# Modeling and Imaging of Attenuation in Biological Media 

Abdul Wahab<br>Centre de Mathématiques Appliquées, École Polytechnique, Palaiseau,<br>France.<br>Supervised by<br>Prof. Habib Ammari<br>École Normale Supérieure, Paris, France.

## Problem Statement

Let $F$ be compactly supported in a bounded smooth domain $\Omega \subset \mathbb{R}^{d}$ with $d=2,3$ and boundary $\partial \Omega$.

Problem
Find supp $\{F(x, t)\}$ given $\left\{g_{a}(y, t):=p_{a}(y, t):(y, t) \in \partial \Omega \times[0, T]\right\}$ such that :

$$
\begin{cases}\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\Delta-L_{a}\right) p_{a}(x, t)=F(x, t), & (x, t) \in \mathbb{R}^{d} \times \mathbb{R} \\ p_{a}(x, t)=0=\frac{\partial p_{a}(x, t)}{\partial t}, & x \in \mathbb{R}^{d}, t \ll 0,\end{cases}
$$

for $T$ sufficiently large.

- $L_{a}\left[p_{a}(x, \cdot)\right](t):=\frac{1}{\sqrt{2 \pi}} p_{a} * \int_{\mathbb{R}}\left(\kappa^{2}(\omega)-\frac{\omega^{2}}{c_{0}^{2}}\right) e^{i \omega t} d \omega$
- $\kappa(\omega)=\frac{\omega}{c(\omega)}+i a|\omega|^{\xi}, 1 \leq \xi \leq 2$.


## Problem Statement

Let $\vec{F}$ be compactly supported in a bounded smooth domain $\Omega \subset \mathbb{R}^{d}$ with $d=2,3$ and boundary $\partial \Omega$.

Problem
Find supp $\{\vec{F}(x, t)\}$ given $\left\{\vec{g}_{a}(y, t):=\vec{p}_{a}(y, t):(y, t) \in \partial \Omega \times[0, T]\right\}$ such that :

$$
\begin{cases}\left(\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial}{\partial t} \mathcal{L}_{\eta_{\lambda}, \eta_{\mu}}-\mathcal{L}_{\lambda, \mu}\right) \vec{p}_{a}(x, t)=\vec{F}(x, t), & (x, t) \in \mathbb{R}^{d} \times \mathbb{R} \\ \vec{p}_{a}(x, t)=\overrightarrow{0}=\frac{\partial}{\partial t} \vec{p}_{a}(x, t), & x \in \mathbb{R}^{d}, t \ll 0\end{cases}
$$

for $T$ sufficiently large.

- $(\lambda, \mu)$ : Lamé parameters,
- $\left(\eta_{\lambda}, \eta_{\mu}\right)$ : visco-elastic moduli,
- $\mathcal{L}_{\alpha, \beta}\left[\vec{p}_{a}\right]=(\alpha+\beta) \nabla \nabla \cdot \vec{p}_{a}-\beta \Delta \vec{p}_{a}$,


## Motivation



- Multi-Physics Imaging
- Photo-acoustic imaging, Magneto-acoustic imaging, Acoustic radiation force imaging, Elasticity Imaging,...
- Temporally localized sources i.e. $F(x, t)=\partial_{t} \delta(t) f(x)$
- Noise Source Localization

Robotics, Passive Flastography, ...
$F(x, t)$ is stationary Gaussian process with mean zero.

## Motivation



- Multi-Physics Imaging
- Photo-acoustic imaging, Magneto-acoustic imaging, Acoustic radiation force imaging, Elasticity Imaging,...
- Temporally localized sources i.e. $F(x, t)=\partial_{t} \delta(t) f(x)$
- Noise Source Localization
- Robotics, Passive Elastography, ...
- $F(x, t)$ is stationary Gaussian process with mean zero.
- Other Applications

Earthquake sources (spatially localized),
Dynamical systems (initial state identification)....

## Motivation



- Multi-Physics Imaging
- Photo-acoustic imaging, Magneto-acoustic imaging, Acoustic radiation force imaging, Elasticity Imaging,...
- Temporally localized sources i.e. $F(x, t)=\partial_{t} \delta(t) f(x)$
- Noise Source Localization
- Robotics, Passive Elastography, ...
- $F(x, t)$ is stationary Gaussian process with mean zero.
- Other Applications
- Earthquake sources (spatially localized),
- Dynamical systems (initial state identification)....


## Outlines

- Photo-acoustic Imaging
- Radon transform based algorithms
- Attenuation correction
- Acoustic Time Reversal
- Mathematical analysis
- Extension to attenuating media
- Preprocessing techniques
- Elastic Time Reversal
- Weighted time reversal
- Visco-elastic extension
- Noise Source Localization
- Lossless media
- Attenuating media
- Spatial correlation
- Conclusions and Perspectives


## Photo-acoustic Imaging

## Photo-acoustic Imaging

## Photo-acoustic Imaging

Problem Formulation


## Mathematical Formulation

Find the absorbed enorgy density $f(x)$ given $g(y, t):=p_{0}(y, t)$ for all $(y, t) \in \partial \Omega \times[0, T]$ such that


## Photo-acoustic Imaging

Problem Formulation


Mathematical Formulation
Find the absorbed energy density $f(x)$ given $g_{0}(y, t):=p_{0}(y, t)$ for all $(y, t) \in \partial \Omega \times[0, T]$ such that

$$
\begin{cases}\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\Delta\right) p_{0}(x, t)=\frac{\partial \delta(t)}{\partial t} f(x), & (x, t) \in \mathbb{R}^{d} \times \mathbb{R} \\ p_{0}(x, t)=0=\frac{\partial p_{0}(x, t)}{\partial t}, & x \in \mathbb{R}^{d}, t \ll 0,\end{cases}
$$

## Photo-acoustic Imaging <br> Spherical Radon transform : $a=0,2 D$

- Spherical Radon transform

$$
\mathcal{R}_{\Omega}[f](y, t)=\int_{S} t f(y+t \omega) d \sigma(\omega)
$$

- Kirchhoff formula implies
- Therefore,



## Photo-acoustic Imaging <br> Spherical Radon transform : $a=0,2 D$

- Spherical Radon transform

$$
\mathcal{R}_{\Omega}[f](y, t)=\int_{S} t f(y+t \omega) d \sigma(\omega)
$$

- Kirchhoff formula implies

$$
\begin{cases}g_{0}(y, t) & =\frac{1}{2 \pi} \frac{\partial}{\partial t} \int_{0}^{t} \frac{\mathcal{R}_{\Omega}[f](y, c r)}{\sqrt{t^{2}-r^{2}}} d r \\ \mathcal{R}_{\Omega}[f](y, r) & =4 r \int_{0}^{r} \frac{g_{0}(y, t / c)}{\sqrt{r^{2}-t^{2}}} d t\end{cases}
$$

- Therefore,

$$
\mathcal{R}_{\Omega}[f](y, r)=\mathcal{W}\left[g_{0}\right](y, r):=4 r \int_{0}^{r} \frac{g_{0}(y, t / c)}{\sqrt{r^{2}-t^{2}}} d t
$$

## Photo-acoustic Imaging

Filtered back-projection : $a=0,2 D$

- Filtered back-projection formula [04Finch], [07Haltmeier], [07Kunyansky], [09Nguyen]

$$
\begin{aligned}
f(x) & =\frac{1}{\left(4 \pi^{2}\right)} \int_{\partial \Omega} \int_{0}^{2}\left[\frac{d^{2}}{d r^{2}} \mathcal{R}_{\Omega}[f](y, r)\right] \ln \left|r^{2}-(y-x)^{2}\right| d r d \sigma(y) \\
& =\frac{1}{4 \pi^{2}} \mathcal{R}_{\Omega}^{*}\left[\mathcal{B} \mathcal{W}\left[g_{0}\right]\right](x)
\end{aligned}
$$

with $\mathcal{R}_{\Omega}^{*}[g](x)=\int_{\partial \Omega} g(y,|y-x|) d \sigma(y) \quad$ and $\quad \mathcal{B}[g](y, t):=\int_{0}^{2}\left[\frac{d^{2}}{d r^{2}} g(y, r)\right] \ln \left|r^{2}-t^{2}\right| d r$ for all $g: \Omega \times \mathbb{R}^{+} \rightarrow \mathbb{R}$.

## Photo-acoustic Imaging

Filtered back-projection : $a=0,2 D$

- Filtered back-projection formula [04Finch], [07Haltmeier], [07Kunyansky], [09Nguyen]

$$
\begin{aligned}
f(x) & =\frac{1}{\left(4 \pi^{2}\right)} \int_{\partial \Omega} \int_{0}^{2}\left[\frac{d^{2}}{d r^{2}} \mathcal{R}_{\Omega}[f](y, r)\right] \ln \left|r^{2}-(y-x)^{2}\right| d r d \sigma(y) \\
& =\frac{1}{4 \pi^{2}} \mathcal{R}_{\Omega}^{*}\left[\mathcal{B} \mathcal{W}\left[g_{0}\right]\right](x)
\end{aligned}
$$

with $\mathcal{R}_{\Omega}^{*}[g](x)=\int_{\partial \Omega} g(y,|y-x|) d \sigma(y) \quad$ and $\quad \mathcal{B}[g](y, t):=\int_{0}^{2}\left[\frac{d^{2}}{d r^{2}} g(y, r)\right] \ln \left|r^{2}-t^{2}\right| d r$ for all $g: \Omega \times \mathbb{R}^{+} \rightarrow \mathbb{R}$.


## Photo-acoustic Imaging

Acoustic attenuation : $a>0$


## Photo-acoustic Imaging

Acoustic attenuation : $a>0$


- To take into account acoustic attenuation, let $p_{a}$ be the solution to

$$
\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\Delta-L_{a}\right) p_{a}(x, t)=\frac{\partial \delta(t)}{\partial t} f(x)
$$

## Photo-acoustic Imaging

Acoustic attenuation : $a>0$


- To take into account acoustic attenuation, let $p_{a}$ be the solution to

$$
\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\Delta-L_{a}\right) p_{a}(x, t)=\frac{\partial \delta(t)}{\partial t} f(x)
$$

- The loss term $L_{a}\left[p_{a}\right]$ is given by [04Sushilov]

$$
L_{a}\left[p_{a}(x, \cdot)\right](t):=\frac{1}{\sqrt{2 \pi}} p_{a} * \int_{\mathbb{R}}\left(\kappa^{2}(\omega)-\frac{\omega^{2}}{c^{2}}\right) e^{i \omega t} d \omega
$$

with complex wave number $\kappa(\omega)=\frac{\omega}{c(\omega)}+i a|\omega|^{\xi}, 1 \leq \xi \leq 2$.

## Photo-acoustic Imaging <br> Spherical Radon Transform : $a>0$

Remark that $\widehat{p}_{0}(x, \omega)$ and $\widehat{p}_{a}(x, \omega)$ satisfy

$$
\left(\kappa^{2}(\omega)+\Delta\right) \widehat{p}_{a}(x, \omega)=\frac{i \omega}{\sqrt{2 \pi} c^{2}} f(x), \quad \text { and } \quad\left(\frac{\omega^{2}}{c^{2}}+\Delta\right) \widehat{p}_{0}(x, \omega)=\frac{i \omega}{\sqrt{2 \pi} c^{2}} f(x)
$$

Therefore, $\widehat{p}_{a}(x, \omega)=\frac{\omega}{c \kappa(\omega)} \widehat{p}_{0}(x, c \kappa(\omega)) \quad$ or $\quad p_{a}(x, t)=\mathcal{L}\left[p_{0}(x, \cdot)\right](t)$ where

Attenuation Operator

$$
\mathcal{L}[\phi](t)=\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{\omega}{c \kappa(\omega)} e^{-i \omega t}\left\{\int_{\mathbb{R}^{+}} \phi(s) e^{i c \kappa(\omega) s} d s\right\} d \omega .
$$

## Photo-acoustic Imaging <br> Spherical Radon Transform : $a>0$

Remark that $\widehat{p}_{0}(x, \omega)$ and $\widehat{p}_{a}(x, \omega)$ satisfy

$$
\left(\kappa^{2}(\omega)+\Delta\right) \widehat{p}_{a}(x, \omega)=\frac{i \omega}{\sqrt{2 \pi} c^{2}} f(x), \quad \text { and } \quad\left(\frac{\omega^{2}}{c^{2}}+\Delta\right) \widehat{p}_{0}(x, \omega)=\frac{i \omega}{\sqrt{2 \pi} c^{2}} f(x)
$$

Therefore, $\widehat{p}_{a}(x, \omega)=\frac{\omega}{c \kappa(\omega)} \widehat{p}_{0}(x, c \kappa(\omega)) \quad$ or $\quad p_{a}(x, t)=\mathcal{L}\left[p_{0}(x, \cdot)\right](t)$ where

Attenuation Operator

$$
\mathcal{L}[\phi](t)=\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{\omega}{c \kappa(\omega)} e^{-i \omega t}\left\{\int_{\mathbb{R}^{+}} \phi(s) e^{i c \kappa(\omega) s} d s\right\} d \omega
$$

- A natural definition of the spherical Radon transform when $a>0$ is

$$
\mathcal{R}_{\Omega, a}[f]:=\mathcal{W}\left[p_{a}\right]=\mathcal{W}\left[\mathcal{L}\left[p_{0}\right]\right]
$$

- Then, a pseudo-inverse $\mathcal{R}_{\Omega, a}^{-1}$ may be given by

$$
\mathcal{R}_{\Omega, a}^{-1}=\mathcal{R}_{\Omega}^{-1} \mathcal{W} \mathcal{L}^{-1} \mathcal{W}^{-1}
$$

## Photo-acoustic Imaging SVD-Approach

- Consider a singular value decomposition of $\mathcal{L}$ :

$$
\mathcal{L}[\phi]=\sum_{l} \sigma_{l}\left\langle\phi, \widetilde{\psi}_{l}\right\rangle \psi_{l}
$$

where $\left(\widetilde{\psi}_{l}\right)$ and $\left(\psi_{l}\right)$ are two orthonormal bases of $L^{2}(0, T)$ and $\sigma_{l}$ are positives eigenvalues such that

$$
\left\{\begin{aligned}
\mathcal{L}^{*}[\phi] & =\sum_{l} \sigma_{l}\left\langle\phi, \psi_{l}\right\rangle \widetilde{\psi}_{l} \\
\mathcal{L}^{*} \mathcal{L}[\phi] & =\sum_{l} \sigma_{l}^{2}\left\langle\phi, \widetilde{\psi}_{l}\right\rangle \tilde{\psi}_{l} \\
\mathcal{L} \mathcal{L}^{*}[\phi] & =\sum_{l} \sigma_{l}^{2}\left\langle\phi, \psi_{l}\right\rangle \psi_{l}
\end{aligned}\right.
$$

## Photo-acoustic Imaging SVD-Approach

- Consider a singular value decomposition of $\mathcal{L}$ :

$$
\mathcal{L}[\phi]=\sum_{l} \sigma_{l}\left\langle\phi, \widetilde{\psi}_{l}\right\rangle \psi_{l}
$$

where $\left(\widetilde{\psi}_{l}\right)$ and $\left(\psi_{l}\right)$ are two orthonormal bases of $L^{2}(0, T)$ and $\sigma_{l}$ are positives eigenvalues such that

$$
\left\{\begin{aligned}
\mathcal{L}^{*}[\phi] & =\sum_{l} \sigma_{l}\left\langle\phi, \psi_{l}\right\rangle \widetilde{\psi}_{l} \\
\mathcal{L}^{*} \mathcal{L}[\phi] & =\sum_{l} \sigma_{l}^{2}\left\langle\phi, \widetilde{\psi}_{l}\right\rangle \tilde{\psi}_{l} \\
\mathcal{L} \mathcal{L}^{*}[\phi] & =\sum_{l} \sigma_{l}^{2}\left\langle\phi, \psi_{l}\right\rangle \psi_{l}
\end{aligned}\right.
$$

- An $\epsilon$-approximation inverse of $\mathcal{L}$ is then given by [08Modgil]

$$
\mathcal{L}_{\epsilon}^{-1}[\phi]=\sum_{l} \frac{\sigma_{l}}{\sigma_{l}^{2}+\epsilon^{2}}\left\langle\phi, \psi_{l}\right\rangle \tilde{\psi}_{l},
$$

where $\epsilon>0$.

## Photo-acoustic Imaging <br> SVD-Approach

- Consider a singular value decomposition of $\mathcal{L}$ :

$$
\mathcal{L}[\phi]=\sum_{l} \sigma_{l}\left\langle\phi, \widetilde{\psi}_{l}\right\rangle \psi_{l}
$$

where $\left(\widetilde{\psi}_{l}\right)$ and $\left(\psi_{l}\right)$ are two orthonormal bases of $L^{2}(0, T)$ and $\sigma_{l}$ are positives eigenvalues such that

$$
\begin{cases}\mathcal{L}^{*}[\phi] & =\sum_{l} \sigma_{l}\left\langle\phi, \psi_{l}\right\rangle \tilde{\psi}_{l} \\ \mathcal{L}^{*} \mathcal{L}[\phi] & =\sum_{l} \sigma_{l}^{2}\left\langle\phi, \widetilde{\psi}_{l}\right\rangle \tilde{\psi}_{l} \\ \mathcal{L} \mathcal{L}^{*}[\phi] & =\sum_{l} \sigma_{l}^{2}\left\langle\phi, \psi_{l}\right\rangle \psi_{l}\end{cases}
$$

- An $\epsilon$-approximation inverse of $\mathcal{L}$ is then given by [08Modgil]

$$
\mathcal{L}_{\epsilon}^{-1}[\phi]=\sum_{l} \frac{\sigma_{l}}{\sigma_{l}^{2}+\epsilon^{2}}\left\langle\phi, \psi_{l}\right\rangle \tilde{\psi}_{l},
$$

where $\epsilon>0$.

- An $\epsilon$-approximation inverse of spherical Radon transform is given by

$$
\mathcal{R}_{\Omega, a, \epsilon}^{-1}=\mathcal{R}_{\Omega}^{-1} \mathcal{W} \mathcal{L}_{\epsilon}^{-1} \mathcal{W}^{-1}
$$

## Photo-acoustic Imaging

SVD-Approach : Reconstruction using $\mathcal{L}_{\epsilon}^{-1}$


## Photo-acoustic Imaging

Asymptotic approach : Quadratic losses $(\xi=2)$

Approximate thermo-viscous Model : $a \ll \frac{1}{\omega}, \xi=2, \kappa(\omega) \simeq \frac{\omega}{c}+i a \frac{\omega^{2}}{2}$

$$
\begin{aligned}
\mathcal{L}[\phi](t) & =\frac{1}{2 \pi} \int_{\mathbb{R}^{+}} \phi(s) \int_{\mathbb{R}}\left(1-i \frac{a c \omega}{2}\right) e^{i \omega(s-t)} e^{-\frac{1}{2} a c \omega^{2} s} d \omega d s \\
& =\left(1+\frac{a c}{2} \frac{\partial}{\partial t}\right) \underbrace{\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}^{+}} \phi(s) \frac{1}{\sqrt{a c s}} \exp \left\{-\frac{1}{2} \frac{(t-s)^{2}}{a c s}\right\}}_{:=\widetilde{\mathcal{L}}[\phi](t)} d s
\end{aligned}
$$

## Photo-acoustic Imaging

Asymptotic approach : Quadratic losses $(\xi=2)$

Approximate thermo-viscous Model : $a \ll \frac{1}{\omega}, \xi=2, \kappa(\omega) \simeq \frac{\omega}{c}+i a \frac{\omega^{2}}{2}$

$$
\begin{aligned}
\mathcal{L}[\phi](t) & =\frac{1}{2 \pi} \int_{\mathbb{R}^{+}} \phi(s) \int_{\mathbb{R}}\left(1-i \frac{a c \omega}{2}\right) e^{i \omega(s-t)} e^{-\frac{1}{2} a c \omega^{2} s} d \omega d s \\
& =\left(1+\frac{a c}{2} \frac{\partial}{\partial t}\right) \underbrace{\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}^{+}} \phi(s) \frac{1}{\sqrt{a c s}} \exp \left\{-\frac{1}{2} \frac{(t-s)^{2}}{a c s}\right\} d s}_{:=\widetilde{\mathcal{L}}[\phi](t)}
\end{aligned}
$$

Theorem (Stationary Phase Theorem [03Hormander])
For $K \subset[0, \infty)$ compact, $X$ its open neighbourhood, $k \in \mathbb{N}, \psi \in \mathcal{C}_{0}^{2 k}(K)$ and $h \in \mathcal{C}_{0}^{3 k+1}(X)$ such that :

$$
\begin{gathered}
\Im m\{h(t)\} \geq 0, \quad \Im m\left\{h\left(t_{0}\right)\right\}=0, \quad h^{\prime}\left(t_{0}\right)=0, \quad h^{\prime \prime}\left(t_{0}\right) \neq 0, \quad \text { and } \quad h^{\prime} \neq 0 \text { in } K \backslash\left\{t_{0}\right\} \\
\text { we have }\left|\int_{K} \psi(t) e^{i h(t) / \epsilon} d t-e^{i h\left(t_{0}\right) / \epsilon}\left(h^{\prime \prime}\left(t_{0}\right) / 2 i \pi \epsilon\right)^{-1 / 2} \sum_{j<k} \epsilon^{j} D_{j}[\psi]\right| \leq C \epsilon^{k} \sum_{\alpha \leq 2 k} \sup _{x}\left|\psi^{(\alpha)}(x)\right|
\end{gathered}
$$

for $\epsilon>0$, where

$$
D_{j}[\psi]=\sum_{\nu-\mu=j} \sum_{2 \nu \geq 3 \mu} i^{-j}(-1)^{\nu} \frac{1}{2^{\nu} \nu!\mu!} h^{\prime \prime}\left(t_{0}\right)^{-v}\left(\theta_{t_{0}}^{\mu} \psi\right)^{(2 \nu)}\left(t_{0}\right)
$$

with

$$
\theta_{t_{0}}(t):=h(t)-h\left(t_{0}\right)-\frac{1}{2} h^{\prime \prime}\left(t_{0}\right)\left(t-t_{0}\right)^{2}
$$

## Photo-acoustic Imaging

Asymptotic approach : Stationary phase analysis

Theorem (Asymptotic expansion)
For a sufficiently smooth function $\phi$

$$
\widetilde{\mathcal{L}}[\phi](t)=\sum_{j=0}^{k} \frac{(a c)^{j}}{2^{j} j!} \mathcal{D}_{j}[\phi](t)+o\left(a^{k}\right) \quad \text { where } \quad \mathcal{D}_{j}[\phi]=\left(t^{j} \phi(t)\right)^{(2 i)}
$$

Moreover, an approximate inverse of order $k$ of $\widetilde{\mathcal{L}}$ is given by

$$
\widetilde{\mathcal{L}}_{k}^{-1}[\psi]=\sum_{j=0}^{k} a^{j} \psi_{k, j}, \quad \text { where }\left\{\begin{array}{l}
\psi_{k, 0}=\psi \\
\psi_{k, j}=-\sum_{m=1}^{j} \frac{c^{m}}{2^{m} m!} \mathcal{D}_{m}\left[\psi_{k, j-m}\right], \quad \text { for all } j \leq k
\end{array}\right.
$$

## Photo-acoustic Imaging

Asymptotic approach : Stationary phase analysis

## Theorem (Asymptotic expansion)

For a sufficiently smooth function $\phi$

$$
\widetilde{\mathcal{L}}[\phi](t)=\sum_{j=0}^{k} \frac{(a c)^{j}}{2^{j} j!} \mathcal{D}_{j}[\phi](t)+o\left(a^{k}\right) \quad \text { where } \quad \mathcal{D}_{j}[\phi]=\left(t^{j} \phi(t)\right)^{(2 i)}
$$

Moreover, an approximate inverse of order $k$ of $\widetilde{\mathcal{L}}$ is given by

$$
\widetilde{\mathcal{L}}_{k}^{-1}[\psi]=\sum_{j=0}^{k} a^{j} \psi_{k, j}, \quad \text { where }\left\{\begin{array}{l}
\psi_{k, 0}=\psi \\
\psi_{k, j}=-\sum_{m=1}^{j} \frac{c^{m}}{2^{m} m!} \mathcal{D}_{m}\left[\psi_{k, j-m}\right], \quad \text { for all } j \leq k
\end{array}\right.
$$

Consequently,

- An approximate inverse of order $k$ to the spherical Radon transform is given by

$$
\mathcal{R}_{\Omega, a, k}^{-1}=\mathcal{R}_{\Omega}^{-1} \mathcal{W} \mathcal{L}_{k}^{-1} \mathcal{W}^{-1} \quad \text { with } \quad \mathcal{L}_{k}^{-1}=\widetilde{\mathcal{L}}_{k}^{-1}\left(1+\frac{a c}{2} \frac{\partial}{\partial t}\right)^{-1}
$$

## Photo-acoustic Imaging

Asymptotic approach : $1 \leq \xi<2$

- In general

$$
\widetilde{\mathcal{L}}[\phi](t)=\int_{\mathbb{R}^{+}} \phi(s) \int_{\mathbb{R}} e^{i \omega(s-t)} e^{-a c s|\omega| \xi} d \omega d s
$$

- Its adjoint $\widetilde{\mathcal{L}}^{*}$ is given by

$$
\widetilde{\mathcal{L}}^{*}[\phi](t)=\int_{\mathbb{R}^{+}} \phi(s) \int_{\mathbb{R}^{2}} e^{i \omega(t-s)} e^{-\left.a c| | \omega\right|^{\xi}} d \omega d s=\frac{1}{\pi} \int_{\mathbb{R}^{+}} \phi(s) \frac{a c t}{(a c t)^{2}+(t-s)^{2}} d s
$$

## Photo-acoustic Imaging

Asymptotic approach : $1 \leq \xi<2$

- In general

$$
\widetilde{\mathcal{L}}[\phi](t)=\int_{\mathbb{R}^{+}} \phi(s) \int_{\mathbb{R}^{2}} e^{i \omega(s-t)} e^{-a c s|\omega|^{\xi}} d \omega d s
$$

- Its adjoint $\widetilde{\mathcal{L}}^{*}$ is given by

$$
\tilde{\mathcal{L}}^{*}[\phi](t)=\int_{\mathbb{R}^{+}} \phi(s) \int_{\mathbb{R}^{2}} e^{i \omega(t-s)} e^{-a c t|\omega| \xi} d \omega d s=\frac{1}{\pi} \int_{\mathbb{R}^{+}} \phi(s) \frac{a c t}{(a c t)^{2}+(t-s)^{2}} d s
$$

Theorem
For a sufficiently smooth function $\phi$,

$$
\widetilde{\mathcal{L}}[\phi](t)=\phi(t)+C_{\xi} a c \mathcal{D}_{t}^{\xi / 2}(t \phi(t))+o(a)
$$

and

$$
\widetilde{\mathcal{L}}^{*}[\phi](t)=\phi(t)+C_{\xi} a c t \mathcal{D}_{t}^{\xi / 2}(\phi(t))+o(a),
$$

where $C_{\xi}$ is a constant, depending only on $\xi$ and $\mathcal{D}_{t}^{\xi / 2}$ is defined by

$$
\mathcal{D}_{t}^{\xi / 2}[\phi](t):=\frac{1}{\pi} p \cdot v \cdot \int_{\mathbb{R}} \frac{\phi(s)-\phi(t)}{(s-t)^{1+\xi}} d s
$$

## Photo-acoustic Imaging

## Asymptotic approach : Reconstruction using $\widetilde{\mathcal{L}}_{k}^{-1}$



## Acoustic Time Reversal

## Acoustic Time Reversal

## Acoustic Time-reversal

Idea of time-reversal

- The wave equation

$$
\partial_{t t} p_{0}(x, t)-\Delta p_{0}(x, t)=0
$$

is invariant under time-transformation $t \rightarrow T-t$.

- By reciprocity principle, we can re-focus on a



## Adjoint Wave

Let $y$ be the solution of the wave equation

Then,

## Acoustic Time-reversal

Idea of time-reversal

- The wave equation

$$
\partial_{t t} p_{0}(x, t)-\Delta p_{0}(x, t)=0
$$

is invariant under time-transformation $t \rightarrow T-t$.

- By reciprocity principle, we can re-focus on a



## Adjoint Wave

Let $v$ be the solution of the wave equation

$$
\begin{cases}\partial_{t t} v(x, t)-\Delta v(x, t)=0, & (x, t) \in \Omega \times(0, T) \\ v(x, 0)=0, \quad \partial_{t} v(x, 0)=0, & x \in \Omega \\ v(x, t)=g_{0}(x, T-t), & (x, t) \in \partial \Omega \times[0, T]\end{cases}
$$

Then,

$$
v(x, t)=p_{0}(x, T-t), \quad \forall(x, t) \in \Omega \times[0, T], \quad \text { and } \quad v(x, T)=f(x)
$$

## Acoustic Time-reversal



Simulations carried out by E. Bretin(INSA-Lyon)

## Acoustic Time-reversal



Simulations carried out by E. Bretin(INSA-Lyon)

## Acoustic Time-reversal

Integral formulation

## Exact Integral Formulation

Green's theorem and integration by parts yield

$$
f(x)=v(x, T)=\int_{0}^{T} \int_{\partial \Omega} \frac{\partial G_{D}(x, y, t-T)}{\partial \nu_{y}} g_{0}(y, t-T) d \sigma(y) \quad \forall x \in \Omega
$$

where $G_{D}$ is the Dirichlet Green function and $v$ is the adjoint wave.

Modified TR-functional
Let $G_{0}(x, y, t)$ be the outgoing fundamental solution and $x(x, t)$ be such that


Then, a modified time-reversal functional is given by


## Acoustic Time-reversal

Integral formulation

## Exact Integral Formulation

Green's theorem and integration by parts yield

$$
f(x)=v(x, T)=\int_{0}^{T} \int_{\partial \Omega} \frac{\partial G_{D}(x, y, t-T)}{\partial \nu_{y}} g_{0}(y, t-T) d \sigma(y) \quad \forall x \in \Omega
$$

where $G_{D}$ is the Dirichlet Green function and $v$ is the adjoint wave.

## Modified TR-functional

Let $G_{0}(x, y, t)$ be the outgoing fundamental solution and $v_{s}(x, t)$ be such that

$$
\begin{cases}\partial_{t t} v_{s}(x, t)-\Delta v_{s}(x, t)=\partial_{t} \delta_{s}(t) g_{0}(x, T-s) \delta_{\partial \Omega}(x), & \forall(x, t) \in \mathbb{R}^{d} \times \mathbb{R} \\ v_{s}(x, t)=0, \quad \partial_{t} v_{s}(x, t)=0 & \forall x \in \mathbb{R}^{d}, \quad t \ll s\end{cases}
$$

Then, a modified time-reversal functional is given by

$$
\mathcal{I}(x):=\int_{0}^{T} v_{s}(x, T) d s=\int_{0}^{T} \int_{\partial \Omega} \partial_{t} G_{0}(x, y, T-s) g_{0}(y, T-s) d \sigma(y) d s \quad \forall x \in \Omega
$$

## Acoustic Time-reversal

Integral formulation II

- Remark that $\widehat{g}_{0}(y)=-i \omega \int_{\Omega} \widehat{G}_{0}(z, y) f(z) d z$ for all $y \in \partial \Omega$
- Helmholtz-Kirchhoff Identity : For $x, z \in \Omega$ sufficiently far from $y \in \partial \Omega$

$$
\int_{\partial \Omega} \widehat{G}_{0}(x, y) \overline{\widehat{\widehat{G}}_{0}}(z, y) d \sigma(y)=\frac{1}{\omega} \Im m\left\{\widehat{G}_{0}(x, z)\right\}
$$

- $\int_{\mathbb{R}} \omega \Im m\left\{\widehat{G}_{0}(x, z)\right\} d \omega=\delta_{x}(z)$


## Acoustic Time-reversal

- Remark that $\widehat{g}_{0}(y)=-i \omega \int_{\Omega} \widehat{G}_{0}(z, y) f(z) d z$ for all $y \in \partial \Omega$
- Helmholtz-Kirchhoff Identity : For $x, z \in \Omega$ sufficiently far from $y \in \partial \Omega$

$$
\int_{\partial \Omega} \widehat{G}_{0}(x, y) \overline{\widehat{G}_{0}}(z, y) d \sigma(y)=\frac{1}{\omega} \Im m\left\{\widehat{G}_{0}(x, z)\right\}
$$

- $\int_{\mathbb{R}} \omega \Im m\left\{\widehat{G}_{0}(x, z)\right\} d \omega=\delta_{x}(z)$
- Therefore,

$$
\begin{aligned}
\mathcal{I}(x) & =-\frac{1}{2 \pi} \int_{\mathbb{R}} \int_{\partial \Omega} i \omega \widehat{G}_{0}(x, y) \overline{\bar{g}}_{0}(y) d \sigma(y) d \omega \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}^{d}} f(z) \int_{\mathbb{R}} \int_{\partial \Omega} \omega^{2} \widehat{G}_{0}(x, y) \overline{\widehat{G}_{0}}(z, y) d \sigma(y) d \omega d z \\
& \simeq \frac{1}{2 \pi} \int_{\mathbb{R}^{d}} f(z) \int_{\mathbb{R}} \omega \Im m\left\{\widehat{G}_{0}(x, z)\right\} d \omega d z
\end{aligned}
$$

## Acoustic Time-reversal

Integral formulation II

- Remark that $\widehat{g}_{0}(y)=-i \omega \int_{\Omega} \widehat{G}_{0}(z, y) f(z) d z$ for all $y \in \partial \Omega$
- Helmholtz-Kirchhoff Identity : For $x, z \in \Omega$ sufficiently far from $y \in \partial \Omega$

$$
\int_{\partial \Omega} \widehat{G}_{0}(x, y) \overline{\widehat{G}_{0}}(z, y) d \sigma(y)=\frac{1}{\omega} \Im m\left\{\widehat{G}_{0}(x, z)\right\}
$$

- $\int_{\mathbb{R}} \omega \Im m\left\{\widehat{G}_{0}(x, z)\right\} d \omega=\delta_{x}(z)$
- Therefore,

$$
\begin{aligned}
\mathcal{I}(x) & =-\frac{1}{2 \pi} \int_{\mathbb{R}} \int_{\partial \Omega} i \omega \widehat{G}_{0}(x, y) \overline{\widehat{g}}_{0}(y) d \sigma(y) d \omega \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}^{d}} f(z) \int_{\mathbb{R}} \int_{\partial \Omega} \omega^{2} \widehat{G}_{0}(x, y) \overline{\widehat{G}_{0}}(z, y) d \sigma(y) d \omega d z \\
& \simeq \frac{1}{2 \pi} \int_{\mathbb{R}^{d}} f(z) \int_{\mathbb{R}} \omega \Im m\left\{\widehat{G}_{0}(x, z)\right\} d \omega d z
\end{aligned}
$$

Theorem
For $x$ far from $\partial \Omega$ (w.r.t. wavelength), we have $\mathcal{I}(x) \simeq f(x)$.

## Acoustic Time-reversal Reconstructions



## Acoustic Time-reversal Reconstructions



## Acoustic Time-reversal

TR in attenuating media

Consider the thermo-viscous wave equation

$$
\left\{\begin{array}{l}
\partial_{t t} p_{a}(x, t)-\Delta p_{a}(x, t)-a \partial_{t}\left(\Delta p_{a}(x, t)\right)=0 \\
p_{a}(x, 0)=f(x), \quad \text { and } \quad \partial_{t} p_{a}(x, 0)=0 .
\end{array}\right.
$$

Attenuated TR-functional

## Define

$$
\mathcal{I}_{a}(x)=\int_{0}^{T} v_{s, a}(x, T) d s \quad \forall x \in \Omega
$$

where $v_{s, a}(x, t)$ is the solution of the adjoint attenuated wave equation [07Burghoizer], [10Treeby]

$$
\partial_{t t} v_{s, a}(x, t)-\Delta v_{s, a}(x, t)+a \partial_{t}\left(\Delta v_{s, a}(x, t)\right)=\partial_{t} \delta_{s}(t) g_{a}(x, T-s) \delta_{\partial \Omega}(x) .
$$

## Acoustic Time-reversal

TR in attenuating media

Consider the thermo-viscous wave equation

$$
\left\{\begin{array}{l}
\partial_{t t} p_{a}(x, t)-\Delta p_{a}(x, t)-a \partial_{t}\left(\Delta p_{a}(x, t)\right)=0 \\
p_{a}(x, 0)=f(x), \quad \text { and } \quad \partial_{t} p_{a}(x, 0)=0 .
\end{array}\right.
$$

Attenuated TR-functional
Define

$$
\mathcal{I}_{a}(x)=\int_{0}^{T} v_{s, a}(x, T) d s \quad \forall x \in \Omega
$$

where $v_{s, a}(x, t)$ is the solution of the adjoint attenuated wave equation [07Burghoizer], [10Treeby]

$$
\partial_{t t} v_{s, a}(x, t)-\Delta v_{s, a}(x, t)+a \partial_{t}\left(\Delta v_{s, a}(x, t)\right)=\partial_{t} \delta_{s}(t) g_{a}(x, T-s) \delta_{\partial \Omega}(x)
$$

- Highly unstable,
- Order of correction,
- Mathematical justifications.


## Acoustic Time-reversal

TR in attenuating media : Truncated functional

- Let $\widehat{\widetilde{G}}_{a}$ be the fundamental solution of the Lossy Helmholtz equation

$$
\omega^{2} \widehat{\widetilde{G}}_{a}(x, y)+(1+i a \omega) \Delta_{y} \widehat{\widetilde{G}}_{a}(x, y)=-\delta_{x}(y) \text { in } \mathbb{R}^{d}
$$

- Let $\widetilde{G}_{a, \rho}(x, y, t):=\frac{1}{2 \pi} \int_{|\omega|<\rho} \widehat{\widetilde{G}}_{a}(x, y) \exp (-i \omega t) d \omega$
- Consider an approximation $v_{s, a, \rho}(x, t)$ of $v_{s, a}(x, t)$ given by:

$$
v_{s, a, \rho}(x, t)=\int_{\partial \Omega} \partial_{t} \widetilde{G}_{a, \rho}(x, y, t-s) g_{a}(y, T-s) d \sigma(y)
$$

## Acoustic Time-reversal

TR in attenuating media : Truncated functional

- Let $\widehat{\widetilde{G}}_{a}$ be the fundamental solution of the Lossy Helmholtz equation

$$
\omega^{2} \widehat{\widetilde{G}}_{a}(x, y)+(1+i a \omega) \Delta_{y} \widehat{\widetilde{G}}_{a}(x, y)=-\delta_{x}(y) \text { in } \mathbb{R}^{d}
$$

- Let $\widetilde{G}_{a, \rho}(x, y, t):=\frac{1}{2 \pi} \int_{|\omega|<\rho} \widehat{\widetilde{G}}_{a}(x, y) \exp (-i \omega t) d \omega$
- Consider an approximation $v_{s, a, \rho}(x, t)$ of $v_{s, a}(x, t)$ given by:

$$
v_{s, a, \rho}(x, t)=\int_{\partial \Omega} \partial_{t} \widetilde{G}_{a, \rho}(x, y, t-s) g_{a}(y, T-s) d \sigma(y)
$$

We define :
Truncated TR-Functional

$$
\mathcal{I}_{a, \rho}(x):=\int_{0}^{T} v_{s, a, \rho}(x, T) d s=\int_{0}^{T} \int_{\partial \Omega} \partial_{t} \widetilde{G}_{a, \rho}(x, y, T-s) g_{a}(y, T-s) d \sigma(y) d s, \quad x \in \Omega
$$

## Acoustic Time-reversal

## Attenuation operators

- We have $p_{a}(x, t)=\mathcal{L}[p(x, \cdot)](t)$, where

$$
\mathcal{L}[\phi](t)=\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{\kappa(\omega)}{\omega}\left\{\int_{\mathbb{R}} \phi(s) e^{i \kappa(\omega) s} d s\right\} e^{-i \omega t} d \omega
$$

with $\kappa(\omega)=\frac{\omega}{\sqrt{1-i a \omega}}$.

## Acoustic Time-reversal

## Attenuation operators

- We have $p_{a}(x, t)=\mathcal{L}[p(x, \cdot)](t)$, where

$$
\mathcal{L}[\phi](t)=\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{\kappa(\omega)}{\omega}\left\{\int_{\mathbb{R}} \phi(s) e^{i \kappa(\omega) s} d s\right\} e^{-i \omega t} d \omega .
$$

with $\kappa(\omega)=\frac{\omega}{\sqrt{1-i a \omega}}$.

- Moreover we define operator $\widetilde{\mathcal{L}}_{\rho}$ associated with $\widetilde{\kappa}(\omega)=\frac{\omega}{\sqrt{1+i a \omega}}$ by

$$
\widetilde{\mathcal{L}}_{\rho}[\phi](t):=\frac{1}{2 \pi} \int_{0}^{\infty} \phi(s)\left\{\int_{|\omega| \leq \rho} \frac{\widetilde{\kappa}(\omega)}{\omega} e^{i \widetilde{\kappa}(\omega) s} e^{-i \omega t} d \omega\right\} d s
$$

## Acoustic Time-reversal

## Attenuation operators

- We have $p_{a}(x, t)=\mathcal{L}[p(x, \cdot)](t)$, where

$$
\mathcal{L}[\phi](t)=\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{\kappa(\omega)}{\omega}\left\{\int_{\mathbb{R}} \phi(s) e^{i \kappa(\omega) s} d s\right\} e^{-i \omega t} d \omega .
$$

with $\kappa(\omega)=\frac{\omega}{\sqrt{1-i a \omega}}$.

- Moreover we define operator $\widetilde{\mathcal{L}}_{\rho}$ associated with $\widetilde{\kappa}(\omega)=\frac{\omega}{\sqrt{1+i a \omega}}$ by

$$
\widetilde{\mathcal{L}}_{\rho}[\phi](t):=\frac{1}{2 \pi} \int_{0}^{\infty} \phi(s)\left\{\int_{|\omega| \leq \rho} \frac{\widetilde{\kappa}(\omega)}{\omega} e^{i \widetilde{\kappa}(\omega) s} e^{-i \omega t} d \omega\right\} d s
$$

- We denote its adjoint operator by $\widetilde{\mathcal{L}}_{\rho}^{*}$ given by

$$
\widetilde{\mathcal{L}}_{\rho}^{*}[\phi](t)=\frac{1}{2 \pi} \int_{|\omega| \leq \rho} \frac{\widetilde{\kappa}(\omega)}{\omega} e^{i \widetilde{\kappa}(\omega) t}\left\{\int_{0}^{\infty} \phi(s) e^{-i \omega s} d s\right\} d \omega
$$

Remark that

$$
\partial_{t} \widetilde{G}_{a, \rho}(x, y, t)=\widetilde{\mathcal{L}}_{\rho}\left[\partial_{t} G_{0}(x, y, .)\right](t)
$$

## Acoustic Time-reversal

Asymptotic approximation : $a \ll \omega^{-1}$

Proposition
For $\kappa(\omega) \simeq \omega+\frac{i a \omega^{2}}{2}$ and $a \rightarrow 0$ following results hold :

- Let $\phi(t) \in \mathcal{S}([0, \infty[)$, then

$$
\mathcal{L}[\phi](t)=\phi(t)+\frac{a}{2}\left(t \phi^{\prime}\right)^{\prime}(t)+o(a) .
$$

- Let $\phi(t) \in \mathcal{D}([0, \infty[)$, then for all $\rho>0$

$$
\widetilde{\mathcal{L}}_{\rho}^{*}[\phi](t)=S_{\rho}[\phi](t)-\frac{a}{2} S_{\rho}\left[\left(t \phi^{\prime}\right)^{\prime}\right]+o(a)
$$

- Let $\phi(t) \in \mathcal{D}([0, \infty[)$ and $\rho>0$, then

$$
\widetilde{\mathcal{L}}_{\rho}^{*} \mathcal{L} \phi(t)=S_{\rho}[\phi](t)+o(a)
$$

where $\mathcal{S}$ is the Schwartz space, $\mathcal{D}$ is the space of $\mathcal{C}^{\infty}$ - functions of compact support and

$$
S_{\rho}[\phi](t)=\frac{1}{2 \pi} \int_{|\omega| \leq \rho} e^{-i \omega t} \widehat{\phi}(\omega) d \omega
$$

## Acoustic Time-reversal

Analysis of truncated functional

Consequently we have

$$
\begin{aligned}
\mathcal{I}_{a, \rho}(x) & =\int_{0}^{T} \int_{\partial \Omega} \partial_{t} G_{0}(x, y, t) \widetilde{\mathcal{L}}_{\rho}^{*}\left[\mathcal{L}\left[g_{0}(y, \cdot)\right]\right](t) d \sigma(y) d t \\
& =\int_{0}^{T} \int_{\partial \Omega} \partial_{t} G_{0}(x, y, t) S_{\rho}\left[g_{0}(y, \cdot)\right](t) d \sigma(y) d t+o(a)
\end{aligned}
$$

## Acoustic Time-reversal

## Analysis of truncated functional

Consequently we have

$$
\begin{aligned}
\mathcal{I}_{a, \rho}(x) & =\int_{0}^{T} \int_{\partial \Omega} \partial_{t} G_{0}(x, y, t) \widetilde{\mathcal{L}}_{\rho}^{*}\left[\mathcal{L}\left[g_{0}(y, \cdot)\right]\right](t) d \sigma(y) d t \\
& =\int_{0}^{T} \int_{\partial \Omega} \partial_{t} G_{0}(x, y, t) S_{\rho}\left[g_{0}(y, \cdot)\right](t) d \sigma(y) d t+o(a)
\end{aligned}
$$

Finally remark that

$$
\delta_{\rho, x}(z)=\frac{1}{2 \pi} \int_{|\omega| \leq \rho} \omega \Im m\left\{\widehat{G}_{0}(x, z)\right\} d \omega \rightarrow \delta_{x}(z) \quad \text { as } \quad \rho \rightarrow+\infty
$$

Therefore,

$$
\begin{array}{rll}
\mathcal{I}_{a, \rho}(x) & \simeq & \delta_{\rho, x}(y) * f(y)+o(a) \\
& \xrightarrow{\rho} & f(x)+o(a) .
\end{array}
$$

## Acoustic Time-reversal

Truncated TR-functional : Reconstruction


Test with $a=0.001$. Left to Right : Without correction, with correction \& $\rho=15$, with correction \& $\rho=20$.

## Acoustic Time-reversal

Pre-processing TR-scheme

- As $g_{a}(y, t)=\mathcal{L}\left[g_{0}(y,].(t)\right.$, an alternative strategy is to
- pre-process the measured data $g_{a}(y, t)$ using a pseudo-inverse of $\mathcal{L}$ as a filter
- apply the ideal time-reversal functional $\mathcal{I}(x)$ to identify source location.


## Acoustic Time-reversal

Pre-processing TR-scheme

- As $g_{a}(y, t)=\mathcal{L}\left[g_{0}(y,].(t)\right.$, an alternative strategy is to
- pre-process the measured data $g_{a}(y, t)$ using a pseudo-inverse of $\mathcal{L}$ as a filter
- apply the ideal time-reversal functional $\mathcal{I}(x)$ to identify source location.
- Using higher order asymptotics:

$$
\begin{gathered}
\mathcal{L}[\phi](t)=\sum_{m=0}^{k} \frac{a^{m}}{m!2^{m}}\left(t^{m} \phi^{\prime}\right)^{(2 m-1)}(t)+o\left(a^{k}\right) \\
\mathcal{L}_{k}^{-1}[\phi](t)=\sum_{m=0}^{k} a^{m} \phi_{k, m}(t) \quad \text { such that } \quad \mathcal{L}_{k}^{-1} \mathcal{L}[\phi](t)=\phi(t)+o\left(a^{k}\right)
\end{gathered}
$$

and $\phi_{k, m}$ verify

$$
\left\{\begin{array}{ll}
\phi_{k, 0}=\phi \\
\phi_{k, m}=-\sum_{l=1}^{m} \mathcal{D}_{l}\left[\phi_{k, m-l}\right],
\end{array} \quad \text { and } \quad \mathcal{D}_{m} \phi(t)=\frac{1}{m!2^{m}}\left(t^{m} \phi^{\prime}\right)^{(2 m-1)}(t)\right.
$$

## Acoustic Time-reversal

Pre-processing TR-scheme : Reconstruction


Test with $a=0.0005$. Left to Right : Without correction, with correction $\& k=1$, with correction \& $k=4$.


Test with $a=0.001$. Left to Right: Without correction, with correction $\& k=1$, with correction $\& k=4$.

## Elastic Time-reversal

## Elastic Time-reversal

## Elastic Time-reversal

Ideas of elastic time-reversal

## Problem

Find supp $\{\mathbf{f}(x)\}$ given $\left\{\mathbf{g}_{0}(y, t):=\mathbf{u}_{0}(y, t):(y, t) \in \partial \Omega \times[0, T]\right\}$ such that :

$$
\begin{cases}\left(\partial_{t t}-\mathcal{L}_{\lambda, \mu}\right) \mathbf{u}_{0}(x, t)=\partial_{t} \delta_{0}(t) \mathbf{f}(x), & (x, t) \in \mathbb{R}^{d} \times \mathbb{R} \\ \mathbf{u}_{0}(x, t)=\mathbf{0}, \partial_{t} \mathbf{u}_{0}(x, t)=\mathbf{0}, & x \in \mathbb{R}^{d}, t \ll 0\end{cases}
$$

for $T$ sufficiently large and

$$
\mathcal{L}_{\alpha, \beta}[\mathbf{u}]=(\alpha+\beta) \nabla \nabla \cdot \mathbf{u}-\beta \Delta \mathbf{u} .
$$

Elastic TR-functional
An clastic time reversal functional is given by

where $v_{s}(x, t)$ is the adjoint elastic wave


## Elastic Time-reversal

Ideas of elastic time-reversal

## Problem

Find supp $\{\mathbf{f}(x)\}$ given $\left\{\mathbf{g}_{0}(y, t):=\mathbf{u}_{0}(y, t):(y, t) \in \partial \Omega \times[0, T]\right\}$ such that :

$$
\begin{cases}\left(\partial_{t t}-\mathcal{L}_{\lambda, \mu}\right) \mathbf{u}_{0}(x, t)=\partial_{t} \delta_{0}(t) \mathbf{f}(x), & (x, t) \in \mathbb{R}^{d} \times \mathbb{R} \\ \mathbf{u}_{0}(x, t)=\mathbf{0}, \partial_{t} \mathbf{u}_{0}(x, t)=\mathbf{0}, & x \in \mathbb{R}^{d}, t \ll 0\end{cases}
$$

for $T$ sufficiently large and

$$
\mathcal{L}_{\alpha, \beta}[\mathbf{u}]=(\alpha+\beta) \nabla \nabla \cdot \mathbf{u}-\beta \Delta \mathbf{u}
$$

## Elastic TR-functional

An elastic time-reversal functional is given by

$$
\mathcal{I}(x):=\int_{0}^{T} \mathbf{v}_{s}(x, T) d s
$$

where $v_{s}(x, t)$ is the adjoint elastic wave :

$$
\begin{cases}\partial_{t t} \mathbf{v}_{s}(x, t)-\mathcal{L}_{\lambda, \mu} \mathbf{v}_{s}(x, t)=\partial_{t} \delta_{s}(t) \mathbf{g}_{0}(x, T-s) \delta_{\partial \Omega}(x), & \forall(x, t) \in \mathbb{R}^{d} \times \mathbb{R} \\ \mathbf{v}_{s}(x, t)=\mathbf{0}, \quad \partial_{t} \mathbf{v}_{s}(x, t)=\mathbf{0} & \forall x \in \mathbb{R}^{d}, \quad t \ll s\end{cases}
$$

## Elastic Time-reversal

Integral formulation and Green's Tensors

Integral formulation

$$
\mathcal{I}(x):=\Re e\left\{\frac{1}{2 \pi} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}} \omega^{2}\left[\int_{\partial \Omega} \widehat{\mathbb{G}}(x, y) \overline{\widehat{\mathbb{G}}}(y, z) d \sigma(y)\right] d \omega \mathbf{f}(z) d z\right\}
$$

- We have defined $\widehat{\mathbb{G}}(x, y):=\widehat{\mathbb{G}}_{0}(x-y)$ such that $\widehat{\mathbb{G}}_{0}(x-y)$ is the fundamental solution of the time harmonic wave equation i.e.

$$
\left(\mathcal{L}_{\lambda, \mu}+\omega^{2}\right) \widehat{\mathbb{G}}_{0}(x)=-\delta_{0}(x) \mathbb{I}, \quad x \in \mathbb{R}^{d}
$$

- It can be expressed as

where



## Elastic Time-reversal

Integral formulation and Green's Tensors

Integral formulation

$$
\mathcal{I}(x):=\Re e\left\{\frac{1}{2 \pi} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}} \omega^{2}\left[\int_{\partial \Omega} \widehat{\mathbb{G}}(x, y) \overline{\widehat{\mathbb{G}}}(y, z) d \sigma(y)\right] d \omega \mathbf{f}(z) d z\right\}
$$

- We have defined $\widehat{\mathbb{G}}(x, y):=\widehat{\mathbb{G}}_{0}(x-y)$ such that $\widehat{\mathbb{G}}_{0}(x-y)$ is the fundamental solution of the time harmonic wave equation i.e.

$$
\left(\mathcal{L}_{\lambda, \mu}+\omega^{2}\right) \widehat{\mathbb{G}}_{0}(x)=-\delta_{0}(x) \mathbb{I}, \quad x \in \mathbb{R}^{d}
$$

- It can be expressed as

$$
\widehat{\mathbb{G}}_{0}(x)=\frac{1}{\mu \kappa_{s}^{2}}\left(\kappa_{s}^{2} \widehat{G}_{0}^{s}(x) \mathbb{I}+\mathbb{D}\left(\widehat{G}_{0}^{s}-\widehat{G}_{0}^{p}\right)(x)\right), \quad x \in \mathbb{R}^{d}
$$

where

$$
\begin{array}{ll}
-\mathbb{D}=\left(\partial_{i} \partial_{j}\right)_{i, j=1}^{d}, & -\left[\Delta+\kappa_{\alpha}^{2}\right] \widehat{G}_{0}^{\alpha}(x)=-\delta(x) \text { in } \mathbb{R}^{d} \\
-\kappa_{s}^{2}=\omega^{2} \mu^{-1} \text { and } \kappa_{p}^{2}=\omega^{2}(\lambda+2 \mu)^{-1}, & -\alpha=p, s
\end{array}
$$

## Elastic Time-reversal

Helmholtz-Kirchhoff identities

Let $\widehat{\mathbb{G}}^{p}$ and $\widehat{\mathbb{G}}^{s}$ be the divergence and curl free parts of $\widehat{\mathbb{G}}$ such that $\widehat{\mathbb{G}}(x)=\widehat{\mathbb{G}}^{p}(x)+\widehat{\mathbb{G}}^{s}(x)$. Then Proposition (Elastic HK-identities)

For all $x, z \in \Omega$, we have

1. $\int_{\partial \Omega}\left[\frac{\partial \widehat{\mathbb{G}}(x, y)}{\partial \nu} \widehat{\widehat{\mathbb{G}}}(y, z)-\widehat{\mathbb{G}}(x, y) \frac{\partial \overline{\widehat{\mathbb{G}}}(y, z)}{\partial \nu}\right] d \sigma(y)=2 i \Im m\{\widehat{\mathbb{G}}(x, z)\}$.
2. $\int_{\partial \Omega}\left[\frac{\partial \widehat{\mathbb{G}}^{\alpha}(x, y)}{\partial \nu} \overline{\widehat{\mathbb{G}}^{\alpha}}(y, z)-\widehat{\mathbb{G}}^{\alpha}(x, y) \frac{\partial \overline{\widehat{\mathbb{G}}^{\alpha}}(y, z)}{\partial \nu}\right] d \sigma(y)=2 i \Im m\left\{\widehat{\mathbb{G}}^{\alpha}(x, z)\right\}, \quad \alpha=p, s$.
3. $\int_{\partial \Omega}\left[\frac{\partial \widehat{\mathbb{G}}^{s}(x, y)}{\partial \nu} \overline{\widehat{\mathbb{G}}^{p}}(y, z)-\widehat{\mathbb{G}}^{s}(x, y) \frac{\partial \overline{\widehat{\mathbb{G}}^{p}}(y, z)}{\partial \nu}\right] d \sigma(y)=0$.
where the co-normal derivative in the outward unit normal direction $\mathbf{n}$ is defined by

$$
\frac{\partial \mathbf{u}}{\partial \nu}:=\lambda(\nabla \cdot \mathbf{u}) \mathbf{n}+\mu\left(\nabla \mathbf{u}^{T}+\left(\nabla \mathbf{u}^{T}\right)^{T}\right) \mathbf{n} .
$$

## Elastic Time-reversal

Helmholtz-Kirchhoff identities II

Proposition
If $\mathbf{n}=\widehat{y-x}$ and $|x-y| \gg 1$ then

$$
\frac{\partial \widehat{\mathbb{G}}^{\alpha}}{\partial \nu}(x, y)=i \omega c_{\alpha} \widehat{\mathbb{G}}^{\alpha}(x, y)+o\left(|x-y|^{-1}\right), \quad \alpha=p, s .
$$

where $c_{s}^{2}=\mu$ and $c_{p}^{2}=\lambda+2 \mu$ are shear and pressure wave speeds.

## Lemma <br> Let $\Omega \subset \mathbb{\#}{ }^{\prime}$ be a ball with large radius (w.r.t. wavelength). Then, for all $x, z \in \Omega$ sufficiently far from the boundary $\partial \Omega$, we have



## Elastic Time-reversal

Helmholtz-Kirchhoff identities II

Proposition
If $\mathbf{n}=\widehat{y-x}$ and $|x-y| \gg 1$ then

$$
\frac{\partial \widehat{\mathbb{G}}^{\alpha}}{\partial \nu}(x, y)=i \omega c_{\alpha} \widehat{\mathbb{G}}^{\alpha}(x, y)+o\left(|x-y|^{-1}\right), \quad \alpha=p, s .
$$

where $c_{s}^{2}=\mu$ and $c_{p}^{2}=\lambda+2 \mu$ are shear and pressure wave speeds.

## Lemma

Let $\Omega \subset \mathbb{R}^{d}$ be a ball with large radius (w.r.t. wavelength). Then, for all $x, z \in \Omega$ sufficiently far from the boundary $\partial \Omega$, we have

1. $\Re e\left\{\int_{\partial \Omega} \widehat{\mathbb{G}}^{\alpha}(x, y) \overline{\widehat{\mathbb{G}}^{\alpha}}(y, z) d \sigma(y)\right\} \simeq \frac{1}{\omega c_{\alpha}} \Im m\left\{\widehat{\mathbb{G}}^{\alpha}(x, z)\right\}, \quad \alpha=p, s$.
2. $\Re e\left\{\int_{\partial \Omega} \widehat{\mathbb{G}}^{s}(x, y) \overline{\widehat{\mathbb{G}}^{p}}(y, z) d \sigma(y)\right\} \simeq 0$

## Elastic Time-reversal

## Analysis of TR-functional

- For $x$ far from $\partial \Omega$,

$$
\begin{aligned}
\mathcal{I}(x)= & \Re e\left\{\frac{1}{2 \pi} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}} \omega^{2}\left[\int_{\partial \Omega} \widehat{\mathbb{G}}(x, y) \overline{\widehat{\mathbb{G}}}(y, z) d \sigma(y)\right] d \omega \mathbf{f}(z) d z\right\} \\
\simeq & \frac{c_{s}+c_{p}}{c_{s} c_{p}} \frac{1}{4 \pi} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}} \omega \Im m\left\{\left(\widehat{\mathbb{G}}^{p}+\widehat{\mathbb{G}}^{s}\right)(x, z)\right\} d \omega \mathbf{f}(z) d z \\
& +\frac{c_{s}-c_{p}}{c_{s} c_{p}} \frac{1}{4 \pi} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}} \omega \Im m\left\{\left(\widehat{\mathbb{G}}^{p}-\widehat{\mathbb{G}}^{s}\right)(x, z)\right\} d \omega \mathbf{f}(z) d z \\
\simeq & \frac{c_{s}+c_{p}}{2 c_{s} c_{p}} \mathbf{f}(x)+\frac{c_{s}-c_{p}}{2 c_{s} c_{p}} \int_{\mathbb{R}^{d}} \mathbb{B}(x, z) \mathbf{f}(z) d z .
\end{aligned}
$$

- The operator $\mathbb{B}(x, z):=\frac{1}{2 \pi} \int_{\mathbb{R}} \omega \Im m\left\{\left(\widehat{\mathbb{G}}^{p}-\widehat{\mathbb{G}}^{s}\right)(x, z)\right\} d \omega$, is not diagonal.
- The reconstruction mixes the components of $\mathbf{f}$ when $c_{s} \neq c_{p}$.


## Elastic Time-reversal

Elastic TR-functional I : Reconstructions


## Elastic Time-reversal

Weighted TR-functional

- Let $\Psi$ and $\Phi$ be the divergence and the curl free functions respectively such that

$$
\mathcal{I}=\nabla \times \Psi+\nabla \Phi
$$

- Define the weighted time-reversal functional by

$$
\begin{aligned}
\tilde{\mathcal{I}} & :=c_{s} \nabla \times \Psi+c_{p} \nabla \Phi \\
& =\Re e\left\{\frac{1}{2 \pi} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}} \omega^{2}\left[\int_{\partial \Omega}\left(c_{s} \widehat{\mathbb{G}}^{s}(x, y)+c_{p} \widehat{\mathbb{G}}^{p}(x, y)\right) \overline{\widehat{\mathbb{G}}}(y, z) d \sigma(y)\right] d \omega \mathbf{f}(z) d z\right\}
\end{aligned}
$$

Theorem
Let $x \in \Omega$ be sufficiently far (w.r.t. wavelength) from the boundary $\partial \Omega$. Then, $\bar{I}(x) \sim f(x)$

## Elastic Time-reversal <br> Weighted TR-functional

- Let $\Psi$ and $\Phi$ be the divergence and the curl free functions respectively such that

$$
\mathcal{I}=\nabla \times \Psi+\nabla \Phi
$$

- Define the weighted time-reversal functional by

$$
\begin{aligned}
\tilde{\mathcal{I}} & :=c_{s} \nabla \times \Psi+c_{p} \nabla \Phi \\
& =\Re e\left\{\frac{1}{2 \pi} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}} \omega^{2}\left[\int_{\partial \Omega}\left(c_{s} \widehat{\mathbb{G}}^{s}(x, y)+c_{p} \widehat{\mathbb{G}}^{p}(x, y)\right) \overline{\widehat{\mathbb{G}}}(y, z) d \sigma(y)\right] d \omega \mathbf{f}(z) d z\right\}
\end{aligned}
$$

Theorem
Let $x \in \Omega$ be sufficiently far (w.r.t. wavelength) from the boundary $\partial \Omega$. Then, $\widetilde{\mathcal{I}}(x) \simeq \mathbf{f}(x)$.

## Elastic Time-reversal

Weighted TR-functional $\widetilde{\mathcal{I}}$ : Reconstructions


## Elastic Time-reversal

Weighted TR-functional $\widetilde{\mathcal{I}}$ : Reconstructions


## Elastic Time-reversal

TR in visco-elastic media

- Consider the Stoke's visco-elastic wave equation with visco-elastic moduli $\left(\eta_{\lambda}, \eta_{\mu}\right)$ i.e.

$$
\begin{cases}\left(\partial_{t t}-\mathcal{L}_{\lambda, \mu}-\partial_{t} \mathcal{L}_{\eta_{\lambda}, \eta_{\mu}}\right) \mathbf{u}_{a}(x, t)=\partial_{t} \delta_{0}(t) \mathbf{f}(x), & (x, t) \in \mathbb{R}^{d} \times \mathbb{R} \\ \mathbf{u}_{a}(x, 0)=\mathbf{0}, \partial_{t} \mathbf{u}_{a}(x, 0)=\mathbf{0}, & x \in \mathbb{R}^{d}, t \ll s\end{cases}
$$

- Define an approximation of the adjoint visco-elastic wave by

$$
\mathbf{v}_{s, a, \rho}(x, t)=-\frac{1}{2 \pi} \int_{|\omega| \leq \rho}\left\{\int_{\partial \Omega} i \omega \widehat{\mathbb{G}}_{-a}(x, y) \mathbf{g}_{a}(y, T-s) d \sigma(y)\right\} e^{-i \omega(t-s)} d \omega
$$

where

$$
\left(\mathcal{L}_{\lambda, \mu} \pm i \omega \mathcal{L}_{\eta_{\lambda}, \eta_{\mu}}+\omega^{2}\right) \widehat{\mathbb{G}}_{\mp a}(x, y)=-\delta_{y}(x) \mathbb{I}, \quad x, y \in \mathbb{R}^{d}
$$

- Define

where

- Finally, for $\Psi$ and $\Phi$ the divergence and curl free components of $\mathcal{I}_{a, \rho}$, let


## Elastic Time-reversal

TR in visco-elastic media

- Consider the Stoke's visco-elastic wave equation with visco-elastic moduli $\left(\eta_{\lambda}, \eta_{\mu}\right)$ i.e.

$$
\begin{cases}\left(\partial_{t t}-\mathcal{L}_{\lambda, \mu}-\partial_{t} \mathcal{L}_{\eta_{\lambda}, \eta_{\mu}}\right) \mathbf{u}_{a}(x, t)=\partial_{t} \delta_{0}(t) \mathbf{f}(x), & (x, t) \in \mathbb{R}^{d} \times \mathbb{R} \\ \mathbf{u}_{a}(x, 0)=\mathbf{0}, \partial_{t} \mathbf{u}_{a}(x, 0)=\mathbf{0}, & x \in \mathbb{R}^{d}, t \ll s\end{cases}
$$

- Define an approximation of the adjoint visco-elastic wave by

$$
\mathbf{v}_{s, a, \rho}(x, t)=-\frac{1}{2 \pi} \int_{|\omega| \leq \rho}\left\{\int_{\partial \Omega} i \omega \widehat{\mathbb{G}}_{-a}(x, y) \mathbf{g}_{a}(y, T-s) d \sigma(y)\right\} e^{-i \omega(t-s)} d \omega
$$

where

$$
\left(\mathcal{L}_{\lambda, \mu} \pm i \omega \mathcal{L}_{\eta_{\lambda}, \eta_{\mu}}+\omega^{2}\right) \widehat{\mathbb{G}}_{\mp a}(x, y)=-\delta_{y}(x) \mathbb{I}, \quad x, y \in \mathbb{R}^{d}
$$

- Define

$$
\mathcal{I}_{a, \rho}(x):=\int_{0}^{T} \mathbf{v}_{s, a, \rho}(x, T) d s=\int_{0}^{T} \int_{\partial \Omega} \partial_{t} \mathbb{G}_{-a, \rho}(x, y, T-s) \mathbf{g}_{a}(y, T-s) d \sigma(y) d s
$$

where

$$
\mathbb{G}_{-a, \rho}(x, y, t):=\frac{1}{2 \pi} \int_{|\omega| \leq \rho} \widehat{\mathbb{G}}_{-a}(x, y) e^{-i \omega t} d \omega
$$

- Finally, for $\Psi$ and $\Phi$ the divergence and curl free components of $\mathcal{I}_{a, \rho}$, let

$$
\widetilde{\mathcal{I}}_{a, \rho}(x):=c_{p} \nabla \Phi+c_{s} \nabla \times \Psi
$$

## Elastic Time-reversal

Visco-elastic HK-identities

Proposition
Let $\Omega \subset \mathbb{R}^{d}$ be a ball with large radius. Then,

$$
\begin{aligned}
& \Re e\left\{\int_{\partial \Omega} \widehat{\mathbb{G}}_{-a}^{s}(x, y) \overline{\widehat{\mathbb{G}}_{a}^{p}}(y, z) d \sigma(y)\right\} \simeq 0 \\
& \Re e\left\{\int_{\partial \Omega} \widehat{\mathbb{G}}_{-a}^{p}(x, y) \overline{\widehat{\mathbb{G}}_{a}^{s}}(y, z) d \sigma(y)\right\} \simeq 0
\end{aligned}
$$

for all $x, z \in \Omega$ sufficiently far from the boundary $\partial \Omega$ w.r.t. wavelength

Theorem
For all $x \in \Omega$ sufficiently far from the boundary $\partial \Omega$, we have
where
$\nu_{s}$ and $\nu_{p}$ are shear and bulk viscosities and


## Elastic Time-reversal

Visco-elastic HK-identities

Proposition
Let $\Omega \subset \mathbb{R}^{d}$ be a ball with large radius. Then,

$$
\begin{aligned}
& \Re e\left\{\int_{\partial \Omega} \widehat{\mathbb{G}}_{-a}^{s}(x, y) \overline{\widehat{\mathbb{G}}_{a}^{p}}(y, z) d \sigma(y)\right\} \simeq 0 \\
& \Re e\left\{\int_{\partial \Omega} \widehat{\mathbb{G}}_{-a}^{p}(x, y) \overline{\widehat{\mathbb{G}}_{a}^{s}}(y, z) d \sigma(y)\right\} \simeq 0
\end{aligned}
$$

for all $x, z \in \Omega$ sufficiently far from the boundary $\partial \Omega$ w.r.t. wavelength

## Theorem

For all $x \in \Omega$ sufficiently far from the boundary $\partial \Omega$, we have

$$
\widetilde{\mathcal{I}}_{a, \rho}(x)=\widetilde{\mathcal{I}}_{\rho}(x)+o\left(\nu_{s}^{2} / c_{s}^{2}+\nu_{p}^{2} / c_{p}^{2}\right)
$$

where

$$
\widetilde{\mathcal{I}}_{\rho}(x) \xrightarrow{\rho \rightarrow \infty} \widetilde{\mathcal{I}}(x) \simeq \mathbf{f}(x),
$$

$\nu_{s}$ and $\nu_{p}$ are shear and bulk viscosities and

$$
\widetilde{\mathcal{I}}_{\rho}(x)=\int_{\partial \Omega} \int_{0}^{T} \partial_{t}\left[c_{s} \mathbb{G}^{s}(x, y, t)+c_{p} \mathbb{G}^{p}(x, y, t)\right] S_{\rho}\left\{\mathbf{g}_{0}(y, \cdot)\right\}(t) d t d \sigma(y)
$$

## Elastic Time-reversal

Visco-elastic Weighted TR-functional : Reconstructions


Reconstruction with $(\lambda, \mu)=(1,1)$ and $a=0.0002$. Left to Right : Initial data, without correction using $\widetilde{\mathcal{I}}(x)$, correction using $\tilde{\mathcal{I}}_{a, \rho}$ with $\rho=15$, with $\rho=20$.

## Noise Source Localization

## Noise Source Localization

## Noise Source Localization

- Let $p_{0}$ satisfy the wave equation

$$
\begin{cases}\frac{1}{c^{2}(x)} \frac{\partial^{2}}{\partial t^{2}} p_{0}(x, t)-\Delta p_{0}(x, t)=n(x, t), & (x, t) \in \mathbb{R}^{d} \times \mathbb{R} \\ p_{0}(x, t)=0, \quad \text { and } \quad \frac{\partial}{\partial t} p_{0}(x, t)=0, \quad x \in \mathbb{R}^{d}, t \ll 0, \quad d=2,3\end{cases}
$$

$n$ is compactly supported in a bounded smooth domain $\Omega$.

## Noise Source Localization

- Let $p_{0}$ satisfy the wave equation

$$
\left\{\begin{array}{l}
\frac{1}{c^{2}(x)} \frac{\partial^{2}}{\partial t^{2}} p_{0}(x, t)-\Delta p_{0}(x, t)=n(x, t), \quad(x, t) \in \mathbb{R}^{d} \times \mathbb{R} \\
p_{0}(x, t)=0, \quad \text { and } \quad \frac{\partial}{\partial t} p_{0}(x, t)=0, \quad x \in \mathbb{R}^{d}, t \ll 0, \quad d=2,3
\end{array}\right.
$$

$n$ is compactly supported in a bounded smooth domain $\Omega$.

- $n$ is a stationary Gaussian process with mean zero and covariance

$$
\langle n(x, t) n(y, s)\rangle=F(t-s) K(x) \delta(x-y) .
$$

Problem
Find supp $\{n\}$ given $\left\{p_{0}(y, t): \quad(y, t) \in \partial \Omega \times[0, T]\right\}$ for sufficiently large $T$.

- $\langle\cdot\rangle$ : Statistical average,
- $c$ : Positive, smooth and bounded function,
- $F$ : Time covariance function,
- K : Spatial support of $n$.


## Noise Source Localization

## cross-correlation based functional

Imaging functional[09Garnier]

$$
\mathcal{I}\left(z^{S}\right):=\int_{\mathbb{R}} \iint_{\partial \Omega \times \partial \Omega} \widehat{G}_{0}\left(x, z^{s}, \omega\right) \overline{\widehat{G}}_{0}\left(y, z^{S}, \omega\right) \widehat{C}_{0}(x, y, \omega) d \sigma(x) d \sigma(y) d \omega
$$

- $\left(\frac{\omega^{2}}{c^{2}(x)}+\Delta\right) \widehat{G}_{0}(x, y, \omega)=-\delta(x-y), \quad x, y \in \mathbb{R}^{d}$.
- The statistical cross-correlation $C_{0}$ is defined by

$$
C_{0}(x, y, \tau)=\left\langle p_{0}(x, t) p_{0}(y, t+\tau)\right\rangle=\frac{1}{2 \pi} \int_{\mathbb{R}}\left[\int_{\Omega} \widehat{\widehat{G}}_{0}(x, z, \omega) \widehat{G}_{0}(y, z, \omega) K(z) d z\right] \widehat{F}(\omega) e^{-i \omega \tau} d \omega
$$

## Noise Source Localization

## cross-correlation based functional

Imaging functional[09Garnier]

$$
\mathcal{I}\left(z^{S}\right):=\int_{\mathbb{R}} \iint_{\partial \Omega \times \partial \Omega} \widehat{G}_{0}\left(x, z^{s}, \omega\right) \overline{\widehat{G}}_{0}\left(y, z^{S}, \omega\right) \widehat{C}_{0}(x, y, \omega) d \sigma(x) d \sigma(y) d \omega
$$

- $\left(\frac{\omega^{2}}{c^{2}(x)}+\Delta\right) \widehat{G}_{0}(x, y, \omega)=-\delta(x-y), \quad x, y \in \mathbb{R}^{d}$.
- The statistical cross-correlation $C_{0}$ is defined by

$$
C_{0}(x, y, \tau)=\left\langle p_{0}(x, t) p_{0}(y, t+\tau)\right\rangle=\frac{1}{2 \pi} \int_{\mathbb{R}}\left[\int_{\Omega} \widehat{\widehat{G}}_{0}(x, z, \omega) \widehat{G}_{0}(y, z, \omega) K(z) d z\right] \widehat{F}(\omega) e^{-i \omega \tau} d \omega
$$

Theorem
Functional $\mathcal{I}$ gives $K$ up to a smoothing operator, that is

$$
\mathcal{I}\left(z^{S}\right) \simeq \int_{\Omega} \mathcal{Q}\left(z^{S}, z\right) K(z) d z
$$

where

$$
\mathcal{Q}\left(z^{S}, z\right)=\int_{\mathbb{R}} \frac{\widehat{F}(\omega)}{\omega^{2}} \Im m\left\{\widehat{G}_{0}\left(z^{s}, z, \omega\right)\right\}^{2} d \omega
$$

## Noise Source Localization

Weighted imaging functional

- Consider the power spectral density $\mathcal{F}(\omega)=\int_{\partial \Omega} \widehat{C}_{0}(x, x, \omega) d \sigma(x)$.
- $\widetilde{\mathcal{F}}(\omega)=\frac{1}{\Delta \omega} \int_{\omega-\Delta \omega / 2}^{\omega+\Delta \omega / 2} \mathcal{F}\left(\omega^{\prime}\right) d \omega^{\prime} \simeq \widehat{F}(\omega) \int_{\Omega} \frac{1}{\omega} \Im m\left\{\widehat{G}_{0}(z, z, \omega)\right\} K(z) d z \simeq \frac{\widehat{F}(\omega)}{4 \pi} \int_{\Omega} K(z) d z$.
- Moving frequency window $\Delta \omega$ should be large than $1 / T$ and smaller than noise bandwidth.


## Noise Source Localization

Weighted imaging functional

- Consider the power spectral density $\mathcal{F}(\omega)=\int_{\partial \Omega} \widehat{C}_{0}(x, x, \omega) d \sigma(x)$.
- $\widetilde{\mathcal{F}}(\omega)=\frac{1}{\Delta \omega} \int_{\omega-\Delta \omega / 2}^{\omega+\Delta \omega / 2} \mathcal{F}\left(\omega^{\prime}\right) d \omega^{\prime} \simeq \widehat{F}(\omega) \int_{\Omega} \frac{1}{\omega} \Im m\left\{\widehat{G}_{0}(z, z, \omega)\right\} K(z) d z \simeq \frac{\widehat{F}(\omega)}{4 \pi} \int_{\Omega} K(z) d z$.
- Moving frequency window $\Delta \omega$ should be large than $1 / T$ and smaller than noise bandwidth.

Imaging functional

$$
\mathcal{I}_{W}\left(z^{S}\right):=\int_{\mathbb{R}} \frac{W(\omega)}{\widetilde{\mathcal{F}}(\omega)} \iint_{\partial \Omega \times \partial \Omega} \widehat{G}_{0}\left(x, z^{S}, \omega\right) \overline{\widehat{G}}_{0}\left(y, z^{S}, \omega\right) \widehat{C}_{0}(x, y, \omega) d \sigma(x) d \sigma(y) d \omega .
$$

## Noise Source Localization

Weighted imaging functional

- Consider the power spectral density $\mathcal{F}(\omega)=\int_{\partial \Omega} \widehat{C}_{0}(x, x, \omega) d \sigma(x)$.
- $\widetilde{\mathcal{F}}(\omega)=\frac{1}{\Delta \omega} \int_{\omega-\Delta \omega / 2}^{\omega+\Delta \omega / 2} \mathcal{F}\left(\omega^{\prime}\right) d \omega^{\prime} \simeq \widehat{F}(\omega) \int_{\Omega} \frac{1}{\omega} \Im m\left\{\widehat{G}_{0}(z, z, \omega)\right\} K(z) d z \simeq \frac{\widehat{F}(\omega)}{4 \pi} \int_{\Omega} K(z) d z$.
- Moving frequency window $\Delta \omega$ should be large than $1 / T$ and smaller than noise bandwidth.

Imaging functional

$$
\mathcal{I}_{W}\left(z^{S}\right):=\int_{\mathbb{R}} \frac{W(\omega)}{\widetilde{\mathcal{F}}(\omega)} \iint_{\partial \Omega \times \partial \Omega} \widehat{G}_{0}\left(x, z^{s}, \omega\right) \overline{\widehat{G}}_{0}\left(y, z^{s}, \omega\right) \widehat{C}_{0}(x, y, \omega) d \sigma(x) d \sigma(y) d \omega .
$$

Theorem

$$
\begin{aligned}
& \mathcal{I}_{W}\left(z^{S}\right) \simeq \int_{\Omega} \mathcal{Q}_{W}\left(z^{S}, z\right) \frac{K(z)}{K_{0}} d z, \text { with } K_{0}=\frac{1}{4 \pi} \int_{\Omega} K(z) d z \quad \text { and } \\
& \mathcal{Q}_{W}\left(z^{S}, z\right)=\int_{\mathbb{R}} \frac{W(\omega)}{\omega^{2}} \Im m\left\{\widehat{ज}_{0}\left(z^{S}, z, \omega\right)\right\}^{2} d \omega= \begin{cases}\frac{1}{16} \int_{\mathbb{R}} \frac{W(\omega)}{\omega^{2}} J_{0}^{2}(\omega|z|) d \omega, & d=2 \\
\frac{1}{16 \pi^{2}} \int_{\mathbb{R}} \frac{W(\omega)}{\omega^{2}} \operatorname{sinc}^{2}(\omega|z|) d \omega, & d=3 .\end{cases}
\end{aligned}
$$

## Noise Source Localization

Weighted imaging functional : Remarks

- A potential candidate for $W$ is

$$
W(\omega)= \begin{cases}|\omega|^{3} \mathbf{1}_{|\omega|<\omega_{\max }}, & d=2 \\ \omega^{2} \mathbf{1}_{|\omega|<\omega_{\max }}, & d=3\end{cases}
$$

where 1 denotes the characteristic function, based on the closure formulae [65Abramowitz]

$$
\int_{\mathbb{R}^{+}} \omega J_{0}^{2}(\omega|z|) d \omega=\frac{1}{|z|} \delta(z), \quad \text { and } \quad \int_{\mathbb{R}^{+}} \omega^{2} \operatorname{sinc}^{2}(\omega|z|) d \omega=\frac{1}{|z|^{2}} \delta(z)
$$

## Noise Source Localization

Weighted imaging functional : Remarks

- A potential candidate for $W$ is

$$
W(\omega)= \begin{cases}|\omega|^{3} \mathbf{1}_{|\omega|<\omega_{\max }}, & d=2 \\ \omega^{2} \mathbf{1}_{|\omega|<\omega_{\max }}, & d=3\end{cases}
$$

where 1 denotes the characteristic function, based on the closure formulae [65Abramowitz]

$$
\int_{\mathbb{R}^{+}} \omega J_{0}^{2}(\omega|z|) d \omega=\frac{1}{|z|} \delta(z), \quad \text { and } \quad \int_{\mathbb{R}^{+}} \omega^{2} \operatorname{sinc}^{2}(\omega|z|) d \omega=\frac{1}{|z|^{2}} \delta(z)
$$

- $\mathcal{I}_{W}$ can seen as an application of $\mathcal{I}$ on filtered data $\widetilde{p}_{0}(x, t)$ where

$$
\widehat{\widetilde{p}}_{0}(x, \omega):=\sqrt{\frac{W(\omega)}{\widetilde{\mathcal{F}}(\omega)}} \widehat{p}_{0}(x, \omega)
$$

where $\left(-\omega_{\max }, \omega_{\max }\right)$ is the estimated support of $\widetilde{\mathcal{F}}(\omega)$.

## Noise Source Localization

Weighted imaging functional : Remarks

- A potential candidate for $W$ is

$$
W(\omega)= \begin{cases}|\omega|^{3} \mathbf{1}_{|\omega|<\omega_{\max }}, & d=2 \\ \omega^{2} \mathbf{1}_{|\omega|<\omega_{\max }}, & d=3\end{cases}
$$

where $\mathbf{1}$ denotes the characteristic function, based on the closure formulae [65Abramowitz]

$$
\int_{\mathbb{R}^{+}} \omega J_{0}^{2}(\omega|z|) d \omega=\frac{1}{|z|} \delta(z), \quad \text { and } \quad \int_{\mathbb{R}^{+}} \omega^{2} \operatorname{sinc}^{2}(\omega|z|) d \omega=\frac{1}{|z|^{2}} \delta(z)
$$

- $\mathcal{I}_{W}$ can seen as an application of $\mathcal{I}$ on filtered data $\widetilde{p}_{0}(x, t)$ where

$$
\widehat{\widetilde{p}}_{0}(x, \omega):=\sqrt{\frac{W(\omega)}{\widetilde{\mathcal{F}}(\omega)}} \widehat{p}_{0}(x, \omega)
$$

where $\left(-\omega_{\max }, \omega_{\max }\right)$ is the estimated support of $\widetilde{\mathcal{F}}(\omega)$.

- Time reversal analogy: Let $v$ be the adjoint wave then,

$$
\mathcal{I}\left(z^{S}\right)=\int_{\mathbb{R}}\left|\int_{\partial \Omega} \widehat{G}_{0}\left(x, z^{S}, \omega\right) \overline{\widehat{p}_{0}}(x, \omega) d \sigma(x)\right|^{2} d \omega=2 \pi \int_{0}^{T} v\left(z^{S}, t\right)^{2} d t
$$

## Noise Source Localization

## Reconstructions



Top : point sources. Bottom : extended sources.Left to Right : $K(x) ; \mathcal{I} ; \mathcal{I}_{W}$ with $W(\omega)=|\omega|^{3} \mathbf{1}_{|\omega|<\omega_{\max }}$.

$$
T=8, \omega_{\max }=1000, N_{x}=2^{8}, \text { and } N_{t}=2^{11}
$$

## Noise Source Localization

## Estimation of power spectral density



## Noise Source Localization

Localization in Attenuating Media

- Let $p_{a}$ satisfy the thermo-viscous wave equation

$$
\begin{cases}\frac{1}{c^{2}(x)} \frac{\partial^{2}}{\partial t^{2}} p_{a}(x, t)-\Delta p_{a}(x, t)-\frac{\partial}{\partial t} \Delta p_{a}(x, t)=n(x, t), & (x, t) \in \mathbb{R}^{d} \times \mathbb{R} \\ p_{a}(x, t)=0, \quad \text { and } \quad \frac{\partial}{\partial t} p_{a}(x, t)=0, & x \in \mathbb{R}^{d}, t \ll 0 \quad d=2,3 .\end{cases}
$$

- $C_{a}(x, y, \tau)=\left\langle p_{a}(x, t) p_{a}(y, t+\tau)\right\rangle=\frac{1}{2 \pi} \int_{\mathbb{R}}\left[\int_{\Omega} \widehat{\widehat{G}}_{a}(x, z, \omega) \widehat{G}_{a}(y, z, \omega) K(z) d z\right] \widehat{F}(\omega) e^{-i \omega \tau} d \omega$.
- $\left(\frac{\omega^{2}}{c^{2}(x)}+(1 \mp i a \omega) \Delta_{x}\right) \widehat{G}_{ \pm a}(x, y, \omega)=-\delta(x-y), \quad x, y \in \mathbb{R}^{d}$.


## Noise Source Localization

Localization in Attenuating Media

- Let $p_{a}$ satisfy the thermo-viscous wave equation

$$
\begin{cases}\frac{1}{c^{2}(x)} \frac{\partial^{2}}{\partial t^{2}} p_{a}(x, t)-\Delta p_{a}(x, t)-\frac{\partial}{\partial t} \Delta p_{a}(x, t)=n(x, t), & (x, t) \in \mathbb{R}^{d} \times \mathbb{R} \\ p_{a}(x, t)=0, \quad \text { and } \quad \frac{\partial}{\partial t} p_{a}(x, t)=0, & x \in \mathbb{R}^{d}, t \ll 0 \quad d=2,3 .\end{cases}
$$

$C_{a}(x, y, \tau)=\left\langle p_{a}(x, t) p_{a}(y, t+\tau)\right\rangle=\frac{1}{2 \pi} \int_{\mathbb{R}}\left[\int_{\Omega} \widehat{\widehat{G}}_{a}(x, z, \omega) \widehat{G}_{a}(y, z, \omega) K(z) d z\right] \widehat{F}(\omega) e^{-i \omega \tau} d \omega$.

- $\left(\frac{\omega^{2}}{c^{2}(x)}+(1 \mp i a \omega) \Delta_{x}\right) \widehat{G}_{ \pm a}(x, y, \omega)=-\delta(x-y), \quad x, y \in \mathbb{R}^{d}$.
- $\mathcal{I}_{a}\left(z^{S}\right):=\int_{\mathbb{R}} \iint_{\partial \Omega \times \partial \Omega} \widehat{G}_{-a}\left(x, z^{S}, \omega\right) \overline{\widehat{G}}_{-a}\left(y, z^{S}, \omega\right) \widehat{C}_{a}(x, y, \omega) d \sigma(x) d \sigma(y) d \omega$.

Truncated imaging functional

$$
\mathcal{I}_{a, \rho}\left(z^{S}\right):=\int_{|\omega| \leq \rho} \iint_{\partial \Omega \times \partial \Omega} \widehat{G}_{-a}\left(x, z^{S}, \omega\right) \overline{\widehat{G}_{-a}}\left(y, z^{S}, \omega\right) \widehat{C}_{a}(x, y, \omega) d \sigma(x) d \sigma(y) d \omega
$$

## Noise Source Localization

Attenuated Helmholtz-Kirchhoff identities \& localization

## Lemma

If $\Omega$ is a ball with large radius (w.r.t. wavelength) and $c(x) \equiv 1$ outside the ball then

$$
\int_{\partial \Omega} \widehat{G}_{-a}\left(x, z^{s}, \omega\right) \overline{\widehat{G}}_{a}(x, z, \omega) d \sigma(x) \simeq \frac{1}{2 i \bar{\kappa}_{a}(\omega)(1+i a \omega)}\left(\widehat{G}_{-a}\left(z, z^{s}, \omega\right)-\overline{\widehat{G}}_{a}\left(z, z^{s}, \omega\right)\right) .
$$

where

$$
\kappa_{ \pm a}(\omega)=\frac{\omega}{\sqrt{1 \mp i a \omega}}
$$

## Noise Source Localization

Attenuated Helmholtz-Kirchhoff identities \& localization

## Lemma

If $\Omega$ is a ball with large radius (w.r.t. wavelength) and $c(x) \equiv 1$ outside the ball then

$$
\int_{\partial \Omega} \widehat{G}_{-a}\left(x, z^{s}, \omega\right) \overline{\widehat{G}}_{a}(x, z, \omega) d \sigma(x) \simeq \frac{1}{2 i \overline{\kappa_{a}}(\omega)(1+i a \omega)}\left(\widehat{G}_{-a}\left(z, z^{s}, \omega\right)-\overline{\widehat{G}}_{a}\left(z, z^{s}, \omega\right)\right) .
$$

where

$$
\kappa_{ \pm a}(\omega)=\frac{\omega}{\sqrt{1 \mp i a \omega}}
$$

Proposition
The truncated imaging functional $\mathcal{I}_{a, \rho}$ satisfies

$$
\mathcal{I}_{a, \rho}\left(z^{S}\right):=\int_{\Omega} \mathcal{Q}_{\rho}\left(z^{S}, z\right) K(z) d z
$$

with

$$
\mathcal{Q}_{\rho}\left(z^{S}, z\right)=\int_{|\omega| \leq \rho} \frac{\widehat{F}(\omega)}{4 \omega^{2}\left(1+a^{2} \omega^{2}\right)^{1 / 2}}\left|\widehat{G}_{-a}\left(z, z^{S}, \omega\right)-\overline{\widehat{G}}_{a}\left(z, z^{S}, \omega\right)\right|^{2} d \omega
$$

## Noise Source Localization

Reconstructions : Point sources in attenuating media


Top : $a=0.0005$. Bottom : $a=0.001$. Left to right : $\mathcal{I}_{W}, \mathcal{I}_{\rho}$ with $\rho=7.5$, and $\mathcal{I}_{\rho}$ with $\rho=15$.

$$
T=8, \omega_{\max }=1000, N_{x}=2^{8}, \text { and } N_{t}=2^{11}
$$

## Noise Source Localization

Spatially correlated sources

- Let $n$ be a stationary Gaussian process with mean zero and covariance function

$$
\langle n(x, t) n(y, s)\rangle=F(t-s) \Gamma(x, y)
$$

where $\Gamma$ characterizes spatial support and covariance of the sources.

## Noise Source Localization

- Let $n$ be a stationary Gaussian process with mean zero and covariance function

$$
\langle n(x, t) n(y, s)\rangle=F(t-s) \Gamma(x, y)
$$

where $\Gamma$ characterizes spatial support and covariance of the sources.

- $J\left(z^{S}, z^{s^{\prime}}\right):=\int_{\mathbb{R}} \iint_{\partial \Omega \times \partial \Omega} \widehat{G}_{0}\left(x, z^{S}, \omega\right) \overline{\widehat{G}_{0}}\left(y, z^{s^{\prime}}, \omega\right) \widehat{C}_{0}(x, y, \omega) d \sigma(x) d \sigma(y) d \omega$.
- $C_{0}(x, y, \tau)=\frac{1}{2 \pi} \int_{\mathbb{R}}\left[\iint_{\Omega \times \Omega} \overline{\widehat{G}}_{0}(x, z, \omega) \widehat{G}_{0}\left(y, z^{\prime}, \omega\right) \Gamma\left(z, z^{\prime}\right) d z d z^{\prime}\right] \widehat{F}(\omega) e^{-i \omega \tau} d \omega$.


## Noise Source Localization

Spatially correlated sources

- Let $n$ be a stationary Gaussian process with mean zero and covariance function

$$
\langle n(x, t) n(y, s)\rangle=F(t-s) \Gamma(x, y)
$$

where $\Gamma$ characterizes spatial support and covariance of the sources.

- $J\left(z^{s}, z^{s^{\prime}}\right):=\int_{\mathbb{R}} \iint_{\partial \Omega \times \partial \Omega} \widehat{G}_{0}\left(x, z^{s}, \omega\right) \widehat{\widehat{G}}_{0}\left(y, z^{s^{\prime}}, \omega\right) \widehat{C}_{0}(x, y, \omega) d \sigma(x) d \sigma(y) d \omega$.
- $C_{0}(x, y, \tau)=\frac{1}{2 \pi} \int_{\mathbb{R}}\left[\iint_{\Omega \times \Omega} \overline{\widehat{G}}_{0}(x, z, \omega) \widehat{ज}_{0}\left(y, z^{\prime}, \omega\right) \Gamma\left(z, z^{\prime}\right) d z d z^{\prime}\right] \widehat{F}(\omega) e^{-i \omega \tau} d \omega$.

Proposition

In 3D homogeneous media, $\Psi\left(z^{S}, z^{S^{\prime}}, z, z^{\prime}\right)=\psi\left(z^{S}-z, z^{S^{\prime}}-z^{\prime}\right)$ with

$$
\psi\left(z, z^{\prime}\right)=\frac{1}{16 \pi^{2}} \int_{\mathbb{R}} \widehat{F}(\omega) \operatorname{sinc}(\omega|z|) \operatorname{sinc}\left(\omega\left|z^{\prime}\right|\right) d \omega .
$$

## Noise Source Localization

Spatially correlated sources II

- Extended distribution of locally correlated sources : $\Gamma\left(z, z^{\prime}\right)=K\left(\frac{z+z^{\prime}}{2}\right) \gamma\left(z-z^{\prime}\right)$. Then

$$
\mathcal{I}\left(z^{S}\right)=\int_{\Omega} \underbrace{\int_{\mathbb{R}} \frac{\widehat{F}(\omega)}{\omega^{2}} \int_{\Omega} \Im m\left\{\widehat{G}\left(z+\xi / 2, z^{S}, \omega\right)\right\} \Im m\left\{\widehat{G}\left(z-\xi / 2, z^{S}, \omega\right)\right\} \gamma(\xi) d \xi d \omega}_{\Phi\left(z, z^{s}\right)} K(z) d z .
$$

## Noise Source Localization

Spatially correlated sources II

- Extended distribution of locally correlated sources : $\Gamma\left(z, z^{\prime}\right)=K\left(\frac{z+z^{\prime}}{2}\right) \gamma\left(z-z^{\prime}\right)$. Then

$$
\mathcal{I}\left(z^{S}\right)=\int_{\Omega} \underbrace{\int_{\mathbb{R}} \frac{\widehat{F}(\omega)}{\omega^{2}} \int_{\Omega} \Im m\left\{\widehat{G}\left(z+\xi / 2, z^{S}, \omega\right)\right\} \Im m\left\{\widehat{G}\left(z-\xi / 2, z^{s}, \omega\right)\right\} \gamma(\xi) d \xi d \omega}_{\Phi\left(z, z^{s}\right)} K(z) d z .
$$

- Correlated point sources : $\Gamma\left(z, z^{\prime}\right)=\sum_{i, j=1}^{N_{s}} \rho_{i j} \delta\left(z-z_{i}\right) \delta\left(z-z_{j}\right)$
- Find $z_{i}$ from $\mathcal{I}\left(z^{S}\right) \simeq \sum_{i, j=1}^{N_{S}} \rho_{i j} \int_{\mathbb{R}} \frac{\widehat{F}(\omega)}{\omega^{2}} \Im m\left\{\widehat{G}\left(z, z^{S}, \omega\right)\right\}^{2} d \omega$.
- Estimate $\rho_{i j}$ from $J\left(z_{i}, z_{j}\right)=\rho_{i j} \int_{\mathbb{R}} \Im m\left\{\widehat{G}\left(z_{i}, z_{i}, \omega\right)\right\} \Im m\left\{\widehat{G}\left(z_{j}, z_{j}, \omega\right)\right\} d \omega \simeq \rho_{i j} \frac{1}{16 \pi} \int_{R} \widehat{F}(\omega) \omega$.


## Noise Source Localization

Spatially correlated sources II

- Extended distribution of locally correlated sources : $\Gamma\left(z, z^{\prime}\right)=K\left(\frac{z+z^{\prime}}{2}\right) \gamma\left(z-z^{\prime}\right)$. Then

$$
\mathcal{I}\left(z^{s}\right)=\int_{\Omega} \underbrace{\int_{\mathbb{R}} \frac{\widehat{F}(\omega)}{\omega^{2}} \int_{\Omega} \Im m\left\{\widehat{G}\left(z+\xi / 2, z^{s}, \omega\right)\right\} \Im m\left\{\widehat{G}\left(z-\xi / 2, z^{s}, \omega\right)\right\} \gamma(\xi) d \xi d \omega K(z) d z . . . . . . .}_{\Phi\left(z, z^{s}\right)}
$$

- Correlated point sources : $\Gamma\left(z, z^{\prime}\right)=\sum_{i, j=1}^{N_{s}} \rho_{i j} \delta\left(z-z_{i}\right) \delta\left(z-z_{j}\right)$
- Find $z_{i}$ from $\mathcal{I}\left(z^{S}\right) \simeq \sum_{i, j=1}^{N_{s}} \rho_{i j} \int_{\mathbb{R}} \frac{\widehat{F}(\omega)}{\omega^{2}} \Im m\left\{\widehat{G}\left(z, z^{S}, \omega\right)\right\}^{2} d \omega$.
- Estimate $\rho_{i j}$ from $J\left(z_{i}, z_{j}\right)=\rho_{i j} \int_{\mathbb{R}} \Im m\left\{\widehat{G}\left(z_{i}, z_{i}, \omega\right)\right\} \Im m\left\{\widehat{G}\left(z_{j}, z_{j}, \omega\right)\right\} d \omega \simeq \rho_{i j} \frac{1}{16 \pi} \int_{R} \widehat{F}(\omega) \omega$.

$$
\rho=\left(\begin{array}{cccc}
1 & 1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 1 & 0 & 0 \\
1 / \sqrt{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \widehat{\rho}=\left(\begin{array}{cccc}
1.000 & 0.733 & 0.701 & 0.061 \\
0.733 & 1.000 & 0.049 & 0.061 \\
0.701 & 0.049 & 1.000 & 0.030 \\
0.061 & 0.061 & 0.030 & 1.000
\end{array}\right)
$$

## Noise Source Localization

## Correlated point sources : Reconstruction



$$
\begin{gathered}
\text { Top : } K(z) \text { (left), } \mathcal{I}_{W} \text { with } W(\omega)=|\omega|^{3} \mathbf{1}_{|\omega|}<\omega_{\text {max }} \text { (middle), and } z \rightarrow \mathcal{J}_{W}\left(z_{1}, z\right) \text { (right). } \\
\quad \text { Bottom }: z \rightarrow \mathcal{J}_{W}\left(z_{2}, z\right) \text { (left), } z \rightarrow \mathcal{J}_{W}\left(z_{3}, z\right) \text { (middle), and } z \rightarrow \mathcal{J}_{W}\left(z_{4}, z\right) \text { (right). }
\end{gathered}
$$

## Noise Source Localization

## Extended correlated sources : Reconstruction



Top : $K(z)$ (left), $\mathcal{I}_{W}$ with $W(\omega)=|\omega|^{3} \mathbf{1}_{|\omega|}=\omega_{\max }$ (middle), and $z \rightarrow \mathcal{J}_{W}\left(z_{1}, z\right)$ (right).
$\quad$ Bottom $: z \rightarrow \mathcal{J}_{W}\left(z_{2}, z\right)$ (left),$z \rightarrow \mathcal{J}_{W}\left(z_{3}, z\right)$ (middle), and $z \rightarrow \mathcal{J}_{W}\left(z_{4}, z\right)$ (right).

## Conclusion and Perspectives

## Conclusion and Perspectives

## Conclusion and Perspectives

Conclusion

- Developed Radon transform and time reversal algorithms for Photo-acoustic imaging.
- Justified the use of adjoint of the attenuated wave operator in time reversal.
- Proposed pre-processing technique to compensate for attenuation effects.
- Proposed and justified weighted elastic time-reversal algorithms.
- Proposed weighted algorithms for noise source localization.
- Studied impact of spatial correlation between noise sources.
- Derived Helmholtz-Kirchhoff identities for elastic, viscoelastic and attenuating acoustic media.


## Conclusion and Perspectives

Perspectives

- Extension of the algorithms to complex wave propagation models, e.g. by taking into account non-linearity, heterogeneity, anisotropy ...
- Applications : Non-destructive testing, underwater acoustics, telecommunications ...
- Recovery of the attenuation map from attenuated far field measurements ...
- Variable attenuation correction.
- Time reversal with a few transducers : lower bound on the number of transducers for stable reconstructions.
- Passive elastography : Elastic noise source localization in a transversally isotropic medium.


## References

[04Finch] D. Finch et al., Determining a function from its mean-values over a family of spheres, SIAM J. Math An., 35 :(2004), pp 1213-1240.
[07Kunyansky] L. Kunyansky, Explicit inversion formulas for the spherical mean Radon transform, Inverse Prob., 23 :(2007), pp 373-383.
[07Haltmeier] M. Haltmeier et al., Filtered back projection for thermoacoustic computed tomography in spherical geometry, Math. Meth. App. Sci., 28 : (2005), pp 1919-1937.
[09Nguyen] L.V. Nguyen, A family of inversion formulas in thermo-acosutic tomography, Inverse Prob. \& Imag., 3 : (2009), pp 649-675.
[04Sushilov] N.V. Sushilov, R.S.C. Cobbold, Frequency-domain wave equation and its time-domain solutions in attenuating media, J. Acoust. Soc. Am., 115 : (2004), pp 1431-1436.
[08Modgil] D. Modgil, P. La Rivière, Photoacoustic image reconstruction in an attenuating medium using singular value decomposition, IEEE Nuc. Sci. Symp., (2008).
[03Hormander] L. Hormander, The Analysis of the Linear Partial Differential Operators, Classics in Math., (2003), Springer-Verlag.
[97Fink] M. Fink, Time reversed acoustics, Physics Today, 50 : (1997).
[07Fouque] J.-P. Fouque, Wave Propagation and Time Reversal in Randomly Layered Media, Springer-Verlag, New York, 2007.
[07Burgholzer] P. Burgholzer et al., Compensation of acoustic attenuation for high resolution photoacoustic imaging with line detectors, Proc. SPIE, 6437 : (2007).
[10Treeby] B.E. Treeby et al., Photoacoustic tomography in absorbing acoustic media using time reversal, Inverese Prob., 26(11) : (2010).
[09Garnier] J. Garnier, G. Papanicolaou, Passive sensor imaging using cross correlations of noisy signals in a scattering medium, SIAM J. Imag. Sci., 2 : (2009), pp. 396-437.
[65Abramowitz] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover Publications, New York (1965).

## Publications

1. H. Ammari, E. Bretin, J. Garnier, A. Wahab, Noise source localization in an attenuating medium , SIAM Journal on Applied Mathematics, to appear.
2. H. Ammari, E. Bretin, J. Garnier, A. Wahab, Time reversal in attenuating acoustic media, Mathematical and Statistical Methods for Imaging, Contemporary Mathematics, vol. 548, pp. 151-163 AMS 2011.
3. H. Ammari, E. Bretin, J. Garnier, A. Wahab, Time reversal algorithms in viscoelastic media, Numerishe Mathematik, submitted.
4. H. Ammari, E. Bretin, V. Jugnon, A. Wahab, Photoacoustic imaging for attenuating acoustic media, Mathematical Modeling in Biomedical Imaging II, Lecture Notes in Mathematics, vol. 2035, pp. 57-84 Springer-Verlag, 2011.
5. E. Bretin, L. Guadarrama-Bustos, A. Wahab, On the Green function in visco-elastic media obeying a frequency power law, Mathematical Methods in the Applied Sciences, vol. 34(7), pp. 819-830, 2011.
6. E. Bretin, A. Wahab, Some anisotropic viscoelastic green functions, Mathematical and Statistical Methods for Imaging, Contemporary Mathematics, vol. 548, pp. 129-149, AMS 2011.

## It's not the End!

## Thank you!

