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Chapter1
Introduction

In this chapter we begin by presenting the direct or forward problem of certain en-
gineering, physical applications. Then we introduce the corresponding inverse prob-
lems and we classify them by Hadamard criteria [29]. We give also the mathematical
model of these two problems and we conclude by the tridimensional elliptic partial
differential equations which defines our two main practical problems of interest: the
geophysical and magneto/electro-encephalography (M/EEG) inverse problems.

1.1 General framework and state of the art

Inverse problems are very important in science, engineering and bioengineering.
They have applications to many practical examples. Among this applications, we
quote the geodesy and M/EEG inverse problems.

Before introducing inverse problems, we consider the associated direct or forward
problem.

Given a domain Ω ⊂ R
3 and a (continuous or discrete) density supported inside

the domain Ω, the direct problem consists in computing the generated potential at the
surface of the considered domain. Then, the inverse problem consists in recovering
the interior density from measurements of the potential taken (in some points) at
the boundary of the domain. For appropriated models, the issue is to find the
density which means to find the parameters (some of them or all) which describe
it (like source positions, moments, etc.). As measurements, we can have values of
the potential, its first derivative or its Hessian which can be observed on different
surfaces (orbits). Nowadays, many problems in science like geophysics and medicine

3



1.1. GENERAL FRAMEWORK AND STATE OF THE ART 4

are inverse problems [30, 54]. Graphically, the inverse problem can be illustrated by
the next image:

Figure 1.1: From partial measurements outside the domain to sources (masses, density)
in the domain

In both cases, M/EEG [31] and geophysics [54] problems, the considered geo-
metrical domain Ω is assumed to be a ball. The measurements can be taken over
the sphere ∂Ω (boundary of the ball) or in the realistic case just over a part of the
sphere (the superior hemisphere of the head or the satellite orbits). In this later case,
we express the data in the Slepian basis (with good local properties)[46]. After we
have the development of the data in the adapted basis, the next step is the extrap-
olation over all the sphere-data transmission problem (TP)-and the recovery of the
density (DR) with an intermediate discretisation step called source recovery (SR)
inside the ball using the rational approximation method (see Chapter 4 and 5). The
source identification issue is translated as families of 2D best rational approximation
problems in disks [8], whose solutions allow to localize and estimate the original 3D
sources and their moments.
Briefly, the work of this thesis is concentrated on the representation of the disposed
data over the sphere (Chapter 3) and as a following step, the recovery of the density
in the ball using the rational approximation method (Chapter 5). The two problems
are modeled by the next partial differential equation:

−∆Pot = ρ with ρ = ρr︸︷︷︸
smooth

+ ρs︸︷︷︸
singular part

(1.1)
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where Pot can be the electrical, magnetic or gravitational potential and it can be
written as the convolution between the Green function (see Chapter 2, Section 2.2.1)
and the density ρ. The link between these two quantities will be expressed by an
operator called "forward operator" denoted by T :

Pot = G ∗ ρ = Tρ (1.2)

1.2 Geophysics

The purpose of this section is to present the physical frame of geophysical
inverse problem. The knowledge of the Earth’s gravity field is essential for many
domains. The gravity field being connected with the internal density of the Earth,
it permits to geophysicists to study the structure, the dynamic but also different
physical properties of the Earth at different scales: from its surface layers to its
center. One particular equipotential surface, the geoid, which coincides with the
average of the ocean surfaces, was proposed as the "mathematical figure of the
Earth" (C.F. Gauss). It is still frequently considered by many to be the fundamental
surface of physical geodesy. Referring to the curvature of the interior level surfaces,
these change discontinuously with the density. Because the geodetic measurements
(theolite measurements, satellite techniques, etc.) are referred to the system of
the level surface, the geoid plays an important role and thus, we see that one of
the physical aim is the determination of the level surfaces of the Earth’s gravity field.

The gravity field, at various temporal and space scales, is also used for orbitogra-
phy and navigation, locate and characterize different reserves or deposits, to evaluate
the groundwater resource and study polluted sites. The time variations of the gravity
field reflect the mass displacements inside the Earth system, from the Earth’s core
to the top of the atmosphere. Such mass transfer occurs in a wide range of spatial
and temporal scales, and they are dominated by the water redistribution related to
the global water cycle in the Earth’s superficial envelopes (atmosphere, oceans, polar
ice caps, continental hydrology). They also reflect solid Earth deformations such as
earthquakes. Measuring and modeling the time variations of the gravity field, and
hence of the mass displacements, allow to better understand the dynamical processes
and changes in the global Earth system.
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The gravimetry inverse problem

After Isaac Newton, the gravitational potential of the Earth is given by the
following formula:

V (X) = G
∫∫∫

Ω

ρ(Y )
|X − Y |dY ,X ∈ R

3 \ Ω (1.3)

where G is the gravitational constant and ρ is the Earth density.
At the exterior of the Earth modeled by Ω, in empty space, the density is zero

and the gravitational potential V satisfies the Laplace equation:

∆V = 0

Inside the Earth Ω, V is solution of the Poisson equation:

∆V = −4πGρ

In what follows, we will suppose 4πG ≃ 1. At the surface of the Earth, we can
measure the gravitational potential V , but we can also observe measurements of
normal derivative ∂V

∂n
. The normal derivative is the derivative along the outward-

directed surface normal n to the spherical surface of the Earth. According to the
satellite missions CHAMP (Challenging Minisatellite Payload), GRACE (Gravity
Recovery and Climate Experiment) and GOCE (Gravity Field and Steady-State
Ocean Circulation Explorer) we can also have the second order derivative of V
(Hessian of V) on satellite orbits. The time-varying component offered by GRACE
satellite improves our knowledge of the data at all spatial scales. Usually, the
data are modeled using a linear combination of spherical harmonics. For regional
measurements, local basis functions as Slepian functions, are used.

The direct problem of gravimetry is to find V given the density ρ.

The inverse problem: find the density ρ from boundary measurements of V , ∂V
∂n

or Hessian V at ground or on satellite orbits.
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Geometric model of the Earth

Historically, many physicians did scientific observations related to the structure
of the Earth.

The first ones that observed the structure multi-shells of the Earth and the
different densities for each of them, are Burnet Woodward and Whiston in the XVII
century.

A little bit later, Roche proposed 2 shells: a iron kernel of density 7 and a rocks
shell of density 3.

In the first decade of the xx century, Lehmann discovered a new structure inside
the kernel. Consequently, the new model is composed by a grain (inner core), a
core, a mantle and it is called the Lehmann model.

Bullen proposed in 1936 a concentric model of the Earth with a density which
increase towards the center (the inner of the Earth).

In 1906, Mohorovici identified a discontinuity between the crust and the mantle.

There are also Gutenberg discontinuity between the lower mantle and outer core
and Lehmann discontinuity between the external and the inner core.
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Figure 1.2: Schematic view of the interior of Earth. 1. continental crust - 2. oceanic
crust - 3. upper mantle - 4. lower mantle - 5. outer core - 6. inner core. A: Mo-
horovici discontinuity - B: Gutenberg Discontinuity - C: Lehmann discontinuity (Source:
http://en.wikipedia.org/wiki )
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Figure 1.3: Shells of the Earth and their discontinuities
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1.3 M/EEG

The progress of the medical imaging techniques is very important and it is of high
utility because it permits to improve continuously the care available for patients.
The electroencephalography (EEG) and magnetoencephalography (MEG) are two
complementary methods which are used for measuring the electric and magnetic
potential of the brain [45]. The electromagnetic activity of the brain gives rise to an
electric and magnetic potential which can be measured on the scalp (by electrodes)
or outside the head by SQUID (Superconducting Quantum Interference) device.

Magnetoencephalography (MEG) is a technique for measuring the magnetic
field induced by the electrical activity of neurons in the brain, classically modeled
with current dipoles [31]. The electroencephalography (EEG) records variations of
electrical potential at the surface of the scalp.

Both techniques are used for the investigations in neuroscience like the study
and the care of certain cerebral disorders. These two techniques are complementary
and can be measured simultaneously. Nowadays, EEG is relatively inexpen-
sive and commonly used. MEG is, comparatively, more expensive because the
SQUID device can be used just in a shielded room isolated from the ambient
noise (sensitivity of the device due to the fact that the recorded magnetic poten-
tial is of a magnitude of one billion times smaller than the Earth magnetic potential).

Medical engineering aims to localize sources within the brain from measurements
of the electromagnetic potential they produce (the inverse source MEG problem-
(IP)). When a limited number of sources are modeled as pointwise and dipolar, in
general there are more measurements than unknowns. In the literature of EEG-MEG
source localization problem, there exists several families of methods to solve it, when
sources can be modeled as the superposition of a small number of dipoles [45]:

• Dipole fitting methods: minimize a non-convex function, with an outcome that
is unstable with respect to the number of dipoles in the model [18].

• The MUSIC method applies a principal component analysis to the measure-
ments, identifies a "noise subspace" and a "signal subspace" and determines the
dipole positions by analyzing the signal subspace [41].
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• With Beamforming method the sources can be estimated by scanning the region
of interest and by comparing the covariance of the measurement to that of the
noise.

• In this thesis for solving the inverse M/EEG problem, we used the rational
approximation method in planar sections of the 3D domains and show how the
sources are recovered [8]. This method belongs to a new category of source
estimation algorithms that are grounded in Harmonic Analysis and Best Ap-
proximation theory. This method, as well as MUSIC and Beamforming meth-
ods, requires no prior information on the number of sources. It works instant
by instant and it does not require sources to be decorrelated across time.

Geometric model of the head

The simplified spherical model of the head that can be assumed is the union
of three disjoint homogeneous spherical layers B0, B1, B2, namely the brain, the
skull and the scalp. The spheres which separate these volumes are denoted by
S0, S1, S2 = S. The main source model available for describing the neuronal activity
is the dipolar model described by their number, positions and moments. For
practical reasons, the data are available only on the outer layer (scalp) by electrodes.
For the resolution of the inverse problem, the APICS team uses a technique which
consists to decompose the 3 dimensional problem in some others 2 dimensional
problems for which rational approximation techniques are applied (ARL2 theory,
for more details see Chapter 5).

For EEG inverse problem we need to pass by a step called «cortical mapping»
which allows to propagate the data from the scalp to the interior shell: the brain. In
MEG, for the spherical model, this step is not necessary because the data measure-
ments depend only on the primary current and not anymore on conductivities [45].

1.4 Unified framework

In practice the measured data (electric, magnetic or gravitational potential)
are generally available just over a region Θ ⊂ S or Θ ⊂ SR, R ≥ 1 (the nord
hemisphere-M/EEG or satellite orbits-geodesy). Disposing of the partial data, we
want to estimate this data over the whole sphere S, that means to propagate the
data potential from the region Θ of SR to the sphere S (geodesy, MEG) or directly
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from Θ ⊂ S to whole sphere S. This step called transmission inverse data problem
(TP) will be detailled in Chapter 4.

After having the data over the sphere S, we solve the inverse problem (DR)
which consists to localize the density inside the ball B. An "intermediate" step to
this problem is the (SR) problem which suppose to approximate the density by
pointwise sources and hence to localize the discrete density, as an approximate of
the continuous density. Source recovery problem from exterior measurements is an
ill-posed inverse problem in the sense of Hadamard: formally, it is unstable and, in
the distributed source case, non-unique. Constraints, or regularization, are necessary
in order to guarantee a unique and stable solution [29].
We say that a problem is not well-posed if one of the next conditions are satisfied:

• it is not solvable (existence of solution);

• it is not uniquely solvable (uniqueness);

• the solution does not depend continuously on the data (stability)

1.5 Overview

Chapter 1 presents an introduction around the geodesy and M/EEG inverse
problems. In Chapter 2 we introduce the background necessary for the study of
the problems of this thesis. As it was briefly described, the resolution of the inverse
problem (IP) involves the resolution of two problems: the transmission data (TP)
and density recovery (DR) problem. In practice, as we know, the data are available
just on some regions as the north hemisphere of the head (M/EEG) or continents,
spherical caps, etc. (geodesy). For this purpose, we will build a new adaptative basis
on which we express the data. The Chapter 3 provides a new efficient method for
building the convenient Slepian basis. The step which consists in passing from the
partial data expressed in the new Slepian basis, to data over the whole sphere S and
expressed in spherical harmonic basis, is called the transmisson data problem (TP).
For more details, see Chapter 4. The second step of the (IP) resolution problem
is the density recovery (DR) problem, see Chapter 5. In Chapter 6 we present
some numerical tests to illustrate the sources localization for geodesy and M/EEG
problems when we dispose of partial data.

The main contributions of this work concern:

• the development of a quadrature method for the construction of Slepian bases
functions on the sphere, together with a study of numerical aspects concerning
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their use for the representation of potentials on a sphere from partial data (data
transmission);

• the application of best quadratic rational approximation techniques on planar
sections (circles) to the extended potential, especially for geophysical issues
where the gravitational potential is generated by a special piecewise continuous
density, and in medical engineering, for electroencephalography (and a current
density with pointwise dipolar sources). Numerical experiments are provided
and discussed (see also [33]).



Chapter2
Notations, backgrounds, main problems

In this chapter, we will introduce the main notations and definitions that we use
throughout this thesis and that are necessary for the well comprehension of the next
chapters.

2.1 Notations, definitions

The function space L2(B) represents the set of all square-Lebesgue integrable
functions from a domain B ⊂ R

n into R. The space L2(B) is equipped with the inner
product [19]:

〈f, g〉L2(B) :=
∫

B
f(x)g(x)dx f, g ∈ L2(B) (2.1)

and the norm ‖f‖L2(B) :=
√

〈f, f〉
L2(B)

. In this thesis, for simplicity, we will index

the L2(B) norm of a function f just by the domain, i.e. ‖f‖B. The same remark is
valid for the scalar product (2.1), i.e. 〈f, g〉B. For p 6= 2, we denote the Lp norms of
f by ‖f‖Lp(B).
If B = [a, b] and the product is defined in terms of a weighted function ω : [a, b] → R,
we note it by 〈f, g〉ω.

2.2 Harmonic functions and elliptic partial derivative equations

A function F is called harmonic function on R
n if it is solution of Laplace equation

[19]:
∆F = 0 (2.2)

13
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More precisely, a function is called harmonic in a region B ⊂ R
n if it satisfies

equation of Laplace at every point of B.

Definition 2.2.1. Let L be a linear differential operator of order m with constant
coefficients acting on functions f : B → E of k variables. Thus

(Lf)(x) =
∑

|α|≤m

Aα(
∂|α|f

∂xα1
1 . . . ∂xαk

k

)(x)

where E is a given finite-dimensional vector space (typically E = R
p or C

p, p > 1).
Here αi, i = 1, 2, . . . , k are nonnegative integers, α = (α1, α1, . . . , αk),|α| = α1 +α2 +
. . . αk and Aα are the coefficients. The linear partial differential operator L is said
to be strongly elliptic if for every ξ ∈ S

k−1 and unit vector e ∈ E,

Re〈Pm(ξ)e, e〉E > 0

where Pm is called principal symbol and is given by:

P(ξ) = Pm(ξ) =
∑

|α|=m

ξαAα, ξ
α = ξα

1 . . . ξ
α
k ∈ R

for ξ ∈ R
k.

In this thesis we consider the Laplace elliptic operator of order m = 2 in k = 3
variables:

∆f(x) =
∂2f

∂x2
1

+
∂2f

∂x2
2

+
∂2f

∂x2
3

Definition 2.2.2. We recall the Sobolev spaces Wm,p(B),m ∈ Z
+, 1 ≤ p ≤ ∞ of a

open domain B:

Wm,p = {u ∈ Lp(B) : Dα(u) ∈ Lp(B), for 0 ≤ |α| ≤ m} (2.3)

A general stability property for the Neumann problems is given by the following
theorem:

Theorem 2.2.1. [14] Given a bounded domain B with a C2-boundary Γ, then the
Neumann problem: {

∆u = f ∈ W r,2(B), r ≥ −1
∂nu = g ∈ W s,2(Γ), s ∈ R

(2.4)
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has a solution u ∈ W α,2(B), α = min(r + 2, s+ 3
2
) if and only if:

∫

Γ
gdγ =

∫

B
fdx

is verified, where dγ is a measure on Γ. If u is a solution, u + c is also a solution
for ∀c ∈ R. More, we have:

inf
c∈R

‖u+ c‖W α,2(B) ≤ C(‖f‖W α,2(B) + ‖g‖W s,2(Γ)),

where the constant C depends just on B.

2.2.1 Fundamental solutions and Green functions

The fundamental solution of Laplacian (2.2) in R
n is a distribution En ∈ R

n which
is solution of Poisson equation [19]:

∆En = δ on R
n, (2.5)

with




En(x) = 1
n(2−n)ωn

|x|2−n, n > 2, x ∈ R
n;

E2(x) = 1
2π

log |x|,

with ωn = −(n− 2)σn, where σn is the total surface of the sphere in R
n. En verifies

(2.5) and is the fundamental solution of Laplacian. We introduce also the Green
function over the ball B(x0, r0) := Br0 .

G(x, x0) = G(x0, x) =





En(x− x0) − En(x0), n ≥ 3;

1
2π

log |x−x0|
r0

, n = 2.
with r0 = |x0|.

Related also to the fundamental solution of Laplacian, we introduce the simple and
double layer potential. If ϕ ∈ C0(S), then the expression:

u1(x) =
∫

S

En(σ − x)ϕ(σ)dω(σ), σ ∈ S

is everywhere defined on R
n and it is called single layer potential [14].

u2(x) =
∫

S

∂

∂n
En(σ − x)ϕ(σ)dω(σ) =

1
σn

∫

S

Σ
(σi − xi)ni(σ)

|σ − x|n ϕ(σ)dω(σ)

It is called double layer potential, where ϕ(σ)dω(σ) is a measure on S, n(σ) is the
vector normal to S in σ ∈ S and exterior to B.
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Proposition 2.2.1. Given Br0 and u ∈ H(Br0) ∩ C0(Br0). For ∀x ∈ Br0, we have
the Poisson formula:

u(x) =
1

r0σn

∫

Sr0

r2
0 − |x− x0|2

|t− x|n u(t)dwr0(t), (2.6)

where dwr0(t) is a measure on the sphere Sr0 and H(Br0) is the space of the harmonic
functions on Br0.

2.2.2 Mean-value property

Theorem 2.2.2. [19] Mean-value property for the ball Given Br0, u harmonic
and u ∈ L1(Br0), we have:

u(x0) =
n

σnrn
0

∫

Br0

u(x)dx =
n

σnr
n−1
0

∫

B

u(x0 + r0y)dy.

where σn/n is the volume of the unit ball B.

Theorem 2.2.3. [19] Mean-value property for the sphere Given Br0, u
harmonic and u ∈ C0(Br0), for every x, we have:

u(x0) =
1

σnr
n−1
0

∫

Sr0

u(t)dωr0(t) =
1

σnr
n−2
0

∫

S

u(x0 + r0σ)dω(σ).

2.3 Data representation

In solving theoretical and mathematical physical problems, we usually use var-
ious special functions. Such kind of problems we can find in connection with heat
conduction, propagation of electromagnetic or acoustic waves, etc. Usually, the spe-
cial functions are solutions of differential equations. In the following we introduce
several classes of special functions as: the classical orthogonal polynomials (Jacobi,
Laguerre, Hermite, Legendre), spherical harmonics, Bessel and hypergeometric func-
tions [4, 52].
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2.3.1 Orthogonal polynomials

General properties

In the literature of orthogonal polynomials, there exists many definitions of or-
thogonality [4, 52].

Let be [a, b] ⊂ R. The simplest way to say that two polynomials p(x) and q(x)
are orthogonal is to write the inner product 〈p, q〉 = 0. The operator 〈·, ·〉 is defined

in terms of the integral of a weighted product 〈p, q〉ω =
∫ b

a
p(x)q(x)ω(x)dx, with

dω(x) = ω(x)dx, where ω : [a, b] → R is a weight function.

A sequence of polynomials p0, p1, p2, . . . is called sequence of orthogonal polyno-
mials if pn is of degree n and all distinct members of the sequence are orthogonal
between them.

To construct a sequence of orthogonal polynomials, one may use the Gram-
Schmidt procedure. For this, we define a projection operator on the polynomials

as: projf (g) =
〈f, g〉
〈f, f〉f =

b∫
a
f(x)g(x)dx

b∫
a
(f(x))2dx

f(x), [a, b] ⊂ R. To apply the algorithm, we

define our set of original polynomials g1, g2, . . . , gk by gp(x) = xp, p = 1, . . . , k which
generate a sequence of orthogonal polynomials f1, f2, . . . , fk using:

f1 = g1,

f2 = g2 − projf1
(g2),

f3 = g3 − projf1
(g3) − projf2

(g3),
...

fk = gk −
k−1∑

j=1

projfj
(gk).

Here, the polynomials are supposed to be dense in L2[a, b].

A second method which can be used for the construction of orthogonal polyno-
mials is given by the following method of moments:

Let µn =
∫
R
xndω be the moments of a measure dω. Then the polynomial sequence

defined by:
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pn(x) = det




µ0 µ1 µ2 · · · µn

µ1 µ2 µ3 · · · µn+1

µ2 µ3 µ4 · · · µn+2
...

...
...

...
µn−1 µn µn+1 · · · µ2n−1

1 x x2 · · · xn




is a sequence of orthogonal polynomials with respect to the measure dω on R. For
more details, see [3, 35].

This section is devoted to present the properties of the orthogonal polynomials.
Orthogonal polynomials are frequently used to construct highly accurate Gaussian
quadrature associated with some weight function ω on [a, b].
The following properties of the orthogonal polynomials are from [4].

Definition 2.3.1. We say that a sequence of polynomials {pn(x)}∞
0 , where pn(x) has

exact degree n, is orthogonal with respect to the measure dω(x) on [a, b] if:

∫ b

a
pn(x)pm(x)dω(x) = hnδmn. (2.7)

Theorem 2.3.1. Three-term recurrence relation: A sequence of orthogonal
polynomials {pn(x)} satisfies:

pn+1(x) = (Anx+Bn)pn(x) − Cnpn−1(x) for n ≥ 0,

where we set p−1(x) = 0. Here An, Bn and Cn are real constants, n = 0, 1, 2, . . . and
An−1AnCn > 0, n = 1, 2, . . .. If the highest coefficient of pn(x) is kn > 0, then

An =
kn+1

kn

, Cn+1 =
An+1

An

hn+1

hn

,

where hn is given by (2.7).

An other useful general property of orthogonal polynomials is the following
Christofell Darboux formula:

Theorem 2.3.2. Christofell-Darboux formula: Suppose that the pn(x) are nor-
malized so that:

hn =
∫ b

a
p2

n(x)dω(x) = 1.



2.3. DATA REPRESENTATION 19

Then
n∑

m=0

pm(y)pm(x) =
kn

kn+1

pn+1(x)pn(y) − pn+1(y)pn(x)
x− y

, (2.8)

where kn is the highest coefficient of pn(x).
When hn = 1 and x = y, then:

n∑

k=0

p2
k(x) =

kn

kn+1

(p′
n+1(x)pn(x) − pn+1(x)p′

n(x))

with p′
n+1(x)pn(x) − pn+1(x)p′

n(x) > 0 for all x.

Remark 2.3.1. If hn 6= 1, then (2.8) takes the form:

n∑

m=0

pm(y)pm(x)
hm

=
kn

kn+1

pn+1(x)pn(y) − pn+1(y)pn(x)
(x− y)hn

for x 6= y.

For x = y, we have:

n∑

m=0

(pm(x))2

hm

=
kn

hnkn+1

(pn+1(x)pn(x) − pn+1(x)pn(x)).

Remark 2.3.2. Given a sequence of polynomials {pn(x)} orthogonal with respect to
a measure ω(x), the coefficients a(k,m, n) in

pm(x)pn(x) =
m+n∑

k=0

a(k,m, n)pk(x)

are given by:

a(k,m, n) =
1
hk

∫

I
pm(x)pn(x)pk(x)dω(x). (2.9)

A very important class of orthogonal polynomials arises from a differential equa-
tion of the form, see [35]:

Q(x) f ′′ + L(x) f ′ + λf = 0, (2.10)

where Q is a given at most quadratic polynomial, and L is a given linear polynomial.
The function f , and the constant λ, are to be found. Letting D be the differential
operator, D(f) = Qf ′′ + Lf ′, and changing the sign of λ, the problem is to find
the eigenvectors (eigenfunctions) f and the corresponding eigenvalues λ, such that f
does not have singularities and D(f) = λf . The solutions of this differential equation
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have singularities unless λ takes on specific values. There is a sequence of numbers
λ0, λ1, λ2, . . . that lead to a sequence of polynomial solutions P0, P1, P2, . . . . If Q is
actually quadratic, it has two distinct real roots, the root of L lies strictly between
the roots of Q, and the leading terms of Q and L have the same sign. Fore more

details see [3]. Letting R(x) = e
∫

L(x)
Q(x)

dx, the polynomials are orthogonal under the

weight function W (x) =
R(x)
Q(x)

. Because of the constant of integration, the quantity

R(x) is determined only up to an arbitrary positive multiplicative constant.

Also, under the previous section, we have λn = −n
(
n− 1

2
Q′′ + L′

)
. Since Q is

quadratic and L is linear, Q′′ and L′ are constants, so these are just real numbers.
Note that the orthogonal polynomial, pn(x) is proportional to

1
ω(x)

dn

dxn
(ω(x)[Q(x)]n).

In fact, we have the normalized polynomial:

pn(x) =
µ

ω(x)
dn

dxn
(ω(x)[Q(x)]n) (2.11)

with µ a normalizing constant. This is known as Rodrigues formula [4, 52]. We
distinguish the follow cases:

1. a = −1, b = +1, ω(x) = (1 + x)α(1 − x)β, α > −1, β > −1.
Then, except for a constant factor, the orthogonal polynomial pn(x) is the
Jacobi polynomial P (α,β)

n (x).

If α = β, there are some special cases, excepting the constant factors:

(a) for α = β = −1
2

the Chebychev polynomials of first kind;

(b) for α = β = +1
2

the Chebychev polynomials of second kind;

(c) for α = β = 0 we have the Legendre polynomials.

2. a = 0, b = +∞, ω(x) = e−xxα, α > −1.
In this case, pn(x) is except for a constant, the Laguerre polynomial Lα(n);

3. a = −∞, b = ∞, ω(x) = e−x2
.

In this case, pn(x) is, save for a constant factor, the Hermite polynomial Hn(x).
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Zeros of orthogonal polynomials

It is important to mention that orthogonal polynomials have the same general
properties concerning the number of their zeros and the way to compute these zeros.

Theorem 2.3.3. [4] Suppose that {pn(x)} is a sequence of orthogonal polynomials
with respect to the distribution dω(x) on the interval [a, b]. Then pn(x) has n simple
zeros in [a, b].

Proposition 2.3.1. If {pn(x)} satisfies the three term recursive formula (2.3.1),
then:

pn(x) = det




A0x+B0 1 0 0 0
C1 A1x+B1 1 0 0
0 C2 A2x+B2 1 0
...

. . . . . .
...

An−2x+Bn−2 1
0 Cn−1 An−1x+Bn−1




.

More, under the hypothse that An = 1,∀n and Cn = |dn|2 = dndn, then the zeros
of pn(x) are the eigenvalues of the matrix:

M =




−B0 d1 0 . . . 0 0 0 0
d1 −B1 d2 . . . 0 0 0

0 d2 −B2 d3
...

...
. . . . . . . . .

0 0
0 dn−2 −Bn−2 dn−1

0 0 dn−1 −Bn−1




.

We note that the matrix M is an Hermetian matrix, with Bn ∈ R.

2.3.2 Legendre polynomials and functions, Gauss Legendre quadrature for-

mula

For a = −1, b = 1 we have the special case of orthonormal polynomials, called
Legendre polynomials [4].
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They are given by the formula:

Pn(x) =
1

2nn!
dn

dxn
(x2 − 1)n. (2.12)

The Legendre polynomials form a complete orthogonal set of L2[−1, 1]:
∫ 1

−1
Pn′(x)Pn(x)dx =

2
2n+ 1

δn′n. (2.13)

By using Theorem 2.3.2, the relations (2.12) and (2.13), one gets the following re-
cursion formula for Legendre polynomials:

Remark 2.3.3. Recursive formula:

P0(x) = 1, P1(x) = x, Pn(x) = −n− 1
n

Pn−2(x) +
2n− 1
n

xPn−1(x). (2.14)

Since the Legendre polynomials form a complete set of L2[−1, 1], any function
f(x) ∈ L2[−1, 1] can be expanded in terms of them:

f(x) =
∞∑

n=0

AnPn(x), (2.15)

where
An =

2n+ 1
2

∫ 1

−1
f(x)Pn(x)dx.

We note that it is possible to compute the successive derivatives of the Legendre
polynomials in an explicit manner. This is done as follows. If P (α,β)

n (x) denote the
Jacobi polynomials, then we have [4]:

Proposition 2.3.2.

d
dx
P (α,β)

n (x) =
n+ α+ β + 1

2
P

(α+1,β+1)
n−1 (x).

Consequently, it is easy to see that ∀k, 0 ≤ k ≤ n, we have:

dk

dxk
P (α,β)

n (x) =
n+ α+ β + 1

2
· n+ α+ β + 2

2
· . . . · n+ α+ β + k

2
P

(α+k,β+k)
n−k (x).

If now, we take α = β = 0 one gets the k-derivative of Legendre polynomials Pn in
function of the Jacobi polynomials P

(k,k)
n−k :

dk

dxk
Pn(x) =

n+ 1
2

· n+ 2
2

· . . . · n+ k

2
P

(k,k)
n−k (x). (2.16)
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Remark 2.3.4. We denote the Legendre polynomial P (0,0)
n (x) by Pn(x).

We introduce Legendre function g(θ) = Pnm(cos θ) as a solution of Legendre
differential equation:

g′′(θ) sin θ + g′(θ) cos θ +
[
n(n+ 1) sin θ − m2

sin θ

]
g(θ) = 0, 0 ≤ θ ≤ π. (2.17)

The subscript n is the degree and the subscript m the order of Pnm.

It is convenient to transform Legendre differential equation (2.17) by the substi-
tution x = cos θ ∈ [−1, 1]. We use overbar to denote g as a function of x. Using this
and the substitutions:

g(θ) = g(x),

g′(θ) =
dg
dθ

=
dg
dx

dx
dθ

= −g′(x) sin θ,

g′′(θ) = g′′(x) sin2 θ − g′(x) cos θ

and then substituting sin2 θ = 1 − x2, we get:

(1 − x2)g′′(x) − 2xg′(x) +
[
n(n+ 1) − m2

1 − x2

]
g(x) = 0, x ∈ [−1, 1]. (2.18)

The Legendre function Pnm(x) is defined by :

Pnm(x) =
1

2nn!
(1 − x2)

m
2

dn+m

dxn+m
(x2 − 1)n. (2.19)

For fixed m the functions Pnm(x) form an orthogonal set on the interval −1 ≤ x ≤ 1.
They satisfy: ∫ 1

−1
Pn′m(x)Pnm(x)dx =

2
2n+ 1

(n+m)!
(n−m)!

δn′n.

We introduce also the normalized associated Legendre functions P nm:

P nm(x) :=

√√√√(2n+ 1)
2

(n−m)!
(n+m)!

Pnm(x). (2.20)

Remark 2.3.5. For m = 0 in (2.19) we obtain the Legendre polynomials.

In the following, we introduce the addition theorem for Legendre polynomials:
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Theorem 2.3.4. Given two points (θ, φ1) and (θ′, φ2) on the unit sphere, we have
the identity [4]:

Pn(cos θ cos θ′ + sin θ sin θ′ cosφ) (2.21)

= Pn(cos θ)Pn(cos θ′) + 2
n∑

m=1

(n−m)!
(n+m)!

Pnm(cos θ)Pnm(cos θ′) cos(mφ),

where φ = φ1 − φ2 is the spherical distance between (θ, φ1) and (θ′, φ2).

Gaussian quadrature formula

We want to approximate an integral which can not be evaluated exactly.
Let us consider {Pn(x), n ∈ N} a sequence of polynomials orthogonal with respect
to measure dω:

∫ b

a
Pn(x)Pm(x)dω(x) = 0, for m 6= n. (2.22)

Let xj, j = 1, 2, . . . , n denote the zeros of Pn(x).

Theorem 2.3.5. [4] Using the above notations, there are positive numbers
λ1, λ2, . . . , λn such that for every polynomial f(x) of degree at most 2n− 1:

∫ b

a
f(x)dω(x) =

n∑

j=1

λjf(xj). (2.23)

Remark 2.3.6. If f(x) is not a polynomial of degree ≤ 2n − 1, then (2.23) is not
exact, but we have an approximation of the integral by the finite left sum.

Remark 2.3.7. Gauss considered the case where dω(x) = dx, Lebesgue measure on
R in Theorem 2.3.5. The orthogonal polynomials are then the Legendre polynomials
for the interval [−1, 1] introduced in Section 2.19.

For an interval [a, b], the integral is approximated by the finite sum:
∫ b

a
f(x)dx ≃

n∑

j=1

λjf(xj),

where the nodes xj are the roots of the Legendre polynomials Pn(x) and the weights
λj are given by the formula:

λj = −an+1

an

1
Pn+1(xj)P ′

n(xj)
, (2.24)
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where an denotes the coefficient of xn in Pn.
The error of the Gaussian quadrature is given as follows:

∫ b

a
f(x)dx =

n∑

k=1

λkf(xk) +
1
a2

n

f (2n)(η)
(2n)!

∫ b

a
P 2

n(x)dx, a ≤ η ≤ b. (2.25)

2.3.3 Fourier expansion

We identify R
2 = {(x, y)} by the complex space C = {z = x+ iy = Reiθ} and the

unit circle by {eiθ; θ ∈ R}.
Using the theory of Fourier series, we know that on the unit circle, every f ∈ L2(T)
has an expansion of the form:

f(eiθ) =
∑

n∈Z

fneinθ =
∑

n≥0

fneinθ +
∑

n<0

fneinθ = f+(eiθ) + f−(eiθ),

where

f+(z) =
∑

n≥0

fnz
n,

f−(z) =
∑

n<0

fnz
n.

For z = reiθ we have:

f+(z) =
∑

n≥0

fnr
neinθ,

f−(z) =
∑

n<0

fnr
neinθ =

∑

n>0

f−nr
−ne−inθ.

Given f+(z) =
∑

n≥0

fnz
n and h−(z) =

∑

k>0

hkz
−k, the inner product is computed as:

< f+, h− >L2(T)= Re
∫ 2π

0
f+(eiθ)h−(eiθ)

dθ
2π

= Re
∑

n,k

fnhk

∫ 2π

0
ei(n+k)θ dθ

2π
= 0, k > 0, n ≥ 0.

Proposition 2.3.3. Recall briefly that a function f+ is analytic in D if and only
if f+(z) = u(x, y) + iv(x, y), where u and v are conjugate harmonic functions (they
satisfy the Cauchy-Riemann equations):

∂u

∂x
=
∂v

∂y
,

∂v

∂x
= −∂u

∂y
,
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2.3.4 Hardy spaces

Given f an analytic function on the disk denoted by D, we define:

M2(f, r) =
[ 1
2π

∫ π

−π
|f(r expiθ)2|dθ

] 1
2 and M∞(f, r) = sup

θ
|f(reiθ)|,

where r, θ are polar coordinates on D.

‖f‖p = lim
r→1

Mp(f, r), p = 2,∞.

The Hardy spaces Hp(D), p = 2,∞ are defined being the set of the holomorphic
functions f on D such that ‖f‖p < ∞ [44].

Definition 2.3.2. H
2
0(D) Hardy space is the orthogonal complementary of H2(D) on

L2(T):
L2(T) = H2(D) ⊕H

2
0(D). (2.26)

For n ≥ 3, the analogous expansion for functions f ∈ L2(S) is got using the
spherical harmonics instead of the exponentials einθ, see the following Section.

2.3.5 Spherical harmonics

Laplace equation in spherical coordinates

In spherical coordinates (r, θ, φ), the Laplace equation (2.2) can be written in the
following form, see [30]:

1
r

∂2

∂r2
(rF ) +

1
r2 sin θ

∂

∂θ

(
sin θ

∂F

∂θ

)
+

1
r2 sin2 θ

∂2F

∂φ2
= 0. (2.27)

The method of separation of variables is used to solve a wide range of linear partial
differential equations with boundary and initial conditions, such as Laplace equation,
heat equation, wave equation, and Helmholtz equation. Using the separation of
variables, we look for F under the form:

F (r, θ, φ) =
U(r)
r

P (θ)Q(φ). (2.28)

Substituting (2.28) into (2.27) we get:

Q(φ) = e±imφ, m is a constant
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as solution of the equation
1
Q

d2Q

dφ
= −m2. (2.29)

Moreover, P and U satisfy the two differential equations:

1
sin θ

d
dθ

(
sin θ

dP
dθ

)
+

[
n(n+ 1) − m2

sin2 θ

]
P = 0 (2.30)

d2U

dr2
− n(n+ 1)

r2
U = 0 (2.31)

with n(n+ 1) a real constant. The solution of (2.31) is :

U = Anr
n+1 +Bnr

−n.

The coefficients An and Bn will be determined from the boundary conditions of
the problem. In (2.28), the solution of Laplace equation was decomposed into a
product of factors for three variables r, θ and φ. Now, if we combine the angular
factors, we construct orthonormal functions over the unit sphere. These functions
are called spherical harmonics or tesseral harmonics in older books. The functions
Qm(φ) = eimφ, m ∈ Z form a set of orthogonal functions on the interval 0 ≤ φ ≤ 2π.
The functions Pnm(cos θ) form a similar set in the index n for each m value on the
interval −1 ≤ cos θ ≤ 1. Therefore their product PnmQm will form an orthogonal set
on the surface of the unit sphere in the two indexes n,m. Using the normalization
constant, given in [42], the suitable normalized spherical harmonics, denoted by Yn,m

are given as follows:

Ynm(θ, φ) =

√√√√2n+ 1
4π

(n−m)!
(n+m)!

Ỹnm(θ, φ) (2.32)

∫

S

Y 2
nm(θ, φ)dω(θ, φ) = 1.

with
Ỹnm(θ, φ) = Pnm(cos θ)eimφ, (2.33)

with Pnm the Legendre functions and Qm = eimφ. For m = 0 the spherical harmonic
functions are identified with Legendre’s polynomials, which as we have seen they
have n zeros in the interval −1 ≤ t ≤ 1 (0 ≤ θ ≤ π). Therefore, the spherical
harmonics functions for m = 0, which in this case they do not depend on θ, they
change their sign n times in the interval. Since they divide the sphere into zones,
they are also called zonal harmonics.
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Figure 2.1: Zonal spherical harmonics

We notice that Ynm can be also written as a product of a function g(θ) and
h(φ) (method of separation of variables). The function g, respectively h verify the
equation (2.18) and (2.29), respectively. We notice also that the Legendre functions
Pnm verify the equation (2.30). Therefore, the solution of Laplace equation (2.2) can
be written in terms of spherical harmonics and powers of r as:

F (r, θ, φ) =
∞∑

n=0

n∑

m=−n

[
Anmr

n +Bnmr
−(n+1)

]
Ynm(θ, φ).

Dimension of the space of spherical harmonics

Let Vn be the vector space of homogeneous polynomials of degree n in k variables.
Each polynomial p ∈ Vn has the form [4, 19]:

p(x) =
∑

|α|=n

cαx
α,

where α = (α1, α2, . . . , αk), x = (x1, x2, . . . , xk), cα = cα1,α2,...,αn
, xα = xα1

1 · . . . · xαk

k

and |α| =
∑k

i=1 αi, where αi are nonnegative integers. The dimension of Vn is the
number of k-tuples (α1, α2, . . . , αk) with

∑k
i=1 αi = n. For instance, in the case of

two variables, the dimension of the space of harmonic polynomials of degree n > 0
is 2, but dn,2 = n+ 1 (the number of solutions of

∑k
i=1 αi = n with αi nonnegative).
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Remark 2.3.8. The number of linearly independent harmonic polynomials of degree
n in k variables is [42]:

cn,k = dn,k−1 + dn−1,k−1 = (2n+ k − 2)
(n+ k − 3)!
n!(k − 2)!

. (2.34)

Observe that cn,2 = 2 and cn,3 = 2n + 1 for n > 0. In the special case where k = 3,
(2.34) tells us that the space of spherical harmonic functions of degree n is a vector
space of independent harmonic polynomials in 3 variables for a dimension 2n+ 1.

Orthogonality of spherical harmonics

On the space L2(S) of square integrable functions on S, we have the inner product:

〈f, g〉S =
∫

S

f(σ)g(σ)dω(σ), σ ∈ S, f, g ∈ L2(S). (2.35)

Here dω(σ) = sin θdθdφ, σ = (θ, φ) ∈ S is the usual surface measure on the sphere.

Proposition 2.3.4. Spherical harmonics of different degrees are orthogonal with
respect to the inner product (2.35). Moreover, they verify:

〈Ynm, Yn′m′〉S = δnn′δmm′ . (2.36)

Proposition 2.3.5. [19] The spherical harmonics are the eigenfunctions of the
Laplacian:

∆Ynm(σ) = −n(n+ 1)Ynm(σ), ∀σ ∈ S. (2.37)

Proposition 2.3.6. The functions Ynm form an orthonormal baisis for the space of
spherical harmonics functions of degree n of the space R

3.

We have: ∫ 1

−1
[Pnm(x)]2dx =

2
2n+ 1

(n+m)!
(n−m)!

so that an orthonormal set of spherical harmonics of degree n for k = 3 is given by:
√

2n+ 1
4π

Pn(x), Anm cosmφPnm(x), Anm sinmφPnm(x), m = 1, . . . , 2n

where

Anm =

√√√√(n−m)!(2n+ 1)
(n+m)!2π

.
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Now take:
ξ = (cosα, sinα cosφ1, sinα sinφ1)

and
η = (cosβ, sin β cosφ2, sin β sinφ2)

so that (ξ, η) = cosα cos β + sinα sin β cosφ when φ = φ1 − φ2.

Proposition 2.3.7. Addition formula for spherical harmonics:

n∑

m=−n

Ynm(θ, φ)Ynm(θ′, φ′) =
2n+ 1

4π
Pn(cos γ), (2.38)

where cos γ = cos θ cos θ′ +sin θ sin θ′ cosφ is the spherical distance between (θ, φ) and
(θ′, φ′).

In the next paragraph we introduce important properties of spherical harmonics:

Proposition 2.3.8. [42] Recursive formula:

cos θ · Ynm =
((n+ 1)2 −m2

4(n+ 1)2 − 1

)1/2

Yn+1,m +
(n2 −m2

4n2 − 1

)1/2
Yn−1,m.

Proposition 2.3.9. [42] Differentiation formula:

∂Ynm(θ, φ)
∂θ

= − sin θ
eimφ

√
2π

· dP nm(x)
dx

|x=cos θ.

Note that any square-integrable function on the sphere can be expanded in terms
of spherical harmonics as:

f(θ, φ) =
∞∑

n=0

n∑

m=−n

fnmYn,m(θ, φ), (2.39)

where fnm are the spherical harmonics coefficients associated to Yn,m(θ, φ).
These spherical Fourier coefficients fnm can be computed by

fnm = 〈f, Ynm〉S =
∫ 2π

0

∫ π

0
f(θ, φ)Ynm(θ, φ) sin θdθdφ (2.40)

which by discretization of the integrals is approximately equal to the sum:

D∑

d=1

wdf(θd, φd)Ynm(θd, φd). (2.41)
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We note that here the spherical harmonics functions Ynm are normalized, see (2.32).
The integral over the sphere ∫

S

f(x)dω(x) (2.42)

is approximately equal to the sum:

D∑

d=1

wdf(θd, φd)Ynm(θd, φd)

by considering the Gauss-Legendre quadrature formula (χS,WS), see [34], where
ω(x) is the Lebesgue measure on the sphere and (θd, φd) ∈ χS = {θj, j = 0, . . . , S} ×
{φk, k = 0, . . . , 2S + 1}- a sampling set of the nodes with

φk = kπ
S+1

, φk ∈ [0, 2π], S ∈ N.

The θj and φk are called the co-latitudinal and longitudinal nodes, respectively. For
the co-latitudinal direction we use the Gauss-Legendre quadrature with θj nodes and
wj weights which can be obtained as the solution of an eigenvalue problem, see [20],
pp. 95. The weights

WS = {wd = wj,k, j = 0, . . . , S, k = 0, . . . , 2S + 1}

for the entire quadrature formula are then given by:

wj,k =
2π

2S + 2
wj (2.43)

Comparing with Gaussian quadrature where the nodes are computed as zeros of
Legendre polynomials and the weights are given by 2.43, (see Section 2.3.2), here, the
nodes and the weights are given by the couple (χS,WS). Using the Gauss-Legendre
quadrature formula, the integral over the sphere:

∫

S

f(x)dw(x) =
∫ 2π

0

∫ π

0
f(θ, φ) sin θdθdφ

is approximately equal to the double sum:
∑

j∈{0,...,S}

∑

k∈{0,...,2S+1}

wj,kf(θj, φk).

In the previous integral, we apply a variable change for the interior one and we get:
∫ 2π

0

∫ 1

−1
f(arccosx, φ)dxdφ (2.44)
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which using Gauss-Legendre quadrature formula we get that the initial integral is
approximately equal to:

S∑

j=0

wj

∫ 2π

0
f(arccosxj, φ)dφ

The same step is applied for the second integral over [0, 2π] and we get:

S∑

j=0

wj

2S+1∑

k=0

αkf(arccosxj, φk)

Now, we denote the weights for the entire quadrature formula wjαk by wj,k, see
(2.43). With this we obtain that the integral on the sphere is approximately equal
to:

2S+1∑

k=0

S∑

j=0

2πwj

2S + 2
f(arccosxj, φk).

2.4 Statement of the problems

2.4.1 M/EEG

Notations

In this section we introduce the main notations used for the description of
M/EEG problem.
For a real value function f(~r), respectively f(~r′), we denote by ∇f , respectively ∇′f
the gradient of f , i.e the vector field whose components are the partial derivatives
of f with respect to ~r ∈ R

3, respectively to ~r′-variable.

We denote by:

• ~r the position of the point r in R
3;

• ρc(~r, t) the (volumic) charge density at location ~r and time t;

• ~E(~r, t) the electric field vector;
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• ~B(~r, t) the magnetic field vector;

• ~J(~r, t) the current density vector.

Maxwell’s equations

Using quasi-static assumptions, Maxwell’s equations lead to a formulation of the
magnetic potential ~B as a solution of a differential partial equation.
The Maxwell’s equations in vacuum are [30]:

∇ · ~E =
ρc

ε0

, ~∇ × ~E = −∂~B
∂t
, (2.45)

where ε0 ≃ 8.85 10−12Fm−1 is the electrical permittivity of the vacuum and ρc is the
total charge density:

∇ · ~B = 0, ~∇ × ~B = µo


~J + ε0

∂~E
∂t




and µo = 4π10−7Hm−1 is the magnetic permeability. Because the frequencies of the
electromagnetic signals of the brain are very low, the quasi-static approximation of
Maxwell’s equations allows us to neglect the derivatives with respect to time. With
this assumption, the fourth Maxwell’s equation becomes:

~∇ × ~B = µo
~J. (2.46)

Because µo = 0 at the exterior of the head, the curl of the magnetic field is zero:

~∇ × ~B = 0. (2.46′)

Since the curl of the electric field is zero, this field is the gradient of electric potential
U :

~E = −~∇U. (2.47)

Inside the head, the current density ~J, can be decomposed into:
-a volumic density ~J

v
= σ~E where σ is the head conductivity;

-a primary current ~J
p
:

~J = ~J
p

+ σ~E.
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Using (2.47), we have:
~J = ~J

p − σ~∇U. (2.48)

Using (2.46) and that the curl of the divergence is zero, we have:

∇ · ~J = 0

Thus, using (2.48):
∇ · (σ~∇U) = ∇ · ~Jp

.

The primary current generated by N dipolar sources Ck of moments pk is:

~J
p

=
N∑

k=1

pk · δCk
,

where δCk
is the Dirac distribution. Then, we have:

∇ · ~Jp
=

N∑

k=1

pk · ∇δCk

and

∇ · (σ~∇U) =
N∑

k=1

pk · ∇δCk
. (2.49)

Because the sources are localized inside the interior layer (brain), (2.49) becomes:




σ∆U =
N∑

k=1

pk.∇δCk
in B

σ ∂U
∂n |S

= g on S

∆U = 0 in B
e.





(2.50)

where, here σ is the brain conductivity.

2.4.2 Geophysics

We recall that inside the Earth, the gravitational potential verifies [54]:

−∆V (X) = ρ(X).

Outside the Earth, the potential verifies the Laplace equation:

∆V (X) = 0.
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Now, if we consider a system of several point masses m1,m2, . . . ,mN , the potential
of the system is the sum of each contribution:

V (X) =
m1

|X − C1|
+

m2

|X − C2|
+ . . .+

mN

|X − CN | =
N∑

k=1

mk

|X − Ck| .

Here, the density ρ is approximated by a monopolar discrete distribution ρN(X) =∑N
k=1 mkδCk

(X). For (1.3) we assume that point masses are distributed continuously
over the volume v of the Earth (which is modeled by the unit ball) with density
ρ ∈ L2:

ρ =
dm
dv

with dm an element of the mass and dv an element of volume. In Newton’s integral
(1.3), |X −Y | represents the distance between the mass elements dm = ρdv and the
point Y . Let us consider (x, y, z) the coordinates of the point X and (ξ, η, ζ) the
coordinates of the point Y . Then, the distance |X − Y | becomes:

|X − Y | =
√

(x− ξ)2 + (y − η)2 + (z − ζ)2.

The gravitational force F is the gradient of V :

Fx =
∂V

∂x
, Fy =

∂V

∂y
, Fz =

∂V

∂z
.

In vector notation, the force vector F is the gradient of the scalar function V :

F = [Fx, Fy, Fz] = gradV.

The disposed measurements can be values of the potential V , of the gravitaional
force F or of the Hessian of V .

2.4.3 Unified formulation

As we have seen, the both inverse problems are modeled by the partial differential
equation:

−∆Pot = ρ

inside the domain (here, the ball B), and

∆Pot = 0 (2.51)
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outside the domain (Be). To underline this commune feature, in the following, we give
a mathematical description of the M/EEG and geophysics problems and we introduce
briefly the paleomagnetism problem. In all these cases, the direct (forward) problem
(FP) and the inverse problem (IP) can be formulated by:

(FP ) :

{
Tρ = Pot in B;
∂P ot
∂n |S

= g in S;

and

(IP ) :





∆Pot = ρ in B;
∆Pot = 0 in B

e = R \ B;
TρN ≃ Pot in S.

The resolution of the inverse problem (IP) consists on two inverse problems: data
transmission problem (TP) and density recovery (DR) by passing by (SR)-source
recovery. In general, we dispose of the data just over a region and in this case we
pass by the transmission of the data (TP) towards the surface of all the sphere
(∂B = S):

(TP): Given values of Pot over a region of S or SR (R > 1) estimate Pot over
whole the sphere S.

The second step which consist in solving the inverse problem is the sources
recovery:

(SR): Find the density ρN =
∑N

k=1 mkδCk
given measurements of the discrete

potential PotN .
We recall that the problems of our interest are modeled by the next partial differential
equation:

−∆Pot = ρ with ρ = ρr︸︷︷︸
smooth

+ ρs︸︷︷︸
singular part

(2.52)

In geodesy, we have:
ρ = ρr ∈ L2(B) and ρs = 0.

We can dispose of gravimetric measurements ∇V (the gravitational force) on the
surface of the Earth or of satellite measurements of gravitational potential V [1].

Remark 2.4.1. The measurements can be given directly as pointwise values at the
sphere surface or as data obtained after the extrapolation step of the transmission
problem, which is the case that we discuss in this thesis.
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In electroencephalography (EEG), we have:

ρs =
∑

mk.∇δCk
and ρr = 0,

where mk, Ck are the masses of points, respectively the coordinates of these points.
The measurements of the electrical potential U or electrical flux ∂nU are taken on
the scalp of the head [8].

In magnetoencephalography (MEG), we have:

ρs =
∑

mk.∇δCk
and ρr = 0.

Here, mk are the moments of the sources Ck. Radial measurements of the magnetic
field ~B are taken at a distance of the head [31]. The magnetic field ~B is the curl of
a vector field ~A called potential vector: ~B = ~∇ × ~A, where ~A verifies ∆ ~A = −µ0

~J,
in this case we have a vectorial density, so ρ = −µ0

~J.

In paleomagnetism:

ρs = ∇ · ~M and ρr = 0 where ~M ∈ L1 is a distribution.

The magnetic field of the Earth, ~B, is resumed through the time and it is used to
determine the age of rocks, reconstructions of the deformational histories of parts of
the crust, etc.
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Chapter3
Slepian bases on the sphere

In this chapter we present a new basis which is used for the partial representation of
the data on the sphere. This basis was introduced by Slepian and it was used after,
in many domains of applied mathematics. Here we will present two computation
methods already existed in the literature and we introduce one method based on the
Gauss-Legendre quadrature method.

3.1 Construction of Slepian functions on the sphere

3.1.1 Preliminaries

For the two inverse problems that we considered, the data (the gravitational, electri-
cal or magnetic potential) can be measured over the whole sphere or just on a part of
it, as the north hemisphere or a spherical cap, continents, etc. When such a limited
area is studied, the spherical harmonic basis is prone to error, since it is no longer
orthogonal over the partial area. Therefore, the construction of a local spherical har-
monic basis that is orthogonal over the studied area of the sphere is required for the
study of the inverse problem. This issue of finding such a basis was first studied in
[2, 36] for an interval of the real line and for balls of Rn. The authors discovered bases
of functions (called Slepian functions) with energies concentrated in the considered
regions. This procedure is very useful in several domains of applied mathematics and
physics, notably geophysics [2], cosmology [27] and image processing [15, 48].

39



3.1. CONSTRUCTION OF SLEPIAN FUNCTIONS ON THE SPHERE 40

Bandlimited functions

We recall that any real-valued square-integrable function on the unit sphere can
be expanded as:

g(θ, φ) =
∞∑

n=0

n∑

m=−n

gnmYnm(θ, φ) (3.1)

Here, we are interested on the space of square-integrable functions with no power
above a bandwidth L, i.e g belongs to the space of bandlimited functions denoted
by BL with:

BL = {g ∈ L2(S)|g =
L∑

n=0

n∑

m=−n

gnmYnm}

Data concentration within a region of the sphere

Definition 3.1.1. The bandlimited functions g ∈ BL that are optimally concentrated
within a region Θ of the sphere are called spherical Slepian functions or simply Slepian
functions, in this thesis.

Slepian functions are those bandlimited functions g ∈ BL for which the concen-
tration within Θ is maximum, i.e. to maximize the ratio:

µ =
∫

Θ g
2(θ, φ)dw

∫
S
g2(θ, φ)dω

. (3.2)

These functions are the analogues of one dimensional Slepian’s time-frequency
concentration problem, see [36], on the surface of the unit sphere. They form an
orthonormal basis on the sphere and they are orthogonal over the studied region.
Such a basis is a useful tool in data analysis and representation in a variety of
applications. The spherical Slepian functions can be found by solving an algebraic
eigenvalue problem or an integral equation [46], see Section Method 1. In [40], the
Slepian functions are seen as a basis for the space of eigenfunctions of an integral
operator, see Definition (3.1.2).

In the case of real line, the computation of one-dimensional Slepian functions
was done using the fact that the differential operator of Sturm Liouville defined on
C2([−1, 1]):

L =
d
dx

(1 − x2)
d
dx

− c2x2, |x| ≤ 1 (3.3)
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obtained by solving the Helmotz equation by the separation of variables method with
the use of prolate spheroidal coordinates, commutes with the integral operator

∫ 1

−1

sin c(x− y)
π(x− y)

ψ(y)dy = µψ(x), |x| ≤ 1 (3.4)

where c > 0 is a given real number. The functions ψ are called proloidal spherical
wave functions (PSWF).

Method 1

This method was studied by Simons in [46, 47].
In order to maximize the ratio (3.2), we replace g by its bandlimited expansion

and we get:

µ =

L∑

n=0

n∑

m=−n

gnm

L∑

n′=0

n′∑

m′=−n′

Dnm,n′m′gn′m′

L∑

n=0

n∑

m=−n

g2
nm

,

where the orthonormality relation of the spherical harmonics is used for the denom-
inateur. Define the quantity:

Dnm,n′m′ =
∫

Θ
Ynm(θ, φ)Yn′m′(θ, φ)dω. (3.5)

Now, the maximization problem becomes:

µ =
gTDg
gTg

(3.6)

where D is a (L + 1)2 × (L + 1)2 matrix with elements Dnm,n′m′ and g =
(g00, . . . , gnm, . . . , gLL)T the vector of spherical harmonic coefficients associated to
the function g. The matrix D depends on the size of the region Θ and the band-
width L.

Every eigenvector gα, α = 1, . . . , (L+1)2 gives rise to an associated eigenfunction
gα ∈ BL. Thanks to the bandwidth L, the eigenfunctions g that are well concentrated
within the region Θ will have eigenvalues which are near unity, whereas those that
are poorly concentrated will have eigenvalues near zero. Using the index notation,
(3.6) is given as follows:

L∑

n=0

n∑

m=−n

Dnm,n′m′gn′m′ = µgnm. (3.7)
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If we multiply (3.6) by Ynm and sum over n and m we deduce that the eigenfunction
g satisfies the integral eigenvalue equation of the second kind in Θ:

D(g)(θ, φ) =
∫

Θ
D((θ, φ), (θ′, φ′))g(θ′, φ′)dw = µg(θ, φ), (θ, φ) ∈ Θ, (3.8)

where D is the integral operator and D is its associated kernel. The kernel D is
symmetric and depends on the spherical distance γ between (θ, φ) and (θ′, φ′) given
by cos γ = cos θ′ cos θ + sin θ′ sin θ cos(φ′ − φ):

D((θ, φ), (θ′, φ′)) =
L∑

n=0

2n+ 1
4π

Pn(cos θ′ cos θ + sin θ′ sin θ cos(φ′ − φ))). (3.9)

This method has the drawback to require the computation of the eigenvalues and
eigenvectors of an (L + 1)2 × (L + 1)2 order matrix with entries given by (3.5) that
requires a quadrature method to compute approximate values of these.

Method 2

This method was studied by Miranian in [40]. In Section 3.2 we develop an
efficient computational method which uses the Gauss-Legendre quadrature and it is
based on the method of Miranian.

We define the integral operator T over the region Θ ⊂ S:

(T f)(u) =
∫

Θ

L∑

n=0

Pn(〈u, u′〉Θ)f(u′)du′ =
∫

Θ

L∑

n=0

n∑

m=−n

Ynm(u)Y nm(u′)f(u′)du′, u ∈ Θ

with: ∫ 2π

0

∫ 1

−1
Ynm(x, φ)Y nm(x, φ)dxdφ = 1, x = cos θ

where Y nm are the conjugate of (2.32).
For a particular region Θ as a polar cap or two symmetrically caps (one at each

pole) defined by Θ : b ≤ cos θ ≤ 1 or 0 ≤ θ ≤ arccos b, 0 ≤ φ ≤ 2π, the Sturm
Liouville operator S:

S =
d
dx

[(1 − x2)(b− x)
d
dx

] − L(L+ 2)x− m2(b− x)
1 − x2

(3.10)

defined on the interval [b, 1] commutes with the operator T on the spaces of functions
whose dependence on φ is of the form eimφ. We denote these spaces by Hm with:
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Hm = {g|g(u) = g(θ, φ) = f(cos θ)eimφ, u ∈ Θ}
Definition 3.1.2. The operator Tm is the restriction of the operator T on the space
Hm, m = 0, . . . , L.

When the studied region is not anymore a polar cap, but a region with less
symmetry, spherical belt bounded by two parallels, etc., with Θ : a ≤ cos θ ≤ b or
arccos a ≤ θ ≤ arccos b with θ0 = arccos a, θ1 = arccos b we can always consider the
integral operator Tm, but to get the commuting local operator is not simple.

In the following, let consider a function g ∈ Hm, g(θ, φ) = f(cos θ)eimφ, x = cos θ
and apply it to the operator T , see [40]:

(Tm)g(u) =
∫

Θ
(

L∑

l=0

l∑

p=−l

Ylp(u)Y lp(u′))g(u′)du′

=
∫

Θ

L∑

l=0

l∑

p=−l

Ylp(x, φ)Y lp(x′, φ′)f(x′)eimφ′

dx′dφ′

=
∫ 2π

0

∫ b

a

( L∑

l=0

l∑

p=−l

2l + 1
4π

(l − p)!
(l + p)!

Plp(x)eipφPlp(x′)e−ipφ′

)
f(x′)eimφ′

dx′dφ′

=
∫ b

a

L∑

l=0

l∑

p=−l

2l + 1
4π

(l − p)!
(l + p)!

Plp(x)Plp(x′)f(x′)
(

eipφ
∫ 2π

0
eiφ′(−p+m)dφ′

)
dx′

= eimφ
∫ b

a

L∑

l=|m|

2l + 1
2π

(l − |m|)!
(l + |m|)!Plm(x)Plm(x′)f(x′)dx′.

Remark 3.1.1. By applying the operator T to a function g ∈ Hm, the result still
belongs to Hm.

We denote by Km the kernel of the operator Tm in the space Hm:

Km(x, x′) =
L∑

n=|m|

2n+ 1
2π

(n− |m|)!
(n+ |m|)!Pnm(x)Pnm(x′). (3.11)

Here, the problem (3.8) is reduced to the following eigenproblem:
∫ b

a
Km(x, x′)ψn,m(x′)dx′ = µn(m)ψn,m(x), ∀x ∈ [a, b]. (3.12)

with ψn,m the eigenfunctions of the operator Tm. The rank of Tm is L − |m| + 1
and so it admits L − |m| + 1 eigenvalues and L − |m| + 1 eigenfunctions, they are
concentrated in the studied region, the remaining are zero. In the following is given
the spectral study of the operator Tm, see [40]:
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Proposition 3.1.1. Let us consider the finite (L+ 1)2 operator Tm. Then:

• There are L+1 linearly independent orthogonal eigenfunctions of T0 that belong
to the space H0; consequently, T0 has only L+ 1 distinct non-zeros eigenvalues
that correspond to eigenfunctions in H0.

• The
L(L+ 1)

2
non zero eigenvalues of Tm have multiplicity 2: in both subspaces

Hm and H−m, Tm has L − m + 1 non-zero distinct eigenvalues, where m =
1, . . . , L− 1.

• L − |m| + 1 eigenfunctions of Tm belong to Hm for all |m| = 1, . . . , L − 1 and
are orthogonal.

The method used by Simons asks to compute the matrix D whose elements are
given by (3.5). For L very big, this computation can occupy a lot of memory and
time. In Section 3.2, we give a new practical method for computing the Slepian basis
and their associated eigenvalues. This method uses Gauss-Legendre quadrature and
it is based on the method proposed by Miranian.

Shifted Legendre polynomials

In the previous paragraph, we saw that the Sturm-Liouville operator S defined
on the interval [b, 1] commutes with the operator Tm for those functions which have
a dependence on φ of the form eimφ. In order to compute the eigenfunctions of S we
use the shifted Legendre polynomials [40]. Once, we have the eigenfunctions denoted
by ψn of the operator S, the Slepian functions are obtained by the multiplication
with eimφ. The shifted Legendre polynomials are defined to be the solutions of the
following second-order differential equation:

(b− x)(1 − x)S ′′
n + 2(x− b1)S ′

n − n(n+ 1)Sn = 0 (3.13)

with
b1 = (1 + b)/2, b2 = (1 − b)/2.

Proposition 3.1.2. Properties of shifted Legendre polynomials:

Recursion formula:

xSn = b1Sn +
b2(n+ 1)
2n+ 1

Sn+1 +
b2n

2n+ 1
Sn−1. (3.14)
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Derivative:

(1 − x)(b− x)S ′
n = b2

n(n+ 1)
2n+ 1

(Sn+1 − Sn−1). (3.15)

Normalized shifted Legendre polynomials:

Sn = Sn

√
(2n+ 1)/2b2.

In this case, to solve the problem Sψn = µnψn with m = 0 and m > 0, we use
the shifted Legendre polynomials [40].

For m = 0 the problem is reduced to the problem of computing eigenvectors of a
certain symmetric tridiagonal matrix.
We have: ( d

dx

[
(1 − x2)(b− x)

d
dx

]
− L(L+ 2)x

)
ψn = µnψn. (3.16)

We express ψn in terms of shifted Legendre polynomials:

ψn =
∞∑

k=0

an
kSk.

In the case m > 0, the problem will be reduced to a generalized matrix
eigenproblem Ax = µnBx with A,B two matrices, x their eigenfunctions and µn

their eigenvalues.
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3.2 New constructive method of Slepian functions on the

sphere

This method is based on the Gaussian quadrature formula applied to an eigen-
problem of the form (3.12) for functions which belong to Hm for x ∈ [a, b].

In this paragraph, we describe our Gaussian quadrature based technique for the
accurate and efficient computation of the Slepian functions on the sphere. Moreover,
we will provide the reader with the analysis of this method in computing the values
of the ψn,m as well as in computing the associated eigenvalues. This method is based
on discretizing (3.12) by using an N -point quadrature formula associated with a
Legendre polynomial PN(x) that is an orthogonal family over [a, b] ⊂ [−1, 1]. Hence,
(3.12) is approximated by the following eigensystem:

N∑

j=1

wjKm(xi, xj)ψn,m(xj) = µn(m)ψn,m(xi), 1 ≤ i ≤ N. (3.17)

Here, the wi, xi are the weights and the nodes of the N -point Gaussian quadra-
ture that are easily computed by the techniques of the paragraph Orthogonality of
spherical harmonics from Chapter 3.

3.2.1 Main results

We recall the substitutions and the notations:

x = cos θ, x′ = cos θ′, xi = cos θi (3.18)

and
θ0 = arccos a, θ1 = arccos b. (3.19)

Hence, (3.12) is rewritten as follows:
N∑

j=1

wjKm(cos θi, cos θj)ψn,m(cos θj) = µn(m)ψn,m(cos θi), 1 ≤ i ≤ N. (3.20)

We give the two main theorem results of this section:

Theorem 3.2.1. Given an integer 0 ≤ n ≤ L − m and an arbitrary real number
0 < ǫ < 1 ∃ N(ǫ, |µn(m)|) ∈ N such that ∀N > N(ǫ, |µn(m)|) we have:

sup
a≤θ≤b

∣∣∣∣ψn,m(cos θ) − 1
µn(m)

N∑

j=1

wjψn,m(cosϕj)Km(cos θ, cosϕj)
∣∣∣∣ < ǫ. (3.21)

The wj are the weights associated with the Legendre polynomial PN(x).
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The error analysis of our quadrature method for computing the eigenvalues of Tm

is given by the following theorem. We should note that this theorem is an adaptation
of a similar theorem given in the case of classical prolate spheroidal wave functions
in [32].

Theorem 3.2.2. Let m > 0 be a positive real number and let consider N an inte-
ger with 1 < N ≤ L − m + 1. Let (µi(m))0≤i≤N−1 denote the first N eigenvalues
of the integral operator Tm arranged in decreasing order of their magnitudes. Let
x1, . . . , xN ∈ [a, b] and w1, . . . , wN be the N different nodes and weights correspond-
ing to the N-th degree Legendre polynomial. Assume that

sup
0≤n≤N−1

sup
1≤l≤N

|ψn,m(xl) − 1
µn(m)

N∑

j=1

wjKm(xl, yj)ψn,m(xj)| ≤ ǫ. (3.22)

Moreover, assume that the matrix B = [ψl−1,m(xj)]1≤l,j≤N is nonsingular. Consider
the matrix ÃN = [wjKm(xl, yj)]1≤l,j≤N ; then we have:

max
0≤j≤N−1

|µj(ÃN) − µj(Tm)| ≤
ǫ
√
N(L−m+ 1)

π
. (3.23)

3.2.2 Bounds of associated Legendre functions and its derivatives

Before to give the proof of these two theorems we introduce the following results
concerning the associated Legendre functions.

We consider Pn(R) the set of all algebraic polynomials of degree at most n with
real coefficients. The following theorem is due to A.A. Markov [4]:

Theorem 3.2.3. If p ∈ Pn(R) and ‖p‖[−1,1] := max
−1≤t≤1

|p(t)| ≤ 1, then:

‖p′‖[−1,1] ≤ n2. (3.24)

The following theorem gives us a bound for the kth derivative of an algebraic
polynomial:

Theorem 3.2.4. [4] V.A. Markov: For 1 ≤ k ≤ n, if p ∈ Pn(R) and ‖p′‖[−1,1] ≤ 1,
we have:

‖p(k)‖[−1,1] ≤ T (k)
n (1) · ‖p‖[−1,1] =

n2(n2 − 12) · . . . · (n2 − (k − 1)2)
1 · 3 · . . . · (2k − 1)

· ‖p‖[−1,1], (3.25)

where Tn is the nth Chebyshev polynomial of the first kind.
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Proposition 3.2.1. For real θ, we have:

|Pn(cos θ)| ≤ 1 (3.26)

and

|P ′
n(cos θ)| ≤ 1

2
n(n+ 1) (3.27)

from what one may deduce the bound of the kth derivative of Pn:

|P (k)
n (cos θ)| ≤ (n+ k)!

(n− k)!k!2k
, (3.28)

for 0 ≤ k ≤ n.

Note that in [28], (3.28) is given without proof. To prove this inequality, we
proceed as follows:

Proof. We recall the relation (2.16) the derivative of Legendre polynomials Pn in
function of the Jacobi polynomials P (α,β)

n :

dk

dxk
Pn(x) =

n+ 1
2

· n+ 2
2

· . . . · n+ k

2
P

(k,k)
n−k (x). (3.29)

From (3.29), we have:

|P (k)
n (cos θ)| =

∣∣∣
n+ 1

2
· n+ 2

2
· . . . · n+ k

2
P

(k,k)
n−k (x)

∣∣∣ ≤ (n+ 1)n

2k
· max |P (k,k)

n−k (x)|.

or

|P (k)
n (cos θ)| =

∣∣∣
n+ 1

2
· n+ 2

2
· . . . · n+ k

2
P

(k,k)
n−k (x)

∣∣∣ ≤ (n+ k)!
2kn!

· max |P (k,k)
n−k (x)|.

Proposition 3.2.2.

max
−1≤x≤1

|P (α,β)
n (x)| =

(q + 1)n

n!
, q = max(α, β) ≥ −1/2, (3.30)

where (a)n denotes the shifted factorial defined by:

(a)n = a(a+ 1) . . . (a+ n− 1), for n > 0, (a)0 = 1, a ∈ R.

Remark 3.2.1. We have:

x! =
(x+ n)!
(x+ 1)n

. (3.31)
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Using (3.30),

max
−1≤x≤1

|P (k,k)
n−k (x)| =

(k + 1)n−k

(n− k)!
.

From (3.31),

(k + 1)n−k =
(k + n− k)!

k!
=
n!
k!
.

Hence,

max
−1≤x≤1

|P (k,k)
n−k (x)| =

n!
k!(n− k)!

.

Therefore,

|P (k)
n (cos θ)| ≤ (n+ k)!

2kn!
· n!
k!(n− k)!

. (3.32)

|P (k)
n (cos θ)| ≤ (n+ k)!

2kn!
n!

k!(n− k)!
=

(n+ k)!
(n− k)!k!2k

.

From the definition of Legendre associated functions (2.19) and the previous
bound (3.28), it has been mentioned in [28] that:

|Pnm(cos θ)| ≤ |P (m)
n (cos θ)| ≤ (n+m)!

(n−m)!m!2m
.

A better bound is given in [28] by using the addition theorem for Legendre poly-
nomials (see Theorem 2.3.4) and letting θ = θ′ and φ = φ′ in (2.21). Hence, one
gets:

1 = Pn(1) = (Pn(cos θ))2 + 2
n∑

m=1

(n−m)!
(n+m)!

(Pnm(cos θ))2. (3.33)

Because the right side is a sum of positive terms, then each term of (3.33) is bounded
by 1. Therefore, we obtain:

|Pnm(cos θ)| ≤
[1
2

(n+m)!
(n−m)!

] 1
2

. (3.34)

Till now we introduced the bounds of Pn and its derivatives. Bounds of the
associated Legendre functions Pnm and its derivatives are obtained in a similar way.
Let φ′ = φ and obtain:

Pn(cos(θ− θ′)) = Pn(cos θ)Pn(cos θ′) + 2
n∑

m=1

(n−m)!
(n+m)!

Pnm(cos θ)Pnm(cos θ′). (3.35)
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Now, if we differentiate (3.35) with respect to θ and also θ′ and then set θ = θ′, this
gives:

P ′
n(1) =

( d
dθ
Pn(cos θ)

)2

+ 2
n∑

m=1

(n−m)!
(n+m)!

( d
dθ
Pnm(cos θ)

)2

. (3.36)

Now, because the right side is a sum of positive terms and the left side is bounded
by (3.27) we obtain:

∣∣∣∣
d
dθ
Pnm(cos θ)

∣∣∣∣ ≤
[1
2
n(n+ 1)

(n+m)!
2(n−m)!

] 1
2

(3.37)

for 1 ≤ m ≤ n. Iterating the above process, it is shown in [28] that:

∣∣∣∣
( d

dθ

)k

Pnm(cos θ)
∣∣∣∣ ≤ Mnk

[(n+m)!
(n−m)!

] 1
2

(3.38)

for 0 ≤ m ≤ n, where M is a constant independent of θ,m and n. To show the next
inequality we use all the previous inequalities.

Proposition 3.2.3. For any integer k ≥ 0, 0 ≤ m ≤ n, arccos a ≤ θ ≤
arccos b, arccos a ≤ θ′ ≤ arccos b, we have the following inequality:

∣∣∣∣
dkKm(cos θ, cos θ′)

dθk

∣∣∣∣ ≤ 2n
k + 2

[(L+ 1)k+2 −mk+1].

Proof. We have:

Km(cos θ, cos θ′) =
L∑

n=|m|

2n+ 1
2π

(n− |m|)!
(n+ |m|)!Pnm(cos θ)Pnm(cos θ′),

dkKm(cos θ, cos θ′)
dθk

=
L∑

n=|m|

2n+ 1
2π

(n− |m|)!
(n+ |m|)!

dkPnm(cos θ)
dθk

Pnm(cos θ′).
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∣∣∣∣
dkKm(cos θ, cos θ′)

dθk

∣∣∣∣ ≤
∣∣∣∣

L∑

n=m

2n+ 1
2π

(n−m)!
(n+m)!

dkPnm(cos θ)
dθk

Pnm(cos θ′)
∣∣∣∣

≤
L∑

n=m

2n+ 1
2π

∣∣∣∣
(n−m)!
(n+m)!

Mnk
[(n+m)!
(n−m)!

] 1
2
[1
2

(n+m)!
(n−m)!

] 1
2
∣∣∣∣

= M
L∑

n=m

nk
(
n+

1
2

)

≤ M
[ 1
k + 2

((L+ 1)k+2 −mk+2) +
1

2(k + 1)
((L+ 1)k+1 −mk+1)

]

(3.39)

≤ 2M
k + 2

[(L+ 1)k+2 −mk+1].

Note that to get (3.39), we have used the bound
L∑

n=1

nk ≤
∫ L+1

1
xkdx.

3.2.3 Proof of main results

In the following, we give the proof of our first result.

Proof of Theorem 3.2.1:

Since from (3.12), we have:

∫ θ1

θ0

Km(cos θ, cosϕ)ψn,m(cosϕ) sinϕdϕ = µn(m)ψn,m(cos θ). (3.40)

From (3.40), we get the relation:

ψn,m(cos θ) =
1

µn(m)

∫ θ1

θ0

Km(cos θ, cosϕ)ψn,m(cosϕ) sinϕdϕ (3.41)

=
1

(µn(m))2

∫ θ1

θ0

∫ θ1

θ0

Km(cos θ, cosϕ)Km(cosϕ, cos θ
′

)ψn,m(cos θ
′

) sin θ
′

sinϕdθ
′

dϕ.

By using (3.41), to write ψn,m(cosϕj), one gets:
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1
µn(m)

N∑

j=1

wjψn,m(cosϕj)K(m, cos θ, cosϕj)

=
1

(µn(m))2

∫ θ1

θ0

N∑

j=1

wjKm(cos θ, cosϕj)Km(cosϕj, cos θ′)ψn,m(cos θ
′

) sin θ′dθ′.

Hence, one gets:

∣∣∣∣ψn,m(cos θ) − 1
µn(m)

N∑

j=1

wjψn,m(cosϕj)Km(cos θ, cosϕj)
∣∣∣∣

≤ 1
|µn(m)|2

∫ θ1

θ0

∣∣∣∣
∫ θ1

θ0

Km(cos θ, cosϕ)Km(cosϕ, cos θ
′

) sinϕdϕ

−
N∑

j=1

wjKm(cos θ, cosϕj)Km(cosϕj, cos θ
′

)
∣∣∣∣ · |ψn,m(cos θ

′

)| sin θ
′

dθ
′

.

We denote by I the interior of the first integral:

I =
∫ θ1

θ0

Km(cos θ, cosϕ)Km(cosϕ, cos θ
′

)d cosϕ−
N∑

j=1

wjKm(cos θ, cosϕj)Km(cosϕj, cos θ
′

).

We apply the Gaussian quadrature error given via the following equation:

∫ b

a
f(x)dx =

n∑

k=1

wkf(xk) +
1
a2

n

f (2n)(η)
(2n)!

∫ b

a
P 2

n(x)dx, a ≤ η ≤ b. (3.42)

In terms of the substitutions (3.19) and in the case where f(x) is substituted with

Km(cos θ, cosϕ)Km(cosϕ, cos θ
′

)

and (3.42) is rewritten as follows:
∫ θ1

θ0

Km(cos θ, cosϕ)Km(cosϕ, cos θ
′

) sinϕdϕ

=
n∑

k=1

wkKm(cos θ, cosϕk)Km(cosϕk, cos θ
′

)

+
1

a2
N(2N)!

∂2N

∂ϕ2N
Km(cos θ, cosϕ)Km(cosϕ, cos θ

′

)
∣∣∣∣
ϕ=η

·
∫ θ1

θ0

P 2
n(cos θ) sin θdθ.
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with θ0 ≤ η ≤ θ1.

To abreviate the notation, we will write:

Km(θ, ϕ, θ) = Km(cos θ, cosϕ)Km(cosϕ, cos θ
′

).

For computing the 2Nth derivative of Km(θ, ϕ, θ), we apply the Leibnitz formula:

d2N

dϕ2N
[Km(θ, ϕ, θ′)] =

k∑

l=0

C l
k

dl

dϕl
[Km(cos θ, cosϕ)]

dk−l

dϕk−l
[Km(cosϕ, cos θ

′

)].

For k = 2N and using the fact that the kernel Km is symmetric, we obtain:

d2N

dϕ2N
[Km(cos θ, cosϕ)Km(cosϕ, cos θ

′

)] ≤ M2
2N∑

l=0

C l
2N

L∑

n=m

n2N
(
n+

1
2

)2

= M2
2N∑

l=0

C l
2N

L∑

n=m

(n2N+2 + n2N+1 +
n2N

4
) ≤ M2 · 4N

[ 1
2N + 3

((L+ 1)2N+3 −m2N+3)

+
1

2N + 2
((L+ 1)2N+2 −m2N+2) +

1
4(2N + 1)

((L+ 1)2N+1 −m2N+1)
]

≤ M24N4
2N + 3

[
(L+ 1)2N+3 −m2N+1

]
=

(2N+1M)2

2N + 3

[
(L+ 1)2N+3 −m2N+1

]
= CM,N,L,

where
2N∑

l=0

C l
2N =

(2N)!
l!(2N − l)!

= 22N .

I ≤ 1
|µn(m)|2 · CM,N,L

(2N)!a2
N

‖ψn,m‖2,[a,b] ≤ 1
|µn(m)|2

CM,N,L

(2N)!a2
N

|µn(m)| =
CM,N,L

(2N)!a2
N

1
|µn(m)|

with:

aN =
(2N)!hN

N !
, hN =

√
2N + 1

(b− a)N+ 1
2N !

. (3.43)

We call the Weyl’s perturbation theorem used in error analysis study:

Theorem 3.2.5. Let A and B be two hermitian matrices of order n, where ‖ · ‖ is
the norm defined on the space n× n size of matrices M(Rn × R

n). Then:

max
0≤j≤n−1

|µj(A) − µj(B)| ≤ ‖A−B‖.

Here, µj are the eigenvalues of A and B, respectively and
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{|µ0(A)| ≥ |µ1(A)| ≥ . . . |µn−1(A)|}, {|µ0(B)| ≥ |µ1(B)| ≥ . . . |µn−1(B)|}

are their rearrangements.

We give the proof of the second result.

Proof of Theorem 3.2.2:

We build the Hilbert space EN defined by

EN = Span{ψ0,m, ψ1,m, . . . , ψN−1,m}.

Let TN,m, T̃N,m : EN → R
N be two operators defined by:

TN,m(f) =
[ ∫ b

a
Km(xj, y)f(y)dy

]t

1≤j≤N
.

T̃N,m(f) =
[ N∑

k=1

wkKm(xj, yk)f(yk)
]t

1≤j≤N
.

TN,m, T̃N,m We have:

TN,m(ψi,m) = µi(m)Ψi, 0 ≤ i ≤ N − 1,

where Ψi = [ψi,m(x1), . . . , ψi,m(xN)]t ∈ R
N . Note that, by assumption,

B = {Ψ0,Ψ1, . . . ,ΨN−1}

is a basis of RN . Moreover, since:

T̃N,m(ψl,m) =
[ N∑

k=1

wkKm(xj, xk)ψl,m(xk)
]t

1≤j≤N
= ÃNψl,m, 0 ≤ l ≤ N − 1,

where ÃN is the matrix representation of T̃N,m. Then, we have:

‖TN,m − T̃N,m‖2 ≤
N−1∑

l=0

|µl(m)|2 ·
N∑

j=1

[
ψl,m(xj) − 1

µl(m)

N∑

k=1

wkKm(xj, xk)ψl,m(xk)
]2

≤
∑

0≤l≤N−1

Nǫ2|µl(m)|2 ≤ Nǫ2
∑

l≥0

|µl(m)|2. (3.44)
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We compute
∑

l≥0

|µl(m)|2:

‖Tm‖2 =
∑

l≥0

|µl(m)|2 =
∫ b

a

∫ b

a
|Km(x, y)|2dxdy,

=
∫ b

a

∫ b

a

L∑

n=m

L∑

p=m

2n+ 1
2π

(n−m)!
(n+m)!

Pnm(x)Pnm(y)
2p+ 1

2π
(p−m)!
(p+m)!

Ppm(x)Ppm(y)dxdy,

=
L∑

n,p=m

(2n+ 1)(2p+ 1)
4π2

∫ b

a
(Pnm(x)Ppm(x))dx

∫ b

a
(Pnm(y)Ppm(y))dy

≤
L∑

n=m

(2n+ 1)2

4π2

∫ 1

−1
(Pnm(x))2)dx

∫ 1

−1
(Pnm(y))2)dy

=
L∑

n=m

(2n+ 1)2

4π2

22

(2n+ 1)2
=
L−m+ 1

π2
,

then we have:

‖TN,m − T̃N,m‖2 ≤ Nǫ2(L−m+ 1)
π2

.

Because
µ(T̃N,m) = µ(ÃN)

and
µj(TN,m) = |µj(m)|, j = 0, . . . , N − 1,

then, by using Weyl’s perturbation theorem and the previous inequality, we get:

max
1≤j≤N

|µj(TN,m) − µj(T̃N,m)| = max
1≤j≤N

∣∣∣∣|µj(m)| − µj(ÃN)
∣∣∣∣

≤ ‖TN,m − T̃N,m‖ ≤
ǫ
√
N(L−m+ 1)

π

3.3 Numerical illustrations

To compute the Slepian functions by using Gauss-Legendre quadrature, we need
the weights and the nodes in that we evaluate them. An example of the computed
nodes and weights of the Gauss-Legendre quadrature over the sphere are given in
Annexe (see Fig.1). In the next figure we show the distribution of these nodes that
we took over the sphere and in which the potential is computed:
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Figure 3.1: Distribution of nodes on the sphere

Eigenvalues of Tm operator

In this paragraph we illustrate the eigenvalues of the problem (3.12):

1 > µ1 ≥ µ2 ≥ . . . ≥ µ(L+1)2 > 0. (3.45)

For m = 0, the operator Tm has L+1 distinct non-zeros eigenvalues. For m 6= 0, Tm

has L(L+1)
2

non-zeros eigenvalues of multiplicity 2.
The next figures illustrate the eigenvalues of the operator Tm for different values of

the bandwidth L (L = 5, 10, 15) and concentrated within the belt of angle θ ∈ [0, 90].
The eigenvalues λ measure the quality of the eigenfunctions concentration: the

band-limited function that is most concentrated inside Θ is ψ1 with λ1 the largest
associated eigenvalue and so on. The insignificant eigenvalues (λ ≈ 0) determine
excluded eigenfunctions and for the significant eigenvalues λ ≈ 1, we have well
concentrated eigenfunctions. The eigenfunctions with significant eigenvalues (λ ≈ 1)
provide an uniform coverage of the region Θ.
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Figure 3.2: Rearanged eigenvalues for L = 5, L = 10 and L = 15



3.3. NUMERICAL ILLUSTRATIONS 58

Below we present the eigenfunctions of the operator Tm for L = 3:

Figure 3.3: L=3, m=1 Figure 3.4: L=3, m=2

Figure 3.5: L=3, m=3 Figure 3.6: L=3, m=4

Figure 3.7: Eigenfunctions obtained by using the integral operator Tm for m=1, 2, 3, 4.
Functions presented can be numeroted according to the number of roots.
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Figure 3.8: L=3, m=1 Figure 3.9: L=3, m=2

Figure 3.10: L=3, m=3,n=2 Figure 3.11: L=3, m=3, n=3

Figure 3.12: Slepian functions associated to the previous eigenfunctions

.
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Chapter4
Potentials estimation on the sphere

4.1 Statement of the problem

In this chapter the problem that we consider to be solved is the estimation of
the potential (such as gravitational potential or electromagnetic potential) over the
whole unit sphere S from noise contaminated observations over regions Θ ⊂ S. For
this, Slepian functions form a natural basis for the expansion and the estimation of
the potential data on the unit sphere. In practice, we can dispose also of values of
first derivative or Hessian of the potential. These inverse problems are related to
direct Dirichlet, Neumann and Robin problems, whose solutions can be computed
by using the double-layer potential, see [14].
The unit sphere S is parametrized in terms of the spherical coordinates, colatitude
θ and longitude φ. In the sequel, the region where the data is considered and its
complemantary region will be denoted by Θ and Θe = S \ Θ, respectively, see the
figure:

Figure 4.1: Spherical caps

61
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4.2 Noisy measurements

We consider the signal [46]:

s(σ) =
L∑

nm

snmYnm(σ)
︸ ︷︷ ︸

bandlimited component

+
∞∑

nm>L

snmYnm(σ)

︸ ︷︷ ︸
non bandlimited component

σ = (θ, φ) ∈ S (4.1)

with the coefficients of the signal spherical harmonic expansion given by:

snm =
∫

S

s(σ)Ynm(σ)dω(σ). (4.2)

The data over the covered region Θ is given by (4.1), but they are contamined by
noise. Thus, a satellites measures:

d(σ) = s(σ) + n(σ), if σ ∈ Θ,Θ ⊂ S (4.3)

We assume that the noise is modelled by a function n ∈ L2(Θ) with the norm ‖n‖Θ

small.

4.3 Signal field estimation

Being given the noisy data d taken by the satellites over an incomplete region
Θ, we look to estimate the signal s, that gives rise to these observations. Although
the signal has an infinite bandwidth, we will be able, practically, only to make
bandlimited estimates of it, which we denote by ŝ. The limitation to the bandwidth
L as well as the spatial restriction of the observations to the region Θ motivates to
seek an estimate in terms of Slepian basis that are well concentrated in the considered
region, rather than using the non-localized spherical harmonics Ynm. In this manner,
the signal is given by:

s(σ) =
(L+1)2∑

α

sαgα(σ) +
∞∑

nm>L

snmYnm(σ), σ = (θ, φ) ∈ S

whereas the estimated signal ŝ(σ) is given on S by:

ŝ(σ) =
L∑

nm

ŝnmYnm(σ) =
(L+1)2∑

α=1

ŝαgα(σ), (4.4)
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where (gα)1≤α≤(L+1)2 , α = α(n,m) are the Slepian functions on the sphere S that
are concentrated on the region Θ and associated with the bandwidth L > 0, see
(3.7) (after the computation method used by Miranian, we have ψn,m(θ) sinmφ,
ψn,m(θ) cosmφ, 0 ≤ n ≤ L,m ≤ n ≤ L for Slepian functions).

The Slepian functions gα verify:

gα(σ) =
L∑

nm

gα,nmYnm(σ), σ ∈ S (4.5)

gα,nm =
∫

S

gα(σ)Ynm(σ)dω(σ). (4.6)

Using (4.1) and (4.6) we get:

ŝnm =
(L+1)2∑

α=1

gα,nmŝα (4.7)

and

ŝα =
L∑

nm

gα,nmŝnm. (4.8)

The Slepian functions g1(σ), . . . , g(L+1)2(σ) are defined on the part Θ of the unit
sphere S.

Now, if we index gα in terms of an index β(n,m), between α and β there exists
a bijective mapping such that α = β(n,m).
Using the Miranian computational method, the Slepian functions are given by

ψL
β(n,m)(θ)(ηn,m cosmφ+ (1 − ηn,m) sinmφ).

where

ηn,m =

{
1 if 1 ≤ n ≤ (L−m+ 1)
0 if L−m+ 2 ≤ n ≤ 2(L−m+ 1)

(L+1)2∑

α=1

ŝαgα =
L+1∑

n=0

ŝL
β(n,0)ψ

L
β(n,0)(θ) cosmφ

+
L∑

m=1

2(L−m+1)∑

n=1

ŝL
β(n,m)ψ

L
β(n,m)(θ)(ηn,m cosmφ+ (1 − ηn,m) sinmφ)
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with

βn,m =

{
n if 1 ≤ n ≤ (L+ 1),m = 0
(L+ 1) + (m− 1)(2L− (m− 2)) + n if 1 ≤ n ≤ 2(L−m+ 1), 1 ≤ m ≤ L.

The coefficients of the Slepian functions can be computed by:

sL
β(n,m) = 〈s, ψL

β(n,m)(θ)(ηn,m cosmφ+ (1 − ηn,m) sinmφ)〉Θ. (4.9)

For simplicity, in what follows, the Slepian functions ψL
β(n,m)(θ)(ηn,m cosmφ + (1 −

ηn,m) sinmφ) will be denoted by Ψn,m(θ, φ) or Ψn,m(σ). The normalized Slepian
functions are denoted by Ψ̃n,m. They are orthonormal over the sphere and orthogonal
over the region Θ: ∫

S

Ψ̃n,m(σ)Ψ̃n′,m′(σ)dω(σ) = δn,n′δm,m′ (4.10)

∫

Θ
Ψ̃n,m(σ)Ψ̃n′,m′(σ)dω(σ) = µnmδn,n′δm,m′ (4.11)

The inverse problem which consists to estimate the signal ŝ over the whole sphere S

from measurements of the noisy data d on the region Θ, becomes to minimize:
∫

Θ
(ŝ(σ) − d(σ))2dω(σ). (4.12)

In [46], the estimate of the field coefficients is given by:

ŝnm =
L∑

n′m′

D−1
nm,n′m′

∫

Θ
d(σ)Yn′,m′(σ)dω(σ), (4.13)

where Dnm,n′m′ is given by (3.5).
Because D composed by the elements Dnm,n′m′ , see (3.5) has a low condition number,
finding a stable inverse D−1 is problematic, hence the problem is ill-conditioned. To
stabilize the solution it was included a weighted norm to the minimization problem
(4.12): ∫

Θ
(ŝ− d(σ))2dω(σ) + η

∫

Θe
ŝ2dω(σ), (4.14)

where η > 0 is a damping parameter.
Involving (4.4) and (3.5), we get:

ŝnm =
L∑

n′m′

(Dnm,n′m′ + ηD̃nm,n′m′)−1 ×
∫

Θ
d(σ)Yn′,m′(σ)dω(σ) (4.15)
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with
D̃nm,n′m′ =

∫

Θe
YnmYn′,m′dw = δnn′δmm′ −Dnm,n′m′ . (4.16)

The relation (4.15) holds for n ≤ L, since, when n > L, no estimate is available,
ŝnm = 0. The case where n = 1, for which D + D̃ = I, the identity matrix, was
treated by Sneeuw and Gelderen [50].

By substituting the equation (4.3) and using (4.4), (3.5), the integral over the
data in (4.15) becomes:

∫

Θ
d(σ)Yn′,m′(σ)dω(σ) =

∑

n′m′

Dnm,n′m′sn′m′ +
∫

Θ
n(σ)Ynm(σ)dω(σ). (4.17)

After we compute
∫

Θ
d(σ)Yn′,m′(σ)dω(σ), we get the coefficients ŝnm and consequently

the signal ŝ. Now, if we use the Slepian expansion of ŝ:

ŝ =
(L+1)2∑

α=1

ŝαgα, (4.18)

the coefficients ŝα are computed according to (4.8). A Slepian basis expansion of the
observations, combining (4.1), (4.3), (4.4), is given by:

d(σ) =
(L+1)2∑

α=1

ŝαgα +
∞∑

nm>L

snmYnm(σ) + n(σ). (4.19)

This equation allows us to find an alternative expression for the data integral (4.17),
for which we also use (4.5), (3.5) and (3.6):

∫

Θ
d(σ)Ynmdω(σ) =

(L+1)2∑

α=1

gα,nm(µαsα +
∫

Θ
ngαdω(σ)) +

∞∑

n′m′>L

Dnm,n′m′sn′m′ . (4.20)

where µα are the eigenvalues associated to the eigenfunctions gα, see (3.6). Inserting
(4.7), (4.14), (4.20) into (4.4), we get the following formula for the computation of
ŝ:

ŝ(σ) =
(L+1)2∑

α=1

µ∗
α(η)gα(σ) ×

(
µαsα +

∫

Θ
n(σ)gαdω +

∞∑

nm>L

Dnm,n′m′sn′m′

)

with
µ∗

α(η) = [µα + η(1 − µα)]−1.
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Remark 4.3.1. In practice, the data is measured by satellites at an altitude a from
the unit sphere S. In this case, instead to consider the data on S it can be supposed
known at the surface of S1+a, R = 1 + a.

Then, at the altitude a above the unit sphere, the signal is given by:

su(σ) =
L∑

nm

su
nmYnm(σ) +

∞∑

nm>L

su
nmYnm(σ), (4.21)

where
su

nm = (1 + a)−(n+1)snm. (4.22)

where the index u denotes the upward component.

Remark 4.3.2. The estimation problem (4.14) can be also formulated in terms of
best constrained approximation problems (BEP), see [5].

4.4 Bandlimited signals expansion

Given sL ∈ BL a bandlimited function on the sphere, we have that sL(σ) has the
following Slepian functions expansion on the region Θ and the sphere S:

On the sphere S:

sL(σ) =
L∑

m=0

2(L−m+1)∑

n=1

anmΨ̃n,m(σ) =
L∑

m=0

2(L−m+1)∑

n=1

anm
√
µnmΨn,m(σ), (4.23)

where Ψ̃n,m(σ) are the normalized Slepian functions introduced in (4.9).
Using (4.10) and (4.11), we have:

∫

Θ
|Ψn,m(σ)|2dω(σ) = 1 (4.24)

and ∫

S

|Ψn,m(σ)|2dω(σ) =
1
µnm

, (4.25)

where the µnm are the eigenvalues associated to the eigenfunctions of the operator Tm.

On the region Θ:

sL(σ) =
L∑

m=0

2(L−m+1)∑

n=1

bnmΨn,m(σ), (4.26)
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Ψn,m(σ) is a basis for L2(R) ∩BL, where:

BL = {s ∈ L2(S), s is an L− bandlimited function}. (4.27)

On the region Θ, the equations (4.23) and (4.26) hold simultaneously, that is:

bn,m =
√
µnmanm, 1 ≤ n ≤ 2(L−m+ 1). (4.28)

Moreover, we have from (4.23):

‖sL‖2
S

=
L∑

m=0

2(L−m+1)∑

n=1

|anm|2. (4.29)

Hence,
|bnm|√
µnm

= |anm| ≤ ‖sL‖S,∀n,m. (4.30)

By combining, (4.28) and (4.30), we conclude that the |bnm|2 have the same decay
as the sequence of eigenvalues µnm, 0 ≤ m ≤ L, 1 ≤ n ≤ 2(L − m + 1). They have
also a faster decay than the spherical harmonic coefficients.

Example:

In this example, we consider a particular signal, the gravitational potential V ,
defined on S by:

V (X) =
N∑

k=1

mk

|X − Sk| , (4.31)

where Sk are monopolar sources and mk their masses. We define also the region
Θ = {(θ, φ), θ ∈ [0, 90], φ ∈ [0, 2π]}. Then, the first spherical harmonic coefficients
expansion of V and the corresponding Slepian functions expansion coefficients are
given by the next table. The gravitational potential V is supposed to be generated
by the monopolar source S = (−0.06, 0.42, 0.25) of masse m = 0.6.
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Table 4.1: Slepian and spherical harmonic coefficients

Slepian coefficients Sph. harmonic coeffs.
1.34735025892288 2.12694462108036
1.18133457989493 0.52281646393469
0.45997548109045 -0.3108172255903
-0.0252840301636 0.08394471836205
0.03100363169295 0.04794941680222
-0.0299892861079 0.17753951636619
0.00548231227261 -0.0274923910878
-0.1930938528012 0.02850618855291
0.18677640267095 -0.1454675460986
-0.0341444128050 -0.0452532233219
-0.0512831282433 0.02293579710826
0.04474925300979 0.01473934291648
-0.0169040872483 0.04371476066204
0.01475037313615 0.00236658574342
0.01656191070438 -0.0695819541854
-0.0319988610750 -0.0234220787321

Now, using these coefficients, we express the gravitational potential V in Slepian (in
red) and the spherical harmonic basis (in blue). We plot their behavior with respect
to the exact simulated potential in green (4.31):

Figure 4.2: Spherical harmonic expansion Figure 4.3: Slepian expansion
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Choice of bandwidth L

The bandwidth L plays an important role in the approximation of a signal s by
its truncated approximant sL as well as in source localization error. Let us consider
the monopolar sources Sk, k = 1, . . . , N located at (rk, θk, φk) and with masses mk.
We take β = max | rk

R
| < 1, R ≥ 1, rk < R and let us consider β < γ < 1. Then,

∀γ > β, we have s ∈ L2(Sγ) and its expansion on spherical harmonic basis there is:

s(θ, φ) =
∑

n≥0,m

snmγ
−nYnm(θ, φ) on Sγ. (4.32)

with s harmonic at B
e
γ.

From Parseval equality, we have:

‖s‖2
S

=
∞∑

n≥0

n∑

m=−n

|γ−nsnm|2,

we have:
∑

n>L

n∑

m=−n

|γ−nsnm|2 ≤ ‖s‖2
Sγ
.

Hence,
|snm|2 ≤ γn‖s‖2

Sγ
.

and then:

‖s− sL‖2
S

=
∑

n≥L+1

n∑

m=−n

|snm|2

≤ ‖s‖2
Sγ

∑

n≥L+1

n∑

m=−n

γ2n

≤ ‖s‖2
Sγ

∑

n≥L+1

(2n+ 1)γ2n

= ‖s‖2
Sγ

d(
∑

n≥L+1

γ2n+1)

dγ

= ‖s‖2
Sγ

· γ
2L+2(2L+ 3 − (2L+ 1)γ2)

(1 − γ2)2

‖s− sL‖2
S

‖s‖2
Sγ

≤ ǫL(γ) → 0 for L → ∞,
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where

ǫL(γ) =
γ2L+2(2L+ 3 − (2L+ 1)γ2)

(1 − γ2)2

=
γ2

(1 − γ2)2
Lγ2L(2 +

3
L

− (2 +
1
L

)γ2)

≃ 2γ2

1 − γ2
Lγ2L → 0, L → ∞, |γ| < 1

with
Lγ2L = Le−2L(ln( 1

γ
)).

We have used:
Le−αL → 0 for L → ∞, α > 0.



Chapter5
Singularities of the potential in the ball

The aim of this chapter is the resolution of the density recovery (DR) problem
and singularity recovery (SR) problem when the disposed data is the gravitational
potential and the electrical potential, respectively (monopolar and dipolar sources,
respectively). The unified mathematical formulation of these two potential problems
is expressed by [6, 22]:

∆Pot = ρ in B, (5.1)

where Pot can be the gravitational or the electrical potential and the density ρ can
be approximated by a discrete combination of monopolar and dipolar density given
as follows:

f =
N∑

k=1

mkδSk
+

N∑

k=1

pk.∇δCk
, (5.2)

f ≃ ρ, where Sk are monopolar sources, Ck are the dipolar sources, mk the masses
of Sk and pk the moments of Ck. For pk = 0 the problem becomes a monopolar
geodesy inverse problem and for mk = 0 we have a dipolar EEG inverse problem.
We recall the (DR) and (SR) problems for geodesy and EEG:

(DR): Being given boundary data PotS associated to a solution Pot of (5.1)
on S (i.e. Pot|S = PotS), find a related density ρ in B (uniqueness properties will be
discussed).

(SR): Being given on S measurements PotS, find a pointwise discrete distri-
bution ρN of (a given number) N pointwise monopolar or dipolar sources located
inside B, such that the associated potential PotN best approximates Pot in quadratic
norm on S.

71



5.1. DENSITY MODELS 72

In [22] an important identifiability result associated with the problem (5.1) and
(5.2) is given. The identifiability result permits us to know if the inverse problem is
well posed in the following sense: if two measured potentials Pot1 and Pot2 coincide
on Γ∗ (a convenient subset of the sphere S), then they are generated by the same
sources. In other words, identifiability means the uniqueness of the inverse problem,
see Theorem 5.2.1. Related to the geodesy and EEG inverse problems, well-posedness
properties discussions intervene naturally. This chapter is organized as follows. In
Section 5.1, we give the mathematical formulation for some direct and inverse geodesy
and EEG problems, then in Section 5.2 some well-posedness results are introduced.
We end by Section 5.3 where the best quadratic approximation method is presented
as algorithm for the resolution of both (DR) inverse problems, see [8, 17].

5.1 Density models

The mathematical formulation for the direct and the inverse problems related to
the geodesy and M/EEG that we consider in this thesis is given by the equations:

−∆V = ρ in B , ∆V = 0 in B
e = R

3 \ B, (5.3)

where V ∈ L2(R3) and ρ ∈ L2(B) are the gravitational potential and the gravitational
density, respectively. In this section, we study the inverse density recovery problems.
In fact, the density recovery problem (DR) consists of approximately computing the
density ρ ∈ L2(B) inside the ball by solving the (SR) problem. For the solution
of this later, we apply the rational approximation techniques given in [8, 17]. More
precisely, given V|S on S, we build the "discrete" problem (SR) as an intermediary step
for the (DR) resolution problem [6, 10]. At this level, we will describe the algorithm
that allows us to go from the data on the sphere to the singularities in the ball B.
Hence, the recovery of the discrete density is accomplished. In fact, we are interested
in a density of the following form (relation (5.2) with pk = 0):

ρN =
N∑

k=1

mkδSk
, (5.4)

which leads to the associated approximated potential VN such that ρN approximates
ρ and it is solution of:

−∆VN = ρN in B, ∆VN = 0 in B
e and VN best approximates V on L2(S) norm.

(5.5)
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The discrete density ρN can be approximated by a density ρχ which characterize
inclusions zones of the Earth with high concentration. Recall that, when it comes
to applications, the surface S of B could be either the Earth boundary, or the scalp
of the head. We assume here that the given data VS on S is given via its harmonic
spherical expansion coefficients. In this thesis, we use the available data on S or part
of S and we apply our proposed Gaussian quadrature method on the sphere to get
accurate approximations of these coefficients.

Density recovery problem

Related to the inverse problem is the direct (forward) problem, which consists in
finding the values on S of the potential V solution to (5.3), from the internal density
ρ in B. The relation between the density ρ on B and V on S is expressed by the
forward operator T :

(Tρ)(y) =
∫

B

ρ(x)
|x− y|dx for y ∈ S, (5.6)

so that Tρ = V|S for V solution to (5.3) or Te (for data taken on SR, R > 1):

(Teρ)(y) =
∫

B

ρ(x)
|x− y|dx for y ∈ B

e, (5.7)

whence (Teρ)|S = Tρ. From this, it is easy to see that minimizing the potential in
L2(S) comes to minimize ‖ρ‖S. This last problem was studied in [12, 39]. Under a
harmonicity constraint, a unique minimizer of ρ is given.

In [16, 51], the authors have given local and global methods for the density
approximation in the Earth. In [39] and [38] under a constraint of harmonicity a
kernel or a scaling function is proposed for the density approximation.

In the following, we give a proposition for the existence of the direct problem,
and continuity properties of the forward operator T :

Proposition 5.1.1. [39, Thm 2.1] Whenever ρ ∈ L2(B), then V is a solution to
(5.3) if and only if V = Teρ, see (5.7).

Remark 5.1.1. The previous Proposition is also valid for pointwise densities ρN

given by (5.4), see [39]. Moreover, it remains true for ρ ∈ L1(B) with supp ρ ⊂ Br ⊂
B the ball centered at 0 and of radius r < 1.

Note that in [39], it has been shown that the operator T maps L2(B) → L2(S)
continuously and

‖Tρ‖L2(S) ≤ 4π‖ρ‖L2(B).

Another important property of the operator Te is given by the following proposition:
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Proposition 5.1.2. Whenever ρ ∈ L2(B) with supp ρ ⊂ Br, r < 1, then Teρ is a
continuous function on B

e
.

Proof. Put Teρ = V . Let y1, y2 ∈ B
e
:

|V (y2) − V (y1)| = |
∫

Br

ρ(x)
|x− y2|

dx−
∫

Br

ρ(x)
|x− y1|

dx|

= |
∫

Br

ρ(x)

[
1

|x− y2|
− 1

|x− y1|

]
dx| = |

∫

Br

ρ(x)

[
|x− y1| − |x− y2|

|x− y1||x− y2|

]
dx|

≤
∫

Br

|ρ(x)|
[

|y1 − y2|
|x− y1||x− y2|

]
dx,

because ρ ∈ L2(Br) and |x− y| ≥ 1 − r for y ∈ B
e.

So,
|V (y2) − V (y1)| ≤ c ‖ρ‖L2(B) |y1 − y2|,

with c = cr = (1 − r)2.
Hence, |V (y2) − V (y1)| −→ 0 for |y1 − y2| −→ 0.

Remark 5.1.2. The previous Proposition remains true for ρ ∈ L1(B) and supp ρ ⊂
Br, r < 1 and for pointwise densities ρN given by (5.4).

In the following, we give other properties of the density ρ and the operator T :
The density ρ ∈ L2(B) can be decomposed into a harmonic and an anti-harmonic
part ρ = ρharm + ρanharm such that [39]:

‖ρ‖2
B

= ‖ρharm‖2
B

+ ‖ρanharm‖2
B
.

To show this relation we use the next proposition:

Proposition 5.1.3. [39] L2(B) is written as the following direct sum:

L2(B) = Harm(B) ⊕ Anharm(B), (5.8)

where
Harm(B) = {H ∈ C2(B)| ∆H = 0 in B},

Anharm(B) = {F ∈ L2(B)| 〈F,H〉B = 0,∀H ∈ Harm(B)}.
Proposition 5.1.4. An equivalent decomposition is also given as follows:

L2(B) = Harm(B) ⊕ ∆W 2,2
0 (B). (5.9)

The space of "anharmonic functions" coincides with those density functions ρ which
have vanishing associated potential Vρ in B

e:

Anharm(B) = {ρ ∈ L2(B) |Teρ = 0}.
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Proof. First, we show that Anharm(B) ⊂ {ρ ∈ L2(B) |Teρ = 0}.
The equality Teρ(y) = 0 means:

∫

B

ρ(x)
|y − x|dx = (ρ ∗ E3)(y) =

∫

B

ρ(x)E3(y − x)dx = 〈ρ,E3(y − x)〉B = 0,

where E3(y − x) is the fundamental solution of Laplace equation.
Let g ∈ ∆W 2,2

0 (B), so g = ∆v, v ∈ W 2,2
0 (B). Using the second Green’s formula,

we have:

〈g, E3(y − x)〉B =
∫

S

∂v(x)
∂n

E3(y − x)dx−
∫

S

v(x)
∂E3(y − x)

∂n
dx = 0,

because ∆xE3(y − x) = 0 in B if y ∈ B
e and v ∈ W 2,2

0 . Hence, Anharm(B) ⊂ {ρ ∈
L2(B) |Teρ = 0}.

Secondly, we show that Anharm(B) ⊃ {ρ ∈ L2(B) |Teρ = 0}.
Let ρ ∈ L2(B) such as Teρ = 0. This is equivalent to say that 〈ρ,E3(y− x)〉B = 0 for
y ∈ B

e. Because E3(y − x) is harmonic for y ∈ B
e, we have ρ ∈ Anharm(B).

This proposition is equivalent to say that only the harmonic part of the density
generates a non nul exterior potential.

Remark 5.1.3. KerTe = KerT = Anharm(B) = {ρ ∈ L2(B) |Teρ = 0} with the
topological supplement Harm(B) in L2(B).

Source recovery problem

(SR) problem has been considered for example in [1] and consists in finding
a discrete density in B denoted by ρN , such that TρN = VN |S is close to a given
function VS on S, in a sense to be made precise. Note that whenever VS = V|S

for some solution V = Tρ to (5.3), then (SR) leads to a discretization VN of the
potential V (and to the related discrete density ρN , approximating ρ).
Given VS on S, we thus introduce the functional FN defined on B

N × R
N which

depends on two families of parameters (vectors) (S,m) representing the positions
and masses associated with N monopolar sources, that is:

FN(S,m) = ‖VS − VN‖2
S
, (5.10)
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where VN = V (N,S,m), S = (Sk) ∈ B
N , 0 < r1 ≤ |Sk| ≤ r2 < 1, m = (mk) ∈ R

N ,
M ≥ mk ≥ m > 0, for k = 1, . . . , N , where M is the mass of the Earth and

VN(y) =
N∑

k=1

mk

|y − Sk| ,∀ y 6= Sk. (5.11)

Then, with ρN =
∑N

k=1 mkδSk
, we have that VN is a solution to (5.3) associated to

ρN , with VN = TρN .

Remark 5.1.4. Though the Earth density possesses localized zones of high concen-
tration, they can though be approximated by pointwise masses or by inclusions [10].

In geophysics literature, the inverse geodesy problem (DR) was intensively stud-
ied, see for example [1, 38, 39, 51].

Next, the inverse problem of density recovery related to EEG that we consider in
this thesis is modeled by the equations (2.50). We note in this case that the surface
S of B is the scalp of the head and after a preliminary cortical mapping step of
data transmission, we end up with a "filtered" part of the electrical potential which
satisfies ∆U = 0 in B

e.
In the same way as for the monopolar case, we can formulate the direct and the
inverse (DR) EEG problem.

The direct problem associated to (SR) is: being given the density
ρN =

∑N
k=1 pk.∇δCk

inside the ball B, find the exterior generated potential U
at S.

The density recovery problem (SR) is: being given boundary data US associated
to a solution U of (2.50) on S (i.e. U|S = US), find the related density ρN in B.

Links between (DR) and (SR) problem

To have an approximation of the (DR) problem, we solve the source recovery prob-
lem (SR) supposing the discrete density given by a monopolar or dipolar sources dis-
tribution. In the geodesy case, because of the non uniformed repartition of the density
(different levels of concentration on the Earth), this can be modeled by agglomera-
tions of monopolar/dipolar sources contained in small inclusions parametrized by a
small radius ǫ, see Section 5.4.
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5.2 Existence, uniqueness and stability results

We recall the (SR) inverse geodesy problem with ρN given by (5.4), supposing that
M ≥ mk ≥ m > 0, and the sources considered inside the spherical shell B = B(r1, r2):
0 < r1 ≤ |Sk| ≤ r2 < 1. Before solving this problem, we give some existence,
uniqueness and stability results. The point-masses determination problem (5.10)
was introduced in [1]. In order to study the well-posedeness of the problem, we
introduce details on the existence property.

Problem (SR): For a fixed N

find VN (alternatively, (S,m)) that minimizes (5.10). (5.10
′

)

In the following we give a proof of the existence of this problem:

Proposition 5.2.1. For any set of measurements of V , there exists a density ρ
such that Tρ = V ∈ L2(S).

Proof. The existence of solutions VN to problem (5.10
′

) is ensured by continuity
properties. The expansion of V , measured at the surface of the unit sphere, in terms
of the spherical harmonic basis is given by:

V (1, θ, φ) =
∞∑

n=0

n∑

m=−n

cnmYnm(θ, φ), (5.12)

The potential generated by N sources is the sum of the potentials generated by the
considered point masses.

VN(1, θ, φ) =
N∑

k=1

mk

∞∑

n=0

n∑

m=−n

rn
k

4π
2n+ 1

Ynm(θk, φk)Ynm(θ, φ), (5.13)

with cnm the coefficients of the development of V in spherical harmonic basis. For
getting the spherical harmonic expansion of the discrete gravitational potential (5.11)
we denote by lk the Euclidean distance between X and Sk with

lk =
√

1 − 2rk cosψk + r2
k, (5.14)

where ψk is the spherical distance between X and Sk. Then, we have:

1
lk

=
1

√
1 − 2rk cosψk + r2

k

=
1
rk

∞∑

n=0

rn+1
k Pn(cosψk). (5.15)
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Using the addition formula for spherical harmonics (2.38), we get:

1
lk

=
∞∑

n=0

rn
k

4π
2n+ 1

Ynm(θk, φk)Ynm(θ, φ). (5.16)

Then, we obtain (5.13). Using the development of V and VN on the spherical har-
monic basis, the functional FN(S,m) = ‖VS − VN‖2

S
becomes:

min
S∈BN ,m∈RN

‖b− A(S)m‖2
S
, (5.17)

where, the entries of b and A(S) are given by:

bI(n,m) = cnm

( 1
R

)n
, I(n,m) = 1, 2, . . . ,

AI(n,m)k(S) =
4π

(2n+ 1)
rn

kYnm(θk, φk), I(n,m) = 1, 2 . . . , k = 1, . . . , N,

with I(n,m) =
∑n

l=0(2l+ 1) − n+m = n2 + n−m+ 1, −n ≤ m ≤ n. We note that

the functional FN is continuous on the ball BN × [0,M ]N , 0 ≤
N∑

k=1

mk ≤ M .

The problem (5.5) is ill posed. A condition on this problem such that the solution
exists is the next compatibility condition:

∫

S

gdω = −
N∑

k=1

mk,

with g = ∂V
∂n

. Then, the solution is unique up to an additive constant.
For the (SR) problem, the uniqueness (i.e. identifiability) of the solution of (5.10)

is establish in [22], see the next theorem for pk = 0 in (5.2):

Theorem 5.2.1. [22] Let Vi, i = 1, 2 be the solution of the problems




∆Vi = F i in B
∂Vi

∂n
= g on S

V = f on S

(5.18)

such that V1 = V2 on Γ∗ which is a subset with non-void interior of S. Then V1 = V2,
i.e.

S
(1)
k = S

(2)
k ,m

(1)
k = m

(2)
k , k = 1, . . . , N.

where Sk are monopolar sources and mk their masses.



5.3. RESOLUTION SCHEMES 79

A general stability result is given by Theorem 2.2.1. Next, we give some existence
and stability results associated with the EEG problem. The identifiability Theorem
5.2.1 remains valid for mk = 0 and pk 6= 0. The direct problem (2.50) is well-posed
on the Hilbert quotient space W 1,2(B)/R under the compatibility condition [22]:

∫

Γ
gdω =

∫

Γ

∂U

∂n
dω = 〈ρN , 1〉B (5.19)

where W 1,2 is the Sobolev space, U the electrical potential. Note that if f1, f2 ∈
W 1,2(B) with f1 = f2 + constant, then f1 = f2 in W 1,2(B)/R.

Another result is given in [6].

Proposition 5.2.2. Given a dipolar source distribution Ck, k = 1, . . . , N of moments
pk, the potential U generated by this distribution verifies (2.50), where the current

flux belongs to W− 1
2

,2(Γ) with ∫

S

gdω = 0.

Then, the direct EEG problem (2.50) admits a unique solution up to an additive

constant and the solution U belongs to W
1
2

,2(S).

The identifiability Theorem 5.2.1 can be seen as a uniqueness result [22, 55]: if
two measured potentials U1 and U2 coincide on Γ∗, a non void-interior subset of S,
then they are generated by the same sources.

Stability: If two potentials generated by two distributions of N dipolar sources
have close values on the boundary S, then the corresponded distributions are also
close rapported to a distance [22, 53]. A local stability for EEG problem is given in
[21]:

Theorem 5.2.2. If ϕh = (pk, Ck)1≤k≤N ∈ (R3 ×B)N such that ϕh → ϕ if h → 0 and
if we denote by fh the data on Γ∗ corresponding to ϕh, then:

lim
h→0

‖f − fh‖Γ∗

|h| > 0.

5.3 Resolution schemes

A short description of some resolution methods was introduced in Chapter 1. In
this thesis, the (SR) problem is solved by using the best quadratic approximation on
2D combined with our scheme for the extrapolation of the potential to whole sphere
via Slepian functions basis and the computation of spherical harmonic expansion
coefficients of this later.
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Our resolution procedure

Once the data is estimated over the whole sphere S (geodesy, M/EEG) by solving
(TP), the next step in the resolution of the inverse problem (IP), is the source
recovery problem (SR). The resolution of (SR) problem in the ball B involves 3
steps:

• Planar sections
The ball B is sliced along a family of parallel sections, perpendicular to a chosen
axis. The intersection between B and the planar sections gives us a family of
disks where we apply the best quadratic rational approximation.

• Best quadratic rational approximation on circles
The 2D approximation techniques are used to find the planar singularities on
the disks obtained in the previous step.

• 3D sources localization
The sources are localized in 3D by analyzing the planar singularities induced
by sources or masses which are superposed.

Remark 5.3.1. In order to get more accuracy on the localization process and to sep-
arate the sources, the detection step must be performed with several slicing directions.
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Figure 5.1: Rational approximation from 3D to 2D

x
y

z

r p Tp

Figure 5.2: One section of S

Planar sections

We suppose that the data is given over the whole sphere S and it is harmonic at
the exterior of the ball. The ball B is sliced along a family of planes Πp, p = 1, · · · , P .
The intersection between B and Πp are disks Dp whose boundaries are circles Tp of
radius rp centered at a point of the chosen axis. From Vp on Tp (the restriction of
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the potential V on the circles Tp, i.e. V \Tp), we build the complex rational variable
function fp on the unit circle Tp. Due to the N sources Ck, fp has N singularities z−

k,p

(related to the positions of Ck) inside the disk Dp (as well as N related singularities
z+

k,p outside the closed disk Dp). The data fp is assumed to be given either by a
number of its pointwise values on Tp or by a number of its Fourier coefficients, using
the spherical harmonics expansions of VS .

Remark 5.3.2. For building the function fp on the circles, we use the relation

z = r2
p

z
, with z the affix of the points where we take the measurements, see [8].

Remark 5.3.3. In [8, 17], the data is available over whole the sphere S and the
coefficients of the spherical harmonic expansion of the data are computed by solving
a linear system of equations that might be unstable. Our proposed method works with
data potential known only in a region of the sphere, like belt or spherical caps. Also,
the coefficients are computed by using the Gauss-Legendre quadrature.

Once we can localize the singularities z−
k,p, this leads to an estimate of Ck. The

relation between the singularities z−
k,p and the sources Ck is given by the next propo-

sition [56]:

Proposition 5.3.1. We suppose zk 6= 0, k ∈ {1, . . . n}. Then:

arg(z−
k,p) = arg(zk) and max

p=1...P
|z−

k,p| = zk

This allows us to determine the number N of sources.

The function fp has the following properties:

1. If there exists just one source (N = 1), then fp is a rational function with a
pole (single or triple) in Dp at z1,p.

2. If there are more than one source (N ≥ 2), fp is not anymore a rational
function. In this case, fp can still be approximated on the boundary Tp by a
rational function with poles in Dp [8, 9].

Best quadratic rational approximation on circles

At the origin, the rational approximation was mainly used in systems theory,
control theory and signal treatment [11]. The software used for the inverse source
problem identification (Matlab software RARL2, see [37]) was first implemented
for the resolution of frequencies filters identification problems in signal [21]. These
problems consist in approximating the transfer function of a system by a rational
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function with poles in D, given pointwise values of the transfer function on the unit
circle T of C. Before describing the algorithm we need to introduce Rm to be the
set of rational functions Rm with less than m poles in the unit disk D:

Rm =
{pm

qm

, where pm, qm are polynomials such that deg pm < deg qm ≤ m, roots of qmbelong to D

}

A best quadratic rational approximant to fp in Rm is a function R∗
m ∈ Rm which

verify:
‖fp −R∗

m‖T = min
Rm∈Rm

‖fp −Rm‖T (5.20)

for the L2(T) norm. As we see in the previous step, the function fp is computed
on each circle Tp. To apply the best quadratic rational approximant of fp we need
to get the norm L2 on the unit circle T. For this, a normalization step of fp is
required. Existence and uniqueness in problem (5.20) are studied in [26]. For each
section p, we compute the best meromorphic approximant of the function fp and the
singularities zk,p are approximated by the poles of the best approximant of fp. This
step is repeated for each section and the poles are gathered in groups which give us
an estimation of the number N of sources and of their positions Ck.

Remark 5.3.4. If the function fp to be approximated is a rational function of degree
m′, the best approximant of fp of degree m coincides with fp for m ≥ m′.

3D source localization

This step "from 2D to 3D" consists in superposing all the estimated singularities
and estimating the positions of sources. To each k fixed and each axis section, is
associated a singularity line which connects together the singularities zk,p of fp when
p varies for k fixed. When the sources are "well separated", the convergence of the
poles of the best approximant is better for the sections close to the sources. Closer
we are to the section where the source is located, better the poles of the rational
approximant gather towards the induced singularity. From this remark, in order to
get more accuracy on the localization process, it is indicated to take several slicing
directions. Each line lk is associated with one of the sources Ck and has the following
theoretical properties [17]:

• lk lies in a half-plane containing Ck and orthogonal to the slicing plane Π.

• lk goes through its associated source Ck. If we look to the ball B from the
top of the slicing axis, the source Ck is found at the maximum modulus of
singularities.
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The singularity lines lk associated to various slicing directions Π intersect at the
sources which allows to better estimate their positions.

Remark 5.3.5. For both cases i.e. monopolar (geodesy inverse problem) and dipolar
density (EEG inverse problem, see [17]), the same approximation scheme can be used
in order to solve the discretization issue (SR) of the initial (DR) problem. In other
words, using the best quadratic rational approximantion we solve the (SR) problem
for geodesy and EEG and the solution of this problem gives us an approximant of the
(DR) problem.

5.4 Others density models

Due to different levels of concentration of the Earth density, it can be approximated
by different models. As we already saw, one of the appropriate model is that one of
the monopolar masses. In the following, we describe briefly a case when the (Earth)
potential V is generated by a density denoted by cωχω which is concentrated inside
a ball ω of radius ǫ and centered in y0 contained in the unit ball B which model
the Earth [10, 25]. This new model of density allows us to compute an approximant
for (DR) problem. In the complementary part of the ball, B \ ω, the corresponded
density has the constant value cT .
We have the equation :

∆V =





0, R
3 \ B

cT , in B \ ω
cω, in ω





= ρχ,

with cω, cT ∈ R+, cω >> cT .

∆V = cTχB\ω + cωχω = cTχB + (cω − cT )χω = ρχ.

For subsets A ⊂ R
n, χA is the indicator function with:

χA(x) =

{
1 if x ∈ A;
0 if x /∈ A.

Proposition 5.4.1. The potential generated by the above density ρ ∈ L2(B) coin-
cides, up to an additive constant, with a potential issued from a pointwise mass at
y0.



5.4. OTHERS DENSITY MODELS 85

Proof. We have:

V (x) =
∫

B

cT + χω(y)(cω − cT )dy
|x− y| ,

V (x) = cT

∫

B

dy
|x− y| + (cω − cT )

∫

ω

dy
|x− y| . (5.21)

Now, if we take

U(y) = Ux(y) =
1

|x− y| = E3(x− y) with ∆yUx = 0 in B.

applying the Theorem 2.2.3 of mean-value property, we have:

1
4
3
π

∫

B

dy
|x− y| = Ux(y = 0) =

1
|x| = 1, |x| = 1 (unit ball). (5.22)

Consequently, we have: ∫

B

dy
|x− y| =

4π
3
.

For the ball denoted by ω = ω(y0, ǫ), we obtain:

1
4
3
πǫ3

∫

ω

dy
|x− y| = Ux(y = y0) =

1
|x− y0|

= E3(x− y0), (5.23)

∫

ω

dy
|x− y| =

ǫ34π
3|x− y0|

=
ǫ34π

3
E3(x− y0).

From (5.21), (5.22) and (5.23) we obtain:

V (x) =
4π
3

[
cT + ǫ3(cω − cT )E3(x− y0)

]
. (5.24)

In the case when the density of the Earth is model by 6 dipoles (or a finite number of
point masses) placed inside a small ball ω(x0, ǫ), the associated potential is the sum
of the individual contributions. For solving the inverse problem we use the rational
approximation technique described in Section 5.3. The unit ball B is intersected by
5 parallel planes orthogonal to the z-th axis, so that we obtain a family of 2D disks
Dp, p = −5, . . . , 5. The next image represents the approximation result on the 5-th
section: the blue points are the poles of the approximant and those in red the true
singularities of sources. The next two images represent a 3D visualization of the
sphere after we apply the best meromorphic approximant on each circle. On the first
figure we can see the poles of each 2D-approximant (in blue) for the 6 sources (in
green). In the second case, the figure is seen from above.
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Figure 5.3: 2D-approximation on the 4th and 5th section

Figure 5.4: Six sources

Now, we suppose that the density of the Earth is contained inside an union of
3 balls w = ∪3

i=1B(xi, ǫ). In this case, we compute the potential by the explicit
formula (5.24). This figure represents the approximation result on the third section,
where the blue points are the poles of the approximant and the black ones the true
singularities of the sources. We give as example the results that we obtain for the 3th
and 4th sections of the unit sphere where we apply the best rational approximant.
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Figure 5.5: 2D-approximation on the 3th and 4th section

After superposing the sections we get the 3D source localization. In the next
figure we have in blue the poles of each 2D-approximant and in green the estimated
sources.

Figure 5.6: Localization of three sources

More numerical results concerning the monopolar and dipolar source localization
will be presented in Chapter 6.
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Chapter6
Numerical results

In this chapter, we give various examples that illustrate the results of this thesis.
The scheme used to obtain these numerical results is explained in the following. We
already saw that the resolution of the inverse problem (IP) involves the resolution
of two problems: the transmission data problem (TP) and density recovery (DR)
problem. In practice, as we know, the data is available just on some regions as
the north hemisphere of the head (M/EEG) or above continents, spherical caps,
etc. (geodesy). To represent these data, we have build a new adaptive basis. The
Chapter 3 provides a new efficient method for building the convenient Slepian
basis. This method is based on Gauss-Legendre quadrature. The step which consists
in passing from the partial data expressed in the new Slepian basis, towards the
complete data over the whole sphere S and expressed in spherical harmonic basis,
is called the transmission data problem (TP). For more details, see Chapter 4.
For (DR) resolution problem via the best quadratic rational approximation on 2D
on sections, we need the coefficients of the spherical harmonic expansion of the
data over the sphere. In this thesis we have given an accurate method based on
Gauss-Legendre quadrature, for the computation of the coefficients of the spherical
harmonic development. This passage involves some steps and it was implemented in
MAPLE:

• We compute the spherical harmonic expansion of the potential (gravitational or
electrical) truncated up to a bandwidth L. For this, informations as bandwidth,
angles of spherical caps (belts) and positions of sources are read from a file
called input.txt;

• Once we know the potential and the Slepian basis, we compute the coefficients
of its Slepian expansion (as integrals over the region Θ between the potential
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and Slepian basis, see Chapter 4, relation (4.9));

• Knowing the coefficients of the Slepian expansion and Slepian functions, we
have to built the potential by using the Slepian basis;

• We compute the coefficients of the spherical harmonic expansion as integral
over the sphere between the potential and the spherical harmonic basis.

The output data furnished by this MATLAB software will give informations which
serve as input for the MATLAB software FindSources3D. This output data will
be exported from MAPLE as a file called output.txt and it contains the truncation
bandwidth of the potential, the angles associated with the the region (spherical caps,
belts), the spherical harmonic coefficients and the nodes on which the potential data
was evaluated over the whole sphere. For a better organization of files, the name of
output.txt will change in function of the variables values.
The next step of the (IP) resolution problem is the density recovery (DR) problem
solved by FindSources3D (INRIA, APICS team, see [24]) that uses the best quadratic
approximation on 2D planar sections, see Chapter 5. Chapter 6 is presented such
that to illustrate numerical tests which was obtained by using the MAPLE and
MATLAB codes and which corresponds to (TP) and (DR) problems. Firstly, we
introduce the monopolar case of geodesy masses model and in a second time we
consider the dipolar case for EEG.
Choice of the bandwidth L
The truncated spherical harmonics expansion of the potential data represents an
approximation of the real potential. The choice of the bandwidth L affects the
reconstruction of the data and the precision of the source localization. We make
different choices of the bandwidth L in order to show the fact that greater the
bandwidth L is, better we localize the sources. We introduce some symbols:

• the singularities zk,p of fp are represented by green points.

• the sources Ck are marked by red points.
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6.1 Monopolar case

6.1.1 Simulations parameters

For these numerical simulations we will consider in a first time the gravitational
potential V (monopolar case) given by:

V (X) =
N∑

k=1

mk

|X − Sk| , X ∈ S. (6.1)

where Sk are the sources, mk their masses. Secondly, we consider the electrical
potential generated by a dipolar distribution of sources:

U(X) =
N∑

k=1

〈pk, X − Ck〉
|X − Ck|3 , X ∈ S.

with Ck dipolar masses, pk their moments. Our simulations will be done for one and
two sources. We start with the data known on different belts or parts Θ of the unit
sphere (see Chapter 3 and 4). These data will be approximated by truncated Slepian
series expansion of the form:

L∑

m=0

2(L−m+1)∑

n=1

an,mΨn,m(θ, φ)

The bandwidth L will be changed in order to see its influence on the sources localiza-
tion. Hence, by using the Gauss-Legendre quadrature, we compute the coefficients of
the spherical harmonic expansion of the gravitational or electrical potential. In order
to find the estimates values of the source (monopolar or dipolar), i.e. to solve the
source localization inverse problem, these coefficients will be read on planar sections
where the best quadratic approximation method is applied.

Remark 6.1.1. The slicing axis is [0z) and the singularities zk,p from each section
are approximated by a simple pole.

This scheme will be used for each case that we consider in this chapter. In the
output figures, we can see in green the singularities and in red the true source.
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6.1.2 Monopolar case

Example 1.1:

In this first example, we illustrate our scheme for a first monopolar sources lo-
calization. For this purpose, we consider the exact source S = (−0.06, 0.42, 0.25) in
Cartesian coordinates and the associated mass m = 6. The associated potential is
given by (6.1):

First, we consider the free noise data V known on the belt Θ of the unit sphere:

Θ = {X = (1, θ, φ), θ ∈ [0, 90], φ ∈ [0, 2π]} (6.2)

In the following table, we present the positions of the true and estimated source and

Figure 6.1: L=3, belt=[0, 90]

the error between them.

positions
true sources -0.06 0.42 0.25

estimated sources -0.002 0.42 0.22
L2 relative error 0.040

Table 6.1: True vs estimated sources
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Example 1.2:

Here, we take the same source S and we add a Gaussian noise of amplitude
σ = 0.02. In the following table we give the real positions of the source S and the

Figure 6.2: L=3, belt=[0, 90], noise: 2%

positions of the estimated one after we add the noise. We can compare the values of
the estimated source for free and noisy data. We can remark that after adding a

positions
true sources -0.06 0.42 0.25

estimated sources -0.067 0.404 0.151
L2 relative error 0.18

Table 6.2: True vs estimated sources

noise, the source S is less well localized.
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Example 1.3:

In this example we consider L = 6, θ ∈ [0, 90]. When the data is available over
the north hemisphere θ ∈ [0, 90], we notice that for bigger L, the source is better
localized. The data is supposed without noise. Comparing to the numerical test

Figure 6.3: L=6, belt=[0, 90]

positions
true sources -0.06 0.42 0.25

estimated sources -0.06 0.42 0.23
L2 relative error 0.00061

Table 6.3: True vs estimated sources

for L = 3, when we obtained an error localization of order 10−2, for L = 6 we have
a better localization with an error of order 10−4.
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Example 1.4:

In this example we consider the same source S = (−0.06, 0.42, 0.25), m = 0.6,
L = 3 with the data over the whole sphere S. The corresponded table for the sources

Figure 6.4: L=3, [0,180]

positions as well the L2 relative error of localization is:

positions
true sources -0.06 0.42 0.25

estimated sources -0.06 0.42 0.25
L2 relative error 0.0409

Table 6.4: True vs estimated source
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Example 1.5:

We change the positions of the source. Let us consider the monopolar source:

S = (0.23, 0.57, 0.31) and m = 0.6

We take L = 10, and the belt Θ defined by θ ∈ [0, 90]. The corresponded table for

Figure 6.5: L=10, belt=[0, 90]

the sources positions as well the L2 relative error of localization is:

positions
true sources 0.23 0.57 0.317

estimated sources 0.23 0.57 0.316
L2 relative error 0.002

Table 6.5: True vs estimated source

Remark 6.1.2. For this example, we notice that for L = 10 the source S is
better localized than for L = 3. If we compare its localization with that for
S = (−0.06, 0.42, 0.25), this last was well localized even for L = 3.
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2 sources

Example 1.1:

In this example we consider a numerical result concerning the localization of
2 sources whose positions are given in cartesian coordinates with the truncation
bandwidth L = 3 and the belt θ ∈ [0, 90]. The associated potential is given by:

V (X) =
m1

|X − C1|
+

m2

|X − C2|
, X ∈ S (6.3)

In the table we give the positions and the estimation error of the considered sources:

C1 = (−0.06, 0.42, 0.25), m1 = 0.6
C2 = (−0.31,−0.07,−0.23), m2 = 0.7

Figure 6.6: L=3, belt=[0, 90]

positions

true sources
-0.06 0.42 0.25
-0.31 -0.07 -0.23

estimated sources
-0.03 0.17 0.34
-0.26 -0.12 0.25

L2 relative error
0.496
0.918

Table 6.6: True vs estimated sources
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Comparing to the case when the potential is generated by a single source, the
localization is less good when we consider two sources. This is due to the cross
product which appears when we compute the power of (6.3). We remember that
we compute for each section of the sphere a best meromorphic approximate to the
function V 2, see Section (5.3).

Example 1.2:

In this example we consider the same sources, θ ∈ [0, 90] and L = 10. We

Figure 6.7: L=10, belt=[0, 90]

positions

true sources
-0.06 0.42 0.25
-0.31 -0.07 -0.23

estimated sources
-0.06 0.42 0.25
-0.31 -0.07 -0.23

L2 relative error
0.0098
0.0067

Table 6.7: True vs estimated sources

remark a better localization for L = 10 for both sources.
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Example 1.3:

We retake the previous example and we add a noise of amplitude σ = 0.01. The

Figure 6.8: L=3, belt=[0, 90], noise: 1%

corresponded table for these two sources:

positions

true sources
-0.06 0.42 0.25
-0.31 -0.07 -0.23

estimated sources
-0.12 0.28 0.39
-0.16 -0.29 -0.12

L2 relative error
0.386
0.527

Table 6.8: True vs estimated sources
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Example 1.4:

This case illustrates and localize two sources placed in different hemispheres.
Consequently, when the data is available over the belt [0, 90], one source is placed
inside the belt and the other one at the exterior.

C1 = (−0.06, 0.42, 0.25), m1 = 0.6
C2 = (−0.34,−0.08,−0.18), m2 = 0.6

Figure 6.9: L=3, belt=[0, 90], without and with noise 2%

The corresponded table of the true and estimated sources, as well the error of local-
ization is:

positions

true sources
-0.06 0.42 0.25
-0.34 -0.08 -0.18

estimated sources(free noise)
-0.01 0.13 0.16
-0.19 -0.10 -0.04

estimated sources(noise)
-0.06 0.23 0.40
-0.31 -0.12 -0.10

L2 relative error(free noise)
0.586
0.384

L2 relative error(noise)
0.453
0.561

Table 6.9: True vs estimated sources
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6.2 Dipolar case

1 source

Example 1.1:

In [23], the author has developed a scheme for the source localization. This scheme
is based on the use of an initial guess of the exact locations of the sources combined
with the boundary element method to calculate a cost function J and its gradient
associated with the (SR) problem. Then, an iterative minimization algorithm is used
to compute the approximate location of the sources.

In [23], it was applied the previous scheme for one dipolar source with Ctrue =
(0.12, 0.12, 0.12), ptrue = (0.70, 0, 0.70) and taking two different starting points C1

0 =
(0.63, 0.1, 0.75), p1

0 = (0.4, 0, 0.2) and C2
0 = (0.5, 0.3, 0.9), p2

0 = (0.4, 0.3,−0.2). The
first value is closer to the exact solution than the second one. The data are considered
to be known on the whole boundary of the sphere, with no added noise.

In the case when the data are considered known just on the belt Θ = [0, 90], we
use the method of Simons [46] to have the data expansion on Slepian basis. After,
we use FindSource3D software for source localization and we find the estimated
source Cestim = (0.118, 0.117, 0.132) with the L2 relative error equal to 0.0579. We
note that although the scheme introduced in [23] gives a slightly better result (an
error of order 10−5 and 10−4 for the initial guess C1

0 , respectively C2
0), our method

has the advantage to not require an initial accurate guess of the source localization.
Also, we have repeated the previous example with an added Gaussian noise with
σ = 0.02 and truncation bandwidth L = 10 and find the location of the source
Cestim = (0.121, 0.117, 0.151) and an error equal to 0.149. The following numerical
tests are done by using the method of Simons when we dispose of partial data on
the sphere.
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Example 1.2:

C = (−0.06, 0.42, 0.25), p = (0.7, 0, 0.7)

In this example we suppose the data given on the belt Θ = [0, 90] and the bandwidth
L = 10. The corresponded table of the true and estimated source, as well the relative

Figure 6.10: L=10, belt=[0, 90], without noise

error of localization is:

positions
true sources -0.06 0.42 0.25

estimated sources -0.061 0.417 0.253
L2 relative error 0.00897

Table 6.10: True vs estimated sources
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Example 1.3:

We add a noise of amplitude σ = 0.02 for the previous example:

C = (−0.06, 0.42, 0.25), p = (0.7, 0, 0.7)

Figure 6.11: L=10, belt=[0, 90], with noise: 2%

The corresponded table of the true and estimated source, as well the relative
error of localization is: Comparing to the previous example, the source is less well

positions
true sources -0.06 0.42 0.25

estimated sources -0.061 0.417 0.259
L2 relative error 0.019

Table 6.11: True vs estimated sources

localized with an error localization of order 10−2 instead of 10−3.
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Example 1.4:

In this example we consider the same positions of sources and the data is available
on the belt Θ = [45, 135].

C = (−0.06, 0.42, 0.25), p = (0.7, 0, 0.7)

Figure 6.12: L=10, belt=[45,135], without noise

The corresponded table of the true and estimated source, as well the relative error
of localization is: Where the data covers a part of the nord hemisphere where the

positions
true sources -0.06 0.42 0.25

estimated sources -0.058 0.421 0.258
L2 relative error 0.0172

Table 6.12: True vs estimated sources

source is placed and a part of the sud hemisphere (where we do not dispose of data),
the source is less well localized comparing with the Example 1.2 when the data is
given just on the belt [0, 90] where the source is placed.
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Example 1.5:

C = (−0.06, 0.42, 0.25), p = (0.7, 0, 0.7)

For the previous example, we add a noise of amplitude σ = 0.02. The following table

Figure 6.13: L=10, belt=[45,135], with noise 2%

gives us the positions of the true and estimated source, as well the relative error of
localization: The same remark: adding a noise, the error localization increases.

positions
true sources -0.06 0.42 0.25

estimated sources -0.055 0.416 0.242
L2 relative error 0.0206

Table 6.13: True vs estimated sources
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Example 1.6:

Now, if we change the positions of sources,

C = (0.23, 0.57, 0.31), p = (0.7, 0, 0.7)

we get the localization, see Fig. 6.14. The corresponded table of the true and

Figure 6.14: L=10, belt=[0,90], without noise

estimated source, as well the relative error of localization is:

positions
true sources 0.23 0.57 0.31

estimated sources 0.223 0.568 0.311
L2 relative error 0.0111

Table 6.14: True vs estimated sources
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Example 1.7:

In this example we add a noise of amplitude σ = 0.02:

C = (0.23, 0.57, 0.31), p = (0.7, 0, 0.7)

Figure 6.15: L=10, belt=[0,90], with noise 2%

The corresponded table of the true and estimated source, as well the error of local-
ization. Comparing with the previous example, we remark that the error increases

positions
true sources 0.23 0.57 0.31

estimated sources 0.222 0.567 0.308
L2 relative error 0.0126

Table 6.15: True vs estimated sources

by adding a noise.
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2 sources

Example 1.1:

We consider the sources:

C1 = (−0.06, 0.42, 0.25), p1 = (0.7, 0, 0.7)
C2 = (−0.31,−0.07,−0.23), p2 = (0.7, 0, 0.7)

Figure 6.16: L=10, belt=[0,90], without noise

The corresponded table of the true and estimated sources, as well the error of local-
ization is:

positions

true sources
-0.06 0.42 0.25
-0.31 -0.07 -0.23

estimated sources(free noise)
-0.061 0.424 0.351
-0.294 -0.051 -0.237

estimated sources(noise)
-0.051 0.41 0.241
-0.289 -0.065 -0.276

L2 relative error(free noise)
0.190
0.048

L2 relative error(noise)
0.0320
0.0962

Table 6.16: True vs estimated sources
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Figure 6.17: L=10, belt=[0,90], with noise 2%

Example 1.2:

We change the moment for the second source. The data is supposed over the belt
θ ∈ [45, 135] for L = 10:

C1 = (−0.06, 0.42, 0.25), p1 = (0.7, 0, 0.7)
C2 = (−0.31,−0.07,−0.23), p2 = (0.2,−0.1, 0.1)

We give the corresponded table of the true and estimated sources, as well the error
of localization. We notice that we have a better localization when the sources have

positions

true sources
-0.06 0.42 0.25
-0.31 -0.07 -0.23

estimated sources
-0.069 0.369 0.478
-0.208 0.116 0.114

L2 relative error
0.142
0.765

Table 6.17: True vs estimated sources

the same coordinates of moments.
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Example 1.3:

We consider the two sources and the data are available over the whole sphere.

C1 = (−0.06, 0.42, 0.25), p1 = (0.7, 0, 0.7)
C2 = (−0.31,−0.07,−0.23), p2 = (0.7, 0, 0.7)

Figure 6.18: L=10, belt=[0,180], without noise

The corresponded table of the true and estimated sources, as well the error of local-
ization is: Comparing this example with the previous one, when the data is available

positions

true sources
-0.06 0.42 0.25
-0.31 -0.07 -0.23

estimated sources(free noise)
-0.058 0.418 0.236
-0.313 -0.067 -0.223

estimated sources(noise 2%)
-0.064 0.404 0.262
-0.300 -0.105 0.019

L2 relative error(free noise)
0.0276
0.0151

L2 relative error(noise 2%)
0.0387
0.476

Table 6.18: True vs estimated sources

just over the north hemisphere, the localization is better because the data is available
over the entire sphere.
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General remarks:

1. The bandwidth L plays an important role in the source localization: bigger the
L is, smaller the error localization becomes.

2. The localization depends also on the positions of the sources with respect to
the belt, i.e. if the sources are placed or not in the covered region.

3. The localization is also improved when the data is considered over the whole
sphere.
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Chapter7
Conclusion

This thesis is developped around the representation of data on the sphere and
approximation, for transmission and recovery problems concerning some Laplace
partial differential equations.

The resolution of the associated inverse problems requires a first transmission
data step, from the considered region to the whole boundary sphere, and in a second
time, the recovery of the sources in the domain [17].

The use of families like spherical harmonics and Slepian bases is of special interest
for the resolution of such inverse problems in geodesy and EEG, when we dispose of
partial boundary data.

When we dispose of different types of heterogeneous data, as the gravitational
potential measured at the surface of the Earth and its derivative or Hessian measured
on sattelite orbits, for their expansion we can use different bases like Slepian [46],
wavelets [13] or other functions families.

Suitable functions families here are given by Slepian bases that allow to represent
partially available data on sphere, whenever these come from almost band-limited
functions (this is numerically the case; however, further error bounds should be
established concerning the above potentials with pointwise or localized singularities
in the ball, following Chapter 4). For the computation of such a Slepian basis, an
efficient scheme has been proposed, using Gauss-Legendre quadrature methods [33].
The comparison between zonal spherical harmonics and Slepian functions would be
interesting particularly when the studied region is a belt, contained between two
parallels of the sphere.

In practice, the nodes location is imposed (they are not chosen as suitable nodes,
as for Gauss-Legendre quadrature) and consequently, the study of different quadra-
ture methods (as points of a cubature rule on the sphere, see [49]) which could give
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more flexibility on the choice of the nodes (location of electrodes or satellites) is
suitable.

The considered data could be gravitational or electrical potential measured at
points on the boundary sphere (from electrodes on the scalp, or by gravimeters on
the Earth surface) or some other sphere (for satellite measurements, or for MEG).

For the case when we dispose of partial data over particular regions of the sphere,
the estimation of the data over all the sphere can be formulated in terms of best
constrained approximation problems [5], boundary elements methods or other regu-
larization techniques [17].

For the second sources recovery step of the inverse problem, from data now avail-
able on a whole sphere, we used best quadratic rational approximation methods on
planar sections [8, 17]. It furnishes good localization results for monopolar and dipo-
lar sources type. The source localization results could be improved using several
directions of planar sections, technique called of "clustering". This procedure yields
a family of estimations of the sources at the intersection of the axis [17].

Concerning EEG issues, simultaneous measurements from MEG could be used for
a better source localization (this will be done through the software FindSources3D,
[24]).

To complete the resolution of the inverse problem, masses and moments identifi-
cation is further required [43].

Similar inverse problems come from other physical and non destructive control
issues, like paleomagnetism [7], determination of the thickness of glaciers and soils,
exploration of subsoils, etc.
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Annexe

MAPLE code

Slepian basis construction

As we already saw in the different chapters, the method that we use to build
the Slepian functions in this thesis is based on a discretization of a certain integral
operator by the use of a convenient Gaussian-Legendre quadrature. In the following,
we give the Maple code which permits us to compute the Slepian basis functions as
well as their corresponding eigenvalues. Also, it allows us to extrapolate a given
signal to the whole sphere. Finally, it allows to compute the spherical harmonic
expansion coefficients of a signal from their Slepian functions expansion coefficients.

######### QUADRATURE OVER (theta_0, theta_1) ######################

>theta_0_degres:=(theta_0*Pi)/180;

>theta_1_degres:=(theta_1*Pi)/180;

>Digits:=50:with(linalg):

a:=-evalf(sin(theta_1_degres)):

b:=evalf(sin(theta_0_degres)):

#N0 is the number of noeds taken on (theta_0,theta_1)

N0:=20:x:=’x’:

for n from N0 to N0+1 do

hh:=evalf(sqrt(2*n+1)*1.0/((b-a)^(n+0.5)*n!)):

Q[n]:=expand(diff((b-x)^(n)*(a-x)^n,x$n)*hh):

k[n]:=coeff(Q[n],x,n):

od:

Q1:=expand(diff(Q[N0],x)):

## nodes and weights for (theta_0,theta_1)

121
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#we build the matrix DD with eigenvalues being the nodes

DD:=array(1..N0,1..N0):

for i from 1 to N0 do

for j from 1 to N0 do

DD[i,j]:=0.0:

od:

od:

for i from 1 to N0 do

DD[i,i]:=0.5*(a+b):

od:

for i from 1 to N0-1 do

DD[i,i+1]:=-evalf(i*(b-a)/(2.0*sqrt(2*i+1.0)*sqrt(2*i-1.0))):

DD[i+1,i]:=DD[i,i+1]:

od:

#the nodes as eigenvalues of matrix DD and the corresponding weights

E:=evalf(eigenvals(DD)):

>for i from 1 to N0 do

x:=E[i]:#the nodes for (theta_0,theta_1)

W[i]:=-k[N0+1]/k[N0]*1.0/(Q1*Q[N0+1]):#the weights

od:

>with(linalg):a2:=arccos(b):b2:=arccos(a):NN1:=N0:x:=’x’:

#NN1 is the number of nodes over the belt (a2,b2)

for n from NN1 to NN1+1 do

hhh:=evalf(sqrt(2*n+1.0)*1.0/(n!)*1.0/((b2-a2)^(n+1/2))):

QQ[n]:=expand(diff((x-a2)^n*(x-b2)^(n),x$n)*hhh):

ka[n]:=coeff(QQ[n],x,n):

od:

QQ1:=expand(diff(QQ[NN1],x)):

>DDD:=array(1..NN1,1..NN1):

for i from 1 to NN1 do

for j from 1 to NN1 do

DDD[i,j]:=0.0:

od:

od:

for i from 1 to NN1 do

DDD[i,i]:=0.5*(a2+b2):

od:

for i from 1 to NN1-1 do

DDD[i,i+1]:=-evalf(i*(b2-a2)/(2.0*sqrt(2*i+1.0)*sqrt(2*i-1.0))):

DDD[i+1,i]:=DDD[i,i+1]:

od:
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#the nodes as eigenvalues of matrix DDD

E2:=evalf(eigenvals(DDD)):

>for i from 1 to NN1 do

#nodes and weights over (arccos(theta_0),arccos(theta_1))

x:=E2[i]:W2[i]:=-ka[NN1+1]/ka[NN1]*1.0/(QQ1*QQ[NN1+1]):

od:

####################################################################

We compute the nodes and the weights for the Gauss-Legendre quadrature applied to the
interval (0, π):

########### QUADRATURE OVER (0,Pi) #################################

>with(linalg):a3:=0:b3:=evalf(Pi):NN1:=N0:x:=’x’:

for n from NN1 to NN1+1 do

hhh:=evalf(sqrt(2*n+1.0)*1.0/(n!)*1.0/((b3-a3)^(n+1/2))):

QQ[n]:=expand(diff((x-a3)^n*(x-b3)^(n),x$n)*hhh):

ka[n]:=coeff(QQ[n],x,n):

od:

QQ1:=expand(diff(QQ[NN1],x)):

# nodes E3 and weights W3 for (0,Pi)

DDD:=array(1..NN1,1..NN1):

for i from 1 to NN1 do

for j from 1 to NN1 do

DDD[i,j]:=0.0:

od:

od:

for i from 1 to NN1 do

DDD[i,i]:=0.5*(a3+b3):

od:

for i from 1 to NN1-1 do

DDD[i,i+1]:=-evalf(i*(b3-a3)/(2.0*sqrt(2*i+1.0)*sqrt(2*i-1.0))):

DDD[i+1,i]:=DDD[i,i+1]:

od:

E3:=evalf(eigenvals(DDD)):# E3 are the nodes for (0,Pi)

>for i from 1 to NN1 do

x:=E3[i]:W3[i]:=-ka[NN1+1]/ka[NN1]*1.0/(QQ1*QQ[NN1+1]):

od:

####################################################################

####### QUADRATURE OVER (0,2pi) ####################################

>with(linalg):

aa:=0:bb:=evalf(2*Pi):NN0:=20:x:=’x’:

for n from NN0 to NN0+1 do
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hhh:=evalf(sqrt(2*n+1.0)*1.0/(n!)*1.0/(bb^(n+1/2))):

QQ[n]:=expand(diff(x^n*(x-bb)^(n),x$n)*hhh):

ka[n]:=coeff(QQ[n],x,n):

od:

QQ1:=expand(diff(QQ[NN0],x)):

# nodes EE and weights WW for (0,2PI)

DDD:=array(1..NN0,1..NN0):

for i from 1 to NN0 do

for j from 1 to NN0 do

DDD[i,j]:=0.0:

od:od:

for i from 1 to NN0 do

DDD[i,i]:=0.5*(aa+bb):

od:

for i from 1 to NN0-1 do

DDD[i,i+1]:=-evalf(i*(bb-aa)/(2.0*sqrt(2*i+1.0)*sqrt(2*i-1.0))):

DDD[i+1,i]:=DDD[i,i+1]:

od:

EE:=evalf(eigenvals(DDD)):

#### nodes and weights ######

>for i from 1 to NN0 do

x:=EE[i]:

WW[i]:=-ka[NN0+1]/ka[NN0]*1.0/(QQ1*QQ[NN0+1]):

od:

###################################################################

We compute the kernel of the operator Tmassociated to Slepian functions

######### KERNEL K(m,x,y) #######################################

>x:=’x’:y:=’y’:

>K:=proc(m,x,y)

if (m=0) then evalf(sum((2*l+1.0)/(4.0*Pi)*1/(2^l*l!)

*(diff((x^2-1)^l,x$l))*1/(2^l*l!)*(diff((y^2-1)^l,y$l)),l=0..L)):

else

evalf(sum((2*l+1.0)/(4.0*Pi)*(((l-abs(m))!)/((l+abs(m))!)

*((1-x^2)^(m/2)*1/(2^l*l!)*diff(diff((x^2-1)^l,x$l),x$m)

*(1-y^2)^(m/2)*1/(2^l*l!)*diff(diff((y^2-1)^l,y$l),y$m))),l=abs(m)..L)):

fi:

end:

###################################################################

Using the quadrature Gauss-Legendre over the belt (θ0, θ1), we compute the eigenvalues
and eigenfunctions of the kerner K(m, x, y) evaluated at the nodes taken over the belt:
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######## EIGENVALUES of K(m,x,y) #################################

>with(LinearAlgebra):mmm:=’mmm’:mmm:=L+1:i:=0:j:=0:

A:=Matrix(1..mmm*N0,1..N0):

for m from 0 to mmm-1 do

for i from 1 to N0 do

for j from 1 to N0 do

A[m*N0+i,j]:=evalf(W[j]*subs(x=E[i],y=E[j],K(m,x,y))):x:=’x’:y:=’y’:

#we evaluate the kernel in the nodes "E" taken over the belt

od:od:od:

m:=’m’:

for m from 0 to mmm-1 do

F[m]:=eigenvectors(SubMatrix(A,[m*N0+1..(m+1)*N0],[1..N0])):

od:

###################################################################

######## SORTED EIGENVALUES #######################################

#here, we sort ascending the eignevalues

beta:=Matrix(1..mmm,1..N0):

for m from 0 to mmm-1 do

for p from 1 to N0 do

beta[m+1,p]:=abs(F[m][p][1]):

od:od:

for m from 0 to mmm-1 do

X[m]:=Row(beta,m+1):Xsort[m]:=sort(X[m]):

od:

###################################################################

######## EIGENVALUES READING ###################################

>for m from 0 to mmm-1 do

for mm from 1 to N0 do

R[m,mm]:=0:

od:od:

for m from 0 to mmm-1 do

for i from 1 to N0 do

for j from 1 to N0 do

if((abs(Xsort[m][i])-abs(F[m][j][1]))=0) then R[m,i]:=j:

else R[m,j]:=R[m,j]+0:

fi:

od:od:od:

###################################################################

The approximate eigenfunctions of the integral operator with the kernel K(m, x, y) by
using Gauss-Legendre quadrature over the belt (θ0, θ1):
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########## EIGENFUNCTIONS #########################################

>n:=’n’:m:=’m’:

>psi:=proc(n,m,x)

evalf((1.0/F[m][R[m,N0+1-n]][1])*sum(W[kk]*subs(y=E[kk],K(m,x,y))

*F[m][R[m,N0+1-n]][3][1][kk],kk=1..N0)):

end:

###################################################################

Multiplying the eigenfunctions of the operator K(m, x, y) by eimφ, we compute the Slepian
functions.

## NORMALIZATION CONSTANTE BY USING GAUSS-LEGENDRE QUADRATURE ##

>kk:=’kk’:

for m from 0 to mmm-1 do

for n from 1 to (L-m+1) do

AA[n,m]:=evalf(sum(W[kk]*(F[m][R[m,N0+1-n]][3][1][kk])^2, kk=1..N0)):

od:od:

ppsi:=proc(n,m,x)

evalf((1.0/sqrt(AA[n,m])*psi(n,m,x))):

end:

subs(x=3,ppsi(2,1,x));

####################################################################

######## NORMALIZED SLEPIAN FUNCTIONS ##############################

>slepian:=proc(n,m,theta,phi)

if (m<=L-1) then if(n<=L-m+1) then subs(x=cos(theta),

evalf(1.0/sqrt(evalf(Pi)))*ppsi(n,m,x))*cos(m*phi)

else

subs(x=cos(theta),evalf(1.0/sqrt(evalf(Pi)))*ppsi(n-L+m-1,m,x))*sin(m*phi)

fi:

else

if(m=L) then

if(n=1) then

subs(x=cos(theta), evalf(1.0/sqrt(evalf(Pi)))*ppsi(1,L,x))*cos(L*phi)

else

subs(x=cos(theta),evalf(1.0/sqrt(evalf(Pi)))*ppsi(1,L,x))*sin(L*phi)

fi:

fi:

fi:

end:

####################################################################

We indroduce the matrix whose coefficients are the Slepian functions evaluated at the
quadrature nodes:
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# MATRIX T COMPUTATION WHOSE COEFFICIENTS ARE SLEPIAN FUNCTIONS ####

>T:=Matrix((L+1)*(L+2),N0*NN0):

iii:=0:

for m from 0 to L do

for n from 1 to 2*(L-m+1) do

iii:=iii+1:jjj:=0:

for k from 1 to N0 do

for j from 1 to NN0 do:

jjj:=jjj+1:T[iii,jjj]:=evalf(WW[j]*W2[k]*sin(E2[k])

*slepian(n,m,E2[k],EE[j])):

od:od:

od:od:

#here, we put away zero slepian functions (for m=0 n=L+1..2*(L+m+1))##

T2:=Matrix((L+1)^2,N0*NN0):jjj:=0:

for k from 1 to N0 do

for j from 1 to NN0 do

jjj:=jjj+1:T2[1..L+1,jjj]:=T[1..L+1,jjj]:T2[L+2..(L+1)^2,jjj]

:=T[2*(L+1)+

1..(L+1)*(L+2),jjj]:

od:

od;

######################################################################

By using this matrix, we compute the Slepian functions expansion coefficients of
a given signal. By a matrix multiplication between the matrix T and the matrix
associated to the signal (potential) computed in the nodes taken on the belt we get
the coefficients. After having the Slepian functions and the coefficients, we can give
the expansion of the signal over the sphere. Moreover, from this expansion we can
get the spherical harmonic expansion coefficients of the signal. In the following,
we consider as application a particular signal, the gravitational potential, and we
give the code for the previous scheme. Note that the input data (the bandwith, the
positions of sources, the angels which parametrize the belt) is given in a file which we
call data.txt. The file will be opened for reading the data using basical file commands.

Spherical harmonic coefficients of a potential generated by a monopolar and dipolar sources
distribution

\section

##################### READ DATA ####################################

>Restart;_EnvLegendreCut := 1 .. infinity;forget(evalf);
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># we give the name of the input file

>name_file_to_read:=readstat("The name of the file");

>convert(name_file_to_read,string);

>#here, we open the file for reading the data

>f:=fopen("../datafiles/"||name_file_to_read||"."||txt,READ,TEXT);

>#we read each line

>i:=0:while ligne[i]<>0 do i:=i+1:ligne[i]:=readline(f) end do:fclose(f):

Ligne:=convert(ligne,list);whattype(Ligne);nops(Ligne):

>i:=0:

for i from 1 to nops(Ligne) do

if Ligne[i]="# BELT"

then t:=sscanf(Ligne[i+1], "%d%d"):

theta_0:=t[1]:theta_1:=t[2]:position_belt:=i:

fi:

if Ligne[i]="# BANDWITH"

then L0:=sscanf(Ligne[i+1], "%d");

L:=L0[1]:

fi:

if Ligne[i]="# SOURCES"

then

position_source:=i:

fi:

od:

>nbSources:=position_belt-position_source-1:

source:=Array(1..nbSources,1..4):j:=0:

for j from 1 to nbSources do

s[j]:=sscanf(Ligne[position_source+j], "%f%f%f%f");

source[j,1]:=s[j][1];

source[j,2]:=s[j][2];

source[j,3]:=s[j][3]:

source[j,4]:=s[j][4]:

od:

########################################################################

We compute the real spherical harmonic basis:

############# SPHERICAL HARMONIC BASIS CONSTRUCTION ####################

>Y2:=proc(l,m,x,y)

evalf(sqrt(2*(2*l+1)/(4*Pi)*(l-abs(m))!/(l+abs(m))!)

*LegendreP(l,abs(m),x)*cos(m*y)):

end:

Y1:=proc(l,m,x,y)
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evalf(sqrt(2*(2*l+1)/(4*Pi)*(l-abs(m))!/(l+abs(m))!)

*LegendreP(l,abs(m),x)*sin(m*y)):

end:

Y3:=proc(l,m,x,y)

evalf(sqrt((2*l+1)/(4*Pi)))*(l-0)/(l+0)*diff(1/(2^l*l!)*(1-x^2)^l,x$l):

end:

Y:=proc(l,m,x,y)

if m>0 then Y2(l,m,x,y)

elif m<0 then Y1(l,m,x,y)

elif m=0 then Y3(l,m,x,y)

fi:

end:

###########################################################################

################ QUADRATURE OVER (theta_0, theta_1) #######################

>theta_0_degres:=(theta_0*Pi)/180;

>theta_1_degres:=(theta_1*Pi)/180;

>Digits:=50:with(linalg):

a:=-evalf(sin(theta_1_degres)):

b:=evalf(sin(theta_0_degres)):

N0:=20:x:=’x’:

for n from N0 to N0+1 do

hh:=evalf(sqrt(2*n+1)*1.0/((b-a)^(n+0.5)*n!)):

Q[n]:=expand(diff((b-x)^(n)*(a-x)^n,x$n)*hh):

k[n]:=coeff(Q[n],x,n):

od:

Q1:=expand(diff(Q[N0],x)):

#######the zeros of P_n as eigenvalues of DD matrix ###############

DD:=array(1..N0,1..N0):

for i from 1 to N0 do

for j from 1 to N0 do

DD[i,j]:=0.0:

od:

od:

for i from 1 to N0 do

DD[i,i]:=0.5*(a+b):

od:

for i from 1 to N0-1 do

DD[i,i+1]:=-evalf(i*(b-a)/(2.0*sqrt(2*i+1.0)*sqrt(2*i-1.0))):

DD[i+1,i]:=DD[i,i+1]:

od:

E:=evalf(eigenvals(DD)):
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####### nodes and weights #######################################

>for i from 1 to N0 do

x:=E[i]:#the nodes

W[i]:=-k[N0+1]/k[N0]*1.0/(Q1*Q[N0+1]):#the weights

od:

>with(linalg):a2:=arccos(b):b2:=arccos(a):NN1:=N0:x:=’x’:

for n from NN1 to NN1+1 do

hhh:=evalf(sqrt(2*n+1.0)*1.0/(n!)*1.0/((b2-a2)^(n+1/2))):

QQ[n]:=expand(diff((x-a2)^n*(x-b2)^(n),x$n)*hhh):

ka[n]:=coeff(QQ[n],x,n):

od:

QQ1:=expand(diff(QQ[NN1],x)):

>DDD:=array(1..NN1,1..NN1):

for i from 1 to NN1 do

for j from 1 to NN1 do

DDD[i,j]:=0.0:

od:

od:

for i from 1 to NN1 do

DDD[i,i]:=0.5*(a2+b2):

od:

for i from 1 to NN1-1 do

DDD[i,i+1]:=-evalf(i*(b2-a2)/(2.0*sqrt(2*i+1.0)*sqrt(2*i-1.0))):

DDD[i+1,i]:=DDD[i,i+1]:

od:

E2:=evalf(eigenvals(DDD)):

>for i from 1 to NN1 do

x:=E2[i]:W2[i]:=-ka[NN1+1]/ka[NN1]*1.0/(QQ1*QQ[NN1+1]): #nodes and weights

od:

############################################################################

########### QUADRATURE OVER (0,Pi) #########################################

>with(linalg):a3:=0:b3:=evalf(Pi):NN1:=N0:x:=’x’:

for n from NN1 to NN1+1 do

hhh:=evalf(sqrt(2*n+1.0)*1.0/(n!)*1.0/((b3-a3)^(n+1/2))):

QQ[n]:=expand(diff((x-a3)^n*(x-b3)^(n),x$n)*hhh):

ka[n]:=coeff(QQ[n],x,n):

od:

QQ1:=expand(diff(QQ[NN1],x)):

DDD:=array(1..NN1,1..NN1):

for i from 1 to NN1 do

for j from 1 to NN1 do
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DDD[i,j]:=0.0:

od:

od:

for i from 1 to NN1 do

DDD[i,i]:=0.5*(a3+b3):

od:

for i from 1 to NN1-1 do

DDD[i,i+1]:=-evalf(i*(b3-a3)/(2.0*sqrt(2*i+1.0)*sqrt(2*i-1.0))):

DDD[i+1,i]:=DDD[i,i+1]:

od:

E3:=evalf(eigenvals(DDD)):

# nodes and weights

>for i from 1 to NN1 do

x:=E3[i]:W3[i]:=-ka[NN1+1]/ka[NN1]*1.0/(QQ1*QQ[NN1+1]):

od:

###########################################################################

########## QUADRATURE OVER (0,2pi) ########################################

>with(linalg):

aa:=0:bb:=evalf(2*Pi):NN0:=20:x:=’x’:

for n from NN0 to NN0+1 do

hhh:=evalf(sqrt(2*n+1.0)*1.0/(n!)*1.0/(bb^(n+1/2))):

QQ[n]:=expand(diff(x^n*(x-bb)^(n),x$n)*hhh):

ka[n]:=coeff(QQ[n],x,n):

od:

QQ1:=expand(diff(QQ[NN0],x)):

les zeros du P_n comme des valeurs propres de la matrice DDD

DDD:=array(1..NN0,1..NN0):

for i from 1 to NN0 do

for j from 1 to NN0 do

DDD[i,j]:=0.0:

od:od:

for i from 1 to NN0 do

DDD[i,i]:=0.5*(aa+bb):

od:

for i from 1 to NN0-1 do

DDD[i,i+1]:=-evalf(i*(bb-aa)/(2.0*sqrt(2*i+1.0)*sqrt(2*i-1.0))):

DDD[i+1,i]:=DDD[i,i+1]:

od:

EE:=evalf(eigenvals(DDD)):

#### nodes and weights ######

>for i from 1 to NN0 do
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x:=EE[i]:

WW[i]:=-ka[NN0+1]/ka[NN0]*1.0/(QQ1*QQ[NN0+1]):

od:

#####################################################################

######### KERNEL K(m,x,y) ##########################################

>x:=’x’:y:=’y’:

>K:=proc(m,x,y)

if (m=0) then evalf(sum((2*l+1.0)/(4.0*Pi)*1/(2^l*l!)

*(diff((x^2-1)^l,x$l))*1/(2^l*l!)*(diff((y^2-1)^l,y$l)),l=0..L)):

else

evalf(sum((2*l+1.0)/(4.0*Pi)*(((l-abs(m))!)/((l+abs(m))!)

*((1-x^2)^(m/2)*1/(2^l*l!)*diff(diff((x^2-1)^l,x$l),x$m)

*(1-y^2)^(m/2)*1/(2^l*l!)*diff(diff((y^2-1)^l,y$l),y$m))),l=abs(m)..L)):

fi:

end:

####################################################################

######## EIGENVALUES of K(m,x,y) ###################################

>#the eigenvalues of K which is computed in nodes taken over the belt:

>with(LinearAlgebra):mmm:=’mmm’:mmm:=L+1:i:=0:j:=0:

A:=Matrix(1..mmm*N0,1..N0):

for m from 0 to mmm-1 do

for i from 1 to N0 do

for j from 1 to N0 do

A[m*N0+i,j]:=evalf(W[j]*subs(x=E[i],y=E[j],K(m,x,y))):x:=’x’:y:=’y’:

od:od:od:

m:=’m’:

for m from 0 to mmm-1 do

F[m]:=eigenvectors(SubMatrix(A,[m*N0+1..(m+1)*N0],[1..N0])):

od:

#####################################################################

######## SORTED EIGENVALUES #########################################

>ascendent sorted eigenvalues

>beta:=Matrix(1..mmm,1..N0):

for m from 0 to mmm-1 do

for p from 1 to N0 do

beta[m+1,p]:=abs(F[m][p][1]):

od:od:

for m from 0 to mmm-1 do

X[m]:=Row(beta,m+1):Xsort[m]:=sort(X[m]):

od:

#####################################################################
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######## EIGENVALUES INDEXATION #####################################

>for m from 0 to mmm-1 do

for mm from 1 to N0 do

R[m,mm]:=0:

od:od:

for m from 0 to mmm-1 do

for i from 1 to N0 do

for j from 1 to N0 do

if((abs(Xsort[m][i])-abs(F[m][j][1]))=0) then R[m,i]:=j:

else R[m,j]:=R[m,j]+0:

fi:

od:od:od:

###########################################################################

######### EIGENFUNCTIONS OF THE KERNEL K(m,x,y)############################

#E are the nodes over the belt, W the weights of G-L quadrature of the belt

>n:=’n’:m:=’m’:

>psi:=proc(n,m,x)

evalf((1.0/F[m][R[m,N0+1-n]][1])*sum(W[kk]*subs(y=E[kk],K(m,x,y))

*F[m][R[m,N0+1-n]][3][1][kk],kk=1..N0)):

end:

###########################################################################

##### NORMALIZATION CONSTANTE OF GAUSS-LEGENDRE QUADRATURE ###############

>kk:=’kk’:

for m from 0 to mmm-1 do

for n from 1 to (L-m+1) do

AA[n,m]:=evalf(sum(W[kk]*(F[m][R[m,N0+1-n]][3][1][kk])^2, kk=1..N0)):

od:od:

ppsi:=proc(n,m,x)

evalf((1.0/sqrt(AA[n,m])*psi(n,m,x))):

end:

subs(x=3,ppsi(2,1,x));

########################################################################

######## NORMALIZED SLEPIAN FUNCTIONS ##################################

#From eigenfunctions of K(m,x,y), we build the slepian functions

>slepian:=proc(n,m,theta,phi)

if (m<=L-1) then if(n<=L-m+1) then subs(x=cos(theta),

evalf(1.0/sqrt(evalf(Pi)))*ppsi(n,m,x))*cos(m*phi)

else

subs(x=cos(theta),evalf(1.0/sqrt(evalf(Pi)))*ppsi(n-L+m-1,m,x))*sin(m*phi)

fi:

else
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if(m=L) then

if(n=1) then

subs(x=cos(theta), evalf(1.0/sqrt(evalf(Pi)))*ppsi(1,L,x))*cos(L*phi)

else

subs(x=cos(theta),evalf(1.0/sqrt(evalf(Pi)))*ppsi(1,L,x))*sin(L*phi)

fi:

fi:

fi:

end:

########################################################################

#EIGENVALUES COMPUTATION OF EIGENVALUES lambda[m,n],m=0..L,n=1..2(L-m+1)#

ASSOCIATED TO SLEPIAN FUNCTIONS slepian(n,m,theta,phi)

> m := 0;

for n to L+1 do

lambda[m, n] := evalf(2.0*Pi)*F[m][R[m, N0+1-n]][1]

od;

for m to L do

for n to L-m+1 do

lambda[m, n] := evalf(2.0*Pi)*F[m][R[m, N0+1-n]][1]

od;

for n from L-m+2 to 2*(L-m+1) do

lambda[m, n] := lambda[m, n-L+m-1]

od:od

##########################################################################

####### PLOT THE EIGENVALUES #############################################

>lambda1:=Vector(1..(L+1)^2):i:=0:m:=0:

for n from 1 to (L+1) do

i:=i+1:

lambda1[i]:= evalf(2.0*Pi)*F[m][R[m,N0+1-n]][1]:

od:

i:=0:

for m from 1 to L do

for n from 1 to (L-m+1) do

i:=i+1:lambda1[(L+1)+L*(L+1)/2+i]:=evalf(2.0*Pi)*F[m][R[m,N0+1-n]][1]:

lambda1[L+1+i]:=evalf(2.0*Pi)*F[m][R[m,N0+1-n]][1]:

od:

od:

k:=0:

for k from 1 to (L+1)^2 do

lambda1[k]

od:
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P:=sort(lambda1,‘>‘):

k:=0:

for k from 1 to (L+1)^2 do

P[k]

od:

plot([seq([k,P[k]],k=1..(L+1)^2)],style=point,color=red):

##########################################################################

########### PLOT THE EIGENVALUES #########################################

> plot(ppsi(1,3,x), x=0..1):

##########################################################################

######## PLOT THE SLEPIAN FUNCTIONS ######################################

>Slepian:=proc(n,m,theta,Phi)

evalf(subs(x=cos(theta),ppsi(n,m,x))*cos(m*phi)):

end;

plot3d(Slepian(1, 3, theta, Phi),theta = 0..evalf(Pi),phi = 0..evalf(2*Pi)):

##########################################################################

####### MATRIX T-COMPUTATION WHOSE COEFFICIENTS ARE SLEPIAN FUNCTIONS ####

>T:=Matrix((L+1)*(L+2),N0*NN0):

iii:=0:

for m from 0 to L do

for n from 1 to 2*(L-m+1) do

iii:=iii+1:jjj:=0:

for k from 1 to N0 do

for j from 1 to NN0 do:

jjj:=jjj+1:T[iii,jjj]:=evalf(WW[j]*W2[k]*sin(E2[k])*slepian(n,m,E2[k],EE[j])):

od:od:

od:od:

## here, we put away zero slepian functions (for m=0 n=L+1..2*(L+m+1)) ####

T2:=Matrix((L+1)^2,N0*NN0):jjj:=0:

for k from 1 to N0 do

for j from 1 to NN0 do

jjj:=jjj+1:T2[1..L+1,jjj]:=T[1..L+1,jjj]:T2[L+2..(L+1)^2,jjj]

:=T[2*(L+1)+1..(L+1)*(L+2), jjj]:

od:

od;

####################################################################

We give the bandlimited spherical harmonic developpement of the gravitational potential:

### GRAVITATIONAL POTENTIAL ########################################

>pot_monopolar:=proc(theta,phi)

i:=0:a3:=0:
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for i from 1 to nbSources do

a3:=a3+evalf(source[i,4]): od:

for i from 1 to nbSources do

for n from 1 to L do

for m from -n to n do

a3:=a3+evalf(source[i,4]*source[i,1]^n*((4*evalf(Pi))/(2*n+1))

*subs(x=cos(source[i,2]),y=source[i,3],Y(n,m,x,y))

*subs(x=cos(theta),y=phi,Y(n,m,x,y))):

od:od:od:

end;

#####################################################################

We compute the potential in the nodes taken over the belt and we associate the corre-
sponded matrix:

########## THE POTENTIAL MATRIX ASSOCIATED ##########################

>S1:=Matrix(N0*NN0,3):jjj:=0:

for k from 1 to N0 do

for j from 1 to NN0 do

jjj:=jjj+1:

S1[jjj,1]:=pot_monopolar((E2[k]),EE[j]):

S1[jjj,2]:=E2[k]:

S1[jjj,3]:=EE[j]:

od:

od:

>s1:=array(1..N0*NN0): ## the potential array

for i from 1 to N0*NN0 do

s1[i]:= S1[i,1]:

od:

########################################################################

We compute the coefficients of the potential developpement on Slepian basis:

###### THE COEFFS OF THE SLEPIAN POTENTIAL DEVELOPEMENT ################

>C1:=multiply(T2,S1):

########################################################################

Having the Slepian basis and the corresponded coefficients of the potential Slepian basis
developpement, we can express the potential in all points which belong to the sphere:

###RECONSTRUCTION AND EXTRAPOLATION OF THE POTENTIAL BY SLEPIAN FUNCTIONS#

>Rpot_monopolar:= proc(theta,phi)

i:=1: a4:=0.0:
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for n from 1 to L+1 do

a4:=a4+(0.5)*C1[i,1]*slepian(n,0,theta,phi):i:=i+1:

od:

i:=i-1:

for m from 1 to L do

for n from 1 to 2*(L-m+1) do

i:=i+1:a4:=a4+C1[i,1]*slepian(n,m,theta,phi):

od:

od:

end:

#########################################################################

We compute the reconstruct potential in the nodes taken over the belt and we associate to
it a matrix:

######### THE RECONSTRUCT POTENTIAL MATRIX ASSOCIATED ###################

>S1_slepian:=Matrix(N0*NN0,3):jjj:=0:

for k from 1 to N0 do

for j from 1 to NN0 do

jjj:=jjj+1:

S1_slepian[jjj,1]:=Rpot_monopolar((E2[k]),EE[j]):

S1_slepian[jjj,2]:=E2[k]:

S1_slepian[jjj,3]:=EE[j]:

od:

od:

>s1_slepian:=array(1..N0*NN0):

for i from 1 to N0*NN0 do

s1_slepian[i]:= S1_slepian[i,1]:

od:

###########################################################################

The coefficients of its spherical harmonic developpement over the sphere are computed.
These coefficients are exported in an output file and used after for FindSource3D as input.

####### SPHERICAL HARMONIC COEFFS OF THE RECONSTRUCT POTENTIAL ############

>CRpot_monopolar:=Matrix((L+1)^2,3):

x := ’x’; y := ’y’; k := ’k’; j := ’j’:iii:=0:

for n from 1 to L do

for m from -n to n do

iii:=iii+1:

CRpot_monopolar[iii+1,1]:=evalf(sum(sum(WW[j]*W3[k]*sin(E3[k])

*Rpot_monopolar(E3[k],EE[j])*subs(x=cos(E3[k]),y=EE[j],
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Y(n, m, x, y)),k=1..N0),j=1..NN0)):

CRpot_monopolar[iii+1,2]:=n:

CRpot_monopolar[iii+1,3]:=m:

CRpot_monopolar[1,1]:=evalf(sum(sum(WW[j]*W3[k]*sin(E3[k])

*Rpot_monopolar(E3[k], EE[j])

*(1/sqrt(4*Pi)),k = 1..N0),j=1..NN0)):

CRpot_monopolar[1,2]:=0:

CRpot_monopolar[1,3]:=0:

end do

end do;

>crpot_monopolar:=array(1..(L+1)^2):

for i from 1 to (L+1)^2 do crpot_monopolar[i]:=CRpot_monopolar[i,1]:

od:

>CRpot_dipolar:=Matrix((L+1)^2,3):

x := ’x’; y := ’y’; k := ’k’; j := ’j’:iii:=0:

for n from 1 to L do

for m from -n to n do

iii:=iii+1:

CRpot_dipolar[iii+1,1]:=evalf(sum(sum(WW[j]*W3[k]*sin(E3[k])

*Rpot_dipolar(E3[k],EE[j])

*subs(x=cos(E3[k]),y=EE[j],Y(n, m, x, y)),k=1..N0),j=1..NN0)):

CRpot_dipolar[iii+1,2]:=n:

CRpot_dipolar[iii+1,3]:=m:

CRpot_dipolar[1,1]:=evalf(sum(sum(WW[j]*W3[k]*sin(E3[k])

*Rpot_dipolar(E3[k], EE[j])*(1/sqrt(4*Pi)),k = 1..N0),j=1..NN0)):

CRpot_dipolar[1,2]:=0:

CRpot_dipolar[1,3]:=0:

end do

end do;

>crpot_dipolar_dipolar:=array(1..(L+1)^2):

for i from 1 to (L+1)^2 do

crpot_dipolar[i]:=CRpot_dipolar[i,1]:

od:

##########################################################################

The exported file will be named in function of the bandwith L, θ0 and θ1, the number of
sources and their positions. For example, the exported file for the coefficients associated
to a potential troncated for L = 10 and generated by 1 monopolar source, when the data
is taken over the belt [0, 90] will be named 1source_L10_B_0_90.txt.

##### OUTPUT FILE ########################################################

>#we build the name of the output file
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>name_file_export:=cat(nbSources,sources,_,"L",L,_,B,theta_0,"-",theta_1);

>convert(name_file_export,string);

>#we open the file for writing inside

>ff:=fopen("../datafiles/"||name_file_export||"."||txt,WRITE,TEXT);

>#we write the informations as: bandwidth, monopoles positions, the belt,

the coefficients and the potential on spherical harmonic basis.

>writedata(ff,{"# BANDWITH"},string);

>fprintf(ff,"%d\n",L);

>fprintf(ff,"\n");

>writedata(ff,{"# MONOPOLES"},string);

>for jj from 1 to nbSources do

for ii from 1 to 4 do

fprintf(ff, "%f ",source[jj,ii] )

od:

fprintf(ff,"\n"):

od:

fprintf(ff,"\n");

>writedata(ff,{"# BELT"},string);

>fprintf(ff,"%d %d\n",theta_0,theta_1);

>fprintf(ff,"\n");

>writedata(ff,{"# COEFFICIENTS HS"},string);

>writedata(ff,crpot);

>fprintf(ff,"\n");

>writedata(ff,{"# POTENTIAL HS"},string);

>writedata(ff,s1);

>fprintf(ff,"\n");

>writedata(ff,{"# NODES"},string);

>writedata(ff,Nodes);

>fclose(ff);

######################################################################

In the next table we give an example of the taken nodes over the sphere and the
corresponded weights for N = 30.
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Figure 1: Nodes and weights for N = 30-points Gauss-Legendre quadrature

Nodes EEi Weights WWi Nodes Ej Weights Wj

0.97594076093434623 0.02503281500824385 0.48797038046717311 0.01251640750412192
0.51308103923682235 0.05801412118384111 0.25654051961841117 0.02900706059192055
0.12559501531978600 0.09042982682197554 0.62797507659893003 0.04521491341098777
0.23184938883146788 0.12189125834194921 0.11592469441573394 0.06094562917097460
0.36894695799720711 0.15206148137871379 0.18447347899860355 0.07603074068935689
0.53543494881847886 0.18062007720493192 0.26771747440923943 0.09031003860246596
0.72954871329723447 0.20726415592410433 0.36477435664861723 0.10363207796205216
0.94923066584311044 0.23171122839432797 0.47461533292155522 0.11585561419716398
1.19215215575067468 0.25370212718680757 0.59607607787533734 0.12685106359340378
1.45573817204794098 0.27300373306944176 0.72786908602397049 0.13650186653472087
1.73719464730237738 0.28941143909239454 0.86859732365118869 0.14470571954619727
2.03353807897558081 0.30275131674358954 1.01676903948779040 0.15137565837179477
2.34162715700806423 0.31288195846135423 1.17081357850403211 0.15644097923067712
2.65819606338856840 0.31969597604533323 1.32909803169428420 0.15984798802266661
2.97988909115127632 0.32312113873262549 1.48994454557563816 0.16156056936631274
3.30329621602830947 0.32312113873262539 1.65164810801415474 0.16156056936631269
3.62498924379101384 0.31969597604533126 1.81249462189550692 0.15984798802266563
3.94155815017152289 0.31288195846135474 1.97077907508576145 0.15644097923067737
4.24964722820400276 0.30275131674358627 2.12482361410200138 0.15137565837179313
4.54599065987720508 0.28941143909238855 2.27299532993860254 0.14470571954619427
4.82744713513164481 0.27300373306944045 2.41372356756582240 0.13650186653472021
5.09103315142891776 0.25370212718682167 2.54551657571445888 0.12685106359341083
5.33395464133647490 0.23171122839432468 2.66697732066823744 0.11585561419716231
5.55363659388234687 0.20726415592408597 2.77681829694117344 0.10363207796204300
5.74775035836111670 0.18062007720497221 2.87387517918055835 0.09031003860248610
5.91423834918237912 0.15206148137871243 2.95711917459118956 0.07603074068935621
6.05133591834811924 0.12189125834195395 3.02566795917405962 0.06094562917097697
6.15759029185980111 0.09042982682198210 3.07879514592990056 0.04521491341099110
6.23187720325590622 0.05801412118387329 3.11593860162795311 0.02900706059193664
6.27342589957023833 0.02503281500806989 3.13671294978511917 0.01251640750403513


