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Nomenclature

Jf Mass Flux at a face f

α1 First Normal Stress Di�erence Coe�cient

α2 Second Normal Stress Di�erence Coe�cient

αp Pressure Underrelaxation Coe�cient

αU Velocity Underrelaxation Coe�cient

δij Kronecker Delta

∇• Divergence Operator

Υ Source Term Vector

ε Strain (Deformation) Tensor

ςij Deviatoric Stress Tensor

∆t Time Step

ε̇ Strain Rate Tensor

γ̇ Shear Rate

γ̇NL Non-Local Shear Rate

η Dynamic Viscosity

ηf Suspending Fluid Viscosity
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ηN Particles Normal Stress Viscosity

ηP Particles Shear Viscosity

ΓΨ Di�usion Coe�cient

Σf Fluid Stress Tensor

Σp Particle Stress Tensor

Σp
nn, 2 The Modi�ed Particle Normal Stress Diagonal Tensor

Σp
nn, 3 The Modi�ed Particle Normal Stress Anisotropic Tensor

Σ Stress Tensor

Σp
nn, 1 Particle Normal Stress Diagonal Tensor

A Sparse Matrix

E Local Rate of Strain Tensor

F Force

FH Hydrodynamic Drag Force

n Unit Normal Vector

Q Parametric Symmetric Tensor

Sf Face-Area Vector

U Velocity Vector

X Position Vector In 3D Cartesian Coordinates

Z Flow Aligned Tensor

µ Dynamic Viscosity

ν Kinematic Viscosity

Ω Angular Velocity
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ω Rotational Velocity

−→⊥ Total Migration Flux Of Particles

−→g Di�erence-In-Densities Migration Flux

−→
Nη Gradients In Vicosity Flux

−→
Nc Collision Flux

−→
Nr Curvature-Induced Flux

−→
Nt Di�usive Migration Flux Of Particles

φ Concentration (Volume Fraction) Of Particles

Π Suspension Pressure

Ψ Scalar Property

<esP Residual

ρ Medium Density

ρf Fluid Density

ρp Particles Density

τ Shear Stress

g Gravitational Acceleration

Υt Suspension Surface Tension

aN Matrix O�-Diagonal Coe�cients

aP Matrix Diagonal Coe�cients

f(φ) Sedimentation Hindrance Function

Kη Empirical Parameter Of The Gradients In Viscosity Flux

Kc Empirical Parameter Of The Collision Flux
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koo Ordinates At The Origin

kp Slope

Kr Empirical Parameter Of The Curvature-Induced Flux

kT Thermal Energy

N1 First Normal Stress Di�erence

N2 Second Normal Stress Di�erence

Pδij Mean Normal Stress Tensor

Pa Atmospheric Pressure

SΨ Source Term

tM Migration Characteristic Time

VP Volume Of A Control Volume Cell

a Radius Of The Spherical Particles

Cr Courant Number

Er Numerical Error

h Gap

L Conduit Length

P Pressure

p Kinematic Pressure

Pe Péclet Number

r ; R Radius

Re Reynolds Number

t Time

tr Trace Of A Tensor
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ABBREVIATIONS

�

SBM Suspension Balance Model

FVM Finite Volume Method

FCM Force Coupling Method

PIV Particles Image Velocimetry

LDV Laser Doppler Velocimetry

NMR Nuclear Magnetic Resonance

SIMPLE Semi-Implicit Method for Pressure-Linked Equations

NS Navier-Stokes

OO Object Oriented

SD Stokesian Dynamics

CV Control Volume
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Stress Convention

Due to di�erent Stress-sign conventions that exist in literature, we provide

our convention used in this manuscript by following the most known conven-

tion, in suspensions rheology. The normal stresses are de�ned by directing the

normals toward the interior side of a medium element (compressional stresses

are negative) as you can see in the next drawing.

�

S

F

n

n

V

normal
Fn

S
=

Compressional Stress

Σ

Σ<0
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INTRODUCTION

This thesis covers the rheology of concentrated non-Brownian suspensions and

shear-induced migration of particles. The rheology of non-Brownian suspen-

sions of solid spheres has been capturing many attentions widely, illustrated in

numerous studies that have been done from about the 1970s. These suspensions

are spreading quickly in our daily life in di�erent forms such as paints, cosmetics,

detergents, food stu�s, mud, fuel, rivers, etc... Thus, the knowledge and un-

derstanding of their mechanical behavior is very important and have motivated

numerous theoretical, numerical, and experimental studies. The modelisation of

concentrated suspensions is a hard task since the multibody-interactions have

to be taken into account. An experimental characterization is also di�cult

because several complex phenomena such as wall slip or shear-induced migra-

tion can take place. This last phenomenon that leads to particle concentration

inhomogeneities, and originates in size segregation in polydisperse systems, is

observed in many �ows and constitutes a crucial problem in many industrial

processes.

Many experimental studies have been performed in order to characterize the

shear-induced migration and to identify the mechanisms responsible for it.

Basically there exist two models which account for the particle migration.

The �rst one is called �shear induced di�usion model� which explains the migra-

tion through the hydrodynamic collisions between particles in the shear �ow.

This model is phenomenological and does not allow a quantitative prediction of

the migration since it introduces some di�usion coe�cients which are not easily
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reachable theoretically nor experimentally. The second model, named �Sus-

pension Balance Model (SBM)�, is based on the action of the particle normal

stresses which are present in a concentrated suspension subject to a shear �ow.

The predictions of this model could be quantitative. Nevertheless, there exist

only few experimental data on the dependence of the particle normal stresses in

a suspension on the shear rate value, or on the particle volume fraction.

The SBM was �rst formulated by [Nott and Brady 1994] to explain the

particle migration toward the center-line in pressure-driven channel �ow. This

model has been re�ned by [Morris and Boulay 1999] to introduce the anisotropy

of the particle stress tensor Σp. They proposed an expression for Σp such

that the concentration pro�les measured by other authors in various geometries

([Phillips et al. 1992] for a Couette �ow, [Chapman 1990, Chow et al. 1994]

for a parallel-plate torsional �ow, and [Chow et al. 1995] for a cone and plate

�ow) �t the model. We propose here a direct determination of Σp and of the

suspension material functions (the viscosity ηs and the normal stress di�erences

N1 and N2) in a parallel-plate torsional �ow. The direct determination of the

normal stress di�erences and of the particle stress tensor are quite rare.

First [Gadala-Maria 1979] showed that the normal stress di�erences (more

precisely (N1 −N2)) are proportional to the shear stress and are of the same

order of magnitude.

[Zarraga et al. 2000] determined the Normal stress di�erences thanks to

the anti-Weissenberg e�ect, and to the total force measurements exerted on a

rotating cone or disk, on top of a stationary plane. They measured that N1 &

N2 are both negative and that N1 ∼ N2

4 .

Later [Singh and Nott 2003] proposed a technique to measure both N1 &

N2 by coupling data taken from two separate experiments, that's by installing

pressure transducers in a Couette cell geometry from one side, and in a two

parallel disk cell from the other side. They obtained negative N1 & N2, and

N1 ≈ N2.

Recently, [Boyer et al. 2011 a] have measured precisely (N1 + 2N2) as a
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function of the volume fraction of particles φ, using the anti-Weissenberg e�ect,

in addition to, [Couturier et al. 2011] who have determined the second normal

stress di�erence N2 , by measuring the deformation of the free surface of a

suspension �ow in a narrow inclined channel. The latter two measurements

show that N1 is of the order of zero, and that N2 is negative.

The numerical simulations of [Yeo and Maxey 2010a] using the Force Cou-

pling Method (FCM) and the Stokesian Dynamics (SD) of [Sierou and Brady

2002] show that both N1 and N2 are negative, but with N1 ≈ N2 in the SD

simulations, and N1 . N2 in the FCM.

Concerning the measurement of the particle normal stress tensor, we can

mention [Deboeuf 2008, Deboeuf et al. 2009] who were able to determine the

third particle normal stress (in the vorticity direction), through the measure-

ment of the pore pressure in a sheared suspension in a Couette cell. A so recent

work of [Boyer et al. 2011 b] where the second particle normal stress has been

measured is also to be mentioned. There exist also numerical estimations of the

particle normal stresses both in Stokesian Dynamics [Sierou and Brady 2002]

and in the FCM [Yeo and Maxey 2010a].

In this manuscript, we describe how the whole particle normal stress tensor is

measured and the way the two normal stress di�erences are determined through,

using a parallel-plate torsional �ow device. For this purpose, we measure the

radial pro�le of the second normal stress, Σ22 (r) (in the velocity gradient di-

rection) in the parallel-plate con�guration. The �rst and the second normal

stress di�erences are deduced from that pro�le [Bird et al. 1977]. Furthermore,

we measure the pore pressure, Pf , in the suspension that allows one, when it

is subtracted from the total normal stress, Σ22, to evaluate the particle stress

tensor.

Once Σp is determined, the SBM equations are implemented in the [Open-

FOAM®] open source package. The stationary and transient concentration

pro�les are calculated for various simple shear �ows (rectangular, circular chan-

nels and wide, narrow gap Couette cells) and compared to experimental and
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numerical data found in the literature. Then following [Miller and Morris 2009],

we extend our code to the 2D general case where the �ow is no more restricted

to be a simple shear. After a validation of the code with the �ows of suspensions

in channels and Couette cells, the general 2D solver is applied to the case of a

2D oscillating shear of a particle cloud between two parallel-plates [Metzger et

al. 2011]. Finally, the last neutrally buoyant general 2D code is also re-extended

to account for buoyancy and is validated through the case of resuspension and

mixing of a suspension in a horizontal Couette cell [Rao et al. 2002 b].
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Chapter 1

STATE OF THE ART

1.1 OVERVIEW

This chapter (1) includes the state of the art of the subject of this the-

sis. We present an introduction to Rheology in section (1.2), where we

talk about its history. In section (1.3) an introduction to suspensions

is made, where their rheophysics are covered in section (1.4). The

Rheometry and its techniques are introduced in section (1.5), while

the phenomenon of shear-induced migration of particles inside the

suspensions is presented in section (1.6) with the experimental views

in literature. Numerical modeling via di�erent models for the latter

phenomenon is shown in sections (1.7) and (1.7.4).

1.2 AN INTRODUCTION TO RHEOLOGY

1.2.1 Run-up to rheology (before 1929)

The period prior to the formal creation of the discipline of rheology, included

tremendous e�orts by numerous scientists at di�erent key times [Deepak Do-

raiswamy]. The antiquity period shined out through Archimedes around 250

B.C., and [Newton 1687] who worked on Ideal Materials especially Perfect
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1.2. AN INTRODUCTION TO RHEOLOGY

Rigid Bodies. Later, Ideal Elastic Solids have been born through out the work

of Young (1807), and [Cauchy 1827] based on the e�orts of [Boyle 1660] and

[Hooke 1678]. By the 1700s, [Pascal 1663] eased out the way for [Bernoulli

1738] and [Euler 1755] to attack well what is known now under Inviscid Flu-

ids1. At the early 1800s, Newtonian-Liquids have been well named, and it was

a celebration period because it was the birth of the [Navier 1823] - [Stokes 1845]

equations which can describe the motion of a �uid in a given geometry such as

a [Poiseuille 1841]. At the mid 1800s, Linear Viscoelasticity was de�ned and

di�erent Models were set up to describe this behavior of liquids, by di�erent

scientists like [Maxwell 1867], and [Boltzmann 1878]. By the early 1900s, more

complex nonNewtonian-Liquids (suspensions, polymers..) behaviors have been

observed experimentally, and have been well described through many mathe-

matical Models by variety of physicists and mathematicians. We mention some

of them like [Einstein 1906], [Bingham 1922], [Je�rey 1922], and [Hershel and

Bulkley 1926].

1.2.2 Rheology birth (1929)

The word �Rheology� was �rst named by the scientist �[Bingham 1944]� at

Lafayette college in 1920, from a suggestion of his colleague, Markus Reiner

[Wikipedia®]. During the 3rd decade of the 20th century, the science of Rhe-

ology has been born o�cially, and started to invade the family as the science of

deformation and �ow of matter.

1.2.3 Rheology since its inception in 1929

Since its inception in 1929, Rheology science has captured the attention of many

scientists who have implemented their e�orts in di�erent wide areas of activities

such as constituting theories and mathematical equations or Models, describ-

ing phenomena through experiments, studying advanced materials, and doing

numerical computations.
1Fluids which exhibit no resistance to �ow.
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1.2.4 Present rheology and the new face

As we have seen from the previous short historical excursion of the origins

of rheology, we can say nowadays, Rheology is a middle-aged science after a

century of previous works, continuing to evolve more and more. However the

old face of this science that delt with things from a nearly �macroscopic scale�

has changed now to include the �microscopic scale� point of view of describing

di�erent phenomena in an attempt to connect the behavior of matter to its

Microstructure [Tanner 2009].

At the moment it is obvious that Rheology is no more a single science disci-

pline, but a one which is applied and well combined completely with other sci-

ences like Physics and Chemistry to yield new disciplines such as Rheo-Physics,

Rheo-Chemistry, and even Bio-Rheology.

1.3 SUSPENSIONS

1.3.1 Introduction

Industrial daily-life products like food, paints, cosmetics, detergents, fuel, and

alloys, biological materials like milk and blood, in addition to natural ones such

as clouds, muds, and rivers, are all examples of dispersions (Systems that are

made of a combination of several gas, liquid, and solid phases). From now on, we

will be dealing with dispersions systems of type �suspensions� more speci�cally,

suspensions of mono-dispersed Solid particles 2 in a continuous Liquid phase, as

you can see in the following classi�cation Table (1.1):

Dispersed Phase
Gas Liquid Solid

Gas vapors aero-sol smokes
Continuous Phase Liquid foams emulsions suspensions

Solid solid foams alloys, polymers

Table 1.1: Dispersions Classi�cation.

2All particles are of the same size and type.
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1.3. SUSPENSIONS

For particles (solid phase) dispersed in a liquid phase, the two types of in-

teractions that may occu are �particle-particle� and �particle-�uid� interactions.

The �nal complex behavior of the suspension is determined through the dom-

inance of one type of interaction over the other. Therefore, it is crucial to

estimate the order of magnitude of the di�erent forces acting on particles.

1.3.2 Inside a suspension

1.3.2.1 Suspension classification

Figure (1.1) shows a classi�cation of suspensions according to the shape and

size of the solid particles suspended in the liquid phase.

Suspensions
(spherical particles dispersed

in a Newtonian Liquid)

Mono-dispersed
(same particles of the
same size, radius=a)

Poly-dispersed
(same particles of
different sizes)

Homogeneous
solutions
a < 1 nm

colloidal
1 nm < a < 1 �m

non-colloidal

a > 1 �m

Figure 1.1: Classi�cation of Suspensions.

There are two major parameters that de�ne the state of a suspension:

1. The percentage of particles by volume in the liquid (φ), also known as the

volume fraction of particles. The particle volume fraction of hard spheres

in a suspension is given by

φ =
4

3
πa3n (1.1)

where n is the particle number density, and a the particle radius. The sus-

pension is said to be dilute usually if (φ ≤ 5%), and dense or concentrated

when (φ ≥ 30 %).
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2. The distribution of the particles the suspension. Thus, a well mixed sus-

pension has a homogeneous distribution of particles, which an inhomoge-

neous suspension does not realize.

1.3.2.2 Forces on particles

Forces of di�erent origins exist and act on the particles inside a suspension. The

particle size is very important because it determines the type of particle-particle

interactions that are dominant in the suspension, in addition to the signi�cance

of the shape of particles which determines the type of particle-�uid interactions.

Our work in this thesis is restricted only to solid spherical particles

of radius a. The following Table (1.2) provides an insight of the di�erent forces

that can be present in a suspension.

Forces Mathematical Form Parameters

Brownian k: Boltzmann's constant [J·K−1]

kT/a T : Absolute Temperature [K]

Dispersion Θeffective: Hamaker constant [N ·m]

or Van der Waals Θeffective/a Θeffective = f (Θparticles , Θfluid)
ξ: dielectric constant of the �uid

Electrostatic ξξ0ζ
2 ξ0: permittivity of free space [F ·m−1]

ζ: electrostatic potential of the particles [V ]

Hydrodynamic η: medium viscosity [Pa · s]

or viscous ηa2γ̇ γ̇: shear rate [s−1]

Gravitational 4ρ: particle-�uid density di�erence [kg ·m−3]

a34ρg g: gravitational constant [m · s−2]

Inertial ρfa
4γ̇2 ρf : �uid density [kg ·m−3]

Table 1.2: Forces present in a suspension.

Moreover, in our study and as you will see in the coming chap-

ter (4), we have always the following scalings for our monodispersed

neutrally buoyant suspensions: shear rate γ̇ is O
(
1 s−1

)
, suspension

viscosity η is O (1 Pa · s), particle radius a is O (50 µm), and �uid-

particles-matched density ρ is O
(
103 kg ·m−3

)
to the limit of ∆ρ

ρ which

is O
(
10−2

)
. For an aqueous suspension, we have a typical value of

Θeff ' 10−20 N ·m and ζ ' 30µV . All that provide one with a compar-
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ison between the di�erent forces (orders of magnitude) presented in

our work as it is illustrated in the next table:

Di�erent Force ratio Order of magnitude in our work
Brownian
V iscous ∼

kT
6πηa3γ̇ ∼ 10−09

Electrical
V iscous ∼

ξξ0ζ
2

ηa2γ̇ ∼ 10−02

Dispersion
V iscous ∼

Θeff
ηa3γ̇ ∼ 10−10

Gravitational
V iscous ∼ a·∆ρ·g

ηγ̇ ∼ 10−03

Inertial
V iscous ∼

ρfa
2γ̇
η ∼ 10−06

Table 1.3: Orders of magnitude of di�erent force ratios

According to table (1.3), the suspensions that will be considered in this study

are non-colloidal, non-Brownian, and the �ow is non-inertial.

To quantify these two last characteristics, it is usual to introduce two nondi-

mensional numbers, which are the Particle Reynolds Number Rep, and the

Péclet Number Pe [Stickel and Powell 2005].

� The particle Reynolds Number is the ratio between inertial and viscous

forces given by:

Rep =
ρf γ̇a

2

ηf
(1.2)

where the subscript f stands for the �uid phase. Rep is here of the order of

O
(
10−06

)
.

� The Péclet Number is the ratio between Hydrodynamic and Brownian

forces given by:

Pe =
6πηfa

3γ̇

kT
(1.3)

Pe is here of the order of O
(
10+09

)
.

Moreover, it is good to note that the ratio of Péclet Number to the Reynolds

Number is de�ned as the Schmidt Number given by:

Sc =
Pe

Re
(1.4)
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1.4 SUSPENSION RHEOPHYSICS

Understanding the behavior of a suspension is quite di�cult due to the com-

plexity of the physics which stands behind its Rheology. The behavior of any

material is described, and its identity is given, through �material functions�

that represent the relation between the applied forces (stress) on it and its re-

sponse as deformation or shear rate. The viscometric functions are some of

material functions which are the viscosity (1.4.2.1) and the Normal Stress

Di�erences (1.4.2.2). The viscometric functions of a suspension will be de-

scribed later through the methodology of taking �rstly the Newtonian liquid

alone, then observations on the changes will be done among adding the solid

particle phase to the Newtonian matrix.

1.4.1 Material functions

The relations between various stress components, and various deformations, are

the material functions, that can be derived from measurements on viscometric

�ows. The latter �ows are generated in apparatus which are made in a way to

have a well de�ned stress �eld to be applied, in order the kinematics to be mea-

sured, or viceversa. The material functions can be divided into both functions

derived from shear �ows and others derived from extensional �ows. However, in

this work we will be concerned with some material functions derived only from

shear �ows. The material functions and their methodolgy of determination are

precisely described in [Bird et al. 1977, Bird et al. 1987, Barnes et al. 1989].

1.4.2 Suspension viscometric functions (Viscosity & Normal Stress Dif-

ferences)

1.4.2.1 Viscosity

Let us consider in Figure (1.2) a shearing force which is generated in a medium

(i.e. �uid) between the two surfaces, where one is stationary and the other

surface is moving parallel to the �xed one.
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Force  F
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Figure 1.2: Simple shearing of a material (�uid).

An external force F [N ] must be applied to the moving surface to overcome

the resistance of the medium. So, if we denote the magnitude of the shearing

force by F, then

τ =
F

A
(1.5)

is de�ned as the shear stress (τ [Pa] ), with A [m2] being the area of the moving

surface.

For a newtonian liquid, τ is proportional to the shear strain rate or simple

shear rate γ̇ de�ned as:

γ̇ =
dU

dY

[
s−1
]

(1.6)

where Y [m] is the height variable and U [m · s−1] is the medium velocity.

The proportionality term is what we call the dynamic viscosity (or the shear

viscosity) and assigned the Greek letter eta (η) [Pa · s], where

τ = η
dU

dY
= η · γ̇ (1.7)

The kinematic viscosity coe�cient ν in [m2 ·s−1], can be simply calculated from

the dynamic one by dividing it by the density of the medium ρ.

� Viscosity of a Suspension

The �suspension viscosity� (η [Pa · s] ) is an intrinsic property of the medium (a

37



1.4. SUSPENSION RHEOPHYSICS

material function) that represents the behavior between external applied forces

( shear stress τ [Pa] ), and the internal response through deformation rate

( shear rate γ̇ [s−1] ). This intrinsic property of the suspension η (φ) is an

essential function of φ.

�

Experiments on suspensions of mono-dispersed solid spheres suspended in a

Newtonial liquid captured the attention of many scientitsts. In the very dilute

limit (0 ≤ φ ≤ 0.05) the suspension viscosity obeys the Einstein law [Einstein

1906] given by:

η = η0 (1 + 2.5φ) . (1.8)

where η0 is the viscosity of the suspending Newtonian liquid.

Later, Batchelor extended the previous work of Einstein to a higher limit

(φ . 0.15) providing a new suspension viscosity law such that:

η = η0

(
1 + 2.5φ+Kφ2

)
(1.9)

where the term in φ2 accounts for hydrodynamic interactions between parti-

cle pairs that arise at higher volume fractions. K Values depend on the �ow

type and range from 4.375 [Roscoe 1952, Brinkman 1952] to 14.1 [Simha 1952].

The Batchelor's value K = 6.2 is obtained by taking into account the balance

between Brownian di�usion and hydrodynamic interaction [Batchelor 1977].

To simplify a little, from now on, we will be denoting

ηs =
η

η0
(1.10)

as the normalized suspension viscosity (relative viscosity), where η0 is the vis-

cosity of the Newtonian suspending liquid, and η is the e�ective suspension

viscosity.

The same previous relative suspension viscosity ηs was given later in di�erent

forms by many rheologists, who measured and modeled the experimental data

38



1.4. SUSPENSION RHEOPHYSICS

via various phenomenological equations that take into account the maximum

possible packing volume fraction of particles (φm). We mention some of these

models for the relative suspension viscosity presented in literature:

[Krieger and Dougherty 1959]:

ηs =

(
1− φ

φm

)−2.5φm

, (1.11)

[Maron and Pierce 1956] (Figure1.3):

ηs =

(
1− φ

φm

)−2

, (1.12)

[Leighton and Acrivos 1986]:

ηs =

(
1 +

1.5φ

1− φ
φm

)2

, (1.13)

[Morris and Boulay 1999]:

ηs = 1 + 2.5φ

(
1− φ

φm

)−1

+ 0.1

(
φ

φm

)2(
1− φ

φm

)−2

, (1.14)

and [Zarraga et al. 2000]:

ηs =
e−2.34φ(
1− φ

φm

)3 (1.15)

Note, φm depends strongly on the particle shape and interaction, and is

measured and found to be between 0.58 and 0.72 for monodispersed spheres. In

our manuscript here, we are only restricted to buoyancy free monodis-

persed hard spheres suspensions, where we measured in our experi-

ments the viscosity law in equation (1.12) with φm = 0.58 (see Figure

1.3).

39



1.4. SUSPENSION RHEOPHYSICS

0 0.1 0.2 0.3 0.4 0.5 ..........

20

40

60

80

100

120

.

.

.

.

1

Φ

η s

 

 

Normalized Suspension Viscosity

Φ

Infinity

m

Figure 1.3: Normalized Suspension Viscosity

Figure 1.4: 1.25 µm PVC particles in dioctyl phthalate [Ho�man 1972].

Usually, non-Brownian suspensions are considered as viscous materials (i.e.

whose viscosity does not depend on the shear rate
{
∂ηs
∂γ̇ ∼ 0

}
[Ovarlez et al.

2006]). But as indicated in Figure (1.4), this assumption is only valid for in-

termediate shear rate (or shear stress) values [Stickel and Powell 2005]. More

di�erent behaviors of the suspension may exist and which depend on the di-

mensionless numbers Re and Pe (1.3.2.2) as you can see in the phase diagram

of Figure (1.5). In our study
(
Re ∼ 10−06

)
&

(
Pe ∼ 10+09

)
so that the
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suspension viscosity will be considered as constant in shear rate.

Shear thinning Newtonian

Sc

�

Shear thickening�
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2
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10
8

10
-2

Re

Pe
Figure 1.5: �Phase diagram� for suspension rheology, based on a dimensional
analysis. Remade from [Stickel and Powell 2005].

1.4.2.2 Normal Stress Differences

1. De�nitions

Normal stress di�erences {N1 and N2} constitute the second and third vis-

cometric functions respectively in addition to viscosity, that characterize

the properties of a material. These �rst & second normal stress di�erences

in the 3D cartesian coordinate system(x, y, z) ≡ (1, 2, 3) are de�ned as:

N1 = Σ11 −Σ22 , and N2 = Σ22 −Σ33 , respectively. (1.16)

where Σ11, Σ22, and Σ33 are the three diagonal Normal components of the

stress tensor (equation (1.19)). The normal stress di�erences of a material

can be expressed as functions of the shear stress τ or the shear rate γ̇. In
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the following, we will adopt the formulation:

N1 = −α1 (γ̇) · η0|γ̇| ; N2 = −α2 (γ̇) · η0|γ̇| , (1.17)

where α1 and α2 are the two measured parameters known as the normal

stress coe�cients.

2. Measurements Methods

The experimental setups and techniques used to measure α1 and α2 in

a given material are still developping and under validation until now. A

single experimental con�guration can not give easily the access to both co-

e�cients α1 and α2 separately, but gives usually a combination of them.

So, let us go now to reveal some of the experimental setups reported in

the literature. We mention �rst the rotating rod con�guration experiment,

known from the early works of [Weissenberg 1946], who tried to measure

the normal stress di�erences in polymers. There exist also the rotating

parallel cone-plate, parallel plate-plate and truncated-cone-plate con�g-

urations (known also as torsional rheometers) that allows one from the

measurements of the radial pressure distribution, or from the total thrust

force exerted on the plate while shearing, to measure the normal stress

di�erences in steady or in oscillatory shear �ows. We mention the early

works in these geometries on polymers solutions of [Kotaka 1959, Lipson

and Lodge 1968, Kaye et al. 1968, Marsh and Pearson 1968, Lodge and

Hou 1980], and some of the recent works of [Jung et al. 2008, Aalcoutabli

et al. 2009].

3. Suspension Normal Stress Di�erences

The studies in literature on suspensions for the measurements of N1 and

N2 are rare compared to those on polymers. That's why recently di�erent

studies and experimental investigations were really interested in measuring

the normal stress di�erences inside suspensions.

The latter studies on suspensions established that the normal stresses are
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small at low concentrations, but rise rapidly when φ increases (φ & 0.25).

�

Experimentally, The early works started with [Gadala-Maria 1979] who

showed that the normal stress di�erences, used to appear in concentrated

suspensions of monodispersed hard spheres, are such that:

([N1 −N2] is O (τ)) and are both proportional to the shear stress τ = ηγ̇

(N1 &N2 ∝ τ). Owing to this proportionality, the coe�cients α1 and

α2 de�ned in equation (1.17) do not depend on γ̇ and equation (1.17)

becomes:

N1 = −α1 · η0 · |γ̇| ; N2 = −α2 · η0 · |γ̇| , (1.18)

One had to wait a lot till the millenium period when [Zarraga et al.

2000], and [Singh and Nott 2003] restudied the normal stress di�erences

in sheared Stokesian suspensions.

�

In 2000 the Normal stress di�erences for monodispersed concentrated sus-

pensions of hard spheres had been determined by [Zarraga et al. 2000]

thanks to the anti-Weissenberg e�ect, and to the total force measurements

exerted on a rotating cone or disk, on top of a stationary plane. [Zarraga

et al. 2000] calculated both N1 & N2 by coupling two di�erent systems

where from the total force meaurements they got the di�erence (N1 −N2),

and from the anti-Weissenberg e�ect experiment they got
(
N2 + N1

2

)
.

They found that for 0.3 ≤ φ ≤ 0.5 (N1 < 0 ; N2 < 0 & |N1| < |N2|)

with
(
N1 = (−0.15± 0.05)ατ ; N2 = (−0.54± 0.03)ατ ; α = 2.17φ3e2.34φ

)
.

�

Moreover, later [Singh and Nott 2003] proposed a technique to measure

both N1 & N2 by coupling data taken too from two separate experimen-

tal systems, that's by installing pressure transducers in a Couette cell

geometry from one side, and in a two-parallel-disks cell from the other

side where the suspension was sheared in a pool of suspension. From
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the axial suspension stress radial pro�le Σzz (r), in the two-parallel-disks

geometry [Singh and Nott 2003] got (N1 +N2), and from the cylindri-

cal Couette cell experiment obtained (0.107N1 + 1.214N2). They showed

that (N1 < 0 ; N2 < 0 & |N1| is O (|N2|)) but they do not depend in the

same way on φ as it was found by [Zarraga et al. 2000].

�

Recently, [Boyer et al. 2011 a] have measured precisely
(
N2 + N1

2

)
as a

function of the volume fraction of particles φ, using the anti-Weissenberg

e�ect, in addition to, [Couturier et al. 2011] who have determined the

second normal stress di�erence N2 , by measuring the deformation of

the free surface of a suspension �owing in a narrow inclined channel.

The latter two measurements show that N1 is of the order of zero, and

that N2 is negative (i.e. see their Figure 7 [Couturier et al. 2011]).

In chapter (4) we present in details the latest experimental setup, we devel-

oped, and reveal the study after measurements of the 3 material functions

η, N1, and N2 in monodispersed suspensions of hard spheres at di�erent

shear rates γ̇, and at a wide zone of volume fraction of particles φ.

�

Numerically, the computations of normal stress di�erences for monodis-

persed concentrated suspensions of hard spheres are few. [Sierou and
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Brady 2002] via Stokesian Dynamics (SD) simulations (suspension as an

in�nite medium) showed that both N1 and N2 are negative, and N1 is

O (N2). They studied systems of number of particles N ° between 125 &

1000, for volume fractions φ between 0.10 & 0.50, and for an interparticle

force F = γ̇∗ = 1000 as you can see in the following Table1.4.

N ° ηs −N1 −N2

125 6.2180±0.058 0.7830±0.038 0.8656±0.037
256 6.2286±0.072 0.8582±0.074 0.8536±0.150
512 6.2413±0.036 0.8301±0.047 0.8486±0.025
1000 6.2152±0.035 0.8396±0.025 0.8342±0.032

Table 1.4: Numerical Simulations of 40% Suspension Normal Stress Di�erences.
From [Sierou and Brady 2002]

Recently, using the Force Coupling Method (FCM), [Yeo and Maxey

2010a, Yeo and Maxey 2010b] calculated the normal stress di�erences N1

andN2 for concentrated monodispersed suspensions of hard spheres. They

did three-dimensional numerical simulations of concentrated suspensions

of O(1000) particles in a Couette �ow at zero Reynolds number taking

into account the wall e�ects on concentrated suspensions of non-colloidal

particles [Yeo and Maxey 2010b]. Their simulations were performed for

φ between 0.20 & 0.40 and their results are similar to those of [Sierou

and Brady 2002] where they found negative N1 and N2 values, and N1 is

O (N2) as you can see in the following plot taken from their (Figure11 on

page 223 [Yeo and Maxey 2010b]):
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1.5 RHEOMETRY

Rheometry generically refers to the experimental techniques used to determine

the rheological properties of materials (i.e. measurements of η, N1, and N2).

We distinguish two kinds of rheometers:

The shear rheometers such as that in (Figure1.6), and the extensional ones.
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Figure 1.6: HAAKE-Mars Thermo Scienti�c rotational Rheometer.

Moreover, shear rheometers are divided into two groups: drag�ows like the

Couette cell apparatus, in which shear is produced between a moving and a

�xed solid surface, and pressure-driven �ows, in which shear is generated by a

pressure di�erence over a closed channel. The important schematics of these

types of shear rheometrical geometries with the coordinate systems used for

analysis are shown in Figure (1.7). A detailed analysis on the calculations of

the di�erent rheological parameters and the experimental artifacts can be found

in [Macosko 1994].
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Figure 1.7: Common shear �ow geometries taken from [Macosko 1994].

In our manuscript where we measure the suspension material func-

tions η, N1, and N2 as you will see in chapter (4), we mainly used a

two-parallel-disk geometry installed on a shear rheometer. Moreover
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in a coming section, we will detail how to measure these material

functions in such a geometry.

1.5.1 Stress, Strain, and the local Shear-rate

1.5.1.1 The Stress Tensor

The Stress is the quantity that represents applied forces on the surfaces of a

volume, which will be the cause of any resulting deformation in that volume.

In the 3D cartesian coordinate system(x, y, z) ≡ (1, 2, 3) the Stress Σ is a 2nd

rank tensor (i.e. 3x3 Matrix) which has 9 components as you can see in the

following Figure (1.8).

Figure 1.8: Stress Tensor.

Σ =


Σxx τyx τzx

τxy Σyy τzy

τxz τyz Σzz

 (1.19)

The �rst subscript designates the axis perpendicular to the plane subjected

to the force while the second subscript designates the direction in which the

stress acts in that plane. Normal stresses Σxx, Σyy, and Σzz act on the planes

normal to the axes x, y, and z respectively. For the static equilibrium, the shear
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stresses acting on mutually perpendicular planes must be equal:

τxy = τyx ; τxz = τzx ; τyz = τzy ; (1.20)

Thus the stress tensor Σ is a symmetric tensor that can be completely de�ned

by the only six components: Σxx, Σyy, Σzz,τxy, τxz, and τyz.

�

The stress tensor Σ can be expressed as the sum of two other stress tensors:

1. A volumetric stress tensor or mean normal stress tensor, −Pδij , which

tends to change the volume of the stressed body.

2. A deviatoric component known as the deviatoric stress tensor, ςij , which

tends to distort it.

So, it can be written that:

Σij = −Pδij + ςij , (1.21)

where P is the mean stress or pressure given by:

P = −1

3
trace(Σij) = − (Σ11 + Σ22 + Σ33)

3
, (1.22)

and δij is the kronecker delta de�ned as:

δij =


1, if i = j

0, if i 6= j

. (1.23)

1.5.1.2 The Strain (deformation) Tensor

The strain can be seen as the quantity that represents the amount of trans-

formation (deformation) of a body from a reference con�guration to a current

con�guration. In the 3D cartesian coordinate system (x, y, z) ≡ (1, 2, 3) the

strain ε is also a 2nd rank tensor which has 9 components de�ned as following:

50



1.5. RHEOMETRY

ε =


εxx εyx εzx

εxy εyy εzy

εxz εyz εzz

 (1.24)

Strains, like stresses, have normal strain and shear strain components (i.e.

perpendicular to or along the face of an element respectively). Normal strain

components are εxx, εyy, and εzz in the direction of the axes x, y, and z

respectively, that can be represented as follows:

dx

L
P

P'

L'

dx'

x

x
o

o
xu

x'

L'

Figure 1.9: In�nitesimal 1D strain

If we consider an arbitrary point P in the bar of Figure (1.9), which has a

position vector x, and its in�nitesimal neighbor dx. Point P shifts to P ′, which

has a position vector x′, after the stretch. So, the small "step" dx is stretched

to dx′.

The strain at point P can be de�ned as:

εxx =
dx′ − dx
dx

(1.25)

Since the displacement in the x-direction is u = x′ − x, the strain can hence

be rewritten as:

εxx =
dx′ − dx
dx

=
du

dx
(1.26)
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Thus, the strain is a 2nd rank tensor that can be summarized as:

εij =
1

2

[
∂ui
∂χj

+
∂uj
∂χi

]
(1.27)

where u is the displacement vector, χ is coordinate, and the two indices i and

j can range over the three coordinates (1, 2, 3) ≡ (x, y, z) in three dimensional

space.

γij is the shear strain that acts in the (i, j) plane de�ned as:

γij =
εij + εji

2
= εij (i 6= j) (1.28)

Strain rate tensor is the variation of the strain tensor with respect to time

denoted as ε̇ and is equal to:

ε̇ =
dε

dt
. (1.29)

1.5.1.3 The Shear Rate Scalar

In our work the local shear rate will be a scalar quantity de�ned as:

γ̇ =
√

2E : E (1.30)

where E = 1
2

[
∇U + (∇U)T

]
is the local rate of strain tensor, and U is the

medium averaged velocity. So from now on, wherever the words �shear

stress� and �shear rate� are mentioned, it is clear that they correspond

to the scalar quantities τ , and γ̇ respectively.

1.5.2 Conservation Equations

The material (Fluid) (i.e. Suspension) being under �ow is considered as a con-

tinuum medium that obeys the conservation laws of both mass and momentum

[Navier 1823, Stokes 1845].
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1.5.2.1 Mass Conservation

The mass conservation of the material under �ow (i.e. suspension �ow) is ex-

pressed through the continuity equation as follows:

∂ρ

∂t
+ ∇ • (ρU) = 0 (1.31)

where ρ is the material density, t is time, and U is the �ow mean velocity vector

�eld.

1.5.2.2 Momentum Conservation

The momentum equation (or equation of motion) is given by:

∂ (ρU)

∂t
+ ∇ • (ρUU) = ∇ •Σ + ρg (1.32)

where Σ is material stress tensor (1.5.1.1), and ρg are the gravitational body

forces.

In our work, we are restricted to incompressible laminar Stokes

�ow types at very low Reynolds number (Re� 1) without external

forces and at
(
ρ = constant& Dρ

Dt = 0
)
, where the previous mass conti-

nuity and momentum equations can be simpli�ed to:

∇ •U = 0 (1.33)

and

∇ •Σ = 0 . (1.34)

1.5.3 Measurements of η, N1, and N2 in different flows

In order to determine the material functions of a suspension from the measur-

able macroscopic quantities such as the torque, the force exerted on the �ow

geometry, or the surface de�ection in a free surface �ow, we will assume (as
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presented in section 1.4.2) that both the shear and the normal stresses depend

linearly on the shear rate (Note that it is not the case for polymeric liquids).

The measurements of normal stress di�erences N1 and N2 through their coe�-

cients α1 and α2, respectively in di�erent standard experimental arrangements

can be summarized in the following enumeration:

1. Rotating rod (material free surface de�ection)

Ω
θ

r

z

e

erheometer

material

ro
ta

ti
n

g
 r

od e

RiRe

Figure 1.10: Rotating-Rod Instrument

[Zarraga et al. 2000, Boyer et al. 2011 a] used this type of geometry for

suspension �ows where N1 and N2 are responsible for the surface de�ec-

tion.

In the absence of surface tension and inertia, the normal stress coe�cients

α1 and α2 in a rotating rod geometry of radius Ri and of angular velocity

Ω inside a larger stationary cylinder of radius Re, are given from N1 and

N2 by:

(
N2 +

1

2
N1

)
= −ρg

[
(h (Re)− h (r)) · r2R2

e

R2
i (R2

e − r2)

]
, (1.35)

where h is height of the free surface of the material (i.e. suspension) being

de�ected.
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2. Inclined trough of angle θ relatively to the horizontal direction

Figure 1.11: Inclined-Plane Flow

[Couturier et al. 2011] following [Tanner 1970] determined the value of α2

upon analysing the free surface de�ection of a suspension �owing through

an inclined trough.

In the absence of surface tension and inertia, N2 is given here (1.11) by:

N2

τ
= −

(
h (y)− h (0)

tanθ · |y|

)
(1.36)

where h (0) is a constant that can be determined by applying the mass

conservation equation, i.e.
´W
−W [h(y) · dy] ≡ 0, and 2W is the width of

the channel.
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3. Parallel cone and plate
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Figure 1.12: Parallel-Cone-Plate Instrument

In this con�guration (1.12) N1 is given by:

N1 =
2F

πR2γ̇
, (1.37)

γ̇ =
Ω

θ0
(1.38)

where R is the radius of circular plate, θ0 the angle between cone and plate

(usually less than 4°), Ω the cone angular velocity, and F the magnitude

of the force required to keep tip of cone in contact with the circular plate.
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4. Cylindrical Couette cell

Ω
θ

r

z

e

e

in
n

er
 c

yl
in

d
er rheometer

material

outer cylinder

e

Figure 1.13: Cylindrical Couette cell Viscometer

Figure (1.13) shows a cylindrical Couette cell viscometer of a stationary

outer cylinder of radius R2. The inner cylinder of radius R1 is rotating

at an angular velocity Ω. The viscometric functions in this geometry are

given by:

η =
Γ

4πΩH
· R

2
2 −R2

1

R2
1R

2
2

, (1.39)

β
N1

2
+ (1 + β)N2 = Σrr (R2) , (1.40)

γ̇ = 2Ω
R2

1R
2
2

R2
2 −R2

1

· 1

r2
, (1.41)

where H is the height of the cylinders, Γ the torque on inner cylinder,

Σrr (R2) is the measured normal pressures on the outer cylinder, and β a

constant that depends on the cylinders radii. As an example, [Singh and

Nott 2003] used this geometry for studying suspension �ows.
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5. Parallel disks
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Figure 1.14: Parallel-Disks Instrument

This geometry that will be presented in detail in the following section

allows measuring the di�erence of the �rst and the second normal stress

di�erences from the total force exerted on one of the disks:

(N1 −N2) =
F

πR2
(1.42)

This geometry has been used by [Zarraga et al. 2000, Singh and Nott

2003] for the torsional �ow of suspensions.

A detailed study on the calculation of the material functions in di�erent geome-

tries of the �ow can be found in [Bird et al. 1977, Bird et al. 1987].
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1.5.4 Measurements of material functions for a suspension in a torsional

flow between two parallel-disks at low Reynolds Number

In our work, we worked on monodispersed suspensions in a torsional

�ow between two parallel-disks at low Reynolds Number to measure

the suspension material functions η, N1, and N2. That's why it is

good to detail here how to measure these material functions in such

a geometry. The suspension is placed between two horizontal parallel disks

of radius R, separated by a gap H. Then, a torque Γ is applied to the upper

disk to rotate it with an angular velocity Ω, while the lower disk is always being

stationary. Furthermore, the lower stationary plate is equiped with pressure

transducers in such a way that the radial pro�le of the pressure is measurable.

In the following we show that such an installation device allows one to measure

the whole 3 material functions η, N1, and N2. Moreover, such a geometry

presents the advantage of preserving a homogeneous concentration of particles

in the suspension. Indeed, it is well known that shear-induced migration of

particles is absent (or weak) in torsional shear �ow between rotating disks, in

contrast with other numerous �ow geometries like cylindrical Couette cell or

cone-plate geometry.

Here, in the torsional �ow between two parallel-disks, the velocity is consid-

ered orthoradial given by:

vθ = rΩ (z) . (1.43)

After the projection of Stokes equation on the axes r, and θ one gets respec-

tively:

∂Σ33

∂r
+

Σ33 −Σ11

r
= 0, (1.44)

and
∂Σ12

∂z
= 0 . (1.45)
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The shear rate γ̇ = r dΩ(z)
dz is deduced from equations (1.43) and (1.45) on

the form:

γ̇ (r) =
Ωr

h
. (1.46)

The suspension viscosity is related to the ratio of the applied torque on the

upper disk, to its speed of rotation given by:

η =
Σ12

γ̇
=

2hΓ

πR4Ω
. (1.47)

The equation (1.44), using the de�nitions in (1.18) and upon expressing Σ11

and Σ33 as a function of Σ22, gives the radial variation of the second component

of the normal stress on the following form:

∂Σ22

∂r�R
= −η0γ̇R (α1 + 2α2) , (1.48)

where ˙γR = γ̇ (r = R).

Equation (1.48) can be integrated now with the hypothesis that Σ33 (R) is

equal to the atmospheric pressure −Pa, in order to get Σ22 (r) :

Σ22 (r) = −η0γ̇R

[
(α1 + 2α2)

r

R
− (α1 + α2)

]
− Pa, (1.49)

where Pa is the atmospheric pressure that can be simply chosen as the reference

(Pa = 0).

If one measures the radial pro�le of Σ22, equation (1.49) makes it possible

to determine both α1 and α2, since clearly the slope provides an access to

− (α1 + 2α2) and the ordinate at origin gives an access to (α1 + α2).

Later, in chapter (4) we provide precisely our experimental proce-

dure for the measurements of the material functions in monodispersed

suspensions of hard spheres using such a device.
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1.6 SHEAR-INDUCED MIGRATION

Here, we report on the particle migration, observed in several geometrical con-

�gurations. Numerous experiments of di�erent con�gurations in the literature,

have measured and reported that particles in initially homogeneous suspen-

sions (noncolloidal, neutrally buoyant, rigid, monodispersed spheres suspended

in viscous newtonian liquid) migrate usually to the lower-shear-rate regions in

nonhomogeneous shear �ows:

[Karnis et al. 1966, Arp and Mason 1977, Gadala-Maria 1979, Gadala-

Maria and Acrivos 1980, Hookham 1986, Leighton and Acrivos 1987, Chapman

1990, Graham et al. 1991, Altobelli et al. 1991, Abbott et al. 1991, Phillips et

al. 1992, Koh et al. 1994, Chow et al. 1994, Hampton et al. 1997, Breedveld et

al. 1998, Lyon and Leal I 1998, Shapley et al. 2002, Shapley et al. 2004, Merhi

et al. 2005, Ovarlez et al. 2006, Kim et al. 2008, Boyer et al. 2011 a, Deshpande

and Shapley 2010]. The time scale of this migration of particles was observed

to be completely di�erent from one experimental con�guration (e.g. Couette

cylindrical cell) to another (e.g. torsional parallel-plate cell).

1.6.1 Migration in different geometries (Experimental Studies)

Most of suspension �ow studies have been trying to measure and track the dis-

tribution of particles starting from a homogeneous suspension using di�erent

experimental techniques. Many of them have focused on the unidirectional sim-

ple shear �ows such as the Couette cell of two concentric cylinders, the rotating

parallel plates, the cone-plate geometry, the rectangular channels, and the circu-

lar pipes, while others were even interested in more complex �ows. They tracked

the concentration pro�le evolution (migration) of particles in the suspensions

via numerous techniques. Some of them are direct like the (Nuclear Magnetic

Resonance) NMR technique which provides directly the concentration pro-

�le φ (r), while others are indirect such as the (Particles Image Velocimetry)

PIV and (Laser Doppler Velocimetry) LDV techniques that provide η (r) from
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which φ (r) is deduced indirectly according to the suspension viscosity law being

adopted.

The Couette cell has captured the attentions of many, like [Abbott et al. 1991,

Phillips et al. 1992, Chow et al. 1994, Breedveld et al. 1998, Shapley et al.

2002, Shapley et al. 2004].

In the Couette cell geometry, the measurements of the particle concentrations

via numerous techniques showed the presence of radial migration from zones of

high shear rate near the inner rotating cylinder toward lower shear rate regions

near the outer stationary cylinder [Gadala-Maria 1979, Phillips et al. 1992,

Shapley et al. 2002, Ovarlez et al. 2006].

�

The torsional �ow between two rotating parallel disks is another con�gu-

ration for suspension studies. The early measurements in the parallel plate

geometry, reported mostly the absence of migration in semi-dilute and concen-

trated suspensions [Chan and Powell 1984, Chapman 1990, Chow et al. 1994],

or a weak migration in dilute suspensions [Kim et al. 2008] or in concentrated

ones [Merhi et al. 2005].

�

[Chapman 1990] conducted experiments on suspension �ow in the parallel

cone-plate geometry where an outward migration of particles was observed.

�

The circular pipes have been capturing the attentions of [Sinton et al. 1991,

Hampton et al. 1997, Han et al. 1999]. And in the rectangular channels we

mention [Koh et al. 1994, Lyon and Leal I 1998, Lyon and Leal II 1998]. The

particles are shown to migrate toward the channel center-line where the shear

rate is the lowest [Hampton et al. 1997, Lyon and Leal I 1998].

�

Even more, many researchers have been interested in suspension �ow in

complex geometries such as the (contraction↔expansion �ows) [Iwamiya et al.

1994, Corbett and Phillips 1995, Altobelli et al. 1997, Rao et al. 2002 a, Rao
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et al. 2007, Miller and Morris 2006, Moraczewski et al. 2005, Moraczewski

and Shapley 2006, Moraczewski and Shapley 2007, Xi and Shapley 2008], and

evolving �ows [Miller and Morris 2006, Stickel et al. 2007, Ingber et al. 2009],

in order to seek better and understand the particle dynamics at multiple stress

components.

1.7 SHEAR-INDUCED MIGRATION MODELING

1.7.1 Overview

We describe brie�y the di�erent models that represent the migration with a

di�usion �ux that originates from the particle collisions in the suspension �ow.

We will describe more precisely another model, named �Suspension Balance

Model� since the goal of this thesis is to determine experimentally (chapter 4)

the parameters that intervene in this model. At the end of this manuscript we

discuss the in�uence of these parameters on the predictions of the model.

These models in literature have been successful in predicting steady-state

concentration pro�les, but many of them have been less successful in predicting

the transient concentration pro�les over a range of parameters like the particle

size a, the volume fraction of particles φ, and the geometry of the �ow.

1.7.2 Constitutive modeling

As in paragraph (1.5.2), the suspension is considered here as a continuous

medium and its behavior is governed by the continuity and the momentum

equations, respectively as:

∂ρ

∂t
+ ∇ • (ρU) = 0 (1.50)

∂ (ρU)

∂t
+ ∇ • (ρUU) = ∇ •Σ + ρg (1.51)
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Moreover, we consider here in our study the steady �ow of neutrally buoy-

ant incompressible monodispersed suspensions of hard spheres in a

Newtonian Liquid at very low Reynolds Number (Re� 1) and with-

out external forces which transform the previous medium continuity equation

in addition to the suspension momentum balance to:

∇ •U = 0, (1.52)

and

∇ •Σ = −∇P + ∇ • ς = 0, (1.53)

respectively, where U is the suspension mean velocity, ς is the deviatoric stress

tensor, and P is the pressure (Σ = −P I + ς).

Moreover, an equation for the particle conservation can be written as:

∂φ

∂t
+ U ·∇φ = −∇ • −→Nt (1.54)

where
−→
Nt denotes the particle �ux that accounts for di�erent migration mecha-

nisms such as sedimentation, Brownian motion, shear-induced, curvature-induced,

or viscosity gradient-induced migrations. Equation (1.54) is solved in parallel

with equations (1.52) & (1.53) to track the evolution of the particle concentra-

tion φ and of the �ow �eld. Here, we will be neglecting sedimentation

and Brownian motion due to the neutrally buoyant non-colloidal sus-

pensions we deal with.

In the next section we describe brie�y the di�erent di�usive models in the

literature that express
−→
Nt as a di�usive �ux. A detailed study on these di�erent

models can be found in the paper of [Kim et al. 2008].
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1.7.3 Diffusion Models

1.7.3.1 Original Phillips Model

[Phillips et al. 1992] extended the works of [Leighton and Acrivos 1987, Leighton

and Acrivos 1987] into the �ux equation (1.54), where they explained the mi-

gration of particles from their net displacement during collisions, and proposed

that this migration is the result of two �uxes induced by gradients of both vis-

cosity and collision rate. They de�ned the collision �ux as originating from the

gradients in shear rate and in particle concentration:

−→
Nc = −Kca

2φ∇ (φγ̇) (1.55)

being explained physically as the migration of particles from zones where they

experience high number of collisions (high shear rate zones) to regions of lower

number of collisions among the particles (lower shear rate zones) (see Fig-

ure1.15a). They de�ned the gradients in viscosity as the �ux:

−→
Nη = −Kη

a2γ̇φ2

η

dη

dφ
∇φ (1.56)

that accounts for the tendency of particles to migrate from the high to low

viscous regions. Physically speaking, this �ux exists (see Figure1.15b) because

during a collision the particle displacement is higher in the low viscous regions

rather than in the high viscous ones. Kc and Kη are empirical parameters �tted

experimentally. Thus the total �ux
−→
Nt responsible for migration, implemented

in equation (1.54), had been given on the form of
−→
Nt =

−→
Nc +

−→
Nη.
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Figure 1.15: Di�usive Fluxes

Numerous experiments had and have been conducted to test the validity

of the original Phillips' model. However, the failure of this model to predict

well the migration of particles in a torsional �ow between two parallel plates,

had been reported through experimental evidences by [Chapman 1990, Chow

et al. 1994]. They found that there is no, or very weak [Merhi et al. 2005],

migration of particles in the torsional �ow of a suspension between two parallel

disks, which is in strong contrast with the original Phillips model that predicts

an inward migration due to the linear radial dependence of the shear rate.

1.7.3.2 Modified Phillips Model

[Krishnan et al. 1996] proposed to introduce an additional migration �ux orig-

inated from the �ow curvature. They de�ned this additional curvature-induced

�ux as:
−→
Nr = Krnκa

2γ̇φ (1.57)

being explained as the �ux due to the di�erent curved-streamlines in a shear �ow

(see Figure1.16). The term n is the unit normal vector in the radially outward

direction in curved-streamline shear �ow, κ is the curvature of the streamline,

and Kr is an experimentally �tted parameter that must be re-adjusted with

the other two previous parameters Kc and Kη. Finally, the total �ux in the
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modi�ed Phillips model implemented in equation (1.54) had the form of
−→
Nt =

−→
Nc +

−→
Nη +

−→
Nr.

Nr

+

+

+

Figure 1.16: Curvature Flux

1.7.3.3 φ-Dependent Kc Model

[Graham et al. 1998] updated the last modi�ed Phillips model by considering

the parameter Kc as a function of the volume fraction of particles φ. Their

argument was based on the works of [Brady and Morris 1997, Tetlow et al. 1998]

such that when the original Phillips model (1.7.3.1) was employed in Couette

cell experiments to predict the particle distribution, it was revealed that the

outward migration happening near the inner cylinder wall was overestimated.

Nevertheless this can be cured by introducing φ-dependent parameters.

1.7.3.4 Flow-aligned Tensor Model

This one here was based on the works of [Brady and Morris 1997] who intro-

duced the idea of the non-isotropic nature of di�usion and migration processes,

and employed it in their �ow aligned tensor model in the velocity, velocity-

gradient and vorticity directions. Later [Fang et al. 2002] incorporated the

�ow aligned tensor model concept into the di�usive �ux model (original Phillips

model (1.7.3.1)), and thus modi�ed the two �uxes as the following:

−→
Nc = −Kca

2φ∇ (φγ̇Z) (1.58)

−→
Nη = −Kηa

2φ2γ̇Z∇ lnφ (1.59)
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where Z is the �ow aligned tensor that can be determined by imposing inhomo-

geneity in velocity, velocity-gradient, and vorticity directions.

Note that, in order to capture the experimental observations in various

geometries with di�erent particle volume fractions, authors had to introduce so

many parameters that any quantitative prediction concerning the migration is

not possible yet.

1.7.3.5 Migration-Time Scaling

The characteristic time τc for the migration in this modeling can be simply

observed from equation (1.54) to scale as:

τc ∼
(
H

a

)2
1

γ̇
(1.60)

where a is the particle radius, γ̇ the shear rate, and H is a lengthscale of the

�ow.

1.7.4 Suspension Balance Model

It was �rst proposed by [Nott and Brady 1994] and modi�ed later by [Morris

and Boulay 1999]. Its physical concept is that an inhomogeneous stress that

exists due to the particle phase inside the suspension during �ow, would be

responsible for a migration phenomenon of the particles in order to balance

that inhomogeneity (Figure (1.17)). The migration �ux
−→
Nt is de�ned as:

−→
Nt ≡ −→⊥ =

2a2

9η0
f(φ) [∇ •Σp] . (1.61)

where f(φ) is the sedimentation hindrance function that represents the mobility

of the particle phase. Σp is the particle stress tensor that depends on both the

concentration of particles φ and the shear rate γ̇. The migration �ux
−→
Nt ≡ −→⊥ in

this model is directly proportional to the divergence of the particle stress tensor

Σp. It can be seen as a result of concentration gradients in the suspension

or shear rate gradients which induce gradients in the particle stress. In other
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words, since Σp = f (φ , γ̇), if γ̇ 6= constant or if φ 6= constant then a particle

�ux appears.

�
J

�p��
p

�p2

3

�p
1Nt

Figure 1.17: Migration Flux −→⊥

We adopt this model in our work because it is the most quanti-

tative and the least parametric among the previous ones mentioned

above. Moreover, as you will see in chapter (4) that most (if not all)

of the terms in this model can be measured experimentally.

1.7.4.1 Overview

The Suspension Balance Model is restricted to suspension �ow of rigid monodis-

persed spherical particles of radius a immersed in a Newtonian �uid of density

ρ0 and viscosity η0. The �ow of a suspension in this Model is assumed at viscous

conditions where Reynolds number Re = ρ0
.
γa2

η0
vanishes (Re → 0), and where

Brownian e�ects are neglected at in�nite Péclet number Pe = 3πη0
.
γa3

kT (Pe→∞).

The volume fraction of particles is in the range of 0 < φ < φm, where φm is the

maximum packing volume fraction of particles.

1.7.4.2 Mass and Momentum Conservation Equations

In this Suspension Balance Model the mixture of two phases (the particles and

the �uid) is considered as a bulk suspension (continuous medium) that of course

obeys the laws of conservation of mass and momentum. This approach was

�rst developed by [Nott and Brady 1994] assuming that the particle phase can

be taken as a continuum. Formally, [Drew and Lahey 1993] did an averaging

procedure to get the mass conservation equation of the particle phase that is

69



1.7. SHEAR-INDUCED MIGRATION MODELING

∂φ

∂t
+ ∇ • (Upφ) = 0, (1.62)

where Up is the local velocity of the particle phase.

The particle momentum conservation at very small Reynolds number (Re→ 0)

and at no external force is given by:

∇ •Σp + n < FH >p= 0, (1.63)

where <>p is the average on the particle phase, n = 3φ
4πa3 is the number density

of particles, and FH is the hydrodynamic drag force on a particle given by:

FH ∼= −6πη0af
−1(φ) (Up −U) (1.64)

f−1(φ) is the mean resistance since f(φ) is the sedimantion hindrance function

that represents the mobility of the particle phase. [Richardson and Zaki 1954],

and [Davis and Acrivos 1985] provided the form of f(φ) as

f(φ) =

(
1− φ

φm

)
(1− φ)

α−1
, (1.65)

where α ∈ [2, 4] is a �tting parameter depending on the particles type. We

adopted this form of f(φ) in our work, however there exist other forms of f(φ)

such that used by [Morris and Boulay 1999]:

f(φ) = (1− φ)
α (1.66)

The di�erence between both forms is the dependence of f(φ) on the maximum

packing volume fraction of particles φm. We adopted a φm-dependent f(φ)

based on the fact that the suspension has no settling velcoity at φ = φm.

The migration �ux in this modeling is de�ned as:

−→⊥ = φ (Up −U) (1.67)
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where the symbol⊥ is used to denote the cross-stream direction of the migration.

Upon using this de�nition for −→⊥, the �ux −→⊥ ≡
−→
Nt on its �nal form is

obtained by substituting equation (1.64) in equation (1.63) such that:

−→⊥ = φ (Up −U) =
2a2

9η0
f(φ) [∇ •Σp] . (1.68)

The general �nal form of the particle mass conservation equation in (1.62) be-

comes:

∂φ

∂t
+ U ·∇φ = −∇ •

[
2a2

9η0
f(φ) [∇ •Σp]

]
. (1.69)

Thus, the knowledge of Σp and its variation in φ allows predicting the par-

ticles migration whatever the geometry is.

1.7.4.3 Migration-Time Scaling

Assuming that Σp
ii is O (ηγ̇), one can note that the migration time τm scaling

provided by this Suspension Balance Model is consistent with that obtained in

the di�usion models:

τm =

(
H

a

)2
1

γ̇
(1.70)

1.7.4.4 The Non-Colloidal Suspension Stress

In this model the total stress Σ is decomposed into a �uid phase stress Σf , and

a particle phase stress Σp such that:

Σ = Σf + Σp. (1.71)

The �uid phase stress Σf is de�ned as

Σf = −P̂fI + 2η0E, (1.72)
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where E = 1
2

[
∇U + (∇U)T

]
is the local rate of strain tensor, and P̂f is the

local �uid phase pressure. [Morris and Boulay 1999] suggested the constitutive

law for the particle phase stress for shear �ows as the following

Σp = −Σp
nn, 1 + 2η0ηP (φ) E (1.73)

where Σp
nn, 1 = η0ηN (φ)

.
γQ is the particle normal stress diagonal tensor,

(2η0ηP (φ) E) is the particle shear stress tensor, ηP (φ) = (ηs (φ)− 1) is the

shear viscosity of the particle phase dimensionlessed by the viscosity of the sus-

pending liquid η0, and ηN (φ) is �the normal stress viscosity� depending on φ. In

their original paper, [Morris and Boulay 1999] proposed the following expression

for ηN (φ):

ηN (φ) = KN

(
φ

φm

)2(
1− φ

φm

)−2

(1.74)

where KN is a �tting parameter that was set to 0.75 to match the experimental

data of [Phillips et al. 1992].

Q is a parametric symmetric tensor of the form

Q =


1 0 0

0 λ2 0

0 0 λ3

 (1.75)

that physically captures the anisotropy of the normal stress of the particle phase.

Here, the principal directions of the tensor Q in (1.75) are those of a viscometric

shear �ow as mentioned before with 1, 2, 3 denoting �ow, velocity gradient, and

vorticity directions, respectively. It is preferred to mention that the determi-

nation of the local principal directions for the �ow becomes more complicated

in general �ow conditions. We will let this subject open to later discussion in

chapter(6), where we developped a General Frame-Invariant 2D code.

The two normal stress di�erences and the suspension pressure Π are given

in terms of this modeling by
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N1 = (Σ11 −Σ22) = (Σp
11 −Σp

22) = −η0ηN γ̇ (1− λ2) , (1.76)

N2 = (Σ22 −Σ33) = (Σp
22 −Σp

33) = −η0ηN γ̇ (λ2 − λ3) , (1.77)

and

Π = −1

3
tr (Σp) = −Σp

11

(
1 + λ2 + λ3

3

)
= −

[
Σp

22 +
1

3
(α1 − α2)

]
, (1.78)

where tr (Σp) = (Σp
11 + Σp

22 + Σp
33) with 1, 2 & 3 denoting �ow, velocity gra-

dient and vorticity directions, respectively.

The combination of the above de�nitions for both, the particle phase and

�uid phase stress, Σf & Σp yields �nally to a Bulk Suspension Stress Σ in the

Suspension Balance Model of the form

Σ ≡ ΣT = Σf + Σp = −P I− η0ηN
.
γQ + 2η0ηsE, (1.79)

where P is the suspension pressure.

1.7.4.5 Model Parameters

There are only �ve parameters required in this Suspension Balance Model that

are all measurable experimentally. These parameters are:

1. The sedimantion hindrance function f(φ) that represents the mobility of

the particle phase.

2. The relative suspension viscosity ηs and its dependence on φ that can be

measured experimentally as we have seen previously in section (1.4.2.1).

3. The normal stress viscosity ηN (φ) and its dependence on φ.

4. The ratio λ2 =
(

Σp
22

Σp
11

)
.
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5. And the ratio λ3 =
(

Σp
33

Σp
11

)
.

So it is su�cient to provide these quantities f(φ), ηs, ηN , Σp
11, Σp

22, and Σp
33

for a suspension to start predicting the migration of particles in it during the

�ow in any geometry.

Experimentally, the studies in literature for Σp
11, Σp

22, and Σp
33 in suspen-

sions are rare due to the experimental di�culties of their measurements. Until

this date, all of the studies showed that Σp
11, Σp

22, and Σp
33 (thus λ2, and λ3)

have not been measured completely in the �ow of monodispersed suspensions

of hard spheres. However, some studies in literature have measured a single

one component of them such as [Deboeuf 2008, Deboeuf et al. 2009] who pro-

vided direct measurements of Σp
33 for the shearing �ow of these suspensions in

a Couette cell geometry, or very recently [Boyer et al. 2011 b] who measured

Σp
22 (they know the whole stress tensor since they also measured α1 and α2).

In addition to, [Zarraga et al. 2000] who provided indirect measurements of

the Σp
33 component by studying the resuspension of a settled suspension in a

Couette �ow.

Moreover, [Morris and Boulay 1999] adjusted numerically the Suspension

Balance Model to �t well with experimental data on the migration of particles

in a Couette cell, and got a value of λ2 that varies between 0.6 and 0.85. For

λ3, they explained how the weakness or the absence of migration observed for

the �ow of a suspension in a torsional �ow between two parallel-disks, implies

that the value of λ3 must be equal to 0.5.

Numerically, the studies in literature for Σp
11, Σp

22, and Σp
33 in suspensions

are rare too. We can mention the works of [Sierou and Brady 2002] in Stokesian

Dynamics, and [Yeo and Maxey 2010a] in Force Coupling Method.

So there is a lack of measurements of Σp
11, Σp

22, and Σp
33 in the �ow of

suspensions. For that reason, in our manuscript, we determine exper-

imentally the values of Σp
11, Σp

22, and Σp
33 and their dependence on

φ for monodispersed suspensions as you will see in the experimental

part of the thesis in chapter(4).
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Chapter 2

THE NUMERICAL FINITE VOLUME

METHOD

2.1 OVERVIEW

This chapter (2) presents the essential body parts of the numerical

technique �The Finite Volume Method� used in this work to discretize

the di�erent equations for incompressible �ows of suspensions. In

section (2.2) we start by introducing some of the numerous numerical

methods used in the literature. Then, in the next following sections

(2.3) & (2.4) we cover the procedures of discretizing both the solution

domain, and the general transport equation. The Navier-Stokes equa-

tion discretization is presented in section (2.6). Finally, the closure of

this chapter comes in section (2.7).

2.2 INTRODUCTION

Scientists, and especially physicists study di�erent phenomena that occur in

nature, and try to represent them via theoretical mathematical models. These

models are sets of mathematical equations that describe well the physical phe-
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2.2. INTRODUCTION

nomena observed by the scientists. Heat transfer and �uid �ow processes are

so good example of these phenomena that occur usually in our real daily life

in oceans, rivers, climate, volcanoes, etc... These processes are represented by

di�erent transport conservation equations.

Most of the time, mathematical equations are complex, and can't be solved

analytically, but nowadays numerically can, due to the revolution in electronics

and the presence of super computers. Some of those equations are the Partial

Di�erential Equations (PDEs) which can be solved through di�erent discretiza-

tion techniques like the Finite Di�erence Method (FDM), the Finite Element

Method (FEM), and the Finite Volume Method (FVM).

� The Finite Di�erence Method approximates the theoretical equations in

di�erential form that's through substituting partial derivatives by Taylor

series expansions or polynomial �tting to a certain order.

� The Finite Element Method or Structural Analysis is a method where the

domain of interest can be sub-divided into a series of smaller regions in

which the di�erential equations are approximately solved. Each region

is referred to as an element and the process of subdividing a domain

into a �nite number of elements is referred to as discretization. Elements

are connected at speci�c points, called nodes, and the assembly process

requires that the solution be continuous along common boundaries of ad-

jacent elements. The mathematical techniques used to approximate the

equations are numerous such as [Eulers Method], [Runge-Kutta Method],

[Galerkin Method] etc... At last, by assembling the set of equations for

each region, the behavior over the entire problem domain is determined.

This method is so well famous, and is the most widely used in solving solid

structural analysis problems.

� The Finite Volume Method deals with the integral form of the conserva-

tion equations. The domain of interest here where calculations are done, is

divided into �nite number of control volumes (CVs) each has a barycen-
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2.3. DISCRETIZATION OF THE SOLUTION DOMAIN

ter that represents the calculation node P. The domain has boundaries,

and each CV in it, is surrounded in between di�erent CVs via surfaces.

Interpolation and variety of schemes are used to express variable values at

the surface f in terms of the nodal values. An advantage of this method is

conservativeness, in contrast to the two previous methods, because here in

this one, the surface integrals for volumes sharing the same face are equal

for both of them. Thus, the FVM is a very good numerical approach

to solve complicated PDEs systems, due to the physical approach in its

background, not too hard to be understood and implemented, and it is

the most widely used in solving �uid dynamics problems.

In this manuscript, we utilize the [OpenFOAM®] environment which uses the

FVM to solve our PDEs system.

�The [OpenFOAM®] (Open Field Operation and Manipulation) CFD1

Toolbox is a free, open sourceCFD software package produced by the �OpenCFD

Ltd.� commercial company. [OpenFOAM®] uses the Finite Volume Method to

solve systems of partial di�erential equations ascribed on any 3D unstructured

mesh of polyhedral cells. The �uid �ow solvers are developed within a robust,

implicit, pressure-velocity, iterative solution framework. It has a large user base

across most areas of engineering and science, from both commercial and aca-

demic organisations. [OpenFOAM®] has an extensive range of features to solve

anything from complex �uid �ows involving chemical reactions, turbulence and

heat transfer, to solid dynamics and electromagnetics2�.

In the following sections, we explore the FVM in the spirit of [Open-

FOAM®], where we present and explain most of its details.

2.3 DISCRETIZATION OF THE SOLUTION DOMAIN

The conservative equations in the FVM are solved over a certain domain (the

solution domain) in space and time. This domain will be the domain where
1Computational Fluid Dynamics
2From the webpage: http://www.openfoam.com/
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2.3. DISCRETIZATION OF THE SOLUTION DOMAIN

calculations are done, and it is divided into a �nite number of control volumes

(or cells) as you can see in Figure (2.1). Each central control volume (central cell)

has a central node �P� which is the calculation node, and has several neighbor

control volumes (i.e. a neighbor to �P� is the control volume of central node

�N�). Every control volume is also surrounded by di�erent �at faces each de�ned

by its surface vector Sf that is normal to the face �f� (Sf = nSf ; Sf =

Magnitude of Area ; n = unit normal vector), points outwards from the

central cell, and has the magnitude of its surface area. Point �f� also represents

the point in the middle of the face.

P
f

NS

x

y
z

f

Figure 2.1: Control Volume �P�

The computational node �P� is located at the barycenter (centroid) of the

control volumes, in a way such that:

ˆ

VP

(X−XP ) dV = 0, (2.1)

where X (x, y, z) is the position vector in three dimensional cartesian coordinate

system. The control volume faces in the mesh are also divided into two sets,

boundary faces and internal faces.

It's good to mention that the discretized domain is usually known as a Mesh.

We are restricted here in this study to orthogonal uniform Meshes where all

the CVs are cubic, do not overlap, and where the surface vector Sf is parallel
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2.4. DISCRETIZATION OF THE TRANSPORT EQUATION

to, and along, PN. However, there are many cases where the Mesh is non-

orthogonal and a single control volume can be no more cubic and may thus

have more than six surrounding faces, which is not the case here.

2.4 DISCRETIZATION OF THE TRANSPORT EQUATION

Most scalar properties when transported can be represented by the general

transport equation of the following form

∂ρΨ

∂t︸ ︷︷ ︸
Temporal term

+ ∇ • (ρUΨ)︸ ︷︷ ︸
Convection term

= ∇ • (ρΓΨ∇Ψ)︸ ︷︷ ︸
Diffusion term

+ SΨ (Ψ)︸ ︷︷ ︸
Source term

, (2.2)

where Ψ is the scalar property, U (u, , v, w) is the velocity vector, ΓΨ is the

di�usion coe�cient, ρ is the density, and SΨ the source term that is simply

a good �dumping ground� [Moukalled and Darwish 2009] for everything that

doesn't �t into the other terms. An Example is the continuity equation:

∂ρ

∂t
+ ∇ • (ρU) = 0, (2.3)

where here Ψ = 1, ΓΨ = 0, and SΨ = 0. Another example is the x-Momentum

equation

∂ρu

∂t
+ ∇ • (ρu) = ∇ • (ρν∇u)− ∂P

∂x
+ Su, (2.4)

where here Ψ = u, ΓΨ = ν, and SΨ = −∂P∂x + Su.

The Finite Volume Method requires that equation (2.2) be satis�ed over the

control volume VP around the point �P� in the integral form in both space and

time such that:

t+∆tˆ

t

ˆ
VP

∂ρΨ

∂t
dV +

ˆ

VP

∇ • (ρUΨ) dV

 dt =

t+∆tˆ

t

ˆ
VP

∇ • (ρΓΨ∇Ψ) dV +

ˆ

VP

SΨ (Ψ) dV

 dt.
(2.5)
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2.4. DISCRETIZATION OF THE TRANSPORT EQUATION

In a physical sense of meaning, the term
´ t+∆t

t

(´
VP

∂ρΨ
∂t dV

)
dt in the left

hand side of equation (2.5) represents the rate of change of the property Ψ in

the CV , and the second term
´ t+∆t

t

(´
VP

∇ • (ρUΨ) dV
)
dt is the net trans-

port rate of the property Ψ into the volume due to convection. The term
´ t+∆t

t

(´
VP

∇ • (ρΓΨ∇Ψ) dV
)
dt is the net transport rate of the property Ψ out

of the control volume due to di�usion, and the last term
´ t+∆t

t

(´
VP
SΨ (Ψ) dV

)
dt

represents the net rate of augmentation of Ψ due to sources inside the control

volume as it is shown in Figure (2.2).

CV
Advection

Diffusion

Time 
derivative

Source 
term

Figure 2.2: Transport process in the CV

The discretization of equation (2.5) will be examined now term by term

in the coming sections, where the temporal discretization process is explained

separately from the discretization process of the spatial terms.

2.4.1 Storage and Arrangement of variables

The �rst thing that comes to mind when discretizing the governing equations is

to select the locations in the domain at which the values of the variables are to be

stored. All dependent variables can be stored at the cell centers (i.e. in control

volumes centers). This is called the �collocated-grid" arrangement [Versteeg and

Malalasekera 1995]. However, in the �staggered-grid" arrangement [Patankar

1981] the velocities are stored at the cell faces (in a face center), separate from

other variables as it is illustrated in the following Figure (2.3).
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u

v

(a) Collocated-grid

u

v

(b) Staggered-grid

Figure 2.3: Arrangement of variables

The collocated-grid arrangement has signi�cant advantages:

1. The number of coe�cients that must be calculated is minimised because

each of the governing equations is discretized using the same control vol-

ume.

2. It has signicant advantages in complex solution domains, especially when

the boundaries have slope discontinuities or the boundary conditions are

discontinuous [Ferziger 1996].

However, the collocated arrangement was not used for a long time because

of di�culties with pressure-velocity coupling and the occurrence of oscil-

lations (checkerboarding) in the pressure �eld [Patankar 1981, Ferziger

1996]. A simple cure for this problem was proposed by [Rhie and Chow

1983] and since then the collocated arrangement has been adopted by most

CFD (Computational Fluid Dynamics) codes including commercial ones.

In our study here, the collocated-grid variable arrangement is adopted and

the di�erent terms discretization utilizing this arrangement are explained

in the next sections.
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2.4.2 Discretization Of Spacial Terms

2.4.2.1 The Diffusion Term

The di�usion term ∇ • (ρΓΨ∇Ψ)︸ ︷︷ ︸
Diffusion term

of equation (2.2), after using the Gauss Os-

trogradsky divergence theorem, can be discretized over the central calculation

control volume VP of node �P� as the following:

ˆ

VP

∇ • (ρΓΨ∇Ψ) dV =

ˆ

S

dSf · (ρΓΨ∇Ψ) =
∑
f

Sf · (ρΓΨ∇Ψ)f =
∑
f

(ρΓΨ)f nSf · (∇Ψ)f

(2.6)

where Sf = nSf .

The term (∇Ψ)f can be calculated in di�erent ways depending on the type

of interpolation scheme being used. We use a scheme for the calculation of this

term at the surface �f� as the following:

nSf · (∇Ψ)f = Sf
ΨN −ΨP

|d|
, (2.7)

where the vector d between the center of the cell of interest �P� and the center

of a neighbouring cell �N� is orthogonal to the face plane (i.e. d is parallel to

n) (see Figure (2.4)).

P f N

nd

Sf

Figure 2.4: Orthogonal Mesh Interface
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2.4.2.2 The Convection Term

The convection term ∇ • (ρUΨ)︸ ︷︷ ︸
Convection term

in equation (2.2) and after using the Gauss

Ostrogradsky divergence theorem, can be discretized over the central calculation

control volume VP of node �P� as the following:

ˆ

VP

∇•(ρUΨ) dV =

ˆ

S

dS·(ρUΨ) =
∑
f

Sf ·(ρUΨ)f =
∑
f

nSf ·(ρU)f Ψf =
∑
f

JfΨf ,

(2.8)

where Jf holds for the mass �ux through the face �f�, de�ned as:

Jf = nSf · (ρU)f (2.9)

We de�ne the kinematic �ux Φf through the face �f� that will be used later as:

Φf =
Jf
ρ
. (2.10)

� Interpolation of the cell-centred values to the face centers is essential to

the Finite Volume Method. The values of the di�erent variables at the

interface �f� are interpolated via many interpolation schemes that can be

found in [Patankar 1981, Ferziger 1996, Jasak 1996]. We present some of

them such as the upwind-di�erence and the central-di�erence schemes.

1. The Upwind-di�erence Scheme

This scheme is only a �rst-order accurate, but it guarantees boundedness3

of the solution. The boundedness of the solution is e�ectively ensured at

the expense of accuracy. The convection term is calculated here according

to the direction of the �ow [Barakat and Clark 1966, Courant et al. 1952,

Gentry et al. 1952]. The value of Ψf at the interface �f� is equal to the

3The physically realistic value of a property lies within proper bounds that should be
guaranteed by the numerical scheme.
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value of Ψ at grid point on the upwind side of the face such that:


Ψf = ΨP for Φf ≥ 0

Ψf = ΨN for Φf < 0

(2.11)

and it implies

JfΨf = ρ [ΨP ·max (Φf , 0)−ΨN ·max (−Φf , 0)] (2.12)

2. The Central-di�erence Scheme

This scheme is second-order accurate, but the solution can be unbounded

[Patankar 1978, Ferziger 1996].

Ψf = fxΨP + (1− fx) ·ΨN (2.13)

where

fx =
|Xf −XN |

|Xf −XN |+ |Xf −XP |
(2.14)

For other existing schemes especially those that can be used in [Open-

FOAM®], one can seek them down in Appendix B on page 222.

In our calculations in this manuscript we used the central di�erence scheme for

interpolation.

2.4.2.3 The Source Term

The source term SΨ (Ψ)︸ ︷︷ ︸
Source term

can be a constant or even a function of the property

Ψ . For computational success, it must be linearised before discretization as

described in [Patankar 1981] such that

SΨ (Ψ) = Su+ SpΨ, (2.15)
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where Su and Sp can be also functions of the property Ψ with the condition on

Sp for calculation-stability (Sp < 0) (see [Patankar 1981]). Thus, the discretiza-

tion of the source term over the control volume after linearisation is going to be

as the following:

ˆ

VP

SΨ (Ψ) dV =

ˆ

VP

(Su+ SpΨ) dV = SuVP + SpVPΨP . (2.16)

2.4.3 Temporal Discretization

If we denote all the spatial terms as fΨ where f is any spatial operator, then

we can express a transient PDE in integral form as:

t+∆tˆ

t

 ∂
∂t

ˆ
VP

ρΨdV

+

ˆ

VP

fΨdV

 dt = 0 (2.17)

After using the Implicit Euler Scheme (Explained in next section) for the time

derivative, the �rst and second terms of equation (2.17) become:

´ t+∆t

t

[
∂
∂t

(´
VP
ρΨdV

)]
dt =

´ t+∆t

t
(ρPΨPVP )k+1−(ρPΨPVP )k

∆t
dt

= (ρPΨPVP )k+1−(ρPΨPVP )k

∆t
∆t

(2.18)

and

t+∆tˆ

t

ˆ
VP

fΨdV

 dt =

t+∆tˆ

t

(f∗) Ψdt (2.19)

respectively, where (f∗) represents the spatial disretization of f. The current

time values are represented by the superscript (k + 1), and the old time values

by the superscript (k).

The time integral can be discretized via di�erent interpolation schemes such

as the Implicit Euler, the Explicit Euler, and the Cranck-Nicolson schemes.

1. Euler Implicit Scheme

It uses implicit discretization of the spatial terms, thereby taking current
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values Ψk+1 such that:

t+∆tˆ

t

(f∗) Ψdt = (f∗) Ψk+1∆t (2.20)

It is �rst-order accurate in time, guarantees boundedness and is uncondi-

tionally stable.

2. Euler Explicit Scheme

It uses explicit discretization of the spatial terms, thereby taking old values

Ψk such that:
t+∆tˆ

t

(f∗) Ψdt = (f∗) Ψk∆t (2.21)

It is �rst-order accurate in time and is unstable if the Courant number

�Cr� is greater than 1. The Courant number is the ratio of the distance

traveled by a disturbance in one time step to the length of a computational

distance step.

Cr =
∆t |U|
∆X

≤ 1 (2.22)

The Courant number must be less than or equal to unity (0<Cr ≤ 1) so

as to ensure that the solution remains within the computational

domain.

3. Crank�Nicolson Scheme

[Crank-Nicolson] uses the trapezoid rule to discretize the spatial terms,

thereby taking a mean of current values Ψk+1 and old values Ψk such

that:
t+∆tˆ

t

(f∗) Ψdt = (f∗)
Ψk+1 + Ψk

2
∆t (2.23)

�

After �nishing the discretization procedure of the spatial terms, and as-

suming no change of the CVs in time (i.e. static mesh), the equation (2.5) is

transformed into a �semi-discretized� [Hirsch 1991] equation of the form:
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´ t+∆t

t

[(
∂ρΨ
∂t

)
P
VP +

∑
f JfΨf

]
dt =

´ t+∆t

t

[∑
f (ρΓΨ)f nSf · (∇Ψ)f + (SuVP + SpVPΨP )

]
dt.

(2.24)

�

The semi-discretized equation (2.24) can be transformed then, after we used

the Cranck-Nicolson scheme, into a discretized equation in space and time over

the control volume �P� such that:

ρk+1
P Ψk+1

P −ρkPΨkP
∆t

VP +
∑

f

(
Jk+1
f Ψk+1

f +JkfΨkf
2

)
=∑

f

(
((ρΓΨ)fnSf ·(∇Ψ)k+1

f )+((ρΓΨ)fnSf ·(∇Ψ)kf)
2

)
,

(2.25)

where the density ρ and the di�usivity ΓΨ are considered not changing with

time. Equation (2.25) is solved for the current time values (k + 1).

In our work, we always respected that Cr < 1. Moreover, we used the [Crank-

Nicolson] scheme for the temporal terms discretization.

2.4.4 Solution Techniques for Systems of Linear Algebraic Equations

Finally, the transport equation in its discretized shape (2.25), after assembly of

the terms, gives an algebraic equation for each single CV of the form

aPΨP +
∑

aNΨN = ΥP . (2.26)

The value of ΨP depends on the values in the neighbouring CVs, thus

creating a matrix system of algebraic equations:

AΨ = Υ, (2.27)

where A = aPΨP +
∑
aNΨN , with A being a sparse matrix of coe�cients

aP on the diagonal and coe�cients aN out o� the diagonal, Ψ is the vector of

Ψ-s for all control volumes and Υ is the source term vector. Note that A and

Υ contain the assembled terms of equation (2.26) from both the current and the
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previous time steps, (k + 1) and (k), respectively. There are two main methods,

direct and iterative, in order to solve the algebraic system of equations (2.27).

Some examples of the direct methods used are the [Gaussian elimination] and

the Cramer's rule matrix inversion [Cramers Rule] methods.

Iterative methods are the Jacobi and Gauss Siedel methods, in addi-

tion to the Thomas or Tri-diagonal Matrix Algorithm (TDMA) (see [Versteeg

1995]), Conjugate Gradient method (CG) [Hestens and Steifel 1952], Incom-

plete Cholesky preconditioned Conjugate Gradient (ICCG) [Jacobs 1980], and

the Bi-CGSTAB method by [Van Der Vorst 1992].

Iterative methods have a main advantage over the direct methods which is

the calculation speed where less space for the computer memory is needed during

calculations, especially when dealing with large systems at four dimensional

situations [Muzaferija 1994].

In our work we use both Preconditioned conjugate gradient (PCG) and Pre-

conditioned bi-conjugate gradient (PBiCG) iterative methods that are imple-

mented in [OpenFOAM®] during the solution procedure.

2.4.5 Boundary Conditions

The control volumes of the mesh like in Figure (2.1) may have internal faces

but also faces that coincide with the boundary faces of the mesh. These faces

may have numerical boundary conditions (BCs), where they will be denoted

as patches, thus seperating them from the internal faces as you can observe in

Figure (2.5).
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Figure 2.5: Boundary Faces represented as Patches

The numerical boundary conditions are divided into two types:

1. Dirichlet boundary conditions that prescribe the value of the variable on

the boundary;

2. Neumann boundary conditions that prescribe the gradient of the variable

normal to the boundary.

It is good to note that the boundary conditions for any problem are built in the

algebraic equations system in (2.26) before solving it.

When we perform discretization of terms that include the sum over faces,∑
f , we need to consider what happens when one of the faces is a boundary

face.
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2.4.5.1 The Fixed Value BC

P b

nd

bo
un
da
ry
 f
ac
e 
b

Sf

Figure 2.6: Boundary Face b (patch)

The �xed value boundary condition forces the value of Ψ at the boundary face b

to be equal to Ψb. Thus, this has to be taken into account in the discretization

procedure of the convection and di�usion terms on the boundary face as you

will see next.

� Di�usion Term: According to the equation (2.6):
´
VP

∇•(ρΓΨ∇Ψ) dV =∑
f

(ρΓΨ)f nSf · (∇Ψ)f the di�usion term will be discretized on the CV

of a boundary face b with the face gradient calculated as the following:

nSf · (∇Ψ)f = Sf
Ψb −ΨP

|d|
, (2.28)

where n and d are parallel as you can see in Figure (2.6). Moreover, the term

(ρΓΨ)f on the boundary will be simply equal to (ρΓΨ)b.

� Convection Term: The convection term is desretized as
ˆ

VP

∇ • (ρUΨ) dV =
∑
f

JfΨf , (2.29)

where the term, in the summation, at the boundary face b will be equal to

JbΨb.
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2.4.5.2 The Fixed Gradient BC

Here, the dot product of the outward pointing unit normal and the gradient

can be de�ned on the boundary as the following:

(n ·∇Ψ)b = gb. (2.30)

� Di�usion Term: The di�usion term then will be discretized here as in

equation (2.6):
´
VP

∇• (ρΓΨ∇Ψ) dV =
∑
f

(ρΓΨ)f nSf · (∇Ψ)f , where the

term inside the summation, according to the de�nition in (2.30) will be

on the boundary face b equal to (ρΓΨ)b Sfgb.

� Convection Term: The value of Ψ here at the boundary face b will

be calculated from the value in the control volume center �P� and the

prescribed gradient (∇Ψ)b (see Figure2.6) such that:

Ψb = ΨP + d · (∇Ψ)b = ΨP + |d|gb. (2.31)

2.5 NUMERICAL ERRORS

After solving the linear algebraic system of equations (2.27) for the property

Ψ (X, t), the resulting numerical solution Ψ on the cell centers of the mesh on

the calculation domain is an approximate solution to the exact solution ψ. The

Numerical Error �Er� can be simply de�ned as

Er = ψ −Ψ. (2.32)

Di�erent methods of Error estimation exist such as those based on Taylor

Series Expansion like �Richardson Extrapolation�, and �Direct Taylor Series Er-

ror estimate�, in addition to others like �the Moment Error Estimate�, and �the

Residual Error Estimate� methods. All these methods for Error estimation, well

analysed in the FVM, can be found in [Jasak 1996].

In our work where we use the [OpenFOAM®] package, we use the �Residual

Error Estimate� method that will be discussed brie�y in the coming section.
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2.5.1 The Residual Error Estimate

Here the spirit of the �Residual Error Estimate� in the Finite Volume Method

comes from the Errors Estimation technique in the Finite Element Method

[Zienkiewicz et al. 1989]. Taking equation (2.2) in a steady-state the residual

of the control volume �P� can be calculated as the following

<esP (Ψ) =

ˆ

VP

[∇ • (ρUΨ)−∇ • (ρΓΨ∇Ψ)− Su− SpΨP ] dV

=
∑
f

nSf ·
[
(ρU)f Ψf − (ρΓΨ)f (∇Ψ)f

]
− SuVP − SpΨPVP , (2.33)

At last for convergence check during the iterations, the maximum of all the

residuals at the control volumes must obey the follwing:

Max (<esP (Ψ))� ε (2.34)

where ε is O
(
10−4

)
.

2.5.2 Convection and Diffusion Control

� Convection Control

Most of the calculation schemes are sensitive to the computational time and

space intervals (∆t , ∆X) used. The sensitivities for variety of problems are

usually discussed in terms of the Courant number Cr that was previously

de�ned in equation (2.22) (0<Cr ≤ 1).

� Di�usion Control

The Numerical di�usion is controlled to be within the physical realistic one

through the following imposed condition:

Γ ∆t

(∆X)
2 < 1 (2.35)
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So in our simulations we choose a mesh that has a ∆X, and then we calculate

its corresponding ∆t that satis�es both conditions of (2.22) and (2.35).

2.6 NAVIER-STOKES EQUATION DISCRETIZATION

Any �uid motion is described under the Navier-Stokes (NS) equations. The

latter equations require here special treatments for the disretisation procedure

on the control volume through the Finite Volume Method, especially the way it

is developed inside the [OpenFOAM®] tool we use.

The transient continuity and momentum equations in the NS system are

∂ρ

∂t
+ ∇ • (ρU) = 0, (2.36)

and

∂ (ρU)

∂t
+ ∇ • (ρUU)−∇ • (η∇U) = −∇P, (2.37)

respectively, where U is the average velocity, ρ is the �uid density, P is the

pressure, and η is the dynamic viscosity.

For an incompressible neutrally buoyant system
(
Dρ
Dt = ∂ρ

∂t + ∇ρ ·U = 0
)

and dividing all by ρ, equations (2.36) and (2.37) can be rewritten as:

∇ •U = 0, (2.38)

and
∂U

∂t
+ ∇ • (UU)−∇ • (ν∇U) = −∇p, (2.39)

where
(
ν = η

ρ

)
is the kinematic viscosity, and

(
p = P

ρ

)
is the kinematic pres-

sure. While solving these two equations, there exist two major di�culties:

1. The convection term ∇ • (UU) is nonlinear, since the velocity U is mul-

tiplied by itself.

2. The equations are strongly coupled in U and p.
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2.6. NAVIER-STOKES EQUATION DISCRETIZATION

This precludes to solve out simultaneously the velocity and pressure with-

out great di�culty, and requires iterative algorithms while solving for the

di�erent variables (i.e. U, p) . In our work here, we use the �SIMPLE�

algorithm (de�ned later) to solve that di�culty.

2.6.1 Discretizing the equations

Both equations (2.38) and (2.39) are discretized and written for each cell in the

grid, which will result in a huge set of equations. According to [Auvinen et al.

2010] (as in [OpenFOAM®]), the discrete forms of equations (2.38) (continuity)

and (2.39) (momentum) are written, respectively, as:

∑
f

(Uf · nSf ) = 0 (2.40)

∆U

∆t
VP +

∑
f

UfΦf −
∑
f

(ν∇U)f nSf = −
∑
f

pfnSf (2.41)

2.6.1.1 The Discretized Momentum Equation in a Matrix form

The �nal form of the matrix equation which results from the momentum equa-

tion (2.41) discretization can be written in the following form:

aPUP +
∑

aNUN = src−∇p , (2.42)

where src is a source vector, and∇p is left out of the source vector in its original

form.

2.6.2 Pressure-Velocity Coupling Technique

The di�erential equations system is srtongly coupled in (p &U) and cannot

be solved directly. Iterative solution methods (approach) are the only choice

[Ferziger 1996, Patankar 1981]. There are di�erent iterative solution meth-

ods that can be used to solve the inter-coupling (p &U) system of equations
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(2.36), and (2.37). In this manuscript, we use the �SIMPLE� algorithm

[Ferziger 1996, Patankar 1981, Versteeg and Malalasekera 1995] implemented

in [OpenFOAM®] to solve the inter-coupling (p &U) system of equa-

tions.

2.6.2.1 The SIMPLE Algorithm

The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algo-

rithm is a technique that allows to couple the Navier-Stokes equations with an

iterative procedure to seek p and U �elds such that the obtained �elds satisfy

well both the continuity and the momentum equations [Patankar 1981]. We will

try to explain this method in the spirit of equation (2.42).

Let �i� be a time index that constitutes the outer iterations for time. Then

the discretized momentum equation (2.42) at this time �i� becomes on the fol-

lowing form:

aPUi
P +

∑
aNUi

N = srci − (∇p)
i (2.43)

In order for the solution of equation (2.43) for the �elds Ui
P and pi to

satisfy continuity and momentum, equation (2.43) must be solved iteratively.

This is done in the SIMPLE algorithm through a technique by adding internal

iterations of an index �j� to the outer iteration �i� of time.

Thus, equation (2.43) can be written now in both �i� and �j� iteration indices

on the following form:

aPUi, j
P +

∑
aNUi, j

N = srci, j−1 −∇pi, j (2.44)

with

Ui, j
P =

[
−
∑
aNUi, j

N + srci, j−1

aP

]
− ∇pi, j

aP
(2.45)

The source src contains all the terms that are explicitly computed (i.e. body

forces, linearized terms, etc...). At the end of iterations on �j�, the �nal Ui, j
P

& pi, j ful�ll well the continuity and momentum equations. In the following,
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sometimes the time index �i� will be dropped out from the equations, just to

simplify the formulation.

The steps of the SIMPLE algorithm (1 to 4) are inside the single time step

�i� as follows:

1. Momentum Predictor: First, we start from Uj−1 & pj−1 (for the �rst

iteration �j = 1� & one takes Ui, 0 = Ui−1 ; pi, 0 = pi−1). Then assemble

and solve the discretized momentum equation (2.45) from the previous

iteration step �j − 1� to compute an intermediate (momentum-predictor)

new velocity �eld U∗ jP on the form:

U∗ jP =
−
∑
aNU∗ jN + srcj−1

aP
− ∇pj−1

aP
(2.46)

[
NoteU∗jP is a first approximation of Uj

P at the iteration ”j”
]
that do not

satisfy the following discrete continuity equation:

{
∇ •Uj

P

}
=
∑
f

(
Uj
f · nSf

)
= 0 (2.47)

In order for the velocities to ful�ll this latter equation, the velocity and

the pressure �elds should be corrected by introducing two correction terms

U′ and p′ such that:

Uj
P = U∗ jP + U′P (2.48)

pj = pj−1 + p′ (2.49)

2. Pressure solution: Upon using the de�nition in (2.45) U′ can be written

as:

U′P =

[
−
∑
aNU′N
aP

]
− ∇p′

aP
(2.50)

Introducing the latter U′P of equation (2.50) in the discrete continuity

equation (2.47) one gets:

∇ •U∗ jP = −∇ •U′P (2.51)
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that implies a discrete Poisson pressure equation on the form:

∑
f

(
U∗ jf · n

)
Sf = −

∑
f

(
−
∑
aNU′N
aP

− ∇p′

aP

)
· nSf (2.52)

In the SIMPLE algorithm, the term
[
−
∑
aNU′N
aP

]
is neglected, and equa-

tion (2.52) becomes:

∑
f

(
U∗ jf · n

)
Sf =

∑
f

(
∇p′

aP

)
· nSf (2.53)

The solution of this last discrete pressure equation gives the correction

term p′ of the new pressure �eld pj .

3. Explicit Velocity Correction: Correct the velocities according to equa-

tion (2.48) to obtain the new Uj
P that satis�es continuity and correct the

pressure according to equation (2.49) to get the new pj .

4. Go back to step 1 and repeat, using Uj
P and pj as improved estimates for

Uj+1
P and pj+1, untill all corrections are negligibly small.

5. Advance to the next time step �i+ 1�.

2.6.2.2 Under-relaxation

In the iterative algorithms (i.e. SIMPLE) that seeks the solution of the alge-

braic equations, it is often desirable to speed up or to slow down the changes,

from iteration to iteration, in the values of the dependent variables. This pro-

cess is well known as overrealaxtion or underrelaxation. Consequently, in the

�SIMPLE� algorithm (loop) both velocity and pressure are under-relaxed in

order to prevent divergence problems and control the speed up of the calcula-

tions [Patankar 1981]. Moreover, the performance of the �SIMPLE� algorithm

does not converge rapidly and depends greatly on the size of time step, or

-for steady �ows- on the value of the underrelaxation parameter used in the

momentum equations.
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� Concerning velocity, the underrelaxation of the momentum equation

is done by a coe�cient αU that is applied during the iteration �j� in the

following way:

Uj
P = Uj−1

P + αU

(
Uj
P −Uj−1

P

)
(2.54)

or can be written on the following form after using equation (2.42):

aP
αU

Uj
P +

∑
f

aNUj
N = srcj −∇pj +

(1− αU)

αU
aPUj−1

P (2.55)

where the underrelaxation parameter (0 ≤ αU ≤ 1).

� Concerning pressure, it has been found by trial and error that con-

vergence can be improved if one adds only a portion of p′ to pj−1 in the

follwing way:

pj = pj−1 + αpp
′ (2.56)

after the pressure equation is solved, where (0 ≤ αp ≤ 1). Thus, only some part

of the new pressure is used, and the rest is taken from the previous iteration

round (Note: this also increases computation stability [Patankar 1981, Ferziger

1996]). An optimum can be found in literature [Ferziger 1996] for the choice of

αU & αp according to the following:

αp = (1− αU) (2.57)

Note: For the implementation of the �SIMPLE� algorithm in [Open-

FOAM®] environment, see Appendix C on page 224.
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2.7 CLOSURE

The conservative Finite Volume Method for incompressible �ows had

been described globaly in this chapter (2) in a simpli�ed clear manner.

However, an extension of this method for compressible �ows can be

found in literature well explained by [Moukalled and Darwish 2009].
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Chapter 3

THE Suspension Balance Model IN

OpenFOAM®

3.1 OVERVIEW

This chapter (3) tackles the process of developping a computational

open-source code used to solve the simple shear �ow problems of con-

centrated suspensions. The technique used here is based on consider-

ing the suspension (the liquid and the particle phases) as a continuum

medium to solve the �ow equations. The Suspension Balance Model

(SBM) [Nott and Brady 1994, Morris and Boulay 1999] described in

chapter (1) is used to model the shear-induced migration of particles

in various geometries.

The Model is implemented in the [OpenFOAM®] [C++] Object-

Oriented (OO) source code in [OpenFOAM®] package which uses

the Finite Volume Method (FVM) for the spatial discretization of

the transport equations. In this chapter (3) we aim to provide an

overview of the original SBM and its numerical implementation in

[OpenFOAM®].
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3.2. MODEL GOVERNING EQUATIONS

In section (3.2), Governing Equations of the SBM development are

presented. In section (3.3), the technique of implementation of the

SBM utilizing the Finite Volume Method is presented. In section

(3.4), validation of the implemented-code for the �ow of suspensions

at various concentrations in di�erent geometries are discussed, and

compared with the previous studies in literature.

3.2 MODEL GOVERNING EQUATIONS

The SBM, that was presented and explained previously in chapter (1) for the

incompressible Stokes �ow of monodispersed neutrally buoyant non-Brownian

suspensions of hard spheres, can be summarized by the following system of three

coupled equations:

∇ •U = 0, (3.1)


∇ •Σ = ∇ •Σf + ∇ •Σp = 0

m

−∇P + ∇ • (2η0ηsE)−∇ •
(
η0ηN

.
γQ
)

= 0

 (3.2)

∂φ

∂t
+ U ·∇φ = −∇ • −→⊥. (3.3)

where U is the suspension mean velocity �eld vector, Σ the suspension stress

tensor, and −→⊥ the shear-induced migration �ux of particles relative to the mean

motion of the suspension that were all de�ned precisely in chapter (1) . We recall

that:

−→⊥ =
2a2

9η0
f(φ) [∇ •Σp] . (3.4)
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3.3 NUMERICAL IMPLEMENTATION

3.3.1 Implementation of the “Suspension Balance Model” in “OpenFOAM®”

The [OpenFOAM®] [C++] library is a pack of applications divided into two

di�erent categories which are �solvers� and �utilities�. The �solvers� are those

where all the actual calculations are performed while the �utilities� provide a

wide range of functionalities for pre- and post-processing. The user can im-

plement his own Model as a � new solver� and pass it to the already existing

library thus creating a new implemented Model describing a certain new physical

phenomenon, as we will do with the implementation of the SBM.

The system of equations (3.1), (3.2), and (3.3) is implemented by

modifying the �transientSimpleFoam Solver� in the open source code

[OpenFOAM®] to a new solver which represents the SBM.

Precisely, equations (3.1) and (3.2) which describe the �ow behavior have

been solved iteratively via the SIMPLE algorithm technique described pre-

viously in chapter (2). The convective term is absent here, and the ∇ • Σp

term that corresponds to the particle normal stresses is simply added to the

source term src. The transport equation (3.3) is solved following the detailed

procedures in chapter (2) where we used the Crank-Nicholson scheme in the

discretization of the ∂φ
∂t term.
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The following shows brie�y the Implementation procedure inside

the transientSimpleFoam Solver:

int main(int argc, char *argv[])

{ Info<�< "\nStarting time loop\n" <�< endl;

for (runTime++; !runTime.end(); runTime++)

{

# include "readPISOControls.H"# include "CourantNo.H"

Calculating parameters: η0, ηS , ηN , ηP , E, γ̇, Σf , Σp, Σ, −→⊥, etc...
// Pressure-velocity SIMPLE corrector

for (int corr=0; corr<nCorr; corr++) (SIPMLE iteration)

{

solve steady Stokes momentum: ∇ • Σ = 0;

velocity-pressure correction to satisfy continuity ∇•U = 0;

}

At each time step solve transport equation

∂φ
∂t + U ·∇φ = −∇ • −→⊥to get new φ

runTime.write();

}

}.

The validity of the Model implementation in [OpenFOAM®] is presented

and discussed in the following section(3.4).

3.4 VALIDATION OF THE CODE IMPLEMENTATION IN Open-

FOAM®

Any new implemented written code must be tested for its validation. That's

usually done by tackling di�erent examples which already exist on another dif-

ferent softwares or codes, and compare the results of the new written code with

them and with the existing experiments in literature. In section (3.4.1), we

will present the suspension �ow in both rectangular and circular cross-sectional
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channels, while in section (3.4.2) an example of the suspension �ow in a Couette

cell geometry will be presented.

3.4.1 Suspension flow in channels

3.4.1.1 Suspension flow in a rectangular cross-section conduit

Our numerical simulations for the pressure-driven �ow of a suspension in a 2D

rectangular cross-section (CS) conduit are compared with the numerical code

written by [Miller 2004, Miller and Morris 2006]. All the numerical data are also

compared with the experimental ones presented by [Lyon and Leal I 1998] who

measured the concentration pro�le distribution of the particles φ using laser-

Doppler velocimetry (LDV) method. Their experiments used monodispersed

spherical PMMA1 particles, large enough to neglect Brownian e�ects, and of

diameters between 50 and 100 µm. Moreover, the particles were immersed in a

Newtonian liquid (Triton X-100 + UCON 75-H) of dynamic viscosity η0 =0.48

Pa · s at 20 °C, and of density ρf =1.19 g · cm−3 which was equal to that of the

PMMA particles (ρp = ρf = ρ) in order to prevent sedimentation problems.

The rectangular CS conduit was of length L, and of width 2H. Conse-

quently, di�erent experimental parameters were chosen in a way to neglect in-

ertia, i.e. Rep � 1 where Rep is the particles Reynolds number [Goldsmith et

al. 1967] de�ned as:

Rep =
4

3

ρ

η

a3

H2
Umax (3.5)

Umax is the maximum suspension velocity and a the particle radius.

Another parameter is the ratio
[
L
H

]
ss

that was chosen in a way to ensure

that, the measured pro�les were at fully developed state. [Nott and Brady 1994]

have shown that the pro�les are fully developed if:

[
L

H

]
ss

&
1

12g(φ)

(
H

a

)2

(3.6)

where g(φ) stands for the bulk particle concentration dependence of the shear-

1Polymethyl methacrylate
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induced di�usion coe�cient. After a good �tting to their experimentally mea-

sured di�usion coe�ecients, [Leighton and Acrivos 1987], and later [Chapman

1990] have found g(φ) on the following form

g(φ) =
1

3
φ2

(
1 +

1

2
e8.8φ

)
. (3.7)

Some zones during the �ow may be experiencing a zero shear rate such as at the

channel centerline. In this latter situation, the model predicts concentration

pro�les with a cusp representing a singularity (φ = φm). This singularity is

localised in a narrow zone whose size is of the order of magnitude of the particle

size, where the description of the suspension as a continuum medium makes no

sense any more. In order to eliminate this singularity at the channel centerline,

a non-local shear rate γ̇NL [Nott and Brady 1994, Miller and Morris 2006] is

de�ned and added to the local shear rate γ̇ in equation (1.73) such that

γ̇NL = as
Umax

H
, (3.8)

where as is equal to 0, ε, or ε2 and ε = a
H .

To solve the concentration distribution pro�le of particles, during the �ow in-

side the conduit of a rectangular CS (cross-sectional) area, the two-dimensional

domain of the conduit, as you can see in Figure (3.1), is meshed using the al-

ready installed �blockMesh� utility in [OpenFOAM®]. The 2D Mesh is uniform

in the y-direction (velocity gradient direction) of width W = 2H = 20δy, but

nonuniform in the velocity direction: L = 100δx with an expansion ratio equal

to
(

1
50

)
in the direction of �ow, in order to better capture the di�erent properties

at the inlet of the conduit.
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Figure 3.1: Channel rectangular cross-section 2D Mesh

The imposed boundary conditions of the problem of a suspension �ow in

a channel, to be used in the system of equations (3.1), (3.2), and (3.3), are

represented in Figure (3.2).
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Figure 3.2: Channel 2D imposed boundary conditions

Results for the fully-developed steady state pro�les of the concentration φ of

bulk suspension values φb of 0.30, 0.40, and 0.50, and at parameters of Ha = 18,

ηs =
(

1− φ
φm

)−2

, φm = 0.68, α = 4, λ2 = 0.8, λ3 = 0.5, and as = ε are shown

in the following Figures (3.3), (3.4), (3.5), and (3.6).
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Figure 3.4: 40% Suspension Steady State Concentration Pro�le
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Figure 3.5: 50% Suspension Steady State Concentration Pro�le
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The Numerical pro�les of our implemented code in [OpenFOAM®] in the
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present study, were in good agreement with those of the 2D code given by

[Miller and Morris 2006] along the cross section of the rectangular channel as

you can see in Figures (3.3), (3.4), and (3.5). However, we observe a slight

di�erence between the data along the centerline of the channel especially at the

�rst quarter of the conduit length in (3.6).

Figure (3.7) shows an example of the evolution of Residuals (see section

(2.5.1)) with the number of iterations of the di�erent calculated variables (�c�

stands for the concentration φ, U the velocity, and p the pressure), from start

untill the steady state in concentration is reached.

Figure 3.7: Residuals of the 30% Suspension case in Figure (3.3)

The number of iterations necessary to calculate the concentration �c� (c≡ φ)

is half of that needed by the velocity and the pressure �elds. That's due to the

fact that �c� was calculated at each time step outside the �SIMPLE� loop, where

we did 2 pressure-velocity �SIMPLE� corrections (see the code in section 3.3.1)

and look at the Appendix D on page 228 for the di�erent settings we used in

simulations for the [Numerical Schemes] and the [Solution Solvers].

As a conclusion for the previous section (3.4.1.1), the implementation in

[OpenFOAM®] of the SBM for the shear �ows of monodispersed suspensions

was successful, and well tested for a 2D �ow of a suspension inside a rectangular

CS conduit. We will move now to the next following section (3.4.1.2), where
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the validity of our implemented code in [OpenFOAM®] will be studied for a

suspension �ow inside a pipe.

3.4.1.2 Suspension flow in a pipe (circular cross-section conduit)

Similarly, the �ow of suspensions in pipes is simulated, but as an axisymmety

problem. Axisymmetric geometries are implemented in [OpenFOAM®] in a 2D

manner via what's known as �Wedge-type-geometry�, that is explained in the

Appendix A on page 220.

[Hampton et al. 1997] made their experiments on suspensions undergoing

pressure driven �ow in a circular conduit. They used the NMR imaging tech-

nique to capture the spatial particle distribution in the cross-section of the

pipe. Their experiments included monodispersed suspensions of PMMA spheri-

cal particles of mean diameter 2a = 650µm, and of density ρp = 1180.7Kg ·m−3

matched to that of the suspended liquid ρf . Their latter suspended liquid was

of dynamic viscosity η0 =2.1 Pa · s at 28 °C.

The two-dimensional domain of the pipe, as you can see in Figure (3.8), is

meshed uniformly in both the r-axis and z-axis directions, of diameter R = 20δr

and of length L = 100δz. The boundary conditions for the problem are similar

to those in Figure (3.2).

     100
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rδ
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δ

Figure 3.8: Circular cross-section pipe 2D Mesh

The results of the numerical simulations, by using our code, for the suspen-
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sion �ow inside a pipe of concentrations 0.20, 0.30, and 0.45, and at parameters

R
a = 16, ηs =

(
1− φ

φm

)−2

, φm = 0.68, α = 2, λ2 = 0.8, λ3 = 0.5, and as = ε

are viewed out in the following Figures (3.9), (3.10), (3.11), and (3.12).
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Good closeness is observed between our numerical data results, and those

provided by [Miller and Morris 2006] which can emphasize the well implementa-

tion of the original SBM inside the [OpenFOAM®] environment. This close-

ness is especially good for the 20% and 30% concentration pro�les across the

section of the pipe. For the 45% one can see an observable deviation between

our numerical pro�le and that obtained by [Miller and Morris 2006]. This slight

di�erence may be due to some interpolation scheme types that have been taken

di�erently in the two codes. Furthermore, in Figure (3.12), we observe that the

concentration pro�les along the pipe centerline that we calculated are not the

same as those presented by [Miller and Morris 2006].

Looking more carefully at the results of [Miller and Morris 2006], we realized

that the pro�les they present as obtained at the centerline were actually at(
r
R

)
∼ 0.02 (�rst points in Figures (3.9), (3.10) & (3.11)). This leads to a

di�erence which is the more important the lower the volume fraction is.
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3.4.2 Suspension flow in a Couette cell geometry

The suspension �ow in a Couette cell is here a �ow between two concentric

cylinders, the inner cylinder is rotating with an angular velocity Ω , and the other

is stationary. The suspension, before the �ow occurs, has a uniform distribution

of particles in the geometrical space. During the �ow, it is observed that the

particles migrate toward the outer cylinder.

The Suspension Balance Model, implemented through equations (3.1), (3.2)

and (3.3) in the [OpenFOAM®] environment, is used and tested for the monodis-

perse suspension �ow in a Couette cell geometry. Our numerical data are com-

pared with the experimental ones of [Phillips et al. 1992] and most of all with

the numerical pro�les provided by [Morris and Boulay 1999].

In their experiment, [Phillips et al. 1992] used a monodispersed suspension

of PMMA spheres of mean diameter 2a = 675µm, suspended in a Newtonian

liquid mixture of dynamic viscosity η0 =4.95 Pa · s at 23.15 °C, and of density

ρf w ρp = ρ = 1182Kg ·m−3.

The inner and outer radii of the Couette cell were 0.64 cm and 2.38 cm,

respectively. The cavity length was 25 cm. They measured the pro�le concen-

tration using the NMR technique.

We consider here the Couette cell as in�nite cylinders, and with no gravi-

tational e�ects in the vertical axial direction, which reduces the problem to be

simulated in 1D in the radial direction. We use a Wedge-type geometry de�ned

in Appendix A on page 220 due to the axi-symmetry of the problem. The 1D

domain of calcuation and the boundary conditions are shown in Figures (3.13)

and (3.14) respectively. It is good to mention that the tensor Q de�ned in equa-

tion (1.75) will have here (for the �ow in a Couette cell geometry) the following

form:

Q =


λ2 0 0

0 1 0

0 0 λ3

.
That's due to the respect of its previous de�nition for the principal directions
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1, 2 & 3 which stand for the �ow, velocity-gradient and vorticity directions,

respectively.
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Our 1D numerical results for the transient concentration pro�les evolution

were at the following model variables:

Kn = 0.75, a
Rout

= 0.0143, φbulk = 0.55, α = 4, φm = 0.68, λ2 = 0.8, λ3 =

0.5, as = 0, f (φ) = (1− φ)α, ηs = 1+2.5φ
(

1− φ
φm

)−1

+0.1
(
φ
φm

)2 (
1− φ

φm

)−2

,

and ηN = Kn

(
φ
φm

)2 (
1− φ

φm

)−2

.

The evolution of the particles distribution in the suspension sheared between

the two cylinders is shown in the following Figures (3.15) and (3.16). The

SBM predicts well the direction of the migration of particles toward the outer

cylinder, and it quanti�es well the particles distribution in the gap. We have

more closeness to the experimental data by using [OpenFOAM®] compared

to the 1D numerical simulations of [Morris and Boulay 1999]. However, the

small di�erence between our numerical pro�les and those obtained by [Morris

and Boulay 1999] code may be due to di�erent interpolation schemes they used

during their numerical resolutions for the problem.
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It is good to remention the importance of the maximum volume fraction

packaging value φm in a�ecting well the numerical results. Here φm was taken

to be 0.68 by [Morris and Boulay 1999] just to �t their steady concentration

pro�les experimental data with the numerical obtained ones by the SBM,

and with the viscosity form they adopted as ηs = 1 + 2.5φ
(

1− φ
φm

)−1

+

0.1
(
φ
φm

)2 (
1− φ

φm

)−2

. We took their same φm value 0.68 here just to test the

validity of implementation of the Suspension Balance Model in [OpenFOAM®]

for the Couette cell �ow. However, we will see later in chapter 4 that for a

suspension of 2a = 140 µm we measure a φm of 0.58 .

�

Analytically, at steady state and in the cylindrical coordinate system, the

radial momentum balance is represented by the following equation:
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1

r

∂

∂r
(rΣrr) =

Σθθ

r
. (3.9)

According to the de�nition of N1 and N2 in equation (1.76), equation (3.9)

can be rewritten as:

∂Σrr

∂r
=

Σθθ −Σrr

r
=
N1

r
, (3.10)

where θ, and r denote the �ow and velocity gradient directions, respectively.

Using equations (1.73) & (1.76) in expression (3.10), and replacing N1 by

its form yields

λ2
d (ηN γ̇)

dr
=
ηN γ̇ (1− λ2)

r
, (3.11)

which is solved in conjunction with the shear stress balance

1

r2

∂

∂r

(
r2Σrθ

)
= 0, Σrθ ≡ τ = η0ηs (φ) γ̇, (3.12)

and

γ̇ = r
∂

∂r

(uθ
r

)
. (3.13)

The balance in shear stress yields

γ̇ =
C

r2ηs (φ)
, (3.14)

which is subistuted in equation (3.11) to give

q (φ) ≡ ηN (φ)

ηs (φ)
= Acr

1+λ2
λ2 , (3.15)

where Ac represents a constant determined by requiring φ (r) to average to
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the imposed bulk concentration φbulk ≡ φb such that

φbπ
(
R2
out −R2

in

)
=

Routˆ

Rin

φ (r) · 2πr dr (3.16)

The analytical predicted steady state concentration pro�les using equations

(3.15) and (3.16) for a bulk suspension of φb = 0.55, and at λ2 = 0.8, are

compared with the experimental results of [Phillips et al. 1992] as you can see in

Figure (3.17). Our steady numerical pro�le using the SBM in [OpenFOAM®]

(line in Figure (3.17)) matches exactly the analytic pro�le solution of equations

(3.15) and (3.16) (circles in Figure (3.17)).
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Figure 3.17: Steady State Concentration Pro�les in a Couette gap

Note that it is not the case for the stationary pro�le obtained numerically by

[Morris and Boulay 1999] that calculated the values of φ near the inner cylinder

slightly underestimated.
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3.5 CLOSURE

In this chapter (3) we have seen the implementation of the original

Frame-Dependent Suspension Balance Model in the [OpenFOAM®]

environment, and its validity for suspension �ows inside channels of

two di�erent cross-sectional areas, and for suspension �ows inside

Couette cell geometry. Note that here all the simulations have been

done using the �original SBM� as it was presented previously in Lit-

erature by [Nott and Brady 1994, Morris and Boulay 1999]. The next

coming two chapters (4) and (5) will be a revisit on the �SBM�, where

the chapter (4) describes the experiments that have been done to de-

termine well its di�erent important parameters ηs (φ), ηN (φ), λ2 and

λ3. Another chapter (5) will present di�erent simulations examples

using the modi�ed version of the �SBM�, according to our present

determination for its latter parameters.
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Chapter 4

MEASUREMENTS OF NORMAL

STRESSES

4.1 OVERVIEW

In this chapter (4) we present a developed experimental technique for

the measurements of Normal stresses in non-Brownian suspensions.

We start by an Introduction in section (4.2), and the theoretical back-

ground of the Suspension material functions in a torsional �ow be-

tween two rotating parallel plates in section (4.3). Our experiments

are shown and discussed in section (4.4). Later, the determination of

the three material functions ηs, α1, and α2 in the suspensions are ex-

plained in section (4.5), and the particle normal stresses are presented

in section (4.6). Finally, it is the closure of this chapter (4) in section

(4.9).

4.2 INTRODUCTION

Despite of some existing di�erences among the results in literature, the sus-

pension viscosity as a function of the volume fraction of particles is quite well
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known. However, it is a di�erent situation for normal stress di�erences that are

still mysterious in the suspensions with very few things known about them. It

is well established that whenever the concentration of particles is large enough,

normal stress di�erences used to appear in the suspensions. The early works

of [Gadala-Maria 1979] have shown that the normal stress di�erences (actually

the di�erence N1 −N2) were proportional to the shear stress, and of the same

order of magnitude. Then, one had to wait untill the year 2000, where the

Normal stress di�erences had been determined thanks to the anti-Weissenberg

e�ect, and to the total force measurements exerted on a rotating cone or disk,

on top of a stationary plane [Zarraga et al. 2000]. Later [Singh and Nott 2003]

proposed a technique to measure both N1 & N2 by coupling data taken from

two separated experiments, that's by installing pressure transducers in a Cou-

ette cell geometry from one side, and in a two parallel disks cell from the other

side. Recently, [Boyer et al. 2011 a] have measured precisely (N1 + 2N2) as a

function of the volume fraction of particles φ, using the anti-Weissenberg e�ect,

in addition to, [Couturier et al. 2011] who have determined the second normal

stress di�erence N2 , by measuring the deformation of the free surface of a sus-

pension �ow in a narrow inclined channel. The latter two measurements show

that N1 is of the order of zero, and that N2 is negative. We present here the

direct determination of both Normal stress di�erences N1 & N2 by a technique

of measuring the Normal stress radial pro�le ΣT
22 (in the direction of velocity-

gradient) in a torsional suspension �ow between rotating parallel plates [Bird et

al. 1977]. Concurrently, the pore pressure1 Pf was measured via circular grids

that separate the solid particles phase from the liquid one, which allowed us to

deduce the particle normal stress Σp
22 given by: Σp

22 = ΣT
22−Σf , that's by sub-

tracting the isotropic �uid stress, Σf , from the total normal stress ΣT
22 ≡ Σ22.

The knowledge of the three normal components of the particle stress 2nd−rank

tensor Σp
11, Σp

22, and Σp
33 is of great importance, due to the signi�cant role

they play in predicting the phenomenon of shear-induced migration of parti-
1The pressure of the �uid in the pore space is just the pressure exerted by the overlying

�uids between the solid spheres.
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cles in non-Brownian suspensions. That's according to the �Suspension Balance

Model� of [Nott and Brady 1994, Morris and Boulay 1999]. [Deboeuf et al.

2009] have proposed direct determination of the third component in the latter

tensor, Σp
33, by measuring the pressure in a sheared suspension through grids

attached to the walls of a Couette cell geometry. They found [GISEC06 2010]

that the particle normal stresses vary quadratically with φ. Moreover, [Zarraga

et al. 2000], and [Acrivos et al. 1993] measured indirectly the component Σp
33

by regarding the resuspension of a sedimented bed of particles. Whenever, the

bed of particles is sheared, its height changes till reaching a stationary value

which represents in the vertical direction, the balance between the gravitational

volumetric force on a particle, and the gradient of the particle normal stress.

The next sections expose that, our results [Dbouk et al. 2011] are in good

agreement with the di�erent previous measurements found in literature.

4.3 SUSPENSION MATERIAL FUNCTIONS IN A TORSIONAL

FLOW BETWEEN TWO ROTATING PARALLEL PLATES

First of all, it's necessary to mention the argument of choosing this type of geom-

etry, where the normal stresses are measured in a torsional �ow of a suspension

sheared between two rotating parallel disks. Our choice was made, after taking

into account the previous observations presented in the literature, which showed

that the shear-induced migration of particles has no existence, or it is so weak,

in such a �ow [Chow et al. 1994, Chapman 1990, Merhi et al. 2005, Bricker

and Butler 2006]. So, the concentration remains homogeneous enough during

the experiment, and we can determine the following material functions α1, α2,

and ηs
(
ηs = η

η0

)
at a well controlled volume fraction of particles φ.

4.3.1 Torsional flow at small Reynolds Number

Our work here is restricted to the �ow of non-Brownian monodispersed sus-

pensions of hard spheres. We are at neglected inertial e�ects, and where the
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hydrodynamic forces dominate over the brownian ones (Re� 1 & Pe� 1) as

we have mentiond previously in section (1.3.2.2) of chapter (1).

The viscosity of the suspension sheared in the torsional �ow between two

parallel disks is given by:

η =
Γ

2πR3γ̇R

(
3 +

d ln
(
Γ�2πR3

)
d lnγ̇R

)
, (4.1)

γ̇R =
ΩR

h
(4.2)

where R is the disks radius, Γ the torque on the upper rotating disk of angular

velocity Ω, γ̇R the shear rate at edge of the system, and h is the gap.

If the suspension viscosity η is independent of γ̇
[
i.e.

(
d ln(Γ�2πR3)

d lnγ̇R

)
≈ 1

]
,

then it will be such that:

η =
2Γ

πR3γ̇R
=

2Γh

πR4Ω
(4.3)

Before showing the normal stress coe�cients α1 and α2, it is good to note

that in this manuscript the normal stresses are de�ned by directing the nor-

mals toward the interior side of a medium element (compressional stresses are

negative) as we have shown previously in the stress convention on page 12.

The normal stress coe�cients α1 and α2 are de�ned as:

α1 = − N1

η0 · ˙|γ|
& α2 = − N2

η0 · ˙|γ|
. (4.4)

The radial variation of the second component of the normal stresses is de�ned

as (see section 1.5.4):

Σ22 (r) = −η0γ̇R

[
(α1 + 2α2)

r

R
− (α1 + α2)

]
− Pa, (4.5)

where Pa is the atmospheric pressure we choose as the reference (Pa = 0).

Thus, equation (4.5) makes it possible to determine both α1 and α2 if one

measures the radial pro�le of Σ22. In our experiment, we then expect to have a
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linear pro�le of Σ22 in the radial direction, where the slope kp gives an access

to − (α1 + 2α2) and the ordinate at origin koo gives an access to (α1 + α2). In

addition to the direct transducers that allow the measurements of Σ22 (r), four

indirect transducers were placed behind four respective holes. The holes were

covered with grids to retain the particles in the rheometer gap such that the

transducers attached to them measure the pore pressure Pf in the suspension.

Upon subtracting Σf
22 = −Pf from the measured normal stress on the �ush

mounted transducers Σ22, we can get what we call �the second particle normal

stress Σp
22� such that:

Σp
22 = Σ22 −Σf

22 . (4.6)

This idea is based on and emphasized in the existing bi-phase Models in the

literature, where the total stresses in the suspension are de�ned as the sum of

both, the �uid stresses and the particle stresses [Nott and Brady 1994, Morris

and Brady 1998]. Moreover, the idea of measuring the �uid interstitial pressure

by seperating the suspension from direct contact with the sensors via grids,

comes from the previous works of [Deboeuf et al. 2009] who measured the pore

pressure in a sheared suspension in a cylindrical Couette cell.

As a short summary, the radial pro�le of Σ22 gives us an access to both

α1 and α2, and the measurements of the pore pressure Pf allow us to get and

extract Σp
22 using equation (4.6), where from these terms α1, α2 and Σp

22 we

can deduce the other two particle normal stresses Σp
11 , and Σp

33 utilising both,

the isotropy of the �uid stress, and the de�nitions in equation (1.16):

Σp
11 = Σp

22 +N1 ; Σp
33 = Σp

22 −N2 . (4.7)

Thus we have seen now the methodoly of getting the three particle normal

stresses Σp
11, Σp

22 andΣp
33, where we will show you soon that their knowledge is

of a huge signi�cance.
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4.4 EXPERIMENTS

4.4.1 Experimental device

The suspension was placed between two parallel disks of radius R = 5.5cm, and

gap h = 2 mm, inside a controlled Mars II Rheometer (Haake, Thermo�sher)

as you can see in Figure (4.1).

Figure 4.1: Experimental Setup

Four �ush mounted pressure transducers (sensors) (STS ATM ±25 mbar ;

Figure (4.2)) had been installed directly in the stationary lower disk at di�erent
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positions (Ri = 1.1, 3, 3.3, and 3.9 cm) as it is illustrated in the Figure (4.3):

Figure 4.2: STS Pressure Sensor

R=5.
5 cm

h=2 mm

Direct sensors

Sensors at Grids�22

Pf
Figure 4.3: Experimental Setup

The pressure transducer membranes have to be exactly at the surface (if not,

a hole pressure is to be accounted for). To solve this problem we coated the

membranes at the surface via RTV elastomer. But, we discovered quickly that

this elastomer is too fragile which obliged us to remove it and seek another so-

lution. The �nal good decision was to coat the membranes surface with para�n

as you can see in the following Figure (4.4).
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surface

Paraffin

sensor
membrane

Figure 4.4: Para�n Coating

After the coating process the pressure sensors were tested by measuring the

hydrostatic pressure of a column of Glycerine in water solution of height h. It

is shown in Figures (4.5) & (4.6) that all the pressure transducers work very

well after coating the surface with para�n, and all measure �ne the hydrostatic

pressure with a maximum deviation of around 2% only.
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Figure 4.6: Hydrostatic Pressure Test

Furthermore, four holes 2 mm in diameter have been made in the lower

stationary disk (see Figure 4.3). They were covered with grids (square-meshed)

that are well �tted inside the holes (50 µm space at the edge). That's to retain

the spherical particles between the two disks in a way such that the transducers

attached to them can measure well the pore pressure Pf in the suspension.

4.4.2 Suspensions

We have studied the suspensions of monodispersed spherical particles of polystyrene

(Dyno seeds TS, Microbeads) of diameters 40 & 140 µm (±5%) dispersed in

a newtonian liquid which is a mixture of water, Ucon Oil 75H90000 (Dow)(
ρucon = 1.09 kg ·m−3, ηucon = 30 Pa · s

)
, and zinc bromide. The newtonian

liquid mixture was prepared in such a way that its density matched enough

that of the particles
(
ρf = ρp = ρ = 1.05 kg ·m−3

)
in order to prevent any sedi-
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mentation problem, and also that its viscosity η0 may vary up to several tens of

the centipoise2. We used suspensions of volume fraction of particles φ between

20% and 50%. The suspending �uid viscosity η0 has been chosen and modi�ed

by diluting the Ucon Oil with water in a way such that the suspension viscosity

η is always of the order of 1 Pa · s, whatever the volume fraction of particles φ

is. This order of magnitude of the suspension viscosity permits one of getting

measurable normal stresses, throwing away the problems of Edge Fracture. In-

deed, the normal stresses in a suspension at a given volume fraction of particles

are proportional to the shear stress, and it is well known that the second normal

stress di�erence, if negative, is the motor of the Edge Fracture which appears

whenever |N2| passes a critical value [Keentok and Xue 1999] of the order of

|N2c| = 5Υt�h, where Υt is the surface tension of the suspension.

Taking 70 mPa ·m for Υt, then |N2c| ≈ 150 Pa. We will see later that our

measured second normal stress di�erence N2 is of the order of the shear stress

Σ12 (|N2| ∼ (0.5↔ 0.8) ·Σ12). So, whenever the volume fraction of particles

increases, we decrease the �uid viscosity in a way where we can register a shear

rate of some tens of s−1 without that the shear stress passes 50 Pa.

Moreover, we use large disks (R = 5.5 cm) and such a large dimension makes

it di�cult to �ll the cell, and it is easier to manipulate a suspension whose vis-

cosity is not too large. In addition to all that, the use of a low viscous suspend-

ing �uid facilitates the removing of bubbles that appear when the particles are

mixed with the �uid.

The following Table (4.1) of data shows the characteristics of the di�erent

suspensions we studied in our experiments. It is good to mention that whatever

the viscosity of the suspending �uid is, the particles are large enough so that

the Colloidal and Brownian forces are negligible near the Hydrodynamic ones.

That is illustrated through the Péclet Number that was much larger than 1,

even at small values of shear rate of order of 10 s−1 : Pe = 3πη0a
3γ̇

κT ≥
(
106γ̇

)
.

2 1 centipoise = 0.001 pascal second.
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Particle diameter 140 µm 

φ 0.2 0.245 0.28 0.28 0.3 0.34 0.36 0.38 0.42 0.44 0.45 0.46 

η0 (Pa.s.) 0.36 0.36 0.142 0.93 0.36 0.24 0.24 0.24 0.151 0.151 0.151 0.130 
 

Particle diameter 140 µm Particle diameter 40 µm 
φ 0.46 0.47 0.48 0.49 0.5 0.5 0.3 0.35 0.4 0.45 0.47 

η0 (Pa.s.) 0.143 0.143 0.143 0.17 0.07 0.07 

 

1 0.235 0.235 0.173 0.083 
 
 

Table 4.1: Suspesions we used in our experiments

4.4.3 Experimental Procedure

For each volume fraction of particles, a suspension of 30 grams was prepared

and placed in a closed �ask (The suspension mass introduced between the two

the disks was about 25 grams). After mixing the particles within the �uid,

the suspension was put under ultrasound for a period of 2 hours, then the

�ask was placed inside an oven at 50 °C for 12 hours in order to decrease the

suspending �uid viscosity and to facilitate the removing of the bubbles. After

taking the samples out from the oven, they were reweighted to verify nothing

was evaporized. When it is cooled down to the standard room temperature, the

suspension is placed on the bottom stationary disk with huge attention, in order

to avoid any air bubbles that may arise during the �lling process. The process

of moving down the upper disk to diminish the gap, was slow enough to retain

a conservative stable air/suspension interface, and to prevent any air bags from

being trapped by the suspension. The upper disk is moved 50 µm below its

measurement position so that the distance h between the disks is decreased to

the value (h− 50) , and the excess in the suspension is cleaned with attention.

Then the upper disk is removed up by +50 µm so that the gap became again

equal to h [(h− 50) + 50]. In the experiments presented here h = 2.5 mm.

At this stage, the pressure sensors are set to zero as a reference. Then

a stairstep torque Γ in two opposite directions (clockwise & anti-clockwise),

including rest periods, is applied to the suspension on the upper disk causing

its rotation. The followed protocol of applying the latter torque is presented in

Figure (4.7).
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t

�

Figure 4.7: The protocol of the applied torque Γ as function of time

The period, at which the torque was applied, was equal to the period being

needed by the rotating upper disk to complete at least 3 rotations. The reason

of applying this protocol of torque on the upper disk is exlpained in the next

section.

4.4.4 Parallelism problem

There are two possible errors that may arise due to defaults in parallelism in

the experimental setup:

1. The axis of rotation is perpendicular to the stationary disk but not to the

rotating one as you can see in the following Figure (4.8). During half a

period of rotation, the �ow above a given transducer is compressional and

the pressure exerted on the transducer is increased, while during the other

one, the �ow is extensional and the pressure is lessened. To correct this

parallelism default, the pressure measured at the di�erent transducers is

averaged over few revolutions.
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Starting

position
After one 

semi-revolution

transducer
Figure 4.8: Rotating Disk parallelism default

2. The axis of rotation is perpendicular to the rotating disk but not to the

stationary one as you can see in Figure (4.9). This problem is avoided too

by taking an average on changing the direction of rotation.

1 2

transducer
Figure 4.9: Stationary Disk parallelism default

Indeed, if the rotor turns in an anti-clockwise direction from point 1 to point

2 the �ow is contractional, while in the clockwise direction (from 2 to 1) the

�ow is elongational. Thus, averaging the clockwise and anti-clockwise rotations

cancel the pressure induced by this kind of parallelism default. These e�ects if

not taken into account can be important and of the same order of magnitude

as the signals that are going to be measured.

In lubrication approximation for a stationary viscous �ow between two planes

forming a small angle θ, [Guyon et al. 2001] give the di�erence in the pressure

δp in their equation (4.159) of page (230) such that:
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δp =
6ηV

θ
· (e2 − ex) (ex − e1)

e2
x (e1 + e2)

. (4.8)

In Figure (4.10) we represent our two parallel disks con�guration with an

error δh in parallelism, where it is clear that e1 = h− δh, e2 = h+ δh, ex = h,

V = ΩR, and for small angles θ ≈ δh
R . Upon susbstituting all these parameters

in equation (4.8), one gets the di�erence in pressure as:

δp = 2ηΩR2 δh

h3
= 2Σ12

δh ·R
h2

(4.9)

where

Σ12 ≡ τ = ηγ̇R (4.10)

Figure 4.10: Two parallel disks geometry of an error δh

In our experiments, R = 5.5 cm, and h = 2.5 mm, and we have measured

δh . 50 µm that implies a δp .≈ Σ12

2 . Consequently, in order to eliminate

this default in pressure δp, we measure Σ22 by rotating the upper disk in both

clockwise and anti-clockwise directions, and then we average all the registered

data from both.

4.4.5 Pressure Membranes (size and position)

Because of the large membrane surface of the pressure sensors we used (mem-

brane radius = 10 mm), the imposed pressure by the �ow of the suspension

is not the same on all positions of the surface of the membrane. To take that

into account, it required us to do a certain correction in the sensor positions so
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that to be more accurate in our measurements. So, we started by determining

a response function f (ξ) of the sensor by applying a punctual force on di�erent

radial positions r of the sensor membrane. Experimentally, that punctual force

was applied via placing a steel sphere of 2mm in diameter on di�erent radii of

the sensor, where its responses were registered. The response function is well

represented in Figure (4.11). Then, the variation of the pressure on the sensor

surface during the �ow was approximated by a linear variation: p = p0 + p1 · r,

where r is the distance taken from the center of the disk, as you can see in

Figure (4.12).
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Figure 4.11: f (ξ)

Then, the e�ective radius Reff where the sensor was virtually resituated at,

was calculated as the following: p1Reff =
´

Ssensor

(f (ξ) · p1 · r) dSsensor , where

Ssensor is the surface area of the sensor. The integral was calculated numerically,

and Table (4.2) below gives the correspondance between the actual radii where

the senors were placed, and the e�ective corrected ones. We mention that only

the smallest radius value was corrected.
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Figure 4.12: Correction of Rreal to Reff

Rreal (cm) 1.1 3 3.3 3.9
Reffective (cm) 1.1774 3.0276 3.3251 3.9212

Table 4.2: Correspondence between Rreal & Reffective

4.4.6 Wall Slip Effects

Even if its origin is not absolutely clear, it is well known that wall slip is present

when concentrated suspensions are sheared. [Jana et al. 1995] performed local

measurements, using Laser Doppler Velocimetry, in narrow-gap Couette geom-

etry to determine the slip length at the wall. They characterize the wall slip by

an apparent slip velocity, i.e. the di�erence between the velocity of the walls and

the velocity of the suspension at the same position. They showed that the slip

velocity, us, was related to the local shear rate γ̇ and the local volume fraction

φ by:

us =
ηs
q
· a · γ̇ (4.11)

where q is a constant that is determined experimentally (q = 8 in their study).

Following [Jana et al. 1995], we introduce a slip velocity, both at the stationary
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and rotating disks, that is proportional to the shear rate such that:

us (r) =
ηs
q
· a · γ̇ (r) . (4.12)

Thus the apparent shear rate as shown in Figure (4.13) is given by:

γ̇app (r) =
2us + γ̇h

h
=

Ωr

h
(4.13)

�
�apph

us

us
Stationary disk

Rotating disk

Figure 4.13: Apparent Shear rate

Since the stress τ is controlled such that:

τ

η0
= ηs · γ̇ = ηapp · γ̇app (4.14)

We deduce that:

ηs =
ηapp

1− 2a
qhηapp

(4.15)

Moeover, since the normal stress di�erences N1 and N2 scale linearly with

γ̇ [N1,2 = α1,2 · (η0γ̇)], then the same previous correction applies for α1 and α2

such that:

(α1,2) =
(α1,2)app

1− 2a
qhηapp

(4.16)
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Orders of magnitude speaking, for a φ = 40% monodispersed suspen-

sion of hard spheres of (2a = 140 µm) and at h = 2.5 mm, we have ηs ∼ 10

which implies
[(

ηs
ηapp

)
=
(

1 + 2a
qhηs

)]
∼
[
1 +

(
7 · 10−03 · 10

)]
∼ 1.07. Conse-

quently, it means that the e�ect of wall slip in our experiments is not

too important. Furthermore, in the following, we will speak about

the ratios of α1 and α2 over ηs (or α1 app and α2 app over ηapp), quantities

that are not a�ected by the wall slip.

4.4.7 Setup Validation

Figure (4.14) provides an example of the registered signals by both, the direct

sensors (Figure (4.14a)), and those attached to the grids (Figure (4.14b)) for a

suspension of 46% of particles 140 µm in diameter.
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Figure 4.14: Registered Signals by the sensors

The curve in Figure (4.15) shows the variation of the shear stress as a func-

tion of the shear rate (shear rate at r = R), for a suspension of 46% of particles.

As expected, the viscosity of the suspension is almost independent of the shear

rate, despite of a weak shear-thinning that can be observed if one looks very

carefully.
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Figure 4.15: The Shear Stress τ ≡ Σ12 Versus the Shear Rate γ̇R

The rheological behavior of the suspension was well represented by a power

law
(
τ = 2.62γ̇0.942

)
but can also be represented by a linear one, as we did.

Figure (4.16a) shows the mean radial variation of (−Σ22), averaged over several

revolutions in the two clockwise and anti-clockwise directions, obtained for dif-

ferent applied shear stresses to a suspension of 46% of particles (2a = 140 µm).
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Figure 4.16: The radial variation of the second normal stress Σ22

As it was predicted by equation (4.5), the suspension normal stress (Σ22)

varies linearly in
(
r
R

)
, and Figure (4.16b) that represents the di�erent points

gathered at the same radial positions, reveals that the ratio (Σ22�η0γ̇R) is well

independent of γ̇R.

The Figure (4.17a) indicates that the pore pressure Pf is almost constant in
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(
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R

)
, which is consistent with the absence or weakness of the migration of parti-

cles in the torsional �ow of a suspension between two parallel plates [Chapman

1990, Chow et al. 1994].
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(b) The �uid pressure Pf versus the Shear Rate

Figure 4.17: The �uid pressure Pf

Hereafter, Pf will be representing the mean �uid pressure on the four sensors
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at the grids, where we veri�ed as you can see in Figure (4.17b) that this pressure

Pf varies almost linearly with γ̇R.

4.5 MATERIAL FUNCTIONS IN SUSPENSIONS, DETERMINA-

TION OF ηs, α1, AND α2

4.5.1 Suspension Viscosity

4.5.1.1 Shear-thinning

The viscosity of a suspension is almost independent of γ̇ but a slight shear-

thinning is often observed [Zarraga et al. 2000, Stickel and Powell 2005]. There

is no clear explanation for this behavior. The only interpretation available in

the literature has been given by [Acrivos et al. 1994] who measured the shear-

thinning of a suspension sheared in a cylindrical Couette cell. He shows that

the shear-thinning behavior, he observed, can be explained by the resuspension

of the particles that have not exactly the same density as that of the �uid. The

particles are supposed to settle in the gap between the two cylinders. When the

shear �ow is applied they are resuspended over a height that increases with an

increasing shear rate. The particle volume fraction in the settled layer decreases

and thus, the torque on the rotating cylinder decreases too (see Figure (4.18)).

� ��� � ���

Figure 4.18: Resuspension in a Couette cell

We think that the resuspension can not explain the shear-thinning behavior

we observed in the parallel-plates geometry since in such a con�guration, the
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particles sedimentation would lead to a decrease of the torque on the upper

rotating plate and their resuspension should be responsible for an increase of

the torque (i.e shear-thickening behavior) (see Figure (4.19)).

� �

Figure 4.19: Resuspension in a parallel plate geometry

Nevertheless, our measurements show that the shear thinning behavior is

weak but increases as the particle volume fraction increases. The Table (4.3)

gives the constitutive laws that we have measured for di�erent particle volume

fractions ranging from 0.2 to 0.49.

φ τ
η0

0.2 1.95 γ̇1

0.24 2.48 γ̇1

0.3 4.6 γ̇0.996

0.34 5.68 γ̇0.996

0.36 7.25 γ̇0.992

0.38 8.33 γ̇0.989

0.42 14.3 γ̇0.968

0.44 18.7 γ̇0.941

0.45 25.2 γ̇0.946

0.48 37.4 γ̇0.933

0.49 50.6 γ̇0.925

Table 4.3: Constitutive Laws of a (2a = 140 µm) suspension

It's worth listing that these measurements have been carried out over a

limited range of shear rates that typically varies from 10 to 50 s−1. So it is no

use attaching too much importance to these results, and in the following the

suspensions will be considered viscous (i.e. with a viscosity independent of the

shear rate). Moreover, the values of the viscosity that will be given, will be the

averaged values of the viscosity measured for di�erent shear rates in the range
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10 → 50 s−1.

4.5.1.2 Variation with φ

The variation of the reduced viscosity with the particle volume fraction is repre-

sented in Figure (4.20) for two di�erent monodispersed particle-size suspensions.

The experimental data �t well the Krieger-Dougherty Law of the form:

ηs =
1(

1− φ
φm

)2 , with φm = 0.58 . (4.17)
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Figure 4.20: The normalized suspension viscosity

However, one can clearly observe some dispersion in the results, that's prob-

ably due to variations in temperature, since the only controlled one was that of

the room with a variation of ±1°C. We measured that a 2 °C variation, modi�es

the suspending �uid viscosity about 8%. One must also keep in mind that the

suspending �uid is a mixture of water & Ucon Oil 75H90000, where the viscos-

ity is very sensitive to the mixture composition. Thus, a possible evaporation

of water in the mixture during the suspension placement process between the
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two disks inside the rheometer and even during the experiment, may change the

suspending �uid viscosity.

4.5.1.3 Transient Response after shear reversal

Following [Gadala-Maria and Acrivos 1980], we have measured the shear viscos-

ity response of a suspension placed in a cylindrical Couette cell when the �ow

direction is inverted. The experiments are carried out with a controlled-stress

rheometer �CARRI MED CSL 100�. The Couette cell consists of two cylinders

whose radii are 13.5 and 15 mm and length 40 mm. The inner cylinder rotates

in a direction till a deformation of about 5 is attained. Then, the torque direc-

tion is reversed and the viscosity response is recorded. A typical signal obtained

with a φ = 0.44 suspension is presented on Figure (4.21).
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Figure 4.21: Suspension Viscosity Response upon shear reversal

This kind of transient behavior has been explained by both the destruction

and the reformation of shear induced structure in the suspension [Gadala-Maria

and Acrivos 1980], and by the relaxation of the contact forces between particles

when the shear is reversed [Narumi et al. 2002, Kolli et al. 2002]. Thus,
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the minimum of the viscosity (ηmin) corresponds to a suspension where the

particles are distributed almost isotropically. If indeed ηmin is reached when

the suspension structure is almost isotropic, then ηmin can be compared to the

so called �high frequency dynamic viscosity� that according to [Sierou and Brady

2002] is obtained when the system microstructure has not been a�ected by the

�ow and is purely hydrodynamic in origin.

Then, subtracting ηmin from ηplateau, we will be able to obtain the excess

viscosity ηex that arises from particle interactions in the structure induced by

the �ow [Sierou and Brady 2002]. Before doing that, we have to make some

remarks:

� It is necessary to use a Couette cell rather than a parallel plate geometry,

because the key parameter of the response is the deformation γ (and not

the time) and in a parallel plate geometry the deformation is not constant

spatially (i.e. zero at r = 0, and maximum at r = R).

� The measurements are very rough due to di�erent facts such as:

- Slipping.

- Migration that can be very quick when φ is high [Ovarlez et al. 2006].

- The gap between the cylinders is a little bit small h = 1.5 mm (i.e.

h
2a = 11), while a gap equal to 15 particle diameters is usually considered

necessary for measuring the bulk viscosity [Zarraga et al. 2000].

- The rheometer inertia is not corrected.

- The temperature is not well controlled.

Nevertheless, and having in mind these limitations, we can perform the mea-

surements for di�erent particle volume fractions. The variation of ηmin and

ηplateau with φ are represented in Figure (4.22).
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Figure 4.22: ηmin and ηplateau as function of φ

As expected from the poor accuracy of the measurements, there is a notice-

able dispersion in the reported values. The normalized excess viscosity ηex is

reported in Figure (4.23).
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Figure 4.23: ηex as function of φ
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We note that above a threshold-like value of the particle volume fraction,

the excess viscosity increases almost linearly with φ. In the following we will

show that this behavior is to be related to the behavior of the normal stresses.

4.5.2 Suspension Normal Stress Coefficients α1 and α2

As mentioned in (4.3.1), the slope and the origin at ordinate of the second

normal stress are measured for di�erent values of particle volume fractions from

where the values of α1 and α2 are deduced. As explained in (4.4.6), a wall

slip is probably present. Rather than to correct it, we chose to present in the

following the ratios of the normal stress coe�cients to the suspension viscosity

rather than the normal stress coe�cients. Indeed, these ratios are supposed not

to depend on the wall slip since, according to (4.4.6), the correction is the same

for the viscosity as for the normal stress coe�cients (see equation (4.16))

α1 and α2 are presented in Figures (4.24a) and (4.24b), respectively. It is

observed that above a threshold value α1 and α2 vary linearly with the particle

volume fraction. α1 and α2 are measured to be of opposite signs. This last sig-

ni�cant point of observation (sign opposition) is in contrast with all the previous

measurements presented in the literature, and thus it will be well discussed in

the next section.
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Figure 4.24: The ratios α1

ηs
and α2

ηs
as function of φ. (1.8φ− 0.356) is the �t for

2a = 140µm & (1.94φ− 0.465) is the �t for 2a = 40µm.

4.5.3 Validity of α1 and α2 measurements

Both, the negative sign of α1 and the elevated values it has at increasing volume

fraction of particles
(
|α1| ≈ α2

2 for φ ≈ 0.45
)
, are surprising, because they are in

contrast with many previous results in the literature [Zarraga et al. 2000, Singh
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and Nott 2003, Couturier et al. 2011]. So, when we obtained these novel results,

we attempted to seek experimental artifacts which may led to those strange

values of α1. Our di�erent proceeded tests are coming soon in the section,

where we will visit also the results of [Singh and Nott 2003] to show that an

adequate treatment for their measurements leads to α1 and α2 values that are

close to our measured ones. At the end of this section, we will compare our

obtained experimental data to other results in the literature, where we will try

to review the similarities and disagreements between them.

4.5.3.1 Influence of the suspendend fluid viscosity

All previous studies used suspending �uids which are more viscous than the

ones we used. 1Pa · s . η0 . 5Pa · s for [Zarraga et al. 2000], η0 = 2.15Pa · s

for [Couturier et al. 2011], and η0 = 2.19 Pa · s for [Singh and Nott 2003], but

in the present study, we have 0.05 Pa · s . η0 . 0.5 Pa · s. So, we wanted to

know if the suspending �uid viscosity η0 has an in�uence on the values of the

coe�cients α1 and α2. For that reason, we measured the radial pro�le of Σ22

in a suspension of 45% of PMMA particles (2a = 140 µm) in suspending �uids

of di�erent viscosities. Table (4.4) shows the measured values of α1 and α2 in

suspensions of 45% of particles dispersed in �uids of di�erent η0 viscosities.

Fluid viscosity Slope Ordinate at origin α1�ηs α2�ηs
η0 (Pa · s) kp

ηs
= α1+2α2

ηs
k00

ηs
= −α1+α2

ηs

0.09 0.74 -0.28 -0.18 0.46
0.15 0.77 -0.26 -0.25 0.51
0.185 0.70 -0.22 -0.18 0.48
0.36 0.71 -0.25 -0.21 0.46
0.72 0.72 -0.23 -0.26 0.49

Table 4.4: α1�ηs and α2�ηs at di�erent η0 vlaues for φ = 45%

Despite a dispersion among the numbers, we observe no signi�cant in�uence

of the suspending �uid viscosity on the values of α1 and α2.
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4.5.3.2 Influence of the capillary pressure

Here we stopped and asked ourselves the question: Is it OK to use the boundary

condition Σ33 (r = R) = −Pa. Practically, during the �ow, the air/suspension

interface may deform and the change in its curvature may induce a capillary

pressure. Indeed, the order of magnitude of the capillary pressure is the same

as the normal stresses that are expected to arise in the sheared suspension:

Pc = Υt
rc
∼ 50 Pa, where Υt ∼ 50 µN · m is the order of magnitude of the

suspension surface tension, and 1
rc
∼ 2

h = 103 m−1 is the interface curvature.

This order of magnitude of the capillary pressure is well comparable to the values

of Σ22 we measure. So, if the capillary pressure really plays a role during the

measurements of Σ22 pro�le, we should measure di�erent pro�les upon changing

the value of the gap h. It is not the case, as it is well shown in Figure (4.25),

the values of α1 and α2 are independent of h.
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Figure 4.25: α1�ηs(triangles) and α2�ηs(squares) as function of h

One must note that it was not possible to vary the gap (h) in an important

manner. Indeed, the liquid must be held between the two parrallel disks by

capillarity. That's what prevented us from seperating more the two disks. On

the other hand, narrowing the gap too much will increase the error in parallelism.

Moreover, the capillary pressure with respect to the inter-particle distance
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Pcp = Υt
a did not have any in�uence on the measurements of α1 and α2, as

it is indicated in the Figures (4.24a) & (4.24b), where we �nd almost identical

results for suspensions of di�erent particle sizes (2a = 40 & 140 µm).

Thus, the capillary e�ects both at macroscopic and at the particle scales

seem not to play any role.

4.5.3.3 Comparison with the results of Singh and Nott 2003

[Singh and Nott 2003] proposed to determine α1 and α2 by measuring the radial

normal stress, Σrr, in a cylindrical Couette geometry and the axial stress pro�le,

Σzz (r), in a parallel plate geometry. The former, is related to α1

ηs
and α2

ηs
by

Σrr (R0)

η0|γ̇0|
= − (1 + β)α2 −

β

2
α1 , (4.18)

where γ̇0 is the shear rate at the outer cylinder, where Σrr is measured, and

β = 0.214 is a geometrical coe�cient that depends only on the cylinders radii

ratio. They obtain a second equation for the determination of α1 and α2 from

the measurement of the axial stress at the rotation axis, Σzz (0) in parallel

plate torsional �ow. Actually, the value of Σzz (0) is extrapolated from the

measurement of Σzz (r) at three radial positions (Figure10 in [Singh and Nott

2003]). The relation they use is (eq.5.6 in their paper):

d

dγ̇R
[Σzz (r = 0)] = η0 (α1 + α2) . (4.19)

This relation is equivalent to the equation (4.5) at r = 0 and is valid only if

the condition Σ33 (r = R) = −Pa is applicable whereas it is not the case in the

Singh and Nott's experiment, since they used a rotating top plate over a pool of

suspension (Figure 3b, in their paper). In such a geometrical con�guration, the

boundary condition Σ33 (r = R) = −Pa is no more satis�ed and equations (4.5)

or (4.19) cannot be used. On the other hand, the slopes of Σzz (r) can be used,

independently of the boundary conditions, to determine (α1 + 2α2). [Singh and

Nott 2003] show in their paper the variation of Σzz (r) in the parallel plate
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geometry as you can see from the following Figure (4.26).

Figure 4.26: Σzz (r)�ηγ̇ taken from Figure10 of [Singh and Nott 2003]

From the values of α1 and α2 that they give, we recalculate Σrr (r = R0)

they should have obtained in the Couette cell and consequently using equation

(4.18) the combination
[
(1 + β)α2 + β

2α1

]
. Then, from the slope of Σzz (r)

determined with Figure (4.26), we deduce (α1 + 2α2). And, at last, from these

two combinations of α1 and α2, we calculate α1 and α2 as it is illustrated in

Table (4.5).

Singh & Nott results Modifed values

φ α1 α2

[
Σrr(R0)
η0|γ̇0|

]
=

∂
(

Σrr(R0)

η0|γ̇0|

)
∂ rR

= deduced from

− (1 + β)α2 − β
2α1 − (α1 + 2α2) columns 4 & 5

0.30 0.314 0.314 -0.415 -0.56 -0.15 0.36
0.35 0.475 1.23 ⇒ -1.54 -2 ⇒ -0.65 1.33
0.40 0.9 3.14 -3.91 -5 -1.75 3.38
0.45 1.54 5.98 -7.42 -14.6 2.88 5.86

Table 4.5: From the values of α1 and α2 given in the paper of Singh & Nott
(2003), the radial normal stress in the cylindrical Couette geometry is recal-
culated (4th column). The slopes of

[
Σzz

(
r
R

)
�η0γ̇R

]
for the di�erent volume

fractions of particles are deduced from the Figure10 of the Singh and Nott paper
(5th column). At last, the corrected values of α1 and α2 are deduced from their
previous equations.
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φ Singh & Nott Modi�ed Present Measurement
α1�ηs α2�ηs α1�ηs α2�ηs

0.30 -0.0350 0.110 -0.0290 0.1689
0.35 -0.119 0.244 -0.080 0.2839
0.40 -0.176 0.340 -0.130 0.37595
0.45 0.1447 0.325 -0.1925 0.4806

Table 4.6: Values of α1�ηs and α2�ηs at present measurements compared to
the corrected ones obtained by [Singh and Nott 2003].

We note that, for the 3 lowest particles volume fractions, α1 is negative.

These values, divided by the suspension viscosity given by [Singh and Nott

2003] and referred as "Singh & Nott modi�ed" are plotted together with our

results on Figures (4.27a) and (4.27b) (open circles). The agreement is very good

for the di�erent values of α1 and α2 for φ = 0.3, 0.35 and 0.4. For φ = 0.45,

the [Singh and Nott 2003] modi�ed value of α1 is positive and we have no

explanation for that. But, one can note that the Σzz (r) pro�le registered in

the parallel plate geometry for this particle volume fraction (φ = 0.45) looks

strange when compared with the pro�les obtained for the other values of φ (i.e.

see Figure4.26). The line at (φ = 0.45) does not intersect with the other lines

at the same point, as these other lines do intersect each other.
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y=-φ+0.27

Singh and Nott modified

(a) The ratios α1
ηs

as function of φ

Singh and Nott modified

(b) The ratios α2
ηs

as function of φ

Figure 4.27: The ratios α1

ηs
and α2

ηs
as function of φ
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4.5.3.4 Comparison with other results

Following [Zarraga et al. 2000], [Boyer et al. 2011 a] have used a rotating rod

geometry to measure the combination of normal stress coe�cients
(
α2 + α1

2

)
,

which is half the slope kp (equation (4.5)) that we measure in our two parallel

disk geometry. They show that
(
α2 + α1

2

)
remains as small as immeasurable

for φ < 0.2. However, above φ ≈ 0.22, it increases linearly with increasing the

concentration. Their results together with ours are plotted in Figure (4.28), and

are in good agreement.

Moreover, we have also to compare our results with those of [Zarraga et

al. 2000]. The �rst experiment reported by [Zarraga et al. 2000] consists of

measuring the net thrust force F on one of the two disks in a torsional �ow.

This Force is directly proportional to the di�erence (N1 −N2) given by:

(N1 −N2) =
2F

πR2

(
1 +

1

2

d lnF

d lnγ̇R

)
. (4.20)
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as function of φ

First we have measured directly the force exerted on the upper plate when
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the suspension is sheared, in order to verify that the integral of the measured

Σ22 (r) over the disk surface give the same value as the thrust force measured

by the rheometer. An example of result, obtained at a φ = 0.42 suspension is

presented in Figure (4.29), where one can clearly observe that the direct mea-

surement of the Force (stars) and its calculation from the Σ22 pro�le (squares)

give almost the same result.
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Figure 4.29: Measured thrust force F as function of shear rate γ̇R

Figure (4.30) shows the di�erence (α2 − α1) together with the correlation

proposed by [Zarraga et al. 2000] to �t their data in the range φ = 0.35 ↔

0.5. The normal Force we measured is approximately two times larger than

that reported by [Zarraga et al. 2000]. This di�erence is not so surprising

because, the shear stress behavior already reported by [Zarraga et al. 2000]

is quite di�erent from that we observed. Indeed, they measure a signi�cant

shear-thinning behavior that is not observable in the present study.

Otherwise, the magnitude of α1 that we measured is inconsistent with the

results obtained by [Couturier et al. 2011], who show that α2 which has been
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measured upon observing the shape of the suspension free-surface in a tilted

trough �ow, is equal to the combination
(
α2 + α1

2

)
, measured previously by

[Boyer et al. 2011 a] with the same suspensions. In this way, [Couturier et al.

2011] estimate that |α1|
ηs

is less than 0.06.
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Figure 4.30: (α2 − α1) as function of φ

At last, we have to mention that the numerical simulations using either Force

Coupling Method (FCM) [Yeo and Maxey 2010a] or Stokesian Dynamics (SD)

[Sierou and Brady 2002] show that bothN1 andN2 are negative, andN1 ≈ N2 in

SD simulation, andN1 < N2 in FCM calculations. However, [Sierou and Brady

2002] investigated the e�ect of sliding friction on the rheological behavior of a

suspension and showed that an increase in the friction coe�cient gave rise to an

increase of the viscosity, to an increase of the second normal stress di�erence,

but to a decrease of the �rst normal stress di�erence (in magnitude). They

explain this result by the change in the suspension microstructure induced by

the particle friction. The microstructure is shifted in such a way that the density

of particles that would give rise to a positive N1, is increased, while the density

of particles that would give rise to a negative N1, is lessened, and vise versa for
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N2. Consequently, the friction results in a decrease of |N1| and in an increase

of |N2|. The question is whether the friction e�ect on the microstructure can

be so large that N1 even becomes positive?

4.5.4 Concluding remarks on the measurements of α1 and α2

We are aware that the negative sign of α1 (N1 positive) can appear surprising.

However, we have conducted several tests that have been unable to invalidate

our measurements. The size of the particles, the gap width and the viscosity

of the suspending liquid have been shown not to in�uence the results. We

have revisited the results of [Singh and Nott 2003] and have shown that for

0.3 ≤ φ ≤ 0.4 they were consistent with ours. However, there remain some

signi�cant discrepancies with other results of the literature that are still to be

explained.

4.6 PARTICLE NORMAL STRESSES

4.6.1 Results

As described in section (4.3.1), the pore pressure is measured and when the

�uid stress is subtracted from the total stress, the particle contribution to the

bulk stress is deduced (equation (4.6)). In Figure (4.31), the square symbols

denote the variation of the normalized pore pressure with the volume fraction

of particles. These measurements have been performed with the (2a = 140 µm)

suspensions. We have not been able to measure the pore pressure in the sus-

pensions of small particles since the grid screen openings (50 µm) were larger

than the particles (2a = 40 µm). As expected and reported by [Deboeuf et

al. 2009], the �ow generates a suction pressure in the liquid whose magni-

tude increases with the particle volume fraction. The value of the total stress

−Σ22 (0)�Σ12 (R) = − (α1 + α2)�ηs at r = 0 is also plotted in Figure (4.31)

(triangles). We observe that, −Σ22 (0)�Σ12 (R) ≈ Pf�Σ12 (R). This result

was expected, since at r = 0, γ̇ (r = 0) = 0, the particle stress as well as the
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normal stress di�erences N1 and N2 should be equal to zero, and thus the total

stress should be equal to the �uid stress. In a coming section, we will show that

this is not true anymore when φ > 0.46.
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Figure 4.31: Normalized pore pressure Pf as function of φ

Coming back to the determination of the particle stress, we can write:

Σp
22 (γ̇R)

η0γ̇R
=

Σ22 (γ̇R)

η0γ̇R
+

Pf
η0γ̇R

. (4.21)

The second particle normal stress, normalized by the tangential stress is

presented in Figure (4.32). The experimental results can be �tted either with

a quadratic law:
[
−Σp

22

Σ12
= 4.1φ2

]
, or with a linear law above a threshold value,

φc, of the volume fraction φ:
[
−Σp

22

Σ12
= 3.15 (φ− φc)

]
with φc ∼ 0.19. This

result looks like that of [Boyer et al. 2011 a] who showed a sudden change in

the behavior of
(
α2 + α1

2

)
that appears at the threshold of 20%.

161



4.6. PARTICLE NORMAL STRESSES

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

φ

−Σ
p 22

/Σ
12

 

 

2a=140 µm
 linear fit:  − Σ

22
/Σ

12
=3.15φ−0.583 

 quadratic fit:  − Σ
22

/Σ
12

=4.1φ2 

Figure 4.32: Σp22(γ̇R)
Σ12

as function of φ

This threshold-like behavior also recalls of the excess viscosity shown in Fig-

ure (4.23). It is conforting that these two quantities behave in the same manner

because, both normal stresses and excess viscosity, originate from the nonhy-

drodynamic forces between particles in a suspension that has been structured

by the shear �ow.

The existence of a threshold particle volume fraction, φc, is still under dis-

cussion and we plan to make e�orts trying to measure normal stresses for lower

concentrations φ < 0.2.

Finally, supposing that the �uid pressure is isotropic (that is intuitive but

maybe inexact [Nott, Guazelli, and Pouliquen 2011]), we can deduce from the

values of α1, α2 and Σp
22 the other two particle normal stresses Σp

11 and Σp
33

such that:

Σp
11 (γ̇)

η0γ̇
=

Σp
22 (γ̇)

η0γ̇
− α1 ;

Σp
33 (γ̇)

η0γ̇
=

Σp
22 (γ̇)

η0γ̇
+ α2 . (4.22)
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Figure 4.33: λ2 and λ3 as function of φ

Then, the ratios λ2 =
Σp

22

Σp
11

(squares) and λ3 =
Σp

33

Σp
11

(triangles) that appear

in the Suspension Balance Model can be obtained. They are plotted in Figure

(4.33).

4.6.2 Discussion

First, all particle normal stress components are compressive (negative). A result

that is consistent with the microstructure that appear in a sheared suspension

with an excess of particle pairs in the compressional quadrant [Phung et al. 1996,

Brady and Morris 1997, Parsi and Gadala Maria 1987]. Second, we measure that

the particle normal stresses are of the same order of magnitude as the second

normal stress di�erence N2. Furthermore, we have measured the 3 variables

involved in the Suspension Balance Model proposed by [Morris and Boulay 1999]

to explain the shear-induced migration, which are: q (φ) =̂ηN (φ)
ηs(φ) =

−Σp
11(φ)�η0γ̇
ηs(φ) ,

λ2 and λ3.

Figure (4.34) represents the variation of q (φ) with φ2, where one observes
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clearly that up to φ ≈ 0.47 , q (φ) varies quadratically and the experimental

data are very well represented by the dashed line:

q (φ) =
ηN (φ)

ηs (φ)
=
−Σp

11 (φ)�η0γ̇

ηs (φ)
= 3.2φ2 ; φ ≤ 0.47 . (4.23)
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Figure 4.34: q (φ)

The solid line represents the function q (φ) = ηN (φ)
ηs(φ) = 2.2φ2 as the ratio

of ηN (φ) proposed by [Morris and Boulay 1999] to the normalized suspension

viscosity ηs (φ) we measured in equation (4.15). Despite we measure a q (φ)

nearly 1.4 times larger than that used in the model of [Morris and Boulay

1999], we capture well the expected quadratic behavior.

On the other side, in the model of [Morris and Boulay 1999], the coe�cients

λ2 and λ3 were supposed, due to the lack of experimental data, to be inde-

pendent of the volume fraction of particles φ. As you can see from the ratios

λ2 =
Σp

22

Σp
11

(squares) and λ3 =
Σp

33

Σp
11

(triangles) in Figure (4.33), this hypothesis

is under suspicion for 0.2 < φ < 0.46. λ3 is almost constant and equal to 0.5
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as the model of [Morris and Boulay 1999] predicts, based on the absence of mi-

gration in a torsional �ow between two parallel disks. But, λ2 slightly increases

with φ, and its values are some how greater than those proposed by [Morris

and Boulay 1999], who gave a value of λ2 = 0.8 extracted from comparisons

between their model predictions of the concentration pro�les, and the measured

data of [Phillips et al. 1992] of a �ow in large gap Couette cell. Thereby, our

obtained results at φ = 0.2↔ 0.46 are well close to those used in the proposed

model of [Morris and Boulay 1999], and not even far away from those obtained

by [Yeo and Maxey 2010a] in FCM. The latter obtained λ2 and λ3 that vary

linearly with φ, in the zone φ = 0.2 ↔ 0.4 such that 0.46 . λ2 . 0.61 and

0.45 . λ3 . 0.77.

Moreover, as you can see in Figure (4.35) our measured results for Σp
33 are

close to those reported by [Deboeuf 2008, Deboeuf et al. 2009], who measured

the pore pressure in a suspension �ow in a Couette cylindrical cell.
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Figure 4.35: Σp33 as function of φ

Our results are also in rather good agreement with those of [Acrivos et al.
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4.6. PARTICLE NORMAL STRESSES

1993, Zarraga et al. 2000], while we measure slightly greater values for −Σp
33.

Finally, the mean particle normal stress is equal to the particle pressure Πp:

Πp = − tr (Σp)

3
= −

[
Σp

11 + Σp
22 + Σp

33

3

]
= −

[
Σp

22 +
1

3
(α1 − α2)

]
. (4.24)

Figure (4.36) represents the variation of (Πp�Σ12) with φ, which permits

the comparison of our results with those obtained by [Sierou and Brady 2002]

in Stokesian Dynamics (triangles up). The solid line is the �t of our results for

φ = 0.2↔ 0.46 with the law proposed by [Mills and Snabre 2009] given by:

Π = βη0γ̇
φ

7
3

(φ− φm)
2 , with β ≈ 1.3 . (4.25)
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Figure 4.36: The variation of (Π�Σ12) with φ

On the same Figure (4.36) we show also the particle pressure obtained by

[Yeo and Maxey 2010a] in FCM (equation4.26), with a note that the agreement
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with our results is very well satisfactory:

Πp = −Σp
11 ·

(1 + λ2 + λ3)

3
. (4.26)

4.7 A TENTATIVE MEASUREMENT OF THE SUSPENSION MA-

TERIAL FUNCTIONS AT HIGHER PARTICLE VOLUME FRAC-

TIONS

We tried to measure α1, α2, ηs and Pf for particle volume fractions higher

than 0.46. We noticed that for these high concentrations, the value of Σ22 (0),

extrapolated from the measurement of Σ22 at four radial positions, was not

equal to the pore pressure (averaged over the 4 at-grid-transducers) (see Figure

(4.37)).
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Figure 4.37: Normalized pore pressure Pf as function of φ

This result was di�cult to understand since the particle normal stresses are

expected to vary linearly with shear rate and especially to be zero at a zero-shear
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rate. Thus, the only contribution to the normal stress at the center of the disks

should be the �uid stress, i.e. Σ22 (0) = Σf = −Pf . Looking more carefully

at the Σ22 (r) pro�le, we observe that for high particle volume fraction, it is no

more linear. See for instance the pro�le obtained for a φ = 0.47 suspension and

represented on Figure (4.38).
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Figure 4.38: Σ22 (r) and Pf (r) for a φ = 0.47 suspension

The dotted line represents the average pore pressure
(

Pf
η0γ̇R

)
and the dashed

line is the linear �t of −Σ22 (r) over the four direct transducers that gives(
−Σ22(r)
η0γ̇R

= −8.6
)
. If rather than �tting over the four values of −Σ22 (r),

we just consider the three outermost sensors, the linear �t of −Σ22 (r) gives(
−Σ22(r)
η0γ̇R

= −13
)
, a value which is close to

(
Pf
η0γ̇R

)
.

This would be interpreted by the presence of a central zone in the gap be-

tween the disks where the �ow is not a simple shear one. This could occur if

the suspension behavior is not newtonian and in particular if the suspension is

a viscoplastic material that behaves as a rigid body at low stresses.

An image of what happens in such a case can be found in [Jarny et al. 2006]

who measured the velocity pro�le in a clay suspension that has a yield stress and
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that is sheared between two rotating disks. They show that the clay suspension

is separated into two zones, one where the �ow is a simple shear �ow and a zone

where the material moves as a block with no internal shearing (see Figure 4.39).

Increasing ��

Jammed zones 

Simple
shear flow 

Figure 4.39: Shear-banding zones. Remade from [Jarny et al. 2006].

This kind of shear-banding could explain why the Σ22 (r) pro�le is not linear

anymore. Furthermore, if an unsheared zone exists in the gap, the measurements

of the viscosity that are deduced from the ratio of the applied torque on the

measured angular velocity are unvalid. Thus, we are unable to determine the

ratios α1

ηs
and α2

ηs
even if we could determine α1 and α2 from the �t of Σ22 (r)

obtained with the three outermost transducers.

At last, this interpretation of the non-linearity of Σ22 (r) deserves some

remarks. In the section (4.5.1.1), we have shown that the suspensions were

slightly shear-thinning and that this behavior increased with the increase of the

volume fraction of particles φ. In the same section (4.5.1.1), we have represented

the rheological behavior of the suspensions with a power law but it is also

possible to do that with a Bingham law:

τ = ηB (γ̇) + τs . (4.27)

For example, for the φ = 0.47 suspension, we obtain τ (Pa) = 4.3γ̇
(
s−1
)

+

2.8 (Pa) with η0 = 0.143 Pa · s.
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4.8 SECONDARY FLOW IN ROTATING PARALLEL PLATE GE-

OMETRY

The torsional steady shear �ow of a Newtonian �uid between two rotating par-

allel plates witnesses a large-scale secondary �ow due to inertia which appears

as a toroidal motion with in�ow near the stationary plate, and out�ow near the

moving one. We use the equation [18] of [McCoy and Denn 1971], for the �in�-

nite disk� solution
(
R
h →∞

)
at low Reynolds number, where the radial velocity

due to secondary �ow (to 22d order in pseudo-Reynolds number NRe) is given

by:

u = −
( r
R

)(NRe
60

)[
4
(

1− z

h

)
− 9

(
1− z

h

)2

+ 5
(

1− z

h

)4
]
Rω , (4.28)

where

NRe =
ρh2ω

η
(4.29)

and ω is angular velocity of the rotating disk.

The variation of the velocity
(

u
ωrNRe�60

)
over the gap is well represented in

Figure (4.40).
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Figure 4.40: Secondary Flow Radial Velocity

The variation of the inertial pressure pi of a simple �uid sheared between

two parallel disks is given by:

pi (z = 0) = 0.15ρω2
(
r2 −R2

)
, (4.30)

where ρ is the �uid density.

4.8.1 Validation of the experimental procedure used to determine α1 and

α2

We have made use of the previous inertial pressure of equation (4.30) to validate

the experimental procedure described in section (4.4.3).

The gap between the disks is �lled with a mixture of water and ucon oil(
η ∼ 1Pa · s, ρ = 1.05 · 103 kg ·m−3

)
. Figure (4.41) shows the pressure pro�le

we measured for di�erent angular velocities using both the direct sensors (in

triangles) and the grid transducers (in squares). Note that expression (4.30)
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is valid only if the Reynolds number is low (typically not greater than few

unities). In these measurements that we have conducted, the Reynolds number

was between 0.3
(
for Ω = 2 rad · s−1

)
and 1.4

(
for Ω = 9.7 rad · s−1

)
so that

expression (4.30) was valid. Figure (4.41) shows a good agreement between our

measured pressure pro�les and those predicted by equation (4.30).

Note that the inertial pressure was completely negligible in the experiments

carried out to measure α1 and α2. Indeed in these experiments, the maximum

shear rate was about 50 s−1 that corresponds to an angular velocity Ω = γ̇h
R ≈

2 rad · s−1 and to an inertial pressure pi ≈ 2Pa.
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Figure 4.41: Inertial pressure pi as function of r.

4.8.2 Visualization of the secondary flow

4.8.2.1 In a simple liquid

A Glycerine sample is sheared between two parallel disks of dimensions, h =

gap ∈ [2.5 ; 35.0] mm; r1 = 50, 10 ± 0, 02 mm; R = 58, 09 ± 0, 01 mm. The

upper disk is stationary, while the lower one rotates by means of a motor at a
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certain rotational velocity ω (Figure4.42).

r

z

45° mirror

Camera

Stationary disk

Rotating disk

Secondary flow

R

r1

(a) (b)

Figure 4.42: Experimental Setup

A mirror, making 45° with the horizontal, is placed under the lower disk

so that the digital camera can catch straight clear planar images. A droplet

of colored glycerine is injected from top by means of a syringe, before lowering

down the upper disk to make contact with the surface of the sample (Figure4.43).

(a) (b)

Figure 4.43: Glycerine Injection

It was observed that, at large gaps, a recirculation existed clearly caused by

the secondary �ow, where the streamlines are shown on Figure (4.44).
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(a) (b)

Figure 4.44: StreamLines

At smaller gaps, the recirculation appears like fronts that propagate in op-

posite directions. After taking di�erent photos of the fronts (Figure4.45), we

did images tracking in order to measure their velocities.

r

z

h

h 2,5 mm

fronts

(a)

fronts

(b)

Figure 4.45: The Fronts

The experimental results obtained with ω = 1.32 rad·s−1, ν = η
ρ = 873.34mm2·

s−1 and h = 2.5mm are presented in Figure (4.46) together with the theoret-

ical ones calculated from (4.28): rfront (t) = r0e
A±t with A+ = 0.5126

(
ωNRe

60

)
& A− = 0.4582

(
ωNRe

60

)
. The signs + and - stand for the outward and inward

fronts, respectively. The agreement is good and especially better for the inward

front displacement.
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Figure 4.46: Front Displacement

4.8.2.2 Secondary flow in a suspension

The secondary �ow has also been studied in a 10% suspension of PMMA par-

ticles (2a = 80µm) dispersed in a mixture of Transformer oil and Ugilec (Elf

Atochem) such that the density of the �uid is equal to that of the particles.

The suspension is sheared between two parallel disks mounted on a controlled

stress rheometer (CARRI-MED CSL 100). The upper rotating disk is transpar-

ent and covered with a conducting material ITO (Indium Tin Oxyde) and then

grounded to the earth. The lower disk is connected to a high voltage source

that supplies a DC voltage between -1500 V and +1500 V. The gap between

the disks is h = 800µm. The experimental setup is presented in Figure (4.47).

175



4.8. SECONDARY FLOW IN ROTATING PARALLEL PLATE GEOMETRY
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Figure 4.47: Suspension Experimental Setup

Whenever the voltage is applied on the stationary disk, the particles that

carry a positive electrical charge are attracted by either the upper or the lower

plate according to the sign (+Ve DC or -Ve DC) of the applied source electric

�eld. If the particles are being attracted by the upper plate rotating, they move

outward under the e�ect of the secondary �ow and stay at the edge. But, if the

lower stationary plate attracted the particles, they move inward and accumulate

at the center due to the fact that the secondary �ow at the stationary plate (disk)

is an in�ow (see Figure 4.48).
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Stationary disk

Rotating disk Secondary flow
  Streamlines

particles at edge

particles at center+VDC

source
-VDC

source

(a)

(b) Positive voltage +500 VDC. The particles
migrated toward the edge

(c) Negative voltage -500 V DC. The particles
migrated toward the center

Figure 4.48: Inward and Outward Migration. (Particles in White)

So, we observe a particle front that moves inward in the negative voltage

case, and outward in the positive voltage case. The front velocity is measured

(Figure 4.49) for di�erent applied torques (or di�erent angular velocities).
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Figure 4.49: Suspension Outward Front displacement

These results are presented and compared to the theoretical values of the

secondary �ow radial velocities deduced from equation (4.28) in Table (4.7).

τ (Pa) 1.2 2.4 3.6
ω
(
rad · s−1

)
1.62 3.3 6.08

Vr (experimental)

(
µm · s−1

)
34.7 138.8 500

Vr (theoretical)

(
µm · s−1

)
35.6 148 502

Table 4.7: suspension Fronts Radial Velocities

A very good agreement is observed among the results.

4.8.3 On the possible role of the secondary flow on the particle shear-

induced migration in parallel plate geometry

As we have seen in the section (1.7.3.5), the shear-induced migration charac-

teristic time tM scales as d2�
(
γ̇a2D (φ)

)
, with D (φ) ∼ Kcφ. Thus, in the

torsional �ow of a suspension between two parallel disks, this time will be scal-

ing as tM ∼ 1
Kcφγ̇

R2

a2 . Moreover, the characteristic time for the secondary �ow

scales as tS ≈ R
u = 60

ωNRe
. So, comparing both times, for the suspension of
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φ = 10%, where Kc ∼ 0.1[Chapman 1990, Merhi et al. 2005], one gets a crite-

rion for the sheared-induced migration in parallel plates geometry to

be measurable as Re� 60Kcφ
a2

h2 that is Re� a2

h2 .

4.9 CLOSURE

Using a single experiment, this chapter (4) have proposed a deter-

mination methodology of the three material functions (the viscosity,

and the two normal stress di�erences) in non-Brownian suspensions

of hard spheres for a wide zone of concentrations φ = 0.2↔ 0.46. The

measurement of the radial pro�le of Σ22 in a torsional �ow between

two parallel disks, provides us with the two linear combinations of α1

and α2: The slope of Σ22 gives − (α1 + 2α2), and the ordinate at the

origin returns (α1 + α2). Simultaneously, we measure the viscosity of

the suspension. It is so well surprising, we measure a positive N1. For

that reason, we did a chain of tests to show that the sign of N1 does

not depend neither on the particles size, nor on the gap size betwen

the two disks. The behavior of [(α1 + 2α2)�ηs] as a function of the

volume fraction of particles φ is very close to that measured recently

by [Boyer et al. 2011 a] in a rotating rod experiment. When φ is less

than 0.47, α1�ηs and α2�ηs seemed to vary linearly with the volume

fraction with threshold of orders 0.25 for α1�ηs, and 0.2 for α2�ηs.

The pore pressure measurements permit us to have an access to

the values of the particle normal stress in the direction of velocity-

gradient (Σp
22 = Σ22 + Pf ), and to deduce from Σp

22, α1 and α2 the

two other particle normal stresses Σp
11 and Σp

33. The particle normal

stresses are of the same order of magnitude of N2. Generally, our ob-

tained results for the particle normal stresses are in good agreements

with those presented in the literature, which were obtained numer-

ically [Sierou and Brady 2002, Yeo and Maxey 2010a], theoretically
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[Mills and Snabre 2009], and experimentally [Deboeuf 2008, Deboeuf

et al. 2009, Zarraga et al. 2000]. We observe, as [Sierou and Brady

2002] showed numerically, that the three particle normal stresses

(Σp
11, Σp

22, and Σp
33) do not vary exactly in the same manner with

the variation of the volume fraction of particles φ. This is in a dif-

ference with the particle normal stresses used by [Morris and Boulay

1999] in the Suspension Balance Model that explains and predicts the

shear-induced migration of particles. Nevertheless, the values of Σp
11,

Σp
22 and Σp

33 that we have measured are not very di�erent from that

proposed by [Morris and Boulay 1999]. As they found, we obtain

λ3 =
Σp

33

Σp
11
≈ 0.5, and a quadratic variation of q (φ) = ηN (φ)

ηs(φ) =
−Σp

11

Σ12
such

that
(
q (φ) = 3.2φ2

)
for us, and

(
q (φ) = 2.2φ2

)
for them. At last, while

they suppose that λ2 =
Σp

22

Σp
11
is independent of φ, we measured a slight

increase of λ2 when φ increases from 0.2 (λ2 ≈ 1) to 0.46 (λ2 ≈ 1.3).

Above φ = 0.47, we have not been able to measure neither the

material functions (ηs, α1 and α2) nor the particle normal stresses

(Σp
11, Σp

22, and Σp
33). In particular we have observed that the Σ22

pro�le deviated from its predicted expression. We suppose that for

high φ, the �ow between the disks is no more a simple shear �ow in the

central region. Further rheo-optics experiments should be performed

to measure the velocity pro�le between the disks and to verify that

a jammed zone is present.

At last we have studied the secondary �ow that is present in the

torsional between two parallel plates. It has been used to validate

the pressure measurements. The secondary �ow velocity has been

measured both in a simple liquid and in a suspension, and its in�uence

on the shear induced particles migration has been estimated.
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Chapter 5

THE MODIFIED Suspension

Balance Model

5.1 OVERVIEW

Here we present the modi�cation of the original SBM of [Nott and

Brady 1994, Morris and Boulay 1999] according to our experimental

results obtained in chapter (4). In section (5.2), we summarise the

parameters that intervene in this SBM, then in section (5.3), the

modi�ed particle normal stress tensor is presented according to our

measurements. Later, the validation of the modi�ed SBM in Couette

cell and in rectangular channel �ows via [OpenFOAM®] are tackled

in section (5.4), and the closure of this chapter (5) comes in section

(5.6).

5.2 THE GOVERNING PARAMETERS

The central modi�cation in the SBM, de�ned in section (1.7.4) of chapter

(1), lies in its Σp tensor that plays a signi�cant role in the migration �ux

−→⊥ of particles (equation 1.61). That's because, the latter is driven by the
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divergence of the particle stress tensor which can be written now, according to

our experimental measurements, in its new form as:

Σp = −Σp
nn, 2 + 2η0ηp (φ) E , (5.1)

where Σp
nn, 2 will be the modi�ed particle stress diagonal tensor de�ned as:

Σp
nn, 2 = −


Σp

11 0 0

0 Σp
22 0

0 0 Σp
33

 = η0ηN (φ)
.
γ


1 0 0

0 λ2 (φ) 0

0 0 λ3 (φ)

 (5.2)

with the measured parameters ηN , ηs, λ2, and λ3. We recall that λ2 =
Σp

22

Σp
11
,

λ3 =
Σp

33

Σp
11
, and ηp = (ηs − 1).

5.3 THE PARTICLE NORMAL STRESS TENSOR

We got experimentally, as [Sierou and Brady 2002] showed numerically, that

the 3 particle normal stresses (Σp
11, Σp

22, and Σp
33) do not vary exactly in the

same manner with the variation of the volume fraction of particles φ. That is

inconsistent with the hypothesis in the original SBMmodel proposed by [Morris

and Boulay 1999], which consists of supposing that the 3 particle normal stresses

(Σp
11, Σp

22, and Σp
33) vary in the same way with the variation of the volume

fraction of particles φ. From our experimental measurements of (Σp
22, α1 , and

α2) in chapter (4), we measured, thus modi�ed, the particle stress tensor Σp in

the SBM according to the following parameters ηN , ηs, λ2, and λ3 :

ηs (φ) =

(
1− φ

φm

)−2

with φm = 0.58 (5.3)

ηN (φ) = 3.2φ2ηs (φ) (5.4)

182



5.4. THE MODIFIED SBM IMPLEMENTED IN OPENFOAM®

Note that in the latter equation (5.4), we made the implicit hypothesis that the

normal particle viscosity ηN is proportional to the suspension shear viscosity ηs.

λ2 (φ) = 1.4φ+ 0.665 (5.5)

λ3 (φ) = −0.015φ+ 0.547 (5.6)

It is important to keep in mind that these variations of ηs, ηN , λ2, and λ3

have been obtained for particle volume fractions in the range of [0.20 ≤ φ ≤ 0.47].

In the following we will allow ourselves to generalise and use these expressions

even if φ doesn not belong to the latter range, when it is outside of 0.20↔ 0.47.

Of course, this would deserve further experimental con�rmation.

5.4 THE MODIFIED SBM IMPLEMENTED IN OpenFOAM®

We present here di�erent simulations using the �Modi�ed-SBM� implemented

in [OpenFOAM®]. We study the suspension �ow in Couette cells of both large

and small gaps, trying to validate the modi�ed model through the comparisons

with the experimental data found in literature.

5.4.1 Suspension Flow in a Large-gap Couette cell

Let us now go back and take the experiments of [Phillips et al. 1992] of a

suspension �ow in a large gap
(
Rout
Rin
≈ 3.7

)
of a Couette cell. Figure (5.1)

shows the transient concentration pro�les at n = 200 and n = 12000 revolutions

of the internal cylinder at variables a
Rout

= 0.0143, φbulk = 0.55, α = 3.5 & 4,

φm = 0.68, f (φ) =
(

1− φ
φm

)
(1− φ)α−1, and ηs

η0
=
(

1− φ
φm

)−2

.
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Figure 5.1: Transient Concentration Pro�les at 200 & 12000 revolutions

We observe good matching between the �Modi�ed SBM� predicted concen-

trations and the experimental data obtained by [Phillips et al. 1992] via the

direct measuring method �NMR�, speci�cally at n = 200 revolutions of the

inner cylinder (Figure 5.1). However, the Model predictions deviates away from

the experimental pro�le at n = 12000 revolutions. The discrepancy between

the experimental results of [Phillips et al. 1992] and our numerical ones is not

surprising since, according to [Phillips et al. 1992] the maximum packing vol-

ume fraction φm of the suspension they studied is 0.68, while for our suspension

φm = 0.58. This means that, for a reason that we ignore here, the material

functions are not the same for the two suspensions.

Moreover, it is then good to recall that the form of f (φ) =
(

1− φ
φm

)
(1− φ)α−1

we adopted, is phenomenological and has been borrowed from the sedimenta-

tion modeling [Richardson and Zaki 1954]. The term
(

1− φ
φm

)
is introduced

in such a way that the particle velocity would be zero when φ = φm. The value

of the exponent α is not well controlled and can be taken in the range from 3
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to 5 which also may a�ect the results.

Fortunately, we have been able to compare our numerical results to experi-

mental ones obtained by [Boyer et al. 2011 a] with the same suspension as that

we have used to measure Σp. They present results on the particle migration

in a suspension sheared in a large-gap Couette cell
((

Rout
Rin

)
max

= 11
)
. Their

experimental setup consisted of a rotating rod of Rin = 5, 10 & 12.5 mm and of

length L = 50mm immersed in a suspension in a cylindrical container having a

radius of Rout = 55mm. They used in their experiments a suspension made of

the same polystyrene spherical beads as we used (2a = 140µm), dispersed in a

Newtonian liquid of viscosity η0 = 2.15 Pa · s at 25° C.

During the experiment they did transient measurements of the concentration

pro�les of particles in the sheared suspension by taking samples using a pipette

at di�erent radial distances in the large gap. Each sample was then weighted

then immersed into a large quantity of water, �ltered and dried. Volume frac-

tions were obtained as the ratio of the mass of the particles to the mass of the

sample. They noted that this basic method proved to be fairly accurate as the

spatially averaged volume fraction gives the initial volume fraction with less

than 5 % discrepancy.

The numerical simulations of the [Boyer et al. 2011 a] experiment of a 0.40

suspension using the �Modi�ed SBM� with a
Rout

= 0.001272, α = 4, φm =

0.58, f (φ) =
(

1− φ
φm

)
(1− φ)α−1, and ηs

η0
=
(

1− φ
φm

)−2

are presented in the

following Figure (5.2).
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Figure 5.2: Transient Concentration Pro�les ωt = 105

The �Modi�ed SBM� as you can see in Figure (5.2) predicts quite well

the transient volume fraction of particles φ in the large gap at ωt = 105 of a

suspension of initial bulk concentration of 40%, where ω is the speed of rotation

of the inner rod and t is time.

5.4.2 Suspension Flow in a Small-gap Couette cell

[Shapley et al. 2002, Shapley et al. 2004] conducted LDV experiments on

suspension �ow in a small-gap Couette cell. The setup consisted of an inner

cylinder of radius Rin = 5.715 cm and an outer one of Rout = 6.31cm, resulting

in a gap width of h = 0.595 cm, which is 10.4 % of the inner cylinder radius and

about 30 particle diameters wide.

They used PMMA particles (2a ≈ 200 µm) dispersed in a Newtonian liquid

of viscosity η0 = 0.84 Pa · s at 22 °C.

�
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They used the LDV technique to measure the suspension velocity pro�le

v (r) from which they deduced the shear rate pro�le:

γ̇ (r) = r
∂ v(r)

r

∂r
. (5.7)

Since they know the shear stress τ (r) in the gap such that:

τ =
Γ

2πr2L
(5.8)

with L being the cylinder length, and Γ the applied torque, they obtain the

viscosity throughout the gap. Then, they compute the particle volume fraction

pro�le from the relation between the viscosity and the particle concentration.

Thus, the way they used to measure the concentration pro�les is indirect

and likely to introduce errors. Indeed, the authors do not measure themselves

the relation between the viscosity and the particle volume fraction. They adopt

arbitrarly the Krieger-Dougherty relation:

ηs (φ) =

(
1− φ

φm

)−1.82

with φm = 0.68 (5.9)

This value of the packing volume fraction (φm = 0.68) is very elevated compared

to the values usually obtained for nonbrownian suspensions ( [Ovarlez et al.

2006] φm = 0.615, [Boyer et al. 2011 a] φm = 0.58, present study [Dbouk et al.

2011] φm = 0.58 ).

Thus, to compare our numerical simulations with the [Shapley et al. 2002,

Shapley et al. 2004] experimental data, we �rst re-calculate the φ-pro�les data

with our measured relative suspension viscosity of the form:

ηr (φ) =

(
1− φ

φm

)−2

with φm = 0.58 (5.10)

After correcting their original experimental concentration pro�les φ with our

measured relative viscosity of equation (5.10), we present in the following Fig-

ures for three di�erent bulk suspensions, the predictions of the �Modi�ed SBM�
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for their steady volume fraction of particles at variables a
Rout

= 0.0015847,

α = 4, φm = 0.58, f (φ) =
(

1− φ
φm

)
(1− φ)α−1, and ηs

η0
=
(

1− φ
φm

)−2

:
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Figure 5.3: Steady State Concentration Pro�les of 30% initial suspension
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Figure 5.5: Steady State Concentration Pro�les of 50% initial suspension

We observe good agreements between the �Modi�ed SBM� steady concen-

trations predictions, and the corrected experimental data of [Shapley et al.

2002, Shapley et al. 2004] speci�cally for the moderate particle volume frac-

tions of 30 & 40 % (Figures (5.3) & (5.4)). However, it is clearly observed in

Figure (5.5) that the numerical pro�le deviates well away from the corrected

experimental one. This may be due to the fact that we have measured the

particle stress tensor Σp only for particle concentrations lower than 47%. The

extrapolated laws for higher concentrations may not be correct and additional

measurements of Σp should be necessary to predict the shear-induced migration

in so concentrated suspensions.
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5.5 THE SBM AND THE MODIFIED-SBM

One can wonder about the consequences of having modi�ed the particle stress

tensor Σp on the shear-induced migration. We start by presenting in Figure

(5.6) an example for the simulation of the latter experiment of [Shapley et al.

2002, Shapley et al. 2004] at φ = 40 % using both model versions.
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Figure 5.6: Steady State Concentration Pro�les of 40% initial suspension

It is clearly observed from Figure (5.6), that the modi�ed SBM captures

the steady concentration pro�le better than as it was predicted by the original

SBM for the 40% bulk suspension �ow in a narrow gap Couette cell.

Moreover, we present in Figure (5.7) the results of simulations for the square

cross sectional conduit case at bulk volume fraction of 40% and at di�erent φm

values.
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Figure 5.7: Steady State Concentration Pro�les of 40% initial suspension

One observes clearly, that φm plays an important role in the predictions

of the concentration pro�les at steady state. Thus, the particle concentration

pro�les depend more on the value of φm than on the form of the particle stress

tensor Σp. In other words, it is necessary to know the material functions includ-

ing the particle stress tensor to explain or predict the shear induced particles

migration.

5.6 CLOSURE

In this chapter (5), we have presented the �Modi�ed SBM� , as an

update to the original SBM. The modi�cations were done according to

experimental measurements we obtained for the particle stress tensor

used inside the model. The modi�ed version �The Modi�ed SBM�

is implemented in [OpenFOAM®]. Since the SBM depends on the

suspension material functions, it would be of interest to perform, in
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the near future, direct migration experiments on a suspension whose

all material functions had already been determined. Moreover, it is

necessary to carry out further experiments on the measurements of

the particle normal stresses to verify the validity of the expressions

obtained for ηN , ηs, λ2, and λ3 in the zone where φ < 0.20 and φ > 0.47.

In the next chapter (6) we will present and discuss the extended

version of this model here �The modi�ed SBM�, into a 2D general

version which is �Frame-Invariant� that can account for the general

2D �ow of non-Brownian suspensions.
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Chapter 6

ADVANCED SUSPENSION

MODELING

6.1 OVERVIEW

This chapter (6) covers the advanced suspension modeling techniques

that exist in literature. In section (6.2) we give and discuss the exten-

sion of the �Modi�ed SBM� of chapter (5) into a new version which is

�Frame-Invariant� that considers the suspension local kinematics and

which accounts for the 2D general �ows of non-Brownian monodis-

persed suspensions. Section (6.3) reveals how can one update the

SBM to account for Buoyancy problems.

6.2 THE 2D FRAME-INVARIANT MODIFIED Suspension Bal-

ance Model

6.2.1 Introduction

We have seen in the previous chapters of the thesis, the original and the modi�ed

versions of the SBM, and their validation through the implementation in the
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[OpenFOAM®] environment. The previous model untill now was just limited

to the cases of simple shear �ows of non-Brownian suspensions, and if one wants

to use it in the general case of a �ow that is not necessarily a simple shear one,

it requires modi�cations.

So, here we will describe the process of developing a Frame-invariant version

of our �modi�ed SBM� that we have seen previously in chapter (5).

We will present here, the framework for suspension �ow modeling in general

geometries, where two-dimensional (2D) �ows are considered. The work done

here follows the previous e�orts of [Miller and Morris 2009] where we re-extend

the �modi�ed SBM� by formulating its frame-invariant form.

It is known that in a general �ow �eld, the local kinematics can vary between

pure extension and solid-body rotation, with simple shear representing an equal

balance between them. Due to that fact, it is essential to relate the particle

stress Σp to the local kinematics of the �ow since, as it was previously shown

by [Brady and Morris 1997, Morris and Katyal 2002], that the existence of

shear-induced normal stresses in suspensions was going back to the breaking of

fore-aft symmetry of the pair-particle microstructure, and since that the particle

stress Σp drives the particle phase migration.

Basically, an anisotropic particle normal stress Σp
nn, 3 will be represented

here using the local kinematics for the development of the framework in general

�ows of suspensions in 2D situations.

6.2.2 Frame-Invariant Suspension Kinematics

The suspension �ow kinematics represent the local motion or behavior that a

micro-zone (micro-structure-zone) of the suspension (�uid-particles) may un-

dergo. It is the zone where the particles inside the �uid may be going away

from each other, approaching each other, colliding, or even rolling over each

other aligning in a preferred position by the �ow between both the compression,

and the tension axes as schematically depicted in Figure (6.1).
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  Compression
  Tension

  Shearing Flow

�  p

  Suspension

  Extending Flow

�

Figure 6.1: Suspension �ow between shearing and extending

We represent this local kinematics between shearing and extending suspen-

sion �ows, in the spirit of the previous works of [Miller and Morris 2009] for

suspensions, and whom their work was based on that of [Schunk and Scriven

1990, Bird et al. 1987] for polymers.

6.2.2.1 Kinematic Ratio

The local kinematics of the suspension is characterized by:

1. The local material deformation rate de�ned as:

γ̇ =
√

2E : E (6.1)

where E is the rate of strain tensor.

2. The relative rotation ωrel de�ned as:

ωrel =
ω

2
−W (6.2)

where ω is the local vorticity given by the curl of the velocity U:
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ω = ∇×U (6.3)

W is the local rotation of the axes of the rate of strain given by:

W = ei ×
[
∂ei
∂t

+ U · ∇ei

]
(6.4)

with ei being an eigenVector corresponding to an eigenValue Λi of E sat-

isfying the following equation

(E− Λi) · ei = 0 (6.5)

�This representation of ωrel in equation (6.2) sets the rotation relative to

a stationary rate of strain and since each rotation quantity (ω�2 , W)

is calculated in the same Cartesian frame of reference, taking the di�er-

ence produces a frame invariant measure of rotation [Miller 2004]�. Note

that in our work the term ∂ei
∂t of equation (6.4) is neglected since we are

interested in a quasi-stationary �ow.

In order to account for the two e�ects of local kinematics, (γ̇ & ωrel), we follow

[Ryssel and Brunn 1999] to introduce the following ratio known as the �kinematic

ratio ρ̂k� de�ned as:

ρ̂k =
2|ωrel|

(γ̇�2) + |ωrel|
(6.6)

ρ̂k varies between 0 and 2 according to the �ow local kinematic state. In

pure extension ρ̂k = 0 (|ωrel| = 0), in simple shear ρ̂k = 1
(
|ωrel| = γ̇

2

)
, and in

solid body rotation ρ̂k = 2 (γ̇ = 0).

6.2.2.2 Compression-Tension Coordinates and Transition Matrix

In the 2D situation, the ei vectors are de�ned as the principal axes of the

rate of strain tensor, where the subscript i = ”t” stands for the tension axis

corresponding to the positive eigenValue of Λi=t > 0, and i = ”c” for the
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compression axis corresponding to the negative eigenValue of Λi=c < 0 as you

can see in the following Figure (6.2).

x

y

z

etec
t

c

Simple shearPure extension

Figure 6.2: compression-tension axes

So, now the 2D transformation that can transport one from the general

cartesian system (−→ex , −→ey , −→ez) to the local frame of reference (−→et , −→ec , −→ez) can be

de�ned as the 2D transition Matrix Tm:

Tm =

−→et


et1

et2

0

 | −→ec


ec1

ec2

0

 | −→ez


0

0

1


 (6.7)

where its inverse matrix (Tm)
−1 (equal to its transpose (Tm)

Tdue to the sym-

metry of E) transports one from (−→ex, −→ey , −→ez) to (−→et , −→ec , −→ez).

6.2.3 Anisotropic Particle Stress in the SBM

The Σp
nn, 2 tensor of modi�ed Suspension Balance Model of chapter (5) valid

for simple shear �ows only, is set up in the 2D compression-tension coordinates

(−→et , −→ec , −→ez) (6.2.2.2), and extended to a new tensor Σp
nn, 3 which is valid for

general �ow types that are de�ned by ρ̂k. This extension provides a frame of

reference independent of the 2D geometry of the �ow, but strongly depends on

the local kinematic state of the �ow of the suspension. The extension of Σp
nn, 2
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to Σp
nn, 3 is as the following:

Σp
nn, 2

∠(−→ex,−→ey,−→ez)

=


Σp, 11
nn, 2 0 0

0 Σp, 22
nn, 2 0

0 0 Σp, 33
nn, 2

 = η0ηN (φ) γ̇


1 0 0

0 λ2 (φ) 0

0 0 λ3 (φ)


(6.8)

Σp
nn, 2

∠(−→et,−→ec,−→ez)

=



(
Σ
p, 11
nn, 2+Σ

p, 22
nn, 2

2

)
N1
2

0

N1
2

(
Σ
p, 11
nn, 2+Σ

p, 22
nn, 2

2

)
0

0 0 Σp, 33
nn, 2

 (6.9)

Σp
nn, 3

∠(−→et,−→ec,−→ez)

=



(
Σ
p, 11
nn, 2+Σ

p, 22
nn, 2

2

)
·Bt (ρ̂k) N1

2
· C (ρ̂k) 0

N1
2

· C (ρ̂k)

(
Σ
p, 11
nn, 2+Σ

p, 22
nn, 2

2

)
·Bc (ρ̂k) 0

0 0 Σp, 33
nn, 2


(6.10)

Σp
nn, 3 constitutes the modi�ed particle normal stress anisotropic tensor.

�

Bt (ρ̂k), and Bc (ρ̂k) are the functions that weight the particle normal stress

in the tension, and compression directions respectively, with Σp, 33
nn, 2 being the

one in the out-of-plane direction. C (ρ̂k) corresponds to the tangential stress

weighting function. We take the same weighting functions as [Miller and Morris

2009] where the di�erent possible cases of Bt, Bc, and C are presented in the

following Figure (6.3). We can try to provide some explanation about the choice

of the values of Bt, Bc, and C and their variation with ρ̂k.
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Figure 6.3: Bt, Bc, and C as function of ρ̂k

� Simple shear �ow: In a simple shear situation, ρ̂k = 1 and we have

Bt = Bc = C = 1 such that the tensor Σp
nn, 3 after transformation in

equation (6.11) goes back to be equal to Σp
nn, 2.

� Pure extension: Taking Bt = 0 is quite natural since, during a pure

extension (Figure (6.2)), along the extensional axis, the particles are far

away from each other and the normal stress in that direction should be

almost zero. Of course C that represents the tangential stress is also to

be zero.

� Rotation: When ρ̂k > 1 we suppose that the rotation plays no role where

we take unity for Bt = Bc = C = 1.

� At last, when 0 < ρ̂k < 1 we interpolate linearly the �weighting� functions

Bt, Bc, and C to account for the local kinematics between the compression
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and tension axes.

Note that, the tensor Σp
nn, 3 is retransformed back from the local axes to the

general ones through the transformation matrix Tm such that:

Σp
nn, 3

∠(−→ex,−→ey,−→ez)

←=

Tm ·
Σp
nn, 3

∠(−→et ,−→ec,−→ez)

·T−1
m

 (6.11)

6.2.4 Validation

The last General �Frame-Invariant� 2D SBM was also implemented in the

[OpenFOAM®] with its new equation for Σp including the tensor Σp
nn, 3. The

results using this general extended version (Frame-Invariant) for the suspen-

sion �ow in both, a wide gap Couette cell of [Phillips et al. 1992], and in a

rectangular-cross-section channel of [Lyon and Leal I 1998], were compared to

the previous version of the SBM (Frame-dependent).

Note that, nevertheless the �ow of the suspensions in such geometries is

a simple shear �ow, we intend to do these comparisons. That's in order to

validate our new code for the transformation of Σp (see equation (6.11)) be-

tween the local and the general frame references, (−→et , −→ec , −→ez) and (−→ex, −→ey , −→ez),

respectively.

6.2.4.1 2D Frame-Invariant Suspension Flow in a Channel and in a Couette cell

As you can see in Figures (6.4) & (6.5) for the suspension �ow in a channel, and

Figures (6.6) & (6.7) for the �ow of a suspension in a Couette cell of large gap,

the last 2D �Frame-invariant SBM� captures well the concentration pro�les of

particles that had been computed using the �Frame-dependent� one.
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Figure 6.5: The �Frame-Invariant� SBM 2D Steady State φ
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Figure 6.7: The �Frame-Invariant� SBM 2D concentration at 200 revolutions

6.2.4.2 Oscillating shear of a suspension cloud

In this section, we apply our last 2D general code of the SBM to an experi-

mental con�guration used by [Metzger et al. 2011] to observe the behavior of a

suspension cloud in an oscillatory high amplitude shear strain.

The clouds were composed of spherical PMMA particles (2a = 450µm) dis-

persed in a newtonian liquid of viscosity η0 = 3Pa·s. The particle concentration

in the cloud is either 30% or 40%. The suspension droplet is placed, far away
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from the walls, in a shear cell �lled with the same suspending liquid (see Figure

(6.8)).

Initial 30% suspension cloud

Su
sp

en
sd

in
g 

li
qu

id
Oscillatory shearing

Figure 6.8: Experimental [Metzger et al. 2011] initial 30% suspension cloud in
an oscillatory shearing between two parallel plates.

Upon reversal of the shear �ow, [Metzger et al. 2011] showed that the cloud

does not reconstitute identically by the end of each cycle of shear, but expands

progressively in the �ow direction. They show that the strength of the extension

E depends mainly on the applied strain amplitude γ0 and the number of cycles

N (see Figure (6.9)). Note that one cycle of shear corresponds to a whole

deformation that is two times the strain amplitude.
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Figure 6.9: Taken From [Metzger et al. 2011]

The xy-2D mesh of 30% suspension cloud case is presented in the following

Figure (6.10):

Figure 6.10: 2D-Mesh of the 30% suspension cloud

During N = 30 cycles of shear at an amplitude of γ0 = 8, the numerical evo-

lution of the cloud extension E (N) in the �ow direction (x-axis) was measured

and compared to the experimental one obtained by [Metzger et al. 2011].
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Figure 6.11: 30% suspension cloud extension in the �ow direction at a strain
amplitude γ0 = 8.
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Figure 6.12: 30% suspension cloud extension in the �ow direction

Figures (6.11) & (6.12) show that the simulation gives the same type of be-

havior with a good agreement between the experimental data and the numerical

ones obtained by using the 2D �Frame-invariant� SBM.

Nevertheless, the comparison can be only qualitative since the numerical

calculations have been done in a 2D case while the experiments are of course

3D. Furthermore, we know from [Kolli et al. 2002, Narumi et al. 2002] that

upon shear reversal, the normal stresses exhibit a transient behavior over a

deformation of about unity. This transient behavior had never been introduced

in the SBM and thus the calculations are valid only for high strain amplitudes

where the transient behaviors upon shear reversal could be neglected.

6.3 THE SBM EXTENDED TO BUOYANCY

All the previous contents of the thesis covered the RheoPhysics of �neutrally

buoyant Suspensions� only. What happens now, if the suspensions are no

more neutrally buoyant?

Another more properties happen in these �dense� suspensions of �unmatched
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particles-�uid densities� (ρp 6= ρf ) like sedimentation, and viscous resuspension.

The latter is when a �uid �ows past an initially settled bed of heavy particles, to

disturb and resuspend the sediment layer. It was �rst reported by [Gadala-Maria

1979] and investigated well experimentally and numerically later by [Leighton

and Acrivos 1986, Leighton and Acrivos 1987, Scha�inger et al. 1990, Rao et

al. 2002 b].To account for that phenomenon which is the true general case in

nature where many suspensions are dense, buoyancy should be included in our

previous SBM.

So here we will repass over the three basic governing equations of the SBM

which are the mass, Stokes momentum and transport conservation equations

in a manner of trying to update them to account for unmatched particles-�uid

densities in the non-Brownian suspensions of hard spheres.

�

Let ρip and ρ
i
f be the densities of the particle and �uid phases, respectively.

According to the total suspension mixture concentration φ , and the mixture

density ρ as a whole, one can write the following:

ρ = φρip + (1− φ) ρif (6.12)

with

ρp = φρip (6.13)

ρf = (1− φ) ρif (6.14)

where ρp and ρf are the mass fraction concentrations of the particles and of the

�uid, respectively.

The suspension mass and momentum balances become:

∇ •U = 0 (6.15)
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∇ •Σ +4ρi gφ = 0 (6.16)

respectively, where4ρi = ρip−ρif is di�erence in pure densities, U is the suspen-

sion mean velocity, g is the gravitational acceleration, and Σ is the suspension

stress tensor as it was de�ned in the previous chapters of the thesis.

The transport equation of the particles phase in the mixture becomes as

following:

∂φ

∂t
+ U ·∇φ = −∇ • −→t with −→t = −→⊥ +−→g (6.17)

where −→⊥ is the migration �ux de�ned previously in section (1.7.4) as:

−→⊥ =
2a2

9η0
f(φ) [∇ •Σp] (6.18)

and −→g is the de�ned as:

−→g =
2a2

9η0
f(φ)

[
∆ρigφ

]
(6.19)

In this form the SBM is extended to a new version which accounts for

buoyancy, that is also implemented in the [OpenFOAM®] environment.

6.3.1 Validation

6.3.1.1 Viscous resuspension and 2D mixing

We present here the recent validation results of the modi�ed-to-buoyancy 2D

code of the SBM. That's through the simulation of 2D resuspension and mixing

in a horizontal Couette cell which goes back to the works of [Rao et al. 2002 b].

In their experiment, [Rao et al. 2002 b] used PMMA particles (a = 397µm) of

density ρip = 1.18 g ·cm−3, suspended in a newtonian liquid (glycerol/water solu-

tion) of density ρif = 1.253 g · cm−3and of viscosity η0 = 0.588Pa · s. They used

the NMR imaging to measure the concentration pro�le during the demixing
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of an initially 20% well-mixed suspension. The suspension was placed between

two concentric horizontal cylinders (wide-gap Couette cell Ri = 0.64 cmRout =

2.54 cm) where the gravity, before rotating the inner cylinder, acted on the sus-

pension causing the particles to �oat toward the upper surface of the larger

cylinder. Then, the suspension is sheared in the Couette cell by rotating the

inner cylinder where the concentration pro�les were measured through NMR.

The xy-2D mesh of this case is presented in the following Figure (6.13).

Figure 6.13: xy-2D mesh of the wide-gap Couette cell

The initial conditions on φ before the rotation of the inner cylinder are

presented in Figure (6.14).
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�
t=0

= 0.001

�
t=0

= 0.61

Figure 6.14: Initial conditions on φ at t = 0

The transient concentration pro�les results (after 45 turns of the internal

cylinder) of the numerical simulations using the 2D frame-invariant-buoyancy-

included SBM are compared with those obtained by [Rao et al. 2002 b] as you

can see in Figure (6.15).
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Fluid fraction
1.0

45 turns

45 turns

Rao et al. 2002 NMR experiment

Present Study 2D
Frame-Invariant Suspension Balance model

Figure 6.15: Concentration pro�le at 45 turns of the inner cylinder (φ ≡ c),
φm = 0.64.

The predictions of the model are quantitatively good compared to theNMR

experimental data obtained by [Rao et al. 2002 b].

Thus, the �Frame-Invariant� SBM implemented in [OpenFOAM®] seems

to capture well the physical features involved in the shear-induced particle mi-

gration even in quite complex geometries. Nevertheless, the normal stresses are

known to be very sensitive to the shear-induced microstructure in the suspen-

sion [Brady and Morris 1997] that itself depends on the �ow. An improvement
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in the model proposed by [Miller and Morris 2009] would consist in introducing

this coupling between the �ow and the microstructure.

6.4 CLOSURE

We have seen here in this chapter (6) an extended 2D version of the

SBM which is general �Frame-Invariant� and that takes into account

the local kinematics of the suspension. The new version was validated

after the implementation in [OpenFOAM®] by simulating the 2D

�ow of neutrally buoyant monodispersed non-Brownian suspensions

in both geometries, a wide-gap Couette cell, and a rectangular-cross-

section channel. The simulation of a suspension cloud undergoing an

alternative shear gives results that are very close to the recent ex-

perimental results of [Metzger et al. 2011]. Moreover, the possibility

of the SBM to account for Buoyancy problems, where unmatched

particles-�uid densities may be present, was also presented including

the governing equations and has been validated for the suspension

mixing in a horizontal wide-gap Couette cell.
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Chapter 7

SUMMARY, CONCLUSIONS &

PERSPECTIVES

7.1 SUMMARY AND CONCLUSIONS

This thesis covers the RheoPhysics (Experiments and Simulations) of Non-

brownian Suspensions of particles immersed in a Newtonian Liquid at very low

Reynolds Number. It is composed of two main topics.

The �rst branch covers the Mathematical Modeling of the kinematics of these

suspensions as a continuum modeling approach and by using the Finite Volume

Method as the numerical technique to solve the problem.

The second branch is the experimental part for the measurements of the

suspension Material functions (the viscosity ηs and the �rst and second Normal

Stress Di�erences N1 and N2) and of the particle stress tensor Σp.

The central point in this thesis is the phenomenon of shear-induced migra-

tion of particles and its predictions upon using the Suspension Balance Model

(SBM). Thus, according to the need for the di�erent measurable variables in

this Model, experiments were developped in order to measure well those vari-

ables, which can complete and modify the SBM to be capable of predicting
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well the suspension Kinematics.

Finally, after the completeness of the Model with all of its measurable vari-

ables being measured, it was implemented numerically and validated in the

[OpenFOAM®] environment for the tracking process of the Kinematics of these

suspensions.

A detailed summary of this thesis can be achieved now by grouping all

the closures of the chapters as the following:

� We have seen in the �rst chapter (1) an introduction to Rheology Sci-

ence since its inception in 1929. Suspensions were classi�ed, and their

Rheophysics were presented, in addition to the shear-induced migration

of particles. After the presentation of the di�erent Models in literature

that modelize the migration phenomenon, we adopted the SBM of [Nott

and Brady 1994, Morris and Boulay 1999].

� The conservative Finite Volume Method for incompressible �ows had been

described globaly in chapter (2) in a simpli�ed clear manner. However, an

extension of this method for compressible �ows can be found in literature

well explained by [Moukalled and Darwish 2009].

� In chapter (3), we explained the implementation of the original Suspen-

sion Balance Model (as it was presented previously in Literature by [Nott

and Brady 1994, Morris and Boulay 1999]) in the [OpenFOAM®] en-

vironment, and its validity for suspension �ows inside channels of two

di�erent cross-sectional areas, and for suspension �ows inside Couette cell

geometry.

� The fourth chapter (4) is the heart of this manuscript. Using a single

experiment, this chapter has proposed a determination methodology of

the three material functions (the viscosity, and the two normal stress dif-

ferences) in non-brownian suspensions of hard spheres for a wide zone of

concentrations φ = 0.2 ↔ 0.46. The measurement of the radial pro�le of

Σ22 in a torsional �ow between two parallel disks, provides us with the two
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linear combinations of α1 and α2: The slope of Σ22 gives − (α1 + 2α2),

and the ordinate at the origin returns (α1 + α2). Simultaneously, we mea-

sure the viscosity of the suspension. It is so well surprising, we measure a

positive N1. For that reason, we did a chain of tests to show that the sign

of N1 does not depend neither on the particles size, nor on the gap size

betwen the two disks. The behavior of [(α1 + 2α2)�ηs] as a function of

the volume fraction of particles φ is very close to that measured recently

by [Boyer et al. 2011 a] in a rotating rod experiment. When φ is less than

0.47, α1�ηs and α2�ηs seemed to vary linearly with the volume fraction

with threshold of orders 0.25 for α1�ηs, and 0.2 for α2�ηs.

The pore pressure measurements permit us to have an access to the

values of the particle normal stress in the direction of velocity-gradient

(Σp
22 = Σ22 + Pf ), and to deduce from Σp

22, α1 and α2 the two other par-

ticle normal stresses Σp
11 and Σp

33. The particle normal stresses are of the

same order of magnitude of N2. Generally, our obtained results for the

particle normal stresses are in good agreements with those presented in the

literature, which were obtained numerically [Sierou and Brady 2002, Yeo

and Maxey 2010a], theoretically [Mills and Snabre 2009], and experimen-

tally [Deboeuf 2008, Deboeuf et al. 2009, Zarraga et al. 2000]. We observe,

as [Sierou and Brady 2002] showed numerically, that the three particle nor-

mal stresses (Σp
11, Σp

22, and Σp
33) do not vary exactly in the same manner

with the variation of the volume fraction of particles φ. This is in a di�er-

ence with the particle normal stresses used by [Morris and Boulay 1999]

in the Suspension Balance Model that explains and predicts the shear-

induced migration of particles. Nevertheless, the values of Σp
11, Σp

22 and

Σp
33 that we have measured are not very di�erent from that proposed by

[Morris and Boulay 1999]. As they found, we obtain λ3 =
Σp

33

Σp
11
≈ 0.5, and

a quadratic variation of q (φ) = ηN (φ)
ηs(φ) =

−Σp
11

Σ12
such that

(
q (φ) = 3.2φ2

)
for us, and

(
q (φ) = 2.2φ2

)
for them. At last, while they suppose that

λ2 =
Σp

22

Σp
11

is independent of φ, we measured a slight increase of λ2 when φ
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increases from 0.2 (λ2 ≈ 1) to 0.46 (λ2 ≈ 1.3).

Above φ = 0.47, we have not been able to measure neither the material

functions (ηs, α1 and α2) nor the particle normal stresses (Σ
p
11, Σp

22, and

Σp
33). In particular we have observed that the Σ22 pro�le deviated from

its predicted expression. We suppose that for high φ, the �ow between

the disks is no more a simple shear �ow in the central region. Further

rheo-optics experiments should be performed to measure the velocity pro-

�le between the disks and to verify that a jammed zone is present.

At last we have studied the secondary �ow that is present in the torsional

between two parallel plates. It has been used to validate the pressure

measurements. The secondary �ow velocity has been measured both in a

simple liquid and in a suspension, and its in�uence on the shear induced

particles migration has been estimated.

� Chapter (5), has presented the �Modi�ed SBM� , as an update to the orig-

inal SBM. The modi�cations were done according to our last experimental

measurements we obtained for the particle stress tensor Σp used inside the

model. The updated version �The Modi�ed SBM� is implemented also

in [OpenFOAM®], where the simulation results are compared to those

obtained previously upon using the model before its update.

� The �nal chapter (6) provides an extended 2D version of the SBM which is

general �Frame-Invariant� and that takes into account the local kinematics

of the suspension. The new version was validated after the implementa-

tion in [OpenFOAM®] by simulating the 2D �ow of neutrally buoyant

monodispersed non-Brownian suspensions in both geometries, a wide-gap

Couette cell, and a rectangular-cross-section channel. The simulation of

a suspension cloud undergoing an alternative shear gives results that are

very close to the recent experimental results of [Metzger et al. 2011].

Moreover, the possibility of the SBM to account for Buoyancy problems,

where unmatched particles-�uid densities may be present, was also pre-
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sented including the governing equations and has been validated for the

suspension mixing in a horizontal wide-gap Couette cell.

7.2 PERSPECTIVES

� Experimentally: Since the SBM depends on the suspension material

functions, it would be of interest to perform in the near future, direct

migration experiments on a suspension whose all material functions had

already been determined. Moreover, it is necessary to carry out further

experiments on the measurements of the particle normal stresses to verify

the validity of the expressions obtained in chapter (4) for ηN , ηs, λ2, and

λ3 especially in the zones where φ < 0.20 and φ > 0.47.

� Numerically: It will be so interesting in the near future to continue

the simulations to better test and validate the new 2D general �Frame-

Invariant� SBM in more complex suspension �ows, where the �ow is no

more a simple shear one. It will be also vital to study to what limit, the

model can predict and quantify well the migration of particles in such

�ows.

� Further Missions: The SBM using the continuum modeling approach of

non-brownian suspensions of hard spheres, can not capture the suspension

relaxation e�ects that go back to the changes in suspension microstructure

during the �ow. These e�ects have been seen and proved well through

di�erent experimental evidences in the literature [Blanc et al. 2011]. Soon,

it is possible or not, it will be quite interesting to include these e�ects of

the suspension microstructure in the modeling of these suspensions.
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Appendix A

WEDGE TYPE MESH

A.1 Wedge type mesh description

The simulation domain is a cylindrical pipe with diameter D and length L. To

reduce computational e�ort, mesh is created as 2D axi-symmetrical. Schemat-

ically the drawing of the mesh with very small angle α is shown on the Figure

(A.1) in the "X", "Y", and "Z" - coordinates. Thus, only variations in the

"X"-"Z" 2D plane are considered [openfoamwiki.net].
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Figure A.1: Wedge type Schematic
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Appendix B

NUMERICAL SCHEMES AND

SOLUTION SOLVERS IN

OpenFOAM®

B.1 Numerical Schemes & Solution Solvers

[Numerical Schemes] AND [Solution Solvers] IN OpenFOAM®

Printed from the website documentation of [OpenFOAM®] under the

3rd permission rule of:

Copyright © 2004-2011 OpenCFD Limited.

�This website and its content (including without limitation the text, com-

puter code, artwork, photographs, images, music, audio material, video material

and audio-visual material on this website) is owned by OpenCFD Limited.

Any redistribution or reproduction of part or all of the contents in any form

is prohibited other than the following:
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1. you may view this website and the material on this website on a computer

or mobile device via a web browser;

2. you may copy and store this website and the material on this website in

your web browser cache memory;

3. you may print pages from this website for your own use.

You may not distribute or commercially exploit the content. Nor may you

transmit it or store it in any other website or other form of electronic retrieval

system. The automated and/or systematic collection of data from this website

is prohibited�.
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Appendix C

IN OpenFOAM®

C.1 The convection term (precisely in OpenFOAM®)

Concerning the �ux term, the convection term (precisely in OpenFOAM®) is

expressed as:

∑
f

Uf (U · n)f Sf =
∑
f

UfΦf (C.1)

where Φ is always the kinematic mass �ux de�ned on each cell face, and U

must be interpolated onto the cell faces using di�erent interpolation schemes.

The convection based terms in the matrix A are found by using the Upwind

interpolation scheme for U. In other words U-values are adopted from the

cell that is located on the Upwind side of the surface. If, anyway, some other

interpolation scheme is used for U, the terms that di�er from the Upwind-

scheme are included in src. The discretization practise of interpolating the

velocity values onto the cell faces can be expressed ganerally as:

Uf,HS = Uf,UW − (Uf,HS −Uf,UW ) = Uf,UW −Uf,∆ (C.2)

with HS standing for �Higher order Scheme�, UW for �Upwind Scheme�, and

∆ for the �di�erence between both�. In this general case the Upwind based
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term multiplying Uf,UW is included in A, and Uf,∆ in src along with the term

multiplying it. The Upwind scheme fabricates an easily solvable matrix and

is therefore used as the basic Scheme on which other schemes are built[Jasak

1996].

C.2 The flux term in OpenFOAM®

In reality, the �ux Φ can be written in two di�erent ways:

1. It can be the inner product of the velocity interpolated onto the cell surface

with the cell surface vector, (Uf · nfSf ) , or

2. It can be an older corrected �ux �eld such that Φ =
(
U∗f · nf

)
Sf +Φcorr,

where Φcorr corrects the interpolated velocity based �ux by comparing an older

�ux, Φ, and an older velocity interpolated onto the cell surface.

C.3 Implementation of the SIMPLE algorithm in OpenFOAM®

The SIMPLE algorithm can be implemented in OpenFOAM as follows (The

complete implementation of the algorithm can be seen in the source code of the

simpleFoam solver provided with OpenFOAM):

� Store the pressure calculated at the previous iteration, because it is re-

quired to apply under-relaxation

p.storePrevIter();

� De�ne the equation for U

tmp<fvVectorMatrix> UEqn

(

fvm::div(phi, U) - laplacian(nu, U)

);

�tmp< > is used to reduce peak memory.�
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� Under-relax the equation for U

UEqn.relax();

� Solve the momentum predictor

solve (UEqn == -fvc::grad(p));

� Update the boundary conditions for p

p.boundaryField().updateCoe�s();

� Calculate the aP coe�cient and calculate U

volScalarField AU = UEqn().A();

U = UEqn().H()/AU;

UEqn.clear();

� Calculate the �ux

phi = fvc::interpolate(U) & mesh.Sf(); adjustPhi(phi, U, p);

� De�ne and solve the pressure equation and repeat for the prescribed num-

ber of non-orthogonal corrector steps

fvScalarMatrix pEqn (

fvm::laplacian(1.0/AU, p) == fvc::div(phi)

);

pEqn.setReference(pRefcell, pRefValue);

pEqn.solve();

� Correct the �ux

phi -= pEqn.�ux();

� Calculate continuity errors

# include "continuityErrs.H"

� Under-relax the pressure for the momentum corrector and apply the cor-

rection
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p.relax();

U -= fvc::grad(p)/AU;

U.correctBoundaryConditions();

� Check for convergence and repeat from the beginning until convergence

criteria are satis�ed.

Note: In OpenFOAM 1.6. and 1.6.x the convergence check has been imple-

mented in simpleFoam by de�ning

eqnResidual: Initial residual of the equation

maxResidual: Maximum residual of the equations after one solution step

convergenceCriterion: Convergence criterion speci�ed by the user

� The value of the initial residual can be obtained when solving the cor-

responding equation using the initialResidual() method. Two syntax are

possible:

eqnResidual = solve

(

UEqn() == -fvc::grad(p)

).initialResidual();

or, equivalently, for the pressure equation, since it has been already de�ned,

eqnResidual = pEqn.solve().initialResidual();

C.4 References

1. [openfoamwiki.net]

2. J. H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics,

Springer, 3rd Ed., 2001.

3. H. Jasak, Error Analysis and Estimation for the Finite Volume Method

with Applications to Fluid Flows, Ph.D. Thesis, Imperial College, London,

1996.
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Appendix D

SCHEMES USED IN OpenFOAM®

FOR THE DIFFERENT SIMULATION

CASES

D.1 The schemes used in OPENFOAM® in this work for dif-

ferent simulation cases

ddtSchemes

{

default CrankNicholson 1;

}

gradSchemes

{

default Gauss linear;

}
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divSchemes

{

default Gauss linear;

}

laplacianSchemes

{

default Gauss linear corrected;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default corrected;

}

D.2 Solvers settings used in OpenFOAM® in this work for

different simulation cases

solvers

{

p

{

solver PCG;

preconditioner DIC;
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tolerance 1e-10;

relTol 0.05;

}

U

{

solver PCG;

preconditioner DIC;

tolerance 1e-09;

relTol 0.1;

}

c (c ≡ φ) (concentration of particles)

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-09;

relTol 0.1;

}

}

SIMPLE

{

nCorrectors 2; //minimum 2

nNonOrthogonalCorrectors 0;

pRefcell 0;

pRefValue 0;

}

relaxationFactors

230



D.2. SOLVERS SETTINGS USED IN OPENFOAM® IN THIS WORK FOR
DIFFERENT SIMULATION CASES

{

p 0.3;

U 0.7;

}
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