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 Résumé 

Le travail qui est présenté dans ce mémoire de thèse s’inscrit dans le domaine de la 

Spectroscopie moléculaire en phase gazeuse théorique et expérimentale. Il comprend deux 

parties dédiées à des aspects relativement différents de cette discipline.  

La première partie présente l’analyse à haute résolution des positions et intensité des raies de 

la bande ν5 (ouverture angulaire du groupe NO2 dans le plan de la molécule) de DNO3 dans la 

région spectrale de 11 µm. Pour ce faire, nous avons utilisé un spectre infrarouge enregistré 

dans la région 700−1400 cm−1 à l’aide d’un spectromètre à transformée de Fourier de 

l’université « Bergische Universität » à Wuppertal, en Allemagne. Ce travail nous a permis 

de montrer que la bande ν5, centrée à 887.657 cm−1, est fortement perturbée. L’analyse 

prouve en effet que les niveaux d’énergie 51 et 71+91 sont couplés par des résonances de 

Coriolis de types A et B. Le schéma de résonances pour la variété isotopique DNO3 diffère 

donc fortement de ceux observés pour les états 51 et 92 de H14NO3 et H15NO3 qui 

sont majoritairement de type Fermi.  

Le deuxième problème abordé dans ce travail est celui des profils de raies rotationnelles 

pures de CH3F avec l’étude des élargissements collisionnels (collisions CH3F-CH3F et CH3F-

He) des transitions optiques et de leurs composantes Stark. Des mesures microondes ont été 

réalisées à l’ESTC à Prague. Leur analyse a permis d’en extraire des paramètres collisionnels 

à l’aide de divers profils de raies (Voigt, Rautian, dépendantes de vitesse) pour les transitions 

J, K → J + 1, K (K = 0, …, J)  avec J = 1 et J = 3 et leurs diverses composantes Stark 

J, K, M → J + 1, K, M’ (|M|  = 0, …, J ; |M − M’| = 0, 1). De plus, un modèle fondé sur 

l’approximation Infinite Order Sudden (IOS) a été construit pour décrire les effets 

d’interférences collisionnelles observés. Les résultats expérimentaux obtenus complètent et 

étendent des travaux précédents et sont la première démonstration de la capacité de 

l’approximation IOS à modéliser les couplages collisionnels entre composantes Stark. 

Mots clefs: DNO3, spectroscopie infrarouge, positions, intensités, résonance Coriolis, 

bande ν5, bande ν7 + ν9, CH3F, spectroscopie microonde, profils de raies, profil de Rautian, 

profil avec dépendance de vitesse, élargissement collisionel, effet Stark, moment dipolaire, 

couplage des raies, approximation IOS. 
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Summary 

The work presented in this thesis belongs to the domain of theoretical and experimental gas 

phase molecular spectroscopy. It consists of two parts dedicated to two relatively different 

aspects in this field. 

The first part presents a high resolution analysis of the ν5 fundamental band (NO2 in plane 

bending mode) positions and intensities of D14NO3 (deuterated nitric acid) in the 11 µm 

spectral region. For this study, we used an infrared spectrum of D14NO3 recorded in the 

700−1400 cm−1 region on a Fourier transform spectrometer at Bergische Universität in 

Wuppertal (Germany). Our analysis demonstrates that the fundamental ν5 band centered at 

887.657 cm−1 is strongly perturbed. Indeed, it proves that 51 and 71+91 energy levels of DNO3 

are coupled through A and B type Coriolis resonances. The resonance scheme for the 

isotopologue D14NO3 therefore differs substantially from the schemes of H14NO3 and H15NO3 

that feature dominantly Fermi type resonances.  

The second theme treated in this work is devoted to the lineshapes of pure rotational 

transitions of CH3F with the study of collisional broadening (collisions CH3F-CH3F and 

CH3F-He) of optical transitions and their Stark components. The microwave measurements 

were realised at ICT in Prague. Their analysis enabled to provide collisional parameters using 

various line profiles (Voigt, Rautian, Speed dependent) for the J, K → J + 1, K (K = 0, …, J) 

transitions with J = 1 and J = 3 as well as for their various Stark components 

J, K, M → J + 1, K, M’ (|M| = 0, …, J ; |M − M’| = 0, 1).  Moreover, a correct use of model 

based on Infinite Order Sudden approximation led to very satisfactory results of the observed 

line-mixing effects. The retrieved experimental results complete and extend the previous 

studies and provide the first successful demonstration of the ability of the IOS approximation 

to model line-mixing effects among Stark transitions. 

Key words: DNO3, Infrared spectroscopy, Positions, Intensities, Coriolis resonance, ν5 band, 

ν7 + ν9 band, CH3F, Microwave spectroscopy, Line shapes, Rautian profile, Speed dependent 

profile, Collisional broadening, Stark effect, Dipole moment, Line-Mixing, IOS 
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Shrnutí 

Předkládaná dizertační práce tematicky zahrnuje jak teoretickou, tak i experimentální 

molekulovou spektroskopii v plynné fázi. Předmětem práce jsou dvě relativně nezávislé 

studie, které spojuje právě zaměření na vysoce rozlišenou spektroskopii plynů.  

V první části je vypracována analýza poloh a intenzit linií vysoce rozlišeného spektra 

základního vibračního pásu ν5 (mód kyvadlové rovinné vibrace skupiny NO2) DNO3 v 11 µm 

spektrální oblasti. V této studii bylo použito infračervené spektrum naměřené v rozsahu 

700−1400 cm−1 na FT spektrometru v Bergische Universität ve Wuppertalu (Německo).  

Tato práce ukazuje, že základní pás ν5 o poloze 887.657 cm−1 je silně porušen. Podrobná 

analýza naměřených spekter dokázala, že energetické hladiny 51 a 71+91 jsou spřaženy 

prostřednictvím Coriolisových rezonancí typu A a B. Rezonanční schéma isotopologu DNO3 

se tedy podstatně liší od rezonancí pozorovaných u H14NO3 a H15NO3, kde mezi stavy 51 a 92 

dominují Fermiho rezonance. 

Druhá část práce se věnuje profilům čistě rotačních linií CH3F. Studováno je kolizní rozšíření 

(kolize CH3F s CH3F a kolize CH3F s He) rotačních přechodů a jejich Starkových 

komponent. Mikrovlnná spektra byla naměřena na VŠCHT Praha. Jejich analýza vedla 

k určení kolizních parametrů vybraných profilů (Voigtův, Rautianův, rychlostně závislé 

profily) u přechodů J, K → J + 1, K (K = 0, …, J) s J = 1 a J = 3 a jejich Starkových 

komponent J, K, M → J + 1, K, M’ (|M|  = 0, …, J ; |M − M’| = 0, 1). Navíc byl pro popis 

pozorovaných kolizních interferenčních jevů sestaven model založený na Infinite Order 

Sudden (IOS) aproximaci. Získané výsledky doplňují a rozšiřují předchozí práce a jsou 

zároveň první úspěšnou aplikací aproximace IOS pro modelování kolizního spřažení (line-

mixing) mezi Starkovými komponentami. 

Klíčová slova: DNO3, infračervená spektroskopie, pozice, intenzita, Coriolisovy rezonance, 

pás ν5 , pás ν7 + ν9, CH3F, mikrovlnná spektroskopie, profily linií, Rautianův profil, 

rychlostně závislý profil, kolizní rozšíření, Starkův jev, dipólový moment, Line-Mixing, 

model IOS 
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I  Introduction 
The work presented in this thesis had been done in the frame of co-tutelle thesis program 

organized by Université Paris-Est (UPE) and by Institute of Chemical Technology, Prague 

(ICT Prague). Some studies have been carried out in the Laboratoire Interuniversitaire des 

Systèmes Atmosphériques (LISA, CNRS UMR 7583) under the supervision of 

Dr. Agnès Perrin and at the Department of Analytical Chemistry (DAC-402) of ESCT Prague 

in the laboratory LMSVR under direction of Prof. Štěpán Urban. Another topic of the thesis, 

suggested at the end of the first year of the co-tutelle, was studied afterwards and continued 

further on, in cooperation with Dr. Jean-Michel Hartmann (LISA) and Prof. Christian Boulet 

(ISMO). The text describes therefore two completely independent spectroscopic studies, as 

the thesis name suggests: an analysis of the infrared spectra of deuterated nitric acid (DNO3) 

and an analysis of collisional effects in the Stark and non Stark microwave spectra of the 

methyl fluoride (CH3F).  These two subjects are introduced in the following two sections. 

The lay-out of the thesis text is presented afterwards. 

I.1  Rovibrational study of DNO3 ν5 band 

Nitric acid (HNO3) plays an important role as a ‘‘reservoir’’ molecule for both the NOx 

(nitrogen oxides) and HOx (hydrogen oxides) species in the stratosphere (1, 2). These radicals 

are potentially active contributors to the ozone destruction in the stratosphere through 

catalytic reactions. The 11 µm region corresponds to one of the strongest absorption bands of 

nitric acid and coincides with a rather clear atmospheric window of the atmosphere.          

This spectral region is therefore commonly used for the retrieval of nitric acid in the 

atmosphere, not only for the most abundant isotopic species (H14NO3, Refs. (3, 4) and 

references therein) but also for H15NO3 (isotopic concentration of about α ~ .00365(7)) which 

could be detected by MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) 

aboard the ENVISAT satellite (5). For this reason, numerous spectroscopic studies were 

devoted to the improvement of line position, line intensities ((6-9) and references therein) and 

line broadening parameters (10) for nitric acid at 11 µm for both the H14NO3 and H15NO3 

species.  

On the other hand, the chances to detect DNO3 in atmospheric spectra at 11 µm are rather 

weak. DNO3 exists with rather weak isotopic abundance in a natural sample of nitric acid 

(α ~1.55 10-4) and the ν5 band of DNO3 is located at 887.7 cm-1 in the middle of the 11 µm 

absorption region for H14NO3, where strong absorptions from the ν5, 2ν9 and ν5+ν9-ν9 Q-
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branches are clearly observable in atmospheric spectra at 879.109, 896.448, 885.424 cm-1, 

respectively. However studying DNO3 is interesting since it provides input for the validation 

of recent and future ab initio studies on nitric acid (11). Indeed the resonance scheme for the 

interacting DNO3 vibrational states differs as compared to H14NO3 and H15NO3. 

I.2 Collisional effect studies of CH3F microwave spectra with and 
without Stark effect 

Line-mixing (LM) is a process manifesting through transfers of intensity among overlapping 

optical transitions and resulting from rotational population exchanges induced by inter-

molecular collisions. It has been the subject of numerous experimental and theoretical studies 

for various molecular systems and types of spectra, as reviewed in Chapter IV of Ref. (17). 

However, few of these studies have considered the case of collisional exchanges among Stark 

resolved molecular lines, i.e. when an applied electric field removes the spatial degeneracy of 

the rotational levels. As first shown by Bréchignac (12) and afterwards measured (13-15) for 

CH3F in the IR region, the “zero field widths” are much smaller than the widths of the 

various Stark resolved lines. Various theoretical treatments have been proposed to describe 

collisional couplings between M-components. Let us first mention the pioneering work of 

Buffa, Tarrini and co-workers (13), based on a generalization of the well known Anderson-

Tsao-Curnutte (ATC) model (16). An alternative approach to take LM into account is to build 

the associated relaxation matrix using the Infinite Order Sudden (IOS) approximation (17, 

18) or its improved Energy Corrected Sudden (ECS) extension (17, 19, 20). IOS/ECS models 

have enabled precise modeling of LM effects for many systems and types of spectra (17), 

including hyperfine components due to nuclear spin (21, 22) and symmetric-top spectra (23, 

24). However, quite surprisingly, as shown in Ref. (14), the IOS model developed in (12) 

apparently failed to reproduce the details of coupling processes between the Stark 

components of CH3F lines. With the aim of clarifying this result we have re-examined the 

problem and the present work shows that this failure was only due to an oversimplification of 

the IOS formalism.  

During the analysis of the measured CH3F pure rotational spectra using Voigt line shapes, a 

“W signature”, characteristic of a narrowing, was observed in the fits residuals. The line 

shapes were therefore also studied with more refined models that involve a more thorough 

description of collisional effects by taking Dicke and speed dependence effects into account, 
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in order to attempt to diminish the residuals and to understand the contributions of various 

collisional processes. 

* * * 

The remained of the thesis text is divided into the following parts: 

After this introductory chapter, a chapter dedicated to infrared spectra of deuterated nitric 

acid is presented, in which the general theory is first recalled. Then the model used for the 

rovibrational spectra of asymmetric top molecules like DNO3 is discussed following the 

approach established by J.K.G. Watson for cases with vibrationaly isolated states and 

generalised further by J.-M. Flaud and C. Camy-Peyret for cases with interacting vibrational 

states. The final section of the chapter presents the results of the analysis of ν5 band of DNO3 

using the previously mentioned formalism. 

The next three chapters are devoted to collisional effects on rotational spectra of CH3F. 

The third chapter describes the experimental apparatus used for in this study as well as some 

experimental details on the measurements made using the Stark effect. 

The fourth chapter is devoted to the analysis of the shapes of isolated lines in the pure 

rotational CH3F spectra. Some general theory is first mentioned before some selected models 

describing isolated line profiles are discussed. The results obtained CH3F J = 1 and J = 3 pure 

rotational transitions are then presented and discussed.  

The fifth chapter is devoted to the analysis of the Stark pure rotational CH3F spectra in 

situations when lines overlap and collisional line mixing effect get involved. The modelling 

of this effect using the Infinite Order Sudden (IOS) approximation is detailed before the 

analysis of Stark and non Stark CH3F (pure or diluted in helium) J = 1 and J = 3 pure 

rotational transitions is presented. 

The next and final parts cover a general conclusion, references and appendices.  
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II Vibration –rotation study for a molecule of atmospheric and 
theoretical interest: the case of the DNO3 isotopomer of 
nitric acid 

 

The present chapter is organized in the following way. Paragraph II.1 will describe the 

overall approximation which led to establish the vibration rotational Hamiltonian written in 

the form given by Darling and Dennison. Assuming that the nuclei vibrations are small 

compared to the interatomic distances, the Hamiltonian can be developed in series according 

to the vibrational quanta. The structure of the DNO3, its vibrational modes, its symmetry 

properties will be presented in Paragraph II.2.1 together with the rigid rotor rotational 

wavefunctions. The selection rules for an electric dipole moment transition will be deduced in 

Paragraph II.2.3. The “contact transformations” which lead to a partial block diagonalization 

of the vibration rotation Hamiltonian will be presented in Paragraph II.2.4. Finally the 

effective Hamiltonian used in this work will be described shortly in Paragraph II.3.4.  



 16

II.1 General considerations, Rovibrational Hamiltonian 

A molecule can be considered as a rather stable aggregate of atomic nuclei and electrons.  

The time dependence of Φ(t) is defined by the Schrödinger equation: 

)()( tH
t
ti Φ=

∂
Φ∂=           (II.1) 

where Φ(t) is the molecule wavefunction of the molecule which is function of its electronic 

and nuclear coordinates. In Eq. (II.1) H is the Hamiltonian of the molecule which is assumed, 

in the following, to be time independent. In this way the Φ(t) eigenfunctions for the different 

stationary states are solutions of the equation: 

)()( tEtH Φ=Φ             (II.2) 

Solving Eq. (II.2) for a molecular system consisting in moving particles (several atoms and 

numerous electrons) is usually impossible. Several more or less severe approximations must 

be formulated. 

¤ The Born Oppenheimer approximations (25): 

The fact that the nuclei are much heavier than electrons (neutron-electron mass ratio 

mn/me = 1838.683 6605(11) – 2006 CODATA values (26), proton-electron mass ratio 

mp/me =  1836.152 672 47(80)) led Born and Oppenheimer (25) to formulate approximation 

that fast movements of electrons are separated from the relatively slow movements of nuclei. 

The rovibronic (electronic vibration rotational) Hamiltonian then takes the form:  

evr e vrH H H= + ,          (II.3) 

where He is electronic Hamiltonian describing the movements of electrons considered for a 

given fixed nuclear geometry, and Hvr is the rovibrational (vibration rotational) Hamiltonian 

describing the movement of the nuclei for the corresponding electronic state.  

In the following of this manuscript, the Born Oppenheimer approximation is assumed to be 

appropriate. The studies presented here are for molecules (nitric acid and methyl fluoride) in 

their ground electronic state. 

¤ The molecules under study are assumed to be isolated and moving in an isotropic 

laboratory space. By using a reference system of axes centered at the molecular center of 

gravity, O, the translation of the center of inertia is completely separated from the internal 
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coordinates (vibration and rotation) of the molecule. The so-called vibration-rotational 

Hamiltonian involve 3N − 3 degrees of freedom, for a molecule with N nuclei. We are 

dealing with non linear polyatomic molecules, and the molecular rotation and the nuclear 

vibrations around their equilibrium positions are associated to 3 and 3N − 6 degrees of 

freedom, respectively. 

¤ It is assumed that the amplitudes of the nuclei vibrations are small compared to the 

interatomic distances. This is relevant for the present DNO3 study. Let us mention, however, 

that this approximation fails when considering the OH torsional motion (ν9 mode) for the H 

isotopomers of nitric acid (H14NO3 and H15NO3).  

 

Even in such conditions, it is not possible to separate completely rotation from the vibration 

motion. At this level we need to define two orthogonal systems of axes centered at O, the 

molecular center of gravity: a floating Oxyz - reference system of molecular axis – bound to a 

reference molecular configuration (i.e. equilibrium configuration in case of rigid or semi-

rigid molecules) and the OXYZ “laboratory fixed” reference system that is in translational 

motion relative to the laboratory system. In order to fix the origin, O, of both systems to the 

center of gravity of the molecule, the following relationship applies: 
N

i i
i 1

 m
=

=∑ r 0            (II.4) 

where ri is instantaneous radius vector of nucleus i with mass mi. 

In order to minimize the interactions between rotation and vibration, Eckart wrote the 

following constrains (27) which set the orientation of Oxyz relative to OXYZ : 
N

0
i i i

i 1
 m

=

∧ =∑ r r 0 ,          (II.5) 

where ri
0 is radius vector of nucleus i at its reference position. 

In this way, the vibration-rotation Hamiltonian, as developed by Darling-Dennison (28) takes 

the following form, presented here as it was simplified later by Watson (29): 

( ) ( )
2

2

,

1
2 2 k

k

H J J P U Vα α αβ β β
α β

π μ π= − − + + +∑ ∑=      (II.6) 

In this equation, α and β refer to the molecular axes with values x, y or z, k refers to the 

3N − 6 normal coordinates Qk. The other symbols are defined as follows: 

- Jα  are components of the molecular axes of the total angular momentum in = units 
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- απ are components on the molecular axes of the vibrational moment defined as:  

,
,

1
k l k l

k l

Q Pα
απ ς= ∑=           (II.7) 

- αβμ is matrix element (α, β) of the inverse matrix of the effective inertia tensor referring to 

the Oxyz molecular system of axis 

- kP is conjugate moment to the normal coordinate Qk, and V is the vibrational potential 

energy function whose quadratic part can be diagonalized through the 3N − 6 vibrational 

coordinates:  

(3 6)
21

2
1

...
N

k k
k

V Qλ
−

=

= +∑            (II.8) 

and: 

-        U αα
α

μ= ∑ ,           (II.9) 

as shown by J.K.G. Watson (29) 

In the following of the text, we will use ,k kq p  which are the dimensionless normal 

coordinates and their conjugate momenta defined by: 

1/4

1/2 ,k
k k k

k

q Q p i
q

λ ∂
= = −

∂=
                  (II.10) 

In case of small vibrations (in comparison to interatomic distances), V and αβμ  can be 

expanded as series in the normal coordinates qk:  

0 1 2H H H H= + + +…                  (II.11) 

with: 

( )2 2 2
0

1
2 k k k

k
H p q B Jα α

α

ω= + +∑ ∑                     (II.12)                         

1 2
,

1
, ,

2 l
k k k l kl klm k l m

k k l k l mk

H B J J q q p B J K q q qα β α
α β α α

α β α

ω ς
ω < <

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑∑ ∑ ∑ ∑             (II.13) 
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( ) ( )1
2

, , , ,

2

3
8

1
4

k l k l k l k k k
k l k

klmn k l m n
k l m n

H q q B B B B B J J B q q J

B B K q q q q

γα γβ γβ γα αβ
γ α β α α β

α β γ α β

α α α
α α

π π

π

−

< < <

= + − +

+ − +

∑ ∑ ∑∑

∑ ∑ ∑
           (II.14) 

 

In these formulas, 

- kω  is the harmonic vibrational wavenumber of the kth normal mode: 

1/4

2
k

k c
λω

π
=                     (II.15) 

- Bα  is the equilibrium rotational constants (in cm-1 ): 

28
B

cIα
απ

=
=                     (II.16) 

- ,
kBα β  are rotational derivatives: 

( )
2

, 1

0 0

,k k l k l
k k l

B B B B B B
q q q

αβ αβα β γα γβ γβ γα
γ

μ μ− ⎛ ⎞∂ ∂⎛ ⎞
= + = ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

              (II.17) 

- kl
ας  are Coriolis coupling constants 

- απ  are components on the molecular axes of the vibrational momentum: 

1 2

,
,

1 l
k l k l

k l k

q pα
α

ωπ ς
ω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑=                   (II.18) 

- klmK , (resp. klmnK ) are cubic, (resp. quartic) potential constants.  

We can rewrite the Eq. (II.12) as: 

0 0 0
vib rotH H H= + ,                   (II.19) 

where 

( )
3

2 2
0

1

1
2

vib
k k k

k
H p qω

=

= +∑ ,                  (II.20) 
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2
0
rotH B Jα α

α

= ∑ ,                   (II.21) 

with 0 0, , ,vib rot
k B H Hαω  in cm-1.  

The zeroth order Hamiltonian is a rough approximation. At this level, the vibration and 

rotation are separated, and it is easy to label the vibrorotational energy levels. We will detail 

the description of the eigenfunctions and eigenvalues of the rotational and vibrational zeroth 

order Hamiltonian. Let us remind, however, that at higher orders (H1, H2 and over …) the 

vibration and rotational motions are coupled. 
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II.2  Application to the nitric acid molecule 

II.2.1 Description of the molecule 

II.2.1.1 Nitric acid structure 

Figure II.1 gives the structure of nitric acid molecule which is planar in its equilibrium 

configuration.  

   

Fig. II.1 Scheme of DNO3 structure.  
 

Recently, a semi-experimental equilibrium structure has been derived from experimental 

ground state rotational constants achieved for several isotopomers of nitric acid ((30), (31) 

and Refs. therein) and of rovibrational interaction parameters calculated from the ab initio 

force field. In this way, the best equilibrium structure was found to be 

re(N=Osyn) = 1.209(1) Å, re(N=Oanti) = 1.194(1) Å, re(N-O) = 1.397(1) Å, 

re(O−H) = 0.968(1) Å, ∠(ONOsyn) = 115.8(1)°, ∠(ONOanti) = 114.2(1)° and 

∠(NOH) = 102.2(1)°  (11). 

II.2.1.2 Inertia axes and rotational constants 

Figure II.1 gives also the system of principal axes for the DNO3 isotopomer. As compared to 

H14NO3, the inertia system of axes rotates of about 9° clockwise from H14NO3 to D14NO3. 
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DNO3 is an asymmetric top molecule (it has three different inertial moments). Following the 

common usage, the three principal inertial constants are noted as Ba = A, Bb = B and Bc = C 

and ordered by the relation A B C≥ ≥ .  

 A (cm-1) B (cm-1) C (cm-1) Ref. 

H14NO3 0.43399948 0.40360889 0.2088321 (30) 

H15NO3 0.43404204 0.40350885 0.20881543 (31) 

DNO3 0.43265388 0.37734832 0.2013037 (31) 

Table II.1 Ground state rotational constants for the H14NO3, H15NO3 and D14NO3 isotopomers of nitric 

acid.          

Table II.1 gives the ground state rotational constants for the H14NO3, H15NO3 and D14NO3 

isotopomers. The following approximation holds: 

A~B ~2C                     (II.22) 

Therefore nitric acid may be considered as a “near oblate rotor”.  

For a near-symmetric top molecule, it is useful to define the (x,y,z) reference axes, choosing 

the  z axis as the symmetry axis of the rotor. In this way, the standard base J k  formed by 

eigenvectors common to 2J  and zJ  is the bases of all rotational wavefunctions.                 

The eigenstates and eigenvalues of the asymmetric Hamiltonian rotor, 0
rotH ,  are retrieved by 

diagonalization of matrix associated to the standard base J k . Different conventions can be 

chosen for the orientation of the (x, y, z) reference system for the symmetric rotor relative to 

the (a,b,c) inertia axes of the actual molecule. Naturally the IIIr representation, with z = c, 

x = a, y = b seems the most appropriate for a near oblate molecule like nitric acid, because c 

is the z- reference axis. However, the most recent and accurate determinations of the 

rotational constants for various isotopomers of nitric acid by millimeter wave techniques (30, 

31) were satisfactorily performed using a rotational Hamiltonian written in the 

Ir representation (x = b, y = c, z = a), and the so called A-type reduction which will be defined 

further in the text. Therefore the Ir convention was also adopted in this study. Under these 

conditions, the zeroth order rotational Hamiltonian has following form: 

2 2 2
0
rot

z x yH AJ BJ CJ= + +                   (II.23) 
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The eigenstates of 0
rotH  are labeled by a cJ K K , aK and cK  being associated, respectively, 

to the components of the total kinetic moment J
G

 on molecular axes a and c. Though these 

two last labels are not well behaved quantum numbers, nevertheless the triplet    a cJ K K (that 

follows conditions 0 aK J≤ ≤ , 0 cK J≤ ≤  and a cK K J+ = or 1J + ) enables labeling of the 

molecular rotational energy levels in a single way. 

Equation of the eigenvalues of 0
rotH  has the form: 

0 0( )0 0a c

rot rot
a c J K K a cH J K K E J K K=                       (II.24) 

II.2.1.3 Vibration 

Nitric acid molecule has 3N − 6 = 9 non degenerated vibrations.  

Symmetry Mode Approximation type  D14NO3 Ref. H14NO3 Ref.  H15NO3 Ref. 

A' ν1 O–H stretch Ev 2621.5 (32) 3550.0 (32)  3550.0 (32) 

 ν2 NO2 a-stretch Ev 1688.3629 (33) 1709.567 (4)  1675.4 (32) 

 ν3 NO2 s-stretch Ev 1308.5 (32) 1326.185 (4)  1327.0 (32) 

 ν4 H–ON bend Ev 1013.22 (32) 1303.069 (4)  1320.6 (32) 

 ν5 NO2 bend (planar) Ev 887.658 (34) 886.229 (7)  875.050 (8) 

  NO2 bend (planar) ν~  887.658 (34) 879.1075   871.086 (8) 

 ν6 O–NO2 stretch Ev 642.1383 (35) 646.826 (4)  646.96407 (36) 

 ν7 O–NO2 bend Ev 541.5847 (35) 580.304 (4)  578.47191 (36) 

A'' ν8 NO2 bend (out of plane) Ev 762.8738 (37) 763.154 (4)  743.61660 (36) 

 ν9 H–ONO torsion Ev 343.8496 (38) 458.229 (4)  458.29167 (36) 

           

A' 2ν9 Overtone of ν9: Ev 677.5827 (38) 886.229 (7)  889.498 (8) 

   ν~  677.5827 (38) 896.447   893.452  

A'' ν7+ν9 
Combination of  

 ν7 and ν9 
Ev 882.21 (34) 1038 (39)  ~ 1037 (estimation) 

Table II.2 Vibrational modes of several nitric acid isotopologues. The Ev and ν~ are the vibrational energy 

and the band center, respectively, expressed in cm-1. ν~  is the calculated  position for the [J=0, Ka=0, 

Kc=0] energy level. 
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Table II.2 gives the description, the frequency, and the symmetry type according to Cs of the 

nine vibrational modes of the D14NO3, H14NO3 and H15NO3 isotopologs. The Cs point group 

will be defined later in the text. 

At zeroth-order, the rotation and vibration are well separated as shown previously 

( 0 0 0
vib rotH H H= + ). The eigenstates of H0 are the product of vibrational eigenstate of 0

vibH  

denoted as 
0

…1 2 9v  v   v and of the rotational eigenstate of 0
rotH , denoted as 

0a cJ K K  : 

0 00a c a cJ K K J K K=… …1 2 9 1 2 9v  v   v   v  v   v                 (II.25) 

The zeroth-order vibrational Hamiltonian, 0
vibH , is a tensorial product of nine non 

degenerated harmonic oscillators. Each corresponding vibrational eigenstate, 
0

…1 2 9v  v   v  

is the product of nine iv  harmonic oscillators eigenstates. Each associated eigenvalue is the 

sum of the nine associated eigenvalues: 

0 1 2 9
1 1 1
2 2 21 2 9v v vvibE ω ω ω⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
…                (II.26) 

II.2.2 Symmetry properties 

II.2.2.1 Symmetry group of DNO3 

The equilibrium structure of nitric acid has two elements of symmetry: the identity E and the 

reflection in the molecular plane σxz. Therefore the appropriate symmetry point group is Cs 

with { },sC E σ= . This point group is isomorph to the G2 = {E, E*}, where E* is the 

inversion of the positions of all particles (electron and atomic nuclei) in the center of mass.  

Table II.3 presents the characters of the Cs group together with the symmetry species of the 

molecular (μx,μy,μz) and space-fixed (μZ) electric dipole moment components, of the total 

angular moment J molecular components, of the normal coordinates, and the rotational levels 

with regards to the Kc parity.  

Cs E σxz [J Ka Kc] 
G2 E E* 

 μ J   Vibrations
parity of Kc 

A' 1 1  μx  μy Jz   q1, ..., q7 even 
A" 1 -1  μz , μZ Jx  Jy   q8, q9 odd 

Table II.3   Symmetry properties of DNO3 molecule  
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Let us remind that for the H14N16O3 and H15N16O3 isotopomers, the ν9 mode (H–ONO torsion 

around the O
ON <−  group) is a large amplitude motion. This means that for excited energy 

levels in the v9 vibrational quantum numbers, splittings of the energy levels can be observed, 

whose values are of about 2 MHz for v9 = 1, 60 MHz  for v9 = 2 and 1800 MHz for v9 = 3. 

This is because the ν9 large amplitude motion enables the H
O
O ON −>    HO

O ON −>  

tunneling effects. In this operation, the two 16O in the O
ON <−  radical are exchanged through 

a (12) permutation. The Cs or G2 groups are no more suitable, and it is necessary to use the 

G4 = {E, (12), E*, (12)*} permutation-inversion group to characterize the symmetry 

properties of the vibration- torsion- rotation wavefunctions. Of course G4 is homomorph onto 

G2 or Cs.    

For DNO3 such large amplitude motions are expected to be significantly weaker than for 

HNO3 because of the mass ratio D/H~2. For example the tunneling splitting in the v9 = 2 

vibrational state of DNO3 is expected to be only of 2 MHz, instead of 60 MHz for HNO3. 

Therefore, the D-O tunneling around the O
ON <−  moiety will not be considered for this 

DNO3 study. 

II.2.2.2 Symmetry properties of H0 eigenstates 

The eigenstates of H0 can also be classified using the two irreducible representations of Cs 

group, their type of symmetry Γ (Γ = A' or A'') depends on the parity of the rotational and 

vibrational quantum numbers and is obtained by multiplication of the types of symmetry of 

the vibrational state and of the rotational level: 

( ) ( ) ( )0 00a c a cJ K K J K KΓ = Γ ⊗ Γ… …1 2 9 1 2 9v  v   v   v  v   v                               (II.27) 

Afterwards, it is convenient to calculate the matrix elements of the operators involved in the 

Hamiltonian using a symmetry adapted basis defined from the J k  and 
0

…1 2 9v  v   v . 

II.2.2.2.1 Symmetry of vibrational states 

The Cs symmetry group is an Abelian group and the type of symmetry of a particular 

vibrational state …1 2 9v  v   v  is therefore given by the direct product of the types of 

symmetry of its each vibrational state iv : 
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( ) ( ) ( ) ( )1 2 9 1 2 9v  v   v v   v vΓ = Γ ⊗ Γ ⊗ ⊗ Γ… …               (II.28) 

The eigenfunctions of an one dimension harmonic oscillator iv , are Hermite’s polynomes, 

Hv(qi). During the qi → −qi change of sign, the iv  wavefunction changes as: 

qi → -qi  ( ) i

i i i

v
v i v i v i( ) ( ) 1 ( )H q H q H q→ − = − .                         (II.29) 

The symmetry type of the iv  vibrational wave function according to Cs depends on the i 

and vi values.  For i = 1 to 7, the qi normal mode does not change during any Cs symmetry 

operation (E or σxz). Consequently, ( ) 'Γ =iv A  for i = 1 to 7 and for all vi values.  On the 

other hand, for i = 8 or 9, ( ) 'Γ =iv A  and ( ) ''Γ =iv A  for vi even and vi odd, respectively. 

Therefore, for nitric acid, the …1 2 9v  v   v  vibrational states with even v8+v9 values (resp. 

odd v8+v9 values) are of A' symmetry (resp. of A'' symmetry): 

( ) ( ) ( )Γ = + = + =…1 2 9 8 9 8 9v  v   v A' (resp. A'') if v v even (resp. v v odd )           (II.30) 

Symmetry of rotational levels 

The inertia ellipsoid has at least three planes of symmetry and three binary axes, whatever the 

molecular symmetry group is. The molecular rotation Hamiltonian is therefore invariant 

under any operation of the V symmetry group (Vierergruppe, noted also D2): identity, three 

rotations by π around the respective axes x, y and z. The symmetry types of the rotational 

levels in this group are hence to be determined. The characters of the V symmetry group are 

given in Table II.4. 

V (D2) E Cx
2 Cy

2 Cz
2 

A 1 1 1 1 
Bx 1 1 -1 -1 
By 1 -1 1 -1 
Bz 1 -1 -1 1 

Table II.4  Character table of the V group of symmetry  

As was already mentioned, the eigenstates of 0
rotH  are determined through diagonalization of 

this Hamiltonian in a standard basis J k , and the wavefunctions 
0a cJ K K   are given as 
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linear combinations of J k  basis sets.  In order to determine the symmetry of the 

0a cJ K K   levels it is necessary to determine the symmetry of the J k  functions.  

An appropriate symmetric basis of rotational wavefunctions is the Wang type basis defined 

as: 

( )1
2

J K J k J kγ γ= + −                     (II.31) 

with K = |k|,  γ  = ±1   

and 

0 1 0J Jγ = + =                    (II.32) 

The J K γ   are grouped in four classes named usually E+, E−, O+ and O−  with regards to the 

K parity (K even or odd) and the γ sign (γ = ±1) . 

The following useful relations were demonstrated (40): 

( )expzR J k i k J kβ β=                    (II.33) 

( ) ( )1 exp 2JR J k i k J kπ
α α= − − −                  (II.34) 

In this expression zRβ  is the rotation of a β angle around z of the x and y axes. Also, Rπ
α  is the 

π rotation of the x, y and z axes around an “α “ axis. This “α “ axis is located in the (xy) plane 

with an α angle with regards to the x axis. 

The three rotation operations of the group V (Cx
2, Cy

2, Cz
2) are equivalent to the 0 /2, , zR R Rπ π π

π  

operations, respectively. The equations (II.33-34) give the J K γ  symmetry types under the 

V operations. The irreducible representation of this group under the Ir convention (x = b, 

y = c, z = a) is:  

, ,A A, B B  B B  B Bx b y c z a→ → → →                (II.35) 

Table II.5 gives the symmetry of the basis functions J K γ  under the V symmetry group 

following the Ir convention.  
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 J even J odd 
E+ A Ba 
E- Ba A 
O+ Bb Bc 
O- Bc Bb 

Table II.5   Symmetry of fonctions J K γ   under the V group of symmetry  

Under the under the Ir convention, the 
0a cJ K K   symmetry types according to V operation 

are deduced from those of J K γ   in the two limit cases, K → Ka and K → Kc. This is 

possible since the levels sharing the same J do not cross each other and the symmetry 

properties are conserved. As a final result, the symmetry type of 
0a cJ K K   depends only on 

the Ka and Kc parity, as reported in the Table II.6. 

Ka Kc type 
e e A 
e o Ba 
o o Bb 
o e Bc 

Table II.6  Symmetry of the rotational levels under the V symmetry group 

Once the symmetry types of the 
0a cJ K K   and J K γ  wavefunction relative to V are 

established, it is easy to set the symmetry properties of these wavefunctions relative to the Cs 

point group. Indeed V is homomorph onto G2 or Cs.    

Therefore, the correspondence between the irreductible representations of the V and Cs group 

is obtained: 

; A, B A'; B , B A''s y a bV C→ → →                 (II.36) 

The symmetry of the 
0a cJ K K   levels and of the basis functions J K γ   under the Cs 

symmetry group is given in Tables II.7-8. 
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  J even J odd 
E+ A' A'' 
E- A'' A' 
O+ A'' A' 
O- A' A'' 

Table II.7 Symmetry of the levels J K γ  under Cs symmetry group 

 J Ka Kc 
Kc even A' 
Kc odd A'' 

Table II.8 Symmetry of the levels 
0a cJ K K  under Cs symmetry group 

II.2.2.2.2 Symmetry of the rovibrational levels 

The symmetry of the H0 eigenstates can be determined using the equation (II.29) from the 

known symmetry of the 0
vibH and 0

rotH eigenstates and depends only on the Kc and (v8+v9) 

parities, as is shown in Table II.9. 

    Kc even Kc odd 

(v8+v9) = even A' A'' 

 ( )0a cJ K KΓ …1 2 9v  v   v    (v8+v9) = odd A'' A' 

Table II.9 Symmetry of rovibrational levels of DNO3 under Cs symmetry group 

II.2.3 Selection rules 

The intensity of an electric dipole moment transition between two levels 

' ' a cJ K K…1 2 9v ' v '  v  ' '  and '' '' a cJ K K…1 2 9v '' v ''  v  '' ''  is proportional to the square of 

the transition moment matrix element: 

| ' ' '' ''a c Z a cJ K K J K Kμ… …1 2 9 1 2 9v ' v '  v  ' ' v '' v ''  v  '' '' |2             (II.37) 

where Zμ  is the component on the laboratory axis Z of the molecule electric dipole moment 

μ .  In order this matrix element be non-zero, the following conditions must be satisfied: 

- For an electric dipolar transition, one has: 
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0, 1JΔ = ±                     (II.38) 

- The transition moment matrix element must belong to the totally symmetric representation 

of the molecular symmetry group. For a Cs type molecule this is stated by: 

( ) ( ) ( )' ' '' '' 'a c Z a cJ K K J K K AμΓ ⊗ Γ ⊗ Γ =… …1 2 9 1 2 9v ' v '  v  ' ' v '' v ''  v  '' ''         (II.39) 

Following Table II.3, ( ) ''Z AμΓ = , and in order to satisfy the equation (II.39), the following 

relation must hold: 

( ) ( )' ' '' '' ''a c a cJ K K J K K AΓ ⊗ Γ =… …1 2 9 1 2 9v ' v '  v  ' ' v '' v ''  v  '' ''             (II.40) 

The symmetry types of the vibration – rotational wavefunctions are gathered in Table II.9. 

Using these results, it is easy to deduce the ' ''a a aK K KΔ = −  and ' ''c c cK K KΔ = −  selection 

rules as a function of the Δ(v8+v9) variation. These results are collected in Table II.10.  Let us 

remind that the ν5 and ν7+ν9 bands of DNO3 bands correspond to Δ(v8+v9) = 0 and 

Δ(v8+v9) = 1, respectively.     

Δ v v odd8 9+ =  (ν7+ν9 band) Δ v v even8 9+ =  (ν5 band) 

C-type  transitions A-type transitions B-type transitions 

oddKa =Δ       

evenK c =Δ  

evenK a =Δ    

oddK c =Δ  

oddK a =Δ    

oddK c =Δ  

Table II.10 Selection rules for an electric dipole moment transition 

For vibrational transitions with Δ(v8+v9) = even, the band is in principle hybrid, with both A- 

and B-type characters. This is the case, in principle for the ν2 to ν7 fundamental bands of 

H14NO3 or DNO3.  For example, during the analysis of the ν4 band of H14NO3, both A and B 

type  vibro-rotational transitions were observed (41).  

It is important to underline that for a hybrid band the A to B character depends on the relative 

values of the a to b components of the transition moment operator of the considered band. 

Indeed, for H14NO3, H15NO3 and DNO3, the ν2 bands are almost pure B-type bands, while ν3, 

ν6 and ν7 are mostly A-type bands.  This is obvious when comparing the general structure of 

the ν6 to ν2 bands of nitric acid (Figs II.2 and II.3, respectively). Finally the ν5 band is a pure 
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A-type band for H14NO3 and H15NO3, and is hybrid for DNO3 with a significantly stronger A-

type component as compared to its B-type counterpart. 

 

Fig. II.2 Calculated and observed spectrum of the ν6 Q branch of HNO3 (42). The upper curve is the 

calculated spectrum for only b-type transitions; the middle curve is the observed spectrum; and the lower 

curve is the calculated spectrum for only A-type transitions. The spectra are offset for clarity. 
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Fig. II.3 Overview of the ν2 band of DNO3 and  HNO3 for an D-enriched sample of nitric acid.  The 

absence of sharp Q structure indicates a B-type character of the ν2 band. From Ref. (33). 

 

Fig. II.4 Overview of the C-type ν8 band of DNO3.  From Ref. (37). 
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Finally, Fig. II.4  gives an overview of the C-type ν8 band of DNO3: it is clear that C-type 

bands differ in its structure from A- or B-type bands (see Figs. II.2-3).  

 

II.2.4 Contact transformation and energy levels calculation 

It is possible, in principle, to compute the rotation-vibration energy levels of a given molecule 

together with its associated transition intensities. For this it is necessary to build a potential 

energy surface generated through ab initio calculations and subsequently fitted against 

experimental data. Such studies are presently performed for water (43), methane (44), ozone 

(45), phosphine (46). These calculations necessitate important computation capacities and a 

large set of accurate experimental data to validate the results of the calculations. Even in this 

case, the accuracy of the calculation is often far from the experiment.   

Such theoretical methods are far for being applicable for nitric acid at the present time.   

Nitric acid with five atoms, several N-O bonds and the existence of the large amplitude OH 

bonds is quite a challenge for ab initio calculations (11). In addition the experimental data are 

still scarce. To give an example, the ν1 fundamental band at 3 µm was not yet investigated at 

high resolution. Finally, in the literature, the infrared studies pointed out the existence of 

numerous complicated resonances.   

For this reason it is not possible to perform a full diagonalisation of the vibration- rotation 

Hamiltonian. To perform the analyses presented here, it is necessary to use effective 

Hamiltonians which were generated through the so called contact transformations which are 

described here.  

II.2.4.1 Vibrational Hamiltonian  

A widely used perturbation method in molecular spectroscopy is the unitary transformation 

method first proposed by Van Vleck (47) and developed further in Refs. (48-50).              

This method leads to a partial vibrational diagonalization of the Hamiltonian matrix in 

vibrational blocks and is based on the physical properties of the molecule. Each vibrational 

block groups together vibrational states with close enough vibrational energies. These states 

are presumed to interact together, while interactions between states belonging to different 

blocks are assumed to be much weaker. The goal of the contact transformation method is to 
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eliminate, at a given order of approximation, the matrix elements coupling the states that do 

not belong to the same polyad. 

For instance, let the Hamiltonian H be developed: 

0 1 2 pH H H H H= + + + + +… …                  (II.41) 

The first contact transformation T1 leads to: 

1
1 1

0 1 2

'
' ' ' 'p

H T H T
H H H H

−=
= + + + + +… …

                 (II.42) 

T1 is chosen such that 0 0'H H= applies and 1 'H  is block diagonal in the basis …1 2 9v  v   v  

following the scheme of resonance. 

A second contact transformation T2 leads to: 

1
2 2

0 1 2

''
'' '' '' ''p

H T H T
H H H H

−=
= + + + + +… …

                (II.43) 

T2 is chosen such that 0 0 0'' 'H H H= =  and 1 1'' 'H H=  apply and 1 ''H  is block diagonal in the 

basis …1 2 9v  v   v  following the scheme of resonance. 

The contact transformation may be repeated, in principle, until the elimination, in sufficient 

order of approximation, of all operators coupling states belonging to different polyads.      

The Hamiltonian matrix appears then in a bloc diagonal form following a chosen resonance 

scheme. This simplifies the Hamiltonian matrix diagonalization because it is sufficient to 

calculate individually each block related to the particular polyad of interacting states. 

However, as it is detailed in Ref. (51),  it is important to underline that this method is suitable 

only if several conditions are fulfilled.    

The Ti (i = 1, 2, …) unitary operators are usually written as Ti = exp(Si). The vibration (and 

or) rotational operators, Si, must obey the following conditions.  

- as it is the case for Hi, the Si operators must fulfill strict symmetry conditions for all 

the terms appearing at a given order in the expansion of the T expansion.  
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- There exist also severe criteria of convergence, both for the Hi and Si operators 

appearing in the expansion of the Hamiltonian and of T, respectively.  

More or less, and without going into details, one must have: 

i+1 iH H η≈  and i+1 iS S η≈  with of course η<<1                  (II.44) 

with depending on the authors, different definitions for η. One is based on the Born-

Oppenheimer parameter 
1/4

e

p

m
mη ⎛ ⎞= ⎜ ⎟

⎝ ⎠
where me and mp are the electron and proton masses, 

respectively, the other one adopted by Nielsen (52) is ( )1/2Bη ω= , where B and ω are mean 

values of the rotational constants and vibrational frequencies, respectively. 

II.2.4.2 Rotational Hamiltonian for non resonating states 

Two cases are discerned: isolated vibrational state and polyad of interacting states. 

Let us consider the Hamiltonian TH obtained by a series of contact transformations and an 

isolated (non resonating) state v . The relevant part TH of the transformed Hamiltonian 

TH is: 

H

H

=

= vv

T Tv v v v

v v

H
                  (II.45) 

In the vibrational state v , rotH E H= +vv v v  contains only the operators acting on rotational 

functions, i.e. the powers of operators ( , , )J x y zα α =  and can be written as: 

rotH E H= +vv v v ,                   (II.46) 

Where Ev is vibrational energy dependent on v  and coinciding with the band center, in this 

case of non resonating state. rotHv  is the rotational Hamiltonian of the state v  which can be 

written in general form proposed by J.K.G. Watson (29, 53-55, 56 ) as: 

( ), , 2v v v
rot pqr p q r r q p pqr

x y z z y x
pqr

H h J J J J J J h p q r= + ∈ + + ∈∑ \ `              (II.47) 
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This expansion of rotHv  is written with strict conditions for the existing non zero 

pqrhv parameters and for the p, q and r exponents values which can appear at a given n order 

(p + q + r = n). Indeed, rotH v must be fully symmetrical in the molecular symmetry group, 

and remain unchanged during other symmetry operations (time reversal, exchange of the 

particules etc…). 

The direct diagonalization of Hvv  gives the energy levels if the v
pqrh  coefficients are known. 

The inverse problem consists in the determination of the v
pqrh  coefficients from the observed 

eigenvalues which are the experimental energy levels. As J.K.G. Watson showed all the v
pqrh  

coefficients cannot be determined simultaneously from the experimental energy levels.      

The method proposed by J.K.G. Watson consists in performing a series of rotational contact 

transformations. These unitary transformations do not change the eigenvalues of a given 

rotational Hamiltonian and eliminate the undeterminable parameters at a given order.        

The used unitary operator is viSe  where Sv  is a rotational operator that can be expanded as a 

series with respect to the components of J : 

( ), , 2v v v
pqr p q r r q p pqr

x y z z y x
pqr

S s J J J J J J s p q r= + ∈ + + ∈∑ \ `              (II.48) 

There are multiple ways of reduction to go from v
rotH  to iS iSred rotH e H e−= v v

v v  (J.K.G. Watson 

(53)).  

 

Case of an orthorhombic molecule: 

Orthorhombic molecule are molecules for which the symmetry point group is isomorph to V 

(C2v, D2 etc..) or homomorph into V (D2V etc..).  For this type of molecules several types of 

reductions exist, among which Watson described in detail the A and S type reductions.  

We will only consider here the A reduction, where v
redH has non zero matrix elements only 

for 0, 2KΔ = ± . In this way, the rotational Hamiltonian is written as: 

(2) (4) (6)v
redH H H H= + + +… ,                 (II.49) 
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with 

( ) ( ) ( )2 2 2
(2)

1 1 1
2 2 2v v v v v v vz xyH A B C J B C B C J⎛ ⎞= − + + + + −⎜ ⎟

⎝ ⎠
J              (II.50) 

( )
{ }

24 2 2 2
(4)

2 2 2 2, 2

v v v

v v

K z JK z J

K z xy J xy

H J J

J J Jδ δ

= −Δ − Δ − Δ

− −

J J

J
                 (II.51) 

( ) ( )
{ } { } ( )

2 36 4 2 2 2 2
(6)

24 2 2 2 2 2 2, , 2

v v v v

v v v

K z KJ z JK z J

K z xy KJ z xy J xy

H H J H J H J H

h J J h J J h J

= + + +

+ + +

J J J

J J
,               (II.52) 

where  

{ }2 2 2 , ,xy x yJ J J A B AB BA= − = + .                 (II.53) 

 

Case of a Cs type molecule: 

We are dealing here with DNO3 which is not an orthorhombic molecule. At the second order 

its rotational Hamiltonian takes a form which is more complicated than for a V molecule: 

{ }zx
v
xz

2
zv

2
zv

2
zv , JJhJCJBJAH RedNon

(2) +++=                 (II.54) 

In this expression the {Jx,Jz} is a non-orthorhombic term. However, Watson has 

demonstrated that, in principle, it is possible to remove all the non-orthorhombic terms (in  

{ }zx
v
xz , JJh  for example) by a suitable contact transformation. For this reason the form of the 

reduced rotational Hamiltonian written in Eqs. (II.50-53) can be used for a Cs type molecule 

for DNO3.    

In the present study, the rotational Hamiltonian that was used for DNO3 was written in the A 

reduction and with a Ir representation. Indeed the same model was successfully used recently 

during the ground state studies performed for HNO3 and DNO3 ((30, 31) and Refs. therein). 
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II.2.4.3 Resonance conditions 

As was suggested previously, interactions can couple energy levels belonging to different 

vibrational states with rather close energy. These resonances must be taken into account 

explicitly.   

Let us consider two states ,1 2v  v  with energies 
1 2

0 0,v vE E . If an interaction X is 

considered, the second order corrections to the energies are: 0 0E E−
2 1

1 2

v v

v X v
. If this correction is 

small when compared to 1, the problem can be solved by perturbation methods. If 0 0E E−
2 1v v  is 

of the same order as 1 2v X v , the two states in question are in resonance. 

In order that the 1 2v X v  matrix element differs from zero, several conditions must be 

fulfilled:  

( ) ( ) ( )1 2v v 'X AΓ ⊗ Γ ⊗ Γ =                    (II.55) 

2, 0H⎡ ⎤ =⎣ ⎦J , and therefore  

2, 0X⎡ ⎤ =⎣ ⎦J .                    (II.56) 

The resonance conditions for states therefore are: 

- same value of J quantum number 

- same type of symmetry 

- close energy levels 

 

II.2.4.4 Rotational operators appearing in the expansion of the v-off 

diagonal operators in case of resonances 

When several vibrational state have to be considered in the same block of interacting states, 

the relevant part TH of the transformed Hamiltonian TH has the following general form: 
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H

H

=

=

∑

∑ vv'

T T

v v'

v v'

v v v' v'

v v'

H
                  (II.57) 

with H H=vv'
Tv v'                   (II.58) 

where v and v' represent vibrational states belonging to the same polyad. 

¤ v diagonal blocks 

When v = v', it is possible, in principle, to apply the results of the previous discussion. 

By performing rotational contact transformation the v- diagonal Hvv  Hamiltonian is reduced 

to the Hamiltonian redHvv  that can be written as: 

red redH E H= +v
vv v                    (II.59) 

where the  operator, redH v  takes the form given in Eqs. (II.50-52).  One defines the 

vibrational band center ν~  as the (fictive) position of the [J = 0, Ka = 0, Kc = 0] energy levels. 

The vibrational level energy Ev does not always coincide with ν~  especially when 

anharmonic interaction operators exist. This is particularly the case for the {51,92} system of 

interacting states for H14NO3 and H15NO3, as it can be seen in Table II.2.  

¤ v ≠v' off diagonal blocks.  

When strong resonances couple energy levels from different vibrational states, it is necessary 

to account explicitly these interactions. The theoretical approach used to carry out the 

calculation of the resonating energy levels is described by J.-M. Flaud and C. Camy-Peyret  

(57). In this approach, the expansion of the rotational operators in the off diagonal blocks is 

written in an expansion based on symmetry considerations. The rotational terms are, in 

principle, expanded according to their J power.  

Indeed for a molecule with symmetry Cs like DNO3, the 'vvH  rotational operator belongs to 

A' the totally symmetric representation of the group. Following expressions apply for the non 

diagonal operators of H vv' : 

( ) ( ) ( )'HΓ ⊗ Γ ⊗ Γ =v'v'' v v A'                  (II.60) 
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The form of the 'vvH  rotational operator for v  and 'v  interacting vibrational states 

depends on the Δ(v8+v9) variation, more explicitly:  

¤ Δ(v8+v9) = even,  'vvH  = anharmonic and Fermi- type rotational operators together 

with C-type Coriolis operators 

¤ Δ(v8+v9) = odd,  'vvH  = A- and  B-type Coriolis operators.  

Table II.11 gives the type of rotational operators which appears in the expansion of the off 

diagonal in v rotational operators (up to n = 2).  

Δ(v8+v9)  = even Fermi or anharmonic C-type Coriolis 

 n = 0 n = 2 n = 1 n = 2 

A' rotational operators:   Cst ( )2
z

2
x

2
z

2 ,, JJJ −J yiJ  { }zx , JJ  

Δ(v8+v9)  = odd A-type Coriolis B-type Coriolis 

 n = 1 n = 2 n = 1 n = 2 

A'' rotational operators:   
zJ  { }yx i, JJ  xJ  { }yz i, JJ  

Table II.11 Type of rotational operators appearing in the expansion of the v- off diagonal resonating 

blocks as a function of Δ(v8+v9).  

If we consider the dyad {51, 71+91} of DNO3, with 51 and 71+91 of A' and A'' symmetry, 

respectively, all operators appearing in the expansion of the H vv' off diagonal interaction 

block are of A- or B- Coriolis types and must be of A'' symmetry. 

On the other hand, for the dyad {51, 92} of HNO3, Fermi and C-type Coriolis resonances 

couple together the 51, and 92 energy levels of H14NO3 (7) and H15NO3 (8). 

Finally, let us mention that in the expansion of the interacting operators, the terms in J1 (Jx, 

iJy and Jz for an B–type, C-type or A-type Coriolis resonances), are usually, but not always 

weaker but than those in J2 ({iJy,Jz}, {Jx,Jz},  or {Jx,iJy}, respectively). This was discussed in 

details by Perevalov and Tyuterev in 1982 (58), considering the rotational constants values, 

the strength of the resonance, and the distance between the interacting vibrational states. 
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II.2.4.5 Symmetrized basis for energy level calculation  

The expansion of a cJ K K…1 2 9v  v   v    wavefunctions is performed on J K γ⊗v    

cross product of zero order vibration and rotation wavefunctions:  

a c K
K

J K K C J K γ
Γ ΓΓ

= ∑∑…
v rot

v'
1 2 9

v'
v  v   v    v'                 (II.61) 

with Γ ⊗ Γ = Γv rot  symmetry conditions. In this expression the sum over v'  runs only 

through the states belonging to the same polyad of interacting states, B'. For the study 

performed during this thesis for DNO3, B' = {51, 71+91}. 

 

II.2.5 Intensities 

The intensity of a line (57) for a "pure" isotopic sample of DNO3 is given (in 

cm-1/(molecule.cm-2)) by: 

 U
L

LN~ R
kT

hcE
exp

kT

~hcexp
)T(Zhc

~
k ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ν
−−

πε

νπ
=ν 1

34

8

0

3

              (II.62)          

where L and U are respectively the lower and upper levels of the transition, 

( ) ( )U LE E hcν = −�  is the wavenumber of the transition in cm-1,  Z(T) is the total partition 

function and U
LR  is line strength. 

The total partition function can be written as: 

vib rot( ) ( ) ( )Z T Z T Z T= ⋅                   (II.63) 

and includes a vibrational contribution Zvib(T) and a rotational contribution Zrot(T). 

Finally, U
LR is the square of the matrix element:   

2U
L

l u
R l u= ∑∑ μ ,                   (II.64) 

where l  and u  are the states corresponding to the degeneracy in quantum number M of 

the lower and upper level, and μ is the transition moment operator. 
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In case of zero external field, the expression (II.64) simplifies in to 

2
3U

L Z
l u

R l uμ= ∑∑ ,                  (II.65) 

where Zμ  is the projection of electric dipole moment on axis OZ of the laboratory system of 

axis. 

Intensities are often given other units, and the following correspondence applies: 

Nk N kν ν=� �    (in cm-1/(cm-2))                   (II.66) 

0P Nk Tk L k
P T

ν
ν ν= =�
� �  (in cm-2.atm-1),                  (II.67) 

where L is Loschmidt constant (L = 2.686754 1019 cm-3 at 0 °C and 1 atm), N is number of 

molecules and P is the pressure. 

In Eq. (II.62) the quantity difficult to evaluate is U
LR . Also, the initial upper and lower state 

Hamiltonian were transformed by rotational and vibrational contact transformations in order 

to enable the energy levels calculation. As a consequence, these contact transformations also 

affect the transition moment operator. Therefore, the transformed dipole moment, '
Zμ ,  is 

used for the calculation of U
LR : 

2
' ' ' " " ", ' ,v' v''U

L a c Z a cR J K K J K Kμ=                  (II.68) 

It is, in principle possible to calculate explicitly the transformed dipole moment using the 

expression of the vibrational and rotational contact transformations. This was indeed 

performed numerically for several C2v triatomic molecules (59). However, for molecules with 

five atoms, like DNO3, this task is impossible. Therefore it is necessary to use an a priori 

expansion of the transformed transition moment operator based on the symmetry properties 

of the molecule.  

II.2.5.1 Transformed dipolar moment 

In the present study we are dealing only on cold bands, and the lower vibrational state is the 

ground state ( )0 . The operator of the transformed dipole moment may be written as: 
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' '0Z Zμ μ= ∑ v,0

v
v ,                   (II.69) 

where v runs through all members of the polyad B', and '
Zμv,0  is the transition moment 

between the ground state and the state v that can be written as: 

' '
Z j j

j

Aμ μ= ∑v,0 v,0  ,                   (II.70) 

where '
jμv,0  are the coefficients to be determined from the experimental intensities, and 

jA are  the rotational operators of the form { },p q r r q p
x y z z y xJ J J J J J αϕ+ . In this expression, αϕ  is 

direction cosine between the molecular axes α and the laboratory axis Z. The operator '
Zμ  has 

the A'' symmetry as Zμ , therefore the jA operators depends on symmetry properties of the 

vibrational operator 0 v . 

¤ For Δ(v8+v9) = even, both  A- and B- type transitions are observable, and, up to the 

second order, the jA operators appearing in the right hand side of Eq. (II.70) are in ϕz,  

{ϕx, iJy}, {iϕy, Jx}, and in ϕx, {ϕz, iJy}, {iϕy, Jz}, for the A- and B-type expansion, 

respectively.   

¤ For Δ(v8+v9) = odd,  only C- type transitions are observable. In this case Eq. (II.70)  

involves only terms in iϕy,  {ϕz,Jx},  {ϕx,Jz}.  

 

II.2.5.2 Calculation of the line strengths: 

The eigenvectors are written on the symmetrized basis functions as: 

,0
,

a c K
K

J K K C J Kγ
γ

γ= ∑∑… v
1 2 9

v
v  v   v    v   .               (II.71) 

The expression (II.68) is now written in the following way: 

2

'
' ''

' ''
' ' ' " " "U

L K K j j
K K j

R C C J K A J Kμ γ γ= ∑∑∑∑ v'* v" v,0

v'
    .             (II.72) 
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In Eq. (II.72) the coefficients 'KC v'* and ''KC v"  are obtained from the diagonalization of the upper 

and lower state Hamiltonian matrix (see Eq. II.71). Then the matrix elements of the 

jA operators on the J K γ  basis wavefunctions are easily computable as it was established  

by Flaud et al 1981 (57). Therefore, for the computation of U
LR  the only missing entities are 

the '
jμv,0 constants which are to be determined through a least squares fit performed on the 

experimental intensities, or estimated from those of other isotopomers, or predicted by ab 

initio calculations.   
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II.3 First high resolution analysis of the ν5 band of DNO3 

II.3.1 Existing spectroscopic studies for the first vibrational states of DNO3 

For the ground vibrational state of several isotopic species of nitric acid, accurate rotation 

constants were achieved from high resolution studies performed in the microwave 

submillimeter and centimeter region (Drouin et al. (31) and Chou et al. (60) and references 

therein).  

In the infrared, the vibrational spectrum of nitric acid was measured at low resolution by 

McGraw et al. (32) for several isotopic species (H14NO3, D14NO3, H15NO3, D15NO3). As for 

DNO3, only the ν2 (NO2 a-stretch) (33), ν6 (O–NO2 stretch) and ν7 (O–NO2 bend) (35), ν8 (out 

of plane NO2 bend) (37), and ν9 (O–D torsion) (38) fundamental bands were the subject of 

extensive high resolution infrared studies. Except for the ν6 band for which a Fermi type 

resonance coupling the 61  92 interacting energy levels was noticed, all other investigated 

bands (ν2, ν7, ν8, and ν9) appeared to be unperturbed.  

The present analysis describes the first high resolution study of the ν5 fundamental band (NO2 

in plane bending mode) of DNO3 in the 11 µm spectral region. Fig. II.5 compares the 

positions of the first vibrational states of H14NO3 and DNO3. For H14NO3 or H15NO3 the 

energy levels calculation had to account the strong Fermi and C-type resonances coupling the 

51 and 92 energy levels. This is because, as stated in Table II.2, the vibrational energies 

between 51 and 92 differ in Δ99-5 = E99 − E5 = 14.448 and Δ99-5 = 3.098 cm-1 for H14NO3 or 

H15NO3, respectively. This value has to be compared with the value, F0 = 8.53 cm-1, where F0 

is the zeroth order term in the expansion of the 51  92 Fermi operator for both H14NO3 (7) 

or H15NO3 (8). By diagonalizing the J = 0 Hamiltonian matrix using the Δ99-5  and F0  values it 

is possible to estimate the mean 599R mixing of the 92 wavefunctions onto the 51 vibrational 

state defined as  

299 5 99 5
,KR C γ=                    (II.73) 

where: 

2 99 5 1 99 99 2
, ,

, ,

9 5 9a c K K
K K

J K K C J K C J Kγ γ
γ γ

γ γ= +∑ ∑              (II.74) 
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The  bracket is for the mean mixing value on the overall 92[J Ka Kc] energy levels.        

By using the numerical values of Δ99-5  and F0 and diagonalizing the J = 0 matrix, this 599R  

mixing is estimated to be about 41 %, 18 % and 0.2 % for H14NO3 (7) and H15NO3 (8) and 

DNO3, respectively. Therefore, the very weak resonances coupling the 51 and 92 energy 

levels of DNO3 were not considered explicitly. 

On the other hand, when examining Table II.2, it is clear that 7191 vibrational state is located 

~160 cm-1 above the 51 state for H14NO3 and H15NO3. On the contrary, for DNO3, 7191 is only 

~5.4 cm-1 below 51. Therefore, due to symmetry considerations it is clear that A-type and B- 

type Coriolis resonances coupling together the 51 and 7191 energy levels have to be explicitly 

taken into account for DNO3. 

 

Fig. II.5  Resonance scheme for DNO3 and HNO3   

II.3.2 Experimental details 

The synthesis of DNO3 and the recording of the high resolution Fourier transform infrared 

spectra were performed at the Bergische Universität in Wuppertal (Dr. Helmut Beckers and 

Prof. Helge Willner). 

DNO3 was synthesized from D2SO4 (Merck, 96% in D2O, 99.5 % D) and KNO3 (Merck).     

In a 100 mL glass bulb equipped with a magnetic stirring bar and a 10 mm valve with PTFE 
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stem (Young) 40 g of KNO3 (0.4 mol) was placed. After the KNO3 was dried in vacuum for 

one hour, 25 mL (0.5 mol) of D2SO4 was introduced into the bulb. Subsequently the bulb was 

connected to the vacuum line and the volatile products were distilled through a series of traps 

held at −20, −100, and −196 °C. The content in the bulb was stirred and heated in a water 

bath until the gas evolution was terminated. About 20 g of pure DNO3 was collected in the 

trap held at −100 °C. 

The IR gas cell (glass body, AgBr windows sealed with Kel-F wax, optical path length of 

28 cm) was treated with DNO3 vapour several times, until no proton exchange with the 

surface could be detected any more. For the final measurements sample pressures of 1.3, 0.4 

and 0.1 mbar at cca 23°C (296 K) were used. 

The infrared spectra of DNO3 were recorded with an instrumental resolution of 0.0022 cm−1 

in the 700−1400 cm−1 region on the Bruker IFS 120 HR Fourier transform spectrometer at the 

University of Wuppertal, equipped with a Globar source, a KBr beam splitter, and 

a MCT 800 detector. An optical filter was used to eliminate radiation > 1400 cm-1. 60, 121 

and 169 scans were co-added for the spectra recorded at pressures of 0.1, 0.4 and 1.3 mbar, 

respectively.  

The calibration of both FT spectra recorded at two different pressures (1 Torr and < 0.1 Torr) 

in the region 730 – 1400 cm-1 was performed via model 

( )1 Cσ σ= +Ref FT FT ,                    (II.75) 

using HITRAN 2004 (61) collection of H2O (62), HDO (62), N2O (63) reference line 

positions. These species were present in the measured gas mixtures impurities. In case of D2O 

the line position values issued directly from an article by Toth (64).  

13 lines of H2O, 22 lines of HDO, 50 lines of D2O and 15 lines of N2O were localised in the 

higher pressure spectrum, respectively in the regions 1187 – 1387 cm-1, 1354 – 1386 cm-1 , 

1127 – 1388 cm-1, and 1258 – 1273 cm-1. This led to determination of the CFT constants 

respectively 1.70(15) 10–6, 1.71(20) 10–6, 1.54(23) 10–6 and 1.65(23) 10–6. These constants 

were weighted by square of inversed standard uncertainties to form the weighted mean value 

of 1.66(19) 10–6. 

In the lower pressure spectrum, just H2O and D2O lines with sufficient intensity were traced. 

The calibration through some 16, resp. 24, lines from region 1174 – 1386 cm-1, resp. 1042 – 
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1271 cm-1, led to CFT values of 1.68(30) 10–6, resp. 1.58(25) 10–6 which gave the weighted 

mean value 1.62(27) 10–6. 

A spectral resolution of 0.0027 cm-1 was determined from the FWHM value of isolated lines. 

II.3.3 Analysis 

Because of the particular values of the A, B and C rotational constants for nitric acid (A ~ B ~ 

2C) there exists a Ka degeneracy (resp. a Kc degeneracy) for the rather high Kc values (resp. 

the very high Ka values): this means that the [J, Ka = J − Kc, Kc] and [J, Ka = J − Kc + 1, Kc] 

(resp. [J, Ka, Kc = J − Ka] and [J, Ka, Kc = J − Ka + 1]) energy levels are degenerate.  

As already mentioned in part II.2.2-3, DNO3 is a planar asymmetric molecule (CS symmetry) 

and as it is expected by symmetry considerations, the ν5 band is a hybrid band, with both A- 

and B-type transitions, with (Δ|Ka| = even, Δ|Kc| = odd) and (Δ|Ka| = odd, Δ|Kc| = odd) 

selection rules, respectively.  

Fig. II.6 shows the overview of the measured spectrum in the 11 µm region. The lower trace 

corresponds to the experimental spectrum (T = 296 K and P = 0.1 Torr). The upper trace is 

the line by line calculation for DNO3. The Q branch of ν5 band is centered at 887.65 cm−1. 

The A-type character of the ν5 is predominant according to the general aspect of the narrow 

Q branch for which the strongest lines are A-type transitions involving very high Ka values 

(Ka ~ J). 

 

Fig. II.6 Overview of the 855-920 cm-1 spectral region with the ν5 band of deuterated nitric acid 



 49

Figs. II.7-9 give details of the spectrum in the P, Q and R branches of the ν5 band, 

respectively. In the P and R branches, the strongest P and R lines correspond to transitions 

involving high Kc values, and because of the Ka degeneracy the A- to B- type character of 

such transitions cannot be evaluated. The series of lines for low J values (see Fig. II.7) are 

grouped in stacks corresponding to the same values of (2J' − K'c), and this helped for the first 

assignments.   

In addition, in the wings of the P and R branches, series of regular weaker transitions 

involving high Ka values were also observed. These series were assigned as "pure" B-type 

transitions, as it is exemplified on Fig. II.9. Searching for these B-type transitions, as for 

example the [J, Ka =  J, Kc = 0 or 1] - [J  ± 1, K"
a = J ± 1, K"

c = 1 or 0] type transitions, 

helped us to confirm the A-type assignments in the narrow Q-branch ([J, Ka = J, Kc = 0 or1] - 

[J, K"
a = J, K"

c = 1 or 0] type- transitions).   

Fig. II.7 shows some lines of the P branch grouped in stacks corresponding to the same 

(2J − Kc) values. The quoted assignments are given for the upper K'c values, with 

(2J' − K'c) = 20 (solid triangles, S) and (2J' − K'c) = 21 (open triangles, U). Due to a 

resonance which occurs for K'c = 14 and 15, several ν7+ν9 band transitions are also observed 

and some assignments are given (diamonds ♦). The “d” letter stands for degenerate 

transitions with Ka = J − Kc and Ka = J − Kc + 1. The lower trace corresponds to the 

experimental spectrum, the medium and the upper traces are line by line calculations 

performed for the ν5 and ν7+ν9 interacting bands and for the ν7+ν9 dark band, respectively. 

Fig. II.8 shows part of Q branch together with several assignments (solid triangles T) of a 
Q

1Q
aK J= −  sub-branch and two assignments for the ν7+ν9 band. The lower trace corresponds to 

the experimental spectrum, the medium and the upper traces are line by line calculations 

performed for the ν5 and ν7+ν9 interacting bands and for the ν7+ν9 dark band only, 

respectively. 
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Fig. II.7 Part of P branch of the ν5 band of DNO3 near 878.6 cm-1 (with some upper Kc assignements) 

 

Fig. II.8 Portion of Q branch transitions of the ν5 band in the 887.7 cm-1 spectral region 
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Fig. II.9 shows part of R branch together with some J' and K'c (upper state) assignments for 

the ν5 band. An example of a pure B- type transition is marked by an arrow. In the upper 

trace, examples of forbidden transitions for the ν7+ν9 dark (C- type) band are also given.  

The “d” letter in this case stands for degenerate transitions with Kc = J − Ka and 

Kc = J  − Ka + 1. The lower trace corresponds to the experimental spectrum, the medium and 

the upper traces are line by line calculations performed for the ν5 and ν7+ν9 interacting bands 

and for the ν7+ν9 dark band, respectively. 

 

Fig. II.9  Part of R branch of the ν5 band of DNO3 near 903  cm-1 

Because both A- and B-type transitions are observable in the spectra, the synthetic spectrum 

used for the predictions was generated using, for the line intensities calculation, both A- and 

B-type components for the ν5 transition moment operator 5 '
Zμ : 

5 5 'A 5 'B
1 1

'
Z z xμ μ ϕ μ ϕ= +                    (II.76)                         
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In this expression, ϕz and ϕx are the Zz and Zx components of the direction cosines between 

the Z laboratory fixed axis and the z = a and x = b molecular axes. By comparing pure A-type 

to pure B-type line intensities, the ratio of the absolute values of the A- ( A'
1

5μ ) to B- ( B'
1

5μ ) 

components of the ν5 band transition moment operator was estimated at the value:    

5 ' B 5 'A
1 1 0.4μ μ ≈                      (II.77) 

The details of the line intensity calculations will be given in Section II.3.4.3.   

Some low and medium J and Ka transitions in the ν5 band were first assigned. Then, using the 

ground state parameters of Ref. (31), the lower state energy levels were calculated and added 

to the newly observed line positions to get a list of experimental upper state energy levels. 

These upper state levels were inserted in a least squares fit to get an improved set of upper 

states parameters allowing better predictions and hence more assignments to be made.  

This process was repeated iteratively until it appeared that several series were significantly 

perturbed, because of resonances involving the energy levels belonging to the 7191dark state 

located at 882.211 cm-1. A model accounting for these resonances was then set up, which 

allowed more accurate predictions, and therefore new assignments. This iterative process was 

carried out until the ν5 band was satisfactorily assigned. Table II.12 gives an overview of the 

results of the present analysis. As the resonances coupling the 51 and 71+91 energy levels are 

rather strong, it was possible to assign several transitions belonging to the dark ν7+ν9 band.  

Table II.13 provides a statistical analysis of the energy levels calculations. The standard 

deviation of the fit is 0.70 10−3 cm-1.  

 ν5 ν7 + ν9 

Nb of lines 2938 137 
JMax 68 40 

Maximum  Ka values 44 33 
Nb of levels 1078 75 

Table II.12 Range of the observed energy levels 
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 51 7191 
Nb of levels 1078 75 

0 1.0δ≤ <  94.0 % 81.3 % 
1.0 2.0δ≤ <  3.6 % 4.0 % 
2.0 4.0δ≤ <  1.7 % 10.7 % 
4.0 10.0δ≤ <  0.7 % 4.0 % 

Table II.13 Statistical analysis ( obs calcE Eδ = −  in 10-3 cm-1) 

In addition, it has to be mentioned that lines from several hot bands were observed in the 

spectrum during the analysis. Fig. II.10 identifies the Q-branches of the ν5+ν6−ν6, ν5+ν7−ν7 

and ν5+ν9−ν9 hot bands at 881.03, 882.61 and 884.45 cm−1, respectively. These assignments 

are based on considerations on the relative intensities of these hot bands. In this way the 

position of the 51+61, 51+71 and 51+91 vibrational states of DNO3 is estimated at 1523.17, 

1424.20 and 1228.30 cm-1, respectively, therefore, in good agreement with the low resolution 

measurements of McGraw et al. (32) (ν5+ν6 ~ 1520 cm-1 and ν5+ν7  ~ 1424 cm-1).  Because 

of the complexity of the spectrum, no further detailed analysis could be performed for these 

hot bands. Unobserved center of the ν7+ν9 dark band was calculated at 882.211 cm−1.  

 

Fig. II.10  Portion of the P branch of the ν5 band of DNO3 near 883 cm−1: Identification of the ν5+ν6−ν6, 

ν5+ν7−ν7 and ν5+ν9−ν9 hot bands 
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II.3.4 Energy levels and intensity calculation 

II.3.4.1 Hamiltonian 

The form of the Hamiltonian matrix used for the {51,7191} interacting states of DNO3 is 

described in Table II-14.  

 51 71 91 

51 H5,5 Complex conjugate 
71 91 CA+CB H79,79 

Table II.14 Hamiltonian matrix - The {51,7191} resonating  states 

As it is the case usually for planar Cs type molecules, the v-diagonal parts of this model are 

A-reduced Watson-type Hamiltonians written in the Ir representation: 

( ) ( ) ( )
( ) { }

{ }

v v v 2 v v 2 v v 2
v,v v

2v 4 v 2 v v 2 2 v 2

2 2 2

1 1 1
2 2 2

, 2

, ,

z xy

K z JK z J K z xy J xy

xy x y

H E A B C J B C B C J

J J J J J

A B AB BA J J J

δ δ

⎡ ⎤= + − + + + + −⎣ ⎦

− Δ − Δ − Δ − − +

= + = −

2 2 2

J

J J J …            (II.78) 

Due to the relative symmetry of the 51 ↔ 7191 interacting states (A' ↔ A"), both A-type and 

B-type Coriolis operators are considered in the 51  7191 off diagonal blocks: 

H5,79 = CA + CB (A-type Coriolis, B-type Coriolis) 

{ }1 2 ,A A z A y xC C J C iJ J= +                   (II.79) 

{ } ( )2 2 3 3
1 2 3 4 5,B B x B y z B x B x z BC C J C iJ J C J C J J C J J+ −= + + + + +J              (II.80) 

The final energy levels calculation was performed for the {51,7191} resonating states.         

The experimental 51 and 7191 energy levels obtained in this work were introduced in a least 

squares fit using this Hamiltonian model. Tables II.15 and II.16 list the Hamiltonian 

parameters (band centers, rotational and interacting constants, in cm-1 units) resulting from 

the fit, together with their associated statistical uncertainties (for one standard deviation). 

Several rotational or centrifugal distortion constants were maintained fixed at their ground 

state values (31). One has to remind that since the informations available on the rotational 

structure of the 7191 dark state concern a small sample of perturbed levels (75 as compared to 
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1078 for the 51 bright state). For this reason the rotational and centrifugal distortion constants 

for the 7191 resonating state are effective ones, with poor physical meaning. 

The results of the energy levels calculations proved to be rather satisfactory, as can be seen 

from the standard deviation and statistical analysis given in the Table II.13. However, several 

resonances could not be completely accounted for satisfactorily. Indeed the most significant 

disagreements are observed starting from J~30 for the levels of the 51 state with Kc = 1, 2 and 

3 (with Ka = J − Kc and J − Kc + 1).  As it will be discussed in the next paragraph, this is 

because these resonances are local, and difficult to predict.  

 

 

 

    0 51 71+91 

EV   887.657186(81) 882.20837(21) 
A  0.43265424876 0.43245812(300) 0.43176867(490)
B     0.37734930500 0.376607964(570) 0.37572761(340)
C     0.20130393744 0.200482401(180) 0.20019724(320)
ΔΚ   2.13530x10−7 1.61221(130)x10−7 3.81447(150)x10−7

ΔKJ  -0.15060x10−7 0.4704(150)x10−7 −1.4266(480)x10−7

ΔJ    2.326846x10−7 2.11850(850)x10−7 2.450(17)x10−7

δΚ   2.485385x10−7 3.39012(790)x10−7 1.6354(550)x10−7

δJ   0.958026x10−7 0.85602(460)x10−7 1.2368(210)x10−7

HK  0.6831x10−11 1.1408(140)x10−11 # 
HKJ  -0.6856x10−11 # # 
HJK  1.7855x10−12 # # 
HJ  -0.8156x10−13 # # 
hK  0.7103x10−12 # # 
hJK  0.4954x10−12 # # 
hJ   -0.3070x10−13 # # 
LK  -1.420x10-16 # # 
LKKJ  1.2329x10-16 # # 
lKKJ  1.90x10-17 # # 
lJJK  -4.420x10-18 # # 
Table II.15  Vibrational energies and rotational constants for the dyad {51,7191} ( # Fixed to the ground 

state values [Drouin et al. (31)]) 
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Operator Parameter Value in cm-1 
Jz        CA1 3.3410(25)x10−2 
{i Jy, Jx}  CA2 4.622(110)x10−4 
Jx        CB1 6.94941(560)x10−2 
{i Jy, Jz}  CB2 1.25664(370)x10−3 
Jx J2      CB3 -1.044(100)x10−6 
Jx Jz

2     CB4 6.3721(860)x10−6 
J+

3 + J−3 CB5 1.1546(160)x10−6 
Table II.16  Coriolis interaction constants 

II.3.4.2 Resonances  

Due to the close proximity (Fig. II.5) of the 51 and 7191 energy levels of DNO3, strong 

perturbations are observed during the analysis of the ν5 band. Through A-type and B-type 

Coriolis resonances the wavefunctions of the 7191 "dark" state are mixed with those from the 

"bright" 51 state, and therefore many ν7+ν9 transitions become observable.  

In order to characterize these mixings and get an idea of the strength of the resonances we 

plot on Fig. II.11 the percentage of mixing coefficients of the 51 energy levels on the 1 17 9  

vibrational state, defined as:  

( ) 21 1 1 79 5
', '

,
% 7 9 ; 5v k

k

C γ
γ

= = ∑ ,                  (II.81) 

where the 579
','kC γ  are the coefficients appearing in the expansion of the v = 51 wavefunctions 

resulting from the diagonalization of the Hamiltonian matrix:  

γγ
γ

γ
γ

γ kJC''kJCKKJ,
,k

,k
','k

','kca ∑∑ += 155115791 5975               (II.82) 

In Eq. (II.82),  J k γ  and  J k γ′ ′ are the classical Wang's type symmetrized wavefunction 

(see Eqs. II.31 and II.32): 

Fig. II.11 shows that rather regular resonances couple together the 15 , a cJ K K  with 

'
c

'
a KKJ,1197  energy levels for Kc ≥ 14 and ' 1 c cK K= − , and these resonances reach its 

maximum for J ~ −31 + 3.5Kc (see the bottom trace of Fig. II.11). In addition, as it can be 

seen on the upper trace of Fig. II.11, numerous local and sharp resonances are observed for 
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low Kc values (and therefore high Ka values), with 3−= c
'
c KK  or 1−= c

'
c KK  selection rules. 

For the very low Kc values (Kc = 1, 2 and 3 in the upper panel) the resonances are sharper 

than for higher Kc values (Kc = 14 to 18 in the lower panel). 

 

Fig. II.11  Mixing (in %) of the 51 [J, Ka, Kc] energy levels on the 7191 state versus J  for different Kc values. 

 

For the 51 energy levels involving high Ka values (i.e. low Kc) perturbed by 7191 energy 

levels, the resonances are difficult to model. This is because the rotational and centrifugal 

distortion constants for the 7191 resonating state obtained in this work are effective ones, 

preventing accurate predictions for the presumed resonating '
c

'
a KKJ,1197  energy levels 

involving low K'c  values.  

Examples of resonances were observed during the assignment of the spectrum. An example 

of the first type of perturbations due to the resonances involving the 51[J = 17, Ka = d, 

Kc = 14]  7191[J = 17, K’a = d, K’c = 13] and 51[18, d, 15]  7191[18, d, 14] upper levels 

(the d stands for the Ka degenerated value, Ka = J − Kc and J − Kc+1) is clearly observable in 

Fig. II.7. Also Fig. II.8 and II.9 give examples of resonances involving low Kc values in the Q 
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and R branches, respectively. Due to these resonances several transitions from the ν7+ν9 dark 

are clearly observable. 

II.3.4.3 Intensity calculation 

Line intensity calculations were performed using the theoretical treatment which was detailed 

in paragraph II.2.5.  

As it was mentioned previously the ν7+ν9 is a dark band, and only the transition moment 

operator from the ν5 bright band ( 5 '
Zμ ) is supposed to contribute in the expansion given in 

Eq. (II.76).  

Since both A-type and B-type ν5 transitions were observed for DNO3, the first order 

expansion of the transition moment operator 5 '
Zμ  is written in the form given in Eq. (II.76), 

and  the relative values of 5 'A
1μ and 5 'B

1μ  were estimated according to the ratio of Eq. (II.77). 

 To the writer’s knowledge, there exists no reported band intensity for the ν5 band of DNO3. 

Consequently as for H15NO3 (8), an estimation of the "absolute" line intensities was 

performed using the transition moment operator of the ν5 band of H14NO3 (7).  

For the (almost) pure A-type ν5 band of H14NO3 the first order in the expansion of the 

transition moment operator is written  

5 ' 14 5 ' 14
3 1 3(H NO ) (H NO )A

Z zμ μ ϕ≈ +…                 (II.83)  

with, from Ref. (7): 

5 1 14
3(H NO )  0.250132 DA

zμ = ,                  (II.84) 

using the expression: 

2 2 25 1A 14 5 1A 5 1B
3 3 3(H NO ) (DNO ) (DNO )z z zμ μ μ≈ +                 (II.85) 

one gets: 

5 1A
3(DNO )  0.232 Dzμ =  and 5 1 B

3(DNO ) 0.095Dzμ =               (II.86) 
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Finally, the synthetic spectrum of the ν5 band of DNO3 was calculated in the region 846.5 –

929.6 cm-1. The line positions were computed using the band centers and rotational and 

coupling constants which are given in Tables II.15-16 for the upper {51,7191} resonating 

states and in Ref. (31) for the vibrational ground state. 

The intensities were computed using the method described above and the A- and B- type 

components of the ν5 transition moment operator given in Eq. (II.86).  

The calculations were performed for a "pure" isotopic sample of DNO3 using an intensity 

cutoff of 0.5 x10-22cm-1/(molecule.cm-2) at 296 K, maximum values of 70 for J’ and 50 for 

K’a, maximum upper and lower state energies of  2000 cm-1 and 1200 cm-1, respectively.      

In this way, about 28000 lines were generated and the values 

( )5 -17 -1 -2(296 K) =1.37x10  cm / molecule.cmSν                (II.87) 

( )7 9 -17 -1 -2(296 K) =0.12x10  cm / molecule.cmSν ν+                (II.88) 

at 296 K were achieved for the ν5 and ν7+ν9 band intensities of DNO3, showing that the 

ν7+ν9 dark band borrows about 8 % of the ν5 band’s intensity. This final list of line positions 

and intensities generated for the 11 µm bands of DNO3 has been deposited as supplementary 

data at the Journal of Quantitative Spectroscopy and Radiative Transfer and is available on-

line (34). 

Some comparisons between the observed and calculated spectra are given through Figs. II.6-

10, the agreement between the observed and calculated spectra is in general reasonably good 

when one considers the difficult treatment of the interaction between 51 and 7191 states. 

II.3.5 Conclusion  

Using new high resolution Fourier transform infrared spectra recorded at Bergische 

Universitat in Wuppertal, the first analysis of the ν5 bright band and a partial identification of 

the ν7+ν9 dark band of DNO3 have been performed. The theoretical models which were used 

to calculate the line positions and intensities account for very strong Coriolis resonance (A-

type and B-type) which perturb the 51 and 71+91 rotational energy levels. Finally a synthetic 

spectrum of the ν5 band of DNO3 was generated, using a realistic estimation of its transition 

moment operator. 
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III CH3F collisional effect studies – experimental part 

III.1 Experimental set-up  

Pure rotational spectra and Stark split pure rotational spectra of 12CH3F used in this study in 

Chapters IV and V were recorded for the transitions J: 1 → 2 (102 GHz) and J: 3 → 4 

(204 GHz) with semiconductor millimeter wave high resolution spectrometer (described in 

Refs. (65-67)) and the 1.5 m long Stark cell (see Fig. III.1) at ICT Prague.  

 

Fig. III.1 Scheme of the Prague MW spectrometer with the Stark module 

Some measurements extending the lineshape study of pure rotational lines will be measured 

using a 3 m long free space cell without the Stark electrodes (see Fig. III.2). 

 

Fig. III.2 Scheme of the Prague MW spectrometer with free path cell only 

It is also possible to arrange a two-way pass of the e.m. beam using 90 deg. roof top mirror 

with its ridge rotated at 45 degrees (compared to the direction of either electric or magnetic 

vector of the incident microwave (see Fig. III.3)). A polarization grid lets pass the initial 
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radiation through its wires into the cell but mirrors the returning beam (characterized by 

orthogonal orientation of its components in comparison to the initial orientation) into the 

detector. 

 

Fig. III.3 Scheme of a set-up with doubled absorption path  

 

The microwave radiation is synthesized using a swept signal generator 83650 B (Agilent) 

operating from 10 MHz to 50 GHz. The signal generator is phase-locked to a rubidium 

atomic clock that is controlled by the cesium frequency standard via the GPS system.        

The frequencies above 50 GHz are generated using a set of frequency multipliers. For this 

study a home made tripler by Dr. Vowinkel (Köln University) and a WR 4.3x6 sextupler 

produced by Virginia Diodes were used together with the high power semiconductor 

amplifier AHP 3404 by Wisewave Technologies that ensured a sufficient radiation power 

before the frequency multiplication. The millimeter set-up uses a set of Schottky non-cooled 

diodes as detectors, in this case WR 8 ZBD and WR 5.1 ZBD detectors by Virginia Diodes. 

The rotational lines were measured using amplitude modulation since this modulation makes 

possible a more subtle numerical evaluation of the spectral background and overlapping lines 

than frequency modulation. An accuracy of the well developed lines measured by the 

amplitude modulation and subjected to the numerical treatment is estimated to be close to 

10 kHz. 
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III.2 Pure rotational transition measurements  

In the present study, microwave spectra were recorded for total pressures ranging from 3 to 

250 μbar in the case of pure CH3F  and from 100 to 500 μbar in the case of CH3F diluted in 

He (xCH3F around 0.1). All measurements were made at room temperature and the sample 

pressures were measured by a capacitance gauge from Leybold CTR 91 in the range from 5 

to 130 μbar and Leybold CTR 100 in the range from 5 to 500 μbar with relative uncertainty 

of about 5 %. Methyl fluoride (with natural isotopolog abundances) and helium were 

provided by Linde Gas with stated purities of 99.5 %, and 99.994 %, respectively.  

First, a check of optimal absorption conditions was carried out in order to avoid the higher 

energy levels’ saturation that would lead to nonlinear absorption. The power of generated 

probing microwaves at 102 (resp. 204) GHz was held at −22 (resp. −7) dBm for pressures 

above 7 (resp. 5) μbar. At lower sample pressures, the respective radiation input powers led 

to the significant saturation of CH3F spectra and lower powers detered the signal to noise 

ratio due to high noise, as is shown in Fig. III.4-5. The indicated saturation of a line for given 

pressure was calculated as proportion of its intensity to the intensity of the same line 

measured with least intensive power. This calculation gives only approximative values since 

they are overrated - the signal to noise ratio is particularily low for low input microwave 

powers and so the maximal intensity may be overestimated. 

Figures III.6-7 display experimental absorbancies for the J: 1 → 2 and J: 3 → 4 pure 

rotational transitions of methyl fluoride used further in the analysis. 
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Fig. III.4 Saturation and signal to noise ratios of a CH3F J″ = 1 line for different pressures and input 
microwave powers 
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FIG. III.5 Saturation and signal to noise ratios of a CH3F J″ = 3 line for different pressures and input 
microwave powers  



 64

102135 102140 102145 102150

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

CH3F, J'' = 1, K'' = 1 and K'' = 0
Amplitude modulation (f = 1 kHz, width = 0.5 ms), 80 ms dwell time / 20 ms time constant
mw power input: -22dBm
pCH3F

= 7-200 μbar
number of scans: 2-4
791 points per scan
background measured with He

A

f [MHz]

  p = 0.250   mbar 
  p = 0.200   mbar 
  p = 0.150   mbar 
  p = 0.100   mbar 
  p = 0.080   mbar 
  p = 0.060   mbar 
  p = 0.040   mbar 
  p = 0.020   mbar 
  p = 0.015   mbar 
  p = 0.010   mbar
  p = 0.007   mbar

 
Fig. III.6 Methyl fluoride J″ = 1 pure rotational spectra at different pressures 
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FIG. III.7 Methyl fluoride J″ = 3 pure rotational spectra at different pressures 

A multifit procedure was used on all estimated non-saturated spectra for given J″ to retrieve 

experimental line positions, lineshifts and line widths. Using known rotational constants (68), 
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partition functions (at 296 K, Zrot = 7217.4, Zvib =  1.015 from Ref. (69)) and permanent 

electric dipole moment value (70), the absorption coefficients were calculated for all 

considered transitions. In the pressure multifit procedure the list of experimental files (for 

given J) to be analysed is first read. The experimental files are specified by the J number and 

pressure level in μbar and contain the measured frequencies and the experimental 

absorbancies. The experimental absorbancies are calculated as negative values of natural 

logarithms of the transmittance I/I0 where I is detector signal (voltage) for measured 

absorbent gas and I0 is detector signal (voltage) for the spectral background. The respective 

detector signals are averaged values issuing from multiple scans. By considering all the data 

for all the pressures in each iteration, this approach enables to fit  also the characteristics of 

the spectral lines as pressure shift [MHz/Torr] and collisional broadening [MHz/Torr] over 

multiple pressures, including the higher pressures under which some or all treated lines are no 

more isolated due to pressure broadening. The pressure values are on the other hand with 

respect to the calculated absorption coefficients. This approach assumes the identity of the 

pressure value for all lines at given pressure level. This is not granted and care had to be 

taken during experiment to keep the pressure for such different measurements as close as 

possible since the dosing of the gas in the cell was carried out manually in this work. This 

applies for low pressures and higher J (e.g. for J″=3 lines, different K lines were measured 

separetely at the same pressure level). 

III.3 Specificities of the measurements in the significant external electric 
field 

Stark spectra of 12CH3F (whether pure or in mixture with helium) were recorded for J: 1 → 2 

(102 GHz) and J: 3 → 4 (204 GHz) using the Stark module (see Fig. III.1) and the 

semiconductor millimeter wave high resolution spectrometer at the ICT in Prague.             

The probing electromagnetic radiation (microwave, millimeterwave, submm wave) travels 

between and along the Stark electrodes and transmits its power to the rotational modes of 

absorbing species. When the electric tension is applied on one electrode while the other is 

grounded, the spatial isotropy is withdrawn and the intensity of electric field between Stark 

plates separates the energy levels of the space orientation sensitive components (characterised 

by quantum number M) as shown in Fig. III.8. The selection rules for the Stark transitions 

depend on the orientation of the external electric intensity vector towards electric component 

of the probing beam. ΔM = 0 rule applies in case of parallel orientation, ΔM = ±1 

characterizes othogonal orientation. 
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In these measurements, the orientation of the electric field has been set parallel or orthogonal 

to the electric vector of the polarized microwave probing beam. Thus the Stark transitions 

were obtained with both the selection rules ΔM = 0 and ΔM = ±1. Finally, the electric field 

intensities used in our experiments ranged from 15 to 35 V/cm. The pressures of the pure 

methyl fluoride ranged from 7 to10 μbar and in the experiments with the methyl fluoride 

diluted in the helium (xHe = 80-95 %), the total pressure range was 100-500 μbar. 

 

Fig. III.8   Methyl fluoride rotational spectrum and Stark spectrum for orthogonal and parallel 

orientation 

For precise measurements of these separations, the intensity of the static electric field must be 

as homogenous and stable in time as possible. The better the precision, homogeneity and 

stability of the electric field intensity makes the better the precision of the electric dipole 

moment determined possible. In optimal case, the 1σ uncertainty shall not disturb at least 

four significant digits of the involved quantities. In the laboratory of Prof. Urban at ICT, it is 

possible to measure using both the parallel and orthogonal Stark effect arrangements.          

As alredy mentionned, these two designations refer to orientation of the intensity of the 

electric field between Stark plates towards the orientation of the electric component of the 

probing beam. By rotating the transmitter parts (multiplier, amplifier) together with detecting 

part (detector, bias) around the beam axis, it is possible to switch from one regime to the 
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other one. The two different orientations have the different selection rules for the Stark 

components they enable to generate. 

The symmetry of this class of molecules (symmetrical top) makes that the frequencies of the 

pure rotational lines are multiples of J"+1, the transitions follow rules ΔJ = 1, ΔK = 0 and for 

parallel orientation Stark effect there are 2J"+1 Stark components. Roughly, 

νrot(J",K") = 2B(J"+1)−2DJ"(J"+1)2(J"+2)−2DJ"K"(J"+1)K2, where B is a molecular rotational 

constant and DJ", DJ"K" are centrifugal distortion constants (inherent to a vibronical state). 

Note that the individual transition is described by the quantum numbers of the lower (e.g. J", 

K", M", …) and upper (e.g. J', K', M', …)  state involved. The intensity of the initial rotational 

line is least share of it. The higher rotational number J" the lesser the maximal Stark shift of 

the Stark components (see formula in Fig. III.8) and the lesser their intensities (see 

Eqs. III.11-12).  

In the case of the strong Stark field when compared to fine or hyperfine fields, a perturbation 

method can be used to calculate the Stark splitting. Eq. (III.1) gives the energies of Stark 

levels (in MHz) up to third order of the perturbation development, the coefficients being 

specified further: 

( )Stark coef, coef ,
1,3

( , , ) ( , , )ii
i i

i

E J K M UF S E E J K Mμ
=

= ∑ ,               (III.1) 

where the electric field intensity E is in V/cm, dipole moment μ is in D, UF is a unity factor 

to pass from Debye unit to C.m via statcoulomb.cm for the dipole moment and to pass from 

V/cm to V/m for the intensity of the electric field: 

( )( )21 19
coef coef 10 / 100 10 /UF E c cμ − −= = =  ,                (III.2) 

16

coef, 6

10 1
2.10

i

iS
h hB

−− ⎛ ⎞= ⎜ ⎟
⎝ ⎠

,                  (III.3) 

with c = 299792458 m/s, h = 6.62606896 10−34 J.s (26), B in MHz..  

While evaluating some of the constants, the Eq. (III.1) simplifies to: 
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( ) ( )

( )
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Stark 1 coef ,1 2 coef ,2

3

3 coef ,32
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                                                                  ( , , )

E
E J K M X E E J K M X E J K M

B
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X E J K M
B

μ
μ

μ

= +

+

,            (III.4) 

where 1 2 30.50341175,  0.12671169,  0.06378816X X X= = =  and the J, K, M energy level 

coefficients are given by Eqs. (III.5-10): 
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Relative intensities of the Stark components J, K, M → J +1, K, M +ΔM (ΔM = −1, 0, 1) are 

given by Eqs. (III.11-12) : 
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We can also remark that the fastest Stark components (the M components with the highest 

absolute value of coef , ( , , )iE J K M  and therefore with the largest Stark shift for given J, K and 

voltage, i.e. |M"| = J in parallel orientation (ΔM= 0), M" = −J for ΔM= +1 and M" = J for 

ΔM = −1 in orthogonal orientation (ΔM= ±1)) are also the least intensive ones. 

While it is easy to resolve J" = 1 CH3F Stark lines with Stark field intensities of 20 V/cm (see 

Fig. III.8) and observe the fastest Stark components as well isolated (|MJ"| = 1 for ΔMJ = 0, 

MJ" = −1 for ΔMJ = +1 and MJ" = +1 for ΔMJ = −1) the situation becomes cumbersome for 

higher values of the rotational quantum number. Moreover, when the pure rotational lines are 

split significantly also by other effects (fine, hyperfine) as in J" = 12 Stark lines of CH3Br 

(see Fig. III.9) where each rotational (J", K") line is also split by nuclear quadrupole 

hyperfine effect to four components (described by quantum number F"). 
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FIG. III.9 Methyl bromide rotational spectrum and Stark spectrum for orthogonal orientation 
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Calibration of Stark cell  

Though the distance that separates the Stark plates may be measured rougly using Vernier 

caliper, the spectroscopic calibration leads to a more precise effective value. By measuring 

precisely Stark shifts of Stark components of rotational lines belonging to a species which 

dipole moment is known precisely and knowing the precise value of electric tension applied 

to electrodes (i.e. using a precise and stable Voltage generator, e.g. Fluke 5440B 

featuring 10 ppm output accuracy), we can determine precisely the distance separating the 

electrodes. The usual calibration molecules are: OCS, CH3F and CH3CN. Their electric 

dipole moments determined by different methods and groups are given in Tables III.1-3, the 

actually used ones are formatted in bold letters.  

 

Experimental 

technique 
μ [D] 

Transition (No Stark Freq. 

[GHz] / wavenumber [cm-1] / 

wavelenght [μm]) 

Comments Authors Year Ref. 

OCS        
0.710 (4)    Shulman, Dailey, 

Townes 
1950  (71) 

mw absorption 

0.7124 (2) J=1→2, ΔM=0  Marshall, Weber 1957  (72) 
MBER 0.71521 (20) J: 1→1, MJ: 0→±1 mean value Muenter 1968  (73) 

MW absorption 

resonant cavity 
0.7149 (3) (J, M) = (1,0)→ (2,1) least square Dijkerman, 

Ruitenberg 
1969  (74) 

0.71512 (3)   
1.00031 (2) J: 1→1, MJ:  0→±1, 16O12C34S 
1.00017 (2) J: 1→1, MJ:  0→±1,16O13C32S 

μ relative to 16O12C32S 
De Leeuw, 

Dymanus 
1970  (75) 

0.70423 (3) (0110) vibrational state 
0.98473 (1) μ(OCS (0110))/ μ (OCS (000)) 

least square Reinartz, Meerts, 

Dymanus 

1972  (76) 

0.71519 (3)  

0.70433 (3) (0110) vibrational state 

MBER 

(Molecular 

beam electric 

resonance) 

0.98482 (2) μ (OCS (0110))/ μ (OCS (000))

Revision of  Ref. (75) value based 

on change of recommended value 

of Planck constant: 

6.62559(16).10−34 J.s [(77) used in 

(75)], 6.626196(50).10−34 J.s (78) 

used in  (79); 2011 

recommendation CODATA2006: 

6.626 068 96(33) x 10-34 J s  (26) 

Reinartz, 

Dymanus 
1974  (79) 

Table III.1  Review table of OCS electric dipole moment value determinations 
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Experimental 

technique 
μ [D] 

Transition (No Stark Freq. 

[GHz] / wavenumber [cm-1] / 

wavelenght [μm]) 

Comments Authors Year Ref. 

CH3F        
polarization 1.808   −   Smyth, 1934 (80)  

1.79 (2) 
J: 0→1, K = 0, ΔMJ= 0 (51.07 

GHz) 

mean value,  (K-band waveguide 

Stark cell  with a plane electrode) 

Ghosh, 

Trambaluro, 

Gordy 

1953 (81)  

1.8555 (15) J: 1→2, K = 0,1 mean value Larkin, Gordy 1963 (82)  

mw absorption 

1.8572 (10) J: 1→2, K = 0,1 (102.14 GHz); 

3→4, K = 0-3 (204.24-27 GHz) 

mean  value Steiner, Gordy 1966 (83)  

1.9009 (10) ν3: 0→1, J:12→12,K>2→2 IR double 

resonance 1.8549 (10) ν3: 0→0, J:12→12,K>2→2 

mean value, resonance with P(20) 

CO2 laser transition, band 001-020, 

at 1046.8543 cm-1 

Brewer 1970 (84) 

MBER 1.8585 (5)  ΔJ  = 0, ΔMJ= ±1, (J,K): (1,1), 

(3,3), (4,4), (5,4) 
mean value Wofsy, Muenter, 

Klemperer 
1971 (85)  

Laser - Stark, 

Stark Lamb Dip 

for 6 lines 

1.9054 (5) 
69 Stark lines of ν3: R(0,0)-

R(5,5), Q(1,1)-Q(12,2), P(1,0)-

P(5,4) 

weighted mean value,  CO2 laser 

P(6)-P(30) lines in the 9.4 μm band, 

P = 2-20 mTorr 

Freund, 

Duxbury, 

Römheld, Tiedje, 

1974  (86) 

1.85840 (7)  ΔMJ  = 1,  (J,K): (1, 1) 
molecular 

beam 

spectroscopy 1.85842 (11)  ΔMJ  = 1,  (J,K): (2, 2) 

least squares, calibration  on OCS 

(0110) using μ (OCS (0110)) = 

0.70423(3) D  from (76), used  

const. h = 6.626176.10−34 J.s,           

c = 2.99792458.108 m/s 

Marshall, 

Muenter 
1980 (70)  

Table III.2  Review table of CH3F electric dipole moment value determinations
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Experimental 

technique 
μ [D] 

Transition (No Stark Freq. 

[GHz] / wavenumber [cm-1] / 

wavelenght [μm]) 

Comments Authors Year Ref. 

CH3CN        

3.97   J: 1→2, K = 0, ΔMJ = 0           

(36.79 GHz) 
mean value Coles, Good, Hughes 1950 (87)  

3.92 (6) J=1→2  (36.79 GHz) mean value Ghosh, Trambaluro, 

Gordy 
1953 (81)  mw absorption 

3.913 (2) J: 1→2, K = 0, 1 ΔMJ = 0, ±1      

(36.79 GHz) 
mean value Steiner, Gordy 1966  (83) 

3.925191 (48)  

3.929493 (92) ν7 

3.935513 (55) ν4 

least squares , ν4 12CO2 

P(40)-P(50) and N2O P(18)-

P(29) around 10.6 μm, ν7 
12CO2, P(34)-P(8), and R(8)-

R(26) at 9.4 μm, and 13CO2

P(14)-P(26), R(10)-R(24) at 

9.8 μm, 550 CH3F Stark lines 

ΔM = ±1,0;  P = 20-23 mTorr

Rackley, Butcher, 

Römheld, Freund, Oka 
1982 (88)  

3.9256 (7) CH3C15N 

laser-Stark 

spectroscopy 

3.9354 (7) ν4, CH3C15N 

least squares analysis, CO2 

and N2O lasers,  650 Stark 

lines for cca 140 ro-

vibrational transitions with  

J< 34 and K < 11, 

P = few mTorr

Sakai, Katayama 1984 (89) 

3.9219 (15) mean value 
3.92196 (12) least squares analysis 
3.92197 (13) corelated least squares 

saturated 

absorption mw 

spectroscopy - 

Stark Lamb 

dip 

3.92171 (17) 

J: 4→5, K = 1, 2, 3, 4, ΔMJ = 

±1, MI = 0,1; calibration of the 

cell on CH3F J: 1→2, K = 1 

using μ (CH3F)= 1.85840(4) D 

referenced to (70)  

median (LMS) 

Gadhi, Lahrouni, 

Legrand, Demaison 
1995  (90) 

Table III.3 Review table of CH3CN electric dipole moment value determinations 

 

The Stark module used consists of a stable DC voltage generator Fluke 5440B (0 – 1100 V, 

claimed stability 10 ppm) and of two 150 cm × 8 cm × 1 cm finely polished stainless steel 

plates placed in a free path glass absorption cell. The separation d of the electrodes by quartz 

blocks was deduced from measured Stark shifts of the J = 1 → 2, K = 1 → 1, M = −1 → −1 

transition at low pressure using an accurate value μ = 1.85840(7) D (70) of the CH3F 

permanent electric dipole moment. This was done using a relatively low voltage of 

40 V creating a (small) shift of −12.741 MHz, leading to d = 0.9790(9) cm, a determination 

by far accurate enough for the low field measurements used further. 
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At higher intensities of the Stark electrical field, the experimental spectra of calibration 

molecules CH3F and CH3CN suffered anomalies when confronted to calculations resulting 

from perturbation method. For both the molecules, it seemed like hyperfine structure is 

responsive, in term of the frequency position of its components, also to the higher electric 

field’s intensity. Figs. III.10-11 resume the anomalies measured for CH3CN and CH3F Stark 

spectra recorded using in the amplitude and/or frequency modulations in the parallel 

orientation. The negative and positive M components sharing the same J, K numbers are 

given for the same voltage in sake of comparison. The pure rotational spectra are shown in 

the upper parts of the Figs. III.10-11. A consideration of inhomogeneity of the electric field 

between the Stark plates would explain this observed effect partly only since inhomogeneity 

would just continuously broaden the Stark lines (most obviously the Stark lines that shift 

easily) with increasing intensities, diminishing the absorbance peak of the transition for high 

intensities. 

Though the effect of the electric field heterogeneity may be observed in high voltage Stark 

amplitude modulation spectra of CH3CN and CH3F as given in Figs. III.10-11, the frequency 

modulation spectra suggest that the hyperfine structure components are separating with the 

external electrical field. These puzzling details of the spectra are not yet explained since apart 

what seems to be Stark field dependent hyperfine structure, there are also many lines 

appearing in the spectrum which are not accounted for by perturbation theory calculation.  
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Fig. III.10 CH3CN pure rotational and higher voltage Stark AM and FM spectra (identic pressure colour 

code)  
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Fig. III.11 CH3F Stark parallel AM /FM spectra of one M component at lower and higher voltage Stark  
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IV Line profiles of pure rotational CH3F lines 

IV.1 General considerations 

The various types of interactions of electromagnetic (e.m.) radiations with gaseous molecules 

manifest through specifics shapes of the resulting (absorption, scattering, etc.) spectra.    

Under sufficient gas density (i.e. pressure/temperature) conditions, these spectra can be 

significantly influenced by collisional processes occurring in the system.  

The early studies dealing with spectrally isolated optical transitions, overlapping and 

collisionally coupled lines either in a practical way or through the development of formal 

theories are reviewed in chapter II. of Ref. (17) and thus are not recalled here. Some other 

models, approximate but amenable to practical calculations and/or useful for analyses and fits 

of experimental spectra will be presented directly (see also chapter III of Ref. (17), rather 

than the fully general formalism underlying them. From now on, we shall consider molecular 

gases with the following restrictions, all valid for our studies: 

- Neutral molecular species 

- Absorption in the spectral domain 

- Weak radiation fields (no saturation, no alignment, no high order effects, etc) and non 

reactive collisions (no chemical reactions) 

- Local thermodynamic equilibrium (LTE) so that all populations of energy levels are given 

by the Maxwell-Boltzmann statistics with equal translational, rotational, and vibrational 

temperatures. 

-  The inter-molecular collisions are binary: this approximation, which assumes that a 

molecule interacts with a single other one at a given time is valid except at very high 

pressures not considered in this work. The spectral shape then results from the interaction of 

intrinsic properties of one molecule (called the radiator or absorber) with the e.m. field and 

with the other particles (perturbers) through binary collisions. 

- The “impact approximation” which assumes very short collisions and limits the modeling of 

the line-shape to the spectral region within a few cm-1 (a few ten GHz) around the center of 

the resonant optical transition. 

- In cases where the transitions in the spectrum are spectrally separated (negligible 

overlapping), the isolated lines approximation is used which neglects the influence of line-

mixing studied in chapter V. The absorption then can be computed by simply adding up the 

individual contributions of the transitions with proper line shapes. 
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- We assume the dipolar approximation which assumes that the variation of the e.m. field 

amplitude due to its spatial modulation over the radiator size is negligible and only take into 

account the contribution of the permanent electric dipole. 

IV.1.1 Absorption 

In classical electrodynamics a neutral gas (characterized by the scalar relative complex 

permittivity ε) is polarized (linear macroscopic electric polarization P
G

) by the 

electromagnetic field (of frequency ν, polarization vector E
G

 and wave vector k
G

) through 

Maxwell equations: 

0 ( 1)   ,   with  ' "iε ε ε ε ε= − = +P E
G G

,                 (IV.1) 

ε 0 being the vacuum dielectric constant. 

For electromagnetic waves travelling through a gas in the z direction, the Beer-Lambert law 

gives the light intensity I(ν,z) at frequency ν and depth z: 

( , ) ( , 0) exp[ ( ) ]I z I z zν ν α ν= = × −                          (IV.2) 

where α(ν) is the absorption coefficient which can be related to the imaginary part of the 

permittivity through:  

2( ) "( )
c
πνα ν ε ν=                            (IV.3) 

Within the dipolar approximation, "( )ε ν  is the Laplace transform in time of the classical 

dipole autocorrelation function ( )C t . Note that, in the following, we shall use frequencies ν 

instead of angular frequencies ω or wavenumber σ but that conversions are easy to make 

using the relations ω = 2πν = 2πcσ. One can then show that the absorption coefficient is 

given by (17):  
24( ) 1 exp  ( )

3a
B

n I
c k T

π ν να ν ν
⎡ ⎤⎛ ⎞

= − − ×⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

=
=

,                (IV.4) 

( )0

1( ) Im[ F( )] Im ( ) di tI i i e C t tνν ν
π

∞
= = ∫ ,                (IV.5) 

where F( )ν  is the complex spectral density and ( )I ν  is a line profile function. 

IV.2 Introduction to isolated lines profiles 

As mentioned before, within the isolated lines approximation, the contributions of the various 

transitions to the spectrum are additive. This disregards the influence of line-mixing treated in 

following chapter. 
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Let us consider an optical transition from the initial internal state i to the final state f (i → f) 

with a corresponding frequency at zero pressure νif [Hz] (or equivalently wavenumber σif   

[m-1] or angular frequency ωif [rad.s-1] with νif = cσif = ωif /2π). The basic parameters 

characterizing the line shape are the frequency of its maximum νMAX thus defining the line 

shift νMAX − νif and its full width at half maximum (FWHM). For spectrally asymmetric lines, 

when their peak is skewed toward higher or lower frequencies while the center of gravity 

remains the same for both asymmetrical and symmetrical profiles, an additional and 

convenient asymmetry parameter can be defined, for example by: 

 A = [νHF +νLF −2νMax]/[( νHF−νLF)/2]                  (IV.6) 

where νHF and νLF are the high and low frequencies at half maximum.  
 

Two general types of line broadening may occur in a gas in thermal equilibrium for given 

temperature and pressure conditions: homogenous broadening and inhomogeneous 

broadening that, respectively, affect the line identically or not at all frequencies. 

One example of inhomogeneous broadening is that due to the Doppler effect through the 

Maxwell-Boltzmann distribution of absorber velocity vG  given for the volume element 

[ 3, d+v v vG G G
]:  

3 3/2 2 3
MB B( ) d ( / 2 ) exp[ (v / v) ] df M k Tπ= −v v vG G G� ,                 (IV.7) 

where M is the absorber  mass, v = vG  the absorber speed, and 1/2v (2 / )Bk T M=�  the most 

probable speed. Doppler broadening is dominant when collisional processes influencing the 

line shape are negligible, i.e. at sufficiently low pressures. It is a symmetric broadening. 

However, the velocity equilibrium distribution may be altered by the radiator velocity 

changes due to collisions. Since the collisions favor changes from large velocities to smaller 

ones, this so-called Dicke effect leads to a narrowing of the line. 

IV.2.1 Doppler broadening, Dicke narrowing 

We consider here the Doppler effect associated with the velocity vG  and position at time t 

( )trG  ( ( ) ,  (0)t t= ⋅ =r v r 0G GG ) of the radiator. It results in a Doppler shift if zv / cν  for the 

absorbed photon frequency (vz is the radiator velocity component along the e.m. wave 

propagation vector k
G

: zv . °= v k
GK  ( /|| ||, || || 2 / 2 /k cπν π λ= = = =°k k k k

G G G G
). Because zv±  are 

equally probable, the Maxwell-Boltzmann distribution fM(vz) leads to an inhomogenously 

broadened symmetric profile centered at ifν . 
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The dipole autocorrelation function ( )extC t  resulting from the absorber translational motion 

(external degrees of freedom) then reads 

( ) ( ) ( )2
ext D( ) exp [ ( ) (0)] exp ( . ) exp (2 / 2)C t i t i t tπ ν= − − = − = − Δk r r k v

G GG G G ,           (IV.8) 

where ...  stands for mean value, averaged over all velocities through Maxwell-Boltzmann 

distribution MB ( )f vG , D if B
v v / ,  v 2

2
k c k T Mν ν
π

Δ = = =
� � � , v�  being the most probable speed. 

The Doppler profile may be calculated from (IV.8) by using Laplace transform: 

( )2
D ext D0

D

1 1( ) Im ( ) d exp ( / )
2

i tI i e C t tνν ν ν
π π π ν

∞ Δ⎡ ⎤Δ = = − Δ Δ⎢ ⎥⎣ ⎦ Δ∫ ,            (IV.9) 

where ifν ν νΔ = −  

The Doppler (Gaussian) profile is usually characterized by its half width at half maximum 

(HWHM) Dγ : 

if B
D D

7 1
D if

2 ln(2)ln(2)

[MHz] 3.5812 10 [MHz] [K] [g.mol ]

k T
c M

T M

νγ ν

γ ν− −

= Δ =

= ×

            (IV.10) 

In the Dicke narrowing model, one assumes that the collisions have only a velocity 

changing (VC) effect. Let VC ( )f →v' vG G  be the probability per unit time of velocity changing 

(from  to )v' vG G
 collisions. These collisions change the Doppler shift from if z.v' cν  to if z.v cν  

and therefore change the line shape. Assuming the velocity isotropy of gas and the constancy 

of the velocity equilibrium distribution and thus the detailed balance principle: 

VC MB VC MB( ) ( ) ( ) ( )f f f f→ = →v' v v' v v' vG G G G G G , one has: 

( )2 2
VC z z VC z z

B

(v v' ) (v ' v ) exp v v'
2 z z

Mf f
k T

⎛ ⎞
→ = → −⎜ ⎟

⎝ ⎠
             (IV.11) 

From this relation one can conclude that collisions decreasing |vz| are more probable than 

those increasing it.  This is in favor of the decrease of the absolute value of the Doppler shift 

if zv cν  so that transfers are more probable from the wing of the line to the center rather 

than vice versa. Hence the signature of this Dicke effect is a reduction of the line width 

explaining the largely used term of “Dicke narrowing”. 
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The Dicke narrowed profile can be modeled within the diffusional approximation of the 

thermal motion of the absorber that travels a distance z(t) along the e.m. beam between times 

0 and t:  

( ) 2 2
ext ( ) exp ( ) exp[ ( ) /2]C t ikz t k z t= − = − < >              (IV.12) 

The diffusional approximation assumes that <z(t)2>=2Dt (D is the diffusion coefficient, 

[D] = m2.s-1) which shall apply in cases when the square root of the mean square 

displacement is small enough when compared to the wavelength λ. 
2 Diff

ext ext( ) ( )k DtC t e C t−= ≡ ,                (IV.13) 

where 0 z z0 0

1v (0)v ( ) d (0) ( ) d
3

D D P t t t t
∞ ∞

≡ = =∫ ∫ v vG G ,            (IV.14) 

where D0 ([D0] = N) is the pressure independent value for the diffusional coefficient. 

The diffusional profile may be calculated from (IV.13-14) by using Laplace transform: 

( )

2
0

Diff 2 2 2
0

/1( )
( / )

k D PI
k D P

ν
π ν

Δ =
Δ +

               (IV.15) 

This profile has a Lorentzian shape with 2
0 /k D P  as HWHM that decreases with increasing 

pressure. This conforms the assumption of many collisions to occur to the absorbing 

molecule before it travels a wavelength. 

IV.2.2 Lorentz, Dicke, Voigt, Galatry and Rautian profiles 

The Lorentz profile 

If the thermal motion, and thus the Doppler effect, is disregarded, the dipole autocorrelation 

function int ( )C t  bound to the absorber internal (rotation, vibration) degrees of freedom reads 

( )int ( ) exp ( )C t i tφ= −                   (IV.16) 

where ( )t iφ = Δ + Γ  is the averaged collisional phase shift of the radiator dipole for the 

optical transition, Δ being the frequency shift of the oscillating radiator dipole and Γ its decay 

rate, hence: 

( )int ( ) exp ( )C t i t= − Γ + Δ                 (IV.17) 

Frequency shift and the decay rate are pressure dependent: 

,   P Pδ γΔ = Γ = ,                 (IV.18) 
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where δ is the frequency shifting coefficient and γ is the Lorentz broadening coefficient (per 

unit pressure). 

After a Laplace transform of Eq. (IV.17) we obtain the Lorentz profile (91): 

L 2 2

1( )
( ) ( )

PI
P P
γν

π ν δ γ
Δ =

Δ − +
,               (IV.19) 

where  ifν ν νΔ = − . In the long wavelength region, negative resonances must be taken into 

account, which leads, for rotational transitions, to the Van Vleck-Weisskopf profile (92): 

( ) ( )VVW 2 22 2
if if if

1( )I νν
π ν ν ν ν ν

⎧ ⎫⎛ ⎞ Γ Γ⎪ ⎪= +⎨ ⎬⎜ ⎟
− − Δ + Γ + + Δ + Γ⎝ ⎠ ⎪ ⎪⎩ ⎭

           (IV.20) 

 

The Dicke profile 

Provided that velocity changing collisions do not correlate with dephasing collisions, the 

correlation function in the diffusional limit stands as: 

Diff
ext int( ) ( ) ( )C t C t C t=                    (IV.21) 

The Dicke profile (93) is then obtained from the Laplace transform of Eq. (IV.21) using Eqs. 

(IV.13) and (IV.17):  
2

0
Dicke 2 2 2

0

/1( )
( ) ( / )

P k D PI
P P k D P
γν

π ν δ γ
+

Δ =
Δ − + +

             (IV.22) 

The Voigt profile 

The very popular and widely used Voigt profile (94) is the convolution of the Lorentz and 

Doppler profiles (without taking into account Dicke narrowing): 

( ) ( )

( )

Voigt D D L

2
D 2 2

D

( ) ', ',  d '

1 1exp ( '/ )  d '
( ' )

I I Iν ν ν ν ν ν

ν ν ν
π ν νπ ν

+∞

−∞

+∞

−∞

Δ = Δ Δ − Δ Γ Δ

Γ
= − Δ Δ Δ

Δ − Δ − Δ + ΓΔ

∫

∫
          (IV.23) 

The expression of the Voigt profile can be obtained from the general expression (IV.5) of 

normalized absorption profile for isolated line, neglecting the velocity changing and speed 

dependence of Δ and Γ: 

3MB
Voigt

if

( )1( ) Im dfI
i

ν
π ν ν

=
− − − Δ − Γ∫∫∫

v v
k.v

G GG G ,  

that leads to: 
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3/2
2

Voigt
D if D

1( ) exp( ) Im  d
( ) /

I t t
t i

πν
ν ν ν ν

− ∞

−∞

⎧ ⎫
= − ⎨ ⎬− + − Δ − Γ⎩ ⎭

∫            (IV.24) 

Using the dimensionless parameters if if

D D D

,   and x x yν ν ν ν
ν ν ν
− − − Δ Γ

= = =
Δ Δ Δ

� the Voigt 

profile can be also written as: 

[ ]Voigt D L
1( , ) ( ') ( ', ) d ' Im ( , )I x y I x I x x y x i w x y
π

+∞

−∞
= − =∫ � � � ,            (IV.25) 

where w(x, y) is a complex probability function: 
2

( , )  d  
ti ew x y t

x t iyπ

−+∞

−∞
=

− +∫                 (IV.26) 

Note that, using the same dimensionless parameters, the Doppler and Lorentz profiles take 

the form: 

2
D L 2 2

1 1( ) exp( )   ,  ( , ) yI x x I x y
x yππ

= − =
+

� �              (IV.27) 

 

The Galatry profile 

The Galatry profile (95) is an extension of the Dicke model to the Doppler model that 

assumes very small velocity changes of the absorber caused by collisions. It is adapted to 

system involving heavy radiators and light perturbers. The correlation function then takes the 

form:  

S
VC

2
S SD
ext VCS

VC

1( ) exp 1
2

tC t t e νν ν
ν

−
⎧ ⎫⎛ ⎞Δ⎪ ⎪⎡ ⎤= − − +⎨ ⎬⎜ ⎟ ⎣ ⎦⎝ ⎠⎪ ⎪⎩ ⎭

,             (IV.28) 

where S
VCν  is the speed independent VC collision rate in the soft collision model (also called 

dynamical friction coefficient) that relates to the “optical” diffusion coefficient D by 

S B
VC Diff

k T
MD

ν ν= ≡ .  

 Assuming the independence of VC and dephasing (broadening/shifting) collisions, the 

Laplace transform of S
int ext( ) ( )C t C t  gives the Galatry profile: 

( )G 20

1 1( , , ) Im exp ( ) 1  d ,  
2

ztI x y z i ix y t zt e t
zπ

∞ −⎧ ⎫⎡ ⎤= − + + − −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∫ �� � �            (IV.29) 

S
VC D Dwith       and    z t tν ν ν= Δ = Δ�                (IV.30) 



 83

The Rautian profile  

The Rautian profile (96, 97), also called Nelkin-Ghatak profile or Rautian-Sobelman profile, 

is a model, which, as the Galatry profile, describes velocity changes. It is a hard collision 

model, thus conceptually opposite to the soft collision Galatry approach, which assumes that 

each collision completely thermalyses the velocity. The VC probability density for a →v' vG G  

collision is thus given by:  

H H
VC VC MB( ) ( )f fν→ =v' v vG G G , where               (IV.31) 

H
VCν  is the speed independent hard collision rate. Assuming the independence of VC and 

dephasing collisions and considering the pressure broadening, the Rautian profile can be 

developed as solution for the ( , )f tvG  distribution function which satisfies Boltzmann kinetic 

equation (see Eq. III.29 in (17)): 

( ) ( )H H 3
if VC VC

( , ) ( , ) ( ) ( , )df t i f t f f t
t

ν ν∂ ⎡ ⎤= + +Δ − Γ+ + →⎣ ⎦∂ ∫∫∫
v k.v v v' v v' v'
G G G G G G G G             (IV.32) 

The solution after Laplace transform gives the expression: 

3MB

Raut
H 3MB
VC

( )d
1 ( )( ) Im

( )d
( )

fi
AI

fi
A

νν
π ν

ν

⎧ ⎫
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪−
⎪ ⎪⎩ ⎭

∫∫∫

∫∫∫

v v

v v

G G

G G
,                (IV.33) 

where H
if VC( ) ( )A iν ν ν ν= − − −Δ− Γ+k.v
G G . 

Calculations can thus be performed using the complex probability function introduced for the 

Voigt profile: 

{ }Raut
1( , , ) Im ( , ) [1 ( , )] ,I x y iw x y w x yς ς πς ς
π

= + − +             (IV.34) 

with H
VC D/ς ν ν= Δ                  (IV.35) 

The Rautian profile reduces to the Doppler profile when Δ = Γ =ς = 0, to the Lorentz profile 

when y → infinity, and to Voigt profile when 0ς = .  

IV.2.3 Speed dependence 

All the models presented above disregard the dependences of the broadening and shifting 

coefficients on the radiator speed v ( v = vG )  (98). Nevertheless, these dependences exist and 



 84

generally lead to a narrowing of the line shape, as do the velocity changes modeled in the 

Rautian and Galatry profiles.  

The speed dependent version of the Voigt profile is easily derived and takes the form: 

3MB
sdVoigt

( )1( ) Im d
Δ(v) . Γ(v)

fI
i

ν
π ν

=
Δ − − −∫∫∫

v v
k v

G GG G ,             (IV.36) 

which can be developed, as shown in Appendix, in 
3/2

2
sdVoigt

D

1 '( )( ) exp( ) Im  d
( )

z tI t t
x t z t

πν
ν

− ∞

−∞

⎧ ⎫−
= − ⎨ ⎬+ −⎩ ⎭

∫ , where             (IV.37) 

0

D

D D

D D

 

Δ (v ) (v )( ) i

Δ(v ) (v )( ) i

x

t tz t

t tz t

ν ν
ν

ν ν

ν ν

−
=

′ ′Γ′ = +

Γ
= +

� �

� �

 

Note at this step that the quadratic law of Rohart (99) is convenient for fits of measured 

spectra and has been widely used for this purpose. Its expression is 
2

0 2

2

(v ) ( 1.5)
(v ) 2

t t
t t

Γ = Γ + − Γ
′Γ = Γ

�
�

                (IV.38) 

 

The speed dependent generalization of the Rautian profile has the form: 

3MB

sdRaut
H 3MB
VC

( )d
1 ( , )( ) Im

( )d
( , )

fi
AI

fi
A

νν
π ν

ν

⎧ ⎫
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪−
⎪ ⎪⎩ ⎭

∫∫∫

∫∫∫

v v
v

v v
v

G G
G

G G
G

,                (IV.39) 

where H
if VC( , ) (v) ( (v) )A iν ν ν ν= − − −Δ − Γ +v k.v
GG G . 

Note that, for H
VC 0ν = , the speed dependent Voigt profile is, of course, obtained. Indeed 

H 3 3M M
VC sdRaut sdV

( ) ( )if 0,  then   I ( ) Im d  Im d  ( )
A( ,ν) A(ν)
f f Iν ν ν

⎧ ⎫ ⎧ ⎫
= = = =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
∫∫∫ ∫∫∫

v vv v
v

G GG G
G      (IV.40) 

One can easily show that the Dicke effect (due to velocity changes) vanishes at elevated 

pressures, when the collisional width gets much larger than the Doppler one. For instance, in 

the absence of speed dependence, the Rautian and Galatry profiles tend toward a Lorentz 

shape. On the opposite, speed dependence effects remain whatever the pressure.            
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Hence, although the speed dependence and Dicke narrowing have similar spectral effects, it 

is, in principle, possible to differentiate them experimentally provided that the investigated 

pressure range goes from the nearly Doppler to the collisional regime, i.e. from conditions for 

which the Doppler broadening is dominant to negligible. 

 

IV.3 Case of CH3F  

IV.3.1 Introduction 

While treating the measured pure rotational spectra for the line-mixing study presented in the 

next chapter, the detailed analysis of the fit residuals showed that the observed profiles of the 

lines, when isolated, are slightly narrower than their Voigt fits, as demonstrated by the W 

shaped residuals in Figs. IV.1 and IV.2.  
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Fig. IV.1 Voigt profile residuum, CH3F J: 1→2, K = 0-1,  pressure 7 μbar. 
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Fig. IV.2 Voigt profile residuum, CH3F J = 3→4, K = 2,  pressure 7 μbar. 
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As recalled above, this narrowing, which has been observed for many molecular systems 

(17), may results from velocity changes (Dicke effect), from the speed dependence, or from 

simultaneous contributions of these two processes. Note that, for CH3F in the microwave, line 

narrowing has been studied, to the best of our knowledge, in Ref. (99) only. In this work, the 

J = 1 K = 1 CH3F pure rotational transition has been studied in a time domain experiment and 

its narrowing has been attributed to the speed dependence of the broadening coefficient only, 

thus a priori disregarding any Dicke effect. 

IV.3.2 Analysis  

It shall be reminded that the presented analysis was carried out as a first trial study of 

narrowing processes in pure rotational absorbance spectra of CH3F. The measured spectra 

were fitted line by line, first using the Rautian profile and the speed dependent Voigt profile 

presented in Sec. IV.2. As shown by Figs. IV.3-4 this leads to very significant improvements 

of the fits qualities with respect to what is obtained when a purely (speed independent) Voigt 

profile is used. Furthermore, the fits residuals obtained with these two more refined models 

are very good and comparable thus not permitting, at this step, any conclusion on the 

mechanism(s) truly involved. In fact, recall that the narrowing obtained with the Rautian and 

SDV profiles originate from completely different processes, i.e. the velocity changes 

(Rautian) and the speed dependence of the broadening coefficient (SDV). 
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Fig. IV.3 Residuals of Voigt, Rautian and their speed dependent profiles, CH3F, J: 1→2, K = 0-1, 
p =7 μbar. 



 87

204258 204260 204262
-0.2

0.0

0.2

0.4  Obs
 Voigt
 5x(Obs-Voigt)
 5x(Obs-Rautian)
 5x(Obs-sdVoigt)
 5x(Obs-sdRautian)

A

f [MHz]  

Fig. IV.4 Residuals of Voigt, Rautian and their speed dependent profiles, CH3F, J = 3→4, K = 2, 
p = 7 μbar.  

Although measured spectra were available in the range from about 5 to 250 μbar, only those 

for the lowest pressures (below about 30 μbar) were used since, for higher pressures, the 

fitting procedure either failed to converge or converged to physically meaningless values. 

This could be expected for the Rautian profile since it tends to a Voigt profile at elevated 

pressure forbidding a fit of the narrowing parameter. It is more unexpected for the speed 

dependent Voigt shape and the reason for this problem remains unclear but may be due to 

uncertainties and noise on the measurements. Further studies are needed to clarify this point. 

Nevertheless, Table IV.1 gives the values of the parameters obtained from these fits. As can 

be seen, the only possible comparison with previous values is reasonable.  

J K Voigt sd Voigt Rautian sdRautian Γcalc

    this study Ref. (99)  this study Ref. (99)     

    Γ unc Γ multifit Γ unc Γ0 unc Γ2 unc Γ0 unc Γ2 unc Γ unc H
VCν  unc Γcalc

H
VCν unc

1 0 20.2 0.7 20.5   22.5 0.1 4.5 0.5     22.4 0.4 10.2 1.2 20.1 0.98 0.05

 1 19.6 1.5 21.0 17.98 0.4 20.6 0.7 1.3 0.2 18.3 0.4 3 1 20.5 0.6 3.9 0.8 18.6 1.03 0.09

3 0 20.4 1.7 18.8   21.2 0.3 3.7 0.5     20.2 0.4 7.7 2.1 17.0 1.18 0.04

 1 18.2 0.4 19.1   19.6 0.6 2.5 0.4     19.0 0.4 5.0 0.4 16.8 1.10 0.05

 2 17.6 0.4 18.4   19.7 0.4 3 0.1     18.9 0.2 5.6 0.8 16.0 1.12 0.05

 3 17.1 0.3 16.2   17.9 0.4 1.5 0.1     17.5 0.3 2.8 0.5 14.1 1.23 0.08

 

Table IV.1 Collisional parameters in [MHz/Torr] of CH3F pure rotational lines for various profiles 
(1 σ uncertainties). 
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In order to go further and to try to differentiate between the contributions of Dicke (through 
H
VCν ) and speed dependent (through the 0 2, Γ Γ  parameters) effects, a speed dependent 

Rautian profile was set up. Since attempts to simultaneously derive (fit) from experiments the 

velocity changing and speed dependence parameters failed due to the strong correlation 

between these two unknown quantities an alternative procedure was used. In fact, in order to 

constrain the model, the speed dependent broadening coefficients a(v )Γ  and its derivative 

a

a

(v )
v

d
d
Γ  were fixed to values calculated with a semi-classical model adapted to CH3F from 

the method proposed for linear molecules by Bonamy et al. (100). These calculations, made  

with a program kindly communicated by Pr. Christian Boulet, provide the broadening cross 

section r(v )σ Γ  as a function of the the relative speed r rv = vG  with r p a= −v v vG G G  being the 

relative velocity between the perturber and the absorber. Assuming a Maxwell-Boltzmann 

distribution for the perturber velocity, the values of a(v )Γ , thus now versus the speed of the 

absorbed only, were calculated using the following relation (see Eqs. III.54-55 in (17)): 

( )
2

3 p 3
a p r p

p

v
(v ) v exp (v ) d

v
π σ

−

Γ

⎛ ⎞⎛ ⎞
⎜ ⎟Γ = −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫∫∫ vG�
�

,              (IV.41) 

where 3 3
p rd d=v vG G  and p

p

2v MBk T
M

=� . After integration over the orientation, Eq. (IV.41) 

transforms to: 

2 2
a r a r

a r r r2 2
p p0a p

v v 2v v2(v ) v exp (v ) dv
v vv v

sh σ
π

+∞

Γ

⎛ ⎞ ⎛ ⎞+
Γ = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ � ��

           (IV.42) 

The calculation of a(v )Γ  for values of av  up to a a6v  (v ( 296 K) 380 m/s)T = =� �  leads to the 

values presented in Fig. IV.5 for the transitions under study in this work. 
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Fig. IV.5 Speed dependent broadening coefficients (T = 296 K): calculated values for J = 1 and 3 CH3F 
lines 

For practical reasons, these raw values of a(v )Γ  were fitted with polynomial whose 

derivatives were afterwards used for calculation of a

a

(v )
v

d
d
Γ  needed in the calculation of the 

line shape [see Eq. (IV.37)].  

Since these two quantities are now fixed, the only line shape parameter adjusted parameter in 

the fit of measured spectra [through the numerical integration of Eq. (IV.33)] is the Rautian 

parameter H
VCν . This parameter, after normalization by pressure, thus in MHz/Torr, should be 

constant and in this property is not obtained from our spectra in the low pressure conditions 

as shown in Fig. IV.6. On the opposite, above about 20 mTorr nearly pressure independent 

values are obtained, consistently with expectations. This is a quite promising result that needs 

confirmations and further analysis using improved measurements, a possible continuation of 

this thesis work.  
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Fig. IV.6 Rautian narrowing parameter H
VCν in [MHz/Torr] in the Rautian speed dependent profile with 

calculated (v)Γ for J = 1 lines (left) and J = 3 lines (right). 

IV.3.3 Conclusion 

The pure rotational lines of CH3F were studied using Voigt profile and other more subtle 

profiles as speed dependent Voigt profile, Rautian profile and speed dependent Rautian 

profile. Speed dependent Voigt profile and Rautian profile flattened significantly the residual 

of the Voigt profile. On the other hand, the results using in part calculated in part fitted 

parameters in the speed dependent Rautian profile did not help to conclude on the impact of 

involved narrowing contributors since it seemed that for low pressures the profiles were 

overnarrowed or did not really differ from the previous models (Rautian and speed dependent 

Voigt, see J = 3 K = 0 transition of Fig. IV.4). The quality of experimental data is probably at 

the origin of failure in using speed dependent Rautian profile. The pure rotational lines have 

been measured in Stark cell with relatively short path length in order to evaluate the fine 

subtleties of the line profiles. Therefore the study will be repeated using a longer, non Stark, 

free path absorption cell (see Figs. III.2-3). Also, rather then a line by line fit, a multifit could 

be used to retrieve the collisional parameters.  
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V Line-mixing among CH3F Stark lines 

V.1 Introduction to collisional line mixing 

When the contributions, to the absorption spectrum, of different transitions overlap 

significantly due to their broadening by pressure, the lines often cannot be considered as 

(collisionally) isolated (chapter IV of Ref. (17)). If the overlapping transitions are coupled to 

each other through collisions, the spectrum is not the sum of the contributions of the 

individual lines because of the collisional line mixing effect which leads to intensity transfers 

among the various coupled transitions. The line-mixing mechanism can be explained by 

considering the (simple) example of two absorption (ΔJ = 1) Stark lines (ΔM = 0) of a 

symmetrical top that differ only by their M quantum number, centered at νif for the transition 

, , 1, ,J K M J K M→ +  and at νi'f' for the transition , , ' 1, , 'J K M J K M→ + .    In the 

presence of radiation, a molecule in the level i , ,J K M= can be excited to level 

f 1, ,J K M= + by absorbing a photon of frequency νif , thus generating, in the spectrum, an 

absorption line at frequency νif. The molecule can also be transferred through collision to the 

level i' , , 'J K M= , wherefrom it can be excited to level f' 1, , 'J K M= +  by absorbing a 

photon of frequency νi'f' , thus contributing to the absorption line at frequency νi'f' and then it 

can relax from level f ' 1, , 'J K M= +  to f 1, ,J K M= + by collisions (blue arrows on 

Fig. V.1). Through this process, a molecule initially on level i can contribute to the 

absorption line at frequency νi'f'.  The reverse path is also possible (collisional transfer from 

i' , , 'J K M=  to i , ,J K M= , absorption at νif and collisional relaxation from 

f 1, ,J K M= + to f ' 1, , 'J K M= + ) as showed on Fig. V.1 by red arrows. 
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Fig. V.1 Scheme of line mixing process among two ΔM=0 Stark lines 

In summary, collisional line-mixing leads to exchanges of populations between energy levels 

of the considered absorption transitions and this manifests, in the spectrum, through the fact 

that the absorption lines partially exchange their intensities.  

For this effect to occur and to significantly affect absorption by pure rotational transitions 

(vibrational ground state), the following conditions must be fulfilled. First, collisional 

transfers between levels i i ', f f '↔ ↔ must be permitted: levels must thus belong to the same 

isotopologue and be “connectable” considering their symmetries and the inter-molecular 

potential. For instance, within the model presented thereafter, the ΔM = − 1 and ΔM = + 1 

optical transitions in Stark orthogonal orientation spectra are not coupled by collisions. 

Secondly, radiator-perturber interactions inducing i i ', f f '↔ ↔  transfers must be efficient. 

One may thus disregard transfers between levels belonging to different vibrational states (or 

having different nuclear spins); indeed the collisional transfers between such levels are very 

slow and several orders of magnitude less efficient that pure rotational transfers. Finally, the 

populations’ exchanges must have a significant effect on the spectrum itself. Recalling that 

the pressure broadening is some kind of measure of the effect of molecular interactions, a 

criterion is thus that the collisional widths of the interacting lines should be comparable or 

greater than the distance between line centers ( if if i 'f '  ν νΓ ≈ > − ). 
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Since the equilibrium Maxwell-Boltzmann population distribution applies in collisions, the 

detailed balance principle relates the exchange terms:  

( ) ( ) ( ) ( )i i' i i' i i'P Pρ ρ→ = → ,         (V.1) 

where ( )i i'P →  is probability of transition from i to i’ and ( )iρ  is the equilibrium relative 

population of the initial level of line νif. The detailed balance indicates that more probable is 

the process starting from the less populated level. Therefore line-mixing promotes the 

transfer of intensity from the weak lines to the strong lines. More generally this leads to 

transfers from the weak to the strong absorption regions. In comparison with shapes of 

isolated lines, line-mixing leads to a narrowing of profile. 

 

V.1.1 Absorption coefficient and widths 

In the following, we assume binary collisions (valid at the pressures considered in this work), 

we disregard the Doppler effect (which can be easily introduced through a convolution by the 

proper Gaussian profile), and work within the frame of the “impact approximation” (valid 

since we consider regions close to the line centers). With these assumptions, the normalized 

spectral profile of a band composed of rotational components broadened and coupled by 

molecular collisions is given by Refs. (17, 101): 

'
, '

1 1( ) Im 'F d d
i

ν ρ
π ν

=
− −∑

0L WA A A
A A

A A   (V.2) 

For each optical transition A, dA is its reduced dipole transition matrix elements and ρA is the 

relative population of its initial level. L0 is a diagonal matrix, in the line (Liouville) space, 

containing the unperturbed line frequencies νA. W is the relaxation matrix, which is, within 

the binary collision approximation, proportional to the gas density (or total pressure P).       

Its diagonal elements are related to the pressure induced width ΓA and spectral shift ΔA of the 

individual lines: 

( )i P iγ δ= Γ − Δ = −W A A A AA A  (V.3)  
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The off diagonal elements of W describe the couplings between the various transitions and 

they are responsible for the LM process. From now on, the imaginary part of W will be 

neglected. This is required in the absence of any model to construct them and this 

approximation is likely valid in view of the small pressure induced shifts. Knowing W, the 

collisional profile is obtained from the diagonalization of L0+iW (17, 102) and it can be 

convolved by a Gaussian function in order to take the Doppler effect into account, if 

necessary. 

Two asymptotic behaviors will be of primary importance for the analysis of the results in 

section V.2. The first is the (very) weak overlapping regime when the widths of the pressure 

broadened transitions are negligible when compared with the spectral distances between 

absorption lines [ AAAAAA ≠∀ν−ν<<Γ ',    || ' ]. The collisional profile of Eq. (V.2) then 

becomes the sum of “isolated” Lorentzian contributions: 

2
2 2

1( )
( )

F dν ρ
π ν ν

Γ
=

Γ + −∑ A
A A

A A A

  . (V.4) 

In the opposite case, i.e. for a group of completely overlapping lines 

[ AAAAAA ≠∀ν−ν>>Γ ',    || ' ], the profile corresponds to that of a single “effective line” with a 

Lorentzian shape: 

2 2( )
( )

SF ν
π ν ν

Γ
=

Γ + −
,  (V.5) 

where the intensity, frequency and width of this “effective” line are given by : 

2S dρ= ∑ A A
A

, 21 d
S

ν ρ ν= ∑ A A A
A

 and { }' '
, '

1 Re Wd d
S

ρΓ = ∑ A A A A A
A A

. (V.6) 

Equation (V.6) shows that the line width of a bunch of completely overlapping collisionally 

coupled transitions is different from the weighted average of the widths of the isolated 

components, the latter being given by: 

{ }WA 21 Re Wd
S

ρΓ = ∑ A A AA
A

.   (V.7) 
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In fact, Γ  is generally smaller (17) than WAΓ  because of a usually negative coupling term 

{ }1
' '

'
Re WS d dρ−

≠
∑∑ A A A A A
A A A

 that must be taken into account. Note that WAΓ  is the width of the 

“effective” line obtained from Eq. (V.4) in the strongly overlapping case and that it is thus the 

value associated with the neglect of LM effects. 

In the present study we consider individual Stark transitions associated with given values of 

the rotational quantum numbers J and K, i.e.: , , 1, , 'J K M J K M M M→ + = + Δ . The sums 

over A and A’ in Eq. (V.2) thus become sums over M and M’. As shown in (13) and (14), and 

as can also be established from the IOS formalism of (12) and Sec. V.2.2, collisional 

coupling can arise only between lines having the same value of ΔM. The problem thus 

reduces to the three subspaces corresponding to the three possible values ( 0,  1± ) of MΔ . 

Consequently M
JKM
ΔΓ → ΓA  is the width of an isolated Stark component while JKΓ → Γ  is the 

width of the , 1,J K J K→ +  rotational line when unresolved, i.e. in the zero field limit 

(recall that the distance between M-components is driven by a first order Stark effect with a 

constant spacing – for given values of J and K – linear in the field). Finally, the weighted 

average of the widths of the Stark components [see Eq. (V.7)] will be noted WA
JKΓ . 

V.1.2 Construction of the relaxation matrix 

The models available to build collisional relaxation matrices within the impact and binary 

collision approximation range from simple empirical approaches for complex molecular 

systems to fully quantum calculations starting from the intermolecular potential energy 

surface (PES) for simple systems. With the exception of direct calculation from the PES, the 

models provide calculations only of the real part of the relaxation matrix.  

Note at this step that one can show that the relaxation matrix W verifies the following 

properties: 

1) The diagonal elements of W are the individual pressure-induced widths and shifts of 

the optical transitions (Eq. (V.3)) 

2) W satisfies  the detailed balance principle which ensures the overall conservation of 

the populations ρA of the levels 

              '' 'ρ ρ=W WA AA A A A              (V.8) 
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3) For rigid rotors and intermolecular interactions only dependent on the rotational states 

(i.e. no dependence on vibration), W verifies the following sum rule: 

               ' '
' '

1' 0    ' ( ) ( )d d T i T
d ≠

= ⇔ − = Γ − Δ∑ ∑W WA A A A
A A AA

A A A A                (V.9) 

 

The numerous models for the construction of W are detailed in (17) and are (very) briefly 

recalled below. 

- The simplest is a partly empirical approach based on the hard collision model where the off 

diagonal real elements are proportional to the relative population of the initial level: 

''  , 'ρ γ= − × ≠W AA A A A                  (V.10) 

It has been largely used in the past when computer power was limited and more sophisticated 

models were not available, which is not the case anymore. 

- Another type of phenomenological models uses statistically based energy gap fitting laws 

(103). In energy gap models, the real elements of W are expressed by state-to-state collisional 

transfer quantities between initial levels K(i’←i) that are represented as functions of energy 

gap ΔEi’i=|Ei-Ei’| in the statistical fitting law approach: 

EG ' '' ( ' ) ( )  for i i i iK i i f E E E E= ← = − ≥WA A ,              (V.11) 

where EG ( )f EΔ  is usually a power or exponential function ( 2 
1

aa E −Δ , 2
1 a Ea e− Δ , 

2 3  
1

a a Ea E e− − ΔΔ , …) which parameters are obtained through fits of experimental data. Such 

models have the advantage of easy implementation but have limited extrapolation 

possibilities since they rely on experimental data. 

- The dynamically based scaling laws, which were originally introduced to model collisions 

with atoms, have more robust physical bases since they explicitly take into account the 

couplings of the various (spectroscopic and collisional) angular momenta. The first of these 

models is based on the so-called Infinite Order Sudden (IOS) approximation (104) and 

assumes instantaneous collisions to disregard the molecules rotation during collisions.         

Its main interest is that this model separates spectroscopic effects dependent on the internal 

states of the absorber (described by angular momenta coupling terms) and dynamical effects 

dependent on absorber-perturber interactions (described by a set of collisional quantities). 

Nevertheless, the IOS neglecting of the energy spacing between rotational levels leads to the 

breakdown of the detailed balance relation of Eq. (V.8) and to inaccurate results when 

collisions are “slow” (for relatively heavy molecular pairs). To correct for these limitations, 
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the Energy corrected Sudden (ECS, (19) model was proposed later on, which improves the 

IOS by imposing the detailed balance condition and including the collisional effects of the 

finite duration of collisions.  The resulting approach has enabled very satisfactory predictions 

of line-mixing in a large variety of spectra for many molecules including linear and 

symmetric-top species (see review in (17)). Note that, for Stark components in which all M 

sub-levels have the same rotational energy and population, the IOS model, used in the 

following, is identical to the ECS approach. 

Among approaches based on knowledge of the intermolecular potential, the fully quantum 

ones are the most accurate and they are considered as essentially exact. Nevertheless, in spite 

of the considerable increase of computer power, they are still hardly applicable to complex 

molecular pairs and limited to simple system and/or low temperatures. The alternative is to 

use a semi-classical treatment in which the translation is treated classically while the internal 

states are treated quantum mechanically. Among these approaches, the Neilsen and Gordon 

model (105) is considered most sophisticated but limited to interactions between linear 

molecules and atoms. The Anderson-Tsao-Curnutte (ATC, (16, 106) model enables to treat 

more complex collisional pairs and the Robert-Bonamy (100) model extends the ATC 

approach with a better description of close collisions. Note that a model derived from the 

ATC approach was applied previously to line-mixing among Stark components as discussed 

below. 

 

V.2 Case of Stark components of CH3F and CH3F in He 

V.2.1 Introduction 

As reviewed in chapter IV of Ref. (17), LM has been the subject of numerous experimental 

and theoretical studies for various molecular systems and types of spectra. However, only 

very few studies have considered the case of collisional exchanges among hyperfine 

components and/or Stark resolved molecular lines, i.e. when an applied electric field removes 

the spatial degeneracy of the rotational levels. As first shown by Bréchignac (12) for CH3F in 

the IR region, the “zero field widths” are significantly smaller than the widths of the various 

Stark resolved lines. Later on, accurate measurements were performed on pure rotational 

transitions of CH3F (13-15), confirming the expected M-dependence of the widths of the M-

components as well as the importance of LM effects.  
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Various theoretical treatments have been proposed to describe collisional couplings between 

M-components. Let us first mention the pioneering work of Buffa, Tarrini and co-workers 

(13), based on a generalization of the well known Anderson-Tsao-Curnutte (ATC) model 

(16). This approach has enabled a clear understanding of the collisional processes between 

hyperfine and Stark components of molecular spectral lines, for molecules with large dipole 

moments (13-15, 18). An alternative approach to take LM into account is to build the 

associated relaxation matrix using the Infinite Order Sudden (IOS) approximation (17, 107) 

or its improved Energy Corrected Sudden (ECS) extension (17, 19, 20). IOS/ECS models 

have enabled precise modeling of LM effects for many systems and types of spectra (17), 

including hyperfine components due to the nuclear spin (21, 22) and symmetric-top spectra 

(23, 24). However, quite surprisingly, as shown in (14), the IOS model developed in (12) 

apparently failed to reproduce the details of coupling processes between the Stark 

components of CH3F lines. With the aim of clarifying this result we have re-examined the 

problem and the presented results suggest that this failure was only due to an 

oversimplification of the IOS formalism. Indeed, when applied properly, and using basic 

cross-sections previously (and independently) determined from double resonance 

experiments and He-broadening data, the IOS formalism leads to an agreement with 

experimental data comparable to that obtained in (14) and (15) within a different (ATC-like) 

approach. 

V.2.2 The IOS relaxation matrix 

The basic equations used here have been given in (12). In the IOS limit, the relaxation matrix 

elements are expressed in terms of spectroscopic factors (containing the coupling of the 

various angular momenta of the system) and dynamical factors Q(L,Ma,Mb). Note that M 

diagonal values Q(L,M,M) can be identified (20, 107) with the state to state rotational cross-

sections: 

( , , ) ( 0, 0 , )Q L M M J K J L K Mσ≡ = = → = =  .  (V.12)  

Starting from Ref. (12), we first assume that: 

,0 ,0( , , ) ( )
a ba b M MQ L M M Q L δ δ= ,  (V.13)  

where: 
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B

B

( ) ( 0, 0 , 0)

( , 0)           ( , 0 0, 0)(2 1)exp

( , 0)   '( )(2 1)exp  .

Q L J K J L K

E J L KJ L K J K L
k T

E J L KQ L L
k T

σ

σ

≡ = = → = =

⎛ ⎞= =
= = = → = = + −⎜ ⎟

⎝ ⎠
⎛ ⎞= =

≡ + −⎜ ⎟
⎝ ⎠

 (V.14)  

Q(L) and Q’(L), as the corresponding cross sections σ, are thus related by the detailed 

balance relation. Equation (V.13) generalizes the approach of (12) where it was assumed that 

a predominant dipole-dipole interaction implies that only Q’(1) is non zero. Even if the 

dipole-dipole interaction (with its 1; 0J KΔ = ± Δ =  selection rule) is the dominant 

contribution to intermolecular forces that connect rotational states through collisions, it can 

induce | | 1JΔ >  rotational changes through higher order terms in the expansion of the S 

matrix. The 1JΔ = ±  processes are likely the fastest but they are not the only ones authorized 

by this interaction. In our opinion, this is the origin of the relative failure; observed in (14), of 

the IOS model of Bréchignac (12), in reproducing the experimental data, as will be shown 

later on. 

For CH3F-He, the validity of Eq; (V.13) approximation has been assumed and discussed in 

(108) where the basic Q’(L) cross-sections, that will be used here, were deduced from an IOS 

analysis of He-broadening data . 

Inserting Eq. (V.13) into the IOS formalism of (12), one obtains the following expression for 

the elements of the relaxation matrix: 

'

( )

W( , , ; 1, , , , '; 1, , ' ) ( 1) (2 1)

1 1
                  W ( , ,; 1, , ; 1, )

' '

M M

k

k

J K M J K M M J K M J K M M k

J J k J J k
J K J K J K J K

M M M M M M M M

++ + Δ → + + Δ = − +

+ +⎛ ⎞⎛ ⎞
× + → +⎜ ⎟⎜ ⎟+ Δ − −Δ − Δ − −Δ⎝ ⎠⎝ ⎠

∑

 (V.15)  

 

with: 

( )W ( , ; 1, , ; 1, ) ( , , 1, ; , , 1, ; ) ( )k
k

L
J K J K J K J K F J K J K J K J K L Q L+ → + = − + +∑  (V.16)  

where: 
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2 1
( , , 1, ; , , 1, ; ) ( 1) (2 1)(2 3)        

0 1
k L

k

J L J J J k
F J K J K J K J K L J J

K K J J L
+ +⎛ ⎞ ⎧ ⎫

+ + = − + + ⎨ ⎬⎜ ⎟− +⎝ ⎠ ⎩ ⎭
 (V.17) 

where ( ):::  and { }:::  are 3-j and 6-j coefficients, respectively. Note that: 

W( , , ; 1, , , , ; 1, , ) M
JKMJ K M J K M M J K M J K M M Δ+ + Δ → + + Δ = Γ , (V.18) 

and that the symmetry relations verified by the elements of W given in (14, 15, 18) can be 

easily obtained within the IOS formalism. They will not be detailed here but one has, for 

instance: 

 0 0M M
JKM JK M
Δ = Δ =

−Γ = Γ  . (V.19)    

Using the following expression of the dipole reduced matrix element (12): 

1 1 13( 1)
2 1

J M M
JKM M

J J
d      

M M M MJ
+ + +Δ

Δ

+⎛ ⎞
= − ⎜ ⎟− − Δ Δ+ ⎝ ⎠

,  (V.20) 

and neglecting the influence of the Stark field on the rotational distribution, it can be easily 

verified that 2 1S dρ= =∑ A A
A

, provided that the relative populations are defined by 

2 1Jρ = +A . This last equality, which is consistent with the IOS approximation which 

neglects the spacing between rotational levels, is a good approximation for the low J lines 

considered in this paper. Then, one can show that, within the IOS limit:  

{ } (1)
' '

, '

Re W W ( , ; 1, , ; 1, )JK d d J K J K J K J KρΓ = ≡ + → +∑ A A A A A
A A

 . (V.21) 

This result is of course expected since (1)W ( , ; 1, , ; 1, )J K J K J K J K+ → +  is nothing but the 

IOS width of an “ordinary’ rotational line , 1,J K J K→ +  of a symmetric top molecule 

(107), in the absence of any static field.  

Coming back to the collisional line-mixing process, and according to Eqs. (V.6-7), one can 

see that if the off diagonal elements coupling the various Stark components M M M→ + Δ  

are significant, JKΓ will be significantly smaller than the weighted average WA
JKΓ  of the widths 

M
JKM
ΔΓ  of these components. Stark manifolds of various M transitions thus behave similarly to 
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clusters of other types (J or K manifolds, Q branches, hyperfine components) of closely 

spaced lines where LM reduces the broadening with increasing pressure (17). 

V.2.3 Data 

The experimental details on the recording of the Stark microwave spectra used for the 

analysis of line-mixing effects were given in chapter III. Let us only recall here that Stark 

spectra of 12CH3F (either pure or in mixtures with helium) were recorded for the transitions J: 

1 → 2 (102 GHz) and J: 3 → 4 (204 GHz). Orientations of the electric field parallel and 

orthogonal to the electric vector of the polarized microwave probing beam were applied thus 

leading to Stark resolved transitions with the selection rules ΔM = 0 and ΔM = ±1, 

respectively. Electric field intensities from 15 to 35 V/cm were used. Total pressures between 

7 and 10 μbar were used for the measurements with pure methyl fluoride while values in the 

range 100-500 μbar were retained for mixtures with helium typically between 5 and 20 % of 

CH3F. 

As an example, Fig V.2 displays recorded absorbances near the J = 1 → 2, K = 1 and K = 0 

transitions of pure methyl fluoride diluted in helium, measured without and with Stark effect 

induced by a parallel external electric field of about 23.5 V/cm. Under pressure/electric field 

conditions for which the transitions in the recorded spectra are sufficiently isolated from each 

other, fits were made to extract collisional parameters. This was done through a 

multispectrum fitting (109) with Voigt profiles yielding the pressure-broadening coefficients 

γ(CH3F-He) of the various lines.  
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Fig. V.2 Experimental spectra of pure rotational CH3F J: 1→2, K = 0-1 transitions (on right) and the 

parallel Stark components M = −1, 0 ,1 at E = 23.5 V/cm (on left). Total pressure 0.1-0.5 mbar, mixture 

CH3F (x = 0.05-0.2) and He (x = 0.80-0.95). 

Other typical examples, for J = 3 → 4 transitions of methyl fluoride diluted in helium, are 

displayed in Figs. V.3-4.  
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Fig. V.3 Experimental (red line), Voigt fit (black line) and residuals (blue line) of CH3F J: 3→4, K = 0-3, 
M = −3, … , 3 parallel Stark lines at E = 27 V/cm. Total pressure 0.1 mbar, mixture CH3F (x = 0.05) and 
He (x = 0.95). 
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Fig. V.4 Experimental (red line), calculation based on sum of individual M components Voigt profiles 
(black line) and residuals (blue line) of CH3F J: 3→4, K = 0-3 (from right to left) pure rotational lines (i.e. 
E = 0 V/cm, no Stark effect). Total pressure 0.5 mbar, mixture CH3F (x = 13 %) and He (x = 0.87 %). 

 

Note that Fig. V.4 gives a first demonstration of LM effects. Indeed, the profile simulated 

neglecting LM and thus calculated from the sum of the Lorentzian contributions of the 

various individual M components with broadening values retrieved as in Fig. V.3 is obviously 

too broad. This is expected from the previously mentioned fact that WA
JKΓ  is greater than JKΓ . 

Finally, in order to estimate the uncertainty, the spectra have also been fitted one by one each 

giving a value of the broadening coefficient. From the scatter of the results for a given 

transition and various total pressures, the error on our determinations was estimated to be of 

less than 5 % for pure CH3F and about twice for CH3F-He (due to the fact that the broadening 

coefficients by He are about one order of magnitude smaller than those for pure CH3F). 

V.2.4 Analysis 

According to Eqs. (V.14-17), the information required for the calculation of the relaxation 

matrix are the dynamical factors Q(L) [or Q’(L)].  

Pure CH3F: Over the past decades, rotational energy transfer in pure CH3F samples 

have been widely investigated, in particular, by a time resolved millimetre/sub-millimeter-

infrared double resonance experiment (110). Rotational state-to-state rates were measured 
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and it was shown that they can be modeled using the IOS theory and the following law for the 

basic cross-sections: 

[ ]'( 0) ( ,0 0,0) ( 1)Q L L A L L ασ −≠ ≡ → = × + , (V.22) 

[with 
0

( 0) ( )
L

Q L Q L
≠

= = −∑ ]. The parameters A and α deduced from the measurements of 

(110) are given in Table V.I. They have been used in the present work to construct the 

relaxation matrix, after a slight optimization (well within the experimental uncertainty) of the 

parameters, based on the experimental results (14) for the J = 5, K = 5 → J = 6, K = 5; ΔM = 0 

line broadening coefficients. 

CH3F-He: Line mixing among usual (i.e. zero field limit) rotational components have 

been studied in the 3ν  band of CH3F perturbed by He in (108). The observed modifications 

with respect to the addition of Lorentzian contributions were analyzed in terms of models 

respectively based on the IOS and ECS approximations. Both lead to a satisfactory agreement 

with measurements even if the latter gives better results, particularly for high J values. The 

basic CH3F-He cross sections were modeled (108) through the simple analytical law given by 

Eq. (V.22). The two parameters deduced in this previous study are given in Table V.1 and 

will be used in the present calculations. 

 From previous 

experiments 

Ref. Used in the 

present work

CH3F-CH3F 
A = 8.94 ± 2.11 

α = 1.30 ± 0.05 
(110)

 

A = 8.63 

α = 1.325 

CH3F-He 
A = 0.31 

α = 0.8 
(108)

 

A = 0.31 

α = 0.8 

Table V.1 Parameters of the law of Eq. (V.22) for the basic cross sections (A is given in MHz/Torr). 

Finally, let us recall that for CH3F-He mixtures, the W matrix is written according to the 

binary collision approximation as: 

 
3 3 3 3CH F CH F-CH F He CH F-He[ ]P x x= +W W W  ,  (V.23) 

where P is the total pressure while xCH3F and xHe are the mole fractions of CH3F and He, 

respectively. 
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V.2.4.1 Results - Pure CH3F 

Experimental values of the broadening coefficients of transitions with and without a Stark 

effect from the present study and from (14) are compared with the IOS predictions in Fig. V.5 

and in Tables V.2-3.  

 

Fig. V.5 Measured and calculated (IOS) self-broadening coefficients (in MHz/Torr) of CH3F pure 
rotational lines 
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Ji,Ki→ Jf,Kf Mi = Mf Experiment IOS 
  Present Ref. (14)  

0,0→1,0 Zero field 21.9 21.5
1,0→2,0 Zero field 20.5 18.3 20.7
1,1→2,1 Zero field 21.0 18.3 19.2
2,2→3,2 Zero field 16.1 17.1
 0 23.2 21.5
 1 22.9 21.0
 2 19.7 19.2
3,0→4,0 Zero field 18.8 20.4
3,1→4,1 Zero field 19.1 19.9
 0 19.8 21.3
 1 20.7 21.3
 2 21.5 21.3
 3 21.8 21.1
3,2→4,2 Zero field 18.4 18.6
 0 25.7 21.5
 1 26.0 21.3
 2 25.1 20.7
 3 24.0 20.0
3,3→4,3 Zero field 16.2 15.6
 0 29.1 21.4
 1 28.6 21.1
 2 28.2 20.1
 3 25.2 18.0
5,5→6,5 Zero field 12.8 13.5
 0 22.4 21.3
 1 23.1 21.1
 2 22.1 20.6
 3 20.9 19.7
 4 19.7 18.3
 5 17.3 16.1
7,6→8,6 Zero field 13.6 15.1
 0 25.3 21.4
 1 25.4 21.3
 2 25.0 21.1
 3 24.3 20.7
 4 23.3 20.0
 5 21.8 19.2
 6 20.0 18.1
 7 17.6 16.9

Table V.2 Measured and calculated (IOS) self-broadening coefficients (in MHz/Torr) in the zero field 
limit and for isolated Stark components (ΔM = 0 case).    
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Ji,Ki→ Jf,Kf Mi→ Mf Experiment IOS 

  Present Ref. (14)  
1,1→2,1 Zero field 18.2 19.2 

 −1→0 22.2 21.5 
 1→0 22.3 21.5 
 0→1 and −1→−2 19.4 20.5 
 0→−1 and 1→2 19.9 19.9 

3,1→4,1 Zero field 19.1 19.9 
 −3→−4 and 0→1 19.8 20.8 
 −2→−3 and 1→2 18.7 21.2 
 −1→−2 and 2→3 18.7 21.2 
   0→−1 and 3→4 19.8 20.8 

3,2→4,2 Zero field 18.4 18.6 
 −3→−4 and 0→1 22.4 19.9 
 −2→−3 and 1→2 23.1 20.7 
 −1→−2 and 2→3 23.1 20.7 
  0→−1 and 3→4 22.4 19.9 

3,3→4,3 Zero field 16.2 15.6 
 −3→−4 and 0→1 23.4 18.0 
 −2→−3 and 1→2 26.3 19.9 
 −1→−2 and 2→3 26.3 19.9 
  0→−1 and 3→4 23.4 18.0 

5,5→6,5 Zero field 12.8 13.5 
 −5→−6 and 0→1 16.6 16.4 
 −4→−5 and 1→2 21.0 18.7 
 −3→−4 and 2→3 22.8 19.7 
 −2→−3 and 3→4 22.8 19.7 

 
Table V.3 Measured and calculated (IOS) self-broadening coefficients (in MHz/Torr) in the zero field 
limit and for isolated Stark components ( 1MΔ = ±  case). When two lines ΔM = +1 and ΔM = −1 are 
superimposed and since they are not coupled, the calculated value is the weighted average of their 
individual widths. 

For the J = 5 → 6, K = 5, and |M| values from 0 to 5, the IOS matrix is given in Table V.4 and 

results are displayed in Fig. V.6 which also shows previous predictions (14). They show that, 

when properly applied, the IOS model does indeed lead to an agreement with the 

experimental data very similar to that obtained in (14) with the semi-classical approach based 

on an extension of the ATC model. It quite correctly predicts the J, K and M dependences of 

the widths and of the amplitude of the coupling process. Recall that the latter manifests 

through the difference between the width JKΓ  [Eq. (V.21)] of the line for zero field and the 

average WA
JKΓ  of those ( JKM

εΓ ) of the individual components [Eq. (V.7)]. For the 7, 6→8, 6 

transitions, for instance, LM leads to a reduction of the broadening by almost a factor of two 

which is well predicted by our model. From the reasonable agreement between the 

experimental data and IOS predictions obtained for both the unresolved (zero field) and 

resolved Stark lines, one can deduce that the IOS evaluation of the relaxation matrix, starting 

from Eqs. (V.13) and (V.22), is now more reliable than assuming that only Q’(1) is non zero. 

Consider, as in (14), the J = 5, K = 5 → J = 6, K = 5; line and more particularly the ratio of the 
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width of the zero field line to the J = 5, K = 5, M = 0 → J = 6, K = 5, M = 0 component.     

The experimental result is 0.572, the semi-classical result of (14) is 0.527, while the present 

IOS prediction is 0.63 and not 0.306 as obtained by assuming that only Q’(1) is non zero. 

This quality of the IOS approach, when properly applied, is confirmed by the similarity of the 

IOS relaxation matrix for the case J = 5, K = 5 → J = 6, K = 5; ΔM = 0 with that obtained 

within the semi-classical approach (compare Table V.4 with Table III of (15)). Consequently 

the IOS formalism will give, in the intermediate regime where the Stark components are 

neither well resolved nor completely degenerate, results very similar to those obtained in 

(15).  

M’/M -5 -4 -3 -2 -1 0 1 2 3 4 5
-5 +16.0 -1.94 -0.08 0.06 0.04 0.02 0.01 0.00 0.00 0.00 0.00
-4 -1.94 +18.3 -2.76 -0.23 0.05 0.05 0.03 0.01 0.00 0.00 0.00
-3 -0.08 -2.76 +19.7 -3.22 -0.34 0.03 0.05 0.03 0.01 0.00 0.00
-2 0.06 -0.23 -3.22 +20.6 -3.49 -0.40 0.02 0.05 0.03 0.01 0.00
-1 0.04 0.05 -0.34 -3.49 +21.1 -3.61 -0.42 0.02 0.05 0.03 0.01
0 0.02 0.05 0.03 -0.40 -3.61 +21.2 -3.61 -0.40 0.03 0.05 0.02
1 0.01 0.03 0.05 0.02 -0.42 -3.61 +21.1 -3.49 -0.34 0.05 0.04
2 0.00 0.01 0.03 0.05 0.02 -0.40 -3.49 +20.6 -3.22 -0.23 0.06
3 0.00 0.00 0.01 0.03 0.05 0.03 -0.34 -3.22 +19.7 -2.76 -0.08
4 0.00 0.00 0.00 0.01 0.03 0.05 0.05 -0.23 -2.76 +18.3 -1.94
5 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.06 -0.08 -1.94 +16.0

Table V.4 IOS relaxation matrix elements W( 1, 1, )J,K,M; J K,M J,K,M'; J K,M'+ → +  (in 
MHz/Torr) coupling M components of the J = 5, K = 5 → J = 6, K = 5, ΔM = 0 transitions in pure CH3F. 
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Fig. V.6 CH3F self-broadening coefficients M M
JKM JK -M=γ γΔ Δ  vs |M| for J: 5 → 6, K = 5, M = −5 to 5, ΔM = 0: 

● Experimental values from Ref. (14), ▼ calculated values using a semi-classical approach (14), ▲ values 
calculated in this study with the IOS model. For comparison, the measured (○) and calculated (Δ, IOS) 
collisional-broadening coefficients ( JKγ ) in the zero field limit for the J: 5 → 6, K = 5 line are also shown. 
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V.2.4.2 Results - CH3F diluted in Helium 

We shall note that presently measured values (typically 2.6 MHz/Torr) for He- broadening 

coefficients of CH3F pure rotational lines (the zero field limit of Stark effect) are in good 

agreement with previous determinations (111, 112). The quality of used IOS model is shown 

by Fig. V.7 which compares our IOS predictions and Grigoriev (111) experimental values for 

some Q branch lines of the ν3 fundemental band.  
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Fig. V.7  IOS and experimental values of He- broadening coefficients of CH3F ν3 band rovibrational lines 

The results obtained for pure rotational lines of CH3F diluted in He are given in Figs. V.8-9 

and are included in Tables V.5-6.  
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Fig. V.8  Experimental (red) and fitted (black) spectrum and shifted residuals (blue lower trace) for the 
transitions J: 3 → 4, K = 0 to 3 (from right to left) without Stark effect. Total pressure 0.5 mbar, 
x(CH3F) = 13 %, x(He) = 87 %. The black lower trace gives the shifted difference between measured 
values and those calculated by summing Voigt profiles of all M components. 
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Fig. V.9 CH3F-He broadening coefficients in the zero field limit JKγ   vs.  K for J: 3 → 4, K = 0-3: ● 
measured values, ▲ IOS calculated results; the Δ symbols correspond to the IOS predictions of the 
weighted average of the widths of the Stark components WA

JKγ . 

Furthermore, in spite of a larger uncertainty due to the difficulty to extract the He broadening 

parameters, it may be reasonably concluded that the observed “zero field- widths” are smaller 

than the widths of the individual Stark components and consequently of their weighted 

average (see Fig. V.10 and Tables V.5-6). Here again, the IOS model succeeds at reproducing 

the amplitude of the coupling process. However, more accurate experiments are clearly 



 111

needed to quantify the M- dependences of the widths, allowing then a deeper analysis of the 

J, K and M dependences of the relaxation matrix. 
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Fig. V.10  CH3F-He broadening coefficients M M
JKM JK -M=γ γΔ Δ   as a function of J, K, M for J: 3 → 4, K = 1 to 

3, M = −3 to 3, ΔM = 0: ● measured values, ▲ IOS calculated results. For comparison, the collisional-
broadening coefficients ( JKγ  calculated from the IOS model) in the zero field limit for J: 3 → 4,  K= 1 to 
3 are also given (Δ). The three sets of seven results correspond, from left to right to K = 1-3 while, in each 
K set, the seven results from left to right are for M = −3 to 3. 

Ji,Ki→ Jf,Kf Mi = Mf Meas. IOS 
1,1→2,1 Zero field 2.8 2.7

 0 2.4 2.8
 1 3.0 2.8

3,1→4,1 Zero field 2.6 2.7
 0 2.7 2.8
 1 2.8 2.8
 2 2.9 2.8
 3 3.1 2.8

3,2→4,2 Zero field 2.6 2.6
 0 2.6 2.8
 1 2.7 2.8
 2 2.7 2.7
 3 2.7 2.7

3,3→4,3 Zero field 2.4 2.5
 0 2.5 2.8
 1 2.6 2.8
 2 2.6 2.7
 3 2.6 2.6

Table V.5 Measured and calculated (IOS) He-broadening coefficients (in MHz/Torr) in the zero field 

limit and for isolated Stark components (ΔM = 0 case). 
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Ji,Ki→ Jf,Kf Mi→ Mf Meas. IOS 
1,1→2,1 Zero field 2.8 2.7

 −1→0 2.3 2.8
  1→0 2.3 2.8
 0→1 and −1→−2 2.0 2.75
 0→−1 and 1→2 2.0 2.75

3,1→4,1 Zero field 2.6 2.7
 −3→−4 and 0→1 3.0 2.75
 −2→−3 and 1→2 3.6 2.8
 −1→−2 and 2→3 3.6 2.8
 0→−1 and 3→4 3.0 2.75

3,2→4,2 Zero field 2.6 2.6
 −3→−4 and 0→1 3.2 2.75
 −2→−3 and 1→2 3.0 2.8
 −1→−2 and 2→3 3.0 2.8
 0→−1 and 3→4 3.2 2.75

3,3→4,3 Zero field 2.4 2.5
 −3→−4 and 0→1 2.8 2.75
 −2→−3 and 1→2 2.9 2.7
 −1→−2 and 2→3 2.9 2.7
 0→−1 and 3→4 2.8 2.75

Table V.6  Measured and calculated (IOS) He-broadening coefficients (in MHz/Torr) in the zero field 

limit and for isolated Stark components ( 1MΔ = ±  case). When two lines ΔM = +1 and ΔM = −1 are 

superimposed and since they are not coupled, the calculated value is the weighted average of their 

individual widths.  

V.2.5 Conclusion 

The measurements presented in this study complete previous results of (14, 15) on the self 

broadening of CH3F microwave transitions and provide, for the first time, values for He-

broadened Stark components. Furthermore, through a correct use of the IOS approximation, 

we have shown that this model leads to very satisfactory results for the self- and He-

broadening coefficients of absorption lines both in the zero field limit and when Stark 

components are separated by an external electric field. This is, to the writer’s knowledge, the 

first successful demonstration of the ability of the IOS approximation to model line-mixing 

effects among Stark transitions. 

Figures V.11-12 give a good overall view of the present study. In these plots, the spectra have 

been directly calculated starting from the IOS relaxation matrix W, either using the full W or 

restricting it to its diagonal part. The first calculation thus takes line mixing into account 

while the second does not (uncoupled lines) and corresponds to the addition of individual 

Lorentzian/Voigt line contributions. As can be seen in Fig. V.11, in the “high-field/low 

pressures” regime where the Stark components are well resolved, LM effects are small, as 

expected (17), and both approaches give a good prediction of the various Stark components 

profiles.  
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Fig. V.11  CH3F Stark spectrum (Helium broadened):  J: 3→4, K = 3, ΔM = 0, M = −3,…,3; E = 27 V/cm,  
ptot = 0.1mbar, xCH3F = 5 %  

If the static field is removed (and also in the “low-field/high pressures” regime), all these 

components collapse (Fig. V.12) into a single line whose width is significantly smaller than 

those of the individual transitions. Assuming a diagonal relaxation matrix then significantly 

overestimates the observed broadening while using a full matrix leads to very satisfactory 

results. 
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Fig. V.12 CH3F pure rotational spectrum: J: 3 → 4, K = 3, Ptot = 0.5mbar, x(CH3F) = 13 %  
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Further similar studies of CH3F-He mixtures for more transitions and higher rotational 

quantum numbers would be of great interest. These would enable to test the limits of the IOS 

model and to evaluate the improvements brought by the adiabaticity corrections (20) of the 

Energy Corrected Sudden model. Furthermore, when available, extended experimental data 

could be compared with the results of direct calculations starting from the intermolecular 

potential. This could be done within the close-coupling scheme using the sophisticated CH3F-

He potential of Ref. (113). 
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VI Conclusion 
Two independent studies in experimental and theoretic gas phase molecular spectroscopy are 

presented in this thesis: an analysis of the infrared spectra of deuterated nitric acid (D14NO3) 

and an analysis of collisional effects in the Stark and non Stark microwave spectra of methyl 

fluoride (CH3F). These studies were carried out in the frame of co-tutelle thesis program 

organized by Université Paris-Est (UPE) and by Institute of Chemical Technology, Prague 

(ICT Prague).  

The first part of the thesis presents the first high resolution analysis of the ν5 fundamental 

band (NO2 in plane bending mode) of DNO3 (deuterated nitric acid) in the 11 µm spectral 

region. In order to carry out the project, we used an infrared spectrum of D14NO3 recorded 

with a Fourier transform spectrometer in the 700−1400 cm−1 region by Profs. Helmut Beckers 

and Helge Willner at Bergische Universität in Wuppertal. The analysis of the ν5 band of 

DNO3 centred at 887.657 cm−1 which is mostly an A-type band, was performed at LISA.   

Our study shows that the fundamental ν5 band is very perturbed. In the case of DNO3, there is 

the ν7 +ν9 “dark” combination band situated at 882.211 cm−1. The 51 and 7191 energy levels 

of DNO3 are therefore coupled through A and B type Coriolis resonances. The resonance 

scheme for D14NO3 thus differs a lot from those involve in H14NO3 and H15NO3, since, for 

these two isotopologues, the 51 and 92 energy levels are coupled through Fermi and C type 

Coriolis resonances. Finally, the absolute line intensities for the ν5 band of DNO3 were 

calculated using the ν5 transition operator from H14NO3. The hot bands ν5+ν6−ν6, ν5+ν7−ν7 

and ν5+ν9−ν9 located at 881.03, 882.61 and 884.45 cm−1, respectively, were also identified in 

the spectrum. 

The second part of the thesis is devoted to the analysis of the spectral shape, when influenced 

by collisions, of pure rotational spectra of CH3F (CH3F-CH3F, CH3F-He) in the absence or 

presence of a Stark effect. The microwave spectra were recorded at ICT Prague and analysed 

at LISA. Various profiles have been used to model the shapes of the lines when spectreally 

isolated. As expected, the widely used Voigt profile leads, at the lower pressures when the 

lines are spectrally separated, to errors with a shape characteristic of a narrowing that could 

be partially removed by using speed dependent Voigt profiles  as well as by Rautian profiles. 

A speed dependent Rautian profile with calculated self-broadening speed dependent 

coefficients was also used, in an attempt to take both the speed dependence and Dicke 

narrowing into account. The results seem promising but remain not conclusive likely due to 
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the insufficient quality of the measured spectra. Self- and He-broadening coefficients of 

microwave transitions of CH3F have also been measured with and without the presence of an 

external electric field. This provides values for the J, K→J + 1, K (K = 0, …, J) transitions 

for J = 1 and J = 3 as well as for the various J, K, M → J+1, K, M’ (|M|  = 0, …, J ; 

|M−M’| = 0, 1) Stark components. The measurements presented in this study complete 

previous results of Lemaire et al. (14, 15) on the self broadening of CH3F microwave 

transitions and provide, for the first time, values for He-broadened Stark components. 

Furthermore, through a correct use of the Infinite Order Sudden (IOS) approximation, it is 

shown that this model leads to very satisfactory predictions of line-mixing effects for the self- 

and He-broadening coefficients of absorption lines both in the zero field limit and when Stark 

components are separated by an external electric field. This is the first successful 

demonstration of the ability of the IOS approximation to model line-mixing effects among 

Stark transitions. 

* * * 

The work presented in this thesis was published in two articles: 

J. Koubek, C. Boulet, A. Perrin, Š. Urban and J.-M. Hartmann, Line-mixing between 
rotational Stark components of CH3F self-perturbed and perturbed by helium: Experimental 
results and IOS analysis, Journal of Molecular Spectroscopy, Journal of Molecular 
Spectroscopy, 266, 2011, 12-20 

J. Koubek, A. Perrin, H. Beckers, H. Willner and Š. Urban, First analysis of the ν5 band of 
DNO3 (deuterated nitric acid) in the 11 μm region, Journal of Quantitative Spectroscopy & 
Radiative Transfer, 111, 2010, 1184-1192 

Three more articles co-signed by Jindřich Koubek were published during his thesis studies: 

S. Zvánovec, P. Černý, P. Piksa, T. Kořínek, P. Pechač, M. Mazánek, J. Varga, J. Koubek, 
Š. Urban, The Use of the Fabry-Perot Interferometer for High Resolution Microwave 
Spectroscopy, Journal of Molecular Spectroscopy, 256, 2009, 141-145 

L. Nová Stříteská, M. Šimečková, P. Kania, P. Musil, L. Kolesniková, J. Koubek and 
Š. Urban, Precise ground state molecular parameters of chloromethane, Journal of Molecular 
Structure, 919, 2009, 89-93 

P. Kania, L. Nová Stříteská, M. Šimečková, P. Musil, L. Kolesniková, J. Koubek and 
Š. Urban, Rotational spectrum of 13C chloromethanes, Journal of Molecular Spectroscopy, 
252 , 2008, 90-92 
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VIII Appendices 

VIII.1  Appendix 1: Derivation of speed dependent Voigt profile formula 

 

The speed dependent Voigt profile is derived for an isolated line centered at frequency ifν , 

disregarding thus the line-mixing effects. The Doppler effect is taken in account as well as 

the dependences of collisional broadening and shifting parameters on the speed v of the 

absorbing molecule. The Dicke narrowing is not considered. The normalized absorption 

profile is that of equation (IV.36) stated in IV.2.3.: 

{ }1 3
sdVoigt M if

1( ) Im ( ) Δ(v) . i (v) d
π

I fν ν ν
−

⎡ ⎤= − − − − Γ⎣ ⎦∫∫∫ v k v v
GG G G         (VIII.1.1) 

 Remark, that following equation is equivalent to VIII.1.1 through { } { }ZReiZIm = : 

{ }1 3
sdVoigt M if

1( ) Re ( ) Γ(v) i( Δ(v) . ) d
π

I fν ν ν
−

⎡ ⎤= − − − −⎣ ⎦∫∫∫ v k v v
GG G G         (VIII.1.2) 

The wave propagation vector can be expressed, assuming that it is along the z axis, as: 

if cν=k z
G G . The normalised Maxwell-Boltzmann distribution of the radiator velocity 

expression using Euler angles is: 

( ) ( )
3 23 2

MB ( ) d v d  sin( ) d  v  exp v vf π φ θ θ
−

⎡ ⎤= −⎣ ⎦v vG G � � ,          (VIII.1.3) 

with [ ] [ ] [ ] B2   0, 2  , 0, , 0, , v k Tv
M

φ π θ π∈ ∈ ∈ + ∞ =� ,         (VIII.1.4) 

and, with this coordinate system, one has where if.  v cos( )
c

ν θ=k v
G G . 

Equation (VIII.1.1) after adaptation of relations (VIII.1.3-4) leads to 

( )
( )

3

2 22
sdVoigt 0 0

0 if
if

v 
( )  d   v  exp v v   dv

π

1                sin( ) d  Im  
Δ(v)  v cos( ) i (v)

I

c

π

π

π
ν φ

θ θ νν ν θ

−

+∞ ⎡ ⎤= −⎣ ⎦

⎧ ⎫
⎪ ⎪

× ⎨ ⎬
⎪ ⎪− − − − Γ
⎩ ⎭

∫ ∫

∫

�
�

       (VIII.1.5) 

and gives after integration over φ and θ : 
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( )
( )

3

22
sdVoigt 0

if
if

if 0

v
( ) 2  v  exp v v   dv

π

               Im ln Δ(v)  v cos( ) i (v)   
v 

 
I

c
c

π

π
ν π

νν ν θ
ν

−

+∞ ⎡ ⎤= −⎣ ⎦

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞× − − − − Γ⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

∫
�

�
       (VIII.1.6) 

( )
( )

3

22
sdVoigt 0

if

if if
if if

v 
( )  2  v  exp v v  dv

v π

      Im ln Δ(v)  v i (v) ln Δ(v)  i (v)   

cI

c c

π
ν π

ν

ν νν ν ν ν

−

+∞ ⎡ ⎤= −⎣ ⎦

⎧ ⎫⎛ ⎞ ⎛ ⎞× − − + − Γ − − − − − Γ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

∫
�

�
      (VIII.1.7) 

Remarking the equivalence: 

( )

( )

22 if
if0

0 22 if
if

 v  exp v v  dv ln Δ(v)  i (v)

   v  exp v v  dv ln Δ(v)  i (v)

c

c

νν ν

νν ν

+∞

−∞

⎛ ⎞⎡ ⎤− − − − − − Γ =⎜ ⎟⎣ ⎦ ⎝ ⎠
⎛ ⎞⎡ ⎤− − − + − Γ⎜ ⎟⎣ ⎦ ⎝ ⎠

∫

∫

�

�
         (VIII.1.8) 

and after simplifications of the equation (VIII.1.7) we obtain: 

( ) ( )
3 2

sdVoigt
if

if
if

( ) 2 v   v exp v v  
 

            Im ln Δ(v)  v i (v)   dv 

cI

c

ν π
ν

νν ν

− +∞

−∞
⎡ ⎤= −⎣ ⎦

⎧ ⎫⎛ ⎞× − − + − Γ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∫� �
         (VIII.1.9) 

After integrating per partes of the equation (VIII.1.9) we obtain: 

( )
2 ifv

3
2 v

sdVoigt
ifif

if

 Δ (v) i (v)
( ) v v    Im   dv 

 Δ(v)  v i (v)

c cI e

c

ν

ν π νν ν ν

⎛ ⎞−− +∞ ⎜ ⎟
⎝ ⎠

−∞

⎧ ⎫′ ′− − Γ⎪ ⎪
= ⎨ ⎬

⎪ ⎪− − + − Γ
⎩ ⎭

∫ �� �      (VIII.1.10) 

Performing of a change of variables v v t→ �  and introduction of  if
D v

c
νν = �  leads then to: 

( )3/2 2
sdVoigt

D

1 1 ( )( )    exp   Im   d  
  ( )

z tI t t
x t z t

ν π
ν

+∞−

−∞

′⎧ ⎫−
= − ⎨ ⎬+ −⎩ ⎭

∫       (VIII.1.11) 
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if

D

D D

D D

 

Δ (v ) (v )( ) i

Δ(v ) (v )( ) i

x

t tz t

t tz t

ν ν
ν

ν ν

ν ν

−
=

′ ′Γ′ = +

Γ
= +

� �

� �

           (VIII.1.12) 

Remark: if speed dependence neglected, ieΔ (v ) (v ) 0t t′ ′= Γ =� � , we reduce equation (VIII.1.11) 

to a Voigt profile formula: 

( )
3/2

2 if
Voigt

D D D

1 ( )    exp   Im   d  , ,
  y

I t t x y
x t i

ν νπν
ν ν ν

− +∞

−∞

⎧ ⎫ − Γ
= − = =⎨ ⎬+ −⎩ ⎭

∫      (VIII.1.13) 
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VIII.2  Appendix 2: Derivation of Speed dependent Rautian profile 
formula 

 

In order to get the speed dependent Rautian profile that has the form: 

3MB

sdRaut
H 3MB
VC

( )d
1 ( , )( ) Im

( )d
( , )

fi
AI

fi
A

νν
π ν

ν

⎧ ⎫
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪−
⎪ ⎪⎩ ⎭

∫∫∫

∫∫∫

v v
v

v v
v

G G
G

G G
G

,                (IV.39) 

where H
if VC( , ) (v) ( (v) )A iν ν ν ν= − − −Δ − Γ +v k.v
GG G , 

we start from the general normalized absorption profile valid for isolated line when Dicke 

effect, Doppler effect as well as the dependence of collisional line-broadening and line-

shifting parameters on speed of the molecule v are considered (see Eq. IV.4-5), counting here 

with real part of  the complex spectral density { } { }ZReiZIm = :   

( ){ }0

1( )  Re  exp i  ( ) d
 

I t C t tν ν
π

+∞
= ∫ ,           (VIII.2.1) 

where ( )C t  is matrix element of the dipolar autocorrelation function, that can be detailed as: 

3
MB( ) ( , ) d ,   ( , 0) ( )C t C t C t f= = =∫∫∫ v v v vG G G G           (VIII.2.2) 

Differential equation for ( , )C tvG  gives: 

( )if

3

3

d ( , ) i .   (v) (v) ( , )
dt
                 ( ) ( , ) d

                 ( ) ( , ) d

C t C t

f C t

f C t

ν⎡ ⎤= + + Δ − Γ⎣ ⎦

′ ′− →

′ ′ ′+ →

∫∫∫
∫∫∫

v k v v

v v v v

v v v v

GG G G

G G G G

G G G G
,          (VIII.2.3) 

where ( )f ′ →v vG G  is frequency of velocity change ′ →v vG G due to collisions. 

Hard collision model sets: 

H
MB VC( ) ( ) f f ν′ → =v v vG G G              (VIII.2.4) 

Using 

l ( )( , ) exp i ( , ) dC t C t tν ν= ∫v vG G ,            (VIII.2.5) 

we get: 



 124

l ( ) l

l l
MB if

H H 3
VC VC MB

i ν ( , )  ( ) i .   (v) (v) ( , )

                  ( , )   ( )  ( , ) d

C f C

C f C

ν ν ν

ν ν ν ν

⎡ ⎤− = + + Δ − Γ⎣ ⎦

′ ′− + ∫∫∫

v v k v v

v v v v

GG G G G

G G G G          (VIII.2.6) 

If we put H
if VC( , ) .   (v) i (v) iA ν ν ν ν= − − − Δ − Γ −v k v
GG G ,         (VIII.2.7) 

then we can write also: 

l lH 3
M VC MB( ) i ( , ) ( , )   ( )  ( , ) df A C f Cν ν ν ν′ ′− = − + ∫∫∫v v v v v vG G G G G G ,         (VIII.2.8) 

which leads to: 

l l
H

3VC MBMB  ( )( )( , )  ( , ) d
i ( , ) i ( , )

ffC C
A A

νν ν
ν ν

′ ′= + ∫∫∫
vvv v v

v v

GGG G G
G G           (VIII.2.9) 

After integration over velocities and realizing that: 

l 3(v ,ν) d v  ( ν)C I′ ′ =∫∫∫
G G ,           (VIII.2.10) 

we obtain finally: 

3MB

sdRaut
H 3MB
VC

( ) d
1 i ( , )( ) Re  ( ) 1  d

i ( , )

f
AI f

A

νν
π ν

ν

⎧ ⎫
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪−
⎪ ⎪⎩ ⎭

∫∫∫

∫∫∫

v v
v

v v
v

G G
G

G G
G

        (VIII.2.11) 

The equation (VIII.2.11) can be transformed using equality { } { }ZReiZIm =  to: 

3 3MB MB

sdRaut
H 3 H 3M MB
VC VC

3MB

H M
VC

( ) ( )d d
1 1i ( , ) ( , )( ) Im  = Im( ) (( )  1  d 1  d

i ( , ) ( , )
( ) d

1 ( , )Im ( )  
( ,

f f
A AI i f f

A iA
fi
A

fi
A

ν νν
π πν ν

ν ν

ν
π ν

ν

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪= ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪− −
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

=
−

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

∫∫∫

v vv v
v v

v vv v
v v

v v
v

v
v

G GG G
G G

G GG G
G G

G G
G

G
G 3d

)

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

∫∫∫ vG
    (VIII.2.12) 

Note that if we neglect the Rautian narrowing parameter H
VCν , the speed dependent Rautian 

profile converge to speed dependent Voigt profile: 

H 3M
VC sdRaut sdVoigt

( )if 0,  then   I ( ) Im d  ( )
A( ,ν)
f Iν ν ν

⎧ ⎫
= = =⎨ ⎬

⎩ ⎭
∫∫∫

v v
v

G G
G       (VIII.2.13) 

 

 


