Modeling and Imaging of Attenuation in Biological Media

Abdul Wahab

Centre de Mathématiques Appliquées, École Polytechnique, Palaiseau, France.

Supervised by

Prof. Habib Ammari

École Normale Supérieure, Paris, France.

Problem Statement

Let *F* be compactly supported in a bounded smooth domain $\Omega \subset \mathbb{R}^d$ with d = 2, 3 and boundary $\partial \Omega$.

Problem

Find supp $\{F(x,t)\}$ given $\{g_a(y,t) := p_a(y,t) : (y,t) \in \partial\Omega \times [0,T]\}$ such that :

$$\begin{cases} \left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \Delta - L_a\right) p_a(x,t) = F(x,t), & (x,t) \in \mathbb{R}^d \times \mathbb{R}, \\ \\ p_a(x,t) = 0 = \frac{\partial p_a(x,t)}{\partial t}, & x \in \mathbb{R}^d, t \ll 0, \end{cases}$$

for T sufficiently large.

-
$$L_a[p_a(x,\cdot)](t) := \frac{1}{\sqrt{2\pi}} p_a * \int_{\mathbb{R}} \left(\kappa^2(\omega) - \frac{\omega^2}{c_0^2}\right) e^{i\omega t} d\omega$$

- $\kappa(\omega) = \frac{\omega}{c(\omega)} + ia|\omega|^{\xi}, \ 1 \le \xi \le 2.$

Problem Statement

Let \vec{F} be compactly supported in a bounded smooth domain $\Omega \subset \mathbb{R}^d$ with d = 2, 3 and boundary $\partial \Omega$.

Problem

Find supp $\{\vec{F}(x,t)\}$ given $\{\vec{g}_a(y,t) := \vec{p}_a(y,t) : (y,t) \in \partial\Omega \times [0,T]\}$ such that :

$$\begin{cases} \left(\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} \mathcal{L}_{\eta_\lambda, \eta_\mu} - \mathcal{L}_{\lambda, \mu}\right) \vec{p}_a(x, t) = \vec{F}(x, t), & (x, t) \in \mathbb{R}^d \times \mathbb{R}, \\\\ \vec{p}_a(x, t) = \vec{0} = \frac{\partial}{\partial t} \vec{p}_a(x, t), & x \in \mathbb{R}^d, t \ll 0, \end{cases}$$

for T sufficiently large.

- (λ, μ) : Lamé parameters,
- $(\eta_{\lambda}, \eta_{\mu})$: visco-elastic moduli,
- $\mathcal{L}_{\alpha,\beta}[\vec{p}_a] = (\alpha + \beta)\nabla\nabla \cdot \vec{p}_a \beta\Delta\vec{p}_a,$

Motivation

Multi-Physics Imaging

- Photo-acoustic imaging, Magneto-acoustic imaging, Acoustic radiation force imaging, Elasticity Imaging,...
- Temporally localized sources i.e. $F(x, t) = \partial_t \delta(t) f(x)$
- Noise Source Localization
- Robotics, Passive Elastography, ...
- *F*(*x*, *t*) is stationary Gaussian process with mean zero.

Motivation

Multi-Physics Imaging

- Photo-acoustic imaging, Magneto-acoustic imaging, Acoustic radiation force imaging, Elasticity Imaging,...
- Temporally localized sources i.e. $F(x, t) = \partial_t \delta(t) f(x)$

Noise Source Localization

- Robotics, Passive Elastography, ...
- *F*(*x*, *t*) is stationary Gaussian process with mean zero.
- Other Applications
- Earthquake sources (spatially localized),
- Dynamical systems (initial state identification)....

Motivation

Multi-Physics Imaging

- Photo-acoustic imaging, Magneto-acoustic imaging, Acoustic radiation force imaging, Elasticity Imaging,...
- Temporally localized sources i.e. $F(x, t) = \partial_t \delta(t) f(x)$
- Noise Source Localization
- Robotics, Passive Elastography, ...
- *F*(*x*, *t*) is stationary Gaussian process with mean zero.
- Other Applications
- Earthquake sources (spatially localized),
- Dynamical systems (initial state identification)....

Outlines

Photo-acoustic Imaging

- Radon transform based algorithms
- Attenuation correction

Acoustic Time Reversal

- Mathematical analysis
- Extension to attenuating media
- Preprocessing techniques

Elastic Time Reversal

- Weighted time reversal
- Visco-elastic extension

Noise Source Localization

- Lossless media
- Attenuating media
- Spatial correlation
- Conclusions and Perspectives

Photo-acoustic Imaging

Mathematical Formulation

Find the absorbed energy density f(x) given $g_0(y,t) := p_0(y,t)$ for all $(y,t) \in \partial \Omega \times [0,T]$ such that

$$\begin{cases} \left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \Delta\right) p_0(x, t) = \frac{\partial \delta(t)}{\partial t} f(x), & (x, t) \in \mathbb{R}^d \times \mathbb{R}, \\ p_0(x, t) = 0 = \frac{\partial p_0(x, t)}{\partial t}, & x \in \mathbb{R}^d, t \ll 0, \end{cases}$$

Modeling & Imaging of Attenuation

Mathematical Formulation

Find the absorbed energy density f(x) given $g_0(y,t) := p_0(y,t)$ for all $(y,t) \in \partial\Omega \times [0,T]$ such that

$$\begin{cases} \left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \Delta\right)p_0(x,t) = \frac{\partial\delta(t)}{\partial t}f(x), & (x,t) \in \mathbb{R}^d \times \mathbb{R}, \\ p_0(x,t) = 0 = \frac{\partial p_0(x,t)}{\partial t}, & x \in \mathbb{R}^d, t \ll 0, \end{cases}$$

Photo-acoustic Imaging Spherical Radon transform : a = 0, 2D

Spherical Radon transform

$$\mathcal{R}_{\Omega}[f](y,t) = \int_{S} tf(y+t\omega)d\sigma(\omega)$$

Kirchhoff formula implies

$$\begin{cases} g_0(y,t) &= \frac{1}{2\pi} \frac{\partial}{\partial t} \int_0^t \frac{\mathcal{R}_\Omega[f](y,cr)}{\sqrt{t^2 - r^2}} dr, \\ \mathcal{R}_\Omega[f](y,r) &= 4r \int_0^r \frac{g_0(y,t/c)}{\sqrt{r^2 - t^2}} dt. \end{cases}$$

• Therefore,

$$\mathcal{R}_{\Omega}[f](y,r) = \mathcal{W}[g_0](y,r) := 4r \int_0^r \frac{g_0(y,t/c)}{\sqrt{r^2 - t^2}} dt$$

Photo-acoustic Imaging Spherical Radon transform : a = 0, 2D

Spherical Radon transform

$$\mathcal{R}_{\Omega}[f](y,t) = \int_{S} tf(y+t\omega)d\sigma(\omega)$$

• Kirchhoff formula implies

$$\begin{cases} g_0(y,t) &= \frac{1}{2\pi} \frac{\partial}{\partial t} \int_0^t \frac{\mathcal{R}_\Omega[f](y,cr)}{\sqrt{t^2 - r^2}} dr, \\ \\ \mathcal{R}_\Omega[f](y,r) &= 4r \int_0^r \frac{g_0(y,t/c)}{\sqrt{r^2 - t^2}} dt. \end{cases}$$

• Therefore,

$$\mathcal{R}_{\Omega}[f](y,r) = \mathcal{W}[g_0](y,r) := 4r \int_0^r \frac{g_0(y,t/c)}{\sqrt{r^2 - t^2}} dt.$$

Photo-acoustic Imaging Filtered back-projection : a = 0, 2D

• Filtered back-projection formula [04Finch], [07Haltmeier], [07Kunyansky], [09Nguyen]

$$\begin{split} f(x) &= \frac{1}{(4\pi^2)} \int_{\partial\Omega} \int_0^2 \left[\frac{d^2}{dr^2} \mathcal{R}_\Omega[f](y,r) \right] \ln |r^2 - (y-x)^2 |dr \, d\sigma(y) \\ &= \frac{1}{4\pi^2} \mathcal{R}_\Omega^* \left[\mathcal{B} \mathcal{W}[g_0] \right](x), \end{split}$$
with $\mathcal{R}_\Omega^*[g](x) = \int_{\partial\Omega} g(y, |y-x|) d\sigma(y)$ and $\mathcal{B}[g](y,t) := \int_0^2 \left[\frac{d^2}{dr^2} g(y,r) \right] \ln |r^2 - t^2 |dr$

for all $g: \Omega \times \mathbb{R}^+ \to \mathbb{R}$.

Photo-acoustic Imaging Filtered back-projection : a = 0, 2D

• Filtered back-projection formula [04Finch], [07Haltmeier], [07Kunyansky], [09Nguyen]

$$\begin{split} f(x) &= \frac{1}{(4\pi^2)} \int_{\partial\Omega} \int_0^2 \left[\frac{d^2}{dr^2} \mathcal{R}_\Omega[f](y,r) \right] \ln |r^2 - (y-x)^2 |dr \, d\sigma(y) \\ &= \frac{1}{4\pi^2} \mathcal{R}_\Omega^* \left[\mathcal{B} \mathcal{W}[g_0] \right](x), \end{split}$$
with $\mathcal{R}_\Omega^*[g](x) &= \int_{\partial\Omega} g(y, |y-x|) d\sigma(y)$ and $\mathcal{B}[g](y,t) := \int_0^2 \left[\frac{d^2}{dr^2} g(y,r) \right] \ln |r^2 - t^2 |dr$

for all $g: \Omega \times \mathbb{R}^+ \to \mathbb{R}$.

Photo-acoustic Imaging Acoustic attenuation : a > 0

Photo-acoustic Imaging Acoustic attenuation : a > 0

• To take into account acoustic attenuation, let p_a be the solution to

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \Delta - L_a\right)p_a(x,t) = \frac{\partial\delta(t)}{\partial t}f(x)$$

Photo-acoustic Imaging Acoustic attenuation : a > 0

• To take into account acoustic attenuation, let p_a be the solution to

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \Delta - L_a\right)p_a(x,t) = \frac{\partial\delta(t)}{\partial t}f(x)$$

• The loss term $L_a[p_a]$ is given by [04Sushilov]

$$L_a[p_a(x,\cdot)](t) := \frac{1}{\sqrt{2\pi}} p_a * \int_{\mathbb{R}} \left(\kappa^2(\omega) - \frac{\omega^2}{c^2} \right) e^{i\omega t} d\omega$$

with complex wave number $\kappa(\omega) = \frac{\omega}{c(\omega)} + ia|\omega|^{\xi}, \ 1 \le \xi \le 2.$

Photo-acoustic Imaging Spherical Radon Transform : a > 0

Remark that $\widehat{p}_0(x,\omega)$ and $\widehat{p}_a(x,\omega)$ satisfy

$$\left(\kappa^2(\omega) + \Delta\right)\widehat{p}_a(x,\omega) = \frac{i\omega}{\sqrt{2\pi}c^2}f(x), \text{ and } \left(\frac{\omega^2}{c^2} + \Delta\right)\widehat{p}_0(x,\omega) = \frac{i\omega}{\sqrt{2\pi}c^2}f(x)$$

Therefore, $\widehat{p}_a(x,\omega) = \frac{\omega}{c\kappa(\omega)}\widehat{p}_0(x,c\kappa(\omega))$ or $p_a(x,t) = \mathcal{L}[p_0(x,\cdot)](t)$ where

Attenuation Operator

$$\mathcal{L}[\phi](t) = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{\omega}{c\kappa(\omega)} e^{-i\omega t} \left\{ \int_{\mathbb{R}^+} \phi(s) e^{ic\kappa(\omega)s} ds \right\} d\omega.$$

Photo-acoustic Imaging Spherical Radon Transform : a > 0

Remark that $\widehat{p}_0(x,\omega)$ and $\widehat{p}_a(x,\omega)$ satisfy

$$\left(\kappa^2(\omega) + \Delta\right)\widehat{p}_a(x,\omega) = \frac{i\omega}{\sqrt{2\pi}c^2}f(x), \text{ and } \left(\frac{\omega^2}{c^2} + \Delta\right)\widehat{p}_0(x,\omega) = \frac{i\omega}{\sqrt{2\pi}c^2}f(x)$$

Therefore, $\widehat{p}_a(x,\omega) = \frac{\omega}{c\kappa(\omega)}\widehat{p}_0(x,c\kappa(\omega))$ or $p_a(x,t) = \mathcal{L}[p_0(x,\cdot)](t)$ where

Attenuation Operator

$$\mathcal{L}[\phi](t) = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{\omega}{c\kappa(\omega)} e^{-i\omega t} \left\{ \int_{\mathbb{R}^+} \phi(s) e^{ic\kappa(\omega)s} ds \right\} d\omega.$$

• A natural definition of the spherical Radon transform when a > 0 is

$$\mathcal{R}_{\Omega,a}[f] := \mathcal{W}[p_a] = \mathcal{W}[\mathcal{L}[p_0]]$$

• Then, a *pseudo-inverse* $\mathcal{R}_{\Omega,a}^{-1}$ may be given by

$$\mathcal{R}_{\Omega,a}^{-1} = \mathcal{R}_{\Omega}^{-1} \mathcal{W} \mathcal{L}^{-1} \mathcal{W}^{-1}$$

Photo-acoustic Imaging SVD-Approach

• Consider a singular value decomposition of $\mathcal L$:

$$\mathcal{L}[\phi] = \sum_{l} \sigma_l \langle \phi, \widetilde{\psi}_l \rangle \psi_l,$$

where $(\tilde{\psi}_l)$ and (ψ_l) are two orthonormal bases of $L^2(0,T)$ and σ_l are positives eigenvalues such that

$$\begin{cases} \mathcal{L}^*[\phi] &= \sum_l \sigma_l \langle \phi, \psi_l \rangle \widetilde{\psi}_l, \\ \mathcal{L}^* \mathcal{L}[\phi] &= \sum_l^l \sigma_l^2 \langle \phi, \widetilde{\psi}_l \rangle \widetilde{\psi}_l, \\ \mathcal{L} \mathcal{L}^*[\phi] &= \sum_l^l \sigma_l^2 \langle \phi, \psi_l \rangle \psi_l. \end{cases}$$

Photo-acoustic Imaging SVD-Approach

Consider a singular value decomposition of L :

$$\mathcal{L}[\phi] = \sum_{l} \sigma_l \langle \phi, \widetilde{\psi}_l \rangle \psi_l,$$

where $(\tilde{\psi}_l)$ and (ψ_l) are two orthonormal bases of $L^2(0,T)$ and σ_l are positives eigenvalues such that

$$\begin{cases} \mathcal{L}^*[\phi] &= \sum_l \sigma_l \langle \phi, \psi_l \rangle \widetilde{\psi}_l, \\ \mathcal{L}^* \mathcal{L}[\phi] &= \sum_l^l \sigma_l^2 \langle \phi, \widetilde{\psi}_l \rangle \widetilde{\psi}_l, \\ \mathcal{L} \mathcal{L}^*[\phi] &= \sum_l^l \sigma_l^2 \langle \phi, \psi_l \rangle \psi_l. \end{cases}$$

• An ϵ -approximation inverse of \mathcal{L} is then given by [08Modgil]

$$\mathcal{L}_{\epsilon}^{-1}[\phi] = \sum_{l} rac{\sigma_{l}}{\sigma_{l}^{2} + \epsilon^{2}} \langle \phi, \psi_{l}
angle \widetilde{\psi}_{l},$$

where $\epsilon > 0$.

Photo-acoustic Imaging SVD-Approach

• Consider a singular value decomposition of $\mathcal L$:

$$\mathcal{L}[\phi] = \sum_{l} \sigma_l \langle \phi, \widetilde{\psi}_l \rangle \psi_l,$$

where $(\tilde{\psi}_l)$ and (ψ_l) are two orthonormal bases of $L^2(0,T)$ and σ_l are positives eigenvalues such that

$$\begin{cases} \mathcal{L}^*[\phi] &= \sum_l \sigma_l \langle \phi, \psi_l \rangle \widetilde{\psi}_l, \\ \mathcal{L}^* \mathcal{L}[\phi] &= \sum_l^l \sigma_l^2 \langle \phi, \widetilde{\psi}_l \rangle \widetilde{\psi}_l, \\ \mathcal{L} \mathcal{L}^*[\phi] &= \sum_l^l \sigma_l^2 \langle \phi, \psi_l \rangle \psi_l. \end{cases}$$

• An ϵ -approximation inverse of \mathcal{L} is then given by [08Modgil]

$$\mathcal{L}_{\epsilon}^{-1}[\phi] = \sum_{l} rac{\sigma_{l}}{\sigma_{l}^{2} + \epsilon^{2}} \langle \phi, \psi_{l}
angle \widetilde{\psi}_{l},$$

where $\epsilon > 0$.

An ε-approximation inverse of spherical Radon transform is given by

$$\mathcal{R}_{\Omega,a,\epsilon}^{-1} = \mathcal{R}_{\Omega}^{-1} \mathcal{W} \mathcal{L}_{\epsilon}^{-1} \mathcal{W}^{-1}.$$

SVD-Approach : Reconstruction using $\mathcal{L}_{\epsilon}^{-1}$

Asymptotic approach : Quadratic losses ($\xi = 2$)

Approximate thermo-viscous Model : $a \ll \frac{1}{\omega}, \xi = 2, \kappa(\omega) \simeq \frac{\omega}{c} + ia\frac{\omega^2}{2}$

$$\mathcal{L}[\phi](t) = \frac{1}{2\pi} \int_{\mathbb{R}^+} \phi(s) \int_{\mathbb{R}} \left(1 - i \frac{ac\omega}{2} \right) e^{i\omega(s-t)} e^{-\frac{1}{2}ac\omega^2 s} d\omega ds$$
$$= \left(1 + \frac{ac}{2} \frac{\partial}{\partial t} \right) \underbrace{\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}^+} \phi(s) \frac{1}{\sqrt{acs}} \exp\left\{ -\frac{1}{2} \frac{(t-s)^2}{acs} \right\} ds}_{:= \widetilde{\mathcal{L}}[\phi](t)}.$$

Asymptotic approach : Quadratic losses ($\xi = 2$)

Approximate thermo-viscous Model : $a \ll \frac{1}{\omega}$, $\xi = 2$, $\kappa(\omega) \simeq \frac{\omega}{c} + ia\frac{\omega^2}{2}$

$$\mathcal{L}[\phi](t) = \frac{1}{2\pi} \int_{\mathbb{R}^+} \phi(s) \int_{\mathbb{R}} \left(1 - i\frac{ac\omega}{2}\right) e^{i\omega(s-t)} e^{-\frac{1}{2}ac\omega^2 s} d\omega ds$$
$$= \left(1 + \frac{ac}{2}\frac{\partial}{\partial t}\right) \underbrace{\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}^+} \phi(s) \frac{1}{\sqrt{acs}} \exp\left\{-\frac{1}{2}\frac{(t-s)^2}{acs}\right\} ds}_{:= \widetilde{\mathcal{L}}[\phi](t)}.$$

Theorem (Stationary Phase Theorem [03Hormander])

For $K \subset [0, \infty)$ compact, X its open neighbourhood, $k \in \mathbb{N}$, $\psi \in C_0^{2k}(K)$ and $h \in C_0^{3k+1}(X)$ such that : $\Im m\{h(t)\} \ge 0$, $\Im m\{h(t_0)\} = 0$, $h'(t_0) = 0$, $h''(t_0) \ne 0$, and $h' \ne 0$ in $K \setminus \{t_0\}$

we have
$$\left|\int_{K}\psi(t)e^{i\hbar(t)/\epsilon}dt - e^{i\hbar(t_{0})/\epsilon}\left(h^{\prime\prime}(t_{0})/2i\pi\epsilon\right)^{-1/2}\sum_{j < k}\epsilon^{j}D_{j}[\psi]\right| \leq C\epsilon^{k}\sum_{\alpha \leq 2k}\sup_{x}\left|\psi^{(\alpha)}(x)\right|$$

for $\epsilon > 0$, where

$$D_{j}[\psi] = \sum_{\nu-\mu=j} \sum_{2\nu \ge 3\mu} i^{-j} (-1)^{\nu} \frac{1}{2^{\nu} \nu! \mu!} h''(t_{0})^{-\nu} \left(\theta_{t_{0}}^{\mu} \psi\right)^{(2\nu)}(t_{0})$$

with

$$\theta_{t_0}(t) := h(t) - h(t_0) - \frac{1}{2}h''(t_0)(t-t_0)^2.$$

A. WAHAB (CMAP-École Polytechnique, France)

Photo-acoustic Imaging Asymptotic approach : Stationary phase analysis

Theorem (Asymptotic expansion)

For a sufficiently smooth function ϕ

$$\widetilde{\mathcal{L}}[\phi](t) = \sum_{j=0}^{k} \frac{(ac)^{j}}{2^{j} j!} \mathcal{D}_{j}[\phi](t) + o\left(a^{k}\right) \quad \text{where} \quad \mathcal{D}_{j}[\phi] = \left(t^{j} \phi(t)\right)^{(2i)}$$

Moreover, an approximate inverse of order k of $\widetilde{\mathcal{L}}$ is given by

$$\widetilde{\mathcal{L}}_{k}^{-1}[\psi] = \sum_{j=0}^{k} d^{j} \psi_{k,j}, \quad \text{where} \quad \begin{cases} \quad \psi_{k,0} = \psi \\ \\ \quad \psi_{k,j} = -\sum_{m=1}^{j} \frac{c^{m}}{2^{m} m!} \mathcal{D}_{m}[\psi_{k,j-m}], \quad \text{for all} \quad j \leq k. \end{cases}$$

Photo-acoustic Imaging Asymptotic approach : Stationary phase analysis

Theorem (Asymptotic expansion)

For a sufficiently smooth function ϕ

$$\widetilde{\mathcal{L}}[\phi](t) = \sum_{j=0}^{k} \frac{(ac)^{j}}{2^{j} j!} \mathcal{D}_{j}[\phi](t) + o\left(a^{k}\right) \quad \text{where} \quad \mathcal{D}_{j}[\phi] = \left(t^{j} \phi(t)\right)^{(2i)}$$

Moreover, an approximate inverse of order k of $\widetilde{\mathcal{L}}$ is given by

$$\widetilde{\mathcal{L}}_{k}^{-1}[\psi] = \sum_{j=0}^{k} d^{j}\psi_{k,j}, \quad \text{where} \quad \begin{cases} \quad \psi_{k,0} = \psi \\ \\ \psi_{k,j} = -\sum_{m=1}^{j} \frac{c^{m}}{2^{m} m!} \mathcal{D}_{m}[\psi_{k,j-m}], \quad \text{for all} \quad j \leq k. \end{cases}$$

Consequently,

• An approximate inverse of order *k* to the spherical Radon transform is given by

$$\mathcal{R}_{\Omega,a,k}^{-1} = \mathcal{R}_{\Omega}^{-1} \mathcal{W} \mathcal{L}_{k}^{-1} \mathcal{W}^{-1} \quad \text{with} \quad \mathcal{L}_{k}^{-1} = \tilde{\mathcal{L}}_{k}^{-1} \left(1 + \frac{ac}{2} \frac{\partial}{\partial t} \right)^{-1}$$

Photo-acoustic Imaging Asymptotic approach : $1 \le \xi < 2$

In general

$$\widetilde{\mathcal{L}}[\phi](t) = \int_{\mathbb{R}^+} \phi(s) \int_{\mathbb{R}} e^{i\omega(s-t)} e^{-acs|\omega|^{\xi}} d\omega \, ds$$

• Its adjoint $\widetilde{\mathcal{L}}^*$ is given by

$$\widetilde{\mathcal{L}}^*[\phi](t) = \int_{\mathbb{R}^+} \phi(s) \int_{\mathbb{R}} e^{i\omega(t-s)} e^{-act|\omega|^{\xi}} d\omega \, ds = \frac{1}{\pi} \int_{\mathbb{R}^+} \phi(s) \frac{act}{(act)^2 + (t-s)^2} ds$$

Photo-acoustic Imaging Asymptotic approach : $1 \le \xi \le 2$

In general

$$\widetilde{\mathcal{L}}[\phi](t) = \int_{\mathbb{R}^+} \phi(s) \int_{\mathbb{R}} e^{i\omega(s-t)} e^{-acs|\omega|^{\xi}} d\omega \, ds$$

• Its adjoint $\widetilde{\mathcal{L}}^*$ is given by

$$\widetilde{\mathcal{L}}^*[\phi](t) = \int_{\mathbb{R}^+} \phi(s) \int_{\mathbb{R}} e^{i\omega(t-s)} e^{-act|\omega|^{\frac{2}{5}}} d\omega \, ds = \frac{1}{\pi} \int_{\mathbb{R}^+} \phi(s) \frac{act}{(act)^2 + (t-s)^2} ds$$

Theorem

For a sufficiently smooth function ϕ ,

$$\widetilde{\mathcal{L}}[\phi](t) = \phi(t) + C_{\xi} \, ac \mathcal{D}_t^{\xi/2} \left(t\phi(t) \right) + o(a),$$

and

$$\widetilde{\mathcal{L}}^*[\phi](t) = \phi(t) + C_{\xi} \operatorname{ac} t \mathcal{D}_t^{\xi/2}(\phi(t)) + o(a),$$

where C_{ξ} is a constant, depending only on ξ and $\mathcal{D}_{t}^{\xi/2}$ is defined by

$$\mathcal{D}_{t}^{\xi/2}[\phi](t) := \frac{1}{\pi} p.v. \int_{\mathbb{R}} \frac{\phi(s) - \phi(t)}{(s-t)^{1+\xi}} ds$$

Asymptotic approach : Reconstruction using $\widetilde{\mathcal{L}}_k^{-1}$

Acoustic Time Reversal

Acoustic Time Reversal

Acoustic Time Reversal

Acoustic Time-reversal Idea of time-reversal

The wave equation

 $\partial_{tt}p_0(x,t) - \Delta p_0(x,t) = 0$

is invariant under time-transformation $t \rightarrow T - t$.

 By reciprocity principle, we can re-focus on a (temporally localized) source location. [97Fink], [07Fouque]

Adjoint Wave

Let *v* be the solution of the wave equation

$$\begin{cases} \partial_{tt} v(x,t) - \Delta v(x,t) = 0, & (x,t) \in \Omega \times (0,T) \\ v(x,0) = 0, & \partial_{t} v(x,0) = 0, & x \in \Omega \\ v(x,t) = g_0(x,T-t), & (x,t) \in \partial\Omega \times [0,T] \end{cases}$$

Then,

$$v(x,t) = p_0(x,T-t), \quad \forall (x,t) \in \Omega \times [0,T], \text{ and } v(x,T) = f(x)$$

Acoustic Time-reversal Idea of time-reversal

The wave equation

 $\partial_{tt}p_0(x,t) - \Delta p_0(x,t) = 0$

is invariant under time-transformation $t \rightarrow T - t$.

 By reciprocity principle, we can re-focus on a (temporally localized) source location. [97Fink], [07Fouque]

Adjoint Wave

Let v be the solution of the wave equation

$$\begin{cases} \partial_{tt} v(x,t) - \Delta v(x,t) = 0, & (x,t) \in \Omega \times (0,T) \\ v(x,0) = 0, & \partial_{t} v(x,0) = 0, & x \in \Omega \\ v(x,t) = g_0(x,T-t), & (x,t) \in \partial\Omega \times [0,T] \end{cases}$$

Then,

$$v(x,t) = p_0(x,T-t), \quad \forall (x,t) \in \Omega \times [0,T], \text{ and } v(x,T) = f(x)$$

Acoustic Time-reversal Time-reversal experiment

Simulations carried out by E. Bretin(INSA-Lyon)

Acoustic Time-reversal Time-reversal experiment

Simulations carried out by E. Bretin(INSA-Lyon)

Modeling & Imaging of Attenuation

Acoustic Time-reversal Integral formulation

Exact Integral Formulation

Green's theorem and integration by parts yield

$$f(x) = v(x,T) = \int_0^T \int_{\partial\Omega} \frac{\partial G_D(x,y,t-T)}{\partial \nu_y} g_0(y,t-T) d\sigma(y) \quad \forall x \in \Omega$$

where G_D is the Dirichlet Green function and v is the adjoint wave.

Modified TR-functional

Let $G_0(x, y, t)$ be the outgoing fundamental solution and $v_s(x, t)$ be such that

$$\begin{cases} \partial_{tt} v_s(x,t) - \Delta v_s(x,t) = \partial_t \delta_s(t) g_0(x,T-s) \delta_{\partial \Omega}(x), & \forall (x,t) \in \mathbb{R}^d \times \mathbb{R}, \\ v_s(x,t) = 0, & \partial_t v_s(x,t) = 0 & \forall x \in \mathbb{R}^d, \quad t \ll s. \end{cases}$$

Then, a modified time-reversal functional is given by

$$\mathcal{I}(x) := \int_0^T v_s(x,T) ds = \int_0^T \int_{\partial \Omega} \partial_t G_0(x,y,T-s) g_0(y,T-s) d\sigma(y) ds \quad \forall x \in \Omega$$
Acoustic Time-reversal Integral formulation

Exact Integral Formulation

Green's theorem and integration by parts yield

$$f(x) = v(x,T) = \int_0^T \int_{\partial\Omega} \frac{\partial G_D(x,y,t-T)}{\partial \nu_y} g_0(y,t-T) d\sigma(y) \quad \forall x \in \Omega$$

where G_D is the Dirichlet Green function and v is the adjoint wave.

Modified TR-functional

Let $G_0(x, y, t)$ be the outgoing fundamental solution and $v_s(x, t)$ be such that

$$\begin{cases} \partial_{tt} v_s(x,t) - \Delta v_s(x,t) = \partial_t \delta_s(t) g_0(x,T-s) \delta_{\partial \Omega}(x), & \forall (x,t) \in \mathbb{R}^d \times \mathbb{R}, \\ v_s(x,t) = 0, & \partial_t v_s(x,t) = 0 & \forall x \in \mathbb{R}^d, \quad t \ll s. \end{cases}$$

Then, a modified time-reversal functional is given by

$$\mathcal{I}(x) := \int_0^T v_s(x,T) ds = \int_0^T \int_{\partial\Omega} \partial_t G_0(x,y,T-s) g_0(y,T-s) d\sigma(y) ds \quad \forall x \in \Omega.$$

Acoustic Time-reversal Integral formulation II

• Remark that
$$\widehat{g}_0(y) = -i\omega \int_{\Omega} \widehat{G}_0(z, y) f(z) dz$$
 for all $y \in \partial \Omega$

• Helmholtz-Kirchhoff Identity : For $x, z \in \Omega$ sufficiently far from $y \in \partial \Omega$

$$\int_{\partial\Omega}\widehat{G}_0(x,y)\overline{\widehat{G}_0}(z,y)d\sigma(y) = \frac{1}{\omega}\Im m\{\widehat{G}_0(x,z)\}$$

•
$$\int_{\mathbb{R}} \omega \Im m \{ \widehat{G}_0(x,z) \} d\omega = \delta_x(z)$$

Acoustic Time-reversal Integral formulation II

• Remark that
$$\widehat{g}_0(y) = -i\omega \int_{\Omega} \widehat{G}_0(z, y) f(z) dz$$
 for all $y \in \partial \Omega$

• Helmholtz-Kirchhoff Identity : For $x, z \in \Omega$ sufficiently far from $y \in \partial \Omega$

$$\int_{\partial\Omega}\widehat{G}_0(x,y)\overline{\widehat{G}_0}(z,y)d\sigma(y) = \frac{1}{\omega}\Im m\{\widehat{G}_0(x,z)\}$$

•
$$\int_{\mathbb{R}} \omega \Im m \{ \widehat{G}_0(x,z) \} d\omega = \delta_x(z)$$

• Therefore,

$$\begin{split} \mathcal{I}(x) &= -\frac{1}{2\pi} \int_{\mathbb{R}} \int_{\partial\Omega} i\omega \widehat{G}_0(x, y) \overline{\widehat{g}}_0(y) d\sigma(y) d\omega \\ &= \frac{1}{2\pi} \int_{\mathbb{R}^d} f(z) \int_{\mathbb{R}} \int_{\partial\Omega} \omega^2 \widehat{G}_0(x, y) \overline{\widehat{G}_0}(z, y) d\sigma(y) d\omega dz \\ &\simeq \frac{1}{2\pi} \int_{\mathbb{R}^d} f(z) \int_{\mathbb{R}} \omega \Im m\{\widehat{G}_0(x, z)\} d\omega dz \end{split}$$

Acoustic Time-reversal Integral formulation II

• Remark that
$$\widehat{g}_0(y) = -i\omega \int_{\Omega} \widehat{G}_0(z, y) f(z) dz$$
 for all $y \in \partial \Omega$

• Helmholtz-Kirchhoff Identity : For $x, z \in \Omega$ sufficiently far from $y \in \partial \Omega$

$$\int_{\partial\Omega}\widehat{G}_0(x,y)\overline{\widehat{G}_0}(z,y)d\sigma(y) = \frac{1}{\omega}\Im m\{\widehat{G}_0(x,z)\}$$

•
$$\int_{\mathbb{R}} \omega \Im m \{ \widehat{G}_0(x,z) \} d\omega = \delta_x(z)$$

Therefore,

$$\begin{split} \mathcal{I}(x) &= -\frac{1}{2\pi} \int_{\mathbb{R}} \int_{\partial\Omega} i\omega \widehat{G}_0(x, y) \overline{\widehat{g}}_0(y) d\sigma(y) d\omega \\ &= \frac{1}{2\pi} \int_{\mathbb{R}^d} f(z) \int_{\mathbb{R}} \int_{\partial\Omega} \omega^2 \widehat{G}_0(x, y) \overline{\widehat{G}_0}(z, y) d\sigma(y) d\omega dz \\ &\simeq \frac{1}{2\pi} \int_{\mathbb{R}^d} f(z) \int_{\mathbb{R}} \omega \Im m\{\widehat{G}_0(x, z)\} d\omega dz \end{split}$$

Theorem

For *x* far from $\partial \Omega$ (w.r.t. wavelength), we have $\mathcal{I}(x) \simeq f(x)$.

Acoustic Time-reversal Reconstructions

Acoustic Time-reversal Reconstructions

Left to Right : Initial image, Exact time-reversal, Modified time-reversal

A. WAHAB (CMAP-École Polytechnique, France)

Acoustic Time-reversal

Consider the thermo-viscous wave equation

$$\begin{cases} \partial_{tt}p_a(x,t) - \Delta p_a(x,t) - a\partial_t(\Delta p_a(x,t)) = 0\\ p_a(x,0) = f(x), \quad \text{and} \quad \partial_t p_a(x,0) = 0. \end{cases}$$

Attenuated TR-functional

Define

$$\mathcal{I}_a(x) = \int_0^T v_{s,a}(x,T) ds \quad \forall x \in \Omega$$

where $v_{s,a}(x, t)$ is the solution of the adjoint attenuated wave equation [07Burgholzer], [10Treeby]

 $\partial_{tt}v_{s,a}(x,t) - \Delta v_{s,a}(x,t) + a \partial_t (\Delta v_{s,a}(x,t)) = \partial_t \delta_s(t) g_a(x,T-s) \delta_{\partial \Omega}(x).$

Acoustic Time-reversal

Consider the thermo-viscous wave equation

$$\begin{cases} \partial_{tt}p_a(x,t) - \Delta p_a(x,t) - a\partial_t(\Delta p_a(x,t)) = 0\\ p_a(x,0) = f(x), \quad \text{and} \quad \partial_t p_a(x,0) = 0. \end{cases}$$

Attenuated TR-functional

Define

$$\mathcal{I}_a(x) = \int_0^T v_{s,a}(x,T) ds \quad \forall x \in \Omega$$

where $v_{s,a}(x, t)$ is the *solution* of the adjoint attenuated wave equation [07Burgholzer], [10Treeby]

$$\partial_{tt}v_{s,a}(x,t) - \Delta v_{s,a}(x,t) + a\partial_t(\Delta v_{s,a}(x,t)) = \partial_t \delta_s(t)g_a(x,T-s)\delta_{\partial\Omega}(x).$$

- Highly unstable,
- Order of correction,
- Mathematical justifications.

Acoustic Time-reversal TR in attenuating media : Truncated functional

• Let $\widehat{\widetilde{G}}_a$ be the fundamental solution of the Lossy Helmholtz equation

$$\omega^2 \widehat{\widetilde{G}}_a(x, y) + (1 + ia\omega) \,\Delta_y \widehat{\widetilde{G}}_a(x, y) = -\delta_x(y) \quad \text{in} \quad \mathbb{R}^d$$

• Let
$$\widetilde{G}_{a,\rho}(x,y,t) := \frac{1}{2\pi} \int_{|\omega| < \rho} \widehat{\widetilde{G}}_a(x,y) \exp(-i\omega t) d\omega$$

• Consider an approximation $v_{s,a,\rho}(x,t)$ of $v_{s,a}(x,t)$ given by :

$$v_{s,a,\rho}(x,t) = \int_{\partial\Omega} \partial_t \widetilde{G}_{a,\rho}(x,y,t-s) g_a(y,T-s) d\sigma(y)$$

Acoustic Time-reversal TR in attenuating media : Truncated functional

• Let $\widehat{\widetilde{G}}_a$ be the fundamental solution of the Lossy Helmholtz equation

$$\omega^2 \widehat{\widetilde{G}}_a(x, y) + (1 + ia\omega) \,\Delta_y \widehat{\widetilde{G}}_a(x, y) = -\delta_x(y) \quad \text{in} \quad \mathbb{R}^d$$

• Let
$$\widetilde{G}_{a,\rho}(x,y,t) := \frac{1}{2\pi} \int_{|\omega| < \rho} \widehat{\widetilde{G}}_a(x,y) \exp(-i\omega t) d\omega$$

• Consider an approximation $v_{s,a,\rho}(x,t)$ of $v_{s,a}(x,t)$ given by :

$$v_{s,a,\rho}(x,t) = \int_{\partial\Omega} \partial_t \widetilde{G}_{a,\rho}(x,y,t-s)g_a(y,T-s)d\sigma(y)$$

We define :

Truncated TR-Functional

$$\mathcal{I}_{a,\rho}(x) := \int_0^T v_{s,a,\rho}(x,T) ds = \int_0^T \int_{\partial\Omega} \partial_t \widetilde{G}_{a,\rho}(x,y,T-s) g_a(y,T-s) d\sigma(y) ds, \quad x \in \Omega.$$

Acoustic Time-reversal Attenuation operators

• We have $p_a(x, t) = \mathcal{L}[p(x, \cdot)](t)$, where

$$\mathcal{L}[\phi](t) = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{\kappa(\omega)}{\omega} \left\{ \int_{\mathbb{R}} \phi(s) e^{i\kappa(\omega)s} ds \right\} e^{-i\omega t} d\omega.$$

with $\kappa(\omega) = \frac{\omega}{\sqrt{1-ia\omega}}$.

Acoustic Time-reversal Attenuation operators

• We have
$$p_a(x, t) = \mathcal{L}[p(x, \cdot)](t)$$
, where

$$\mathcal{L}[\phi](t) = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{\kappa(\omega)}{\omega} \left\{ \int_{\mathbb{R}} \phi(s) e^{i\kappa(\omega)s} ds \right\} e^{-i\omega t} d\omega.$$

with $\kappa(\omega) = \frac{\omega}{\sqrt{1-ia\omega}}$.

• Moreover we define operator $\widetilde{\mathcal{L}}_{\rho}$ associated with $\widetilde{\kappa}(\omega) = \frac{\omega}{\sqrt{1+ia\omega}}$ by

$$\widetilde{\mathcal{L}}_{\rho}[\phi](t) := \frac{1}{2\pi} \int_0^{\infty} \phi(s) \left\{ \int_{|\omega| \le \rho} \frac{\widetilde{\kappa}(\omega)}{\omega} e^{i\widetilde{\kappa}(\omega)s} e^{-i\omega t} d\omega \right\} ds,$$

Acoustic Time-reversal Attenuation operators

• We have
$$p_a(x, t) = \mathcal{L}[p(x, \cdot)](t)$$
, where

$$\mathcal{L}[\phi](t) = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{\kappa(\omega)}{\omega} \left\{ \int_{\mathbb{R}} \phi(s) e^{i\kappa(\omega)s} ds \right\} e^{-i\omega t} d\omega.$$

with $\kappa(\omega) = \frac{\omega}{\sqrt{1-ia\omega}}$.

• Moreover we define operator $\widetilde{\mathcal{L}}_{\rho}$ associated with $\widetilde{\kappa}(\omega) = \frac{\omega}{\sqrt{1+ia\omega}}$ by

$$\widetilde{\mathcal{L}}_{\rho}[\phi](t) := \frac{1}{2\pi} \int_0^{\infty} \phi(s) \left\{ \int_{|\omega| \le \rho} \frac{\widetilde{\kappa}(\omega)}{\omega} e^{i\widetilde{\kappa}(\omega)s} e^{-i\omega t} d\omega \right\} ds,$$

• We denote its adjoint operator by $\widetilde{\mathcal{L}}_{\rho}^{*}$ given by

$$\widetilde{\mathcal{L}}_{\rho}^{*}[\phi](t) = \frac{1}{2\pi} \int_{|\omega| \leq \rho} \frac{\widetilde{\kappa}(\omega)}{\omega} e^{i\widetilde{\kappa}(\omega)t} \left\{ \int_{0}^{\infty} \phi(s) e^{-i\omega s} ds \right\} d\omega$$

Remark that

$$\partial_t \widetilde{G}_{a,\rho}(x,y,t) = \widetilde{\mathcal{L}}_{\rho} \left[\partial_t G_0(x,y,.) \right](t)$$

Acoustic Time-reversal Asymptotic approximation : $a \ll \omega^{-1}$

Proposition

For $\kappa(\omega) \simeq \omega + rac{ia\omega^2}{2}$ and a
ightarrow 0 following results hold :

• Let
$$\phi(t) \in \mathcal{S}([0,\infty[), then$$

$$\mathcal{L}[\phi](t) = \phi(t) + \frac{a}{2} \left(t\phi' \right)'(t) + o(a).$$

• Let
$$\phi(t) \in \mathcal{D}([0,\infty[), \text{ then for all } \rho > 0$$

$$\widetilde{\mathcal{L}}_{\rho}^{*}[\phi](t) = S_{\rho}[\phi](t) - \frac{a}{2}S_{\rho}[(t\phi')'] + o(a).$$

• Let $\phi(t) \in \mathcal{D}([0,\infty[) \text{ and } \rho > 0, \text{ then }$

$$\widetilde{\mathcal{L}}_{\rho}^{*}\mathcal{L}\phi(t) = S_{\rho}[\phi](t) + o(a).$$

where S is the Schwartz space, \mathcal{D} is the space of \mathcal{C}^{∞} – functions of compact support and

$$S_{\rho}[\phi](t) = \frac{1}{2\pi} \int_{|\omega| \le \rho} e^{-i\omega t} \widehat{\phi}(\omega) d\omega$$

Acoustic Time-reversal Analysis of truncated functional

Consequently we have

$$\begin{aligned} \mathcal{I}_{a,\rho}(x) &= \int_0^T \int_{\partial\Omega} \partial_t G_0(x,y,t) \widetilde{\mathcal{L}}_{\rho}^* \left[\mathcal{L} \left[g_0(y,\cdot) \right] \right](t) d\sigma(y) dt \\ &= \int_0^T \int_{\partial\Omega} \partial_t G_0(x,y,t) S_{\rho} \left[g_0(y,\cdot) \right](t) d\sigma(y) dt + o(a) \end{aligned}$$

Acoustic Time-reversal Analysis of truncated functional

Consequently we have

$$\begin{aligned} \mathcal{I}_{a,\rho}(x) &= \int_0^T \int_{\partial\Omega} \partial_t G_0(x,y,t) \widetilde{\mathcal{L}}_{\rho}^* \left[\mathcal{L} \left[g_0(y,\cdot) \right] \right](t) d\sigma(y) dt \\ &= \int_0^T \int_{\partial\Omega} \partial_t G_0(x,y,t) S_{\rho} \left[g_0(y,\cdot) \right](t) d\sigma(y) dt + o(a) \end{aligned}$$

Finally remark that

$$\delta_{\rho,x}(z) = \frac{1}{2\pi} \int_{|\omega| \le \rho} \omega \Im m\{\widehat{G}_0(x,z)\} d\omega \to \delta_x(z) \quad \text{as} \quad \rho \to +\infty.$$

Therefore,

$$\mathcal{I}_{a,\rho}(x) \simeq \delta_{\rho,x}(y) * f(y) + o(a)$$

$$\xrightarrow{\rho \to \infty} f(x) + o(a).$$

Acoustic Time-reversal Truncated TR-functional : Reconstruction

Acoustic Time-reversal Pre-processing TR-scheme

- As $g_a(y, t) = \mathcal{L}[g_0(y, .](t)]$, an alternative strategy is to
 - pre-process the measured data $g_a(y, t)$ using a pseudo-inverse of \mathcal{L} as a filter
 - apply the ideal time-reversal functional $\mathcal{I}(x)$ to identify source location.

Acoustic Time-reversal Pre-processing TR-scheme

- As $g_a(y, t) = \mathcal{L}[g_0(y, .](t)]$, an alternative strategy is to
 - pre-process the measured data $g_a(y, t)$ using a pseudo-inverse of \mathcal{L} as a filter
 - apply the ideal time-reversal functional $\mathcal{I}(x)$ to identify source location.
- Using higher order asymptotics :

$$\mathcal{L}[\phi](t) = \sum_{m=0}^{k} \frac{a^{m}}{m! \ 2^{m}} \left(t^{m} \phi'\right)^{(2m-1)}(t) + o(a^{k})$$

$$\mathcal{L}_k^{-1}[\phi](t) = \sum_{m=0}^k a^m \phi_{k,m}(t) \quad \text{such that} \quad \mathcal{L}_k^{-1} \mathcal{L}[\phi](t) = \phi(t) + o(a^k).$$

and $\phi_{k,m}$ verify

$$\begin{cases} \phi_{k,0} &= \phi \\ \phi_{k,m} &= -\sum_{l=1}^{m} \mathcal{D}_{l}[\phi_{k,m-l}], \quad \text{and} \quad \mathcal{D}_{m}\phi(t) = \frac{1}{m! \ 2^{m}} \left(t^{m} \phi'\right)^{(2m-1)}(t). \end{cases}$$

Acoustic Time-reversal Pre-processing TR-scheme : Reconstruction

Test with a = 0.0005. Left to Right : Without correction, with correction & k = 1, with correction & k = 4.

Elastic Time-reversal

Elastic Time-reversal

Elastic Time-reversal Ideas of elastic time-reversal

Problem

Find supp { $\mathbf{f}(x)$ } given { $\mathbf{g}_0(y,t) := \mathbf{u}_0(y,t) : (y,t) \in \partial\Omega \times [0,T]$ } such that :

$$\begin{cases} (\partial_{tt} - \mathcal{L}_{\lambda,\mu}) \, \mathbf{u}_0(x,t) = \partial_t \delta_0(t) \mathbf{f}(x), & (x,t) \in \mathbb{R}^d \times \mathbb{R}, \\ \mathbf{u}_0(x,t) = \mathbf{0}, \, \partial_t \mathbf{u}_0(x,t) = \mathbf{0}, & x \in \mathbb{R}^d, t \ll 0, \end{cases}$$

for T sufficiently large and

$$\mathcal{L}_{\alpha,\beta}[\mathbf{u}] = (\alpha + \beta)\nabla\nabla \cdot \mathbf{u} - \beta\Delta\mathbf{u}.$$

Elastic TR-functional

An elastic time-reversal functional is given by

$$\mathcal{I}(x) := \int_0^T \mathbf{v}_s(x,T) ds,$$

where $v_s(x, t)$ is the adjoint elastic wave :

$$\begin{cases} \partial_{tt} \mathbf{v}_{s}(x,t) - \mathcal{L}_{\lambda,\mu} \mathbf{v}_{s}(x,t) = \partial_{t} \delta_{s}(t) \mathbf{g}_{0}(x,T-s) \delta_{\partial \Omega}(x), & \forall (x,t) \in \mathbb{R}^{d} \times \mathbb{R}, \\ \mathbf{v}_{s}(x,t) = \mathbf{0}, & \partial_{t} \mathbf{v}_{s}(x,t) = \mathbf{0} & \forall x \in \mathbb{R}^{d}, \quad t \ll s. \end{cases}$$

Modeling & Imaging of Attenuation

Elastic Time-reversal Ideas of elastic time-reversal

Problem

Find supp { $\mathbf{f}(x)$ } given { $\mathbf{g}_0(y,t) := \mathbf{u}_0(y,t) : (y,t) \in \partial\Omega \times [0,T]$ } such that :

$$\begin{cases} (\partial_{tt} - \mathcal{L}_{\lambda,\mu}) \, \mathbf{u}_0(x,t) = \partial_t \delta_0(t) \mathbf{f}(x), & (x,t) \in \mathbb{R}^d \times \mathbb{R}, \\ \mathbf{u}_0(x,t) = \mathbf{0}, \; \partial_t \mathbf{u}_0(x,t) = \mathbf{0}, & x \in \mathbb{R}^d, t \ll 0, \end{cases}$$

for T sufficiently large and

$$\mathcal{L}_{\alpha,\beta}[\mathbf{u}] = (\alpha + \beta)\nabla\nabla \cdot \mathbf{u} - \beta\Delta\mathbf{u}.$$

Elastic TR-functional

An elastic time-reversal functional is given by

$$\mathcal{I}(x) := \int_0^T \mathbf{v}_s(x,T) ds,$$

where $v_s(x, t)$ is the adjoint elastic wave :

$$\begin{cases} \partial_{tt} \mathbf{v}_{s}(x,t) - \mathcal{L}_{\lambda,\mu} \mathbf{v}_{s}(x,t) = \partial_{t} \delta_{s}(t) \mathbf{g}_{0}(x,T-s) \delta_{\partial \Omega}(x), & \forall (x,t) \in \mathbb{R}^{d} \times \mathbb{R}, \\ \mathbf{v}_{s}(x,t) = \mathbf{0}, & \partial_{t} \mathbf{v}_{s}(x,t) = \mathbf{0} & \forall x \in \mathbb{R}^{d}, \quad t \ll s. \end{cases}$$

Elastic Time-reversal Integral formulation and Green's Tensors

Integral formulation

$$\mathcal{I}(x) := \Re e\left\{\frac{1}{2\pi} \int_{\mathbb{R}^d} \int_{\mathbb{R}} \omega^2 \left[\int_{\partial \Omega} \widehat{\mathbb{G}}(x, y) \overline{\widehat{\mathbb{G}}}(y, z) d\sigma(y) \right] d\omega \mathbf{f}(z) dz \right\}$$

• We have defined $\widehat{\mathbb{G}}(x, y) := \widehat{\mathbb{G}}_0(x - y)$ such that $\widehat{\mathbb{G}}_0(x - y)$ is the fundamental solution of the time harmonic wave equation *i.e.*

$$\left(\mathcal{L}_{\lambda,\mu}+\omega^2\right)\widehat{\mathbb{G}}_0(x)=-\delta_0(x)\mathbb{I}, \quad x\in\mathbb{R}^d.$$

It can be expressed as

$$\widehat{\mathbb{G}}_{0}(x) = \frac{1}{\mu \kappa_{s}^{2}} \left(\kappa_{s}^{2} \widehat{G}_{0}^{s}(x) \mathbb{I} + \mathbb{D} \left(\widehat{G}_{0}^{s} - \widehat{G}_{0}^{p} \right)(x) \right), \qquad x \in \mathbb{R}^{d},$$

where

$$= \left[\left(\partial_i \partial_j \right)_{i,j=1}^d, \qquad \qquad = \left[\Delta + \kappa_\alpha^2 \right] \widehat{G}_0^\alpha(x) = -\delta(x) \text{ in } \mathbb{R}^d,$$

Elastic Time-reversal Integral formulation and Green's Tensors

Integral formulation

$$\mathcal{I}(x) := \Re e\left\{\frac{1}{2\pi} \int_{\mathbb{R}^d} \int_{\mathbb{R}} \omega^2 \left[\int_{\partial \Omega} \widehat{\mathbb{G}}(x, y) \overline{\widehat{\mathbb{G}}}(y, z) d\sigma(y) \right] d\omega \mathbf{f}(z) dz \right\}$$

We have defined G
[−](x, y) := G
[−](x - y) such that G
[−](x - y) is the fundamental solution of the time harmonic wave equation *i.e.*

$$\left(\mathcal{L}_{\lambda,\mu}+\omega^2\right)\widehat{\mathbb{G}}_0(x)=-\delta_0(x)\mathbb{I}, \quad x\in\mathbb{R}^d.$$

It can be expressed as

$$\widehat{\mathbb{G}}_{0}(x) = \frac{1}{\mu \kappa_{s}^{2}} \left(\kappa_{s}^{2} \widehat{G}_{0}^{s}(x) \mathbb{I} + \mathbb{D} \left(\widehat{G}_{0}^{s} - \widehat{G}_{0}^{p} \right)(x) \right), \qquad x \in \mathbb{R}^{d},$$

where

$$\mathbb{D} = (\partial_i \partial_j)_{i,j=1}^d, \qquad \qquad \mathbb{D} = [\Delta + \kappa_{\alpha}^2] \widehat{G}_0^{\alpha}(x) = -\delta(x) \text{ in } \mathbb{R}^d,$$

$$\label{eq:alpha} \quad - \ \kappa_s^2 = \omega^2 \mu^{-1} \text{ and } \kappa_p^2 = \omega^2 (\lambda + 2\mu)^{-1}, \qquad \quad - \ \alpha = p,s.$$

Elastic Time-reversal Helmholtz-Kirchhoff identities

Let $\widehat{\mathbb{G}}^p$ and $\widehat{\mathbb{G}}^s$ be the divergence and curl free parts of $\widehat{\mathbb{G}}$ such that $\widehat{\mathbb{G}}(x) = \widehat{\mathbb{G}}^p(x) + \widehat{\mathbb{G}}^s(x)$. Then

Proposition (Elastic HK-identities)

For all $x, z \in \Omega$, we have

$$1. \int_{\partial\Omega} \left[\frac{\partial \widehat{\mathbb{G}}(x,y)}{\partial \nu} \overline{\widehat{\mathbb{G}}}(y,z) - \widehat{\mathbb{G}}(x,y) \frac{\partial \overline{\widehat{\mathbb{G}}}(y,z)}{\partial \nu} \right] d\sigma(y) = 2i\Im m\{\widehat{\mathbb{G}}(x,z)\}.$$

$$2. \int_{\partial\Omega} \left[\frac{\partial \widehat{\mathbb{G}}^{\alpha}(x,y)}{\partial \nu} \overline{\widehat{\mathbb{G}}^{\alpha}}(y,z) - \widehat{\mathbb{G}}^{\alpha}(x,y) \frac{\partial \overline{\widehat{\mathbb{G}}^{\alpha}}(y,z)}{\partial \nu} \right] d\sigma(y) = 2i\Im m\{\widehat{\mathbb{G}}^{\alpha}(x,z)\}, \quad \alpha = p, s.$$

$$3. \int_{\partial\Omega} \left[\frac{\partial \widehat{\mathbb{G}}^{s}(x,y)}{\partial \nu} \overline{\widehat{\mathbb{G}}^{p}}(y,z) - \widehat{\mathbb{G}}^{s}(x,y) \frac{\partial \overline{\widehat{\mathbb{G}}^{p}}(y,z)}{\partial \nu} \right] d\sigma(y) = 0.$$

where the co-normal derivative in the outward unit normal direction n is defined by

$$\frac{\partial \mathbf{u}}{\partial \nu} := \lambda (\nabla \cdot \mathbf{u}) \mathbf{n} + \mu (\nabla \mathbf{u}^T + (\nabla \mathbf{u}^T)^T) \mathbf{n}.$$

Elastic Time-reversal Helmholtz-Kirchhoff identities II

Proposition

If
$$\mathbf{n} = \widehat{y - x}$$
 and $|x - y| \gg 1$ then

$$\frac{\partial \widehat{\mathbb{G}}^{\alpha}}{\partial \nu}(x, y) = i\omega c_{\alpha} \widehat{\mathbb{G}}^{\alpha}(x, y) + o(|x - y|^{-1}), \quad \alpha = p, s.$$
where $c_s^2 = \mu$ and $c_p^2 = \lambda + 2\mu$ are shear and pressure wave speeds.

Lemma

Let $\Omega \subset \mathbb{R}^d$ be a ball with large radius (w.r.t. wavelength). Then, for all $x, z \in \Omega$ sufficiently far from the boundary $\partial \Omega$, we have

1.
$$\Re e \left\{ \int_{\partial\Omega} \widehat{\mathbb{G}}^{\alpha}(x, y) \overline{\widehat{\mathbb{G}}^{\alpha}}(y, z) d\sigma(y) \right\} \simeq \frac{1}{\omega c_{\alpha}} \Im m \left\{ \widehat{\mathbb{G}}^{\alpha}(x, z) \right\}, \quad \alpha = p, s.$$

2. $\Re e \left\{ \int_{\partial\Omega} \widehat{\mathbb{G}}^{s}(x, y) \overline{\widehat{\mathbb{G}}^{p}}(y, z) d\sigma(y) \right\} \simeq 0$

Elastic Time-reversal Helmholtz-Kirchhoff identities II

Proposition

If
$$\mathbf{n} = \widehat{y - x}$$
 and $|x - y| \gg 1$ then

$$\frac{\partial \widehat{\mathbb{G}}^{\alpha}}{\partial \nu}(x, y) = i\omega c_{\alpha} \widehat{\mathbb{G}}^{\alpha}(x, y) + o(|x - y|^{-1}), \quad \alpha = p, s.$$
where $c_s^2 = \mu$ and $c_p^2 = \lambda + 2\mu$ are shear and pressure wave speeds.

Lemma

Let $\Omega \subset \mathbb{R}^d$ be a ball with large radius (w.r.t. wavelength). Then, for all $x, z \in \Omega$ sufficiently far from the boundary $\partial \Omega$, we have

1.
$$\Re e \left\{ \int_{\partial\Omega} \widehat{\mathbb{G}}^{\alpha}(x, y) \overline{\widehat{\mathbb{G}}^{\alpha}}(y, z) d\sigma(y) \right\} \simeq \frac{1}{\omega c_{\alpha}} \Im m \{ \widehat{\mathbb{G}}^{\alpha}(x, z) \}, \quad \alpha = p, s.$$

2. $\Re e \left\{ \int_{\partial\Omega} \widehat{\mathbb{G}}^{s}(x, y) \overline{\widehat{\mathbb{G}}^{p}}(y, z) d\sigma(y) \right\} \simeq 0$

Elastic Time-reversal Analysis of TR-functional

• For x far from $\partial \Omega$,

$$\begin{split} \mathcal{I}(x) &= \Re e \left\{ \frac{1}{2\pi} \int_{\mathbb{R}^d} \int_{\mathbb{R}} \omega^2 \left[\int_{\partial \Omega} \widehat{\mathbb{G}}(x, y) \overline{\widehat{\mathbb{G}}}(y, z) d\sigma(y) \right] d\omega \mathbf{f}(z) dz \right\} \\ &\simeq \frac{c_s + c_p}{c_s c_p} \frac{1}{4\pi} \int_{\mathbb{R}^d} \int_{\mathbb{R}} \omega \, \Im m \Big\{ \left(\widehat{\mathbb{G}}^p + \widehat{\mathbb{G}}^s \right)(x, z) \Big\} d\omega \mathbf{f}(z) dz \\ &+ \frac{c_s - c_p}{c_s c_p} \frac{1}{4\pi} \int_{\mathbb{R}^d} \int_{\mathbb{R}} \omega \, \Im m \Big\{ \left(\widehat{\mathbb{G}}^p - \widehat{\mathbb{G}}^s \right)(x, z) \Big\} d\omega \mathbf{f}(z) dz \\ &\simeq \frac{c_s + c_p}{2c_s c_p} \mathbf{f}(x) + \frac{c_s - c_p}{2c_s c_p} \int_{\mathbb{R}^d} \mathbb{B}(x, z) \mathbf{f}(z) dz. \end{split}$$

• The operator
$$\mathbb{B}(x,z) := \frac{1}{2\pi} \int_{\mathbb{R}} \omega \Im m \left\{ \left(\widehat{\mathbb{G}}^p - \widehat{\mathbb{G}}^s \right)(x,z) \right\} d\omega$$
, is not diagonal.

• The reconstruction mixes the components of **f** when $c_s \neq c_p$.

Elastic Time-reversal Elastic TR-functional *I* : Reconstructions

Elastic Time-reversal Weighted TR-functional

• Let Ψ and Φ be the divergence and the curl free functions respectively such that

$$\mathcal{I} = \nabla \times \Psi + \nabla \Phi.$$

Define the weighted time-reversal functional by

$$\begin{aligned} \widetilde{\mathcal{I}} &:= c_s \nabla \times \Psi + c_p \nabla \Phi. \\ &= \Re e \left\{ \frac{1}{2\pi} \int_{\mathbb{R}^d} \int_{\mathbb{R}} \omega^2 \left[\int_{\partial \Omega} \left(c_s \widehat{\mathbb{G}}^s(x, y) + c_p \widehat{\mathbb{G}}^p(x, y) \right) \overline{\widehat{\mathbb{G}}}(y, z) d\sigma(y) \right] d\omega \mathbf{f}(z) dz \right\} \end{aligned}$$

Theorem

Let $x \in \Omega$ be sufficiently far (w.r.t. wavelength) from the boundary $\partial \Omega$. Then, $\widetilde{\mathcal{I}}(x) \simeq \mathbf{f}(x)$.

Elastic Time-reversal Weighted TR-functional

• Let Ψ and Φ be the divergence and the curl free functions respectively such that

$$\mathcal{I} = \nabla \times \Psi + \nabla \Phi.$$

Define the weighted time-reversal functional by

$$\begin{aligned} \widetilde{\mathcal{I}} &:= c_s \nabla \times \Psi + c_p \nabla \Phi. \\ &= \Re e \left\{ \frac{1}{2\pi} \int_{\mathbb{R}^d} \int_{\mathbb{R}} \omega^2 \left[\int_{\partial \Omega} \left(c_s \widehat{\mathbb{G}}^s(x, y) + c_p \widehat{\mathbb{G}}^p(x, y) \right) \overline{\widehat{\mathbb{G}}}(y, z) d\sigma(y) \right] d\omega \mathbf{f}(z) dz \right\} \end{aligned}$$

Theorem

Let $x \in \Omega$ be sufficiently far (w.r.t. wavelength) from the boundary $\partial \Omega$. Then, $\tilde{\mathcal{I}}(x) \simeq \mathbf{f}(x)$.

Elastic Time-reversal Weighted TR-functional $\widetilde{\mathcal{I}}$: Reconstructions

Elastic Time-reversal Weighted TR-functional $\widetilde{\mathcal{I}}$: Reconstructions

Elastic Time-Reversal

Elastic Time-reversal

• Consider the Stoke's visco-elastic wave equation with visco-elastic moduli $(\eta_{\lambda}, \eta_{\mu})$ *i.e.*

$$\begin{cases} \left(\partial_{tt} - \mathcal{L}_{\lambda,\mu} - \partial_{t}\mathcal{L}_{\eta_{\lambda},\eta_{\mu}}\right) \mathbf{u}_{a}(x,t) = \partial_{t}\delta_{0}(t)\mathbf{f}(x), & (x,t) \in \mathbb{R}^{d} \times \mathbb{R}, \\ \mathbf{u}_{a}(x,0) = \mathbf{0}, \ \partial_{t}\mathbf{u}_{a}(x,0) = \mathbf{0}, & x \in \mathbb{R}^{d}, t \ll s. \end{cases}$$

• Define an approximation of the adjoint visco-elastic wave by

$$\mathbf{v}_{s,a,\rho}(x,t) = -\frac{1}{2\pi} \int_{|\omega| \le \rho} \left\{ \int_{\partial \Omega} i\omega \widehat{\mathbb{G}}_{-a}(x,y) \mathbf{g}_{a}(y,T-s) d\sigma(y) \right\} e^{-i\omega(t-s)} d\omega$$

where

$$\left(\mathcal{L}_{\lambda,\mu}\pm i\omega\mathcal{L}_{\eta_{\lambda},\eta_{\mu}}+\omega^{2}\right)\widehat{\mathbb{G}}_{\mp a}(x,y)=-\delta_{y}(x)\mathbb{I}, \quad x,y\in\mathbb{R}^{d}.$$

Define

$$\mathcal{I}_{a,\rho}(x) := \int_0^T \mathbf{v}_{s,a,\rho}(x,T) ds = \int_0^T \int_{\partial\Omega} \partial_t \mathbb{G}_{-a,\rho}(x,y,T-s) \mathbf{g}_a(y,T-s) d\sigma(y) ds,$$

where

$$\mathbb{G}_{-a,\rho}(x,y,t) := \frac{1}{2\pi} \int_{|\omega| \le \rho} \widehat{\mathbb{G}}_{-a}(x,y) e^{-i\omega t} d\omega.$$

• Finally, for Ψ and Φ the divergence and curl free components of $\mathcal{I}_{a,\rho}$, let

$$\widetilde{\mathcal{I}}_{a,\rho}(x) := c_p \nabla \Phi + c_s \nabla \times \Psi$$

A. WAHAB (CMAP-École Polytechnique, France)

Modeling & Imaging of Attenuation

Elastic Time-Reversal

Elastic Time-reversal

Consider the Stoke's visco-elastic wave equation with visco-elastic moduli (η_λ, η_μ) *i.e.*

$$\begin{cases} \left(\partial_{tt} - \mathcal{L}_{\lambda,\mu} - \partial_{t}\mathcal{L}_{\eta_{\lambda},\eta_{\mu}}\right) \mathbf{u}_{a}(x,t) = \partial_{t}\delta_{0}(t)\mathbf{f}(x), \quad (x,t) \in \mathbb{R}^{d} \times \mathbb{R} \\ \mathbf{u}_{a}(x,0) = \mathbf{0}, \ \partial_{t}\mathbf{u}_{a}(x,0) = \mathbf{0}, \qquad x \in \mathbb{R}^{d}, t \ll s. \end{cases}$$

• Define an approximation of the adjoint visco-elastic wave by

$$\mathbf{v}_{s,a,\rho}(x,t) = -\frac{1}{2\pi} \int_{|\omega| \le \rho} \left\{ \int_{\partial \Omega} i\omega \widehat{\mathbb{G}}_{-a}(x,y) \mathbf{g}_{a}(y,T-s) d\sigma(y) \right\} e^{-i\omega(t-s)} d\omega$$

where

$$\left(\mathcal{L}_{\lambda,\mu}\pm i\omega\mathcal{L}_{\eta_{\lambda},\eta_{\mu}}+\omega^{2}\right)\widehat{\mathbb{G}}_{\mp a}(x,y)=-\delta_{y}(x)\mathbb{I}, \quad x,y\in\mathbb{R}^{d}.$$

Define

$$\mathcal{I}_{a,\rho}(x) := \int_0^T \mathbf{v}_{s,a,\rho}(x,T) ds = \int_0^T \int_{\partial\Omega} \partial_t \mathbb{G}_{-a,\rho}(x,y,T-s) \mathbf{g}_a(y,T-s) d\sigma(y) ds,$$

where

$$\mathbb{G}_{-a,\rho}(x,y,t) := \frac{1}{2\pi} \int_{|\omega| \le \rho} \widehat{\mathbb{G}}_{-a}(x,y) e^{-i\omega t} d\omega.$$

• Finally, for Ψ and Φ the divergence and curl free components of $\mathcal{I}_{a,\rho}$, let

$$\widetilde{\mathcal{I}}_{a,\rho}(x) := c_p \nabla \Phi + c_s \nabla \times \Psi$$
Elastic Time-reversal Visco-elastic HK-identities

Proposition

Let $\Omega \subset \mathbb{R}^d$ be a ball with large radius. Then,

$$\begin{split} &\Re e\left\{\int_{\partial\Omega}\widehat{\mathbb{G}}^{s}_{-a}(x,y)\overline{\widehat{\mathbb{G}}^{p}}_{a}(y,z)d\sigma(y)\right\}\simeq 0\\ &\Re e\left\{\int_{\partial\Omega}\widehat{\mathbb{G}}^{p}_{-a}(x,y)\overline{\widehat{\mathbb{G}}^{s}}_{a}(y,z)d\sigma(y)\right\}\simeq 0 \end{split}$$

for all $x, z \in \Omega$ sufficiently far from the boundary $\partial \Omega$ w.r.t. wavelength

Theorem

For all $x \in \Omega$ sufficiently far from the boundary $\partial \Omega$, we have

$$\widetilde{\mathcal{I}}_{a,\rho}(x) = \widetilde{\mathcal{I}}_{\rho}(x) + o(\nu_s^2/c_s^2 + \nu_p^2/c_p^2)$$

where

$$\widetilde{\mathcal{I}}_{\rho}(x) \stackrel{\rho \to \infty}{\longrightarrow} \widetilde{\mathcal{I}}(x) \simeq \mathbf{f}(x),$$

 ν_s and ν_p are shear and bulk viscosities and

$$\widetilde{\mathcal{I}}_{\rho}(x) = \int_{\partial\Omega} \int_{0}^{T} \partial_{t} \left[c_{s} \mathbb{G}^{s}(x, y, t) + c_{\rho} \mathbb{G}^{\rho}(x, y, t) \right] S_{\rho} \left\{ \mathbf{g}_{0}(y, \cdot) \right\}(t) dt \, d\sigma(y)$$

Elastic Time-reversal Visco-elastic HK-identities

Proposition

Let $\Omega \subset \mathbb{R}^d$ be a ball with large radius. Then,

$$\begin{split} &\Re e\left\{\int_{\partial\Omega}\widehat{\mathbb{G}}^{s}_{-a}(x,y)\overline{\widehat{\mathbb{G}}^{p}}_{a}(y,z)d\sigma(y)\right\}\simeq 0\\ &\Re e\left\{\int_{\partial\Omega}\widehat{\mathbb{G}}^{p}_{-a}(x,y)\overline{\widehat{\mathbb{G}}^{s}}_{a}(y,z)d\sigma(y)\right\}\simeq 0 \end{split}$$

for all $x, z \in \Omega$ sufficiently far from the boundary $\partial \Omega$ w.r.t. wavelength

Theorem

For all $x \in \Omega$ sufficiently far from the boundary $\partial \Omega$, we have

$$\widetilde{\mathcal{I}}_{a,\rho}(x) = \widetilde{\mathcal{I}}_{\rho}(x) + o(\nu_s^2/c_s^2 + \nu_p^2/c_p^2)$$

where

$$\widetilde{\mathcal{I}}_{\rho}(x) \stackrel{\rho \to \infty}{\longrightarrow} \widetilde{\mathcal{I}}(x) \simeq \mathbf{f}(x),$$

 ν_s and ν_p are shear and bulk viscosities and

$$\widetilde{\mathcal{I}}_{\rho}(x) = \int_{\partial\Omega} \int_{0}^{T} \partial_{t} \left[c_{s} \mathbb{G}^{s}(x, y, t) + c_{\rho} \mathbb{G}^{p}(x, y, t) \right] \mathcal{S}_{\rho} \left\{ \mathbf{g}_{0}(y, \cdot) \right\}(t) dt \, d\sigma(y)$$

Elastic Time-reversal Visco-elastic Weighted TR-functional : Reconstructions

Reconstruction with $(\lambda, \mu) = (1, 1)$ and a = 0.0002. Left to Right : Initial data, without correction using $\widetilde{\mathcal{I}}_{(x)}$, correction using $\widetilde{\mathcal{I}}_{a,\rho}$ with $\rho = 15$, with $\rho = 20$.

Noise Source Localization

Noise Source Localization

Let p₀ satisfy the wave equation

$$\begin{cases} \frac{1}{c^2(x)} \frac{\partial^2}{\partial t^2} p_0(x,t) - \Delta p_0(x,t) = n(x,t), & (x,t) \in \mathbb{R}^d \times \mathbb{R} \\ \\ p_0(x,t) = 0, & \text{and} & \frac{\partial}{\partial t} p_0(x,t) = 0, & x \in \mathbb{R}^d, t \ll 0, \quad d = 2, 3. \end{cases}$$

n is compactly supported in a bounded smooth domain Ω .

Let p₀ satisfy the wave equation

$$\begin{cases} \frac{1}{c^2(x)} \frac{\partial^2}{\partial t^2} p_0(x,t) - \Delta p_0(x,t) = n(x,t), & (x,t) \in \mathbb{R}^d \times \mathbb{R} \\ \\ p_0(x,t) = 0, & \text{and} \quad \frac{\partial}{\partial t} p_0(x,t) = 0, & x \in \mathbb{R}^d, t \ll 0, \quad d = 2, 3. \end{cases}$$

n is compactly supported in a bounded smooth domain Ω .

• *n* is a stationary Gaussian process with mean zero and covariance

$$\langle n(x,t)n(y,s)\rangle = F(t-s)K(x)\delta(x-y).$$

Problem

Find supp $\{n\}$ given $\{p_0(y,t): (y,t) \in \partial\Omega \times [0,T]\}$ for sufficiently large T.

- $\langle \cdot \rangle$: Statistical average,
- *c* : Positive, smooth and bounded function,

- F: Time covariance function,
- K : Spatial support of n.

Imaging functional[09Garnier]

$$\mathcal{I}(z^{\delta}) := \int_{\mathbb{R}} \iint_{\partial\Omega \times \partial\Omega} \widehat{G}_{0}(x, z^{\delta}, \omega) \overline{\widetilde{G}_{0}}(y, z^{\delta}, \omega) \widehat{C}_{0}(x, y, \omega) d\sigma(x) d\sigma(y) d\omega.$$

•
$$\left(\frac{\omega^2}{c^2(x)} + \Delta\right) \widehat{G}_0(x, y, \omega) = -\delta(x - y), \quad x, y \in \mathbb{R}^d.$$

• The statistical cross-correlation C₀ is defined by

$$C_0(x, y, \tau) = \langle p_0(x, t) p_0(y, t + \tau) \rangle = \frac{1}{2\pi} \int_{\mathbb{R}} \left[\int_{\Omega} \overline{\widehat{G}_0}(x, z, \omega) \widehat{G}_0(y, z, \omega) K(z) dz \right] \widehat{F}(\omega) e^{-i\omega\tau} d\omega.$$

Imaging functional[09Garnier]

$$\mathcal{I}(z^{\tilde{S}}) := \int_{\mathbb{R}} \iint_{\partial\Omega \times \partial\Omega} \widehat{G}_0(x, z^{\tilde{S}}, \omega) \overline{\widetilde{G}_0}(y, z^{\tilde{S}}, \omega) \widehat{C}_0(x, y, \omega) d\sigma(x) d\sigma(y) d\omega.$$

•
$$\left(\frac{\omega^2}{c^2(x)} + \Delta\right) \widehat{G}_0(x, y, \omega) = -\delta(x - y), \quad x, y \in \mathbb{R}^d.$$

• The statistical cross-correlation C₀ is defined by

$$C_0(x, y, \tau) = \langle p_0(x, t) p_0(y, t + \tau) \rangle = \frac{1}{2\pi} \int_{\mathbb{R}} \left[\int_{\Omega} \overline{\widehat{G}_0}(x, z, \omega) \widehat{G}_0(y, z, \omega) K(z) dz \right] \widehat{F}(\omega) e^{-i\omega \tau} d\omega$$

Theorem

Functional \mathcal{I} gives K up to a smoothing operator, that is

$$\mathcal{I}(z^{\mathcal{S}}) \simeq \int_{\Omega} \mathcal{Q}(z^{\mathcal{S}}, z) K(z) dz$$

where

$$\mathcal{Q}(z^{S},z) = \int_{\mathbb{R}} \frac{\widehat{F}(\omega)}{\omega^{2}} \Im m \{ \widehat{G}_{0}(z^{S},z,\omega) \}^{2} d\omega.$$

A. WAHAB (CMAP-École Polytechnique, France)

Noise Source Localization Weighted imaging functional

• Consider the power spectral density $\mathcal{F}(\omega) = \int_{\partial\Omega} \widehat{C}_0(x, x, \omega) d\sigma(x).$

•
$$\widetilde{\mathcal{F}}(\omega) = \frac{1}{\Delta\omega} \int_{\omega - \Delta\omega/2}^{\omega + \Delta\omega/2} \mathcal{F}(\omega') d\omega' \simeq \widehat{F}(\omega) \int_{\Omega} \frac{1}{\omega} \Im\{\widehat{G}_0(z, z, \omega)\} K(z) dz \simeq \frac{\widehat{F}(\omega)}{4\pi} \int_{\Omega} K(z) dz.$$

• Moving frequency window $\Delta \omega$ should be large than 1/T and smaller than noise bandwidth.

Noise Source Localization Weighted imaging functional

• Consider the power spectral density $\mathcal{F}(\omega) = \int_{\partial\Omega} \widehat{C}_0(x, x, \omega) d\sigma(x).$

•
$$\widetilde{\mathcal{F}}(\omega) = \frac{1}{\Delta\omega} \int_{\omega - \Delta\omega/2}^{\omega + \Delta\omega/2} \mathcal{F}(\omega') d\omega' \simeq \widehat{F}(\omega) \int_{\Omega} \frac{1}{\omega} \Im m \{ \widehat{G}_0(z, z, \omega) \} K(z) dz \simeq \frac{\widehat{F}(\omega)}{4\pi} \int_{\Omega} K(z) dz.$$

• Moving frequency window $\Delta \omega$ should be large than 1/T and smaller than noise bandwidth.

Imaging functional

$${\mathcal I}_W(z^S):=\int_{\mathbb R} rac{W(\omega)}{\widetilde{{\mathcal F}}(\omega)} \iint_{\partial\Omega imes\partial\Omega} \widehat{G}_0(x,z^S,\omega) \widehat{\widehat{G}_0}(y,z^S,\omega) \widehat{C}_0(x,y,\omega) d\sigma(x) d\sigma(y) d\omega.$$

Noise Source Localization Weighted imaging functional

• Consider the power spectral density $\mathcal{F}(\omega) = \int_{\partial\Omega} \widehat{C}_0(x, x, \omega) d\sigma(x).$

•
$$\widetilde{\mathcal{F}}(\omega) = \frac{1}{\Delta\omega} \int_{\omega-\Delta\omega/2}^{\omega+\Delta\omega/2} \mathcal{F}(\omega') d\omega' \simeq \widehat{F}(\omega) \int_{\Omega} \frac{1}{\omega} \Im m \{ \widehat{G}_0(z,z,\omega) \} K(z) dz \simeq \frac{\widehat{F}(\omega)}{4\pi} \int_{\Omega} K(z) dz.$$

• Moving frequency window $\Delta \omega$ should be large than 1/T and smaller than noise bandwidth.

Imaging functional

$$\mathcal{I}_{W}(z^{S}) := \int_{\mathbb{R}} \frac{W(\omega)}{\widetilde{\mathcal{F}}(\omega)} \iint_{\partial\Omega\times\partial\Omega} \widehat{G}_{0}(x, z^{S}, \omega) \overline{\widehat{G}_{0}}(y, z^{S}, \omega) \widehat{C}_{0}(x, y, \omega) d\sigma(x) d\sigma(y) d\omega.$$

Theorem

$$\mathcal{I}_{W}(z^{S}) \simeq \int_{\Omega} \mathcal{Q}_{W}(z^{S}, z) \frac{K(z)}{K_{0}} dz, \quad \text{with} \quad K_{0} = \frac{1}{4\pi} \int_{\Omega} K(z) dz \quad \text{and}$$
$$\mathcal{Q}_{W}(z^{S}, z) = \int_{\mathbb{R}} \frac{W(\omega)}{\omega^{2}} \Im_{M}\{\widehat{G}_{0}(z^{S}, z, \omega)\}^{2} d\omega = \begin{cases} \frac{1}{16} \int_{\mathbb{R}} \frac{W(\omega)}{\omega^{2}} J_{0}^{2}(\omega|z|) d\omega, & d = 2\\ \frac{1}{16\pi^{2}} \int_{\mathbb{R}} \frac{W(\omega)}{\omega^{2}} \operatorname{sinc}^{2}(\omega|z|) d\omega, & d = 3. \end{cases}$$

Noise Source Localization Weighted imaging functional : Remarks

• A potential candidate for W is

$$W(\omega) = \begin{cases} |\omega|^3 \mathbf{1}_{|\omega| < \omega_{\max}}, & d = 2\\ \\ \omega^2 \mathbf{1}_{|\omega| < \omega_{\max}}, & d = 3. \end{cases}$$

where 1 denotes the characteristic function, based on the closure formulae [65Abramowitz]

$$\int_{\mathbb{R}^+} \omega J_0^2(\omega |z|) d\omega = \frac{1}{|z|} \delta(z), \quad \text{and} \quad \int_{\mathbb{R}^+} \omega^2 sinc^2(\omega |z|) d\omega = \frac{1}{|z|^2} \delta(z).$$

Noise Source Localization Weighted imaging functional : Remarks

• A potential candidate for W is

$$W(\omega) = \begin{cases} |\omega|^3 \mathbf{1}_{|\omega| < \omega_{\max}}, & d = 2\\ \\ \omega^2 \mathbf{1}_{|\omega| < \omega_{\max}}, & d = 3. \end{cases}$$

where 1 denotes the characteristic function, based on the closure formulae [65Abramowitz]

$$\int_{\mathbb{R}^+} \omega J_0^2(\omega|z|) d\omega = \frac{1}{|z|} \delta(z), \quad \text{and} \quad \int_{\mathbb{R}^+} \omega^2 sinc^2(\omega|z|) d\omega = \frac{1}{|z|^2} \delta(z).$$

• \mathcal{I}_W can seen as an application of \mathcal{I} on filtered data $\widetilde{p}_0(x, t)$ where

$$\widehat{\widetilde{p}}_0(x,\omega) := \sqrt{\frac{W(\omega)}{\widetilde{\mathcal{F}}(\omega)}} \widehat{p}_0(x,\omega).$$

where $(-\omega_{\max}, \omega_{\max})$ is the estimated support of $\widetilde{\mathcal{F}}(\omega)$.

Noise Source Localization Weighted imaging functional : Remarks

• A potential candidate for W is

$$W(\omega) = \begin{cases} |\omega|^3 \mathbf{1}_{|\omega| < \omega_{\max}}, & d = 2\\ \\ \omega^2 \mathbf{1}_{|\omega| < \omega_{\max}}, & d = 3. \end{cases}$$

where 1 denotes the characteristic function, based on the closure formulae [65Abramowitz]

$$\int_{\mathbb{R}^+} \omega J_0^2(\omega|z|) d\omega = \frac{1}{|z|} \delta(z), \quad \text{and} \quad \int_{\mathbb{R}^+} \omega^2 \operatorname{sinc}^2(\omega|z|) d\omega = \frac{1}{|z|^2} \delta(z).$$

• \mathcal{I}_W can seen as an application of \mathcal{I} on filtered data $\widetilde{p}_0(x, t)$ where

$$\widehat{\widetilde{p}}_0(x,\omega) := \sqrt{rac{W(\omega)}{\widetilde{\mathcal{F}}(\omega)}} \widehat{p}_0(x,\omega).$$

where $(-\omega_{\max}, \omega_{\max})$ is the estimated support of $\widetilde{\mathcal{F}}(\omega)$.

• Time reversal analogy : Let v be the adjoint wave then,

$$\mathcal{I}(z^{S}) = \int_{\mathbb{R}} \Big| \int_{\partial\Omega} \widehat{G}_{0}(x, z^{S}, \omega) \overline{\widehat{p_{0}}}(x, \omega) d\sigma(x) \Big|^{2} d\omega = 2\pi \int_{0}^{T} v(z^{S}, t)^{2} dt,$$

Top : point sources. Bottom : extended sources.Left to Right : K(x); \mathcal{I} ; \mathcal{I}_W with $W(\omega) = |\omega|^3 \mathbf{1}_{|\omega| < \omega_{\text{max}}}$. $T = 8, \omega_{\text{max}} = 1000, N_x = 2^8, \text{ and } N_t = 2^{11}$.

Modeling & Imaging of Attenuation

Noise Source Localization Estimation of power spectral density

Noise Source Localization Localization in Attenuating Media

Let p_a satisfy the thermo-viscous wave equation

$$\begin{cases} \frac{1}{c^2(x)} \frac{\partial^2}{\partial t^2} p_a(x,t) - \Delta p_a(x,t) - \frac{\partial}{\partial t} \Delta p_a(x,t) = n(x,t), & (x,t) \in \mathbb{R}^d \times \mathbb{R} \\ p_a(x,t) = 0, & \text{and} \quad \frac{\partial}{\partial t} p_a(x,t) = 0, & x \in \mathbb{R}^d, t \ll 0 \quad d = 2, 3. \end{cases}$$

$$C_a(x,y,\tau) = \langle p_a(x,t) p_a(y,t+\tau) \rangle = \frac{1}{2\pi} \int_{\mathbb{R}} \left[\int_{\Omega} \overline{\widehat{G}_a}(x,z,\omega) \widehat{G}_a(y,z,\omega) K(z) dz \right] \widehat{F}(\omega) e^{-i\omega\tau} d\omega.$$

$$\left(\frac{\omega^2}{c^2(x)} + (1 \mp ia\omega) \Delta_x \right) \widehat{G}_{\pm a}(x,y,\omega) = -\delta(x-y), \quad x,y \in \mathbb{R}^d.$$

Let p_a satisfy the thermo-viscous wave equation

$$\begin{cases} \frac{1}{c^{2}(x)} \frac{\partial^{2}}{\partial t^{2}} p_{a}(x,t) - \Delta p_{a}(x,t) - \frac{\partial}{\partial t} \Delta p_{a}(x,t) = n(x,t), & (x,t) \in \mathbb{R}^{d} \times \mathbb{R} \\ p_{a}(x,t) = 0, \quad \text{and} \quad \frac{\partial}{\partial t} p_{a}(x,t) = 0, & x \in \mathbb{R}^{d}, t \ll 0 \quad d = 2, 3. \end{cases}$$

$$\bullet \ C_{a}(x,y,\tau) = \langle p_{a}(x,t)p_{a}(y,t+\tau) \rangle = \frac{1}{2\pi} \int_{\mathbb{R}} \left[\int_{\Omega} \overline{G}_{a}(x,z,\omega) \widehat{G}_{a}(y,z,\omega) K(z) dz \right] \widehat{F}(\omega) e^{-i\omega\tau} d\omega.$$

$$\bullet \ \left(\frac{\omega^{2}}{c^{2}(x)} + (1 \mp ia\omega) \Delta_{x} \right) \widehat{G}_{\pm a}(x,y,\omega) = -\delta(x-y), \quad x,y \in \mathbb{R}^{d}.$$

$$\bullet \ \mathcal{I}_{a}(z^{S}) := \int_{\mathbb{R}} \iint_{\partial\Omega \times \partial\Omega} \widehat{G}_{-a}(x,z^{S},\omega) \overline{\widehat{G}_{-a}}(y,z^{S},\omega) \widehat{C}_{a}(x,y,\omega) d\sigma(x) d\sigma(y) d\omega.$$

Truncated imaging functional

$$\mathcal{I}_{a,\rho}(z^{\tilde{S}}) := \int_{|\omega| \le \rho} \iint_{\partial\Omega \times \partial\Omega} \widehat{G}_{-a}(x, z^{\tilde{S}}, \omega) \overline{\widehat{G}_{-a}}(y, z^{\tilde{S}}, \omega) \widehat{C}_{a}(x, y, \omega) d\sigma(x) d\sigma(y) d\omega.$$

Noise Source Localization Attenuated Helmholtz-Kirchhoff identities & localization

Lemma

If Ω is a ball with large radius (w.r.t. wavelength) and $c(x) \equiv 1$ outside the ball then

$$\int_{\partial\Omega} \widehat{G}_{-a}(x,z^{\mathbb{S}},\omega)\overline{\widehat{G}_{a}}(x,z,\omega)d\sigma(x) \simeq \frac{1}{2i\overline{\kappa_{a}}(\omega)(1+ia\omega)} \left(\widehat{G}_{-a}(z,z^{\mathbb{S}},\omega) - \overline{\widehat{G}_{a}}(z,z^{\mathbb{S}},\omega)\right).$$

where

$$\kappa_{\pm a}(\omega) = \frac{\omega}{\sqrt{1 \mp ia\omega}}$$

Noise Source Localization Attenuated Helmholtz-Kirchhoff identities & localization

Lemma

If Ω is a ball with large radius (w.r.t. wavelength) and $c(x) \equiv 1$ outside the ball then

$$\int_{\partial\Omega} \widehat{G}_{-a}(x,z^{s},\omega)\overline{\widehat{G}_{a}}(x,z,\omega)d\sigma(x) \simeq \frac{1}{2i\kappa_{a}(\omega)(1+ia\omega)} \left(\widehat{G}_{-a}(z,z^{s},\omega) - \overline{\widehat{G}_{a}}(z,z^{s},\omega)\right).$$

where

$$\kappa_{\pm a}(\omega) = \frac{\omega}{\sqrt{1 \mp ia\omega}}$$

Proposition

The truncated imaging functional $\mathcal{I}_{a,\rho}$ satisfies

$$\mathcal{I}_{a,\rho}(z^{S}) := \int_{\Omega} \mathcal{Q}_{\rho}(z^{S}, z) K(z) dz$$

with

$$\mathcal{Q}_{\rho}(z^{\tilde{S}},z) = \int_{|\omega| \le \rho} \frac{\widehat{F}(\omega)}{4\omega^2 (1+a^2\omega^2)^{1/2}} \left| \widehat{G}_{-a}(z,z^{\tilde{S}},\omega) - \overline{\widehat{G}}_{a}(z,z^{\tilde{S}},\omega) \right|^2 d\omega$$

Noise Source Localization Reconstructions : Point sources in attenuating media

A. WAHAB (CMAP-École Polytechnique, France)

Modeling & Imaging of Attenuation

Noise Source Localization Spatially correlated sources

• Let *n* be a stationary Gaussian process with mean zero and covariance function

$$\langle n(x,t)n(y,s)\rangle = F(t-s)\Gamma(x,y)$$

where Γ characterizes spatial support and covariance of the sources.

Noise Source Localization Spatially correlated sources

• Let *n* be a stationary Gaussian process with mean zero and covariance function

$$\langle n(x,t)n(y,s)\rangle = F(t-s)\Gamma(x,y)$$

where Γ characterizes spatial support and covariance of the sources.

•
$$J(z^{S}, z^{S'}) := \int_{\mathbb{R}} \iint_{\partial\Omega\times\partial\Omega} \widehat{G}_{0}(x, z^{S}, \omega) \overline{\widehat{G}_{0}}(y, z^{S'}, \omega) \widehat{C}_{0}(x, y, \omega) d\sigma(x) d\sigma(y) d\omega.$$

•
$$C_{0}(x, y, \tau) = \frac{1}{2\pi} \int_{\mathbb{R}} \left[\iint_{\Omega\times\Omega} \overline{\widehat{G}_{0}}(x, z, \omega) \widehat{G}_{0}(y, z', \omega) \Gamma(z, z') dz dz' \right] \widehat{F}(\omega) e^{-i\omega\tau} d\omega.$$

Noise Source Localization Spatially correlated sources

• Let *n* be a stationary Gaussian process with mean zero and covariance function

$$\langle n(x,t)n(y,s)\rangle = F(t-s)\Gamma(x,y)$$

where Γ characterizes spatial support and covariance of the sources.

•
$$J(z^{S}, z^{S'}) := \int_{\mathbb{R}} \iint_{\partial\Omega\times\partial\Omega} \widehat{G}_{0}(x, z^{S}, \omega) \overline{\widehat{G}_{0}}(y, z^{S'}, \omega) \widehat{C}_{0}(x, y, \omega) d\sigma(x) d\sigma(y) d\omega.$$

•
$$C_{0}(x, y, \tau) = \frac{1}{2\pi} \int_{\mathbb{R}} \left[\iint_{\Omega\times\Omega} \overline{\widehat{G}_{0}}(x, z, \omega) \widehat{G}_{0}(y, z', \omega) \Gamma(z, z') dz dz' \right] \widehat{F}(\omega) e^{-i\omega\tau} d\omega.$$

Proposition

$$\begin{split} J(z^{S},z^{S'}) &:= \iint_{\Omega \times \Omega} \underbrace{\int_{\mathbb{R}} \frac{\widehat{F}(\omega)}{\omega^{2}} \Im m\{\widehat{G}(z,z^{S},\omega)\} \Im m\{\widehat{G}(z',z^{S'},\omega)\} d\omega}_{\Psi(z^{S},z^{S'},z,z')} \\ & In \ 3D \ homogeneous \ media, \ \Psi(z^{S},z^{S'},z,z') = \psi(z^{S}-z,z^{S'}-z') \ with \\ & \psi(z,z') = \frac{1}{16\pi^{2}} \int_{\mathbb{R}} \widehat{F}(\omega) sinc(\omega|z|) sinc(\omega|z'|) d\omega. \end{split}$$

Noise Source Localization Spatially correlated sources II

• Extended distribution of locally correlated sources : $\Gamma(z, z') = K\left(\frac{z+z'}{2}\right)\gamma(z-z')$. Then

$$\mathcal{I}(z^{\mathcal{S}}) = \int_{\Omega} \underbrace{\int_{\mathbb{R}} \frac{\widehat{F}(\omega)}{\omega^2} \int_{\Omega} \Im m\{\widehat{G}(z+\xi/2, z^{\mathcal{S}}, \omega)\} \Im m\{\widehat{G}(z-\xi/2, z^{\mathcal{S}}, \omega)\} \gamma(\xi) d\xi d\omega}_{\Phi(z, z^{\mathcal{S}})} K(z) dz.$$

Noise Source Localization Spatially correlated sources II

• Extended distribution of locally correlated sources : $\Gamma(z, z') = K\left(\frac{z+z'}{2}\right)\gamma(z-z')$. Then

$$\mathcal{I}(z^{\mathcal{S}}) = \int_{\Omega} \underbrace{\int_{\mathbb{R}} \frac{\widehat{F}(\omega)}{\omega^2} \int_{\Omega} \Im m\{\widehat{G}(z+\xi/2, z^{\mathcal{S}}, \omega)\} \Im m\{\widehat{G}(z-\xi/2, z^{\mathcal{S}}, \omega)\}\gamma(\xi)d\xi d\omega}_{\Phi(z, z^{\mathcal{S}})} K(z)dz.$$

• Correlated point sources :
$$\Gamma(z, z') = \sum_{i,j=1}^{N_s} \rho_{ij} \delta(z - z_i) \delta(z - z_j)$$

- Find
$$z_i$$
 from $\mathcal{I}(z^{\mathcal{S}}) \simeq \sum_{i,j=1}^{N_{\mathcal{S}}} \rho_{ij} \int_{\mathbb{R}} \frac{\widehat{F}(\omega)}{\omega^2} \Im m\{\widehat{G}(z, z^{\mathcal{S}}, \omega)\}^2 d\omega.$

- Estimate ρ_{ij} from $J(z_i, z_j) = \rho_{ij} \int_{\mathbb{R}} \Im m\{\widehat{G}(z_i, z_i, \omega)\} \Im m\{\widehat{G}(z_j, z_j, \omega)\} d\omega \simeq \rho_{ij} \frac{1}{16\pi} \int_{R} \widehat{F}(\omega) \omega.$

Noise Source Localization Spatially correlated sources II

• Extended distribution of locally correlated sources : $\Gamma(z, z') = K\left(\frac{z+z'}{2}\right)\gamma(z-z')$. Then

$$\mathcal{I}(z^{\mathcal{S}}) = \int_{\Omega} \underbrace{\int_{\mathbb{R}} \frac{\widehat{F}(\omega)}{\omega^2} \int_{\Omega} \Im m\{\widehat{G}(z+\xi/2, z^{\mathcal{S}}, \omega)\} \Im m\{\widehat{G}(z-\xi/2, z^{\mathcal{S}}, \omega)\} \gamma(\xi) d\xi d\omega}_{\Phi(z, z^{\mathcal{S}})} K(z) dz.$$

• Correlated point sources :
$$\Gamma(z, z') = \sum_{i,j=1}^{N_s} \rho_{ij} \delta(z - z_i) \delta(z - z_j)$$

- Find
$$z_i$$
 from $\mathcal{I}(z^{\mathcal{S}}) \simeq \sum_{i,j=1}^{N_{\mathcal{S}}} \rho_{ij} \int_{\mathbb{R}} \frac{\widehat{F}(\omega)}{\omega^2} \Im m \{ \widehat{G}(z, z^{\mathcal{S}}, \omega) \}^2 d\omega.$

- Estimate ρ_{ij} from $J(z_i, z_j) = \rho_{ij} \int_{\mathbb{R}} \Im m\{\widehat{G}(z_i, z_i, \omega)\} \Im m\{\widehat{G}(z_j, z_j, \omega)\} d\omega \simeq \rho_{ij} \frac{1}{16\pi} \int_{\mathbb{R}} \widehat{F}(\omega) \omega.$

$$\rho = \begin{pmatrix} 1 & 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 1/\sqrt{2} & 1 & 0 & 0\\ 1/\sqrt{2} & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \hat{\rho} = \begin{pmatrix} 1.000 & 0.733 & 0.701 & 0.061\\ 0.733 & 1.000 & 0.049 & 0.061\\ 0.701 & 0.049 & 1.000 & 0.030\\ 0.061 & 0.061 & 0.030 & 1.000 \end{pmatrix}$$

Correlated point sources : Reconstruction

$$\begin{split} \text{Top}: K(z) \text{ (left)}, \ \mathcal{I}_W \text{ with } W(\omega) &= |\omega|^3 \mathbf{1}_{|\omega| < \omega_{\text{max}}} \text{ (middle)}, \text{ and } z \to \mathcal{J}_W(z_1, z) \text{ (right)}. \\ \text{Bottom}: z \to \mathcal{J}_W(z_2, z) \text{ (left)}, z \to \mathcal{J}_W(z_3, z) \text{ (middle)}, \text{ and } z \to \mathcal{J}_W(z_4, z) \text{ (right)}. \end{split}$$

A. WAHAB (CMAP-École Polytechnique, France)

Modeling & Imaging of Attenuation

Noise Source Localization Extended correlated sources : Reconstruction

 $\begin{array}{l} \text{Top}: K(z) \ (\text{left}), \ \mathcal{I}_W \ \text{with} \ W(\omega) = |\omega|^3 \mathbf{1}_{|\omega| < \omega_{\max}} \ (\text{middle}), \ \text{and} \ z \to \ \mathcal{J}_W(z_1, z) \ (\text{right}). \\ \text{Bottom}: z \to \ \mathcal{J}_W(z_2, z) \ (\text{left}), z \to \ \mathcal{J}_W(z_3, z) \ (\text{middle}), \ \text{and} \ z \to \ \mathcal{J}_W(z_4, z) \ (\text{right}). \end{array}$

A. WAHAB (CMAP-École Polytechnique, France)

Modeling & Imaging of Attenuation

Conclusion and Perspectives

Conclusion and Perspectives

Conclusion and Perspectives

Conclusion and Perspectives

- Developed Radon transform and time reversal algorithms for Photo-acoustic imaging.
- Justified the use of adjoint of the attenuated wave operator in time reversal.
- Proposed pre-processing technique to compensate for attenuation effects.
- Proposed and justified weighted elastic time-reversal algorithms.
- Proposed weighted algorithms for noise source localization.
- Studied impact of spatial correlation between noise sources.
- Derived Helmholtz-Kirchhoff identities for elastic, viscoelastic and attenuating acoustic media.

Conclusion and Perspectives

- Extension of the algorithms to complex wave propagation models, e.g. by taking into account non-linearity, heterogeneity, anisotropy ...
- Applications : Non-destructive testing, underwater acoustics, telecommunications ...
- Recovery of the attenuation map from attenuated far field measurements ...
- Variable attenuation correction.
- Time reversal with a few transducers : lower bound on the number of transducers for stable reconstructions.
- Passive elastography : Elastic noise source localization in a transversally isotropic medium.

References

[04Finch] D. Finch et al., Determining a function from its mean-values over a family of spheres, SIAM J. Math An., 35 :(2004), pp 1213-1240.

[07Kunyansky] L. Kunyansky, Explicit inversion formulas for the spherical mean Radon transform, Inverse Prob., 23 :(2007), pp 373-383.

[07Haltmeier] M. Haltmeier et al., Filtered back projection for thermoacoustic computed tomography in spherical geometry, *Math. Meth. App. Sci.*, 28 : (2005), pp 1919-1937.

[09Nguyen] L.V. Nguyen, A family of inversion formulas in thermo-acosutic tomography, Inverse Prob. & Imag., 3: (2009), pp 649-675.

[04Sushilov] N.V. Sushilov, R.S.C. Cobbold, Frequency-domain wave equation and its time-domain solutions in attenuating media, *J. Acoust. Soc. Am.*, 115 : (2004), pp 1431-1436.

[08Modgil] D. Modgil, P. La Rivière, Photoacoustic image reconstruction in an attenuating medium using singular value decomposition, *IEEE Nuc. Sci. Symp.*, (2008).

[03Hormander] L. Hormander, The Analysis of the Linear Partial Differential Operators, *Classics in Math.*, (2003), Springer-Verlag.

[97Fink] M. Fink, Time reversed acoustics, *Physics Today*, 50 : (1997).

[07Fouque] J.-P. Fouque, Wave Propagation and Time Reversal in Randomly Layered Media, *Springer-Verlag*, New York, 2007.

[07Burgholzer] P. Burgholzer et al., Compensation of acoustic attenuation for high resolution photoacoustic imaging with line detectors, *Proc. SPIE*, 6437 : (2007).

[10Treeby] B.E. Treeby et al., Photoacoustic tomography in absorbing acoustic media using time reversal, *Inverese Prob.*, 26(11) : (2010).

[09Garnier] J. Garnier, G. Papanicolaou, **Passive sensor imaging using cross correlations of noisy signals in a** scattering medium, *SIAM J. Imag. Sci.*, 2 : (2009), pp. 396-437.

[65Abramowitz] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover Publications, New York (1965).

Publications

- 1. H. Ammari, E. Bretin, J. Garnier, <u>A. Wahab</u>, **Noise source localization in an attenuating medium**, *SIAM Journal on Applied Mathematics*, to appear.
- H. Ammari, E. Bretin, J. Garnier, <u>A. Wahab</u>, Time reversal in attenuating acoustic media, *Mathematical and Statistical Methods for Imaging*, Contemporary Mathematics, vol. 548, pp. 151-163 AMS 2011.
- H. Ammari, E. Bretin, J. Garnier, <u>A. Wahab</u>, Time reversal algorithms in viscoelastic media, Numerishe Mathematik, submitted.
- H. Ammari, E. Bretin, V. Jugnon, <u>A. Wahab</u>, Photoacoustic imaging for attenuating acoustic media, Mathematical Modeling in Biomedical Imaging II, Lecture Notes in Mathematics, vol. 2035, pp. 57-84 Springer-Verlag, 2011.
- 5. E. Bretin, L. Guadarrama-Bustos, <u>A. Wahab</u>, **On the Green function in visco-elastic media obeying a** frequency power law, *Mathematical Methods in the Applied Sciences*, vol. 34(7), pp. 819–830, 2011.
- E. Bretin, <u>A. Wahab</u>, Some anisotropic viscoelastic green functions, *Mathematical and Statistical Methods for Imaging*, Contemporary Mathematics, vol. 548, pp. 129-149, AMS 2011.

It's not the End !

Thank you!