A proof checking kernel for the $\lambda \Pi$-calculus modulo

Mathieu Boespflug, École Polytechnique
-s

PhD defense, 18 january 2011
-s
Funded by

* îledeFrance

Pythia of Delphi

Pythia of Delphi

Proof implies truth. ${ }^{1}$

${ }^{1}$ For any reasonable notion of proof.

Formal systems

Example

\leftrightarrow The language of formulae
\& The set of axioms (or assumptions)
© The language of proofs

$$
\begin{gathered}
(\mathrm{ax}) \frac{P \text { is an axiom }}{P \text { is a palindrome }} \\
\text { (ext) } \frac{P \text { is a palindrome }}{x P x \text { is a palindrome }} \\
\text { (concat) } \frac{P \text { is a palindrome } Q \text { is a palindrome }}{Q P Q \text { is a palindrome }}
\end{gathered}
$$

\& Theorems are formulae that have proofs.

Palindromes: example

$$
\begin{aligned}
& (\mathrm{ax}) \frac{\mathrm{d} \text { is an axiom }}{\mathrm{t} \text { is a palindrome }} \\
& (\mathrm{ext}) \frac{\mathrm{rtr} \text { is a palindrome }}{(\mathrm{ext}) \frac{\text { artra is a palindrome }}{}} \\
& (\mathrm{ext}) \frac{\text { tartrat is a palindrome }}{(\mathrm{ext})} \frac{\text { etartrate is a palindrome }}{\text { detartrated is a palindrome }} \\
& (\mathrm{ext}) \frac{\text { den }}{\text { det }}
\end{aligned}
$$

Palindromes: example

$$
\begin{array}{ll}
\begin{array}{ll}
\text { (ax) } \frac{\mathrm{t} \in \Gamma}{\Gamma \vdash \mathrm{t}} \\
\text { (ext) } \frac{1}{\Gamma \vdash \mathrm{rtr}} \\
\text { (ext) } \frac{1}{\Gamma \vdash \text { artra }} & \text { (ax) } \frac{\mathrm{d} \in \Gamma}{\Gamma \vdash \mathrm{~d}} \\
\text { (ext) } \frac{\Gamma \vdash \mathrm{tartrat}}{\Gamma \vdash} & \text { (ext) } \frac{\Gamma \vdash \text { ada }}{\text { (ext) } \frac{\Gamma \vdash \text { etartrate }}{\Gamma \vdash}} \\
\text { (ext) } \frac{\text { (ext) } \frac{\Gamma \vdash \text { detartrated }}{\Gamma \vdash \text { radar }}}{\Gamma \vdash \text { radardetartratedradar }}
\end{array}
\end{array}
$$

Tree of proofs

Tree of proofs

Proof reduction

Proof reduction: example

Proof reduction: example

Proof reduction: example

$$
\begin{aligned}
& \text { (ax) } \frac{\mathrm{t} \in \Gamma}{\Gamma \vdash \mathrm{t}} \\
& \text { (ext) } \frac{\Gamma}{\Gamma \vdash \mathrm{rtr}} \\
& \text { (ext) } \frac{\Gamma \vdash \text { artra }}{\Gamma \vdash} \\
& \text { (ext) } \frac{\Gamma \vdash \text { tartrat }}{\Gamma \vdash} \\
& \text { (ext) } \frac{\Gamma \vdash \text { etartrate }}{\Gamma \vdash} \\
& \text { (ext) } \frac{\Gamma \text { detartrated }}{\Gamma} \\
& \text { (ext) } \frac{\Gamma \vdash \text { rdetartratedr }}{\Gamma \vdash \text { ardetartratedra }} \quad \text { (ax) } \frac{\mathrm{d} \in \Gamma}{\Gamma \vdash \mathrm{~d}} \\
& \text { (concat) } \frac{(\mathrm{ext}) \frac{\Gamma \vdash \text { dardetartratedrad }}{\Gamma \vdash \text { adardetartratedrada }}}{\text { (ext) } \frac{\Gamma \vdash \text { radardetartratedradar }}{\Gamma}}
\end{aligned}
$$

Proof reduction: example

$$
\begin{aligned}
& \text { (ax) } \frac{\mathrm{t} \in \Gamma}{\Gamma \vdash \mathrm{t}} \\
& \text { (ext) } \frac{\Gamma \vdash \mathrm{rtr}}{\Gamma \vdash} \\
& \text { (ext) } \frac{\Gamma \vdash \mathrm{artra}}{\Gamma \vdash} \\
& \text { (ext) } \frac{1}{\Gamma \vdash \text { tartrat }} \\
& \text { (ext) } \frac{\Gamma \vdash \text { etartrate }}{\Gamma \vdash} \\
& \text { (ext) } \frac{\Gamma \vdash \text { detartrated }}{(\mathrm{ext})} \frac{\Gamma \vdash \text { rdetartratedr }}{\Gamma} \\
& \text { (ext) } \frac{\Gamma \vdash \text { ardetartratedra }}{\Gamma \vdash \text { dardetartratedrad }} \\
& \text { (ext) } \frac{\Gamma \vdash \text { adardetartratedrada }}{(\mathrm{ext})} \frac{\frac{1}{\Gamma \vdash \text { radardetartratedradar }}}{\Gamma}
\end{aligned}
$$

Proof reduction: example

Modus Ponens

$$
\stackrel{\Gamma \vdash A \underset{\Gamma}{\Rightarrow} \vdash B}{ } \quad \Gamma \vdash A
$$

Computation with proofs of logical formulae

$$
\frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B}
$$

$$
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B}
$$

Computation Rule:

Modulo --- formula rewriting

$$
\begin{aligned}
\text { Proofs } & \longleftrightarrow \text { Programs } \\
\text { Formulae } & \longleftrightarrow \text { Types }
\end{aligned}
$$

\& Want to reason on proofs/programs.
\& If we can write proofs inside formulae then we should be able to compute inside formulae.
\& Computation is a means to reduce proof effort (e.g. Four Colour Theorem, reflexive tactics).

Dedukti

Dedukti ($\lambda \Pi$ modulo)

Dedukti

Thesis

Analysis, transformation and compilation of programs is a simple and effective method for checking proofs.

Conversion tes \dagger

Normalization by Evaluation

1. $\forall M \cdot \forall N . M \equiv N \Rightarrow \llbracket M \rrbracket=\llbracket N \rrbracket$ (soundness),
2. $\forall M . \downarrow \llbracket M \rrbracket=M$ if M is in normal form (reproduction).

From program to data

$$
\begin{aligned}
\ulcorner x\urcorner & =\mathrm{B} x \\
\ulcorner\underline{\lambda} x . M\urcorner & =\operatorname{Lam}(\lambda x .\ulcorner M\urcorner) \\
\ulcorner M: N\urcorner & =\operatorname{App}\ulcorner M\urcorner\ulcorner N\urcorner
\end{aligned}
$$

Data evaluation

$$
\begin{aligned}
&\ulcorner x\urcorner=\mathrm{B} x \\
&\ulcorner\underline{\lambda} x \cdot M\urcorner=\operatorname{Lam}(\lambda x .\ulcorner M\urcorner) \\
&\ulcorner M \cdot N\urcorner=\operatorname{App}\ulcorner M\urcorner\ulcorner N\urcorner \\
& \begin{aligned}
\text { eval }(\mathrm{B} x) & =x \\
& \text { eval }(\operatorname{Lam} f)
\end{aligned} \\
&=\lambda x . \operatorname{eval}(f x) \\
& \text { eval }(\operatorname{App} M N)=\operatorname{app}(\operatorname{eval} M)(\operatorname{eval} N) \\
& \operatorname{app} f N=f N
\end{aligned}
$$

Evaluation to a residualizing semantics

$$
\left.\begin{array}{rl}
\ulcorner x\urcorner & =\mathrm{B} x \\
\ulcorner\underline{\lambda} x . M\urcorner\urcorner & =\operatorname{Lam}(\lambda x .\ulcorner M\urcorner) \\
\ulcorner M: N\urcorner=\operatorname{App}\ulcorner M\urcorner\ulcorner N\urcorner
\end{array}\right) \begin{aligned}
\operatorname{eval}(\mathrm{B} x) & =x \\
\text { eval }(\operatorname{Lam} f) & =\operatorname{Lam}(\lambda x . \operatorname{eval}(f x)) \\
\operatorname{eval}(\operatorname{App} M N) & =\operatorname{app}(\operatorname{eval} M)(\text { eval } N) \\
\operatorname{app}(\operatorname{Lam} f) N & =f N \\
\operatorname{app} M N & =\operatorname{App} M N
\end{aligned}
$$

Interpretation

$$
\begin{aligned}
&\ulcorner x\urcorner=\mathrm{B} x \\
&\ulcorner\underline{\lambda} x \cdot M\urcorner=\operatorname{Lam}(\lambda x .\ulcorner M\urcorner) \\
&\ulcorner M \cdot N\urcorner=\operatorname{App}\ulcorner M\urcorner\ulcorner N\urcorner \\
& \quad \operatorname{eval}(\mathrm{B} x)=x \\
& \operatorname{eval}(\operatorname{Lam} f)=\operatorname{Lam}(\lambda x . \text { eval }(f x)) \\
& \operatorname{eval}(\operatorname{App} M N)=\operatorname{app}(\text { eval } M)(\mathrm{eval} N) \\
& \operatorname{app}(\operatorname{Lam} f) N=f N \\
& \operatorname{app} M N=\operatorname{App} M N \\
& \llbracket M \rrbracket=\mathrm{eval}\ulcorner M\urcorner .
\end{aligned}
$$

Partial evaluation of eval ० \ulcorner.

$$
\begin{aligned}
\llbracket x \rrbracket & =x \\
\llbracket \underline{\lambda} \cdot M \rrbracket & =\operatorname{Lam}(\lambda x \cdot \llbracket M \rrbracket) \\
\llbracket M_{\subseteq} \cdot N \rrbracket & =\operatorname{app} \llbracket M \rrbracket \llbracket N \rrbracket
\end{aligned}
$$

Reification

$$
\begin{aligned}
& \llbracket x \rrbracket=x \\
& \llbracket \underline{x} \cdot M \rrbracket \\
& \llbracket M: N \rrbracket=\operatorname{Lam}(\lambda x \cdot \llbracket M \rrbracket) \\
& \downarrow_{n} \mathrm{~F} m=m \\
& \downarrow_{n} \operatorname{Lam} f=\underline{\lambda} n \cdot \downarrow_{n+1}(f(\mathrm{~F} n)) \\
& \downarrow_{n} \mathrm{App}^{2} M N=\left(\downarrow_{n} M\right):\left(\downarrow_{n} N\right)
\end{aligned}
$$

Rewrite Rules and extensions

$$
\llbracket \llbracket \rrbracket={ }_{-}^{\llbracket} \begin{aligned}
\llbracket x \rrbracket & =x \\
\llbracket c P_{1} \ldots P_{n} \rrbracket & =\operatorname{App}\left(\ldots\left(\operatorname{App}(\operatorname{Con} \hat{c}) \llbracket P_{1} \rrbracket\right) \ldots\right) \llbracket P_{n} \rrbracket
\end{aligned}
$$

$$
\begin{aligned}
& \text { fix }\left(\lambda c . \lambda x_{1} \cdots \lambda x_{n}\right. \text {. } \\
& \text { case }\left(x_{1}, \ldots, x_{n}\right) \text { of } \\
& \left\lfloor\left[\begin{array}{ccc}
c P_{11} \ldots P_{1 n} & \longrightarrow & M_{1} \\
\vdots & & \vdots \\
c P_{m 1} \ldots P_{m n} & \longrightarrow & M_{m}
\end{array}\right]=\right. \\
& \left(\llbracket P_{11} \rrbracket, \ldots, \llbracket P_{1 n} \rrbracket\right) \quad \rightarrow \quad \llbracket M_{1} \rrbracket \\
& \left(\llbracket P_{m 1} \rrbracket, \ldots, \llbracket P_{m n} \rrbracket\right) \rightarrow \llbracket M_{m} \rrbracket \\
& \text { default } \\
& \left.\operatorname{App}\left(\ldots\left(\operatorname{App}(\operatorname{Con} \hat{c}) x_{1}\right) \ldots\right) x_{n}\right)
\end{aligned}
$$

© Untyped NbE extends naturally to residual forms and reduction rules of the Calculus of Constructions.

Optimizations

\& Removal of intermediate closure allocation by standard eval/apply transformation.
\& Constructors of object-level datatypes interpreted as metalevel constructors.
\& Native pattern matching.

Micro benchmarks

Synthetic benchmark

Context-free typing

An alternative interpretation

$$
\begin{aligned}
\llbracket x \rrbracket & =x \\
\llbracket \underline{\lambda} \cdot M \rrbracket & =\operatorname{Lam}(\lambda x \cdot \llbracket M \rrbracket) \\
\llbracket M: N \rrbracket & =\operatorname{App} \llbracket M \rrbracket \llbracket N \rrbracket
\end{aligned}
$$

Dependent product elimination

$$
(\mathrm{app}) \frac{\Gamma \vdash M: \Pi x: A . B \quad \Gamma \vdash N: A}{\Gamma \vdash M N:\{N / x\} B}
$$

Dependent product elimination

$$
\begin{gathered}
\text { (app) } \frac{\Gamma \vdash M: \Pi x: A \cdot B \quad \Gamma \vdash N: A}{\Gamma \vdash M N:\{N / x\} B} \\
\text { (app-ho) } \frac{\Gamma \vdash M: \operatorname{Pi} A f \quad \Gamma \vdash N: A}{\Gamma \vdash M N: f N}
\end{gathered}
$$

\& Easy implementation of capture avoiding substitution.

Dependent product introduction

$\llbracket \underline{\lambda} x . M \rrbracket=\operatorname{Lam}(\lambda x . \llbracket M \rrbracket)$

Dependent product introduction

Dependent product introduction

$f($ Var $n)$

Dependent product introduction

$$
f[n: A]
$$

Dependent product introduction

$$
(\mathrm{abs}) \frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x: A \cdot M: \Pi x: A . B}
$$

Dependent product introduction

$$
\begin{gathered}
\text { (abs) } \frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x: A \cdot M: \Pi x: A \cdot B} \\
\left(\text { abs-ho) } \frac{\vdash M: f[n: A]}{\vdash \operatorname{Lam} A f: \operatorname{Pi} A f}\right.
\end{gathered}
$$

\& Drop explicit context in judgements.

Towards a LCF style proof checker for dependently typed theories

\& Type decorated variable occurrences in HOL.
\& Proofs checked by construction.
as Allous cheap combination of proofs.
\leftrightarrow No context - no checking that contexts are compatible.

Example:

Towards a LCF style proof checker for dependently typed theories

\& Type decorated variable occurrences in HOL.
\& Proofs checked by construction.
as Allous cheap combination of proofs.
\leftrightarrow No context - no checking that contexts are compatible.

Example:

A purely functional kernel

\leftrightarrow Proof checked by construction means no need for global registry of checked proofs.
© No state during proof checking.

A purely functional kernel

© Proof checked by construction means no need for global registry of checked proofs.
\& No state during proof checking.

A purely functional kernel

\leftrightarrow Proof checked by construction means no need for global registry of checked proofs.
© No state during proof checking.

Managing dual interpretations

Code explosion: example

$$
a_{1}\left(a_{2}\left(a_{3}\left(a_{4}\left(a_{5}\left(a_{6}\left(a_{7} a_{8}\right)\right)\right)\right)\right)\right)
$$

Recuperating sharing

$$
\begin{aligned}
\llbracket x \rrbracket_{\rho} & =\rho(x) \quad \text { si } x \in \operatorname{dom}(\rho) . \\
\llbracket s \rrbracket_{\rho} & =\langle s, s\rangle \\
\llbracket \lambda x: A . M \rrbracket_{\rho} & =\text { Let } \llbracket A \rrbracket_{\rho}\left(\bar{\lambda} y \cdot\left\langle\operatorname{Lam} \hat{y}\left(\bar{\lambda} x \cdot \llbracket M \rrbracket_{\rho[x \mapsto x]}\right), \text { Lam }(\bar{\lambda} x \cdot \overline{\llbracket M \rrbracket})\right\rangle\right) \\
\llbracket \Pi x: A \cdot B \rrbracket_{\rho} & =\text { Let } \llbracket A \rrbracket_{\rho}\left(\bar{\lambda} y \cdot\left\langle\operatorname{Pi} \hat{y}\left(\bar{\lambda} x \cdot \llbracket B \rrbracket_{\rho[x \rightarrow x]}\right), \operatorname{Pi} \check{y}(\bar{\lambda} x \cdot \overline{\llbracket B \rrbracket})\right\rangle\right) \\
\llbracket M N \rrbracket_{\rho} & =\text { Let } \llbracket N \rrbracket_{\rho}\left(\bar{\lambda} x . \text { Let } \llbracket M \rrbracket_{\rho}(\bar{\lambda} y \cdot\langle\operatorname{App} \hat{x} \hat{y}, \text { app } \check{x} \check{y}\rangle)\right)
\end{aligned}
$$

Connecting subterms to their code

Connecting subterms to their code

Connecting subterms to their code

Lambda-lifting

Lambda-lifting

Final words

Proof checking by program analysis, transformation and compilation is a cheap and effective method for checking proofs.

Future work

\leftrightarrow More clever shortcutting of normalization.
\& Development of more embeddings in the $\lambda \Pi$-calculus modulo.
\leftrightarrow Bootstrap of core type checker.

