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Introduction

In this thesis, we study Lie algebras, Lie superalgebras, Jordan algebras and Novikov alge-
bras equipped with a non-degenerate associative bilinear form. Such algebras are considered
over the field of complex numbers and finite-dimensional. We add the condition that the bilin-
ear form is symmetric or even, supersymmetric in the graded case. We call them respectively
quadratic Lie algebras, quadratic Lie superalgebras, pseudo-Euclidean Jordan algebras
and symmetric Novikov algebras.

Let g be a finite-dimensional algebra over C and (X ,Y ) 7→ XY be its product. A bilinear
form B : g×g→ C is called associative (or invariant) if it satisfies:

B(XY,Z) = B(X ,Y Z)

for all X ,Y,Z in g and non-degenerate if B(X ,g) = 0 implies X = 0. Such a bilinear form has
arisen in several areas of Mathematics and Physics. It can be seen as a generalization of the
Killing form on a semisimple Lie algebra, the inner product of an Euclidean Jordan algebra or
simply, as the Frobenius form of a Frobenious algebra. The associativity of a bilinear form also
can be found in the conditions of an admissible trace function defined on a power-associative
algebra. For details, the reader can refer to a paper by M. Bordemann [Bor97].

We begin with a quadratic Lie algebra g and its product, the bracket [ , ]. A result in the
work of G. Pinczon and R. Ushirobira [PU07] leads to our first problem: define the 3-form I on
g by I(X ,Y,Z) = B([X ,Y ],Z) for all X ,Y,Z in g. Then I satisfies {I, I} = 0 where { , } is the
super-Poisson bracket defined on A (g), the Grassmann algebra of skew-symmetric multilinear
forms on g by:

{Ω,Ω′}= (−1)k+1
n

∑
j=1

ιX j(Ω)∧ ιX j(Ω
′), ∀ Ω ∈A k(g),Ω′ ∈A (g)

in a fixed orthonormal basis {X1, . . . , Xn} of g.
In this case, the element I is called the 3-form associated to g. Conversely, given a quadratic

vector space (g,B) and a non-zero 3-form I on g such that {I, I}= 0, then there is a non-Abelian
quadratic Lie algebra structure on g such that I is the 3-form associated to g. By a classical result
in a N. Bourbaki’s book [Bou58] that is also recalled in Proposition 2.2.3, we set the following
vector space:

VI = {α ∈ g∗ | α ∧ I = 0}

The dup-number dup(g) of a non-Abelian quadratic Lie algebra g is defined by dup(g) =
dim(VI). It measures the decomposability of the 3-form I and its range is {0,1,3}. For instance,
I is decomposable if and only if dup(g) = 3 and then the corresponding quadratic Lie algebra

vi



Introduction

structures can be determined completely up to isometrical isomorphisms (or i-isomorphisms, for
short) [PU07]. Such Lie algebras appear also in the classification of Lie algebras whose coad-
joint orbits of dimension at most 2 (done by D. Arnal, M. Cahen and J. Ludwig [ACL95]). A
remarkable point is that the dup-number is invariant by i-isomorphism, that is, two i-isomorphic
quadratic Lie algebras have the same dup-number.

The first goal of our study is to determine quadratic Lie algebra structures in the case
dup(g) = 1. The classification of such structures is one of the aims of this thesis. Here, we
want to emphasize that our classification is considered in two senses: up to i-isomorphisms and
more strongly, up to isomorphisms. This study is interesting by itself. It allows us to regard two
distinguished kinds of classes: quadratic Lie algebras whose dup-number is non-zero and those
whose dup-number is zero.

We say that a non-Abelian quadratic Lie algebra g is ordinary if dup(g) = 0. Otherwise, g
is called singular. By a technical requirement, we separate singular quadratic Lie algebras into
two classes: those of type S1 if their dup-number is 1 and of type S3 if their dup-number is 3.

For n≥ 1, let O(n) be the set of ordinary, S(n) be the set of singular and Q(n) be the set of
non-Abelian quadratic Lie algebra structures on Cn. The distinction of two sets O(n) and S(n)
is shown in Theorem 2.2.13 as follows:

THEOREM 1:

(1) O(n) is Zariski-open and S(n) is Zariski-closed in Q(n).

(2) Q(n) 6= /0 if and only if n≥ 3.

(3) O(n) 6= /0 if and only if n≥ 6.

Next, we shall give a complete classification of singular quadratic Lie algebras, up to i-
isomorphisms and up to isomorphisms. It is done mainly on a solvable framework by the
reason below. There are four main steps to reach this goal:

(1) Using the identity {I, I}= 0, we determine the Lie bracket on a solvable singular quadratic
Lie algebra (Proposition 2.2.22).

(2) We describe a solvable singular quadratic Lie algebra as a double extension of a quadratic
vector space by a skew-symmetric map (or double extension, for short) (this notion is
initiated by V. Kac [Kac85] and generally developed by A. Medina and P. Revoy [MR85]).
As a consequence of (1), a quadratic Lie algebra is singular and solvable if and only if it
is a double extension (Proposition 2.2.28 and Proposition 2.2.29).

(3) We find the i-isomorphic and isomorphic conditions for two solvable singular quadratic
Lie algebras (Theorem 2.2.30 and Corollary 2.2.31). These conditions allow us to es-
tablish a one-to-one correspondence between the set of i-isomorphic class of solvable

singular quadratic Lie algebras and the set ˜P1(o(n)) of O(n)-orbits in P1(o(n)), where
P1(o(n)) denotes the projective space of the Lie algebra o(n).

(4) Finally, we prove that the i-isomorphic and isomorphic notions coincide for solvable sin-
gular quadratic Lie algebras.
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What about non-solvable singular quadratic Lie algebras? Such a Lie algebra g can be
written as

g= s
⊥
⊕ z

where z is a central ideal of g and s ' o(3) equipped with a bilinear form λκ for some non-
zero λ ∈ C where κ is the Killing form of o(3). Note that different from the solvable case, the
notions of i-isomophism and isomorphism are not equivalent in this case.

We denote by Ss(n+2) the set of solvable singular quadratic Lie algebra structures on Cn+2,

by Ŝs(n+2) the set of isomorphism classes of elements in Ss(n+2) and by Ŝs
i
(n+2) the set of

i-isomorphism classes. Given C ∈ o(n), there is an associated double extension gC ∈ Ss(n+2)
(Definition 2.2.26) and then (Theorem 2.2.35):

THEOREM 2:
The map C→ gC induces a bijection from ˜P1(o(n)) onto Ŝs

i
(n+2).

A weak form of Theorem 2 was stated in the paper by G. Favre and L. J. Santharoubane
[FS87], in the case of i-isomorphisms satisfying some (dispensable) conditions. A strong im-
provement to Theorem 2 will be given in Theorem 5 where the i-isomorphic notion is replaced
by the isomorphic notion.

We detail Theorem 2 in some particular cases. Let N(n+2) be the set of nilpotent singular
structures on Cn+2, N̂i(n+ 2) be the set of i-isomorphism classes and N̂(n+ 2) be the set of

isomorphism classes of elements in N(n+2). We denote g and g′ i-isomorphic by g
i' g′. Using

the Jacobson-Morozov theorem, we prove that (Theorem 2.2.37):

THEOREM 3:

(1) Let g and g′ be in N(n+2). Then g
i' g′ if and only if g' g′. Thus N̂i(n+2) = N̂(n+2).

(2) Let Ñ (n) be the set of nilpotent O(n)-adjoint orbits in o(n). Then the map C 7→ gC
induces a bijection from Ñ (n) onto N̂(n+2).

In Chapter 1, we recall the well-known classification of nilpotent O(n)-adjoint orbits in
o(n). An important ingredient is the Jacobson-Morosov and Kostant theorems on sl(2)-triples
in semisimple Lie algebras (see the book by D. H. Collingwood and W. M. McGovern [CM93]
for more details). Using this classification, we obtain a classification of N̂(n+ 2) in term of
special partitions of n, that is, there is a one-to-one correspondence between N̂(n + 2) and
the set P1(n) of partitions of n in which even parts occur with even multiplicity (Theorem
2.2.38). In other words, we can parametrize the set N̂(n+2) by the set of indices P1(n). This
parametrization is detailed by means of amalgamated products of nilpotent Jordan-type Lie
algebras.

Let D(n+2) be the set of diagonalizable singular structures on Cn+2 (i.e. C is a semisim-
ple element of o(n)) and Dred(n+ 2) be the set of reduced ones (see Definition 2.1.7 for the
definition of a reduced quadratic Lie algebra). Denote by D̂(n+ 2), D̂i(n+ 2), D̂red(n+ 2)
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and D̂i
red(n+2) the corresponding sets of isomorphism and i-isomorphism classes of elements

in D(n+ 2) and Dred(n+ 2). It is clear by Theorem 2 that D̂i(n+ 2) is in bijection with the
well-known set of semisimple O(n)-orbits in P1(o(n)). More precisely, we have the following
result (Proposition 2.2.40, Corollary 2.2.43 and Proposition 2.2.44):

THEOREM 4:

(1) There is a bijection between D̂i(n+2) and the set of semisimple O(n)-orbits in P1(o(n)).
The same result holds for D̂i

red(n+2) and semisimple invertible orbits in P1(o(n)).

(2) Let g and g′ be inDred(n+2). Then n must be even and g
i' g′ if and only if g' g′. Thus,

D̂red(2p+2) = D̂i
red(2p+2), for all p≥ 1.

(3) Let (g,B) be a diagonalizable reduced singular quadratic Lie algebra. Consider g4 the

double extension of C2 by C =

(
1 0
0 −1

)
. Then g is an amalgamated product of singular

quadratic Lie algebras all i-isomorphic to g4.

Combined with the classification of semisimple O(n)-adjoint orbits of o(n) in Chapter 1,
the sets D̂(2p+ 2) and D̂red(2p+ 2) can be parametrized as in Theorem 2.2.41 where the set
D̂(2p+2) is in bijection with Λp/Hp and the set D̂red(2p+2) is in bijection with Λ+

p /Hp (see
Section 1.3 and Subsection 2.2.5 for the respective definitions).

Clearly, the parametrization of i-isomorphic classes of nilpotent or diagonalizable singular
quadratic Lie algebras can be regarded as a direct corollary of the classification of nilpotent or
semisimple O(n)-adjoint orbits of o(n). However, we do not find any reference that shows how
to parametrize O(n)-adjoint orbits of o(n) in the general case. Therefore, our next objective is
to determine such a parametrization. This solution allows us to go further in the classification
of singular quadratic Lie algebras.

We continue with the notion of an invertible singular quadratic Lie algebra (i.e. C is
invertible). Let Sinv(2p+2) be the set of such structures on C2p+2 and Ŝinv(2p+2) be the set of
isomorphism classes of elements in Sinv(2p+2). The isomorphic and i-isomorphic notions co-
incide in the invertible case as we show in Lemma 2.2.42. Moreover, a description of invertible
singular quadratic Lie algebras in term of amalgamated product can be found in Proposition
2.2.49. The classification of the set Ŝinv(2p+2) is deduced from Theorem 6 below.

We turn our attention to the general case. Given a solvable singular quadratic Lie algebra
g, realized as the double extension of Cn by C ∈ o(n), we consider the Fitting components CI
and CN of C and the corresponding double extensions gI = gCI

and gN = gCN
that we call the

Fitting components of g. We have gI invertible, gN nilpotent and g is the amalgamated product
of gI and gN . We prove that (Theorem 2.2.52):

THEOREM 5:
Let g and g′ be solvable singular quadratic Lie algebras and let gN , gI , g′N , g′I be their

Fitting components, respectively. Then:

ix
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(1) g
i' g′ if and only if

gN
i' g′N

gI
i' g′I

.

The result remains valid if we replace
i' by ' .

(2) g' g′ if and only if g
i' g′. Therefore Ŝs(n+2) = Ŝs

i
(n+2).

Theorem 5 is a really interesting and unexpected property of solvable singular quadratic Lie
algebras.

From the above facts, in order to describe more precisely the set Ss(n+ 2), we turn to the
problem of classification of O(n)-adjoint orbits in o(n). Since the study of the nilpotent orbits is
complete, we begin with the invertible case. Let I (n) be the set of invertible elements in o(n)
and Ĩ (n) be the set of O(n)-adjoint orbits of elements in I (n). Notice that I (2p+ 1) = /0
(Appendix A) then we consider n = 2p. Define the set

D =
⋃

r∈N∗
{(d1, . . . ,dr) ∈ Nr | d1 ≥ d2 ≥ ·· · ≥ dr ≥ 1}

and the map Φ : D → N defined by Φ(d1, . . . ,dr) = ∑
r
i=1 di. We introduce the set Jp of all

triples (Λ,m,d) such that:

(1) Λ is a subset of C\{0} with ]Λ≤ 2p and λ ∈ Λ if and only if −λ ∈ Λ.

(2) m : Λ→ N∗ satisfies m(λ ) = m(−λ ), for all λ ∈ Λ and ∑
λ∈Λ

m(λ ) = 2p.

(3) d : Λ→D satisfies d(λ ) = d(−λ ), for all λ ∈ Λ and Φ◦d = m.

To every C ∈ I (2p), we can associate an element (Λ,m,d) of Jp as follows: write C =
S+N as a sum of its semisimple and nilpotent parts. Then Λ is the spectrum of S, m is the
multiplicity map on Λ and d gives the size of the Jordan blocks of N. Therefore, we obtain a
map i : I (2p)→Jp and we prove:

THEOREM 6:
The map i : I (2p)→Jp induces a bijection from Ĩ (2p) onto Jp.

As a corollary, we deduce a bijection from Ŝinv(2p+ 2) onto Jp/C∗ (Theorem 2.2.50)
where the action of µ ∈ C∗ = C\{0} on Jp is defined by

µ · (Λ,m,d) = (µΛ,m′,d′), with m′(µλ ) = m(λ ) and d′(µλ ) = d(λ ), ∀ λ ∈ Λ.

Combined with the previous theorems, we obtain a complete classification of Ŝs(n+ 2) as
follows. Let D(n) be the set of all pairs ([d],T ) such that [d] ∈P1(m), the set of partitions of
m in which even parts occur with even multiplicity, and T ∈J` satisfying m+2`= n. We set
an action of the multiplicative group C∗ on D(n) by:

µ · ([d],T ) = ([d],µ ·T ) , ∀ µ ∈ C∗, ([d],T ) ∈D(n).

x



Introduction

and obtain the following result (Theorem 2.2.54):

THEOREM 7:
The set Ŝs(n+2) is in bijection with D(n)/C∗.

By this process, we also obtain a complete classification of O(n)-adjoint orbits in o(n), a
result which is certainly known, but for which we have no available reference.

We close the first problem with the result as follows (Theorem 2.3.7):

THEOREM 8:
The dup-number is invariant under isomorphisms, i.e. if

g' g′ then dup(g) = dup(g′).

Its proof is not really obvious as in the case of i-isomorphisms. It is obtained through a
computation of centromorphisms in the reduced singular case. Here, we use a result of I. Bajo
and S. Benayadi given in [BB97]. We also have the quadratic dimension dq(g) of g in this case
(Proposition 2.3.6):

dq(g) = 1+
dim(Z(g))(1+dim(Z(g))

2
,

where Z(g) is the center of g.
As we will see in Chapter 4, we are also interested in 2-step nilpotent quadratic Lie algebras.

Thanks to double extensions, the simplest case of a quadratic Lie algebra is a solvable singular
quadratic Lie algebra. We have a similar situation for 2-step nilpotent quadratic Lie algebras
in term of T ∗-extensions, a notion given by M. Bordemann [Bor97]. Such algebras with a
characterization of i-isomorphic classes and isomorphic classes were introduced in a paper of
G. Ovando [Ova07]. By studying the set of linear transformations in o(h) where h is a vector
space with a fixed inner product, the author shows that if the dimension of the vector space
h is three or greater than four, there exists a reduced 2-step nilpotent quadratic Lie algebra.
Moreover, there is only one six-dimensional reduced 2-step nilpotent quadratic Lie algebra (up
to i-isomorphisms). In this thesis, once again, we want to approach 2-step nilpotent quadratic
Lie algebras through the method of double extensions and the associated 3-form I. In term
of double extensions, we have a rather obvious result: every 2-step nilpotent quadratic Lie
algebra can be obtained from an Abelian algebra by a sequence of double extensions by one-
dimensional algebra (Proposition 2.4.12).

In order to observe the appearance of the element I, we recall the notion of T ∗-extension
of a Lie algebra in [Bor97] but with some restricted conditions as follows. Let h be a complex
vector space and θ : h×h→ h∗ be a non-degenerate skew-symmetric bilinear map. We assume
that θ is cyclic (that means θ(x,y)z = θ(y,z)x for all x,y,z ∈ g). Let g = h⊕h∗ be the vector
space equipped with the bracket

[x+ f ,y+g] = θ(x,y)

and the bilinear form
B(x+ f ,y+g) = f (y)+g(x),
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for all x,y ∈ h, f ,g ∈ h∗. Then (g,B) is a 2-step nilpotent quadratic Lie algebra and called the
T ∗-extension of h by θ (or T ∗-extension, simply).

The set of T ∗-extensions is enough to represent all 2-step nilpotent quadratic Lie algebras
by a result in Proposition 2.4.14 that every reduced 2-step nilpotent quadratic Lie algebra is
i-isomorphic to a T ∗-extension. Thus, we focus on the isomorphic classes and i-isomorphic
classes of T ∗-extensions. We prove that (Theorem 2.4.16):

THEOREM 9:
Let g and g′ be T ∗-extensions of h by θ1 and θ2 respectively. Then:

(1) there exists a Lie algebra isomorphism between g and g′ if and only if there exist an
isomorphism A1 of h and an isomorphism A2 of h∗ such that

A2(θ1(x,y)) = θ2(A1(x),A1(y)), ∀ x,y ∈ h.

(2) there exists an i-isomorphism between g and g′ if and only if there exists an isomorphism
A1 of h such that

θ1(x,y) = θ2(A1(x),A1(y))◦A1, ∀ x,y ∈ h.

Now, if we define I(x,y,z) = θ(x,y)z, for all x,y,z ∈ h then the element I is the 3-form
associated to the T ∗-extension of h by θ . Moreover, there is a one-to-one correspondence
between the set of T ∗-extensions of h and the set of 3-forms {I ∈ A 3(h) | ιx(I) 6= 0, ∀ x ∈
h \ {0}}. Remark that by Theorem 9 the i-isomorphic classification of T ∗-extensions of h can
be reduced to the isomorphic classification of such 3-forms on h. As a consequence, we obtain
the same result as in [Ova07] and further that there exists only one reduced 2-step nilpotent
quadratic Lie algebra of dimension 10 (Appendix C and Remark 2.4.21).

In Chapter 3, we give a graded version of the main results in Chapter 2: singular quadratic
Lie superalgebras. We begin with a quadratic Z2-graded vector space V =V0⊕V1 with a non-
degenerate bilinear form B. Recall that the bilinear form B is symmetric on V0, skew-symmetric
on V1 and B(V0,V1) = 0.

Consider the super-exterior algebra of V ∗ defined by a Z×Z2-gradation

E(V ) = A (V0) ⊗
Z×Z2

S (V1)

with the natural super-exterior product

(Ω⊗F)∧ (Ω′⊗F ′) = (−1) f ω ′(Ω∧Ω
′)⊗FF ′,

for all Ω,Ω′ in the algebra A (V0) of alternating multilinear forms on V0 and F,F ′ in the algebra
S (V1) of symmetric multilinear forms on V1. It is clear that this algebra is commutative and
associative. In [MPU09], I. A. Musson, G. Pinczon and R. Ushirobira presented the super
Z×Z2-Poisson bracket on E(V ) as follows:

{Ω⊗F,Ω′⊗F ′}= (−1) f ω ′ ({Ω,Ω′}⊗FF ′+(Ω∧Ω
′)⊗{F,F ′}

)
,

for all Ω ∈A (V0), Ω′ ∈A ω ′(V0), F ∈S f (V1), F ′ ∈S (V1).
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We realize that with a quadratic Lie superalgebra (g,B), if we define a trilinear form I on g
by

I(X ,Y,Z) = B([X ,Y ],Z), ∀ X ,Y,Z ∈ g

then I is a super-antisymmetric trilinear form in E(3,0)(g) and therefore, it seems to be natural to
ask the question: does it happen {I, I}= 0? We give an affirmative answer this in the first part
of Chapter 3 (Theorem 3.1.17). Moreover, we obtain that quadratic Lie superalgebra structures
with bilinear form B are in one-to-one correspondence with elements I in E(3,0)(g) satisfying
{I, I}= 0 (Proposition 3.1.18)

As in Chapter 2, we give the notion of dup-number of a non-Abelian quadratic Lie superal-
gebra g defined by

dup(g) = dim({α ∈ g∗ | α ∧ I = 0})
and suggest considering the set of quadratic Lie superalgebras where the dup-number is non-
zero. Thanks to Lemma 3.2.1, we focus on a singular quadratic Lie superalgebra g with
dup(g) = 1. It is called a singular quadratic Lie superalgebra of type S1. Remark that in
this case, the element I may be decomposable.

We detail some particular cases. When the element I is decomposable, we obtain a classifi-
cation of reduced corresponding Lie superalgebras as in Proposition 3.3.3 where the even part
g0 of g is a singular quadratic Lie algebra or 2-dimensional. Actually, we prove in Proposition
3.4.1 that if g is a non-Abelian quadratic Lie superalgebra with 2-dimensional even part then g
is a singular quadratic Lie superalgebra of type S1.

Note that if we replace the quadratic vector space q in the definition of double extension by
a symplectic vector space then we obtain a quadratic Lie superalgebra with 2-dimensional even
part (Definitions 2.2.26 and 3.4.6). Thus, we have the following result (Theorem 3.4.8):

THEOREM 10:
A quadratic Lie superalgebra has the 2-dimensional even part if and only if it is a double

extension.

By a completely similar process as in Chapter 2, a classification of quadratic Lie super-
algebras with 2-dimensional even part is given as follows. Let S(2+ 2n) be the set of such
structures on C2+n. We call an algebra g ∈ S(2+2n) diagonalizable (resp. invertible) if it is
the double extension by a diagonalizable (resp. invertible) map. Denote the subsets of nilpo-
tent elements, diagonalizable elements and invertible elements in S(2+ 2n), respectively by
N(2+ 2n), D(2+ 2n) and by Sinv(2+ 2n). Denote by N̂(2+ 2n), D̂(2+ 2n), Ŝinv(2+ 2n) the
sets of isomorphic classes in N(2+2n), D(2+2n), Sinv(2+2n), respectively and D̂red(2+2n)
the subset of D̂(2+2n) including reduced ones. Keeping the other notations then we have the
classification result (Theorems 3.4.13 and 3.4.14):

THEOREM 11:

(1) Let g and g′ be elements in S(2+2n). Then g and g′ are i-isomorphic if and only if they
are isomorphic.

(2) There is a bijection between N̂(2+ 2n) and the set of nilpotent Sp(2n)-adjoint orbits of
sp(2n) that induces a bijection between N̂(2+ 2n) and the set of partitions P−1(2n) of
2n in which odd parts occur with even multiplicity.
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(3) There is a bijection between D̂(2 + 2n) and the set of semisimple Sp(2n)- orbits of
P1(sp(2n)) that induces a bijection between D̂(2+2n) and Λn/Hn. In the reduced case,
D̂red(2+2n) is bijective to Λ+

n /Hn.

(4) There is a bijection between Ŝinv(2 + 2n) and the set of invertible Sp(2n)- orbits of
P1(sp(2n)) that induces a bijection between Ŝinv(2+2n) and Jn/C∗.

(5) There is a bijection between Ŝ(2+ 2n) and the set of Sp(2n)- orbits of P1(sp(2n)) that
induces a bijection between Ŝ(2+2n) and D(2n)/C∗.

As for quadratic Lie algebras, we have the notion of quadratic dimension for quadratic Lie
superalgebras. In the case g having a 2-dimensional even part, we can compute its quadratic
dimension as follows:

dq(g) = 2+
(dim(Z(g)−1))(dim(Z(g)−2)

2
.

We turn now to (g,B) a singular quadratic Lie superalgebra of type S1. By Definition 3.5.3
and Lemma 3.5.5, the Lie superalgebra g can be realized as the double extension of a quadratic
Z2-graded vector space q= q0⊕q1 by a map C =C0 +C1 ∈ o(q0)⊕ sp(q1). Denote by L (q0)
(resp. L (q1)) the set of endomorphisms of q0 (resp. q1). We give a characterization as follows
(Theorem 3.5.7).

THEOREM 12:
Let g and g′ be two double extensions of q by C =C0 +C1 and C′ =C′0 +C′1, respectively.

Assume that C1 is non-zero. Then

(1) there exists a Lie superalgebra isomorphism between g and g′ if and only if there exist
invertible maps P ∈L (q0), Q ∈L (q1) and a non-zero λ ∈ C such that

(i) C′0 = λPC0P−1 and P∗PC0 =C0.

(ii) C′1 = λQC1Q−1 and Q∗QC1 =C1.

where P∗ and Q∗ are the adjoint maps of P and Q with respect to B|q0×q0
and B|q1×q1

.

(2) there exists an i-isomorphism between g and g′ if and only if there is a non-zero λ ∈ C
such that C′0 is in the O(q0)-adjoint orbit through λC0 and C′1 is in the Sp(q1)-adjoint
orbit through λC1.

We close the problem on singular quadratic Lie superalgebras by an assertion that the dup-
number is invariant under Lie superalgebra isomorphisms (Theorem 3.5.9).

In the last section of Chapter 3, we study the structure of a quadratic Lie superalgebra g
such that its element I has the form:

I = J∧ p

where p ∈ g∗1 is non-zero and J ∈ A 1(g0)⊗S 1(g1) is indecomposable. We call g a quasi-
singular quadratic Lie superalgebra. With the notion of generalized double extension given
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by I. Bajo, S. Benayadi and M. Bordemann in [BBB], we prove that (Corollary 3.6.5 and The-
orem 3.6.8)

THEOREM 13:
A quasi-singular quadratic Lie superalgebra is a generalized double extension of a quadratic

Z2-graded vector space. This superalgebra is 2-nilpotent.

The algebras obtained in Chapter 2 and Chapter 3 lead us to the general framework as
follows: let q be a complex vector space equipped with a non-degenerate bilinear form Bq and
C : q→ q be a linear map. We associate a vector space :

J= q
⊥
⊕ t

to the triple (q,Bq,C) where (t = span{x1,y1},Bt) is a 2-dimensional vector space and Bt :
t× t→ C is the bilinear form defined by

Bt(x1,x1) = Bt(y1,y1) = 0, Bt(x1,y1) = 1.

Define a product ? on the vector space J such that t is a subalgebra of J,

y1 ? x =C(x), x1 ? x = 0, x? y = Bq(C(x),y)x1

for all x,y ∈ q and such that the bilinear form BJ = Bq+Bt is associative. We call J the double
extension of q by C. It can be completely characterized by the pair (Bq,C). Solvable singular
quadratic Lie algebras and singular quadratic Lie superalgebras are only particular cases of this
notion. Therefore, it is natural to consider similar algebras corresponding to the remaining
different cases of the pair (Bq,C). In Chapter 4 we give a condition that J is a pseudo-Euclidean
(commutative) Jordan algebra (i.e a Jordan algebra endowed with a non-degenerate associative
symmetric bilinear form). Consequently, the bilinear forms Bq, Bt are symmetric, C must be
also symmetric (with respect to Bq) and the product ? is defined by:

(x+λx1 +µy1)? (y+λ
′x1 +µ

′y1) = µC(y)+µ
′C(x)+Bq(C(x),y)x1

+ε
((

λ µ
′+λ

′
µ
)

x1 +µµ
′y1
)
,

ε ∈ {0,1}, for all x,y ∈ q, λ ,µ,λ ′,µ ′ ∈ C.
Since there exist only two one-dimensional Jordan algebras, one Abelian and one simple,

then we have two types of extensions called respectively nilpotent double extension and diag-
onalizable double extension. The first result (Proposition 4.2.1, Corollary 4.2.2, Lemma 4.2.7
and Appendix D) is the following:

THEOREM 14:

(1) If J is the nilpotent double extension of q by C then C3 = 0, J is k-step nilpotent, k ≤ 3,
and t is an Abelian subalgebra of J.

(2) If J is the diagonalizable double extension of q by C then 3C2 = 2C3+C, J is not solvable
and t? t= t. In the reduced case, y1 acts diagonally on J with eigenvalues 1 and 1

2 .
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This result can be obtained by checking Jordan identity for the algebra J. However, it
can be seen as a particular case of the general theory of double extension on pseudo-Euclidean
(commutative) Jordan algebras given by A. Baklouti and S. Benayadi in [BB], that is the double
extension of an Abelian algebra by one dimensional Jordan algebra. By the similar method as
in Chapter 2 and Chapter 3, we obtain the classification result (Theorem 4.2.5, Theorem 4.2.8
and Corollary 4.2.9):

THEOREM 15:

(1) Let J= q
⊥
⊕ (Cx1⊕Cy1) and J′= q

⊥
⊕ (Cx′1⊕Cy′1) be nilpotent double extensions of q by

symmetric maps C and C′, respectively. Then there exists a Jordan algebra isomorphism
A : J→ J′ such that A(q⊕Cx1) = q⊕Cx′1 if and only if there exist an invertible map
P ∈ End(q) and a non-zero λ ∈C such that λC′ = PCP−1 and P∗PC =C where P∗ is the
adjoint map of P with respect to B. In this case A i-isomorphic then P ∈ O(q).

(2) Let J= q
⊥
⊕ (Cx1⊕Cy1) and J′ = q

⊥
⊕ (Cx′1⊕Cy′1) be diagonalizable double extensions

of q by symmetric maps C and C′, respectively. Then J and J′ are isomorphic if and only
if they are i-isomorphic. In this case, C and C′ have the same spectrum.

The next part of Chapter 4 can be regarded as the symmetric version of 2-step nilpotent
quadratic Lie algebras, that is the class of 2-step nilpotent pseudo-Euclidean Jordan algebras.
We introduce the notion of generalized double extension but with a restricting condition for 2-
step nilpotent pseudo-Euclidean Jordan algebras. As a consequence, we obtain in this way the
inductive characterization of those algebras (Proposition 4.3.11): a non-Abelian 2-step nilpo-
tent pseudo-Euclidean Jordan algebra is obtained from an Abelian algebra by a sequence of
generalized double extensions.

To characterize (up to isomorphisms and i-isomorphisms) 2-step nilpotent pseudo-Euclidean
Jordan algebras we need to use again the concept of a T ∗-extension as above with a little change.
Given a complex vector space a and a non-degenerate cyclic symmetric bilinear map θ : a×a→
a∗. On the vector space J= a⊕a∗ we define the product

(x+ f )(y+g) = θ(x,y).

Then J is a 2-step nilpotent pseudo-Euclidean Jordan algebra and it is called the T ∗-extension of
a by θ (or T ∗-extension, simply). Moreover, every reduced 2-step nilpotent pseudo-Euclidean
Jordan algebra is i-isomorphic to some T ∗-extension (Proposition 4.3.14). An i-isomorphic and
isomorphic characterization of T ∗-extensions is given in Theorem 4.3.15 as follows:

THEOREM 16:
Let J1 and J2 be T ∗-extensions of a by θ1 and θ2 respectively. Then:

(1) there exists a Jordan algebra isomorphism between J1 and J2 if and only if there exist an
isomorphism A1 of a and an isomorphism A2 of a∗ satisfying:

A2(θ1(x,y)) = θ2(A1(x),A1(y)), ∀ x,y ∈ a.
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(2) there exists an i-isomorphism between J1 and J2 if and only if there exists an isomorphism
A1 of a satisfying

θ1(x,y) = θ2(A1(x),A1(y))◦A1, ∀ x,y ∈ a.

As a consequence, the classification of i-isomorphic T ∗-extensions of a is equivalent to the
classification of symmetric 3-forms on a. We will detail it in the cases of dim(a) = 1 and 2
(Examples 4.3.18 and 4.3.19).

In the last of Chapter 4, we study Novikov algebras. These objects appeared in the study of
the Hamiltonian condition of an operator in the formal calculus of variations (see the paper by
I. M. Gel’fand and I. Y. Dorfman [GD79]) as well as in the classification of Poisson brackets
of hydrodynamic type (done by A. A. Balinskii and S. P. Novikov in [BN85]). A detailed
classification of Novikov algebras up to dimension 3 is given by C. Bai and D. Meng in [BM01].

It is known that an associative algebra is both Lie-admissible and Jordan-admissible. This
is not true for Novikov algebras although they are Lie-admissible. Therefore, it is natural to
search a condition for a Novikov algebra to become Jordan-admissible. The condition we give
here (weaker than associativity) is the following (Theorem 4.4.17):

THEOREM 17:
A Novikov algebra N is Jordan-admissible if it satisfies the condition

(x,x,x) = 0, ∀ x ∈N.

A corollary of Theorem 17 is that Novikov algebras are not power-associative since there
exist Novikov algebras not Jordan-admissible.

Next, we consider symmetric Novikov algebras. In this case, N will be associative, its sub-
adjacent Lie algebra g(N) is a 2-step nilpotent quadratic Lie algebra (shown in the paper [AB10]
of I. Ayadi and S. Benayadi) and the associated Jordan algebra J(N) is pseudo-Euclidean.
Therefore, the study of 2-step nilpotent quadratic Lie algebras and pseudo-Euclidean Jordan
algebras is closely related to symmetric Novikov algebras.

It is known that every symmetric Novikov algebra up to dimension 5 is commutative [AB10]
and a non-commutative example of dimension 6 is given by F. Zhu and Z. Chen in [ZC07]. This
algebra is 2-step nilpotent. We will show in Proposition 4.4.28 that every non-commutative
symmetric Novikov algebra of dimension 6 is 2-step nilpotent.

As for quadratic Lie algebras and pseudo-Euclidean Jordan algebras, we define the notion
of a reduced symmetric Novikov algebra. Using this notion, we obtain the result (Proposition
4.4.29): if N is a non-commutative symmetric Novikov algebra such that it is reduced then

3≤ dim(Ann(N))≤ dim(N2)≤ dim(N)−3.

In other words, we do not have N2 = N in the non-commutative case . Note that this
may happen in the commutative case (see Example 4.4.13). As a consequence, we have a
characterization for the non-commutative case of dimension 7 (Proposition 4.4.31). Finally,
we give an indecomposable non-commutative example for 3-step nilpotent symmetric Novikov
algebras of dimension 7.
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z

The thesis has been divided into four parts. The classifications of O(m)-adjoint orbits of
o(m) and Sp(2n)-adjoint orbits of sp(2n) are presented in Chapter 1. Singular quadratic Lie
algebras and 2-step nilpotent quadratic Lie algebras are studied in Chapter 2. We will prove the
equality {I, I} = 0 and introduce the class of singular quadratic Lie superalgebras in Chapter
3. However, since the classifying method is not new, we only focus on two cases: elementary
and 2-dimensional even part. The classification of singular quadratic Lie algebras and singular
quadratic Lie superalgebras having 2-dimensional even part can be regarded as an application
of the problem of orbits classification in Chapter 1. We present quasi-singular quadratic Lie
superalgebras without classification in Chapter 3. Such algebras can be found in [BBB] where
the generalized double extension notion is reduced into the one-dimensional extension of an
Abelian superalgebra. Pseudo-Euclidean Jordan algebras that are the one-dimensional double
extension of an Abelian algebra and 2-step nilpotent pseudo-Euclidean Jordan algebras are
given in Chapter 4 with a classifying characterization. The structure of symmetric Novikov
algebras is studied in the last section of Chapter 4 with a more detail than in [AB10].

There are four appendices containing rather obvious and lengthy results but yet useful for
our problems. Appendix A supplies a source about skew-symmetric maps for Chapter 1 and
Chapter 2. Appendix B gives a non trivial proof of a fact that every non-Abelian 5-dimensional
quadratic Lie algebra is singular. Another proof can be found in Appendix C where we classify
(up to isomorphisms) 3-forms on a vector space V with 1≤ dim(V )≤ 5. Appendix D is a small
result used in Chapter 4 for pseudo-Euclidean Jordan algebras.
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Notations

We use the notations N, Z, R and C for the set of natural numbers, the set of integers, the
set of real numbers and the set of complex numbers, respectively. The ring of residue classes
modulo 2 of integers is denoted by Z2 which contains two elements 0 and 1. If p ∈ Z, the
notation p indicates its residue classes modulo 2. For a set of numbers K, we denote by K∗ the
set of non-zero numbers in K. Let Λ be a finite set then we use the notation ]Λ for the number
of elements of Λ.

If V is a finite-dimensional vector space over a field K of characteristic zero, the notation
End(V ) signs the set of endomorphisms of V . The space End(V ) is also an algebra over K and
it is denoted by L (V ). We denote by V ∗ the dual vector space of V , that is the set of linear
maps from V into K. For each f ∈ V ∗ and each X ∈ V , there is a natural bilinear form 〈 , 〉 is
defined by

〈 f ,X〉= f (X).

Let W be a subset of V , we denote by W⊥∗ an orthogonal complement of W in V ∗ by the bilinear
form 〈 , 〉. In addition, if V has a non-degenerate bilinear form B : V ×V → K then W⊥B (or
W⊥, for short) also denotes the set {X ∈V | B(X ,W ) = 0}.

The Grassmann algebra of V , that is the algebra of alternating multilinear forms on V ,
with the wedge product is denoted by A (V ). We have A (V ) =

∧
(V ∗), where

∧
(V ∗) denotes

the exterior algebra of the dual space V ∗. We also use the notation S (V ) for the algebra of
symmetric multilinear forms on V , i.e. S (V ) = S(V ∗) where S(V ∗) denotes the symmetric
algebra of V ∗. The algebras A (V ) and S (V ) are Z-graded, we denote their homogeneous
subspaces of degee n by A n(V ) and S n(V ), respectively. Thus one has

A (V ) =
⊕
n∈Z

A n(V ) and S (V ) =
⊕
n∈Z

S n(V )

where A n(V ) = {0} if n /∈ {0,1, . . . ,dim(V )} and S n(V ) = {0} if n is negative.
For n ∈ N∗, the Lie algebra of complex square matrices of size n is denoted by gl(n,C) or

gl(n) for short. The subalgebras sl(n,C) of zero trace matrices and o(n,C) of skew-symmetric
matrices of gl(n) are defined as follows:

sl(n,C) = {M ∈ gl(n) | tr(M) = 0},

o(n,C) = {M ∈ gl(n) | tM =−M}
where tM denotes the transpose matrix of the matrix M. If n = 2k then the subalgebra sp(2k,C)
of symplectic matrices of gl(n) is defined by:

sp(2k,C) = {M ∈ gl(2k) | tMJ+ JM = 0}

1
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where J =

(
0 Ik
−Ik 0

)
∈ gl(2k), Ik denotes the unit matrix of size k. From here, we use the

notations sl(n), o(n) and sp(2k) instead of sl(n,C), o(n,C), sp(2k,C), respectively. We also
denote by P1(o(n)) and P1(sp(2k)) the projective spaces associated to o(n) and sp(2k).

For complex numbers λ1, . . . ,λn, the notation diagn(λ1, . . . ,λn) indicates the diagonal matrix
whose diagonal entries are λ1, . . . ,λn, respectively.

Finally, if g is a finite dimensional algebra over K then we denote the algebra of derivations
of g by Der(g). Recall that an endomorphism D : g→ g is called a derivation of g if it satisfies
D(XY ) = D(X)Y +XD(Y ) for all X ,Y in g.

2



Chapter 1

Adjoint orbits of sp(2n) and o(m)

In the first chapter, we will turn to a fundamental and really interesting problem in Lie
theory: the classification of orbits of classical Lie algebras sl(m), sp(2n) and o(m) where m,n∈
N∗. However, we only emphasize two special cases Sp(2n)-adjoint orbits of sp(2n) and O(m)-
adjoint orbits of o(m) that are necessary for next chapters. The Jordan decomposition allows us
to consider two kinds of orbits: nilpotent and semisimple (represented respectively by diagonal
matrices and strictly upper triangular matrices). The classfication of nilpotent orbits that we
present here follows the work of Gerstenhaber and an important point is the Jacobson-Morozov
theorem. In the semisimple case, a well-known result is that the orbits are parametrized by a
Cartan subalgebra under an action of the associated Weyl group. A brief overview can be found
in [Hum95] with interesting discussions. Many results with detailed proofs can be found in
[CM93] and [BBCM02].

A different point here is to use the Fitting decomposition to review this problem. In particu-
lar, we parametrize the invertible component in the Fitting decomposition of a skew-symmetric
map and from this, we give an explicit classification for Sp(2n)-adjoint orbits of sp(2n) and
O(m)-adjoint orbits of o(m) in the general case. In other words, we establish a one-to-one cor-
respondence between the set of orbits and some set of indices. This is an rather obvious and
classical result but in our knowledge there is not a reference for that mentioned before.

1.1 Definitions
Let V be a m-dimensional complex vector space endowed with a non-degenerate bilinear

form Bε where ε =±1 such that Bε(X ,Y ) = εBε(Y,X), for all X ,Y ∈V . If ε = 1 then the form
B1 is symmetric and we say V a quadratic vector space. If ε =−1 then m must be even and we
say V a symplectic vector space with symplectic form B−1. We denote by L (V ) the algebra of
linear operators of V and GL(V ) the group of invertible operators in L (V ). A map C ∈L (V )
is called skew-symmetric (with respect to Bε ) if it satisfies the following condition:

Bε(C(X),Y ) =−Bε(X ,C(Y )), ∀ X ,Y ∈V.

We define

Iε(V ) = {A ∈ GL(V ) | Bε(A(X),A(Y )) = Bε(X ,Y ), ∀ X ,Y ∈V}

3



1.1. Definitions

and gε(V ) = {C ∈L (V ) | C is skew-symmetric}.

Then Iε(V ) is the isometry group of the bilinear form Bε and gε(V ) is its Lie algebra. Denote
by A∗ ∈L (V ) the adjoint map of an element A ∈L (V ) with respect to Bε , then A ∈ Iε(V ) if
and only if A−1 = A∗ and C ∈ gε(V ) if and only if C∗ =−C. If ε = 1 then Iε(V ) is denoted by
O(V ) and gε(V ) is denoted by o(V ). If ε = −1 then Sp(V ) stands for Iε(V ) and sp(V ) stands
for gε(V ).

Recall that the adjoint action Ad of Iε(V ) on gε(V ) is given by

AdU(C) =UCU−1, ∀ U ∈ Iε(V ), C ∈ gε(V ).

We denote by OC = AdIε (V )(C), the adjoint orbit of an element C ∈ gε(V ) by this action.
If V = Cn, we call Bε a canonical bilinear form of Cn. And with respect to Bε , we de-

fine a canonical basis B = {E1, . . . ,Em} of Cm as follows. If m even, m = 2n, write B =
{E1, . . . ,En,F1, . . . ,Fn}, if m is odd, m = 2n+1, write B = {E1, . . . ,En,G,F1, . . . ,Fn} and one
has:

• if m = 2n then

B1(Ei,Fj) = B1(Fj,Ei) = δi j, B1(Ei,E j) = B1(Fi,Fj) = 0,

B−1(Ei,Fj) =−B−1(Fj,Ei) = δi j, B−1(Ei,E j) = B−1(Fi,Fj) = 0,

where 1≤ i, j ≤ n.

• if m = 2n+1 then ε = 1 and
B1(Ei,Fj) = δi j, B1(Ei,E j) = B1(Fi,Fj) = 0,
B1(Ei,G) = B1(Fj,G) = 0,
B1(G,G) = 1

where 1≤ i, j ≤ n.

Also, in the case V = Cm, we denote by GL(m) instead of GL(V ), O(m) stands for O(V )
and o(m) stands for o(V ). If m = 2n then Sp(2n) stands for Sp(V ) and sp(2n) stands for sp(V ).
We will also write Iε = Iε(Cm) and gε = gε(Cm). The goal of this chapter is classifying all of
Iε -adjoint orbits of gε .

Finally, let V is an m-dimensional vector space. If V is quadratic then V is isometrically
isomorphic to the quadratic space (Cm,B1) and if V is symplectic then V is isometrically iso-
morphic to the symplectic space (Cm,B−1) [Bou59].
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1.2. Nilpotent orbits

1.2 Nilpotent orbits
Let n ∈ N∗, a partition [d] of n is a tuple [d1, ...,dk] of positive integers satisfying

d1 ≥ ...≥ dk and d1 + ...+dk = n.

Occasionally, we use the notation [t i1
1 , . . . , t

ir
r ] to replace the partition [d1, ...,dk] where

d j =


t1 1≤ j ≤ i1
t2 i1 +1≤ j ≤ i1 + i2
t3 i1 + i2 +1≤ j ≤ i1 + i2 + i3
. . .

Each i j is called the multiplicity of t j. Denote by P(n) the set of partitions of n. For example,
P(3) = {[3], [2,1], [13]} and P(4) = {[4], [3,1], [22], [2,12], [14]}.

Let p ∈ N∗. We denote the Jordan block of size p by J1 = (0) and for p≥ 2,

Jp :=


0 1 0 . . . 0
0 0 1 . . . 0
...

... . . .
. . . ...

0 0 . . . 0 1
0 0 0 . . . 0

 .

Then Jp is a nilpotent endomorphism of Cp. Given a partition [d] = [d1, ...,dk] ∈P(n) there is
a nilpotent endomorphism of Cn defined by

X[d] := diagk(Jd1, ...,Jdk).

Moreover, X[d] is also a nilpotent element of sl(n) since its trace is zero. Conversely, if C is a
nilpotent element in sl(n) then C is GL(n)-conjugate to its Jordan normal form X[d] for some
partition [d] ∈P(n).

Given two different partitions [d] = [d1, ...,dk] and [d′] = [d′1, ...,d
′
l ] of n then the GL(n)-

adjoint orbits through X[d] and X[d′] respectively are disjoint by the unicity of Jordan normal
form. Therefore, one has the following proposition:

Proposition 1.2.1. There is a one-to-one correspondence between the set of nilpotent GL(n)-
adjoint orbits of sl(n) and the set P(n).

It results that sl(n) has only finitely many nilpotent GL(n)-adjoint orbits, exactly ]P(n).
However, this does not assure the same for its semisimple subalgebras and the classification of
nilpotent adjoint orbits of gε is rather more difficult since the action of the subgroup Iε does not
coincide with the action of GL(n). However, by many works of Dynkin, Kostant and Mal’cev
(see [CM93]), there is an important bijection between nilpotent adjoint orbits of a semisimple
Lie algebra g and a subset of 3rank(g) possible weight Dynkin diagrams where rank(g) is the
dimension of a Cartan subalgebra of g, and thus gε has only finitely many nilpotent adjoint
orbits.

The main tool in the classical work on nilpotent adjoint orbits is the representation theory
of the Lie algebra sl(2) (or sl(2)-theory, for short) applied to the adjoint action on a semisimple
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1.2. Nilpotent orbits

Lie algebra g. We start with a review of the basic results give in [Hum72]. Recall that sl(2) is
spanned by

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
and these satisfy the following relations:

[H,X ] = 2X , [H,Y ] =−2Y and [X ,Y ] = H.

Let V be a finite-dimensional sl(2)-module. Since H is semisimple then H acts diagonally
on V . Therefore, we can decompose V as a direct sum of eigenspaces Vλ = {v ∈ V | H.v =
λv}, λ ∈ C where the notation H.v denotes H acting on v by the representation.

Definition 1.2.2. If Vλ 6= {0} then we call λ a weight of H in V and we call Vλ a weight space.

Lemma 1.2.3. If v ∈Vλ then X .v ∈Vλ+2 and Y.v ∈Vλ−2.

Proof. Since [H,X ] = 2X one has H.(X .v) = X .(H.v)+ 2X .v = (λ + 2)X .v. So X .v ∈ Vλ+2.
And this is done similarly for Y .

Since V =
⊕
λ

Vλ and dim(V ) is finite then there must exist Vλ 6= {0} such that Vλ+2 = {0}.

In this case, each non-zero x ∈ Vλ is called a maximal vector of weight λ (note that X .v = 0 if
v is a maximal vector).

Now, we assume that V is an irreducible sl(2)-module. Choose a maximal vector, say
v0 ∈Vλ . Set v−1 = 0, vi =

1
i!Y

i.v0 (i≥ 0). Then one has the following lemma.

Lemma 1.2.4.

(1) H.vi = (λ −2i)vi,

(2) Y.vi = (i+1)vi+1,

(3) X .vi = (λ − i+1)vi−1, (i≥ 0).

Proof.

(1) One has H.vi =
1
i!HY i.v0 =

1
i!(Y H−2Y )Y i−1.v0. Since H.v0.= λv0, Y.vi−1 = ivi and by

induction on i, we get H.vi = (λ −2i)vi.

(2) It follows from the definition of vi.

(3) We prove (3) by induction on i. If i = 0, it is clear since vi−1 = 0 and X .v0 = 0. If i > 0,
one has

iX .vi = XY.vi−1 = [X ,Y ].vi−1 +Y X .vi−1 = H.vi−1 +Y X .vi−1.

By (1), (2) and induction, we obtain

iX .vi = (λ −2(i−1))vi−1 +(λ − i+2)Y.vi−2 = i(λ − i+1)vi−1.
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1.2. Nilpotent orbits

By induction, it is easy to show that the non-zero vi are all linearly independent. Since
dim(V ) is finite then there must exist the smallest m such that vm 6= 0 and vm+1 = 0, obviously
vm+i = 0 for all i > 0. Therefore, the subspace of V spanned by vectors v0, . . . ,vm is a sl(2)-
module. Since V is irreducible then V = span{v0, . . . ,vm}. Moreover, the formula (3) shows λ =
m by checking with i = m+1. It means that the weight λ of a maximal vector is a nonnegative
integer (equal to dim(V )− 1) and we call it the highest weight of V . Conversely, for arbitrary
m ≥ 0, formulas (1)- (3) of Lemma 1.2.4 can be used to define a representation of sl(2) on an
m+1-dimensional vector space with a basis {v0, . . . ,vm}. Moreover, it is easy to check that this
representation is irreducible and then we have the following corollary:

Corollary 1.2.5.

(1) Let V be an irreducible sl(2)-module then V is the direct sum of its weight spaces Vµ ,
µ = m,m−2, . . . ,−(m−2),−m where m = dim(V )−1 and dim(Vµ) = 1 for each µ .

(2) For each integer m ≥ 0, there is (up to isomorphisms) one irreducible sl(2)-module of
dimension m+1.

Next, let g be a complex semisimple Lie algebra. If there is a subalgebra of g isomorphic
to sl(2) and spanned by {H,X ,Y} then we called {H,X ,Y} a sl(2)-triple of g. In this case, the
triple {H,X ,Y} satisfies the bracket relations:

[H,X ] = 2X , [H,Y ] =−2Y and [X ,Y ] = H.

We call H (resp. X , Y ) the neutral (resp. nilpositive, nilnegative) element of the triple
{H,X ,Y}. Since ad(H) is semisimple in the subalgebra a= span{H,X ,Y} of g then it is known
that H is also semisimple in g. Similarly, X ,Y are nilpotent in g.

Fix an integer r ≥ 0 and define a linear map ρr : sl(2)→ sl(r+1) by

ρr(H) =


r 0 0 . . . 0 0
0 r−2 0 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . −r+2 0
0 0 0 . . . 0 −r

 ,

ρr(X) =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0

 ,

ρr(Y ) =


0 0 0 . . . 0 0
µ1 0 0 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 0 0
0 0 0 . . . µr 0

 ,
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1.2. Nilpotent orbits

where µi = i(r+1− i) for 1≤ i≤ r.
By Corollary 1.2.5, ρr defines an irreducible representation of sl(2) of highest weight r and

dimension r+ 1. Moreover, every irreducible finite-dimensional representation of sl(2) arises
in this way.

Conveniently, for a partition [d] = [d1, ...,dk] of n, denote by O[d] the orbit through X[d].
Now, let O be a non-zero nilpotent orbit in sl(n) then there exists a partition [d1, ...,dk] of n
such that O = O[d1,...,dk]. We define the homomorphism φO : sl(2)→ sl(n) by

φO = ⊕
1≤i≤k

ρdi−1.

Then φO(X) = X[d1,...,dk] where X =

(
0 1
0 0

)
∈ sl(2). Note that if O is a non-zero nilpotent

orbit then the partition [d1, ...,dk] does not coincide with [1n], the image φO is not trivial and
it is isomorphic to sl(2). Therefore, to each non-zero nilpotent orbit O = OX in sl(n), we can
attach a sl(2)-triple {H,X ,Y} such that the nilpositive element is X . More precisely, choose X
exactly having the Jordan form and set

H := φO

((
1 0
0 −1

))
, X := φO

((
0 1
0 0

))
and Y := φO

((
0 0
1 0

))
.

This can be done for an arbitrary complex semisimple algebra g, not necessarily sl(n), by
the theorem of Jacobson-Morozov as follows.

Proposition 1.2.6 (Jacobson-Morozov).
Let g be a complex semisimple Lie algebra. If X is a non-zero nilpotent element of g then

it is the nilpositive element of a sl(2)-triple. Equivalently, for any nilpotent element X, there

exists a homomorphism φ : sl(2)→ g such that: φ

((
0 1
0 0

))
= X.

Proof. We follow the proof given in [CM93]. First, we prove the following lemma.

Lemma 1.2.7. Let g be a complex semisimple Lie algebra and X be a nilpotent element in g.
Then one has:

(1) κ(X ,gX) = 0 where κ is the Killing form and gX is the centralizer of X in g defined by
gX = {Y ∈ g | [X ,Y ] = 0}.

(2) [g,X ] = (gX)⊥ where the notation (gX)⊥ denotes the orthogonal subspace of gX by κ .

Proof.

(1) Let Z be an element of gX then by the Jacobi identity, one has ad(X) ◦ ad(Z) = ad(Z) ◦
ad(X). As a consequence, (ad(X) ◦ ad(Z))k = adk(X) ◦ adk(Z) for any k in N. Since X
is nilpotent then ad(X) is nilpotent. It implies that adk(X) = 0 for some k and therefore
ad(X)◦ ad(Z) is nilpotent. That means trace(ad(X)◦ ad(Z)) = κ(X ,Z) = 0.

(2) By the invariance of κ , one has κ([g,X ],gX) = κ(g, [X ,gX ]) = 0. Hence, [g,X ]⊂ (gX)⊥.
Since dim(g)= dim(ker(ad(X)))+dim(Im(ad(X))) then dim(g)= dim(gX)+dim([g,X ]).
By the non-degeneracy of κ , we obtain [g,X ] = (gX)⊥.
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1.2. Nilpotent orbits

We prove the Jacobson-Morozov theorem by induction on the dimension of g. If dim(g) = 3
then g is isomorphic to sl(2) and the result follows. Assume that dim(g) > 3. If X is in a
proper semisimple subalgebra of g then by induction, there is a sl(2)-triple with X its nilpositive
element. Hence we may assume that X is not in any proper semisimple subalgebra of g. By
Lemma 1.2.7 and [X ,X ] = 0, one has X ∈ (gX)⊥ = [g,X ]. Therefore, there exists H ′ ∈ g such
that [H ′,X ] = 2X .

Now, let H ′ = H ′s +H ′n be the Jordan decomposition of H ′ in g where H ′s is semisimple and
H ′n is nilpotent. Remark that any subspace which is stable by ad(H ′) is also stable by ad(H ′s)
and ad(H ′n). The nilpotency of the ad(H ′n) action on the stable subspace CX gives [H ′n,X ] = 0
and therefore [H ′s,X ] = 2X . Set H = H ′s.

If H ∈ [g,X ] then there exists Y ∈ g such that H = [X ,Y ]. Since ad(H) acts semisimply on
g then g is decomposed by

g= gλ1⊕·· ·⊕gλk
,

where gλ1, . . . , gλk
are ad(H)-eigenspaces. Write Y = Yλ1 + · · ·+Yλk

with Yi ∈ gλi . Let Z ∈ gλi

then [H,Z] = λiZ. Hence, [X , [H,Z]] = λi[X ,Z]. By the Jacobi identity, one has

[Z, [H,X ]]+ [H, [X ,Z]] = λi[X ,Z].

Then we get ad(H)([X ,Z]) = (λi + 2)[X ,Z]. It shows that [X ,gλi] ⊂ gλi+2,1 ≤ i ≤ k. Since
ad(H)(H) = 0, one has H ∈ g0. Moreover, H = [X ,Y ] = ∑

i=1
k [X ,Yi]. Therefore, there is some

Y ′ ∈ g−2 such that H = [X ,Y ′]. If we replace Y by Y ′ then [H,X ] = 2X , [H,Y ] = −2Y and
[X ,Y ] = H. That means {H,X ,Y} is a sl(2)-triple with X its nilpositive element.

From the above reason, it remains to prove H ∈ [g,X ]. By contradiction, assume that H /∈
[g,X ] then κ(H,gX) 6= 0. According to the Jacobi identity

[X , [H,gX ]]+ [gX , [X ,H]]+ [H, [gX ,X ]] = 0,

one get [X , [H,gX ]] = 0. It implies that ad(H)(gX) ⊂ gX , i.e. gX is ad(H)-invariant. By acting
semisimply of ad(H) on gX , gX is decomposed into ad(H)-eigenspaces:

gX = gX
τ1
⊕·· ·⊕gX

τi
= gX

0 ⊕ ∑
τi 6=0

gX
τi
.

From the invariance of the Killing form, one has κ(H, [H,gX ]) = κ([H,H],gX) = 0. There-
fore if Z is a non-zero element of gX

τi
with τi 6= 0 then

0 = κ(H, [H,Z]) = κ(H,τiZ) = τiκ(H,Z).

This shows that H ∈ (gX
τi
)⊥. Since κ(H,gX) 6= 0 there must exist Z ∈ gX

0 = {Y ∈ gX | [H,Y ] =
0}= (gX)H such that κ(H,Z) 6= 0. If Z is nilpotent then κ(H,Z) = 0 as in the proof of Lemma
1.2.7. Therefore, Z is non-nilpotent. That means its semisimple component Zs 6= 0 and hence
gZs is reductive. As a consequence, [gZs,gZs] is a semisimple subalgebra of g and it is a proper
subalgebra since gZs = g only if Zs = 0.

On the other hand, since [X ,Z] = [H,Z] = 0, apply the property of Jordan decomposition
one has [X ,Zs] = [H,Zs] = 0. That means Zs ∈ (gX)H and then X ∈ gZs . Also, H ∈ gZs so we
get 2X = [H,X ] ∈ [gZs,gZs]. This is a contradiction then we obtain the result.
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1.2. Nilpotent orbits

The point of the above proof is that the Killing form of g is non-degenerate and invariant.
However, the existence of a sl(2)-triple {H,X ,Y} having the nilpositive element X is not unique,
that is, it may exist another sl(2)-triple {H ′,X ,Y ′} with the same nilpositive element. The
following theorem shows that our choice is is unique up to an element in Gad , the identity
component of the automorphism group Aut(g) = {φ ∈ GL(g) | [φ(X),φ(Y )] = φ([X ,Y ])}.

Proposition 1.2.8 (Kostant).
Let g be a complex semisimple Lie algebra. Any two sl(2)-triples {H,X ,Y} and {H ′,X ,Y ′}

with the same nilpositive element are conjugate by an element of Gad .

Denote by Atriple the set of sl(2)-triples of g, Ãtriple the set of Gad-conjugacy classes of
sl(2)-triples in Atriple and N (g) the set of non-zero nilpotent orbits in g then we obtain the
corollary:

Corollary 1.2.9. The map ω : Atriple→N (g) defined by ω({H,X ,Y}) = OX induces a bijec-
tion Ω : Ãtriple→N (g).

Proof. Let O be a non-zero nilpotent orbit in g. Fix X 6= 0 in O . By Proposition 1.2.6, there
exists a sl(2)-triple {H,X ,Y} such that X is its nilpositive element so Ω is onto. If there ex-
ists another sl(2)-triple {H ′,X ,Y ′} such that X is also nilpositive then by Proposition 1.2.8
{H ′,X ,Y ′} must lie in Gad-conjugacy class of {H,X ,Y}. Therefore, Ω is one-to-one.

Now we turn to our problem of classification nilpotent Iε -adjoint orbits of gε . Define the set

Pε(m) = {[d1, ...,dm] ∈P(m)| ]{ j | d j = i} is even for all i such that (−1)i = ε}.

In particular, P1(m) is the set of partitions of m in which even parts occur with even multiplicity
and P−1(m) is the set of partitions of m in which odd parts occur with even multiplicity.

Proposition 1.2.10 (Gerstenhaber).
Nilpotent Iε -adjoint orbits in gε are in one-to-one correspondence with the set of partitions

in Pε(m).

Proof. A proof of the proposition can be found in [CM93], Theorem 5.1.6.

Here, we give the construction of a nilpotent element in gε from a partition [d] of m that is
useful for next two chapters. Define maps in gε as follows:

• For p≥ 2, we equip the vector space C2p with its canonical bilinear form Bε and the map
CJ

2p having the matrix

CJ
2p =

(
Jp 0
0 −tJp

)
in a canonical basis where tJp denotes the transpose matrix of the Jordan block Jp. Then
CJ

2p ∈ gε(C2p).
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• For p ≥ 1 we equip the vector space C2p+1 with its canonical bilinear form B1 and the
map CJ

2p+1 having the matrix

CJ
2p+1 =

(
Jp+1 M

0 −tJp

)
in a canonical basis where M = (mi j) denotes the (p+ 1)× p-matrix with mp+1,p = −1
and mi j = 0 otherwise. Then CJ

2p+1 ∈ o(2p+1)

• For p ≥ 1, we consider the vector space C2p equipped with its canonical bilinear form
B−1 and the map CJ

p+p with matrix (
Jp M
0 −tJp

)
in a canonical basis where M = (mi j) denotes the p× p-matrix with mp,p = 1 and mi j = 0
otherwise. Then CJ

p+p ∈ sp(2p).

For each partition [d] ∈P−1(2n), [d] can be written as

(p1, p1, p2, p2, . . . , pk, pk,2q1, . . . ,2q`)

with all pi odd, p1 ≥ p2 ≥ ·· · ≥ pk and q1 ≥ q2 ≥ ·· · ≥ q`. We associate a map C[d] with the
matrix:

diagk+`(C
J
2p1

,CJ
2p2

, . . . ,CJ
2pk

,CJ
q1+q1

, . . . ,CJ
q`+q`)

in a canonical basis of C2n then C[d] ∈ sp(2n).
Similarly, let [d] ∈P1(m), [d] can be written as

(p1, p1, p2, p2, . . . , pk, pk,2q1 +1, . . . ,2q`+1)

with all pi even, p1 ≥ p2 ≥ ·· · ≥ pk and q1 ≥ q2 ≥ ·· · ≥ q`. We associate a map C[d] with the
matrix:

diagk+`(C
J
2p1

,CJ
2p2

, . . . ,CJ
2pk

,CJ
2q1+1, . . . ,C

J
2q`+1).

in a canonical basis of Cm then C[d] ∈ o(m).
By Proposition 1.2.10, it is sure that our construction is a bijection between the set Pε(m)

and the set of nilpotent Iε -adjoint orbits in gε .
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1.3 Semisimple orbits
We recall the well-known result [CM93]:

Proposition 1.3.1. Let g be a semisimple Lie algebra, h be a Cartan subalgebra of g and W be
the associated Weyl group. Then there is a bijection between the set of semisimple orbits of g
and h/W.

For each gε , we choose the Cartan subalgebra h given by the vector space of diagonal
matrices of type

diag2n(λ1, . . . ,λn,−λ1, . . . ,−λn)

if gε = o(2n) or gε = sp(2n) and of type

diag2n+1(λ1, . . . ,λn,0,−λ1, . . . ,−λn)

if gε = o(2n+1).
Any diagonalizable (equivalently semisimple) C ∈ gε is conjugate to an element of h (see

Appendix A for a direct proof).
If gε = sp(2n) then any two eigenvectors v,w ∈ C2n of X ∈ gε with eigenvalues λ ,λ ′ ∈ C

such that λ +λ ′ 6= 0 are orthorgonal. Moreover, each eigenvalue pair λ ,−λ is corresponding
to an eigenvector pair (v,w) satisfying Bε(v,w) = 1 and we can easily arrange for vectors v,v′

lying in a distinct pair (v,w),(v′,w′) to be orthogonal, regardless of the eigenvalues involved.
That means the associated Weyl group is of all coordinate permutations and sign changes of
(λ1, . . . ,λn). We denote it by Gn.

If gε = o(2n), the associated Weyl group, when considered in the action of the group
SO(2n), consists all coordinate permutations and even sign changes of (λ1, . . . ,λn). However,
we only focus on O(2n)-adjoint orbits of o(2n) obtained by the action of the full orthogonal
group, then similarly to preceding analysis any sign change effects. The corresponding group
is still Gn. If gε = o(2n+1), the Weyl group is Gn and there is nothing to add.

Now, let Λn = {(λ1, . . . ,λn) | λ1, . . . ,λn ∈ C, λi 6= 0 for some i}.

Corollary 1.3.2. There is a bijection between non-zero semisimple Iε -adjoint orbits of gε and
Λn/Gn.
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1.4 Invertible orbits
Definition 1.4.1. We say that the Iε -orbit OX is invertible if X is an invertible element in gε .

Keep the above notations. We say an element X ∈ V isotropic if B(X ,X) = 0 and a subset
W ⊂ V totally isotropic if B(X ,Y ) = 0 for all X ,Y ∈W . To classify invertible adjoint orbits in
gε , we need the following lemma:

Lemma 1.4.2. Let V be an even-dimensional vector space with a non-degenerate bilinear form
Bε . Assume that V =V+⊕V− where V± are totally isotropic vector subspaces.

(1) Let N ∈L (V ) such that N(V±)⊂V±. We define maps N± by N+|V+ = N|V+ , N+|V− = 0,
N−|V− = N|V− and N−|V+ = 0. Then N ∈ gε(V ) if and only if N− =−N∗+ and, in this case,
N = N+−N∗+.

(2) Let U+ ∈L (V ) such that U+ is invertible, U+(V+) = V+ and U+|V− = IdV− . We define
U ∈L (V ) by U |V+ =U+|V+ and U |V− =

(
U−1
+

)∗ |V− . Then U ∈ Iε(V ).

(3) Let N′ ∈ gε(V ) such that N′ satisfies the assumptions of (1). Define N± as in (1). More-
over, we assume that there exists U+ ∈L (V+), U+ invertible such that

N′+|V+ =
(
U+ N+ U−1

+

)
|V+.

We extend U+ to V by U+|V− = IdV− and define U ∈ Iε(V ) as in (2). Then

N′ =U N U−1.

Proof.

(1) It is obvious that N = N+ + N−. Recall that N ∈ gε(V ) if and only if N∗ = −N so
N∗++N∗− = −N+−N−. Since Bε(N∗+(V+),V ) = Bε(V+,N+(V )) = 0 then N∗+(V+) = 0.
Similarly, N∗−(V−) = 0. Hence, N− =−N∗+.

(2) We shows that Bε(U(X),U(Y )) = Bε(X ,Y ), for all X ,Y ∈ V . Indeed, let X = X+ +
X−,Y = Y++Y− ∈V+⊕V−, one has

Bε(U(X++X−),U(Y++Y−)) = Bε(U+(X+)+
(
U−1
+

)∗
(X−),U+(Y+)+

(
U−1
+

)∗
(Y−))

= Bε(U+(X+),
(
U−1
+

)∗
(Y−))+Bε(

(
U−1
+

)∗
(X−),U+(Y+))

= Bε(X+,Y−)+Bε(X−,Y+) = Bε(X ,Y ).

(3) Since Bε(U−1(V+),V+) = Bε(V+,U(V+)) = 0, one has U−1(V+) = V+ and U−1(V−) =
V−. Consequently, (U N U−1)(V+)⊂V+ and (U N U−1)(V−)⊂V−. Clearly, U N U−1 ∈
gε(V ). By (1), we only show that

(U N U−1)|V+ = N′+

This is obvious since U−1|V+ =U−1
+ .
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1.4. Invertible orbits

Let us now consider C ∈ gε , C invertible. Then, m must be even (obviously, it happened if
ε = −1), m = 2n (see Appendix A). We decompose C = S+N into semisimple and nilpotent
parts, S, N ∈ gε by its Jordan decomposition. It is clear that S is invertible. We have λ ∈ Λ if
and only if −λ ∈ Λ (Appendix A) where Λ is the spectrum of S. Also, m(λ ) = m(−λ ), for all
λ ∈ Λ with the multiplicity m(λ ). Since N and S commute, we have N(V±λ ) ⊂ V±λ where Vλ

is the eigenspace of S corresponding to λ ∈ Λ. Denote by W (λ ) the direct sum

W (λ ) =Vλ ⊕V−λ .

Define the equivalence relation R on Λ by:

λRµ if and only if λ =±µ.

Then

C2n =
⊥⊕

λ∈Λ/R

W (λ ),

and each (W (λ ),Bλ ) is a vector space with the non-degenerate form Bλ = Bε |W (λ )×W (λ ).
Fix λ ∈ Λ. We write W (λ ) = V+⊕V− with V± = V±λ . Then, according to the notation in

Lemma 1.4.2, define N±λ = N±. Since N|V− = −N∗
λ

, it is easy to verify that the matrices of
N|V+ and N|V− have the same Jordan form. Let (d1(λ ), . . . ,drλ

(λ )) be the size of the Jordan
blocks in the Jordan decomposition of N|V+ . This does not depend on a possible choice between
N|V+ or N|V− since both maps have the same Jordan type.

Next, we consider

D =
⋃

r∈N∗
{(d1, . . . ,dr) ∈ Nr | d1 ≥ d2 ≥ ·· · ≥ dr ≥ 1}.

Define d : Λ→ D by d(λ ) = (d1(λ ), . . . ,drλ
(λ )). It is clear that Φ◦d = m where Φ : D → N

is the map defined by Φ(d1, . . . ,dr) = ∑
r
i=1 di.

Finally, we can associate to C ∈ gε a triple (Λ,m,d) defined as above.

Definition 1.4.3. Let Jn be the set of all triples (Λ,m,d) such that:

(1) Λ is a subset of C\{0} with ]Λ≤ 2n and λ ∈ Λ if and only if −λ ∈ Λ.

(2) m : Λ→ N∗ satisfies m(λ ) = m(−λ ), for all λ ∈ Λ and ∑
λ∈Λ

m(λ ) = 2n.

(3) d : Λ→D satisfies d(λ ) = d(−λ ), for all λ ∈ Λ and Φ◦d = m.

Let I (2n) be the set of invertible elements in gε and Ĩ (2n) be the set of Iε -adjoint orbits
of elements in I (2n). By the preceding remarks, there is a map i : I (2n)→Jn. Then we
have a parametrization of the set Ĩ (2n) as follows:

Proposition 1.4.4.
The map i : I (2n)→Jn induces a bijection ĩ : Ĩ (2n)→Jn.

14



1.4. Invertible orbits

Proof. Let C and C′ ∈ I (2n) such that C′ = U C U−1 with U ∈ Iε . Let S, S′, N, N′ be re-
spectively the semisimple and nilpotent parts of C and C′. Write i(C) = (Λ,m,d) and i(C′) =
(Λ′,m′,d′). One has

S′+N′ =U (S+N) U−1 =U S U−1 +U N U−1.

By the unicity of Jordan decomposition, S′ =U S U−1 and N′ =U N U−1. So Λ′ = Λ and
m′ = m. Also, since U S = S′ U one has U S(Vλ ) = S′ U(Vλ ). It implies that

S′ (U(Vλ )) = λU(Vλ ).

That means U(Vλ ) =V ′
λ

, for all λ ∈Λ. Since N′ =U N U−1 then N|Vλ
and N′|V ′

λ
have the same

Jordan decomposition, so d = d′ and ĩ is well defined.
To prove that ĩ is onto, we start with Λ = {λ1,−λ1, . . . ,λk,−λk}, m and d as in Definition

1.4.3. Define on the canonical basis:

S = diag2n(

m(λ1)︷ ︸︸ ︷
λ1, . . . ,λ1, . . . ,

m(λk)︷ ︸︸ ︷
λk, . . . ,λk,

m(λ1)︷ ︸︸ ︷
−λ1, . . . ,−λ1, . . . ,

m(λk)︷ ︸︸ ︷
−λk, . . . ,−λk).

For all 1≤ i≤ k, let d(λi) = (d1(λi)≥ ·· · ≥ drλi
(λi)≥ 1) and define

N+(λi) = diagd(λi)

(
Jd1(λi),Jd2(λi), . . . ,Jdr

λi
(λi)

)
on the eigenspace Vλi and 0 on the eigenspace V−λi where Jd is the Jordan block of size d.

By Lemma 1.4.2, N(λi) = N+(λi)−N∗+(λi) is skew-symmetric on Vλi⊕V−λi . Finally,

C2n =
⊥⊕

1≤i≤k

(
Vλi⊕V−λi

)
.

Define N ∈ gε by N
(
∑

k
i=1 vi

)
= ∑

k
i=1 N(λi)(vi), vi ∈ Vλi ⊕V−λi and C = S+N ∈ gε . By con-

struction, i(C) = (Λ,m,d), so ĩ is onto.
To prove that ĩ is one-to-one, assume that C, C′ ∈I (2n) and that i(C) = i(C′) = (Λ,m,d).

Using the previous notation, since their respective semisimple parts S and S′ have the same
spectrum and same multiplicities, there exist U ∈ Iε such that S′ =USU−1. For λ ∈ Λ, we have
U(Vλ ) =V ′

λ
for eigenspaces Vλ and V ′

λ
of S and S′ respectively.

Also, for λ ∈ Λ, if N and N′ are the nilpotent parts of C and C′, then N′′(Vλ ) ⊂ Vλ , with
N′′ = U−1N′U . Since i(C) = i(C′), then N|Vλ

and N′|V ′
λ

have the same Jordan type. Since
N′′ = U−1N′U , then N′′|Vλ

and N′|V ′
λ

have the same Jordan type. So N|Vλ
and N′′|Vλ

have the

same Jordan type. Therefore, there exists D+ ∈ L (Vλ ) such that N′′|Vλ
= D+N|Vλ

D−1
+ . By

Lemma 1.4.2, there exists D(λ ) ∈ Iε(Vλ ⊕V−λ ) such that

N′′|Vλ⊕V−λ
= D(λ )N|Vλ⊕V−λ

D(λ )−1.

We define D∈ Iε by D|Vλ⊕V−λ
= D(λ ), for all λ ∈Λ. Then N′′ = DND−1 and D commutes with

S since S|V±λ
is scalar. Then S′ = (UD)S(UD)−1 and N′ = (UD)N(UD)−1 and we conclude

C′ = (UD)C(UD)−1.
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1.5. Adjoint orbits in the general case

1.5 Adjoint orbits in the general case
Let us now classify Iε -adjoint orbits of gε in the general case as follows. Let C be an element

in gε and consider the Fitting decomposition of C

Cm =VN⊕VI,

where VN and VI are stable by C, CN = C|VN is nilpotent and CI = C|VI is invertible. Since C
is skew-symmetric, Bε(Ck(VN),VI) = (−1)kBε(VN ,Ck(VI)) for any k then one has VI = (VN)

⊥.
Also, the restrictions BN

ε = Bε |VN×VN and BI
ε = Bε |VI×VI are non-degenerate. Clearly, CN ∈

gε(VN) and CI ∈ gε(VI). By Section 1.2 and Section 1.4, CN is attached with a partition [d] ∈
Pε(n) and CI corresponds to a triple T ∈J` where n = dim(VN), 2`= dim(VI). Let D(m) be
the set of all pairs ([d],T ) such that [d] ∈Pε(n) and T ∈J` satisfying n+ 2` = m. By the
preceding remarks, there exists a map p : gε → D(m) . Denote by O(gε) the set of Iε -adjoint
orbits of gε then we obtain the classification of O(gε) as follows:

Proposition 1.5.1. The map p : gε →D(m) induces a bijection p̃ : O(gε)→D(m).

Proof. Let C and C′ be two elements in gε . Assume that C and C′ lie in the same Iε -adjoint
orbit. It means that there exists an isometry P such that C′ = PCP−1. So C′k P = P Ck for
any k in N. As a consequence, P(VN) ⊂ V ′N and P(VI) ⊂ V ′I . However, P is an isometry then
V ′N = P(VN) and V ′I = P(VI). Therefore, one has

C′N = PN CNP−1
N and C′I = PI CIP−1

I ,

where PN = P : VN → V ′N and PI = P : VI → V ′I are isometries. It implies that CN , C′N have the
same partition and CI , C′I have the same triple. Hence, the map p̃ is well defined.

For a pair ([d],T ) ∈ D(m) with [d] ∈Pε(n) and T ∈J`, we set a nilpotent map CN ∈
gε(VN) corresponding to [d] as in Section 1.2 and an invertible map CI ∈ gε(VI) as in Proposition
1.4.4 where dim(VN) = n and dim(VI) = 2`. Define C ∈ gε by C(XN +XI) =CN(XN)+CI(XI),
for all XN ∈VN , XI ∈VI . By construction, p(C) = ([d],T ) and p̃ is onto.

To prove p̃ is one-to-one, let C,C′ ∈ gε such that p(C) = p(C′) = ([d],T ). Keep the above
notations, since CN and C′N have the same partition then there exists an isometry PN : VN →V ′N
such that C′N = PN CN P−1

N . Similarly CI and C′I have the same triple and then there exists an
isometry PI : VI → V ′I such that C′I = PI CI P−1

I . Define P : V → V by P(XN +XI) = PN(XN)+
PI(XI), for all XN ∈VN ,XI ∈VI then P is an isometry and C′ = P C P−1. Therefore, p̃ is one-to-
one.
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Chapter 2

Quadratic Lie algebras

In the first part of this chapter, we recall some preliminary definitions and results of quadratic
Lie algebras. Next, we study a new invariant under isomorphisms of quadratic Lie algebras
that we call dup-number. Moreover, we give a classification of singular quadratic Lie alge-
bras, i.e. those for which the invariant does not vanish. The classification is closely related to
O(m)-adjoint orbits of o(m) mentioned in the Chapter 1. To prove these results, we need to
fully describe the structure of singular quadratic Lie algebras by properties of super-Poisson
bracket defined on the (Z-graded) Grassmann algebra of alternating multilinear forms of an n-
dimensional quadratic vector space [PU07] and in terms of double extensions ([Kac85], [FS87]
and [MR85]). The invariance of dup-number is a consequence of calculating the quadratic
dimension of singular quadratic Lie algebras in the reduced case.

Another effective method called T ∗-extension is introduced by M. Bordemann to descibe
solvable quadratic Lie algebras [Bor97] and we use it to study the 2-step nilpotent case. Finally,
we also obtain a familiar result: the classification of 2-step nilpotent quadratic Lie algebras up
to isometrical isomorphisms is equivalent to the classification all of associated 3-forms.

2.1 Preliminaries
Definition 2.1.1. A quadratic Lie algebra (g,B) is a vector space g equipped with a non-
degenerate symmetric bilinear form B and a Lie algebra structure on g such that B is invariant
(that means, B([X ,Y ],Z) = B(X , [Y,Z]), for all X , Y , Z ∈ g).

Let (g,B) be a quadratic Lie algebra. Since B is non-degenerate and invariant, we have some
simple properties of g as follows:

Proposition 2.1.2.

(1) If I is an ideal of g then I⊥ is also an ideal of g. Moreover, if I is non-degenerate then so

is I⊥ and g= I⊕ I⊥. Conveniently, in this case we use the notation g= I
⊥
⊕ I⊥.

(2) Z(g) = [g,g]⊥ where Z(g) is the center of g. And then

dim(Z(g))+dim([g,g]) = dim(g).

17



2.1. Preliminaries

(3) Set the map φ : g→ g∗ defined by φ(X) = B(X , .), for all X ∈ g then φ is an isomorphism.
Moreover, the adjoint representation and coadjoint representation of g are equivalent by
φ .

Definition 2.1.3. Let (g,B) and (g′,B′) be two quadratic Lie algebras. We say that (g,B) and
(g′,B′) are isometrically isomorphic (or i-isomorphic) if there exists a Lie algebra isomorphism
A from g onto g′ satisfying

B′(A(X),A(Y )) = B(X ,Y ), ∀ X ,Y ∈ g.

In this case, A is called an i-isomorphism. In other words, A is an i-isomorphism if it is a

Lie algebra isomorphism and an isometry. We write g
i' g′.

Consider two quadratic Lie algebras (g,B) and (g,B′) (same Lie algebra) with B′ = λB,
λ ∈ C, λ 6= 0. They are not necessarily i-isomorphic, as shown by the example below:

Example 2.1.4. Let g= o(3) and κ its Killing form. Then A is a Lie algebra automorphism of
g if and only if A ∈ O(g). So (g,κ) and (g,λκ) cannot be i-isomorphic if λ 6= 1.

We have a characteristic of quadratic Lie algebras as follows:

Proposition 2.1.5. [PU07]
Let (g,B) be a non-Abelian quadratic Lie algebra. Then there exists a central ideal z and

an ideal l 6= {0} such that:

(1) g = z
⊥
⊕ l where (z,B|z×z) and (l,B|l×l) are quadratic Lie algebras. Moreover, l is non-

Abelian.

(2) The center Z(l) is totally isotropic, equivalently Z(l)⊂ [l, l], and

dim(Z(l))≤ 1
2

dim(l)≤ dim([l, l]).

(3) Let g′ be a quadratic Lie algebra and A : g→ g′ be a Lie algebra isomorphism. Then

g′ = z′
⊥
⊕ l′

where z′=A(z) is central, l′=A(z)⊥, Z(l′) is totally isotropic and l and l′ are isomorphic.
Moreover if A is an i-isomorphism, then l and l′ are i-isomorphic.

Proof. Let z0 = Z(g)∩ [g,g]. Define z a complementary subspace of z0 in Z(g). Since Z(g)⊥ =
[g,g], one has B(z0,z) = {0} and z∩ z⊥ = {0}. Therefore z and z⊥ are non-degenerate and

g= z
⊥
⊕ l, where l= z⊥. It is obvious that l is non-Abelian since z is central in g.

Since B([g,g],z)= {0}, one has [g,g]⊂ l. It is easy to check that Z(l)= z0 and [l, l] = [g,g] =
Z(g)⊥ so Z(l) is totally isotropic. Moreover, Z(l)⊂ [l, l] = Z(l)⊥ implies dim(l)−dim([l, l])≤
dim([l, l]) and (2) is finished.

For (3), one has A(Z(g)∩ [g,g]) =Z(g′)∩ [g′,g′] and Z(g′)= z′⊕(Z(g′)∩ [g′,g′]). Therefore

l′ satisfies g′ = z′
⊥
⊕ l′ and Z(l′) is totally isotropic. Since A is an isomorphism from z onto z′,

A induces an isomorphism from g/z onto g′/z′, and it results that l and l′ are isomorphic Lie
algebras. Same reasoning works for A i-isomorphism.
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2.1. Preliminaries

Corollary 2.1.6. Let (g,B) be a non-Abelian solvable quadratic Lie algebra. Then there exists
a central element X of g such that X is isotropic.

Proof. By the above proposition, g can be decomposed by g= z
⊥
⊕ l where l is non-Abelian and

Z(l) is totally isotropic. Since g is solvable then l is solvable. Moreover, l is a quadratic Lie
algebra then Z(l) 6= 0 and the result follows.

Definition 2.1.7. A quadratic Lie algebra g is reduced if:

(1) g 6= {0}

(2) Z(g) is totally isotropic.

Notice that a reduced quadratic Lie algebra is necessarily non-Abelian.

Definition 2.1.8. Let (g,B) be a quadratic Lie algebra and C be an endomorphism of g. We say
that C is skew-symmetric (or B-antisymmetric) if B(C(X),Y ) = −B(X ,C(Y )), for all X ,Y ∈ g.
Denote by Enda(g) (resp. Dera(g)) space of skew-symmetric endomorphisms (resp. deriva-
tions) of g.

Next, we recall two effective methods to construct quadratic Lie algebras: double extensions
and T ∗-extensions. The former method is initiated by V. Kac for the solvable case ([Kac85] and
[FS87]), after that developed generally by A. Medina and Ph. Revoy [MR85]; the later is given
by M. Bordemann [Bor97].

Definition 2.1.9. Let (g,B) be a quadratic Lie algebra, h be another Lie algebra and π : h→
Dera(g) be a representation of h by means of skew-symmetric derivations of g. Define the map
ϕ : g×g→ h∗ by ϕ(X ,Y )Z = B(π(Z)X ,Y ), for all X ,Y ∈ g, Z ∈ h. Denote by ad∗ the coadjoint
representation of h. Then the vector space g= h⊕g⊕h∗ with the product:

[X +Y + f ,X ′+Y ′+ f ′] = [X ,X ′]h+[Y,Y ′]g+π(X)Y ′−π(X ′)Y + ad∗(X) f ′

−ad∗(X ′) f +ϕ(Y,Y ′)

for all X ,X ′ ∈ h, Y,Y ′ ∈ g, f , f ′ ∈ h∗ is a Lie algebra and it is called the double extension of g by
h by means of π . It is easy to show that g is also a quadratic Lie algebra with the bilinear form
B defined by:

B(X +Y + f ,X ′+Y ′+ f ′) = B(Y,Y ′)+ f (X ′)+ f ′(X)

for all X ,X ′ ∈ h, Y,Y ′ ∈ g, f , f ′ ∈ h∗.
If there is an invariant symmetric bilinear form γ on h (not necessarily non-degenerate) then

g is also a quadratic Lie algebra with the bilinear form Bγ as follows:

Bγ(X +Y + f ,X ′+Y ′+ f ′) = B(Y,Y ′)+ γ(X ,X ′)+ f (X ′)+ f ′(X)

for all X ,X ′ ∈ h, Y,Y ′ ∈ g, f , f ′ ∈ h∗.

Proposition 2.1.10. ([Kac85], 2.11, [MR85], Theorem I)
Let (g,B) be an indecomposable quadratic Lie algebra (see Definition 2.2.17) such that it is

not simple nor one-dimensional. Then g is the double extension of a quadratic Lie algebra by a
simple or one-dimensional algebra.
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2.1. Preliminaries

Proof. Let I be a minimal ideal of g. Since I ∩ I⊥ is also an ideal of g then we must have
I ∩ I⊥ = I or I ∩ I⊥ = {0}. But g is indecomposable so the second case does not happen. It
means that I ⊂ I⊥, i.e. I is totally isotropic. So B([I, I⊥],g) = B(I, [I⊥,g]) = 0. Therefore,
[I, I⊥] = 0 by the non-degeneracy of B.

Consider two exact sequences of Lie algebras

0→ I→ I⊥→ I⊥/I→ 0,

0→ I⊥→ g→ g/I⊥→ 0.

Denote by h = g/I⊥ then h is simple or one-dimensional since I⊥ is a maximal ideal of
g. We can identify h with a subalgebra of g and g is the semi-direct product of I⊥ by h. Let
W = I⊥/I, p : I⊥→W be the canonical projection and define on W the bilinear form T that is
the restriction of B on W . Then (W,T ) is a quadratic Lie algebra. Since the subspace H = I⊕h
is non-degenerate, we can identify W (regarded as a subspace of g) with H⊥, i.e. g= I⊕W ⊕h.

Now, we will define an action π of h on W as follows. Let x ∈W , regarded as an element
of H⊥, and take h ∈ h. We will show that [h,x] ∈ H⊥. Indeed, let h′ ∈ h then B(h′, [h,x]) =
B([h′,h],x) = 0 since [h′,h]∈ h. Therefore, [h,x]∈ h⊥. Let y∈ I then B([x,h],y) = B(x, [h,y]) =
0. Hence, [h,x] must be in H⊥. We set π : h→Dera(W ) by π(h)(x) = [h,x], for all h∈ h, x∈W .

For all x,y ∈W one has:
[x,y]g = [x,y]W +ϕ(x,y),

where ϕ : W ×W → I satisfies B(ϕ(x,y),z) = B(π(z)x,y), for all x,y ∈W, z ∈ h.
Finally, since I⊕h is non-degenerate and I is a totally isotropic subspace of I⊕h, we can

identify I with h∗ and the adjoint action of h into I becomes the coadjoint action ad∗ of h into
h∗. Then g is the double extension of W by h by means of π .

Corollary 2.1.11. [FS87]
Let (g,B) be a non-Abelian solvable quadratic Lie algebra then g is the double extension of

a quadratic Lie algebra of dimension dim(g)−2 by a one-dimensional algebra.

Proof. By Corollary 2.1.6, there is a totally isotropic central ideal CX of g. Let Y ∈ g isotropic
such that B(X ,Y ) = 1 then g is the double extension of (CX⊕CY )⊥ by the one-dimensional
algebra CY .

Let us present now the second construction of quadratic Lie algebras which is given by M.
Bordemann in [Bor97] as follows:

Definition 2.1.12. Let g be a Lie algebra over C, V be a complex vector space and ρ : g→
End(V ) be a representation of g in V . That means

ρ([X ,Y ]) = ρ(X)ρ(Y )−ρ(Y )ρ(X), ∀ X ,Y ∈ g.

In this case, V is also called a g-module. For an integer k ≥ 0, denote by Ck(g,V ) the space
of alternating k-linear maps from g× ...× g into V if k ≥ 1 and C0(g,V ) = V . Let C(g,V ) =
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2.1. Preliminaries

∞

∑
k=0

Ck(g,V ). The coboundary operator δ : C(g,V )→C(g,V ) is defined by

δ f (X0, ...,Xk) =
k

∑
i=0

(−1)i
ρ(Xi)( f (X0, ..., X̂i, ...,Xk))

+∑
i< j

(−1)i+ j f ([Xi,X j],X0, ..., X̂i, ..., X̂ j, ...,Xk)

for all f ∈ Ck(g,V ), X0, . . . ,Xk ∈ g. It is known that δ 2 = 0. We say that f ∈ Ck(g,V ) is a
k-cocycle if δ f = 0 and f is a k-coboundary if there is g ∈Ck−1(g,V ) such that f = δg.

In particular, the dual g∗ is a g-module with respect to the coadjoint representation of g.
Consider a bilinear map θ : g× g→ g∗ and define on the vector space T ∗

θ
(g) = g⊕ g∗ the

product as follows:

[X + f ,Y +g] = [X ,Y ]g+ f ◦ adg(Y )−g◦ adg(X)+θ(X ,Y ), ∀ X ,Y ∈ g, f ,g ∈ g∗.

It is easy to check that T ∗
θ
(g) is a Lie algebra if and only if θ is a 2-cocycle. In this case,

T ∗
θ
(g) is called the T ∗-extension of g by means of θ . Moreover, if θ satisfies θ(X ,Y )Z =

θ(Y,Z)X , for all X ,Y,Z ∈ g (cyclic condition) then T ∗
θ
(g) becomes a quadratic Lie algebra with

the bilinear form B defined by

B(X + f ,Y +g) = f (Y )+g(X), ∀ X ,Y ∈ g, f ,g ∈ g∗.

Proposition 2.1.13. [Bor97]
Let (g,B) be an even-dimensional quadratic Lie algebra over C. If g is solvable then g

is i-isomorphic to a T ∗-extension T ∗
θ
(h) of h where h is the quotient algebra of g by a totally

isotropic ideal.
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2.2 Singular quadratic Lie algebras

2.2.1 Super-Poisson bracket and quadratic Lie algebras
Let (V,B) be a quadratic vector space. Denote by A (V ) the (Z-graded) Grassmann algebra

of alternating multilinear forms on V . For X ∈ V , we recall the derivation ιX of A (V ) defined
by:

ιX(Ω)(Y1, . . . ,Yk) = Ω(X ,Y1, . . . ,Yk), ∀ Ω ∈A k+1(V ), X ,Y1, . . . ,Yk ∈V (k ≥ 0),

and ιX(1) = 0. Then the super-Poisson bracket on A (V ) is defined as follows (see [PU07] for
details): fix an orthonormal basis {v1, . . . ,vn} of V , then one has

{Ω,Ω′}= (−1)k+1
n

∑
j=1

ιv j(Ω)∧ ιv j(Ω
′), ∀ Ω ∈A k(V ), Ω

′ ∈A (V ). (I)

For instance, if α ∈V ∗, one has

{α,Ω}= ιφ−1(α)(Ω), ∀ Ω ∈A (V ),

and if α ′ ∈ V ∗, {α,α ′} = B(φ−1(α),φ−1(α ′)). This definition does not depend on the choice
of the basis.

For any Ω ∈A k(V ), define adP(Ω) by

adP(Ω)
(
Ω
′)= {Ω,Ω′}, ∀ Ω

′ ∈A (V ).

Then adP(Ω) is a super-derivation of degree k−2 of the algebra A (V ). One has:

adP(Ω)
(
{Ω′,Ω′′}

)
= {adP(Ω)(Ω′),Ω′′}+(−1)kk′{Ω′,adP(Ω)(Ω′′)},

for all Ω′ ∈ A k′(V ), Ω′′ ∈ A (V ). That implies that A (V ) is a graded Lie algebra for the
super-Poisson bracket.

Proposition 2.2.1. [PU07]
Let (g,B) be a quadratic Lie algebra. We define a 3-form I on g as follows:

I(X ,Y,Z) = B([X ,Y ],Z), ∀ X ,Y,Z ∈ g.

Then one has:

(1) I ∈A 3(g).

(2) {I, I}= 0.

Conversely, assume that g is a finite-dimensional quadratic vector space. Let I ∈A 3(g) and
define

[X ,Y ] = φ
−1 (ιX∧Y (I)) , ∀ X ,Y ∈ g.

This bracket satisfies the Jacobi identity if and only if {I, I}= 0 [PU07]. In this case, g becomes
a quadratic Lie algebra with the 3-form I.

Definition 2.2.2. The 3-form I in the previous proposition is called the 3-form associated to g.
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2.2. Singular quadratic Lie algebras

2.2.2 The dup number of a quadratic Lie algebra
Let V be a vector space and I ∈A k(V ), for k ≥ 1. We introduce two subspaces of V ∗:

VI = {α ∈V ∗ | α ∧ I = 0},
WI = {v ∈V | ιv(I) = 0} ⊥∗ .

Proposition 2.2.3. [Bou58]
Let I ∈A k(V ), I 6= 0. Then:

(1) VI ⊂WI , dim(VI)≤ k and dim(WI)≥ k.

(2) If {α1, . . . ,αr} is a basis of VI , then α1 ∧ ·· · ∧αr divides I. Moreover, I belongs to the
k-th exterior power of WI , also denoted by

∧k(WI).

(3) I is decomposable if and only if dim(VI) = k or dim(WI) = k. In this case, VI =WI and
if {α1, . . . ,αk} is a basis of VI , there is some non-zero λ ∈ C such that:

I = λα1∧·· ·∧αk.

Proof. First, we need the following lemmas:

Lemma 2.2.4. Let l ≤ k and α1, ...,αl be linear forms independent in V ∗ and satisfying αi∧ I =
0, for all i = 1, . . . , l. One has:

(1) if l≤ k−1 then there exists a multilinear form β ∈A k−l(V ) such that I =α1∧·· ·∧αl∧β ,

(2) if l = k then there exists a non-zero complex ξ such that I = ξ α1∧·· ·∧αk.

Proof. Since α1, ...,αl are linearly independent in V ∗ then we can complete this system by
vectors to get a basis {α1, ...,αn} of V ∗. In this basis, assume that I is as follows:

I = ∑
J⊂[[1,n]],|J|=k

ξJα j1 ∧·· ·∧α jk ,

where ξJ ∈ C and the indices meant J = ( j1, . . . , jk) ∈ Nk with 1≤ j1 < · · ·< jk ≤ n.
One has α1∧ I = 0 then ξJ = 0 if j1 6= 1. Therefore, we obtain

I = α1∧ ∑
2≤ j2<···< jk≤n

ξ1, j2,..., jkα j2 ∧·· ·∧α jk .

Similarly, one has α2∧ I = 0 then ξJ = 0 if j2 6= 2 and we get

I = α1∧α2∧ ∑
3≤ j3<···< jk≤n

ξ1,2, j3,..., jkα j3 ∧·· ·∧α jk .

This continues until αl and finally we obtain if l ≤ k−1:

I = α1∧·· ·∧αl ∧

(
∑

l+1≤ jl+1<···< jk≤n
ξ1,...,l, jl+1,..., jkα jl+1 ∧·· ·∧α jk

)
.
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2.2. Singular quadratic Lie algebras

If l = k then we stand at (k−1)-step and

I = α1∧·· ·∧αk−1∧ ∑
k≤ jk≤n

ξ1,...,k−1, jkα jk .

Since αk∧ I = 0 then ξJ = 0 if jk 6= k. Therefore, we obtain

I = ξ α1∧·· ·∧αk.

Lemma 2.2.5. WI = GI = {ιA(I) | A ∈
∧ k−1(V )}.

Proof. Let X ∈V such that ιX(I) = 0. If A ∈
∧ k−1(V ) then one has

ιA(I)(X) = I(A∧X) = (−1)k−1I(X ∧A) = (−1)k−1
ιX(I)(A) = 0.

So GI ⊂WI . Let X ∈ G⊥I . If A ∈
∧ k−1(V ) then ιA(I)(X) = 0. That means ιX(I)(A) = 0, for

all A ∈
∧ k−1(V ). Therefore ιX(I) = 0 and then X ∈W⊥I . It implies that WI = GI .

We turn now to the proof of the proposition.

(1) Let α ∈ VI , we show that α ∈WI . It means that if X ∈ V such that ιX(I) = 0 then
α(X) = 0. Indeed, let X ∈ V such that ιX(I) = 0. Since α ∈ VI one has α ∧ I = 0. This
implies that

0 = ιX(α ∧ I) = ιX(α)∧ I−α ∧ ιX(I) = α(X)I.

Therefore, α(X) = 0 since I 6= 0.

To prove dim(VI)≤ k, we assume to the contrary, i.e. dim(VI)≥ k+1. Let {α1, ...,αk+1}
be an independent system of vectors of VI . Apply Lemma 2.2.4 one has a non-zero
complex ξ such that

I = ξ α1 · · ·∧αk.

Since αk+1∧ I = 0 we get ξ α1 · · ·∧αk = 0, i.e. ξ = 0. This is a contradiction. Therefore,
dim(VI)≤ k.

To prove dim(WI) ≥ k, let {α1, ...,αr} be a basis of VI and complete it to get a basis
{α1, ...,αn} of V ∗. By Lemma 2.2.4, there exists a (k− r)-form β such that

I = α1 · · ·∧αr∧β .

We can write β as follows:

β = ∑
r+1≤ jr+1<···< jk≤n

ξ jr+1,... jkα jr+1 ∧·· ·∧α jk = ∑
J

ξJαJ.

Let {X1, ...,Xn} be the dual basis of {α1, ...,αn} in V and choose J such that ξJ 6= 0. By
Lemma 2.2.5, one has:

• if As = X1∧·· ·∧ X̂s∧·· ·∧Xr∧X jr+1 ∧·· ·∧X jk then ιAs I =±ξJαs ∈WI(1≤ s≤ r).
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2.2. Singular quadratic Lie algebras

• if As = X1∧ ·· · ∧Xr ∧X jr+1 ∧ ·· · ∧ X̂ jr+s ∧ ·· · ∧X jk then ιAs I = ±ξJα jr+s ∈WI(1 ≤
s≤ k− r).

Therefore, dim(WI)≥ k.

(2) The first statement of (2) follows Lemma 2.2.4. By the proof of (1), α1, ...,αr,α jr+1 ,

...,α jr+s ∈WI then I ∈
∧k(WI).

(3) Lemma 2.2.4 shows that I is decomposable if and only if dim(VI) = k. We only prove
that I is decomposable if and only if dim(WI) = k. The last assertion follows. Indeed,
if I is decomposable, then I = α1 ∧ ·· · ∧ αk. Therefore, WI = span{α1, . . . ,αk}, i.e.
dim(WI) = k.

Conversely, if dim(WI) = k, we assume that I is not decomposable. Let {α1, ...,αr} be a
basis of VI and complete it to get a basis {α1, ...,αn} of V ∗. By Lemma 2.2.4, there exists
a (k− r)-form β such that

I = α1 · · ·∧αr∧β .

We can write β as follows:

β = ∑
r+1≤ jr+1<···< jk≤n

ξ jr+1,... jkα jr+1 ∧·· ·∧α jk = ∑
J

ξJαJ.

If there exist two index families J and J′ distinct such that ξJ 6= 0 and ξJ′ 6= 0 then

]({ jr+1, . . . , jk}∪{ j′r+1, . . . , j′k})≥ k− r+1.

So one has r+(k− r+ 1) = k+ 1 vectors independent in WI which is of dimension k.
This is a contradiction. Therefore, I is decomposable.

Corollary 2.2.6. Let g be a non-Abelian quadratic Lie algebra and I be its associated 3-form.
Then one has:

(1) dim(VI) ∈ {0,1,3}.

(2) WI = φ([g,g]) and dim([g,g])≥ 3.

(3) I is decomposable if and only if dim([g,g]) = 3.

Corollary 2.2.7. Let g be a non-Abelian quadratic Lie algebra with its associated 3-form I. If

g= z
⊥
⊕ l is a decomposition of g as in Proposition 2.1.5, where z is a central ideal and l has a

totally isotropic center then WI = φ([l, l]).

Recall that if A : g→ g′ is an isomorphism then it induces an isomorphism tA : g′∗ → g∗

defined by tA( f ) = f ◦A, for all f ∈ g′∗, that extends to an algebra isomorphism from A (g′)
onto A (g). We also denote this isomorphism by tA.

Lemma 2.2.8. Let g and g′ be quadratic Lie algebras with associated 3-forms I and I′ re-
spectively. Let A be an i-isomorphism from g onto g′. Then I = tA(I′), VI =

tA(VI′) and
WI =

tA(WI′).
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Proof. Assume that A is an i-isomorphism from (g,B) onto (g′,B′) then

B′([A(X),A(Y )],A(Z)) = B′(A[X ,Y ],A(Z)) = B([X ,Y ],Z), ∀ X ,Y,Z ∈ g.

That means I = tA(I′).
Let α ′ ∈VI′ then α ′∧I′= 0. So tA(α ′∧I′) = tA(α ′)∧ tA(I′) = 0. It means that tA(VI′)⊂VI .

Similarly, tA−1(VI)⊂ VI′ . Therefore, VI =
tA(VI′).

For all X ∈ g, Y,Z ∈ g′ one has ιA(X)(I′)(Y,Z) = ιX(I)(A−1(Y ),A−1(Z)). Therefore, the
restriction of A to the subspace {v∈ g | ιv(I) = 0} is an i-isomorphism from {v∈ g | ιv(I) = 0}
onto {v ∈ g′ | ιv(I′) = 0} then WI =

tA(WI′).

It results from the previous lemma that dim(VI) and dim(WI) are invariant under
i-isomorphisms. This is not new for dim(WI) since dim(WI) = dim([g,g]). Actually, dim(WI)
is invariant under isomorphisms.

For dim(VI), to our knowledge this fact was not remarked up to now, so we introduce the
following definition:

Definition 2.2.9. Let g be a quadratic Lie algebra. The dup number dup(g) is defined by

dup(g) = dim(VI).

Remark 2.2.10. By Corollary 2.2.6, when g is non-Abelian, one has dup(g) ∈ {0,1,3} and
dim([g,g])≥ 3. Moreover, I is decomposable if and only if dup(g) = dim([g,g]) = 3, a simple

but rather interesting remark. Finally, if g is decomposed by g = z
⊥
⊕ l as in Proposition 2.1.5

then dup(g) = dup(l) since I ∈
∧3(WI) and WI = φ([g,g]) = φ([l, l]).

We separate non-Abelian quadratic Lie algebras as follows:

Definition 2.2.11. Let g be a non-Abelian quadratic Lie algebra.

(1) g is an ordinary quadratic Lie algebra if dup(g) = 0.

(2) g is a singular quadratic Lie algebra if dup(g)≥ 1.

(i) g is a singular quadratic Lie algebra of type S1 if dup(g) = 1.

(ii) g is a singular quadratic Lie algebra of type S3 if dup(g) = 3.

Now, given a non-Abelian n-dimensional quadratic Lie algebra g, we can assume, up to
i-isomorphisms, that g is regarded as the quadratic vector space Cn equipped with its canonical
bilinear form B. Our problem is considering Lie algebra structures on g such that B is invariant.
So we introduce the following sets:

Definition 2.2.12. For n≥ 1:

(1) Q(n) is the set of non-Abelian quadratic Lie algebra structures on Cn.

(2) O(n) is the set of ordinary quadratic Lie algebra structures on Cn.
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2.2. Singular quadratic Lie algebras

(3) S(n) is the set of singular quadratic Lie algebra structures on Cn.

By [PU07], there is a one-to-one map from Q(n) onto the subset{
I ∈A 3(Cn) | I 6= 0,{I, I}= 0

}
⊂A 3(Cn).

In the sequel, we identify these two sets, so that Q(n)⊂A 3(Cn).

Theorem 2.2.13. One has:

(1) Q(n) is an affine variety in A 3(Cn).

(2) O(n) is a Zariski-open subset of Q(n).

(3) S(n) is a Zariski-closed subset of Q(n).

Proof. The map I 7→ {I, I} is a polynomial map from A 3(Cn) into A 4(Cn), so the first claim
follows.

Fix I ∈ A 3(Cn) such that {I, I} = 0. Consider the map m : (Cn)∗ → A 4(Cn) defined by
m(α) = α ∧ I, for all α ∈ (Cn)∗. Then, if g is the quadratic Lie algebra associated to I, one has
dup(g) = 0 if and only if rank(m) = n. This can never happen for n ≤ 4. Assume that n ≥ 5.
Let M be a matrix of m and ∆i be the minors of order n, for 1≤ i≤

(n
4

)
. Then g ∈ O(n) if and

only if there exists i such that ∆i 6= 0. But ∆i is a polynomial function and from that the second
and the third claims follow.

Lemma 2.2.14. Let g1 and g2 be non-Abelian quadratic Lie algebras. Then g1
⊥
⊕ g2 is an

ordinary quadratic Lie algebra.

Proof. Set g = g1
⊥
⊕ g2. Denote by I, I1 and I2 the non-trivial 3-forms associated to g, g1 and

g2 respectively.
One has A (g) = A (g1)⊗A (g2), A k(g) =

⊕
r+s=k

A r(g1)⊗A s(g2) and I = I1 + I2, with

I1 ∈ A 3(g1) and I2 ∈ A 3(g2). It immediately results that for α = α1 +α2 ∈ g∗1⊕ g∗2, one has
α ∧ I = 0 if and only if α1 = α2 = 0.

Proposition 2.2.15. One has:

(1) Q(n) 6= /0 if and only if n≥ 3.

(2) O(3) = O(4) = /0 and O(n) 6= /0 if n≥ 6.

Proof. If g is a non-Abelian quadratic Lie algebra, using Remark 2.2.10, one has dim([g,g])≥
3, so Q(n) = /0 if n < 3.

We shall now use some elementary quadratic Lie algebras given in Section 6 of [PU07]
(see also in Proposition 2.2.29), i.e. those are quadratic Lie algebras such that their associated
3-form is decomposable. We denote these algebras by gi, according to their dimension, i.e.
dim(gi) = i, for 3≤ i≤ 6. Note that g3 = o(3), g4, g5 and g6 are examples of elements of Q(3),
Q(4), Q(5) and Q(6), respectively.
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Consider

g=
⊥⊕

3≤i≤6

(

ki times︷ ︸︸ ︷
gi
⊥
⊕ . . .

⊥
⊕ gi).

Then dim(g) =
6
∑

i=3
iki and by Lemma 2.2.14, dup(g) = 0, so we obtain O(n) 6= /0 if n≥ 6.

Finally, let g be a non-Abelian quadratic Lie algebra of dimension 3 or 4 with associated
3-form I. Then I is decomposable, so g is singular. Therefore O(3) = O(4) = /0.

Remark 2.2.16. We shall prove in Appendix B and Appendix C by two different ways that
O(5) = /0. So, generically a non-Abelian quadratic Lie algebra is ordinary if n≥ 6.

Definition 2.2.17. A quadratic Lie algebra g is indecomposable if g= g1
⊥
⊕ g2, with g1 and g2

ideals of g, implies g1 or g2 = {0}.

The proposition below gives another characterization of reduced singular quadratic Lie al-
gebras.

Proposition 2.2.18. Let g be a singular quadratic Lie algebra. Then g is reduced if and only if
g is indecomposable.

Proof. If g is indecomposable, by Proposition 2.1.5, g is reduced. If g is reduced and g =

g1
⊥
⊕ g2, with g1 and g2 ideals of g, then Z(gi) ⊂ [gi,gi] for i = 1,2. So gi is reduced or gi =

{0}. But if g1 and g2 are both reduced, by Lemma 2.2.14, one has dup(g) = 0. Hence g1 or
g2 = {0}.

2.2.3 Quadratic Lie algebras of type S1

Let (g,B) be a quadratic vector space and I be a non-zero 3-form in A 3(g). As in Subsection
2.2.1, we define a Lie bracket on g by:

[X ,Y ] = φ
−1(ιX∧Y (I)), ∀ X ,Y ∈ g.

Then g becomes a quadratic Lie algebra with an invariant bilinear form B if and only if {I, I}= 0
[PU07].

In the sequel, we assume that dim(VI) = 1. Fix α ∈ VI and choose Ω ∈ A 2(g) such that
I = α ∧Ω as follows: let {α,α1, . . . ,αr} be a basis of WI . Then, I ∈

∧3(WI) by Proposition
2.2.3. We set:

X0 = φ
−1(α) and Xi = φ

−1(αi), 1≤ i≤ r.

So, we can choose Ω ∈A 2(V ) where V = span{X1, . . . ,Xr}. Note that Ω is an indecomposable
bilinear form, so dim(V )> 3.

We define C : g→ g by
B(C(X),Y ) = Ω(X ,Y ).

Therefore C is skew-symmetric with respect to B.
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Lemma 2.2.19. The following assertions are equivalent:

(1) {I, I}= 0

(2) {α,α}= 0 and {α,Ω}= 0

(3) B(X0,X0) = 0 and C(X0) = 0

In this case, one has dim([g,g])> 4, Z(g)⊂ ker(C), Im(C)⊂ [g,g] and X0 ∈ Z(g)∩ [g,g].
Proof. It is easy to see that:

{I, I}= 0⇔{α,α}∧Ω∧Ω = 2I∧{α,Ω}.

If Ω∧Ω= 0, then Ω is decomposable and that is a contradiction since dim(VI) = 1. So Ω∧Ω 6=
0.

If {α,α} 6= 0, then α divides Ω∧Ω∈A 4(V ), another contradiction. That implies {α,α}=
0 = B(X0,X0). It results that {α,Ω} ∈ VI = Cα , hence {α,Ω} = λα for some λ ∈ C. But
{α,Ω} is an element of A 1(V ), so λ must be zero and by Subsection 2.2.1, ιX0(Ω) = 0,
therefore C(X0) = 0. Moreover, since {α,α} = {α,Ω} = 0, using I = α ∧Ω, we deduce that
{α, I}= 0. Again by Subsection 2.2.1, it results that B(X0, [X ,Y ]) = {α, I}(X ∧Y ) = 0, for all
X , Y ∈ g. So X0 ∈ [g,g]⊥ = Z(g). Also, VI ⊂WI , so X0 = φ−1(α) ∈ φ−1(WI) = [g,g].

Write Ω = ∑
i< j

ai jαi ∧α j, with ai j ∈ C. Since WI = φ([g,g]) and X1, . . . ,Xr ∈ [g,g], we

deduce that
C = ∑

i< j
ai j(αi⊗X j−α j⊗Xi)

Hence Im(C) ⊂ [g,g]. Since C is skew-symmetric, one has ker(C) = Im(C)⊥ and it follows
Z(g) = [g,g]⊥ ⊂ ker(C).

Finally, [g,g] = CX0⊕V and since dim(V )> 3, we conclude that dim([g,g])> 4.

Remark 2.2.20. It is important to notice that our choice of Ω such that I = α ∧Ω is not unique,
it depends on the choice of V , so C is not uniquely defined. If we consider another vector space
V ′ and I = α ∧Ω′. Then Ω′ = Ω+α ∧ β for some β ∈ g∗. Let X1 = φ−1(β ) and let C′ be
the map associated to Ω′. By a straightforward computation, C′ =C+α⊗X1−β ⊗X0. Since
C′(X0) = 0, we must have B(X0,X1) = 0.

Lemma 2.2.21. There exists Y0 ∈V⊥ such that

V⊥ = Z(g)⊕CY0, B(Y0,Y0) = 0 and B(X0,Y0) = 1.

Moreover
C(Y0) = 0.

Proof. One has φ−1(WI) = [g,g] =CX0⊕V , therefore Z(g)⊂V⊥ and dim(Z(g)) = dim(g)−
dim([g,g]) = dim(V⊥)−1. So there exists Y ∈V⊥ such that V⊥ = Z(g)⊕CY . Now, Y cannot
be orthogonal to X0, since it would be orthogonal to [g,g] and therefore an element of Z(g). So

we can assume that B(X0,Y ) = 1. Replace Y by Y0 = Y − 1
2

B(Y,Y )X0 to obtain B(Y0,Y0) = 0

(recall B(X0,X0) = 0).
By Lemma 2.2.19, Im(C) ⊂ V and that implies B(Y0,C(X)) = −B(C(Y0),X) = 0, for all

X ∈ g. Then C(Y0) = 0.
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Proposition 2.2.22. We keep the previous notation and assumptions. Then:

(1) [X ,Y ] = B(X0,X)C(Y )−B(X0,Y )C(X)+B(C(X),Y )X0, for all X, Y ∈ g.

(2) C = ad(Y0) and rank(C) is even.

(3) ker(C) = Z(g)⊕CY0, Im(C) =V and [g,g] = CX0⊕ Im(C).

(4) the Lie algebra g is solvable. Moreover, g is nilpotent if and only if C is nilpotent.

(5) the dimension of [g,g] is greater than or equal to 5 and it is odd.

Proof.

(1) For all X ,Y,Z ∈ g one has

B([X ,Y ],Z) = (α ∧Ω)(X ,Y,Z) = α(X)Ω(Y,Z)−α(Y )Ω(X ,Z)+α(Z)Ω(X ,Y )

= B(B(X0,X)C(Y )−B(X0,Y )C(X)+B(C(X),Y )X0,Z).

Since B is non-degenerate then

[X ,Y ] = B(X0,X)C(Y )−B(X0,Y )C(X)+B(C(X),Y )X0, ∀ X ,Y ∈ g.

(2) Set X = Y0 in (1) and use Lemma 2.2.21 to show C = ad(Y0). Since C(g) = ad(Y0)(g) =
φ−1 (ad∗(g)(φ(Y0))), the rank of C is the dimension of the coadjoint orbit through φ(Y0),
so it is even (see also Appendix A).

(3) We may assume that g is reduced. Then Z(g) is totally isotropic and Z(g) ⊂ X⊥0 . Write
X⊥0 = Z(g)⊕h with h a complementary subspace of Z(g). Therefore g= Z(g)⊕h⊕CY0
and for an element X = Z+H +λY0 ∈ ker(C), we deduce H ∈ ker(C) by Lemmas 2.2.19
and 2.2.21.

But B(X0,H) = 0, so using (1), H ∈ Z(g). It results that H = 0. Then ker(C) = Z(g)⊕
CY0. In addition,

dim(Im(C)) = dim(h) = dim(X⊥0 )−dim(Z(g)) = dim([g,g])−1.

Our choice of V implies that [g,g] = φ−1(WI) = CX0⊕V and Im(C)⊂V (see the proof
of Lemma 2.2.19). Therefore Im(C) =V and [g,g] = CX0⊕ Im(C).

(4) Since B(X0, Im(C)) = 0, then [[g,g], [g,g]] = [Im(C), Im(C)] ⊂ CX0. We conclude that
g is solvable. If g is nilpotent, then C = ad(Y0) is nilpotent. If C is nilpotent, using
Im(C)⊂ X⊥0 , we obtain by induction that (ad(X))k(g)⊂CX0⊕ Im(Ck) for any k ∈N. So
ad(X) is nilpotent, for all X ∈ g and that implies g nilpotent.

(5) Notice that [g,g] = CX0⊕ Im(C) and rank(C) is even, so dim([g,g]) is odd. By Lemma
2.2.19, dim([g,g])≥ 5.
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Recall that C is not unique (see Remark 2.2.20) and it depends on the choice of V . Let

a= X⊥0 /CX0.

We denote by X̂ the class of an element X ∈ X⊥0 .

Proposition 2.2.23.
Keep the notation above. One has:

(1) the Lie algebra a is Abelian.

(2) define
B̂(X̂ ,Ŷ ) = B(X ,Y ), ∀ X ,Y ∈ X⊥0 .

Then B̂ is a non-degenerate symmetric bilinear form on a.

(3) define
Ĉ(X̂) =C(X), ∀ X ∈ X⊥0 .

Then Ĉ ∈L (a) is a skew-symmetric map with rank(Ĉ) = rank(C) even and rank(Ĉ)≥ 4.

(4) Ĉ does not depend on the choice of V . More precisely, if WI = Cα⊕φ(V ′) and C′ is the
associated map to V ′ (see Remark 2.2.20), then Ĉ′ = Ĉ.

(5) the Lie algebra g is reduced if and only if ker(Ĉ)⊂ Im(Ĉ).

Proof.

(1) It follows from Proposition 2.2.22 (1).

(2) It is clear that B̂ is well-defined. Now, since B(X0,Y0) = 1, B(X0,X0) = B(Y0,Y0) = 0, the
restriction of B to span{X0,Y0} is non-degenerate. So

g= span{X0,Y0}
⊥
⊕ span{X0,Y0}⊥,

X⊥0 =CX0⊕ span{X0,Y0}⊥ and X⊥0
⊥ = X⊥0 ∩ span{X0,Y0}=CX0. We conclude that B̂ is

non degenerate.

(3) We have C(X⊥0 ) = ad(Y0)(X⊥0 )⊂ X⊥0 since X⊥0 is an ideal of g. Moreover, C(X0) = 0, so
Ĉ is well-defined. The image of C is contained in X⊥0 and Im(C)∩CX0 = {0}, therefore
dim(Im(C)/CX0) = dim(Im(Ĉ)) = dim(Im(C)). Now it is enough to apply Proposition
2.2.22.

(4) By Remark 2.2.20, we have C′ =C+α⊗X1−β ⊗X0. But α(X0) = 0, so Ĉ′ = Ĉ.
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(5) By Proposition 2.2.22, we have ker(C) = Z(g)⊕CY0 and by Lemma 2.2.19, we have
Z(g)⊂ X⊥0 . Again by Proposition 2.2.22, we conclude that ker(Ĉ) = Z(g)/CX0. Apply-
ing Proposition 2.2.22 once more, we have [g,g] =CX0⊕ Im(C), so Im(Ĉ) = [g,g]/CX0.
Then ker(Ĉ) ⊂ Im(Ĉ) if and only if Z(g) ⊂ [g,g] +CX0. But X0 ∈ [g,g] (see Lemma
2.2.19), so the result follows.

We should notice that Ĉ still depends on the choice of α (see Remark 2.2.20): if we replace

α by λα , for a non-zero λ ∈ C, that will change Ĉ into
1
λ

Ĉ. So there is not a unique map Ĉ

associated to g but rather a family {λĈ | λ ∈C\{0}} of associated maps. In other words, there
is a line

[Ĉ] = {λĈ | λ ∈ C} ∈ P1(o(a))

where P1(o(a)) is the projective space associated to the space o(a).

Definition 2.2.24. We call [Ĉ] the line of skew-symmetric maps associated to the quadratic Lie
algebra g of type S1.

Remark 2.2.25. The unicity of [Ĉ] is valuable, but the fact that Ĉ acts on a quotient space
and not on a subspace of g could be a problem. Hence it is convenient to use the following
decomposition of g: the restriction of B to CX0⊕CY0 is non-degenerate, so we can write g =

(CX0⊕CY0)
⊥
⊕ q where q = (CX0⊕CY0)

⊥. Since C(X0) = C(Y0) = 0 and C ∈ o(g), C maps
q into q. Let π : X⊥0 → X⊥0 /CX0 be the canonical surjection and C = C|q. Then the restriction
πq : q→ X⊥0 /CX0 is an isometry and Ĉ = πq C π−1

q .
Remark that Y0 is not unique, but if Y ′0 satisfies Lemma 2.2.21, consider C′ = ad(Y ′0) and q′

such that g = (CX0⊕CY ′0)
⊥
⊕ q′, therefore Ĉ = π ′q C′ π ′−1

q with the obvious notation. It results
that π ′−1

q πq is an isometry from q to q′ and that

C′ =
(
π
′−1
q πq

)
C
(
π
′−1
q πq

)−1
.

We shall develop this aspect in the next Section.

2.2.4 Solvable singular quadratic Lie algebras and double extensions
In this subsection, we will apply Definition 2.1.9 for a particular case that is the double

extension of a quadratic vector space by a skew-symmetric map as follows:

Definition 2.2.26.

(1) Let (q,Bq) be a quadratic vector space and C : q→ q be a skew-symmetric map. Let
(t= span{X1,Y1},Bt) be a 2-dimensional quadratic vector space with Bt defined by

Bt(X1,X1) = Bt(Y1,Y1) = 0, Bt(X1,Y1) = 1.

Consider
g= q

⊥
⊕ t
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equipped with a bilinear form B = Bq+Bt and define a bracket on g by

[X +λX1 +µY1,Y +λ
′X1 +µ

′Y1] = µC(Y )−µ
′C(X)+B(C(X),Y )X1,

for all X ,Y ∈ q, λ ,µ,λ ′,µ ′ ∈ C. Then (g,B) is a quadratic solvable Lie algebra. We say
that g is the double extension of q by C.

(2) Let gi be double extensions of quadratic vector spaces (qi,Bi) by skew-symmetric maps
Ci ∈L (qi), for 1≤ i≤ k. The amalgamated product

g= g1 ×
a
g2 ×

a
. . . ×

a
gk

is defined as follows:

• consider (q,B) be the quadratic vector space with q = q1⊕ q2⊕ ·· · ⊕ qk and the
bilinear form B such that B(∑k

i=I Xi,∑
k
i=I Yi) = ∑

k
i=I Bi(Xi,Yi), for Xi,Yi ∈ qi, 1≤ i≤

k.

• the skew-symmetric map C ∈L (q) is defined by C(∑k
i=I Xi) = ∑

k
i=I Ci(Xi), for Xi ∈

qi, 1≤ i≤ k.

Then g is the double extension of q by C.

Next, we will show that double extensions are highly related to solvable singular quadratic
Lie algebras and amalgamated products can be used to decompose double extensions that are
useful in the nilpotent case. However, we notice here that generally this decomposition is a bad

behavior with respect to i-isomorphisms as follows: if g1
i' g′1 and g2

i' g′2, it may happen that
g1 ×

a
g2 and g′1 ×a g′2 are not even isomorphic. An example will be given in Remark 2.2.45.

Lemma 2.2.27. We keep the notation above.

(1) Let g be the double extension of q by C. Then

[X ,Y ] = B(X1,X)C(Y )−B(X1,Y )C(X)+B(C(X),Y )X1, ∀ X ,Y ∈ g,

where C = ad(Y1). Moreover, X1 ∈ Z(g) and C|q =C.

(2) Let g′ be the double extension of q by C′ = λC, λ ∈ C, λ 6= 0. Then g and g′ are i-
isomorphic.

Proof.

(1) This is a straightforward computation from the previous definition.

(2) Write g = q
⊥
⊕ t = g′. Denote by [·, ·]′ the Lie bracket on g′. Define A : g → g′ by

A(X1) = λX1, A(Y1) =
1
λ

Y1 and A|q = Idq. Then A([Y1,X ]) =C(X) = [A(Y1),A(X)]′ and

A([X ,Y ]) = [A(X),A(Y )]′, for all X ,Y ∈ q. So A is an i-isomorphism.
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A natural consequence of formulas in Proposition 2.2.22 (1) and Lemma 2.2.27 is given by
the proposition below:

Proposition 2.2.28.

(1) Consider the notation in Subection 2.2.3, Remark 2.2.25. Let g be a singular quadratic
Lie algebra of type S1 (that is, dup(g) = 1). Then g is the double extension of q= (CX0⊕
CY0)

⊥ by C = ad(Y0)|q.

(2) Let (g,B) be a quadratic Lie algebra. Let g′ be the double extension of a quadratic vector
space (q′,B′) by a map C′. Let A be an i-isomorphism of g′ onto g and write q = A(q′).
Then g is the double extension of (q,B|q×q) by the map C = A C′ A−1 where A = A|q′ .

(3) Let g be the double extension of a quadratic vector space q by a map C 6= 0. Then g is a
solvable singular quadratic Lie algebra. Moreover:

(i) g is of type S3 if and only if rank(C) = 2.

(ii) g is of type S1 if and only if rank(C)≥ 4.

(iii) g is reduced if and only if ker(C)⊂ Im(C).

(iv) g is nilpotent if and only if C is nilpotent.

Proof.

(1) Let b=CX0⊕CY0. Then B|b×b is non-degenerate and g= b⊕q. Since ad(Y0)(b)⊂ b and
ad(Y0) is skew-symmetric, we have ad(Y0)(q)⊂ q. By Proposition 2.2.22 (1), we have

[X ,X ′] = B(C(X),X ′)X0, ∀ X ,X ′ ∈ q.

Set X1 = X0 and Y1 = Y0 to obtain the result.

(2) Write g′= (CX ′1⊕CY ′1)
⊥
⊕ q′. Let X1 =A(X ′1) and Y1 =A(Y ′1). Then g= (CX1⊕CY1)

⊥
⊕ q

since A is i-isomorphic. One has:

[Y1,X ] = A[Y ′1,A
−1(X)] = (AC′A−1)(X), ∀ X ∈ q, and

[X ,Y ] = A[A−1(X),A−1(Y )] = B((AC′A−1)(X),Y )X1, ∀ X ,Y ∈ q.

Hence, this proves the result.

(3) Let g= (CX1⊕CY1)
⊥
⊕ q, C = ad(Y1), α = φ(X1), Ω(X ,Y ) = B(C(X),Y ), for all X , Y ∈ g

and I be the 3-form associated to g. Then the formula for the Lie bracket in Lemma 2.2.27
(1) can be translated as I = α ∧Ω, hence dup(g)≥ 1 and g is singular.

Let WΩ be the set WΩ = {ιX(Ω) = φ(C(X)),X ∈ g} then WΩ = φ(Im(C)). Therefore
rank(C)≥ 2 by Proposition 2.2.3 and Ω is decomposable if and only if rank(C) = 2.
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If rank(C)> 2, then g is of type S1 and by Proposition 2.2.23, we have rank(C)≥ 4.

Finally, Z(g) = CX1⊕ ker(C) and [g,g] = CX1⊕ Im(C), so g is reduced if and only if
ker(C)⊂ Im(C).

The proof of the last claim is exactly the same as in Proposition 2.2.22 (4).

A complete classification (up to i-isomorphisms) of quadratic Lie algebras of type S3 is
given in [PU07] by applying the formula {I, I}= 0 for the case I decomposable. We shall recall
the characterization of these algebras here and describe them in terms of double extensions:

Proposition 2.2.29. Let g be a quadratic Lie algebra of type S3. Then g is i-isomorphic to an

algebra l
⊥
⊕ z where z is a central ideal of g and l is one of the following algebras:

(1) g3(λ ) = o(3) equipped with the bilinear form B = λκ where κ is the Killing form and
λ ∈ C, λ 6= 0.

(2) g4, a 4-dimensional Lie algebra: consider q = C2, {E1,E2} its canonical basis and the
bilinear form B defined by B(E1,E1) = B(E2,E2) = 0 and B(E1,E2) = 1. Then g4 is the
double extension of q by the skew-symmetric map

C =

(
1 0
0 −1

)
.

Moreover, g4 is solvable, but it is not nilpotent. The Lie algebra g4 is known in the
literature as the diamond algebra (see for instance [Dix74]).

(3) g5, a 5-dimensional Lie algebra: consider q = C3, {E1,E2,E3} its canonical basis and
the bilinear form B defined by B(E1,E1) = B(E3,E3) = B(E1,E2) = B(E2,E3) = 0 and
B(E1,E3) = B(E2,E2) = 1. Then g5 is the double extension of q by the skew-symmetric
map

C =

0 1 0
0 0 −1
0 0 0

 .

Moreover, g5 is nilpotent.

(4) g6, a 6-dimensional Lie algebra: consider q = C4, {E1,E2,E3,E4} its canonical basis
and the bilinear form B defined by B(E1,E3)=B(E2,E4)= 1 and B(Ei,E j)= 0 otherwise.
Then g6 is the double extension of q by the skew-symmetric map

C =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0

 .

Moreover, g6 is nilpotent.
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Therefore, we can conclude that all solvable quadratic Lie algebras of type S3 are double
extensions of a quadratic vector space by a skew-symmetric map.

We remark that in the nilpotent Lie algebras classification, the Lie algebras g5 and g6 can be
identified respectively as g5,4 and g6,4, for more details the reader should refer to [Oom09] and
[Mag10].

2.2.5 Classification singular quadratic Lie algebras
Let (q,B) be a quadratic vector space. We recall the notations in Chapter 1 that O(q) is the

group of orthogonal maps and o(q) is its Lie algebra, i.e. the Lie algebra of skew-symmetric
maps. Also, recall that the adjoint action is the action of O(q) on o(q) by conjugation.

Theorem 2.2.30. Let (q,B) be a quadratic vector space. Let g = (CX1⊕CY1)
⊥
⊕ q and g′ =

(CX ′1⊕CY ′1)
⊥
⊕ q be double extensions of q, by nonzero skew-symmetric maps C and C′ respec-

tively. Then:

(1) there exists a Lie algebra isomorphism between g and g′ if and only if there exist an
invertible map P ∈L (q) and a non-zero λ ∈ C such that C′ = λ PCP−1 and P∗PC =C
where P∗ is the adjoint map of P with respect to B.

(2) there exists an i-isomorphism between g and g′ if and only if C′ is in the O(q)-adjoint
orbit through λC for some non-zero λ ∈ C.

Proof.

(1) Let A : g→ g′ be a Lie algebra isomorphism. We know by Proposition 2.2.28 that g and
g′ are singular. Assume that g is of type S3. Then 3 = dim([g,g]) = dim([g′,g′]). So g′

is also of type S3 ([PU07]). Therefore, g and g′ are either both of type S1 or both of type
S3. Let us study these two cases.

(i) First, assume that g and g′ are both of type S1. We start by proving that A(CX1⊕q)=
CX ′1⊕q. If this is not the case, there is X ∈ q such that A(X) = βX ′1 + γY ′1 +Y with
Y ∈ q and γ 6= 0. Then

[A(X),CX ′1⊕q]′ = γC′(q)+ [Y,q]′.

Since g′ is of type S1, we have rank(C′)≥ 4 (see Proposition 2.2.28) and it follows
that dim([A(X),CX ′1⊕q]′)≥ 4. On the other hand, [A(X),CX ′1⊕q]′ is contained in
A([X ,g]) and dim([X ,g])≤ 2, so we obtain a contradiction.
Next, we prove that A(X1) ∈ CX ′1. By the definition of a double extension and B
non-degenerate, then there exist X , Y ∈ q such that X1 = [X ,Y ]. Then A(X1) =
[A(X),A(Y )]′ ∈ [CX ′1⊕q,CX ′1⊕q]′ = CX ′1. Hence A(X1) = µX ′1 for some non-zero
µ ∈ C.
Now, write A|q = P + β ⊗ X ′1 with P : q → q and β ∈ q∗. If X ∈ ker(P), then

A
(

X− 1
µ

β (X)X1

)
= 0, so X = 0 and therefore, P is invertible.
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For all X , Y ∈ q, we have A([X ,Y ]) = µB(C(X),Y )X ′1. Also,

A([X ,Y ]) = [P(X)+β (X)X ′1,P(Y )+β (Y )X ′1]
′

= B(C′P(X),P(Y ))X ′1.

So it results that P∗C′P = µC.
Moreover, A([Y1,X ]) = P(C(X)+β (C(X))X ′1, for all X ∈ q. Let A(Y1) = γY ′1 +Y +
δX ′1, with Y ∈ q. Therefore

A([Y1,X ]) = γC′P(X)+B(C′(Y ),P(X))X ′1

and we conclude that P C P−1 = γC′ and since P∗C′P = µC, then P∗PC = γµC.

Set Q =
1

(µγ)
1
2

P. It follows that QCQ−1 = γC′ and Q∗QC = C. This finishes the

proof in the case g and g′ of type S1.

(ii) We proceed to the case when g and g′ of type S3: the proof is a straightforward case-
by-case verification. By Proposition 2.2.5, we can assume that g and g′ are reduced.
Then dim(q) = 2,3 or 4 by Proposition 2.2.29.
Recall that g is nilpotent if and only if C is nilpotent (see Proposition 2.2.28 (3)).
The same is valid for g′.
If dim(q) = 2, then g is not nilpotent, so C is not nilpotent, Tr(C) = 0 and C must
be semisimple. Therefore we can find a basis {e1,e2} of q such that B(e1,e2) = 1,

B(e1,e1) = B(e2,e2) = 0 and the matrix of C is
(

µ 0
0 −µ

)
. The same holds for C′:

there exists a basis {e′1,e′2} of q such that B(e′1,e
′
2) = 1 and B(e′1,e1)

′=B(e′2,e
′
2) = 0

such that the matrix of C′ is
(

µ ′ 0
0 −µ ′

)
. It results that C′ and

µ ′

µ
C are O(q)-

conjugate and we are done.
If dim(q) = 3 or 4, then g and g′ are nilpotent. We use the classification of nilpotent
orbits given for instance in Chapter 1: there is only one non-zero orbit in dimension
3 or 4 (corresponding to only one partition different from [13] or [14]), so C and C′

are conjugate by O(q).

This finishes the proof of the necessary condition. To prove the sufficiency, we replace
C′ by λPCP−1 to obtain P∗C′P = λC. Then we define A : g→ g′ by A(X1) = λX ′1,

A(Y1) =
1
λ

Y ′1 and A(X) = P(X), for all X ∈ q. By a direct computation, we have for all X
and Y ∈ q:

A([X ,Y ]) = [A(X),A(Y )]′ and A([Y1,X ]) = [A(Y1),A(X)]′,

so A is a Lie algebra isomorphism between g and g′.

(2) If g and g′ are i-isomorphic, then the isomorphism A in the proof of (1) is an isometry.
Hence P ∈ O(q) and PC′P−1 = µC gives the result.

Conversely, define A as above (sufficiency of (1)). Then A is an isometry and it is easy to
check that A is an i-isomorphism.
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Corollary 2.2.31. Let (g,B) and (g′,B′) be double extensions of (q,B) and (q′,B′) respectively,

where B = B|q×q and B′ = B′|q′×q′ . Write g = (CX1⊕CY1)
⊥
⊕ q and g′ = (CX ′1⊕CY ′1)

⊥
⊕ q′.

Then:

(1) there exists an i-isomorphism between g and g′ if and only if there exists an isometry
A : q→ q′ such that C′ = λ A C A−1, for some non-zero λ ∈ C.

(2) there exists a Lie algebra isomorphism between g and g′ if and only if there exist invertible
maps Q : q→ q′ and P ∈L (q) such that

(i) C′ = λ Q C Q−1 for some non-zero λ ∈ C,

(ii) P∗ P C =C and

(iii) Q P−1 is an isometry from q onto q′.

Proof.

(1) We can assume that dim(g) = dim(g′). Define a map F : g′→ g by F(X ′1) = X1, F(Y ′1) =
Y1 and F = F |q′ is an isometry from q′ onto q. Then define a new Lie bracket on g by

[X ,Y ]′′ = F
(
[F−1(X),F−1(Y )]′

)
, ∀ X ,Y ∈ g.

Denote by (g′′, [·, ·]′′) this new Lie algebra. So F is an i-isomorphism from g′ onto g′′.

Moreover g′′ = (CX1⊕CY1)
⊥
⊕ q is the double extension of q by C′′ with C′′ = F C′ F−1.

Then g and g′ are i-isomorphic if and only if g and g′′ are i-isomorphic. Applying Theo-
rem 2.2.30, this is the case if and only if there exists A ∈ O(q) such that C′′ = λ A C A−1

for some non-zero complex λ . That implies

C′ = λ (F−1 A) C (F−1A)−1

and proves (1).

(2) We keep the notation in (1). We have that g and g′ are isomorphic if and only if g and g′′

are isomorphic. Applying Theorem 2.2.30, g and g′′ are isomorphic if and only if there
exist an invertible map P ∈L (q) and a non-zero λ ∈ C such that C′′ = λ P C P−1 and
P∗ P C =C and we conclude that C′= λ Q C Q−1 with Q = F−1 P. Finally, F−1

=Q P−1

is an isometry from q to q′.

On the other hand, if C′ = λ Q C Q−1 and P∗ P C =C with P = F Q for some isometry
F : q′→ q, then construct g′′ as in (1). We deduce C′′ = λ P C P−1 and P∗ P C =C. So,
by Theorem 2.2.30, g and g′′ are isomorphic and therefore, g and g′ are isomorphic.
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Remark 2.2.32. Let g be a solvable singular quadratic Lie algebra. Consider g as the double
extension of two quadratic vectors spaces q and q′:

g= (CX1⊕CY1)
⊥
⊕ q and g= (CX ′1⊕CY ′1)

⊥
⊕ q′.

Let C = ad(Y1)|q and C′ = ad(Y ′1)|q′ Since Idg is obviously an i-isomorphism, there exist an
isometry A : q→ q′ and a non-zero λ ∈ C such that

C′ = λ A C A−1
.

Remark 2.2.33. A weak form of Corollary 2.2.31 (1) was stated in [FS87], in the case of i-
isomorphisms satisfying some (dispensable) conditions. So (1) is an improvement. To our
knowledge, (2) is completely new. Corollary 2.2.31 and Remark 2.2.32 can be applied directly
to solvable singular quadratic Lie algebras: by Proposition 2.2.28 and Proposition 2.2.29, they
are double extensions of quadratic vector spaces by skew-symmetric maps.

Apply results in Chapter 1, we shall now classify solvable singular quadratic Lie algebra
structures on Cn+2 up to i-isomorphisms in terms of O(n)-orbits in P1(o(n)). We need the
lemma below.

Lemma 2.2.34. Let V be a quadratic vector space such that V = (CX1⊕CY1)
⊥
⊕ q′ with X1, Y1

isotropic elements and B(X1,Y1) = 1. Let g be a solvable singular quadratic Lie algebra with
dim(g) = dim(V ). Then, there exists a skew-symmetric map C′ : q′→ q′ such that V considered
as the the double extension of q′ by C′ is i-isomorphic to g.

Proof. By Proposition 2.2.28 and Proposition 2.2.29, g is a double extension. Let us write

g = (CX0⊕CY0)
⊥
⊕ q and C = ad(Y0)|q. Define A : g→ V by A(X0) = X1, A(Y0) = Y1 and

A = A|q any isometry from q→ q′. It is clear that A is an isometry from g to V . Now, define the
Lie bracket on V by:

[X ,Y ] = A
(
[A−1(X),A−1(Y )]

)
, ∀ X ,Y ∈V.

Then V is a quadratic Lie algebra, that is i-isomorphic to g, by definition. Moreover, V is
obviously the double extension of q′ by C′ = A C A−1.

We denote by Ss(n+ 2) the set of solvable elements of S(n+ 2) (the set of singular Lie
algebras structures on Cn+2), for n≥ 2. Given g∈ S(n+2), we denote by [g]i its i-isomorphism

class and by Ŝs
i
(n+2) the set of classes in Ss(n+2). For [C] ∈ P1(o(n)), we denote by O[C] its

O(n)-adjoint orbit and by ˜P1(o(n)) the set of orbits.

Theorem 2.2.35. There exists a bijection θ : ˜P1(o(n))→ Ŝs
i
(n+2).

Proof. We consider O[C] ∈ ˜P1(o(n)). There is a double extension g of q = span{E2, . . . ,En+1}

by C realized on Cn+2 = (CE1⊕CEn+2)
⊥
⊕ q. Then, by Proposition 2.2.28, g ∈ Ss(n+2) and

[g]i does not depend on the choice of C. We define θ(O[C]) = [g]i. If g′ ∈ Ss(n + 2) then
by Lemma 2.2.34, g′ can be realized (up to i-isomorphism) as a double extension on Cn+2 =

(CE1⊕CEn+2)
⊥
⊕ q. So θ is onto. Finally, θ is one-to-one by Corollary 2.2.31.
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It results from the previous theorem that the classification (up to i-isomorphisms) of the
solvable singular quadratic Lie algebras of dimension n+2 can be reduced to the classification
of adjoint orbits of o(n) that details in Chapter 1. However, here we are interesting in classifying
up to isomorphisms these algebras. According to Chapter 1, we consider case-by-case particular
subsets of Ss(n+2): the set of nilpotent elements N(n+2), the set of diagonalizable elements
D(n+2) and the set of invertible elements Sinv(2p+2).

Let g ∈N(n+2). Recall that g will be a double extension by a nilpotent map C. Let N (n)
be the set of non-zero nilpotent elements of o(n) then C ∈N (n), we denote by OC its O(n)-
adjoint orbit. The set of nilpotent orbits is denoted by Ñ (n). We need the following lemma:

Lemma 2.2.36. Let C and C′ ∈ N (n). Then C is conjugate to λC′ modulo O(n) for some
non-zero λ ∈ C if and only if C is conjugate to C′.

Proof. It is enough to show that C and λC are conjugate, for any non-zero λ ∈ C. By the
Jacobson-Morozov theorem, there exists a sl(2)-triple {X ,H,C} in o(n) such that [H,C] = 2C,
so et ad(H)(C) = e2t C, for all t ∈ C. We choose t such that e2t = λ , then etH C e−tH = λC and
etH ∈ O(n).

Theorem 2.2.37. One has:

(1) Let g and g′ ∈N(n+2). Then g and g′ are isomorphic if and only if they are i-isomorphic,
so [g]i = [g], where [g] denotes the isomorphism class of g, and N̂i(n+2) = N̂(n+2).

(2) There is a bijection τ : Ñ (n)→ N̂(n+2).

(3) N̂(n+2) is finite.

Proof.

(1) Assum that g and g′ ∈ N(n+ 2) are double extensions by C and C′ respectively. Using
Lemma 2.2.34, Proposition 2.2.28 (3) and Corollary 2.2.31, if g and g′ are isomorphic
then there exists P ∈ GL(n) such that C′ = λPCP−1, for some non-zero λ ∈ C. Then λC
and C′ are conjugate under O(n) by Lemma 2.2.36. Therfore, g and g′ are i-isomorphic.

(2) As in the proof of Theorem 2.2.35, for a given OC ∈ Ñ (n), we construct the double
extension g of q = span{E2, . . . ,En+1} by C realized on Cn+2. Then, by Proposition
2.2.28 (3), g ∈N(n+2) and [g] does not depend on the choice of C. We define τ(OC) =
[g]. Then by (1) and Corollary 2.2.31, τ is one-to-one and onto.

(3) N̂(n+2) is finite since the set of nilpotent orbits Ñ (n) is finite.

Next, we describe more explicitly the set N̂(n+2) by nilpotent Jordan-type maps mentioned
in Chapter 1 and by the amalgamated product defined in the previous subsection.

40
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In a canonical basis of the quadratic vector space q=C2p consider the map CJ
2p with matrix(

Jp 0
0 −tJp

)
and in a canonical basis of the quadratic vector space q = C2p+1 consider the

map CJ
2p+1 with matrix

(
Jp+1 M

0 −tJp

)
where Jp is the Jordan block of size p, M = (mi j)

denotes the (p+ 1)× p-matrix with mp+1,p = −1 and mi j = 0 otherwise. Then CJ
2p ∈ o(2p)

and CJ
2p+1 ∈ o(2p+1). Denote by j2p the double extension of q by CJ

2p and by j2p+1 the double

extension of q by CJ
2p+1. So j2p ∈ N(2p+2) and j2p+1 ∈ N(2p+3). Lie algebras j2p or j2p+1

will be called nilpotent Jordan-type Lie algebras.
Keep the notations in Chapter 1, each [d]∈P1(n) can be written as (p1, p1, p2, p2, . . . , pk, pk,

2q1 +1, . . .2q`+1) with all pi even, p1 ≥ p2 ≥ ·· · ≥ pk and q1 ≥ q2 ≥ ·· · ≥ q`. We associate
a map C[d] ∈ o(n) with the matrix

diagk+`(C
J
2p1

,CJ
2p2

, . . . ,CJ
2pk

,CJ
2q1+1, . . . ,C

J
2q`+1)

in a canonical basis of Cn and denote by g[d] the double extension of Cn by C[d]. Then
g[d] ∈N(n+2) and g[d] is an amalgamated product of nilpotent Jordan-type Lie algebras. More
precisely,

g[d] = j2p1 ×a
j2p2 ×a

. . . ×
a
j2pk ×a

j2q1+1 ×
a
. . . ×

a
j2q`+1.

By Proposition 1.2.10, the map [d] 7→ C[d] from P1(n) to o(n) induces a bijection from

P1(n) onto Ñ (n). Therefore, combined with Theorem 2.2.37, we deduce:

Theorem 2.2.38.

(1) The map [d] 7→ g[d] from P1(n) to N(n+2) induces a bijection from P1(n) onto N̂(n+2).

(2) Each nilpotent singular n+2-dimensional Lie algebra is i-isomorphic to a unique amal-
gamated product g[d], [d] ∈P1(n) of nilpotent Jordan-type Lie algebras.

Definition 2.2.39. Let g be a solvable singular quadratic Lie algebra and write g = (CX0⊕

CY0)
⊥
⊕ q a decomposition of g as a double extension (Proposition 2.2.28). Let C = ad(Y0)|q.

We say that g is diagonalizable if C is diagonalizable.
We denote by D(n+ 2) the set of such structures on the quadratic vector space Cn+2, by

Dred(n+2) the reduced ones, by D̂(n+2), D̂i(n+2), D̂red(n+2), D̂i
red(n+2) the correspond-

ing sets of isomorphic and i-isomorphic classes of elements in D(n+2) and Dred(n+2).

Remark that the property of being diagonalizable does not depend on the chosen decompo-
sition of g (see Remark 2.2.32) and a diagonalizable C satisfies ker(C) ⊂ Im(C) if and only if
ker(C) = {0}. By Corollary 2.2.31 and using a proof completely similar to Theorem 2.2.35 or
Theorem 2.2.37, we conclude:

Proposition 2.2.40. There is a bijection between D̂i(n+ 2) and the set of semisimple O(n)-
orbits in P1(o(n)). The same result holds for D̂i

red(n+ 2) and semisimple invertible orbits in
P1(o(n)).
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Keep the notations as in Chapter 1. To describe the set of semisimple O(n)-orbits in
P1(o(n)), we need to add maps (λ1, . . . ,λp) 7→ λ (λ1, . . . ,λp), for all λ ∈ C, λ 6= 0 to the group
Gp. We obtain a group denoted by Hp. As a consequence of Section 1.3, we have the classifi-
cation result for the diagonalizable case:

Theorem 2.2.41. There is a bijection between D̂i(n+2) and Λp/Hp with n = 2p or n = 2p+1.
Moreover, if n = 2p+ 1, D̂i

red(n+ 2) = /0 and if n = 2p, then D̂i
red(2p+ 2) is in bijection with

Λ+
p /Hp where Λ+

p = {(λ1, . . . ,λp) | λi ∈ C,λi 6= 0, ∀ i }.

To go further in the study of diagonalizable reduced case, we need the following Lemma:

Lemma 2.2.42.
Let g′ and g′′ be solvable singular quadratic Lie algebras, g′ = (CX ′1⊕CY ′1)

⊥
⊕ q′ a decom-

position of g′ as a double extension and C′ = ad(Y ′1)|q′ . We assume that C′ is invertible. Then g′

and g′′ are isomorphic if and only if they are i-isomorphic.

Proof. Write g′′ = (CX ′′1 ⊕CY ′′1 )
⊥
⊕ q′′ a decomposition of g′′ as a double extension and C′′ =

ad(Y ′′1 )|q′′ .
Assume that g′ and g′′ are isomorphic. By Corollary 2.2.31, there exist Q : q′ → q′′ and

P ∈L (q′) such that Q P−1 is an isometry, P∗ P C′ = C′ and C′′ = λ Q C′ Q−1 for some non-
zero λ ∈ C. But C′ is invertible, so P∗ P = Idq′ . Therefore, P is an isometry of q′ and then Q is
an isometry from q′ to q′′. The conditions of Corollary 2.2.31 (1) are satisfied, so g′ and g′′ are
i-isomorphic.

Corollary 2.2.43. One has:

D̂red(2p+2) = D̂i
red(2p+2), ∀ p≥ 1.

Next, we describe diagonalizable reduced singular quadratic Lie algebras using the amalga-

mated products. First, let g4(λ ) be the double extension of q = C2 by C =

(
λ 0
0 −λ

)
, λ 6= 0.

By Lemma 2.2.27, g4(λ ) is i-isomorphic to g4(1), call it g4.

Proposition 2.2.44. Let (g,B) be a diagonalizable reduced singular quadratic Lie algebra.
Then g is an amalgamated product of singular quadratic Lie algebras all i-isomorphic to g4.

Proof. We write g=(CX0⊕CY0)
⊥
⊕ q, C = ad(Y0), C =C|q and B=Bq×q. Then C is a diagonal-

izable invertible element of o(q,B). Apply Appendix A to obtain a basis {e1, . . . ,ep, f1, . . . , fp}
of q and λ1, . . . ,λp ∈ C, all non-zero, such that B(ei,e j) = B( fi, f j) = 0, B(ei, f j) = δi j and
C(ei) = λiei, C( fi) =−λi fi, for all 1≤ i, j ≤ p. Let qi = span{ei, fi}, 1≤ i≤ p. Then

q=
⊥
⊕

1≤i≤p
qi.

Furthermore, hi = (CX0⊕CY0)
⊥
⊕ qi is a Lie subalgebra of g for all 1≤ i≤ p and

g= h1 ×
a
h2 ×

a
. . . ×

a
hp with hi

i' g4(λi)
i' g4.
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2.2. Singular quadratic Lie algebras

Remark 2.2.45. For non-zero λ , µ ∈ C, consider the amalgamated product:

g(λ ,µ) = g4(λ ) ×
a
g4(µ).

Then g(λ ,µ) is the double extension of C4 by
λ 0 0 0
0 µ 0 0
0 0 −λ 0
0 0 0 −µ

 .

Therefore g(λ ,µ) is isomorphic to g(1,1) if and only if µ = ±λ (Lemma 2.2.42 and Section
1.3). So, though g4(λ ) and g4(µ) are i-isomorphic to g4, the amalgamated product g(λ ,µ) is
not even isomorphic to g(1,1) = g4 ×

a
g4 if µ 6=±λ . This illustrates that amalgamated products

may have a rather bad behavior with respect to isomorphisms.

Definition 2.2.46. A double extension is called an invertible quadratic Lie algebra if the corre-
sponding skew-symmetric map is invertible.

Remark 2.2.47.

• By Remark 2.2.32, the property of being an invertible quadratic Lie algebra does not
depend on the chosen decomposition.

• By Appendix A, the dimension of an invertible quadratic Lie algebra is even.

• By Lemma 2.2.42, two invertible quadratic Lie algebras are isomorphic if and only if they
are i-isomorphic.

For p≥ 1 and λ ∈ C, let Jp(λ ) = diagp(λ , . . . ,λ )+ Jp and

CJ
2p(λ ) =

(
Jp(λ ) 0

0 −tJp(λ )

)
in a canonical basis of quadratic vector space C2p. Then CJ

2p(λ ) ∈ o(2p).

Definition 2.2.48. For λ ∈C, let j2p(λ ) be the double extension of C2p by CJ
2p(λ ). We say that

j2p(λ ) is a Jordan-type quadratic Lie algebra.
When λ = 0 and p≥ 2, we recover the nilpotent Jordan-type Lie algebras j2p from nilpotent

case.
When λ 6= 0, j2p(λ ) is an invertible singular quadratic Lie algebra and

j2p(−λ )' j2p(λ ).

Proposition 2.2.49. Let g be a solvable singular quadratic Lie algebra. Then g is an invert-
ible quadratic Lie algebra if and only if g is an amalgamated product of Lie algebras all i-
isomorphic to Jordan-type Lie algebras j2p(λ ), with λ 6= 0.
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2.2. Singular quadratic Lie algebras

Proof. Let g = (CX0⊕CY0)
⊥
⊕ q, B be the bilinear form of g, B = B|q×q, C = ad(Y0) and C =

C|q ∈ o(q,B). We decompose C into its semisimple and nilpotent parts, C = S+N. It is well
known that S and N ∈ o(q,B).

Let Λ ⊂ C \ {0} be the spectrum of S. We have that λ ∈ Λ if and only if −λ ∈ Λ (see
Appendix A). Let Vλ be the eigenspace corresponding to the eigenvalue λ . We have dim(Vλ ) =
dim(V−λ ). Denote by q(λ ) the direct sum q(λ ) =Vλ ⊕V−λ . If µ ∈ Λ, µ 6=±λ , then q(λ ) and
q(µ) are orthogonal (Appendix A). Choose Λ+ such that Λ=Λ+∪(−Λ+) and Λ+∩(−Λ+)= /0.
We have (see Appendix A):

q=
⊥
⊕

λ∈Λ+

q(λ ).

So the restriction Bλ = B|q(λ )×q(λ ) is non-degenerate. Moreover, Vλ and V−λ are maximal
isotropic subspaces in q(λ ).

Now, consider the map Ψ : V−λ → V ∗
λ

defined by Ψ(u)(v) = Bλ (u,v), for all u ∈ V−λ ,
v ∈ Vλ . Then Ψ is an isomorphism. Given any basis B(λ ) = {e1(λ ), . . . ,enλ

(λ )} of Vλ , there
is a basis B(−λ ) = {e1(−λ ), . . . ,enλ

(−λ )} of V−λ such that Bλ (ei(λ ),e j(−λ )) = δi j, for all
1≤ i, j ≤ nλ : simply define ei(−λ ) = ψ−1(ei(λ )

∗), for all 1≤ i≤ nλ .
Remark that N and S commute, so N(Vλ ) ⊂ Vλ , for all λ ∈ Λ. Define Nλ = N|q(λ ), then

Nλ ∈ o(q(λ ),Bλ ). Hence, if Nλ |Vλ
has a matrix Mλ with respect to B(λ ), then Nλ |V−λ

has
a matrix −tMλ with respect to B(−λ ). We choose the basis B(λ ) such that Mλ is of Jordan
type, i.e.

B(λ ) = B(λ ,1)∪·· ·∪B(λ ,rλ ),

the multiplicity mλ of λ is mλ = ∑
rλ

i=1 dλ (i) where dλ (i) = ]B(λ , i) and

Mλ = diagrλ

(
Jdλ (1), . . . ,Jdλ (rλ )

)
.

The matrix of C|q(λ ) written on the basis B(λ )∪B(−λ ) is:

diagnλ

(
Jdλ (1)(λ ), . . . ,Jdλ (rλ )

(λ ),−tJdλ (1)(λ ), . . . ,−
tJdλ (rλ )

(λ )
)
.

Let q(λ , i) be the subspace generated by B(λ , i)∪B(−λ , i), for all 1 ≤ i ≤ rλ and let
C(λ , i) =C|q(λ ,i). We have

q(λ ) =
⊥
⊕

1≤i≤rλ

q(λ , i).

The matrix of C(λ , i) written on the basis of q(λ , i) is CJ
2dλ (i)

(λ ). Let g(λ , i), λ ∈Λ+, 1≤ i≤ rλ

be the double extension of q(λ , i) by C(λ , i). Then g(λ , i) is i-isomorphic to j2dλ (i)(λ ). But

q=
⊥
⊕

λ∈Λ+
1≤i≤r

λ

q(λ , i) and C|q(λ ,i) =C(λ , i).

Therefore, g is the amalgamated product

g= ×
a

λ∈Λ+
1≤i≤r

λ

g(λ , i).
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Denote by Sinv(2p+ 2) the set of invertible singular quadratic Lie algebra structures on
C2p+2, by Ŝinv(2p+2) the set of isomorphism (or i-isomorphism) classes of Sinv(2p+2). The
classification of Ŝinv(2p+2) can be deduced from the classification of the set of orbits Ĩ (2p)
by Jp as follows (see Chapter 1): introduce an action of the multiplicative group C∗ =C\{0}
on Jp by

for all µ ∈ C∗, µ · (Λ,m,d) = (µΛ,m′,d′), ∀ (Λ,m,d) ∈Jp,λ ∈ Λ,

where m′(µλ ) = m(λ ),d′(µλ ) = d(λ ), for all λ ∈ Λ. Since i(µC) = µi(C), for all C ∈I (2p)
and µ ∈ C∗ where i : I (2p)→Jp the bijection is defined as in Chapter 1, then there is a
bijection î : P1(Ĩ (2p))→Jp/C∗ given by î([C]) = [i(C)], if [C] is the class of C ∈I (2p) and
[(Λ,m,d)] is the class of (Λ,m,d) ∈Jp.

Theorem 2.2.50. The set Ŝinv(2p+2) is in bijection with Jp/C∗.

Proof. By Theorem 2.2.35, there is a bijection between Ŝs
i
(2p+2) and ˜P1(o(2p)). By restric-

tion, that induces a bijection between Ŝinv
i
(2p+2) and ˜P1(I (2p)). By Lemma 2.2.42, we have

Ŝinv
i
(2p+2) = Ŝinv(2p+2). Then, the result follows: given g ∈ Sinv(2p+2) and an associated

C ∈I (2p), the bijection maps g̃ to [i(C)] where g̃ is the isomorphism class of g.

Let g be a solvable singular quadratic Lie algebra. We fix a realization of g as a double

extension, g= (CX0⊕CY0)
⊥
⊕ q (Proposition 2.2.28 and Lemma 2.2.34). Let C = ad(Y0), C =

C|q and B = B|q×q. We consider the Fitting decomposition of C:

q= qN⊕qI,

where qN and qI are C-stable, CN =C|qN is nilpotent and CI =C|qI is invertible.
We recall the facts in Section 1.5, one has qI = q⊥N , the restrictions BN = B|qN×qN and BI =

B|qI×qI are non-degenerate, CN and CI are skew-symmetric and [qI,qN ] = 0. Let gN = (CX0⊕

CY0)
⊥
⊕ qN and gI = (CX0⊕CY0)

⊥
⊕ qI . Then gN and gI are Lie subalgebras of g, gN is the

double extension of qN by CN , gI is the double extension of qI by CI and gN is a nilpotent
singular quadratic Lie algebra. Moreover, we have

g= gN ×
a
gI.

Definition 2.2.51. The Lie subalgebras gN and gI are respectively the nilpotent and invertible
Fitting components of g.

This definition is justified by:

Theorem 2.2.52. Let g and g′ be solvable singular quadratic Lie algebras and gN , gI , g′N , g′I
be their Fitting components. Then

(1) g
i' g′ if and only if gN

i' g′N and gI
i' g′I . The result remains valid if we replace

i' by '.
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2.2. Singular quadratic Lie algebras

(2) g' g′ if and only if g
i' g′.

Proof. We assume that g ' g′. Then by Corollary 2.2.31, there exists an invertible P : q→ q′

and a non-zero λ ∈C such that C′ = λ P C P−1, so q′N = P(qN) and q′I = P(qI), then dim(q′N) =
dim(qN) and dim(q′I) = dim(qI). Thus, there exist isometries FN : q′N→ qN and FI : q′I→ qI and
we can define an isometry F : q′→ q by F(X ′N +X ′I ) = FN(X ′N)+FI(X ′I ), for all X ′N ∈ q′N and
X ′I ∈ q′I . We now define F : g′→ g by F(X ′1) = X1, F(Y ′1) = Y1, F |q′ = F and a new Lie bracket
on g :

[X ,Y ]′′ = F
(
[F−1(X),F−1(Y )]′

)
, ∀ X ,Y ∈ g.

Call g′′ this new quadratic Lie algebra. We have g′′ = (CX1⊕CY1)
⊥
⊕ q, i.e., q′′ = q and

C′′ = F C′ F−1. So q′′N = F(q′N) = qN and q′′I = F(q′I) = qI . But g ' g′′, so there exists an
invertible Q : q→ q such that C′′ = λ Q C Q−1 for some non-zero λ ∈ C (Corollary 2.2.31). It
follows that q′′N = Q(qN) and q′′I = Q(qI), so Q(qN) = qN and Q(qI) = qI .

Moreover, we have Q∗ Q C =C (Corollary 2.2.31), so Q∗ Q Ck
=Ck for all k. There exists k

such that qI = Im(Ck) and (Q∗ Q Ck
)(X) =Ck

(X), for all X ∈ g. So Q∗Q|qI = IdqI and QI =Q|qI

is an isometry. Since C′′I = λ QI CI Q−1
I , then gI

i' g′′I (Corollary 2.2.31).
Let QN = Q|qN . Then C′′N = λ QN CN Q−1

N and Q∗N QN CN = CN , so by Corollary 2.2.31,

gN ' g′′N . Since gN and g′′N are nilpotent, then g′′N
i' gN by Theorem 2.2.37.

Conversely, assume that gN ' g′N and gI ' g′I . Then gN
i' g′N and gI

i' g′I by Theorem 2.2.37
and Lemma 2.2.42.

So, there exist isometries PN : gN → g′N , PI : gI → g′I and non-zero λN and λI ∈ C such that
C′N = λN PN CN P−1

N and C′I = λI PI CI P−1
I . By Lemma 2.2.36, since gN and g′N are nilpotent,

we can assume that λN = λI = λ . Now we define P : q→ q′ by P(XN +XI) = PN(XN)+PI(XI),
for all XN ∈ qN , XI ∈ qI , so P is an isometry. Moreover, since C(XN +XI) =CN(XN)+CI(XI),
for all XN ∈ qN , XI ∈ qI and C′(X ′N +X ′I ) = C′N(X

′
N) +C′I(X

′
I ), for all X ′N ∈ qN , X ′I ∈ qI , we

conclude C′ = λ P CP−1 and finally, g
i' g′, by Corollary 2.2.31.

Remark 2.2.53. The class of solvable singular quadratic Lie algebras has the remarkable prop-
erty that two Lie algebras in this class are isomorphic if and only if they are i-isomorphic. In
addition, the Fitting components do not depend on the realizations of the Lie algebra as a double
extension and they completely characterize the Lie algebra (up to isomorphisms).

It results that the classfification of Ŝs(n+2) can be reduced from the classification of O(n)-
orbits of o(n) in Chapter 1. We set an action of the group C∗ on D(n) by:

µ · ([d],T ) = ([d],µ ·T ) , ∀ µ ∈ C∗, ([d],T ) ∈D(n).

Then, we have the classification result of Ŝs(n+2) as follows:

Theorem 2.2.54. The set Ŝs(n+2) is in bijection with D(n)/C∗.

Proof. By Theorems 2.2.35 and 2.2.52, there is a bijection between Ŝs(n+2) and ˜P1(o(n)). It

needs only to show that there is a bijection between ˜P1(o(n)) and D(n)/C∗. Let C ∈ o(n) then
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2.2. Singular quadratic Lie algebras

there is the bijection p mapping C onto a pair ([d],T ) in D(n) by Proposition 1.5.1. Moreover,
CN and µCN have the same partition so p(µC) = ([d],µ ·T ) = µ · p(C). Therefore, the map p

induces a bijection p̂ : ˜P1(o(n))→ D(n)/C∗ given by p̂([C]) = [([d],T )], if [C] is the class of
C ∈ o(n) and [([d],T )] is the class of ([d],T ) ∈D(n). The result follows.
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2.3. Quadratic dimension of quadratic Lie algebras

2.3 Quadratic dimension of quadratic Lie algebras
In this section, we will study an interesting characteristic of a quadratic Lie algebra g called

the quadratic dimension. It is defined by the dimension of the space of invariant symmetric
bilinear forms on g and denoted by dq(g). This notion involves special maps which commute
with inner derivations of g. We call such maps centromorphisms. Some simple properties of a
centromorphism are given in the first subsection. We calculate the formula dq(g) for reduced
singular quadratic Lie algebras in the second subsection and use it to show that dup-number is
invariant under isomorphisms. Finally, we study centromorphisms with respect to some exten-
sions of a quadratic Lie algebra g.

2.3.1 Centromorphisms of a quadratic Lie algebra
Let (g,B) be a quadratic Lie algebra. To any symmetric bilinear form B′ on g, there is an

associated map D : g→ g satisfying

B′(X ,Y ) = B(D(X),Y ), ∀ X ,Y ∈ g.

Since B and B′ are symmetric, one has D symmetric (with respect to B), i.e. B(D(X),Y ) =
B(X ,D(X)) for all X , Y ∈ g.

Lemma 2.3.1.

(1) B′ is invariant if and only if D satisfies

D([X ,Y ]) = [D(X),Y ] = [X ,D(Y )], ∀ X ,Y ∈ g. (II)

(2) B′ is non-degenerate if and only if D is invertible.

Proof.

(1) Let X ,Y,Z ∈ g then B′([X ,Y ],Z) = B(D([X ,Y ]),Z). Since B is invariant one has:

B′(X , [Y,Z]) = B(D(X), [Y,Z]) = B([D(X),Y ],Z).

Therefore B′ is invariant if and only if D([X ,Y ]) = [D(X),Y ] since B is non-degenerate.
The Lie bracket anticommutative implies that D([X ,Y ]) = [X ,D(Y )].

(2) Assume that B′ is non-degenerate. If X is an element in g such that D(X) = 0 then
B(D(X),g) = 0. Then one has B′(X ,g) = 0. It implies that X = 0 and therefore D is
invertible. Conversely, if D is invertible then B′(X ,g) = 0 reduces to B(D(X),g) = 0.
Since B is non-degenerate one has D(X) = 0. Thus X = 0 and B′ is non-degenerate.

48



2.3. Quadratic dimension of quadratic Lie algebras

A symmetric map D satisfying (II) is called a centromorphism of g. The equality (II) is
equivalent to

D◦ ad(X) = ad(X)◦D = ad(D(X)), ∀ X ∈ g.

Denote by C(g) the space of centromorphisms of g and by CI(g) the subspace spanned by
invertible centromorphisms in C(g). We recall Lemma 2.1 in [BB97] as follows.

Lemma 2.3.2. One has C(g) = CI(g).

Proof. Let D be an invertible centromorphism and ϕ ∈ C(g). Fix B a basis of g. Denote by
M(D) and M(ϕ) respectively the associated matrices of D and ϕ in B. Consider the polynomial
P(x) = det(M(ϕ)− xM(D)). Since P(x) is a non-zero polynomial so there exists λ ∈ C such
that P(λ ) 6= 0. It means that ϕ − λD is invertible and thus ϕ = (ϕ − λD)+ λD ∈ CI(g). It
shows that C(g) = CI(g).

Therefore the space of invariant symmetric bilinear forms on g and the subspace generated
by non-degenerated ones are the same. Let us denote it by B(g). The dimension of B(g) is
called the quadratic dimension of g and denoted by dq(g). As a consequence of the previous
lemmas, one has dq(g) = dim(C(g)). Moreover, one has other properties of C(g) as follows:

Proposition 2.3.3. Let D ∈ C(g) then

(1) Dn ∈ C(g) for all n≥ 1. Furthermore, if D is invertible then D−1 ∈ C(g).

(2) Z(g) and [g,g] are stable subspaces under D.

Proposition 2.3.4. Let δ ∈ Dera(g) be a skew-symmetric derivation of g. Assume D ∈ C(g)
such that D and δ commute. Then D◦δ is also a skew-symmetric derivation of g.

Proof. Since (D ◦ δ )[X ,Y ] = D[δ (X),Y ]+D[X ,δ (Y )] = [(D ◦ δ )(X),Y ]+ [X ,(D ◦ δ )(Y )] and
B((D ◦ δ )(X),Y ) = −B(X ,(δ ◦D)(Y )) = −B(X ,(D ◦ δ )(Y )) for all X ,Y ∈ g, one has D ◦ δ ∈
Dera(g).

Corollary 2.3.5. For all X ∈ g and D ∈ C(g), D◦ ad(X) ∈ Dera(g).

It is known that dq(g) = 1 if g is simple or one-dimensional Lie algebra. If g is reductive,
but neither simple, nor one-dimensional, then

dq(g) = s(g)+
dim(Z(g))(1+dim(Z(g)))

2

where Z(g) is the center of g and s(g) is the number of simple ideals of a Levi factor of g
(Corollary 2.1 in [Ben03], see also in [BB07]). A general formula for dq(g) is not known. Next,
we give a formula of dq(g) for reduced singular quadratic Lie algebras.
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2.3.2 Quadratic dimension of reduced singular quadratic Lie algebras
and the invariance of dup number

Proposition 2.3.6. Let g be a reduced singular quadratic Lie algebra and D ∈ L (g) be a
symmetric map. Then:

(1) D is a centromorphism if and only if there exist µ ∈C and a symmetric map Z : g→ Z(g)
such that Z|[g,g] = 0 and D = µ Id+Z. Moreover D is invertible if and only if µ 6= 0.

(2)

dq(g) = 1+
dim(Z(g))(1+dim(Z(g))

2
.

Proof.

(1) If g = o(3), with B = λκ and κ the Killing form, the two results are obvious. So, we
examine the case where g is solvable, and then g can be realized as a double extension:

g = (CX1⊕CY1)
⊥
⊕ q, with corresponding bilinear form B on q, C = ad(Y1), C = C|q ∈

o(q).

Let D be an invertible centromorphism. One has D ◦ ad(X) = ad(X) ◦D, for all X ∈ g
and that implies DC = CD. Using formula (1) of Lemma 2.2.27 and CD = DC, from
[D(X),Y1] = [X ,D(Y1)], we find D(C(X)) = B(D(X1),Y1)C(X). Let µ = B(D(X1),Y1).
Since D is invertible, one has µ 6= 0 and C(D−µ Id) = 0. Since ker(C) =CX1⊕ker(C)⊕
CY1 = Z(g)⊕CY1, there exists a map Z : g→ Z(g) and ϕ ∈ g∗ such that D− µ Id =
Z+ϕ ⊗Y1. But D maps [g,g] into itself, so ϕ|[g,g] = 0. One has [g,g] = CX1⊕ Im(C).
If X ∈ Im(C), let X = C(Y ). Then D(X) = D(C(Y )) = µC(Y ), so D(X) = µX . For
Y1, D([Y1,X ]) = DC(X) = µC(X) for all X ∈ g. But also, D([Y1,X ]) = [D(Y1),X ] =
µC(X)+ϕ(Y1)C(X), hence ϕ(Y1) = 0.

Assume we have shown that D(X1) = µX1. Then if X ∈ q, B(D(X1),X) = µB(X1,X) = 0.
Moreover, B(D(X1),X) = B(X1,D(X)), so ϕ(X) = 0. Thus, to prove (1), we must prove
that D(X1) = µX1. We decompose q respectively to C as in Appendix A. Let l= ker(C).
Then:

q= (l⊕ l′)
⊥
⊕ (u⊕u′)

and C is an isomorphism from l′
⊥
⊕ (u⊕u′) onto l

⊥
⊕ (u⊕u′). Or

q= (l+ l′)
⊥
⊕ CT

⊥
⊕ (u⊕u′)

and C is an isomorphism from l′
⊥
⊕ CT

⊥
⊕ (u⊕u′) onto l

⊥
⊕ CT

⊥
⊕ (u⊕u′).

If u⊕u′ 6= {0}, there exist X ′, Y ′ ∈ u⊕u′ such that B(X ′,Y ′) =−1 and X , Y ∈ l′
⊥
⊕ (u⊕u′)

(resp. l′
⊥
⊕ CT

⊥
⊕ (u⊕u′)) such that X ′ =C(X), Y ′ =C(Y ). It follows that [C(X),Y ] = X1

and then D(X1) = [DC(X),Y ] = µ[C(X),Y ] = µX1.
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If u⊕u′ = {0}, then either q= (l+ l′)
⊥
⊕ CT or q= l+ l′. The first case is similar to the

situation above, setting X ′ =Y ′ =
T
i

and X , Y ∈ l′
⊥
⊕ CT . In the second case, l= Im(C) is

totally isotropic and C is an isomorphism from l′ onto l. For any non-zero X ∈ l′, choose
a non-zero Y ∈ l′ such that B(C(X),Y ) = 0. Then D([X ,Y ]) = D(B(C(X),Y )X1) = 0. But
this is also equal to [D(X),Y ] = µ[X ,Y ]+ϕ(X)C(Y ). Since D is invertible, [X ,Y ] = 0 and
we conclude that ϕ(X) = 0. Therefore ϕ|l′ = 0. There exist L, L′ ∈ l′ such that X1 = [L,L′]
and then D(X1) = µX1.

Finally, C(g) is generated by invertible centromorphisms, so the necessary condition of
(1) follows. The sufficiency is a simple verification.

(2) As in (1), we can restrict ourselves to a double extension and follow the same notation.
By (1), D is a centromorphism if and only if D(X) = µX + Z(X), for all X ∈ g with
µ ∈ C and Z is a symmetric map from g into Z(g) satisfying Z|[g,g] = 0. To compute

dq(g), we use Appendix A. Assume dim(q) is even and write q= (l⊕ l′)
⊥
⊕ (u⊕u′) with

l= ker(C), Z(g) =CX1⊕ l, Im(C) = l
⊥
⊕ (u⊕u′) and [g,g] =CX1⊕ Im(C). Let us define

Z : l′
⊥
⊕ CY1→ l

⊥
⊕ CX1: set basis {X1,X2, . . . ,Xr} of l⊕CX1 and {Y ′1 = Y1,Y ′2, . . . ,Y

′
r} of

l′⊕CY1 such that B(Y ′i ,X j) = δi j. Then Z is completely defined by

Z

(
r

∑
j=1

µ jY ′j

)
=

r

∑
i=1

(
r

∑
j=1

νi jµ j

)
Xi

with νi j = ν ji = B(Y ′i ,Z(Y
′
j)) and the formula follows. The case of dim(q) odd is com-

pletely similar.

As a consequence of Proposition 2.3.6, we have:

Theorem 2.3.7. The dup-number is invariant under isomorphisms, i.e. if g and g′ are quadratic
Lie algebras with g' g′, then dup(g) = dup(g′).

Proof. Assume that g ' g′. Since an i-isomorphism does not change dup(g′), we can assume
that g= g′ as Lie algebras equipped with invariant bilinear forms B and B′. Thus, we have two
dup-numbers, dupB(g) and dupB′(g).

We choose z such that Z(g) = (Z(g)∩ [g,g])⊕ z. Then z∩ z⊥B = {0}, z is a central ideal

of g and g = l
⊥B
⊕ z with l a reduced quadratic Lie algebra. Then dupB(g) = dupB(l) (see Re-

mark 2.2.10). Similarly, z∩ z⊥B′ = {0}, g = l′
⊥B′
⊕ z with l a reduced quadratic Lie algebra and

dupB′(g) = dupB′(l
′). Now, l and l′ are isomorphic to g/z, so l ' l′. Therefore, it is enough to

prove the result for reduced quadratic Lie algebras to conclude that dupB(l) = dupB′(l) and then
that dupB(g) = dupB′(g).

Consider a reduced quadratic Lie algebra g equipped with bilinear forms B and B′ and
associated 3-forms I and I′. We have dupB(g) = dim(VI) and dupB′(g) = dim(VI′) with VI =
{α ∈ g∗ | α ∧ I = 0} and VI′ = {α ∈ g∗ | α ∧ I′ = 0}.
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We start with the case dupB(g) = 3. This is true if and only if dim([g,g]) = 3 by Remark
2.2.10. Then dupB′(g) = 3.

If dupB(g)= 1, then g is of type S1 with respect to B. We apply Proposition 2.3.6 to obtain an
invertible centromorphism D = µ Id+Z for a non-zero µ ∈ C, Z : g→ Z(g) satisfying Z|[g,g] =
0 and such that B′(X ,Y ) = B(D(X),Y ), for all X ,Y ∈ g. Then I′(X ,Y,Z) = B′([X ,Y ],Z) =
B([D(X),Y ],Z) = µB([X ,Y ],Z) = µI(X ,Y,Z), for all X , Y , Z ∈ g. So I′ = µI and dupB′(g) =
dupB(g).

Finally, if dupB(g) = 0, then from the previous cases, g cannot be of type S3 or S1 with
respect to B′, so dupB′(g) = 0.

2.3.3 Centromorphisms and extensions of a quadratic Lie algebra
First we recall the definition of double extension of a quadratic Lie algebra by a one-

dimensional algebra as follows:

Definition 2.3.8. Let (g,B) be a quadratic Lie algebra and δ ∈ Dera(g) the space of skew-

symmetric derivations of g. Denote by g the Lie algebra defined by g= (CX1⊕CY1)
⊥
⊕ g with

the bracket:

[αX1 +βY1 +X ,α ′X1 +β
′Y1 +Y ] = [X ,Y ]g+βδ (Y )−β

′
δ (X)+B(δ (X),Y )X1

and the non-degenerate invariant symmetric bilinear form B on g is extended on g by:

B(αX1 +βY1 +X ,α ′X1 +β
′Y1 +Y ) = B(X ,Y )+αβ

′+α
′
β ,

for all X ,Y ∈ g, α,α ′,β ,β ′ ∈ C. Then the quadratic Lie algebra (g,B) is called the double
extension of (g,B) by means of δ .

Proposition 2.3.9. Let (g,B) be a quadratic Lie algebra and D∈ CI(g). Assume that there exist
a derivation δ ∈ Dera(g), a non-zero x ∈ C and an element U ∈ ker(δ ) such that δD = Dδ =
xδ + adg(U). Let g be the double extension of g by means of δ . Then the endomorphism D of g
defined by:

D|g = D+φ(U)⊗X1, D(X1) = xX1, D(Y1) = xY1 +U + yX1

with y ∈ C is an invertible centromorphism of g.

Proof. It is obvious that D is symmetric and invertible. Let αX1+βY1+X and α ′X1+β ′Y1+Y
be elements in g, one has:

D[αX1 +βY1 +X ,α ′X1 +β
′Y1 +Y ] = D[X ,Y ]g+B(U, [X ,Y ]g)X1 +βDδ (Y )

−β
′Dδ (X)+ xB(δ (X),Y )X1.

Furthermore, we get:

D(αX1 +βY1 +X),α ′X1 +β
′Y1 +Y ] = [D(X),Y ]g+β [U,Y ]g+βxδ (Y )

−β
′
δD(X)+B(δD(X),Y )X1.

Therefore, since δD = Dδ = xδ + adg(U) we obtain D a centromorphism of g.
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Corollary 2.3.10. Let (g,B) be a quadratic Lie algebra and δ ∈ Dera(g). Let g be the double
extension of g by means of δ . Then the endomorphism D of g defined by:

D|g = x Id, D(X1) = xX1, D(Y1) = xY1 + yX1

with x ∈ C∗,y ∈ C is an invertible endomorphism of g. Consequently, dq(g)≥ 2.

Proof. The result can be obtained from the previous proposition by setting D = x Id,x ∈C∗ and
U = 0.

Keep the notations as in Proposition 2.3.9 and define the set:

E(g,B,δ ) = {(x,y,U,D) ∈ C×C×kerδ ×C(g) | δD = Dδ = xδ + adg(U)}.

Therefore, if dq(g) = 2 then E(g,B,δ ) = {(x,y,0,x Id) | x,y ∈ C} [BB07].

Proposition 2.3.11. Let g be a Lie algebra and D : g→ g be an invertible linear map satisfying
D[X ,Y ] = [D(X),Y ], for all X ,Y ∈ g. Assume that there exists a cyclic 2-cocycle θ : g×g→ g∗

such that θ(D(X),Y ) = θ(X ,D(Y )), for all X ,Y ∈ g. Denote by T ∗
θ
(g) the T ∗-extension of g by

means of θ then the endomorphism D of T ∗
θ
(g) defined by:

D(X + f ) = D(X)+ f ◦D, ∀ X ∈ g, f ∈ g∗

is an invertible centromorphism of T ∗
θ
(g).

Proof. Since D is invertible, so is D. Let X + f ,Y +g ∈ T ∗
θ
(g), one has:

B(D(X + f ),Y +g) = f ◦D(Y )+g◦D(X) = B(X + f ,D(Y +g)),

D[X + f ,Y +g] = D[X ,Y ]g+θ(X ,Y )◦D+ f ◦ adg(Y )◦D−g◦ adg(X)◦D

and [D(X + f ),Y +g] = [D(X),Y ]g+θ(D(X),Y )+ f ◦D◦ adg(Y )−g◦D◦ adg(X).
Remark that the condition D[X ,Y ] = [D(X),Y ], for all X ,Y ∈ g is equivalent to D◦adg(X) =

adg(X) ◦D, for all X ∈ g. Since θ is cyclic then θ(X ,Y ) ◦D = θ(D(X),Y ). Therefore D[X +
f ,Y +g] = [D(X + f ),Y +g], ∀ X + f ,Y +g ∈ T ∗

θ
(g) and so D is a centromorphism of T ∗

θ
(g).

A more general result is given in the proposition below:

Proposition 2.3.12. Let g be a Lie algebra endowed with an invariant symmetric bilinear
form ω (not necessarily non-degenerate) and D : g→ g be the invertible linear map satisfying
D[X ,Y ] = [D(X),Y ], for all X ,Y ∈ g. Assume that there exists a cyclic 2-cocycle θ : g×g→ g∗

such that θ(D(X),Y ) = θ(X ,D(Y )), for all X ,Y ∈ g then the endomorphism D of T ∗
θ
(g) defined

by:
D(X + f ) = D(X)+ϕ(X)+ f ◦D, ∀ X ∈ g, f ∈ g∗

is an invertible centromorphism of T ∗
θ
(g) where ϕ : g→ g∗ is defined by ϕ(X) = ω(X , .), for all

X ∈ g.

Proof. It is easy to see that D is invertible. Since ω is symmetric then D is also symmetric.
Prove similarly to Proposition 2.3.11 and note that the condition invariance of ω is equivalent
to ϕ([X ,Y ]g) = ϕ(X)◦ adg(Y ), for all X ,Y ∈ g, we get the result.
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2.4 2-step nilpotent quadratic Lie algebras
Conveniently, we redefine a 2-step nilpotent Lie algebra in another way as follows:

Definition 2.4.1. An algebra g over C with a bilinear product g×g→ g,(x,y) 7→ [x,y] is called
a 2-step nilpotent Lie algebra if it satisfies [x,y] = −[y,x] and [[x,y],z] = 0 for all x,y,z ∈ g.
Sometimes, we use the notion 2SN-Lie algebra as an abbreviation.

According to this definition, a commutative Lie algebra is a trivial case of 2SN-Lie algebras.

2.4.1 Some extensions of 2-step nilpotent Lie algebras
Definition 2.4.2. Let g be a 2SN-Lie algebra, V be a vector space and ϕ : g× g→ V be a
bilinear map. On the space g= g⊕V we define the following product:

[x+u,y+ v] = [x,y]+ϕ(x,y), ∀ x,y ∈ g,u,v ∈V.

Then it is easy to see that g is a 2SN-Lie algebra if and only if ϕ is skew-symmetric and
ϕ([x,y],z) = 0, for all x,y,z ∈ g. In this case V is contained in the center Z(g) of g so the Lie
algebra g is called the 2SN-central extension of g by V by means of ϕ .

Proposition 2.4.3. Let g be a 2SN-Lie algebra then g is the 2SN-central extension of an Abelian
algebra h by some vector space V .

Proof. Denote by V = [g,g] and let h= g/[g,g]. Then h is Abelian. Set the map ϕ : h×h→V
by

ϕ(p(x), p(y)) = [x,y], ∀ x,y ∈ g,

where p : g→ h is the canonical projection. This map is well defined since g is 2-step nilpotent.
So g is the 2SN-central extension of h by V by means of ϕ .

Let g be a 2SN-Lie algebra, V be a vector space and π : g→ End(V ) be a linear map. On
the space g= g⊕V we define the following product:

[x+u,y+ v] = [x,y]+π(x)v−π(y)u, ∀ x,y ∈ g,u,v ∈V.

Proposition 2.4.4. The vector space g is a 2SN-Lie algebra if and only if π satisfies the condi-
tion:

π([x,y]) = π(x)π(y) = 0, ∀ x,y ∈ g.

In this case, π is called a 2SN-representation of g in V .

Proof. For all x,y,z ∈ g, u,v,w ∈ V the condition [[x + u,y + v],z + w] = 0 is equivalent to
π([x,y])w−π(z)π(x)v+π(z)π(y)u= 0 for all u,v,w∈V . This happens if and only if π([x,y]) =
π(x)π(y) = 0, for all x,y ∈ g.

Remark 2.4.5. The adjoint representation and the coadjoint representation are 2SN-representations
of a 2SN-Lie algebra g. Therefore, the extensions of g by itself or its dual space with respect to
these representations are 2-step nilpotent.
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Definition 2.4.6. Let g be a 2SN-Lie algebra, V and W be vector spaces. If π : g→ End(V )
and ρ : g→ End(W ) are two 2SN-representations of g then the map π⊕ρ : g→ End(V ⊕W )
defined by

(π⊕ρ)(x)(v+w) = π(x)v+ρ(x)w, ∀ x ∈ g,v ∈V,w ∈W

is also a 2SN-representation of g and it is called the direct sum of the two representations π and
ρ .

Proposition 2.4.7. Let g1, g2 be 2SN-Lie algebras and π : g1→ End(g2) be a linear map. We
define on the vector space g= g1⊕g2 the following product:

[x+ y,x′+ y′] = [x,x′]g1 +π(x)y′−π(x′)y+[y,y′]g2, ∀ x,x′ ∈ g1,y,y′ ∈ g2.

Then g with this product is a 2SN-Lie algebra if and only if π satisfies the following conditions:

(1) π([x,x′]g1) = π(x)π(x′) = 0.

(2) π(x)([y,y′]g2) = [π(x)y,y′]g2 = 0.

for all x,x′ ∈ g1,y,y′ ∈ g2.

Proof. Assume that g is a 2SN-Lie algebra. For all x,x′,x′′ ∈ g1, y,y′,y′′ ∈ g2, one has:

0 = [[x+ y,x′+ y′],x′′+ y′′] = π([x,x′]g1)y
′′−π(x′′)π(x)y′+

+π(x′′)π(x′)y+[π(x)y′,y′′]g2− [π(x′)y,y′′]g2−π(x′′)([y,y′]g2).

Let y = y′ = x′′ = 0 we obtain π([x,x′]g1)y
′′ = 0, for all y′′ ∈ g. It means that π([x,x′]g1) = 0.

Similarly, π(x)π(x′), π(x)([y,y′]g2) and [π(x)y,y′]g2 are zero for all x,x′ ∈ g1, y,y′ ∈ g2.
Conversely, if π satisfies (1) and (2) then it is easy to check g is a 2SN-Lie algebra by

Definition 2.4.1.

Clearly, the map π in Proposition 2.4.7 is a 2SN-representation of g1 in g2. Hence,, we
obtain the following definition:

Definition 2.4.8. Let g1, g2 be 2SN-Lie algebras and π : g1→ End(g2) be a 2SN-representation
of g1 in g2. Then the vector g= g1⊕g2 with the product:

[x+ y,x′+ y′] = [x,x′]g1 +π(x)y′−π(x′)y+[y,y′]g2, ∀ x,x′ ∈ g1,y,y′ ∈ g2.

become a 2SN-Lie algebra if and only if

π(x)([y,y′]g2) = [π(x)y,y′]g2 = 0, ∀ x ∈ g1,y,y′ ∈ g2.

In this case, π is called a 2SN-admissible representation of g1 in g2 and we say that g is the
semi-direct product of g2 by g1 by means of π .

Remark 2.4.9.

(1) The condition in the above definition ensures π(x) ∈ Der(g2), for all x ∈ g1.

(2) The adjoint representation of a 2SN-Lie algebra is a 2SN-admissible representation.
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2.4.2 2-step nilpotent quadratic Lie algebras
Let (g,B) be a quadratic Lie algebra and g = h⊕ g⊕ h∗ be the double extension of g by

h by means of π as in Definition 2.1.9. If g is a 2SN-Lie algebra then g and h should be also
2-step nilpotent.

Proposition 2.4.10. Let (g,B) be a 2-step nilpotent quadratic Lie algebra (or 2SNQ-Lie alge-
bra for short), h be another 2SN-Lie algebra and π : h→ Dera(g) be a representation of h by
means of skew-symmetric derivations of g. Then the double extension of g by h by means of π

is 2-step nilpotent if and only if π is a 2SN-admissible representation of h in g.

Proof. We can prove directly by checking the conditions of Definition 2.4.1 for the Lie algebra
g. However, it is easy to see that g is the semi-direct product of h by g⊕h∗ by means of π⊕ad∗

where g⊕h∗ is the central extension of g by h∗ by means of φ . Therefore, the result follows.

Combined with Proposition 2.4.7 and Definition 2.4.8 we obtain the following result:

Corollary 2.4.11. Let (g,B) be a 2SNQ-Lie algebra and D ∈ Dera(g) be a skew-symmetric
derivation of g. Then the double extension of g by means of D is a 2SNQ-Lie algebra if and only
if D2 = 0 and [D(x),y] = 0, for all x,y ∈ g.

Proposition 2.4.12. Let (g,B) be a 2SNQ-Lie algebra of dimension n+ 2, n ≥ 0. Then g is
the double extension of a 2SNQ-Lie algebra of dimension n. Consequently, every 2SNQ-Lie
algebra can be obtained from an Abelian algebra by a sequence of double extensions by one-
dimensional algebra.

Proof. If g is Abelian then g is the double extension of an Abelian algebra by means of the
zero map. If g is non-Abelian. By Corollary 2.1.6, there exists a central element x such that
x is isotropic. Then there is an isotropic element y such that B(x,y) = 1 and g is the double
extension of (h= (Cx⊕Cy)⊥,B′) where B′ = B|h×h. Certainly, h is still 2-step nilpotent.

Proposition 2.4.13. Let g be a Lie algebra, θ be a cyclic 2-cocycle of g with value in g∗ and
T ∗

θ
(g) be the T ∗-extension of g by means of θ (see Definition 2.1.12). Then T ∗

θ
(g) is a 2SNQ-Lie

algebra if and only if g is 2-step nilpotent and θ satisfies

θ(x,y)◦ adg(z)+θ([x,y]g,z) = 0, ∀ x,y,z ∈ g.

Proof. For all x,y,z ∈ g, f ,g,h ∈ g∗ one has

[[x+ f ,y+g],z+h] = [[x,y],z]g+( f ◦ adg(y)−g◦ adg(x)+θ(x,y))◦ adg(z)

−h◦ adg([x,y]g)+θ([x,y]g,z).

Therefore, T ∗
θ
(g) is 2-step nilpotent if and only if g is 2-step nilpotent and θ satisfies

θ(x,y)◦ adg(z)+θ([x,y],z) = 0, ∀ x,y,z ∈ g.

By the above proposition, if T ∗
θ
(g) is a 2SNQ-Lie algebra then g should be 2-step nilpo-

tent. However, we can only consider T ∗
θ

-extensions of an Abelian algebra by the following
proposition.

56



2.4. 2-step nilpotent quadratic Lie algebras

Proposition 2.4.14. Let (g,B) be a reduced quadratic Lie algebra. Then g is 2-step nilpotent
if and only if it is i-isomorphic to a T ∗

θ
-extension of an Abelian algebra by means of a non-

degenerate cyclic 2-cocycle θ .

Proof. Assume that g is 2-nilpotent then [g,g]⊂ Z(g). Since g is reduced one has [g,g] = Z(g)
and dim(g) even. By Proposition 2.1.13 (given in [Bor97]) and Z(g) a totally isotropic ideal,
we write g = V ⊕Z(g) with V totally isotropic. We can identify V with the quotient algebra
h' g/Z(g) and Z(g) with h∗. Then g is i-isomorphic to the T ∗

θ
-extension of h by θ defined by

θ(p0(x), p0(y)) = φ(p1([x,y])),

where p0, p1 are respectively the projections from g into V and Z(g). Certainly, h is Abelian
since [g,g] = Z(g). We write g= h⊕h∗ and the bracket on g becomes

[x+ f ,y+g] = θ(x,y), ∀ x,y ∈ h, f ,g ∈ h∗.

Since Z(g) = h∗ then θ is non-degenerate on h×h.
Conversely, if g is i-isomorphic to the T ∗

θ
-extension T ∗

θ
(h) of Abelian algebra h by means

of a non-degenerate cyclic 2-cocycle θ , it is obvious that g is 2-step nilpotent and Z(g) '
Z(T ∗

θ
(h)) = h∗. Since h∗ is totally isotropic then Z(g) is also totally isotropic. Therefore g is

reduced.

Consequently, we have a restricted definition for the reduced 2-step nilpotent case as fol-
lows:

Definition 2.4.15. Let h be a complex vector space and θ : h× h→ h∗ be a non-degenerate
cyclic skew-symmetric bilinear map. Let g = h⊕ h∗ be the vector space equipped with the
bracket

[x+ f ,y+g] = θ(x,y)

and the bilinear form
B(x+ f ,y+g) = f (y)+g(x),

for all x,y ∈ h, f ,g ∈ h∗. Then (g,B) is a 2SNQ-Lie algebra. We say that g is the T ∗-extension
of h by θ .

Theorem 2.4.16. Let g and g′ be T ∗-extensions of h by θ1 and θ2 respectively. Then:

(1) there exists a Lie algebra isomorphism between g and g′ if and only if there exist an
isomorphism A1 of h and an isomorphism A2 of h∗ such that

A2(θ1(x,y)) = θ2(A1(x),A1(y)), ∀ x,y ∈ h.

(2) there exists an i-isomorphism between g and g′ if and only if there exists an isomorphism
A1 of h such that

θ1(x,y) = θ2(A1(x),A1(y))◦A1, ∀ x,y ∈ h.

Proof.
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(1) Let A : g→ g′ be a Lie algebra isomorphism. Since h∗ = Z(g) = Z(g′) is stable by A then
there exist linear maps A1 : h→ h, A′1 : h→ h∗ and A2 : h∗→ h∗ such that

A(x+ f ) = A1(x)+A′1(x)+A2( f ), ∀ x ∈ h, f ∈ h∗.

It is obvious that A2 is an isomorphism of h∗. We show that A1 is also an isomor-
phism of h. Indeed, if there exists x0 ∈ h such that A1(x0) = 0 then 0 = [A(x0),g

′]′ =
A([x0,A−1(g′)]) = A([x0,g]). It means that [x0,g] = 0. Since h∗ = Z(g) then x0 = 0.
Therefore A1 is an isomorphism of h.

For all x,y ∈ h, f ,g ∈ h∗, one has

A([x+ f ,y+g]) = A(θ1(x,y)) = A2(θ1(x,y)).

and [A(x+ f ),A(y+g)]′ = θ2(A1(x),A1(y)).

Therefore, A2(θ1(x,y)) = θ2(A1(x),A1(y)) for all x,y ∈ h.

Conversely, if there exist an isomorphism A1 of h and an isomorphism A2 of h∗ such that
A2(θ1(x,y)) = θ2(A1(x),A1(y)) for all x,y∈ h, we define A : g→ g′ by A(x+ f ) =A1(x)+
A2( f ) for all x+ f ∈ g. Then it is easy to check that A is a Lie algebra isomorphism.

(2) Asumme A : g→ g′ is an i-isomorphism then there exist A1 and A2 defined as in (1). Let
x ∈ h, f ∈ h∗, one has

B′(A(x),A( f )) = B(x, f )⇒ A2( f )(A1(x)) = f (x).

Therefore, A2( f ) = f ◦A−1
1 , for all f ∈ h∗.

On the other hand, since A2(θ1(x,y)) = θ2(A1(x),A1(y)) we obtain

θ1(x,y) = θ2(A1(x),A1(y))◦A1, ∀ x,y ∈ h.

Conversely, define A(x + f ) = A1(x) + f ◦ A−1
1 , for all x ∈ h, f ∈ h∗ then A is an i-

isomorphism.

Example 2.4.17. We keep the notations as above. Let g′ be the T ∗-extension of h by θ ′ = λθ

where λ 6= 0. Then g and g′ are i-isomorphic by A : g→ g′ defined by A(x+ f ) = 1
3√

λ
x+ 3
√

λ f ,
for all x+ f ∈ g.

For a non-degenerate cyclic skew-symmetric bilinear map θ of h, define the 3-form

I(x,y,z) = θ(x,y)z, ∀ x,y,z ∈ h.

Then I ∈A 3(h). The non-degenerate condition of θ is equivalent to ιx(I) 6= 0 for all x∈ h\{0}.
Conversely, let h be a vector space and I ∈A 3(h) such that ιx(I) 6= 0 for every non-zero vector
x ∈ h. Define θ : h× h→ h∗ by θ(x,y) = I(x,y, .), for all x,y ∈ h then θ is skew-symmetric
and non-degenerate. Moreover, since I is alternating one has θ is cyclic and then we obtain a
reduced 2SNQ-Lie algebra T ∗

θ
(h) defined by θ . Therefore, there is a one-to-one map from the

set of all T ∗-extension of h onto the subset {I ∈ A 3(h) | ιx(I) 6= 0, ∀ x ∈ h \ {0}}. We has a
corollary of the above theorem as follows:
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Corollary 2.4.18. Let g and g′ be T ∗-extensions of h with respect to I1 and I2. Then g and
g′ are i-isomorphic if and only if there exists an isomorphism A of h such that I1(x,y,z) =
I2(A(x),A(y),A(z)), for all x,y,z ∈ h.

Remark 2.4.19. The element I in this case is exactly the 3-form associated to g in Definition
2.2.2 and the above corollary is only a particular case of Lemma 2.2.8.

Lemma 2.4.20. Let h be a vector space and I ∈ A 3(h) satisfying ιx(I) 6= 0, ∀ x ∈ h \ {0}}.
If there are nontrivial subspaces h1, h2 of h such that h = h1⊕ h2 and I is decomposed by
I = I1 + I2 where I1 ∈A 3(h1), I2 ∈A 3(h2). Then the T ∗-extension g of h with respect to I is
decomposable.

Proof. Let a = h1⊕ h∗1 be the T ∗-extension of h1 with respect to I1 then a is non-degenerate.
We will show that a is an ideal of g. Indeed, one has:

[h1,h1⊕h2] = I(h1,h1⊕h2, .) = I(h1,h1, .)+ I(h1,h2, .).

Since I(h1,h2, .) = 0 then [h1,h1⊕h2] = I(h1,h1, .) = I1(h1,h1, .)⊂ h∗1. Therefore a is an ideal
of g and then g is decomposable.

Remark 2.4.21. Denote by N(2n) the set of i-isomorphism classes of 2n-dimensional reduced
2SNQ-Lie algebras. It is obvious that N(2) = N(4) = /0 and N(6) has only an element (see
Appendix C and Example 2.4.17, also in [PU07] or [Ova07]). By Appendix C and Lemma
2.4.20, N(8) = /0, N(10) contains only an element and N(2n) 6= /0 if n≥ 6.
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Chapter 3

Singular quadratic Lie superalgebras

This chapter is a natural adaptation of Chapter 2 for the quadratic Lie superalgebras: Lie
superalgebras endowed with an even invariant non-degenerate bilinear form. In this context,
we also have a trilinear form I. We will recall the construction of the super-exterior algebra
([Sch79], [Gié04]) and the super Z×Z2-Poisson bracket { , } on it [MPU09] to get the same
formula {I, I}= 0 for quadratic Lie superalgebras. These guide us to define a dup-number and
a subclass of quadratic Lie superalgebras having dup-number non-zero which can be character-
ized up to isomorphisms. Finally, we show that the dup-number is also an invariant of quadratic
Lie superalgebras.

3.1 Application of Z×Z2-graded Lie superalgebras to quadratic
Lie superalgebras

We begin from a Z2-graded vector space V = V0⊕V1 over C. The subspaces V0 and V1

are respectively called the even part and the odd part of V . Keep the notation A = A (V0)
for the Grassmann algebra of alternating multilinear forms on V0 as in Chapter 2 and denote
by S = S (V1) the (Z-graded) algebra of symmetric multilinear forms on V1, i.e. S = S(V ∗1 )
where S(V ∗1 ) is the symmetric algebra of V ∗1 . We define a Z×Z2-gradation on A and on S by

A (i,0) = A i, A (i,1) = {0}

and S (i,i) = S i, S (i, j) = {0} if i 6= j,

where i, j ∈ Z and i, j are the residue classes modulo 2 of i and j, respectively.
Set a gradation:

E(V ) = A ⊗
Z×Z2

S .

More particularly, in terms of the Z-gradations of A and S

En(V ) =
n⊕

m=0

(
A m⊗S n−m) ,
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and in terms of the Z2-gradations

E0(V ) = A ⊗
(
⊕
j≥0

S 2 j
)

and E1(V ) = A ⊗
(
⊕
j≥0

S 2 j+1
)
.

In other words, if A = Ω⊗F ∈ A ω ⊗S f then A ∈ E(ω+ f , f )(V ) where f denotes the residue
class modulo 2 of f .

Next, we define the super-exterior product on E(V ) as follows:

(Ω⊗F)∧ (Ω′⊗F ′) = (−1) f ω ′(Ω∧Ω
′)⊗FF ′,

for all Ω ∈A , Ω′ ∈A ω ′ , F ∈S f , F ′ ∈S .

Proposition 3.1.1. The vector space E(V ) with this product becomes a commutative and asso-
ciative Z×Z2-graded algebra. We call E(V ) the super-exterior algebra of V ∗.

Proof. It is easy to see that the algebra E(V ) with this product is a Z×Z2-graded algebra. Let
A = Ω⊗F ∈A ω ⊗S f , A′ = Ω′⊗F ′ ∈A ω ′⊗S f ′ and A′′ = Ω′′⊗F ′′ ∈A ω ′′⊗S f ′′ then

A′∧A = (Ω′⊗F ′)∧ (Ω⊗F) = (−1) f ′ω(Ω′∧Ω)⊗F ′F = (−1) f ′ω+ωω ′(Ω∧Ω
′)⊗FF ′

= (−1) f ′ω+ωω ′+ f ω ′(Ω⊗F)∧ (Ω′⊗F ′) = (−1)(ω+ f )(ω ′+ f ′)+ f f ′A∧A′.

Similarly, (A∧A′)∧A′′=A∧(A′∧A′′) = (−1) f (ω ′+ω ′′)+ f ′ω ′′(Ω∧Ω′∧Ω′′)⊗FF ′F ′′. There-
fore, we get the result.

Remark 3.1.2. There is another equivalent construction in [BP89], that is, E(V ) is the space of
super-antisymmetric multilinear mappings from V into C. The algebras A and S are regarded
as subalgebras of E(V ) by identifying Ω := Ω⊗1, F := 1⊗F , and the tensor product Ω⊗F =
(Ω⊗1)∧ (1⊗F) for all Ω ∈A , F ∈S .

Now, we assume that the vector space V is equipped with a non-degenerate even supersym-
metric bilinear form B. That means B is symmetric on V0, skew-symmetric on V1, B(V0,V1) = 0
and B|V0×V0

, B|V1×V1
are non-degenerate. In this case, dim(V1) = 2n must be even and V is also

called a quadratic Z2-graded vector space. We recall the definition of the Poisson bracket on
S as follows.

Definition 3.1.3. Let B = {X1, ...,Xn,Y1, ...,Yn} be a canonical basis of V1 such that B(Xi,X j) =
B(Yi,Yj) = 0, B(Xi,Yj) = δi j and {p1, ..., pn,q1, ...,qn} its dual basis. Then the Poisson bracket
on the algebra S regarded as the polynomial algebra C[p1, ..., pn,q1, ...,qn] is defined by:

{F,G}=
n

∑
i=1

(
∂F
∂ pi

∂G
∂qi
− ∂F

∂qi

∂G
∂ pi

)
, ∀ F,G ∈S .

Combined with the notion of super-Poisson bracket on A in Chapter 2, we have a new
bracket as follows [MPU09].

Definition 3.1.4. The super Z×Z2-Poisson bracket on E(V ) is defined by:

{Ω⊗F,Ω′⊗F ′}= (−1) f ω ′ ({Ω,Ω′}⊗FF ′+(Ω∧Ω
′)⊗{F,F ′}

)
,

for all Ω ∈A , Ω′ ∈A ω ′ , F ∈S f , F ′ ∈S .
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By straightforward calculating, it is easy to get simple properties of this bracket:

Proposition 3.1.5. E(V ) is a Lie superalgebra with the super Z×Z2-Poisson bracket. In other
words, for A ∈ E(a,b)(V ), A′ ∈ E(a′,b′)(V ) and A′′ ∈ E(a′′,b′′)(V ):

(1) {A′,A}=−(−1)aa′+bb′{A,A′}.

(2) (−1)aa′′+bb′′{A,{A′,A′′}}+(−1)a′′a′+b′′b′{A′′,{A,A′}}+(−1)a′a+b′b{A′,{A′′,A}}= 0.

Moreover, one has {A,A′∧A′′}= {A,A′}∧A′′+(−1)aa′+bb′A′∧{A,A′′}.

Remark 3.1.6. The second formula in the previous proposition is equivalent to:

{{A,A′},A′′}= {A,{A′,A′′}}− (−1)aa′+bb′{A′,{A,A′′}}.

Therefore, if we denote by adP(A) = {A, .}, A ∈ E(a,b)(V ) and by End(E(V )) the vector space
of endomorphisms of E(V ) then adP(A) ∈ End(E(V )), for all A ∈ E(V ) and:

adP({A,A′}) = adP(A)◦ adP(A′)− (−1)aa′+bb′ adP(A′)◦ adP(A)

for all A′ ∈ E(a′,b′)(V ).

We recall that End(E(V )) has a natural Z×Z2-gradation as follows:

deg(F) = (n,d), n ∈ Z, d ∈ Z2 if deg(F(A)) = (n+a,d +b), where A ∈ E(a,b)(V ).

Denote by Endn
f (E(V )) the subspace of endomorphisms of degree (n, f ) of End(E(V )). It is

clear that if A∈E(a,b)(V ) then adP(A) has degree (a−2,b). Moreover, as we known, End(E(V ))
is also a Z×Z2-graded Lie algebra, frequently denoted by gl(E(V )), with the Lie super-bracket
defined by:

[F,G] = F ◦G− (−1)np+ f gG◦F, ∀ F ∈ Endn
f (E(V )), G ∈ Endp

g(E(V )).

Therefore, since Remark 3.1.6, one has the corollary:

Corollary 3.1.7.
adP({A,A′}) = [adP(A),adP(A′)], ∀ A,A′ ∈ E(V ).

Definition 3.1.8. An endomorphism D ∈ gl(E(V )) of degree (n,d) is called a super-derivation
of E(V ) (for the super-exterior product) if

D(A∧A′) = D(A)∧A′+(−1)na+dbA∧D(A′), ∀ A ∈ E(a,b)(V ), A′ ∈ E(V ).

Denote by Dn
d(E(V )) the space of super-derivations degree (n,d) of E(V ) then we obtain a

Z×Z2-gradation of the space of super-derivations D(E(V )) of E(V ) as follows:

D(E(V )) =
n∈Z⊕
d∈Z2

Dn
d(E(V ))

and D(E(V )) becomes a subalgebra of gl(E(V )) [NR66]. Moreover, the last formula in Propo-
sition 3.1.5 affirms that adP(A) ∈D(E(V )), for all A ∈ E(V ).
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Example 3.1.9. Let X ∈ Vx be a homogeneous element in V of degree x and define the endo-
morphism ιX of E(V ) by

ιX(A)(X1, ...,Xa−1) = (−1)xbA(X ,X1, ...,Xa−1), ∀ A ∈ E(a,b)(V ), X1, . . . ,Xa−1 ∈V.

Then ιX is a super-derivation of E(V ) of degree (-1,x) [BP89]. In particular

ιX(A∧A′) = ιX(A)∧A′+(−1)−a+xbA∧ ιX(A′), ∀ A ∈ E(a,b)(V ), A′ ∈ E(V ).

Lemma 3.1.10. Let X0 ∈V0 and X1 ∈V1 then for all Ω⊗F ∈A ω ⊗S f , one has:

(1) ιX0
(Ω⊗F) = ιX0

(Ω)⊗F,

(2) ιX1
(Ω⊗F) = (−1)ωΩ⊗ ιX1

(F).

Proof. We have:

(1) ιX0
(Ω⊗F) = ιX0

((Ω⊗1)∧ (1⊗F)) = ιX0
(Ω⊗1)∧ (1⊗F)+(−1)−ω(Ω⊗1)∧ ιX0

(1⊗
F) = ιX0

(Ω)⊗F .

(2) ιX1
(Ω⊗F) = ιX1

((Ω⊗1)∧ (1⊗F)) = ιX1
(Ω⊗1)∧ (1⊗F)+(−1)−ω(Ω⊗1)∧ ιX1

(1⊗
F) = (−1)ωΩ⊗ ιX1

(F).

Remark 3.1.11.

(1) If Ω ∈A ω then ιX(Ω)(X1, . . . ,Xω−1) = Ω(X ,X1, . . . ,Xω−1), for all X ,X1, . . . ,Xω−1 ∈V0.

(2) Let X be an element of the canonical basis B of V1 and p ∈ V ∗1 be its dual form. By
Corollary II.1.52 in [Gié04] one has:

ιX(pn)(Xn−1) = (−1)n pn(Xn) = (−1)n(−1)n(n−1)/2n!.

Moreover,
∂ pn

∂ p
(Xn−1) = n(pn−1)(Xn−1) = (−1)(n−1)(n−2)/2n!. It implies that

ιX(pn)(Xn−1) =−∂ pn

∂ p
(Xn−1).

Since each F ∈S f is regarded as a polynomial in the variable p and by linearizing so
one has the following property: let X ∈V1 and p ∈V ∗1 be its dual form then

ιX(F) =−∂F
∂ p

, ∀ F ∈S .

Proposition 3.1.12. Fix an orthonormal basis {X1
0 , . . . ,X

m
0 } of V0 and a canonical basis B =

{X1
1 , . . . ,X

n
1 ,Y

1
1 , . . . ,Y

n
1 } of V1. Then the super Z×Z2-Poisson bracket on E(V ) is given by:

{A,A′}= (−1)ω+ f+1
m

∑
j=1

ιX j
0
(A)∧ ιX j

0
(A′)+(−1)ω

n

∑
k=1

(
ιXk

1
(A)∧ ιY k

1
(A′)− ιY k

1
(A)∧ ιXk

1
(A′)

)
for all A ∈A ω ⊗S f and A′ ∈ E(V ).
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Proof. Let A = Ω⊗F ∈A ω ⊗S f and A′ = Ω′⊗F ′ ∈A ω ′⊗S f ′ , then

{A,A′}= (−1) f ω ′ ({Ω,Ω′}⊗FF ′+(Ω∧Ω
′)⊗{F,F ′}

)
.

By the formula (I) in Chapter 2, one has

{Ω,Ω′}= (−1)ω+1
m

∑
j=1

ιX j
0
(Ω)∧ ιX j

0
(Ω′).

Combined with Lemma 3.1.10 (1), we obtain

{Ω,Ω′}⊗FF ′ = (−1)ω+1
m

∑
j=1

(
ιX j

0
(Ω)∧ ιX j

0
(Ω′)

)
⊗FF ′

= (−1) f (ω ′−1)+ω+1
m

∑
j=1

(
ιX j

0
(Ω)⊗F

)
∧
(

ιX j
0
(Ω′)⊗F ′

)

= (−1) f ω ′+ω+ f+1
m

∑
j=1

ιX j
0
(A)∧ ιX j

0
(A′).

Let {p1, . . . , pn,q1, . . . ,qn} be the dual basis of B then

{F,F ′}=
n

∑
k=1

(
∂F
∂ pk

∂F ′

∂qk
− ∂F

∂qk

∂F ′

∂ pk

)
.

By Remark 3.1.11, one has

{F,F ′}=
n

∑
k=1

(
ιXk

1
(F) ιY k

1
(F ′)− ιY k

1
(F) ιXk

1
(F ′)

)
.

Combined with Lemma 3.1.10 (2), we obtain

(Ω∧Ω
′)⊗{F,F ′}= (Ω∧Ω

′)⊗
n

∑
k=1

(
ιXk

1
(F) ιY k

1
(F ′)− ιY k

1
(F) ιXk

1
(F ′)

)

= (−1)( f−1)ω ′
n

∑
k=1

((
Ω⊗ ιXk

1
(F)
)
∧
(

Ω
′⊗ ιY k

1
(F ′)

)
−
(

Ω⊗ ιY k
1
(F)
)
∧
(

Ω
′⊗ ιXk

1
(F ′)

))
= (−1) f ω ′+ω

n

∑
k=1

(
ιXk

1
(A)∧ ιY k

1
(A′)− ιY k

1
(A)∧ ιXk

1
(A′)

)
.

Therefore, the result follows.

Corollary 3.1.13. Define the (even) isomorphism φ : V →V ∗ by φ(X) = B(X , .), for all X ∈ g
then one has

(1) {α,A}= ιφ−1(α)(A),

(2) {α,α ′}= B(φ−1(α),φ−1(α ′)),
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for all α,α ′ ∈V ∗, A ∈ E(V ).

Proof.

(1) We apply Proposition 3.1.12, respectively for α = (X i
0)
∗ = φ(X i

0), for all i = 1, . . . ,m,
α = (Y l

1 )
∗ = φ(X l

1) and α = (−X l
1)
∗ = φ(Y l

1 ), for all l = 1, . . . ,n to obtain the result.

(2) Let α ∈ g∗x , α ′ ∈ g∗x′ be homogeneous forms in g∗, one has

{α,α ′}= ιφ−1(α)(α
′) = (−1)xx′

α
′(φ−1(α)) = (−1)xx′B(φ−1(α ′),φ−1(α))

= B(φ−1(α),φ−1(α ′)).

Proposition 3.1.12 and Corollary 3.1.13 are enough for our purpose. But as a consequence
of Lemma 6.9 in [PU07], one has a more general result as follows:

Proposition 3.1.14. Let {X1
0 , . . . ,X

m
0 } be a basis of V0 and {α1, . . . ,αm} its dual basis. Let

{Y 1
0 , . . . ,Y

m
0 } be the basis of V0 defined by Y i

0 = φ−1(αi). Set B = {X1
1 , . . . ,X

n
1 ,Y

1
1 , . . . ,Y

n
1 } be a

canonical basis of V1. Then the super Z×Z2-Poisson bracket on E(V ) is given by:

{A,A′} = (−1)ω+ f+1
m

∑
i, j=1

B(Y i
0 ,Y

j
0 ) ιX i

0
(A)∧ ιX j

0
(A′)

+(−1)ω
n

∑
k=1

(
ιXk

1
(A)∧ ιY k

1
(A′)− ιY k

1
(A)∧ ιXk

1
(A′)

)
for all A ∈A ω ⊗S f and A′ ∈ E(V ).

Now, we consider the vector space

E =
⊕
n∈Z

E n,

where E n = {0} if n ≤ −2, E −1 = V and E n is the space of super-antisymmetric n+ 1-linear
mappings from V to V . Each of the subspaces E n is Z2-graded then the space E is Z×Z2-
graded by

E =
n∈Z⊕
f∈Z2

E n
f .

Moreover, E is a Z×Z2-graded Lie algebra and called the graded Lie algebra of the Z2-graded
vector space V [BP89]. Recall that there exists a Z×Z2-graded Lie algebra isomorphism D
between E and D(E(V )) (see a precise construction in [Gié04]) satisfying if F = Ω⊗X ∈ E n

ω+x
then DF =−(−1)xωΩ∧ ιX ∈Dn

f (E(V )).

Lemma 3.1.15. ([BP89], [Gié04])
Fix F ∈ E 1

0 , denote by d = DF and define the product [X ,Y ] = F(X ,Y ), for all X ,Y ∈ V .
Then one has
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(1) d(φ)(X ,Y ) =−φ([X ,Y ]), for all X ,Y ∈V, φ ∈V ∗.

(2) The product [ , ] becomes a Lie super-bracket if and only if d2 = 0. In this case, d is
called a differential super-exterior of E(V ).

Next, we will apply the above results for quadratic Lie superalgebras defined as follows:

Definition 3.1.16. A quadratic Lie superalgebra (g,B) is a Z2-graded vector space g equipped
with a non-degenerate even supersymmetric bilinear form B and a Lie superalgebra structure
such that B is invariant, i.e. B([X ,Y ],Z) = B(X , [Y,Z]), for all X ,Y,Z ∈ g.

Theorem 3.1.17. Let (g,B) be a quadratic Lie superalgebra. Define a trilinear form I on g by

I(X ,Y,Z) = B([X ,Y ],Z), ∀ X ,Y,Z ∈ g.

Then one has

(1) I ∈ E(3,0)(g) = A 3(g0)⊕
(
A 1(g0)⊗S 2(g1)

)
.

(2) d =−adP(I).

(3) {I, I}= 0.

Proof. The assertion (1) follows the properties of B, note that B([g0,g0],g1) =B([g1,g1],g1) = 0.
For (2), fix an orthonormal basis {X1

0 , . . . ,X
m
0 } of V0 and a canonical basis {X1

1 , . . . ,X
n
1 ,

Y 1
1 , . . . ,Y

n
1 } of V1. Let {α1, . . . ,αm} and {β1, . . . ,βn,γ1, . . . ,γn} be their dual basis respectively.

Then for all X ,Y ∈ g, i = 1, ...,m, l = 1, ...,n one has:

adP(I)(αi)(X ,Y ) =

(
m

∑
j=1

ιX j
0
(I)∧ ιX j

0
(αi)−

n

∑
k=1

(
ιXk

1
(I)∧ ιY k

1
(αi)− ιY k

1
(I)∧ ιXk

1
(αi)

))
(X ,Y )

=

(
m

∑
j=1

ιX j
0
(I)∧ ιX j

0
(αi)

)
(X ,Y ) =

(
ιX i

0
(I)∧ ιX i

0
(αi)

)
(X ,Y )

= B(X i
0, [X ,Y ]) = αi([X ,Y ]) =−d(αi)(X ,Y ),

adP(I)(βl)(X ,Y ) =

(
m

∑
j=1

ιX j
0
(I)∧ ιX j

0
(βl)−

n

∑
k=1

(
ιXk

1
(I)∧ ιY k

1
(βl)− ιY k

1
(I)∧ ιXk

1
(βl)

))
(X ,Y )

=

(
n

∑
k=1

ιY k
1
(I)∧ ιXk

1
(βl)

)
(X ,Y ) =

(
ιY l

1
(I)∧ ιX l

1
(βl)

)
(X ,Y )

=− ιY l
1
(I)(X ,Y ) =−B(Y l

1 , [X ,Y ]) = βl([X ,Y ]) =−d(βl)(X ,Y ),

adP(I)(γl)(X ,Y ) =

(
m

∑
j=1

ιX j
0
(I)∧ ιX j

0
(γl)−

n

∑
k=1

(
ιXk

1
(I)∧ ιY k

1
(γl)− ιY k

1
(I)∧ ιXk

1
(γl)
))

(X ,Y )
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=−

(
n

∑
k=1

ιXk
1
(I)∧ ιY k

1
(γl)

)
(X ,Y ) =−

(
ιX l

1
(I)∧ ιY l

1
(γl)
)
(X ,Y )

= ιX l
1
(I)(X ,Y ) = B(X l

1 , [X ,Y ]) = γl([X ,Y ]) =−d(γl)(X ,Y ).

Therefore, d =−adP(I).
Moreover, adP({I, I}) = [adP(I),adP(I)] = [d,d] = 2d2 = 0. Therefore, for all 1 ≤ i ≤ m,

1≤ j,k≤ n one has {αi,{I, I}} = {β j,{I, I}} = {γk,{I, I}}= 0. Those imply ιX ({I, I}) = 0 for
all X ∈ g and hence, we obtain {I, I}= 0.

Conversely, let g be a quadratic Z2-graded vector space equipped with a bilinear form B
and I be an element in E(3,0)(g). Define d =−adP(I) then d ∈D1

0 (E(g)). Therefore, d2 = 0 if
and only if {I, I} = 0. Let F be the struture in g corresponding to d by the isomorphism D in
Lemma 3.1.15, one has

Proposition 3.1.18. F becomes a Lie superalgebra structure if and only if {I, I} = 0. In this
case, with the notation [X ,Y ] := F(X ,Y ) one has:

I(X ,Y,Z) = B([X ,Y ],Z), ∀ X ,Y,Z ∈ g.

Moreover, the bilinear form B is invariant.

Proof. We need to prove that if F is a Lie superalgebra structure then I(X ,Y,Z) = B([X ,Y ],Z),
for all X ,Y,Z ∈ g. Indeed, let {X1

0 , . . . ,X
m
0 } be an orthonormal basis of V0 and {X1

1 , . . . ,X
n
1 ,

Y 1
1 , . . . ,Y

n
1 } be a canonical basis of V1 then one has

d =−adP(I) =−
m

∑
j=1

ιX j
0
(I)∧ ιX j

0
+

n

∑
k=1

ιXk
1
(I)∧ ιY k

1
−

n

∑
k=1

ιY k
1
(I)∧ ιXk

1
.

It implies that

F =
m

∑
j=1

ιX j
0
(I)⊗X j

0 +
n

∑
k=1

ιXk
1
(I)⊗Y k

1 −
n

∑
k=1

ιY k
1
(I)⊗Xk

1 .

Therefore, for all i we obtain

B([X ,Y ],X i
0) = ιX i

0
(I)(X ,Y ) = I(X i

0,X ,Y ) = I(X ,Y,X i
0),

B([X ,Y ],X i
1) =− ιX i

1
(I)(X ,Y ) =−I(X i

1,X ,Y ) = I(X ,Y,X i
1),

B([X ,Y ],Y i
1 ) =− ιY i

1
(I)(X ,Y ) =−I(Y i

1 ,X ,Y ) = I(X ,Y,Y i
1 ).

These show that I(X ,Y,Z) = B([X ,Y ],Z), for all X ,Y,Z ∈ g.

Remark 3.1.19. The element I defined as above is also an invariant of g since LX(I) = 0, for all
X ∈ g where LX = D(ad(X)) the Lie super-derivation of g. Therefore, I is called the associated
invariant of g.

Lemma 3.1.20. Let (g,B) be a quadratic Lie superalgebra and I be its associated invariant.
Then ιX(I) = 0 if and only if X ∈ Z(g).
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Proof. Since ιX(I)(g,g) = B(X , [g,g]) and Z(g) = [g,g]⊥ then one has ιX(I) = 0 if and only if
X ∈ Z(g).

Definition 3.1.21. Let (g,B) and (g′,B′) be two quadratic Lie superalgebras. We say that (g,B)
and (g′,B′) are isometrically isomorphic (or i-isomorphic) if there exists a Lie superalgebra
isomorphism A from g onto g′ satisfying

B′(A(X),A(Y )) = B(X ,Y ), ∀ X ,Y ∈ g.

In other words, A is an i-isomorphism if it is a (necessarily even) Lie superalgebra isomorphism

and an isometry. We write g
i' g′.

Note that two isomorphic quadratic Lie superalgebras (g,B) and (g′,B′) are not necessarily
i-isomorphic by the example below:

Example 3.1.22. Let g = osp(1,2) and B its Killing form. Recall that g0 = o(3). Consider
another bilinear form B′ = λB, λ ∈ C, λ 6= 0. In this case, (g,B) and (g,λB) cannot be i-
isomorphic if λ 6= 1 since (g0,B) and (g0,λB) are not i-isomorphic (see Example 2.1.4).
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3.2 The dup-number of a quadratic Lie superalgebra
Let (g,B) be a quadratic Lie superalgebra and I be its associated invariant, then by Theorem

3.1.17
I = I0 + I1

where I0 ∈A 3(g0) and I1 ∈A 1(g0)⊗S 2(g1). Since {I, I} = 0 one has {I0, I0} = 0. It means
that g0 is a quadratic Lie algebra with the associated 3-form I0. Remark that g0 is Abelian (resp.
[g1,g1] = {0}) if and only if I0 = 0 (resp. I1 = 0). Define the subspaces of g∗ as follows:

VI = {α ∈ g∗ | α ∧ I = 0},
VI0 = {α ∈ g∗0 | α ∧ I0 = 0},
VI1 = {α ∈ g∗0 | α ∧ I1 = 0}.

The following lemma alows us to consider the notion dup-number for quadratic Lie super-
algebras in a similar way we did for quadratic Lie algebras.

Lemma 3.2.1. Let g be a non-Abelian quadratic Lie superalgebra then one has

(1) dim(VI) ∈ {0,1,3},

(2) dim(VI) = 3 if and only if I1 = 0, g0 is non-Abelian and I0 is decomposable in A 3(g0).

Proof. Let α = α0 +α1 ∈ g∗0 ⊕g∗1 then one has

α ∧ I = α0∧ I0 +α0∧ I1 +α1∧ I0 +α1∧ I1,

where α0∧ I0 ∈A 4(g0), α0∧ I1 ∈A 2(g0)⊗S 2(g1), α1∧ I0 ∈A 3(g0)⊗S 1(g1) and α1∧ I1 ∈
A 1(g0)⊗S 3(g1).

Hence, α∧ I = 0 if and only if α1 = 0 and α0∧ I0 =α0∧ I1 = 0. It means that VI =VI0∩VI1 .
If I0 6= 0 then dim(VI0) ∈ {0,1,3} and if I1 6= 0 then dim(VI1) ∈ {0,1}. Therefore, dim(VI) ∈
{0,1,3} and dim(VI) = 3 if and only if I1 = 0 and dim(VI0) = 3.

Definition 3.2.2. Let (g,B) be a non-Abelian quadratic Lie superalgebra and I be its associated
invariant. The dup number dup(g) is defined by

dup(g) = dim(VI).

The decomposition in Proposition 2.1.5 is still right in the case of a quadratic Lie superal-
gebra below:

Proposition 3.2.3. Let (g,B) be a non-Abelian quadratic Lie superalgebra. Keep the notations
as in Chapter 2, then there exist a central ideal z and an ideal l 6= {0} such that:

(1) g = z
⊥
⊕ l where (z,B|z×z) and (l,B|l×l) are quadratic Lie superalgebras. Moreover, l is

non-Abelian.

(2) The center Z(l) is totally isotropic, i.e. Z(l)⊂ [l, l].
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(3) Let g′ be a quadratic Lie superalgebra and A : g→ g′ be a Lie superalgebra isomorphism.
Then

g′ = z′
⊥
⊕ l′

where z′=A(z) is central, l′=A(z)⊥, Z(l′) is totally isotropic and l and l′ are isomorphic.
Moreover if A is an i-isomorphism, then l and l′ are i-isomorphic.

Proof. The proof is exactly as Proposition 2.1.5 where z is a complementary subspace of Z(g)∩
[g,g] in Z(g) and l= z⊥.

Clearly, if z= {0} then Z(g) is totally isotropic. Moreover, one has

Lemma 3.2.4. Let g be a non-Abelian quadratic Lie superalgebra. Write g= z
⊥
⊕ l as in Propo-

sition 3.2.3 then dup(g) = dup(l).

Proof. Since [z,g] = {0} then I ∈ E(3,0)(l). Let α ∈ g∗ such that α ∧ I = 0, we show that α ∈ l∗.
Assume that α = α1+α2, where α1 ∈ z∗ and α2 ∈ l∗. Since α ∧ I = 0, α1∧ I ∈ E(z)⊗E(l) and
α2 ∧ I ∈ E(l) then one has α1 ∧ I = 0. Therefore, α1 = 0 since I is nonzero in E(3,0)(l). That
mean α ∈ l∗ and then dup(g) = dup(l).

Definition 3.2.5. A quadratic Lie superalgebra g is reduced if:

(1) g 6= {0}

(2) Z(g) is totally isotropic.

Notice that a reduced quadratic Lie superalgebra is necessarily non-Abelian.

Definition 3.2.6. Let g be a non-Abelian quadratic Lie superalgebra.

(1) g is an ordinary quadratic Lie superalgebra if dup(g) = 0.

(2) g is a singular quadratic Lie superalgebra if dup(g)≥ 1.

(i) g is a singular quadratic Lie superalgebra of type S1 if dup(g) = 1.

(ii) g is a singular quadratic Lie superalgebra of type S3 if dup(g) = 3.

By Lemma 3.2.1, if g is a singular quadratic Lie superalgebra of type S3 then g is an or-

thogonal direct sum g= g0
⊥
⊕ V 2n where g1 =V 2n, [g1,g1] = {0}, g0 is a singular quadratic Lie

algebra of type S3 and the classification is known (more details in Proposition 3.3.3). Therefore,
we are interested in singular quadratic Lie superalgebras of type S1.

Before studying completely the structure of singular quadratic Lie superalgebras of type S1,
we begin with some simple properties as follows:

Proposition 3.2.7. Let (g,B) be a singular quadratic Lie superalgebra of type S1. If g0 is
non-Abelian then g0 is a singular quadratic Lie algebra.

Proof. By the proof of Lemma 3.2.1, one has VI =VI0∩VI1 . Therefore, dim(VI0)≥ 1. It means
that g0 is a singular quadratic Lie algebra.
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Let (g,B) be a singular quadratic Lie superalgebra of type S1. Fix α ∈ VI and choose
Ω0 ∈A 2(g0), Ω1 ∈S 2(g1) such that I = α ∧Ω0 +α⊗Ω1. Then one has

{I, I}= {α ∧Ω0,α ∧Ω0}+2{α ∧Ω0,α}⊗Ω1 +{α,α}⊗Ω1Ω1.

By the equality {I, I} = 0, one has {α ∧Ω0,α ∧Ω0} = 0, {α,α} = 0 and {α,α ∧Ω0} = 0.
These imply that {α, I} = 0. Hence, if we let X0 = φ−1(α) then X0 ∈ Z(g) and B(X0,X0) = 0
(Corollary 3.1.13 and Lemma 3.1.20).

Proposition 3.2.8. Let (g,B) be a singular quadratic Lie superalgebra of type S1. If g is reduced
then g0 is reduced.

Proof. Assume that g0 is not reduced, i.e. g0 = z
⊥
⊕ l where z is a non-trivial central ideal of g0,

there is X ∈ z such that B(X ,X) = 1. Since g is singular of type S1 then g0 is also singular, the
element X0 defined as above will be in l and I0 = α ∧Ω0 ∈A 3(l) (see in Chapter 2). We also
have B(X ,X0) = 0.

Let β = φ(X) so ιX(I) = {β , I} = {β ,α ∧Ω0 +α ∧Ω1} = 0. That means X ∈ Z(g). This
is a contradiction since g is reduced. Hence g0 must be reduced.

Lemma 3.2.9. Let g1 and g2 be non-Abelian quadratic Lie superalgebras. Then g1
⊥
⊕ g2 is an

ordinary quadratic Lie algebra.

Proof. Set g = g1
⊥
⊕ g2. Denote by I, I1 and I2 their non-trivial associated invariants, respec-

tively. One has E(g) = E(g1)⊗E(g2), Ek(g) =
⊕

r+s=k
Er(g1)⊗Es(g2) and I = I1 + I2 where

I1 ∈ E3(g1), I2 ∈ E3(g2). Therefore, if α = α1 +α2 ∈ g∗1⊕ g∗2 such that α ∧ I = 0 then α1 =
α2 = 0.

Definition 3.2.10. A quadratic Lie superalgebra is indecomposable if g= g1
⊥
⊕ g2, with g1 and

g2 ideals of g, then g1 or g2 = {0}.

Proposition 3.2.11. Let g be a singular quadratic Lie superalgebra. Then g is reduced if and
only if g is indecomposable.

Proof. If g is indecomposable then it is obvious that g is reduced. If g is reduced, assume that

g= g1
⊥
⊕ g2, with g1 and g2 ideals of g, then Z(gi)⊂ [gi,gi] for i = 1,2. Therefore, gi is reduced

or gi = {0}. If g1 and g2 are both reduced, by Lemma 3.2.9 , then g is ordinary. Hence g1 or
g2 = {0}.

To describe fully the class of singular quadratic Lie superalgebras, we shall study case-
by-case its particular subclasses: elementary quadratic Lie superalgebras and quadratic Lie
superalgebras with 2-dimensional even part.
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3.3 Elementary quadratic Lie superalgebras
Definition 3.3.1. Let g be a quadratic Lie superalgebra and I be its associated invariant. We say
that g is an elementary quadratic Lie superalgebra if I is decomposable.

It is easy to see that if I is decomposable then I0 or I1 = 0. If g is a non-Abelian elementary
quadratic Lie superalgebra then either g is a singular quadratic Lie superalgebra of type S3 or g
is a singular quadratic Lie superalgebra of type S1 such that I is non-zero and decomposable in
A 1(g0)⊗S 2(g1).

Assume that I0 = 0 and I = I1 is a non-zero decomposable element in A 1(g0)⊗S 2(g1),
that means

I = α⊗ pq

where α ∈ g∗0 and p,q ∈ g∗1 .

Lemma 3.3.2. Let g be a reduced elementary quadratic Lie superalgebra having I = α ⊗ pq.
Set X0 = φ−1(α) then one has:

(1) dim(g0) = 2 and g0∩Z(g) = CX0.

(2) Let X1 = φ−1(p), Y1 = φ−1(q) and U = span{X1,Y1} then

(i) dim(g1) = 2 if dim(U) = 1 or U is non-degenerate.

(ii) dim(g1) = 4 if U is totally isotropic.

Proof.

(1) Let β be an element in g∗0 . It is easy to see that {β ,α} = 0 if and only if {β , I} = 0,
equivalently φ−1(β )∈Z(g). Therefore, (φ−1(α))⊥∩g0 ⊂Z(g). It means that dim(g0)≤
2 since g is reduced (see [Bou59]). Moreover, X0 = φ−1(α) is isotropic then dim(g0) = 2.
If dim(g0 ∩Z(g)) = 2 then g0 ⊂ Z(g). Since B is invariant one obtains g Abelian (a
contradiction). Therefore, g0∩Z(g) = CX0.

(2) It is obvious that dim(g1) ≥ 2. If dim(U) = 1 then U is an isotropic subspace of g1 so
there exists a one-dimensional subspace V of g1 such that B is non-degenerate on U ⊕V

(see [Bou59]). Let g1 = (U ⊕V )
⊥
⊕W where W = (U ⊕V )⊥ then for all f ∈ φ(W ) one

has:
{ f , I}= { f ,α⊗ pq}=−α⊗ ({ f , p}q+ p{ f ,q}) = 0.

Therefore, W ⊂ Z(g). Since B is non-degenerate on W and g is reduced then W = {0}.
If dim(U) = 2 then U is non-degenerate or totally isotropic. If U is non-degenerate,

let g1 = U
⊥
⊕W where W = U⊥. If U is totally isotropic, let g1 = (U ⊕V )

⊥
⊕W where

W = (U ⊕V )⊥ and B is non-degenerate on U ⊕V . In the both cases, similarly as above,
one has W a non-degenerate central ideal so W = {0}. Therefore, dim(g1) = dim(U) = 2
if U is non-degenerate and dim(g1) = dim(U⊕V ) = 4 if U is totally isotropic.
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Proposition 3.3.3. Let g be a reduced elementary quadratic Lie superalgebra then g is i-
isomorphic to one of the following Lie superalgebras:

(1) gi where gi, 3 ≤ i ≤ 6, are reduced singular quadratic Lie algebras of type S3 given in
Proposition 2.2.29.

(2) gs
4,1 = (CX0⊕CY0)⊕ (CX1⊕CZ1) such that the bilinear form B is defined by

B(X0,Y0) = B(X1,Z1) = 1,

the other are zero and the Lie super-bracket is defined by [Z1,Z1] =−2X0, [Y0,Z1] =−2X1,
the other are trivial.

(3) gs
4,2 = (CX0⊕CY0)⊕ (CX1⊕CY1) such that the bilinear form B is defined by

B(X0,Y0) = B(X1,Y1) = 1,

the other are zero and the Lie super-bracket is defined by [X1,Y1] = X0, [Y0,X1] = X1,
[Y0,Y1] =−Y1, the other are trivial.

(4) gs
6 = (CX0⊕CY0)⊕ (CX1⊕CY1⊕CZ1⊕CT1) such that the bilinear form B is defined by

B(X0,Y0) = B(X1,Z1) = B(Y1,T1) = 1,

the other are zero and the Lie super-bracket is defined by [Z1,T1] = −X0, [Y0,Z1] = −Y1,
[Y0,T1] =−X1, the other are trivial.

Proof.

(1) This statement corresponds to the case where I1 = 0 and I = I0 a decomposable 3-form in
A 3(g0). In this case, I(g0,g1,g1) = B([g0,g1],g1) = 0. It implies [g0,g1] = [g1,g1] = {0}
since B is non-degenerate and then g1 ⊂ Z(g). On the other hand, g is reduced so Z(g)⊂
[g,g]⊂ g0. Therefore, g1 = {0} and we obtain (1).

Assume that I = α ⊗ pq ∈ A 1(g0)⊗S 2(g1). By the previous lemma, g0 = CX0⊕CY0
where X0 = φ−1(α), B(X0,X0) = B(Y0,Y0) = 0, B(X0,Y0) = 1. Let X1 = φ−1(p), Y1 =
φ−1(q) and U = span{X1,Y1}.

(2) If dim(U) = 1 then Y1 = kX1 with some non-zero k ∈ C. Therefore, q = kp and I =
kα⊗ p2. Replace with

X0 = kX0, Y0 =
Y0
k

and Z1 is an element in g1 such that B(X1,Z1) = 1 then g = (CX0⊕CY0)⊕ (CX1⊕CZ1)
and I = α⊗ p2.

Now, let X ∈ g0,Y,Z ∈ g1. By using (1.7) and (1.8) of [BP89], one has:

B(X , [Y,Z]) =−2α(X)p(Y )p(Z) =−2B(X0,X)B(X1,Y )B(X1,Z).

Since B|g0×g0
is non-degenerate then:

[Y,Z] =−2B(X1,Y )B(X1,Z)X0, ∀ Y,Z ∈ g1.
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3.3. Elementary quadratic Lie superalgebras

Similarly and by invariance of B, we also obtain:

[X ,Y ] =−2B(X0,X)B(X1,Y )X1, ∀ X ∈ g0, Y ∈ g1

and (2) follows.

(3) If dim(U) = 2 and U is non-degenerate then B(X1,Y1) = a 6= 0. Replace with

X1 :=
X1

a
, p :=

p
a
, X0 := aX0 and Y0 :=

Y0
a

then g= (CX0⊕CY0)⊕ (CX1⊕CY1), B(X0,Y0) = B(X1,Y1) = 1 and I = α⊗ pq.

Let X ∈ g0, Y,Z ∈ g1, one has:

B(X , [Y,Z]) = I(X ,Y,Z) =−α(X)(p(Y )q(Z)+ p(Z)q(Y )).

Therefore, the Lie super-brackets are defined:

[Y,Z] =−(B(X1,Y )B(Y1,Z)+B(X1,Z)B(Y1,Y ))X0, ∀ Y,Z ∈ g1,

[X ,Y ] =−B(X0,X)(B(X1,Y )Y1 +B(Y1,Y )X1), ∀ X ∈ g0, Y ∈ g1

and (3) follows.

(4) If dim(U)= 2 and U is totally isotropic. Let V =CZ1⊕CT1 be a totally isotropic subspace
of g1 such that g1 = CX1⊕CY1⊕CZ1⊕CT1, B(X1,Z1) = B(Y1,T1) = 1.

If X ∈ g0,Y,Z ∈ g1 then:

B(X , [Y,Z]) = I(X ,Y,Z) =−α(X)(p(Y )q(Z)+ p(Z)q(Y )).

We obtain the Lie super-brackets as follows:

[Y,Z] =−(B(X1,Y )B(Y1,Z)+B(X1,Z)B(Y1,Y ))X0, ∀ Y,Z ∈ g1,

[X ,Y ] =−B(X0,X)(B(X1,Y )Y1 +B(Y1,Y )X1), ∀ X ∈ g0, Y ∈ g1.

Thus, [Z1,T1] =−X0, [Y0,Z1] =−Y1, [Y0,T1] =−X1.
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3.4 Quadratic Lie superalgebras with 2-dimensional even part
Proposition 3.4.1. Let g be a non-Abelian quadratic Lie superalgebra with 2-dimensional even
part. Then g is a singular quadratic Lie superalgebra of type S1.

Proof. By Remark 2.2.10, every non-Abelian quadratic Lie algebra must have the dimension
more than 2 so g0 is Abelian and consequently, I ∈A 1(g0)⊗S 2(g1). We choose a canonical
basis {X0,Y0} of g0 such that B(X0,X0) = B(Y0,Y0) = 0 and B(X0,Y0) = 1. Let α = φ(X0),
β = φ(Y0) and we can assume that

I = α⊗Ω1 +β ⊗Ω2

where Ω1,Ω2 ∈S 2(g1). Then one has:

{I, I}= 2(Ω1Ω2 +α ∧β ⊗{Ω1,Ω2}).

Therefore, {I, I}= 0 implies that Ω1Ω2 = 0. So Ω1 = 0 or Ω2 = 0. It means that g is a singular
quadratic Lie superalgebra of type S1.

Proposition 3.4.2. Let g be a singular quadratic Lie superalgebra with Abelian even part. If g
is reduced then dim(g0) = 2.

Proof. Let I be the associated invariant of g. Since g has the Abelian even part one has I ∈
A 1(g0)⊗S 2(g1). Moreover g is singular then

I = α⊗Ω

where α ∈ g∗0 , Ω ∈S 2(g1). The proof follows exactly Lemma 3.3.2. Let β ∈ g∗0 then {β ,α}=
0 if and only if {β , I}= 0, equivalently φ−1(β ) ∈ Z(g). Therefore, (φ−1(α))⊥∩g0 ⊂ Z(g). It
means that dim(g0) = 2 since g is reduced and φ−1(α) is isotropic in Z(g).

Now, let g be a non-Abelian quadratic Lie superalgebra with 2-dimensional even part. By
Proposition 3.4.1, g is singular of type S1. Fix α ∈ VI and choose Ω ∈S 2(g) such that

I = α⊗Ω.

We define C : g1→ g1 by B(C(X),Y ) = Ω(X ,Y ), for all X ,Y ∈ g1 and let X0 = φ−1(α).

Lemma 3.4.3. The following assertions are equivalent:

(1) {I, I}= 0,

(2) {α,α}= 0,

(3) B(X0,X0) = 0.

In this case, one has X0 ∈ Z(g).

Proof. It is easy to see that:

{I, I}= 0⇔{α,α}⊗Ω
2 = 0.

Therefore the assertions are equivalent. Moreover, since {α, I}= 0 one has X0 ∈ Z(g).

76



3.4. Quadratic Lie superalgebras with 2-dimensional even part

We keep the notations as in the previous sections. Then there exists an isotropic element
Y0 ∈ g0 such that B(X0,Y0) = 1 and one has the following proposition:

Proposition 3.4.4.

(1) The map C is skew-symmetric (with respect to B), that is, B(C(X),Y ) =−B(X ,C(Y )) for
all X, Y ∈ g1.

(2) [X ,Y ] = B(C(X),Y )X0, for all X ,Y ∈ g1 and C = ad(Y0)|g1
.

(3) Z(g) = ker(C)⊕CX0 and [g,g] = Im(C)⊕CX0. Therefore, g is reduced if and only if
ker(C)⊂ Im(C).

(4) The Lie superalgebra g is solvable. Moreover, g is nilpotent if and only if C is nilpotent.

Proof.

(1) For all X , Y ∈ g1, one has

B(C(X),Y ) = Ω(X ,Y ) = Ω(Y,X) = B(C(Y ),X) =−B(X ,C(Y )).

(2) Let X ∈ g0,Y,Z ∈ g1 then

B(X , [Y,Z]) = (α⊗Ω)(X ,Y,Z) = α(X)Ω(Y,Z).

Since α(X) = B(X0,X) and Ω(Y,Z) = B(C(Y ),Z) so one has

B(X , [Y,Z]) = B(X0,X)B(C(Y ),Z).

The non-degeneracy of B implies [Y,Z] = B(C(Y ),Z)X0. Set X = Y0 then B(Y0, [Y,Z]) =
B(C(Y ),Z). By the invariance of B, we obtain [Y0,Y ] =C(Y ).

(3) It follows from the assertion (2).

(4) g is solvable since g0 is solvable, or since [[g,g], [g,g]] ⊂ CX0. If g is nilpotent then
C = ad(Y0) is nilpotent obviously. Conversely, if C is nilpotent then it is easy to see that g
is nilpotent since (ad(X))k(g)⊂ CX0⊕ Im(Ck) for all X ∈ g.

Remark 3.4.5. The choice of C is unique up to a non-zero scalar. Indeed, assume that I =α ′⊗Ω′

and C′ is the map associated to Ω′. Since Z(g)∩g0 =CX0 and φ−1(α ′)∈Z(g) one has α ′= λα

for some non-zero λ ∈ C. Therefore, α⊗ (Ω−λΩ′) = 0. It means that Ω = λΩ′ and then we
get C = λC′.
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3.4. Quadratic Lie superalgebras with 2-dimensional even part

3.4.1 Double extension of a symplectic vector space
In Chapter 2, the double extension of a quadratic vector space by a skew-symmetric map

is a solvable singular quadratic Lie algebra. Next, we have a similar definition for a symplectic
vector space as follows:

Definition 3.4.6.

(1) Let (q,Bq) be a symplectic vector space equipped with the symplectic bilinear form Bq

and C : q→ q be a skew-symmetric map, that is,

Bq(C(X),Y ) =−Bq(X ,C(Y )), ∀ X ,Y ∈ q.

Let (t= span{X0,Y0},Bt) be a 2-dimensional quadratic vector space with Bt defined by

Bt(X0,X0) = Bt(Y0,Y0) = 0, Bt(X0,Y0) = 1.

Consider the vector space

g= t
⊥
⊕ q

equipped with a bilinear form B = Bt+Bq and define a bracket on g by

[λX0 +µY0 +X ,λ ′X0 +µ
′Y0 +Y ] = µC(Y )−µ

′C(X)+B(C(X),Y )X0,

for all X ,Y ∈ q,λ ,µ,λ ′,µ ′ ∈C. Then (g,B) is a quadratic solvable Lie superalgebra with
g0 = t and g1 = q. We say that g is the double extension of q by C.

(2) Let gi be double extensions of symplectic vector spaces (qi,Bi) by skew-symmetric maps
Ci ∈L (qi), for 1≤ i≤ k. The amalgamated product

g= g1 ×
a
g2 ×

a
. . . ×

a
gk

is defined as follows:

• consider (q,B) be the symplec vector space with q = q1 ⊕ q2 ⊕ ·· · ⊕ qk and the
bilinear form B such that B(∑k

i=I Xi,∑
k
i=I Yi) = ∑

k
i=I Bi(Xi,Yi), for Xi,Yi ∈ qi, 1≤ i≤

k.

• the skew-symmetric map C ∈L (q) is defined by C(∑k
i=I Xi) = ∑

k
i=I Ci(Xi), for Xi ∈

qi, 1≤ i≤ k.

Then g is the double extension of q by C.

Lemma 3.4.7. We keep the notation above.

(1) Let g be the double extension of q by C. Then

[X ,Y ] = B(X0,X)C(Y )−B(X0,Y )C(X)+B(C(X),Y )X0, ∀ X ,Y ∈ g,

where C = ad(Y0). Moreover, X0 ∈ Z(g) and C|q =C.
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3.4. Quadratic Lie superalgebras with 2-dimensional even part

(2) Let g′ be the double extension of q by C′ = λC, λ ∈ C, λ 6= 0. Then g and g′ are i-
isomorphic.

Proof.

(1) This is a straightforward computation by Definition 3.4.6.

(2) Write g = t
⊥
⊕ q = g′. Denote by [·, ·]′ the Lie super-bracket on g′. Define A : g→ g′ by

A(X0) = λX0, A(Y0) =
1
λ

Y0 and A|q = Idq. Then A([Y0,X ]) = C(X) = [A(Y0),A(X)]′ and

A([X ,Y ]) = [A(X),A(Y )]′, for all X ,Y ∈ q. So A is an i-isomorphism.

Theorem 3.4.8.

(1) Let g be a non-Abelian quadratic Lie superalgebra with 2-dimensional even part. Keep
the notations as in Proposition 3.4.4. Then g is the double extension of q = (CX0⊕
CY0)

⊥ = g1 by C = ad(Y0)|q.

(2) Let g be the double extension of a symplectic vector space q by a map C 6= 0. Then g is a
singular solvable quadratic Lie superalgebra with 2-dimensional even part. Moreover:

(i) g is reduced if and only if ker(C)⊂ Im(C).

(ii) g is nilpotent if and only if C is nilpotent.

(3) Let (g,B) be a quadratic Lie superalgebra. Let g′ be the double extension of a symplectic
vector space (q′,B′) by a map C′. Let A be an i-isomorphism of g′ onto g and write
q = A(q′). Then g is the double extension of (q,B|q×q) by the map C = A C′ A−1 where
A = A|q′ .

Proof. The assertions (1) and (2) follow Proposition 3.4.4 and Lemma 3.4.7. For (3), since A

is i-isomorphic then g has also 2-dimensional even part. Write g′ = (CX ′0⊕CY ′0)
⊥
⊕ q′. Let

X0 = A(X ′0) and Y0 = A(Y ′0). Then g= (CX0⊕CY0)
⊥
⊕ q and one has:

[Y0,X ] = (AC′A−1)(X), ∀ X ∈ q, and

[X ,Y ] = B((AC′A−1)(X),Y )X0, ∀ X ,Y ∈ q.

This proves the result.

Example 3.4.9. For reduced elementary quadratic Lie superalgebras with 2-dimensional even
part, then
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(1) gs
4,1 is the double extension of the 2-dimensional symplectic vector space q = C2 by the

map having matrix:

C =

(
0 1
0 0

)
in a canonical basis {E1,E2} of q where B(E1,E2) = 1.

(2) gs
4,2 the double extension of the 2-dimensional symplectic vector space q = C2 by the

map having matrix:

C =

(
1 0
0 −1

)
in a canonical basis {E1,E2} of q where B(E1,E2) = 1.

(3) gs
6 is the double extension of the 4-dimensional symplectic vector space q = C4 by the

map having matrix:

C =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0


in a canonical basis {E1,E2,E3,E4} of q where B(E1,E3) = B(E2,E4) = 1, the other are
zero.

Let (q,B) be a symplectic vector space. We recall that Sp(q) is the isometry group of the
symplectic form B and sp(q) is its Lie algebra, i.e. the Lie algebra of skew-symmetric maps
with respects to B. The adjoint action is the action of Sp(q) on sp(q) by conjugation (see
Chapter 1).

Proposition 3.4.10. Let (q,B) be a symplectic vector space. Let g = (CX0⊕CY0)
⊥
⊕ q and

g′= (CX ′0⊕CY ′0)
⊥
⊕ q be double extensions of q, by skew-symmetric maps C and C′ respectively.

Then:

(1) there exists a Lie superalgebra isomorphism between g and g′ if and only if there exist an
invertible map P ∈L (q) and a non-zero λ ∈ C such that C′ = λ PCP−1 and P∗PC =C
where P∗ is the adjoint map of P with respect to B.

(2) there exists an i-isomorphism between g and g′ if and only if C′ is in the Sp(q)-adjoint
orbit through λC for some non-zero λ ∈ C.

Proof. The assertions are obvious if C = 0. We assume C 6= 0.

(1) Let A : g→ g′ be a Lie superalgebra isomorphism then A(CX0⊕CY0) = CX ′0⊕CY ′0 and
A(q) = q. It is obvious that C′ 6= 0. It is easy to see that CX0 = Z(g)∩ g0 and CX ′0 =
Z(g′)∩g′0 then one has A(CX0) = CX ′0 . It means A(X0) = µX ′0 for some non-zero µ ∈ C.
Let A|q = Q and assume A(Y0) = βY ′0 + γX ′0 . For all X , Y ∈ q, we have A([X ,Y ]) =
µB(C(X),Y )X ′0. Also,

A([X ,Y ]) = [Q(X),Q(Y )]′ = B(C′Q(X),Q(Y ))X ′0.
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3.4. Quadratic Lie superalgebras with 2-dimensional even part

It results that Q∗C′Q = µC.

Moreover, A([Y0,X ]) = Q(C(X)) = [βY ′0 + γX ′0,Q(X)]′ = βC′Q(X), for all X ∈ q. We
conclude that Q C Q−1 = βC′ and since Q∗C′Q = µC, then Q∗QC = β µC.

Set P =
1

(µβ )
1
2

Q and λ =
1
β

. It follows that C′ = λPCP−1 and P∗PC =C.

Conversely, assume that g = (CX0⊕CY0)
⊥
⊕ q and g′ = (CX ′0⊕CY ′0)

⊥
⊕ q be double ex-

tensions of q, by skew-symmetric maps C and C′ respectively such that C′ = λPCP−1 and
P∗PC =C with an invertible map P ∈L (q) and a non-zero λ ∈ C. Define A : g→ g′ by

A(X0) =
1
λ

X ′0, A(Y0) = λY ′0 and A(X) = P(X), for all X ∈ q then it is easy to check that A
is isomorphic.

(2) If g and g′ are i-isomorphic, then the isomorphism A in the proof of (1) is an isometry.
Hence P ∈ Sp(q) and C′ = λPCP−1 gives the result.

Conversely, define A as above (the sufficiency of (1)). Then A is an isometry and it is easy
to check that A is an i-isomorphism.

Corollary 3.4.11. Let (g,B) and (g′,B′) be double extensions of (q,B) and (q′,B′) respectively

where B = B|q×q and B′ = B′|q′×q′ . Write g = (CX0⊕CY0)
⊥
⊕ q and g′ = (CX ′0⊕CY ′0)

⊥
⊕ q′.

Then:

(1) there exists an i-isomorphism between g and g′ if and only if there exists an isometry
A : q→ q′ such that C′ = λ A C A−1, for some non-zero λ ∈ C.

(2) there exists a Lie superalgebra isomorphism between g and g′ if and only if there exist
invertible maps Q : q→ q′ and P ∈L (q) such that

(i) C′ = λ Q C Q−1 for some non-zero λ ∈ C,

(ii) P∗ P C =C and

(iii) Q P−1 is an isometry from q onto q′.

Proof.
The proof is completely similar to Corollary 2.2.31 in Chapter 2.

We shall now classify quadratic Lie superalgebra structures on the quadratic Z2-graded
vector space C2 ⊕

Z2

C2n up to i-isomorphisms in terms of Sp(2n)-orbits in P1(sp(2n)). This

work is like what we have done in Chapter 2. We need the following lemma:

Lemma 3.4.12. Let V be a quadratic Z2-graded vector space such that its even part is 2-

dimensional. We write V =(CX ′0⊕CY ′0)
⊥
⊕ q′ with X0, Y0 isotropic elements in V0 and B(X0,Y0)=

1. Let g be a quadratic Lie superalgebra with dim(g0) = dim(V0) and dim(g) = dim(V ). Then,
there exists a skew-symmetric map C′ : q′→ q′ such that V is considered as the double extension
of q′ by C′ that is i-isomorphic to g.
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Proof. By Theorem 3.4.8, g is a double extension. Let us write g = (CX0⊕CY0)
⊥
⊕ q and

C = ad(Y0)|q. Define A : g→ V by A(X0) = X ′0, A(Y0) = Y ′0 and A = A|q any isometry from
q→ q′. It is clear that A is an isometry from g to V . Now, define the Lie super-bracket on V by:

[X ,Y ] = A
(
[A−1(X),A−1(Y )]

)
, ∀ X ,Y ∈V.

Then V is a quadratic Lie superalgebra, that is i-isomorphic to g. Moreover, V is obviously the
double extension of q′ by C′ = A C A−1.

Theorem 3.4.8, Proposition 3.4.10, Corollary 3.4.11 and Lemma 3.4.12 are enough for us to
apply the method of classification in Chapter 2 for the set S(2+2n) of quadratic Lie superalge-
bra structures on the quadratic Z2-graded vector space C2⊕

Z2

C2n by only replacing the isometry

group O(m) by Sp(2n) and o(m) by sp(2n) to obtain completely similar results. One has the
first characterization of the set S(2+2n):

Theorem 3.4.13. Let g and g′ be elements in S(2+2n). Then g and g′ are i-isomorphic if and
only if they are isomorphic.

By using the notion of double extension, we call the Lie superalgebra g ∈ S(2+ 2n) diag-
onalizable (resp. invertible) if it is a double extension by a diagonalizable (resp. invertible)
map. Denote the subsets of nilpotent elements, diagonalizable elements and invertible elements
in S(2+2n), respectively by N(2+2n), D(2+2n) and by Sinv(2+2n). Denote by N̂(2+2n),
D̂(2+2n), Ŝinv(2+2n) the sets of isomorphism classes in N(2+2n), D(2+2n), Sinv(2+2n),
respectively and D̂red(2+ 2n) the subset of D̂(2+ 2n) including reduced ones. Keep the no-
tations as in Chapter 1 and Chapter 2. Then we have the classification result of these sets as
follows:

Theorem 3.4.14.

(1) There is a bijection between N̂(2+2n) and the set of nilpotent Sp(2n)-adjoint orbits of
sp(2n) that induces a bijection between N̂(2+2n) and the set of partitions P−1(2n).

(2) There is a bijection between D̂(2 + 2n) and the set of semisimple Sp(2n)-orbits of
P1(sp(2n)) that induces a bijection between D̂(2+2n) and Λn/Hn. In the reduced case,
D̂red(2+2n) is bijective to Λ+

n /Hn.

(3) There is a bijection between Ŝinv(2 + 2n) and the set of invertible Sp(2n)-orbits of
P1(sp(2n)) that induces a bijection between Ŝinv(2+2n) and Jn/C∗.

(4) There is a bijection between Ŝ(2+2n) and the set of Sp(2n)-orbits of P1(sp(2n)) that
induces a bijection between Ŝ(2+2n) and D(2n)/C∗.

Next, we will describe the sets N(2+ 2n), Dred(2+ 2n) the subset of D(2+ 2n) including
reduced ones, and Sinv(2+2n) in term of amalgamated product in Definition 3.4.6. Remark that
except for the nilpotent case, the amalgamated product may have a bad behavior with respect to
isomorphisms.
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Definition 3.4.15. Keep the notation Jp for the Jordan block of size p and define two types of
double extension as follows:

• for p ≥ 2, we consider the symplectic vector space q = C2p equipped with its canonical
bilinear form B and the map CJ

2p having matrix(
Jp 0
0 −tJp

)
in a canonical basis. Then CJ

2p ∈ sp(2p) and we denote by j2p the double extension of q

by CJ
2p. So j2p ∈N(2+2p).

• for p ≥ 1, we consider the symplectic vector space q = C2p equipped with its canonical
bilinear form B and the map CJ

p+p with matrix(
Jp M
0 −tJp

)
in a canonical basis where M = (mi j) denotes the p× p-matrix with mp,p = 1 and mi j = 0
otherwise. Then CJ

p+p ∈ sp(2p) and we denote by jp+p the double extension of q by

CJ
p+p. So jp+p ∈N(2+2p).

Lie superalgebras j2p or jp+p will be called nilpotent Jordan-type Lie superalgebras.

Keep the notations as in Chapter 1. For n ∈N, n 6= 0, each [d] ∈P−1(2n) can be written as

[d] = (p1, p1, p2, p2, . . . , pk, pk,2q1, . . .2q`),

with all pi odd, p1 ≥ p2 ≥ ·· · ≥ pk and q1 ≥ q2 ≥ ·· · ≥ q`.
We associate the partition [d] with the map C[d] ∈ sp(2n) having matrix

diagk+`(C
J
2p1

,CJ
2p2

, . . . ,CJ
2pk

,CJ
q1+q1

, . . . ,CJ
q`+q`)

in a canonical basis of C2n and denote by g[d] the double extension of C2n by C[d]. Then
g[d] ∈N(2+2n) and g[d] is an amalgamated product of nilpotent Jordan-type Lie superalgebras,
more precisely,

g[d] = j2p1 ×a
j2p2 ×a

. . . ×
a
j2pk ×a

jq1+q1 ×a
. . . ×

a
jq`+q`.

Proposition 3.4.16. Each g ∈ N(2 + 2n) is i-isomorphic to a unique amalgamated product
g[d], [d] ∈P−1(2n) of nilpotent Jordan-type Lie superalgebras.

For reduced diagonalizable case, let gs
4(λ ) be the double extension of q = C2 by C =(

λ 0
0 −λ

)
, λ 6= 0. By Lemma 3.4.7, gs

4(λ ) is i-isomorphic to gs
4(1) = gs

4,2.
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Proposition 3.4.17. Let g ∈ Dred(2+ 2n) then g is an amalgamated product of quadratic Lie
superalgebras all i-isomorphic to gs

4,2.

Finally, for invertible case, we recall the matrix Jp(λ ) = diagp(λ , . . . ,λ )+Jp, p≥ 1, λ ∈C
and set

CJ
2p(λ ) =

(
Jp(λ ) 0

0 −tJp(λ )

)
in a canonical basis of C2p then CJ

2p(λ ) ∈ sp(2p). Let j2p(λ ) be the double extension of C2p

by CJ
2p(λ ) then it is called a Jordan-type quadratic Lie superalgebra.

When λ = 0 and p≥ 2, we recover the nilpotent Jordan-type Lie superalgebras j2p. If λ 6= 0,
j2p(λ ) becomes an invertible singular quadratic Lie superalgebra and

j2p(−λ )' j2p(λ ).

Proposition 3.4.18. Let g∈ Sinv(2+2n) then g is an amalgamated product of Lie superalgebras
all i-isomorphic to Jordan-type quadratic Lie superalgebras j2p(λ ), with λ 6= 0.

3.4.2 Quadratic dimension of reduced quadratic Lie superalgebras with
2-dimensional even part

Let (g,B) be a quadratic Lie superalgebra. To any bilinear form B′ on g, there is an associ-
ated map D : g→ g satisfying

B′(X ,Y ) = B(D(X),Y ), ∀ X ,Y ∈ g.

Lemma 3.4.19. If B′ is even then D is even.

Proof. Let X be an element in g0 and assume that D(X) = Y +Z with Y ∈ g0 and Z ∈ g1. Since
B′ is even then B′(X ,g1) = 0. It implies that B(D(X),g1) = B(Z,g1) = 0. By the non-degeneracy
of B on g1, we obtain Z = 0 and then D(g0)⊂ g0. Similarly to the case X ∈ g1, it concludes that
D(g1)⊂ g1. Thus, D is even.

Lemma 3.4.20. Let (g,B) be a quadratic Lie superalgebra, B′ be an even bilinear form on g
and D ∈L (g) be its associated map. Then:

(1) B′ is invariant if and only if D satisfies

D([X ,Y ]) = [D(X),Y ] = [X ,D(Y )], ∀ X ,Y ∈ g.

(2) B′ is supersymmetric if and only if D satisfies

B(D(X),Y ) = B(X ,D(Y )), ∀ X ,Y ∈ g.

In this case, D is called symmetric.

(3) B′ is non-degenerate if and only if D is invertible.
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Proof. Let X ,Y and Z be homogeneous elements in g of degrees x, y and z, respectively.

(1) If B′ is invariant then
B′([X ,Y ],Z) = B′(X , [Y,Z]).

That means B(D([X ,Y ]),Z =B(D(X), [Y,Z])=B([D(X),Y ],Z). Since B is non-degenerate,
one has D([X ,Y ]) = [D(X),Y ]. As a consequence, D([X ,Y ]) = −(−1)xyD([Y,X ]) =
−(−1)xy[D(Y ),X ] = [X ,D(Y )] by D even.

Conversely, if D satisfies D([X ,Y ]) = [D(X),Y ] = [X ,D(Y )], for all X ,Y ∈ g, it is easy to
check that B′ is invariant.

(2) B′ is supersymmetric if and only if B′(X ,Y ) = (−1)xyB′(Y,X). Therefore, B(D(X),Y ) =
(−1)xyB(D(Y ),X) = B(X ,D(Y )) by B supersymmetric.

(3) It is obvious since B is non-degenerate.

Definition 3.4.21. An even and symmetric map D∈L (g) satisfying Lemma 3.4.20 (1) is called
a centromorphism of g.

As in Subsection 2.3.1, for a quadratic Lie superalgebra g, the space of centromorphisms of
g and the space generated by invertible ones are the same, denote it by C(g) (the proof is similar
completely to Lemma 2.3.2). As a consequence, the space of even invariant supersymmetric
bilinear forms on g coincides with its subspace generated by non-degenerate ones. Moreover,
the dimensions of all those spaces are the same and we denote it by dq(g), in particular, dq(g) =
dim(C(g)). The following proposition gives the formula of dq(g) for reduced quadratic Lie
superalgebras with 2-dimensional even part.

Proposition 3.4.22. Let g be a reduced quadratic Lie superalgebra with 2-dimensional even
part and D ∈L (g) be an even symmetric map. Then:

(1) D is a centromorphism if and only if there exist µ ∈ C and an even symmetric map Z :
g→ Z(g) such that Z|[g,g] = 0 and D = µ Id+Z. Moreover D is invertible if and only if
µ 6= 0.

(2)

dq(g) = 2+
(dim(Z(g)−1))(dim(Z(g)−2)

2
.

Proof.

(1) The proof follows exactly as Proposition 2.3.6. First, g can be realized as the double

extension g= (CX0⊕CY0)
⊥
⊕ q by C = ad(Y0) where C =C|q ∈ sp(q).

Let D be an invertible centromorphism. Lemma 3.4.20 (1) implies that D ◦ ad(X) =
ad(X)◦D, for all X ∈ g and then DC =CD. Using Lemma 3.4.7 (1) and CD = DC, from
[D(X),Y0] = [X ,D(Y0)], we find

D(C(X)) = B(D(X0),Y0)C(X), ∀ X ∈ g.
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Let µ = B(D(X0),Y0). Since D is invertible, one has µ 6= 0 and C(D− µ Id) = 0. Recall
that ker(C) = CX0⊕ ker(C)⊕CY0 = Z(g)⊕CY0, there exists a map Z : g→ Z(g) and
ϕ ∈ g∗ such that

D−µ Id = Z+ϕ⊗Y0.

But D maps [g,g] into itself and Y0 /∈ [g,g], so ϕ|[g,g] = 0. One has [g,g] = CX0⊕ Im(C).
If X ∈ Im(C), let X = C(Y ). Then D(X) = D(C(Y )) = µC(Y ), so D(X) = µX . For Y0,
D([Y0,X ]) = DC(X) = µC(X) for all X ∈ g. But also, D([Y0,X ]) = [D(Y0),X ] = µC(X)+
ϕ(Y0)C(X), hence ϕ(Y0) = 0. As a consequence, D(Y0) = µY0 +aX0 since D is even and
X0 ∈ Z(g).

Now, we will prove that D(X0) = µX0. Indeed, since D is even and [g1,g1] = CX0 then
one has

D(X0)⊂ D([g1,g1]) = [D(g1),g1]⊂ [g1,g1] = CX0.

It implies that, D(X0) = bX0. Combined with B(D(Y0),X0) = B(Y0,D(X0)), we obtain
µ = b.

Let X ∈ q, B(D(X0),X) = µB(X0,X) = 0. Moreover, B(D(X0),X) = B(X0,D(X)), so
ϕ(X) = 0.

Since C(g) is generated by invertible centromorphisms then the necessary condition of
(1) is finished. The sufficiency is obvious.

(2) By (1), D is a centromorphism if and only if D(X) = µX +Z(X), for all X ∈ g with µ ∈C
and Z is an even symmetric map from g into Z(g) satisfying Z|[g,g] = 0. To compute

dq(g), we use Appendix A. Write q= (l⊕ l′)
⊥
⊕ (u⊕u′) with l= ker(C), Z(g) =CX0⊕ l,

Im(C) = l
⊥
⊕ (u⊕u′) and [g,g] =CX0⊕ Im(C). Let us define Z : l′

⊥
⊕ CY0→ l

⊥
⊕ CX0: set

basis {X1, . . . ,Xr} of l and {Y ′1, . . . ,Y ′r} of l′ such that B(Y ′i ,X j) = δi j. Note that by (1) so
Z(Y0) = aX0 and Z(l′)⊂ l since Z is even. Therefore, Z is completely defined by

Z

(
r

∑
j=1

µ jY ′j

)
=

r

∑
i=1

(
r

∑
j=1

νi jµ j

)
Xi

with νi j =−ν ji = B(Y ′i ,Z(Y
′
j)) and the formula follows.
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3.5 Singular quadratic Lie superalgebras of type S1 with non-
Abelian even part

Let g be a singular quadratic Lie superalgebra of type S1 such that g0 is non-Abelian. If
[g1,g1] = {0} then g is an orthogonal direct sum of a singular quadratic Lie algebra of type S1
and a vector space. There is nothing to do. Therefore, we can assume that [g1,g1] 6= {0}. Fix
α ∈ VI and choose Ω0 ∈A 2(g0), Ω1 ∈S 2(g1) such that

I = α ∧Ω0 +α⊗Ω1.

Let X0 = φ−1(α) then X0 ∈ Z(g) and B(X0,X0) = 0. We define the maps C0 : g0 → g0,
C1 : g1→ g1 by Ω0(X ,Y ) = B(C0(X),Y ), for all X ,Y ∈ g0 and Ω1(X ,Y ) = B(C1(X),Y ), for all
X ,Y ∈ g1. Let C : g→ g defined by C(X +Y ) =C0(X)+C1(Y ), for all X ∈ g0, Y ∈ g1.

Proposition 3.5.1. For all X ,Y ∈ g, the Lie super-bracket of g is defined by:

[X ,Y ] = B(X0,X)C(Y )−B(X0,Y )C(X)+B(C(X),Y )X0.

In particular, if X ,Y ∈ g0, Z,T ∈ g1 then

(1) [X ,Y ] = B(X0,X)C0(Y )−B(X0,Y )C0(X)+B(C0(X),Y )X0,

(2) [X ,Z] = B(X0,X)C1(Z),

(3) [Z,T ] = B(C1(Z),T )X0

Proof. For all X ,Y,T ∈ g0, since B([Y,Z],T ) = α ∧Ω0(X ,Y,Z) then one has (1) as in Chapter
2. For all X ∈ g0, Y,Z ∈ g1

B([X ,Y ],Z) = α⊗Ω1(X ,Y,Z) = α(X)Ω1(Y,Z) = B(X0,X)B(C1(Y ),Z).

Hence we obtain (2) and (3).

Now, we show that g0 is solvable. Consider the quadratic Lie algebra g0 with 3-form I0 =
α ∧Ω0. Write Ω0 = ∑i< j ai jαi∧α j, with ai j ∈ C. Set Xi = φ−1(αi) then

C0 = ∑
i< j

ai j(αi⊗X j−α j⊗Xi).

Recall the space WI0 in Chapter 2 as follows:

WI0 = {ιX∧Y (I0) | X ,Y ∈ g0}.

Since WI0 = φ([g0,g0]) one has Im(C0) ⊂ [g0,g0]. In Section 3.2, it is known that {α, I0} = 0
and then [X0,g0] = 0. As a sequence, B(X0, [g0,g0]). That deduces B(X0, Im(C0)) = 0. Therefore
[[g0,g0], [g0,g0]] = [Im(C0), Im(C0)]⊂ CX0 and then g0 is solvable.

Since B is non-degenerate then we can choose Y0 ∈ g0 isotropic such that B(X0,Y0) = 1 as in
Chapter 2 to obtain a straightforward consequence as follows:
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Corollary 3.5.2.

(1) C = ad(Y0), ker(C) = Z(g)⊕CY0 and [g,g] = Im(C)⊕CX0.

(2) The Lie superalgebra g is solvable. Moreover, g is nilpotent if and only if C is nilpotent.

Moreover, Proposition 3.5.1 is enough for us to give the definition of double extension of a
quadratic Z2-graded vector space as follows:

Definition 3.5.3. Let (q= q0⊕q1,Bq) be a quadratic Z2-graded vector space and C be an even
endomorphism of q. Assume that C is skew-supersymmetric, that is, B(C(X),Y )=−B(X ,C(Y )),
for all X ,Y ∈ q. Let (t= span{X0,Y0},Bt) be a 2-dimensional quadratic vecor space with Bt de-
fined by:

Bt(X0,X0) = Bt(Y0,Y0) = 0 and Bt(X0,Y0) = 1.

Consider the vector space g= t
⊥
⊕ q equipped with the bilinear form B = Bt+Bq and define

on g the bracket as follows:

[λX0 +µY0 +X ,λ ′X0 +µ
′Y0 +Y ] = µC(Y )−µ

′C(X)+B(C(X),Y )X0,

for all X ,Y ∈ q,λ ,µ,λ ′,µ ′ ∈ C. Then (g,B) is a quadratic solvable Lie superalgebra with
g0 = t⊕q0 and g1 = q1. We say that g is the double extension of q by C.

Note that an even skew-supersymmetric endomorphism C on q can be written by C =C0 +
C1 where C0 ∈ o(q0) and C1 ∈ sp(q1).

Corollary 3.5.4. Let g is the double extension of q by C. Denote by C = ad(Y0) then one has

(1) [X ,Y ] = B(X0,X)C(Y )−B(X0,Y )C(X)+B(C(X),Y )X0, for all X ,Y ∈ g.

(2) g is a singular quadratic Lie superalgebra. If C|q1
is non-zero then g1 is of type S1.

Proof. The assertion (1) is direct from the above definition. Let α = φ(X0) and define the bilin-
ear form Ω : g→ g by Ω(X ,Y ) = B(C(X),Y ) for all X ,Y ∈ g. By B even and supersymmetric, C
even and skew-supersymmetric (with respect to B) then Ω = Ω0+Ω1 ∈A 2(g0)⊕S 2(g1). The
formula in (1) can be replaced by I = α ∧Ω0 +α⊗Ω1 = α ∧Ω. Therefore, dup(g)≥ 1 and g
is singular. If C|q1

is non-zero then Ω1 6= 0. In this case, [g1,g1] 6= {0} and thus dup(g) = 1.

As a consequence of Proposition 3.5.1 and Definition 3.5.3, one has

Lemma 3.5.5. Let (g,B) be a singular quadratic Lie superalgebra of type S1. Keep the no-
tations as in Proposition 3.5.1 and Corollary 3.5.2. Then (g,B) is the double extension of
q= (CX0⊕CY0)

⊥ by C =C|q.

Remark 3.5.6. Let g= (CX0⊕CY0)
⊥
⊕ (q0⊕q1) be the double extension of q= q0⊕q1 by C =

C0 +C1 then g0 is the double extension of q0 by C0 and the subalgebra (CX0⊕CY0)
⊥
⊕ q1 is the

double extension of q1 by C1 (see Definitions 2.2.26 and 3.4.6).
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Theorem 3.5.7. Let g = (CX0⊕CY0)
⊥
⊕ (q0⊕ q1) and g′ = (CX ′0 ⊕CY ′0 )

⊥
⊕ (q0⊕ q1) be two

double extensions of q = q0⊕ q1 by C = C0 +C1 and C′ = C′0 +C′1, respectively. Assume that
C1 is non-zero. Then

(1) there exists a Lie superalgebra isomorphism between g and g′ if and only if there exist an
invertible maps P ∈L (q0), Q ∈L (q1) and a non-zero λ ∈ C such that

(i) C′0 = λPC0P−1 and P∗PC0 =C0.

(ii) C′1 = λQC1Q−1 and Q∗QC1 =C1.

where P∗ and Q∗ are the adjoint maps of P and Q with respect to B|q0×q0
and B|q1×q1

.

(2) there exists an i-isomorphism between g and g′ if and only if there is a non-zero λ ∈ C
such that C′0 is in the O(q0)-adjoint orbit through λC0 and C′1 is in the Sp(q1)-adjoint
orbit through λC1.

Proof.

(1) Assume that there is a Lie superalgebra isomorphism A : g→ g′. Obviously, A|g0
: g0→ g0

is a Lie algebra isomorphism. Moreover, g0 and g′0 are the double extensions of q0 by C0

and C′0, respectively. By Theorem 2.2.30 (1), there exist an invertible map P∈L (q0) and
a non-zero λ ∈ C such that

C′0 = λPC0P−1, P∗PC0 =C0 and A(Y0) =
1
λ

Y ′0 +Y,

where Y ∈ g0∩ (X0)
⊥. Let Q = A|g1

. Since C1 is non-zero one has [g1,g1] 6= 0 and then
[g′1,g

′
1]
′ 6= 0, where [ , ]′ denotes the Lie super-bracket on g′. We have:

A([g1,g1]) = A(CX0) = [A(g1),A(g1)]
′ = [g′1,g

′
1]
′ = CX ′0.

Therefore, A(X0) = µX ′0 for some non-zero µ ∈ C.

Let X ,Y be elements in g1 then

A([X ,Y ]) = µB(C1(X ,Y ))X ′0 = [A(X),A(Y )] = B(C′1Q(X),Q(Y ))X ′0.

It implies that Q∗C′1Q = µC1. Similarly, one has

QC1(X) = A([Y0,X ]) = [A(Y0),A(X)]′ = [
1
λ

Y ′0 +Y,Q(X)]′ =
1
λ

C′1Q(X).

So we obtain C′1 = λQC1Q−1 and then Q∗QC1 =
µ

λ
C1. Replace with Q :=

(
λ

µ

) 1
2

Q then

Q∗QC1 =C1 and C′1 = λQC1Q−1.

Conversely, if there is a triple (P,Q,λ ) satisfying (i) and (ii) then we set A(X0) = λX0,
A(Y0) =

1
λ

Y0 and A(X +Y ) = P(X)+Q(Y ), for all X ∈ q0, Y ∈ q1. It is easy to check that
A is a Lie superalgebra isomorphism.
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(2) In the case of A i-isomorphic then the maps P and Q in the proof of (1) are isometries.
Therefore, one has the necessary condition. To prove the sufficiency, we define A as in
the proof the sufficiency of (1) then A is an i-isomorphism.

Remark 3.5.8. If let M = P+Q then M−1 = P−1 +Q−1 and M∗ = P∗+Q∗. The formulas in
Theorem 3.5.7 (1) can be written:

C′ = λMCM−1 and M∗MC =C.

Hence, the problem of classification of singular quadratic Lie superalgebras of type S1 (up to
i-isomophisms) can be reduced to the classification of O(q0)×Sp(q1)- orbits of o(q0)⊕ sp(q1),
where O(q0)×Sp(q1) denotes the direct product of two groups O(q0) and Sp(q1).

Theorem 3.5.9. The dup-number is invariant under Lie superalgebra isomorphisms, i.e. if
(g,B) and (g′,B′) are quadratic Lie superalgebras with g' g′, then dup(g) = dup(g′).

Proof. By Lemma 3.2.4 we can assume that g is reduced. By Proposition 3.2.3, g′ is also
reduced. Since g ' g′ then we can identify g = g′ as a Lie superalgebra equipped with the
bilinear forms B, B′ and we have two dup-numbers: dupB(g) and dup′B(g).

We start with the case dupB(g) = 3. Since g is reduced then g1 = {0} and g is a reduced
singular quadratic Lie algebra of type S3. By Proposition 2.3.7, dupB′(g) = 3.

If dupB(g) = 1, then g is of type S1 with respect to B. There are two cases: [g1,g1] = {0} and
[g1,g1] 6= {0}. If [g1,g1] = 0 then g1 = {0} by g reduced. In this case, g is a reduced singular
quadratic Lie algebra of type S1. By Proposition 2.3.7 again, g is also a reduced singular
quadratic Lie algebra of type S1 with the bilinear form B′, i.e. dupB′(g) = 1.

Assume that [g1,g1] 6= {0}, we need the following lemma:

Lemma 3.5.10. Let g be a reduced quadratic Lie superalgebras of type S1 such that [g1,g1] 6= 0
and D ∈ L (g) be an even symmetric map. Then D is a centromorphism if and only if there
exist µ ∈ C and an even symmetric map Z : g→ Z(g) such that Z|[g,g] = 0 and D = µ Id+Z.
Moreover D is invertible if and only if µ 6= 0.

Proof. First, g can be realized as the double extension g= (CX0⊕CY0)
⊥
⊕ q by C = ad(Y0) and

let C =C|q.
Assume that D is an invertible centromorphism. The condition (1) of Lemma 3.4.20 implies

that D ◦ ad(X) = ad(X) ◦D, for all X ∈ g and then DC = CD. Using formula (1) of Corollary
3.5.4 and CD = DC, from [D(X),Y0] = [X ,D(Y0)] we find

D(C(X)) = µC(X), ∀ X ∈ g, where µ = B(D(X0),Y0).

Since D is invertible, one has µ 6= 0 and C(D−µ Id) = 0. Recall that ker(C) =CX0⊕ker(C)⊕
CY0 = Z(g)⊕CY0, there exists a map Z : g→ Z(g) and ϕ ∈ g∗ such that

D−µ Id = Z+ϕ⊗Y0.

It needs to show that ϕ = 0. Indeed, D maps [g,g] into itself and Y0 /∈ [g,g], so ϕ|[g,g] = 0.
One has [g,g] = CX0⊕ Im(C). If X ∈ Im(C), let X =C(Y ). Then D(X) = D(C(Y )) = µC(Y ),
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so D(X) = µX . For Y0, D([Y0,X ]) = DC(X) = µC(X) for all X ∈ g. But also, D([Y0,X ]) =
[D(Y0),X ] = µC(X)+ϕ(Y0)C(X), hence ϕ(Y0) = 0. As a consequence, D(Y0) = µY0 +Z(Y0).

Now, we prove that D(X0) = µX0. Indeed, since D is even and [g1,g1] = CX0 then one has

D(X0)⊂ D([g1,g1]) = [D(g1),g1]⊂ [g1,g1] = CX0.

It implies that, D(X0) = aX0. Combined with B(D(Y0),X0) = B(Y0,D(X0)), we obtain µ = a.
Let X ∈ q, B(D(X0),X) = µB(X0,X) = 0. Moreover, B(D(X0),X) =B(X0,D(X)), so ϕ(X) =

0.
Since C(g) is generated by invertible centromorphisms then the necessary condition of

Lemma is finished. The sufficiency is obvious.

We turn now the proposition. By the previous lemma, the bilinear form B′ defines an as-
sociated invertible centromorphism D = µ Id+Z for some non-zero µ ∈ C and Z : g→ Z(g)
satisfying Z|[g,g] = 0. For all X ,Y,Z ∈ g, one has:

I′(X ,Y,Z) = B′([X ,Y ],Z) = B(D([X ,Y ]),Z) = B([D(X),Y ],Z) = µB([X ,Y ],Z).

That means I′ = µI and then dupB′(g) = dupB(g) = 1.
Finally, if dupB(g) = 0, then g cannot be of type S3 or S1 with respect to B′, so dupB′(g) = 0.
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3.6 Quasi-singular quadratic Lie superalgebras
By Definition 3.5.3, it is natural to question: let (q = q0⊕ q1,Bq) be a quadratic Z2-graded

vector space and C be an endomorphism of q. Let (t = span{X1,Y1},Bt) be a 2-dimensional

symplectic vector space with Bt(X1,Y1) = 1. Is there an extension g= q
⊥
⊕ t such that g equipped

with the bilinear form B = Bq +Bt becomes a quadratic Lie superalgebra such that g0 = q0,
g1 = q1⊕ t and the Lie super-bracket is represented by C ? In this last section of Chapter 3, we
will give an affirmative answer to this question.

The dup-number and the form of the associated invariant I in the previous sections sug-
gest that it would be also interesting to study a quadratic Lie superalgebra g whose associated
invariant I has the form

I = J∧ p

where p ∈ g∗1 is non-zero, J ∈ A 1(g0)⊗S 1(g1) is indecomposable. We obtain the first result
as follows:

Proposition 3.6.1. {J,J}= {p,J}= 0.

Proof. Apply Proposition 3.1.5 (1) and (2) to obtain

{I, I}= {J∧ p,J∧ p}= {J∧ p,J}∧ p+ J∧{J∧ p, p}

=−{J,J}∧ p∧ p+2J∧{p,J}∧ p− J∧ J∧{p, p}.

Since the super-exterior product is commutative then one has J ∧ J = 0. Moreover, {I, I} = 0
implies that:

{J,J}∧ p∧ p = 2J∧{p,J}∧ p.

That means {J,J}∧ p = 2J∧{p,J}.
If {J,J} 6= 0 then {J,J}∧ p 6= 0, so J ∧{p,J} 6= 0. Note that {p,J} ∈ A 1(g0) so J must

contain the factor p, i.e. J = α⊗ p where α ∈ g∗0 . But {p,J}= {p,α⊗ p}=−α⊗{p, p}= 0
since {p, p}= 0. This is a contradiction and therefore {J,J}= 0.

As a consequence, J ∧{p,J} = 0. Set α = {p,J} ∈ A 1(g0) then we have J ∧α = 0. If
α 6= 0 then J must have the form J = α⊗q where q ∈S 1(g1). That is a contradition since J is
indecomposable.

Definition 3.6.2. We continue to keep the condition I = J ∧ p with p ∈ g∗1 non-zero and J ∈
A 1(g0)⊗S 1(g1) indecomposable. We can assume that

J =
n

∑
i=1

αi⊗ pi

where αi ∈ A 1(g0), i = 1, . . . ,n are linearly independent and pi ∈ S 1(g1). A quadratic Lie
superalgebra having such associated invariant I is called a quasi-singular quadratic Lie super-
algebra.
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Let U = span{α1, . . . ,αn} and V = span{p1, . . . , pn}, one has dim(U) and dim(V )≥ 2 by if
there is a contrary then J is decomposable. Using Definition 3.1.4, we have:

{J,J}=

{
n

∑
i=1

αi⊗ pi,
n

∑
i=1

αi⊗ pi

}
=−

n

∑
i, j=1

(
{αi,α j}⊗ pi p j +(αi∧α j)⊗{pi, p j}

)
.

Since {J,J} = 0 and αi, i = 1, . . . ,n are linearly independent then {pi, p j} = 0, for all i, j.
It implies that {pi,J}= 0, for all i.

Moreover, since {p,J} = 0 we obtain {p, pi} = 0, consequently {pi, I} = 0, for all i and
{p, I} = 0. By Corollary 3.1.13 (2) and Lemma 3.1.20 we conclude that φ−1(V +Cp) is a
subset of Z(g) and totally isotropic.

Now, let {q1, . . . ,qm} be a basis of V then J can be rewritten by

J =
m

∑
j=1

β j⊗q j

where β j ∈U , for all j. One has:

{J,J}=

{
m

∑
j=1

β j⊗q j,
m

∑
j=1

β j⊗q j

}
=−

m

∑
i, j=1

(
{βi,β j}⊗qiq j +(βi∧β j)⊗{qi,q j}

)
.

By the linear independence of the system {qiq j}, we obtain {βi,β j} = 0, for all i, j. It
implies that {β j, I}= 0, equivalently φ−1(β j)∈ Z(g), for all j. Therefore, we always can begin

with J =
n
∑

i=1
αi⊗ pi satisfying the following conditions:

(i) αi, i = 1, . . . ,n are linearly independent,

(ii) φ−1(U) and φ−1(V +Cp) are totally isotropic subspaces of Z(g) where U = span{α1, . . . ,αn}
and V = span{p1, . . . , pn}.

Let X i
0 = φ−1(αi), X i

1 = φ−1(pi), for all i and C : g→ g defined by

J(X ,Y ) = B(C(X),Y ), ∀ X ,Y ∈ g.

Lemma 3.6.3. The mapping C is a skew-supersymmetric homogeneous endomorphism of odd
degree and Im(C) ⊂ Z(g). Recall that if C is a homogeneous endomorphism of degree c of g
satisfying

B(C(X),Y ) =−(−1)cxB(X ,C(Y )), ∀ X ∈ gx, Y ∈ g

then we say C skew-supersymmetric (with respect to B).

Proof. Since J(g0,g0) = J(g1,g1) = 0 and B is even then C(g0)⊂ g1 and C(g1)⊂ g0. That means
C is of odd degree. For all X ∈ g0, Y ∈ g1 one has:

B(C(X),Y ) = J(X ,Y ) =
n

∑
i=1

αi⊗ pi(X ,Y ) =
n

∑
i=1

αi(X)pi(Y ) =
n

∑
i=1

B(X i
0,X)B(X i

1,Y ).
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By the non-degeneracy of B and J(X ,Y ) =−J(Y,X), we obtain:

C(X) =
n

∑
i=1

B(X i
0,X)X i

1 and C(Y ) =−
n

∑
i=1

B(X i
1,Y )X

i
0.

Combined with B supersymmetric, one has:

−B(Y,C(X)) = B(C(X),Y ) =−B(C(Y ),X) =−B(X ,C(Y )).

It shows that C is skew-supersymmetric. Finally, Im(C) ⊂ Z(g) since X i
0,X

i
1 ∈ Z(g), for all

i.

Proposition 3.6.4. Let X1 = φ−1(p) then for all X ∈ g0, Y,Z ∈ g1 one has:

(1) [X ,Y ] =−B(C(X),Y )X1−B(X1,Y )C(X),

(2) [Y,Z] = B(X1,Y )C(Z)+B(X1,Z)C(Y ),

(3) X1 ∈ Z(g) and C(X1) = 0.

Proof. Let X ∈ g0, Y,Z ∈ g1 then

B([X ,Y ],Z) = J∧ p(X ,Y,Z) =−J(X ,Y )p(Z)− J(X ,Z)p(Y )
=−B(C(X),Y )B(X1,Z)−B(C(X),Z)B(X1,Y ).

By the non-degeneracy of B on g1×g1, it shows that:

[X ,Y ] =−B(C(X),Y )X1−B(X1,Y )C(X).

Combined with B invariant and C skew-supersymmetric, one has:

[Y,Z] = B(X1,Y )C(Z)+B(X1,Z)C(Y ).

Since {p, I}= 0 then X1 ∈ Z(g). Moreover, {p, pi}= 0 imply B(X1,X i
1) = 0, for all i. It means

B(X1, Im(C)) = 0. And since B(C(X1),X) = B(X1,C(X)) = 0, for all X ∈ g then C(X1) = 0.

Let W be a complementary subspace of span{X1
1 , . . . ,X

n
1 ,X1} in g1 and Y1 be an element in

W such that B(X1,Y1) = 1. Let X0 =C(Y1), q= (CX1⊕CY1)
⊥ and Bq = B|q×q then we have the

following corollary:

Corollary 3.6.5.

(1) [Y1,Y1] = 2X0, [Y1,X ] = C(X)−B(X ,X0)X1 and [X ,Y ] = −B(C(X),Y )X1, for all X ,Y ∈
q⊕CX1.

(2) [g,g]⊂ Im(C)+CX1 ⊂ Z(g) so g is 2-step nilpotent. If g is reduced then [g,g] = Im(C)+
CX1 = Z(g).

(3) C2 = 0.

Proof.
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(1) The assertion (1) is obvious by Proposition 3.6.4.

(2) Note that X0 ∈ Im(C) so [g,g] ⊂ Im(C)+CX1. By Lemma 3.6.3 and Proposition 3.6.4,
Im(C)+CX1 ⊂ Z(g). If g is reduced then Z(g) ⊂ [g,g] and therefore [g,g] = Im(C)+
CX1 = Z(g).

(3) Since g is 2-step nilpotent then

0 = [Y1, [Y1,Y1]] = [Y1,2X0] = 2C(X0)−2B(X0,X0)X1.

Since X0 =C(Y1) and Im(C) is totally isotropic then B(X0,X0) = 0 and therefore C(X0) =
C2(Y1) = 0.

If X ∈ q⊕CX1 then 0 = [Y1, [Y1,X ]] = [Y1,C(X)]. By the choice of Y1, it is sure that
C(X) ∈ q⊕CX1. Therefore, one has:

0 = [Y1,C(X)] =C2(X)−B(C(X),X0)X1 =C2(X)−B(C(X),C(Y1))X1.

By Im(C) totally isotropic, one has C2(X) = 0.

Now, we consider a special case: X0 = 0. As a consequence, [Y1,Y1] = 0, [Y1,X ] = C(X)
and [X ,Y ] =−B(C(X),Y )X1, for all X ,Y ∈ q. Let X ∈ q and assume that C(X) =C1(X)+aX1
where C1(X) ∈ q then

0 = B([Y1,Y1],X) = B(Y1, [Y1,X ]) = B(Y1,C1(X)+aX1) = a.

It shows that C(X) ∈ q, for all X ∈ q and therefore we have the affirmative answer of the above
question as follows:

Proposition 3.6.6. Let (q= q0⊕q1,Bq) be a quadratic Z2-graded vector space and C be an odd
endomorphism of q such that C is skew-supersymmetric and C2

= 0. Let (t = span{X1,Y1},Bt)

be a 2-dimensional symplectic vector space with Bt(X1,Y1) = 1. Consider the space g = q
⊥
⊕ t

and define the product on g by:

[Y1,Y1] = [X1,g] = 0, [Y1,X ] =C(X) and [X ,Y ] =−Bq(C(X),Y )X1

for all X ∈ q. Then g becomes a 2-nilpotent quadratic Lie superalgebra with the bilinear form
B = Bq+Bt. Moreover, one has g0 = q0, g1 = q1⊕ t.

It remains to consider X0 6= 0. The fact is that C may be not stable on q, that is, C(X) ∈
q⊕CX1 if X ∈ q but that we need here is an action stable on q. Therefore, we decompose C
by C(X) =C(X)+ϕ(X)X1, for all X ∈ q where C : q→ q and ϕ : q→ C. Since B(C(Y1),X) =
B(Y1,C(X) then ϕ(X) = −B(X0,X) = −B(X ,X0), for all X ∈ q. Moreover, C is odd degree
on g and skew-supersymmetric (with respect to B) implies that C is also odd on q and skew-
supersymmetric (with respect to Bq). It is easy to see that C2

= 0, C(X0) = 0 and we have the
following result:
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Corollary 3.6.7. Keep the notations as in Corollary 3.6.5 and replace 2X0 by X0 then for all
X ,Y ∈ q, one has:

(1) [Y1,Y1] = X0,

(2) [Y1,X ] =C(X)−B(X ,X0)X1,

(3) [X ,Y ] =−B(C(X),Y )X1.

Hence, we have a more general result of Proposition 3.6.6:

Theorem 3.6.8. Let (q = q0⊕ q1,Bq) be a quadratic Z2-graded vector space and C an odd
endomorphism of q such that C is skew-supersymmetric and C2

= 0. Let X0 be an isotropic
element q0, X0 ∈ ker(C) and (t = span{X1,Y1},Bt) a 2-dimensional symplectic vector space

with Bt(X1,Y1) = 1. Consider the space g= q
⊥
⊕ t and define the product on g by:

[Y1,Y1] = X0, [Y1,X ] =C(X)−Bq(X ,X0)X1 and [X ,Y ] =−Bq(C(X),Y )X1

for all X ∈ q. Then g becomes a 2-nilpotent quadratic Lie superalgebra with the bilinear form
B = Bq+Bt. Moreover, one has g0 = q0, g1 = q1⊕ t.

A quadratic Lie superalgebra obtained in the above theorem is a special case of the general-
ized double extensions given in [BBB] where we consider the generalized double extension of a
quadratic Z2-graded vector space (regarded as an Abelian superalgebra) by a one-dimensional
Lie superalgebra.
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Chapter 4

Pseudo-Euclidean Jordan algebras

4.1 Preliminaries
Definition 4.1.1. A (non-associative) algebra J over C is called a (commutative) Jordan algebra
if its product is commutative and satisfies the following identity (Jordan identity):

(xy)x2 = x(yx2), ∀ x,y,z ∈ J. (I)

For instance, any commutative algebra with an associative product is a Jordan algebra. A
trivial case is when the product xy = 0 for all x,y ∈ J. In this case, we say that J is Abelian. A
Jordan algebra J is called nilpotent if there is an integer k ∈N such that Jk = {0}. The smallest
k for which this condition satisfied is called the nilindex of J and we say that J is k− 1-step
nilpotent. If J is non-Abelian and it has only two ideals {0} and J then we say J simple.

Given an algebra A, the commutator [x,y] = xy− yx, for all x,y ∈ A measures the commuta-
tivity of A. Similarly the associator defined by

(x,y,z) = (xy)z− x(yz), ∀ x,y,z ∈ A.

measures the associativity of A. In term of associators, the Jordan identity in a Jordan algebra J
becomes

(x,y,x2) = 0, ∀ x,y,z ∈ J. (II)

An algebra A is called a power-associative algebra if the subalgebra generated by any el-
ement x ∈ A is associative (see [Sch66] for more details). A Jordan algebra is an example of
a power-associative algebra. A power-associative algebra A is called trace-admissible if there
exists a bilinear form τ on A that satisfies:

(1) τ(x,y) = τ(y,x),

(2) τ(xy,z) = τ(x,yz),

(3) τ(e,e) 6= 0 for any idempotent e of A,

(4) τ(x,y) = 0 if xy is nilpotent or xy = 0.
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It is a well-known result that simple (commutative) Jordan algebras are trace-admissible
[Alb49]. A similar fact is proved for any non-commutative Jordan algebras of characteristic 0
[Sch55]. Recall that non-commutative Jordan algebras are algebras satisfying (I) and the flexible
condition (xy)x = x(yx) (a weaker condition than commutativity).

A bilinear form B on a Jordan algebra J is associative if

B(xy,z) = B(x,yz), ∀ x,y,z ∈ J.

The following definition is quite natural:

Definition 4.1.2. Let J be a Jordan algebra equipped with an associative symmetric non-
degenerate bilinear form B. We say that the pair (J,B) is a pseudo-Euclidean Jordan algebra
and B is an associative scalar product on J.

Recall that a real finite-dimensional Jordan algebra J with a unit element e (that means,
xe = ex = x, for all x ∈ J) is called Euclidean if there exists an associative inner product on J.
This is equivalent to say that the associated trace form Tr(xy) is positive definite where Tr(x) is
the sum of eigenvalues in the spectral decomposition of x ∈ J. To obtain a pseudo-Euclidean
Jordan algebra, we replace the base field R by C and the inner product by a non-degenerate
symmetric bilinear form (considered as generalized inner product) on J keeping its associativity.

Lemma 4.1.3. Let (J,B) be a pseudo-Euclidean Jordan algebra and I be a non-degenerate
ideal of J, that is, the restriction B|I×I is non-degenerate. Then I⊥ is also an ideal of J, II⊥ =
I⊥I = {0} and I∩ I⊥ = {0}.

Proof. Let x ∈ I⊥,y ∈ J, one has B(xy, I) = B(x,yI) = 0 then xy ∈ I⊥ and I⊥ is an ideal.
If x ∈ I⊥ such that B(x, I⊥) = 0 then x ∈ I and B(x, I) = 0. Since I is non-degenerate then

x = 0. That implies that I⊥ is non-degenerate.
Since B(II⊥,J) = B(I, I⊥J) = 0 then II⊥ = I⊥I = {0}.
If x ∈ I∩ I⊥ then B(x, I) = 0. Since I non-degenerate, then x = 0.

By above Lemma, if I is a proper non-degenerate ideal of J then J = I
⊥
⊕ I⊥. In this case,

we say J decomposable.

Remark 4.1.4. A pseudo-Euclidean Jordan algebra does not necessarily have a unit element.
However if that is the case, this unit element is certainly unique. A Jordan algebra with unit
element is called a unital Jordan algebra. If J is not a unital Jordan algebra, we can extend J to
a unital Jordan algebra J= Ce⊕J by the product

(λe+ x)? (µe+ y) = λ µe+λy+µx+ xy.

More particularly, e?e = e, e?x = x?e = x and x?y = xy for all x,y ∈ J. In this case, we say J
the unital extension of J.

Proposition 4.1.5. If (J,B) is unital then there is a decomposition:

J= J1
⊥
⊕ . . .

⊥
⊕ Jk,

where Ji, i = 1, . . . ,k are unital and indecomposable ideals.
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Proof. The assertion is obvious if J is indecomposable. Assume that J is decomposable, that
is, J = I⊕ I′ with I, I′ 6= {0} proper ideals of J such that I is non-degenerate. By the above

Lemma, I′ = I⊥ and we write J = I
⊥
⊕ I⊥. Assume that J has the unit element e. If e ∈ I then

for x a non-zero element in I⊥, we have ex = x ∈ I⊥. This is a contradiction. This happens
similarly if e ∈ I⊥. Therefore, e = e1 + e2 where e1 ∈ I and e2 ∈ I⊥ are non-zero vectors. For
all x ∈ I, one has:

x = ex = (e1 + e2)x = e1x = xe1.

It implies that e1 is the unit element of I. Similarly, e2 is also the unit element of I⊥. Since the
dimension of J is finite then by induction, one has the result.

Example 4.1.6. Let us recall an example in Chapter II of [FK94]: consider q a vector space
over C and B : q× q→ C a symmetric bilinear form. Define the product below on the vector
space J= Ce⊕q:

(λe+u)(µe+ v) = (λ µ +B(u,v))e+λv+µu,

for all λ ,µ ∈ C,u,v ∈ q. In particular, e2 = e, ue = eu = u and uv = B(u,v)e. This product
makes J a Jordan algebra.

Now, we add the condition that B is non-degenerate and define a bilinear form BJ on J by:

BJ(e,e) = 1, BJ(e,q) = BJ(q,e) = 0 and BJ|q×q = B.

Then BJ is associative and non-degenerate and J becomes a pseudo-Euclidean Jordan algebra
with unit element e.

Example 4.1.7. Let us slightly change Example 4.1.6 by setting

J′ = Ce⊕q⊕C f .

Define the product of J′ as follows:

e2 = e, ue = eu = u, e f = f e = f , uv = B(u,v) f and u f = f u = f 2 = 0, ∀ u,v ∈ q.

It is easy to see that J′ is the unital extension of the Jordan algebra J= q⊕C f where the product
on J is defined by:

uv = B(u,v) f , u f = f u = 0, ∀ u,v ∈ q.

Moreover, J′ is a pseudo-Euclidean Jordan algebra with the bilinear form BJ′ defined by:

BJ′
(
λe+u+λ

′ f ,µe+ v+µ
′ f
)
= λ µ

′+λ
′
µ +B(u,v).

We will meet this algebra again in the next section.

Recall the definition of a representation of a Jordan algebra:

Definition 4.1.8. A Jacobson representation (or simply, a representation) of a Jordan algebra J
on a vector space V is a linear map J→ End(V ), x→ Sx satisfying for all x, y, z ∈ J,

(1) [Sx,Syz]+ [Sy,Szx]+ [Sz,Sxy] = 0,

99



4.1. Preliminaries

(2) SxSySz +SzSySx +S(xz)y = SxSyz +SySzx +SzSxy.

Remark 4.1.9. An equivalent definition of a representation S of J can be found for instance in
[BB], as a necessary and sufficient condition for the vector space J1 = J⊕V equipped with the
product:

(x+u)(y+ v) = xy+Sx(v)+Sy(u), ∀x,y ∈ J,u,v ∈V

to be a Jordan algebra. That is:

(1) Sx2Sx−SxSx2 = 0,

(2) 2SxySx +Sx2Sy−2SxSySx−Sx2y = 0,

for all x,y ∈ J. In this case, Jacobson’s definition is different from the usual definition of
representation, that is, as a homomorphism from J into the Jordan algebra of linear maps.

For x ∈ J, let Rx ∈ End(J) be the endomorphism of J defined by:

Rx(y) = xy = yx, ∀ y ∈ J.

Then the Jordan identity is equivalent to [Rx,Rx2] = 0, for all x ∈ J where [·, ·] denotes the Lie
bracket on End(J). The linear maps

R : J→ End(J) with R(x) = Rx

and R∗ : J→ End(J∗) with R∗(x)( f ) = f ◦Rx, ∀ x ∈ J, f ∈ J∗,

are called respectively the adjoint representation and the coadjoint representation of J. It is
easy to check that they are indeed representations of J. Recall that there exists a natural non-
degenerate bilinear from 〈·, ·〉 on J⊕J∗ defined by 〈x, f 〉= f (x), for all x ∈ J, f ∈ J∗. For all
x,y ∈ J, f ∈ J∗, one has:

f (xy) = 〈xy, f 〉= 〈Rx(y), f 〉= 〈y,R∗x( f )〉.

That means that R∗x is the adjoint map of Rx with respect to the bilinear form 〈·, ·〉.
The following proposition gives a characterization of pseudo-Euclidean Jordan algebras

([BB], Proposition 2.1 or [Bor97], Proposition 2.4.)

Proposition 4.1.10. Let J be a Jordan algebra. Then J is pseudo-Euclidean if and only if its
adjoint representation and coadjoint representation are equivalent.

Proof. Assume that (J,B) is a pseudo-Euclidean Jordan algebra. We define the map φ : J→ J∗

by φ(x) = B(x, .), for all x ∈ J. Since B is non-degenerate, φ is an isomorphism from J onto J∗.
Moreover, it satisfies

φ (Rx(y))(z) = B(xy,z) = B(y,xz) = (R∗(x)φ(y))(z).

That means φ ◦ Rx = R∗(x) ◦ φ , for all x ∈ J. Therefore, the representations R and R∗ are
equivalent.

Conversely, assume that R and R∗ are equivalent then there exists an isomorphism φ : J→ J∗

such that φ ◦Rx = R∗(x) ◦ φ , for all x ∈ J. Set the bilinear form T : J× J→ C defined by
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T (x,y) = φ(x)(y), for all x,y ∈ J then T is non-degenerate. Moreover, it is easy to check that T
is also associative since R and R∗ are equivalent by φ . However, T is not necessarily symmetric.
Then we need construct a symmetric bilinear form that is still non-degenerate and associative
from T as follows. Define the symmetric (resp. skew-symmetric) part Ts (resp. Ta) by

Ts(x,y) =
1
2
(T (x,y)+T (y,x)) (resp. Ta(x,y) =

1
2
(T (x,y)−T (y,x))), ∀ x,y ∈ J.

By straightforward checking, Ts and Ta are also associative. Consider subspaces

Js = {x ∈ J | Ts(x,J) = 0} and Ja = {x ∈ J | Ta(x,J) = 0}.

If x ∈ Js ∩ Ja then T (x,J) = Ts(x,J)+ Ta(x,J) = 0. So x = 0 since T is non-degenerate. It
means Js∩Ja = {0}. Moreover, Js and Ja are also ideals of J since Ts and Ta are associative.

Now, for all x,y,z ∈ J, Ta(xy,z) = Ta(x,yz) =−Ta(xy,z). Therefore, J2 ⊂ Ja and then J2
s ⊂

Js∩Ja = {0}. Let J =W ⊕Js where W is a complemenary subspace of Js in J. It is obvious
that Ja ⊂W . Therefore, WW ⊂ J2 ⊂W and WJs = {0}. Consider F : Js×Js→ C be a non-
degenerate symmetric bilinear form on Js. Since J2

s = {0} then F is associative. Finally, we
define the bilinear form B : J×J→ C by:

B|W×W = Ts|W×W , B|Js×Js = F and B(W,Js) = B(Js,W ) = 0.

Let x= xw+xs,y= yw+ys,z= zw+zs ∈W⊕Js. Remark that Ts(Js,J) = 0 so if Ts(xw,W ) =
0 then Ts(xw,J) = 0. It implies xw ∈ Js so xw = 0. One has

B(xw + xs,J) = 0 if and only if Ts(xw,W ) = 0 and F(xs,Js) = 0.

By preceding remark and F non-degenerate on Js then xw = xs = 0. It means B non-degenerate.
It is easy to see that

B((xw + xs)(yw + ys),zw + zs) = Ts(xwyw,zw) = Ts(xw,ywzw)

= B(xw + xs,(yw + ys)(zw + zs))

Hence, B is associative.

We will need some special subspaces of an arbitrary algebra J:

Definition 4.1.11. Let J be an algebra.

(1) The subspace
(J,J,J) = span{(x,y,z) | x,y,z ∈ J}

is the associator of J.

(2) The subspaces
LAnn(J) = {x ∈ J | xJ= 0},

RAnn(J) = {x ∈ J | Jx = 0} and

Ann(J) = {x ∈ J | xJ= Jx = 0}
are respectively the left-annihilator, the right-annihilator and the annihilator of J. Cer-

tainly, if J is commutative then these subspaces coincide.
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(3) The subspace

N(J) = {x ∈ J | (x,y,z) = (y,x,z) = (y,z,x) = 0, ∀ y,z ∈ J}

is the nucleus of J.

Proposition 4.1.12. If (J,B) is a pseudo-Euclidean Jordan algebra then

(1) the nucleus N(J) coincide with the center Z(J) of J where Z(J) = {x ∈ N(J) | xy =
yx, ∀ y∈ J}, that is, the set of all elements x that commute and associate with all elements
of J. Therefore

N(J) = Z(J) = {x ∈ J | (x,y,z) = 0, ∀ y,z ∈ J}.

(2) Z(J)⊥ = (J,J,J).

(3) (Ann(J))⊥ = J2.

Proof. Since B((x,y,z), t) = B((y,x, t),z) = B((z, t,x),y) = B((t,z,y),x), for all x,y,z, t ∈ J then
we get (1) and (2). The statement (3) is gained by B non-degenerate and associative.

Definition 4.1.13. A pseudo-Euclidean Jordan algebra J is reduced if

(1) J 6= {0},

(2) Ann(J) is totally isotropic.

Proposition 4.1.14. Let J be non-Abelian pseudo-Euclidean Jordan algebra. Then J = z
⊥
⊕ l

where z⊂ Ann(J) and l is reduced.

Proof. The proof is completely similar to Proposition 2.1.5. Let z0 = Ann(J)∩J2, z be a com-
plementary subspace of z0 in Ann(J) and l = z⊥. If x is an element in z such that B(x,z) =
0 then B(x,J2) = 0 since Ann(J) = (J2)⊥. As a consequence, B(x,z0) = 0 and therefore
B(x,Ann(J)) = 0. That implies x ∈ J2. Hence, x = 0 and the restriction of B to z is non-
degenerate. Moreover, z is an ideal, then it is easy to check that the restriction of B to l is also a
non-degenerate and that z∩ l= {0}.

Since J is non-Abelian then l is non-Abelian and l2 = J2. Moreover, z0 = Ann(l) and the
result follows.

Next, we will define some extensions of a Jordan algebra and introduce the notion of a
double extension of a pseudo-Euclidean Jordan algebra [BB].

Definition 4.1.15. Let J1 and J2 be Jordan algebras and π : J1→ End(J2) be a representation
of J1 on J2. We call π an admissible representation if it satisfies the following conditions:

(1) π(x2)(yy′)+2(π(x)y′)(π(x)y)+(π(x)y′)y2 +2(yy′)(π(x)y)
= 2π(x)(y′(π(x)y))+π(x)(y′y2)+(π(x2)y′)y+2(y′(π(x)y))y,

(2) (π(x)y)y2 = (π(x)y2)y,
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(3) π(xx′)y2 +2(π(x′)y)(π(x)y) = π(x)π(x′)y2 +2(π(x′)π(x)y)y,

for all x,x′ ∈ J1,y,y′ ∈ J2. In this case, the vector space J = J1⊕J2 with the product defined
by:

(x+ y)(x′+ y′) = xx′+π(x)y′+π(x′)y+ yy′, ∀ x,x′ ∈ J1,y,y′ ∈ J2

becomes a Jordan algebra.

Definition 4.1.16. Let (J,B) be a pseudo-Euclidean Jordan algebra and C be an endomorphism
of J. We say that C is symmetric if

B(C(x),y) = B(x,C(y)), ∀ x,y ∈ J.

Denote by Ends(J) the space of symmetric endomorphisms of J.

The definition below was introduced in [BB], Theorem 3.8.

Definition 4.1.17. Let (J1,B1) be a pseudo-Euclidean Jordan algebra and let J2 be an arbitrary
Jordan algebra. Let π : J2 → Ends(J1) be an admissible representation. Define a symmetric
bilinear map ϕ : J1×J1→ J∗2 by: ϕ(y,y′)(x) = B1(π(x)y,y′), for all x ∈ J2,y,y′ ∈ J1. Consider
the vector space

J= J2⊕J1⊕J∗2

endowed with the product:

(x+ y+ f )(x′+ y′+ f ′) = xx′+ yy′+π(x)y′+π(x′)y+ f ′ ◦Rx + f ◦Rx′+ϕ(y,y′)

for all x,x′ ∈ J2, y,y′ ∈ J1, f , f ′ ∈ J∗2. Then J is a Jordan algebra. Moreover, define a bilinear
form B on J by:

B(x+ y+ f ,x′+ y′+ f ′) = B1(y,y′)+ f (x′)+ f ′(x), ∀ x,x′ ∈ J2,y,y′ ∈ J1, f , f ′ ∈ J∗2.

Then J is a pseudo-Euclidean Jordan algebra. The Jordan algebra (J,B) is called the double
extension of J1 by J2 by means of π .

Remark 4.1.18. If γ is an associative bilinear form (not necessarily non-degenerate) on J2 then
J is again pseudo-Euclidean thanks to the bilinear form

Bγ(x+ y+ f ,x′+ y′+ f ′) = γ(x,x′)+B1(y,y′)+ f (x′)+ f ′(x)

for all x, x′ ∈ J2, y, y′ ∈ J1, f , f ′ ∈ J∗2.
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4.2 Jordanian double extension of a quadratic vector space
Let Cc be a one-dimensional Jordan algebra. If c2 6= 0 then c2 = λc for some non-zero

λ ∈ C. Replace c by 1
λ

c, we obtain c2 = c. Therefore, there exist only two one-dimensional
Jordan algebras: one Abelian and one simple. Next, we will study double extensions of a
quadratic vector space by these algebras.

Let us start with (q,Bq) a quadratic vector space. We consider (t = span{x1,y1},Bt) a 2-
dimensional quadratic vector space with Bt defined by

Bt(x1,x1) = Bt(y1,y1) = 0, Bt(x1,y1) = 1.

Let C : q→ q be a non-zero symmetric map and consider the vector space

J= q
⊥
⊕ t

equipped with a product defined by

(x+λx1 +µy1) (y+λ
′x1 +µ

′y1) =

µC(y)+µ
′C(x)+Bq(C(x),y)x1 + ε

((
λ µ
′+λ

′
µ
)

x1 +µµ
′y1
)
,

ε ∈ {0,1}, for all x,y ∈ q,λ ,µ,λ ′,µ ′ ∈ C.

Proposition 4.2.1. Keep the notation just above.

(1) Assume that ε = 0. Then J is a Jordan algebra if and only if C3 = 0. In this case, we call
J a nilpotent double extension of q by C.

(2) Assume that ε = 1. Then J is a Jordan algebra if and only if 3C2 = 2C3+C. Moreover, J is
pseudo-Euclidean with bilinear form B=Bq+Bt. In this case, we call J a diagonalizable
double extension of q by C.

Proof.

(1) Let x, y ∈ q, λ , µ , λ ′, µ ′ ∈ C. One has

((x+λx1 +µy1)(y+λ
′x1 +µ

′y1))(x+λx1 +µy1)
2 = 2µBq(C2(µy+µ

′x),C(x))x1

and

(x+λx1 +µy1)((y+λ
′x1 +µ

′y1)(x+λx1 +µy1)
2) = 2µ

2
µ
′C3(x)

+2µµ
′Bq(C(x),C2(x))x1.

Therefore, J is a Jordan algebra if and only if C3 = 0.

(2) The result is achieved by checking directly the equality (I) for J.
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4.2.1 Nilpotent double extensions
Consider J1 = q as an Abelian algebra, J2 = Cy1 the nilpotent one-dimensional Jordan

algebra, π(y1) =C and identify J∗2 with Cx1. Then by Definition 4.1.17, J = J2⊕J1⊕J∗2 is a
pseudo-Euclidean Jordan algebra with a bilinear form B given by B = Bq+Bt. In this case, C
obviously satisfies the condition C3 = 0.

An immediate corollary of the definition is:

Corollary 4.2.2. If J= q
⊥
⊕ (Cx1⊕Cy1) is the nilpotent double extension of q by C then

y1x =C(x),xy = B(C(x),y)x1 and y2
1 = x1J= 0, ∀ x ∈ q.

As a consequence, J2 = Im(C)⊕Cx1 and Ann(J) = ker(C)⊕Cx1.

Remark 4.2.3. In this case, J is k-step nilpotent, k ≤ 3 since Rk
x(J)⊂ Im(Ck)⊕Cx1.

Definition 4.2.4. Let (J,B) and (J′,B′) be pseudo-Euclidean Jordan algebras, if there exists a
Jordan algebra isomorphism A : J→ J′ such that it is also an isometry then we say that J, J′ are
i-isomorphic and A is an i-isomorphism.

Theorem 4.2.5. Let (q,B) be a quadratic vector space. Let J = q
⊥
⊕ (Cx1⊕Cy1) and J′ =

q
⊥
⊕ (Cx′1⊕Cy′1) be nilpotent double extensions of q, by symmetric maps C and C′ respectively.

Then:

(1) there exists a Jordan algebra isomorphism A : J→ J′ such that A(q⊕Cx1) = q⊕Cx′1
if and only if there exist an invertible map P ∈ End(q) and a non-zero λ ∈ C such that
λC′ = PCP−1 and P∗PC =C where P∗ is the adjoint map of P with respect to B.

(2) there exists an i-isomorphism A : J→ J′ such that A(q⊕Cx1) = q⊕Cx′1 if and only if
there exists a non-zero λ ∈C such that C and λC′ are conjugate by an isometry P∈O(q).

Proof.

(1) Assume that A : J→ J′ is an isomorphism such that A(q⊕Cx1) = q⊕Cx′1. By Corol-
lary 4.2.2 and B non-degenerate, there exist x,y ∈ q⊕Cx1 such that xy = x1. Therefore
A(x1) = A(x)A(y) ∈ (q⊕Cx′1)(q⊕Cx′1) = Cx′1. That means A(x1) = µx′1 for some non-
zero µ ∈ C. Write A|q = P+ β ⊗ x′1 with P ∈ End(q) and β ∈ q∗. If x ∈ ker(P) then

A
(

x− 1
µ

β (x)x1

)
= 0, so x = 0 and therefore, P is invertible. For all x,y ∈ q, one has

µB(C(x),y)x′1 = A(xy) = A(x)A(y) = B(C′(P(x)),P(y))x′1.

So we obtain P∗C′P = µC. Assume that A(y1) = y+δx′1 +λy′1, with y ∈ q. For all x ∈ q,
one has

P(C(x))+β (C(x))x′1 = A(y1x) = A(y1)A(x) = λC′(P(x))+B(C′(y),P(x))x′1.

Therefore, λC′ = PCP−1. Combined with P∗C′P = µC to get P∗PC = λ µC. Replace P

by
1

(µλ )
1
2

P to obtain λC′ = PCP−1 and P∗PC =C.
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Conversely, define A : J→ J′ by A(y1) = λy′1, A(x) = P(x), for all x∈ q and A(x1) =
1
λ

x′1,
we prove that A is a Jordan isomorphism. Indeed, for all x,y ∈ q and δ ,δ ′,µ,µ ′ ∈ C one
has:

A((δy1 + x+µx1)(δ
′y1 + y+µ

′x1)) = δPC(y)+δ
′PC(x)+

1
λ

B(C(x),y)x′1

and A(δy1 + x+ µx1)A(δ ′y1 + y+ µ ′x1) = λδC′P(y)+ λδ ′CP(x)+B(C′P(x),P(y))x′1.
Since λC′ = PCP−1 and P∗PC =C, we obtain λC′P = PC and P∗C′P = 1

λ
C. Therefore,

A is an Jordan isomorphism.

(2) If A : J→ J′ is an i-isomorphism then the isomorphism P in the proof of (1) is also an
isometry. Hence P ∈ O(q). Conversely, define A as in (1) then it is obvious that A is an
i-isomorphism.

Proposition 4.2.6. Let (q,B) be a quadratic vector space and let J = q
⊥
⊕ (Cx1⊕Cy1), J′ =

q
⊥
⊕ (Cx′1⊕Cy′1) be nilpotent double extensions of q, by symmetric maps C and C′ respectively.

Assume that rank(C′)≥ 3. Let A : J→ J′ be an isomorphism. Then A(q⊕Cx1) = q⊕Cx′1.

Proof. We assume that there is x∈ q such that A(x) = y+βx′1+γy′1 where y∈ q,β ,γ ∈C,γ 6= 0.
Then for all q ∈ q and λ ∈ C, we have

A(x)(q+λx′1) = γC′(q)+B(C′(y),q)x′1.

Therefore, dim(A(x)(q⊕Cx′1))≥ 3. But A is an isomorphism, hence

A(x)(q⊕Cx′1)⊂ A(xA−1(q⊕Cx′1))⊂ A(x(q⊕Cx1⊕Cy1))⊂ A(CC(x)⊕Cx1).

This is a contradiction. Hence A(q⊕Cx1) = q⊕Cx′1.

4.2.2 Diagonalizable double extensions

Lemma 4.2.7. Let J= q
⊥
⊕ (Cx1⊕Cy1) be a diagonalizable double extension of q by C. Then

y2
1 = y1,y1x1 = x1,y1x =C(x),xy = B(C(x),y)x1 and x1x = x2

1 = 0, ∀ x ∈ q.

Note that x1 /∈ Ann(J). Let x ∈ q. Then x ∈ Ann(J) if and only if x ∈ ker(C). Moreover,
J2 = Im(C)⊕ (Cx1⊕Cy1). Therefore J is reduced if and only if ker(C)⊂ Im(C).

Let x ∈ Im(C). Then there exists y ∈ q such that x = C(y). Since 3C2 = 2C3 +C, one has
3C(x)− 2C2(x) = x. Therefore, if J is reduced then ker(C) = {0} and C is invertible. That
implies that 3C−2C2 = Id and we have the following proposition:

Theorem 4.2.8. Let (q,B) be a quadratic vector space. Let J = q
⊥
⊕ (Cx1⊕Cy1) and J′ =

q
⊥
⊕ (Cx′1⊕Cy′1) be diagonalizable double extensions of q, by invertible maps C and C′ respec-

tively. Then there exists a Jordan algebra isomorphism A : J→ J′ if and only if there exists an
isometry P such that C′ = PCP−1. In this case, J and J′ are also i-isomorphic.
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Proof. Assume J and J′ isomorphic by A. First, we will show that A(q⊕Cx1) = q⊕Cx′1.
Indeed, if A(x1) = y+βx′1 + γy′1 where y ∈ q,β ,γ ∈ C, then

0 = A(x2
1) = A(x1)A(x1) = 2γC′(y)+(2βγ +B(C′(y),y))x′1 + γ

2y′1.

Therefore, γ = 0. Similarly, if there exists x ∈ q such that A(x) = z+αx′1 + δy′1 where z ∈
q,α,δ ∈ C. Then

B(C(x),x)A(x1) = A(x2) = A(x)A(x) = 2δC′(z)+(2αδ +B(C′(z),z))x′1 +δ
2y′1.

That implies δ = 0 and A(q⊕Cx1) = q⊕Cx′1.
The rest of the proof follows exactly the proof of Theorem 4.2.5, one has A(x1) = µx′1 for

some non-zero µ ∈C and there is an isomorphism of q such that A|q = P+β⊗x′1 where β ∈ q∗.
Similarly as in the proof of Theorem 4.2.5, one also has P∗C′P = µC, where P∗ is the adjoint
map of P with respect to B. Assume that A(y1) = λy′1+y+δx′1. Since A(y1)A(y1) = A(y1), one

has λ = 1 and therefore C′ = PCP−1. Replace P by
1

(µ)
1
2

P to get P∗PC =C. However, since C

is invertible then P∗P = I. It means that P is an isometry of q.
Conversely, define A : J→ J′ by A(x1) = x′1, A(y1) = y′1 and A(x) = P(x), for all x ∈ q then

A is an i-isomorphism.

An invertible symmetric endomorphism of q satisfying 3C−2C2 = Id is diagonalizable by
an orthogonal basis of eigenvectors with eigenvalues 1 and 1

2 (see Appendix D). Therefore, we
have the following corollary:

Corollary 4.2.9. Let (q,B) be a quadratic vector space and let J = q
⊥
⊕ (Cx1 ⊕Cy1) and

J′ = q
⊥
⊕ (Cx′1⊕Cy′1) be diagonalizable double extensions of q, by invertible maps C and C′

respectively. Then J and J′ are isomorphic if and only if C and C′ have the same spectrum.

Example 4.2.10. Let Cx be a one-dimensional Abelian algebra. Let J=Cx
⊥
⊕ (Cx1⊕Cy1) and

J′ = Cx
⊥
⊕ (Cx′1⊕Cy′1) be diagonalizable double extensions of Cx by C = Id and C = 1

2 Id. In
particular, the product on J and J′ are defined by:

y2
1 = y1,y1x = x,y1x1 = x1,x2 = x1;

(y′1)
2 = y′1,y

′
1x =

1
2

x,y1x1 = x1,x2 =
1
2

x1.

Then J and J′ are not isomorphic. Moreover, J′ has no unit element.

Remark 4.2.11. The i-isomorphic and isomorphic notions are not coinciding in general. For
example, the Jordan algebras J = Ce with e2 = e, B(e,e) = 1 and J′ = Ce′ with (e′)2 = e′,
B(e′,e′) = a 6= 1 are isomorphic but not i-isomorphic.
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4.3 Pseudo-Euclidean 2-step nilpotent Jordan algebras

4.3.1 2-step nilpotent Jordan algebras
In Chapter 2, 2-step nilpotent quadratic Lie algebras are characterized up to isometric iso-

morphisms and up to isomorphisms (see also [Ova07]). There is a similar natural property in
the case of pseudo-Euclidean 2-step nilpotent Jordan algebras. Let us redefine 2-step nilpotent
Jordan algebras in a more convenient way:

Definition 4.3.1. An algebra J over C with a product (x,y) 7→ xy is called a 2-step nilpotent
Jordan algebra if it satisfies xy = yx and (xy)z = 0 for all x,y,z ∈ J. Sometimes, we use 2SN-
Jordan algebra as an abbreviation.

The method of double extension is a fundamental tool used in describing algebras that are
endowed with an associative non-degenerate bilinear form. This method is based on two prin-
cipal notions: central extension and semi-direct product of two algebras. We have just seen it
in Chapter 2 for 2-step nilpotent quadratic Lie algebras. In the next part, we apply it again but
as we will see that the method of double extension is not quite effective for pseudo-Euclidean
Jordan algebras, even in the 2-step nilpotent case. With our attention we will recall some defi-
nitions given in Section 3 of [BB] but with a restricting condition for pseudo-Euclidean 2-step
nilpotent Jordan algebras.

Proposition 4.3.2. Let J be a 2SN-Jordan algebra, V be a vector space, ϕ : J×J→ V be a
bilinear map and π : J→ End(V ) be a representation. Let

J= J⊕V

equipped with the following product:

(x+u)(y+ v) = xy+π(x)(v)+π(y)(u)+ϕ(x,y), ∀x,y ∈ J,u,v ∈V.

Then J is a 2SN-Jordan algebra if and only if for all x,y,z ∈ J one has:

(1) ϕ is symmetric and ϕ(xy,z)+π(z)(ϕ(x,y)) = 0,

(2) π(xy) = π(x)π(y) = 0.

Definition 4.3.3. If π is the trivial representation in Proposition 4.3.2, the Jordan algebra J is
called the 2SN-central extension of J by V (by means of ϕ).

Remark that in a 2SN-central extension J, the annihilator Ann(J) contains the vector space
V .

Proposition 4.3.4. Let J be a 2SN-Jordan algebra. Then J is a 2SN-central extension of an
Abelian algebra.

Proof. Set h = J/J2 and V = J2. Define ϕ : h×h→ V by ϕ(p(x), p(y)) = xy, for all x,y ∈ J
where p : J→ h is the canonical projection. Then h is an Abelian algebra and J' h⊕V is the
2SN-central extension of h by means of ϕ .
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Remark 4.3.5. It is easy to see that if J is a 2SN-Jordan algebra, then the coadjoint representa-
tion R∗ of J satisfies the condition on π in Proposition 4.3.2 (2). For a trivial ϕ , we conclude
that J⊕J∗ is also a 2SN-Jordan algebra with respect to the coadjoint representation.

Definition 4.3.6. Let J be a 2SN-Jordan algebra, V and W be two vector spaces. Let π : J→
End(V ) and ρ : J→ End(W ) be representations of J. The direct sum π⊕ρ : J→ End(V ⊕W )
of π and ρ is defined by

(π⊕ρ)(x)(v+w) = π(x)(v)+ρ(x)(w), ∀ x ∈ J,v ∈V,w ∈W.

Proposition 4.3.7. Let J1 and J2 be 2SN-Jordan algebras and let π : J1→ End(J2) be a linear
map. Let

J= J1⊕J2.

Define the following product on J:

(x+ y)(x′+ y′) = xx′+π(x)(y′)+π(x′)(y)+ yy′, ∀ x,x′ ∈ J1,y,y′ ∈ J2.

Then J is a 2SN-Jordan algebra if and only if π satisfies:

(1) π(xx′) = π(x)π(x′) = 0,

(2) π(x)(yy′) = (π(x)(y))y′ = 0,

for all x,x′ ∈ J1,y,y′ ∈ J2.
In this case, π satisfies the conditions of Definition 4.1.15, it is called a 2SN-admissible

representation of J1 in J2 and we say that J is the semi-direct product of J2 by J1 by means
of π .

Proof. For all x,x′,x′′ ∈ J1,y,y′,y′′ ∈ J2, one has:

((x+ y)(x′+ y′))(x′′+ y′′) = π(xx′)(y′′)+π(x′′)(π(x)(y′)+π(x′)(y)+ yy′)
+(π(x)(y′)+π(x′)(y))y′′.

Therefore, J is 2-step nilpotent if and only if π(xx′), π(x)π(x′), π(x)(yy′) and (π(x)y)y′ are
zero, for all x,x′ ∈ J1,y,y′ ∈ J2.

Remark 4.3.8.

(1) The adjoint representation of a 2SN-Jordan algebra is a 2SN-admissible representation.

(2) Consider the particular case of J1 = Cc a one-dimensional algebra. If J1 is 2-step nilpo-
tent then c2 = 0. Let D= π(c)∈End(J2). The vector space J=Cc⊕J2 with the product:

(αc+ x)(α ′c+ x′) = αD(x′)+α
′D(x)+ xx′, ∀ x,x′ ∈ J2,α,α ′ ∈ C.

is 2-step nilpotent if and only if D2 = 0, D(xx′) = D(x)x′ = 0, for all x,x′ ∈ J2.
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(3) Let us slightly change (2) by fixing x0 ∈ J2 and setting the product on J = Cc⊕ J2 as
follows:

(αc+ x)(α ′c+ x′) = αD(x′)+α
′D(x)+ xx′+αα

′x0,

for all x,x′ ∈ J2,α,α ′ ∈ C. Then J is a 2SN-Jordan algebra if and only if

D2(x) = D(xx′) = D(x)x′ = D(x0) = x0x = 0, ∀ x,x′ ∈ J2.

In this case, we say (D,x0) a 2SN-admissible pair of J2.

Next, we see how to obtain a 2SN-Jordan algebra from a pseudo-Euclidean one.

Proposition 4.3.9. Let (J,B) be a 2-step nilpotent pseudo-Euclidean Jordan algebra (or 2SNPE-
Jordan algebra for short), h be another 2SN-Jordan algebra and π : h→ Ends(J) be a linear
map. Consider the bilinear map ϕ : J×J→ h∗ defined by ϕ(x,y)(z) = B(π(z)(x),y), for all
x,y ∈ J,z ∈ h. Let

J= h⊕J⊕h∗.

Define the following product on J:

(x+ y+ f )(x′+ y′+ f ′) = xx′+ yy′+π(x)(y′)+π(x′)(y)+ f ′ ◦Rx + f ◦Rx′+ϕ(y,y′)

for all x,x′ ∈ h,y,y′ ∈ J, f , f ′ ∈ h∗. Then J is a 2SN-Jordan algebra if and only if π is a 2SN-
admissible representation of h in J. Moreover, J is pseudo-Euclidean with the bilinear form

B(x+ y+ f ,x′+ y′+ f ′) = B(y,y′)+ f (x′)+ f ′(x), ∀ x,x′ ∈ h,y,y′ ∈ J, f , f ′ ∈ h∗.

In this case, we say that J is a 2-step nilpotent double extension (or 2SN-double exten-
sion) of J by h by means of π .

Proof. If J is 2-step nilpotent then the product is commutative and ((x + y + f )(x′ + y′ +
f ′))(x′′+ y′′+ f ′′) = 0 for all x,x′,x′′ ∈ h,y,y′,y′′ ∈ J, f , f ′, f ′′ ∈ h∗. By a straightforward com-
putation, one has that π is a 2SN-admissible representation of h in J.

Conversely, assume that π is a 2SN-admissible representation of h in J. First, we set the
extension J⊕h∗ of J by h∗ with the product:

(y+ f )(y′+ f ′) = yy′+ϕ(y,y′), ∀ y,y′ ∈ J, f , f ′ ∈ h∗.

Since π(z) ∈ Ends(J) and π(z)(yy′) = 0, for all z ∈ h, y,y′ ∈ J, then one has ϕ symmetric and
ϕ(yy′,y′′) = 0, for all y,y′,y′′ ∈ J. By Definition 4.3.3, J⊕h∗ is a 2SN-central extension of J
by h∗.

Next, we consider the direct sum π ⊕R∗ of two representations: π and R∗ of h in J⊕ h∗

(see Definition 4.3.6). By a straightforward computation, we check that π ⊕R∗ satisfies the
conditions of Proposition 4.3.7 then the semi-direct product of J⊕h∗ by h by means of π⊕R∗

is 2-step nilpotent. Finally, the product defined in J is exactly the product defined by the semi-
direct product in Proposition 4.3.7. Therefore we obtain the necessary and sufficient conditions.

As a consequence of Definition 4.1.17, B is an associative scalar product of J, then J is a
2SNPE-Jordan algebra.
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The notion of 2SN-double extension does not characterize all 2SNPE-Jordan algebras:
there exist 2SNPE-Jordan algebras that can be not described in terms of 2SN-double exten-
sions, for example, the 2SNPE-Jordan algebra J = Ca⊕Cb with a2 = b and B(a,b) = 1, zero
otherwise. Therefore, we need a better characterization given by the proposition below, its proof
is a matter of a simple calculation.

Proposition 4.3.10. Let (J,B) be a 2SNPE-Jordan algebra. Let (D,x0) ∈ Ends(J)× J be a
2SN-admissible pair with B(x0,x0) = 0 and let (t=Cx1⊕Cy1,Bt) be a quadratic vector space
satisfying

Bt(x1,x1) = Bt(y1,y1) = 0, Bt(x1,y1) = 1.

Fix α in C and consider the vector space

J= J
⊥
⊕ t

equipped with the product

y1 ? y1 = x0 +αx1, y1 ? x = x? y1 = D(x)+B(x0,x)x1, x? y = xy+B(D(x),y)x1

and x1 ?J = J ? x1 = 0, for all x,y ∈ J. Then J is a 2SNPE-Jordan algebra with the bilinear
form B = B+Bt.

In this case, (J,B) is called a generalized double extension of J by means of (D,x0,α).

Proposition 4.3.11. Let (J,B) be a 2SNPE-Jordan algebra. If J is non-Abelian then it is ob-
tained from an Abelian algebra by a sequence of generalized double extensions.

Proof. Assume that (J,B) is a 2SNPE-Jordan algebra and J is non-Abelian. By Proposition
4.1.14, J has a reduced ideal l that is still 2-step nilpotent. That means l2 6= l, so Ann(l) 6= {0}.
Therefore, we can choose a non-zero x1 ∈ Ann(l) such that B(x1,x1) = 0. Then there exists

an isotropic element y1 ∈ J such that B(x1,y1) = 1. Let J = (Cx1⊕Cy1)
⊥
⊕W where W =

(Cx1⊕Cy1)
⊥. We have that Cx1 and x⊥1 = Cx1⊕W are ideals of J as well.

Let x,y ∈W , xy = β (x,y)+α(x,y)x1 where β (x,y) ∈W and α(x,y) ∈C. It is easy to check
that W with the product W ×W →W , (x,y) 7→ β (x,y) is a 2SN-Jordan algebra. Moreover, it is
also pseudo-Euclidean with the bilinear form BW = B|W×W .

Now, we show that J is a generalized double extension of (W,BW ). Indeed, let x ∈W
then y1x = D(x)+ϕ(x)x1 where D is an endomorphism of W and ϕ ∈W ∗. Since y1(y1x) =
y1(xy) = (y1x)y = 0, for all x,y ∈W we get D2(x) = D(x)y = D(xy) = 0, for all x,y ∈W .
Moreover, B(y1x,y) = B(x,y1y) = B(y1,xy), for all x,y ∈W implies that D ∈ Ends(W ) and
α(x,y) = BW (D(x),y), for all x,y ∈W .

Since BW is non-degenerate and ϕ ∈W ∗ then there exists x0 ∈W such that ϕ = BW (x0, .).
Assume that y2

1 = µy1 + y0 +λx1. The equality B(y2
1,x1) = 0 implies µ = 0. Moreover, y0 =

x0 since B(y1x,y1) = B(x,y2
1), for all x ∈W . Finally, D(x0) = 0 is obtained by y3

1 = 0 and
this is enough to conclude that J is a generalized double extension of (W,BW ) by means of
(D,x0,λ ).
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4.3.2 T ∗-extensions of pseudo-Euclidean 2-step nilpotent

Given a 2SN-Jordan algebra J and a symmetric bilinear map θ : J× J → J∗ such that
R∗(z)(θ(x,y))+θ(xy,z) = 0, for all x,y,z ∈ J, then by Proposition 4.3.2, J = J⊕J∗ is also a
2SN-Jordan algebra. Moreover, if θ is cyclic (that is, θ(x,y)(z) = θ(y,z)(x), for all x,y,z ∈ J),
then J is a pseudo-Euclidean Jordan algebra with the bilinear form defined by

B(x+ f ,y+g) = f (y)+g(x), ∀ x,y ∈ J, f ,g ∈ J∗.

In a more general framework, we can define:

Definition 4.3.12. Let a be a complex vector space and θ : a× a→ a∗ a cyclic symmetric
bilinear map. Assume that θ is non-degenerate, i.e. if θ(x,a) = 0 then x = 0. Consider the
vector space J= a⊕a∗ equipped with the product

(x+ f )(y+g) = θ(x,y)

and the bilinear form
B(x+ f ,y+g) = f (y)+g(x)

for all x+ f ,y+g ∈ J. Then (J,B) is a 2SNPE-Jordan algebra and it is called the T ∗-extension
of a by θ .

Lemma 4.3.13. Let J be a T ∗-extension of a by θ . If J 6= {0} then J is reduced.

Proof. Since θ is non-degenerate, it is easy to check that Ann(J) = a∗ is totally isotropic by the
above definition.

Proposition 4.3.14. Let (J,B) be a 2SNPE-Jordan algebra. If J is reduced then J is i-isomorphic
to some T ∗-extension.

Proof. Assume that J is a reduced 2SNPE-Jordan algebra. Then one has Ann(J) = J2, so
dim(J2) = 1

2 dim(J). Let J = Ann(J)⊕ a where a is a totally isotropic subspace of J. Then
a' J/J2 as an Abelian algebra. Since a and Ann(J) are maximal totally isotropic subspaces of
J, we can identify Ann(J) to a∗ by the isomorphism: ϕ : Ann(J)→ a∗, ϕ(x)(y) = B(x,y), for
all x ∈ Ann(J), y ∈ a. Define θ : a×a→ a∗ by θ(x,y) = ϕ(xy), for all x,y ∈ a.

Now, set α : J→ a⊕ a∗ by α(x) = p1(x)+ϕ(p2(x)), for all x ∈ J where p1 : J→ a and
p2 : J→ Ann(J) are canonical projections. Then α is i-isomorphic.

Theorem 4.3.15. Let J1 and J2 be two T ∗-extensions of a by θ1 and θ2 respectively. Then:

(1) there exists a Jordan algebra isomorphism between J1 and J2 if and only if there exist an
isomorphism A1 of a and an isomorphism A2 of a∗ satisfying:

A2(θ1(x,y)) = θ2(A1(x),A1(y)), ∀ x,y ∈ a.

(2) there exists an i-isomorphism between J1 and J2 if and only if there exists an isomorphism
A1 of a satisfying

θ1(x,y) = θ2(A1(x),A1(y))◦A1, ∀ x,y ∈ a.
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Proof.

(1) Let A : J1 → J2 be a Jordan algebra isomorphism. Since a∗ = Ann(J1) = Ann(J2) is
stable by A then there exist linear maps A1 : a→ a, A′1 : a→ a∗ and A2 : a∗→ a∗ such
that:

A(x+ f ) = A1(x)+A′1(x)+A2( f ), ∀ x+ f ∈ J1.

Since A is an isomorphism one has A2 also isomorphic. We show that A1 is an isomor-
phism of a. Indeed, if A1(x0) = 0 with some x0 ∈ a then A(x0) = A′1(x0) and

0 = A(x0)J2 = A(x0A−1(J2)) = A(x0J1).

That implies x0J1 = 0 and so x0 ∈ a∗. That means x0 = 0, i.e. A1 is an isomorphism of a.

For all x and y in a, one has A(xy) = A(θ1(x,y)) = A2(θ1(x,y)) and

A(x)A(y) = (A1(x)+A′1(x))(A1(y)+A′1(y)) = A1(x)A1(y) = θ2(A1(x),A1(y)).

Therefore, A2(θ1(x,y)) = θ2(A1(x),A1(y)), for all x,y ∈ a.

Conversely, if there exist an isomorphism A1 of a and an isomorphism A2 of a∗ satisfying:

A2(θ1(x,y)) = θ2(A1(x),A1(y)), ∀ x,y ∈ a,

then we define A : J1→ J2 by A(x+ f ) = A1(x)+A2( f ), for all x+ f ∈ J1. It is easy to
see that A is a Jordan algebra isomorphism.

(2) Assume that A : J1 → J2 is a Jordan algebra i-isomorphism then there exist A1 and A2
defined as in (1). Let x ∈ a, f ∈ a∗, one has:

B′(A(x),A( f )) = B(x, f )⇒ A2( f )(A1(x)) = f (x).

Hence, A2( f ) = f ◦A−1
1 , for all f ∈ a∗. Moreover, A2(θ1(x,y)) = θ2(A1(x),A1(y)) implies

that
θ1(x,y)) = θ2(A1(x),A1(y))◦A1, ∀ x,y ∈ a.

Conversely, define A(x+ f )=A1(x)+ f ◦A−1
1 , for all x+ f ∈ J1 then A is an i-isomorphism.

Example 4.3.16. We keep the notations as above. Let J′ be the T ∗-extension of a by θ ′ =
λθ ,λ 6= 0 then J and J′ is i-isomorphic by A : J→ J′ defined by

A(x+ f ) =
1
α

x+α f , ∀ x+ f ∈ J

where α ∈ C, α3 = λ .
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For a non-degenerate cyclic symmetric map θ of a, define a 3-form

I(x,y,z) = θ(x,y)z, ∀ x,y,z ∈ a.

Then I ∈S 3(a), the space of symmetric 3-forms on a. The non-degenerate condition of θ is
equivalent to ∂ I

∂ p 6= 0, for all p ∈ a∗.

Conversely, let a be a complex vector space and I ∈ S 3(a) such that ∂ I
∂ p 6= 0 for all p ∈

a∗. Define θ : a× a→ a∗ by θ(x,y) = I(x,y, .), for all x,y ∈ a then θ is symmetric and non-
degenerate. Moreover, since I is symmetric, then θ is cyclic and we obtain a reduced pseudo-
Euclidean 2-step nilpotent Jordan algebra T ∗

θ
(a) defined by θ . Therefore, there is an one-to-one

map from the set of all T ∗-extensions of a complex vector space a onto the subset {I ∈S 3(a) |
∂ I
∂ p 6= 0, ∀ p ∈ a∗}, such elements are also called non-degenerate.

Corollary 4.3.17. Let J1 and J2 be T ∗-extensions of a with respect to I1 and I2 non-degenerate.
Then J and J′ are i-isomorphic if and only if there exists an isomorphism A of a such that

I1(x,y,z) = I2(A(x),A(y),A(z)), ∀ x,y,z ∈ a.

In particular, J and J′ are i-isomorphic if and only if there is an isomorphism tA on a∗ which
induces the isomorphism on S 3(a), also denoted by tA such that tA(I1) = I2. In this case, we
say that I1 and I2 are equivalent.

Example 4.3.18. Let a = Ce be a one-dimensional vector space then S 3(a) = C(e∗)3. By
Example 4.3.16, T ∗-extensions of a by (e∗)3 and λ (e∗)3, λ 6= 0, are i-isomorphic (also, these
3-forms are equivalent). Hence, there is only one i-isomorphic class of T ∗-extensions of a, that
is J= Ce⊕C f with e2 = f and B(e, f ) = 1, the other are zero.

Now, let a= Cx⊕Cy be 2-dimensional vector space then

S 3(a) = {a1(x∗)3 +a2(x∗)2y∗+a3x∗(y∗)2 +a4(y∗)3, ai ∈ C}.

It is easy to prove that every bivariate homogeneous polynomial of degree 3 is reducible.
Therefore, by a suitable basis choice (certainly isomorphic), a non-degenerate element I ∈
S 3(a) has the form I = ax∗y∗(bx∗+ cy∗), a,b 6= 0. Replace x∗ by αx∗ with α2 = ab to get
the form of Iλ = x∗y∗(x∗+λy∗),λ ∈ C.

Next, we will show that I0 and Iλ ,λ 6= 0 are not equivalent. Indeed, assume the contrary, i.e.
there is an isomorphism tA such that tA(I0) = Iλ . We can write

tA(x∗) = a1x∗+b1y∗, tA(y∗) = a2x∗+b2y∗, a1,a2,b1,b2 ∈ C.

Then

tA(I0) = (a1x∗+b1y∗)2(a2x∗+b2y∗) = a2
1a2(x∗)3 +(a2

1b2 +2a1a2b1)(x∗)2y∗+
(2a1b1b2 +a2b2

1)x
∗(y∗)2 +b2

1b2(y∗)3.

Comparing the coefficients we will get a contradiction. Therefore, I0 and Iλ , λ 6= 0 are not
equivalent.

114



4.3. Pseudo-Euclidean 2-step nilpotent Jordan algebras

However, two forms Iλ1 and Iλ2 where λ1,λ2 6= 0 are equivalent by the isomorphism tA
satisfying tA(Iλ1) = Iλ2 defined by:

tA(x∗) = αy∗, tA(y∗) = βx∗

where α,β ∈ C such that α3 = λ1λ 2
2 and β 3 = 1

λ 2
1 λ2

and satisfying tA(Iλ1) = Iλ2 . That implies
that there are only two i-isomorphic classes of T ∗-extensions of a.

Example 4.3.19. Let J0 = span{x,y,e, f} be a T ∗-extension of a 2-dimensional vector space a
by I0 = (x∗)2y∗, with e = x∗ and f = y∗, that means B(x,e) = B(y, f ) = 1, the other are zero. It
is easy to compute the product in J0 defined by x2 = f , xy = e. Let Iλ = x∗y∗(x∗+λy∗), λ 6= 0
and Jλ = span{x,y,e, f} be two T ∗-extensions of the 2-dimensional vector space a by Iλ . The
products on Jλ are x2 = f , xy= e+λ f and y2 = λe. These two algebras are neither i-isomorphic
nor isomorphic. Indeed, if there is A : J0→ Jλ an isomorphism. Assume A(y) = α1x+α2y+
α3e+α4 f then

0 = A(y2) = (α1x+α2y+α3e+α4 f )2 = α
2
1 x2 +2α1α2xy+α

2
2 y2.

We obtain (λα2
2 + 2α1α2)e+(2λα1α2 +α2

1 ) f = 0. Hence, α1 = ±λα2. Both cases imply
α1 = α2 = 0 (a contradiction).

We can also conclude that there are only two isomorphic classes of T ∗-extensions of a.
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4.4 Symmetric Novikov algebras
Definition 4.4.1. An algebra N over C with a bilinear product N×N→N, (x,y) 7→ xy is called
a left-symmetric algebra if it satisfies the identity:

(xy)z− x(yz) = (yx)z− y(xz), ∀ x,y,z ∈N. (III)

or in term of associators
(x,y,z) = (y,x,z), ∀ x,y,z ∈N.

It is called a Novikov algebra if in addition

(xy)z = (xz)y (IV)

holds for all x,y,z ∈N. In this case, the commutator [x,y] = xy− yx of N defines a Lie algebra,
denoted by g(N), which is called the sub-adjacent Lie algebra of N. It is known that g(N) is a
solvable Lie algebra [Bur06]. Conversely, let g be a Lie algebra with Lie bracket [ , ]. If there
exists a bilinear product g×g→ g,(x,y) 7→ xy that satisfies (III), (IV) and [x,y] = xy− yx, for
all x,y ∈ J then we say that g admits a Novikov structure.

Example 4.4.2. Every 2-step nilpotent algebra N satisfying (xy)z = x(yz) = 0 for all x,y,z∈N,
is a Novikov algebra.

For x ∈ N, denote by Lx and Rx respectively the left and right multiplication operators
Lx(y) = xy, Rx(y) = yx, for all y ∈ N. The condition (III) is equivalent to [Lx,Ly] = L[x,y] and
(IV) is equivalent to [Rx,Ry] = 0. In the other words, the left-operators form a Lie algebra and
the right-operators commute.

It is easy to check two Jacobi-type identities:

Proposition 4.4.3. Let N be a Novikov algebra then for all x,y,z ∈N:

[x,y]z+[y,z]x+[z,x]y = 0,

x[y,z]+ y[z,x]+ z[x,y] = 0

Definition 4.4.4. Let N be a Novikov algebra. A bilinear form B : N×N→ C is called asso-
ciative if

B(xy,z) = B(x,yz), ∀ x,y,z ∈N.

We say that N is a symmetric Novikov algebra if it is endowed with a non-degenerate associative
symmetric bilinear form B.

Let (N,B) be a symmetric Novikov algebra and S be a subspace of N. Denote by S⊥ the
set {x ∈N | B(x,S) = 0}. If B|S×S is non-degenerate (resp. degenerate) then we say that S is
non-degenerate (resp. degenerate).

Lemma 4.4.5. Let (N,B) be a symmetric Novikov algebra and I be a two-sided ideal (or simply
an ideal) of N then

(1) I⊥ is also a two-sided ideal of N and II⊥ = I⊥I = {0}
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(2) If I is non-degenerate then so is I⊥ and N= I
⊥
⊕ I⊥.

Proof.

(1) Since B(xN, I) = B(x,NI) = 0 and B(I,Nx) = B(IN,x) = 0, for all x ∈ I⊥ then I⊥ is
also an ideal of N. Let x ∈ II⊥, i.e. x = yz with y ∈ I,z ∈ I⊥ then B(x,N) = B(yz,N) =
B(y,zN) = 0. Therefore x = 0. That means II⊥ = {0}. Similarly, one gains I⊥I = {0}.

(2) Assume that I⊥ is degenerate, that means there is a non-zero x ∈ I⊥ such that B(x, I⊥) =
0. Therefore, x ∈ I. However, B(x, I) = 0 since x ∈ I⊥ so I is degenerate (that is a
contradiction). Hence, I⊥ must be non-degenerate.

Let x ∈ I ∩ I⊥ then B(x, I) = 0. Since I is non-degenerate, one has x = 0. That means

I∩ I⊥ = {0} and N= I
⊥
⊕ I⊥.

Proposition 4.4.6. Let Z(N) = {x ∈ N | xy = yx, ∀ y ∈ N} the center of N and denote by
As(N) = {x ∈N | (x,y,z) = 0, ∀ y,z ∈N}. One has

(1) If N is a Novikov algebra then Z(N)⊂N(N) where N(N) = {x∈N | (x,y,z) = (y,x,z) =
(y,z,x) = 0, ∀ y,z ∈N} is the nucleus of N (see Definition 4.1.11 (3)). Moreover, if N is
also commutative then N(N) =N= As(N) (that means N is an associative algebra).

(2) If (N,B) is a symmetric Novikov algebra then

(i) Z(N) = [g(N),g(N)]⊥

(ii) N(N) = As(N) = (N,N,N)⊥.

(iii) LAnn(N) = RAnn(N) = Ann(N) = (N2)⊥.

Proof.

(1) Assume that x is an element in Z(N). For all y,z ∈N, one has:

(x,y,z) = (xy)z− x(yz) = (yx)z− x(yz) = (yz)x− x(yz) = 0.

By (III), we also have (y,x,z) = 0. Moreover, since

(y,z,x) = (yz)x− y(zx) = x(yz)− y(xz)

= (xy)z− (x,y,z)− (yx)z+(y,x,z) = (xy)z− (yx)z = 0

one obtains Z(N) ⊂ N(N). If N is commutative then Z(N) = N. Certainly, Z(N) =
N(N) =N.

(2) Let (N,B) be a symmetric Novikov algebra.

(i) It is obvious since g(N) is a quadratic Lie algebra and Z(N) is its center.
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(ii) For all x,y,z, t ∈N, one has

B((x,y,z), t) = B((xy)z− x(yz), t) = B(x,y(zt)− (yz)t) =−B(x,(y,z, t)).

Therefore, As(N)= (N,N,N)⊥. To prove N(N)=As(N), we fix x∈As(N) and let
y,z, t ∈N. Since (x,z, t) = 0 and (III) one has (z,x, t) = 0. Moreover, B((y,z,x), t) =
−B(y,(z,x, t)) and B non-degenerate imply (y,z,x) = 0, for all y,z ∈ N. Hence,
N(N) = As(N).

(iii) Let x ∈ LAnn(N) then B(xN,N) = B(x,N2) = 0. It means that x ∈ (N2)⊥. Con-
versely, if x ∈ (N2)⊥ then since B(xN,N) = B(x,N2) = 0 one has x ∈ LAnn(N).
It implies that LAnn(N) = (N2)⊥. Similarly, we obtain LAnn(N) = RAnn(N) =
Ann(N) = (N2)⊥.

Proposition 4.4.7. Let N be a Novikov algebra then

(1) Z(N) is a commutative subalgebra.

(2) As(N), N(N) are ideals.

Proof.

(1) Let x,y∈ Z(N) then (xy)z = (xz)y = (zx)y = z(xy)+(z,x,y) = z(xy), for all z∈N. There-
fore, xy ∈ Z(N) and then Z(N) is a subalgebra of N. Certainly, Z(N) is commutative.

(2) Let x ∈ As(N),y,z, t ∈N. By the equality

(xy,z, t) = ((xy)z)t− (xy)(zt) = ((xz)t)y− (x(zt))y = (x,z, t)y = 0,

one has xy ∈ As(N). Moreover,

(yx,z, t) = ((yx)z)t− (yx)(zt) = (y(xz))t− y(x(zt))

= (y,xz, t)+ y((xz)t)− y(x(zt)) = y(x,z, t) = 0

since xz ∈ As(N). Therefore As(N) is an ideal of N.

Similarly, let x ∈ N(N),y,z, t ∈N one has:

(y,z,xt) = (yz)(xt)− y(z(xt)) = ((yz)x)t− (yz,x, t)− y((zx)t− (z,x, t))

= ((yz)x)t− (y(zx))t +(y,zx, t) = (y,z,x)t = 0

and
(y,z, tx) = (yz)(tx)− y(z(tx)) = ((yz)t)x− (yz, t,x)− y((zt)x− (z, t,x))

= ((yz)x)t− y((zx)t) = (y,z,x)t +(y,zx, t) = 0.

Then N(N) is also an ideal of N.
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Lemma 4.4.8. Let (N,B) be a symmetric Novikov algebra then [Lx,Ly] = L[x,y] = 0 for all
x,y ∈ N. Consequently, for a symmetric Novikov algebra, the Lie algebra formed by the left-
operators is Abelian.

Proof. It follows the proof of Lemma II.5 in [AB10]. Fix x,y ∈N, for all z, t ∈N one has

B([Lx,Ly](z), t) = B(x(yz)− y(xz), t) = B((tx)y− (ty)x,z) = 0.

Therefore, [Lx,Ly] = L[x,y] = 0, for all x,y ∈N.

Corollary 4.4.9. Let (N,B) be a symmetric Novikov algebra then the the sub-adjacent Lie
algebra g(N) of N with the bilinear form B becomes a 2-step nilpotent quadratic Lie algebra.

Proof. One has

B([x,y],z) = B(xy− yx,z) = B(x,yz)−B(x,zy) = B(x, [y,z]), ∀ x,y,z ∈N.

Hence, g(N) is quadratic. By Lemma 4.4.8 and 2(iii) of Proposition 4.4.6, one has [x,y] ∈
LAnn(N) = Ann(N), for all x,y∈N. That implies [[x,y],z]∈Ann(N)N= {0}, for all x,y∈N,
i.e. g(N) is 2-step nilpotent.

It results that the classification of 2-step nilpotent quadratic Lie algebras in [Ova07] and
Chapter 2 is closely related to the classification of symmetric Novikov algebras. For instance,
by Remark 2.2.10, every 2-step nilpotent quadratic Lie algebra of dimension ≤ 5 is Abelian so
that every symmetric Novikov algebra of dimension≤ 5 is commutative. In general, in the case
of dimension ≥ 6, there exists a non-commutative symmetric Novikov algebra by Proposition
4.4.11 below.

Definition 4.4.10. Let N be a Novikov algebra. We say that N is an anti-commutative Novikov
algebra if

xy =−yx, ∀ x,y ∈N.

Proposition 4.4.11. Let N be a Novikov algebra. Then N is anti-commutative if and only if N
is a 2-step nilpotent Lie algebra with the Lie bracket defined by [x,y] = xy, for all x,y ∈N.

Proof. Assume that N is a Novikov algebra such that xy = −yx, for all x,y ∈ N. Since the
commutator [x,y] = xy− yx = 2xy is a Lie bracket, so the product (x,y) 7→ xy is also a Lie
bracket. The identity (III) of Definition 4.4.1 is equivalent to (xy)z = 0, for all x,y,z ∈ N. It
shows that N is a 2-step nilpotent Lie algebra.

Conversely, if N is a 2-step nilpotent Lie algebra then we define the product xy = [x,y], for
all x,y ∈N. It is obvious that the identities (III) and (IV) of Definition 4.4.1 are satisfied since
(xy)z = 0, for all x,y,z ∈N.

By the above proposition, the study of anti-commutative Novikov algebras is reduced to the
study of 2-step nilpotent Lie algebras. Moreover, the formula in this proposition also can be
used to define a 2-step nilpotent symmetric Novikov algebra from a 2-step nilpotent quadratic
Lie algebra. Recall that there exists only one non-Abelian 2-step nilpotent quadratic Lie algebra
of dimension 6 up to isomorphisms (Remark 2.4.21) then there is only one anti-commutative
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symmetric Novikov algebra of dimension 6 up to isomorphisms. However, there exist non-
commutative symmetric Novikov algebras that are not 2-step nilpotent [AB10]. For example,

let N= g6
⊥
⊕ Cc where g6 is the 6-dimensional elementary quadratic Lie algebra in Proposition

2.2.29 and Cc is a pseudo-Euclidean simple Jordan algebra with the bilinear form Bc(c,c) = 1
(obviously, this algebra is a symmetric Novikov algebra and commutative). Then N becomes
a symmetric Novikov algebra with the bilinear form defined by B = Bg6 + Bc where Bg6 is

the bilinear form on g6. We can extend this example for the case N = g
⊥
⊕ J where g is a

2-step nilpotent quadratic Lie algebra and J is a symmetric Jordan-Novikov algebra defined
below. However, these algebras are decomposable. An example in the indecomposable case of
dimension 7 can be found in the last part of this section.

Proposition 4.4.12. Let N be a Novikov algebra. Assume that its product is commutative,
that means xy = yx, for all x,y ∈ N. Then the identities (III) and (IV) of Definition 4.4.1 are
equivalent to the only condition:

(x,y,z) = (xy)z− x(yz) = 0, ∀ x,y,z ∈N.

That means that N is an associative algebra. Moreover, N is also a Jordan algebra. In this
case, we say that N is a Jordan-Novikov algebra. In addition, if N has a non-degenerate asso-
ciative symmetric bilinear form, then we say that N is a symmetric Jordan-Novikov algebra.

Proof. Assume N is a commutative Novikov algebra. By (1) of Proposition 4.4.6, the product
is also associative. Conversely, if one has the condition:

(xy)z− x(yz) = 0, ∀ x,y,z ∈N

then (III) is zero and (IV) is obtained by (yx)z = y(xz), for all x,y,z ∈N.

Example 4.4.13. Recall the pseudo-Euclidean Jordan algebra J in Example 4.2.10 spanned by
{x,x1,y1} where the commutative product on J is defined by:

y2
1 = y1,y1x = x,y1x1 = x1,x2 = x1.

It is easy to check that this product is also associative. Therefore, J is a symmetric Jordan-
Novikov algebra with the bilinear form B defined by B(x1,y1) = B(x,x) = 1 and the other zero.

Example 4.4.14. Pseudo-Euclidean 2-step nilpotent Jordan algebras are symmetric Jordan-
Novikov algebras.

Remark 4.4.15.

(1) By Lemma 4.4.8, if the symmetric Novikov algebra N has Ann(N) = {0} then [x,y] =
xy− yx = 0, for all x,y ∈N. It implies that N is commutative and then N is a symmetric
Jordan-Novikov algebra.

(2) If the product on N is associative then it may not be commutative. An example can be
found in the next part.
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(3) Let N be a Novikov algebra with unit element e, that is ex = xe = x, for all x ∈N. Then
xy = (ex)y = (ey)x = yx, for all x,y ∈N and therefore N is a Jordan-Novikov algebra.

(4) The algebra given in Example 4.4.13 is also a Frobenius algebra, that is a finite-dimensional
associative algebra with unit element equipped having a non-degenerate associative bilin-
ear form.

A well-known result is that every associative algebra N is Lie-admissible and Jordan-
admissible, that is, if (x,y) 7→ xy is the product of N then the products

[x,y] = xy− yx and [x,y]+ = xy+ yx

define respectively a Lie algebra structure and a Jordan algebra structure on N. There exist
algebras satisfying each one of these properties. For example, the non-commutative Jordan
algebras are Jordan-admissible [Sch55] or the Novikov algebras are Lie-admissible. However,
remark that a Novikov algebra may not be Jordan-admissible by the following example:

Example 4.4.16. Let the 2-dimensional algebra N = Ca⊕Cb such that ba = −a, zero other-
wise. Then N is a Novikov algebra [BMH02]. One has [a,b] = a and [a,b]+ =−a. For x ∈N,
denote by ad+x the endomorphism of N defined by ad+x (y) = [x,y]+ = [y,x]+, for all y ∈N. It is
easy to see that

ad+a =

(
0 −1
0 0

)
and ad+b =

(
−1 0
0 0

)
.

Let x = λa+µb ∈N, λ ,µ ∈ C, one has [x,x]+ =−2λ µa and therefore:

ad+x =

(
−µ −λ

0 0

)
and ad+[x,x]+ =

(
0 2λ µ

0 0

)
.

Since [ad+x ,ad+
[x,x]+

] 6= 0 if λ ,µ 6= 0, then N is not Jordan-admissible.

We will give a condition for a Novikov algebra to be Jordan-admissible as follows:

Theorem 4.4.17. Let N be a Novikov algebra satisfying

(x,x,x) = 0, ∀ x ∈N. (V)

Define on N the product [x,y]+ = xy+ yx, for all x,y ∈N then N is a Jordan algebra with this
product. In this case, it is called the associated Jordan algebra of N and denoted by J(N).

Proof. Let x,y ∈N then we can write x3 = x2x = xx2. One has

[[x,y]+, [x,x]+]+ = [xy+ yx,2x2]+ = 2(xy)x2 +2(yx)x2 +2x2(xy)+2x2(yx)

= 2x3y+2(yx)x2 +2x2(xy)+2x2(yx)

and
[x, [y, [x,x]+]+]+ = [x,2yx2 +2x2y]+ = 2x(yx2)+2x(x2y)+2(yx2)x+2(x2y)x

= 2x(yx2)+2x(x2y)+2(yx)x2 +2x3y.
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Therefore, [[x,y]+, [x,x]+]+ = [x, [y, [x,x]+]+]+ if and only if x2(xy)+ x2(yx) = x(yx2)+ x(x2y).
Remark that we have following identities:

x2(xy) = x3y− (x2,x,y) = x3y− (x,x2,y),

x2(yx) = (x2y)x− (x2,y,x) = x3y− (y,x2,x),

x(yx2) = (xy)x2− (x,y,x2) = x3y− (y,x,x2),

x(x2y) = x3y− (x,x2,y).

It means that we have only to check the formula (y,x2,x) = (y,x,x2). It is clear by the identities
(III) and (V). Then we can conclude that J(N) is a Jordan algebra.

Corollary 4.4.18. If (N,B) is a symmetric Novikov algebra satisfying (V) then (J(N),B) is a
pseudo-Euclidean Jordan algebra.

Proof. It is obvious since B([x,y]+,z) = B(xy + yx,z) = B(x,yz + zy) = B(x, [y,z]+), for all
x,y,z ∈ J(N).

Remark 4.4.19. Obviously, Jordan-Novikov algebras are power-associative but in general this
is not true for Novikov algebras. Indeed, if Novikov algebras were power-associative then they
would satisfy (V). That would imply they were Jordan-admissible. But, that is a contradiction
as shown in Example 4.4.16.

Lemma 4.4.20. Let N be a Novikov algebra then [x,yz]+ = [y,xz]+, for all x,y,z ∈N.

Proof. By (III), for all x,y,z ∈N one has (xy)z+ y(xz) = x(yz)+ (yx)z. Combined with (IV),
we obtain:

(xz)y+ y(xz) = x(yz)+(yz)x.

That means [x,yz]+ = [y,xz]+, for all x,y,z ∈N.

Proposition 4.4.21. Let (N,B) be a symmetric Novikov algebra then following identities:

(1) x[y,z] = [y,z]x = 0, and therefore [x,yz]+ = [x,zy]+,

(2) [x,y]+z = [x,z]+y,

(3) [x,yz]+ = [xy,z]+ = x[y,z]+ = [x,y]+z,

(4) x[y,z]+ = [y,z]+x,

hold for all x,y,z ∈N.

Proof. Let x,y,z and t be elements in N.

(1) By Proposition 4.4.6 and Lemma 4.4.8, L[y,z] = 0 so one has (1).

(2) We have B([x,y]+z, t) = B(y, [x,zt]+) = B(y, [z,xt]+) = B([z,y]+x, t). Therefore, [x,y]+z =
[z,y]+x. Since the product [ , ]+ is commutative then [y,x]+z = [y,z]+x.
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(3) By (1) and Lemma 4.4.20, [x,yz]+ = [x,zy]+ = [z,xy]+ = [xy,z]+.

Since B is associative with respect to the product in N and in J(N) then

B(t, [xy,z]+) = B([t,xy]+,z) = B([t,yx]+,z) = B([y, tx]+,z) = B(tx, [y,z]+) = B(t,x[y,z]+).

It implies that [xy,z]+ = x[y,z]+. Similarly, one has:

B([x,y]+z, t) = B(x, [y,zt]+) = B(x, [y, tz]+) = B(x, [t,yz]+) = B([x,yz]+, t).

So [x,y]+z = [x,yz]+.

(4) By (2) and (3), x[y,z]+ = [x,y]+z = [y,x]+z = [y,z]+x.

Corollary 4.4.22. Let (N,B) be a symmetric Novikov algebra then (J(N),B) is a symmetric
Jordan-Novikov algebra.

Proof. We will show that [[x,y]+,z]+ = [x, [y,z]+]+, for all x,y,z ∈N. Indeed, By Proposition
4.4.21 one has

[[x,y]+,z]+ = [2xy,z]+ = 2[z,xy]+ = 2[x,yz]+ = [x, [y,z]+]+.

Hence, the product [ , ]+ are both commutative and associative. That means J(N) be a Jordan-
Novikov algebra.

It results that if a Novikov algebra is symmetric then it is Jordan-admissible. In fact, we
have the much stronger result as follows:

Proposition 4.4.23. Let N be a symmetric Novikov algebra then the product on N is associative,
that is x(yz) = (xy)z, for all x,y,z ∈N.

Proof. First, we need the lemma:

Lemma 4.4.24. Let N be a symmetric Novikov algebra then N2 ⊂ Z(N).

Proof. By Lemma 4.4.8, one has [x,y] = xy−yx∈Ann(N)⊂Z(N), for all x,y∈N. Also, by (4)
of Proposition 4.4.21, x[y,z]+ = [y,z]+x, for all x,y,z ∈N, that means [x,y]+ = xy+ yx ∈ Z(N),
for all x,y ∈N. Hence, xy ∈ Z(N), for all x,y ∈N, i.e. N2 ⊂ Z(N).

Let x,y,z∈N. By above Lemma, one has (yz)x= x(yz). Combined with (IV), (yx)z= x(yz).
On the other hand, [x,y] ∈ Ann(N) implies (yx)z = (xy)z. Therefore, (xy)z = x(yz).

A general proof of the above proposition can be found in [AB10], Lemma II.4 which holds
for all symmetric left-symmetric superalgebras.

By Corollary 4.4.9, if N is a symmetric Novikov algebra then g(N) is 2-step nilpotent.
However, J(N) is not necessarily 2-step nilpotent, for example the one-dimensional Novikov
algebra Cc with c2 = c and B(c,c) = 1. If N is a symmetric 2-step nilpotent Novikov algebra
then (xy)z = 0, for all x,y,z ∈N. So [[x,y]+,z]+ = 0, for all x,y,z ∈N. That implies J(N) is
also a 2-step nilpotent Jordan algebra. The converse is also true.
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Proposition 4.4.25. Let N be a symmetric Novikov algebra. If J(N) is a 2-step nilpotent Jordan
algebra then N is a 2-step nilpotent Novikov algebra.

Proof. Since (4) of Proposition 4.4.21, if x,y,z ∈N then one has

[[x,y]+,z]+ = [x,y]+z+ z[x,y]+ = 2[x,y]+z = 0.

It means [x,y]+ = xy+ yx ∈ Ann(N). On the other hand, [x,y] = xy− yx ∈ Ann(N) then xy ∈
Ann(N), for all x,y ∈N. Therefore, N is 2-step nilpotent.

By Proposition 4.4.11, since the lowest dimension of non-Abelian 2-step nilpotent quadratic
Lie algebras is six then examples of non-commutative symmetric Novikov algebras must be at
least six dimensional. One of those can be found in [ZC07] and it is also described in term of
double extension in [AB10]. We recall this algebra as follows:

Example 4.4.26. First, we define the character matrix of a Novikov algebra N= span{e1, . . . ,en}
by ∑k ck

11ek . . . ∑k ck
1nek

... . . . ...
∑k ck

n1ek . . . ∑k ck
nnek

 ,

where ck
i j are the structure constants of N, i. e. eie j = ∑k ck

i jek.
Now, let N6 be a 6-dimensional vector space spanned by {e1, ...,e6} then N6 is a non-

commutative symmetric Novikov algebras with character matrix
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 e3 0
0 0 0 0 0 e1
0 0 0 e2 0 0


and the bilinear form B defined by: 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 .

Obviously, in this case, N6 is a 2-step nilpotent Novikov algebra with Ann(N) =N2. More-
over, N6 is indecomposable since it is non-commutative and all of symmetric Novikov algebras
up to dimension 5 are commutative.

In fact, in the next proposition, we prove that all non-commutative symmetric Novikov
algebras of dimension 6 are 2-step nilpotent. We need the following lemma:
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Lemma 4.4.27. Let N be a non-Abelian symmetric Novikov algebra then N = z
⊥
⊕ l where

z⊂Ann(N) and l is a reduced symmetric Novikov algebra, that means l 6= {0} and Ann(l)⊂ l2.

Proof. Let z0 = Ann(N)∩N2, z is a complementary subspace of z0 in Ann(N) and l = z⊥.
If x is an element in z such that B(x,z) = 0 then B(x,N2) = 0 since Ann(N) = (N2)⊥. As a
consequence, B(x,z0) = 0 and then B(x,Ann(N)) = 0. Hence, x must be in N2 since Ann(N) =
(N2)⊥. It shows that x = 0 and z is non-degenerate. By Lemma 4.4.5, l is a non-degenerate

ideal and N= z
⊥
⊕ l.

Since N is non-Abelian then l 6= {0}. Moreover, l2 =N2 implies z0 ⊂ l2. It is easy to see
that z0 = Ann(l) and the lemma is proved.

Proposition 4.4.28. Let N be a non-commutative symmetric Novikov algebras of dimension 6
then N is 2-step nilpotent.

Proof. Let N= span{x1,x2,x3,z1,z2,z3}. By Remark 2.4.21, there exists only one non-Abelian
2-step nilpotent quadratic Lie algebra of dimension 6 (up to isomorphisms) then g(N) = g6.
We can choose the basis such that [x1,x2] = z3, [x2,x3] = z1, [x3,x1] = z2 and the bilinear form
B(xi,zi) = 1, i = 1,2,3, the other are zero.

Recall that Z(N) = {x ∈ N | xy = yx, ∀ y ∈ N} then Z(N) = {x ∈ N | [x,y] = 0, ∀ y ∈
N}. Therefore, Z(N) = span{z1,z2,z3} and N2 ⊂ Z(N) by Lemma 4.4.24. Consequently,
dim(N2)≤ 3.

By Lemma 4.4.27, if N is not reduced then N= z
⊥
⊕ l with z⊂Ann(N) is a non-degenerate

ideal and z 6= {0}. It implies that l is a symmetric Novikov algebra having dimension ≤ 5
and then l is commutative. This is a contradiction since N is non-commutative. Therefore,
N must be reduced and Ann(N) ⊂ N2. Moreover, dim(N2)+ dim(Ann(N)) = 6 so we have
N2 = Ann(N) = Z(N). It shows that N is 2-step nilpotent.

In this case, the character matrix of N in the basis {x1,x2,x3,z1,z2,z3} is given by:(
A 0
0 0

)
,

where A is a 3×3-matrix defined by the structure constants xix j = ∑k ck
i jzk, 1≤ i, j,k ≤ 3, and

B has the matrix: 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 .

Since B(xix j,xk) = B(xi,x jxk) = B(x j,xkxi) then one has ck
i j = ci

jk = c j
ki, 1≤ i, j,k ≤ 3.

Next, we give some simple properties for symmetric Novikov algebras as follows:

Proposition 4.4.29. Let N be a non-commutative symmetric Novikov algebra. If N is reduced
then

3≤ dim(Ann(N))≤ dim(N2)≤ dim(N)−3.
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Proof. By Lemma 4.4.24, N2 ⊂ Z(N). Moreover, N non-commutative implies that g(N) is
non-Abelian and by Remark 2.2.10, dim([N,N]) ≥ 3. Therefore, dim(Z(N)) ≤ dim(N)− 3
since Z(N) = [N,N]⊥. Consequently, dim(N2)≤ dim(N)−3 and then dim(Ann(N))≥ 3.

Corollary 4.4.30. Let N be a non-commutative symmetric Novikov algebra of dimension 7. If
N is 2-step nilpotent then N is not reduced.

Proof. Assume that N is reduced then dim(Ann(N)) = 3 and dim(N2) = 4. It implies that there
must have a non-zero element x∈N2 such that xN 6= {0} and then N is not 2-step nilpotent.

Now, we give a more general result for symmetric Novikov algebra of dimension 7 as fol-
lows:

Proposition 4.4.31. Let N be a non-commutative symmetric Novikov algebra of dimension 7.
If N is reduced then there are only two cases:

(1) N is 3-step nilpotent and indecomposable.

(2) N is decomposable by N = Cx
⊥
⊕N6 where x2 = x and N6 is a non-commutative sym-

metric Novikov algebra of dimension 6.

Proof. Assume that N is reduced then dim(Ann(N))= 3, dim(N2)= 4 since Ann(N)⊂N2 and
Ann(N) = (N2)⊥. By [Bou59], Ann(N) is totally isotropic then there exist a totally isotropic
subspace V and a non-zero x of N such that

N= Ann(N)⊕Cx⊕V,

where Ann(N)⊕V is non-degenerate, B(x,x) 6= 0 and x⊥ = Ann(N)⊕V . As a consequence,
Ann(N)⊕Cx = (Ann(N))⊥ =N2.

Consider the left-multiplication operator Lx : Cx⊕V → Ann(N)⊕Cx, Lx(y) = xy, for all
y ∈ Cx⊕V . Denote by p the projection Ann(N)⊕Cx→ Cx.

• If p◦Lx = 0 then (NN)N= xN⊂Ann(N). Therefore, ((NN)N)N= {0}. That implies
N is 3-nilpotent. If N is decomposable then N must be 2-step nilpotent. This is in
contradiction to Corollary 4.4.30.

• If p◦Lx 6= 0 then there is a non-zero y ∈Cx⊕V such that xy = ax+ z with 0 6= a ∈C and
z∈Ann(N). In this case, we can choose y such that a = 1. It implies that (x2)y = x(xy) =
x2.

If x2 = 0 then 0 = B(x2,y) = B(x,xy) = B(x,x). This is a contradiction. Therefore, x2 6= 0.
Since x2 ∈ Ann(N)⊕Cx then x2 = z′+µx where z′ ∈ Ann(N) and µ ∈ C must be non-
zero. By setting x′ := x

µ
and z′′ = z′

µ2 , we get (x′)2 = z′′+ x′. Let x1 := (x′)2, one has:

x2
1 = (x′)2(x′)2 = (z′′+ x′)(z′′+ x′) = x1.

Moreover, for all t = λx+v∈Cx⊕V , we have t(x2) = (x2)t = x(xt) = λ µ(x2). It implies
that Cx2 = Cx1 is an ideal of N.

Since B(x1,x1) 6= 0, by Lemma 4.4.5 one has N = Cx1
⊥
⊕ (x1)

⊥. Certainly, (x1)
⊥ is a

non-commutative symmetric Novikov algebra of dimension 6.
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Proposition 4.4.32. Let N be a symmetric Novikov algebra. If g(N) or J(N) is reduced then
N is reduced.

Proof. Assume that N is not reduced then there is a non-zero x ∈Ann(N) such that B(x,x) = 1.
Since [x,N] = [x,N]+ = 0 then g(N) and J(N) are not reduced.

Corollary 4.4.33. Let N be a symmetric Novikov algebra. If g(N) is reduced then N must be
2-step nilpotent.

Proof. Since g(N) is reduced then Ann(N)⊂N2. On the other hand, dim(Z(N))= dim([N,N])=
1
2 dim(N) so dim(Ann(N)) = dim(N2). Therefore, Ann(N) = N2 and N is 2-step nilpo-
tent.

Example 4.4.34. By Example 4.4.2, every 2-step nilpotent algebra is Novikov then we will give
here an example of non-commutative symmetric Novikov algebras of dimension 7 which is 3-
step nilpotent. Let N = Cx⊕N6 be a 7-dimensional vector space where N6 is the symmetric
Novikov algebra of dimension 6 in Example 4.4.26. Define the product on N by

xe4 = e4x = e1,e4e4 = x,e4e5 = e3,e5e6 = e1,e6e4 = e2,

and the symmetric bilinear form B defined by

B(x,x) = B(e1,e4) = B(e2,e5) = B(e3,e6) = 1
B(e4,e1) = B(e5,e2) = B(e6,e3) = 1,

0 otherwise.

Note that in above Example, g(N) is not reduced since x ∈ Z(N).
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Appendix A

In this appendix, we recall some facts on skew-symmetric maps used in this thesis. Nothing
here is new, but short proofs are given for the sake of completeness.

Throughout this section, let V be a vector space endowed with a non-degenerate bilinear
form Bε (quadratic or symplectic) and C be a skew-symmetric map in gε then one has the useful
identity ker(C) = (Im(C))⊥.

Lemma A.1. There exist subspaces W and N of V such that:

(1) N ⊂ ker(C), C(W )⊂W and V =W
⊥
⊕ N.

(2) Let BW = Bε |W×W and CW = C|W . Then BW is non-degenerate, CW ∈ gε(W,BW ) and
ker(CW )⊂ Im(CW ) = Im(C).

Proof. We follow the proof of Proposition 2.1.5. Let N0 = ker(C)∩ Im(C) and let N be a
complementary subspace of N0 in ker(C), ker(C) = N0⊕N. Since ker(C) = (Im(C))⊥, we have

Bε(N0,N) = {0} and N ∩N⊥ = {0}. So, if W = N⊥, one has V =W
⊥
⊕ N. From C(N) = {0},

we deduce that C(W )⊂W .
It is clear that Bε is non-degenerate on W and that CW ∈ gε(W ). Moreover, since C(W )⊂W

and C(N) = {0}, then Im(C) = Im(CW ). It is immediate that ker(CW ) = N0, so ker(CW ) ⊂
Im(CW ).

Lemma A.2. Assume that ker(C)⊂ Im(C). Denote by L = ker(C). Let {L1, . . . ,Lr} be a basis
of L.

(1) If dim(V ) is even, there exist subspaces L′ with basis {L′1, . . . ,L′r}, U with basis {U1, . . . ,Us}
and U ′ with basis {U ′1, . . . ,U ′s} such that Bε(Li,L′j) = δi j, for all 1≤ i, j≤ r, L and L′ are
totally isotropic, Bε(Ui,U ′j) = δi j, for all 1≤ i, j ≤ s, U and U ′ are totally isotropic and

V = (L⊕L′)
⊥
⊕ (U⊕U ′).

Moreover Im(C) = L
⊥
⊕ (U⊕U ′) and C : L′

⊥
⊕ (U⊕U ′)→ L

⊥
⊕ (U⊕U ′) is a bijection.

(2) If ε = 1 and dim(V ) is odd, there exist subspaces L′, U and U ′ as in (1) and v ∈ V such
that Bε(v,v) = 1 and

V = (L⊕L′)
⊥
⊕ Cv

⊥
⊕ (U⊕U ′).
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Moreover Im(C) = L
⊥
⊕ Cv

⊥
⊕ (U ⊕U ′) and C : L′

⊥
⊕ Cv

⊥
⊕ (U ⊕U ′)→ L

⊥
⊕ Cv

⊥
⊕ (U ⊕

U ′) is a bijection.

(3) If ε = 1, in both cases, rank(C) is even.

Proof. Since (ker(C))⊥ = Im(C), L is isotropic.

(1) If dim(V ) is even, there exist maximal isotropic subspaces W1 and W2 such that V =
W1⊕W2 [Bou59] and L ⊂W1. Let U be a complementary subspace of L in W1, W1 =
L⊕U and {U1, . . . ,Us} a basis of U . Consider the isomorphism Ψ : W2→W ∗1 defined by
Ψ(w2)(w1) = Bε(w2,w1), for all w1 ∈W1, w2 ∈W2. Define L′i = ψ−1(L∗i ), 1≤ i≤ r, L′ =
span{L′1, . . . ,L′r}, U ′j = ψ−1(U∗j ), 1 ≤ j ≤ s, U ′ = span{U ′1, . . . ,U ′s}. Then Bε(Li,L′j) =
δi j, 1≤ i, j ≤ r, L and L′ are isotropic, Bε(Ui,U ′j) = δi j, for all 1≤ i, j ≤ s, U and U ′ are
isotropic and

V = (L⊕L′)
⊥
⊕ (U⊕U ′).

Since Im(C) = L⊥, we have Im(C) = L
⊥
⊕ (U ⊕U ′). Finally, if v ∈ L′

⊥
⊕ (U ⊕U ′) and

C(v) = 0, then v ∈ L. So v = 0. Therefore C is one to one from L′
⊥
⊕ (U ⊕U ′) into

L
⊥
⊕ (U⊕U ′) and since the dimensions are the same, C is a bijection.

(2) There exist maximal isotropic subspaces W1 and W2 such that V = (W1⊕W2)
⊥
⊕ Cv, with

v ∈V such that Bε(v,v) = 1 and L ⊂W1 [Bou59]. Then the proof is essentially the same
as in (1).

(3) Assume that dim(V ) is even. Define a bilinear form ∆ on L′
⊥
⊕ (U ⊕U ′) by ∆(v1,v2) =

Bε(v1,C(v2)), for all v1, v2 ∈ L′
⊥
⊕ (U ⊕U ′). Since C ∈ o(V ), ∆ is skew-symmetric. Let

v1 ∈ L′
⊥
⊕ (U⊕U ′) such that ∆(v1,v2) = 0, for all v2 ∈ L′

⊥
⊕ (U⊕U ′). Then Bε(v1,w) = 0,

for all w ∈ L
⊥
⊕ (U ⊕U ′). It follows that Bε(v1,w) = 0, for all w ∈V , so v1 = 0 and ∆ is

non-degenerate. So dim(L′
⊥
⊕ (U ⊕U ′) is even. Therefore dim(L′) = dim(L) is even and

rank(C) is even. If V is odd-dimensional, the proof is completely similar.

Corollary A.3. If C ∈ o(V ), then rank(C) is even.

Proof. By Lemma A.1, Im(C) = Im(CW ) and rank(CW ) is even by the preceding Lemma.

For instance, if C ∈ o(V ) and C is invertible, then dim(V ) must be even. But this can also
be proved directly: when C is invertible, then the skew-symmetric form ∆C on V defined by
∆C(v1,v2) = Bε(v1,C(v2)), for all v1, v2 ∈V , is clearly non-degenerate.

When C is semisimple (i.e. diagonalizable), we have V = ker(C)
⊥
⊕ Im(C) and C|Im(C) is

invertible. So semisimple elements are completely described by:
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Lemma A.4. Assume that C is semisimple and invertible. Then there is a basis {e1, . . . ,ep,
f1, . . . , fp} of V such that Bε(ei,e j) = Bε( fi, f j) = 0, Bε(ei, f j) = δi j, 1≤ i, j≤ p. For 1≤ i≤ p,
there exist non-zero λi ∈ C such that C(ei) = λiei and C( fi) =−λi fi.

Moreover, if Λ denotes the spectrum of C, then λ ∈Λ if and only if−λ ∈Λ, λ and−λ have
the same multiplicity.

Proof. We prove the result by induction on dim(V ). Assume that dim(V ) = 2. Let {e1,e2}
be an eigenvector basis of V corresponding to eigenvalues λ1 and λ2. We have Bε(C(v),v′) =
−Bε(v,C(v′)) and C is invertible, so Bε(e1,e1) = Bε(e2,e2) = 0, Bε(e1,e2) 6= 0 and λ2 =−λ1.

Let f1 =
1

Bε(e1,e2)
e2, then the basis {e1, f1} is a convenient basis.

Assume that the result is true for vector spaces of dimension n with n ≤ 2(p− 1). As-
sume dim(V ) = 2p. Let {e1, . . . ,e2p} be an eigenvector basis with corresponding eigenvalues
λ1, . . . ,λ2p. As before, Bε(ei,ei) = 0, 1 ≤ i ≤ 2p, so there exists j such that Bε(e1,e j) 6=

0. Then λ j = −λ1. Let f1 =
1

Bε(e1,e j)
e j. Then Bε |span{e1, f1} is non-degenerate, so V =

span{e1, f1}
⊥
⊕ V1 where V1 = span{e1, f1}⊥. But C maps V1 into itself, so we can apply the

induction assumption and the result follows.

As a consequence, we have this classical result, used in Chapter 1:

Lemma A.5.

(1) Let C be a semisimple element of o(n). Then C belongs to the SO(n)-adjoint orbit
of an element of the standard Cartan subalgebra of o(n) (i.e., an element with matrix
diag2p(λ1, . . . ,λp,−λ1, . . . ,−λp) if n = 2p and diag2p+1(λ1, . . . ,λp,0,−λ1, . . . ,−λp) if
n = 2p+1 in a canonical basis of Cn).

(2) Let C be a semisimple element of sp(2p). Then C belongs to the Sp(2p)-adjoint orbit
of an element of the standard Cartan subalgebra of sp(2p) (i.e., an element with matrix
diag2p(λ1, . . . ,λp,−λ1, . . . ,−λp)).

(3) Let C and C′ be semisimple elements of gε . Then C and C′ are in the same Iε -adjoint orbit
if and only if they have the same spectrum, with same multiplicities.

Proof.

(1) We have Cn = ker(C)
⊥
⊕ Im(C) and rank(C) is even. So dim(ker(C)) is even if n = 2p

and odd, if n = 2p+1. Then apply Lemma A.4 to C|Im(C) to obtain the result.

(2) The proof is similar to (1) with n even.

(3) If C and C′ have the same spectrum and their eigenvalues having same multiplicities, they
are Iε -conjugate to the same element of the standard Cartan subalgebra.
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Remark A.6.

(1) Caution: O(n)-adjoint orbits are generally not the same as SO(n)-adjoint orbits.

(2) Lemma A.5 (1) is a particular case of a general and classical result on semisimple Lie
algebras: any semisimple element of a semisimple Lie algebra belongs to a Cartan subal-
gebra and all Cartan subalgebras are conjugate under the adjoint action [Sam80]. Here, gε

are semisimple Lie algebras and the corresponding adjoint groups are SO(n) and Sp(2p).
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Here we prove:

Lemma B.1. Let (g,B) be a non-Abelian 5-dimensional quadratic Lie algebra. Then g is a
singular quadratic Lie algebra.

Proof.

• We assume g is not solvable and then we write g = s⊕ r where s is semisimple and r is
the radical of g [Bou71]. Then s' sl(2) and B|s×s = λκ where κ is the Killing form.

If λ = 0, consider Ψ : s→ r∗ defined by Ψ(S)(R) = B(S,R), for all S ∈ s, R ∈ r. Then
Ψ is one-to-one and Ψ(ad(X)(S)) = ad∗(X)(ψ(S)), for all X , S ∈ s. So Ψ must be a
homomorphism from the representation (s,ad |s) of s into the representation (r∗,ad∗ |s),
so Ψ = 0, a contradiction.

So λ 6= 0. Then B|s×s is non-degenerate. Therefore g = s
⊥
⊕ s⊥ and ad(s)|s⊥ is an or-

thogonal 2-dimensional representation of s. Hence, ad(s)|s⊥ = 0 and [s,s⊥] = 0. We
have B(X , [Y,Z]) = B([X ,Y ],Z) = 0, for all X ∈ s, Y ∈ s⊥, Z ∈ g. It follows that s⊥ is an
ideal of g and therefore a quadratic 2-dimensional Lie algebra. So s⊥ is Abelian. Finally,

g= s
⊥
⊕ s⊥ with s⊥ a central ideal of g, so dup(g) = dup(s) = 3.

• We assume that g is solvable and we write g= l
⊥
⊕ z with z a central ideal of g (Proposition

2.1.5). Then dim(l)≥ 3. If dim(l) = 3 or 4, then it is proved in Proposition 2.2.15 that l is
singular, so g is singular. So we can assume that g is reduced, i.e. Z(g)⊂ [g,g]. It results
that dim(Z(g)) = 1 or 2 (Proposition 2.1.5 (3) and Remark 2.2.10).

– If dim(Z(g)) = 1, Z(g) = CX0. Then dim([g,g]) = 4 and [g,g] = X⊥0 . We can
choose Y0 such that B(X0,Y0) = 1 and B(Y0,Y0) = 0. Let q = (CX0⊕CY0)

⊥. Then

g = (CX0⊕CY0)
⊥
⊕ q. If X , X ′ ∈ q, then B(X0, [X ,X ′]) = B([X0,X ],X ′) = 0, so

[X ,X ′] ∈ X⊥0 . Write [X ,X ′] = λ (X ,X ′)X0 +[X ,X ′]q with [X ,X ′]q ∈ q. Remark that
[X , [X ′,X ′′]] = λ (X , [X ′,X ′′]q)X0 + [X , [X ′,X ′′]q]q, for all X , X ′, X ′′ ∈ q. So [·, ·]q
satisfies the Jacobi identity. Moreover B([X ,X ′],X ′′) = −B(X ′, [X ,X ′′]q). But also
B([X ,X ′],X ′′) = B([X ,X ′]q,X ′′). So (q, [·, ·]q,B|q×q) is a 3-dimensional quadratic
Lie algebra.
If q is an Abelian Lie algebra, then [X ,X ′]∈CX0, for all X , X ′ ∈ q. Write B(Y0, [X ,X ′])
= B([Y0,X ],X ′) to obtain [X ,X ′] = B(ad(Y0)(X),X ′)X0, for all X , X ′ ∈ q. Since
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dim(q)= 3 and ad(Y0)|q is skew-symmetric, there exists Q0 ∈ q such that ad(Y0)(Q0)=
0. It follows that Q0 ∈ Z(g) and that is a contradiction since dim(Z(g)) = 1.
Therefore (q, [·, ·]q)' sl(2). Consider

0→ CX0→ X⊥0 → q→ 0.

Then there is a section σ : q→ X⊥0 such that σ([X ,X ′]q) = [σ(X),σ(X ′)], for all X ,
X ′ ∈ q [Bou71]. Then σ(q) is a Lie subalgebra of g, isomorphic to sl(2) and that is
a contradiction since g is solvable.

– If dim(Z(g)) = 2, then we choose a non-zero X0 ∈ Z(g) and Y0 ∈ g such that

B(X0,Y0) = 1 and B(Y0,Y0) = 0. Let q= (CX0⊕CY0)
⊥. Then g= (CX0⊕CY0)

⊥
⊕ q

and as in the preceding case, [X ,X ′] ∈ X⊥0 , for all X , X ′ ∈ q. Write [X ,X ′] =
λ (X ,X ′)X0+[X ,X ′]q with [X ,X ′]q ∈ q. Same arguments as in the preceding case al-
low us to conclude that [·, ·]q satisfies the Jacobi identity and that B|q×q is invariant.
So (q, [·, ·]q,B|q×q) is a 3-dimensional quadratic Lie algebra.
If q ' sl(2), then apply the same reasoning as in the preceding case to obtain a
contradiction with g solvable.
If q is an Abelian Lie algebra, then [X ,X ′] ∈ CX0, for all X , X ′ ∈ q. Again, as in the
preceding case, [X ,X ′] = B(ad(Y0)(X),X ′)X0, for all X , X ′ ∈ q. Then it is easy to
check that g is the double extension of the quadratic vector space q by C = ad(Y0)|q.
By Proposition 2.2.28, g is singular.

Remark B.2. Let us give a list of all non-Abelian 5-dimensional quadratic Lie algebras:

• g
i' o(3)

⊥
⊕ C2 with C2 central, o(3) equipped with bilinear form λκ , λ ∈ C, λ 6= 0 and

κ the Killing form. We have dup(g) = 3.

• g
i' g4

⊥
⊕ C with C central, g4 the double extension of C2 by

(
1 0
0 −1

)
, g is solvable,

non-nilpotent and dup(g) = 3.

• g
i' g5, the double extension of C3 by

0 1 0
0 0 −1
0 0 0

, g is nilpotent and dup(g) = 3.

See Proposition 2.2.29 for the definition of g4 and g5. Remark that g4
⊥
⊕ C is actually the

double extension of C3 by

1 0 0
0 0 0
0 0 −1


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We will classify (up to isomorphisms) 3-forms on a vector space V with 1 ≤ dim(V ) ≤ 5
that can be applied in the classification of quadratic solvable or 2-step nilpotent Lie algebras of
low dimension in Chapter 2. The method is based only on changes of basis in the dual space
V ∗.

Let I ∈A 3(V ) be a 3-form on V . It is obvious that I = 0 if dim(V ) = 1 or 2.

Case 1: dim(V ) = 3

If I 6= 0 then there exists a basis {α1,α2,α3} of V ∗ such that I = aα1∧α2∧α3. Replace α1
by 1

aα1, we get the result
I = α1∧α2∧α3.

Case 2: dim(V ) = 4

We will show that every 3-form on V is decomposable. Hence A 3(V ) has only a non-zero
3-form (up to isomorphisms). Let {α1,α2,α3,α4} be a basis of V ∗. Then I has the following
form:

I = aα1∧α2∧α3 +bα1∧α2∧α4 + cα1∧α3∧α4 +dα2∧α3∧α4,

where a,b,c,d ∈ C. We rewrite:

I = α1∧α2∧ (aα3 +bα4)+(cα1 +dα2)∧α3∧α4.

If aα3+bα4 = 0 or cα1+dα2 = 0 then I is decomposable. If aα3+bα4 6= 0 and cα1+dα2 6=
0, then we can assume that a 6= 0 and c 6= 0. We replace b

a by b′ and d
c by d′ to get:

I = aα1∧α2∧ (α3 +b′α4)+ c(α1 +d′α2)∧α3∧α4.

We change the basis of V ∗ as follows:

β1 = α1 +d′α2, β2 = α2, β3 = α3 +b′α4, β4 = α4.

Then I = aβ1∧β2∧β3 + cβ1∧β3∧β4. It means that

I = β1∧ (aβ2− cβ4)∧β3.

Therefore, I is decomposable.
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Case 3: dim(V ) = 5

Proposition C.1. If I is an indecomposable 3-form on V then there exists a basis {α1,α2,α3,
α4,α5} of V ∗ such that I has the form

I = α1∧ (aα2∧α3 +bα4∧α5),

where a,b ∈ C.

Proof. First, we prove the following lemma:

Lemma C.2. Let V1 be a 4-dimensional vector space and J be a 2-form on V1. Then there exists
a basis {β1,β2,β3,β4} of V ∗1 such that

J = pβ1∧β2 +qβ3∧β4,

where p,q ∈ C.

Proof. Let {β1,β2,β3,β4} be a basis of V ∗1 then J has the form:

J = β1∧ (aβ2 +bβ3 + cβ4)+β2∧ (dβ3 + eβ4)+ f β3∧β4,

where a,b,c,d,e, f ∈ C.

(1) If aβ2 +bβ3 + cβ4 = 0 and dβ3 + eβ4 = 0 then the result follows.

(2) If aβ2 + bβ3 + cβ4 = 0 and dβ3 + eβ4 6= 0 then we can assume d 6= 0. Replace with
β ′3 = β3 +

e
d β4 and β ′2 = β2− f

d β4 then we have the result.

(3) If aβ2+bβ3+cβ4 6= 0 and dβ3+eβ4 = 0 then we can assume that a 6= 0 because if a = 0
then we return (2). Replace with β ′2 = β2 +

b
aβ3 +

c
aβ4 one has the result.

(4) If f = 0 we can assume d 6= 0. Replace with β ′3 = β3 +
e
d β4 then we return (3).

(5) If aβ2 +bβ3 + cβ4 6= 0 and dβ3 + eβ4 6= 0 then we can assume that d 6= 0. Replace with
β ′3 = β3 +

e
d β4 then we return the case (4). Therefore, J has only the form

J = pβ1∧β2 +qβ3∧β4,

where p,q ∈ C.

By the above Lemma we can choose {α1,α2,α3,α4,α5} a basis of V ∗ such that I has the
form:

I = α1∧Ω+aα2∧α3∧α4 +bα2∧α3∧α5 + cα2∧α4∧α5 +dα3∧α4∧α5,

where Ω = pα2∧α3 +qα4∧α5 and a,b,c,d, p,q ∈ C. Now, we need the next lemma:
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Lemma C.3. The element I always has the form:

I = α1∧Ω+ I1,

where I1 = 0 or I1 decomposable. More particularly, I has the following possible forms:

a) I = α1∧Ω.

b) I = α1∧Ω+α2∧α3∧ (aα4 +bα5), a 6= 0.

c) I = α1∧Ω+(cα2 +dα3)∧α4∧α5, c 6= 0.

d) I = α1∧Ω+α2∧ (aα3− cα5)∧α4, a,c 6= 0

Proof. We rewrite I =α1∧Ω+α2∧α3∧(aα4+bα5)+(cα2+dα3)∧α4∧α5. If aα4+bα5 = 0
or cα2 +dα3 = 0 then I has the form a), b) or c). If aα4 +bα5 6= 0 and cα2 +dα3 6= 0 then we
can assume that a 6= 0 and c 6= 0. Replace with b′ = b

a , d′ = d
c and

α
′
2 = α2 +d′α3, α

′
4 = α4 +b′α5.

Note that our change keeps the form of Ω. Therefore, one has:

I = α1∧Ω+aα
′
2∧α3∧α

′
4 + cα

′
2∧α

′
4∧α5.

It means that I has the form d).

Clearly, the forms b) and c) of I are equivalent then we only consider the form b). We rewrite
the form b) as follows:

I = α1∧ (pα2∧α3 +qα4∧α5)+α2∧α3∧ (aα4 +bα5)

= α2∧α3∧ (pα1 +aα4 +bα5)+qα1∧α4∧α5.

Replace with p′ = p
a , b′ = b

a and after that α ′4 = p′α1 +α4 +b′α5 then we obtain

I = α
′
4∧ (aα2∧α3−qα1∧α5).

For the form d), we rewirite

I = α2∧α3∧ (pα1 +aα4)+(qα1 + cα2)∧α4∧α5.

If p = q = 0 then I = α2∧α3∧ (−aα3 + cα5) decomposable.
If p 6= 0, let a′ = a

p and set α ′1 = α1 +a′α4 then

I = pα2∧α3∧α
′
1 +(qα

′
1 + cα2)∧α4∧α5.

Let q′ = q
c and α ′2 = qα ′1 +α2 then

I = α
′
2∧ (pα3∧α

′
1 + cα4∧α5).
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Corollary C.4. Let V be a vector space, V ∗ its dual space and I be a 3-form on V . Define

VI = {α ∈V ∗ | α ∧ I = 0} and dup(V ) = dim(VI).

Then dup(V ) 6= 0 if 1≤ dim(V )≤ 5.

Proof. It is easy to see that if I = 0 then VI =V ∗. If I is a non-zero decomposable 3-form then
dup(V ) = 3. Assume that I is indecomposable. Since dim(V ) ≤ 5 then it happens only in the
case dim(V ) = 5. In this case I has the form as in Proposition C.1 with a,b 6= 0. Therefore one
has dup(V ) = 1.

Consequently, we obtain the result given in Appendix B as follows:

Corollary C.5. Let g be a non-Abelian quadratic Lie algebra such that dim[g,g] ≤ 5. Then g
is singular.

Proof. Define the element I as in Proposition 2.2.1 then I ∈
∧3(WI) where WI = φ([g,g])

(Corollary 2.2.6). Since dim[g,g]≤ 5 then dup(g) 6= 0 and therefore g is singular.

Corollary C.6. Let g be a non-Abelian quadratic solvable Lie algebra such that dim(g) ≤ 6.
Then g is singular.

Proof. Since g is solvable then [g,g] 6= g and therfore dim[g,g]≤ 5. Apply the above corollary,
we get the result.

In the case of higher dimensions, we have the following proposition:

Proposition C.7. Let V be a vector space such that dim(V ) ≥ 6. Then there exists an element
I ∈A 3(V ) satisfying ιx(I) 6= 0 for all non-zero x in V .

Proof. We denote by n = dim(V ) and fix a basis {α1, . . . ,αn} of V ∗. Then the element I is
defined in the following cases:

• If n = 3k then we set

I = α1∧α2∧α2 + · · ·+αn−2∧αn−1∧αn.

• If n = 3k+1 = 3(k−2)+7 then we set

I = α1∧α2∧α2 + · · ·+αn−9∧αn−8∧αn−7

+αn−6∧ (αn−5∧αn−4 +αn−3∧αn−2 +αn−1∧αn).

• If n = 3k+2 = 3(k−1)+5 then we set

I = α1∧α2∧α2 + · · ·+αn−7∧αn−6∧αn−5

+αn−4∧ (αn−3∧αn−2 +αn−1∧αn).

138



Appendix D

In the last appendix, we will prove a result needed to Chapter 4 as follows:

Lemma D.1. Let (V,B) be a quadratic vector space, C be an invertible endomorphism of V
such that

(1) B(C(x),y) = B(x,C(y)), for all x,y ∈V ,

(2) 3C−2C2 = Id.

Then there is an orthogonal basis {e1, ...,en} of B such that C is diagonalizable with eigenvalues
1 and 1

2 .

Proof. First, one has (2) equivalent to C(C− Id) = 1
2(C− Id). Therefore, if x is a vector in V

such that C(x)−x 6= 0 then C(x)−x is an eigenvector with respect to eigenvalue 1
2 . We prove the

result by induction on dim(V ). If dim(V ) = 1, let {e} be an orthogonal basis of V and assume
C(e) = λe for some λ ∈ C. Then by (2) one has λ = 1 or λ = 1

2 .
Assume that the result is true for quadratic vector spaces of dimension n, n ≥ 1. Assume

dim(V ) = n+ 1. If C = Id then the result follows. If C 6= Id then there exists x ∈ V such that
C(x)− x 6= 0. Let e1 =C(x)− x then C(e1) =

1
2e1.

If B(e1,e1) = 0 then there is e2 ∈ V such that B(e2,e2) = 0, B(e1,e2) = 1 and

V = span{e1,e2}
⊥
⊕ V1 where V1 = span{e1,e2}⊥. Since 1

2 = B(C(e1),e2) = B(e1,C(e2)) one
has C(e2) =

1
2e2 + y+ βe1 with y ∈ V1,β ∈ C. Let f1 = C(e2)− e2 = −1

2e2 + y+ βe1 then
C( f1) =

1
2 f1 and B(e1, f1) = −1

2 . If B( f1, f1) 6= 0 then let ẽ1 = f1. If B( f1, f1) = 0 then let

ẽ1 = e1 + f1. In the bold cases, we have B(ẽ1, ẽ1) 6= 0 and C(ẽ1) =
1
2 ẽ1. Let V = Cẽ1

⊥
⊕ ẽ1

⊥

then ẽ1
⊥ is non-degenerate, C maps ẽ1

⊥ into itself. Therefore the result follows by induction.
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Hermann, Paris, 1958. ↑vi, 23
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Hermann, Paris, 1971. ↑133, 134

[BP89] H. Benamor and G. Pinczon, The graded Lie algebra structure of Lie superalgebra deformation the-
ory, Lett. Math. Phys. 18 (1989), no. 4, 307 – 313. ↑62, 64, 66, 74

[Bur06] D. Burde, Classical r-matrices and Novikov algebras, Geom. Dedicata 122 (2006), 145–157. ↑116

[CM93] D. H. Collingwood and W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand
Reihnhold Mathematics Series, New York, 1993. ↑viii, 3, 5, 8, 10, 12
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Abstract

In this thesis, we defind a new invariant of quadratic Lie algebras and quadratic Lie super-
algebras and give a complete study and classification of singular quadratic Lie algebras and
singular quadratic Lie superalgebras, i.e. those for which the invariant does not vanish. The
classification is related to adjoint orbits of Lie algebras o(m) and sp(2n). Also, we give an iso-
morphic characterization of 2-step nilpotent quadratic Lie algebras and quasi-singular quadratic
Lie superalgebras for the purpose of completeness. We study pseudo-Euclidean Jordan alge-
bras obtained as double extensions of a quadratic vector space by a one-dimensional algebra
and 2-step nilpotent pseudo-Euclidean Jordan algebras, in the same manner as it was done for
singular quadratic Lie algebras and 2-step nilpotent quadratic Lie algebras. Finally, we focus
on the case of a symmetric Novikov algebra and study it up to dimension 7.

Key-words: quadratic Lie algebras, quadratic Lie superalgebras, pseudo-Eucliean Jordan al-
gebras, symmetric Novikov algebras, invariant, adjoint orbits, Lie algebra o(m), Lie algebra
sp(2n), solvable Lie algebras, 2-step nilpotent, double extensions, T ∗-extension, generalized
double extension, Jordan-admissible.
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