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Chapter 1

Introduction

Life is a random walk [1]. At the same time, we like pretending that there is a master narrative
with us in the leading role. I’m not sure if I have such a script. Surely there is a drift of going from
theory to algorithms and going from finding the nail for my hammers to finding the matching
hammers to the nails, but other than that there is no grandiose reason why I did research on the
specific subjects assembled in this thesis. I also have some vague scientific feelings about which
way to go if we want to understand and mimic human intelligence, but I don’t kid myself: we
are far, and the chances that my findings would be part of the big theory are slim.

So then what does drive me, what does explain this seemingly random collection of works? A
big part of it is concrete problems. I like solving puzzles, and I like finding algorithms that solve
problems. There is also mathematical beauty, although I must say that I believe less and less that
something is right for a problem just because the solution is beautiful. In machine learning too
often we do invent the problems we solve; we inherited this from pure mathematics. Sometimes
it happens that, as a side effect, we invent something useful, but that is often a result of sheer
luck. Today I am fortunate to work in a research field (we call “application”) where there are
plenty of unsolved data mining problems. Sometimes they are not easy to isolate, but once they
are there, they “only” have to be solved, they don’t have to be invented. This thesis contains
two such concrete problems and our solutions to them. To be honest, originally I thought about
presenting only these two very fresh results, but it turned out that they would not fill the fifty
page lower limit, so I added a lot of other research we have been doing, recently and less recently.

Chapter 2 is a short summary of my early research which I did during and right after my
Ph.D. It is not an area in which I have been active recently; I included it for completeness. My
work on principal curves is clearly my most significant research contribution in terms of impact.
The theoretical model motivated the development of several new results in unsupervised learn-
ing theory (e.g., probabilistic principal surfaces, regularized principal manifolds, and principal
curves with bounded turn). Variants of my polygonal-line algorithm have been used in a wide
variety of applications ranging from data visualization and curve detection to clustering and
feature extraction.

Chapter 3 is the thickest part of the thesis. Most of it is about a multivariate classification
algorithm called ADABOOST. ADABOOST is one of those rare examples where mathematical
beauty meets practical usefulness. I first used it for a prediction problem, I believe for credit card
fraud, when some of the database entries were missing. The method did not work out of the box,
so I invented a beautiful extension. It worked, I was ready to publish it when I discovered it was
published two years earlier. This happened two more times before I actually found something
new. The chapter contains most of the research we have done on ADABOOST since then. It also
contains a formal but gentle introduction to supervised learning that I wrote knowing that two of
the committee members are not machine learning experts. At the end of the chapter (Section 3.6)
I describe the first method I mentioned earlier: a new algorithm motivated by trigger design in
experimental physics.

Chapter 4 summarizes some of the research I have been doing in the Auger collaboration.
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6 CHAPTER 1. INTRODUCTION

Naturally, this chapter is more oriented towards experimental physics, but, as in Chapter 3, I
included an introduction readable for a non-expert. The rest is, I have to admit, will be difficult to
read for both machine learners and physicists: it is about physics but written in a formal language
we use in machine learning and statistics. The only exception is Section 4.3 which contains the
second example of a physics-motivated technical result: I describe here a new adaptive Monte
Carlo Markov chain algorithm for mixture models directly motivated by the signal processing
challenges of Auger.

To ease the reading of the thesis for jury members of different backgrounds, Figure 1.1 pro-
vides a map with (clickable) section numbers on the plane defined by the dichotomies of techni-
cal/general and physics/machine learning.

technical general

physics

machine learning

2.1
2.2

3.1

3.2

3.33.4
3.5

3.6
3.7

4.1

4.2

4.3

4.4
4.5

Figure 1.1: A clickable map of sections.
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Chapter 2

Unsupervised learning

The goal of unsupervised learning is to “make sense” of high-dimensional data sets. Density
estimation is the heavy machinery that can be used to formalize most of the unsupervised prob-
lems, but it is often not necessary to go through a formal probabilistic model to solve a particular
problem. Two big sub-families of unsupervised learning are clustering and dimensionality re-
duction. In clustering the goal is to partition the data set into a finite number of groups with high
“similarity” within groups and high “distance” between groups. The difficulty is that, unlike in
supervised classification, there is no clear semantics of what the clusters are, and, above all, no
feedback (label) whether we found the right cluster for a given data point (which explains the
adjective “unsupervised”). In dimensionality reduction we take high dimensional observations
and try to represent them with a small number of parameters without losing information. Both
problems come with a natural trade-off between information preservation and compression (e.g.,
number of clusters vs. average distortion, number of dimensions vs. lost variance). Most of the
time there is no universal solution of this trade-off. The most popular algorithms usually come
with a complexity hyperparameter which the user can set to settle the solution into an acceptable
compromise.

The two basic unsupervised methods are Principal Component Analysis (PCA) [2, 3, 4] and
vector quantization with the k-means algorithm [5, 6]. They are basically the algorithmic proto-
types of many more sophisticated methods. Some of the first non-linear techniques, Kohonen’s
Self-Organizing Maps and [7] Kramer’s Autoassociative Neural Networks [8], are direct extensions
of k-means and PCA, respectively. The field was revolutionized in the early 2000s by the ap-
pearance of two neighborhood-based dimensionality reduction methods, Roweis et al.’s Local Linear
Embedding (LLE) [9] and Tenenbaum et al.’s ISOMAP [10]. These two seminal papers started a
whole new research domain on diffusion kernels and the graph Laplacian [11, 12]. Although
the main wave of hype has somewhat dwindled by now, unsupervised learning and feature in-
duction remains a central topic in deep learning; some of the devotees of the subject go as far as
portraying unsupervised learning as the holy grail for attaining human intelligence [13, 14].

In this chapter we will summarize three of our contributions to unsupervised learning. In
Section 2.1 we review our work on principal curves [15, 16]. Principal curves can be consid-
ered either as an extreme dimensionality reduction method where we project the data onto a
1D manifold, or as a clustering technique where clusters are adorned by a linear or a graph
structure. Principal curves are not as general as LLE or ISOMAP, mainly because of the 1D con-
straint, but they scale much better than LLE and ISOMAP in the number of data points and they
also handle additive noise better. Our approach had a considerable impact both in applications
[17, 18, 19, 20, 21, 22, 23, 24] and inciting various extensions [25, 26, 27, 28, 29, 30]. We summarize
some of these works in Section 2.1.1.

One of the basic questions one can ask before running any data analysis method is the number
of degrees of freedom of the data that can be formalized as its intrinsic dimensionality. Knowing
this value is a first step towards understanding the data. On a more pragmatic level, the intrinsic
dimensionality is usually a design parameter that has to be input into nonlinear dimensionality

9



10 CHAPTER 2. UNSUPERVISED LEARNING

reduction techniques such as LLE and ISOMAP. Section 2.2 outlines our technique [31] to estimate
the intrinsic dimensionality using packing numbers, and summarizes its impact.

2.1 Principal curves

Principal curves are one of the nonlinear extensions of Principal Component Analysis. They give a
one-dimensional non-linear summary of a high-dimensional data set and also serve as an efficient
feature extraction tool. Principal curves were originally defined by Hastie [32] and Hastie and
Stuetzle [33] (hereafter HS) to formally capture the notion of a smooth curve passing through the
“middle” of a d-dimensional probability distribution or data cloud (Figure 2.1(a)).

Data points

Principal curve

(a) Principal curve

(d)

Character template

Skeleton graph

(b) Principal graph

Figure 2.1: A smooth curves passing through the “middle” of (a) a data cloud and (b) a set of
pixels.

The original HS definition of principal curves is based on the concept of self-consistency. Intu-
itively, self-consistency means that each point of the curve is the average of all points that project
there. Based on the self-consistency property, HS developed a theoretical and a practical algo-
rithm for constructing principal curves of distributions and data sets, respectively.

There was an unsatisfactory aspect of the original definition of principal curves: Hastie and
Stuetzle could not prove the existence of the theoretically defined object even for very simple
data distributions. This made it difficult to theoretically analyze any learning scheme for princi-
pal curves. In [15] we proposed a new definition of principal curves, and proved their existence
for a large class of data distributions. Then we described a theoretical learning scheme, proved its
statistical consistency, and obtained convergence rate. These are also one of the first theoretical
results in any non-linear unsupervised learning models. The theoretical algorithm also inspired
the design of a new practical algorithm to estimate principal curves of data sets. The polygonal line
algorithm beat previous methods both in terms of performance and computational complexity. In
[16] we proposed an algorithm to find piecewise linear skeletons of hand-written characters by
using principal curves based on the similarity between principal curves and the medial axis (Fig-
ure 2.1(b)). The algorithm substantially improved the pixelwise skeleton obtained by traditional
thinning methods .
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2.1.1 Impact

In this section we summarize subsequent advances on principal curves on both the theoretical
and algorithmic side, and describe some of the applications. Many of the 300+ citations of [15, 16]
are simple references to related work, but there is about half a dozen applications where a variant
of the polygonal line algorithm was actually used in practice.

There was a slight discrepancy in [15] between the theoretical model and the practical al-
gorithm: the theoretical principle curve definition used a constraint on the length of the curve
whereas the polygonal line algorithm penalized small angle between segments. [25] elegantly
solved this problem by proving existence and convergence for curves with bounded turn (inte-
grated curvature). A second, very recent work [30] improved the convergence rate from O(n−1/3)
to O(n−1/2) by replacing our covering number approach with a technique based on Rademacher
averages [34, 35]. Based on the slope heuristics introduced by [36], [30] also redesigned the
heuristic model selection procedure of the polygonal line algorithm.

There were two main improvements on the algorithmic side of estimating principle curves
of data sets. The initialization procedure of the polygonal line algorithm uses the first principal
component, and then refines the principal curve by iteratively adding more and more vertices
and segments. When the data is close to self intersecting (such a the spiral toy data set), this
procedure can easily get stuck in bad local minima. [26] and [27] proposed to overcome this
problem by designing the principle curve in a bottom-up fashion. Although the algorithms have
never been connected, we think that the best practical solution would be to initialize the principle
curve using the method of [26], and then use the polygonal line algorithm to finish the design. A
second major algorithmic advance is [28]’s elastic net that uses a similar penalized “energy func-
tion” to define principal curves. The great advantage of [28] over the polygonal line algorithm
is that elastic nets can naturally be extended to higher dimensional manifolds. Finally, although
not directly related to our work, we would like to mention [29]’s approach that defines principal
curves and graphs based on local properties of the data distribution. The closest relative to their
definition is [37]’s principal curves, but the most important contribution of [29] is an efficient
practical algorithm based on the mean shift method.

Although these are not “real” applications per se, [22] demonstrated that the polygonal line
algorithm can be used for clustering around curves, and [19] shows how to use it for feature
extraction. The first concrete applications of the polygonal line algorithm were in traffic stream
modeling [18], in analyzing temporal data [17], and in fault detection and process monitoring
[20]. Image processing is one of the main application areas of principal curves in general. [21]
used a simplified version of the polygonal line algorithm for solar filament detection in images,
whereas [23] used it for extracting vessels in a 3D angiography. Arguably the most important
application of the algorithm is in experimental physics. The goal of the ICARUS experiment
[24] is to study cosmic rays, neutrino oscillation, and proton decay using a 760 ton liquid argon
time projection chamber installed in the Gran Sasso underground National Laboratory in Italy.
The polygonal line algorithm is in the official pipeline of the trajectory reconstruction of particles
crossing the chamber.

2.2 Intrinsic dimension estimation

High-dimensional data sets have several unfortunate properties that make them hard to ana-
lyze. The phenomenon that the computational and statistical efficiency of statistical techniques
degrade rapidly with the dimension is often referred to as the “curse of dimensionality”. One
particular characteristic of high-dimensional spaces is that, as the volumes of constant diame-
ter neighborhoods become large, exponentially many points are needed for reliable density es-
timation. Another important problem is that as the data dimension grows, sophisticated data
structures constructed to speed up nearest neighbor searches rapidly become inefficient.

Fortunately, most meaningful, real life data do not uniformly fill the spaces in which they
are represented. Rather, the data distributions are observed to concentrate to non-linear mani-
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folds of low intrinsic dimension. Several methods have been developed to find low-dimensional
representations of high-dimensional data, including classical methods such as Principal Com-
ponent Analysis (PCA), Self-Organizing Maps (SOM) [38], and Multidimensional Scaling (MDS)
[39], and, more modern techniques such as Local Linear Embedding (LLE) [9] and the ISOMAP
algorithm [10].

There are two principal areas where a good estimate of the intrinsic dimension can be use-
ful. First, the estimate can be used to set input parameters of dimension reduction algorithms.
Certain methods (e.g., LLE and the ISOMAP algorithm) also require a scale parameter that de-
termines the size of the local neighborhoods used in the algorithms. In this case, it is useful if
the dimension estimate is provided as a function of the scale (see Figure 2.2(a) for an intuitive
example where the intrinsic dimension of the data depends on the resolution). Nearest neighbor
searching algorithms can also profit from a good dimension estimate. The complexity of search
data structures (e.g., kd-trees and R-trees) increase exponentially with the dimension, and these
methods become inefficient if the dimension is more than about 20. Nevertheless, it was shown
by [40] that the complexity increases with the intrinsic dimension of the data rather then with the
dimension of the embedding space.

D ≃ 0

≃

D ≃ 1

≃

D ≃ 2

≃

D ≃ 2

(a) Intrinsic dimension at different resolutions
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Figure 2.2: (a) At very small scale the data looks zero-dimensional. If the scale is comparable
to the noise level, the data fills the embedding space. At the “right” scale the data looks one-
dimensional. At very large scale the embedding dimension dominates again. (b) The scale de-

pendent packing dimension D̂PACK(r) and correlation dimension D̂CORR(r). The lighter the curve
the larger p is in (2.2) (that is, the more uneven the distribution is on the manifold).

In [31] we presented a novel method for intrinsic dimension estimation. The estimate is based
on geometric properties of the data, and requires no parameters to set. Experimental results on
both artificial and real data show that the algorithm is able to capture the scale dependence of the
intrinsic dimension. The main advantage of the method over existing techniques is its robustness
in terms of the generating distribution.

Formally, the scale-dependent packing dimension is

D̂pack(r1, r2) = − log M(r2) − log M(r1)

log r2 − log r1
, (2.1)

where M(r) is the r-packing number of a set S ⊂ X , defined as the maximum cardinality of
an r-separated subset of S (a set V ⊂ X is said to be r-separated if d(x, y) ≥ r for all distinct
x, y ∈ V). Finding M(r) for a data set Sn = {x1, . . . , xn} is equivalent to finding the cardinality
of a maximum independent vertex set MI(Gr) of the graph Gr(V, E) with vertex set V = Sn and
edge set E = {(xi, xj)|d(xi, xj) < r}. This problem is known to be NP-hard. Nevertheless, the
simple greedy algorithm of Figure 2.3 works will in practice. Given a data set Sn, we start with an
empty set of centers C, and in an iteration over Sn we add to C data points that are at a distance
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of at least r from all the centers in C. The estimate M̂(r) is the cardinality of C after every point in
Sn has been visited.

PACKINGDIMENSION(Sn, r1, r2, ǫ)

1 for ℓ ← 1 to ∞ do
2 Permute Sn randomly
3 for k ← 1 to 2 do
4 C ← ∅

5 for i ← 1 to n do
6 for j ← 1 to |C| do
7 if d

(
Sn[i], C[j]

)
< rk then

8 j ← n + 1
9 if j < n + 1 then

10 C ← C ∪ {Sn[i]}
11 L̂k[ℓ] = log |C|
12 D̂PACK = −µ(L̂2) − µ(L̂1)

log r2 − log r1

13 if ℓ > 10 and 1.65

√
σ2(L̂1)+σ2(L̂2)√
ℓ(log r2−log r1)

< D̂PACK(1 − ǫ)/2 then

14 return D̂PACK

Figure 2.3: The algorithm returns the packing dimension estimate D̂PACK(r1, r2) of a data set Sn

with ǫ accuracy nine times out of ten.

The procedure is designed to produce an r-packing but certainly underestimates the packing
number of the manifold, first, because we are using a finite sample, and second, because in gen-

eral M̂(r) < M(r). Nevertheless, we can still obtain a good estimate for D̂PACK by using M̂(r) in

the place of M(r) in (2.1). To see why, observe that, for a good estimate for D̂PACK, it is enough if
we can estimate M(r) with a constant multiplicative bias independent of r. Although we have no

formal proof that the bias of M̂(r) does not change with r, the simple greedy procedure described
above seems to work well in practice.

Even though the bias of M̂(r) does not affect the estimation of D̂PACK as long as it does not

change with r, the variance of M̂(r) can distort the dimension estimate. The main source of the

variance is the dependence of M̂(r) on the order of the data points in which they are visited.
To eliminate this variance, we repeat the procedure several times on random permutations of

the data, and compute the estimate D̂PACK by using the average of the logarithms of the packing
numbers. The number of repetitions depends on r1, r2, and a preset parameter that determines
the accuracy of the final estimate (set to 99% in all experiments).

To test robustness, we used a two-sided multivariate power distribution with density

p(x) = I{x∈[−1,1]d}
( p

2

)d d

∏
i=1

(
1 − |x(i)|

)p−1
(2.2)

with different exponents p to generate uniform (p = 1) and non-uniform data sets on the spiral
manifold. Figure 2.2(b) shows that the estimate is clearly better and more robust than the most

popupar correlation dimension estimate D̂CORR [41, 42, 43]. More details on the algorithm and
more experiments can be found in [31].
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Chapter 3

Supervised learning

In this chapter we give an extended synopsis of our contributions to the vast area of supervised
learning. Section 3.1 is a crash course into supervised learning, concentrating mainly on binary
classification. We describe the formal setup, explain some of the principles behind algorithmic
design, and provide details of the three most influential binary classification algorithms. Sec-
tion 3.2 concretizes the abstract concepts of Section 3.1 through applications. We explain how
learning fits into the pattern recognition pipeline and describe the different problem types and
solutions through real-life applications we have worked on in the last ten years. An extended
subsection on trigger design in experimental physics motivates one of our contributions that we
will detail in a separate section (Section 3.6).

Section 3.3 is devoted to multi-class classification in general and to the ADABOOST.MH algo-
rithm in particular. The section is based on the seminal work on Freund, Schapire, and Singer
[44, 45], although we give more details on some of the important practical issues. One such
issue is efficient multi-class base learning which we explain in Section 3.4. Some of the al-
gorithms (INDICATORBASE and PRODUCTBASE) come from our contribution [46] while others
(STUMPBASE and TREEBASE) are variants of standard learning algorithms. Although they are
not new, to our knowledge, details of their multi-class versions have never been published.

Sections 3.5 and 3.6 are preprints of two of our most recent results. In Section 3.5 we show
how to use ADABOOST.MH in a simple pointwise approach for web page ranking. The most sig-
nificant methodological results of this contribution are 1) a diverse output calibration step that
allows to convert algorithmic tools designed for one problem (e.g., classification) to solve seem-
ingly different tasks (e.g., ranking), and 2) an ensemble technique aligned with a recent paradigm
change of going from hyperparameter optimization towards averaging of diverse models. In Sec-
tion 3.6 we combine control with learning. In particular, we show that adding a reinforcement-
learning-based postprocessing step to standard ensemble methods can significantly reduce the
statistical and computational complexity of the final classifier without harming its performance.
The development of the method was directly motivated by object detection and trigger design,
but the resulting algorithm goes beyond the standard cascade architecture usually used to solve
these problems.

To finish the chapter, in Section 3.7 we briefly summarize some of our most significant contri-
butions to supervised learning, other than those explained in previous sections.

3.1 Introduction

3.1.1 The supervised learning setup

The goal of supervised learning is to infer a function g : X → L from a data set

D =
{
(x1, ℓ1), . . . , (xn, ℓn)

}
∈ (X ×L)n

15
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comprised of pairs of observations and labels. The elements x(j) of d-dimensional feature or obser-
vation vector x are either real numbers or they come from an unordered set of cardinality Mj. In

this latter case, without loss of generality, we will assume that x(j) ∈ I (j) = {1, . . . , M(j)}.
When the label space L is real-valued, the problem is known as regression, whereas when

the labels come from a finite set of classes, we are talking about classification. The quality of
g is measured by an error or loss function L

(
g, (x, ℓ)

)
that depends on the type of problem. In

regression, the goal is to get g(x) as close to ℓ as possible, so the loss grows with the difference
between g(x) and ℓ. The most widely used loss function in this case is the quadratic loss

L2

(
g, (x, ℓ)

)
=

(
g(x) − ℓ

)2
.

In classification, typically there is no distance defined between the classes, so all we can measure
is whether or not g predicts correctly the class ℓ. The usual loss in this case is the one-loss

LI

(
g, (x, ℓ)

)
= I {g(x) += ℓ}, (3.1)

where the indicator function I {A} is 1 if its argument A is true and 0 otherwise.
The goal of learning algorithms is not to memorize D, rather to generalize from it. Indeed,

it is rather trivial to construct a function g that has zero loss on every sample point (xi, ℓi) by

explicitly setting g(xi) ! ℓi on all sample points from D, and, say, g(xi) ! 0 everywhere else.
We obviously have not learned anything from D, we have simply memorized it. It is also clear
that this function has very little chance to perform well on points not in the set D (unless 0 is a
good prediction everywhere in which case the problem itself is trivial). To formalize this intuitive
notion of generalization, it is usually assumed that all sample points (including those in D) are
independent samples from a fixed but unknown distribution D, and the goal is to minimize the
expected loss (a.k.a., risk or error) conditioned on the data set D

R(g) = E(x,ℓ)∼D

{
L
(

g, (x, ℓ)
)
| D

}
.1

Note that with this notation, the misclassification probability P
(

g(x) += ℓ) is the risk generated
by the one-loss

RI(g) = E(x,ℓ)∼D

{
LI

(
g, (x, ℓ)

)}
= P

(
g(x) += ℓ).2 (3.2)

As our imaginary example demonstrates it, finding a function g that minimizes the empirical
risk (or training error)

R̂(g) =
1

n

n

∑
i=1

L
(

g, (xi, ℓi)
)

(3.3)

is not necessarily a good idea. Nevertheless, it turns out that the estimator

ĝ∗ = arg min
g∈G

R̂(g)

can have good properties both in theory and in practice if the function class G is not too “rich”
so the functions in G are not too complex. How to control the complexity of G and how to
find an optimal function in G computationally efficiently are the main subjects of the design of
supervised learning algorithms.

Finding ĝ∗ in G is the subject of algorithmic design. The process is called training or learning,

and the data set D on which R̂(g) is minimized is the training set. Of course, once D is used for

finding ĝ∗, it is tainted from a statistical point of view: R̂(ĝ∗) is no longer an unbiased estimator
of R(ĝ∗). Overfitting is the term that describes the situation when the risk R(ĝ∗) is significantly

larger than the training risk R̂(ĝ∗). To detect and to assess overfitting, ĝ∗ has to be evaluated on
a test set D′ independent of D.

1Since statistical consistency is not an issue in this chapter, we will omit the explicit conditioning on the training data
set D from now on.

2For denoting the risk generated by a particular loss, we will use the same index: the risk generated by the loss L• will
be denoted by R•.
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3.1.2 Complexity regularization and hyperparamater optimization

The simplest way to control the complexity of the function class G is to fix it either explicitly (e.g.,
by taking the set of all linear functions) or implicitly (e.g., the set of all functions that a neural
network with N neurons and one hidden layer can represent). Another possibility is complexity
regularization: instead of finding the best function in a fixed class G, we define a nested sequence
of function classes G1 ⊂ . . . ⊂ GK, find the empirically best functions ĝ∗1 , . . . , ĝ∗K in each class, and
then minimize the regularized loss to obtain

k∗ = arg min
k

R̂(ĝ∗k ) + C(Gk),

where C(·) is an appropriate complexity measure of the function classes Gk. For example, one can
let k be the number of neurons in a neural network, and define Gk as the set of all functions that a
neural network with k neurons and one hidden layer can represent. A similar but more practical
procedure is to let G be a large (complex) class of functions, but penalize the complexity C(g) of
the function itself, and obtain

ĝ∗β = arg min
g∈G

R̂(g) + βC(g),

where β is a penalty coefficient that has to be tuned. The classical practices of weight decay or early
stopping in neural networks fall in the category of penalized risk minimization.

Tuning the complexity parameters C(·) or β is possible analytically if the goal is asymptotic (as
training sample size n → ∞) optimality, but in practice, it is almost always done by validation.
In the simplest setup, we choose ĝ∗k or ĝ∗β∗ by minimizing the empirical risk on a validation set

D′′ which has to be independent of both the training set D and the test set D′. This procedure is
known as hyperparameter optimization in machine learning. Hyperparameter optimization is often
done “manually”, and it is one the most grueling tasks of graduate students. It is also a source
of controversy: hidden (and, hopefully, most of the times inadvertent) use of the test set can lead
to tainted results when comparing different algorithms. We have recently started to work on a
stochastic optimization approach to make the procedure automatic [47].

3.1.3 Convex losses in binary classification

Finding either ĝ∗, ĝ∗k , or ĝ∗β∗ can be algorithmically challenging. For example, finding a binary

classifier ĝ∗ ∈ G that minimizes the training error R̂I(g) is NP hard even in the simple case of G
being the set of linear function [48]. One way to make the learning problem tractable is to relax

the minimization of R̂I(g) by defining convex losses that upper bound the one-loss LI

(
g, (x, ℓ)

)

(3.1).
To formalize this, we need to introduce some notions used in binary classification. First, we

change the symbolic output space of g from L to {−1, +1} and denote the numerical label by
y ∈ {−1, +1}. 3 Most of the learning algorithms do not directly output a {±1}-valued classifier
g, rather, they learn a real-valued discriminant function f , and obtain g by thresholding the output
of f (x) at 0, that is,

g(x) =

{
+1 if f (x) > 0,

−1 if f (x) ≤ 0.

Using the real-valued output of the discriminant function, the classifier can be evaluated on a
finer scale by defining the (functional) margin

ρ = ρ
(

f , (x, y)
)

= f (x)y.

With this notation, the misclassification indicator (one loss) of a discriminant function f on a
sample point (x, y) can be defined as a function of the margin ρ by

LI

(
f , (x, y)

)
= LI

(
ρ
(

f , (x, y)
))

= LI(ρ) = I {ρ < 0},

3The reason of the distinction between ℓ and y will be clear in Section 3.3.
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but the magnitude of ρ also indicates the confidence or the robustness of the classification. In-
deed, the combination of a large ρ with a Lipschitz-type (slope) penalty on f means that the

geometric margin ρ(g) is also large: x is far from the decision border consisting of the set of points
for which f (x) = 0 (Figure 3.1).
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Figure 3.1: Geometric and functional margins. The labels of the red and blue points are y = +1
and y = −1, respectively. An upper bound ω on the slope w and a functional margin ρ implies a

geometric margin (distance from the point x : f (x) = 0) of ρ(g) > ρ/ω.

To penalize misclassification on a fine scale, one can define smooth convex upper bounds of
the margin-based one loss LI(ρ), and minimize the corresponding empirical risks instead of the

training error R̂I. The most common losses, depicted in Figure 3.2, are the exponential loss

LEXP(ρ) = exp(−ρ), (3.4)

the hinge loss

L1+(ρ) = max(0, 1 − ρ), (3.5)

and the logistic loss

LLOG(ρ) = log2

(
exp(−ρ) + 1

)
. (3.6)

Given the margin-based loss L•(ρ), the corresponding margin-based empirical risk can be de-
fined as

R̂•( f ) =
1

n

n

∑
i=1

L•( f (xi)yi) (3.7)

Minimizing the margin-based empirical risks R̂EXP( f ), R̂1+( f ) , or R̂LOG( f ) have both algorith-
mic and statistical advantages. First, combining the minimization of these risks with Lipschitz-
type penalties4 often leads to convex optimization problems that can be solved with standard
algorithms (e.g., linear, quadratic, or convex programming). Second, it can also be shown within
the complexity regularization framework that the minimization of these penalized convex risks
lead to large margin classifiers with good generalization properties.

4often of the form of L1 or L2 penalties on the coefficient vector of a generalized linear model; see Section 3.1.4
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Figure 3.2: Convex margin losses used in binary classification.

3.1.4 Binary classification algorithms

The three most popular binary classification algorithms are the multi-layer perceptron or neural
network (NN) [49, 50], the support vector machine (SVM) [51, 52, 53], and ADABOOST [44]. They
have very different origins, and the algorithmic details also make them stand apart, nevertheless,
they share some important concepts, and their practical success is explained, at least qualitatively,
by the same theory on large margin classification.

An important pragmatic similarity is that they all learn generalized linear discriminant func-
tions of the form

f (x) =
T

∑
t=1

α(t)h(t)(x). (3.8)

In neural networks h(t)(x) is a perceptron, that is, a linear combination of the input features fol-
lowed by a sigmoidal nonlinearity (such as arctan)

h(t)(x) = σ

(
w

(t)
0 +

d

∑
j=1

w
(t)
j x(j)

)
,

where x(j) is the jth element of the d-dimensional input vector x. The output weight vector

α =
(
α(1), . . . , α(T)

)
and the T × (d + 1)-dimensional input weight matrix

W =




w
(1)
0 . . . w

(1)
d

...
. . .

...

w
(T)
0 . . . w

(T)
d




are learned using gradient descent optimization (called back-propagation in the NN literature). In
the case of binary classification the neural network is usually trained to minimize the logistic
loss (3.6). One of the advantages of NNs is their versatility: as long as the loss function is dif-
ferentiable, it can be plugged into the algorithm. The differentiability condition imposed by the
gradient descent optimization is, on the other hand, constrains the loss function and the nonlin-
earities used in the hidden units: one could not use, say, a Heaviside-type nonlinearity or the one
loss.
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The invention of the multilayer perceptron in 1986 [49] was a technological breakthrough:
complex pattern recognition problems (e.g., handwritten character recognition) could suddenly
be solved efficiently using neural networks. At the same time, the theory of machine learning at
these early days was not yet developed to the point of being able to explain the principles behind
algorithmic design. Most of the engineering techniques (such as weight decay or early stopping)
were developed using a trial-and-error approach, and they were theoretically justified only much
later within the complexity regularization and large margin framework [54, 55]. Partly because
of the “empirical” nature of neural network design, a common belief developed about the “user-
unfriendliness” of neural networks. Added to this reputation was the uneasiness of having a non-
convex optimization problem: back-propagation cannot be guaranteed to converge to a global
minimum of the empirical risk. This is basically a no-issue in practice (especially on today’s large
problems), still, it is a common criticism from people who usually have never experimented
with neural networks on real problems. As a consequence, neural networks were slightly over-
shadowed in the 90s with the appearance of the support vector machine and ADABOOST. Today
neural networks are, again, becoming more popular partly because of user-friendly program
packages (e.g., [56]) and partly due to the computational efficiency of the training algorithm
(especially its stochastic version).

Support vector machines also learn generalized linear discriminant functions of the form (3.8)
with

h(t)(x) = ytK(xt, x),

where K(x, x′) is a positive semidefinite kernel function that expresses the similarity between two
observations x and x′. K(x, x′) is usually monotonically decreasing with the distance between x
and x′. The most common choice for K is the squared exponential (a.k.a. Gaussian) kernel. The
index t ranges over t = 1, . . . , n which means that each training point (xt, yt) ∈ D contributes to f
a kernel function centered at xt with a sign equal to the label yt, so the final discriminant function
can be interpreted as a weighted nearest neighbor classifier.

The objective of training the SVM is to find the weight vector α =
(
α(1), . . . , α(T)

)
that mini-

mizes the hinge loss (3.5) with a complexity penalty (the L2 loss on the weights of features in the
Hilbert space induced by K(x, x′)). Unlike neural networks, the objective function was designed
based on the theory of large margin classification to ensure good generalization properties. A
great advantage of the setup is that the objective is a quadratic function of α with linear con-
straints 0 ≤ α ≤ C, so the global optimum can be found using quadratic programming. The
result is sparse: only a subset of the training points in D have nonzero coefficients. These points
are called support vectors, giving the name of the method.

The biggest disadvantage of the technique is its training time: naı̈ve quadratic programming
solvers run in super-quadratic time, and even with the most sophisticated tricks it is hard to beat
the O(n2) barrier. The second disadvantage of the method is that in high-dimensional problems
the number of support vectors is comparable to the size of the training set, so, when evaluating
f at the test phase is a bottleneck (see Section 3.2.2), SVMs can be prohibitively slow. Third,
unlike neural networks, SVMs are designed for binary classification, and the generic extensions
for multi-class classification and regression do not reproduce the performance of binary SVM.
Despite these disadvantages, the appearance of the support vector machine in the middle of the
90s revolutionized the technology of pattern recognition. Beside its remarkable generalization
performance, the small number of hyperparameters 5 and the appearance of turn-key software
packages made SVMs the method of choice for a wide range of applications involving small-to-
moderate size training sets. With the appearance of extra-large training sets in the last decade,
training time and optimization became more important issues than generalization [57], so SVMs
lost somewhat their dominant role.

ADABOOST learns a generalized linear discriminant function of the form (3.8) in an iterative
fashion. It can be considered as constructing a neural network by adding one neuron at a time,
but since back-propagation is no longer applied, there is no differentiability restriction on the base

5C in the bound of the αs and a length scale parameter of the kernel function K(x, x′)
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classifiers h(t). This opens the door to using domain-dependent features, making ADABOOST easy
to adapt to a wide range of applications. The basic binary classification algorithm (Figure 3.3)
consists of elementary steps that can be implemented by a first year computer science student in
an hour. The only tricky step is the implementation of the base learner (line 3) whose goal is to

return h(t) with a small weighted error

R̂I(h, w) =
1

n

n

∑
i=1

wiI {h(xi) += yi},

but most of the simple learning algorithms (e.g., decision trees, linear classifiers) can be easily
adapted to this modified risk. The weights w = (w1, . . . , wn) over the training points are ini-
tialized uniformly (line 1), and then updated in each iteration by a simple and intuitive rule

(lines 7-10): if h(t) misclassifies (xi, yi), the weight wi increases (line 8), whereas if h(t) correctly
classifies (xi, yi), the weight wi decreases (line 10). In this way subsequent base classifiers will

concentrate on points that were “missed” by previous base classifiers. The coefficients α(t) are
also set analytically to the formula in line 5 which is monotonically decreasing with respect to
the weighted error.

ADABOOST
(
Dn, BASE(·, ·), T

)

1 w(1) ← (1/n, . . . , 1/n) ⊲ initial weights

2 for t ← 1 to T

3 h(t) ← BASE
(
Dn, w(t)

)
⊲ base classifier

4 ǫ(t) ←
n

∑
i=1

w
(t)
i I

{
h(t)(xi) += yi

}
⊲ weighted error of the base classifier

5 α(t) ← 1

2
ln

(
1 − ǫ(t)

ǫ(t)

)
⊲ coefficient of the base classifier

6 for i ← 1 to n ⊲ re-weighting the training points

7 if h(t)(xi) += yi then ⊲ error

8 w
(t+1)
i ← w

(t)
i

2ǫ(t) ⊲ weight increases

9 else ⊲ correct classification

10 w
(t+1)
i ← w

(t)
i

2(1−ǫ(t))
⊲ weight decreases

11 return f (T)(·) =
T

∑
t=1

α(t)h(t)(·) ⊲ weighted “vote” of base classifiers

Figure 3.3: The pseudocode of binary ADABOOST. D =
{
(x1, y1), . . . , (xn, yn)

}
is the training set,

BASE(·, ·) is the base learner, and T is the number of iterations.

This simple algorithm has several beautiful mathematical properties. First it can be shown

[44] that if each base classifier h(t) is slightly better then a random guess (that is, every weighted

error ǫ(t) ≤ 1
2 − δ with δ > 0), then the (unweighted) training error R̂I of the final discriminant

function f (T) becomes zero after at most

T =

⌈
log n

2δ2

⌉
+ 1

steps. The logarithmic dependence of T on the data size n implies that the technique is formally
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a boosting algorithm from which the second part of its name derives.6 Second, it can be shown

that the algorithm minimizes the exponential risk R̂EXP( f ) (3.4) using a greedy functional gradient

approach [58, 59]: in each iteration h(t) is selected to maximize the decrease of R̂EXP

(
f (t−1) + αh(t)

)

at α = 0, and then α(t) is set to

α(t) = arg min
α

R̂EXP

(
f (t−1) + αh(t)

)
.

Furthermore, for inseparable data sets (for which no linear combination of base classifiers achieves

0 training error), the exponential risk R̂EXP( f (T)) goes to the minimum achievable exponential risk
as T → ∞ [60]. It can also be proven [61] that for the normalized discriminant function

f̃ (x) =
∑

T
t=1 α(t)h(t)(·)

∑
T
t=1 α(t)

,

the margin-based training error

R̂
(θ)
I

( f̃ ) =
1

n

n

∑
i=1

I

{
f̃ (xi)yi < θ

}

also goes to zero exponentially fast for all θ < ρ̃∗/2, where ρ̃∗ is the maximum achievable mini-
mum margin. This results shows that ADABOOST, similarly to the support vector machine, leads
to a large margin classifier. It also explains the surprising experimental observation that the gen-

eralization error RI( f ) (estimated on a test set) often decreases even after the training error R̂I( f )
reaches 0.

ADABOOST arrived to the pattern recognition scene in 1997 when support vector machines
were in full bloom. ADABOOST has a lot of advantages over its main rival: it is fast (its time
complexity is linear in n and T), it is an any-time algorithm, it has few hyperparameters, it is
resistant to overfitting, and it can be directly extended to multi-class classification [45]. Due to
these advantages, it rapidly became the method of choice of machine learning experts in cer-
tain types of problems where the natural setup is to define a large set of plausible features of

which the final solution f (T) uses only a few (a so called sparse classifier). Arguably the most
famous application is the first face detector that could be run real-time on 30 frame-per-second
video [62]. At the same time, ADABOOST is much less known among users with no computer
science background than the support vector machine. The reason is paradoxically the simplic-
ity of ADABOOST: since it is so easy to implement with a little background in programming, no
machine learning expert took the effort to provide a turn-key software package easily usable for
non-experts.7 In fact it is not surprising that the only large non-computer-scientist community
in which ADABOOST is much more popular than SVM is experimental physics: physicists, espe-
cially in high energy physics, are heavy computer-users with considerable programming skills.
In the last five years ADABOOST (and other similar ensemble methods) seem to have been taking
over the field of large-scale applications. In recent large-scale challenges [63, 64] the top entries
are dominated by ensemble-based solutions, and SVM is almost non-existent in the most efficient
approaches.

Although binary ADABOOST (Figure 3.3) is indeed simple to implement, multi-class AD-
ABOOST has some nontrivial tricks. There are several multi-class extensions of the original bi-
nary algorithm, and it is not well-known, even among machine learning experts, that the original
ADABOOST.M1 and ADABOOST.M2 algorithms [44] are largely suboptimal compared to AD-
ABOOST.MH published a couple of years later [45].8 On the other hand, the ADABOOST.MH pa-
per [45] did not specify the implementation details of multi-class base learning (see Section 3.3),
making the implementation non-trivial.

6The algorithm is also ADAptive because the coefficients α(t) depend on the errors ǫ(t) of the base classifiers h(t).
7We are attempting to improve the situation with our free multi-class program package available at http://

multiboost.org.
8The commonly used WEKA package (http://www.cs.waikato.ac.nz/ml/weka/), for example, only contains

a badly written implementation of ADABOOST.M1, effectively harming the reputation of boosting as a whole.

http://multiboost.org
http://multiboost.org
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3.2 Applications

In this section we illustrate the versatility of the abstract supervised learning model described in
Section 3.1 through presenting some of the machine learning applications we have worked on.
It turns out that real-world applications are never so simple as just taking a turn-key implemen-
tation out of the box and running it. To make a system work, one needs both domain expertise
and machine learning expertise, and so it often requires an interdisciplinary approach and con-
siderable communication effort from experts of different backgrounds. Nevertheless, once the
problem is reduced to the abstract setup described in Section 3.1, machine learning algorithms
can be very efficient.

As the examples will show, classification or regression is only one step in the pattern recog-
nition pipeline (Figure 3.4). Data collection is arguably the most costly step in most of the ap-
plications. In particular, harvesting the labels yi usually involves human interaction. How to do
this in a cost-effective way by, for example, using CAPTCHAs to obtain character labels [65] or
making people label images by playing a game [66, 67], is itself a challenging research subject. On
the other hand, in experimental physics simulators can be used to sample from the distribution
p(x | y), so in these applications data collection is usually not an issue.

The second step of the pipeline is preprocessing the data. There is a wide range of techniques
that can be applied here, usually with the objective of simplifying the supervised learning task.
First, if the observations are not already in a format of a real vector x ∈ R

d, features should be
extracted from the raw data. The goal here is to find features that are plausibly correlated with
the label y, so domain knowledge is almost always necessary to carry out this step. Since learning
algorithms usually deteriorate as the dimension of the input x increases (because of the so called
curse of dimensionality), dimensionality reduction is usually part of data preprocessing. Principal
component analysis is the basic tool that is usually applied, but nonlinear manifold algorithms
[9, 10] may also be useful if the training set is not too large. The output space L can also be trans-
formed to massage the original problem into a setup that can be solved by standard machine
learning tools. This can be done in an ad hoc way, but there exist also principled reduction tech-
niques between machine learning problems (binary/multi-class classification, regression, even
reinforcement learning) [68].

After training, postprocessing the results can also be an important step. If, for example, the
original complex problem was reduced to an easy-to-solve setup, re-transforming the obtained
labels and even re-calibrating the solution is often a good idea. In well-documented challenges of
the last five years [63, 69, 64] we have also learned that the most competitive results are obtained
when divers models trained using different algorithms are combined, so model aggregation tech-
niques are also becoming part of the generic machine learning toolbox. In Section 3.5 we show
an example for both of these postprocessing techniques.

Sometimes it happens that an application poses a specific problem that can not be solved
with existing tools. Solving such a problem and generalizing the solution to make it applicable
for similar problems is one of the motivational engines behind the development of the machine
learning domain. We will present a couple of examples of this kind.

3.2.1 Music classification, web page ranking, muon counting

In [70] we use ADABOOST for telling apart speech from music. The system starts by constructing
the spectrogram on a set of recorded audio signals which constitute the observation vectors x
in this case. ADABOOST is then run in a feature space inspired by image classification on the
spectrogram “images”. The output ℓ of the system is binary, that is, ℓ ∈ L = {MUSIC, SPEECH}.
In [71] we stay within the music classification domain but we tackle a more difficult problem:
finding the performing artist and the genre of a song based on the audio signal of the first 30 s of
the song. The first module of the classifier pipeline is an elaborate signal processor that collects
a vector of features for each 2 s segment and then aggregates them to constitute an observation
vector x with about 800 elements per song. We train two systems, one for finding the artist
performing the song and another for predicting its genre. Our algorithm was the best genre
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Preprocessing

Data collection

Postprocessing

Training (learning)

{g(x) =

D =
{

(x1, ℓ1), . . . , (xn, ℓn)
}

Figure 3.4: The pattern recognition pipeline.

classifier among 15 submissions and the second-best among 10 submissions at recognizing artists
at the MIREX 2005 international contest in music information extraction. This application also
stretches the limits of the classical multi-class (single-label) setup. It is plausible that a song
belongs to several genres leading to a so-called multi-label classification. It may also be useful to
train a unique system for predicting both the artist and the genre at the same time. This problem is
known as multi-task learning. In Section 3.3.1 we present the framework in which these problems,
along with the single-label setup, can be formalized and solved.

The regression problem can be illustrated by our recent work [72] in which we aim to predict
the number of muons (an elementary particle) in a signal recorded in a water Cherenkov detector
of the Pierre Auger experiment [73] (see Section 4.4 for a detailed description). The pipeline,
again, starts by extracting features that are plausibly correlated with the muon content of the
signal. The 172 features are quite correlated, so first we apply principal component analysis to
reduce the size of the observation vector x to 19. Then we train a neural network [50, 56] and
convert its output into a point estimate and a pointwise error bar (uncertainty) of the number of
muons.

In [74, 75] we use ADABOOST.MH for web page ranking. The input x of the classifier g is a set
of features representing a search query and a document, and the label ℓ represents the relevance
of the document to the query. The goal is to rank the documents in order of their relevance. Of
course, if the relevance of the document is correctly predicted, the implied ranking will also be
good. Nevertheless, it is hard to formally derive a meaningful loss for each (document, query,
relevance) triplet from the particular loss defined on rankings. The solution to this problem is a
post-processing technique called calibration: instead of directly using the output of the classifier
g, we send it through another regressor or ranker which is now trained to minimize the desired
risk. Our concrete system, described in detail in Section 3.5, also contains another postprocessing
module called model aggregation: instead of training one classifier g, we train a large number
of classifiers by varying data preprocessing and algorithmic hyperparameters, and combine the
results using a simple weighted voting scheme.

3.2.2 Trigger design in experimental physics

Our last example is a work in progress; we present it here because it is one of those problems for
which no turn-key machine learning solution exists even though the problem definitely belongs
to the domain of machine learning. The problem is trigger design in experimental physics. In
experimental physics, detectors are built to collect observations of partially known or unknown
phenomena in order to measure (estimate) some physical quantities. The phenomena can either
occur naturally (e.g., cosmic rays) or they can be generated by man-made instruments (e.g., in
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particle accelerators). A common feature of today’s detectors is that the phenomena they want
to measure are very rare which means that it is increasingly difficult to separate signal generated
by the phenomenon from background, that is, an observed event that just happen to look like
real signal because of random fluctuations or due to some uninteresting phenomena. The final
goal of the analysis is to collect a large statistics of observations that, with high probability, were
generated by the targeted phenomenon. Since the background is often several orders of magni-
tudes more frequent than the signal, part of the background/signal separation cannot be done
offline. Due to either limited disk capacity or limited bandwidth, most of the raw signal has to
be discarded by online triggers.

In the machine learning paradigm, a trigger is just a binary classifier with

L = {SIGNAL, BACKGROUND}.

There are several attributes that make the trigger a special binary classifier. First, it is extremely
unbalanced: the probability of BACKGROUND is practically 1 in a lot of cases. This makes the clas-
sical setup of minimizing the error probability RI(g) (3.2) inadequate: it is very hard to beat the
trivial constant classifier g(x) ≡ BACKGROUND which has an error of RI(g) = P(ℓ = SIGNAL).
Indeed, the natural gain in trigger design is the true positive or hit indicator

GTP

(
g, (x, ℓ)

)
= I {g(x) = SIGNAL | ℓ = SIGNAL}.

Taking the complement of the true positive indicator

LTP

(
g, (x, ℓ)

)
= 1 − I {g(x) = SIGNAL | ℓ = SIGNAL} = I {g(x) = BACKGROUND | ℓ = SIGNAL}

as the loss, the implied risk is

RTP(g) = E(x,ℓ)∼D

{
LTP

(
g, (x, ℓ)

)}
= P

(
g(x) = BACKGROUND | ℓ = SIGNAL

)
.

Again, minimizing RTP(g) is trivial by setting g(x) ≡ SIGNAL this time, so the goal is to minimize
RTP(g) with a constraint that the false positive rate

RFP(g) = P
(

g(x) = SIGNAL | ℓ = BACKGROUND
)

is kept below a fixed level pFP. As we mentioned above, in triggers P(ℓ = SIGNAL) ≪ P(ℓ =
BACKGROUND), so the false positive rate RFP(g) is approximately equal to the unconditional pos-
itive rate P(g(x) = SIGNAL). In experimental physics terminology this means that a constraint is
imposed on the trigger rate.

The second attribute that makes trigger design special is that we have strict computational
constraints imposed on the evaluation of the classifier g on test samples x. Typically, observations
x arrive at a given rate and g(x) has to be run online. The designer can have some flexibility on
the parallel handling of the incoming events, but computational resources are often limited. In
the case of JEM EUSO [76], the detector will be installed on the International Space Station where
electric consumption is limited and harsh conditions require the use of robust hardware with low
clock-rate.

Trigger design shares these two attributes (unbalanced classes and test-time constraints) with
object detection in computer vision where machine learning has been applied widely. For exam-
ple, when the goal is to detect faces in images, the probability of the signal class (face) is much
lower then the probability of background (everything else). We have also computational con-
straints at test time if the goal is to detect faces online in video recordings with given frame rate
and the detector hardware must fit into a compact camera. What makes trigger design slightly
more challenging is the extremely low signal probability and the fact that the computational cost
of each feature (elements of x) can vary in a large range. For example, the LHCb trigger [77] can
use “cheap” observables that can be evaluated fast to rapidly obtain a rough classifier. One can
also almost reconstruct the collision event which can take up a large portion of the allotted time,
but the resulting feature can be used reliably to discard background events.
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This example shows why a natural answer to these challenges is to design cascade classifiers
both in experimental physics and in object detection [62, 78, 79, 80, 81, 82]. A cascade classifier
g(x) is composed of a list of simpler binary classifiers h1(x), . . . , hN(x) evaluated sequentially.
For j < N, if hj(x) classifies the observation x negatively, the final classification of g(x) is BACK-
GROUND, and if the output of hj(x) is positive, the observation is sent to the next (j + 1)th stage
(or level in experimental physics terminology). The classifier hN(x) at the last stage is the only one
that can classify x as a SIGNAL. In computer vision, the stage classifiers hj(x) are usually learned
using classification algorithms (most often ADABOOST). Although machine learning algorithms
are now widely used in high-energy physics for data analysis [83, 84], their application for trig-
ger design is quite new: the first such algorithm to our knowledge is now running in the LHCb
trigger [77]. Some of the newest detection algorithms also attempt to learn the cascade struc-
ture automatically, nevertheless, manual experimentation is usually required to set hyperparam-
eters (stagewise false positive/false negative rates, computational complexity of stage classifiers
hj(x)). In Section 3.6 we present a principled approach [85] that can be used to automatically
design test-time constrained classifiers. The automatic design also allows us to go beyond the
cascade structure which is, although quite intuitive, an artificial constraint to keep the classifier
structure simple and to accommodate manual tuning.

3.3 Multi-class ADABOOST

The original ADABOOST paper of Freund and Schapire [44] also described two multi-class exten-
sions, ADABOOST.M1 and ADABOOST.M2. Both required a quite strong performance from the
base learners, partly defeating the purpose of boosting. The breakthrough came with Schapire
and Singer’s seminal paper [45], which described, among other interesting algorithms, AD-
ABOOST.MH. In this section we first introduce the general multi-class learning setup (Section 3.3.1),
then we give the details and ADABOOST.MH and show its algorithmic convergence (Section 3.3.2).

3.3.1 The multi-class setup: single-label, multi-label and multi-task

In multi-class classification, the label ℓ of the observation x comes from a finite set. Without loss of
generality, we will suppose that ℓ ∈ L = {1, . . . , K}. We will refer to the label of the observation
x as ℓ(x). For technical reasons that will become clear later, we will encode the label using a
K-dimensional binary vector y ∈ Y = {±1}K. In the classical multi-class setup, y is known as
the one-hot representation: the ℓ(x)th element of y will be 1 and all the other elements will be −1,
that is,

yℓ =

{
+1 if ℓ = ℓ(x),

−1 otherwise.

Beside reflecting well the architecture of multi-class neural network or multi-class ADABOOST,
this representation has the advantage to be generalizable to multi-label or multi-task learning when
and observation x can belong to several classes (see the music classification examples in Sec-
tion 3.2.1). To avoid confusion, from now on we will call y and ℓ the label and the label index
of x, respectively. For emphasizing the distinction between multi-class and multi-label classifica-
tion, we will use the term single-label for the classical multi-class setup, and reserve multi-class to
situations we talk about the three setups in general.

The multi-class training data is

D =
{
(x1, y1), . . . , (xn, yn)

}
∈ (X ×Y)n.

and the goal of learning is to infer a vector-valued multi-class classifier g : X → Y from D.
Sometimes we will use the notion of an n × d observation matrix of X = (x1, . . . , xn) and an n × K
label matrix Y = (y1, . . . , yn) instead of the set of pairs D.

As in binary classification, learning algorithms usually output a multi-class discriminant func-
tion f : X → R

K. The semantics of f is that the higher the ℓth element fℓ(x) of f(x), the more
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likely is that the real label index of x is ℓ. The vector-valued classifier g is formally obtained by
simply thresholding the elements of f(x) at 0, that is,

gℓ(x) = sign
(

fℓ(x)
)
, ℓ = 1, . . . , K.

The single-label output of the algorithm is then the class index ℓ for which fℓ(x) is maximal, that
is,

ℓf(x) = arg max
ℓ

fℓ(x).

The classical measure of the performance of the multi-class discriminant function f is the single-
label one-loss

LI

(
f, (x, ℓ)) = I {ℓ += ℓf(xi)}

that defines the single-label training error

R̂I(f) =
1

n

n

∑
i=1

I {ℓ(xi) += ℓf(xi)}. (3.9)

Another, perhaps more comprehensive, way to measure of the performance of f is by computing
the weighted Hamming loss

LH

(
f, (x, y), w) =

K

∑
ℓ=1

wℓI
{

sign
(

fℓ(x)
)
+= yℓ

}

where w =
[
wℓ

]
is an R

k-valued “user-defined” weight vector over labels. The corresponding
empirical risk (training error) is

R̂H(f, W) =
1

n

n

∑
i=1

K

∑
ℓ=1

wi,ℓI
{

sign
(

fℓ(xi)
)
+= yi,ℓ

}
, (3.10)

where W =
[
wi,ℓ

]
is an n × k weight matrix over data points and labels.

In the multi-label/multi-task setup, when, for example, it is equally important to predict that
a song is not “folk” as predicting that it is “classical”, the Hamming loss with uniform weights

wℓ =
1

K
, ℓ = 1, . . . , K (3.11)

is a natural measure of performance: it represents the uniform error rate of missing any class sign
yℓ of a given observation x. In single-label classification, w is usually set asymmetrically to

wℓ =

{
1
2 if ℓ = ℓ(x) (i.e., if yℓ = 1),

1
2(K−1)

otherwise (i.e., if yℓ = −1).
(3.12)

The idea behind this scheme is that it will create K well-balanced one-against-all binary classifica-
tion problems: if each of the K classes have n/K examples in D, then for each class ℓ, the sum
of the weights of the positive examples in the column w·,ℓ of the weight matrix W will be equal
to the sum of the weights of the negative examples. Indeed, for positive examples in class ℓ we
have

1

n

n

∑
i=1

wi,ℓI
{

yi,ℓ = 1
}

=
1

n

n

∑
i=1

1

2
I
{

yi,ℓ = 1
}

=
1

n
× 1

2
× n

K
=

1

2K
,

and for negative examples of the same column we have

1

n

n

∑
i=1

wi,ℓI
{

yi,ℓ = −1
}

=
1

n

n

∑
i=1

1

2(K − 1)
I
{

yi,ℓ = −1
}

=
1

n
× 1

2(K − 1)
× n(K − 1)

K
=

1

2K
.
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Note that both schemes (3.11) and (3.12) boil down to the classical uniform weighting in binary
classification.

It is easy to see that if the Hamming error R̂H(f, W) is 0 then the one-error R̂I(f) is also 0, but
not the other way around: it is possible that a point is correctly classified, that is fℓ(x)(x) > fℓ(x)

for all ℓ += ℓ(x), yet several of the negative classes ℓ : yℓ = −1 have positive outputs fℓ(x). When

both R̂H(f, W) and R̂I(f) are nonzero, both R̂H(f, W) > R̂I(f) and R̂H(f, W) < R̂I(f) can happen.

What can be said is that for every misclassified point according to R̂I(f), f(x) misses the sign of

at least one of the labels yℓ, so R̂I(f) < KR̂H(f, W) for (3.11) and R̂I(f) < 2KR̂H(f, W) for (3.12).

3.3.2 ADABOOST.MH

The goal of the ADABOOST.MH algorithm ([45], Figure 3.5) is to return a vector-valued discrim-

inant function f(T) : X → R
K with a small Hamming loss R̂H(f, W) (3.10) by minimizing the

weighted multi-class exponential margin-based error

R̂EXP

(
f(T), W

)
=

1

n

n

∑
i=1

LEXP

(
f, (x, y), wi) (3.13)

with the convex loss LEXP defined as

LEXP

(
f, (x, y), w) =

K

∑
ℓ=1

wℓ exp
(
− fℓ(x)yℓ

)
.

Since exp(−ρ) ≥ I {ρ < 0}, the exponential loss LEXP

(
f, (x, y), w) upper bounds the Hamming

loss LH

(
f, (x, y), w), and so

R̂EXP

(
f(T), W

)
≥ R̂H

(
f(T), W

)
.

ADABOOST.MH builds the final discriminant function

f(T)(x) =
T

∑
t=1

h(t)(x) (3.14)

as a sum of T base classifiers h(t) : X → R
K returned by a base learner algorithm BASE

(
X, Y, W(t)

)

in each iteration t.

Algorithmic convergence

The following derivation shows that

R̂EXP

(
f(T), W

)
=

T

∏
t=1

Z
(
h(t), W(t)

)
,

where

Z
(
h, W(t)

)
=

n

∑
i=1

K

∑
ℓ=1

w
(t)
i,ℓ exp

(
−hℓ(xi)yi,ℓ

)
(3.15)

is the base objective. This means that the goal of the base learner in iteration t is to minimize

Z
(
h, W(t)

)
in h. Minimizing the base objective (3.15) in each iteration is therefore equivalent to

minimizing the weighted multi-class exponential margin-based error (3.13) in an iterative greedy
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ADABOOST.MH(X, Y, W, BASE(·, ·, ·), T)

1 W(1) ← 1
n W

2 for t ← 1 to T

3
(
α(t), v(t), ϕ(t)(·)

)
← BASE

(
X, Y, W(t)

)

4 h(t)(·) ← α(t)v(t)ϕ(t)(·)
5 for i ← 1 to n for ℓ ← 1 to K

6 w
(t+1)
i,ℓ ← w

(t)
i,ℓ

exp
(
−h

(t)
ℓ

(xi)yi,ℓ

)

∑
n
i′=1 ∑

K
ℓ′=1 w

(t)
i′ ,ℓ′ exp

(
−h

(t)
ℓ′ (xi′)yi′ ,ℓ′

)
︸ ︷︷ ︸

Z
(
h(t), W(t)

)

7 return f(T)(·) = ∑
T
t=1 h(t)(·)

Figure 3.5: The pseudocode of the ADABOOST.MH algorithm. X is the n × d observation ma-
trix, Y is the n × K label matrix, W is the user-defined weight matrix used in the definition of
the weighted Hamming error (3.10) and the weighted exponential margin-based error (3.13),

BASE(·, ·, ·) is the base learner algorithm, and T is the number of iterations. α(t) is the base coeffi-

cient, v(t) is the vote vector, ϕ(t)(·) is the scalar base (weak) classifier, h(t)(·) is the vector-valued

base classifier, and f(T)(·) is the final (strong) discriminant function.

fashion. Indeed,

R̂EXP

(
f(T), W

)
=

1

n

n

∑
i=1

K

∑
ℓ=1

wi,ℓ exp
(
− f

(T)
ℓ

(xi)yi,ℓ

)
(3.16)

=
n

∑
i=1

K

∑
ℓ=1

w
(1)
i,ℓ exp

(
− f

(T)
ℓ

(xi)yi,ℓ

)
(3.17)

= Z
(
h(1), W(1)

) n

∑
i=1

K

∑
ℓ=1

w
(2)
i,ℓ

exp
(
− f

(T)
ℓ

(xi)yi,ℓ

)

exp
(
−h

(1)
ℓ

(xi)yi,ℓ

) (3.18)

...

=
T

∏
t=1

Z
(
h(t), W(t)

) n

∑
i=1

K

∑
ℓ=1

w
(T+1)
i,ℓ

exp
(
− f

(T)
ℓ

(xi)yi,ℓ

)

∏
T
t=1 exp

(
−h

(t)
ℓ

(xi)yi,ℓ

) (3.19)

=
T

∏
t=1

Z
(
h(t), W(t)

) n

∑
i=1

K

∑
ℓ=1

w
(T+1)
i,ℓ (3.20)

=
T

∏
t=1

Z
(
h(t), W(t)

)
. (3.21)

In (3.16) we use the definition of the weighted exponential margin-based error (3.13). (3.17) fol-
lows from the weight initialization of line 1. In (3.18)-(3.19) we repeatedly apply the weight
update formula of line 6. In (3.20) we use the definition (3.14). Finally, (3.21) follows from the fact

that, by lines 1 and 6, the weight matrix W(t) remains normalized

n

∑
i=1

K

∑
ℓ=1

w
(t)
i,ℓ = 1

in each iteration t.
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In binary ADABOOST (Figure 3.3) with binary base classifiers h(x) ∈ {±1} and coefficients α,
(3.15) simplifies to

Z(h, α) =
n

∑
i=1

wi exp
(
−αh(xi)yi

)

=
n

∑
i=1

wiI {h(xi) = yi} exp(−α) +
n

∑
i=1

wiI {h(xi) += yi} exp(α)

= (1 − ǫ) exp(−α) + ǫ exp(α), (3.22)

where

ǫ = ǫ(h, w) =
n

∑
i=1

wiI {h(xi) += yi}

is the weighted error of the base classifier h. It is easy to see that for a given h, Z
(
h, α

)
is mini-

mized by

α =
1

2
log

1 − ǫ

ǫ
=

1

2
log

1 + γ

1 − γ
. (3.23)

where

γ = γ(h, w) = 1 − 2ǫ =
n

∑
i=1

wih(xi)yi

is the so called edge of the base classifier h(xi). Plugging (3.23) back into (3.22), we have

Z(h, α) = (1 − ǫ)

√
ǫ

1 − ǫ
+ ǫ

√
1 − ǫ

ǫ
= 2

√
ǫ(1 − ǫ) =

√
1 − γ2.

Minimizing Z
(
h, α

)
is therefore equivalent to maximizing the edge γ or minimizing the weighted

error ǫ. The chain of minimizing the exponential error R̂EXP

(
f (T)

)
→ minimizing the base objec-

tive Z(h, α) → minimizing the weighted error ǫ(h, w) → setting α to (3.23) explains the formulas
of binary ADABOOST that might have been arbitrary-looking at the first sight. It is also easy to
see that if

γ(t) ! γ
(
h(t), w(t)) ≥ δ > 0

(or, equivalently, if ǫ(t) <
1
2 − δ

2 ), then the binary margin-based exponential error can be bounded
from above by

R̂EXP

(
f (T)

)
≤

√
1 − δ2

T ≤ exp

(
− δ2T

2

)
, (3.24)

where the second inequality follows from 1− x ≤ exp(−x). This means that R̂EXP

(
f (T)

)
becomes

smaller than 1
n after at most

T∗ =

⌈
2 log n

δ2

⌉
+ 1

iterations. Since R̂EXP

(
f (T)

)
is an upper bound of the training error R̂I

(
f (T)

)
, and since the small-

est non-zero value of R̂I

(
f (T)

)
is 1

n , after T∗ iterations f (T) cannot commit any error on the data

set D. To summarize, if the base classifiers h(t) are slightly better than a random guess, the final

classifier f (T) has zero training error in a number of steps that is logarithmic in the size n of the
data set D.

In the general multi-class setup, base learning is more complicated (although still elementary)
so we devote a separate section for the technical details (Section 3.4). But even without under-

standing how h is found, it can be seen, similarly to the binary case, that if Z
(
h, W(t)

)
≤

√
1 − δ2,
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then the exponential error R̂EXP

(
f(T), W

)
(3.13) is also bounded above by (3.24). The smallest

nonzero multi-class Hamming loss R̂H(f, W) (3.10) is wmin/n where

wmin = min
i,ℓ:wı,ℓ +=0

wi,ℓ

is the smallest weight in the initial weight matrix W, so R̂H(f, W) will be zero after at most

T∗ =

⌈
2 log(n/wmin)

δ2

⌉
+ 1

iterations. If W is set to (3.11), then wmin = 1
K , so

T∗ =

⌈
2 log(nK)

δ2

⌉
+ 1, (3.25)

whereas if W is set to (3.12), then wmin = 1
2(K−1)

, so

T∗ =

⌈
2 log

(
2n(K − 1)

)

δ2

⌉
+ 1.

We showed at the end of Section 3.3.1 that the one-error R̂I(f) (3.9) can be bounded from above

by KR̂H(f, W). This bound implies the same limit (3.25) as minimum weight argument. On the
other hand, it can be shown that with the single-label initialization (3.12),

R̂I

(
f(T)

)
≤

√
K − 1

T

∏
t=1

Z
(
h(t), W(t)

)

which implies the limit

T∗ =

⌈
2 log

(
n
√

K − 1
)

δ2

⌉
+ 1.

This result is another motivation for setting the weights to (3.12). Note, however, that these
bounds have very few practical implications: on the one hand, the training error usually becomes
0 much before T∗, and on the other hand, ADABOOST is usually trained much longer after the
training error becomes 0.

3.4 Multi-class base learning

The goal of multi-class base learning is to minimize Z(h, W) (3.15). In general, any vector-valued
multi-class learning algorithm can be used here. Although this goal is clearly defined in [45],
efficient base learning algorithms have never been described in detail. The algorithms are ele-
mentary: they are mostly based on exhaustive or greedy search, but some of the implementation
details are somewhat tricky.9

In this section we will describe base learning algorithms that look for h(x) in the form of

h(x) = αvϕ(x), (3.26)

where α ∈ R
+ is a positive real valued base coefficient, v is a binary v ∈ {±1}K vote vector, and

ϕ(x) : X → {±1} is a binary classifier. This setup is known as discrete ADABOOST.MH. The
setup can be extended to real-valued classifiers ϕ(x) : X → R, also known as confidence-rated

9All the algorithms are implemented in our free software at http://multiboost.org, but we have not realized
that our algorithms are mostly new, so, apart from the INDICATORBASE and PRODUCTBASE learners [46] this is the first
document that describes them formally.

http://multiboost.org
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classifiers or, simply, discriminant functions, and it is also easy to make the vote vector v real-
valued (in which case, without the loss of generality α would be set to 1). Both variants are
known under the name of real ADABOOST.MH. Although there might be slight differences in
the practical performance of real and discrete ADABOOST.MH, here we decided to stick to the
discrete case for the sake of simplicity.

To start, in Section 3.4.1 we show how to set α and v in general if the scalar base classifier ϕ is
given. Some of the elements defined here will be reused throughout the section. In Section 3.4.2
and Section 3.4.3 we describe two simple base classifiers used for numerical and nominal features,
respectively. In practice, boosting these simple learners has often been found to be sub-optimal,
mainly due to the lack of capacity of the resulted strong classifier (large approximation error).
The most common solution for overcoming this problem is to use trees as base learners that call
the simple base learner in a recursive fashion to partition the input space. We describe a basic
tree learner adapted to the multi-class setup of ADABOOST.MH in Section 3.4.4. In Section 3.4.5
we introduce another meta-base learner that combines simple base learners in a multiplicative
fashion. We conclude the section by describing some experimental results in Section 3.4.6.

3.4.1 Casting the votes

The intuitive semantics of (3.26) is the following. The binary classifier ϕ(x) cuts the input space
into a positive and a negative region. In binary classification this is the end of the story: we need
ϕ(x) to be well-correlated with the binary class labels y. In multi-class classification it is possible
that ϕ(x) correlates with some of the class labels yℓ and anti-correlates with others. This free
choice is expressed by the binary votes vℓ ∈ {±1}. We say that ϕ(x) votes for class ℓ if vℓ = +1
and it votes against class ℓ if vℓ = −1. As in binary classification, α expresses the overall quality
of the classifier vϕ(x): α is monotonically decreasing with respect to the weighted error of vϕ(x)
(or, equivalently, monotonically increasing with respect to the edge of vϕ(x)).

The advantage of the setup is that, given the binary classifier ϕ(x), the optimal vote vector
v and the coefficient α can be set in an efficient way. To see this, first let us define the weighted
per-class error rate

µℓ− =
n

∑
i=1

wi,ℓI
{

ϕ(xi) += yi,ℓ

}
, (3.27)

and the weighted per-class correct classification rate

µℓ+ =
n

∑
i=1

wi,ℓI
{

ϕ(xi) = yi,ℓ

}
(3.28)
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for each class ℓ = 1, . . . , K. With this notation, Z
(
h, W

)
simplifies to

Z(h, W) =
n

∑
i=1

K

∑
ℓ=1

wi,ℓ exp
(
−hℓ(xi)yi,ℓ

)
=

n

∑
i=1

K

∑
ℓ=1

wi,ℓ exp
(
−αvℓϕ(xi)yi,ℓ

)
(3.29)

=
n

∑
i=1

K

∑
ℓ=1

(
wi,ℓI

{
vℓϕ(xi)yi,ℓ = 1

}
e−α + wi,ℓI

{
vℓϕ(xi)yi,ℓ = −1

}
eα

)

=
K

∑
ℓ=1

(
µℓ+I {vℓ = +1} + µℓ−I {vℓ = −1}

)
e−α

+
K

∑
ℓ=1

(
µℓ−I {vℓ = +1} + µℓ+I {vℓ = −1}

)
eα (3.30)

=
K

∑
ℓ=1

(
I {vℓ = +1}

(
e−αµℓ+ + eαµℓ−

)
+ I {vℓ = −1}

(
e−αµℓ− + eαµℓ+

))

=
K

∑
ℓ=1

(
1 + vℓ

2

(
e−αµℓ+ + eαµℓ−

)
+

1 − vℓ

2

(
e−αµℓ− + eαµℓ+

))

=
1

2

K

∑
ℓ=1

((
eα + e−α

)(
µℓ+ + µℓ−

)
− vℓ

(
eα − e−α

)(
µℓ+ − µℓ−

))

=
eα + e−α

2
− eα − e−α

2

K

∑
ℓ=1

vℓ

(
µℓ+ − µℓ−

)
. (3.31)

(3.29) comes from the definition (3.26) of h and (3.30) follows from the definitions (3.27) and (3.28)
of µℓ− and µℓ+. In the final step (3.31) we used the fact that

K

∑
ℓ=1

(
µℓ+ + µℓ−

)
=

n

∑
i=1

K

∑
ℓ=1

wi,ℓ = 1.

The quantity

γℓ = vℓ

(
µℓ+ − µℓ−

)
=

n

∑
i=1

wi,ℓvℓϕ(xi)yi,ℓ (3.32)

is called the classwise edge of h(x) with γ denoting the vector (γ1, . . . , γK). The full multi-class
edge of the classifier is then

γ = γ(v, ϕ, W) = ‖γ‖1 =
K

∑
ℓ=1

γℓ =
K

∑
ℓ=1

vℓ

(
µℓ+ − µℓ−

)
=

n

∑
i=1

K

∑
ℓ=1

wi,ℓvℓϕ(xi)yi,ℓ. (3.33)

With this notation, the optimal binary coefficient α (3.23) is recovered: it is easy to see that (3.31)
is minimized when

α =
1

2
log

1 + γ

1 − γ
. (3.34)

With this optimal coefficient, (3.31) becomes

Z(h, W) =
√

1 − γ2,

so Z(h, W) is minimized when γ is maximized. From (3.33) it then follows that Z(h, W) is mini-
mized if vℓ agrees with the sign of

(
µℓ+ − µℓ−

)
, that is,

vℓ =

{
1 if µℓ+ > µℓ−
−1 otherwise

(3.35)
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for all classes ℓ = 1, . . . , K.
The setup of vector-valued based classification has another important consequence: the preser-

vation of the weak-learning condition. Indeed, if ϕ(x) is slightly better then a coin toss (in
maximizing the edge), γ will be positive. Another way to look at it is to say that if a (ϕ, v)
combo has a negative edge −γ < 0, the edge of its complement (either (−ϕ, v) or (ϕ,−v)) will
be γ > 0. To understand the significance of this, consider a classical single-label base classifier
h : X → L = {1, . . . , K}, required by ADABOOST.M1. Now if h(x) is slightly better than a coin

toss, all one can hope for is an error rate slightly lower than K−1
K . To achieve the error of 1

2 , re-
quired for continuing the boosting iterations, one has to come up with a base learner which is
significantly better than a coin toss.

Finally, note that computing v and α is a Θ(nK) operation which may be prohibitive if we
have to do it for every base classifier ϕ in an exhaustive search. Fortunately, it turns out that
the two simple base classifiers STUMPBASE (Section 3.4.2) and INDICATORBASE (Section 3.4.3)
can make cheap updates to the edge (3.33) while doing the exhaustive search, keeping the time
complexity of full base learning at Θ(nK).

3.4.2 Decision stumps for numerical features

The simplest scalar base learner used in practice on numerical features is the decision stump, a
one-decision two-leaf decision tree of the form

ϕj,b(x) =

{
1 if x(j) ≥ b,

−1 otherwise,

where j is the index of the selected feature and b is the decision threshold. If the feature values(
x

(j)
1 , . . . , x

(j)
n

)
are pre-ordered before the first boosting iteration, a decision stump maximizing

the edge (3.33) (or minimizing the energy (3.29)10) can be found very efficiently in Θ(ndK) time.
The pseudocode of the algorithm is given in Figure 3.6. STUMPBASE first calculates the edge

vector γ(0) of the constant classifier h(0)(x) ≡ 1 which will serve as the initial edge vector for each
featurewise edge-maximizer. Then it loops over the features, calls BESTSTUMP to return the best
featurewise stump, and then selects the best of the best by minimizing the energy (3.29). BEST-
STUMP loops over all (sorted) feature values s1, . . . , sn−1. It considers all thresholds b halfway
between two non-identical feature values si += si+1. The main trick (and, at the same time, the
bottleneck of the algorithm) is the update of the classwise edges in lines 4-5: when the threshold

moves from b =
si−1+si

2 to b =
si+si+1

2 , the classwise edge γℓ of 1ϕ(x) (that is, vϕ(x) with v = 1)
can only change by ±wi,ℓ, depending on the sign yi,ℓ (Figure 3.7). The total edge of vϕ(x) with
optimal votes (3.35) is then the sum of the absolute values of the classwise edges of 1ϕ(x) (line 7).

3.4.3 Subset indicators for nominal features

Nominal features x
(j)
i ∈ I (j) = {1, . . . , M(j)} are as abundant in practice as numerical features,

and they need to be treated differently at the base learning. Their main feature is that they cannot
be ordered naturally; they share this feature with the class variable ℓ. The textbook example

is color, e.g., I (j) = { , , , , }, but applications range from text processing (word- or
tag-valued features) to collaborative filtering (movie or user indices).

The classical way to handle nominal features with numerical learners is to encode a feature

with M(j) possible values into M(j) binary (for example, {0, 1}-valued) features. Learning a de-

cision stump on such encoding means that each base classifiers selects one value ι ∈ I (j), and

10Note the distinction: for full binary v the two are equivalent, but for ternary or real valued v and/or real valued φ(x)
they are not. In Figure 3.6 we are maximizing the edge within each feature (line 7 in BESTSTUMP) but across features we
are minimizing the energy (line 7 in STUMPBASE). Updating the energy inside the inner loop (line 4) could not be done
in Θ(K) time.
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STUMPBASE(X, Y, W)

1 for ℓ ← 1 to K ⊲ for all classes

2 γ
(0)
ℓ

←
n

∑
i=1

wi,ℓyi,ℓ ⊲ classwise edges (3.32) of constant classifier h(0)(x) ≡ 1

3 for j ← 1 to d ⊲ all (numerical) features

4 s ← SORT
(

x
(j)
1 , . . . , x

(j)
n

)
⊲ sort the jth column of X

5 (vj, bj, γj) ← BESTSTUMP(s, Y, W, γ(0)) ⊲ best stump per feature

6 αj ←
1

2
log

1 + γj

1 − γj
⊲ base coefficient (3.34)

7 j∗ ← arg min
j

Z
(
αjvj ϕj,bj

, W
)

⊲ best stump across features

8 return
(
αj∗ , vj∗ , ϕj∗ ,bj∗ (·)

)

BESTSTUMP(s, Y, W, γ(0))

1 γ∗ ← γ(0)
⊲ best edge vector

2 γ ← γ(0)
⊲ initial edge vector

3 for i ← 1 to n − 1 ⊲ for all points in order s1 ≤ . . . ≤ sn−1

4 for ℓ ← 1 to K ⊲ for all classes

5 γℓ ← γℓ − 2wi,ℓyi,ℓ ⊲ update classwise edges of stump with v = 1

6 if si += si+1 then ⊲ no threshold if identical coordinates si = si+1

7 if ∑
K
ℓ=1 |γℓ| > ∑

K
ℓ=1 |γ∗

ℓ
| then ⊲ found better stump

8 γ∗ ← γ ⊲ update best edge vector

9 b∗ ← si+si+1
2 ⊲ update best threshold

10 for ℓ ← 1 to K ⊲ for all classes

11 v∗
ℓ
← sign(γℓ) ⊲ set vote vector according to (3.35)

12 if γ∗ = γ(0) ⊲ did not beat the constant classifier

13 return (v∗,−∞, ‖γ∗‖1) ⊲ constant classifier with optimal votes

14 else

15 return (v∗, b∗, ‖γ∗‖1) ⊲ best stump

Figure 3.6: Exhaustive search for the best decision stump. BESTSTUMP receives a sorted column
(feature) s of the observation matrix X. The sorting in line 4 can be done once for all features
outside of the boosting loop. BESTSTUMP examines all thresholds b halfway between two non-
identical coordinates si += si+1 and returns the threshold b∗ and vote vector v∗ that maximizes the
edge γ(v, ϕj,b, W). STUMPBASE then sets the coefficient αj according to (3.34) and stump across
features that minimizes the energy (3.15).

separates observations with x(j) = ι from x(j) += ι. We call this the SELECTORBASE learner, and
define it formally as

ϕj,ι(x) =

{
1 if x(j) = ι,

−1 otherwise.
(3.36)

Using our example, the base learner that selects the blue value can be represented by ϕj, =
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si!1 si si"1
si!1"si
2

si"si"1
2

x! j"

!1

1

# j,$!x
! j""

Figure 3.7: Updating the edge γℓ in line 5 of BESTSTUMP. If yi,ℓ = 1, then γℓ decreases by 2wi,ℓ,
and if yi = −1, then γℓ increases by 2wi,ℓ.

{ – , + , – , – , – }.

Optimizing this SELECTORBASE takes Θ (ndK + KΣ) time, where Σ = ∑
d
j=1 M(j) is the num-

ber of all the different values of all features j = 1, . . . , d. Hence, to obtain a strong learner that

potentially uses (tests) Ω(M(j)) values for each feature, we will need Ω
(
(ndK + KΣ)Σ

)
opera-

tions, which can be prohibitive if Σ is large. On the other hand, it turns out that we can optimize

a base learner that makes a decision on all values of I (j) in each iteration, using essentially the
same number Θ (ndK + KΣ) of operations per iteration as the selector base learner. Formally, we
consider base learners of the form

ϕj,u(x) = ux(j) , (3.37)

where u is a {±1}-valued vector over the index set I (j). For example, the base classifier

ϕj,{+1,−1,−1,+1,+1} = { + , – , – , + , + }

outputs +1 for observations x whose jth feature is , , or , and −1 for feature values or
.

Learning a subset indicator is essentially a rank-1 matrix factorization problem. For showing

this, we first construct the M(j) × K-dimensional edge matrix Γ
(j) =

[
γ

(j)
ι,ℓ

]
with elements

γ
(j)
ι,ℓ =

n

∑
i=1

I

{
x

(j)
i = ι

}
wi,ℓyi,ℓ (3.38)

for each (nominal) feature j = 1, . . . , d, label index ℓ = 1, . . . , K and feature value ι = {1, . . . , M(j)}.
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The edge of ϕj,u(x) with vote vector v is

γ
(
v, ϕj,u, W

)
=

n

∑
i=1

K

∑
ℓ=1

wi,ℓvℓϕj,u(xi)yi,ℓ (3.39)

=
n

∑
i=1

K

∑
ℓ=1

wi,ℓvℓu
x
(j)
i

yi,ℓ (3.40)

=
K

∑
ℓ=1

vℓ

n

∑
i=1

wi,ℓu
x
(j)
i

yi,ℓ (3.41)

=
K

∑
ℓ=1

vℓ

n

∑
i=1

M

∑
ι=1

wi,ℓI

{
x

(j)
i = ι

}
uιyi,ℓ (3.42)

=
K

∑
ℓ=1

vℓ

M

∑
ι=1

uι

n

∑
i=1

I

{
x

(j)
i = ι

}
wi,ℓyi,ℓ (3.43)

=
K

∑
ℓ=1

M

∑
ι=1

vℓuιγ
(j)
ι,ℓ . (3.44)

(3.39) comes from the definition (3.33) of the multi-class edge γ
(
v, ϕj,u, W

)
. In (3.40) we used the

transcription (3.37) of ϕj,u(x). In (3.41) and (3.43) we simply re-ordered the summations. In (3.42)
we used the fact that

u
x
(j)
i

=
M

∑
ι=1

I

{
x

(j)
i = ι

}
uι.

Finally, (3.44) follows from the definition (3.38) of the edge matrix Γ
(j). Introducing the element-

wise matrix multiplication operator ⊗, the edge of ϕj,u(x) with vote vector v is

γ
(
v, ϕj,u, W

)
=

∥∥∥Γ
(j) ⊗ vu⊺

∥∥∥
1

,

where vu⊺ is the outer product of v and u and ‖ ·‖ 1 is the matrix 1-norm (sum of elements). Since

vℓuιγ
(j)
ι,ℓ =

∣∣γ(j)
ι,ℓ

∣∣
(

1 − 2I

{
vℓuι += sign

(
γ

(j)
ι,ℓ

)})
,

maximizing γ
(
v, ϕj,u, W

)
is equivalent to finding u and v that minimize

∑
K
ℓ=1 ∑

M
ι=1

∣∣γ(j)
ι,ℓ

∣∣ − γ
(
v, ϕj,u, W

)

2
=

K

∑
ℓ=1

M

∑
ι=1

∣∣γ(j)
ι,ℓ

∣∣I
{

vℓuι += sign
(
γ

(j)
ι,ℓ

)}
,

which is a weighted (binary) one-error. Therefore, in a nutshell, maximizing the edge in u and v
is equivalent to a rank-1 matrix factorization with an elementwise weighted one-loss.

Whatever beautiful name we give it, maximizing the edge γ
(
v, ϕj,u, W

)
is a difficult combi-

natorial optimization problem. Fortunately, ADABOOST.MH does not require the maximization

of the edge: we only need and edge γ(t) > 0 in each boosting iteration t to be able to continue.
The BESTINDICATOR11 algorithm (Figure 3.8) carries out a local search for a good (u, v) pair. It is
easy to see that the optimal v for a fixed u is

vℓ = sign




M(j)

∑
ι=1

γ
(j)
ι,ℓ uι


 , (3.45)

11The name comes from the fact that u is a binary vector that formally indicates a subset of I .
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and, symmetrically, the optimal u for a fixed v is

uι = sign

(
K

∑
ℓ=1

γ
(j)
ι,ℓ vℓ

)
. (3.46)

After computing Γ
(j) (lines 2-4) and initializing u to a random {±1}-valued vector (line 6),

BESTINDICATOR iterates between (3.45) and (3.46) until no change in the edge. Convergence
is guaranteed since γ

(
v, ϕj,u, W

)
is bounded from above by 1, it must increase in each iteration,

and the increase is bounded away from zero because the weights wi,ℓ are bounded away from
zero. In practice BESTINDICATOR always stops after a few iterations. Once it returns the pair
(uj, vj) for each feature j, INDICATORBASE, as STUMPBASE, takes care of setting the coefficient αj

and finding the best feature j∗.

Another advantage of INDICATORBASE over SELECTORBASE (besides being faster) is that the
vote vector v is shared among the selectors while in the standard learner we learn a vote vector
for each selector. This means that the capacity of the base classifier is considerably reduced (com-
pared to the sum of Σ selectors), suggesting that the algorithm is less susceptible to overfitting.
Sharing the vote vector may also help to “pick up” dependencies between feature values in the
case where there is a structure in the feature space (e.g., using discrete ADABOOST.MH, each

indicator ϕj,u clusters the feature values I (j) into two groups).

In a broader sense, the proposed learner is related to Cohen’s [86] model which allows set-
valued features as well as the common real-valued and nominal features. The main difference is
that in [86] it is the features of the observations that can take a subset of a large set of possible values
but the decision functions are still selectors of the form (3.36), whereas what we propose here
are subset-indicator decision functions (3.37). In another related algorithm (SLIPPER), Cohen and
Singer [87] build rules that are conjunctions of selectors (3.36) using a growing/pruning procedure.
The selectors in the same base rule can use different features, whereas INDICATORBASE acts on
different values of one feature. Although superficially similar to our method, both approaches use
different base classifiers and different algorithms to learn the classifiers. On the other hand, they
can be incorporated into our approach with just a few modifications to INDICATORBASE.

3.4.4 Hamming trees

Classification trees [88] have been widely used for multivariate classification since the 80s. They
are especially efficient when used as base learners in ADABOOST [89]. Their main disadvantage
is their variance with respect to the training data, but when averaged over T different runs, this
problem disappears. The reason of using trees is to increase the expressiveness (complexity) of
base classifiers. For example, learning a linear combination of decision stumps on pixels of an
image ignores completely the correlation between pixels. A small tree of even two nodes, on the
other hand, can easily pick up this correlation.

The most commonly used tree learner is C4.5 [90]. Whereas this tree implementation is a per-
fect choice for binary ADABOOST, it is suboptimal for ADABOOST.MH since it outputs a single-
label classifier with no guarantee of a positive multi-class edge (3.33). Although this problem can
be solved in practice by building large trees, there is no reason why we should not optimize the
multi-class edge using the tree learning framework.

The advantage of our formalization is that we can use any multi-class base classifier of the
form (3.26) for the tree cuts. Formally, a binary classification tree with N leaves and N − 1 inner
nodes consists of a list of N − 1 base classifiers H = (h1, . . . , hN) of the form

hj(x) = αjvj ϕj(x),

and two index lists l = (l1, . . . , lN) and r = (r1, . . . , rN) with l, r ∈ (N ∪ {NULL})N . lj and rj

represent the indices of the left and right children of the jth node of the tree, respectively. The



3.4. MULTI-CLASS BASE LEARNING 39

INDICATORBASE(X, Y, W)

1 for j ← 1 to d ⊲ all (nominal) features

2 (vj, uj, γj) ← BESTINDICATOR(x(j), Y, W, I (j)) ⊲ x(j) !
(
x

(j)
1 , . . . , x

(j)
n

)

3 αj ←
1

2
log

1 + γj

1 − γj
⊲ base coefficient (3.34)

4 j∗ ← arg min
j

Z
(
αjvj ϕj,uj

, W
)

5 return
(
αj∗ , vj∗ , ϕj∗ ,uj∗ (·)

)

BESTINDICATOR(x, Y, W, I)

1 M ← |I| ⊲ number of feature values

2 for ℓ ← 1 to K ⊲ compute Γ (3.38)

3 for ι ← 1 to M γι,ℓ ← 0

4 for i ← 1 to n γxi ,ℓ ← γxi ,ℓ + wi,ℓyi,ℓ

5 γ∗ ← 0

6 for ι ← 1 to M uι ← RANDOM(±1)

7 while TRUE

8 for ℓ ← 1 to K ⊲ compute optimal v given u (3.45)

9 γℓ ←
M

∑
ι=1

γι,ℓuι

10 vℓ ← sign (γℓ)

11 if γ∗ ≥
K

∑
ℓ=1

|γℓ| then return (u, v, γ∗)

12 γ∗ ←
K

∑
ℓ=1

|γℓ|

13 for ι ← 1 to M ⊲ compute optimal u given v (3.46)

14 γι ←
K

∑
ℓ=1

γι,ℓvℓ

15 uι ← sign (γι)

16 if γ∗ ≥
M

∑
ι=1

|γι| then return (u, v, γ∗)

17 γ∗ ←
M

∑
ι=1

|γι|

Figure 3.8: The pseudocode of the subset indicator base learner. After computing Γ
(j) (lines 2-

4) and initializing u to a random {±1}-valued vector (line 6), BESTINDICATOR iterates between
(3.45) and (3.46) until no change in the edge. STUMPBASE, sets the coefficients αj and finds the
best feature j∗.

node classifier in the jth node is defined recursively as

hj(x) =





−vj if ϕj(x) = −1 ∧ lj = NULL (left leaf),

vj if ϕj(x) = +1 ∧ rj = NULL (right leaf),

hlj
(x) if ϕj(x) = −1 ∧ lj += NULL, (left inner node),

hrj
(x) if ϕj(x) = +1 ∧ rj += NULL, (right inner node).

(3.47)
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The final tree classifier is then

hH,l,r(x) = αh1(x).

Note that hH,l,r(x) does not exactly have the form of (3.26). In particular, hH,l,r(x) uses the local
vote vectors vj determined by each leaf instead of a global vote vector. On the other hand, the
coefficient α is unique, and it is determined in the standard way

α =
1

2
log

1 + γ(h1, W)

1 − γ(h1, W)

based on the edge of the root classifier h1. The local coefficients αj returned by the base learners
are thrown away.

Finding the optimal N-leaf tree is a difficult combinatorial problem. Most tree-building algo-
rithms are therefore sub-optimal by construction. For ADABOOST, again, this is not a problem:
we can continue boosting as long as the edge is positive. Classification trees are usually built in a
greedy manner: at each stage we try to cut all the current leaves j by calling the base learner of the
data points reaching the jth leaf, then select the best node to cut, convert the old leaf into an inner
node, and add two new leaves. The difference between the different algorithms is in the way
the best node is selected. Usually, we select the node that improves the most a gain function. In
ADABOOST.MH the natural gain is the edge (3.33) of the base classifier. Since the data set (X, Y)
is different in each node, we will include them explicitly in the argument of the full multi-class
edge

γ(v, ϕ, X, Y, W) =
n

∑
i=1

K

∑
ℓ=1

I {xi ∈ X}wi,ℓvℓϕ(xi)yi,ℓ.

Note that in this definition we do not require that the sum of the weights of the selected points
add up to 1. Also note that this gain function is additive on subsets of the original data set
(X, Y, W), so the local edges in the leaves add up to the edge of the full tree. This means that any
improvement in the local edge directly translates to improvement of the tree edge.

The basic operation when adding a tree node with a scalar classifier (cut) ϕ is to separate the
data matrices X, Y, and W according to the sign of classification ϕ(xi) for all xi ∈ X. Figure 3.9
contains the pseudocode of this simple operation.

CUTDATASET
(
X, Y, W, ϕ(·)

)

1 X− ← Y− ← W− ← X+ ← Y+ ← W+ ← () ⊲ empty vectors

2 for i ← 1 to n

3 if xi ∈ X then

4 if ϕ(xi) = −1 then

5 X− ← APPEND(X−, xi)

6 Y− ← APPEND(Y−, yi)

7 W− ← APPEND(W−, wi)

8 else

9 X+ ← APPEND(X+, xi)

10 Y+ ← APPEND(Y+, yi)

11 W+ ← APPEND(W+, wi)

12 return (X−, Y−, W−, X+, Y+, W+)

Figure 3.9: The basic operation when adding a tree node is to separate the data matrices X, Y, and
W according to the sign of classification ϕ(xi) for all xi ∈ X.
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Building a tree is usually described in a recursive way but we find the iterative procedure
easier to explain, so our pseudocode in Figure 3.10 contains this version. To main idea is to
maintain a priority queue, a data structure that allows inserting objects with numerical keys into a
set, and extracting the object with the maximum key [91]. The key will represent the improvement
of the edge when cutting a leaf. We first call the base learner on the full data set (line 1) and insert
it into the priority queue with its edge γ(v, ϕ, X, Y, W) (line 3) as the key. Then in each iteration,
we extract the leaf that would provide the best edge improvement among all the leaves in the
priority queue (line 7), we partition the data set (line 11), call the base learners on the two new
leaves (line 12), and insert them into the priority queue using the difference between the old edge
on the partitioned data sets and the new edges of the base classifiers in the two new leaves (line 13).
When inserting a leaf into the queue, we also save the sign of the cut (left or right child) and the
index of the parent, so the index vectors l and r can be set properly in line 8.

TREEBASE(X, Y, W, BASE(·, ·, ·), N)

1
(
α, v, ϕ(·)

)
← BASE(X, Y, W)

2 S ← PRIORITYQUEUE ⊲ O(log N) insertion and extraction of maximum key

3 INSERT
(
S,

(
v, ϕ(·), X, Y, NULL, 0

)
, γ(v, ϕ, X, Y, W)

)
⊲ key = edge γ

4 H ← () ⊲ initialize classifier list

5 for j ← 1 to N

6 lj ← rj ← NULL ⊲ initialize child indices

7
(
vj, ϕj(·), Xj, Yj, •, jP

)
← EXTRACTMAX(S) ⊲ best node in the priority queue

8 if • = − then ljP
← j else if • = + then rjP

← j ⊲ child index of parent

9 H ← APPEND(H, vj ϕj(·)) ⊲ adding hj(·) = vj ϕj(·) to H

10 (X−, Y−, W−, X+, Y+, W+) ← CUTDATASET
(
Xj, Yj, W, ϕj(·)

)

11 for • ∈ {−, +} ⊲ insert children into priority queue

12
(
α•, v•, ϕ•(·)

)
← BASE(X•, Y•, W•)

13 INSERT
(
S,

(
v•, ϕ•(·), X•, Y•, •, j

)
, γ(v•, ϕ•,X•,Y•,W•)− γ(vj, ϕj,X•,Y•,W•)

)

⊲ key = edge improvement over parent edge

14 α =
1

2
log

1 + γ(h1, W)

1 − γ(h1, W)
⊲ standard coefficient of the full tree classifier h1 (3.47)

15 return
(
α, H, l, r

)

Figure 3.10: The pseudocode of the tree base learner. N is the number of leaves. The algorithm
returns a list of base classifiers H, two index lists l and r, and the base coefficient α. The tree
classifier is then defined by (3.47).

When the priority queue is implemented as a heap, both the insertion and the extraction of the
maximum takes O(log N) time [91], so the total running time of the procedure is O

(
N(TBASE +

n + log N)
)
, where TBASE is the running time of the base learner. Since N cannot be more than

n, the running time is O
(

N(TBASE + n)
)
. If the base learners cutting the leaves are decision

stumps, the total running time is O(nKdN). In the procedure we have no explicit control over
the shape of the tree, but if it happens to be balanced, the running time can further be improved
to O(nKd log N).
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3.4.5 Decision products

In this section we describe another meta-base learner that combines simple base classifiers in a
generic way [46]. Similarly to trees, we call the base learner as a subroutine but in an iterative
rather than recursive fashion. In the optimization loop we fix all but one of the base classifier
terms, temporarily re-label the points, and call the base learner using the “virtual” labels.

Formally, we learn base classifiers of the form

h(·) = α
m⊗

j=1

vj ϕj(·),

where the vote vectors vj are multiplied elementwise, and the number of terms m is a complexity
parameter that should be validated (similarly to the number of leaves N of decision trees). To
maximize the edge (3.33), we follow a simple iterative approach (Figure 3.11). In each iteration
we fix each base learner except for one ϕj, and maximize the edge with respect to ϕj. Because
of the product form of the edge (3.33), we can carry out this maximization by simply calling the
base learner of ϕj with “virtual” labels defined as the product of the real labels and the outputs
of the remaining base learners (line 9 in Figure 3.11). Formally, when optimizing the jth term
vj ϕj(·), the edge can be written as

γ =
n

∑
i=1

K

∑
ℓ=1

wi,ℓ

m

∏
j′=1

vj′ ,ℓϕj′(xi)yi,ℓ =
n

∑
i=1

K

∑
ℓ=1

wi,ℓvj ϕj(xi)




m

∏
j′=1

j′ +=j

vj′ ,ℓϕj′(xi)yi,ℓ


 ,

so maximizing the edge can be simply done by setting the “virtual” labels to

y′i,ℓ = yi,ℓ

m

∏
j′=1

j′ +=j

vj′ ,ℓϕj′(xi) = yi,ℓ

∏
m
j′=1 vj′ ,ℓϕj′(xi)

vj,ℓϕj(xi)

and calling the base learner with these labels.
The procedure is guaranteed to converge since in each batch of m iterations at least one “vir-

tual” sign y′i,ℓ must change (otherwise the base learner in line 10 returns the same set of m classi-
fiers and we have equality in line 11) and the number of different sign vectors is finite. As with
INDICATORBASE in Section 3.4.3, we found that in practice PRODUCTBASE always returns after a
few iterations.

REMARK 1: PRODUCTS OF STUMPS. In experiments (see Section 3.4.6) we found that ADABOOST.MH
with products of stumps achieves excellent test results on benchmark data sets, for which, at this
point, we can only provide a partial explanation. First, it is easy to see that the algorithm solves
the XOR problem: a product of two stumps can obviously implement the XOR function. As an
extension, the product of d stumps can implement the parity function on any subsequence of the
(binary or thresholded real-valued) feature vector up to d elements. It can also be shown that
the class of sums of products of d stumps is a universal approximator if and only if the obser-
vation space X is at most d-dimensional.12 Second, it is clear that the class of sums of products
of stumps is a subclass of decision trees: there are constraints on how homogeneous regions are
created, and each base learner term of the product has a “global” contribution. Nevertheless, we
also found that one product of stumps does not have enough capacity to achieve a low test error
even if m is set to infinity: PRODUCTBASE underfits the data, probably due to the greediness of
the optimization loop. Hence, unlike trees, products cannot be used as standalone strong learn-
ers. On the other hand, boosting products is less susceptible to overfitting than boosting trees,
for which we also provide some experimental evidence.

12Here we shall only give an outline of the constructive proof: f can be set to an arbitrary value on any hypercube in

R
d, independently of the rest of the space by carefully selecting and weighting products of stumps placed at the corners

of the hypercube.
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PRODUCTBASE(X, Y, W, BASE(·, ·, ·), m)

1 for j ← 1 to m

2 ϕj(·) ← 1, vj ← 1 ⊲ terms are initialized to the constant 1 function

3 α ← 1

4 while TRUE

5 for j ← 1 to m ⊲ loop over all terms while improvement

6 ϕ∗(·) ←
m

∏
j′=1

ϕj′(·), v∗ ←
m⊗

j′=1

vj′ , α∗ ← α ⊲ save current optimal classifier

7 for i ← 1 to n

8 for ℓ ← 1 to K

9 y′i,ℓ ← yi,ℓ
v∗
ℓ

ϕ∗(xi)

vj,ℓϕj(xi)
⊲ “virtual” labels

10
(
α, vj, ϕj(·)

)
← BASE(X, Y′, W)

11 if Z
(

α
⊗m

j′=1 vj′ ϕj′ , W
)
≥ Z

(
α∗v∗ϕ∗, W

)
then ⊲ no improvement

12 return
(
α∗, v∗, ϕ∗(·)

)

Figure 3.11: The pseudocode of the product base learner. m is the number of base classifier terms.
The vote vectors are multiplied elementwise in lines 6 and 11.

REMARK 2: PRODUCTS OF SUBSET INDICATORS. Boosting products of indicator base classi-
fiers (3.37) is a solution of maximum margin matrix factorization (MMMF) [92], used to formalize
and solve the collaborative filtering problem. Taking the simple case when the observations con-

sist of two index features x(1) ∈ I (1) and x(2) ∈ I (2) (for example, movie IDs and user IDs), and
the classification is binary (for example, y = +1 if userx(1) liked moviex(2) and y = −1 if he or she
disliked it), individual base classifiers will take the form

h
(t)

u(t),z(t)

(
x(1), x(2)

)
= α(t)u

(t)

x(1) z
(t)

x(2) ,

where u(t) and z(t) are vectors over I (1) and I (2), respectively. The strong classifier f can then

be used to classify every pair of I (1) × I (2). The resulting M(1) × M(2) matrix can be expressed

as the product of two matrices, an M(1) × T “user feature” matrix containing the column vectors√
α(t)u(t), and a T × M(2) “movie feature” matrix containing the row vectors

√
α(t)z(t). The maxi-

mization of the exponential margin-based error (3.13) leads to a large margin solution, and all the
relevant results on the generalization error (e.g., [61]) apply immediately. Finding two low-rank
(or otherwise low-complexity) matrices whose product produces large margins on the training
data is the exact goal of MMMF [92]. In a certain sense, boosting products of two index learn-
ers is related to the semi-definite-programming-based solution of MMMF as the classical binary
ADABOOST is related to support vector machines.

The algorithm can be applied directly to multi-valued preferences by adding the optimization

of the vote vectors v(t). In this case, the preference prediction matrix becomes a hyper-matrix with
vector-valued elements. The formulation also permits one to boost products of more than two
indices (or to use two or more times a base learner on the same index) which goes beyond the
matrix-decomposition-based formulation of the collaborative filtering problem. It is also quite
straightforward to combine collaborative features with “traditional” numerical or nominal co-
variates by allowing mixed products.
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3.4.6 Comparative experiments of base learners

To test the base learners, we carried out two sets of experiments. In the first we boosted products
of decision stumps on five benchmark datasets13 using the standard train/test cuts. We used
discrete ADABOOST.MH with multi-class initial weights (3.12). We found no overfitting whatso-
ever in terms of the number of boosting iterations T (Figure 3.12), so instead of validating T and
performing an early stopping, we decided to run the algorithm for a long time after convergence

(T = 105 in each experiment), and measure the average test error R̂
(
f(T)

)
on the last T/2 iter-

ations. The advantage of this approach is that this estimate is more robust in terms of random
fluctuations after convergence than the error at a given iteration. It is also a pessimistic estimate
of the error when there is a slight overfitting (since the average is always an upper bound of the
minimum). For the two image datasets we also report results using ADABOOST.MH with stumps
on Haar filters [62].14
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Figure 3.12: The “winning” learning curves on the five benchmark datasets indicate no overfitting
in terms of the number of boosting iterations T when products are used. With a tree base learner
(last plot), on the other hand, we do observe slight overfitting sometimes.

We conducted experiments using a range of values for the number of terms m for which
we report the test errors in Table 3.1. The optimal number of terms (error rate in bold face)
was selected by a 80%-20% simple validation on the training set. We compared PRODUCTBASE

with TREEBASE. Since this base learner was more prone to overfitting (last plot in Figure 3.12),
we validated both the number of leaves N and the number of boosting iterations T. Table 3.1
indicates that, with one exception, boosting products is significantly better than boosting trees.
We also tested the Weka [93] implementation of boosted trees although the comparison is slightly
unfair for two reasons: first, the Weka implementation uses ADABOOST.M1 which is known
to be inferior to ADABOOST.MH for multi-class boosting, and second, the high computational
complexity did not allow us a complete exploration of the hyperparameter space, so we cannot
claim that we have found the optimal tree size and number of iterations T. Nevertheless, these
results provide a reasonable idea about the novice user’s experience with AdaBoost.

On an absolute scale the results are on a par with the state-of-the-art results reported in the
literature on the same data sets. In particular, they are the best results obtained by any ensem-
ble method. We would especially like to underline the 1.26% test error on the MNIST dataset,
which is the best reported error rate among generic classification algorithms15 after Hinton, G.
E. and Salakhutdinov’s [94] deep belief nets (1.00%); it is significantly better than the error rates

13The data sets are available at yann.lecun.com/exdb/mnist (MNIST), www.kernel-machines.org/data.html
(USPS), www.ics.uci.edu/ ˜mlearn/MLRepository.html (letter, pendigit, isolet), and
www.cs.umn.edu/Research/GroupLens (MovieLens).

14We used five filter types (“bw” and “bwb”, vertical and horizontal, and four-field checkerboard). Due to the large
number of possible filters (order of 105), we selected just the best of a random 100 in each boosting iteration.

15Algorithms that do not make explicit use of the fact that the observation vectors represent images.
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learner \ data set MNIST USPS UCI pendigit UCI isolet UCI letter
Stump (m = 1) 7.71 (0.05) 6.48 (0.05) 4.97 (0.00) 4.88 (0.07) 14.74 (0.06)
Product / m = 2 1.56 (0.03) 4.92 (0.06) 1.89 (0.02) 3.91 (0.10) 3.65 (0.04)
Product / m = 3 1.26 (0.02) 4.24 (0.04) 2.07 (0.03) 3.97 (0.04) 2.71 (0.02)
Product / m = 4 1.38 (0.02) 4.72 (0.07) 3.95 (0.05) 2.54 (0.06)
Product / m = 5 3.87 (0.07) 2.41 (0.04)
Product / m = 6 3.92 (0.08) 2.40 (0.03)
Product / m = 8 3.89 (0.04) 2.38 (0.04)
Product / m = 10 4.11 (0.04) 2.35 (0.04)
Haar (m = 1) [62] 1.02 (0.02) 4.29 (0.05)
Haar / Product / m = 2 0.84 (0.02) 3.84 (0.07)
Haar / Product / m = 3 0.87 (0.02) 4.03 (0.06)
Haar / Product / m = 4 0.90 (0.02) 4.05 (0.04)
Tree 1.53 (0.02) 4.73 (0.04) 2.14 (0.04) 3.69 (0.04) 2.62 (0.04)
Haar / Tree 1.08 (0.02) 4.98 (0.05)
AdaBoost.M1 / C4.5 4.05 5.98 2.66 4.81 2.88

Table 3.1: Test error percentages 100 2
T ∑

T
t=T/2 R̂

(
f(t)

)
on benchmark datasets using discrete

ADABOOST.MH with products of stumps. The results with the optimal number of terms m se-
lected by 80%-20% simple validation on the training set are shown in bold. Tree and Haar/Tree
use TREEBASE. In this case both T and the number of leaves N were validated. For Ad-
aBoost.M1/C4.5 we used the Weka implementation.

of support vector machines (1.4%) and randomly initialized two-layer back-propagation neural
nets using cross-entropy loss (1.6%).

set WLRA [95] MMMF SDP [92] ADABOOST

1 rank 2 57.5 max-norm, C = 0.0012 56.2 T = 7275 56.3
2 rank 2 56.2 trace norm, C = 0.24 55.2 T = 9940 54.5
3 rank 1 54.3 max-norm, C = 0.0012 52.7 T = 475 53.9
4 rank 2 55.3 max-norm, C = 0.0012 55.0 T = 9515 56.6
Avg 55.8 54.8 55.3

Table 3.2: Test error percentages on the MovieLens dataset using the experimental setup of [92].
The errors in columns 3 and 5 were taken directly from [92].

It seems also quite surprising that we were able to improve on boosting stumps over the fea-
ture space generated by Haar filters. Boosting stumps over Haar filters is already one of the best
semi-generic method16, achieving similar error rates to convolutional neural nets [96]. Boosting
these feature extractors also outperforms boosting stumps and even boosting products of stumps
(on MNIST). The feature space has a large dimension (of order 105) and the Haar filters are well-
adapted to natural images, so one would expect that a simple linear combination over this space
can achieve the best results. While this intuition is reaffirmed when using trees over the Haar
space, we were genuinely surprised to see that using the product of a small number of Haar filters
as a base learner can significantly outperform boosting single Haar filters.

In the second set of experiments we tested the algorithm on a small subset of the MovieLens
collaborative filtering database using the same experimental settings as Srebro et al. [92]: the data
is divided into four sets, for each of the four test sets the algorithms are trained and validated on
the remaining three in a 3-fold cross validation. The two best of the three learners are selected
and tested on the hold-out test set. In the case of ADABOOST, we validated the real/discrete

16Algorithms that do make explicit use of the fact that the observation vectors represent images, but not of the fact that
the images depict characters.
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version, the weight initialization, the number of terms m and the number of iterations T. In

each experiment, using real ADABOOST.MH with uniform weight initialization w
(1)
i,ℓ = 1/(nK)

and m = 2 proved to be the best approach. The results in Table 3.2 place this approach be-
tween WLRA [95] and semi-definite-programming-based MMMF [92]. The computational effort
needed to produce the results was an order of magnitude smaller than in the case of SDP MMMF
(minutes vs. hours). Since ADABOOST.MH scales linearly with the data size, this approach has a
greater prospective on large collaborative filtering problems.

3.5 Calibration and aggregation for ranking

In this section we summarize our works on learning to rank [74, 75]. The method we devel-
oped came in 5th in one of the tracks in the ranking challenge organized by Yahoo! in 2010
[64]. There are three interesting methodological findings in these works. First, we show that
a simple pointwise approach is competitive to the more sophisticated but computationally less
efficient pairwise and listwise techniques. Second, we describe how to calibrate a seemingly in-
adequate multi-class classifier to obtain good rankers. Finally, we demonstrate that combining
all the trained models in a simple ensemble is significantly better than the traditional approach of
selecting the one best model based on validation. This latter fact is corroborated by the winning
approaches in most of the recent last scale data-mining challenges [69, 63, 64].

3.5.1 Introduction

In the past, the result lists in Information Retrieval were ranked by probabilistic models (such as
the BM25 measure [97]) based on a small number of attributes (the frequency of query terms in
the document, in the collection, etc.). The parameters of these models were usually set empiri-
cally. As the number of useful features increase, these manually crafted models become increas-
ingly laborious to configure. Alternatively, one can use as many (possibly redundant) attributes
as possible, and employ Machine Learning techniques to induce a ranking model. This approach
alleviates the human effort needed to design the ranking function, and also provides a natural
way to directly optimize the retrieval performance for any particular application and evaluation
metric. As a result, Learning to Rank has gained considerable research interest in the past decade.

Machine Learning based ranking systems are traditionally classified into three categories. In
the simplest pointwise approach, the instances are first assigned a relevance score using classical
regression or classification techniques and then ranked by posterior scores obtained using the
trained model [98]. In the pairwise approach, the order of pairs of instances is treated as a binary
label and learned by a classification method [99]. Finally, in the most complex listwise approach,
the fully ranked lists are learned by a tailor-made learning method which aims to optimize a
ranking-specific evaluation metric during the learning process [100].

In web page ranking or subset ranking [101] the training data is given in the form of query-
document-relevance label triplets. The relevance label of a training instance indicates the useful-
ness of the document to its corresponding query, and the ranking for a particular query is usually
evaluated using the (normalized) Discounted Cumulative Gain ((N)DCG) or the Expected Re-
ciprocal Rank (ERR) [102] measure. It is rather difficult to extend classical learning methods to
directly optimize these evaluation metrics. Nevertheless, since the DCG can be bounded by the
one-loss [98], traditional classification error can be considered as a surrogate function for DCG.

Calibrating the output of a particular learning method is crucial in applications with quality
measures different from the one-error [103]. Our approach is based on the calibration of a multi-
class classification model learned by ADABOOST [44]. In our setup, the class labels are assumed
to be random variables and the goal is the estimation of the probability distribution of the class
labels given a feature vector representing the (document, query) pair. An important novelty in
our approach is that, instead of using a single calibration technique, we apply several methods
to estimate the same probability distribution and, in a final step, we combine these estimates.



3.5. CALIBRATION AND AGGREGATION FOR RANKING 47

Figure 3.13: The schematic overview of our approach. In the first level a multi-class method
(ADABOOST.MH) is trained using different hyperparameter settings. Then we calibrate the
multi-class models in several ways to obtain diverse scoring functions. In the last step we ag-
gregate the scoring functions using an exponential weighting.

We use both regression-based calibration (RBC) and class probability-based calibration (CPC) to
transform the output scores of AdaBoost into relevance label estimates. In the case of RBC,
the real-valued scores are obtained by regressing the relevance labels against the output of AD-
ABOOST. These scores are then used to rank the objects. In the case of CPC, the posterior prob-
ability distribution is used to approximate the so-called Bayes-scoring function [101], which is
shown to optimize the expected DCG in a probabilistic setup.

The proper choice of the prior on the set of conditional distributions obtained by the calibra-
tion of ADABOOST is an important decision in practice. In this paper, we use an exponential
scheme based on the quality of the rankings which is theoretically more well-founded than the
uniformly weighted aggregation used by MCRANK [98].

Figure 3.13 provides a structural overview of our system. Our approach belongs to the sim-
plest pointwise category of learning-to-rank models. It is based on a series of standard tech-
niques: 1) multi-class classification, 2) output score calibration and 3) exponentially weighted
forecaster to combine the various hypotheses. As opposed to previous works, we found our
approach to be competitive to the standard methods (ADARANK, LISTNET, RANKSVM, and
RANKBOOST) of the theoretically more involved pairwise and listwise approaches.

The section is organized as follows. Section 3.5.2 describes the formal setup. Section 3.5.3 is
devoted to the description of calibration technique. The ensemble scheme is presented in Sec-
tion 3.5.6. Our experimental results are presented in Section 3.5.7.

3.5.2 Definition of the ranking problem

Let us assume that we are given a set of query objects D = {D(1), . . . ,D(M)}. Each query object

D(k) consists of a set of n(k) pairs

D(k) =
{(

x
(k)
1 , ℓ

(k)
1

)
, . . . ,

(
x
(k)
1 , ℓ

(k)

n(k)

)}
.

The real-valued feature vectors x
(k)
i represent the kth query and the ith document received as

a potential hit for the query. The label index ℓ
(k)
i of the query-document pair x

(k)
i is an integer

between 1 and K. We assume that we are given a set of numerical relevance grades

Z = {z1, . . . , zK}.



48 CHAPTER 3. SUPERVISED LEARNING

The relevance grade z
(k)
i = z

ℓ
(k)
i

expresses the relevance of the ith document to the kth query on a

numerical scale. A popular choice for the numerical relevance grades is

zℓ = 2ℓ−1 − 1

for all ℓ = 1, . . . , K.
The goal of the ranker is to output a permutation j(k) = (j1, . . . , jn(k)) over the integers (1, . . . , n(k))

for each query object D(k). A widely used empirical measure of the quality of the permutation

j(k) is the Discounted Cumulative Gain (DCG)

D̂CG
(

j(k),D(k)
)

=
n(k)

∑
i=1

ciz
(k)
ji

, (3.48)

where ci is the discount factor of the ith document in the permutation. The most common discount
factor is

ci =
1

log(1 + i)
.

The rationale of this formula that a user will be increasingly happy when finding relevant doc-
uments early in the permutation. To normalize DCG between 0 and 1, (3.48) is usually divided
with the DCG score of the best permutation (NDCG). It is also a common practice to truncate the
sum (3.48) at nmax, defining the DCGnmax and NDCGnmax scores. The reason is that a user would
rarely leave the first page of search results containing the first nmax hits.

We will consider ℓ
(k)
i as a random variable with a conditional discrete probability distribution

p∗
(
ℓ|x(k)

i

)
= P

(
ℓ
(k)
i = ℓ|x(k)

i

)

over the label indices ℓ for document i of query k. The Bayes-scoring function

v∗
(
x
(k)
i

)
= E

{
z|x(k)

i

}
=

K

∑
ℓ=1

zℓp∗
(
ℓ|x(k)

i

)

is the conditional expectation of the relevance grade given the (query, document) pair. Then the

expected DCG for any permutation j(k) is

DCG
(

j(k),D(k)
)

=
n(k)

∑
i=1

ciE

{
z|x(k)

ji

}
=

n(k)

∑
i=1

civ
∗(x

(k)
ji

)
.

Let the Bayes optimal permutation j(k)∗ =
(

j
(k)
1

∗
, . . . , j

(k)

n(k)

∗)
over D(k) be the one which maxi-

mizes the expected DCG, that is,

j(k)∗ = arg max
j(k)

DCG
(

j(k),D(k)
)
.

According to Theorem 1 of [101], j(k)∗ has the property that if ci > ci′ , then for the Bayes-scoring

function we have v∗
(
x

j
(k)
i

∗
)

> v∗
(
x

j
(k)

i′
∗
)
. This means that the optimal j(k)∗ can be easily obtained

from the Bayes-optimal scoring function v∗ by ordering the query-document pairs x
(k)
i according

to v∗
(
x
(k)
i

)
. This result justifies the pointwise approach that estimates v∗ in a regression setup. In

this paper we also use the pointwise approach in a discrete density estimation setup: our goal is to

estimate p∗
(
ℓ|x(k)

j

)
by pA

(
ℓ|x(k)

j

)
, where the label A will refer to the method that generates the

probability estimates. To refer the scoring function generated by pA, we will use the notation

vA(x
(k)
i ) =

K

∑
ℓ=1

zℓpA
(
ℓ|x(k)

i

)
. (3.49)
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In the pointwise approach, the scoring function v induces the permutation jv for which

v
(
x
(k)
jv1

)
≥ . . . ≥ v

(
x
(k)
jv
n(k)

)
. (3.50)

3.5.3 The calibration of multi-class classification models

Our basic modeling tool is multi-class ADABOOST.MH [45] (Section 3.3.2). To tackle the ranking
problem, we first convert the set of query objects D into a multi-class setup. The input training

set of ADABOOST.MH consists of the set of feature vectors X =
(

x1
1, . . . , x1

n(1) , . . . , xM
1 , . . . , xM

n(M)

)

and a set of labels Y =
(

y1
1, . . . , y1

n(1) , . . . , yM
1 , . . . , yM

n(M)

)
, where each label vector y

(k)
i encodes the

label index ℓ
(k)
i in a one-out-of-K scheme

y
(k)
i,ℓ =

{
+1 if ℓ

(k)
i = ℓ,

−1 otherwise.

We used two base learners: decision trees (Section 3.4.4) and decision products [46] (Section 3.4.5).
Instead of using uniform (3.11) or multi-class (3.12) weighting for training instances, we up-
weighted relevant instances proportionally to their relevance grades. Formally, the initial (un-
normalized) weight of ℓth label of the (k, i)th instance is

w
(k)
i,ℓ =

{
1 + z

(k)
i if ℓ

(k)
i = ℓ,

(1 + z
(k)
i )/(K − 1) otherwise.

The weights are then normalized to sum to 1. This weighting scheme was motivated by the eval-
uation metric: the weight of an instance in the DCG score (3.48) is proportional to the relevance
grade.

ADABOOST.MH outputs a vector-valued strong classifier

f(T)(x) =
T

∑
t=1

α(t)h(t)(x),

where h(t)(x) is a {±1}K-valued base classifier and α(t) is its weight. In multi-class classifica-

tion the elements of f(T)(x) are treated as posterior scores corresponding to the labels, and the
predicted single label is

ℓ̂
(k)
i = arg max

ℓ=1,...,K

f
(T)
ℓ

(
x
(k)
i

)
.

When posterior probability estimates are required, in the simplest case the output vector can be
shifted into [0, 1]K using

f′(T)
(x) =

1

2

(
1 +

f(T)(x)

∑
T
t=1 α(t)

)
,

and then the posterior probabilities can be obtained by simple normalization

pSHIFT
(
ℓ|x(k)

i

)
=

f ′
ℓ

(T)(
x
(k)
i

)

∑
K
ℓ′=1 f ′(T)

ℓ′
(
x
(k)
i

) . (3.51)
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3.5.4 Regression based pointwise calibration

An obvious way to calibrate the output of ADABOOST.MH is to re-learn the relevance grades by
applying a regression method. Using the raw K-dimensional output of ADABOOST.MH we can
obtain relevance grade estimates in the form of

ẑ
(k)
i = g

(
f(T)(x

(k)
i )

)
,

where g : R
(k) → R is the regression function. We shall refer to this scheme as regression-based

calibration (RBC).

In our experiments we used five different regression methods: Gaussian process regression,
logistic regression, linear regression, neural network regression, and polynomial regression of
degree between 2 and 5. From a practical point of view, the relevance grade estimates provided
by the different regression methods for an unseen test document are on a different scale, so these
values cannot be aggregated in a direct way. In Section 3.5.6 we explain how to normalize these
values.

3.5.5 Class probability calibration

Let us recall that the output of ADABOOST.MH is

f
(
x
(k)
i

)
=

(
f1

(
x
(k)
i

)
, . . . , fK

(
x
(k)
i

))
.

Then the class probability can be calibrated a using sigmoidal function

sθ( f ) = sa,b( f ) =
1

1 + exp
(
− a( f − b)

)

to obtain

psθ
(
ℓ|x(k)

i

)
=

sθ

(
fℓ

(
x
(k)
i

))

∑
K
ℓ′=1 sθ

(
fℓ′

(
x
(k)
i

)) . (3.52)

The parameters of the sigmoid function can be tuned by minimizing a so-called target calibration
function (TCP) LA(θ, f). Generally speaking, LA(θ, f) is a loss function calculated using the prob-
ability estimates (3.52). LA is parametrized by the parameter θ = (a, b) of the sigmoid function
and the output of the multi-class classifier f.

Given a TCF LA and a multi-class classifier f, our goal is to find the optimal calibration pa-
rameters

θA,f = arg min
θ

LA(θ, f).

The output of this calibration step is a probability distribution pA,f
(
ℓ|x(k)

i

)
and a corresponding

Bayes-scoring function vA,f
(
x
(k)
i

)
defined in (3.49). We will refer to this scheme as class-probability-

based calibration (CPC). The upper index A refers to the type of the particular TCF, so the ensemble
of probability distributions is indexed by the target calibration function A and the multi-class
classifier f output by ADABOOST.MH.

Given the ensemble of probability distributions pA,f
(
ℓ|x(k)

i

)
and an appropriately chosen

weights π(A, f), we compute the combined conditional distribution by

pCPC
(
ℓ|x(k)

i

)
= ∑

A,f

π(A, f)pA,f
(
ℓ|x(k)

i

)
.
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Then we obtain a “posterior” estimate for the Bayes-scoring function

vCPC
(
x
(k)
i

)
=

K

∑
ℓ=1

zℓpCPC
(
ℓ|x(k)

i

)

=
K

∑
ℓ=1

zℓ ∑
A,f

π(A, f)pA,f
(
ℓ|x(k)

i

)

= ∑
A,f

π(A, f)
K

∑
ℓ=1

zℓpA,f
(
ℓ|x(k)

i

)

= ∑
A,f

π(A, f)vA,f
(
x
(k)
i

)
. (3.53)

The proper selection of π(·, ·) can further increase the quality of the posterior estimation. In
Section 3.5.6 we will describe a reasonable setup borrowed from the theory of experts.

In the simplest case, the TCF can be

LLS(θ, f) =
M

∑
k=1

n(k)

∑
i=1

− log psθ
(
ℓ
(k)
i |x(k)

i

)
.

We refer to this function as the log-sigmoid TCF. The motivation of the log-sigmoid TCF is that
the resulting probability distribution minimizes the relative entropy between the Bayes opti-
mal probability distribution p∗ and pA,f. In practice distributions being less (or more) uniform
over the labels might be preferred. This preference can be expressed by introducing the entropy
weighted version of the log-sigmoid TCF

LEWLS
C (θ) =

M

∑
k=1

n(k)

∑
i=1

− log psθ
(
ℓ
(k)
i |x(k)

i

)
× HM

(
psθ

(
ℓ1|x(k)

i

)
, . . . , psθ

(
ℓK|x(k)

i

))C
,

where

HM (p1, . . . , pK) = −
K

∑
ℓ=1

pℓ log pℓ,

and C is a hyperparameter.
We also used TCFs based on the expected loss

LEL(θ) =
M

∑
k=1

n(k)

∑
i=1

K

∑
ℓ=1

L
(
ℓ, ℓ

(k)
i

)
psθ

(
ℓ|x(k)

i

)
,

where L(ℓ, ℓ
(k)
i ) represents the loss if ℓ is predicted instead of the correct label ℓ

(k)
i . We used the

standard squared loss L(ℓ, ℓ′) = (ℓ − ℓ′)2.
If the label indices have some structure, e.g., they are ordinal as in our case, it is also possible

to first compute the expected label

ℓ
(k)
i =

K

∑
ℓ=1

ℓpsθ
(
ℓ|x(k)

i

)

and then compute the expected label loss TCF

LELL(θ) =
M

∑
k=1

n(k)

∑
i=1

L
(
ℓ
(k)
i , ℓ

(k)
i

)
.

Note that the definition of L(·, ·) might need to be redefined for LELL since the weighted average
of the label indices might not be a label index at all.



52 CHAPTER 3. SUPERVISED LEARNING

Finally, we can apply the idea of SMOOTHGRAD [105] to obtain a TCF. In SMOOTHGRAD a
smooth surrogate function is used to optimize the NDCG metric. In particular, using the nor-
malized soft indicator (or similarity function)

hθ,σ

(
x
(k)
i , x

(k)
i′

)
=

exp

(
− 1

σ

(
vsθ

(
x
(k)
i

)
− vsθ

(
x
(k)
i′

))2
)

∑
n(k)

i′′=1 exp

(
− 1

σ

(
vsθ

(
x
(k)
i

)
− vsθ

(
x
(k)
i′′

))2
)

the soft NDCG TCF can be written as

LSNDCG
σ (θ) = −

M

∑
k=1

n(k)

∑
i=1

n(k)

∑
i′=1

z
(k)
i ci′hθ,σ(x

(k)
i , x

(k)
ji′

)

where j = (j1, . . . , jn(k)) is the permutation defined by the scoring function vsθ (·) (3.50). The
parameter σ controls the smoothness of LSNDCG

σ : the higher σ, the smoother is the function but the
bigger is the difference between the NDCG value and the value of surrogate function. If σ → 0
then LSNDCG

σ tends to the NDCG value, but, at the same time, optimizing the surrogate function
becomes harder.

3.5.6 Ensemble of ensembles

Selecting the best hyperparameters for ADABOOST.MH and the best calibration function is nor-
mally done in a validation step. This procedure would “throw away” most of the diverse infor-
mation represented by the different predictors. Instead of selecting the best, we use all the rele-
vance predictions vA,f(x, S) obtained by different ADABOOST classifiers f using different TCFs A.

Each relevance prediction can be used as a scoring function to rank the query-document pairs x
(k)
i

according to (3.50). Until this point our method is a purely pointwise approach (except for the
calibration using LSNDCG). To fine-tune the algorithm and to make use of the diversity of our mod-
els, we combine the scoring functions vA,f(x, S) using an exponentially weighted forecaster [106].
The reason of using this particular weighting scheme is twofold. First, it is simple and compu-
tationally efficient to tune which is important when we have a large number of models. Second,
theoretical guarantees over the cumulative regret of a mixture of experts on individual (model-
less) sequences [106] makes the technique robust against overfitting the validation set.

The weights of the models are tuned on the NDCG score, giving a slight listwise touch to our
approach. Formally, the final scoring function is obtained by using π(A, f) = exp(cωA,f), where
ωA,f is the NDCG10 score of the ranking obtained by using vA,f(x). Plugging it into (3.53), the
combined scoring function is

vENSEMBLE(x) = ∑
A,f

exp
(
cωA,f

)
vA,f(x). (3.54)

The parameter c controls the dependence of the weights on the NDCG10 values.
A similar ensemble method can be applied to outputs calibrated by regression methods. A

major difference between the two types of calibration is that the regression-based scores have to
be normalized/rescaled before the exponentially weighted ensemble scheme is applied. We sim-
ply rescaled the output of the regression models into [0, 1] before using them in the exponential
ensemble scheme.

3.5.7 Experiments

In our experiments we used the Ohsumed dataset taken from LETOR 3.0 and both datasets of
LETOR 4.017. We are only interested in datasets that contain more than 2 levels of relevance. On

17http://research.microsoft.com/en-us/um/beijing/projects/letor/

http://research.microsoft.com/en-us/um/beijing/projects/letor/
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the one hand, this has a technical reason: calibration for binary relevance labels does not make
too much sense. On the other hand, we believe that in this case the difference between various
learning algorithms is more significant. All LETOR datasets we used contain 3 levels of relevance.
We summarize their main statistics in Table 3.3.

Table 3.3: The statistics of the datasets we used in our experiments.
Number of Number of Number of Documents per
documents queries features query

LETOR 3.0/Ohsumed 16140 106 45 152
LETOR 4.0/MQ2007 69623 1692 46 41
LETOR 4.0/MQ2008 15211 784 46 19

For each LETOR dataset there is a 5-fold train/valid/test split given. We used this split except
that we divided the official train set by a random 80% − 20% split into training and calibration
sets which were used to adjust the parameters of the different calibration methods. We did not
apply any feature engineering or preprocessing to the official feature set. The NDCG values we
report in this section were computed using the provided evaluation tools.

We compared our algorithm to five state-of-the-art ranking methods whose outputs are avail-
able at the LETOR website for each dataset we used:

1. ADARANK-MAP [107]: a listwise boosting approach aiming to optimize MAP.

2. ADARANK-NDCG [107]: a listwise boosting approach with the NDCG as objective func-
tion, minimized by the ADABOOST mechanism.

3. LISTNET [108]: a probabilistic listwise method which employs cross entropy loss as the
listwise loss function in gradient descent.

4. RANKBOOST [99]: a pairwise approach which casts the ranking problem into a binary clas-
sification task. In each boosting iteration the weak classifier is chosen based on NDCG
instead of error rate.

5. RANKSVM [109] a pairwise method based on SVM, also based on binary classification as
RANKBOOST.

To train ADABOOST.MH, we used our open source implementation available at http://multiboost.
org. We did not validate the hyperparameters of weak learners. Instead, we calibrated and used
all the trained models with various number of tree leafs and product terms. The number of tree
leaves ranged from 5 to 45 uniformly with a step size of 5, and the number of product terms from
2 to 10. The training was performed on a grid18 which allowed us to fully parallelize the training
process, and thus it took less than one day to obtain all strong classifiers.

We only tuned the number of iterations T and the base parameter c in the exponential weight-
ing scheme (3.54) on the validation set. In the exponential weighting combination (3.54) we set
the weights using the NDCG10 performances of the calibrated models and c and T were selected
based on the performance of the combined scoring function vENSEMBLE(·) in terms of NDCG10.
The hyperparameter optimization was performed using a simple grid search where c ranged
from 0 (corresponding to uniform weighting) to 200 and for T from 10 to 10000. Interestingly,
the best number of iterations is very low compared to the ones reported by [46] for classification
tasks. For LETOR 3.0 the best number of iterations is T = 100 and for both LETOR 4.0 datasets
T = 50. The best base parameter is c = 100 for all databases. This value is relatively high con-
sidering that it is used in the exponent, but the performances of the best models were relatively
close to each other. We used fixed parameters C = 2 in the TCN function LEWLS

C , and σ = 0.01 in
LSN

σ .

18http://www.egi.eu

http://www.egi.eu
http://multiboost.org
http://multiboost.org
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Comparison to standard learning to rank methods

Figure 3.14 shows the NDCGk values for different truncation levels k. Our approach consis-
tently outperforms the baseline methods for almost every truncation level on the LETOR 3.0 and
MQ2008 datasets. In the case of LETOR 3.0, our method is noticeably better for high truncation
levels whereas it outperforms only slightly but consistently the baseline methods on MQ2008.
The picture is not so clear for MQ2007 because our approach shows some improvement only for
low truncation levels.19
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Figure 3.14: NDCGk values on the LETOR datasets. We blow up the NDCG10 values to see the
differences.

Table 3.4 shows the average NDCG values for LETOR 4.0 along with NCDG10 for LETOR 3.0
(the tool for LETOR 3.0 does not output the average NDCG). Our approach consistently achieves
the best performance among all methods.

We evaluated the performance of our approach where we use only RBC or only CPC in
the pool of scoring functions used in the aggregation step. We also evaluated the original AD-
ABOOST.MH with decision tree and decision product using “traditional” validation, i.e., without
our calibration and ensemble setup (last two rows in Table 3.4). The posteriors were calculated
according to (3.51) and here we validated the i) number of iterations and ii) the hyperparameters
of base learners (the number of leaves and number of product terms) in order to select a sin-
gle best setting. These results shows that our meta-ensemble learning scheme where we calibrate

19The official evaluation tool of LETOR datasets returns with zero NDCGk value for a given query if k is bigger than
the number of relevant documents. This results in poor performance of the ranking methods for k ≥ 9 in the case of
MQ2008. In our ensemble scheme, we used the NDCG10 values calculated according to (3.48) with a truncation level of
10.
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Table 3.4: The NDCG values for various ranking algorithms.

Method Letor 3.0 Letor 4.0 Letor 4.0
Ohsumed MQ2007 MQ2008

Eval. metric NDCG10 Avg. NDCG Avg. NDCG

ADARANK-MAP 0.4429 0.4891 0.4915
ADARANK-NDCG 0.4496 0.4914 0.4950
LISTNET 0.4410 0.4988 0.4914
RANKBOOST 0.4302 0.5003 0.4850
RANKSVM 0.4140 0.4966 0.4832
EXP. W. ENSEMBLE 0.4561 0.4974 0.5006
EXP. W. ENSEMBLE WITH CPC 0.4621 0.4975 0.4998
EXP. W. ENSEMBLE WITH RBC 0.4493 0.4976 0.5004
ADABOOST.MH BEST DECISION TREE 0.4164 0.4868 0.4843
ADABOOST.MH BEST DECISION PRODUCT 0.4162 0.4785 0.4768

and combine the individual classifiers improves the standard ADABOOST.MH ranking setup sig-
nificantly.

3.6 Accelerating testing using Markov decision processes

There are numerous applications where the computational requirements of classifying a test in-
stance are as important as the performance of the classifier itself. Object detection in images [62]
and web page ranking [64] are well-known examples. A more recent application domain with
similar requirements is trigger design in high energy physics [77]. Most of these applications
come with another common feature: the negative class (usually called noise or background) have
sometimes orders of magnitudes higher probability than the positive class. Beside the test-time
constraints, this also makes training difficult: traditional classification-error-based measures are
not adequate, and using prior class probabilities in constructing training samples leads to either
enormous data sizes or little representativity of the positive class.

A common solution to these problems is to design cascade classifiers. A cascade classifier con-
sists of stages. In each stage a binary classifier attempts to eliminate background instances by
classifying them negatively. Positive classification in inner stages sends the instance to the next
stage, so detection can only be made in the last stage. By using simple and fast classifiers in
the first stages, “easy” background instances can be rejected fast, shortening the expected test-
ing time. The cascade structure also allows the use of different training sets at different stages,
having more difficult background samples at later stages.

Classical cascade classifiers (such as the seminal Viola-Jones (VJ) algorithm [62]) have many
disadvantages, succinctly summarized in [78]. First, only the binary decision of rejecting or not is
carried down in the cascade, losing the information on the margin of the test instance in different
stages. CHAINBOOST [79] resolves this problem by using a so-called embedded cascade architec-
ture in which the output of a stage will be reused in the subsequent stages as well. Second,
positive instances have to pass through all the stages for correct detection, which means that
variability of the positive class (e.g. multi-view face detection) has to be handled by the last
stage. To solve this problem, WALDBOOST [80] decides between classifying an instance (either
positively or negatively) or continuing evaluating the cascade based on the current margin of
the instance. The approach of [81] is similar: they also look at the margin of the instance but
the quitting/continuing decision is learned in a Markov decision process (MDP) framework. Third,
the training process of the VJ cascade requires a lot of hand-tuning of control parameters, and
it is non-trivial how to handle the trade-off between the performance and the complexity of the
cascade. FCBOOST [82] offers an improvement in this respect: it provides an automatic way for
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controling the accuracy/complexity trade-off of the cascade through a hyperparameter. Finally,
extending the cascade architecture to the multi-class case is non-trivial. For example in web page
ranking, it is as crucial to make a fast prediction on the relevance of a web page to a query as in
object detection [110], but, unlike in object detection, the human annotation often provides more
than two relevance grades.

In this section we propose a method to overcome all these problems. As [81], we cast the
cascade design problem in an MDP framework and use the current margin of the given instance
to decide what to do. The main idea is to add a third action at each stage: beside quitting (clas-
sifying) and continuing, we also allow the classifier to skip, that is, continue without using the
stage. This minor-looking design decision has numerous advantageous consequences. First, we
can eliminate stages. Similarly to SOFTCASCADE [78], we will assume that we are given a se-
quence of base-classifiers sorted by importance or quality, but not organized into a small number
of stages neither before nor during learning the cascade. Second, we can easily control the trade-
off between the average number of evaluated base classifiers and the quality of the classification
by combining these two competing goals into an appropriate reward. The form of the reward can
also easily accommodate cost-sensitivity [82] of the base classifiers although we do not investi-
gate this avenue in this section. Allowing skipping has also an unintended positive side-effect:
the resulting classifier is sparse, moreover, the number and identities of base classifiers is data-
dependent. Third, eliminating stages allows each instance to “decide” its own path within the
list of base-classifiers. A-priori, we could have as many different paths as training instances, nev-
ertheless, a-posteriori, we observe clustering in the “path-space”. Moreover, when we artificially
control the clusters within one of the classes, this observed clustering of paths corresponds to the
injected sub-classes, which is an appealing feature for, e.g., multi-view object detection. Fourth,
eliminating stages also greatly simplifies the design. Our algorithm is basically turn-key: it comes
with an important design parameter (the trade-off coefficient between accuracy and speed) and
a couple of technical hyperparameters of the MDP algorithm that can be kept constant across the
benchmark problems we use. Finally, the multi-class extension of the technique is straightfor-
ward.

Another important consequence of introducing skipping is that the structure of the learned
classifier is no longer a cascade neither a tree: it is a directed acyclic graph or a decision DAG. In fact,
the main reason of sticking to the cascade design is that it is easy to control with semi-manual
heuristics. Once the construction is automatic, keeping the cascade architecture is an unnecessary
constraint.

MDDAG has several close relatives in the family of supervised methods. It is obviously re-
lated to algorithms from the vast field of sparse methods. The main advantage here is that the
MDP setup allows us to achieve sparsity in a dynamical data-dependent way. This feature re-
lates the technique to unsupervised sparse coding [111, 112] rather than to sparse classification or
regression. On a more abstract level, MDDAG is also similar to [113]’s approach to “learn where
to look”. Their goal is to find a sequence of two-dimensional features for classifying images in
a data-dependent way, whereas we do a similar search in a one-dimensional ordered sequence
of features. Finally, the fact that our final classifier is a tree (more precisely, a directed acyclic
graph) where decisions are made by accumulating base classifications along the whole path re-
lates our technique to alternating decision trees (ADT) [114], except that ADTs use the output of
the base classifiers directly for navigating in the tree, whereas in MDDAG the classifications are
only indirectly coupled with control decisions.

The section is organized as follows. In Section 3.6.1 we describe the algorithm, in Section 3.6.2
we show experimental results, and we conclude in Section 3.6.3.

3.6.1 The MDDAG algorithm

Similarly to SOFTCASCADE [78], we describe MDDAG as a post-processing method that takes the
output of a trained classifier and “sparsifies” it. Formally, we assume that we are given a se-
quence of N base classifiers H = (h1, . . . , hN). Although in most of the cases cascades are built for
binary classification, we describe the method for the more general multi-class case, which means
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that hj : X → R
K, where X is the input space and K is the number of classes. The semantics of h

is that, given an observation x ∈ X , it votes for class ℓ if its ℓth element hℓ(x) is positive, and votes
against class ℓ if hℓ(x) is negative. The absolute value |hℓ(x)| can be interpreted as the confidence
of the vote. Although it is not a formal requirement, we will also assume that H is sorted in order
of “importance” or performance of the base classifiers. These assumptions are naturally satisfied
by the output of ADABOOST.MH [45] (Section 3.3.2), but in principle any algorithm that builds
its final classifier as a linear combination of simpler functions can be used to provide H. In the
case of ADABOOST.MH or multi-class neural networks, the final (or strong or averaged) classifier

defined by the full sequence H is f(x) = ∑
N
j=1 hj(x), and its prediction for the class index of x is

ℓ̂ = arg max
ℓ

fℓ(x). In binary detection, f is usually used as a scoring function. The observation x
is classified as signal if f1(x) = − f2(x) > θ and background otherwise. The threshold θ is a free
parameter that can be tuned to achieve, e.g., a given false positive rate.

The goal of MDDAG is to build a sparse final classifier from H that does not use all the base
classifiers. Moreover, we would like the selection to be data-dependent. For a given observation x
we process the base classifiers in their original order. At each base classifier hj we choose among
three actions: 1) we either EVALuate hj and continue, or 2) we SKIP hj and continue, or 3) we
QUIT and return the classifier built so far. Let

bj(x) = 1 − I

{
aj = SKIP OR ∃j′ < j : aj′ = QUIT

}
(3.55)

be the indicator that hj is evaluated, where aj ∈ {EVAL, SKIP, QUIT} is the action taken at step
j and the indicator function I {A} is 1 if its argument A is true and 0 otherwise. Then the final
classifier built by the procedure is

f(N)(x) =
N

∑
j=1

bj(x)hj(x). (3.56)

Inspired by WALDBOOST [80] and the method of [81], the decision on action aj will be made
based on the index of the base classifier j and the output vector of the classifier

f(j)(x) =
j

∑
j′=1

bj′(x)hj′(x). (3.57)

built up to step j.20 Formally, aj = π
(
(sj(x)

)
, where

sj(x) =
(

f
(j−1)
1 (x), . . . , f

(j−1)
K (x), j − 1

)
∈ R

K × N
+ (3.58)

is the state where we are before visiting hj, and π is a policy that determines the action in state sj.
The initial state s1 is the zero vector with K + 1 elements.

This setup formally defines a Markov decision process (MDP). An MDP is a 4-tuple M =
(S ,A,P ,R), where S is the (possibly infinite) state space and A is the countable set of actions.
P : S × S ×A → [0, 1] is the transition probability kernel which defines the random transitions

s(t+1) ∼ P(·|s(t), a(t)) from a state s(t) applying the action a(t), and R : R×S ×A → [0, 1] defines

the distribution R(·|s(t), a(t)) of the immediate reward r(t) for each state-action pair. A deterministic
policy π assigns an action to each state π : S → A. We will only use undiscounted and episodic
MDPs where the policy π is evaluated using the expected sum of rewards

̺ = E

{
T

∑
t=1

r(t)

}
(3.59)

20When using ADABOOST.MH, the base classifiers are binary hj(x) = {±αj}K , and we normalize the output (3.57) by

∑
N
j=1 αj, but since this factor is constant, the only reason to do it is to make the range of the state space uniform across

experiments.
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with a finite horizon T. In the episodic setup we also have an initial state (s1 in our case) and a
terminal state s∞ which is impossible to leave.

In our setup, the state s(t) is equivalent to sj(x) (3.58) with j = t. The action QUIT brings
the process to the terminal state s∞. Figure 3.15 illustrates the MDP designed to learn the sparse
stageless DAG.

Figure 3.15: The schematic overview of the process. The input is an instance x to be classified.
During the process the policy decides which base classifier will be evaluated by choosing one of
the three available actions in each state. The output is the score vector provided by the classifier

f(N)(x) (3.56).

To define the rewards, our primary goal is to achieve high accuracy, so we penalize the error

of f(t) when the action a(t) = QUIT is applied. For the formal definition, we suppose that, at
training time, the observations x arrive with the index ℓ ∈ {1, . . . , K} of their class. The multi-class
margin is defined as

ρ(t)(x, ℓ) = f
(t)
ℓ

(x) − max
ℓ′ +=ℓ

f
(t)
ℓ′ (x).

With these notations, the classical (one-loss) multi-class reward for the QUIT action is

r
(t)
I

(x, ℓ) = I

{
ρ(t)(x, ℓ) > 0

}
. (3.60)

For well-known reasons we also use the convex upper bound

r
(t)
EXP(x, ℓ) = exp

(
ρ(t)(x, ℓ)

)
. (3.61)

In principle, any of the usual convex upper bounds (3.5, 3.6) could be used in the MDP frame-
work. The exponential reward is inspired by the setup of ADABOOST [44, 45]. The rewards can
easily be adapted to cost-sensitive classification when the misclassification cost is different for the
classes, although we do not explore this issue here. Note also that in the binary case, rI and rEXP

recover the classical binary notions. From now on we will refer to our algorithm as MDDAG.I
when we use the indicator reward rI and MDDAG.EXP when we use the exponential reward
rEXP.

For encouraging sparsity, we will also penalize each evaluated base classifier h by a uniform
fixed negative reward

R(r|s, EVAL) = δ(−β − r), (3.62)

where δ is the Dirac delta and β is a hyperparameter that represents the accuracy/speed trade-off.
The goal of reinforcement learning (RL) in our case is to learn a policy which maximizes the

expected sum of rewards (3.59). Since in our setup the transition P is deterministic given the
observation x, the expectation in (3.59) is taken with respect to the random input point (x, ℓ).
This means that the global goal of the MDP is to maximize

̺ = E(x,ℓ)∼D

{
r(x, ℓ) − β

N

∑
j=1

bj(x)

}
(3.63)
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where r(x, ℓ) is one of our margin-based rewards and D is the distribution that generates the
instances.

Note that, strictly speaking, the rewards (3.60) and (3.61) are not stationary given the state

s(t): it is possible that two different policies bring two different subsets of X with different label
distributions into the same state. This problem could be tackled in an adversarial setup, recently
analyzed by [115]. However, the results of [115] are rather theoretical, and we found that, simi-
larly to [81] whose method also suffers from non-Markovianness, classical MDP algorithms work
well for solving our problem.

Learning the policy

There are several efficient algorithms to learn the policy π using an iid sample

D =
(
(x1, ℓ1), . . . , (xn, ℓn)

)

drawn from D [116]. When P and R are unknown, model-free methods are commonly used for
learning the policy π. These methods directly learn a value function, (the expected reward in a
state or for a state-action pair), and derive a policy from it. Among model-free RL algorithms,
temporal-difference (TD) learning algorithms are the most commonly used. They can be divided
into two groups: off-policy and on-policy methods. In the case of off-policy methods the policy
search method learns about one policy while following another, whereas in the on-policy case the
policy search algorithm tries to improve the current policy by maintaining sufficient exploration.
On-policy methods have an appealing practical advantage: they usually converge faster to the
optimal policy than the off-policy methods.

We use the SARSA(λ) algorithm [117] with replacing traces to learn the policy π. For more
details we refer the reader to [118]. SARSA(λ) is an on-policy method, so, to make sure that
all policies can be visited with nonzero probability, we use an ǫ-greedy exploration strategy.
Concretely, we apply SARSA in an episodic setup: we use a random training instance x from
D per episode. The instance follows the current policy with probability 1 − ǫ and chooses a
random action with probability ǫ. The instance observes the immediate rewards (3.60), (3.61), or
(3.62) after each action. The policy is updated during the episode according to SARSA(λ). In
preliminary experiments we also tested Q-LEARNING [119], one of the most popular off-policy
methods, but SARSA(λ) slightly but consistently outperformed Q-LEARNING.

In all experiments we used ADABOOST.MH to obtain a pool of weak classifiers H. We ran
ADABOOST.MH for N = 1000 iterations, and then trained SARSA(λ) on the same training set.
The hyperparameters of SARSA(λ) were fixed across the experiments. We set λ to 0.95. In prin-
ciple, the learning rate should decrease to 0, but we found that this setting forced the algorithm
to converge too fast to suboptimal solutions. Instead we set the learning rate to a constant 0.2, we
evaluated the current policy after every 10000 episodes, and we selected the best policy based on
their performance also on the training set (overfitting the MDP was a no-issue). The exploration

term ǫ was decreased gradually as 0.3 × 1/⌈ 10000
τ ⌉ where τ is the number of training episodes.

We trained SARSA(λ) for 106 episodes.
As a final remark, note that maximizing (3.63) over the data set D is equivalent to minimizing

a margin-based loss with an L0 constraint. If rI (3.60) is used as a reward, the loss is also non-
convex, but minimizing a loss with an L0 constraint is NP-hard even if the loss is convex [120]. So,
what we are aiming for is an MDP-based heuristics to solve an NP-hard problem, something that
is not without precedent [121]. This equivalence implies that even though the algorithm would
converge in the ideal case (decreasing learning rate, proper Markovian rewards), in principle,
convergence can be exponentially slow in n. In practice, however, we had no problem finding
good policies in reasonable training time.

3.6.2 Experiments

In the next subsection we first verify the sparsity and heterogeneity hypotheses on a synthetic toy
example. In the second subsection we compare MDDAG to state-of-the-art cascade detectors on
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three object detection benchmarks. Finally, in the third subsection we show how the multi-class
version of MDDAG performs on a benchmark web page ranking problem.

Synthetic data

The goal of this experiment was to verify whether MDDAG can learn the subset of “useful” base
classifiers in a data-dependent way. We created a two-dimensional binary dataset with real-valued
features where the positive class is composed of two well-separable clusters (Figure 3.16(a)). This
is a typical case where ADABOOST or a traditional cascade is suboptimal since they both have to
use all the base classifiers for all the positive instances [78].
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Figure 3.16: Experiments with synthetic data. (a) The positive class is composed of the blue and
red clusters, and the negative class is the green cluster. (b) The number of base classifiers used
for each individual positive instance as a function of the two-dimensional feature coordinates. (c)
The number of positive instances from the blue/red clusters on which a given base classifier was
applied according to the policy learned by MDDAG.I. Lower panel: the decision DAG for the
positive class. Colors represent sub-class probabilities (proportions) and the node sizes and arrow
widths represent the number of instances in the states and following the actions, respectively.

We ran MDDAG.I with β = 0.01 on the 1000 decision stumps learned by ADABOOST.MH.
In Figure 3.16(b) we plot the number of base classifiers used for each individual positive instance
as a function of the two-dimensional instance itself. As expected, the “easier” the instance, the
less base classifiers it needs for classification. Figure 3.16(c) confirms our second hypothesis: base
classifiers are used selectively, depending on whether the positive instance is in the blue or red
cluster.

Binary detection benchmarks

In these experiments we applied MDDAG on three image data sets often used for benchmarking
object detection cascades. VJ [62] and CBCL21 are face recognition benchmarks, and DPED [122]
is a pedestrian recognition data set. We divided the data sets into training and test set.

We compared MDDAG to three state-of-the-art object detection algorithms: the original
Viola-Jones cascade VJCASCADE [62], FCBOOST [82], and SOFTCASCADE [78]. VJCASCADE

21http://cbcl.mit.edu/software-datasets/FaceData2.html

http://cbcl.mit.edu/software-datasets/FaceData2.html
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builds the cascade stage-by-stage by running ADABOOST in each stage. It stops adding base
classifiers to the mth stage when the false positive rate (FPR) falls below pm

FPR and true positive
rate (TPR) exceeds pm

TPR, where pTPR and pFTR are hyperparameters of the algorithm. The total
number of stages is also a hyperparameter. FCBOOST also adds base classifiers iteratively to the
cascade, but the base classifier can be inserted into any of the stages. The goal is to minimize
a global criterion that, similarly to (3.63), is composed of a performance based term and a com-
plexity based term. The number of iterations and the parameter η that determines the trade-off
between the two competing objectives are hyperparameters of the algorithm. SOFTCASCADE,
as MDDAG, builds a cascade on the output of ADABOOST where each stage consists of exactly
one base classifier. The final number of base classifiers are decided beforehand by the hyper-
parameter N. In each iteration j, the base classifier with the highest balanced edge is selected,
and the detection threshold θj is set to achieve a TPR of 1 − exp (αj/N − αI {α < 0}), where α
is a second hyperparameter of the algorithm. Both the TPR and the number of base classifiers
increase with α, so, although not as explicitly as our β or FCBOOST’s η, the choice of α influences
the speed/accuracy trade-off.

Comparing test-time-constrained detection algorithms is quite difficult. The usual trade-off
between false positive rate (FPR) and true positive rate (TPR) can be captured by ROC curves,
but here we also have to take into account the computational efficiency of the detector. In [78]
this problem is solved by showing three-dimensional FPR/TPR/number-of-features surfaces.
Here we decided to show two-dimensional slices of these surfaces: we fix the FPR to reasonable
values and plot the TPR against the detection time. In all the algorithms we used Haar features
as base classifiers, so the detection time can be uniformly measured by the average number of
base classifiers needed for detection. In typical detection problems the number of background
(negative) instances is orders of magnitudes higher than the number of signal (positive) instances,
so we computed this average only over the negative test set. It turns out that using this measure,
vanilla ADABOOST is quite competitive to tailor-made cascade detectors, so we also included it
in the comparison.

Computing the TPR vs. number-of-features curve at a fixed FPR cannot be done in a generic
algorithm-independent way. For ADABOOST, in each iteration j (that is, for each number j of base
classifiers) we tune the detection threshold θ to achieve the given test FPR, and plot the achieved
test TPR vs. j. In the other three algorithms we have 2-3 hyperparameters that explicitly or implic-
itly influence the average number of base classifiers and the performance. We ran the algorithms
using different hyperparameter combinations. In each run we set the detection threshold θ to
achieve the given test FPR. With this threshold, each run k determines a TPR/average-number-
of-features pair (pk, Nk) on the training set and (p′k, N′

k) on the test set. For each N we find the run
k∗(N) = arg maxk:Nk≤N pk that achieves the best training pk using at most N base classifiers, and

plot the test TPR p′
k∗(N) vs. N. Using the training scores for hyperparameter selection is usually

prone to overfitting, but in the case of cascade detectors the complexity of the classifiers is so low
that this is not an issue.

Figure 3.17 shows the results. Although the differences are quite small, MDDAG outperforms
the three benchmarks algorithms consistently in the regime of low number base classifiers, and
it is competitive to them on the full range. MDDAG.I is slightly better at low complexities
whereas MDDAG.EXP is more effective at slightly higher number of base classifiers. This is
not surprising: in the low complexity regime the 0-1 error is more aggressive and closer to the
measured TPR, whereas when most of the instances are classified correctly, without the margin
information it is impossible to further improve the policy.

Ranking with multi-class DAGs

Although object detection is arguably the most well-known test-time-constrained problem, it is
far from being the only one. In web page ranking (Section 3.5) the problem is similar: training
time can be almost unlimited, but the learned ranker must be fast to execute. One of the difficul-
ties in this case is that relevance labels can be non-binary, so classical object-detection cascades



62 CHAPTER 3. SUPERVISED LEARNING

10
1

0.5

0.6

0.7

0.8

0.9

1

#base classifiers for negative class

T
P

R

VJ/FPR=0.02

 

 

AdaBoost

VJCascade

FCBoost

SoftCascade

MDDAG.I

MDDAG.EXP

10
1

0.4

0.45

0.5

0.55

0.6

0.65
CBCL/FPR=0.1

#base classifiers for negative class

T
P

R

10
1

0.5

0.55

0.6

0.65

0.7

0.75

0.8
DPED/FPR=0.1

#base classifiers for negative class

T
P

R

Figure 3.17: The true positive rate (TPR) vs. the average number of base classifiers evaluated
on negative test instances. The results are computed for different fixed false positive rates (FPR)
shown in the title of panels.

are unusable. At the same time, the principles used to design cascades re-surface also in this
domain, although the setup is rather new and the algorithms require quite a lot of manual tuning
[123]. On the other hand, MDDAG can be used for this task as is.

To evaluate MDDAG on a multi-class classification/ranking problem, we show results on
the MQ2007 and MQ2008 data sets taken from LETOR 4.0.22 In web page ranking, observations
come in the form of query-document pairs, and the performance of the ranker is evaluated using
tailor-made loss or gain functions that take as input the ordering of all the documents given a
query. To train a ranker, query-document pairs come with manually annotated relevance labels
that are usually multi-valued ({0, 1, 2} in our case). One of the most common performance mea-
sures is the Normalized Discounted Cumulative Gain (NDCGm) [124] which is based on the first
m documents in the order output by the ranker. We used the averaged NDCG score NDCG, pro-
vided by LETOR 4.0, that takes a weighted average of first ten NDCGm values to evaluate the
algorithms. In these experiments the base learners were decision trees (Section 3.4.4) with eight
leaves.

The goal of MDDAG is similar to the binary case: to achieve a comparable performance to
ADABOOST.MH using less base learners. To make the comparison fair, we use the same calibra-
tion method (Section 3.5.3) to convert the output of the multi-class classifiers to a scoring function
and then to a ranking [98]. Since the goal this time is not detection, we simply evaluate the aver-
age NDCG for each run k to obtain (NDCGk, Nk) on the training set and (NDCG

′
k, N′

k) on the test
set. We then select k∗(N) = arg maxk:Nk≤N NDCGk and plot the test NDCG′

k∗(N) vs. N. Figure 3.18

shows that MDDAG performs as well as ADABOOST.MH with roughly two-fold savings in the
number of base classifiers.

3.6.3 Conclusions and future work

In this section we described an MDP-based design of decision DAGs. The output of the algo-
rithm is a data-dependent sparse classifier which means that every instance “chooses” the base
classifiers or features that it needs for predicting its class index. The algorithm is competitive
to state-of-the-art cascade detectors on object detection benchmarks, and it is also directly ap-
plicable to test-time-constrained problems involving multi-class classification (e.g., web page
ranking). In our view, however, the main advantage of the algorithm is not necessarily its per-
formance but its simplicity and versatility. First, MDDAG is basically a turn-key procedure: it
comes with one user-provided hyperparameter with a clear semantics of directly determining
the accuracy/speed trade-off. Second, MDDAG can be easily extended to problems different
from classification by redefining the rewards on the QUIT and EVAL actions. For example, one
can easily design regression or cost-sensitive classification DAGs by using an appropriate reward
in (3.60), or add a weighting to (3.62) if the features have different evaluation costs.

22http://research.microsoft.com/en-us/um/beijing/projects/letor

http://research.microsoft.com/en-us/um/beijing/projects/letor


3.7. OTHER CONTRIBUTIONS TO SUPERVISED LEARNING 63

5 10 15 20
0.45

0.455

0.46

0.465

0.47

0.475

0.48

0.485

#evaluated base classifiers

A
v
e
ra

g
e
 N

D
C

G

MQ2008

 

 

AdaBoost.MH

MDDAG.I

MDDAG.EXP

5 10 15 20
0.43

0.44

0.45

0.46

0.47

0.48

0.49

#evaluated base classifiers

A
v
e
ra

g
e
 N

D
C

G

MQ2007

 

 

AdaBoost.MH

MDDAG.I

MDDAG.EXP

! "

#

$

%& !'

!( !"

!)

*!

Figure 3.18: The average NDCG vs. the average number of base classifiers evaluated on test
queries, and one of the decision DAGs generated by MDDAG.EXP on MQ2008.

It is exactly because of the flexibility of the algorithm that we have numerous avenues to ex-
plore. Beside the straightforward extensions mentioned above, MDDAG should also be partic-
ularly useful in multi-view object detection when the positive class has considerable variability.
Exploring the connections between MDDAG and sparse coding is also an interesting direction.
At this point the algorithm is designed for post-processing a fixed output of another learning
method. Beside trying it on the output of different methods (e.g., for filtering support vectors), it
would also be interesting to see if the filtering mechanism could be used within the learning loop.
Finally, it is an open question at this point whether the RL algorithm converges under the condi-
tion of our specific non-Markovian rewards; proving convergence is an interesting challenge.

3.7 Other contributions to supervised learning

In this section we briefly summarize some of our most significant contributions to supervised
learning that we have not detailed in previous sections.

In [125, 126] we combine margin theory and data-dependent complexities to improve gener-
alization error bounds in the framework of supervised classification. The main feature of these
bounds is that they can be calculated using the training data and therefore may be effectively
used for model selection purposes. In [127] we extend ADABOOST to regression in a natural
manner, and prove the algorithmic convergence of the algorithm. We also analyze the theoretical
properties of the algorithm in a separate paper [128]. In [129] we develop a natural way to incor-
porate traditional complexity penalization into the boosting framework. In [130] we consider a
distributed learning model in which participants want to learn a common task without sharing
their training data (for example, two banks want to automatically detect fraudulent credit card
transactions based on historical data without sharing secret client records). We extended AD-
ABOOST to this case and show that the participants can significantly improve their classifiers by
cooperating, even when they share very little direct information on their training data. In [131]
we show how to accelerate ADABOOST using multi-armed bandits (MABs). The basic idea is that
we gradually learn the utility of the features (or, in general, subsets of base learners) using MABs,
and use this utility to bias the random selection in each boosting iteration. In [132] we improve on
[131] by using an adversarial bandit algorithm instead of stochastic bandits. The practical per-
formance is comparable but this choice allows us to prove a weak-to-strong-learning theorem,
which means that the proposed technique remains a boosting algorithm in a formal sense.
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Chapter 4

Bayesian inference in the Pierre
Auger experiment: modeling and
computational challenges

This chapter describes some of our contributions to the data analysis of the Pierre Auger ex-
periment. The experiment studies high-energy cosmic rays by observing the secondary particle
cascade that these cosmic rays generate when they interact with the atmosphere of the earth. Our
long-term goal in the Auger collaboration is to develop a comprehensive generative model for
these so-called particle showers and the signal they make in the detectors, and use Bayesian tech-
niques to infer the parameters of the primary cosmic ray particle (energy, arrival direction, and
chemical composition) as well as the parameters of the physical model that describes the first
high-energy interaction between the primary particle and the atomic nucleus it collides with.
Along the way of accomplishing this goal, we would also like to develop novel inference tech-
niques that can deal with the challenges posed by large-scale data analysis problems.

At this point the project resembles a giant interdisciplinary jigsaw puzzle with some parts
more-or-less finished and others completely missing. The unfinished parts also contain some un-
known unknowns especially on the computational feasibility side. To avoid scientific frustration
due to the immense task ahead of us, we try to make the process of getting there as much fun as
possible and contribute standalone parts of the project independently of the master plan. The
sections of this chapter summarize some of the subparts, mainly those in which we have made
the most progress.

After a short introduction to the Pierre Auger experiment in Section 4.1, we describe the gen-
erative model of of the surface detector signal given some parameters of the incoming secondary
particles (Section 4.2, [133, 134]). This model is the first step in creating a bottom-up model for
the full generative process: we will need to parametrize at least two more levels of the graph-
ical model to get to the parameters of the primary cosmic ray particle. Nevertheless, the full
parametrization of the detector already allows us to test the inference techniques being devel-
oped in parallel. Not having had background in experimental physics, developing the formal
model also helped us to understand the physical models relevant to the inference problem.

In the classical machine learning setup, models (priors, likelihoods) are usually chosen for
inferential convenience. In our case models come from physical processes, so we have little free-
dom in choosing parametrizations to make the inference easy. Our inference method of choice is
therefore numerical integration, more precisely, MCMC-type numerical integration. The enor-
mous data produced by the experiment (more than 40K showers and 200K detector signals)
makes Bayesian inference computationally challenging. First, we have to be able to parallelize the
inference, and second, we have to make it automatic (no manual tuning). The adaptive Metropolis
algorithm [135] is a natural choice for this latter reason, but we rapidly realized that it is not com-
pletely adapted for doing inference in our mixture models. In Section 4.3 we describe a contri-
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bution [136] that solves the label switching problem, optimizing adaptive Metropolis for mixture
models. For counting the mixture components, our plan is to develop an adaptive version of the
reversible jump MCMC algorithm [137] although we also leave other avenues open.

In Section 4.4 we summarize a nonparametric multivariate approach for counting particles in
the detector signal (i.e., mixture components), developed in the first half of the note [72]. In a
sense, it is a poor man’s solution for the difficult inference problem that we plan to solve with
adaptive Metropolis once all the modeling and computational challenges will have been solved.
In the meantime, the approach described in this section is the best we can to come up within the
“classical” paradigm of attacking the inverse problem directly.

Section 4.5 contains the second part of [72]: we describe an empirical Bayes [138, 139] ap-
proach to estimate the lateral distribution function of the particle cascade. Beside producing our
first “real” physics results, this method is also a precursor for solving the parallelization problem
for the future Bayesian treatment of the full inference problem.

4.1 The Pierre Auger experiment

The existence of cosmic rays has been known since the daring balloon experiments of Victor
Hess in beginning of the 20th century. Since the initial discovery we have learned a lot about
cosmic rays: we know that they are sub-atomic particles (electrons, protons, and nuclei of heavier
elements up to iron and even uranium) with energies that vary on a large scale (from a few billion
eV to more than 1020 eV – the energy of a tennis ball flying at 200 km per hour!). Cosmic rays
are produced by known or unknown astrophysical mechanisms, so studying the composition,
the energy, and the sources of these particles is important for understanding the universe tracing
back to its origins.

The most interesting and enigmatic cosmic particles are those with the highest energies. Whereas
there are known mechanisms that produce particles up to 1015 eV, the acceleration mechanisms
involved in producing the highest energy cosmic rays are still unknown. These particles are al-
most certainly extra-galactic, and one intriguing possibility is that they are generated by very
massive particles produced at the beginning of time. Some of the recent experiments seem to
measure energies that are higher than the so-called “GZK cut-off” (4× 1019 eV), a theoretical limit
derived from the deceleration effect of the cosmic background radiation (the light left over from
the big-bang). While they are interesting, high energy cosmic ray particles are also extremely
rare: they arrive at a rate of a few per km2 per century. The low rate makes direct detection (usu-
ally by high altitude air balloons) impossible. Fortunately, when one if these particles collides
with the atmosphere, it generates a huge cascade of atmospheric particles, a so-called “extensive
air shower” (hereafter referred to as the “shower”), that covers several square kilometers on the
Earth’s surface.

The objective of the Pierre Auger experiment [73] is to study the properties of ultra-high en-
ergy cosmic ray particles by observing the showers. To obtain reasonable statistics at the higher
end of the spectrum, the detector has to be huge. Indeed, the Auger detector, built on the Ar-
gentinean Pampas, covers 3000 km2. The detector contains two independent measuring devices,
a surface detector consisting of 1600 water tanks placed on hexagonal grid at a 1.5 km resolu-
tion, and a fluorescence detector consisting of 24 fluorescence telescopes placed at the edges of
the detector area, looking inside (Figure 4.1). The fluorescence detector is able to reconstruct the
longitudinal development of the shower high in the atmosphere, whereas the surface detector
samples the shower particles as they hit the surface of the earth. Using two independent mea-
surement devices is a great way to calibrate different estimation techniques to each other.

The goal of the statistical data analysis is to estimate the four generating parameters of the cos-
mic particle (two angular directions, energy, and type of nucleus) based on two independent mea-
surements (surface detectors and fluorescence detectors). The analysis faces huge challenges: the
air-cascade is an intrinsically probabilistic process and only partially understood, atmospheric
effects are barely known, and real measurements deviate seriously from the simulations. Since
the measured signal is not connected directly to the parameters of the cosmic particle, the “tradi-
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Figure 4.1: The Pierre Auger Observatory in Malargüe, Argentina. The bird-eye view of the
detector (left panel) and a schematic representation of detecting an air shower (right panel).

tional” approach is to estimate separately a series of hidden variables with well-defined physical
meanings and use the non-probabilistic estimates as “observations” to determine higher level
variables.

Our main goal is the estimation of one of the generating parameters: the chemical compo-
sition of the cosmic rays. The main candidates are protons (hydrogen nuclei1) and iron nuclei,
although other stable elements cannot be excluded either. Whereas the traditional direct ap-
proach works well for estimating the other generative parameters (the incoming angles and the
energy; although for this latter we start observing the limitations of the standard reconstruction),
the estimation of the chemical composition seems very difficult.

There are two basic observables that are used traditionally to estimate the type of incoming
particle. In general, heavier nuclei collide earlier in the atmosphere, so they generate shallower
showers with small population variance, whereas proton showers are deeper and vary more.
The shower maximum can be relatively well-estimated using the fluorescence detector, but this
sub-detector works only on clear moonless nights (about 10% of the time). On the other hand,
the surface detector works all the time but it has only a limited view of the shower. The main
surface detector observable sensitive to the chemical composition is the number of muons at the
surface: in general, iron showers generate about 40% more muons as proton showers. There
are two major problems that this analysis has to face. First, although individual muon signals
have a unique “signature”, the water tank signals are mixtures of individual muon signals and
a low background of an electromagnetic component (Figure 4.2). The second problem is more
fundamental: even though there is a 40% relative margin between the muon density of an iron
and a proton shower, the absolute muon numbers in the simulations seem to be shifted by a
constant that is comparable to this 40%. The reason of this shift is unknown: it is probably
related to the deficiencies of the hadronic models applied in the air shower simulators. The main
consequence of this fact that the traditional discriminative approach of training on simulation for
classifying real events is infeasible.

4.2 The single muon response model

When muons cross the water tank, they emit Cherenkov photons at a rate that depends on their
energy. These photons are emitted at a precise angle along the muon trajectory. Most of them
are absorbed by the water after a number of reflections on the walls of the tank, but some of
them are detected by one of the three photodetectors (PMTs) placed below the lid of the tank,

1When accelerated to these energies, the atoms lose their electrons.
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Figure 4.2: A simulated signal of an individual muon (left panel) and two typical surface detector
signals of real events at different core distances (right panel).

looking down into the water. Some of the detected photons generate an analog signal through
the emission of photoelectrons (PEs) which is then digitized and recorded as a vector of integers
x = (x1, . . . , xN). We interpret xi as the sum of the signals deposited by photoelectrons, corrupted
by noise, in the time interval

[ti−1, ti) ! [t0 + (i − 1)t∆, t0 + it∆), (4.1)

where t0 is the absolute starting time of the signal, and t∆ = 25 ns is the signal resolution (size of
one bin). The signal is measured in adc unit2.

The goal of this section is to formalize this so called FADC signal generated by an individual
muon. The “input” to this generative model is the time of arrival tµ of the muon, its kinetic
energy Tµ, and its zenith angle θµ, so the formal goal of this section is to describe

p(x|tµ, Tµ, θµ). (4.2)

Since the rate at which Cherenkov photons are emitted is almost constant, the amplitude of the
muon signal is mostly dependent on the tracklength L of the muon in the water tank. The photon
emission rate3 also depends on the energy Tµ of the muon. We will model this dependence by
introducing a unitless factor φ such that the average emission rate of a muon with kinetic energy
Tµ = 1 GeV is set to φ = 1. Since the distribution of the tracklength L depends only on the zenith

angle, and φ depends only on the energy of the muon4, (4.2) factorizes into three basic terms

p(x|tµ, Tµ, θµ) =
∫

p(x|tµ, L, φ)p(L|θµ)p(φ|Tµ)dLdφ.

We treat these three modules in the following three subsections.

4.2.1 The tracklength distribution

In this section we derive the tracklength distribution p(L|θ) of a muon that crosses the tank at
zenith angle θ [133]. The distribution is purely geometric: it depends on the height and radius

2It represents either voltage or current integrated by the FADC inside the bin width t∆. The true unit is thus V ns or
A ns.

3mostly Cherenkov but also due to other physical processes
4not considering second order dependencies of the effective rate on the tracklength
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of the tank which are, in the case of Auger, h = 1.2 m and R = 1.8 m, respectively. The distribu-
tion can be decomposed into three components: the lid–base (lb) term of the form plb(L|θ) P(lb|θ)
representing muons entering at the lid of the tank and leaving at the base, the lid–lateral (li) term
pli(L|θ) P(li|θ) representing muons entering at the lid and leaving at the lateral (or, symmetrically,
entering at the lateral and leaving at the base), and the lateral–lateral (la) term pla(L|θ) P(la|θ) rep-
resenting muons entering and leaving at the lateral (for these regions see projected tank schematic
in Fig. 4.3). We have thus

p(L|θ) = plb(L|θ) P(lb|θ) + pli(L|θ) P(li|θ) + pla(L|θ) P(la|θ). (4.3)

lb

li

li

la
la

Figure 4.3: Projection of the Auger tank along the incoming muon direction at θ = 50◦. The three
components of the tracklength distribution p(L|50◦) are visible: the lid–base (lb), the lid–lateral
(li), and the lateral–lateral (la) terms.

Setting

u =
h

2R
| tan θ|,

the case probabilities are given by

P(lb|θ) =
Alb(θ)

A(θ)
, P(li|θ) =

Ali(θ)

A(θ)
, and P(la|θ) =

Ala(θ)

A(θ)
,

where
A(θ) = 2R2| cos θ|( π

2 + 2u)

is the area of the tank projection for zenith angle θ, and

Alb(θ) = 2R2| cos θ|
{

arccos u − u
√

1 − u2 if u ≤ 1,

0 otherwise,

Ali(θ) = 4R2| cos θ|
{

arcsin u + u
√

1 − u2 if u ≤ 1,
π
2 otherwise,

Ala(θ) = 2R2| cos θ|
{

2u − arcsin u − u
√

1 − u2 if u ≤ 1,

2u − π
2 otherwise,

are the corresponding partial areas.
The lid–base term is a simple Dirac delta

plb(L|θ) = δ(L − Lmax),

where Lmax(θ) is the maximum tracklength (see Fig. 4.4)

Lmax(θ) =

{
h

| cos θ| if u ≤ 1,
2R

sin θ otherwise.
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The lid–lateral and lateral–lateral terms are

pli(L|θ) =
2R2

Ali(θ)




| sin 2θ|

√
1 −

(
L

2R sin θ
)2

if 0 ≤ L ≤ Lmax(θ),

0 otherwise,

pla(L|θ) =
2R2

Ala(θ)





L sin3 θ(h − L| cos θ|)√
4R2 − (L sin θ)2

if 0 ≤ L ≤ Lmax(θ),

0 otherwise,

respectively.
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Figure 4.4: The mean tracklength L̄(θ) = E {p(L|θ)} (red), the maximum tracklength Lmax(θ)
(green), and the region that contains 70% of the probability mass (blue) as a function of the zenith
angle θ.

4.2.2 The photon production rate distribution

The rate at which Cherenkov photons produced when a particle with mass m and kinetic energy
T passes through a substance with refractive index n is

φCherenkov(T, m, n) = max


0,

n2 − (m+T)2

2mT+T2

n2 − 1


 , (4.4)

where both T and m are measured in the same unit, usually in MeV. As T → ∞, φCherenkov tends
to 1, and it becomes 0 at

Tmin = m

(
n√

n2 − 1
− 1

)
.

Muons also lose energy as they pass through water at a rate of about 200 MeV/m, so for the
effective Cherenkov rate, (4.4) must be integrated over the track of the muon. The yellow curve in
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Figure 4.5: Photoelectron distribution p(#PE|Tµ) of vertical throughgoing muons as a function
of the kinetic energy tµ of a muon. The Cherenkov contribution and the mean of the delta ray
fraction can be computed analytically, but the delta ray distribution and the contribution due to
high-energy phenomena can only be assessed by simulations. The red curve is the mean of the
conditional distribution and the blue region contains 70% of the conditional probability mass.
The conversion between φ and the number of photoelectrons is simply done by reading out the
mean at T = 1 GeV.

Figure 4.5 shows the result of this integration. The rate is measured in number of photoelectrons:
the full rate of φCherenkov(T, m, n) = 1 corresponds to about 149 photoelectrons.

Although the Cherenkov effect is the dominating light source when a high-energy charged
particle passes through water, it is not the only one. Delta rays and other more exotic processes
also produce light. Whereas the number of Cherenkov photons is practically constant given the
muon energy, these other sources are intrinsically probabilistic, generating a non-Dirac probabil-
ity distribution p(φ|Tµ). These phenomena are also quite hard to model analytically. To obtain
p(φ|Tµ) numerically, we simulated a large number of muons going through the Auger tank at its
vertical axis of symmetry, and counted the number of PEs detected in the simulated PMTs. After
unfolding the Poisson fluctuation of the PEs, we obtained the distribution depicted in 4.5. The
absolute number of PEs are related to the detection efficiency in the simulations; it is effectively
a free parameter. To calibrate φ, we simply read out the mean number of PEs at T = 1 GeV and
make φ = 1 correspond to about 165 PEs.

4.2.3 The generative model of the FADC signal

The goal of this section is to develop a model for the FADC signal

p(x|tµ, Lµ, φµ) (4.5)
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given the time of arrival tµ of the muon, its tracklength Lµ, and its photon production rate φµ.5

We will construct the model in a bottom-up fashion, that is, we start from the signal, and develop
the model by adding explanatory parameters and nuisance parameters. The difference between
the two kinds of parameters is that we will keep explanatory parameters in the final model (and
possibly estimate them on data), while nuisance parameters only play the role of simplifying
the likelihoods, and we will eliminate them by integrating (or summing) over them. Table 4.1
summarizes all the variables of the model and Figure 4.6 illustrates the steps of the generative
process.

name notation unit law (priors or conditionals)

bin width t∆ ns δ25

signal decay time τ ns δ60 or N60,5

signal risetime td ns δ13 or N13,1

signal start time t0 s given for each signal
muon arrival time tµ ns Uniform
muon tracklength Lµ m see Section 4.2.1
muon photon production factor φµ unitless δ1 or N1,0.1 or see Section 4.2.2

avg number of PEs per 1 m tracklength ν m−1 δ76 or N79,14 [140, 141, 142]
PE signal mean (gain) µ adc δ1.8 or Γ18,0.1

PE signal shape k unitless δ2 or Γ20,0.1

PE signal noise std σ adc δ0.55 or N0.55,0.05

PE signal baseline b adc N55,5

expected number of PEs in bin i n̄i unitless φµLµν
∫ ti

ti−1
pτ,td

(t − tµ)dt

number of PEs in bin i ni unitless Poin̄i

noiseless signal in bin i x̄i adc Γnik,µ/k

signal in bin i xi adc Nb+x̄,σ

Table 4.1: Explanatory (first 12 lines) and nuisance parameters. For explanatory parameters the
fourth column is the prior distribution. For nuisance parameters we give the conditional distri-
butions. δa is the Dirac delta distribution centered at a (i.e., δa(x) = δ(x − a)), Ua,b is the uniform
distribution in the interval [a, b], Γk,θ is the Gamma distribution, Poin is the Poisson distribution,
and Nµ,σ is the Normal distribution.

The signal given the expected photoelectron counts

First we will rewrite (4.5) as

p(x|tµ, Lµ, φµ) =
∫

R+N
p(x, n̄|tµ, Lµ, φµ)dn̄ =

∫

R+N
p(x|n̄, tµ, Lµ, φµ)p(n̄|tµ, Lµ, φµ)dn̄, (4.6)

where n̄ = (n̄1, . . . , n̄N) ∈ R
+N

, and n̄i is the expected number of PEs in the bin [ti−1, ti). Since
the signal is independent of tµ, Lµ, and φµ given n, we can simplify (4.6) to

p(x|tµ, Lµ, φµ) =
∫

R+N
p(x|n̄)p(n̄|tµ, Lµ, φµ)dn̄, (4.7)

Since the second term is a Dirac delta, (n̄ is a deterministic function of tµ, Lµ, φµ, and some other
explanatory parameters), the convolution further simplifies to a simple product

p(x|tµ, Lµ, φµ) = p(x|n̄) δn̄(tµ ,Lµ ,φµ). (4.8)

5There are some important effects that we do not model, mainly azimuthal dependencies due to the asymmetries of
the photodetectors, and the effect of direct light in the photodetectors that can affect significantly the signal in the first
FADC bin.
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Figure 4.6: Generating the FADC signal.

The function n̄(tµ, Lµ, φµ) in the second term is the binwise integral of the ideal muon response
(Figure 4.6(a)). It depends mainly on the time response profile which we will describe in Sec-
tion 4.2.4. Here we start by developing the first term p(x|n̄) of (4.8). First note that given the
expected number of PEs, the bin-wise PE signals xi are independent of each other. This is a quite
realistic assumption since the signals vary due to some random events in the PMT, although some
dependence can occur due to some secondary effects.6 In this model we ignore these effects, and
factorize p(x|n̄) to obtain

p(x|n̄) =
N

∏
i=1

p(xi|n̄i). (4.9)

We now introduce a second nuisance parameter, the actual number of PEs ni in the bin [ti−1, ti),
and rewrite p(xi|n̄i) as

p(xi|n̄i) =
∞

∑
ni=0

p(xi, ni|n̄i) =
∞

∑
ni=0

p(xi|ni, n̄i)p(ni|n̄i). (4.10)

Given ni, the signal xi is independent of the expected number of PEs n̄i, so p(xi|ni, n̄i) = p(xi|ni).
Since we can assume that the PEs are generated by capturing a small portion of Cherenkov pho-
tons, the number of PEs ni is Poisson with parameter n̄i (Figure 4.6(b)), and so (4.10) simplifies
to

p(xi|n̄i) =
∞

∑
ni=0

p(xi|ni)Poin̄i
(ni). (4.11)

The first term p(xi|ni) depends on the spectrum of single PEs, the baseline, and the bin-wise
noise. To model this convolution, we introduce our last nuisance parameter, the noiseless signal

6See Figure A-52 in [142].
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x̄i in the bin [ti−1, ti), and rewrite p(xi|ni) as

p(xi|ni) =
∫ ∞

0
p(xi, x̄i|ni)dx̄i =

∫ ∞

0
p(xi|x̄i, ni)p(x̄i|ni)dx̄i. (4.12)

Given x̄i, the signal xi is independent of the PE count ni (it only depends on the noise and the
baseline), so we can rewrite (4.12) as

p(xi|ni) =
∫ ∞

0
p(xi|x̄i)p(x̄i|ni)dx̄i. (4.13)

The bin-wise noiseless signal x̄i (Figure 4.6(c)) is shifted by a baseline b, and also corrupted by
an additive Gaussian noise (Figure 4.6(d)) with zero mean and standard deviation σ so the first
term of (4.13) becomes

p(xi|x̄i) = Nb+x̄i ,σ(xi). (4.14)

The noiseless signal x̄i is a sum of ni independent PE signals. It was measured [143, 144, 142] that
single PEs deposit a signal which is almost exponential, having a relative variance

variance

mean2
≈ 0.5. (4.15)

The actual form of the distribution is not very important since the total signal is a sum of several
PE signals, so we have decided to model the single PE spectrum by a Gamma distribution with
shape parameter k = mean2/variance and scale parameter θ = variance/mean. We parametrize
the distribution using the gain µ = kθ and the shape parameter k. Since the distribution of the
sum of n independent Gamma variates with parameters k and θ is Γnk,θ , the distribution of the

noiseless signal x̄i given the number of PEs ni is7

p(x̄i|ni) = Γnik,µ/k(x̄i). (4.16)

Combining equations (4.11), (4.13), (4.14), and (4.16), our final bin-wise signal model is

p(xi|n̄i) =
∞

∑
ni=0

Poin̄i
(ni)

∫ ∞

0
Γnik,µ/k(x̄i)Nb+x̄i ,σ(xi)dx̄i

=
∫ ∞

0
Nb,σ(xi − x̄i)

∞

∑
ni=0

Poin̄i
(ni)Γnik,µ/k(x̄i)

︸ ︷︷ ︸
compound Poisson

dx̄i (4.17)

Figure 4.7 shows the single PE spectrum under the model, using different values for the gain
µ and the shape parameter k. The spectra contains the additive noise, that is, we numerically
integrate the convolution of (4.17) with ni = 1. The curves are reasonably close to those depicted
by Figure 2 in [144], Figures 1-2 in [143], or Figure A-53 in [142].

The distribution p(xi|n̄i) is the convolution of a Gaussian and a compound Poissonian (a sum
of independent Gamma variables) so its mean is b + n̄iµ and its variance is

n̄iµ
2

(
1 +

1

k
+

σ2

n̄iµ2

)
.

Setting aside the baseline translation, the relative variance is

1

n̄i

(
1 +

1

k
+

σ2

n̄iµ2

)
, (4.18)

7For avoiding the singularity, we will define Γ0,θ(x) = δ0(x) where δa is the Dirac delta distribution centered at a.
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(a) k = 2.5, µ = 1.9, σ = 0.6
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(b) k = 1.05, µ = 1.2, σ = 0.6

Figure 4.7: “Ideal” single PE spectra with additive noise.

where the third term in the parentheses can safely be ignored for large n̄i. The range of k goes
from 1 (exponential PE spectrum) to ∞ (Dirac PE spectrum), with the relative signal variance
(4.18) being between 1/n̄i (Dirac) and 2/n̄i (exponential).

Generating random variates from (4.17) is easy: one just has to go through the convolution
chain. On the other hand, evaluating (4.17) given xi and n̄i (which we need in parameter es-
timation) can only be done numerically. One can approximate (4.17) by simpler formulas, but
we found that these approximations may corrupt the estimation of signal parameters µ, k, and
σ. In case these parameters are known, we can approximate the convolution (4.17) by a Gamma
distribution with the same mean and variance:

p(xi|n̄i) ≈ Γk′ ,θ′(xi − b) (4.19)

with

k′ = n̄i
k

(k + 1)
(

1 + kσ2

(k+1)n̄iµ
2

) (4.20)

θ′ = µ
k + 1

k
+

σ2

n̄iµ
(4.21)

If the signal parameters are estimated with a Monte Carlo Markov chain (MCMC) algorithm,
we can explicitly introduce the nuisance parameters n̄i, ni, and x̄i, and let the MCMC do the
numerical integration.

Discretization

The FADC count is a discretized value of the original signal. The likelihood (4.17) is a good
approximation of the real likelihood in case σ > 0.5 times the resolution (which is 1 in our case).
In this case the discretization variance 1/12 is included in the estimated σ. In experiments we
found that σ is around the critical value of 0.5, and we started to observe both a slight bias in
the baseline estimate and a fluctuation of the noise estimate, depending where the real baseline
was with respect to the FADC bin boundaries, so we opted to include the discretization in the
likelihood by using

p(xi|n̄i) =
∞

∑
ni=0

Poin̄i
(ni)

∫ ∞

0
Γnik,µ/k(x̄i)

∫ xi+0.5

xi−0.5
Nb+x̄i ,σ(x′i)dx′idx̄i. (4.22)

instead of (4.17).
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4.2.4 The distribution of the expected photoelectron count in time

The second term n̄i(Lµ, φµ, tµ) of (4.8) determines the expected number of PEs in the bin [ti−1, ti),
given Lµ, φµ, and tµ. We will use a simple model with three additional explanatory parameters,
the risetime td, the rate of the exponential decay τ (both measured in ns), and the mean number ν
of PEs generated by an average vertical atmospheric muon of unit (1 m) tracklength and captured
in a PMT. We found that this parametrization works fine for vertical centered muons, which is
the subject of this note. The model will have to be refined for inclined non-centered muons due
to azimuthal asymmetries of the PMTs and direct light.

Our model is based on the assumption that a muon generates a number of Cherenkov photons
along its trajectory at a rate that depends on its energy. The photons are generated at a precise
angle around the trajectory. They can be reflected several times on the walls of the tank before
arriving into the PMT. It was measured that the photon distribution “mixes” (becomes uniform)
after around two reflections within another 5 to 10 ns. This means that the risetime is in the first
two bins (at most). After that the rate of arrival in the PMT becomes exponential because of the
constant decay rate due to the absorption of photons in the water and reflection losses. The rate
can change from one tank to another, and it was observed to change also in time. To model the
risetime, we assume that the photon generation is uniform in a window of width td. The decay
phase is modeled by an exponential with parameter τ. The convolution can be solved analytically
to obtain the time response distribution

pτ,td
(t) =

1

td
·





0 if t < 0,

1 − exp(−t/τ) if 0 ≤ t < td,

exp
(
− (t − td)/τ

)
− exp(−t/τ) if td ≤ t.

(4.23)

Figure 4.8 shows the time response distribution with typical parameter values τ = 60 ns and
td = 13 ns.
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Figure 4.8: The time response distribution with typical values τ = 60 ns and td = 13 ns.

To obtain the expected number of PEs in a bin, we first have to integrate pτ,td
(t) in the bin,

and then we have to multiply it with (a) the tracklength Lµ, (b) the average number of PEs per
unit tracklength ν, and (c) the energy factor φµ,

n̄i(Lµ, φµ, tµ) = φµLµν

∫ ti

ti−1

pτ,td
(t − tµ)dt. (4.24)

4.3 An adaptive Metropolis algorithm for mixture models

Adaptive Metropolis (AM) [135] is a powerful recent algorithmic tool in numerical Bayesian data
analysis. AM builds on a well-known Markov Chain Monte Carlo (MCMC) algorithm but opti-
mizes the rate of convergence to the target distribution by automatically tuning the design pa-
rameters of the algorithm on the fly. In the case of AM, the adaptive parameter tuning rule relies
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on the availability of an online estimate of the covariance of the target distribution. AM is con-
sidered a pioneering contribution in adaptive MCMC methodology, and it represents a significant
step towards developing self-tuning, turn-key sampling algorithms which are necessary for us-
ing MCMC approaches in high throughput data analysis. The optimality criterion considered
in AM relies on theoretical results derived when the target distribution is multivariate Gaus-
sian [145, 146]. When the target is multi-modal or concentrated around a non-linear manifold,
the algorithm still applies but its optimality is no longer guaranteed, and its practical perfor-
mance is often suboptimal.

An important case where AM usually fails is when the target is the posterior distribution in
Bayesian inference on a mixture model. In this case the mixture likelihood is invariant to per-
muting the mixture components, and the chosen prior often does not favor any permutation
either. Although we usually have “nice” genuinely unimodal posteriors of the parameters of
well-identified components, the posterior is highly multimodal with exponentially many peaks,
one for each permutation of the components. Running a well-mixing MCMC on such a model
results in useless marginal estimates for the parameters of the individual components due to
the confusion between all possible labelings. This phenomenon is called label switching. Several
approaches have been proposed to deal with this problem, usually in a post-processing step after
the posterior sample has been produced [147, 148, 149, 150, 151, 152, 153]. They all aim to solve
the identifiability problem in order to produce meaningful marginal posteriors for the mixture
parameters. Running vanilla AM on such a model has two pitfalls. If the chain does not mix
well, we get stuck in one of the modes. The adaptive proposal can then be efficient but we know
that we are not sampling from the actual mixture posterior and it is quite likely that the results of
inference will be ultimately biased. On the other hand, if the MCMC chain does switch between
components, the online sample covariance estimate will be too broad, resulting in poor adap-
tive proposals and slow convergence. Note that the latter situation is usually prevalent when
using trans-dimensional samplers based on the Reversible Jump approach [147]: in this case, the
dimension-changing moves force label switching and running an embedded AM algorithm is, in
our experience, almost useless.

To solve these challenging issues, we develop an Adaptive Metropolis algorithm with Online
Relabeling (AMOR). The main idea is to combine the online relabeling strategy of [148] with the
AM algorithm of [135]. This results in a doubly adaptive algorithm that uses the sample statistics
both for (i) adapting its proposal and for (ii) redefining the region onto which it constrains the
chain by attempting relabeling in each iteration.

The section is organized as follows. In Section 4.3.1 we formalize the problem and motivate
AMOR on a real-world example. In Section 4.3.2, we derive the new online relabeling procedure
based on AM and present our main convergence results.

4.3.1 Adaptive Metropolis and label switching

In this section we briefly provide some more background regarding AM and the label switching
problem. We consider using MCMC sampling to explore posterior distribution

π(x) ! p(x|data) ∝ p(data|x)p(x)

of the parameters x ∈ X given the observation data. The posterior π(x), whose normalization
constant is usually unknown, can be explored by MCMC by running a Markov chain (Xt) with
stationary distribution π. In this context, π is also said to be the target distribution of the MCMC
chain. The Symmetric Random Walk Metropolis algorithm (SRWM; [154]; corresponding to the
blue steps in Figure 4.10 in Section 4.3.2) is one of the most popular techniques for simulating such
a chain (Xt). In SRWM the user has to provide a symmetric proposal kernel that will be used to
propose a new sample X̃ given the previous sample Xt−1. When the posterior is a distribution
over a continuous space X = R

d, the most common proposal kernel is a multivariate Gaussian
N

(
· |Xt−1, Σ

)
.
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The goal of Adaptive Metropolis (AM) (corresponding to the blue and green steps in Figure 4.10)
is to automatically calibrate the design parameter Σ of SRWM. When the target π(x) is multivari-
ate Gaussian with covariance Σπ , the optimal choice of Σ is of the order of (2.38)2Σπ/d [145, 146].
In practice, Σπ is unknown thus motivating the use of an estimate of the covariance of the pos-
terior based on samples (X1, . . . , Xt−1) generated so far. From a theoretical point of view, the
conditional distribution of Xt given the past then depends on the whole past rendering the anal-
ysis of AM more challenging. The convergence of AM has been recently addressed under quite
general conditions (see, e.g., [155, 156] and references therein).

The optimal choice for Σ is appropriate only when the target distribution is strongly uni-
modal [146]. In a mixture model, the likelihood is of the form

p(data|x) =
M

∑
m=1

αm f (data|φ(m)),

where ∑i αi = 1 and αi ≥ 0, φ(m) denotes the n-dimensional parameter vector of the mth com-
ponent, and the parameter space is a subset of (R

+ × R
n)M. The likelihood p(data|x) in this

case is invariant under any permutation of the mixture components. If the prior p(x) is exchange-
able, that is, it also does not favor a particular permutation, then the posterior π(x) inherits the
permutation invariance.

To illustrate the challenges of inference in this model, Figure 4.9(a)-4.9(b) display the MCMC
sample corresponding to a single run of AM on a mixture of muon signals simulated from the
model described in Section 4.2. The red variable gets stuck in one of the mixture components,
whereas the blue, green, and brown variables visit all the three remaining components. Marginal
estimates computed for the blue, green, and brown variables are then mostly identical as seen in
Figure 4.9(b). In addition, the resulting empirical covariance estimate is very broad, resulting in
poor efficiency of the adaptive algorithm.

Several approaches have been proposed to deal with the label switching problem. The first
solution consists in modifying the prior in order to make it select a single permutation of the
variables, introducing an identifiability constraint [147]. This solution is known to cause artificial
biases by not respecting the topology of the posterior [150]. An effort has then been made to
adapt to the estimated posterior surface through the design of relabeling algorithms [149, 150]
that process the MCMC sample after the completion of the simulation run. These techniques look
for a permutation Pt of each individual sample point Xt so as to minimize a posterior-based cri-
terion depending on the whole chain history. [148] proposed an online version of the relabeling
procedure in which the simulation of each Xt is followed by a permutation Pt of its components.
The permutation Pt is chosen to minimize a user-defined criterion that depends only on the past
history of the chain up to time t. The major advantage of this online approach is that it is com-
patible with our objective of solving label switching “on the fly” in order to optimize AM for
permutation-invariant models.

In both batch and online relabeling algorithms, inference is carried out by using relabeled sam-
ples. Since the permutation steps in the MCMC procedure modify the distribution of the chain
(Xt), the target distribution is no longer the posterior π(x). [151] showed recently that, empiri-
cally, relabeling induces the learning of an appropriate identifiability constraint, but the existence
of a target distribution and its relation with the original target π(x) has been an open problem,
meaning that these relabeling techniques have remained mostly heuristics.

4.3.2 AMOR: An adaptive online relabeling algorithm

From now on, we consider the general case of MCMC sampling from a target distribution with
density π(x) on X ⊆ R

d with respect to (w.r.t.) the Lebesgue measure, with d = qM. Let P be a
finite group of d × d block permutation matrices, indexed by some permutations ν of {1, ..., M},

acting on X as follows: for x = (x1, ..., xM) ∈ R
d, Pνx ! (xν−1(1), ..., xν−1(M)). As an example, let

us take d = 6 dimensions separated in three blocks of size 2. This would correspond to having
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(b) AM: component posteriors
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(d) AMOR: component posteriors

Figure 4.9: The results of AM (top raw) and AMOR (bottom raw) algorithms on a mixture of
muon signals (Section 4.2). The right panels show the parameters of the four components. The
x-coordinates of the black dots are the location parameters (muon arrival times tµ) and the y-

coordinates are the mixture coefficients α(m) (proportional to Lµφµ). The (unnormalized) mixture
distribution (sum of the ideal muon signals) are in blue. The colored histograms are the marginal
posteriors of the four muon arrival times. The left panels show the four chains of the location pa-
rameters tµ (light colors), the running means (dark colors), and the mean of the running means
(black curve). The AM algorithm shows heavy label switching among the three rightmost com-
ponents whereas the AMOR algorithm separates the components nicely.

a mixture model with 3 components and 2 parameters each. The 6 × 6 matrix associated to the
permutation ν that sends 1 onto 2, 2 onto 3 and 3 onto 1 is

Pν =




0 0 I2

I2 0 0
0 I2 0


 ,

and for x = (1, 2, ..., 6)T , Pνx = (5, 6, 1, 2, 3, 4)T .

Let us now assume that π is invariant under the action of P , i.e. π(Px) = π(x) for any P ∈ P .
Our goal is to isolate a single mode out of the many identically repeated symmetric modes of the
posterior. Formally, we are interested in restricting the target π to a fundamental domain D of the
action of P , that is, finding a subset D ⊂ X which is minimal for the inclusion and for which
{Px : x ∈ D, P ∈ P} = X . Minimality is to be understood here as “up to sets of Lebesgue
measure zero”. Following [148, 149], we will select D so that the sample looks as Gaussian as
possible, since we want to select a single mode of the symmetric modes of the target π. For
this purpose, the domain D will be defined through the minimization of a Mahalanobis-type
criterion.
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For a d × d invertible covariance matrix Σ, let

N (x|µ, Σ) =
1

(2π)d/2

1√
detΣ

exp

(
−1

2
L(µ,Σ)(x)

)

be the density of a Gaussian distribution on R
d with mean µ and covariance matrix Σ, where

L(µ,Σ)(x) ! (x − µ)TΣ−1(x − µ).

AMOR
(
π(x), x0, T, µ0, Σ0, c

)

1 S ← ∅

2 for t ← 1 to T

3 Σ ← cΣt−1 ⊲ scaled adaptive covariance

4 x̃ ∼ N
(
· |xt−1, Σ

)
⊲ proposal

5 P̃ ∼ arg min
P∈P

L(µt−1,Σt−1)

(
Px̃

)
⊲ pick an optimal permutation

6 x̃ ← P̃x̃ ⊲ permute

7 if
π(x)∑P N

(
Pxt−1|x, Σ

)

π(xt−1)∑P N
(

Px|xt−1, Σ
)> U [0, 1] then

8 xt ← x ⊲ accept

9 else

10 xt ← xt−1 ⊲ reject

11 S ← S ∪ {xt} ⊲ update posterior sample

12 µt ← µt−1 +
1

t

(
xt − µt−1

)
⊲ update running mean and covariance

13 Σt ← Σt−1 +
1

t
((xt − µt) (xt − µt)

⊺ − Σt−1)

14 return S

Figure 4.10: The pseudocode of the AMOR algorithm. The steps of the classical SRWM algorithm
are in blue, the adaptive MH algorithm adds the green steps, and the new online relabeling steps
are in red. Remark the adaptation of both the proposal (line 4) and the selection mechanism
through the dependence of L(µ,Σ) on (µ, Σ). Note that for practical reasons, a small εId is often
added to the covariance matrix in line 3, but [157] recently confirmed that core AM does not lead
to degenerate covariances. Note also that line 5 is usually a simple assignment of the optimal
permutation. In case of ties, we draw uniformly from the finite set of optimal permutations.

4.3.3 Derivation of the algorithm

Let C+
d be the set of real d × d (symmetric) positive definite matrices, and let θ ∈ R

d × C+
d . θ will

later on be taken to be the concatenation of the mean and covariance of the chain (Xt), but for
now, it is fixed to an arbitrary value. AMOR combines two actions: (i) sample a chain with target
proportional to πI {D} where D is a fundamental domain of the action of P and (ii) learn the
domain D on the fly.

To show this, first assume that the adaptation is frozen, that is, consider AMOR when steps
12 and 13 in the pseudocode in Figure 4.10 are removed. In this case, we prove in [136] that our
algorithm is a MCMC sampler with target distribution

πθ(x) = Z−1
θ π(x)I {x ∈ Vθ}, where Zθ =

∫

Vθ

π(x)dx, (4.25)
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and Vθ is defined by Vθ ! {x : Lθ(x) = minP∈P Lθ(Px)}. In other words, πθ(x) is the original
target π(x) restricted to the nearest-neighbor (Voronoı̈) cell Vθ defined by the distortion measure
Lθ .

The question now is to find a convenient θ in such a way that MH is optimized: based on [146],
we want to choose the covariance matrix Σ such that Σ is proportional to the covariance matrix
of πθ . This implies that θ = (µ, Σ) solves the fixed point equations

µ =
∫

x πθ(x)dx, Σ =
∫

(x − µ)(x − µ)Tπθ(x)dx. (4.26)

To achieve this goal, the MH-online relabeling (steps 3 to 11 in Figure 4.10) is combined with the
adaptive steps 12 and 13. Further analysis of the algorithm can be found in [136].

4.4 Counting muons using neural networks

Counting muons in the FADC traces is a notoriously difficult problem. In principle, the analyt-
ical single muon response model [133, 134] (Section 4.2) would allow for efficient inference in a
pure muonic signal. Unfortunately, in showers with zenith angle θ < 60◦, the electromagnetic
“contamination” is non-negligible, so the main difficulty is to decouple the muonic and elec-
tromagnetic components. Unlike muons, the more numerous electromagnetic particles generate
smaller signals, so, when added up, they constitute a smooth background to the muonic peaks.
When the number of muons is relatively small a simple approach to count muons in the “con-
taminated” signal is to compute the discrete derivatives (xi+1 − xi) in each bin and count the
number of bins when (xi+1 − xi) exceeds a threshold δ [158, 159] (Figure 4.11. More formally, the
goal is to construct an estimator for the number of muons Nµ based on the “jump” statistics

Jδ = ∑
FADC bin i

(xi+1 − xi)︸ ︷︷ ︸
jump

I {xi+1 − xi > δ}. (4.27)
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Figure 4.11: The FADC trace of three vertical throughgoing muons arriving at 45, 120, and 225 ns.
A simple statistics that correlates well with the number of muons is the number of “jumps”
(discrete derivatives) exceeding a threshold δ.

To assess the overall quality of the estimator Jδ, Figure 4.12 shows the histograms of the rela-
tive error8

ηδ =
Nµ + 1

Jδ + 1
(4.28)

8We offset the counts by 1 to avoid the singularity at Jδ = 0.
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for δ = 0.1 and δ = 0.5. The figures indicate that J0.1 is a better estimator than J0.5 both in terms
of variance and regularity (shorter tails). The main problem with Jδ is, in fact, not overall bias
or variance but its dependence on various shower parameters (mainly distance from the core r,
energy of the shower E, or the zenith angle θ) that may generate energy- and zenith angle-trends
in the bias (Figure 4.13).
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Figure 4.12: Regularized ηδ (4.28) histograms for δ = 0.1 and δ = 0.5.

The goal of this section is to estimate the correction factor η0.1 based on a large set of sim-
ulated individual FADC signals. Although we only use proton and iron showers simulated by
QGSJetII, the detectorwise muon estimator does not have access to any shower parameters, so it
cannot bias its estimate explicitly. The procedure does not eliminate the bias completely, but the
bias is smaller than the bias of the jump method and it is easier to control. Using independent
simulations, we can obtain reliable upper bounds on the systematic bias.

4.4.1 The non-parametric multivariate correction factor

The FADC signal has several high-level characteristics that are known to be correlated to the
number of muons crossing the detector. The integrated thresholded discrete derivative (“jump”)
(4.27) is only one of them. The main idea of this analysis is to extract as much information from
the FADC signal as possible through variables that are plausibly correlated to muon content, and
let a non-parametric predictor to construct a correction-factor estimator η̂ based on a large set of
divers simulations.

The 172 extracted variables, described in detail in [72], include signal integrals, time quantiles,
“jump”-style parameters, and asymmetry statistics between the three PMTs. Of course, most of
the extracted variables are correlated even if the number of muons is given, so the first step of the
analysis is to run Principal Component Analysis (PCA) to reduce the dimensionality of the data.
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Figure 4.13: Trends of η. The red dots and curve depict the statistics Nµ/J0.5 used in the original
jump method [158, 159]. The black curve is the “hand-made” correction factor of [159]. The blue
dots and curve depict the statistics η0.1 = (Nµ + 1)/(J0.1 + 1) used in this section.

After this step, each FADC signal is represented by a real vector of length 19, capturing 98% of
the total variance of the original 172-dimensional data set (Figure 4.14).
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Figure 4.14: The proportion of the total variance explained by the first ℓ principal components.
The gray lines represent the 0.9, 0.95 and 0.99 quantiles and the corresponding numbers of prin-
cipal components.



84 CHAPTER 4. BAYESIAN INFERENCE IN THE PIERRE AUGER EXPERIMENT

The next step is the actual training of the nonparametric predictor. We use the NETLAB
implementation [56] of the neural network technique described in [50] for this purpose. A useful
property of this implementation is that, beside point estimates, it provides reliable uncertainty
estimates on individual points which we can easily turn into uncertainties on the detectorwise
muon number estimate. Since the global goal of the analysis is to obtain a single observable for
each shower, these uncertainties greatly improve the lateral distribution function (LDF) fit and, in
turn, our final estimator of muon content.

Neural networks are usually trained to minimize the squared error between the predictions
and the target “labels”. Since we are interested in minimizing the relative error of the muon
estimate, we define the target labels as

y = log η0.1 = log
Nµ + 1

J0.1 + 1
. (4.29)

The output of the neural network will be interpreted as a Gaussian over the target, so using
the logarithm in (4.29) will assure that negative Nµ’s receive no probability (more precisely, the

output distribution of N̂µ will be log-normal). Details on the training and validation process can
be found in [72].

The neural network provides point estimates ŷ and error bar estimates σ̂y for the target label
y = log η0.1 of every FADC signal. Assuming that the posterior distribution of y is Gaussian

Nŷ,σ̂y
,

Nµ+1
J0.1+1 has a log-normal distribution. Considering that Nµ is an integer, we integrate the

posterior of log
Nµ+1
J0.1+1 between log N+0.5

J0.1+1 and log N+1.5
J0.1+1 to obtain the probability (likelihood) of

Nµ = N. Formally, we first compute the unnormalized probabilities

P̃(Nµ = N) = erf

(
log N+1.5

J0.1+1 − ŷ
√

2σ̂y

)
− erf

(
log N+0.5

J0.1+1 − ŷ
√

2σ̂y

)
,

then normalize them using the interval [ŷ − 5σ̂y, ŷ + 5σ̂y], making also sure that only nonnegative
counts receive any probability:

P(Nµ = N) =
P̃(Nµ = N)

∑
(J0.1+1) exp(ŷ+5σ̂y)−1

N′=max
(

0,(J0.1+1) exp(ŷ−5σ̂y)−1
) P̃(Nµ = N′)

.

The output of this detectorwise reconstruction step is therefore a normalized table that assigns
probabilities to a set of nonnegative integers in an interval also determined by the ANN. Since,
through a complex process, this estimate depends only on the FADC signal x, we will denote this
table as

PANN(N|x) ! P(Nµ = N|x).

This table will be used as an input likelihood in the reconstruction of the lateral distribution
function described in Section 4.5.

4.4.2 Detectorwise results

The overall quality of the new estimator has improved significantly compared to the jump esti-
mator (Figure 4.15). The range of the relative biases between QGSJet proton and EPOS1.6 iron is
17% for the ANN estimator and 22% for the jump estimator. The relative standard deviation of
the ANN estimator is less then half of the standard deviation of the jump estimator.

The 15-20% systematic bias (across primary masses and hadronic models) of the output of
the ANN estimator roughly corresponds to the relative error of estimating Nµ, confirmed by
Figure 4.16. The overall trends depicted by Figure 4.16 are also what we expected. The main
source of the trends is related to overestimating Nµ when Nµ is small and underestimating it
when it is large. This trend can be almost completely eliminated using a simple correction that
depends on the estimated number of muons.
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Figure 4.15: η̂ANN − η0.1 and η(E, r) − Nµ/J0.5 histograms. These quantities roughly correspond
to the relative error of estimating Nµ.
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Figure 4.16: Detectorwise bias trends in energy and zenith angle.

4.5 An empirical Bayes approach for reconstructing the muonic

LDF

In this section we describe a reconstruction method that fits a parametric lateral distribution func-
tion to the estimated number of muons in the detectors, and, at the same time, fits smooth func-
tions to the dependencies of the LDF parameters on the energy and zenith angle of the shower.
In particular, it automatically estimates the mean of the number of muons at 1000 m as a function
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of the energy and the zenith angle.

The justification of the method is mathematically rather involved, but the global setup of the
algorithm itself is quite intuitive. It consists in iterating two steps: 1) fixing global priors or
constraints on the three LDF parameters and estimating the fit for each shower, and 2) fixing
the individual fits and estimating the global constraints, that is, the dependencies of the LDF
parameters on the energy and zenith angle of the shower. The constrained LDF fit is more flexible
than a fixed-slope fixed-curvature fit, allowing for shower-to-shower fluctuation of the fit. At the
same time, the constraints make sure that the fits of low-quality events do not vary too much,
essentially “imitating” a fixed-slope fixed-curvature fit for these events. The other advantage of
the method is that the constraints are non-parametric and estimated entirely form the data.

The section is organized as follows. In Section 4.5.1 we describe the basic setup: the LDF
parametrizations, likelihoods, and the constraints. The description of the algorithm is divided
into two parts. In Section 4.5.2 we give a short high-level overview of the empirical Bayes prin-
ciple and its application to the concrete problem. Section 4.5.3 describes the algorithmic details
of the approximate Expectation-Maximization (EM) algorithm we are using within the empiri-
cal Bayes framework. We illustrate the two steps of the algorithm on an example and show the
expected bias and variance reduction in Section 4.5.4.

4.5.1 The basic setup

After introducing some new notations, we describe the LDF parametrizations, the shower likeli-
hoods, and the constraints of the LDF parameters.

Notation

First, let us introduce some notation. We assume that we have n showers, indexed by i. For each
shower, we observe its energy Ei and zenith angle θi. The ith shower has mi active detectors,
indexed by j. Out of these mi detectors, ki have triggered and mi − ki are non-triggering. Without
loss of generality we will assume that the first ki have triggered and the last mi − ki are non-
triggering. The real number of muons in the jth detector of the ith shower will be denoted by
Ni,j (we omit the index µ for simplicity). Ni,j is, of course, only observed in simulations. When
Ni,j is not available, we observe the FADC signal xi,j, and use the probability table PANN(N|xi,j)
provided by the neural network to estimate (Section 4.4) the number of muons in the detector. For
each detector, we also observe its distance from the shower core ri,j and an indicator ιi,j whether
it has triggered or not (that is, ιi,j = 1 if the detector triggers, 0 if it is non-triggering). When we
talk about the whole event i, the vector of the numbers of muons in all the detectors of the event
will be denoted by Ni. Similarly, the vector of radii, the vector of FADC signals and the vector of
triggers indicators will be ri, Xi, and ιi, respectively.

The lateral distribution function

After some preliminary experiments, we decided to use a log-log parabola for the LDF parametriza-
tion. The three parameters of the fit are the number of muons at 1000 m Nµ(1000), the slope of
the fit β and the curvature parameter γ. To simplify the notation, we will use ν for log Nµ(1000),
so the LDF function is

N(r, ν, β, γ) = exp
(

ν + β log
r

1000 m
+ γ log2

( r

1000 m

))
. (4.30)

We use the notation N to emphasize that the function expresses the expected number of muons
in a detector at a distance r from the shower core. Accordingly, the parameter exp(ν) = Nµ(1000)
will target the expected number of muons in an imaginary detector at 1000 m from the core.
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The shower likelihood

To simplify the notation, in some of the formulas we will omit the dependence of N on r, ν, β,
and γ. Given the lateral distribution function N(r, ν, β, γ), the likelihood of the number of muons
is a simple Poisson

p(N|N) = PoiN(N).

We suppose that the probability that a detector triggers

p(ι = 1|N) = fι(N)

is a deterministic non-parametric function of the number of muons in the detector. This is defi-
nitely a simplification and it could be refined in a subsequent analysis. We do not parametrize fι,
rather, we provide it as a table of probabilities. The trigger probability in a detector given the fit
is then

p(ι = 1|r, ν, β, γ) = p(ι = 1|N(r, ν, β, γ))

= ∑
N

p(ι = 1|N)p(N|N)

= ∑
N

fι(N)PoiN(N),

where we use the simplifying assumption in the second equality. Similarly, the no-trigger proba-
bility is

p(ι = 0|r, ν, β, γ) = p(ι = 0|N(r, ν, β, γ))

= ∑
N

p(ι = 0|N)p(N|N)

= ∑
N

(1 − fι(N))PoiN(N).

(4.31)

Since we do not observe the number of muons in non-triggering detectors, (4.31) is itself the
likelihood of a detector being non-triggering given the fit and the distance r of the detector from
the shower core. Given that we observe the real number of muons N in the detector, the likelihood
of the pair (ι, N) of a detector that has triggered is

preal(ι = 1, N|r, ν, β, γ) = p(ι = 1, N|N(r, ν, β, γ))

= p(ι = 1|N, N)p(N|N)

= p(ι = 1|N)p(N|N)

= fι(N)PoiN(N).

In this case the likelihood of the triplet νi, βi, γi is

preal(Ni, ιi, ri|νi, βi, γi) =
ki

∏
j=1

fι(Ni,j)PoiN(ri,j ,νi ,βi ,γi)
(Ni,j)

×
mi

∏
j=ki+1

∑
N

(1 − fι(N))PoiN(ri,j ,νi ,βi ,γi)
(N).

(4.32)

When using the probability table PANN(N|x) provided by the neural network estimator (Sec-
tion 4.4), the likelihood of the pair of the trigger indicator ι and the FADC signal x is also a sum

pANN(ι = 1, x|r, ν, β, γ) = ∑
N

PANN(N|x) fι(N)PoiN(N),
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so the likelihood of the triplet νi, βi, γi is

pANN(Xi, ιi, ri|νi, βi, γi) =
ki

∏
j=1

∑
N

PANN(N|xi,j) fι(N)PoiN(ri,j ,νi ,βi ,γi)
(N)

×
mi

∏
j=ki+1

∑
N

(1 − fι(N))PoiN(ri,j ,νi ,βi ,γi)
(N).

(4.33)

The priors (constraints)

Maximizing the likelihoods (4.32) or (4.33) with completely free parameters is possible, but it can
lead to degenerate fits with large uncertainties especially for lower energy events or events with
bad geometry. As an alternative, one could fix β and/or γ and fit only the log number of muons ν
at 1000 m, but this would eliminate the shower-to-shower fluctuation of β and γ and bias the fits
unnecessarily for high quality events. In this analysis we opt for a best-of-both-worlds solution:
we define “soft constraints” that can be formally interpreted as priors over the parameters ν, β,
and γ.

In particular, the parameters ν, β, and γ will be modeled with independent Gaussians

p(β|µβ, σβ) = Nµβ ,σβ
(β)

p(γ|µγ, σγ) = Nµγ ,σγ(γ)

p(ν|µν, σν) = Nµν ,σν(ν).

(4.34)

In the simplest setup, we could fix the mean and the variance of these Gaussians, but this would
obviously bias the fits since we know that all parameters depend on the energy and the zenith
angle of the shower. This dependence is very strong for ν, but β and γ can also have slight but
clear trends in energy and zenith angle. The solution to this problem is to parametrize the means
and the standard deviations in E and θ. In “physical terms”, µβ(E, θ), µγ(E, θ), and µν(E, θ) are
means of the LDF slope, curvature, and the logarithm of Nµ(1000), respectively, whereas σβ(E, θ),
σγ(E, θ), and σν(E, θ) represent the shower-to-shower fluctuations of the slope, curvature, and the
logarithm of the number of muons at 1000 m, respectively. In this setup, the likelihood of the ith
shower (conditioned on µβ, µγ, µν, σβ, σγ, and σν) is

preal(Ni, ιi, ri, νi, βi, γi|µβ, µγ, µν, σβ, σγ, σν) =

preal(Ni, ιi, ri|νi, βi, γi) ×Nµβ(Ei ,θi),σβ(Ei ,θi)
(βi)

×Nµγ(Ei ,θi),σγ(Ei ,θi)
(γi) ×Nµν(Ei ,θi),σν(Ei ,θi)

(νi),

(4.35)

when the number of muons is observed in each detector, and

pANN(Xi, ιi, ri, νi, βi, γi|µβ, µγ, µν, σβ, σγ, σν) =

pANN(Xi, ιi, ri|νi, βi, γi) ×Nµβ(Ei ,θi),σβ(Ei ,θi)
(βi)

×Nµγ(Ei ,θi),σγ(Ei ,θi)
(γi) ×Nµν(Ei ,θi),σν(Ei ,θi)

(νi),

(4.36)

when the number of muons is estimated using the neural network.
In our first attempt, the mean functions µβ(E, θ), µγ(E, θ), and µν(E, θ) were simple polyno-

mial parametrizations of E and θ, but we found that the natural shape of some of these functions
did not follow any simple polynomial, so this rigid setup either led to unnecessary biases or the
number of parameters (degrees of the polynomials) had to be unreasonably high. To overcome
this problem, we settled in a nonparametric solution in which overall trends were modeled with
low-order polynomials, and the residuals were then fitted with smooth nonparametric function
using Gaussian processes [160]. The standard deviation functions σβ(E, θ), σγ(E, θ), and σν(E, θ)
are linear functions of E and θ.
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4.5.2 The empirical Bayes setup and an approximate EM algorithm

In a classical Bayesian analysis, the goal would be to obtain the posterior distribution

p(φ|data) =
p(data|φ)p(φ)

p(data)
, (4.37)

and estimate the parameters by either the mean or the maximizer of p(φ|data). In our case “data”

represents either
{
(Ni, ιi, ri)

}n

i=1
or

{
(Xi, ιi, ri)

}n

i=1
, and the parameter vector φ is

{
(νi, βi, γi)}n

i=1.
Since the events are independent, the likelihood is just the product of (4.32) or (4.33) for all events.
The prior p(φ) is usually a fixed probability distribution over the parameters that encodes prior
knowledge (“constraints”).

In our case, the prior p(φ) is further parametrized by

ξ = (µβ, µγ, µν, σβ, σγ, σν).

In the Empirical Bayes setup [139], we do not fix the prior, rather we estimate it by maximizing the
marginal likelihood

p(data|ξ) =
∫

p(data, φ|ξ)dφ =
∫

p(data|φ)p(φ|ξ)dφ, (4.38)

where we used the fact that, given φ, the data is independent of the hyperparameters ξ. It is
a mixed frequentist/Bayesian approach that integrates over nuisance parameters φ (which is a
Bayesian step), but estimates the hyper-parameters ξ by maximum likelihood (which is frequen-
tist). Once the maximum marginal likelihood estimator (MMLE)

ξ̂ = arg max
ξ

p(data|ξ)

is found, the showerwise parameters φ = {φi}n
i=1 =

{
(νi, βi, γi)}n

i=1 can be estimated by using

the distributions p(φi|datai, ξ̂) by maximization (MAP estimate) or by averaging (MEP estimate).
Since

p(φi|datai, ξ) ∝ p(datai|φi)p(φi|ξ),

in case the MAP estimate is used, this step is equivalent to maximizing the likelihoods (4.35) or
(4.36).

Directly maximizing (or even computing) (4.38) is infeasible in our case. To approximately

maximize it, we iterate between two simple steps. We start with an initial prior ξ(0), then iterate
between

1. estimating the parameters φi = (νi, βi, γi) of each shower by fitting the LDF (4.30) to the

detector signals under the constraints (4.34) defined by ξ(t), and

2. estimating the energy- and zenith-angle-dependencies ξ(t+1) by fitting a smooth function

µ•(E, θ) to the set of triplets
{
(Ei, θi, •i)

}n

i=1
and fitting σ•(E, θ) to the residuals, where • is

either β, γ, or ν.

This simple algorithm can have several variants with various interpretations, depending on
how the fits are carried out in the two steps. For example, a purely frequentist solution consists
in simple maximum likelihood fits in both steps, which leads to a variant of the Expectation Max-
imization (EM) algorithm [161] that converges to a (locally) maximum likelihood solution. We
opted for a slightly more complicated solution because we wanted to compute individual uncer-
tainty estimates for each shower parameter φi = (νi, βi, γi), and use these uncertainty estimates
in the fits of Step 2) in a setup similar to weighted least squares. Our intuition was that, depend-
ing on the number of detectors mi and their geometry, there can be significant differences in the
parameter uncertainties between showers, and we wanted to give more weight to “nice” showers
in determining the means and the shower-to-shower fluctuations of the three LDF parameters.9

9In fact, a heuristic version of this algorithm was already used in [158, 159]: we selected an unbiased set of “nice”
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4.5.3 The approximate EM algorithm

Maximizing the marginal log likelihood

log p(data|ξ) = log
∫

p(data, φ|ξ)dφ = log
∫

p(data|φ)p(φ|ξ)dφ

directly is infeasible even if we suppose that the underlying densities factorize and the factors
p(datai|φi) and p(φi|ξ) have simple forms (e.g., Gaussians). To overcome this problem, we use
the convexity of the log function and Jensen’s inequality to define the lower bound

log
∫

p(data, φ|ξ)dφ = log
∫

q(φ)
p(data, φ|ξ)

q(φ)
dφ

≥
∫

q(φ) log
p(data, φ|ξ)

q(φ)
dφ ! F (q, ξ).

(4.39)

Note that the inequality is true for any density q over the shower parameters φ =
{
(νi, βi, γi)}n

i=1.
The main idea of the expectation maximization (EM) algorithm is to alternately optimize F (q, ξ)
in its two parameters.

1. In the E-step, we fix the hyperparameters ξ(t), and optimize F (q, ξ) in q. The difference

between the marginal likelihood and F (q, ξ(t)) is

log p(data|ξ(t)) −F (q, ξ(t)) = log p(data|ξ(t)) −
∫

q(φ) log
p(data, φ|ξ(t))

q(φ)
dφ

= log p(data|ξ(t)) −
∫

q(φ) log
p(φ|data, ξ(t))p(data|ξ(t))

q(φ)
dφ

= −
∫

q(φ) log
p(φ|data, ξ(t))

q(φ)
dφ,

which is the so-called Kullback-Leibler (KL) divergence between q(φ) and the posterior distri-

bution p(φ|data, ξ(t)) given the fixed hyperparameters ξ(t). The KL divergence is always
non-negative, and it is zero if and only if the two densities are identical. This means that

F (q, ξ(t)) is maximized when

q(t)(φ) = arg max
q

F (q, ξ(t)) = p(φ|data, ξ(t)). (4.40)

Finding the exact posterior p(φ|data, ξ(t)) is still infeasible. Since the shower events are
independent, the posterior factorizes into

p(φ|data, ξ(t)) =
n

∏
i=1

p(φi|datai, ξ(t)),

so we can fit each shower independently. Furthermore, by Bayes’ theorem

p(φi|datai, ξ(t)) =
p(datai|φi)p(φi|ξ(t))

p(datai)
∝ p(datai|φi)p(φi|ξ(t)),

which is exactly our likelihood (4.35) or (4.36) with fixed constraints ξ(t) = {µ
(t)
• , σ

(t)
• }•=β,γ,ν.

We approximate10 p(φi|datai, ξ(t)) with the product of three independent Gaussians

p(φi|datai, ξ(t)) ≈ N
β̂i ,σ̂βi

(βi)Nγ̂i ,σ̂γi
(γi)Nν̂i ,σ̂νi

(νi), (4.41)

showers based on geometry, and used this set to estimate the slope prior µβ. We then used a second round with µβ as
constraint for all showers.

10From where the title “approximate EM” comes from.
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and estimate the means β̂
(t)
i , γ̂

(t)
i , and ν̂

(t)
i by maximizing (4.32) or (4.33) numerically. Fi-

nally, we estimate the error bars σ̂
(t)
βi

, σ̂
(t)
γi

, and σ̂
(t)
νi

by matching one-sigma regions. In a

nutshell, this step is very similar to “classical” maximum likelihood fitting with Gaussian
(≡ squared) constraints.

2. In the M-step, we fix the posterior q(t)(φ) and maximize F (q(t), ξ) (4.39) in its second pa-
rameter to obtain

ξ(t+1) = arg max
ξ

F (q(t), ξ).

Since the posterior entropy

H(φ) = −
∫

q(t)(φ) log q(t)(φ)dφ

is constant in this step, maximizing F (q(t), ξ) is equivalent to maximizing the expected com-
plete data likelihood

ξ(t+1) = arg max
ξ

∫
q(t)(φ) log p(data, φ|ξ)dφ.

Since q(t)(φ)p(data|φ) does not depend on ξ, this further simplifies to

ξ(t+1) = arg max
ξ

∫
q(t)(φ) log p(data, φ|ξ)dφ

= arg max
ξ

∫
q(t)(φ)

(
log p(data|φ) + log p(φ|ξ)

)
dφ

= arg max
ξ

∫
q(t)(φ) log p(φ|ξ)dφ.

(4.42)

Plugging (4.41) into q(t)(φ) and (4.34) into p(φ|ξ) we end up with three independent min-
imizations for β, γ, and ν

(µ
(t+1)
β , σ

(t+1)
β ) = arg max

µβ ,σβ

n

∑
i=1

∫
N

β̂
(t)
i ,σ̂

(t)
βi

(β) logNµβ(Ei ,θi),σβ(Ei ,θi)
(β)dβ

= arg min
µβ ,σβ

n

∑
i=1

log σβ(Ei, θi) +
1

2

(µβ(Ei, θi) − β̂
(t)
i )2 + σ̂

(t)2

βi

σβ(Ei, θi)2
,

(µ
(t+1)
γ , σ

(t+1)
γ ) = arg min

µγ ,σγ

n

∑
i=1

log σγ(Ei, θi) +
1

2

(µγ(Ei, θi) − γ̂
(t)
i )2 + σ̂

(t)2

γi

σγ(Ei, θi)2
,

(µ
(t+1)
ν , σ

(t+1)
ν ) = arg min

µν ,σν

n

∑
i=1

log σν(Ei, θi) +
1

2

(µν(Ei, θi) − ν̂
(t)
i )2 + σ̂

(t)2

νi

σν(Ei, θi)2
.

(4.43)

The minimizations can be done over any family of functions for µ•(E, θ) and σ•(E, θ). For
the mean dependencies µ•(E, θ), we started by trying to match the natural shape of the
data using polynomials of increasing degree. We found that some of these functions (es-
pecially the zenith-angle-dependencies) were smooth but non-polynomial in the sense that
for a good fit we would have needed a large number of terms. Our solution was to model
first order trends using (at most) third-order polynomials, and then fit the residuals with
smooth nonparametric functions using Gaussian processes [160]. The residuals σ•(E, θ)
were linear functions in all cases. As a last technical detail, we carried out these minimiza-
tions alternating between minimizing in µ•(E, θ) and in σ•(E, θ). The fits converged after
2-3 iterations.
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The minimizations in (4.43) are almost χ2 fits onto the estimated parameters (β̂
(t)
i , γ̂

(t)
i , ν̂

(t)
i )

with parametrized standard deviations, done regularly in other analyses. The only differ-
ence is the individual error bar terms σ̂•i

added in quadrature to the squared deviations

(µ•(Ei, θi) − •̂)2 that, quite intuitively, capture the fact that the total variance is the sum of
the variance coming from the shower-to-shower fluctuation and the variance coming from
the uncertainty of the parameter estimates.

The two EM iterations are often summarized in one step where the goal is to maximize

Q(ξ|ξ(t)) = E
φ|data,ξ(t) {log p(data, φ|ξ)}

in ξ, which is indeed the combination of (4.40) and (4.42).

Under regularity conditions on p(data|ξ), the sequence (ξ(t)) converges to the marginal MLE.
In practice we started with wide Gaussian priors N−3,2 for β and N−1,2 for γ, and a flat (uniform)
prior for ν. This meant that the first fits were quite “wild” sometimes, and the mean functions
µ•(E, θ) and the fits changed quite considerably between the first and the second iterations. One
of the effects was the disappearance of outliers, but the most important consequence of the EM
iteration is that the detector resolution was increased two-fold on average. We saw very little
change after the third iteration, so in all our analyses the number of EM iterations is set to 3.

The trigger probability table fι(N) can, in principle, be also optimized in the E-step. We
found that letting fι(N) free gave too much flexibility to the fit, so we decided to fix it to { fι(0) =
0, fι(1) = 0.1, fι(2) = 0.6, fι(3) = 0.9, fι(4) = 1.0, . . .}. Not using the non-triggering detectors
at all generated rather large biases and trends. Among the three shower parameters, only the
curvature γ is sensitive to the actual values in the probability table which was one of the reasons
we kept γ free.

4.5.4 Results

We first illustrate the two steps of the algorithm on an example then show some results on four
simulation libraries. A more detailed analysis as well as results on Auger data can be found in
[72].

Individual LDF reconstructions

Figure 4.17 shows the effect of the EM iterations on some example reconstructions. The first
row contains “nice” events with detectors spaced uniformly around 1000 m and with good de-
tectorwise estimations of the number of muons. These events are reconstructed well in the first
iteration, so the gradually tightening prior or constraint (4.34) has no significant effect on the

estimated N̂µ(1000).
The second row contains events with bad geometry: the detector near the shower core is

saturated, so all usable detectors are further from shower core than 1000 m. In the standard LDF
reconstruction, these events profit from the fixed slope. The EM rounds have a similar effect here:
the slope and the curvature is constrained by the tightening prior (4.34). The advantages are that
1) we do not have to fix the slope beforehand, the average slope (given the energy and the zenith
angle is estimated from data), and 2) we do not fix the slope at all, allowing for shower-to-shower
fluctuation. “Nice” but fluctuating events profit from this additional flexibility.

The third row contains some “exotic” events from the point of view of reconstruction. Inclined
events (Figure 4.17(e)) often have non-triggering detectors downstream relatively close to the
shower core. The upstream and downstream detectors usually average out, but, depending the
actual geometry, the shape of unconstrained fit might be significantly altered, biasing also the

N̂µ(1000) estimate. The solution to this problem would be a parametrization that can account for
the asymmetry. In the meantime, pulling the slope and curvature back towards the mean using
our iterative reconstruction can correct this bias.
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The detectorwise estimator is far from being perfect, but the estimation error usually cancels
out when the event contains a relatively large number of detectors. However, in some unlucky
cases, the estimation error can have a “structure”. Figure 4.17(f) depicts an event where the num-
ber of muons are underestimated near 1000 m and overestimated at the edges of the fit, causing
the unconstrained (log-log) LDF to be convex. Again, the effect of the data-dependent constraints
(4.34) is that the curvature is pulled back towards the population mean, greatly improving the

N̂µ(1000) estimate.

Fitting the constraints

Figure 4.18 shows the results of fitting the constraints in the M-step (4.43) after the first EM iter-
ation on the QGSJet proton set. The left panels show the original polynomial fit and the fit after
the small Gaussian process correction. The right panels show the residuals after the polynomial
fit and the GP fit onto the residuals.

Bias and variance reduction

In this section we show some of the results we obtained on simulated shower libraries. We used
our method to reconstruct the showers in the four simulation libraries using the real number of
muons Ni,j and the corresponding likelihood (4.35). Figures 4.19 and 4.20 show the reconstruction
bias and standard deviation vs. the energy. These figures illustrate the main force of the iterative
reconstruction: the detector resolution (the estimation error) improves significantly. Observe that
the improvement is larger for the iron sets than for the proton simulations. This is not surprising.
Iron showers fluctuate less than proton showers, so, assuming that the reconstruction quality of
the shower sets is the same, it is more advantageous to bias the individual estimates towards
the mean for iron than for proton. In fact if the individual error bars of the unconstrained fits
are larger than the shower-to-shower fluctuation, then the most efficient estimator for individual
showers is the population mean. We run the EM loop up to 8 iterations.
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Figure 4.17: Example reconstructions. The blue dots are real number of muons Nµ with
√

Nµ

Poisson error bars. The red bars are one-sigma regions of the estimated number of muons N̂µ =

E {PANN(N|x)} with σ̂Nµ =
√

Var {PANN(N|x)} of the ANN, and the red error bars are the

complete approximate error bars
√

N̂µ + σ̂2
Nµ

. The yellow dots are non-triggering detectors. The

magenta dot is the real number of muons at 1000 m, estimated from the 12 artificial detectors.
The green curves are the LDF fits: light green = first EM iteration, green = second EM iteration,

dark green = third EM iteration. The green dots and error bars are the corresponding N̂µ(1000)
estimates.



4.5. AN EMPIRICAL BAYES APPROACH FOR RECONSTRUCTING THE MUONIC LDF 95

0

20

40

60

Θ !!"

18.6

18.8

19.0

19.2

19.4

lg E !eV"

"4.0

"3.5

"3.0

"2.5

Β

(a) The polynomial and GP mean constraints µβ(E, θ)

0

20

40

60

Θ !!"

18.6

18.8

19.0

19.2
19.4

lg E !eV"

"0.10

"0.05

0.00

0.05

0.10

Β " ΜΒ#E,Θ$

(b) β residuals and the GP fit

0

20

40

60

Θ !!"

18.6

18.8

19.0

19.2

19.4

lg E !eV"

"2.0

"1.5

"1.0

"0.5

Γ

(c) The polynomial and GP mean constraints µγ(E, θ)

0

20

40

60

Θ !!"

18.6

18.8

19.0

19.2
19.4

lg E !eV"

"0.10

"0.05

0.00

0.05

0.10

Γ " ΜΓ#E,Θ$

(d) γ residuals and the GP fit

0

20

40

60

Θ !!"

18.6 18.8 19.0 19.2 19.4

lg E !eV"

1

2

3

4

log NΜ#1000$

(e) The polynomial and GP mean constraints µν(E, θ)

0

20

40

60

Θ !!"

18.6

18.8

19.0

19.2
19.4

lg E !eV"

"0.10

"0.05

0.00

0.05

0.10

log Ν " ΜΝ#E,Θ$

(f) log Nµ(1000) residuals and the GP fit

Figure 4.18: Left panels: the mean constraints µ•(E, θ) after the polynomial fit (blue) and after
the GP correction (red). Right panels: the residuals after the polynomial fit and the GP fit onto
the residuals (that is, the difference between the blue and red surfaces of the left panels).



96 CHAPTER 4. BAYESIAN INFERENCE IN THE PIERRE AUGER EXPERIMENT

QGSJet proton real t ! 1

QGSJet proton real t ! 2

QGSJet proton real t ! 3

QGSJet proton real t ! 4

QGSJet proton real t ! 5

QGSJet proton real t ! 6

QGSJet proton real t ! 7

QGSJet proton real t ! 8

18.6 18.8 19.0 19.2 19.4

"0.2

"0.1

0.0

0.1

0.2

lg E !eV"

#$
N#

Μ
#1
0
0
0
%&
"
$N
Μ
#1
2
"
ta
n
k
%#
1
0
0
0
%&
%'
$N
Μ
#1
2
"
ta
n
k
%#
1
0
0
0
%&

(a) QGSJet proton

QGSJet iron real t ! 1

QGSJet iron real t ! 2

QGSJet iron real t ! 3

QGSJet iron real t ! 4

QGSJet iron real t ! 5

QGSJet iron real t ! 6

QGSJet iron real t ! 7

QGSJet iron real t ! 8

18.6 18.8 19.0 19.2 19.4

"0.2

"0.1

0.0

0.1

0.2

lg E !eV"

#$
N#

Μ
#1
0
0
0
%&
"
$N
Μ
#1
2
"
ta
n
k
%#
1
0
0
0
%&
%'
$N
Μ
#1
2
"
ta
n
k
%#
1
0
0
0
%&

(b) QGSJet iron

EPOS1.6 proton real t ! 1

EPOS1.6 proton real t ! 2

EPOS1.6 proton real t ! 3

EPOS1.6 proton real t ! 4

EPOS1.6 proton real t ! 5

EPOS1.6 proton real t ! 6

EPOS1.6 proton real t ! 7

EPOS1.6 proton real t ! 8

18.6 18.8 19.0 19.2 19.4

"0.2

"0.1

0.0

0.1

0.2

lg E !eV"

#$
N#

Μ
#1
0
0
0
%&
"
$N
Μ
#1
2
"
ta
n
k
%#
1
0
0
0
%&
%'
$N
Μ
#1
2
"
ta
n
k
%#
1
0
0
0
%&

(c) EPOS1.6 proton

EPOS1.6 iron real t ! 1

EPOS1.6 iron real t ! 2

EPOS1.6 iron real t ! 3

EPOS1.6 iron real t ! 4

EPOS1.6 iron real t ! 5

EPOS1.6 iron real t ! 6

EPOS1.6 iron real t ! 7

EPOS1.6 iron real t ! 8

18.6 18.8 19.0 19.2 19.4

"0.2

"0.1

0.0

0.1

0.2

lg E !eV"

#$
N#

Μ
#1
0
0
0
%&
"
$N
Μ
#1
2
"
ta
n
k
%#
1
0
0
0
%&
%'
$N
Μ
#1
2
"
ta
n
k
%#
1
0
0
0
%&

(d) EPOS1.6 iron

Figure 4.19: Relative bias vs. the energy of the reconstructed N̂µ(1000) using the real number of
muons in the detectors, and the nominal (simulation) energy, zenith angle, and shower core.
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Figure 4.20: Relative RMS vs. the energy of the reconstructed N̂µ(1000) using the real number of
muons in the detectors, and the nominal (simulation) energy, zenith angle, and shower core.
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[4] K. Karhunen, “Über lineare methoden in der wahrscheinlichkeitsrechnung,” Amer. Acad.
Sci., Fennicade, Ser. A, I, vol. 37, pp. 3–79, 1947, (Translation: RAND Corporation, Santa
Monica, California, Rep. T-131, Aug. 1960).

[5] J. MacQueen, “Some methods for classification and analysis of multivariate observations,”
in Proceedings of the Fifth Berkeley Symposium on Mathematics, Statistics and Probability, 1967,
pp. 281–296.

[6] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE
Transactions on Communications, vol. COM-28, no. 1, pp. 84–95, 1980.

[7] T. Kohonen, “Clustering, taxonomy, and topological maps of patterns,” in Proceedings of
the 6th International Conference on Pattern Recognition, Munich, 1982, pp. 114–128.

[8] M.A. Kramer, “Nonlinear principal component analysis using autoassociative neural net-
works,” AIChE Journal, vol. 37, no. 2, pp. 233–243, 1991.

[9] S. Roweis and Saul L. K., “Nonlinear dimensionality reduction by locally linear embed-
ding,” Science, vol. 290, pp. 2323–2326, 2000.

[10] J. B. Tenenbaum, V. de Silva, and Langford J. C., “A global geometric framework for non-
linear dimensionality reduction,” Science, vol. 290, pp. 2319–2323, 2000.

[11] R. I. Kondor and J. Lafferty, “Diffusion kernels on graphs and other discrete input spaces,”
in Proceedings of the 19th International Conference on Machine Learning, 2002.

[12] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data
representation,” Neural Computation, vol. 15, no. 6, pp. 1373–1396, 2003.

[13] G. E. Hinton and Salakhutdinov. R., “Reducing the dimensionality of data with neural
networks,” Science, vol. 313, no. 5785, pp. 504–507, 2006.

[14] D. Erhan, Y. Bengio, A. Courville, P. Manzagol, P. Vincent, and S. Bengio, “Why does
unsupervised pre-training help deep learning?,” Journal of Machine Learning Research, vol.
11, pp. 625–660, 2010.
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[130] S. Gambs, B. Kégl, and E. Aı̈meur, “Privacy-preserving boosting,” Data Mining and Knowl-
edge Discovery, vol. 14, no. 1, pp. 131–170, 2007.
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[134] R. Bardenet, B. Kégl, and D. Veberič, “Single muon response: The signal model,” Tech.
Rep. 2010-110, Auger Project Technical Note, 2010.

[135] H. Haario, E. Saksman, and J. Tamminen, “An adaptive Metropolis algorithm,” Bernoulli,
vol. 7, pp. 223–242, 2001.
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