depends on the absorption of the pump laser, which is controlled by the occupation
of Sz = −5/2. Therefore, the decrease of the PL observed during the pump pulse re�ects the
e�ciency of the optical pumping process. The e�ciency is then given by ∆I/I0 ≈ 75%. During
the probe pulse, the amplitude of the PL depends on the population of Sz = −5/2, and increases
overtime as the probe restores an even probability of having Sz = −5/2. The PL level at the
beginning of the quasi-resonant pulse is a probe of the pumping e�ciency reached at the end
of the pump pulse. This is illustrated in Fig. 2.6(i) which presents the di�erence of the signal
produced by the quasi-resonant probe when the pump was ON or OFF (the steady-state quasi-
resonant PL is normalized to one). This di�erence re�ects the population di�erence caused by
optical pumping and its height, which reaches 75%, is another way to measure the e�ciency of
the optical pumping. The rapidity of the transient observed in Fig. 2.6(i) during the probe pulse
depends on the intensity of the probe, whereas the transient observed during the pump pulse is
controlled by the pump power. Experimentally, for this measure, the probe power is 10 times
smaller than the pump pulse. The processes responsible for the orientation of the Mn spin are
faster under quasi-resonant excitation than under resonant excitation (since the observed tran-
sient time is similar for very di�erent powers). This point will be studied in depth in Chapter
4.

The process does not lead to pumping e�ciencies as high as the one observed in the case
of resident carriers initialization (above 99%). Reasonning with the simple picture of a dynam-
ics controlled by incoherent processes (with characteric time-constants τMn,X and τMn,G, Fig.

23We choose excited states with a weak spin-selectivity.
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2.4. Optical pumping

Figure 2.5: Energy levels of a Mn-doped quantum dot and experimental con�guration. The states are

displayed as a function of their total angular momentum Mz (Mn+Exciton) and energy E. The bright

excitons Xb are displayed in black, the dark excitons are displayed in gray. For the resonant optical

pumping, the quantum dot is resonantly excited on the state Sz = −5/2 with a σ− laser with a Rabi

frequency Ω. The scattered photons obtained after a spin-�ip of the exciton (rate ΓX,Mn) are recorded

in the σ+ PL of the low energy line. The intensity of this PL is proportional to the population of the

Mn spin state Sz = −5/2 and is used to probe the optical pumping e�ciency.
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Chapter 2. Optical control of a single spin: spin initialization and read-out

2.5), this could be attributed to a fast relaxation of the Mn spin when it is in the ground state
(τMn,G). However, this is ruled out by the following experiment: performing the same sequence
as before without the probe pulse, we observe a completely �at PL signal (curve (iii) of Fig.
2.6). No transient is observed. This is the signature that the optical pumping performed by the
resonant excitation is fully conserved over a few hundreds of ns. The optical pumping needs to be
destroyed by a quasi-resonant excitation, in order to observe an optical pumping spin-transient.
The full conservation of the Mn spin distribution will be further-con�rmed by a straight-foward
experiment discussed in the next chapter. At this point, the 75% e�ciency is unclear. This
shows that an ingredient is missing to fully understand the dynamics of the system which cannot
be simply described by two relaxation rates. We leave this question for now and focus on further
experimental insights on the optical pumping mechanism.

The �gure 2.7 presents the amplitude and the time-evolution of the �uorescence signal de-
tected on the low energy line |+1, Sz = −5/2〉 for di�erent pump wavelength around the high-
energy level |−1, Sz = −5/2〉. A clear resonant behavior is observed in the initial amplitude I0

of the �uorescence signal (Fig. 2.7 (c)). The measured width of the resonance (80µeV ) is a con-
volution of the width of the quantum dot's absorption (probably power-broadened) and of the
linewidth of the excitation laser (60µeV ). The e�ciency of the optical pumping ∆I/I0, presents
a similar resonance demonstrating the strong excitation energy dependence of the optical pump-
ing process. However, the e�ciency of the optical pumping and the �uorescence does not follow
exactly a Lorentzian shape. A weak optical pumping, with a pumping e�ciency of ≈ 20% can
still be observed for detunnings as large as 400µeV . This is probably due to phonon-assisted
absorption from the state |+1,−5/2〉.

In Fig. 2.8, we present the time-resolved PL recorded on the low-energy line during an optical
pumping sequence, for both polarizations of the detection. For cross circularly polarized pump
excitation and PL detection, the PL probes the Mn spin state resonantly excited by the pump
laser (Sz = −5/2 for a σ− pump). In this case, the pumping e�ect is both observed in the
transient of the resonant �uorescence and as a decrease in the initial PL intensity in the probe
signal. For copolarized pump excitation and PL detection (σ−), the PL intensity of the low-
energy line is proportional to the population of Sz = +5/2. As evidenced by the PL of the probe
pulse, the population of this state is not signi�cantly a�ected by the resonant pump laser. The
resonant PL during the pump is dominated by the direct absorption from the acoustic phonon
side band of this low energy line [50]. Surprisingly, a small transient is observed. Possibly, the
Sz = −5/2 is not completely shielded from the laser by optical selection rules, contrary to what
would be expected in the heavy hole approximation. Such e�ect could be induced by valence
band mixing for instance. This is a small e�ect though. As expected for a Mn pumping process,
the in�uence of a σ− resonant laser tuned on the high-energy X-Mn level mainly a�ects the
population of the state Sz = −5/2.

We have invoked phonon-assisted absorption twice already. To illustrate what is the phonon
side-band in our quantum dots, we present in Fig. 2.9 a PLE measurement carried on the
high energy side of a non-magnetic quantum dot line. We observe that the line is absorbent
although the laser is not strictly resonant, which is due to coupling to acoustic phonons. This
phonon-assisted absorption is e�cient in the �rst 1−2meV around the PL emission. Also, as the
circularly polarized laser is resonant with the excitonic line labeled Y on the scheme of Fig. 2.9,
we observe a dip in the PLE. We attribute this to the direct absorption of the laser by the other
excitonic line (Y ), which is more e�cient than the phonon-assisted absorption from the detected
line (X). Note that this is a rather indirect but e�cient way of measuring the absorption (and
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Figure 2.6: The left-inset presents the quantum dot PL under non-resonant excitation, and the con-

�guration of the resonant excitation and detection. (ii) and (iii) are the PL transients recorded on the

low energy line of the quantum dot, the quantum dot is excited using resonant and quasi-resonant (i.e.

resonant on an excited state) excitation. The excitation sequence is displayed below each curve. In (ii)

the optical pumping process is directly observed on the resonant �uorescence produced by the pump and

on the PL from the probe. ∆I/I0 is the e�ciency of the pumping process. The transient related to the

destruction of the pumping by the probe can be evidenced by subtracting to the curve (ii) the PL signal

obtained when the pump is OFF (which is a square signal apart from the rise-time of the set-up). This

is how the curve (i) is obtained, re�ecting a measure of the e�ciency on the probe pulse. In (iii), no

signature of a transient is observed, as a consequence of the Mn spin memory in the absence of injected

carriers.
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Figure 2.7: (Same quantum dot as in Fig. 2.6)(a) Excitation energy dependence of the resonant �uores-

cence signal obtained for cross circular excitation-detection on the high- and low-energy line respectively

(positive detuning corresponds to an excitation on the hight energy side of the line). (b) Detail of the

resonant �uorescence transient recorded during the optical pumping process. The exponentiel �t (black

line) gives an optical pumping e�ciency Peff≈75% and a pump time of 70 ns. (c) Amplitude of the res-

onant �uorescence signal as the excitation is tuned around the high energy line of X-Mn. The Lorentzian

�t give a full width at half maximum of 80µeV , which is a convolution with the laser width 60µeV and

the quantum dot linewidth.
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Figure 2.8: Circularly polarized PL obtained during the optical pumping sequence for co and cross

circularly polarized pump.

Figure 2.9: Phonon side-band in a non-magnetic II-VI quantum dot. The bright states are split into a

linearly polarized doublet due the interplay of VBM and short-range exchange interaction as shown by

the PL spectrum obtained under quasi-resonant excitation (red curve). Detecting the low energy line (as

shown on the scheme), we perform a PLE measurement with a circularly polarized laser. The detection

is cross-polarized to minimize scattered laser. Phonon-assisted absorption is visible in the �rst few meV

on the high energy side of the PL line. Also, a dip occurs as the laser excitation is resonant with the

other excitonic state.
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the line-width24) of a line.

Conclusion

In this chapter, we have demonstrated for the �rst time that a Mn spin in a solid-state en-
vironment could be individually addressed and e�ciently prepared in a non equilibrium spin
distribution using optical excitation. Spin orientation of the Mn is achievable using injection
of polarized carriers on an excited state of the quantum dot. Under resonant excitation on the
high energy line, we were able to deplete the −5/2 spin-state of the Mn spin with an e�ciency
reaching ≈ 75%. The optical pumping process can be directly observed during the resonant
excitation, or probed by a quasi-resonant probe.

This intuitive picture of the orientation of a single Mn spin in the e�ective �eld created by the
exciton has been widely used in this chapter. We have seen that it is quite intuitive, and explains
well the observed behavior under quasi-resonant excitation. However, it has its limits. It fails
to predict the saturation of the e�ciency of the process under resonant excitation. This raises
fundamental questions: what are the exact microscopic mechanisms ruling the photo-induced
spin-orientation and optical pumping; what limits the spin initialization?

24The measurement presented here are performed with a laser presenting a 60µeV FWHM, which has not a real
interest. But the same measurements with a single-mode laser allow to measure line-width below the resolution
of our set-up (which is 30µeV ).
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Dynamics of the Mn spin
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This chapter deals with the dynamics of the Mn atom revealed by the optical pumping
experiments. To begin with, we present pump-probe experiments which enable us to give a minor
bound to the Mn spin relaxation time. Then, we will discuss mechanisms which allow optical
pumping at B = 0T . We will show that the presence of a magnetic anisotropy is primordial to
explain the observed dynamics. This magnetic anisotropy is clearly evidenced by the magnetic
�eld dependence of the optical pumping. At last, we will discuss possible e�ects due to hyper�ne
coupling of the Mn spin with its nucleus.

3.1 Mn spin memory

Having established a method for preparing Mn spins, we perform pump-probe experiments to ob-
serve how the Mn polarization is conserved (Fig. 3.1 (b)). In this experiment, a non-equilibrium
distribution of the Mn spin is prepared with a σ− train of quasi-resonant excitation. The pump-
ing laser is then switched o� and switched on again after a dark time tdark. The appearance of a
PL transient after tdark would mean that the Mn spin distribution has partially relaxed towards
thermal equilibrium, the amplitude of the transient being a probe of this relaxation. However,
for the quantum dot presented in Fig. 3.1 (b), no transient is observed with tdark in the µs range
showing a conservation of the prepared Mn spin distribution.

To further con�rm this conclusion, we perform the reciprocal experiment: We prepare the Mn
spin using a σ+ light, switch o� the laser during tdark, and switch it on again with the opposite
helicity (σ−). If the distribution prepared by the σ+ illumination is fully conserved over tdark,
a spin transient, identical to the one observed for a σ+ /σ− switch, should be observed. This is
exactly veri�ed in Fig. 3.1 (a).

However, as expected from previous measurements of a single Mn spin dynamics under CW
optical excitation [51], the injection of high energy carriers in the vicinity of the QD signi�cantly
increases the Mn spin relaxation rate. This is illustrated in Fig. 3.1 (c): When free carriers are
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Chapter 3. Dynamics of the Mn spin

Figure 3.1: PL transients recorded under the optical transients displayed at the bottom of each plot.

The prepared Mn spin is conserved during tdark: in (a) and (b), a transient is observed only for a di�erent

helicity of the pump and the probe. (c) The injection of carriers with a non-resonant excitation (514nm)

forces the relaxation of the Mn spin.

injected with a second non-resonant laser during the dark time, the PL transient is observed
when the probe laser is switched on after tdark. This result con�rms that the exchange coupling
with carriers in the wetting layer is a very e�cient way to erase the Mn spin orientation. As it
can be seen from the low non-resonant PL, the process requires very few non-resonant photons.
Surprisingly, even this vanishing small non-resonant excitation slightly shifts the PL emission of
the dot, because of a change in the electro-static environment.

We present in Fig. 3.2 analogue experiments carried out on two other quantum dots. With
the top curve (QD1), we show another example of Mn spin memory, where τdark has been
increased up to ≈ 3µs. Again, no relaxation of the spin distribution is observed. Probing the
relaxation on longer time-scales is di�cult experimentally. The integration time is proportional
to the duration of the sequence, and the illumination time has to be comparable to the dark time
(in order to have enough signal to correct the drifts of the set-up). We have reached dark times
up to 10µs and have not observed any relaxation. For all the investigated quantum dots the
relaxation time is longer than experimentally accessible times. All, except one! This example is
shown at the bottom of Fig. 3.2. We have estimated the Mn relaxation time for this quantum
dot by measuring the amplitude of the pumping transient for increasing delays. We observe a
relaxation time τMn,G ≈ 700ns. On this quantum dot we observe an e�cient pumping process
in quasi-resonant excitation and resonant excitation. The relaxation process is too slow to a�ect
the e�ciency of the Mn spin orientation. The origin of this relaxation could be tunnel coupling
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with charged defects around the dot.

3.2 Fine structure of the Mn spin

To understand the dynamics observed on a few µs timescale, we need to consider the evolution
of the Mn spin when the dot is empty, i.e. once the photo-created carriers have recombined
optically. We consider at t = 0 a given Sz spin state of the Mn spin, given by the energy and
helicity of the emitted photon. The Mn spin evolution is given by a master equation of the
general form:

dρ

dt
= − i

h̄
[H, ρ] + L(ρ) (3.1)

where ρ is the density matrix of the manganese atom, H is the Hamiltonian which governs the
coherent evolution of the manganese atom, and L(ρ) describes the non-hermitian evolution of
the system due to its coupling to the environment, responsible for irreversible relaxation of the
Mn spin. L(ρ) would include processes such as phonon assisted spin relaxation or coupling to
a �uctuating reservoir of charges. The �uctuating reservoir of charges could result from the
p-doping by surface states or photo-created carriers in the quantum dot's vicinity. The e�ect
of surface can be neglected if the capping layer is su�ciently thick. The relaxation induced
by photo-created carriers is very rapid when exciting above the barriers but it can be neglected
otherwise. The other spin relaxation process, is a spin relaxation process caused by a deformation
of the lattice (phonon). The picture here, is that the lattice deformation induced by the phonon
shakes the electronic wave-function of the Mn 5d electrons, which can, through spin-orbit coupling
cause a spin relaxation of the Mn spin. However, since the orbital momentum of the Mn spin is
L = 0, phonon assisted spin-relaxation is a second order process, and the time of the phonon-
mediated relaxation is expected in the ms range [9]. This is much longer than the time-scale
accessed experimentally (which is given in optical pumping experiments by the time between the
injection of two excitons (≈ 1ns) or by τdark in pump-probe memory experiments). Last but
not least, the absence of relaxation processes is also consistent with experimental observations
discussed in the last section.

Another question to address, is the presence of pure dephasing, which can also a�ect the
coherent dynamics. We will assume that the e�ect of pure dephasing can be neglected and focus
on the coherent evolution of the Mn spin. The Hamiltonian controlling the Mn spin is well known
from electron paramagnetic resonance in CdTe/ZnTe superlattices [52]:

HFS = A~I.~S +
1

6
a

[
S4
x + S4

y + S4
z −

1

5
S(S + 1)(3S2 + 3S − 1)

]
+D0

[
S2
z −

1

3
S(S + 1)

]
(3.2)

The �rst term in the Hamiltonian is the hyper�ne interaction which results from the magnetic
dipolar interaction between the Mn 5d electrons forming a spin ~S and the spin of the Mn nucleus
~I. The latter is also a 5/2 spin. The hyper�ne constant A is equal to +0.71µeV ([53]). This
term leads to a coherent evolution of the Mn spin state which �ip-�ops with its nucleus on a
characteristic time-scale of 0.5ns. Considering that the total spin ~S + ~I is conserved25, this �ip-
�op process reduces the possibility to perform optical pumping. The only spin-state con�guration
that conserves Sz are (Iz = 5/2, Sz = 5/2) or (Iz = −5/2, Sz = −5/2). Otherwise, starting from
a given (Iz, Sz), the expectation value of Sz averaged over time falls down to one half of its
initial value.

25Relaxation processes for the nuclear spin can be neglected on the time-scale of 10µs considered here [54].
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Figure 3.2: Relaxation time of the Mn spin: (QD1) PL transients recorded on the σ− high energy

line under the optical pumping sequence displayed at the bottom of the plot. The spin distribution

prepared by optical pumping is fully conserved during τdark = 3.5µs. (QD2) PL transients recorded

under σ− excitation, switched o� during τdark. The amplitude of the pumping signal is fully restored

after τdark ≈ 3µs. From the delay dependence of this amplitude, we deduce a Mn spin relaxation time

τMn,G ≈ 700ns.
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Figure 3.3: Schematic view of a Mn atom in a quantum dot. The �ne structure of the electronic spin

is controlled by the hyper�ne interaction with the Mn nucleus, a cubic crystal �eld and a magnetic

anisotropy arising from the presence of biaxial strain. The magnetic anisotropy results in the Mn energy

level structure displayed on the right.

The second term of the Hamiltonian results from cubic crystal symmetry and mixes di�erent
Sz of the Mn spin. We have a = 0.36µeV according to [53]. If we consider only this second
term (and neglect hyper�ne coupling), a Mn spin-state Sz = 5/2 at t = 0 coherently oscillates
between Sz = 5/2 and Sz = −3/2 (as expected from the exponent 4 in the Hamiltonian) with a
≈ 4ns period. Thus, this term can lead to the impossibility of performing optical orientation.

The third term, commonly called 'magnetic anisotropy' arises from the existence of bi-axial
strains. These strains induce an additional component to the crystal �eld which has an axial
symmetry. We are going to give an estimation of the maximum D0 expected in our samples.
The lattice constant of an unstrained CdTe crystal is aCdTe ≈ 0.648nm while for a ZnTe crystal,
aZnTe ≈ 0.610. According to [52], the magnetic anisotropy D0 for a strained layer grown along
the [001] axis is given by:

D0 = −3

2
G11

(
1 +

2C12

C11

)
axy − aCdTe

aCdTe
(3.3)

where G11 is the spin-lattice coe�cient describing the energy-shift of spin levels per unit strain,
C11 and C12 are elastic constants, and axy is the common in-plane lattice constant of the strained-
layer. According to [53], G11/(2πh̄c) = 0.46cm−1, and according to [55], C11 = 5.62 · 1010N.m−2

and C12 = 3.93 · 1010N.m−2 at 77K. Considering axy is determined by the ZnTe lattice, we can
estimate D0 ≈ 12µeV .

Note that if we take into account the hyper�ne coupling, the Mn atom is described by a
36 × 36 density matrix. This coupling is always included in our modeling. In the following
we will loosely call '5/2 population' or 'ρ5/2' what corresponds to the sum of the six diagonal
coe�cients of the density matrix corresponding to an electronic spin Sz = 5/2 (the sum runs
over the spin-states of the nucleus Iz = +5/2...− 5/2).
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Figure 3.4: Mn spin transient as a function of a magnetic �eld applied in-plane (a) and out-of-plane (b).

Inset: magnetic �eld dependence of the transient amplitude ∆I/I (see Fig. 2.2). B1/2 is the half width

at half maximum.

3.3 Magnetic Field dependence of the optical pumping: evidence

of a magnetic anisotropy

More information on the Mn local environment can be obtained from the magnetic �eld de-
pendence of the optical pumping signal. Depending on the direction, a magnetic �eld either
stabilizes the spin-state Sz (through the Zeeman splitting) or induces a precession of the Mn
spin. In the present case, a magnetic �eld in the Faraday con�guration (Bz) does not change
signi�cantly the PL transients (Fig. 3.4): a weak increase of the spin orientation e�ciency is
observed as soon as a �eld of a few mT is applied. By contrast, an in-plane �eld (Bx) induces
coherent precession of the Mn spin away from the optical axis (= quantum dot's growth axis),
so that the average spin polarization, and therefore the amplitude of the optical pumping signal,
decay (Fig. 3.4). For an isotropic Mn spin, the decoherence of the precessing spin in a transverse
�eld gives rise to the standard Hanle depolarization curve with a Lorentzian shape and a width
proportional to 1/T2 [56]. However, a detailed analysis of the magnetic �eld dependence (Fig.
3.4) shows that the transverse magnetic �eld dependence is not only ruled by T2 but mainly by
the Mn �ne structure.

Let us discuss qualitatively how the Mn �ne structure is expected to rule the magnetic �eld
dependence of the optical pumping process. At zero �eld, in the absence of magnetic anisotropy,
the precession of the electronic spin of the Mn in its own hyper�ne �eld and in the cubic crystal
�eld should erase any information stored on the electronic spin. In the presence of an anisotropy,
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Figure 3.5: (a) Magnetic �eld dependence of the �ne structure of the Mn spin with a magnetic �eld in the

Faraday (right panel) and Voigt (left panel) geometry, calculated with hyper�ne coupling A = 0.68µeV ,

a magnetic anisotropy D0 = 7µeV , and a crystal �eld parameter a = 0.32µeV . (b) Time evolution of

ρ5/2(t) calculated for di�erent values of D0 and Bx with ρ5/2(0) = 1 and an unpolarized Mn nucleus.

(c) Time-averaged value of ρ5/2(t) versus Bx for di�erent values of D0. Spin dephasing and relaxation is

neglected (T2 =∞). The B1/2 found experimentally is indicated with the dashed line.
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Figure 3.6: Transverse magnetic �eld (Bx) dependence of the resonant �uorescence signal under cross

polarized excitation-detection. The inset presents the amplitude of the optical pumping signal as a

function of transverse magnetic �eld.
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the precession of the Mn spin in the nuclear �eld and the cubic crystal �eld is blocked even at
B = 0T . In a weak transverse �eld: if D0 is larger than a, A and gMnµBBx, the Mn electronic
spin is still quantized along the growth axis, i.e. mixing between the Sz spin states induced
by the hyper�ne coupling or by Bx is small enough to have a partial memory of the Sz spin
state between the emission of a photon and the absorption of another one. Then, the cumulative
process controlling the optical pumping mechanism can take place. On the other hand, if the
non diagonal terms in HFS (Eqn. 3.2) or the transverse �eld are strong enough to overcome
the magnetic anisotropy, the Mn spin starts to precess and no orientation can be performed.
The presence of a magnetic anisotropy also explains the weak in�uence of an out-of-plane �eld
(Bz): The Zeeman splitting cancels the residual non-diagonal coupling induced by crystal �eld
or anisotropic strains and slightly improves the Mn spin conservation, thus accounting for the
increase of the optical pumping e�ciency experimentally observed in weak �eld (Fig. 3.4).

In order to verify quantitatively these assertions, we model the time-evolution of the Mn spin
as given by Eqn. 3.2 and 3.1. We also add a Zeeman term to the Hamiltonian 3.2:

HZeeman = gMnµB ~B.~S (3.4)

Fig. 3.5(c) presents the magnetic �eld dependence of the time average value of the diagonal
density matrix element 〈ρ5/2(t)〉 for ρ5/2(0) = 126, T2 =∞ and varying values of D0. This quan-
tity describes the probability for the state Sz = +5/2 to be conserved after the recombination
of an exciton leaving the electronic Mn spin to freely evolve in the hyper�ne �eld, the crystal
�eld and the applied magnetic �eld. A decrease in this spin conservation progressively destroys
the cumulative process controlling the optical pumping mechanism. For a free precessing spin,
〈ρ5/2(t)〉 ≈ 0.23 as soon as a transverse �eld27 is applied and the depolarization is controlled by
T2. The presence of a magnetic anisotropy strongly modi�es the depolarization curve in trans-
verse magnetic �eld: the precession of the Mn spin only occurs if the transverse magnetic �eld
overcomes the magnetic anisotropy. The half width at half maximum observed experimentally
(B1/2 ≈ 45mT , Fig. 3.4) is consistent with a magnetic anisotropy D0 ≈ 6µeV in the modeling
(Fig. 3.5). At large Bx, all the curves asymptotically tend towards the value of a free precessing
Mn spin, as expected physically. The dephasing time is expected to be long enough to neglect
its contribution to the observed experimental width. Scheibner et al. [57] have indeed measured
in Cd1−xMnxSe/ZnSe quantum dots ensemble a T ∗2 = 630 ± 70ps. In the quantum dots stud-
ied here, because of the lower Mn concentration, we do not expect the dephasing time to be
shorter. In other words, the contribution to the Hanle depolarization width should not exceed
δB = h̄(T ∗2 gMnµB)−1 ≈ 8mT . Therefore, we tend to think that the Hanle depolarization curve
is mainly controlled by D0. Microwave excitation between the levels of the �ne structure of the
Mn atom could be a way of measuring directly D0.

Under resonant excitation, the magnetic �eld behavior of the optical pumping process is also
controlled by the Mn �ne structure when the Mn atom is alone in the dot. Therefore, we do
not expect the magnetic �eld dependence to change signi�cantly. The transverse magnetic �eld
dependence under resonant excitation is presented in Fig. 3.6. We indeed observe a similar
behavior: the e�ciency of the pumping process ∆I/I decreases with increasing transverse mag-
netic �eld (inset of Fig. 3.6) or, equivalently, we observe an increase of the steady-state resonant

26In this model, we neglect optical pumping of the Mn nucleus. We consider that all the spin-states of the Mn
nucleus are equiprobable.

27This value is calculated by numerical means.
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Chapter 3. Dynamics of the Mn spin

�uorescence (i.e. at the end of the resonant pulse). The steady-state �uorescence (equivalent
to the resonant �uorescence under CW excitation) can be used to probe a change in the optical
pumping e�ciency.

We use the amplitude of the resonant �uorescence to probe variations of the optical pumping
e�ciency with an external magnetic �eld in the Faraday geometry (Bz). In Fig. 3.7 PLE spectra
detected on the low-energy line when the excitation laser is tuned around the high-energy level
are presented for di�erent magnetic �elds in Faraday geometry. The PL intensity is divided by
two for a magnetic �eld of about 100mT . This reduction could either be explained by a reduction
in the spin-�ip rate of the exciton or an increase in the e�ciency of the optical pumping of the
Mn spin. A priori, the Zeeman energy of the exciton in this weak magnetic �eld is not signi�cant
compared to the exchange �eld with the Mn: the dynamics of the exciton coupled with the Mn
is unlikely to be a�ected by this small energy change. Thus, the magnetic �eld dependence can
be attributed to an increase in the optical pumping e�ciency. Indeed, the Zeeman splitting of
the Mn in an empty dot cancels the non-diagonal coupling induced by the tetragonal crystal �eld
or an anisotropic strained distribution at the Mn atom location (which gives rise to a magnetic
anisotropy in E(S2

x−S2
y)). It improves the Mn spin conservation thus accounting for the increase

in the optical pumping e�ciency in a Faraday magnetic �eld.

3.4 Mn steady-state under optical pumping

The PL transients obtained experimentally can be qualitatively reproduced considering laser
excitation and relaxation from the bright state to a Mn spin-state di�erent than the one under
excitation28. Laser excitation can be included considering 6 other levels corresponding to a given
XMn state (i.e. |−1;−5/2〉) with six spin-states for the nuclei (Ii = −5/2...+ 5/2) following29:

(
∂ρ

∂t

)
laser

= −
6∑
i=1

iΩ(σ(XSz ,Ii),(Sz ,Ii)ρ+ σ(Sz ,Ii),(XSz ,Ii)ρ

−ρσ(XSz ,Ii),(Sz ,Ii) + ρσ(Sz ,Ii),(XSz ,Ii)) (3.5)

Were σij =| i〉〈j |. We further add pure dephasing (γXMn) of the transition (although strictly
speaking, the linewidth of the transitions could also come from spectral di�usion) and radiative
recombination (Γ). Finally we consider that the excitonic state (XSz, Ii) can recombine via
an incoherent process toward (Sz + 1, Ii) with a characteristic time τpump. The hypothesis of
this particular recombination channel is a way of treating e�ectively the pumping process given
Fig. 4.6. This process will be discussed in detail in the next chapter. This process is included
considering an evolution term in the Lindblad form:

(
∂ρ

∂t

)
pump

= −
6∑
i=1

1

2τpump
(2σ(Sz−1,Ii),(XSz ,Ii)ρσ(XSz ,Ii),(Sz−1,Ii)

−σ(XSz ,Ii),(XSz ,Ii)ρ− ρσ(XSz ,Ii),(XSz ,Ii)) (3.6)

28We will give abruptly a few equations to describe the density matrix evolution. One can refer to the �rst
pages of Annex B where we manipulate the same equations on a simpler system, and take the time to discuss
them.

29Bloch equation in the rotating frame.
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3.4. Mn steady-state under optical pumping

Figure 3.7: Magnetic �eld dependence of the photoluminescence excitation (PLE) spectra obtained on

the ground state of a Mn doped QD (QD3)under circularly cross-polarized excitation-detection. The

insets present a PL spectra of QD3 (arrows point the excitation and detection wavelength) and the

magnetic �eld (Bz) dependence of the amplitude of the resonant PL signal.
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Chapter 3. Dynamics of the Mn spin

Figure 3.8: Schematic view of the modeling of the optical pumping experiments. We consider 36 levels

corresponding to the uncoupled Mn-nuclei states. The evolution of these states is governed by the

Hamiltonian describing the Mn �ne structure (HFS) de�ned Eqn. 3.2. We add a dipole-laser coupling

characterized by the Rabi Ω. Radiative recombination occurs at a rate Γ = 200ps. The pumping process

is modeled by a recombination toward the state −3/2 (The spin of the nuclei is conserved).

A schematic view of this model is shown in Fig. 3.8. The evolution of the density matrix
is computed numerically. Experimentally, the PL signal is monitored through a spin-�ip of the
exciton in the exchange �eld of the Mn. This PL is proportional to the population of the state
|−1;−5/2〉 (summed over the six nuclei spin-states). The population of this state (which we will
call abusively PL) is shown in Fig. 3.9 for di�erent τpump and magnetic anisotropy D0. First
we discuss the top panel of Fig. 3.9, were all the parameters of the modeling are kept constant,
except for D0. We see that the e�ciency of the pumping process and the memory depend on
D0. Interestingly, a D0 of 2µeV already allows an e�cient pumping process. Moreover, for
D0 = 6µeV , a highly non-exponential transient is observed. This is still the case if τpump is
increased (lower panel of Fig. 3.9). For τpump = 5ns, the evolution of the transient presents
two characteristic times: a quick decrease as the −5/2 population is transferred towards the
−3/2. At this point the process is incomplete because population of the −3/2 can coherently
evolve towards the −5/2 spin state via a �ip-�op with the nuclei. The wave-function mixing is
small though, because D0 is large. The major part of the pumping process is performed. On a
longer time-scale, the population is transferred toward states which are less coherently coupled
to the −5/2 spin state involving higher projections of the nuclei spin state Ii. However, an
absorption always remains because of the cubic crystal �eld (in theory, without the cubic crystal
�eld (a = 0), the −5/2 spin state can be fully depleted at D0 = 0µeV ). A non-exponential
transient has never been observed experimentally. This could arise as the fast transient is within
the resolution of our set-up. This is plausible considering a fast τpump (which is, as we will see,
expected to be controlled by the spin-�ip of the hole). This model accounts well for the limit of
the optical pumping e�ciency observed experimentally, a memory e�ect on a hundred of ns and
the role of a magnetic anisotropy.
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3.4. Mn steady-state under optical pumping

Figure 3.9: Modeling of the optical pumping experiments with Ω = (200ps)−1, Γ = (200ps)−1, γXMn =

(20ps)−1. Upper panel: PL signal for varying values of D0, at a �xed τpump. Lower pannel: PL signal

for varying values of τpump.
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Conclusion

We have discussed in this chapter the dynamics of the Mn atom in the absence of charged carriers
in the dot. Through pump-probe experiments, we demonstrated that the relaxation time of the
Mn atom is typically longer than the µs range. This is in full accordance with the relaxation
rates measured by Dietl et al. for Mn spins in DMS at the limit of low concentration [9]. We have
also demonstrated that the Mn �ne structure, resulting from the inter-play of hyper�ne coupling
with the Mn nucleus and a magnetic anisotropy plays a key-role: it explains the saturation of the
optical pumping of the +5/2 spin-state at ≈ 75% in the best cases, and controls the magnetic
�eld dependence of photo-induced spin orientation.
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Dynamics of the Exciton-Mn complex
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This chapter is dedicated to the study of Exciton-Mn dynamics. First we study, using res-
onant �uorescence the most e�cient spin relaxation channels within the ground state of the
Exciton-Mn complex. We clearly observe a non-linear dependence of the spin-�ip rate with the
inter-level splitting, which suggests an acoustic-phonon mediated process. Spin-�ips towards
dark states are also observed. Regarding these spin-relaxation processes, we discuss recent theo-
retical proposal on the optical pumping mechanism in a Mn-doped quantum dot. Then, we will
discuss relaxation processes from an excited state based on polarization-resolved PL-decay mea-
surements. Relaxation of the exciton-spin during the injection is evidenced. This is in agreement
with the faster optical initialization of the Mn spin under quasi-resonant excitation compared to
resonant excitation.

4.1 Spin Relaxation within the Ground-State of the XMn Com-

plex

In this section, we answer the following question: what are the main relaxation channels within
the XMn complex? In order to address it, we perform resonant excitation on a given line of the
XMn complex, and detect the PL emitted on the other lines. The spectral distribution of the
scattered photons during the resonant excitation of a given line reveals the spin-�ip processes
within the exciton-Mn system.
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Chapter 4. Dynamics of the Exciton-Mn complex

4.1.1 Experiment

First, we report results on a quantum dot (QD1) presenting a weak optical pumping at B = 0T .
This poor e�ciency of the optical pumping is attributed to the local strain environment. This
case is interesting for a study of the X-Mn dynamics: the quantum dot line is always absorbent
and the scattered photons re�ect the fastest spin relaxation channels.

In Fig. 4.1, we present the following PLE measurements: the detection window is set on the
low energy side of the XMn PL, while a circularly cross-polarized laser scans the high energy
lines. A PL spectrum under quasi-resonant excitation is displayed at the bottom to facilitate line
identi�cation. This spectrum is also displayed vertically in order to indicate the correspondence
between the excitation energy and the PL lines. The two PLE maps di�er by the detection
window (controlled by the two slits of the double monochromator). For the top-map, the detec-
tion window (centered on the low energy line |−1,+5/2〉) is small, allowing the energy of the
excitation to be very close to the detection. The energy of the laser excitation is determined
with high precision using the scattered laser light30.

On these two PLE maps we have labeled 6 resonances. We are going to discuss all of them in
detail, starting with the easiest to identify. Before that, we highlight the fact that this quantum
dot presents seven lines as a result of a strong admixing of the states |+2,+1/2〉 and |−1,+3/2〉
(Fig. 4.2). The position of the XMn levels labeled in Fig. 4.2 are con�rmed by calculations
shown in Fig. 4.3. We will safely based our reasoning on the XMn states labeled in Fig. 4.2.

Resonance 1 (equivalent to 4): Strong PL on the lowest energy line (|−1,+5/2〉) is observed
when the cross-polarized laser is tuned on the highest line |+1,+5/2〉.

Resonance 5 : As the laser is tuned on |+1,+3/2〉, the two lines corresponding to (|+2,+1/2〉±
|−1,+3/2〉) present a resonance.

Resonance 6 : This strong resonance appears as the laser is resonant with |+1,+1/2〉. Strong
PL is observed from a dark state. Using Fig. 4.2, we can attribute this dark state either to
|−2,+3/2〉 or |+2,−3/2〉. To discriminate between the two, we have to consider their admixture
with bright states, through non-diagonal spd-exchange terms. |−2,+3/2〉 for instance, is admixed
with |−1,+1/2〉 via a electron-Mn �ip-�op term and with |+1,+1/2〉 through a hole-Mn �ip-�op
term. The admixtures α+ (with |+1,+1/2〉) and α− (with |−1,+1/2〉) scale as31:

α+ =

√
2IeMn

∆E+

α− =
2
√

6ηIhMn

∆E−
(4.1)

where, as usual, η is the parameter describing the heavy-light hole mixing, IeMn the electron-Mn
exchange, IhMn the hole-Mn exchange. ∆E± are the energy splitting between the corresponding
bright states with the dark state. ηIhMn ≈ 24µeV can be estimated from the energy splitting

30Elaser ≈ Edet + 2∆Escat, where Elaser is the laser energy, Edet is the energy at the center of the detection
window. ∆Escat is the energy between the scattered laser and the detection window. Note that using this
relation, one can �nd which line is excited, only using the bottom spectra (the vertical spectra are only displayed
for comfort).

31Using a perturbative approach.
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4.1. Spin Relaxation within the Ground-State of the XMn Complex

Figure 4.1: PLE maps of QD1. It can be seen from the quasi-resonant PL spectra that the laser excitation

is scanned across the high energy lines of the XMn complex, while the detection is performed on the low

energy lines. Excitation and detection are circularly cross-polarized. This quantum dot presents seven

lines originating from a dark-bright admixture (see Figs. 4.2 and 4.3). The di�erent resonances (1 − 6)

are discussed in detail in the text.

69



Chapter 4. Dynamics of the Exciton-Mn complex

Figure 4.2: PL spectrum of QD1 under quasi-resonant excitation. Below are displayed the uncoupled

levels of bright and dark states. The accidental degeneracy of the dark state |+2,+1/2〉 and the bright

state |−1,+3/2〉 results (through valence band mixing and hole-Mn exchange) in two PL lines of equal

oscillator strength.
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4.1. Spin Relaxation within the Ground-State of the XMn Complex

of the two lines resulting from the dark/bright admixed lines (|+2,+1/2〉 and |−1,+3/2〉) 32.
Ie−Mn ≈ 70µeV can be estimated using two lines with the same Mn and hole spin projection and
substracting the electron-hole exchange (but a precise estimation requires a spectra modeling as
done in Fig. 4.3). Finally a rough estimation of these admixture, considering ∆E+ ≈ 1200µeV
and ∆E− ≈ 1590µeV is:

α+ = 0.08

α− = 0.08

The admixtures are similar. Basing ourselves on polarization considerations, we cannot discrim-
inate which of the two dark states (|−2,+3/2〉 or |+2,−3/2〉) is observed.

Resonance 3 : A weak PL is observed from the |−1,+5/2〉 line, as the laser is tuned at a
slightly lower energy than the |+1,−1/2〉 energy line. This must correspond to a dark state.
Indeed the dark states |+2,+3/2〉 and |−2,−3/2〉 are expected at this energy (Fig. 4.2). Once
again, the dominant admixture is ambiguous: for |+2,+3/2〉 the admixture via a hole-Mn �ip-
�op (|−1,+5/2〉) slightly dominates over the electron-Mn (|+1,+5/2〉).

Resonance 2 : As the laser is tunned on |+1,−1/2〉 we clearly observe a resonance. Referring
to Fig. 4.2, the PL either comes from |−2,+1/2〉 or |+2,−1/2〉. The dominant admixture with
bright states is via a hole-Mn �ip-�op (with |+1,−1/2〉 for |−2,+1/2〉). Since the detection is
σ−, what we detect corresponds mainly to |+2,−1/2〉. This could be the signature of a hole
spin-�ip. However, the states |+1,+1/2〉 and |−1,+1/2〉 (or |+1,−1/2〉 and |−1,−1/2〉) are
admixed by short range and long range exchange through valence band mixing or anisotropy of
the con�ning potential, resulting in an absorption partially linearly polarized. Let us highlight
the fact that this e�ect is particularly strong for the ±1/2 bright states because they are less
split by the exchange interaction with the Mn (see [58] or p.81 of [27]). Consequently, the Mn
spin-state under excitation is not well de�ned and we cannot a�rm or in�rm a spin-�ip of the
hole compared to the other process which would be a simultaneous hole-Mn �ip-�op.

If we resume the observed resonance, we can distinguish two type of resonances:

• Resonances (4, 1 and 5) between two bright states, which involve a change of the spin of
the exciton, while the Mn spin-state is una�ected. The transition between the two bright
states corresponding to the Mn spin state Sz = 1/2 which has not been discussed so far, is
shown in Fig. 4.3.

• Resonances (2, 3 and 6) involving a transition from a dark to a bright state or vice-versa.
The exact XMn states involved in the transition could not be determined unambiguously
for the latter. However, there is one possible path that uni�es all these transitions: a
hole-Mn �ip-�op.

Before we comment on these conclusions, let us note a few other features of these transitions
and brie�y comment on another quantum dot. In Fig. 4.3, we see that the intensity of the
resonant PL (which re�ects more or less the probability of the transition during the life-time of
the exciton) increases with the inter-level splitting of the two-states involved in the transition.

32Since the two lines are degenerate, we �nd from the model discussed in the �rst chapter that this energy
splitting is 4

√
(6)ηIhMn.
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We also note that the acoustic phonon-side band can be observed in the PLE which re�ects the
absorption of the excited line. The e�ect is particularly clear on the resonance 1 (or 4) involving
the 5/2 lines, since there is no absorption at higher energy.

In Fig. 4.4, we present an analogue experiment carried out on a di�erent quantum dot. Sim-
ilarly to the �rst example, we observe a XMn relaxation between bright states corresponding to
the same Mn spin states. Again, relaxation from |+1,+5/2〉 to |−1,+5/2〉, is faster than relax-
ation from |+1,+3/2〉 to |−1,+3/2〉 resulting in a stronger PL signal. However, the e�ciency
of the optical pumping has not been investigated on this quantum dot. It is possible that the
latter also plays a role in the relative height of the PL peaks.

We also observe relaxation toward the dark states: as the laser excitation is tuned on the high
energy line corresponding to |+1,+3/2〉, two weak PL lines appear: we attribute them to dark
states. A modeling33 allows to attribute the corresponding XMn states (|−2,+5/2〉;|+2,+1/2〉).
We will not detail all the transitions and simply highlight that the transitions between the bright
state under resonant excitation and the observed dark state involve hole-Mn and electron-Mn
�ip-�op. Also, the PL from the dark states is very weak (it barely emerges from the background),
contrary to what was observed for QD1. This second example illustrates that the rapidity and
the nature of the dominant channels (e-Mn or h-Mn �ip-�op) within the XMn states vary from
dot to dot.

4.1.2 Phonon Assisted Spin Relaxation of the Exciton

Exciton spin relaxation through phonon-assisted processes has attracted attention both theoret-
ically and experimentally. For typical quantum dots at low temperature, the zero-magnetic �eld
exciton spin-relaxation is usually negligible compared to the radiative lifetime. Apart from [59]
and [60], the relaxation time is expected to be longer than the tens of ns range, both theoretically
[61] and experimentally [62]. However, it is well understood that the exciton spin-relaxation con-
siderably increases with external magnetic �eld [63, 64]. This e�ect is due to the increase of the
acoustic phonon density of states at the energy of the interlevel splitting. So far, the mechanisms
identi�ed by theoretical studies involve (i) the interplay of short-range exchange interaction and
the distortion of the crystal by the phonon and consequently a distortion of the band described
through the Bir-Pikus Hamiltonian or (ii) the combined action of spin-orbit coupling and the
phonon. The former is expected to dominate spin relaxation processes for small quantum dots.
We try, in the following to give an idea of how these spin-�ip rates can be calculated and to
describe the evolution of these phonon-assisted spin-�ip as a function of the energy splitting
between the two excitonic states. We will focus on the transitions linked to a spin-�ip of a hole
in the exchange �eld of the Mn. Our approach is based on [65] and [64].

The elastic properties of the two materials are similar, thus the bulk acoustic-phonon modes
are considered here. We will make the approximation that the acoustic phonon dispersion is
isotropic. Also, we will neglect the presence of anisotropic built-in strain. We will consider
strain terms εij , which are no longer built-in strain, but strain terms induced by the phonons.

As we have seen in Chap. 1, a crystal deformation leads to a shift of the energy of the
conduction and the valence band, and shear strain (εij 6= 0 or εii − εjj 6= 0 with i 6= j)

33Because bright/dark admixture is not strong enough to identify the presence of a seventh line, the model does
not allow strictly speaking to determine the position of the dark states (a change of Ieh shifts in block the position
of the dark states). Contrary to QD1, a magneto-optic study would be required here. However, the values of Ieh
are well known. Taking a value of Ieh in the average, there is only few ambiguity in the attribution of the dark
sates.
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Figure 4.3: Photoluminescence excitation (PLE) spectra and resonant photoluminescence obtained on

the ground state of QD1. The resonant PL is obtained under circularly cross-polarized excitation-

detection. The top-inset presents an enlarged view of the PLE obtained under excitation and detection

on the Sz=+5/2 state. The black line is a Lorentzian �t with a half width at half maximum of 80µeV.

The asymmetry of the absorption line comes from a coupling with acoustic phonons. The lower inset

presents the evolution of the intensity of the PL as a function of the energy splitting between the two

states involved in the transition. Data points of the same color are issued from the same PLE measure-

ment. The labels (1-6) refer to the resonances given in the text. (b) Calculated bright | + 1〉 and dark

| − 2〉 energy levels with IeMn=0.07 meV, IhMn=0.245 meV, Ieh=825 meV, η = 0.11 and ζ=20µeV (all

these constants are de�ned Chap. 1). The contribution of long-range exchange is neglected. Because of

the large carrier-Mn exchange coupling, the dark exciton levels overlap with the bright excitons. The

valence band mixing couples the states | + 1,−3/2〉 and | − 2,−1/2〉 and gives rise to an additional PL

line.
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Figure 4.4: Black curve: PL under non-resonant excitation. Colored curves: σ− PL spectra recorded

under σ+ resonant excitation on the high energy lines (shown by the arrows) corresponding to Sz = +5/2

(red), +3/2 (blue) and +1/2 (green). Dashed or �lled lines are used to highlight the position of the

bright or dark lines. The XMn states (bright states in red, dark states in dashed-black) are modeled

using IeMn=0.06 meV, IhMn=0.190 meV, Ieh=0.788 meV, η = 0.07 and ζ=17µeV. Long-range exchange

is neglected.
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modi�es light/heavy hole mixing and changes (through short-range exchange interaction) the
wave-function mixing between the di�erent excitonic states. The strain components εij are
directly linked to the displacement �eld ~u induced by the phonon through the relation:

εij =
1

2

(
∂ui
∂rj

+
∂uj
∂ri

)
(4.2)

In second quantization, the displacement �eld is given by:

~u(~r) = i
1√
N

∑
~k

√
h̄

2ρV ω(k)
~ε~k

(
b~k + b†

−~k

)
ei
~k.~r (4.3)

where ρ is the crystal density, ω(k) is the frequency of the phonon mode, V is the volume of a
unit cell (NV is the volume of the crystal), b~k and b†~k are the phonon creation and annihilation

operators. ~k is the phonon wavevector and ~ε~k is the unit vector giving the polarization of the
phonon.

Similarly to what we have seen in Chap. 1 (Eqn. 1.37), the strain terms due to phonons
couple through short-range exchange interaction the bright states |+1〉 and |−1〉 (see Eqn. 1.41).
The deformation potential Hamiltonian (HDP ) which describes the exciton-phonon coupling is
given by:

〈+1|HDP |−1〉 =
δsr0

∆lh
〈+1| i 2√

3
dεxy − b(εxx − εyy) |−1〉

(4.4)

where δsr0 is the short-range exchange constant de�ned in Eqn 1.40, b, d are the Bir-Pikus
parameter and ∆lh is the energy splitting between light and heavy holes. This expression holds
to describe the coupling in the limit of long wavelength phonons [65]. This expression also holds
if we consider a magnetic quantum dot, and states corresponding to the same Mn spin-state
(|+1, Sz〉 and |−1, Sz〉). In the following, we will not write Sz in the exciton state for brevity.
We can deduce using Eqn. 4.2 and 4.3 that the coupling between these two states and the phonon
modes is:

〈+1|HDP |−1〉 =
δsr0

∆lh
〈+1| − 1√

N

∑
~k

√
h̄

2ρV ω(k)
k

(
bMb(~k,~ε~k) + id

2√
3
Md(~k,~ε~k)

)
(
b~k + b†

−~k

)
ei
~k.~r |−1〉 (4.5)

In this expression,Mb(~k,~ε~k) andMd(~k,~ε~k) are the so-called geometrical factors which depend
on the direction of the phonon momentum ~k/k and polarization ~ε~k, and are found replacing Eqn.
4.3 in Eqn. 4.2:

kMb(~k,~ε~k) =
(
kxε~k,x − kyε~k,y

)
(4.6)

kMd(~k,~ε~k) =
1

2

(
kxε~k,y + kyε~k,x

)
(4.7)

(4.8)
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Where ki, ε~k,i are the component of vector ~k or ε~k along the i-axis. Assuming that the spatial
wave-function of the carriers can be written:

Ψe,h =
1

π3/4l
1/2
z lρ

e
− 1

2

((
ρ
lρ

)2

+
(
z
lz

)2)
(4.9)

The matrix element 4.5 can be written:

〈+1|HDP |−1〉 =

∫ ∞
−∞

d3rΨ∗h(~r)HDP (~r)Ψ∗h(~r) (4.10)

∝ − 1√
N

∑
~k

√
h̄

2ρV ω(k)
k

(
bMb(~k,~ε~k) + id

2√
3
Md(~k,~ε~k)

)(
b~k + b†

−~k

)
F (~k)

Where F (~k) is commonly called �form-factor�, and is nothing else but the Fourier transform of the
wave-function Ψ(r)2:

F (~k) = e−
1
4((kρlρ)2+(kzlz)2) (4.11)

We see from Eqn. 4.10, and the expression of the form factor that only phonons near the
center of the Brillouin zone are coupled: if k � 1/lz, 1/lρ, the coupling is negligible. Therefore,
we will not make a big error considering a linear dispersion for the phonons: ω(k) = cSk, with
S = L, T corresponding to longitudinal or transverse phonons.

The phonon assisted spin-�ip rate is given by Fermi's golden rule (the contribution of each
phonon branch will be summed):

Γ−1→+1 =
2π

h̄2

∑
~k

∣∣∣〈+1|HDP |−1〉
∣∣∣2 δ(ω−1→+1 − ωk) (4.12)

Alternatively written:

Γ−1→+1 = 2πRph(ω−1→+1)(1 + nB(ω−1→+1)) (4.13)

where nB is the Bose-Einstein distribution (equal to (e−βE − 1)−1), ω−1→+1 is the frequency
di�erence between the two bright levels and Rph(ω) is spectral density of phonons, de�ned by:

Rph(ω) =
1

h̄2

δ2
0

∆2
lh

1

N

∑
k

h̄k

2ρV cS

(
b2Mb(~k,~ε~k)

2 + d2 4

3
Md(~k,~ε~k)

2
)2

F (~k)2δ(ω − ωk) (4.14)

We perform the continuum limit (
∑
k → NV

(2π)3

∫
d3k and switch to spherical coordinates:

~k = k(sin θ cosφ, sin θ sinφ, cos θ)). Considering the following polarization vectors:

~ε
L,~k

= ~k/k

~ε
T1,~k

= (− sinφ, cosφ, 0)

~ε
T2,~k

= (cos θ cosφ, cos θ sinφ,− sin θ) (4.15)
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for the transverse and longitudinal modes, we can calculate the geometrical factors Mb and Md,
integrate over φ and �nd in fair agreement with [64, 66]:

Rph,L(ω) =
(δSR0 )2

(
b2 + d2/3

)
∆2
lh

ω3

16π2h̄ρc5
L

∫ π

0
sin θdθ sin4 θe

−ω
2

c2
L

(l2ρ sin2 θ+l2z cos2 θ)

Rph,T1(ω) =
(δSR0 )2

(
b2 + d2/3

)
∆2
lh

ω3

16π2h̄ρc5
L

∫ π

0
sin θdθ sin2 θe

−ω
2

c2
L

(l2ρ sin2 θ+l2z cos2 θ)

Rph,T2(ω) =
(δSR0 )2

(
b2 + d2/3

)
∆2
lh

ω3

16π2h̄ρc5
L

∫ π

0
sin θdθ sin2 θ cos2 θe

−ω
2

c2
L

(l2ρ sin2 θ+l2z cos2 θ)

(4.16)

We calculate the phonon reservoir density by numerical means using the ZnTe sound ve-
locities34: cL = 4 × 103m.s−1, cT = 2.6 × 103m.s−1 and the mass density [67, 50]. We take
∆lh = 30meV , δSR0 = 0.5meV , b = 1meV and d = 2.76meV .

4.1.3 Comparison with the Experiment

The shape of the spectral density of phonons depends a lot on the form-factor de�ned in Eqn.
4.11. If the wave-function is localized on a length l, the form-factor is equal to ≈ 1 for wave-
vectors k � 1/l, while it is equal to zero for k � 1/l. Consequently, the spectral density of
phonons �rst increases proportionally to ω3 for k � 1/l, and decreases for k � 1/l.

We use localization parameters lz = 1.5nm and lρ = 2.8nm, found by Laurent Maingault
using variational calculations in a II-VI quantum dot of typical size (Lz = 2.6nm and a total
width Lρ = 9nm).

In Figure 4.5, we present the spin-�ip rate between the two bright states as a function of the
energy splitting. First, we note that this spectral density is less spread spectrally for transverse
phonons than for longitudinal phonons. This is mainly due to the di�erence of velocity between
transverse and longitudinal phonons cL > cT . The maximum of the spectral density is in
q ≈ 1/l, or equivalently E ≈ h̄cS/l. The main contribution in this spin-�ip mechanism is given
by transverse phonons. These results can be compared with the results of Roszak et al [66]: we
�nd a dynamics even slower than the one they report. The spin-�ip rate found here is unable to
explain the observed PL, contrary to what we thought in [68]. However these curves illustrate
well how a phonon assisted process is expected to increase with the interlevel splitting in the
�rst ≈ 1.25meV as a result of the increase of the phonon density.

Now, we compare the shape of the phonon density in Fig. 4.5 to the shape of the phonon
side-band observed experimentally for the QD1 (see the inset of Fig. 4.3). Experimentally, the
cut-o� frequency is observed roughly around 1meV (compared to ≈ 3meV in the model). QD1
should evidently be modeled with larger localization parameters35. Considering the experimental
phonon side-band of QD1, we would therefore expect a single phonon spin-relaxation process to
decrease as the inter-level splitting increases from 1meV to 2meV . Experimentally we observe
the opposite.

34We use the elastic coe�cients given in [67] and the fact that cT ≈
√
C11/C44cL.

35Note that the localization parameters chosen in the model are consistent with the strong hole-Mn exchange
interaction observed for this quantum dot. Considering larger localization parameters for the hole to be in
agreement with the acoustic phonon side-band observed experimentally would lead to a strong discrepancy with
the observed exchange interaction.
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Figure 4.5: Phonon-assisted spin-�ip rate corresponding to a direct transition between the two bright

excitonic states (black curve) as a function of the energy splitting between the initial and �nal state. The

contribution of the longitudinal branch and the two transverse phonon-branch are shown in dashed line.

The spectral density of phonons are calculated with lz = 1.5nm and lρ = 2.8nm
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4.2. Photo-Induced Orientation: Which Physical Mechanism?

To our knowledge, taking into account phonon spin-�ips mediated by spin-orbit interaction
would not help the understanding of the observed resonant �uorescence. Liao et al. [61] calculate
the phonon assisted spin relaxation in (In,Ga)As quantum dots focusing on spin admixtures
induced by spin-orbit coupling. They �nd that the dominant spin relaxation channel in a neutral
quantum dot is a relaxation of the hole spin (i.e. |+1, 〉 to |−2〉 and |−1〉 to |+2〉) which exceeds
by a factor 10 to 100 the electron spin-relaxation in small quantum dots (lρ ≈ 3− 6nm). They
extract a value of a few hundreds of ns. In our dots, the weak con�nement of the hole could
further reduce the relaxation time for the hole (this point should be checked carefully). Still, we
do not see how an extension of their model applied to Mn-doped quantum dots would explain the
transitions towards dark states, where a hole-Mn �ip-�op is the fastest spin relaxation channel
(resonance 2 3 and 6 in QD1).

4.2 Photo-Induced Orientation: Which Physical Mechanism?

4.2.1 State of the Art

The o�-diagonal term of the sp-d exchange interaction are essential, they allow simultaneous spin-
�ips of carriers and the Mn spin. Cywinski [69] developed a model to clarify the physical origin
of the optical pumping. He considered spin relaxation of the carriers (electron or hole). Let's
consider excitation on the XMn state |+1; +5/2〉. An electron spin relaxation can be excluded
from our experimental observations: electron spin relaxation from the high energy line |+1; +5/2〉
would lead to a dark state |+2; +5/2〉, which is not admixed to any other states considering the
usual admixing36. This would not lead to any pumping process of the Mn spin. Thus, a hole
spin-�ip has to be considered. Once the hole has �ipped, the XMn state is dark (|−2; +5/2〉),
and its recombination is expected to be controlled by the admixtures with bright states. As
discussed already, the dominant admixture (non-diagonal s-d or p-d exchange) depends on the
dark state considered and the light/hole heavy hole mixing. However the main point is that
whatever the admixture, the Mn spin decreases by one unit if the |−2〉 XMn state recombines
optically through his bright part (Fig. 4.6). Cywinski showed that for realistic valence-band
mixing and exchange constants, this could explain our experimental observations (apart from
the saturation at 75%, which is, as we have seen a result from the coherent evolution of the Mn
in the crystal �eld and the Mn nucleus).

In the same time, Goryca et al. [70], also looking for a mechanism for photo-induced spin
orientation, have performed experiments in an interesting con�guration: they observe the PL
of a Mn-doped quantum dot at high magnetic �eld. This allows them to split the dark states
|−2, Sz〉 from |+2, Sz〉 and so, to distinguish them. Under σ− excitation37, they report observing
clearly the luminescence of the XMn dark states with an exciton |+2〉 explaining that the Mn
spin tends to be oriented up. On the other hand, under σ+ excitation, they clearly observe the
absence of luminescence on the |+2〉 XMn states. They would expect a high population transfer
towards the |−2〉 XMn states. However this cannot be evidenced experimentally because the
|−2〉 states overlap with the bright states at these high magnetic �elds. The observation of an
absence of +2 excitons under σ+ excitation is already a relevant indication: relaxation of the
hole spin seems to be the preferential relaxation channel.

36admixtures with usual light hole/heavy hole mixing:
∣∣ ˜+3/2

〉
= |+3/2〉+ η |−1/2〉

37The conditions of excitation are not explicitly mentioned. We assume it is quasi-resonant excitation, since the
authors propose that their observations could explain experiments carried out under quasi-resonant excitation.
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Figure 4.6: Schematic view of the mechanism proposed by Cywinski, allowing the pumping of the

Mn spin under σ+ excitation. Spin relaxation of the hole at a rate Γh causes relaxation towards a dark

state. This dark state is admixed with a bright state (through an electron-Mn or a hole-Mn �ip-�op term).

Recombination of the dark state through its bright part changes the Mn spin by one unit (Sz −→ (Sz−1))

4.2.2 Is the Role of Hole Spin Relaxation opened to doubt?

The XMn relaxation channels discussed in the previous section do not evidence a spin-�ip of
the hole. The hole spin-�ip could simply be too long to be directly observed in PL. More
importantly, could the observed relaxation channels within the XMn complex pave the way to a
di�erent mechanism of optical pumping? The fact that we do not fully understand the origin of
these transitions does not facilitate the answer. We are going to show that another mechanism
is indeed possible and could contribute to orientation of the Mn spin under resonant excitation.

The transitions evidenced in the subsection 4.1.1 correspond to a carrier-Mn relaxation. Let
us suppose that both e-Mn and h-Mn spin relaxations can be involved. Experimentally, we
perform optical pumping on the high energy line (say |+1,+5/2〉). Starting from the XMn state
|+1,+5/2〉, an e-Mn spin relaxation leads to the dark state |+2,+3/2〉 while the hole-Mn spin
relaxation via a �ip-�op is forbidden (since the hole and the Mn spin are parallel). From the
state |+2,+3/2〉, we need to consider the following recombination path:

• Optical recombination through a hole-Mn admixture (i.e. small admixture with the state
|−1,+5/2〉)

• Optical recombination through an e-Mn admixture (i.e. small admixture with the state
|+1,+5/2〉)

• Optical recombination through the light hole component of the exciton:
∣∣∣+̃2

〉
is in fact equal

to |Jz = +3/2, σz = +1/2〉+η |Jz = −1/2, σz = +1/2〉. Optical recombination is expected
through the emission of a photon linearly polarized along the z axis (that is to say parallel
to the detection axis).
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The �rst two recombination path are not expected to play any role on the optical orientation
of the Mn spin, contrary to the last one. Recombination through the light hole component is
not expected to be negligible. It leads to a recombination of the exciton with a Mn spin-state
Sz = +3/2, di�erent from the initial one (Sz = +5/2), thus leading to an optical pumping of the
Mn spin. This process could also be involved in the observed spin-orientation of the Mn under
resonant excitation, where experimentally, spin relaxation of the hole was not found to be the
dominant relaxation channel within the XMn system.

Further investigations are required to understand the exact microscopic mechanism. An
experiment that could help to discriminate between the two mechanism would be to perform
optical pumping on di�erent XMn lines (with Sz = 5/2, 3/2, 1/2). If Cywinski's mechanism is
dominant, one would expect that the Mn spin is always driven from the state Sz to the state
Sz − 1 (under σ+ excitation). On the other hand, if carrier-Mn spin relaxation combined with
recombination through the light-hole part is involved, one should expect more complex dynamics
depending on the Mn spin-state.

4.3 Comparative Study of the Optical Orientation and Optical

Pumping Dynamics

4.3.1 Power Dependence of the Optical Pumping

As displayed in Fig. 4.7, the characteristic time and the amplitude of the optical pumping signal
depend on the excitation intensity. In the low excitation regime, as expected for a spin optical
pumping process, the transient characteristic time τpump is inversely proportional to the pump
laser intensity. However, a saturation behavior is clearly observed both for the amplitude and
the characteristic time of the resonant �uorescence transient. Here, the rate of the spin optical
pumping saturates around 0.025ns−1 (Fig. 4.7). The saturation of the optical pumping process
results from a saturation of the absorption of the resonantly excited excitonic level. Indeed, the
population of the excited state of a two level system driven by a resonant excitation laser is given
by:

n =
1

2

Ω2 T1
T2

δ2 + 1
T 2

2
+ Ω2 T1

T2

(4.17)

where Ω is the Rabi frequency, δ the frequency detuning between the excitation laser and the
excitonic transition, and T1 and T2 the lifetime and the coherence time of the exciton, respectively.
The rate of the spin optical pumping process, which is proportional to n, is expected to increase
with the excitation Rabi frequency until it reaches a saturation value when the Rabi frequency
is larger than the spontaneous emission rate Ω � (T2T1)−1/2. The saturation curve obtained
with this equation, T1 = 180ps, T2 = 10ps, and δ = 0 is compared with the optical pumping
signal. A good agreement with this simple model describing the population of a two level system
resonantly excited by a cw laser is obtained.

As the intensity of the pump is increased, saturation of the absorption of the quantum dot
and of the optical pumping rate is observed. Lets come back to a simple rate equation approach
(neglecting the Mn �ne structure). At saturation, if Sz = −5/2, the quantum dot is �lled with
an exciton half of the time and, assuming that ΓMn,X � ΓMn,G, the rapidity of the transient
is simply governed by the rate of the relaxation process which depletes Sz = −5/2 (ΓMn,X).
At saturation, the optical pumping rate observed in Fig. 4.7 (c) leads to a relaxation time
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Figure 4.7: (a) Excitation power dependence of the resonant �uorescence signal. (b) Excitation power

dependence of the optical pumping rate. (c) Excitation power dependence of the amplitude of the optical

pumping signal. The solid line describe the population saturation of a resonantly excited two level system.
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Figure 4.8: (a) PL transients at di�erent values of the excitation power. In inset is shown the power

dependence of the inverse of the response time τr, taken at the 1/e point the PL transient. (b) PL

counts as a function of the excitation power. The black line is a guide to the eye showing a linear power

dependence. The striped zone shows the power range in which the experiments were performed.

ΓMn,X ≈ 20ns. In the microscopic process proposed by Cywinski [69], ΓMn,X is governed by the
relaxation time of the hole. However, considering the modeling presented in the section 3.4, we
highlight the fact that the Mn �ne structure is also expected to play a role in the transient time
observed experimentally.

4.3.2 Power Dependence of the Optical Orientation

The power dependence of the optical orientation process is displayed in Fig. 4.8. In the power-
range investigated here, the characteristic time of the transient is inversely proportional to the
power. This is the expected behavior for a pumping process far from saturation (Fig. 4.8 (b)).
The power-range cannot be further increased: at low power, we are limited by the insu�cient
signal to noise ratio, and at high power, the transient reaches the rise-time of the excitation
modulation.

However, it is obvious that compared to the dynamics of optical pumping, optical orientation
using quasi-resonant excitation is an extremely fast process (τr ≈ 13ns for the highest power
accessed experimentally which is far below the saturation).

This major di�erence is attributed to a spin �ip of the hole during the relaxation of the
carriers from the excited (XMn)∗-state to the ground XMn-state. Under σ+ excitation, this
leads to a high population of the |−2〉 exciton, and a decrease of the Sz through non-diagonal
spd exchange terms. Spin relaxation of excited carriers is faster compared to when they are
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Figure 4.9: Polarization rate decay of the low energy line of a Mn-doped quantum dot under quasi-

resonant excitation.

in the ground excitonic state. This can be evidenced through polarization rate measurements.
We present in Fig. 4.9 the time-resolved PL observed under quasi-resonant pulsed excitation.
The polarization rate presents an abrupt decrease in the �rst tens of ps, followed by a slower
decrease. The initial diminution of the polarization rate is attributed to relaxation of the exciton
during the thermalization of the photo-created carriers. The slower transient likely comes from
relaxation of the exciton spin within the ground XMn complex. Hole spin relaxation is expected
to follow the same trend. Relaxation of the hole during the thermalization process injects dark
excitons and would explain why the optical orientation process is faster than the optical pumping
process.

Conclusion

In this chapter, we have evidenced unexpectedly rapid transitions between the XMn levels. We
clearly observe a dependence with the inter-level splitting of the two XMn states involved, which
points out at a phonon mediated process. The transitions we observe are:

• A relaxation of the bright exciton in the exchange �eld of the Mn spin (i. e. from |+1, Sz〉
to |−1, Sz〉)

• A relaxation from bright do dark states or vice-versa. The relaxation channels involve a
hole-Mn or an electron-Mn �ip-�op. The dominant relaxation channels seem to depend
on the spin-states admixtures. For instance, only hole-Mn �ip-�ops are observed on a
quantum dot presenting strong valence-band-mixing.

The rapidity of these processes cannot be addressed considering a short-range mediated single-
phonon spin relaxation.

We have discussed possible mechanism that could explain photo-induced spin-orientation.
In agreement with [69], we think that a hole spin relaxation could be involved. However other
mechanisms should be considered. The di�erence of the spin initialization time, faster under
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quasi-resonant excitation than under resonant illumination is attributed to a fast spin relaxation
of the hole during the injection from an excited state.
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Optical Stark E�ect and Dressed States
on a Mn-doped Quantum Dot
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In this chapter, we present the observation of spin-dependent optically dressed states and
optical Stark e�ect on the Mn spin. The vacuum-to-exciton or the exciton-to-biexciton transitions
of the Mn-doped quantum dot are optically dressed by a strong laser �eld, and the resulting
spectral signature is measured in photoluminescence. We demonstrate that the energy of any
spin state of the Mn atom can be independently tuned by using the optical Stark e�ect induced
by a control laser. We study the power-, polarization-, and detuning-dependent Autler-Townes
splitting of each optical transition of the Mn-doped quantum dot. These dependencies are well
described using the dressed atom picture of a two-level system, showing that any spin state of
the Mn atom can be individually addressed and strongly coupled to a resonant laser �eld. First,
we present the experimental con�guration for these measurements and the dressed atom picture.
Then, we present and discuss the experimental results.

5.1 The Dressed Atom Picture

5.1.1 Resonant Excitation of a transition in a Mn-doped Quantum Dot

Only one spin state of the Mn is addressed when a control laser is circularly polarized (σ±)
and tuned on resonance with an emission line of the exciton-Mn (XMn) complex. The strong
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coupling between the laser photons and the resonantly excited quantum dot levels results in the
creation of dressed states which are split by a Rabi frequency Ωr as shown in Fig. 5.1. Before
we give a quantitative description of this phenomenon, we can give an intuitive picture. At
resonance, the photons of the laser �eld can be coherently absorbed and emitted by the ground
state and the excited state of the transition at a Rabi �opping frequency Ωr which depends on
the strength of the coupling between the laser �eld and the transition dipole. In other words,
the unperturbed states |Mn〉 ⊗ |n〉 and |XMn〉 ⊗ |n− 1〉 (n designates the n-photons state of
the control laser), which are degenerate at resonance are no longer stationary solutions of the
Hamiltonian. The stationary solutions, denoted |II, n〉 and |I, n〉 in Fig. 5.1 are symmetric and
anti-symmetric combinations of the two unperturbed states and are split by the Rabi �opping
frequency Ωr. The laser used for the resonant excitation is a tunable continuous wave single-
mode dye (Rhodamine B) laser with a spectral width smaller than 0.1µeV . This laser is tunable
between 590 − 640nm, which allows resonant excitation on the ground state of our quantum
dots. Also, a non-resonant laser is used to populate XMn and X2Mn levels, in order to observe
the Rabi splitting and to destroy the optical pumping performed by the resonant excitation.

5.1.2 The Dressed-Atom Picture

The dressed states and the energy splitting Ωr can be found using a quantum description of
the quantum dot levels and the laser �eld: this is the dressed atom formalism. We make the
assumption that the Rabi splitting Ωr and the detuning of the laser δ are smaller than the
splitting ∆E between two PL lines of the quantum dot. Then, it is reasonable to calculate the
dressed states resulting from the interaction between the two-levels of the quantum dot addressed
by the laser (which will refer as |G〉 and |E〉 for the ground and excited state) and the resonant
laser photons, while the light matter interaction with all the other levels is neglected. In Fig.
5.1, we have |G〉 = |Mn〉 and |E〉 = |XMn〉 with the Mn spin-state Sz = +5/2 and X = +1. In
the absence of coupling, the Hamiltonian is:

H = h̄ωEG |E〉 〈E|+ h̄ωLaa
† (5.1)

where a (resp. a†) is the annihilation (resp. creation) operator of a photon in the mode ωL. The
eigenstates of the uncoupled system are |G,n〉, |E,n〉, at an energy h̄nωL and h̄(ωEG + nωL).
Since the detuning δ = ωL − ωEG is many orders of magnitude smaller than ωL and ωEG, these
energy levels are grouped two by two: the energy separation within a multiplet is δ and the
energy splitting between two multiplets is a multiple of h̄ωL. These states are represented in
Fig. 5.1 in the case δ = 0.

The light-matter coupling originates from the dipole interaction V = −~d. ~E between the
dipole d of the transition and E, the quantized electrical �eld operator. V is given in second
quantization, in the rotating wave approximation by:

V ≈ h̄g(a |E〉 〈G|+ a† |G〉 〈E|) (5.2)

where g is the electric dipole matrix element describing the coupling between the dipole of the
quantum dot transition and the mode ωL of the electric �eld. The levels |G,n〉 and |E,n− 1〉
of a multiplet are coupled through stimulated emission (a† |G〉 〈E|) and absorption of a photon
(a |E〉 〈G|). The dressed states are found diagonalizing the total Hamiltonian within a given
multiplet:
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Figure 5.1: Energy levels of a Mn-doped quantum dot and formation of dressed-states. In the absence

of exchange interactions with carriers (Mn or X2Mn levels), the Mn �ne structure is controlled by the

strained-induced magnetic anisotropy. The bright exciton levels (XMn with X= ±1) are split by the

exchange interaction with the Mn. The quantum dot is excited by a continuous monochromatic laser

tuned on a given transition of the quantum dot (here, Mn, Sz = +5/2 7−→ XMn, X= +1, Sz = +5/2).

Considering a mode of n photons, the levels (Mn, n) and (XMn, n − 1) are coherently coupled through

absorption and stimulated emission of a photon. The eigenstates of the coupled atom-�eld system (I, n)

and (II, n) are entangled states which at resonance have equal contributions of the upper and the lower

level of the laser-driven transition. The Rabi splitting Ωr between these two levels can be probed in the

cross-polarized PL of the exciton or the biexciton using a second non-resonant probe laser (as shown on

the right part of the diagram). The splitting observed using a third level is the so-called Autler-Townes

splitting.
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Hn =
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h̄nωL
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(5.3)
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Ωr,n =
√
ng is the Rabi frequency, δ the detuning and E0

n = h̄
2 (ωEG + (2n − 1)ωL) is the mean

energy of the multiplet. The eigenstates of the system are given by:

|I, n〉 = c |G,n〉 − s |E,n− 1〉 (5.5)

|II, n〉 = s |G,n〉+ c |E,n− 1〉 (5.6)

where:
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with corresponding energies:
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2
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EII = E0
n +

h̄

2

√
Ω2
r,n + δ2 (5.8)

∆EI−II = h̄
√

Ω2
r,n + δ2 (5.9)

= h̄Ω′r,n

Ω′r,n is the generalized Rabi �opping frequency. At resonance (δ = 0), c = s =
√

2. Then,
the states |E,n− 1〉 and |G,n〉 corresponding to the upper and lower levels of the transition
have equal contribution to the dressed levels |I, n〉 and |II, n〉: the dressed states are entangled
atom-�eld states.

5.1.3 Autler-Townes splitting

The Rabi splitting Ω′r observed experimentally is given by Ω′r,nL where nL is the average number
of photons of the laser excitation. As nL is proportional to the laser power (P ), the Rabi
splitting ΩL is proportional to

√
P . In the following experiment, it is observed using non-resonant

excitation to generate PL by a transition involving a third level and an optically dressed state
as shown in Fig. 5.1. The PL of such transitions are split because, for example, spontaneous
emission from |−1,+5/2〉 can occur toward any of the dressed states (II, n) and (I, n) as they
contain a component of the |+5/2〉 state. The resulting PL is split by Ω′r, this is the so-called
Autler-Townes splitting [71]. As shown in Fig. 5.1, when the laser is tuned on a XMn-to-Mn
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transition, an Autler-Townes splitting can also be observed by detecting the adequate biexciton
PL line.

The strong coupling regime between a quantum dot transition and a laser �eld has been
observed for the �rst time in 2001 by Kamada et al. [72], using resonant excitation on an excited
state of a quantum dot. In [73, 74], Xiaodong Xu et al. have measured the absorption of a
weak probe when the ground excitonic transition of a neutral and negatively charged quantum
dot is resonantly driven by a strong pump. They have evidenced Autler-Townes and Mollow
absorption spectra. Dressed states were also observed in [75] and [76]. All these experiments
were performed on III-V quantum dots.

5.2 Optical Stark E�ect and Dressed Exciton States in a Mn-

doped Quantum Dot

5.2.1 Experimental Evidendence of Optical Stark E�ect and Dressed Exciton

States

Experimental data corresponding to a control laser tuned on |+1, 5/2〉 and the observation of
an Autler-Townes splitting in the PL of the state |−1, 5/2〉 are presented in Fig. 5.2. Particular
care is given to the e�ect of the detuning of the control laser from the XMn resonance [Figs.
5.2(c) and 5.2(d)] and its intensity [Figs. 5.2(e) and 5.2(f)]. At large laser detuning, the optically
active transitions asymptotically approach the original excitonic transitions where the remaining
energy o�set is the optical Stark shift. At the resonance, an anticrossing is observed showing that
the strong coupling between the laser �eld and the exciton creates hybrid light-matter states. As
presented in the inset in Fig. 5.2(d), a good agreement with the simple dressed atom model is
obtain with a Rabi energy of Ωr = 180µeV . On resonance, the emission from the |−1, 5/2〉 state
splits into a doublet when the power of the control laser is increased. The splitting is plotted as a
function of the square root of the control laser intensity in Fig. 5.2(f), showing that the splitting
linearly depends on this quantity, as expected from the dressed atom model. A Rabi splitting
larger than 250µeV is obtained at high excitation intensity. It is worth noting that these energy
shifts can be easily larger than the magnetic anisotropy of an isolated Mn spin created by the
strain in the quantum dot plane (≈ 40µeV ). This optical tuning of the �ne structure may lead
to a control of the coherent dynamics of the isolated Mn spin.

The high energy transition of the XMn complex is twice degenerate. The corresponding
optical transitions di�er by the polarization of the absorbed or emitted photons. The polarization
dependence of the laser-induced splitting shown in Fig. 5.2(b) con�rms the Mn spin selectivity
of the strong coupling with the laser �eld: σ+ photons couple with the state |+5/2〉 of the Mn
to create two hybrid light-matter states, while no splitting of this PL line is observed when the
control laser is σ−. This demonstrates that the Mn spin state Sz = +5/2 is not dressed by the
σ− control laser, in accordance with the dipole selection rules.

5.2.2 Individual Addressing of any Transition and Mn Spin State

The strong coupling with the control laser is also observed monitoring the PL of the biexciton.
This con�guration of the detection speaks for itself, as the PL lines corresponding to the six
Mn spin states can be observed at the same time. A detuning dependence of the PL emission
is presented in Fig. 5.3 in the case of successive resonant excitations on the XMn transitions
corresponding to a Mn spin state Sz = +1/2, +3/2, and +5/2. In these cases, the recombination
of X2Mn probes the laser-induced splitting of a XMn level for a given spin state of the Mn. It is
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Figure 5.2: Autler-Townes splitting of the PL emission of |−1,+5/2〉 in a Mn-doped quantum dot (QD1)

resonantly excited on |+1,+5/2〉. (a) shows the PL of QD1 under non-resonant excitation. (c) is the

intensity map of the PL as the resonant laser is tuned around the transition. The corresponding emission

line-shape is presented in (d). The inset of (d) shows the spectral position of the Autler-Townes doublet

as a function of the energy of the resonant laser. The �t is obtained with a Rabi splitting h̄Ωr = 180µeV .

The straight lines correspond to the uncoupled exciton and laser energy. (e) is the intensity map of the

PL as the resonant laser power is increased. The corresponding PL spectra are presented in (f). The

inset of (f) shows the evolution of the Rabi splitting with the square-root of the resonant laser power.

A linear increase is observed. (b) presents the circular polarization dependence of the Rabi splitting

obtained under resonant excitation.
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Figure 5.3: (a) PL of the exciton and biexciton in a Mn-doped quantum dot (QD2). (b) Autler-Townes

splitting of the exciton in QD2 detected on the biexciton PL under resonant excitation of the ground-

to-exciton transition for the Mn spin-state Sz = +5/2 (i), Sz = +3/2 (ii), Sz = +1/2 (iii) (arrows on

the PL spectra of QD2). (c) Emission of the exciton for a dressed exciton-to-biexciton transition. The

excitation is tuned around the state Sz = +3/2 of the biexciton (iv).
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shown here that any XMn transition can be dressed, and consequently any Mn spin state can be
optically shifted by a control laser tuned on resonance. By coherently driving the X2Mn-to-XMn
transition, one can also tune the energy of any state of the XMn complex as illustrated in Fig.
5.3(c) for Sz = 3/2. This set of experiments demonstrates that a complete optical control of the
exciton-Mn system is possible.

A zoom on the detuning dependence of the dressed X2Mn-to-XMn transition is shown in Fig.
5.4. This detuning dependence also follows the evolution predicted by the dressed atom-picture.
The PL spectra observed experimentally correspond well with the spectra expected theoretically
(model given in the Annex B). Note the mirror symmetry when the resonant laser is tuned on a
X2Mn-to-XMn transition while the detection is done on a XMn-to-Mn transition (or vice-versa):
the anti-crossing observed in Fig. 5.4(a) and 5.3 are reversed with the one observed in Fig. 5.2
(c) where resonant excitation and detection both take place on a XMn-to-Mn transition.

5.2.3 Resonant Excitation on Mn Spin States Coupled Through Valence

Band Mixing

It is also demonstrated here that the use of a resonant strong laser �eld allows one to individually
address any spin state of the Mn even if they are coupled by the exciton through valence band
mixing (VBM).

The particular situation where the Mn spin states Sz = +1/2 and Sz = +3/2 are signi�cantly
mixed is presented in Fig. 5.5. The spectrum of this quantum dot [Fig. 5.5(a)] is the one
already discussed in Chap. 1 (1.3.3). Through hole-Mn short-range exchange, the VBM couples
|−1,+3/2〉 with |+2,+1/2〉, and the new eigenstates (labeled (1) and (2) in Fig. 5.5 (a)) share
the oscillator strength of the bright state |−1,+3/2〉. This attribution is con�rmed by the
calculation of the energy levels presented in Fig. 5.5(b). As shown in Figs. 5.5(c) and 5.5(d),
it is possible to optically address selectively one state (and one only) of the Mn spin in the
mixed bright-dark XMn levels. When the σ+ control laser is tuned on the state |−1,+3/2〉
[line (4)], an Autler- Townes splitting is observed in σ− polarization for both components of the
emission of the dark-bright excitonic complexes [lines (1) and (2) in Fig. 5.5(c)]. This arises
from the control laser-induced splitting of their common �nal state with a Mn spin Sz = +3/2.
With a resonant excitation on the mixed bright-dark states, only the states which share a Mn
spin-state Sz = +3/2 are split. The dark part with a Mn spin-state Sz = +1/2 is not a�ected.
This is demonstrated in Fig. 5.5(d). The σ− control laser splits the Mn state |+3/2〉, which
leads to the formation of a doublet in the σ+ PL from the state |+1,+3/2〉 [line (4)], while no
splitting of the state |+1,+1/2〉 [line (3)] is observed. This experiment suggests the possibility
to optically control the exciton-induced coupling between two spin states of the Mn atom. A
resonant laser tuned on the transition |−1,+3/2〉-to-|X2,+3/2〉 or |−1,+3/2〉-to-|+3/2〉 should
detune the exciton level |−1,+3/2〉 from |+2,+1/2〉 and reduce the dark-bright admixing and
the coupling between the two Mn spin states resulting from it.

5.2.4 Power Limitation to the Increase of the Rabi Frequency

An important question to address is whether the strong resonant excitation causes unwanted
electro-static �uctuations or broadening e�ects. Laser excitation above the barriers is well-known
to increase the pure dephasing or the spectral di�usion of the quantum dot transitions because of
the photo-induced charge �uctuations in the vicinity of the quantum dot [77]. Excitation under
the wetting layer (resonant on the ground state and sometimes on the �rst excited states) is
expected to address this problem, and it has indeed been observed so far that resonant excitation
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Figure 5.4: (a) presents the intensity map of the exciton PL, centered on the transition |+1,+3/2〉 7−→
|+3/2〉, as the resonant laser is tunned around the exciton-to-biexciton transition |+1,+3/2〉 7−→
|X2,+3/2〉. (b) is the intensity map of the Autler-Townes splitting expected theoretically as a func-

tion of the laser detuning, in the approximation of a spin-selective excitation (i.e. only the four levels

corresponding to Sz = 3/2 are considered). The spectra were calculated considering a Rabi splitting

Ωr = 140µeV and a pure dephasing term of 40µeV for all the transitions (model given in the annex B).
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Figure 5.5: Rabi splitting obtained on a mixed bright-dark states in QD2. (a) presents the PL of QD2.

The corresponding theoretical emission spectra is presented in (b). It is calculated with IeMn = 95µeV ,

IhMn = 300µeV , Ieh = 900µeV , η = 0.1, and δ1 = 50µeV (following the notations introduced in Chap.

1). (c) presents the detuning and the excitation power dependence of the Rabi splitting obtained on a

mixed bright-dark exciton under excitation on (i). (d) presents the detuning and excitation intensity

dependence measured on the high energy transitions associated with the Mn spin states Sz = +1/2 and

Sz = +3/2 (i.e. lines (3) and (4)) under excitation on the mixed dark-bright exciton (ii). The relevant

PL lines are numbered for a sake of clarity.
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Figure 5.6: Power limitation: biexciton PL intensity map of a neutral quantum dot (no Mn) for

increasing resonant laser power (the laser is tuned on the ground-to-exciton transition as shown on the

right scheme). At high excitation power the emission of the PL is red-shifted.

Figure 5.7: Observation of PL emission from the biexciton when exciting resonantly the exciton shown

on a non magnetic quantum dot. PLE measurement is carried out and reveals the existence of a resonance

close to exciton energy. The PL spectra shown are taken with the same integration time (1s) and the

same excitation power.)
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did not cause additional dephasing [76, 73, 74] even at strong power of excitation.
In the present case, the studied quantum dots have a linewidth (≥ 60µeV ) which is not

limited by the resolution of our set-up. No diminution of the line-width is observed under
strictly resonant excitation. When the resonant excitation power is increased, broadening of
the lines (others than the levels driven resonantly which are of course power broadened) is not
observed for a wide range of power excitation and enables to reach Rabi splitting ≈ 300µeV .

However, experimental observations show that the Rabi splitting cannot be further increased.
At a certain power, further increase of the excitation power causes a red-shift and a broadening
of the transitions. This is shown in Fig. 5.6, in the case of a non-magnetic quantum dot. The
same behavior is of course observed on magnetic quantum dots. This limits the maximum Rabi
splitting to a value of ≈ 300µeV when the laser is at resonance with the transition. We have also
observed the irreversible broadening of the quantum dot PL when exciting beyond this power
which is the signature of a structural change and a local deterioration of the sample due to strong
laser excitation. We speculate that the reason for these observations is a heating of the sample
by the laser although the sample should not be absorbent at these wavelength.

Moreover, we have observed that resonant excitation on one of the six PL line of a magnetic
quantum dot produces almost systematically signi�cant PL of the biexciton on the sample studied
in this chapter. This is quite unexpected. PLE measurements of the biexciton (Fig. 5.7) has
revealed the existence of a resonance close to the exciton emission (in some cases, the resonance
is shifted to a few meV higher than the energy of the exciton). This behavior has been observed
only on one sample, and PLE measurements of X2 have been carried out only on a few quantum
dots. Further studies are required to understand where this resonance comes from.

Conclusion

In summary, we have demonstrated that the ground, exciton, and biexciton states in a Mn-doped
quantum dot can be coherently coupled to a strong resonant laser �eld on the optical transitions.
At the resonance, hybrid matter-�eld states are created that should signi�cantly in�uence the Mn
spin dynamics. Our results demonstrate that, even under a strong optical �eld, the transition in
a Mn-doped quantum dot behaves like isolated two-level quantum systems well described by the
dressed atom picture. Only one spin-state of the Mn impurity is addressed even if the spin-states
are coupled through valence-band-mixing. In the ground state, the laser-induced shift of the Mn
spin could be used for a fast optical manipulation of the spin degree of freedom of the Mn atom
[78]. At last, we have discussed properties of our sample under resonant excitation and have seen
that the maximum Rabi splitting obtainable experimentally is limited.

98



Chapter 6

Spin Dynamics in n-Doped CdTe
Quantum Dots
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In this chapter, as a preliminary study of the in�uence of a Mn spin on the dynamics of a
con�ned carrier, we discuss the properties of n-doped CdTe/ZnTe quantum dots. The samples
are obtained by modulation doping: during the growth, a 20nm thick Al-doped ZnTe layer is
grown 30nm above the quantum dots. The electrons from the Al donors are eventually trapped
in some quantum dots, allowing the study of quantum dots with a single resident electron. First,
we focus on the optical features which indicate that the quantum dots are negatively charged.
Similarly to Mn-doped quantum dots, we will see that the spin of this resident carrier can be
controlled by optical pumping. Then, we show that the electron is strongly coupled to the
nuclear spin bath through hyper�ne interaction which can e�ciently depolarize the electron. On
the other hand, continuous optical pumping of the electron can be used to create a dynamic
polarization of the nuclei. The strong depolarization of the electron induced by nuclear spin
�uctuations is then suppressed at B = 0T .

6.1 Optical Properties of Negatively Charged Quantum Dots

A large majority of the quantum dots in the sample studied here present a single PL line, which
is the signature of a charged exciton X+ or X−. Moreover, these lines present a negative circular
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polarization rate ranging from −20% to −60% when the laser frequency is higher than a certain
value (typically 70meV above the PL emission). As we will explain, this is a characteristic of
negatively charged quantum dots in the optical pumping regime. Another signature of X− is
the presence of a polarized �ne structure in the Pholotoluminescence Excitation Spectra (PLE).

6.1.1 Polarized Fine Structure of the Excited State

We present a typical PLE spectra of these quantum dots in Fig. 6.1 (a). A negative circular
polarization is observed at high energy of excitation. Also, the PLE exhibits a resonance around
2110meV with a strongly co- and then cross-polarized PL as the laser energy increases (Fig. 6.1
(b)). This striking feature has already been observed on InAs quantum dots by M. E. Ware et
al. [79]. It results from optical excitation on the p-shell of the singly charged quantum dot.

The �ne-structure of the p-shell (hot trion) results from the exchange interactions between
the resident electron (↑s or ↓s), and the photo-created electron-hole pair (⇑p↓p for σ+ excitation).
The strongest exchange term is the electron-electron exchange interaction [80] which reduces to
a Heisenberg Hamiltonian:

Hes,ep = −∆ee~σ1.~σ2 (6.1)

This Hamiltonian splits the excited38 singlet state S∗0 with I = 0 from the triplet T−1, T0, T+1

with I = 1. This splitting is typically equal to 5meV in InAs/GaAs quantum dots [81], [79]. The
electron-hole exchange interaction ∆0 is a smaller correction (typically 250µeV in InAs/GaAs
quantum dots and 350µeV in the present case) which splits the triplet states T1, T0 and T−1 as
shown in Fig. 6.2. The full Hamiltonian of the charged exciton is:

Hes,ep,hp = ∆ee(
3

4
− I2

2
) + 2∆0jzIz +

∆1

2
(j+I− + j−I+) +

∆2

2
(j+I+ + j−I−)

+2η0jzKz +
η2

2
(j+K− + j−K+) +

η1

2
(j+K+ + j−K−) (6.2)

In this equation, we have used ~K = ~σ1 − ~σ2 and ~I = ~σ1 + ~σ2. The non-diagonal exchange
terms ∆1 (resp. η1) allow a mixing between the triplet states T−1 ⇑ and the states T0 ⇓ (resp
S∗0 ⇓). This mixing is invoked to explain the polarized �ne-structure of the p-state shown in
Fig 6.1. As shown in Fig 6.1 (c), σ+ excitation selectively excites the triplet T0 ⇑ or T−1 ⇑,
depending on the excitation energy and the spin of the resident electron. Then relaxation to
the ground state of the trion S0 from T0 ⇑ can occur, while relaxation from T−1 ⇑ requires a
hole-electron �ip-�op to the state T0 ⇓ before relaxing to S0 ⇓ resulting in a σ− PL, controlled
by the hole spin.

Relaxation from T0 to S0 is in fact not straightforward: the spin projection over z is conserved
but the total angular momentum I of the two electrons is not conserved. The authors of [79]
retain the Dzyaloshinskii-Moriya exchange term as a probable cause of the observed relaxation.
This exchange term is more often encountered in magnetism than in quantum dot physics. The
exchange term we have used so far are all based on the assumption that the exchange tensor
is symmetric and can be diagonalized choosing proper axis (i.e. the exchange Hamiltonian
could always be expressed as Hexch

1,2 =
∑
i=x,y,z aiσ

1
i σ

2
i , where x, y, z were axis of the crystal).

Dzyaloshinskii and Moriya showed that this assumption is only an approximation: there is also

38Excited singlet, as opposed to the ground state singlet of the trion where the two electrons are on the s shell.
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Figure 6.1: a) PLE spectra resolved in circular polarization under σ+ CW excitation. The correspond-

ing polarization rate is displayed above. The PL is displayed on the left. b) Zoom on the polarized

doublet observed in the PLE at a laser excitation around 2110meV . c) Energy levels in a negatively

charged quantum dot: (from bottom to top) the ground state (degenerate), the ground state of the trion

(degenerate) the triplet state S = 1 (which is split by the electron-hole exchange). The representation

may be over-simpli�ed: for instance, the states denoted ↑s↓p stands for a symmetric spin-part for the two

electrons (↑s↓p) + (↓s↑p) and the excited singlet state is not represented. Only the top-two triplet states

are bright. When the σ+ laser is tuned on the triplet with Sz = 0 (on the right part of the scheme),

absorption occurs only if the resident electron is up, and relaxation to the ground singlet occurs at a rate

γ+ resulting in σ+ PL. When the laser is tuned on the triplet with Sz = −1 (left part of the scheme),

absorption occurs only if the resident electron is down, relaxation of the electron to the ground singlet

is forbidden by the Pauli principle. Relaxation is allowed through an electron-hole �ip-�op (due to the

assymetric part of the e-h exchange) at a rate γ− resulting in σ− PL.
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Figure 6.2: Fine structure of the negatively charged exciton.

an anti-symmetric part in the exchange tensor resulting from spin-orbit interaction. This anti-
symmetric part can be expressed as a vectorial product39:

Hexch,AS
1,2 = ~D.(~σ1 ∧ ~σ2) (6.3)

where ~D is the so-called Dzyaloshinskii-Moriya vector. The term in Dz(σ
1
xσ

2
y − σ1

yσ
2
x) mixes

e�ciently the triplet state T0 with the excited singlet S∗0 . The authors of [79] estimate using
power broadening of the transitions, the relaxation rates of each triplet to the ground singlet to be
γ+ = (25ps)−1 and γ− = (310ps)−1. From these values they extract the ratio ∆1/∆0 = 0.24 while
Dz/∆ee = 1/5 corresponding to ∆2 = 60µeV , ∆0 = 250µeV , ∆ee = 6meV and Dz = 1.2meV .
All the other anisotropic exchange term are neglected in their model. They have found that
these values were compatible with kp calculations in a potential with a realistic anharmonicity.

We have found that the triplet splitting ∆0 typically ranged from 350µeV to 490µeV (Fig.
6.3). This is higher than the values found by M. E. Ware et al. in InAs/GaAs quantum dots.
This is in agreement with stronger exchange interactions in our system (for e.g. the electron-hole
exchange δ0 for the neutral exciton is typically twice the one found in InAs/GaAs quantum dots
[82]). We also note in Fig. 6.1 (b) the presence of a weaker polarized doublet ≈ 3meV away
from the �rst polarized doublet. This is often the case (see also the spectra shown in Fig. 6.4),
and probably results from a lift of degeneracy between the orbital P states, as observed already
in [48].

In the next-section, using time-decay experiments, we are going to estimate the relaxation
rates γ+ and γ− in our quantum dots and study the spin-injection mechanism which leads, among
other things, to the negative PL observed at high energy of excitation.

39This is just a way of re-writing the anti-symmetric exchange tensor J (for e.g. Jxy = −Jyx = Dz)
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Figure 6.3: PLE spectra resolved in circular polarization under σ+ CW excitation. In inset is presented

a PLE scan around the polarized �ne structure, presenting a splitting ∆0 = 490µeV . The quantum dot

under study is the same that in Fig. 6.9 (a), 6.10 (b), 6.11, 6.12 and 6.13.

6.1.2 Spin injection

In this paragraph, we consider a σ+ pulsed excitation, and discuss relaxation processes depending
on the energy of the laser excitation. The PL decay measurements, and polarization-rate are
qualitatively reproduced by a simple rate equation model. In this approach, relaxation of the
electron within the X− and X−∗ complex is neglected. In the following, the numerical values
should be taken with a large margin error up to 50% for the shortest times which are close to the
resolution of the set-up. The PL decay curves obtained with the model are convolved with the
response of the set-up and then compared to the experimental ones. The decay measurements
are obtained under ps pulsed excitation tuned on four di�erent excited states (see Fig. 6.4).

As shown on the PLE, the lowest excited state is fully copolarized, and at a lower energy
than the P doublet. Hence, it is attributed to a forbidden transition, where the electron is
injected on the S shell while the hole is on a higher shell. This transition is spin-selective:
the resident electron must be |↑〉. The fast initial decay of the polarization rate (Fig. 6.4,
Eexc.1) is attributed to relaxation of the hole spin on the high energy shell (τh∗ ≈ 70ps), while
the slower decay is attributed to relaxation of the hole spin when it is in the S state equal to
τh ≈ 4ns. This relaxation time is surprisingly short and cannot be attributed to phonon assisted
processes. Tunnel coupling with photo-created carriers from the wetting layer is also unlikely at
this excitation energy. Tunnel coupling with charged defects is more likely. The other parameters
used to model the data are the radiative lifetime (τb = 240ps) and hole relaxation to the S state
(τrlx = 55ps).

Injection on the P doublet results in the creation of an excited trion ⇑P ↓P ↑S or ⇑P ↓P ↓S
depending on the spin of the resident electron. In Fig. 6.4, Eexc.2, we observe a positive polar-
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Figure 6.4: PL Decay and Time-Resolved Polarization rate measurement for di�erent energy of excita-

tion. The energies are shown on the PLE spectra. Three out of the four decay experiments are reproduced

(green lines) using a rate equation model described in the text.
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ization rate at short delays, then a fast decrease: the polarization rate becomes negative in a few
tens of ps. After that, the polarization rate slowly increases on a ns time-scale. This evolution
re�ects the relaxation dynamics of the hot trion. The excited state T0 ⇑ can relax quickly to
the ground trion state (γ+ = (25ps)−1) and gives co-polarized PL while for the other trion state
T−1 ⇑, relaxation to the ground state is forbidden until a hole-electron �ip-�op occurs through
anisotropic exchange interaction. Therefore, relaxation from the hot trion results in a positive
polarization rate at short delays and negative at longer delays. For the �ip-�op process, we
take an e�ective time τff ≈ 50ps. Hence we obtain γ− ≈ (τff + γ+)−1 = (75ps)−1, which is
signi�cantly shorter than the rate found by M.E. Ware et al.. This could result from stronger
light/heavy hole mixing in our quantum dots, but we note that Akimov et al. [83] have also
found ratios of ∆1/∆0 between 0.44 and 0.77 in CdSe/ZnSe quantum dots40, although they had
been selecting quantum dots with small valence band mixing (low linear polarization rate of the
X− PL). To be consistent with the previous modeling and to �t the data we consider the same
relaxation time of the hole spin (τh ≈ 4ns). Also, a di�erence in the e�ciency of the injection
has been considered. At the low power limit, this is ruled by the di�erence of oscillator strength
between the two transitions (equal to 0.5) [83]. Due to the high power of the pulsed excitation
we would have expected that the di�erence of oscillator strength could be neglected, but this is
not the case and a ratio of 0.7 has been considered. At long delays, the model overestimates the
negative circular polarization rate. This could result from the optical recombination of the hot
trion (⇑P ↓P ↓S).

To model injection at high energy (Fig. 6.4, Eexc.4), we consider, following [81], a 0D2D
cross-transition, where the electron is injected in the dot and the hole, in the wetting layer.
Hence, the spin of the hole is completely lost (τhWL

≤ 5ps) before it is captured by the dot with
τcapt = 30ps. The parameters relative to the dynamics within the hot trion (P states) and the
trion ground state (γ+, τff , τh and τb) are of course kept constant. Such conditions of excitation
are well-known to be an e�cient way of performing optical pumping of the resident electron down
(↓) via relaxation towards the hot trion as we will see in the next-section. Indeed we observe that
our data �t with a polarization of the resident electron equal to −40% (i.e. 〈σz〉 = −0.2). Such
polarisation rate is consistent with CW PL experiments. We have not considered relaxation
through the excited singlet states. Such relaxation should be faster than relaxation from the
triplet states (a few ps). This would lead to an increase of the rise time of the PL. This has
not been observed experimentally. This e�ect is probably within the resolution of the set-up.
We �nd that the high energy injection and the negative circular polarization can be described
qualitatevely without having to introduce the capture of dark excitons from the wetting layer
(contrary to the scenario proposed in [84]).

At last, polarization of the excitation has been tuned between 90% and 95% so that the
curves would adapt nicely to the data.

6.1.3 Optical orientation of the electron

We focus now on two pulses experiments (carried on another quantum dot) shown in Fig. 6.5.
The pulses are of equal intensity. Measurements were performed at B = 0T , for two circularly
polarized pulses of the same helicity (i), of opposite helicity (ii), and (iii) with the same helicity
but with a transverse magnetic �eld Bx = 0.13T . The data will be qualitatively reproduced by
the rate equation model described above. The response to the second pulse is modeled assuming
that the formation of charged bi-exciton is negligible. An electron-hole pair is created only if

40The values given in [83] have been multiplied by
√

2. This factor arises from a di�erence of de�nition of the
exchange constants.

105



Chapter 6. Spin Dynamics in n-Doped CdTe Quantum Dots

Figure 6.5: Time-Resolved Polarization rate measurement for a 2 pulses sequence. Obtained at Bx =

0.13mT (iii) or at B = 0T but with cross-polarized pulses (ii), in comparison with the polarization rate

obtained at B = 0T with two co-polarized pulses (i).
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the electron was alone in the dot before the second pulse, the population of the hot trion are
unchanged by the second pulse. The observed injection conditions are close to the one observed in
Fig. 6.4 for Eexc.3 where we are not completely in the regime of 0D2D transitions, and where the
injection could present some spin-selectivity. However, we will model it as if it was a simple 0D2D
transition. A consequence is that we overestimate the population of dark triplet states and so,
the amplitude of the polarization decay (relaxation from dark states contribute to a negative PL
at long delays), but it will help to grasp the physics, and in fact enhance experimental features
coming from dark states. The parameters used in the rate equation model are τb = 250ps,
τhWL

= 30ps, τcapt = 45ps, τff = 60ps, γ+ = (25ps)−1, τh = 3ns. Also, to reproduce the data in
the case of a transverse magnetic �eld or with a co or cross-polarized sequence we assume a fast
relaxation of the resident electron (1ps) when it is alone in the dot. In the case of a transverse
magnetic �eld, it is a rather approximative way of modeling the randomization of the electron
spin due to the precession in Bx between the emission of a photon and the photo-excitation by
the second pulse. In the case of a co-cross polarized sequence, this is also a rough modeling of the
randomization of the spin of the electron due to hyper�ne interaction in the absence of nuclear
spin polarization41.

The �rst obvious observation is that the 0T polarization rate (i) is lower than the same
curve obtained under transverse magnetic �eld Bx = 0.13T (iii) or a crossed-polarized 2 pulse
sequence(ii). The overall diminution of the circular polarization rate observed in (i) is attributed
to the optical pumping of the resident electron resulting from the cumulative e�ect of the optical
pulses. This cumulative e�ect cannot take place when the pulses are cross-polarized (in aver-
age, no angular momentum is transferred to the resident electron), and it cannot occur under
transverse magnetic �eld because of the precession of the resident electron. Since the optical
pumping is a cumulative e�ect observed in pulsed excitation, this means that the polarization of
the resident electron is conserved at least over a few ns.

A slight diminution of the polarization measured at the beginning of the second pulse (com-
pared to the one measured at the beginning of the �rst pulse) is observed in the experiment
(i) and (iii). We tend to think that this diminution is real and results from the presence of
dark states at the beginning of the second pulse. These dark states contribute to a negative
polarization. This a�ects the polarization rate observed during the second pulse only during the
rise-time of the PL (otherwise, the PL created by the second pulse governs the polarization rate).
This decrease is observed in the calculation and over-estimated (because the population of dark
states is overestimated).

In these conditions of excitation, the negative polarization of the PL gives a value of the
polarization of the resident electron just after the recombination. However, we insist on the
fact that (i) the negative polarization rate is also linked to the mean value σz of the resident
electron, and we will systematically interpret in the following section that an increase of the
polarization rate (for example from −50% to −40%) is a signature of the depolarization of the
resident electron spin. Secondly, (ii) the resident electron can be fully depolarized, even if the
observed PL presents a negative circular polarization. An experimental evidence of this is shown
in Fig. 6.6(a) for Bx = 0.13T . In this transverse �eld, no polarization of the resident electron can
be performed. However we still observe a negative circular polarization rate. These assumptions
may require justi�cations.

To �x ideas, we present a simpli�ed description of the injection dynamics reasonably consis-

41In the following, we will see that on this timescale, we should rather model the hyper�ne interaction by
the loss of the two thirds of the resident electron polarization. However, there is no point in considering these
subtleties in the rate equation model presented here.
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tent with the one observed in decay experiments at high excitation energy:

• The spin of the hole is fully randomized during the injection, while the photo-created
electron is ↓, corresponding to σ+ excitation.

• One electron-hole pair is injected (charged biexciton is neglected)

• Relaxation of the electrons spin is neglected, relaxation of the hole after thermalization is
considered only for the dark state ↓p↓s⇓ and is neglected for the other trions because of
their shorter lifetime.

Then the overall polarization rate is �xed by the following process:

1. ↑s↓p⇑ 7−→ ↑s↓s⇑ 7−→ σ+ + ↑s

2. ↑s↓p⇓ 7−→ ↑s↓s⇓ 7−→ σ− + ↓s

3. ↓s↓p⇑
∆27−→ ↓s↑s⇓ 7−→ σ− + ↓s

4. ↓s↓p⇓
τh7−→ ↓s↓p⇑

∆27−→ ↑s↓s⇓ 7−→ σ− + ↓s

Hence, the realization of (1) and (2) is proportional to the probability for the resident electron
to be ↑, while (3) and (4) depend on the probability of having the resident electron ↓. We assume
that due to a process (to be discussed), the resident electron polarization between two pulses
relaxes to a mean-value:

〈σz〉 =
1

2
(ρ↑ − ρ↓) (6.4)

Where ρ↑ and ρ↓ are the population of spin ↑ and ↓ before the optical injection. The polarization
rate (PR) of the time-averaged PL is given by:

PR = −0.5 + 〈σz〉 (6.5)

Hence, in this simplistic approach, a polarization rate of −0.5 is expected if the electron
spin relaxes completely between two absorption-emission process. If relaxation of the resident
electron is negligible, a polarization rate of −1 is expected as a result of the cumulative e�ect of
optical excitation. In practice, such low polarization rates are of course not observed. We invoke
among others, e�ects such as: (1) Relaxation of the hole during the life-time of the cold trion and
the bright hot trions, which is not completely negligible; this limits the e�ciency of the optical
pumping of the resident electron and increases the circular polarization rate. (2) Incomplete
relaxation of the hole spin during the injection which tends to increase the circular polarization
rate for 〈σz〉 6= −1/2 (3) Light-hole/Heavy-hole mixing, which a�ects the optical selection rules.
However the equation 6.5 highlights the fact that the observation of NCP does not necessarily
mean that the resident electron is polarized42 and that a variation of the polarization of the
resident electron causes a change of the circular polarization rate.

42NCP only means that the injection can lead to a polarization of the resident electron, but coherent processes
(e.g. precession in a transverse magnetic �eld) or incoherent processes (e.g. spin relaxation induced by charge
tunneling) can destroy the pumping process.
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Figure 6.6: (a) Evolution of the degree of circular polarization as a function of CW excitation power.

Empty circles are zero �eld measurements, �lled circles are measurements in a transverse magnetic �eld

Bx = 0.13T . (b) Time-evolution of the degree of circular polarization under pulsed-excitation for di�erent

transverse magnetic �eld (excitation in the Negative Circular Polarization regime).

The optical pumping of the resident electron is con�rmed by the power dependence of the
negative circular polarization rate obtained under continuous-wave excitation shown in Fig. 6.6
(a). As the pump power is increased, we observe a rapid decrease of the circular polarization rate,
with a saturation at about −55%. The reason for this evolution is the progressive orientation of
the resident electron. The remaining rate at low excitation power is controlled by the randomized
injection of the hole, and the relaxation within the hot trion states, as discussed earlier. The
polarization rate observed under transverse magnetic �eld does not depend on power, as the
precession of the electron forbids the pumping process (Fig. 6.6).

We also expect the precession of the hole to play a role for su�ciently high magnetic �elds.
The precession of the hole during the life-time of the trion can be observed with increasing
transverse magnetic �eld, due to the weak in-plane g factor of the hole (Fig. 6.6 (b)). At
high �eld, this precession fully depolarizes the hole spin, a�ects the conditions of injection, and
destroys the negative circular polarization of the PL. In Fig. 6.6 (b), we observe that the shape
of the time-resolved polarization rate changes between 0.04T and 0.13T . This demonstrates that
the precession of the hole already contributes to a change of the PL polarization rate between
0.04T and 0.13T .

6.2 Nuclear E�ects in II-VI Quantum Dots

Nuclear e�ects have been extensively studied in III-V Quantum Dots over the past years, but
few has been done in II-VI materials. It is well established that nuclear spin e�ects are much
stronger in the former, as all the nuclei in these materials carry a spin. In III-V quantum dots,
the e�ective �eld created by the polarized nuclei can be directly measured through the Zeeman
splitting of the PL (Overhauser shift). This is not possible in II-VI quantum dots, where the
maximum Overhauser shift is expected to be around 6µeV , hidden in the linewidth of the PL
transitions, but depolarization of the resident electron by unpolarized nuclei can be monitored
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through the measurement of the PL polarization rate of X−. In II-VI Quantum Dots, where
the number of nuclei is typically �fty-times lower43, �uctuations of the nuclei are also large and
rule the relaxation of the resident electron spin. In this context, the control of the nuclear spin
ensemble and the study of the coupled electron-nuclear spin dynamics in II-VI quantum dots
deserve attention. Alternatively, nuclear spins could be suppressed completely using quantum
dots based on isotopically puri�ed II-VI materials since Zn, Cd, Mg, Se and Te all have dominant
isotopes without nuclear spins.

6.2.1 Hyper�ne Coupling in II-VI Quantum Dots

The nuclear spins in a semi-conductor can be controllably polarized using circularly polarized
photo-excitation. This phenomenon results from the hyper�ne interaction of electron and nuclear
spins, enabling the transfer of angular momentum from the optically oriented electron to the
nuclei. Continuous pumping of the electron can generate a dynamic nuclear spin polarization
of the nuclei. The dynamically polarized nuclei produce in turn an e�ective magnetic �eld that
in�uences the polarization of the electron in a feedback process. The electron-nuclear system is a
strongly-coupled system, with a rich dynamics. We will see that this dynamics can be separated
on two time-scales: a fast evolution of the electron and a slower evolution of the nuclei. The
fast evolution of the electron can be grasped considering the combined action of the external
magnetic �eld and the e�ective �eld created by the nuclei on the electron (Overhauser �eld BN )
and its �uctuations (Bf , which scales as Bmax

N /
√
N for an unpolarized nuclear ensemble, where

N is the total number of nuclei in the quantum dot). The slow evolution of the nuclei is governed
by the e�ective �eld created by the mean value of the electron spin (called Knight �eld, Be), its
�uctuations and the nearest neighbor interactions which result in an e�ective �eld Bdip due to
magnetic dipole coupling between the nuclei.

The dominant contribution to the coupling between the electron and the nuclear spins origi-
nates from a Fermi contact hyper�ne interaction. This term results from the direct interaction
of the nuclear dipole with the electronic spin dipole and is proportional to the electron density
at the position of the nucleus. Holes, which have a p-type Bloch function are not coupled to
nuclei by the Fermi contact interaction. In III-V semiconductors, their coupling with the nuclei
is typically ten times smaller than the electron coupling[85, 86]. Hole-nuclei hyper�ne coupling
will be neglected. The hyper�ne interaction between the nuclei and the electron can be written
as:

Hhf = v0

∑
i

Ai |Fe(Ri)|2 ~σ.~Ii (6.6)

where Ri is the position of the nucleus i, with a spin operator ~Ii; ~σ is the electron spin operator,
Fe(r) is the envelope function of the electron, v0 is the volume of a unit cell (containing N=2
atoms) and Ai is the hyper�ne interaction constant given by:

Ai =
4

3Ii

µ0µBµIi
v0

|ui(0)|2 (6.7)

where µB is the Bohr magneton, µIi is the magneton of the nucleus i and ui(0) is the periodic
Bloch function amplitude at the site of the nucleus. The derivation of this Hamiltonian can be
found in [87].

43The small number of nuclei in II-VI QDs results from the small quantum dot volume
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The hyper�ne interaction constants in II-VI are not known precisely, contrary to III-V mate-
rials. The value of the nucleus magneton is known for Zn, Cd and Te [88] (c.f. Table 6.2.1), but
the amplitude of the Bloch function |ui(0)|2 /v0 at the nuclear site is only known for Cd and is
equal to 5.3×1031m−3 [89]. From this, we can deduce, averaging over the cadmium isotopes car-
rying a spin, that ACd = −31µeV . For ATe, C. Testelin et al. have obtained a value of −45µeV
[90], assuming that the amplitude of the Bloch function was identical on Cd and Te. However,
the s-state is anti-bonding and II-VI crystals presents an important ionicity. Consequently, we
would expect that the Bloch amplitude is higher on the cation (i.e. Te) than on the anion. In
III-V, the ratio |ucation|2 / |uanion|2 is around 1.7 [91, 92]. This ratio is expected to be higher in
II-VI. We take a ratio of 1.7 and �nd ATe ≈ −80µeV , which is somewhat arbitrary. Finally,
we �nd AZn = 8.9µeV assuming |uCd|2 / |uZn|2 = 1. The e�ect of Zn nuclei will be taken into
account, as the fraction of Zn is expected to be (1− x) ≈ 25% at the center of the dot.

Abundance
(%)

I µI

111Cd 12.75 1/2 −0.5943

113Cd 12.26 1/2 −0.6217

67Zn 4.11 5/2 +0.8754

123Te 0.87 1/2 −0.7357

125Te 6.99 1/2 −0.8871

Table 6.1: Isotopic abundance, nuclear spin I and magneton of the nucleus µI for Cd, Zn and
Te alloys. µI is given in unit of the nuclear magneton µN .

We are now going to discuss the dynamics of the electron-nuclei system in terms of e�ec-
tive �eld and for di�erent timescales. Nuclear spin-dynamics tend to be much slower than
electron-spin dynamics, so that the electron dynamics can be described in a frozen nuclear
spin-con�guration. Then, the average of all the possible nuclear spin-con�guration (�uctuations
around a mean value) gives the average electron-spin orientation observed experimentally (as
the electron polarization, measured on a CCD camera or an APD, is an average over timescales
long compared to the nuclear �uctuation time). On a longer time-scale, evolution of the mean-
polarization of the nuclei will be considered. This time-scale di�erence relies on the fact that
only one �ip-�op is necessary to change the electron polarization while N �ip-�ops are necessary
to change the polarization of the nuclear ensemble.

The Overhauser �eld which is the e�ective �eld created by the nuclei on the electron is de�ned
by:

Hhf = geµB~σ. ~BN (6.8)

which gives:

~BN =
v0
∑
iAi |Fe(Ri)|

2
〈
~Ii
〉

geµB
(6.9)
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We can estimate roughly the maximum Overhauser �eld (complete polarization of the nuclei),
assuming a homogeneous envelope-function for the electron normalized on a volume V = v0N/2:

Bmax
N =

1

geµB
(xICdACdpCd + (1− x)IZnAZnpZn + ITeATepTe) (6.10)

With x = 0.75, pi the isotopic abundance of the nuclei i, Ii the spin and Ai the hyper�ne
coupling constant calculated earlier. Note that the maximum Overhauser �eld is independent
on the quantum dots volume, and depends only on intrinsic parameters of the material. We
take for the Lande factor in CdTe/ZnTe quantum dots ge = −0.5, as measured in [27]. We
estimate Bmax

N ≈ 200mT . This is typically forty times smaller than the maximum Overhauser
�eld in III-V compounds. As mentioned earlier, another important parameter is the amplitude
of the �uctuations of the Overhauser �eld for a randomly oriented nuclear ensemble, because this
rules the decoherence of the electron. This results in an e�ective �eld Bf , oriented in a random
direction, around which the electron precesses. On average (over the nuclear spin con�gurations),
an electron polarized along the z axis looses 2/3 of its polarization44 . This was predicted in [93]
and observed in [94]. This decay is not a real relaxation process in the sense that the electron
coherently evolves in a frozen nuclear spin con�guration, but on an average measurement, we
observe a fast decay of the electron polarization on a characteristic timescale T ≈ h̄/(geµBBf )
[93] which is the precession period of the electron in this nuclear �eld. The decay of the last
third is due to true relaxation on the time-scale of a change of Bf which is longer as we will
discuss shortly after. First we give an estimate of Bf at BN = 0. Assuming a homogeneous
envelope-function for the electron normalized on a volume V = v0N/2, it is given by [33, 95]:

B2
f =

2

(geµB
√
N)2

(xICd(ICd + 1)A2
CdpCd + (1− x)IZn(IZn + 1)A2

ZnpZn + ITe(ITe + 1)A2
TepTe)

where N is the number of nuclei in the dot, regardless of their spin. We estimate this number
to be roughly equal to 8000 for a quantum dot volume of 250nm3. This leads to Bf ≈ 12mT . It
is the same order of magnitude than the �uctuations in III-V quantum dots [96]. Consequently,
electron spin relaxation by nuclei is also expected to be e�cient in II-VI materials at Bext = 0T .
On a time-scale Te ≈ 2ns, the electron looses 2/3 of its polarization.

At Bext = 0T , the nuclei's dynamics are ruled by the e�ect of the Knight �eld Be (e�ective
�eld created by the electron on a given nucleus) given by:

Hhf = −
∑
i

µi~Ii. ~Be,i (6.11)

with

~Be,i = − v0

µI
Ai |Fe(Ri)|2 〈σz〉 ~uz (6.12)

Again, assuming a homogeneous normalized electron wave-funtion, we �nd:

44If a spin, initially ~S0 along z precesses around a magnetic �eld ~B, the average z component overtime is
Sz(B) = ( ~S0. ~B)( ~B. ~uz)/B

2 = S0 cos2(θB), where θB is the angle between ~B and the z axis. Averaging over θB ,
we �nd that 〈Sz〉B = S0/3.
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~Be,i = − 2Ai
µIiN

〈σz〉 ~uz (6.13)

We derive an estimation of the maximum Knight �eld of 150mT for a Cd atom. This is
much higher than in III-V materials, where the maximum Knight �eld is expected to be around
a few mT [96]. This is a consequence of the di�erence of quantum dot size between II-VI and
III-V materials. The characteristic time-scale on which a nuclei precesses in the Knight �eld
is TN ≈ h̄/(µIiBe) which is equal to 0.2µs. For an unpolarized nuclei ensemble, the electron's
dynamics is not extremely faster than the nuclei's. In fact we could have guessed this time-scale
from the start: as the interaction of the electron with the �uctuating �eld scales as Hmax

hf /
√
N

while the interaction with a single nucleus scales as Hhf/N , we �nd TN ≈ Te
√

(N). In our
system, the picture of an electron evolving in a frozen nuclear spin con�guration is a rougher
approximation, compared to the case of III-V, where the large number of nuclei really allows to
decouple the two dynamics. However, we will still use this approximation to describe qualitatively
the dynamics. As the electron precesses rapidly around Bf , the nuclei only see a time-averaged
Knight �eld, which is directed along Bf . On a time-scale TN , the nuclei start to precess around
this Knight �eld. The inhomogeneity of the Knight �eld due to the di�erent species of nuclei
and the non-uniform wavefunction Fe induces a di�erent precession frequency for each nucleus
causing a slow change of Bf . This change of direction of the �uctuating �eld causes the relaxation
of the last third of the electron polarization.

Under optical pumping of the electron say with σ+ light, the resident electron is pumped
down (〈σz〉 < 0). Spin momentum is transferred to the nuclei which acquire a polarization
〈Iz〉 < 0. The dominant contribution comes from Cd and Te, presenting a hyper�ne constant
Ai < 0. With ge < 0, this leads to an Overhauser �eld ~BN .~uz < 0 while for the Knight �eld, we
have ~Be.~uz > 0. All the signs of the e�ective �elds are reversed for Zn nuclei. The direction of
these e�ective �eld is of prior importance in the experiments to come.

The last time-scale to discuss is the magnetic-dipole coupling between nuclei. This is a short-
range interaction which scales as 1/r3

ij . In III-V materials, this interaction results in an e�ective
�eld of 0.20mT with a precession period T ≈ 10−4s. This interaction is not spin-conserving and
causes relaxation of the nuclei on this timescale unless a magnetic �eld or strain gradients a�ect
it. In our system, the e�ects of this interaction is expected to be even smaller because of the low
isotopic abundance of nuclei carrying a spin. Another cause of nuclear polarization relaxation
is an electron-mediated nuclear spin-spin interaction which depolarizes the nuclei. This will be
discussed later.

6.2.2 Evidence of strong Nuclear Spin Fluctuations

As explained earlier, the polarization rate of the PL re�ects the spin polarization of the resident
electron. In Fig. 6.7 (a), we show an experiment where the polarization of the electron has
been measured as a function of the frequency of a σ + /σ− modulation of the excitation. This
experiment, carried out at low power of excitation, demonstrates the existence of a slow process
(100µs > T > 10µs) that allows the pumping of the resident electron and hence, the decrease of
the polarization rate at low modulation frequencies. This modulation frequency dependence is
canceled by a magnetic �eld Bz = 0.16T , which allows a strong pumping of the resident electron,
independently of the modulation frequency in the range of the scan (0.05− 200kHz).

In Fig 6.7 (b), (c), we investigate the dynamics of this pumping as a function of power, and
magnetic �eld. We �nd at B = 0.19T a transient on a time-scale of ≈ 20ns to ≈ 200ns depending
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Figure 6.7: (a) Evolution of the degree of circular polarization with the frequency of the σ + /σ−
modulation of the excitation laser at Bz = 0T and Bz = 0.16T applied along the growth axis. Time-

evolution of the σ+ PL excited alternatively with σ+ or σ− light for di�erent magnetic �elds applied in

the Faraday geometry (b) and for di�erent excitations intensities at a �xed magnetic �eld Bz = 0.19T (c).

For (b) and (c), each curve is normalized to one at its highest mean-level. The curves have been shifted

for a sake of clarity. The scale corresponding to one unit is given, it is the same for the two graphs. (d)

Time-evolution of the σ+ PL excited alternatively with σ+ and σ− light trains. The excitation sequence

are displayed above each curve. (e) Zoom on the fast transient observed at the beginning of (d).
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on power. The detection is σ+, proportional to a polarization 〈σz〉 of the resident electron. We
observe a decrease of the σ+ PL (hence a decrease of the polarization of the resident electron)
under σ+ excitation, and an increase under σ− illumination. As predicted from the injection
studies, the cumulative e�ect of σ+ (resp σ−) photon absorption tends to pump the electron
↓ (resp. ↑). The study of the pumping transient at a �xed power and for increasing magnetic
�eld (Fig. 6.7(b)) shows a signi�cant increase of the polarization rate with magnetic �eld.
This demonstrates that under fast modulation, the optical pumping of the resident electron is
ine�cient at B = 0T while the �rst 60mT of Faraday magnetic �eld progressively restore a strong
polarization of the resident electron. This is consistent with the high frequency measurements
of Fig 6.7(a). We attribute this magnetic �eld dependence to the existence of nuclear spin
�uctuations Bf , which, in average, e�ciently destroy 2/3 of the resident electron polarization
between two successive photo-injection, greatly limiting the optical pumping process.

To further-con�rm this hypothesis, we carry out the following experiment (Fig 6.7(d), (e)):
the σ+ PL is time-resolved using two di�erent excitation sequences. In the sequence (ii), the
pulses are of equal length and power, and short enough to prevent the creation of Dynamic
Nuclear Spin Polarization (DNSP). In the sequence (i), the di�erence of pulses length allows
in average the creation of DNSP. The measurements show two striking di�erences. Firstly, the
average circular polarization, given by the di�erence of the PL intensity obtained under σ+ and
σ− excitation, is higher in (i) than in (ii). Secondly, the PL of (i) exhibits PL transients re�ecting
an optical pumping of the resident electron. The transient observed at the beginning of the σ+
pulse is detailed in Fig. 6.7(e). These two features demonstrate directly that the Overhauser
�eld created in (i) is strong enough to block the precession caused by the �uctuating nuclear
�eld.

We have shown that the naive picture of smaller nuclear e�ects in II-VI semiconductors is
subject to caution. The nuclear spin �uctuations can cause e�cient electron decoherence when
the nuclei are unpolarized. At �rst sight, these e�ects can be canceled by applying a Faraday
�eld of a few tens of mT .

6.2.3 Dynamic Nuclear Spin Polarization

Direct evidence of the build-up of a DNSP can be observed using pulses of long duration (tens or
hundreds of µs). As displayed in Fig. 6.8 (a), the σ+ PL recorded under σ+ excitation presents
�rst a fast transient with a drop of the intensity due to the orientation of the resident electron
spin discussed previously (a zoom on this transient is presented in Fig. 6.8 (b)). Then a slower
transient is observed: the σ+ PL increases and decreases again on a few µs. This re�ects a
depolarization of the resident electron (increase of the circular polarization rate). This evolution
has been modeled by M. Petrov et al [97]45. It results from a destruction of the Overhauser �eld
obtained at the end of the σ− excitation pulse and the progressive build-up of an Overhauser
�eld in the opposite direction controlled by the σ+ helicity of the excitation. During this process,
the amplitude of the Overhauser �elds cancels and the nuclear spin �uctuations Bf a�ect the
resident electron. The evolution during the σ− excitation pulse is interpreted the same way.
Under σ− excitation, the resident electron is pumped ↑. The minimum of σ+ PL observed a few
µs after the beginning of the pulse corresponds to a diminution of (ρ↑ − ρ↓), resulting from the
depolarization of the electron by the nuclear spin �uctuations.

As presented in Fig. 6.8 (d), the speed of the destruction and build-up of the DNSP can
signi�cantly increases with excitation power. This e�ect can be evidenced by the modulation

45Except the modeling was in pulsed excitation leading to subtle e�ects that will not be discussed here
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Figure 6.8: (a) Time-evolution of the σ+ PL excited alternatively with σ + /σ− light. The excitation

sequence is displayed above. (b) Zoom on the transient corresponding to the optical pumping of the elec-

tron. The time-evolution of the σ− PL recorded in the same conditions of excitation is also displayed, the

opposite transient is observed. (c) Circular polarization degree dependence with the σ+/σ− modulation

frequency of the excitation for di�erent excitation power. (d) Time-evolution of the σ+ PL for di�erent

excitation power. The excitation sequence is displayed above.
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Figure 6.9: (a) Magnetic �eld dependence in Faraday con�guration of the negative polarization rate

under circularly polarized CW excitation. (b) Magnetic �eld dependence of the negative polarization

rate in Voight (left panel) and Faraday (right panel) geometry under σ + /σ− modulated excitation at

low (fmod = 200Hz) and high (fmod = 175kHz) modulation frequency.

frequency dependence of the polarization rate displayed in Fig. 6.8 (c): the modulation fre-
quency required to suppress the DNSP (i.e. to observe a signi�cant increase of the polarization
rate) increases with power. At low excitation intensity, a formation time of the nuclear spin
polarization of τF ≈ 50µs can be estimated from the modulation frequency dependence of the
circular polarization. This is three orders of magnitude faster than in InAs/GaAs quantum dots
where a pumping time of the nuclei at B = 0T around 10ms has been reported [98]. At high
excitation power, the polarization rate does not depend on the modulation. This is attributed
to the rapidity of the pumping process which can be faster than the modulation period (5µs).
This will be further con�rmed and discussed during a systematic power dependence study.

6.2.4 Magnetic Field Dependence of the Negative Circular Polarisation

In order to gain knowledge about the nuclear polarization and its dependence on an external �eld
along the spin quantization axis, we performed polarization rate measurements in the optical
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Figure 6.10: Excitation power-dependence of the negative polarization rate under magnetic �eld. (a)

Voight con�guration. (b) Faraday con�guration. The excitation is CW and σ+ polarized.
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pumping regime with a Faraday magnetic �eld under circularly polarized CW excitation and
probe small variations of the polarization rate. A typical magnetic �eld dependence is presented
Fig. 6.9 (a). The experiment are performed at low power of excitation. The asymmetry of the
magnetic �eld dependence is a �ngerprint of the presence of a nuclear spin polarization induced
by the helicity of the excitation beam.

Another striking feature is the decrease of a few % of the polarization around B = 0T .
This is in opposition to what has been observed in III-V semiconductor quantum dots, where
an increase of the polarization (i.e. diminution of the resident electron spin polarization) occurs
at weak magnetic �eld because of the dominant contribution of nuclear spin �uctuations at
B = 0T . In the present case, these nuclear spin �uctuations are strongly suppressed by the
Overhauser �eld resulting from the DNSP. The experiment was carried out under continuous-
wave σ+ excitation, pumping the resident electron down. This leads to an average polarization
of nucleus with 〈Iz〉 < 0 and an Overhauser �eld BN .uz ≤ 0.

For Bz ≥ 0, we observe a signi�cant increase of the circular polarization rate demonstrating
an e�cient depolarization of the resident electron. This behavior is attributed to compensation
of the Overhauser �eld by the external Faraday �eld (Bext = −BN ). As the electron precesses
around the total �eld Btot = Bext + BN + Bf , the electron dynamics are then governed by the
nuclear spin �uctuations Bf , resulting in a 5% depolarisation.

Considering the left panel of Fig. 6.9 (a) (corresponding to Bz ≤ 0), we observe at B = 0
a minimum in the polarization rate, then an increase of 5% and then a small decrease again.
This extrema also re�ects an increase of the depolarisation of the electron. This depolarisation
is attributed to a compensation of the Knight �eld by the external magnetic �eld. The nuclear
�eld is then close to zero and the electron dynamics is ruled by the sum of Bz ≈ 30mT and the
nuclear spin �uctuations Bf . It may look rather suprising at this point that we invoke the e�ect
of Bf since the estimation given earlier was a �uctuating Overhauser �eld of 12mT . However
the e�ect of Bf is not negligible at 30mT as observed in the experiment of Fig. 6.7(b), where
the polarization of the PL signi�cantly decreases as the Faraday magnetic �eld is increased from
0 to 60mT .

This is further-con�rmed by the following experiment: We present on the right panel of
Fig. 6.9 (b) a measurement, were we have studied the polarization rate as a function of the
magnetic �eld Bz under modulated excitation (on a di�erent QD, hence the average polarization
rate is di�erent). The light is modulated σ + /σ− at two di�erent rates: (i) 175kHz (≈ 3µs
of σ+ exc., then ≈ 3µs of σ− exc. of equal intensity) and (ii) 200Hz (≈ 2500µs for a given
polarization). Hence, DNSP is achieved in (ii) and not in (i) (since we are at low power of
excitation). The detection is done on an APD synchronized with the modulation, and for a �xed
circular polarization. We measure a 'polarization rate' by varying the excitation and not the
detection. Hence, this 'polarization rate' is a sort of average of the polarization rates measured
in Fig. 6.9 (a) for Bz and −Bz. The magnetic �eld dependence for (ii) is consistent with
the one observed in the CW regime, with an evolution ruled by the competition between the
Bz, BN , Be and Bf . On the other hand the magnetic �eld dependence (i) is only controlled
by the competition between Bz and Bf . For su�ciently large external �elds, the nuclear spin
�uctuations Bf almost do not contribute to the total �eld and the electron-spin polarization does
not decay. The width at half maximum is 30± 5mT . This gives an estimation of the magnitude
of the nuclear spin �uctuations.

A transverse magnetic �eld dependence of the polarization rate is also displayed (left panel of
6.9 (b)). As the transverse magnetic �eld is increased, we observe in the absence of DNSP (black
curve, corresponding to fast σ+/σ− modulation), a progressive increase of the polarization rate
over the �rst 80mT . We expect two processes to contribute to the Hanle depolarization: (i) a
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depolarization of the resident electron (standard Hanle depolarization controlled by the T2 of the
electron in an unpolarized nuclear spin bath. This T2 should give rise to a half width of the hanle
curve B1/2 = Bf ≈ 30mT , from the Faraday measurement in Fig. 6.9 (b)) and (ii) precession of
the hole during the trion life-time (expected to play a role above 40mT when discussing Fig. 6.6
(b)). Thus, the two processes (i) and (ii) cannot be dissociated and there is little to say about
the few % of change in the circular polarization rate. More interesting is the comparison with
the blue curve (slow modulation where DNSP is created). For the latter, a fast increase of the
polarization rate is observed in a transverse �eld between 0 and 10mT (left panel of 6.9 (b)).
The half width at half maximum is ≈ 5mT . The fast depolarization of the resident electron is
due to the precession of the elctron-nuclei system. To summarize, the magnetic �eld dependence
in Faraday or Voigt geometry clearly depend on the creation or the absence of DNSP. The main
features are:

• a depolarization of the electron-nuclei system by a transverse magnetic �eld of a few mT .

• a maximum of depolarization of the resident electron when Bz ≈ BN
We are now going to detail the power dependence of these two features.

The magnetic �eld dependence for Bz > 0 has been performed for di�erent excitation power
(Fig. 6.10 (b)). With increasing power, the dip in the negative circular polarization is shifted
to higher magnetic �eld, evidencing an increase of the polarization of the nuclei. A signi�cant
portion of the nuclei are polarized: the dip reaches 100mT which could correspond to 50% of the
maximum Overhauser �eld. However, as already discussed, the parameters of II-VI materials
are not known with precision. This percentage is subject to caution.

In transverse magnetic �eld (Fig. 6.10 (a)), we observe that the width of the depolarization
curve strongly depends on the excitation power and deviates from a Lorentzian shape at high
excitation power. For the latter case, the polarization rate seems to be una�ected by the the �rst
few mT of transverse magnetic �eld, and then increases. To understand this, we have to consider
the electron-nuclei coupled system. This behavior could arise as the electron is pumped faster
than the precession in the few mT applied (τ epress = 4ns at Bx = 5mT ). The creation of DNSP
could also be faster than the nuclei precession (τNpress = 5µs at Bx = 5mT ). Then, the precession
of the electron would be e�ciently blocked by the Overhauser �eld, and the electron polarization
would be conserved. Such a scenario would be speci�c to II-VI quantum dots, where the build-up
of DNSP is fast enough to block the precession of nuclei. This requires further investigation.

The study of DNSP was complemented by adding a magnetic �eld in the Faraday con�gu-
ration and observing the time-resolved destruction and build-up of DNSP. The slow-evolution
presents also a strong assymetry in the dynamics (Fig. 6.11), depending on the relative projec-
tion of the helicity of the photon and the direction of the magnetic �eld. The complex non-linear
dynamics of the electron-nuclei coupled system is revealed. We are unable to give a detailed ex-
planation of this behavior. The acceleration with Bz of the dynamics observed at the beginning
of the σ+ pulse could arise as Bz compensates progressively BN , leading to an increase of the
electron-nuclei �ip-�op, but then, it is not clear why such an acceleration is not observed at the
end of the transient observed under σ− excitation.

6.2.5 Power Dependence of the Nuclear Polarization Build-up

In order to analyze quantitatively the build-up time and the characteristic amplitude of the
transient induced by DNSP, we perform a time-resolved measurement using a 100µs pulse of a
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Figure 6.11: (a) Magnetic �eld dependence of the time-evolution of the σ+ and σ− PL excited alterna-

tively with σ+/σ− light on a time-scale showing the destruction and build-up of the nuclear polarization.

The excitation sequence is displayed above. Lines are guide to the eye. (b) Zoom on the transient corre-

sponding to the optical pumping of the electron. The time-evolution of the σ− PL recorded in the same

conditions of excitation is also displayed. (b) A detailed view of the transients is presented.
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Figure 6.12: (a) DNSP transient observed under σ− excitation after a dark time τdark = 50µs. The

amplitude (c) and rate of the transient (d) is studied as a function of power. (b) At a �xed power, the

magnetic-�eld dependence of the amplitude of the transient and of the pumping time is shown.
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σ− helicity, followed by a 50µs dark time during which the DNSP relaxes partially (quantitative
analysis of this relaxation will be done in the next section and is indeed found to occur on this
time-scale for Bz < 5mT ). This con�guration enables us to �t the observed DNSP transient by
an exponential variation, enabling to extract a characteristic rate 1/τ and amplitude ∆I.

We observe in Fig. 6.12 (d), a linear increase of the pumping rate with power. While the
build up of DNSP takes a few ms in III-V materials at B = 0T [98], the observed pumping
rate can be as high as a ≈ 1µs−1 in our case. A formation time of 30µs was already measured
in CdSe/ZnSe quantum dots. Again, this results from the strong localization of the electron in
II-VI quantum dots. Indeed, the built-up rate of DNSP scales as |Fe|4 [99] so that we typically
expect τII−V I/τIII−V ≈ 80002/(105)2 ≈ 5.10−3.

The amplitude of the transient observed in Fig. 6.12 (c) �rst increases and then decreases
with power. The increase is attributed to an increase of the DNSP. The decrease observed at
high excitation power likely comes from a decoupling of the dynamics of the electron spin from
the �uctuating nuclear spins, as the precession in the �uctuating Overhauser �eld is slower than
the optical pumping rate of the electron.

The magnetic �eld dependence of ∆I/I is shown in Fig. 6.12 (b). We observe an important
decrease of ∆I/I as soon as a few mT of magnetic �eld are applied. This decrease mainly comes
from the increase of the relaxation time of the DNSP under magnetic �eld (this increase of the
relaxation time is evidenced in Fig. 6.13 and will be further discussed). This increase of the
relaxation time explains the general shape. However, the magnetic �eld dependence of ∆I/I
(Fig. 6.12 (b)) also presents an asymmetry as the magnetic �eld is reversed. Similarly to the
asymmetry observed in Fig. 6.9 (a), this is the signature of the creation of an e�ective �eld with
well de�ned directions. The drop of ∆I/I likely comes from the decrease of DNSP obtained
when Bext screens Be.

The pumping time (Fig. 6.12 (b)) decreases with magnetic �eld in the �rst few mT . This is
consistent with a decrease of relaxation processes under magnetic �eld: the diminution of spin
di�usion allows to reach a steady-state value more quickly. The further evolution with Bz < 0
cannot be clearly measured, as the signal to noise ratio increases (the amplitude of the transient
diminishes). A further acceleration of the dynamics is observed for Bz > 0, this could be the
signature of a feedback expected when Bext is opposite to BN .

6.2.6 Nuclear spin polarization decay

In order to investigate the variation of the relaxation time of the DNSP with magnetic �eld,
we follow the protocol shown in Fig 6.13. For a given magnetic �eld, we prepare a DNSP and
measure after a time τdark the amplitude of the transient, corresponding to the partial relaxation
of the nuclear polarization. As τdark is increased, this amplitude saturates, demonstrating the
full relaxation. The variation of the amplitude of the transient with τdark is used to estimate
the relaxation time of DNSP at a given magnetic �eld. The evolution of this relaxation time is
presented in Fig 6.13.(b). It ranges from 14µs at B = 0T to 170µs at B = 16mT . The relaxation
rate is one order of magnitude faster than the one observed in [100], and the one expected
from nuclear dipole-dipole interactions. Furthermore, the magnetic �eld dependence presents
a signi�cant increase of the decay time over the �rst few mT , while a magnetic �eld of 1mT
e�ciently inhibits nuclear dipole-dipole interactions in III-V materials [98]. Since this interaction
is expected to be smaller in our case, we can de�nitely rule out dipole-dipole interaction as a
major cause of DNSP relaxation.

Co-tunneling to the close-by reservoir could be responsible for this depolarization. Via
hyper�ne-mediated �ip-�op, the randomization of the electron spin creates an e�cient relax-
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Figure 6.13: (a) Evolution of the DNSP transient, under a magnetic �eld Bz = 9.3mT , with an increasing

dark time. (b) Magnetic �eld dependence of the nuclear spin relaxation time. The inset shows how the

relaxation time is extracted (e.g. at Bz = 9.3mT ): the amplitude of the transient is measured as a

function of the time delay (i.e. τdark). The relaxation time is taken at the 1/e point of the time-delay

dependence.
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ation of the nuclei. According to [99], this relaxation time is:

T−1
1e =

2
〈
ω2
〉
‖s‖2 τc

3[1 + (Ωτc)2]
(6.14)

In this expression, ω is the precession frequency of the nuclei in the Knight �eld (equal
to 2π/(0.2)µs−1), τc is the correlation time of the electron (in the dark), Ω is the precession
frequency of the electron in the Overhauser �eld. At last, ‖s‖2 is equal to s(s + 1) = 3/4. The
fastest relaxation we expect from this process can be estimated taking Ω = Ωfluc = 2π/2ns−1

and τc = 10ns. We obtain T1e ≈ 200µs which is not fast enough. Therefore, we are tempted to
conclude that co-tunneling alone cannot explain the observed dynamics.

Another mechanism to consider is the depolarization resulting from an electron-mediated nu-
clear dipole-dipole interaction. This results in exchange constants between the nuclei which typi-
cally scale asA2/(N2εz). The resulting rate of nuclear-spin depolarization is T−1

ind ≈ A2/(N3/2h̄εz),
where εz is the Zeeman splitting of the electron. This mechanism could explain a depolarization
of the nuclei on a µs scale [101]. However, this expression gives only a minor bound to the
relaxation time because the inhomogeneity of the Knight �eld can strongly inhibit this decay
[102]. A magnetic �eld along the z axis is expected to a�ect this process, progressively decou-
pling the nuclei from the indirect coupling created by the electron, as observed in the �rst few
mT (Fig. 6.13). The electron-induced nuclear depolarization was demonstrated in [98] in which
the ms relaxation was completely suppressed using a voltage pulse on a Schottky diode in order
to remove the resident electron.

Conclusion

In conclusion, we have evidenced in the photoluminescence excitation spectra of a negatively
charged quantum dot the polarized �ne structure of the P-shell of the hot trion. We have studied
using PL decay measurements the dynamics of the injection of photocarriers as a function of the
energy of the injection. Injection above the P-shell has been used to pump the resident electron
on a time-scale of 10 − 100ns and to create a dynamic nuclear spin polarization. At B = 0T ,
the creation of the dynamic nuclear spin polarization can be as fast as a µs, and the decay of
the nuclear polarization, attributed to an electron mediated relaxation, is ≈ 10µs. The observed
dynamics are ≈ 103 faster than the ones observed in III/V quantum dots at B = 0T , which
we attribute to the smaller quantum dot volume. The magnetic-�eld dependence of the PL
polarization-rate revealed that the nuclear spin �uctuations were the dominant process in the
dephasing of the resident electron. We proved that this dephasing was e�ciently suppressed by
dynamic nuclear spin polarization at B = 0T .

The time-resolved creation of dynamic nuclear spin polarization in a Faraday magnetic �eld
(Fig. 6.11) has revealed an intriguant behavior. The Hanle depolarization of the coupled electron-
nuclei system deviates from a Lorentzian at high excitation power, which is also unexpected.
Modeling of the coherent evolution of the coupled electron-nuclei system could be helpful to a
thorough comprehension.
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In closing, we have studied in this thesis the dynamics of a single Mn spin embedded in a II-VI
quantum dot. We have shown that Mn spin orientation could be achieved using light of a con-
trolled helicity and energy. This is the �rst experimental demonstration of the optical pumping
of a single Mn spin. Such orientation can be performed in a few tens of ns. The spin distribution
obtained by such means is perfectly conserved over a few µs. This is a direct evidence that the
relaxation time of a Mn spin is long, and con�rms that this system has a robust spin.

We have shown that the dynamic of the Mn spin orientation at zero magnetic �eld is con-
trolled by a magnetic anisotropy induced by the presence of strains at the Mn location. This
magnetic anisotropy explains the saturation of the e�ciency of the pumping process (at ≈ 75%,
in the best cases) under resonant excitation. We have investigated processes responsible for
the photo-induced spin-orientation. We have discussed processes involving a hole spin-�ip, or
carrier-Mn spin-�ips. The latter have been evidenced experimentally but their physical origin
needs to be clari�ed.

We have also evidenced dressed states on a Mn-doped quantum dot. This signature of a
strong light-matter coupling, and of an optical Stark shift of the Mn spin is promising for co-
herent manipulation of the Mn spin. Moreover, this is the �rst time that dressed-states are
evidenced on a II-VI quantum dots and should encourage further improvements on this class of
materials.

At last, we have evidenced the coherent time-evolution of the electron-nuclei coupled system.
Although no hysteresis was observed, the system presents a very rich and complex dynamics. We
have observed that unpolarized nuclei could e�ciently cause a rapid decoherence of the resident
electron. However, these undesirable nuclear e�ects can in principle be completely avoided in
II-VI materials through the use of isotopically puri�ed materials.

Future experiments will involve the study of unstrained �uctuations interface quantum dots.
Firstly, this system should be interesting to further-study the e�ect of the Mn �ne structure
on the optical pumping process. Also, if light-hole states are identi�ed in these structures, we
could try optical rotation of the Mn spin. Another project is the use of micro-waves. Combined
with pump-probe experiments, this should allow us to directly probe transitions between the
Mn �ne levels and measure the magnetic anisotropy. Another way to directly probe the Mn
�ne structure is to use a resonant laser so as to tune a dressed state corresponding to the Mn
spin-state Sz = +5/2 with the ground-state Sz = +3/2. Via resonant two-photon absorption in
pulsed excitation, we should be able to probe a change in the Mn population which depends if
the dressed-state is on resonance with the ground-state Sz = +3/2. However, before performing
such experiments, we would need to considerably improve the linewidth of our samples! At last,
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an interesting case to study would be the one of a hole-Mn doped quantum dot. Indeed, when
an electron-hole pair is injected in the quantum dot, the Mn is left to freely �ip-�op with the
electron before optical recombination, thus providing a natural way to perform a fast optical
pumping of the hole-Mn complex.
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En conclusion, nous avons étudié dans ce manuscrit la dynamique d'un spin unique de man-
ganèse dans une boite quantique II-VI. Nous avons mis en évidence la possibilité d'orienter ce
spin par des moyens optiques (injection de porteurs polarisés, pompage optique). Un tel proces-
sus d'orientation est réalisé en quelques dizaines de ns. Nous montrons que l'état de spin préparé
optiquement est parfaitement conservé à l'échelle d'une dizaine de µs. Nous apportons la preuve
expérimentale que le temps de relaxation du Manganèse est long, ce qui était bien le résultat
escompté pour une impureté magnétique isolée.
Nous avons démontré qu'en champ magnétique nul, la dynamique du Manganèse seul (en l'absence
d'une paire électron-trou) est contrôlée par une anisotropie magnétique induite par la présence
de contraintes. La prise en compte de cette anisotropie magnétique, qui domine la structure �ne
du Mn, permet d'expliquer les e�cacités de pompage optique rencontrées expérimentalement,
qui se situent autour de 75%. Au sein du complexe exciton-Manganèse, nous avons cherché à
mettre en évidence des processus rendant compte de l'orientation photo-induite. Nous avons
évoqué l'hypothèse d'un processus d'orientation impliquant le spin-�ip du trou, ou impliquant
des relaxations de spin porteurs-Manganèse. Ces derniers ont été mis en évidence expérimentale-
ment, et semble dominer sous excitation résonante, mais leur origine physique doit être clari�ée.
Nous avons également mis en évidence des états habillés (doublet d'Autler-Townes) sur une boîte
quantique magnétique. Cette signature d'un couplage cohérent entre la lumière et les états d'une
boîte quantique magnétique ouvre des perspectives de contrôle cohérent du Manganèse par des
moyens optiques. De plus, c'est la première fois que des états habillés sont mis en évidence dans
des boîtes II-VI, ce qui est encourageant pour cette classe de matériaux.
En�n, nous avons étudié la dynamique cohérente du système électron-noyaux dans une boîte
quantique II-VI. Bien qu'aucune hystérésis ne soit observée, ce système présente une dynamique
très riche et complexe. Nous avons montré expérimentalement qu'un bain de noyaux non-
polarisés causait une décohérence rapide de l'électron résident. Mais ce bain de noyaux peut
être polarisé en quelques µs par le biais de l'interaction hyper�ne avec un électron résidant
pompé optiquement. La décohérence de l'électron induite par les noyaux peut en principe être
contournée dans les matériaux II-VI, en utilisant une puri�cation isotopique.

Nos recherches sur des boîtes dopées Mn s'orientent maintenant vers l'étude de boîtes à
�uctuation d'interface non-contraintes. Tout d'abords, ce système devrait être intéressant pour
observer l'in�uence d'une structure �ne non-contrainte sur le processus de pompage optique.
Aussi, si les états de trous légers sont identi�és dans ces structures, ils pourraient permettre de
réaliser un contrôle cohérent du spin du Manganèse sous champ magnétique faible (un champ
Faraday de quelques dizaines de mT est à priori nécessaire pour initialiser un spin de Manganèse
en l'absence d'anisotropie magnétique).
Un autre projet en cours est l'utilisation de micro-ondes. Combinés à des séquences pompe-
sonde, des micro-ondes nous permettraient de sonder des transitions entre deux niveaux de la
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structure �ne du Manganèse, et d'aller mesurer directement l'anisotropie magnétique. Un autre
moyen d'aller sonder cette structure �ne est d'utiliser un laser résonant pour mettre en résonance
un état habillé correspondant par exemple à l'état de spin Sz = +5/2 avec le niveau de l'état
fondamental de la boîte correspondant à Sz = +3/2. Via une transition résonante à deux photons
(que nous réalisons en pulsé), nous devrions être capable de sonder une di�érence de population
de l'état +5/2 lorsque l'état habillé est résonant avec le niveau Sz = +3/2. Toutefois, avant de
réaliser cette expérience, il nous faudrait améliorer la largeur de raie de nos échantillons (environ
60µeV ) qui est comparable au l'écart énergétique attendu entre les deux niveaux de la structure
�ne considérés ici.
En�n, un sujet d'étude intéressant serait les boîtes comportant un Manganèse et un trou résident.
En e�et, lors de l'injection d'une paire électron-trou, le Manganèse interagit avec un électron.
L'évolution du spin du Manganèse est alors contrôlée par une interaction d'échange isotrope,
avec des termes de �ip-�op électron -Manganèse qui devraient permettre un pompage optique
e�cace du système trou-Mn.
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Appendix A

Spin Operators

For any spin-operator S we have:

S+ = Sx + iSy (A.1)

S− = Sx − iSy (A.2)

Electron: 1/2 spin

The spin operator for the electron are de�ned by:

σx = 0.5

(
0 1
1 0

)
(A.3)

σy = 0.5

(
0 −i
i 0

)
(A.4)

σz = 0.5

(
1 0
0 −1

)
(A.5)

Hole: 3/2 momentum

For the hole of the Γ8 band with a momentum 3/2, the spin operators are de�ned by:

Jx =


0

√
3

2 0 0√
3

2 0 1 0

0 1 0
√

3
2

0 0
√

3
2 0

 (A.6)

Jy =


0 − i

√
3

2 0 0
i
√

3
2 0 −i 0

0 i 0 − i
√

3
2

0 0 i
√

3
2 0

 (A.7)
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Jz =


3
2 0 0 0
0 1

2 0 0
0 0 −1

2 0
0 0 0 −3

2

 (A.8)

Hole in the heavy hole approximation: 1/2 isospin

For a heavy-hole of the Γ8 band, we associate an isospin ±1/2 for heavy-holes with Jz = ±3/2.
The spin operators are noted jx, jy and jz. They are formally identical to σx, σy, σz.

Electronic spin of the Mn: 5/2 spin

The spin operators for a 5/2 are given by:

Sx =



0
√

5
2 0 0 0 0√

5
2 0

√
2 0 0 0

0
√

2 0 3
2 0 0

0 0 3
2 0

√
2 0

0 0 0
√

2 0
√

5
2

0 0 0 0
√

5
2 0


(A.9)

Sy =



0 − i
√

5
2 0 0 0 0√

5
2 0 −i

√
2 0 0 0

0
√

2 0 −3i
2 0 0

0 0 3
2 0 −i

√
2 0

0 0 0
√

2 0 − i
√

5
2

0 0 0 0
√

5
2 0


(A.10)

Sz =



5
2 0 0 0 0 0
0 3

2 0 0 0 0
0 0 1

2 0 0 0
0 0 0 −1

2 0 0
0 0 0 0 −3

2 0
0 0 0 0 0 −5

2


(A.11)

Nuclear spin of the Mn: 5/2 spin

The spin operators are noted Ix, Iy and Iz. They are formally identical to the spin operators Sx,
Sy, and Sz.
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Appendix B

Autler-Townes Photo-Luminescence

In this section, we compute the spontaneous emission of a three level system in the so-called V
or Ξ con�guration. The aim here to is to reproduce the results obtained experimentally, and to
lay a foundation for further studies. The V con�guration corresponds to the experiment Fig.
5.2, where resonant excitation and detection are done on the exciton (or the XMn). The Ξ
con�guration corresponds to Fig. 5.3(c) where resonant excitation is on a biexciton (or X2Mn)
line, and detection is made on the exciton. In fact, this problem has already been solved in [103]
in the Schrödinger picture, but here, we choose to follow a calculation in the Heisenberg picture,
closer to the one found for a two level system in [104] which we �nd less fastidious. This means
that none of this section is new to the specialist, the aim is purely pedagogical.

The calculation steps will be detailed for the V con�guration. To start with, we will derive
the density matrix evolution equations, and solve them in the steady-state. The steady state
values will be used at the end of the calculation. We will present the Langevin equations of
motion, which rule the evolution of atomic operators. Then we will show that the spectrum of
detected light is given by the �rst-order correlation function of the atomic dipole operator of the
detected transition. Then, using the quantum regression theorem and a Laplace transform, we
will see that the spectrum reduces to a simple algebra calculation.

B.1 Density Matrix Evolution, Stationary Solution

We consider the evolution of a three level system in the V con�guration, irradiated by a classical
electric �eld:

~E(z, t) =
1

2
(ε(z)ei(kz−ωLt)~u+ c.c.) (B.1)

Where ε(z) is the �eld amplitude, ωL is the laser frequency, and ~u is the unitary vector giving
the �eld polarization. We consider the laser is resonant or nearly resonant with the transition
1 → 3, with the same polarization as the transition. In the dipolar approximation and in the
rotating wave approximation, the atom-laser coupling is given by:

Hint = − ~D13. ~E (B.2)

= h̄Ω(σ31e
−iωLt + c.h.) (B.3)

Where σ31 =| 3〉〈1 | (more generally we de�ne σij =| i〉〈j |). ~D13 = µ31σ31~u + c.h. is the
transition dipole operator, with µ31 the transition dipole. We do not restrict the problem if we
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Appendix B. Autler-Townes Photo-Luminescence

Figure B.1: Con�guration of the energy levels.

take Ω = −1
2µ31ε(z)e

ikz real. The Hamiltonian of the three level system is given by:

H =
3∑
i=0

h̄ωiσii + h̄Ω(σ31e
−iωLt + c.h.) (B.4)

The hamiltonian evolution of the density matrix can be calculated using the Liouville equation:

∂ρ

∂t
= − i

h̄
[H, ρ] (B.5)

The irreversible part of the evolution such as spontaneous emission or generation of carriers by
a non-resonant laser or pure dephasing can be handled using a Lindbladien. This treatment
assumes that the coupling with the environment can be treated in the Markov approximation.
This approximation relies on the existence of a timescale long compared to the correlation-time of
the reservoir but short compared to the decay of the system. For instance, spontaneous emission
from level 2→ 1 is included adding (B.6) to the Hamiltonian evolution given by (B.5):(

∂ρ

∂t

)
irrev

=
Γ

2
(2σ12ρσ21 − σ22ρ− ρσ22) (B.6)

The �rst part describes the increase of the population of level 1 (ρ11) due to relaxation from level
2:
(
∂ρ11

∂t

)
irrev

= Γρ22. The last terms describe the loss of population from level 2 at a rate Γ and

the damping of the coherences linked to level 2 (ρ23 ρ21, ρ32 and ρ12) at a rate Γ/2. We see that,
by construction, relaxation written in the Lindblald form conserves the population (trρ = 1).

When considering a pumping rate g at the limit of low pumping46, spontaneous emission
rates Γ from level 2 and 3 to level 1, and the atom-laser coupling, the full master equation is:

ρ̇33 = gρ11 − Γρ33 − (iΩ)e−iωLtρ13 + c.h.) (B.7)

ρ̇22 = gρ11 − Γρ22 (B.8)

46we consider g � Γ, population of X2 can be neglected

134



B.1. Density Matrix Evolution, Stationary Solution

ρ̇32 = −(γ23 + iω23)ρ32 − iΩe−iωLtρ12 (B.9)

ρ̇21 = −(γ12 + iω12)ρ21 + iΩe−iωLtρ23 (B.10)

ρ̇31 = −(γ13 + iω13)ρ31 + iΩe−iωLt(ρ33 − ρ11) (B.11)

ρ11 = 1− ρ33 − ρ22 (B.12)

ρ23 = ρ∗32 (B.13)

ρ12 = ρ∗21 (B.14)

ρ13 = ρ∗31 (B.15)

and where the coherence damping γij which can include pure dephasing47 γdephij and ωij are
de�ned by:

ω12 = ω2 − ω1; ω13 = ω3 − ω1; ω23 = ω3 − ω2; (B.16)

γ12 =
Γ

2
+
g

2
+ γdeph12 (B.17)

γ13 =
Γ

2
+
g

2
+ γdeph13 (B.18)

γ23 = Γ + γdeph23 (B.19)

The steady state solution of these equations can be found considering that the population are
constant. Note that (ρ32)stat and (ρ21)stat are equal to 0. Equation B.11 can be formally
integrated:

(ρ31)stat(t) = iΩ

∫ t

∞
dt′e−iωLt

′
e(iω13+γ13)(t′−t)((ρ33)stat − (ρ11)stat) (B.20)

(B.21)

we �nd:

(ρ31)stat(t) = iΩe−iωLt
(ρ33)stat − (ρ11)stat
γ13 + i(ω31 − ωL)

(B.22)

(B.23)

If we substitute this result in B.7 and use B.8 and B.12, we �nd the stationnary solution:

(ρ33)stat =
Γ(g +R)

2Γg + 2ΓR+ Γ2 +Rg
(B.24)

(ρ22)stat =
g

g + Γ

(
1− Γ(g +R)

2Γg + 2ΓR+ Γ2 +Rg

)
(B.25)

where R is the rate constant appearing in the rate equations:

R =
(2Ω)2

2

γ13

γ2
13 + (ω13 − ωL)2

(B.26)

The result B.24 will be used by the end of this section.

47This will be discussed in details later

135



Appendix B. Autler-Townes Photo-Luminescence

B.2 What is a spectra?

From now on, we switch to a Heisenberg picture where operators depend on time. We will
neglect the vectorial nature of the �eld operators E(t) and atomic dipole operators D(t). The
Wiener-Khintchine theorem states that the spectrum of a stationary stochastic process is given
by the Fourier transform of the two-time correlation function of the radiated �eld:

S(ωdet) ∝ lim
T→∞

1

T

∫ T

0
dt

∫ T

0
dt′〈E−(t)E+(t′)〉e−iωdet(t−t′) (B.27)

where E+(t) is the positive frequency component of the electric �eld operator48. There is a
simple relation between the scattered electrical �eld and the atomic dipole valid both in classical
physics and in quantum mechanics:

E+(t) ∝ D−(t− r

c
) (B.28)

Where the polarisation operator D− involves in our case the contribution of the 3→ 1 and 2→ 1
transitions:

D−(t) = µ13σ13(t) + µ12σ12(t) (B.29)

Equation B.28 means that the time-evolution of the atomic dipole operators (and their two-time
correlation function) is all that we need to solve this problem.

B.3 Langevin equations of motion

The time evolution of the atomic operators is given by the Langevin equations of motion:

σ̇12 = −(γ12 + iω12)σ12 + (iΩ)e−iωLtσ32 + F12(t) (B.30)

σ̇13 = −(γ13 + iω13)σ13 + (iΩ)e−iωLt(σ33 − σ11) + F13(t) (B.31)

σ̇23 = −(γ23 + iω23)σ23 − (iΩ)e−iωLtσ21 + F23(t) (B.32)

σ̇22 = gσ11 − Γσ22 + F22(t) (B.33)

σ̇33 = gσ11 − Γσ33 − (iΩ)e−iωLtσ31 + c.h.) + F33(t) (B.34)

σ11 = 1− σ33 − σ22 (B.35)

σ23 = σ†32 ; σ12 = σ†21 ; σ13 = σ†31 (B.36)

It is the sum of a Hamiltonian evolution, relaxation terms in the Lindblald form (which give
the mean e�ect of reservoir interactions), and the noise operator Fij(t) which satisfy:

〈Fij(t)〉 = 0 (B.37)

〈Fkl(t)Fij(t′)〉 = 2δ(t− t′)〈Dklij〉 (B.38)

We see that these equations are very similar to the ones of the matrix density (B.7-B.15),
except for the presence of the

{
~Fij
}
ij
. This comes from the fact that there is a straightforward

link between the observable σij and the matrix density coe�cient ρji in the Schrödinger picture:

〈σHeisenbergij 〉 = tr(σijρ) = ρSchrodingerji (B.39)

48We use the traditional notation: the ω vibration of E+(t) oscillates as e−iωt.
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B.3. Langevin equations of motion

The use of the {Fij}ij can be justi�ed qualitatively49 by the fact that we need to add an "ingre-
dient" to guarantee that the commutation rules ([σij(t), σkl(t)] = (δjkσil(t)− δliσkj(t))) are valid
at all times, even if 〈σij(t)〉stat = 0. We will take for granted that the {Fij}ij permit to ful�ll
these requirements. The fact that the noise operators are δ-correlated in time is another way to
formulate the Markov approximation. We won't need the explicit expression for the {Fij(t)}ij
and the {Dklij}klij .

These linear equations can be considerably simpli�ed if we manage to get rid of the explicit
time dependence of the coe�cients50. This can be done if we introduce the following operators51:

σ12 = e−iω12tS12 ; σ13 = e−i(ω13−δ)tS13 ; σ23 = e−i(ω23−δ)tS23 ; (B.40)

σ21 = eiω12tS21 ; σ31 = ei(ω13−δ)tS31 ; σ32 = ei(ω23−δ)tS32 ; (B.41)

σ11 = S11 ; σ22 = S22 ; σ33 = S33 (B.42)

where δ = ω13−ωL. We apply the same transformation to the {Fij}ij , and note {fij}ij the new
noise operators . Furthermore, if we substitute S11 = 1− S22 − S33 in all equations, we obtain:

Ṡ12 = −γ12S12 + iΩS32 + f12(t) (B.43)

Ṡ13 = −(γ13 + iδ)S13 + iΩ(2S33 + S22 − 1) + f13(t) (B.44)

Ṡ21 = −γ12S12 − iΩS23 + f21(t) (B.45)

Ṡ22 = g(1− S22 − S33)− ΓS22 + f22(t) (B.46)

Ṡ23 = −(γ23 + iδ)S23 − iΩS21 + f23(t) (B.47)

Ṡ31 = −(γ13 − iδ)S31 − iΩ(2S33 + S22 − 1) + f31(t) (B.48)

Ṡ32 = −(γ23 − iδ)S32 + iΩS12 + f32(t) (B.49)

Ṡ33 = g(1− S22 − S33)− ΓS33 − iΩ(S13 − S31) + f33(t) (B.50)

(B.51)

which can be written in the matrix form:

d

dt



S12

S13

S21

S22

S23

S31

S32

S33


=

49A thorough explanation can be found in the chap15 of [104].
50This method could have been used to solve (B.11).
51We extract from the {σij}ij the fast dipole oscillations.
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

−γ12 0 0 0 0 0 iΩ 0
0 −(γ13 + iδ) 0 iΩ 0 0 0 2iΩ
0 0 −γ12 0 −iΩ 0 0 0
0 0 0 −(Γ + g) 0 0 0 −g
0 0 −iΩ 0 −(γ23 + iδ) 0 0 0
0 0 0 −iΩ 0 −(γ13 − iδ) 0 −2iΩ
iΩ 0 0 0 0 0 −(γ23 − iδ) 0
0 iΩ 0 −g 0 −iΩ 0 −(g + Γ)





S12

S13

S21

S22

S23

S31

S32

S33



+



0
iΩ
0
g
0
iΩ
0
g


+



f12

f13

f21

f22

f23

f31

f32

f33


(B.52)

We will identify this equation with the matrix notation:

Ψ̇(t) = LΨ(t) + Λ + F (t) (B.53)

Where the Ψ(t) vector is related to the Sij(t) operators, L is the matrix containing the coe�cients
of the linear di�erential equations, Λ is a vector which results from the elimination of S11(t) in
the equations, and F (t) is a vector containing the noise operators.

B.4 Relevant two-time correlation function for the spectra calcu-

lation

Inserting (B.29) into (B.27), and replacing the σij(t) by the slow varying operator Sij we obtain:

S(ω) ∝ µ13µ31 lim
T→∞

1

T

∫ T

0
dt

∫ T

0
dt′〈S31(t)S13(t′)〉e−i(ω−ω12)(t−t′)

+µ21µ13 lim
T→∞

1

T

∫ T

0
dt

∫ T

0
dt′〈S21(t)S13(t′)〉ei(ω12−ω13)te−i(ω−ω13)(t−t′)

+µ31µ12 lim
T→∞

1

T

∫ T

0
dt

∫ T

0
dt′〈S31(t)S12(t′)〉ei(ω13−ω12)te−i(ω−ω12)(t−t′)

+ µ21µ12 lim
T→∞

1

T

∫ T

0
dt

∫ T

0
dt′〈S21(t)S12(t′)〉e−i(ω−ω12)(t−t′) (B.54)

We are interested in the solution of (B.54) in the stationary regime which means that the
two-time-correlation functions involved depend only on the time di�erence t − t′. Therefore,
the second and third term in (B.54) are null52 because of the oscillating factor e+i(ω13−ω12)t (or

52If we had taken in account the polarization of the transition , these terms would be trivially null because of
the scalar product between the two dipole moments µ21 and µ13.
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it's c.c.). Next, we see that the �rst term and the last term correspond to two di�erent set of
emission lines, one centered at the frequency ω13 and the other at ω12. In other words, the �rst
term is the resonant �uorescence, and the last term is the emission from level 2 detected in our
experiments. We will focus on the calculation of this last term:

Sexp(ω) ∝ lim
T→∞

1

T

∫ T

0
dt

∫ T

0
dt′〈S21(t)S12(t′)〉e−i(ω−ω12)(t−t′)

= lim
T→∞

1

T

∫ T

0
dt

∫ t

t−T
dτ〈S21(τ)S12(0)〉e−i(ω−ω12)τ

= lim
T→∞

1

T

∫ T

0
dt

(∫ t

0
dτ〈S21(τ)S12(0)〉e−i(ω−ω12)τ +

∫ T−t

0
dτ〈S21(0)S12(τ)〉ei(ω−ω12)τ

)
(B.55)

The correlation function 〈S21(0)S12(τ)〉 is not null only on a �nite correlation time Tcor.
When t is greater than Tcor, the integral over τ which we note F (t) is constant (F (∞)). So, in
order to get rid of the integral over t, we can decompose the integral:

Sexp(ω) ∝ lim
T→∞

1

T

∫ T−Tcorr

Tcorr
dt(F (∞) + F ∗(∞))

+ lim
T→∞

1

T

(∫ Tcor

0
dt+

∫ T

T−Tcor
dt

)
(F (t) + F ∗(T − t)) (B.56)

Since the physical quantity F (t) can be majored, the second limit in (B.56) tends to zero and
the �rst limit tends toward F (∞) + F ∗(∞). Finally:

Sexp(ω) ∝
∫ ∞

0
dτ〈S21(τ)S12(0)〉e−i(ω−ω12)τ + c.c. (B.57)

We introduce the Laplace transform of the two-time-correlation of the Ψ operators (using
the notations introduced Eqn. B.53):

Φij(p) =

∫ ∞
0

e−pτ 〈Ψi(τ)Ψj(0)〉 (B.58)

We see that B.57 is nothing else but the Laplace transform: (Φ13(p))p=i(ω−ω12).

B.5 Quantum Regression Theorem

The quantum regression theorem is an equation which gives the evolution of the two-time corre-
lation function of atomic operators as a function of the expectation value of the system operator
correlation function. Beyond this impressive name, there is a theorem which is easy to demon-
strate. If we consider the operators {Ψi}, a time τ > 0 and use Eqn. B.53:

d

dτ
〈Ψi(τ)Ψj(0)〉 = 〈[LΨ(τ) + Λ]i Ψj(0)〉+ 〈Fi(τ)Ψj(0)〉 (B.59)

The atomic operator Ψj(0) cannot know about the future noise Fi(τ), so expectation value
〈Fi(τ)Ψj(0)〉 vanishes. All is left is:

d

dτ
〈Ψi(τ)Ψj(0)〉 = 〈[LΨ(τ) + Λ]i Ψj(0)〉 (B.60)
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B.6 Spectra in the Λ con�guration

As we have seen Eqn. B.57, the spectra can be derived from the Laplace transform Φ31(p). This
quantity can be calculated if we take the Laplace transform of (B.60) for j = 3 and i ∈ [1; 8]
which is:

p (Φi1 − 〈Ψi(0)Ψ1(0)〉) =
8∑

k=1

LikΦk1 +
[Λ]i
p
〈Ψ1(0)〉 (B.61)

We can rewrite the equations (B.61) in a Matrix form. We introduce the column vector ϕ:

ϕ =



Φ11

Φ21

Φ31

Φ41

Φ51

Φ61

Φ71

Φ81


Then, using (B.52), and the 8 ∗ 8 identity matrix I8; (B.61) are equivalent to:

(pI8 − L)ϕ =



〈Ψ1(0)Ψ1(0)〉
〈Ψ2(0)Ψ1(0)〉+ iΩ

p 〈Ψ1(0)〉
〈Ψ3(0)Ψ1(0)〉

〈Ψ4(0)Ψ1(0)〉+ g
p〈Ψ1(0)〉

〈Ψ5(0)Ψ1(0)〉
〈Ψ6(0)Ψ1(0)〉+ iΩ

p 〈Ψ1(0)〉
〈Ψ7(0)Ψ1(0)〉

〈Ψ8(0)Ψ1(0)〉+ g
p〈Ψ1(0)〉


(B.62)

The expectation values 〈Ψi(0)Ψ1(0)〉 and 〈Ψ1(0)〉 can be calculated using the de�nition of
the Ψi given in (B.53) and using the results of the sub-section B.1. We �nd that the only term
which is not null is:

〈Ψ3(0)Ψ1(0)〉 = 〈S21(0)S12(0)〉 (B.63)

= 〈σ21(0)σ12(0)〉 (B.64)

= ρ22 (B.65)

=
g

g + Γ

(
1− Γ(g +R)

2Γg + 2ΓR+ Γ2 +Rg

)
(B.66)

Using Cramers'rule, we �nd:

Φ31(p) =
(p+ γ23 + iδ)ρ22(

p+ γ23 + iδ + Ω2

p+γ12

)
(p+ γ12)

(B.67)
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and the spectrum Sexp(ω) ∝ <e
{

(Φ31(p))p=i(ω−ω12)

}
is given by:

Sexp(ω) ∝ <e

 (i(ω − ω12) + γ23 + iδ)ρ22(
i(ω − ω12) + γ23 + iδ + Ω2

i(ω−ω12)+γ12

)
(i(ω − ω12) + γ12)

 (B.68)

B.7 Spectra calculation in the Ξ con�guration

We will give the main steps and results for the Ξ con�guration. The notations are the same as
in the previous section, so is the index ordering to de�ne the matrix form of the equations, and
the calculation procedure53. But to reproduce more faithfully the experiments54, we include in-
coherent population transfer towards a fourth level. This level corresponds to the other excitonic
level to which the biexciton can decay55. This means we add a ninth component to the Ψ vector
(Ψ9 ≡ σ44(t) ≡ S44(t)), to Λ, to F (t) and a dimention to the square matrix L. We call Γ′ the
relaxation rate of the decays 3 → 2 and 3 → 4, Γ the relaxation rate of the decays 2 → 1 and
4→ 1, and δ = ω23 − ωL (levels shown Fig. B.1). We reduce the problem to:

Ψ̇(t) = LΨ(t) + Λ + F (t) (B.69)

With the L matrix given by:

−γ12 iΩ 0 0 0 0 0 0 0
iΩ −(γ13 + iδ) 0 0 0 0 0 0 0
0 0 −γ12 0 0 −iΩ 0 0 0
0 0 0 −(Γ + 2g) iΩ 0 −iΩ Γ′ − g −g
0 0 0 iΩ −(γ23 + iδ) 0 0 −iΩ 0
0 0 −iΩ 0 0 −(γ13 − iδ) 0 0 0
0 0 0 −iΩ 0 0 −(γ23 − iδ) iΩ 0
0 0 0 g −iΩ 0 iΩ −2Γ′ g
0 0 0 −g 0 0 0 Γ′ − g −2g


And the Λ vector given by:

Λ =



0
0
0
g
0
0
0
0
g


(B.70)

53We eliminate the variable S11 like we did for (B.43-B.50).
54In particular, the drop of PL signal as the Rabi frequency Ω is increased.
55The polarisations {σ4i, h.c.}i linked to level 4 could be added but it would not change the calculated spectra

emitted by the dipole D12. Of course, this is not the case for the other transitions.
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The spectra is given by the Laplace transform Φ31(p) which is an unknown in the following
linear system of equations:

(pI9 − L)



Φ11

Φ21

Φ31

Φ41

Φ51

Φ61

Φ71

Φ81

Φ91


=



〈Ψ1(0)Ψ1(0)〉
〈Ψ2(0)Ψ1(0)〉
〈Ψ3(0)Ψ1(0)〉

〈Ψ4(0)Ψ1(0)〉+ g
p〈Ψ1(0)〉

〈Ψ5(0)Ψ1(0)〉
〈Ψ6(0)Ψ1(0)〉
〈Ψ7(0)Ψ1(0)〉
〈Ψ8(0)Ψ1(0)〉

〈Ψ9(0)Ψ1(0)〉+ g
p〈Ψ1(0)〉


(B.71)

We calculate the expectation values in the inhomogeneous vector of (B.71) and �nd out:



〈Ψ1(0)Ψ1(0)〉
〈Ψ2(0)Ψ1(0)〉
〈Ψ3(0)Ψ1(0)〉

〈Ψ4(0)Ψ1(0)〉+ g
p〈Ψ1(0)〉

〈Ψ5(0)Ψ1(0)〉
〈Ψ6(0)Ψ1(0)〉
〈Ψ7(0)Ψ1(0)〉
〈Ψ8(0)Ψ1(0)〉

〈Ψ9(0)Ψ1(0)〉+ g
p〈Ψ1(0)〉


=



0
0

(ρ22)stat(0)
0
0

(ρ23)stat(0)
0
0
0


(B.72)

Finally, using Cramer's rule we �nd:

Sexp(ω) ∝ <e
{

(i(ω − ω12)− iδ + γ13)(ρ22)stat(0) + iΩ(ρ23)stat(0)

(i(ω − ω12) + γ12)(i(ω − ω12)− iδ + γ13) + Ω2

}
(B.73)

with:

(ρ22)stat(0) =
(2Γ′ +R− 2gΓ′

2g+Γ)( g
g+Γ′ )

g +R+ gΓ
2g+Γ + Γ+g

Γ′+g (2Γ′ +R− 2gΓ′

2g+Γ)
(B.74)

(ρ23)stat(0) =
iΩ

γ23 + iδ

(
g

g + Γ′
− 2g + Γ + Γ′

g + Γ′
(ρ22)stat

)
(B.75)

R =
(2Ω)2

2

γ23

γ2
23 + (ω23 − ωL)2

(B.76)

This equation has been used to model the experimental data in Fig. 5.4.

B.8 General Remarks

The aim here is to generalise the calculations to the case of resonant �uorescence and to explicit
a numerical handling. As shown in the sub-section B.4, the spectrum is the sum of the spectra of
each dipole provided the fact that these dipole have di�erent transition frequencies. Each dipole
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emission can be calculated seperatly using the method described above. For each dipole σij of a
three level system, we arrive at a matrix formulation of the problem of the type:

(pI8 − L)ϕ = χ+
Λ

p
〈σji(t = 0)〉 (B.77)

In fact this problem can also be solved using the inverse of the matrix (pI8 − L):

ϕ = (pI8 − L)−1
(
χ+

Λ

p
〈σji(t = 0)〉

)
(B.78)

The problem in (B.78) is that if 〈σji(t = 0)〉 6= 0, it diverges for p = 0. In the previous
spectra calculation, we were not bothered by this term, since the relevent dipole always satis�ed
〈σji(t = 0)〉 6= 0. This is because there was no resonant laser driving it, so the dipole mean
value would tend to zero in the stationnary regime, and the spectrum would be given by the
dipole �uctuation around zero. However, if detection is resonant with the laser, the atomic
dipole is in a forced oscillation regime at the frequency of the laser. Since the coherence time
of the laser is in�nite (c.f. (B.1)), this results in a Dirac delta function in the spectra. This
elastic scattering know as the Rayleigh peak would be the only componant of the spectra if we
considered a purely Hamiltonian evolution where energy is conserved. The coherent Rayleigh
scattering can be removed, an expression easy for computation can be derived:

ϕinc = (pI8 − L)−1
(
χ+

Λ

p
〈σji(t = 0)〉

)
− 1

p
lim
p→0

p((pI8 − L)−1)
Λ

p
〈σji(t = 0) (B.79)

= (pI8 − L)−1χ+
(
(pI8 − L)−1 + L−1

) Λ

p
〈σji(t = 0)〉 (B.80)

= (pI8 − L)−1χ+ (pI8 − L)−1L−1Λ〈σji(t = 0)〉 (B.81)

For the last step, we have used the fact that the matrix (pI8−L)−1 and L−1 commute. Equation
B.81 can be used to compute the incoherent emission of a dipole excited (or not) by a resonant
laser.

B.9 Autler-Townes PL in the limit of a slow spectral di�usion

An interesting application to this calculation is to consider the case of a quantum dot subject
to a slow spectral di�usion. This situation arises because of charge �uctuations in the quantum
dot neighborhood which Stark shift the transition. The energy shift Σ depends on the level
considered.

We suppose that for a given charged environment, the energy shift of the ground state is zero,
while the excitonic levels are shifted by Σ and the biexciton by 2Σ (which is fairly realistic in
this system [105]). We assume that the correlation time τc is greater than the radiative lifetime
of the levels but short compared to the integration time of the detector, and that the energy
shift follows a poissonian distribution characterized by Σ0 = 60µeV . Under these assumptions,
the PL spectra can be calculated considering the sum over the di�erent con�gurations. The
result for various Rabi is presented in Fig. B.2. We see a variation of the linewidth within
the Autler-Townes splitting, which depends on the con�guration of the detection (Ξ or Λ). This
e�ect can easily be understood physically. We assume a zero detuning (when Σ = 0!) to facilitate
the discussion. In the Λ con�guration for instance (lower panel of Fig. B.2), the control laser
admixes the states 3 and 1. The two levels 3 and 2 jitter (on the detection time scale). This

143



Appendix B. Autler-Townes Photo-Luminescence

Figure B.2: Autler-Townes PL for a 4 level system analogue to a neutral quantum dot where the excitonic

states are split by anisotropic exchange. Spectral di�usion with τc >> Γ is considered.

jitter is time-correlated for the two-levels. The states dressed by the laser jitter twice as less.
Then, recombination from level 2 to the dressed state is less broadened. Considering a detuning
δ 6= 0, this e�ect leads to a di�erence of linewidth between the two PL lines: recombination from
level 2 towards the dressed state which is more excitonic character has a smaller linewidth.

This e�ect has not been observed experimentally. In fact, presently, we do not know what is
the lineshape of our quantum dots (Lorentzian or Gaussian).
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Résumé

Nous avons étudié les propriétés dynamiques d'un spin individuel dans une boite quantique
de semiconducteur II-VI (spin d'un atome de Mn ou electron résident). Une boîte quantique
comportant un atome de manganese présente six raies qui permettent de sonder optiquement
l'état de spin du Manganese. Des expériences pompe-sonde réalisées sur boîte unique ont permit
de montrer que le spin du Mn peut être orienté optiquement en quelques dizaines de ns, que le
temps de vie T1 de ce spin est supérieur à la µs, et que le pompage optique en champ nul est
controlé par une anisotropie magnétique induite par les contraintes. Par ailleurs, dans le but
d'identi�er les mécanismes du pompage optique, nous avons mis en évidence des processus de
relaxation de spin au sein du système exciton-manganese, durant la durée de vie de ce dernier.
En�n, nous avons réalisé un e�et Stark optique sur chacune des raies d'une boîte quantique
magnétique. Concernant la dynamique d'un électron dans une boîte quantique II-VI, nous avons
mis en évidence le pompage du spin de l'électron résident ainsi que des noyaux.

Mots-clés: Boîte quantique, semiconducteur magnétique dilué, manganèse, spin individuel,
pompage optique, e�et Stark optique, champ Overhauser.

Abstract

We have studied the dynamic properties of a single spin (Mn impurity or resident electron) in
a II-VI semiconductor quantum dot. A quantum dot doped with a single Mn atom presents six
lines which allow to probe optically the spin-state of the Mn atom. Pump-probe experiments at a
single dot level were carried out to demonstrate that the Mn spin could be oriented in a few tens
of ns, and that the spin-distribution prepared by such means was perfectly conserved over a few
µs. The optical pumping of the Mn spin at zero magnetic �eld is controlled by a strain-induced
magnetic anisotropy. Furthermore, seeking for a microscopic mechanism controlling the optical
pumping of the Mn atom, we have evidenced spin relaxation channels within the exciton-Mn
complex. At last, we have demonstrated an optical Stark e�ect on any of the lines of a Mn-
doped quantum dot. Concerning the dynamics of an electron in a II-VI quantum dot, we have
evidenced optical pumping of the resident electron, and dynamic nuclear spin polarization.

Keywords: Quantum dot, diluted magnetic semiconductor, manganese, single spin, optical
pumping, optical Stark e�ect, Overhauser �eld.
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