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Atmospheric phenomena are of main importance to understand earth’s general
behavior such as the rapid climate change, which has received particular attention
over the world. Consequently more investigations have being carried out. Over
the last few decades, the use of satellites enables us to gather huge amounts of in-
formation over large geographic areas. Meanwhile development of new technology
now allows more detailed investigations. Resolution, robustness and time acqui-
sition rates of various prediction tools benefit constant improvement. Among the
existing predictive techniques, remote sensing is becoming a major contributor not
only for analyzing and understanding the phenomena, but also for help making
political decisions to prevent human activities that increase the risk of natural dis-
asters. However, physical phenomena themselves are not yet well understood nor
fully measured. Different scientific communities around the world are currently
working towards a better understanding of the underlying physics. The complexity
of correlation pattern between different parameters leaves many rooms for further
investigation and improvement.

1.1 Context

Atmospheric flows are known to be highly turbulent. Transportation of particles,
aerosols and clouds is thus strongly depending on turbulence, which cannot be simply
neglected for predictions. As an example, during the Iceland volcano eruption in
spring 2010, dust and hash clouds were transported throughout the atmosphere
by turbulent currents. The difference between reality and predictions clearly show
that the latest atmospheric model simulations are still far from describing the exact
physical phenomenon. Because of these uncertainties (mainly due to turbulence),
governments are unable to know with sufficient precision where the particle clouds
are going to pass. They have to make preventive decisions by closing airports, even
far away from the real path of the clouds.
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Turbulent motion fields exist not only in atmosphere. There are also present, in
many other domains, as for example in aeronautics, hydraulics, nuclear and chem-
ical engineering, environmental sciences, oceanography, astrophysics or even the
human body inner flows. Understanding the physics of turbulence constitutes itself
a challenging field of research.

It is well know that turbulent motions present a wide range of different time and
space depending scales. Ideally, it is necessary to take the smallest scale interactions
into account over extremely large domains and with a very small time frequency
sampling. However, when performing calculations over large periods of time in
practical situations, it is realistically impossible to compute the numerical solution
with current calculation capabilities. Until now, modeling of turbulence is the only
suitable solution for global prediction. This modeling needs often to be validated
by experimental studies from which the velocity field determination at each time ¢
is of main importance for the natural phenomena understanding and for validation
of their simulations.

In practical applications, velocity field can be obtained by numerous techniques
(Tachometer, Anemometer, Laser Doppler Anemometry, Hot wire, Particle Image
Velocimetry, atmospheric balloon tracking...). Depending on the application, they
can be more or less adapted to the situation either because of their size or their
price. For details on velocity measurement techniques please refer to [149]. From
all these techniques, Cross-Correlation PIV (CC) has a huge advantage to extract
instantaneous velocity field for a large spatial 2D area. For In-Situ experiments
or data collection as to describe atmospheric and oceanic currents geostationary
satellite time sequences can be used. Efficiency and robustness of the estimated
velocity field from these time image sequences, is then a key point of validation of
turbulent models when applied to solve real situation where turbulence is involved.

Resuming to the context of the present thesis, we are working with natural
fluid phenomena that are frequently highly turbulent. Turbulent motion is one of
the most important information. It is necessary for understanding their behavior
over the time. Regarding the existing prediction tools, image processing seems to
be the most suitable and promising technique to estimate the velocity field due to
the fast technology improvement. The main objective of this thesis is to further
investigate the computer vision technique. The validation of estimations accounting
for turbulence relies on further comparisons with reference data that can either
be obtained from laboratory experiments or from direct Navier-Stokes equation
simulations. It will also be the purpose of this work.

1.2 Motivation and Objectives

Many works have been done on motion estimation since last 30 years. The Op-
tical Flow (OF) describes the apparent velocity field observed from a time image
sequence. It exists two principal OF techniques: Cross-correlation (CC) and Dif-
ferential Optical Flow (DOF) approaches. These methods deal with rigid and de-



1.2. Motivation and Objectives 3

formable motions, elastic motions, or fluid motions. Since the 21 century, more
efficient approaches have been proposed. However, despite the incredible amount
work done over the years, fluid motion in a turbulent environment has still not been
considered. Thus, motion estimation of turbulent flow cannot exclusively rely on
traditional computer vision techniques. The motion of studied physical quantities
is directly linked to the observed quantity, which obeys physical rules defined by
known physical properties.

This thesis focuses on motion estimation of scalar transported by a turbulent
flow given two-successive in time images. Most of the existing techniques fail to
accurately estimate the turbulence. The objective of our work is to propose and
validate an original approach that is based on a physical formulation, in the case of
scalar transported by turbulent flow.

The evolution of scalar field does not satisfy the brightness constancy hypothe-
sis in time made by classical motion estimation approaches as CC and DOF ones.
The scalar concentration evolution is exactly defined by the concentration trans-
port equation with molecular diffusion [160]|. However the discretized information
imposed by the image recording brings us to consider the fact that the input image
sequence has some missing information. This lack of information may not be negli-
gible when the turbulence is high. Referring to the concept of large eddy simulation
(LES) of turbulence [139], the resolved information, given by image pixel values, can
be seen as related to resolved large-scales eddies. The lack of information could be
assimilated as sub-pixel or sub-grid information, i.e., unsolved small-scales of tur-
bulence. Small-scales of the flow cannot be directly extracted from the data while
its effects on resolved velocity field are important in highly turbulent flows. They
must be modeled in the motion equation. After the filtering - in the LES sense - of
the exact concentration equation at a given spatial scale corresponding to the size of
pixel, the unsolved small scales appear in the equation as an explicit sub-grid term.
This term is usually modeled using a turbulent sub-grid eddy viscosity concept [153]
because its main physical property is turbulent diffusion.

Given a time image sequence, the estimation of the velocity field from the filtered
concentration transport equation with diffusion is an ill-posed problem. Probabilis-
tic approaches based on a graph, as Markov Random Fields (MRF), are very con-
venient to define a formulation of a specific problem in image processing. We add a
global constraint to mathematically well pose the problem [98]. The constraint is a
spatial regularization constraining the spatial distribution of the adjacent turbulent
velocity field by a first order derivative function. The choice of this regularization
function is familiar in the motion estimation algorithms. Advantage of MRF frame-
work is that it generally allows to use a wider range of functional, while ensuring
to find a global (exact or approximated) solution, without being limited to convex
functions [168] unlike other popular approaches as variational methods. However,
optimization methods for MRF framework are generally defined for finite dicretized
random field. In our case, the unknown velocity field is a 2D real velocity field. We
propose a complete optimization scheme coupling multiresolution without warping
and multigrid technique with an adapted minimization method to find the optimal
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solution within a correct computational cost.

To the best of our knowledge, such a way of incorporating turbulence models
into the filtered transport equation for motion estimation from time image sequence
has never been investigated before. Our work shows that the sub-grid scale model
in the filtered concentration equation, improves motion estimation. It opens an
interesting new field of research which may lead to a better understanding of passive
scalar spread by turbulent flows. This thesis is a multi-disciplinary work from which
the aim is to converge knowledge and techniques from fluid mechanic (turbulence)
and computer vision (image processing) scientific communities.

1.3 Overview of the thesis

The first part of the thesis proposes an efficient Differential Optical Flow (DOF)
approach working on motion equation, large displacement estimation technique and
minimization methods [125, 33, 34, 32, 38|]. The second part will focus on a physical
formulation of the motion equation and on improvements on the DOF approach due
to the turbulent viscosity term. This will be studied in the case of scalar transported
by turbulent flows [35, 36, 37].

In the second chapter, necessary background requirement on fluid mechanics
and turbulence are given. We recall physical equations and present the concept of
turbulence and its consequence on the velocity field. We then describe different
possibilities in turbulence modeling.

The following chapter describes the motion estimation technique from time image
sequence (section 3.1). We only detail the DOF methods to retrieve the flow motion.
Description of DOF methods is presented for ordinary motion applications (section
3.2). We will pay special attention to DOF methods defined for fluid motion estima-
tion (section 3.3). For comparison, appendix A describes the Cross-Correlation PIV
(CC) technique used to determine velocity field from PIV acquisition in laboratory
experiments.

In fourth chapter, we propose an efficient DOF approach. For taking into ac-
count more spatial information, motion equation based on the two successive image
gradients is defined (section 4.1). To tackle the limitation of DOF equations for
large displacements, we propose an unwarping multiresolution by pyramidal de-
composition (section 4.2) for which assumption on gradients is made to reduce the
number of transformations during the process. We also compare and suggest some
improvements of optimization methods (appendixes C and E) for MRF formulation.
Results on different type of motions are compared with other existing DOF and CC
methods (sections 4.5 and 4.6).

In the fifth chapter, we now treat the problem of scalar transported by turbulent
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flow. Based on the proposed algorithm of chapter 4, we suggest a new motion esti-
mation method which takes into account the unresolved scale effect (sub-pixel) on
the resolved velocity (pixel resolution) for high turbulent flows for which this effect
is, in this case, not negligible and affect the dynamic of the flow. Thus, we use the
filtered concentration transport equation with molecular diffusion where the small
scale interactions are modeled by a classic turbulent sub-grid eddy viscosity model
(section 5.2). Results of application on synthetic and real-time sequences of scalar
transport (section 5.3) and solid particles seeding in turbulent flow (section 5.4), are
very encouraging and promising. In the last section 5.5, we apply our model to at-
mospheric events such as dust storms. Remote sensing from geostationary satellite
image sequences allows us to estimate the dust cloud motion from our method. A
homogeneous invariant brightness method is added to the model to deal with the
day light variations.

Conclusions and future directions are presented in chapter 6.
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This chapter gives an introduction of fluids and turbulence. Two descriptions,
Lagrangian and Eulerian, can be used to describe the movement of fluid. Funda-
mental fluid equations such as Continuity, Scalar transport with molecular diffusion
and Navier-Stokes equations are presented. For more information on fluid dynam-
ics, we can refer to [15]. An introduction on turbulence is given and different main
approaches used to solve numerically the Navier-Stokes equations are aborded in
order to demonstrate the difficulty of the turbulence accounting. More details on
turbulence and numerical models can be found in [103, 124].

2.1 Movement Representation

2.1.1 Particle and mathematical points

Fluids (gases and liquids) can be viewed at different scales. At molecular scale
(Linicro = 1072%m) they are in permanent movement, chocking each others. De-
scription of the motion behavior at this scale is given by Brownian motion. For
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A molecule

Molecule velocity
A Particle
(Elementary volume)
Macroscopic scale Mesoscopic scale Microscopic scale

Figure 2.1: Illustration of different scales and representation of a particle.(photo
from http: //www. astrographics. com/ GalleryPrints/Display/ GP4{293. jpg)

fluid mechanics description, fluid is observed at scale Lyqero > 107%m |, higher than
the molecular free path A determined by the Knudsen number Kn = L/A > 1.
Physical quantities (density, velocity, pressure...) at scales Lyqero can be considered
continuous in space and time. Elementary volume domain of the smallest scale is
called particle or material point P. It has a closed surface of elementary volume dv
of density p. Figure 2.1 illustrates the different scales representations for an example
of smoke evolving in a flow.

A particle has a defined spatial position X, (¢o) = (0, %0, 20) at time ty and its
position X, (¢) varies at each time ¢. In the above example figure 2.1, an interesting
goal would be to study the smoke motion. To study this evolution we need to
consider the time and space dimensions. Two principal movement descriptions,
Lagrangian and Eulerian, could be developed.

2.1.2 Lagrangian / Eulerian descriptions

We can follow the behavior of the particles over the time (Lagrangian) or stay at a
fixed position to see different particles going through the position (Eulerian). Figure
2.2 represents the two motion descriptions for two successive times t and ¢ + dt.

Lagrangian description: In the Lagrangian description, the observer follows the
position and physical properties of the particle P that moves depending on time ¢.
In figure 2.2, the observer look the particle P; at position Xp, (¢) at time ¢ and goes
to the position Xp, (t+dt) at time t+dt. Positions and deformations of the particle
take into account all the history from the initial state at (xg,yo, z0) and time tg.
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Figure 2.2: Difference between Lagrangian and Fulerian descriptions.

The position X,(¢) at time ¢ is given by:

x = f(xo, Yo, 20,1)
Xp(t) =19 v=9(z0,Y0, 20, ) (2.1)
= h(x(],y(),Z(),t)

where f, g, h are three continuous functions. Lagrangian description may be inter-
esting for studying the behavior evolution of particles over the time as for example
the evolution of smoke propagation or dust cloud displacement in the atmosphere
during a dust storm event. However, identification of each particle and their tracking
can be very difficult.

Eulerian description: In the Eulerian description, the observer stays at a fixed
position and describes the evolution of the flow. He does not follow a particle over
time axis, but observes the evolution of quantities going through a fixed position
X = (z,y, z) (mathematical point) at each time. In figure 2.2, for point X at time
t, the Eulerian description observes physical quantities of particle P;(¢). At time
t + dt, he will observe physical quantities of particle P(t + dt). For example, one
common used physical quantity in Eulerian description is the velocity field V defined
by its components (U, V, W) as:

U(z,y,z,1t)
VX, 1) = | Viw,y.z1) (2:2)

W(z,y,z,t)
V(X, t) is the velocity at fixed point X for ¢ fixed. This description is often used in
fluid mechanics where kinematic properties of the flow are of greater interest than
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the shape of a part of the fluid at a reference time ¢. It is also more convenient
in a mathematical point of view, because the spatial domain is fixed. Moreover, in
the case of computer vision, Eulerian description fits directly from the image pixel
representation. In this thesis, we use this description to describe the motion of the
fluid.

Note that we will use x = (z,y) to represent the point X = (x,y, z) on the 2D
image. At fixed £, X = Xp for the particle Xp located at the point X.

2.1.3 Total Derivative

The Eulerian description defines at each time t the value of a physical quantity ¢
related to a fixed position of the flow. The variation of this quantity over the time is
described by a partial derivative, also called Eulerian derivative. Relation between
total derivative and partial derivative of the quantity ¢ is as follow:

©(X,p(t),t) depends on time ¢ and its position X,(t) = (z,y,2). During an
interval of time dt, the particle X,(t) = X at time ¢ has moved to the position
X, (t+dt) by a displacement Vdt from its old position (Xp(t+dt) =X, (1) + Vit =
X + Vdt).
Variation of the quantity ¢ is:

dp = o(x+ Udt,y + Vdt,z + Wdt,t + dt) — p(x,y, 2, 1) (2.3)

First order Taylor expansion gives:

¢ ¢ d¢ ¢
d —dt+Udt— +Vdt— + Wdt— 2.4
P et Yty Vg vty (24)
Dividing by dt, we have the total derivative usually written as D/Dt:
Dp _d¢  Op dp dp
— 2.
DE ot +U—— p + V= By + W= ER (2.5)
In vector notation: D 5
(p (p i
— = +V.Vp 2.6
Dt ot (26)

The total derivative is made of two parts:

e Op/0t is the local rate of change of ¢ at a given point representing the unsteady
behavior of the flow.

° V.ﬁg@: is called the convective derivative due to the displacement of the parti-
cle, because it is the change, in ¢, as a result of convection of the particle from
one position to another where the values of ¢ are different. This convective
term is generally non-linear.

The total derivative can be applied to any scalar or vectorial quantities character-
izing a fluid particle like density p, scalar concentration C, pressure p or velocity
V.

We will see in section 3.2 that the total derivative is the base of the differential
optical flow equation proposed by Horn and Schunck in 1981 [77]| and improved by
others.
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2.2 Fundamental Equations

All fluid mechanics is based on conservation laws as for mass, momentum, and
energy. These laws can be stated in the differential form, applicable at a point
(Eulerian description). Conservation laws in Lagrangian description exist, but in our
case of study, they are not adapted to the image recordings used for this work. For
that, Eulerian forms are more convenient. We present here the continuity equation,
the advection-diffusion equation and Navier-Stokes equations.

2.2.1 Continuity Equation

In fluid dynamics, continuity equation is based on the process that variation of
quantity in an infinitesimal volume is equal to the quantity of flow going through
the volume surface.

D(t) is a material volume domain and S(t) its surface at time ¢t. The density by
unity of volume dv is p(X, ).

The total mass of D(t) is: m = fD(t) p(X,t)dv. Hypothesis of mass conservation

gives the equality:
dm d

Using the Reynolds transport theorem (see [132] for demonstration), we can
express the time derivative of a volume integration.
d Jdp(X,t -
L X, t)dv :/ 9 Xt) 4 +/ (X, OV (X, t).7ids  (2.8)
dt Jp) by Ot S(t)
The first term represents the unsteady behavior of ¢(X,t) and the second term
the movement of the surface S(t) (7 is the normal to S(¢)). ¢(X,t) is a physical
quantity that is here the density p(X,t).
The mass conservation equation is then:

X,t -
/ L’)dv +/ p(X, )V (X, t).7ids = 0 (2.9)
o) Ot S(t)
Using the divergence theorem: [q p(X, OV (X, t).itds = I V.(p(X,t)V(X, t))dv.
We obtain:

KD s o T
»/D(t)[ ot +V'(f’(X7t>V(X7t))}d 0 (2.10)

Because this integral is null for all volume domain D(t), that implies the expres-
sion to be null for each particle (point) of the domain. The continuity equation is

finally:

op(X,t - -

p(ﬁt’) + V.(p(X, )V (X,t)) =0 (2.11)
This equation can be rewritten as:

Dp(X,t -

DoXot) | X 9.7 (X,t) = 0 (2.12)

Dt
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In the case of an incompressible fluid, the density of a fluid particle is constant
over the time Dp/Dt = 0. Thus, the continuity equation of incompressible fluid is
simplified and becomes for each time t¢:

V.V (X, t) =0 (2.13)

We will see in section 3.3 that the continuity equation considering a compressible
fluid has been linked to optical flow estimation at the beginning of the 21%¢ century
in works of [16], [47] or [191]. In our work, we consider the fluid as incompressible,
which is a correct hypothesis in the case of aerosols in the atmosphere.

2.2.2 Convection Diffusion Equation

Convection diffusion equation, also called scalar transport equation with molecular
diffusion, can be retrieved as for the continuity equation adding the fact that the
scalar quantity of the fluid can diffuse (Fick’s first law). The rate of change for a
scalar quantity C of a fluid particle is given by flow and diffusion into and out of its
elementary domain along without any generation or consumption inside:

oC (X, t)

V.J = 2.14
o V=0 (2.14)

Where J is the total flux. The total flux is the summation of the convective scalar
flux CV and the diffusive scalar flux. The diffusive flux is obtained by the Fick’s
first law which assumes that the flux of the diffusing material in any part of the
global system is proportional to the local gradient of C.

J=CV - DVC (2.15)

where D is the molecular diffusion coefficient (unity m?/s).
The convection diffusion equation can be written as:

aC (X, 1)

ety V.(CV) = DV?*C =0 (2.16)

For incompressible fluid, the convection diffusion equation becomes:

W +V.VC - DV*C =0 (2.17)

The scalar transport equation allows to describe the time behavior of scalar
quantity considering the molecular diffusion effects. In 1996, Su and Dahm [160, 161|
proposed to use this equation for estimating the motion and concentration field of
the scalar in a laboratory channel flow. In our work, we want to estimate the motion
of scalar carried by a turbulent fluid. This equation will be the basis of our approach.
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2.2.3 Navier-Stokes Equations

Navier-Stokes equations arise from applying Newton’s second law to fluid motion

—

(mEB¥ =" f) for a fluid particle.

=L =V.i+pf (2.18)

where p is the density of the fluid, DV/ Dt the acceleration of the fluid particle, f
are the volume forces applying to the density of the fluid particles (for example the
gravity). & is the constraint tensor (fluid stress) that represents forces on the fluid
particle surface. For incompressible Newtonian fluid, the constraint tensor can be
expressed by: . .

&= —pl +2uD (2.19)

where p is the pressure that pushes with a force normal to the surface. ul_j is the
viscosity constraint that represents the force on the surface of the particle that tends
to stretch it due to viscosity p (kg.m~1.s7!) of fluid particles between each other.

Naturally, this force is related to the tensor 5, which is the deformation tensor
depending on local velocity gradients.

v, oV
Dy = ( o a:cj> (2.20)

with Zv] = (17 27 3)a (:L‘la €2, '1:3) = (l’, Y, 2) and (Vh VYQa VE’)) = (Ua VYa W) Slmphfylng
the Navier-Stokes equations for an incompressible Newtonian fluid, we obtain:

1 /A—— 1= L
o TVVV = —;Vp+VV2V+f (2.21)

v = u/p the kinematic viscosity (m?.s71).

The Navier-Stokes equations give an exact description of the evolution of the fluid
depending on its initial conditions and fluid properties (p, pt). They are the basis of
the fluid dynamics. There are only three equations for four unknown (U, V, W and p).
It is often added the mass conservation equation in the case of incompressible fluid.
Defining the initial conditions, the problem is closed and can be computed. However,
due to non linearity of the equation system, principally due to the convection terms,
the numerical resolution is very complex. Only scarce flow can be directly computed
nowadays because of computer limitations.

The Navier-Stokes equations need a local time sequence of the flow field. In the
case of optical flow, it is hardly usable, but recent approaches (2007) proposed to use
this as regularization to constrain the flow to have a time fluid coherence [138, 74].

2.2.4 Dimensionless Equations

All the presented fluid equations have dimensional parameters. In fluid dynamics,
it is better to transform the equations in a non dimensional form.
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To reduce the equations to dimensionless parameters, we define a characteristic
scale for each quantity. In the mass, scalar transport with molecular diffusion and
Navier-Stokes equations, these scales are T, L. and U,.. Thus:

Lt
=V =t (2.22)

2 X
Te

X v
L. U.

are dimensionless. Doing the variable changes in the equations (2.12), (2.17) and
(2.21), we obtain respectively, the mass, scalar transport with molecular diffusion
and Navier-Stokes non-dimensional equations:

dp

V* Vi = 2.2
otV Vp=0 (2.23a)
oC -, = 1 .
VO - ——V*C = 2.23b
o VIO - VO =0 (2.23b)
ovr L L . .
o TV = —V*p* + Re V" (2.23¢)

where the dimensionless parameters are Re = U.L./v and Sc = v/D. They are
respectively the Reynolds number that characterizes the rate of turbulence of the
flow and the Schmidt number that represents the diffusivity of the fluid. Note that
here; we considered a fluid without volume forces. For an easier readability, we
omitted symbol * in the rest of the paper.

In this work, we are focused on turbulent flow. That means high Reynolds
number (Re >> 1). In turbulent flow, convective terms are dominant.

2.3 Turbulence

Most of the flows encountered in engineering practice and in nature are turbu-
lent. Atmospheric flows, oceanic currents are turbulent. Many other examples of
turbulent flows arise in aeronautics, hydraulics, nuclear and chemical engineering,
environmental sciences, oceanography, astrophysics... More details on turbulence
theory and its applications can be found in [103, 124].

Turbulence remains a huge challenge in the science community nowadays, be-
cause its understanding will help us to predict hurricanes, global climate changes,
pollution dispersion, energy consumption optimization...

An historical description of turbulence can be found in [114].

2.3.1 Physical Point of View

A good way to survey the turbulence world is through flow motion hand book [56]
that shows pictures of different turbulent flows in its variety of application. Another
way is to characterize certain number of observable physical properties (more details
can be found in [96, 61]). We enumerate here some characteristics of turbulence flows
transporting a scalar:
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e Dispersion: Turbulent flows can mix transported quantities much faster than
if only molecular diffusion is involved. For example, to heat a room, it is
better to spread hot air by turbulent jet whereas using hot wires. In this way
diffusion of temperature over all the room will be faster due to the high rate
of turbulent dispersion. In engineering, efficiency and rapidity of diffusion in
an environment may be very important (fuel in engine, heat diffusion ...).

e Random behavior: Physical variables of the flow (velocity and pressure) vary
randomly in time and space under turbulence. It is possible to make a statis-
tical description of the turbulent flow solving, for example, average transport
equation of velocity and pressure.

e Continuum phenomena in space and time: The smallest scales that appear in
a turbulence flow will always be much larger than molecular length scales. In
this way, continuum properties can still be applied to turbulent flow quantities.

2.4 Numerical Approaches to Turbulence

From previous sections, we have seen that physical approach does not give nowadays
a complete answer of the understanding of turbulence. However, as we already said,
most of the flows in the nature and in industrial domains are frequently turbulent.
Lot of phenomena as heat or scalar transfers are related to the movement of the fluid.
Their study needs some knowledge and computation of flow under consideration.
In this way, in engineering and research, numerical simulation of turbulent flows
is very important for practical applications (industrial, environmental, medicine...).
Numerical simulation emerges as an essential approach in tackling turbulence. Even
though, numerical simulation still remains a hard topic and an exciting research
domain.

The quality of given information from numerical simulation depends on the level
of chosen resolutions to obtain the best possible precision, the simulation have to
consider all spatial and time scales that contribute to the dynamic of the flow.

Numerical simulation, direct or using statistic models, took place in the begin-
ning 60’s. This evolution is directly related to the improvement of computers. In
the 70’s, big computers allowed to simulate without statistical models (direct simu-
lation), movement of homogeneous isotropic turbulence for small Reynolds number.

In the next section, we present some methods involved in numerical simulation of
turbulent flows: Direct Numerical Simulation (DNS) [182] and two statistical mod-
eling way of turbulence: Reynolds Average Navier-Stokes (RANS) [90] and Large
Eddy Simulation (LES) [139].

2.4.1 Direct Numerical Simulation (DNS)

In the Navier-Stokes equations, the fluid is treated as continuum compared to molec-
ular scale. According to this point of view, the most natural idea is to find the
turbulent solutions of Navier-Stokes equations by resolving directly the equations.
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That means to compute all scales of the flow that compose the turbulent kinetic en-
ergy spectrum (from energetic scales to dissipative scales) [87]. The benefit of DNS
is to obtain in detail all information of the turbulence. This allows to understand
the dynamic of the turbulence and to evaluate lot of quantities that are unreachable
experimentally.

To numerically represent the totality of these spatial and time scales, it is nec-
essary for the discretization to be fine enough. That means, the discretization step
in space (Az, Ay, Az) and time (At) of the simulation are respectively smaller than
the characteristic length scales and characteristic time scale related to the smallest
active ones of the exact solution.

From Kolmogorov cascade theory [87], we can show that the ratio between scales
of largest eddies and Kolmogorov scale (scale that characterizes the smallest non

3/4

laminar scales) is proportional to Re It implies that to get all scales which

appear in turbulent flow, we have to use a grid mesh with a number of points in

3/4 6/4

each direction of space proportional to Re®/*. That makes an order of Re®/* mesh

9/4 mesh points for a tridimentional domain.

points for a bidimentional grid or Re
To give an idea of the Reynolds number amplitude, here are some examples in the

air (v &~ 15.107%m?2.s71):
e Cars (U, ~3m.s7 !, L.~ 1m): Re ~ 10°
e Airplane wings (U, ~ 30m.s~!, L. ~ 5m): Re ~ 108
e Atmospheric flows (U, ~ 10m.s™!, L. ~ 1km): Re =~ 10'°

In so, for cars Re ~ 10, the number of mesh points would be in 2D: N = Ref/4 =
10 and in 3D: N = 10", Nowadays, DNS with such number of mesh points is
not able due to insufficient computational resources. Looking for the computational
cost this type of simulation can be used only for relative simple flows with a limited
Reynolds number.

DNS is an exact way to simulate turbulent flows, but it is unable to simulate
high Reynolds number turbulent flow because of computer capability. Most of the
existing methods in numerical simulation of high Reynolds number flow are based
on the insight gained from the phenomenological description of turbulence. These
methods model turbulent fluctuations, from Reynolds or Favre decomposition [57]
point of view, and can compute the most interesting statistical quantities. However,
DNS can be useful to validate these models of turbulence for simple well-known
cases.

2.4.2 Reynolds Average Navier-Stokes (RANS)

One of the most important characteristic of turbulent flows is its random character.
It seems, then, not able to describe the turbulent motion in all details as a function
of time and space coordinates, but it is able to define average values of flow variables
(velocity, pressure, scalar concentration) [90].
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Reynolds proposed in 1895 [131] a statistical approach. He proposed to separate
instantaneous velocity V' and pressure p variables into a mean (average) component,

V and P and a turbulent component (fluctuation), V' and p’ respectively:

—

V=V4V p=p+p (2.24)

Time average variables of the flow are defined as:

= 1 t+Tr _,
7(X,1) = / VX, 1,)db, (2.25a)
Tg
1 t+Tr
B(X, 1) = / p(X, t,)dt, (2.25D)
Tr

where T is a chosen time scale which is high enough compare to turbulent time
scale. In case of stationary, for large Tr, average variables do not depend on time
t, equation (2.25) gives:

= Tr _,
V(X) = / V(X,t,) (2.26a)

1 (Tr
(X) = — p(X, t,)dt, (2.26Db)

sl

When Tg — oo, we have the following properties (identical for all flow variables):

<ull
Il
<y

V=0 (2.27)

Doing time average of the Navier-Stokes equations (2.23c) and continuity equa-
tions (2.23a) using decomposition (2.24) and its properties (2.27), we obtained the
Reynolds equations for average quantities:

S—B‘ %L\
i)

LVVV = —Vp+ RV 4 4+ Vom (2.282)

<1\

V. (2.28D)
Where % =VV —V Vis called Reynolds stress tensor.

The Reynolds stress tensor is unknown variable. The system of Reynolds equa-
tion is not anymore a closed system. We could model 7R, to ensure the conservation
of fundamental characteristics of the Navier-Stokes equations. This is called one
point statistical modeling. Reynolds stress tensor is usually modeled in terms of the
average flow variables.
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2.4.3 Large Eddy Simulation (LES)

Large Eddy Simulation (LES) [139], in a similar way, use another decomposition of
the flow variables of turbulent flow. Large Eddy Simulation (LES) concept relies on
the use of a filter which removes numerically unsolvable small scales.

LES is based on the decomposition of instantaneous dynamic variable fields of
the flow in two parts corresponding to structures of different sizes. This method
separates large scales isolating them by filtering unresolved small scales. The fil-
tering can be done in spatial or spectral space. In the case of spatial space, flow
velocity variable is composed as:

V=Vt4+v- (2.29)

where VT is the resolved velocity (large scales) and V= is the unresolved velocity
of unresolved small scales. The filtered field representing resolved scales could be
defined by a convolution with a filter of bandwidth A around the point X:

VH(X,t) :/ V(X' ) WX - X) dX’ (2.30)
As

where W is the filter. In LES, there are usually three types of spatial filter (see [139]):
Top-hat, Gaussian or cutoff. The filters depend on the used numerical approach.

Filtering the Navier-Stokes equations using equation (2.30), we get the following
filtered equations:

vt L - - , oo
t = _VUpt + Re VAV + fT 4 v.?f (2.31a)

+
<
+
<
<
I

V.Vt =0 (2.31D)

We obtain an open system due to the unknown term %S; = (‘7‘7>+ — VTV which
is the constraint tensor called sub-grid scale tensor. To model the sub-grid scale
tensor, a concept such as turbulent viscosity is generally used. In chapter 5, we will
assimilate information given by images with resolved scales of the physical quantity
of LES. A simple subgrid scale model will be suggested to improve motion estimation
of scalar carried by turbulent flow from time image sequence. For more details on
LES sub-grid scale models refer to [139].

LES can be viewed as a hybrid approach between DNS and RANS. It consists
to do a complete simulation for resolved turbulent structures and a partial one,
modeling unresolved turbulent structure contribution.

2.5 Conclusions

This chapter gives a brief overview of the different points of view that can be adopted
to describe fluid motion. In this work, we will use Eulerian motion description
because equations governing the flow are well defined in this representation and
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because main parts of the laboratory observations are Eulerian. Fluid motion are
describes by equations which define evolutions of fluid particle over the time. At low
Reynolds number, flow is laminar. Solution can be computed. However when the
Reynolds number becomes high, flow regime changes and becomes turbulent. As
we saw in section 2.3, solution of fluid motion equations is difficult to reach. Many
modeling approaches exist allowing simulation of the flow evolution.

An important point, for understanding turbulent flows, is experiments. From
experiments, DNS or turbulence model simulation results could be validated by
comparison. Quality of the estimation of the velocity field is thus very important.
It is a key point for the validation of turbulent models when applied to solve real
situation where turbulence is involved.

Numerical simulations of turbulent flows also need initial conditions. For small
variations of initial conditions, solutions of these numerical simulations may diverge.
In case of atmospheric flows, a good estimation of cloud, dust or wind motions can
be set as initial condition to numerical simulation with the aim to get a better
prediction of their transport in the atmosphere.

The next chapter will give descriptions of principal motion estimation approaches
and state of the art algorithms in these fields.
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This chapter introduces the foundations and state-of-the-art of some motion
estimation techniques.

The first subsection is dedicated to Optical Flow (OF). Optical Flow describes
the pattern of apparent motion between two successive images.

The Optical Flow principle was first introduced and popularized by Horn and
Schunck [77], and Lucas and Kanade [101], in the early 1980s. Both works rely on a
single assumption, but each proposes a different numerical solution of the problem.
The technique has considerably evolved since its early age and still improves: math-
ematical statement (along with the underlying hypothesis) and numerical scheme
are made more efficient.

Two main branches of OF techniques are: the so-called Differential Optical Flow
(DOF) method — which will be presented in this chapter — and cross-correlation
(CC) approach — also coined Cross-correlation Particle Image Velocimetry tech-
nique —introduced in the appendix A.1.

Readers can refer to [130] and [14, 111, 11] for more details on CC and DOF
respectively.
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(a) (b)

Figure 3.1: 2 successive images Iy = 1(x,t) at timet (a) and Iy = I(x,t+At)
at time t + At (b).

OF relies on an assumption of intensity conservation from one frame to the other.
This assumption, valid for rigid motion, becomes unrealistic for the analysis of fluid
flow.

The second part of this chapter presents recent approaches dedicated to fluid flow
estimation from image sequences. Most of these techniques borrow concepts from
fluid mechanics. These physical concepts are incorporated into the image model as
new representation of the fluid flow. We will see that traditional DOF technique is
often reduced to a particular case of these approaches.

3.1 Motion Field

Let be I, an image recorded at a fixed time ¢t. The image is a set of fixed points
(pixels). These pixels can be viewed as a set of point of coordinates x corresponding
to the center of the mesh grid of the image of size A = (A,,A,) (for writing
simplicity A, = A, denoted also A). For a time image series, we have a set of
successive images recorded at different times (¢, t2 ...). Thus shows the same
observed scene at successive instants. Over the time, at x, for each image, values of
the image intensity I(x,t) evolved.

Let us consider two successive images I1 = I(x,t) and Iy = I(x,t + At), x €
Q= ([0, N] x [0, M]), representing the same observed scene at two different instants
t and t + At. The figure 3.1 shows images I; and Is. The square, on bottom left,
represents a set of pixels at a fixed position x, x € {5t C 2 in both images. We
can see that, pixel intensities from ¢ to t + At are different demonstrating that the
object inside is moving from a displacement d to determine.

The motion or velocity of the object which is at x at time ¢, is the Eulerian
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V1

3D motion field

Optical center

Figure 3.2: Illustration of apparent motion on the image plan.

vector velocity in pixel x corresponding to ¥(x,t) (¢ = (u,v)) which gives the
displacement d(x,t) (d = (d, dy)) for a time interval At and v(x,t) = d(x,t)/At.
In function of the studied object, intensity may vary for every point x € Q. In so
the motion or velocity fields correspond to the determination of ¥ for every x €
as U(x,t) = d(x,t)/At. The intensity I(x,t) for x € Q could correspond to solid
non-deformable object or temperature, particle or scalar concentration field. Here
¥ is the 2D apparent motion field of the 3D projected scene. In case of 3D motion,
¥ is the projection on the image plan of the real velocity V. The figure 3.2 shows

the difference between the 2D apparent velocity and real velocity.

Note that all equations, presented in the precedent chapter, are defined in 3D
space (X). They are also true in 2D space (x) for any kind of 2D flows for which
velocity in the z direction is null. In case of projected 2D representation of the
3D reality space, if the flow is not two dimensional, the described equations in this
chapter should be carefully projected from 3D to the 2D plan (for more details see
[100]). In our work, we made the assumption of a 2D turbulent flow.

For an optical center location very far from the observed scene, spatial coordi-
nates (z,y) for X and x could be considered equivalent. Variation of z is negligible
compare to the depth from the scene to optical center. For example, in zoomed
remote sensing images or in Particle Image Velocimetry acquisition using laser thin
sheet, we have: (0/0X), , < 0/0x for any (x,y) of the image.

We have now to work on the 2D image to express the apparent 2D motion field

-

d(x,t). To get this displacement, we consider the 2D material point (particle point)

-

from x,(t) = x at time ¢ to x,(t + At) = x + d(x,t) (section 2.1.1). x,(t) denotes

—

the position of particle P in the image. The distance d is given by x,(t+At) —x,(t).
The figure 3.3 represents the displacement d for 2 different material points P; and
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Trajectory of
particle P, ——————————— 3

Trajectdry of
particlg P,

-

Figure 3.3: Illustration of displacement d(t) from t to t+ At for 2 particles Py, and
Py and difference between velocity ¥(t) and instantaneous velocity u(t).

Py from time t to time ¢ + At. The velocity ¥ is defined as:

B 1) = xp(t + AAti — xp(t) _ d(Z,tt) (3.1)

This velocity ¢ is measured indirectly, as the displacement d of a material point P
in a finite time interval At.

However the velocity ¢ given by the displacement is different from the instanta-
neous velocity @ = x = limg_,odx/dt. In fact, the displacement field only provides
the average velocity along the trajectory over a time At.

. t+At
d(x,t) = /t @ (xp(t'),t") dt’ (3.2)

For a better understanding, on the figure 3.3, we draw the trajectory path of the
two material points P; and P,. The distance between material points from time ¢
to time t + At is represented by dashed line. The instantaneous velocity at time
t is given by the tangent vector of the trajectory path. Thus (x,(t),t) may be
different from ¥(x, t) obtained using J(x, t). This depends on the trajectory path of
the material point.

a(xp(t), 8) — 0(x, )| < e (3-3)
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Figure 3.4: Yosemite sequence: (a) image 09, (b) velocity field U representa-
tion from image 09 to 10

The observed velocity #(x,t) cannot lead to an exact representation of @(x,(t),t),
but approximates it with a finite error €. This associated error is often negligible,
provided that the spatial scale L. and time scale T of the flow are large with respect
to the spatial resolution A and time resolution At. In this work, this hypothesis
approximation is good enough most of the time. However, for high turbulent rate,
the spatial and time resolutions of our image sequence could be poor due to very
small characteristic scales of the flow. In so the observed velocity field is to poor
to represent the turbulent flow characteristics. Figure 3.4 shows an image of a time
image sequence and its corresponding exact velocity field from one image to the
next one. The sequence is the well known Yosemite sequence from computer vision
community [14] representing the Yosemite National Park from a flight view over the
mountain. In (a), we have the image 09 of the time sequence. In (b) the velocity field
is represented by vector arrows every 10 pixels that is a mesh size for visualization
clarity. But the velocity field is given for every pixel of the image.

Optical Flow estimations try to determine the velocity field using different tech-
niques. We detail, here, the Differential Optical Flow (DOF) technique. Another
technique called Cross-correlation PIV (CC) is widely used in fluid mechanic com-
munity. Later on, we will compare our methods with results from CC commercial
software. For description of CC technique, we refer to appendix A.1 [130, 149].

3.2 Differential Optical Flow

In early 80s, OF technique has been introduced by Horn and Schunck [77] and Lucas
and Kanade [101]. They both proposed a Differential Optical Flow (DOF) equation
formulation for their OF approach but each of them used a different numerical
solution of the problem (subsection 3.2.2 and 3.2.3).
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3.2.1 Brightness Change Constraint Equation (BCCE)

A way to estimate the motion field is based on the brightness conservation hypoth-
esis. We suppose that the brightness values of material points are conserved for a
small time interval At [77]. We have the following relation, called the Brightness
Change Constraint Equation (BCCE):

I(x+d(x,t),t+ At) — I(x,t) = 0 (3.4)
Using a first order Taylor’s expansion on I(x + d, t + At) around (x,t) gives:

I(x+d(x,1),t + At) = I(x,t) + d(x,1).VI(x, 1) + Atal(a}?w

+9 (cP, At2> (3.5)
oz’ dy
vartheta (JQ, At2> for d? and At? small enough, thus differential form of the BCCE

1S:

Here V is the 2D spatial derivatives ( o 0 ) Neglecting the second order terms

-

0I(x,t) n d(x,t)
ot At
From equation 3.1, BCCE can be rewritten with the velocity #(x,t):

VI(x,t)=0 (3.6)

I(x,t) 4+ 0(x,1).VI(x,t) = 0 (3.7)

with I;(x,t) = %. The brightness conservation is correct for At, thus it is

also correct for dt. In fact, BCCE is exactly defined by the total derivative of the
intensity quantity (see 2.1.3).
DI(x,t)
Dt
This equation is the basis of most of the works done using Differential Optical Flow

=0 (3.8)

methods for motion estimations.

This single equation is not sufficient to compute lonely the two unknown com-
ponents u and v as we have one equation for two unknown values. From BCCE,
only the normal component of the velocity vector can be computed. We cannot
estimate a unique solution for ¥. It is an ill-posed problem. In optical flow, this
indetermination is known as the aperture problem [14].

Figure 3.5 illustrates it:

e In case 1, we are inside the object. The intensity of the neighborhood pixels
are constant therefore the spatial and time gradients are equal to zero. The
vector velocity is undetermined (infinite solution from equation 3.7).

e In case 2, we are at a border of the object. We can only estimate the velocity
component parallel to the spatial gradient. On the right side of the object, it
will be horizontal.

e The case 3 is the angle for which we can compute all the components of the
velocity.
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Figure 3.5: Illustration of the aperture problem

One way to get solution of the BCCE (equations (3.6),(3.7) or (3.8)) is to use
parametric formulations of the velocity field.

T(x,t) = { / (X’Lf)) (3.9)

where functions f and g can be defined as constant, affine, quadratic functions or
any others function fitting the observing type of motion |9, 21, 116]. Parameters of
the velocity field formulation have to be computed inside the image domain. These
formulations get the advantage to define representation of the global velocity. They
are quite robust and low computational cost. However, depending on the dynamic
complexity of the observed scene, parametric approaches may mainly determine the
dominant motion contained in the image sequence. For example the velocity field
of many objects having their own motion cannot be obtained in detail by these
parametric approaches. As well as for highly turbulent flow, these approaches are
not well suited to give full and precise velocities.

Another way to solve BCCE is adding constraints. Two different methods are
generally used, local approaches [101] or global approaches [77].

3.2.2 Local Approaches

As we saw in the previous section, a direct solution for equation (3.7) cannot be
obtained due to the aperture problem (more variables than equations). Therefore we
need additional constraints. One of the simplest methods to overcome this problem
is to assume the velocity field to be constant within a fixed neighborhood. These
methods are called local approaches. Local approaches are introduced in the early
1980s by Lucas and Kanade [101|. By the way solution of the BCCE on a pixel x,
is satisfied around a fixed neighborhood of x: N (i.e. ¥(x) = ¥(x0), Vx € N (xp)).
Lucas and Kanade [101] use a weighted least-squares (LS) fitting of local con-
straints of BCCE in every small spatial neighborhood A/ by minimizing the following
energy:
Bix) = Y W —x) (Lix1)+ a(x,t)ﬁf(x,t))Z (3.10)
x'eN(x)
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where W is a window function that gives to the constraints more influence at the
center of the neighborhood N than at the periphery. W is generally a Gaussian
distribution of variance o2.

The solution to equation (3.10) is given by:
ATWAD = ATWb (3.11)

where, for n points x; € N;i = 1,n at time ¢,

A = [ﬁl(xl), v ﬁ[(xn)}T
W = diag [W(x1), ..., W(xn)
b = — (I;(x1), ..., It(xn))T

The solution of equation (3.11) is 7 = [ATWA] ~" ATWb, which is solved in closed
form when ATWA is non singular, as it is a 2 x 2 matrix:

T _ doic1 W(x;) 12 (x;) Yo W) L (%) Iy (%)
AT"WA = o W) Lo (%) Iy (xi) Doy W(xa) 2 (x:) (3.12)

This approach is robust compare to noise but does not have a global spatial
coherency distribution on the velocity field. Note that equation (3.11) is not de-
termined uniquely. In areas where the gray values are, for example, constant or at
image edges, there is no single solution. Moreover, assumption of constant velocity
inside a neighborhood is often violated in fluid flow, as for CC approaches (appendix
A).

Due to these limitations, we did not work with local methods. For more infor-
mation, readers may refer to the review by Haussecker [71] on different types of local
optical flow approaches and extensions.

3.2.3 Global Approaches

For local approaches, velocity field is piecewise constant within an interrogation
window. This implies an implicit spatial coherence constraint of the velocity field.
Global approach needs to define a regularization function wh