A. Image, . Crater, . On, . Film-(-c-), . Curve et al., -26 - FIGURE 12 PROFILE. -27 - FIGURE 13 TWO. -30 - FIGURE 15 COMPARISON OF THE EVOLUTION OF THE TEMPERATURE AT THE SURFACE OF THE MATERIAL 12, 30 - FIGURE 14 ARROWS INDICATE THE POLARIZATION'S ORIENTATION OF THE BEAM RESPECTIVELY OF 0° (A), 40° (B) AND 90° (C). THE DEPENDENCE OF THE ORIENTATION OF RIPPLES ON THE POLARIZATION IS OBVIOUS. NOTICE THAT IN THE PICTURE (A)44 - FIGURE 22 SCHEME OF THE INVERTED MICROSCOPE ZEISS AXIOVERT 200 (A). TRANSLATION STAGES... -45 - FIGURE 23 PICTURE OF THE SAMPLE HOLDER FIXED ON TRANSLATION STAGES...................................................... -46 - FIGURE 24 100 MICROMETER SCALE SEEN BY THE CCD CAMERA IN THE OBJECTIVE FOCAL PLAN. ......................... -47 - FIGURE 25 EXAMPLE OF SPOT VISUALISATION OF THE LASER SPOT ON THE MATERIAL SURFACE DURING, p.48

F. , T. Reached, . Accumulation, . For, . Repetitions et al., -103 - FIGURE 62 DESCRIPTION. -103 - FIGURE 63 AFM PICTURES OF STRUCTURES OBTAINED FOR 1, 2, 5, 10 AND 20 PASSES FOR A FLUENCE OF 0.36J/CM² AT (A) 100 µM. -105 - FIGURE 65 RESULTS ON COPPER AT 10µM/S AT THE FLUENCE OF 0. -106 - FIGURE 66 RESULTS ON COPPER AT 50µM/S AT THE FLUENCE OF 0. -106 - FIGURE 67 RESULTS ON COPPER AT 100µM/S AT THE FLUENCE OF 0. -106 - FIGURE 68 EVOLUTION -108 - FIGURE 69 GROWTH OF THE MATTER DEPENDING ON THE FLUENCE FOR 10, 50 AND 100 µM/S, THE CORRESPONDING NUMBER OF PULSES ARE 16. -111 - FIGURE 70. -113 - FIGURE 72 SCHEMATIC. -122 - FIGURE 75 LARGE HISTOLOGICAL IMAGE OF SKIN BIOPSY COMPOSED OF THE MAPPING OF 5 X 5 INDIVIDUAL IMAGES BEFORE (A) AND AFTER (B) LASER PERFORATION. FURTHER EXAMPLES OF LASER PERFORATION OF A BLOOD CELL (C) AND IN A MICRO-PATTERN PERFORMED IN A POLYMER (D), 119 - FIGURE 73 MAPPING OF 6 × 6 (A) AND 12 × 12 (B) IMAGES OF A GRID PATTERN PERFORMED ON SU8 PHOTORESIST UNDER LITHOGRAPHY126 - FIGURE 77 AFM PICTURE OF THE TWO PHOTON NANODISSECTION OF A HUMAN CHROMOSOME BEFORE PROCESSING (A) AND AFTER PROCESSING (B). THE WIDTH OF THE CUT IS IN A RANGE OF 500 TO 1µM129 - FIGURE 80: NANOPROCESSING OF THE FRAUNHOFER IBMT LOGO PERFORMED BY THE USE OF CAD SUPPORT. (A) DRAWING MADE UNDER A CAD SOFTWARE........... -130 - FIGURE 81 OPTICAL (A, B) AND SEM (C, D) IMAGES OF 3D STRUCTURES PERFORMED IN SU-8 PHOTORESIST BY TWO AND DIFFERENT NUMBER OF PASSES, RESPECTIVELY FROM THE LEFT TO RIGHT 1075 J/CM², AND DIFFERENT NUMBER OF PASSES, RESPECTIVELY FROM THE LEFT TO RIGHT 124 J/CM², AND DIFFERENT NUMBER OF PASSES, RESPECTIVELY FROM THE LEFT TO RIGHT 1, pp.20-20

Y. Chen and A. Pépin, Electrophoresis, Nanofabrication : conventional and nonconventional methods, pp.187-207, 2001.

M. J. Word, I. Adesida, and P. R. Berger, Nanometer-period gratings in hydrogen silsesquioxane fabricated by electron beam lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.21, issue.6, 2003.
DOI : 10.1116/1.1629711

M. A. Mccord and R. F. Pease, Lift-off metallization using poly(methyl methacrylate) exposed with a scanning tunneling microscope, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.6, issue.1, p.293, 1988.
DOI : 10.1116/1.583981

E. A. Dobisz and C. R. Marrian, Sub-30 nm lithography in a neative electron beam resist with a vacuum scanning tunnelling microscope, Appl. Phys. Lett, vol.58, p.22, 1991.

J. A. Dagata, J. Schneir, H. H. Haray, C. J. Evans, M. T. Postek et al., Modification of hydrogen-passivated silicon by a scanning tunnelling microscope operating in air, Appl. Phys. Lett, vol.56, p.2003, 1990.

E. S. Snow and P. M. Campbell, Fabrication of Si nanostructures with an atomic force microscope, Applied Physics Letters, vol.64, issue.15, p.1932, 1994.
DOI : 10.1063/1.111746

I. Lyo and P. , Field-Induced Nanometer- to Atomic-Scale Manipulation of Silicon Surfaces with the STM, Science, vol.253, issue.5016, p.173, 1991.
DOI : 10.1126/science.253.5016.173

H. J. Mamin, P. H. Guenther, and D. Rugar, Atomic emission from a gold scanning-tunneling-microscope tip, Physical Review Letters, vol.65, issue.19, p.2418, 1990.
DOI : 10.1103/PhysRevLett.65.2418

H. J. Mamin and D. Rugar, Thermomechanical writing with an atomic force microscope tip, Applied Physics Letters, vol.61, issue.8, p.1003, 1992.
DOI : 10.1063/1.108460

L. A. Nagahara, T. Thundat, and S. M. Lindsay, Nanolithography on semiconductor surfaces under an etching solution, Applied Physics Letters, vol.57, issue.3, p.270, 1990.
DOI : 10.1063/1.103711

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, Extreme ultraviolet lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.6, pp.3142-3149, 1998.
DOI : 10.1116/1.590453

G. F. Cardinale, C. C. Henderson, J. E. Goldsmith, P. J. Mangat, J. Cobb et al., Demonstration of pattern transfer into sub-100 nm polysilicon line/space features patterned with extreme ultraviolet lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.17, issue.6, pp.2970-2974, 1999.
DOI : 10.1116/1.590936

R. Viswanathan, D. Seeger, A. Bright, T. Bucelot, A. Pomerene et al., Fabrication of high performance 512K static-random access memories in 0.25 ??m complementary metal???oxide semiconductor technology using x-ray lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.11, issue.6, p.2910, 1993.
DOI : 10.1116/1.586560

K. Deguchi, K. Miyoshi, M. Oda, and T. Matsuda, Extendibility of synchrotron radiation lithography to the sub-100 nm region, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.6, p.4294, 1996.
DOI : 10.1116/1.588593

J. P. Silverman, Challenges and progress in x-ray lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.6, p.3137, 1998.
DOI : 10.1116/1.590452

A. Kumar and G. M. Whitesides, Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ??????ink?????? followed by chemical etching, Applied Physics Letters, vol.63, issue.14, p.2002, 1993.
DOI : 10.1063/1.110628

Y. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics, Applied Physics Letters, vol.81, issue.3, p.562, 2002.
DOI : 10.1063/1.1493226

J. Haisma, M. Verheijen, and K. Van, Mold-assisted nanolithography: A process for reliable pattern replication, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.6, p.4124, 1996.
DOI : 10.1116/1.588604

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhang, Sub-10 nm imprint lithography and applications, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.15, issue.6, p.2897, 1997.
DOI : 10.1116/1.589752

M. Okai, S. Tsuji, N. Chinone, and T. Harada, Novel method to fabricate corrugation for a ??/4???shifted distributed feedback laser using a grating photomask, Applied Physics Letters, vol.55, issue.5, p.415, 1989.
DOI : 10.1063/1.101882

M. N. Cooke, J. P. Fisher, D. Dean, C. Rimnac, and A. G. Mikos, Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth, Journal of Biomedical Materials Research, vol.19, issue.2
DOI : 10.1002/jbm.b.10485

T. Matsuda, M. Mizutani, and S. C. Arnold, Molecular Design of Photocurable Liquid Biodegradable Copolymers. 1. Synthesis and Photocuring Characteristics, Macromolecules, vol.33, issue.3, pp.795-800, 2000.
DOI : 10.1021/ma991404i

M. H. Hong, Q. Xie, K. S. Tiaw, and T. C. Chong, Laser Singulation of Thin Wafers & Difficult Processed Substrates: A Niche Area over Saw Dicing, Journal of Laser Micro/Nanoengineering, vol.1, issue.1, p.84, 2006.
DOI : 10.2961/jlmn.2006.01.0016

E. Baubeau, Etude et réalisation d'une chaîne laser femtoseconde haute cadence et de haute puissance moyenne, 2002.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore et al., Optical ablation by high-power short-pulse lasers, Journal of the Optical Society of America B, vol.13, issue.2, p.459, 1996.
DOI : 10.1364/JOSAB.13.000459

B. C. Stuart, Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses, Physical Review Letters, vol.74, issue.12, p.2248, 1995.
DOI : 10.1103/PhysRevLett.74.2248

J. H. Campbell, Laser-induces damage in optical materials, SPIE, vol.1441, p.444, 1990.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore et al., Optical ablation by high-power short-pulse lasers, Journal of the Optical Society of America B, vol.13, issue.2, p.459, 1996.
DOI : 10.1364/JOSAB.13.000459

E. G. Gamaly, A. V. Rode, B. Luther-davies, and V. T. Tikhonchuk, Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics, Physics of Plasmas, vol.9, issue.3, p.949, 2002.
DOI : 10.1063/1.1447555

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses, Physical Review Letters, vol.74, issue.12, p.2248, 1995.
DOI : 10.1103/PhysRevLett.74.2248

J. F. Ready, LIA Handbook of laser materials processing, 2001.

J. Meijer, Laser beam machining (LBM), state of the art and new opportunities, Journal of Materials Processing Technology, vol.149, issue.1-3, pp.2-17, 2004.
DOI : 10.1016/j.jmatprotec.2004.02.003

N. Bloembergen, Laser-induced electric breakdown in solids, IEEE Journal of Quantum Electronics, vol.10, issue.3, pp.375-386, 1974.
DOI : 10.1109/JQE.1974.1068132

P. Ajit, H. Joglekar, E. Liu, G. Meyhöfer, A. J. Mourou et al., Optics at critical intensity: Applications to nanomorphing, 2004.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou et al., A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining, Applied Physics B, vol.50, issue.1, p.25, 2003.
DOI : 10.1007/s00340-003-1246-z

X. Liu, D. Du, and G. Mourou, Laser ablation and micromachining with ultrashort laser pulses, IEEE Journal of Quantum Electronics, vol.33, issue.10, p.1706, 1997.
DOI : 10.1109/3.631270

P. Pronko, S. Dutta, J. Squier, J. Rudd, D. Du et al., Machining of sub-micron holes using a femtosecond laser at 800 nm, Optics Communications, vol.114, issue.1-2, p.106, 1995.
DOI : 10.1016/0030-4018(94)00585-I

K. Venkatakrishnan, B. Tran, P. Stanley, and N. Sivakumar, The effect of polarization on ultrashort pulsed laser ablation of thin metal films, Journal of Applied Physics, vol.92, issue.3, p.1604, 2002.
DOI : 10.1063/1.1487453

B. Tan, R. Narayanswamy, and K. Sivakumar, Direct grating writing using femtosecond laser interference fringes formed at the focal point, Journal of Optics A: Pure and Applied Optics, vol.7, issue.4, p.169, 2005.
DOI : 10.1088/1464-4258/7/4/003

K. Kawamura, N. Sarujura, and M. Hirano, Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses, Applied Physics B, vol.71, issue.1, pp.119-140, 2001.
DOI : 10.1007/s003400000335

K. Kawamura, N. Sarujura, M. Hirano, and H. Hosono, Holographic Encoding of Permanent Gratings Embedded in Diamond by Two Beam Interference of a Single Femtosecond Near-Infrared Laser Pulse, Japanese Journal of Applied Physics, vol.39, issue.Part 2, No. 8A, p.767, 2000.
DOI : 10.1143/JJAP.39.L767

A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy, Applied Physics Letters, vol.82, issue.8, p.1146, 2003.
DOI : 10.1063/1.1555693

J. Jersh and K. Dickmann, Nanostructure fabrication using laser field enhancement in the near field of a scanning tunneling microscope tip, Applied Physics Letters, vol.68, issue.6, p.868, 1996.
DOI : 10.1063/1.116527

A. A. Gorbunov and W. Pompe, Thin Film Nanoprocessing by Laser/STM Combination, Physica Status Solidi (a), vol.9, issue.2, p.333, 1994.
DOI : 10.1002/pssa.2211450213

R. Huber, M. Koch, and J. Feldmann, Laser-induced thermal expansion of a scanning tunneling microscope tip measured with an atomic force microscope cantilever, Applied Physics Letters, vol.73, issue.17, p.2521, 1998.
DOI : 10.1063/1.122502

V. Gerstuer, A. Thon, and W. Pfeiffer, Thermal effects in pulsed laser assisted scanning tunneling microscopy, Journal of Applied Physics, vol.87, issue.5, p.2574, 2000.
DOI : 10.1063/1.372221

S. F. Ho and B. K. Ngoi, Sub-microdrilling with ultrafast pulse laser interference, Applied Physics B, vol.109, issue.1, pp.99-148, 2004.
DOI : 10.1007/s00340-004-1517-3

M. Fanetti, L. Gavioli, and M. Sancrotti, Long-Range-Ordered, Molecular-Induced Nanofaceting, Advanced Materials, vol.366, issue.68, p.2863, 2006.
DOI : 10.1002/adma.200600510

H. Brune, M. Giovannini, K. Bromann, and K. Kern, Self-organized growth of nanostructure arrays on strain-relief patterns, Nature, vol.394, p.451, 1998.

P. Soukiassian, F. Semond, A. Mayne, and G. Dujardin, -SiC(100) Surface, Physical Review Letters, vol.79, issue.13, p.2498, 1997.
DOI : 10.1103/PhysRevLett.79.2498

URL : https://hal.archives-ouvertes.fr/jpa-00210119

J. Lobo, E. G. Michel, A. R. Bachmann, S. Speller, J. Kuntze et al., Tuning the Surface State Dimensionality of Cu Nanostripes, Tuning the surface state dimensionality of Cu nanostripes, p.137602, 2004.
DOI : 10.1103/PhysRevLett.93.137602

N. Sykaras, A. M. Iacopino, V. A. Marker, R. G. Triplett, and R. D. Woody, Femtosecond laser structuring of titanium implants, Int. J. Oral Maxillofac. Implan, vol.15, p.675, 2000.

F. Pfeiffer, B. Herzog, D. Kern, L. Scheideler, J. Geis-gerstorfer et al., Cell reactions to microstructured implant surfaces, Microelectronic Engineering, vol.67, issue.68, p.913, 2003.
DOI : 10.1016/S0167-9317(03)00154-0

X. D. Bai, E. G. Wang, P. X. Gao, and Z. L. Wang, Measuring the Work Function at a Nanobelt Tip and at a Nanoparticle Surface, Nano Letters, vol.3, issue.8, p.1147, 2003.
DOI : 10.1021/nl034342p

X. D. Bai, P. X. Gao, Z. L. Wang, and E. G. Wang, Dual-mode mechanical resonance of individual ZnO nanobelts, Applied Physics Letters, vol.82, issue.26, pp.82-4806, 2003.
DOI : 10.1063/1.1587878

Z. L. Wang and J. H. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science, vol.312, issue.5771, p.242, 2006.
DOI : 10.1126/science.1124005

C. X. Xu, X. W. Sun, Z. L. Dong, G. P. Zhu, and Y. P. Cui, Zinc oxide hexagram whiskers, Applied Physics Letters, vol.88, issue.9, p.93101, 2006.
DOI : 10.1063/1.2179133

M. Birnbaum, Semiconductor Surface Damage Produced by Ruby Lasers, Journal of Applied Physics, vol.36, issue.11, p.3688, 1965.
DOI : 10.1063/1.1703071

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van-driel, Laser-induced periodic surface structure. I. Theory, Physical Review B, vol.27, issue.2, p.1141, 1983.
DOI : 10.1103/PhysRevB.27.1141

G. N. Maracas, G. L. Harris, C. A. Lee, and R. A. Mcfarlane, On the origin of periodic surface structure of laser???annealed semiconductors, Applied Physics Letters, vol.33, issue.5, p.453, 1978.
DOI : 10.1063/1.90376

N. R. Isenor, surfaces, Applied Physics Letters, vol.31, issue.3, p.148, 1977.
DOI : 10.1063/1.89633

A. K. Jain, V. N. Kulkarni, D. K. Sood, and J. S. Uppal, Periodic surface ripples in laser???treated aluminum and their use to determine absorbed power, Journal of Applied Physics, vol.52, issue.7, p.4882, 1981.
DOI : 10.1063/1.329296

P. A. Temple and M. J. Soileau, Polarization charge model for laser-induced ripple patterns in dielectric materials, IEEE Journal of Quantum Electronics, vol.17, issue.10, p.2067, 1981.
DOI : 10.1109/JQE.1981.1070638

J. A. Van-vechten, Experimental tests for boson condensation and superconductivity in semiconductors during pulsed beam annealing, Solid State Commun, p.1285, 1981.

D. C. Emmony, R. P. Howson, and L. J. Willis, Laser mirror damage in germanium at 10.6 ??m, Applied Physics Letters, vol.23, issue.11, p.598, 1973.
DOI : 10.1063/1.1654761

M. Oron and G. Sorensen, New experimental evidence of the periodic surface structure in laser annealing, Applied Physics Letters, vol.35, issue.10, p.782, 1979.
DOI : 10.1063/1.90977

T. Her, R. J. Finlay, C. Wu, and E. Mazur, Femtosecond laser-induced formation of spikes on silicon, Applied Physics A: Materials Science & Processing, vol.70, issue.4, p.383, 2000.
DOI : 10.1007/s003390051052

M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, and J. Reif, Femtosecond laser ablation from dielectric materials: Comparison to arc discharge erosion, Applied Physics A: Materials Science & Processing, vol.69, issue.7, p.355, 1999.
DOI : 10.1007/s003390051416

J. Bonse, S. Baudach, J. Kruger, and W. Kautek, Femtosecond laser ablation of silicon-modification thresholds and morphology, Appl. Phys, And Lenzner M, vol.74, p.19

F. Coyne, J. P. Magee, P. Mannion, G. M. O-'connor, and T. J. Glynn, STEM (scanning transmission electron microscopy) analysis of femtosecond laser pulse induced damage to bulk silicon, Applied Physics A, vol.72, issue.2, p.371, 2004.
DOI : 10.1007/s003390000596

F. Costache, S. Kouteva-arguirova, and J. Reif, Sub???damage???threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation, Applied Physics A, vol.65, issue.4-6, 2004.
DOI : 10.1103/PhysRevB.65.115327

J. Bonse, J. M. Wrobel, J. Krüger, and K. J. , Ultrashort-pulse laser ablation of indium phosphide in air, Applied Physics A Materials Science & Processing, vol.72, issue.1, p.89, 2001.
DOI : 10.1007/s003390000596

J. Erlebacher, M. J. Aziz, E. Chason, M. B. Sinclair, and J. A. , Spontaneous Pattern Formation on Ion Bombarded Si(001), Spontaneous pattern formation on Ion bombarded Si(001), p.2330, 2000.
DOI : 10.1103/PhysRevLett.82.2330

T. M. Mayer, E. Chason, and A. J. Howard, surfaces, Journal of Applied Physics, vol.76, issue.3, p.1633, 1993.
DOI : 10.1063/1.357748

URL : https://hal.archives-ouvertes.fr/hal-00105640

S. Habenicht, K. P. Lieb, J. A. Koch, and A. D. Wieck, Ripple propagation and velocity dispersion on ion-beam-eroded silicon surfaces, Physical Review B, vol.65, issue.11, p.115327, 2002.
DOI : 10.1103/PhysRevB.65.115327

J. P. Colombier, P. Combis, F. Bonneau, R. L. Harzic, and E. Audouard, Hydrodynamic simulations of metal ablation by femtosecond laser irradiation, Physical Review B, vol.71, issue.16, p.165406, 2005.
DOI : 10.1103/PhysRevB.71.165406

URL : https://hal.archives-ouvertes.fr/hal-00121833

J. P. Colombier, P. Combis, R. Stoian, and E. Audouard, High shock release in ultrafast laser irradiated metals: Scenario for material ejection, Physical Review B, vol.75, issue.10, p.104105, 2007.
DOI : 10.1103/PhysRevB.75.104105

URL : https://hal.archives-ouvertes.fr/hal-00137243

J. P. Colombier, Théorie et simulation de l'interaction des impulsions laser ultracourtes à flux modéré avec un solide métallique, 2005.

J. M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes, Optics Letters, vol.7, issue.5, p.5, 1982.
DOI : 10.1364/OL.7.000196

X. Tang, L. Pierre, Y. Hostis, and . Xiao, An auto-focusing method in a microscopic testbed for optical discs, Journal of Research of the National Institute of Standards and Technology, vol.105, issue.4, p.565, 2000.
DOI : 10.6028/jres.105.046

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her et al., Three-dimensional optical storage inside transparent materials, Three-dimensionaloptical storage inside transparent materials, p.2023, 1996.
DOI : 10.1364/OL.21.002023

. Misawa, Three-dimensional optical data storages in vitreous silica, Jpn. J. Appl. Phys. Part, vol.2, pp.37-1527, 1998.

K. Yamasaki, S. Juodkazis, M. Watanabe, H. B. Sun, S. Matsuo et al., Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films, Applied Physics Letters, vol.76, issue.8, p.1000, 2000.
DOI : 10.1063/1.125919

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Writing waveguides in glass with a femtosecond laser, Optics Letters, vol.21, issue.21, p.1729, 1996.
DOI : 10.1364/OL.21.001729

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, Photowritten optical waveguides in various glasses with ultrashort pulse laser, Applied Physics Letters, vol.71, issue.23, p.3329, 1996.
DOI : 10.1063/1.120327

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy, Optics Letters, vol.26, issue.2, p.93, 2001.
DOI : 10.1364/OL.26.000093

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van-stryland, T. Cardinal et al., Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses, Optical Materials, vol.17, issue.3, p.379, 2001.
DOI : 10.1016/S0925-3467(01)00062-3

D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses, Optics Letters, vol.24, issue.18
DOI : 10.1364/OL.24.001311

C. Momma, B. N. Chichkov, S. Nolte, F. Von-alvensleben, A. Tunnermann et al., Short-pulse laser ablation of solid targets, Optics Communications, vol.129, issue.1-2, pp.129-134, 1996.
DOI : 10.1016/0030-4018(96)00250-7

F. Audouard and . Dausinger, Pulse-width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps, Appl. Surf. Sci, vol.249, pp.322-331, 2005.

S. Nöel, J. Hermann, and T. Itina, Investigation of nanoparticle generation during femtosecond laser ablation of metals, Applied Surface Science, vol.253, issue.15, pp.6310-6315, 2007.
DOI : 10.1016/j.apsusc.2007.01.081

P. Mannion, J. Magee, E. Coyne, and G. M. Connor, Ablation thresholds in ultrafast laser micro-machining of common metals in air, Proc. SPIE, pp.470-478, 2003.

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa et al., Ablation threshold dependence on pulse duration for copper, Applied Surface Science, vol.197, issue.198, pp.197-198, 2002.
DOI : 10.1016/S0169-4332(02)00463-4

G. Matras, N. Huot, E. Baubeau, and E. Audouard, 10 kHz water-cooled Ti :Sapphire femtosecond laser, Optics Express, vol.15, issue.12, pp.7528-7536, 2007.
DOI : 10.1364/OE.15.007528

URL : https://hal.archives-ouvertes.fr/ujm-00152528

J. P. Colombier, P. Combis, F. Bonneau, R. L. Harzic, and E. Audouard, Hydrodynamic simulations of metal ablation by femtosecond laser irradiation, Physical Review B, vol.71, issue.16, p.165406, 2005.
DOI : 10.1103/PhysRevB.71.165406

URL : https://hal.archives-ouvertes.fr/hal-00121833

P. T. Mannion, J. Magee, E. Coyne, G. M. O-'connor, and T. J. Glynn, The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air, Applied Surface Science, vol.233, issue.1-4, pp.275-287, 2004.
DOI : 10.1016/j.apsusc.2004.03.229

R. and L. Harzic, Study of laser processing for micro-machining with limited thermal effects, 2003.

K. Minoshima, A. M. Kowalvicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator, Optics Letters, vol.26, issue.19, p.1516, 2001.
DOI : 10.1364/OL.26.001516

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea et al., Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses, Electronics Letters, vol.36, issue.3, p.226, 2000.
DOI : 10.1049/el:20000172

L. Shah, A. Y. Arai, S. M. Eaton, and P. R. Herman, Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate, Optics Express, vol.13, issue.6, p.6, 2005.
DOI : 10.1364/OPEX.13.001999

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses, Physical Review Letters, vol.74, issue.12, p.2248, 1995.
DOI : 10.1103/PhysRevLett.74.2248

. Krausz, Femtosecond optical breakdown in dielectrics, Phys. Rev. Lett, vol.80, p.4076, 1998.

C. B. Schaffer, J. F. Garcia, and E. Mazur, Bulk heating of transparent materials using a high-repetition-rate femtosecond laser, Applied Physics A: Materials Science & Processing, vol.76, issue.3, p.351, 2003.
DOI : 10.1007/s00339-002-1819-4

R. R. Gattass, L. R. Cerami, and E. Mazur, Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates, Optics Express, vol.14, issue.12, pp.5279-5284, 2006.
DOI : 10.1364/OE.14.005279

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah et al., Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate, Optics Express, vol.13, issue.12, pp.4708-4716, 2005.
DOI : 10.1364/OPEX.13.004708

M. Henyk, D. Wolfframm, and J. Reif, Ultra short laser pulse induced charged particle emission from wide bandgap crystals, Applied Surface Science, vol.168, issue.1-4, p.263, 2000.
DOI : 10.1016/S0169-4332(00)00619-X

M. Henyk, R. Mitzner, D. Wolfframm, and J. Reif, Laser-induced ion emission from dielectrics, Applied Surface Science, vol.154, issue.155, pp.154-155, 2000.
DOI : 10.1016/S0169-4332(99)00377-3

M. Henyk, F. Costache, and J. Reif, Femtosecond laser ablation from sodium chloride and barium fluoride, Applied Surface Science, vol.186, issue.1-4, p.381, 2002.
DOI : 10.1016/S0169-4332(01)00688-2

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo et al., Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses, Applied Physics Letters, vol.82, issue.17, p.2901, 2003.
DOI : 10.1063/1.1570514

J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf et al., Nanotexturing of gold films by femtosecond laser-induced melt dynamics, Applied Physics A, vol.68, issue.2, p.325, 2005.
DOI : 10.1103/PhysRevB.68.064114

T. Okamoto, E. Ohmura, T. Sano, Y. Morishige, and I. Miyamoto, Analytical study on metal microstructures using femtosecond laser, Applied Physics A, vol.61, issue.3, pp.639-643, 2005.
DOI : 10.1007/BF01538207

F. Korte, J. Koch, and B. N. Chichkov, Formation of microbumps and nanojets on gold targets by femtosecond laser pulses, Applied Physics A, vol.17, issue.4-6, p.879, 2004.
DOI : 10.1007/BF02670828

A. Kiani, K. Venkatakrishnan, and B. Tan, Micro/nano scale amorphozation of silicon by femtosecond laser irradiation, Optics Express, vol.18, p.3, 2010.

J. Bonse, K. W. Brezinka, and A. J. Meixner, Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy, Applied Surface Science, vol.221, issue.1-4, pp.1-4, 2004.
DOI : 10.1016/S0169-4332(03)00881-X

URL : https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/3224

B. E. Deal and A. S. Grove, General Relationship for the Thermal Oxidation of Silicon, Journal of Applied Physics, vol.36, issue.12
DOI : 10.1063/1.1713945

J. Blanc, A revised model for the oxidation of Si by oxygen, Applied Physics Letters, vol.33, issue.5, p.424, 1978.
DOI : 10.1063/1.90409

V. K. Samalam, Theoretical model for the oxidation of silicon, Applied Physics Letters, vol.47, issue.7, p.736, 1985.
DOI : 10.1063/1.96021

A. Fargeix and G. Ghibaudo, Role of stress on the parabolic kinetic constant for dry silicon oxidation, Journal of Applied Physics, vol.56, issue.2, p.589, 1984.
DOI : 10.1063/1.333924

H. Z. Massoud, J. D. Plummer, and E. A. Irene, Thermal Oxidation of Silicon in Dry Oxygen: Growth-Rate Enhancement in the Thin Regime, Journal of The Electrochemical Society, vol.132, issue.11, pp.2693-2700, 1985.
DOI : 10.1149/1.2113649

F. Audouard and . Dausinger, Pulse width and energy influence onlaser micromachining of metals in a range of 100 fs to 5 ps, Appl. Surf. Sci, vol.249, pp.322-331, 2005.

P. Mannion, J. Magee, E. Coyne, and G. M. Connor, Ablation thresholds in ultrafast laser micro-machining in common metals in air Proc, Of SPIE, vol.4876, 2003.

Z. Guo, S. K. Wan, D. A. August, J. Ying, S. Dunn et al., Optical imaging of breast tumor through temporal log-slope difference mappings Comput, Biol, 2006.

M. H. Niemz, E. Klancnik, and J. Bille, Plasma-mediated ablation of corneal tissue at 1053 nm using a Nd, 1991.

J. P. Fischer, J. Dams, M. H. Götz, E. Kerker, F. H. Loesel et al., Plasma-mediated ablation of brain tissue with picosecond laser pulses, Applied Physics B Laser and Optics, vol.60, issue.6, pp.493-499, 1993.
DOI : 10.1007/BF01081080

J. P. Moss, B. C. Patel, G. J. Pearson, G. Arthur, and R. A. Lawes, Krypton fluoride excimer laser ablation of tooth tissues: precision tissue machining, Biomaterials, vol.15, issue.12, pp.1013-1018, 1994.
DOI : 10.1016/0142-9612(94)90083-3

S. C. Chen, V. Kancharla, and Y. Lu, Laser-based microscale patterning of biodegradable polymers for biomedical applications, International Journal of Materials and Product Technology, vol.18, issue.4/5/6, pp.457-68, 2003.
DOI : 10.1504/IJMPT.2003.002502

C. Hallgren, H. Reimers, D. Chakarov, J. Gold, and A. Wennerberg, An in vivo study of bone response to implants topographically modified by laser micromachining, Biomaterials, vol.24, issue.5, pp.701-710, 2003.
DOI : 10.1016/S0142-9612(02)00266-1

W. Denk, J. Strickler, and W. Webb, Two-photon laser scanning fluorescence microscopy, Science, vol.248, issue.4951, pp.73-79, 1990.
DOI : 10.1126/science.2321027

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille et al., Corneal refractive surgery with femtosecond lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.5, issue.4, pp.902-909, 1999.
DOI : 10.1109/2944.796309

A. Vogel, J. Noack, G. Huttman, and P. , Mechanisms of femtosecond laser nanosurgery of cells and tissues, Applied Physics B, vol.18, issue.2???3, pp.1015-1047, 2005.
DOI : 10.1007/s00340-005-2036-6

K. König, I. Riemann, and W. Fritsche, Nanodissection of human chromosomes with near-infrared femtosecond laser pulses, Optics Letters, vol.26, issue.11, pp.819-821, 2001.
DOI : 10.1364/OL.26.000819

K. König, I. Riemann, F. Stracke, L. Harzic, and R. , Nanoprocessing with nanojoule near-infrared femtosecond laser pulses, Medical Laser Application, vol.20, issue.3, pp.169-184, 2005.
DOI : 10.1016/j.mla.2005.07.009

I. Maxwell, S. Chung, and E. Mazur, Nanoprocessing of subcellular targets using femtosecond laser pulses, Medical Laser Application, vol.20, issue.3, pp.193-200, 2005.
DOI : 10.1016/j.mla.2005.07.005

V. Kohli, A. Elezzabi, and J. Acker, Cell nanosurgery using ultrashort (femtosecond) laser pulses: Applications to membrane surgery and cell isolation, Lasers in Surgery and Medicine, vol.274, issue.3, pp.227-230, 2005.
DOI : 10.1002/lsm.20220

N. Shen, D. Datta, C. B. Schaffer, L. Duc, P. Ingber et al., Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser microscissors, Mech Chem Biosyst, vol.2, pp.17-26, 2005.

H. Huang and Z. Guo, Human dermis separation via ultra-short pulsed laser plasma-mediated ablation, Journal of Physics D: Applied Physics, vol.42, issue.16, pp.165204-165213, 2009.
DOI : 10.1088/0022-3727/42/16/165204

P. Steyer, S. Valette, B. Forest, J. P. Millet, C. Donnet et al., Surface modification of martensitic stainless steels by laser marking and its consequences regarding corrosion resistance Surf. Eng, pp.167-172, 2006.

M. Groenendijk, Fabrication of Super Hydrophobic Surfaces by fs Laser Pulses Laser Technik, Journal, vol.5, pp.44-47, 2008.

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis et al., Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation, Nanotechnology, vol.17, issue.13, p.3234, 2006.
DOI : 10.1088/0957-4484/17/13/026

E. Fadeeva, S. Schlie, J. Koch, A. Ngezahayo, and C. Bn, The hydrophobic properties of femtosecond laser fabricated spike structures and their effects on cell proliferation, physica status solidi (a), vol.514, issue.6, pp.1348-1351, 2009.
DOI : 10.1002/pssa.200881063

A. Vorobyev and C. Guo, Femtosecond laser structuring of titanium implants, Applied Surface Science, vol.253, issue.17, pp.7272-7280, 2007.
DOI : 10.1016/j.apsusc.2007.03.006

V. Oliveira, S. Ausset, and R. Vilar, Surface micro/nanostructuring of titanium under stationary and non-stationary femtosecond laser irradiation, Applied Surface Science, vol.255, issue.17, pp.7556-7560, 2009.
DOI : 10.1016/j.apsusc.2009.04.027

S. Maruo, O. Nakamura, and S. Kawata, Three-Dimensional Microfabrication with Two-Photon-Absorbed Photopolymerization Opt, Lett, vol.22, pp.132-134, 1997.

H. Sun, S. Matsuo, and H. Misawa, Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Applied Physics Letters, vol.74, issue.6, pp.786-788, 1999.
DOI : 10.1063/1.123367

J. Serbin, A. Egbert, A. Ostendorf, B. Chickov, R. Houbertz et al., Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics Opt, 2003.

V. Mizeikis, K. Seet, S. Juodkazis, and H. Misawa, Three-dimensional woodpile photonic crystal templates for the infrared spectral range, Optics Letters, vol.29, issue.17, pp.2061-2063, 2004.
DOI : 10.1364/OL.29.002061

A. Ovsianikov, A. Ostendorf, and B. Chichkov, Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine, Applied Surface Science, vol.253, issue.15, pp.6599-6602, 2007.
DOI : 10.1016/j.apsusc.2007.01.058

H. Choi, J. Johnson, N. J. Farson, D. Lannutti, and J. , Structuring electrospun polycaprolactone nanofiber tissue scaffolds by femtosecond laser ablation, Journal of Laser Applications, vol.19, issue.4, p.225, 2007.
DOI : 10.2351/1.2795749

J. Cm², and different number of passes, respectively from the left to right 1, pp.10-20