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Atmospheric phenomena are of main importance to understand earth’s general
behavior such as the rapid climate change, which has received particular attention
over the world. Consequently more investigations have being carried out. Over
the last few decades, the use of satellites enables us to gather huge amounts of in-
formation over large geographic areas. Meanwhile development of new technology
now allows more detailed investigations. Resolution, robustness and time acqui-
sition rates of various prediction tools benefit constant improvement. Among the
existing predictive techniques, remote sensing is becoming a major contributor not
only for analyzing and understanding the phenomena, but also for help making
political decisions to prevent human activities that increase the risk of natural dis-
asters. However, physical phenomena themselves are not yet well understood nor
fully measured. Different scientific communities around the world are currently
working towards a better understanding of the underlying physics. The complexity
of correlation pattern between different parameters leaves many rooms for further
investigation and improvement.

1.1 Context

Atmospheric flows are known to be highly turbulent. Transportation of particles,
aerosols and clouds is thus strongly depending on turbulence, which cannot be simply
neglected for predictions. As an example, during the Iceland volcano eruption in
spring 2010, dust and hash clouds were transported throughout the atmosphere
by turbulent currents. The difference between reality and predictions clearly show
that the latest atmospheric model simulations are still far from describing the exact
physical phenomenon. Because of these uncertainties (mainly due to turbulence),
governments are unable to know with sufficient precision where the particle clouds
are going to pass. They have to make preventive decisions by closing airports, even
far away from the real path of the clouds.
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Turbulent motion fields exist not only in atmosphere. There are also present, in
many other domains, as for example in aeronautics, hydraulics, nuclear and chem-
ical engineering, environmental sciences, oceanography, astrophysics or even the
human body inner flows. Understanding the physics of turbulence constitutes itself
a challenging field of research.

It is well know that turbulent motions present a wide range of different time and
space depending scales. Ideally, it is necessary to take the smallest scale interactions
into account over extremely large domains and with a very small time frequency
sampling. However, when performing calculations over large periods of time in
practical situations, it is realistically impossible to compute the numerical solution
with current calculation capabilities. Until now, modeling of turbulence is the only
suitable solution for global prediction. This modeling needs often to be validated
by experimental studies from which the velocity field determination at each time t
is of main importance for the natural phenomena understanding and for validation
of their simulations.

In practical applications, velocity field can be obtained by numerous techniques
(Tachometer, Anemometer, Laser Doppler Anemometry, Hot wire, Particle Image
Velocimetry, atmospheric balloon tracking...). Depending on the application, they
can be more or less adapted to the situation either because of their size or their
price. For details on velocity measurement techniques please refer to [149]. From
all these techniques, Cross-Correlation PIV (CC) has a huge advantage to extract
instantaneous velocity field for a large spatial 2D area. For In-Situ experiments
or data collection as to describe atmospheric and oceanic currents geostationary
satellite time sequences can be used. Efficiency and robustness of the estimated
velocity field from these time image sequences, is then a key point of validation of
turbulent models when applied to solve real situation where turbulence is involved.

Resuming to the context of the present thesis, we are working with natural
fluid phenomena that are frequently highly turbulent. Turbulent motion is one of
the most important information. It is necessary for understanding their behavior
over the time. Regarding the existing prediction tools, image processing seems to
be the most suitable and promising technique to estimate the velocity field due to
the fast technology improvement. The main objective of this thesis is to further
investigate the computer vision technique. The validation of estimations accounting
for turbulence relies on further comparisons with reference data that can either
be obtained from laboratory experiments or from direct Navier-Stokes equation
simulations. It will also be the purpose of this work.

1.2 Motivation and Objectives

Many works have been done on motion estimation since last 30 years. The Op-
tical Flow (OF) describes the apparent velocity field observed from a time image
sequence. It exists two principal OF techniques: Cross-correlation (CC) and Dif-
ferential Optical Flow (DOF) approaches. These methods deal with rigid and de-
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formable motions, elastic motions, or fluid motions. Since the 21st century, more
efficient approaches have been proposed. However, despite the incredible amount
work done over the years, fluid motion in a turbulent environment has still not been
considered. Thus, motion estimation of turbulent flow cannot exclusively rely on
traditional computer vision techniques. The motion of studied physical quantities
is directly linked to the observed quantity, which obeys physical rules defined by
known physical properties.

This thesis focuses on motion estimation of scalar transported by a turbulent
flow given two-successive in time images. Most of the existing techniques fail to
accurately estimate the turbulence. The objective of our work is to propose and
validate an original approach that is based on a physical formulation, in the case of
scalar transported by turbulent flow.

The evolution of scalar field does not satisfy the brightness constancy hypothe-
sis in time made by classical motion estimation approaches as CC and DOF ones.
The scalar concentration evolution is exactly defined by the concentration trans-
port equation with molecular diffusion [160]. However the discretized information
imposed by the image recording brings us to consider the fact that the input image
sequence has some missing information. This lack of information may not be negli-
gible when the turbulence is high. Referring to the concept of large eddy simulation
(LES) of turbulence [139], the resolved information, given by image pixel values, can
be seen as related to resolved large-scales eddies. The lack of information could be
assimilated as sub-pixel or sub-grid information, i.e., unsolved small-scales of tur-
bulence. Small-scales of the flow cannot be directly extracted from the data while
its effects on resolved velocity field are important in highly turbulent flows. They
must be modeled in the motion equation. After the filtering - in the LES sense - of
the exact concentration equation at a given spatial scale corresponding to the size of
pixel, the unsolved small scales appear in the equation as an explicit sub-grid term.
This term is usually modeled using a turbulent sub-grid eddy viscosity concept [153]
because its main physical property is turbulent diffusion.

Given a time image sequence, the estimation of the velocity field from the filtered
concentration transport equation with diffusion is an ill-posed problem. Probabilis-
tic approaches based on a graph, as Markov Random Fields (MRF), are very con-
venient to define a formulation of a specific problem in image processing. We add a
global constraint to mathematically well pose the problem [98]. The constraint is a
spatial regularization constraining the spatial distribution of the adjacent turbulent
velocity field by a first order derivative function. The choice of this regularization
function is familiar in the motion estimation algorithms. Advantage of MRF frame-
work is that it generally allows to use a wider range of functional, while ensuring
to find a global (exact or approximated) solution, without being limited to convex
functions [168] unlike other popular approaches as variational methods. However,
optimization methods for MRF framework are generally defined for finite dicretized
random field. In our case, the unknown velocity field is a 2D real velocity field. We
propose a complete optimization scheme coupling multiresolution without warping
and multigrid technique with an adapted minimization method to find the optimal
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solution within a correct computational cost.
To the best of our knowledge, such a way of incorporating turbulence models

into the filtered transport equation for motion estimation from time image sequence
has never been investigated before. Our work shows that the sub-grid scale model
in the filtered concentration equation, improves motion estimation. It opens an
interesting new field of research which may lead to a better understanding of passive
scalar spread by turbulent flows. This thesis is a multi-disciplinary work from which
the aim is to converge knowledge and techniques from fluid mechanic (turbulence)
and computer vision (image processing) scientific communities.

1.3 Overview of the thesis

The first part of the thesis proposes an efficient Differential Optical Flow (DOF)
approach working on motion equation, large displacement estimation technique and
minimization methods [125, 33, 34, 32, 38]. The second part will focus on a physical
formulation of the motion equation and on improvements on the DOF approach due
to the turbulent viscosity term. This will be studied in the case of scalar transported
by turbulent flows [35, 36, 37].

In the second chapter, necessary background requirement on fluid mechanics
and turbulence are given. We recall physical equations and present the concept of
turbulence and its consequence on the velocity field. We then describe different
possibilities in turbulence modeling.

The following chapter describes the motion estimation technique from time image
sequence (section 3.1). We only detail the DOF methods to retrieve the flow motion.
Description of DOF methods is presented for ordinary motion applications (section
3.2). We will pay special attention to DOF methods defined for fluid motion estima-
tion (section 3.3). For comparison, appendix A describes the Cross-Correlation PIV
(CC) technique used to determine velocity field from PIV acquisition in laboratory
experiments.

In fourth chapter, we propose an efficient DOF approach. For taking into ac-
count more spatial information, motion equation based on the two successive image
gradients is defined (section 4.1). To tackle the limitation of DOF equations for
large displacements, we propose an unwarping multiresolution by pyramidal de-
composition (section 4.2) for which assumption on gradients is made to reduce the
number of transformations during the process. We also compare and suggest some
improvements of optimization methods (appendixes C and E) for MRF formulation.
Results on different type of motions are compared with other existing DOF and CC
methods (sections 4.5 and 4.6).

In the fifth chapter, we now treat the problem of scalar transported by turbulent
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flow. Based on the proposed algorithm of chapter 4, we suggest a new motion esti-
mation method which takes into account the unresolved scale effect (sub-pixel) on
the resolved velocity (pixel resolution) for high turbulent flows for which this effect
is, in this case, not negligible and affect the dynamic of the flow. Thus, we use the
filtered concentration transport equation with molecular diffusion where the small
scale interactions are modeled by a classic turbulent sub-grid eddy viscosity model
(section 5.2). Results of application on synthetic and real-time sequences of scalar
transport (section 5.3) and solid particles seeding in turbulent flow (section 5.4), are
very encouraging and promising. In the last section 5.5, we apply our model to at-
mospheric events such as dust storms. Remote sensing from geostationary satellite
image sequences allows us to estimate the dust cloud motion from our method. A
homogeneous invariant brightness method is added to the model to deal with the
day light variations.

Conclusions and future directions are presented in chapter 6.
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This chapter gives an introduction of fluids and turbulence. Two descriptions,
Lagrangian and Eulerian, can be used to describe the movement of fluid. Funda-
mental fluid equations such as Continuity, Scalar transport with molecular diffusion
and Navier-Stokes equations are presented. For more information on fluid dynam-
ics, we can refer to [15]. An introduction on turbulence is given and different main
approaches used to solve numerically the Navier-Stokes equations are aborded in
order to demonstrate the difficulty of the turbulence accounting. More details on
turbulence and numerical models can be found in [103, 124].

2.1 Movement Representation

2.1.1 Particle and mathematical points

Fluids (gases and liquids) can be viewed at different scales. At molecular scale
(Lmicro ≈ 10−20m) they are in permanent movement, chocking each others. De-
scription of the motion behavior at this scale is given by Brownian motion. For
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Macroscopic scale Mesoscopic scale Microscopic scale

Figure 2.1: Illustration of different scales and representation of a particle.(photo
from http: // www. astrographics. com/ GalleryPrints/ Display/ GP4293. jpg )

fluid mechanics description, fluid is observed at scale Lmacro > 10−6m , higher than
the molecular free path λ determined by the Knudsen number Kn = L/λ > 1.
Physical quantities (density, velocity, pressure...) at scales Lmacro can be considered
continuous in space and time. Elementary volume domain of the smallest scale is
called particle or material point P . It has a closed surface of elementary volume dv
of density ρ. Figure 2.1 illustrates the different scales representations for an example
of smoke evolving in a flow.

A particle has a defined spatial position Xp(t0) = (x0, y0, z0) at time t0 and its
position Xp(t) varies at each time t. In the above example figure 2.1, an interesting
goal would be to study the smoke motion. To study this evolution we need to
consider the time and space dimensions. Two principal movement descriptions,
Lagrangian and Eulerian, could be developed.

2.1.2 Lagrangian / Eulerian descriptions

We can follow the behavior of the particles over the time (Lagrangian) or stay at a
fixed position to see different particles going through the position (Eulerian). Figure
2.2 represents the two motion descriptions for two successive times t and t+ dt.

Lagrangian description: In the Lagrangian description, the observer follows the
position and physical properties of the particle P that moves depending on time t.
In figure 2.2, the observer look the particle P1 at position XP1(t) at time t and goes
to the position XP1(t+dt) at time t+dt. Positions and deformations of the particle
take into account all the history from the initial state at (x0, y0, z0) and time t0.

http://www.astrographics.com/GalleryPrints/Display/GP4293.jpg
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Figure 2.2: Difference between Lagrangian and Eulerian descriptions.

The position Xp(t) at time t is given by:

Xp(t) =


x = f(x0, y0, z0, t)

y = g(x0, y0, z0, t)

z = h(x0, y0, z0, t)

(2.1)

where f, g, h are three continuous functions. Lagrangian description may be inter-
esting for studying the behavior evolution of particles over the time as for example
the evolution of smoke propagation or dust cloud displacement in the atmosphere
during a dust storm event. However, identification of each particle and their tracking
can be very difficult.

Eulerian description: In the Eulerian description, the observer stays at a fixed
position and describes the evolution of the flow. He does not follow a particle over
time axis, but observes the evolution of quantities going through a fixed position
X = (x, y, z) (mathematical point) at each time. In figure 2.2, for point X at time
t, the Eulerian description observes physical quantities of particle P1(t). At time
t + dt, he will observe physical quantities of particle P2(t + dt). For example, one
common used physical quantity in Eulerian description is the velocity field V⃗ defined
by its components (U, V,W ) as:

V⃗ (X, t) =

 U(x, y, z, t)

V (x, y, z, t)

W (x, y, z, t)

 (2.2)

V⃗ (X, t) is the velocity at fixed point X for t fixed. This description is often used in
fluid mechanics where kinematic properties of the flow are of greater interest than
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the shape of a part of the fluid at a reference time t. It is also more convenient
in a mathematical point of view, because the spatial domain is fixed. Moreover, in
the case of computer vision, Eulerian description fits directly from the image pixel
representation. In this thesis, we use this description to describe the motion of the
fluid.

Note that we will use x = (x, y) to represent the point X = (x, y, z) on the 2D
image. At fixed t, X = XP for the particle XP located at the point X.

2.1.3 Total Derivative

The Eulerian description defines at each time t the value of a physical quantity φ

related to a fixed position of the flow. The variation of this quantity over the time is
described by a partial derivative, also called Eulerian derivative. Relation between
total derivative and partial derivative of the quantity φ is as follow:

φ(Xp(t), t) depends on time t and its position Xp(t) = (x, y, z). During an
interval of time dt, the particle Xp(t) = X at time t has moved to the position
Xp(t+dt) by a displacement V⃗ dt from its old position (Xp(t+dt) = Xp(t)+ V⃗ dt =

X+ V⃗ dt).
Variation of the quantity φ is:

dφ = φ(x+ Udt, y + V dt, z +Wdt, t+ dt)− φ(x, y, z, t) (2.3)

First order Taylor expansion gives:

dφ =
∂φ

∂t
dt+ Udt

∂φ

∂x
+ V dt

∂φ

∂y
+Wdt

∂φ

∂z
(2.4)

Dividing by dt, we have the total derivative usually written as D/Dt:

Dφ

Dt
=
∂φ

∂t
+ U

∂φ

∂x
+ V

∂φ

∂y
+W

∂φ

∂z
(2.5)

In vector notation:
Dφ

Dt
=
∂φ

∂t
+ V⃗ .∇⃗φ (2.6)

The total derivative is made of two parts:

• ∂φ/∂t is the local rate of change of φ at a given point representing the unsteady
behavior of the flow.

• V⃗ .∇⃗φ: is called the convective derivative due to the displacement of the parti-
cle, because it is the change, in φ, as a result of convection of the particle from
one position to another where the values of φ are different. This convective
term is generally non-linear.

The total derivative can be applied to any scalar or vectorial quantities character-
izing a fluid particle like density ρ, scalar concentration C, pressure p or velocity
V⃗ .

We will see in section 3.2 that the total derivative is the base of the differential
optical flow equation proposed by Horn and Schunck in 1981 [77] and improved by
others.
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2.2 Fundamental Equations

All fluid mechanics is based on conservation laws as for mass, momentum, and
energy. These laws can be stated in the differential form, applicable at a point
(Eulerian description). Conservation laws in Lagrangian description exist, but in our
case of study, they are not adapted to the image recordings used for this work. For
that, Eulerian forms are more convenient. We present here the continuity equation,
the advection-diffusion equation and Navier-Stokes equations.

2.2.1 Continuity Equation

In fluid dynamics, continuity equation is based on the process that variation of
quantity in an infinitesimal volume is equal to the quantity of flow going through
the volume surface.
D(t) is a material volume domain and S(t) its surface at time t. The density by
unity of volume dv is ρ(X, t).
The total mass of D(t) is: m =

∫
D(t) ρ(X, t)dv. Hypothesis of mass conservation

gives the equality:
dm

dt
=

d

dt

∫
D(t)

ρ(X, t)dv = 0 (2.7)

Using the Reynolds transport theorem (see [132] for demonstration), we can
express the time derivative of a volume integration.

d

dt

∫
D(t)

φ(X, t)dv =

∫
D(t)

∂φ(X, t)

∂t
dv +

∫
S(t)

φ(X, t)V⃗ (X, t).n⃗ds (2.8)

The first term represents the unsteady behavior of φ(X, t) and the second term
the movement of the surface S(t) (n⃗ is the normal to S(t)). φ(X, t) is a physical
quantity that is here the density ρ(X, t).

The mass conservation equation is then:∫
D(t)

∂ρ(X, t)

∂t
dv +

∫
S(t)

ρ(X, t)V⃗ (X, t).n⃗ds = 0 (2.9)

Using the divergence theorem:
∫
S ρ(X, t)V⃗ (X, t).n⃗ds =

∫
D ∇⃗.(ρ(X, t)V⃗ (X, t))dv.

We obtain: ∫
D(t)

[
∂ρ(X, t)

∂t
+ ∇⃗.(ρ(X, t)V⃗ (X, t))

]
dv = 0 (2.10)

Because this integral is null for all volume domain D(t), that implies the expres-
sion to be null for each particle (point) of the domain. The continuity equation is
finally:

∂ρ(X, t)

∂t
+ ∇⃗.(ρ(X, t)V⃗ (X, t)) = 0 (2.11)

This equation can be rewritten as:

Dρ(X, t)

Dt
+ ρ(X, t)∇⃗.V⃗ (X, t) = 0 (2.12)
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In the case of an incompressible fluid, the density of a fluid particle is constant
over the time Dρ/Dt = 0. Thus, the continuity equation of incompressible fluid is
simplified and becomes for each time t:

∇⃗.V⃗ (X, t) = 0 (2.13)

We will see in section 3.3 that the continuity equation considering a compressible
fluid has been linked to optical flow estimation at the beginning of the 21st century
in works of [16], [47] or [191]. In our work, we consider the fluid as incompressible,
which is a correct hypothesis in the case of aerosols in the atmosphere.

2.2.2 Convection Diffusion Equation

Convection diffusion equation, also called scalar transport equation with molecular
diffusion, can be retrieved as for the continuity equation adding the fact that the
scalar quantity of the fluid can diffuse (Fick’s first law). The rate of change for a
scalar quantity C of a fluid particle is given by flow and diffusion into and out of its
elementary domain along without any generation or consumption inside:

∂C(X, t)

∂t
+ ∇⃗.J⃗ = 0 (2.14)

Where J⃗ is the total flux. The total flux is the summation of the convective scalar
flux CV⃗ and the diffusive scalar flux. The diffusive flux is obtained by the Fick’s
first law which assumes that the flux of the diffusing material in any part of the
global system is proportional to the local gradient of C.

J⃗ = CV⃗ −D∇⃗C (2.15)

where D is the molecular diffusion coefficient (unity m2/s).
The convection diffusion equation can be written as:

∂C(X, t)

∂t
+ ∇⃗.(CV⃗ )−D∇2C = 0 (2.16)

For incompressible fluid, the convection diffusion equation becomes:

∂C(X, t)

∂t
+ V⃗ .∇⃗C −D∇2C = 0 (2.17)

The scalar transport equation allows to describe the time behavior of scalar
quantity considering the molecular diffusion effects. In 1996, Su and Dahm [160, 161]
proposed to use this equation for estimating the motion and concentration field of
the scalar in a laboratory channel flow. In our work, we want to estimate the motion
of scalar carried by a turbulent fluid. This equation will be the basis of our approach.
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2.2.3 Navier-Stokes Equations

Navier-Stokes equations arise from applying Newton’s second law to fluid motion
(mDV⃗

Dt =
∑
f⃗) for a fluid particle.

ρ
DV⃗

Dt
= ∇⃗.⃗⃗σ + ρf⃗ (2.18)

where ρ is the density of the fluid, DV⃗ /Dt the acceleration of the fluid particle, f⃗
are the volume forces applying to the density of the fluid particles (for example the
gravity). ⃗⃗σ is the constraint tensor (fluid stress) that represents forces on the fluid
particle surface. For incompressible Newtonian fluid, the constraint tensor can be
expressed by:

⃗⃗σ = −p⃗⃗I + 2µ
⃗⃗
D (2.19)

where p is the pressure that pushes with a force normal to the surface. µ ⃗⃗D is the
viscosity constraint that represents the force on the surface of the particle that tends
to stretch it due to viscosity µ (kg.m−1.s−1) of fluid particles between each other.

Naturally, this force is related to the tensor ⃗⃗
D, which is the deformation tensor

depending on local velocity gradients.

Dij =

(
∂Vj
∂xi

+
∂Vi
∂xj

)
(2.20)

with i, j = (1, 2, 3), (x1, x2, x3) = (x, y, z) and (V1, V2, V3) = (U, V,W ). Simplifying
the Navier-Stokes equations for an incompressible Newtonian fluid, we obtain:

∂V⃗

∂t
+ V⃗ .∇⃗V⃗ = −1

ρ
∇⃗p+ ν∇2V⃗ + f⃗ (2.21)

ν = µ/ρ the kinematic viscosity (m2.s−1).
The Navier-Stokes equations give an exact description of the evolution of the fluid

depending on its initial conditions and fluid properties (ρ, µ). They are the basis of
the fluid dynamics. There are only three equations for four unknown (U, V,W and p).
It is often added the mass conservation equation in the case of incompressible fluid.
Defining the initial conditions, the problem is closed and can be computed. However,
due to non linearity of the equation system, principally due to the convection terms,
the numerical resolution is very complex. Only scarce flow can be directly computed
nowadays because of computer limitations.

The Navier-Stokes equations need a local time sequence of the flow field. In the
case of optical flow, it is hardly usable, but recent approaches (2007) proposed to use
this as regularization to constrain the flow to have a time fluid coherence [138, 74].

2.2.4 Dimensionless Equations

All the presented fluid equations have dimensional parameters. In fluid dynamics,
it is better to transform the equations in a non dimensional form.
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To reduce the equations to dimensionless parameters, we define a characteristic
scale for each quantity. In the mass, scalar transport with molecular diffusion and
Navier-Stokes equations, these scales are Tc, Lc and Uc. Thus:

X

Lc
= X∗ V⃗

Uc
= V⃗ ∗ t

Tc
= t∗ (2.22)

are dimensionless. Doing the variable changes in the equations (2.12), (2.17) and
(2.21), we obtain respectively, the mass, scalar transport with molecular diffusion
and Navier-Stokes non-dimensional equations:

∂ρ

∂t∗
+ V⃗ ∗.∇⃗∗ρ = 0 (2.23a)

∂C

∂t∗
+ V⃗ ∗.∇⃗∗C − 1

ReSc
∇∗2C = 0 (2.23b)

∂V⃗ ∗

∂t∗
+ V⃗ ∗.∇⃗∗V⃗ ∗ = −∇⃗∗p∗ +Re−1∇∗2V⃗ ∗ (2.23c)

where the dimensionless parameters are Re = UcLc/ν and Sc = ν/D. They are
respectively the Reynolds number that characterizes the rate of turbulence of the
flow and the Schmidt number that represents the diffusivity of the fluid. Note that
here; we considered a fluid without volume forces. For an easier readability, we
omitted symbol ∗ in the rest of the paper.

In this work, we are focused on turbulent flow. That means high Reynolds
number (Re >> 1). In turbulent flow, convective terms are dominant.

2.3 Turbulence

Most of the flows encountered in engineering practice and in nature are turbu-
lent. Atmospheric flows, oceanic currents are turbulent. Many other examples of
turbulent flows arise in aeronautics, hydraulics, nuclear and chemical engineering,
environmental sciences, oceanography, astrophysics... More details on turbulence
theory and its applications can be found in [103, 124].

Turbulence remains a huge challenge in the science community nowadays, be-
cause its understanding will help us to predict hurricanes, global climate changes,
pollution dispersion, energy consumption optimization...

An historical description of turbulence can be found in [114].

2.3.1 Physical Point of View

A good way to survey the turbulence world is through flow motion hand book [56]
that shows pictures of different turbulent flows in its variety of application. Another
way is to characterize certain number of observable physical properties (more details
can be found in [96, 61]). We enumerate here some characteristics of turbulence flows
transporting a scalar:
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• Dispersion: Turbulent flows can mix transported quantities much faster than
if only molecular diffusion is involved. For example, to heat a room, it is
better to spread hot air by turbulent jet whereas using hot wires. In this way
diffusion of temperature over all the room will be faster due to the high rate
of turbulent dispersion. In engineering, efficiency and rapidity of diffusion in
an environment may be very important (fuel in engine, heat diffusion ...).

• Random behavior: Physical variables of the flow (velocity and pressure) vary
randomly in time and space under turbulence. It is possible to make a statis-
tical description of the turbulent flow solving, for example, average transport
equation of velocity and pressure.

• Continuum phenomena in space and time: The smallest scales that appear in
a turbulence flow will always be much larger than molecular length scales. In
this way, continuum properties can still be applied to turbulent flow quantities.

2.4 Numerical Approaches to Turbulence

From previous sections, we have seen that physical approach does not give nowadays
a complete answer of the understanding of turbulence. However, as we already said,
most of the flows in the nature and in industrial domains are frequently turbulent.
Lot of phenomena as heat or scalar transfers are related to the movement of the fluid.
Their study needs some knowledge and computation of flow under consideration.
In this way, in engineering and research, numerical simulation of turbulent flows
is very important for practical applications (industrial, environmental, medicine...).
Numerical simulation emerges as an essential approach in tackling turbulence. Even
though, numerical simulation still remains a hard topic and an exciting research
domain.

The quality of given information from numerical simulation depends on the level
of chosen resolutions to obtain the best possible precision, the simulation have to
consider all spatial and time scales that contribute to the dynamic of the flow.

Numerical simulation, direct or using statistic models, took place in the begin-
ning 60’s. This evolution is directly related to the improvement of computers. In
the 70’s, big computers allowed to simulate without statistical models (direct simu-
lation), movement of homogeneous isotropic turbulence for small Reynolds number.

In the next section, we present some methods involved in numerical simulation of
turbulent flows: Direct Numerical Simulation (DNS) [182] and two statistical mod-
eling way of turbulence: Reynolds Average Navier-Stokes (RANS) [90] and Large
Eddy Simulation (LES) [139].

2.4.1 Direct Numerical Simulation (DNS)

In the Navier-Stokes equations, the fluid is treated as continuum compared to molec-
ular scale. According to this point of view, the most natural idea is to find the
turbulent solutions of Navier-Stokes equations by resolving directly the equations.
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That means to compute all scales of the flow that compose the turbulent kinetic en-
ergy spectrum (from energetic scales to dissipative scales) [87]. The benefit of DNS
is to obtain in detail all information of the turbulence. This allows to understand
the dynamic of the turbulence and to evaluate lot of quantities that are unreachable
experimentally.

To numerically represent the totality of these spatial and time scales, it is nec-
essary for the discretization to be fine enough. That means, the discretization step
in space (∆x,∆y,∆z) and time (∆t) of the simulation are respectively smaller than
the characteristic length scales and characteristic time scale related to the smallest
active ones of the exact solution.

From Kolmogorov cascade theory [87], we can show that the ratio between scales
of largest eddies and Kolmogorov scale (scale that characterizes the smallest non
laminar scales) is proportional to Re3/4. It implies that to get all scales which
appear in turbulent flow, we have to use a grid mesh with a number of points in
each direction of space proportional to Re3/4. That makes an order of Re6/4 mesh
points for a bidimentional grid or Re9/4 mesh points for a tridimentional domain.
To give an idea of the Reynolds number amplitude, here are some examples in the
air (ν ≈ 15.10−6m2.s−1):

• Cars (Uc ≈ 3m.s−1, Lc ≈ 1m): Re ≈ 106

• Airplane wings (Uc ≈ 30m.s−1, Lc ≈ 5m): Re ≈ 108

• Atmospheric flows (Uc ≈ 10m.s−1, Lc ≈ 1km): Re ≈ 1010

In so, for cars Re ≈ 106, the number of mesh points would be in 2D: N = Re6/4 =

109 and in 3D: N = 1013.5. Nowadays, DNS with such number of mesh points is
not able due to insufficient computational resources. Looking for the computational
cost this type of simulation can be used only for relative simple flows with a limited
Reynolds number.

DNS is an exact way to simulate turbulent flows, but it is unable to simulate
high Reynolds number turbulent flow because of computer capability. Most of the
existing methods in numerical simulation of high Reynolds number flow are based
on the insight gained from the phenomenological description of turbulence. These
methods model turbulent fluctuations, from Reynolds or Favre decomposition [57]
point of view, and can compute the most interesting statistical quantities. However,
DNS can be useful to validate these models of turbulence for simple well-known
cases.

2.4.2 Reynolds Average Navier-Stokes (RANS)

One of the most important characteristic of turbulent flows is its random character.
It seems, then, not able to describe the turbulent motion in all details as a function
of time and space coordinates, but it is able to define average values of flow variables
(velocity, pressure, scalar concentration) [90].
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Reynolds proposed in 1895 [131] a statistical approach. He proposed to separate
instantaneous velocity V⃗ and pressure p variables into a mean (average) component,
V⃗ and p and a turbulent component (fluctuation), V⃗ ′ and p′ respectively:

V⃗ = V⃗ + V⃗ ′ p = p+ p′ (2.24)

Time average variables of the flow are defined as:

V⃗ (X, t) =
1

TR

∫ t+TR

t
V⃗ (X, tr)dtr (2.25a)

p(X, t) =
1

TR

∫ t+TR

t
p(X, tr)dtr (2.25b)

where TR is a chosen time scale which is high enough compare to turbulent time
scale. In case of stationary, for large TR, average variables do not depend on time
t, equation (2.25) gives:

V⃗ (X) =
1

TR

∫ TR

0
V⃗ (X, tr)dtr (2.26a)

p(X) =
1

TR

∫ TR

0
p(X, tr)dtr (2.26b)

When TR → ∞, we have the following properties (identical for all flow variables):

V⃗ = V⃗ V⃗ ′ = 0 (2.27)

Doing time average of the Navier-Stokes equations (2.23c) and continuity equa-
tions (2.23a) using decomposition (2.24) and its properties (2.27), we obtained the
Reynolds equations for average quantities:

∂V⃗

∂t
+ V⃗ .∇⃗V⃗ = −∇⃗p+Re−1∇2V⃗ + f⃗ + ∇⃗.

−→−→τRe (2.28a)

∇⃗.V⃗ = 0 (2.28b)

Where
−→−→τRe = V⃗ V⃗ − V⃗ V⃗ is called Reynolds stress tensor.

The Reynolds stress tensor is unknown variable. The system of Reynolds equa-
tion is not anymore a closed system. We could model τRe to ensure the conservation
of fundamental characteristics of the Navier-Stokes equations. This is called one
point statistical modeling. Reynolds stress tensor is usually modeled in terms of the
average flow variables.
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2.4.3 Large Eddy Simulation (LES)

Large Eddy Simulation (LES) [139], in a similar way, use another decomposition of
the flow variables of turbulent flow. Large Eddy Simulation (LES) concept relies on
the use of a filter which removes numerically unsolvable small scales.

LES is based on the decomposition of instantaneous dynamic variable fields of
the flow in two parts corresponding to structures of different sizes. This method
separates large scales isolating them by filtering unresolved small scales. The fil-
tering can be done in spatial or spectral space. In the case of spatial space, flow
velocity variable is composed as:

V⃗ = V⃗ + + V⃗ − (2.29)

where V⃗ + is the resolved velocity (large scales) and V⃗ − is the unresolved velocity
of unresolved small scales. The filtered field representing resolved scales could be
defined by a convolution with a filter of bandwidth ∆s around the point X:

V⃗ +(X, t) =

∫
∆s

V⃗ (X′, t) W(X−X′) dX′ (2.30)

where W is the filter. In LES, there are usually three types of spatial filter (see [139]):
Top-hat, Gaussian or cutoff. The filters depend on the used numerical approach.

Filtering the Navier-Stokes equations using equation (2.30), we get the following
filtered equations:

∂V⃗ +

∂t
+ V⃗ +.∇⃗V⃗ + = −∇⃗p+ +Re−1∇2V⃗ + + f⃗+ + ∇⃗.

−→−→τs (2.31a)

∇⃗.V⃗ + = 0 (2.31b)

We obtain an open system due to the unknown term
−→−→τs =

(
V⃗ V⃗

)+
− V⃗ +V⃗ + which

is the constraint tensor called sub-grid scale tensor. To model the sub-grid scale
tensor, a concept such as turbulent viscosity is generally used. In chapter 5, we will
assimilate information given by images with resolved scales of the physical quantity
of LES. A simple subgrid scale model will be suggested to improve motion estimation
of scalar carried by turbulent flow from time image sequence. For more details on
LES sub-grid scale models refer to [139].

LES can be viewed as a hybrid approach between DNS and RANS. It consists
to do a complete simulation for resolved turbulent structures and a partial one,
modeling unresolved turbulent structure contribution.

2.5 Conclusions

This chapter gives a brief overview of the different points of view that can be adopted
to describe fluid motion. In this work, we will use Eulerian motion description
because equations governing the flow are well defined in this representation and
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because main parts of the laboratory observations are Eulerian. Fluid motion are
describes by equations which define evolutions of fluid particle over the time. At low
Reynolds number, flow is laminar. Solution can be computed. However when the
Reynolds number becomes high, flow regime changes and becomes turbulent. As
we saw in section 2.3, solution of fluid motion equations is difficult to reach. Many
modeling approaches exist allowing simulation of the flow evolution.

An important point, for understanding turbulent flows, is experiments. From
experiments, DNS or turbulence model simulation results could be validated by
comparison. Quality of the estimation of the velocity field is thus very important.
It is a key point for the validation of turbulent models when applied to solve real
situation where turbulence is involved.

Numerical simulations of turbulent flows also need initial conditions. For small
variations of initial conditions, solutions of these numerical simulations may diverge.
In case of atmospheric flows, a good estimation of cloud, dust or wind motions can
be set as initial condition to numerical simulation with the aim to get a better
prediction of their transport in the atmosphere.

The next chapter will give descriptions of principal motion estimation approaches
and state of the art algorithms in these fields.
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This chapter introduces the foundations and state-of-the-art of some motion
estimation techniques.

The first subsection is dedicated to Optical Flow (OF). Optical Flow describes
the pattern of apparent motion between two successive images.

The Optical Flow principle was first introduced and popularized by Horn and
Schunck [77], and Lucas and Kanade [101], in the early 1980s. Both works rely on a
single assumption, but each proposes a different numerical solution of the problem.
The technique has considerably evolved since its early age and still improves: math-
ematical statement (along with the underlying hypothesis) and numerical scheme
are made more efficient.

Two main branches of OF techniques are: the so-called Differential Optical Flow
(DOF) method — which will be presented in this chapter — and cross-correlation
(CC) approach — also coined Cross-correlation Particle Image Velocimetry tech-
nique –introduced in the appendix A.1.

Readers can refer to [130] and [14, 111, 11] for more details on CC and DOF
respectively.
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(a) (b)

Figure 3.1: 2 successive images I1 = I(x, t) at time t (a) and I2 = I(x, t+∆t)

at time t+∆t (b).

OF relies on an assumption of intensity conservation from one frame to the other.
This assumption, valid for rigid motion, becomes unrealistic for the analysis of fluid
flow.

The second part of this chapter presents recent approaches dedicated to fluid flow
estimation from image sequences. Most of these techniques borrow concepts from
fluid mechanics. These physical concepts are incorporated into the image model as
new representation of the fluid flow. We will see that traditional DOF technique is
often reduced to a particular case of these approaches.

3.1 Motion Field

Let be I, an image recorded at a fixed time t. The image is a set of fixed points
(pixels). These pixels can be viewed as a set of point of coordinates x corresponding
to the center of the mesh grid of the image of size ∆ = (∆x,∆y) (for writing
simplicity ∆x = ∆y denoted also ∆). For a time image series, we have a set of
successive images recorded at different times (t1, t2 ...). Thus shows the same
observed scene at successive instants. Over the time, at x, for each image, values of
the image intensity I(x, t) evolved.

Let us consider two successive images I1 = I(x, t) and I2 = I(x, t + ∆t), x ∈
Ω = ([0, N ]× [0,M ]), representing the same observed scene at two different instants
t and t + ∆t. The figure 3.1 shows images I1 and I2. The square, on bottom left,
represents a set of pixels at a fixed position x, x ∈ Ωset ⊂ Ω in both images. We
can see that, pixel intensities from t to t+∆t are different demonstrating that the
object inside is moving from a displacement d⃗ to determine.

The motion or velocity of the object which is at x at time t, is the Eulerian
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Figure 3.2: Illustration of apparent motion on the image plan.

vector velocity in pixel x corresponding to v⃗(x, t) (v⃗ = (u, v)) which gives the
displacement d⃗(x, t) (d⃗ = (dx, dy)) for a time interval ∆t and v⃗(x, t) = d⃗(x, t)/∆t.
In function of the studied object, intensity may vary for every point x ∈ Ω. In so
the motion or velocity fields correspond to the determination of v⃗ for every x ∈ Ω

as v⃗(x, t) = d⃗(x, t)/∆t. The intensity I(x, t) for x ∈ Ω could correspond to solid
non-deformable object or temperature, particle or scalar concentration field. Here
v⃗ is the 2D apparent motion field of the 3D projected scene. In case of 3D motion,
v⃗ is the projection on the image plan of the real velocity V⃗ . The figure 3.2 shows
the difference between the 2D apparent velocity and real velocity.

Note that all equations, presented in the precedent chapter, are defined in 3D
space (X). They are also true in 2D space (x) for any kind of 2D flows for which
velocity in the z direction is null. In case of projected 2D representation of the
3D reality space, if the flow is not two dimensional, the described equations in this
chapter should be carefully projected from 3D to the 2D plan (for more details see
[100]). In our work, we made the assumption of a 2D turbulent flow.

For an optical center location very far from the observed scene, spatial coordi-
nates (x, y) for X and x could be considered equivalent. Variation of z is negligible
compare to the depth from the scene to optical center. For example, in zoomed
remote sensing images or in Particle Image Velocimetry acquisition using laser thin
sheet, we have: (∂/∂X)x,y ⇔ ∂/∂x for any (x, y) of the image.

We have now to work on the 2D image to express the apparent 2D motion field
d⃗(x, t). To get this displacement, we consider the 2D material point (particle point)
from xp(t) = x at time t to xp(t +∆t) = x + d⃗(x, t) (section 2.1.1). xp(t) denotes
the position of particle P in the image. The distance d⃗ is given by xp(t+∆t)−xp(t).
The figure 3.3 represents the displacement d⃗ for 2 different material points P1 and
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Figure 3.3: Illustration of displacement d⃗(t) from t to t+∆t for 2 particles P1 and
P2 and difference between velocity v⃗(t) and instantaneous velocity u⃗(t).

P2 from time t to time t+∆t. The velocity v⃗ is defined as:

v⃗(x, t) =
xp(t+∆t)− xp(t)

∆t
=
d⃗(x, t)

∆t
(3.1)

This velocity v⃗ is measured indirectly, as the displacement d⃗ of a material point P
in a finite time interval ∆t.

However the velocity v⃗ given by the displacement is different from the instanta-
neous velocity u⃗ = ẋ = limdt→0dx/dt. In fact, the displacement field only provides
the average velocity along the trajectory over a time ∆t.

d⃗(x, t) =

∫ t+∆t

t
u⃗
(
xp(t

′), t′
)
dt′ (3.2)

For a better understanding, on the figure 3.3, we draw the trajectory path of the
two material points P1 and P2. The distance between material points from time t
to time t + ∆t is represented by dashed line. The instantaneous velocity at time
t is given by the tangent vector of the trajectory path. Thus u⃗(xp(t), t) may be
different from v⃗(x, t) obtained using d⃗(x, t). This depends on the trajectory path of
the material point.

||u⃗(xp(t), t)− v⃗(x, t)|| < ε (3.3)
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(a) (b)

Figure 3.4: Yosemite sequence: (a) image 09, (b) velocity field v⃗ representa-
tion from image 09 to 10

The observed velocity v⃗(x, t) cannot lead to an exact representation of u⃗(xp(t), t),
but approximates it with a finite error ε. This associated error is often negligible,
provided that the spatial scale Lc and time scale Tc of the flow are large with respect
to the spatial resolution ∆ and time resolution ∆t. In this work, this hypothesis
approximation is good enough most of the time. However, for high turbulent rate,
the spatial and time resolutions of our image sequence could be poor due to very
small characteristic scales of the flow. In so the observed velocity field is to poor
to represent the turbulent flow characteristics. Figure 3.4 shows an image of a time
image sequence and its corresponding exact velocity field from one image to the
next one. The sequence is the well known Yosemite sequence from computer vision
community [14] representing the Yosemite National Park from a flight view over the
mountain. In (a), we have the image 09 of the time sequence. In (b) the velocity field
is represented by vector arrows every 10 pixels that is a mesh size for visualization
clarity. But the velocity field is given for every pixel of the image.

Optical Flow estimations try to determine the velocity field using different tech-
niques. We detail, here, the Differential Optical Flow (DOF) technique. Another
technique called Cross-correlation PIV (CC) is widely used in fluid mechanic com-
munity. Later on, we will compare our methods with results from CC commercial
software. For description of CC technique, we refer to appendix A.1 [130, 149].

3.2 Differential Optical Flow

In early 80s, OF technique has been introduced by Horn and Schunck [77] and Lucas
and Kanade [101]. They both proposed a Differential Optical Flow (DOF) equation
formulation for their OF approach but each of them used a different numerical
solution of the problem (subsection 3.2.2 and 3.2.3).
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3.2.1 Brightness Change Constraint Equation (BCCE)

A way to estimate the motion field is based on the brightness conservation hypoth-
esis. We suppose that the brightness values of material points are conserved for a
small time interval ∆t [77]. We have the following relation, called the Brightness
Change Constraint Equation (BCCE):

I(x+ d⃗(x, t), t+∆t)− I(x, t) = 0 (3.4)

Using a first order Taylor’s expansion on I(x+ d⃗, t+∆t) around (x, t) gives:

I(x+ d⃗(x, t), t+∆t) = I(x, t) + d⃗(x, t).∇⃗I(x, t) + ∆t
∂I(x, t)

∂t
+ ϑ

(
d⃗2,∆t2

)
(3.5)

Here ∇⃗ is the 2D spatial derivatives
(

∂
∂x ,

∂
∂y

)
. Neglecting the second order terms

vartheta
(
d⃗2,∆t2

)
for d⃗2 and ∆t2 small enough, thus differential form of the BCCE

is:
∂I(x, t)

∂t
+
d⃗(x, t)

∆t
.∇⃗I(x, t) = 0 (3.6)

From equation 3.1, BCCE can be rewritten with the velocity v⃗(x, t):

It(x, t) + v⃗(x, t).∇⃗I(x, t) = 0 (3.7)

with It(x, t) = ∂I(x,t)
∂t . The brightness conservation is correct for ∆t, thus it is

also correct for dt. In fact, BCCE is exactly defined by the total derivative of the
intensity quantity (see 2.1.3).

DI(x, t)

Dt
= 0 (3.8)

This equation is the basis of most of the works done using Differential Optical Flow
methods for motion estimations.

This single equation is not sufficient to compute lonely the two unknown com-
ponents u and v as we have one equation for two unknown values. From BCCE,
only the normal component of the velocity vector can be computed. We cannot
estimate a unique solution for v⃗. It is an ill-posed problem. In optical flow, this
indetermination is known as the aperture problem [14].

Figure 3.5 illustrates it:

• In case 1, we are inside the object. The intensity of the neighborhood pixels
are constant therefore the spatial and time gradients are equal to zero. The
vector velocity is undetermined (infinite solution from equation 3.7).

• In case 2, we are at a border of the object. We can only estimate the velocity
component parallel to the spatial gradient. On the right side of the object, it
will be horizontal.

• The case 3 is the angle for which we can compute all the components of the
velocity.
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Figure 3.5: Illustration of the aperture problem

One way to get solution of the BCCE (equations (3.6),(3.7) or (3.8)) is to use
parametric formulations of the velocity field.

v⃗(x, t) =

{
f(x, t)

g(x, t)
(3.9)

where functions f and g can be defined as constant, affine, quadratic functions or
any others function fitting the observing type of motion [9, 21, 116]. Parameters of
the velocity field formulation have to be computed inside the image domain. These
formulations get the advantage to define representation of the global velocity. They
are quite robust and low computational cost. However, depending on the dynamic
complexity of the observed scene, parametric approaches may mainly determine the
dominant motion contained in the image sequence. For example the velocity field
of many objects having their own motion cannot be obtained in detail by these
parametric approaches. As well as for highly turbulent flow, these approaches are
not well suited to give full and precise velocities.

Another way to solve BCCE is adding constraints. Two different methods are
generally used, local approaches [101] or global approaches [77].

3.2.2 Local Approaches

As we saw in the previous section, a direct solution for equation (3.7) cannot be
obtained due to the aperture problem (more variables than equations). Therefore we
need additional constraints. One of the simplest methods to overcome this problem
is to assume the velocity field to be constant within a fixed neighborhood. These
methods are called local approaches. Local approaches are introduced in the early
1980s by Lucas and Kanade [101]. By the way solution of the BCCE on a pixel x,
is satisfied around a fixed neighborhood of x: N (i.e. v⃗(x) = v⃗(x0),∀x ∈ N (x0)).

Lucas and Kanade [101] use a weighted least-squares (LS) fitting of local con-
straints of BCCE in every small spatial neighborhood N by minimizing the following
energy:

E(v⃗(x)) =
∑

x′∈N (x)

W(x′ − x)
(
It(x, t) + v⃗(x, t).∇⃗I(x, t)

)2
(3.10)
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where W is a window function that gives to the constraints more influence at the
center of the neighborhood N than at the periphery. W is generally a Gaussian
distribution of variance σ2.

The solution to equation (3.10) is given by:

ATWAv⃗ = ATWb (3.11)

where, for n points xi ∈ N ; i = 1, n at time t,

A =
[
∇⃗I(x1), ..., ∇⃗I(xn)

]T
W = diag [W(x1), ...,W(xn)]

b = − (It(x1), ..., It(xn))
T

The solution of equation (3.11) is v⃗ =
[
ATWA

]−1 ATWb, which is solved in closed
form when ATWA is non singular, as it is a 2× 2 matrix:

ATWA =

[ ∑n
i=1W(xi)I

2
x(xi)

∑n
i=1W(xi)Ix(xi)Iy(xi)∑n

i=1W(xi)Ix(xi)Iy(xi)
∑n

i=1W(xi)I
2
y (xi)

]
(3.12)

This approach is robust compare to noise but does not have a global spatial
coherency distribution on the velocity field. Note that equation (3.11) is not de-
termined uniquely. In areas where the gray values are, for example, constant or at
image edges, there is no single solution. Moreover, assumption of constant velocity
inside a neighborhood is often violated in fluid flow, as for CC approaches (appendix
A).

Due to these limitations, we did not work with local methods. For more infor-
mation, readers may refer to the review by Haussecker [71] on different types of local
optical flow approaches and extensions.

3.2.3 Global Approaches

For local approaches, velocity field is piecewise constant within an interrogation
window. This implies an implicit spatial coherence constraint of the velocity field.
Global approach needs to define a regularization function which explicitly uses spa-
tial coherent constraint. Compare to local ones, a new term is added to the BCCE
equation that will bring supplementary information on spatial or time velocity distri-
bution. Adding a regularization constraint restricts the class of acceptable solutions
which corresponds to transform the ill-posed problem to a well-posed problem of
the BCCE (equation (3.7)) where we have only 1 equation for 2 unknown variables
(u, v).

The objective function E is now composed by a data conservation energy (data
term) Ed combined with an explicit regularization energy Es. Es can take the form
we want it to be to correctly well-posed the problem. In OF approach, it is generally
defined as a smoothness constraint term.

E(v⃗) = Ed(v⃗, I) + Es(v⃗) (3.13)
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Solution of the problem is given by the minimum of E. The smoothness term is
defined as a local constraint over a small spatial neighborhood. A more detailed
description of the mathematical background of this energy definition is given in
chapter 4.

In the early 80s, Horn and Schunck [77] proposed to constraint spatially the
BCCE equation. The data conservation term Ed is formulated as the quadratic
function of BCCE. Spatial distribution of the velocity field is constrained by mini-
mizing the norm of the spatial gradients of the velocity field v⃗ = (u, v).

Ed(v⃗, I) =

∫
Ω

(
It(x, t) + v⃗(x, t).∇⃗I(x, t)

)2
dx (3.14)

Es(v⃗) =

∫
Ω
α
∣∣∣∣∣∣∇⃗v⃗(x, t)∣∣∣∣∣∣2 dx (3.15)

where ||∇⃗v⃗(x, t)||2 =
∑

i,j

(
∂vi
xj

)2
, with (i, j) ∈ [1, 2] × [1, 2], (x1, x2) = (x, y) and

(v1, v2) = (u, v). The parameter α controls the relative importance of the two
terms. It is a weighting coefficient. This spatial regularization is obtained via a first
order smoothness term of the velocity field because it models the first order spatial
continuity properties of the flow. In this way the BCCE formulation is well-posed
and solution of the problem can be computed. More the weighting coefficient is
large, more the spatial regularization is important compare to the flow equation
and more the estimated velocity field will be smoothed. Horn and Schunck [77]
used a variational formulation of the problem. They computed Euler-Lagrange
differential equations and solve the obtained system equation using Gauss-Seidel
iterative method.

Global approaches have a strong advantage compare to local ones as they allow to
provide a dense estimated velocity field. For locations for which ||∇⃗I|| ≈ 0 (i.e. un-
textured regions), no reliable velocity can be estimated from the data term (equation
(3.14)). At these locations, the smoothness term (equation (3.15)) solves this prob-
lem by propagation of the velocity due to the neighborhood connexity presents in Es.
This is particularly interesting in the case of particle image where most of the back-
ground is untextured and where BCCE contains motion information only on particle
gradients. However, this smoothness term spatially constraints the velocity field all
over the image domain in an equivalent way. The gain obtained on untextured areas,
may be a disadvantage to treat discontinuities of the velocity field (for example, be-
tween different moving objects or strong flow mixing). Discontinuities might, in this
case, be over smoothed. Many works have been done to improve the regularization
functions to fit the application study [65, 20, 177, 29, 122, 136, 74, 12, 162].

3.2.4 Preserving discontinuities

In this section, we give a brief overview of the different methods used to preserve
discontinuities of the velocity field. The discussion on these methods is, however,
beyond the scope of this manuscript as we focus on the motion equation defini-
tion which corresponds to the data term Ed. Insertion of some of these methods
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should probably improve the efficiency of our approach for some applications. For
a complete review of preserving discontinuity methods, please refer to [65, 20, 177].

Omitting the integration over the image domain Ω for writing clarity, Horn and
Schunck [77] regularization function is isotropic Es(v⃗) = αΦ

(
||∇⃗v⃗||

)
. where Φ is a

Tikhonov [172] function and is as: Φ
(
||∇⃗v⃗||

)
= ||∇⃗v⃗||2. This function is isotropic

because it affects all direction x, y equivalently. The Tikhonov function is quadratic
and tends to penalize stronger the outliers (strong velocity deviations) than other
smaller deviations. At discontinuities of the velocity field, robust regularization
functions allow stronger variations and then do not constraint them too much.

To preserve discontinuities, we can distinguish two cases: image driven and flow
driven functions.

Image driven functions will play on the importance of the smoothness term de-
pending on the image brightness composition. These methods suppose that bright-
ness gradients represent acceptable discontinuity area. An image driven function
can be written as:

Es(v⃗) = α Φ
(∣∣∣∣∣∣∇⃗I∣∣∣∣∣∣) ∣∣∣∣∣∣∇⃗v⃗∣∣∣∣∣∣2 (3.16)

Function Φ can be supposed as isotropic [5] or anisotropic [145, 177] applying dif-
ferent weight depending on the orientation of the gradient.

Image driven might be useful in the case for which brightness of the image
corresponds to different objects with different motions. However in fluid motion,
it is mainly wrong. For example in particle images, brightness gradients do not
represent disparity areas of the velocity field but only particle contours.

Another method is to focus on the velocity variations to control the regulariza-
tion function. Variation of the velocity will be higher all around discontinuities.
Importance of the constraining weight should be different when there is or not mo-
tion discontinuities. A flow driven function can be written as follows:

Es(v⃗) = α Φ
(
||∇⃗v⃗||

)
(3.17)

where Φ has to be defined to allow strong variations at discontinuities (i.e. ||∇⃗v⃗||
high) and to constrain local variations (i.e. ||∇⃗v⃗||). Many strategies have been devel-
oped to find these kinds of function based, for example, on diffusion interpretation.
The resulting functions Φ are called robust functions as they can deal with out-
liers. For mathematical demonstration details and necessary conditions that robust
functions have to satisfy, we refer to [65, 53].

Robust functions are often non-convex and harder to minimize than convex func-
tions such as quadratic function for example. A variant class called semi-quadratic
functions allows to keep the advantage of easy minimization process as quadratic
coupling with the advantages of robust functions [65, 20]. An auxiliary variable ζ
is needed and the semi-quadratic minimization is the combination of quadratic one
and analytical updating of the new variable representing the discontinuity. In image
processing [116, 20, 106] and for optical flow estimation [108, 47], many authors used
it successfully for inverse problem.
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Flow driven regularizations have much more interest for fluid motion because
it does not refer to image information but only to the spatial configuration of the
velocity field. Today state-of-the-art methods in OF estimation are using robust
functions to preserve discontinuity of the velocity field. We can enumerate the
following recent works [29, 122, 136, 74, 12, 162].

3.2.5 Multi-Resolution

Differential Optical Flow has a strong limitation concerning the displacement am-
plitude. When defining the differential BCCE (equation 3.7), there is an implicit
assumption of small image displacement leading to ignore the large ones. The second
order terms of Taylor expansion are neglected. Two methods can be used to force
large displacement determination. For both cases, it consists on reducing spatial
resolution to get the larger displacements included in the spatial gradient informa-
tion.

The first method is the pyramidal decomposition, first proposed by Burt [30].
Today, this technique is used by most DOF algorithms. It is based on subsampling
the original image from size N ×M to successive different levels k with resolution of
size N/2k×M/2k. Original image resolution is for k = 0. To generate the pyramidal
decomposition different methods have been proposed. The most common is using
a Gaussian decomposition [21, 116, 106, 47, 123, 29, 162], but others use wavelet
decomposition [99] or steerable pyramid [152]. First of all, number of pyramidal
decomposition level has to be arbitrarily defined. The same filter will be used
to reduce successively the resolution at each level. The displacement field d⃗k+1

estimated at level k + 1 is interpolated and used at level k to transform the image.
Therefore, at level k, we are looking for the residual displacement field d⃗rk following
equation (3.18). The total displacement field is then updated at level k by the
residual displacement field d⃗rk considering the interpolated coarser displacement field˜⃗
dk+1 where ’˜ ’ is the interpolated field from coarser to current pyramidal level. (for
more clarity, illustrations are given in chapter 4 figures 4.2 and 4.3).

d⃗k =
˜⃗
dk+1 + d⃗rk (3.18)

Multiresolution by pyramidal decomposition of the differential BCCE is very suit-
able. Justification can be found in [123]. Nevertheless, careful attention has to be
paid to the implementation. A wrong estimation of displacement at a level k + 1 is
increased at level k. Our approach uses pyramidal decomposition technique, a de-
tailed description of it is given in section 4.2.1 and a new pyramidal decomposition
technique reducing the number of transformation procedures is proposed in section
4.2.2

In the 90’s, another multiresolution technique has been proposed based on scale
space theory [156]. This method consists in successive decompositions of the original
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image in different space representation. It uses low pass filter of different bandwidths
from low to high frequencies. In DOF approaches, multiscale methods have been
successfully used [187, 6, 135]. Using convolution derivative property, when filtering
the image I by a Gaussian filter W of variance σ2, we have:

D (W ∗ I)
Dt

=
DW
Dt

∗ I (3.19)

For large bandwidth filter (low frequency), DW/Dt got large spatial information.
Large displacements can be then retrieved from the filtered brightness gradient.
Finer information about the displacement is retrieved using smaller bandwidth fil-
ters. This iterative technique has the advantage to work on the original image size.
However, it still needs warping (see section 4.2) and interpolation of the estimated
velocity field obtained using larger bandwidth filter, in the aim to determine the
residual displacement using smaller bandwidth filter.

A combined pyramidal decomposition and multiscale approach has been pro-
posed by Ruhnau in [135]. At each pyramidal level additional filters of the multi-
scale allow to slice the bandwidth into smaller pieces that has the effect to reduce
the aliasing along the time frequency axis.

3.2.6 Conclusions

Dense motion estimation using the DOF approaches is now very efficient. Com-
bined local and global constraint has been proposed in [29]. A video set benchmark
is available since 2009 [12] enabling to test and compare different methodologies
(http://vision.middlebury.edu/flow/). Today, the best algorithm tested on
these image sequences is proposed by Sun [162]. This approach shows, that the
main improvements since Horn and Schunck [77] are on discontinuity preservation,
optimization scheme and iterative multiresolution processes. For a larger overview
on classical motion estimations and computer vision, readers can refer to the book
of Szeliski [166] available online: http://szeliski.org/Book/

3.3 Physical Optical Flow Modeling

Differential Optical Flow methods describe in the preceding section may become
too restrictive when applied to fluid motions. Only brightness constancy hypothesis
or continuity of the solution is made. No specific notion concerning the properties
of the observed fluid are used to formulate the problem. However, fluid motion
is constituted of regions that move differently and transform differently. This can
produce strong brightness variations of intensity information used to determine the
velocity field. Brightness constancy (see section 3.2.1) is not anymore a usable hy-
pothesis. In the image, this phenomenon is described by local variation, or gradient,
of the brightness that may be strong. The smoothness function defined in equation
(3.15) in the global regularization (section 3.2.3) has to account for the spatially

http://vision.middlebury.edu/flow/
http://szeliski.org/Book/
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coherence of the velocity field. When there is strong velocity deformation gradient,
the smoothness term will under estimate spatial variation of the velocity field.

In the case of fluid motion, classical DOF approaches cannot, most of the time,
directly determine correctly the velocity field. It is the reason why the fluid motion
estimation, using DOF variation formulations and complex resolution processes,
becomes, these last years, a point of interest for many researchers in computer vision
and in fluid mechanics [7, 55, 160, 183, 16, 127, 191, 47, 189, 137, 73, 120, 74, 100,
75]. Possible improvements are in equations 3.13: the motion equation definition
(data term) attached to the observed brightness intensity values of images and the
regularization function (smoothness term) to allow spatial and time fluid velocity
field.

3.3.1 Flow Equation

3.3.1.1 Continuity Optical Flow Equation (CE)

The first physical formulation of the flow equation was proposed by Fitzpatrick [59].
He uses the continuity equation for the data term to compute the velocity field.
Later on, other works proposed as well to define the data term by the continuity
equation [7, 55, 183, 16, 127]. Let be,

∂ρ

∂t
+ ∇⃗.(ρV⃗ ) = 0 (3.20)

the continuity equation where ρ is the density function and V⃗ = (U, V,W ) the 3D
velocity field.
Let integrate in the vertical direction (z axis) the equation (3.20) between z0 and
z1: ∫ z1

z0

(
∂ρ

∂t
+ ∇⃗.(ρV⃗ )

)
dz = a (3.21)

Let be a equal to zero due to boundary conditions in z0 and z1.∫ z1

z0

∂ρ

∂t
dz +

∫ z1

z0

∇⃗.(ρV⃗ )dz = 0 (3.22a)

∫ z1

z0

∂ρ

∂t
dz +

∫ z1

z0

(
∂(ρU)

∂x
+
∂(ρV )

∂y
+
∂(ρW )

∂z

)
dz = 0 (3.22b)

Using the Leibniz integral rule [1]:

∂

∂z

∫ g(z)

f(z)
φ(x, z)dx =

∫ g(z)

f(z)

∂φ

∂z
dx+ φ(g(z), z)

∂g

∂z
− φ(f(z), z)

∂f

∂z
(3.23)

with f(z) and g(z) functions of z. We can commute the integral and the partial
derivative because z0 and z1 are constant. Thus:

∂
∫ z1
z0
ρdz

∂t
+
∂(
∫ z1
z0
ρUdz)

∂x
+
∂(
∫ z1
z0
ρV dz)

∂y
+

∫ z1

z0

∂(ρW )

∂z
dz = 0 (3.24)
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Defining an observed apparent motion v⃗ = (u, v) as a density-weighted average of
the horizontal and vertical velocity field as

u =

∫
ρUdz∫
ρdz

; v =

∫
ρV dz∫
ρdz

(3.25)

Equation (3.22b), it becomes:

∂
∫ z1
z0
ρdz

∂t
+
∂
(
(
∫ z1
z0
ρdz) u

)
∂x

+
∂
(
(
∫ z1
z0
ρdz) v

)
∂y

= −[ρW ]z1z0 (3.26)

The complete continuity equation can be written as:(∫ z1

z0

ρdz

)
t

+ ∇⃗.
(
(

∫ z1

z0

ρdz) v⃗

)
= −[ρW ]z1z0 (3.27)

Thus for any quantity describing the flow, the integration on z can be make as for
example, for a recorded image of a flow seeded, we have an integration of infor-
mation in the direction of the camera or satellite axis I ∝

∫ z1
z0
ρdz. The projected

3D continuity equation (2D-CE) neglecting the vertical integration of the vertical
velocity W is:

It + ∇⃗. (I v⃗) = 0 (3.28)

The 3D Continuity Equation (3D-CE) which considers the vertical integration of
the vertical velocity W term is:

It + ∇⃗. (I v⃗) = −[ρW ]z1z0 (3.29)

[55, 183, 16] use directly the L2 norm of the 2D continuity equation (3.28). [7]
starts from 2D continuity equation (3.28) and applying it to incompressible fluid,
the divergence of the velocity is thus null (equation (2.13)). It brings back the
equation to BCCE (equation (3.7)). [127] uses a parametric formulation based on
2D continuity equation (3.28). [191] uses the continuity equation for post processed
the cross-correlation allowing to estimate velocity field. [16, 191, 47] make the
hypothesis of a 2D motion field and neglect the vertical velocity component. [73]
uses the 3D continuity equation (3.29) in a z-layered motion estimation.

3.3.1.2 Integrated Continuity Optical Flow Equation (ICE)

[47, 73] proposed to base the flow equation on an integrated formulation of the
continuity equation (3.28) (ICE). They expressed the flow equation function of the
displacement field. They assumed that the velocity field is constant between two
successive images and integrate the continuity equation along the trajectories from
time t to time t+∆t. Resolving the differential equation (3.28), the ICE formulation
becomes:

I(x+ d⃗(x), t+∆t) e∇⃗.(d⃗(x)) − I(x, t) = 0 (3.30)

The integrated formulation of the continuity equation (3.30) contains informa-
tion of large displacements. However the equation is highly non linear that makes
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difficult the process of minimization to get an optimal solution. The authors pro-
posed a multiresolution process by pyramidal decomposition. Displacement is de-

composed as in sec.3.2.5: d⃗(x) = ˜⃗
d(x)+ d⃗r(x). The gradient ICE formulation (3.30)

is obtained by first order Taylor expansion around the point x+
˜⃗
d(x) as:

e∇⃗.
˜⃗
d(x)

[
I+ d⃗r(x)

(
∇⃗I+ I ∇⃗

(
∇⃗. ˜⃗d(x)))]− I(x, t) = 0 (3.31)

with I = I(x +
˜⃗
d, t + ∆t) the warped image by ˜⃗d (see section 4.2 for more details

on the multiresolution by pyramidal decomposition). The final gradient formulation
ICE (3.31), in the multiresolution process, is attached to warped information of the
second image at time t + ∆t. They proposed to use robust functions for data and
smoothness terms (see section 3.2.4). Note that the final equation is different of the
direct used continuity equation (3.28) in a multiresolution process. For the 3D-ICE,
integration of equation (3.29) is not null but it is function of the vertical velocity
difference and the divergence of the coarser displacement field. These methods
add to this new flow equation formulation a special regularization which is based
on divergence and curvature of the velocity field [46] and on an extension using
simplified Navier-Stokes equation as spatio-temporal regularization [73].

3.3.1.3 Scalar Transport Equation

At the best of our knowledge, Su and Dahm [160] were the first to propose an
optical flow method based on the scalar transport equation with molecular diffusion
(convection/diffusion) under its dimensionless formulation (equation (2.23b)), that
we call TE:

∂C

∂t
+ V⃗ .∇⃗C − 1

ReSc
∇2C = 0 (3.32)

In visualization studies of the concentration field evolution, link exists between C

and the brightness I of the recorded images of the studied flow. They directly used
the 3D equation (3.32) to determine the three-dimensional velocity fields. For this,
they used recorded images by Planar Laser Induced Fluorescence (PLIF) from flu-
orescent dye evolving in a turbulent flow. To solve the non-unicity of the equation,
here 3 unknown variables U, V,W , they used global constraints adding 2 equations:
the continuity equation ∇⃗.V⃗ = 0 (equation (2.13)) and a spatial coherency of the
velocity field as Horn and Schunck ||∇⃗V⃗ || = 0 (equation (3.15)). The problem for-
mulation is done through a variational formulation making the summation of the
quadratic form of the scalar transport equation with molecular diffusion, continuity
equation and the spatial coherency of the velocity field functions. The method does
not incorporate multiresolution technique. This necessitates, then, time-resolved
measurements of volumetric scalar fields. That was done, in practice, by using a
laser-scanning system and a high-speed photosensitive array [50, 60]. Note that such
measurements are feasible only when a time interval between two successive scan
planes is sufficiently small that a 3D data volume reconstructed from a set of data
planes can be considered to be frozen in time. Moreover, the resolution in time
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(∆t) and space (3D pixel size) of the time sequence has to be finer than the flow
characteristic time and length. Nevertheless the formulated equation misses lower
scale information. This is the main point of the present work (chapter 5).

Recently, an interesting work from Liu and Shen [100], extended and general-
ized the 2D projected flow equation. They gave a direct connection between the
DOF and fluid flow methods by projecting the 3D transport or continuity equations
onto the image plane to analyze typical flow visualizations, including laser-sheet
induced fluorescence, transmittance through transported passive scalar and others
(see [100]). They obtained projected motion equation showing that the 2D apparent
velocity field is proportional to the path-averaged velocity of fluid or particles.

∂g

∂t
+ ∇⃗. (gv⃗) = λ2D∇2g︸ ︷︷ ︸

Diffusion

+ DcB︸ ︷︷ ︸
Boundary

+ cn⃗.
(
ψV⃗
)∣∣∣z1

z0︸ ︷︷ ︸
Accumulation

(3.33)

where v⃗ is the 2D apparent velocity, g = g(I) is the function of the normalized
image intensity that depends on the type of image sequence. z0, z1 are the depth
between controlled surfaces (layer, laser shit or maximum depth boundary). D is the
diffusion coefficient and c a coefficient for fluorescence processes, scalar absorption
or particle scattering absorption that are at basis of the recorded information from
the flow field enlightened generally by laser.

B = −n⃗.∇⃗ψ|z1z0 − ∇⃗12.
(
ψ|z1∇⃗12z1 + ψ|z0∇⃗12z0

)
(3.34)

is a boundary term where ∇⃗12 is projected 3D gradient on the plane (x, y), ψ is
the scalar concentration in the flow (e.g. fluorescent dye), fluid density in density-
varying flows or particle number per unit total volume for loaded flows. Last term
n⃗.(ψV⃗ )|z1z0 represents a rate of accumulation of ψ within the observed area (x, y, z1−
z0).

Most of the time, experiments or analyzed image sequences are recorded as the
boundary and accumulation terms in equation (3.33) are negligible. In Liu’s method,
the diffusion term in equation (3.33) is also considered as null. Note that in case
of 2D incompressible flows ∇⃗.v⃗ = 0 (equation (2.13)), without diffusion, we retrieve
the BCCE equation (3.6) with g(I) = I. However, even for 3D incompressible flows
∇⃗.v⃗ ̸= 0 because ∇⃗12.V⃗12 = −∂W/∂z ̸= 0.

It was proved by Liu and Shen that the 2D apparent velocity from the BCCE
equation (3.6) and others (equation (3.28),(3.29), (3.32)) respect mathematically
the constraint imposed by the flow properties.

Works on the equation of motion have been done linking the continuity equation
or transport equations to the optical flow formulation. CE (section 3.3.1.1) differs
from BCCE (section 3.2.1) for compressible or 3D incompressible flows where the z
component may produce a projected non null divergence as shown just above. TE
(section 3.3.1.3) considers the molecular diffusion of the fluid. For fluid with high
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Reynolds number (Re >> 1) or/and with low diffusion (Sc >> 1), the molecular
diffusion coefficient D is close to zero. In this condition, for incompressible 2D
flows, TE is equivalent to BCCE. In the case of solid particles, we speak of apparent
diffusion.

3.3.2 Regularization Functions

In another way, many works have been done concerning the definition of the regu-
larization function. The Horn and Schunck regularization function is too restrictive,
especially for disparities or strong velocity gradients. Robust functions as seen in
3.2.4 are a way to deal with such disparities. However improvements can be done on
the choice of regularization function definitions that may be more adapted to fluid
flow. Here, we give only the main advancements done for optical flow estimation
applied to flow motion estimation.

3.3.2.1 Constraints based on Helmholtz decomposition

For a bounded domain Ω containing a 2D velocity field v⃗, the Helmholtz decom-
position states that this velocity field can be interpolated as a superposition of a
translation (laminar −−→vlam), a divergence free (solenoidal −→vso) and a curl free (irrota-
tional −→vir) vector fields.

v⃗ = −−→vlam +−→vso +−→vir (3.35)

with
∇⃗.−→vso =

∂u

∂x
+
∂v

∂y
= 0 (3.36)

and
∇⃗ × −→vir =

∂v

∂x
− ∂u

∂y
= 0 (3.37)

In case of non-zero boundary conditions, the laminar term is not null. However,
it is easily identifiable and can be removed in a preprocessing step. Assumption
about vanishing velocity on boundary can also be made, for example, by extending
the domain Ω. Then using the Helmholtz decomposition, the Horn and Schunck
regularization formulation (equation (3.15)) can be rewritten in a div-curl one where
divergence and curvature are independently constrained.

Es (v⃗) =

∫
Ω

(
α
(
∇⃗.v⃗(x)

)2
+ β

(
∇⃗ × v⃗(x)

)2)
dx (3.38)

where α, β > 0 are weighting coefficients [164]. Horn and Schunck equivalently
penalize the divergence and curl of the velocity field. For incompressible flows, as
the apparent velocity field is the 2D projection of the real 3D velocity field, the
rotational component is usually much higher than the divergence. Therefore, div-
curl regularization becomes more advantageous. However, first-order regularization
still penalizes spatial variations of the velocity through the divergence and curvature.
To overcome this strong smoothing higher order regularizations have been proposed
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that constrain variations of divergence and curl instead of directly constrain the
velocity variations [8, 165, 68]

Es (v⃗) =

∫
Ω

(
α
∣∣∣∣∣∣∇⃗(∇⃗.v⃗(x))∣∣∣∣∣∣2 + β

∣∣∣∣∣∣∇⃗(∇⃗ × v⃗(x)
)∣∣∣∣∣∣2) dx (3.39)

Using a variational formulation, the corresponding Euler-Lagrange equation system
consists of two coupled fourth-order Partial Differential Equations (PDEs). [47,
46] proposed a modified second-order div-curl regularization using semi-quadratic
minimization by introducing auxiliary variables ζ and ξ

Es (v⃗, ζ, ξ) =

∫
Ω

[
α

(∣∣∣∣∣∣∇⃗.v⃗(x)− ζ(x)
∣∣∣∣∣∣2 + ∣∣∣∣∣∣∇⃗ × v⃗(x)− ξ(x)

∣∣∣∣∣∣2)

+β

(
Φ
(
||∇⃗ζ(x)||

)
+Φ

(
||∇⃗ξ(x)||

))]
dx (3.40)

This transforms the fourth-order PDEs into a system of second-order PDEs. Min-
imization is done by alternatively minimizing the energy for every variables. A
robust function is also used as Leclerc function for Φ [47]. Another advantage of the
method is that ζ and ξ can be seen as an approximation of the true divergence and
curl.

Later on, [86] and [189] proposed to base the regularization on the potential
function ς (stream potential) and ω (velocity potential)

−→vso = ∇⃗ω⊥ =

(
∂ω

∂y
,−∂ω

∂x

)
(3.41)

−→vir = ∇⃗ς =
(
∂ς

∂x
,
∂ς

∂y

)
(3.42)

Depending on the studied flows, it might be interesting to directly look for the
potential functions ς and ω to reconstruct the velocity field v⃗. After subtracting the
laminar component of the velocity field, the data term Ed (equation (3.14) becomes:

Ed (ς, ω, I) =

∫
Ω

[(
It(x, t) +

(
∇⃗ς(x, t) + ∇⃗ω⊥(x, t)

)
.∇⃗I(x, t)

)2]
dx (3.43)

The regularization is then applied to ς and ω in an high-order regularization formu-
lation as in [47]

Es (ς, ω, ζ, ξ) =∫
Ω

[
α

(∣∣∣∣∣∣∇⃗.(∇⃗ς(x))− ζ(x)
∣∣∣∣∣∣2 + ∣∣∣∣∣∣∇⃗ ×

(
∇⃗ω⊥(x)

)
− ξ(x)

∣∣∣∣∣∣2)

+λ

(
Φ
(
||∇⃗ζ(x)||

)
+Φ

(
||∇⃗ξ(x)||

))]
dx (3.44)

with Φ quadratic [86]. discretization and minimization convergence are given in
[189].

This regularization functions presents the advantage to penalize independently
divergence and curl of the velocity field.
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3.3.2.2 Physical Based Priors Constraints

As fluids are governed by the well-known Navier-Stokes equations (2.21), it comes
naturally in mind to use these equations as regularization function as used in CC
methods for the post-processing step [117, 82] (see appendix A). However, the
Navier-Stokes equations are dependent on many other variables for which we do not
have access from our image sequences. Authors as [136, 137, 73, 120, 74] proposed,
then, to simplify the Navier-Stokes equations and to apply them as regularization
functions in certain flow cases.

A first method was proposed by Ruhnau [136] for which the velocity field is
spatially constrained by the Stokes equations in case of a incompressible stationary
2D flow (∇⃗.v⃗ = 0 and ∂v⃗/∂t = 0). The Stokes equations are correct for small
Re number, then the convective terms are much smaller than the viscous terms
(v⃗.∇⃗v⃗ << ν∇2v⃗). The system of equations can be written as:

− ν∇2v⃗ + ∇⃗p = f⃗ in Ω (3.45a)

∇⃗.v⃗ = 0 in Ω (3.45b)

v⃗ = g⃗ in Ωb (3.45c)

Ωb the boundary of Ω. g⃗ is a boundary condition on v⃗. Coupling this system of
equation with the classic DOF formulation as BCCE, CE, ICE or TE, they got
four unknown variables u, v, ∂p/∂x, ∂p/∂y. To defined a well-posed problem, [136]
proposed to minimize the following energy controlled by variables f⃗ , g⃗:∫

Ω
Es

(
v⃗, p, f⃗ , g⃗

)
=

∫
Ω
α||f⃗ ||2dx+ β

∫
Ωb

||∂tg⃗||2dx (3.46)

Details on their numerical resolution can be found in [136]. This method has the ad-
vantage to be able to determine the pressure field and the external forces involved
in Stokes flows. This regularization method is still coherent for turbulent flows,
however variables f⃗ , g⃗ do not have anymore physical meaning. Another interesting
point is that this regularization function can be applied to only 2 successive images.

Thinking about flow motion, we can imagine a coherency over the time axis of
the velocity field evolution. It is there suitable to use spatio-temporal regularization
functions and not only spatial ones. This is, of course interesting when the time
image sequence contains more than two successive images.

The simple regularization that comes, is to extend the spatial Horn and Schunck
smoothness over the time axis. In this way [178] defined the time as the third
dimension

Es (v⃗) =

∫
Ω

(
α
∣∣∣∣∣∣∇⃗3v⃗(x, t)

∣∣∣∣∣∣2)dx (3.47)

with ∇⃗3 = ( ∂
∂x ,

∂
∂y ,

∂
∂t) and ||∇⃗3v⃗(x, t)||2 =

∑
i,j

(
∂vi
xj

)2
, with i = 1, 2 and j = 1, 2, 3

with (x1, x2, x3) = (x, y, t) and (v1, v2) = (u, v). The time smoothness term im-
proves the optical flow estimation but it becomes less sensitive to instantaneous
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noise. However, it is not physically motivated.

In recent papers [137, 73, 120, 74], incorporation of physical based equations into
regularization functions are used to constrain the velocity field using time informa-
tion.

[137] proposes to incorporate physical based time smoothing into the div-curl
regularization for turbulent 2D incompressible flows. The vorticity transport equa-
tion gives the time evolution of the velocity. In case of 2D flows, the vorticity
ϖ = ∇⃗ × v⃗ is a scalar field and:

Dϖ

Dt
=
∂ϖ

∂t
+ v⃗.∇⃗ϖ = ν∇2ϖ (3.48)

where v⃗ is the 2D velocity field. Note that in case of 3D flows, projection of vorticity
transport equation should be done. In [165] the second-order div-curl regulariza-
tion penalizes the spatial variations of divergence and vorticity. Considering 2D
incompressible flows ∇⃗.v⃗ = 0 (equation (2.13)), only variations of vorticity are in-
teresting. Using the vorticity equation with the last velocity field estimated between
times (t −∆t) and time t, it is possible to compute a predicted vorticity at time t
by solving:

ϖP (t) = ϖ(t−∆t) +

∫ t

t−∆t

(
v⃗(t′).∇⃗ϖ(t′)− ν∇2ϖ(t′)

)
dt′ (3.49)

This predicted vorticity field is used to constrain in time the current estimation of
vorticity at instant t. This constraint is formulated as a new quadratic term (right
term of equation (3.50))in the regularization energy Es coupled with the second-
order div-curl regularization. For the objective energy E, they use the BCCE data
term Ed (equation (3.14)).

Es (v⃗) =

∫
Ω

(
α Φ

(∣∣∣∣∣∣∇⃗(∇⃗ × v⃗(x)
)∣∣∣∣∣∣2)︸ ︷︷ ︸

2ndorder div-curl

+β
∣∣∣∣∣∣ϖP (t)− ∇⃗ × v⃗(x)

∣∣∣∣∣∣2︸ ︷︷ ︸
temporal vorticity constraint

)
dx (3.50)

Where Φ is a robust function. For details of the non-trivial discretization and
numerical resolution, please refer to [137, 138].

A similar time regularization has been proposed in [73, 74] for determining mo-
tion of atmospheric layer. They did not only predict the vorticity field but they
used a filtered simplified vorticity-divergence formulation of shallow water models
[51] to predict the velocity field.{

∂ϖ
∂t + v⃗.∇⃗ϖ +ϖι = (νs + ν)∇2ϖ
∂ι
∂t + v⃗.∇⃗ι+ ι2 − 2 |J | = (νs + ν)∇2ι

(3.51)

where ι = ∇⃗.v⃗ is the divergence of the velocity field, |J | is the determinant of the
Jacobian matrix of variables (u, v), νs is the enstrophy-based subgrid scale model
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[73] (see section 2.4.3). In the same way as [137] a quadratic time regularization
term is added to the energy which constrains the variations of the velocity field
compared to the predicted velocity field obtained from equation (3.51). Thus, the
smoothness term Es is:

Es (v⃗) =

∫
Ω

(
α

(∣∣∣∣∣∣∇⃗(∇⃗ × v⃗(x)
)∣∣∣∣∣∣2 + ∣∣∣∣∣∣∇⃗(∇⃗v⃗(x))∣∣∣∣∣∣2)+ β ||v⃗(x)−−→vP (x)||2

)
dx

(3.52)
with −→vP the predicted velocity field using last information at time (t − ∆t). Here
the 2D apparent velocity field v⃗ is proportional to the path-averaged velocity field
of the flow across a volume. Hence it did not satisfy directly the full Navier-Stokes
equations but it satisfies, the simplified formulation given by the shallow flow as-
sumptions.

An extension of this method has been proposed in [74]. The authors proposed to
use CC estimation as supplement information. In the same way as for the time reg-
ularization by the predicted velocity field from shallow water equations, a quadratic
term is added to the regularization energy Es which constrains the velocity field v⃗ by
the cross-correlation estimation −→vcc. This method is very useful when applied to par-
ticle images because CC estimation is much more robust and it is thus less sensible
to noise than DOF estimation where the error level increase with the multiresolu-
tion process. However, this regularization term may bring much more erroneous
information in case of scalar images for which CC is poorly efficient.

For turbulent flows, the last proposed method [72] was to include a regulariza-
tion term that enforces quantities derived from the velocity gradients to be smooth
for which second-order spatial regularization function is added to the regularization
energy Es that constrains the velocity field to satisfy the turbulent kinetic energy
decay [87].

All these methods use spatio-temporal regularization based on flow conservation
equations of different quantities. However these regularizations do not guaranty a
continuous respect of the conservation laws over the entire time sequence because
they only take into account two successive times at each estimation. An interesting
technique, data assimilation, is used by [120, 121, 45, 89] to estimate the motion field
over an entire temporal image sequence. The data term Ed (defined by BCCE) is
controlled by dynamic equations as the Navier-Stokes. The optimal solution is given
by the best configuration of the velocity field satisfying the Navier-Stokes equations
with respect to the observing scene represented in the data term Ed. This method
is not affected by noisy or incomplete data. Discussion of this technique is beyond
the scope of this thesis. However the use of our approach should be very interesting
combined with data assimilation based on subgrid scale models for LES formulation
of the Navier-Stokes equations.
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3.3.3 Conclusions

Global approaches on differential optical flow methods have been improved a lot
for the last 20 years. DOF becomes to be applied on flow motion estimation at
the beginning of 21st century and becomes explicitly linked to physical properties
of fluid in [100]. Many works have been done on the regularization trying to adapt
it to flow motion or to use physical flow equation to constrain temporally and spa-
tially the velocity field. Motion equations were derived from continuity or transport
equations. Only recently, focus on turbulent flows and differentiation between large
and small scales has been done on the regularization functions [74, 72]. Data as-
similation [120] is also very promising as it computes the Navier-Stokes equations
over the time domain. In this way, they filter all scales satisfying the flow equations.
Flow equation (data term) has been left aside of turbulent problem. However, it
is the observed information from which we estimate the field of motion. Moreover,
observed information is given by images of fixed time and spatial resolutions.

3.4 Discussions

In the appendix A, we will describe the standard algorithm for cross-correlation (CC)
particle image velocimetry and have summarized several extensions. CC approaches
are the most used techniques in fluid mechanic community. They proved to be robust
and fine enough to be able to extract fluid and turbulence statistics.

There is also a very large work on DOF methods. In an attempt to model the
physical behavior of fluid flow, alternative formulations have been proposed : volume
conservation [7, 16], continuity equation [46], and generalized transport equation
applied to particle images [100, 74]. Besides, efforts have been put to improve
the regularization term: some authors enforce divergence and vorticity constraints
[165, 46] or integrate Navier-Stokes equation [137, 74]. These methods are now
adapted to fluid motion. They have the advantage to produce a dense estimated
velocity field with high spatial precision. Recent improvements allow to get very
small estimation errors with higher spatial resolution than CC. Moreover, they can
be applied on particle images but are naturally defined for scalar images because
they are derived from continuity and scalar transport equations. Comparisons of
the state of the art of DOF approaches with CC on particle images and synopsis of
these methods can be found in [75].

For example, in the application of atmospheric motion determination, cross-
correlation techniques were the first to be applied to remote sensing images [63, 93].
Improvements of cross-correlation methods are still used, with good results on re-
mote sensing images [190, 27], as they are less sensitive to noise than DOF methods.
However, DOF adapted to flow motion determination becomes very efficient when
applied on remote sensing images [43, 160, 47, 49, 73, 74]. They have the advantage
to estimate coherent dense velocity field of fluid motion. In the next chapter, we
propose an efficient DOF approach and compare it to some recent existing DOF and
CC approaches.
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In this chapter, we describe our differential optical flow (DOF) approach. Motion
estimation problem is formulated as a Markov Random Field (MRF) framework.
The Gibbs energy is defined as the sum of a data term derived from the DOF
equation, and a global regularization term acting as a smoothness constraint.

In the first part of this chapter, we explain our problem formulation. We pro-
pose a new DOF equation formulation which is defined on the two spatial intensity
gradients of two successive in time images (section 4.1). To tackle the limitation of
DOF equations for large displacements, we propose an unwarping multiresolution by
pyramidal decomposition (section 4.2) for which assumption on gradients is made
to reduce the number of transformations during the process. We also compare and
suggest some improvements of optimization methods (appendixes C and E).
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In the second part, we present a validation applying our algorithm to different
time image sequences for rigid and non-rigid motions (sections 4.5 and 4.6). Ac-
curacy of results is compared with other DOF techniques from the literature and
CC commercial software for known errors as AAE and RMS velocity (section 4.4
equations (4.44)).

The works done in this chapter have been published or submitted in [125, 33,
34, 32, 38].

4.1 Problem Formulation

In our case, we want to estimate the velocity v⃗(x) for each pixel x from one image
I1 = I(x, t) at time t to the successive in time image I2 = I(x, t + ∆t). Available
information, we have from images are the brightness intensity field of the image
pair. We call observation variable field I = {I(x)|x ∈ Ω} the extracted information
that we can get from these fields. Ω is the image dimension. The velocity field
v⃗ = {v⃗(x)|x ∈ Ω} is, in our problem, the unknown variable for which we are seeking
the best configuration which will correspond to the apparent velocity field from I1 to
I2. The velocity v⃗(x) is a continuous 2D variable bounded by Γ = [−v⃗max; +v⃗max]

Observed variable field I is known with a certain degree of uncertainty, due
in particular to the stochastic process of imaging condition. Consequently, the
estimated velocity field, itself, can be estimated only up to a certain accuracy.

The Markov Random Field (MRF) theory is a probabilistic approach which
allows to define a mathematical framework of the problem to solve. A review of
MRF framework is given in appendix B. MRF-Gibbs equivalence (appendix B.3)
gives:

P (v⃗|I) ∝ exp (−E(v⃗, I)) (4.1)

P (v⃗|I) is the probability of a configuration of v⃗ given the pair image information I.
A configuration of v⃗ is any possible velocity field.

The Gibbs energy E is generally defined as:

E(v⃗, I) = Ed(v⃗, I) + Es(v⃗)

=
∑
x∈C1

Vd (v⃗(x), I(x)) + α
∑

x,x′∈C2

Vs(v⃗(x), v⃗(x
′)) (4.2)

where Ed is the data energy (data term) and Es is the regularization energy. And
Vd, Vs the associated potential functions [98]. C1 and C2 are the single-site and
pair-site cliques respectively (see appendix B.2 and figure B.2 for explanation).

MRF is formulated on an undirected graph G = (s, e). Graph is a convenient
representation of image for which the observed variable is given in each pixel of the
image. Thus, the image domain Ω corresponds to the undirected graph G. The sites
s of G are the pixels x ∈ Ω of the pair images and the edges e correspond to the
relation between pixels defined by the chosen neighborhood system (4-neighborhood
system in our case).
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The data energy Ed (equation (4.2)) establishes the link between the observed
variable field I, and the unknown variable field v⃗. This term is defined according to
the application. In this chapter, Ed will be defined by the motion equation which is
a differential optical flow equation (section 4.1.1). DOF equation (see section 3.2)
does not allow to determine a unique solution (2 unknown variables v⃗ = (u, v) for
1 equation). However, it is reasonable to assume that nearby points are not totally
independent, but are animated by similar motions. Hence, contextual constraints
ought to be added to the model which transforms the ill-posed problem to a well-
posed problem. This modeling of interdependencies between neighbor variables is
defined through a regularization energy Es that we define as a smoothness term
applied on the unknown velocity field.

Hence, we seek for the best solution ̂⃗v of v⃗ that maximizes the posterior proba-
bility P (v⃗ | I), or equivalently, that minimizes the energy E (v⃗, I) :

̂⃗v = arg min
v⃗∈ΓN

E (v⃗, I) (4.3)

The choice of an MRF framework, associated to efficient optimization technique
on graphs, enables to define the functional of the energy E with a certain flexi-
bility (Szeliski and al. [168], Kolmogorov and Zabih [88]). Alternative methods to
solve energy minimization problems defined similarly to (4.3), such as variational
approaches (Horn and Schunck [77], Heitz and al. [75]), are efficient in practice only
if E is a convex function of the unknown v⃗. Note that DOF approaches presented
in last chapter 3.3 were defined using variational framework. Their data Ed and
regularization Es energies were continuous functions (

∫
). However, in our case, the

energies are defined on an undirected graph and thus are discretized functions (
∑

).
Results show, in this thesis, that motion estimation using MRF framework is as
efficient as and even better than variational ones and allows a 2D real velocity field
determination.

In the following, we detail the formulation of E in subsections 4.1.1 and 4.1.2.
The optimization procedure is described in sections 4.2.1 and 4.3 and in appendixes
C and E.

4.1.1 Data Term and Differential Optical Flow Equation

BCCE (section 3.2.1) has proved to be very powerful in motion estimations since
[77]. It is based on the hypothesis of constant brightness of the scene of interest
over a small period of time ∆t. For a given time image pair I(x, t) and I(x, t+∆t),
BCCE is defined by:

I(x+ d⃗(x), t+∆t)− I(x, t) ≈ 0 (4.4)

d⃗ is the displacement field.
The 2D velocity v⃗(x) = (u(x), v(x)) in pixel x is deduced from an apparent

displacement d⃗(x) = (dx(x), dy(x)) that links pixel x = (x, y) of the first image at
time t with its corresponding position x+ d⃗(x) in the second image at time (t+∆t)
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(see section 3.1).

v⃗(x) =
d⃗(x)

∆t
(4.5)

From a 1st order Taylor expansion of I(x + d⃗(x), t + ∆t) around x , equation
(4.4) lead to:

I(x, t+∆t) + d⃗(x).∇⃗I(x, t+∆t) + ϑ(d⃗2(x))− I(x, t) ≈ 0 (4.6)

where ∇⃗ = (∂/∂x, ∂/∂y) is the gradient operator. ∇⃗I(x, t + ∆t) are the spatial
gradients on the second image (at time (t + ∆t)). If d⃗(x) is small enough, higher
order terms ϑ(d⃗2(x)) are negligible. We call the resulting equation BCCE_2:

I(x, t+∆t)− I(x, t)

∆t
+ v⃗(x).∇⃗I(x, t+∆t) ≈ 0 (4.7)

This equation was used by [106, 122].

We also perform a Taylor expansion of I(x + d⃗(x), t + ∆t) around x and t.
Neglecting higher order terms ϑ(d⃗2(x),∆t2), equation (4.4) leads to:

It(x, t) + v⃗(x).∇⃗I(x, t) ≈ 0 (4.8)

where It(x, t) = ∂I(x, t)/∂t is the time gradient and ∇I(x, t) are the spatial gra-
dients on the first image (at time t). Lets call it BCCE_1. This formulation was
used by [21].

The finite difference scheme of the time gradient It(x, t) neglecting ϑ(∆t2), on
two successive in time images, is here:

It(x, t) =
I(x, t+∆t)− I(x, t)

∆t
(4.9)

Combining equation (4.8), (4.7) and (4.9), we obtain a new non-centered BCCE
equation that contains spatial information from I(x, t) and I(x, t+∆t).

It(x, t) + v⃗(x).
1

2

[
∇⃗I(x, t) + ∇⃗I(x, t+∆t)

]
≈ 0 (4.10)

We call this equation TF_BCCE (TI_DOFE in [34, 38]). This equation based on
two successive in time images has more information referring to the observed scene
than BCCE_1 and BCCE_2. In this way, spatial gradient may better represents
displacement orientation. Recently [4] propose to introduce an intermediate image
at the half way from the first to the second image (t − ∆t/2) and (t + ∆t/2) and
uses a symmetrical formulation of BCCE based on two images.

I

(
x+

d⃗(x)

2
, t+

∆t

2

)
− I

(
x− d⃗(x)

2
, t− ∆t

2

)
≈ 0 (4.11)
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However, coordinates of the velocity v⃗(x) correspond to coordinates of an imaginary
intermediate image. Comparing to the formulation of [4], for TF_BCCE, there is
no virtual intermediate image to be created via interpolation. We will see in section
4.2 that TF_BCCE will present more advantage than their formulation.

BCCE_1 (equation (4.8)), BCCE_2 (equation (4.7)) and TF_BCCE (equation
(4.10)) are three different DOF equations of the BCCE (equation (4.4)). DOF equa-
tion is strongly dependent on the displacement amplitude because of the hypothesis
made above. For large displacements, DOF equation becomes weaker because of
the importance of higher Taylor order expansion terms (ϑ(d⃗2(x),∆t2)) that can be
not anymore neglected. This limitation is resolved using multiresolution techniques
introduced in previous chapter 3.2.5 and detailed in the following section 4.2.

The data term Ed in equation (4.2) is defined by a quadratic cost function of
the BCCE_1 (equation (4.8)), BCCE_2 (equation (4.7)) or TF_BCCE (equation
(4.10)).

The finite difference scheme of the time gradient It(x, t) was given in equation
(4.9) neglecting ϑ(∆t2) terms to formulate the TF_BCCE equation. Finite dif-
ference is known to be sensitive to noise. To reduce high frequency artifact and
possible noise from the input images, we first smooth them using a Gaussian filter
W of variance σ2. This will help to determine a better velocity field [100]. The time
gradient discretization becomes:

It(x, t) =
(W ∗ I)(x, t+∆t)− (W ∗ I)(x, t)

∆t
(4.12)

For spatial gradients of the intensity ∇⃗I(x, t) and ∇⃗I(x, t+∆t), we can also use
a finite difference formulation.

As we have a large spatial information in the image, it is better to use the
convolution property:

∇⃗ (W ∗ I) = ∇⃗W ∗ I (4.13)

In this way, the spatial derivative is only computed on the Gaussian filter, then it is
convolved with the image. This derivative formulation is less sensible to noise than
the finite difference.

In addition to decrease artifact and noise, the Gaussian filter W removes high
spatial frequencies of brightness variations (small scales). This will be the main
point discussed in chapter 5 for study of turbulent flows.

The data term Ed of our DOF approaches is defined as follow:
For BCCE_1 equation (4.8):

Ed (v⃗, I) =
∑
x∈C1

(
It(x, t) + v⃗(x, t).

(
∇⃗I(x, t)

))2
(4.14)

For BCCE_2 equation (4.7):

Ed (v⃗, I) =
∑
x∈C1

(
It(x, t) + v⃗(x, t).

(
∇⃗I(x, t+∆t)

))2
(4.15)
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Figure 4.1: Illustration of the time image sequence discretization scheme.

For TF_BCCE equation (4.10):

Ed (v⃗, I) =
∑
x∈C1

(
It(x, t) + v⃗(x, t).

1

2

(
∇⃗I(x, t) + ∇⃗I(x, t+∆t)

))2

(4.16)

with the above discretization of the gradients. C1 the single-pair clique corresponding
to the image domain Ω.

4.1.2 Regularization term

The regularization energy Es in Gibbs energy (equation (4.2)) is

Es(v⃗) = α
∑

(x,x′)∈C2

Vs(v⃗(x), v⃗(x
′)) (4.17)

We define a 4-neighborhood connexity (Figure 4.1). For pixel x = (x, y) on x

and y axis at time t, the pixel size is ∆ = (∆x,∆y) and pixel x has an intensity
I(x, t) and a velocity v⃗(x, t). Due to the neighborhood system, we have 4 neighbors
of x defined as:

x′
0 = (x−∆x, y) ; x′

1 = (x, y−∆y) ; x′
2 = (x+∆x, y) ; x′

3 = (x, y+∆y) | x′
i ∈ Ω

(4.18)
There are represented in figure 4.1 by gray color points. Set of pairs (x,x′), for all
x and x′, defines the clique C2 (see appendix B and figure B.2).

We also choose a quadratic cost function of the spatial velocity variations on the
image. Defining Vs as the following finite difference schemes for each neighbor x′

from equation (4.18), we have:

Vs
(
v⃗(x), v⃗(x′

0)
)
=

∣∣∣∣∣∣∣∣ v⃗(x, y)− v⃗(x−∆x, y)

∆x

∣∣∣∣∣∣∣∣2 (4.19a)
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Vs
(
v⃗(x), v⃗(x′

2)
)
=

∣∣∣∣∣∣∣∣ v⃗(x, y)− v⃗(x+∆x, y)

∆x

∣∣∣∣∣∣∣∣2 (4.19b)

Vs
(
v⃗(x), v⃗(x′

1)
)
=

∣∣∣∣∣∣∣∣ v⃗(x, y)− v⃗(x, y −∆y)

∆y

∣∣∣∣∣∣∣∣2 (4.19c)

Vs
(
v⃗(x), v⃗(x′

3)
)
=

∣∣∣∣∣∣∣∣ v⃗(x, y)− v⃗(x, y +∆y)

∆y

∣∣∣∣∣∣∣∣2 (4.19d)

neglecting ϑ(∆x2) and ϑ(∆y2) terms.

When doing the summation over all the clique C2 (for all x and x′), the discrete
form of the regularization energy defined in (4.2) is equivalent to the continuous form
defined in variational global approaches [14] as in equation (3.15). Es correspond
to a first order spatial continuity of the velocity field. For writing simplification, we
pose ∆x = ∆y = ∆.

Es(v⃗) = α
∑

x,x′∈C2

∣∣∣∣∣∣∣∣ v⃗(x)− v⃗(x′)

∆

∣∣∣∣∣∣∣∣2 ≡ α

∫
Ω
||∇⃗v⃗(x, t)||2dx (4.20)

This discretization scheme is correct if the pixel size (∆x,∆y) is small enough
to neglect second order Taylor terms ϑ(∆x2) and ϑ(∆y2). It has the advantage to
satisfy the global spatial continuity of the velocity field in a Gibbs energy formu-
lation defined on a graph. The smoothness discretized term is also isotropic. We
will use, in the following, this discretization scheme of the smoothness term in our
proposed methods presented in this chapter and in the next one.

We use a quadratic penalty formulation of the data energy Ed and regularization
energy Es for an easier convergence of the minimization process used to determine
the optimal solution [115]. However, as a drawback, it tends to oversmooth the
real discontinuities of the velocity field. As we are studying impact of different data
energy formulations for motion estimation, work on robust function presented in
section 3.2.4 is not our objective.

4.2 Multiresolution Approach

The DOF formulation (equations (4.8), (4.7) and (4.10)) cannot deal with large
displacements as the second and highest orders of Taylor expansion can not be
anymore neglected. Multiresolution is a nice way to tackle this problem. This allows
to estimate the velocity field from a coarse-to-fine estimation in an incremental way.
There are two different multiresolution techniques: The pyramidal decomposition
and the scale space decomposition (see section 3.2.5). However, multiresolution
necessitates interpolation of velocity field and warping of image data between two
pyramidal levels (section 4.2.1). These transformations result in an approximation of
the image brightness intensity field from which the residual incremental estimation is
computed. We propose, now, a multiresolution technique that reduces the number of
these transformations. This unwarped multiresolution is presented in section 4.2.2.
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(a) (b)

Figure 4.2: Coarse-to-fine resolution with multiresolution representation of images
(a) and corresponding estimated velocity field for each pyramidal level (b)

4.2.1 Mutliresolution by Pyramidal decomposition technique (W_MR)

Multiresolution by pyramidal decomposition from coarse-to-fine resolution (from
level K to level 0) has been proved to be numerically useful for Optical Flow esti-
mation [123]. The image resolution is iteratively reduced in K+1 different successive
resolution levels making a pyramid of image as illustrated in figure 4.2. This is done
using a Gaussian filter between every level k to k + 1 [30].

Figure 4.2.a. illustrates an example of Gaussian pyramidal decomposition. Be-
cause ∆t is given by the time image series, large velocities are equivalent to large
displacements. From the Gibbs energy E (equation (4.2)), velocity field v⃗ is ex-
pressed in pixel by interval of time. Spatial resolution of image Ik at level k is

∆k = (2k ∗∆× x, 2k ×∆y) (4.21)

for k = (0, ...,K) if K + 1 levels are necessary and where ∆0 is the pixel size of
original images (I0 = I). This means that the velocity field v⃗ (in pixel by interval
of time) is smaller at coarser level. A representation of the corresponding velocity
field at each pyramidal level k is given as example, in figure 4.2.b.

At coarsest level K, v⃗K is small enough to satisfy the BCCE_1 ( equation (4.8)),
BCCE_2 ( equation (4.7)) and TF_BCCE ( equation (4.10)).

For level k (k ̸= K), the velocity v⃗k(x) (and equivalently for the displacement
d⃗k(x)) is defined as

v⃗k(x) = ˜v⃗k+1(x) + v⃗rk(x) (4.22)
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Figure 4.3: Illustration of the incremental resolution of displacement in the pyra-
midal decomposition multiresolution from level k + 1 to level k.

where ⃗̃vk+1 = interp (2× v⃗k+1) is the interpolated velocity field v⃗k+1 computed
at coarser resolution level k + 1 to the current level k. The figure 4.3 gives an
illustration of velocity between level k and k + 1 (figure shows the displacement,
v⃗k(x) = d⃗k(x)/∆t). Velocity is multiplied by 2 because pixel resolution is decreased
by 2 between level k and k + 1. The velocity must also be interpolated at the
new level pixel grid locations. We use bilinear interpolation. ⃗̃vk+1 is considered
as known information in the input time image sequence at level k. Then only the
residual velocity field at level k, v⃗rk, needs to be estimated (⃗̃vk+1 >> v⃗rk). The
condition of small displacement between two successive images for DOF equations
is now satisfied (figure 4.3).

Taking ˜⃗
dk+1 = ⃗̃vk+1.∆t into consideration at level k, needs transformation of

images by the displacement field ˜⃗
dk+1. The resulting image is denoted I. This

transformation is called warping [122]. There is two possible warping processes:

• Warping image at time t to t + ∆t. It is called forward warping

(Ik(x+ ⃗̃dk+1(x), t)). The brightness constancy equation (4.4) becomes:

Ik(x+ ⃗̃dk+1(x) + d⃗rk(x), t+∆t)− Ik(x+ ⃗̃dk+1(x), t) ≈ 0 (4.23)

Redefining the spatial coordinates on warped image at time t making the

variable change x = x+ ⃗̃dk+1(x), equation (4.23) is:

Ik(x+ d⃗rk(x), t+∆t)− Ik(x, t) ≈ 0 (4.24)

Thus BCCE_1 (equation (4.8)) [21] at level k takes the form:

Ikt (x, t) + v⃗rk(x) . ∇⃗Ik (x, t) = 0 (4.25)

with
Ikt (x, t) =

Ik (x, t+∆t)− Ik (x, t)

∆t
(4.26)
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• Warping image at time t + ∆t to t which is called backward warping

(Ik(x + ⃗̃dk+1(x) + d⃗rk(x) − ⃗̃dk+1(x), t + ∆t)). Here, the brightness constancy
equation (4.4) becomes:

Ik(x+ ⃗̃dk+1(x) + d⃗rk(x)− ⃗̃dk+1(x), t+∆t)− Ik(x, t) ≈ 0 (4.27)

Thus BCCE_2 (equation (4.8)) [47, 122] at level k takes the form:

Ikt (x, t) + v⃗rk(x) . ∇⃗Ik (x, t+∆t) = 0 (4.28)

with
Ikt (x, t) =

Ik (x, t+∆t)− Ik (x, t)

∆t
(4.29)

For TF_BCCE formulation (equation (4.10)), in the same way, images at time t and

t + ∆t has to be forward warping and backward warping by ˜⃗
dk+1/2. TF_BCCE

in a multiresolution by pyramidal decomposition is then similar to [4] because it
becomes a centered formulation with the W_MR multiresolution technique. The
brightness constancy is:

Ik(x+ ⃗̃dk+1(x) + d⃗rk(x)−
⃗̃dk+1(x)

2
, t+∆t)− Ik(x+

⃗̃dk+1(x)

2
, t) ≈ 0 (4.30)

Doing the variable change x = x+ ⃗̃dk+1(x)/2, TF_BCCE at level k becomes:

Ikt (x, t) + v⃗rk(x) .
1

2

(
∇⃗Ik (x, t) + ∇⃗Ik (x, t+∆t)

)
= 0 (4.31)

with
Ikt (x, t) =

Ik (x, t+∆t)− Ik (x, t)

∆t
(4.32)

For all these formulations (equations (4.25), (4.28) and (4.31)), transformation

of images by ˜⃗
dk+1 is done first, then the time and space gradients are computed.

Their precision depends on the accuracy of ˜⃗dk+1 which is an estimated displacement
field from coarser level and which is not an exact field. It also depends on the
efficiency of the used warping technique to generate I. All existing algorithms using
pyramidal decomposition, as multiresolution, use a warping process. The efficiency
of the approach is then directly related to the used warping method and the quality of

estimation of the coarser displacement field ˜⃗
dk+1. Warping is a non negligible source

of errors. To tackle this, we propose in section 4.2.2 an unwarping multiresolution
method.

At each pyramidal level k, the velocity field v⃗rk is estimated by minimization of
the Gibbs energy Ek defined in equation (4.2). The data energy Ekd , at level k, is
the L2 norm of the equations (4.25), (4.28) and (4.31) for BCCE_1, BCCE_2 and
TF_BCCE approaches respectively.
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As we are seeking for the velocity field v⃗k from t to t +∆t at each level k, the
regularization energy Eks , defined in equation (4.20), should be applied on v⃗k. Eks

becomes:

Eks(v⃗k) = α
∑

x,x′∈C2

∣∣∣∣∣∣∣∣ v⃗k(x)− v⃗k(x
′)

∆k

∣∣∣∣∣∣∣∣2

= α
∑

x,x′∈C2

∣∣∣∣∣∣
∣∣∣∣∣∣
(
⃗̃vk+1(x) + v⃗rk(x)

)
−
(
⃗̃vk+1(x

′) + v⃗rk(x
′)
)

∆k

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(4.33)

where ∆k takes the value 2k×∆x or 2k×∆y depending on the horizontal or vertical
orientation of the pixel pairs (x,x′). The only change along the pyramid level k is
the pixel size ∆k (equation (4.21)).

After estimation of the residual velocity field v⃗rk, the velocity field v⃗k has to be
updated using equation (4.22).

4.2.2 Multiresolution by Unwarped Pyramidal Decomposition tech-
nique (noW_MR)

As described in the above section 4.2.1, the multiresolution by pyramidal decom-
position needs image warping between each pyramidal level. The time and space
gradients, used by DOF equation, are then computed from these transformed images
I in equations (4.25), (4.28) or (4.31). Warping images bring uncertainty related to

the quality of the coarser displacement field ˜⃗
dk+1 and to the method used for the

warping. For example, the resulting image brightness field may have some undefined
values for which an interpolated value should be given, or some collisions due to the
image resolution grid, for which a selection criteria or average method is often used.

We propose here to remove the warping step in W_MR (section 4.2.1) making
some assumption on gradient properties. We call this new method noW_MR. At a
pyramidal level k, d⃗k is defined by equation (4.22) recalled here:

d⃗k(x) = ⃗̃dk+1(x) + d⃗rk(x) (4.34)

where ˜⃗dk+1 has to be taken into account to determine d⃗rk(x) using DOF equations
(BCCE_1, BCCE_2 or TF_BCCE).

In noW_MR, we consider that the spatial gradients are constant over a small
time interval ∆t. This means that spatial gradients should not be dependent on
⃗̃dk+1(x) during the pyramidal decomposition technique. In W_MR technique, gra-
dients are affected by the image warping because the resulting image brightness

field is transformed by the coarser displacement field ˜⃗
dk+1 and then interpolated

to the pixel grid. In noW_MR, the spatial gradients are computed on the original
images at pyramidal level k at time t and at time t + ∆t depending on the used
DOF equations (4.8)) (BCCE_1), (4.7) (BCCE_2) or (4.10) (TF_BCCE).
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The figure 4.4 illustrates the difference between the spatial brightness distribu-
tions at a pyramidal level k using W_MR or noW_MR methods. For sake of sim-
plicity, the illustration represents a pixel x with its 4-neighbors x′. Arrows represent

the relative coarser displacements ( ˜
d⃗k+1(x′) − ⃗̃dk+1(x)). In x, this relative coarser

displacement is thus null. Using the proposed unwarped method (noW_MR) in this
section, spatial gradients are computed from the original images. However, using
the warping method (W_MR) (previous section), image is warped by the previous
relative coarser displacement field. Brightness distribution is transformed, and then
interpolated to the image grid resolution to compute the spatial gradients. We can
see that, in this example, spatial gradients are affected by the warping process. If
the coarser displacement field is correct and if the warping method does not intro-
duce some artifact, W_MR should perform better than our noW_MR. However,
this is almost never the case, because estimation of the velocity field is never perfect.

At pyramidal level k, the DOF equations (4.8)) (BCCE_1), (4.7) (BCCE_2)
and (4.10) (TF_BCCE) using noW_MR are simplified and take the following forms:

• For BCCE_1 (equation (4.25)), image at time t for pixel x keeps the intensity
value and spatial gradients of the original image after moving to location

x+ ⃗̃dk+1(x). Thus BCCE_1 becomes:

Ikt (x, t) + v⃗rk(x) . ∇⃗Ik (x, t) = 0 (4.35)

with

Ikt (x, t) =

Ik

(
x+ ⃗̃dk+1(x), t+∆t

)
− Ik (x, t)

∆t
(4.36)

• For BCCE_2 (equation (4.28)), image at time t + ∆t for pixel x takes the
intensity value and spatial gradients on the original image of location x +

⃗̃dk+1(x). Thus BCCE_2 becomes:

Ikt (x, t) + v⃗rk(x) . ∇⃗Ik
(
x+ ⃗̃dk+1(x), t+∆t

)
= 0 (4.37)

with

Ikt (x, t) =

Ik

(
x+ ⃗̃dk+1(x), t+∆t

)
− Ik (x, t)

∆t
(4.38)

• And by combination of equation (4.35) and (4.37), TF_BCCE (equation
(4.31)) becomes:

Ikt (x, t) + v⃗rk(x) .
1

2

(
∇⃗Ik

(
x+ ⃗̃dk+1(x), t+∆t

)
+ ∇⃗Ik (x, t)

)
= 0 (4.39)

with

Ikt (x, t) =

Ik

(
x+ ⃗̃dk+1(x), t+∆t

)
− Ik (x, t)

∆t
(4.40)
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Figure 4.4: Illustration of the difference with W_MR (red) and noW_MR (orig-
inal image configuration - blue) methods for spatial gradient computations. Pixel
schematization.

Because of assumption made on gradients in this section, TF_BCCE with noW_MR
does not need transformation of both images. The method is then different than
the one used in [4] using W_MR.

From these new equations, there are, at maximum, two interpolations depending
on the used DOF equations which are the pixel brightness interpolation

Ik

(
x+ ⃗̃dk+1(x), t+∆t

)
on image at time t +∆t for the computation of Ikt (x, t)

and the spatial gradients interpolation ∇⃗Ik
(
x+ ⃗̃dk+1(x), t+∆t

)
on image t+∆t.

These interpolations do not correspond to a warping process, it is only an interpo-
lation of the brightness or spatial gradient of image t+∆t corresponding to a shift

of ⃗̃dk+1(x).
To resume, W_MR needs at each pyramidal level k to warp images which repre-

sent an interpolation and a transformation for each image. Time and space gradients
depend then on the approximated images. For the noW_MR, we reduce the needed
operations to only one or two interpolations depending on the DOF equations (4.8)
(BCCE_1), (4.7) (BCCE_2) or (4.10) (TF_BCCE). Time and space gradients are
computed on the exact image at time t and t+∆t.

Another advantage is that the discretization of the time derivative of BCCE_1
(equation (4.36)), BCCE_2 (equation (4.38)) and TF_BCCE (equation (4.40)) is,
in the case of noW_MR, the same for all of them. It is not the case using W_MR
because of the warping images (equations (4.26), (4.29) and (4.32)) which may result
in different transformed images.

In the other hand, the assumption made on gradients imposes a local restriction
on spatial deformation as it considers that gradients do not vary over the entire
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pyramidal decomposition approach.
The tables 4.1 and 4.2 recall the difference between the DOF equations (BCCE_1,

BCCE_2 and TF_BCCE) (section 4.1.1) using W_MR (section 4.2.1) or noW_MR
(section 4.2.2) multiresolution techniques for the time and spatial gradients. Ik is

the resulting warped image of Ik by the displacement field ˜⃗
dk+1.

Ik

(
x+ ⃗̃dk+1(x), t+∆t

)
is the interpolated value of Ik and ∇⃗Ik at location x +

⃗̃dk+1(x).

W_MR BCCE_1 BCCE_2 TF_BCCE

Ikt

Ik(x,t+∆t)−Ik(x,t)
∆t

Ik(x,t+∆t)−Ik(x,t)
∆t

Ik(x,t+∆t)−Ik(x,t)
∆t

∇⃗I ∇⃗Ik (x, t) ∇⃗Ik (x, t+∆t) 1
2

(
∇⃗Ik (x, t) + ∇⃗Ik (x, t+∆t)

)

Table 4.1: Recall of time and spatial gradients for BCCE_1, BCCE_2 and
TF_BCCE using W_MR (section 4.2.1).

W_MR BCCE_1 BCCE_2 TF_BCCE

Ikt

Ik

(
x+

˜
d⃗k+1(x),t+∆t

)
−Ik(x,t)

∆t

Ik

(
x+

˜
d⃗k+1(x),t+∆t

)
−Ik(x,t)

∆t

Ik

(
x+

˜
d⃗k+1(x),t+∆t

)
−Ik(x,t)

∆t

∇⃗I ∇⃗Ik (x, t) ∇⃗Ik

(
x+

˜
d⃗k+1(x), t+∆t

)
1
2

(
∇⃗Ik (x, t)

+∇⃗Ik(x+
˜

d⃗k+1(x), t+∆t)

)

Table 4.2: Recall of time and spatial gradients for BCCE_1, BCCE_2 and
TF_BCCE using noW_MR (section 4.2.2).
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4.3 Multigrid Technique

To reduce the computational cost and to help local minimization methods to con-
verge close to the global minimum, multigrid methods [107, 28] are often used.

These methods consist in representing the image domain in different grids G. We
choose squared grids of size NG ×NG pixels. For more information about multigrid,
readers can refer to [179, 174]. We describe here briefly such approach as we use it.

At a pyramid level k, we are looking for the velocity v⃗rk(x) (equation (4.22)).
We defined a two stage uniform multigrid process at each pyramidal level. Coupling
the multigrid process with the multiresolution by pyramidal decomposition W_MR
or noW_MR (section 4.2) for which the velocity v⃗rk(x) is small at each pyramidal
level k (see figure 4.3), a two-stage multigrid is sufficient. The image domain is
decomposed in one size grid resolution. We consider the velocity v⃗rkg(x) uniform
inside the grid G of size N2

G . Each sub-structure (pixel) of the grid is defined by the
uniform grid velocity and by a local velocity component v⃗rkl(x) as:

v⃗rk(x) = v⃗rkg(x) + v⃗rkl(x) (4.41)

This method is a variant formulation of the FLTG (From Local To Global) method
describes in (appendix C.4) for local minimization in Stereo Matching application.

However, in the multiresolution by pyramidal decomposition, at a pyramidal
level k, the smoothness term Es (equation (4.33)) controls evolution of the total
velocity spatial variations. In this case, when generating the grid representation of
the image, coarser interpolated velocity field ⃗̃vk+1 has to be averaged over pixels
inside the grid to get the corresponding coarser grid velocity field ⃗̃v(k+1)g .

In terms of energy, at pyramidal level k for grid level, the Gibbs energy Ek

becomes:

Ek (v⃗, I) =
∑
G∈Ω

∑
x∈G

(
Ikt (x, t) + v⃗rkg(x) . ∇⃗Ik (x, t)

)2

+ αNG
∑

G,G′∈C2G

∣∣∣∣∣∣
∣∣∣∣∣∣
(
⃗̃v(k+1)g + v⃗rkg

)
−
(
v⃗kg′

)
∆k

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(4.42)

with C2G is the pair-grid cliques (G′ ∈ NG). v⃗kg′ = ˜v⃗(k+1)g′
+ v⃗rkg′

is the neighbor
grid velocity of the grid G′. Here the DOF equation for the data term Ekd is the
BCCE_1 using noW_MR (equation (4.35)). We get similar energy using the other
DOF equations or the other multiresolution by pyramidal decomposition (section
4.2).

The Gibbs energy Ek for grid level gets 1/(N2
G) less summation terms as smooth-

ness term Eks only constrains spatial variations of grid velocity field v⃗kg . Weight of
the smoothness term cost is ponderated by NG which represents the number of pixel
on the border of the grid for which it is the only case where the velocity difference
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between two pixels is non null. Moreover, the grid velocity field is computed through
the DOF equation over N2

G grid pixels. This is equivalent to Local approach (section
3.2.2) combined with Global approach (section 3.2.3). It has to be noted that such
obtained grid velocity field v⃗rkg is less affected by noise (appendix D.2.3).

Thereafter, at substructure level (pixel), we estimate the local velocity field v⃗rkl
for every pixel. The Gibbs energy Ek is:

Ek (v⃗, I) =
∑
x∈C1

(
Ikt (x, t) +

(
v⃗rkg(x) + v⃗rkl(x)

)
. ∇⃗Ik (x, t)

)2
+ α

∑
x,x′∈C2

∣∣∣∣∣∣∣∣ v⃗k(x)− v⃗k(x
′)

∆k

∣∣∣∣∣∣∣∣2 (4.43)

with v⃗k = ⃗̃v(k+1)g + v⃗rkg + v⃗rkl for x and x′ respectively. At substructure level, it
remains only a small quantity to estimate. As the grid velocity field is closed to the
optimal solution, the minimization converges faster.

Minimization techniques and other optimization issues for motion estimation are
described in appendixes C and E respectively. Results are given in appendix F.
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4.4 Evaluation methodology

To validate accuracy of our DOF approaches (section 4.1) with W_MR and noW_MR
multiresolution by pyramidal decomposition (section 4.2), we test them on synthetic
data from classical sequences of computer vision community. Analysis of multiresolu-
tion and optimization issues are described in appendix F. Tests on DOF formulation
(BCCE_1, BCCE_2 and TF_BCCE) and unwarped multiresolution (noW_MR),
proposed in section 4.1.1 and 4.2.2 respectively, is detailed in the following section
4.5. We also validate our approach on synthetic particle image sequences in section
4.6.

Using the exact velocity field, we calculate the statistical errors to evaluate the
quality of algorithm results. In a standard way [14, 11], we computed the Average
Angle Error (AAE), Average Endpoint Errors or L1 absolute error (AEPE) and
RMS Velocity Error (RMS) as follows:

AAE =
1

N

∑
x∈Ω

arccos

(
v⃗c(x).v⃗e(x)

||v⃗c(x)|| ||v⃗e(x)||

)
(4.44a)

AEPE =
1

N

∑
x∈Ω

(||v⃗c(x)− v⃗e(x)||) (4.44b)

RMS =

√∑
x∈Ω (||v⃗c(x)− v⃗e(x)||2)

N
(4.44c)

with v⃗c and v⃗e are respectively the exact and the estimated velocity fields. N =

card(Ω) is the total number of pixel x in the image. The exact velocity field v⃗c from
image at time t to time t+∆t is called the ground truth.

For visualization of velocity fields v⃗c and v⃗e, we used an arrow representation
for some image pixels as illustrated in figure 3.4.b. We also used a color mapping
visualization proposed by Middlebury (figure 4.5) for which the orientation and
amplitude of velocities are representing by a color and a brightness intensity respec-
tively. White color corresponds to a null velocity vector.

Our approaches are compared with state of the art algorithms from both com-
puter vision and fluid mechanic communities.

Figure 4.5: Flow color coding (Middlebury open source)
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4.5 Experimentation on Middlebury Benchmark

4.5.1 Input Data Sequences

Methods are first tested on different image sequences provided by the Middlebury
Flow Team Benchmark [11]. We chose this benchmark because proposed sequences
were defined to represent different motion characteristics (discontinuities, light vari-
ations, untextured regions...) [12]. The figures 4.6.a illustrate the input images for
three sequences: a) Dimetrodon, b) Venus and c) Yosemite. Figures 4.6.b represent
the ground truth of these sequences using the velocity color mapping from figure 4.5.
Statistical errors AAE, AEPE, RMS (equation (4.44)) are computed for three kinds
of image area (all, disc and untext) which allows a better analysis of our approaches
accuracy. The figures 4.6.c, 4.6.d and 4.6.e show the different masks used to extract
specific image areas which are:

• All the image domain without border (all) Figure 4.6.c,

• The motion discontinuities regions (disc) Figure 4.6.d,

• The texture less regions (untext) Figure 4.6.e.

Before determination of the velocity field, we preprocess the Dimetrodon, Venus
and Yosemite time image sequences by convolving them with a Gaussian filter of
variance (σ2 = 1) (see section 4.1.1 equations (4.12) and (4.13)).

Parameters set for each test is the same for a better comparison. Only, the
studied parameter varies.

4.5.2 Analysis of Data Energy Formulation and Unwarping Mul-
tiresolution

For all results, we fix the same values of parameters. We use a 4-level pyramidal
decomposition for multiresolution (K = 3) (section 4.2) and a grid size of 4×4 pixels
for the multigrid method (section 4.3). The weighting coefficient α is spatially
constant and equal to 100 (equation (4.2)). We use DDE minimization method
(appendix C.2). See appendix F for explanation on the chosen parameters and
minimization.

Figure 4.7 shows the estimated velocity field computed using the proposed
TF_BCCE equation (4.10) with noW_MR unwarping multiresolution scheme (sec-
tion 4.2.2 equation (4.39)) for Dimetrodon, Venus and Yosemite sequences. The
color mapping visualization (figure 4.5) is the same as the ground truth visualiza-
tion in figure 4.6.b.

The estimated velocity field is very similar to the ground truth. We show in table
4.3 the AAE (equation (4.44a)) errors for the three image sequences for the differ-
ent DOF formulations BCCE_1 (equation (4.8)), BCCE_2 (equation (4.7)) and
TF_BCCE (equation (4.10))) using (W_MR) warping and (noW_MR) unwarp-
ing multiresolutions (section 4.2). Performance of our methods is also compared to
results shown in [11] given by other Optical Flow algorithms.
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a)

b)

c)

d)

e)

Figure 4.6: Data: From top to bottom: a) Image sequence, b) ground truth, masks
for computation of statistic errors (over white area): c) all domain (all), d) discon-
tinuity (disc), e) untextured zones (untext). From left to right: Dimetrodon, Venus
and Yosemite sequences.

From the table 4.3, we can notice that our approaches outperform algorithms as
Pyramid LK [23], MediaPlayer TM [110] and Zitnick [192] and that it gets around
the same magnitude of errors (AAE) than Bruhn et al. [29] and Black and Anandan
[21]. In bold red, it is the smallest AAE errors over all methods for each sequence.
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(a) (b) (c)

Figure 4.7: Estimated velocity field using TF_BCCE with noW_MR for
Dimetrodon (a), Venus (b) and Yosemite (c) sequences.

AAE dimetrodon yosemite venus
all disc untext all disc untext all disc untext

Bruhn et al. [29] 10.99 9.41 14.22 1.69 2.86 1.05 8.73 31.46 8.15
Black and Anandan [21] 9.26 10.11 12.08 2.65 4.18 1.88 7.64 30.13 7.31

Pyramid LK ([23]) 10.27 9.71 13.63 5.22 6.64 4.29 14.61 36.18 24.67
MediaPlayer ([110]) 15.82 26.42 16.96 11.09 17.16 10.66 15.48 43.56 15.09

Zitnick [192] 30.10 34.27 31.58 18.50 28.00 9.41 11.42 31.46 11.12

W_MR BCCE_1 5.20 8.62 6.17 3.21 4.88 1.33 8.56 34.85 8.21
W_MR BCCE_2 5.43 8.72 6.19 3.49 4.75 2.01 9.57 35.17 9.02

W_MR TF_BCCE 5.00 8.43 5.89 3.17 4.81 1.35 8.32 34.81 7.90
noW_MR BCCE_1 5.12 8.50 6.02 2.89 4.13 1.23 9.03 35.28 8.71
noW_MR BCCE_2 4.99 8.09 5.80 2.93 4.15 1.12 8.72 34.37 8.72

TF_BCCE noW_MR 4.92 8.21 5.80 2.88 4.13 1.06 8.41 33.81 8.54

Table 4.3: AAE errors comparison of BCCE formulations and warping
(W_MR) - unwarping (noW_MR) multiresolution with classic algorithms ([11])
for Dimetrodon, Yosemite and Venus sequences. In bold: smallest AAE errors for
classic algorithms, W_MR and noW_MR. In red: smallest AAE errors over all
methods.

Each method produces at least one of the best estimation.
DOF formulation using the two-frame spatial information (TF_BCCE) performs

better than BCCE_1 and BCCE_2 which are based on only one image information
independently of the used multiresolution scheme. The new unwarping multiresolu-
tion method allows most of the time, a better estimation of the displacement field
for all kind of DOF formulations.

However, as remarked in appendix F, we can notice that our methods get stronger
AAE errors at motion discontinuities (disc). This is mainly due to the energy terms
that are defined as quadratic functions (section 4.1).

Note, that for the multigrid, the grid size is set as 4× 4 pixels. AAE errors for
DDE minimization in table 4.3 becomes most of the time smaller than AAE errors
for SA minimization in table F.3 which confirms the figure F.6 of appendix F.

We also participate to the Middlebury Optical Flow comparison survey. TF_BCCE
with noW_MR results are available on the website: http://vision.middlebury.

edu/flow/. The Middlebury evaluation provides the most complete Optical Flow

http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/
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Figure 4.8: Extracted table from Middlebury online statistic error values tables for
Average Angle Error (AAE) and Standard Deviations (SD). TF_BCCE is using
noW_MR.

algorithm’s comparison. It evaluates performances of approaches on different type
of motion on synthetic and real image sequences. It also computes several statistical
errors to evaluate the quality of velocity field estimations. Moreover, it contains the
most famous Optical Flow approaches and the state-of-art algorithms in the Optical
Flow domain.

Figure 4.8 shows part of the evaluation table with Bruhn et al. [29] (2D-CLG),
Black & Anandan [21], Horn & Schunck [77], pyramid LK [23] and TF_BCCE with
noW_MR methods. In this table, TF_BCCE always gives better AAE errors than
pyramid LK and AAE errors close to the multiresolution Horn & Schunck (imple-
mented by [163] in 2008). This is coherent because our DOF equation formulation
is similar to Horn & Schunck DOF equation (section 3.2.3). Black & Anandan have
smaller AAE errors in other sequences than Yosemite. This is probably due to the
fact that we have optimized the parameter set only on Yosemite sequence. An op-
timization of parameter set over the all training data should improve performance
of the present proposed method for the other data sequences.

4.5.3 Model Efficiency on Other Algorithms

To validate TF_BCCE and noW_MR methods, we apply them into other Optical
Flow algorithms. We use two Matlab open source codes proposed by [163], in which
we incorporated TF_BCCE and noW_MR. One of the open source algorithm is
a multiresolution adaptation of the Horn & Schunck [77] (H&S) algorithm and the
other of the Black & Anandan [21] (B&A) algorithm.

Results are illustrated in Figure 4.9 on the Rubber Whale sequence that was
furnished with the code sources and the running code example. In Figure 4.9, we
represent only the first image of the sequence and the corresponding ground truth
at the upper line and the estimated velocity fields obtained using TF_BCCE with
noW_MR for H&S (Figure 4.9.c) and B&A (Figure 4.9.d).

Statistical AAE errors are shown in table 4.4 comparing the AAE errors with
the original code and with the modified code using TF_BCCE and noW_MR. For
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(a) first Image (b) Ground truth

(c) H&S with TF_BCCE (d) B&A with TF_BCCE

Figure 4.9: Rubber Whale sequence: First image (a), ground truth (b) and esti-
mated velocity field from Horn & Schunck (H&S) (c) and Black & Anandan (B&A)
(d) Matlab codes [163] using TF_BCCE noW_MR

AAE H&S B&A
Deqing Sun 7.277 5.944

TF_BCCE noW_MR 6.996 5.781

Table 4.4: AAE error for the improved Horn & Schunck (H&S) and Black &
Anandan (B&A) Matlab codes [163] on Rubber Whale sequence with TF_BCCE
using noW_MR

the two algorithms, TF_BCCE noW_MR gives a smaller AAE error. It generalizes
and validates that the proposed approach allows a better estimation of the veloc-
ity field. This is due to a better motion information extracted from both images
and a reduction of image transformation in the multiresolution process (section 4.2).

This work on DOF formulations (section 4.1) and Unwarping multiresolution
(section 4.2.2) was published in [34] and submitted in [38].



4.6. Validation on Flow Motion 65

4.6 Validation on Flow Motion

We applied now our method on synthetic particle image velocimetry (PIV) sequences
obtained from experimental studies of turbulent flow field.

Following results are obtained using the TF_BCCE (equation (4.10)) with Un-
warping Multiresolution method noW_MR (section 4.2.2). Our approach is com-
pared to other DOF methods [77, 21, 107, 135, 46] and cross-correlation PIV (CC)
[119, 128, 91].

Readers can find details on PIV recording technique for laboratory experiments
in appendix A.3 and a description of the cross correlation PIV (CC) technique in
appendix A.1.

Although, our energy definition E = Ed + Es (equations (4.16) and (4.17)) is
not adapted to flow motion, our method performs as good as other DOF techniques
form the literature and CC techniques.

4.6.1 Standard PIV images

Data sequences
The Visualization Society of Japan (VSJ) published in 1999 standard PIV images

in order to provide to world researchers available data to test Optical Flow (OF)
techniques. These data are available on-line (www.piv.jp/image-e.html). In this
project, there are eight different synthetic PIV image sequences called standard
images. These sequences were generated with the same velocity field (in cm/s) in a
wide variety of controlled conditions [118] which allows to evaluate the accuracy of
OF approaches with respect to different parameters.

Parameters of the eight sequences are thus detailed in Table 4.5. v⃗ is the average
image velocity in pixels by interval of time over the image domain, ||v⃗max|| gives
the maximum of image velocity. W is the out-of-plane velocity which expresses
the three-dimensional effects of the flow field: The intensity of the particles that
moves slightly out of the observed plane (if the particle completely leaves the plane
the gray value of the particle disappears). Pn is the number of solid particle in
the image, Pd is the average of solid particle diameter in pixels and std(Pd) is the
standard deviation of Pd in pixels. Image sequences n̊ 01, n̊ 02 and n̊ 03 differ only
with respect to the magnitude of the velocity field. Image sequences n̊ 04 and n̊ 05

have only different number of particle. Sequences n̊ 06 and n̊ 07 have particles with
a different diameter while sequence n̊ 08 has a high out-of-plane velocity.

Figure 4.10.a represents one of the input particle image and figure 4.10.b illus-
trates the exact velocity field v⃗c for the eight sequences. Only a parse v⃗c, every 8×8

pixels, is available.

Approaches and parameters
Some applications of method on these images are available in the literature [119,

128, 135, 46]. The results from these tests are shown here for comparison with ours.
To complete the evaluation, we also run the DOF open source Matlab codes of Horn

www.piv.jp/image-e.html
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a) b)

Figure 4.10: a) One of the standard particle image b) and the parse correct velocity
field given every 8× 8 pixels.

Sequence v⃗ ||v⃗max|| W Pn Pd std(Pd)

01 7.4 15.0 0.017 4000 5.0 1.4

02 22.0 45.0 0.058 4000 5.0 1.4

03 2.5 5.1 0.006 4000 5.0 1.4

04 7.4 15.0 0.017 10000 5.0 1.4

05 7.4 15.0 0.017 1000 5.0 1.4

06 7.4 15.0 0.017 4000 5.0 0.0
07 7.4 15.0 0.017 4000 10.0 4.0
08 7.4 15.0 0.170 4000 5.0 1.4

v⃗ : average image velocity [pixels/interval]
||v⃗max|| : maximum image velocity [pixels/interval]
W : average out-of-plane velocity [-/interval]
Pn : number of solid particles [-]
Pd : average solid particle diameter [pixels]
std(Pd) : standard deviation of Pd [pixels]

Table 4.5: Data List of the Standard Images. Parameter settings of n̊ 01 to n̊ 08

image sequences.

& Schunck (H&S) and Black & Anandan (B&A) implemented by [163] and the CC
commercial software [91].

We briefly present the tests for which errors are compared with our errors.

• TF_BCCE noW_MR (our method): Because of the large velocities in pixel
by interval of time of sequence n̊ 02 (||v⃗max|| = 45), we use for the eight
sequences, a 6-level pyramidal decomposition (K = 5) (section 4.2.2) with a
grid size of 4× 4 pixels for the multigrid (section 4.3). Images are previously
smoothed with a Gaussian filter of variance σ2 = 0.75 and the weighting
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coefficient α = 200 (equation (4.2)).

• Black & Anandan (B&A-SUN) and Horn & Schunck (H&S-SUN): The open
source is available on-line on http://www.cs.brown.edu/~dqsun/research/

software.html. We used a 5 level pyramidal decomposition (K = 4), weight-
ing coefficient was set to α = 0.5 for B&A-SUN and α = 1000 for H&S-SUN.
These approaches use warping multiresolution W_MR (section 4.2.1) and even
do 3 successive estimations and warpings at each pyramidal level k. Efficiency
comparison of these approaches are available on Middlebury benchmark as
shown in section 4.5.2.

• Cross-correlation software (CC Lavision) [91]: Davis Lavision software is the
most used CC technique in experimental fluid community. In this test, we
use refinement method that is an iterative methods giving first velocity for
128 × 128 pixels size window to 8 × 8. Gaussian peak interpolation is used
on cross-correlation signal to better retrieve the exact maximum localization.
More information on CC technique is given in appendix A.1.

• Robust Multigrid Horn & Schunck (OF-MG) [107]: It is a coupled pyramidal
decomposition - multigrid optical flow method. Error values were taken from
[46].

• Orthogonal Dynamic Programming (ODP) [128]: It is a dynamic program-
ming [154] based optical flow technique that uses a global regularization of
the intensity difference between successive images. Error values were taken
from [128].

• Classic CC (CC-Classic) and extended (CC+NS) [119]: It is a CC technique.
Interrogation window is taken equal to 9× 9 pixels without overlapping, and
correlation coefficient is evaluated by direct convolution computation instead
of FFT algorithm (usually used). Authors propose a dynamical system cor-
recting the CC by physical equations. Here, the 2D vorticity equation (3.48)
and continuity equation (∇⃗.v⃗ = 0) are employed to govern the CC estimation.
Error values were taken from [119].

• Multiscale Horn & Schunck (OF-MS) [135]: Authors propose a pyramidal mul-
tiscale decomposition of Horn & Schunck method. A 5 pyramidal decompo-
sition (K = 4) with a 9 scale space decomposition levels on every pyramidal
level k was chosen. Error values were taken from [135].

• Continuity equation with Div-Curl regularization (ICE-DivCurl) [46]: Authors
use the integrated continuity optical flow equation (section 3.3.1.2) with a
second-order div-curl robust regularization (section 3.3.2.1). Error values were
taken from [46].

http://www.cs.brown.edu/~dqsun/research/software.html
http://www.cs.brown.edu/~dqsun/research/software.html
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Figure 4.11: Comparison of the RMS velocity error for our algorithm TF_BCCE
noW_MR, B&A-SUN and H&S-SUN [163], CC+NS and CC-Classic [119] and CC
Lavision [91] methods.

Results
Figure 4.11 compares the RMS velocity errors (equation ( 4.44c)) of CC and DOF

approaches mentioned just above with ours from the application of our approach.
We do not have information about sequence n̊ 02 for CC-Classic and CC+NS in

[119]. Errors from DOF approaches are compared in figure 4.12 in their application
to the eight sequences. In Figure 4.11, RMS velocity errors are always less than
1 pixel by interval for TF_BCCE noW_MR. DOF approaches seem to have con-
stantly the same order of RMS errors. For CC methods, there are some RMS errors
strongly different from the others on certain image sequences. While CC techniques
are defined for particle images, they give here the strongest RMS errors. It is clear
on sequence n̊ 08, where the out-of-plane velocity is the strongest. Out-of-plane
velocity will brings particle outside of the light sheet. However, DOF methods and
CC+NS incorporate a global regularization of the velocity field. These methods are,
then, more robust to out-of-plane velocity variations.

For CC Lavison, RMS error is high for sequence n̊ 06, whereas there is no stan-
dard deviation of particle diameters. It is strange as the peak should be easier to
detect. However, CC-Classic shown as well a higher RMS error than other methods.
It also produces the highest RMS error for sequence n̊ 05 for which there is not lot
of particles in the image. This can be explained by the used of meshes of 9×9 pixels



4.6. Validation on Flow Motion 69

that become too small compared to the number of particles in the image. CC-Classic
does not use refinement technique as CC Lavision allowing to get a better velocity
field.

CC+NS constraining method always gives lower RMS errors than the same
method without physical regularization of the flow (CC-Classic). It strongly re-
duces the RMS errors where CC method gives higher errors. The global physical
regularization form helps the correlation peak detection to find the best matches
which satisfies dynamic fluid flow equations. However, we can see here that even
with dynamic physical regularization, CC methods return higher RMS errors than
DOF approaches (TF_BCCE noW_MR, H&S-SUN and B&A-SUN). These syn-
thetic image sequences are not affected by experimental noise. In case of real PIV
acquisition images, CC methods become more robust than DOF methods because
cross correlation is more robust in presence of noise.

For DOF methods, TF_BCCE noW_MR has almost constantly smaller RMS
errors than B&A-SUN and H&S-SUN. B&A-SUN and H&S-SUN got smaller RMS
error only in the case of sequence n̊ 06 where there is no particle diameter variation
which means that the brightness constancy is exactly satisfied. In this optimal
condition, the pyramidal decomposition with warping procedure may not bring too
much erroneous information. However, in Figure 4.12 where the percentage value
of the relative L1 amplitude AEPE errors (equation (4.44b)) is plotted, we can see
that B&A-SUN and H&S-SUN generally give the highest relative AEPE for which
we can confirm that depending on the chosen function to compute errors, different
conclusion can be made on approach efficiency.

Figure 4.12 compares relative AEPE errors which are the AEPE errors (equation
(4.44b)) divided by the average image velocity v⃗ for the different DOF methods
describe above. The average relative AEPE errors of TF_BCCE noW_MR method
for image sequences n̊ 01 and n̊ 04 to n̊ 07 are the lowest. We can see that for
sequence n̊ 04 corresponding to high particle density, we got the smallest AEPE
error. Conversely for sequence n̊ 05, corresponding to low particle density, the error
is higher. This means that DOF methods are sensitive to the number of particle on
image to treat. In fact, more numerous particles are, more the image brightness is
smoothed over the image.

Nevertheless on sequence n̊ 05 and n̊ 06, our algorithm gives the smallest errors
compared to other DOF methods. This is due to the TF_BCCE method that
contains spatial image information from the two successive images at time t and
time t+∆t.

Even after setting empirically the best parameters for B&A-SUN and H&S-SUN
methods to get the smallest errors, these methods still have the highest AEPE errors
compare to the other DOF approaches. ODP method also shows higher AEPE errors
than our approach.

OF-MG and OF-MS methods are similar approaches based on Horn & Schunck
algorithm. AEPE Errors seem also similar. The difference between the two meth-
ods is the used multiresolution technique. OF-MG method uses a pyramidal de-
composition coupled with a multigrid technique. OF-MS method uses pyramidal
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Figure 4.12: Comparison of the RMS velocity error for TF_BCCE noW_MR,
ODP [128], OF-MS [135], OF-MG [107], ICE-DivCurl [46], B&A-SUN and H&S-
SUN [163] methods.

decomposition with multiscale decomposition technique.
ICE-DivCurl method gives the smallest AEPE errors for sequences n̊ 01, n̊ 02

and n̊ 08. For sequence n̊ 01, AEPE error difference with our approach is very
small. However on sequence n̊ 02, ICE-DivCurl method clearly outperforms other
approaches. This method uses the multiresolution - multigrid technique proposed
in OF-MG [107]. We can see that both methods retrieve the lowest error for this
sequence. The multigrid method, here, allows to retrieve a better velocity field at
the coarsest pyramidal level and then the algorithm is able to correctly estimate
the velocity field. For our approach, even if we use an unwarping multiresolution
noW_MR, the two-stage uniform multigrid technique is, for this sequence, too re-
strictive (section 4.3). We should incorporate multi-stage multigrid technique for
high velocity sequences (in sequence n̊ 02, ||v⃗max|| = 45 pixels by interval of time
in an 256× 256 image pixels which represents almost a shift of 20 % of the image).
The difference between ICE-DivCurl and OF-MG methods, on this sequence and on
sequence n̊ 08, can be explained by the definition of their regularization function Es.
ICE-DivCurl method uses a div-curl regularization (equation (3.40)) which favors
more spatial velocity variations than first order velocity derivative (equation (3.15))
used in OF-MG method and in our approach.

For sequence n̊ 03, velocities in pixel by interval of time are small. All methods
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give higher relative error, since small estimated error will produces high relative
error. In this case, much pyramidal decomposition is not useful and even more may
bring some supplementary errors in the estimation. We see that our method gives
one of the smallest errors. It is probably due to the noW_MR technique (section
4.2.1) which will not transfer error due to warping and interpolation during the
mutliresolution process.

4.6.2 Cemagref Particle Images

We will now apply our approach to treat particle time image sequence of a turbulent
flow obtained from a Direct Numerical Simulation (DNS) (section 2.4.1) of known
flow case.

Data sequence
This 2D flow is turbulent and the image sequence was generated numerically using

DNS by the laboratory of fluid mechanics from Cemagref [31] in the aim to have
the exact solution of a flow evolving along the time. The flow has a large range of
scale in the energy spectrum sense.

The Reynolds number of the flow is Re = 3000. The turbulence is homogeneous
and isotropic

They used the 2D vorticity equation with the incompressible condition (equation
3.48) to simulate numerically the flow. The vorticity is computed at each time step
in Fourier spectral space. Resulting images have a size of 2π × 2π with 256 × 256

pixels (meshes). The DNS input image sequence only contains 1 over 10 images
computation results. The average velocity between two successive images from the
DNS input image sequence is around 3.5 pixels by interval of time. The sequence is
composed by 100 successive image pairs.

Particles are generated as ideal tracers of the fluid which means that they follow
the fluid velocity. They are randomly distributed on the image domain at time
t = 0.

Figure 4.13.a represents the first particle image of the used sequence and figure
4.13.b shows the exact DNS velocity field map which is the ground truth.

Approaches and parameters
On this sequence, we test CC Lavision and three DOF algorithms.

• TF_BCCE noW_MR (our approach): We use a 3 level pyramidal decompo-
sition (K = 2) (section 4.2.2) with a grid size of 2 × 2 pixels for multigrid
(section 4.3). Images are previously smoothed with a Gaussian filter of vari-
ance σ2 = 1.0. Weighting coefficient α = 50 (equation (4.2)).

• H&S-SUN: We use a 3 level pyramidal decomposition (K = 2), weighting
coefficient is set to α = 250. See details in [163].
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(a) Particle image (b) Exact velocity map

Figure 4.13: First particle image of the sequence (a) with the corresponding velocity
field map (b) using the Middlebury color coding figure 4.5

• ICE-DivCurl: [46] uses the integrated continuity optical flow equation (equa-
tion (3.31)) with a second-order div-curl robust regularization (equation (3.3.2.1)).
Estimated velocity fields were provided by the authors and published in [121].

• CC Lavision: CC Lavision is a commercial software [91]. We use iterative
refinement method from square meshes of 128×128 pixels to 8×8 pixels with
3 iterations per level (for each mesh size). Gaussian peak interpolation is used
to get a sub-pixel localization of the maximum of the cross-correlation peak.
The parse velocity field is then bilinear interpolated to all image pixels.

Results
Figure 4.14 shows different velocity maps obtained by the above approaches on

the first image pair of the particle DNS image sequence. The color mapping legend,
for velocity field, is given in figure 4.5. The color represents the velocity orientation.
The brightness represents the velocity amplitude. From the four velocity maps, we
use the same color amplitude and orientation. The ground truth has a maximum
amplitude of 3.59 pixels by interval of time at the bottom vortex. All approaches got
a lower maximum amplitude velocity: H&S (3.39), TF_BCCE noW_MR (3.40) and
ICE-DivCurl (3.49). The first order velocity regularization energy (equation (3.15)),
used by H&S-SUN and our approach, is too restrictive to be able to recover high
velocity fluctuations. This explains the difference of maximum velocity between
ICE-DivCurl method which uses a second order velocity regularization based on
Div-Curl equation (3.3.2.1). We can observe that the estimated velocity fields for
all DOF methods are much noisier than DNS field.

For a better comparison between approaches, we compute AAE (equation (4.44a))
and RMS velocity (equation (4.44c)) errors over the 100 successive images for each
image pair. Figure 4.15 and figure 4.16 give the evolution of the AAE and RMS
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(a) Exact velocity map (b) TF_BCCE velocity map

(c) H&S-SUN velocity map (d) ICE-DivCurl velocity map

Figure 4.14: Estimated velocity maps on the first image pair of the DNS particle
sequence for TF_BCCE (b) (our approach), H&S-SUN (c) [163], ICE-DivCurl (d)
[46] compare to the exact velocity map (a). The color mapping is from figure 4.5.

errors over the 100 image pairs. In these figures, we compare errors from CC Lav-
ision and DOF approaches (H&S-SUN, ICE-DivCurl and TF_BCCE noW_MR).
Strangely, ICE-DivCurl produces the strongest errors over the image sequence. The
highest maximum velocity is better determined by ICE-DivCurl method. This prob-
ably means that weighting coefficient α between data Ed and regularization Es

energies (equation (4.2)) is lower than for other DOF methods which results in a
less smoothed estimated velocity field (see figure 4.14.d). ICE-DivCurl with other
parameter settings should give smaller errors, at least as small as H&S-SUN and
TF_BCCE noW_MR.

Another much more interesting conclusion about these two graphs is that the
DOF approaches give similar AAE and RMS velocity errors than the CC approach.
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Figure 4.15: AAE errors for the DNS particle sequence
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Figure 4.16: RMS velocity errors for the DNS particle sequence

CC Lavision is defined for particle image velocimetry estimation which is the case of
application here. Images are issued from numerical simulation and do not contain
any noise. It is why DOF approaches can get the same error level than CC method.
The CC method is limited to 8 × 8 pixels window size for analysis, giving a parse
velocity estimation which is bilinear interpolated to pixel grid locations for every im-
age. In the smallest mesh, the velocity estimation represents the dominant velocity.
The DOF approaches do not have this limitation and can estimate velocity field for
each pixels. Because of the global regularization and the multiresolution technique,
the DOF methods can retrieve a smoothed motion field over the total image domain
even over regions where there is no particle. TF_BCCE noW_MR approach gives
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Figure 4.17: Power spectral analysis of the turbulent horizontal (a) and
vertical (b) velocity components over the lines (log-log scale) on particle DNS
sequence. Exact DNS spectrum (thin black line) is compared with spectra ob-
tained with ICE-DivCurl (dashed green line), H&S-SUN (regular-dashed red
line) and TF_BCCE (blue line) methods.

better results than CC and the other DOF approaches even if the defined flow equa-
tion TF_BCCE (equation (4.10)) and regularization function (equation (4.20)) is
not adapted to fluids.

This DNS is generated for a flow regime of Re = 3000. The flow is thus turbu-
lent. The DNS resolves all turbulent scales of the flow. However, the time resolution
has been filtered. The input image sequence only represents 1 over 10 computed
resulting images. Moreover, DNS input images are filtered by a Gaussian filter of
variance σ = 1.0 before estimation of the velocity field which remove some small
scales information. We compute the average horizontal and vertical velocity energy
spectra (See Figure 4.17) for H&S-SUN, ICE-DivCurl and TF_BCCE noW_MR.
We can thus compare the energy spectra with the exact DNS spectrum. We see
that, low frequencies corresponding to large scales can be correctly retrieved by the
approaches. At a certain frequency, the highest frequency, corresponding to lower
scales, all approaches clearly differs from the DNS spectrum. This is of course, due
to the filtered information of the input images. Because they are filtered informa-
tion, small scales are removed and DOF approaches can only estimate the largest
scale velocity components, even if the approach has a second order velocity regu-
larization (ICE-DivCurl). Another supposition for the spectrum difference behavior
for highest frequencies could come from the method used to estimate the velocity
field. Incremental random value of velocity is generated in the minimization process
for each pixel independently from each other (see appendix E). Final solution of
velocity field is thus globally smoothed over the image domain but it contains lot
of small spatial variations of velocities due to the minimization which may explain
the strong energy at highest frequencies.
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4.7 Conclusions

In this chapter, we have proposed a new DOF approach coupling a non-centered
DOF formulation based on the two spatial image information from instants t and (t+
∆t) with an unwarping multiresolution (TF_BCCE noW_MR). The optimization is
done through the minimization of Gibbs energy (equation (4.2)). For that, different
minimization methods have been adapted and tested on different sequences. Local
minimization method combined with multigrid approach gives the best compromise
between efficiency of the estimated velocity field and time consuming.

We also used a MRF framework to formulate the proposed TF_BCCE noW_MR
method. Results are compared with other DOF methods defined within a variational
framework [77, 107, 47, 29, 135]. Variational approaches, for solving energy mini-
mization problems, have been very popular and have shown excellent results during
the last decades. However, these approaches are efficient only when the total en-
ergy functional is convex. The main advantage of MRF methods is that it generally
allows to use a wider range of energy functional, while ensuring to find a global
(exact or approximated) solution, without being limited to convex functions [168].
Unlike most discrete graph-based optimization framework, our technique enables us
to estimate a 2D real velocity field. Results show that our framework is as efficient
as continuous ones (variational).

TF_BCCE noW_MR approach was not defined taking account for physical
properties of the flow. However, tests on particle sequences of fluid flow shown
that it estimates coherent velocity field compared to recent DOF algorithms and
compared to CC approaches.

The last test on the DNS particle sequence where the flow is turbulent, shown the
limitation of classical DOF approaches. As, in this case, the input image sequence is
a filtered information of the reality scene from which smallest scales information is
missing, the energy spectra in figure 4.17 clearly show that estimation of small scales
becomes at a point strongly different from the exact ones. The tested approaches
can not compute or take into account the velocity contribution associated with these
small scales.

This point is discussed in the next chapter where we are looking for highly
turbulent flow of transported scalar field. This will be discussed in the case for
which the input image data is time and space limited. Note that a way to solve the
problem of missing information from the input sequence was proposed in [121]. The
method uses data assimilation on the BCCE equation (3.14) forcing the velocity field
to satisfy simplified Navier-Stokes equations over the entire time sequence. Even
if some information is missing in the image sequence, the dynamic regularization
by Navier-Stokes equations will allow to retrieve a continuous velocity field at each
instant. This method is very promising and gives very interesting results. However,
it needs at least 10 successive acquisitions of the scene over the time at regular time
step intervals and cannot be applied to an image pair at instants t and (t + ∆t).
This method will also be compared to ours, in the next chapter where we propose a
new motion estimation approach for turbulent flows.
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The study of fluid flow is one of the main challenges in application domains
such as aeronautic, acoustic, or environmental sciences. Conclusions drawn from
the analysis of experiments are strongly linked to the methodology used for motion
estimation.

Cross-Correlation PIV (CC) approaches (appendix A.1) or Differential Optical
Flow (DOF) based approaches adapted to fluids (Section 3.3) are competing to
provide the best motion estimation from time image sequences.
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Most of the fluid flows around us are highly turbulent (Section 2.3): atmospheric
motions, ocean currents, vascular flows... Up to now the problem of turbulence is
generally ignored in the flow equation of existing DOF methods. Turbulence level of
flows are characterized by the Reynolds number Re = UcLc/ν where Uc, Lc are the
velocity and length scales of the flows and ν the kinetic viscosity of the fluid. For
Re high enough, flows are turbulent. The Kolmogorov theory of cascade is a theory
that allows to describe certain part of turbulent flow behavior. Its basis is that
turbulent flows are constituted of structures or eddies containing energy. The ratio
between scales of the largest eddies and the smallest ones in the turbulent flow [87]
is proportional to Re3/4. This implies, that to account for all scales which appear
in the turbulent flow, the time and space resolution of a discrete representation of
flow motion have to be proportional to Re3/4 (for example, for atmospheric flows
Re ≈ 1010). Generally, time and space image resolution are much coarser than this
constraint. Depending on the turbulence regime, missing information in the image
sequence has not to be neglected (see discussion in section 4.7). This information is
generally associated to the smallest scales. When the influence of these small scales
cannot be computed, they should be modeled.

In this chapter, we analyze turbulent fluid flows from image sequences, by ana-
lyzing the concentration of particles measured from the observed intensity in these
images. We propose here to use a Large Eddy Simulation (LES) decomposition
[133] (Section 2.4.3) of the transport equation [160, 161], where the influence of
small scales is incorporated via a subgrid scale turbulent viscosity term as a con-
straint inside a system to solve. We further add a spatial regularization function for
unicity of the solution in the system to solve. The proposed formulation is a new
approach for optical flow estimation. The velocity field, deduced from the resolution
of this system, takes into account effect of small scales through a turbulent viscosity.

The proposed method is tested on synthetic and real image sequences with high
Reynolds number. Comparisons with existing approaches are very promising.

The works done in this chapter have been published or submitted in [35, 36, 37].

5.1 Image Scalar Transport Equation

5.1.1 Continuous Transport Equation for Optical Flow Formula-
tion

We want to estimate the velocity field v⃗ from images containing intensity emitting
by molecules of a passive scalar concentration. The field evolution is deduced partly
by the scalar transport equation which is written in dimensionless form as follows
[160]:

∂C

∂t
+ ∇⃗. (Cv⃗)− 1

Re Sc
∇2C = 0 (5.1)

where C is the scalar concentration field of a specie spread in the studied flow
fluid. Remember that the equation and quantities, describing the flow field, in
this chapter, are non dimentionalised (section 2.2.4). The 2D apparent velocity is
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v⃗ = (u, v). The space and time partial derivatives are ∇⃗ =
(

∂
∂x ,

∂
∂y

)
and ∂

∂t , where
∇2 is the Laplacian operator. Re and Sc are the Reynolds and Schmidt numbers
where Sc = ν/D. D is the molecular diffusion.

To account for the integration of 3D information of a flow over the thickness
of the plane of view or over transverse direction for global view, this for all images
in the sequences, we make the coarse hypothesis that our fluid is a 2D turbulence
where the transport equation is considered only on the plane (x, y). The velocity
along the z-axis is considered as null (W = 0). In the future, we should focus on
this 2D integration of real 3D transport equation related to the studied application
flow field [100]. The fluid is, here, considered as incompressible (equation (2.13)
∇⃗.v⃗ = 0). The equation (5.1) becomes:

∂C

∂t
+ v⃗ . ∇⃗C − 1

Re Sc
∇2C = 0 (5.2)

For images we want to treat, information contained in intensity I can be related to
the passive scalar concentration C. For cloud motion from satellite images, some
authors have proposed I ∝

∫
Cdz [46] or I ∝

(∫
Cdz

)−1 [190]. In this thesis, we
suppose no absorption and thus we consider that intensity is directly proportional
to concentration (observation depth δz << 1):

I ∝ α C (5.3)

where α is a constant independent on time and space. Thus in equation (5.2), we
could substitute I/α to C and equation (5.2) takes the following form:

∂I

∂t
+ v⃗ . ∇⃗I − 1

Re Sc
∇2I = 0 (5.4)

We can notice that for transported quantity with low molecular diffusion or
apparent diffusion (solid particle) (Sc >> 1), the equation (5.4) becomes similar
to the differential form of the BCCE equation proposed by [77] (equation (3.7))
recalled here:

∂I

∂t
+ v⃗ . ∇⃗I = 0 (5.5)

5.1.2 Image Restitution of the Observed Scene

In chapter 4, we focused on brightness time evolution from a studied image sequence.
Now, we are interested on the real physical information contains within every image
in the sequence. The information contained in the images differs from an exact 2D
scene (with very small thickness) in many points:

1. It is a 2D integration of the 3D real scene approximately in the direction
orthogonal to the observation.

2. Recorded intensity depends on the scene illumination of the observed quantity
and on the properties of light reemission of the observed quantity.
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(a)

Figure 5.1: Illustration of a 3 × 3 pixel image of an observe scene. Many
flow structures are integrated into only one brightness intensity value by pixel.

3. Brightness intensity is spatially and temporally discretized. Figure 5.1 is a
scheme of the light integration and thus discretization over a pixel.

These 3 points involve an error level that is important to evaluate.
For the 1st point (see also chapter 3 and above section), we consider that the

observed quantity is integrated over a thickness δz, along the z axis that is much
smaller than the size of the observed scene in the horizontal and vertical directions
Lx = [0;N ], Ly = [0;M ] (δz << Lx and δz << Ly). In this way, if the recorded
image plane is parallel to plane (0xy), the 3D transport equation with molecular
diffusion becomes:

∂C

∂t
+ ∇⃗. (Cv⃗)− 1

Re Sc
∇2C = 0 (5.6)

In so the obtained velocity field v⃗ is approximated.
For the 2nd point, we have the hypothesis (equation (5.3)) that is mainly justified

as soon as there is no absorption. The grey levels are related to the quantity of light
reemitted from the scene by the 2D integration over the scene represented by the
pixel size ∆. The recorded light is generally noised. In this thesis preprocessing of
images is used to remove this (see section 5.4.1 for laboratory images and section
5.5.2 for satellite images). For laboratory experiments the proportionality given
in equation (5.3) is perfectly justified via the Beer-Lambert law. We also use this
hypothesis for the remote sensing application presented in section 5.5. However,
this hypothesis is clearly wrong in that case. Scattering diffusion of light should be
used in the future to account for this. Research on this topic is beyond a scope of
this thesis.
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The 3rd point is the space and time discretization. The recording time integration
δt has to be small to freeze the motion and to avoid blurring effects. This is generally
respected if:

δt <<
Lc

Uc

(5.7)

As an example, δt = 10−9s compared to Lc/Uc = 5.10−6s for the treated laboratory
experimental images.

Concerning the integration over the pixel ∆ = (∆x,∆y) area, the pixel concen-
tration represents a filtered information of the real concentration.

The scalar concentration C+ observed in the image is thus:

C+ =

∫
∆
C(x− x′) W(x′) dx′ (5.8)

where x = (x, y) is the center of a pixel, x′ = (x′, y′) is the characteristic length
of the filter ∆ in the x and y directions. The operator W(x′) can be, for example,
Gaussian or Heaviside functions.

However, in the time scale, the temporal image sequence between two successive
in time images at time t and at time t+∆t is limited by the technology data transfer
from the captors to the hard disk. ∆t >> δt and most of the time ∆t > Lc

Uc
. For

example, experimental fluid camera, can goes until few µs time acquisition period,
and in the case of geostationary satellites, the fastest time rate is about 15 minutes.

If the 3rd point involves a negligible error level, we could deduce the velocity field
by solving the equation (5.2) by knowledge of the passive scalar concentration field
at two successive instants in a plane of interest [160]. For image acquisition dur-
ing laboratory experiments or cloud motions study in atmosphere, the acquisition
period ∆t and the pixel ∆ = (∆x,∆y) are imposed. Moreover, for noise reduction
purpose, images are first smoothed by Gaussian filter before computing the DOF
equations (section 4.1.1) or the scalar transport equation (5.6).

In the majority of cases, as soon as turbulence is present, the smallest active
scales of the flow are much smaller than the filtered information furnished by the
image sequence due to the 1st and 3rd points. This observation brings us to use the
subgrid scale modeling as for the Large Eddy Simulation (LES) theory [139]. Only
the dynamic of the flow until scale resolution larger than the smallest active scales
are computed directly. The other ones are accounted for in a model.

We present now, the concept of LES on the scalar transport equation which will
lead to the formulation of our optical flow approach for scalar spread in turbulent
flows.
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5.2 Large Eddy Decomposition

Large Eddy Simulation (LES) concept relies on the use of a filter which removes
numerically unsolvable small scales. LES proposes to compute exactly the flow
dynamic for resolved scales. An additional term is modeled in the LES equations
governing the evolution of the resolved scales to account for the interaction by the
smaller scales on the larger ones.
A brief introduction on LES has been described in section 2.4.3, we now detail it.

5.2.1 Filtered Transport Equation

For simplicity, we use the same notation as in section 5.1.2. The pixel area ∆ is
larger than the smallest active scales of the turbulent flow. Thus, the effect of small
scales on the fluid dynamic is not negligible due to the non-linearity of the transport
equation [139, 48].

As defined in the above section, C+ is the resolved large scale contribution to
the scalar concentration field (observed in our image). In our case, filter size is ∆

which correspond to our LES filter size ∆s (section 2.4.3).
The instantaneous passive scalar concentration field verifies: C = C+ + C−

where C− represents the small scale contribution. Starting from the scalar transport
equation (equation (5.1)) and using filtering as described in (equation (5.8)), we
obtain:

∂C+

∂t
+ ∇⃗. (Cv⃗)+ − 1

Re Sc
∇2C+ = 0 (5.9)

The non linear term (Cv⃗)+ can be rewritten as:

(Cv⃗)+ = C+v⃗+ +−→τs (5.10)

where −→τs is the subgrid tensor also called residual stress tensor:

−→τs = L⃗ + R⃗ + C⃗ (5.11)

Namely, L⃗ = (C+v⃗+)
+ − C+v⃗+ is the Leonard stress tensor, C⃗ = (C+v⃗−)

+ −
(C−v⃗+)

+ is the Cross-stress tensor and R⃗ = (C−v⃗−)
+ is the subgrid Reynolds

stress tensor [95, 184]. Hence, the filtered transport equation becomes:

∂C+

∂t
+ ∇⃗.

(
C+v⃗+

)
+ ∇⃗.−→τs −

1

Re Sc
∇2C+ = 0 (5.12)

For incompressible fluid, equation (5.12) can be simplified and expresses as:

∂C+

∂t
+ v⃗+. ∇⃗C+ + ∇⃗.−→τs −

1

Re Sc
∇2C+ = 0 (5.13)

The term ∇⃗.−→τs (subgrid scale term) contains all the interaction between resolved
and unresolved scales. This information is missing in the observed images. If the
space and time resolutions of the time image sequence are larger than the smallest
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active space and time scales of the flow, ∇⃗.−→τs participates on the dynamic of the
flow and cannot be neglected. It has to be modeled in our approach. Most of the
used technique [124, 139] consists in modeling the effect of the subgrid term ∇⃗.−→τs
on the resolved quantity. We choose this method.

5.2.2 Turbulent diffusivity

Many works have been done on the modeling of the subgrid term [87, 188, 67, 113,
126, 48]. The subgrid scale effect on resolved scales is generally considered under
spectral Fourier energy formulation. It is defined by the balance of the energy
transfer between the two scale ranges. The dominant transfer is from the resolved
to unresolved scales. This energy transfer from resolved to subgrid scales could be
formulated similarly as the molecular diffusion. We call it the subgrid scale diffusion
concept. For the transport equation, the subgrid scale diffusion takes the following
form:

∇⃗.−→τs = −∇⃗.
(
Dt ∇⃗C+

)
(5.14)

where Dt is the turbulent diffusion or subgrid scale diffusion coefficient. This mod-
eling of subgrid scales in the transport equation is strictly similar as the concept
of subgrid scale viscosity (also called eddy viscosity) established for the momentum
equations [139].

It is known [146, 147] that even in case of the strong inhomogeneous turbulent
flow, for such proposed diffusion modeling at subgrid scale level, if this scale is
small compared to the largest turbulent scales (that is the case most of time), the
turbulent diffusion coefficient Dt can be approximated by a constant, except near
the wall in wall bounded turbulent flow which is not the present case. This means
that Dt does not vary neither in time and space. The main part of spectral subgrid
scale modeling [40] demonstrates the validity of such hypothesis. Nevertheless to
discuss such hypothesis is beyond the scope of this thesis. Using the formula of
Deardorff [52], the constant turbulent diffusion coefficient Dt can be computed from
the turbulent subgrid scale kinetic energy qsgs:

qsgs = Csgs ∗
(
Dt

∆s

)2

(5.15)

where ∆s is the filter size (mesh size). The turbulent subgrid scale kinetic energy
qsgs is generally unknown but it can be approximated by the knowledge of the power
spectrum Euu that is given or deductible from experimental fact or theory even for
real atmosphere. In the present case, Euu is estimated with a simple theoretical
model using power law assumption from Kc to ∞ for Euu [44]. This gives:

qsgs =
3

2
∗
∫ ∞

Kc

Euu(K)dK (5.16)

where Kc =
π
∆s

.The constant Csgs usually takes values around 0.1 [52]. This is what
we have done for the scalar DNS in section 5.3 and the laboratory experiment in
section 5.4 using their known power spectrum Euu and the size of the used filter.
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From equations (5.15) and (5.16) we obtain:

Dt = ∆s ∗
(

3

2 Csgs

∫ ∞

Kc

Euu(K)dK

) 1
2

(5.17)

Our modeling, to account for subgrid scale turbulence in the estimation of the local
velocity field, is thus perfectly determined knowing the power spectrum and the
filter size [44].

5.2.3 Conclusions

In this work, we propose, in a first instance, to define the turbulent diffusion co-
efficient Dt as a statistical constant over the entire spatial domain. We want to
measure the influence of the insertion of a turbulent diffusivity in the transport
equation (equation (5.13)) on the accuracy of the estimated velocity field.

Turbulent diffusion Dt could be modeled using many other different approaches.
Reader can refer to [139, 41]. More precise study of the turbulent diffusion behav-
ior and comparison of the possible adaptation into the problem of scalar motion
estimation from temporal image sequences will be the subject to future research
project.

Finally, inserting equation (5.14) in equation (5.13) leads to:

∂C+

∂t
+ v⃗+. ∇⃗C+ −

(
1

Re Sc
+Dt

)
∇2C+ = 0 (5.18)

Such subgrid scale scalar transport equation (TE-SGS) is a new approach for optical
flow estimation. At the best of our knowledge nobody took into account for subgrid
scale effect of the small turbulent scales on flow motion estimation with OF formu-
lation. Note that for high Reynolds number (Re >> 1) or scalar with low molecular
diffusion (Sc >> 1), the contribution from turbulent diffusion becomes large com-
pared to molecular diffusion ; it is the case, for example, for dust cloud particles in
the atmosphere. Some works as [70, 64] add a diffusion term with space and time
variability but they accounted for physical effect under molecular as [160] or thermal
similarity concept which is physically different than the turbulent diffusivity concept.

The motion estimation problem is formulated in the same way as in chapter 4.
Equation (5.18) defines the evolution of the scalar C+. It establishes the rela-

tionship between the observed quantity C+ and the unknown velocity vector v⃗+, at
each point x of the image domain. However, the resolution of equation (5.18) is not
possible directly (it is a mathematically ill-posed equation), unless another function
(regularization term) is added to the system.

In LES, all resolved quantities for C+ and v⃗+ are exactly computed. For our con-
cern, it is not the case. The filtered concentration field C+ is given as an observed
quantity. This observed quantity is known with a certain degree of uncertainty
due in particular to the 3 points enumerated in section 5.1.2. Consequently, the
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unknown velocity field we want to determine can be estimated only up to a cer-
tain accuracy. Moreover, equation (5.18) only gives the evolution of the filtered
concentration in the fluid. The evolution of the velocity field v⃗ is also defined by
the Navier-Stokes equations. But, it is not convenient to use these equations to
well-posed the problem in our case (only two successive in time images). Another
function defining the evolution of the velocity field has to be added. This function
traduces the interdependencies between neighbors of the velocity field.

For above comments, Markov Random Fields (MRF) theory provides us with
the theoretical foundations necessary to deal with the issues of i) modeling the
uncertainty , ii) modeling interdependencies between neighbor variables. A recall
on MRF is given in appendix B.

The problem is then established under the form of a Gibbs energy E (equation
(B.13)), recalled here:

E(v⃗+, C+) =
∑
x∈C1

Ed(v⃗
+(x), C+(x)) +

∑
x,x′∈C2

Es(v⃗
+(x), v⃗+(x)′) (5.19)

for which the observed field is C+ and the random variable field is v⃗+. C1 and C2
are the single-site clique and the pair-site clique respectively (see appendix B.2).

Ed is the data energy which establishes the link between observed and unknown
variables. It is defined according to the application which is, in our case, the TE-SGS
equation (5.18).

Es is the regularization energy constraining the evolution of the velocity field.
For the same reason than in chapter 4.1.2, we define Es as in equation (4.20) which
is equivalent to a first order spatial continuity of the velocity field. Note that it is
now applied to the filtered velocity field v⃗+.
Finally, the approach with subgrid scale model is defined by the following energy E:

E (v⃗, I) =
∑
x∈C1

(
∂C+(x, t)

∂t
+ v⃗+(x, t). ∇⃗C+(x, t)−

(
1

Re Sc
+Dt

)
∇2C+(x, t)

)2

+ α
∑

x,x′∈C2

∣∣∣∣∣∣∣∣ v⃗+(x)− v⃗+(x′)

∆s

∣∣∣∣∣∣∣∣2 (5.20)

∆s is the mesh size (pixel).
Note that for Dt = 0, there is no subgrid scale modeling in the transport equa-

tion, effect of subgrid scales being neglected in equation (5.18). The filtered trans-
port equation without subgrid model (TE) is:

∂C+

∂t
+ v⃗+. ∇⃗C+ − 1

Re Sc
∇2C+ = 0 (5.21)

This equation is used in the formulation of the data energy Ed. The Gibbs energy
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using TE is:

E (v⃗, I) =
∑
x∈C1

(
∂C+(x, t)

∂t
+ v⃗+(x, t). ∇⃗C+(x, t)− 1

Re Sc
∇2C+(x, t)

)2

+ α
∑

x,x′∈C2

∣∣∣∣∣∣∣∣ v⃗+(x)− v⃗+(x′)

∆s

∣∣∣∣∣∣∣∣2 (5.22)

We denote TE-SGS the motion estimation method with subgrid scale modeling
and TE the method without subgrid scale modeling. For TE and TE-SGS methods,
multiresolution by pyramidal decomposition noW_MR (section 4.2.2) can be used to
determine large velocities. Multigrid technique (section 4.3) and DDE minimization
(appendix C.2 and E) are used to minimize the energy E.

5.3 Tests on scalar DNS image sequence

A true velocity field could be obtained from a DNS computation. In so, we can
evaluate statistical errors, as described in section 4.4, comparing with results from
our approach. For synthetic image sequences of motion of scalar in a turbulent flow,
we use the Direct Numerical Simulation (DNS) generated by [31].

5.3.1 Data test description

In section 4.6.2, we worked on a particle DNS image sequence where the velocity field
is computed by 2D vorticity equations (3.48) [31]. Authors propose also a passive
scalar concentration image sequence which is generated by DNS computation for
a 2D turbulence of an incompressible fluid. The 2D vorticity equations (3.48) and
advection-diffusion equation (5.1) are used to calculate the velocity and passive
scalar concentration fields at each instant [31]. The scalar DNS has been done, in
the aim to have the same vorticity field for particle sequence presented in section
4.6.2. Sequence properties are identical for particle and scalar sequences: The size of
images is 2π×2π with 256×256 pixels (meshes), the Reynolds number is Re = 3000

and the Schmidt number is Sc = 0.7. The maximum velocity is about 3.5 pixels by
interval of time ∆t. Remember that equations are classically non dimensionalised,
the DNS computation time step is ∆tDNS = 0.01, we will use as input image sequence
a regularly sampled sequence from the DNS. The time step in the sequence, that
we will treat, is then ∆t = 10∆tDNS. The treated sequence is composed by 100

successive image pairs. The Figure 5.2 shows three scalar field images at time t = 0,
40 and 80 (top line) with the corresponding velocity field (bottom line). The scalar
concentration image is arbitrarily defined at the beginning of the time sequence
(figure 5.2.a). We have a much smoothed distribution of the scalar concentration
over the image. Then due to the turbulence, we see strong eddies appearing over
the time.
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a) t = 0 b) t = 40 c) t = 80

Figure 5.2: Scalar DNS sequence: Three different concentration fields (top line)
and corresponding velocity fields (bottom line with color map from figure 4.5) at time
t = 0, 40 and 80. (velocity amplitude brightness bar on the right).

We will compare now our results with two other DOF algorithms developed for
fluid motion:

• The ICE-DivCurl model proposed in [46] uses as constraint a flow equation
based on 2D projection of continuity equation (ICE) (equation (3.30)). The
authors defines a regularization term Es based on divergence and vorticity
(DivCurl) of the velocity field (equation (3.40)) to constrain the ICE formu-
lation, which is specifically adapted to velocity field of fluids when there is
no under-resolution of the original data to treat. For 2D incompressible fluid
with low molecular diffusion or high Reynolds number, ICE-DivCurl and TE
methods become similar to the differential formulation of the BCCE [77] (equa-
tion (3.7)). They only differ by a different regularization function. For low
Reynolds number, turbulent diffusion is small compared to convective terms,
TE-SGS method (equation (5.20)) is similar to TE method (equation (5.22)).
However, when Re becomes high, which is the case in the present scalar DNS
sequence, turbulent diffusion cannot be anymore neglected and TE-SGS for-
mulation is necessary.

• The OF-Assim model proposed in [121] uses data assimilation [92, 169] on the
BCCE formulation regularizing the velocity field by the 2D vorticity equation
(3.48). The estimated field is then constrained to satisfy the 2D vorticity equa-
tion over the 100 successive images. This is equivalent to a spatio-temporal
physical regularization. In this formulation the observation data term Ed

(BCCE equation (3.14)) was not physically motivated and this approach, to
be efficient, needs at least 8 successive images taken at regular time interval
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that is the case in the present scalar DNS sequence.

For the ICE-DivCurl and OF-Assim approaches proposed by [46] and [121], pa-
rameters of their algorithms were not available. Their estimated velocity fields are
published in [121] applying on the same scalar DNS sequence as presently. These
authors provide us the estimated velocity fields from ICE-DivCurl method. For
the OF-Assim method, presented RMS velocity errors in this chapter, are extracted
from [121] where OF-Assim were applied on the same scalar DNS from time t = 0

to 50.

5.3.2 Test on filtered scalar DNS field

In this section, we will use TE method (without subgrid scale model) (equation
(5.21)). It will be applied to spatial filtered and time under sampled scalar concen-
tration field from DNS of known velocity field [31]. For the scalar DNS sequence, we
do not use multiresolution by pyramidal decomposition (section 4.2). The reason is
described later in this section.

A DNS computation contains all and thus the full kinetic energy of the flow to
test our method. We use filtered images in space from the full resolved DNS to test
our approaches.

Authors of the DNS sequence provide us a resampled information as explained
above. The velocity fields (illustrated in Figure 5.2) are the time integrated velocity
field over 10 DNS time computations linking scalar concentration field from one
image to the next one. In the same way, we miss information about the scalar
concentration field on time as we got only 1 instantaneous field over 10.

We further filter spatially, using equation (5.8), the scalar concentration fields
with a Gaussian function of variance σ2 = 1. This filtering is used to remove spatial
smallest scales. But it is also used to reduce the sensibility of partial derivative
computations to image noise (equation (5.18)).

To recover the velocity field from the filtered transport equation without subgrid
scale model (equation (5.21)) will loose the effects of the unresolved scales as ex-
plained above. We will measure in section 5.3.3, the influence on the estimation if we
introduce the proposed subgrid scale model in the filtered transport equation (5.18).

For filtered scalar DNS sequence, the maximum exact velocity amplitude corre-
sponds to about 3.5 pixels by interval of time. In this case of a Gaussian filter of
variance σ2 = 1, the determination of the maximum velocity amplitude seems to be-
come possible without using multiresolution by pyramidal decomposition noW_MR
method (see section 4.2). In the Figure 5.3, we plot the Average Angle Error (AAE)
(equation (4.44a)) and Root Mean Square errors (RMS) (equation (4.44c)) of the
estimated velocity field from TE method, for different number of pyramidal decom-
positions from K = 0 to 3 for the image pairs at time t = 40 and 80. The minimum
errors are obtained without pyramidal decomposition. In section 4.6.2, we studied
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Figure 5.3: AAE and RMS velocity errors using TE approach for different number
of pyramidal decomposition (noW_MR) using Gaussian filter of variance σ2 = 1 on
scalar DNS image pair at time t = 40 and 80.

1 2 3 4
4.1

4.15

4.2

4.25

4.3

4.35

4.4

number of pyramidal level

A
ve

ra
ge

 A
ng

le
 E

rr
or

 (
in

 d
eg

re
e)

 

 

TE − t=0 (on particle DNS)

1 2 3 4
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

number of pyramidal level

R
M

S
 V

el
oc

ity
 e

rr
or

 (
in

 p
ix

el
/in

te
rv

al
)
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Figure 5.4: AAE and RMS velocity errors using TE approach for different number
of pyramidal decomposition (noW_MR) using Gaussian filter of variance σ2 = 1 on
particle DNS image pair at time t = 0.

particle images where particle are submitted to the same velocity fields. In this par-
ticle DNS case, even using a Gaussian filter of variance σ2 = 1, the correct velocity
amplitude cannot be determined correctly for the entire image domain. Figure 5.4
shows AAE and RMS errors on image pair at t = 0 for different number of pyrami-
dal decomposition (K = 0 to 3). This difference on the motion estimation quality
between scalar DNS and particle DNS image sequences comes from the fact that
the observed quantity is completely different. Scalar DNS images give the evolution
of scalar concentration over the all image domain (figure 5.2 first line). However,
particle DNS images only give information of the motion of solid particles carried
by the fluid where the fluid is invisible in the image. Then most of the image pixel
intensities, in that case, correspond to the constant background intensity (figure
4.13.a). In the case of particle DNS images, TE method becomes equivalent to
BCCE because for solid particles the molecular diffusion is low (Sc >> 1).

Figure 5.5 gives a visual illustration of the spatial filtered scalar concentration
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t = 0 t = 40 t = 80

Figure 5.5: Scalar DNS sequence: Filtered concentration fields for time t = 0, 40
and 80.

images at time t = 0, 40 and 80. Because of a strongly smoothed concentration at
the beginning of the sequence t = 0, there is no significant spatial concentration
variations. The estimation of the velocity field should be harder than in the middle
of the sequence (t = 40 or 80).

5.3.3 Analysis of Subgrid Model

Now, we will apply the same formulation constraining the system with equation
(5.18) (TE-SGS method) to account for unresolved scales, in place of equation (5.21)
(TE method) that was used in above section 5.3.2.

TE and TE-SGS parameter settings:
We recall that the only difference between TE and TE-SGS approaches is the sub-
grid scale coefficient Dt. Technical parameters (as detailed under) are the same for
TE and TE-SGS for a fair comparison. The multiresolution by decomposition pyra-
midal is not used (K = 0). The grid size for multigrid is 2×2 pixels. DNS Images to
treat are first filtered by a Gaussian filter of variance σ2 = 1 as in section 5.3.2. The
weighting coefficient α is set to 0.4 (equation (5.20)). For TE-SGS method (equa-
tion (5.18)), the turbulent diffusion coefficient Dt is determined using the equations
(5.17). From the filter size used in this test, we get Kc = 33. An approximation
of the power spectrum decreasing slope in k−5/3 is used to determine the turbulent
subgrid scale kinetic energy qsgs from equation (5.16). We finally obtain Dt ≈ 0.2

with Csgs = 0.1.

On Figure 5.6, we plot the AAE (equation (4.44a)) and RMS velocity (equation
(4.44c)) errors for the spatial filtered scalar DNS images. In order to evaluate
the subgrid modeling, we also do run the TE-SGS algorithm for different value
of the turbulent diffusion coefficient Dt varying from 0 to 1. We can see that the
subgrid scale model in the formulation with the filtered transport equation (TE-SGS)
has a significant influence on the velocity field estimation. When Dt = 0, this is
equivalent to TE method which means that unresolved scales are considered to have
a negligible effect on the dynamic of the flow. When Dt increase, the subgrid scale
term Dt∇2C+ takes more importance in the equation (5.18). Increasing Dt should
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Figure 5.6: AAE (top) and RMS (bottom) errors for TE and TE-SGS methods
with different turbulent diffusion coefficients Dt for the filtered scalar DNS sequence.
Best Dt coefficient, given smallest errors over the entire sequence, is obtained around
0.15 ∼ 0.25.

improve the accuracy of the estimated velocity field. However, when Dt becomes
too high, the turbulent diffusion model may not correctly represent the physical
action of non-resolved scale effect. Estimation should then be affected by a too high
turbulent diffusion coefficient. The Figure 5.6 illustrates clearly this supposition.
From Dt = 0 to Dt = 0.18 ∼ 0.2, the errors become smaller. For values Dt greater
than 0.2, errors tend to increase. This is clear for time t > 40. From time t = 0

to 10, the concentration distribution over the images is too smooth. The algorithm
is inefficient to retrieve the correct velocity field (for our methods as well as for
ICE-DivCurl, see figure 5.9). From time t = 10 to 40, when increasing the turbulent
diffusion coefficient Dt, AAE and RMS velocity errors decrease significantly. For Dt

greater than 1, errors get bigger.
From this figure, we can clearly identify that it exists a value of Dt, of order

of 0.15 ∼ 0.25, which allows to estimate a better velocity field over the all time
image sequence. For time t > 20, where scalar fields are not too smooth, the errors
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tend to be of the same order for all image pairs. This confirms the hypothesis of
non variability in time and space of the diffusion coefficient Dt made in section
5.2.2. Moreover, the proposed model of Dt in equation 5.17 based on the turbulent
subgrid scale kinetic energy qsgs gives, for this filtered scalar DNS sequence, a value
of Dt ≈ 0.2. The tested results are thus coherent with the proposed physical model
of the turbulent diffusion coefficient.

Note that in this sequence, amplitude variations of ∇2C+ become bigger along
the time. Increasing Dt over 0.2 produces an increase of the level error from the
beginning to the end of the sequence conjointly to the evolution of amplitude range
of ∇2C+. Thus, one proposition can be suggested as for example that the turbulent
diffusion coefficient may also depend spatially on the distribution of the observed
resolved concentration C+.

For the remaining of this section, we set Dt = 0.2 (given by equation 5.17) for
TE-SGS method. We compare now, our estimations to these of ICE-DivCurl method
[46]. Figure 5.7 shows the estimated velocity field and vorticity map obtained from
the compared method at three different times (t = 10, 30 and 50). Raws (a) and
(b) show the exact scalar field images and the corresponding exact vorticity field
obtained by DNS with velocity vector superimposed. Figure 5.7(c) illustrates the
estimated velocity fields from ICE-DivCurl; (d) and (e) are respectively estimated
velocity fields from our TE and TE-SGS methods. The color legend is identical for
all these results. The vector field and vorticity map obtained from ICE-DivCurl and
the ones obtained with the TE method (equation (5.21)) are visually similar. Let
remind us that the ICE-DivCurl and TE methods differ only by:

1. The regularization term Es: equation (3.40) for ICE-DivCurl, equation (5.22)
for TE.

2. For 2D flow in the data term Ed, the difference is the molecular diffusion
factor: equation (3.28) for ICE-DivCurl, equation (5.22) for TE.

However, in the used sequence from DNS simulation the Reynolds number (Re =

3000) is relatively high and thus, molecular diffusion term of equation (5.18) will be
negligible; therefore only the regularization Es distinguishes the two formulations.

The TE-SGS method (equation (5.20)) provides better estimated velocity fields
than TE and ICE-DivCurl methods: TE-SGS method allows a more accurate de-
tection of the vortices. Globally, it behaves likely as the original DNS fields.

Figures 5.8 (a) and (b) illustrate an example on a zoom area of the DNS pas-
sive scalar concentration field image at time t = 50 where vortices are strong. In
Figures 5.8 (d), (e), (f), are represented, respectively, the velocity divergence, the
vorticity and the exact velocity vector field. The last raw, Figures 5.8 (g), (h), and
(i), shows comparison of the velocity vector fields estimated under ICE-DivCurl,
TE and TE-SGS methods. On this figures, we can see that estimated velocity field
with TE-SGS method is closer to the DNS results than the other ones with TE and
ICE-DivCurl methods for which similar difficulties exist to retrieve vortices around
area of strong concentration variations. The subgrid scale model in TE-SGS method
overcomes these difficulties.
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a)

b)

c)

d)

e)

Figure 5.7: Results on filtered scalar DNS sequence at times (t = 10, 30 and
50): Passive scalar concentration field input images (a), exact DNS vorticity
fields (b), estimated vorticity maps with superposition of flow vectors obtained
by ICE-DivCurl (c), TE (d) and TE-SGS (e) methods.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.8: Illustration over a zoomed area at time t = 50. Area representa-
tion on passive scalar concentration field image (a,b). Exact DNS divergence
(d) and vorticity (e) maps (color map legend (c)) and exact DNS flow vec-
tor field (f). Estimated velocity vector field for ICE-DivCurl (g), TE (h) and
TE-SGS (i) methods applied on the filtered image sequence.
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Figure 5.9: AAE (top) and RMS velocity (bottom) errors of ICE-DivCurl, TE and
TE-SGS methods for filtered scalar DNS concentration sequence. On RMS velocity
error figure (bottom), the green line from t = 1 to t = 50 are the errors from the
data assimilation proposed by [121] (errors are extracted from the paper).

Figure 5.9 shows the statistical error AAE (top) and RMS (bottom) (equation
(4.44a) and (4.44c)) of the velocity field for the 100 successive image pairs with
TE and TE-SGS (Dt = 0.2) methods, compared to ICE-DivCurl method [46] and
compared to RMS errors in case of estimation by OF-Assim method [121]. The evo-
lution of errors from TE method has the same behavior as the one for ICE-DivCurl
method for AAE and RMS formulas. This confirms the remarks made above. The
estimation with TE method is slightly more accurate. This is puzzling in some way
because TE method contains a first order quadratic regularization energy Es (equa-
tion (4.20)) while ICE-DivCurl method contains a robust semi-quadratic formulation
for div-curl regularization energy Es (equation (3.40)) which is more appropriate to
fluid motion (section 3.3.2.1). The reason should come from a non optimal param-
eter setting of the ICE-DivCurl approach on the scalar DNS sequence (discussions
with ICE-DivCurl authors). Anyway, TE-SGS method includes scalar subgrid scale
model in the filtered scalar transport equation. This is an improvement from physics
of fluid point of view for the estimation of the velocity field compared to TE method.
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Figure 5.10: Power spectral analysis of the turbulent horizontal (a) and
vertical (b) velocity components over the lines (log-log scale) on filtered scalar
DNS sequence. Exact DNS spectrum (black) is compared with spectra obtained
with ICE-DivCurl (green), TE (blue) and TE-SGS (cyan) methods.

Estimations, for TE-SGS method, are also much better than ICE-DivCurl and OF-
Assim estimations. This means that for this scalar turbulent sequence, effects of
unresolved small scales on the fluid dynamic are not negligible. The turbulent dif-
fusion term represents these effects.

The time evolution error for TE-SGS method, over the sequence, behaves differ-
ently than TE and ICE-DivCurl methods. The TE-SGS method accounts for the
lack of information on filtered passive scalar images conversely to the other meth-
ods. It allows to retrieves a closer velocity field compared to the exact one. Even if
OF-Assim method constrains temporally the velocity field to satisfy the 2D vorticity
equation, errors are higher than for TE-SGS method. This is due to the fact that
the data function for observed motion does not contain subgrid scale model.

One important conclusion to draw from these experiments is that, improving
the data term of the energy functional, in particular via a physical modeling such
as our TE-SGS method, is a necessary step to estimate a velocity field closer to
the exact ground truth. The role of the regularization term, thought important, is
not as crucial as the role of the data term. This can be understood by observing
that the main driving force which leads the algorithm towards the optimal solution
is precisely the data energy, while the regularization is acting only to smooth out
unacceptable solutions (ICE-DivCurl and OF-Assim).

The Figures 5.10(a) and 5.10(b) show plots of the average kinetic energy spec-
tra of horizontal (left) and vertical (right) velocity components. Spectra are defined
in [31] and they are of first importance in describing turbulent flows. From both
velocity components, energy spectra obtained with TE method (green) and ICE-
DivCurl method (red) are almost the same. We can see that the spectrum obtained
by TE-SGS method (blue) is closer to the exact DNS spectrum (black). We observe
both for large and small wavelengths that the TE-SGS method gives the best rep-
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resentation of the velocity spectrum. Again the proposed subgrid scale formulation
improves the result, essentially with a better estimation of the finest structures.
However, the spectrum obtained with the OF-Assim method (see the paper [121]) is
much closer to the exact DNS spectrum. It is not here possible to compare with our
results as their spectrum concerns with the vorticity field. This is the result of the
time regularization imposed by the 2D vorticity equation in the data assimilation
process (see [121]). In their estimation, the velocity field is smoothed accounting for
the physics underlying in the 2D vorticity and continuity equations. We can con-
clude that their assimilation technique can estimate a much less noisy velocity field
over the space and time than the other methods. However, AAE and RMS velocity
errors for OF-Assim method are higher than TE-SGS method because of the data
observation function which does not contain subgrid scale term. Combination of
TE-SGS and OF-Assim methods should probably in the future give better results
than all existing approaches.

5.3.4 Discussions

Average energy spectra obtained by TE and TE-SGS methods are still too much
noisy which is represented in figure 5.10 by too high level energy for small scales.
Compared to [121] where the all velocity field is constrained by the 2D vorticity
equations which can be seen as a temporal regularization, our regularization energy
Es (equation (4.20)) is not constrained by fluid equations neither in time neither in
space. Moreover, the estimation of the velocity field, by TE and TE-SGS methods,
is obtained for each pixel independently by incrementation of residual random veloc-
ities (appendixes E and F.2 for minimization technique details) which decrease the
Gibbs energy (equation (5.20)). This results in very high spatio-temporal velocity
variations of the velocity frequencies.

Considering this, as responsible of the high energy for the small scales, observed
in the average energy spectra, we propose to smooth the TE and TE-SGS estimated
fields by a Gaussian filtering of variance σ2 = 1. The figure 5.11 represents the AAE
and RMS velocity errors from TE and TE-SGS methods and from their smoothed
estimations. We can see that errors are similar. Smoothing the velocity fields can
only decrease a little the statistical error levels. It is more evident on TE method
estimations than on TE-SGS ones. The subgrid scale model still plays a smoothing
role on the estimation of the velocity field. In so, the new filtering has no effect.
This can prove the effect of our addition of subgrid scale model in the TE-SGS
method compared to TE one.

On the other hand in figure 5.12 which shows plots of the average kinetic en-
ergy spectra of horizontal (a) and vertical (b) velocity components, we can see that
the spectra obtained by smoothed estimations from TE (red) and TE-SGS (orange)
methods are clearly different from spectra obtained using the original estimations
from TE (blue) and TE-SGS (cyan) methods. This was expected as the velocity
fields were smoothed by a Gaussian filter. What is interesting, is that the en-
ergy spectra obtained after using the smoothed TE and TE-SGS methods are now



98
Chapter 5. Subgrid Scale Approach of Transport Equation for Motion

Estimation

0 10 20 30 40 50 60 70 80 90 100
6

8

10

12

14

16

18

20

22

24

Pair number

A
ve

ra
ge

 A
ng

le
 E

rr
or

 (
in

 d
eg

re
e)

 

 

TE
TE−SGS
TE (smoothed)
TE−SGS (smoothed)

0 10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Pair number

R
M

S
 V

el
oc

ity
 e

rr
or

 (
in

 p
ix

el
/in

te
rv

al
)

 

 

TE
TE−SGS
TE (smoothed)
TE−SGS (smoothed)

Figure 5.11: AAE (top) and RMS velocity (bottom) errors of TE and TE-SGS
methods for filtered scalar DNS concentration sequence compared with the errors
obtained if TE and TE-SGS estimated velocity field is smoothed by a Gaussian filter
with σ2 = 1.

much closer to the exact DNS spectrum (black) than the ones obtained applying
TE and TE-SGS methods. This is more evident on vertical velocity component
energy spectra than on horizontal velocity component energy spectra. The observed
differences between smoothed and non-smoothed results for high frequencies (small
scales) traduce the fact that the velocity fields are smoother. We cannot conclude
that smoothed TE and TE-SGS methods allow to retrieve better small scale infor-
mation of the flow than from original TE and TE-SGS methods. Moreover, com-
paring original TE method with TE-SGS method, and also comparing smoothed
TE method with smoothed TE-SGS method, as we set the same parameters, the
spectra differences cannot only be explained by less noisy fields. Again, for both
large and small wavelengths TE-SGS method gives a better representation of the
velocity spectrum.

These tests show that a frequency analysis is not sufficient to prove retrieving the
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Figure 5.12: Power spectral analysis of the turbulent horizontal (a) and
vertical (b) velocity components over the lines (log-log scale) on filtered scalar
DNS sequence. Exact DNS spectrum (black) is compared with spectra obtained
with TE (blue) and TE-SGS (cyan) methods and smoothed TE (red) and TE-
SGS (orange) using a Gaussian filter with σ2 = 1.

correct finest structures of the flow. [72] proposed a regularization accounting for
the turbulent kinetic energy decay which leads to a good estimated velocity fields
satisfying the turbulent kinetic energy decay. This method as well as the other
cited methods in the chapter, should probably significantly improved if a subgrid
scale model was added into their definition of the motion equation from the resolved
observations (C+).

We are now testing the TE-SGS model on real image sequence from a laboratory
experiment.

5.4 Tests on Laboratory Experiment image sequence

Here, the complete TE-SGS method is tested on a real image sequence of particle
images, from a fluid flow study, acquired at the Laboratory of Fluid Mechanics and
Acoustics (LMFA) [150, 151]. We compare and validate our approach against CC
technique Lavision software [91].

5.4.1 Description of the Wind Tunnel Experiment

Experiment and image acquisition were conducted at LMFA ([150, 151]), in order to
study the dispersion of a passive scalar spreading within an atmospheric boundary
layer in presence of obstacles. The source of scalar is located at mid-distance of
the perpendicular to the flow between walls of a canyon represented by two lines
of squares whose sections are h2. Obstacles are transversally disposed in order to
be perpendicular to the mean flow; the distance between them is h = 1cm. The
momentum Reynolds number at source location without obstacle is Re ≈ 103 and
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(a)

(b)

Figure 5.13: Sketch of channel (a) and optical set-up arrangements to create
laser light sheet (b).

the scalar Schmidt number is Sc ≈ 106. The sketch of the tunnel is represented
in Figure 5.13a. The passive scalar is incense smoke. The source is flushed at the
ground. In this experiment, 1st set of images were recorded zooming enough on
the area of interest in order to individualize smoke solid sub-microscopic particles.
A 2nd set of images were recorded with a zoom less important in order to avoid
individualization of particles: Recorded intensities being linked to the number of
solid particles leading to their concentration. We used the 1st set of images obtained
with the higher zoom that individualizes particle images because the 2nd set does
not contains two successive in time images.

The acquisition was made by synchronization of two YAG lasers and a CCD
camera. YAG lasers delivered 300mJ energy per pulse and had a pulse frequency
of 10Hz that determined the acquisition frequency of image pairs. Time step be-
tween the two laser pulses, δt, for first and second image acquisition of each pair,
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was 0.2ms. Synchronization between camera and laser pulses was achieved by Lav-
ision device. CC Lavision from software [91] allowed to obtain good results using
a recursive mesh size method with refinement from 128 × 128 to 4 × 4 pixels (see
appendix A for technical description). The optical set-up arrangements are shown
in Figure 5.13b. More details can be found in [175]. Note that tests were done by
[157, 158, 159] that demonstrates that the used CC Lavision is the most efficient
CC commercial software in the fluid mechanic community.

We compare now, results we obtain with our TE and TE-SGS methods, with
these obtained with CC Lavision technique. For this aim we first calculate the
velocity field associate statistics, as on mean velocity field and RMS fluctuating
velocity field.

Hereafter statistics are compared.
As for tests on DNS sequence in above section, settings are the same for TE

and TE-SGS methods. The maximum amplitude of the velocity field between two
instants t and t+∆t is about 6 pixels by interval of time. We use our multiresolution
noW_MR (section 4.2.2) of 3-level pyramidal decomposition (K = 2) and a grid size
of 2× 2 pixels for multigrid (section 4.3). The experimental images are filtered by a
spatial Gaussian filter of variance σ2 = 1. The weight α equals to 1 (equation (5.20)).
For TE-SGS, the coefficient Dt was determined using the equation 5.17. The power
spectrum was the one by Spalart [155] cited in [175] as characterizing the boundary
layer of their experiment. The filter size is deduced from the given spatial resolution,
Kc = 211.5 and Csgm = 0.1. This gives us Dt ≈ 2.

5.4.2 Results

From this experiment, we have a series of 200 pairs of images. We compute instan-
taneous velocity fields with CC Lavision method and average these fields to obtain
the mean velocity field. Figure 5.14 shows an instantaneous image of the scatter-
ing diffusion intensity from solid particle seeding the flow (Figure 5.14(a)) and the
mean velocity field, over the 200 pairs (Figure 5.14(b)). On background of the CC
mean velocity field, we visualize the horizontal velocity component amplitude (color
map). Length and velocity scales are normalized by length h and outside boundary
layer velocity Ue ≈ 2.3m.s−1 respectively.

On input images, we define a binary mask that identifies the ground and ob-
stacles. Notice that we have a vertical line in the mask above first obstacle. It is
due to a burnt (destroyed) pixel column of the camera. This line influences the
estimation of the velocity field around this area as we can see on Figure 5.14(b).
However, this line is far from the canyon where the test is significant as this is the
single zone where there is a complete repartition of particles. The mask is used to
help the algorithms to avoid disturbance due to light reflections on the analyzed
area. This is of first importance on the obstacle walls and flat ground of the tunnel.
CC Lavision can take into account this mask. In our TE-SGS method algorithm,
we added the possibility to use such a mask. Velocity value v⃗(x) in the mask area
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Figure 5.14: Instantaneous Mie scattering diffusion image from solid particle
seeding the flow with 2 obstacles (a) and amplitude map of the average hori-
zontal velocity with the velocity vector representation obtained by CC Lavision
(b)

is set to 0. The clique c of neighbor pixels x′ of pixel x for the case of one of the
pixels is inside and the other outside the mask are removed from the second order
clique C2 (figure B.2). Thus, the smoothness term will not take into account these
cases (equation (4.20)). Estimation of the velocity field at the mask border is then
not influenced by inside border information.

The results are very sensitive to the quality of experimental acquisitions. Recorded
image intensity depends on the light exposure on CCD captors. This light contains
information from seeding particle concentration but also information from experi-
mental noise. As mentioned in section 5.1.2, we consider in this work that the image
intensity is directly linked to solid particle concentration. In practice, this is not the
case as main part of particle images are individualized. We had then to identify and
to suppress experimental noise before to be able to apply TE-SGS method correctly.

It is interesting to detail here all our preprocess as this is frequent to have to
apply such treatment for real images.
This noise is due to two main causes:

1. The reflections of light on the walls. This can be corrected by knowledge of a
background image. It is obtained in the same experimental conditions without
seeding the flow.

2. The laser pulse energy that is different for the two instant of a pair. Fur-
thermore as laser beams come from two different lasers with small alignment
difference, it provides intensity difference in a same location. This results on
an independent brightness variation between images 1 and 2 in a pair. Such
noise was classically removed as in [10].
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Figure 5.15: Amplitude maps of horizontal mean velocity with mean velocity
vectors obtained by TE method on original (a) and pretreated (b) image sequence

Figure 5.16: Average concentration field with represention of the zone of interest.

To deal with these experimental noises, we propose a simple but efficient method:

1. Subtract image background on images 1 (1st instant) and 2 (2nd instant) pixel
by pixel for all images of the series.

2. Extract a uniform seeding image called image of uniformity. If we don’t have
this image without particle, we can compute it by taken the minimum intensity
value over all the images of the series for each instant at each image pixel.

3. Divide each image of 1st instant, without background (step 1), by the image
of uniformity (step 2) (identically for 2nd instant).

We use this process to preprocessed the image pairs to remove the noise and to
represent dimensionless information of the particle intensity image [10].
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Figure 5.17: Mean velocity field for the study area with 200 pairs of images
with CC Lavision (black arrows), our TE method (blue arrows) and TE - SGS
(red arrows). For the 3 methods, velocity vectors are very similar.

Figure 5.15 shows the computed mean velocity field obtained by the TE method
on the original images (a) and on the preprocessed images (b). Without preprocess-
ing, estimated field is strongly perturbed outside the zone of interest. At border of
this zone, there are strong light variations due to stronger impact of experimental
noise and reflections; preprocessing proves to remove this light variations. The es-
timated field on preprocessed images is not influenced by experimental noise. It is
more relevant than estimated velocity field on original sequence and it is coherent
with the CC Lavision field (Figure 5.14(b)). We can also observe that TE method
does not estimate correctly the velocity field over the entire experimental domain.
Our approach estimates the velocity field based on scalar transport equation. Thus,
this approach will be the most efficient where there is enough particle seeding the
field which can be considered as an information about particle concentration. For
y/h ≥ 1.3, there is no more solid particle concentration. Whereas due to a back-
ground fluid particle seeding the tunnel, CC Lavision method is still able to retrieve
the velocity flow field because of the large size of the CC interrogation window
(128× 128).

To compare TE and TE-SGS methods, we focus only the analysis on particle
concentration velocity inside and close around the canyon. The Figure 5.16 rep-
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Figure 5.18: Vertical profiles of average velocity field of normalized a) hori-
zontal and b) vertical components with CC Lavision, TE and TE-SGS methods.
The profile is taken at the center of the canyon (h = 0)
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Figure 5.19: Vertical profiles of the RMS fluctuating field of normalized a)
horizontal and b) vertical components with CC Lavision, TE and TE-SGS
methods. The profile is taken at the center of the canyon (h = 0)

resents the zone of interest where there is particle concentration almost for every
acquisition. TE and TE-SGS velocity estimates are consistent with the CC Lavision
estimates for the area where the average concentration of the scalar is nonzero. To
compare the TE and TE-SGS methods, we focus the study of the velocity field on
the canyon area (area bounded by the red box on figure 5.16).

Figure 5.17 shows the mean velocity field vectors from CC Lavision, TE and
TE-SGS methods. Results for all methods are similar. To exhibit clearly differences
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between TE and TE-SGS approaches, we plot the vertical profiles of normalized
horizontal (a) and vertical (b) velocity components at the middle of the canyon.
Figure 5.18 represents the profiles for the mean velocity fields and figure 5.19 shows
the fluctuating RMS profiles for the different methods.

For this experiment, the image acquisition technique has been specially defined to
satisfy the best conditions for the use of CC technique. Estimated velocity fields from
CC Lavision have been validated compared to the turbulence theory and published
in [150, 151]. These velocity fields are, in our case, considered as closest estimation
we can made from the reality. On figures 5.18 and 5.19, it seems that TE-SGS
method estimates a closest average velocity profile and RMS fluctuating profile to
CC Lavision than TE method.

However, our TE and TE-SGS methods can correctly estimates the flow field
over particle concentration area. TE-SGS method allows to improve flow field esti-
mation and flow characteristics.

We are now, in the last section, applying TE-SGS method to the motion es-
timation of an atmospheric event on remote sensing time image series for which
assumptions made for the definition of our approach are not anymore satisfied.

5.5 Application to Remote Sensing Atmospheric Event

Satellite observations are currently of major importance in geosciences. Remote
sensing is a strong tool to study atmospheric and earth phenomena. In this section,
we are concerned with the analysis of dust storm events. These phenomena often
appear on four of the five continents. Dust particles can be transported through
the atmosphere over thousands of kilometers. Dust Storms have strong impact on
health and economy of the touched regions. The estimation of the displacement of
dust particle from remote sensing images is important for a better understanding
and modeling of this phenomenon. Figure 5.20 gives an illustration of the treated
sand storm event in this section.

Monitoring natural phenomena is of major importance for the prevention against
possible environmental degradation or to reduce their negative impact. The crucial
role of satellite imagery is to make possible the analysis of these dynamic phenom-
ena, in order to better understand them, and eventually to refine, parameterize, or
validate physical models whenever they are available. These phenomena, observed
from a set of multi-temporal images, are described by their evolution in time (e.g.
sand wind motion). Their estimation from multi-temporal images analysis requires
taking into account global deterministic characteristics (given by physical laws) and
local stochastic characteristics.

Atmospheric motion from geostationary remote sensing image was well studied
in meteorological community since the late 1960s [62]. Traditional methods, used
to estimate the displacement field, are based on CC techniques [93]. These methods
are easy to implement and robust to noise; however they need large interrogation
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(a) (b)

Figure 5.20: Colored remote sensing image from MODIS Terra satellite of
the dust storm over eastern Australia taken on 23 September 2009 (a) and
pictures of the Sydney opera before and during the sand storm (b).

windows to be able to correctly detect a stable and correct correlation peaks. More-
over they are not suitable for scalar motion estimation where correlation peaks are
hardly detectable, as for example in clouds, dust or smoke images.

Here, we test our TE-SGS approach and compare it to CC Lavision [91].

5.5.1 Data description

We use, here, a real pair of optical images from satellite MTSAT-1R taken during
the 22 September 2009 dust storm event that happened in Australia. Image sizes are
300 pixels with a resolution of ∆ = 5km by pixel. ∆t is 1 hour. The remote sensing
time image sequence is from the visible channel. Figure 5.21 shows two successive
in time input images with a time separation of 1 hour.

In this image sequence, the pixel ∆ = 5km, the image spatial coverage is
1500km× 1500km. In the atmosphere, large scales are of the order, or larger than,
few hundred kilometers. Because the thickness of dust cloud is only few hundred
meters to few kilometers high on z direction [83], the dust cloud motion (even
atmospheric motion in general) is considered as quasi-two-dimensional [97]. The
hypothesis of 2D motion made in equation (5.6) is then satisfied.

However, small scales in the atmosphere are ranging from 10−3m (Kolmogorov
scale) to several tenths of kilometers and are strongly three dimensional [97]. In
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(a) (b)

Figure 5.21: Two successive MTSAT-1R input satellite images of the dust
storm on the 09/22/2009 at time 22:30 (a) and 23:30 (b).

this sequence, the order of velocity is around 15 pixels by interval of time ∆t which
corresponds to Uc ∼ 20m.s−1. As we said above velocity on the z direction is
negligible compared to the (Oxy) plane components. In this case, the effect of the
component of small scales on the z direction on the dynamic of the flow can also be
neglected.

In the atmosphere, the Reynolds number Re ∼ 1010. With Uc ∼ 20m.s−1 and
the kinetic viscosity of the air, the characteristic length of the flow in this sequence
is of the order of the kilometer Lc ∼ 1km. Then the characteristic time scale is
Tc ∼ 1min. These length and time scales are much smaller than the one given by
the satellite image sequence. Thus small scales will have a non negligible effect on
the dynamic of the dust cloud motion. TE-SGS should be used.

We keep, for this test, the direct proportionality between concentration and
image brightness intensity made in equation (5.3) even if in this application case,
this hypothesis is not totally satisfied. Another point is that the scene lighting is
evolving during the day. This will strongly affect the TE-SGS approach since the
transport concentration equation is directly related to the image brightness. We
propose a simple day light invariant method to tackle this problem.

5.5.2 Brightness Invariant Model

We established, at beginning of this chapter, the relationship between the scalar
concentration and the image grey-level value (equation 5.3): I(x, t) ∝ α C+(x, t).
However, this is an over simplification: external factors such as day light variation (or
atmosphere humidity and others ...) may lead to global changes of the observation
I+ , thought C+ may not vary.
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To overcome this problem, we assume that the image’s grey-level changes linearly
from one acquisition to the next : ∂I+/∂t ≈ ∂C+/∂t + β(t) . This is equivalent
to center the temporal variation of C+.

At last, the illumination change invariant transport equation defines our data
term in equation (5.18); it writes using intensity variable instead of the concentra-
tion:

Ed(v⃗
+, I+) =

∑
x∈C1

((
∂I+(x)

∂t
− β(t)

)
+ v⃗+(x). ∇⃗I+(x) (5.23)

−
(

1

Re Sc
+Dt

)
∆I+(x)

)2

with β(t) = 1
N

∑
x∈Ω ∂I

+(x)/∂t. We name it the +Bvar model.
The invariant light variation model, proposed here, is a sparse approximation of

the daylight physical effect on image brightness. However, it shows to improve sig-
nificantly the motion estimation for geostationary images using the visible channel.
Thus, in case of real atmospheric event, further work should be done on bright-
ness invariant model as for example, in [70], the authors proposed to extend OF
assumption to light variation problems using diffusion models and in [84], they con-
sider brightness variation as a multiplicative and additive factor to the observed
intensity.

5.5.3 Results

We test TE and TE-SGS on the presented satellite sequence in figure 5.21. We
compare our results with the ones from CC Lavision software.

For CC Lavision, we use refinement method from 128 × 128 pixels size window
to 16× 16. Gaussian peak interpolation is used on cross-correlation signal to better
retrieve the exact maximum localization (see appendix A.1 for technical details).

For TE and TE-SGS, we use our noW_MR multiresolution (section 4.2.2) with
4-level pyramidal decomposition (K = 5). We set a grid size of 4× 4 pixels for the
multigrid (section 4.3). Images are previously smoothed with a Gaussian filter of
variance σ2 = 1 and the weighting coefficient α = 100 (equation (4.2)). For this
test, Dt was fixed arbitrarily to Dt = 3 which shows experimentally to correspond to
the best turbulent diffusion coefficient. Further investigation should be made in this
kind of sequence in collaboration with atmospheric research institute to determine
physically the value of Dt as for the case in section 5.3 and 5.4.

Figure 5.22 (a,b,c) illustrates the corresponding estimated velocity field (left)
and streamlines (right) resulting from CC Lavision, TE-SGS and TE-SGS+Bvar
approaches. We observe that cross-correlation technique estimates a displacement
field which is not smooth; experimentally, it needs large interrogation window size,
and the correct correlation peak is difficult to localize due to slowly varying concen-
tration. Results from our TE-SGS+Bvar method give a visually smoother flow field
than TE-SGS method which is affected by day light variation. Streamlines gener-
ated from results, given by TE-SGS+Bvar method, show the same behavior as CC
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LaVision. Dust cloud motion is more identifiable on TE-SGS+Bvar method results
and is visually more appealing than from other methods. Advantage of our method
compares to cross-correlation approaches is that the motion field is estimated from
physical equation (5.18) of the filtered transport equation with the modeling of tur-
bulent diffusivity. Another advantage is that the estimated flow field is dense (one
velocity vector by pixel). For CC LaVision, final interrogation windows are 16× 16

pixels due to cross-correlation limitation (appendix A.1).
On this real remote sensing image, the proposed simple light invariant model

(section 5.5.2) proves to significantly improve motion estimation on visible satellite
images. One of the scientific interests is to be able to estimate the more coherent
velocity field of dust cloud motion to use it as inlet condition in Large Eddy Sim-
ulation atmospheric codes for prediction. In this way, we can bring a correction in
real time to the simulation for further dust storm.

Figure 5.23 plots on the image the estimated velocity field from TE+Bvar (blue)
and TE-SGS+Bvar (red). The subgrid scale model in TE-SGS, with Dt = 3, influ-
ence the velocity field. The TE-SGS estimated velocity field seems to detect more
spatial variations, as rotations, than TE which seems to oversmooth the velocity
field globally over the image domain.

In this section, we applied the proposed sub-grid transport formulation TE-SGS
to study atmospheric motion from remote sensing images. In satellite images, in
order to compensate for the variation of global illumination from one acquisition to
another, we further introduced a brightness variation correction term. Our model
takes into account non-observed small scales effects by incorporating a turbulent
diffusion term into the scalar transport equation. However, it is hard to evaluate
quantitatively the improvement on motion estimation of the subgrid model for this
kind of satellite image sequence. Further works in collaboration with atmospheric
research institute should be interesting.
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(a) Corresponding estimated motion field and streamlines from CC LaVision cross-correlation algorithm.

(b) Corresponding estimated motion field and streamlines from TE-SGS algorithm.

(c) Corresponding estimated motion field and streamlines from TE-SGS+Bvar algorithm.

Figure 5.22: Real Australian dust storm event in 2009. Comparison of CC Lavision
(a) with proposed TE-SGS (b) and TE-SGS+Bvar (c).
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Figure 5.23: Estimated velocity fields from TE (blue) and TE-SGS (red) using
Bvar light invariant method.
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5.6 Conclusions

The filtered transport equation that we have proposed in this chapter takes into
account the limitations of the observed information in treated images, incorporat-
ing a subgrid scale model based on a turbulent diffusion coefficient Dt in the scalar
transport equation (5.18). Tests on synthetic, experimental and atmospheric time
image sequences show that the new model improves the estimation of the velocity
field for study of passive scalar concentration spread by turbulent flow. It even
shows to be robust enough to be applied to non homogeneous solid particle seeding
displacements if number of particle in the domain is sufficient to be assimilated to
concentration of particle. Subgrid scale model advantages are less important on
experimental acquisitions because the illustrated experiment does not fully repre-
sent the passive scalar concentration field. In the original laboratory experiment
concentration field is obtained only for one instant and not for two successive in-
stants. This was sufficient for obtaining mass fluxes with the pair images for CC
Lavision. But this is not sufficient for applying TE-SGS method that necessitates
time evolution images of the treated field. However, on the DNS sequence, subgrid
scale model outperforms existing optical flow algorithms by considering influence of
small scales interactions on the filtered flow field. TE-SGS method allows a better
estimation of vortices by modeling the turbulence influence at subgrid scale level. It
would be interesting to combine advantages of CC methods with DOF [74] not only
by constraining the DOF estimation by the correlation estimations, but also by us-
ing a confident weighting coefficient depending on the properties of the studied flow
(solid particle or passive scalar transport). A more physical definition of the turbu-
lent diffusion coefficient Dt could also bring an improvement to our model [153, 48].
Incorporation of subgrid scale model in the regularization term and introduction of
more physical regularization functions should also be studied. Combination of data
assimilation process proposed by [121] with subgrid scale transport equation should
strongly improve the motion estimation. Moreover data assimilation can be used to
analyze more precisely the turbulent diffusion coefficient Dt, in the aim, to identify
the best way in application of subgrid scale modeling in computer vision.





Chapter 6

Conclusions and Further Work

Summary
In this thesis, we were interested on motion estimation problem in the case of

turbulent fluid flows. The main issue of this manuscript was to introduce into the
motion equation a subgrid scale model using a turbulent diffusion term to tackle the
fact that temporal image sequences are discrete information of the reality and that
their time and space resolutions may be to large compare to the turbulence scales of
the studied flow and therefore to the small active scales on the kinetic of the flow.

The work has been oriented in two principal axes:

• First: Proposition and validation of an efficient motion estimation approach
(chapter 4).

Differential form of BCCE was defined on information from two image spatial
gradients (TF_BCCE) (section 4.1.1). Large velocities are retrieved using an
unwarping pyramidal decomposition process (noW_MR) (section 4.2.2). Op-
timization issues have been studied and Direct Descent Energy (DDE) min-
imization (appendix C) coupling with multigrid techniques proved to be the
best compromise between solution accuracy and time consuming (appendix F).
The proposed approach is formulated by a Markov Random Field framework.
In the past, variational approaches were popular to treat motion estimation
problem as the velocity field is 2 dimensional real values. However, we show in
this work, that using Markovian framework which formalizes the problem on
a discretized graph, estimation of 2D real velocity field is as efficient as varia-
tional framework which solves the continuous equations using Euler-Lagrange
equations [77]. Moreover, Markovian approaches allow more flexibility on the
energy functional definition than variational ones. Results shown to be com-
petitive with existing algorithms in computer vision community, on different
temporal image sequences (solids and non-rigid, synthetic and real) and in
fluid mechanic community, on synthetic DNS particle sequences. Even if the
problem formulation were not physically motivated, results are coherent with
other CC and DOF approaches adapted to fluids (sections 4.5 and 4.6).

• Second: Definition of physical based motion equation with turbulence consid-
eration (chapter 5).

Transport equation with diffusion is filtered to correspond to the observed in-
formation given by the image sequence. Small scale interactions are defined



116 Chapter 6. Conclusions and Further Work

through a subgrid scale model using a turbulent diffusion term (TE-SGS) (sec-
tion 5.2.1). The turbulent diffusion coefficient Dt is, in this work, defined as
a statistical constant invariant in time and space. Dt is determined by the
turbulent subgrid scale kinetic energy (section 5.2.2). Results on synthetic
scalar filtered sequence are very promising. TE-SGS clearly outperform other
approaches and estimates a better velocity field closer to the exact DNS ve-
locity field (section 5.3). Results on real PIV acquisitions are less impressive
than the one on scalar sequence but we saw that subgrid scale model may also
improve motion estimation for dense particle image sequence (section 5.4).
Application on remote sensing has been done for the case of dust storms mo-
tion estimation. A brightness invariant model has been proposed to tackle
the variation of light over the day time (section 5.5). Qualitative results are
interesting for further research.

Improvement on motion estimation by the insertion of subgrid scale model into
the motion equation to deal with missing image information in the case of turbulent
flows opens a wild field of research where turbulence modeling can be used into
computer vision applications for a better analysis of image sequences.

Open problem and Further Work
As said above, this thesis leads to many different research fields.

Subgrid scale model definition

The subgrid scale model, representing the small scale effects on the dynamic of
turbulent flows, was defined as a constant in time and space. Study of different
subgrid scale models of turbulent diffusion, starting by the simplest Smagorinsky
model [87], should be investigated ([188, 67, 113, 126, 48]). From this study, we
should evaluate the capacity of subgrid scale model to fit the problem of turbulent
motion estimation from temporal image sequence. And, it may also lead to a new
subgrid scale model definition adapted to the application which will come to add
itself to the many existing models.

Physical regularization function with subgrid scale model

In this work, we focus our research on the motion equation through the definition
of filtered transport equation. We use a classical smoothness regularization function
[77]. This function can be viewed physically as a constant kinetic energy over time if
external forces are neglected. More complex regularization functions, with physical
motivation, have been proposed as Div-Curl [47], Stokes [136] or simplified Navier-
Stokes [137, 73] equations. These functions can bring improvement to the model
as it will force the estimated field to satisfy the regularization. However, functions
should be carefully defined depending on the studied flow field and the temporal
image sequence.
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Moreover, regularization functions were only defined on the filtered velocity field
(large scales). As subgrid scale model has been introduced, in this work, in the
data term (motion equation) due to no negligible effect of small scales, we should
also work on introducing subgrid scale models into the regularization function to
correctly constrain the physical observed phenomena.

Another promising solution is presented in next paragraph.

Coupling TE-SGS with data assimilation governing by filtered dynamic
equations with subgrid scale model

Methods proposed in [120, 121, 45, 89] are very promising for long temporal image
sequences. By experience, it needs at least height regular time interval successive
images. In [121], using data assimilation governing by Navier-Stokes equations with
an observation function defined by BCCE, the estimated velocity field is temporally
forced to satisfy the Navier-Stokes equation over the all sequence according to the
observation function. In this way, the regularization function is the exact dynamic
equation and it is coherent along the all time axis. The estimated field is less
sensitive to noise or even to missing instantaneous observation as it will be filtered
by governing Navier-Stokes equations. Moreover data assimilation is a useful tool
for analysis of some variables of the observed function.

Introducing TE-SGS as the observed function instead of BCCE is the next step
of research. As we can see in [121], when the observation function is an estimated
velocity field, the results are different than when it is the BCCE. The observation
function has then an important weight on the final estimation. TE-SGS shows much
better results than TE on filtered scalar sequence (chapter 5). Then coupling TE-
SGS with data assimilation governing by dynamic equations should improve the
estimation. Moreover, subgrid scale model should be introduce into the governing
equations. Data assimilation will then be useful to analysis and define the best
subgrid scale model of turbulent diffusion that fits to turbulent motion estimation
from temporal image sequences.

Robust light invariant model

In section 5.5, we propose a simple brightness invariant model which considers
the variation of image intensity linearly changes over the time. This assumption
is too restrictive and in fact far from the exact light variation phenomenon. More
work on brightness variation models should improve robustness. [170, 84] proposed
to consider that intensity between two successive images can vary by a proportional
coefficient and an additive term. Spatial regularization of the proportional coefficient
and additive term is added to the energy definition. [70] proposed different physical
possible phenomena which changes brightness intensity over the time as diffusion
process for example. Another way, to tackle brightness variation, is to use data
assimilation governing by dynamical equations as [121] over a set of successive images
(see above paragraph).
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3D flow estimation and scattering theory

The hypothesis of 2D turbulent flow is too restrictive. Temporal image sequences
give us a 2D projected observation of the real 3D environment. Thus it is important
to look to the projected dynamic equations from 3D to 2D plan as [100]. If 3D
data temporal sequence is available, the exact dynamic equations can be used in
our model.

Another problem of using transport equation as motion equation is that con-
centration of the observed quantity has to be related to the image intensity. We
made the assumption that brightness intensity is directly proportional to concentra-
tion. However, brightness intensity comes from light emission, diffusion, refraction
of scene components. The link relating the concentration to the brightness intensity
may be very complex. Scattering theory should be considered if we want to refine
the proposed approach.

Application work

Experimental fluids

In experimental fluids, determination of the velocity field is a requirement for
the experience validation. Methods used to retrieve the flow field are most of the
time Cross-Correlation (CC) techniques. Fluid needs to be seed by particles, in the
aim, to get the correct fields. We show, in chapter 4, that Differential Optical Flow
(DOF) based approaches can perform better than CC methods on synthetic particle
image sequences and even more on scalar image sequences. DOF based methods
have the advantage to give a dense field. Moreover the problem formulation can be
defined with physical motivated equations like for example: Motion equation based
on filtered transport equation with subgrid scale model (TE-SGS) as we suggested
in this thesis, regularization by 2D vorticity equation [137] or data assimilation
with simplified Navier-Stokes equations [121]. However, we saw that DOF based
approaches are much more sensitive to noise than CC methods. Experimental noise
due to the image acquisition is unavoidable. Further work suggested above on
robust brightness invariant models is a way to improve the efficiency of DOF based
approaches for experimental fluids.

Environmental understanding

Dispersion of pollution, smoke, ashes or even floods and climate change atmo-
spheric models, all these things need velocity field computation or at least a good
initial velocity field to be able to correctly do the simulation. The proposed method
in this thesis may provide more precise velocity field as initial condition given to the
model. On natural phenomena, regular flow estimation from temporal image acqui-
sition of the event can also be used as external forces on the simulation. Insertion
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of our approach into atmospheric models [186, 140] is a pretty interesting research
topic for real case studies linking estimation, simulation and real-time correction
problems.

Meteorology

In meteorology, huge data of temporal image sequences provided by satellite ac-
quisitions are available. Geostationary satellites become more and more precise with
a spatial resolution of few km2 and a temporal acquisition rate of 15 to 30 minutes.
However, due to the high turbulence (Re >> 1) in the atmosphere, time and space
resolutions of satellites are still much larger than turbulence characteristic scales of
the events. This thesis work opens a new research field where subgrid scale models
should be considered in the motion estimation from remote sensing sequences. Ap-
plication can be on dust and sand storms as shown in section 5.5 but also on clouds,
storms, hurricanes and typhoons (many every years), ashes (eruptions of Eyjafjalla-
jökull in Iceland in 2010) or sea surface temperature or pollution (oil spill in Gulf of
Mexico in 2010). Huge problems still remain to study. Satellite images give a verti-
cal integrated information. Flow in this thesis is considered to be 2 dimensional. In
reality equations should be the projection of the 3D scene [100]. Vertical velocity
field should not be neglected. Hypothesis of stratified flow in the atmosphere can
be done [73]. Extraction of the real observed quantity from remote sensing image is
not trivial and it is still a challenging problem. Combination of different bandwidth
acquisitions as infra-rouge, visible and others can used to extract a better analyzed
quantity value as for example, [102, 171] for optical thickness extraction on dust
events.

Few words to conclude

This thesis was supervised and supported in a Sino-French cooperation. Moreover,
it was held between teams and topics linking two scientific communities: Computer
Vision and Fluid Mechanics. Even with large physical distances and differences in
scientific knowledge from the both parties, this work has been completed. The re-
sults are promising and much remains to be done. Today, collaboration has become
stronger through a new project within LIAMA with the participation of French
(Rennes, Lyon) and Chinese (Tsinghua, LIAMA) scientists in these area. To con-
clude, I like to express my deepest gratitude to all the people I met during these
last years and with whom I hope to continue to collaborate in the future.





Appendix A

Particle Image Velocimetry (PIV)

A.1 Cross-Correlation Particle Image Velocimetry (CC)

Principe of Particle Image Velocimetry (PIV) is relatively simple and allows to
obtain a 2D instantaneous velocity field of the flow. This technique was mainly
developed in Fluid Mechanics community [2]. It consists in recording images of
the flow of an area lighting by a thin pulse of light probe at different successive
instants. This technique is non intrusive because no utensil, that could perturb the
flow characteristics, has to be placed inside the fluid. However particles have to be
placed in the fluid to be able to visualize something on images and to be able to
determined the displacement of the fluid by assimilate it to the displacement of the
particles in it. A technical background of the recording technique is presented in
appendix A.3. The image analysis to get the displacement of particles is generally
based on correlation techniques (CC). For this purpose, we need a seeding of the
fluid by particles within a correct concentration of particles. Moreover, it allows
to access to all spatial scales of the fluid depending on the spatial resolution of the
recorded images. Depending on the turbulence rate and camera specifications, it can
contain or not spatial scales of the turbulence. However, for the time rate of image
acquisition, the limitation due to camera technology is most of the time insufficient
to capture temporal scale of the turbulent flow. PIV can fix turbulent structures in
a spatial way.

In our case, we study two successive images representing the same scene at two
different times (I1 = I(x, t) and I1 = I(x, t + ∆t)). Thus we describe here the
Cross-Correlation PIV (CC). For a complete overview on PIV recording technique
and flow estimation methods, the reader can refer to [130, 94].

CC has become the best-known and most widely used experimental method for
flow estimation in fluid mechanics

A.1.1 Cross correlation

The principle of cross correlation is to look for the degree of similarity between
two variables. In the case of PIV, variables are considered as square interrogation
windows W(x) centered in pixel x containing N2

W pixels. Under hypothesis that
particles in image I1 will also be in image I2 and considering that particle size
and brightness doest not vary so much (BCCE defined in equation 3.4), the cross
correlation of interrogation windows between both images will allow us to determine
the dominant displacement of particles. The normalized cross correlation function
is defined as:
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Figure A.1: Cross-correlation illustration: Cross-correlation plane (middle). A
2× 2 interrogation window is correlated with a 6× 6 sample which produces a 5× 5

correlation plane.
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d⃗c is the displacement estimated by cross-correlation technique. For each choice
of a displacement d⃗c, the sum of the products of all gray values in the interrogation
windows W produces one cross-correlation value R12(d⃗

c). Figure A.1 shows how the
cross-correlation is performed in practice for an example of W of size 2 × 2 pixels
in an image of size 6 × 6. The original position of W is in the center of the image
(bottom-center representation on figure). W is linearly shifted over the image. For
every integer displacement, the corresponding correlation coefficient is computed
using A.1b. We obtained a cross-correlation plane of size 5 × 5 for this example.
Figure A.2 gives a 3D view of the cross-correlation function in the case of two PIV
images. The maximum of the cross-correlation function will provide the dominant
displacement of particles containing in W (illustration bottom right on figure A.2).

In the spatial space, the process of finding the highest correlation value for
every window is time-consuming. Number of multiplications per correlation value
increases in proportion to the interrogation window size. One way to avoid this
time-consuming calculations is to use the property of cross-correlation in Fourier
space: The cross-correlation of two function is equivalent to a complex conjugate
point-wise multiplication of their two-dimensional Fourier-transforms.

R12 = IFT (ℜ (FT (I1).FT (I2)
∗)) (A.2)
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Figure A.2: Illustration of cross correlation between two PIV images and rep-
resentation of cross-correlation function. The peak represents the dominant dis-
placement of pixels in the interrogation window. (Figure extracted from http:

// koncerto. biz/ )

where ∗ represents the complex conjugate, IFT is the 2D inverse Fourier-transform,
FT is the 2D Fourier-transform and ℜ is the real part of the complex given by the
multiplication of the two Fourier functions.

This standard cross-correlation techniques have some limitation. However, they
can be weakened by certain strategies that are presenting in the following subsec-
tions.

A.1.2 Peak Locking and Sub-Pixel Interpolation

Cross correlation allows to get only integer value velocity. Fractional displacement
can be obtained using correlation peak locking and sub-pixel interpolation.

http://koncerto.biz/
http://koncerto.biz/
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A CCD camera get the light intensity over the pixel size during a time lap
transforming the number of electrons in intensity of gray level. This intensity is
an average over all the pixel surface. We only have one information for one pixel.
The light signal is not continuous on the image and we don’t know values between
pixels. It can produce sometimes bias on the measure. The peak locking select
the measured displacement at the nearest integer value. It depends on the chosen
sub-pixel algorithm, the size of detected object compare to the pixel size of the CCD
camera, boundaries of the interrogation window, and density of similar objects. This
effect is added to the experimental noise that limit the precision of CC calculation.
We can see it when plotting the density of the displacement probability. If the
Gaussian is not smoothed, and shows discretization step at integer values, that
means there is some bias coming from this phenomenon. It is recommended that
particles have an average diameter around two to four pixels. Under this interval,
the sub-pixel interpolation is not efficient and can generate this bias. For a detailed
discussion of peak locking, we refer to [180]

Many improvements have been proposed to reduce the peak locking bias although
it was shown that Gaussian sub-pixel interpolation minimizes this effect.

Cross-correlation can retrieve the closest integer displacement d⃗cI of the interro-
gation window. Precision of these methods is ±1/2 pixel. It is not enough to get the
smallest scales of phenomena we want to measure. Sub-pixel techniques are used
to improve the precision. Camera has discretized intensity values of gray level, we
can make the interpolation between pixels if we know, a priori, the form of objects
to correlate. Displacement can be decomposed in an integer component d⃗cI and a
fractional one d⃗cf :

d⃗c = d⃗cI + d⃗cf (A.3)

Sub-pixel interpolation techniques determine the fractional displacement. There is
three classical methods to calculate d⃗cf : Peak Centroid, Parabolic Peak Fit and
Gaussian Peak Fit.

With good particle images, these interpolation functions can detect peaks with
an accuracy up to 0.05 pixels. Gaussian peak fit is the most used peak fit function
because particles themselves can be described by Gaussian intensity distributions.

A.1.3 Multi-Pass and Iterative Refinement

Multipass and iterative refinement techniques are used respectively to reduce erro-
neous estimates and to retrieve high-resolution velocity estimates [181, 142] because
CC is sensitive to the interrogation window size. More the interrogation window is
large, more the estimation is robust. However, resolution estimation is parser. Small
interrogation window gives a higher resolution estimations. However, estimations
are more sensitive to noise and provide more erroneous estimates.

Multi-pass technique is based on an iterative process. After the first displacement
evaluation of W, a shift corresponding to this displacement is applied to the same
interrogation window on the second image. The correlation peak becomes center
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Figure A.3: Iterative refinement technique illustration (two levels).)

in zero after the first iteration if the displacement proves to be correct. Else, other
displacement evaluation iterations are processed till a fixed convergent criterium.
At every iteration, the estimated displacement is added to the previous one. It has
been shown [181] that by offsetting the correlation windows, the number of matched
particles increases. Usually, three multi-pass steps are performed.

Iterative refinement technique allows to improve the resolution of the velocity
estimates [142]. A first displacement estimation is made by multi-pass between two
images using a large window size (NW × NW). Then the interrogation window is
reduce by half (NW ×NW → NW/2×NW/2). The coarse estimated displacement
is projected to the new smaller windows (see figure A.3). A new multi-pass is
performed on the smaller windows using the displacement as the first evaluation.
This window reduction is done until the desired resolution is reached. Note that
outliers have to be detected and replaced by interpolation at each refinement steps.
Because, they will strongly affect the final estimated displacement.

Anyway, these techniques do not allow to get a dense resolution estimation. The
final interrogation window size should depend on the particle density. It is shown
that at least four particle pairs should be located inside both corresponding interro-
gation windows. Compare to single-pass cross-correlation methods, coupling these
techniques improves both estimation efficiency and resolution. However, interro-
gation windows are not deformed by these methods. There is only one velocity
estimate for an interrogation window.

A.1.4 Interrogation Windows Deformation

As we say before, only one displacement estimate is recovered per interrogation win-
dow. The highest peak of the cross correlation function is selected has the displace-
ment of the window representing the dominant displacement of windows particles.
However, this peak will be less pronounced in regions with a large velocity gradient.
Interrogation window deformation techniques [78, 79, 173] can deal with this lim-
itation. Over interrogation windows, the corresponding displacement distributions
vary spatially. The spatial displacement distribution can be related to Taylor series.
Scarano [141] classifies the different interpolation methods depending on the order
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0th order 1st order 2nd order

Figure A.4: Effect of window deformation with a different truncation order of the
displacement distribution.)

of Taylor expansion used to estimate the displacement distribution:
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with d⃗c displacement in x = (x, y) and d⃗c0 displacement in x0 = (x0, y0) at the
center of the interrogation window W. x ∈

[
x0 − 1

2NW , x0 +
1
2NW

]
and y ∈[

y0 − 1
2NW , y0 +

1
2NW

]
. After a first cross-correlation estimation, the displacement

distribution inside the interrogation windows is computed by the used interpola-
tion method. The most used window deformation technique is the 1st order Taylor
expansion (linear) interpolation ([78, 79]). Higher order methods are more time
consuming due to the increased number of parameters. Figure A.4 represents the
different order methods.

A.1.5 Post-Processing

CC does not take into account spatial context when estimating the displacement of
an interrogation window. Depending on the quality of the correlation function, it
may do wrong displacement estimations. These outliers can be detected based on
the magnitude and direction of outliers vectors compare to its neighborhood. Many
different techniques for outliers detection and data interpolation have been proposed
(see [129, 180, 148]). Most of them combine the following two points:

• Outliers detection: An outlier is detected if the absolute difference of magni-
tude or direction between the velocity vector and the average of its neighbor-
hood is larger than a defined threshold. Divergence, vorticity or other flow
characteristics can be used as well for outliers detection [142].

• Interpolation: Replacement of outliers by interpolation technique using neigh-
borhood velocity vectors.
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A.1.6 Physics-Based Priors

An interesting improvement for post-processing methods has been the introduc-
tion of physical properties of the flow. For example [117, 82, 3] combined CC and
CFD using cost functions. Cross-correlation estimates are constrained to satisfy the
continuity equation or the incompressible Navier-Stokes equations. Displacement
estimations are spatially corrected in respect to the fluid equations.

[119] proposed a new CC technique based on physics. The obtained velocity
field satisfies the governing equation of the fluid. It is possible that not only the
velocity but also the pressure is measured, using the Navier-Stokes equations for the
dynamic model. This CC method with physical based model is used in section 4.6.1
for comparison with ours on particle image sequence.

A.2 Conclusions on CC

CC technique is attractive for its simplicity. The motion field is retrieved by search-
ing the local displacement that maximizes the cross-correlation between two inter-
rogation windows placed in each of the two images. This approach has proved to
be very efficient when satisfying various criteria related to the density of particles
or to the local gradient of the studied flow. Nevertheless, there are several limiting
factors. At first, the size of the window needs to be chosen carefully: if too small,
the cross-correlation peak might not be reliable ; if too big, the particles in the
windows might be animated by different movements due to local inhomogeneities
of the flow; because CC method estimates a single velocity vector representing the
majority displacement of particles in the window, the resulting velocity field will
be over-smoothed. In these two cases, the estimated velocity field might be either
noisy, either too smooth, or even incorrect. We have seen standard CC limitations
can be overcome by iterative schemes and post-processing steps. Note that the error
rates of up-to-date image processing methods for CC is under 0.1 pixel size which
means that the overall error is mainly caused by the peak-fitting function. A second
drawback lies in the fact that CC methods need very specific input data (particle
images under certain image conditions). In addition, CC approach cannot be used
for scalar field sequences, due to the absence of clear correlation peak in this type
of images as correlation relies on high-frequency components of the images.

A.3 Particle Image Velocimetry - Recording Technique

This appendix describes the technical background of the recording process for Par-
ticle Image Velocimetry (PIV). For complete description please refer to [130].

PIV is an optical method, used to measure the velocity field in fluids. Because
fluids are generally non-textured, to be able to perceive the fluid motion, tracer
particles are usually added to the flow. Small solid particles, very thin, are inserted
to the fluid. One of PIV hypothesis is that the solid tracer particle are small and
light enough to always be in the same fluid particle. In this way the displacement
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Figure A.5: Optical sketch of the PIV technique. (http: // koncerto. biz/ )

of the particle represents the displacement of the fluid. More information on tracer
particles (different materials and sizes) can be found in [104].

A.3.1 Image acquisitions

To get particle images, we have to create a bright plan in the flow. Particles, that
will go through this plan, will diffuse the light and we will be able to catch this light
on camera CDD. The camera is placed perpendicular to the bright slide. Illustration
of technique coupling laser and camera is given in Figure A.5.

Normally, every kinds of light source can be used, but rapidly laser sources
became the reference. Because they can generate a high power light and they allow
to better control the characteristics of the light plan in particular its divergence.
The laser power is chosen in function of the coverage of the light plan, the size of
present particles in the flow (diffused intensity by particles is proportional to the
square of their diameter), the exposure time (more the flow speed is important, more
the exposure time is short). For water flow, the use of classical laser providing few
Watts, can be enough. But for other cases, it is often necessary to use some sources
much more powerful. These kind of sources is composed by pulsed lasers that can
provide until few megawatts (over a time rate of few nanoseconds).

Particle images at different instants can be recorded on the same support (multi-
exposition), or on different supports (single-exposition): In the first case, the record-
ing will be analyzed by auto correlation. In the second case, we will use the cross
correlation. Typically the time rate ∆t between two images of a same particle varies
from few microseconds to few milliseconds. To be used, cross correlation has to be
associated to a double frame camera allowing to save rapidly two recordings.

http://koncerto.biz/
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Figure A.6: Illustration of a multi-exposition image.
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Figure A.7: Illustration of single-exposition images.

A.3.2 Synchronization between laser and camera

In multi-exposition many light flashes are superposed on a same support (on the
same camera frame for example). Thus, we only need to generate laser pulses when
the camera recording is open (illustration of multi-exposition image is shown in
figure A.6). In single-exposition, we use double frame cameras, that are able to
record two successive images separated by a minimum interval of time in a order
length of few microseconds. In our case, we use the single-exposition technique,
that gives us two images representing the scene at two successive times. And from
these two images, we estimate the displacement of fluid particles. Illustration of
single-exposition images is shown in figure A.7 where the fluid is going vertically
from the top to the bottom.

For single-exposition, the double frame camera is synchronized with a laser in
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Figure A.8: Time set of camera and laser synchronization for single-exposure
images. (Figure extracted from http: // koncerto. biz/ )

the way to take images of the lighting flow field when there is the laser pulses.
Laser pulses have lighting flash inferior to 1µs of light. This high speed lighting
flash allows to get a fixed information of the fluid particles. In the same time, the
camera frame is open to record the light diffused by the particles. The first frame
acquisition is fully controlled by the user. The opening frame time is larger than
the lighting flash time. Thus, first the camera frame is open then the laser pulse
is done. The camera frame is closed after the laser pulse. Figure A.8 gives a time
chronology of camera and laser synchronization for the two frames. However, the
second frame acquisition is constrained, even today, by camera technical limitation.
In fact, the camera needs time to transfer the electric charges from the first image to
the computer when recording the second image. Because the transfer time is larger
than the temporal time rate of acquisition ∆t. We can then only take image pairs.
Another pair will be taken after that the second image is finished to be transfered.
The exposition time of the second frame is not controlled by the user and it is much
longer than the first frame. The temporal scheme coupling laser pulses and camera
acquisitions is implemented in commercial software as Dantec Dynamics or Lavision.
The PIV image sequences used in this work in chapter 5 were generated by Lavision
software.

Today, we can find some very fast camera that can take many images with a
temporal rate acquisition of order of ∆t. However these kind of camera still remains
very expensive and few laboratories in the world use it. Due to the limitation of
image pairs, temporal information of the flow cannot be taken into consideration.
It is for that, in this work, we focus our motion estimation over only two successive
in time images. Equation definition using temporal information has temporal con-
straints or Navier-Stokes equation (section 3.3.2.2) could be used in a later work to
improve our estimation.

Another limitation of Particle Image Velocimetry is that for fluid or scalar in the
fluid, we have to seed tracers into the fluid. For some real applications, it might be
not possible to seed the fluid correctly due to temperature or to a difficult access for
seeding particle to the studied location. For scalar experiments, seeding of the fluid
may represents some inconvenient, in the way that we need particle to estimate the
flow field and the concentration to know its evolution. Fluorescence is often used in

http://koncerto.biz/
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this case.
A last limitation resides that the technique needs an accessible optical path.

One for the laser sheet and another one for the camera. In certain cases, a testbed
should be specially builded.





Appendix B

Problem formulation using
MRF-Gibbs framework

Markov Random Fields (MRF) and Gibbs distributions [69, 17, 66] are at the inter-
section of statistical physics and probability theory. These methods allow to define
a mathematical formulation of many kind of problems in computer vision where
solution cannot be analytically computed. They have been extensively used since
the early 80’s. Many studies based on this approach have been proposed as im-
age restoration [66, 80], segmentation [54, 24], classification [42, 112], optical flow
[76, 134] and many others...

We give here a brief presentation of this method. For complete details on the
approach, please refer to books [81, 98, 22]. Its application to stereo matching
problem is given in appendix D and another application to optical flow problem is
given in chapter 4.

B.1 Markov Random Fields

Let have an undirected grid graph G = (s, e) defined by different nodes, called site
s, linked each others by undirected edges e.

s = {si|i ∈ {1, ...,N}} (B.1a)

e = {eij |i, j ∈ {1, ...,N}} (B.1b)

where N = card(G) is the size of the graph. The figure B.1 represents two of the
most used neighborhood systems N for a regular grid graph. Figure B.1.a shows a
4-neighborhood system and figure B.1.b a 8-neighborhood system. The neighbors
of site s4 for figures B.1.a and B.1.b are represented with light (cyan) color. Light
(red) edges are the linking edges for site s4 with its neighbors.

A neighborhood system N for G is:

N = {Nsi |∀si ∈ G} (B.2)

where Nsi is the set of sites neighboring si. Nsi satisfies the following properties:

1. si /∈ Nsi

2. si ∈ Nsj ⇔ sj ∈ Nsi
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(a) (b)

Figure B.1: Illustration of undirected graph with different neighborhood sys-
tems: 4-neighborhood (a) and 8-neighborhood (b).

A 4-neighborhood system is generally enough (figure B.1.a). Higher neighborhood
systems can be interesting in some cases, but are too much time consuming for a
non significant improvement of the estimation in our case.

Let be Q = {Qsi |si ∈ G} a set of random variables indexed by the site si in the
graph G. In this set Q, each random variable Qsi takes a value qsi in Γ (also called
state or label). Γ is called the space state of variable Qsi . The event for which Qsi

takes the value qsi is noted Qsi = qsi . Similarly, the joint event is noted Q = q

where q = {qsi |si ∈ G} is a configuration of Q corresponding to a realization of the
random variable field. The set of all possible configuration q is Λ. The notation
QG−{si} = qG−{si} denotes the joint event of the restricted set of Q containing
all random variables except the one at site si. Probability of a random variable
P (Qsi = qsi) is denoted P (qsi) for writing simplification, and similarly the joint
probability P (Q = q) is denoted P (q).

Markov property: Q is called a MRF with respect to a neighborhood system N
if and only if:

P (q) > 0 for all h ∈ Λ (B.3a)

P
(
qsi | qG−{si}

)
= P

(
qsi | qNsi

)
(B.3b)

for all si ∈ G. P (a|b) is the conditional probability of a given b. One interesting
property of MRF concept is that any joint probability P (q) satisfying equation B.3b
is uniquely determined by the local characteristics P

(
qsi | qNsi

)
[66] for which the

configuration is qNsi
= {qsj |sj ∈ Nsi}.

B.2 MRF - Gibbs equivalence

Hammersley and Clifford theorem [66] states that any probability distribution P (q)
having the Markov property, equations (B.3), can be represented with the Gibbs
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distribution, given an appropriate energy function E.
The Gibbs distribution gives the probability of the set of random variable Q

having the configuration value q as:

P (q) = Z−1exp
(
− 1

T
E(q)

)
(B.4)

where Z, called the partition function, is the normalizing term:

Z =
∑
q∈Λ

exp
(
− 1

T
E(q)

)
(B.5)

where T is a constant called the temperature which controls the sharpness of the
distribution. The more probable configurations q are those with the lower Gibbs
energies E(q). According to Hammersley and Clifford theorem, if

E(q) =
∑
c∈C

Vc(q) (B.6)

where Vc(q) is a potential function defined over clique c, the P (q) is a MRF and
satisfies MRF properties. A clique c is any fully connected subset of s in G. There
is different order of cliques depending on the neighborhood system. The figure B.2
gives the different possible cliques for the regular grid graph G presented in figure
B.1 for 4-neighborhood system (figure B.2.a) and 8-neighborhood system (figure
B.2.b). For 4-neighborhood system we take into account the single-site C1 and the
pair-site C2 cliques. For 8-neighborhood system, triple-site C3 and quadruple-site

(a) (b)

Figure B.2: Illustration of cliques orders for 4-neighborhood (a) and 8-neighborhood
(b). All possible cliques can be obtained by permutation of sites. From top to down:
Single-site C1, pair-site C2, triple-site C3 and quadruple-site C4
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C4 cliques are possible. Moreover, there is also more possible pair-site cliques than
with the 4-neighborhood system. As example, triple-site cliques are not possible
with 4-neighborhood system, because all sites inside the cliques are not neighbors
each others. The potential function Vc(q) depends on the order of cliques c.

B.3 Gibbs energy functional

Most of the time, we have a known information called observation variable Y from
which we want to extract a more meaningful unknown information Q as for example
segmented region, classification from one image or optical flow from time image
sequence.

We seek for the best configuration of q, denoted q̂, given the observation Y .
Using Bayes rule decomposition:

P (q|Y ) =
P (Y |q)P (q)

P (Y )
(B.7)

where P (Y ) and P (q) are prior probabilities and P (Y |q) is the likelihood (condi-
tional probability of Y given q). Y is given by the time image sequence. Thus, P (Y )

is a normalizing constant. Then, we have:

P (q|Y ) ∝ P (Y |q)P (q) (B.8)

Using MRF-Gibbs property, we have:

P (q|Y ) ∝ exp (−E(q, Y )) = Πc∈CP (qc|Yc) (B.9)

where Y ⊃ Yc defined on clique c. Taking the negative log, we finally get:

E(q, Y ) = log (P (Y |q)) + log (P (q)) (B.10)

= Ed(q, Y ) + Es(q) (B.11)

=
∑
c∈C1

Ed(qc, Yc) +
∑
c∈C2

Es(qc) (B.12)

Energy Ed is called the data energy. It represents the cost of generating Y , knowing
the configuration q. Es is the regularization function corresponding to the cost of
the configuration q. It is independent of Y but q = {qsi |si ∈ G} where qsi are
dependent each others. The Gibbs energy could be written with potential functions
as (figure B.3 gives a representation of the potential functions on a graph for site
s4):

E(q, Y ) =
∑
si∈C1

Vd (qsi , Ysi) + α
∑

si,sj∈C2

Vs
(
qsi , qsj

)
(B.13)

where sj ∈ Nsi . α is a weighting coefficient playing on the contribution of smooth-
ness potential function Vs with respect to data potential function Vd.
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Figure B.3: Representation of the MRF problem given an image. Dashed line
shows the data potential functions Vd and the red line shows the smoothness potential
functions Vs in our case of 4-neighborhood system.

Our goal is to get q̂, the best configuration of q, that recovers the Maximum a
Posteriori (MAP). From equation (B.4), it is equivalent to get the minimum of the
Gibbs energy E(q, Y ). q̂ is defined as:

q̂ = argmin
q∈Λ

E (q, Y ) (B.14)

To obtain q̂, many optimization methods can be used [168]. In this work, we
compare few of them and propose some improvement for Stereo Matching and OF
approaches (see appendixes C and E).





Appendix C

Optimization Techniques

Problem formulation in computer vision is often modeled via an energy formulation.
In this thesis, we use MRF-Gibbs framework to define this energy (appendix B).
Solution of the problem correspond to the minimum of the defined energy E.

Energy minimization is often the key point of solving problems in computer vi-
sion. For decades, many methods have been proposed (deterministic, stochastic,...).
Some can only reach local minimum and others strong local minimum close to the
optimal solution (global minimum). Since beginning of 21th century, minimization
based on Graph theory have been generalized to find global minimum of multi-
labeling problems which means that the random variable can take many different
values.

In this work, we study deterministic local minimization methods (Iterated Con-
ditional Modes and Direct Descent Energy), and a stochastic global minimization
with an improved Simulated Annealing algorithm.

A new approach formulation to help local minimization to converge to a mini-
mum closed to the global one is proposed. This method combines local and global
energy constraints in an multigrid approach.

Results were compared to Graph theory algorithms on simple Stereo Matching
application (see appendix D). In optical flow estimation, we also work on Graph
Cuts using and adapting alpha-expansion algorithm to the hybrid multiresolution
process in aim to get a finer discretized velocity estimate (see section E).

C.1 Iterated Conditional Modes - ICM

ICM [18] is a deterministic method that converges to a local minimum. It iteratively
chooses the value (candidate) q(s) ∈ Γ of the random variable Q(s) which decreases
the most the Gibbs energy E(s) of each site s until convergence (see appendix
B for MRF review). The value q(s) is also called a label. As local methods, it
extremely sensitive to initialization especially in high-dimensional spaces with non-
convex energies. Experimentally, ICM generally proves to converge to a better
minimum of the energy when it is initialized by the random field configuration q

given the lowest data energy Ed cost (min(Ed)) (equation (B.12)). It has sense
because ICM at each iteration selects the candidate minimizing the most the energy
for each site according to neighbors states. Fixing all the random field to zero, the
minimum of E is the minimum of Ed because the regularization energy Es only
depends on the random field (equation (B.12)). Ed is representing the problem to



140 Appendix C. Optimization Techniques

solve, so the minimum of Ed is already a good approximation of the problem without
spatial regularization.

ICM algo.1 details the minimization process. Y is some known observed quantity.
s is a site of the graph G. s′ is a neighbor of s (s′ ∈ Ns). Ei(s) is the energy of a site
s at loop iteration i. Ed and Es are the data and regularization energies (equation
(B.12)). Ei

total =
∑

s∈GE
i(s) is the total energy over all pixels.

Our ICM implementation differs from [18] and Middlebury software ICM [168]
by a rotation of site order iteration loop at each minimization iteration (algo.1 line.7)
which proves to reach faster a better minimum and by an energy logical operator
comparison ≤ (algo.1 line.12) which allows to go over plateau energy. Convergence
of the algorithm is obtained when no configuration can be made, this results in
same total energy value (summation of all image pixels) for two successive iterations
(algo.1 line.16).

Algorithm 1: Iterated Conditional Modes Minimization
1 INITIALIZATION SET TO MIN(Ed) ;
2 MINIMIZATION SCHEME: Iteration over i ;
3 i← 0 ;
4 while Stop Condition NON Satisfied do
5 i← i+ 1 ; Ei

total ← 0 ;
6 foreach site s ∈ G (minimization) do
7 (Permutation of site listing way at each loop) ;
8 qi(s)← qi−1(s) ;
9 Ei−1(s)← Ed(Y (s), qi−1(s)) + αEr(qi−1(s), qi−1(s′)) ;

10 foreach label q ∈ Γ do
11 Ei(s)← Ed(Y (s), q) + αEr(q, qi−1(s′)) ;
12 if (Ei(s) ≤ Ei−1(s)) then
13 Ei−1(s)← Ei(s) ;
14 qi−1(s)← qi(s)← q ;

15 Ei
total ← Ei

total + Ei−1(s) ;

16 if (Ei
total = Ei−1

total) then Go to 17 else Retour in 4 ;

17 FINISH ;

C.2 Direct Descent Energy - DDE

Classical Direct Descent Energy (DDE) is a variant of the gradient descent algo-
rithm. It is based on a random generation of label candidate q in Γ for each site.
The candidate is selected if it decreases the energy. This method is still sensitive
to initialization. We propose an improvement of DDE method. Algo 2 details the
minimization process. First, to find the best match for a site at an iteration, we
generate N times a non repetitive random candidate and choose the one that mini-
mizes the best E(s) for site s (algo.2 line.8-13). This proved to converge faster to a
better minimum. Second, we use a logarithmic increasing function for α from 0 to
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α0 depending on iteration i (algo.2 line.16).

α(k) = α0

(
1− e−b i

)
(C.1)

b is a coefficient that defines the increasing speed of α. In this way, we first satisfies
the data energy Ed then constraints it more and more by regularization energy Es.
Thus, improved DDE is not very sensitive to initialization.

Iteration is done until convergence. Because of random generation of candidate,
it is possible to have an iteration with no diminution of energy that is not repre-
sentative of the real convergence of the algorithm. Convergence criterium is little
changed compare to ICM. Convergence is obtained when 20 successive decreased
energy quantities are inferior to a threshold ε. Number of 20 has been chosen
empirically to satisfy compromise between enough iterations to allow possible ap-
parition of candidate q decreasing the energy E and not too much iterations in
regard to the computational time. Parameter ε allows to play on the rigorousness
of the convergence. ε = 0 corresponds to a full convergence, no decreasing of energy
over the last 20 iterations. ε ̸= 0 allows to stop faster the algorithm in a state very
close to the full convergence (algo.2 line.18).

Algorithm 2: Direct Energy Descent Minimization
1 MINIMIZATION SCHEME: Iteration over i ;
2 i← 0 ; α(i)← 0 ; stop← 0 ;
3 while Stop Condition NON Satisfied do
4 i← i+ 1 ; Ei

total ← 0 ;
5 foreach site s ∈ G (minimization) do
6 qi (s)← qi−1 (s) ;
7 Ei−1 (s)← Ed

(
Y (s), qi−1(s)

)
+ α(i)Er

(
qi−1(s), qi−1(s′)

)
;

8 foreach n from 0 to N do
9 Random non-repetitive generation of q ∈ Γ ;

10 Ei (s)← Ed (Y (s), q) + α(i)Er
(
q, qi−1(s′)

)
;

11 if (Ei(s) ≤ Ei−1(s)) then
12 Ei−1 (s)← Ei (s) ;
13 qi (s)← q ;

14 qi−1(s)← qi(s) (updating) ;
15 Ei

total ← Ei
total + Ei−1 (s) ;

16 α(i)← α0

(
1− e−bi

)
;

17 if (Ei−1
total −Ei

total < ε) then stop← stop+ 1 else stop← 0 ;
18 if (stop > 20) then Go to 19 else Return in 3;

19 FINISH ;

A hierarchical global to local constraints approach is proposed in section C.4 to
help local minimization to not be trapped into local minima. In this case, DDE
minimization uses logarithm increasing coefficient only at the coarsest level. Then,
the weighting coefficient is constant α0 because the estimation at coarser level k+1

is used as initialization at level k.
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C.3 Simulated Annealing - SA

Deterministic methods as ICM and DDE stuck into local minima due to the fact
that the energy E(s) of a site can only be decreased. These methods find a minimum
of energy for each site. In most of cases, the minimum of the total energy is not
equal to the summation of the minimum of site energies satisfying a neighborhood
configuration of the random field. This is due to the fact that we have an energy cost
depending on this neighborhood. To keep converging toward the global minimum,
these algorithms should consider the possibility of an increase of the energy allowing
a change of the random field configuration which could lead to a better minimum.

Simulated Annealing (SA) (Kirkpatrick [85], Geman [66], Bernard [13]) is an
adaptation from Metropolis algorithm [109] to combinatory optimization problem.
Algo 3 details the algorithm of the proposed SA in this paper. SA considers pos-
sibility of a validation of candidate that increases E(s) at iteration i depending on
the following condition (algo 3 line.18-19):

U ≤ e

(
−Ei(s)−Ei−1(s)

T (i)

)
(C.2)

U is an uniform random value in [0 : 1]. Ei(s) − Ei−1(s) is the energy quantity
difference between new candidate energy and previous validated candidate energy
for the site s. T (i), called "Temperature", represents the selection control parameter
of the decreasing energy from the equilibrium point ("freezing point") around this
temperature. For T = 0, we retrieve DDE algorithm. To converge to strong local
minimum close to the optimal, T has to be a decreasing function that slowly decrease
around the freezing point. Many functions have been proposed, Geman [66] proposed
a logarithmic decreasing function:

T (i) =
b

ln(1 + a i)
(C.3)

Theoretically, to converge to the optimal solution, T has to slowly decrease to let the
algorithm time to find the most stable state for each T . For computational point
of view, it will require an infinity of time. In practice, decreasing of T function
is set to make compromise between slow decreasing to get the best minimum and
fast enough decreasing for a correct computational time. Convergence criteria of
SA is reached in this paper when relative decreasing variation of E over the last 20

iterations is inferior to a threshold limit (ε = 10−8) as described in DDE section.
The temperature at convergence is then Tconv.

Considering a slow decreasing T function, most of the combinatory optimization
problem is solved around a certain freezing point (Tc) depending on the random
field discretization and the data and regularization energy cost ranges. After what,
improvement of random field configuration are fewer with smaller impact on the
energy decreasing. Keeping iteration process on Geman T function till T = 0 is
high time consuming comparing to the minimization improvement. However when
convergence criterium is satisfied T = Tconv ̸= 0, SA returns a good minimum close
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to the optimal solution but this minimum can easily be improved till T = 0. We
propose to change T function by adding a second phase to the logarithm decreasing
after the algorithm has converged at Tconv. Considering the same convergence cri-
teria, T become an decreasing erf function from Tconv to 0 converging to the best
local minimum from the one reached for Tconv (algo 3 line.5). Final convergence is
obtained when there is no site changing random value (algo 3 line.27-28). Figure
C.1 gives an illustration of the T function over iterations. In this paper, b and a, the
decreasing coefficients of the logarithm T function are empirically defined to slowly
decrease around Tc, then at Tconv decreasing coefficients of the inverse erf function
are automatically computed from Tconv and number of iteration i at Tconv. Further
work on optimal Tc parameter computation from the energy definition is interesting.

Algorithm 3: Simulated Annealing Minimization
1 MINIMIZATION SCHEME: Iteration over i ;
2 i← 0 ; stop← 0 ; nsleep (s)← 0 ;
3 while ( Stop Condition NON Satisfied ) do
4 i← i+ 1 ; Ei

total ← 0 ;
5 if ( 1st phase T ) then T (i) = b/ln(1 + a i) else T (i) = −erf(f(i, Tconv)) ;
6 foreach ( site s ∈ G (minimization) ) do
7 qi (s)← qi−1 (s) ;
8 if ( nsleep (s) > nc (s asleep) ) then
9 if ( qi−1(s′) changed ) then nsleep (s)← 0 (wake up s) ;

10 if ( nsleep (s) < nc (s awake) ) then
11 nsleep (s)← nsleep (s) + 1 ;
12 Ei−1 (s)← Ed

(
Y (s), qi−1(s)

)
+ αEr

(
qi−1(s), qi−1(s′)

)
;

13 n← 0 ;
14 while ( n < N & nsleep (s) ̸= 0 ) do
15 n← n+ 1 ;
16 Random non-repetitive generation of q ∈ Γ ;
17 Ei (s)← Ed (Y (s), q) + αEr

(
q, qi−1(s′)

)
;

18 Random generation of uniform value U ∈ [0, 1] ;

19 if
(
U < exp

(
−Ei(s)−Ei−1(s)

T (i)

))
then

20 Ei−1 (s)← Ei (s) ;
21 qi (s)← q ;
22 nsleep (s)← 0 ;

23 qi−1(s)← qi(s) (updating) ;

24 Ei
total ← Ei

total + Ei−1 (s) ;

25 if ( |Ei−1
total −Ei

total| < ε ) then stop← stop+ 1 else stop← 0 ;
26 if ( stop > 20 ) then
27 if ( 1st phase T ) then Pass to 2nd phase T ; ε← 0 ; Go to 3 ;
28 else Go to 30 ;

29 else Return in 3 ;

30 FINISH ;

Another improvement is the candidate selection and speed up of the iteration
loop. At iteration i for site s, candidate is non repetitively and randomly generated
over the range set as for Improved DDE (algo 3 line.13-16). But main difference is
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Figure C.1: Temperature function T over iteration i for improved SA. For visual-
ization, scales don’t correspond to reality. 1st decreasing phase in much longer than
the 2nd phase.

that SA does not select the candidate that minimizes the maximum E(s) but select
the first candidate that satisfies equation C.2 (algo 3 line.14). nsleep (s) ̸= 0 means
that a candidate has satisfied the validation condition (algo 3 line.22). In this way,
at each iteration, we have less rejected candidate. This process allows to reach a
better configuration state but increase inside loop computational time around the
freezing point. In the other way, a site can be put in a sleeping state if its random
value didn’t change for nc successive iterations (algo 3 line.8&11). Thus, it becomes
outside minimization process and it can be waking up if a neighbor site changes
random value (algo 3 line.9&10). This does not affect the final minimum because
of the SA algorithm property of small move minimization but it significantly makes
the algorithm faster. We call, the proposed SA method, Improved SA.

C.4 From Global to Local Constraints

Because local minimization strongly depend on the quality of the initialization, the
idea was to solve the energy function in an iterative process from local to global
constraints.

Local constraints consist to define an interrogation window W of size NW ×NW
for which all site s of W will have the same label qW . The best configuration of
qW represents the dominant disparity over W. More W is large more the solution
is parse but more it is robust.

The global constraints is the smoothness term Es, it consists to constraint the
disparity distribution by a defined function over the all image domain linking neigh-



C.4. From Global to Local Constraints 145

Figure C.2: Illustration of FLTG energy on an 8×8 image with 4×4 interrogation
window W.

bor sites.
Coupling local and global constraints, smoothness term is only non-null at bor-

ders of 2 interrogation windows W and W ′. The total energy becomes:

E(I, qW) =
∑
s∈W

Ed(I(s), qW) + α
∑

s∈W,s′∈W ′

Es(qW , qW ′) (C.4)

Figure C.2 shows an illustration of the image energy for W = 4 × 4 on a 8 × 8

pixel image. W is on the top left of the image. Its neighbors are W ′. Inside
W, each pixel has a data energy term of Ed(I(s), qW). Only pixels on the border
(
∑

s∈W,s′∈W ′) of W have non-null smoothness terms Es(qW , qW′) represented by
red arrows. Everywhere else, smoothness terms in white arrows are equal to zero.

From local to global constraints (FLTG) method starts the process with W of
image size. Only 1 disparity is obtained for the all image (Es = 0). All the energy
is governed by local constraint. Then, W is reduced by scale of 2 till W reach the
pixel size. When going down in the process W getting smaller, the local constraint
get less important regarding to the global constraint influence. At the last step,
W is of size of a pixel, the energy is finally governed by the global constraint Es.
At each step of the FLTG method, energy is minimized by local minimization ICM
(FLTG-ICM) or DDE (FLTG-DDE).

The proposed FLTG method allows to local minimization to reach local min-
imum close to the global minimum keeping the advantage of slow computational
time of ICM and DDE. It is not interesting to apply FLTG method to global min-
imization because global minimum can be directly obtained at pixel size. FLTG
may, however, be used to reduce the computational time of global minimization
(illustration in appendix F.2).





Appendix D

Optimization Validation on Stereo
Matching

Stereo Matching is a simple case, where each pixel of an image is matched to its
correspondent in the other image. The distance separating a pixel with its corre-
spondent is called disparity. Thus, we are looking to the best disparity map allowing
to recover every pixel displacement between both images. Most of the time stereo
pair images are rectified where horizontal lines are epipolar lines which reduce the
displacement dimension from 2D to 1D (horizontal displacement) and in a simpli-
fied case displacements are integer value representing the distance in term of pixels.
And in the case of fixed scene, the displacement only takes value in one direction
from 0 to dmax. For all of this, number of possible value of our random variable
d (number of label) is limited and strongly discretized. Minimizations based on
Graph theory are very efficient. It is for that we proposed, here, to compare our
minimization algorithms to these graph minimization on this kind of problem. For
optical flow estimation where random variable is 2D real value, number of label is
much higher, than our minimization will naturally be less affected by this condition
than graph minimizations. Formalization of stereo matching problem is done using
MRF framework with the definition of Gibbs energy as explained in appendix B.

D.1 Stereo Matching Equation Formulation

We assume that stereo pair images are rectified where horizontal lines are epipolar
lines. Data Y (s) is the observed image intensity I(s) and random variable field Q(s)

is the disparity field d(s). Site s is image pixel (x, y) (Ω = dim(I)). d(s) ∈ [0 : L[ is
the horizontal integer distance in pixel between a site s on the left image IL(s) and its
corresponding site on the right image IR(s+d(s)). Data term Ed (equation (B.12))
is the simple absolute difference between corresponding sites for each disparity:

Ed(I, d) =
∑
s∈C1

∑
color

∣∣IL(s)− IR(s+ d(s))
∣∣ (D.1)

C1 is the single site clique (appendix B.2) corresponding to Ω. Variant formulation
of Ed difference computation proposed by Birchfield and Tomasi [19] can be used in
our model. Linear interpolation of intensity distributions around a site is calculated
to reduce sensitivity of the integration of light intensity over the site area by the
camera. Indeed due to camera sampling and material, intensity can be interpreted
differently from one image to the other by the camera.
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In this paper and like in [168], we consider that different pairings of neighbor
disparities can lead to different costs. The smoothness term can be written as:

Es(d) =
∑

s,s′∈C2

α.βss′ . min
(
Φ
(∣∣d(s)− d(s′)

∣∣) , Vmax

)
(D.2)

C2 is the pair-site clique defined by (s, s′) for all s and s′ ∈ Ns (appendix B.2). Φ is
L1 or L2 norm. Vmax allows to truncate the smoothness term.
If Vmax = 1, it becomes Potts function. βss′ is a per-pairing weight defined as:

βss′ =

{
γ if |IL(s)− IL(s′)| < γthreshold
1 else

(D.3)

γ is a positive constant coefficient weight transforming the smoothness term in an
anisotropy image driven function if left image gradient between s and s′ is inferior
to a threshold value γthreshold.

Solution of the stereo matching problem will be given by the best disparity
configuration field that minimize the most the defined energy (equation (B.14)).

D.2 Results on Middlebury Stereo Benchmark

Middlebury Stereo Benchmark ([143, 144]) is a dataset of many different stereo
image pairs with different characteristics. The benchmark has been done to help
comparison of state of the art approaches on identical stereo image pairs. Differ-
ent statistical errors are computed and an on-line approach performance table is
available on http://vision.middlebury.edu/stereo/eval/.

D.2.1 Evaluation Methods

We decide to compare our minimizations on four stereo image pairs of this data set.
Figure D.1 shows the four stereo image pairs: a) Tsukuba, b) Venus, c) Teddy, d)
Cones for which left and right images are represented in the two first columns. The
third column give the ground truth which is the exact disparity map. The different
gray colors represent different disparities (displacements) in pixel.

Results are also compared with an open source software from [168] available on
http://vision.middlebury.edu/MRF/code/ that contains Graph based minimiza-
tion algorithms and for which validation has been published. Time consuming and
final minimum convergence are compared between algorithms.

As we got the exact disparity map for each sequence, we may compute statistical
errors. For that, we use the proposed statistical error definition in [143] which
compute the percentage of bad matching pixel, (statistical errors are computed
from our disparity map by routine of middlebury stereo team and comparisons are
then more objective)

Err% = 100 ∗
∑

s∈Ω (|de(s)− dc(s)| > δd)∑
s∈Ω 1

(D.4)

http://vision.middlebury.edu/stereo/eval/
http://vision.middlebury.edu/MRF/code/
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where δd is a disparity error tolerance in pixel. For the following results δd =

(0.5; 1; 2). In case of δd = 0.5, as our disparity discretization is integer value in
pixel, it means the percentage of wrong matching pixel without tolerance. Ω is the
domain on which we want to compute the statistical errors. As in the middlebury
benchmark, we use three different area where to compute Err%, which are defined
by different masks shown in Figure D.2. The interest domain is represented by white
area. Different masks are focus on different characteristic area of the image as:

• All the image domain (Figure D.2.1 all) without borders for Tsukuba and
Venus sequence

• Non-occluded regions (Figure D.2.2 nonocc)

• Regions near disparity discontinuities (Figure D.2.3 disc)

a)

b)

c)

d)

Figure D.1: Stereo image pairs: a) Tsukuba, b) Venus, c) Teddy, d) Cones. Col-
umn from left to right: left input image, right input image, corresponding ground
truth (disparity map).
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a)

b)

c)

d)

1) all 2) nonocc 3) disc

Figure D.2: Tsukuba (a), Venus (b), Teddy (c) and Cones (d) masks use for com-
puting Err% for different regions of interest (in white): 1) all: all the image domain,
2) nonocc: non-occluded regions, 3) disc: regions near disparity discontinuities.

Moreover for accuracy generalization different energy definitions (data and reg-
ularization) are set for Tsukuba, Venus and Teddy and compare with Graph based
minimization methods as illustrated in [168]. All results and running times presented
below were obtained on a 1.73GHz Pentium 4 with 2 Gbyte RAM.
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D.2.2 Improved DDE and SA

Here, we test DDE and SA minimization on Tsukuba image. The energy function
is Ed using Birchfield and Es using L1 norm truncated at Vmax = 2. dmax = 16

(dim(Γ) = nbL = 16) and α = 20.

Improved DDE
In Figure D.3, we illustrate the disparity maps obtained by classical DDE and

Improved DDE for different initializations: d(s) = 0 (a), configuration of d(s) given
the minimum of the data energy Ed (equation (D.1)) (b), random d(s) (c), for all
s ∈ Ω. For Improved DDE, b = 1 in α function. Classical DDE is clearly sensitive to
initialization compare to Improved DDE. Moreover, Improved DDE disparity maps
are spatially smoother and better than classical DDE.

(a) Init null (b) Init min(E) (c) Init random

Figure D.3: Estimated disparities for Classical DDE (top) and Improved DDE
(bottom) for different initializations (columns).

Figure D.4 shows improvement of energy minimization when using non repetitive
generation of candidate. Figure D.4.a plots the total energy function Etotal along the
time t and figure D.4.b plots the number of pixels which changed disparity value.
The best minimization of the energy is obtained when at each site, candidate is
randomly generated over the all discretization domain (here nbL = 16). It reduces
convergence time consuming by almost a factor 2 and energy minimum about 20 %

compare to one candidate generation at each iteration. If using a constant weighting
coefficient, the improved DDE is similar to ICM but the main difference is that
candidate generation is random, while in ICM it is incrementally done from 0 to
dmax. It means that because there is a lot of local minima of the energy, random
generation process of potential candidate and site order iteration loop allow to go
over some of them.

This proposed improved DDE gives a better minimum than classical DDE and
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Figure D.4: Comparison of the energy minimization for Improved DDE for differ-
ent repetition numbers (1, 2, 3, 5, 10, nbL) and ICM (a) and evolution of number
of changed label at each iteration (b) over the time.

converge faster. However, final convergence always get stuck in a strong local minima
compared to global minimization methods (see section D.2.4).

Improved SA
Figure D.5 shows SA algorithm disparity map estimations: SA-Geman (a) and

Improved SA (b). For these algorithms, T logarithmic parameters are b = 30

and a = 0.01. The erf decreasing function for Improved SA is automatically
parametrized by convergence of the first temperature phase. Sleeping condition
is n = 5 successive times non changing labeling. Improved SA find better minimum
than SA-Geman. The estimated disparity map is closer to the ground truth (Figure
D.1.a).

We also compare improved SA to the SA algorithm proposed by [167] (paper and
open source). For this, we set the same energy definition as indicated in [167]: Ed

is the simple quadratic intensity difference without Birchfield formulation and Er is
the Potts model (Vmax = 1). dmax = 16 and α = 500. For Improved SA, b = 800,
a = 0.2 and n = 5. Figure D.6a illustrates Improved SA disparity map and the
table (figure D.6b) shows number of pixel error where difference between estimated
and true disparity is superior or equal to 1 pixel. Our SA error is almost 2 times
smaller. Improvement made in algorithmic and in T function definition proved to
help the minimization to converge to better minimum closer to the optimal solution.
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(b) SA-Geman (c) Improved SA

Figure D.5: Estimated disparities for SA methods: Geman function (a), improved
SA (b).

(a) Improved SA

# errors (≥ ±1) Total pixels
Image 84, 863

Annealing [167] 4, 244

Improved SA 2, 561

(b) Estimated disparities errors

Figure D.6: Results of improved SA (a) using same equation and parameters than
in [167] (without Birchfield [19] with Potts smoothness term). Number of estimated
label error ≥ ±1 (b).

D.2.3 FLTG and local minimizations

FLTG method proves to improve a lot the performance of local minimization ICM
and DDE. To evaluate the energy minimization please refer to next section D.2.4.
Here, we illustrate in Figure D.7, the disparity map obtained by FLTG-DDE at
different steps for the height of W = Image, 72, 18, 4, 1 pixels and we compare it
to normal DDE. FLTG allows to not be stuck into local minima as happened for
DDE. The robustness of local constraints for large W help the minimization to get
good initialization till the pixel resolution. The influence of global constraint when
W gets smaller allows to keep a spatial coherency of disparity distribution. The
estimated disparity map obtained by FLTG-DDE is pretty close to the one from
SA and global minimization. FLTG method tends to over smooth the disparity
field. However, this problem can be reduce with another neighborhood connexity
definition or with overlying interrogation windows.
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(a) W =Image (b) W = 72 (c) W = 18

(d) W = 4 (e) Final FLTG-DDE (f) DDE

Figure D.7: Illustration of disparity map for different step W = Image, 72, 18, 4, 1
for FLTG-DDE compare with normal DDE.

D.2.4 Comparison with graph minimizations

Using the soft developed by [168], we test the Graph based methods: Graph Cuts
methods (GC-swap and GC-expansion) [25], Max-Product Loopy Belief Propaga-
tion (BP-S and BP-M) [58] and Tree-Reweighted Message Passing (TRW-S) [176].
As illustrated in the paper, we complete the comparison study with our proposed
approaches on the same stereo images (Figure D.1) with the same parameters. To
be sure that we have the same energy formulation, we insert in our implementation
GC-swap and GC-expansion algorithms and we retrieve exactly the same results as
illustrated in the paper.

• For Tsukuba, dmax = 16 labels, Φ is L1 norm, Vmax = 2, α = 20 and βss′ = 2

if |ILs − ILs′ | ≤ 8.

• For Venus, dmax = 20, Φ is L2 norm, Vmax = 7, α = 50 and βss′ = 1.

• For Teddy, dmax = 60, Φ is L1 norm, Vmax = 1, α = 10 and βss′ = 3 if
|ILs − ILs′ | ≤ 10.

Figure D.8 shows the relative energy to the maximum lower bound achieved by
TRW-S algorithm of minimization over the time till convergence for each methods.
For this three stereo images with different energy configuration, we can tell similar
conclusion of the efficiency of minimization methods. For local minimization, DDE
always find better minimum than ICM. They are fast but converge to local minimum
far from the optimal solution.
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Figure D.8: Relative energy (to maximum lower bound) over runtime axis (log-
scale) for minimization methods on Tsukuba (a), Venus (b) and Teddy (c) images
with different energy definitions. From left to right, same plot with different zooms.

FLTG-ICM and FLTG-DDE minimize much more the energy than ICM and
DDE from E(%) around few hundreds to an E(%) around 100 %. The FTLG
method is very efficient and adapted to local minimization algorithms. FLTG-DDE
still get a smaller energy than FLTG-ICM. The final energy for FLTG-DDE is has
good ad BP-S. FLTG brings local minimization performance close to the global
minimization and Graph based methods.

For global minimization, proposed SA gives always smaller minimum than Ge-
man SA. Moreover it converges to global minimum for the three images around
E(%) ≈ 100 % as GC, BP and TRW. It even gives better results than BP-S and
sometimes BP-M. However, SA is clearly too much time consuming compare to
Graph methods even if improved SA is faster than SA-Geman. But SA algorithm
has advantage to be easily adaptable to every kind of data and smoothness terms and
to high number of labels because it minimizes iteratively the equation by random
candidate selection. Same advantage can be notice for local minimization.

On Tab.D.1, we can see final relative energy obtained by the different minimiza-
tion methods. The proposed SA can reach a minimum as good as BP methods and
close to GC-Expansion and GC-Swap. This is much better than conclusions made
in [167] and [26] where SA minimum was far from GC minimum. Improved SA is
still too much time consuming compare to other minimization methods around 10

to 100 times longer. SA computational time can be reduce for each sequence playing
on T function parameters. From the table, we can remark that FLTG methods are
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E%(time) Tsukuba Venus Teddy

lower bound 100(113) 100(900) 100(810)

ICM [168] 653.3(2) 405.1(2) 234.2(7)

BP-S [168] 115.6(5) 110.2(80) 106.9(30)

BP-M [168] 110.2(86) 101.6(300) 104.1(300)

Swap [168] 100.8(7) 103.0(21) 100.8(45)

Expansion [168] 100.4(6) 102.5(21) 100.5(68)

TRW-S [168] 100.0(44) 100.0(900) 100.6(810)

ICM 640.3(2) 405.0(4) 229.4(10)

DDE 389.2(8) 342.2(13) 205.1(50)

FLTG-ICM 176.9(2) 110.5(4) 108.2(10)

FLTG-DDE 118.2(4) 109.4(11) 108(29)

SA-Geman 125.3(981) 123.4(1624) 129.6(2220)

Improved SA 102.7(470) 103.9(323) 104.9(2211)

Table D.1: Final relative energy for minimization algorithms in % with computa-
tional time in seconds.

as good as others. Moreover, they have a very low computational time (few sec-
onds). The computational time can be easily reduce because our implementation is
not optimized at all. In case of FLTG-DDE, FLTG method reduces computational
time.

D.2.5 Middlebury database

To compare the efficiency of the proposed SA and FLTG methods with state-of-the-
art Stereo Matching approaches, we submit our results on the Middlebury Stereo
benchmark for the four sequences (Tsukuba, Venus, Teddy and Cones). Approach
parameters are constant for the four image pairs. On the online database only
results of FLTG-DDE is published.

Figure D.9 gives the rank for all our proposed approaches compared to GC-
expansion algorithm for an error threshold of 2. We can see that local minimizations
(ICM and DDE) give the poorest estimations. Using FLTG, local minimizations
(FLTG-ICM and FLTG-DDE) perform as well as Improved SA and GC-expansion
with a respective rank of 66.3, 66.4, 66.6, 63. Here GC has a little better rank than
the others. This not really meaningful, the final energy obtained by FLTG, SA or
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Figure D.9: Illustration of the middlebury stereo evaluation approach table avail-
able online for FLTG-DDE (http: // vision. middlebury. edu/ stereo/ eval/ )

GC are very closed with a difference between them about less than 10 % for all
image pairs. The rank of our methods in the evaluation table is principally due to
the energy definition that is not sufficient to describe the Stereo Matching problem.

D.3 conclusion

We propose, in this work, a complete comparison study of energy minimization
methods in the case of stereo matching. Local minimization proved to be able to
perform as well as Graph based global minimization when defined with the proposed
FLTG process (appendix section C.4). DDE (appendix section C.2) always converge
to better minimum than ICM (appendix section C.1), but still too far from global
minimum. FLTG-DDE and FLTG-ICM can reach very good minimum with a very
low computational time. Proposed global SA (appendix section C.3) performs better
than Geman SA and converges to a minimum closed to the global minimum. SA
minimum are coherent with Graph based minimization and even as good as BP-S
and BP-M. However, SA needs very long computation time to converge to the global
minimum. In this paper, we saw that global minimization methods based on Graph
theory give a good minimum in a correct computational time. However, for the
same energy definition, local minimization when process with FLTG can be as good
as Graph based minimization with a smaller time consuming. This work has been
publish in [32].

We choose to select FLTG-DDE approach in the case of optical flow estimation
in this thesis because this method shows the best compromise between efficiency
of energy minimization and computation cost time. Moreover, extension of the
approach is proposed in appendix E to obtained a 2D real velocity field estimation.

http://vision.middlebury.edu/stereo/eval/




Appendix E

Optimization Relative Issues

In the case of the optical flow estimation, we want to extract the 2D apparent velocity
field v⃗ (section 3.1) from the motion of objects recorded on two successive images.
The 2D velocity field corresponds to random variable field in a MRF formulation
of the problem. As explained in appendix B.1, this random variable is bounded
as v⃗(x) ∈ Γ = [−v⃗max(x); v⃗max(x)]. The solution of the problem is given by the
best configuration of the velocity field minimizing the Gibbs energy E (section B
equation (B.12)).

Optimization techniques, describe in appendix C, are used to minimize the en-
ergy E. For optical flow estimation, we seek for real 2D values. The discretization
of domain Γ should be fine enough to get an estimation of the velocity field as closed
as possible to the real one.

Due to the partial information of DOF equations, the apparent velocity in the
image can be retrieved with precision if the velocity amplitude is of the order of
magnitude of 1 pixel by interval of time. We use a quantized step of 0.1 pixel by
interval of time in the domain Γ = [−1; 1] × [−1; 1]. Thus, the total number of
possible velocity vectors is 21 × 21 = 441. That is much more than for the Stereo
Matching application (appendix D). Moreover, the precision of the velocity field is
poor, only about 0.1 pixel by interval of time.

Because the number of velocity values is higher, the computational time of min-
imization methods will also be more important. If we reduce the number of velocity
values, we get lower precision on the estimation.

For Direct Descent Energy (DDE - appendix C.2) and Simulated Annealing (SA
- appendix C.3) minimization methods use a random candidate selection (random
walk) to minimize the energy. We propose to define this random generation as an
small incremental vector δ⃗(x) updating the current velocity v⃗(x). δ⃗(x) is a real
vector following a uniform random distribution in Γ = [−0.1; 0.1]× [−0.1; 0.1]. This
method shown to improve the precision of the optical flow estimation, but also to
reduce the computational time of DDE and SA. Results are given in appendix F.2.

Another improvement of the optimization is the adaptation of other minimiza-
tion methods (ICM and GC) to the multigrid.

E.1 ICM and GC Adaptation to Multigrid Approach

Other minimization, as Iterated Conditional Modes (ICM - appendix C.2) and
Graph Cuts (GC - see [26, 25, 88]), need a finite discretized random variable. Their
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computational time strongly depends on the number of velocity vectors and image
size.

In the multigrid approach (section 4.3), we can make the hypothesis that the
grid velocity v⃗g(x) is a fine representation of the substructure (pixel) velocities
v⃗(x) = v⃗g(x) + v⃗l(x); (v⃗g(x) >> v⃗l(x)). Considering this hypothesis, the substruc-
ture velocities should only differ from the grid velocity about small variations. The
figure E.1 gives an illustration for a 1D random variable for simplification. At grid
level, the random variables are integer values. Going to substructure level, we con-
sider that the random variables may only differ from the grid level estimation about
a cover-range set of +/ − 1 (possible changes are represented by arrows). In the
same time, because number of possible configuration of the random variable field is
strongly reduced which is equivalent to smaller number of random variable values
at substructure level, we also proposed to improve the discretization to get a finer
final estimation. In this example, we improve by 2 the precision between grid and
substructure levels from 1 to 0.5.

For GC method, we use the GC α-expansion algorithm proposed by [26, 25, 88].
Thus, we modified it and integrate our multigrid adaptation approach. This work
was published in [33]. Another similar method was proposed by [185] where the
authors limit the possible configuration in a multigrid approach. However, they
applied it on the GC α− β-swap algorithm and the random variable discretization
stays the same between multigrid levels.

In figure E.2, we show a weak point of the method because of the hypothesis made
above of restricted possible change of the random variable from grid to substructure
level. At grid level (2 × 2 size grid), we only have four different values of v⃗g (see
appendix C figure C.2). Then, at substructure level, we represent the ground-truth
on the left (figure E.2(a)). In fact, at strong discontinuity regions, the possibility
of change of the random value is limited by the defined cover-range (figure E.2(b)).
Dark substructure are the propagated errors resulting of the hypothesis of limited
cover-range set of possible change from grid to substructure level. In some cases,
this cover-range set is not large enough to let the random variable get to the correct
value. We propose then to add to the cover-range set the possible configurations
of values defined from the grid estimated field corresponding to neighbor’s values.
Thus, as shown on Figure E.2(c), the new estimation field can now reach the optimal
solution. Figure E.3 illustrates the new possible change configuration adapting to
the multigrid approach going from grid level to substructure level.
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Figure E.1: illustration of value distribution and possible change from grid to
substructure levels.

(a) (b) (c)

Figure E.2: Illustration of a possible error configuration.

Figure E.3: illustration of value distribution and possible change from grid to
substructure levels, allowing possible jump to neighbor values.





Appendix F

Tests on Multiresolution and
Optimization Issues

F.1 Analyze of classical Multiresolution (W_MR) and
Multigrid techniques

Results in this section are shown on the Venus sequence (figure 4.6 middle column).
The data energy Ed (equation (4.2)) is the L2 norm of BCCE_1 (equation (4.14))
and the used minimization method is DDE (appendix C.2).

F.1.1 Pyramidal decomposition

Because of partial derivative in DOF equation (4.8), we saw in section 4.2 that
this formulation can only retrieve a small velocities between two successive images.
Figure F.1 illustrates the estimated velocity map for different level of pyramidal
decomposition (section 4.2.1).

We see that under 3 level pyramidal decomposition K = 2 (k = 0, 1, 2) (section
4.2.1), the algorithm cannot retrieve the real velocity amplitude. We have a lot of
small velocity regions that differ from the ground truth. This remark is confirmed
by the figure F.2 which plot the AAE error (equation (4.44a)) depending on the
number of pyramidal decomposition level K. From 3 to 5 levels, the AAE error is
about the same. Strangely, for 5 levels, the AAE error becomes higher than 4 levels.
In fact, there is an optimal number of pyramidal decomposition level depending on
the maximum velocity amplitude ||v⃗max||. If the number of pyramidal decomposi-
tion level is higher than the necessary number, then the pyramidal decomposition
technique can introduce to the estimation some errors which are propagated by the
coarser estimated velocity field at level k + 1 to level k when warping the image
(see section 4.2.1). In Venus sequence, the maximum velocity field is about +/− 10

pixels by interval of time. Thus, 4 level decomposition should be adequate.
In fact, pyramidal decomposition technique is necessary to retrieve the correct

velocity amplitude for large velocities over the image domain. But the use of too
many levels may bring some errors. [74] proposed to suppress this pyramidal de-
composition drawback, which is even more present in noisy image, by adding a
global regularization Escc (section 3.2.3) constraining the velocity field to be closed
to cross-correlation PIV (CC) estimation. This method shown to be very powerful
in case of particle images where CC is very robust. The CC has the advantage to
be able to retrieve large velocity from original images. Description of CC technique
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a) b) c)

d) e) f)

Figure F.1: Exact velocity field a). Estimated velocity field for different pyramidal
decomposition level: b) 1 level K = 0, c) 2 level K = 1, d) 3 levels K = 2, e) 4

levels K = 3 and f) 5 levels K = 4.

0 1 2 3 4  

10

15

20

25

30

35

40

45

Number of pyramidal decomposition level K

A
A

E
 (

de
gr

ee
)

Figure F.2: AAE error depending on the number of pyramidal decomposition

can be found in appendix A.1. After using CC, differential optical flow algorithm
is used to retrieve the dense velocity field for which solution is obtained from the
energy E = Ed + Es + Escc . Note that the collaborative method will provide poor
results on scalar image as the CC will estimate strongly erroneous velocity field.
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a) b) c)

d) e) f)

Figure F.3: Exact velocity field a). Estimated velocity field for different grid size:
b) 1× 1, c) 2× 2, d) 4× 4, e) 8× 8 and f) 16× 16 pixels.

F.1.2 Multigrid

In appendix C.4 is shown that multigrid methods allow local minimization algo-
rithms to converge till a local minimum of the energy E which is closed to the
global one.

Figure F.3 shows estimated velocity maps for different grid sizes (1×1 (b), 2×2

(c), 4× 4 (d), 8× 8 (e) and 16× 16 (f) pixels) when it is not coupled with W_MR
pyramidal decomposition K = 0. Estimated velocity fields v⃗e tend to get more and
more close to the exact velocity field v⃗c. Anyway without pyramidal decomposition,
multigrid cannot recover large velocities because second and higher orders of Taylor
expansion used to defined BCCE_1 (equation (4.8)) cannot be neglected for large
velocities.

Figure F.4 represents the AAE errors for different grid sizes (1× 1, 2× 2, 4× 4,
8 × 8 and 16 × 16 pixels) with different number of pyramidal decomposition level
(K = 0, K = 1, K = 2, K = 3 and K = 4). We see that best estimation is obtained
for a grid size between 2 × 2 pixels and 8 × 8 pixels. Most of the time, we set the
grid size to 2 × 2 or 4 × 4 pixels in the following experiments (chapters 4 and 5).
As we only define a two-stage multigrid approach (grid level and substructure level)
for optical flow estimation (section 4.3), the grid size influences the final estimation
but it is also limited by the ratio between grid and substructure (pixel) sizes. We
see that AAE error gets higher for grid size of 16 × 16 pixels. Using multi-stage
multigrid method as in appendix C.4, tests shown to get similar estimation than
when using only two step multigrid method with a grid size of 4× 4 pixels.
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The principal point of interest is that multigrid always improve accuracy of the
estimation even more when it is coupled with multiresolution technique.
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Figure F.4: AAE error depending on grid size (1×1, 2×2, 4×4, 8×8 and 16×16

pixels) and level of pyramidal decomposition (K = 0, K = 1, K = 2, K = 3 and
K = 4).

F.2 Analyze of Optimization Issues

As we describe in appendix E, we modify the random walk technique of DDE by
introducing an updating residual velocity candidate δ⃗ small compare to the current
state velocity v⃗. Figure F.5 and table F.1 illustrate the difference between random
velocity candidate generation over the velocity domain Γ = [−1; 1]× [−1; 1] pixel by
interval of time for which discretization is 0.1 pixel by interval of time, with updating
residual velocity candidate δ⃗ = (δx, δy)|δx, δy ∈ N (0, 0.1) following uniform random
real distribution center in zero and bounded between +/ − 0.1 pixel by interval of
time. Estimation by DDE minimization by updating residual value, as proposed in
appendix E, is better than the previous one. In fact, the main difference between
both minimization algorithms is that one can estimate real velocity vector while the
other can only estimate a discretized velocity vector with a precision of 0.1 pixel by
interval of time. At each pyramidal level estimation k, the estimate velocity field is
more precise using the proposed modified method. Then less errors are propagated
from level k to level k−1. We can observe it on the estimated velocity field on figure
F.5, the final estimated velocity field is much smoother using real residual updating
value (denoted T − I in the figure) than using discretized value over Γ (denoted
T −D −D). Note also that computational time is smaller.

Multigrid technique is useful for local minimization method. Figure F.6 compare
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a) b)

Figure F.5: Velocity field estimation by DDE for a 4 level pyramidal decomposition
using a) discretized value over Γ (T − D − D) and b) real residual updating value
(T − I).

Venus Computational time (seconds)
T −D −D 335
T − I 79

Table F.1: Time consuming for DDE on Venus sequence with randomly candidate
generation minimization methods: Over the entire discretization domain [−1; 1] ×
[−1; 1] by step of 0.1 pixel by interval (T −D −D) or by incremental real random
vector (δx, δy) ∈ N (0, 0.1) (T − I).

AAE errors (equation (4.44a)) for DDE, SA (section C.3) and Graph Cut (GC) [88]
minimizations for different grid sizes (1 × 1, 2 × 2 and 4 × 4 pixels) using a 4

level pyramidal decomposition (K = 3). Only local minimization DDE get smaller
AAE error when using multigrid. We can remark that SA minimization gives a
smaller AAE error than DDE minimization without multigrid, which confirmed the
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Figure F.6: AAE error for DDE (blue), SA (purple) and GC (red) on Venus
sequence for different grid sizes (1×1, 2×2 and 4×4 pixels) using 4 level pyramidal
decomposition K = 3.

difference between global SA method and local DDE method. When using multigrid,
SA and DDE methods are equivalent. DDE method even gives a smaller AAE error
for grid size of 4 × 4 pixels. We can conclude that for optical flow estimation
using multigrid, local DDE minimization method becomes as good as global SA
minimization. Moreover DDE method presents the advantage to be much less time
consuming.

For global GC minimization method, AAE error is larger than DDE and SA
methods for optical flow estimation. This observation came from two different
things:

• The smoothness term Es, we used, is a quadratic function of the spatial ve-
locity variations (equation (4.33)). This term is not submodular which is a
necessary condition for α-expansion GC algorithm to converge to the global
minimum of E (equation (4.2)). However, it has been shown in [88] that
α-expansion can converge close to the global minimum for non-submodular if
non submodular configurations are truncated which becomes an approximative
smoothness term submodular function.

• For GC minimization, the random variable field has to be a discretized finite
set as defined in appendix E. While DDE and SA use an updating real residual
random variable which proves to improve the velocity estimation.

We can also observe on figure F.6 that AAE error for GC method get little
higher when using multigrid. This shows the limit of the GC adaptation technique
proposed in appendix E.1. Here, we use for the multigrid at grid level, the entire
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Computational time (seconds) without MG with MG Time reduction (in %)
DDE 79 61 −25 %

SA 1094 805 −25 %

GC 5212 1347 −75 %

Table F.2: Computational time for DDE, SA and GC methods on Venus sequence
without and using multigrid (MG) of grid size= 2 × 2 pixels in a 4 level pyramidal
decomposition (K = 3).

Γ = ([−1; 1]× [−1; 1]) domain with discretization of 0.1 pixel by interval of time for
x and y coordinates and at substructure level, we use a cover-range set of +/− 0.1

pixel by interval of time with precision of 0.05 pixel. More the grid size is large, more
substructure velocity v⃗l inside a grid may have larger variations compared to the
grid velocity v⃗g. In this case, the cover-range set and neighborhood possible change
of velocity are not large enough to retrieve all substructure velocity (illustration in
figures E.1, E.2 ,E.3), which explain the increasing of AAE error with increasing of
grid size of multigrid method. However, the principal objective of the GC adapted
method to multigrid, is to reduce the number of possible velocity values at each level,
in the aim to reduce the computational time. Table F.2 shows the computational
time without and using multigrid MG method (grid size= 2 × 2 pixels). Using
MG, the GC time consuming is strongly reduced (−75%) for a low increasing of
AAE error (4 %). In the same time, the table shows that multigrid also reduces
computational time for DDE and SA methods about 25%. Local DDE method, for
optical flow estimation, is much faster than global minimizations.

We test the different minimization methods on three sequences: Dimitrodon,
Venus and Yosemite (section 4.5.1). We illustrate, here, in table F.3 the AAE error
for ICM, DDE, SA and GC minimization methods when using a 4 level pyramidal
decomposition (K = 3) and a multigrid with grid size of 2×2 pixels. The weighting
coefficient between the data energy Ed and regularization energy Es is α = 100

(equation (4.2)). We compare the efficiency of our BCCE_1 ((equation (4.14)) with
W_MR (section 4.2.1)) approach depending on the used minimization methods with
other OF algorithms from [11].

AAE values are computed for three different image regions as described in section
4.5.1 which are delimited by masks represented in figure 4.6.c,d,e.

From this results, we can confirm that ICM method does not allow a good
estimation of the velocity field (highest AAE errors). GC method gives a closer
AAE errors to the ones of DDE and SA methods, but the strongly discretized
estimated velocity field influenced the accuracy of velocity estimation as explained
above. For DDE and SA methods, AAE error is similar for all the different cases. In
fact, these methods fit more to the optical flow problem where the seeking solution
is a real 2D vector field than for example as GC method which was first defined
for binary minimization problems. DDE and SA methods give the smallest AAE
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AAE Dimetrodon (Hiddentexture) Yosemite (Synthetic) Venus (Stereo)
all disc untext all disc untext all disc untext

Bruhn et al. [29] 10.99 9.41 14.22 1.69 2.86 1.05 8.73 31.46 8.15
Black & Anandan [21] 9.26 10.11 12.08 2.65 4.18 1.88 7.64 30.13 7.31

Pyramid LK [23] 10.27 9.71 13.63 5.22 6.64 4.29 14.61 36.18 24.67
MediaPlayer [110] 15.82 26.42 16.96 11.09 17.16 10.66 15.48 43.56 15.09

Zitnick [192] 30.1 34.27 31.58 18.5 28 9.41 11.42 31.46 11.12

ICM 19.201 20.527 23.646 5.651 6.678 7.300 14.74 36.65 16.92
DDE 6.288 9.751 7.66 3.358 4.920 1.444 9.022 35.228 9.355
SA 5.293 8.394 6.347 3.0669 4.916 1.340 8.864 35.600 8.287
GC 8.032 10.560 9.741 3.760 6.103 2.629 11.2 34.48 10.23

Table F.3: AAE error comparison of ICM, DDE, SA and GC minimization meth-
ods with classic algorithms ([11]) for Dimetrodon, Yosemite and Venus sequences.
Our approaches use a 4 level pyramidal decomposition and a multigrid with grid size
of 2× 2 pixels. Energy parameters are the same for the 4 minimizations.

error and are faster to converge due to the high number of velocity values. In this
table SA almost everywhere gets the smallest AAE, however from figure F.6, we can
notice that we use, here, a 2× 2 pixels multigrid technique. If using 4× 4 grid size,
AAE error for DDE method should be smaller. This remark is confirmed in section
4.5.2. Moreover, for DDE method is much less time consuming than SA method for
the same order of error.

In table F.3, bold AAE error shown the smallest AAE for all presented ap-
proaches. In red, we have the smallest AAE error from our methods. Comparing
AAE error from our methods to other approaches, we can see that AAE values are
coherent and DDE or SA methods shown AAE error as good as [29] or [21]. More-
over, this table shown that there is no universal optical flow method. Non of these
methods gets the best AAE errors over the all sequences (Dimetrodon, Venus and
Yosemite) and image regions (all, disc and untext). For Dimetrodon, DDE and SA
methods give much lower AAE errors than [29] or [21]. This might be explained
perhaps by the use of a smaller number of pyramidal decomposition in these meth-
ods that do not allow the complete retrieving of the large velocity (larger in this
sequence than in others).

However, at discontinuities, we can see that our methods have often a less ac-
curate AAE error. This is due to the quadratic smoothness term that penalize to
much variation of velocity field on continuities (equation (4.14)). [29] or [21] use
robust functions.

In this section, we show that DOF method as BCCE_1 (equation(4.8)) needs a
multiresolution technique to determine large velocities. We also compare different
minimization techniques. DDE minimization (section C.2) proves to obtain the best
compromise between accuracy of the velocity estimation and time consuming when
using it with a multigrid approach. DDE and multigrid will be used in sections 4.5
and 4.6 and in chapters 5.
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Résumé:
L’objectif de cette thèse est l’étude de l’évolution de champ scalaire transporté par un écoule-
ment à partir d’une séquence d’images temporelles. L’estimation du champ de vitesse d’un
écoulement turbulent est d’une importance majeure pour mieux comprendre le phénomène
physique. Jusqu’à présent, le problème de la turbulence est généralement ignoré dans
l’équation de mouvement des méthodes existantes. Les images contiennent une infor-
mation discrète correspondant à la taille du pixel. Selon le niveau de turbulence de
l’écoulement, les résolutions des pixels et du temps peuvent devenir trop grandes pour
négliger l’effet des petites échelles (sous-pixel) sur le champ de vitesse. Nous proposons
pour cela, une équation de mouvement définie par l’équation de transport de concen-
tration filtrée pour laquelle un modèle classique de viscosité turbulente sous-maille est
introduit afin de tenir compte de cet effet. Nous utilisons pour formuler le problème,
une approche Markovienne. Une méthode de multirésolution par décomposition pyrami-
dale, sans transformation d’image intermédiaire au cours du processus, est proposée. Cela
permet de diminuer le nombre d’opérations sur les images. La méthode d’optimisation
utilisée, couplée avec une approche multigrille, permet d’obtenir le champ de vitesse réel
optimal. Notre approche est testée sur des séquences d’images synthétiques et réelles (ex-
périence PIV et tempête de sable à partir d’image de télédétection) avec des nombres
de Reynolds élevés. Les comparaisons avec des approches existantes sont très promet-
teuses.

Mots clés: Estimation du mouvement, LES, modèle sous-maille, flot optique, MRF, op-
timisation
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Abstract:
The objective of this thesis is to study the evolution of scalar field carried by a flow from
a temporal image sequence. The estimation of the velocity field of turbulent flow is of
major importance for understanding the physical phenomenon. Up to now the problem of
turbulence is generally ignored in the flow equation of existing methods. Information given
by images is discrete at pixel size. Depending on the turbulent rate of the flow, pixel and
time resolutions may become too large to neglect the effect of sub-pixel small-scales on the
pixel velocity field. For this, we propose a flow equation defined by a filtered concentration
transport equation where a classic turbulent sub-grid eddy viscosity model is introduced in
order to account for this effect. To formulate the problem, we use a Markovian approach.
An unwarping multiresolution by pyramidal decomposition is proposed which reduces the
number of operations on images. The optimization coupled with a multigrid approach al-
lows to estimate the optimal 2D real velocity field. Our approach is tested on synthetic and
real image sequences (PIV laboratory experiment and remote sensing data of dust storm
event) with high Reynolds number. Comparisons with existing approaches are very promis-
ing.

Keywords: Motion estimation, LES, subgrid scale model, optical flow, MRF, optimization
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