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Preface

My PhD thesis is constructed around four topics of research, of which one is already pub-

lished, one is in review, a third close to be submitted and a fourth in preparation. I have

chosen to present this work in form of research articles, because I feel the diverse subjects are

easier to read, when presented in a compact way accompanied with their associated introduc-

tion and methods. However, I like to excuse some possible redundancy, caused by the need

to introduce each article again in full. Although, I present this work and all the results as my

work, I have to acknowledge the contributions of my co-authors. Without their contribution

this work would not have been possible.
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Abstract

Erosion processes in large mountain belts are controlled by tectonic uplift and the spatial distribution

of topography and precipitation. The aim of this work is to understand more in detail the influence

of precipitation on erosion in the Nepal Himalayas. Here, the Indian Summer Monsoon defines a very

clear cyclic seasonality, with two well separated and long-lasting seasons, one very wet and one very

dry. I will investigate here: 1) the evaluation of precipitation datasets, 2) the transfer of precipitation to

river discharge, 3) the mobilization and transport of material from the analysis of a unique suspended

sediment dataset, and 4) the determination of millennial time-scale erosion rates using comsogenic

isotopes.

1) High-quality precipitation observations with good spatio-temporal coverage are needed to in-

vestigate the possible impact of precipitation on erosion. I evaluate five gridded precipitation data sets

and show that the APHRODITE dataset, derived from gauge data interpolation performs best in the

Himalayas.

2) The transfer of precipitation into rivers involves temporary water storage in different reservoirs,

where different residence times influence the hydrological cycle. I observe an annual anticlockwise

precipitation-discharge hysteresis loop, revealing more river discharge than precipitation during the

falling limp of the monsoon season. This implies the temporal storage of water in a fractured basement

aquifers, whose storage capacity is ∼ 28 km3 at the scale of Nepal.

3) I present a new suspended sediment data compilation, with daily resolution for the major rivers

in the Nepal Himalayas. I show that suspended sediment concentrations vary through the seasons

describing an annual clockwise hysteresis effect. This hysteresis effect disappears when comparing

suspended sediment fluxes directly with direct storm discharge, revealing a linear relationship. All

river basins show the same erosion behavior when data are normalized by drainage area and mean

sediment flux,. Erosion rates calculated from a new rating model, based on direct discharge, range

between 0.1 and 5.9 mm/yr. The rivers in the Nepal Himalayas are supply limited and the hillsopes

as contributing source are transport limited. This results provide some new insights on erosion mech-

anisms in the Himalayas.

4) I present mean catchment erosion rates, calculated from in-situ produced 10Be cosmogenic iso-

tope concentration. The calculated erosion rates range between 0.2 and 4.4 mm/yr within five large

streams in Nepal and several tributary catchments. I show an unreported systematic difference be-
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tween tributary and main streams erosion rates, suggesting that the system is not in an equilibrium

state. However, this effect could be also due to bias in the calculation of the erosion rates.
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Chapter 1

Introduction

1.1 Erosion in mountain belts

Mountain evolution depends on the rather complex interplay between tectonics, climate and erosion

[Willett, 1999; Molnar, 2003; Reiners et al., 2003; Whipple, 2009], (Fig. 1.1). Tectonics set the initial condi-

tion lifting material upwards [Molnar, 2003] and erosion acts as the destructive counterpart, thinning

the orogen by removing material [Whipple, 2009] and shaping landscape [Molnar, 2003]. Climate is

highly influenced by mountains [Roe, 2003] and might have a first order control on erosion [Reiners

et al., 2003]. Erosion in return exerts a direct influence on tectonic [Whipple, 2009; Willett, 1999]. The

interaction of these three processes results in the topographic expression of mountain relief [e.g. Bon-

net and Crave, 2003; Grujic et al., 2006]. However, until today this is a rather hypothetical conceptual

picture, based on a manifold of empirical, experimental and numerical studies [Whipple, 2009], which

still have to be tested in detail, and the question of how these forces are connected remains still to be

understood.

Knowledge on mountain building processes has numerous implications in fundamental geological

sciences as well as in applied engineering. The east-west orientation of the Himalayan range forms

an orographic barrier, potentially controlling the global monsoon circulation [Boos and Kuang, 2010].

Weathering of silicate rocks and erosion processes are a major CO2 sink controlling largely the global

carbon budget and thus climate [Raymo and Ruddiman, 1992; France-lanord and Derry, 1997; Galy et al.,

2007]. Even plate motion might be influenced by erosion-precipitation interaction at the plate margins

[Iaffaldano et al., 2011]. Mountain relief has furthermore implicit impact on catastrophic events, land

degradation and floods. High mountains also host glaciers and are therefore important freshwater

reservoirs [Immerzeel et al., 2010].

In the following two chapters, I will discuss the state of the art research of the three fundamental

processes with focus on erosion and climate in large mountain belts. Starting from continental scale

over mountain ranges to detailed regional studies.
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Figure 1.1: Feedback loop illustration of the three fundamental Earth Surface Processes process in earth

surface processes; erosion, climate and tectonics. [from Willett et al., 2006]

1.2 General context

Tectonic - climate - erosion interactions

Relating continental scale erosionI and deposition with tectonic activity and climate through geological

time, provides information on the process of landscape evolution [Schumer and Jerolmack, 2009]. The

debate of how precipitation controls erosion and consequently the tectonic activities, is a long lasting

debate [e.g. Molnar, 2003; Whipple, 2009]. Over the last twenty years this field of research gained more

attention in Earth sciences, motivated by the new suggestion of [Molnar and England, 1990] that climate

change has exerted a strong control on the Cenozoic change in surface processes. The increased supply

of terrigenous sediments into oceans during the late Cenozoic (Fig. 1.2) has triggered a controversial

debate about the role of tectonic, erosion and climate change in the evolution of the Earth [e.g. Hays

et al., 1976; Molnar and England, 1990; Derry and France-Lanord, 1996; Molnar, 2004; Clift et al., 2008a;

Willenbring and von Blanckenburg, 2010]. Analysis of sedimentary cores from large ocean basins revealed

that over the last ∼ 5 Myr sediment supply to the ocean basins has increased dramatically [e.g. Molnar

and England, 1990]. The increased sedimentation rates coincide with decreasing global atmospheric

CO2 concentration (Fig. 1.2) and consequently with atmospheric cooling. Earlier, Hays et al. [1976] have

interpreted it as a evidence of a global intensification of tectonic activity, accompanied by increasing

relief energy and hence, high erosion rates and CO2 consumption due silicate weathering. Later,

Molnar and England [1990] questioned this evidence and interpreted the high sediment influxes in the

IErosion integrates all involved processes that remove mass from Earth and make it transportable. It can be

seen as a natural intrinsic process forming landscape. Erosion includes mechanical/chemical weathering and

dissolution. Denudation refers only to a mass or volume removed (by erosion). Denudation can be directly

measured as a length or a volume removed over time.
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LETTERS

Long-term stability of global erosion rates and
weathering during late-Cenozoic cooling
Jane K. Willenbring1 & Friedhelm von Blanckenburg1

Overgeologic timescales,CO2 is emitted fromtheEarth’s interior and
is removed from the atmosphere by silicate rock weathering and
organic carbon burial. This balance is thought to have stabilized
greenhouse conditions within a range that ensured habitable condi-
tions1. Changes in this balance have been attributed to changes in
topographic relief, where varying rates of continental rock weather-
ing anderosion1,2 are superimposedon fluctuations inorganic carbon
burial3. Geological strata provide an indirect yet imperfectly pre-
served record of this change through changing rates of sedimenta-
tion1,2,4. Widespread observations of a recent (0–5-Myr) fourfold
increase in global sedimentation rates require a global mechanism
to explain them4–6. Accelerated uplift and global cooling have been
given as possible causes2,4,6,7, but because of the links between rates of
erosion and the correlated rate of weathering8,9, an increase in the
drawdown of CO2 that is predicted to follow may be the cause of
global climate change instead2. However, globally, rates of uplift
cannot increase everywhere in the way that apparent sedimentation
ratesdo4,10.Moreover, proxy recordsof past atmosphericCO2provide
no evidence for this large reduction in recent CO2 concentrations

11,12.
Here we question whether this increase in global weathering and
erosion actually occurred and whether the apparent increase in the
sedimentation rate is due to observational biases in the sedimentary
record13. As evidence, we recast the ocean dissolved 10Be/9Be isotope
system as a weathering proxy spanning the past 12Myr (ref. 14).
This proxy indicates stable weathering fluxes during the late-
Cenozoic era. The sum of these observations shows neither clear
evidence for increased erosion nor clear evidence for a pulse in
weatheredmaterial to theocean.Weconclude thatprocessesdifferent
from an increase in denudation caused Cenozoic global cooling,
and that global cooling had no profound effect on spatially and
temporally averaged weathering rates.

Studies of both the suspended and the dissolved loads of the world’s
largest rivers and of hill-slope denudation have shown a strong link
between physical erosion and chemical weathering8,9. Even though
the exact mechanisms linking physical erosion rates with chemical
weathering fluxes are still unknown, there is general agreement that
high rates of physical erosion supply fresh mineral surfaces to the
weathering environment9. Steepmountain slopes such as those in areas
of active uplift often have the highest rates of total denudation. Thus,
tectonically active areas should be coupledwith large silicate weathering
fluxes2,4, and the atmospheric CO2 withdrawn in this way should then
be disposed of in the oceans’ carbonate sediments1. Similarly, in basins
surrounding active mountain belts, a substantial fraction of atmo-
spheric CO2 is sequestered through the terrestrial biosphere in the form
of buried particulate organic carbon3. The consequences of the sug-
gested fourfold global increase in Pliocene–Quaternary sedimentation
rates5,6 and, by inference, erosion rates should be associated with a
similar increase in silicateweathering, carbonate sedimentation, organic
carbon burial and, consequently, increased CO2 drawdown (Fig. 1).

Atmospheric CO2 concentrations derived from ocean palaeo-pH
and stomatal indices do not testify to a significant decrease over this
period. Concentrations were around 300 parts per million by volume
(p.p.m.v.) during the Pliocene andMiocene epochs11. The significant
drop from ,1,000 p.p.m.v. occurred long before the apparent
increase in erosion. In particular, during the Pliocene and the
Quaternary period, the fourfold increase in erosionwas accompanied
by only a minor drop in atmospheric CO2 (refs 11, 12; Fig. 1). One
proposed source of abated CO2 drawdown during the past 12Myr is a
feedback caused by land plants that accelerated chemical weathering,
attenuated long-term CO2 concentration changes and prevented a
transition into ice-house conditions during this apparent increase in
erosion15. Another hypothesis is that chemical weathering and phys-
ical erosion are not linked in as straightforward a way as previously

1Deutsches GeoForschungsZentrum GFZ, Section 3.4: Earth Surface Geochemistry, Telegrafenberg, D-14473 Potsdam, Germany.
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Figure 1 | Terrigenous sediment input into the oceans through the late-
Cenozoic era and atmospheric CO2. Yellow bars show global terrigenous
sediment accumulation in oceans5. Values are separated into bins with an
interval of 5Myr and appear to increase abruptly during the past 5Myr. The
CO2 data compilation is derived from a number of independent proxies and
shows steady atmospheric concentrations from the mid-Miocene epoch to
today (pre-industrial values) despite the observed increase in terrigenous
sediment accumulation. Records include the stable boron isotopes in
planktonic foraminifera (purple band), the stomatal distribution in the
leaves of C3 plants (green band), the stable carbon isotopes in alkenones
(blue band) and air trapped in ice cores from Antarctica (thin black line).
Each colour band spans the associated data points and their uncertainties.
See Supplementary Information for additional details, uncertainties and
references.
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Figure 1.2: Cenozoic terringenous sediment supply to the oceans (yellow bars, binned in 5 Myr

time steps) and atmospheric CO2 concentration determined from different markers (purple: planktonic

foraminifera, green: C3 plants, blue: alkenones, and black: ice cores) [from Willenbring and von Blanck-

enburg, 2010]

light of climate change and isostatic rebound of continental crust, causing flexural surface upliftII. In

this sense, increased erosion rates are the result of a stormier climate and of large scale glaciation

due to low temperatures rather than the consequence of high relief [Molnar, 2004]. The argument

that plant fossils, which are indicators of warmer climates are found at high elevation, do provides

evidence for the Cenozoic accelerated uplift can be as well explained by climate change [Molnar and

England, 1990]. For example the plant fossils are not necessarily brought to their current elevation by

uplift, it could well be that climate has just simply changed. In contrast, recent work by Willenbring

and von Blanckenburg [2010] question the evidence of increased sediment input. Their arguments is

that 10Be/9Be ratios in seawater bearing sediments do not show any increase in chemical weathering

and the apparent increased sedimentation rate might well be only an observational biased side effect.

Indeed, estimating sedimentation volumes from point observations of drilling cores is tricky and many

processes, such as consumption by subduction, compaction by overburden and remobilization have to

be corrected [Sadler, 1999; Molnar, 2004; Schumer and Jerolmack, 2009; Willenbring and von Blanckenburg,

2010]. However, Willenbring and von Blanckenburg [2010] make the basic assumption that weathering

rates and physical erosion rates are straightforward linked, which might not be true in a rapidly

IIWhen talking about uplift one has to distinguish between three different processes: (1) Surface uplift is the

change of mean elevation with respect to the geoid. (2) Rock uplift is the vertical displacement of individual rocks

(units) with respect to the geoid and (3) exhumation is the vertical movement of rocks with respect to the surface.

Thus, surface uplift equals rock uplift minus exhumation [Molnar and England, 1990].
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evolving mountain belt such as the Himalayas or in Taiwan. For example Summerfield and Hulton

[1994] show that the contribution of chemical weathering rates to the total denudation rate varies

considerably between different settings. Furthermore, the consumption of large quantities of CO2 can

thoroughly take place in form of organic detritus burial, and does not necessarily need to involve

silicate weathering [Galy and France-Lanord, 2001]. From a global point of view, the interpretation of

fundamental processes is highly controversial and limits our understanding on the evolution of climate

and large mountain belts.

Depending on the local tectonic settings and the climatic condition, relief and mountain structure

might develop completely differently. Many efforts have been done in applying experimental and

numerical models, together with empirical evaluations, in order to understand the involved processes.

Erosion is a crucial process linking climate and tectonics and acts like a transmitter of the signals.

Erosion unloads the crust and shapes landscape at the same time. As a results of decreasing burden

the crust reacts by rebounding in a flexural manner, and thus lifting the surface. Schaffer et al. [1998]

have demonstrated this conceptual reactions in the Laramide mountain range, in the western United

States. They related mountain summit erosion with valley erosion, which is roughly one magnitude

faster. Therefore, relief increases simply as a function of relative erosion rates. But at the same time,

erosion removes mass from the region and due to isostatic response landscape elevation increases. This

concept describes how erosion alters landscape, both relief and elevation, without any active tectonic

and climatic forcing Schaffer et al. [1998].

In compressional and active orogens such as the Himalayas, Taiwan, Southern Alps of New Zealand

or the European Alps, the interplay of the involved surface processes is more complex. In this areas,

very high erosion rates coincide with high uplift rates, which might be influenced by precipitation

distribution or vice versa [Willett, 1999; Whipple, 2009]. In a widely recognized coupled deformation-

erosion model, Willett [1999] has studied crustal deformation and strain localisation under the impact

of surface processes (climate and erosion) that perturb topography (Fig. 1.3 a and b). His numerical

experiments demonstrate how precipitation can focus tectonic activity at continental plate margins by

enhanced erosion activity. As illustrated in Figure 1.3, the exhumation front is oriented towards the

main moisture arrival. If the leeward side of the system coincides with the fixed overriding plate of the

model, exhumation appears to be more localised (Fig. 1.3 a). If moisture arrives from the side of the

subducting plate (Fig. 1.3 b), the exhumation front is broadened.

Based on the earlier work of Royden [e.g. 1996], Beaumont et al. [2001] proposed a highly debated

model for the Himalayan - Tibetan Plateau system in central Asia (Fig. 1.4). The authors propose a

thermo-mechanical model explaining the exhumation of the Himalayan range driven by erosion. In this

model, intensive monsoon precipitation at the subduction front causes extensive denudation. Due to

high erosion rates, hot and low-viscose rocks surface from an inter-crustal layer, or are literally drawn

from under the plateau, building the High Himalayan peaks. This positive feedback has been termed

as channel flow [Bird, 1991]. In the case of the Himalayas, the erosion induced channel flow is capable
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used as a guide to what observations are needed to determine 
whether a climatic in!uence on the tectonic evolution of active 
mountain belts is demonstrable, and over what time and space 
scales data are most needed.

Analogue laboratory experiments clearly document that the rate 
and pattern of erosion directly and signi"cantly in!uence the style, 
pattern and rate of rock deformation in a manner generally consistent 
with expectations for critical-taper wedges. Analogue experiments 
have demonstrated erosional control of several factors: the relative 
concentration of strain on pro- and retro-thrusts19,20; particle 
trajectories, and by implication the pressure–temperature–time 
paths and the associated distribution of metamorphic rocks exposed 
at the surface7,20; the steepness and lifetime of frontal thrusts20–22; and 
the rate and location of underplating and the associated development 
of structural duplexes21,23. Both analogue and numerical experiments 
on critical-taper wedges have further demonstrated the potential 

for highly localized deformational response to concentrated 
erosion22–25. Similar experiments have explored temporal, 
semi-periodic variation of deformation in fold-and-thrust belts20,26. 
#us, analogue experiments provide a partial, but important, test of 
model predictions in a controlled laboratory setting, and highlight 
potential in!uences on the evolution of individual faults poorly 
captured in most continuum models.

Recent advances — that explicitly quantify the strength of 
interactions between erosional e$ciency, mountain-belt width and 
rock upli% rate in space and time27–32 at mountain-range scale in 
frictional critical-taper wedges — provide an e&ective template for 
highlighting the "eld observations required to de"nitively test the 
core hypotheses outlined above. #ese models are highly simpli"ed 
to allow analytical solution and are most suited to provide illustrative 
guidance to expected behaviour. Moreover, model predictions 
discussed below are resolved at the mountain-range scale, not at the 
scale of individual thrust faults. Essential results are a consequence 
of mass balance and the notion that erosion rates increase with 
topographic relief 28,33,34, and therefore are robust to model details30.

Published solutions are limited to frictional rheology, but one may 
turn to numerical models of hot, viscous orogens to highlight how 
feedbacks between erosion and rheology may alter climate–tectonic 
interactions. In the following sections, I review the fundamental 
behaviour of three types of orogenic systems: "xed-width or inactive 
systems; narrow, frictional critical-taper wedges (such as Taiwan’s 
Central Range and the Southern Alps of New Zealand); and large, 
hot orogenic systems (such as the Himalaya and Tibetan plateau). 
#e "xed-width orogenic system is not realistic, except for inactive 
ranges, but serves as a useful tool for comparison. #is comparison 
highlights what observations can and cannot be taken as supporting 
the proposed climatic control of orogen evolution.

#e "xed-width is a simple, hypothetical system in which no 
interactions between the rate and style of deformation and 
climate-driven erosion are allowed, as is assumed in most landscape-
evolution models forced with prescribed patterns of rock upli%35,36. 
As in some of these models, it is also assumed that topography is 
isostatically compensated in the "xed-width system. Analogous to 
an iceberg, most of the mass of a mountain range is in its crustal 
root (Fig. 3a), in proportion to the relative densities of the crust 
and mantle. In accord with the Archimedes principle, rocks will 
rise vertically to restore isostatic balance in response to erosional 
removal of mass in both tectonically active and inactive settings. If 
accretionary !ux, FA, is set to zero, the "xed-width system is a good 
analogue for inactive mountain ranges such as the Sierra Nevada37 
or the Appalachian Mountains38.

For simplicity, the "xed-width system assumes simple block-upli% 
at a rate determined by the tectonic mass in!ux. In the case of no erosion, 
the near-surface rock upli% rate, U, is equal to cFA/W, where c is the 
isostatic compensation factor (c ~ 1/5 for Airy  isostasy)39 and W is the 
width of the range (Fig. 3a) — most of the mass added must contribute 
to the crustal root to maintain isostatic balance. In the presence of 
erosion that increases with regional slope or topographic relief, the 
range grows in height until the erosion rate is equal to FA/W, at 
which point a balance between tectonic in!ux and erosional e'ux, 
FE, is achieved40. Under this condition, both topography and crustal 
thickness are steady41 and the near-surface rock upli% rate balances 
the erosion rate (U = FA/W everywhere).

#e climate-modulated erosional e$ciency dictates the relief 
required to erode at this rate. Higher erosional e$ciency (wetter 
climate) means lower steady-state relief 42 (Fig. 3a), but no di&erence 
in steady-state rock upli% rate (FA/W in all cases). An east–west 
di&erence in erosional e$ciency can be expected to produce a 
topographic asymmetry with a steeper slope corresponding to 
lower erosional e$ciency, but again with no e&ect on the tectonics: 
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Figure 1.3: Interplay between tectonics, erosion and climate demonstrated by the numerical model of

Willett [1999]. The model describes how crustal deformation and strain rate (color coding) evolves in

response to unidirectional moisture flux on the examples of the Southern Alps of New Zealand. Grey

colored zone illustrates the exhumed material which has been eroded during the numeric run. a) If

major moisture transport arrives from the west, exhumation is forced to the west of the topographic

divide. Exhumation is focused on the active thrust fault. b) In the case of moisture-laden air arriving

from the east, both exhumation and uplift are focused to the east of the topographic divide. The thrust

fault in the east becomes nearly inactive. c) Illustration of observed topographic and tectonic structure

[from Koons, 1990], matching the numerical experiment. Note that in the experiment (a) exhumation

is much more localized than in experiment (b) [from Whipple, 2009].
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of explaining many observed features (e.g. rapid exhumation, dome intrusion). However, their model

lacks real field evidence [Harrison, 2006; Whipple, 2009]. Nevertheless, the model presents a possible

connection of how climate might drive erosion and hence, tectonic movements, within active mountain

ranges and high plateau construction. In particular the question, if localized monsoon precipitation can

maintain sufficient high erosion rates along the mountain front, that a channel flow model demands,

remains to be evaluated [Harrison, 2006]. Indeed, Burbank et al. [2003] contest that climate and erosion

in the Himalayas are linked and propose that tectonic rock uplift is controlling erosion.

U = FA/W everywhere as prescribed by the block-upli! kinematics. 
During a transient response to an increase in erosional e"ciency, 
however, there will be a passive isostatic rebound in response to 
erosional unloading. For a time, the erosion rate will exceed FA/W 
and the excess volume of rock previously stored in the topography 
and crustal root will be delivered to surrounding depositional basins, 
temporarily increasing FE to greater than FA (Fig. 4b,c).

Observations of quasi-steady balance between erosion and 
rock upli! rate (in Taiwan, the Southern Alps of New Zealand and 
the Olympic Mountains, among others)43–46 and documentation 
of an isostatic rebound in response to accelerated erosion have at 
times been o#ered as evidence for a climatic in$uence on tectonics. 
However, both of these arise in the hypothetical %xed-width 

system characterized by simple block-upli! driven by independent 
tectonic processes. &us, neither observation provides a test or 
demonstration of the dynamic interactions seen in coupled models, 
whereby the climate-modulated erosional e"ciency directly a#ects 
internal deformation patterns, structural con%gurations and the rates 
and patterns of rock upli!. A demonstration of isostatic rebound47,48 
and/or increase in sediment delivery to basins49,50, in response to 
the onset of Quaternary glaciation, supports the argument that this 
climate change enhances erosional e"ciency, but does not lend 
support to the hypothesis that there is a profound link between climate 
and tectonics. We must look for evidence of connections beyond the 
well-established isostatic rebound to erosional unloading which 
operates even in inactive mountain ranges51.
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Figure 1.4: Schema of the erosion driven Himalayan channel flow model, as proposed by Beaumont

et al. [2001], 2:1 vertical exaggerated. In this model, highly ductile and hot crustal material (pink)

is extracted along the main structural system by erosional forcing. This is illustrated in the unscaled

inset. Abbreviation are: Main Boundary Thrust MBT, Fold Thrust Belt FTB, Main Himalayan Thrust

MHT, Main Central Thrust MCT, South Tibetan Detachment STD, Lesser Himalayan Sequence LHS,

Great Himalayan Sequence GHS an Tethyan Sequence TS [from Whipple, 2009]

Precipitation seams to exert a strong influence on erosion [e.g. Reiners et al., 2003]. However,

geochronological measurements and field observations struggle to proof the link between tectonic

exhumation and precipitation. Reiners et al. [2003] demonstrate that in the Washington Cascades, mod-

ern precipitation distribution fits well with spatial pattern of erosion. Their Apatite (U-Th)/He model

erosion rates are highest where precipitation is highest, and decrease to the west and east in a similar

fashion as mean annual rainfall. However, it is not clear if the differential exhumation rate is an expres-

sion of simple isostasy or some other mechanical response. Dadson et al. [2003] report that long-term

erosion patterns for the Taiwan orogen are linked to localized tectonic deformation. They find that

short term erosion events correlate well with seismic activity and typhoon precipitation. However this,

is less surprising since these kind of events only trigger erosion in already destabilized locations, such

as over-steepened mountain terrain. I will discuss this more in detail later. In the NW Himalayas,
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Thiede et al. [2004] demonstrated using Apatite fission track dating that precipitation (present day) and

exhumation rates are linked. But in their second more complete study [Thiede et al., 2009] the authors

contradict their earlier observations and find only poor spatial correlation between exhumation and

precipitation. Though, the most resent findings [Deeken et al., 2011] for the same region, incorporat-

ing the previous results [Thiede et al., 2004, 2009], suggest a dynamic coupling between tectonics and

surface processes. These different findings in the same region, based on basically the same kind of

measurements, highlights the converse problematic of interpretation. Although, these previous exam-

ples are field observations, they can not provide information on the physics of the erosion processes,

but are only interpret measurements in this context. Eventually, the supposed coupling might only be

coincidence, given the different time scales the data represents. In any case, it is clear that the acting

processes have to be explored more in detail.

In summary, the fundamental question of what is controlling shape and speed of mountain build-

ing on a continental and orogene scale is still highly debated and current state of the art research can not

really clarify the ”chicken or egg” [Molnar and England, 1990] question. It is probably undeniable that

climate-erosion-and tectonic are connected. So far, the knowledge on the involved feedback processes

is merely hypothetical. Real measurements and field observations of these processes, both short-term

and long-term, are needed to quantify the existing models. In particular the assumption that erosion

efficiency increases with precipitation has not yet been demonstrated [Whipple, 2009]. Therefore, the

role of water has to be further investigated [Molnar, 2003].

1.3 Controls on erosion rates and patterns

Erosion is the displacement of rock, soils and minerals to a different position by loosing potential en-

ergy. It can take place by physical and/or chemical processes and involves often a transport media

such as water and/or wind. The process of erosion depends mainly on local settings, such as physiog-

raphy of the terrain, lithology and the availability of the transport media. Additionally, life can catalyse

erosion processes considerably. For example, chemical weathering might be strongly influenced by the

presence of bacteria, which can accelerate dissolution processes. However, in this thesis I will mainly

focus on erosion processes by physical erosion. Chemical weathering and dissolution may be impor-

tant [Galy and France-Lanord, 2001] but in most case they are a minor fraction [Summerfield and Hulton,

1994].

1.3.1 Erosion measurements

Measuring erosion, notable denudation, is one of the fundamental disciplines in geomorphology. In

this paragraph, I will give a principle overview of three techniques to determine erosion fluxes from

direct field measurements and analysis of field samples: 1) Erosion rates from measurements of sed-

iment fluxes in rivers, 2) erosion rates from cosmogenic nuclide analysis, and 3) erosion rates from
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low-temperature thermochronology (fission tracks and (U-Th)/He) analysis. Strictly speaking, rates

from low-temperature thermochronology are cooling ages, but under certain assumptions, erosion

rates can be calculated (will be explained below). Each method is representative of a different time

scale, from very recent (� 102 years), over intermediate (103 − 105 years), to long time (typical longer

than 105 years), respectively.

Erosion rates from sediment fluxes

All the eroded material in a drainage basin is normally transported by rivers until it reaches its final

sink [e.g. Ahnert, 1970]. Thus, if significant internal storage and/or transport by wind can be neglected,

it is possible to estimate present-day erosion rates of the whole contributing area by measuring the mass

of eroded material transported in the river. Material can be transported in three different ways: 1) As

bedload, creeping and saltation of material along the river bed, 2) in suspension within the water col-

umn of the river and 3) in chemical dissolved form. In order to estimate the complete mass flux leaving

the basin, each parameter has to be measured separately, which is in many cases difficult or impos-

sible. Bedload is not constant over time and varies depending on local conditions, such as river bed

inclination, velocity and the upstream settings [Turowski, 2010]. In particular in large rivers, this frac-

tion is difficult to measure for instrumental reasons. Suspended sediment flux is normally measured

as the depth integrated mean concentration. However, sediment concentration is not homogeneously

distributed over the river cross section, tampering the results. Dissolved load can be measured from a

water sample by classical element analysis. The proportional contribution of dissolved load to the total

flux varies considerably between regional settings [e.g. Summerfield and Hulton, 1994].

The large disadvantage of this methodology is the considerable effort of labour and time, since

measurements have to be conducted continuously in order to obtain a reliable estimation. Secondly,

sampling intervals might not always be representative and in particular bedload is not always mea-

surable. However, measuring sediment fluxes provides high temporal information on the erosion

processes. Single events can be for example related to precipitation events, earthquakes or human

impact Dadson et al. [2003]; Fuller et al. [2003]; Morehead [2003]. Typically these kind of measurements

are available for > 30 years, however, in most remote areas they are almost inexistent.

Sediments are deposited in lowlands, lakes or man made structures (e.g. water reservoirs or re-

taining dams). If these kind of traps are monitored, large-scale erosion rates can be estimated from the

simple volumetric storage variation. For example Dadson et al. [2003] and Wulf et al. [2010] have used

sedimentation volumes to calibrate and correct their suspended measurements for bedload contribu-

tion and to validate their results. The dissolved load however, can not be estimated from sediment

reservoirs, as it stays normally in dissolution.
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Erosion rates from cosmogenic nuclide analysis

Erosion fluxes representative for longer time scales (103 − 105 years) can be derived from the analysis

of cosmogenic nuclides, produced from cosmic rays in mineral grains [e.g. Bierman and Steig, 1996;

Granger et al., 1996; von Blanckenburg, 2005]. This methodology integrates erosion over the time span

that it takes to remove approximately one attenuation length of the cosmic rays, ∼ 60 cm in bedrock

[Granger et al., 1996]. The concentration of cosmogenic nuclides in river sands is inversely proportional

to the mean catchment denudation rate [e.g. Bierman and Steig, 1996]. The production of cosmogenic

nuclides depends on the location, elevation and latitude and has to be incorporated in the production

rate calculation [Stone, 2000]. The crux of this method is the basic underlying assumption that the

studied basin is in an isotopic steady state, in-going production equals the out-going flux, which is

not always valid in areas where glacial and masswasting processes are dominant [e.g. Binnie et al.,

2006]. Glaciers and landslides can provide considerable volumes of juvenile material and thus bias the

calculated erosion rates [Heimsath and McGlynn, 2008; Yanites et al., 2009]. Nevertheless, the method

provides a powerful tool to quantify mean catchments erosion rates and has closed the temporal gap

between short term measurements and those representative of millions of years [Kirchner et al., 2001].

With respect to fluvial sediment analysis, this methodology does not allow to compare erosion rates

on the event-scale. However, it integrates the erosion processes long enough to study the influence of

large-scale patterns of landscape, i.e. tectonic and precipitationn, which is difficult to study on shorter

time-scales.

Erosion (cooling) rates from low-temperature thermochronology

Low-temperature thermochronology, namely fission track and (U − Th)/He analysis, is a useful tool to

quantify the cooling history of rocks as they pass through the upper few kilometers of the Earth crust

[e.g. Wagner and Reimer, 1972; Mancktelow, 1997; Farley, 2002; Ehlers and Farley, 2003]. As rocks move

closer to the surface, as a result of tectonic uplift or erosion, they pass through the isotherms, from high

temperatures to lower ones. This cooling history is preserved by mineral closure ages, based on the

principle that each mineral and method has its particular closing temperature [Mancktelow, 1997]. If the

age of closure of the mineral and the geothermal gradient are known, it is possible to calculate the time

it took for the particular rock sample to reach the surface. Strictly, these are exhumation rates rather

than erosion rates. To turn exhumation rates into erosion rates, either topographic/elevation steady

state has to be assumed (during the exhumation history) or the relative surface elevation change,

with respect to the isotherm, must be know [e.g. Brandon et al., 1998; Ehlers and Farley, 2003]. The

limitation of this method is that the geothermal gradient has to be extrapolated back in time in order

to model the cooling pathway of the samples. Furthermore, topography, heat advection (vertical and

transversal) and also water circulation have the potential to locally adulterate the thermal gradient,

leading to relative misinterpretation of the results [e.g. Ehlers and Farley, 2003; Whipp and Ehlers, 2007].
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Despite the possible uncertainties, low-temperature thermochronology provides a powerful tool to

estimate tectonic uplift, exhumation and denudation rates for very long time spans (Myr) and thus, to

reconstruct the long term evolution of landscapes [e.g. Jolivet et al., 2010].

1.3.2 Temporal scale: Modern vs. long term erosion

Comparing erosion processes derived from measurements representative of different time scales, one

has to take into account the recurrence interval of events and their impact on the evolution of land-

scapes. Large events, triggered by rainstorms or earthquakes can dominate erosion patterns according

to their frequency of occurrence. For example the 2008 Wenchuan earthquake (Mw 7.9), in the eastern

margin of the Tibetan Plateau produced 5− 15 km3 of erodible material by extensive landsliding [Parker

et al., 2011]. In this case the mobilized material is larger than the net volume added to the orogen by

coseismic uplift. Taking this as an extreme example, one single event can offset the measured signal

considerably. Dating techniques representative for long time scales, e.g. fission track ages, have a high

probability to include such single events, while, dating techniques representative for shorter time scales

probably do not integrate such a extreme event [Kirchner et al., 2001]. Consequently, erosion rates de-

termined from different dating techniques can differ quite considerably (Fig. 1.5). This conceptual idea

holds of course only if the extreme events are large enough to control significantly the long term mean

erosion rate. In other words, the extreme events must outweigh the erosion in volume representative

for interim times. Secondly, timing of the measurement has to be taken into account, for example the

temporal spacing of the events and the timing of sampling with respect to the last event.

On the other hand, measurements integrating over long time scales are difficult to separate into

the different involved processes. Therefore, short-term erosion proxies, such as suspended sediment

concentration provide more detailed information on the erosion processes. Single storm events can be

directly compared, for example to the transported volumes of rivers. Hence, single storm events reveal

information on the efficiency of the event-magnitude. Though, the modern erosion rates might not be

representative for the long-term evolution of a mountain range. In order to understand the link between

the involved processes both short-term and long-term measurements are needed to understand the

system.

1.3.3 Erosion and landscape

Numerous studies are conducted to find characteristic controls, such as topography, precipitation,

drainage density, vegetation and basin size, which might help to describe erosional processes [e.g.

Ahnert, 1970; Milliman and Syvitski, 1992; Summerfield and Hulton, 1994; Montgomery et al., 2001; Aalto

et al., 2006]. Such simplified relations have been often applied to model and predict erosional systems

on a catchment scale [e.g. Tucker and Slingerland, 1997; Syvitski, 1998; Finlayson et al., 2002; Kettner and

Syvitski, 2008]. But the relations of erosion rates with few parameters is often not straightforward.
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TABLE 1. LONG-TERM AND SHORT-TERM SEDIMENT YIELDS

Conventional Cosmogenic

Record Sediment Time Sediment
Catchment* Area length yield scale yield

(km2) (yr) (t·km�2·yr�1) (yr) (t·km�2·yr�1)

Silver Creek
1 SC-2 1.2 27 13.2 � 2.2 5 100 327 � 42
2 SC-3 1.3 28 8.9 � 1.4 9 400 174 � 23
3 SC-5 1.1 28 10.9 � 1.6 12 000 136 � 18
4 SC-6 1.6 27 9.3 � 1.7 11 000 152 � 22
5 SC-7 0.23 22 14.4 � 2.5 17 000 90 � 12
6 SC-8 1.1 13 30.0 � 10.6 13 000 121 � 16
Horse Creek
7 HC-2 0.57 10 7.3 � 1.3 16 000 97 � 13
8 HC-4 1.4 10 3.5 � 0.6 18 000 89 � 12
9 HC-6 1.0 15 3.3 � 0.6 19 000 80 � 11
10 HC-8 1.5 12 11.0 � 3.0 17 000 90 � 13
11 HC-9 0.23 10 8.6 � 1.3 19 000 80 � 11
12 HC-10 0.65 12 9.9 � 2.4 17 000 92 � 13
13 HC-12 0.83 14 8.2 � 2.3 16 000 101 � 14
14 HC-14 0.62 12 7.5 � 2.3 19 000 80 � 12
15 HC-16 0.21 13 25.1 � 6.7 27 000 55 � 8
16 West Fork 17 23 5.0 � 0.5 18 000 87 � 12
17 East Fork 14 23 2.5 � 0.3 20 000 76 � 11
Tailholt & Circle End Creeks
18 Tailholt A 2.2 21 11.0 � 2.5 6 300 264 � 36
19 Tailholt B 1.6 22 14.6 � 3.3 6 400 262 � 34
20 Tailholt C 1.4 22 13.7 � 2.4 8 200 202 � 26
21 Tailholt Main 6.6 28 14.0 � 2.8 7 000 239 � 32
22 Circle End A 0.8 N.D.† N.D. 7 300 226 � 29
23 Circle End B 2.3 N.D. N.D. 7 300 229 � 30
24 Circle End Main 3.8 25 6.5 � 1.1 7 700 215 � 29
Larger Streams and Rivers
25 Trapper Creek 20 10 9.8 � 1.6 26 000 57 � 8
26 South Fk. Red

River
98 14 8.0 � 1.4 25 000 58 � 8

27 Upper Red River 129 14 10.1 � 1.6 18 000 87 � 12
28 Johns Creek 293 10 7.6 � 1.3 15 000 108 � 15
29 S. Fk. Clearwater

R.
2 149 25 7.6 � 2.3 17 000 91 � 12

30 Lochsa River 3 055 72 26.3 � 2.8 6 700 250 � 32
31 Selway River 4 945 70 24.5 � 3.2 8 100 205 � 28
32 Salmon River 35 079 84 13.7 � 4.1 6 300 261 � 36

*Identification numbers are coded to Figure A and Table A (see footnote 1). Sam-
pling and analytical details are given as notes accompanying Table A.

†N.D. � not determined.

Figure 1. Short-term and long-term sediment yields for Idaho catch-
ments. Catchment sediment yields were measured over 5–27 k.y.
using cosmogenic 10Be in alluvial quartz grains (closed symbols)
and over shorter periods by conventional methods (open symbols):
sediment trapping at Silver Creek (circles), Horse Creek (squares),
and Tailholt and Circle End Creeks (diamonds), and sediment gaug-
ing at larger rivers (triangles). Data and methods are given in Table
A (see footnote 1); standard errors are shown where larger than
plotting symbols. Dotted lines indicate range of expected climate-
driven variability in long-term sediment yields, inferred from cos-
mogenic 10Be and 26Al measurements at seven Sierra Nevada sites
with average annual temperatures ranging from 4 to 15 �C and av-
erage annual precipitation ranging from 22 to 178 cm/yr (Riebe et
al., 2001b).

Idaho (Table 1; see also Table A and Fig. A1; sampling and analytical
details are given as notes accompanying Table A). Our catchments are
rugged; average hillslope gradients range from 23% to 57%, and the
valleys are characteristically narrow, steep, and V shaped. Opportuni-
ties for sediment storage in alluvial deposits are minimal, implying that
sediment production and sediment delivery must be in approximate
equilibrium over the 10 k.y. time scales of our cosmogenic measure-
ments. Field observations indicate that soils are typically thin and hill-
slopes erode mainly by rain splash, tree throw, bioturbation, dry ravel,
and shallow landsliding. Some sediment accumulates in small hollows
and steep headwater channels, which in turn are episodically evacuated
by shallow debris flows; this storage and episodic release of sediment
has no measurable effect on its cosmogenic nuclide concentration (Ap-
pendix A; see footnote 1). Neither field evidence nor mapped topog-
raphy indicates widespread bedrock landsliding, which would compli-
cate the interpretation of our cosmogenic data.

RESULTS AND DISCUSSION
At every one of our sites, sediment yields measured by cosmo-

genic 10Be over time scales of 5–27 k.y. are 2.2–38 (average � 17)

1GSA Data Repository item 2001064, Figure A (site location map), Table
A (catchment characteristics and sediment yield data), and Appendix A (effects
of shallow debris flows on cosmogenic nuclide measurements), is available on
request from Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301-
9140, editing@geosociety.org, or at www.geosociety.org/pubs/ft2001.htm.

times greater than sediment yields measured over 10–84 yr (average
� 24 yr) by conventional sediment-trapping and sediment-gauging
methods (Table 1; Fig. 1). At all scales, from small experimental catch-
ments (0.2 km2) to large river basins (35 000 km2), long-term sediment
yields are consistently much greater than conventional measurements
over years or decades would suggest (Fig. 1).

This discrepancy cannot be attributed to artifacts in either of the
measurement methods. We previously tested our cosmogenic sediment
yield estimates for two small catchments against the accumulation rates
of their debris fans, which have functioned as sediment traps for �16
k.y. similar to the cosmogenic time scale (Granger et al., 1996). Both
measurements agreed within 20%, indicating that our cosmogenic
method accurately measures whole-catchment sediment yields over
millennial time scales. Our cosmogenic measurements are corrected for
present-day snow shielding; one could hypothesize greater snow depths
in the distant past, but to account for the 18-fold discrepancy with the
conventional sediment-yield measurements would require continuous
year-round burial under more than 10 m of snow. Paleoclimate records
indicate that, if anything, the region was somewhat warmer and drier
throughout the middle Holocene (Doerner and Carrara, 1999; Fall et
al., 1995; Sea and Whitlock, 1995; Whitlock, 1993), so snow shielding
was even less significant in the past than it is at present. Our cosmo-
genic erosion measurements are consistent, within a factor of two, with
much longer term (�10 m.y.) exhumation rates inferred from apatite
fission tracks (Sweetkind and Blackwell, 1989), suggesting that they
are not anomalously high (Fig. 2). These longer term exhumation rates
are based on a somewhat uncertain geotherm, but for them to be con-
sistent with the conventional sediment yields would require a geotherm
of �500 �C/km, which is unrealistic. Conventional sediment-yield
measurements are also subject to many uncertainties (Meade, 1988),
but none that could plausibly account for such a large discrepancy with
the long-term rates across such a diverse array of catchments. Thus we
conclude that the mismatch between the long-term and short-term mea-
surements is not an artifact of the measurement methods.

Could this mismatch between long-term and short-term sediment
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Figure 2. Idaho batholith erosion rates over 10 yr, 10 k.y., and 10
m.y. time scales. Dotted rectangles delimit ranges of measure-
ments and corresponding time scales for conventional sediment-
trapping and sediment-gauging methods, which average over de-
cades, cosmogenic nuclides, which average over thousands of
years or �60 cm of erosion, and apatite fission tracks (Sweetkind
and Blackwell, 1989), which average over tens of millions of years
or �3.6 km of erosion. Solid rectangles indicate middle 50% of
each of three classes of measurements. Fission-track data do not
include samples considered by Sweetkind and Blackwell (1989) to
have anomalous thermal histories.

yields reflect climatic differences over the different time scales? Gla-
ciation is unlikely to account for the differences we observe, because
only 5 of our 30 catchments show evidence of Pleistocene glaciation,
and their average erosion rates (both long term and short term) are
similar to the other catchments (Table A; see footnote 1). Nonglacial
erosion rates are not sensitive enough to climate to account for our
results. In a separate study (Riebe et al., 2001b), we used cosmogenic
nuclides to measure long-term erosion rates at seven unglaciated gra-
nitic Sierra Nevada sites that span a range of 4–15 �C in average tem-
perature and 22–178 cm/yr in annual precipitation; across these diverse
climatic regimes, long-term erosion rates vary by a factor of only 2.5
(indicated by the dashed lines in Fig. 1) and are uncorrelated with both
temperature and precipitation (r � 0.17, p � 0.5). Even though, as the
Sierran data indicate, long-term average climatic regimes have little
effect on mountain erosion rates, one could still speculate that a recent
shift in climate and vegetation may have transiently suppressed sedi-
ment delivery from hillslopes or channels at our sites. However, to
account for the low present-day sediment yields, such a climate shift
would need to reduce sediment delivery by an average of 94% through-
out our study area, and paleoclimate proxy records from central Idaho
(Biondi et al., 1999; Doerner and Carrara, 1999) and the northern
Rockies and Cascades (Beiswenger, 1991; Fall et al., 1995; Sea and
Whitlock, 1995; Whitlock, 1993; Whitlock and Bartlein, 1997) do not
show dramatic changes in climate or vegetation over the past 2–3 k.y.
One might suspect that the present-day sediment yields reflect anthro-
pogenic influences; 10 of the 15 small catchments at Silver Creek and
Horse Creek have been partially logged, and logging activities are scat-
tered across most of our larger catchments. However, one would expect
timber harvests to increase, rather than decrease, present-day sediment
yields. We cannot definitively exclude the possibility that, for some as-
yet undiscovered reason, there has been a recent shift in erosional pro-
cesses that has dramatically lowered the present-day sediment yields
in our study catchments, but we have no evidence that this is the case.

Episodic Nature of Sediment Yield
If the mismatch between long-term and short-term sediment yields

is neither a measurement artifact nor a result of climate change, it must

arise from extremely episodic sediment delivery, dominated by events
that are large but rare—so rare that they are unlikely to be reflected in
measurements over years or decades. For example, the sediment trap
at Circle End Creek (catchment 24 in Table 1) measured a total sedi-
ment flux of 614 t over its 25 yr of operation, but in January 1997, an
intense winter rainstorm triggered a debris flow on one of its tributaries
(catchment 22 in Table 1) and released an estimated 6250 t of sediment,
which dwarfed the 25 yr cumulative sediment flux by 10-fold and
destroyed the sediment trap and gauging station. Catastrophic erosion
events can also be triggered by convective storms following intense
forest fires, which leave the soil surface unprotected until vegetation
can regrow; one such storm eroded more than 100 000 t from 8 km2
of catchments near Glenwood Springs, Colorado (Cannon et al., 1998).
Our measurements suggest that events such as these are a normal
(though infrequent and unpredictable) part of the erosional regime of
mountain landscapes. That is, our measurements suggest that present-
day sediment yields are not anomalously low, but instead are highly
episodic, such that short-term measurements do not accurately capture
the average sediment yield. For our long-term and short-term mea-
surements to be even approximately compatible with one another,
70%–97% of sediment delivery must occur during episodes that are
too infrequent to be detected by conventional sediment-yield
measurements.

If these episodes were uncorrelated with each other, sediment yield
would be less episodic in larger catchments, because they would av-
erage out stochastic fluctuations in sediment delivery from their com-
ponent subcatchments (Benda and Dunne, 1997). Instead, the discrep-
ancy between short-term and long-term sediment yields persists even
in our largest catchments, suggesting that the factors driving episodic
erosion events, such as extreme storms and catastrophic wildfire, must
be highly correlated in space and time. For example, the same 1997
storm that triggered the debris flow at Circle End Creek also triggered
debris flows to 100 km away, including one that released more than
7500 t of sediment from a 0.5 km2 catchment (Wood and Meyer, 1997),
and caused severe flooding as far away as California. Extreme precip-
itation events are spatially correlated over tens of thousands of km2
(Dai et al., 1997), and large wildfires are similarly extensive; the Big
Burn of 1910 scorched 12 000 km2 of northern Idaho and western
Montana.

The consistency between our cosmogenic erosion measurements
and the much longer term fission-track exhumation rates (Fig. 2) im-
plies that, as one might expect, sediment delivery is much less episodic
over 104–107 yr time scales than it is over decades or centuries. Over
human time scales, sediment delivery by hillslopes and channels is
dramatically out of equilibrium with long-term sediment production at
our study sites, but the disequilibrium is in the opposite direction from
what one might expect (Clapp et al., 2000; Trimble, 1977); present-
day short-term sediment yields are substantially below the long-term
average.

Implications
Our results show that the erosional regime of mountain landscapes

encompasses two distinct styles of sediment delivery. Incremental ero-
sion prevails most of the time, but accounts for a small fraction of the
total sediment yield; by contrast, catastrophic erosion events are rare
and brief, but dominate the long-term sediment yield. Aquatic habitats
subjected to such catastrophic sediment loads will be episodically dis-
rupted, and the species that recolonize such disturbed habitats may
differ from those that thrive under more stable, incremental sediment
fluxes. Thus the episodic disturbance regime imposed by catastrophic
sediment delivery may be more than just a cruel fact of life for montane
aquatic ecosystems—it may also be essential for maintaining their di-
versity and productivity in the long term (Reeves et al., 1995). The
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Figure 1.5: Denudation rates over different time scales, from several catchments in central Idaho

(United States). (a) Denudation rates plotted against basin size, spanning several magnitudes. Short-

term erosion rates are derived from suspended sediment measurements and long-term erosion rates are

derived from 10Be cosmogenic nuclide concentrations. Note, that sample locations for both suspended

sediments and cosmogenic nuclides are identical. (b) Denudation rates plotted against representative

time scale. Suspended sediments average over several decades, cosmogenic nuclide concentrations aver-

age over several thousand years (in this kind of settings) and denudation rates from apatite fission track

ages average over some million years. These denudation rates are representative for a mountain region

which is tectonically inactive and heavily farmed [from Kirchner et al., 2001]

Globally, denudation rates are negatively correlated with basin size (Fig. 1.6 d)III , being highest in

small catchments and decrease with basin size [Milliman and Syvitski, 1992; Aalto et al., 2006]. However,

this relationship was deduced from suspended sediment concentrations and represents the increasing

chance to find a less pronounced relief and intra-basin accommodation space, where sediments can be

deposited.

Furthermore, denudation rates estimated from suspended sediment loads show correlations with

relief, channel gradient and elevation [Ahnert, 1970; Pinet and Souriau, 1988; Summerfield and Hulton,

1994; Montgomery and Brandon, 2002; von Blanckenburg, 2005; Binnie et al., 2007; Ouimet et al., 2009, and

Fig. 1.7, 1.8]. Relief exerts a very strong control on denudation rates, which seems to be a robust

relationship over very contrasting climate regimes (e.g. Fig. 1.7). Similarly, these authors and others

[e.g. Ahnert, 1970; Montgomery and Brandon, 2002; von Blanckenburg, 2005; Binnie et al., 2007; Ouimet et al.,

2009] found a well defined relationship between denudation rates and slope. Ouimet et al. [2009] for

IIISediment yield is the mean mass yield per unit area. If the density of the mass is known, yield can be

transformed into a volume, and hence denudation. Note that, the calculation of denudation rates from mass

transport involves assumptions of density changes during weathering prior to physical mobilisation. For example

if the a mean mean rock density (2.65 g/cm3) is applied, steady state soil thickness is assumed [Summerfield and

Hulton, 1994].
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Figure 2. Runoff vs. basin area (A); sediment yield vs. runoff (B); and load (C); and yield (D) vs. basin area for the 
rivers listed in table 2. Note the generally inverse relationship between runoff and yield with basin area, the strongly 
positive correlation between load and basin area, and the great amount of scatter for yield vs. runoff. 

As can be seen in table 2, <lo% of the rivers were 
discounted on the basis of having either load or 
yield values more than 1 standard deviation from 
the mean. In fact, deviations from the predicted 
norm often reflect either unique fluvialldrainage 
basin conditions or possible erroneous data bases; 
various examples are discussed below. 

For loadlyield vs. basin area, the correlations 
with the various topographic categories are gener- 
ally good, ranging from 0.70 to 0.82 (load vs. area) 
and 0.62 to 0.89 (yield vs. area) (figures 5 and 6; 
table 2). The relatively poor correlation coefficients 
(r2 = 0.81 for load, but 0.32 for yield) for coastal 
plain rivers, however, suggest that basin area plays 
little or no role in determining sediment discharge 
from these low-lying rivers. 

Mountainous rivers have greater loads and 
yields than do upland rivers, which in turn have 
greater loads and yields than lowland rivers (figures 
5 and 6), although there is some overlap in values. 
For example, mountainous rivers with basin areas 

of about 10,000 km2 have sediment yields between 
140 and 1700 t/km2/yr (e.g., Negro, Porong), 
whereas yields for similar-sized upland rivers are 
60-250 (e.g., Sabine, Tone), and lowland rivers 
20-60 (e.g., Cape Fear River). With the exception 
of two rivers (Waiapu and Niger), no upland, low- 
land or coastal plain river has a sediment load >20 
mt, even though more than 25 upland and lowland 
rivers have drainage basin areas >100,000 km2. In 
contrast, nearly 60 mountainous rivers have loads 
1 2 0  mt  (table 1). Mountainous rivers draining 
South Asia and Oceania have much greater yields 
(2-3 fold) than rivers draining other mountainous 
areas of the world, and an order of magnitude 
greater than rivers draining high-Arctic and non- 
alpine European mountains (figure 5). 

The trend of increasing sediment yield with de- 
creasing size of mountainous rivers becomes less 
pronounced in river basins less than about 4000 
km2 in area, as seen by the relative number of riv- 
ers that fall > 1 standard deviation from the mean 

Figure 1.6: Sediment flux vs. basin area and discharge plots. A) annual specific discharge (runoff)

vs. area, B) annual suspended sediment denudation rate (yield) vs. specific discharge (runoff), C) total

annual sediment flux vs. area and D) annual suspended sediment denudation rate (yield) vs. area.

Note that basin denudation rate and specific discharge decrease with increasing drainage basin area.

Denudation rate and specific discharge seam to be positively related as well as the absolute sediment

flux with basin area [from Milliman and Syvitski, 1992].

example, analysed cosmogenic nuclide samples from 65 small catchments (25− 200 km2) of the eastern

margin of the Tibetan Plateau (Yunnan). They show that erosion increases with mean basin slope up

to a characteristic slope angle (∼ 25 − 30◦). Erosion rates in basins with a mean slope larger than this

threshold value are uncorrelated with slope (Fig. 1.8). The same relationship has been also described

by Montgomery and Brandon [2002] and Binnie et al. [2007] for the Olympic Mountains and the San

Bernardino Mountains, both in the western United States, using thermochronological and cosmogenic

data respectively. On a global scale erosion and slope (or relief) are linearly related in low-gradient

landscapes, whereas in rugged mountain terrains a small change in relief can modify significantly ero-

sion rates [Montgomery and Brandon, 2002]. These findings show that actively uplifting landscapes with

extreme topography, with hillslopes close to failure, are controlled by river channel incision [Ouimet

et al., 2009]. Landscapes having low slopes and consequently low denudations rates are typically trans-

port limited, while landscape with steep slopes and high denudation rates are supply limited systems

[Binnie et al., 2007]IV. In this sense, river incision keeps pace with uplift rates and the adjacent hillslopes

IVIn a transported limited system, transport of material depends on the available energy, leading to a net accu-

mulation of material. Supply limited systems depend on the supply of eroded material, the energy to transport is

higher than the available material [e.g. Fuller et al., 2003].

14



ously [6,8] and if climate change is the cause then
the acceleration in exhumation rates should be
synhronous across the Himalayan chain. The var-
iations in mica ages relative to apatite ¢ssion
track ages tends to support diachronous acceler-
ation of exhumation rates, although more work
needs to be done to interpret the topographic cor-
rections for the ¢ssion track ages. Also, there is
evidence for past changes in exhumation rates of
equal magnitude that are almost certainly nothing
to do with climate. There is abundant evidence for
rapid exhumation in the High Himalaya during
the early Miocene (V20 Ma) [61^64], although
it is not known how much of this was taken up
by crustal extension rather than erosion. Detrital
muscovite ages also record similar evidence with
very short detrital muscovite lag times (time be-
tween cooling age and sediment age) of 1^2 Myr
between s 21 and 17 Ma increasing to 5^10 Myr
between 17 and 12 Ma [26].

Tectonic moderation of exhumation rates may
occur by the development of new thrusts or by the
existence of short steeper ramps along existing
thrusts. A 160 km ramp segment dipping at
V8‡ along a longer thrust dipping at V2‡ would
accelerate exhumation of the hanging wall of a
thrust moving at 20 mm/yr from V0.75 to
V2.7 mm/yr. If the ramp section were short, clo-
sure ages of low blocking temperature minerals

would re£ect the higher exhumation rate, whereas
ages of higher blocking temperature minerals set
before, or as, the crust reached the steep ramp
section, would be proportionally less reduced
(Fig. 7). Cooling at the base of the hanging wall
would make ages older adjacent to the thrust but
such a zone would be only V10 km thick [65].
The geometry shown in Fig. 7 reproduces the 10^
20 Ma muscovite ages observed in the Alaknanda
catchment in crust exhumed at 2.7 mm/yr. If the
ramp length were increased to V240 km or the
angle steepened to 12‡, 6 5 Myr-old muscovites
would be exhumed within 70 km of the toe of the
thrust wedge.

7.4. Controls on erosion rates

Several published studies [41^43,66,67] have at-
tempted to assess the major geomorphic and cli-
matic controls (relief, precipitation etc.) on conti-
nental denudation rates on a basin scale using
estimates of the suspended load measurement of
rivers. All of these studies have concluded that
relief is the main controlling factor though Lud-
wig and Probst [42] also emphasise the impor-

Fig. 7. Muscovite Ar^Ar and apatite ¢ssion track cooling
ages exposed by a thrust over a ramp that steepens from
V2‡ to 8‡ and moves at V15 mm/yr. Erosion is presumed
to be in balance with exhumation. Crust is exhumed at
V0.75 mm/yr over shallow section giving muscovite ages of
V22 Myr and apatite ¢ssion track ages of V6 Myr. Ages
become progressively younger towards the toe of thrust as
rocks at surface entered steeper zone at progressively earlier
times. Note that ages within V50 km of the toe of thrust
will be older than shown because of cooling at base of
thrust.

Fig. 8. Denudation rates in the upper Ganges catchment, for
sub-catchments and total catchments in this study. Also
shown (circles) are the data for European river catchments
[11]. The relief measure was calculated for each 9 kmU9 km
grid square from the mean elevation minus the minimum ele-
vation in each grid square. Each data point and error bar
represents the mean and two standard errors for all the
squares in each sub-catchment.

EPSL 6509 21-1-03

D. Vance et al. / Earth and Planetary Science Letters 206 (2003) 273^288 285

Figure 1.7: Log-linear relationship between cosmogenic nuclide denudation rates and relief. Here,

relief is calculated from a 9 by 9 km moving square window and expresses the half of the elevation range

under the window. The circles show data from European catchments [Schaller et al., 2001] and the

squares represent data from the upper Ganges basin in the Himalayas [Vance et al., 2003]. The clear

relationship over three orders of magnitude relief and very different climate regimes is remarkable [from

Vance et al., 2003].

lag behind [Whipple et al., 1999], and consequently the signal of erosion and topography is decoupled.

Naturally, the question arises: What controls erosion beyond the critical threshold slope? Or is it only

a stochastic effect? In Taiwan, erosion rates do not show any correlation with topography [Dadson

et al., 2003]. Earthquakes and typhoons which are relatively frequent in Taiwan, mobilize large quan-

tities of material at ones and thus, flush all available sediments out of the mountain belt. Topography

exerts a control on erosion over long time-scales and sets possible conditions. In the case of Taiwan,

probably the intermittent recurrence of very large storm and earthquake events outweighs the effect of

topography.

Topography has clearly a strong impact on erosion, e.g. very high erosion rates are detected when

hillslopes are beyond threshold steepness. Steep landscapes are also more vulnerable to the impact

of external forcing by earthquakes and rainstorms. However, the topography does not seem to be the

sole controlling factor and the importance of its contribution might change accordingly to climatic and

tectonic settings.

1.3.4 Erosion and climate

One of the most controversial parameter controlling erosion is precipitation [e.g. Burbank et al., 2003;

Reiners et al., 2003]. As already raised before, climate can change considerably over short distances and
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threshold is associated with a transition from soil-mantled to rocky land-
scapes as documented by Binnie et al. (2007). 

The most theoretically satisfying, and most fully developed, hill-
slope transport model consistent with a limiting threshold slope (SC) and 
a nonlinear relationship between mean basin slope and erosion rate is the 
nonlinear hillslope diffusion model of Roering et al. (2001). We cannot, 
however, a priori reject a simpler model in which soil transport is linearly 
dependent on slope until a slope-stability threshold is reached, at which 
point the potential transport rate becomes infi nite. Assuming that quasi-
equilibrium hillslope morphologies, a hillslope diffusion constant (K), 
and a hillslope length (LH) can be used to characterize a basin (Roering 
et al., 2007), either model can be readily cast as a predicted relationship 
between mean slope and erosion rate (Fig. 2A). For LH = 75 m (estimated 
from satellite imagery and digital elevation models [DEMs]), our data are 
consistent with model curves based on a reasonable range of K values 
expected from studies of soil-mantled hillslopes in semiarid to temperate 
climates (0.002–0.02 m2/a) and SC (32°–35°). This represents an important 
confi rmation of theoretical models of hillslope evolution and a corrobora-
tion of the interpretation of earlier fi eld data.

CHANNEL STEEPNESS INDEX
Assuming that basin-averaged erosion rates refl ect the average rate 

of river incision that drives hillslope base-level fall, the normalized chan-
nel steepness index (mean basin ksn) of the well-graded tributary basins 
sampled in our study can be compared to measured erosion rates. Our 
data suggest a nonlinear relationship between mean normalized channel 
steepness and erosion rate (Fig. 2B). This nonlinearity, however, is not as 
strong as the nonlinearity between mean hillslope gradient and erosion 
rate. Channels continue to steepen up to ~0.6 mm/a and higher, exceeding 
the hillslope threshold of ~0.25 mm/a (Figs. 2A and 2B). This is further 
demonstrated in Figure 2C, which shows the erosion rates associated with 
different combinations of hillslope gradient and channel steepness index. 

By the time erosion rates get to 0.20–0.25 mm/a, hillslope gradients have 
stopped increasing and have reached threshold values (>30°), but channels 
continue to steepen as erosion increases up to at least 0.6 mm/a (Fig. 2C). 
This pattern supports the view that beyond the point where threshold hill-
slopes emerge, river channels continue to steepen in order to incise more 
rapidly and transport downstream a larger volume of material derived 
from upstream and adjacent hillslopes.

A linear relationship between ksn and erosion rate has been suggested 
by data from a few fi eld sites (Safran et al., 2005; Wobus et al., 2006), 
and this may describe our data at lower values of ksn and erosion rate, but at 
higher values, the rate of channel steepness increase slows, suggesting that 
incision becomes more effi cient at high channel gradients, similar to the 
argument made by Snyder et al. (2003) on theoretical grounds and sup-
ported by limited fi eld data. Keeping in mind that our highest erosion rates 
have the greatest uncertainties, include anomalous values in an otherwise 
systematic pattern consistent with the long-term evolution of landscapes 
in the fi eld area (Fig. 1), and include basins near the glaciated Gongga 
Shan area, we focus our interpretation on erosion rates <0.6 mm/a and 
argue that the relationship between ksn and erosion rate is only mildly non-
linear (E ≈ (ksn)

n with n = 2; Fig. 2B). We are hesitant to say that our data 
indicate that this nonlinearity could be much stronger and that the channel 
steepness index may indeed reach threshold values.

Nonlinear behavior between erosion and channel steepness can arise 
for a number of reasons. Using the stream-power framework (Whipple 
and Tucker, 1999), nonlinear behavior (E ≈ (ksn)

n with n >1) refl ects a 
different erosion process than linear behavior (n = 1). The classic, sim-
plest form of the stream-power model is the linear model (n = 1); the fact 
that our data are better described by n >1 suggests that the simple linear 
stream-power model of river incision breaks down at high rates of ero-
sion. One example of nonlinear behavior has been argued to result from 
the combined effects of a critical threshold of motion and detachment and 
the probability distribution of fl ood magnitudes and durations (Snyder et 
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Figure 2. Erosion and topography: main plots in A and B focus on erosion rates <0.6 mm/a (59 basins; gray); insets show full data set (65 
basins), including outliers (black) and glaciated basins near Gongga Shan (white). (A) Mean basin slope versus erosion rate. Solid black line 
is from nonlinear model in Roering et al. (2001) using K, LH, and SC values indicated; dashed gray line is from linear-threshold model with 
LH = 75 m, K = 0.015 m2/a, and SC = 32° (see the GSA Data Repository [see footnote 1] for additional details). (B) Mean basin ksn (normalized 
channel steepness) versus erosion rate. Bold lines depict E ≈ (ksn)

n; n = 1 is a linear relationship between mean basin ksn and erosion rate 
(E); n = 2 and n = 4 are nonlinear, power-law relationships. (C) Summary plot of binned mean basin slope versus mean basin ksn with average 
erosion rates indicated (number of data points indicated within box). Inset shows all data points. 

Figure 1.8: Topographic controls on erosion rates. Mean basin erosion rates are plotted against mean

basin topography. Basins are small tributary catchemnts (25− 200 km2) of major streams in the eastern

Tibetan Plateau margin (Yunnan). A) Plot of the mean basin slope against erosion rate, exhibiting a

nonlinear relationship with a slope threshold between 25− 30◦. B) Normalized channel steepness index

versus erosion. Despite the general high erosion rates for high channel steepness the relationship is less

well defined. C) Summarizes figure A with binned mean values. The insets of A, B and C illustrate full

dataset range. [from Ouimet et al., 2009]

depends highly on topographic patterns and the proximity of moisture sources [Roe, 2005; Bookhagen

and Burbank, 2006].

Surprisingly, fission-track ages in the Himalayas show higher exhumation on the arid hinterland

than in the wet mountain front, suggesting that denudation and precipitation are not connected [Bur-

bank et al., 2003]. Instead, the authors suggest glacial erosion to account for the high erosion rates.

However, erosional efficiency of glaciers is closely related to climatic conditions, such as temperature

and precipitation [Zech et al., 2009]. In this sense, glacial erosion is also an expression of climate. On

the other hand, (U − Th)/He exhumation rates of the Washington Cascades, reflect the present day

precipitation pattern [Reiners et al., 2003]. On teh opposite, a global compilation of cosmogenic nuclide

erosion rates (for similar lithology), sorted by precipitation rates and temperature (Fig. 1.9a and b)

does not reveal any tendency and shows that for the same precipitation regime high and low erosion

rates are possible [von Blanckenburg, 2005].

Precipitation is largely influenced by topography and exposition (windward or leeward) of the

drainage basin [e.g. Roe, 2005; Anders et al., 2006b; Bookhagen and Burbank, 2006], and is thus spatially

very heterogeneously distributed. Precipitation and consequently discharge, are merely correlated with

erosion rates [Summerfield and Hulton, 1994; von Blanckenburg, 2005]. Given the fact that these authors
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Although cosmogenic nuclides yield the total denuda-
tion rate (chemical plus mechanical), Riebe et al. have
developed a technique that is, in homogenous granitic
lithologies, suitable to separate both rates [18,29,30].
The approach is to measure the total denudation rate
from cosmogenic nuclides in a given catchment. The
time-integrated relative loss of cations by weathering
(bChemical Depletion FactorQ CDF) is obtained by
measuring zirconium-normalised total chemical con-
centrations in both bedrock and soils. It is also the rate
of chemical weathering to the total denudation rate.
Furthermore, since, under steady state conditions,
chemical weathering operates on the same time scale
as total denudation, the obtained rates all integrate over
the same cosmogenic time scale. This time scale is
potentially more representative of the assessment of
long-term silicate weathering than the short time scale
of solute load measurements.

The results of a global survey of chemical weath-
ering rates in granitic catchments are shown in Fig.
8 [30]. At first glance, neither precipitation (Fig. 8a)
nor temperature (Fig. 8b) appear to exert any control
over silicate weathering. Furthermore, physical ero-
sion and chemical denudation appear to be tightly

interlinked (Fig. 8d). The slope of the best fit line
through the physical erosion versus chemical weath-
ering data corresponds to a mean global ratio of ca.
0.2. Superimposed on this trend, however is some
scatter that is not random. This scatter turns out to
be caused by climate-dependent variations in CDF.
This climate-dependency only becomes apparent once
the chemical weathering rate has been normalised in
some way for physical erosion (Fig. 8c). This
becomes apparent when the chemical depletion frac-
tion is plotted as a function of annual precipitation
(Fig. 8c), showing a positive correlation. A similar
observation was also made with regard to temperature
[30]. These observations are in line with those made
recently in a compilation of modern river flux data
[69]: a possible if vague correlation exists between
mean annual temperature and weathering rate; precip-
itation and weathering rate are weakly correlated;
chemical weathering rate and physical erosion rate
are tightly interlinked.

The conclusion of this analysis is that once the
effects of the dominating external physical erosional
controls are removed, weak trends become apparent in
the weathering data that support the notion that both
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Fig. 7. Global compilation of catchment-wide denudation rates from cosmogenic nuclides as a function of precipitation and temperature. Only

granitic catchments have been included, to avoid the introduction of lithology-dependent effects. Figure reprinted from [31]. Copyright 2004

American Geophysical Union. Reproduced by permission of the American Geophysical Union.

F. von Blanckenburg / Earth and Planetary Science Letters 237 (2005) 462–479 473

Figure 1.9: Global compilation of denudation rates sorted by (a) mean annual precipitation and (b)

temperature [Blanckenburg et al., 2004, and data sources listed therein]. The compared basins here are

all for granitic settings to avoid lithology dependency. Note that in each region denudations rates vary

considerably for the same mean precipitation rate [from von Blanckenburg, 2005].

compared large scale mean basin values, the average precipitation rate gets relatively smoothed with

increasing basin size, and therefore represents only to a certain degree the real local conditions which

control erosion. For example, the local frequency/intensity distribution of precipitation might be more

important than the accumulated annual rate. Indeed, Bookhagen et al. [2005a] and Wulf et al. [2010]

demonstrated that rain storm events exert a strong control on mass movement and sediment fluxes.

From the discussion above, the question arises: Does precipitation exerts any control on erosion,

and if, at which time-scale? Possibly, the temporal distribution and intensity of precipitation is a more

important parameter than the amount of water precipitated

Several studies have made the link between modern erosion rates and the temporal recurrence

and intensity distribution of precipitation rates [e.g. Benda and Dunne, 1997; Bookhagen et al., 2005a,b;

Wulf et al., 2010]. In particular, large mass wasting events - landslides - are tightly coupled with

intense rainfall [e.g. Kirschbaum et al., 2009a; Dahal and Hasegawa, 2008; Lin et al., 2008; Gabet et al., 2004;

Fuller et al., 2003; Iverson, 2000]. In rapidly evolving mountain belts, mass wasting is the dominant

type of erosion [Meunier et al., 2008]. Intense precipitation causes saturation of the subsurface and

reduces internal friction and detachments becomes more likely [Iverson, 2000]. On the other-hand, if

precipitation intensity (or snow melt) exceeds the infiltration capacity of the surface substrate, surface

runoff is generated which can cause mass movement by incision (gullys, ravins). Hong et al. [2006]

showed for two prominent events in California and Nicaragua that the timing of failure coincides with

peak intensity of the antecedent 10 day rainfall accumulation curve. Large scale mass wasting can also

be triggered by high magnitude earthquakes [e.g. Meunier et al., 2008; Parker et al., 2011]. Erosion rates

after such events (rainstorms and earthquakes) are tremendously elevated and can offset the erosion
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signal significantly [Dadson et al., 2003; Hovius et al., 2011]. Landslides triggered by precipitation events

cluster generally at the base of the slope while earthquake triggered failures tend to cluster along the

mountain ridges [Meunier et al., 2008]. In this work however, I concentrate on the interaction of climate

and erosion. There is very little doubt that intense rainfall events have an impact on erosion. Hence,

it is possible that the recurrence interval of a certain magnitude rainfall events exerts an important

control on landscape formation.

As climate might have an impact on erosion, it consequently has the potential to change the shape

of landscape. For example, Montgomery et al. [2001] proposed that the landscape of the Andes reflects

the north-south distribution of precipitation. In the Buthan Himalayas, [Grujic et al., 2006] illustrate the

impact of climate on landscape evolution. The Bhutan Himalayas are separated in a very wet (western)

and a less wet (eastern) part, because of the Shillong Plateau, an upstream mountain formation of the

Himalayan range (Fig. 1.10). The plateau has been uplifted relatively rapidly, well after the Himalayan

range and the monsoon system were in place. Low precipitation in the east is caused by the moister

blockage of the upstream Plateau (Fig. 1.10 A), having one of the highest precipitation rates in the

world on the windward site (> 9 m/year). In the dryer eastern part, erosion is relatively little and the

whole landscape has been passively uplifted, without changes in the topography [Grujic et al., 2006].

In contrast, the western part receives the full monsoonal precipitation causing higher erosion rates and

hence, a deeply incised relief. From laboratory sandbox models, [Bonnet and Crave, 2003] showed that

relief changes with different precipitation rates under constant uplift conditions. These experiments

showed that climate has the potential to change relief (range of elevation for a given reference area)

under constant uplift rates. The crux is that final erosion rates, for two very different topographies and

precipitation regimes, is equal.

In summary climate has the potential to leave a footprint on landscape but the process is not as

straight forward as often believed. More precipitation does not necessary mean more erosion or vice

versa. Nevertheless, intensity-frequency distribution of precipitation exerts a strong control on erosion

processes. Futhermore, different climates can cause very different landscapes although tectonic forcing

and erosion rates are very similar.

1.4 Motivation & Questions

Climate is thought to have an impact on erosion, but the processes and effects are not well described

yet [Whipple, 2009]. The current state of the knowledge is partly inconsistent, providing arguments for

and against a climate control. Especially, the mechanisms and time-scales of how climate might impact

erosion is not well known. Possibly, the observed examples where climate and erosion show the same

tendency are only coincidence.

The emphasis of this work is to understand more in detail the possible influence of precipitation

on erosion, transport and on the formation of landscape. Therefore, it is important to investigate all
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Figure 2. Topographic and precipitation profiles, in 40-km-wide swaths, across Bhutan
Himalayas and Shillong plateau show that an orographic barrier of 1.5–2 km is sufficient to
hinder moisture transport. A—eastern Bhutan; B—western Bhutan. Topography (orange)
has been derived from Shuttle Radar Topography Mission data; precipitation (blue) is taken
from the calibrated Tropical Rainfall Measuring Mission data (Appendix DR1, see text foot-
note 1). There is a strong E-W precipitation gradient: at ~1–1.5 km elevation in the east it
is ~4 m/yr, while in the west it is ~6 m/yr. The orographic effect is also strongly pronounced
with only Indian summer monsoon (ISM) precipitation (i.e., 0.5 versus 3.5 m/yr, respectively;
Bookhagen et al., 2005). Geographic locations are shown on Figure DR1 (see text footnote
1). MFT—Main Frontal thrust, MBT—Main Boundary thrust, MCT—Main Central thrust, KT—
Kakhtang thrust, STD—South Tibetan detachment, LHS—Lesser Himalayan Sequence,
GHS—Greater Himalayan Sequence, TK—Tethyan Klippen, PW—Paro window, TSS—
Tethyan Sedimentary Sequence.

Figure 3. Age-elevation
diagram of apatite fission-
track (AFT) data. Data
from western Bhutan are
in bright red; data from
periphery of Paro window
are in pale red; data from
eastern Bhutan are in
pale blue. Dark blue indi-
cates data from vertical
profile at ~91!E (inset). In
white are published AFT
ages from western Hima-
layas (Sorkhabi et al.,
1996; Thiede et al., 2004;
Vannay et al., 2004) and
central Nepal (Burbank et
al., 2003).

ocene AFT ages show no correlation with el-
evation (Fig. 3). The weighted mean AFT age
of 2.55 ! 0.15 Ma (excluding the 3 anomalous
samples) provides a long-term exhumation rate
(i.e., erosion rate; Appendix DR1 [see footnote
1]) on the order of 1.0–1.8 mm/yr.

Across eastern Bhutan, AFT ages vary be-
tween 3.0 ! 0.7 Ma and 8.6 ! 0.8 Ma, with
late Miocene ages clearly dominant in this
area (Fig. 3; Table DR1). The weighted mean
AFT age of 5.08 ! 0.09 Ma yields a long-
term exhumation rate of 0.55–0.85 mm/yr, as-

suming a steady exhumation rate until the
present. However, a vertical profile at "91#E
(Figs. 1 and 3; Table DR1) reveals a positive
correlation between age and elevation, with a
slope (equivalent to exhumation rate) of 1.6
! 0.6 mm/yr for the period between 6.5 and
5.9 Ma. This apparent late Miocene erosion
rate is similar to the late Pliocene erosion rate
in western Bhutan. If such a rapid erosion rate
had continued until the present day across
eastern Bhutan, younger AFT ages would
dominate across the modern landscape. This
is not the case, which leads us to conclude that
across eastern Bhutan, the erosion rate must
have slowed sometime after 5.9 Ma.

DISCUSSION
The uplift of the Shillong plateau may ac-

count for up to one-third of the India-Eurasia
convergence (Bilham and England, 2001),
which would consequently lower the fault slip
rate and thus the rock uplift rate in eastern
Bhutan when compared with other frontal
parts of the Himalayas. However, the degree
of convergence partitioning between the pla-
teau and eastern Bhutan is poorly constrained
because neither the kinematics nor the attitude
of the faults bounding the Shillong plateau are
well known (Bilham and England, 2001; Bis-
was and Grasemann, 2005). Although the pla-
teau emerged only in the early Pliocene, the
sedimentary record of the more southerly Syl-
het Trough (Johnson and Nur Alam, 1991) in-
dicates sustained displacements along the
southern boundary fault since the Eocene.
Thus, the convergence partitioning started
much earlier than the plateau’s subareal uplift
at the Miocene-Pliocene transition. The sur-
face uplift of the Shillong plateau is likely due
to a change of rock erodibility at a constant
rock uplift rate, similar to mechanisms of sur-
face uplift proposed elsewhere (Sobel and
Strecker, 2003). The basement of the plateau
was covered by "3000 m of Tertiary sedi-
ments (Johnson and Nur Alam, 1991). When
these sediments were eroded and more resis-
tant bedrock was exposed, the erosion rate
may have slowed, resulting in surface uplift.

Rock uplift rate in a critical taper wedge
appears more sensitive to erosional efficiency
than to the tectonic accretionary flux (Whipple
and Meade, 2004). Therefore, convergence
partitioning into the Shillong plateau, which
would reduce the shortening rate in eastern
Bhutan, would produce a lesser effect than re-
ducing the erosion rate. The relict landscape
argues against a significantly reduced short-
ening rate across the Bhutan Himalaya. In par-
ticular, rock uplift in the mountain chain could
not have decreased considerably or there
would have been no fast surface uplift of a
paleolandscape. Assuming nearly constant
fault-slip rate, a recent decrease in erosion rate
in eastern Bhutan would cause rock uplift to
become less compensated by erosion, result-

Figure 1.10: 40 km wide swath profile of topography (orange) and precipitation (blue) across the Bhutan

Himalayas and the Shillong Plateau. The Shillong plateau acts as an orographic barrier (1.5 − 2 km

high), blocking moisture transport from the south. A) eastern Bhutan, and B) western Bhutan. There

is a strong E-W precipitation gradient: at ∼ 1 − 1.5 km elevation in the east it is ∼ 4 m/yr, while in

the west it is ∼ 6 m/yr. The eastern Himalayan topography was uplifted as a relict landscape since the

formation of the Shillong Plateau, due to the blockage of moisture arrival. Main structural features are:

MFT Main Frontal thrust, MBT Main Boundary thrust, MCT Main Central thrust, KT Kakhtang

thrust, STD South Tibetan detachment, LHS Lesser Himalayan Sequence, GHS Greater Himalayan

Sequence, TK Tethyan Klippen, PW Paro window, TSS Tethyan Sedimentary Sequence [from Grujic

et al., 2006].
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successive steps involved, starting from precipitation, the transfer of precipitation to river discharge,

the mobilization of material, the transport of material out of the mountain range, and the constrains

over longer time-scales (up to several thousand years). In order to make this possible I will exploit

multiple datasets such as precipitation, river discharge, earth observations datasets (e.g. temperature,

snow and glacier cover), suspended sediment concentrations of rivers and cosmogenic nuclide analysis.

In the following, I list four main points of interest which describe the thematic of each chapter of this

work.

1. Precipitation data with a good resolution is needed to understand its role on both spatial and

temporal scale. Today, more and more sophisticated data compilations are available but their

quality has never been tested for the Himalayan region. Hence, I feel their is a strong need to

evaluate the available data, in order to be able to know their limitations and strengths.

2. Precipitation impact on erosion is often stated as an hypothetical fact. In order to understand the

mechanism behind this process, the fate of water after it is precipitated has to be investigated.

Notably, how is precipitation transferred to river discharge and which different flow paths and

reservoirs are involved.

3. Water in form of precipitation and river discharge exert a control on erosion processes. In par-

ticular the magnitude-frequency distribution of events has a huge impact on how material is

mobilized and transported. To understand the erosion processes it is important to study the

involved processes in parallel, in order to identify the different controls. For example, does the

bulk of material comes only from few events? And what is the role of the high magnitude-low

frequency monsoon climate?

4. Over a longer time period, tectonic, landscape and erosion counterbalance each other. This re-

lation might be shifted relatively due to the climatic regime. Erosion rates determined from

cosmogenic nuclide analysis, integrating over several hundreds and thousands of years are use-

ful tools to determine the interactions. Thus, from the comparison of this rates with several

landscape parameters and precipitation, some insights on the longer evolution can be gained.

1.5 Why the Himalayas?

The Himalayas are a natural place to study the climate-erosion interaction processes. The mountain

range is actively uplifting and the monsoon defines a very clear cyclic seasonality, with two long-lasting

seasons, one very wet and one very dry [e.g. Lavé and Avouac, 2001; Hannah et al., 2005; Bookhagen and

Burbank, 2006].

The very well defined cyclic climatic system of the Himalayas has a very well defined onset and

end. Although the magnitude might vary between the years [Shrestha, 2000; Bookhagen et al., 2005a;

Wulf et al., 2010], the average intensity has been relatively stable for at least the last few thousand
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years [e.g. Bookhagen et al., 2005b; Clift et al., 2008b]. Furthermore, the Himalayas build a very distinct

orographic barrier, separating the wet Indian Subcontinent from the arid Tibetan Plateau [Anders et al.,

2006a; Bookhagen and Burbank, 2006; Boos and Kuang, 2010]. The blockage of wet air masses, arriving

from the Bay of Bengal and progressing along the mountain range towards the east and west, lead to

an orographically enhance precipitation pattern [Barros et al., 2006; Bookhagen and Burbank, 2010]. All of

this sets a system tightly prone to precipitation-landscape interactions. Furthermore, the clear and well

separated seasonality defines a cyclic system which likely allows to separate the involved processes

within each season and to relate them with their exogenous forcing.

In the Nepal Himalayas, erosional processes are almost exclusively associated to monsoon. One

of the main points I would like to address in this work is the question of the particularity of the Hi-

malayan system compared to other mountain belts where climate is not characterized by such a strong

seasonality. In Taiwan for example, the seasonality is less pronounced than in the Himalayas and

surface processes are mainly controlled by recurrence of extreme short-term events such as typhoons

and earthquakes [Hovius et al., 2000; Dadson et al., 2003]. Although, typhoons are clustered in the ty-

phoon season, earthquakes are clearly random and can overlap with typhoons, which makes it difficult

to separate the impact of typhoons or earthquakes on erosion. The mountain range of the Southern

Alps intercepts the oceanic westerlies, resulting in a very wet north-western flank compare to a dry

south-eastern flank with almost no seasonality [e.g. Hovius et al., 1997; Henderson and Thompson, 1999].

Hence, the Himalayas are an ideal test bed to study the cyclic interactions of surface processes and

the possible impact of precipitation on erosion.
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Chapter 2

The Himalayas

The Himalayas are one of the youngest and the highest mountain ranges on earth. The Himalayas

and the Tibetan Plateau, started to build up in the Eocene, as a result of the continent-continent col-

lision between India and Eurasia [e.g. Molnar and Tapponnier, 1975; Dupont-Nivet et al., 2010]. The

whole Himalayan range extends over ∼ 2500 km from the west (Indus river, Nanga Parbat) to the east

(Tsangpo-Brahmaputra Gauge, Namche Barwa), separating the Indian Subcontinent from central Asia

(Fig. 2.1). From the south to the north, the Himalayan range rises from the low-lying Ganges Plains

(∼ 200 m a.s.l.) to the peaks of the High Himalayas (> 8000 m a.s.l.), over less than 250 km horizontal

distance. To the north they are bounded by the Tibetan Plateau, characterized by a low-relief and high

elevations (> 5000 m asl).

The Nepal Himalayas (Fig. 2.1) are situated in the central part of the Himalayan range, in the

headwaters of the Ganges drainage system. The country extends approximately 800 km east-west and

200 km north-south and borders with Tibet/China in the north and India to the south. The three main

drainage basins of Nepal are from the east to the west: the Koshi catchment, the Narayani catchment

and the Karnali catchment, covering in total ∼ 135 km2. All three basins have parts of their headwaters

on the Tibetan Plateau (Fig. 2.1). They drain the complete Himalayan range of Nepal, amongst eight

of the tallest mountains in the world (> 8000 masl.), and outflow into the Ganges plains where they

join the Ganges River. This work is constrained to the surface of these three basins, and several smaller

ones in the southern most mountain front.

2.1 Geological settings and topography

Tectonics in the Himalayan range are very active as the Indian Subcontinent continues to collide with

the Eurasian plate [e.g. Lavé and Avouac, 2001; Bettinelli et al., 2006]. Uplift rates of the Himalayas are

in the order of several millimeters per year [e.g. Bilham et al., 1997; Hurtrez et al., 1999; Lavé and Avouac,

2001; Bettinelli et al., 2006; Bollinger et al., 2006; Blythe et al., 2007]. The successive underthrusting of

the Indian plate underneath the Asian plate has created an orogenic wedge, underlying the Himalayan
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Figure 2.1: Topographic map of the Himalayan range. Political boundaries are indicated in white. The three main drainage basins of the Nepal

Himalayas are outlined in red. Glaciers are obtained from the National Snow and Ice Data Center. [1999]. Note that, the database is not complete for

the western part of the Himalayas in Pakistan and India, as well as in Bhutan and eastern India.
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MFT = Main Frontal Thrust

Figure 2.2: Geological map of the Himalayan orogen. The map symbols are defined in the legend in the square box below. The major lithologic units

and structures are defined in the systematic overview in the top right [from Yin, 2006, and references therein].
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range and bulging the Tibetan Plateau upwards. The Himalayas comprise four main tectonic structures

[e.g. Blythe et al., 2007]. From north to south, they are: 1) the South Tibetan Detachment STD, 2) the

Main Central Thrust MCT, 3) the Main Boundary Thrust MBT and 4) the Main Frontal Thrust MFT

(fig. 2.2). All these four structures can be traced along almost the whole Himalayan range (Fig. 2.2).

Geophysical and structural studies suggest that all thrusts connect at depth to one single thrust (see

Fig. 2.3 a), the Main Himalayan Thrust MHT. The MHT acts as a slide face where the Indian plate

thrusts under the southern edge of the Tibetan Plateau [Lavé and Avouac, 2001; Bollinger et al., 2006].

Horizontal shortening along the MHT are approximately 15 − 20 mm/yr [Bettinelli et al., 2006; Lavé

and Avouac, 2000], consuming a large part of the modern south-north shortening between the two

continental plates [Lavé and Avouac, 2000].

The geology of the Himalayan range comprises from north to south: 1) The Thetysian Sediment

Series of the Tibetan Plateau, 2) the High Himalayan crystallines (granite and gneiss) of the High

Himalayan range (or Greater Himalayas), 3) the low-grade metasediments (mainly gneiss and schist

and some Thetysian Sediments) of the Lesser Himalayas, 4) the Siwaliks (Sub-Himalayas), low altitude

hills and mountains (< 1000 m asl.) composed of easily erodible Neogene Molasse (eroded material

accumulated during the Himalayan formation), and 5) the southern-most Ganges plains with their

Quaternary Sediments [e.g. Lavé and Avouac, 2001]. The lithologic contacts coincide approximately

with the fault structures (Fig. 2.2). The STD separates the Tibetan Himalayas (hanging wall) from the

High Himalayas (foot wall). The MCT separates the High Himalayas from the Lesser Himalayas, and

together with the STD facilitated the exhumation of the High Himalayas [Szulc et al., 2006].

Wobus et al. [2005, 2006] suggest the existence of a fifth out-of-sequence thrust in the Nepal Hi-

malayas, located ∼ 30 km south of the MCT. Topographic analysis show their an abrupt slope break,

which coincide with very young 40Ar/39Ar cooling ages (< Myr) to the north of the formally unde-

tected structure. The authors relay this thrust with high erosion rates, focused onto the Himalayan

front, which favour deep exhumation rates within this zone. In contrast, Bollinger [2004]; Bollinger et al.

[2006] explain the sudden drop in exhumation ages with an inverted metamorphic gradient, resulting

from a combination of underplating and postmetamorphic shearing, tampering the geothermal gra-

dient and hence the thermochronological model measurements. Both arguments are convincing and

can explain the field evidences. In terms of exhumation/erosion, the one or the other have completely

different consequences: The model by [Bollinger, 2004; Bollinger et al., 2006] involves homogeneous and

constant exhumation rates. The proposed out-of-sequence thrust by Wobus et al. [2005, 2006] however

requires a localised net-input of material, provoking locally higher exhumation rates along this struc-

ture. Nevertheless, it is important to notice that topography rises abruptly from the Lesser Himalayas

to the Higher Himalayas (Fig. 2.3 b).

The seismic activity within the Nepal Himalayas is closely related to the tectonic settings and

however as well as by the hydrological cycle [Pandey et al., 1995; Pandey, 1999; Bollinger et al., 2007;

Bettinelli et al., 2008]. The background activity is very high and most seismic events are localised along
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MHT

Figure 2.3: Geological (a) and topographic (b) cross-section through the Himalayas, at the longitude

of Kathmandu valley. The lines in profile b show the mean (solid) and the maximum and minimum

elevation (dashed) along a 50 km long swath profile [from Lavé and Avouac, 2001, and references

therein]. 21 ± 1.5 mm/yr are slip rates according to Lavé and Avouac [2000].

the southern front of the Higher Himalayas (Fig. 2.4 a) in an average depth of ∼ 10 − 20 km (Fig.

2.4 b). Roughly, the concentration zone traces the surface course of the MCT [e.g. Pandey et al., 1995].

Interestingly, the seismic record analyses by [Bollinger et al., 2007; Bettinelli et al., 2008], covering 5 years

(1995-2000) of continuous measurements, show that seismic activity is clustered in the winter season

and relatively little activity is recorded during monsoon time. The authors interpret this seasonality by

recharge of the aquifer during monsoon time, exerting an overburden and reducing failure conditions.

However, these are relatively weak seismic events (ML = 0 to 6.3) and no major earthquake (� 6.5 MW)

has occurred in the Central Himalayas since the Bihar-Nepal in 1934 [Pandey and Molnar, 1988; Pandey

et al., 1995; Bettinelli et al., 2006]. The Bihar-Nepal MW 8.0 − 8.2 earthquake, ruptured a 200 − 300 km

long segment to the east of Kathmandu [Pandey and Molnar, 1988; Pandey, 1999, and references therein].

Only two relatively strong earthquakes happened in Nepal during the time period considered for the

suspended sediment and discharge analysis of this work: in 1979 (5.5 MW) and in 1980 (6.5 MW)

[Global Centroid-Moment-Tensor (CMT) catalog, www.globalcmt.org].

As mentioned before, the topography in Nepal raises abruptly over a short distance from <

200 m asl. to elevations > 8000 m asl. and continues onto the Tibetan Plateau with average eleva-

tions ∼ 5000− 6000 m asl. (Fig. 2.3b and 2.5). Along the entire Himalayan range two different patterns
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those occurring in the summer. Figure 3b shows that the
probability that the observed low ratio would be due to
chance is much less than 1% up to magnitude 4. We also
considered the possibility of a bias caused by temporal
clustering of events. As evident in Figure 2, microseismic
productivity peaked level between December 1996 and
January 1997. This peak, as well as others less obvious in
the catalog is attributable to aftershocks following inter-
mediate magnitude earthquakes (ML > 4 to 5) [Bollinger,
2002]. To circumvent contamination from aftershocks we
suppressed their effects in our catalog using the declustering
method proposed by Reasenberg [1985]. We adjusted the
spatial (5 km horizontal, 10 km vertical, and inter-event
separation <80 km) and temporal (1 ! t ! 10 days) input
parameters to exclude events those sequential occurrence
occurred with P = 0.95 confidence in the catalog (Figure 3b).
The ratio of summertime to wintertime events remains
significantly lower than 1, in the declustered catalog, as well
as lower than the 99% envelope of the 10000 synthetic
random catalogs (Figure 3b).
[6] Purely instrumental effects are unlikely to produce an

artificial seasonality at such high magnitudes, we conclude
that the observed seasonality is genuine.

3. Comparison With Meteorological Cycle

[7] In Figure 4 we compare average rainfall with a
monthly count of microearthquakes for different cut-off
magnitudes, calculated for the period 1995–2000. The
minimum in seismicity corresponds with maximum rainfall.
The correlation is most pronounced when all events are
considered. We interpret this correlation to be due to the
direct or indirect effect of heavy monsoonal rainfalls on the
background seismic noise during the summer monsoon. It
might be envisioned that raindrop-impacts, or local run-off
from atmospheric storms would generate some seismic
noise directly. However, we did not detect any daily
variation of the detection threshold that might be expected
from this mechanism since nocturnal rainfall peaks between
11 pm and 2 am [Ueno et al., 2001]. Our preferred
interpretation is thus that the seismic noise results primarily

from river bed-load transport. Another possibility is that
seismic noise is generated by landslides activated during
periods of heavy rain. However, although we find that
seismic noise levels in the Himalaya are moderated by
sediment transport in the mountains. The correlation
between seasonal variations of seismicity and rainfall is
observed at magnitudes well above the detection threshold.
This argues that surface hydrology must influence sub-
surface seismicity directly. We discuss that possibility in
the next section.

4. Discussion

[8] Earthquake triggering mechanisms are commonly
discussed in terms of Coulomb failure criteria [e.g., King
et al., 1994]. Coulomb stress, (S), can be expressed as a
function of the normal stress, sn, and shear stress, t, on the
fault plane as

S ¼ t # m sn # pf
! "

; ð2Þ

Figure 1. (a) Microseismicity recorded between 04/01/1995 and 04/11/2000 by Nepal Seismological Center, Department
of Mines and Geology. In red, events within the seismicity belt at the front of the high Himalaya that were selected for the
present study. Focal mechanisms from Harvard CMT catalog. (b) Density distribution of seismic events with resolvable
depths through a 50 km swath centred on AA’. The depth of these events is inaccurately determined [Pandey et al., 1995],
most events fall within depths from 10 to 20 km (black circles), as determined from a temporary experiment [Cattin and
Avouac, 2000].

Figure 2. Variations in numbers of earthquakes each
month for all magnitudes (grey) and ML > 2.5 (black) in the
period 1995–2001. An annual cycle is evident with peak
numbers occurring in the winter months between January
and March each year.
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Figure 2.4: Microseismicity recorded between 04/01/1995 and 04/11/2000 by Nepal Seismological

Center [from Bollinger et al., 2007]

of topographic rise can be observed (Fig. 2.3b and 2.5): 1) in the eastern and western Himalayas, topog-

raphy rises directly in one step until the high summits, while 2) in the central Himalayan topography

describes a two step pattern of successively increasing elevations, a first one at the front of the range

and a second one within the Higher Himalayas [Bookhagen and Burbank, 2006].

2.2 Climate and hydrology

The very strong Himalayan relief marks pronounced climate differences on a very short distance [Han-

nah et al., 2005]. The Ganges plains in the south, are characterized by a subtropical climateI. In the

valleys of the Lesser Himalayas, climate is subtropical and gets warm to temperate with increasing

elevation. The High Himalayas are marked by very strong climatic differences from partially sub-

tropical in the very deep incised valley bottoms (∼ 1000 m asl.), to nival, in the very high elevations

(> 5000 m asl.). Typically the horizontal distance between the valleys and the high ridges and peaks

is not more than 10 − 15 km, imposing very strong gradients in temperature and ecosystems. The

winter snowline is ∼ 3000 m asl., while above elevations of 5000 m asl. all precipitation comes in

form of snow [Putkonen, 2004]. However, the climatic regime is poorly documented within the Nepal

Himalayas. Meteorological monitoring stations are sparsely distributed, mainly situated in the easily

accessible valley floors, and thus climate analysis have to relay on few punctual observations. Due to

the complex terrain and poor data basis climate models as well as satellite based observations perform

ISubtropical climate: characterized by hot, humid summers and mild to cool winters.

Temperate climate: not as hot as subtropical, but warmer than polar climate.

Nival climate: All year around below zero, above snow line. [Koppen, 1936]
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Figure 9
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Figure 2.5: Topographic profiles across the Himalayan range vs. annual precipitation rates, from

the south (left) to the north (right). Grey shading indicates the elevation range (±2σ) and the black

line the respective mean, perpendicular to the 50 km swath width. Precipitation is derived from the

TRMM-3B31 precipitation radar measurements, intensity is the maximum rainfall made over the 10

year measuring period. Red line represents the number of lightning events per km2 TRMM-LIS,

registered by the TRMM sensor and can be seen as proxy of storm intensity. A represents the western

Himalayas, B the central Himalayas, typical for the Nepal Himalayas and C the eastern Himalayas

[from Bookhagen and Burbank, 2010].

29



that represents a continuous rainfall-time series [Barros et
al., 2000; Lang and Barros, 2002]. Thus, we utilize the
relationship between field measurements and single-cell
TRMM-derived rainfall amounts to scale our satellite-
derived rainfall amounts (Figure 2). Interestingly, this
simple linear fit between TRMM-derived Indian summer
monsoon rainfall intensities and absolute rain-gauge
amounts yields consistent results. This indicates that, de-
spite non-continuous TRMM-rainfall time series, relative
values represent a valid rainfall distribution. Consequently,
we apply a constant scaling factor to the satellite data to
derive an estimate of the absolute rainfall amount. This
relationship, however, holds true only when integrating over
satellite rainfall series at least one month long. We suggest
this represents a more valid calibration method than com-
parisons of basin-wide TRMM-derived runoff with river
gauges, because a) discharge measurements are more inac-
curate than rainfall measurements, b) discharge in the
Himalaya is strongly influenced by snowmelt with un-
known but likely significant temporal offsets from the
precipitation events, and c) very few continuous, reliable
discharge measurements are available that account for the

Figure 1. (a) Calibrated TRMM-based monsoon rainfall amounts averaged from January 1998 to December 2005. The
data comprises instantaneous rainfall measurement with a spatial resolution of �5 � 5 km. Note the two pronounced
rainfall bands in the central Himalaya. (b) 5-km-radius relief calculated from topographic data merged from SRTM V2,
DTED, and ASTER-DEM imagery with a spatial resolution of 90 m. Note the high-relief band �75–100 km from the
mountain front in the central Himalaya. White polygons indicate the location of 20 swath profiles, of which 4 examples are
shown in Figure 3. A simplified N-S geologic profile depicts the major geologic units and faults separating them: Main
Frontal Thrust (MFT), Main Boundary Thrust (MBT), Main Central Thrust (MCT).

Figure 2. Calibration curve for TRMM-rainfall data
utilizing the half-hour rainfall measurement of the central
Nepal (Marsyandi) gauge network for the years 2001–2004
[Barros et al., 2000]. Each dot represents the cumulative
TRMM-measured rainfall intensity over 4 months (June to
September) for one grid cell (�5 � 5 km) vs. the (point-)
gauge network measurement. Despite the large differences
in spatial and temporal resolution, the data sets agree well.
We show only stations that are within 250 m elevation of
the corresponding TRMM gridcell.
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Figure 2.6: Precipitation distribution in the Himalayas, measured from the precipitation radar, on-

board of the Tropical Measuring Mission satellite TRMM. The plotted precipitation rates indicate the

mean (1998-2005) annual precipitation distribution with ∼ 5 × 5 km resolution [from Bookhagen and

Burbank, 2006].

poorly in the very complex and rugged terrain of the Himalayas. The Himalayas present a prominent

topographic feature, well able to influence climate on the continental or global scale [e.g. Raymo and

Ruddiman, 1992; Boos and Kuang, 2010]. Hence, there is a huge need in the Earth Sciences community

to get a better understanding on climate distribution (temporal and spacial) in this region.

Seasonality of the Himalayas is jointly linked with the large scale monsoon circulation, defining a

very wet (monsoon) and a very dry season [e.g. Bookhagen and Burbank, 2010]. The dry, non-monsoon

season can be subdivided in: post-monsoon (October - November), winter (December - February)

and pre-monsoon (March - May). The large part (∼ 80%) of the annual precipitation is associated

with the Indian summer monsoon [Anders et al., 2006b; Bookhagen and Burbank, 2006, 2010], and only

a small fraction of precipitation (∼ 20%) falls during winter [Lang and Barros, 2004]. Furthermore,

the spatial precipitation distribution is strongly associated with topography (Fig. 2.5 and 2.6), due to

orographic effects [Anders et al., 2006b; Bookhagen and Burbank, 2006]. Their observations show a clear

connection with the steepness and elevation of the terrain. For example, in the central Himalayas where

topography describes a two step rise from the south to the north, the rainfall data reveals two discrete

rainfall bands which coincide with the topographic rises (see also Fig. 2.5). The southernmost band

corresponds with elevations of ∼ 1000 m asl. in the lesser Himalayas and the second one with elevations

of ∼ 2000 m asl. on the foot of the High Himalayas. Annual precipitation rates exceed 3000 mm/yr

at those elevation [Bookhagen and Burbank, 2006]. Further north precipitation decreases drastically to

∼ 250 mm/yr on the Tibetan Plateau (Fig. 2.6). However, this reflects only the large scale rainfall

pattern, small scale variations are much more complex and change according to orientation, elevation
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and proximity to moisture sources of the mountain slopes [Barros and Lang, 2003; Bhatt and Nakamura,

2005; Barros et al., 2006]. Furthermore, [Bhatt and Nakamura, 2005] demonstrated inter-daily precipitation

patterns, so called diurnal cycles, from satellite based precipitation radar analysis (TRMM-PR). Along

the southern Himalayan front, precipitation is more concentrated during the midnight-early-morning

hours and minimal during the late morning [Bhatt and Nakamura, 2005]. The existence of diurnal cycles

might bias precipitation measurements as well as river discharge records.

Because precipitation and monsoon climate are so important for this work, I will use the follow-

ing two chapters to explain the large scale monsoon system and how topography exerts a control

(orographic effects) on the spatial distribution of rainfall pattern.

2.2.1 Monsoon

Monsoon is a global weather phenomenon caused by the unequal distribution of large ”hot” land

masses, the differential heating between land-surface and oceans and the relative inclination of the

earth towards the sun [e.g. Webster and Chou, 1980; Molnar et al., 1993; Zhisheng et al., 2001; Boos and

Kuang, 2010]. The Inter Tropical Convergence zone ITC, circles the Earth near to the equator and

separates the wind circulation of the southern and northern hemisphere. Depending on the exposi-

tion towards the sun, the ITC moves further north (northern hemisphere summer) or south (northern

hemisphere winter), as a result of differential net heat radiation [e.g. Webster and Chou, 1980]. For ex-

ample, the Indian Summer Monsoon ISM is formed by a summer low pressure cell over central Asia

(tropospheric high), deflecting the ITC far north, and a relative high pressure cell over the Pacific and

Indian Ocean. Thereby, it induces intense moisture flow from the open ocean to the Asian continent

[Bookhagen et al., 2005a]. In the case of the ISM (affecting the central Himalayas), the air-masses arrive

from the Arabian Sea and the Indian Ocean, penetrate the Indian continent from Bay of Bengal and

move westwards and eastwards along the Himalayan range (Fig. 2.7). There, they collide with the high

mountain range, causing heavy monsoonal precipitation rates. Monsoonal rainfall in the Himalayas is

characterized by strong upward movements and convective rainfall. Latent heating caused by moisture

condensation additionally amplifies the effect [Bookhagen et al., 2005a; Barros et al., 2006].

Monsoon intensity can vary considerably between the years [Shrestha, 2000; Gadgil et al., 2004;

Bookhagen et al., 2005a] and has also varied back in geological time [Zhisheng et al., 2001; Bookhagen

et al., 2005b; Clift et al., 2008a]. Short-term variability of the monsoon intensity are linked to global

shift in climate patterns, for example El Nino/El Nina Southern Oscillation (ENSO cycles), modifying

the large-scale climate circulations [Shrestha, 2000]. This relation is manifested in a propensity of

droughts during El Nino and vice versa [Gadgil et al., 2004]. During strong monsoon years the moisture

laden air-masses can penetrate far deeper into the otherwise arid mountain interior (Fig. 2.7), causing

catastrophic mass-wasting events [Bookhagen et al., 2005a]. Shrestha [2000] finds a good correlation

between the monsoon intensity and the monsoon Southern Oscillation Index, in the Nepal Himalayas.

The exact timing of the onset of the Asian monsoon system remains quite controversial [e.g. Iaf-
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Figure 1. Main wind directions during Indian summer monsoon
(southwest monsoon). Thin black arrows indicate present-day, weak
monsoonal wind directions. Bold orange arrows show prevailing
wind directions of strong monsoon inferred to represent intensified
monsoon phases (IMP) during late Pleistocene and Holocene.
Dashed lines depict temporal evolution of Indian summer monsoon
and its northwestward propagation. Dates of rainfall onset are com-
piled from passive-microwave satellite observation and rain-gauge
measurements (Bookhagen et al., 2005; Hastenrath, 1994; Parthas-
arathy et al., 1992). Black box outlines Sutlej Valley region (Fig. 2).

Figure 2. Precipitation anomalies draped over shaded relief of Sutlej
Valley region. Topography based on GTOPO30 (U.S. Geological Sur-
vey) and precipitation anomalies from 10 yr record of passive mi-
crowave data (Bookhagen et al., 2005). Precipitation anomaly map
(in percent) depicts magnitude changes between decadal mean
(1992–2001) and abnormal monsoon year (AMY; i.e., strengthened
monsoon intensity) in 2002. Positive anomalies (blue) show more
rain during 2002 AMY, i.e., 100% anomaly represents doubling of
precipitation. During AMY, moist air masses penetrate northeast-
ward into orogen through Beas, Chandra, and Bhagirati Valleys and
generate high amounts of precipitation in commonly dry areas of
Spiti, Baspa, and Sutlej Valleys. Locations of late Pleistocene (tri-
angles) and Holocene (circles) landslides and lacustrine sediments
are shown; white symbols indicate radiocarbon-dated deposits, and
black symbols denote landslides and their related lacustrine sedi-
ments dated by stratigraphic correlation. Letters indicate landslides
and associated lacustrine deposits for which more detailed infor-
mation is available (Table DR1; see footnote 1 in text).

topographic maps and orthorectified ASTER satellite images. The qual-
ity of the digitized and ASTER-derived DEM was tested against ele-
vation measurements by differential global positioning system and al-
timeter readings and yielded consistent results. Prelandslide topography
and stream gradients were reconstructed by removing landslide depos-
its from the DEMs and connecting upstream and downstream channel
sections by a simple river profile. The uncertainties introduced by this
method are small, because the reconstructed topography in the steep
and narrow bottom parts of the landslide-dammed valleys leads to in-
significant differences in the paleolake volume calculations. We assume
that sedimentation rates of landslide-dammed lakes represent upstream
denudation rates, whereas all fluvially transported material is being
deposited in the lake basin. Multiple landslides in single drainage ba-
sins strongly affect catchment areas upstream of landslide dams. For
example, three Holocene landslide deposits in the Baspa Valley trun-
cate each other (Fig. 2). Hence, mean basin-erosion rates derived from
lake-sedimentation rates were adjusted for smaller river catchment ar-
eas. Present-day summer monsoon precipitation distribution was de-
rived from 10 yr of passive microwave data (Special Sensor Micro-
wave/Imager) (Bookhagen et al., 2005).

INTENSIFIED MONSOON PHASES
The intensified monsoon phases in the northwest Himalaya may

be the result of orbital and/or terrestrial forcing by intensifying the
monsoonal circulation through a steeper ocean-land thermal gradient
(e.g., Clemens et al., 1991; Hastenrath, 1994). This provides greater
moisture transport into the continent and also increases precipitation
leeward of orographic barriers, when rainfall increases abruptly once
it has overcome the moisture-saturation threshold (Bookhagen et al.,
2005). Consequently, in the dry, high-elevation sectors of the Sutlej
Valley region enhanced rainfall may lead to significant changes in ero-
sional surface processes.

Late Pleistocene (ca. 29–24 ka) and Holocene (ca. 9–4 ka) inten-
sified monsoon phases were previously identified by several authors
(Fig. 3). For example, in the northwest Himalaya, Tibet, and south
China, numerous lacustrine deposits indicate humid intervals between

ca. 29 and 25 ka (e.g., Fang, 1991; Kotlia et al., 2000) as well as
during the Holocene (e.g., Gasse et al., 1991). In addition, marine rec-
ords covering these two periods document enhanced terrigenous input
and monsoon-related increased upwelling off the west coast of India
(e.g., Prins and Postma, 2000; Thamban et al., 2002); increased sedi-
mentation rates during the Holocene intensified monsoon phase are also
known from the Bay of Bengal (Goodbred and Kuehl, 2000). Humid
conditions related to a strong southwest monsoon have been inferred
(e.g., Phillips et al., 2000) from the expansion of glaciers in the Nanga
Parbat regions during the early to middle Holocene. Increased moisture
transport during the late Pleistocene and Holocene has also been re-
ported for the southern tip of the Arabian Peninsula (e.g., Bray and
Stokes, 2003; Fleitmann et al., 2003). Although the intensified mon-
soon phases are well documented, processes and rates of erosion and
sediment production, as well as the role of transient sediment storage
in fluvial systems, remain largely unknown for these intervals of in-
creased humidity.

LANDSLIDES AND LAKE SEDIMENTS
In the Sutlej Valley region, 13 large landslide deposits (�0.5 km3)

and lacustrine sediments constitute the vestige of enhanced hillslope
erosion and valley impoundment during intensified monsoon phases in
late Pleistocene (at or after 28.8 ka) and Holocene (8.8–4 ka) time
(Table DR1; see footnote 1). Field observations, radiometric dating,
and stratigraphic and geomorphic correlations allow reconstruction of
paleolake surfaces, landslide volumes, and the temporal evolution of
sedimentation and erosion.

The Holocene Kuppa (Baspa Valley) and Sichling (Spiti Valley)
lake deposits behind former landslide barriers (Fig. 2 and Table DR1
[see footnote 1]) are well suited for an assessment of process rates in

Figure 2.7: Main Indian Summer Monsoon trajectories over the Indian subcontinent. The black arrows

indicate the weak Monsoon flow directions, while the bold orange arrows show paths of strong monsoon

years. The dashed lines indicate the temporal progression of the north westward propagating Indian

Summer Monsoon [from Bookhagen et al., 2005b].

faldano et al., 2011]. However, some evidences from dust deposits and sedimentary cores suggest that

the monsoon system has been in place since at least the beginning of the Neogene [e.g. Clift et al.,

2008a]. Other authors suggest that the monsoon started only in the late Miocene [e.g. Molnar et al.,

1993; Zhisheng et al., 2001]. Continuous research efforts have been conducted to understand the role

of monsoon on a global scale and its role in atmospheric CO2 draw-down by silica weathering [e.g.

Raymo and Ruddiman, 1992], and to understand its role in the formation of the High Himalayas and the

Tibetan Plateau [e.g. Molnar et al., 1993; Beaumont et al., 2001; Zhisheng et al., 2001; Clift et al., 2008a,b].

Most recent studies, from landslide and lake sediment dating [Bookhagen et al., 2005b] and the analysis

of sediment cores from the Indus River delta [Clift et al., 2008b], reveal that monsoon intensity was rela-

tively stable over the last few thousand years, approximately the integration time of this work (Chapter

6).

So far it was a common agreement that the Indian monsoon system, and eventually even the global

system, is caused by the Tibetan Plateau [e.g. Molnar et al., 1993]. The Plateau is a huge elevated land-

mass, relatively cold in winter and hot in summer. However, Boos and Kuang [2010] provide evidence

from numerical modelling that a high Plateau is not necessarily needed but it is rather important to

have a prominent east-west barrier separating the ”hot” hinterland from the moisture source.
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2.2.2 Orographic effects

”Orographic effects” is a collective term for processes causing enhanced precipitation by the interac-

tion of land surface and the atmosphere [Roe, 2003, 2005]. Here, I will concentrate on the particular

example of the Himalayas, blocking the southward arrival of the ISM air-masses. It is the dynamic

response of the airflow to the presence of orography, defining a lower boundary condition and setting

the three-dimensional pattern of water condensation from which the precipitation results [Roe, 2005].

The fundamental ability of air to carry water in form of vapor depends on its partial pressure. The

saturation pressure, when water starts to condensate, is sensitive to temperature and atmospheric pres-

sure. For example when the moisture laden winds are forced to rise by the underlying topography,

the partial pressure of the air masses increases by cooling and adiabatic expansion, leading to moisture

condensation [Roe, 2005]. Once the gravitational forces of the condensed water droplets are larger than

the buoyancy of the rising air, the droplets will fall as rain or snow. This general feedback between air

flow (wind) and land surface elevation leads to distinct rainfall patterns along a mountain range such

as the Himalayas (Fig. 2.8 a). Furthermore, processes such as the formation of droplets and their drift

as they fall, are important to understand the rainfall patterns.
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Figure 6 Schematic illustrations of different mechanisms of orographic precipitation.
(a) stable upslope ascent, (b) partial blocking of the impinging air mass, (c) down-
valley flow induced by evaporative cooling, (d) lee-side convergence, (e) convection
triggered by solar heating, ( f ) convection owing to mechanical lifting above level of
free convection, and (g) seeder-feeder mechanism. See text for more details.

blocked air can cause ascent further windward of the range and can also enhance
the lifting (and hence the precipitation) that does occur. The effects of blocking
on orographic precipitation and the conditions under which it occurs have been
investigated in many studies (e.g., Katzfey 1995a,b; Sinclair et al. 1997; Rotunno
& Ferretti 2001; Houze et al. 2001; Jiang 2003; Medina & Houze 2003). A related
effect has been observed in large rain storms in the Alps. Melting and evaporating
precipitation cools the air through which it falls, and the result can be strong
down-valley air flow (Figure 6c). Again, the impinging air mass must rise over
this blocking air (Steiner et al. 2003). It has been argued that this contributes to
the precipitation pattern (Houze et al. 2001), although it remains to be seen how
widespread or significant this interesting mechanism is. Lastly, the diverted airflow
itself can lead to precipitation. For example, the Puget Sound region in Washington
State often experiences a “convergence zone” when the atmospheric flow, which
has split around the relatively narrow Olympic mountains, converges in the lee of
the range, where ascent occurs (Figure 6d; Mass 1981).

Another notable part of the atmospheric response to orography is the possi-
ble triggering of unstable convection (e.g., Banta 1990). If the orography lifts air
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Figure 2.8: Schematic illustration of several orographic precipitation mechanisms. (a) stable upslope

ascent, (b) partial blocking of the colliding air mass, (c) down flow of air into valleys by latent heating

(evaporative cooling), (d) lee-side convergence, (e) convection by solar heating, (f) upwind convection

by mechanical lifting, (g) seeder-feeder mechanism case [from Roe, 2005].
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Several schematic processes of orographic rainfall mechanisms are illustrated in Figure 2.8 and will

be explained partly thereafter. These processes are discussed more in detail in Roe [2005, and references

therein]. Due to the complex and rugged topography, with deep perpendicular valleys and multiple

slope expositions, all these processes can play a role in the Himalayas. The simplest form of orographic

induced rainfall is the ascent of air over a broad topographic ramp which is responsible for the overall

large scale precipitation pattern in the Himalayas, as described above (Fig. 2.7) It is governed by the

upwind fallout of moister and the leeward decent of dry and warm air-masses. If the air flow is not

strong enough, or the atmosphere too stable, parts of the airflow get blocked or diverted along the

upwind mountain front (Fig. 2.8 b). One possible process is the partial cooling of the air-masses by, for

example rainfall induced glacier melt, leading to a reverse of airflows down the valley (Fig. 2.8 c).

The incorporation of orographic rainfall gradients is important to evaluate water resources and

landslide risks, but also to model river incision rates and tectonic uplift from river profile analysis,

because in areas with a dominant rainfall gradient the surface area is not linearly related with discharge

[Roe et al., 2002; Wu et al., 2006].

2.2.3 Himalayan hydrology

In the central Himalayas of Nepal, rivers are deeply incised and descend on a short distance (< 300 km)

a considerable elevation range, from several thousand meters above sea-level (High Himalayas) to

around 150 meters in the Indian Lowland (Fig. 2.1). After the definition of Turowski et al. [2008]II, all

rivers in Nepal are bedrock rivers. They are highly channelized, with little accommodation space for

transient sediment deposition and with high flow rates (> 1 m3/s), inducing high transport capacities.

The instant transport of material, is for example an important assumption to analyse catchment wide

erosion rates from cosmogenic nuclide analysis. The annual river hydrographs (Fig. 2.9) show clearly

the control of the ISM on Himalayan rivers, causing a one to two magnitude increase of discharge

from non-monsoon to monsoon season [Hannah et al., 2005; Bookhagen and Burbank, 2010]. The high

elevations of the Himalayas are covered by glaciers (Fig. 2.1) and form an important water resource for

the whole dwonstream region [Immerzeel et al., 2010]. In contrast to the rivers of the western (e.g. Indus

and Sutlej) and eastern Himalayas (e.g. Tsangpo-Brahmaputra), snow and glacier melt contribution is

minor in the central Himalayas [Bookhagen and Burbank, 2010, and Fig. 2.9]. However, the importance of

glacier melt contribution has never been evaluated on the scale of Nepal. Alford and Armstrong [2010, in

discussion] estimate the glacier melt contribution, from an altitude based energy gradient model, to be

in the range of 4% of the total stream flow. Last, the role of ground water is an important component

which is merely investigated in the whole Himalayas. Geochemical analysis of river water samples

show clearly the signature of an important groundwater storage volume [Tipper et al., 2006].

II”A bedrock river can not substantially widen, lower, or shift its bed without eroding bedrock”
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4.3. River Flow: Spatiotemporal Contributions
of Rainfall, Snowmelt, and Evapotranspiration
[35] In order to estimate the spatiotemporal hydrological

river flows, we have created simple, but robust snowmelt
and evapotranspiration models and combined them with our
rainfall estimates. All data sets are based on calibrated sat-
ellite data to provide measurements for the remote Himalaya
regions. Satellite‐input data for our snowmelt and evapo-
transpiration models have weekly temporal resolutions; the
critical, high‐spatial resolution rainfall data are robust on
monthly timescales and thus we have calculated monthly
averages over the 10‐year measurement period. In a second
step, the three water‐balance components are combined into
a runoff model defined by the DEM and are accumulated to
generate monthly river flows (also referred to as monthly

averaged discharges). In general, the river flows calculated
from the snowmelt model, evapotranspiration, and rainfall
captures very well (r2 = 0.95) the spatial and temporal distri-
bution of a river‐gauged network (Figure 3). The Nash‐Sutcliff
coefficient [Nash and Sutcliffe, 1970] varies between 0.7 and 0.9
for the 13 control stations, with a mean of 0.82. Importantly,
the model accurately produces the snowmelt and rainfall peak
for the Indus (Figure 10a) and Sutlej Rivers, each of which has
a high snowmelt contribution. Here, we emphasize the dis-
charges derived from rainfall and snowmelt contribution –
evapotranspiration generally has an impact of only a few
percent in the mountainous catchments (Figures 10a and 10b).
Evapotranspiration becomes more important, however, in the
low‐elevation Himalayan foreland – a region that is not
included in this study (Figure S5).
[36] Next, we explore the spatiotemporal variation of snow-

melt and rainfall for each of the 27 major Himalayan catch-
ments draining to the south (see Figure 1a for locations). As
expected, discharge volumes are strongly dependent on catch-
ment size (Table 1 and Figure 11). Interestingly, catchments
in the eastern and central Himalaya receive more than ∼70%
of their annual rainfall during the summer monsoon, whereas
catchments beyond the end of the Indian Summer monsoon
conveyer belt (west of the Sutlej: catchment #6 in Figure 1,
see also Figures 4 and 5a) receive high amounts of precipi-
tation from winter westerlies as well (Figure 11). At the Hima-
laya’s eastern end, the Tsangpo/Brahmaputra catchment has
the highest discharge, whereas the second largest catchment
– the Indus – has a somewhat lower discharge (Table 1).
[37] An important distinction between the Himalaya’s two

largest rivers is that Tsangpo discharge is primarily derived
from rainfall (∼80%), whereas Indus discharge has a signif-
icant snowmelt component (∼66%) (Figure 11a). The third
largest catchment by area – the Sutlej – in the western Hima-
laya, has a high snowmelt component (∼57%) as well, whereas
the third largest catchment by discharge – the Karnali in the
central Himalaya – is largely rain‐fed (∼80%).
[38] On an annual timescale, snowmelt provides ∼15 to

60% of discharge in the western Himalaya (Indus to Sutlej:
catchments #1 to #6 in Figure 1 and Table 1), whereas
the central and eastern Himalaya receive less than 20% of

Figure 10. Characteristic annual hydrographs for the
(a) snowmelt‐dominated Indus (drainage area: ∼200 ×
103 km2, #1 in Figure 1) and (b) rain‐fed Tista (∼8 ×
103 km2, #18 in Figure 1) catchments from the western and
central Himalaya, respectively. Bold dashed lines indicate
mean‐monthly discharge measurements and shaded areas
show results from modeled discharge (snowmelt plus rain-
fall). Blue circles indicate discharge from rainfall and orange
crosses indicate snowmelt‐derived discharges. Green squares
show evapotranspiration (ET). Note that ET amounts are
negative in the hydrologic‐budget equation. Overall, the
model successfully mimics the general discharge pattern with
Nash‐Sutcliffe coefficients of 0.88 (Indus) and 0.86 (Tista).
Panel above hydrographs indicates the rain versus snow
contribution in the cumulative sum. Note the temporal dis-
crepancy in rainfall and snowmelt runoff in the Indus catch-
ment: Discharge is dominated by snowmelt in the pre‐ and
early monsoon season, whereas rainfall becomes more
important during the mid to late summer.

BOOKHAGEN AND BURBANK: COMPLETE HIMALAYAN HYDROLOGIC BUDGET F03019F03019

14 of 25
Figure 2.9: Annual hydrograph of the Tista river, east of Nepal, Sikkim. Colored lines indicate the rel-

ative contribution of various discharge compartments, rainfall, snowmelt, evapotranspiration (ground-

water and glacier melt is not included here). The drainage area is approximately ∼ 2000 km2. The data

represents modeled data from remote sensing observations, compared to gauge measurements (dashed

line). The small inset on top shows the % temporal contribution of snowmelt and rainfall to the to-

tal discharge. Most important is to notice that snowmelt volumes are roughly constant through the

year and contributes significantly (25%) to the total discharge only in January [from Bookhagen and

Burbank, 2010].

2.3 Erosion patterns

The spatial and temporal constrains of erosion in the central Himalayas has never been studied on

a large scale, for example on the scale of Nepal. Although, several studies deal with erosion and

exhumation, they focus on relatively small study areas, such as single watersheds of < 5000 km2 [e.g.

Thiede et al., 2004; Wobus et al., 2005; Huntington et al., 2006; Garzanti et al., 2007; Gabet et al., 2008; Wulf

et al., 2010].This is mainly because the availability of data (precipitation, discharge, sediment transport)

in these regions is rather limited. Secondly, the terrain is very rugged and difficult to access. On the

other hand, several studies attempt to evaluate the erosional behaviour over long time series and/or on

a large scale from sedimentary cores [Métivier et al., 1999; Clift et al., 2008a, and others] and geochemical

analysis [Galy and France-Lanord, 2001].
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It is very difficult to draw a larger image from all these studies, because of the different integration

time scales of the various methods. For the sake of brevity, I will concentrate here on the most im-

portant findings contributing to the discussion and conclusion of this work, in order to draw a larger

image of erosion sources and the final deposition of sediments. One general observation is that today

erosion rates in the Himalayas are in the range of several millimeters per year [e.g. Galy and France-

Lanord, 2001], roughly the same as exhumation rates and uplift rates, and therefore one of the fastest

erosion rates in the world.

Eroded material from the Himalayan range is transported to the south by the three main Himalayan

river systems: Tsangpo-Brahmaputra, Ganges and the Indus (Fig. 2.1). Eventually it gets deposited in

the foreland basins and is then passed through to their final sink, the Bay of Bengal or the Arabian Sea

[Galy et al., 2007; Singh et al., 2007]. By studying these sedimentary reservoirs it is possible to evaluate

erosion fluxes and their variability back in time [e.g. Métivier et al., 1999; Clift et al., 2008a]. However,

to retrieve the whole Cenozoic erosion history, and possible connections with monsoonal strength,

from sedimentary cores is still in debate. In particular, it seems very difficult to attribute the observed

accumulation rates to real erosion and deposition rates [Schumer and Jerolmack, 2009]. Probably the most

tricky exercise is to estimate the distance between the source and the sampling place back in time.

Geochemical analysis of the two main rivers, Tsangpo-Brahmaputra and Ganges, draining the

eastern and central Himalayas, bear the signature of erosion from the upstream region [Galy and France-

Lanord, 2001]. This approach is based on chemical budget analysis of major elements in transport, and

on the idea that the composition of the source rocks (Himalayas) must equal the composition of the

erosion flux (dissolved, suspended and bedload and flood plain depositions) [Galy and France-Lanord,

2001]. This provides a good understanding of the mean Himalayan erosion flux, which is according

to Galy and France-Lanord [2001] in the order of 2 mm/yr for the Ganges basin and ∼ 3 mm/yr for the

Tsangpo-Brahmaputra basin. In total, this accounts for ∼ 2.1 · 109 t/yr of material transported from the

Himalayan range to the Bay of Bengal. Furthermore, the ratio between dissolved load and undissolved

load (bedload and suspended load) shows clearly that physical erosion processes dominate erosion in

the Himalayas [Galy and France-Lanord, 2001]. These findings are important background information on

the large scale erosion fluxes from the Himalayan range. However, they can not give any information

on the local dynamics and its controls. More detailed studies with a good temporal resolution and

spatial coverage are needed to provide further constraints.

In Nepal, most of the current research on erosion and exhumation has focused on the Siwaliks [e.g.

Lavé and Avouac, 2000; Kirby and Whipple, 2001; Lague and Davy, 2003] and the Annapurna region [e.g.

Burbank et al., 2003; Gabet et al., 2004, 2008, 2010; Hodges et al., 2004; Huntington et al., 2006; Tipper et al.,

2006; Blythe et al., 2007; Garzanti et al., 2007; Pratt-Sitaula et al., 2007]. Drainage pattern analysis show

that the very fast uplift rates in the Siwaliks [Lavé and Avouac, 2001] are counter balanced by erosion

[Kirby and Whipple, 2001]. In the Siwaliks, these rates are in the range of 8 − 15 mm/yr. Most of the

data presented in this work, however, will deal with erosion processes in the High Himalayan range.
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In the Higher Himalayas, erosion rates depend largely on the sampling position and the applied

methodology. Suspended sediment analysis of the Marsyangdi valley, draining the north and east

of the Annapurna massif, are in the order of 2 mm/yr in the Higher Himalayas and get as low as

∼ 0.1 mm/yr in the hinterland, which is roughly confirmed from sand provenance analysis by Garzanti

et al. [2007]. Outstanding is the Khudi Khola watershed, draining from the very steep southern flank

of the Annapurna massif with denudation rates of ∼ 3.5 mm/yr [Gabet et al., 2008]. Very high erosion

rates are also reported from thermochornological analysis by [Burbank et al., 2003; Huntington et al.,

2006]. Analysis of slope and rainfall distribution suggest that erosion is mainly controlled by a combi-

nation of these two parameters[Gabet et al., 2004]. Especially, intense monsoon phases (climate change)

have an impact on the erosion, accelerating rates tremendously [Pratt et al., 2002]. Present day obser-

vations of rainfall confirm the impact of intense rainfall on landsliding [Gabet et al., 2004; Dahal and

Hasegawa, 2008]. In summary, erosion in the Higher Himalayas is localized where relief is strong and

the intense precipitation correlates well with the mobilisation of material and hence, the predominant

erosion process is physical erosion. Yet, this rather complete picture, assembled from relatively short

analysis and localized study areas needs to be validated on a larger scale. The challenge is to integrate

measurements from different sources and representative for different processes, in order to understand

the spatio-temporal constrains of erosion processes in the Himalayas.

It is important to note that erosion rates of glaciers in the Himalayas are not well studied. Heimsath

and McGlynn [2008] determined the headwall and sidewall retreat by glacial erosion (∼ 1 mm/yr),

however the basal erosion rate remains an open question. Few suspended sediment analysis from

glacier outlet stations report total erosion rates (headwall retreat and basal erosion) to be in the order

of 1 − 6.5 mm/yr in the central Himalayas [Hasnain and Thayyen, 1999, and references therein] and

around 0.1 − 0.5 mm/yr in the eastern Himalayas [Bhutiyani, 2000]. However, these are only some

punctual short term observations. Secondly, little is known about the erosion rates of the part of the

Tibetan Plateau being drained to the south. So far, Lal et al. [2004] has published erosion rates from

cosmogenic nuclide exposure dating for the internally drained Tibetan Plateau, which are ∼ 103 times

lower than those of the Himalayas. Vance et al. [2003] has reported one mean catchment erosion rate

for the southward drained Tibetan part (∼ 1.2 mm/yr), however he did not correct for possible glacial

erosion contribution (∼ 20% of the watershed is glaciated). It is of major importance to study more in

detail the erosional capacity of glaciers and the Tibetan Plateau, because they have the potential to bias

the analysis of catchment wide cosmogenic nuclide erosion rates, for example.

37



38



Chapter 3

Precipitation data evaluation

3.1 Introduction

To study the influence of temporal and spatial distribution of precipitation onto erosion processes

and landscape is the central thematic of this thesis. In the Himalayas, precipitation is very difficult

to measure due to the inaccessibility of the terrain and the lean rainfall gauging network. Further-

more, characterizing the highly variable spatio-temporal structure of rainfall at a single point is by

no means straightforward [Tustison et al., 2001]. Measuring rainfall in both space and time is much

more adequate to the problematic addressed here. Today more and more sophisticated precipitation

datasets exist, providing precipitation information on various temporal and spatial resolutions. Some

of these datasets are based on spatial interpolations of in-situ observations, some are derived from

remote sensing observations and others fuse both into one single product.

A considerable effort has been made recently to apply modern precipitation observation to the Hi-

malayan region [e.g. Barros et al., 2004; Lang and Barros, 2004; Anders et al., 2006b; Bookhagen and Burbank,

2006, 2010; Kamal-Heikman et al., 2007; Yatagai and Kawamoto, 2008] and some new outstanding observa-

tions have been possible by comparing these observations with landscape. For example Bookhagen and

Burbank [2006] determined a very good image on the coupled distribution of precipitation and topog-

raphy, and exploited these findings later to calculate the annual hydrological budget on the scale of

the entire Himalayan range [Bookhagen and Burbank, 2010]. Similarly, Anders et al. [2006b] evaluated the

role of orographic effects and [Kamal-Heikman et al., 2007] tested a hydrological model for the eastern

Himalayas. However, the quality of the data has never been really evaluated in the Nepal Himalayas.

In short, high-quality precipitation data are important for a wide community of researchers in Earth

Sciences, for example people working in hydrology, short-term mass transfers, geochemical cycles and

those investigating the possible influence of climate and erosion on the tectonic evolution of mountain

belts. Hence, their is a strong need to evaluate the available data, in order to be able to know their

limitations and strengths, and justify the choice of data for my analysis. Here, I will demonstrate that
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existing precipitation datasets, particularly those derived from remote sensing techniques, show large

discrepancies in the Himalayas, which I will evaluate against each other and with ground-based rain

gauge data.

I will present this chapter in form of an article, published in the peer-review journal Geochemistry,

Geophysics, Geosystems.
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1. Introduction

[2] The spatial distribution and the temporal vari-
ability of precipitations governs vegetation growth,
hydrology and surface mass transport on Earth [e.g.,
Istanbulluoglu and Bras, 2006], whereas precipi-
tation is proposed to be a first‐order control on
landscape morphology [Tucker and Slingerland,
1997; Anders et al., 2008; Bonnet, 2009] as well
as on the interplay between climate, erosion and
tectonics [Willett, 1999; Bonnet and Crave, 2003;
Reiners et al., 2003; Whipple and Meade, 2006;
Whipple, 2009]. Consequently, precipitations mea-
surements with good spatial and high temporal
resolution, recorded over a long time span are cru-
cially needed to better understand the impact of
precipitation on landscape [Barros et al., 2006].
This is particularly the case in mountains where
local extreme events are much more frequent than in
the adjacent flatlands [Wulf et al., 2010].

[3] Mountain topography controls regional precipi-
tation patterns through orographic effects [Roe et al.,
2003; Roe, 2005; Bookhagen and Burbank, 2006;
Bookhagen and Strecker, 2008]. In mountainous
environments, precipitation distribution can also
change on short distances and within short periods
of time [Anders et al., 2006]. High amplitude rainfall
events are often very localized [Nesbitt and Anders,
2009], whereas their impact on landscape forming
can be enormous. Landslides, for example, are
largely controlled by precipitation intensity and
accumulation over time [Gabet et al., 2004; Dahal
and Hasegawa, 2008]. Such extreme precipitation
events are usually localized and therefore not
recorded by widely scattered ground‐based meteo-
rological stations (e.g., in Nepal).

[4] Remotely sensed precipitation data are now
available at moderate to high resolution, some over
long time spans to allow a reasonable comparison of
local precipitation patterns with respect to land-
scape morphology. Several gridded data sets, with
varying temporal and spatial resolution, are avail-
able (Figure 1). The measurements are derived from
ground and/or satellite observations. Most remotely
sensed precipitation data sets are based on multi-
sensor algorithms, merging ground measurements,
low‐orbiting geostationary satellite observations,
and global ground‐based gauge databases [e.g.,

Yatagai et al., 2009]. Rain gauge stations provide
highly accurate local information for the point of
observation but their spatial representativity is
questionable [Tustison et al., 2001], particularly in
case of local rainfall gradients such as ridge‐valley
gradients [Barros et al., 2004; Bhatt and Nakamura,
2005; Anders et al., 2006]. In the Himalayas, pre-
cipitations indeed varies between ridges and valleys
[Barros et al., 2004], therefore a single rain gauge
station does not register variability at the scale of
kilometers. Rain gauge data must consequently be
compared to their associated pixel value of any
remotely measured rainfall information with great
caution, especially at high temporal resolution.
Gridded data sets (satellite observations or spatial
interpolation of gauge data) provide good infor-
mation on the spatial precipitation distribution,
however with potentially large errors within each
point of the grid space (pixel), particularly when
resolution of the data is larger than the spatial var-
iability of rainfall.

[5] Precipitation measurements from remote plat-
forms are carried out using active precipitation radar
(PR), passive microwave radiometer (MWR), such
as Tropical Rainfall Measuring Mission (TRMM),
Microwave Imager (TMI) and infrared radiometer
(IR) sensors [Ushio et al., 2009; Huffman et al.,
2007]. The PR sensor is an active precipitation
radar, which can record the three‐dimensional struc-
ture of rainfall distribution [Kummerow et al., 1998].
IR observations are made at the top of the clouds
and are therefore indirect measurements [Huffman
et al., 2007]. Microwave measurements detect the
radiation emitted by the water fraction in the vertical
profile of the atmosphere [Kubota et al., 2007]. For
all these techniques, differences between ground and
remote observed quantities come from the inability
to incorporate local conditions in the sensor algo-
rithms. In particular property changes of precipitates,
affecting polarization, scatter and absorption, due
to slope, snow, ice and orographic effects, are not
well accounted for [Vicente et al., 2002]. In general,
short‐lasting and low precipitation rates as well as
frozen precipitates are badly detected from the remote
sensors. Hence, at high elevation, where precipita-
tion comes mainly as snow, as light drizzle and dur-
ing short intense storms remote measurements often
underestimate the actual rates. The TRMM satel-
lite system is so far the only platform in operation
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designed specifically for rainfall monitoring from
space [Kummerow et al., 2000]. It will be succeeded
by the Global Precipitation Measurement Mission
(GPM), in 2013.

[6] In this study we compare four gridded spatio-
temporal precipitation data sets (Figure 1) and one
mean annual compilation of raw TRMM‐2B31
data by Bookhagen and Burbank [2006], with
ground‐truth precipitation gauge data. We focus on
precipitation estimates along the Himalayan front,
where previous studies [Anders et al., 2006;
Bookhagen and Burbank, 2006; Yatagai and
Kawamoto, 2008] show along‐strike precipitation
peaks which are strongly controlled by topography.
The precipitation data sets are tested three ways
(Figure 2). First, we perform a bulk comparison of
gridded data set with ground station data. Second,
we test the performance of each data set in five
small watersheds for various temporal resolutions
(daily, monthly, annual). Third, we compare pre-
cipitation distribution across the orographic barrier

and its relation with elevation along seven swath
profiles, orthogonal to the Himalayan range.

2. Data and Methods

2.1. Gridded Precipitation Data Sets
[7] We give here a general description of the pre-
cipitation data sets tested here (Figure 1). More
technical specifications can be found in Text S1.1

2.1.1. APHRODITE

[8] APHRO_MA_V1003R1 (Asian Precipitation
Highly Resolved Observational Data Integration
Towards Evaluation of Water Resources, Monsoon
Asia, Version 10, hereafter referred to as APH-
RODITE) data set is developed by a consortium

Figure 1. Schematic overview of the data sets compared in this work (APHRODITE, TRMM‐3B42 (3B43), CPC‐
RFE, and GSMaP) and their availability timeline, spatiotemporal resolution, and data input. Bookhagen and
Burbank’s [2006] TRMM‐2B31 data are not shown here since only one mean layer for 10 years (1997–2007) is
available. TRMM‐2B31 has a ∼4 km spatial resolution and is derived from PR and TMI sensor input.

1Auxiliary materials are available with the HTML. doi:10.1029/
2011gc003513.
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between the Research Institute for Humanity and
Nature (RIHN) Japan and the Meteorological
Research Institute of Japan Meteorological Agency
(MRI/JMA). This consortium develops precipita-
tion products with varying resolution and for sev-
eral Asian subregions. We used here the latest
version daily data set for monsoon Asia (60–155°E
and 15°S–55°N) [Yatagai et al., 2009; Xie et al.,
2007]. APHRODITE is a distance weighted inter-
polated data set from precipitation gauge stations.
Depending on availability, between 5,000–12,000
stations are considered for the interpolation. Data are
available for a statistically robust time span of more
than 50 years, 1951–2007. This data set has daily
resolution and 0.25° (∼30 km) spatial resolution.
The interpolation algorithm incorporates orographic
correction of precipitation. Yatagai and Kawamoto
[2008] show for the Himalayas that an earlier ver-
sion of APHRODITE correlates well with monthly
active TRMM‐PR (2A25) measurements, however
they show that TRMM‐2A25 considerably under-
estimates precipitation with respect to APHRODITE.

2.1.2. CPC‐RFE

[9] CPC‐RFE 2.0 (Climate Prediction Center–
Rainfall Estimates) is a precipitation product for the
South Asian region published by the CPC of
National Oceanic and Atmospheric Administration
(NOAA), United States Agency for International
Development (USAID) and United States Geolog-

ical Survey (USGS). The product provides real
time daily precipitation information with a good
spatial resolution of 0.1° (∼10 km) for the area 70–
110°E and 5–35°N. Data from CPC‐RFE are avail-
able since May 2001 and continuously updated.
RFE2.0 combines 4 different primary products,
of which, one is a rain gauge network and three
are remotely sensed. The four input products are
(1) GTS global gauge network (∼1000 stations);
(2) GOES Precipitation Index (GPI), a precipitation
index derived from Geostationary Operational Envi-
ronmental Satellites (GEOS) geostationary weather
satellites (IR data); (3) Special Sensor Microwave/
Imager (SSM/I) observations; and (4) Advanced
Microwave Sounding Unit‐B (AMSU‐B), on board
of NOAA‐K, ‐L, ‐M satellites. In general all data
sources have similar large‐scale distribution patterns
[Xie et al., 2002]. The three satellite products are
merged through maximum likelihood estimation
methods. In comparing CPC‐RFE and ground gauge
stations, Shrestha et al. [2008] have run a hydro-
logicalmodel in the Bagamati basin of themiddle and
lower Nepal Himalayas. They show that CPC‐RFE
capture the occurrence of rainfall events but consid-
erably underestimate rainfall amounts.

2.1.3. GSMaP

[10] The Global Satellite Mapping of Precipitation,
passive microwave radiometer (GSMaP MVK+)
data set was developed in order to provide high‐

Figure 2. Topographic map of the Himalayan region. Arrows point at the location of the five PARDYP watersheds,
where the data sets have been tested on a small scale for temporal accuracy. Red polygons outline the seven swath
profiles across the Himalayan range, and green dots are the gauge station locations.
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precision and high‐resolution global precipitation
maps from satellite observations. The project is
sponsored by Core Research for Evolutional Sci-
ence and Technology (CREST) of the Japan Sci-
ence and Technology Agency (JST), by Japan
Aerospace Exploration Agency (JAXA) and the
Precipitation Measuring Mission (PMM) Science
Team. GSMaP data are a global data set (60°N/S),
available since the end of November 2002 and is
provided in almost real time (with a ∼10 month data
gap in 2007). The data have 0.1° (∼10 km) spatial
resolution and 1 h temporal. The project aims to
develop an advanced microwave radiometer algo-
rithm based on a deterministic rain‐retrieval algo-
rithm and the production of precise high‐resolution
global precipitation maps [Ushio et al., 2009;
Kubota et al., 2007]. The data incorporate MWR
measures from TRMM‐TMI, SSM/I, Advanced
Microwave Scanning Radiometer–EOS on board
of AQUA satellite (AMSR‐E), AMSU‐B and IR.
Because of its high spatiotemporal resolution this
data set is potentially the most interesting for ana-
lyzing climatic influence on surface processes and
the links between rainfall distribution and topogra-
phy. Dinku et al. [2009] compared GSMaP MVK+
with several other satellite derived precipitation data
sets and gauge stations over the whole of Colombia.
They report that GSMaP MVK+ underestimates
precipitation in mountains, where the topography is
complex.

2.1.4. TRMM‐3B42

[11] The Tropical Rainfall Measuring Mission
(TRMM) is a joint collaboration between JAXA
and the United States of America National Aero-
nautics and Space Administration (NASA). TRMM‐
3B42, is a global multisatellite precipitation analysis
data set. It combines several instruments, has a 0.25°
(∼30 km) spatial and 3 h temporal resolution, and
is available within a global belt, 50°N/S latitude
[Huffman et al., 2007; Kummerow et al., 2000].
Basically it is a set of MWR estimates from TRMM‐
TMI, SSM/I, AMSR‐E and AMSU‐B, whereas
missing pixels are filled with IR observations com-
piled by CPC [Huffman et al., 2007]. The data are
corrected with the monthly field ratios between
TRMM‐3B43 (monthly compiled version of 3B42)
and gauge stations. TRMM‐3B42 has been applied
successfully for measuring precipitation patterns in
many studies on a global [Tian and Peters‐Lidard,
2010] and local scale [Kamal‐Heikman et al., 2007;
Bookhagen and Strecker, 2008; Bookhagen, 2010].
However, underestimation in mountainous regions,

in particular with high snowfall contribution [Kamal‐
Heikman et al., 2007], has been reported.

2.1.5. TRMM‐2B31

[12] Bookhagen and Burbank [2006] have devel-
oped their own precipitation compilation from
primary TRMM‐2B31 orbital data (not gridded).
Despite a common platform and name, TRMM‐
2B31 and TRMM‐3B42 data set do not use the
same sensor (except for TMI). TRMM‐2B31 is
principally derived from the active PR sensor,
found only on board of the TRMM satellite
[Bookhagen and Burbank, 2006]. Here TRMM‐
TMI is used to fill unobserved areas. TRMM‐2B31
data have a spatial resolution of 0.05° (∼4 km), one
of the finest grid size available at the moment.
However its temporal resolution is 1 month, aver-
aged over several years. The PR sensor makes one
or two snapshots of the Earth surface per day
(depending on the latitude). Therefore, measure-
ments are infrequent and have to be averaged over
a long time span (here: 11 years, 1997–2007) to
provide reliable rainfall data [Bookhagen and
Burbank, 2006]. This data set has been success-
fully applied for measuring precipitation patterns in
the Andes [Bookhagen and Strecker, 2008] and the
Himalayas [Bookhagen and Burbank, 2006, 2010].

2.2. Rain Gauge Data
[13] We compared precipitation estimates from
each product with ground measurements derived
from the 55 rain gauge stations located in Nepal
(54) and on the Tibetan Plateau (1): Figure 2 (see
also Text S1). Most of the data are obtained from
the Department of Hydrology and Meteorology
NepalDHM(∼30years data, numbers 1–51, Text S1).
Three high elevation stations (3560, 4260 and 5050m
above sea level (asl), numbers 53–55) in theKhumbu‐
Everest region are kindly provided by the Ev‐K2‐
CNR, Pyramid‐SHARE project, while the station
for the Tibetan Plateau (number 52) comes from
the LocClim FAO database (http://www.fao.org/nr/
climpag/pub/en0201_en.asp). We also compared
the precipitation data sets with ground information
from rain gauge stations in five watersheds located
in Pakistan, India, Nepal (2) and Yunnan/China
(Figure 2) maintained within the People and Resource
Dynamics Project (PARDYP) program, realized by
International Centre for Integrated Mountain Devel-
opment (ICIMOD) between 1997 and 2006. Note that
the 51 gauge stations provided by DHM have been
used to generate the APHRODITE data set so there
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is a dependency problem between APHRODITE and
these gauge station data. They might have also served
to calibrate any of the other data sets. However, this
is not the case for all the precipitation gauge data of
the five PARDYP watersheds, as well as the three
Pyramid‐SHARE stations (53–55), which provide
independent data that have not been used to generate
or calibrate any of these data sets. We presume the
uncertainties of all precipitation gauge measurements
to be ≤10%.

2.3. Bulk Validation of Data
[14] To give an overview of the bulk error of each
data set at the scale of Nepal, we compared each
data set with all rain gauge stations on a monthly
scale. For this purpose, we subtracted the monthly
accumulated ground measurements of each station
from the corresponding monthly sum of each data
set and average the difference considering all the
stations. This comparison was carried out consid-
ering only the data for the years 2003 and 2004.
Because some of the 51 DHM stations might have
been used to calibrate or generate some of the pro-
ducts (in particular APHRODITE), we also evaluate
the bulk error by considering only the stations that
have not been used in the calibration or generation

of products (the three Pyramid‐SHARE stations and
stations within the five PARDYP watersheds).
Because gauge data are not always available for the
same period, we sampled precipitation and rain
gauge data for months of common availability
between 1997 and 2006 and calculated then the
monthly bulk error of each product.

2.4. Calculation of Basin‐Wide Precipitation
in Five Selected Watersheds
[15] We compared the precipitation data sets with
ground information from rain gauge stations in the
five watersheds maintained within the PARDYP
program (Figure 2). The five relatively small
watersheds (15–111 km2, Table 1) have been
equipped with several measuring devices to obtain
meteorological, hydrological and erosional param-
eters. In each watershed, data are available for
4 to 12 rainfall stations (Table 1) for 5 to 10 years,
providing a very good data set of ground truth
information to calibrate remote sensing information
[Andermann et al., 2010]. The station elevation
distribution is homogeneous for Bhetagad, Jhikhu
Khola and Yarsha Khola basin (Figure 3), whereas
in Xizhuang basin a large part between 2200 and
3000 m asl is not covered by stations. The higher
part of the Hillkot basin (elevation >1800 m asl) is
not covered by rain gauge stations (Figure 3). In
each catchment, we interpolated (nearest neighbor
interpolation technique) the available gauge data
to a mean basin‐wide value. The mean basin‐wide
value was then extracted from each data set. Since
TRMM‐2B31 data do not exist with high temporal
resolution (daily nor monthly) it was not included in
the comparison of products here.

2.5. Calculation of Precipitation
Along Swath Profiles
[16] We compared the precipitation data sets during
the years of common availability of all data sets,
2003 and 2004 (Figure 1), along seven swath
profiles perpendicular to the Himalayan front
(Figure 2). Each swath profile is 60 km wide and
650 km long. Precipitation and elevation along one
profile represent the average over the swath width
of the profile. Topography information is derived
from the Shuttle Radar Topographic Mission
(SRTM) Version 4 (A. Javis et al., Hole‐filled
seamless SRTM data V4, International Centre for
Tropical Agriculture (CIAT), 2008, available from
http://srtm.csi.cgiar.org) with a spatial resolution of

Figure 3. Hypsometric profiles of each PARDYP
watershed with gauge station distribution. Gauge station
elevation is plotted on the y axis as the respective cumu-
lative normalized elevation fraction of each watershed.
Area on the x axis represents the cumulative fraction
of area within the watershed for each respective eleva-
tion above mean sea level.
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∼90 m. Along the profiles, precipitation totals were
compiled annually as well as for monsoon (June to
September) and for the nonmonsoon season
(October–May).

3. Results

[17] We present the results of the evaluation of
precipitation data sets, first the bulk difference
between fully independent and semi‐independent
gauge data and precipitation data sets. Second, we
present results within the five PARDY catchments,
allowing us to test the temporal quality of data,
from annual to daily scale. Last, we present results
along the swath profiles perpendicular to the
Himalayan chain and examine the spatial variations
of data with regard to elevation.

3.1. Bulk Error and Comparison
of Products
[18] The annual bulk comparison between pro-
ducts and fully independent gauge data (Pyramid‐
SHARE and PARDYP), which have not been used
to generate nor calibrate any product, including
APHRODITE shows that CPC‐RFE, TRMM3B42
and GSMaP underestimate rain gauge data up
to 400 mm yr−1, while TRMM‐2B31 considerably
overestimates (∼600 mm/yr) the independent data set
(Figure 4a). Precipitation is mainly underestimated
during monsoon season (CPC‐RFE 52 mm/yr,
TRMM3B42 77 mm/yr, GSMaP 130 mm/yr), while
APHRODITE (maximal 12 mm/yr) does not sig-
nificantly differ from gauge data, whatever the sea-
son considered. Because of its temporal resolution,
TRMM‐2B31 cannot be compared to rain gauge

Table 1. Overview of the Selected Five PARDYP Watershedsa

Name Region/Country
Area
(km2)

Elevation Range
(m asl)

Catchment
Orientation

Number of
Stations Literature

Bhetagad Uttaranchal/India 24 1000–2000 north 5 Kothyari et al. [2004]
Hillkot Pakistan 15 1500–2700 southwest 4 unpublished
Jhikhu Khola Nepal 111 800–2200 southeast 11 Merz [2004]
Xizhuang Yunnan/China 34 1750–3100 east 8 Jianchu et al. [2005]
Yarsha Khola Nepal 53 1000–3000 southwest 12 Merz [2004]

aArea is the drainage area, and range is the elevation minima and maxima. Number of stations indicates the number of available precipitation
gauge stations which have been used to interpolate mean basin‐wide precipitation rates. See also Figure 2.

Figure 4. Monthly and annual bulk error plots of the compared precipitation data sets (APHRODITE, CPC‐RFE,
GSMaP, TRMM‐3B31, and TRMM‐2B42). Errors represent the mean accumulated sum (monthly or annual) of pre-
cipitation gauge data subtracted from the precipitation data set. (a) Bulk error derived from independent gauge sta-
tions. (b) Bulk error for all 51 DHM stations in Nepal, which have been partially used to calibrate or generate the
here evaluated data sets. Stations and data represent the 2 years 2003 and 2004 (1997–2007 in case of TRMM‐
2B31). Because of its temporal resolution, TRMM‐2B31 was not included in the monthly evaluation.
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data at themonthly scale. The same conclusions could
be done considering the 51 rain gauge data from
DHM as a reference (Figure 4b). However, these
stations have been used to generate APHRODITE,
and some stations may have been used to calibrate
all the other products. Despite this possible depen-
dency problem,CPC‐RFE, TRMM3B42 andGSMaP
always show a significant underestimation of pre-
cipitationwhereas TRMM‐2B31 overestimates gauge
data, but to a lesser degree than with independent
data (328 mm/yr).

[19] Results from the bulk error analysis are also
reflected in the intercomparison of the data sets in
map view (Figure 5). The available gridded pro-
ducts show contrasting patterns of annual precipi-
tation along the Himalayas. All products show high
precipitation rates along the mountain chain, but
with different amplitudes and patterns. Most pro-
ducts show the westward decrease of precipitation
already described by Bookhagen and Burbank [2006]
as well as the two along‐strike rainfall peaks they also
described. They are clearly expressed by TRMM‐
2B31 because of the higher spatial resolution of this
product. The comparison of the remote products with
respect to APHRODITE shows that all products
differ considerably in detail (Figures 5f, 5g, 5h, and
5i). It illustrates an overestimation of precipitation
by TRMM‐2B31 with respect to APHRODTIE,
possibly because APHRODITE cannot depict small‐
scale changes because of its moderate resolution
(0.25°), but also because peak precipitation rates
by TRMM‐2B31 are likely overestimated, as the
authors acknowledge themselves [Bookhagen and
Burbank, 2010]. When compared to APHRODITE,
remotely sensed products CPC‐RFE, GSMaP and
TRMM3B42 significantly underestimate precipita-
tion in the eastern and central part of the Himalayas
(Figures 5g, 5h, and 5i), while CPC‐RFE (Figure 5g)
tends to overestimate precipitation in the Western
part. All data sets show similar low precipitation rates
(<0.5 m/yr) on the Tibetan Plateau and moderate
ones (0.5–1 m/yr) in the Indian foreland.

3.2. Comparison of Data Within the Five
PARDYP Watersheds
[20] Within the five PARDYP watersheds, precip-
itation estimates by APHRODITE and TRMM‐
3B42 fit measurements derived from ground gauge
stations, both at the monthly (Figures 6 and 7) and
annual scales (Text S2). The correlation coefficient
between monthly precipitations derived from gauge
data and data sets is 0.87 for APHRODITE and

0.69 for TRMM‐3B42 when one considers the five
catchments all together (Figure 7). The best cor-
relation is found in the Jhikhu Khola catchment
with r2 of 0.98 (APHRODITE) and of 0.82
(TRMM‐3B42). APHRODITE always fit very well
the monthly precipitation derived from gauge data
(correlation coefficient between 0.83 and 0.98)
except in the Hillkot catchment (Figure 6) where it
gives higher estimates than the interpolated gauge
data during monsoon season. This is likely the
consequence of the lack of gauge stations at high
elevations in this basin (Figure 3). Indeed, Bhatt
and Nakamura [2005] and Barros et al. [2004]
report strong ridge‐valley gradients on a basin
scale in the Himalayan front. If we assume an
orographic gradient, with lower precipitation in the
valley bottom than close to the ridges, the absence
of stations at high elevation in the Hillkot catch-
ment will result in an underestimation of mean
basin‐wide precipitation. Note that APHRODITE
also correlates very well with precipitation derived
from gauge stations at the daily scale in the Jhikhu
Khola catchment (Figure 8). This correlation is not
observed with the other data sets nor in the other
basins. Monthly precipitation derived from TRMM‐
3B42 usually correlates well with gauge data (cor-
relation coefficient between 0.78 and 0.84; Text S2)
except again in the Hillkot catchment, likely for the
same reason as discussed above (correlation coeffi-
cient of 0.52). Overall, CPC‐RFE and GSMaP data
do not match the ground information at the annual
and monthly scale (Figure 6).

[21] In contrast to observations made by Anders
et al. [2006] and Kamal‐Heikman et al. [2007],
using remote precipitation measurements (TRMM/
PR and TRMM‐3b42), our annual precipitation
estimates from APHRODITE or from interpolated
rain gauge data exceed annual water discharge
recorded at the catchment outlet of the five PARDYP
watersheds. In Jhikhu Khola catchment for example,
annual precipitation measured by APHRODITE,
TRMM‐3B42 and by gauge stations (∼1400 mm/yr)
is roughly 3.5 times as high as the annual specific
discharge (∼400 mm/yr) recorded at the basin outlet
[Merz, 2004]. As pointed out by Bookhagen and
Burbank [2010] for the Himalayas, the hydrologic
budget is only correct when evapotranspiration and
snow and glacier melt processes are taken into
account. High snowfall contribution on the Tibetan
Plateau is difficult to detect by remote sensors and is
shown to lead to considerable underestimation of
basin‐wide water budgets [Kamal‐Heikman et al.,
2007].

Geochemistry
Geophysics
Geosystems G3G3 ANDERMANN ET AL.: PRECIPITATION EVALUATION 10.1029/2011GC003513

8 of 16



Figure 5. Mean annual precipitation distribution of the five tested precipitation data sets for their common availabil-
ity (2003 and 2004, TRMM‐2B31 1997–2007): (a) APHRODITE, (b) TRMM‐2B31 [Bookhagen and Burbank,
2006], (c) CPC‐RFE, (d) GSMaP, and (e) TRMM‐3B42. Figures 5f–5i illustrate the differences between the data
sets in respect to APHRODITE (APHRODITE ‐ data set): (f) APHRODITE versus TRMM‐2B31, (g) APHRODITE
versus CPC‐RFE2.0, (h) APHRODITE versus GSMaP, and (i) APHRODITE versus TRMM‐3B42.
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Figure 6. Monthly mean basin‐wide precipitation rates from gridded precipitation data and basin‐wide interpolated
rain gauge stations for the five watersheds. Gray shading represents the range of interpolated gauge data. The upper
and lower limits of the range represent the minimal and maximal monthly sum of precipitation rates.
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3.3. Comparison of Data Along the Seven
Swath Profiles
[22] Evaluating the different data sets along swath
profiles has the advantage to investigate precipita-
tion distribution as a function of elevation. Swath
profiles show mean precipitation over the swath
width and average over local variations. Therefore,
gridded data sets with the same resolution (e.g.,
TRMM‐3B42 and APHRODITE) should match
quantitatively. This is however not the case in our
results (Figure 9).

[23] While the middle hills and the foreland are
easily accessible, the High Himalayas are only
sparsely covered with stations and the station ele-
vation might not reflect the surroundings [Bhatt
and Nakamura, 2005]. However, most existing
rain gauge data indicate high precipitation rates in
the Lesser Himalaya and a decrease at higher ele-
vation, in the Higher Himalayas and on the Tibetan
Plateau. Along most profiles (Figure 9 and Text S3),
gauge data consequently document the orographic
effect across the Himalayas, despite possible pro-
blems of point data vs. spatial data. Due to inac-
cessibility, gauge stations are generally situated in
valleys, especially within the high Himalayan range
(Text S3). Note that most stations used here are
situated at mean swath elevation in the transition
between the Indian Lowlands and the mountain
front (e.g., stations 16, 17, 18, 19, and 20 along
profile 3: Figure 9a and Text S3), whereas stations

in the high mountain front are situated at minimum
elevation of the swath profile (e.g., stations 12, 13,
14, and 15 along profile 3: Figure 9a and Text S3).
Therefore, along profile 3 it is not clear if the
decreasing trend defined by stations 18 and 14 is
due to elevation or stations positioning. In contrast,
thanks to the three Pyramid‐SHARE stations
(numbers 53–55), nearly all stations in profile 5
(Figure 9d) are situated close to mean elevation
(Text S3). Here, the strong decrease in precipitation
rates between stations 31 and 55, above 3000 m asl
is likely the consequence of the orographic effects.
Locally, the annual difference between two neigh-
boring stations is remarkable, e.g., between stations
46 and 48 (profile 7, Text S3) or between stations 38
and 44 (profile 6, Figure 9g). In both cases the
stations are almost at the same latitude but at dif-
ferent elevation, so they likely record different local
annual precipitation variations linked to orography.

[24] For the data sets evaluated here, all seven
swath profiles (Figure 9 and Text S3) illustrate the
orographic effect of the Himalayan chain, on
annual scale as well as during monsoon season
(May–October). Depending on the data set, the
amplitude of the orographically induced rainfall
peak is more or less pronounced. The orographic
influence during nonmonsoon season is much
weaker, as already observed by Bookhagen and
Burbank [2010]. Overall, all data sets are more or
less consistent during nonmonsoon season.

Figure 7. Correlation between monthly basin‐wide
precipitation rates from gridded data and basin‐wide
interpolation from station data. Data from all five water-
sheds is plotted here.

Figure 8. Daily correlation (Jhikhu Khola, Nepal)
between APHRODITE data and basin‐wide mean inter-
polated precipitation rates.
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[25] Along the Himalayan front, annual precipita-
tion estimates at a given location along the profiles
are always maximum for TRMM‐2B31 data and
minimum for GSMaP, the difference being often
as large as two‐ to threefold (Figures 9a, 9d, and 9g).
Between these two extreme data sets, APHRODITE
usually shows higher estimates than TRMM‐3B42
and CPC‐RFE data, except for profiles 1 and 2
(Text S3) where the latter delivers the highest
values. The three Pyramid‐SHARE project stations
(independent to APHRODITE) fit very well with
the APHRODITE data, on an annual as well as a
seasonal scale (Figures 9d–9f). A striking feature is
the large difference between TRMM‐2B31 data set
and all the other data sets when considering mean
and maximum values, as well as the high frequency
spatial variations of precipitations documented.
This is a direct consequence of the high spatial
resolution of this data set. Overall, most of the
gauge stations usually plot near the mean value of
the TRMM‐2B31 product, except for some local
examples (e.g., stations 27 and 29 in profiles 4;
stations 12 and 13 in profile 3; stations 31 and 34
in profile 5; stations 38, 39 and 41 in profile 6:
see Figure 9 and Text S3). The extreme values of
the TRMM‐2B31 product always exceed gauge
values (e.g., extremely high precipitation values
(>7000 mm/yr) for few pixels on profile 3, Figure 9a),
as already noticed by Bookhagen and Burbank
[2010] and Anders et al. [2006]. These extreme
values likely overestimate real precipitation rates.
Note that Bookhagen and Burbank [2006] used a
network of rainfall stations to calibrate their TRMM‐
2B31 data; however, most of the stations we used
here have not been used in their work. In general the
swath profiles reflect the findings of the bulk error
estimation (Figure 4).

[26] Bookhagen and Burbank [2010, 2006] demon-
strated that precipitation profiles across the Hima-
layas mimic the topography. When the topography
steadily increases from the Indian Lowland to the
Tibetan Plateau, rainfall distribution is character-
ized by a single high peak of rainfall at elevation
∼0.9 km. Conversely, for a two‐stepped increase
of topography, rainfall distribution shows two peaks
of lower amplitude at ∼0.9 km and 2.1 km (e.g.,
Figures 5b and 9g). This bimodal distribution of
rainfall is visible in most of the TRMM‐2B31 pro-
files we show here (e.g., profiles 1, 4, and 6). This
particular distribution is also well depicted by the
APHRODITE product in most cases (e.g., profiles 1,
4, and 6) but with a lower amplitude. However, this
is usually not depicted by the other products, except
in profile 1 (Text S3). Overall, all the products show

the increase of precipitation rates at the front of the
Himalayas. TRMM‐3B42, GSMaP and CPC‐RFE,
however, do not describe correctly the precipitation
distribution at elevations higher than 1 km. This result
highlights the difficulty of remote sensing techniques
to capture precipitation in areas with strong oro-
graphic effects. The direct comparison of TRMM‐
2B31 and TRMM‐3B42 in the Andes already shows
that TRMM‐3B42 cannot detect the local orographic
precipitation maxima, due to its moderate spatial
resolution [Bookhagen and Strecker, 2008].

4. Discussion and Conclusion

[27] We show that existing gridded precipitation
data sets as well as published sources [Bookhagen
and Burbank, 2006] display large differences
along the Himalayan orographic front. With the
exception of CPC‐RFE, all measurements corre-
spond in low‐relief landscapes (Indian Lowlands,
Tibetan Plateau) and during nonmonsoon season.
On the basis of comparison with independent
ground observations (Figure 4a) we show that most
remote products underestimate precipitation during
monsoon season at the annual and monthly scale
whereas TRMM‐2B31 [Bookhagen and Burbank,
2006] overestimates precipitation at the annual
scale. These problems of precipitation estimation
are likely due to remote techniques and calibration
procedures. They do not concern APHRODITE data,
a product processed from gauge stations, which
gives the best precipitation estimates when compared
to independent ground observations (Figure 4a).
However, the lack of stations at high elevation limits
the accuracy of this data set.

[28] Most of the rain gauges used to calibrate CPC‐
RFE, GSMaP and TRMM‐3B42 data are derived
from the GTS network with reportedly poor spatial
coverage in the Himalayas [Yatagai and Kawamoto,
2008], which might explain the underestimation of
precipitation during monsoon season. Additionally,
Yatagai and Kawamoto [2008] report that the GTS
database includes erroneous entries in the Himala-
yan region, where 0 mm precipitation values were
reported instead of missing values, thus resulting in
underestimating precipitation. In the case of APH-
RODITE, up to 4.5 times as many stations as GTS
were considered for interpolation and erroneous
gauge data sets are excluded if other information
existed for the interpolation space [Yatagai and
Kawamoto, 2008]. Many difficulties in the estima-
tion of precipitation from space may also arise from
remote techniques themselves. Remote sensors can-
not determine accurately snowfall which is the major
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contribution at high elevation in the Himalayas,
(>5000 m asl: [Putkonen, 2004]) and on the Tibetan
Plateau. Data sets depending on IR observations are
primarily sensitive to cloud‐top temperature, whose
calibration for estimating precipitation is a main
source of uncertainty [Huffman et al., 2007]. Finally,
diurnal variations and the likeliness of the satellites to
miss rainfall events, may participate to the discrep-
ancy between the remote measurements. CPC‐RFE,
GSMaP and TRMM‐3B42 are principally derived
from MVR sensors, which have an irregular return
interval and therefore, likelymiss precipitation events
[Huffman et al., 2007].

[29] Our study also highlights some of the diffi-
culties in evaluating remote precipitation products
using rainfall gauge data. In the Himalayas, pre-
cipitation varies according to a wide range of spatial
scales, from small‐scale ridge‐valley gradients [Barros
et al., 2004; Bhatt and Nakamura, 2005; Anders
et al., 2006; Craddock et al., 2007] to large‐scale
orographic effects over the whole mountain [Anders
et al., 2006; Bookhagen and Burbank, 2006]. Ide-
ally, the validation of any remote sensed product
from gauge stations is only possible if the resolution
of the products is sufficient to take into account the
scale of spatial variability of precipitation. Hence,
the coarse resolution of all products (Figure 1)
introduce an inescapable problem in the validation
procedure. For example, gauge stations in valleys
within the High Himalayas (e.g., profile 3; see
Text S3) likely introduce a bias in the reference
value of precipitation they provide. We show that
several stations, covering full elevation range, are
necessary to represent the climatic situation cor-
rectly and to validate remotely sensed products. We
also show that basin‐wide precipitation measure-
ment deduced from gauge data are significantly
altered if elevation is not sufficiently covered by
gauge stations (Hillkot watershed, Figure 6). The
current gauge network within the High Himalayas is
generally not sufficient to characterize orographic
precipitation phenomena correctly.

[30] Along the Himalayan range, several precipi-
tation products are of potential interest depending
on the problem addressed. TRMM‐2B31 is a good
product when one wants to investigate rainfall
patterns. This is of significant interest for example
to understand the topographic influence on rain
distribution. The use of this product is however,
limited by its temporal resolution, which is not
adequate to investigate, for example, event‐scale
processes. As also observed by Bookhagen and
Burbank [2006], the rainfall peaks of TRMM‐

2B31 data along the Himalayan front are generally
overestimated. TRMM‐2B31 describes correctly
the large‐scale orographic rainfall distribution along
the Himalayan front. This distribution is poorly
depicted by all other data sets based on remote
sensing techniques. As in the work by Tian and
Peters‐Lidard [2010], our study shows that sensor
algorithms for mountainous regions, where terrain
changes on short distances and orography influ-
ences precipitation, must be improved.

[31] As observed in the five small watersheds
studied here, APHRODITE (and to a lesser extent
TRMM‐3B42) deliver good temporal variability,
both on annual and monthly scale. In some cases,
for example in the Jhikhu Khola catchment, which
is located in the lower middle mountains with a low
relief (∼1400 m), even daily precipitation estimates
by APHRODITE are representative (Figure 8).
Because of its long availability (>30 years), coupled
with its good temporal resolution, the APHRODITE
product is appropriate to track above‐threshold
events driven by precipitation (e.g., landslides
thresholds [Gabet et al., 2004;Dahal and Hasegawa,
2008]) as well as for hydrological budget and dis-
charge analysis. It can be applied for hydrolog-
ical budget and discharge analysis of large basins
(>2000 km2 ∼ 2 pixels). If higher temporal resolu-
tion than APHRODITE is needed, then the TRMM‐
3B42 data, with its 3‐hourly resolution, could also
be exploited for relative analysis, even if not tested
here. Accurate precipitation data in an active moun-
tain belt such as the Himalayas are essential for
a real understanding of the potential couplings
between climate, erosion and tectonics processes as
well as for hazard mitigation.

Acknowledgments

[32] We would like to thank the German academic exchange
service DAAD and the French German university DFH for
funding the Ph.D. thesis of C. Andermann. Pyramid Ev‐K2‐
CNR–SHARE project for meteorological data. We would like
to thank Madhav Dhakal and Isabelle Providolli from ICIMOD
Kathmandu for their outstanding support, Jianchi Xu and Ma
Xing for readily sharing information on Xizhuang watershed,
as well as B. P. Kothyari from GBPIHED India for providing
data on Bhetagad watershed. Many thanks go also to Bodo
Bookhagen for providing us with a mean annual data set of
TRMM‐2B31. We would like to thank Jagadish Karmacharya
from DHM Nepal for his great support to select and obtain
gauge data. We thank Alain Crave for helpful discussions
and Guillaume Dupont‐Nivet for proofreading. We would
also like to thank two anonymous reviewers and the Editor
of G‐cubed, Louis Derry, whose comments and suggestions
have considerably improved this manuscript.

Geochemistry
Geophysics
Geosystems G3G3 ANDERMANN ET AL.: PRECIPITATION EVALUATION 10.1029/2011GC003513

14 of 16



References

Andermann, C., S. Bonnet, and R. Gloaguen (2010), Erosion in
the Himalayas on catchment scale. Integrative remote sensing
assessment, in Geoscience and Remote Sensing Symposium,
2009 IEEE International, IGARSS 2009, vol. 3, IEEE,
Washington, D. C., doi:10.1109/IGARSS.2009.5417866.

Anders, A. M., G. H. Roe, B. Hallet, D. R. Montgomery, N. J.
Finnegan, and J. Putkonen (2006), Spatial patterns of precip-
itation and topography in the Himalaya, GSA Spec. Pap.,
398, 39–53, doi:10.1130/2006.2398(03).

Anders, A. M., G. H. Roe, D. R. Montgomery, and B. Hallet
(2008), Influence of precipitation phase on the form of
mountain ranges, Geology, 36(6), 479–482, doi:10.1130/
G24821A.1.

Barros, A. P., G. Kim, E. Williams, and S. W. Nesbitt (2004),
Probing orographic controls in the Himalayas during the
monsoon using satellite imagery, Nat. Hazards Earth Syst.
Sci., 4(1), 29–51, doi:10.5194/nhess-4-29-2004.

Barros, A. P., S. Chiao, T. J. Lang, D. Burbank, and J. Putkonen
(2006), From weather to climate: Seasonal and interannual
variability of storms and implications for erosion processes
in the Himalaya, GSA Spec. Pap., 398, 17–38, doi:10.1130/
S2006.2398(02).

Bhatt, B. C., and K. Nakamura (2005), Characteristics of mon-
soon rainfall around the Himalayas revealed by TRMM pre-
cipitation radar, Mon. Weather Rev., 133(1), 149–165,
doi:10.1175/MWR-2846.1.

Bonnet, S. (2009), Shrinking and splitting of drainage basins in
orogenic landscapes from the migration of the main drainage
divide, Nat. Geosci., 2(11), 766–771, doi:10.1038/ngeo666.

Bonnet, S., and A. Crave (2003), Landscape response to
climate change: Insights from experimental modeling and
implications for tectonic versus climatic uplift of topography,
Geology, 31(2), 123–126, doi:10.1130/0091-7613(2003)031<
0123:LRTCCI>2.0.CO;2.

Bookhagen, B. (2010), Appearance of extreme monsoonal
rainfall events and their impact on erosion in the Himalaya,
Geomatics Nat. Hazards Risk, 1(1), 37–50, doi:10.1080/
19475701003625737.

Bookhagen, B., and D. W. Burbank (2006), Topography,
relief, and TRMM‐derived rainfall variations along the
Himalaya, Geophys. Res. Lett., 33, L08405, doi:10.1029/
2006GL026037.

Bookhagen, B., and D. W. Burbank (2010), Toward a com-
plete Himalayan hydrological budget: Spatiotemporal distri-
bution of snowmelt and rainfall and their impact on river
discharge, J. Geophys. Res., 115, F03019, doi:10.1029/
2009JF001426.

Bookhagen, B., and M. R. Strecker (2008), Orographic bar-
riers, high‐resolution TRMM rainfall, and relief variations
along the eastern Andes, Geophys. Res. Lett., 35, L06403,
doi:10.1029/2007GL032011.

Craddock, W. H., D. W. Burbank, B. Bookhagen, and E. J.
Gabet (2007), Bedrock channel geometry along an oro-
graphic rainfall gradient in the upper Marsyandi River valley
in central Nepal , J. Geophys. Res. , 112 , F03007,
doi:10.1029/2006JF000589.

Dahal, R. K., and S. Hasegawa (2008), Representative rainfall
thresholds for landslides in the Nepal Himalaya, Geomorphol-
ogy, 100(3–4), 429–443, doi:10.1016/j.geomorph.2008.01.014.

Dinku, T., F. Ruiz, S. J. Connor, and P. Ceccato (2009), Val-
idation and intercomparison of satellite rainfall estimates over
Colombia, J. Appl. Meteorol. Climatol., 49(5), 1004–1014,
doi:10.1175/2009JAMC2260.1.

Gabet, E. J., D.W. Burbank, J. K. Putkonen, B. A. Pratt‐Sitaula,
and T. Ojha (2004), Rainfall thresholds for landsliding in the
Himalayas of Nepal, Geomorphology, 63(3–4), 131–143,
doi:10.1016/j.geomorph.2004.03.011.

Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin,
K. P. Bowman, Y. Hong, E. F. Stocker, and D. B. Wolff
(2007), The TRMM Multisatellite Precipitation Analysis
(TMPA): Quasi‐global, multiyear, combined‐sensor preci-
pitation estimates at fine scales, J. Hydrometeorol., 8(1),
38–55, doi:10.1175/JHM560.1.

Istanbulluoglu, E., and R. L. Bras (2006), On the dynamics
of soil moisture, vegetation, and erosion: Implications of
climate variability and change, Water Resour. Res., 42,
W06418, doi:10.1029/2005WR004113.

Jianchu, X., A. Xihui, and D. Xiqing (2005), Exploring the
spatial and temporal dynamics of land use in Xizhuang
watershed of Yunnan, southwest China, Int. J. Appl. Earth
Obs. Geoinf., 7(4), 299–309, doi:10.1016/j.jag.2005.06.008.

Kamal‐Heikman, S., L. A. Derry, J. R. Stedinger, and C. C.
Duncan (2007), A simple predictive tool for lower Brahma-
putra River basin monsoon flooding, Earth Interact., 11(21),
1–11, doi:10.1175/EI226.1.

Kothyari, B. P., P. K. Verma, B. K. Joshi, and U. C. Kothyari
(2004), Rainfall‐runoff‐soil and nutrient loss relationships
for plot size areas of Bhetagad watershed in central Hima-
laya, India, J. Hydrol., 293(1–4), 137–150, doi:10.1016/j.
jhydrol.2004.01.011.

Kubota, T., et al. (2007), Global Precipitation map using satellite‐
borne microwave radiometers by the GSMaP project: Produc-
tion and validation, IEEE Trans. Geosci. Remote Sens., 45(7),
2259–2275, doi:10.1109/TGRS.2007.895337.

Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson
(1998), The Tropical Rainfall Measuring Mission (TRMM)
sensor package, J. Atmos. Oceanic Technol., 15(3), 809–817,
doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.
CO;2.

Kummerow, C., et al. (2000), The status of the Tropical Rain-
fall Measuring Mission (TRMM) after two years in orbit,
J. Appl. Meteorol., 39(12), 1965–1982, doi:10.1175/1520-
0450(2001)040<1965:TSOTTR>2.0.CO;2.

Merz, J. (2004), Water balances, floods and sediment transport
in the Hindu Kush‐Himalayas, Ph.D. thesis, Inst. of Geogr.,
Univ. of Bern, Bern, Switzerland.

Nesbitt, S. W., and A. M. Anders (2009), Very high resolution
precipitation climatologies from the Tropical Rainfall Mea-
suring Mission precipitation radar, Geophys. Res. Lett., 36,
L15815, doi:10.1029/2009GL038026.

Putkonen, J. (2004), Continuous snow and rain data at 500
to 4400 m altitude near Annapurna, Nepal, 1999–2001,
Arct. Antarct. Alp. Res., 36(2), 244–248, doi:10.1657/1523-
0430(2004)036[0244:CSARDA]2.0.CO;2.

Reiners, P. W., T. A. Ehlers, S. G. Mitchell, and D. R.
Montgomery (2003), Coupled spatial variations in precipitation
and long‐term erosion rates across the Washington Cascades,
Nature, 426(6967), 645–647, doi:10.1038/nature02111.

Roe, G. H. (2005), Orographic precipitation, Ann. Rev. Earth
Planet. Sci., 33(1), 645–671, doi:10.1146/annurev.earth.33.
092203.122541.

Roe, G. H., D. R. Montgomery, and B. Hallet (2003), Oro-
graphic precipitation and the relief of mountain ranges,
J. Geophys. Res., 108(B6), 2315, doi:10.1029/2001JB001521.

Shrestha, M., G. Artan, S. Bajracharya, and R. Sharma (2008),
Using satellite‐based rainfall estimates for streamflow mod-
elling: Bagmati Basin, J. Flood Risk Manage., 1(2), 89–99,
doi:10.1111/j.1753-318X.2008.00011.x.

Geochemistry
Geophysics
Geosystems G3G3 ANDERMANN ET AL.: PRECIPITATION EVALUATION 10.1029/2011GC003513

15 of 16



Tian, Y., and C. D. Peters‐Lidard (2010), A global map of
uncertainties in satellite‐based precipitation measurements,
Geophys. Res. Lett., 37, L24407, doi:10.1029/2010GL046008.

Tucker, G. E., and R. Slingerland (1997), Drainage basin
responses to climate change, Water Resour. Res., 33(8),
2031–2047, doi:10.1029/97WR00409.

Tustison, B., D. Harris, and E. Foufoula‐Georgiou (2001), Scale
issues in verification of precipitation forecasts, J. Geophys.
Res., 106(D11), 11,775–11,784, doi:10.1029/2001JD900066.

Ushio, T., K. Sasashige, T. Kubota, S. Shige, K. Okamoto,
K. Aonashi, T. Inoue, N. Takahashi, and T. Iguchi (2009),
A Kalman filter approach to the Global Satellite Mapping
of Precipitation (GSMaP) from combined passive microwave
and infrared radiometric data, J. Meteorol. Soc. Jpn., 87A(9),
3084–3097, doi:10.2151/jmsj.87A.137.

Vicente, G. A., J. C. Davenport, and R. A. Scofield (2002), The
role of orographic and parallax corrections on real time high
resolution satellite rainfall rate distribution, Int. J. Remote
Sens., 23(2), 221–230, doi:10.1080/01431160010006935.

Whipple, K. X. (2009), The influence of climate on the tectonic
evolution of mountain belts, Nat. Geosci., 2(2), 97–104,
doi:10.1038/ngeo413.

Whipple, K. X., and B. J. Meade (2006), Orogen response to
changes in climatic and tectonic forcing, Earth Planet. Sci.
Lett., 243(1–2), 218–228, doi:10.1016/j.epsl.2005.12.022.

Willett, S. D. (1999), Orogeny and orography: The effects of
erosion on the structure of mountain belts, J. Geophys.
Res., 104(B12), 28,957–28,981, doi:10.1029/1999JB900248.

Wulf, H., B. Bookhagen, and D. Scherler (2010), Seasonal pre-
cipitation gradients and their impact on fluvial sediment flux in
the northwest Himalaya, Geomorphology, 118(1–2), 13–21,
doi:10.1016/j.geomorph.2009.12.003.

Xie, P., Y. Yarosh, T. Love, J. E. Janowiak, and P. A. Arkin
(2002), A real‐time daily precipitation analysis over South
Asia, paper presented at the 16th Conference of Hydrology,
Am. Meteorol. Soc., Orlando, Fla., 12–17 Jan. (Available at
http://www.cpc.ncep.noaa.gov/products/fews/sasia_r fe.pdf)

Xie, P.,M.Chen, S.Yang,A.Yatagai, T.Hayasaka,Y. Fukushima,
and C. Liu (2007), A gauge‐based analysis of daily precipita-
tion over East Asia, J. Hydrometeorol., 8(3), 607–626,
doi:10.1175/JHM583.1.

Yatagai, A., and H. Kawamoto (2008), Quantitative estimation
of orographic precipitation over the Himalayas by using
TRMM/PR and a dense network of rain gauges, in Proc.
SPIE, 7148‐11, doi:10.1117/12.811943.

Yatagai, A., O. Arakawa, K. Kamiguchi, H. Kawamoto, M. I.
Nodzu, and A. Hamada (2009), A 44‐year daily gridded pre-
cipitation data set for Asia based on a dense network of rain
gauges, SOLA, 5, 137–140, doi:10.2151/sola.2009-035.

Geochemistry
Geophysics
Geosystems G3G3 ANDERMANN ET AL.: PRECIPITATION EVALUATION 10.1029/2011GC003513

16 of 16



3.2 General discussion

In this paper, I demonstrated that remotely sensed precipitation datasets are very discrepant in the

Himalayas. It appears in particular very difficult to apply the remotely sensed measurements on a high

temporal resolution, for example on a daily time-scale. Although, time series with a good temporal

resolution are needed to understand the erosional processes.

From the comparison with ground based rain gauge stations, both on the spatial basin scale and

with single station observations, I identified the AHRODITE (Asian Precipitation Highly Resolved

Observational Data Integration Towards Evaluation of Water Resources, Monsoon Asia, Version 10)

dataset as the best performing one available at the moment. This dataset has several advantages: 1)

It has a daily temporal resolution, the same resolution as the river discharge and suspended sediment

concentration data that I will analyse in the following chapters. 2) It integrates over more than 50

years (1951-2007) covering the whole time span of all the other datasets analysed here. 3) It has a

reasonable spatial resolution of ∼ 30 km, and 4) It performs exceptionally well, with respect to the

available ground measurements, both on a spatial and temporal time scale.

From the evaluation of the precipitation datasets, I have set the basis to further evaluate erosion

processes in the Nepal Himalayas and their possible control by precipitation.
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Chapter 4

Hydro-climatology

4.1 Introduction

The hydrological compartments of mountains are key issues to understand the erosion processes there.

Water is the principle media to eroded and transport materials out of the mountain range. Rivers incise

valley bottoms and thus create actively landscapes by bring slopes to critical inclination. The capacity

of a river to incise bedrock depends directly on the amount of water and its slope [e.g. Tucker and

Slingerland, 1997; Whipple and Tucker, 1999; Kirby and Whipple, 2001]. Hence, it is very important to have

a full comprehensive knowledge on the role of different hydrological compartments. In particular, the

storage and release of water from reservoirs, such as groundwater and glaciers, are crucial parameters

for erosion and transport processes. The repartition of precipitation in surface runoff, snow, ice and

groundwater (and evapotranspiration) controls primarily the amount of water available on the surface

to erode and the amount of water available in the rivers to transport and incise. Furthermore, this has

direct implication on the availability of water resources, flood hazard mitigation and the occurrence

landslides [Oki and Kanae, 2006; Immerzeel et al., 2010]. Last, a good knowledge on the flow-paths is im-

portant to understand geochemical cycles as well as climate-erosion interactions and the consumption

of atmospheric CO2 by Si-weathering [e.g. Raymo and Ruddiman, 1992].

In the Himalayas the role of the different hydrological compartments is practically unknown.

Bookhagen and Burbank [2010] has published recently a hydrological budget analysis from remote sens-

ing data for the whole Himalayas, providing a good idea of variation of snowmelt and rainfall contri-

bution in different regions of the Himalayas. For example, the snow melt component is much more

important in the eastern and the western Himalayas. Similarly, Immerzeel et al. [2009] has modelled

snow and glacier melt river discharge contributions and under the effect of climate change for the

Indus basin in the western Himalayas. However, groundwater, as an important transient storage has

so far been neglected.

The following manuscript is published in the journal Nature Geosciences.
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Impact of transient groundwater storage on the
discharge of Himalayan rivers
Christoff Andermann1,2*, Laurent Longuevergne1, Stéphane Bonnet3, Alain Crave1, Philippe Davy1
and Richard Gloaguen2

In the course of the transfer of precipitation into rivers, water
is temporarily stored in reservoirs with different residence
times1,2 such as soils, groundwater, snow and glaciers. In
the central Himalaya, the water budget is thought to be
primarily controlled by monsoon rainfall, snow and glacier
melt3,4, and secondarily by evapotranspiration3. An additional
contribution from deep groundwater5–7 has been deduced from
the chemistry of Himalayan rivers6, but its importance in the
annual water budget remains to be evaluated. Here we analyse
records of daily precipitation and discharge within twelve
catchments in Nepal over about 30 years. We observe annual
hysteresis loops—that is, a time lag between precipitation
and discharge—in both glaciated and unglaciated catchments
and independent of the geological setting. We infer that
water is stored temporarily in a reservoir with characteristic
response time of about 45 days, suggesting a diffusivity
typical of fractured basement aquifers8. We estimate this
transient storage capacity at about 28 km3 for the three main
Nepal catchments; snow and glacier melt contribute around
14 km3 yr−1, about 10% of the annual river discharge. We
conclude that groundwater storage in a fractured basement
influences significantly theHimalayan river discharge cycle.

The discharge of the central Himalayan rivers is governed by
a strong precipitation seasonality3,6,9,10 (Fig. 1) with up to 80% of
the annual rainfall occurring during the Indian Summer Monsoon
(ISM) season3. The ISM precipitation is the main source for
glacier mass accumulation9 and its spatial distribution is strongly
influenced by orographic effects3. Variations in intensity and
duration of the ISM, linked to ElNino/SouthernOscillation (ENSO;
ref. 11), enhance the annual amount of precipitation by ∼25–50%
with respect to the annual mean at low to moderate elevation
(>3 km), and up to 200%at high elevation12. Snowmelt contributes
to a significant fraction of river discharge in the western and eastern
Himalayas and on the Tibetan plateau3,13, but only to a minor
fraction (∼10%) in the central Himalayas, mainly in the early ISM
(May–July)3. It has been suggested that rainfall-derived discharge,
ice and snow melt are the primary factors controlling Himalayan
river discharge, with evapotranspiration forming a secondaryminor
component3. Notwithstanding, this hydrological budget model ne-
glects transient water storage in soils, floodplains and groundwater.
However, geochemical data indicate that a non-negligible part of
surface runoff originates fromdeep groundwater reservoirs6.

We investigate the transfer of water within the main catchments
of the Nepal Himalayas (Fig. 1a) using a daily meteorological and
hydrological dataset spanning ∼30 years (Table 1). We consider
the three main catchments of Nepal (Sapta Koshi, Narayani and

1Géosciences Rennes, Université de Rennes 1, CNRS, Campus de Beaulieu, 35042 Rennes, France, 2Remote Sensing Group, Geology Institute, TU
Bergakademie Freiberg, B.-von-Cotta-Str. 2, 09599 Freiberg, Germany, 3Géosciences Environnement Toulouse, Université de Toulouse, CNRS-UPS-IRD,
Observatoire Midi-Pyrénées, 14 Av. Edouard Belin, 31400 Toulouse, France. *e-mail: christoff.andermann@univ-rennes1.fr.

Karnali basins), some of their tributaries, and three unglaciated
small catchments at the front of the Himalayan range (Fig. 1a
and Table 1). The main catchments drain the entire Himalayan
range of Nepal, from the Tibetan Plateau to the Lesser Himalayas.
Most of their headwaters are located on the arid Plateau (Fig. 1a),
characterized by a weaker influence of the ISM. The rivers incise
bedrock comprising, from north to south, the low-grade Paleozoic–
Mesozoic Tethyan Sediment Series, high-grade metamorphic
gneisses and migmatites of the High Himalayan Crystalline series
and low-grade Proterozoic sediments of the Lesser Himalayas
(Fig. 1c). Most of the data considered here come from outlet
stations located to the north of the Siwalik foreland. The annual
specific discharge of the studied basins is typically on the order of
∼103 mmyr−1 (Table 1) and their annual hydrograph clearly shows
the seasonal impact of the ISM on river discharge, generally peaking
in July/August3,14 (Fig. 1b). Mean annual basin precipitation is
920, 1,396 and 920mmyr−1 in the Sapta Koshi, Narayani and
Karnali catchments, respectively. However, precipitation is spatially
heterogeneous (Fig. 1a) and is strongly controlled by orography,
reaching a maximum between elevations of 2–3 km (refs 15,16).
The upper parts of the catchments are glaciated (Fig. 1a), covering
between 4 and 15% of the catchment area (Table 1).

We calculated mean basin-wide daily precipitation rate and use
daily discharge measurements to compute specific water discharge
for all the studied drainage basins (see Methods). Plots of daily
precipitation versus specific discharge highlight a considerable
scatter within the ∼30-year datasets (Fig. 2a). However, the
chronology of the data exhibits a well-defined annual cycle,
showing an increase of discharge with increasing precipitation
during the pre-ISM (March–May) to the ISM (June–September)
and a decrease during the post-ISM (October–November). The
systematic higher discharge for a given precipitation rate during
the post-ISM compared with the pre-ISM is striking. The data
consequently shows an annual anticlockwise hysteresis loop
(Fig. 2a). A 30-day moving average highlights the temporal
consistency of the loop from year to year (Fig. 2a, inset). Data
scattering results from inter-annual variability, particularly during
the post-ISM, as illustrated by comparing the data during a strong
or a weak ISM year (see Supplementary Fig. S1). The annual
anticlockwise hysteresis loop is observed in all studied basins
(Fig. 2b), regardless of the geological units, the presence of glaciers
or snow cover (Table 1).

Anticlockwise hysteresis loops imply that precipitation is
temporarily stored within the catchments and not transferred
directly to the river during the pre-ISM and ISM seasons, whereas
the storage compartment is drained during the post-ISM. Glaciers
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Figure 1 |Hydrological setting of the Nepal Himalayas. a, Precipitation distribution map; hydrological discharge stations used in this study (diamonds)
and contours (red lines) of the studied drainage basins. Grey lines mark political boundaries. Mean annual precipitation rates (see Methods), representing
50 years of data, are draped over shaded relief. River network is shown in blue and glaciers in white (after ref. 29). b, Mean basin-wide precipitation
(1951–2006, in green) and potential evapotranspiration (red) for the Narayani drainage basin. The bold blue line with blue shading represents the mean,
maximum and minimum daily discharge over 34 years (station 450). c, Simplified geological map of Nepal30: QS; Quaternary Sediments; SW, Siwaliks
Formation; LH, metasediments of the Lesser Himalayas; HHC, High Himalayan Crystalline; TSS, Tethyan Sediment Series.

can be directly ruled out as the main contributor to the observed
hysteresis effect because the release of water by glacier or snow
melt occurs principally during the pre-ISM to ISM season3,13

(Fig. 3b and Supplementary Fig. S2), which is not consistent with
the anticlockwise nature of the hysteresis. Moreover, hysteresis
effects are observed in both glaciated and unglaciated catchments
(Fig. 2b). As the potential evapotranspiration in the Himalayas
reaches a maximum during the pre-ISM, in April–May17 (Fig. 1b),
this could qualitatively explain the anticlockwise hysteresis loop.
However, it is estimated to account for less than 10% of the
overall hydrological budget3, so this effect probably plays a minor
role, mainly because the magnitude of evapotranspiration rapidly
decreases with elevation17. Consequently, the main mechanism
explaining the hysteresis effect is probably a transient storage
of water in a groundwater unit during the rising ISM and
its post-ISM release.

To more precisely determine the role of groundwater storage
on the Himalayan hydrological cycle, we solved the water balance
at catchment scale to discriminate time response distribution in
discharge data and relate it to storage compartments through
hydrological modelling. We used a modified version of the
conceptual hydrological model GR2M (see Methods), which
addresses several physical processes in a simplified, but proven
robust, way in a wide range of climatological settings18. Because the
observed hysteresis effect is a seasonal process, daily modelling of
hydrological processes is not the pertinent scale for our purpose
(see ref. 19). The great diversity of the involved processes, within

a wide range of environmental settings, limits the reliability of
short-term modelling, so we modelled the data at a monthly rather
than at a daily scale. Note that we nevertheless tested daily-scale
modelling (see Methods and Supplementary Table S1). Modelled
daily results are generally similar to monthly ones (Table 1),
but the efficiency, however, is less well described (Table 1 and
Supplementary Table S1). The model simulates the catchment
response to rainfall in terms of river discharge and incorporates
three components (see Supplementary Fig. S3): (1) a snow
module based on the Hydrologiska Byråns Vattenbalansavdelning
(HBV) approach20 (see Methods), (2) a fast rain-to-discharge
flow related to quick runoff processes, and (3) a slow-flow
component representing groundwater contribution. This third
reservoir retards the rain-discharge response and yields baseflow
during dry periods. It is characterized by a response time tc,
defined as the time for a hydrological system to reach equilibrium
after the hydraulic head has changed1. The model is forced
by precipitation, temperature and potential evapotranspiration
(see Methods). We calibrated on the logarithm of all the
observed daily water discharge to account for the large range of
discharges, that is to apply identical weights to both high- and
low-water stages, and under the constraint that total observed
and modelled discharge volumes are identical. The modelling
is robust in most catchments: hysteresis loops are confidently
reproduced for all catchments (for example Supplementary Fig.
S4) with Nash–Sutcliffe coefficients of 0.89, 0.91 and 0.92 for
Sapta Koshi, Narayani and Karnali basins, respectively (Table 1).
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Table 1 | Properties of the studied drainage basins and summary of results (monthly modelling).

Station no. 240 280* 410 447 450* 670 695*
Basin Karnali Karnali Kali Gandaki Trishuli Narayani Dudh Koshi Sapta Koshi

Lat (◦) N 28.95 28.64 28.01 27.97 27.71 27.27 26.87
Long (◦) E 81.44 81.29 83.60 85.18 84.43 86.66 87.16
Size (km2) 21,121 45,967 7,169 4,428 32,002 3,880 57,719
Precipitation (mmyr−1) 558 920 1,030 692 1,396 1,295 920
Discharge (mmyr−1) 650 789 1,145 1,513 1,145 1,598 1,039
ETR (mmyr−1) 176 234 178 121 367 178 179
Availability of discharge 1975–2006 1973–2006 1979–1995 1977–2006 1973–2006 1987–2006 1977–2006
% Area glaciated 5.9 4.7 10.3 6.5 9.9 14.7 7.3
Max elevation (m asl.) 7,549 7,697 8,147 7,352 8,147 8,848 8,848
Nash–Sutcliffe coef. 0.93 0.92 0.91 0.79 0.91 0.94 0.89
Recession exp. b (Q= aSb) † 1.01 1.11 1.01 1.02 1.16 1.17 1.01
Storage capacity (km3) 3.1± 1.2 8.1±3.3 1.3±0.6 0.9±0.4 9.9±3 1.2±0.4 10.3±6
Storage capacity (mm) 150±60 175±70 180±80 200±80 310± 125 300± 105 180± 100
tc GR2M (days)† 46±5 50±5 45±4 38±4 50±5 53± 11 47±4
tc recession curve (days)† 40± 10 46± 15 41± 15 44± 11 40± 13 45±9 41± 11
Ice+snow melt (km3 yr−1) 1.2 4.1 0.7 0.8 5.3 0.6 4.1
% snow melt 12 7 3 13 2 6 5
Geology units % coverage
QS/SW/LH/HHC/TSS

0/0/17/44/39 0/5/33/25/37 10/0/32/15/43 0/0/8/ 37/55 2/0/42/23/33 0/0/26/73/1 6/0/16/40/38

Station no. 286 350 360 589 1
Basin Saradha Rapti Rapti Bagmati Jhikhu Khola

Lat (◦) N 28.64 27.90 27.95 27.11 27.59
Long (◦) E 82.03 82.85 82.23 85.48 85.67
Size (km2) 808 3,648 5,198 2,849 111
Precipitation (mmyr−1) 1,107 1,522 1,470 1,932 1,285
Discharge (mmyr−1) 460 903 787 1,205 374
ETR (mmyr−1) 656 720 654 839 171
Availability of discharge 1976–2006 1978–2006 1985–2006 2001–2006 1998–2006
% Area glaciated 0.0 0.0 0.0 0.0 0.0
Max elevation (m asl.) 2,800 3,623 3,623 2,795 2,200
Nash–Sutcliffe coef. 0.79 0.88 0.95 0.88 0.29
Recession exp. b (Q= aSb) 1.16 1.01 1.18 1.12 1.18
Storage capacity (km3) 0.21±0.08 1.6±0.7 1.8±0.8 1.2±0.5 0.03±0.01
Storage capacity (mm) 260±90 430± 180 350± 150 440± 180 300± 120
tc GR2M (days) 37±3 36±8 41±8 30±5 120±35
tc recession curve (days) 37± 13 44± 17 42± 15 41± 19 77±24
Ice+snow melt (km3 yr−1) n.a. n.a. n.a. n.a. n.a.
% snow melt n.a. n.a. n.a. n.a. n.a.
Geology units % coverage
QS/SW/LH/HHC/TSS

0/3/96/0/1 0/5/62/0/33 8/24/45/0/23 13/42/2/11/32 0/0/11/17/72

Maximum elevation is used as a proxy for snow occurrence during winter (considering winter snowline at∼3,000m asl.; ref. 16). Precipitation rate is computed as a mean basin value. Specific discharge is
computed from daily river gauge data. Real evapotranspiration (ETR) is computed from our modelling (seeMethods). Storage represents the mean annual amplitude of storage variation, expressed in both
km3 and mm, and its uncertainty(Supplementary Fig. S2). tc is the characteristic basin response time, derived from hydrological modelling or from the recession curve of hydrographs (see Methods). The
% glaciated values are calculated using data from ref. 29. Icemelt is the annual volumetric glacier icemelt contribution to the rivers, estimated from the relative baseflow shift in the precipitation–discharge
plot (Fig. 2b). % snow melt is the contribution of snow to discharge (both directly and via the aquifer). QS: Quaternary Sediments, SW: Siwaliks Formation, LH: metasediments of the Lesser Himalayas,
HHC: High Himalayan Crystalline, TSS: Tethyan Sediment Series. *Three main basins of the Nepal Himalayas outlined in red in Fig. 1. †See Methods.

The modelling implies a significant storage of water within the
slow-flow reservoir, with calculated tc longer than one month
(Table 1). Modelled data are in agreement with tc values derived
directly from the fit of baseflow recession curves21 (see Methods
and Table 1). This delay between precipitation and discharge
yields baseflow during dry periods and is responsible for the
existence of the hysteresis loops. Shorter tc, associated with a
low storage capacity (for example ten days, equivalent to twenty
times smaller storage capacity), do not allow one to reproduce
the observed hysteresis loops analytically (see Methods and
Supplementary Fig. S5c).

The nature of the groundwater system controlling the hysteresis
effect is provided by its response time tc. For groundwater

systems, tc is inversely proportional to the hydraulic diffusivity D

(transmissivity divided by storage coefficient) and is proportional
to the square of the characteristic aquifer scale Lc: tc ∼ L

2
cD

−1

(ref. 1). Lc is the characteristic distance between the aquifer and
streams, which is approximately the hillslope length if aquifers are
spread homogeneously over the drainage basin. Considering Lc
in the range 0.5–5 km and tc of ∼45 days, equivalent diffusivity
values are about ∼1m2 s−1, a typical value for aquifers in fractured
rocks8 (0.01–10m2 s−1). Recession curve exponents calculated on
the falling limb of the post-ISM hydrograph (see Methods) are
close to 1, and suggest the contribution of a confined aquifer to
discharge21. The estimated aquifer storage capacity is∼180mm per
unit area, representing ∼28 km3 for the three main catchments of
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Figure 2 | Precipitation–discharge (P–Q) anticlockwise hysteresis plot. a, Bi-logarithmic P–Q plot of daily data for the Narayani basin over 34 years at
station 450 (∼12,300 data points). Data plotted are specific discharges (discharges normalized by drainage area) and mean basin precipitation rates. Note
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Figure 3 | 10-year (1997–2006) temporal variability of several
hydrological compartments, Narayani basin. a, Daily precipitation (green)
and daily specific river discharge (blue). b, Temperature (orange) as a
glacier melt proxy (from CRU; ref. 26) and percentage of basin-wide snow
cover (dark green, data fromMODIS MOD10C2 v.5 (ref. 25) with an 8-day
temporal resolution). c, Calculated groundwater storage (red), shading
illustrating model uncertainty (Supplementary Fig. S2). Ground water table
variation (dark blue) observed in a dug-well in Jhikhu Khola Basin22

(station no. 1) from ref. 22 and unpublished data provided by these authors.
The abnormal low water table in 2004 probably results from exhaustive
exploitation.

Nepal (Table 1). Modelling also indicates that the annual volume
of water flowing through this groundwater system represents
∼2/3 of the annual river discharge (Supplementary Table S1).
The modelled storage dynamics matches the groundwater table
variations observed in dug-wells, for example in Jhikhu Khola
catchment22 (Fig. 3c). The ratio between calculated water storage
variations (Table 1) and water-table depth observed here indicates
low porosity values of a few per cent. We conclude from
low porosity values23, confined behaviour21 and characteristic
diffusivity values8, that the aquifer is predominantly fractured
basement. Average water-table variation (total annual storage
capacity divided by rock porosity, considering low porosity value)
is estimated to a few tens ofmetres in the studied catchments.

We show that the very specific climatic regime of Nepal,
characterized by distinct long-lasting wet and dry seasons and a
major increase of precipitation during the ISM (Figs 1b and 3a),
is responsible for the recharge of fractured basement aquifers.
The aquifers are refilled during the ISM and purged in the post-
ISM, leading to the annual hysteresis effect that we observed.
This behaviour is observed in all the studied drainage basins,
independent of their size, physiographic location or main basement
geology (Fig. 1, Table 1 and Supplementary Fig. S6). Very little is
known in Nepal about the actual aquifer, its physical properties and
the relationship with tectonic structures. These critical unknowns
limit the further understanding of deep groundwater in the
Himalayas, including water resources, flood hazard, landslide
risk due to pore-pressure saturation as well as deep weathering
and dissolution processes. Finally, it is noticeable that during
winter (December–February) the precipitation–discharge graphs
(Fig. 2b) show a systematic higher baseflow for glaciated catchments
compared with unglaciated ones. Because glaciers represent an
additional water storage component in some catchments, this
vertical shift of the hysteresis loops of glaciated catchments reveals
the contribution of glacial melt (and snow in spring) to river
discharge and can be used to quantify it. From this approach (see
Methods), the snow and glacier melt contribution to river discharge
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is estimated to be ∼14± 7 km3 yr−1 considering the three main
catchments in Nepal (Table 1), which accounts for∼10% of annual
river discharge. In Nepal, the volume of water flowing through
fractured basement aquifer is approximately six times higher than
the contribution of glacial and snowmelt to river discharge.

Methods
Data and data processing. Precipitation is calculated using APHRODITE
(Asian Precipitation Highly Resolved Observational Data Integration Towards
Evaluation of Water Resources) data (http://www.chikyu.ac.jp/precip/). Here,
we use the daily version for monsoon Asia APHRO_MA_V1003R1, with a
spatial resolution of 0.25◦ (ref. 24). It is currently the best available dataset
for Nepal10. We use raw river discharge data provided by the Department of
Hydrology and Meteorology of Nepal (DHM; see for example ref. 14), derived
from daily stage readings and calibrated rating curves (no interpolated data are
used). Potential evapotranspiration is estimated using an elevation-based model
developed for Nepal17. Basin-wide snow cover is obtained from MOD10C2
version 5 (http://nsidc.org/data/mod10c2v5.html), with an 8-day temporal and
500m spatial resolution25. We used the monthly temperature dataset CRU
TS3.0 (ref. 26), with 0.5◦ gridded resolution. Daily temperature is obtained
from linear interpolation.

Baseflow recession analysis. Recession curves have been analysed for time-series
of at least 60 days, where daily rainfall is below potential evapotranspiration
and cumulated rainfall <25mm for each recession curve. The first 15 days of
each recession are not considered when fitting the recession model. Both linear
and nonlinear models are fitted to the relationship between river discharge
Q and storage S: Q = aS

b. Analytically, exponent b changes from 1 when
transmissivity is constant over time (most likely for confined or very deep
unconfined aquifers) to 2 for unconfined flow21. Coefficient a is the inverse of the
response time when b∼ 1.

The annual snow and glacier melt contribution is estimated from the baseflow
offset between glaciated and unglaciated basins along the discharge axis of the
hysteresis plots (Fig. 2b). The scatter of baseflow within unglaciated basins
(∼5mm/month) is considered as uncertainty. For the Mount Everest region (here,
Dudh Koshi, station 670), our estimated melt volume (0.6 km3 yr−1, Table 1) is
consistent with independent glacier mass-loss estimates, measured on ∼10% of the
glaciated area using satellite altimetry27.

Hydrological modelling. We consider parsimonious conceptual
models at daily and monthly timescales, GR4J and GR2M
(http://www.cemagref.fr/webgr/IndexGB.htm). The initial versions have
been built up on four and two parameters respectively. We added a distributed
snow module based on the HBV conceptual approach20. Data scarcity and the
requirement of a parsimonious model structure prevented application of a
more complex approach. Rainfall and temperature data are redistributed on the
ETOPO2v2 (2�� resolution) elevation grid. The parameter Tsep separates rainfall
and snowfall (Supplementary Fig. S3). The fusion temperature (Tf) is set to 0 ◦C.
Snow melt (Sm) is driven by a degree-day approach with a constant melting factor
M , Sm =M (T −Tf). The snow module adds two parameters to the initial GR2M
and GR4J models for the whole basin. Modelled snow cover fractions are validated
onMODIS snow cover25 extent (r2 = 0.8).

The modified GR2M is based on three storage compartments; the snow
storage, soil store and routing store, interpreted as ‘groundwater storage’
(Supplementary Fig. S3). Liquid rainfall and snow melt are partitioned into excess
rainfall, actual evapotranspiration, slow percolation and water remaining in the
soil store based on a single parameter. Actual evaporotranspiration is driven
by potential evaporotranspiration and reservoir water availability. At monthly
timescales, the routing store gathers all water and computes discharge. The
model discharge calculation was modified on a physical basis to include a priori
linear behaviour from recession curve analysis with a variable time response X5,
Q=R/X5. GR models allow water exchanges with outside the basin (for example
subsurface flow) computed with the parameter X2. A first order estimate of the
groundwater flux contribution to river discharge is computed by tracking water
flow from the routing store of GR4J model.

Modulation of hysteresis effect. The shape of the hysteresis curve is used to deduce
catchment groundwater storage capacity. Forward modelling studies allow stepwise
interpretation of the hysteresis shape with respect to hydrological processes or
observation errors, which might have the potential to explain the hysteresis effect.
The Rapti catchment (station 360 unglaciated, with no snow) is considered as a
reference to test the cumulative impact of several contributions.

We tested four factors, the first being the effect of a systematic underestimation
of precipitation and snow on the shape of the hysteresis loop. Applying 30% of
excess rainfall10 shrinks the hysteresis along the precipitation axis (Supplementary
Fig. S5a). The second was the impact of snow storage and a delayed melting
contribution to discharge, using GLDAS-NOAH model output28 as a realistic
a priori estimate (100mm snow yr−1). The snow melt contribution drags the

baseflow upward (in March, April and June) but does not change the general shape
of the hysteresis loop (Supplementary Fig. S5a). The third was the effect of tc on
the shape of hysteresis loops, where the decrease of tc from ∼45 to 10 days and
the associated decrease of the storage capacity does not allow the reproduction of
the hysteresis loops observed (Supplementary Fig. S5c). The last was the effect of
glacier melt on the shape of the hysteresis loops, where we considered a glacier
melt contribution at a constant rate and following a seasonal temperature cycle.
This induces a year-long vertical shift of the hysteresis curve (increased baseflow),
keeping its shape intact (Supplementary Fig. S5b).
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4.2 General discussion

In this manuscript, I presented for the first time an annual anticlockwise hysteresis loop between

precipitation and river discharge. This effect provides the unique chance to highlight the existence of an

important hydrological compartment of the Himalayan discharge cycle, the fractured basement aquifer.

The aquifer contributes a transient storage volume to the Himalayan discharge cycle, where water is

temporally stored and retarded, yielding river discharge in the dry seasons. From the application

of a conceptual hydrological model it is actually possible to quantify the transient storage volume.

These findings have very important implications with regards to flood hazard management, landslide

suggestibility and water resources. However, the calculated storage volume represents only a mean

basin value, and it is difficult to distribute it within the basin. This is mainly because the subsurface

properties in the studied basins are not well known and because of large intra-basin heterogeneities.

The results provide a first order estimation of how water is transferred to river discharge, and of the

response-time of the aquifer storage capacity.

In contrast to Bookhagen and Burbank [2010], I show that the transient storage of groundwater plays

an important role in the Himalayan discharge cycle and has to be taken into account for hydrological

modelling and/or stream flow predictions, for example for hydropower purposes. For annual budget

analysis however, it is less important since the storage volume fluctuates always around the same mean.

This is due to the very repetitive occurrence of the Indian Summer Monsoon, imposing a well defined

annual cycle.

A second important observation is the similarity in the recharge-discharge behaviour between all

studied basins. Regardless if the basins are situated in the front of the Himalayan range or in the

glaciated High Himalayas, all basins describe the same hysteresis effect, independently of the basin

lithology. Only, those basins with considerable glaciated areas and seasonal snow cover yield relatively

more baseflow contribution to the river discharge. This highlights one more hydrological component,

the snow and ice melt contribution to the river discharge, which can be actually quantified from the

baseflow difference between glaciated and unglaciated basins. The contribution of ice and snow melt

to the annual river discharge is ∼ 10%, confirming the importance of ice and snowmelt as a water

resource [Immerzeel et al., 2010]. This results are significantly higher than the ∼ 4% reported by Alford

and Armstrong [2010]. First, this might be because Alford and Armstrong [2010] did not include snowmelt

in their analysis and second, their temperature driven energy gradient model might be restrain by the

temperature extrapolation technique (1◦C/160 m and 5400 m asl. set to 0◦). Indeed, my estimations

show that ice melt accounts for approximately 5% of the annual river discharge.

In summary, the ISM exerts a very clear and well defined control on the Himalayan discharge cycle.

The very prominent transient groundwater storage volume leads to a 1 to 2 month phase shift in the

transfer of rain to river discharge, retarding discharge in the early ISM season and yielding discharge

in the dry seasons. Glacier and snow melt volumes are significant and maintain the baseflow of

the rivers all year around. This three findings: 1) seasonal cyclicity, 2) groundwater storage and 3)
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melt contribution, are fundamental to understand erosion and transport processes on a sub-seasonal

resolution.
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Chapter 5

Source, mobilization and transport of

sediments

5.1 Introduction

In the two previous chapters I have presented two important properties: precipitation and river dis-

charge, to evaluate the erosion processes of mobilisation and transport in the Nepal Himalayas. Intense

rainfall can trigger the mobilisation of material [e.g. Pratt et al., 2002; Dadson et al., 2003; Bookhagen et al.,

2005a; Wulf et al., 2010], rivers then transport the eroded materials out of the mountain range and

deposit them in the foreland or the oceans [e.g. Métivier et al., 1999; Galy and France-Lanord, 2001; Clift

et al., 2008a]. Therefore it is important to have a good knowledge on 1) the spatio-temporal distribution

of rainfall, 2) the transfer of precipitation to river discharge, and finally 3) the availability of water to

mobilize and transport material. In this chapter, I will investigate precipitation, river discharge and

suspended sediment concentration measurements of several larger drainage basins in the Nepal Hi-

malayas. As the precipitation and the discharge measurements, all suspended sediment concentrations

are daily measurements.

The suspended sediment concentration data was collected from several places in Nepal. The largest

part of the data has been obtained from the Department of Hydrology and Meteorology Nepal. Some

data are published in feasibility reports of hydropower projects. Unlike the other datasets, suspended

sediment concentration data was available only on hard-cover and had to be digitalized beforehand.

Most of the data has never been published before and provides a new long-term and high resolution

dataset to the Earth Sciences community. As such, it is the largest and most complete suspended

sediment dataset for the whole Himalayas.

The following manuscript, which is submitted to Earth Planetary Sciences Letters has the motivation

to provide suspended sediment erosion rates (denudation rates) for the three major basins of the Nepal

Himalayas and several of their tributaries, and to explain the relations of mass fluxes with discharge
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and precipitation throughout the seasons.
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Abstract:

Understanding the dynamics of sediment flux is a key  issue to constrain modern erosion rates in 

mountain belts and the still debated level of control exerted by precipitation, topography and tectonics. 

In the Himalayas, the well defined monsoon seasonality, together with active tectonics and strong relief 

provide an ideal environment to assess these possible interactions. For this purpose, we present here a 

new compilation of daily suspended sediment data for 13 stations of the major rivers of the Nepal 

Himalayas. We analyze the relationships of sediment transport with daily  river discharge and 

precipitation data as well as with morphometric parameters. We show that suspended sediment 

concentrations vary systematically  through the seasons, displaying an annual clockwise hysteresis 
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effect when plotted against river discharge. This hysteresis effect  disappears when suspended sediment 

fluxes are directly compared with direct storm discharge. Therefore we attribute the hysteresis effect to 

a dilution effect by groundwater rather than a supply  effect. We infer a rating model to calculate erosion 

rates directly  from long river discharge chronicles. We show that, when normalized by drainage area 

and mean sediment flux, all rivers exhibit the same trend. This implies that all river basins have the 

same erosion behavior, independent of location, size and catchment characteristics. Erosion rates 

calculated from suspended sediment  fluxes range between 0.1 and 3.5 mm/yr. The highest erosion rates 

are calculated for stations situated at the mountain front and in the Annapurna region, while suspended 

sediment erosion rates in the Higher Himalayas are relatively low. We propose that material transport in 

the rivers depends on the supply from hillslopes, which is controlled by the occurrence of rainfall 

producing direct runoff. In other words, the rivers in the Nepal Himalayas are supply-limited and the 

hillsopes as a contributing source are transport-limited. We also show that erosion processes are not as 

much controlled by  infrequently occurring extreme events, than by moderate ones with a high 

recurrence interval.

1. Introduction

Suspended sediment load in rivers is the primary proxy for present-day  mean catchment denudation 

rates [Dadson et al., 2003; Summerfield and Hulton, 1994]. As such, these data are of first  order 

importance to quantify the dependencies between denudation rates and their controlling factors 

[Dadson et  al., 2003; Summerfield and Hulton, 1994; Milliman and Syvitski, 1992; Pinet  and Souriau, 

1988; Ahnert, 1970]. However, the use of bulk sediment  load measurements to derive erosion rates is 

not straightforward [Fuller et al., 2003] and needs to take into account the sediment transfer 

mechanisms from hillslopes to the rivers, as well as within the rivers themselves [e.g. Benda and 

Dunne, 1997].  Discrete landslide events represent a major supply of material from hillslopes to rivers 

in rapidly evolving mountain settings, [Korup, 2009; Fuller et al., 2003; Hovius et al., 2000], their 

occurrence being tightly  coupled to the spatio-temporal distribution of earthquakes [Hovius et al., 2011, 

2000; Lin et al., 2008; Meunier et al., 2008] and of extreme precipitation events [Lin et al., 2008; 

Bookhagen et al., 2005b; Hovius et al., 2000; Iverson, 2000].

The capacity of rivers to transport sediments in suspension is proportional to their discharge and 
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then to rainfall and to the hydrologic properties of their drainage basin [e.g. Tucker and Slingerland, 

1997]. Most  of the parameters controlling sediment fluxes in mountain belts such as precipitation, 

floods, earthquakes, landslides among others, are consequently characterized by large intrinsic 

variabilities. Additionally, suspended sediment data themselves show a large variability [e.g. Kirchner 

et al., 2001]. Fuller et  al. [2003]  demonstrated that the interpretation of suspended sediment records in 

Taiwan needs at least to distinguish between transport-limited (sediments are available and variations 

in sediment flux depends only on the transport capacity  of the river) and supply-limited (variations in 

sediment flux depend on the supply  of sediments to the river from the hillslopes) conditions. Numerous 

studies also document discrepancies between short-term erosion rates derived from suspended sediment 

data and millennial to geological scale ones [Palumbo et al., 2011; Meyer et al., 2010; Dadson et  al., 

2003; Kirchner et  al., 2001; Schaller et al., 2001]. Several reasons are invoked for the diminished 

relevance of the sediment flux calculation, such as the quality of the suspended sediment record itself, 

sampling frequency, length of record, characteristic timescale of occurrence of events, internal storage 

within drainage basins, or anthropogenic influences.

In the Himalayas, the spatial distribution of erosion is thought to scale with tectonics [e.g. Burbank 

et al., 2003], topography [e.g. Ouimet et al., 2009; Vance et al., 2003] and/or rainfall [e.g. Deeken et  al., 

2011; Gabet et al., 2008]. The quantification of erosion rates and a better understanding of actual 

impact of potential controlling factors have fundamental implications regarding the interactions and 

feedbacks between climate and tectonics [Wobus et al., 2005; Burbank et al., 2003; Beaumont et al., 

2001; France-lanord and Derry, 1997; Raymo and Ruddiman, 1992;]. In the Himalayas, long-term 

changes in exhumation rates and patterns, deduced from thermochronology, have been attributed to 

climatic variations [Grujic et al., 2006; Huntington et al., 2006]. The possible coupling between erosion 

and precipitation in the Himalayas is inferred from the coincidence between spatial variations of long-

term exhumation rates, also determined by thermochronology, and the present-day spatial distribution 

of rainfall [Deeken et al., 2011; Thiede et al., 2004; Zeitler et al., 2001]. The coincidence of spatial 

variations of erosion rates with present-day  precipitation gradient is also documented at a shorter time-

scale, for example, by Garzanti et al. [2007] using provenance analysis or by Gabet et al. [2008] using 

suspended sediment load data. However this coincidence is not always observed, particularly in 

thermochronological data [Thiede et al., 2009; Burbank et al., 2003]. To better understand the impact of 
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climate on erosion in the Himalayas, some authors focused their study on a millennial time scale and 

looked at relationships between erosion and Indian Summer Monsoon (ISM) intensity [Clift et al., 

2008; Bookhagen et al., 2005a; Goodbred and Kuehl, 2000]. These studies show that Himalayan 

erosion is coupled to ISM  intensity variations over the last thousands years, a finding also supported at 

the annual or event scale [e.g. Wulf et al. 2010, Bookhagen et al. 2005b]. Bookhagen et al. [2005b] 

observed enhanced hillslope erosion and increased suspended sediment flux in the Sutlej catchment 

during the 2002 abnormal monsoon year and Wulf et al. [2010] shows that fluvial sediment fluxes are 

largely controlled by episodic heavy  monsoon rainstorms. The existence of rainfall thresholds for the 

triggering of landslides was proposed by Dahal and Hasegawa [2008], Gabet et al. [2004] and 

Froehlich et al., [1990], illustrating any  coupling between precipitation and erosional processes is 

complex in detail.

This paper focuses on the analysis of daily sediment flux measurements covering several years, 

based on a new suspended sediment concentration compilation available for the whole Nepal 

Himalayas. Our data covers the three major drainage basins of Nepal and several tributaries. We 

characterize the underlying mechanisms of suspended sediment vs. discharge hysteresis phenomena. 

We present the temporal magnitude-frequency distribution of suspended sediment fluxes. On the basis 

of the clear relationship between direct river discharge and sediment fluxes we propose a new sediment 

transport rating model, allowing us to deduce basin wide denudation rates from long (~30 yr) river 

discharge chronicles. Finally, we discuss these basin-wide denudation rates in the context  of basin 

characteristics and propose a conceptual model of mobilization and transportation of material within 

the monsoonal discharge cycle and its possible implications. The goal of this study is: 1) to better 

understand the impact of ISM on erosion fluxes, 2) to deduce basin-wide erosion rates from suspended 

sediments, and 3) to contribute to the understanding of the spatio-temporal relation between erosion, 

precipitation, river discharge and topography.

2. Local settings 

The southern front of the central Himalayas has two very distinct  climatic periods [Hannah et al., 

2005] an extremely  wet (June-September) ISM season and the very dry (October-May) season. The dry 

season can be subdivided into post-ISM  (October - November), winter (December – February) and pre-
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ISM  (March – May). Up to 80% of the annual amount of precipitation falls during ISM  season and 

only a small fraction (20%) in non-ISM  season [Andermann et  al., 2011; Bookhagen and Burbank, 

2006; Shrestha, 2000]. The precipitation distribution across the mountain front is strongly influenced 

by orographic effects, resulting in a tenfold increase from the southern lowlands to elevations of ~4000 

m asl. dropping to a minimum of ~250 mm/yr on the Tibetan plateau [Andermann et al., 2011; Anders 

et al., 2006; Bookhagen and Burbank, 2006]. Annual precipitation rates are >1500 mm/yr and locally 

more than 4000 mm/yr along the Himalayan front of Nepal [Andermann et al., 2011; Shrestha, 2000]. 

The stupendous differences between the wet and dry seasons exert a control on the environment, (e.g. 

water availability, soil saturation, vegetation cover, pore pressure, landslide vulnerability). The ISM 

may even inhibit seismic activity  due to a water storage overburden in the subsurface [Bollinger et al., 

2007]. In particular, the volume of groundwater water storage and consequently the availability of 

water is tightly coupled to the ISM [Andermann et al., in press]. The strong variability, intensity and 

duration of ISM precipitation can be linked to the El Nino/Southern Oscillation (ENSO cycles) 

[Shrestha, 2000]. Intense ISM years enhance the annual precipitation amount by 25 – 50% at  elevations 

below 3 km asl. and up to 200% at higher elevations [Bookhagen et al., 2005b]. During these abnormal 

years, moisture can be transported deep into the mountain front, into the usually arid mountain interior 

and the Tibetan Plateau [Wulf et al., 2010].

The entire Himalayan chain in Nepal is drained through three major watersheds (Fig. 1 and Fig. 2), 

(1) Sapta-Koshi in the east, (2) Narayani in the center and (3) Karnali Basin in the west. These three 

basins differ considerably with respect to annual rainfall rate, size, elevation distribution and 

contributing area of the Tibetan Plateau (Table 1). Remarkable is the Sapta-Koshi basin, where the 

Arun River cuts through the Himalayan chain (Fig. 1), with ~55% of its total drainage area (Sapta-

Koshi Basin) on the Tibetan Plateau. The part of Sapta-Koshi Basin within the Himalayan front is very 

humid and characterized by high precipitation intensities (Fig. 2). The Narayani Basin is the most 

humid basin in Nepal (Table 1). In particular, very high precipitation intensities are recorded in front of 

the Annapurna massif (Fig. 2). Glacier cover is relatively  high (14%) and the contribution from the 

plateau is relatively small. In the Karnali Basin, the Himalayan front is less pronounced and the 

mountains are not as high (max. ~7700 m asl.) and thus, the orographic rainfall gradient is more gentle. 

Rainfall intensities in the upper Karnali Basin are comparably low (Fig. 2) and proportionally the 

5



6

0

30
0

10
00

25
00

45
00

>7
00

0

El
ev

at
io

n 
[m

 a
sl

.]

0
10

0
20

0
km

R
iv

er
 g

au
ge

 s
ta

tio
n

G
la

ci
er

s
La

ke

24
0

28
0

28
6 36

0
35

0
41

0
45

044
7 58

9

0

67
0

69
5

79
5

St
at

io
n 

N
o.

  D
ra

in
ag

e 
ba

si
n

   
24

0 
  

   
 U

pp
er

 K
ar

na
li

   
28

0 
   

 K
ar

na
li

   
28

6 
   

 S
ar

ad
ha

   
35

0 
   

 U
pe

r R
ap

ti
   

36
0 

   
 R

ap
ti

   
41

0 
   

 K
al

i-G
an

da
ki

   
44

7 
   

 T
ris

hu
li

   
45

0 
   

 N
ar

ay
an

i
   

58
9 

   
 B

ag
m

at
i

   
67

0 
   

 D
hu

dh
-K

os
hi

   
69

5 
   

 S
ap

ta
-K

os
hi

   
79

5 
   

 K
an

ka
i M

ai

or
og

ra
ph

ic
 b

ar
rie

r

Ar
un

 R
iv

er

F
ig

ur
e 

1:
 M

ap
 o

f t
he

 th
re

e 
m

ai
n 

dr
ai

na
ge

 b
as

in
s o

f t
he

 c
en

tr
al

 H
im

al
ay

as
 in

 N
ep

al
, f

ro
m

 th
e 

ea
st

 to
 th

e 
w

es
t: 

K
ar

na
li 

(r
ed

), 
N

ar
ay

an
i (

bl
ue

) a
nd

 S
ap

ta
 K

os
hi

 B
as

in
 (g

re
en

). 
C

ol
or

 c
od

in
g 

is
 c

ar
ri

ed
 th

ro
ug

h 
th

e 
en

tir
e 

m
an

us
cr

ip
t. 

H
yd

ro
lo

gi
ca

l s
ta

tio
ns

, f
ro

m
 

w
he

re
 w

e 
an

al
yz

ed
 d

at
a 

in
 th

is
 w

or
k,

 a
re

 in
di

ca
te

d 
w

ith
 d

ia
m

on
ds

 a
nd

 th
ei

r r
es

pe
ct

iv
e 

st
at

io
n 

nu
m

be
r. 

G
re

y 
bo

un
da

ri
es

 m
ar

k 
th

e 
ou

tli
ne

s o
f s

ub
-c

at
ch

m
en

ts
. c

ol
or

 c
od

in
g 

co
rr

es
po

nd
s t

o 
el

ev
at

io
n,

 d
ra

pe
d 

ov
er

 sh
ad

ed
 re

lie
f. 

G
la

ci
er

s a
re

 in
di

ca
te

d 
in

 d
ar

k 
bl

ue
.



7

010203040506070

95
%

 ra
in

fa
ll

qu
an

til
e

[m
m

/d
]

0
10

20
30

A r 1
03  [

km
!]

01020304050
Q  109 [m!/s]

Q
 =

 0
.8

4 
+ 

1.
66

·A
r2  =

 0
.9

4

a
b

Ka
rn
ali

N
ar
ay
an
i

K
os
hi

An
na

pu
rn

a 
M

as
si

f

Ar
un

 R
iv

er

F
ig

ur
e 

2:
 a

) M
ap

 o
f p

re
ci

pi
ta

tio
n 

qu
an

til
es

 d
is

tr
ib

ut
io

n,
 il

lu
st

ra
tin

g 
th

e 
95

%
 q

ua
nt

ile
 o

f d
ai

ly
 p

re
ci

pi
ta

tio
n 

ra
te

s, 
ca

lc
ul

at
ed

 o
n 

th
e 

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty
 o

f 3
0 

ye
ar

s o
f d

ai
ly

 p
re

ci
pi

ta
tio

n 
ra

te
s o

f e
ac

h 
pi

xe
l. 

Pr
ec

ip
ita

tio
n 

in
fo

rm
at

io
n 

is
 d

er
iv

ed
 fr

om
 

AP
H

RO
D

IT
E 

da
ta

se
t. 

b)
 R

eg
re

ss
io

n 
m

ea
n 

an
nu

al
 b

as
in

 d
is

ch
ar

ge
 v

s. 
ba

si
n 

ar
ea

 A
r (

on
ly

 H
im

al
ay

an
 fr

on
t).

 R
ed

 d
ot

te
d 

lin
e 

re
pr

es
en

ts
 th

e 
H

im
al

ay
an

 ri
dg

e 
cr

es
t e

xt
ra

ct
ed

 fr
om

 p
re

ci
pi

ta
tio

n 
gr

ad
ie

nt
.



8

!
"#

$%
&'

(
)

*
+
,
*

!
"
#

+
-
.

/
0
*

/
.
*

,
1
*

,
,
2

$
%
#

0
-
3

.
2
*

&
'
%

2
3
0

!
"#

$%
&%

"4
5

!
6
(
75
&

8
(
#6

$

9
:
:
5;

&

8
";

%
"<
$

(
)
*+

)
,-

=
";

">
6
"

9
:
:
5;

&

?
":

7$

?
":

7$
8
"<
$&

@
"%

>
"A

$

B
;$
#6

C
<$

.
)
*)

/
)
+
-

!
"D

4
"7
$

E
C
>
6
&

8
(
#6

$

0
)
1
2)

3

(
4
56

-

8
"%

A
"$
&

F
"$

G
"7
HG

(
%
D
&I
JK

+
2
)2

0
H-

0
)+

.
+
-
)3

0
H-

1
),

,
!
"
7&

$
8"

9
7!

'
+
2
).

,
H-

+
)*

+
+
2
)3

*
H-

+
)-

0
+
2
)3

0
H-

+
)+

/
+
-
)*

1
H-

/
).

*
+
2
)3

2
H-

0
)1

-
!
:
7:

9
8"

$
7$

;
+
2
)1
1
H-

0
),

-
+
2
)+

2
H-

.
).

.
!
"
7"

:
8"

:
79

&
+
.
)2

*
H-

2
)-

-

E
;"

$%
"D

5&
";

5"
&!

&I
A
4

LK
+
/
*
-

+
1
1
+
1

$
%
'
&
:

-
*
-

/
.
,
-

0
1
3
2

2
1
2
*

,
,
+
-

;
!
#
#
!

+
-
,
3

/
-
-
*

%
:
:
9
'

1
1
2
+

M
&N
(
%
7;
$O

C
7$
(
%
&P

<"
75
"C

.
+

0
*

!
'

*
*

*
/
3

,
*

!
$

*
*

%
%

*

F
5"

%
&#
<(

:
5&
4

(
C
%
7"
$%

&Q
;(

%
7&
IJ
K

+
2
),

+
0
)2

!
:
7'

+
+
)+

+
0
)2

+
1
)0

+
3
)/

/
*
)/

!
&
7:

1
2
)+

+
2
)/

!
&
79

1
3
)*

F
5"

%
&O

"#
$%

&;
5<
$5
Q&
IA

4
K

+
)2

+
)/

!
79

1
)+

1
),

1
)+

+
)-

+
)3

!
7;

1
)+

+
).

!
7!

1
),

M
&"
;5

"&
D
<"
N$
"7
5>

1
+
),

0
)3

$
7:

*
*

*
1
*
)/

.
)0

'
7'

*
1
,
)2

:
7;

*

'
C
4

O
5;

&(
Q&
"

#&
R
"<
C
5#

.
/
0

1
*
/
,

:
&
:

1
3
0
/

1
/
3
1

-
*
,

1
+
3
3

.
.
0

9
&
:
:

/
2
/

/
.
0

99
"
%

,
,
0

S
5"

;#
&(

Q&
"R

"$
<"
O
$<
$7
T

+
*
*
,
U+

*
*
-

1
3
2
0
U1

3
2
3

9
'
:
;
<3
9
'
:
$
<3

9
'
:
:
=9

'
:
'

1
3
2
.
U1

3
2
-
V&

1
3
-
0
U1

3
-
2

1
3
2
-
V&
1
3
-
0
U

1
3
-
-

1
3
-
0
V&
1
3
-
2
V&

1
3
-
-

1
3
2
3
V&
1
3
-
*
V&

1
3
-
2
V&
1
3
-
-
V&

1
3
3
*

1
3
2
/
U&
1
3
2
2
V&

1
3
2
3

9
'
:
&
<3
9
'
:
:
<3

9
'
:
'
<3
9
'
"
%
<3

9
'
"
&
<3
9
'
'
;
<3

!
#
#
9
=!

#
#
;

+
*
*
1
U+

*
*
/

1
3
-
2

9
'
"
:
=3
9
'
'
'
<3

!
#
#
9
=!

#
#
;

+
*
*
1
U+

*
*
/

E
"7
"&
#(

C
;N

5&
W

$
%

!
%

%
%

%
%

!
"#

"$
&

'
!
"#

"$
&

X
R
"$
<"
O
$<
$7
T
&(

)
+
*
*
,
U+

*
*
.

1
3
2
0
U+

*
*
.

9
'
:
;
=!

#
#
&

1
3
2
.
U+

*
*
.

1
3
2
-
U+

*
*
.

1
3
-
0
U+

*
*
.

1
3
2
3
U1

3
3
0

1
3
2
2
U+

*
*
.

9
'
:
;
=!

#
#
&

+
*
*
1
U+

*
*
.

1
3
-
2
U+

*
*
.

9
'
:
:
=!

#
#
&

+
*
*
1
U+

*
*
.

X
%
%
C
"<
&(

)I
A
4

YK
1
)0

1
0
)2

$
$

*
),

/
)0

,
),

-
)-

.
)3

$
'
7%

/
),

2
.
)0

$
'

+
)+

X
%
%
C
"<
&*

)I
4

4
K

2
3
2

0
0
-

'
!
#

1
1
*
2

1
0
+
+

1
,
2
*

1
*
/
*

.
3
+

9
;
'
&

1
3
/
+

1
+
3
0

'
!
#

1
+
-
-

+
),

-
.-

)#
/
0
12

3#
4)
%
5)
6,

7
8

9)
&
:
:
$
59
)&

5)
6,

7
8

;<
<
=
9)
&
:
:
'
59
)$

5)
>
/
.?

3)
@
/
#?

A)
B
/
C
31

)2
/
D
E
-
F
G)
H
.I

J9
)'

5)
6K

L
B
9)
%
M
M
N
5

Ta
bl

e 
1:

 T
ab

le
 o

f b
as

in
 p

ar
am

et
er

s o
f t

he
 d

ra
in

ag
e 

ba
si

ns
 c

on
si

de
re

d 
he

re
. G

eo
gr

ap
hi

c 
co

or
di

na
te

s a
re

 th
e 

st
at

io
n 

lo
ca

tio
n 

at
 

ba
si

n 
ou

tle
t. 

Th
e 

%
 c

on
tr

ib
ut

io
n 

of
 P

la
te

au
 is

 c
al

cu
la

te
d 

fro
m

 th
e 

ar
ea

 o
f t

he
 b

as
in

 o
n 

th
e 

pl
at

ea
u 

in
 re

la
tio

n 
to

 th
e 

to
ta

l 
dr

ai
na

ge
 a

re
a.

 S
lo

pe
 re

pr
es

en
ts

 th
e 

m
ea

n 
sl

op
e 

of
 th

e 
fr

ac
tio

n 
of

 th
e 

w
at

er
sh

ed
 lo

ca
te

d 
at

 th
e 

m
ou

nt
ai

n 
fro

nt
. C

s s
ta

nd
s 

su
sp

en
de

d 
se

di
m

en
t c

on
ce

nt
ra

tio
n 

an
d 

nu
m

be
r r

ep
re

se
nt

s t
he

 d
ay

s o
f a

va
ila

bl
e 

da
ta

. D
is

ch
ar

ge
 Q

, i
s m

ea
su

re
d 

at
 th

e 
sa

m
e 

lo
ca

tio
n 

as
 c

on
ce

nt
ra

tio
ns

. P
re

ci
pi

ta
tio

n 
R,

 is
 th

e 
m

ea
n 

ba
si

n-
w

id
e 

an
nu

al
 ra

in
fa

ll 
ra

te
 e

xt
ra

ct
ed

 fr
om

 A
PH

RO
D

IT
E 

da
ta

.



contributing area of the plateau is important. Rainfall intensities and specific discharge are the 

lowest of the three basins (Table 1).

Rivers valleys are deeply incised in the central Himalayas of Nepal, and descend a considerable 

elevation range over a relatively short distance (~ 300km), from several thousand meters above sea-

level (High Himalayas) to around 150 meters in the Indian Lowland (Fig. 1). All rivers in the Nepal 

Himalayas are bedrock rivers incising actively into Himalayan basement rock. Rivers are highly 

channelized, with little accommodation space for temporal sediment deposition and with high transport 

capacities (flow rates >1 m3/s). The annual river hydrographs (Fig. 3) highlight clearly  the control of 

the ISM  on Himalayan rivers in Nepal, causing a one to two order of magnitude increase of discharge. 

In contrast to the rivers of the western (e.g. Indus and Sutlej) and eastern Himalayas (e.g. Tsangpo-

Brahmaputra), snow and glacier melt contribution is minor in the central Himalayas [Bookhagen and 

Burbank, 2010]. A large volume of the river discharge in the Nepal Himalayas passes through the deep 

fractured basement aquifer, representative of ~2/3 of the annual river discharge volume [Andermann et 

al., in press].

The retrieval of suspended sediment measurements is routine in many regions of the world but in the 

Himalayas measurements  are limited to few stations and published detailed studies are limited to small 

regions over short periods of time [e.g. Haritashya et  al., 2010; Wulf et al., 2010; Gabet et al., 2008; 

Craddock et al., 2007; Singh et al., 2005; Hasnain and Thayyen, 1999]. The fact that sediment 

concentrations vs. river discharge displays a hysteresis behavior through the seasons [Wulf et al., 2010; 

Gabet et al., 2008; Hasnain and Thayyen, 1999] suggest that the supply of material and/or water 

sources vary temporally  between the seasons. Due to the rugged and deeply incised landscape of the 

Himalayas slope failure and mass-wasting are common, mobilizing considerable volumes of material 

[Fort et al., 2010; Burtin et al., 2009; Dortch et  al., 2009]. Earthquakes can be excluded as pivotal 

factor of sediment mobilization in the region of interest and during the time span of available records. 

No large earthquake (M  > 6.5) occurred (Global Centroid-Moment tensor (CMT) catalog, 

www.globalcmt.org), and moreover, seismic activity is less during monsoon season [Bollinger et al., 

2007] when the highest suspended sediment concentrations are observed.

To calculate absolute erosion rates from river load, the bedload and solute transport fractions have to 

be considered [e.g. Turowski et al., 2010]. While the solute fraction is often only minor in terms of 

9



volume (1 - 4 % [see e.g. Gabet  et  al., 2008; Summerfield and Hulton, 1994], < 10% [Gal and France-

Lanord 2001]), bedload has the potential to account for large quantities of total transport  [Galy  and 

France-Lanord, 2001; Pratt-Sitaula et al., 2007; Wulf et  al., 2010]. Bedload is certainly the most 

difficult fraction to measure and is essentially  the unknown fraction [Galy and France-Lanord, 2001]. 

Turowski et al. [2010] show from the analysis of a large empirical dataset  from the European Alps that 

the contribution of bedload is not constant over time and varies significantly between different settings. 

Pratt-Sitaula et al. [2007] report bedload fractions of ~25% of the total erosion rate, from dam-infill, 
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lines. Runoff component is the mean daily discharge contribution by direct 
runoff Qd. Base flow represents the slow flow component. Discharge was 
separated using the local minimum method.
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trapping sediments from the mainly arid upper Marsyandi River Basin in Nepal. Wulf et al. [2010] also 

analyzed a basin north of the orographic barrier and found that bedload is one third of erosion rate. 

Galy and France-Lanord [2001] deduced from geochemical analyzes that suspended sediments count 

only for the half of the erosion rate in the Himalayas. Finally, Burtin et al. [2009] suggest that bedload 

transport is minor on the Tibetan Plateau and in the Lesser Himalayan range.

3. Data and Methods

We use daily suspended sediment concentration, river discharge, and precipitation data to 

analyse the sediment transport  behavior (Fig. 4). Daily  suspended sediment concentrations, Cs(i) (with i 

for daily indices), are available for 13 stations (Fig. 1) and are obtained from various sources (listed in 

Table 1). The majority  of the data is derived from the Department of Hydrology and Meteorology 

Nepal DHM [DHM/FFS, 2004; DHM and His Majesty’s Government, 2003]. Bhote Khoshi data 

(station 0) were kindly provided by  the local hydropower operation company “BK Power”, measured 

upstream of the intake. Data on Dudh Koshi (station 670) are taken from a hydro-power feasibility 

report [NEP, 1998]. All data are continuous daily measurements, spanning several years (i.e. ~4-6 

years) between 1973 and 2006, but are not always continuous (Fig. 4 and Table 1). Years with available 

data are not necessarily coincident between the river basins (Table 1). Days of missing data are 

randomly distributed over the available time series and do not cluster preferentially  in one season (e.g. 

monsoon season). All statistical analyses are conducted on the raw - not interpolated - data. Cs 

measurements are usually depth integrated measurements, “following the USGS Method” [DHM  and 

His Majesty’s Government, 2003]. However data quality  might vary and representativeness between 

the stations might be biased. It  should be noted that these data are the only available for the major 

hydrological units of Nepal. We used raw daily river discharge data Q(i) (chronicles of ~30 years in 

most cases, see Table 1) provided by the DHM for all 13 stations (Fig. 1). Data are derived from daily 

stage readings and calibrated rating curves. We estimate discharge measuring accuracy to be ±10%. 

Daily  precipitation (R) is extracted from the APHRODITE (Asian Precipitation Highly Resolved 

Observational Data Integration Towards Evaluation of Water Resources) precipitation dataset [Yatagai 

et al., 2009]. The data are an interpolated rain gauge product, comprising orographic corrections. In 

terms of temporal resolution and absolute accuracy  it is presently the best available dataset for the 

Himalayan region [Andermann et al., 2011] APHRODITE data are available from 1951 until 2007, in 

11
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daily temporal resolution and 0.25° (~30 km) spatial resolution. Elevation information is 

extracted from SRTM-4 DEM [Javis et al., 2008; http://srtm.csi.cgiar.org].

Frequency  distribution analyses are commonly used to describe natural systems, e.g. distribution of 

fault lengths [Davy, 1993], landslide area [Malamud et al., 2004], floods [Malamud and Turcotte, 

2006], hazardous events [Korup and Clague, 2009] and sediment fluxes [Hovius et al., 2000]. In this 

paper we calculate the density distribution as a function of probability of the total mass flux Qs (Cs*Q), 

to describe their characteristic magnitude-frequency  distribution. By definition, the probability density 

distribution function p(x) is defined as the probability  P of an event to fall into a certain range of 

magnitude between x and x+dx (if: dx >0),

(1)

where the probability of a certain magnitude p(xi), is a function of the number of events n(xi) within a 

range of magnitudes !xi, given by:

                 (2)

Here, the range !xi increases equally spaced on a logarithmic scale, using:

                  (3)

where j is the number of ranges, N is the total number of samples and xm is the maximum value 

observed. Increasing spacing with magnitude has the advantage to integrate also for large magnitudes 

over a representative number of events [Davy, 1993]. Here we normalize with the respective mean, x", 

X/x"=X* in order to compare over a large range of system sizes (drainage area).

We define direct  runoff, or storm runoff Qd as the fraction of river discharge characterized by a short 

transfer time, resulting in a short response (< 1 day) of the discharge hydrograph to a corresponding 

rainfall event. Hydrograph separation analysis are usually applied to separate river discharge into a 

low-frequency baseflow Qb component and a high-frequency  Qd component [Lim et al., 2010]. Here, 
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we used the local minimum method implemented in the Web-based Hydrograph Analysis Tool WHAT 

[WHAT, 2011; Lim et al., 2010]. This method connects the local minimum points by comparing the 

slope of the hydrographs. Since several events might  overlap within the sequence, producing local 

minimum points within the duration of Qd, the Qb component can be overestimated [WHAT, 2011]. Qds 

is the daily total mass flux Qs [t/day] where Qd ! 0, and q"ds its respective annual mean in t/day.

In order to separate regions which we assign as arid plateau or humid mountain range, we extracted the 

500 mm/yr isohyet. For this purpose, we classified the high resolution TRMM-3B31 precipitation 

dataset of Bookhagen and Burbank [2006] in <500 mm/yr and >500 mm/yr precipitation and extracted 

the resulting boundary (Fig. 1 and Fig. 2). We choose this criteria as a significant  precipitation 

boundary and hereafter referred to as the orographic barrier. The basins analyzed here are subset along 

the orographic barrier into the part draining the arid plateau and the part draining the wet mountain 

front. The total drainage area A and the respective drainage area within the wet mountain range Ar are 

listed in Table 1.

Because concentration measurements are not complete and only available for several years (Tab. 1), we 

calculated sediment fluxes on the basis of the more comprehensive and longer water discharge 

chronicles. Empirical power law relations are commonly used to express Qs as function of Q in form of 

a rating curve [e.g. Morehead, 2003]. In this study, we define rating curves between the discharge 

component Qd and the transported mass Qs:

             (4)

where a and b are rating parameters. Both Qd and Qs are normalized with the drainage area Ar of the 

Himalayan front (Qs*=Qs/Ar). To avoid erroneous estimation of parameters a and b, rating curves (Eq. 

4) are fitted to the data on a logarithmic scale applying standard maximum likelihood regression 

method [Goldstein et al., 2004]. The fitting procedure was carried out for the best fit as well as for the 

±1σ (2σ) confidence interval determination. From this general law we calculated mean basin wide 

denudation rates D for all basins. We calculated the annual denudation rates [mm] from the transported 

mass assuming a density typical for quartz, 2.65 g/cm3.
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4. Results

 Cs vs. Q plots reveal a clockwise hysteresis effect on an annual scale for all the Himalayan 

rivers analyzed here, as illustrated by the example of Narayani outlet station (st. 450): Figure 5a. Cs and 

Q are low in winter season and rise with increasing ISM. Both Cs and Q are at their maxima during 

ISM  and decrease during post-ISM, Cs is systematically lower for the same amount of Q during post-

ISM  as during pre-ISM. Monthly mean values confirm the annual hysteresis behavior. In general, Cs 

variability is high all year around, but the variability of Q increases with rising ISM, with larger 

variability in pre-ISM and smaller in post-ISM  (Fig. 5a). Several concentrations exceed 5000 ppm (5 g/

l), mostly during pre- and ISM season. Plotting Cs against Qd the hysteresis effect  disappears (Fig. 5b), 

and reveals a linear relationship, with a slope of one between the two variables. Low concentrations 

cluster during post-ISM  and winter season and high to very high concentrations cluster in pre-ISM and 

ISM. Variability, both for Cs and Qd are high all year around.

The Probability density distribution of the specific direct runoff fluxes Qds* (normalized by  the mean 

q"ds [t/day]), reveals that all rivers display the same statistical distribution with respect to their means 

(Fig. 6). Mean Cs fluxes are listed in Table 2 and vary  over a large range, from 1953 t/day in Saradha 

basin to ~1 million t/day in Karnali basin. Remarkable is the threshold for Qds* " 2, which is similar for 

all rivers (Fig. 6). Events with Qds* < 1 align along a power law distribution with a slope ~ -1. The 

larger events describe a different distribution trend with a slope ~ -2. Except for very small events, the 

scatter between different rivers is minimal. In terms of mass, the total transport of each river is 

dominated by events larger than the respective mean flux q"ds. In bulk, 71% of all the transported mass, 

considering all rivers, fall within the specific discharge range of 1< Qds* < 8 (Fig. 6).

Sediment mass fluxes increase with Qd (Fig. 7). Plotting the normalized values Qd against the volume 

transported Qds during Qd events reveals a well defined minimum threshold, above which Qds increases 

linearly  with increasing Qd, with a slope of >1 (Table 2). Striking is the threshold, Qd # 0.04 mm/day, 

identical for all rivers. However, their corresponding base flux volumes Qds vary between the basins 

over one magnitude (Fig. 7 and Table 2). The fact that all Qd and Qs of all rivers are normalized with 

their respective drainage area Ar (only  Himalayan front) demonstrates their similar behavior in terms of 

erosion and sediment fluxes. We observe more similarity between the basins when normalizing with Ar 

than using the total drainage area A. 
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Figure 6: Probability density distribution function plot of normalized Qds*. 
Qds [t/day] is the sediment flux on days where direct runoff Qd exists. Data 
has been normalized by respective mean q"ds [t/day] of each basin. Events 
plotting between between Qds* 1 and 8 account for ~71% of the transported 
mass  plotted here.
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Figure 7: Bi-logarithmic plot of suspended sediment fluxes Qds and 
direct runoff Qd, binned median of logarithmic equally spaced ranges . 
Both Qds and Qd are normalized with the respective basin size 
(Himalayan front only). Qds is the total suspended sediment flux for days 
where Qd >0. Denudation rates D are calculated  from Qds presuming a 
density of 2.65 g/m$. The threshold (0.04 mm/day) indicates the limit 
below which suspended fluxes are constant. The gray dashed line 
indicates linear relationship.
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4.1 Denudation rate estimation

The well defined relationship between Qd and Qds permits us to define for each river a rating curve as 

defined in equation 4, in order to model basin wide denudation rates from Qd. We fitted (maximum 

likelihood method) to all data with Qd higher than the threshold (0.04 mm/day). For all Qd inferior than 

this threshold, we assigned the respective constant flux Qds of each river, corresponding to the Qd 

threshold (Fig. 7). All specific rating parameters and constant flux values are listed in Table 2. 

At the annual scale, a part of the total sediment flux might be transported on days with Qd = 0 because 

of a retardation effect on sediment transport, e.g. Qs might be temporally  offset compared to Qd. The Qd 

events are the results of rainfall events, landsliding and consequently the supply of material to the river 

might occur after the flood peak has passed the gauging station. This can introduce a bias in our model 

causing systematic underestimation of annual D. Therefore, in order to evaluate the relative volume of 

material included in the #Qds calculation, we compared the observed #Qs and the observed #Qds for the 

whole length of each dataset. We found that #Qds accounts systematically for ~80% of the #Qs, in all 

rivers. Hence, we added 20% onto modeled #Qsmod. We validated the calculated mass in four basins 

(stations 286, 360, 447 and 450) for which one year fully continuous data exist (no or nearly no day 

missing data). For all four basins our modeled Qsmod (best fit) are within the confidence interval of error 

(Tab. 3). Discrepancy between the annual reference value and the rating curve modeled is due the fit 

over the whole available Cs dataset. 

Applying the resulting rating parameters, we calculated basin wide suspended sediment denudation 

rates D (Table 2). For the major drainage basins in Nepal, these are 1 mm/yr in the eastern Koshi Basin 

(station 695), 1.7 mm/yr in the central Narayani Basin (station 450) and 1.6 mm/yr in the western 

Karnali Basin (station 280). D in the upper part of the Karnali Basin (station 240) is with 0.5 mm/yr  

much lower than for the total basin. The largest D, 3.5 mm/yr, can be found in the Kali Gandaki Basin 

(station 410). The smallest  one, 0.1 mm/yr, is calculated for the Bhote Koshi basin (station 0). Overall, 

D in the small basins at the mountain front are around 1 mm/yr, except  for Saradha Basin with only 0.3 

mm/yr and upper Rapti with 2.3 mm/yr. Uncertainties of D, calculated from 2σ confidence limits on 

the Qd vs. Qs fit range from 25 to 300% (Table 2).
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Table 3: Validation of suspended sediment denudation rates. The sediment rating model was 
validated on four stations, one year datasets. Qs is the annual sediment flux calculated from 
measurements (reference), the best, lower and upper fit (5 % and 95% quantile respectively). 
The results are listed with systematic 20% underestimation and corrected (incl. 20%) and is 
used in this manuscript for further discussion.



5. Discussion

5.1 Hysteresis effect and storm runoff

We show that Cs varies seasonally and displays an annual hysteresis behavior with respect to Q (Fig. 

5a). It could be argued that the sediment supply in the contributing areas is exhausted during the course 

of monsoon, leading to higher concentrations in pre-ISM in comparison to post-ISM. Actually, Gabet  et 

al. [2008] proposed that the seasonal hysteresis loop in the mainly glaciated hinterland of the 

Annapurna massif is driven by variations in glacial sediment supply. Similarly, Hasnain and Thayyen 

[1999] observed increased concentrations during the onset of monsoon in an almost exclusively 

glaciated catchment of the upper Ganges headwaters in India. The most obvious explanation for this  

phenomenon is the depletion of a sediment stock within the glacier and at its ablation front. However, 

we observe the annual hysteresis behavior for both glaciated and unglaciated basins (see Tab. 1 and 

Fig. 1 for basin wide glacier cover), suggesting that glaciers as sediment source are not solely, or 

perhaps even not at all, accountable for this observation. A second explanation for the hysteresis 

behavior is a shift in the relative contribution of Qb (from groundwater and/or glaciers) to the river 

discharge. Indeed, a temporally increased contribution of groundwater and melt would cause dilution of 

suspended concentrations over the annual monsoonal cycle. We have shown [Andermann et al., in 

press] that ground water contribution to the discharge hydrographs in Nepal is not negligible. As a 

consequence total river discharge and/or glacial melting are not appropriate proxies to determine 

suspended sediment fluxes.

Separating the discharge hydrographs in its flow components - Qd and Qb - has the advantage of 

allowing us to consider their respective relation with the transport of erosional products separately. Qd 

integrates all precipitation events over the whole basin and is therefore a good indicator of event 

magnitude. Qd preserves the precipitation intensity signal, especially if high intensity events are very 

localized or temporally  concentrated, while daily precipitation measurements smooth the information 

of the rainfall intensity distributions. Plotting the Qd component against Cs compensates the seasonal 

hysteresis effect and reveals a direct proportional relationship (Fig. 5b). This observation demonstrates 

that Cs is not dependent on the amount of water in the river but on the contribution of water draining 

from the near surface into the river, and characterized by a very  short residence time. This illustrates 

also that Cs is not limited by the sediment stock within the river itself, but is supplied proportionally to 
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Qd from the hillslopes. The different apportionment of Qd and Qb before and after ISM explains the 

hysteresis effect and furthermore identifies it as a dilution effect rather than a sediment supply  effect. 

This is the direct consequence of groundwater dominated river discharge during the falling limb of the 

ISM  [Andermann et al., in press]. It implies that Qd is a better proxy to estimate suspended sediment 

fluxes in rivers than the commonly used total discharge.

5.2 Comparability of Himalayan rivers

Whatever their size and location, all Himalayan rivers describe a strikingly  consistent probability 

distribution of Qd in terms of trends and characteristic threshold (Fig. 6). The threshold marks two 

statistical trends between small and large transport events with exponents ~-1 and ~-2 respectively. 

Exponents demonstrate that large events do not control the statistical mean. Indeed, most of the mass 

transport is carried out by events of 1 < Qds* < 8 (Fig. 6). The steep distribution of high magnitude 

events also means that return intervals of extreme events (> 10 Qds*) are too rare to contribute 

significantly to the bulk sediment transport.

5.3 Load-discharge rating model Nepal

Because Qd resolves seasonal dilution effects of Cs, it is a good measure to estimate suspended 

sediment fluxes in the Himalayan rivers of Nepal (Fig. 5). However, because Cs represents the 

concentration flux of the total daily  river discharge Q, it cannot be compared directly to Qd. Therefore, 

a rigorous analysis was carried out on the mass flux between Qs and Qd (Fig. 7). The comparison of 

specific Qd with specific Qds allows us to develop a rating curve model (Eq. 5) and to calculate annual 

mean basin erosion rates. This implies that annual sediment fluxes and consequently the mobilization 

of material is, to first order, controlled by the quantity and intensity of Qd producing rainfall events.

The rating model proposed here is the very first of its kind. This model is highly reproducible and 

based solely on empirical data. It is constructed on Qd, which represents a small fraction of the total 

river discharge, and on a specific threshold of Qd. So far, previous studies have mainly  concentrated on 

rating curve models [Ferguson, 1986; Morehead, 2003; Wulf et al., 2010] mostly to fill incomplete Cs 

datasets with the more complete discharge datasets [Fuller et al., 2003]. Strictly, this rather classical 

rating model is only valid for transport limited systems [Dadson et al., 2003], where Cs is only 

dependent on the available transport energy e.g. [Dadson et al., 2003; Fuller et al., 2003; Turowski et 
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al., 2008]. This implies that sufficient material is always available and that the drainage network is 

saturated with sediments. This might be true for large braided or alluvial systems but not in the deeply 

incised bed rock rivers as in the Himalayas. To avoid a bias introduced by  seasonal sediment supply to 

the channel and with it accompanied seasonal changes in Cs, various rating models have been 

proposed. Dadson et al. [2003] for example propose a time dependent average, Fuller et al. [2003] 

propose a dual transport and supply limited model on the basis of supply  by landslides and Kettner and 

Syvitski [2008] present a numerical model based on five different river discharge components (from 

ice/snow melt, ground water, rain and evaporation). Our model integrates supply and transport 

processes by relating the supply component Qd, with Qs (Fig. 7) and the introduction of a specific base 

flux threshold, which accounts for material which is always available for transport within the river.

The rating model exponent b (Eq. 5), for Qd > threshold, ranges from 1 to 1.6 (Tab. 2). Uncertainties of 

b have little impact on the resulting erosion rates. Nevertheless, the level of constant sediment base flux 

(for Qd < threshold) differs considerably between the single basins. It sets the intercept a of the rating 

curve (Eq. 5) and therefore it  controls significantly the calculation of suspended sediment erosion rates. 

This level of constant base flux might result  from basin characteristics such as topography, rainfall 

amount or human activity  (Tab. 1). These factors could explain the observed relative shift of Qb fluxes, 

although they  are difficult to quantify. Processes such as road construction, agriculture or mining can 

provide considerable volumes of material to the river. For example, road construction is commonly 

associated with landsliding in Nepal [e.g. Fort et al., 2010]. However, the occurrence of such temporal 

activity is difficult to constrain at our scales of investigation.

5.4. Denudation fluxes in Nepal

We interpret the denudation rates presented here as modern rates, representative for a relatively stable 

period of climate vs. erosion interaction. No major earthquake event has destabilized the system during 

the study period. However, these denudation rates (Tab. 2) represent only  the suspended sediment 

fraction of the total transport rate because bedload and dissolved load are not taken into account. From 

our own experiences we know that large pebbles (> 10 cm) can be found on the downstream river 

banks of Narayani station (450). Hence, absolute erosion rates are likely  higher than the suspended 

fraction analyzed here. Due to the lack of quantitative constraints on the bedload and solute 
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contribution we restrict our analysis to Cs.
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The denudation rates we deduced from Cs and the rates infered from geochronological analysis in the 

Himalayas agree. Our results (0.1-5.9 mm/yr, Fig. 8 and Tab. 2) fall in the same range of magnitude as 

the 0.2 - 0.7 mm/yr determined in Bhudi Gandaki, Nepal [Wobus et al., 2005], and the ~2 mm/yr in the 

upper Ganges, India [Vance et al., 2003], both deduced from cosmogenic nuclide analysis. Our results 

also agree with the rates of ~ 5 mm/yr determined from apatite fission-track dates in front of the 

Annapurna massif [Burbank et al., 2003]. Previous published data on Cs denudation rates are consistent 

with our findings. For example, Gabet et al. [2008] found rates of ~1 – 2 mm/yr in the Marsyandi 

(Nepal) and Wulf et al. [2010] found rates of ~1 mm/yr in the Indian Sutlej region. Cosmogenic erosion 

rates from the three major outlet  stations (station 280, 450, 695) of Nepal, analyzed by  Maarten Lupker 

(CRPG, Nancy, France, manuscript in preparation) agree within the range of error with our 

measurements. The agreement between independently determined erosion rates and our findings 

support the validity of our calculations. Furthermore, it supports the findings of Lupker et al. [2011], 

Burtin et al. [2009] and Attal and Lavé [2006] that bedload at the outlet stations of of the major 

Himalayan basins is minimal.

In a spatial context, the denudation rates we determined are heterogeneously distributed (Fig. 8). D are 

around 1 mm/yr in the catchments at the front of the Himalayan range. The major basins have higher D  

from 1 to 1.7 mm/yr. Basins draining from the High Himalayan range and the Tibetan Plateau have 

lower D (0.1-0.5 mm/yr). With a value of ~3.5 mm/yr the very  high D in the Kali Gandaki basin 

(station 410) is noticeable, slightly lower than the ~5 mm/yr reported by Burbank et al. [2003]. This 

coincides with the strongest relief of the Annapurna range, which is partially  drained by  basin 410  

(Fig. 8). However, we do not observe a clear relationship between all D and mean basin relief as  

reported for example by  Vance et al. [2003] and Finnegan et al. [2008] from cosmogenic nuclide 

analysis. Intuitively, we would expect D in the High Himalayas to be higher than in the low relief 

mountain front. We can partly explain the relatively low D in the high relief basins by a locally higher 

bedload contribution on the total sediment flux in the High Himalayas. Indeed, high frequency seismic 

noise analyzes in the Trisuhli Basin (here station 447) suggest considerable bedload movements during 
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monsoon in the High Himalayas, while in the Lesser Himalayas bedload is a minor fraction [Burtin et 

al., 2009]. Nonetheless, minor bedload contribution in the Lesser Himalayas also means that our 

estimates from suspended sediments represent close to total D for the stations at the front (including the 

three major basins 280,450 and 695).

Precipitation rates and intensities in the upwind side of the Annapurna range are the highest in Nepal 

(Fig. 2), with locally  > 5000 mm/yr [Putkonen, 2004]. Together with the high relief energy  (Fig. 8) and 

several closely spaced tectonic structures such as the Thakkhola-Mustang graben, make the region 

tectonically complex and prone to erosional instability [Fort et al., 2010; Fort, 2000; Hodges et al., 

1996]. The mean basin slope is at  the failure threshold of 30° (Tab. 1), the river are deeply incised  into 

bedrock, creating one of the world deepest gorges [Fort et al., 2010] and uplift rates are around 5 mm/

yr [Blythe et al., 2007]. This results into a system which is highly controlled by  relief. As the rivers are 

incised and highly channelized, flood concentration times are very short and therefore, transport 

capacities are very high. This also implies that transport times of material are prompt, resulting in 

highly  concentrated sediment pulses. These observations support our inference of high values of D in 

the Kali Gandaki basin.

5.7. Annual Himalayan erosion cycle

The strong relation between Qd and D and the highly repetitive ISM leads us to propose a conceptual 

cyclic surface dynamics model for the Himalayas (Fig. 9 a-d). In this representation, the low-frequency 

high-magnitude ISM signal of Qb has minor impact on the annual erosion mass balances. 1) During 

pre-ISM water availability is at  its minimum. Soils are generally dry but a few rainfall events can 

occur, mobilizing available sediments. Groundwater storage is being purged and starts to refill at the 

end. 2) During ISM, precipitation intensity  and frequency  are very high, providing large amounts of 

hillslope material to the river. This amount is evacuated directly  out of the mountain range by  the high 

river transport  capacity. High transport capacity is maintained by the high Qb (groundwater) input into 

the river. Water storage is replenished and pore pressure in the subsurface is high, inducing landslides. 

Most of the erosion takes place at that time. 3) During post-ISM, only  a few precipitation events are 

recorded. Erosion fluxes decrease drastically and are diluted by the increase groundwater contribution, 

depleting the aquifer storage. 4) In winter, a few isolated precipitation events take place, mainly as 
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Figure 9: Schematic model for the cyclic surface dynamics in the Nepal Himalayas. 
(a) illustrates how the groundwater storage volume is recharged during ISM and 
depleted in the dry seasons. It causes a phase shift between the peak of R and the 
peak of Q (b and a) leading to relatively high Q during post-ISM. (c) Qs and Qd are 
linearly related and consequently follow the same pattern. During the onset of ISM, 
Qs and Qd are slightly retarded with respect to precipitation, because groundwater 
has to be refilled before Qd can be produced. However, the falling limb of Qs and Qd 
during post-ISM follows the rainfall curve. Hence, the relatively high river 
discharge in post-ISM, is maintained by Qb , generating a dilution effect on Cs. The 
cumulative erosion curve (d) shows that most erosion takes place during ISM, and 
strongly increases with the onset of Qd.



snow in high elevations. Water availability is close to its minimum. Frost cracking and shattering at the 

higher elevations weakens material and makes it prone to failure in the subsequent monsoon season.

6 Conclusions

We show that erosion in the Himalayas is strongly  coupled with the magnitude-frequency distribution 

of precipitation expressed in the fast Qd fraction of river discharge. Total river discharge can not 

explain temporal variations of Cs. The observed annual hysteresis effect between Q and Cs disappears 

when comparing Cs only  to Qd, and reveals a reproducible relationship, with a threshold of minimum 

Qd. All 13 studied rivers show the same relationship  with an universal threshold revealing a 

homogeneous character of all rivers in Nepal. The high magnitude base frequency of the ISM  does not 

control erosion dynamics, but contributes significantly to the river discharge, which is important to 

evacuate the erosional material from the mountain range. From these observations we propose a 

empirical model which relies on the high frequency signal of precipitation events (producing Qd) to 

predict erosional mass fluxes. The supply  of material from the hillsopes to the river depends on the 

occurrence of rainfall producing Qd. This implies that the rivers in the Nepal Himalayas are supply-

limited and that the hillsopes as contributing source are transport-limited. We calculate denudation rates 

for the Himalayan front in Nepal. The calculated erosion rates are consistent with long term erosion 

rates, derived from geochronological measurements. This is the direct consequence of a system which 

is not  controlled by  infrequently  occurring extreme events, but rather by moderate ones with a high 

recurrence interval. To gain more insights on erosion dynamic in Nepal, three points need further 

investigation: (1) what are the spatial and temporal dynamics of bedload, (2) what controls the 

baseflow concentration of each basins, and (3) what controls the hillslope production processes e.g. 

landslide triggering?
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Appendix A. Table of notations

A and Ar  drainage area and drainage area in the Himalayan front

Cs   suspended sediment concentrations in river discharge [ppm] or [mg/l]

D   Suspended sediment flux denudation rate (employing 2.65 g/cm3 density) 

      [mm/yr]

ISM   Indian Summer Monsoon

Q   Total river discharge over time

Qs   Suspended sediment flux over time

Qd   Direct river discharge fraction of Q, short response and residence time

Qb   Baseflow river discharge fraction of Q, originates from groundwater

Qds   Suspended sediment flux where Qd > 0

Qds*   Suspended sediment flux where Qd > 0, normalized by the annual mean of Qds

&Qsmod   Suspended sediment flux, modeled from rating model

q"ds   Mean annual direct suspended sediment flux
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5.2 General discussion

From the multi-data analysis of precipitation, river discharge and suspended sediment analysis, I

presented some new results and proposed a conceptual image of the seasonal erosion cycle. Erosion

in the Nepal Himalayas is clearly controlled by hillslope processes limiting the transport of material

in the rivers. In return, hillslope processes are closely connected with the occurrence and intensity of

precipitation.

With respect to erosion analysis using different methods (suspended sediments or cosmogenic nu-

clides) I like to underline again that the occurrence of large erosion events follows a different probability

distribution than moderate and small events and the large events do not control the volume of the total

erosion flux. This has important implications concerning the inter-comparability of modern erosion

fluxes with for example, catchment wide erosion rates from cosmogenic nuclide analysis. Although I

studied data chronicles of only few years, the data shows a robust distribution which is identical for

all rivers. However, these results are representative for a relatively stable period of roughly constant

monsoon intensity [e.g. Clift et al., 2008b] and the absence of any major seismic events. One large earth-

quake might offset the erosion model [e.g. Hovius et al., 2011], but due to the extremely high transport

capacity of the rivers, the excess material of such an event will be most likely fast evacuated. Further-

more, to statistically bias the already very high erosion rates, the mass wasting event would have to be

significantly larger than the mean annual erosion rate. An intensification of monsoon [e.g. Bookhagen

et al., 2005b] might eventually have the potential to bring the erosion processes to a different state, for

example to a temporary transport limited one [Pratt et al., 2002]. Nevertheless, over the last couple of

thousand years climate was relatively constant [e.g. Clift et al., 2008b] and therefore, the demonstrated

relatively little impact of extreme events onto the total erosion rate persists for this timespan.

I showed that direct discharge is linearly related with the mass fluxes. This suggests that precip-

itation (direct discharge as a function of precipitation intensity and infiltration capacity) controls the

mobilisation of material. However, on an intra basin scale these processes need to be evaluated in more

detail. For example, I did not manage to explain the rating threshold differences (and therefore the

intercept) amongst the basins. Some suggestions can be made towards landuse, road construction or

lithology, but without any further investigations those possibilities are rather hypothetical. A second

problematic is the limited number of documented mass-wasting events. Figure 5.1 illustrates a short

time series where some documented landslides could be obtained from the two databases of Dahal and

Hasegawa [2008] and Kirschbaum et al. [2009b]. However, the landslide occurrence does not necessarily

fall together with the peak of direct discharge. At the same time sediment fluxes do not increase au-

tomatically when landslide occur. For example, before the 28th of August, landsliding coincides with

high precipitation and direct discharge and consequently increased sediment fluxes. In contrast, after

the 29th of August precipitation rates and direct discharge are relatively low, along with decreasing

sediment fluxes, but several consecutive landslides happened. Note, sediment fluxes in this time series

are very high, in the range of ∼ 105 − 106 t/day. The second series of landslides is possibly triggered by
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Figure 5.1: Example time series of 36 days during the 2001 monsoon. Discharge is separated in direct

Qd (light blue) and baseflow Qb (dark blue). The sum of Qd and Qb represents the total measured river

discharge at the Narayani outlet station (450). Mean catchment precipitation (APHRODITE) is plotted

in green. The total sediment discharge Qs is plotted in brown. For comparison landslides are indicated

with brown arrows. The landslide information was derived from the landslide catalogues of Dahal and

Hasegawa [2008] and Kirschbaum et al. [2009b]. On the 29th of August 2001, four landslides have

been documented within the drainage Narayani drainage basin.

elevated pore pressure saturation processes [Iverson, 2000], while the early series of landslides is trig-

gered by intense rainfall rates, exceeding the infiltration capacities of surface material. This example

demonstrates the huge need to document landslides and quantify their volumes in order to evaluate

the involved erosion processes in the Nepal Himalayas.

Another remarkable result is the similarity of the sediment flux probability distribution between

the basins with respect to its mean flux. The same observation can be also made for river discharge

and precipitation, as illustrated in Figure 5.2. The data (sediment flux, river discharge and precipita-

tion) shows a well defined threshold, with a steeper relation for high magnitude events. Some further

research has to be done to evaluate these distributions and to interpret the graphs in terms of return

intervals. A second highly reproducible threshold was observed in the sediment rating model, when

normalized by the drainage area. The existence of these very reproducible thresholds illustrates the
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Figure 5.2: Normalized probability density distribution plots of a) river discharge Q [m2/s] and b)

precipitation R [mm/yr]. The data of each basins is normalized by the mean, river discharge and

precipitation respectively.

similarity of different regions in the Nepal Himalayas in terms of erosion, discharge and precipitation,

and highlights the predominant control of precipitation and river discharge onto the system, rather

than local catchment characteristics, such as landuse and lithology. Furthermore, the results highlight

the often-over-looked importance of geomorphic thresholds in landscape analysis as for example dis-

cussed by [Lague and Davy, 2003], which seems to be important in the study of surface processes in the

Himalayas.

The results confirm that in the Himalayas sediment fluxes are mainly controlled by supply from

the hillslopes, while the rivers are supply limited [e.g. Gabet et al., 2008]. The transported sediment

volumes in the rivers of the three watersheds in Nepal are hardly ever close to their transport capacity,

which I interpret as the consequence of the large groundwater contribution to the river discharge.

Depending on the season the relative contribution of surface runoff and groundwater discharge shifts.

This relative shift of surface verses groundwater contribution generates an annual clockwise hysteresis

effect between suspended sediment concentrations and river discharge. I showed in the manuscript

that this effect is not, as usually interpreted, a supply effect, but rather the dilution effect of the retarded

groundwater contribution to the river discharge.
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Chapter 6

Millennial scale erosion rates

10Be erosion rates, precipitation and topography in the Nepal Hi-

malayas

6.1 Introduction

Spatial erosion distribution patterns are first-order controlled by driving boundary conditions of pre-

cipitation and tectonic uplift rate [Molnar and England, 1990; Willett, 1999; Beaumont et al., 2001; Whipple,

2009], yet the role of climate is controversially debated [e.g. Molnar, 2003]. Short-time scale erosion

depends clearly on the transport capacity, hence on mobilisation and availability of water [Bookhagen

et al., 2005a; Gabet et al., 2008; Wulf et al., 2010]. Burbank et al. [2003]; Dadson et al. [2003]; von Blancken-

burg [2005]; Thiede et al. [2009] argue that on a millennial time scale, tectonic forcing sets the pace of

erosion, while Reiners et al. [2003]; Thiede et al. [2004]; Deeken et al. [2011] report a spatial coherence of

modern rainfall distribution and long-time exhumation rates. The latter studies suggest that climate

has a profound impact on exhumation over a long time span. However, it is tricky to compare mod-

ern climate with dynamical processes integrating over several thousands to millions of years and the

observed coherence might be only coincidence.

Numerous studies have recently attempted to quantify erosion in the Himalayas, applying a vari-

ety of determination techniques. Gabet et al. [2008] and Wulf et al. [2010] analysed suspended sediment

load chronicles to determine modern erosion rates. Vance et al. [2003] and Wobus et al. [2005] applied

cosmogenic nuclide analysis on river sands to determine catchment-wide erosion rates and relay them

to tectonic and topographic features. Thiede et al. [2004]; Wobus et al. [2006]; Deeken et al. [2011] applied

low-temperature geochronology to quantify long-term erosion rates. All studies report typical erosion

rates for the Himalayas in the range of 0.1 − 5 mm/yr. However, these studies are difficult to com-

pare since result is representative of different time-scales and contribution by beadload, glaciers, mass

wasting, geology, or temporal changes in geothermal gradients. For example, Binnie et al. [2006] and
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Yanites et al. [2009] documented with numerical models how landsliding and incomplete mixing of the

sediments can change the calculated cosmogenic-derived erosion rates. Finally, these studies do not

attempt to differentiate between glacial- and hillslope erosion [Heimsath and McGlynn, 2008].

In this work I present an integrated comparison of mean catchment erosion rates, calculated

from in-situ (not atmospheric) produced 10Be cosmogenic isotope concentration in river sands, and

precipitation-landscape features of the Nepal Himalayas. These erosion rates integrate the erosional

processes of the whole drainage basin over several thousand years. It can be confidently assumed

that the integration time of this approach is sufficiently long to level out short-term variations, such as

strong or weak monsoon years [Bookhagen et al., 2005a]. Furthermore it is long enough to represent the

impact of relief and long-term precipitation patterns. Emphasis of this study is to document the spatial

pattern of erosion rates in the Nepal Himalayas and to constrain its links with rainfall distribution and

topography. In particular I compare 10Be erosion rates with: 1) topographic features, such as mean

basin relief and slope, 2) precipitation, both volume and frequency-intensity distribution, and 3) pos-

sible bias effects by glacial coverage and basement lithology. Finally, cosmogenic derived erosion rates

are also compared with rates derived from suspended loads by [Andermann et al. to be submitted].

6.2 Study area

6.2.1 Tectonic and geological settings

The Himalayas are built by the continuous underthrusting of the Indian crust underneath Asia [e.g.

Blythe et al., 2007]. The range comprises several east-west running tectonic faults (Fig. 6.1). From the

north to the south the main tectonic structures are: 1) the South Tibetan Detachment STD, 2) the Main

Central Thrust MCT, 3) the Main Boundary Thrust MBT, 4) and the southernmost Main Frontal Thrust

MFT [Yin, 2006]. Wobus et al. [2003, 2005, 2006] have detected from thermochronological, cosmogenic

nuclide and topographic analysis an out-of-sequence thrust, south of the MCT. The authors interpret

this formally undetected structure as a consequence of high precipitation rates concentrated along

strike of this feature. However, the existence of this structure is still debated [Bollinger et al., 2006].

The major geological units are from north to south: 1) the low-grade Paleozoic-Mesozoic Tethyan

Sediment Series of the Tibetan Plateau, 2) the high-grade metamorphic gneisses and migmatites of the

High Himalayan Crystalline Series, 3) the low-grade Proterozoic sediments of the Lesser Himalayas, 4)

the fine to coarse grained Siwalik Sediment Series, and 5) finally the quaternary deposits of the Indian

Foreland [Yin, 2006, and references therein] (see Fig. 6.1).

6.2.2 Climate and topography

The climate of the Himalayan front is controlled by the Indian Summer Monsoon ISM, imposing a very

well defined wet and dry seasonality [Hannah et al., 2005; Bookhagen and Burbank, 2006, , Andermann et
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Figure 6.1: Simplified map of tectonic structures and major geological units of the study area. Major

geological units are: TSS: Tethyan Sediment Series, HCC: High Himalayan Cristalline, LH: metased-

iments of the Lesser Himalayas, SW: Siwaliks formation, QS: Quaternary Sediments. 10Be sampling

locations are market with diamonds. The red swath profile marks the precipitation and topography swath

profile plotted in the inset. Inset: North-south swath profile of mean elevation (grey shading illustrates

elevation range along the profile) and precipitation (shading illustrates the precipitation range).

al. in review, NG and Andermann et al. to be submitted]. The ISM penetrates the Indian sub-continent

from the Bay of Bengal and propagates westward along the Himalayan front, generating a east-to-west

decreasing rainfall gradient [Bookhagen and Burbank, 2006]. In addition, a ∼ 10-fold (over ∼ 200 km)

south-to-north increasing rainfall gradient exists due to orographic effects [Bookhagen and Burbank, 2006,

2010; Andermann et al., 2011, and inset Fig. 6.1]. On the leeward side of the Himalayan range, on the

Tibetean Plateau, annual precipitation rates drop abruptly to ∼ 250mm/yr. The intensity and duration

of ISM varies from year to year by 25 − 50% [Bookhagen et al., 2005b] and is thought to be linked to El

Nino/Southern Oscillation (ENSO) [Shrestha, 2000]. During winter precipitation occurs mainly in form

of snowfall under the influence of the westerlies [Lang and Barros, 2004]. Considerable long-lasting

snow cover is minimal and only significant in elevations > 5000 m asl., where all precipitation comes

in form of snow [Putkonen, 2004], and on the Tibetan Plateau [Immerzeel et al., 2009]. Glacial coverage

for all major basins is around ∼ 10 − 20% [Andermann et al. in review, NG].

The topography of the Himalayan range in Nepal raises from south to north, from < 200 m asl. to
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the high summits of > 8000 m asl. over a distance of only ∼ 200 km (inset Fig. 6.1). On a south-north

profile the topography describes a two step rise, first to ∼ 2000 m asl. and secondly up to the mean

elevation of the Tibetan Plateau, ∼ 6000 m asl. (Fig. 6.1). Especially, over the second rise spanning

a horizontal distance of only ∼ 20 − 40 km, rivers are very deeply incised and elevation differences

between the ridges and the valleys are ∼ 3000 m. This results in a landscape constantly close to critical

slope angle of ∼ 30◦. The rivers are all bedrock rivers and erosional material entering the streams

from the adjacent hillslopes usually stays in transport and is not redeposited [Andermann et al. to be

submitted].

6.2.3 Sampling locations

Tributary basins

Main stream basins

Basin outline

Glaciers

Kathmandu 
valley

Narayani Basin Koshi Basin

Tibet/China

Nepal

India
Bhutan
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Bhudi-
gandaki

Trishuli
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Koshi
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Figure 6.2: Shaded relief map of the studied drainage basins. 10Be sample locations are indicated with

diamonds (main streams) and dots (tributary basins). Basin outlines are given in blue for major basins

and in red for tributaries. Tributary basins are in general < 250 km2. Glaciers are plotted in dark blue.

Inset gives the location of the map subset.

In this study I present samples from three major watersheds of the Narayani Basin (central Nepal)

and from two watersheds of the Koshi Basin (eastern Nepal) and from several of their small tributaries

(Fig 6.2). In particular I sampled the following rivers: Tama Koshi and Bhote Koshi (further down-
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stream Sunkoshi) in the Koshi Basin, and Trishuli, Bhudigandaki and Marsyangdi in the Narayani

Basin. In the Trishuli watershed I have eight samples along the main stream, spanning from the mainly

arid Himalayan hinterland close to the border with Tibet, to the very wet mountain front just upstream

of the confluence with Marsyangdi and Kali Gandaki river. Most of the tributary basins are within the

Trishuli watershed and are in general < 250 km2. So far no large scale study based on cosmogenic

nuclide erosion rates has been published in this area. [Wobus et al., 2003] has analysed eight tributary

basins in Bhudigandaki basins, of which I sampled one (01WBS7, in my study: NP-23s, Table 6.1),

in order to test the reproducibility of the measurements between the two studies. However, direct

comparison is difficult since earlier results are calculated with a different 10Be half-life, analysing tech-

niques and production rates. After personal communication with C. Wobus, it was not possible to

obtain these parameters to make direct comparison possible.

These samples cover most of the Himalayan physiographic and geological units. All sample loca-

tions are between the MBT and the STD, mainly south of the MCT (Fig. 6.1).

6.3 Methods

6.3.1 Theory of cosmogenic nuclide erosion rates

Cosmogenic nuclide concentration measurements offer the possibility to estimate catchment-wide ero-

sion rates from the isotopic nuclide concentration of river sands [e.g. Granger et al., 1996; Schaller et al.,

2001; Vance et al., 2003; von Blanckenburg, 2005]. The basic idea of this method is to determine the

cosmogenic nuclide concentration in mineral grains (here quartz), in this case of 10Be, inherited over

the average exposure time by cosmogenic radiation (neutrons, fast- and slow muons). The ratio be-

tween the nuclide concentration C(0) and the catchment-wide production rate P(0) is proportional to

the catchment erosion rate ε [e.g. Granger et al., 1996].

C(0) = P(0)/(λ + ρε/Λ) (6.1)

Where λ (yr−1) is the decay constant of the nuclide, ρ is the mineral density (g/cm3) and Λ the

attenuation coefficient (g/cm2) [Lal, 1991; Granger et al., 1996; von Blanckenburg, 2005; Dunai, 2010]. P(0)
depends on the amount of cosmic rays reaching the Earth surface, varying with the latitude and eleva-

tion [Stone, 2000; Gosse and Phillips, 2001]. The P(0) increases with altitude as a function of decreasing

atmospheric attenuation by ∼ 1% with each 10 m of elevation [Lal, 1991; Stone, 2000]. Due to the earth

magnetic field cosmic rays are deflected towards the poles and consequently P(0) increases with lati-

tude [Lal, 1991; Gosse and Phillips, 2001]. Last, the heterogeneous irradiation of the catchment surface

due to shielding effects has to be corrected [see Dunne, 1999]. Two different types of cosmic rays can

produce 10Be isotopes in minerals: 1) high energy neutrons produce 10Be by spallation in the top few

meters of the Earth surface, 2) a second production path is by capture of slow muons and stopping of
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fast muons. Although muon reaction is only minor in terms of production, they are less apt to react

with matter and penetrate much deeper into the surface, producing a significant amount of 10Be over

long periods. Hence P(0) is the sum off all these productions paths [Ivy-Ochs and Schaller, 2009]:

Ptot = P(0)neut.e
−(xρ/Λneut.) + P(0)µstoppede−(xρ/Λµstopped) + P(0)µ f aste

−(xρ/Λµ f ast) (6.2)

where x (cm) is the depth to the surface and Λneut., Λµstopped and Λµ f ast are the respective at-

tenuation length of each production path (150, 1300 and 5300 g/cm2) [Braucher et al., 2003, 2011]. In

particular in regions with high erosion rates, muon induced production is important.

The cosmic ray flux, received on a specific surface, also depends on the field of view of each single

point within the catchment. Thick topographic features such as mountains and cliffs partially shield

the incoming radiation and therefore lower P(0) [Dunne, 1999; Dunai, 2010]. The fraction of the cosmic

ray flux which can reach the surface at one point depends on the inclination θ of the horizon over a

certain azimuthal length �ϕ and can be expressed in form of a shielding factor:

Stopo = 1 − 1
360◦

n

∑
i=1

�φi sinm+1 θi (6.3)

Where �φi is the baseline of the horizon triangulation and θi the inclination over the ith azimuthal

length fraction. The exponent m (typically 2.3) describes the angular dependency of the cosmic rays

[Dunne, 1999] and n is the number of azimuthal computing steps (n = 1− (360◦/ � ϕi)). The influence

of the topography can be corrected by multiplying the production rate with the shielding factor.

The averaging time-scale Te f f (approximately the time to remove one attenuation path length), for

which the calculated erosion rates are representative, depends directly on the respective erosion rate:

the faster the erosion processes the shorter Te f f [Lal, 1991; von Blanckenburg, 2005]. After Lal [1991] Te f f

can be calculated as follows:

Te f f =
Λ
ρε

(6.4)

The following six hypothesis have to be fulfilled to calculate catchment-wide erosion rates from the

in-situ produced 10Be concentration [Dunai, 2010, and references therein]:

1. Erosion in the catchment is constant over Te f f . This might be biased when landsliding and/or

glacial erosion contributes dominantly to the erosion processes. In this case, fresh un-radiated

material enters the system.

2. The target material (here quartz) must be homogeneously concentrated in all catchment litholo-

gies and each lithology must contribute equally to the erosion rate.

3. The grainsize of the quartz minerals must be similar over the whole catchment.

4. Erosion must take place by dominantly surface lowering and not by subsurface dissolution pro-

cesses.
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5. The transport of eroded material must be instantaneous or very short with respect to Te f f . In

other words, the measured sand sample must not be deposited during transport.

6. Te f f must be shorter than the half-life T1/2 of 10Be isotope (1.36 ± 0.07 Ma [Nishiizumi et al.,

2007]).

The main limitations for this method in the Himalayas are: 1) In-homogeneous distribution of

quartz concentration between the major geological units, 2) undefined glacial erosion contribution,

3) possibility of landslide dominated erosion processes, and 4) partial shielding by temporary snow

coverage. The first might bias the calculation of the production rate inducing a relative miss-estimation

of the production rate. The second and third can provide partially juvenile (un-radiated) material to

the sediment budget, altering the results towards higher erosion rates. The latter one, leads to a lower

isotope concentration inducing likewise higher erosion rates.

6.3.2 Sample preparation and analysis

To estimate erosion rates from cosmogenic nuclides elaborated mechanical/chemical cleaning and sep-

aration techniques are necessary to segregate the respective isotope [Brown et al., 1991; Merchel and

Herpers, 1999]. All samples were collected on fresh sandbars within the river channel itself. Sampling

locations were chosen according to clearly fresh deposits of the previous monsoon season. The sam-

ples were dried and sieved to 250 − 1000 µm grain size fraction. For each sample, ∼ 100 g of quartz

were separated by standard magnetics separation techniques. The remaining feldspars and some mi-

nor fraction of undefined non-magnetic mineral were chemically dissolved. Because of the possible

contamination by atmospheric produced 10Be the remaining pure-quartz sample were etched in three

leaching steps with hydrofluoric acid (48%). In each step ∼ 10% of the remaining mass was dissolved.

Following the cleaning, the samples were spiked with 9Be carrier (Phenakite DD - MER08, [Merchel

et al., 2008]). The total Be inventory (10Be and 9Be) was then extracted by classical exchange column

chemistry following the protocol of Merchel and Herpers [1999], and prepared for accelerator mass spec-

trometry AMS. All samples were measured at the AMS facility ASTER (Accelerateur pour les Sciences

de la Terre, Environnement, Risques), Aix-en-Provence, France [Arnold et al., 2010], except for two

samples which were analysed at the AMS facility in Dresden/Rossendorf DREAMS (DREsden-AMS

facility), Germany.

P(0) of each sample are calculated spatially (not only mean catchment values). All calculations

are conducted within a GRASS GIS environment [GRASS Development Team, 2010]. P(0) and Stopo

are calculated on the basis of a ∼ 90 m SRTM-4 digital elevation model (A. Javis et al., Hole filled

seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT), 2008, available from

http : //srtm.csi.cgiar.org). The elevation scaling scheme of P(0) was calculated after Stone [2000]

for a constant latitude of 30◦ and a sea-level high-latitude production rate of 4.5 [at/(g yr)]. Λneut.,

Λµstopped and Λµ f ast parameters are 150, 1500 and 5300 respectively [Braucher et al., 2003, 2011; Siame
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et al., 2004]. Topographic shielding was corrected on a pixel scale (equation 6.3) using �φi of 30 km,

which is sufficiently longer than the average ridge-to-ridge valley width (∼ 10 − 20 km). Glaciated

areas are excluded of the P(0) calculation. The resulting production rate map is sub-sampled for each

catchment to extract the respective mean P(0) in order to calculate mean catchment erosion rates using

equation 6.1. I assumed homogeneous quartz concentration and rock erodibility. I did not correct

for juvenile sediment contribution by glacial erosion which might be significant [Burbank et al., 2003;

Heimsath and McGlynn, 2008]. However, glacial erosion depends on bedrock lithology and intra-glacial

dynamics (e.g. temperature, accumulation rate and glacier bed inclination) and can vary significantly

from glacier to glacier [Paterson, 1994; Zech et al., 2009; Scherler et al., 2011a]. Erosion rates are calculated

assuming uniform rock density of 2.65 g/cm3.

6.3.3 Calculation of catchment characteristics

I extracted the following basin characteristics in order to compare with 10Be erosion rates: 1) slope,

2) relief, 3) mean annual precipitation rate P, 4) mean precipitation intensity PInt, 5) glaciated area,

and 6) percent surface are within a major geological unit. All spatial calculations and procedures are

conducted in a GRASS GIS environment [GRASS Development Team, 2010], using standard implemented

routines.

1) Slope is calculated from the SRTM-4 DEM in degree of inclination to the horizontal plain, using

a 3 by 3 neighbourhood kernel. 2) Relief, or local relief [see Ahnert, 1970] is calculated on a ∼ 10 km

circular kernel, assigning the elevation range (maximum elevation - minimum elevation) to the cen-

tral pixel. 4) Annual mean basin precipitation is extracted from APHRODITE (Asian Precipitation

Highly Resolved Observational Data Integration Towards Evaluation of Water Resources, Monsoon

Asia, Version 10, hereafter referred to as APHRODITE [see Yatagai et al., 2009; Andermann et al., 2011])

precipitation dataset, compiled to a mean annual dataset (∼ 50 years). 4) Rainfall intensity is calcu-

lated as the pixel based 99% rainfall quantile over the ∼ 50 years daily precipitation distribution. It

represents a minimum intensity which is exceeded in average on ∼ 3.6 days per year. 5) The percent

glaciated area of each catchment is extracted from the global glacier database provided online by the

National Snow and Ice Data Center. [1999]. 6) The major geological units are sub-sampled for each basin

from the simplified geological map (see Fig. 6.1) published by Department of Mines and Geology Nepal

[1994].

6.4 Results

The calculated erosion rates range between 0.2 and 4.4 mm/yr (Table 6.1), typical for cosmogenic ero-

sion rates reported from independent studies in the Himalayan region [Vance et al., 2003; Wobus et al.,

2005; Heimsath and McGlynn, 2008, and Lupker et al., in preparation]. Sample NP-A42s sticks out

from the rest with an erosion rate of 8.7 ± 8.9 mm/yr. This sample gave only one count during the
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Table 6.1: Results for 10Be erosion rates in Nepal. Latitude and longitude of the sampling locations are given in WGS84 reference system. Elevation at sampling location is derived from GPS readings.

Bl. corr. stands for blank correction. AMS Accelerator Mass Spectroscopy, ASTER facility at Aix-en-Provence (France), DREAMS facility at Dresden/Rossendorf (Germany). C is the 10Be concentrations

with (1σ) measuring uncertainty. ε is the erosion rate and Te f f the integration time scale. Standard: NIST-27900, 10Be half live T1/2 is 1.36 ± 0.07 Ma [Nishiizumi et al., 2007]. Scaling factors for the

production rate are calculated for a constant latitude of 30◦ after Stone [2000]. Attenuation parameters for neutrons, slow- and fast muons are from Braucher et al. [2003, 2011] and Siame et al. [2004].

Sea-level high-latitude production rate [at/(g yr)] is 4.5. Density ρ is assumed to be 2.65 g/cm3.

Sampling location Erosion results

Sample River Location Lat. Long. Elevation Bl. corr. AMS C 10Be uncert. ε uncert. Te f f

[◦] [◦] [m asl.] [%] 103 [at/g] 103 [at/g] [mm/yr] [mm/yr] yr

Main streams

NP081016A Marshyangdi Beshishar 82.42 28.23 698 10.07 ASTER 7.56 1.55 4.42 0.90 136.7

NP080912A Bhote Koshi Power plant 85.94 27.93 1404 1.28 ASTER 51.21 2.76 0.89 0.05 674.9

NP080913A Sunkoshi Pangretar 85.83 27.75 720 3.79 ASTER 14.12 0.70 2.76 0.14 219.0

NP080913B Tama Koshi Nayapul 86.08 27.62 1084 3.89 ASTER 15.47 1.59 2.16 0.22 279.2

NP-A1s Tati Tandipul 85.13 27.86 485 4.11 DREAMS 20.00 2.30 0.45 0.05 1331.4

NP-A10s Trishuli River Shyaphru 85.34 28.16 1389 5.06 ASTER 16.25 2.30 2.38 0.34 254.0

NP-A18s Trishuli River Devighat 85.11 27.86 454 6.33 ASTER 12.13 1.79 2.79 0.41 216.5

NP-A20s Trishuli River Downstream Devighat 85.10 27.86 446 5.63 DREAMS 18.11 3.58 1.67 0.33 362.4

NP-A39s Bhudi Gandaki Arughat 84.81 28.04 470 71.08 ASTER 15.27 2.54 2.12 0.35 284.2

CAJ-7 Trishuli River /Botekoshi Upstream Confluence 85.34 28.18 1502 3.40 ASTER 25.98 2.02 1.55 0.12 390.3

Arr-2 Trishuli River Adamghat 84.97 27.81 414 4.00 ASTER 17.94 1.64 1.52 0.14 396.9

Arr-3B Trishuli River downstream Benighat 84.77 27.81 330 8.70 ASTER 8.56 0.81 3.05 0.29 197.9

Arr-3A Bhudi Gandaki Benighat 84.78 27.82 336 8.90 ASTER 9.59 1.68 2.86 0.50 211.2

Arr-4 Trishuli River Mugling 84.56 27.86 256 4.90 ASTER 15 1.15 1.70 0.13 354.4

Tributary catchments

NP080929A Yarsha Khola Gopitar 86.08 27.61 847 2.51 ASTER 38.24 1.99 0.27 0.01 2249.9

NP080924A Jhikhu Khola close Lekalibesi 85.67 27.95 780 4.40 ASTER 32.03 1.41 0.18 0.01 3263.5

NP-A3s Samari Khola Outlet 85.13 27.93 563 4.06 ASTER 13.15 0.82 0.46 0.03 1306.7

NP-A5s Phalakhu Khola Betrawati 85.19 27.98 615 4.01 ASTER 13.71 0.83 0.88 0.05 687.6

NP-A9s Trishuli Khola Dhunche 85.31 28.11 1844 0.85 ASTER 82.18 2.58 0.33 0.01 1851.8

NP-A16s-I Phenglung Khola Outlet 85.36 28.23 1634 4.28 ASTER 17.96 2.73 1.42 0.22 423.8

NP-A16s-II Phenglung Khola Outlet 85.36 28.23 1634 3.91 ASTER 18.81 2.38 1.36 0.17 443.8

NP-A23s Arkhet Khola Arkhet 84.83 28.10 563 5.30 ASTER 8.74 0.63 0.73 0.05 831.1

NP-A42s Lothar Khola Debichaur 84.73 27.59 258 7.90 ASTER 0.68 0.66 8.74 8.88 69.0

Special case

NP-A12s Chilime Khola Thambuchet 85.30 28.19 1744 6.57 ASTER 10.32 1.39 2.71 0.37 222.7

NP-A14s Bamdang Khola Thambuchet 85.30 28.18 1777 8.99 ASTER 8.22 0.72 2.03 0.18 297.5
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AMS measurement (usually > 50) and is considered as an outlier and not further considered here.

I separated the samples in three different batches: 1) Samples from main streams with drainage ar-

eas > 250 km2, 2) samples from tributaries of small catchments of < 250 km2 (Table 6.2) and 3) two

catchments with some special conditions (explained thereafter). Batch three is considered as tributary

catchments. The highest erosion rates are measured in the main streams, all ≥ 1.5 mm/yr (with ex-

ception of Bhotekoshi NP080912A and Tati NP-A1s), while the tributary catchments have in general

lower erosion rates (≤ 1.4 mm/yr). The highest erosion rate is measured in the Marshyangdi catchment

4.4 mm/yr (NP081016A). The lowest erosion rate is measured in the Jhikhu Khola (NP080924A) catch-

ment, which is located south of the High Himalayan range, characterized by a lower relief (∼ 1000 m).

Measuring uncertainties are in the range of ∼ 3 − 20% of the calculated erosion rate, in general higher

for high erosion rates. Depending on the rates, Te f f is very short for high erosion rates, 137 years in

Marshyangdi, and is in the order of ∼ 1000− 3000 years for catchments with erosion rates < 1 mm/yr.

Concerning the two samples measured at the AMS facility in Dresden DREAMS (NP-A20s and NP-

A1s), I find good reproducibility between ASTER and DREAMS (identical in construction) in the order

of few percent (see also Appendix). Sample NP-A16s was separated in two different batches (NP-A16s-

I and NP-A16s-II) in order to test the reproducibility of the separation and AMS measurements. Both

samples show the same results with < 1% difference.

6.4.1 Catchment Characteristics

The catchment characteristics are listed in Table 6.2. All main stream catchments include a glaciers,

covering between 11 and 23% of the catchment area. Among the tributaries only one basin (NP-A12s)

is glaciated, with an area of 34% covered by glaciers. Mean catchment slope of all three batches ranges

between ∼ 20 − 30◦. The mean catchment relief of all three batches ranges from 1000 to 3400 m. Both

P and PInt are much smaller for the main stream catchments than for the tributary catchments. Large

rivers originate on the arid Tibetan Plateau and drain through the wet Himalayan front. The tribu-

taries are situated in the more or less wet monsoon climate mountain front and have therefore much

higher mean P and PInt values. The percental surface area of the major geological units is relatively

heterogeneously distributed and non of the batches is exclusively dominated by one geological unit.

The two catchments termed as special case (NP-A12s and NP-A14s) are located at the end of a

larger side branch of the Trishuli River (see Fig. 6.2). As mentioned above the Chilime Khola NP-A12s

is strongly glaciated which might lead to artificial higher erosion rates, therefore it is graphically set

apart. Bamdang Khola NP-A14s is physiographically similar to the other tributary catchments (no

glaciers, similar slope). Just before I sampled this basin, a strong flood has lowered the river bed by

∼ 1 m. Remains of intense mass transport where found and sediments are eventually not perfectly

mixed. The sampling location is upstream of the fresh debris deposits.
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Table 6.2: Catchment characteristics for the respective drainage area of each 10Be sample. Mean basin values (elevation, slope, relief, precipitation P and precipitation intensity Pint, glaciers) are calculated

spatially in a GIS system. Relief is calculated with circular moving kernel with ∼ 11 km radius, as maximum-minimum elevation. Area represents the whole catchment including glaciated area. P is derived

from the spatial APHRODITE dataset [Yatagai et al., 2009]. Pint is the 99% quantile of the pixelbased rainfall distribution of the ∼ 50 yr daily precipitation time series. Glacier cover is the % area of the

catchment covered by glaciers [National Snow and Ice Data Center., 1999]. Major geological units in % area contribution of each catchment: TSS: Tethyan Sediment Series, HCC: High Himalayan Cristalline,

LH: metasediments of the Lesser Himalayas, SW: Siwaliks formation, QS: Quaternary Sediments.

Mean catchment parameters Geological units

Sample River Area Elevation Slope Relief P PInt Glaciers TSS HHC LH SW

[km2] [m asl.] [◦] [m] [mm/yr] [mm/yr] %cover % area % area % area % area

Main streams

NP081016A Marshyangdi 3000 4408 29.3 2925.0 909.3 29.9 21 60.74 34.57 4.7 n.a.

NP080912A Bhote Koshi 2105 4868 22.5 1925.2 453.5 30.2 13 41.49 58.51 n.a. n.a.

NP080913A Sunkoshi 2572 4379 23.5 1998.6 1111.9 38.0 11 33.95 52.55 13.51 n.a.

NP080913B Tama Koshi 2962 4239 27.8 2456.5 894.9 25.5 18 n.a. 87.11 12.84 n.a.

NP-A1s Tati 657 1653 24.4 1984.3 2195.6 56.3 no n.a. 78.08 21.92 n.a.

NP-A10s Trishuli River 4086 4625 26.4 2339.6 632.2 20.3 23 59.37 38.93 1.69 n.a.

NP-A18s Trishuli River 4798 4259 26.5 2354.0 813.6 25.0 19 50.57 34.72 14.71 n.a.

NP-A20s Trishuli River 5469 3939 26.3 2307.9 967.1 28.5 17 44.36 39.98 15.65 n.a.

NP-A39s Bhudi Gandaki 3981 4215 30.3 2784.2 939.1 31.4 15 41 31.52 16.39 10.74

CAJ-7 Trishuli River /Botekoshi 3207 4675 25.3 2191.3 535.1 19.9 20 74.96 25.04 n.a. n.a.

Arr-2 Trishuli River 6091 3670 25.8 2219.5 967.1 28.5 15 44.28 39.06 16.67 n.a.

Arr-3B Trishuli River 11716 3570 27.1 2362.3 1048.2 31.7 13 43.67 34.14 22.2 n.a.

Arr-3A Bhudi Gandaki 5048 3739 29.3 2652.4 1023.0 31.9 12 44.88 30.53 24.58 n.a.

Arr-4 Trishuli River 11997 3507 27.0 2342.0 1083.0 32.9 13 42.81 33.34 23.85 n.a.

Tributary catchments

NP080929A Yarsha Khola 55 1773 18.9 1803.2 1779.2 45.6 n.a. n.a. 100 n.a. n.a.

NP080924A Jhikhu Khola 113 1129 14.9 1009.9 1196.4 41.8 n.a. 78.92 13.47 7.6 n.a.

NP-A3s Samari Khola 53 1258 24.0 1644.4 2082.7 57.8 n.a. n.a. n.a. 100 n.a.

NP-A5s Phalakhu Khola 148 2145 28.1 2560.4 1543.2 37.6 n.a. n.a. 17 83 n.a.

NP-A9s Trishuli Khola 52 3548 27.4 2730.3 1152.7 25.5 n.a. n.a. 57.4 42.6 n.a.

NP-A16s-I Phenglung Khola 21 3393 32.2 3676.1 1152.7 25.5 n.a. n.a. 100 n.a. n.a.

NP-A16s-II Phenglung Khola 21 3393 32.2 3676.1 1152.7 25.5 n.a. n.a. 100 n.a. n.a.

NP-A23s Arkhet Khola 18 1427 27.1 2565.5 1973.0 51.1 n.a. 56.92 33.23 9.85 n.a.

NP-A42s Lothar Khola 433 1156 25.0 1541.3 1637.5 66.0 n.a. n.a. n.a. 100 n.a.

Special case

NP-A12s Chilime Khola 227 4441 31.4 3070.0 597.3 17.1 34 n.a. 95.39 4.61 n.a.

NP-A14s Bamdang Khola 42 3003 29.3 2828.4 1526.3 30.3 n.a. n.a. 2.22 97.78 n.a.
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6.4.2 Erosion vs. precipitation

The plot of precipitation (P and PInt) vs. 10Be erosion rates shows overall a negative relation (Fig. 6.3).

However, when separating the data in tributary catchments and main stream catchments, the data plots

in two different groups and within each group no relation between erosion and precipitation can be

observed. The small basins have overall the lowest erosion values and plot over a wide range of mean

precipitation rates (1200 − 2100 mm/yr, Fig. 6.3a). In contrast, the main stream basins cluster around

mean basin precipitation rates of 500 − 1000 mm/yr. The plot of PInt reveals a similar distribution

(Fig. 6.3 b). Although, the pattern between Figure 6.3a and Figure 6.3b changes slightly I can not

observe any relation between precipitation and 10Be erosion rates. I have to further investigate the role

of precipitation by for example only considering the Himalayan front.
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Figure 6.3: 10Be erosion rate plotted against mean catchment precipitation parameters. The three

different batches are indicated by color, red: tributaries, green: special case, tributaries, and blue: main

streams. a) Mean annual rainfall rate (integrating 50 years) plotted against 10Be erosion rate. b) 99%

rainfall quantile, calculated on a pixel base over the whole 50 year time series.

6.4.3 Erosion vs. topography

10Be erosion rates compared to relief show clear positive trends, different for the main basin samples

and tributaries ones. The main stream catchments show a steeper trend than the small tributaries

(Fig. 6.4 a), however the two basins termed as special case plot close to the main stream basins. The

comparison of my results with literature data from Finnegan et al. [2008] Vance et al. [2003] and Schaller

et al. [2001] reveals globally similar trends. A shift between the data of Vance et al. [2003] and Schaller

et al. [2001] along the relief axis is possibly induced by the methodology used to calculate relief. I

calculated relief as the difference between the maximum and the minimum elevation (local relief),

while Vance et al. [2003] and Schaller et al. [2001] have calculated relief, using a slightly smaller kernel,

as the mean elevation minus the minimum elevation. Consequently, their respective relief values

are smaller for a given erosion rate (roughly half). However, the data of Finnegan et al. [2008], who
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calculated relief in the same way as us, plots well with my dataset. The data of Finnegan et al. [2008]

and the main streams follow a exponential-law: ESt = 0.07exp(0.0013 ∗ Relie f ) with r2 = 0.61 and the

tributaries a different exponential-law: ETR = 0.1exp(0.00068 ∗ Relie f ) with r2 = 0.69.

The comparison of 10Be erosion rates with mean basin slope (Fig. 6.4 b) shows a clear non-linear

relation, confirming the findings of Ouimet et al. [2009]; Norton et al. [2010] and Palumbo et al. [2011]

using cosmogenic data, as well as the findings of Montgomery and Brandon [2002] using thermochrono-

logical data. Erosion tends to increase with slope to a certain slope threshold (∼ 25 − 30◦) and then

independently of slope. Above the threshold, erosion varies over a wide range for the same mean basin

slope. However, the slope threshold in the central Himalayas seems to be smaller than the 30◦ reported

by Ouimet et al. [2009] and Norton et al. [2010] (see Fig. 6.4) and tends to be closer to the 25◦ reported

by Palumbo et al. [2011]. This threshold is usually interpreted as a threshold value for landsliding.

However, the significance of a lower slope threshold for the Nepal Himalayas would need to be further

evaluated.

6.4.4 Erosion vs. geology and glaciers

The majority of all catchments lays within the geological units of the TSS, HCC and LH (Fig. 6.5). No

correlation can be observed when comparing the 10Be erosion rates with geological % surface area of

the geological units (Fig. 6.5a, b and c). I conclude that 10Be erosion rates are not influenced by the

contributing lithology. Or if geology plays a role, the significance of five units is not pertinent enough.

Again the contributing area of glaciers does not show any tendency (Fig. 6.6). However, this might

be the result of highly heterogeneous glacier dynamics. Therefore, their surface area and eventual

impact on mean catchment erosion rates is not necessarily related.
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Figure 6.5: 10Be erosion rates plotted against % surface area of the major geological units. a) TSS:

Tethyan Sediment Series, b) HCC: High Himalayan Cristalline, c) LH: metasediments of the Lesser

Himalayas.
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Figure 6.4: 10Be erosion rates plotted against topographic parameters. The three different batches are

indicated by color, red: tributaries, green: special case tributaries, and blue: main streams. a) Plot of

mean basin relief (calculated over a circular moving kernel with ∼ 10 km radius) vs. 10Be erosion rates.

The data is compared to literature values from Vance et al. [2003] (Himalayas, upper Ganges catchment)

, Schaller et al. [2001] (European catchments), and Finnegan et al. [2008] (eastern Himalayan syntaxis),

indicated with grey triangles, diamonds and squares. Note, Vance et al. [2003] and Schaller et al.

[2001] did not calculate local relief (see text). The data of the main streams catchments and the data by

Finnegan et al. [2008] are fitted by a exponential law (ESt = 0.07 exp(0.0013 ∗ Relie f ), r2 = 0.61), as

well as the data of tributaries catchments (ETr = 0.1 exp(0.00068 ∗ Relie f ), r2 = 0.69). I did not plot

the data of Norton et al. [2010] and Palumbo et al. [2011] since their relief was calculated on < 1 km

radius. b) Mean basin slope plotted against 10Be erosion rates. Data from Ouimet et al. [2009]; Norton

et al. [2010] and Palumbo et al. [2011], from the eastern Himalayan margin, the European Alps and

the NE Tibet respectively, are plotted in grey for comparison. The dashed lines indicate the critical slope

threshold above which erosion rates are uncorrelated with slope.
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Figure 6.6: 10Be erosion plotted against % glaciated surface area. Only catchments with glaciers are

plotted.

6.4.5 Erosion variations across the Himalayan range

I plotted 10Be erosion rates of the tributary basins against the distance to the southern front of the

Himalayan range (see Fig. 6.1), in order to test how erosion rates evolve across the mountain range

(Fig. 6.7). Elevation and precipitation is plotted for orientation. As a spatial reference I defined the

MFT as the Himalayan front. I did not compare the main stream catchments because the source of

erosion is not well represented by the sampling location. The tributary samples show a clear increase

with the increasing distance to the Himalayan front. Roughly the erosion rates mimic the relief (grey

shading) across the Himalayan range. Unfortunately I miss tributary samples from the arid Tibetan

Plateau, in order to see if erosion decreases beyond the Himalayan range.

6.5 Discussion

Erosion rates calculated from 10Be concentration in river sand are all in the typical range ∼ 0.2 −
4.5mm/yr of published erosion rates for Himalayas [e.g. Vance et al., 2003; Wobus et al., 2005; Finnegan

et al., 2008; Gabet et al., 2008; Wulf et al., 2010; Ouimet et al., 2009]. One striking result is the general

difference between erosion rates from the main rivers and the tributary catchments.

6.5.1 Erosion vs. precipitation

As I showed in a previous manuscript [Andermann et al. to be submitted] from analyses of suspended

sediment concentrations, precipitation plays an important role in mobilizing and transporting material.

Though, published erosion rates derived from cosmogenic nuclide analysis, integrating over several

hundreds to thousands of years do not show any correlation with precipitation [e.g. von Blanckenburg,

2005]. My data shows overall a weak negative correlation between erosion and precipitation (Fig. 6.3).

125



0
1

2
3

4
5

6
7

El
ev

at
io

n 
[k

m
]

0.
5

1.
5

2.
5

Pr
ec

ip
ita

tio
n 

[m
/y

r]

0
1

2
3

10
Be

 E
ro

si
on

 ra
te

 [m
m

/y
r]

Tributary erosion
Special case

0 50 100 150
distance to the front [km]

Elevation

Precipitation

Figure 6.7: 10Be erosion rates of tributary basins plotted against their shortest distance to the Hi-

malayan front (see Fig. 6.1). Zoom of the elevation and precipitation swath profile of the inset of Figure

6.1. Here the Himalayan front is the Main Frontal Thrust MFT (Fig. 6.1).

However, the negative correlation vanishes when separating between tributary basin and main stream

basin samples and no trend can be documented when considering the batches separately. The main

stream basins have generally lower mean precipitation rates and higher erosion rates than the tributary

ones and it is likely that the overall observed negative relation is only an artifact. Note that, their is no

physical meaningful reason why erosion rates should increase with decreasing precipitation rate. In

order to explain the artifact two possibilities could be discussed: 1) a general overestimation of erosion

rates in the main stream basins, and/or 2) a methodological underestimation of the precipitation rates

in the main stream basins.

Overestimation of the catchment wide erosion rates of the main stream catchments can arise from

the contribution of glacial erosion to the river sediments. Depending on the erosion efficiency of the

glacier, considerable volumes of juvenile material can be brought to the river, which would decrease

the 10Be concentration and hence the erosion rate. However, glacial erosion behaviour is very complex,

depending on climate variations and topographic conditions [e.g. Zech et al., 2009; Scherler et al., 2011b]

and is therefore difficult to quantify. As illustrated in Figure 6.6 I do not observe a relation between

the glaciated surface area and erosion rates, suggesting that either glaciers do not bias the calculations

or that strong inter-glacier variabilities do not allow to define a trend between the surface area of the

glacier and their erosion capacity.

Intuitively I would expect that the bulk of the eroded material comes from the Himalayan range
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and only a small fraction from the Tibetean Plateau. Indeed, Lal et al. [2004] show that erosion rates

across the Tibetan Plateau, determined from comsogenic exposure dating, are in average ∼ 6.3 mm/kyr,

roughly 2 to 3 magnitudes lower than typical Himalayan ones [e.g. Vance et al., 2003]. Since the large

catchments integrate partially the Plateau, the mean catchment erosion rates should be lower then

the ones determined from small catchments, draining exclusively the Himalayan range. This rises the

question of where does the material comes from? On the other hand the results of Lal et al. [2004]

represent only the internally drained Tibetan Plateau, north of the Tsangpo Sature and thus the base

level of erosion for the analysed rivers is very high. The base level of erosion for the rivers draining

south, through the Himalayan range, however is controlled by the Himalayan forland [Lavé and Avouac,

2001], ∼ 6000 m lower than the Plateau. Hence, the erosive capacity of the south draining Tibetan

Plateau is much higher than the one of the interior.

One other possible reason why the erosion rates in the main catchments could be overestimated

comes from my sampling strategy. Before the sampling field-campaign I selected catchments from

satellite image interpretation, where no massif landsliding could be observed. Hence, the large catch-

ments integrate both, the large landslides and areas with erosion processes by surface lowering. This

can explain overall higher erosion rates in the large catchments.

Another reason for a possible overestimation in the main stream basins lays in the heterogeneous

quartz concentration of the basement geology. For example Vance et al. [2003] report that modal quartz

concentrations of the TSS (∼ 38%) are about 15% lower as those from the HHC. As a consequence,

the production rate of the Tibetan Plateau, being very high because of the elevation, is leading to an

overestimation of the mean catchment production rate and hence, of the erosion rate. The same affect

could be caused by a very low erosion contribution from the Tibetan Plateau. Considering for example

the very low erosion rates reported by Lal et al. [2004], the considered mean production rate would be

disproportional high with respect to the actual erosional contribution from the Plateau. Furthermore,

large parts of the Tibetan Plateau and the High Himalayas are temporally snow covered, which leads to

a partial shielding of the snow covered areas and thus decreases the production rate of 10Be, and thus

leads to an overestimation of the erosion rates. However, shielding by snow is very difficult to evaluate,

because the shielding efficiency depends on the properties (thickness and density) of the snow cover

which is highly variable in time [e.g. Stewart, 2009].

The two northernmost samples (CAJ-7 and NP080912A) from the upper Trishuli River and Bhote

Koshi River (Arniko Highway), both north of the MCT yield erosion rates of 1.5± 0.12 mm/yr and 0.9±
0.05 mm/yr respectively, approximately three magnitudes higher than those erosion rates reported by

Lal et al. [2004] for the Plateau. Thoroughly, comparable with those erosion rates reported for the

southern edge of the Plateau by Vance et al. [2003], 1.2 ± 0.1 mm/yr. Although, Vance et al. [2003]

corrected their calculations for variable quartz concentrations but they did not correct for possible

glacial contribution and therefore their results might be incorrectly high.

Secondly, the apparent negative relation between erosion rates and precipitation (Fig. 6.3) could
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arise from my method to extract mean basin precipitation rates. The main stream basins average pre-

cipitation over a large range of precipitation regimes, from the wet mountain front to the overall arid

Tibetan Plateau. The tributary basins are all relatively small and are situated in the south facing moun-

tain front, and consequently each basin averages over a relative homogeneous precipitation regime.

Hence, mean precipitation rates for large basins are lower than for the small basins characterized by a

very wet climate. However, without any a-priori information on the spatial distribution of the erosion

processes I did not calculated the precipitation rate for only one region.

Considering the reasons discussed above, it is most likely that the erosion rates of the main streams

are overestimated to a certain degree. Probably the highest uncertainty comes from the difficulty to

quantify glacier erosion rates and from the inaccurate consideration of the production rates of the

Tibetan Plateau. In order to quantify the effect of these uncertainties further sensitivity analysis have

to be carried out.

Due to the lack of necessary information, in particular the glacier contribution and shielding by

snow, I did not corrected the calculations for these parameters.

6.5.2 Erosion vs. topography

Comparing the 10Be erosion rates with relief (Fig. 6.4 a) reveals overall an exponential relationship.

The observation of an exponential relation is different from earlier observations made by Ahnert [1970]

and Schaller et al. [2001], who reported a linear relation between these two parameters, but in good

agreement with for example the observations of Vance et al. [2003] in the Himalayas and Palumbo et al.

[2011] in the northern margin of the Tibetan Plateau. The latter ones show the same tendency, although

relief was calculated using a different technique (Fig. 6.4 a). This, however, fits well into the conclusions

by Montgomery and Brandon [2002], that the linear relation shown by Ahnert [1970] provides only a lower

limit for tectonic active landscapes, while erosion rates in landscapes with a relief � 1000 m behave in

a non-linear fashion.

In comparison with mean basin slope, my data show the same effect than the data from the east-

ern margin of the Tibetan Plateau [Ouimet et al., 2009], data from the Transverse Ranges of Southern

California [Binnie et al., 2007], the Swiss Alps [Norton et al., 2010] and the north-eastern Tibet [Palumbo

et al., 2011]. The plot of mean basin slope vs. 10Be erosion rates reveals a non-linear increase with slope

and a decorrelation between erosion and slope for mean basin slopes larger than the critical angle (Fig.

6.4 b). Although, my erosion rates are higher for a given slope as those of Ouimet et al. [2009] and the

critical slope angle seems to be lower (∼ 25 − 30◦) than theirs (30 − 35◦). It is possible that the lower

critical slope angle detected in the Himalayas might be due to overall higher precipitation rates in the

Nepal Himalayas. For example, more water in the landscape can increase pore saturation and hence

decreases internal friction, bringing slopes faster to collapse [e.g. Iverson, 2000].

A striking feature is that I observe two different exponential relations (Fig. 6.4 a), one for the main

streams and one for the tributaries, indicating that for the same relief, erosion rates are systematically
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lower in tributaries than along the main streams. Indeed, the exponential increase of erosion with

relief for the small tributary basins is less strong than in the large main stream basins. Note that, I am

going to consider here that this systematic difference in erosion rates between tributaries and mains

stream samples is real, however one has to keep in mind that this could be an atrifact, for the reasons

explained before.

Since I observe the same range of mean basin relief for both types of basins I can assume that

the hillslope angle distribution is similar and indeed all basins have comparable mean basins slopes,

close to the critical hillslope angle (Fig. 6.4 b). Consequently, in the tributary basins erosion is not as

strongly coupled with relief as in the larger basins, suggesting that relief alone is not a good proxy

to estimate erosion rates. I interpret this as the direct result of very faster stream incision rates in the

main stream basins and hence, a stronger coupling with hillslopes. The nonlinear increase of erosion

rates with slope and relief indicates that slope angles have reached a threshold value in the steep

catchments [Binnie et al., 2007; Palumbo et al., 2011]. Probably the different incision rates between the

two types of basins induce a different landslide frequency, hence in the large basins landslides are more

frequent causing faster erosion rates. If this is the case, the small basins erode more slowly than the

main stream basins which would indicate that the landscape is in a disequilibrium state. Indeed, from

field observations I know that the tributaries are disconnected from the main stream by knick-points,

indicating that these rivers incise more slowly than the main streams. However, the significance of the

two different relations has to be further investigated, as the different behaviour in erosion could also

simply result from the systematic overestimation of the erosion rates along the main stream basins, as

it was discussed above.

Binnie et al. [2007] interpreted the nonlinear relation between erosion and mean basin slope in terms

of transport and supply (detachment) limitation. Low erosion rates in areas with less inclined slopes

are typical of transport limited system, where the transport of material depends only on the available

transport energy of water. The high erosion rates are typical of systems, where the amount of material

transported is limited by the supply of material from the hillslopes. Amongst the data (Fig. 6.4) all

basins are supply limited, or in transition between the two conditions, in agreement with the earlier

findings from suspended sediment analysis [Andermann et al. to be submitted].

6.5.3 Comparison with suspended sediments

The 10Be erosion rates are higher than suspended sediment erosion rates analysed earlier, and illus-

trated in Figure 6.8. The direct comparison shows that the erosion rates in the High Himalayas (Trishuli,

Bhote Koshi and Dudh Koshi) are 4 to 9 times higher than the suspended sediment erosion rates. In

the Annapurna region, erosion rates are the highest, shown by both cosmogenic nuclide (Marsyangdi

basin) and suspended sediment (Kaligandaki Basin) analysis. Similar high erosion rates for this region

are reported by Burbank et al. [e.g. 2003]; Blythe et al. [e.g. 2007], determined from (U-Th)/He low-

temperature cooling ages. These findings are supported by sediment provenance analysis of Garzanti
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et al. [2007], who report highest erosion rates for the hangingwall of the MCT zone (see Fig. 6.1, HHC

unit) in the Annapurna region. However, suspended sediment analysis measured in the Marsyangdi

valley by Gabet et al. [2008], few kilometers upstream from my sampling location (NP081016A), are

roughly half 2.1 mm/yr. The suspended sediment erosion rates measured at the two outlet stations

of the Narayani Basin and the Koshi Basin agree well, in the range of uncertainty, with cosmogenic

nuclide erosion rates measured by Maarten Lupker (manuscript in preparation), CRPG Nancy, France.

Even though, the presented cosmogenic nuclide erosion rates in Figure 6.8 might be overestimated,

for the reasons discussed before. Indeed, they are very significantly higher than suspended sediment

ones in the High Himalayas (except Anapurna region). On the other hand, the suspended sediment

erosion rates measured at stations within the High Himalayas might be underestimated, due to the

lack of information on bedload transport [Andermann et al. to be submitted]. These findings are sup-

ported by high-frequency seismic noise analysis of Burtin et al. [2009], who detect significant bedload

movements between the Tibetan Plateau and the Lesser Himalayas, where relief and river channels

gradients are highest. However, both analysis agree for the three main outlet stations where bedload

is considered to play a minor role. Consequently, beadload contribution in the High Himalayas is a

tremendous fraction of the total sediment transport, considerably higher than the ∼ 33% reported by

Pratt-Sitaula et al. [2007] or the 50% applied by Gabet et al. [2008] and even more than the 60 − 350%

reported by[cf Galy and France-Lanord, 2001], if no overestimation of the 10Be rates is assumed. Hence,

the suspended sediment erosion rates can be interpreted as a lower limit and the 10Be erosion rates as

a higher limit of the High Himalayan erosion rates. I conclude that bedload contributes to a signifi-

cant fraction to the sediment flux in the High Himalayas and the cosmogenic nuclide erosion rates are

slightly overestimated.

6.6 Conclusions and outlook

I have compared spatial patterns of 10Be erosion rates to topography, precipitation and the possible

controls of glacier cover and dominant lithology. The presented data confirms high erosion rates

of several millimeters per year, determined by different authors and analysing techniques [Burbank

et al., 2003; Vance et al., 2003; Blythe et al., 2007; Garzanti et al., 2007; Finnegan et al., 2008; Gabet et al.,

2008; Ouimet et al., 2009; Wulf et al., 2010] for the Himalayan region. My results present a first order

evaluation of five large streams in Nepal and several of their tributary catchments. I have discussed in

detail possible effects which might bias the reported results and show how important it is to investigate

the role of glaciers and their erosion efficiency. This might not be an easy task, since each glacier

behaves differently, but is desperately needed to further constrains cosmogenic nuclide analysis within

the Himalayan range.

I demonstrated that in the Nepal Himalayas erosion does not correlate with precipitation, integrat-

ing over a millennial time span. However, precipitation is important as it furnishes river discharge
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Figure 6.8: Map of 10Be erosion rates (blue) vs. suspended sediments erosion rates (red) [Andermann

et al., to be submitted]. Only main stream basins are plotted. The cosmogenic nuclide erosion rates

of the major outlet stations (green) of Koshi, Narayani and Karnali basin are provided by Maarten

Lupker (CRPG Nancy, manuscript in preparation). The errors of cosmogenic nuclide erosion rates are

measuring uncertainty (1σ). The errors of suspended sediment erosion rates are mean uncertainty of

the 5% and 95% quantile fit of the rating model. a) Overview of all sampling locations. b) Zoom of the

region with the highest sampling density indicated in (a) by the black outline.

and hence, controls incision of bedrock [e.g. Tucker and Slingerland, 1997]. The non-linear relationship

between erosion rates and topography (slope and relief) confirms the existence of a critical hillslope

gradient [Montgomery and Brandon, 2002; Binnie et al., 2006; Finnegan et al., 2008; Ouimet et al., 2009;

Palumbo et al., 2011]. The fact that the erosion rates and slope show a supply limitation is supported

from suspended sediment analysis of these rivers [Andermann et al. to be submitted]. Furthermore,

I show an unreported offset between tributary and main streams erosion rates, suggesting that the

system is not in equilibrium. Though, to further promote the hypothesis of landscape disequilibrium I
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have to evaluate if the observed difference between main stream and tributary basins is significant or

if it exhibits a methodological artifact.
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Chapter 7

Conclusions and outlook

Here I review the main results of each chapter and synthesise them with respect to the four principle

research questions I developed in Chapter 1. I pinpoint the major conclusions and discuss their impli-

cations for the research of landscape evolution in the Nepal Himalayas. I understand this chapter as a

chance to discuss in a comprehensive way the four research topics of this thesis, compare the results

with respect to their temporal representativeness and develop some ideas which were not addressed

before. Then I discuss the temporal distribution of erosion processes and their sequential organisation.

Finally, I give some perspectives of research needs arising from the results of this thesis.

7.1 Main results and implications

Chapter 3 addresses the fundamental needs of precipitation data with a good temporal and spatial

resolution. This information represents the basis for evaluating erosion processes in the Himalayas.

Principally, two different datasets are available to understand precipitation: 1) ground based rain

gauge measurements and 2) remotely sensed observations, and both have their pros and cons. In-situ

gauge measurements have the potential to provide highly accurate measurements of a single point

with almost realtime resolution, but they provide only limited information on the spatial distribution

of rainfall patterns [Tustison et al., 2001]. Remotely sensed measurements facilitate very good informa-

tion on the spatial patterns without any need to extrapolate the information. However, the temporal

resolution (and to a certain degree the spatial resolution) of remotely sensed time series are restrained

by the return interval of the remote sensor. In total, I evaluated the spatio-temporal performance of

four different precipitation datasets available for the Himalayas. Three are mainly remote sensing

datasets and one is an interpolated rain gauge dataset. Additionally, the data was compared to the

high resolution precipitation data of Bookhagen and Burbank [2006].

The data was tested against 53 in-situ gauge observations and rain distribution maps of 5 small

watersheds. I identified the APHRODITE dataset [Yatagai et al., 2009] as the best performing one for

the Himalayas, both spatially and temporally. The APHRODITE dataset provides data for a very long
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time-span of > 50 years, with a daily resolution. Since, all the other applied time series (river discharge,

suspended sediment concentrations) in my thesis are also in daily resolution, precipitation data with a

daily resolution is sufficient for my approach. I also demonstrated that remotely sensed precipitation

datasets perform very poorly in mountains with important orographic effects. This is mainly because

the rain retrieval algorithms are not adapted to the physical complex precipitation processes caused

by orography. With respect to the importance of mountains as water resources [Viviroli et al., 2007;

Immerzeel et al., 2010] these algorithms need to be urgently revised. Furthermore, the existence of an

important rainfall gradient across the Himalayas has important implications regarding the analysis of

fluvial incision models [Roe et al., 2002; Wu et al., 2006] and for the flood hazard mitigation. The good

spatio-temporal quality of the APHRODITE dataset provides the unique possibility to study the role

of precipitation, furnishing water to the landscape and being one of the fundamental parameters in

landscape evolution.

In Chapter 4, I studied the fate of precipitated water. The particular emphasis was to understand

the pathways to transfer precipitation into river discharge. I applied ∼ 30 year time series of precip-

itation and river discharge of 12 watersheds, in order to compare the temporal phase-shift of peak

precipitation and river discharge. The temporal plot of precipitation vs. river discharge data revealed

an annual anticlockwise hysteresis effect, highlighting with respect to precipitation relatively fewer

river discharge in the pre- to early monsoon season and relatively more river discharge in the late

monsoon and post monsoon season. I concluded from this observation that a fraction of precipitated

water is temporally stored, and thus retarded, before it is released to the river. The response time

of the system, of ∼ 45 days, is significant and can not yield from the retardation of water in soils

and/or by a surface runoff. I identified this effect as the result of transient storage of water in a deep

fractured basement aquifer. This until now neglected component of the hydrological discharge cycle

in the Himalayas retards water during monsoon and maintains river discharge during the dry sea-

son. Furthermore, the recharge-discharge behaviour of all studied basins shows the same progress

and the same hysteresis shape, regardless of the basin location within the Himalayan range, as well

as the partial glaciation and temporal snow coverage. Only the hysteresis loops of those basins with

considerable glaciated areas and seasonal snow cover are relatively shifted along the discharge axis,

revealing an elevated basflow component. I used this relative shift to estimate the annual snow and ice

melt contribution to the Himalayan discharge cycle. The calculated snow and ice melt volume is in the

order of ∼ 14 km3/yr, which is roughly 10% of the annual river discharge of the three main drainage

basins in Nepal, and is consequently a significant fraction. Yet, the calculated storage variability of the

three main basins, estimated through hydrological modelling, accounts for ∼ 28 km3/yr. This storage

variability has to be interpreted as a volume which is purged and refilled every year. The actual water

volume passing through this compartment is a multiple of it and thus much more important in terms

of volume than the ice and snow melt contribution. Saying this, I am not intending to neglect the im-

portance of glaciers but rather want to point out the importance of this transient groundwater storage
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compartment.

The precondition to observe such a well defined cyclic discharge behaviour is the very strong and

likewise cyclic seasonality imposed by the Indian Summer Monsoon. One of the most important find-

ing is the retardation of the groundwater contribution to the river discharge. Therefore, very high flow

rates can be observed during post-monsoon, even though the climate is very dry. This has impor-

tant implications with respect to the transport capacity of sediments during this time. Furthermore,

as the rivers are high, precipitation events present a larger risk for flooding with respect to a similar

precipitation event in pre-monsoon season.

Chapter 5 deals with the constrains of mobilization and transport of suspended sediments in space

and time. I present in this work some new unpublished data on daily suspended sediment concen-

trations measurements from 13 hydrological stations, covering all major drainage basins of the Nepal

Himalayas. These data provide a new long-term and high resolution dataset to the Earth Sciences

community. It is so far the largest and most complete suspended sediment dataset for the whole Hi-

malayas. I applied a multi-data analysis of daily precipitation, river discharge and suspended sediment

concentration observations and show some new fundamental observations on the transport and mobi-

lization of material. Here, I separated the river discharge hydrograph in a direct runoff (fast response

time) and a basflow component (slow response time). Baseflow is the fraction of river discharge which

passes through a reservoir before it is released to the river, and thus gets temporally retarded. The

direct runoff is the fraction of river discharge characterized by a short transfer time, resulting in a short

response (� 1 day) of the corresponding rainfall event into the discharge hydrograph. I show that

suspended sediment concentrations plotted against river discharge describe an annual clockwise hys-

teresis effect. However, when plotting suspended sediment concentration only against the direct runoff

component, the hysteresis effect disappears, revealing a linear relationship. From this observation and

with the beforehand achieved knowledge of an important groundwater contribution, I identified the

hysteresis effect as an dilution effect. The observation of an hysteresis effect between suspended sedi-

ment concentrations and river discharge is a common phenomena and has been usually attributed as

a temporal supply effect [e.g. Morehead, 2003], for example, the depletion of a sediment stock in the

river system during the course of a large flood [e.g. Morehead, 2003]. From the linear relation between

sediment fluxes and river discharge, I developed a rating model, allowing me to calculate basin wide

denudation rates directly from the river hydrograph for the whole of Nepal. The calculated denudation

rates are in the order of 0.1− 6 mm/yr which is typical for the central Himalayas [e.g. Gabet et al., 2008;

Wulf et al., 2010].

I also show that all river systems of the Nepal Himalayas have the same behaviour with respect

to their mean flux. For example, the probability density of sediment fluxes is highly reproducible

between the different basins. The data shows a well defined threshold, with a stepper relation for high

magnitude events. Consequently, the occurrence of large erosion events follows a different probability

distribution than moderate and small events. Furthermore, the large events do not control the erosion
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flux. This has important implications concerning inter-comparability of modern erosion fluxes with, for

example, catchment wide erosion rates from cosmogenic nuclide analysis. Similarly, the normalized

sediment flux vs. river discharge plot reveals the same linear relation and an identical minimum

threshold. One major conclusion from this observation is that precipitation and river discharge exert a

predominant control on the mobilization and transport processes. Other basin characteristics, such as

lithology and landuse have only a minor impact. It is possible that the threshold in the rating model is

influenced by one of these parameters.

The analysis of suspended sediment fluxes reveals that erosion in the Nepal Himalayas is clearly

controlled by hillslope processes, limiting the transport of material in the rivers. In return, hillslope

processes are closely connected with the occurrence and intensity of precipitation. The rivers in the

three watersheds of Nepal are hardly ever close to their transport capacity, which is a result of a large

discharge contribution by groundwater. This implies that the rivers in the Nepal Himalayas are supply

limited and the hillsopes as contributing source are transport limited.

In Chapter 6, I analysed the cosmogenic nuclide concentration of river sand samples in order to

calculate the mean catchment denudation rates of 24 catchments, integrating over several hundred to

thousands of years. Then, I compared these results with those calculated from the suspended sediment

concentrations. For the Nepal Himalayas, no large scale study dealing with cosmogenic nuclide erosion

rates has been carried out so far. In general, the results confirm erosion rates of 0.1 to ∼ 6 mm/yr

calculated from suspended sediment concentrations and reported in the literature [Burbank et al., 2003;

Vance et al., 2003; Blythe et al., 2007; Garzanti et al., 2007; Gabet et al., 2008; Wulf et al., 2010]. I compared the

data to mean basin slope and relief, in order to see if I can establish a relationship between topography

and erosion as documented in the literature [e.g Ahnert, 1970; Montgomery and Brandon, 2002; Vance

et al., 2003; Binnie et al., 2007; Finnegan et al., 2008; Ouimet et al., 2009]. Secondly, I plotted the data

against mean basin rainfall rate and intensity, in order to test if the short-term precipitation control can

be also observed for longer time scales.

The results of the cosmogenic nuclide analyses confirm the overall established relationship between

relief and slope, showing clearly that slope exerts a predominant control on spatial erosion rates. I

observe non-linear relations between catchment wide erosion rates and relief, confirming that erosion

in the Nepal Himalayas is supply limited. Especially, the very high erosion rates for a slope larger than

the critical hillslope demonstrate that erosion takes place in form of mass-wasting.

Cosmogenic nuclide analysis suggest a different erosion behaviour of small tributary basins than

large main stream basins. The small basins show in general lower erosion rates than large basins.

However, further work is necessary to test whereas this finding is real or a methodology artifact. If

true however, this result would imply that the landscape in the central Himalayas is not in a state of

equilibrium, which might be the result of a change in climatic forcing, for example the documented

monsoon intensification around 5000 years ago [Bookhagen et al., 2005b; Clift et al., 2008b; Huntington

et al., 2006]. Even if the demonstration needs to be strengthen, the observation of faster erosion rates in
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the large mainstream basins than the small tributary basins is supported by field observation showing

knick-points on the tributary just before the confluence with the main streams.

In summary, I provided some new data on erosion processes for the Nepal Himalayas. The re-

sults are overall consistent and demonstrate that precipitation is important to mobilize and transport

eroded materials, but that on a longer time scale (> kyr) erosion seems to be controlled by topogra-

phy. On the long time-scale erosion rates do not show an explainable correlation with precipitation.

However, landscape is produced by the fast incision rate of rivers, due to their high transport energy,

generated by the high precipitation rates. From the analysis of high resolution (temporal and spatial)

precipitation analysis, I established the importance of the formally neglected transient groundwater

storage compartment and I show that all rivers in Nepal have a similar erosion behaviour. The exis-

tence of a threshold in the probability of occurrence between large events and small events is the direct

consequence of a system which is not controlled by infrequently occurring extreme events, but rather

moderate ones with a high recurrence interval. Furthermore, the high magnitude base frequency of the

Indian Summer Monsoon does not control erosion dynamics, but contributes significantly to the river

discharge, which is important to evacuate the erosional material from the mountain range. Finally, I

show that the landscape is currently not in a state of equilibrium.

7.2 The seasonal erosion cycle

The strong relation between direct runoff vs. denudation rates and the highly repetitive Indian Sum-

mer Monsoon leads me to propose a conceptual cyclic surface dynamics model (Fig. 7.1). In this

representation, the low-frequency high-magnitude monsoon signal has a minor impact on the annual

erosion mass balances. Erosion is mainly driven by the high-frequency low-magnitude event intensity.

1) In pre-monsoon water availability is at its minimum and soils are dry but a few rainfall events can

occur, mobilizing available sediments. Groundwater storage is being refilled. 2) In monsoon, pre-

cipitation intensity and frequency are very high, providing large amounts of hillslope material to the

river. This amount is evacuated directly out of the mountain range by the high river transport capacity.

High transport capacity is maintained by the high groundwater input into the rivers. Water storage is

replenished and pore pressure in the subsurface is high, inducing landslides. Most of the erosion takes

place during monsoon, mainly in from of mass wasting. 3) In Post-monsoon, only few precipitation

events are recorded. Erosion fluxes decrease drastically and are diluted by the relatively increased

groundwater contribution, depleting the aquifer storage. 4) Winter, few isolated precipitation events

take place, mainly as snow at high elevations. Water availability is close to its minimum. Frost cracking

and shattering at higher elevations weakens material and makes it prone to failure in the subsequent

monsoon season.
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Figure 7.1: Conceptual schema of the seasonal erosion cycle in the Nepal Himalayas. Winter:

December-February, Pre-monsoon: March-May, Monsoon: June-September, Post-monsoon: October-

November.

7.3 Outlook

Precipitation data with higher spatial resolution are needed to evaluate the orographic effects on a

finer scale, for example valley-bottom ridge-crest gradients within small watersheds. Remotely sensed

precipitation datasets have to be urgently revised to be applicable in the Himalayas. As these datasets

serve as input for global climate models, their general unsatisfying performance might also bias the

quality of these models. This underlines the need to bring forward the new remote precipitation

measuring system GPM (Global Precipitation Measuring mission) which promises to have a better

spatial and temporal resolution as well as a higher precision of measurements [e.g. Gruber et al., 2008].

I demonstrated the general importance of groundwater contribution to the Himalayan discharge

cycle. Deep groundwater is a non-negligible compartment to take into account when estimating water

resources in the central Himalayas, as well as flood hazard and landslide occurrence due to pore-

pressure saturation processes. It requires improving our knowledge about the geometry and physical

properties of the basement fracture systems [e.g. Davy et al., 2010] and their relationship with relief.

Furthermore, it is important to separate between snow and glacier melt contribution. These are two

138



crucial components of river discharge and might shift towards higher or lower contributions due to

climate change and therefore can change the hydrological system of the Nepal Himalayas.

The suspended sediment concentrations, I present in this work, show a clear relation with direct

river discharge. Nevertheless, the database has to be extended over longer time spans, including also

measurements on smaller basins (< 250 km2), in order to resolve more robust results. Also, it is

important to study the distribution of the sediment concentration fluxes within the river cross profile,

in order to have a more representative image of the real suspended sediment flux. Secondly, the

hydrograph separation method has to be improved. I used the local minimum technique, connecting

the local minimum points of the hydrograph. Since several events might overlap within the sequence,

producing local minimum points within the duration of a direct discharge event, this method might

underestimate the volume of direct discharge. Furthermore, to gain more insights on erosion dynamics

in the Nepal Himalayas, the following points need further investigation: 1) the spatial and temporal

dynamics of bedload, 2) what controls the baseflow concentration of each basins, and 3) what controls

the hillslope production processes, for example landslide triggering.

Cosmogenic nuclide analysis offer the huge potential to measure erosion rates from only one hand

full of sand. However, the calculation of erosion rates might be biased by the impact of four essential

unknowns: 1) glacial erosion rates, 2) the erosion contribution of the Tibetan Plateau, 3) the hetero-

geneous quartz distribution, and 4) the temporal shielding by snow cover. Further research has to be

carried out to quantify the impact of these four parameters onto the calculation of catchment wide

erosion rates from cosmogenic nuclide analysis, in order to test if the observed differences between

main stream basins and tributary basins persist. Finally, more data is needed to constrain the apparent

differences between tributary catchment erosion rates and main stream catchment erosion rates.
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GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS, VOL. ???, XXXX, DOI:10.1029/,

Supplementary material, data sources and description

1. Aphrodite APHRO V 1003R1

The APHRODITE (Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation
of Water Resources) project is a consortium by the Research Institute for Humanity and Nature (RIHN) and
the Meteorological Research Institute of Japan Meteorological Agency (MRI/JMA). In joint collaboration this
project develops precipitation products with varying resolution and for several Asian regions. We used the latest
version daily dataset for monsoon Asia (60− 155◦E, 15◦S - 55◦N) APHRO MA V 1003R1 [Yatagai et al., 2009;
Xie et al., 2007] (released 25 Aug. 2010) with a spatial resolution of 0.25◦ (∼ 30km). APHRO MA V 1003R1
provides data for a statistical robust time span of more than 50 years (1951-2007).

APHRO MA V 1003R1 is a distance weighted interpolated dataset from precipitation gauging stations. De-
pending on availability, between 5000 - 12000 stations are considered for interpolation. The project uses a
compilation of precipitation gauge stages from several sources: 1) Global Telecommunication System GTS net-
work stations for this area, 2) historical archive data, e.g. GSOD (Global Surface Summary of the Day) by the
National Climatic Data Center (NCDC)/National Oceanic and Atmospheric Administration (NOAA) and Xie
et al. [2007], as well as 3) pre-compiled data-sets [Yatagai et al., 2009, suppl. 2]. Additional the data has been
bias corrected with WORLDCLIM data [Hijmans et al., 2005] for gauge-sparse areas as well as for orography.
Stations falling within the same 0.05◦ grid have been combined [Yatagai et al., 2009].

More information is available here: http : //www.chikyu.ac.jp/precip/data/APHRO V 1003R1 readme.txt
The data can be downloaded from here: http : //www.chikyu.ac.jp/precip/products/index.html

2. CPC − RFE2.0

CPC-RFE 2.0 (Climate Prediction Center - Rainfall Estimates) is a precipitation product for the south Asian
region published by the CPC of NOAA (National Oceanic and Atmospheric Administration ), USAID (United
States Agency for International Development) and USGS (United States Geological Survey). The product provides
real time daily precipitation information with a spatial resolution of 0.1◦ (∼ 10km) for the area (70− 110◦E, 5−
35◦N . RFE2.0 combines 4 different primary product, including data from one rain gauging network whereas the
three others are remotely sensed. Data from RFE2.0 is available since May 2001 and continuously updated.

The four input products are: 1) GTS global gauging network (∼ 1000 stations), 2) GPI (GOES Precipi-
tation Index), a precipitation index derived from GEOS (Geostationary Operational Environmental Satellites)
geostationary weather satellites (IR data), 3) SSM/I (Special Sensor Microwave/Imager) observations and 4) and
AMSU-B (Advanced Microwave Sounding Unit-B, on-board of NOAA-K, -L, -M satellites). In general all data
sources have similar large scale distribution patterns [Xie et al., 2002]. The three satellite products are merged
through maximum likelihood estimation methods.

More information is available here: http : //www.cpc.ncep.noaa.gov/products/fews/SASIA/climatology.shtml
The data can be downloaded from here: ftp : //ftp.cpc.ncep.noaa.gov/fews/S.Asia/

3. GSMaP MVK+

The Global Satellite Mapping of Precipitation, passive microwave radiometer (GSMaP MVK+) dataset was
developed in order to provide high-precision and high-resolution global precipitation maps from satellite data.
The project is sponsored by CREST (Core Research for Evolutional Science and Technology) of the Japan Science
and Technology Agency (JST) and by the JAXA (Japan Aerospace Exploration Agency) Precipitation Measuring
Mission (PMM) Science Team.

GSMaP data is an global dataset (60◦N/S), available since the end of November 2002 and is provided in almost
real time (with an ∼ 10 month data gap in 2007). The data has an 0.1◦ (∼ 10km) spatial resolution and one
hour temporal. The project aims to develop an advanced microwave radiometer algorithm based on a determinis-
tic rain-retrieval algorithm and the production of precise high-resolution global precipitation maps [Ushio et al.,
2009; Kubota et al., 2007]. The data incorporates MWR measures from TRMM-TMI, SSM/I,AMSR-E (Advanced
Microwave Scanning Radiometer-EOS, on-board of AQUA satellite) and AMSU-B sensors and IR from geostation-
ary satellites compiled by CPC. The algorithm is using morphing methods and Kalman filter prediction correction.

More information is available here: http : //sharaku.eorc.jaxa.jp/GSMaP crest/html/about data.html1
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Data can be downloaded from: ftp : //hokusai.eorc.jaxa.jp/pub/gsmap crest/MWR+ / (archive 2003-2006)
and http : //sharaku.eorc.jaxa.jp/GSMaP/index.htm (real time >2007)

4. TRMM 3B42 and 2B31

The Tropical Rainfall Measuring Mission (TRMM) is an joint collaboration between the JAXA and the United
States of America National Aeronautics and Space Administration (NASA). TRMM is an independent satellite
carrying an arrangement of radar and optical sensors.

The 3B42, is a multisatellite precipitation analysis dataset. It combines several instruments and outputs grid-
ded rainfall with and 0.25◦ (∼ 30km) spatial- and 3 hour temporal resolution and is available within a global
belt, 50◦N/S latitude [Huffman et al., 2007]. Basically it is a set of MWR estimates from TRMM-TMI, SSM/I,
AMSR-E and AMSU-B, missing pixels have been filled with IR observations compiled by CPC. The data are
corrected with the monthly field ratios between 3B43 (monthly compiled version of 3B42) and gauging stations.

More information is available here: http : //trmm.gsfc.nasa.gov/3b42.html

Bookhagen and Burbank [2006] have developed his own precipitation record from primary TRMM 3B31 orbital
dataset, that is data are not yet projected and merged into global coordinate systems, but are rather provided
in an orbital strip of observation. This data has a 0.05◦ (∼ 4km) spatial resolution (one of the finest grid size
available at the moment). In contrast the temporal resolution is at its best one month. In contrast to multi
satellite datasets, this observation has only one or two snapshots per day, and is likely to miss large quantities of
precipitation. Analysis of a 12 year time series show that when averaged over more than 6 years, the correlation
coefficient (r2) with ground based observations (GPCC, Global Prepitation Climatology Centre, stations) is 0.82,
for the whole observation circumference.

All TRMM datasets can be downloaded here: http : //trmm.gsfc.nasa.gov/datadir/data.html
More information is available here: http : //trmm.gsfc.nasa.gov/2b31.html
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Supplementary material, PARDYP watersheds

1. Monthly regression
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Figure 1. Regression between the interpolation of local
rain gauges and each respective precipitation product for
the five PARDYP watersheds (A) Bhetagad India, (B)
Hillkot Pakistan, (C) Jhikhu Nepal, (D) Xizhuang Yun-
nan/China and (E) Yarsha Nepal.
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2. Annual comparison
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Figure 2. Annual mean basin wide precipitation rates
from gridded precipitation data and basin wide inter-
polated rain gauging stations. Error bars represent the
range of interpolated gauging data. The upper and lower
limits of the error bars represent the minimal and maxi-
mal annual sum of precipitation rates.
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Supplementary material, swaths profiles

1. Station elevation profiles
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Figure 1: Elevation range along the swath profiles and stations elevation. Note that swath profiles are averaged
over the whole swath width.
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2. annual swath profiles
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Figure 2: Annual precipitation swath profiles. Mean precipitation for each precipitation dataset, plotted against
elevation from North to South. Shaded curves represent max., min. and mean values along each swath profile.
The gridded data are for the years of common availability (2003 and 2004) while TRMM-2B31 [Bookhagen and
Burbank , 2006] if for a 10 year time span (1997-2007). Gauging data is plotted as a mean value for both time
spans. Error bars show the long term (∼ 30 years) maxima and minima.
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3. Monnsoon swath profiles
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Figure 3: Precipitation swath profiles for monsoon season (June - September). Mean precipitation for each
precipitation dataset, plotted against elevation from North to South. Shaded curves represent max., min. and
mean values along each swath profile. The gridded data are for the years of common availability (2003 and 2004)
while TRMM-2B31 [Bookhagen and Burbank , 2006] if for a 10 year time span (1997-2007). Gauging data is
plotted as a mean value for both time spans. Error bars show the long term (∼ 30 years) maxima and minima.
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4. Swaths profiles out of monsoon season
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Figure 4: Precipitation swath profiles for out of monsoon season (October - May). Mean precipitation for each
precipitation dataset, plotted against elevation from North to South. Shaded curves represent max., min. and
mean values along each swath profile. The gridded data are for the years of common availability (2003 and 2004)
while TRMM-2B31 [Bookhagen and Burbank , 2006] if for a 10 year time span (1997-2007). Gauging data is
plotted as a mean value for both time spans. Error bars show the long term (∼ 30 years) maxima and minima.
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S1| Di!erence between strong and weak monsoon hysteresis loops. Precipitation-
discharge hysteresis loop for the strong monsoon year 1999 and the weak monsoon year 
199711 for the Narayani Basin. Data has been !ltered with a 5-day moving average to avoid 
small-scale noise. The amplitude of the hysteresis loop is larger during strong monsoon years 
compared to weak ones. Q/A is the speci!c discharge, P is the mean basin precipitation.
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S2| 10-year (1997-2006) temporal variability of several hydrological discharge cycle 
compartments, Koshi Basin (I) and Karnali Basin (II), central Nepal. a, Daily precipitation 
(green), and daily specific river discharge (blue). b, Temperature (orange) as a glacier melt 
proxy (from CRU26) and percentage of basin-wide snow cover (dark green, data from 
MOD10C2 v.527 with an 8-day temporal resolution). c, Calculated groundwater storage evo-
lution (red) derived from a modified version of the conceptual hydrological model GR2M18 
(see methods), shading illustrating model uncertainty, and ground water table variation 
(dark blue) observed in dug-wells in the Jhikhu Khola Basin22 (station no. 1). 

Uncertainty estimation:
A Monte-Carlo approach is carried out to quantify the impact of observation data uncertainties 
on modeled groundwater properties (storage capacity, response time, see Table 1). Multiplica-
tive errors have been considered for rainfall and discharge. Rainfall might be systematically 
underestimated by 30%10, and discharge biased by ±5%. Conversely, ET and temperature errors 
are taken as additive, based on differences between independent datasets. Model is then reca-
librated, model structure error is therefore not considered in this uncertainty analysis. While 
groundwater storage capacity is highly sensitive to systematic bias in precipitation data, reces-
sion curves, and therefore time response, are rather well constrained (Table 1).
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S3| Flowchart of the modi!ed version of the conceptual hydrological model used in this 
study. Simpli"ed schema of the conceptual models GR2M and GR4J18, and the added snow 
module. Black lines applied for both models GR2M and GR4J whereas gray dotted lines applied 
only for model GR4J. Please refer to Mouelhi et al. 2006 (ref. 18), the method section and the 
following web resource http://www.cemagref.fr/webgr/Modelesgb/descriptionsgb.htm for more 
detailed information.
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S4| Modeled vs. observed hysteresis loop for Narayani catchment (450). Data are plotted on 
a monthly scale. The inset shows the linear correlation between the observed and modeled 
discharge. Q/A is the specific discharge. P is the monthly basin-wide precipitation rate.
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S 5| Influence of precipitation undercatch, snow melt, reservoir residence time and glacier melt 
on the shape of hysteresis loops. The months are indicated by numbers. In all the examples, the mean 
monthly precipitation-discharge values for Rapti River at station 360 are used as a reference (blue). a, 
Effect of a constant 30% undercatch of precipitation and impact of snowmelt contribution, considering 
an annual water equivalent of the snowmelt contribution after the GLDAS-NOAH model25 (inset). b, 
Impact of the basin-wide storage capacity on the hysteresis shape of the Rapti catchment, considering 
characteristic basin response times of 35 days and of only 10 days, corresponding to a 20-fold downsi-
zing of the storage capacity (see Methods). c, Influence of a 100 mm yr-1 glacier melt contribution (or 
storage), considering a constant melt rate, equally distributed over the whole year or assuming a cyclic, 
temperature-driven ice melt contribution (both illustrated in the inset).
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S6 | Comparison between groundwater storage properties and geological units within the studied drainage basins. Graphs 
illustrate storage properties (response time and storage capacity), plotted against geological unites.

Station No. 240 280 286 350 360 410 447 450 670 695 589 1 

Basin Karnali Karnali Saradha Rapti Rapti Kali 
Gandaki Trishuli  Narayani Dudh 

Koshi 
Sapta 
Koshi Bagmati Jhikhu 

Khola 

ETR [mm yr-1]* 304 407 576 630 607 359 258 457 643 591 703 617 

Nash-Sutcliffe coef. 0.73 0.78 0.8 0.84 0.84 0.84 0.48 0.21 0.75 0.61 0.61 0.12 

Storage capacity [km ] 4.0 ±1.6 8.9 ±3.7 0.2 ± 0. 1 1.6 ±0.7 1.8 ±0.8 1.6±0.7 0.8±0.3 9.9 ± 4 1.0 ± 0.4 9.9 ± 3.5 1.4 ± 0.7 0.02 ± 0.01 

Storage capacity [mm] 200±75 200±80 240±90 425±180 340±140 220±90 190±80 310±120 250±100 170±60 490±90 210±90 

Estimated surface time 
response [days] 0.41 0.68 0.73 0.70 0.45 0.27 0.37 0.71 0.24 0.43 0.27 0.70 

Estimated soil moisture 
time response [days] 7 7.6 3.8 8.3 5.8 7.8 6.9 7.4 5.1 10 9.5 12 

tc  GR4J [days]* 59 ± 13 47 ± 10 44±6 63±26 51±22 54±10 43±6 36±8 35±25 66±12 24±5 120±35 

% snow-melt  12 6 n.a. n.a. n.a. 2 10 2 3 2 n.a. n.a. 

% discharge retarded 60 65 92 86 92 66 50 68 59 60 84 94 

* see Methods 
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Appendix Chapter 6
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Figure 2: Comparison of cosmogenic nuclide erosion rates measured at different AMS (Accelerated

Mass Spectroscopy) facilities. Compared are identical samples measured ones at the DREAMS (DREs-

den AMS) facility, Dresden/Rossendorf, Germany, and ones at the ASTER (Accelerateur pour les

Sciences de la Terre, Environnement, Risques) facility, Aix-en-Prenvence, France. A fourth sample was

compared to the measurement of Wobus et al. [2005]. The two later ones are not the same samples but

were sampled at the same location with several years time difference. Our sample NP-23s was collected

in November 2009. The sample of Wobus et al. [2005] was collected in 2001 (sample ID 01WBS7).
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Lavé, J., and J. P. Avouac (2000), Active folding of fluvial terraces across the Siwaliks Hills, Himalayas
of central Nepal, Journal of Geophysical Research, 105(B3), 5735–5770, doi:10.1029/1999JB900292.

Lin, G.-W., H. Chen, N. Hovius, M.-J. Horng, S. Dadson, P. Meunier, and M. Lines (2008), Effects
of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain
catchment, Earth Surface Processes and Landforms, 33(9), 1354–1373, doi:10.1002/esp.1716.

Mancktelow, N. (1997), Time-dependent effects of heat advection and topography on cooling histories
during erosion, Tectonophysics, 270(3-4), 167–195, doi:10.1016/S0040-1951(96)00279-X.

Merchel, S., and U. Herpers (1999), An update on radiochemical separation techniques for the de-
termination of long-lived radionuclides via accelerator mass spectrometry, Radiochimica acta, 84(4),
215–219.

Merchel, S., et al. (2008), Towards more precise 10Be and 36Cl data from measurements at the 10â14
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