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 Abstract 

 

Microbially-induced mineralization is considered as one of the main natural processes 

controlling CO2 levels in the atmosphere and a major structural and ecological player, in the 

modern and in the past ecosystems. In this study are presented the data of laboratory 

experimental work on CaCO3 precipitation with pure cultures of two anoxygenic phototrophs 

bacteria (APB): haloalcaliphilic Rhodovulum steppens A-20s and neutrophilic halophilic 

Rhodovulum sp. S-17-65; and cyanobacteria Gloeocapsa sp.. These bacteria represent two 

important groups of photosynthetic organisms in the past and at present time. APB is the 

oldest microorganism which could be dominant during the anoxygenic period of Earth’s life 

(approximately 4 billon years ago) whereas the origin of oxygen evolving microorganisms 

(cyanobacteria) is placed at about 3.5 billion years ago as based on oxidation records of the 

Earth’s crust. In modern ecosystems, cyanobacteria are the dominant primary producers. 

Nonetheless, the potential of APB are abundant in the modern microbial mats and 

stromatolites and thus may represent a considerable fraction of the standing biomass. 

However, biomineralization induce by these bacteria has not been thoroughly studied up to 

now. 

In this context, the aim of this thesis is to characterize the process of biological CaCO3 

precipitation and to assess the existence of metabolic processes protecting studied bacteria 

against carbonate mineralization on their surfaces. For this, kinetic experiments, SEM and 

TEM imaging, EDX and XRD analyses, zeta-potential measurements and Ca adsorption into 

bacterial surface were carried out.  

The result of this study demonstrates the participation of studied bacteria in CaCO3 

precipitation. Zeta-potential measurements suggest the existence of a cells protection 

mechanism for studied APB, based on the metabolic maintenance of a positive surface charge 

at alkaline pH, preserving active bacteria against Ca2+ adsorption and subsequent carbonate 

precipitation on their surfaces. The existence of the same mechanism for Gloeocapsa sp. was 

not confirmed.     

Overall, the results of this study show two different mechanisms of CaCO3-nucleation: 

an unspecific supersaturation by APB and a specific nucleation at the cell wall by 

cyanobacteria Gloeocapsa sp.. 

 



 Abstract  

6 
 

Key words: Anoxygenic phototrophic bacteria, Rhodovulum sp., Cyanobacteria, 

Gloeocapsa sp., electrophoresis, zeta potential, calcium, bicarbonate, adsorption, calcite, 

calcium carbonate, precipitation, kinetics. 

 

 Résumé 
  

La minéralisation induite par l’activité microbienne joue un rôle majeur dans le 

fonctionnement des écosystèmes passés et présents. Cette étude présente les données 

expérimentales de précipitation de CaCO3 à partir de cultures pures de deux types de bactéries 

anoxygéniques phototrophiques (APB) : Rhodovulum steppens A-20s haloalcaphilique et 

Rhodovulum sp. S-17-65 neutrophilique halophilique, ainsi que de cyanobactéries Gloeocapsa 

sp.. Ces bactéries représentent deux groupes importants d’organismes photosynthétiques 

depuis les temps les plus anciens jusqu’à nos jours. Les APB sont des microorganismes 

dominants durant la période anoxygénique de la Terre (il y a environ 4 milliards d’années) 

tandis que l’origine des microorganismes évoluant grâce à l’oxygène (cyanobactéries) se situe 

à environ 3.5 milliards d’années, en se basant sur les enregistrements d’oxydation de la croûte 

terrestre. Au sein des écosystèmes modernes, les cyanobactéries sont les producteurs 

primaires dominants. Cependant, le potentiel des APB est important de part leur abondance 

dans les biolfilms microbiens et les stromatolites modernes, représentant ainsi une fraction 

considérable de la biomasse effective. La biomineralisation induite par ces bactéries a 

toutefois été très peu étudiée jusqu’à présent. 

Dans ce contexte, cette thèse a pour objectif principal de caractériser les processus 

biologiques de précipitation de CaCO3 et d’évaluer l’existence d’un processus métabolique 

protégeant les bactéries étudiées contre la minéralisation de carbonates à leur surface. Pour 

cela, des expériences cinétiques, des mesures de potentiel zeta et d’adsorption de Ca à la 

surface bactérienne, couplées à des observations par Microscopie Electronique à Balayage 

(MEB), en Transmission (MET) et des analyses chimiques par émission et diffraction de 

rayons X (EDX et XRD) ont été menées. 

Les résultats de cette étude démontrent que les bactéries étudiées prennent une part 

active dans la précipitation de CaCO3. Les mesures de potentiel zeta suggèrent l’existence 

d’un mécanisme de protection de la cellule pour les APB étudiées, basé sur le maintien 

métabolique d’une charge de surface positive à pH alcalin, préservant les bactéries actives de 
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l’adsorption de Ca2+ et de la précipitation subséquente de carbonates à leur surface. 

L’existence d’un tel mécanisme n’est pas confirmée pour Gloeocapsa sp.. 

Ainsi, deux mécanismes différents de nucléation de CaCO3 peuvent être mis en 

évidence : un premier mettant en jeu une sursaturation non-spécifique pour les bactéries 

anoxygéniques phototrophiques (APB), et un deuxième par nucléation spécifique au niveau 

de la membrane cellulaire pour les cyanobactéries Gloeocapsa sp.. 

 

Mots-clés : Bactéries anoxygéniques phototrophique, Rhodovulum sp., 

Cyanobactéries, Gloeocapsa sp., électrophorèse, potentiel zeta, calcium, bicarbonate, 

adsorption, calcite, précipitation, cinétique 

. 
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 Résumé de l’introduction en français 

 

La biominéralisation est le processus de formation des minéraux au cours de l'activité 

des organismes vivants. En comparaison avec les minéraux produits de manière inorganique, 

les biominéraux ont souvent des propriétés spécifiques de forme, de taille et de cristallinité 

conduisant à la notion de biosignature. D’autre part les compositions isotopiques et en 

éléments en trace sont différentes de celles des minéraux abiotiques (Lowenstam and Weiner, 

1989).  

La minéralisation microbienne est un acteur majeur des écosystèmes passés et 

présents. Les stromatolites ("structures organo-sédimentaire principalement accrétées par le 

piégeage des sédiments, leur liaison, et/ou la précipitation in situ à la suite de la croissance et 

de l'activité métabolique des micro-organismes" (Papineau et al., 2005)) sont présents dans les 

relevés géologiques et sont des bio-signatures importantes de la Terre primitive et pour la 

recherche de vie extraterrestre. Les plus anciens exemples de fossiles de stromatolites 

préservés datent d'environ 3,5 milliards d'années et proviennent d’Australie occidentale et 

d'Afrique du Sud (Lowe, 1980). Les stromatolites se développent par accrétion et par 

précipitation de minéraux à leur surface, où le développement microbiologique est également 

le plus remarquable, et se traduit communément par des biofilms finement stratifiés (Reid et 

al., 2003). 

Dans cette étude sont présentées les données des travaux expérimentaux effectués sur 

des cultures de deux souches de bactéries anoxygéniques phototrophiques (APB) pourpres 

non-sulfatées et une souche de cyanobactéries Gloeocapsa sp .. Ces bactéries ont été choisies 

pour plusieurs raisons. Elles  représentent deux groupes majeurs d'organismes 

photosynthétiques tout on long de l’histoire de la Terre. Les APB sont les plus anciens micro-

organismes probablement dominants au cours de la période anoxygénique de la Terre (il y a 

environ 4 milliards d’années). Les premiers organismes évoluant avec l’oxygène 

(cyanobactéries) datent d’environ 3,5 milliards d'années, selon les enregistrements 

géologiques d'oxydation de la croûte terrestre (Xiong et Bauer, 2002). Dans les écosystèmes 

modernes ces cyanobactéries sont les principaux producteurs primaires. Néanmoins, les APB 

sont abondantes dans les biofilms microbiens et les formations de stromatolites modernes et 

peuvent donc représenter une fraction considérable de la biomasse effective (Papineau et al. 

2005). Il existe de grandes différences entre le métabolisme des ABP et celui des 

cyanobactéries. Une description détaillée de la diversité des bactéries étudiées et leur 
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métabolisme est développée dans le Chapitre 1. Brièvement, les bactéries anoxygéniques 

phototrophiques sont connues pour utiliser une grande variété de substrats comme donneurs 

d'électrons dans la photosynthèse, dont l'hydrogène, le soufre, mais aussi de petites molécules 

organiques (Bosak et al., 2007). Les cyanobactéries quand à elles utilisent les électrons de 

l’eau pour la production d’oxygène. Cette grande différence entre ces bactéries pourrait 

expliquer des mécanismes distincts de précipitation des carbonates. 

Plusieurs hypothèses ont été avancées pour décrire les mécanismes responsables de la 

précipitation du carbonate de calcium par des bactéries. Elles peuvent être classées en deux 

groupes: biologiquement induite et biologiquement contrôlée (Lowenstam, 1989). Dans le 

premier cas, les minéraux précipitent car les organismes modifient le micro-environnement 

chimique de la couche d'eau adjacente à la cellule. Dans le second cas, le rôle de l'organisme 

va au-delà du rôle de la seule augmentation de la sursaturation locale: il contrôle le processus 

de minéralisation par l'intermédiaire d'une matrice organique constituée de macromolécules 

qui passent de la membrane externe des cellules à la solution (Dittrich et Obst, 2004). Par 

exemple, la précipitation de carbonate de calcium sur des substances polymériques 

extracellulaires (EPS) de bactéries hétérotrophes sulfato-réductrices a été observée par Aloisi 

et al. (2006). 

Par conséquent, mon étude a été orientée autour de trois grandes questions: 

1. Quel est le rôle de la surface des bactéries étudiées dans la précipitation de 

carbonate de calcium ? 

2. Quel est le rôle de ces différentes bactéries dans cette précipitation ? 

3. Quel est le mécanisme de formation de ces minéraux carbonatés ? 

 

Afin d’apporter des réponses à ces questions, différentes techniques expérimentales 

ont été utilisées et sont détaillées dans le Chapitre 2. Des mesures du potentiel zeta ont été 

réalisées en fonction du pH, de la force ionique, des concentrations en Ca2+ et bicarbonate 

(HCO3
-), et avec ou sans lumière afin de caractériser la charge surfacique des bactéries dans 

des environnements différents. A ces mesures s’ajoutent des expériences d'adsorption de 

calcium. Ces travaux sont réunis sous la forme d’un article sous presse dans Journal of 

Colloid and Interface Science (Chapitre 3). Par ailleurs, des expériences cinétiques ont été 

effectuées afin de quantifier le rôle des bactéries sur les vitesses de précipitation des 

carbonates. Les mécanismes biologiques actifs ont été étudiés en comparant les cinétiques de 

précipitation de CaCO3 abiotiques et biotiques. Les résultats obtenus, en particulier le rôle 

important de l’activité métabolique microbienne (photosynthèse) dans la précipitation de 
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CaCO3 sont décrits dans les Chapitres 4 et 5 pour APB et Cyanobactéries Gloeocapsa sp., 

respectivement (sous forme de manuscrits : un soumis à Chemical Geology et l’autre qui sera 

soumis à Geobiology, respectivement). La possibilité de précipitation microbienne de CaCO3 

sur la surface et les exopolysaccharides (EPS) des cellules bactériennes a été examinée par 

microscopie électronique à transmission (MET). Cette technique permet de répondre à la 

troisième question et notamment de comprendre le mécanisme de précipitation déclenché par 

différents types de bactéries. Les caractéristiques morphologiques des minéraux précipités ont 

été déterminées par microscopie électronique à balayage (MEB) et diffraction des rayons X 

(XRD). 

 

L’ensemble des résultats obtenus dans cette étude permet : 1) de mieux comprendre 

les mécanismes de formation des carbonates aussi bien en contexte paléontologique (passé) 

que dans les temps présents (séquestration géologique du CO2, cycles biogéochimiques) et 2) 

d’apporter de précieuses informations sur l'évolution de la vie microbienne dans les premières 

périodes de l'histoire biologique ainsi que sur la formation des écosystèmes bactériens 

contemporains (contexte écologique). 
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 Introduction 

Biomineralization is the process of mineral formation during activity of living 

organisms. Biominerals, in contrast to organominerals, often have their own specific 

properties of shape, size, crystallinity, isotopic and trace element compositions (Lowenstam 

and Weiner, 1989), leading to the general notion of biosignature. 

Microbially-induced mineralization is considered as one of the main natural processes 

controlling CO2 levels in the atmosphere and a major structural and ecological player, in the 

modern and in the past ecosystems (Dupraz et al., 2009). Stromatolites (“organo-sedimentary 

structure predominantly accreted by sediment trapping, binding, and/or in situ precipitation as 

a result of the growth and metabolic activity of microorganisms” (Papineau et al., 2005)) are 

found throughout the geological record and are important biosignatures of the early Earth and 

in the search for extraterrestrial life. The oldest examples of preserved fossil stromatolites in 

the geological record are about 3.5 billion years old and have been found in Western Australia 

and South Africa (Lowe, 1980). Stromatolites grow by accretion and precipitation of material 

at the outer surface layer, where the most conspicuous microbiology also occurs, commonly 

as a thinly stratified microbial mat (Reid et al., 2003). In modern natural systems, biological 

CaCO3 precipitation occurs in different forms, such as (Dupraz et al., 2009):  

• CaCO3 precipitation in travertine platforms of specific hotspring mats in 

Yellowstone (Farmer, 2000; Fouke et al., 2000); 

• Dolomite production in saline lagons like Lagoa Vermelha Brazil (Vasconcelos 

et al., 2006) ; 

• Microbialite formation in hypersaline and/or alkaline lakes (Arp et al., 2003; 

Dupraz et al., 2004) as well as in freshwater rivers and lakes (Freytet and 

Verrecchia, 1999);  

• Open marine stromatolites in the Bahamas (Reid et al., 2003) and in the 

hypersaline coastal Shark Bay (Ried et al., 2003; Burns et al., 2004). 

 

Numerous works have addressed calcium carbonate formation via cyanobacterial 

activity (Thompson and Ferris, 1990; Hartley et al., 1995; Douglas and Beveridge, 1998; Obst 

and Dittrich, 2006; Dittrich and Sibler, 2010; Kranz et al., 2010; Martinez et al., 2010;), algal 

and coral (Ries, 2010) with a number of studies devoted to mineral precipitation via sulphate-
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reducing (Vasconselos et al., 1995; Warthmann et al., 2000; Van Lith et al., 2003; Bontognali 

et al., 2008), methanogenic archae (Kenward et al., 2009) and heterotrophic ureolitic (Ferris et 

al., 2004; Mitchell and Ferris, 2005, Dupraz et al., 2009) and aerobic halophilic (Sánchez-

Román et al., 2011) bacteria. Whereas these studies are certainly helpful for understanding 

contemporary settings of microbial calcification, the deciphering of past biocalcification 

processes is still at the very beginning. 

There are several characteristics which make bacteria as ideal nucleating agents for 

mineral precipitation. Due to their small size, bacteria as a group have the highest surface 

area-to-volume ratio of any group of living organisms and this, together with the presence of 

charge chemical groups on their cell surface, is responsible for the potential mineral-

nucleating ability of these cells (Douglas and Beveridge, 1998). 

The understanding of microbial-mineral interactions is critical for interpretation of the 

mineral formation mechanism. In modern and historical ecosystems microbiological life is 

presented in the form of community, i.e. microbial mats. Microbial mats are widely regarded 

as the Earth’s earliest ecosystem (Tice and Lowe, 2006) and have been present on Earth since 

3 billion years (Schopf, 2006). The typical arrangement of microbial groups is a vertical 

organized structure, where the lamination is determined by the light quantity and quality 

(Dupraz et al., 2009). According to the study of Dupraz et al. (2009), depending on the mat 

type, five to seven key groups of microorganisms can enter into the microbial mat 

composition: 1. photolithoautotrophs (i.e. cyanobacteria); 2. aerobic (chemoorgano-) 

heterotrophs; 3. fermenters; 4. anaerobic heterotrophs (predominantly sulfate-reducing 

bacteria); 5. sulfide oxidizers. 6. anoxyphototrophs (i.e. purple and green (non) sulfur 

bacteria)); 7. methanogens.    

The typical microbial mat structure and combined metabolic-geochemical reactions 

leading to carbonate precipitation and dissolution are presented in Figure 1.  
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Fig. 1. Metabolic-geochemical reactions in a microbial mat leading to carbonate 

precipitation and dissolution (modified from Dupraz et al., 2009). 

 

In this figure the six major guilds of microorganisms that compose a typical microbial 

mat are arranged by their respective effects on the precipitation process. Associated equations 

combine metabolic and geochemical reactions (Dupraz et al., 2009). All these processes are 

detailed in the study of Visscher and Stolz (2005). Photosynthesis and sulfate reduction are 

known to increase alkalinity (promoting carbonate precipitation), whereas aerobic respiration, 

sulfide oxidation and fermentation are more likely to induce dissolution. When oxygen-

depending metabolisms stop during the night, anaerobic heterotrophy such as sulfate 

reduction prevails. The net carbonate precipitation depends on the balance between the 

different metabolic activities as well as their temporal and spatial variations (Dupraz et al., 

2009).  

From the early Proterozoic and certainly since Precambrian-Cambrian boundary until 

the end of the Cretaceous, calcifying cyanobacteria frequently occur in normal marine 
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environments (Ries, 2010). After the end of the Cretaceous, however, they seem to be 

restricted to non-marine settings. At the present time, calcification by cyanobacteria occurs 

almost exclusively in freshwater, alkaline and hypersaline or brackish water (Merz, 1992). 

Although anoxygenic photosynthesis does not dominate primary production in the modern 

stromatolites, this metabolism may have been crucial for the growth of Archean and some 

Palaeoproterozoic stromatolites (Bosak et al., 2007). It has been suggested that anoxygenic 

photosynthesis could determine primary productivity in shallow marine environments before 

the rise of oxygenic photosynthesis and the widespread atmospheric oxygenation (Olson and 

Blankenship, 2004). Thus, biofilms formed by anoxygenic photosynthetic microorganisms 

would have helped building stromatolites even before cyanobacteria became the dominant 

primary producers in Precambrian reefs (Bosak et al., 2007). 

In order to better understand the role of each group of bacteria in carbonate 

precipitation, the individual metabolic reactions of the guilds outlined above must be 

considered (Dupraz et al., 2009). Then, individual laboratory experimental study of each 

group must be conducted in the context of carbonate precipitation.  

 

The aim of this thesis is to characterize the process of biological CaCO3 precipitation 

and to assess the existence of metabolic processes protecting studied bacteria against 

carbonate mineralization on their surfaces. More precisely, this study focused on three 

important questions: 

• What is the role of surface of studied bacterial in calcium carbonate 

precipitation? 

• What is the role of these different bacteria in this precipitation? 

• What is the mechanism of the biological carbonates mineral formation? 

 

To address these questions, two types of bacteria were used: pure cultures of two strain 

of purple non-sulfur anoxygenic phototrophs bacteria (APB) and one strain of cyanobacteria 

Gloeocapsa sp..These bacteria were chosen for the following reasons. They represent two 

important groups of photosynthetic organisms in the past and at present time. APB is the 

oldest microorganism which could be dominant during the anoxygenic period of Earth’s life 

(approximately 4 billon years ago). The origin of oxygen evolving microorganisms 

(cyanobacteria) is placed at about 3.5 billion years ago as based on oxidation records of the 

Earth’s crust (Xiong and Bauer, 2002). In modern ecosystems cyanobacteria are the dominant 

primary producers. Nonetheless, the potential of APB are abundant in the modern microbial 
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mats and stromatolites and thus may represent a considerable fraction of the standing biomass 

(Papineau et al. 2005). However, biomineralization induce by these bacteria has not been 

thoroughly studied up to now. 

As there are great differences between the metabolism and diversity of APB and 

cyanobacteria, a detailed description of these bacteria is presented in the Chapter 1. Briefly 

APB are known to use a wide variety of substrates as electron donors in photosynthesis, 

including hydrogen, sulfide, and small organic molecules (Bosak et al., 2007). Cyanobacteria 

use electrons from H2O with O2 production. This great difference between these bacteria 

could be the reason for different mechanisms of carbonate precipitation.   

A large variety of mechanisms were proposed to explain calcium carbonate 

precipitation by bacteria. They can be classified onto two groups: biologically induced and 

biologically controlled (Lowenstam, 1989). In the first case, the mineral precipitates because 

the organisms change the chemical microenvironment of the water layer adjacent to the cell. 

In the biologically controlled process, the role of organism goes beyond the role of merely 

increasing  local oversaturation: the organism control the processes of mineralization via an 

organic matrix consisting of macromolecules that reach out from the outer cell membrane into 

the solution (Dittrich and Obst, 2004). As an example of the second mechanism, calcium 

carbonate precipitation on extracellular polymeric substances (EPS) of heterotrophic sulphur 

reducing bacteria was observed by Aloisi et al. (2006). 

Microbial cell surface and excreted extracellular polymeric substances (EPS), which 

carry a net negative electric charge and have the capacity to bind Ca2+ ions, are frequently 

cited as being the sites of carbonate nucleation (Aloisi et al., 2006). The architecture of 

membranes differs for various cell types and with that also the specificity of the interaction 

between lipids and peptides\proteins. Membrane of Gram-positive as well as of Gram-

negative bacteria express a high amount of negative charged lipids at the outer leaflet of the 

membrane which is in direct contact with the extracellular environment (Hagge et al., 2006) 

thus capable of adsorbing Ca2+ ions. 

 

Different experimental techniques were used as detailed in Chapter 2. Zeta-potential 

measurements were performed under different conditions (pH, ionic strength, various [Ca2+] 

and [HCO3
-] concentrations, with/without light) to characterize the bacterial cell surface 

charge in different solution environments and to determine the degree to which bacteria 

metabolically control their surface potential equilibria. These measurements were reinforced 

by Ca adsorption experiments as presented in Chapter 3. Moreover, kinetic experiments were 
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performed to quantify the role of bacteria on the rate of carbonate precipitation. The active 

biological processes were investigated by comparing kinetics of microbiological and chemical 

(abiotic) CaCO3 precipitation. In chapters 4 and 5 are presented the physical and 

biochemical evidences of bacterial mineral precipitation, in which microbial metabolic 

activities (photosynthesis) plays an important role. Sanning Electron Microscopy and X-ray 

diffraction have been used to characterize the nature and the forms of the precipitated 

minerals, whereas Transmission Electron Microscopy (TEM) has been used to localize the 

microbial precipitation of carbonates on/or near the surface of bacterial cells. This technique 

helps to answer the third question and understands the mechanism of precipitation driven by 

different type of bacteria. The results and interpretation are presented in Chapter 4 and 5.   

 

Overall, the results of this study can help to answer important questions about i) 

carbonate formations in past (paleontological context) and present time (context of CO2 

storage and biogeochemical cycle); ii) evolution of microbial life in the earliest periods of 

biological history (biological context); and iii) bacterial ecosystems formations under 

contemporary land surface conditions (ecological context).  
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Plants, algae, and cyanobacteria are known as oxygenic photoautotrophs because they 

synthesize organic molecules from inorganic materials, convert light energy into chemical 

energy, use water as an electron source, and generate oxygen as an end product of 

photosynthesis. Unlike the oxygenic plants, algae, and cyanobacteria, anoxygenic phototrophs 

do not use water as an electron source and, therefore, do not produce oxygen during 

photosynthesis. The electrons come from compounds such as hydrogen gas, hydrogen sulfide, 

and reduced organic molecules. This chapter will give a short introduction into the diversity 

of anoxygenic phototrophic bacteria (APB) and of cyanobacteria, list some important 

properties of the species, and indicate important physiological features. Two strains of 

anoxygenic phototrophs (purple nonsulfur anoxygenic phototrophic bacteria) and oxygenic 

phototrophs cyanobacteria Gloeocapsa sp. were studied in this work. 

 

1.  Anoxygenic phototrophic bacteria (APB) 

 

Anoxygenic phototrophic bacteria have always attracted scientists because of their 

position at the beginning of life evolution and their ability to perform photosynthesis in the 

absence of air and without producing oxygen. Despite the common feature of these bacteria, 

there are significant variations in their morphological, physiological and molecular properties, 

including molecular structures of the photosynthetic pigments and the photosynthetic 

apparatus (Blankenship et al, 2004).  

The literature contains significant information on the geochemical activity, physiology 

and distribution of APB in earth surface environments. Places of mass dwelling of APB 

usually divide into three types: thermal sources, shallow water reservoirs (salty and fresh), the 

stratified water body such as lakes reservoirs. However, in small amounts APB are also 

present in practically all aquatic systems and flooded soils (Gorlenko, 1977). 
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1.1.  Anoxygenic photosynthesis 

 

Anoxygenic photosynthetic bacteria differ from oxygenic organisms in that each 

species has only one type of reaction center (photosynthetic reaction center is a complex of 

several proteins, pigments and other co-factors assembled together to execute the primary 

energy conversion reactions of photosynthesis) (Blankenship et al., 1995). In some 

photosynthetic bacteria the reaction center is similar to photosystem II and in others it is 

similar to photosystem I (Fig. 1). However, neither of these two types of bacterial reaction 

center is capable of extracting electrons from water, so they do not evolve O2. Many species 

can only survive in environments that have a low concentration of O2. To provide electrons 

for the reduction of CO2, anoxygenic photosynthetic bacteria must oxidize inorganic or 

organic molecules available in their environment. For example, the purple bacterium 

Rhodobacter sphaeroides can use succinate to reduce NAD+ by a membrane-linked reverse 

electron transfer that is driven by a transmembrane electrochemical potential. Although many 

photosynthetic bacteria depend on Rubisco and the Calvin cycle for the reduction of CO2, 

some are able to fix atmospheric CO2 by other biochemical pathways (Huzisige and Ke, 

1993).  

Despite these differences, the general principles of energy transduction are the same in 

anoxygenic and oxygenic photosynthesis. Anoxygenic photosynthetic bacteria contain 

bacteriochlorophyll, a family of molecules that are similar to the chlorophyll, that absorb 

strongly in the infrared region between 700 and 1000 nm. The antenna system consists of 

bacteriochlorophyll and carotenoids that serve as reaction center where primary charge 

separation occurs (Blankenship et al., 1994). The electron carriers include quinone (e.g., 

ubiquinone, menaquinone) and the cytochrome bc complex, which is similar to the 

cytochrome bf complex of oxygenic photosynthetic apparatus. As in oxygenic photosynthesis, 

electron transfer is coupled to the generation of an electrochemical potential that drives 

phosphorylation by ATP synthase and the energy required for the reduction of CO2 is 

provided by ATP and NADH, a molecule similar to NADPH (Briggs, 1989).  
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Fig. I. 1. Schematic of photosystems I and II. 

 

1.2.   Diversity of Anoxygenic Phototrophic Bacteria 

 

There are 7 groups of APB: filamentous anoxygenic phototrophs (Fig. 2A), 

phototrophic purple nonsulfur bacteria (Fig. 2B), green sulfur bacteria (Fig. 2C), phototrophic 

sulfur bacteria, heliobacteria (Fig. 2D), thermophilic anoxygenic phototrophs, aerobic 

anoxygenic phototrophs (Blankenship et al, 2004). To illustrate the diversity of APB we will 

consider some the most interesting examples.  

 Filamentous anoxygenic phototrophs are a diverse group of photosynthetic bacteria 

that are of particular evolutionary significance. The best known species is the thermophilic 

Chloroflexus aurantiacus (Fig. 2A). This organism is a prominent member of hot spring 

microbial mat communities. Because it has an interesting combination of characteristics found 

in very different and diverse groups of phototrophic prokaryotes, it is of particular 

significance in addressing questions of evolutionary importance (Frigaard and Bryant, 2004).  

There are several other strains of filamentous photosynthetic bacteria from a wide 

range of environments that are substantially different from Cf. aurantiacus, yet have enough 

similarity in fundamental photosynthetic features to be likely relatives. Sequence data (16S 

rRNA) are needed to define the phylogenetic range of the family Chloroflexaceae.  
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Fig. I. 2. Anoxygenic phototrophic bacteria: A. Chloroflexus (green non-sulfur 
bacteria, Chloroflexaceae), B. Rhodospirillum (purple non-sulfur bacteria, 

Rhodospirillaceae), C. Chlorobium (green sulfur bacteria, Chlorobiaceae), D. 
Heliobacterium (Gram-positive, Heliobacteriaceae). 

 

The physiology of Cf. aurantiacus is intriguing in several aspects. The recently 

described autotrophic CO2 fixation pathway involving 3-hydroxypropionate is unlike any 

other known autotrophic mechanism. C. aurantiacus is also unique among all groups of 

phototrophs in lacking the capacity for nitrogen fixation. The regulation of pigment synthesis 

in response to changing growth conditions is particularly interesting due to the presence of 

two different photosynthetic pigments located in different sub-cellular environments. The fact 

that Cf. aurantiacus is a thermophile provides another dimension of complexity to its 

physiology. It is also quite resistant to UV radiation. Some of its characteristics may be relicts 

from Precambrian ancestors (Blankenship et al, 2004).  

Other interesting example of APB is heliobacteria (Fig. 2D). Heliobacteria are 

anoxygenic phototrophs that contain bacteriochlorophyll g as their sole chlorophyll pigment. 

These organisms are primarily soil residents and are phylogenetically related to Gram-positive 

bacteria, in particular to the endospore-forming Bacillus/Clostridium line. Some species of 

heliobacteria produce heat resistant endospores containing dipicolinic acid and elevated Ca2+ 

levels. Heliobacteria can grow photoheterotrophically on a limited group of organic substrates 

and chemotrophically (anaerobically) in darkness by pyruvate or lactate fermentation. They 

are also active nitrogen-fixers. Their photosynthetic system resembles that of photosystem I of 

green plants but is simpler, containing a small antenna closely associated with the reaction 

center located in the cytoplasmic membrane; no chlorosomes; typical of the green sulfur 

bacteria; or differentiated internal membranes, typical of purple bacteria, are found in the 

heliobacteria. These bacteria are apparently widely distributed in rice soils and occasionally 
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found in other soils. The ecology of heliobacteria may be tightly linked to that of rice plants, 

and the ability of heliobacteria to produce endospores probably has significant survival value 

in the highly variable habitat of rice soils. The unique assemblage of properties shown by the 

heliobacteria has necessitated creation of a new taxonomic family of anoxygenic phototrophic 

bacteria, the Heliobacteriaceae, to accommodate organisms of this type (Madigan and 

Ormerod, 1995) 

It is apparent that very few species of anoxygenic phototrophs occur or grow at high 

temperatures, particularly when compared to species numbers for thermophilic Archaea and 

non-photosynthetic Bacteria. Chloroflexus spp. are the most thermotolerant (up to ~70 °C) 

(Fig. 3), but none of the APB are in the hyperthermophilic category. Recognizing that there 

may be some endemic populations of anoxygenic phototrophic bacteria that have not been 

dispersed among geographically disparate geothermal sites, the major factors affecting the 

distribution of these bacteria are temperature, pH, and concentration of sulfide. Oxygen may 

have an effect on the vertical distribution and the diel vertical migration of some species 

within mats. Facultative aerobic metabolism appears to be a property of many of the 

anoxygenic phototrophs (but not Chlorobium or Heliobacillus) in these dynamic habitats. 

Light quantity and quality are affected by the diversity of pigmentation within the vertically 

stratified communities and adaptation to low photon fluence rates is a necessity for many 

species (Castenholz and Pierson, 2004).  

Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur 

compounds for use as electron donors in carbon dioxide fixation during anoxygenic 

photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and 

the green sulfur bacteria (GSB). They utilize various combinations of sulfide, elemental 

sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors 

(Frigaard and Dahl, 2009). Phototrophic sulfur bacteria often form mass developments in 

aquatic environments, either planktonic or benthic, where anoxic layers containing reduced 

sulfur compounds are exposed to light. From the point of view of population dynamics, the 

abundance of these organisms is the consequence of a certain balance between growth and 

losses. Both specific growth rates and specific rates of loss through several processes are 

analyzed in several environments, in an attempt to generalize on the growth status of blooms 

of phototrophic sulfur bacteria. The available information indicates the existence of an upper 

limit for the production of these bacteria in nature, and seems to suggest the existence of an 

upper limit for biomass based in the balance between growth and losses (Hell et al., 2008)  
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Fig. I. 3. APB and cyanobacteria in the hot spring (40-60°C), Kamchatka, Russia. 
 

During the last 15 years, more than 20 new strains of aerobic anoxygenic phototrophs 

bacteria which possess bacteriochlorophyll (BChl) a have been identified (Blankenship et al, 

2004). They are distinguished from typical anaerobic (anoxygenic) phototrophs in that they 

synthesize BChl only under aerobic conditions and cannot grow without O2 or other oxidants, 

even under light. In some species, photosynthetic activities have been demonstrated. Reaction 

centers and light-harvesting complexes isolated from some species were shown to be similar 

to those of typical purple photosynthetic bacteria. The regulatory mechanism of synthesis of 

pigments and proteins of the photosynthetic apparatus are apparently opposite with respect to 

O2 pressure compare to that of typical anoxygenic phototrophs. The low content of BChl, 

unique composition of carotenoids and presence of non-photosynthetic carotenoids in most 

strains are other marked characteristics of these aerobic bacteria. Phylogenetically, they are 

not classified into single group. Species so far described are distributed rather widely within 

the α-subclass of Proteobacteria (purple bacteria) in which most of the purple nonsulfur 

bacteria as well as many non-photosynthetic bacteria are included. Apparently, these aerobic 

BChl-containing bacteria represent an evolutionary transient phase from anaerobic 

phototrophs to aerobic non-phototrophs. However, some characteristic features distinct from 
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anaerobic phototrophs suggest that most of them are in an evolutionary stable state (Yurkov 

and Beatty, 1998). 

Our experimental study of calcium carbonate biomineralization during bacterial 

activity deal with two strain of purple nonsulfur APB: Rhodovulum steppense sp. nov. A-20s 

and Rhodovulum sp.  S-17-65.  

 

1.2.1.  Rhodovulum steppense sp. nov. A-20s 

Rhodovulum steppense (step.pen'se, N.L. n. steppum steppe; L. neut. suff. -ense suffix 

used with the sense of pertaining to; N.L. neut. adj. steppense pertaining to the steppe, 

widespread in steppe soda lakes). The type strain, A-20sT (=VKM B-2489T =DSM 21153T). 

The 16S rRNA gene sequences of A-20s strain were deposited in GenBank under the 

following accession numbers: EU741680–EU741684, EU918391, FJ895099 (Kompantseva et 

al., 2009). 

Strains of purple nonsulfur bacteria Rhodovulum steppense sp. nov. A-20s were 

isolated from the shallow-water steppe soda lake Khilganta (Zabaikal'skii Krai, southern 

Siberia, Russia) (Fig. 4A) in the cryoarid zone of Central Asia (Kompantseva et al., 2010). 

 

Fig. I. 4. (A) Lake Khilganta, Zabaikal'skii Krai, southern Siberia, Russia; (B) 
Hypersaline water body in Crimea steppe. 

 

Cells are ovoid to rod-shaped, 0.3–0.8 µm wide and 1.0–2.5 µm long (Fig. 5A), mobile 

by means of polar flagella, multiply by binary fission, and contain vesicular internal 

photosynthetic membranes. Ultrathin sections of cells of strain A-20s showed a Gram-

negative type of cell wall. The internal photosynthetic membranes formed multiple vesicles 

(Fig. 5B). 
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Fig. I. 5. (A,B) TEM images of APB A-20s. Nutrient solution. 10 days old culture. 
(B) Vesicles in the internal photosynthetic membranes of APB A-20s. 

 

Cell suspensions are yellow to brown in anoxic conditions (Fig. 6A) and red in the 

presence of O2 when grown aerobically (Fig. 6B).  

 

 

Fig. I. 6. Bacterial suspensions of A-20s cultivated in anoxic conditions (brown 
color) (A) and in the presents of oxygen (red color) (B). 

 

The photosynthetic pigments of this APB strain are bacteriochlorophyll a and 

carotenoids of the spheroidene series (Kompantseva et al., 2009). In vivo absorption spectra 

show maxima at 461, 483, 515, 592, 803 and 861 nm. Growth occurs anaerobically in the 

light (photoheterotrophically) or aerobically in the dark (chemoheterotrophically). Growth is 
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best with propionate, butyrate, valerate, pyruvate, lactate and glycerol. Asparagine, acetate, 

caprylate, malate, succinate, formate, fumarate, glutamate, mannose, ethanol, casein 

hydrolysate and yeast extract are also used. Alanine, arginine, aspartate, ornithine, proline, 

threonine, valine, citrate, benzoate, tartrate, arabinose, glucose, maltose and fructose support 

slow growth. No growth occurs with sucrose, sorbitol, mannitol or methanol. No anaerobic 

respiration takes place with nitrite, nitrate or fumarate. Growth at the expense of fermentation 

does not occur. Sulfide, sulfur and thiosulfate support photolithoautotrophic and 

chemolithoautotrophic growth, in the course of which they are oxidized to sulfate. Sulfide as 

electron donor is oxidized via temporary deposition of extracellular elemental sulfur. No 

growth occurs with hydrogen as electron donor. Ammonium salts are used as the nitrogen 

source. Sulfate, thiosulfate, elemental sulfur and cysteine are used as the sulfur source. Three 

vitamins (biotin, thiamine, niacin) are needed as growth factors. Obligately haloalkaliphilic: 

growth occurs within a wide range of salinity (0.3–10 %, w/v) and pH (7.5–10) (Kompantseva 

et al., 2010). Growth optima are at 1–5 % NaCl, pH 8.5 and 25–35 °C. No growth occurs in 

the absence of NaCl and/or at pH 7. The major quinone is ubiquinone Q-10. This APB strain 

is resistant to amikacin, ampicillin, chlortetracycline, bacitracin, vancomycin, gentamicin, 

nystatin, nalidixic acid, novobiocin, penicillin, rifampicin, kanamycin, lincomycin, neomycin 

and streptomycin, but sensitive to tetracycline, benzylpenicillin and polymixin B.  

Anaerobically in the light and in the presence of organic compounds, the strain A-20s 

reduced selenite and tellurite (at initial concentrations of up to 10 mM) to elemental selenium 

and tellurium, respectively (Kompantseva et al., 2010). 

 

1.2.2.   Rhodovulum sp. S-17-65 

Bacteria  Rhodovulum sp. S-17-65 were isolated a long time ago and originally 

described as Rhodobacter euryhalinus, renamed later in Rhodovulum euryhalinum. In light of 

new data this species includes only typical strain, but not Rhodovulum sp. S-17-65. Thereby, 

Rhodovulum sp. S-17-65 is likely to be another species, which have been not described yet. In 

this subsection we provide the old description of bacteria S-17-65. 

Rhodobacter euryhalinus (Gr. adj. eurus, wide, broad; Gr. n. hals halos, salt; L. suff. -

inus -a -um, suffix used with the sense of belonging to; N.L. neut. adj. euryhalinum, living in 

a wide range of salinity). Type strain: strain Kompantseva KA-65 = KA-65 = DSM 4868. 

GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of the type strain: 

D16426 (Kompantseva, 1989). 
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Fig. I. 7. TEM images of cells S-17-65. Nutrient solution. 10 days old culture. 
 

Strains of purple nonsulfur bacteria Rhodovulum sp. S-17-65 isolated from the 

hypersaline water body in Crimea steppe (Fig. 4B). It was shown that the main factors 

determining efficiency of growth were: increase salt content, sulphide content in silt deposits, 

unstable character of anaerobic conditions in bottom water (Gorlenko et al., 1983).  

The form of cells is coccus or short rod-shaped, the size is 0.7-0.1.0 µm wide and 1.0–

3.0 µm long (Fig. 7), the cells are mobile by means of polar flagella, multiply by binary 

fission. Cell suspensions are brown as shown in Fig. 8.  

 

 

Fig. I. 8. Cells suspension of APB S-17-65. 
 

The photosynthetic pigments are bacteriochlorophyll a and carotenoids of the 

spheroidene series. The growth occurs anaerobically in the light (photoorganoheterotroph) or 
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microaerophilically in the dark on organic substrate. The cultures can growth 

photoototrophicaly with sulphide. S-17-65 is obligately halophilic with growth optima of 12 

% NaCl, pH 7-8 and 25–35 °C. The source of nitrogen is ammonium, source of sulfur are 

sulfide, cysteine. These bacteria need four vitamins: B1, B5, biotin, n-aminobenzoate 

(Kompantceva, 1985).   

 

2.  Cyanobacteria 

 

A cyanobacterium (also known as blue-green algae, blue-green bacteria, and 

Cyanophyta) is a phylum of bacteria that obtain their energy through photosynthesis. The 

name "cyanobacteria" comes from the color of the bacteria (Greek: κυανός (kyanós) = blue). 

The ability of cyanobacteria to perform oxygenic photosynthesis is thought to have 

converted the early reducing atmosphere into an oxidizing one, which dramatically changed 

the composition of life forms on Earth by stimulating biodiversity and leading to the near-

extinction of oxygen-intolerant organisms (Smith, 1982).  

Cyanobacteria can be found in almost every conceivable environment, from oceans 

and fresh water to bare rock and soil. They can occur as planktonic cells or form phototrophic 

biofilms in fresh water and marine environments. They occur in damp soil or even on 

temporarily moistened rocks in deserts. A few are endosymbionts in lichens, plants, various 

protists, or sponges and provide energy for the host. Some live in the fur of sloths, providing a 

form of camouflage (Madigan et al., 2000). 

Aquatic cyanobacteria are probably best known for the extensive and highly visible 

blooms that can form in both freshwater and the marine environment and can have the 

appearance of blue-green paint or scum (Fig. 9). The association of toxicity with such blooms 

has frequently led to the closure of recreational waters when blooms are observed. Marine 

bacteriophages are a significant parasite of unicellular marine cyanobacteria. When they 

infect cells, they lyse them, releasing more phages into the water (Rippka et al., 1979). 
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Fig. I. 9. Blooms of cyanobacteria. (A) Lake in New England; (B) Lake Atitlán, 
Guatamala highlands, satellite image, November 22, 2009. 

 

2.1.  Oxygenic Photosynthesis of Bacteria 

 

The photosynthetic process in all plants and algae as well as in certain types of 

photosynthetic bacteria involves the reduction of CO2 to carbohydrate and removal of 

electrons from H2O, which results in the release of O2. In this process, known as oxygenic 

photosynthesis, water is oxidized by the photosystem II reaction center, a multisubunit protein 

located in the photosynthetic membrane. Years of research have shown that the structure and 

function of photosystem II is similar in plants, algae and certain bacteria, so that knowledge 

gained in one species can be applied to others. This homology is a common feature of proteins 

that perform the same reaction in different species. This homology at the molecular level is 

important because there are estimated to be 300,000-500,000 species of plants (Huzisige and 

Ke, 1993).  

Cyanobacteria are photosynthetic prokaryotic organisms that evolve O2 (Bryant, 

1994). Fossil evidence indicates that cyanobacteria existed over 3 billion years ago and it is 

thought that they were the first oxygen evolving organisms on earth (Wilmotte, 1994). 

Cyanobacteria are presumed to have evolved in water in an atmosphere that lacked O2. 

Initially, the O2 released by cyanobacteria reacted with ferrous iron in the oceans and was not 

released into the atmosphere. Geological evidence indicates that the ferrous Fe was depleted 

around 2 billion years ago, and earth's atmosphere became aerobic. The release of O2 into the 

atmosphere by cyanobacteria has had a profound affect on the evolution of life.  
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The photosynthetic apparatus of cyanobacteria is similar to that of chloroplasts. The 

main difference is in the antenna system. Cyanobacteria depend on chlorophyll a and 

specialized protein complexes (phycobilisomes) to gather light energy (Sidler, 1994). They do 

not contain chlorophyll b. As in chloroplasts, the chlorophyll a is located in membrane bound 

proteins. The phycobilisomes are bound to the outer side of the photosynthetic membrane and 

act to funnel exciton energy to the photosystem II reaction center. They are composed of 

phycobiliproteins, protein subunits that contain covalently attached open ring structures 

known as bilins that are the light absorbing pigments. Primary photochemistry, electron 

transport, phosphorylation and carbon reduction occur much as they do in chloroplasts. 

Cyanobacteria have a simpler genetic system than plants and algae that enable them to be 

easily modified genetically. Because of this, cyanobacteria have been used as a model to 

understand photosynthesis in plants. By genetically altering photosynthetic proteins, 

researchers can investigate the relationship between molecular structure and mechanism 

(Barry et al., 1994).  

Over the past three decades several types of oxygenic bacteria known as 

prochlorophytes (or oxychlorobacteria) have been discovered that have light harvesting 

protein complexes that contain chlorophyll a and b, but do not contain phycobilisomes 

(Palenik and Haselkorn 1992, Urbach et al., 1992; Matthijs et al., 1994). Because 

prochlorophytes have Chlorophyll a/b light harvesting proteins like chloroplasts, they are 

being investigated as models for plant photosynthesis.  

 

2.2.  Diversity of cyanobacteria 

 

The cyanobacteria were traditionally classified by morphology into five sections, 

referred to by the numerals I-V. The first three - Chroococcales, Pleurocapsales, and 

Oscillatoriales - are not supported by phylogenetic studies. However, the latter two - 

Nostocales and Stigonematales - are monophyletic, and make up the heterocystous 

cyanobacteria. The members of Chroococales are unicellular and usually aggregate in 

colonies. The classic taxonomic criterion has been the cell morphology and the plane of cell 

division. In Pleurocapsales, the cells have the ability to form internal spores (baeocytes). The 

rest of the sections include filamentous species. In Oscillatoriales, the cells are uniseriately 

arranged and do not form specialized cells (akinetes and heterocysts). In Nostocales and 
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Stigonematales the cells have the ability to develop heterocysts in certain conditions. 

Stigonematales, unlike Nostocales, includes species with truly branched trichomes (Smith, 

1982).  

Cyanobacteria include unicellular and colonial species. Colonies may form filaments, 

sheets or even hollow balls. Some filamentous colonies show the ability to differentiate into 

several different cell types: vegetative cells, the normal, photosynthetic cells that are formed 

under favorable growing conditions; akinetes, the climate-resistant spores that may form 

when environmental conditions become harsh; and thick-walled heterocysts, which contain 

the enzyme nitrogenase, vital for nitrogen fixation. Heterocysts may also form under the 

appropriate environmental conditions (anoxic) when fixed nitrogen is scarce. Heterocyst-

forming species are specialized for nitrogen fixation and are able to fix nitrogen gas into 

ammonia (NH3), nitrites (NO2
−) or nitrates (NO3

−) which can be absorbed by plants and 

converted to protein and nucleic acids (atmospheric nitrogen cannot be used by plants 

directly). Rice crops utilize healthy populations of nitrogen-fixing cyanobacteria in some rice 

paddy fertilizers (Scanlan and Nyree, 2002). Rippka (Rippka et al., 1979) divides the 

cyanobacteria into five sections. She describes first two sections, I and II, as "Unicellular; 

cells single or forming colonial aggregates held together by additional outer cell wall layers". 

Her other three sections, III to V, she describes as "Filamentous; a trichome (chain of cells) 

which grows by intercalary cell division". The paper by Rippka et al. (1979) contains many 

micrographs of cell morphologies typical of these genera. 

Anabaena (Fig. 10) is a genus of filamentous cyanobacteria, found as plankton. It is 

known for its nitrogen fixing abilities, and they form symbiotic relationships with certain 

plants, such as the mosquito fern. They are one of four genera of cyanobacteria that produce 

neurotoxins, which are harmful to local wildlife, as well as farm animals and pets. Production 

of these neurotoxins is assumed to be an input into its symbiotic relationships, protecting the 

plant from grazing pressure (Mishra et al. 2009). 

Oscillatoria (Fig.11) is another genus of filamentous cyanobacterium which is named 

for the oscillation in its movement. Filaments in the colonies can slide back and forth against 

each other until the whole mass is reoriented to its light source. It is commonly found in 

watering-troughs waters, and is mainly blue-green or brown-green. Oscillatoria is an 

organism that reproduces by fragmentation. Oscillatoria forms long filaments of cells which 

can break into fragments called hormogonia. The hormogonia can grow into a new, longer 

filament. Breaks in the filament usually occur where dead cells (necridia) are present. Each 
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filament of oscillatoria consists of trichome which is made up of rows of cells. The tip of the 

trichome oscillates like a pendulum (Madigan et al. 2000). 

 

 

Fig. I. 10. Cyanobacteria Anabaena (Scientific classification: Kingdom: Bacteria, 
Phylum: Cyanobacteria, Order: Nostocales, Family: Nostocaceae, Genus: Anabaena). 
 

 

 

 

Fig. I. 11. Cyanobacteria Oscillatoria (Scientific classification: Kingdom: Bacteria, 
Phylum: Cyanobacteria, Class: Cyanophyceae, Order: Oscillatoriales, Family: 

Oscillatoriaceae, Genus: Oscillatoria). 
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Some of cyanobacterial organisms contribute significantly to global ecology and the 

oxygen cycle. Although Prochlorococcus (Fig.12) is the smallest known phototroph it 

contributes 30-80% of primary production in the world's oligotrophic oceans, and is 

consequently plays a significant role in the global carbon cycle and the Earth's climate. This 

tiny marine unicellular cyanobacterium was discovered in 1986 and accounts for more than 

half of the photosynthesis of the open ocean (Scanlan et al. 2002). 

 

 

Fig. I. 12. Cynobacteria Prochlorococcus (Scientific classification: Kingdom: 
Bacteria, Phylum: Cyanobacteria, Order: Synechococcales, Family: Synechococcaceae, 

Genus: Prochlorococcus) 
 

Each individual cell of a cyanobacterium typically has a thick, gelatinous cell wall. 

They lack flagella, but some species may move by gliding along surfaces. Many of the multi-

cellular filamentous forms of Oscillatoria are capable of a waving motion; the filament 

oscillates back and forth. In water columns some cyanobacteria float by forming gas vesicles, 

like in archaea. These vesicles are not organelles as such. They are not bounded by lipid 

membranes but by a protein sheath (Smith, 1982). 

 

In our experimental study of calcium carbonate biomineralization cyanobacteria 

Gloeocapsa sp. was studied in details for determinate its role in precipitation and the 

mechanism of this precipitation.  

 



 Description of APB and Cyanobacteria  

47 
 

2.2.1.  Cyanobacteria Gloeocapsa sp.  

 

Scientific classification: Kingdom: Bacteria, Class/Phylum: Cyanobacteria, Order: 

Chroococcales,  Family: Chroococcaceae. 

Gloeocapsa (from the Greek gloia (glue) and the Latin capsa (box)) may be 

unicellular or made up of small groups of cells grouped together within concentric mucilage 

envelopes (Fig. 13). The individual colonies are usually spherical, microscopic, and enclosed 

within larger masses of mucilage. The cells are oval-shaped or ellipsoidal, and hemispherical 

after dividing. Each cell has a rounded, firm, inner mucilaginous sheath surrounded by older 

sheath material from the parent cell, revealing the pattern of cell division. The sheaths are 

colorless or vivid shades of yellow, brown, red, orange, blue, or violet, and may be affected 

by changes in pH. The cells are usually bright blue-green or olive green and do not have 

distinct gas vesicles (Smith, 1982).  

Gloeocapsa cells divide along three perpendicular planes during successive 

generations. Each daughter cell grows to the size and shape of the parent cell before dividing 

again. The parent colonies disintegrate to form new daughter colonies (Madigan, 2000).  

 

 

Fig. I. 13. Cyanobacteria Gloeocapsa (cells surrounded by a capsule). The black 
scale bars are 10 µm. 

 

Most species of Gloeocapsa live in freshwater lakes, on wet stony substrates, on tree 

bark, or in terrestrial environments such as moist soils. Many grow on wet rocks or mountain 

walls, while some species are restricted to calcareous or acidic rocky surfaces. Some live 
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within porous rocks in hot desert regions or can be seen as black bands on high intertidal 

seacoast rocks. Some species of Gloeocapsa are symbiotic with fungi, forming lichens 

(Smith, 1982). 

Cyanobacterium Gloeocapsa sp. used in this study is usually made up of small number 

of cells grouped within concentric mucilage envelopes. The individual colonies are spherical, 

microscopic, and enclosed within larger masses of mucilage. Gloeocapsa sp. f-6gl was 

provided from the culture collection of the Institute of Microbiology RAS (Moscow), isolated 

from a hot spring (30-40°C) in Kamchatka (Pokrovsky et al., 2008). 

 

2.2.2.  Cyanobacteria Synecochoccus sp. 

 

Scientific classification: Kingdom: Bacteria, Phylum: Cyanobacteria, Order: 

Synechococcales, Family: Synechococcaceae, Genus: Synechococcus. 

Synechococcus (from the Greek synechos (in succession) and the Greek kokkos 

(berry)) is a unicellular cyanobacterium that is very widespread in the marine environment. 

Many freshwater species of Synechococcus have also been described (Madigan et al., 2000). 

A Synechococcus cyanobacterium was isolated from the surface of coastal 

stromatolites sampled in February 2008 from the depth of 1 m at 50 m from the shoreline of 

the Salda Lake, SW Turkey (Fig. 14).  

 

 

Fig. I. 14. Salda Lake, SW Turkey. 
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The cultures of Synechococcus sp. were purified on the agar BG-11 or Pratt media and 

individual colonies was grown in synthetic, cyanobacteria BG-11 Freshwater Solution for 3 

weeks until the stationary growth phase was reached. Continuous illumination at 2000 lx was 

provided from fluorescent lamps. Cyanobacteria Synechococcus typically consists of isolated 

elongated cells, without significant amount of mucilage. Its size varies from 0.8 µm to 1.5 µm 

(Fig. 15). They are gram negative cells with highly structured cell walls that may contain 

projections on their surface. Electron microscopy frequently reveals the presence of phosphate 

inclusions, glycogen granules and more importantly highly structured carboxysomes (Smith, 

1982) (Fig.15). 

 

 

 

Fig. I. 15. TEM images of cyanobacteria Synechococcus sp. (A) Projections on their 
surface; (B) Phosphate inclusions / glycogen granules. 

 

Laboratory modeling experiments with cyanobacteria Synechococcus sp. were 

performed in order to characterize hydrous magnesium carbonate precipitation in alkaline lake 

(stromatolites formation) and to assess the range and characterize the mechanisms of Mg 

isotope fractionation in lacustrine environment. The results of this study are described in the 

articles Mavromatis et al. (2011) and Shirokova et al. (2011). These works are presented in 

Appendices 1 and 2. 
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1.   Bacterial growth and cultivation 

 

1.1.  Bacterial growth 

Bacterial growth is the division of one bacterium into two daughter cells in a process 

called binary fission. Providing no mutational event occurs, the resulting daughter cells are 

genetically identical to the original cell. Hence, "local doubling" of the bacterial population 

occurs. Both daughter cells from the division do not necessarily survive. However, if the 

number surviving exceeds unity on average, the bacterial population undergoes exponential 

growth. The measurement of an exponential bacterial growth curve in batch culture was 

traditionally a part of the training of all microbiologists; the basic means requires bacterial 

enumeration (cell counting) by direct and individual (microscopic, flow cytometry (Skarstad 

et al, 1983)), direct and bulk (biomass), indirect and individual (colony counting), or indirect 

and bulk (most probable number, turbidity, nutrient uptake) methods (Zwietering et al., 1990).  

Bacterial growth can be modeled with four different phases as shown in a typical 

curve of bacterial growth in Fig. 1 below: lag (latent, A) phase, exponential or log phase (B), 

stationary phase (C), and death phase (D).  

 

Fig. II. 1. Typical curve of bacterial growth. 
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During lag phase (A), bacteria adapt themselves to growth conditions. It is the period 

where the individual bacteria are maturing and not yet able to divide. During the lag phase of 

the bacterial growth cycle, synthesis of RNA, enzymes and other molecules occurs. Note that 

in this phase the microorganisms are not dormant (Hett and Rubin, 2008). 

Exponential phase (B) (sometimes called the log phase or the logarithmic phase) is a 

period characterized by cell doubling. The number of new bacteria appearing per unit time is 

proportional to the present population. If growth is not limited, doubling will continue at a 

constant rate so both the number of cells and the rate of population increase doubles with each 

consecutive time period. For this type of exponential growth, plotting the natural logarithm of 

cell number against time produces a straight line. The slope of this line is the specific growth 

rate of the organism, which is a measure of the number of divisions per cell per unit time 

(Novick, 1955). The actual rate of this growth (i.e. the slope of the line in the figure) depends 

upon the growth conditions, which affect the frequency of cell division events and the 

probability of both daughter cells surviving. Under controlled conditions, cyanobacteria can 

double their population four times a day. Exponential growth cannot continue indefinitely, 

however, because the medium becomes depleted of nutrients and enriched with wastes. 

During stationary phase (C), the growth rate slows down as a result of nutrient 

depletion and accumulation of toxic products. This phase is reached as the bacteria begin to 

exhaust the resources that are available to them. This phase is characterized by a constant 

biomass value as the rate of bacterial growth is equal to the rate of bacterial death. 

At death phase (D), bacteria run out of nutrients and die (Zwietering et al., 1990). 

This basic batch culture growth model draws out and emphasizes aspects of bacterial 

growth which may differ from the growth of impure culture or microbial consortia. It 

emphasizes clonality, asexual binary division, the short development time relative to 

replication itself, the seemingly low death rate, the need to move from a dormant state to a 

reproductive state or to condition the media, and finally, the tendency of lab adapted strains to 

exhaust their nutrients (Novick, 1955). 

In reality, even in batch culture, the four phases are not well defined. The cells do not 

reproduce in synchrony without explicit and continual prompting and their exponential phase 

growth is often not ever a constant rate, but instead a slowly decaying rate, a constant 

stochastic response to pressures both to reproduce and to go dormant in the phase of declining 

nutrient concentrations and increasing waste concentrations (Hett and Rubin, 2008). 

Liquid is not the only laboratory environment for bacterial growth. Spatially structured 

environments such as biofilms or agar surfaces present additional complex growth models 
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(Madigan et al. 2000). In contrast to experiments in biomineralization on agar media, we used 

only liquid culture in the present study. The main reason of this is the inability of researcher 

to control and monitor solute parameters (pH, pCO2, Alk, [Ca], [Mg], nutrients) in the agar 

media which does not allow quantifying the rates and identifying the governing factors of the 

microbial mineral precipitation processes.   

 

1.2.  Anoxygenic phototrophic bacterial (APB) growth and cultivation 

 

1.2.1.  Bacteria growth medium preparation and conditions of cultivation 

Both APB, A20-S and S-1765 (which are presented in chapter 1), were cultured in 

Pfenning’s growth medium of the following composition (Pfenning and Lippert, 1966) : 

KH2PO4 (330 mg/L), MgCl2*6H2O (330 mg/L), NH4Cl (330 mg/L), KCl (330 mg/L), Na2SO4 

(330 mg/L), CaCl2 (50 mg/L), NaHCO3 (5 g/L for A-20s, 0.5 g/L for S-17-65), NaCl (25 g/L 

for A-20s , 120 g/L for S-17-65), sodium acetate (1 g/L), casamino acids (0.1 g/L), yeast 

extract (0.1 g/L), B12 (20 µg/L), and Trace metal solution (1 ml/L (composition see paragraph 

1.3.1)). For S-17-65, Na2S (0.1 g/L) and cysteine (0.3 g/L) were added as a source of sulphur.  

Culture (growth) medium is prepared in 2 stages. At the first stage, inorganic 

components (in the form of salts) were added in the distilled (MQ) water. After that, solution 

was sterilised in autoclave (121°C, 2050 mBar, 25 min). The sterile solution is transferred to a 

laminar hood box. At the second stage (in laminar hood box), other components (in the form 

of 10% sterile solution) are added in a solution. Finally, the suspension of living bacterial 

cells is added in this solution.  

Stock cultures of bacteria were kept in sealed glass bottles in oxygen-free conditions at 

23-30°C, under constant 2000 lx light (Kompantseva at al. 2009), and placed on a rotator 

shaker at 10 rpm to grow until the stationary stage is reached (5 to 7 days). 

 

1.2.2.  Characterization of APB bacterial growth 

The overall growth rate was very similar between the two cultures in a wide range of 

pH and Dissolved Inorganic Carbon (DIC] concentrations (see Chapter 4). The curves of both 

APB’s growth in the nutrient solution are presented in the Fig. 2. As it can be seen from this 

figure, lag phase’s duration for A-20s and S-17-65 is 70-80 and 100-120 hrs, respectively. 
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The exponential phase for bacteria A-20s is short and characterized by fast biomass 

development during the first 40 hrs. The duration this phase for S-17-65 is longer than that for 

A-20s (160 hrs) and is characterized by slower bacterial biomass evolution. Stationary phase 

time is achieved after 200 and 100 hrs for A-20s and S-17-65, respectively. Finally, death 

phase starts at the same moment for both bacteria, within 320-340 hrs after the beginning of 

the experiments.  
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Fig. II. 2. Curves of APBs A-20s and S-17-65 growth in the nutrient solution. 
 

Experiments with both APB culture in nutrient medium with Mg additions (1-100 

mM) have shown that this metal, at concentration higher that 10 mM, inhibits bacterial 

biomass growth. This result suggests that Mg, at high concentrations, becomes a toxic metal 

for this APB.   

The possibility of bacterial growth in dilute nutrient medium was tested. The 

experiments in dilute medium (factor of 2 and 10 times) demonstrated the absence of bacterial 

growth in these conditions. 
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1.3.  Cyanobacteria growth and cultivation 

 

1.3.1.  Bacterial growth medium, preparation and conditions of cultivation 

 

Gloeocapsa sp. were grown in Cyanobacteria BG-11 Fresh-water Solution Medium 

(Sigma-Aldrich C3061) of the following composition (Rippka at al., 1979): NaNO3 (150 g/L), 

K2HPO4*3H2O or K2HPO4 (40 g/L or 30 g/L), MgSO4*7H2O (75 g/L), CaCl2*2H2O (36 g/L), 

Citric Acid (6 g/L, Ammonium Citrate (6 g/L), Na2CO3 (20 g/L), Trace metal solution 

(composition see below, 1 ml/L). This medium is traditionally used for most cyanobacteria.  

Trace metal solution: H3BO3 (2.86 g/L), MnCl2*4H2O (1.81 g/L), ZnSO4*7 H2O 

(0.222 g/L), NaMoO4*5H2O (0.39 g/L), CuSO4*5H2O (0.079 g/L), Co(NO3)2*6H2O (0.0494 

g/L) (Rippka at al., 1979). 

All components are added in the distilled (MQ) water. After that, solution is sterilised 

in autoclave (121°C, 2050 mBar, 20 min). Obtained sterile solution is transferred to a laminar 

hood box. Finally, suspension of living bacterial cells is added in this solution. 

Stock culture of Gloeocapsa sp. were kept at room temperature (23±1°C) under 

constant cool white fluorescent light illumination (4700 lx) on a rotator shaker at 250 rpm. 

 

1.3.2.  Characterization of Gloeocapsa sp. growth 

 

The curves Gloeocapsa sp. growth in the nutrient solution are presented in Fig. 3. As it 

can be seen from this figure, lag phase’s duration is 70-80 hrs (3 days). The exponential 

phases for Gloeocapsa sp. are longer than APB and characterized by slow biomass 

development during the 50-55 days. Stationary phase time is achieved after 55 days. Finally, 

death phase starts after 80 days of experiments. 



 Materials and Methods  

58 
 

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90 100

time, days

bi
om

as
s,

 g
/L

la
g

p
h

as
e

ex
p

o
n

en
ti

al
p

h
as

e

st
at

io
n

ar
y

p
h

as
e

d
ea

th
p

h
as

e

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90 100

time, days

bi
om

as
s,

 g
/L

la
g

p
h

as
e

ex
p

o
n

en
ti

al
p

h
as

e

st
at

io
n

ar
y

p
h

as
e

d
ea

th
p

h
as

e

 

Fig. II. 3. Curves Gloeocapsa’s of growth in the nutrient solution. 
 

2.  Electrophoretic Measurements 

 

The composition and structure of bacterial surface is responsible for important 

processes such as biomineralization, bacterial adhesion, and biofilm formation (Borrok & 

Fein, 2004). In order to better understand the mechanisms of all these processes, it is 

necessary to know bacterial surface charge depending upon environmental conditions (pH, 

presence of different organic/inorganic charged/non charged particles, temperature etc.). 

Electrophoretic (named also electrokinetic) measurement is very useful for cells it surface 

characteristic. Microelectrophoresis is a powerful technique for characterizing the electric 

double layer of microbial cell surfaces (van der Wal et al., 1997; Gelabert at al., 2004).  

This subchapter is undertaken to explain the physical theories of electrical double 

layer’s (EDL) structure; structural’s features of bacterial EDL and method to characterise it 

(electrophoretic measurements). 

 

 

 



 Materials and Methods  

59 
 

2.1.  Electrical double layer (EDL)  

 

In contact with a polar medium (water) the solid surface (e.g. majority of minerals and 

cells) show a definite surface charge as the consequence of ionization, ionic adsorption and 

ionic desorption. This surface charge influences the arrangement of neighbouring ions of the 

polar medium. Ions of the opposite charge (counter-ions) will be attracted to the particle 

surface while ions of like charge (co-ions) will be repulsed from the surface (Zembala, 2004). 

The formation of an interfacial charge causes a rearrangement of the local free ions in the 

solution to produce a thin region of nonzero net charge density near the interface. The 

arrangement of the charges at the solid-liquid interface formed the electrical double layer 

(EDL) (Lyklema, 1993). 

There are two part of EDL as depicted in Fig. 4. The thin layer of counter-ions 

immediately next to the charged solid surface or surface of cells, called the compact layer. 

The counter-ions in the compact layer are immobile due to the strong electrostatic attraction. 

Counter-ions outside the compact layer are mobile. This part of the EDL is called the diffuse 

layer. In diffuse layer the ions are arranged under the influence of electrical forces and 

thermal movements (Lyklema, 1993).  

 

 

 

Fig. II. 4. Electrical double layer of bacterial cells (modified from 
http://www.rikenresearch.riken.jp). 

  

There are several theories to describe the structure of the EDL (theories of Helmholtz 

Double Layer (1879) and Gouy-Chapman Double Layer (1910 and 1913)). In this work we 

briefly described Stern theory of EDL structure.  

compact 

electrical double layer diffuse 
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2.2.  Stern theory of the Diffuse Double Layer  

 

 The Gouy-Chapman theory provides a better approximation of reality than does the 

Helmholtz theory, but it still has limited quantitative application.  It assumes that ions behave 

as point charges (which they cannot) and that there is no physical limits for the ions in their 

approach to the surface (which is not true).  Stern, therefore, modified the Gouy-Chapman 

theory by assuming that ions do have finite size, so that they cannot approach the surface 

closer than a few nm.  In other words, the first ions of the Gouy-Chapman Diffuse Double 

Layer are not at the surface, but at some distance δ away from the surface.  This distance will 

usually be taken as the radius of the ion.  As a result, the potential and concentration of the 

diffuse part of the layer is low enough to justify treating the ions as point charges.  

Stern also assumed that it is possible that some of the ions are specifically adsorbed by 

the surface in the plane δ, and this layer has been named the Stern Layer.  Therefore, the 

potential will drop by Ψo - Ψδ over the "molecular condenser" (i.e. the Helmholtz Plane) and 

by Ψδ over the diffuse layer.  Ψδ has been names the zeta (ζ) potential (Alekseev et al., 1988). 

 

Fig. II. 5. This diagram serves as a visual comparison of the amount of counter-ions 
in each the Stern Layer and the Diffuse Layer of smectite when saturated with the three 

alkali earth ions. 
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The double layer is formed in order to neutralize the charged surface and, in turn, 

causes an electrokinetic potential between the surface and any point in the mass of the 

suspending liquid. This voltage difference is on the order of millivolts and is referred to as the 

surface potential. The magnitude of the surface potential is related to the surface charge and 

the thickness of the double layer. As we leave the surface, the potential drops off roughly 

linearly in the Stern layer and then exponentially through the diffuse layer, approaching zero 

at the imaginary boundary of the double layer. The potential curve is useful because it 

indicates the strength of the electrical force between particles and the distance at which this 

force comes into play. A charged particle will move with a fixed velocity in a voltage field. 

This phenomenon is called electrophoresis. The particle’s mobility is related to the dielectric 

constant and viscosity of the suspending liquid and to the electrical potential at the boundary 

between the moving particle and the liquid. This boundary is called the slip plane and is 

usually defined as the point where the Stern layer and the diffuse layer meet. The relationship 

between zeta potential and surface potential depends on the level of ions in the solution. The 

figure above (Fig. 5) represents the change in charge density through the diffuse layer. The 

electrical potential at this junction is related to the mobility of the particle (and is called the 

zeta potential). Although zeta potential is an intermediate value, it is sometimes considered to 

be more significant than surface potential as far as electrostatic repulsion is concerned 

(Valleau, 1982). 

 

2.3.  Zeta (ξ) potential of bacterial cells 

 

As it was defined in previous section, the zeta potential is the electrostatic potential at 

the boundary dividing the compact layer and the diffuse layer. Zeta potential is influenced by 

pH, ionic strength (the concentration and type of ions present) and the concentration of any 

charged molecules. The effect of the pH, or ionic strength of the medium or the concentration 

of an additive on the zeta potential can give information about the EDL of cells (Hunter, 

1981). 

Biological amphoteric molecules such as amino acid and proteins contain both acidic 

and basic functional groups. Amino acids which make up proteins may be positive, negative, 

neutral or polar in nature, and together give a protein its overall charge (Harden and Harris, 

1952). Bacterial surface contain a lot of different proteins and as result their charges 
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depending on the functional groups present in the surface. The net charge on the surface is 

affected by pH of their surrounding environment and can become more positively or 

negatively charged due to the loss or gain of protons (H+) (Dittrich et al. 2009). Net cell 

surface charge can be assessed on the basis of zeta potential which is the electrical potential of 

the interfacial region between the bacterial surface and the aqueous environment (Saito et el, 

1997). Zeta potential can be estimated by measuring cellular electrophoretic mobility in an 

electric field (Mozes and Rouxhet, 1990). 

Bacterial cells possess a net negative electrostatic potential surface charge when 

cultivated at physiological pH values (Mozes and Rouxhet, 1990). Competition between 

counter ion neutralization and molecular motion results in the establishment of an interfacial 

EDL. The inner region is referred to as the Stern layer and consists of the surface proper, as 

well as the ions with which it is electrostatically bound. The outer region protrudes into the 

aqueous environment and consists of more diffuse distribution of anions and cations which 

participate in electrostatic interactions between the cell and other charged surfaces. The zeta 

potential approximates the potential of the inner portion of the diffuse layer (Wilson et al., 

2001).  

Molecules comprising the outer cell envelope which contribute to the net 

electronegativity of the overall bacterial cell surface are structurally disparate and differ 

somewhat as a function of Gram reactivity. The peptidoglycan cell wall of gram-positive 

bacteria influences surface electronegativity by virtue of phosphoryl groups located in the 

substituent teichoic and teichuronic acid residues, as well as unsubstituted carboxylate groups 

(Beveridge, 1988). In contrast, the peptidoglycan of gram-negative bacteria is sequestered 

within the periplasmic space by virtue of the outer membrane and is therefore not exposed to 

the extracellular environment. Negative electrostatic surface charge in these organisms is 

conferred by the phosphoryl and 2-keto-3-deoxyoctonate carboxylate groups of 

lipopolysaccharide located in the outer leaflet of the outer membrane (Wilson et al., 2001).  

Taking together, the complexity of bacterial surface makes predictions relative to 

biophysical parameters, such as surface charges, rather difficult. Polymers composing 

bacterial surface contain dissociable groups. Since most cell surfaces contain both basic and 

acidic groups, the surface is amphoteric, with a more negative net charge at high pH and more 

positive charge at low pH (Bayer and Sloyer, 1990).  
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2.4.   Isoelectric point (IEP) 

 

The point where the plot passes through zero zeta potential is defined as isoelectric 

point (IEP). The pH of IEP  (pHIEP) is the pH at which a particular molecule or surface carries 

no net electrical charge (c.a., negative and positive charges are equal) (Kosmulski and 

Saneluta, 2004). At a pH below their IEP, particles carry a net positive charge; above their 

IEP they carry a net negative charge (Michen and Graule, 2010).  

Within recent years a number of workers have referred to differences in the isoelectric 

point of bacteria. And the general tendency is that the isoelectric point in the gram positive 

bacteria varied from pH 1.75 to 4.15 and in the gram negative group from 2.07 to 3.65.  These 

results indicate that the IEP values for gram negative cells do not vary over as wide a range as 

for gram positive cells. It is apparent, however, that the isoelectric point of the gram negative 

group does not occur at more alkaline reactions than of the gram positive bacteria. This 

feature is due to the protoplasm of the gram positive cells with high ribonucleic acid content 

which would exhibit greater acidic properties than that of gram negative cells (Bayer and 

Sloyer, 1990). 

 

2.5.  Electrophoresis method 

 

A variety of methods has been used in the past to characterize bacterial cell surfaces 

with regard to overall electrostatic properties (Wilson et al., 2001). Microelectrophoresis is 

one such method and involves the placement of cell suspension in an electrophoresis cell, 

application of voltage across the cell, and direct microscopic observation of the movement of 

individual bacteria over a given distance, the velocity of which is then used to calculate 

electrophoretic mobility (Brinton and Lauffer, 1959). Electrophoretic mobility can be used to 

ascertain zeta potential values from which cell surface charge can be estimated by calculation. 

The direction and rate of the movement is dependent on a variety of factors such as ionic 

strength, temperature, pH of the medium, as well as electric field strength and the net surface 

charge of the bacterium (Wilson et al., 2001). Figure 6 shows an example of the movement of 

bacterial cells in electrostatic field (experiment with APB A-20s). 
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Fig. II. 6. Movement of bacterial cells in electrostatic field  
(experiment with APB A-20s). 

 

 

2.6.  Zeta potential measurements 

 

The measurement of zeta potential is based on one of the three electrokinetic effects: 

electrophoresis, electroosmosis, and the streaming potential. In the electrophoresis method, 

the ξ –potential is determined by placing fine particles in an electric field and measuring their 

mobility, υE, using a suitable microscopic technique. The mobility is then related to the ξ –

potential at the interface using the Smoluchowski equation:  

( )04 1 / 6E r rυ = πε ε ζ + κ πµ       , 

where ε0 and εr are the relative dielectric constant and the electrical permittivity of a 

vacuum respectively; µ is the solution viscosity; r is the particle radius and κ is Debye-Hückel 

parameter (Chesworth and Zasoski, 2008). 

 

In this study, zeta potentials of APB cells were measured using a CAD 

Instrumentation “Zetaphoremeter IV” Z 4000, microelectrophoremeter (Fig. 7). 
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Fig. II. 7. Microelectrophoremeter CAD Instrumentation “Zetaphoremeter IV” Z 
4000 

 

2.6.1.  Preparation of the cells for zeta potential measurements 

 

For zeta potential measurements, cell suspensions of metabolically active, inactive 

(NaN3-treated), and dead (autoclaved) A-20s or S-17-65 were prepared in 0.01, 0.1 and 0.5 

mol/L aqueous NaCl solutions, with typical cell concentrations of 10 mgwet/L. Note that the 

conversion factors of wet to dry (lyophilized) weight applied for studied microorganisms and 

for adsorption measurements were equal to 11.7 and 16.1 for A-20s and S-17-65, respectively. 

The cultures were harvested at the late exponential – stationary growth stage by centrifugation 

at 10,000 rpm (7000 g) for 10 min at 20°C. The cells were rinsed in 0.1 mol/L NaCl 

corresponding to optimal physiological conditions and centrifuged twice at 10,000 rpm for 10 

minutes. Finally, bacterial suspension was washed in appropriate electrolyte solution and 

centrifuged. Resulting bacterial suspension was equilibrated for 1-1.5 hours in the specific 

electrolyte solution (0.01, 0.1 or 0.5 mol/L NaCl) at pH 7-8 prior to zeta potential 

measurements at variable pHs. Average equilibration time of bacterial suspension at a given 

pH was between 3 and 5 minutes, and no pH drift was observed during electrophoretic 

measurements. The cell integrity was maintained during experiments in acidic (pH < 4) and 

alkaline (pH > 10) solutions, as verified by optical microscopic examination. Additional zeta 

potentials were recorded for active bacterial cells after they were equilibrated for 1 h in the 

presence of 1.0 and 10 mmol/L NaHCO3 or 1.0 and 10 mmol/L CaCl2. Electrophoretic 

measurements were also performed in the dark using bacteria that were previously kept for 24 

hours in complete darkness. Keeping the bacteria in the dark during 24 hrs, comparable with 
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cell division time, and maintaining the full darkness condition during the measurement were 

intended to insure that the light phase of photosynthesis is completely absent.  

Dead (heat-killed) cells were prepared by autoclaving part of the fresh stock of 

biomass at 121°C for 20 minutes and performing the rinsing procedure as described above for 

live cells. Inactivated cells were prepared by rinsing part of the fresh (live) biomass in 0.1 

mol/L NaN3 during 1-2 hrs. Inactivated cells were prepared by rinsing part of the fresh (live) 

biomass in 0.01 mol/L NaN3 during 1-2 hrs. Sodium azide suppresses bacterial activity by 

inhibiting cytochrome oxidase and is widely used for inactivating cells while keeping the 

surfaces physically and chemically intact (Urrutia Mera et al., 1992; Johnson et al., 2007).  

 

2.6.2.  Procedure of zeta potential measurements 

 

The electrophoretic measurements were performed at 20 to 25°C in a quartz cell 

connecting two Pd electrode chambers. The cells were illuminated by a 2 mW He/Ne laser. 

During the measurements an electric field of 80 V cm−1 was applied in each direction for 20 s 

and the images of moving cells were transmitted to a computer via a CCD camera. The zeta 

potentials of the cells were measured by timed image analysis. Measurements were performed 

at pH ranging from 2.5 to 11.0 with a pH resolution of 0.4 units. The pH of these suspensions 

was increased manually by adding 2–10 µL aliquots of 0.01–1 M NaOH or 0.01-1 M HCl. 

Three replicates were carried out and each was performed with a renewed bacteria 

suspension. The uncertainty of zeta potential measurements ranged from 5% to 20%. 

Electrophoretic mobilities were converted to zeta potentials using the Smoluchowski equation 

(Bazant, 2009):  

η
µεζ )( E×=   

where ζ stands for the zeta potential (mV) and ε, η and µE represent the dielectric 

constant of the solution, the viscosity and the electrophoretic mobility, respectively (µE = 

VE/E with VE = electrophoretic rate (s-1) and E = electric field (V.m-1)).  

 

Results and discussions of zeta potential measurements with APB are presented in 

Chapter 3. 
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3.   Calcium adsorption 

 

Bacterial cell walls display a strong affinity for a wide variety of aqueous metal 

cations. Adsorption of aqueous metal cations onto bacterial cell walls is likely to be an abiotic 

process, controlled only by the acid/base properties of the exposed cell wall surface functional 

groups, and by affinity of each type of functional group for specific aqueous metals (Fein at 

el., 1997). Previous experiments indicate that isolated cell walls and whole bacteria exhibit 

similar affinities for aqueous metals (Mullen at al., 1989), reflecting the abiotic nature of at 

least the initial metal-bacteria interaction at the cell wall surface (Fein at al., 1997). 

 

3.1.   Isotherm of adsorption 

 

Adsorption is the adhesion of atoms, ions, biomolecules or molecules of gas, liquid, or 

dissolved solids to a surface. This process creates a film of the adsorbate (the molecules or 

atoms being accumulated) on the surface of the adsorbent. Adsorption process is generally 

classified as physisorption (characteristic of weak van der Waals forces) or chemisorption 

(characteristic of covalent bonding). It may also occur due to electrostatic attraction 

(Lyklema, 1993). Adsorption is usually described through isotherms. In this study we used 

two types of isotherm: isotherm of calcium adsorption as a function of pH (pH-dependent 

adsorption edge) and isotherm of calcium adsorption at constant pH as a function of metal 

concentration in solution (adsorption isotherm). 

 

3.2.  Metal adsorption onto bacterial surfaces 

 

Bacterial cell walls contain a variety of surface organic functional groups. The 

dominant groups of the bacterial surface are carboxyl, amino, hydroxyl and phosphate sites 

(Beveridge, 1991; Dittrich and Sibler, 2006). To characterize metal adsorption onto the 

bacterial cells, several parameters can be determined: 

• The relative and absolute concentrations of these types of organic functional 

groups on the cell wall. 
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• The total surface area of bacterial walls in contact with the aqueous phase. 

• Deprotonation constant for each of the important functional groups. 

• Metal-organic stability constant for each metal and organic functional group of 

interest. 

Because different functional groups become active under different pH conditions the 

different adsorption reactions occur. The negative charge of the cell wall results 

predominantly from deprotonation of carboxyl, phosphate, and hydroxyl functional groups 

exposed on the outer surface of the cell wall. Deprotonation reactions for theses three 

dominant functional group types are, respectively (Fein, 1997): 

 

R-COOH ↔ R-COO- + H+ 

R-POH ↔ R-PO- + H+ 

R-OH ↔ R-O- + H+ 

Note that phosphate groups in bacteria can exist in several different forms: inorganic 

forms of phosphate such as orthophosphate and its oligomers, and organic species in the form 

of phosphate mono- and diesters (Dittrich, 2006). In the study of Dittrich and Sibler (2005) it 

was shown that three distinct sites exist on the bacterial surfaces of two Synechococcus-type 

unicellular autotrophic picocyanobacteria strain: carboxyl, phosphate and amino groups with 

pK values of 4.8-5.0; 6.6-6.7; 8.8-8.7, respectively.   

Interactions between aqueous metal cations (M) and deprotonated surface sites on the 

bacterial cell wall can be represented by the following association reactions: 

 

Mm+ + R-COO- ↔ R-COO(M)(m-1)+ 

Mm+ + R-PO- ↔ R-PO(M)(m-1)+ 

Mm+ + R-O- ↔ R-O(M)(m-1)+ 

Three cell surface sites known to attract Ca2+ are carboxyl (> COO-), phosphodiester 

(> PO4
-), and phosphoryl (>PO4

2-) sites. Reactions forming Ca2+ complexes with these sites 

can be written as: 
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Ca2+ + > COOH → (> COO – Ca)+ + H+ 

Ca2+ + > PO4H → (> PO4 – Ca)+ + H+ 

Ca2+ + > PO4H2 → (> PO4 – Ca)0 + 2H+ 

 

Like mineral surfaces, bacterial surfaces are charged and create an electric field. The 

resulting electrostatic interaction between this electric field and aqueous ions must be 

accounted for when expressing the equilibrium constant of a reaction involving surface sites. 

These interactions may be quantified using the following relationship: 

 

K=K Intrinsic exp(-FΨ/RT) 

Where F and R are Faraday’s constant and gas constant, respectively, T is absolute 

temperature, KIntrinsic represents the equilibrium constant referenced to zero surface charge and 

zero surface coverage, and Ψ is the electric potential of the bacterial surface (Feid, 1997). The 

interaction between aqueous metal cations and surface functional groups of bacterial cell wall 

is represented schematically in Figure 8. 

 

 

 

Fig. II. 8. Interaction between aqueous metal cations and surface functional groups 
of bacterial cell wall. 
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3.3.  Experimental procedure of Ca adsorption on cell surfaces 

 

The calcium adsorption experiments were designed to provide a quantitative 

characterization of metal binding by bacterial cells in a wide range of pH and Ca2+ 

concentrations in solution. For this, two types of experiments were carried out:  

• adsorption at constant initial calcium concentration in solution as a function of 

pH (pH-dependent adsorption edge) and   

• adsorption at constant pH as a function of metal concentration in solution 

(adsorption isotherm). 

All experiments were performed in undersaturated solutions with respect to any 

calcium carbonate phase as verified by speciation calculations with the MINTEQA2 computer 

code and corresponding database (Allison et al., 1991; Martell et al., 1997). 

Live, freshly harvested (stationary stage) cells, sodium azide-inactivated and heat-

killed (autoclaved) bacteria were used in the adsorption experiments. The cells were rinsed in 

0.1 mol/L NaCl and  0.01 mol/L EDTA solutions for 15 minutes and again in 0.1 mol/L NaCl 

solution prior the experiments. This procedure allowed desorption of all possible Mg2+, Ca2+ 

ions from the cell’s surfaces that might occurred during the APB culture. 

The initial calcium concentration in experiments with APB was 17 µmol/L at variable 

pH and varied between 0.1 and 800 µmol/L at constant pH. In experiments with Gloeocapsa 

sp. initial calcium concentration at variable pH was 2.3-17 µmol/L and at constant pH 

between 4.2 and 25 µM/L. The pH was adjusted by adding aliquots of NaOH (0.1 and 0.01 

mol/L) or HCl (1.0, 0.1 and 0.01 mol/L), whereas, constant pH of 5.5 to 6.7 was maintained 

by adding 0.005 mol/L MES (2-morpholinoethanesulfonic acid monohydrate) buffer. 

Adsorption experiments were conducted in 8 mL sterile polypropylene vials during 3 and 24 

hr at 25 ± 0.2°C, in continuously agitated bacteria suspension with an ionic strength of 0.1 

mol/L NaCl. The biomass concentration was kept constant at 10 ghumid/L.  

The adsorption of calcium on cell surfaces was quantified by subtracting, at each 

solution pH, the concentration of calcium remaining in bacterial suspension from the 

concentration of added calcium in the supernatant (control experiments without biomass). The 

adsorption of calcium on reactor walls and cellular Ca release from the biomass in the full 

range of studied pH was negligible (<10%) compared to the initial amount of Ca added. This 

was routinely verified by Ca analyses in the blank (supernatant) and in the zero-added-Ca cell 

suspension experiments. Nonetheless, the measured Ca concentrations in these blank 
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experiments (to the limit of detection) were explicitly taken into account to calculate the 

adsorption isotherm. 

All filtered solutions (0.22 µm filter) were analyzed for aqueous Ca concentration 

using flame atomic absorption spectroscopy (Perkin Elmer AAnalyst 400) with an uncertainty 

of ±2% and a detection limit of 0.5 µmol/L. 

 

Results and discussion of adsorption experiments with APB and cyanobacteria are 

presented in Chapters 3 and 5, respectively.  

 

4.  Kinetics experiments  

 

To characterise the link between the rate of bacterial growth (biomass production) and 

the rate of CaCO3 precipitation as well as between other parameters (Omega (Ω), pH, [Ca], 

[DIC], [Alk]), batch kinetic experiments were performed. There are fundamental differences 

between kinetic experiments with APB and cyanobacteria because of the essential difference 

between these bacteria. This section is devoted to the description of these kinetics 

experiments, of sampling and sample preparation for the analysis. In the end of the section are 

presented the short descriptions of all analytical methods used in this study for liquid samples 

analysis.  

 

4.1.  Kinetics experiments conditions with anoxygenic phototrophic 
bacteria 

 

Kinetic experiments were carried out with initial concentration of calcium chloride 

and sodium bicarbonate ranging from 1 to 10 and 5 to 20 mM, respectively. All biotic 

experiments were performed with initial biomass concentration between 1.6 and 3.5 gwet/L. 

Experiments were carried out over a range of initial saturation index (Ωinit.) with respect to 

calcite varying between 8 and 230 for A-20s, and between 2 and 60 for S-17-65. The biomass 

of cells, pH, [Ca2+] and [DIC] (or [Alk] in the car of inert electrolyte) were measured as a 

function of time. Blank experiments (without cell or with inactivated cells) were always 

carried out. 
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Kinetic experiments were performed at 25 ± 1°C in a climate chamber in nutrient 

(phosphate-free culture medium solution) and in nutrient-free inert electrolyte (0.1 M NaCl) 

with live, dead and NaN3-inactivated cells. Composition of culture medium solutions was 

constants (see above) for all experiments. For each kinetic experiment (in nutritive or in inert 

electrolyte) only [Ca2+] and [HCO3
-] was changed and 0.1 M solution of NaN3 (sodium azide) 

was used for cells inactivation.  

Experiments were conducted using discontinuous batch mode in two to three 

replicates. Mother suspension of cells in nutrient or inert electrolyte solution was mixed 

homogeneously and separated into 5-10 sealed 25-mL sterile glass bottles without headspace. 

10 ml of homogeny solution (first sampling) is collected to measure the initial conditions of 

experiment (biomass, pH, [Ca2+], DIC). Time zero is the time of this first sampling. 

The bottles were placed in a rotator mixer at 24 rpm and under continuous light 2000 

lx (Fig. 9). Periodically, one whole bottle was sampled to monitor the chemical and 

microbiological evolution of the system. About 30% of experiments were performed in 

duplicates and triplicates; typical experimental reproducibility was 10-20%. 

The initial conditions as well as the variation of all experimental parameters in each 

individual kinetic experiment are presented in the Table 1 in the Chapter 4 and in the 

Appendix 3, respectively. 

 

 

Fig. II. 9 . Rotator with the bottles in the kinetic experiment with  
APB A-20s and S-17-65. 
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4.2.  Kinetics experiments conditions with cyanobacteria Gloeocapsa sp. 

 

Kinetic experiments were performed at 25±1°C in closed Schott® 1L glass bottle 

reactors containing 800 ml of the initial solution (bacterial growth medium with CaCl2 and 

NaHCO3 addition) (Fig. 10). Experiments were carried out with initial concentration of 

calcium chloride and sodium bicarbonate ranging from 1 to 50 and 5 to 10 mM, respectively. 

All biotic experiments were performed with initial biomass concentration between 0.04-0.66 

(in nutrient solution) and 1.5-1.7 gwet/L (in inert electrolite). Precipitation experiments were 

carried out over a range of initial saturation index (Ωinit.) with respect to calcite varying 

between 15.1 and 147.9 (in nutrient solution) 66.1 and 83.2 (in inert electrolite). The 30 % of 

experiments were conducted in duplicates.  

The initial conditions as well as the variation of all experimental parameters in each 

individual kinetic experiment are presented in Table 2 of Chapter 5 and in the Appendix 4, 

respectively. 

 

 

Fig. II. 10. Closed batch kinetic reactor used in the kinetic experiment with 
cyanobacteria Gloeocapsa sp. 
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4.3.   Liquid samples preparation and analysis  

 

One bottle from rotator (in the case of APB) or 10 ml of bacterial suspension (in the 

case of Gloeocapsa sp.) were taken every 2-3 days for monitoring the chemical and 

microbiological evolution of the system. Approximately 2 ml of solution were used to 

estimate the concentration of bacterial cells by measuring optical density and pH. The 

remaining 5 mL were filtered through a 0.22 µm acetate cellulose membrane filter to remove 

active or dead bacterial cells from the suspension.  The filtrate was analyzed for [Ca], [DIC]/ 

[Alk] (Fig.11). 

 

 

Fig. II. 11. Schematic of liquid simple preparation for analysis. 
 

4.3.1.  pH and cells biomass mesurements 

 

The pH in each sample was measured using a Fisher pH combined electrode, with an 

uncertainty of 0.01 units, previously calibrated using pH 4.01, 6.86, 9.18 buffer solutions at 

25°C. 

For unicellular organisms such as the bacteria, growth can be measured in terms of 

two different parameters: changes in cell mass and changes in cell numbers. There are a lot of 

methods of bacterial biomass measurements. Methods for measurement of the cell mass 

involve both direct and indirect techniques. 
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Direct physical measurement of dry weight, wet weight, or volume of cells after 

centrifugation. 

Direct chemical measurement of some chemical component of the cells such as total 

N, total protein content.  

Indirect measurement of chemical activity such as rate of O2 production or 

consumption, CO2 production or consumption, etc.  

Haemocytometry is a total count method where every cell (dead or alive) is counted. It 

works by introducing a standard amount of bacteria solution in to the haemocytometer - a 

glass slide with lots of grid lines. This is placed under a microscope and the number of cells 

counted using a standard method. 

In dilution plating, 1cm3 of original bacterial solution is taken and diluted with 9cm3 

of water. The same is done with this diluted solution and so on. A sample from each dilution 

is cultured; once individual colonies can be seen, it means each of those represents a single 

bacterium that was in the solution. The number is multiplied by the dilution factor. 

Turbidity measurements employ a variety of instruments to determine the amount of 

light scattered by a suspension of cells. Particulate objects such as bacteria scatter light in 

proportion to their numbers. The turbidity or optical density of a suspension of cells is directly 

related to cell mass or cell number, after construction and calibration of a standard curve. The 

method is simple and nondestructive, but the sensitivity is limited to about 107 cells per ml for 

most bacteria (Madigan et al., 2000). 

In our study we used combination of two methods: direct physical measurement of 

dry/wet biomass after centrifugation and turbidity measurement. Firstly, concentration of 

bacterial cells was estimated by measuring optical density (turbidmetry) at a 650 nm 

wavelength for APB (Kompanceva et al., 2009) and at 750 nm for cyanobacteria Gloeocapsa 

sp. (Hu et al., 2000; Sarcina and Mullineaux, 2000). Secondly, known volume of the same 

bacterial suspension was taken for centrifugation. Bacterial mass after centrifugation was 

weighed and freeze-dried. The mass of bacterial cells (in gbiomass dry/L and gbiomass wet/L) with 

corresponding measured optical density had been calculated. Conversion factor from optical 

density (D) to gbiomass wet/L is 3.3 for A-20s and 4.2 for S-17-65 and 2.0 for Gloeocapsa sp. 

Conversion factors from biomass wet to biomass dry are 0.54 and 1.01 for A-20s and S-17-

65, respectively.    
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4.3.2.  Ca, Alkalinity and DIC analyses 

 

Calcium concentration was determined using flame atomic absorption spectroscopy 

via a Perkin Elmer AAnalyst 400 Spectrophotometer with an uncertainty of ±2% and a 

detection limit of 0.5 µmol/L. The series of standard solution were prepared by addition of a 

precise amount of CaCl2 into MilliQ water with HNO3 and La3+ addition. 

In organic-free solutions (experiments in the inert electrolyte), alkalinity was 

determined following a standard HCl titration procedure using automatic titration cell 

TitroLine alpha TA10 plus (Schott Instruments®) with an uncertainty of ±2% and a detection 

limit of 5×10−5 M. 

In organic-rich nutrient solutions, dissolved inorganic carbon (DIC) was measured 

using Shimadzu SCN Analyzer after calibration of the instrument in a series of standard 

solution (10, 50, 100 ppm). All samples before analysis were diluted 20 times by MilliQ 

water. This yielded an uncertainty of ±10% and a detection limit of 4×10−5 M. 

 

5.  Solid phase analyses 

 

For better understanding of the spatial organisation/interaction between bacteria cell 

and precipitated minerals, different microscopic and spectroscopic techniques were used.    

Scanning electron microscope (SEM) and X-ray powder diffraction (XRD) analyses 

were used for crystals characterisation (form, size, and chemical compositions) and for 

identifying the mineralogy of precipitates during bacterial activity. Moreover, Transmission 

Electron Microscope (TEM) analysis was used for bacterial cells characterisations (form, size, 

organisations, and the surface chemical compositions) as well as for better understanding 

bacteria-mineral relationship during the precipitation process.        

 

5.1.  Precipitation experiments 

 

Precipitation experiments with APB were carried out in the 0.5 L bottles to collect 

sufficient quantity of solid phase at the end of experiment. Precipitation experiments with 
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cyanobacteria Gloeocapsa sp. were conducted in the same reactors than kinetic experiments. 

Preparation, condition and duration of precipitation experiment were the same as in kinetic 

experiments described previously. During and at the end of experiments visual precipitates 

were formed on the glass walls of reactors and in the bacterial suspension (Fig. 12 A and B, 

respectively). 

 

 

Fig. II. 12. Precipitate formation on the glass walls of reactor during the 
experiment with APB (S-17-65) (A) and with cyanobacterial suspension experiment with 

Gloeocapsa sp. (B) 
 

5.2.  SEM and XRD analyses 

 

Bacterial suspensions from the reactor, containing live bacteria and crystalline 

precipitates were collected at the end of the precipitation experiment. Suspension were 

centrifuged at 10 000 rpm for 10 min, and washed twice with a MilliQ water. A part of 

bacterial biomass + mineral (mixtures of APB cells and precipitated mineral phase) was 

treated in 10% H2O2 at the same solution pH as in the experimental samples in order to 

remove organic matter. Resulted solid phases were rinsed in MilliQ water, frozen at -80°C 

and freeze-dried. Selected samples were studied by SEM and X-ray diffraction for mineral 

characterization. 

Microscopic examination of crystals was performed using a JEOL JSM840a scanning 

electron microscope (SEM) equipped with a Princeton Gamma Technology (PGT) EDX 

detector, operating at 20kV. Examinations were carried out after carbon film coating 
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deposition on the sample surface. Shown in Figure 13 are some examples of SEM images, 

collected during this study. 

 

Fig. II. 13. SEM images of calcite formed in nutrient solution in the experiment 
with bacteria A-20s (A, B), S-17-65 (C, D). Initial experimental conditions: 10 mM CaCl2 
and 10 mM NaHCO3 (A-D); inert electrolyte with A-20s (E, F); 7 mM CaCl2 and 5 mM 

NaHCO3 (E); 10 mM CaCl2 and 5 mM NaHCO3 (F). 
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X-ray powder diffraction analysis was performed with a INEL CPS 120 powder 

diffractometer on finely powdered samples using Coκα radiation (40 kV and 30 mA), scanning 

speed of 0.02os-1. The time constant was set at 2 s. The XRD analysis of biotic precipitates 

formed in nutrient-free inert electrolyte yielded calcite and vaterite formation with both APB 

species. In the experiments carried out in nutrient solutions the XRD analysis showed the 

presence of calcite and monohydrocalcite. XRD analysis of precipitates formed in 

experiments with Gloeocapsa sp. showed the formation of calcite. As an example, a XRD 

spectrum is presented in Fig. 14, indicating the detection of calcite in this sample. 

 

Fig. II. 14 .XRD spectra of precipitate for experiment with APB A-20s (initial 
conditions 10 mM CaCl2, 10 mM NaHCO3) with the standard peaks for calcite (3.030) 

(black outlining and arrows), indicating the detection of calcite  in this sample. 
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5.3.  Transmission Electron Microscope (TEM) 

Materials for TEM must be specially prepared to thicknesses which allow electrons to 

transmit through the sample, much like light is transmitted through materials in conventional 

optical microscopy (Graef, 2003). Because the wavelength of electrons is much smaller than 

that of light, the optimal resolution attainable for TEM images is many orders of magnitude 

better than that from a light microscope. Thus, TEM can reveal the finest details of internal 

structure - in some cases as small as individual atoms. Magnifications of 350 000 times can be 

routinely obtained for many materials, whilst in special circumstances; atoms can be imaged 

at magnifications greater than 15 million times. For biological samples, cell structure and 

morphology is commonly determined whilst the localization of antigens or other specific 

components within cells is readily undertaken using specialized preparative techniques. The 

energy of the electrons in the TEM determines the relative degree of penetration of electrons 

in a specific sample, or alternatively, influence the thickness of material from which useful 

information may be obtained. Thus, for the physical and biological sciences, TEM is a 

complementary technique to conventional crystallographic methods such as X-ray diffraction 

(Williams and Carter, 2009). 

Mineral-free cells and cell biomass with precipitated CaCO3 were examined using 

Transmission Electron Microscopy (TEM) with a JEOL JEM 12000 EX and JEOL JEM 

2100F (equipped with a field emission gum (FEG) and PGT EDX detector) at 80 kV. Cell 

suspension was rinsed using sterile nutrient solution (without sodium chloride addition) or 

MilliQ water, centrifuged 2 min at 10 000 rpm. TEM samples for analyses were prepared by 

immersing 200 mesh copper grids coated with a carbon film (Fig. 15) for 10 s in prepared 

bacterial suspension. Dried grids were used for TEM analysis.  

 

Fig. II. 15. TEM sample support mesh "grid", with ultramicrotomy sections. 



 Materials and Methods  

81 
 

In Figures 16 and 17 below are shown the few examples of TEM images, which were 

obtained during this study. It can be seen from these figures that there are no significant 

differences between APB cells in nutrient medium (Fig. 16 A,C) and in precipitation 

experiment (Fig. 16 B,D) since no calcium carbonate is observed on the cell surfaces and 

around the cells. In contrast, for the precipitation experiments involving the cyanobacteria 

Gloeocapsa sp. we observed crystals of CaCO3 located around bacterial cells (Fig. 16 F and 

Fig. 17).   

 

Fig. II. 16. TEM images (microscope JEOL JEM 12000 EX) of active A-20s (A,B), 
S-17-65 (C,D) and Gloeocapsa sp. (E,F) in nutrient (CaCO3-free) solution (A,C,E) and 
media supersaturated with respect to calcite (B,D,F). Initial experimental conditions: 

experiments with APB (B, D) 10 mM CaCl2, 10 mM NaHCO3; experiment with 
Gloeocapsa sp. (F): 1 mM CaCl2, 10 mM NaHCO3). The black scale bars are 500 nm. 
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Fig. II. 17. TEM images (microscope JEOL JEM 2100F) of active Gloeocapsa sp. 
with CaCO3 around the cells (A,B) and the crystals of calcite formed around bacterial 
cells (C) in nutrient media supersaturated with respect to calcite (initial experimental 
conditions: 1 mM CaCl2, 10 mM NaHCO3). The black scale bars are (A) 2 µm; (B) 0.5 

µm; (C) 0.1 µm. 
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 Résumé en français 

 

Des mesures de mobilité électrophorétiques et d’adsorption de Ca ont été réalisées sur 

la surface des cellules de bactéries anoxygéniques phototrophiques (A-20S et S-17-65) 

vivantes, inactivées et mortes afin de déterminer la manière dont ces bactéries contrôlent leur 

potentiel de surface. Le potentiel Zeta de ces deux bactéries a été mesuré en fonction du pH, 

de la force ionique, et des concentrations en calcium et bicarbonate.  

Pour des APB vivantes dans une solution de NaCl à 0.1mol.L-1, le potentiel Zeta est 

proche de 0 pour des pH de 2.5 à 3 et diminue jusqu’à -30mV à -40mV dans une gamme de 

pH comprise entre 5 et 8. En milieu alcalin, on note une augmentation inhabituelle du 

potentiel Zeta avec des valeurs maximales de -10mV à -20mV pour des pH de 9 à 10.5. Cette 

augmentation est cependant atténuée lors de l’ajout de NaHCO3 (jusqu’à 10 mmol.L-1) mais 

très peu affectée par l’addition d’une quantité équivalente de Ca. A l’inverse, pour les cellules 

de bactéries inactivées (exposées à NaN3, un inhibiteur métabolique) et mortes (par le biais 

d’une forte chaleur), le potentiel Zeta reste stable (-30mV à -60mV en fonction de la force 

ionique) entre pH 5 et 11, et aucune augmentation n’est rapportée dans des solutions alcalines. 

L’adsorption de Ca à la surface des cellules A-20s est plus significative qu’à la surface de S-

17-65, et démarre à pH plus acide, ce qui est en accord avec les mesures de potentiel Zeta en 

présence de 0.001 à 0.01 mol.L-1 de CaCl2. D’une manière générale, ces résultats indiquent 

que les APB peuvent contrôler, par le biais de leur métabolisme, leur potentiel Zeta afin 

d’attirer de manière électrostatique les nutriments à pH alcalin tout en rejetant/évitant les ions 

Ca qui sont susceptibles d’entrainer la précipitation de CaCO3 au sein de la cellule et à sa 

surface, causant des phénomènes d’incrustation. 

Par analogie avec d’autres bactéries, deux mécanismes peuvent être suggérés pour 

expliquer cette augmentation inhabituelle du potentiel Zeta (moins négatif) des bactéries 

anoxygéniques phototrophiques dans les solutions alcalines: i) augmentation de la 

consommation de micronutriments sous la forme d’anions et ii)  refoulement des ions Ca2+ de 

la surface des cellules dans le but de les protéger d’une incrustation de précipités de CaCO3. 

Ce dernier mécanisme est en accord avec les résultats d’adsorption du Ca à la surface des 

cellules obtenus dans la gamme des compositions physiologiques de la solution. Une légère 

différence du degré d’augmentation du potentiel Zeta et d’adsorption du Ca entre les deux 

souches de bactéries étudiées est compatible avec les différences de tailles des surfaces et les 

gammes physiologiquement optimales de la solution. 



Zeta-potential of APB and Ca adsorption at the cell surface 

88 
 

 

  Les détails et résultats de cette étude sont présentés dans la section suivante sous 

forme d’un article sous presse dans Journal of Colloid and Interface Science.  
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Résumé en français 

La biominéralisation des carbonates est considérée comme l’un des principaux 

processus contrôlant les niveaux de CO2 dans l’atmosphère, aujourd’hui comme dans les 

temps passés. Contrairement aux nombreux travaux axés sur la calcification par les 

cyanobactéries, la biominéralisation par les bactéries anoxygéniques phototrophiques (APB) 

est restée longtemps sous-estimée, malgré leur rôle potentiel important dans la précipitation 

de CaCO3 dans les biofilms. Ce chapitre rapporte les résultats obtenus lors de l’étude des 

vitesses de précipitation de CaCO3 induite par deux types de bactéries anoxygéniques 

phototrophiques : Rhodovulum steppens A-20s haloalcaliphilique et Rhodovulum sp. S-17-65 

neutrophilique halophilique, cultivées sur substrats organiques.  

Afin de caractériser le lien entre le taux de croissance bactérienne (production de 

biomasse) et la vitesse apparente de précipitation de CaCO3, des expériences cinétiques en 

présence de bactéries vivantes, mortes et inactivées ont été menées dans des solutions 

nutritives d’une part et dans une solution d’électrolyte inerte (NaCl) d’autre part. Les 

précipités obtenus ont ensuite été examinés par Microscopie Electronique à Balayage (MEB) 

et en Transmission (MET), ainsi que par spectroscopie de rayon X (XRD). Les résultats 

obtenus montrent une corrélation positive entre la vitesse de précipitation des carbonates et 

l’indice de saturation initial de la calcite (calciteΩ ) pour les deux types de bactéries (r2=0.80 et 

0.75 pour A-20s et S-17-65, respectivement). Cependant, des analyses détaillées de la 

dépendance de l’indice de saturation sur la vitesse de précipitation apparente de la calcite, à 

calciteΩ  constant, montrent que [DIC] et [Ca] seuls ne peuvent contrôler les vitesses de 

précipitation de la calcite par les bactéries anoxygéniques phototrophiques. Rhodovulum 

steppens halophilique A-20s vivante précipite de la calcite à partir d’une solution initialement 

sursaturée ( calciteΩ =40 à 100), ce qui induit parfois une augmentation de calciteΩ  jusqu’à 100-

120 juste avant la précipitation. En revanche, S-17-65 halophilique neutrophilique augmente 

toujours la sursaturation de 10-60 au début de la réaction à 100-140 après 5 à 7 jours de 

réaction, permettant ainsi la précipitation massive de CaCO3. La quantité de précipité (en 

mole) est directement liée à la biomasse (gwet) avec une pente allant de 0.1 à 0.8 et 0.1 à 0.5 

pour A-20s et S-17-65, respectivement, en fonction de la composition initiale de la solution. 

Pour les deux souches, seules les bactéries vivantes et menant activement la photosynthèse 

sont capables de diminuer de manière effective la concentration de Ca et former CaCO3 avec 

des vitesses apparentes de précipitation allant de 0.001 à 0.0150 mM/hr. Ces valeurs sont 
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similaires à celles des cyanobactéries et des bactéries hétérotrophiques et deux ordres de 

grandeur plus grandes que les taux de calcification typiques des algues corallines. Les 

analyses au MEB et par XRD des précipités révèlent que la phase calcite domine, 

accompagnée d’une certaine quantité de vatérite et de mono-hydro-calcite, formant des 

sphères de diamètre ≤100µm. Par contre, les analyses au MET des suspensions bactériennes 

prélevées à la fin des expériences de précipitation ne démontrent pas la présence de CaCO3 à 

la surface ou à l’intérieur des cellules vivantes. Ceci suggère l’existence d’un processus 

cellulaire de protection contre la précipitation de carbonates. Etant donné l’efficacité des 

bactéries anoxygéniques phototrophiques à précipiter CaCO3, leur rôle dans la calcification 

des biofilms pourrait être au moins aussi important que celui des cyanobactéries. 

 

Les résultats obtenus, en particulier le rôle important de l’activité métabolique 

microbienne (photosynthèse) dans la précipitation de CaCO3, sont décrits dans la section 

suivante sous la forme d’un manuscrit soumis à Chemical Geology. 
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 Abstract 

Carbonate biomineralization is considered as one of the main natural processes 

controlling CO2 levels in the atmosphere both in the past and at present time. In contrast to 

extensive studies of cyanobacterial calcification, biomineralization of anoxygenic 

phototrophic bacteria (APB) remained largely underestimated, despite their potentially 

important role on CaCO3 precipitation in the biomats. Haloalcaliphilic Rhodovulum steppens 

A-20s and halophilic neutrophilic Rhodovulum sp. S-17-65 were examined with respect to 

their ability to precipitate CaCO3 under controlled laboratory conditions.  

To characterise the link between the rate of bacterial growth (biomass production) and 

the rate of CaCO3 precipitation, batch kinetic experiments with live, dead and inactivated 

bacteria both in nutrient solution and in inert electrolyte were performed and produced 

precipitates were examined by SEM, TEM and XRD. The results obtained show that there is a 

positive correlation between carbonate precipitation rate and the initial calcite saturation index 

( calciteΩ ) for both bacterial species (r2 = 0.80 and 0.75 for A-20s and S-17-65 respectively). 

Active haloalcaliphilic Rhodovulum steppens A-20s precipitated calcite from initially 

supersaturated solutions (calciteΩ = 40 to 100) sometimes increasing calciteΩ  to 100-120 before 

the precipitation. In contrast, halophilic neutrophilic S-17-65 always increased supersaturation 

value from 10-60 at the beginning of reaction to 100-140 after 5-7 days of reaction thus 

promoting massive CaCO3 precipitation. The amount of precipitated CaCO3 (mole) was 

directly linked to bacterial biomass (gwet) produced with a slope of dependence ranging from 

0.1 to 0.8 and 0.1 to 0.5 for A-20s and S-17-65, respectively, depending on the initial solution 

composition. For both bacterial strains, only live actively photosynthetizing bacteria were 

capable of effectively decreasing Ca concentration and form CaCO3 with apparent bulk 

precipitation rates ranging from 0.001 to 0.0150 mmol/hr, similar to rates reported for other 

bacteria. SEM and XRD analyses of precipitates reveal the dominance of calcite with some 

amount of vaterite and monohydrocalcite forming spheres up to 100 µm diameter. In contrast, 

TEM analysis of bacterial suspension at the end of precipitation experiments did not 

demonstrate the presence of CaCO3 at the surface  or in the vicinity of live cells. This 

suggests the existence of certain cell protection mechanism agains carbonate precipitation. 

Given the efficiency of APB to precipitate CaCO3, their role in biomats calcification may be 

as much important as that of cyanobacteria. 
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1.  Introduction 

 

Microbial carbonate formation occurring for most of Earth’s history was largely 

controlled by mineral nucleation processes driven by microbial metabolism (Bosak and 

Newman, 2003). Numerous works have addressed calcium carbonate formation via 

cyanobacterial activity (Thompson and Ferris, 1990; Hartley et al., 1995; Douglas and 

Beveridge, 1998; Obst and Dittrich, 2006; Dittrich and Sibler, 2010; Kranz et al., 2010; 

Martinez et al., 2010;), algal and coral (Ries, 2010) with a number of studies devoted to 

mineral precipitation via sulphate-reducing (Vasconselos et al., 1995; Warthmann et al., 2000; 

Van Lith et al., 2003; Bontognali et al., 2008), methanogenic archae (Kenward et al., 2009) 

and heterotrophic ureolitic (Ferris et al., 2004; Mitchell and Ferris, 2005, Dupraz et al., 2009) 

and aerobic halophilic (Sánchez-Román et al., 2011) bacteria. Whereas these studies are 

certainly helpful for understanding contemporary settings of microbial calcification, the 

deciphering of past biocalcification processes is still at the very beginning. Indeed, modern 

stromatolites are limited to a few tropical marine and quasi-marine sites, and to extreme 

environments, such as alkaline and hypersaline lakes or thermal springs (Riding et al., 1991; 

Lopez-Garcia et al., 2005; Papineau et al., 2005; Kazmierczak and Kempe, 2006). 

Precambrian stromatolites were formed by iterative accretive growth of microbial 

communities that precipitated and/or entrapped inorganic materials (Dupraz et al., 2006).  

Although anoxygenic photosynthesis does not dominate primary production in the 

modern stromatolites, this metabolism may have been crucial for the growth of Archean and 

some Palaeoproterozoic stromatolites (Bosak et al., 2007). It has been suggested that 

anoxygenic photosynthesis could determine primary productivity in shallow marine 

environments before the rise of oxygenic photosynthesis and the widespread atmospheric 

oxygenation (Olson and Blankenship, 2004). Thus, biofilms formed by anoxygenic 

photosynthetic microorganisms would have helped building stromatolites even before 

cyanobacteria became the dominant primary producers in Precambrian reefs (Bosak et al., 

2007). Even at present, α-proteobacteria anoxygenic phototrophs significantly contribute to 

genetic diversity, gross primary productivity and the biomass of the photosynthetic 

community, as it was demonstrated in Hamelin Pool stromatolithes (Papineau et al., 2005). 

Purple nonsulfur bacteria may play a previously underappreciated role in CaCO3 formation 
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within some microbialites, particularly the microbial community associated with modern 

hypersaline stromatolites in Shark Bay (Bosak et al., 2007).  

There is little doubt that present-day calcareous microbialites are formed via action of 

photosynthetic aerobic cyanobacteria that rise pH and increase CaCO3 supersaturation. 

However, there is a certain paradox concerning the main processes responsible for massive 

calcium carbonate formation within a microbial mat. Previous field and recent laboratory 

observations demonstrated that the mineral formation occurs preferentially on dead than on 

live cyanobacteria (Krumbein et al., 1977; Chafetz and Buczynski, 1992; Martinez et al., 

2010), after the decomposition of exopolymeric matrix by the heterotrophic bacteria (e.g., Arp 

et al., 1999a, b). In fact, live cyanobacterial cells are capable of protecting themselves to 

CaCO3 incrustation via shed off of mineralized S-layer (Thompson et al., 1997; Douglas and 

Beveridge, 1998) and/or metabolically maintaining positive surface potential to avoid Ca 

adsorption (Martinez et al., 2008, 2010). Moreover, natural observations indicate that most of 

biocalcification in the biomats occur in the beginning of aphotic layer where dead 

cyanobacteria, heterotrophic bacteria and anoxygenic phototrophic bacteria (hereafter APB) 

dominate. However, in contrast to numerous laboratory and field studies of CaCO3 

precipitation by cyanobacteria (e.g., Altermann et al., 2006; Riding, 2006; Obst et al., 2009a, 

b; Kranz et al., 2010), quantification of reaction rates and characterization of mechanism of 

biocalcification by APB are very limited. To our knowledge, only one study investigated 

calcite precipitation by APB liquid cultures and biofilms (Bosak et al., 2007). 

In order to better understand the processes and mechanisms of calcium carbonate 

precipitation by anoxygenic phototrophic bacteria, we selected two purple nonsulfur bacteria 

extracted from soda lakes: Rhodovulum steppense A-20s and Rhodovulum sp. S-17-65 

extracted from soda lake and hypersaline water body, respectively (Kompantseva et al., 2007, 

2009, 2010). Using laboratory modeling, we aimed at establishing the relationship between 

the growth rate of APB, environmental solution parameters and associated calcium carbonate 

precipitation.  
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2.  Materials and Methods 

 

2.1.  Anoxygenic phototrophic bacteria (APB) cultures 

 

Two distinct anoxygenic phototrophic bacteria (APB) were used in this study: 

Rhodovulum steppense A-20s (hereafter referred to as A-20s) and strain Rhodovulum sp. S-

17-65 (hereafter referred to as S-17-65), which according to genotypic and phenotypic 

characteristics of the genus Rhodovulum (Kompantseva, 1985). Haloalcaliphilic A-20s with 

optimal growth conditions as a salinity of 10-50 g/L  was isolated from steppe soda lake  in 

southern Siberia (Kompantseva et al., 2010). The halophilic neutrophilic  S-17-65 growing in 

5-25% NaCl with optimum at 12 % was extracted from hypersaline water body in the Crimea 

steppe (Gorlenko et al., 1984). Natural aquatic environment of these APB is as follow: pH = 

9.5, Dissolved Inorganic Carbon (DIC) = 0.1 mol/L, salinity = 40 g/L, T = 23-30°C for A-20s 

(Kompantseva et al., 2009) and pH = 7-8, DIC = 0.01 mol/L, salinity = 20 g/L and T = 25-

35°C for S-17-65 (Gorlenko et al., 1984). Therefore, alkaliphilic Rhodovulum steppense A-

20s grow in more alkaline, carbonate-bearing solutions but at much lower salinity compared 

to the neutrophilic halophilic Rhodovulum sp. S-17-65. By selecting these two contrasting 

species, it was possible to encompass a large variety of environmental conditions pertinent to 

modern and past biocalcification settings.  

 

2.2.  Growth and preparation of bacteria 

 

Both APB were cultured in Pfenning growth medium of the following composition 

(Pfenning and Lippert, 1966; Kompantseva et al., 2010): KH2PO4 (330 mg/L), MgCl2*6H2O 

(330 mg/L), NH4Cl (330 mg/L), KCl (330 mg/L), Na2SO4 (330 mg/L), CaCl2 (50 mg/L), 

NaHCO3 (5 g/L for A-20s, 0.5 g/L for S-17-65), NaCl (25 g/L for A-20s , 120 g/L for S-17-

65), sodium acetate (1 g/L), casamino acids (0.1 g/L), yeast extract (0.1 g/L), B12 (20 µg/L), 

and trace elements solution (1 ml/L (Fe, Zn, Cu, Co, Mn, Mo)). For S-17-65, Na2S (0.1 g/L) 

and cysteine (0.3 g/L) were added as a source of sulfur.  



Calcium carbonate precipitation by APB 

111 
 

Unlike cyanobacteria, studied APB do not use dissolved CO2 and HCO3
- during 

photosynthesis in the presence of organic substrate. This was proven by measuring DIC 

during bacterial growth without CaCO3 precipitation: no significant variations of DIC (±10%, 

or 1-3 mM/L) were observed in experiments producing 1-1.5 gdry/L biomass. 

Photolithoautotrophic growth of both strains is possible with reduced sulfur compounds as 

electron donors on mineral medium in the absence of organic matter (Kompantseva et al, 

2010) but was not tested at experimental conditions of this study. Stock cultures of bacteria 

were kept in sealed glass bottles in oxygen-free conditions at 23-30°C, under constant 2000 lx 

white fluorescent light, and placed on a rotator shaker at 10 rpm to grow for 1 week till the 

stationary stage was reached. Note that the conversion factors of wet to freeze-dried weight 

applied for studied microorganisms were equal to 11.7 and 16.1 for A-20s and S-17-65, 

respectively. Cell suspensions of metabolically active A-20s or S-17-65 were used for kinetic 

experiments. The cells were rinsed in 0.1 mol/L NaCl and centrifuged twice at 10,000 rpm for 

10 minutes at 20°C. Dead cells were preparated by autoclaving fresh bacterial suspension 

during 20 min at 120°C. Although the heat-killing procedure can significantly modify the cell 

surface structure, it still remains a widely used method for producing control alive material 

(e.g. Ngwenya, 2007; Pokrovsky et al., 2008; Kenward et al., 2009; Martinez et al., 2008, 

2010). Scanning electron microscopic examination showed that heat-killed cells maintained 

their integrity and shape after heat treatment. Inactivated cells were prepared by rinsing part 

of the fresh (live) biomass in 0.01 mol/L NaN3 during 1-2 hrs. Sodium azide inhibits bacterial 

growth by preventing cytochrome oxidase and is widely used for inactivating cells while 

keeping the surfaces physically and chemically intact (Urrutia Mera et al., 1992; Johnson et 

al., 2007; Hunter et al., 2010). Cell growth of both cultures in the presence of 0.01 M NaN3 in 

nutrient solution was completely suppressed as proven in separate series of experiments.  

 The nutrient growth solution used for CaCO3 precipitation experiments was 

slightly modified Pfenning media. Preliminary experiments on normal Pfenning media with 

addition of CaCl2 and NaHCO3 yielded Ca phosphate as the main precipitate. As such, 

phosphate-free growth solution was used in kinetic experiments. All manipulations were 

carried out in a laminar hood box class A100. 
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2.3.  Experimental procedure and analyses. 

 

All studied experimental conditions are listed in Table 1. Kinetic experiments were 

carried out with initial concentration of calcium chloride and sodium bicarbonate ranging 

from 1 to 10 and 5 to 20 mM, respectively. All biotic experiments were performed with initial 

biomass concentration between 1.6 and 3.5 gwet/L. Precipitation experiments were carried out 

over a range of initial saturation index (ΩCaCO3) with respect to calcite varying between 8 and 

230 for A-20s, and between 2 and 60 for S-17-65. The variation of all experimental 

parameters (pH, [Ca2+], [Alk] and biomass) as a function of time in each individual 

experiment is presented in the Appendix 3.  

Kinetic experiments were performed at 25 ± 1°C in nutrient, CaCl2, NaHCO3-bearing 

solution and in nutrient-free inert electrolyte (0.1 M NaCl) with live, dead and NaN3-

inactivated cells. Experiments were conducted using discontinuous batch mode in two to three 

replicates. Mother suspension of cells in nutrient or inert electrolyte solution was mixed 

homogeneously and separated into 5-10 sealed 25-mL sterile glass bottles without headspace. 

The bottles were placed in a rotator mixer at 24 rpm and under continuous light 2000 lx. 

Periodically, one whole bottle was sampled to monitor the chemical and microbiological 

evolution of the system. The concentration of bacterial cells was estimated by measuring 

optical density at a 650 nm wavelength. Values of pH were measured using a Mettler 

Toledo® combined electrode, with an accuracy of ±0.02 units. Remaining solution was 

filtered through a 0.22 µm acetate cellulose membrane to measure [Ca], [Alk] and Dissolved 

Organic Carbon (DOC). DOC was analyzed with Shimadzu SCN Analyzer implying total 

combustion at 800°C after acidification, and, finally, infrared detection with an uncertainty of 

3% and detection limit of 8×10-3 mM/L. Calcium concentration was determined using flame 

atomic absorption spectroscopy via a Perkin Elmer AAnalyst 400 Spectrophotometer with an 

uncertainty of ±2% and a detection limit of 0.5 µmol/L. In organic-free solutions, alkalinity 

was determined following a standard HCl titration procedure using automatic titration cell 

TitroLine alpha TA10 plus (Schott Instruments®) with an uncertainty of ±2% and a detection 

limit of 5×10−5 M. In organic-rich nutrient solutions, total dissolved inorganic carbon (DIC) 

was measured using Shimadzu SCN Analyzer after calibration of the instrument in a series of 

standard solutions prepared by addition of precise amount of NaHCO3 into A-20s and S-17-65 

carbonate-free organic-rich nutrient solution at pH = 8. 
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Table IV. 1. Initial experimental conditions of kinetic experiments.  
APB strain A-20s. 

Initial concentrations, mM Solution Bacterial Experiment  number 

№ [CaCl 2] [NaHCO3] state Appendix 3

1 1 5 nutrient live 1

2 1 5 nutrient NaN3-inactivated 31

3 5 5 nutrient live 2

4 5 5 nutrient NaN3-inactivated 32

5 10 5 nutrient live 3, 4

6 10 5 nutrient NaN3-inactivated 33, 34

7 10 5 nutrient bacteria-free 59

8 10 5 nutrient Absent+NaN3 60

9 10 5 nutrient Dead (heat killed) 61

10* 10 5 nutrient live 62

11 1 10 nutrient live 5, 6

12 1 10 nutrient NaN3-inactivated 35, 36

13 1 19 nutrient bacteria-free 63

14 5 10 nutrient live 7, 8, 9

15 5 10 nutrient NaN3-inactivated 37, 38

16 5 10 nutrient bacteria-free 64, 65, 66

17 10 10 nutrient live 10, 11

18 10 10 nutrient NaN3-inactivated 39, 40

19 10 10 nutrient bacteria-free 67

20 1 20 nutrient live 12, 13

21 1 20 nutrient NaN3-inactivated 41, 42

22 5 20 nutrient live 14

23 5 20 nutrient NaN3-inactivated 43

24 5 20 nutrient bacteria-free 68

25 10 20 nutrient live 15

26 10 20 nutrient NaN3-inactivated 44

27 0.3 40 nutrient live 16

28 0.3 40 nutrient NaN3-inactivated 45

29 1.5 5 inert electrolyte live 73

30 3 5 inert electrolyte live 74

31 7 5 inert electrolyte live 75

32 10 5 inert electrolyte live 76

33 15 5 inert electrolyte live 77

34 20 5 inert electrolyte live 78

35 3 5 inert electrolyte Dead (heat killed) 79

36 10 5 inert electrolyte Dead (heat killed) 80

37 20 5 inert electrolyte Dead (heat killed) 81

38 3 5 inert electrolyte bacteria-free 82

39 10 5 inert electrolyte bacteria-free 83

40 20 5 inert electrolyte bacteria-free 84

41 5 10 inert electrolyte bacteria-free 85
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Table IV. 1., continued. Initial experimental conditions of kinetic experiments. 
APB strain S-17-65 

Initial concentrations, mM Solution Bacterial Experiment  number

№ [CaCl 2] [NaHCO3] state in Appendix 3

42 1 5 nutrient live 17, 18, 30

43 1 5 nutrient NaN3-inactivated 46, 47, 58

44 5 5 nutrient live 19

45 5 5 nutrient NaN3-inactivated 48

46 10 5 nutrient live 20, 21

47 10 5 nutrient NaN3-inactivated 49, 50

48 10 5 nutrient live 69

49 1 10 nutrient Live 22

50 1 10 nutrient NaN3-inactivated 51

51 5 10 nutrient Live 23, 24, 25

52 5 10 nutrient NaN3-inactivated 52, 53

53 5 10 nutrient bacteria-free 70, 72

54 10 10 nutrient Live 26

55 10 10 nutrient NaN3-inactivated 54

56 10 10 nutrient Absent 71

57 1 20 nutrient Live 27

58 1 20 nutrient NaN3-inactivated 55

59 5 20 nutrient Live 28

60 5 20 nutrient NaN3-inactivated 56

61 10 20 nutrient Live 29

62 10 20 nutrient NaN3-inactivated 57

63 3 5 inert electrolyte Live 89

64 7 5 inert electrolyte Live 90

65 15 5 inert electrolyte Live 91

66 5 10 inert electrolyte Live 86, 87

67 5 10 inert electrolyte NaN3-inactivated 88

           *Experiment conducted in the darkness 

 

For this, an inorganic (DIC) detection mode was used implying acidification, Ar 

flushing and infrared detection without high-T combustion. This yielded an uncertainty of 

±10% and a detection limit of 4×10−2 mM/L. 

Mixtures of APB cells and precipitated mineral phase were subjected to digestion for 

removing organic matter using 2-3 days treatment in 10% H2O2 at the same solution pH as in 

experimental samples. Resulted solid phases were rinsed in MilliQ water, frozen at -80°C and 

freeze-dried. Selected samples were studied by X-ray diffraction (INEL CPS 120, Coκα, scan 

speed 0.02os-1) and microscopic examination was performed using a Jeol JSM840a Scanning 
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Electron Microscope (SEM) after carbon film coating deposition on the sample surface. 

Mineral-free bacterial cells and cell biomass with precipitated CaCO3 were also observed 

using Transmission Electron Microscopy (TEM) with a JEOL JEM 12000 EX and JEOL JEM 

2100F (equipped with a field emission gum (FEG) and PGT EDX detector) at 80 kV. Cell 

suspension was first rinsed using sterile nutrient solution and MilliQ water then centrifuged 

for about 2 min at 10 000 rpm. TEM samples for analyses were taken by immersing grids 

coated with a carbon film for 10 s in prepared bacterial suspension. Dried grids were used for 

TEM imaging. 

 

2.4.  Rate calculation 

 

Anoxygenic phototrophic bacteria uptake organic ligands such as acetate or lactate (A-

20s) and also cysteine, sulfide and hydrosulfide (S-17-65) at pH > 7.5, releasing OH- for 

charge compensation therefore rising the pH and increasing supersaturation degree. As a 

result, calcium carbonate precipitation by APB occurs, similar to other bacteria (Thompson 

and Ferris, 1990; Dittrich and Obst, 2004; Dittrich and Sibler, 2005; Mitchel and Ferris, 2006; 

Martinez et al., 2008) and according to the reaction: 

 

Ca2+ + 2HCO3
- → CaCO3 + CO2 + H2O   (1) 

The rates of calcium carbonate formation (RCaCO3) were determined by fitting 

numerically the calcium concentration evolution with time using the integrated form of 

carbonate precipitation rate equation given by Morse (1983):  

[ ] ( )n
CaCOCaCOCaCO k

dt

Cad
R 1

333

2

−Ω×==
+

   (2) 

where kCaCO3 stands for the rate constant and [Ca2+] refers to the aqueous calcium 

concentration, t designates time, n denotes the reaction order, Ω CaCO3 corresponds to the 

solution saturation state defined by: 

3

2
3

2

3

CaCO

COCa
CaCO K

aa

°

×
=Ω

−+

    (3) 

where aCa
2+  and aCO3

2- represent the activity of the subscripted species, and K°CaCO3 

refers to the equilibrium constant taken as 10-8.48 for calcite at 25°C (Plummer and Busenberg, 
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1982). In order to verify the correctness of our calculation of 
3CaCOΩ using PHREEQC 

(Parkhurst et al., 1999) in highly saline, organic-rich nutrient media, calcite solubility 

experiments were performed in bacteria-free, sterile growth media. Results are presented in 

the Electronic Supporting Information (ESM Table 1). For most solutions, satisfactory 

agreement between calculated and measured calcite solubility was found thus allowing us 

using the modified PHREEQC database (Bénézeth et al., in preparation) for assessing the 

3CaCOΩ  in experimental solutions. 

The limited number of data points (typically 5-7) in each individual experiment did 

not allow rigorous quantification of k and n parameters (Eqn. 2). However, apparent 

precipitation rates (Ri) were calculated from the first derivative of the fluid phase Ca 

concentration with respect to time, using: 

[ ]
dt

Cad
Ri = .      (4) 

Resulting precipitation rates are presented in Table 2.  

 

Table IV. 2. Rate of calcium carbonate precipitation by APB. 

 Number in the  Number in the
 Table ESP 2 R mM/hrs Ωcalcite  Table ESP 2 R mM/hrs Ωcalcite

1 0.0010 7.76 17 0.00005 44.7

2 0.0038 100 18 0.00000 70.8

3 0.0099 77.6 19 0.0120 123

4 0.0130 36.3 20 0.0110 132

5 0.00009 30.9 21 0.0120 91.2

6 0.0005 7.94 22 0.00000 61.7

7 0.0019 72.4 23 0.0020 30.9

8 0.0038 33.9 24 0.0030 33.1

9 0.0025 39.8 25 0.0060 104

10 0.0037 77.6 26 0.0080 155

11 0.0044 123 27 0.00000 53.7

12 0.0004 38.0 28 0.0260 25.7
13 0.0020 66.1 29 0.0130 151

14 0.0020 83.2

15 0.0088 239

76 0.0010 97.7

77 0.0010 102
78 0.0010 112

Bacteria A-20s Bacteria S-17-65
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3.  Results and discussion 

 

91 precipitation experiments were performed to investigate the influence of physical, 

chemical and biological conditions on the nucleation and precipitation of CaCO3 by both APB 

species (Table 1). These included 30 biotic experiments in growth medium, 28 experiments 

with NaN3-inactivated bacteria and 14 abiotic experiments in growth media (with heat-killed 

bacteria, with live bacteria in the darkness, and without bacteria). Another 19 experiments 

were conducted in the inert electrolyte (organic-free electrolyte) with live and dead bacteria. 

About 30% of experiments were performed in duplicates and triplicates; typical experimental 

reproducibility in terms of Ca and DIC concentration was 10-20%. The list of conducted 

experiments and the range of investigated conditions are given in Table 1.  

 

3.1.  Bacterial biomass development 

 

Bacterial growth in the nutrient medium included four consecutive phases: i) the latent 

phase when the bacteria adapt themselves to growth conditions, ii) exponential phase 

corresponding to active cell division, iii) stationary phase when the growth rate slows down as 

a result of nutrient depletion and accumulation of toxic products and the biomass remains 

constant, and iv) final death phase, marked by a decrease of cell concentration. The growth 

curves of APB A-20s and S-17-65 cultures in 10 mM NaHCO3 and different CaCl2 

concentrations and in 5 mM CaCl2 and different NaHCO3 concentration are presented in Fig. 

1. It can be seen from these figures that the growth curves are quite similar for different CaCl2 

and NaHCO3 concentrations suggesting neither inhibition nor promotion of the cell growth by 

components of carbonate systems within the studied range of solution parameters. Note that 

the growth of both cultures in 2 and 10 times diluted nutrient solution was not achieved; as 

such, all kinetic experiments were conducted in normal growth media but depleted in 

phosphate to avoid Ca phosphate precipitation. 
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Fig. IV. 1. Kinetic of APB A-20s (A, C) and S-17-65 (B, D) growth in the nutrient 
medium and in the kinetic experiments. Conditions of kinetic experiments: (A, B) 10 

mM NaHCO3, pH = 7.7 to 9.1; (C, D) 5 mM CaCl2, pH = 7.7 to 9.4. 
 

 

3.2.  Ca incorporation by APB cells 

 

There exist 3 possible sinks of Ca in bacteria – solution system: (1) metabolic 

intracellular incorporation during growth, (2) reversible adsorption at the cell surface, and (3) 

calcium precipitation in the form of CaCO3. To characterize the Ca metabolic uptake by both 

APB strains, Ca concentration evolution was followed in the experiments with nutrient 

solution, containing 0.3 and 1.0 mM Ca, for A-20s and S-17-65, respectively, where CaCO3 

precipitation did not occur. The results of these experiments are presented in Appendix 3 

(Experiments 16, 17 and 30, hereinafter all experiments numbers from Table in Appendix 3). 

It can be seen from Table in Appendix 3 that there is an increase of the biomass (up to 18 

gwet/L) and pH (up to 9.1) during growth of both bacteria. At the same time, only small 



Calcium carbonate precipitation by APB 

119 
 

decrease of calcium concentration (< 0.1-0.2 mM) is observed whereas the DIC concentration 

remains constant or slightly increases, indicating the absence of carbonate mineral 

precipitation. We believe that observed Ca concentration decrease is due to Ca adsorption 

plus intracellular incorporation; note that in NaN3-inactivated suspension, no [Ca] decrease 

was observed (Experiments 45, 58). The maximal amount of calcium that active bacteria are 

capable of uptake during their growth can be calculated from the difference between the 

initial and final Ca concentration normalized to final cell biomass:  

 

[Ca]uptake= ([Ca]initial  - [Ca]final ) / biomassfinal  (5) 

For A-20s and S-17-65 cultures, maximal incorporation of calcium in the cells at our 

experimental conditions is equal to 12.7 ± 0.3 and 7.37 ± 0.34 µmol Ca /gwet, respectively.  

 

 

3.3.  Mineral precipitation in biotic and abiotic experiments 

 

Calcium carbonate precipitation in nutrient medium was evidenced by [Ca] decrease 

and also supported by microscopic examination of mineral phases. A typical plot of Ca 

concentration as a function of time in biotic and abiotic experiments is presented in Fig. 2. It 

can be seen from this figure that decrease of the aqueous calcium concentration is observed 

only in biotic experiment. No precipitation occurred in abiotic experiments, including those 

with heat-killed and NaN3-inactivated bacteria, without bacteria, with live bacteria in the 

darkness, and with live bacteria in the inert electrolyte. Three experiments with live culture A-

20s in the inert electrolyte (Experiments 76-78) also produced Ca carbonate as follows from 

Ca concentration evolution. This likely stem from the presence of intracellular nutrient 

resources that allowed bacteria to effectively metabolize and raise 
3CaCOΩ even in nutrient-free 

solutions. 
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Fig. IV. 2. Temporal evolution of the aqueous calcium concentration during biotic 
and abiotic experiments with Rhodovulum steppense A-20s (A) and Rhodovulum sp. S-
17-65 (B) in nutrient medium. Initial experimental conditions: 10 mM CaCl2 and 5 mM 

NaHCO3. 
 

3.4.   Characterization of solid phases    

  

In the course of experiments, visual precipitates were formed on the glass walls of 

reactors after 5-7 and 7-9 days for A-20s and S-17-65, respectively. The XRD analysis of 
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biotic precipitates formed in nutrient-free inert electrolyte yielded calcite and vaterite as the 

main mineral phases of both APB species. The SEM images of the crystals are illustrated in 

Fig. 3A-D. Note that the mineral formation in the inert electrolyte was observed only in 

experiments with high initial biomass concentration (16 - 18 gwet/L) with A-20s strain 

(Experiments 73-78). Calcite supersaturation degree in these experiments decreases from 53-

135 at the beginning to 13-52 at the end of experiments. During these experiments, no change 

of the biomass concentration occurred indicating the lack of bacterial development in the 

absence of nutrients. Note that solution parameters ([Ca], alkalinity) in nutrient-free 

experiments with low initial biomass (2 - 3 gbiomass wet/L, Experiments 79-85, 86-87) remained 

constant and no calcium carbonate precipitation occurred. Significant pH and 
3CaCOΩ decrease 

(from 8.6-8.9 to 8.7-7.7 and 130-30 to 115-3, respectively) were measured for these nutrient-

free experiments with both APB cultures. 

A B

C D

A B

C D

 

Fig. IV. 3. SEM image of a precipitate collected from experiments performed in 
inert electrolyte (0.1 M NaCl) with APB A-20s in the presence of 5 mM NaHCO3 and 10 
mM CaCl2 (A, B) or 20 mM CaCl2 (C, D). A and B: calcite (Experiment 76, Table 1), C 

and D: vaterite (Experiment 78, Table 1). 
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Significant increase of the biomass linked to an increase of pH and a decrease of 

calcium and DIC concentrations was observed in nutrient-rich biotic experiments with both 

APB cultures (Experiments 1-30, Table 1). The SEM images of precipitates from experiments 

7-11 and 23-26 are shown in Fig. 4 (A-E).  

 

Fig. IV. 4. SEM images of calcite formed in nutrient solution in the experiment 
with bacteria A-20s  (A, B, E) and S-17-65 (C, D,). Initial experimental conditions: 5 mM 
CaCl2 and 10 mM NaHCO3 (A, C, E; Experiments 7-9 and 24-25 respectively, Table 1); 
10 mM CaCl2 and 10 mM NaHCO3 (B, D, Experiments 10-11 and 26 respectively, Table 

1). (F): Typical EDX spectrum of precipitate formed in nutrient solution in the 
experiment with bacteria A-20s (5 mM CaCl2 + 10 mM NaHCO3). The white cross in (C) 

indicates the position and approximate extent of the EDX analyses shown in (F). 
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The elements detected by EDX (Fig. 4 F) on these crystals are mainly Ca, O and C 

with insignificant amount of Mg, P, N and S. The latter elements are likely to stem from 

contamination by the nutrient solution of the cell biomass. The XRD analysis of all 

precipitates showed only the presence of calcite for both APB species. The size and form of 

the crystals differ between experiments and during the course of the same experiment. There 

is no clear relationship between the experimental conditions and the shape and mineralogy 

(calcite vs. vaterite) of the crystals which is most likely linked to different rates of nucleation 

and crystal growth, accompanied by different transformation rate vaterite → calcite. Most 

precipitates range in size between 50 and 150 µm, having globular or rhombohedra shape 

with round edges and often associate in clusters (Fig. 4E). 

Several experiments conducted at lowest calcium concentration (1 mM) with A-20s 

(Experiments 1, 5, 12, with 
3CaCOΩ (initial) ~ 25) yielded monohydrocalcite as evidenced by 

XRD analysis. The precipitates form spherical associates of 60-80 µm overall size (Fig. 5A).  

 

Fig. IV. 5. (A) SEM images of monohydrocalcite formed in nutrient solution in the 
experiment with bacteria A-20s. Initial experimental condition: 1 mM CaCl2 + 10 mM 
NaHCO3 (Experiments 5, 6, Table 1). (B) EDX image. The white cross in (A) indicates 

the position and approximate extent of the EDX analyses shown in (B). 
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However, the chemical analysis demonstrated the presence of mainly C, O, P and S without 

significant amount of Ca on the surface (Fig. 5B). This result suggests that the crystals of 

monohydrocalcite are covered by organic matter such as extracellular polymeric substances 

(EPS). This organic layer could preserve the metastable monohydrocalcite from 

recrystallization into more stable calcite. Indeed, the presence of organic polymers is known 

to extend the lifetime of metastable amorphous calcium carbonate (DiMasi et al., 2006). In 

bacterial experiments with extensive EPS production, the carbonate grains growing within the 

EPS matrix lacked cleavage and angular surfaces (Bontognali et al., 2008). In addition, 

viscous organic matrix and organic acids are known to influence calcium carbonate crystal 

morphology with a tendency to form round shapes (Braissant et al., 2003). 

 

TEM imaging and chemical analysis were performed on A-20s and S-17-65 samples 

to further explore the cell arrangement and surface morphology linked to calcite precipitation. 

TEM imaging and EDX analysis of active cells following their growth during 10 days in the 

control (nutrient, mineral-free media) and calcite-supersaturated media are shown in Fig. 6 

(A,B), 7(A,B) and Fig. 6 (C,D), 7(C,D). The elements detected on these cells and around with 

EDX are mainly C and O with some S, Si, P, Cl, and Na. No Ca was detected on these 

surfaces. It can be seen from these figures that the cell remains intact and perfectly preserve 

their shape and spatial organization. The surfaces remain clean, without traces of any mineral 

precipitate, except the presence of dark organic matter of extracellular origin or as cell debris. 

These observations suggest that calcium carbonate does not nucleate on live APB cell 

surfaces. The absence of Ca in the vicinity of live photosynthesizing cells was recently 

evidenced during calcium carbonate precipitation by cyanobacteria Synechococcus sp. and 

Plantotrox sp. (Martinez et al., 2010). This is also consistent with the result of Aloisi et al. 

(2006) who observed calcium carbonate precipitation on extracellular polymeric substances 

(EPS) released by heterotrophic sulfur reducing bacteria, rather than on the active cell surface 

itself. 

 

3.5.  Three stages of CaCO3 precipitation by APB 

 

In most experiments the precipitation process can be broken down into three stages: 

(1) initial pH-rise and Ca concentration decrease period, (2) significant biomass production 



Calcium carbonate precipitation by APB 

125 
 

and massive precipitation reaction, and (3) a steady-state phase of culture development and 

solution equilibration with mineral. Examples of these stages are illustrated in Fig. 8. 

 

 

 Fig. IV. 6. TEM images of active A-20s in nutrient (CaCO3-free) solution (A,B) 
and media supersaturated with respect to calcite (C,D) (Experiments 10, 11, 26). The 

black scale bars are 0.5 µm. No calcium carbonate is observed on the cell surfaces and 
around cells. Different cells color (C,D) indicate different stage of cells development.  
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Fig. IV. 7.  TEM images of active S-17-65 in nutrient (CaCO3-free) solution (A,B) 
and media supersaturated with respect to calcite (C,D) (Experiments 10, 11, 26). The 

black scale bars are 0.5 µm. No calcium carbonate is observed on the cell surfaces and 
around cells. The black substance in the vicinity of cells (C, D) is organic matter.  
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Fig. IV. 8. Three phases of calcium carbonate precipitation by APB A-20s (A) and 
S-17-65 (B): (1) a pH-drift period, (2) the actual precipitation reaction, and (3) an 

equilibration phase. 
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The first period lasts 40-100 hrs and is characterized by steady increase of bacterial 

biomass and pH increase from ~7.5 – 8 to some “critical value”, between 8.5 and 9.2. During 

this period, Ca concentration slightly decreases whereas DIC concentration remains stable 

(e.g., experiments 1, 13, 15-18, 20, 21, 28, 30). It indicates that Ca removal from solution 

likely stem from Ca adsorption on the surface or intracellular uptake by live cells. The second 

period lasts 50-150 hrs and corresponds to exponential phase of culture growth; the pH 

increases to its maximal value (9.2-9.7 and 8.8-9.2 for A-20s and S-17-65, respectively), 

calcium and DIC concentrations abruptly decrease. There is much smaller relative [DIC] 

decrease compared to [Ca] decrease (a factor of 2 to 3) during experiments. The observed 

non-stoichiometry can be explained by HCO3
-/CO3

2- production by APB during their 

metabolism or respiration. Overall, the evolution of solution composition strongly suggests 

that massive calcium carbonate precipitation occurs during the second period. Finally, after 

∼160 hrs of reaction, calcium and DIC concentration, pH and biomass achieve some steady-

state values.  

We observe dramatically different evolution of supersaturation degree with time 

between the two cultures (Fig. 9). In nutrient media with live A-20s cultures (Fig. 9A), values 

of 
3CaCOΩ  decrease from 60-100 to 5-10. In the case of lower initial 

3CaCOΩ  (≤ 40), the 

bacteria increase the saturation index to 100-120 and then it decreases again to 20-40. In 

nutrient media with inactivated A-20s or in the inert electrolyte with live strain, there is a 

steady decrease of 
3CaCOΩ  with time, mostly due to solution pH decrease. In contrast to 

alkaliphilic strain A-20s, the neutrophilic strain S-17-65 always increases 
3CaCOΩ  from c.a. 

10-30 to 100-120 whereas in the inert electrolyte and in the nutrient solution with NaN3-

inactivated cells, the supersaturation degree remains very high over full duration of the 

experiment, up to 80-120 (Fig. 9B). 

 

Calcite supersaturation index is the result of combination of a number of solution 

characteristics (pH, [Ca], [DIC], salinity, presence of organic ligands). For the studied APB, 

the main governing factor of 
3CaCOΩ evolution during experiments is the initial pH (pHinitial). 

For bacteria A-20s and S-17-65 the pHinitial is equal to 8.2±0.3 and 7.7±0.3, respectively. As a 

result, at the same initial [Ca] and [DIC], the Ωinitial for bacteria S-17-65 is significantly lower 

than that for A-20s. Consequently, in most experiments with A-20s calcium carbonate 

precipitation starts much earlier than that with S-17-65 strain. The latter have to increase 

Ωcalcite to some critical value (around 100-150) to initiate calcium carbonate precipitation.  
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Fig. IV. 9. ΩCaCO3 dependence on elapsed time during biotic and abiotic 
experiments. Column (A) A-20s; column (B) S-17-65. 

 

It can be seen from Fig. 8 that the maximal rate of calcium removal from solution 

corresponds to the sharp increase of the biomass during the first 100 hrs before the stationary 
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phase of culture development. This indicates that calcium carbonate formation is strongly 

controlled by the concentration and activity of bacterial cells. Note again that this [Ca] 

decrease is unlikely to be linked to Ca uptake by bacterial surface. Indeed, with an overall 

biomass increase of approximately 10 gwet/L and typical Ca adsorption density of 20-30 µmol 

Ca/gwet (Bundeleva et al., 2011), this yields 0.2-0.3 mM Ca decrease, which is significantly 

smaller than the overall Ca decrease in experiments (typically from 1 to 10 mM). The amount 

of Ca incorporated in the cells is on the order of 10 µmol/gwet or maximum 0.1 mM at 10 

gwet/L of biomass (section 3.2). 

 Note that similar periods were observed in other experimental studies on calcium 

carbonate precipitation by green algae (Hartley et al., 1995), cyanobacteria (Dittrich and Obst, 

2004), and heterotrophic bacteria (Ferris et al., 2004; Mitchell and Ferris, 2005). The rate of 

pH increase varied from one species to another depending on the relative growth rate of 

bacterial. As a general trend, there was a correlation between the degree of pH increase and 

the cell number in the suspension (Dittrich et al., 2004). For APB, we observe a clear 

correlation between the absolute increase of bacterial biomass (gwet) and the amount of 

precipitated CaCO3 (mM) for both bacterial species illustrated. The slope of dependence 

ranges from 0.1 to 0.8 and 0.1 to 0.5 for A-20s and S-17-65, respectively depending on the 

CaCl2 and DIC concentrations. This dependence allows a first-order evolution of the quantity 

of CaCO3 as a function of bacterial productivity rate at studied conditions.  

 

3.6.  Kinetics of calcium carbonate precipitation by APB.  

 

We calculated apparent rates of CaCO3 precipitation from the experimental slope of 

[Ca] vs. times at the second stage of reaction corresponding to massive CaCO3 formation 

(zone 2 in Fig. 8). Apparent precipitation rates measured at 150±20 hrs after the beginning of 

experiment range between 0.001 and 0.010 mM/hr, and between 0.005 and 0.015 mM/hr for 

A-20s and S-17-65 APB cultures, respectively. For comparison, the rate of CaCO3 

precipitation during bacterial ureolysis by Bacillus pasteurii is 0.011 mM/hr (Mitchell and 

Ferris, 2005), and during photosynthesis of cyanobacteria Synechococcus sp. and Planktothrix 

sp. is 0.030 and 0.036 mM/hr, respectively (Martinez et al., 2010). Noteworthy that bacterial 

calcification rates are 2 to 3 orders of magnitude higher than those of microorganisms largely 

responsible for CaCO3 formation on the Earth – calcareous algae such as Halimeda, 
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Penicillus and Udotea. For these algae, typical calcification rates range between 0.00005 and 

0.0005 mM/hr (0.1 to 1.2 mg CaCO3 day-1) (Ries, 2010).  

 

Fig. IV. 10. Dependence between the apparent rate (calculated for period 2 in Fig. 
6) of calcium carbonate precipitation by APB A-20s (A) and S-17-65 (B) and the 

saturation index of calcite.  
 

The dependence between calcium carbonate precipitation rate and calcite saturation 

state measured at the beginning of calcium concentration decrease after (40-100 hrs of 

reaction) is shown the Fig. 10. There is significant correlation between these parameters for 

both bacterial species (r2 = 0.80 and 0.75 for A-20s and S-17-65, respectively). For A-20s 

culture, two experiments (Experiments 3 and 4) deviate significantly from the linear 

dependence (encircled in Fig. 10A). They show a factor of 3 to 5 higher precipitation rate at 

the same saturation degree (
3CaCOΩ (1) = 40-45). These two experiments were conducted at 

the same initial conditions ([Ca]=10 mM, [DIC]=5 mM). For S-17-65 strain, one experiments 

(Experiment 19) performed at the same solution composition exhibit a factor of 10 higher 
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apparent rates compared to the general trend. Therefore, the saturation degree alone does not 

control the overall precipitation rate. Apparently, the minimal NaHCO3 and maximal CaCl2 

concentrations are the optimal factors of both inorganic precipitation and biological activity 

(cell growth) creating sufficient number of nucleation sites. As an empirical rule, low [DIC] 

(≤ 5 mM) is most favorable for significant pH and 
3CaCOΩ rise at the beginning of reaction 

promoting fast massive CaCO3 formation. As such, CaCO3 precipitation in studied bacterial 

systems is controlled by a complex interplay of physico-chemical and biological factors. In 

particularly, detailed analysis of 
3CaCOΩ  - rate dependencies at constant 

3CaCOΩ and various Ca 

and DIC values demonstrate that [DIC] or [Ca] alone are not able to control overall 

precipitation rates by the APB. But there is a pH value around 8.5 above which the live cell 

precipitate CaCO3 where as the dead and inactivated cells exhibit zero precipitation rate below 

pH 8.5. It follows that the elevated pH is important prerequisite for live APB to form CaCO3 

even at high supersaturation degrees.In fact, high DIC concentration precludes sufficient pH 

rise during photosynthesis and hampers massive CaCO3 precipitation. This result corroborates 

the observations of the lack of carbonate precipitation in microbial mats in strongly alkaline 

environments (e.g., Arp et al., 1999a, b). The paucity of CaCO3 precipitation in solutions 

having [DIC] ≥ 20-40 mM provides important constrains on the possibility of APB 

calcification under early soda ocean scenario (Kempe and Kazmierzhak, 1990; Kempe and 

Degens, 1985). 

Overall, we can conclude that high rate of carbonate precipitation results from 

combination of favorable inorganic and biological conditions which are similar for both APB 

species. Curiously, these conditions (5 mM DIC, 10 mM Ca) are the closest to modern 

seawater composition (2.3 mM  DIC, 10 mM Ca). Note that, similar to any other experimental 

work on biocalcification with bacteria that use the organic substrates, the final chemical 

composition of the media (pH and, therefore, supersaturation degree) depends on the nature of 

initial organic compound. The use of acetate by APB provokes significant alcalinization of 

the media and thus, massive CaCO3 precipitation. We believe that these conditions, which are 

necessary to provide sufficient biomass growth and to quantify the rates, are nevertheless 

applicable to natural settings of essentially alkaline environments of studied bacteria. The 

similarity of apparent calcification rates between two contrasting species further confirms the 

validity of laboratory approach. 
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3.7.  APB cell protection against CaCO3 incrustation? 

 

The first main result of the present study is that the actively growing APB’s are 

capable of increasing pH and supersaturation of solution thus inducing calcium carbonate 

precipitation. Dead (heat-killed) and metabolically inactive bacteria are not capable of 

precipitating CaCO3 in the full range of studied conditions (pH of 7.5 to 9.5; Ca of 0.3 to 10.7 

mM, DIC of 4.5 to 45 mM) at comparable values of 
3CaCOΩ (40 to 100). Some earlier works 

(e.g., Braissant et al., 2003; Bosak and Newman, 2005, Gautret et al., 2006) suggested that 

actively growing bacteria consume various nutrients from solution, especially those capable 

of inhibiting mineral precipitation such as phosphate. As a result, precipitation in bacterial 

culture may simply happen due to removal of CaCO3 inhibitor via cell metabolism. We do not 

expect this mechanism to occur under the conditions of our experiments. Indeed, there was no 

measurable CaCO3 precipitation in nutrient (inhibitor)-free solutions at 
3CaCOΩ values 

comparable to those of nutrient-rich solutions (40 to 120) as illustrated in Fig. 9. Moreover, 

results of this work unambiguously demonstrate the capacity of live APB to precipitate 

CaCO3 during their growth, whereas inactivated and dead cells could not appreciably decrease 

Ca concentration at similar supersaturation degree but lower pH in the nutrient media.  

 

Plotted in Fig. 11 are the apparent bulk precipitation rates as a function of solution pH 

at the end of 2nd stage of CaCO3 precipitation (zone 2 in Fig. 8). It can be seen that there is a 

“threshold” pH value around 8.5 above which the live cell precipitate CaCO3 where as the 

dead and inactivated cells exhibit zero precipitation rate below pH 8.5. It follows that the 

elevated pH is important prerequisite for live APB to form CaCO3 even at high 

supersaturation degrees. 

The possible presence of the EPS in the vicinity of live cell surfaces (as it is visible on 

the TEM images of A-20s and S-17-65 strains, Fig. 6 and Fig.7, respectively) does not seem 

to be an inhibiting factor of CaCO3 precipitation by both studied Rhodovulum species, in 

accord with recent results on other APB species, Rhodopseudomonas palustris (Bosak et al., 

2007). 
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Fig. IV. 11. Apparent bulk precipitation rates as a function of solution pH at the 
end of 2nd stage of CaCO3 precipitation (zone 2 in Fig. 8). All experiments are performed 

in nutrient solution with A-20s (A) and S-17-65 (B) strains. Different symbols 
correspond to different ranges of Ω CaCO3with closed and open symbols representing live 

and NaN3-inactivated cultures, respectively. 
 

Interestingly the results shown in Fig. 10 do not demonstrate existence of a plateau of 

rate - 
3CaCOΩ  dependence. What should be expected here is a decrease of cell growth at 

highest supersaturation due to progressive cell incrustation and decrease of nucleation center 

concentration. This strongly suggest that whether there is a cell protection mechanisms of live 
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calcifying APB, established recently for cyanobacteria (Martinez et al., 2010) and some 

heterotrophic sulfate reducing bacteria (Aloisi et al., 2006; Bontognali et al., 2008) or the 

precipitation of CaCO3 occurs at a certain distance from the cell surface and the cells remain 

intact as also supported by TEM images presented in section 3.4. 

The possible presence of cell protection mechanism for APB consisting of non-

precipitation of CaCO3 in the vicinity of live cells but only in the bulk solution is in 

accordance with previous studies of Synechococcus sp. and Planktothrix sp. cyanobacteria 

demonstrating the metabolic maintenance of a positive surface charge at alkaline pH for 

protecting active cell against Ca adsorption and subsequent calcite embedding (Martinez et 

al., 2010). Similarly, spectroscopic and microscopic observations suggested that precipitation 

of an amorphous CaCO3 layer within the external EPS sheaths of cyanobacteria at a certain 

distance from the cell wall could serve as a protection mechanism against uncontrolled 

precipitation of a thermodynamically stable phase calcite on their surface (Obst et al., 2009a). 

Another well-documented mechanism allowing cyanobacteria to calcify in continuous regime 

is shed off of mineralized S-layers (Thompson et al., 1997; Douglas and Beveridge, 1998). 

Heterotrophic sulfate-reducing bacteria (SRB) D. desulfuricans were also demonstrated to 

avoid calcium carbonate encrustation with dead cells being more active promoters of 

heterogeneous nucleation from strongly supersaturated solutions compared to live cells 

(Bosak and Newman, 2003). Another SRB, Desulfovibrio brasiliensis, exhibited a self-

preservation behavior against dolomite formation via secreting extracellular polymeric 

substances that were responsible for mineral nucleation and growth at microscopic distances 

from the cells (Bontognali et al., 2008). Similarly, calcium carbonate formation initiated on 

60-200 nm-size EPS globules formed near the cells of Desulfonatrum lacustre SRB, but 

calcify significantly only when released to the culture medium (Aloisi et al., 2006). 

Most previous works documented a cell-protection mechanism were conducted at 

initially strongly saturated solutions when both live and dead cells could serve as carbonate 

nucleation centers. A straightforward application of such experiments to natural environments 

is not warranted. In contrast, results of the present study demonstrate an unequivocal role of 

live bacteria for raising the solution pH, creating the supersaturation (
3CaCOΩ ) in the course of 

bacterial growth (from 10-40 to 60-100) and thus fostering massive CaCO3 nucleation. Note 

that the metabolic regulation of APB cell surface less-negative charge occurs at pH above 9.5 

because there is an increase of zeta potential with a maximum value of -10 to -20 mV at a pH 

of 9 to 10.5) (Bundeleva et al., 2011). These solution conditions correspond to the period of 
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massive mineral precipitation. Therefore, we can conclude, that active APB can apparently 

protect themselves from carbonate incrustation by creating a more positive charge on their 

surface at the pH of massive CaCO3 nucleation. Note that in the microbial consortia such as 

biomats, where cyanobacterial photosynthesis essentially regulates the in-situ pH above 10 

(Jørgensen and Revsbech, 1983; Visscher and van Gemerden, 1991; Visscher and Stolz, 

2005), the APB will certainly manifest their self-protection properties against mineral 

incrustation.. 

 

 Conclusions 

 

This study reports the first results on CaCO3 precipitation rates induced by two 

contrasting strain anoxygenic phototrophic bacteria, haloalcaliphilic Rhodovulum steppens A-

20s and neutrophilic halophilic Rhodovulum sp. S-17-65 growing on organic substrates. The 

optimal initial precipitation conditions for both strains were as following: Ca = 10 mM; DIC = 

5 mM , pH = 8.1±0.1 and 
3CaCOΩ = 70-100. At the main stage of massive CaCO3 precipitation, 

the bulk rates range between 0.001 and 0.010 mM/hr, and between 0.005 and 0.015 mM/hr 

for A-20s and S-17-65 APB cultures, respectively, similar to cyanobacteria and heterotrophic 

bacteria and being 2 orders of magnitude higher than typical calcification rates of coralline 

algae. Measured bulk precipitation rates are unaffected, within the experimental uncertainty of 

10-20%, by Ca adsorption at the cell surface and by intracellular Ca uptake during cell 

growth. The rates are positively correlated with 
3CaCOΩ , but detailed analysis of 

3CaCOΩ  - rate 

dependencies at constant 
3CaCOΩ and various Ca and DIC values demonstrate that the [DIC] 

and [Ca] alone are not able to control overall precipitation rates by APB. There is a pH value 

around 8.5 above which the live cell precipitate CaCO3 where as the dead and inactivated 

cells exhibit zero precipitation rate below pH 8.5. It follows that the elevated pH is important 

prerequisite for live APB to form CaCO3 even at high supersaturation degrees.In case of dead 

and inactivated cells in nutrient media and for live cultures in nutrient-free electrolyte 

solution, precipitation of CaCO3 did not occur despite significant supersaturation degree of 

solution. The most plausible scenario of massive CaCO3 precipitation in the presence of 

growing APB is bulk solution pH raise due to bacterial metabolism followed by 

heterogeneous nucleation on cell debris and EPS of the live cells which serve as nucleation 
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centers, once the required pH and
3CaCOΩ  are attained. TEM analyses of reaction products 

does not demonstrate the presence of CaCO3 crystals in the vicinity of live cells, yet calcite 

and monohydrocalcite were identified as main precipitates of the bulk solution. The results 

presented in this study suggest the existence of a mechanism preventing carbonate biomineral 

formation by active APB, which can protect them from carbonate incrustation by creating a 

more positive charge on their surface at the pH of massive CaCO3 nucleation.  
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 ESM 1.  Solubility of calcite in nutrient media of APB. 

 

Experiments on calcite solubility in nutrient solutions were aimed at verifying the 

correctness of ion activity product calculation (and, correspondently, Ωcalcite) using 

conventional equilibrium speciation code in experimental solution containing high amount of 

organic ligands (up to 1 g/L acetate for A-20s strain), and high ionic strength (up to 2 M NaCl 

for S-17-65 strain).   

Calcite (CaCO3) dissolution experiments were carried out in the closed batch reactors. 

Altogether, three experiments (in duplicates) were performed: two experiments in nutrient 

solution of A-20s strain, with and without organic ligands addition (Exp. 1, and 2, 

respectively of the ESM Table 1) and experiment in nutrient solution of S-17-65 strain with 

organic ligands addition (Exp. 3 of ESM Table 1). Optical clear Iceland spar from Siberian 

traps almost free of impurities (see Pokrovsky et al., 2005) for analysis was used in 

concentration of 50 g/L. Experiments were performed in polypropylene flasks under 

continuous shaking at 25±0.5°C. 
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Reactive solutions of all experiments were regularly sampled, pH was measured and 

solution was filtered (0.45 µm) for analyses of pH, calcium, alkalinity and DIC concentrations 

as described in section 2.3. These measured solution parameters together with all other 

components of the system were used for calculation of calcite saturation degree using Phreeqc 

code with implemented Phreeqc Interactive 2.15.0 (llnl.dat) database (Bénézeth et al., 2011, 

in preparation). 

The evolution of calcite saturation index with reaction time is demonstrated in Fig. 

ESM-1 and measured experimental parameters are listed in Table ESM-1. It can be seen from 

this figure that after 15-20 days the Ωcalcite value is stable and equal to 1±0.5 for all 

experiments. This result indicates that available solution speciation code is suitable for calcite 

saturation degree calculation without additional adjustment of the existing database with 

respect to activity coefficient calculation or the Ca2+ complexation with dissolved organic 

ligands.  
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ESM Fig. 1. The evolution of calcite supersaturation degree with time during 
representative experiments. 

 

 

 

 

 



Calcium carbonate precipitation by APB 

139 
 

ESM Table 1. Results of experiment on calcite solubility measurements in nutrient 
media at 25±0.5°C.  

№ t, days pH pH* [Ca], mM [Ca], mM* Alk /DIC, mM Alk/DIC, mM* Ωcalcite Ω*calcite

1 0 8.23 8.24 0.090 0.083 45.67 45.13 1.2 1.0

6 8.37 8.35 0.080 0.053 45.13 44.04 1.4 1.0

8 8.34 8.38 0.075 0.047 44.81 43.28 1.2 1.0

15 8.69 8.53 0.032 0.042 45.13 45.67 1.0 1.0
20 8.62 8.48 0.034 0.037 44.81 43.28 1.0 1.0

2** 0 8.20 8.18 0.084 0.073 45.13 45.13 2.6 2.2

6 7.78 7.75 0.128 0.143 44.81 44.81 1.8 1.9

8 7.63 7.57 0.166 0.190 45.13 43.28 1.7 1.7

15 7.75 7.60 0.177 0.259 44.04 45.67 1.5 1.5
20 7.84 7.82 0.136 0.196 45.67 43.28 1.1 1.2

3** 0 8.22 8.23 0.387 0.449 4.34 4.45 3.8 3.6

6 8.24 8.29 0.476 0.432 4.92 4.34 3.9 3.6

8 7.14 7.72 0.765 0.559 4.75 4.45 2.0 1.4

15 7.41 7.34 1.146 1.115 4.70 4.34 1.4 1.1
20 7.26 7.81 1.158 1.161 4.81 4.70 1.0 1.0

             *Replicate 

             **DIC measurements. 
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 Chapter V 
  

 Experimental modeling of calcium 
carbonate precipitation by 

cyanobacteria Gloeocapsa sp. 
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 Résumé en français 

 

Des expériences cinétiques en réacteurs fermés couplées à des analyses 

microscopiques au MEB, MET et aux rayons-X ainsi que des mesures d’adsorption de Ca à la 

surface des cyanobactéries ont été menées afin de mettre en évidence et de caractériser les 

processus métaboliques qui protégent les cyanobactéries Gloeocapsa sp. contre la 

précipitation de minéraux carbonatés à leur surface. Ces expériences cinétiques ont été 

réalisées dans des solutions initialement sursaturées (15.1-147.9) par rapport à la calcite à pH 

9.0±0.4 et 25°C, en présence de cyanobactéries Gloeocapsa sp. actives.  

Les résultats suggèrent que Gloeocapsa sp. prend part à la précipitation de CaCO3. Les 

observations au MEB démontrent la présence de différents types de cristaux. Ceci indique que 

la précipitation se produit selon des processus différents: inorganiques (cristaux 

rhomboédriques), typiques des processus abiotiques, et biologiques de par la présence de 

cavités correspondantes à Gloeocapsa sp. à la surface des cristaux et de nano-globules 

couverts de matière organique. Les analyses MET/EDX montrent la présence de Ca2+ à la 

surface de Gloeocapsa sp. active et de précipités de CaCO3 à leur proximité. Les mesures par 

électrophorèse réalisées sur ces bactéries confirment qu’il n’y a aucun potentiel de surface 

positif à pH 8-10 (Pokrovsky et al., 2008), ce qui correspond temporellement à la phase de 

nucléation de CaCO3. Ces observations mettent en évidence l’absence d’un mécanisme 

métabolique de maintenance d’une charge de surface positive à pH alcalin protégeant les 

bactéries actives contre l’adsorption et la précipitation ultérieure de carbonates à leur surface. 

Cette étude apporte de nouveaux résultats aux travaux existants de Pokrovsky et al. 

(2008). De plus, le couplage de notre étude à leurs principaux résultats permet de proposer un 

modèle de mécanisme de précipitation de CaCO3 en présence de Gloeocapsa sp. active. En 

particulier nous supposons que les macromolécules chargées négativement à la surface de 

Gloeocapsa sp. et agissant comme site de nucléation, sont capables de lier et d’accumuler des 

ions métalliques comme Ca2+. Dans le microenvironnement proche de la membrane cellulaire 

de la bactérie, le pH pourrait être plus élevé que dans la solution environnante à cause de la 

libération d’ions OH- par certaines cellules, consécutivement à la consommation de HCO3
- 

durant la photosynthèse (Dittrich et al., 2004). Ainsi, la sursaturation de la couche de surface 

autour de la cellule aurait tendance à surpasser celle de la phase aqueuse principale et la 

précipitation de carbonate de calcium deviendrait possible, préférentiellement à cet endroit. 

 



Experimental modeling of calcium carbonate precipitation by Gloeocapsa sp. 

144 
 

Cette étude ainsi que les résultats obtenus, sont décrits dans la section suivante sous la 

forme d’un manuscrit qui sera soumis dans le journal Geobiology. 
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 Abstract 
  

Batch reactor kinetic experiments, SEM and TEM imaging, EDX and XRD analyses, 

and measurements of calcium adsorption onto bacterial surface and Ca intracellular 

assimilation were used to assess the existence of metabolic process responsible for calcium 

carbonate mineralization on Gloeocapsa sp. cyanobacteria surfaces. Carbonate precipitation 

experiments were performed at initial pH of 9.0±0.4 and 25 C in supersaturated solutions 

(Ωcalcite = 15 to 150) in the presence of active cyanobacteria cells. During cyanobacterial 

photosynthesis, solution pH increased up to 10.5-10.8 after the first 10-20 days of growth, Ca 

concentration decreased and the supersaturation index attained a maximum followed by 

gradual decrease due to progressive CaCO3 precipitation. Ca adsorption at the surface of live 

and inactivated Gloeocapsa sp. cell and Ca intracellular assimilation during cell growth were 

measured as a function of pH and Ca concentration in solution. Experiments under light and 

in the darkness resulted in very similar adsorption edge and surface site densities in the wide 

range of solution pH and Ca concentration. The TEM imaging and EDX analysis indicated the 

presence of Ca2+ on active Gloeocapsa sp.  surfaces and CaCO3 precipitation in the vicinity of 

bacterial cell surfaces. Scanning Electron Microscope analyses demonstrated cyanobacterial 

cell encrusting by CaCO3 precipitated in the form of nano-spheres adjacent to the cell surface. 

In contrast to previously investigated calcifying bacteria, no cell protection mechanism 

against Ca2+ adsorption and subsequent carbonate precipitation has been demonstrated for 

studied cyanobacteria. As such, Gloeocapsa sp. cyanobacteria exhibit significant calcifying 

potential, both in the biofilm and in planktonic culture.  
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1.  Introduction 

 

Geochemical modeling and laboratory experiments demonstrated the importance of 

physico-chemical mineral nucleation/precipitation processes rather than specific metabolic 

reactions, in overall microbially-induced CaCO3 biomineralization processes occurring for 

most of Earth’s history (Bosak and Newman, 2003). From the early Proterozoic and certainly 

since Precambrian-Cambrian boundary until the end of the Cretaceous, calcifying 

cyanobacteria frequently occur in normal marine environments (Ries, 2010). After the end of 

the Cretaceous, however, they seem to be restricted to non-marine settings. At the present 

time, calcification by cyanobacteria occurs almost exclusively in freshwater, alkaline and 

hypersaline or brackish water (Merz, 1992).    

Various carbonate biomineralization mechanisms based on cyanobacteria cellular 

metabolism and surface composition have been proposed (Merz et al., 1993; McConnaughey 

and Whelan, 1997; Dittrich and Obst, 2004; Martinez et al., 2008; Obst et al., 2009 a,b). 

Cyanobacteria are undoubtedly associated with freshwater calcium carbonate 

biomineralization; some attribute this link to Ca2+ binding to cyanobacteria surfaces 

(Thompson and Ferris, 1990; Castanier et al., 1999; Dittrich and Sibler, 2005, 2006). It has 

also been postulated that cyanobacterial calcification results from cell surface acidification 

stemming from proton discharge and/or bicarbonate/nutrient assimilation (Merz et al., 1993; 

McConnaughey and Whelan, 1997). Yet other studies concluded that calcium carbonate 

nucleation is initiated on inert bacteriogenic organic nano-globules and exopolymeric 

substances (Aloisi et al., 2006) and precipitation of amorphous CaCO3 within the extracellular 

polymers of cyanobacteria could serve as a protection mechanism against uncontrolled 

precipitation of calcite at their surface (Obst et al., 2009a).  Indeed, microbial cell surface and 

excreted extracellular polymeric substances (EPS), which carry a net negative electric charge 

and have the capacity to bind Ca2+ ions, are frequently considered as sites of carbonate 

nucleation (Dupraz et al., 2004). The role of photosynthetic cyanobacteria on carbonate 

mineralization is, however, paradoxical, which was noted only recently (Martinez et al., 

2010). To successfully photosynthesize, these bacteria must acquire aqueous bicarbonate ions. 

Bicarbonate ion consumption generates hydroxide ions, increasing pH and thus inducing 

calcite supersaturation and precipitation (e.g., Thompson and Ferris, 1990; Merz, 1992; 

Verrecchia et al., 1995). Different cyanobacteria (Martinez et al., 2010) as well as 

heterotrophic aerobic and anaerobic bacteria (Aloisi et al., 2006; Bontognali et al., 2008) 
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possess a self-protection mechanism against uncontrolled CaCO3 coating and live cell 

embedding. For Synechococcus and Plankothrix and anoxygenic phototrophic bacteria (APB), 

this protection mechanism consists of maintaining a positive surface potential in alkaline 

solutions avoiding Ca adsorption at the cell surface (Martinez et al., 2008; Bundeleva et al., 

2011). The surface potential regulation occurs via multiple and still poorly identified 

molecular and physiological mechanisms occurring in the vicinity of cell membrane such as 

conformational changes in the S-layer protein arrangement (Rachel et al., 1997), lysine-rich 

protein production within the cytoplasmic membrane (Zinovieva et al., 1998), proton 

secretion by the APB cell wall via proton-pumping (McConnaughey and Whelan, 1997) and 

enhanced respiration under alkaline conditions required to keep the proton gradient stable 

(Bazant et al., 2009) .  

A typical freshwater cyanobacterium, Gloeocapsa sp., is dramatically different from 

other unicellular microorganisms studied so far in the sense that it possesses a thick 

polysaccharidic capsule surrounding several cells attached together. The presence of this 

capsule increases the distance between the cell surface membrane and the external 

environment. As a result, the electrostatic individual cell protection mechanisms may not be 

recognized at the macroscopic scale of cell aggregates. In this case, live Gloeocapsa cells may 

turn out to be extremely efficient calcifiers capable of extensive CaCO3 precipitation in the 

vicinity of the cells directly during their life cycle, without necessary participation of dead 

cells or heterotrophic bacteria as it is known for other calcifying cultures.  

The present work is aimed at verifying this hypothesis and assessing the rates and 

mineralogical nature of CaCO3 precipitation during Gloeocapsa photosynthesis. Towards this 

goal, carbonate precipitation experiments have been conducted in closed-system reactors in 

the presence of active Gloeocapsa sp. under the light and in the dark. Complementary 

observations were made using scanning and transmission electron microscopy, coupled to 

energy-dispersive X-ray spectroscopy for cell surface analysis (SEM and TEM/EDX), and 

measurements of Ca adsorption and assimilation by live bacteria.  

 

 

 

 



Experimental modeling of calcium carbonate precipitation by Gloeocapsa sp. 

150 
 

2.  Materials and Methods 

 

2.1.   Gloeocapsa sp. cultures 

 

Cyanobacterium Gloeocapsa sp. f-6gl (from the culture collection of the Institute of 

Microbiology RAS in Moscow, isolated from a warm spring (30–40°C) in Kamchatka) used 

in this study is represented by small number of cells grouped within concentric mucilage 

envelopes. The individual colonies are spherical, microscopic, and enclosed within larger 

masses of mucilage. 

The concentration of the bacterial cell suspensions was quantified by (1) measurement 

of the optical density (O.D.) of suspensions using a spectrophotometer at a wavelength of 750 

nm; the calibration curve O.D. – humid weight was linear up to 0.9 a.u.; (2) weighing the wet 

centrifuged pellets (20 min at 5000 g); and, (3) freeze-drying the centrifuged pellets. The 

conversion factor humid/dry (lyophilized) weight for Gloeocapsa sp. was 8.2 ± 0.4 

(Pokrovsky et al., 2008). The biomass quantification via light absorbance measurement could 

be biased due to the presence of mineral precipitates. This wavelength (750 nm) was selected 

after full spectra recording in the region 300-800 nm of both mineral-free live cells of 

Gloeocapsa sp. cyanobacteria and cell-free calcite suspensions. The mineral suspension 

exhibits no adsorption in the region 650-800 nm whereas the cyanobacterial cells exhibit a 

distinct peak at 700-750 nm. The overall light absorbance of mineral suspension is lower by a 

factor of 10 than that of live biomass, when expressed per dry and wet weight. As a result, the 

maximum uncertainty in optical biomass measurements induced by the presence of minerals 

via absorbance at 750 nm is no more than 10%, which is within the experimental 

reproducibility. The O.D. calibration curve – humid weight was linear up to 1.3 absorbance 

units and the ratio between humid and freeze-dried weight of Gloeocapsa sp. was 10.0 ± 2.0. 

 

2.2.   Growth and preparation of Gloeocapsa sp.  

 

Gloeocapsa sp. were cultured until stationary growth phase in Cyanobacteria BG-11 

Fresh-water Solution Medium (Sigma-Aldrich C3061) of the following composition: NaNO3 
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(150 g/L), K2HPO4*3H2O or K2HPO4 (40 g/L or 30 g/L), MgSO4*7H2O (75 g/L), 

CaCl2*2H2O (36 g/L), Citric Acid (6 g/L, Ammonium Citrate (6 g/L), Na2CO3 (20 g/L), 

Trace metal solution (1 ml/L) (composition of trace metal solution: H3BO3 (2.86 g/L), 

MnCl2*4H2O (1.81 g/L), ZnSO4*7H2O (0.222 g/L), NaMoO4*5H2O (0.39 g/L), 

CuSO4*5H2O (0.079 g/L), Co(NO3)2*6H2O (0.0494 g/L). Stock culture of Gloeocapsa sp. 

were kept at 25 ± 1°C under constant cool white fluorescent light (2000 lx) on a Ping-Pong 

Fisher shaker.  

The cultures for experiments were harvested at the late exponential – stationary 

growth stage by centrifugation at 10,000 rpm (7000 g) for 10 min at 20°C. The cells were 

rinsed in 0.1 mol/L NaCl corresponding to optimal physiological conditions and centrifuged 

twice at 10,000 rpm for 10 minutes. Finally, bacterial suspension was washed in appropriate 

electrolyte solution and centrifuged. 

Inactivated cells were prepared by rinsing part of the fresh (live) biomass in 0.01 

mol/L sodium azide (NaN3) during 1-2 hrs. Sodium azide suppresses bacterial activity by 

inhibiting cytochrome oxidase and is widely used for inactivating cells while keeping the 

surfaces physically and chemically intact (Hunter, 2010). Cell growth of Gloeocapsa sp. 

culture in the presence of 0.01 M NaN3 in nutrient solution was completely suppressed as 

proven in a separate series of experiments. 

 

2.3.   Experimental procedure and analyses 

 

2.3.1.   Ca adsorption on cell surfaces 

 

In this study, two aspects of Ca2+ adsorption process were characterized: i) adsorption 

at constant initial calcium concentration in solution as a function of pH (pH-dependent 

adsorption edge) and ii ) adsorption at constant pH as a function of calcium concentration in 

solution (adsorption isotherm). All experiments were performed in undersaturated solutions 

with respect to any calcium carbonate phase as verified by speciation calculations with the 

MINTEQA2 computer code and corresponding database (Alisson et al., 1991).  

In experiments with Gloeocapsa sp. initial calcium concentration at variable pH 

ranged between 2.3 and 17 µmol/L, whereas Ca concentration at constant pH was between 4.2 

and 25 µM/L (Table 1). The pH was adjusted by adding aliquots of NaOH (0.1 and 0.01 
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mol/L) or HCl (1.0, 0.1 and 0.01 mol/L), whereas, the constant pH of 7.6, 9.0 and 11.8 was 

maintained by adding 5 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 5 

mM NaHCO3+Na2CO3 and 5 mM Na2CO3 buffers, respectively. 

The effect of light on Ca2+ adsorption onto surface of Gloeocapsa sp. was also 

investigated. For this, adsorption experiments were run under light (2000 lx light) or in the 

darkness, by wrapping the vials with aluminum foil. Adsorption experiments were conducted 

in 8 mL sterile polypropylene vials during 2.5, 19 and 24±1 hrs at 25 ± 0.2°C, in continuously 

agitated bacteria suspension with an ionic strength of 0.1 mol/L NaCl. The biomass 

concentration was kept constant at 10 gwet/L. Live, freshly harvested (stationary stage) cells, 

sodium azide-inactivated and heat-killed (autoclaved 20 min at 120°C) bacteria were used in 

the adsorption experiments. The cells were rinsed in 0.1 mol/L NaCl and  0.01 mol/L EDTA 

solutions for 12 minutes and again in 0.1 mol/L NaCl solution prior the experiments. This 

procedure allowed desorption of all possible Mg2+, Ca2+ ions from the cell’s surfaces that 

might occurred during the cyanobacteria culture. 

The adsorption of calcium on cell surfaces was quantified by subtracting, at each 

solution pH, the concentration of calcium remaining in bacterial suspension from the 

concentration of calcium added in the supernatant. The adsorption of calcium on reactor walls 

and cellular Ca release from the biomass in the full range of studied pH was negligible 

(<10%) compared to the initial amount of Ca added. This was routinely verified by Ca 

analyses in the supernatant and in the zero-added-Ca cell suspension experiments. 

Nonetheless, the measured Ca concentrations in these blank experiments (to the limit of 

detection) were explicitly taken into account to calculate the adsorption isotherm. 

All filtered (0.22 µm) solutions were analyzed for aqueous Ca concentration using 

flame atomic absorption spectroscopy (Perkin Elmer AAnalyst 400) with an uncertainty of 

±2% and a detection limit of 0.5 µmol/L. Dissolved organic carbon (DOC) was analyzed 

using a Carbon Total Analyzer (Shimadzu SCN) with an uncertainty of 3% and a detection 

limit of 0.1 mg/L. The DOC concentration during adsorption measurements remained quite 

low, between 5 and 10 mg/L and did not vary with pH and ionic strength in any systematic 

manner, suggesting negligible cell lysis and degradation in the full range of studied solution 

conditions. 
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2.3.2.  Ca and DIC uptake during cell growth 

 

There are 3 possible sinks for Ca in bacterial suspension: (1) metabolic intracellular 

incorporation during growth, (2) reversible adsorption at the cell surface, and (3) calcium 

precipitation in the form of CaCO3. To characterize the Ca metabolic uptake by live 

cyanobacteria, Ca concentration evolution was followed in the experiments with nutrient 

solution, containing 0.5 and 5 mM Ca where CaCO3 precipitation did not occur. Experiments 

were performed in ventilated glass bottles shaken under light at 25 ± 1°C. Periodically, 

aliquots of homogeneous suspension were sampled and used for measurements of biomass, 

pH, and, in <0.45 µm filtered samples, of Ca and alkalinity. Regular optical examination of 

cyanobacterial cells demonstrated that they remained intact, preserving their envelopes and 

structural organization in 2-4 cell associates within a single capsule. 

 

2.3.3.   Mineral precipitation experiments 

Kinetic experiments were performed in nutrient phosphate-free solution and in inert 

electrolyte (0.1 M NaCl) at 25 ± 1 °C in closed Schott® 1L glass bottle reactors containing 

800 mL of the initial solution. Preliminary experiments in BG-11 containing normal 

phosphate concentration enriched in Ca and bicarbonate yielded Ca phosphate as mineral 

precipitates induced during cell photosynthesis. To avoid phosphate mineral precipitation and 

phosphate effect on CaCO3 precipitation rates, all nutrient solution used for kinetic 

experiments were exempt of orthophosphate. 

Kinetic experiments were carried out with initial concentration of calcium chloride 

and sodium bicarbonate ranging from 1 to 50 and 5 to 10 mM, respectively. All biotic 

experiments were performed with initial biomass concentration between 0.04-0.66 (in nutrient 

solution) and 1.5-1.7 gwet/L (in inert electrolyte). Precipitation experiments were carried out 

over a range of initial saturation index (Ωcalcite) varying between 15 and 150 in the nutrient 

solution and between 66 and 83 in the inert electrolyte. Approximately 20 % of experiments 

were conducted in duplicates. Experimental conditions investigated in this study are listed in 

Table 2. Several experiments have been performed with atmospheric air bubbling but most 

experiments were run in glass vessels with sterile ventilated caps Biosilico® allowing 

efficient gas exchange with the atmosphere.  
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 Temporal variation of all experimental parameters in each individual experiment is 

presented in the Appendix 4. Numbers of experiments in Table 2 correspond to the ones in the 

Appendix 4.   

Regularly, an aliquot of ~7 mL was removed from the closed-system reactor, using a 

sterile syringe or pipette, to monitor the chemical and microbiological evolution of the system 

Approximately 2 mL of this aliquot were used to estimate the concentration of bacterial cells 

in the reactor by measuring pH and optical density at a 650 nm wavelength. The remaining 5 

mL were filtered through a 0.22 µm filter to remove biomass from the suspension. The filtrate 

was analyzed for alkalinity and calcium concentration. 

The pH in each unfiltered sample was measured using a Fisher® pH combined 

electrode, with an uncertainty of 0.01 units, previously calibrated using pH 4.01, 6.86, 9.18, 

and 10.01 buffer solutions at 25°C. Alkalinity was determined through potentiometric 

analysis, using a Schott autotitrator system (Titroline alpha plus, TA10plus). Ca concentration 

was determined using flame atomic absorption spectroscopy via a Perkin Elmer 5100 PC 

Spectrophotometer with an uncertainty of ±2% and a detection limit of 0.05 mg/L. 

 

2.3.4.   Solid phase’s analysis  

Mixtures of Gloeocapsa sp. cells and precipitated mineral phase were subjected to 

digestion for removing organic matter using 2-3 days treatment in 10% H2O2 at the same 

solution pH as in experimental samples. Resulted solid phases were rinsed in MilliQ water, 

frozen at -80°C and freeze-dried. Selected samples were studied by X-ray diffraction (INEL 

CPS 120, Coκα, scan speed 0.02os-1) and microscopic examination was performed using a Jeol 

JSM840a Scanning Electron Microscope (SEM) after carbon film coating deposition on the 

sample surface.  

Aliquots of suspensions containing live bacterial cultures and precipitated mineral 

were also examined using Transmission Electron Microscopy (TEM) with a JEOL JEM 

12000 EX and JEOL JEM 2100F (equipped with a field emission gum and PGT EDX 

detector) at 80 kV. Cell suspension was rinsed using sterile nutrient solution (without sodium 

chloride addition) or MilliQ water, centrifuged 2 min at 10 000 rpm. TEM samples for 

analyses were taken by immersing grids coated with a carbon film for 10 s in prepared 

bacterial suspension. Dried grids were used for TEM analyses 
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3.  Results and discussion 

 

3.1.  Calcium adsorption 

 

The pH-dependent adsorption edge for Gloeocapsa sp. performed in 0.1 mol/L NaCl 

and with a biomass of 10 gwet/L exposed for 3 hrs in the dark is illustrated in Fig. 1.  

Gloeocapsa sp., 10 g wet/L, 
0.1 M NaCl, 25°C; [Ca] o = 3.0 mg/L
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Fig. 1. Percentage of adsorbed calcium as a function of pH for live Gloeocapsa sp. 
culture in the darkness (blue diamonds) and under light (yellow diamonds). 

Experimental conditions: 25°C, [Ca]o = 75 µmol/L, 10 gwet biomass/L in 0.1 M NaCl and 
3 to 24 hours of exposure time. The error bars are within the symbol size. 

 

It can be seen from this figure that the adsorption is very low at pH < 3, it increases to 

25-30% at pH = 5-6 and gradually increase to 30-35% with further pH increase, up to 11.5. 

There is no significant difference in the adsorption yield for cells kept in the darkness during 

3 hrs and those exposed to light during 24 hrs. The maximal concentration of adsorbed Ca is 2 

to 3 µmol/gwet. 

Calcium adsorption isotherms recorded for live Gloeocapsa sp. at three constant pHs 

(5.5, 5.9 and 6.7) and Ca concentrations from 10 to 100 µmol/L are illustrated in Fig. 2. The 

adsorption is rather similar at all three studied pH values and the measured maximal 

adsorption density is close to 2 µmol/gwet, in accord with results of pH-dependent adsorption 

edge. 
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Gloeocapsa sp ., 10 gwet/L, 24 hrs exposure, light
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Fig. 2. Concentration of adsorbed calcium as a function of calcium concentration in 
solution (constant-pH adsorption isotherm) for live Gloeocapsa sp.. Experimental 

conditions: 25°C, pH 7.6, 9.0 and 11.8, 10 gwet biomass/L in 0.1 M NaCl and 24 hour of 
exposure time under light. 

 

Experimental condition and range of all parameters in adsorption experiments are 

shown in Table 1. 

 

Table 1. Summary of Ca adsorption with Gloeocapsa sp.  

№ durations, biomass, Conditions [Ca] range, pH range

hrs mg wet/L µM/L

pH adge adsorption

1 2.5 10 0.1 M NaNO3 2.28-19.1 2.981-11.429

2 2.5 10 0.1 M NaCl 3.30-70.1 2.537-8.011

3 24 10 0.1 M NaCl 12.6-81.2 2.564-11.206

4 24 10 0.1 M NaCl 17.0-65.4 2.578-11.588

Langmurian adsorption

5 24 20 0.1 NaCl 24.5-50.0 7.74-7.89

6 19 10 6 ml 0.1 M NaCl+0.3 ml 0.1 M NaHCO3 13.6-69.1 11.80-11.82

7 24 10 6 ml 0.1 M NaCl + 0.3 ml 0.1 M HEPES 13.7-93.6 7.60-7.62

8 24 10 6 ml 0.1 M NaCl + 0.3 ml 0.1 M HEPES 4.20-75.7 8.99-9.10

9 24 10 6 ml 0.1 M NaCl + 0.3 ml 0.1 M HEPES 5.25-718 7.51-7.48

10 23 10 6 ml 0.1 M NaCl + 0.3 ml 0.1 M HEPES 6.80-727 6.95-7.56

 



Experimental modeling of calcium carbonate precipitation by Gloeocapsa sp. 

157 
 

3.2.  Ca and DIC uptake during bacterial growth 

 

The results of Ca uptake during cyanobacterial growth are presented in Appendix 4 

(Exp. 29-34) and illustrated in Fig. 3. Plotted in this figure are the biomass, pH, and Ca 

concentration evolution in experiments that lasted 65 days. It can be seen that there is an 

increase of the biomass (up to 1.15 gwet/L) and pH (up to 11.4) during growth in the presence 

of various Ca concentration. At the same time, only small decrease of calcium concentration 

(< 0.11-0.46 mM) is observed whereas the DIC concentration remains constant or slightly 

increased, indicating the absence of carbonate mineral precipitation. We believe that observed 

Ca concentration decrease is due to Ca adsorption plus intracellular incorporation. The 

maximal amount of calcium that active bacteria are capable of uptake during their growth can 

be calculated from the difference between the initial and final Ca concentration normalized to 

final cell biomass:  

[Ca]uptake= ([Ca]initial  - [Ca]final ) / biomassfinal  (1) 

 

For Gloeocapsa sp., the maximal incorporation of calcium in the cells at our 

experimental conditions ranged from 86 to 430 µmol Ca gwet L
-1, being significantly higher 

than the experimental adsorption site density (∼ 2 µmol/gwet, see section 3.1). At the same 

time, Ca incorporation in live Gloeocapsa cells is much higher than that in anoxygenic 

phototrophic bacteria (13 to 8 µmol Ca /gwet L
-1 see Chapter 4; Bundeleva et al., submitted). 

Taken together, the maximal metabolic and passive adsorptive Ca uptake by live Gloeocaopsa 

sp. not linked to carbonate mineral precipitation is 430 µmol/gwet. L
-1.  



Experimental modeling of calcium carbonate precipitation by Gloeocapsa sp. 

158 
 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80

t, days

bi
om

as
s,

 g
 w

et
/L

0.5 mM Ca 5 mM Ca

8

9

10

11

12

0 20 40 60 80

t, days

pH

0.5 mM Ca 5 mM Ca

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70

t, days

[C
a]

, m
M

/L

0.5 mM Ca 5 mM Ca

∆[Ca]=0.46 mM/L

∆[Ca]=0.11 mM/L

A B

C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80

t, days

bi
om

as
s,

 g
 w

et
/L

0.5 mM Ca 5 mM Ca

8

9

10

11

12

0 20 40 60 80

t, days

pH

0.5 mM Ca 5 mM Ca

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70

t, days

[C
a]

, m
M

/L

0.5 mM Ca 5 mM Ca

∆[Ca]=0.46 mM/L

∆[Ca]=0.11 mM/L

A B

C

 

Fig. 3. Evolution of biomass (A), pH (B) and calcium concentration (C) in 
experiments with live Gloeocapsa sp. without mineral precipitation at different initial Ca 
concentration (Exp. 31-34). The error bars are within the symbol size and represent the 

average of two duplicates. 
 

 

 

3.3.  Kinetic of CaCO3 precipitation in the presents of Gloeocapsa sp.   

 

Three types of biotic kinetic experiments were conducted (Table 2): with live culture 

in inert electrolyte (0.1 M NaCl) and with live culture with and without light in nutrient 

phosphate-free solution.  

In most experiments conducted in this work, the precipitation process can be broken 

down into three stages: (1) initial pH-rise period, (2) the actual massive precipitation reaction, 
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and (3) an equilibration phase (Fig. 4). Calcium carbonate precipitation was evidenced by Ca 

concentration decrease and also supported by microscopic examination of produced mineral 

phases. Typical plots of bacterial biomass, pH, [Ca], [Alkalinity] and Ω as a function of 

elapsed time in biotic experiments in nutrient solution with and without light are presented 

Fig. 4. It can be seen from this figure that significant decrease of calcium concentration is 

observed in both types of biotic experiment. The precipitation under light in biotic experiment 

started earlier than that in the darkness although the initial calcite saturation index was similar 

in both experiments (Ωcalcite = 23). Moreover, light experiments demonstrated significant 

increase of bacterial biomass which was accompanied by a dramatic increase in solution pH, 

and, as a result, Ωcalcite increase to 62, which coincided with the beginning of massive calcium 

carbonate precipitation.  In the absence of light, there were no increase of the biomass and pH, 

Ω values remained stable or increased insignificantly. These results suggest that the presence 

of active Gloeocapsa sp. crucially affect calcite precipitation rates compared to biotic controls 

without light. This result corroborates that of Obst et al. (2009b) who reported little difference 

in calcite nucleation rates measured in the presence of active and inactive cyanobacteria 

Synechococcus leopoliensis and that of Martinez et al. (2010), who observed enhancement of 

CaCO3 precipitation rate in biotic experiments with two strain of cyanobacteria 

Synechococcus sp. and Planktotrix sp. compared to bacteria-free experiments.  
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Table 2. Kinetic experiments with Gloeocapsa sp.: conditions, rates and mineralogy of precipitates. 

№ duration, biomass range, pH range [Alkalinity] range [Ca] range precipitation rate, Ω range [DOC], mineralogy
hrs g wet/L mM/L mM/L  µM/hrs mM/L

Experiments in nutrient solution
1 624 0.62-1.46 9.56-9.01 2.84-3.36 2.77-2.74 3.06 89.1-54.9
2 624 0.68-1.22 9.10-8.71 2.44-2.98 5.80-7.73 0.00 70.8-58.9
3 408 0.18-1.92 9.00-9.07 4.56-2.66 2.75-1.47 6.48 69.2-30.9
4 408 0.14-2.62 8.83-9.46 4.53-1.49 4.83-3.47 9.12 79.4-50.1
5 408 0.14-2.7 8.69-9.10 1.43-1.89 9.19-7.46 19.2 30.9-61.6
6 408 0.12-2.92 8.58-9.82 0.70-1.47 13.11-10.75 15.8 15.1-79.4
7 408 0.12-2.76 8.44-9.45 3.75-1.03 20.60-18.82 25.0 74.9-54.9
8 408 0.12-1.98 8.27-9.56 2.61-0.94 45.00-38.20 54.2 57.7-53.7
9 356 0.15-1.22 9.37-9.49 10.00-7.95 1.00-0.09 2.57 75.8-6.70
10 356 0.15-1.74 8.79-9.19 10.00-2.53 5.00-0.24 22.1 147-9.80
11 168 0.15-0.9 8.17-9.51 10.00-0.5 10.00-2.13 65.6 81.3-13.8 calcite
12 356 0.10-1.52 7.71-8.54 10.00-0.31 20.00-9.26 53.5 50.1-8.10 calcite
13 356 bacteria free 7.42-7.89 10.00-0.81 20.00-9.04 30.8 26.9-4.70

14# 264 0.15-1.88 9.37-9.73 10.00-4.40 1.00-0.87 7.64 75.9-8.90

15# 264 0.15-3.16 8.51-9.10 10.00-4.85 5.00-0.46 21.2 93.3-18.2

16# 120 0.15-1.48 7.75-8.58 10.00-0.97 10.00-1.80 68.3 34.7-43.7 calcite

17# 120 0.15-0.84 7.46-8.34 10.00-0.59 20.00-10.86 76.1 29.5-7.80 calcite+aragonite

18# 120 bacteria free 7.40-8.01 10.00-0.83 20.00-7.96 100 25.7-4.70 calcite

19# 284 0.04-1.98 8.86-9.14 4.27-2.80 1.80-0.13 14.2 38.1-6.30

20# 284 0.04-1.20 8.82-8.75 4.30-0.88 4.50-0.57 56.2 70.8-6.30

21# 284 0.04-2.28 8.73-8.62 4.96-0.77 9.00-2.69 135 107-12.3 calcite

22# 284 bacteria free 8.60-7.89 4.47-0.80 9.00-5.45 12.5 79.4-2.70
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Table 2. (Continued) Kinetic experiments with Gloeocapsa sp.: conditions, rates and mineralogy of precipitates.  

№ duration, biomass range, pH range [Alkalinity] range [Ca] range precipitation rate, Ω range [DOC], mineralogy
hrs g wet/L mM/L mM/L  µM/hrs mM/L

23 3275 0.17-1.08 8.64-9.76 4.43-2.32 1.52-0.09 2.92 23.1-6.64 0.81-2.96 calcite
24* 3275 0.08-0.17 8.37-9.17 4.91-2.68 1.52-0.12 2.44 23.4-3.90 0.17-0.44

25# 552 0.19-0.45 8.62-9.02 4.36-3.12 1.48-0.31 2.12 42.6-5.30
26 3275 0.17-1.02 8.66-9.75 17.53-6.63 0.77-0.07 6.48 24.5-8.30 0.66 calcite
27* 3275 0.08-0.18 8.66-9.69 6.99-13.34 0.77-0.08 0.05 24.5-6.80 0.21

28# 548 0.21-0.46 9.07-9.35 10.90-9.59 0.74-0.13 2.32 54.9-11.7
Experiments of Ca uptake during cyanobacterial growth in nutrient solution

29 1518 0.08-1.308 9.32-10.15 0.008-0.000
30 1518 0.097-1.324 9.30-9.96 0.011-0.000
31 1518 0.074-1.159 9.15-9.82 0.53-0.42
32 1518 0.074-1.189 9.18-9.68 0.55-0.39
33 1518 0.074-1.055 8.37-8.72 5.33-4.87
34 1518 0;069-1.019 8.13-8.80 5.23-4.83

Experiments in inert electrolyte
35" 96 1.64-1.96 9.07-10.80 4.42-3.98 3.40-3.05 1.82 83.2-186
36" 96 1.66-2.00 8.96-10.92 4.95-2.93 3.45-2.59 9.68 66.1-117
37" 96 1.60-1.74 8.90-10.64 4.18-2.40 5.11-3.94 40.5 93.3-107
38" 96 1.50-1.80 8.84-10.73 4.62-2.08 6.52-5.49 12.0 85.1-114

* experiments in the dark
# experiments with bubbling
" experiments with stirring
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Fig. 4. Three phases of 

calcium carbonate precipitation 

in nutrient solution under light 

(open symbols) and in the 

darkness (solid symbols) by 

Gloeocapsa sp. (Exp. 23 and 24 

respectively): (1) a pH-drift 

period, (2) massive precipitation 

reaction, and (3) an 

equilibration phase.  
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Biotic precipitation experiments were conducted at different initial Ωcalcite (from 15 to 

150). The Ωcalcite evolution with time exhibited similar pattern among different experiments. 

At the beginning of experiments we observed an increase of Ωcalcite until a maximal value is 

attained (70-150) which induced massive CaCO3 precipitation and subsequent Ωcalcite 

decrease. The duration of this increase and the maximal value of Ωcalcite varied from one 

experiment to the other depending on the initial experimental conditions (Fig. 5).   
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Fig. 5. Evolution of pH (A) and Ωcalcite (B) in biotic experiments in nutrient 
solution. The numbers in the legend correspond to the following initial experimental 
conditions: (1) 3 mM CaCl2, 5 mM NaHCO3, biomass 0.14 g wet/L  (Exp.4 ); (2) 3 mM 

CaCl2, 5 mM NaHCO3, biomass 0.18 g wet/L (Exp.3); (3) 13 mM CaCl2, 9 mM NaHCO3, 
biomass 0.12 g wet/L (Exp.6). 

 

In contrast to biotic nutrient-rich experiments, in biotic experiments performed in the 

inert electrolyte, Ca concentration decrease was much less pronounced (Fig. 6). During these 

experiments, only insignificant increase of the biomass (between 0.3 and 0.08 g wet/L) 

occurred indicating the lack of bacterial development in the absence of nutrients (Fig. 6A). 
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Despite the lack of bacterial growth, there is a significant pH increase in all biotic 

experiments performed in the inert electrolyte (from 8.9 at the beginning to 10.7 at the end of 

experiment, Fig. 6B).  
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Fig. 6.  Evolution of aqueous solution parameters during biotic experiments in 
nutrient solution and inert electrolyte (Exp. 20 and 37 respectively). Initial conditions: 5 

mM CaCl2 and 5 mM NaHCO3. (1) biomass development; (B) pH; (C) calcium 
concentration; (D) Ωcalcite. 

 

The increase of pH without active development of bacterial biomass in the experiment 

in inert electrolyte may stem from on-going photosynthetic bacterial activity due to sufficient 

intracellular nutrient resources. As a result, calcite supersaturation degree increased from 66-

90 at the beginning to 110-120 at the end of experiments with a maximum of ~190 attained in 

the first day of reaction. 

Apparent precipitation rates (r i) were calculated from the first derivative of the fluid 

phase Ca concentration with respect to time, using 

      
[ ]
dt

Cad
ri =      (2) 

This equation has been applied to each experimental data series, typically at the stage 

2 (Fig. 4) when the largest change in Ca concentration occurred. Resulting precipitation rates 

are listed in Table 2. Due to paucity of experimental data points and low temporal resolution 
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of long-term experiments, it was not possible to provide the uncertainties attached to these 

rate values but they are estimated to be 20-30%. 

 

3.4.   Solid phase characterization 

In the course of experiments, visual white precipitates were formed on the glass walls 

of reactors and in the bacterial suspension after 5-7 days of culture growth. Although calcium 

carbonate precipitation was observed in biotic and abiotic experiments, the shape and size of 

precipitates was different. The SEM images of calcite formed in abiotic nutrient-free, biotic 

nutrient-free and biotic nutrient-rich solutions are shown in Fig. 7, 8 and 9, respectively. The 

XRD analysis identified calcite formations in all experiments except the experiment 17 (Table 

2) in nutrient media with initial biomass 0.15 g wet/L at Ωinitial 30 that produced aragonite.  

Abiotic nutrient-free experiments produced typical rhomobohedral calcite crystals 5 to 

10 µm in size, often associate in clusters (Fig. 7). 

 

Fig. 7. Calcite precipitated in abiotic (cell-free BG 11) experiment (initial 
conditions: 20 mM CaCl2, 10 mM NaHCO3) (Exp. 18). 

 

The size and shape of the crystals formed in biotic precipitation in the inert electrolyte 

and in nutrient solution are dramatically different and vary both in the course of the same 

experiment and among different initial solution conditions. First, there are large, 50 to 100 µm 

crystal associates without clear geometric form (Fig. 8A) or having spherical, rounded shape 

of 5 to 15 µm diameter (Fig. 8 B). In both associated crystals, rounded and elliptical holes 2 to 

4 µm in diameter most likely representing the imprints of Gloeocapsa sp. Bacteria, are visible 

at the surface (Fig. 8 C, D). The same imprints are also visible at the surface of crystals 

formed in nutrient-rich media (see below). Similar “porous” crystals have also been found in 

experiments with CaCO3 precipitation by algae (Stabel, 1986), cyanobacteria Synechococcus, 
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eukaryotic picoplankton Mychonastes sp. and Chlorella sp. (Dittrich et al., 2004). The second 

possible type of precipitate is represented by rhomboid crystals with the longest facet of 10-15 

µm (Fig. 8 E), similar to those formed in abiotic experiments. The rhombohedral crystals and 

“porous” associates are often linked together, both in nutrient-free and nutrient-rich solutions 

(Fig. 8 D and 9 A, B). In addition, the rhombohedral and spherical associates of 10-15 µm in 

diameter are often formed in experiment with live cells in the inert electrolyte (Fig. 8F) 

 

Fig. 8. Calcite precipitated in biotic experiments with Gloeocapsa sp. in inert 
electrolyte. (A,B) Exp. 36; (C,D) Exp. 37; (E,F) Exp. 38. 
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The third type of formed crystals is nano-globular associates. They are often found in 

biotic experiments in nutrient solution and represented by small individual crystals associated 

in large aggregates (Fig. 9 C), typically covered by organic matter, probably in the form of 

EPS (Fig. 9 D). The presence of organic matter is confirmed by the EDX analysis which 

demonstrated very high C content at the surface of these crystals. 

 

Fig. 9. Calcite precipitated in biotic experiment with Gloeocapsa sp. in nutrient 
solution.(A) Exp. 15; (B, D) Exp. 26; (C) Exp. 23. 

 

Overall, the obtained results imply strong participation of cyanobacteria Gloeocapsa 

sp. in CaCO3 precipitation. The existence of different types of crystals in biotic experiments 

suggests that CaCO3 precipitation is driven by different pathways: inorganic precipitation as 

evidenced by the presence of rhombohedral crystals, typical for abiotic experiments and 

biologically-affected precipitation evidenced by the presence the Gloeocapsa-size pores on 

the surfaces of crystals and the nano-globules covered by the organic matter.      

Further insights on mechanisms of CaCO3 precipitation were acquired using TEM 

technique. Results of Transmission Electron Microscopy analysis of active cells following 

their presence in the control (nutrient, mineral-free media) and calcite-supersaturated 
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solutions are shown in Fig. 10. The cells in nutrient media appear intact without traces of 

precipitation within the surface (Fig. 10 A). The elements detected on and around live cells in 

nutrient medium are mainly C and O with some S, Si, P, Cl, and Na. No Ca was detected on 

these surfaces. In contrast, it can be seen from Fig. 10 B that significant CaCO3 precipitation 

occurs in the vicinity of bacterial cell in calcite-supersaturated medium at Ωcalcite = 25. In 

these experiments, Ca was detected in precipitates formed at the surface and at some distances 

from Gloeocapsa sp. cells.   

 

 

Fig. 10. TEM images of cells of Gloeocapsa sp. (A) In nutrient solution; (B) in 
calcite-supersaturated media (1 mM CaCl2, 10 mM NaHCO3) (Exp. 26). 

 

The TEM images of cyanobacterial cells with mineral globules and agglomerates 

formed in precipitation experiment are further illustrated in Fig. 11. The size distribution of 

the globules is irregular; a large number of globules are in the 60-100 nm size range (small 

globules). These small globules are mostly attached to the surface of bacterial cells (Fig. 11 

A). Some cells may be completely covered by the globules so that the surface is not visible 

(Fig. 11 B). There are also large globules (100-200 nm) that occur in the extracellular space, 

being separated from the Gloeocapsa sp. cells (Fig. 11 C, D).   
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Fig. 11. TEM image of 
Gloeocapsa sp. cells and globules of 
calcium carbonate formed in calcite-
supersaturated media (1 mM CaCl2, 10 
mM NaHCO3). (A) General view of the 
bacterial cells and CaCO3 precipitated 
in the vicinity of the cell surface and at 
some distance; (B) Cell aggregate 
completely covered by small CaCO3 
globules; (C) Extracellular globular 
associates; (D) Detail of globular 
associats with aggregates of small 
globules (white rectangle) and large 
globules (white oval). Aggregate of 
small globules attached to the cell (not 
shown in this picture) (Exp. 26). 
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4.   Discussion: rates and mechanisms of calcium carbonate 

formation by Gloeocapsa sp.  

The typical decrease of Ca concentration at the stage of massive CaCO3 precipitation 

is 1 to 4 mmol/L over the first 2-7 days, accompanied by the biomass increase of 0.2 to 0.5 

gwet/L (Fig. 4, 6). This decrease, linked mainly to CaCO3 precipitation (5 to 8 mmol/gwet) is at 

least an order of magnitude higher than that induced by Ca adsorption at the cell surface and 

intracellular assimilation during cyanobacterial growth (sections 3.1 and 3.2). As a result, the 

rate of Ca scavenging during cyanobacterial cells growth is largely due to extracellular CaCO3 

precipitation rather than intracellular and surface Ca uptake. Indeed, results of the present 

work allowed establishing a direct relationship between the amount of precipitated calcium 

and the amount of biomass produced during culture growth (Fig. 12).  
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Fig. 12. Relationship between the amount of precipitated Ca (mM/L) and increase 
of the biomass (gwet/L) in biotic experiments with Gloeocapsa sp. in nutrient solution. 

Experimental conditions: Ω initial = 15-150; pH = 8.6-9.6. 
 

Quantitative analysis of the amount of precipitated mineral (mole of Ca removed from 

solution) as a function of biomass production yielded a clear relationship with a slope of 2.0  

following the relationship: 

   Caprecipitated (moles) = (2.0) × Biomassproduced (gwet) (3) 

This finding corroborates reported linear relationship between the amount of 

hydromagnesite precipitated and the absolute biomass increase in experiments of hydrous Mg 
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carbonate precipitation due to photosynthetic activity of another cyanobacteria 

(Synechoccocus sp.) yielding the coefficient in Eqn. 3 of 1.45±0.23 (Appendix 1). 

Despite this clear tendency of active cells to precipitate CaCO3, there is no 

straightforward relationship between apparent calcite precipitation rates and solution 

supersaturation degree as shown in Fig. 13. This most likely stems from 1) microenvironment 

of solution pH and supersaturation degree adjacent to active photosynthesizing cells and 2) 

processes of Oswald ripening consisting of initial nucleation of amorphous CaCO3 or 

monohydrocalcite at high supersaturation degree in the vicinity of cell surface, at Ωcalcite 

values significantly higher than that of the bulk solution, followed by rapid recrystallization of 

metastable phases to aragonite and, finally, calcite. The existence of aragonite as final 

precipitates in some experiments (Exp. 17 in Table 2) conducted at Ωinitial ~ 30, indirectly 

witnesses the existence of such transformation reactions, also demonstrated in previous 

experiments with anoxygenic phototrophic bacteria (Bundeleva et al., 2011, Chapter 3 of this 

thesis). 

CaCO3 precipitation by cyanobacteria Gloeocapsa sp. includes several consecutive 

stages. In the first step, metal ions present in the aqueous surroundings of the cell interact 

electrostatically with negatively charged groups of cell surface and capsules (i.e., Douglas & 

Beveridge, 1998) and cell exopolysaccharides which may act as nucleation sites capable to 

accumulate significant quantities of Ca2+ (Dittrich et al., 2004, 2010). Once Ca is bound, it 

attracts the carbonate ion, given that cyanobacterial metabolism increases the 

microenvironmental pH facilitating transformation of DIC into CO3
2−. 
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Fig. 13. Plot of apparent Ca precipitation rates as a function of calcite 
supersaturation degree in the bulk solution. 
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This mechanism is driven by HCO3
− uptake into the cell and its conversion by 

carbonic anhydrase to CO2 and OH− (Miller and Colman, 1980). The CO2 is incorporated into 

the cell biomass while OH− ions are released into the cell's microenvironment (Miller et al., 

1990) and getting concentrated around the cell, and as a result around and within the capsules. 

Indeed, Gloeocapsa sp. grown under the light is capable of increasing solution pH from 8.5-

8.6 to 9.5-9.6 within 48 h. This hypothesis is further confirmed by the TEM and SEM 

analyses: in calcite-supersaturated media, abundant CaCO3 precipitation is observed around 

bacterial cells (Fig. 10B, 11A) with some cells and cell associates being completely encrusted 

by calcite (Fig. 8 A, B and C). Additional mechanism of cyanobacterial biomineralization, 

suggested first by Douglas and Beveridge (1998), is that cyanobacteria continuously shed off 

patches of mineralized S-layer which is rapidly replaced by new material. The quantitative 

contribution of this mechanism to biocalcification of Gloeocapsa sp. cannot be determined in 

this study; however, given that precipitated CaCO3 is located not only adjacent to the cells but 

also at some micron-scale distance from the cells surface (Fig. 10B and 11 A, C and D), such 

an exopolysaccharidic shed-off pathway is certainly plausible.  

Noteworthy is the typical spatial organization of cyanobacterial carbonate precipitates 

presented as honeycomb, highly porous calcite crystal associates, inheriting the capsules 

associates of bacteria (Fig. 8). The TEM images of cell – CaCO3 precipitates demonstrated 

the tight link between the cell surface and the nano-globules of precipitated CaCO3. Similar 

nano-spheres and globules were found during calcium carbonate precipitation by 

heterotrophic sulfate reducing bacteria (Aloisi et al., 2006). In their study, calcium carbonate 

precipitation was observed on extracellular polymeric substances (EPS) and near the 

microbial cell wall in the form of nano-globules. A number of recent studies with other types 

of anaerobic and aerobic heterotrophic bacteria (e.g., Bontognali et al., 2008, Spadafora et al., 

2010) also confirmed the governing role of mineral nano-globules in microbially-induced Ca 

and Mg carbonate formation. 

The absence of self-protection mechanisms against CaCO3 incrustation in Gloeocapsa 

sp. cyanobacteria sheds new light on mechanisms and capacities of photosynthetizing 

organisms to form carbonate mineral deposits. It has been earlier argued that the sole action of 

cyanobacteria, notably in the biomats is insufficient to provide massive calcium carbonate 

deposition. Numerous field observation and modeling experiments (Krumbein et al., 1977; 

Chafetz and Buczynski, 1992) demonstrated that precipitation of calcium carbonate occurs 

predominantly within the mats in the aphotic zone, in the deeper parts of the mats where the 
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degradation of organic compounds by heterotrophic bacteria occurs. In modern Ca-Mg 

carbonate stromatolites, formed in association with microbial mats in hypersaline coastal 

lagoons, degradation of organic matter of soft mats leads to the development of lithified Ca-

Mg carbonate laminate via sub-micron polyhedral crystal formation of high-Mg calcite and/or 

Ca dolomite as a result of the coalescence of carbonate nano-globules around degraded 

organic matter nuclei (Spadafora et al., 2010). Furthermore, dead cyanobacteria were coated 

with calcium carbonate quicker and to a greater extent than live cyanobacteria (Chafetz and 

Buczynski, 1992) in agreement with the earlier observation that CaCO3 precipitation within 

the mats is governed by the degradation of organic carbon compounds by bacteria (Krumbein 

et al., 1977). In addition to well-established S-layer shed off (Thompson et al., 1997), this 

observation may be linked to metabolic maintenance of positive surface potential and self-

protection of live cyanobacterial cells from the incrustation (Martinez et al., 2008, 2010). 

Another mechanism of bacteria self-protection against uncontrolled encrustation is 

extracellular polymeric substances (EPS) secreted by the microbial community as it is the 

case for Desulfovibrio brasiliensis, whose cells are predominantly located outside of the EPS 

aggregates where mineral growth takes place. As a result, they remain mobile and are rarely 

entombed within the mineral (Bontognali et al., 2008). Similarly, another SRB bacterium, 

Desulfonatronum lacustre, produces individual globules 6-20 nm in diameter that originates 

from the cell surface but calcify significantly only when released to the culture medium 

(Aloisi et al., 2006). The idea that EPS of cyanobacteria serve as effective Ca2+-buffers, thus 

preventing seed crystal nucleation even in a highly supersaturated macroenvironment has 

been also suggested from numerous field studies of biofilms in alkaline salt lakes (e.g., Arp et 

al., 1999a, b).  

In this regard, the ability of cyanobacteria Gloeocapsa sp. to efficiently calcify, even 

in life cell culture, is most likely linked to its unique cellular organization. Indeed, several 

Gloeocapsa sp. cells are usually grouped together in a single external capsule having essential 

polysaccharidic composition. In addition, the major surface functional groups of Gloeocapsa 

sp. cells are carboxylate, amine, phosphoryl/phosphodiester and hydroxyl stemmed from the 

presence of protein, lipid and carbohydrate components on the external envelopes of cells and 

cell associates such as capsules (Pokrovsky et al., 2008).  

In contrast to other cyanobacteria such as Synechococcus sp. and Planktothrix sp. 

(Martinez et al., 2010) and anoxygenic phototrophic bacteria (Bundeleva et al., 2011), the 

Gloeocapsa sp. cells do not increase their zeta-potential at 9 ≤ pH ≤ 11 (Pokrovsky et al., 

2008). This result, together with massive cell incrustation by CaCO3 and mineral formation in 
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the vicinity of the cell walls, microscopically confirmed in the present study, suggest the 

absence of specific “cell protection mechanism” against cells incrustation during active phase 

of CaCO3 nucleation.  

 

5.  Conclusions 

 

This study presents the first step towards the quantification of CaCO3 precipitation by 

live photosynthetizing cyanobacteria, Gloeocapsa sp., having untypical cellular organization. 

Biotic experiments performed in strongly supersaturated solutions yielded different type of 

crystals reflecting that CaCO3 precipitation in these experiments can be driven by different 

mechanisms: inorganic precipitation producing rhomboid calcite crystals, typical for abiotic 

experiments, and cell-induced precipitation producing the porous crystals with honeycomb –

like structure bearing the imprints of Gloeocapsa sp. cell associates. Detailed TEM analyses 

revealed the presence of nano-globules covered by organic matter in the vicinity of cell 

surface but also at some micron-scale distance from the cells. Overall, microscopic 

examination of reaction products obtained in various environmental conditions does not 

suggest the existence of any self-protection mechanism against uncontrolled CaCO3 

encrustation of live Gloeocapsa sp. cells, in contrast to that established earlier for other 

cyanobacteria, anoxygenic phototrophic bacteria and heterotrophic anaerobic bacteria. The 

lack of this self-protection mechanism, also supported by electrostatic surface properties of 

Gloeocapsa sp. cell capsular associates, and high laboratory calcification rates measured at 

relatively low biomass produced during bacterial growth, place these bacteria among the most 

efficient bacterial calcifies on Earth. Indeed, apparent bulk rates of CaCO3 precipitation due to 

Gloeocapsa sp. photosynthesis (0.01-0.100 mM/h) are similar or higher than those reported 

for capsule-free cyanobacteria Synechococcus sp. and Planktothrix sp. (0.03-0.04 mM/hr, 

Martinez et al., 2010), aerobic ureolithic bacteria (0.01 mM/hr, Micthel and Ferris, 2005) and 

anoxygenic phototrophic bacteria (0.001-0.0150 mM/hr, Bundeleva et al., 2011, Chapter 3). 

The absence of direct correlation between the apparent CaCO3 precipitation rates and calcite 

supersaturation degree or other solution chemical composition parameters is most likely 

linked to specific microenvironments, non detectable in the bulk solution, adjacent to 

cyanobacterial cell due to intensive photosynthetic activity and OH- ions release. 

 



Experimental modeling of CaCO3 precipitation by cyanobacteria Gloeocapsa sp. 

175 
 

 



Experimental modeling of CaCO3 precipitation by cyanobacteria Gloeocapsa sp. 

176 
 

 

      



 

  

  

  

  

  

 

  

 Conclusions and perspectives 



 



 Conclusions and perspectives  

179 
 

 Résumé en français de la conclusion 

La présente étude décrit une approche conjointe de plusieurs techniques destinée à 

caractériser la précipitation de carbonate de calcium induite par deux types de souches 

bactériennes anoxygéniques phototrophiques (APB), Rhodovulum steppense A-20s 

haloalcaliphilique et Rhodovulum sp. S-17-65 neutrophilique halophilique, se développant sur 

des substrats organiques; ainsi que par une souche de cyanobactéries d’eau douce Gloeocapsa 

sp..  

Dans le premier article publié nous avons décrits les mesures de mobilité 

électrophorétique et d’adsorption de Ca à la surface des APB A-20s et S-17-65 vivantes, 

inactive et mortes qui ont été effectuées afin de déterminer le degré pour lequel ces bactéries 

contrôlent métaboliquement leur potentiel de surface. Nous avons montré en particulier que 

ces APB sont capable de réguler leur potentiel de surface en solution alcaline (pH~10-10.5). 

Cela entraîne un potentiel zeta inhabituellement moins négatif, alors jamais reporté pour la 

plupart des bactéries, à l’exception des cyanobactéries. Cet effet n’est pas observé pour les 

cellules mortes et celles inhibées par NaN3, et il est significativement réduit après l’ajout de 1 

à 10 mM d’ions bicarbonates.  

Par analogie avec d’autres bactéries, deux mécanismes fonctionnant en parallèle 

peuvent être mis en avant pour expliquer ce nouveau phénomène d’augmentation du potentiel 

zeta en présence d’APB en solution alcaline : i) l’extension de la consommation de 

micronutriments sous forme d’anions et ii)  la répulsion des ions Ca2+ par la surface cellulaire, 

la protégeant ainsi de l’incrustation de CaCO3. Ce dernier mécanisme est en accord avec les 

résultats d’adsorption de calcium à la surface cellulaire dans la gamme physiologique de 

composition de la solution. Une légère différence dans le degré d’augmentation du potentiel 

zeta et d’adsorption de Ca a été observée entre les deux souches APB étudiées ce qui est 

compatible avec leurs différences de surface cellulaire effective et leurs gammes de 

compositions optimales de la solution. 

Dans le second article, soumis, nous présentons les premiers résultats de précipitation 

de CaCO3 par des bactéries anoxygéniques phototrophiques. Les conditions optimales 

initiales de précipitation pour les deux souches sont les suivantes : [Ca]=10mM ; 

[DIC]=5mM, pH=8.1±0.1 et 
3CaCOΩ =70-100. Au stade de précipitation massive de CaCO3, 

les vitesses apparentes varient entre 0.001 et 0.010 mM/heure, et entre 0.005 et 0.015 

mM/heure pour les cultures A-20s et S-17-65, respectivement. Ces valeurs sont similaires à 

celles reportées auparavant pour les cyanobactéries et les bactéries hétérotrophes, étant déjà 
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deux ordres de grandeur plus importantes que les taux de calcification typiques des algues 

corallines. Les vitesses apparentes  de précipitation mesurées ne sont pas affectées, à 10-20% 

près, par l’adsorption de Ca à la surface des cellules et par la consommation intracellulaire de 

Ca pendant la croissance de celle-ci. Les vitesses apparentes de précipitation sont 

positivement corrélées avec 
3CaCOΩ , mais il existe un seuil de pH (~8.5) au dessus duquel les 

cellules vivantes précipitent CaCO3 alors que les cellules mortes et inactives ne montrent 

aucune précipitation. Il apparaît ainsi qu’un pH élevé est un prérequis important pour la 

précipitation de CaCO3 par des APB vivantes, même pour des taux de sursaturation élevés.  

Des analyses par microscopie électronique en transmission (MET) ne montrent aucune 

présence de CaCO3 à l’intérieur des cellules vivantes. Cependant, la calcite et le monohydro-

calcite ont été identifiés par microscopie électronique à balayage (MEB) et par diffraction de 

rayons X (XRD) comme étant les principales phases de carbonate de calcium ayant 

précipitées dans la solution. Ces résultats suggèrent fortement l’existence d’un mécanisme 

prévenant la biominéralisation de carbonates au sein des cellules vivantes des APB, qui 

peuvent ainsi se protéger d’incrustations incontrôlées. Ce mécanisme consisterait 

principalement en la création de charges plus positives à leur surface, pour des pH 

correspondant à la nucléation massive de CaCO3. 

La troisième partie de l’étude, également sous forme d’article, visait à analyser le rôle 

des cyanobactéries Gloeocapsa sp. dans la précipitation de CaCO3 par des modèles 

expérimentaux en laboratoire. Afin de définir le lien entre la croissance bactérienne 

(production de biomasse) et les vitesses de précipitation de CaCO3, des expériences cinétiques 

de précipitation avec les deux souches de APB et les cyanobactéries Gloeocapsa sp. en 

solution nutritive et d’électrolyte inerte ont été menées. Les phases solides précipitées ont été 

examinées par MEB, MET et XRD. Ces observations microscopiques ont permis de mettre en 

évidence différents mécanismes de précipitation de CaCO3 en présence de Gloeocapsa sp.: 

inorganique, produisant de la calcite rhomboédrique typique d’expériences abiotiques, et 

biologiques. Ce dernier processus est mis en évidence par l’apparition de cristaux poreux et 

par des empreintes sur les cristaux rhomboédriques et sur les nano-globules de calcite 

précipitée recouverts de matière organique. Les analyses microscopiques montrent la présence 

de carbonate de calcium directement sur la membrane cellulaire et au sein des cellules 

vivantes des bactéries. Les expériences menées sur Gloeocapsa sp. ne montrent aucun lien 

entre la vitesse de précipitation apparente et le degré de sursaturation par rapport à CaCO3. 

Ceci est plutôt lié à l’existence de microenvironnements (pH, [DIC], ΩCaCO3) autour des 
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cellules réalisant la photosynthèse, qui ne sont pas directement liés et/ou identiques à la 

composition globale de la solution. 

 

L’ensemble des résultats de précipitation de CaCO3 nous permet ainsi d’identifier 

deux types différents de biominéralisation en lien avec la photosynthèse bactérienne. Le 

premier est qualifié de nucléation suivie de précipitation passive en dehors de la membrane 

cellulaire pour les APB, et le second de nucléation directe liée à la surface des cellules pour 

Gloeocapsa sp.. Dans le premier cas, le scénario le plus plausible de précipitation de CaCO3 

consiste en l’augmentation du pH et du degré de saturation environnant par les APB au cours 

de leur métabolisme, entraînant un changement de la chimie de la solution. Il est peu probable 

que les cellules vivantes des APB puissent servir de sites de nucléation pour les carbonates, 

car selon nos observations, elles se protègent de l’incrustation par les précipités en créant un 

potentiel de surface positif à un pH typique de la photosynthèse et durant la phase de 

nucléation massive de carbonates. En revanche, l’absence d’un mécanisme de protection 

semblable pour les cyanobactéries Gloeocapsa sp., due à une organisation spatiale différente 

de leurs cellules, entraine une calcification efficace des dites cellules. Elles peuvent dans ce 

cas servir de site de nucléation de part la charge négative présente à la surface des capsules de 

Gloeocapsa sp., qui peuvent alors lier et accumuler les ions métalliques comme Ca2+. De plus, 

au sein du microenvironnement proche des parois cellulaires bactériennes, le pH peut être 

plus élevé que celui de la solution à cause de l’intense photosynthèse qui s’y déroule. Cette 

composition très variable de la solution à la surface des bactéries ne permet pas l’observation 

d’une relation directe entre le degré de sursaturation de la solution et la vitesse apparente de 

précipitation de CaCO3 en présence de Gloeocapsa sp. réalisant la photosynthèse. 

 

Enfin, les deux derniers articles consignés dans cette thèse (Annexes 1 et 2) présentent 

l’étude de la formation de carbonates magnésiens hydratés et leurs fractionnements 

isotopiques associés en présence de bactéries vivantes réalisant la photosynthèse (Gloeocapsa 

sp. et Synechoccocus sp.). Nous avons ainsi montré, lors d’une série d’expériences et 

d’observations en milieu naturel, que les Mg-carbonates hydratés peuvent apparaître à la suite 

de photosynthèse cyanobactérienne dans les eaux de lacs, et que le fractionnement isotopique 

du magnésium entre le solide et la solution (∆26Mgsolid-solution) associé à ce processus se situe 

entre -0.8 et -1.5‰. Il n’y a pas de différence significative entre les facteurs de 

fractionnement biotiques et abiotiques. La formation de Mg-carbonates hydratés se produit 

via un processus en cascade de cristallisation/recristallisation : nesquehonite  →  dypingite  →  
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hydromagnésite initié par la nucléation de nano globules au sein et à la surface de cellules 

vivantes. 

 

Ce travail représente les premiers pas vers une évaluation quantitative du phénomène 

de biominéralisation bactérienne en cultures individuelles en solutions aqueuses. L’émergence 

de nouvelles techniques de mesures : chimiques in-situ de haute résolution, spectroscopiques 

et d’observations à l’échelle microscopique et macroscopique, actuellement employées par 

différents groupes de recherche dans le monde, pourraient conduire à une nouvelle 

compréhension, sur le plan qualitatif, des réactions et associations d’interactions minéral-

cellule bactérienne, et de l’appliquer non seulement aux cultures individuelles mais aussi aux 

consortia de cellules, à la fois en conditions de laboratoire et en environnement naturel. 
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 Conclusions and perspectives 

This study describes a concerted multi-technical approach to characterize calcium 

carbonate precipitation induced by two contrasting strains of anoxygenic phototrophic 

bacteria (APB), haloalcaliphilic Rhodovulum steppens A-20s and neutrophilic halophilic 

Rhodovulum sp. S-17-65 growing on organic substrates as well as typical freshwater 

cyanobacteria Gloeocapsa sp.  

In the first paper of this work, electrophoretic mobility measurements and surface 

adsorption of Ca on living, inactivated, and heat-killed A-20s and S-17-65 APB cell surfaces 

were performed to determine the degree to which these bacteria metabolically control their 

surface potential equilibria. We demonstrate, in a suite of electrophoretic and macroscopic 

batch adsorption experiments, that these APB are capable of regulating their electric surface 

potential in alkaline solutions (pH ~ 10-10.5). This produces an unusual, less negative zeta 

potential at these conditions, previously non-reported for most bacteria except cyanobacteria. 

This effect is absent for heat-killed and NaN3-inactivated cells and it is significantly 

suppressed in the presence of 1-10 mM added bicarbonate ions.  

Based on analogy with other bacteria, two parallel mechanisms can be suggested to 

explain this novel feature of zeta potential increase of APB in alkaline solutions linked to the 

appearance of less-negative zeta-potential: i) enhancement of uptake of the micronutrients in 

the form of anions and ii ) Ca2+ ions repelling from the cell surface in order to protect the cells 

from CaCO3 incrustation. The latter mechanism is consistent with the results of Ca adsorption 

on the cell surface in the physiological range of solution composition. A slight difference in 

the degree of zeta-potential increase and Ca adsorption was observed between the two studied 

APB strains, which is compatible with their differences in surface areas and optimal 

physiological range of solution parameters. 

In the second paper of this work, we reported the first results on CaCO3 precipitation 

by anoxygenic phototrophic bacteria. The optimal initial precipitation conditions for both 

strains were as following: Ca = 10 mM; DIC = 5 mM , pH = 8.1±0.1 and 
3CaCOΩ = 70-100. At 

the main stage of massive CaCO3 precipitation, the bulk rates range between 0.001 and 0.010 

mM/hr, and between 0.005 and 0.015 mM/hr for A-20s and S-17-65 APB cultures, 

respectively. These values are similar to those reported earlier for cyanobacteria and 

heterotrophic bacteria, being 2 orders of magnitude higher than typical calcification rates of 

coralline algae. Measured bulk precipitation rates are unaffected, within the experimental 
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uncertainty of 10-20%, by Ca adsorption at the cell surface and by intracellular Ca uptake 

during cell growth. The rates are positively correlated with 
3CaCOΩ , but there is a threshold pH 

value around 8.5 above which the live cells precipitate CaCO3 whereas the dead and 

inactivated cells exhibit zero precipitation rate below pH 8.5. It follows that the elevated pH is 

an important prerequisite for live APB to form CaCO3 even at high supersaturation degrees.  

TEM analyses of reaction products does not demonstrate the presence of CaCO3 

crystals in the vicinity of live cells, yet calcite and monohydrocalcite were identified using 

SEM and XRD techniques as main precipitates of the bulk solution. These results strongly 

suggest the existence of a mechanism preventing carbonate biomineral formation in the 

vicinity of live APB cells, which can protect them from uncontrolled carbonate incrustation. 

This mechanism most likely consists in creating a more positive charge on their surface at pH 

corresponding to massive CaCO3 nucleation.  

The third  paper of this study analyzed the effect of cyanobacteria Gloeocapsa sp. on 

CaCO3 precipitation via experimental laboratory modeling. To characterise the link between 

bacterial growth (biomass production) and the rate of CaCO3 precipitation, and the 

precipitation process batch kinetic experiments with both strain of APB and with 

cyanobacteria Gloeocapsa sp. in nutrient solution and in inert electrolyte were performed and 

produced precipitates were examined by SEM, TEM and XRD techniques. The TEM and 

SEM analyses demonstrated the presence of different types of crystals formed in the biotic 

experiments. It follows that CaCO3 precipitation in the presence of Gloeocapsa sp. can be 

driven by different mechanisms: inorganic precipitation (producing rhombohedral calcite, 

typical for abiotic experiments), and biological precipitation witnessed by appearance of 

porous crystals and imprints of cell associates in calcite rhombohedra as well as the nano-

globules covered by organic matter. Microscopic analysis showed the presence of calcium 

carbonate directly on the cell membrane in the vicinity of live bacterial cells. Experiments on 

Gloeocapsa sp. demonstrated the absence of relationship between the apparent precipitation 

rates and the supersaturation degree with respect to CaCO3. This is most likely linked to the 

existence of microenvironments (pH, DIC, ΩCaCO3) around the photosynthetizing cells, not 

directly related to the bulk solution composition.  

Taken together, results of CaCO3 precipitation allowed identification of two different 

types of biomineralization related to bacterial photosynthesis, namely unspecific passive 

nucleation and precipitation outside of the cell membrane for APB and direct, cell-surface 

related nucleation for Gloeocapsa sp. For APB, the most plausible scenario of CaCO3 
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precipitation consists in increasing the pH of the bulk solution during bacterial metabolism. 

The role of APB in precipitation is restricted to the change of bulk aqueous solution chemistry 

via increasing solution pH and saturation degree. It is unlikely that live APB cells may serve 

as nucleation sites for carbonate precipitation, because they apparently protect themselves 

from carbonate incrustation by creating a positive surface potential at the pH of 

photosynthesis and during the phase of massive CaCO3 nucleation. In contrast, the absence of 

cell protection mechanism for cyanobacteria Gloeocapsa sp. due to different spatial 

organization of their cells allow them to efficiently calcify via direct embedding of cells by 

calcite. The cells in this case may serve as nucleation centers due to negative charge present 

on the surface of Gloeocapsa sp. capsules which can therefore bind and accumulate the metal 

ions such as Ca2+. In addition, in the microenvironment close to the bacterial cell wall the pH 

might be higher than that in the bulk solution due to intense photosynthesis. This extremely 

variable solution composition in the vicinity of cell surface does not allow observing a 

straightforward relationship between the bulk solution supersaturation degree and apparent 

CaCO3 crystallization rates in the presence of photosynthetizing Gloeocapsa sp. 

 Finally, the last two papers of this thesis (Appendix 1 and 2) present a study of 

hydrous Mg carbonate formation in the presence of live photosynthetizing bacteria 

(Gloeocapsa sp. and Synechoccocus sp.). We have shown, in a suite of laboratory experiments 

and natural observations, that hydrous Mg carbonate precipitation may occur due to 

cyanobacterial photosynthesis in the lake water and that Mg isotope fractionation between 

solid and solution (∆26Mgsolid-solution) linked to this process ranges from -0.8 to -1.5 ‰. There 

is no significant difference between biotic and abiotic fractionation factors. Formation of 

hydrous Mg carbonate occurs via stepwise crystallization/recrystallization process 

nesquehonite → dypingite → hydromagnesite initiated by the nucleation of nanoglobules in 

the vicinity and on the live cell surfaces. 

 

This work opens a number of perspectives for further research on bacterial 

biomineralization.  

• Towards a better understanding of initial crystallization phenomena, cyanobacterial 

cell surface and EPS interaction with Ca and Mg are considered as important governing 

factors of mineral nucleation kinetics and thus deserve a separate study. Towards this goal, a 

multidisciplinary macroscopic/microscopic and spectroscopic approach can be envisaged. 
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• The present study, performed in batch reactors, demonstrated the difficulties of 

quantifying the rates of mineral growth and nucleation in closed system with continuously 

increasing biomass. Therefore, for rigorous assessment of crystallization rates and 

identification of governing parameters, continuous-flow, open-system biological reactors 

similar to those elaborated for mineral dissolution (e.g., Shirokova et al., 2011, submitted) 

have to be used. Such reactors will allow maintaining constant bacterial biomass (at the 

exponential or stationary stage) and constant solution parameters (pH, [Ca], [Mg], [DIC], 

[DOC]) including supersaturation degree ΩCaCO3, while continuously evacuating growthing 

biomass and mineral precipitation products. 

• The ultimate goal of multidisciplinary physico-chemical study of bacterial 

biomineralization phenomena should be a construction of quantitative (and predictive) model 

that link the primary productivity (PP, or biomass growth) and the amount and mineralogy of 

precipitated mineral. A straightforward relationship between the amount of produced biomass 

and the moles of precipitated hydrous Mg carbonate (established for Synechoccocus sp. 

cyanobacteria of the Salda Lake water) provides a solid empirical background for such a 

model. Ideally, this model should incorporate the differential equations linking the PP of a 

single APB or cyanobacterial cell and the spatial distribution of pH, DIC, Ca(Mg) and Ω in 

the diffuse layer adjacent to bacterial surface (see for example, Pokrovsky and Savenko 

1995a,b). Based on available nucleation and crystal growth rate models (constructed from 

independent abiotic experiments), a kinetic equation for carbonate precursor nucleation and 

metastable phase crystal growth in the vicinity of cell surface should be constructed. These 

relationships will be used to assess the time necessary to form the first mineral precursor 

(nesquehonite, monohydrocalcite, amorphous CaCO3) depending on the intensity of 

photosynthesis and initial chemical composition of the media. The next step in this model 

should be a prediction of mineral transformation reactions in the sequence of classical Oswald 

ripening: 

CaCO3(amorp) → monohydrocalcite → vaterite → aragonite → calcite, and Nesquehonite → 

dypingite → hydromagnesite, 

which occur  under continuous photosynthesis leading to the increase of pH and Ω and 

decrease of [DIC] and [Ca]([Mg]). Again, the transformation (recrystallization) reaction rate 

driven essentially by physico-chemical inorganic mineral dissolution/precipitation reactions 

should be based on results of independent abiotic experiments.  
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Finally, this model should incorporate, at all stages of mineral growth and dissolution, the 

effect of cellular exometabolites and various excudates both on Ca(Mg) speciation in solution 

and on the mineral(nucleus) surface. Again, these kinetic and thermodynamic coefficients can 

be evaluated only from independent physico-chemical experiments with bacterially-produced 

dissolved and colloidal organic matter. Overall, it is anticipated that such a model, applied for 

the first time to bacterial monoculture, will allow quantitative reconstruction of the amount 

and nature of carbonate minerals formed during autotrophic bacterial activity both in the past 

and present aquatic environments.  

• Despite a highly sophisticated physico-chemical and microscopic approach used in the 

present study to characterize the processes of carbonate biomineralization induced by axenic 

bacterial cultures, the direct extrapolation of these results to natural environments is not 

possible because of the dominance of microbial consortia (autotrophic and heterotrophic 

aerobic and anaerobic bacteria). The main differences of these consortia experiments from 

monocultural approach are: i) chemical gradients linked to PP and respiration are different 

and exhibit clear diurnal and much more heterogeneous spatial pattern and ii ) cellular 

exometabolites and dead cells are not freely available to participate in mineral carbonation 

process, being essentially consumed by heterotrophic activity. Towards approaching the 

natural environment, a coupled (double) culture in the liquid media of autotrophic and 

heterotrophic bacteria should be developed. In such a microbial reactor, simultaneous control 

of both heterotrophic bacteria and cyanobacterial concentration, primary productivity and 

respiration together with all usuall solution parameters should be provided and the mineral 

precipitation rates may be assessed following the conceptual scheme described above for the 

monoculture reactor. 

• An efficient way to address both spatial heterogeneity and species-species relationship 

in a complex microbial consortia is to use gel-like cell growth and mineral crystallization 

media thus approaching the cyanobacterial biofilm conditions typical for microbial mats or 

stromatolites. Although numerous previous studies used agar media for Ca(Mg)CO3 

crystallization in the presence of heterotrophic bacteria, the main shortcoming of these works 

was the lack of rigorous characterization of the chemical composition of the media. To 

overcome this barrier, Raman or confocal-based techniques allowing high-resolution imaging 

of chemical profiles around growing cells and precipitating mineral aggregates are envisaged. 

Additional powerful technique allowing efficient tracing of specific biological, metabolic and 

physico-chemical (abiotic) processes of carbonate mineral formation is the measurement of 

stable isotope fractionation. Although the last part of this study failed to prove the specific 
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biological Mg isotope fractionation mechanism (manuscripts presented in Appendix 1 and 2), 

linked to Mg hydrous carbonate precipitation by cyanobacteria, the potential of using C, Ca 

and Mg isotopes but also traces such as B, Fe, metals for each of the reaction sequence step of 

the general model described in the third perspectives (presented above) is just at the beginning 

of its exploration. 

 

Overall, this work represents only the first step towards quantitative assessment of 

bacterial biomineralization phenomena in individual cultures in aqueous solutions. 

Appearance of novel, in-situ high resolution tracing chemical, spectroscopic, microscopic but 

also macroscopic techniques, being currently applied by different research groups in the 

world, will allow achieving new qualitative understanding of mineral – bacterial cell 

interaction reaction and associations applied to individual cultures but also to cell consortia, 

both in laboratory conditions and in natural environment. 
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Abstract 

Lake Salda (SE Turkey) is one of the few modern environments in Earth’s surface 

where hydrous Mg-carbonates are the dominant precipitating minerals. Stromatolites 

consisting mainly of hydromagnesite formed by cyanobacterial activity are abundant in this 

aquatic ecosystem. Mg isotope analyses were performed on samples of incoming streams and 

groundwaters, lake waters and stromatolites/sediments composed of hydromagnesite. 

Laboratory modeling experiments of Mg hydrous carbonate precipitation were conducted on 

purified Salda lake cyanobacteria of Chroococales family (close to Synechococcus sp.) 

isolated from the lake water. The hydrous magnesium carbonates, nesquehonite 

(MgCO3·3H2O) and dypingite (Mg5(CO3)4(OH)2•5(H2O)), were precipitated in batch reactors 

from aqueous solutions containing 0.05 M NaHCO3 and 0.025 M MgCl2 and natural Salda 

Lake water in the presence and absence of live photosynthesizing Synechococcus sp. Bulk 

precipitation rates are not affected by the presence of bacteria in case of air bubbling through 

solution. However, bacterial photosynthesis allowed nesquehonite precipitation in stirred non 

bubbled reactors, under conditions more similar to natural settings. In bacteria-free systems 

without air bubbling mineral precipitation did not occur despite similar or higher solution 

supersaturation degree. Mg isotope fractionation (∆
26Mgsolid-solution) between mineral and 

solution in the abiotic experiments is identical, within uncertainty, to that measured in 

cyanobacteria-bearing experiments and range from -1.4 to -0.7‰. The isotopic shift between 

the inflowing streams (and the groundwaters) feeding the lake (δ26Mg ≈ -1.1 to -1.4 ‰ DSM-

3) and the lake water samples (δ
26Mg ≈ 0.0 to 0.1 ‰ DSM-3) might be explained by the 

formation of hydromagnesite in the lake water with δ
26Mg ≈ -0.8 to -1.1 ‰. This is consistent 

with results of laboratory experiments in this study and previous works on Gloeocapsa sp. 

cyanobacteria.  

 

1. INTRODUCTION 

In contrast to significant research efforts aimed at elucidating biogeochemical 

processes in lakes using traditional isotopic techniques (eg. C, O, N, S, B; Peterson and Fry, 

1987; Pentecost and Spiro, 1990) new less-common stable isotopes of metals such as Ca, Cu, 

Fe, Li, Mg, Zn are just at the beginning of their utilization by limnologists. Among new 

isotopic couples, Mg provides a very promising proxy because 1) it is a major ionic 
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component of the lake water; 2) it is directly involved in chlorophylla of aquatic 

microorganisms (Black et al., 2006, 2007); 3) it is capable forming individual minerals in the 

lake sediments (Castanier et al., 1993; Power et al., 2009) and 4) its stable isotopes are proven 

to fractionate more significantly compared to other alkaline earth metal such Ca and Sr (Galy 

et al., 2002; Tipper et al., 2006; Higgins and Schrag, 2010; Li et al., 2011; Schauble, 2011).  

One of the most important processes controlling biogeochemical cycle of calcium and 

magnesium in continental waters is carbonate biomineralization (Lowenstum and Weiner, 

1989; Dove, 2010). Cyanobacteria-induced mineralization occurred in both ancient and 

modern environments since the Precambrian (Kempe and Kazmierczak, 1990; Knoll et al., 

1993; Brady et al., 2009; Planavsky et al, 2009; Raven and Giordano, 2009; Riding, 2000; 

Ries, 2010). The majority of modern freshwater cyanobacteria-dominated carbonate 

formations are observed in alkaline aquatic environments with high calcium to magnesium 

ratios (Scholl and Taft, 1964; Müller et al., 1972; Otsuki and Wetzel, 1974; Kelts and Hsü, 

1978; Pentecost, 1978; Stabel, 1986; Thompson and Ferris, 1990; Pedone and Folk, 1996; 

Ferris et al., 1997; Thompson et al., 1997; Kazmierczak and Kempe, 2006; Dupraz et al., 

2009; Power et al., 2011) producing various forms of calcium carbonate minerals. In contrast, 

the formation of Mg-rich carbonate minerals by cyanobacteria occurs only in specific Earth 

surface environments, such as Lake Salda in Turkey, which is fed by ultramafic rock 

weathering products (e.g. Braithwaite and Zedef, 1994), alkaline lakes such as those in British 

Columbia (Renaut, 1990; Power et al., 2007, 2009) and some saline lake sediments (Renaut 

and Long, 1989; Renaut and Douglas, 1990; Queralt et al., 1997). The interest to these 

Mg(HCO3)2 -dominated lakes has been recently stimulated by discovery of Mg carbonates on 

the surface of the Mars which may witness the existence of some Mg-rich waters precipitated 

hydrous Mg carbonates (Calvin et al., 1994; Russell et al., 1999; Edwards et al., 2005; 

Palomba et al., 2009). 

Compared to relatively good knowledge of reaction rates and mechanisms of calcium 

carbonate precipitation associated with cyanobacterial activity, both in liquid suspension 

(Hartley et al., 1995, Obst and Dittrich, 2006; Obst et al., 2009; Dittrich and Sibler, 2010; 

Kranz et al., 2010) and in biofilms (Jorgensen et al., 1983; Cox et al., 1989; Hartley et al., 

1996), the understanding of main biological and physico-chemical factors controlling hydrous 

Mg carbonate precipitation and Mg isotope fractionation in natural waters is still at the very 

beginning. 

In this regard, alkaline Lake Salda (SW Turkey) represents an excellent natural 

laboratory where contemporary Mg carbonate precipitation occurs. Previous studies allowed 
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comprehensive understanding of its geology, lithology, biology and processes of mineral 

precipitation occurring in the lake basin (Braithwaite and Zedef, 1994, 1996). It is believed 

that hydromagnesite (Mg4(OH)2(CO3)3·3H2O) microbialites (stromatolites) developed along 

the lake coast are formed via cyanobacterial and algal activity (Braithwaite and Zedef, 1994). 

In this work, we sampled lake waters, sediments and stromatolites and we performed 

laboratory modeling experiments in order to assess the range and characterize the mechanisms 

of Mg isotope fractionation in lacustrine environment. This allowed us providing first 

quantitative experimental and field calibration of Mg isotope fractionation between aqueous 

solution and biotically and abiotically formed hydrous magnesium carbonates under 

conditions similar to the lake water. It is anticipated that obtained results should provide a 

firm basis for quantitative use of magnesium isotopes as proxies for tracing biomineralization 

processes in past and contemporary continental aquatic environments.  

 

2. MATERIALS AND METHODS 

 

2.1. Site description  

Salda Gölü (lake in turkish), located in SW Turkey, has an area close to 45 km2 and an 

average depth of 80 m with a maximal reported depth of 200 m (Fig. 1A). This lake was 

earlier extensively studied from limnological, geological and geochemical point of view 

(Schmid, 1987; Braithwaite and Zedef, 1994, 1996; Russell et al., 1999; Zedef et al., 2000; 

Kazanchi et al., 2004). It represents an ideal natural case of CO2 sequestration because 

meteoric waters feeding the lake dissolve adjacent ultramafic rocks and precipitate 

hydromagnesite in shallow littoral zones, similar to what is recently described in British 

Columbia playas (Power et al., 2009). The lake has no outlet and the water level is varying 

from one year to another, being largely controlled by precipitation/evaporation regime. 

Contemporary hydromagnesite stromatolites are developed in the littoral of SW part of 

the lake (Kocaadalar Burnu) where they form three large, 20 to 30 m islands about 50 m 

offshore rising ∼10 m from the lake bottom and reaching within 3-4 m of the surface. Similar 

to Braithwaite and Zedef (1994, 1996), we define hereafter the modern, actively grown 

microbialite structures as stromatolites. Underwater diving examination of the deepest part of 

these islands at the end of the littoral did not evidenced any stromatolite presence at depth 

more than 6-10 m. Smaller, up to 1.5-3 m stromatolites are also found in other parts of the 
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lake within 10-20 m from the shoreline (Fig. 1B). Finally, at the littoral of the N side of the 

lake, most submerged stones are covered by actively forming, non-solidified stromatolites 

(Fig. 1C) having the same texture as that constituting the large islands (Fig. 1B) 

Detailed underwater examination of the surface of stromatolites demonstrated that 

they are alive and actively growing. The mineral surface is covered by a layer of green algae, 

diatoms and cyanobacteria with oxygen bubbles adjacent to the surface of the microbial mats 

(Fig. 1D).   

 

2.2. Sampling of lake water and minerals   

We sampled all inflowing streams and the lake littoral zone for dissolved load in 

February 2008 and 2010 and in September 2010. Massive stromatolite islands of Kocaadalar 

Burnu and lake water column up to 70 m depth in the middle of the lake were sampled in 

September 2010 from a PVC boat. 

Various pieces of air-exposed stromatolite islands as well as parts of stromatolites 

collected from 4-5 m depth were also investigated. Both mold, external surface and internal 

parts of stromatolites have been sampled (Fig. 1B to 1C). We also sampled hydromagnesite 

sand from the beach and carbonate mineral coating on submerged branches and grasses. 

For bacterial culture in laboratory, large volumes of surface water filtered on-site 

using sterile Nalgene disposable filter unit (polycarbonate 0.22 µm) and sterile polypropylene 

flacons and stored at 5°C during transport to the laboratory. 

For the water column sampling, horizontal polycarbonate water sampler (Aquatic 

Research Co) was used, applying ultraclean sampling procedures throughout all 

manipulations in the field (Shirokova et al., 2010). The water samples were immediately 

filtered through sterile, single-use Minisart® filter units (Sartorius, acetate cellulose filter) with 

pore sizes of 0.45 µm. The first 100ml of the filtrate was systematically discarded. Dissolved 

oxygen, pH and temperature were measured on-site with an uncertainty of 5%, 0.02 units, and 

0.5°C, respectively. Concentrations of dissolved organic carbon (DOC), Cl, SO4, alkalinity 

(Alk), cations and trace element (TE) were measured in our laboratory using methods 

routinely applied for analysis of lake and river water samples (Pokrovsky et al., 2010, 2011; 

Shirokova et al., 2010; Vasyukova et al., 2010). 

 

 

 



 Appendix 1  

 217 

2.3. Culture and characterization of cyanobacteria  

A culture of family Chroococales. cyanobacteria was isolated from the surface of 

coastal stromatolites sampled in February 2008 from the depth of 1 m at 50 m from the 

shoreline of the Salda Lake, SW Turkey. Similar strains (Chroococcus turgidus, Plankothrix, 

Anabaena and Microcystis) were reported to occur in adjacent Mg(HCO3)2-rich alkaline lake 

Burdur, SW Turkey (Girgin et al., 2004). The culture was purified on the agar BG-11 or Pratt 

media and individual colonies were grown in synthetic, cyanobacteria BG-11 Freshwater 

Solution for 3 weeks until the stationary growth phase was reached. Continuous illumination 

at 2000 lx was provided from fluorescent lamps. Cyanobacterium Synechoccocus typically 

consists of isolated elongated cells, without significant amount of mucilage.  

Their phylogenetic affiliation was performed by DNA extracting (UltraClean® 

Microbial DNA Isolation Kit MO BIO) and 16S RNA gene amplifying (bacterial-specific 

primers 27F (5'-AGAGTTTGATCCTGGCTCAG) and prokaryote-specific reverse primers 

1492R (5'-GGTTACCTTGTTACGACTT), see Gerard et al. 2009 for the condition of PCR 

amplification) and sequencing (Cogenics, Beckman Coulter Genomics). The sequence was 

then identified by BLAST against the NCBI non-redundant nucleotides database. We found 

that purified culture and Synechoccocus PCC XX, already reported to occur in alkaline lakes 

and notably lake Salda (Girgin et al., 2004), share 75% identity at the level of their 16S RNA 

genes. The concentration of the bacterial cell suspensions was quantified via optical density 

(O.D.) using a spectrophotometer at a wavelength of 750 nm (Hu et al., 2000; Sarcina and 

Mullineaux, 2000). The O.D. calibration curve - wet weight was linear up to 1.3 absorbance 

units and the ratio between wet and freeze-dried weight of Synechoccocus sp. was 8.0±2.0. 

Very similar cyanobacteria culture was also isolated from the interior part of the 

examined stromatolite and from the algal coating on the submerged branches in inflowing 

stream. Therefore, it can be considered as the most common and easily culturable 

cyanobacteria representative for Salda lake peryphyton. Note that other cyanobacterial species 

like Gloeocapsa sp. were also reported to occur in the Salda lake stromatolites and water 

column. As such, several experiments were performed with model Gloeocapsa sp. culture 

described previously (Pokrovsky et al., 2008; Mavromatis et al., 2011) 

 

2.4. Laboratory Precipitation Experiments 

Precipitation experiments were aimed at reproducing Mg hydrous carbonate formation 

in the presence of cyanobacterial cultures extracted from the Salda lake stromatolites under 



 Appendix 1  

 218 

controlled laboratory conditions. Experiments were performed in 1000 ml sterile borosilicate 

glass reactors containing either the low-phosphate (10% of normal content, 50 µM) BG-11 

growth medium, or the cell supernatant (sterile filtered BG-11 media after 14-30 days of 

culture growth on the stationary phase), into which 0.025-0.03 M MgCl2 and ~0.05 M 

NaHCO3 were added. In addition, sterile Salda lake water (0.014 M Mg, 0.03 M DIC) 

amended with low-phosphate BG-11 nutrient components, was used for bacterial growth 

experiments. Details of all experiments performed in this study are given in Table 1. 

Several distinct types of biotic experiments were performed at 25 ± 2°C. Experiments 

S-Bio-2, S-Bio-5 and S-Bio-7 were performed in reactors that were continuously stirred with 

a magnet stir bar and bubbled with sterile humid air with an average flow rate of 1.5 ± 0.3 

L/min. Experiments S-Bio-1, S-Bio-3, S-Bio-4 and S-Bio-6 were performed in reactors that 

were stirred but without air bubbling. Salda lake water amended with components of BG-11 

(S-Bio-3, 4) or without addition of BG-11 (S-Bio-6) as well as artificial solutions of different 

composition (0.025 M MgCl2 + 0.05 M NaHCO3, S-Bio-1, S-Bio-2, S-Bio-5) and 0.05 M 

MgCl2 + 0.005 M NaHCO3 (S-Bio-7) were used as growth media. Experiments S-Bio-8, 9 

and 10 (0.025 M MgCl2 + 0.05 M NaHCO3 amended with BG-11) were run without shaking 

and bubbling. Each of these experiments was performed under continuous fluorescent light of 

30 µmol photon m-2 s-1. 

Abiotic cell-free control experiments were also performed at a variety of conditions. 

S-Abio-1 experiment was performed with stirring and air bubbling in the presence of a sterile 

supernatant of the Synechoccocus sp. cyanobacteria containing 50 ± 10 mg/L of dissolved 

organic carbon (DOC) in the form of cell exometabolites in which MgCl2 and NaHCO3 were 

added in concentrations similar to those of the biotic experiments. The supernatant solution 

used in these abiotic experiments was generated after centrifugation and filtration through a 

0.22 µm sterile filter of the Synechoccocus sp. culture collected ~20 days after attainment of 

the stationary phase. Abiotic control experiments S-Abio-2, 5 and 6 were performed without 

air bubbling in sterile Salda lake water amended with low-phosphate BG-11 culture media. 

Experiment S-Abio-4 was performed also without air bubbling in solution having elevated 

concentrations of Mg and DIC (0.05 M MgCl2 + 0.1 M NaHCO3). All abiotic experiments 

were performed in the presence of 0.01 M NaN3 to prevent possible microbial growth. 

One additional experiment, S-f, was run to assess Mg consumption and isotopic 

fractionation by Synechoccocus sp. without carbonate precipitation. This experiment 

performed in the absence of dissolved MgCl2 and NaHCO3 and Synechoccocus sp. was grown 
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in BG-11 medium. The fluid phase and biomass in this experiment was sampled after 5 days 

and 3 months of growth.  

 

2.5. Sampling and Analyses 

30-50 ml aliquots of homogeneous suspension (containing the solution, precipitated 

mineral phase, and cells if present) were sampled periodically from the reactors in a sterile 

laminar hood box during each experiment. Optical density and pH were measured in liquid 

sub-samples, whilst the solution supernatants were initially filtered (< 0.22 µm) and later 

processed for alkalinity, DOC, and Mg concentration measurements. Trace elements were 

measured without preconcentration by the ICP-MS following procedure routinely used in our 

laboratory for lake and river water analyses (e.g., Pokrovsky et al., 2010, 2011). Alkalinity 

was determined following a standard HCl titration procedure using an automatic Schott 

TitroLine alpha TA10plus titrator with an uncertainty of ±2% and a detection limit of 5×10−5 

M. Dissolved Organic Carbon (DOC) was analyzed using a Shimadzu TOC-6000 SCN 

Carbon Total Analyzer with an uncertainty of 3% and a detection limit of 40 µM. Magnesium 

concentrations were measured by flame atomic absorption spectroscopy using a Perkin Elmer 

AAnalyst 400 with an uncertainty of ±2% and a detection limit of 0.2 µM. pH was measured 

using a Mettler Toledo combined electrode, with a precision of ±0.01. The uncertainty of 

biomass concentration determination via optical density is estimated at ±10%.  

Prior to sample characterization by scanning electron microscopy (SEM), organic 

matter was removed by treating sampled solid phases with 10% H2O2 for 2-3 days at the same 

pH as the experimental fluids. The residual solid phases were then thoroughly rinsed with de-

ionized water and freeze dried at -55°C. The mineral phases were characterized by SEM using 

a Jeol JSM840a, and by X-ray diffraction using an INEL CPS 120 Coκα, with a scan speed of 

0.02o s-1. Untreated solids were kept for chemical analysis as described below.  

Transmission Electron Microscopy (TEM) analysis was performed using TEMSCAN 

facilities of the University of Toulouse, with a JEOL JEM 2100F unit equipped with a field 

emission gun (FEG) source and a PGT EDX detector. TEM samples for analyses were 

prepared by immersing 200 mesh copper grids coated with a carbon film for 10 seconds in 

solutions containing live bacteria taken from the experiments that either produced or not 

mineral precipitates. To minimize the potential effect of crystallization from salts present in 

reactor solution on TEM/EDX measurements, aliquots of 20 mL were centrifuged at 4000 
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rpm for 10 minutes and washed twice with sterile MilliQ water. Grids were dried and covered 

with a 20 nm carbon layer prior to TEM analysis.  

 

2.6. Magnesium Isotope Analyses  

Mg isotope compositions of liquid and solid samples collected in the field and 

produced during the experimental part of the present study, were analyzed following the 

procedure given in Mavromatis et al. (2011). Magnesium isotopic ratios were measured using 

a Thermo-Finnigan ‘Neptune’ Multi Collector Inductively Coupled Plasma Mass 

Spectrometer (MC-ICP-MS) at GET (Toulouse, France). Instrumental mass fractionation 

effects were corrected via sample-standard bracketing, and all results are presented in delta 

notation with respect to the DSM-3 international reference material (Galy et al., 2001):  
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where x refers to the Mg mass of interest. Compatibility of results between the 

Neptune and Nu Instrument MC-ICP-MS used in this study was confirmed by replicate 

analyses of three international Mg reference standards (DSM, CAM-1 and OUMg), and by 

duplicate analyses of the carbonate standard J-Do 1. The δ26Mg reproducibility of these 

standards was typically <0.08 ‰. 

 

The isotopic offset between the Mg in the fluid and that incorporated into the solid 

phase is defined as: 

∆26Mgsolid-liquid ≡ δ26Mgsolid - δ26Mgliquid    (2) 

This value was determined for all samples where both the fluid and solid phases were 

collected in the present study. 
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3. RESULTS 

 

3.1. Chemical and Mg isotopic composition of Salda lake water and minerals 

3.1.1. Hydrochemistry 

Concentrations of Mg, Alk and pH values measured in Salda lake waters and 

inflowing streams are in general in agreement with values reported by Braithwaite and Zedef 

(1994, 1996) and Kazanci et al. (2004) over the past two decades. The chemical composition 

of major and trace elements in collected samples is listed in the electronic supporting 

information (ESM-1). In February 2008 and 2010, surface water temperature was around 8-

10°C whereas in September 2010, it varied from 27.5°C at the surface to 13°C at 70 m depth. 

The summer period corresponds to the most significant growth of stromatolites (e.g. 

Braithwaite and Zedef, 1996) and as such, detailed chemical and isotopic analysis of the lake 

water composition was performed in water samples collected during September 2010. During 

this period, pH decreased from 9.20±0.05 at the surface to 9.03±0.03 at the bottom layer; 

[DOC] ranged from 4.1-4.5 to 3.5 mg/L, and Alk, Mg, Ca and Cl concentrations remained 

constant in the water column and were equal to 0.032±0.001 M, 390±5 mg/L, 4.0±0.1 mg/L 

and 195±5 mg/L, respectively. Solution saturation degree (Ω) with respect to nesquehonite, 

the first precipitating mineral (e.g., Mavromatis et al., 2011 and this study) ranged from 1.6-

1.85 at the surface to 0.76 at the bottom layer. Therefore, precipitation of hydrous magnesium 

carbonates in the Salda lake water during summer is limited to the upper 20 meters. The Mg 

concentration of incoming streams and groundwaters was about 3 times lower compared to 

the lake water (e.g., 72 – 120 mg/L, see also Braithwaite and Zedef, 1996) and they were 

strongly undersaturated with respect to nesquehonite (Ωnesquehonite = 0.03-0.12). 

 

3.1.2. Mineralogy of stromatolites 

Collected stromatolites are dominated by hydromagnesite as shown by XRD analysis 

of multiple spots of a 20 cm-thick representative stromatolite sample and littoral sediments. 

The carbonate sand on the littoral zone of the lake (white coastal deposits Fig. 1A) is also 

composed of hydromagnesite as it essentially originates from the wave abrasion of growing 

stromatolites (Braithwaite and Zedef, 1996). The external stromatolite surface has a typical 

honeycomb-like structure (Fig. 2A, B) probably formed due to heterotrophic degradation of 

cyanobacteria cell which are mineralized within their EPS layers (e.g., Dupraz et al., 2004). In 
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the deeper (interior) part of stromatolites, platelets of hydromagnesite are clearly seen (Fig. 

2D) and similar needle-like habits occur on hydromagnesite covering the submerged solid 

support as tree branches (Fig. 2C). These three types of crystal forms were found to be highly 

reproducible and frequently found in all investigated hydromagnesite samples. The imprints 

of Pyrogira green algae are often seen by the SEM on the surface of stromatolites (not shown) 

as this algae efficiency to colonize active stromatolite surfaces forming visible air bubbles 

(Fig. 1D). 

 

3.1.3. Mg isotopes 

In September 2010, magnesium isotopic composition (δ26Mg) of the lake water was 

very homogeneous and did not vary among different sites on the littoral zone, with and 

without stromatolite presence, and along the water column down to the bottom (70 m), being 

equal in average to 0.118±0.043 ‰ (Table 2). The coastal lake water in February 2008 and 

2010 had δ26Mg of -0.005 and -0.02 ‰. The incoming spring and ground water are much 

lighter in Mg having δ26Mg between -1.4 and -0.8‰. The internal and external parts of 

stromatolites and the littoral sand exhibit similar 26Mg isotope signature of -0.99 ± 0.07 ‰.  

 

3.2. Experimental modeling of hydrous Mg carbonate precipitation in laboratory 

 

The measured chemical composition of the reactive fluids and the mineralogy of 

precipitated solid phases are listed in the Electronic Supplementary Material (Table ESM-2 

(as file ESM.pdf made of “Total compilation Salda cyanobacteria-March-2011.xls” file) and are described 

in detail below. 

 

3.2.1. Solid phases 

X-ray diffraction results demonstrate the precipitation of nesquehonite (MgCO3•3H2O) 

and dypingite (Mg5(CO3)4(OH)2•5H2O) at distinct times during the experiments. 

Nesquehonite precipitation is limited to the first 12-23 days of experiments S-Bio-2 and S-

Bio-5, but it is present after 48 days in experiment S-Abio-4 performed in solutions two times 

more enriched in Mg and DIC (Fig. 2I). Two biotic runs (S-Bio-1 and S-Bio-2) yielded 

brucite at the end of experiment (Fig. 2G) with nesquehonite followed by dypingite at the 
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beginning. For the majority of abiotic (S-Abio-1, S-Abio-3) and some biotic experiments (S-

Bio-2, 3 and 5), dypingite or mixtures of dypingite and hydromagnesite were the main 

mineral phases at the end of experiment. Experiments performed on Salda lake water without 

air bubbling often yielded the presence of hydromagnesite. Scanning electron microscopy 

images, such as shown in Fig. 2, reveal that nesquehonite exhibits a needle-like habit, whilst 

the dypingite is present as rosette-like aggregates of 2 to 10 µm diameter. The 

hydromagnesite was characterized by rounded elongated crystals of 0.5 - 1 µm size forming 

large associates (Fig. 2K). Overall, the sequence of precipitation and recrystallization events 

seems as: nesquehonite (needles 20-120 µm long, 10±5 µm large) → dypingite (rosettes 5-15 

µm) → hydromagnesite (aggregates 20-40 µm). 

It is important noting that the hydromagnesite crystal associates formed in solutions 

with Gloeocapsa sp. cyanobacteria (Fig. 2F, Exp H2) are surprisingly similar to the external 

surface of Salda lake stromatolites (Fig. 2A) whereas the rosette-like dypingite and 

hydromagnesite aggregates obtained in experiments with Synechoccocus sp. cyanobacteria 

(Fig. 2E, Exp S-Bio-10; Fig. 2J, K, Exp S-Bio-3) are also similar to natural hydromagnesite 

coatings of submerged surfaces in the Salda lake (Fig. 2C). Finally, the “platellets” of 

hydromagnesite precipitated in biotic experiment S-Bio-3 (Fig. 2K, L) resemble the interior 

part of natural stromatolite (Fig. 2D). Note the shape of hydromagnesite crystals formed in 

this experiment is similar to that of coccoid Synechoccocus sp. cyanobacteria (Fig. 3A) 

suggesting some embedding of the cells. Such an embedding of cells and cell associates is 

clearly seen in experiment with Gloeocapsa sp. cyanobacteria cultured during 100 days in 

Mg, HCO3-enriched BG-11 media (Exp No H-5’’, S-Bio-11) and it is likely to be responsible 

for typical honeycomb structure of Mg hydrous carbonates formed in the presence of 

cyanobacteria (Fig. 2E) as well as in natural stromatolites (Fig. 2A, B) 

The TEM examination of bacteria grown during 2 weeks in hydromagnesite-

supersaturation low-phosphate BG-11 nutrient media containing initially 0.025 M MgCl2 + 

0.05 M NaHCO3 demonstrated the presence of nanometer-size spherulite crystals assembled 

in network-like associates of 1-2 µm size, usually adjacent to the very surface of live cells 

(Fig. 3A, D, E). In addition, mineral coating of the whole cell surfaces (Fig. 3C) or cell 

sheaths (Fig. 3B) was frequently observed. Cells grown in Mg, HCO3
- low nutrient media 

remained clean, without any mineral precipitation on the surface (Fig. 3F). 
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3.2.2. Chemical Composition of the Fluid Phase 

The temporal evolution of Mg concentration and pH in all experiments and the 

temporal evolution of alkalinity and biomass concentration during representative experiments 

are illustrated in Fig. 4. The Mg concentration and alkalinity of the reactive fluids tend to 

decrease and the pH tends to increase with time during all biotic experiments, notably those 

with air bubbling (Fig. 4A, C, E). In the biotic and abiotic experiments, the reactive fluid Mg 

concentration and alkalinity decreased during the first 10±5 days, becoming almost constant 

thereafter, suggesting the attainment of near-equilibrium conditions with most insoluble Mg 

carbonate phase, hydromagnesite or dypingite. Abiotic stirred experiments without air 

bubbling did not produce measurable [Mg] and [Alk] decrease although slight pH increase 

was observed (Fig. 4B, D, F). Biotic stirred experiments with and without air bubbling 

demonstrated very similar pattern of pH, [Mg] and [Alk] dependence on time (Fig. 4), 

although the biomass production was a factor of two higher in experiments with air bubbling 

(Fig. 5). The amendment of Salda lake water with nutrient BG-11 components exhibit 

significant effect on biomass production and Mg hydrous carbonate precipitation as follows 

from Mg concentration decrease (Fig. 6). 

Quantitative analysis of the amount of precipitated mineral (mole of Mg removed from 

solution) as a function of biomass production yielded a clear relationship with a slope of 7.1 ± 

0.9 following the relationship 

Mgprecipitated (moles) = (7.1±0.9) × Biomassproduced (gwet)  (3) 

or, converting mole of Mg into mole of precipitated mineral (Fig. 7): 

Hydromagnesite (mol) = (1.45±0.23) × Biomassproduced (gwet)  (4) 

Given the large variety of investigated conditions (BG-11 media, Salda lake water, air 

bubbling and no-bubbling regime), we consider this dependence as universal suitable for 

quantitative prediction (±25%) of the amount of precipitated Mg hydrous carbonate in the 

presence of photosynthesizing cyanobacteria. Another important conclusion that may be 

drawn from this dependence is that the mineral yield due to microbial photosynthesis and, 

thus, mineral precipitation rates, are very similar among experiments with different solution 

conditions (Mg, DIC concentration and pH), duration and biomass concentration, and air 

bubbling or no-bubbling regime.  

 

The speciation and saturation state of the reactive fluids with respect to potentially 

precipitating mineral phases for all experiments was calculated using PHREEQC together 
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with its MINTEQA2 database (Parkhurst and Appelo, 1999) after adding to it thermodynamic 

properties for nesquehonite and hydromagnesite reported by Cheng and Li (2010a,b). The 

calculated aqueous speciation of Mg is reported in Table ESM-3 (file Total compilation 2011 

Avril.exl). The speciation of aqueous Mg during the experiments was dominated by aqueous 

Mg2+, but also contained 30-50% MgCO3
-
(aq) and MgHCO3°. Reactive fluids were 

undersaturated (Ω = 0.2-0.4) with respect to, first precipitating phase, nesquehonite, found to 

be near to equilibrium with respect to nesquehonite after 5-10 days of reaction, during the 

beginning of massive precipitation, and undersaturated with respect to nesquehonite and 

hydromagnesite at the end of each experiment. The saturation state of these fluids with respect 

to dypingite was not calculated owing to lack of relevant thermodynamic data. The evolution 

of the saturation state of the fluids of biotic and abiotic experiments with and without air 

bubbling is illustrated in Fig. 8A and B, respectively. The initial supersaturation degree with 

respect to nesquehonite, the first precipitating phase, ranged from 0.2 to 0.6, at the beginning 

of the experiments, to 0.8 - 1.6 in the middle of reaction, before massive mineral precipitation 

and finally decreased to 0.1 - 0.3. Experiments with lower concentrations of HCO3
- and thus 

lower supersaturation degree (≤ 0.3) failed to produce sufficient mineral precipitation. 

Note that the abiotic experiments yielded mineral precipitation only at the conditions 

of air bubbling, where as stirred unbubbled experiments failed to precipitate any detectable 

quantity of hydrous Mg carbonate, despite the fact that Ωnesquehonite was similar or even higher 

than that in biotic experiments (Fig. 8B). Similarly, experiments with Salda lake water 

amended (S-Bio-4) and not amended (S-Bio-6) with BG-11 yielded similar precipitation 

indices after 5 and 20 days of experiment (Fig. 8C); however, no mineral precipitation was 

observed in nutrient-free Salda lake water.  

Apparent precipitation rates (r i) were calculated from the first derivative of the fluid 

phase Mg concentration with respect to time, from the onset of precipitation to the attainment 

of constant fluid Mg concentrations using 

dt

dc
ri

Mg= .       (4) 

where Mgc stands for the concentration of Mg in the reactive fluid and t designates 

time. All experiments performed in the presence of sterile humid air bubbling attained steady-

state Mg concentrations over shorter time periods (12±3 days) and exhibit approximately 

twice higher apparent precipitation rates compared to bubbling-free experiments. Under 

similar environmental conditions (Mg, DIC, bubbling regime), the precipitation rate measured 
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in biotic (S-Bio-2) experiment is significantly higher than that measured in abiotic experiment 

(S-Abio-1): -1.22 and -0.50 mmol Mg day-1, respectively. 

 

3.2.3 Magnesium Isotopic Composition 

Mg-isotope analyses were performed on selected samples of experiments S-Bio-1, S-

Bio-2, S-Abio-1, 4 and 5 where nesquehonite and dypingite were the main precipitated 

mineral phases except the last sample of S-Bio-2 which yielded brucite as the main phase. 

The Mg isotope compositions of all analyzed samples are given in Table 2 and the temporal 

evolution of ∆26Mgsolid-solution (Eqn. 2) during experiments is plotted in Fig. 10. All 

experiments exhibited mass-dependent fractionation between the fluid and the solid phase. 

The precipitated hydrous Mg carbonates have δ
26Mg compositions that are 0.5-1.4 ‰ lighter 

than their liquid counterparts. Precipitated brucite is only 0.1-0.2 ‰ lighter than the aqueous 

solution. Isotopic composition of Synechoccocus sp. cells from the mineral-free experiment 

was 0.15 ‰ enriched in heavier Mg isotopic composition compared to the growth medium.  

There is no statistically significant correlation between the extent of Mg fractionation 

and the reactive fluid pH, IAPhydromagnesite, Mg, alkalinity and biomass concentrations (not 

shown) as also follows from data on other cyanobacteria of the family Chroococcales, 

Gloeocapsa sp. (Mavromatis et al., 2011). Generally, within the course of experiments with a 

single mineral hydrous Mg carbonate phase present (eg. S-Bio-5, S-Abio-1), the ∆26Mgsolid-

liquid values are almost constant as a function of elapsed time (Fig. 10A) or the fraction of Mg 

remaining in solution (Fig. 10B) and consistent with closed system equilibrium exchange 

between the fluid and solid phase.  

 

4. DISCUSSION 

 

4.1. Mineralogy of Salda lake sediments and laboratory precipitates.  

Although the stromatolites of the Salda lake were extensively studied in the past, the 

present study confirms the dominance of hydromagnesite (Mg5(CO3)4(OH)2•4H2O) as the 

main mineral of these microbialites. The external surface of stromatolite is extremely porous, 

void-like, honeycomb-like structure bearing the presence of bacterial associates or 

cyanobacterial colonies. The persistence of hydromagnesite both in the lake littoral sediments 

and in live microbialites confirms its ultimate long-term stability at the conditions of lake 
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water temperature and pH. This is also in accord with reports on hydromagnesite dominance 

in alkaline playas of British Columbia (Power et al., 2009) and the hydromagnesite 

persistence in other alkaline lake sediments (Renaut and Long, 1989; Queralt et al., 1997).  

The bottom waters of the lake and incoming streams are undersaturated with respect to 

hydromagnesite and nesquehonite which suggest the importance of both i) microbial 

photosynthetic activity and ii ) surface temperature in creating sufficient supersaturation 

degree favorable for in-situ mineral formation.  

 

In contrast to natural samples, experimental precipitation both in biotic and abiotic 

systems yielded mainly nesquehonite and dypingite. Although the transformation of 

nesquehonite into hydromagnesite is relatively fast, on the order of weeks, it has only been 

studied at elevated temperatures (Davies and Bubela, 1973; Hopkinson et al., 2008). The same 

authors also suggested that dypingite (Mg5(CO3)4(OH)2•5(H2O) may represent an 

intermediate metastable phase during the transition of nesquehonite to hydromagnesite. This 

observation, together with the results of our long term experiments (100 days; S-Bio-8, 9 and 

10) were hydromagnesite was formed, may explain the presence of less stable intermediate 

phases (nesquehonite and dypingite) in experiments run at room temperature for relatively 

short period of time (2 to 6 weeks). Similar to our results, Power et al. (2007), working with 

microbial consortia isolated from Atlin Playas, British Columbia, Canada, reported dypingite 

formation in biotic mesocosm experiments, and nesquehonite formation in abiotic control 

experiments at a pH of ~9.5 

A striking similarity is observed between Mg hydrous carbonate forming at the surface 

of live stromatolites in the Salda lake (Fig. 2B) and those precipitating in long-term laboratory 

experiments with Gloeocapsa sp. (Fig. 2F) as well as in numerous field observations (see Fig. 

9c and Fig. 11 in Dupraz et al., 2004). Dupraz et al. (2009) observed that discontinuous EPS 

calcification generates a micropeloidal structure resulting from the presence of clusters of 

coccoid or remnants of filamentous bacteria. Furthermore the same authors report that no 

precipitation is observed in or on the sheaths of cyanobacteria, and only a negligible amount 

of precipitation is directly associated with the well-organized and active filamentous 

cyanobacteria (in deeper layers of the mat). Instead, the precipitation occurs at the uppermost 

layer of the mat, which is composed of EPS, empty filamentous bacteria and coccoids 

(Gloeocapsa spp.). Results of the present study corroborates the mechanism of honeycomb - 
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like structures formation for hydrous Mg carbonates due to the presence of EPS and cell 

capsules evidenced earlier only for biocalcification phenomena. 

 

4.2. Physico-chemical mechanisms of Mg carbonate precipitation in the presence 

of cyanobacteria 

Carbonate mineral formation in the presence of photosynthetic bacteria may be 

attributed to the alkaline environment produced due to release of hydroxyl ions as a result of 

photosynthesis (Thompson and Ferris, 1990; Douglas and Beveridge, 1998). pH was observed 

to increase in all experiments although this increase was much smaller in abiotic experiments 

without air bubbling. In abiotic experiments, this increase originates from the degassing of the 

initial reactive fluid which contained 3-5×10-2 mol/kg NaHCO3 at pH ~ 8.2-9.2. Owing to this 

high aqueous bicarbonate content, these initial fluids have a pCO2 of ~(0.3-10)×10-2.0 atm, 

supersaturated with respect to the atmosphere. The bubbling of sterile humid air liberates CO2 

from the reactive fluid leading to both an increase in pH and degree of supersaturation with 

respect to Mg carbonate minerals. In biotic experiments, this pCO2 decrease was accompanied 

by additional pH increase due to photosynthetic uptake of HCO3
- ions and OH- release.  

In contrast, the lack of precipitation in abiotic, non-bubbling experiments may stem 

from insufficient local supersaturation occurring in the vicinity of cells during photosynthesis 

(Pokrovsky and Savenko, 1994). This micro-environment supersaturation well known for 

microbial mats and stemmed from local pH rise (Jorgensen and Revsbech, 1983) are 

necessary to initiate nesquehonite precipitation. However, it may not be detectable in the plot 

of bulk solution Ω versus time (Fig. 8). Therefore, at the experimental conditions investigated 

in this work, the live photosynthesizing cells act as nucleation centers due to high local 

supersaturation, not occurring in abiotic, no-bubbling experiments. The contrast between 

bubbling and non-bubbling regime should be more significant in non-stirred experiments; 

however, given the low pertinence of such an experimental setup to highly agitated coastal 

zones of the Salda Lake subjected to wave abrasion, these experiments were not conducted. 

Results of the experiments in axenic culture performed in the present study suggest 

that the role of studied cyanobacteria is both in increasing pH of the bulk solution capable 

directly controlling crystallization process and in providing specific organic template and EPS 

for nucleation. Given the presence of microcrystalline mineral precipitates at the vicinity of 

the cell walls and directly at the cell surface (Fig. 3) we suggest that the role of cyanobacterial 

polysaccharides in Mg hydrous carbonate precipitation is significant as also established for 
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calcium carbonate (e.g., Braissant et al., 2003, 2007; Dittrich and Sibler, 2010). This is further 

confirmed by the similarity of Mg hydrous carbonate crystals observed in natural 

microbialites and that in laboratory cultures (Fig. 2B and 2F). The demonstrated capacity of 

one single culture to precipitate carbonate crystals very similar in shape to those of microbial 

consortia of Salda lake stromatolites may have important consequences on the mechanisms of 

Mg-rich carbonates formation in the past, before the appearance of massive CaCO3 formation 

in the ocean. If the presence of live cyanobacteria is capable of inducing hydromagnesite 

precipitation simply by increasing pH and supersaturation and without specific action of other 

bacteria, then the formation of Mg-rich stromatolites in Precambrian period could occur via 

the simplest life form. This may question the necessity of important control by postmortem 

decomposition of cyanobacterial sheaths by precipitation-inducing heterotrophic bacteria as 

suggested for ancient dendritic reef structures (Laval et al., 2000). 

 

At the present time, it is widely accepted that actively metabolizing microbial cells are 

capable of avoiding calcium carbonate mineral encrustation and cell entombment (Thompson 

et al., 1997; Aloisi et al., 2006; Bontognali et al., 2008; Martinez et al., 2010) via various 

mechanisms of cell electric potential regulation, S-layer formation and extracellular EPS 

generation as evidenced from numerous laboratory experiments and field observations (e.g., 

Krumbein et al., 1977; Chafetz and Buczynski, 1992; Arp et al., 1999a, b). Unlike in 

experiments and observations on biocalcification (Dupraz et al., 2009; Martinez et al., 2010), 

hydrous Mg carbonate formation does not trigger a cell protection mechanism. The presence 

of nanoclusters of hydrous Mg carbonates at the very surface of live cells detectable in the 

TEM images (Fig. 3A, D, E) and complete cell encrustation by precipitated mineral seen by 

the SEM (Fig. 2F, N, O) unequivocally supports the major role of cell surface in governing 

Mg mineral formation in the presence of cyanobacterial cells.  

In addition to different but still unknown requirements (pH, pCO2, EPS concentration) 

of calcite and hydrous Mg carbonate nucleation at the vicinity of photosynthesizing cells, 

another reason for this difference may be the different size of forming crystals. Unlike calcite 

or dolomite submicron nano-globulles (e.g. Aloisi et al., 2006; BontognalI et al., 2008; 

Spadafora et al., 2010), the first precipitated hydrous Mg carbonate, nesquehonite, is 

represented by crystals of 50 to 200 µm length (Fig. 2I) and as such it can not embed the 

small Synechoccocus sp. cells. Similarly, rosette-like dypingite crystal aggregates (Fig. 2E, J 

and M) formed at the second stage of experiment are also too large to cover completely the 

cyanobacterial cells at the beginning of incrustation. Only at the stage of hydromagnesite 
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formation at the end of experiment (Fig. 2K, 2L) at the end of experiments, massive 

embedding and encrusting becomes possible due to i) small size of hydromagnesite platelets, 

and ii ) the presence of dead cells which are easier to mineralize (e.g., Chafetz and Buczynski, 

1992; Martinez et al., 2010) 

 

4.3. Fractionation of Mg isotopes 

Mg isotope fractionation between cells and aqueous solutions (∆26Mgsolid-solution) linked 

to adsorption by cyanobacterial cell surface and intracellular uptake during Synechoccocus sp. 

growth, assessed in mineral-free bacterial growth experiments (S-f), is equal to 0.152 ‰. This 

is in agreement with previous results on Gloeocapsa sp. cyanobacteria (0.05-0.2 ‰, 

Mavromatis et al., 2011). At the same time, Black et al. (2006) reported that chlorophylla 

isolated from cyanobacterium S. elongatus preferentially incorporates light Mg isotopes with 

a fractionation factor of -0.71 to -0.53 ‰ depending on the growth stage. The chlorophyll 

represents small fraction of total cell Mg pool, compared to the cytoplasm. As such, there may 

be significant variation of Mg isotopic ratio in different cell pools, with cytoplasm being 

much "heavier" than the chlorophyll. Note that, unlike other essential metals, Mg2+ is not 

exchanged during a cell division cycle, but once taken by the cells, remains inside them 

(Silver and Walderhaug, 1992). This explains the persistence of light Mg isotope composition 

in mineral-free biomass, collected after 5 days and 3 months (-0.82 and -1.18 ‰, 

respectively).  

During the abiotic experiment S-Abio-1 in the presence of air bubbling, the 

precipitated dypingite exhibits a ∆26Mgsolid-solution value between -1.4‰ and -1. 25‰, whereas 

abiotic experiment S-Abio-4 without bubbling produced only nesquehonite with ∆26Mgsolid-

solution = -0.47‰. In contrast, the biotic experiment with bubbling (S-Bio-5) yielded 

nesquehonite slightly lighter than the abiotic counterpart and depleted in 26Mg compared to 

fluid with ∆26Mgsolid-solution equal to -0.7‰ to -1.0 ‰. Finally, biotic experiments with brucite 

precipitation had ∆26Mgsolid-solution = -0.2‰ to -0.1‰. Therefore, we observe a systematic 

enrichment of mineral solid phase by light isotope in the order brucite < nesquehonite < 

dypingite with maximal fractionation factors of -0.7 to -1.4 ‰ similar to that reported for 

hydrous Mg carbonates formation in the presence Gloeocapsa sp. cyanobacteria (Mavromatis 

et al., 2011). Overall, the depletion of heavy isotopes in our samples is also coherent with the 

results of previous studies on Mg isotope fractionation between aqueous fluids and biogenic 

skeletal carbonates (Chang et al., 2004; Buhl et al., 2007; Hippler et al., 2009), abiotically 
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precipitated low Mg-calcite (Galy et al., 2002; Immenhauser et al., 2010), dolomite (Higgins 

and Schrag, 2010), and magnesite (Pearce et al., 2009).  

The nearly constant ∆26Mgsolid-liquid values for a given dominant mineral phase are 

consistent with a closed-system fractionation equilibrium model suggesting a continuous 

isotopic exchange/equilibration between the precipitated hydrous Mg-carbonates and the 

reactive fluid (Criss, 1999). Taking into account earlier results for dypingite (Mavromatis et 

al., 2011) and for other hydrous Mg carbonates (this work), it can be assumed that hydrous 

Mg-carbonate minerals are in a continuous isotopic equilibrium when present in aquatic 

environments. The exchange does not seem to appreciably affected by physicochemical 

factors such as pH, bubbling, Mg and DIC concentration or the biological activity. 

The isotopic shift between solid and solution observed in the laboratory is in 

reasonable agreement with that found in the Salda lake ecosystem. In the latter, an offset of 

1.0-1.4 ‰ between the incoming streams and groundwaters from the one hand and the lake 

water from the other hand is consistent with formation of 1.0-1.4 ‰ isotopically lighter 

hydromagnesite via cyanobacterial activity in the stromatolites. It is important to note that the 

presence of biofilms and other, heterotrophic bacteria in the microbial community of 

stromatolites apparently, have no significant effect on overall isotopic fractionation factor 

compared to laboratory monocultures of cyanobacteria. Given that abiotic precipitation 

experiments yielded similar fractionation factor, the use of Mg isotopes for tracing the role of 

microbial activity in Mg hydrous carbonate formation is unwarranted.   

 

5. CONCLUSIONS 

The hydrochemistry of the Salda lake system and field observations suggest strong 

microbial control on hydrous Mg carbonates formation in the upper layers of the lake surface. 

Laboratory experiments with cyanobacteria culture Chroococales sp. isolated from live 

stromatolite yielded the precipitation of hydrous magnesium carbonates, nesquehonite and 

dypingite under varying laboratory conditions. We discovered a universal dependence 

between the amount of precipitated Mg carbonate and bacterial biomass production which can 

be used for reconstructing paleoproductivity based on the amount of accumulated Mg 

carbonates. All experiments yielded similar bulk precipitation rates, although the pH of 

reactive fluid was 0.5-1.0 units higher in biotic compared to abiotic experiments. Taken 

together these observations suggest that the presence of cyanobacteria is necessary to increase 

solution pH and therefore, supersaturation degree and to provide the sites for nucleation at the 

microenvironments of the cell surface. No cell protection mechanisms known for 
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biocalcification phenomena have been evidenced in case of hydrous Mg carbonate 

precipitation. The difference between mineral (nesquehonite and dypingite) and solution 26Mg 

isotope ratio (∆26Mgsolid-liquid) obtained from abiotic experiments are similar within the 

uncertainty of those obtained in the presence of Synechoccocus sp. and earlier Gloeocapsa sp. 

cyanobacteria. 
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Table 1: Experimental conditions during the experiments performed in this study. All abiotic experiments were conducted in the presence of 0.01 
M NaN3.  

 
Biomass DOC, Rate (Mg slope) 

range, gwet/L mg/L mmol day -1
Solid phase

S-BIO-1 0.1-3.1 -0.86
H-10 Dypingite+brucite

S-BIO-2 0.2-3.7 Nesquehonite,

H-16 -1.22 Dypingite, brucite

S-BIO-3 0.2-2.2

H-46 -0.38** Dypingite, hydromagnesite

S-BIO-4      
H-50

36 0.1 - 3.0 9.3 - 10.8 14 - 3 9-17

-0.435** Dypingite, hydromagnesite

S-BIO-5 0.4 - 2.8
H-20 -0.71 Nesquehonite, dypingite

S-BIO-6 0.2-0.9
H-47

S-BIO-7

H-29

S-BIO-8* Hydromagnesite

H-2*

S-BIO-9 Hydromagnesite

H-3

S-BIO-10 Hydromagnesite

H-4

S-BIO-11* Dypingite, brucite

H-5*

S-ABIO-1
H-18 -0.50

S-ABIO-2 35 Stirring, no bubblinh 0 9.2-9.39 13-12 7.4
H-49

S-ABIO-3 0 Dypingite
H-22 -1.39

S-ABIO-4 0

H-27 -0.67 Nesquehonite, dypingite

S-ABIO-5 35 Stirring, no bubblinh 0 8.2-9.46 21-22

H-48

S-ABIO-6 0

H-51

* Gloeocapsa sp. Culture; ** The rates are significantly lower due to lower initial Mg concentration

No precipitation

0.05 M MgCl2+0.005 
M NaHCO3

31 Stirring, bubbling 0.05 - 3.0 8.1 - 10.0 52-40 No precipitation

Salda lake water w/o 
BG-11

No precipitation

No precipitation

No precipitation

BG-11 on Salda lake 
water

40? Stirring, no bubbling 9.3 - 9.4 13.1 - 13.8

8.33 - 8.90

BG-11 on Salda lake 
water

Stirring, bubbling

Stirring, no bubbling

Stirring, no  bubbling

Supernatant

Supernatant

0.05 M MgCl2 + 0.1 
M NaHCO3

48

25

BG-11 on Salda lake 
water

Duration 
(days)

pH range Mg range 
(mM)

conditions

60

34 9.2 - 10.8

15-2.5

7-18
Stirring, bubbling

Stirring, no bubbling

30 8.2-10.5

25 8.1 - 9.25 37 - 13

30.8 - 4.1 

34 Stirring, no bubbling 9.2 - 9.6

8.15-9.3

8.2 – 10.4

8.4 - 10.4

23 - 29

23-9 90-30

9.5-12

31 - 7

25-5

43 8.7-10.6
25.6-2.2

17-62
Stirring, no bubbling

BG-11 on Salda lake 
water

Experiment

BG-11

BG-11

Medium

52-27

8.4 - 10.7 25-5 10-65

30

8.7-10.6 25-4 6.2-90

100 No stirring, bubbling 0.05 - 3.5

BG-11 on Salda lake 
water Stirring, no bubbling
BG-11 30 Stirring, bubbling

N.D.

BG-11: 0.025 M MgCl2 + 

0.036 M NaHCO3

100 No stirring, no bubbling 0.05 -3.5 8.5 - 10.8 25-5 10-40 N.D.

BG-11: 0.025 M MgCl2 + 

0.036 M NaHCO3

N.D.BG-11: 0.025 M MgCl2 + 

0.036 M NaHCO3

100 No stirring, no bubbling 0.05 - 4.0 20-120

N.D.BG-11: 0.025 M MgCl2 + 

0.05 M NaHCO3

40 Stirring, no bubbling 0.2-2.2
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δδδδ25Mg 2 s.d. δδδδ26Mg 2 s.d. δδδδ25Mg 2 s.d. δδδδ26Mg 2 s.d. ∆
26Mg solid-liquid Mineralogy

Laboratory samples
1 0 -0.2699 0.0343 -0.5235 0.0504

S-Bio-1 (H-10) 8 13 0.0477 0.0599 -0.0172 0.0561

13 37 -0.0905 0.0546 -0.4620 0.0258 -0.0501 0.0708 -0.5666 0.0052 -0.105 Brucite

S-Bio-2 (H-16) 6 7 -0.07978 0.0589 -0.16762 0.1025 -0.80708 0.0318 -1.57317 0.0161 -1.406 Nesquehonite

10 15 -0.4093 0.0716 -0.75737 0.1207 -0.56523 0.0396 -1.06708 0.0356 -0.310 Dypingite
14 26 -0.2328 0.0500 -0.4472 0.0264 -0.3658 0.0096 -0.6992 0.0408 -0.252 dypingite+brucite

S-ABIO-1 (H-18) 4 6 -0.074 0.041 -0.103 0.033 -0.738 0.016 -1.428 0.005 -1.325 Dypingite
8 13 0.1130 0.0356 0.2129 0.0114 -0.5905 0.0321 -1.1911 0.0197 -1.404 Dypingite
13 25 0.0900 0.0277 0.1949 0.0314 -0.5554 0.0226 -1.0608 0.0295 -1.256 Dypingite

-1.328
S-BIO-5 (H20) 4 10 -0.0677 0.0677 -0.16521 0.1025 -0.4668 0.0168 -0.96494 0.0548 -0.800 nesquehonite

9 20 -0.02475 0.0300 -0.10091 0.0505 -0.3676 0.0021 -0.76927 0.1294 -0.668 nesquehonite
11 26 0.18442 0.0299 0.36078 0.0728 -0.33207 0.0507 -0.70502 0.0874 -1.066 nesquehonite

-0.845
S-ABIO-4 (H-27) 10 40 -0.2059 0.0257 -0.38161 0.0630 -0.4176 0.0446 -0.84917 0.0936 -0.468 nesquehonite

S-f-5 culture 5 days 5 -0.47447 0.0462 -0.97307 0.0525 -0.38499 0.0525 -0.82143 0.0667 0.152

3 months -0.582 0.0046 -1.18436 0.0187 -0.211

Natural samples
T3 Salda Lake coast and stromatholites 0.1337 0.0162 0.2569 0.0721 -0.3648 0.0477 -0.6955 0.0357 -0.952 Hydromagnesite
Salda coastal water & Sand on the beach -0.0637 0.0772 -0.1360 0.1509 -0.5040 0.0665 -0.9933 0.1537 -0.857 Hydromagnesite
Stromatolite - Interior part -0.5324 0.0407 -1.0384 0.0315 -1.118* Hydromagnesite
Stromatolite - Exterior part -0.4794 0.0037 -0.9378 0.0225 -1.018* Hydromagnesite
Salda-Water February 2010 -0.0053 0.0077 -0.0208 0.0046
Live stromatolites + bacteria -0.3953 0.0260 -0.7541 0.0178
Lake depth profile:

T07-0 0 0.075 0.017 0.150 0.010
T07-20 20 0.035 0.044 0.094 0.049
T07-40 40 0.100 0.031 0.167 0.031
T07-60 60 0.040 0.034 0.117 0.080
T07-70 70 0.079 0.011 0.137 0.063

T08, Stromatolite islands 0.050 0.024 0.084 0.027
T11, 1.5 m depth, fragm. stromatolites 0.045 0.024 0.080 0.042

0.118
T09, Incoming spring -0.733 0.042 -1.402 0.053
T10, Spring under mountain, Yuoruk MZL -0.535 0.101 -1.010 0.107

T1, Coastal lake water, Feb 2008 -0.019 0.046 -0.005 0.070
T2 Incoming spring, Feb 2008 -0.384 0.049 -0.759 0.028

Epsomite deposits at the wood 0.1000 -0.1830 0.0226 -0.3401 0.0466 -0.4401 Epsomite
* Assuming δδδδ26Mg in Salda lake water of 0.08‰  

SOLIDS
Expt.

Sample 
No.

Time 
(Days)

LIQUIDS

Table 2. Mg isotopic composition in natural and laboratory samples 
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 Figure 1. (A): View of the Salda lake coast. The white and light blue layers at the 
littoral zone represent the hydromagnesite sand formed due to modern and 

paleostromatolites wave abrasion. (B): Modern stromatolite formations in the littoral 
zone. (C): stromatolite coating of the peridote rock debris from 1-1.5 depth in the littoral 

zone. (D): surface of active stromatolite covered by Pyrogira algae and diatoms with 
oxygen bubbles illustrating active on-going photosynthesis. 
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Figure 2. SEM images of natural stromatolites and experimentally precipitated 
minerals 

(A): sample T3-1 of the coastal zone, representing the external surface of 
stromatolite with a zoom (B). (C): Scratch of 2-10 mm thick mineral coating on grasses 
and tree branches in the littoral zone water. (D) : Deep interior part of the microbialite. 
EDS analyses demonstrated o the presence of only C, Mg, and O in all natural samples 

(A – D). 
E-N: Laboratory precipitates of Experiment S-Bio-10 with dypingite (E), S-Bio-8 

with hydromagnesite (F), S-Bio-2 with dypingite + brucite (G), S-Abio-4 with 
nesquhonite + dypingite (I), S-Bio-3 with dypingite (J), S-Bio-3 with hydromagnesite (K, 
L), S-Abio-1 with dypingite (M), and S-Bio-11 with dypingite and hydromagnesite (N, 

O). 
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Figure 3. TEM images of   hydrous Mg carbonate precipitation after 14 days in 0.025 M MgCl2 + 0.05 M NaHCO3 (A-E) and 
Synechococcus sp. growth during 14 days in BG-11 media without mineral precipitation  (F). 
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Figure 4. Reactive fluid evolution during experiments performed in this study. 
Temporal evolution of pH (A, B), Mg concentration (C, D), and Alkalinity concentration 
(E, F) during experiments in continuously stirred reactors with air bubbling (left panel, 
A, C, E) and without air bubbling (right panel, B, D, F). The symbol size is within the 

uncertainty of the analyses.  
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Figure 5. The biomass evolution during experiments in stirred reactors with 
bubbling (S-Bio-2, circles) and without air bubbling (S-Bio-3, 4, diamonds and triangles) 
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Figure 6. Magnesium and biomass concentration evolution during experiments in 
stirred reactors with Salda lake water amended with BG-11 components (S-Bio-4, 

squares) and without BG-11 (S-Bio-6, squares) 
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Figure 7. Relationship between the amount of precipitated hydromagnesite (mmol) 
and the increase of the biomass (gwet) in different biotic experiments. 
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Figure 8. Temporal evolution of degree of saturation of nesquehonite (Ωnesquehonite) 
of the reactive fluids in stirred experiments. A: During biotic (S-Bio-2) and abiotic (S-

Abio-1) experiments with air bubbling; B: During biotic and abiotic experiments 
without air bubbling; C: During biotic experiments with Salda lake water amended with 

BG-11 components (S-Bio-4, squares) and without BG-11 (S-Bio-6, squares) 
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Figure 9. Mg isotopic composition in Salda lake water (blue diamonds), inflowing 
springs (pink squares), stromatolites and sediments (yellow triangles). 
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Figure 10. Temporal evolution of δ26Mg in the liquid and solid samples collected 
during experiments Bio-A and Abio-A plotted as a function of elapsed time (A) and 
fraction of Mg remaining in solution (B). The size of the symbols incorporates the 

uncertainty (2σ) on δ26Mg. 
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Abstract 

 

The hydrous magnesium carbonates, nesquehonite (MgCO3·3H2O) and dypingite 

(Mg5(CO3)4(OH)2·5(H2O)), were precipitated in batch reactors from aqueous solutions 

containing 0.05 M NaHCO3 and 0.025 M MgCl2 and in the presence and absence of live 

photosynthesizing Gloeocapsa sp. cyanobacteria at various conditions (i.e. stirring and 

bubbling, continuous light, darkness, day/night cycle). Bulk precipitation rates are not 

affected by the presence of bacteria although the solution pH and the degree of fluid 

supersaturation with respect to magnesium carbonates increase due to photosynthesis.. Lighter 

Mg isotopes are preferentially incorporated into the precipitated solids in all experiments. Mg 

isotope fractionation between mineral and solution in the abiotic experiments is identical, 

within uncertainty, to that measured in cyanobacteria-bearing experiments; measured δ
26Mg 

ranges from -1.54 to -1.16 ‰ in all experiments. Mg isotope fractionation is also found to be 

independent of reactive solution pH and Mg, CO3
2- and biomass concentrations. Taken 

together, these observations suggest that Gloeocapsa sp. cyanobacterium does not appreciably 

affect the magnesium isotope fractionation between aqueous solution and hydrous magnesium 

carbonates both in laboratory and natural conditions. These results may have significant 

implications for past environmental reconstruction of hydrous magnesium carbonates 

precipitation in the cyanobacterial mats.  
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1. INTRODUCTION 

 

Biomineralization is the most important carbonate mineral formation mechanism in 

the hydrosphere (Lowenstum and Weiner, 1989; Chafetz and Buczynski, 1992; Ferris et al., 

1997; Douglas and Beveridge 1998; Dove, 2010). Cyanobacteria induced mineralization 

occurred in both ancient and modern environments (Brady et al., 2009; Planavsky et al, 2009; 

Raven and Giordano, 2009); cyanobacteria-dominated carbonate formation occurred in 

oceans, lakes, springs, and soils during the Precambrian (Riding, 2000), whilst modern 

cyanobacteria-dominated carbonate formation occurs in highly alkaline aquatic environments 

(Thompson and Ferris, 1990; Braithwaite and Zedef, 1994; Dupraz et al., 2009; Power et al., 

2009). The formation of Mg-rich carbonates by cyanobacteria occurs only in specific Earth 

surface environments, such as Lake Salda in Turkey, which is fed by ultramafic rock 

weathering products (e.g. Braithwaite and Zedef, 1994), and alkaline lakes such as those in 

British Columbia (Power et al., 2007, 2009).  

 

The chemical and isotopic composition of bio-precipitated minerals is routinely used 

to reconstruct past environmental conditions (Altermann et al., 2006), with particular 

emphasis on carbon and oxygen fractionation in carbonates (e.g. Pentecost and Spiro, 1990; 

Power et al., 2007). Until recently, little attention has been paid to the possibility of isotopic 

fractionation of the major divalent cations within carbonate minerals (i.e. Ca, Mg and Sr) 

owing to the more complex analytical procedures required to quantify these effects (Chang et 

al., 2003; Young and Galy, 2004). The importance of Mg in biogeochemical cycles, and the 

~8% mass difference between 24Mg and 26Mg suggest that Mg isotopes are potentially useful 

for resolving mass fractionation mechanisms during carbonate precipitation. The potential for 

magnesium isotope fractionation in carbonate minerals has been recently documented for Mg-

bearing carbonates (Chang et al., 2004; Buhl et al., 2007; Hippler et al., 2009) and may be 

significant in cyanobacterial induced mineralization (Black et al., 2006). 

 

In this study the rates and magnitude of Mg isotope fractionation has been determined 

during the abiotic and Gloeocapsa sp. induced precipitation of hydrous Mg-carbonates. These 

results 1) enable the quantitative calibration of Mg isotope fractionation between aqueous 

solutions and biotically and abiotically formed magnesium carbonates at Earth surface 



 Appendix 2 

259 

conditions, and 2) allow assessment of the possible role of cyanobacteria on Mg isotope 

fractionation during carbonate biomineralization.  

 

 

2. MATERIALS AND METHODS 

 

2.1. Culture and Characterization of Cyanobacteria  

 

An axenic culture of mesophilic Gloeocapsa sp. f-6gl cyanobacteria was obtained 

from the Institute of Microbiology RAS (Moscow). This culture was originally isolated from 

a thermal spring having a temperature ranging from 30 to 40 oC in Kamchatka (Russia). The 

bacterium was grown in synthetic, low-phosphate (10 % of normal content) cyanobacteria 

BG-11 Freshwater Solution for 3 weeks until the stationary growth phase was reached 

(Martinez et al., 2008). Cyanobacterium Gloeocapsa sp. typically consists of a small number 

of spherical individual colonies, containing 3 to 10 cells enclosed within larger masses of 

mucilage. The concentration of the bacterial cell suspensions was quantified via optical 

density (O.D.) using a spectrophotometer at a wavelength of 750 nm. This wavelength was 

selected after full spectra recording in the region 300-800 nm of both mineral-free live cells of 

Gloeocapsa sp. cyanobacteria and cell-free dypingite suspensions. The mineral suspension 

exhibits no adsorption in the region 650-800 nm whereas the cyanobacterial cells exhibit a 

distinct peak at 700-750 nm. The overall light absorbance of mineral suspension is lower by a 

factor of 10 than that of live biomass, when expressed per dry and wet weight. As a result, the 

maximum uncertainty in optical biomass measurements induced by the presence of minerals 

via absorbance at 750 nm is no more than 10%, which is within the experimental 

reproducibility. The O.D. calibration curve – humid weight was linear up to 1.3 absorbance 

units and the ratio between humid and freeze-dried weight of Gloeocapsa sp. was 10.0 ± 2.0. 

Although the experiments were conducted under fully sterile conditions, possible 

reactor contamination by other cyanobacterial species was assessed by detailed optical 

microscopic examination of bacterial culture during growth, approximately once a week. The 

same periodicity was employed for monitoring contamination by culturable aerobic 

heterotrophic bacteria after inoculation on agar plates. In both cases, no detectable 

contamination was observed even during long-term experiments. 
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2.2. Precipitation Experiments 

 

Precipitation experiments were performed in 1000 ml sterile borosilicate glass reactors 

containing either the low-phosphate BG-11 growth medium (10% of normal content, 50 µM), 

or the cell supernatant, into which 25-30 mM MgCl2 and ~50 mM NaHCO3 were added. 

These conditions were found to be the most suitable for Mg carbonate precipitation and 

correspond closely to conditions found in natural settings where hydromagnesite precipitation 

has been reported (Braithwaite and Zedef, 1994; Power et al., 2007). Experiments with lower 

concentrations of Mg2+ and HCO3
- failed to produce sufficient precipitation for analysis, 

whereas higher concentrations led to rapid and uncontrolled hydrous Mg carbonate 

precipitation. The bacteria used in the experiments were pre-cultured in BG-11 media before 

being placed in the reactors. The bacteria continued to grow while mineral precipitation 

occurred; biomass typically increased by a factor of 10 during the first 2-4 weeks then 

increased less rapidly for the rest of the experiment.  Details of all experiments performed in 

this study are given in Table 1. 

Several distinct types of biotic experiments were performed at 25 ± 2°C. All biotic 

experiments were initiated by adding a known quantity of previously grown Gloeocapsa sp. 

cyanobacteria to the reactors. Experiments Bio-A and Bio-B were performed in reactors that 

were continuously stirred and bubbled with sterile humid air with an average flow rate of 1.5 

± 0.3 L/min. Experiments Bio-C and Bio-F were performed in reactors that were neither 

stirred nor bubbled with air. Experiment Bio-D was shaken continuous using a Fisher 

PingPong 400 shaker, whereas experiment Bio-E was continuous stirred but both were 

performed in the absence of bubbling. Each of these experiments was performed under 

continuous fluorescent light of 30 µmol photon m-2 s-1. In addition, experiment Bio-G was run 

under a normal day/night cycle without stirring and bubbling and experiment Bio-I was 

shaken and run in complete darkness without bubbling. Furthermore, experiments Bio-G and 

Bio-I run for 143 days to allow for i) achievement of end of stationary growth phase and 

beginning of the cell death phase and ii) to account for long-term mineral transformation 

reactions. This allowed for a better approximation of natural conditions and a more rigorous 

characterization of mineral transformation reactions.  

All abiotic experiments performed at 25 ± 2oC but at various conditions. Experiments 

Abio-A, Abio-B, Abio-C, and Abio-E were performed in the presence of a sterile supernatant 

of the Gloeocapsa sp. cyanobacteria to which were added MgCl2 and NaHCO3 in similar 

concentrations to those of the biotic experiments and 50 ± 10 mg/L of dissolved organic 
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carbon (DOC) in the form of cell exometabolites. Note that by cell exometabolites we mean 

dissolved (< 0.22 µm) organic substances of undefined structure and chemical composition, 

largely dominated by exopolysaccharides. Furthermore, phytoplankton-originated 

exopolymeric substances represent the major pool of autochtonous organic matter in natural 

waters, including the lakes where hydrous Mg carbonate precipitation occurs. The amount of 

Mg  initially present in the supernatant was always less than 5% of that added in the form of 

MgCl2 The concentration of DOC used in these experiments is similar to that measured in the 

experiments containing the live Gloeocapsa sp. The supernatant solution for these abiotic 

experiments was generated by centrifugation and filtration through a 0.22 µm sterile filter of 

Gloeocapsa sp. culture collected ~20 days after attainment of the stationary phase. Abiotic 

control Abio-D1 and Abio-D2 experiments were performed in sterile low-phosphate (10 % of 

normal content) and normal BG-11 culture media respectively. Experiments Abio-A, Abio-B, 

Abio-D1, Abio-D2 and Abio-E were bubbled with sterile humid air at similar flow rates as 

that of experiments Bio-A and Bio-B. All abiotic experiments were performed in the presence 

of 0.01 M NaN3 to prevent possible microbial contamination. 

One additional experiment, P-f, was run to assess Mg consumption and isotopic 

fractionation by Gloeocapsa sp. in the absence of carbonate precipitation. This experiment 

was performed in the absence of dissolved MgCl2 and NaHCO3 and Gloeocapsa sp. was 

grown in BG-11 medium. The fluid phase and biomass in this experiment were sampled after 

11 and 44 days of growth.  

 

2.3. Sampling and Analyses 

 

30-50 ml aliquots of homogeneous suspension (containing the solution, precipitated 

mineral phase, and cells if present) were sampled periodically from the reactors in a sterile 

laminar hood box during each experiment (see Table ESM-1). Optical density and pH were 

measured in liquid sub-samples, whilst the solution supernatants were filtered using  

MilliPore 0.22 µm cellulose acetate filters, then used for alkalinity, DOC, and Mg 

concentration measurements. Alkalinity was determined following a standard HCl titration 

procedure using an automatic Schott TitroLine alpha TA10plus titrator with an uncertainty of ± 

2% and a detection limit of 5×10−5 M. Dissolved Organic Carbon (DOC) was analyzed using 

a Shimadzu TOC-6000 Carbon Total Analyzer with an uncertainty of 3% and a detection 

limit of 0.1 mg/L. Magnesium concentrations were measured by flame atomic absorption 

spectroscopy using a Perkin Elmer AAnalyst 400 with an uncertainty of ±2% and a detection 
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limit of 0.0002 mM. pH was measured using a Mettler Toledo combined electrode, with a 

precision of ±0.001. The uncertainty of biomass concentration determination via optical 

density is estimated at ±10%.  

Organic matter was removed from the surfaces of a subset of the recovered minerals 

prior to their surface characterization by treating them with 10% H2O2 for 2-3 days at the 

same pH as the experimental fluids. The residual solid phases were then thoroughly rinsed in 

de-ionized water and freeze dried at -55°C. The resulting mineral phases were characterized 

by scanning electron microscopy (SEM) using a Jeol JSM840a, and by X-ray diffraction 

using an INEL CPS 120 Coκα, with a scan speed of 0.02o s-1. Mineral-free bacterial cells and 

cell biomass with precipitated MgCO3 were also observed using Transmission Electron 

Microscopy (TEM) with a JEOL JEM 12000 EX and JEOL JEM 2100F (equipped with a 

field emission gum (FEG) and PGT EDX detector) at 80 kV. TEM samples were prepared by 

first rinsing cell suspension with sterile nutrient solution and MilliQ water then centrifuging 

them for about 2 min at 10000 rpm. TEM analyses were then performed on grids coated with 

a carbon film that was submerged in the prepared bacterial suspension for 10 s then dried.  

 

2.4. Magnesium Isotope Analyses  

 

Mg isotope compositions of both filtered fluids and solid phases were measured. The 

Mg composition of the solids were made before any pre-treatment; as such resulting Mg 

compositions reflect contributions of the precipitated mineral and some organic material, 

including cells of cyanobacteria and chlorophylla. Because precipitation was performed under 

controlled conditions, the potential for isobaric interferences from double charged ions (e.g. 
48Ca2+, 48Ti2+, 50Ti2+, 50V2+, 50Cr2+ and 52Cr2+) was minimal. Galy et al. (2001), however, 

demonstrated that the presence of Na+ and other species within the sample matrix could also 

result in mass bias effects. Consequently all samples were chemically purified prior to Mg 

isotopes analysis via cation exchange chromatography. Filtered acidified fluids were 

evaporated to dryness and re-diluted in 1 M HNO3, while the freeze-dried solid samples and 

mineral-free organic samples obtained from P-f experiment were digested in 16 M HNO3, 

before being evaporated and re-dissolved in 1 M HNO3. Mg separation was achieved using 

the protocol of Teng et al. (2007), with the AG 50W-X12 exchange resin held in a 10 ml Bio-

Rad poly-prep column. Complete recovery of Mg from the columns, which is essential to 

avoid isotopic fractionation (Chang et al., 2003; Teng et al., 2007) was confirmed by replicate 

passes of samples with different matrices through the purification procedure (Pearce et al. 
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2009). A single pass was generally sufficient to reduce the cation/Mg ratio in the sample to 

<0.05, thereby avoiding potential interferences during mass spectrometry analysis (Galy et al., 

2001).   

Magnesium isotopic ratios were measured using a Thermo-Finnigan ‘Neptune’ Multi 

Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS) at both the LMTG 

(Toulouse, France) and at The Open University (Milton Keynes, UK). All solutions were 

prepared in 0.32 M HNO3 and were introduced into the Ar plasma using a standard spray 

chamber. Instrumental mass fractionation effects were corrected via sample-standard 

bracketing, and all results are presented in delta notation with respect to the DSM3 

international reference material (Galy et al., 2001):  
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where x refers to the Mg mass of interest. Compatibility of results between the two 

MC-ICP-MS used in this study was confirmed by replicate analyses of three international Mg 

reference standards (DSM, CAM-1 and OUMg), and by duplicate analyses of the carbonate 

standard J-Do 1. The δ26Mg reproducibility of these standards was typically <0.07 ‰. 

 

The isotopic offset between the Mg in the fluid and that incorporated into the solid 

phase can be defined as: 

∆26Mgsolid-liquid ≡ δ26Mgsolid - δ26Mgliquid      (2) 

This value was determined for all samples where both the fluid and solid phases were 

collected in the present study. 

 

The evolution of the Mg isotopic composition of the solid phase (δ26Mgsolid) 

precipitating at equilibrium in a closed system experiment can be calculated from mass 

balance constraints using (Criss, 1999): 

δ26Mgsolid = δ26Mginitial + A(∆26Mgsolid-liquid -1)·103     (3) 

where A stands for the percent of Mg precipitated from the liquid phase, and  

δ26Mginitial refers to the isotopic composition of the initial fluid phase. 
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3. RESULTS 

 

The measured chemical composition of the reactive fluids (e.g. the fluid phase in the 

reactor during the experiments) and the mineralogy of precipitated solid phases in all samples 

are listed in the Electronic Supplementary Information table ESM-1 (file ESM.pdf) and are 

described in detail below. 

 

3.1. Mineralogy of the Precipitated Phases 

 

Examples of X-ray diffraction patterns of the solid phases precipitated during the 

experiments are shown in Fig. 1. X-ray diffraction results demonstrate the precipitation of 

nesquehonite (MgCO3 3H2O) and dypingite (Mg5(CO3)4(OH)2 5H2O) at distinct times during 

the experiments. Nesquehonite precipitation is limited to the first hours of experiments Bio-A 

and Abio-A. After ~100 hours of reaction time, dypingite was the only mineral phase present 

in these experiments. Experiments Bio-C, Bio-D and Abio-D2 exhibit dypingite formation 

whereas experiments Bio-F, Bio-G, Bio-I, Abio-B, Abio-C, Abio-D1 and Abio-E exhibit 

nesquehonite formation. Co-existence of both mineral phases was observed only in the final 

solid sample collected from experiment Bio-E. In general, all the collected nesquehonite XRD 

patters exhibited close agreement with corresponding reference patterns (see Fig. 1B), whilst 

the collected XRD patterns of collected dypingite exhibit some minor difference compared to 

their corresponding reference patterns (see Fig. 1A). No clear connection between the 

mineralogy of the precipitated phase and the experimental/ physical conditions of the 

experiment is evident. Scanning electron microscopy images, reveal that nesquehonite 

exhibits a needle-like habit with needles ranging from 5 to 15 µm in length (see Fig. 2A), 

whilst the dypingite is present as rosette-like aggregates of 2 to 8 µm diameter (see Fig. 2B 

and 2C). Transmission electron microscopy demonstrated the presence of nanometer size 

mineral precipitates in the vicinity of cell surfaces in solutions supersaturated with respect to 

hydrous Mg carbonates (see Fig. 3A) suggesting a direct link between the bacteria and some 

precipitates. Such precipitates around cells were absent in control media (see Fig. 3B). 

 

3.2. Chemical Composition of the Fluid Phase 

 

The temporal evolution of Mg concentration and pH in all experiments as well as 

alkalinity and biomass concentration during representative experiments are illustrated in Fig. 



 Appendix 2 

265 

4. The Mg concentration and alkalinity of the reactive fluids tend to decrease and the pH tends 

to increase with time during all biotic experiments. Some significant differences, however, are 

evident among these biotic experiments. For example, an initial latent stage lasting ~4 days is 

observed in experiments Bio-A, Bio-B, Bio-E, Bio-F, where the reactive fluid exhibits a slight 

increase in Mg concentration and alkalinity. This latent stage is followed by a rapid decrease 

in reactive fluid Mg concentration and alkalinity during the next 10-15 days, before 

attainment of a quasi-stationary state. Experiments Bio-C, Bio-D, Bio-G, and Bio-I exhibit 

similar temporal Mg concentration and pH variations, although a pH drop accompanied by an 

increase in the Mg concentration and alkalinity are observed after 40-60 days. For all of these 

biotic experiments other than Bio-I, this final pH drop is concurrent with a decrease of fluid 

optical density suggesting that this observation stems from cyanobacterial death. A decrease 

in photosynthetic activity due to decreasing cyanobacterial activity can result in decreasing 

pH which favors Mg-carbonate dissolution.  

In the abiotic experiments, the reactive fluid Mg concentration and alkalinity 

decreased during the first 10±5 days, becoming almost constant thereafter, suggesting the 

attainment of near-equilibrium conditions. During the same period, the reactive fluid pH 

increased to 9.2-9.3 and then remained approximately constant until the end of each 

experiment (see Fig. 4 and Table ESM-1).  

The speciation and saturation state of the reactive fluids with respect to potentially 

precipitating mineral phases for all experiments was calculated using PHREEQC together 

with its MINTEQA2 database (Parkhurst and Appelo, 1999) after adding to it thermodynamic 

properties for nesquehonite and hydromagnesite reported by Cheng and Li (2010a,b). The 

saturation state of these fluids with respect to dypingite was not calculated owing to lack of 

relevant thermodynamic data. A summary of these saturation state calculations is provided in 

Table 2. The evolution of the saturation state of the fluids of experiments Bio-A and Abio-A 

are illustrated as a function of time in Fig. 5.  The calculated aqueous speciation of Mg is 

reported in Table ESM-2 (file ESM.pdf). The aqueous speciation of Mg during the 

experiments was dominated by aqueous Mg2+, but also contained 30-50% of MgCO3
-
(aq) and 

minor quantities of MgHCO3° and MgOH+. 

Apparent precipitation rates (r i) were calculated from the first derivative of the fluid 

phase Mg concentration with respect to time, from the onset of precipitation to the attainment 

of constant fluid Mg concentrations using 
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dt

dc
r

i
i

Mg

,Mg

1

ν
= .          (4) 

where Mgc stands for the concentration of Mg in the reactive fluid, t designates time, 

and i,Mgν denotes the number of moles of Mg in one mole of the i th mineral. Resulting 

precipitation rates are presented in Table 2. All experiments performed in the presence of 

sterile humid air bubbling attained steady-state Mg concentrations over shorter time periods 

(12±3 days) and exhibit higher apparent precipitation rates compared to bubbling-free 

experiments. Note that the Mg concentration in all the biotic experiments attained a lower 

stationary-state compared to those of the abiotic experiments. There is, however, no statistical 

difference in the precipitation rates obtained from the biotic (Bio-A and Bio-B) and abiotic 

(Abio-A, Abio-B, Abio-D1, Abio-D2, and Abio-E) experiments performed with either stirring 

or air bubbling during first 10-15 days with rates equal to -143 ± 33x10-3 and -118 ± 16x10-3 

mol dypingite L-1 day-1, respectively as calculated using Εq. (4).  

 

3.3. Magnesium Isotopic Composition 

 

The Mg isotope compositions of all analyzed samples are given in Table 3. Mg isotope 

analyses were performed on selected samples of experiments Bio-A, Bio-B, Bio-C, Bio-D, 

and Abio-A where dypingite was the main precipitated mineral phase. Furthermore, the 

temporal evolution of δ26Mg during experiments Bio-A and Abio-A was studied in detail and 

is plotted in Fig. 6.  

All experiments exhibited mass-dependent fractionation between fluid and solid phase. 

The precipitated solids have δ26Mg values that are 0.6-1.55 ‰ lighter than their liquid 

counterparts. The solid samples obtained from Bio-A do not exhibit a systematic temporal 

trend, whilst the solid phases from the Abio-A experiment show a slight isotopic enrichment 

with time, concurrent with a corresponding enrichment in the reactive fluid from the same 

experiment. Isotopic compositions from the mineral-free experiment (P-f) show that the 

Gloeocapsa sp. cells have slightly heavier Mg isotopic values compared to the growth 

medium. The observed shift of δ26Mg between the biomass and the nutrient media over the 44 

days of growth during experiment P-f is ~0.2 ‰. 

The fractionation factors, ∆25Mgsolid-liquid, and ∆26Mgsolid-liquid, calculated from 

corresponding solid and liquid samples are listed in Table 3. In the presence of Gloeocapsa 

sp., ∆26
Μgsolid-liquid calculated from the first collected sample (~ after 4 hours) of experiment 
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Bio-A is significantly lower than that of the latter samples; this is the only Mg isotope 

concentration measurement made on nesquehonite in this study. The samples collected 

between 8 and 25 days from the Abio-A control experiment exhibit ∆26
Μgsolid-liquid values 

similar to those measured in most of the biotic experiments. There is no statistically 

significant correlation between the extent of Mg fractionation and the reactive fluid pH, 

IAPhydromagnesite, Mg, alkalinity and biomass concentrations as illustrated in Fig. ESM-1. In 

addition, no statistically significant correlation was found between the fractionation factor and 

the aqueous speciation of Mg as shown in Fig. ESM-2 for MgCO3°(aq). 

The temporal δ26Mgsolid-liquid evolution of experiments Bio-A and Abio-A are plotted 

against fraction of Mg remaining in solution in Fig. 7. Most data from these experiments fall 

on parallel linear trends corresponding to constant ∆26Mgsolid-solution and consistent with closed 

system equilibrium exchange between the fluid and solid phase calculated with Eq. (4).  

 

4. DISCUSSION 

 

4.1. Chemical Composition of Solutions and Mineralogy of Precipitants 

 

pH was observed to increase with time in all abiotic and biotic experiments. In the 

abiotic experiments, this increase originates from the degassing of the initial reactive fluid, 

which contained a 5x10-2 mol/kg NaHCO3 at pH~8.5. Owing to this high aqueous bicarbonate 

content, these initial fluids have a pCO2 of 10-2.0 atm, which is supersaturated with respect to 

the atmosphere. The bubbling of sterile humid air liberates CO2 from the reactive fluid 

leading to both an increase in pH and degree of supersaturation of this fluid with respect to 

Mg carbonate minerals. Note that all experiments were oversaturated with respect to 

hydromagnesite, although this mineral phase was never observed in the precipitates. In biotic 

experiments, this pCO2 decrease was accompanied by additional pH increase due to 

photosynthetic uptake of HCO3
- ions and OH- release. This enhanced pH increase is evident in 

our experiments; the pH in our biotic experiments increases by 0.8-2.2 units compared to a 

0.7-1.4 units increase in our abiotic experiments. Similar pH increases due to biological 

activity were documented by Power et al. (2007) who performed field experiments using a 

consortium of cyanobacteria isolated from microbial mats of hydromagnesite playas in British 

Columbia, Canada. The evolution of fluid composition during our experiments, as illustrated 

in Fig. 4, shows that, in the presence of cyanobacteria, there is initial induction period lasting 

up to 5 days, during which little mineral precipitation occurs. At the end of this induction 
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period, hydroxyl ions produced by photosynthetic activity increase pH and the degree of fluid 

supersaturation with respect to hydrous magnesium carbonates leading to their precipitation 

(Thompson and Ferris, 1990). Indeed, the TEM images shown in Fig. 3, of active Gloeocapsa 

sp. cyanobacteria suspension in solutions oversaturated with respect to magnesium carbonates 

show formation of fine grained mineral phase in the near their surfaces, indicating a strong 

link between cyanobacterial cells and precipitating Mg hydrous carbonate. 

The final mineral phase precipitated in our experiments was either dypingite, a rare 

hydrous magnesium carbonate mineral compositionally similar to hydromagnesite (Raade, 

1970) or nesquehonite. Power et al. (2007) reported dypingite formation in biotic mesocosm 

experiments, and nesquehonite formation in abiotic control experiments at a pH of ~9.5. The 

transformation of nesquehonite to hydromagnesite is known to occur through intermediary 

hydrous magnesium carbonate phases such as dypingite (Davies and Bubela, 1973; 

Hopkinson et al., 2008). Although it has been argued that such mineralogical changes could 

be an artifact of the sample drying (Botha and Strydom, 2001), we did not observe any 

significant difference in the XRD patterns of samples prepared via freeze-drying and those 

oven-drying at 50°C, and thus conclude that mineralogical changes did not occur during 

sample preparation. All previous work reported on the transformation of nesquehonite to 

hydromagnesite was performed at temperatures above 45 oC, suggesting that this is an 

optimum temperature for this reaction. Formation of hydromagnesite, however, in natural 

environments (e.g. Lake Salda, Turkey; British Columbia, Canada) likely ocurrs at 

significantly lower temperatures, similar to those considered in our experiments (Braithwaite 

and Zedef, 1994; Power et al., 2007, 2009). The results above suggest that at ambient 

temperatures the transformation from nesquehonite to hydromagnesite occurs via a dypingite 

intermediary both in the laboratory and in nature. However the physicochemical factors 

controlling these transformation reactions are currently unknown. Note that a slow transition 

from dypingite to hydromagnesite, might explain the differences reported above between our 

XRD spectra and the reference standard.  

 

4.2. Role of cyanobacteria in Mg concentration and isotopic composition changes 

 

Bacterial cell surfaces, chlorophyll-a, and cellular cytoplasm are strong adsorbers of 

aqueous ions; as such some Mg could have absorbed to cell walls in our experiments 

(Pokrovsky and Kompantseva, 2007; Pokrovsky et al., 2008). For example, Jasper and Silver 

(1977) reported that Mg can be incorporated into chlorophyll-a and cellular cytoplasm during 
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cyanobacterial growth. Black et al. (2006) reported that chlorophyll-a isolated from 

cyanobacterium S. elongatus preferentially incorporates light Mg isotopes. This process has 

also been observed to enrich cells in heavy Zn isotopes (Gélabert et al., 2006). The maximum 

surface site density of Gloeocapsa sp., as revealed by proton Ca-Mg exchange experiments, is 

~0.7x10-3 mol gdry
-1 (Pokrovsky et al., 2008). This suggests that the maximum amount of Mg 

removed from solution during our experiments performed in the presence of cyanobacteria, 

which contained 2-3 gdry biomass L-1 is no more than 1.4-2.1x10-3 mol L-1. This is 

significantly smaller than the 15-25 10-3 mol/L of Mg removed from solution by mineral 

precipitation in our experiments. The small role of bacterial adsorption in this study is 

confirmed by the results of experiment P-f. This experiment, performed to quantify Mg 

uptake and fractionation by Gloeocapsa sp. shows that only 1.5x10-5 to 2.5x10-5 mol/L of the 

aqueous Mg concentration in the reactive fluid was taken up by the biomass. Therefore, 

unless the isotopic fractionation linked to Mg adsorption at cyanobacteria surface is orders of 

magnitude larger than suggested by previous studies, Mg adsorption on the cell surface should 

be negligible compared to the effects of mineral precipitation. 

Note that the magnesium isotope compositions of the solid samples retrieved after 1 hr 

and 4 days of Bio-A experiment deviate from closed system fractionation trend shown in Fig. 

7a. The observed differences between solid and fluid phases may reflect the change in the 

mineralogy from the initially precipitated nesquehonite to the more stable dypingite, if each 

mineral has a distinct fractionation factor. Another possibility is that precipitation rates are 

fast at the onset of the experiment, so this deviation may stem from kinetic isotopic fraction 

effects. 

 

4.3. Magnesium Isotope Fractionation between Mineral and Reactive Fluid 

 

The reactive fluids of Bio-A, Bio-B, Bio-C, Bio-D, and Abio-A experiments exhibit an 

increase in δ26Mg values of 0.5-1.5 ‰ (see Table 3 and Fig. 6). This demonstrates that lighter 

Mg isotopes are preferentially incorporated into the solid phase. This observation is coherent 

with the results of previous studies on Mg isotope fractionation between aqueous fluids and 

biogenic skeletal carbonates (Chang et al., 2004; Buhl et al., 2007; Hippler et al., 2009), 

abiotically precipitated low Mg-calcite (Galy et al., 2002; Immenhauser et al., 2010), dolomite 

(Higgins and Schrag, 2010), and magnesite (Pearce et al., 2009). The origin of the Mg isotope 

fractionation likely stems from the change in Mg coordination, symmetry, and bond distances 

in the reaction forming the mineral from the aqueous fluid. One of the main changes during 
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this reaction is the loss of the strongly attached hydration shell surrounding Mg, which has 6 

water molecules located at a distance of 2.08 Å (Di Tommaso and de Leeuw, 2010). In 

contrast, Mg in hydrous Mg carbonate minerals is contained in a three-dimensional 

framework of MgO6 octahedra and triangular carbonate ions. For example, the average Mg-O 

distances in hydromagnesite are 2.10 and 2.04 Å where the Mg(1) atom is surrounded by 4 

oxygen atoms from carbonate ions, 1 hydroxyl group and 1 water molecule, while the Mg(2) 

atom is surrounded by 4 oxygen atoms from carbonate groups and 2 hydroxyl groups (Akao 

et al., 1974). As such, the Mg-O octahedral in hydromagnesite is more distorted than that in 

the aqueous solution. Quantum mechanic theory suggests that heavier isotopes will 

concentrate in the species in which they are most strongly bounded (i.e. the aqueous solution), 

meaning the lighter, less stable isotopes will be favored in the solid phase (Criss, 1999). 

The ∆26Mgsolid-liquid values of abiotic experiments range from -1.43 to -1.17 ‰. These 

factors are similar to those found in the experiments performed in the presence of Gloeocapsa 

sp., which range from -1.55 to -1.19 ‰. Measured ∆
26Mgsolid-liquid values are consistent with a 

closed system equilibrium model (Fig. 7) suggesting a continuous isotopic 

exchange/equilibration between the precipitated hydrous Mg-carbonates and the reactive 

fluid, probably via a stepwise dissolution/re-precipitation process, which itself is consistent 

with the equilibrium fraction model (Criss, 1999). Such a process can also explain the small 

temporal variations in ∆26Mgsolid-liquid values observed during the experiments. The small 

deviations in ∆26Mgsolid-liquid equilibrium values observed at the end of experiments may arise 

from small changes in the chemical composition of aqueous fluid. The final ∆26Mgsolid-liquid 

values can be affected by: 1) the low amount of remaining suspension as well as modification 

of stirring and bubbling regime at these conditions; and 2) cell lysis and intracellular 

“organic” Mg release at the end of long-term experiment.  

The observation that ∆26Mgsolid-liquid values are identical, within uncertainty (defined as 

the standard deviation of all samples where solid and liquid phase were measured and is equal 

to ± 0.14 ‰), in the presence and the absence of Gloeocapsa sp. suggests that, Mg carbonate 

sediments formed via abiotic processes, or provoked by cyanobacterial photosynthesis will 

exhibit similar Mg isotopic signatures. Moreover no affect of reactor stirring or air bubbling 

was found on Mg isotope fractionation. This suggests that the experimental fractionation 

factors determined in this study may be applicable to natural processes. The only exception to 

this might be Mg-carbonate formation in biofilms that exhibit a high cell:mineral ratio, as 

cyanobacteria can store Ca2+ and Mg2+ ions in organic envelopes (Braissant et al., 2003, 

2007). In such systems, “organic“ Mg originated from cell decay and lysis would be 
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isotopically lighter than the bulk fluid phase. Given that the ∆26Mgsolid-liquid value for cell 

biomass is significantly less negative than that for inorganic carbonates, the release of Mg 

from cyanobacterial sheaths and cell envelopes, and subsequent precipitation of Mg 

carbonates in the vicinity of the cyanobacterial cyanobacterial mats, might be expected to 

produce minerals that are isotopically heavier than those precipitated directly from 

supersaturated aqueous fluids at having a high fluid to cell biomass ratio. 

 

5. CONCLUSIONS 

 

The hydrous magnesium carbonates, nesquehonite and dypingite, were precipitated in 

the presence and absence of cyanobacteria Gloeocapsa sp. under varying laboratory 

conditions (i.e. stirring and bubbling, continuous light, darkness, day/night cycle). All 

experiments yielded similar bulk precipitation rates, although the pH of the reactive fluids 

were 0.5-1.0 units higher in biotic experiments compared to abiotic experiments. Similarly, 

retrieved ∆26Mgsolid-liquid values obtained from abiotic experiments are identical within 

uncertainty of those obtained in the presence of Gloeocapsa sp. Taken together these 

observations suggest that the presence of cyanobacteria affects neither the rates nor the Mg 

isotopic fractionation of the precipitated hydrous magnesium carbonates in natural systems. 
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 Appendix 2 

Figure 1: X-ray diffraction patterns of the solids recovered from (A) experiments Bio-A after 30 
days and Abio-A after 27 days, and (B) experiments Bio-B after 23 days and Abio-C after 15 days 

compared to X-ray diffraction patterns of Dypingite and Nesquehonite reference patterns, 
respectively. 
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Figure 2: SEM images of hydrous magnesium carbonate phases precipitated during this study: 
Nesquehonite needles collected from (A) experiment Bio-A after ~ 1 hour, (B); Dypingite rosettes 

collected from experiment Bio-A after 30 days, and (C) Abio-A after 27 days. 
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Figure 3: TEM images of active Gloeocapsa sp. cyanobacteria and associated precipitates after 
14 days in (A) BG-11 medium and (B-C) MgCl2 – NaHCO3 enriched BG-11 medium. 
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Figure 4: Reactive fluid evolution during the experiments performed in this study. Temporal 
evolution of A) alkalinity, B) pH, C) Mg concentration (CMg), and D) biomass concentration during 
experiments Bio-A, Bio-B, Abio-A and Abio- C. Temporal evolution of E) Mg concentration and G) 
pH during experiments Bio-C, Bio-D, Bio-E, Bio-F, Bio-G and Bio-I Temporal evolution of F) Mg 

concentration and H) pH during experiments Abio-B, Abio-D1, Abio-D2 and Abio-E. The symbol size 
approximates the uncertainty of the analyses.  
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Figure 5: Temporal evolution of saturation degree of nesquehonite (Ωnesquehonite) of the reactive 
fluids during experiments Bio-A and Abio-A. 
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Figure 6: Temporal evolution of δ26Mg values in the liquid and solid samples collected during 
experiments Bio-A and Abio-A. Size of the symbols incorporates the uncertainty (2σ) on δ26Mg. 
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Figure 7: δ26Mg values vs. Mg fraction remained in solution for (A) biotic experiment Bio-A, 
Bio-B, Bio-C, Bio-D and (B) abiotic experiment Abio-A.  The solid lines in the figure correspond to 

trends predicted for closed system equilibrium using Eqn. (3) together with the mean measured 
∆

26
solid-liquid value (-1.31±0.14‰) and the δ26

Μg value of the MgCl2 used to create the reactive fluids. 
Closed and open symbols correspond to liquid and solid samples respectively. Encircled symbols 

collected at the beginning of experiment Bio-A whcih may be affected by mineralogical changes or 
kinetic isotopic fractionation. 
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Figure ESM 1: Correlation of ∆26Mgsolid-liquid with (A) pH, (B) IAP hydromagnesite , (C) aqueous Mg 
concentration, (D) alkalinity and (E) biomass concentration. Size of symbols corresponds to the 

uncertainty in the data. Encircled symbols were collected at the beginning of experiment Bio-A which 
may be affected by mineralogical changes or kinetic isotopic fractionation (see text). 
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Figure ESM-2: Correlation of ∆26Mgsolid- liquid with the percent of aqueous Mg present as MgCO3
o 

in the fluid phase. Encircled symbols were collected at the beginning of experiment Bio-A and my be 
affected by mineralogical changes or kinetic isotopic fractionation (see text). Uncertainty in the 

calculation is estimated to be less than 5%. 
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