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RESUME’

L’ESPACE PERIPERSONNEL:

UNE INTERFACE MULTISENSORIELLE POUR LES 

INTERACTIONS ENTRE LE CORPS ET LES OBJETS

Notre habilité à interagir avec les objets du monde nécessite l’intégration d’informations 

provenant de différents canaux sensoriels, dans le cadre de la construction d’une 

représentation de l’espace en particulier des informations visuelles et tactiles. L’espace 

péripersonnel et l’intégration visuo-tactile ont été l’objet d’importantes recherche récemment. 

Des études neurophysiologiques chez le primate non-humain ont montré l’existence de 

neurones bimodaux activés à la fois par des stimulations tactiles et par des stimulations 

visuelles si ces dernières étaient présentées près d’une partie du corps (par exemple la main). 

Il a été proposé que ces neurones bi-modaux constituent le substrat neuronal de la 

représentation de l’espace péripersonnel. Les études neuropsychologiques menées chez des 

patients présentant une extinction cross-modale consécutive à une lésion pariétale droite ont 

permis de suggérer l’existence du même type de représentation de l’espace péripersonnel chez 

l’homme. Les données issues des études en neuroimagerie fonctionnelle sont venues par la 

suite conforter cette idée. Plus récemment, à travers l’utilisation d’outils, des données 

acquises chez le primate humain et non humain ont révélé les propriétés dynamiques de cette 

représentation spatiale.

 Selon notre hypothèse la représentation de l’espace péripersonnel est une interface 

présidant aux interactions du corps avec les objets du monde externe.

 Nous avons donc évalué le rôle et l’état de l’espace péripersonnel lors de l’exécution 

de mouvements volontaires vers des objets (comme une simple saisie) et lors de mouvements 

involontaires d’évitement. Lors d’une première série d’expériences nous avons étudié les 

coordonnées spatiales du codage des objets qui soudainement se rapprochent du corps grâce à 

la mesure des potentiels évoqués moteurs. Cette étude a révélé que l’espace péripersonnel 

joue un rôle dans la représentation des objets approchant le corps et dans la sélection des 

mouvements appropriés en réponse. Lors d’une seconde série d’expériences nous avons 

utilisé un paradigme d’interférence visuo-tactile couplé à l’enregistrement cinématique des 

mouvements de saisie afin d’examiner la représentation de l’espace péripersonnel lors de 
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l’exécution d’actions volontaires. Cette approche novatrice nous a permis de mettre en 

évidence que l’action volontaire induit un recodage en ligne de l’interaction visuo-tactile dans 

l’espace de préhension. Ce recodage de l’action s’effectue en coordonnées centrées sur la 

partie du corps qui exécute l’action. 

En conclusion nos études expérimentales démontrent que l’espace péripersonnel est  

une interface multisensorielle qui a été sélectionnée à travers l’évolution non seulement pour 

la gestion des mouvements d’évitement et de défense mais également pour l’exécution 

d’actions volontaires.
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ABSTRACT

PERIPERSONAL SPACE:
A MULTISENSORY INTERFACE

FOR BODY-OBJECTS INTERACTIONS

Our ability to interact with the environment requires the integration of multisensory 

information for the construction of spatial representations. The peripersonal space (i.e., the 

sector of space closely surrounding one’s body) and the integrative processes between visual 

and tactile inputs originating from this sector of space have been at the center of recent years 

investigations. Neurophysiological studies provided evidence for the presence in the monkey 

brain of bimodal neurons, which are activated by tactile as well as visual information 

delivered near to a specific body part (e.g., the hand). Neuropsychological studies on right 

brain-damaged patients who present extinction and functional neuroimaging findings suggest 

the presence of similar bimodal systems in the human brain. Studies on the effects of tool-use 

on visual-tactile interaction revealed similar dynamic properties of the peripersonal space in 

monkeys and humans.

 The functional role of the multisensory coding of peripersonal space is, in our 

hypothesis, that of providing the brain with a sensori-motor interface for body-objects 

interactions. Thus, not only it could be involved in driving involuntary  defensive movements 

in response to objects approaching the body, but could be also dynamically maintained and 

updated as a function of manual voluntary actions performed towards objects in the reaching 

space.

We tested the hypothesis of an involvement of peripersonal space in executing both 

voluntary and defensive actions. To these aims, we joined a well known cross-modal 

congruency effect between visual and tactile information to a kinematic approach to 

demonstrate that voluntary  grasping actions induce an on-line re-weighting of multisensory

interactions in the peripersonal space. We additionally show that this modulation is hand-

centred. We also used a motor evoked potentials approach to investigate which coordinates 

system is used to code the peripersonal space during motor preparation if real objects rapidly 

approach the body. Our findings provide direct evidence for automatic hand-centred coding of 

visual space and suggest that peripersonal space may  also serve to represent rapidly
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approaching and potentially  noxious objects, thus enabling the rapid selection of appropriate 

motor responses.

 These results clearly show that peripersonal space is a multisensori-motor interface 

that might have been selected through evolution for optimising the interactions between the 

body and the objects in the external world.

4



INTRODUCTION   





”Space is not a sort of ether in which all things float...

The points in space mark, in our vicinity, the varying range of our aims and our gestures"

(Merleau-Ponty)

Research in the last four decades has brought a considerable advance in our understanding of 

how the brain synthesises perceptual information arising from different sensory  modalities. 

Indeed, many cortical and subcortical areas, also beyond those traditionally considered to be 

‘associative’, have been shown to be involved in multisensory  interaction and integration 

(Ghazanfar and Schroeder 2006). Visuo-tactile interaction is of particular interest because of 

the prominent role played by vision in guiding our actions and anticipating their tactile 

consequences in everyday life. In this thesis, we focus on the functional role that visuo-tactile 

processing may play in driving two types of body-object interactions: avoidance and 

approach. We will first  review some basic features of visuo-tactile interactions, as revealed by 

single units recording studies in monkeys. These will prove to be relevant for interpreting the 

subsequent human evidence. A crucial point that will be stressed is that these neuronal 

populations have not only sensory, but also motor-related activity  that qualifies them as 

multisensory-motor interfaces. Evidence will then be presented for the existence of 

functionally homologous processing in the human brain, both from neuropsychological 

research in brain-damaged patients and in healthy people. The original experimental 

contribution of this dissertation is focussed on healthy  humans and supports the idea that  the 

human motor system is provided with a multisensory interface that allows for continuous 

monitoring of the space near the body (i.e., peripersonal space). We will provide evidence of 

the involvement of the peripersonal space representation in rapid reaction to approaching 

objects. We further demonstrate that multisensory  processing can be modulated on-line as a 

consequence of acting voluntarily  on objects. This indicates that, far from being passive, the 

monitoring of peripersonal space is an active process subserving actions between our body 

and objects located in the space around us.
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Chapter I

Multisensory perception

During the 60’s and 70’s, research about perception focussed on the single sensory modalities 

in order to investigate the sensory processing and the relative brain pathways for the 

elaboration of a perceptual event. The very  fruitful investigation of Hubel and Wiesel’s Nobel 

prize awarded research in Physiology, for example, brought to discover the hierarchical 

organisation of the visual system. The main characteristics is the gradual construction of the 

visual perception, proceeding from a primary sensory area (V1, area 17 of Broadmann, in the 

occipital lobe) to areas of higher level (V2, V3, V4, V5/MT) where the simple visual features 

of the visual input progressively converge in more and more complex perceptions. The visual 

system hierarchical organisation became thus a model for the other sensory modalities, whose 

primary sensory areas have been 

then localised: in the temporal lobe 

for audition (A1, areas 41-42 of 

Broadmann) and in post-central 

gyrus for somatosensation (S1, 

areas 1, 2 and 3 of Broadmann, in 

the parietal lobe; Figure 1.1). Even 

if in a milder fashion, the brain 

elaboration of audition and touch 

also proceeds in a primary-to-

secondary sensory areas pathway 1.

 On the other hand, we are 

used to live in a world where each 

event is a composition of different 

8

1 Recently also for the visual system a more parallel processing of visual features has been revealed 
(See Van Essen 2005 for a review).

Fig. 1.1 Primary and secondary unimodal areas in the 
human brain: visual areas in the occiptal lobe, 
somatosensory areas in the post-central gyrus and 
auditory areas in superior temporal gyrus. From 
Macaluso and Driver 2005.



sensory  inputs and where the multisensoriality is the rule. When we are talking with a friend 

or just watching a movie or looking for our ringing cell-phone in order to grasp it, we are 

simply  receiving and automatically  integrating information coming from different sensory 

modalities. The visible mouth movements of my friend talking bring visual information that 

can interact with its related audible counterpart; similarly the visual information of the ringing 

cell-phone is integrated without any effort to the sound coming from it, sometime possibly 

helping to find its location. Moreover, the form of the telephone I can be aware of through 

vision, creates automatically expectations about the tactile feedback I will receive when my 

hand will enter in contact with it. These everyday life’s examples clearly point out the fact 

that the peripherally separated perceptual channels have to converge at a certain level of the 

sensory  elaboration in order to give the unitary  perception of world events we are used to 

experience.

 The necessary revolution in perception research arrived thus with the discovery of 

brain cortex regions where the “separated” sensory input could converge and interact bringing 

to more elaborated form of perception. For the convergence of information they allow, these 

areas are referred to as “associative” areas; but also as “higher-level” areas, to underline that 

9

Fig. 1.2 Some of the multisensory areas in the non-human (panel A) and human (panel B) primates’ 
brain. Three main regions are recognisable: posterior parietal cortex, prefrontal premotor cortex, 
superior temporal sulcus. From Driver and Noesselt 2008.



here arises the first form of cognition rather than a ‘mere’ perception. We refer to them as 

“multisensory” areas, underlining the fact that in these parts of the brain the integration of 

different sensory modalities takes place (Figure 1.2).

 Further advancements in the research about perception were the discovery  of direct 

influences of the so-defined multisensory areas over the primary and secondary  sensory areas, 

but also very early interactions between different “low-level” areas. These evidence brought 

to a drastic reconsideration of the multisensoriality of the brain, till the provocative question 

of Ghazanfar and Schroeder (2006): “Is the neocortex essentially multisensory?”.

 In this first chapter I will present examples of multisensory  perception that can reflect 

different mechanisms in the brain. We will see how pervasive it is but also that, despite the 

essential multisensory nature of perception in terms of “final” product, we still can consider 

the functional specialisation of the brain areas as a fundamental principle of the brain 

organisation. I will maintain the word “integration” for the multisensory phenomena based on 

a proved convergence of different sensory  inputs on the same cell. Multisensory “interaction” 

is by contrast any other multisensory phenomenon arising by a feedback influence from high- 

to low-level areas or by  direct modulations between primary  or secondary areas of different 

sensory  modalities. Multisensory, when referred to brain areas, will mean the areas of 

convergence of different sensory input over single cells, as opposed to unisensory areas.

1. Multisensory perception in human behaviour

The multisensory perception in everyday life is more the rule than the exception. The 

interaction between different sensory modalities arises so automatically, requiring no 

conscious processing, that we can often experience illusions when contrasting information are 

coming from different sensory  channels. The phenomenon of “Ventriloquism”, for instance, is 

an example of mislocalisation of a sound toward the position of a temporally  correlated 

moving visual object (Driver 1996; Calvert et al. 2004). The more the sound and the visual 

object are ‘compatible’, the stronger is the illusion: a speaking voice can be attributed to a 

visible simultaneously  moving mouth even if the two events are spatially separated (Lewald 
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and Guski 2003). The multisensory perception is so ineluctable that such an illusion would 

arise also when we are aware about the spatial separation between the origin of the sound and 

the visual object. We can thus without any effort enjoying a movie in a cinema, for example. 

Strong crossmodal integration can also occur when visual and auditory  stimuli are not static, 

in particular, in case of apparent motion (Soto-Faraco et  al. 2002; see Soto-Faraco et al. 2004 

for a similar audio-tactile effect). This kind of study  showed that the apparent motion in 

vision strongly modulates the perception of the direction of auditory apparent motion. Also 

for this dynamic situation however, spatial and temporal constraints are present for the 

occurrence of this crossmodal effect (Soto-Faraco et al. 2002).

 A different illusion can arise when incompatible auditory and visual events are 

simultaneously  presented. For instance from the association of an auditory presented phoneme 

and visible mouth movements corresponding to a different sound originates a phenomenon 

typically termed the “McGurk effect” (McGurk and McDonald 1976). The experienced effect 

is a synthesis of discordant visual and auditory information so that the syllable da is the final 

perception of hearing ba while watching a silent mouth moving as for saying ga. This is 

another example of how vision and audition are tightly  interconnected and how the final 

unitary perception is based on information coming from different modalities. The McGurk 

illusion is considered to be the result of an automatic and involuntary process leading to the 

seamless integration of the acoustic and the visual sources of information (Soto-Faraco et  al. 

2004). Recently, Soto-Faraco and Alsius (2009), provided evidence of the fact that, when 

presented with desynchronised audiovisual speech syllables, observers are nonetheless able to 

detect the temporal mismatch while experiencing the McGurk illusion. This interesting 

finding supports the idea that, contrary  to previous assumptions, it  seems possible to gain 

access to information about the individual sensory  components of a perception resulting from 

a multisensory integration.

 These illusions are representative for their pervasive presence in our everyday life but 

it is logical to think that such phenomena can also arise with other pairs of sensory modalities. 

Ventriloquism may indeed also arise between tactile and visual events and is more commonly 

referred to as “visual capture of touch” (Pavani et al. 2000). Also a “tactile capture of 

audition” has been proved (Caclin et  al. 2002) since the apparent location of a sound can be 
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biased toward  the location of a concurrent tactile stimulation. The synchrony  between the 

stimuli appears a fundamental parameter. Similarly  in the “parchement-skin 

illusion” (Jousmäki and Hari 1998), perturbing the sound as hands are rubbed together can 

affect the perception of skin texture and moistness. Also in these cases, illusions appear to be 

dependent on the spatial and temporal association between the two sensory inputs.

 In the presented multisensory illusions, the brain is confronted with concurrent 

information coming from two modalities but providing information about the same external 

property. Often indeed, the auditory  input jointly with the visual ones, both bring the spatial 

information necessary, for example, to the localisation of a multisensory event. It appears thus 

extremely adaptive that the brain might synthesise the different sensory information. By 

contrast, recent examples of multisensory influences in perception show different types of 

phenomena. Rather than different modalities providing independent information about the 

same external sensory property, multisensory research also showed that stimulation in one 

modality  can affect the judgement of a property logically pertinent only  to another modality. 

Touch at a given location for instance, can improve judgements about the colour of a visual 

stimulus delivered nearby, although touch itself does not convey any information about this 

visual property (Spence et al. 2004). Other example of such a multisensory effect  in behaviour 

is the case of single flashes that can be illusory  perceived as being double whenever 

associated with two auditory  signals (Shipley 1964; Shams et al. 2000). Again, a visuo-tactile 

form of the “double-flash illusion” exists (Violentyev et al. 2005), where perceiving two 

touches delivered simultaneously with a single flash induces the illusion to perceive a double 

flash.

2. Multisensory attention

The presence of a sensory  event  can produce a shift of attention toward its location. This shift 

could be either voluntary, “endogenous”, or “exogenous”, as it  is driven by  the sudden 

appearance of a stimulus in the environment, in an involuntary fashion (Posner 1980). A part 

of the multisensory research focussed on how the presence of multisensory  information can 
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affect and drive attention in space (Driver 

and Spence 2000; Macaluso and Driver 

2005). The basic question authors asked was 

whether a shift of attention occurring in one 

modality  (i.e., vision) could then affect the 

detection of a spatially  coincident stimulus 

in another modality  (i.e., tactile; see Figure 

1.3; Spence and Driver 1996; 1997a; 1997b; 

Driver and Spence 1998; Spence et al. 

1998). A cross-modal facilitatory effect is 

generally present when the target is 

presented in the position where a spatially 

non-predictive cue appeared. The cue in one 

modality induces thus an involuntary 

orienting of attention which facilitates the 

detection of a stimulus presented in the 

same spatial location, but in another modality (Driver and Spence 1998; McDonald et al. 

2000). However, the temporal interval between cue and target appears to be fundamental. 

When the cue-to-target interval exceeds 200 ms (or more, depending on the stimuli and task) 

an inverse effect arises, known as the “inhibition of return” (Posner and Cohen 1984; Klein 

2000; Driver and Spence 1998; Spence and Driver 1998a; 1998b; Spence et al. 2000). In this 

case, the attention is initially exogenously  shifted toward the position of the cue and then, 

since nothing happens there, attention shifts back inducing a facilitatory  effect for the 

opposite spatial position compared to the previously cued ones. These studies suggest that 

attention can be shifted supramodally and thus enhance or inhibit  perception in particular 

spatial locations as a function of the spatial position of the cue.

 Attention can also be shifted in space through centrally  symbolic cues such as arrows 

(left or right), for example, or numbers, in virtue of their magnitude (Dehaene et al. 1993). 

Numbers seem indeed to be represented on a spatially  oriented “mental number line” where 

smaller digits find their place on the left and larger on the right side. As a consequence of this 

13

Fig. 1.3 Example of paradigm for the study of 
cross-modal shift  of attention. After the 
presentation of a visual cue, a tactile target is 
delivered in the same spatial position or in the 
opposite one. Facilitatory and inhibitory effects 
have been shown depending on the spatial 
disparity between sensory inputs. From Spence et 
al. 1998.



spatial arrangement, the vision of a task irrelevant digit has been proved to shift attention in a 

visual detection task (Fischer et al. 2005) in a Posner-like fashion, even though evidence has 

been provided against the automaticity of this effect (Galfano et al. 2006). The case is 

possible that the vision of a digit might shift attention also cross-modally, for instance, 

modulating tactile perception. We have investigated this hypothesis and the study is presented 

hereafter as an example of this thesis contribution to multisensory shifts of attention.

2.1.The spatial organization of numbers

My research experience, though mainly focussed on the investigation of multisensory 

properties of peripersonal space, has brought me to study also a more general kind of visuo-

tactile interaction. In my first experimental contribution presented here, I investigated the 

effects of a visual shift of attention on the tactile modality. In particular I investigated a shift 

of attention induced by a visually presented numerical cue.

 We are used to learn counting on our fingers and the digital representation of numbers 

we develop is still present in adulthood in our counting motor behaviour. By virtue of such an 

association between anatomy and digit magnitude we establish tight functional 

correspondences between fingers and numbers. However, it has long been known that 

numerical information is also spatially  arranged along an oriented mental number line, where 

digits are organised from left to right as a function of their magnitude.

 In the following study, I investigated touch perception in order to disambiguate 

whether number representation is embodied on the hand (“1” thumb; “5” little finger) or 

disembodied in the extrapersonal space (“1” left; “5” right). In two experiments, the number 

spatial representations have been directly contrasted each other using a single centrally 

located effector (the foot) and a simple postural manipulation of the hand (palm-up  vs. palm-

down). Results show that visual presentation of a number (‘‘1’’ or ‘‘5’’) shifts attention cross-

modally, modulating the detection of tactile stimuli delivered on the little finger or thumb. 

When the hand rests palm-down, subjects perform better in reporting tactile stimuli delivered 

to the little finger after presentation of number ‘‘5’’ than number ‘‘1.’’ Crucially, this pattern 

reverses (better performance after number ‘‘1’’ than ‘‘5’’) when the hand is in a palm-up 

14



posture, in which the position of the fingers in external space, but not their relative anatomical 

position, is reversed. The human brain can thus use either space- or body-based representation 

of numbers, but in case of competition, the former dominates the latter, showing the stronger 
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We learn counting on our fingers, and the digital representation of
numbers we develop is still present in adulthood [Andres M, et al.
(2007) J Cognit Neurosci 19:563–576]. Such an anatomy–magnitude
association establishes tight functional correspondences between
fingers and numbers [Di Luca S, et al. (2006) Q J Exp Psychol 59:1648–
1663]. However, it has long been known that small-to-large magni-
tude information is arranged left-to-right along a mental number line
[Dehaene S, et al. (1993) J Exp Psychol Genet 122:371–396]. Here, we
investigated touch perception to disambiguate whether number
representation is embodied on the hand (‘‘1’’ � thumb; ‘‘5’’ � little
finger) or disembodied in the extrapersonal space (‘‘1’’ � left; ‘‘5’’ �

right). We directly contrasted these number representations in two
experiments using a single centrally located effector (the foot) and a
simple postural manipulation of the hand (palm-up vs. palm-down).
We show that visual presentation of a number (‘‘1’’ or ‘‘5’’) shifts
attention cross-modally, modulating the detection of tactile stimuli
delivered on the little finger or thumb. With the hand resting palm-
down, subjects perform better when reporting tactile stimuli deliv-
ered to the little finger after presentation of number ‘‘5’’ than number
‘‘1.’’ Crucially, this pattern reverses (better performance after number
‘‘1’’ than ‘‘5’’) when the hand is in a palm-up posture, in which the
position of the fingers in external space, but not their relative
anatomical position, is reversed. The human brain can thus use either
space- or body-based representation of numbers, but in case of
competition, the former dominates the latter, showing the stronger
role played by the mental number line organization.

mental number line � tactile perception

It has long been considered that literate humans associate num-
bers (e.g., ‘‘1’’ and ‘‘5’’) with fingers (e.g., thumb and little finger)

by virtue of learning processes such as counting on fingers. Such an
embodied finger-counting strategy, developed during numerical
acquisition in childhood, might result in a finger–number associa-
tion still present in adulthood when the same numerical manipu-
lations can be carried out mentally (1, 2). Accordingly, activation of
the precentral gyrus and parietal areas participating in hand-
shaping control and finger movements (3) are commonly reported
during numerical tasks (4–9) and have been suggested to underlie
implicit finger-counting strategies (4–6). Neuropsychological stud-
ies of Gerstmann’s syndrome (10, 11) and transcranial magnetic
stimulation (TMS) approaches in healthy subjects (3, 12, 13) have
also suggested tight functional correspondences between fingers
and numbers. However, a disembodied form of numerical repre-
sentation is also well established: Numbers are represented in a
spatial format along the so-called ‘‘mental number line,’’ whereby
smaller numbers occupy relatively leftward locations compared
with larger numbers (14, 15). This phenomenon, which has become
known as the spatial numerical association of response codes
(SNARC) effect, suggests that magnitude information may be
analogically arranged from left to right (in most Western cultures):
In parity judgment tasks, large numbers are responded to faster
with the right hand (and small numbers faster with the left hand)
by virtue of the spatial compatibility between the location of a given
number on the mental number line and the location of the correct

response effector in external space. Neuropsychological evidence
from neglect patients and TMS studies on subjects bisecting nu-
merical intervals has further supported the left-to-right spatial
organization of numbers (16–21). Moreover, visual attention and
action can be enhanced according to the magnitude of a visually
presented number, larger numbers boosting performance on the
right and smaller numbers on the left side (22, 23). The few existing
attempts to contrast hand-/finger-based (embodied) and space-
based (disembodied) representations of numbers have led to mixed
results. Dominance of the space-based representation has been
suggested by Dehaene et al. (14), who asked subjects to perform a
crossed-hand version of their original parity-judgement task and
found that the SNARC effect did not depend on the left–right hand
identity but the left–right hand location in the response space. In
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Fig. 1. Experimental setup and procedures. The subjects’ right hands lay in
front of them with their middle finger aligned with the central fixation point
on the monitor. After a fixation period of 500 ms, a number appeared for 300
ms in the center of the monitor. A tactile stimulus was delivered either to the
thumb or the little finger at a variable interval from number onset: four SOAs
were possible in the first experiment (550, 800, 1,050, or 1,300 ms after onset
of the task-irrelevant number) and two in the second experiment (250 ms or
550 ms after onset of the task-irrelevant number). The subjects were in-
structed to respond to the tactile stimulus as quickly as possible, by pressing a
centrally located pedal with their right foot.
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contrast, finger-based dominance has been suggested by Di Luca et
al. (24), who asked subjects to perform a visuomotor finger-number
compatibility task and found better performance when the mapping
was congruent with the prototypical finger-counting strategy. In
addition, a certain degree of flexibility in number representation
has been recently suggested (25–28), because the mapping between
numbers and space can vary to some extent with instructional
context (25) and task demands (17).

Previous findings are thus not definitive with regard to number
representation, because both the embodied and the disembodied
hypotheses have received empirical support. In this study, we used
a previously undescribed approach to disambiguate between such
representations within a corporeal modality, by investigating the
attentional effects induced by numbers on the perception of touches
delivered to the fingers. A postural manipulation of the hand
(palm-up vs. -down) allowed us to directly contrast the embodied
and disembodied representations of numbers. A further manipu-
lation was critically introduced to avoid any left–right arrangement
in the response space, potentially favoring a space-based represen-
tation, and any motor bias in the response effector, potentially
favoring a finger-based representation: Subjects had to respond to
tactile stimulation by pressing a centrally located pedal with the
foot.

Results and Discussion
Participants performed a simple tactile detection task by making
speeded foot-pedal responses to a tactile stimulus delivered to
either the thumb or little finger of their right (preferred and
counting) hand. Tactile intensity was set in a previous session to
obtain an equal detection probability for the two fingers [see
supporting information (SI) Experiment 1, Supporting Procedures
and Supporting Results, Table S1, and Fig. S1]. In the first experi-
ment, the task instructions were given as to emphasize the fingers
(i.e., ‘‘you will feel a touch on either your thumb or little finger’’).
At a variable stimulus onset asynchrony (SOA), an electrocutane-
ous stimulus followed the presentation of a task-irrelevant number
(‘‘1,’’ ‘‘2,’’ ‘‘4,’’ or ‘‘5’’) on a screen in front of their hand (Fig. 1). The
tactile task was performed with the unseen hand passively resting
either in a palm-down or -up posture.

Two main results were found: First, visual presentation of a
number cross-modally affects tactile performance. Second, this
numerical cueing of touch does not follow a number–finger asso-
ciation, but a number–space association, akin to the mental number

Fig. 2. Visual numerical cueing of touch is modulated by hand posture:
emphasis on fingers. (a) Regression lines of the inverse efficiency score as a
function of number magnitude for all conditions. Regression equations reflect

the averaged data in each image. Performance for the thumb (blue) in
palm-down posture (Upper), decreased as a function of number magnitude
from the smallest (‘‘1’’) to the largest (‘‘5’’) number (y � �5.9x � 436, r2 � 0.81);
the pattern is opposite for the same stimulus on the same thumb but in
palm-up posture (Lower, y � �2.0x � 430, r2 � 0.65). Little-finger results
(yellow) mirror those for the thumb (y � �4.6x � 437, r2 � 0.39, palm-down
posture, Upper; y � �3.7x � 425, r2 � 0.77 palm-up posture, Lower). (b) Beta
values of the regression lines (mean � SEM) relating the inverse efficiency
score to number magnitude are presented for the palm-down (left side of the
graph) and the palm-up posture (right side) for little finger (yellow bars) and
thumb (blue bars) [finger � posture interaction, F(1,13) � 9.80, P � 0.01]. Hand
posture modulates the visual numerical cueing of touch. Indeed, for stimuli
applied to the thumb, positive beta values in the palm-down posture become
negative in the palm-up posture (�5.94 � 2.10 vs. �2.04 � 2.53, respectively).
The opposite is true for the little finger (�0.55 � 1.95 vs. �3.70 � 2.58,
respectively). (c) Time course of the visual numerical cueing of touch. Inverse
efficiency scores (mean � SEM) for stimuli to the little finger (yellow) and
thumb (blue) after presentation of number ‘‘1’’ (black bars) and ‘‘5’’ (green
bars) are presented for each SOA (550, 800, 1,050, and 1,300 ms). The spatial
bias induced by the number is not modulated by time: in the palm-down
posture (Upper), the pattern of performance for touches delivered to the little
finger was better after number ‘‘5’’ than number ‘‘1,’’ whereas performance
for touches delivered to the thumb was better after number ‘‘1’’ than number
‘‘5.’’ The reversed pattern is observed in the palm-up posture (Lower), irre-
spective of the SOA.
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line (14). A descriptive illustration of the results for all experimental
conditions including all of the numbers (‘‘1,’’ ‘‘2,’’ ‘‘4,’’ and ‘‘5’’) is
provided by Fig. 2a. When the right hand was in the palm-down
posture, placed centrally with the middle finger aligned with the
visually presented number, subjects’ detection of brief tactile stimuli
applied to the little finger improved as a function of the preceding
number magnitude. The larger the number, the better the perfor-
mance in terms of inverse efficiency (IE) score, jointly indexing
accuracy, and response latency. The opposite pattern of results was
found when the same little finger was stimulated with the hand in
the palm-up posture. In this condition, subjects’ tactile performance
actually decreased as the preceding number increased. The statis-
tical comparison showed a significant finger � posture interaction
[F(1,13) � 9.80; P � 0.01]: Fig. 2b shows that for stimuli applied on
the little finger, a difference was present between the slopes of IE
regression lines in the palm-down and -up position (�0.55 vs. �3.70,
respectively; P � 0.05; Fig. 2b, yellow bars). Results for the thumb
mirrored those for the little finger (Fig. 2b, blue bars). When the
hand was in the palm-down posture, subjects’ detection improved
as a function of the number’s magnitude. For the thumb, the smaller
the preceding number, the better the performance, because the
regression line has a positive slope. On the contrary, when the hand
was in the palm-up position, subjects’ detection of brief stimuli on
the thumb tended to worsen with decreasing magnitude of the
presented number (�5.94 vs. �2.04 for the palm-down and -up
postures, respectively; P � 0.053, Fig. 2b).

To further establish the dominant role played by the space-based
organization of numbers, an additional analysis of tactile perfor-
mance was run by focusing on those conditions with presentation
of numbers ‘‘1’’ and ‘‘5’’ (i.e., excluding conditions ‘‘2’’ and ‘‘4’’). The
four-way ANOVA revealed a significant main effect of SOA on
tactile performance [F(3,39) � 15.35; P � 0.01]. Newman–Keuls
posthoc test revealed that subjects’ performance was worst in the
longer SOA (1,300 ms), compared with shorter ones (550, 800, and
1,050 ms; P � 0.01 for all comparisons). However, the variable SOA
was not involved in any significant interaction (Fig. 2c). The
hypothesis of an embodied representation of numbers predicts that
the thumb is more closely associated with, and thus would be more
efficiently primed by, number ‘‘1’’ than number ‘‘5,’’ independently
of the hand’s posture, with the opposite association for the little
finger. Contrary to these predictions, a significant posture �
finger � number interaction [F(1,13) � 14.43; P � 0.01] confirmed
that the numerical cueing of touch is mapped in extrapersonal

Fig. 3. Visual numerical cueing of touch is modulated by hand posture:
emphasis on the sides of the hand. (a) Regression lines of the inverse efficiency

score as a function of number magnitude for all conditions. Regression
equations reflect the averaged data in each image. Performance for the
thumb (blue) in palm-down posture (Upper), decreased as a function of
number magnitude from the smallest (‘‘1’’) to the largest (‘‘5’’) number (y �
�23.2x � 446, r2 � 0.97); the pattern is opposite for the same stimulus on the
same thumb but in palm-up posture (Lower, y � �3.4x � 505, r2 � 0.39).
Little-finger results (yellow) mirror those for the thumb (y � �11.7x � 550, r2 �
0.91, palm-down posture, upper row; y � �12.1x � 484, r2 � 0.41 palm-up
posture, Lower). (b) Beta values of the regression lines (mean � SEM) relating
the inverse efficiency score to number magnitude are presented for the
palm-down (left side of the graph) and palm-up postures (right side) for little
finger (yellow bars) and thumb (blue bars) [finger � posture interaction,
F(1,12) � 6.02; P � 0.03]. Hand posture modulates the visual numerical cueing
of touch, also when emphasis in task instruction is given to the side (left or
right) of the hand. For stimuli applied to the thumb, positive beta values in the
palm-down posture become negative in the palm-up posture (�23.2 � 12.6 vs.
�3.4 � 4.9, respectively). The opposite is true for the little finger (�1.69 � 7.3
vs. �12.12 � 6.6, respectively). (c) Time course of the visual numerical cueing
of touch. Inverse efficiency scores (mean � SEM) for stimuli to the little finger
(yellow) and thumb (blue) after presentation of number ‘‘1’’ (black bars) and
‘‘5’’ (green bars) are presented for each SOA: 250 ms (i.e., during number
presentation) and 550 ms (i.e., after number presentation). Even at the
shortest SOA, the spatial bias induced by the number on tactile perception
shifts according to whether the hand is in the palm-down (Upper), or the
palm-up posture (Lower).
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space. Subjects’ performance was better in perceiving a touch on
the thumb after number ‘‘1’’ than ‘‘5’’ in the palm-down posture (IE
score: 447 vs. 470 ms, respectively; P � 0.05), but the opposite
tendency was obtained when the hand posture was reversed (IE
score: 428 vs. 417 ms, respectively). Similarly, when considering the
little finger, subjects’ performance mirrored that of the thumb: In
the palm-down posture, stimuli on the little finger were detected
more efficiently when preceded by number ‘‘5’’ than ‘‘1’’ (408 vs. 439
ms, respectively; P � 0.05), but the opposite was true in the palm-up
posture, in which performance was better when touches were
preceded by number ‘‘1’’ than ‘‘5’’ (429 vs. 447 ms, respectively; P �
0.05). The same significant pattern of results was also obtained
when subjects’ accuracy was separately tested, and response laten-
cies showed the same tendency. In other words, the same touch
delivered to the same little finger was better perceived if preceded
by number ‘‘5’’ than ‘‘1’’ in the palm-down posture but was better
perceived if preceded by number ‘‘1’’ than ‘‘5’’ in the palm-up
posture.

To further explore the potential role played by instructional
and task-setting variables, we performed a second experiment
whereby tactile stimuli were always delivered on the thumb or
little finger, but the side of the hand was stressed (i.e., ‘‘you will
feel a touch on either the left or right side of your hand’’).
Moreover, to provide a finer description of the time course of the
effect of numerical cueing of touch, a shorter SOA was tested:
tactile stimuli were delivered either 550 ms (i.e., as the shortest
SOA in the first experiment) or 250 ms after number onset (i.e.,
when the task-irrelevant number was still present on the screen;
see Methods for details).

Results replicated the findings of the previous experiment. As
shown in Fig. 3b, tactile performance was cross-modally affected
by the visual presentation of a number, and numerical cueing of
touch again followed a number–space association, as revealed by
the significant finger � posture interaction [F(1,12) � 6.02; P �
0.03]. In the palm-down posture, subjects’ tactile detection at the
little finger improved with increasing number magnitude; the
opposite pattern was observed in the palm-up posture. For
stimuli applied on the little finger, the slopes of IE regression
lines in the palm-down and -up position differed (�1.69 vs.
�12.12, respectively; P � 0.04; Fig. 3b, yellow bars). Again,
results for the thumb mirrored those for the little finger (Fig. 3b,
blue bars). When the hand was in the palm-down posture,
subjects’ detection improved with decreasing number magni-
tude; the opposite tendency was present when the hand was in
the palm-up position (�23.22 vs. �3.35 for the palm-down and
-up postures, respectively; P � 0.07; Fig. 3b). When considering
only the numbers ‘‘1’’ and ‘‘5,’’ the ANOVA revealed a signif-
icant posture � finger � number interaction [F(1,12) � 8.20; P �
0.01], which further confirmed that the numerical cueing of
touch was mapped in extrapersonal space. Fig. 3c illustrates that
this effect was also present at the shortest SOA, because neither
was this variable significant nor was it involved in any interaction
(Fig. 3c), thus suggesting a rather early space-based mapping of
numbers.

The findings of both experiments clearly demonstrate that the
human brain takes into account magnitude information pre-
sented in the visual modality when processing tactile stimuli at
the fingers, but in so doing, it refers to an extrapersonal spatial
representation of numbers. Indeed, very similar and consistent
results were observed both when task instructions emphasized
the (left or right) sides of the hand (second experiment), and the
(little finger or thumb) fingers of the hand (first experiment), as
further confirmed by the omnibus ANOVA run on data from the
common SOA (550 ms from number onset), whereby the be-
tween-subject variable emphasis was not involved in any inter-
action. Therefore, even when emphasis was given to fingers and
might have in principle favored a finger-based numerical repre-
sentation, the results were clear in showing a space-based

dominance in number representation. When compared with
previous studies, it is noteworthy that the present findings were
obtained within a best-suited approach to disambiguate between
number representations: First, number magnitude was totally
task-irrelevant, at odds with previous visuomotor number-finger
mapping task (24); second, a single centrally located effector was
used, at variance with SNARC tasks whereby two left–right
horizontally aligned effectors are typical used (14, 17); finally,
the foot was used as response effector, i.e., a body part that is not
used to learn counting.

Here, the case for a connection between space and numbers (29)
was studied in direct reference to the body. Our manipulation of
hand posture (30) was effective in distinguishing between the spatial
reference frames in which tactile perception is biased by numerical
cueing. By using an embodied approach based on tactile perception,
we not only show that number-based attentional cueing crosses
sensory modalities but also demonstrate that number-based tactile
priming is early mapped according to an extrapersonal spatial
representation, thus providing a compelling support for the dom-
inant role played by the spatial representation of numbers known
as the ‘‘mental number line.’’

Methods
Subjects. The first experiment was run on 14 (7 female, mean age 30.9; SD 10.1,
range 20–51 years) neurologically healthy subjects. Thirteen (7 female, mean age
29.3; SD 8.1, range 21–51 years) healthy subjects participated in the second
experiment. Three subjects took part in both experiments. All participants gave
their informed consent to take part in this study, which was approved by the local
ethics committee. They were asked to show how they usually count with their
fingers, without specifying in the request which hand to use first. However, to
induce subjects to use both hands, they were asked to count up to ‘‘8.’’ Only
subjects who used the conventional (for Italian and French subjects) counting
system(1, thumb;2, index;3,middle;4, ring;5, littlefinger) startingfromtheright
thumb were admitted to the experimental session. Subjects were all right-
handed according to the Edinburgh Handedness Inventory. They had normal or
corrected visual acuity, reported no somatosensory problems, and were naı̈ve as
to the purpose of the study.

Apparatus and Procedure. Both experiments were run with the same setup and
procedures were identical, unless otherwise stated. A personal computer (Dell,
Optiplex GX270, Intel Pentium 4) equipped with a visual stimulus generator
(ViSaGe, Cambridge Research Systems) was used to control stimulus presentation
and response collection. Arabic numerals (‘‘1,’’ ‘‘2,’’ ‘‘4,’’ or ‘‘5’’) were presented
singly at the center of a cathode ray tube monitor (Eizo FlexScan T931; resolution,
800 � 600 pixels; refresh rate, 160 Hz), located 57 cm from the subjects’ eyes,
subtending 1 � 1° of visual angle. Subjects’ right hidden hands lay in front of
them, the middle finger aligned with the vertical meridian of the monitor, where
a fixation point appeared. Thumb and little finger were thus to the right or to the
left with respect to the middle finger. Two different postures could be assumed:
Hand pronation (palm-down posture) or supination (palm-up posture). Subject’s
fixation and eye movements were constantly monitored throughout each trial
via an eye-tracking system (Cambridge Research Systems; 250 Hz). After the
subject succeeded in keeping the fixation within a (nonvisible) circular window
centered on the fixation point (2.5° side by side) for 500 ms, one of the four
equiprobable numbers (‘‘1,’’ ‘‘2,’’ ‘‘4,’’ or ‘‘5’’) appeared (300 ms). In the first
experiment, a brief (100-�s) electrocutaneous stimulus was equiprobably deliv-
ered via self-adhesive disposable electrodes (Neuroline 700-K, Ambu) to the
thumb or little finger at one of four possible SOAs (550, 800, 1,050, or 1,300 ms).
In the second experiment, the electrocutaneous stimulus was equiprobably de-
livered to the thumb or little finger at one of two possible SOAs: 550 ms (i.e., same
as the shortest SOA in the first experiment) or 250 ms (i.e., 300 ms earlier than the
first SOA, when the number was still present on the screen). In both experiments,
subjects had to respond as fast as possible to the tactile stimulation by pressing a
central footpedalwiththeir rightfoot.Eyemovementsweremonitoreduptothe
foot-pedal response. If central fixation was broken at any time during the trial,
thetrialwasabortedandrandomlyreintroducedtoensurethatthesamenumber
of trials was recorded for each condition. The tactile stimulus intensity was set to
obtain �80% correct detections for both fingers with a titration procedure that
was run in a preexperimental session (see SI Experiment 1 and SI Experiment 2).
Each stimulator (DS7A, Digitimer) current was varied independently for each
finger so that detection performance was comparable between the two fingers.
Subjects were told that the number was totally irrelevant for the tactile detection
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task. To ensure that number magnitude was processed (see SI Experiment 1 and
SI Experiment 2, Number Magnitude, and Table S2), they were also told they
could be asked without warning which number appeared in the immediately
preceding trial.

Accuracy and reaction time (RT) were combined in the IE score, a standard way
to combine RT and accuracy data into a single performance measure, computed
as the median RT divided by the proportion of correct trials for a given condition;
a higher IE value indicates worse performance, just as for RT and error measures.
The IE score was submitted to a four-way ANOVA with SOA, posture, finger, and
number (‘‘1’’ vs. ‘‘5’’) as variables. Each posture was further analyzed by a three-

wayANOVA.Regression linebetavaluesbetweenIEscoreandnumberswerealso
calculated and submitted to a three-way ANOVA with SOA, posture, and finger
as within-subject variables. Significant sources of variance were explored by
Newman–Keuls posthoc tests and planned comparisons.
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Supporting Information
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SI Experiment 1
Supporting Procedures. To obtain �80% correct detections for
both fingers, the stimulus intensity was set individually for each
subject and each stimulated finger in a preliminary session
before the main experiment. The setup was the same used as for
the main session, but the procedure differed as depicted in the
Fig. S1. The fixation point was presented for 500 ms, after which,
if the subject succeeded in keeping fixation, a tactile stimulus was
delivered either to the thumb or the little finger. No number
stimuli were presented.

The titration block used to set the intensity consisted of 15
trials, where 5 stimulations to the thumb and 5 to the little
finger were randomly intermingled with 5 trials in which no
tactile stimulus was delivered (catch trials). The intensity was
first set at 0.10 mA for both constant current stimulators, each
delivering electrocutaneous square wave pulses to one finger.
At the end of the first preliminary block, the experimenter
varied the stimulator current, independently for each finger, to
reach a detection performance of 80% for each of them. Thus,
the intensity was increased or reduced depending on whether
the performance was below or above the criterion. The first
step was 2 mA, then the step amplitude was halved at every
direction reversal. The same block of trials and procedure was
then repeated until the criterion of 80% of accuracy was met
for each finger. The same procedure was applied for each hand
posture (palm-up, palm-down). Table S1 below reports the
stimulus intensity used for each subject for both fingers and
postures.

Supporting Results. Electrocutaneous current intensity. A statistical
analysis (ANOVA) with finger (thumb vs. little finger) and
posture (palm-up vs. palm-down) as variables showed that, to
have the same performance in terms of accuracy a different
intensity had to be set for thumb (3.79 mA) and little finger (2.61
mA) [F(1,13) � 7.13; P � 0.05)]. No difference was present
between the two postures.

Number Magnitude. To ensure that number magnitude was pro-
cessed, subjects were told they could be asked, without warning,
which number had been presented in the immediately preceding
trial. Two of such probing situations were randomly interspersed
within each block of trials. All subjects answered without error
to this request in each block (100% accuracy), except one
(subject 9) who made two errors reporting an incorrect number
(83% accuracy).

Catch Trials. Each experimental block consisted of 160 trials: 4
repetitions for each combination of number, delay and finger
(128) plus 32 trials (20%), where after the visual presentation of
the number no electric pulse was delivered (catch trials). False
alarms rate was on average 1.16% without difference across
conditions.

SI Experiment 2
Supporting Procedures. Subjects started the experimental session
alternatively with the hand in the palm-down or palm-up posture.
The experiment consisted of a unique session of four experi-
mental blocks (two for each posture), postures being counter-
balanced across blocks. The same procedures and criterion (80%
accuracy independently for both fingers) as for the first exper-
iment were used in the second experiment to set the tactile
stimulations intensity before the experimental session. As in the
first experiment, stimulus intensity was not varied during the
experimental session, but in the second experiment it was set in
the palm-down posture for six subjects and with the hand in the
palm-up posture for the remaining seven subjects. Table S2
below reports the stimulus intensity used for each subject for
each finger.

Supporting Results. Electrocutaneous current intensity. Similar to the
first experiment, a statistical analysis (ANOVA) with posture
(palm-up vs. palm-down) as between-subject variable and finger
(thumb vs. little finger) as within-subject variable showed that a
difference in tactile stimulus intensity was set to obtain the same
detection performance for thumb (4.38 mA) and little finger
(2.94 mA) [F(1,11) � 81.98; P � 0.001)]. No difference was
found between postures.

Number Magnitude. Subjects performed errorless when requested
to report which number had been presented in the immediately
preceding trial in each block (100% accuracy), except one subject
(subject 11) who made one error reporting an incorrect number
(4 instead of 5) (75% accuracy).

Catch Trials. Each experimental block consisted of 160 trials: 8
repetitions for each combination of number, delay and finger
(128) plus 32 trials (20%), where after the visual presentation of
the number no electric pulse was delivered (catch trials). False
alarms rate was on average 2,49% without difference across
conditions.
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Fig. S1. Timing of stimuli presentation for the preliminary titration session.
The figure illustrates the example of a tactile stimulus delivered to the little
finger (green symbol) in the palm-down posture. As in the experimental
sessions, the subjects were instructed to respond to the tactile stimulus as
quickly as possible regardless of the finger stimulated, by pressing a pedal with
their right foot.
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Table S1. Stimulus intensity for each subject’s thumb and little
finger for the two hand postures

Subjects

Stimulus intensity, mA

Thumb Little finger

Palm down Palm up Palm down Palm up

1 3.5 3.6 2 2.1
2 3.4 3.3 1.9 1.5
3 2.7 2.6 1.8 1.8
4 7.5 7.7 4.2 4.3
5 4.8 4.8 3.6 3.6
6 3.7 3.7 3 3
7 7 6.8 1.9 1.6
8 2.4 2.4 4.1 4.1
9 5.6 5.6 3 3

10 2 2.1 2 2
11 3.2 3 2.4 2.5
12 2.5 2.3 2.2 2.2
13 3 3 2.8 2.9
14 2 2 1.8 1.8
Mean 3.81 3.78 2.62 2.60
SD 1.77 1.79 0.85 0.91
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Table 2. Stimulus intensity for each subject’s thumb and
little finger

Subjects

Stimulus intensity, mA

Thumb Little finger

1 3.9 2.7
2 4.1 2.5
3 4.3 3.0
4 4.7 3.3
5 5.3 3.3
6 4.1 2.6
7 4.7 2.7
8 1.9 1.9
9 4.5 3.5

10 6.1 4.4
11 5.9 4.1
12 4.2 2.2
13 3.2 2.1
Mean 4.38 2.94
SD 1.09 0.75

From subjects 1 to 6, intensity was set with the hand in the palm-down
posture; from 7 to 13, intensity was set with the hand was in the palm-up
posture.
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2.1.1. Discussion

The study presented here reveals that visuo-tacile interactions in healthy humans may  be 

modulated by relatively abstract information about quantities and that, in some cases, the 

somatotopic coding of touch ‘loses’ against more ‘space-based’ coding of touch (Azañón and 

Soto-Faraco 2008). The visual information, in this case a semantic symbol as a number, can 

affect the perception of information coming from the somatosensory channel. It  is clear from 

this example that the interaction between the two modalities has a spatial nature, even at this 

high-cognitive level. This study is an evidence of cross-modally driven shift of attention.

3. Multisensory integration through anatomical 
convergence

Perhaps, the simplest approach for thinking of an interplay between different sensory 

modalities is to imagine a point of convergence for inputs coming from the different sensory 

channels. In other words, the information coming from the external world, initially elaborated 

in the unisensory regions of the brain at a certain level have to converge on the same area. A 

large body of evidence is now available from single-cell and tracing studies in animals and 

from neuroimaging studies in humans showing numerous multisensory convergence zones in 

the brain. In particular the animal models revealed cortical and subcortical structures where 

the single units receive afferent inputs from different senses. The pioneering and influential 

series of studies conducted on the superior culliculus (SC) in the cat (Meredith and Stein 

1983; 1986), made of this structure a model for the multisensory integration. In humans too, 

neuroimaging studies revealed the presence of possible areas of sensory convergence.

 Deep layers of the SC, in addition to other subcortical regions such as basal ganglia 

(Nagy et al. 2006), has been shown to receive inputs from somatosensory, auditory, and visual 

areas (Stein and Meredith 1993). Activity in deep SC neurons is thus dependent on the 

presence of information coming from more than one sense and on spatial and temporal 
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relation between inputs of different modalities. Three general rules can describe the neural 

activity of this structure.

1. The spatial proximity between sensory information. Activity of SC neurones is maximal 

when stimuli of different modalities are presented in the same location. The integration 

diminishes with increasing spatial discrepancy  between the visual and auditory 

information, for example.

2. The temporal synchrony between sensory information. Also the temporal relation appears 

to play a fundamental role in the multisensory integration, allowing it when the different 

sensory information are presented simultaneously rather than temporally separated.

3. The “inverse effectiveness” rule. Activity of SC neurones appears to be dependent on the 

intensity of the sensory  signals. In particular the best response is associated with the 

presence of one sensory input  with a 

weak signal. The bi- or trimodal 

interplay  at the cellular level can be 

larger when each unisensory input alone 

elicits a relatively weak neural 

discharge (Stein and Meredith 1993; but 

see Holmes 2007c for a critical 

discussion about the law of inverse 

effectiveness in behaviour). However, 

both super- or sub-additive responses 

can be observed for multisensory co-

stimulation, as compared to stimulating 

either sense individually (see Figure 

1.4).

 Turning to cortical regions in non-

human primates (Kaas and Collins, 2004 

for a review), the upper bank of the 

superior temporal sulcus is known to have 
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Fig. 1.4 Example of audio-visual integration cell 
in SC. A. The bar graph shows a super-additive 
response where the multisensory response of the 
cell (green bar) is higher than the sum of the 
unisensory responses (blue and yellow bars). B.
Distribution of the numbers of cells presenting 
linear and non-linear responses to multisensory 
stimulation. From Driver and Noesselt 2008.



bidirectional connections with unisensory  auditory, visual and somatosensory cortices 

(Padberg et al. 2003; Schmahmann and Pandya 1991) and to contain multisensory  neurons 

(Bruce et al. 1981) that, similarly to the SC, receive inputs from different sensory  modalities 

converging on the same single cell. Several regions within parietal and frontal areas also 

present a multisensory convergence of information (see the second chapter of this 

dissertation).

 One of the most elegant research in humans focussing on cross-modal integration is 

represented by a series of studies conducted in fMRI (functional Magnetic Resonance 

Imaging, Macaluso and Driver 2001; Macaluso et al. 2000; Macaluso and Driver 2005 for a 

review). This constitutes one of the first research investigating which areas in the human brain 

present an activity  correlated with a detection task performed on stimulation coming from 

different modalities. A region corresponding to IPS (Intraparietal sulcus) appeared to be 

activated both for a visual and for a tactile detection task (Macaluso and Driver 2001). These 

results are in agreement with the results coming from an independent research by another 

group showing an activation of parietal regions in response to visual or tactile stimulations 

(Bremmer et al. 2001).

4. Multisensory interactions through feedback on 
unisensory areas and inter-connections among 
unisensory areas

As noted in the introduction, the revolutionary advance in multisensory research is the 

discovery  that the multisensoriality exists “beyond modularity  and convergence” (Driver and 

Spence 2000). The interplay between different modalities can indeed arise not only  through a 

convergence mechanism which integrates the information coming from different senses in the 

same neuron. Other mechanisms have been recently  proposed, following some studies whose 

results showed the existence of modulations of unisensory  low-level areas from the activity of 

multisensory high-level areas, or as a result of direct early modulations from different low-

level unisensory areas (Figure 1.5).
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4.1.Back-projections from multisensory higher-level to 
unisensory lower-level areas

The “new look” in this field is based on studies showing that once believed sensory-specific 

areas can be influenced by multisensory interactions. Some evidence was present in the early 

70’s (Fishman and Micheal 1973; Morrell 1972; Spinelli et al. 1968) showing a modulation of 

the visual regions response as a consequence of the presence of auditory information. 

However due to the technological limits of these early studies one cannot exclude non-

specific confounding factors. More recent researches have clearly showed that traditionally 

considered unisensory regions can be influenced by  multisensory interactions (Macaluso et al. 

2000; Macaluso et al. 2002). Several fMRI studies have now reported modulation of 

traditional unisensory areas (usually defined as occipital for the visual system, post-central for 

tactile sensation and temporal for the auditory information) due to multisensory co-

stimulation (Amedi et al. 2002; Buchel et  al. 1998; Calvert et al. 1999; 2001; Macaluso et al. 

2000; Martuzzi et al. 2007; Miller and D'Esposito 2005). Using high-resolution fMRI in 

monkeys, together with separate mapping of specific auditory-cortex regions, Kayser and 

colleagues (2005) observed increased BOLD signal in secondary  auditory cortex due to the 

presence of tactile stimulations. Even primary  auditory areas were affected during the 

presence of visual information (Kayser et al. 2007).

 Also in human, evidence has been found in favour of a modulation of primary sensory 

areas in case of multisensory stimulation. Auditory cortex, for instance, appears to be 

differentially modulated when subjects perceived audiovisual speech stimuli as synchronous 
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Fig. 1.5 Schematic 
representation of a)
multisensory integration 
and b) multisensory 
feedback interaction 
from integration areas 
over unisensory areas. 
F r o m D r i v e r a n d 
Spence 2000.



or asynchronous (Miller and D’Esposito 2005). Similarly, a neuroimaging study provided 

evidence of modulation of auditory cortex activity induced by  the vision of silent speech 

(Calvert et  al. 1997). An elegant work on modulation of unisensory by multisensory areas is 

Macaluso’s series of studies in fMRI on visuo-tactile interactions. These experiments 

investigated which areas in the brain might present an activity correlated to the execution of 

very simple cross-modal spatial tasks when both visual and tactile information are 

simultaneously  present (Macaluso et al. 2000; Macaluso et al. 2002; Spence and Driver 2004). 

Typically, a visual stimulation was presented on the right or left side of space. On half of the 

trials, a concurrent tactile stimulus was delivered to the right or left hand of the participants, 

instructed to report only where they perceived the visual information trying to ignore the 

touches. Thus, visual and tactile information could be presented in a congruent or incongruent 

spatial arrangement, on a trial-by-trial basis. The behavioural performance showed a cross-

modal facilitation effect when both sensory  modalities were stimulated at the same side with 

respect to when the same stimuli were presented on opposite sides. More interestingly, the 

behavioural facilitation was accompanied by an increased activity  in occipital regions 

contralateral to the stimulated side when the visual information was presented together with 
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Fig. 1.6 Spatially-specific stimulus-driven crossmodal influences on unimodal cortices. (a) Task-
irrelevant tactile stimulations modulated visual responses in contralateral occipital areas, with higher 
activity when the visual event was presented together with a spatially congruent  tactile stimulus on the 
same side (dark bars), even though these areas did not respond to touch alone. (b) Activity in the 
parietal operculum increased for contralateral tactile stimuli when presented with a visual stimulus at 
the same location (dark bars). From Macaluso and Driver 2005.



the tactile one. Similarly, in a subsequent study (Macaluso et al. 2002), tactile responses in the 

parietal operculum have been shown to be analogously modulated by adding a visual 

stimulus: maximal activity  was observed when the contralateral tactile information was 

coupled with the visual stimulation at the same location (Figure 1.6).

 These studies provide evidence in favour of a possible modulation of relatively low-

level areas through backward projections coming from areas of multisensory convergence.

4.2.Early interactions between unisensory areas

Several electrophysiological studies showed very early modulation of event related potentials 

(ERP) arising over visual cortex when a bimodal auditory-visual stimulation was present, 

already at 40 ms after the stimulus presentation (Giard and Perronet 1999). A similar 

modulation of ERP recorded over unisensory  regions has been described for concurrent 

audition and touch, as early as 50 ms after the stimulus presentation (Figure 1.7; Foxe et al. 
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Fig. 1.7 Early multisensory interaction between 
audition and touch. The simultaneous auditory and 
tactile inputs presentation elicits a higher early 
component  (50 ms) than the sum of the unisensory 
stimulation, supporting the idea of an early 
interaction between unisensory areas. From Foxe 
et al. 2000.



2000; Molholm et al. 2002). Effects at  such short  latencies do not readily  fit with backward 

projections via longer pathways from multisensory areas. Thus they are presumably 

suggesting some direct connections between sensory-specific areas. Evidence in favour of this 

possibility comes from retrograde tracing studies in monkeys, showing for example direct 

connections between primary auditory and visual cortex (Falchier et al. 2002). Moreover, 

electrophysiology has also demonstrated some response to somatosensory stimuli in a region 

closely adjacent to the primary auditory cortex (Fu et al. 2003; Lakatos et al. 2007).

5. Conclusion

The multisensory research presented in this chapter clearly  shows how pervasive might be the 

presence of multisensory mechanisms in the brain. It is obvious that the brain adapted such 

mechanisms through evolution in a world that can essentially be experienced in a 

multisensory way. Since also the low-level primary areas can be affected as well by the 

presence of information coming from a different sensory channel, the question arises as to 

whether it is still valuable to distinguish unisensory processing and unimodal areas from 

multisensory areas (Ghazanfar and Schroeder 2006). However, despite this evidence, 

unisensory areas show stronger preference for one particular modality with respect to others. 

They  thus are more “sensory-specific” rather than “unisensory” but they still retain their 

functional specialisation in the elaboration of sensory  information. On the other side, the 

proper multisensory  integration, arising at the single cell level should also present  an adaptive 

function with respect to other form of multisensory modulation. In the next chapter I will 

present in detail the mechanisms underlying the multisensory  convergence between visual and 

tactile information and the characteristics of this multisensory link between information 

external to the body and information present onto the body.
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Chapter II

Multisensory and motor 
representations of peripersonal 
space

The binding of visual information available far outside the body  with tactile information 

arising, by definition, on the body, allows for the construction of a representation of the space 

which lies in-between. This reachable part of the external space is often the theatre of our 

interactions with objects. This representation of intermediate space has become known as 

“peripersonal space” (Rizzolatti et al. 1981b, c). The definition of peripersonal space 

originates from neurophysiological studies in monkeys where single cell investigations have 

highlighted the existence of bimodal neurons responding to visual as well as tactile 

stimulations. In this chapter I will review some basic features of visuo-tactile interactions, as 

revealed by the single units recording studies in monkeys. A crucial point that will be stressed 

is that these neuronal populations are not only responsive to sensory solicitation from the 

environment, but they  also present motor-related activity. The peculiar nature of their 

activation qualifies them as multisensory-motor interfaces, a bridge between the 

(multisensory) perception and the planning and execution of actions.
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1. Multisensory features of peripersonal space: Visuo-
tactile interaction around the body

A class of multisensory, predominantly visual-tactile, neurons has been proposed to provide 

the neural mechanism for the the peripersonal space representation. These class of neurons are 

present in several regions of the monkey brain (Figure 2.1). These include cortical areas in the 

parietal cortex (Broadmann's area 7b and the ventral intraparietal area, VIP) and in the frontal 

premotor cortex (Broadmann’s area 6), 

but also subcortically such as the putamen 

(Fogassi et al. 1999; Graziano 2001; 

Rizzolatti et  al. 1997). These neurons' 

most relevant characteristic for present 

purposes is that they  respond both to 

visual and tactile stimulation; in 

particular, their visual receptive fields 

(RFs) are limited to a region of space 

surrounding the body in such a way that 

their visually evoked responses are 

modulated by the distance between the 

visual object and the tactile RF.

1.1.Parietal Visuo-tactile interactions

The posterior parietal lobe in non-human primates can be subdivided into two different 

regions, with respect  to the intraparietal sulcus, as shown in Figure 2.2: A superior and an 

inferior part, corresponding to areas 5 and 7, respectively (Broadmann’s classification). Area 

7 contains two functionally  distinguishable subdivisions (7a and 7b). While area 5 appears to 

be activated mostly by complex somatosensory stimulation (Duffy and Burchfiel 1971; 

Sakata et al. 1973), the lateral area 7b is composed of bimodal cells. Electrophysiological 

studies conducted on awake monkeys revealed that the visuo-tactile integration in these 
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Fig. 2.1 Side view of a macaque monkey brain 
showing the location of four interconnected 
multimodal areas. Graziano 2001.



posterior parietal areas is based on a 

c o n v e rg e n c e m e c h a n i s m o f 

different sensory afferents at the 

single unit level (Hyvärinen and 

Poranen 1974; Hyvärinen 1981; 

Leinonen et  al. 1979; Leinonen and 

Nyman 1979; Mouncastle et al. 

1975; Robinson et al. 1978; 

Robinson and Burton 1980a, b)1.

Most neurons in this area have been 

shown to be responsive to tactile 

s t i m u l i . T h e y p r e s e n t e d a 

somatotopic organization, with 

separate face, arm and hand 

representations encountered along 

the latero-medial axis (Hyvärinen and Shelepin 1979; Hyvärinen 1981; Robinson and Burton 

1980a). It is overall within the face and arm regions of this map, that visuo-tactile cells have 

been reported (33% of the total sample, Hyvärinen and Poranen 1974; Hyvärinen and 

Shelepin 1979; Hyvärinen 1981; Leinonen et al. 1979; Leinonen and Nyman 1979; Leinonen 

1980). Researchers initially interpreted these visual responses as an “anticipatory activation” 

that appeared before the stimulating object enters into the neurons’ tactile receptive field (RF) 

(Hyvärinen and Poranen 1974, page 675). The critical characteristic of these neurons is that 

their activation have shown to be dependent on the distance of the effective visual stimulus 

from the body-part. Most of the bimodal cells responded to cutaneous stimulations, and to 

visual stimuli moving towards the animal within about 10 cm from the tactile RF, even though 

in some cases, stimulation presented further away, but still within a reachable distance, was 

also effective. Some cells presented a direction-selectivity for both visual and somatosensory 
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1 A possibly earlier report  of neurons responding to both tactile and visual stimulation is in Sakata and 
colleagues’ report  (1973, page 100), a study about the functional organization of area 5, where the 
authors stated: “Even the relatively rare neurons which we could activate visually were more 
powerfully driven by somatosensory stimuli”. However, no further detail or discussion was offered 
concerning the limitation in depth of the visual RF.

Fig. 2.2 Macaque monkey parietal lobe: intraparietal 
sulcus separates a superior and an inferior parietal 
region, area 5 and area 7 respectively. In turn area 7 can 
be differentiated in area 7a and 7b. From Leinonen et al. 
1979.



stimulation (Leinonen et al. 1979). Furthermore, a close correspondence between the tactile 

and visual RFs has been documented, especially for tactile RFs on the arm (Leinonen et al. 

1979). The location of the visual effective stimulus needed to be changed, for example, when 

the arm was placed in different locations. In other words, the authors described the spatial 

correspondence between visual and tactile receptive fields. This characteristic, described later 

in detail, is based on the continuous up-dating of the peripersonal space at each body 

movement. However, this first series of investigations were affected by some technological 

limitations. For instance, authors did not control for eye movements which are numerous and 

unpredictable in awake, behaving monkeys. Thus, their results have to be restricted to the still 

important finding of a neuronal system where visual information close to the body converges 

together with tactile information in single neurons within posterior parietal areas.

 Multisensory neurons have also been found in monkey  area VIP, in the fundus of the 

intraparietal sulcus (Avillac et al. 2005; Colby and Duhamel 1991; Colby et al. 1993; 

Duhamel et al. 1998). VIP 

neurons respond to tactile and 

visual stimulations presented 

within a few centimetres of 

the tactile RF (Figure 2.3). 

Unlike neurons pertaining to 

area 7b, tactile RFs in VIP 

are primarily localised to the 

face and head, and visual RFs 

are restricted to a very 

shallow region of space 

around the face (Colby et al. 

1993). Compared to the few 

neurons of area 7b that 

s h o w e d a d i r e c t i o n a l 

selectivity  for visual and 

tactile moving stimuli, the 
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Fig. 2.3 Schematic representation of somatosensory and visual 
receptive fields of bimodal (VIP) neurons mapped in alert 
monkeys. Tactile responses were elicited with the monkey 
blindfolded, and visual responses were elicited with the 
monkey looking at a central fixation target on the tangent 
screen. Shaded areas represent  tactile and visual RF surfaces. 
From Duhamel et al. 1998.



VIP cells are strongly characterised by  a preferred direction that often matches between both 

sensory  modalities. Their visual RFs have been clearly shown to be anchored to the face 

independently of the gaze direction (Colby et al. 1993). Noteworthy, VIP is a multisensory 

region of the cortex in which the majority  of VIP neurons perform multisensory integration 

following the same general rules (e.g., spatial congruency and temporal synchrony) that have 

been previously documented in other cortical and subcortical regions (Avillac et al. 2007).

 An interesting recent finding showed that visuo-tactile neurons within area 7b and VIP 

also respond when another individual’s body-part is approached by a visual stimulus (Ishida 

et al. 2009). Similarly to the multisensory neurons described above, these “body-matching 

neurons” respond to visual stimuli presented near the tactile RF. Moreover, these “body-

matching neurons” are responsive to a visual stimulus presented close to the corresponding 

body-part of another individual (a human experimenter). For instance, a neuron displaying a 

tactile RF on the arm responded to a visual stimulus presented close to the monkey’s own 

arm, but also responded to visual stimuli presented close to another individual’s arm (Figure 

2.4). For some of these neurons, this matching property  seems to be independent of the 

position of the observed individual with respect to the observing monkey (up to 35 degrees of 

rotation).

 The studies presented in this section indicate that the initial cortical convergence of 

vision and somatosensation occurs in a pool of areas within the parietal lobe. These cortical 

regions present  also several direct and indirect  connections. The intraparietal sulcus receives 

projections from both somatosensory and visual areas respectively in its medial (Jones and 

Powell 1970), and lateral bank (Seltzer and Pandya 1980; Maunsell and Van Essen 1983; 

Ungerleider and Desimone 1986; Boussaoud et al. 1990; Baizer et al. 1991). Most 

importantly, both projections overlap in the fundus, where VIP is located (Maunsell and Van 

Essen 1983; Ungerleider and Desimone 1986; Colby and Duhamel 1991). These three regions 

of the intraparietal sulcus send projections to area 7b (Jones and Powell 1970; Mesulam et al. 

1977), which also receives more direct somatosensory input from SII (Stanton et al. 1977) and 

from area 5 (Jones and Powell 1970), the superior part of the posterior parietal area.

 In this way, multisensory  perception arises as the result  of a physiological convergence 

of visual and tactile input on the same neurons (Jones and Powell 1970) from the respective 
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Fig. 2.4 An example of an anatomical image body-matching neuron. (A, B) Location of tactile RF on 
the monkey’s left  forearm, with visual RF anchored close to the same part  of the tactile RF. (C) Visual 
responses to experimenter’s forearms. This neuron was active when the monkey observed the 
experimenter stroking his own left forearm from proximal to distal. From Ishida et al. 2009.



areas of initial elaboration. Moreover, the multisensory parietal areas appear to be, to a certain 

extent, differentially involved in the representation of the space around different  sectors of the 

body. Most part  of the VIP neurons present RFs on the face and head while neurons within 

parietal area 7b are more representative of the arm and hand regions.

1.2.Premotor visuo-tactile interactions

A detailed series of studies on the properties of visuo-tactile neurons has been also made 

available by investigating monkeys’ bimodal neurons contained in the premotor cortex. 

Numerous studies have focussed on the single cell recording on units within F4 and F5 

regions of macaque monkey (Matelli et al. 1985), composing respectively the rostral and the 

caudal inferior part of area 6, in the proximity  of the arcuate sulcus as illustrated in Figure 2.5 

(Fogassi et al. 1992; Fogassi et al. 1996; Gentilucci et al. 1983; Gentilucci et  al. 1988; 

Godschalk et al. 1985; Graziano et al. 1994; Graziano and Gandhi 2000; Rizzolatti et al. 

1981a, b, c; Rizzolatti et al. 1987; Rizzolatti and Gentilucci 1988; Rizzolatti and Luppino 

2001).

 Neurons in the F4 sub-region are strongly responsive to tactile stimulation. They  are 

characterised by relatively large tactile RFs located primarily  on the animal’s face or arm/

hand regions. Some of these neurons also present RFs in separated body parts. They are 

responsive for tactile stimuli on the peribuccal region, for instance, as well as for touches 

delivered on the hand (Gentilucci et al. 1988; Rizzolatti et al. 1981a). A large proportion 

(85%) of the tactile cells in this area discharges also in response to visual stimuli. According 

to the depth of the visual RFs extending out from the body, multisensory neurons have been 

subdivided into pericutaneous (54%) and distant peripersonal neurons (46%) (Figure 2.6, 

upper and lower panel). The former proved to be better responding to stimuli presented a few 

centimetres from the skin (10 cm or less, Rizzolatti et al. 1981b); the latter are, instead, 

activated by stimuli delivered a bit farther from the body, but always within the animal's 

reaching distance. Therefore, an important property of these neurons, like the cells described 

in multisensory parietal areas, is that their visual RFs are limited in depth to a few centimetres 

(in most cases from ~5 to ~50 cm) from the tactile RFs. The visual RFs are generally 
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independent of gaze direction (Fogassi et  al. 1992; Gentilucci et  al. 1983), being spatially 

related instead to the body-parts on which the tactile RFs are located. Gentilucci and 

colleagues’ study provided the first  evidence of a peripersonal space codification independent 

of eye position. The authors moved the visual stimulus close to the face during monkey’s 

spontaneous eye movements. The neuron always responded when the visual stimulation 

approached the same body part, where the tactile RF of the neuron was located. At similar 

conclusion brings Fogassi’s investigation (Fogassi et al. 1992), which proved that neurons 

within sub-region F4 code the visual stimulus position in spatial and not in retinal 

coordinates. This is true also for neurons with tactile RFs on the arm and hand: when the arm 

is moved under the monkey’s view, the visual RF follows the body-part, staying 'anchored' to 

the tactile RF (Graziano and Gross 1993; 1995) keeping a rough spatial match with its 
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Fig. 2.5 Schematic representation of the functional parcelisation within prefrontal and parietal areas in 
the macaque monkey brain. In particular, within visuo-tactile premotor cortex, different sub-areas are 
distinguishable, such as F4 and F5 in the ventral premotor cortex. From Rizzolatti et al. 1998.
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Fig. 2.6 Examples of visuo-tactile neurons in the ventral premotor area. Upper Panel  Pericutaneous
peripersonal neuron presenting tactile and visual RFs on the mouth or the hands (right  part) or tactile 
RFs on both mouth and hand and visual RFs on the mouth (left part). Bottom Panel  Distant 
peripersonal neuron. A and B represent neuron response for tactile stimuli to mouth and hand 
respectively. C represents the visual response of the same neuron for a visual stimulus presented in 
the region of space around the mouth, as represented in the figure. From Rizzolatti et al. 1981



location at every displacement (see Figure 2.7; Graziano et al. 1994; Graziano et al. 1997).

Although less numerous, visuo-tactile neurons are present also in the rostral sub-

region F5 of area 6, presenting smaller tactile RFs than F4 neurons, frequently  located on the 

hand, the face or both. However, the visual properties of these neurons were shown to be quite 

different: While a stronger response was induced by stimuli presented within the reaching 

distance, visual RFs were usually difficult to define (Rizzolatti et al. 1988; Rizzolatti and 

Gentilucci 1988).
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Fig. 2.7 Visual and tactile RFs of visuo-tactile neurons are in rough spatial register. When the arm is on 
the right  side (A), for example, the visuo-tactile neuron presenting a tactile RF on the arm, also respond 
for a visual stimulus approaching the arm along the trajectory 3 (dark grey line in the graph C). When 
the arm moves on the left side (B), the same visuo-tactile neuron now responds better to a visual 
stimulus approaching the arm along the trajectory 2 (light grey line in the graph C). Modified from 
Graziano et al. 1997.



1.3.Subcortical visuo-tactile interactions

As described in the previous chapter, pools of multisensory  neurons have also been found in 

subcortical structures of the brain such as the superior colliculus. The multisensory  encoding 

of events in the superior colliculus (Stein and Meredith 1993; Wallace and Stein 2007), 

however, seems not to be primarily  devoted to representing the space near the body (for a 

brief discussion of the properties and functional roles of multisensory neurons in the superior 

colliculus see the first chapter). More concerned into the codification of the space close to the 

body is another subcortical multisensory structure: the putamen (e.g., Graziano and Gross 

1993; 1994; 1995) which presents a relevant visuo-tactile activity  contributing to the 

peripersonal space representation (Graziano and Gross 1993; 1994; 1995). Visuo-tactile 

neurons in the putamen are somatotopically organized, just as in the cortical areas described 

above. Most of the somatosensory neurons with tactile RFs on the arm, hand and face are also 

responsive to visual stimulation. Also for neurons in this region the activity driven by visual 

stimulation is dependent on its distance with respect to the body. Neurons in the putamen 

respond as long as visual information is presented close to the tactile RF. A large portion 

(82%) of face-related neurons respond best to visual stimuli presented in a region of space 

within 10-20 cm from the tactile RF (Figure 2.8). Neurons with tactile RFs on the arm and 

hand also present very  shallow visual RFs around the hand (up to 5 cm). As for the cortical 

visuo-tactile neurons, the visual and tactile RFs in the putamen roughly correspond spatially 

with the visual RFs anchored to the tactile ones.

1.4.Dynamic feature of peripersonal space representation
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Fig. 2.8 Examples of 
visuo-tactile neurons 
recorded in the Putamen.
Upper Panel 
D i s t r i b u t i o n o f 
somatosensory RFs in the 
dorso-ventral dimension.
Central Panel 
P e r i p e r s o n a l s p a c e 
neuron with tactile RFs 
on the hand and the 
visual RFs anchored to it.
Lower Panel
P e r i p e r s o n a l s p a c e 
neurons with tactile RFs 
on the face and visual 
RFs in the region around 
the face.
Modified from Graziano 
et al. 1993.



The visual receptive fields of some visuo-tactile neurons proved to present dynamic properties 

in such a way that they  can be modified as a function of the interaction with the environment. 

Iriki and colleagues (Iriki et al. 1996), for instance, revealed that, the functional use of a tool 

can bring to a modification of the extent of bimodal neurons visual RFs. In their 

investigations, a group of monkeys has been trained to use a rake as a tool in order to reach 

food pellets placed in a region of space normally outside of the free-hand reaching space. In 

this paradigm, the functional use of the tool which elongates the monkeys’ arm allows to 

interact with objects that are placed far from the body  as if they were close to it. In such a 

way, the far space becomes functionally near. From a neurophysiological point of view, after 

the tool-use training, some neurons in the post-central gyrus (somewhat extending into the 

intraparietal sulcus) began to display visual responses for stimuli presented far from the body 

but close to the functional extremity of the tool (Figure 2.9). In addition, such visual 

responses appeared to be induced by the active, but not by  passive, tool-use. When monkeys 

just held the tool 

without using it, the 

authors did not report 

any modifications of 

the visual RFs. In 

a d d i t i o n , a f e w 

minutes after active 

t o o l - u s e t h e 

expanded visual RFs 

shrank back to their 

original size when 

tool is not longer 

used. In other words, 

the dynamic aspects 

of the visual RF may 

d e p e n d o n t h e 

e x e c u t i o n o f a 
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Fig. 2.9 Changes in bimodal receptive field properties following tool-
use. The visual RF (vRF) was defined as the area in which cellular 
responses were evoked by visual probes. (a) tactile RF (blue area) of 
the ‘distal type’ bimodal neurons and their vRF (pink areas) (b) 
before tool-use, (c) immediately after tool-use, and (d) when just 
passively grabbing the rake. (e) tactile RF (blue area) of ‘proximal 
type’ bimodal neurons, and their vRF (pink areas) (f) before and (g) 
immediately after tool-use. From Maravita and Iriki 2004.



specific motor action (Rizzolatti et al. 1998). However, as Holmes and colleagues noticed 

(Holmes and Spence 2004), the intraparietal sulcus is a large and heterogeneous area in the 

monkey, and at least five functionally- and neuroanatomically  distinct  sub-regions are found 

there (Colby and Duhamel, 1991; Rizzolatti et al. 1998), with a variety of neuronal response 

properties ranging from purely somatosensory, to purely  visual. It is therefore important to 

plot visual and somatosensory  RFs while controlling for eye, head, and body movements. By 

contrast, in Iriki’s study  no control was exerted on eye and head movements. Even then, the 

influence of attention and response preparation may be serious confounding factors. Neurons 

in the area studied by Iriki and colleagues (1996) have been indeed studied elsewhere 

(Mountcastle et al. 1975). Two thirds of the cells in this area have been reported to be purely 

somatosensory, responding mainly to joint manipulation, and responding more vigorously for 

active than for passive movements (Mountcastle et al. 1975).

 In a similar vein, Fogassi and colleagues (Fogassi et al. 1996) found that the depth of 

the visual RFs of F4 visuo-tactile neurons can increase with increases in the velocity (20-80 

cm/s) of a visual stimulus approaching the cutaneous RF. The authors trained the monkey to 

fixate a LED while moving three-dimensional moving stimuli were presented in the visual 

scene through a robot arm. By changing the position of the visual fixation, it  could be possible 

to dissociate the retinocentred from the somatocentred codification of the stimulus. Moreover, 

through the precise robotic presentation device, these authors could measure the extent in 

depth of the visual RFs, as well as their rapid modification as a function of the stimulus’ 

approaching velocity. Results clearly  showed that the extension in depth of F4 visual RFs 

revealed to be not fixed. It dynamically  changed as a function of the stimulus velocity, in 

particular expanding in the direction of the approaching stimulus for higher velocities. This 

neurophysiological result could be linked to the behaviour described in humans performing 

reaching movements toward moving targets (Chieffi et al. 1992). Although the kinematic of 

the arm movement was not affected by the velocity  of the target, the movement onset was 

modulated of target velocity. The dynamic property  of visuo-tactile neurons could thus be 

crucial for preparing and/or executing actions towards nearby objects.
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1.5.A visuo-tactile network

The neurophysiological findings described in the previous sections define a set of at least four 

distinctive areas with similar visuo-tactile responses: parietal area 7b and VIP, part of inferior 

premotor cortex (mainly  F4) and the putamen. These regions are heavily interconnected, 

forming a tight network (Matelli and Luppino 2001; Rizzolatti et  al. 1997; Rizzolatti et al. 

1998). Posterior parietal areas send projections to the premotor cortex. In particular, superior 

parietal area 5 and the inferior parietal area 7b project respectively  to superior and inferior 

part of premotor area 6 (Pandya and Vignolo 1971; Strick and Kim 1978; Godschalk et al. 

1984; Matelli et al. 1984a and b; Luppino et al. 1999). Reciprocal connections are also sent 

back from premotor area 6 to the respective parietal areas (Rizzolatti et al. 1997). This 

reciprocal interconnected parieto-frontal network projects also to the putamen (Kunzle 1978; 

Weber and Yin 1984; Cavada and Goldman-Rakic 1991; Parthasarathy et al. 1992).

 Neurons in this network share several common features:

1) The visual responses lie primarily within a head-face or arm-hand centred somatosensory 

representation of the body;

2) Visual stimuli near the monkey drive the cells better than farther stimuli;

3) The visual and tactile receptive fields are in spatial register, independent of gaze since they 

relation is up-dated with the movement of the concerned body-part.

This suggests that these neurons allow for body-part centred coding of visual stimuli within 

sectors of space adjacent to the tactile surface. This network possesses all of the necessary 

properties to bind together external visual information around the body and tactile information 

on a specific body  part (Fogassi et al. 1992; Graziano and Gross 1993; Rizzolatti et al. 1997). 

Indeed, in the somatotopically organised maps encountered in these areas, each 

somatosensory body-part representation contains also the representation of the visual space 

that closely surrounds this same body-part. For instance, the arm region contains a 

representation of visual space around the arms as well as the face region contains a 

representation of visual space around the head (particularly in area VIP). This modular 

representation allows the brain to compute the spatial relation between an external object and 

a specific body-part. Furthermore, the spatial correspondence between visual and tactile RFs 

of these cells allows up-dating of the spatial relation between external objects and body-parts 

50



whenever the body moves. In conclusion, this bimodal visuo-tactile network provides the 

brain with the neurophysiological basis for the representation of the space between the body 

and the external world, where each body-part becomes the reference system: the peripersonal 

space.

2. Motor features of peripersonal space: Visuo-tactile 
interactions around the acting body

Why should the brain maintain a representation of the space around the body separate from a 

representation of far extrapersonal space? One possibility is that it could serve purely 

perceptual aims, giving a greater perceptual relevance to visual events occurring in the 

vicinity  of the body. Following this idea, the parieto-frontal network together with the 

subcortical visuo-tactile maps would code for a visual space, with individual body-parts as the 

reference. This is suggested by  the most  obvious sensory properties of this set of neurons. 

However, this interpretation does not describe fully the potential functional aspects of this 

system, since it does not  correspond with some of the evidence described above. First, a 

purely  perceptual account does not fit with the presence of such multisensory neurons in a 

predominantly 'motor' area such as the premotor cortex. Second, it may be difficult to 

interpret the complex tactile RFs of some of these neurons (for instance, single cells 

representing both the hand and peribuccal territories, as reported by Rizzolatti et al. 1981a, b). 

Similarly, the dynamic changes of their visual RFs observed in case of objects approaching 

the body (Fogassi et al. 1996) or after active tool-use (Iriki et al. 1996) point to a more 

“active” role of this multisensory network. More critically, a purely perceptual hypothesis 

does not take into account the intriguing common point of the visuo-tactile areas described so 

far: their motor properties. Numerous visuo-tactile cells in the parietal areas 7b (Hyvärinen 

1981; Hyvärinen and Poranen 1974; Hyvärinen and Shelepin 1979; Leinonen 1980; Leinonen 

et al. 1979; Leinonen and Nyman 1979; Robinson et al. 1978), inferior area 6 (Gentilucci et 

al. 1988; Rizzolatti et al. 1981c; Rizzolatti et  al. 1987; Rizzolatti et al. 1988; Rizzolatti and 
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Gentilucci 1988; Rizzolatti et al. 1997) and putamen (Crutcher and DeLong 1984) respond 

not only passively to visual and tactile stimulation, but also during motor activity.

 These findings raise the more compelling possibility  that the multisensory 

representation of peripersonal space might serve motor functions. Objects in the vicinity of 

the body are indeed more relevant by  virtue of all the possible interactions the body can 

establish with them (Graziano et al. 1993; Rizzolatti et al. 1997, 1998). The hand-centred 

representation of peripersonal space provides us with extremely valuable information 

regarding the spatial position of objects with respect to our hands.

2.1. Inferior premotor cortex

The motor properties of neurons in inferior premotor cortex appear to be very  relevant 

concerning the perception-action link characterising the peripersonal space. In particular, the 

visual responses of such neurons may be enhanced when a reaching movement is performed 

towards an object  (Godschalk et al. 1985). Moreover, inferior area 6 neurons are active during 

reaching and grasping movements of the arms (Godschalk et al. 1981; Godschalk et al. 1985; 

Kurata et al. 1985; Kurata and Tanji 1986; Rizzolatti and Gentilucci 1988), as well as the 

mouth (Rizzolatti et al. 1981c). They also show a rather precise degree of motor 

representation (Gentilucci et al. 1988; Kurata and Tanji 1986; Murata et al. 1997; Raos et  al. 

2006; Rizzolatti et al. 1987; Rizzolatti et al. 1988; Rizzolatti and Gentilucci 1988). Proximal 

and distal movements are represented separately, in area F4 (Figure 2.10) and medially in the 

rostral part of area F1 for the former, and in the periarcuate region F5 for the latter. Distal 

neurons discharge in relation to specific and complex motor acts such as “grasping with hand 

and mouth” or “grasping with the hand” or simply “holding”. In the case of “grasping” 

neurons, the activation occurred only if the approaching movement of the hand (or mouth) to 

an object was aiming to grasp the target. Movements with other purposes, even activating 

similar pattern of muscles, did not produce any  response of the neuron. Even more 

noteworthy  is the fact that grasping neurons show selectivity  for the type of prehension, so 

that some neurons are selectively  activated during a grasping action performed with a 

precision grip (only  the thumb and index finger) rather than during a whole hand prehension. 
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Among the proximal neurons, most appear to be correlated to arm and face movements. 

Crucially, the passive RFs and the active movements are closely related functionally: neurons 

with tactile RFs on the face also have visual RFs in the upper space and discharged during 

arm reaching movements towards the upper space. Thus, not only visual and tactile RFs are in 
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Fig. 2.10 Distribution and example of motor reponses in Gentilucci and colleagues’ F4 neurons 
recording study (1988). A, B and C represent  an F4 visuo-tactile neuron response during a reaching 
movment toward one of the three positions shown in the panel.



spatial register, but the motor activity of these neurons is maximal when the animal’s 

movement is directed to reach into the region of space corresponding to its visual RF. This 

suggests that the sensory and motor responses are expressed in a common coordinate system 

for locating objects in the space close to the body and for guiding a movement toward them.

 The premotor cortex, indeed, has both direct (Martino and Strick 1987) and indirect 

(Godschalk et al. 1984; Matsumura and Kubota 1979; Muakkassa and Strick 1979; Pandya 

and Vignolo 1971) access to the control of upper limbs movements, via projections to the 

spinal cord and the primary motor cortex, respectively. That is, visuo-tactile premotor neurons 

could potentially  modulate motor activity and control down to the final stages of movement. 

Indeed, coupled electrical stimulation experiments in the two corresponding hand fields of the 

premotor (F5 region) and motor cortex, clearly showed the modulatory effects of premotor 

over motor cortex during a grasping action (Cerri et al. 2003; Prabhu et al. 2009; Shimazu et 

al. 2004). Depending on the temporal interval between the conditioning electrical stimulation 

over the premotor cortex and the target stimulation over the correspondent hand field in the 

motor cortex, premotor neurons can both excite or inhibit the primary motor area, producing 

effects on distal muscle control.

 This complex link between sensory and motor properties shown by the premotor 

bimodal system of neurons already points out they  can not subserve a mere perceptual 

function. Rather, they appear more as a functional system to guide the acting body  in the 

sensory-motor transformation from perception to action.

2.1.1. Mirror neurons: a particular class of visuo-motor 
neuron

Inferior area 6, in the F5 sub-region is also characterized by the presence of 'mirror' neurons, a 

special class of motor neurons with visual properties (di Pellegrino et al. 1992; Gallese et  al. 

1996; Rizzolatti et al. 1996)2. Activity of these neurons appears to be correlated to the 
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2  A first report of neurons responding while the monkey was watching an action performed by another 
individual is already present in an early electrophysiological study over the parietal area 7b (Leinonen 1980, 
page 305) : « […] two cells discharged when the monkey grasped an object […] or when the monkey saw an 
investigator grasp an object »



execution of a specific motor act, such as a grasping. Moreover, they discharge also when the 

monkey  observes someone else executing the same or a similar action. Relevant for this 

dissertation is a recent finding which showed how a sub-group of mirror neurons can be 

characterised by selectivity  for actions performed within the observer’s peripersonal space 

(Caggiano et al. 2009). Indeed, a sub-population of mirror neurons appeared to be activated 

preferentially  by  the sight  of an action performed in the observer monkey’s peripersonal space 

rather than in its extrapersonal space (peripersonal mirror neurons). A different sub-population 

of mirror neurons showed the opposite preference. Moreover, peripersonal and extrapersonal 

space appeared to be defined according to a functional criterion: Reducing the extent of the 

accessible peripersonal space by putting a screen in front of the monkey, reduced also the 

responses of several peripersonal mirror neurons during the observation of actions performed 

in the inaccessible portion of the peripersonal space. This suggests that the portion of no more 

accessible peripersonal space had been re-coded as farther extrapersonal space. This was 

supported by the finding that extrapersonal mirror neurons started to respond to the 

observation of actions performed in the inaccessible peripersonal space.

2.2.Parietal areas

The more posterior parietal areas also have motor properties and, similarly to the premotor 

cortex, parietal motor functions seem to be related to approaching movements of a body-part 

toward an object (Debowy et al. 2001; Fogassi and Luppino 2005; Gardner et al. 2002; 

Lacquaniti and Caminiti 1998; Rizzolatti et al. 1997; Stepniewska et al. 2005; Ferraina et  al. 

2009). The posterior parietal cortex, indeed, is part of the dorsal stream of action-oriented 

visual processing (Milner and Goodale 1995). Here, as described in the previous sections, the 

sensory  information converge and start to be linked to the motor activity. Both inferior and 

superior parietal lobules are interconnected with premotor cortex.

 Gardner’s studies investigated the “anticipatory  activation”, as it was defined in the 

early studies in the 70‘s, during a monkey’s voluntary grasping movement. Through an 

interesting approach, where the authors conjugated low-resolution kinematic and single cell 

recordings, they revealed the pattern of activation in posterior parietal areas as a function of 
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the on-set and execution of the action until the hand enters in contact with the target of the 

grasping. The activation so described starts just before the beginning of the movement and 

bimodal neurons were active during all the duration of the action (Figure 2.11). Only when 

the hand enters in contact with the object, the predominant activation moves to SI (Gardner et 

al. 2002). The digitalised video recording system employed in these studies presents several 

limits for investigating the kinematics of the movement (low frequency  of acquisition), which 

do not  allow, for instance, relying the neural activity to the kinematic parameters of the 

movement or to precise phases of the hand motor evolution. Despite these evident limitations, 

these authors showed posterior parietal activation during the motor activity  and, more 

interesting, well before the hand enters in contact with the object. This activation involves 

areas of the brain where bimodal neurons have been found, such as area 7b. 
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Fig. 2.11 Rasters aligned to contact of the left  rectangle knob in an animal particpating to the 
Gardener and colleagues’ study (2002). Neurons are recorded in area 7b/AIP. Firing began during 
reach, and peaked at  contact; activity ceased when the knob was fully lifted. Bursts at the right margin 
show the start  of another trial. Video images capture hand kinematics during approach (A), grasp (B), 
and lift (C) on trial 1; numbers below each image indicate time code (left) and trial times relative to 
contact (right). From Gardner et al. 2002.



 Similar evidence of parietal bimodal neurons motor properties comes from electrical 

micro-stimulation studies. Electrical micro-stimulation of portions of parietal cortex produces 

motor activity  of the arm/hand or the head/face. In particular, the parietal lobe appears 

functionally fractionated in specialised sub-regions as a function of different complex 

movements such as a reaching or a retrieving movement of the arm (Cooke et al. 2003; 

Stepniewska et al. 2005).

3. Lesion studies

Another possible approach to identify the motor role of parietal and premotor bimodal areas is 

to investigate the motor behaviour that might be affected by a dysfunction of one or both of 

these areas. Permanent ablation and reversible inactivation studies in monkeys have tested for 

the behavioral consequences of a lesion within premotor and posterior parietal areas, where 

visuo-tactile neurons have been found.

 Interestingly, lesions to the anterior or posterior part of this network seem to produce 

very similar patterns of impairments, most of which affect in particular the execution of 

visually guided reaching actions (Battaglini et al. 2002; Deuel and Regan 1985; Ettlinger and 

Kalsbeck 1962; Faugier-Grimaud et al. 1978; Gallese et al. 1994; Halsban and Passingham 

1982; Moll and Kuypers 1977; Rizzolatti et al. 1983). After premotor region ablation, for 

instance, the animals were unable to reach around an obstacle with the contralesional arm. 

Arm movements were executed without correctly taking into account visual information 

within action space (Battaglini et al. 2002; Moll and Kuypers 1977). Similarly, removal of 

postarcuate regions where the mouth is represented caused a severe impairment in grasping 

with the mouth (Rizzolatti et al. 1983). Attentional deficits have also been reported after 

selective damage of visuo-tactile parietal and premotor regions (Rizzolatti et al. 1983) in the 

form of spatial hemineglect and extinction. The animals appeared to be unaware of visual (or 

tactile) stimuli presented in the contralesional space. Crucially, the deficit was selective for 

the space around the body.
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4. Conclusion: A multisensory-motor network for 
peripersonal space

The above reviewed studies provide a large body of evidence in favour of the proposal that 

this parieto-frontal network binds together visual and tactile information, in order to generate 

an appropriate motor program, based on the available sensory information. When an object  is 

visually available in the space around the body, it is also potentially available to the tactile 

system, by virtue of the possibility to physically  interact with it. The brain can link the visual 

information about the object to the tactile input which comes or could come from it and can 

use the result of this sensory processing to establish the most correct motor plan as a function 

of the desired interaction. According to this model, it is impossible to draw a strict separation 

between perception and action, due to both multisensory and motor processing occurring 

within these areas. The network should thus be considered of as providing an interface 

between perception and action.

 Here I would therefore suggest that the multisensory body-part centred representations 

are coded to generate the appropriate motor responses towards objects in the world.
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Chapter III

Multisensory based peripersonal 
space in humans

Several studies investigated the characteristics of the multisensory perception in humans, as 

described in the first chapter. Here, in particular, examples of interactions between visual and 

tactile information in humans will be presented. More relevant for this dissertation is the 

strong dependence of the visuo-tactile interactions on the distance of visual information from 

the body. This peculiarity  has been taken as evidence in humans of the existence of a 

representation of the space around the body similar to what I described in monkeys in the 

previous chapter. In this respect, the study of a neuropsychological condition called 

‘extinction’ (Bender 1952) has provided considerable insight into the behavioural 

characteristics of multisensory spatial representation in the human brain (Làdavas 2002; 

Làdavas and Farnè 2004; Legrand et al. 2007). Evidence for visuo-tactile interactions is also 

available in healthy  people, in the form of distance-modulated interference exerted by visual 

inputs over touch (Spence et  al. 2004c, 2008). The crucial point of these studies is the 

presence, both in the healthy and brain-damaged populations, of stronger visual-tactile 

interactions when visual stimuli are displayed in near, as compared to far space, providing 

support for the idea that the human brain also represents peripersonal space through an 

integrated multisensory visuo-tactile system. In this section the pathological phenomenon of 

extinction will be introduced and more deeply discussed in condition of multisensory 

stimulation. Finally, I will review part of the literature supporting the idea of a homologous 

representation of peripersonal space in humans.
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1.  Modularity of space through cross-modal extinction

Neuropsychology allows having an insight over brain mechanisms through behavioural 

deficits affecting brain damaged patients in their life. The fundamental assumption is that a 

circumscribed lesion in the brain can selectively affect the behaviour the damaged area is 

responsible for. The patients’ deficient behaviour can thus open the possibility of studying the 

modularity of the brain functions.

 The deficit of extinction, generally consecutive to a lesion in the right inferior parietal 

areas is a window over the processing underlying the representation of the space around the 

body through cross-modal perception. Extinction patients are usually defective in reporting an 

event presented contralesionally, but only  when it  is accompanied by an event in the 

ipsilesional hemispace. The patients most often present no deficits in reporting a single 

stimulation delivered in the contralesional side. The deficit thus arises despite no gross 

sensory  loss, suggesting that the problem might be more on the construction of spatial 

representations rather than on low-level perceptual processes. The deficit can be limited to a 

single sensory modality or arise in more than one sensory modality  at the same time. Cases 

are known of motor extinction, where the concurrent  motor activity of both side of the body 

results in a disruption of the contralesional side movements. 

 Extinction has been commonly  associated to the more severe deficit of hemineglect, 

where after a parietal and/or frontal lesion, patients are no more aware of the contralesional 

side. Even though the two syndromes present some common characteristics, their 

neurophysiological bases have been shown to be different (Vallar et  al. 1994). In particular the 

extinction phenomenon appears more related to a competition between spatial representations 

which are activated by  the simultaneous presence of bilateral sensory inputs1. By  virtue of its 

spatial nature, cross-modal visuo-tactile extinction has become an interesting phenomenon 

through which approaching the study of the modularity of the spatial representations.
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1� Extinction could be considered of as the effect of a limit of the physiological perceptual system 
responding to the presence of several inputs in different sectors of space. Evidence in favour of this 
possibility is the recent finding of an extinction-like phenomenon in a normal population (Marcel et al. 
2004; Farnè et al. 2007a). Following this model, patients would present a constant bias toward the 
ipsilesional side, mostly due to the unbalanced representation of the two hemispaces caused by the 
unilateral lesion.
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Abstract. Purpose: The interest in human conscious awareness has increasingly propelled the study of neglect, the most striking
occurrence of an acquired lack of conscious experience of space. Neglect syndromes commonly arise after unilateral brain
damage that spares primary sensory areas nonetheless leading to a lack of conscious stimulus perception. Because of the central
role of vision in our everyday life and motor behaviour, most research on neglect has been carried out in the visual domain. Here,
we suggest that a comprehensive perspective on neglect should examine in parallel evidence from all sensory modalities.
Methods: We critically reviewed relevant literature on neglect within and between sensory modalities.
Results: A number of studies have investigated manifestations of neglect in the tactile and auditory modalities, as well as in
the chemical senses, supporting the idea that neglect can arise in various sensory modalities, either separately or concurrently.
Moreover, studies on extinction (i.e., failure to report the contralesional stimulus only when this is delivered together with a
concurrent one in the ipsilesional side), a deficit to some extent related to neglect, showed strong interactions between sensory
modality for the conscious perception of stimuli and representation of space.
Conclusions: Examining neglect and extinction by taking into account evidence from all sensory modalities in parallel can provide
deeper comprehension of the neglect syndrome mechanisms and possibly more effective multi-sensory based rehabilitation
approaches.

1. Introduction

Unilateral spatial neglect is a relatively common
deficit that most frequently arises after right brain dam-
age (RBD). Its main characteristic is a lack of aware-
ness for sensory events located in the contralesional
side of space (towards the left side space following a
right lesion) and a loss of exploratory search and other
actions normally directed toward that side. Most read-
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INSERM-UCBL, AVENIR Team “Multisensory space & action” 16
av. Doyen Lépine, 69500 Bron, France. Tel.: +33 0 4 72913412;
Fax: +33 0 4 72913401; E-mail: farne@lyon.inserm.fr.

ers would be familiar with some of the classic presen-
tation (and descriptions) of neglect patients: they typi-
cally behave as if the left half of their world no longer
existed, so that in daily life they may only eat from one
side of their plate, shave or make-up only one side of
their face [50,89], draw or verbally describe only the
right side of a remembered image or place [22,136].
This shortened version of a commonly used description
of what neglect is, already conveys the equally com-
mon (though often implicit) assumption that neglect is
mainly a visual disturbance. This probably relies on the
well-funded argument that visually-guided behaviour
entails most of our daily living activities. As such, vi-
sual neglect certainly gained most of the scholars’ at-

0922-6028/06/$17.00 © 2006 – IOS Press and the authors. All rights reserved
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tention over the expression of this syndrome in other
modalities and, accordingly, the main visually-centred
aspects of neglect will be first briefly reviewed here.

However, there is now large consensus that neglect
and extinction1 can virtually affect all of the other sen-
sory modalities (separately or jointly), as well as the
motor domain. We will address such a diversity of
the neglect symptomathology to provide an up-to-date
multisensory-motor framework. In addition, we will
argue that the multisensory nature of neglect is most
likely to have profound implications for rehabilitation
of this cognitive deficit. Accordingly, we will con-
clude by reviewing some recent multisensory-based ap-
proaches to neglect rehabilitation.

2. Visual neglect and extinction

The last “decade of the brain” studies have brought
convergent and definite evidence that neglect is a pro-
tean disorder, whose definition escapes from the bound-
aries of any theoretical unifying attempt [75]. Despite
its heterogeneity, several core aspects of visual spatial
neglect have been identified and, although they might
be present at different levels in different patients, they
are quite widely acknowledged to represent main as-
pects of this multifaceted syndrome. It is beyond the
scope of this work to provide a comprehensive review of
visual neglect and its theoretical accounts (see [107]).
What follows is instead a brief list of examples with
two purposes. First, to show how deeply the study of
visual neglect has contributed to the understanding of
the anatomo-functional structure of human conscious
experience. Second, to recall the core aspects of the
syndrome that should be taken into account when ex-
amining the literature on non-visual manifestations of
neglect and extinction.

The diagnosis of visual neglect typically requires a
comparison of performance on the left-side of a display
with that on the right-side in tasks such as line bisection,
cancellation, drawing (from model or memory). These
tasks commonly reveal the presence of a spatial bias
towards the ipsilesional side, in terms of rightward de-
viation and/or omissions of left-sided items. The pres-
ence of abnormal biases across hemispaces, in absence

1The issue of whether (and to what extent) neglect and extinction
should be conceived of as separate deficits is outside the scope of this
work (for review, see [106]; see also [64]). Nonetheless, through-
out this review we will clearly specify whether the reported studies
concerned extinction or neglect patients.

of contralateral primary sensorimotor loss, highlights
neglect as a higher-order deficit of spatial cognition.
This defective behaviour has been alternatively taken as
evidence of patients’ defective spatial attention and/or
representation, or altered computation of an egocentric
reference frame (for review, see [149]).

Indeed, neglect patients suffer from reduced visual
spatial attention [49], especially in its exogenous com-
ponent ([95] for review, see [6]). Not only simple reac-
tion time (RT), but also search times for contralesional
target are lengthened, increasing with the number of
ipsilesional distractors, thereby indicating a difficulty
in disengaging attention from ipsilesional stimuli [11,
127]. Despite the presence of attentional deficits, preat-
tentive processing has been shown to be relatively pre-
served in visual neglect and extinction, proceeding up
to the level of the extraction of the meaning of contrale-
sional “neglected” items [19,50,97], thus confirming
that implicit visual processing can influence explicit
visuo-motor performance.

Problems of attentional orienting towards the left
side of space are compelling when observing neglect
patients’ behaviour. An interesting debate in the recent
past has concerned what should be intended as “left”
in left visual neglect and extinction. When asked to
copy, for example, neglect patients typically draw the
right side of a perceptual scene, omitting several details,
or even leaving incomplete the left part of centrally
located, single element of the scene. This behaviour
is most likely responsible for the word “hemispatial”
neglect, as implicitly referring to a corporeal midline
that should represent the vertical cleavage line with re-
spect to which conscious perception is preserved (to the
right), or more or less absent (to the left). Although the
trunk is one of the most important egocentric reference
frames’ origin [85], visual neglect and extinction can
also be manifest according to other reference frames.
For example, neglect patients have been reported to
miss out the respective left part of two objects present
in a scene (object-based neglect), instead of missing the
leftmost one (space-based neglect), and vice-versa [48,
74]. Moreover, visual neglect can be selectively present
for the vertical, not the horizontal dimension [123,128].

Dissociations of this kind have largely contributed to
thinking of visual neglect as an increasingly fractionat-
ing entity [73,107]. Along the same line, patients may
show left visual neglect for a limited sector of space
around their body, the peripersonal/reaching space [20,
72]. On the contrary, neglect can affect selectively a
farther sector of the extrapersonal space [5,157]. Ne-
glect for near space can also be “transferred” into far
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space when using tools as physical extensions of the
body for bisecting lines of constant visual angle [20].
Visual neglect can even be confined to either internally
generated representations of visual images or percep-
tually presented scenes [70].

The role potentially played by non lateralised deficits
of sustained attention and arousal on the genesis of vi-
sual neglect has been recently stressed [83,135]. By
studying sustained attention through the use of an audi-
tory target detection test, Hjaltason and colleagues [80]
found a strong relationship between the presence of
sustained attention deficits and visual neglect severity.
Similarly, neglect patients may show a significantly
longer “dwell time” for a secondary visual target being
detected after presentation of a first target (attentional
blink [82]). However, the degree of impairment on
tasks for sustained attention does not always differenti-
ate between RBD patients populations with and without
visual neglect, although neglect patients are certainly
affected by non lateralised attentional deficits when
compared with age-matched healthy subjects [55]. In-
deed, neglect seems to be mainly characterised by spa-
tial deficits, though non lateralised attentional deficits
are also present, without being specifically responsible
for the major manifestations of the syndrome.

Another non-lateralised aspect of visual neglect that
has recently raised great interest is the possible involve-
ment of a spatial working memory deficit in the gen-
esis of the syndrome. When invited to ocularly ex-
plore a scene to report targets amidst distractors, ne-
glect patients do not only avoid exploring left-sided el-
ements, but also produce a high number of rightwards
saccades bringing their eyes to re-fixate items on their
ipsilesional side that had already been “visited” [100].
Most important, many of these re-fixations were asso-
ciated with a failure to keep track of spatial locations
across saccades, the patients being unaware of revisit-
ing previously visited locations. The presence of spa-
tial working memory deficits should not be conceived
of as an alternative account for visual neglect, but could
certainly contribute to exacerbating omission of left
sided items, especially in patients with lateral parietal
involvement [100].

A different approach has been undertaken by Pisella
and Mattingley [122], whose arguments propose that
the origin of some re-visiting behavioural deficits in ne-
glect might not be due to the proposed spatial working
memory disorder. They suggest that the manifestations
of visual neglect that are hardly grasped by more tra-
ditional accounts solely based upon deficits of spatial
attention, representation, or working memory can actu-

ally be accounted for by an additional underlying dis-
order of spatial remapping due to parietal dysfunction
(for another alternative account, see [139]).

One important issue that is currently the object of
a very lively debate is the fine-grained anatomy of vi-
sual neglect. There is controversy as to whether lesions
of the inferior posterior parietal cortex are still to be
considered as the crucial anatomo-pathological coun-
terpart of visual neglect [150], or whether and to what
extent the mid-temporal gyrus may also play a role in
the genesis of neglect [86,137]. Most of the recent
studies, although employing different techniques, seem
to confirm the crucial involvement of the inferior pari-
etal lobule and the temporo-parietal junction [27,55,
75,109], as well as the crucial contribution of parieto-
frontal connections [44,46]. It is out of the scope of
this review to fully address this topic, but the interested
reader can also refer to neurointerference studies us-
ing TMS in healthy participants [58,111], although it is
worth noting that the criteria used for defining neglect
are becoming important for comparing anatomical le-
sions studies [107].

As noted by Halligan and colleagues [75, p. 125],
“Deficits of attention, intention, global-local process-
ing, spatial memory and mental representation can all
contribute to the clinical picture of neglect, which ac-
cordingly cannot be traced back to the disruption of
a single supramodal process.” More recently, the ne-
glect literature has actually seen some attempts to pro-
vide a re-unifying interpretation, not by referring to a
unique feature of the syndrome, as was the tendency
in the past three decades, but by advocating the need
of the joint presence of (some) deficits of lateralised
and non-lateralised attention, eye movement, and man-
ual exploratory behaviour, spatial working memory and
remapping to fully account for the puzzling lack of
awareness for contralesional events that is the hallmark
of neglect (see [35,83,122]).

From this brief review, it is apparent how much the
study of visual neglect has contributed to the refine-
ment of our understanding of human conscious aware-
ness. Although this supremacy of vision studies over
the other sensory modalities can be explained, at least
in part, by the fact that the appropriate technology has
been made available for vision well before than for
touch, audition or the chemical senses, it is quite sur-
prising that relatively few(er) studies have addressed
neglect and extinction in the other senses, or even in
the motor domain [77,102]. In the following sections,
we will review the current knowledge for non-visual
manifestations of neglect and extinctions.
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3. Tactile neglect & extinction

Generally, neglect is less evident and usually less
strong in the tactile domain than for the visual modal-
ity. Many authors [30,62,79] failed to demonstrate tac-
tile neglect in right brain damaged patients with visual
neglect, when using tasks such as rod tactile bisection
or haptic exploration. Fuji and colleagues asked visual
neglect patients to bisect a tactually presented stick.
The examiner placed the blindfolded patients’ index
finger on the centre of the stick and asked him to move
the finger and stop it at the estimated midpoint of the
stimulus. Although the patients showed rightward er-
rors on a visual bisection task, they performed normally
on the tactile test. Similar findings were described by
Hjaltason and colleagues in an analogous study, where
RBD patients were asked to perform the visual and tac-
tile bisection, as well as a visuo-tactile variant of the
same task. In the latter task, patients had to indicate
the midpoint of a rod in the same way as in the tactile
version, but in a free vision condition. Rightward bias
was present only in the visual task and no difference
was found between the tactile and the visuo-tactile rod
bisection.

Evidence for tactile neglect comes from studies that
employed spatial exploration tasks like in the maze
test [41], whereby RBD patients were asked to move
their forefinger along the alleys of a maze hidden be-
hind a curtain, in order to search marbles placed at the
end of one of its four lateral arms. Failure to find the
targets in the contralesional part of the maze was taken
as evidence of tactile neglect. Following this criterion,
RBD patients with visual neglect showed more “tactile
neglect” than control groups. Although these results
have been replicated [21], Villardita [154] reported that
patients with left visual neglect engaged at the same
test preferred to explore the left part of the maze, thus
suggesting an inconsistency between the phenomena
described for vision and touch. Other studies have con-
centrated on the weak relationships between visual and
tactile neglect, which seem to be double dissociable [21,
30,33]. One of the possible reasons for the paucity of
tactile neglect studies may derive from its definition,
most often diverging from the classical “omission” of
left-sided targets that is so clearly and astonishingly
present in the visual modality. Strictly speaking, one
may ask the question of whether pure tactile neglect
exists at all. Indeed, the difficulties in describing tac-
tile neglect might be overcome if one admits that some
cases of apparent hemisensory loss are, at least par-
tially, mimicked by tactile neglect ([25], see also [108]).

Several studies have shown that vestibular stimulation
(cold water in the left ear) may induce a transient re-
mission of diverse neglect symptoms in RBD patients.
However, a contralesional supposedly somatosensory
deficit may also be ameliorated by vestibular stimula-
tion [25,151], thus revealing a higher order problem
and suggesting that tactile neglect may be mistaken
for a mere sensory deficit. In this respect, it would
be interesting to establish which proportion of RBD
patients seemingly affected by hemisensory loss is, in
fact, affected by unisensory tactile neglect.

While tactile neglect has been rarely documented,
tactile extinction is much more frequently reported [113],
even when assessed by simple confrontation methods.
Extinction patients are able to detect a single stimulus
presented alone either to the ipsi- or the contralesional
side of space, but fail to report the same contralesional
stimulus when this is delivered concurrently to a sec-
ond one in the ipsilesional side of space (for review,
see [103]). In the tactile domain, extinction has been
reported to occur at the level of the hands, the face-
neck, the arms-legs, both in case of symmetrical and
asymmetrical stimulation [7,15,56], or between the two
sides of a single body-part [110,147].

To some extent, both neglect and extinction show a
similar lack of awareness for tactile inputs delivered in
the side of the body opposite to the brain lesion, despite
relatively intact primary sensory pathways, such that
extinction has long been considered as a residual form
of spatial neglect [50]. However, they also differ in
some respects and double dissociations have been doc-
umented [31,64,134,153], suggesting that the underly-
ing neural mechanism of extinction and neglect might
differ [87].

Both “tactile neglect” and tactile extinction may
manifest according to different reference frames. For
example, they can be modulated by body posture and by
the relative position of the stimulated body parts. Left
tactile extinction is reduced when the left hand crosses
the body midline and lies in the right hemispace,or even
occupies a relative left location as compared to the right
hand in the same hemispace [1,7,141]. Moreover, a
single-case study of a RBD patient [148] illustrated that
right hand touches may also be extinguished by a con-
current ipsilesional elbow stimulus (see [15,63]) when
the right hand lies on the left and the elbow on the right
of the patient’s body midline. Similar effects of pos-
ture arise in neglect patients [109], whereby detection
of single contralesional tactile stimuli increases when
the stimulated hand lies in the ipsilesional hemispace,
whereas touches delivered to the ipsilesional “good”
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hand are omitted to a variable degree when the right
hand lies in the contralesional affected hemispace [1,
7]. Similar to what has been reported for visual ne-
glect [124], improvements in tactile neglect and extinc-
tion have been observed following a reduction of grav-
itational inputs, obtained by placing the subjects in a
supine position [120].

Moreover, in the visual domain it is typically as-
sumed that extinction is maximal under conditions in
which competing stimuli occur simultaneously [95].
One may ask whether, in addition to posture, time (e.g.,
asynchronous stimulation) could also modulate tactile
extinction in a similar fashion. The more a stimulus is
temporally tied apart from another, the more reliably
contralesional events should be perceived [26]. In this
respect, Mattingley et al. [103] examined tactile de-
tection in a RBD patient with tactile extinction, intro-
ducing a variable stimulus onset asynchrony (SOA) be-
tween bilateral stimulations. The occurrence of a right-
sided competitor interfered with detection of left targets
across a range of asynchrony from −400 to 1200 ms
(minus means that left leads), showing an asymmetry in
the effect. The point of subjective simultaneity appears
thus to be biased in favour of ipsilesional stimuli. These
results suggest that sensory timing problems might be
present in both visual and somatosensory neglect [10].

In the case of tactile extinction considerable process-
ing can still take place prior to the level at which loss
of awareness arises. Although the extinguished tactile
stimulus does not access consciousness, it may inter-
fere with perception of the ipsilesional one [2]. More
direct evidence comes from measures of patients’ neu-
ral activity through functional imaging or event-related
potentials. Some studies in the visual domain observed
that the relatively early components of visual process-
ing may be abnormal for contralesional stimuli in visual
extinction [101]. Similarly, it is possible to examine
the fate of extinguished tactile stimuli in those bilat-
eral conditions where extinction arises, by comparing
correct unilateral ERPs with incorrect ones in case of
extinction [52]. In a single RBD patient study, bilateral
trials with extinction still revealed residual early com-
ponents (P60 & N110) over the right hemisphere in re-
sponse to the extinguished left touches. These compo-
nents were completely absent in the right hemisphere
after a single right hand stimulation, although these
kind of stimuli have the same conscious report of the
other ones. However, the somatosensory neural activity
in the right hemisphere was reduced in amplitude when
compared to the one elicited by right hand stimulation
on the left hemisphere. This suggests that, although

tactile extinction is not a pure sensory deficit and is de-
fined in conditions of bilateral stimulation, there may
be an underlying pathology for the contralesional uni-
lateral stimulation too, in agreement to what has been
suggested for visual extinction [101]. Finally, these
results demonstrate that somatosensory cortex activity
is not sufficient for tactile inputs to reach awareness.
In the same vein, a PET study [129] revealed that tac-
tile extinction is associated with reduced activity in the
secondary somatosensory cortex, but not in the primary
one, suggesting that processing of bilateral tactile stim-
uli takes place at a “higher” stage and that extinction
arises at a high level of tactile input processing.

4. Chemical neglect & extinction

To date, only a limited number of investigations
concerning the suppression of (or competition among)
spatial information processed through the so-called
‘chemical senses’ (i.e., olfaction and taste) have been
reported [12,13,16,18,105]. A number of various
different reasons may account for this lack of re-
search. First, the distinction between pure chemical
versus somatosensory information is often problematic
(e.g. [18]). Second, it is widely assumed that olfaction
and taste are senses that are not specialized for con-
veying spatial information (e.g. [92]). In olfaction, in
particular, it is still unclear whether humans can local-
ize at all the source of the olfactory stimulation by dis-
tinguishing between odours that are processed through
the right versus the left nostril. This is particularly
true when the stimulus is a pure odorant rather than
trigeminal, that is when the odour does not cause any
somatosensory stimulation that is known to be encoded
by the trigeminal system (see [47]).

4.1. Olfaction

With respect to olfaction, Mesulam [105] first de-
scribed a case of left-sided olfactory extinction revealed
under double simultaneous stimulation of both nos-
trils in a patient with a brain lesion localized in the
right parietal cortex. A few years later, Bellas and
colleagues [12,13] assessed the ability of a group of
fifteen RBD patients who were affected by left tactile
extinction on the hand to identify and localize a series
of bilaterally presented olfactory stimuli. On each trial,
patients were presented with two stimuli (one in each
nostril) using squeezing bottles and their task was to
name each of the odours that were perceived. Partic-
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ipants could receive either the same pure odorant in
both nostrils, or different odorants in each nostril, or
else an odorant in one nostril and a trigeminal odour
(vinegar) in the other. As the authors could not find an-
other appropriate trigeminal odour, the vinegar odour
was only presented singularly to one of the two nos-
trils while the other nostril was stimulated with a pure
odorant. Bellas and colleagues [12] reported the pres-
ence of an extinction-like phenomenon in the patients’
performance. Specifically, when two different stimuli
(being either two pure odorants or an odorant and the
trigeminal odour) were delivered to each nostril, RBD
patients consistently failed to report the stimulus deliv-
ered to the left nostril. As the olfactory system would
predominantly project its fibres ipsilaterally while the
trigeminal system would be a contralaterally innervated
system, the authors considered these results as evi-
dence supporting the representational theory of neglect
(see [22]). Indeed, if the sensory theory (see [37]) was
responsible for the olfactory and trigeminal extinction,
the pure odorants presented to the right nostril rather
than those presented to the left nostril should have been
extinguished. Bellas et al. [13] also reported that the
patients affected by olfactory extinction showed a large
number of displacements in that the correctly-identified
stimuli presented to the left nostril were described as
being in the right nostril.

The studies conducted by Bellas and colleagues rep-
resent a first step in the investigation of phenomena
such as extinction and neglect in the olfactory modality.
Nevertheless, it is not completely possible to determine
the exact influence exerted by the nasal somatosensa-
tion in the olfactory extinction reported, since one of
the odours considered as being pure odorants was later
found to be processed probably also by the trigeminal
system (i.e., a soap odour; see [13]). Finally, the pos-
sibility of highlighting deficits related to the localiza-
tion of stimuli in the olfactory sensory modality should
be interpreted within a much wider debate regarding
whether the olfactory system could extract spatial in-
formation from pure odorants (i.e., without any inter-
ventions of the trigeminal system; e.g., see [47,92];
though see [126,155]).

Kobal and colleagues [92], for instance, claimed that
the human olfactory system appears to be able to local-
ize the source of the olfactory stimulation only when
the odour elicits also a trigeminal response. This would
appear to be in contradiction with the pioneering work
of von Békésy [155] who showed that trained partici-
pants localized both trigeminal stimuli and pure odor-
ants between the two nostrils. Moreover, Porter et

al. [126] showed recently that naive participants were
able to reliably localize pure odorants between the two
nostrils in a setting in which olfactory stimuli were
delivered by a computer-controlled air-dilution olfac-
tometer that controlled for the exact timing in stimuli
presentation. The stimuli were presented to the nose
through a compartmentalized nasal mask that allowed
for mono-rhinal odour presentation and the sniff flow-
rate was controlled in real-time. Clearly, if the ability
of the olfactory system to extract spatial information
from non-trigeminal stimuli turns out to be true, new
light could be shed on the extinction phenomena de-
scribed for odours. In fact, the relative contribution
of pure odorant and somatonsensory information to ol-
factory localization could be disentangled using exper-
imental methods similar to those described by Porter
and colleagues.

4.2. Taste

The existence of neglect and/or extinction in taste has
been even less explored than in olfaction, even though
in humans the ability to localize taste stimuli presented
on the tongue has been previously described (e.g. [140,
156]). Bender and Feldman [17] first reported a sin-
gle case of a patient with a wide parietal-occipital tu-
mor and tactile extinction on the upper limbs who also
showed extinction of taste sensations on the left part of
the tongue when two tastes were presented simultane-
ously on each hemi-tongue. Taste stimuli were applied
on the tongue surface by means of cotton buds and they
were all accurately identified and localized by the pa-
tient when presented singularly. The results of the as-
sessment revealed that the patient was not only affected
by unimodal taste extinction, but that he also displaced
taste sensations under crossmodal taste-tactile stimula-
tion. In particular, when a touch or a pinprick was de-
livered to the right hemi-tongue and a taste was applied
on the left hemi-tongue, the patient repeatedly reported
bilateral taste stimulation, thus surprisingly extinguish-
ing the right touch and partially misplacing the left taste
stimulus. Unfortunately, Bender and Feldman did not
describe in detail the method that was used to generate
the tactile sensations.

More recently, Berlucchi and colleagues [18] de-
scribed a study carried on two groups of patients (i.e.,
having a right or left brain lesion) and a control group.
The RBD patients were affected by tactile (on the
hands), visual, and/or auditory extinction with different
degrees. By using a highly controlled stimulus presen-
tation (e.g., use of micro-pipettes and controlled wa-
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ter temperature), Berlucchi and colleagues could disen-
tangle (contrary to [17]) between the presence of taste
and/or tactile extinction on the tongue. A sub-group
of the RBD patients showed tactile extinction under bi-
lateral simultaneous stimulation of the tongue. How-
ever, the authors failed to find any significant presence
of taste extinction even among these tactile extinguish-
ing patients, thus highlighting for the first time the ex-
istence of dissociations between extinction phenom-
ena occurring in somatonsensory or in purely chemi-
cal information processing. There also appeared not to
be any consistent correlations between the presence of
tactile extinction on the tongue and that of tactile (on
the hands), visual, and auditory extinction. Berlucchi
and colleagues suggested that a distributed taste repre-
sentation could account for the existence of such dis-
sociation. Namely, the processing of somatosensory
information coming from the tongue would be pre-
dominantly contralateral, whereas the taste stimulation
would activate the brain areas ipsilateral to the hemi-
tongue being stimulated (e.g., see [3,114]). Moreover,
according to Berlucchi and colleagues, the fact that a
dissociation between gustatory and tactile extinction
could be highlighted would suggest that gustatory ex-
tinction occurs consequently to a severe tactile extinc-
tion (see [17]). The patients involved in their study
would have been affected by a mild tactile extinction,
thus allowing the gustatory information to be processed
by the preserved left hemisphere.

To date, thus, there is still no clear evidence of the ex-
istence of purely taste extinction and/or neglect, while
few studies provided evidence about the presence of
tactile extinction on the tongue or inside the mouth
following a right brain lesion [4,18]. In the study of
extinction and neglect, a wide number of questions re-
lated to the chemical senses are still waiting for an-
swers. Today, it would appear to be possible to devise
studies where information conveyed by the chemosen-
sory modalities and by the collateral somatosensory
modality could finally be investigated separately [18,
126,140]. Therefore, future research will be in charge
of furthering our understanding about odours and tastes
and their links with spatial representations.

5. Auditory neglect & extinction

Patients with focal brain lesions can also suffer a
number of disturbances in the auditory modality that
can be characterised as auditory manifestations of the
neglect syndrome. Patients with right hemispheric le-

sions might either fail to respond when addressed ver-
bally from the left, or more commonly behave as if they
heard the voice originating from their right (e.g. [16,
38]). This suggested a deficit in detection and local-
isation of auditory stimuli, especially when they orig-
inate in contralesional space, which could emerge for
hearing as well as for vision. Although this clinical
observation has generally been confirmed, a number of
recent evidence has now highlighted important differ-
ences between the manifestations of neglect in hearing
and vision.

5.1. Deficits of sound localisation

The disturbance for sound localisation, originally de-
scribed as ‘alloacusis’ [16], has been the topic of several
experimental works in the last two decades (see [118]
for review). A first aspect that emerged from these
systematic investigations is that auditory spatial distur-
bances in neglect patients might reflect increased spa-
tial uncertainty for sound position, especially for con-
tralesional stimuli, instead of a strictly systematic shift
in heard azimuth towards the ipsilesional side. For in-
stance, when asked to discriminate verbally the rela-
tive position (same vs. different) of two sounds in close
succession, neglect patients typically perform worse
for pairs of sounds originating from the contralesional
side (e.g. [117,146]; see also [40] for evidence of re-
duced mismatch negativity response in scalp recordings
of event-related potentials for contralesional vs. ipsile-
sional free-field sounds). In addition, it has recently
been shown that patients with neglect perform less ef-
ficiently than control right-hemisphere patients with-
out neglect in a discrimination task that concerns the
vertical position free-field sounds [116,119]. Thus, a
disturbance in auditory space perception emerges even
when localisation involved the vertical dimension, or-
thogonal to any potential horizontal shift.

Horizontal bias in sound localisation have instead
been typically documented when neglect patients are
asked to point to a sound presented in free-field (i.e.,
from an external source [115,121]; but see [138]), or
over headphones (pointing to a location on their head;
e.g. [23]). In addition, deficits have been observed
when using ‘auditory midline’ tasks, in which patients
adjust a continuous sound (or make judgments on a
discrete sound) to locate it relatively to the centre of
the head or body midline (e.g. [23,90,146,152]; but
see [34]). For sounds presented over headphones (with
either varied intensity at the two ears, or varied interau-
ral timing cues to sound localization), neglect patients
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typically report a sound to be central when it is actually
lateralized towards the left (i.e. more intense or arriving
earlier at the left ear), as if there were a rightward shift
in perceived location (e.g. [23,146]). By contrast, for
sounds presented free-field, neglect patients often re-
ported that an external sound seemed aligned with their
head/body midline when it was actually presented to the
right (thus implying a leftward shift in sound localiza-
tion if one assumes that perceived head/body midline is
veridical, which it might not be in neglect patients [90,
152]). As proposed recently [115], some of these dis-
crepancies concerning the direction of lateral shifts in
sound localization for neglect patients might actually
relate to non-auditory aspects of the task. Specifically,
motor or visuo-motor biases in pointing tasks [115], or
pathological distortions of perceived head/body mid-
line in auditory-midline tasks [57] could in principle
affect performance.

5.2. Detection and identification deficits

Although auditory spatial deficits have often been
reported in neglect patients for single auditory stimuli,
especially when they originate in contralesional space,
the patients usually detect these single sounds with ap-
parent ease in most localization studies (e.g. [23,115–
119,121,146]. This might appear to contrast with char-
acteristic clinical deficits affecting the visual modality
in neglect patients, where complete failures to detect or
respond to contralesional visual events are commonly
noted, rather than merely failures in localization. Two
critical differences between hearing and vision may ac-
count for this discrepancy. First, the anatomical orga-
nization of the auditory system, which is less crossed
than for other senses, with some ipsilateral as well
as major contralateral cortical projections of the input
reaching each ear. Second, the typical reduced com-
plexity of the auditory environment in experimental se-
tups. Unlike experiments in vision, in which targets
are often embedded among many distracters, the typi-
cal experiment in the auditory domain presents a single
strong sound against silence [115]. Indeed, when even
a minimal version of concurrent competing stimulation
is produced, usually by presenting one sound on each
side of the head, a consistent failure to detect and/or
identify contralesional sounds emerged, for both free-
field sounds [39,142] and headphone stimuli [14,42].
Strictly speaking, however, such effects with two con-
current competing sounds might be considered the au-
ditory equivalent of visual or tactile extinction, rather
than manifestations of neglect.

A long standing debate in relation to detection and/or
identification deficits under double simultaneous au-
ditory stimulation has been whether poor detection of
sounds at the contralesional ear could be related to ne-
glect of contralesional auditory space [81], or instead
should be ascribed solely to poor processing (or sup-
pression) of the auditory information entering the con-
tralesional ear [8,9]. Indeed, free-field sounds pre-
sented from a contralesional location will tend to be
more intense at the contralesional ear, and if presented
monaurally over headphones, will only reach that ear.
However, there is now mounting evidence suggesting
a role for higher-level spatial factors (e.g., perceived
external position, spatial attention, relation to visual
neglect) in the contralesional detection/identification
deficits for auditory stimuli observed for neglect pa-
tients (e.g. [14,29,142]). For instance, it has been
shown that identification of left free-field sounds can
sometimes improve in the presence of a fictitious visi-
ble sound source (a ‘dummy’ loudspeaker) on the right,
which reportedly made it seem that the sounds orig-
inated from the right side [142]. In addition, a di-
rect investigation of the role of apparent sound location
with respect to which ear the information enters was
recently conducted by Bellman and colleagues [14],
presenting each auditory stimulus (heard words) either
to one ear only (‘dichotic’ stimulation), or binaurally
but with interaural time difference serving as the only
lateralization cue (‘diotic’ stimulation). Under double
simultaneous presentation, two out of four neglect pa-
tients tested in the study showed poorer performance
for left than right words only with dichotic presentation
(consistent with a deficit for sounds entering the con-
tralesional ear), whereas the other two patients were
impaired in reporting left words for both methods of
lateralized presentation (consistent with an identifica-
tion deficit for sounds perceived as originating from
contralesional space).

5.3. Non spatial auditory deficits

A final aspect that merits attention is the description
of non-spatially-lateralized auditory deficits in patients
with visual neglect [34,80,135]. Robertson and col-
leagues, for instance, documented a non-spatial diffi-
culty in sustaining attention and maintaining arousal in
the auditory modality, in a task where neglect patients
were required to count the number of occurrences of
a particular auditory target among a stream of sounds,
of variable length, all presented centrally. Non-spatial
auditory deficits have also emerged when patients with
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visual neglect were asked to listen to a short rapid se-
quence of auditory stimuli over headphones, to detect
which of the stimuli had a higher pitch [34]. Despite
auditory stimuli were always presented centrally, and
patients were able to detect subtle pitch modulation for
single auditory objects, they were severely impaired
at any comparison between two sounds in a rapid se-
quence, possibly as a result of pathologically limited
attentional capacity.

6. Multisensory neglect and extinction

The previous sections on non-visual manifestations
of neglect and extinction clearly showed that in many
circumstances neglect and extinction can emerge for a
single sensory modality, or for multiple sensory modal-
ities in a given patient [43,153]. Note however that all
the works reviewed so far were concerned with stimu-
lation delivered within a single sensory modality at a
time. We now turn to examine how neglect and extinc-
tion affecting a unimodal sensory system can be influ-
enced (enhanced or degraded further) by the concurrent
activation of another modality.

A number of evidence has now systematically shown
that extinction in particular can emerge even when
concurrent stimuli are presented in different sensory
modalities, i.e., different sensory inputs delivered to the
ipsi- and contra-lateral side of the patient’s body [17,
45]. Tactile extinction, for example, can be modulated
by visual events simultaneously presented in the space
region near the tactile stimulation, increasing or reduc-
ing tactile perception, depending upon the spatial ar-
rangement of the stimuli. In particular, the visual stim-
ulation in the ipsilesional side exacerbates contrale-
sional tactile extinction, whereby the presentation of
visual and tactile stimuli on the same contralesional
side can reduce the deficit [96]. Moreover, the mod-
ulation described is most consistently manifest when
visual-tactile interaction occurs in the space close to the
body than when the space far from the body is visually
stimulated.

In a similar way, visual and tactile information are
integrated in other peripersonal space regions, such as
around the face [56,99]. In this case, extinction patients
were presented with unilateral and bilateral tactile stim-
ulation on both cheeks and, in addition, visual stimuli
were concurrently presented in the contralesional or ip-
silesional side. As for the hand, exacerbation of the
deficit was found in the ipsilesional visual condition,
whereby the visual stimulus enhanced tactile detection

when delivered in the contralesional side. The modula-
tion, again, is more evident when the visual stimulus is
presented in a near-body region of space rather than in
a farther region, thus implying that sensory integration
arising from the same near-the-body location allows for
the tactile input to reach awareness.

Similar modulations of tactile extinction have been
reported following another kind of multisensory inter-
action, between audition and touch [98]. When sounds
are concurrently presented with single touches deliv-
ered at the level of the neck in tactile extinction patients,
their contralesional tactile detection is most likely to be
hampered by proximal, as compared to far loudspeak-
ers. Interestingly, such a multisensory effect observed
in the front space with respect to the patients’ head
was even stronger when cross-modal auditory-tactile
extinction was assessed in the patients’ back space,
thus suggesting that different degrees of multisensory
integration may occur depending upon the functional
relevance of a given modality for that particular sector
of space [54].

These results support the existence of a peripersonal
multisensory space in humans, akin to that described
in animals studies [94]. Evidence from animal stud-
ies [51,68,69,131,132] revealed a dissociation between
a space far from the body that can not be reached by a
simple arm movement, and a near peripersonal space,
a region of space extending only a few centimetres out
from the body surface. Indeed, a strong multisensory
integration takes place at single neuron level in this re-
gion of space: the same neurons activated by tactile
stimuli delivered on a given body-part are also activated
by visual or auditory stimuli delivered in the space near
that body-part. In this respect, the selectivity of visual-
tactile extinction for the proximal sector of space is
reminding of the spatial bias observed in unimodal vi-
sual neglect, which may selectively arise in the near
peripersonal space [32,72].

An interesting characteristic of the space region sur-
rounding the body is its plasticity. Through tool-use,
for example, it is possible to remap the space so that “far
becomes near” [20]. When asked to use a long stick
to bisect distant horizontal lines the neglect patients’
selective bias, formerly present only in the near space,
was transferred to the far space. Similar results have
been described in extinction patients who, after tool-
use, showed increased contralesional tactile extinction
when a visual stimulus was presented far from the body
at the extremity of a hand-held tool. Therefore, using
a tool to retrieve distant objects increases the strength
of visual-tactile integrative effects in a region of space
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far from the patients’ body. Such a phenomenon has
been ascribed to a tool-use dependent size-change of
the peri-hand multisensory space [53].

Altogether, these results show that the expression of
cross-modal interaction seems to be a rather frequent
occurrence, which can be selectively modulated by sev-
eral parameters relative to the relationship between the
stimulus and the body: like distance, spatial location,
auditory complexity, spatial and temporal coincidence.
Therefore, these findings are in good agreement with
a modular organization of space in which several neu-
ronal structures are devoted to the processing of dif-
ferent space sectors, in different co-ordinates, across
different modalities, most probably for different behav-
ioral purposes [143]. Among these structures, the rep-
resentation of near and far peripersonal space in hu-
mans parallels the functioning of the circuit of multi-
sensory areas that has been well documented in mon-
keys, which is similarly sensitive to the same parame-
ters listed above.

7. Multisensory-based rehabilitation approaches

The reported frequency of hemispatial neglect varies
widely from 13% to 81% of patients who have had right
hemisphere stroke [145]. The presence of neglect has
been associated with poor outcome measures on func-
tional activities following a stroke [55,65,67]. Patients
with neglect2 have been found to have longer lengths
of stay in rehabilitation facilities and lower scores on
the Functional Independence Measure (FIM) [71] and
thus require more assistance at discharge than patients
without neglect [36,88]. Neglect severity also predicts
the degree of family burden more accurately than the
extent of brain damage [27].

These are the main reasons why it is important to
know whether or not neglect spontaneous pattern of
evolution tends towards recovery, in which proportion
of patients and to which degree. In this respect, a
recent study [55] has shown that only 43% of neglect
patients improved spontaneously during a two-week
long assessment in the acute phase (up to six weeks
post-stroke) and only 9% of patients showed complete
recovery. When a subset of this patient population was

2To date, rehabilitation studies have focussed on neglect rather
than extinction, most likely because extinction is not known to have
such a negative impact on patients’ everyday life as neglect, although
some approaches have nonetheless proved to ameliorate extinction,
for example in the tactile modality [76,112].

re-assessed during the chronic phase, the proportion of
patients who recovered increased up to 63%, although
recovery was complete only in 25% of them. Since
spontaneous recovery in the acute and chronic phase
of the disease is not axiomatic and, when present, does
not allow for complete remission of neglect symptoms
in most patients, it is very important to individuate
efficient treatment strategies to improve recovery of
patients with chronic and persistent unilateral neglect.

Neglect rehabilitation approaches have been classi-
cally divided into two classes: rehabilitation proce-
dures based on a voluntary reorientation of attention
toward the contralesional space and rehabilitation pro-
cedures based on the sensory stimulation of the af-
fected (contralesional) field, or sensory deprivation of
the good (ipsilesional) field. The second class of reha-
bilitation procedures are based on an interpretation of
neglect as an attentional-representational deficit due to
the competition between left and right space represen-
tations. After a right brain damage, the contralateral
space representation is weak and, as a consequence, the
competition with intact ipsilesional space representa-
tion induces neglect in that sector of space. The an-
tagonism between left and right space representation
may be reduced by sensory stimulating the contrale-
sional hemispace (i.e. vestibular, optokinetic, left-sided
transcutaneous mechanical vibration, left-sided elec-
trical nervous stimulation and left-limb proprioceptive
stimulation), or by suppressing sensory inputs from the
ipsilesional hemispace (i.e., hemiblinding technique).
Needless to say, most of the studies focussed on the
visual components of neglect, although several non-
visual aspects of neglect and associated disorders may
also benefit from some of these approaches [104,149].

More recently, many studies have outlined that space
representation is based not only on input and output
responses, that is on sensory and motor information,
but on the integration of these information from multi-
ple sensory modalities. As reviewed above, neuropsy-
chological findings have shown the existence of mul-
tisensory systems devoted to the integrated coding of
spatial information, e.g., a visuotactile system [96,99],
an auditory – tactile system [54,98], and an auditory-
visual system [59,61]. These integrated systems can
offer a unique opportunity to improve the performance
of patients with spatial representational deficit, such as
patients with visual neglect. As a consequence, poten-
tial therapeutic implications could derive from the in-
tegration of visual and proprioceptive information, and
visual and auditory information; for example, a multi-
sensory based approach to neglect rehabilitation may
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enable patients to detect “bimodal” stimuli for which
unimodal components are below behavioural threshold.
Concerning the integration of proprioceptive and visual
information it has been shown that passive movements
of the contralesional arm in the contralesional space
may improve visual neglect. As far as the integration
of visual and auditory integration, bimodal audiovisual
stimulation of the affected field can improve perception
of the visual events in the neglected hemispace [59].
This amelioration of visual detection was observed only
when the two simultaneous stimuli were spatially co-
incident, or when they were located near one another
in space (at a distance of 16◦). In contrast, when the
spatial disparity between the two sensory stimuli was
larger than 16◦, patients’ visual performance remained
unvaried. Moreover, multisensory enhancement was
greater when visual stimuli were presented in the most
peripheral positions of the affected visual field where
the impairment was more severe. This is in keeping
with the functional properties of multisensory neurons
described in animal studies [144]: a greater enhance-
ment of bimodal neurons’ response is observed when
visual and auditory stimuli originate at the same time
(temporal rule) and from the same position and, as a
consequence, fall within the excitatory receptive fields
of a visual-auditory multisensory neuron (spatial rule),
and when two weaker, rather than two strong stim-
uli are combined (inverse effectiveness rule). These
functional integrative properties are well suited to ex-
plain the amelioration of visual neglect patients follow-
ing multisensory stimulation, thus providing a potential
neuronal substrate for a multisensory based treatment
of neglect.

Beyond the existence of beneficial effects of audio-
visual stimulation, showing that a sound can ameliorate
visual detection in neglect patients, the characteristics
of patients who can benefit from audio-visual integra-
tion effects would be important to establish. It is well
known that sensory deficits, such as visual field deficit
(e.g. hemianopia), are frequently associated with ne-
glect and may represent a negative predictive factor
for cross-modal audiovisual integration in neglect pa-
tients [61]. Moreover, since it has been shown that,
not only the superior colliculus [144], but also “het-
eromodal” [66] and “sensory-specific” [28,66] cortices
are involved in cross-modal integration, it is possible
that the site of cerebral lesions may affect audio-visual
integration. The presence of cross-modal audio-visual
integration effects has been recently investigated in pa-
tients with either neglect or hemianopia and in patients
with both hemianopia and neglect [61]. Patients were

asked to detect visual stimuli presented alone or in com-
bination with auditory stimuli that could be spatially
aligned or not with the visual ones. As in the previously
reported study, an enhancement of visual detection was
found when a sound was presented in the same position
of the visual one, but only in patients affected either by
neglect or hemianopia; by contrast, enhancement de-
pendent upon the multisensory integration did not occur
when patients presented with both deficits. Moreover,
a different influence of the site of the cortical lesion
on multisensory integration has been found. When pa-
tients’ lesion was mainly confined to fronto-temporo-
parietal areas (neglect patients), or to the occipital ar-
eas (hemianopic patients), the visual and auditory stim-
uli were effectively integrated, whereas when the le-
sion involved all the previous lobes, although to dif-
ferent degrees in different patients, the effects of mul-
tisensory integration were no longer present (neglect
patients with hemianopia).

The results of these studies underline the relevance
of cross-modal integration in enhancing visual process-
ing in neglect patients and in patients with visual field
deficits. The possibility of a sound improving the de-
tection of visual stimuli is very promising with respect
to the possibility to take advantage of the brain’s mul-
tisensory capabilities for a rehabilitation approach of
visual attention deficit and visual field defects [24,61].
In this respect, one question which needs to be ad-
dressed in the future is whether a systematic bimodal
stimulation, by affecting orientation towards the ne-
glected/blind hemifield and modulating the processing
of visual events, can improve visual exploration, per-
haps with long-lasting effects. A cross-modal training
might reinforce the innate ability of our brain to per-
ceive multisensory events, hidden in the normal condi-
tion in which unimodal processes are usually at work
on unisensory events that are sufficiently salient to be
perceived. This possibility is particularly relevant in
terms of rehabilitation perspectives because it is non-
invasive, as compared with other rehabilitative proce-
dures, and does not require the voluntary displacement
of the patients’ attention to the affected side, which can
be particularly difficult for neglect patients.

8. Summary and conclusions

As it results from the experimental evidences re-
viewed above, some core aspects of neglect and extinc-
tion are observed across different modalities. What-
ever explanation is proposed for the lack of perceptual
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awareness, the deficits can not be solely attributed to
early sensory problems. For example, patients’ per-
formance in visual and tactile detection may strongly
vary according to different reference frames and postu-
ral changes. In addition, Pavani and colleagues [119]
recently showed that discrimination performance for
auditory stimuli presented in the contralesional audi-
tory hemifield of visual neglect patients can actually
improve when patients gaze towards the left. A pure
sensory deficit would imply a complete loss of percep-
tion irrespective of spatial relationship between body-
parts or gaze direction. However, the presence of subtle
sensory dysfunctions has been recently consistently re-
ported in visual, tactile, and auditory studies of neglect
and extinction. Although still unclear, the role possi-
bly played by early sensory deficits can no longer be
excluded, as degradation or slowing of sensory inputs
processing may concur to the difficulty in perceiving
contralesional events.

Other features of neglect and extinction studies re-
cently gained considerable interest, such as the pres-
ence of non lateralised deficits and their contribution
to the syndrome. However, the latter have been mainly
reported in vision and audition, whereas their poten-
tial role in the chemical and tactile modalities has not
been systematically explored. In the same vein, clear
evidence of processing without awareness is mainly
available for the visual and tactile modality.

Although we did not intend to provide an exhaustive
critical review of what the multisensory approach tells
us about the current neurocognitive models of neglect
and extinction, we believe the study of unisensory and
multisensory neglect and extinction is both theoreti-
cally and clinically relevant. The within- and between-
modality approach would hopefully proceed in paral-
lel, the other senses possibly filling the gap with vi-
sion, which is still dominant. We undertook this direc-
tion as it may provide a wider framework within which
multisensory-based rehabilitation approaches may be
devised. An increasing attention devoted to non-visual
manifestations of neglect may be of great interest for
deepening our knowledge of human spatial awareness.
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1.1.Peripersonal space in humans: neuropsychological 
evidence

As described, extinction is a pathological sign following a brain lesion, usually affecting the 

right inferior parietal lobe, as a consequence of what patients may fail to perceive 

contralesional stimuli only under 

c o n d i t i o n s o f d o u b l e 

simultaneous stimulation. This 

charac te r i s t i c revea ls the 

competi t ive nature of the 

extinction deficit  (di Pellegrino 

and De Renzi 1995; Driver 

1998; Ward et al. 1994).

 A number of studies have 

shown that extinction can 

emerge when concurrent stimuli 

are presented in different sensory 

modalities: a visual stimulus 

close to the ipsilesional hand can 

extinguish a touch delivered on 

the contralesional hand (di 

Pellegrino et al. 1997). Crucially, 

c ross-modal v isua l - tac t i le 

extinction appears to be stronger 

w h e n v i s u a l s t i m u l i a r e 

d i sp layed in the near as 

compared to the far space, 

providing neuropsychological 

support for the idea that the 

human brain represents the space 

around the body separately from 
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Fig. 3.1 Schematic drawing of the experimental set-up for 
the assessment  of cross-modal visuo-tactile extinction. (a)
Tactile extinction, related to results in left  part  of (e). (b)
Visuo-tactile extinction for visual stimuli presented near the 
hand. In the far visuotactile condition, the right  visual 
stimulus could either be presented above the right hand, at 
the level of patient’s eyes (non-homologous position) (c), or 
in a homologous location to the tactile one (d). From 
Làdavas 2002.



the space far from the body (Figure 3.1). In particular the spatial representation close to the 

body is characterised by a stronger interaction between visual and tactile information. Thus, 

the near space in humans presents similarities with the peripersonal space described before 

and represented in monkeys through an integrated multisensory visuo-tactile system. Another 

common point is the fact that, as described in monkey studies, also in humans the visual 

representation of stimuli in near-hand space remains anchored to the hand when this is moved 

in another hemi-space, suggesting that visual information in the space around the hand is 

coded in a hand-centred coordinate system (di Pellegrino et al. 1997; Farnè et al. 2003b). As 

for the hand, a multisensory  mechanism is involved in representing the space close to the 

human head. By showing stronger visual-tactile extinction for homologous (left and right 

cheek) than non-homologous combinations of stimuli (e.g., left hand and right cheek), Farnè 

and colleagues’ elegant study demonstrated the modular organisation of the representation of 

space around the body. That is, authors found that different spatial regions, adjacent to 

different body-parts, are represented separately (Farnè et al. 2005b).

 In a series of further studies, Farnè and colleagues (unpublished data) formally  tested 

four cross-modal extinction patients by presenting visual stimuli close and far from the 

patients’ as well as the experimenters’ hand. However, no effect was found in the direction of 

a possible body-matching property  of the human visuo-tactile system similar to that described 

in monkeys (see chapter II, paragraph 1.1). One possibility is that in their research authors 

employed a more radical change in orientation between the observer's own and the observed 

hands (more than 35 degrees).

 Finally, it has been shown that the representation of the region of space around the 

human body also features plastic properties, akin to those shown in the monkey. Authors 

employed a similar paradigm as that employed in monkeys. A group  of cross-modal extinction 

patients has been tested before and after a training period during which they became familiar 

with a tool. A re-coding visual stimuli located in far space, as if they were closer to the 

participants’ body, has been documented behaviourally in extinction patients following the 

use of a tool to retrieve (or act upon) distant objects (Farnè and Làdavas 2000; see also Berti 

and Frassinetti 2000; Bonifazi et al. 2007; Farnè et al. 2005a, 2007b; Maravita and Iriki 

2004). In this interesting study, cross-modal visual-tactile extinction was assessed by 
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presenting visual stimuli far from the patients’ ipsilesional hand, at  the distal edge of a 38 cm-

long rake, passively held in their hand. The patients’ performance was evaluated before tool-

use, immediately after a 5 minute period of tool-use, and after a further 5 to 10 minute resting 

period. Far visual stimuli were found to induce more severe contralesional extinction 

immediately after tool-use, than before tool-use (Figure 3.2). These results demonstrate that 

while near and far spaces are separately  represented, this spatial division is not defined a 

priori. Rather the definition of near and far is derived functionally, depending upon 

movements that allow the body  to interact with objects in space. Other researches confirmed 

this finding, also showing how much dependent might be the re-mapping on the functional 

relationship  between space and body. Berti and Frassinetti’s elegant study on a neglect patient 

(Berti and Frassinetti 2000), for example, showed how the far space can be re-mapped as near 

only when a physical continuity  between the body and the far target of the action is present. 

They  asked a right brain damaged patient presenting neglect  for left near space to perform a 

visual line bisection task, classically employed to assess the presence of neglect symptoms. 

Since this kind of patients “neglect” the contralesional side of space (generally  the left side 

following a right brain lesion), when requested to mark the middle point on a line they 

manifest a rightward bias. In this study, the patient had to bisect lines placed far from the 

body by using either a stick or a laser-pointer. While the patient transferred the rightward bias 

when bisecting far lines with a stick, this re-mapping of far space as near did not arise when 

the laser-pointer was used. 

 The research here presented on extinction patients’ pathological behaviour shows that 

also in humans it  is possible to define the peripersonal space with similar properties as the 

monkeys’ peripersonal space:

• Peripersonal space in humans is a region of space limited in depth with respect to the 

body, where visual and tactile information strongly interact.

• Human peripersonal space is a body-part centred representation of space, so that when 

hands cross the mid-line, the respective peripersonal space is up-dated consequently.

• Human peripersonal space appears as dynamical as that described in monkeys, as tool-

use studies revealed.

� 83� �



1.2.Peripersonal space in humans: evidence from healthy 
behaviour

Evidence in favour of a representation for the space near to the body separated from a 

representation of the space far from the body is also present  in healthy populations. The 

dissociation between peripersonal and extrapersonal space has been also investigated by 
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Fig. 3.2 Upper Panel Schematic representation of the assessment  of visuo-tactile extinction 
modulations induced by tool-use. Bottom Panel Modulation of visuo-tactile extinction induced by the 
use of a tool. Extiction is present  in case of unimodal tactile (T-T) and bimodal (V-T) condition of 
stimulation. Morover it is dependent  on the distance between visual and tactile information, being 
reduced when visual stimulus is delivred far from the hand (V-T  far). While a passive exposure to the 
tool do not affect visuo-tactile extinction (V-T far exposure), tool-use clearly modulated the deficit 
(Long tool use). From Farnè et al. 2005a).



means of the line bisection task, for instance, on healthy participants. When presented with 

lines located in the peripersonal space, healthy participants show a systematic displacement of 

the midpoint  to the left, an opposite phenomenon with respect to patients’ behaviour, known 

as “pseudoneglect” (see Jewell and McCourt 2000 for a review). Some studies reported a 

significant effect of the distance at which the to-be-bisected line is presented. In the transition 

from the peripersonal space to the extrapersonal space subjects present a left-to-right shift of 

the bisection point, so that  they present a stronger “pseudoneglect” (mean shift to the left of 

the true midpoint) in the bisection of lines presented in the peripersonal rather than in the 

extrapersonal space (Bjoermont et  al. 2002; Longo and Lourenco 2006; Varnava et al. 2002; 

Gamberini et  al. 2008 however, see Cowey et  al. 1999; Weiss et al. 2000). Longo and 

Lourenco (2006) reported more precisely a gradual left-to-right shift of the bisection point in 

the transition from the peripersonal to the extrapersonal space, presenting the lines at different 

distances from the body. They also confirmed in normal participants, the dynamic property of 

the human peripersonal space representation that might be extended by the use of a tool 

allowing for a physical continuity between the body  and the far space (see Berti and 

Frassinetti 2000; Berti et al. 2001). A recent interesting study of the same group asked 

whether it is possible to induce contraction in the size of near space (Lourenco and Longo 

2009). As in previous studies, they measured the leftward shift of the midpoint in a bisection 

task in normal participants, as a function of increasing distance. Participants bisected lines, 

while, in some cases, wearing weights. The increase of the effort involved on the line 

bisection task lead to a relative rightward shift in bias at  closer distances (as if the lines were 

thus perceived as being in far space), with little to no rightward shift  as distance increased, 

since near and far space may be considered less distinct.

 Other perceptual tasks also provided evidence in favour of the dissociation between 

peripersonal and extrapersonal space in normal subjects. In the next section I will present a 

similar visual modulation of tactile perception as in patients that  has been shown, with some 

differences, in healthy individuals.
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1.2.1. Cross-modal congruency effect: a perceptual 
paradigm for the investigation of the peripersonal 
space representation in healthy humans

Highly converging evidence in favour of a distinct visuo-tactile representation of the 

peripersonal space with respect to the extrapersonal space comes from studies about the 

interference that visual information can exert  over touch percepton in healthy  humans. In a 

series of studies, participants were asked to discriminate the location of a tactile stimulus 

while a visual distractor could be delivered in a 

congruent or incongruent spatial position. More in 

detail, in a typical crossmodal congruency study, 

participants are required to hold two foam cubes, 

one in each hand (see Figure 3.3 for a schematic 

illustration). A target tactile stimulation is 

presented together with a visual distractor, 

independently in an unpredictable trial-by-trial 

basis from one of the four possible stimulus 

locations. Participants are required to make a 

series of speeded elevation discrimination 

responses, reporting whether tactile target stimuli 

are presented at the index finger or thumb of 

either hand. Simultaneously, participants have to 

try ignoring the visual distractors presented at 

approximately the same time. The overall effect is 

that participants are normally significantly worse 

(both slower and less accurate) at discriminating 

the elevation of the touches when the visual 

distractors are presented at  an incongruent rather 

than at a congruent elevation. The difference in 

performance between incongruent  and congruent 

trials is thus a measure of the amount of the 
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Fig. 3.3 Schematic view of the typical 
set-up for the study of visuo-tactile 
congruency effect. Participants held a 
foam cube in each of their left and right 
hands. Two vibrotactile stimulators 
(shaded rectangles) and two visual 
distractor lights (filled circles) were 
embedded in each cube, by the thumb 
and index finger. Participants made 
speeded elevation discrimination 
responses (by raising the toe or heel of 
their right  foot), in response to 
vibrotactile targets presented either from 
the ‘top’ by the index finger of either 
hand, or from the ‘bottom’ by either 
t h u m b r e s p e c t i v e l y. M a x i m a l 
crossmodal congruency effects were 
always reported for visual distractors 
placed closest  to the location of the 
vibrotactile target  (i.e., on the same foam 
cube), no matter whether the hands were 
held in an uncrossed or crossed posture. 
From Spence et al. 2004c.



cross-modal visuo-tactile interaction. In particular, this value is known as Cross-modal 

Congruency  Effect (CCE), as it has been termed after the original work presented by Spence 

and colleagues (Spence et al. 1998). The modulation exerted by  visual distractors over 

touches in this paradigm seems to be resistant to practice. People cannot  ignore what they see, 

even if they are instructed to respond only to what they feel.

 Crossmodal congruency effects have also been observed when the role of the two 

stimulus modalities is reversed (Walton and Spence 2004), with participants instructed to 

respond to the elevation of the visual stimuli, while ignoring the elevation of the vibrotactile 

stimuli. However, the crossmodal congruency effects elicited by vibrotactile distractors on 

visual elevation discrimination responses tend to be somewhat smaller in magnitude. 

 There are at least two possible explanations for the crossmodal congruency effect. One 

possibility is that this modulation reflects a response competition, between the response 

tendencies elicited by the target and distractor in case of incongruent trials. However, 

whenever a delay is inserted between the stimulation and the response (750 ms), a procedure 

which is meant to reduce errors merely due to a response choice difficulty, the cross-modal 

congruency effect is still significantly present. This finding suggests that this visuo-tactile 

interaction should at least reflect another kind of mechanism.

 The other possibility  is indeed that the CCE is a phenomenon reflecting the integration 

of visual and tactile information, possibly sensitive to the kind of visual-tactile interaction 

occurring around the body and described in the previous sections. The presence of a visual 

distractor integrated with the tactile information would bias the localisation of the second 

input (tactile target) in a sort  of visuo-tactile ventriloquism phenomenon (such as the audio-

visual example described in chapter I). The interesting point of this account is that, if so, the 

cross-modal congruency effect could reveal itself as a perceptual measure of the extent of the 

region where visual and tactile information are tightly  interconnected as that investigated in 

monkeys: the peripersonal space. I will discuss consequently whether the CCE reflects the 

three main characteristics of the visuo-tactile integration arising in the peripersonal space 

coding.
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Spatial modulation of CCE

As described previously for monkeys and neuropsychological patients presenting cross-modal 

extinction, the visuo-tactile interaction in peripersonal space appears dependent upon the 

distance between visual information and the tactually stimulated body part. Spence and 

colleagues (Spence et al. 2004c) investigated the cross-modal congruency  effect displacing 

one hand in a far position with respect to visual distractors. The distracting lights were now 

mounted on two boxes attached to the top of the table in front of participants. With this 

arrangement, the stimulated hand could either be held adjacent to the visual distractors in the 

same hemifield, or could be positioned far from them within the same hemifield. Critically, 

the spatial proximity between the two stimuli (tactile target and visual distractor) could now

be systematically varied (Figure 3.4). The interference exerted by  the visual distractors over 

the tactile modality  was dependent upon the spatial distance between them. In analogy with 

the cross-modal extinction studies and the neurophysiological properties of bimodal visuo-

tactile neurons, the visuo-tactile interference observed within this study  was stronger when 

the stimulated body-part was closer to the visual information. In other terms, the cross-modal 

congruency effect reveals itself 

as a measure of the strength of 

the interaction between visual 

and tactile information in the 

space immediately surrounding 

the body, fulfilling one of the 

three criteria for the definition 

of the peripersonal space.

Body-part-centred reference frame for the CCE

A critical characteristic of the peripersonal space representation is its body-part centred 

nature. Spence and colleagues (Spence et al. 2004c; Spence et al. 2001) also investigated 

whether there is any  role at all for the initial hemispheric projection of the target and 
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Fig. 3.4 Schematic view of the distance manipulation 
between visual distractors and tactile target  in the cross-
modal congruency paradigm. Ibidem.



distractor stimuli in determining cross-modal 

congruency effect. They thus assessed whether 

the cross-modal congruency effect is based on a 

spatial representation that is updated in such a 

way to follow the body-part. When participant’s 

hands cross the mid-line for example (Figure 3.5), 

the left hand is situated close to visual distractors 

on the participant’s right  side, while the right 

hand is situated close to distractors on the 

participant’s left side. These authors tested the 

modulation of the CCE in these conditions, 

finding that there was a complete re-mapping: 

stronger CCE for visual distractors close to hands 

in the external space (for instance, touch on the 

right hand, placed on the left side and visual distractors close to the hand in the left side of 

space) rather than when the two information were projecting to the same hemisphere (for 

instance, touch on the right hand, placed on the left side, and visual distracters from the right 

side). In other terms, the CCE arises in a reference system that is anchored to the stimulated 

body-part, thus exhibiting the second property of the peripersonal space representation, as 

known since neurophysiological and neuropsychological investigations: its body-part centred 

nature.

Tool-use dependent modulations of CCE

The paradigm of CCE has been assessed also in conditions following a training of tool-use, in 

healthy individuals (Holmes et al. 2004, 2007a, b; Maravita et al. 2002). These studies have 

shown that active tool-use increases the salience or effectiveness of visual stimuli presented at 

the tip  of the hand-held tool. These visual enhancements have been demonstrated from the 

effects of visual stimuli on the detection or discrimination of simultaneous tactile stimuli. 

Maravita and colleagues, for instance, asked a group of normal participants to judge the 
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Fig. 3.5 Schematic view of the set-up 
for the spatial reference of the cross-
modal conguency effect. Since visuo-
tactile interaction arises in body-part 
centred coordinates, visual distractors 
on one side (left  for instance) are more 
interferring with tactile target on the 
closest  hand (right  hand in this case). 
Ibidem.



elevation of tactile vibrations delivered to the thumb or index finger on either hand as in the 

typical version of the CCE paradigm. However, visual distractor lights were fixed in vertical 

pairs at the far end of each of two “tools” grasped with each hand (Figure 3.6). These authors 

showed that as a consequence of an active use of the tools, the interaction between visual 

information on the tip of the tools (far from the subject’s hands) and the tactile stimuli on the 

hands was modulated by  the position of the tools. This effect did not arise when tools were 

not actively  used. This result provided evidence for a modification of the area of visuo-tactile 

interaction after the use of a tool (see however Holmes et al. 2004 and Holmes et al. 2007a) 

and about the fact that CCE could be a sensitive measure of such a change.

In conclusion, even if parallels between single cell recordings in monkeys’ studies and 

behavioural studies in humans require caution to be made, CCE reveals to feature all the 

characteristics to be a sensitive measure of the peripersonal space in humans: 

• it proved to be dependent on the distance between visual information and the tactually 

stimulated body-part

• it proved to arise in a reference system that is centred on the body-part

• it proved to be sensitive to the dynamic modulations induced by the use of a tool, even 

when attentional issues/confounds are controlled for (Holmes et al. 2004).
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Fig. 3.6 Schematic view of the set-up used for studying the modulation of cross-modal congruency 
effect  induced by the tool in (a) straight position and (b) crossed position. In either case, a peg at the 
far end of the tool (shown by thick black vertical lines) was inserted into a hole to locate it, while 
hand locations were kept  constant. Unseen tactile stimulators were placed on each tool handle at the 
forefinger and thumb (indicated symbolically here, for the right  hand only in the straight-tool situation 
(a) with grey triangles). Potential visual distractors are shown as grey circles. From Maravita et al. 
2002.



1.3.Peripersonal space in humans: neuroimaging studies

Evidence is now accumulating also from neuroimaging studies in healthy humans that can 

provide further support for the homologies between some of the neurophysiological evidence 

reviewed in the previous chapter and the neural bases of peripersonal space in the human 

brain. Specifically, brain areas that represent near-face and near-hand space in body-centred 

coordinates through visual and tactile maps have been reported in the anterior section of the 

intraparietal sulcus and in the ventral premotor cortex (Bremmer et al. 2001; Makin et al. 

2007; Sereno and Huang 2006). These findings correspond nicely to the anatomical locations 

of the monkey visuo-tactile network. Moreover, recent studies have identified the superior 

parietal occipital junction as a potential site for representing near-face and near-hand visual 

space (Gallivan et al. 2009; Quinlan et al. 2007). This new evidence extends our current 

knowledge of the peripersonal space neural network, and may guide further 

electrophysiological studies to come.

2. Conclusions

The findings presented here for human beings, coming from neuropsychological, behavioural 

and imaging studies, converge supporting the existence in the human brain of mechanisms 

that are specialised for representing visual information selectively when it  arises from the 

space near the hand (and face). In other terms, the human brain, similarly to monkey’s, builds 

a peripersonal space representation separated from a representation of the space that is farther 

from the body. This distinction is based on a different multisensory  integration arising in the 

region close to the body, where visual information appears more tightly  connected to tactile 

information on the close body-part. As the previous section highlighted, indeed, a strong 

binding mechanism of visual and tactile inputs has repeatedly been shown also in humans. 

The homologous representation of the peripersonal space in humans is codified in a body-part 

centred reference system and is up-dated with body posture changes. Finally, the human 

homologous of peripersonal space also presents dynamic properties, induced for instance by 
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the active use of a tool that can change the functional relationship  between the body and the 

reachable space. Importantly, the CCE described in this section appears as a sensitive 

paradigm to study the modulations of peripersonal space.

 These converging results have refined and extended our understanding of the neural 

processes underlying multisensory representation of peripersonal space in the human brain, 

namely, by identifying various cortical areas that are involved in different sensory-motor 

aspects of peripersonal space representation.
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Chapter IV

Peripersonal space: a 
multisensory interface for body-
object interactions?

The review in the previous sections showed that  visual and somatosensory information are 

integrated in the brain, both cortically in parietal and frontal areas and sub-cortically  in the 

putamen. The characteristics of the visuo-tactile integration through systems of bimodal 

neurons differentiate the representation of the space around the body from a farther space. The 

peripersonal space so defined, becomes the space between the body and the external space 

where visual information are not mere events occurring outside the body, but they also 

represent the possibility of an interaction between the body and the external world. When I 

leave my cup  of coffee close to me while working, for instance, not only I can interact with it 

as it commonly -and preferably- happens when I grasp it in order to drink my coffee. In fact, I 

have also to be careful when I’m moving because, for the simple reason that my  cup is close 

to my body, in the space where my movements take place, I could also accidentally -and 

dangerously- collide with it. Also true is the fact that often, when an unknown insect is flying 

around our arm, for instance, we could have the involuntary tendency to move the arm in 

order to avoid the contact between the body and the unknown -and potentially threatening- 

insect. It  is therefore conceivable that an object in the peripersonal space is not visible in the 

same way as are objects or events occurring in the far space: only  the former might be 

intrinsically available for active interactions with body-parts without needing the full body to 

move. The peripersonal space could be thus considered of as an interface between the body 

and the objects.

 For these reasons, it  appears striking that, until recently, all investigations of 

peripersonal space representation in humans have assessed its characteristics in completely 

static conditions. I will present a series of findings in monkeys that, together with the 

electrophysiological findings on bimodal neurons, clearly  indicate the strong link existing 

� 93� �



between peripersonal space and action. As I will discuss in this chapter, also research about 

human peripersonal space representation is ready to fill the gap  between the multisensory 

perceptual investigation of this representation and its involvement in the execution of actions. 

This point represents the novel contribution of this dissertation to our knowledge about the 

peripersonal space. In particular, two original methodological considerations will be 

presented, through which I have tried to experimentally  assess the link between multisensory 

space representation and the execution of actions.
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1. What kind of body-object interactions can the body-
centered PpS representation subserve?

Since the multisensory space based on the visuo-tactile properties of bimodal neurons defines 

a boundary zone limited in depth between the body  and the environment, some researchers 

have suggested that it might have evolved for the execution of defence or object-avoidance 

movements (Cooke and Graziano 2004; Cooke et al. 2003; Graziano et al. 2002; Stepniewska 

et al. 2005). Protect the body against physical threats is one of the vital function the system 

should guarantee. By acting as an anticipatory multisensory-motor interface, the peripersonal 

space representation may serve for the early detection of potential threats approaching the 

body (Fogassi et  al. 1996) in order to drive involuntary defensive movements (Cooke and 

Graziano 2004; Graziano and Cooke 2006). As already  described, the visual RFs of bimodal 

neurons are sensitive to objects approaching the body and more specifically also to the 

velocity  of their approaching, as a function of which they can modify their area of response. 

The most direct evidence in favour of the hypothesis that peripersonal space serves defensive 

actions is the result of cortical stimulation studies, although some concerns have been raised 

in this respect (Strick 2002; Graziano et al. 2002). The electrocortical microstimulation allows 

to artificially  induce electrical activity directly in a specific area in order to study, for 

instance, the cartography of the motor control in the motor areas. Graziano and colleagues 

applied this method for the study of the motor properties of visuo-tactile network (Graziano 

and Cooke 2006). They thus described that the electrocortical stimulation of visuo-tactile 

areas can elicit a pattern of complex movements that is compatible with defensive arm (and 

face) movements and withdrawing of the arm or the head (Cooke and Graziano 2003; 

Stepniewska et al. 2005). The most important concern other electrophysiologists underlined 

was the intensity and the duration/length of train stimulation employed in this research (Strick 

2002). By employing a similar paradigm, however, other researchers have found that the 

stimulation of parietal visuo-tactile areas can induce not  only  movements that are compatible 

with defensive behaviour, but also movements compatible with “appetitive” behaviours, such 

as reaching and grasping (Stepniewska et al. 2005).

 As a consequence, the same anticipatory  feature might also have evolved to serve 

voluntary object-oriented actions (Gardner et  al. 2007; Kaas 2004; Rizzolatti et al. 1981a, b; 
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Rizzolatti et al. 1997; Stepniewska et al. 2005). In support of this view are the results of the 

described single unit recording studies showing the motor properties of both parietal and 

periarcuate visuo-tactile neurons, whose discharge is mostly correlated with reaching and 

grasping movements (see Chapter II, section 2). Moreover, since peripersonal space 

represents a boundary-zone between one’s own body and the external environment, it could 

also indirectly have a role in the self-attribution of sensory signals (Makin et  al. 2008). This 

system may therefore be involved in the multisensory  representation of limb position: the 

visuo-tactile neurons, constantly updated with the varying positions of the body parts, achieve 

a body-part-centered representation of visual space, even while the body moves. 

 The thesis of this dissertation, I would like to propose, is that the multisensory-motor 

neural machinery represented by  the bimodal visuo-tactile network has been selected 

throughout evolution, not only to drive involuntary  avoidance reactions, but also voluntary 

approaching movements towards objects, via the continuous monitoring of action space, the 

space within reach.

2. CCE in action

Until recently, however, the characteristics of visuo-tactile peripersonal space in humans had 

been assessed exclusively  while the relevant body parts were held statically. Even the most 

‘dynamic’ properties of peripersonal space, the post tool-use modulation of the visuo-tactile 

interaction, have been studied in the static phase preceding or following the active use of the 

tool. Some researches have assessed tool-use induced modulations of peripersonal space after 

very brief intervals (i.e., several seconds) following the use of the tool (Holmes et al. 2007b), 

or after several minutes of tool use (Maravita et  al. 2002), and have showed rapid changes in 

visuo-tactile interactions on these time-scales. However, in these studies too, the perceptual 

visuo-tactile task was performed in a “transient” but still static post  tool-use session, 

interleaved with the tool-use training sessions. An exception could be found in those studies 

showing dynamic changes of peripersonal space during tasks such as line bisection, where 

distant stimuli were acted on through the use of a long tool (e.g., Berti and Frassinetti 2000). 
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However, multisensory integration was not explicitly  measured in these studies, meaning the 

link with peripersonal space remains speculative.

 If the peripersonal space representation is indeed directly involved in body-object 

interactions, then modulations of visuo-tactile interaction should be found without the need of 

any tools. On the contrary, the visuo-tactile interaction, or the dynamic 're-mapping' of near 

space should be a basic, primary property that only  secondarily can be generalised to tool-use. 

In this respect, the execution of a voluntary free-hand action, for instance grasping an object, 

should induce a rapid on-line re-mapping of visuo-tactile spatial interactions, as the action 

unfolds.

2.1.The multisensori-motor task

Even if the CCE paradigm revealed to be a useful frame of investigation for the assessing of 

the multisensory  interaction in peripersonal space, an adaptation was needed in order to assess 

the visuo-tactile interaction on-line during action. 

 First of all, an action is required and in particular, in a first step, we choose a grasping 

action. Three main reasons supported this choice. First, the execution of grasping, as the 

execution of reaching actions, has been deeply  investigated in the neurophysiological studies 

on visuo-tactile network, as described in other sections of this dissertation. These studies 

revealed the high degree of functional specialisation of the bimodal network for different kind 

of grasping (i.e., precision vs. whole-hand grip). Second, the kinematics of grasping in human 

and non human primates has been revealed to be highly comparable (Castiello 2005; Roy et 

al. 2002; 2006) so that the possible functional homologies, previously  established on the basis 

of bimodal neurons properties, will hold true across species when the same action of grasping 

an object is performed. Finally, grasping objects is one of the most common actions we 

execute in our everyday life. Thus, grasping appeared the right choice to link our research to 

animal’s studies and at the same time to maintain an ecological approach to our investigation 

in humans. Participants were thus requested to grasp a cylinder along its longitudinal axes, 

with a precision grip  (thumb and index fingers) and extract it from the horizontal support in 

which it was inserted. The cylinder was placed far from the hand (47 cm), and presented in 
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different orientations. In this way, participants 

had to perform a complex action composed by 

a hand transport phase, a finger grip  and a 

wrist rotation component (Figure 4.1).

 Secondly, the CCE paradigm has been 

implemented in these active conditions. The 

same perceptual discrimination task of the 

elevation of tactile stimuli delivered on the 

thumb (“down” position) or on the index 

finger (“up” position) has been maintained. 

However, instead of presenting the visual 

distractors from a position close to the hand, 

as in the typical CCE paradigm, they have 

been embedded in the object, target of the 

action. The cylinder presented two LEDs 

above and below the fixation point marked at 

its centre. The spatially congruent and 

incongruent visuo-tactile stimuli could be thus 

reproduced. At each trial, participants were 

requested to respond where they perceived the 

tactile stimulation trying to ignore the visual distractor on the object.

 This arrangement allowed us to couple the perceptual and motor task at each trial and 

at different timings of the unfolding action. The evolution of the visuo-tactile interaction 

could thus be assessed along the execution of the action and in particular three epochs have 

been chosen. The visuo-tactile interaction was assessed either before the on-set of the action, 

on the action on-set itself, or in the early execution phase. The first constitutes a baseline, 

where the hand does not move yet, to be compared with the two ‘dynamical’ phases. The 

hypothesis supporting the involvement of peripersonal space in action execution would 

predict a modulation of the visuo-tactile interaction in terms of CCE as a function of the 

moment when it is assessed along the execution of the action.
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Fig 4.1 View of the cross-modal congruency 
paradigm modified in order to assess the 
multisensory interaction during the execution 
of an action. (a) tactile target on the hand as 
in the typical CCE condition while visual 
distractors are embedded into the to-be-
grasped object. (b) and (c) are example of 
grasping actions.



3. The kinematic recording of movements: a real-time 
method for linking multisensory perception and action

In order to study the relationship of the multisensory based peripersonal space and the 

execution of an action, it is necessary to measure the updating of the visuo-tactile interplay  in 

real-time with the unfolding action. This aim revealed challenging since, as we described in 

previous sections, the peripersonal space has been assessed only in static conditions. The 

adaptation of the CCE paradigm allowed the real-time assessment of the multisensory 

perception induced by the execution of an action. However, in order to investigate the link 

possibly existing between the perceptual and the motor domain, also the latter needs to be 

measured.

 In the early 80’s, the development of kinematic methods allowed the on-line recording 

and a quantitative description of movements executed during actions. For instance, 

Jeannerod’s studies that were mainly focussed on grasping actions, provided a model of the 

grasping as a two components movement: transport and grip components. The two 

components could be thus defined by their respective kinematic parameters, such as velocity 

and acceleration for the transport component and velocity of finger aperture and maximum 

grip aperture for the grip component.

 With the aim of investigating the link between peripersonal space and execution of 

voluntary actions, we assessed the multisensory perception during action execution and 

simultaneously  recorded the kinematic of each movement. This novel approach conjugates a 

multisensory perceptual task in real-time with the movement and provided the necessary 

method to link the perception to the kinematic characteristics of the action.

 In this section, the main characteristics of the kinematics will be briefly  reviewed in 

particular showing the normal structure of a grasping movement from a kinematic point of 

view. The neural bases of grasping will also be briefly presented.
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3.1.The kinematics of grasping 

When we move the hand in order to grasp  an object, we need to shift the hand closer to the 

object and simultaneously to adapt the finger grip  to the size and orientation of the object. 

Despite the enormous variability in aspects of movement such as force, posture, duration and 

speed, the underlying control principles appear elegant and show a constancy in the overall 

basic (or molar) structure. It is indeed possible to identify A) a transport component toward 

the object, which can be defined by the acceleration, velocity  and deceleration of the hand (as 

derived from the wrist displacement); B) a grip component, which develops during the 

evolution of the transport (Jeannerod 1981). 

Jeannerod (1981; 1984) coded grasping in terms of changes in grip aperture, the separation 

between the thumb and the index finger. During a reach-to-grasp movement, there is first a 

progressive opening of the grip, with straightening of the fingers, followed by a gradual 

closure of the grip until it  matches the object’s size (Figure 4.2). The point  in time at which 

the thumb–finger opening is the largest  (maximum grip  aperture) is a clearly identifiable 

landmark that occurs within 60-70% of the duration of the reach and is highly correlated with 

the size of the object  (Smeets and 

Brenner 1999). Other properties, 

including fragility  (Savelsberg et  al. 

1996), size of the contact surface 

(Bootsma et al. 1994), texture (Weir 

et al. 1991b) and weight (Weir et al. 

1991a) of the object that is the target 

of the action are all factors that can 

influence the kinematics of grasping. 

Object’s weight constrains the 

positioning of the fingers, in such a 

way that heavier objects need to be 

grasped more accurately and with a 

larger grip than lighter objects. 

Grasping slippery objects requires a 
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Fig. 4.2 (a) Representation of a grasping action. 
The hand approaches the object  and simultaneously 
takes an optimal shape in order to grasp it. Fingers 
open reaching a maximum of aperture (b) and then 
close on the object. The maximum of the grip 
aperture is a function of the size of the to-be-
grasped object (c). From Castiello 2005.



larger approach parameter, leading to a larger grip  earlier in the movement compared with 

grasping rough-surfaced objects. On these bases Jeannerod proposed a model based on two 

different visuo-motor channels (Jeannerod and Biguer, 1982). The transport component, that 

is the spatial shift  of the hand toward the object, requires the knowledge of the spatial 

configuration of the to-be-grasped object with respect to the grasping body-part. To reach an 

object in the external space with our hand, we need indeed to know its spatial location (and its 

orientation) with respect to the hand. In other words, we need to know the extrinsic 

characteristic of the object, i.e., those characteristics that not dependent upon the object itself, 

but are determined by the spatial configuration and location of the object with respect to the 

body. By contrast, intrinsic information is required for the development of the grip 

component, such as the size, the texture and the shape of the object itself.

It is clear from these considerations that large part of information about how an object 

has to be optimally  grasped derives from the visual modality (orientation, shape, size of the 

available landing surfaces) sometime associated with the experience of tactile information 

(texture or weight). The tactile system, nonetheless, seems to be important for the optimal 

evolution of the hand-shaping (Gentilucci et al. 1997; Witney et al. 2004): cutaneous 

receptors in the hand provide information about the action of the hand, including its 

kinematics and posture, as well as the grip  forces and load forces that are used during 

grasping and manipulation of objects. Finally, the visual information about the object  can also 

create expectancies about the tactile feedback the grasping hand will receive at  the end of the 

action, when it will enter in contact with the object itself (Gentilucci et al. 1997).

 The kinematics recording represents a powerful technique which allows quantitatively 

describing movement. More important for the experimental contribution of this thesis, the 

real-time kinematics of the movement allows for establishing direct link between the 

perceptual assessment of the visuo-tactile interaction and the evolution of the grasping action. 

For this reason, each grasping movement performed by participants has been kinematically 

recorded and analysed off-line. Three infrared emitters have been placed in the standard 

locations on the grasping hand: one on the wrist, for recording the parameters associated to 

the transport  component; two on the last phalanx of the thumb and of the index finger for 

recording the development of the grip component.
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3.2.Neural network for grasping

Three specific areas involved in hand grasping execution have been identified in the monkey 

cortex: the primary motor cortex (F1), part of ventral premotor cortex (F5) and the anterior 

intraparietal sulcus (AIP). The integrity of the primary motor cortex (F1) is necessary for 

performing a successful grasping action. A lesion of this area indeed produce a severe deficit 

in the control of individual fingers and consequently disrupt normal grasping (Lawrence and 

Kuypers 1968a). Lesioning the corticospinal tract, through which motor commands are 

conveyed from the primary motor cortex to cells in the spinal cord, also impairs the control of 

independent finger movements (Lawrence and Kuypers 1968b). However, after such kind of 

lesion, synergistic finger flexion typical of a power grip prehension might be not affected.

 More interesting for this dissertation, is another fundamental process needed for a 

successful grasp  to be executed. To grasp an object involves indeed a transformation of the 

intrinsic properties of the object, which are visually available, into the correct  motor shaping 

of the hand. The visuo-motor transformations for grasping seem to involve two key cortical 

areas: the AIP  and area F5, already described in the second chapter of this dissertation. AIP 

and F5 neurons activity shows striking similarities and important differences (Rizzolatti et al. 

2002). For example, both AIP and F5 show a functional specialisation for type of grasping, 

which in turn depends on the visual characteristic of the object to be grasped (Murata et al. 

1997; 2000). Different populations of neurons are activated during different kinds of grasping 

(i.e., precision grip  or whole-hand prehension). However, AIP neurons seem to represent the 

entire action, whereas F5 neurons seem to be concerned with a particular segment of the 

action (Rizzolatti et al. 1998). Another important difference is that AIP, more than F5, 

presents a visual response to the presentation of three-dimensional objects (Murata et al. 

2000). Based on these findings, Fagg and Arbib (1998) have thus proposed a model in which 

area AIP provides multiple descriptions of three-dimensional objects for the purpose of 

manipulation, whereas area F5 might  be mainly involved in selecting the most appropriate 

motor prototype from a “motor vocabulary” (Rizzolatti et al. 1988a) for example, the type of 

grip that is effective in interacting with a specific target object. 
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 Similarly  to monkeys, lesions of the human primary  motor cortex or corticospinal 

fibres dramatically  disrupt the execution of a grasping movement. Such lesions typically  lead 

to grasping movements that  are initially  characterised by the loss of independent control of 

the fingers, although synergistic movements of all fingers (a power grip) might remain intact 

(Lang and Shieber 2004).

 Due to the difficulty of establishing a correct homology between human and monkey 

brains, it is difficult to integrate the known grasping deficits in humans after lesions of the 

superior parietal lobe (SPL) with the results of neurophysiological work in monkeys. For 

instance, in monkeys, the SPL (possibly area 5) seems to be mainly related to the 

somatosensory rather than visuomotor elaboration (Rizzolatti et al. 2002). Secondly, although 

in monkeys some parts of the SPL do receive visual information, activity in these areas seem 

to be more correlated with reaching rather than grasping (Galletti et al. 1997). Finally, there is 

reason to believe that, the relative expansion of the parietal lobes characterising humans’ brain 

relative to monkeys’, the human SPL might  be the homologue of the monkey IPL (Milner 

1997). However, with all the possible cautions, there is evidence that a possible homologue of 

AIP has a specific role in grasping in humans. Binkofski and colleagues (Binkofski et al. 

1998) localised the area responsible for grasping in humans to the AIP, contralateral to the 

impaired hand. In line with the results obtained from monkeys in which AIP has been 

inactivated, human patients with AIP lesions present deficits in grasping, whereas reaching 

remained relatively intact.

 The most compelling evidence for a deficit in visually  guided grasping in humans 

comes from patients presenting a deficit known as optic ataxia (Perenin and Vighetto 1988; 

Rossetti et al. 2003) classically considered to be a specific disorder of the visuomotor 

transformations caused by posterior parietal lesions. Various optic ataxic patients have been 

described showing specific deficits in the on-line control of reaching (Pisella et al.2009; 

Blangero et al. 2008), but only a few cases have investigated the kinematics of grasping 

actions. Patient V.K. (Jakobson et al. 1991), for example, showed an apparently normal early 

phase of hand opening during attempts to grasp  an object, but her on-line control of grip 

aperture quickly  degenerated, resulting in numerous secondary peaks in the grip  aperture 

profile, rather than a single peak, which is typical of a healthy subject. Patient I.G. (Milner et 
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al. 2003) also showed considerable deficits in the scaling of her maximum grip  aperture to the 

size of an object. Patient  G.T.’s prehension movements were not normally tuned either by 

intrinsic or extrinsic visual properties of objects (Roy  et al. 2004), his grasping component not 

being appropriately  modulated by object’s size. Overall, these patients present a deficit  in 

translating the visually available information about an object into the correct motor 

configuration to interact with it.

4. Conclusion: kinematic-perceptual co-recording
The general hypothesis underlying the experimental contribution presented here is that 

peripersonal space constitutes a multisensory interface serving for the interactions between 

the body and the objects in the external space. This hypothesis is based on the neural 

mechanism on which peripersonal space representation is built  through. The kinematic 

recording coupled with an on-line assessment of the multisensory interaction during action is 

the method through which I tried to investigate the link between the multisensory perception 

and the execution of action. This novelty  meant to fill the gap till now existing between a 

static and dynamic view of multisensory perception.
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As described, electro-cortical microstimulation studies in monkeys provided evidence in 

favour of an involvement of visuo-tactile parieto-frontal structures in the execution of 

movements that are compatible with a defensive or avoidance reaction. This is compatible 

with the hypothesis that the peripersonal space representation might be a multisensory 

interface with a protective function in response to possible threatening objects approaching 

the body. In the first  study presented here, we tested this hypothesis in healthy humans, 

investigating the reference frame the brain employs for coding the location of real three-

dimensional objects suddenly appearing near the body. We used a single pulse transcranial 

magnetic stimulation (TMS) approach in order to measure the excitability  of the motor cortex 

in correspondence to the hand representation. TMS is a technique allowing to momentarily 

interfere with the normal electrical activity of a relatively small area of the brain. When 

applied to the motor cortex, TMS single pulse elicits a motor evoked potential (MEP) that can 

be measure in the peripheral muscle, which reflects the level of cortical excitability in the 

respective motor cortex representation. The cortical excitability  reflects in turn, the readiness 

for a motor response. We hypothesised that an object suddenly  approaching the hand, for 

instance, should modulate the cortical activity in correspondence of the motor cortex hand 

representation. We also hypothesised that, if peripersonal space is involved in the detection 

and localisation of stimuli approaching the body, the cortical activity  modulation should arise 

in a reference frame centred to the body-part (the hand in the example).

We asked subjects to make a simple response to a visual ‘Go’ signal while they were 

simultaneously  presented with a task-irrelevant distractor ball, which could rapidly approach 

the peripersonal space in a location either near to or far from participants’ responding hand.

 As expected, we found that motor excitability  was modulated as a function of the 

distance of approaching balls from the hand: MEPs amplitude was selectively  reduced when 

the ball approached near the hand, both when the hand was on the left and on the right of the 

midline. Strikingly, this reduction occurred as early as 70 ms after ball appearance. The effect 

arose in hand-centred coordinates since it was not modified by the location of visual fixation 

relative to the hand. Furthermore, it was selective for approaching balls, since static visual 

distractors did not modulate MEP amplitude.
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 Together with additional behavioral measurements, this series of experiments provides 

direct and converging evidence for automatic hand-centered coding of visual space in the 

human motor system during motor preparation. These results provide direct evidence in 

favour of the interpretation of peripersonal space as a multisensory interface for translating 

potentially relevant visual information into rapid actions.
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Defensive behaviors, such as withdrawing your hand to avoid potentially harmful approaching objects, rely on rapid sensorimotor
transformations between visual and motor coordinates. We examined the reference frame for coding visual information about objects
approaching the hand during motor preparation. Subjects performed a simple visuomanual task while a task-irrelevant distractor ball
rapidly approached a location either near to or far from their hand. After the distractor ball appearance, single pulses of transcranial
magnetic stimulation were delivered over the subject’s primary motor cortex, eliciting motor evoked potentials (MEPs) in their respond-
ing hand. MEP amplitude was reduced when the ball approached near the responding hand, both when the hand was on the left and the
right of the midline. Strikingly, this suppression occurred very early, at 70 – 80 ms after ball appearance, and was not modified by visual
fixation location. Furthermore, it was selective for approaching balls, since static visual distractors did not modulate MEP amplitude.
Together with additional behavioral measurements, we provide converging evidence for automatic hand-centered coding of visual space
in the human brain.

Introduction
In daily life, sensorimotor integration is required for the execu-
tion of a wide range of movements, each of which poses different
computational challenges (Rizzolatti et al., 1998; Graziano,
2006). Consider the ongoing processes of movement and re-
sponse selection while you wash the dishes: although you might
still attempt to catch a slippery glass as it is falling, at some point
you must withdraw your hand to avoid injury.

The majority of human research on coordinate transformations
for hand movements has studied goal-directed reaching and grasp-
ing (Crawford et al., 2004; Medendorp et al., 2005; Beurze et al.,
2006; Fernandez-Ruiz et al., 2007; Brozzoli et al., 2009), whereas the
reference frames in which avoidance movements are coded have
been relatively neglected. However, electrophysiological experi-
ments in macaques in which three-dimensional stimuli were

moved rapidly toward the monkey’s body have revealed body
part-centered representations of visual space (Graziano et al.,
2004). For example, certain neurons in the ventral and dorsal
premotor cortex represent objects in hand-centered coordinates
(Graziano et al., 1994, 1997; Fogassi et al., 1996, 1999; Graziano,
1999) and may be involved in the preparation and guidance of
movements both toward and away from objects (as suggested by
Rizzolatti, 1987; Maravita et al., 2003; Cooke and Graziano, 2004;
Avillac et al., 2005). Neuroimaging and neuropsychological stud-
ies have suggested the involvement of possibly homologous
structures in the hand-centered coding of space in the human
brain (di Pellegrino et al., 1997; Bremmer et al., 2001; Farnè et al.,
2003, 2005; Makin et al., 2007; Quinlan and Culham, 2007) (for
review, see Makin et al., 2008).

In the current study, we used an active motor task to deter-
mine the reference frame for coding the location of real, three-
dimensional objects approaching the hand. Subjects abducted
their right index finger in response to a visual “go” signal and
were simultaneously presented with a task-irrelevant distractor
ball, rapidly approaching a location either near to or far from
their responding hand.

To obtain an index of corticospinal excitability with which to
assess the effects of rapidly approaching distractor stimuli, we
used single pulse transcranial magnetic stimulation (TMS), ap-
plied to the left primary motor cortex, eliciting motor-evoked
potentials (MEPs) in the subject’s right hand. We hypothesized
that the hand-centered coding of approaching visual stimuli
should have, as one consequence, some modulatory effect on
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corticospinal excitability as a function of the distance of the ap-
proaching object from the hand (near vs far). We report that
corticospinal excitability is indeed modulated in a hand-centered
manner, while subjects are preparing to respond to the targets.

In a set of complementary experiments, we examined the rel-
ative contributions of visual fixation position and distractor type
[approaching ball vs static light-emitting diode (LED)] to this
hand-centered coding of space. We further examined the process
of “proactive inhibition,” the ability to inhibit in advance one
movement to execute another (Koch et al., 2006; Mars et al.,
2007; van den Hurk et al., 2007; van Elswijk et al., 2007), in
relation to the suppression of possible avoidance responses elic-
ited by the approaching ball.

Materials and Methods
Subjects
A total of 23 healthy right-handed subjects participated in seven experi-
ments (supplemental Table S1, available at www.jneurosci.org as supple-
mental material). The subjects gave written, informed consent and were
screened for contraindications to TMS. The experiments were conducted
in accordance with the Declaration of Helsinki and were approved by the
local ethical review board.

Data acquisition and apparatus
Physiological measurements. MEPs were recorded from the right first dor-
sal interosseus (FDI) muscle using three self-adhesive electrodes (Neu-
roline; Ambu) in a belly-to-tendon manner. EMG data were acquired
using a BioPac system (BioPac Systems). EMG signals were sampled for
2 s at 2 kHz, amplified 1000 times, and bandpass filtered (25–250 Hz). At
the end of each trial, trigger pulses were sent to allow automated identi-
fication of trials. Data were stored for off-line analysis (see below).

Transcranial magnetic stimulation. A Magstim Super Rapid stimulator
and figure-of-eight, 70-mm-diameter TMS coil were used. The position
and orientation of the TMS coil and the intensity of the single pulses was
optimized for each subject to elicit reliable MEPs in the FDI, following
standard procedures (Hallett, 2007). Resting motor threshold (RMT)
was defined as the minimum TMS intensity (in percentage of maximum
stimulator output) required to elicit only 5 of 10 MEPs with peak-to-
peak amplitudes equal to or above 0.5 mV, while the subject’s right hand
was relaxed and placed on the right side of the workspace. We set this
(relatively) high amplitude criterion for the RMT and stimulated at 110%
of this RMT to elicit MEPs on virtually every trial and to allow detection
of MEP suppression (Cantello et al., 2000) (supplemental Table S1, avail-
able at www.jneurosci.org as supplemental material).

Visual stimuli. Two types of visual stimuli were used as distractors:
balls and LEDs. The balls were 5-cm-diameter red foam spheres,
mounted on the end of 55-cm-long aluminum rods (stimulus arms). The
LEDs were 5 mm in diameter, green for the central go signal, and red for
peripheral distractors/fixations and the central “stop” LED.

A custom apparatus controlled stimulus delivery (see Fig. 1 A). Two
stimulus arms were mounted on rotating wheels positioned opposite the
subject and occluded from the subject’s sight. After a cue, the experi-
menter released one of the stimulus arms from its vertical position, and
the ball fell under gravity toward the workspace, entering the subject’s
field of view (see supplemental Videos 1, 2, available at www.jneurosci.
org as supplemental material). The ball traversed 	37 cm in 	100 ms
after becoming visible to the subject, having a mean velocity when
visible of 	370 cm/s, and stopped with minimal bouncing 	3 cm
above the workspace. The landing position of the ball was either
directly above the middle finger of the subject’s hand (near trials) or
30 cm laterally to the hand (far trials).

During their trajectories, the stimulus arms interrupted the beams of
two lasers, triggering pulses from two detectors mounted on the appara-
tus. The second laser was positioned to intersect the stimulus arm at the
point at which the distractor balls first became visible to the subject, thus
providing a precise timing signal for distractor ball appearance. The first
laser was positioned close to the start of the movement of the stimulus
arms and was used in experiments in which a stop signal or peripheral
visual cue was provided in advance of distractor ball appearance. The
time taken for the stimulus arms to pass between the two laser beams was
approximately constant, with a trial-to-trial timing range of �5 ms.

Additional apparatus. Two response buttons were firmly attached,
with the button facing rightward, 20 cm to the left and 15 cm to the right
of the visual midline, so that the middle finger of the subject’s hand in
both positions was 	17.5 cm from the midline. For experiments 2, 3, 4,
6, and S1, a small infrared camera was mounted 5 cm behind the central
fixation LED, allowing the experimenter to monitor the subject’s eye
position. A large ventilator was placed under the workspace near the
subject, providing constant background noise and airflow, minimizing
any acoustic and airflow artifacts induced by stimulus delivery. In pilot
experiments, blindfolded subjects were unable to determine the position
of balls with respect to their hand.

Design and procedure
Because the seven experiments differed in several respects from each
other, the general design and procedures are described here. For addi-
tional details, see Table 1, supplemental material (available at www.
jneurosci.org), and the individual section for each experiment in Results.

The two principal variables in every experiment were the position of
the right hand (on the left or right of the workspace, in separate, coun-
terbalanced blocks), and the position of the distractor stimulus (left or
right of the workspace, pseudorandomized trial-by-trial). Additional
variables for each experiment are detailed in Table 1. Subjects performed
a short (10 –20 trials) practice session before each experiment.

Trials began with the illumination of the central fixation LED, on
which subjects fixated for the duration of the trial. To maintain subjects’
attention during stimulation and to ensure that hand movement was
task-relevant, subjects performed a speeded abduction of their right in-
dex finger, pushing a button in response to the target, which was a brief

Table 1. Experimental conditions

Trial proportion (%)

Experiment N Blocks
Trials per
block

Hand position
(L/R)

Distractor position
(L/R/none)

Task
(go/stop/stay) TMS time point(s) Comments

(1) Time course 10 4 50 50/50 50/50/0 100/0/0 40, 60, 80, 100, 120 —

(2) Eye position 10 2 60 50/50 40/40/20 100/0/0 70, 80 (75)a Two fixation positions (L/R); eye monitoring

(3) Go/stop balls 11 (10b) 4 72 50/50 33/33/33 75/25/0 70, 80, 90, 100, 110, 120; (80, 110)c Eye monitoring

(4) Go/stop LEDs 10 (9b) 4 72 50/50 33/33/33 75/25/0 70, 80, 90, 100, 110, 120; (80, 110)c Eye monitoring

(5) Go/stay balls/LEDs 10 4 48 50/50 25/25/0d 50/0/50 70 Behavioral data analyzed

(6) Selectivity 6 4 60 50/50 50/50/0 100/0/0 65, 70, 75, 80, 85 MEPs from FDI and ADM; eye monitoring

(S1) Exog. attention 10 2 60 50/50 50/50/0 75/0/25 70, 80, 75e Run with experiment 2; eye monitoring

N, Sample size; L, left; R, right.
aNo-distractor trials.
bOne dataset from experiment 3 discarded because of insufficient valid trials; one dataset from experiment 4 lost because of hardware failure.
cStop trials.
dPer distractor type (balls, LEDs).
eStay trials.
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(130 ms) offset of the fixation LED. In trials with a distractor ball, the
offset of the fixation was simultaneous with the appearance of the ball,
triggered by the interruption of the second laser beam (see supplemental
Videos 1, 2, available at www.jneurosci.org as supplemental material).
Targets and distractors were presented 3–5 s after trial onset (see Fig. 1 B).
A single pulse of TMS was applied, at different time points (between 40
and 120 ms) after distractor appearance, over the hand area of the sub-
ject’s left primary motor cortex. In trials with distractor LEDs, one of two
LEDs, positioned underneath the endpoint of the trajectory of each ball
was illuminated for 130 ms simultaneously with the go signal. On these
trials, and on other trials without distractor balls, the timing of the go
signal was determined by using the distribution of target delays with
respect to trial onset from experiment 1. These had an approximately
uniform rectangular distribution between 750 and 1500 ms.

Analysis
Data analysis was performed with custom software written in Matlab
(available at http://www.neurobiography.info).

MEPs. The peak-to-peak MEP amplitude was determined automati-
cally by finding the minimum and maximum values within a search
window, starting 	20 ms and ending 	70 ms after TMS. In all cases,
individual MEPs were visually inspected and rejected if they were con-
taminated with a voluntary contraction or large fluctuations in the base-
line before the TMS pulse. MEP amplitudes �0.25 mV were discarded as
being indistinguishable from baseline. A mean � SE of 10.5 � 2.1% of
trials across experiments was discarded because of outlying reaction
times (RTs) (�150 or 
1500 ms), noisy EMG background, or the ab-
sence of MEPs.

To rule out the possibility that differences in MEP amplitude were
attributable to differences in RT for near and far trials, we regressed out
the effect of RT on MEP amplitude and report here only the corrected
MEP amplitudes (additional data are provided in supplemental Ta-
bles S2 and S3, and supplemental material, available at
www.jneurosci.org).

To correct for between-subject differences in baseline MEP amplitude
(e.g., because of electrode placement or muscle size), peak-to-peak MEP
amplitudes were standardized with respect to the mean MEP amplitude
on no-ball trials (collapsing across hand positions), separately for each
subject and TMS time point. In experiments in which a no-ball condition
was not performed (experiments 1, 5, 6, and S1), the mean MEP ampli-
tude across both near and far conditions was used for standardization
purposes (supplemental Tables S2, S3, available at www.jneurosci.org as
supplemental material). The effects of these standardization proce-
dures on the statistical significance of the reported results were min-
imal (supplemental Table S3, available at www.jneurosci.org as
supplemental material).

EMG. EMG data were rectified and the mean EMG baseline activity
was compared statistically between experimental conditions, to verify
that changes in the baseline EMG activity did not confound our results
(supplemental Table S4, available at www.jneurosci.org as supplemental
material). We also extracted the onset of voluntary EMG activity, defined
as the first point after MEP offset at which the mean EMG over the next
10 ms was �3.09 SD above baseline (Hodges and Bui, 1996). These
onsets were used to determine EMG “twitches” in experiment 5b.

Statistical analysis. We used separate two-tailed t tests, rather than
omnibus ANOVAs, to test novel hypotheses (e.g., experiments 1, 4, 5,
and S1) for two reasons: (1) Since MEPs were standardized for each TMS
time point separately, pooling across near and far distractor conditions,
there could not be a main effect of TMS time point; (2) in experiments
without a separate baseline, data from near and far conditions were not
independent. In these cases, the near data were compared against the null
hypothesis of 1.0. In other cases, near and far conditions were compared
directly. For experiments 2, 3, and 6, we tested one-tailed hypothesis-
driven predictions concerning differences between the effects of near and
far distractors, using t tests and planned comparisons. To protect against
false positives, we used a Bonferroni correction for multiple compari-
sons. Throughout this manuscript, corrected p values are reported. In
addition, we performed numerous bootstrapping and resampling proce-
dures to construct null distributions for each of the critical reported

comparisons. In every case, this bootstrapping procedure supported the
inferences derived from the t tests, so we report only the standard para-
metric tests in this manuscript. The bootstrap statistics are presented in
supplemental Table S6 (available at www.jneurosci.org as supplemental
material). Additional details of the methods are available in supplemen-
tal material (available at www.jneurosci.org).

Results
Experiment 1: early hand-centered modulation of
corticospinal excitability
We first determined whether and when corticospinal excitability
was modulated as a function of the distance of a rapidly ap-
proaching three-dimensional visual distractor ball with respect to
the subject’s hand (experiment 1). Subjects made a speeded right
index finger abduction movement in response to a central go
signal (the offset of the central fixation LED) while a distractor
ball appeared, approaching the workspace on the left or right side
(Fig. 1; supplemental Videos 1, 2, available at www.jneurosci.org
as supplemental material). On one-half of the trials within each
block, and unpredictably, the distractor ball fell near to the sub-
ject’s hand, and in the other one-half it fell far from their hand.
The go signal was simultaneous with, and triggered by, the ap-
pearance of the distractor ball. The subjects were instructed to
ignore the distractor stimuli and respond only to the target. We
found no significant differences between near and far trials with
respect to behavioral performance [supplemental Table S2
(available at www.jneurosci.org as supplemental material) shows
RT, error, and d� data across all seven experiments].

For 10 subjects, TMS was applied at five time points (40 –120
ms, in 20 ms intervals) after the appearance of the distractor ball
(Table 1, experiment 1). This enabled us to measure corticospinal
excitability over most of the interval between the appearance of
the ball and the very earliest voluntary EMG responses.

Across all TMS time points, the mean MEP amplitude for
trials with near distractor balls (standardized mean � SE ampli-
tude, 0.973 � 0.011) was significantly lower than for trials with
far distractor balls (1.027 � 0.011; t(9) � 2.41; p � 0.039). Con-
sidering each time point separately, the effect of distractor ball
distance was significant only at 80 ms after distractor appearance
[t(9) � 4.08; p � 0.014, comparing the mean of near distractor
ball trials (mean � SE, 0.91 � 0.022) against 1.0, and after cor-
recting for five comparisons] (Fig. 2A). For the other four time
points, no significant effects were found, suggesting a return to
baseline (i.e., no differences between near and far distractor balls)
within 20 ms. Within the 80 ms TMS time point, when the hand
was on the left of fixation, distractor balls appearing on the left
resulted in smaller MEPs than distractor balls appearing on the
right, and vice versa for the right hand position (interaction be-
tween distractor ball position and hand position; F(1,9) � 16.63;
p � 0.003) (Fig. 2B). That is, balls approaching near the hand
reduced corticospinal excitability compared with balls falling
far away. These results demonstrate a significant modulation
of corticospinal excitability at 80 ms after visual stimulation,
which is consistent with a hand-centered coding of the ap-
proaching objects.

Experiment 2: hand-centered coding of approaching objects is
independent of eye position
We next examined whether corticospinal excitability during re-
sponse preparation is also modulated by the distance of the
distractor ball from the location of subjects’ visual fixation, or
rather is fixed predominantly in hand-centered coordinates,
similarly to certain neuronal populations in macaque premotor
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and parietal cortices (Graziano et al.,
1994, 1997; Fogassi et al., 1996, 1999; Gra-
ziano, 1999).

With another group of 10 subjects, we
repeated the experimental design de-
scribed above, with some modifications
(Table 1, experiment 2). Rather than
maintaining fixation centrally throughout
the experiment, at the beginning of each
trial, one of two fixation LEDs was illumi-
nated, pseudorandomly either on the left
or on the right side of the workspace,
underneath the end of the left and right
distractor ball trajectories, respectively.
Thus, in one-half of the trials with a dis-
tractor ball, the ball appeared peripher-
ally, on the opposite side to the visual
fixation position, whereas in the remain-
ing trials, the ball appeared parafoveally,
on the same side as visual fixation. Based
on the results of experiment 1 (i.e., a sig-
nificant effect at 80 ms and a nonsignifi-
cant trend at earlier time points), two
TMS time points were tested, at 70 and 80
ms after distractor ball appearance.

We predicted a significant reduction of
corticospinal excitability when the dis-
tractor ball fell near to compared with far
from the hand (i.e., in a hand-centered
manner) and that this hand-centered rep-
resentation would be found regardless of
the distance of the distractor ball from the
fixation position. We used one-tailed
planned comparisons for these hypothesis-
driven predictions.

A significant effect was found for the
70 ms TMS time point, in which, as pre-
dicted, and in accordance with the re-
sults of experiment 1, the mean MEP
amplitude for near-hand distractor ball
trials (mean � SE amplitude, 0.936 �
0.045) was significantly lower than for far-
hand distractor ball trials (1.013 � 0.034;
F(1,9) � 3.79; p � 0.020) (Fig. 3). There
was also a weak (power, 0.259) and non-
significant trend toward an effect of fixa-
tion position, with smaller MEPs for trials
with distractor balls presented on the
same side as visual fixation, compared
with on the opposite side (0.954 � 0.042
vs 0.995 � 0.035, respectively; F(1,9) �
2.35; p � 0.080). Note that fixation posi-
tion was manipulated orthogonally to
hand position. There was no effect of dis-
tractor ball distance at the 80 ms time
point, possibly indicating that the hand-
centered effect is maximal at 70 ms after
visual presentation or that there is some
variability between subjects (see experi-
ment 6). These results suggest that, 70 ms
after the presentation of a visual distrac-
tor, corticospinal excitability reflects the
coding of visual objects primarily with re-

Figure 1. General experimental setup and design. A, Experimental setup. B, Time course. Subjects positioned their right

hand 17.5 cm to the left (shown in A) or right of the central fixation LED. They were instructed to respond to a transient (130

ms) offset of the fixation LED by abducting their right index finger to push a button (black square) while ignoring the

distractor ball (red sphere). The distractor ball appeared simultaneously with the go signal, approaching a position pseu-

dorandomly either on the left or right (shown in A) of fixation. Between 40 and 120 ms after the appearance of the

distractor ball, a single pulse of TMS was delivered to the hand area of the left hemisphere primary motor cortex, eliciting

a MEP in the right FDI muscle.

Figure 2. Rapid modulation of corticospinal excitability by visual stimuli in hand-centered coordinates. A, Mean � SE

peak-to-peak MEP amplitude for near (dark gray) and far (light gray) distractor balls across five TMS time points (40 –120

ms). Early after distractor onset (40 – 80 ms), mean peak-to-peak MEP amplitude in trials with near distractor balls was

lower compared with trials with far distractors, but this difference was significant only at the 80 ms time point (*p � 0.05).

The near condition was tested against 1.0, and p values were corrected for five comparisons. B, Mean � SE peak-to-peak

MEP amplitude for distractor balls presented to the left and right of fixation for the two hand positions separately, at the 80

ms time point. The difference between peak-to-peak MEP amplitudes for left and right distractor balls reversed when the

position of the right hand shifted from left (filled circles) to right (open circles). This pattern was reflected in a significant

interaction between hand position and distractor ball position. The asterisks denote statistical significance of the interac-

tion between hand and ball positions, as evaluated with ANOVA (**p � 0.01).
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spect to the distance from the hand and does so independently
from any potential contribution of visual fixation position.

Experiment 3: near distractor balls suppress corticospinal
excitability during response preparation
The first two experiments provided evidence for decreased corti-
cospinal excitability after presentation of approaching visual dis-
tractor balls near to compared with far from subjects’ hands. We
hypothesized that this early reduction reflects the proactive inhi-
bition of an undesirable response (Koch et al., 2006; Mars et al.,
2007; van den Hurk et al., 2007; van Elswijk et al., 2007), such as
an avoidance movement elicited by the approaching ball. We
therefore measured the effect of voluntary inhibition of the mo-
tor response at the time of distractor presentation (Coxon et al.,
2006, 2007) to examine whether this would suppress MEP ampli-
tudes to a similar level as found with near distractor balls. Addi-
tionally, we included a no-distractor “baseline” condition to
assess whether near balls decrease, or else far balls increase, cor-
ticospinal excitability. For this purpose, we repeated the basic
design of experiment 1 with a different group of 10 subjects (Ta-
ble 1, experiment 3). This time, 25% of the trials contained a
central red stop signal, presented randomly 200 –300 ms before
the go signal, instructing subjects to inhibit their response to the
upcoming go signal. We also included trials (33%) in which no
visual distractor was presented (“no-ball” control trials).

We predicted that a process of proactive inhibition by near
distractor balls should result in the following: (1) lower MEP
amplitudes for near trials at early TMS time points (70 –90 ms),
compared with both far and with no-ball trials; (2) no differences
for late TMS time points (100 –120 ms) between either near and
far, or near and no-ball trials; and (3) no significant difference in
MEP amplitudes on near distractor trials between go and stop
conditions, for the early (70 –90 ms) TMS time points.

In the go trials when a distractor ball was presented, we again
found a hand-centered reduction of MEP amplitudes, with a sig-
nificant effect of distractor distance (near vs far), when averaged
across the early TMS time points (70 –90 ms; near, 0.954 � 0.025;
far, 1.011 � 0.016; t(9) � 2.87; p � 0.037, corrected for two
comparisons) (Fig. 4), but not across the late TMS time points
(100–120 ms; t(9) � 1.75; p � 0.226). Looking separately at the 70,
80, and 90 ms TMS time points, only at 70 ms were there significantly
lower MEP amplitudes for near than far distractor trials (0.946 �
0.028 vs 1.036 � 0.038, respectively; t(9) � 3.07; p � 0.040, corrected
for three comparisons). This confirms that the reduction of cortico-

spinal excitability peaks at the 70 ms time point, and then dimin-
ishes, replicating the findings of experiment 2.

Furthermore, mean MEP amplitude for early TMS time
points on trials with near distractor balls was significantly re-
duced compared with no-distractor control trials (t(9) � 1.89;
p � 0.046, compared against 1.0), whereas MEPs for trials with
far distractor balls were not significantly different from no-ball
trials (Fig. 4). These results show that MEP amplitudes were re-
duced for the near condition, and not enhanced for the far con-
dition, extending the results of experiments 1 and 2.

Additional support for the early suppression of corticospinal
excitability after near distractor balls is provided by comparison
of MEP amplitudes between stop trials in which subjects were
instructed to inhibit their motor responses before ball appear-
ance, and go trials with either near or far distractor balls. For early
TMS time points, mean MEP amplitudes on stop versus go trials
with near distractor balls did not differ significantly (t(9) � 0.54;
corrected p � 1, with a statistical power of 0.82, based on the
effect size of the near vs far go conditions for the early TMS time
points) (Fig. 4). This was not the case when comparing MEP am-
plitudes between go and stop trials for far distractor balls (t(9) � 2.85;
p � 0.038, corrected for two comparisons).

Finally, MEP amplitudes on stop trials were not significantly
different between near and far distractor ball trials, either for the
early or the late TMS time points (Fig. 4). That is, after voluntary
inhibition of motor responses, we did not detect any hand-
centered modulation of MEP amplitudes. We cannot, however,
definitively rule out the possibility that hand-centered modula-
tion may still exist in the stop trials but was not observed because
of possible floor effects on MEP amplitudes.

Although these results do not allow conclusions regarding the
precise mechanisms involved in these forms of inhibition, they
do at least support the hypothesis that an inhibitory process is
responsible for the decrease in corticospinal excitability after the
appearance of the near ball.

The data presented thus far provide clear evidence for the
suppression of corticospinal excitability after the presentation of
rapidly approaching three-dimensional visual stimuli near to rel-
ative to far from the hand. Together, these results might best be

Figure 3. Hand-centered modulation of corticospinal excitability by visual distractors is in-

dependent of eye position. Mean � SE peak-to-peak MEP amplitude with TMS delivered 70 ms

after distractor ball appearance shows a significant effect of distractor ball distance relative to

the hand (dark grays, near; light grays, far). MEP amplitudes were modulated primarily by the

distance of the distractor balls from the hand and less, and independently, by the distance from

visual fixation. The asterisk denotes statistical significance of planned comparisons using hand-

centered predictions (*p � 0.05).

Figure 4. Suppression of corticospinal excitability is found for distractor balls approaching

the hand, but not for static LED flashes. Mean � SE peak-to-peak MEP amplitude for near (dark

gray) and far (light gray) distractor balls (filled columns) and distractor LEDs (striped columns),

pooled over the 70 –90 ms TMS time points. When subjects responded to the go signal, peak-

to-peak MEP amplitudes were significantly suppressed by distractor balls approaching near to

compared with far from the hand, and also for near compared with control trials with no ball. No

such suppression was found when distractor LEDs (positioned at the end of the trajectories of

the balls) were illuminated instead of the approaching balls. When subjects voluntarily inhib-

ited their motor responses after a stop signal, no significant difference was found between MEP

amplitudes on near and far distractor trials, regardless of the distractor type. The asterisks

denote statistical significance of t tests between near and no-ball (*p � 0.05), and near and far

distractor ball trials (*p � 0.05, one-tailed corrected for two comparisons). n.s., Not significant.
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explained in terms of a form of response competition between the
ongoing go task and a newly emerging motor plan, elicited by the
approaching ball, possibly for an avoidance response. To exam-
ine this possibility further, we needed to establish that such effects
were not evident when the distractor was not a rapidly approach-
ing object.

Experiment 4: hand-centered coding of visual space is
observed with approaching balls, but not static LED flashes
We next determined whether the hand-centered suppression that
we identified after distractor ball presentation can be attributed
merely to the sudden occurrence of visual events near the hand.
We therefore repeated experiment 3 (with the additional stop
trials) on a different group of 10 subjects (Table 1, experiment 4).
This time, the moving distractor balls were replaced with static
distractor LEDs, positioned beneath the endpoints of the trajec-
tories of the balls. One of the distractor LEDs flashed for 130 ms,
simultaneously with the central go signal, either near to or far
from the responding hand. We predicted that corticospinal ex-
citability would not be modulated by the static visual distractor
LEDs. Specifically, we expected to find no reduction of MEP
amplitudes after presentation of distractor LEDs near to relative
to far from the hand.

Overall, the subjects’ percentage correct performance in this
experiment was similar to that of experiment 3 (98.2 � 0.6 vs
98.1 � 0.3% correct; d� � 3.71 � 0.03 vs 3.79 � 0.06, respec-
tively). No significant differences in performance were found
with respect to the distance of the distractor LED from the hand,
the trial type (go vs stop), or between the two experiments. Re-
garding the MEP amplitudes, as predicted, we found no differ-
ence between near and far distractor LED trials, both for early and
late TMS time points (Fig. 4). Furthermore, and contrary to the
results of experiment 3, significantly smaller MEPs were found on
stop compared with go trials with near distractor LEDs, specifi-
cally for early TMS time points (t(8) � 3.47; p � 0.017, one-tailed,
corrected for two comparisons).

These results are similar to certain results from neurophysio-
logical studies of bimodal neurons in premotor cortex, which
showed visual selectivity for three-dimensional objects ap-
proaching toward and receding from the hand, and lower re-
sponses to static or two-dimensional visual stimuli (Graziano et
al., 1997).

Experiment 5a: behavioral indices show hand-centered
response inhibition for approaching balls, but not for
static LEDs
Additional support for the inhibition of motor responses in a
hand-centered reference frame derives from behavioral error
rates in a “go/stay” task. This experiment was conducted with a
different group of 16 subjects (Table 1, experiment 5). In this
experiment, on 50% of the trials the go signal did not appear.
Subjects were instructed to respond as quickly as possible, only
on go trials, and to withhold responses when the go signal was not
presented (“stay”). A visual distractor, which was pseudoran-
domly either moving (a ball) or static (an LED), was presented on
every trial, either near to or far from the responding hand. TMS
pulses were applied to the motor cortex contralateral to the re-
sponding hand. The MEP data are reported in the following sec-
tion (experiment 5b).

On go trials, performance with near distractor balls was sig-
nificantly worse than on trials with far distractor balls (92.9 � 1.3
vs 97.3 � 1.0% correct, respectively; t(15) � 3.02; p � 0.017,
two-tailed, corrected; d� � 3.16 � 0.09 vs 3.51 � 0.07, respec-

tively; t(15) � 3.16; p � 0.013, two-tailed, corrected for two com-
parisons). As presented in Figure 5A, when a ball approached the
responding hand, subjects were more likely not to respond (i.e.,
there were more missed responses) than when the ball appeared
far from the hand. The effects were similar for both left ( p �
0.003) and right hand positions separately ( p � 0.07). In con-
trast, performance with near and far distractors on stay trials did
not differ significantly (96.0 � 1.1 vs 97.1 � 0.9%; d� � 3.30 �
0.06 vs 3.35 � 0.12, respectively).

This hand-centered modulation of behavioral performance
was also selective for approaching balls, compared with static
flashing distractors. Overall, performance was nearly identical
between trials with distractor balls (95.8 � 0.5% correct; d� �
3.33 � 0.06) and LEDs (95.9 � 0.6% correct; d� � 3.33 � 0.08).
Contrary to what was found for balls, however, no differences were
found between near and far distractor LEDs on go trials (Fig. 5B).

These results converge with the MEP data obtained from ex-
periment 4, which showed that the decrease in corticospinal ex-
citability during response preparation is selective for a ball
approaching the hand and is not merely attributable to sudden
visual changes near the hand in the peripheral visual field. Since
the ball and LED distractors differed in several respects (e.g., size,
luminance), it is impossible at present to establish definitively
which aspects are critical for driving the hand-centered suppres-
sion that we report here. However, we found no behavioral evi-
dence (i.e., in RT, percentage correct, or d� measures) to suggest
that the two distractor types varied in salience (which might be
expected to affect behavioral performance) (see also supple-
mental Table S2, available at www.jneurosci.org as supple-
mental material).

Experiment 5b: hand-centered enhancement of corticospinal
excitability with response uncertainty
We suggest that our results thus far may best be explained in
terms of proactive inhibition during an action selection process:
to perform the go task as rapidly and successfully as possible, any
avoidance response evoked by the approaching ball needs to be
inhibited. According to this account, if subjects were not able
sufficiently to prepare a motor response before the appearance of
the go signal, the effects of proactive inhibition would not be
observed. To test this directly, we used the go/stay task in which,
while a distractor appeared on every trial (either a ball or an
LED), the go signal appeared on only 50% of the trials (as de-
scribed above) (Table 1, experiment 5). In this way, we intro-

Figure 5. Behavior demonstrates selective response inhibition by distractor balls approach-

ing the hand. Mean � SE percentage of “hits” for distractor balls (A) and LEDs (B) presented to

the left or right of fixation, separately for the two hand positions (filled circles, left; open circles,

right). When the probability of responses on each trial was 0.5 (i.e., a go signal appeared in only

one-half of the trials), subjects were prone to inhibit their response to the targets (i.e., to miss)

with a concurrent near distractor ball. No such hand-centered modulation of performance was

evident with static LED distractors. The asterisk denotes significance of the interaction between

hand position and ball position (*p � 0.05, two-tailed corrected for two comparisons).
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duced a substantial degree of response uncertainty, forcing
subjects to adopt a more conservative response preparation strat-
egy. Subjects were encouraged to perform the task quickly and to
refrain from making errors, both misses and false alarms.

Two hypotheses were entertained: first, it is possible that,
when no motor response is prepared, there should be no differ-
ence between MEP amplitudes on near and far trials, regardless of
the visual distractor type (moving ball vs static LED) or response
type (go vs stay). Second, in the absence of any preparation to
push the response button, the avoidance movement elicited by
the approaching ball would remain unchallenged by any compet-
ing responses. This might result in greater MEP amplitudes on
near relative to far ball go trials. For this experiment, TMS was
delivered 70 ms after the appearance of the distractor. Since this
experiment was designed to test both a negative (i.e., no differ-
ence between near and far ball trials with response uncertainty)
and a positive prediction (MEP enhancement with near vs far
balls), we used a larger group of subjects (n � 16; power � 0.998,
based on the near vs far effect size for the 80 ms TMS time point
of experiment 1).

Contrary to the first hypothesis, and consistent with the sec-
ond, the TMS results continued to support the notion of hand-
centered modulation of MEP amplitude for the go ball trials only.
This was demonstrated by a significant effect of distance from the
hand for the distractor balls (t(15) � 2.58; p � 0.042, two-tailed,
corrected for two comparisons), but not for the LEDs. Further-
more, the MEPs were now larger for the near ball trials (1.044 �
0.019), compared with the far ball trials (0.992 � 0.022). No such
trend was found for the stay trials. That is, with no advanced
response preparation, MEP amplitude may now reflect the addi-
tional excitatory effects of the distractor ball approaching the
hand (i.e., a potentially avoidance-related response), early in the
process of response selection.

This interpretation is further supported when we focus, post
hoc, on the trials in which subjects produced a voluntary EMG
response (here called a muscle “twitch”) (see supplemental ma-
terial, available at www.jneurosci.org) after the MEP, compared
with trials in which no twitch was produced. This analysis was
performed regardless of MEP size, whether a response was re-
quired, or whether a button press was registered. Within these
twitch trials, we found a significant increase of MEP amplitudes
for near compared with far trials, and specifically for the distrac-
tor balls (t(15) � 3.13; p � 0.014, two-tailed, corrected for two
comparisons) (Fig. 6A), but not for the LEDs. Importantly, this
result did not depend on differences in EMG baseline activity
before the MEP (supplemental Table S4, available at www.
jneurosci.org as supplemental material). By sharp contrast, on
trials in which no voluntary EMG response occurred, there were
no significant effects of distractor distance, either for balls or
LEDs. This finding provides direct support for our interpretation
of proactive inhibition during response selection: when compe-
tition between the avoidance and the go responses was eliminated
or, at least, desynchronized, the hand-centered suppression of
MEP amplitudes was reversed and became hand-centered en-
hancement, specifically on those trials in which the hand was
most ready to respond.

Additional evidence for the enhancement of MEP amplitudes
for “near” trials during response uncertainty is provided in ex-
periment S1, reported in supplemental material (available at
www.jneurosci.org). This experiment additionally demonstrates
that any contribution of exogenous attentional orienting cannot
be solely responsible for the hand-centered coding of approach-
ing objects reported here.

Experiment 6: precise time course and muscle specificity of
hand-centered coding of approaching objects
An additional experiment was run to answer questions concern-
ing the precise time course of the hand-centered modulation of
corticospinal excitability. Specifically, across the replications of
our basic finding, slight differences arose in latency between the
80 ms (experiments 1 and S1) and the 70 ms time points (exper-
iments 2, 3, and 5b). We hypothesized that the hand-centered
effect starts or peaks at 	70 ms and has a duration of 	10 –20 ms,
perhaps with some intersubject variability in its time course. For
this reason, the effect may also be seen at 80 ms after ball
appearance.

To test this hypothesis, we repeated experiment 1 with a new
group of six subjects, with several minor adjustments (see sup-
plemental material, available at www.jneurosci.org). First, we
used five TMS time points between 65 and 85 ms after ball ap-
pearance, in 5 ms intervals. Second, we recorded MEPs from both
the FDI and the abductor digiti minimi (ADM) muscles. We
hypothesized that the excitability of the ADM, which is not di-
rectly involved in the task-related index finger abduction re-
sponse, should not be in competition with any responses elicited
by the approaching ball, and therefore should not show hand-
centered suppression of MEP amplitudes, contrary to the FDI.

The mean MEP amplitudes across the high-resolution time
course are presented in Figure 7. As predicted, we observed the
greatest effect of distractor ball position on MEP amplitudes at
the 70 ms time point, in which MEP amplitudes were again sig-
nificantly smaller for near (mean � SE, 0.862 � 0.053) compared
with far trials (t(5) � 2.64; p � 0.023, comparing the mean of near
distractor ball trials against 1, one-tailed). The mean MEP ampli-
tude pooled across the 70, 75, and 80 ms time points was also
significantly lower than one, suggesting that the effect endured
for as long as 10 ms. The time course of the effect in individual
subjects confirmed this suggestion, with each subject showing at
least a 7% suppression of MEP amplitudes for near compared
with far trials of at least two adjacent time points (i.e., of 	10 ms),
typically at 70 – 80 ms after ball appearance.

In the ADM, no significant differences were found between
the near and far conditions at any of the five time points (all
values of p � 0.49) nor did we observe any clear trends across the
time course (supplemental Fig. S2, available at www.jneurosci.
org as supplemental material). This result should be interpreted

Figure 6. With response uncertainty, late muscle activation predicts hand-centered en-

hancement of MEP amplitude by approaching balls. Mean � SE peak-to-peak MEP amplitude

for distractor ball trials in which a voluntary EMG activity onset (twitch) was recorded after the

MEP (A) and for trials in which no late muscle activation was recorded (B). On the EMG twitch

trials, near distractor balls elicited greater MEP amplitudes, compared with far distractor balls,

both in the left and the right hand positions. Importantly, this was not the case for the left and

right no twitch trials. The asterisks denote statistical significance of the interaction between

hand position and ball position, as evaluated with ANOVA (**p � 0.01, corrected for two

comparisons).
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with some caution, however, given the relatively small number of
subjects and the fact that MEPs were not elicited from one
subject’s ADM muscle. However, given that we found a signif-
icant effect in the FDI in the same group of subjects, even after
excluding all the data of the subject without MEPs in the ADM
( p � 0.039), this result further strengthens our interpretation of
proactive inhibition during response selection at 70 – 80 ms after
distractor ball appearance.

Discussion
In the current study, we provide direct evidence for hand-centered
coding of approaching visual stimuli during motor preparation.
Such a coding was manifested in modulations of corticospinal excit-
ability evoked by presenting three-dimensional visual distractors
rapidly approaching subjects’ hands. These hand-centered effects
were repeatedly observed across independent experiments, oc-
curred when the responding hand was positioned both on the left
and on the right of the body midline (Figs. 2, 6, 7), regardless of
visual fixation position (Fig. 3), and were dependent on motor
response preparation. Furthermore, they did not occur for static
distractors (Fig. 4), suggesting that this hand-centered modula-
tion may be specific for potentially aversive approaching distrac-
tors, although the latter point awaits confirmation by future
studies.

The latency at which visual spatial information began selec-
tively to influence corticospinal excitability was 70 ms after ball
appearance, with an effective duration of as short as 10 ms. In this
narrow time window, hand-centered processing of visual infor-
mation had already occurred, even while the visual distractor ball
was still falling toward the hand, highlighting the rapidity of the
hand-centered coding of visual space identified here.

Proactive inhibition of avoidance movements during
response selection
In our study, when a go response was required on every trial and
the subjects were able to prepare the appropriate response (i.e.,
pushing the response button) in advance, a distractor ball ap-
proaching near the hand reduced corticospinal excitability at
70–80 ms after ball appearance (experiments 1, 2, 3, and 6) (Figs.
2–4, 7). This reduction may reflect the inhibition of an avoidance-
related motor plan, which automatically emerges only when the
ball approaches the responding hand (experiment 3) (Fig. 4).
Indeed, flexible motor behavior requires the ability to inhibit one
movement while concurrently executing another (i.e., selective

inhibition) (Coxon et al., 2007). Such inhibition can be effective
to suppress undesirable movements not only after they have been
initiated but also proactively before any EMG response is released
(Boulinguez et al., 2008).

Numerous TMS studies have shown suppression of MEP
amplitude during instructed delay periods (foreperiods),
which serves to hold back the premature execution of re-
sponses (Hasbroucq et al., 1997, 1999a,b; Touge et al., 1998;
Davranche et al., 2007). Similarly, during response selection,
MEP amplitudes are suppressed for the nonprepared effector and
increased for the prepared response (Koch et al., 2006; van
Elswijk et al., 2007), but only when sufficient foreperiod infor-
mation about the response was available to the subjects (Mars et
al., 2007; van den Hurk et al., 2007). Likewise, in our study, the
reduction of corticospinal excitability by the distractor was
evoked only when both advance preparation was possible, and
when an approaching, potentially aversive distractor was used.
When response uncertainty was introduced, such that the go
response could not confidently have been prepared in advance,
and a temporal offset was therefore created between the task-
related and the avoidance responses, corticospinal excitability
was enhanced for active trials in which the ball approached near
the responding hand (experiments 4 and S1) (Fig. 6; supplemen-
tal Fig. S1, available at www.jneurosci.org as supplemental mate-
rial). Conversely, for a muscle that did not participate in the
preparation for the go response (i.e., the ADM), no hand-
centered modulation of corticospinal excitability was observed.
In other words, when competition between the avoidance and go
responses is eliminated (or temporally desynchronized), no sup-
pression of the avoidance response is required, and an active
component of the avoidance movement may be revealed in the
MEP amplitude. Our results therefore indicate an interaction
between the motor consequences of the rapid visual processing of
objects approaching the hand and the voluntary task-related mo-
tor plans for that hand.

Mechanisms underlying rapid visual modulation of
corticospinal excitability
Threat-induced freezing
The early onset of corticospinal modulations in the present study
(70 – 80 ms after the appearance of the ball) reflects the very
rapid transformation of visuomotor information. One possi-
ble framework within which to interpret our results could be
threat-induced startle or freezing responses. A recent functional
magnetic resonance imaging study (Butler et al., 2007) reported
decreased activity in bilateral primary motor cortex during peri-
ods in which subjects expected to receive painful stimuli (com-
pared with a condition without pain expectation). Using TMS,
Cantello et al. (2000) found a significant reduction of corticospi-
nal excitability at 55–75 ms after the onset of unexpected, sudden,
and very bright task-irrelevant light flashes. Similar results were
reported after the presentation of electrical shocks (Maertens de
Noordhout et al., 1992) or loud auditory stimuli (Furubayashi et
al., 2000). Pain-inducing stimulation to the hand also causes im-
mediate (Urban et al., 2004) and long-lasting (Farina et al., 2001;
Svensson et al., 2003) decreases of corticospinal excitability for
distal arm muscles. Furthermore, MEPs were inhibited at later
stages of processing (
1 s after stimulus presentation) when sub-
jects passively viewed movies of painful simulation applied to
specific muscles on a model (Avenanti et al., 2005). It has been
suggested that such inhibition may act as a sort of motor “decer-
ebration,” allowing the spinal motor system freely to develop pro-
tective responses after noxious stimulation (Farina et al., 2003).

Figure 7. Hand-centered modulation of corticospinal excitability by approaching balls:

high-resolution time course. Mean � SE peak-to-peak MEP amplitude for near and far distrac-

tor balls across five TMS time points, at 5 ms temporal resolution (65– 85 ms). The captions are

as in Figure 2. The asterisk denotes statistical significance of one-tailed t tests between the near

condition and the null hypothesis of 1.0 (*p � 0.05).
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We believe that the results described in the studies mentioned
above do not directly correspond with our findings, and that
pain- or startle-related inhibition cannot explain the results we
report here, for two reasons. First, it cannot explain the reversal of
the direction of hand-centered modulation when subjects could
not confidently prepare a response in advance. Second, the
time course of startle-related inhibition based on TMS studies
(Cantello et al., 2000) just precedes the corticospinal modula-
tions reported here, which are restricted to 70 – 80 ms after dis-
tractor ball appearance. Furthermore, Cantello et al. (2000) did
not provide (or search for) evidence for any hand-centered
mechanisms, so any direct links with our results remain specula-
tive. We therefore propose that, although fear-induced startle
might play some role in the mechanism under investigation, our
hand-centered modulation represents a later stage of selection
between an appropriate avoidance/defensive response and the
task-related response.

Cortical mechanisms
Numerous cortical areas have been shown to modulate cortico-
spinal excitability and may therefore contribute to the results
reported here. These include the primary somatosensory area
(Avenanti et al., 2007), posterior parietal areas, and the premotor
cortex (for review, see O’Shea et al., 2008).

Cooke and Graziano (2003) studied macaque muscle activity
during defensive movements evoked by aversive cutaneous stim-
ulation. They distinguished between startle-related EMG activity
occurring as early as 	20 –30 ms after stimulus onset and later
muscle activity starting 	70 ms after stimulus onset [Cooke and
Graziano (2003), their Fig. 2C]. Only the latter activity was spa-
tially specific to the muscles involved in the defensive response.
Very similar motor responses were evoked by electrical macro-
stimulation of bimodal regions of the premotor cortex (Graziano
et al., 2002). Indeed, M1 and the premotor cortex are densely
interconnected, both in humans and in monkeys (Shimazu et al.,
2004; Dum and Strick, 2005; Koch et al., 2006; O’Shea et al., 2007;
Davare et al., 2008). The modulation of MEP amplitude with
respect to approaching balls that we report here may therefore
reflect ongoing activity in the premotor cortex.

Some premotor neurons are active after visual stimulation at
time periods similar to the ones we have described and are
thought to encode the significance of visual cues for response
selection (Cisek and Kalaska, 2005). In humans, the premotor
cortex has been shown to participate in the visuomotor transfor-
mations required to configure hand posture with respect to ob-
jects (Davare et al., 2006). Furthermore, recent studies have
shown a direct influence of premotor over primary motor cortex
as early as 75 ms after a go signal (Koch et al., 2006; O’Shea et al.,
2007). Although any comparisons between data drawn from
monkeys and humans, and using such different methods, should
be made with caution, given the timing and the spatial specificity
of the above responses with respect to visual events, these mech-
anisms fit very well with our results and suggest the involvement
of human premotor areas with the hand-centered coding of vi-
sual space. Following Band and van Boxtel (1999), we tentatively
suggest that one source of the hand-centered modulation that we
report may be the premotor cortex, the site of modulation may be
the primary motor cortex, and the modulation is manifested by
changes in MEP amplitudes (Band and van Boxtel, 1999).

Pruszynski et al. (2008) demonstrated rapid arm muscle re-
sponses that were sensitive to the direction and distance of visual
targets at 95 ms after a go signal. This timing fits very well with
our findings, assuming a 20 –25 ms conduction time between the

primary motor cortex and the intrinsic hand muscles. Pruszynski
and colleagues suggested that such rapid motor responses are
capable of all the sophistication attributed to voluntary control,
within the constraints of their limited processing time. Additional
research is required to determine the precise neurophysiological
mechanisms that might enable such rapid and sophisticated visuo-
motor spatial processing in the human brain.

Subcortical mechanisms
In monkeys, spinal interneurons have been shown to participate
in the control of movement during preparation periods, display-
ing both excitatory changes in the same direction as the subse-
quent movement-related activity, and inhibitory changes that
may reflect superimposed mechanisms suppressing muscular
output (Prut and Fetz, 1999). It is possible that the hand-centered
modulation that we observed reflects such subcortical movement
preparation, although it is important to note that, in our results,
the critical movement selection processes occurred based on the
position of the visual distractor ball relative to the responding
hand, so any candidate subcortical source of the reported modu-
lations of corticospinal excitability would have to have access to
such information.

Hand-centered visual space and attention
In our experiments, both near and far balls were distractors; how-
ever, it is possible that near distractors were more salient than far
distractors and that this somehow resulted in reduced levels of
corticospinal excitability. Such differences in salience could have
been the result of subjects covertly attending toward their re-
sponding hand, despite the instructions and the central visual
task. We addressed these concerns in several experiments.

First, when the balls were substituted with LEDs positioned
near and far from the hand, we found no significant hand-
centered modulations of corticospinal excitability (experiment
4) (Fig. 3) or of percentage correct performance (experiment 5)
(Fig. 5). Second, we manipulated subject’s overt attention, by
shifting their fixation between positions on the same or opposite
side as the impending distractor ball (experiment 2). When shift-
ing the fixation position with respect to the ball and hand posi-
tions, we found a small, but nonsignificant difference between
balls approaching the same side, and balls approaching the oppo-
site side of fixation (Fig. 3). At the same time, however, the dis-
tance of the ball from the hand (manipulated orthogonally and
independently from the distance from fixation) significantly
modulated corticospinal excitability. Finally, we used a cueing
paradigm to attract subjects’ exogenous covert visuospatial atten-
tion toward versus away from the distractor ball, just before its
appearance (experiment S1; supplemental Fig. S1A; supplemen-
tal material, available at www.jneurosci.org). Again, this manip-
ulation did not significantly modulate corticospinal excitability,
while the distance of the distractor from the hand remained most
effective (albeit marginally significantly), regardless of whether
subjects’ attention was cued toward or away from the hand (sup-
plemental Fig. S1B, available at www.jneurosci.org as supple-
mental material).

We therefore conclude that the role of overt and covert visuo-
spatial attention in the results that we report here is marginal, or,
at most, complementary, to the role of hand position. A rapid and
automatic hand-centered response to potentially aversive ap-
proaching visual stimuli is a better description of our results as a
whole.
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Conclusions
We demonstrate here that the human motor system is rapidly
informed about potential collisions between nearby objects and
specific body parts that are about to move. This specialized sys-
tem for transforming nearby sensory inputs into rapid and ap-
propriate motor outputs is ideally suited to serve as a
sensorimotor interface for driving defensive movements away
from potentially harmful approaching objects.
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HAND-CENTERED VISUAL SPACE 

S 1

SUPPLEMENTAL MATERIALS 

General methods 

Subjects

Healthy right-handed subjects (n = 23; 12 female; mean±s.e. age=29.9±1.3 

years, range=22-47 years; mean±s.e. handedness laterality 

quotient=88.1±1.7, range=38-100, Oldfield, 1971) were recruited from the 

local population of research staff and students, and gave their written, 

informed consent to participate. Over the course of twenty-five months, 

individual subjects participated in a mean±s.e. of 3.0±1.3 experiments 

(range=1-7), with a mean±s.e. duration between experimental sessions of 

108±26 days (range=3-598) (Supplemental Table S1). There were seven 

independent experiments, involving transcranial magnetic stimulation (TMS), 

and electromyographic (EMG) and motor-evoked potential (MEP) 

measurements. Behavioral data were extracted from one of the TMS 

experiments (Experiment 5a) and are presented separately from the MEP 

data (Experiment 5b) in the main text. Of the seven TMS experiments, five 

longer experiments were conducted on different days, and two shorter 

experiments were conducted in different blocks on the same day in the same 

subjects.

Additional apparatus, materials, & data acquisition 

PCs 

All stimulus presentation and response collection was controlled via the 

parallel port of one PC running in MS DOS and programmed using 

TurboPascal. This PC sent trigger signals to a second PC running the EMG 
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data acquisition software (‘EMG PC’). The EMG PC received 2 or 3 channels 

of input from a BioPac (http://www.biopac.com) data acquisition unit via the 

USB port. 

Apparatus 

A custom apparatus was built to control stimulus delivery. Two stimulus arms 

were mounted in a wooden frame (50 x 76 x 80cm depth x height x width) on 

a rotating wheel, attached to the far side of the frame from the subjects’ 

perspective. The side of the frame closest to the subjects was open, enabling 

the subjects to position their hand in the workspace. The upper half of the 

workspace was occluded from the subjects’ sight by a dark fabric curtain, 

determining the point of initial visibility of the arm-mounted balls when falling 

downwards (Figure 1, Supplemental Movie 1 and 2). 

An LED panel, mounted on the rear of the frame and invisible to the 

subject, was used to instruct the experimenter regarding the timing and 

position of 3D stimulus delivery.

Procedures

After giving informed written consent, subjects completed a handedness 

questionnaire (Oldfield, 1971), and the experimenter explained the task. The 

skin over the belly of the subjects’ first dorsal interosseus (FDI) muscle, the 

distal insertion of the muscle (the base of the forefinger), and at the styloid 

process of the ulna (the lateral bony protrusion at the wrist) of the right wrist 

was prepared, and an electrode was positioned at each site. A tight-fitting cap 

was placed on subjects’ heads. The distances along the axes between the 

inion and nasion, and between the tragi of the two ears were measured, and 
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the intersection of the two axes was defined as the vertex. The approximate 

expected location of the left primary motor cortex hand area was marked on 

the cap. One experimenter then began searching for the hand area of the 

motor cortex, using single pulses of TMS to elicit visible muscle contractions 

selectively in the FDI of the right hand. The second experimenter inspected 

the EMG trace and the MEPs. The position and orientation of the TMS coil 

and the intensity of the single pulses was varied to elicit reliable MEPs in the 

FDI (Supplemental Table S1).  

Throughout each experiment, the TMS coil was held in place by a 

mechanical arm and tripod, and one experimenter stood directly behind the 

subject, continuously monitoring the coil position, and correcting the position 

of the head and/or coil following any small (~2mm) head movements. The 

second experimenter controlled the hardware and stimulus presentation. If 

MEPs were not observed in two or three consecutive trials, the TMS coil was 

repositioned. Trials with absent MEPs (defined as a peak-to-peak amplitude 

of <0.25mV) were excluded during data analysis. 

Analysis 

MEP/EMG 

Offline, the data were segmented into 2s epochs, linear trends were removed 

with a high-pass filter, and MEP data were extracted. Following the end of the 

MEP, EMG data were rectified, and a number of parameters describing the 

EMG data were extracted: 1) The mean and standard deviation of rectified 

EMG between 30-60ms after trial onset (in Experiment 1, between 1-30ms), 

and; 2) The onset of voluntary EMG activity, defined as the first time-point 
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after the offset of the MEP for which the following 10ms had a mean EMG 

activity greater than 3.09 standard deviations above the baseline mean (i.e., 

where p<0.001) EMG activity (see Hodges and Bui, 1996). These parameters 

were chosen primarily for their robustness in ignoring any small spikes of 

EMG activity, which were not followed by full EMG responses. These same 

onset criteria were used to determine EMG ‘twitches’ in Experiment 5b. 

MEP pre-processing: Regressing-out the effect of RT on MEP amplitude 

The measurement of MEP amplitude reflects excitability of the corticospinal 

tract, and may therefore be affected by the motor responses that the subjects 

were performing in the task. Indeed, throughout the experiments, shorter RTs 

(faster responses) were associated with greater peak-to-peak MEP 

amplitudes (Supplemental Table S2). Importantly, this negative correlation 

between RT and MEP amplitude cannot explain our principal finding of 

smaller MEP amplitude for near, as compared to far ball trials: Since RTs 

were overall slightly shorter for near than far trials (Supplemental Table S2), 

they should therefore elicit larger MEP amplitudes than far trials, if RT was the 

only variable influencing MEP amplitude. Nevertheless, in order to reduce the 

influence of RT on MEP amplitudes, we regressed out the effect of RT on 

MEP amplitude, pooling the data across all conditions. This was done for 

each subject in each experiment, by adjusting the MEP amplitudes based on 

the slope of the regression of MEP amplitude on RT, as follows:  

rMEPi = MEPi + m( ( RT/n) – RTi)

where rMEPi = regressed MEP amplitude for trial i; MEPi = original 

MEP amplitude for trial i; m = slope of the regression of MEP on RT across all 

trials for this subject; RT/n = mean RT of this subject across all trials; RTi = 
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individual RT for trial i. As can be seen in Supplemental Table S3, this 

procedure increased the t-statistics and decreased the p-values for several of 

the near vs. far comparisons, but in no cases did this result in a ‘non-

significant’ effect becoming ‘significant’ or vice versa. 

‘Bootstrap’ analysis of main reported findings 

For each comparison reported in Supplemental Table S6, the data from the 

significant or principle condition of interest (e.g., the near distractor ball trials 

with TMS delivered at 70ms after distractor appearance) were compared 

against a null distribution. The null distribution was constructed by randomly 

sampling with replacement one data point per subject from all the data pooled 

across several conditions (e.g., pooled across the near and far distractor ball 

trials and across all TMS time-points). The mean across these (e.g., ten) data 

points was recorded, and the resampling process was repeated 10,000 times 

for each comparison of interest. The obtained means were given a 'p' value by 

counting the number of resampled means that were lower (or higher, 

depending on the prediction) than the actual mean from the null distribution, 

and dividing by 10,000. p-values lower than 0.05 were considered significant. 

All the raw data and the Octave/Matlab scripts used to run these resampling 

procedures are available from http://www.neurobiography.info.

Experiment 6 

The experimental design of Experiment 1 was repeated, with the following 

changes: A MagStim (Magstim Company Ltd.) Rapid2 stimulator was used 

and two pairs of Delsys bar electrodes, one attached to the FDI and another 

attached to the ADM, both on the right (responding) hand. The reference 



HAND-CENTERED VISUAL SPACE 

S 6

electrode was placed over the bone near the elbow (the olecranon process).

The position and orientation of the TMS coil, and the intensity of the single 

pulses, was optimised for each subject in order to elicit reliable MEPs both in 

the FDI and the abductor digiti minimi (ADM). The MEP peak-to-peak 

amplitude criterion for establishing the resting motor threshold (RMT) was 

reduced to 0.05mV, and during the experiment we stimulated at 117% of this 

RMT. Since the signal to noise ratio was higher, and the bar electrodes closer 

together using the new apparatus, the exclusion criterion for excluding MEPs 

as being indiscernible from the baseline was decreased to a peak-to-peak 

amplitude of 0.05mV for the FDI and 0.025mV for the ADM. One subject’s 

ADM data were excluded from the analysis, after discarding, or else failing to 

observe, MEPs from 67% of the trials. 
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Supplemental Results 

Experiment S1: Hand-centred coding of visual space is independent of 

visuospatial attention shifts 

It is possible that distractor balls approaching near the subjects’ hand were 

more salient visual stimuli, as compared with balls approaching the far

position, because subjects may have been selectively attending towards their 

responding hand or to the space nearby. One way to test this hypothesis 

would be to manipulate the location of subjects’ exogenous attention (e.g., 

Klein & Shore, 2000; van der Lubbe and Postma, 2005), either towards or 

away from the upcoming distractor ball, with the prediction that directing 

attention towards the distractor position should increase its salience, and 

therefore modify the hand-centred effect. For this final experiment, we used 

the same group of subjects as in Experiment 2, with a slightly modified 

experimental design (see Experiment S1, Table 1, and Supplemental Figure 

S1A): A peripheral cue (red LED) was illuminated 75ms before distractor ball 

appearance, either to the left or to the right of central fixation, with equal 

probability for each position. The ‘Go’ signal appeared in only 75% of trials, 

thus creating response uncertainty, as in Experiment 5. 

At the 70ms TMS time-point, we found no significant effect of the 

distance of the distractor ball from either the hand or from the peripheral cue. 

However, at the 80ms time-point we found a marginally significant effect of 

distractor ball distance from the hand, regardless of its position relative to the 

peripheral cue (t(9)=1.74, p=0.058, 1-tailed, compared against 1.0): As in the 

‘Go/Stay’ task (Experiment 5), mean MEP amplitude was greater when 

distractor balls were presented near to (1.050±0.029), as compared to far
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from the hand (0.950±0.029). No such effect was found for the distance of the 

distractor ball from the peripheral cue (1.006±0.013 vs. 0.994±0.013 for near 

and far trials, respectively, t(9)=0.48, p=0.323, Supplemental Figure S1B). 

This result supports our claim that corticospinal excitability is modulated in a 

hand-centred manner, and is unaffected by the presentation of exogenous 

spatial cues prior to the appearance of the distractor stimulus. 
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Figure S1. Cueing participants’ exogenous attention towards or away 

from the location of the distractor ball does not abolish hand-centered 

modulation of corticospinal excitability 

(A) Time course. A ‘Go’ signal appeared in 75% of the trials, while distractor 

balls appeared on every trial. An irrelevant peripheral cue (LED) appeared 

pseudorandomly on the left or right side of the workspace, 75ms before the 

appearance of the ball. 70 or 80ms after the appearance of the distractor ball, 

a single pulse of TMS was delivered to the left primary motor cortex, 

contralateral to the participant’s responding (right) hand. (B) Mean±s.e. peak-

to-peak MEP amplitude for the 80ms TMS time-point showed a marginally 

significant effect (p=0.058) of distractor ball distance relative to the hand (dark 

gray=near to the hand, light gray=far from the hand). 
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Figure S2: No hand-centred modulation of MEP amplitude for the 

abductor digiti minimi (ADM) muscle

Mean±s.e. peak-to-peak MEP amplitude for near (dark gray) and far (light 

gray) distractor balls across all TMS time-points (65-85ms). We found no 

significant differences in MEP amplitude between near and far trials at any of 

the measured time-points. Since the ADM did not participate in the task-

relevant ‘Go’ response, this result strengthens our interpretation of the 

proactive inhibition of ball-related avoidance movements during the 

preparation of a competing voluntary movement. 
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Table S1: Subjects and TMS parameters 

Experiment Subjects TMS

 N 

[male]

Age, 

years 

Hand., 

LQ

Distance from

vertex, cm 

Threshold 

intensity, % 

Test intensity,

%, relative to: 

    Lateral
†

Anterior 0.05mV
§

0.5mV max 

output

0.05mV 

threshold

1: Time-

course 

10 [6] 31.2±2.0 

(23-43) 

87.5±4.0 

(65-100) 

6.1±0.2 

(5.0-7.0) 

0.9±0.2 

(0.0-2.0) 

57.5±4.5 

(46-68) 

60.8±4.0 

(46-76) 

66.0±3.8 

(48-83) 

114±2.4 

(107-118) 

2: Eye 

position 

10 [5] 31.8±2.2 

(25-43) 

84.3±4.1 

(65-100) 

5.9±0.2 

(5.0-6.5) 

1.0±0.1 

(0.5-1.5) 

64.1±5.3 

(46-87) 

67.2±4.2 

(52-87) 

72.3±4.4 

(54-90) 

114±2.3 

(103-124) 

3: ‘Go/Stop’ 

Balls 

10 [5] 31.2±2.0 

(26-43) 

87.0±4.5 

(65-100) 

6.3±0.2 

(5.5-7.0) 

1.0±0.2 

(0.0-1.6) 

57.0±3.6 

(46-68) 

65.4±2.7 

(53-78) 

71.9±2.9 

(58-85) 

122±1.3 

(118-126) 

4: ‘Go/Stop’ 

LEDs 

9‡ [6] 31.5±2.3 

(22-43) 

85.9±3.9 

(65-100) 

5.7±0.1 

(5.0-6.5) 

0.8±0.1 

(0.0-1.0) 

60.5±4.3 

(46-87) 

63.5±3.7 

(48-87) 

69.4±4.0 

(50-90) 

116±2.5 

(101-130) 

5: ‘Go/Stay’ 16 [6] 30.1±1.9 

(22-47) 

84.3±4.4 

(38-100) 

6.0±0.2 

(4.0-7.0) 

1.1±0.1 

(0.0-2.0) 

57.6±3.5 

(46-68) 

65.6±2.5 

(50-86) 

68.9±2.5 

(52-88) 

118±2.4 

(112-125) 

S1: Exog. 

Attention 

10 [5] 31.8±2.2 

(25-43) 

84.3±4.1 

(65-100) 

5.9±0.2 

(5.0-6.5) 

1.0±0.1 

(0.5-1.5) 

64.1±5.3 

(46-87) 

67.2±4.2 

(52-87) 

72.4±4.4 

(55-90) 

114±2.3 

(103-124) 

6: Selec-

tivity (FDI) 

6[3] 30.8±0.9 

(27-33) 

85.1±4.6 

(70-100) 

5.0±0.3 

(4.0-6.0) 

0.8±0.1 

(0.3-1.0) 

60.7±3.5 

(52-75) 

(not 

tested) 

71.7±4.0 

(61-88) 

118±0.7 

(117-121) 

Values show mean±s.e. Values in parentheses show ranges. N: Sample size; 

Hand.: Handedness; LQ: Laterality Quotient (Oldfield, 1971); TMS: 

Transcranial Magnetic Stimulation; †Left of the mid-sagittal plane; §Based on 

a minimum of 4 subjects per experiment; ‡1 subject’s data were lost due to 

hardware failure; Exog.: Exogenous. 
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Table S2: Behavioral performance, RT-MEP correlations, and 

standardization procedures 

Experiment Performance RT-MEP correlation Standardization by

% valid RT (ms) d’

  Near Far Pearson’s r Trial 

types 

TMS

time-point 

1: Time-course 95.1±1.9 254±15 257±15 n/a -0.096±0.064 All Yes 

2: Eye position 98.1±0.5 246±7 262±15 n/a -0.057±0.039 No ball Yes 

3: ‘Go/Stop’ Balls 98.1±0.3 295±11 302±15 3.71±0.03 -0.148±0.043** No ball Yes 

4: ‘Go/Stop’ LEDs 98.2±0.6 307±12 309±11 3.79±0.06 -0.125±0.046* No ball Yes 

5: ‘Go/Stay’ 95.8±0.5 370±13‡ 379±12‡ 3.33±0.05 -0.138±0.038** All n/a 

S1: Exog. Attention 92.2±1.5 299±9 293±7 2.79±0.21 -0.038±0.053 Go Yes 

6: Selectivity (FDI) 97.8±0.9 270±20 273±20 n/a -0.211±0.032** All Yes 

        

Values are mean±s.e. RT: Reaction time; MEP: Motor evoked potential peak-

to-peak amplitude; ‡Ball trials only; *p<0.05, 2-tailed; **p<0.01, 2-tailed; n/a: 

Not applicable; Exog.: Exogenous. 



HAND-CENTERED VISUAL SPACE 

S14

Table S3: Effects of data preprocessing on the main reported findings: 

Comparison of t-statistics 

Experiment Near vs. far effect Raw data First stage
†

Second stage
‡

 TMS 

time-

point 

(ms) 

Condition d.f. t p d.f. t p d.f. t p

1: Time-course 80 Balls 9 2.66 0.026 9 3.05 0.014 
*
9 4.08 0.003

2: Eye position# 70 Balls 9 2.49 0.017 9 2.24 0.026 9 2.41 0.020

3: ‘Go/Stop’ Balls# 70-90 ‘Go’, Balls 9 2.40 0.020 9 2.12 0.032 9 2.45 0.018

4: ‘Go/Stop’ LEDs# 70-90 ‘Go’, LEDs 8 0.56 0.295 8 0.15 0.442 8 0.15 0.442

5: ‘Go/Stay’§ 70 ‘Go’, Balls 15 2.81 0.013 15 2.68 0.017 15 2.57 0.021

5: ‘Go/Stay’§ 70 ‘Go’, LEDs 15 1.07 0.302 15 0.70 0.495 15 1.04 0.315

5: ‘Go/Stay’§ 70 ‘Twitch’, Balls 15 3.14 0.007 15 2.88 0.011 15 3.13 0.007

5: ‘Go/Stay’§ 70 ‘Twitch’, LED 15 0.41 0.688 15 0.37 0.717 15 0.72 0.483

S1: Exog. Attention# 80 Balls 9 1.13 0.144 9 1.25 0.121 9 1.74 0.058

6: Selectivity (FDI)# 70 Balls 5 2.33 0.034 5 2.60 0.024 
*
5 2.64 0.023

Significant effects are highlighted in bold font. *Data compared against 1.00; 

†Experiments 1, 5, & S1: Regression; †Experiments 2, 3, & 4: 

Standardization; ‡Experiments 1, 5, & S1: Standardization; ‡Experiments 2, 

3, & 4: Regression; #Hypothesis-driven 1-tailed t-tests, based on the results of 

Experiment 1; §Regressed by ‘Go’ trials only; d.f.: Degrees of freedom; t: t-

test statistic; p: p-value; Exog. = Exogenous. 
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Table S4: Effects of mean baseline EMG activity on the main reported 

findings: Comparison of t-statistics 

Experiment MEP-EMG baseline 

correlation 

Near vs. far comparison on mean EMG 

baseline

 (Pearson’s r) TMS time-

point (ms) 

Condition d.f. t p

1: Time-course 0.185±0.052 80 Balls 9 0.16 0.875

2: Eye position 0.051±0.055 70 Balls 9 0.56 0.590

3: ‘Go/Stop’ Balls -0.039±0.027 70-90 ‘Go’, Balls 9 1.16 0.276

4:’Go/Stop’ LEDs 0.054±0.054 70-90 ‘Go’, LEDs 8 0.89 0.401

5: ‘Go/Stay’ 0.155±0.031 70 ‘Go’, Balls 15 1.89 0.078

70 ‘Go’, LEDs 15 0.87 0.398

70 TwitchBalls 15 1.24 0.233

70 TwitchLED 15 0.74 0.469

S1: Exog. Attention 0.039±0.044 80 Balls 9 0.89 0.198

6: Selectivity (FDI) 0.053±0.042 70 Balls 5 1.94 0.111

Significant effects are highlighted in bold font; Exog.: Exogenous. 
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 Table S5: Effect of hand position on MEP peak-to-peak amplitude: 

Comparison of t-statistics 

Experiment TMS 

time-

point

(ms) 

Trials MEP amplitude (mean±s.e.) per 

hand position 

d.f. t p

  Left Right   

1: Time-course 80 All 0.880±0.038 1.120±0.038 9 -3.15 0.012

2: Eye position 70 All 0.980±0.030 0.996±0.053 9 -0.33 0.749

3: ‘Go/Stop’ Balls  70-90 ‘Go’ 0.958±0.024 1.022±0.22 9 -1.76 0.112

4: ‘Go/Stop’ LED 70-90 ‘Go’ 1.014±0.025 1.046±0.025 8 -0.92 0.384

5: ‘Go/Stay’ 70 ‘Go’ 

ball 

1.040±0.028 0.986±0.033 15 1.04 0.315

5 ‘Go/Stay’ 70 ‘Go’ 

LED

1.016±0.025 0.951±0.022 15 1.58 0.135

S1: Exog. 

Attention 

80 All 1.002±0.038 0.988±0.036 9 0.18 0.861

6: Selectivity 

(FDI) 

70 All 0.830±0.063 1.170±0.063 5 -2.95 0.032

Significant effects are highlighted in bold font. MEP: Motor evoked potential; 

d.f.: Degrees of freedom; t: t-statistic (negative value indicates greater MEP 

amplitude for the right hand position); p: p-value; Exog.: Exogenous. 
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Table S6: Comparison of ‘t’ and ‘bootstrap’ statistics 

Experiment Near vs. far effect T-test
‡ Bootstrap 

 TMS time-

point (ms) 

Condition d.f. t p TMS 

time-

points

p

1: Time-course 80 Balls ‡
9 4.08 0.003 40-120 0.006

2: Eye position 70 Balls 9 2.41 0.020 70, 80 0.018

3: ‘Go/Stop’ Balls 70-90 ‘Go’, Balls 9 2.45 0.018 E, L 0.021

4: ‘Go/Stop’ LEDs 70-90 ‘Go’, LEDs 8 0.15 0.442 E, L 0.051 

5: ‘Go/Stay’ 70 ‘Go’, Balls 15 2.57 0.021 70 0.012

5: ‘Go/Stay’ 70 ‘Go’, LEDs 15 1.04 0.315 70 0.170 

5: ‘Go/Stay’ 70 ‘Twitch’, 

Balls 

15 3.13 0.007 70 0.005

5: ‘Go/Stay’ 70 ‘Twitch’, LED 15 0.72 0.483 70 0.245 

S1: Exog. 

Attention#

80 Balls 9 1.74 0.058 70, 80 0.045

6: Selectivity 

(FDI)#

70 Balls ‡
5 2.64 0.023 65-85 0.021

Significant effects are highlighted in bold font. ‡Data compared against 1.00; 

#Hypothesis-driven 1-tailed t-tests, based on the results of Experiment 1; 

§Regressed by ‘Go’ trials only; d.f.: Degrees of freedom; t: t-test statistic; p: p-

value; Exog. = Exogenous; E = Early; L = Late. 



The results of study 1 show that the location of a visually available three-dimensional object 

near to the body is coded in a reference frame that is centred on the body-part (the hand in the 

experiment present here) and that this information is rapidly available to the motor system. 

The results of the study 1 in this respect, support the idea that peripersonal space can play a 

role not  only in the mere detection of visual information close to the body  but  also in 

subserving the possible consequent motor reaction. In particular, an effect of inhibition of 

irrelevant motor plans seems to be elicited by the suddenly appearance of an object near the 

hand. Possibly, this inhibition of irrelevant plans would be meant to readily prepare to an 

avoidance movement.

 However, as previously pointed out, the same multisensory interface might be 

involved in other kinds of body-object interactions, where the body-part is voluntary 

projected toward the object  location in order to manipulate it, such as in the everyday  life 

when we grasp an object. The next study will thus investigate this possibility, employing the 

paradigm of the cross-modal congruency effect, adaptively modified for assessing the 

multisensory interaction during the execution of action. Participants were requested at  each 

trial to grasp the object with the right  stimulated hand index finger and thumb in a precision 

grip. At the same time, participants were requested to respond to the tactile target 

discriminating their elevation (“up” or “down”) on the grasping hand, trying to ignore the 

visual distractors embedded into the to-be-grasped object. The visuo-tactile stimulation was 

presented at one of three different timings with respect to the execution of the action: Either in 

a static phase, when the grasping hand had not yet moved; At the onset of the movement (0 

ms); Or, in the early execution phase (200 ms after movement onset).

 When participants performed the action with the tactually stimulated hand, the 

multisensory interaction was enhanced (i.e., there was more interference from the visual 

distractor on the tactile task) as compared to the static phase. This effect was even more 

pronounced when the multisensory interaction was assessed during the early execution phase 

of the grasping.

 The experiment  was also repeated asking participants to grasp  the object  with the non-

stimulated hand. Crucially, when the same action was performed with the non-stimulated 

hand, no multisensory modulation was observed.

141



 The co-recording of the kinematics of the movement for each grasping action 

performed by participants, provided a quantitative description of the motor performance. On 

one hand this could rule out any possible confounds of differences in the left/right hand 

movements; on the other hand, it provided the necessary information in order to investigate 

the links possibly  existing between the multisensory peripersonal space modulation during 

action and the action itself.
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The portion of space that closely surrounds our body parts

is termed peripersonal space, and it has been shown to be

represented in the brain through multisensory processing

systems. Here, we tested whether voluntary actions, such

as grasping an object, may remap such multisensory

spatial representation. Participants discriminated touches

on the hand they used to grasp an object containing

task-irrelevant visual distractors. Compared with a static

condition, reach-to-grasp movements increased the

interference exerted by visual distractors over tactile

targets. This remapping of multisensory space was

triggered by action onset and further enhanced in real

time during the early action execution phase.

Additional experiments showed that this phenomenon is

hand-centred. These results provide the first evidence of a

functional link between voluntary object-oriented actions

and multisensory coding of the space around us.
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Introduction
The representation of the space near the body, termed

‘peripersonal’ space (PpS) [1,2], relies on multisensory

processing, both in human and non-human primates. In

monkeys, bimodal neurons in parieto-frontal and sub-

cortical structures code for tactile events on a body part

(e.g. the hand) and visual events near that body part,

thus giving rise to body-centred representations of PpS

[3–6]. In humans, a functionally homologous coding of PpS

is largely supported by behavioural studies showing

stronger visuotactile interaction in near rather than far

space in brain-damaged [7–9] and healthy individuals

[10–13]. For example, visual events occurring in the

immediate proximity to the body induce more severe

tactile extinction than farther ones [7–9]. Recent func-

tional neuroimaging studies further support the exis-

tence of similar multisensory integrative structures in

the human brain [11–13].

Despite the large body of knowledge accumulated across

species on the multisensory properties of PpS, little is

known about its function, and this issue has never been

directly assessed in humans. By acting as an anticipatory

sensorimotor interface, PpS may serve early detection

of potential threats approaching the body to drive in-

voluntary defensive movements [3]. The same antici-

patory feature, however, may also have evolved to serve

voluntary object-oriented actions [1,2,14]. Here, we

tested the latter hypothesis by assessing the effects

of grasping objects on the multisensory coding of PpS.

In Experiment 1, we modified a cross-modal paradigm

[10], whereby participants indicate the elevation (up or

down) of a tactile target delivered to a finger (index or

thumb), while a visual distractor is presented at either

congruent or incongruent elevation (Fig. 1). We then con-

ducted three experiments in which participants were

additionally required to grasp the object in which the

visual distractors were embedded. Although the percep-

tual task was always performed on the right hand, the

motor task was performed by either the right (Experi-

ments 2 and 4) or left (Experiment 3) hand. This simple

manipulation is crucial in two respects: it equalizes

attentional demands for the target object in the sti-

mulated and the nonstimulated hand actions, and it

allows assessing whether any modulation of multisensory

processing is hand-centred.

Experimental procedures
Participants

Fifteen healthy participants (nine men, mean age 27±5

years) took part in Experiments 1, 19 (10 men, mean age

26±6 years) in Experiments 2 and 3, and 16 (8 male,

mean age 25±3) in Experiment 4. All gave their verbal

informed consent to take part in this study, approved by

the local INSERM Ethics Board.

Supplementary data are available at The NeuroReport Online (http://links.lww.com/
A1251; http://links.lww.com/A1250; http://links.lww.com/A1249; http://links.lww.
com/A1248; http://links.lww.com/A1247; http://links.lww.com/A1246)
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Apparatus

A cylinder (7-cm height, 1.7-cm diameter) was presented

in one of four orientations (18 and 361 clockwise or

anticlockwise) 47 cm from the participant’s hand. Visual

distractors consisted of an LED flash (200ms) delivered

concurrently with the electro-cutaneous stimulation (see

below), from either the top or the bottom extremities

of the cylinder (Fig. 1). Neurology electrodes were used

to present suprathreshold (100% detection accuracy)

electro-cutaneous stimuli consisting of squared-wave

pulse (100 ms, 400 V) delivered by constant-current

stimulators (DS7A, Digitimer Ltd., Welwyn Garden City,

Hertfordshire, UK) either on the index finger (up) or

thumb (down) of the right hand. Participants discrimi-

nated tactile targets by releasing one of two foot pedals.

The participants’ eye movements (EyeLink-II, SR

Research, Mississauga, Ontario, Canada; SMI) and spatial

position of their grasping hand (Optotrak 3020, Northern

Digital Inc., Waterloo, Ontario, Canada) were recorded

online.

Design and procedure

In Experiment 1, participants performed only the

perceptual task consisting of a speeded discrimination

(up or down) of tactile stimulation regardless of the

task-irrelevant distractor (the upper or lower LED in

the cylinder). In Experiments 2, 3 and 4, participants

additionally performed a motor task that consisted

grasping the cylinder along its longitudinal axis with

the index and thumb (precision grip, for details see

movies 1–6 in supplementary data). An auditory signal

warned the participant about the start of the trial,

followed after a variable delay (1500–2200ms) by a

second auditory signal constituting the ‘go’ for the motor

task. The motor task was performed using the stimulated

(right) hand in Experiments 2 and 4, and the nonstimu-

lated (left) hand in Experiment 3. The visuotactile

stimulation could be delivered: (i) before movement

start (Static condition) or (ii) at movement onset (action

Start condition) or (iii) during the early phase of move-

ment execution (action Execution condition). These

temporal conditions were run across blocks in Experi-

ments 2 and 3, and were fully randomized in Experi-

ment 4. At the beginning of each trial, the tip of the

thumb and index finger of each hand were kept in a

closed pinch-grip posture on a start switch, whose release

triggered the visuotactile stimulation in the Start and

Execution conditions (0 and 200ms delay, respectively).

Results
Multisensory interplay without action

When action was not required (Experiment 1), partici-

pants proved faster in responding to congruent (360ms)

than incongruent [394ms; t(14)=4.99, P<0.001] trials,

thus extending the typical cross-modal congruency

effect (CCE) finding to a situation in which visual

distractors were far from the stimulated hand [10].

Hereafter, the dependent variable will be the CCE,

calculated as the (reaction times, RTs) difference

between incongruent and congruent trials, in that it

quantifies the strength of the interaction between visual

and tactile inputs (similar trends were found on

accuracy). In the absence of action, the CCE varied as

a function of object orientation with stronger visuotactile

interaction for clockwise (43ms) rather than anticlock-

wise tilted object [24ms; t(14)= 2.15, P=0.049].

Action-dependent multisensory interplay

In the Static condition of Experiment 2, before the

stimulated hand started to move, the CCE was again

stronger when the object was tilted clockwise (66ms)

than anticlockwise [51ms; F(1,18)=6.43, P=0.021].

Crucially, a modulation of the CCE was observed as soon

as the stimulated hand started the action: Fig. 2a shows

that the CCE changed on-line with action specifically

for the objects oriented anticlockwise [F(2,36)=4.37,

P=0.020]. For these orientations, the CCE was stronger

when visuotactile stimuli were delivered at action Start

Fig. 1

Experimental setup. (a) Bird’s eye view of the participant facing the
cylinder (upper inset) with both hands in a pinch-grip position (lower
inset). Electro-cutaneous targets (green zap) were delivered to the
index finger (up) or thumb (down), while a visual distractor (yellow flash)
could be presented from either the same (congruent, not shown) or
different (incongruent) elevation. Grasping the clockwise tilted object
required an inward wrist rotation of the left hand (b) but an outward
wrist rotation of the right hand (c), the opposite pattern being required
for the anticlockwise orientations.
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(63ms) than in the Static condition (31ms; P=0.037).

The CCE further increased during the Execution phase

of the action (100ms; P<0.001 with respect to the

Static condition; P=0.09 with respect to the Start

condition). Importantly, when the very same grasping

action was performed by the nonstimulated hand

(Experiment 3), no modulation of the CCE was observed

(Fig. 2a), either in the Start or Execution condition

compared with the Static condition.

Experiment 4 further corroborated the finding that the

action modulates the visuotactile interaction [F(2,30)=
16.51, P<0.001]. Furthermore, in this fully inter-

leaved design, the CCE was stronger at the action Start

(55ms) than in the Static condition (22ms; P=0.026),

and in addition, this modulation emerged irrespective

of object orientation. As shown in Fig. 3, the action-

dependent modulation of the CCE was further increased

during the Execution phase (79ms), with respect to

both the Start (P=0.022) and the Static conditions

(P<0.001).

Grasping kinematics

To further establish multisensory motor relationships,

we analysed the kinematic pattern of all reach-to-grasp

movements. Comparison between Experiments 2 and 3

served the important purpose of controlling that hand-

related difference between the on-line modulations of

action over the CCE were not because of differences

between hands kinematic patterns. In addition, through

kinematic analyses, we tested for possible parallels

between the motor and perceptual performance [15].

Depending on which hand performed the grasping (left or

right), the object orientation imposed specific patterns

of wrist orientation: clockwise and anticlockwise object

orientations required, respectively, outward and inward

movements of the right hand (for details see movies 1–2

in supplementary data). The reverse was applied to the left

hand (for details see movies 4–5 in supplementary data).

Results of Experiments 2 and 3 showed an effect of

object orientation on grasping kinematics. Crucially,

however, the overall kinematic pattern proved remark-

ably similar for the two hands, both for the reaching and

grasping components. Object orientations modulated

motor RTs to the ‘go’ signal: it took more time for

participants to start the action when the object had to be

grasped with an inward (425ms) than an outward wrist

rotation [418ms; F(1,17)=6.80, P=0.018]. In addition,

as shown in Fig. 2b, deceleration peaks for both hands

Fig. 2

Multisensory perception during action(a) (b)

(c) Multisensory stimulation along grasping kinematics

Grasping kinematics
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were more pronounced for inward ( – 5709mm/s2) than

outward movements [ – 5474mm/s2; F(1,17)=23.19,

P=0.0002]. Irrespective of which hand performed the

task, acceleration peaks were higher when participants

grasped the object with an inward (6337mm/s2) rather

than an outward [6233mm/s2; F(1,17)=6.46, P=0.021]

movement. The same tendency was present for the

velocity peak [1267mm/s and 1274mm/s for inward

and outward movements, respectively; F(1,17)=3.75,

P=0.069]. Peak latencies were not modulated by object

orientation with the exception of the acceleration peak,

which was anticipated for inward (156ms) than outward

movements [160ms; F(1,17)= 5.81, P=0.028]. Kine-

matics of the grasping component of the movement

showed little influence of the perceptual task.

In Experiment 4, kinematics of the reaching movement

was less affected by object orientation. First, motor RTs

did not differ between inward and outward movements

(377 and 371ms, respectively). Second, the remaining

kinematic parameters were not modulated by object

orientation [except the acceleration peak, differing

between inward (8928mm/s2) and outward movement,

8690mm/s2; F(1,14)=5.15, P=0.04].

Discussion
These findings provide the first evidence that purpose-

fully acting on objects links initially separated visual

and somatosensory information, updating their inter-

action as a function of the required sensory motor

transformations. When performing an action, our brain

updates the relationship between visual and tactile

information well before the hand touches the object.

This perceptual reweighting is already effective at the

very early stage of the action and seems to be

continuously updated as action unfolds. This is clearly

illustrated by the fact that from the very start of the

action, the task-irrelevant visual information located on

the to-be-grasped object interacts more strongly with

the tactile information delivered on the hand that will

eventually grasp the object. The specificity of such

visuotactile reweighting for a given hand while naturally

grasping an object confirms the hand-centred nature

of the PpS [16–19], and reveals that tool use is not

necessary for the human brain to remap space [19]. In

addition, it critically extends this property to ecological

and adaptive dynamic situations of voluntary manipula-

tive actions, thus pointing to a fundamental aspect of

multisensory motor control. By showing comparable

pattern of movements across the grasping hands, the

kinematics results rule out the possibility that the

effector-specific increase of the CCE could merely reflect

a difference between the motor performances of the

two hands.

The modulation of the visuotactile interaction induced

by action, limited to the objects oriented anticlockwise

in Experiment 2, was clearly present for all object

orientations in Experiment 4, thus fully supporting our

hypothesis that voluntary grasping actions affect multi-

sensory perception on-line. In addition, kinematic results

were remarkably associated with the perceptual modifi-

cations in both the experiments. In Experiment 2, in

which the perceptual reweighting was selective for

inward object orientation, the kinematic differed be-

tween inward and outward reaching movements, in a

direction that seemed reflecting more important wrist

rotation required for hand pronation [20]. In Experiment

4, the perceptual reweighting was present for all object

orientations and the associated kinematics was compar-

able across inward and outward rotations, thus paralleling,

again, the perceptual modulation of action-dependent

multisensory remapping. This parallel between move-

ment kinematics and the CCE performance strengthens

the functional link between multisensory coding of the

hand-centred space and voluntary actions.

Peripersonal multisensory space may serve involuntary

defensive reactions in response to objects approaching

the body [3,6]. However, here we considerably add to this

view by showing that such multisensory motor inter-

face may be functionally involved in voluntary control of

actions that bring the body towards objects. This fits well

with the functional properties of visuotactile neurons

documented in parieto-frontal circuits that present

spatially aligned visual and tactile receptive fields for a

Fig. 3
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given body part [1–6,21]. This feature allows bimodal

neural systems to represent an object in a body-centred

reference frame and to be continuously updated during

bodily movements. This multisensory spatial representa-

tion has been suggested to serve involuntary defensive

movements, because electrical microstimulation of

some bimodal areas in the monkey brain [3] elicits stereo-

typed arm or face movements that are compatible

with defensive behaviour. Remarkably, however, some

bimodal neurons also respond when the arm is voluntarily

moved within reaching space [14,15,22,23], and have

been previously proposed to code goal-directed actions

[1,2,22]. Neurophysiological studies on monkeys have

shown activation in the posterior parietal cortex during

grasping, in the early phase of the action when the hand

has not yet reached the object. The activation gradually

shifts towards the somatosensory cortex when the hand

enters in contact with the object [14]. Finally, the on-line

enlargement of the visual receptive fields of bimodal

neurons in response to approaching objects [6] or tool use

[17–19,24,25] also emphasizes the dynamic nature of

their multisensory space coding, providing converging

evidence for the involvement of the bimodal system in

dynamic updating of the PpS. The multisensory motor

neural machinery acting as an anticipatory interface

between the body and nearby events may thus have

been selected throughout evolution to drive both in-

voluntary avoidance reactions and voluntary approaching

movements, with common adaptive advantages for

defensive and manipulative actions.

Conclusion
Voluntarily acting on objects triggers a hand-centred

remapping of multisensory spatial processing that paral-

lels action requirements and is regulated in real time as

action unfolds.
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Results of the second study here presented clearly show that when grasping an object, a 

remapping of spatial representation arises in such a way that visual information on the to-be-

grasped object, far from the hand, become more interacting with tactile information onto the 

grasping hand, with respect to a static condition. This remapping arises already at the on-set 

of the action and continues along the execution of the grasping. Furthermore, the remapping 

of the peripersonal space representation induced by action, arises in a coordinates system that 

is centred on the body-part  (the hand in this experiment), since when participants employ the 

unstimulated left hand, no modulation is present. The kinematics of the movement rule out 

any possible confound due to a difference in the execution of the action between right and left 

hand. Moreover, it allowed investigating the link between the remapping of peripersonal 

space and the kinematic difficulty of the movements. These results constitute the first 

evidence in humans of a role played by the multisensory representation of peripersonal space 

in the execution of voluntary actions.

 The intriguing relationship between kinematics of the movement and perceptual 

remapping of the peripersonal space is the further aspect investigated in the third study 

presented here. If, as the previous experiment results suggest, the remapping of peripersonal 

space is linked to the kinematic difficulty  of the actions to be executed, then a difference 

should be found in the modulation of peripersonal space induced by actions that differ with 

respect to their kinematic complexity. In order to investigate more deeply the relationship 

between peripersonal remapping and the motor characteristics of the action, we tested 

whether different multisensory interactions may  arise as a function of the required sensory-

motor transformations. For example, we would expect that action-dependent multisensory 

remapping should be more important whenever performing actions requires relatively more 

complex sensory-motor transformations. Pointing towards an object  without touching it, for 

instance, is a kind of action that only requires the computation of extrinsic properties of the 

object, such as the position of the target relative to the pointing hand. In contrast, in order to 

grasp the same object, the brain also needs to take into account the intrinsic properties of the 

object, such as its shape, size, and spatial orientation (Jeannerod 1988). Moreover, grasping, 

by definition, requires hand-object contact, and the intrinsic properties of the object will 

determine the available landing surface for the fingers and the wrist  orientation that is needed 
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for adopting a functional grip  on the object. The pre-shaping of the hand (grip component) is 

smoothly  implemented in the reaching phase (transport component), when the hand 

approaches the object (see Castiello 2005 for a review). Therefore, while both pointing and 

grasping have a reaching phase during which the hand is brought into the object’s vicinity, 

grasping differs by requiring additional sensory-motor transformations mainly concerning the 

final part of the movement.

 Participants were thus submitted to participate to the same motor-perceptual task as 

for the previous experiment. However, they had to perform either a grasping or a pointing 

toward the object.

 For both actions, the interaction between task-irrelevant visual information on the 

object and the tactile information delivered on the acting hand increased already in the early 

component of the action, thus replicating our previous findings. However, a differential 

updating of the CCE took place during the execution phase of the two action types. While in 

the grasping condition the magnitude of the multisensory interaction was further increased 

during the execution phase, with respect to movement onset, in the pointing condition it  did 

not present any further increase. In other words, during the phase in which the hand 

approached the object, the grasping movement triggered stronger CCE than pointing. Thus, 

not only a continuous updating of peripersonal space occurs during action execution, but this 

remapping varies with the characteristics of the required motor act.
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Action dependent modulations of peripersonal space
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PII: S0028-3932(09)00412-6
DOI: doi:10.1016/j.neuropsychologia.2009.10.009
Reference: NSY 3450

To appear in: Neuropsychologia

Received date: 21-4-2009
Revised date: 23-9-2009
Accepted date: 8-10-2009

Please cite this article as: Brozzoli, C., Cardinali, L., Pavani, F., & Farnè,
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Abstract 

-tactile neurons activated by 

now well documented also in humans, in brain damaged patients presenting cross-modal 

extinction as well as in healthy subjects and typically takes the form of stronger visuo-tactile 

interactions in peripersonal than far space. We recently showed in healthy humans the 

existence of a functional link between voluntary object-oriented actions (grasping) and the 

multisensory coding of the space around us (as indexed by visual-tactile interaction). Here, 

we investigated whether performing different actions towards the same object implies 

differential modulations of peripersonal space. Healthy subjects were asked to either grasp or 

point towards a target object. In addition, they discriminated whether tactile stimuli were 

delivered on their right index finger (up), or thumb (down), while ignoring visual distractors. 

Visuo-tactile interaction was probed in baseline static conditions (before the movement) and 

in dynamic conditions (action onset and execution). Results showed that, compared to the 

static baseline both actions similarly strengthened visuo-tactile interaction at the action onset, 

when grasping and pointing were kinematically indistinguishable. Crucially, grasping induced 

further enhancement than pointing in the execution phase, i.e. when the two actions 

kinematically diverged. These findings reveal that performing actions induce a continuous re-

mapping of the multisensory peripersonal space as a function of on-line sensory-motor 

requirements, thus supporting the hypothesis of a role for peripersonal space in the motor 

control of voluntary actions. 
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Introduction 

The 

Scandolara, Matelli & Gentilucci 1981, Rizzolatti, Fadiga, Fogassi & Gallese 1997), relies on 

multisensory processing both in human and non-human primates. In monkeys, bimodal 

neurons have been described in inferior parietal areas (Hyvärinen & Poranen 1974) and 

premotor cortex (Duhamel, Colby & Goldberg 1998, Fogassi, Gallese, Fadiga, Luppino, 

Matelli & Rizzolatti 1996, Graziano & Cooke 2006, Graziano & Gross 1995). These neurons 

have the characteristics to be activated by visual as well as somatosensory stimulations with a 

higher activity for closer than farther visual stimuli. The activity of these cell assemblies 

across parieto-frontal and subcortical structures codes for tactile events on a body-part (e.g., 

the hand) and visual events near that body-part, thus giving rise to body-centred 

representations of peripersonal space (Rizzolatti et al 1981, Rizzolatti et al 1997, Gentilucci, 

Scandolara, Pigarev & Rizzolatti 1983, see for review Rizzolatti, Fogassi & Gallese 2002). In 

humans, a functionally homologous coding of peripersonal space is largely supported by 

behavioural studies, showing stronger visual-tactile interaction in near than far space in brain-

damaged (di Pellegrino, Làdavas & Farné 1997, Farnè, Demattè & Làdavas 2005, Farnè, 

Pavani, Meneghello & Làdavas 2000, Brozzoli, Demattè, Pavani, Frassinetti & Farnè 2006) 

and healthy individuals (Spence, Pavani & Driver 2004, Spence, Pavani, Maravita & Holmes 

2004, Pavani & Castiello 2004, Bremmer, Schlack, Shah, Zafiris, Kubishik et al 2001). The 

investigation in neurological patients, for example, revealed that visual events occurring in the 

immediate proximity to the body induce more severe visual-tactile extinction than farther 

events (Farnè et al 2000; Brozzoli et al 2006). Similarly, in healthy individuals, visual-tactile 

interaction has been shown to be stronger when visual information is presented close to the 

body than far from it (Spence et al 2004a; Spence et al 2004b). In addition to behavioural 



Page 4 of 30

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

 3

evidence, recent functional neuroimaging and electrophysiological studies support the 

existence of similar multisensory integrative structures in the human brain (Bremmer et al 

2001a, 2001b; Sereno & Huang 2006; Makin, Holmes & Zohary 2007; Sarri, Blankenburg & 

Driver 2006).  

 Despite the large body of knowledge accumulated across species on the multisensory 

properties of peripersonal space, little is known about its function as this issue has been 

assessed in humans only recently (Brozzoli, Pavani, Urquizar, Cardinali & Farnè, 2009; 

Cardinali, Brozzoli & Farnè, 2009). Two not mutually exclusive hypotheses have been 

proposed on the basis of the neurophysiological findings in the monkey. By acting as an 

anticipatory sensorimotor interface, peripersonal space may serve early detection of potential 

threats approaching the body to drive involuntary defensive movements (Graziano & Cooke 

2006). The most direct evidence in favour of this hypothesis is the result of cortical 

stimulation studies. When multisensory areas where visuo-tactile neurons have been found 

(Graziano & Cooke 2006) are electrically stimulated, a pattern of movements is elicited that is 

compatible with defensive arm movements and withdrawing of the arm or the head. 

Analogously, in humans, corticospinal excitability during motor preparation has been shown 

to be modulated by visually approaching objects in a hand-centred fashion (Makin, Holmes, 

Brozzoli, Rossetti & Farnè, in press). 

 The same anticipatory feature, however, may have also evolved to serve voluntary 

object-oriented actions (Rizzolatti et al 1981, Rizzolatti et al 1997; Gardner, Babu, Reitzen, 

Ghosh, Brown et al. 2007; Galletti, Kutz, Gamberini, Breveglieri & Fattori 2003). In support 

to this view are the results of single units recording studies showing the motor properties of 

both parietal (Hyvärinen & Poranen 1974; Mountcastle, Lynch, Georgopoulos, Sakata, & 

Acuna 1975; Leinonen 1980; Gardener et al 2007) and periarcuate (Rizzolatti et al 1981a, b, 

Gentilucci et al 1983; Rizzolatti, Gentilucci, Fogassi, Luppino, Matelli et al 1987, Rizzolatti 
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 4

& Gentilucci 1988) visuo-tactile neurons. In particular, the visual sensory activation of 

bimodal neurons seems to be enhanced whenever a reaching movement is performed towards 

an object (Godschalk, Lemon, Kuypers & van der Steen 1985). Such a parieto-frontal network 

would thus compute the sensory-motor transformations that allow a body-centred coding of 

space. This, in turn, could be useful for the execution of voluntary actions toward objects 

(e.g., Fogassi, Gallese, di Pellegrino, Fadiga, Gentilucci, et al 1992). Recently, we provided 

evidence in humans of an involvement of the peripersonal space representation in the 

execution of a grasping (Brozzoli et al 2009). When compared to a static (no action) 

condition, the initiation of a grasping movement increased the interaction between visual 

inputs originating from the to-be-grasped object and tactile inputs delivered to the grasping 

hand. This action-dependent multisensory remapping was further enhanced during movement 

execution when the hand was brought towards the object, but still well before any hand-object 

contact. Notably, when the stimulated right hand remained still while the left (unstimulated) 

hand performed the same action these modulations of the multisensory interactions no longer 

emerged, suggesting that the observed effect was strictly hand-centred. These hand-centred 

effects of action on multisensory perception support the role of peripersonal space in 

voluntary object-oriented actions in humans. 

 In the present study, we took a step forward in the understanding of the functional link 

between peripersonal space coding and voluntary control of action by testing whether 

different object-oriented actions would induce different on-line modulations of multisensory 

coding of peripersonal space. We hypothesized that, if peripersonal space serves the control 

of voluntary object-oriented actions, action-dependent multisensory remapping should be 

more important whenever the action to be performed requires relatively more complex 

sensory-motor transformations.  Two hand actions that differ clearly in this respect are reach-

to-point and reach-to-grasp. When pointing the hand (closed in a fist configuration) towards 
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an 

position relative to the acting body-part (a so-called extrinsic object property; Jeannerod 

1988). In contrast, when grasping the same object with the hand, the brain needs to take into 

account the spatial position of the target object with respect to the grasping hand (extrinsic 

object properties), as well as the shape, size of the target object (intrinsic object properties; 

Jeannerod 1988). In addition, because grasping requires hand-object contact by definition, the 

intrinsic object properties determine the available landing surface for the fingers and the 

appropriate wrist orientation for achieving an optimal functional grip on the object. The pre-

shaping of the hand (grip component) is smoothly implemented in the reaching phase 

(transport component), while the hand approaches the object (see Castiello 2005 for a 

review). Therefore, while both pointing and grasping are composed by a reaching phase 

during which the hand 

different in the final part of the movement, with additional sensorimotor transformations 

implemented selectively for grasping movements.  

 To test our prediction that action-dependent multisensory remapping is modulated as a 

function of the sensorimotor transformations complexity, we contrasted the visual-tactile 

effects produced by performing a relatively simple action (pointing) with those produced by 

performing a more complex action (grasping). In the former condition, participants were 

asked to reach a target object with their right hand without touching it, keeping a fist hand-

configuration (with a closed index-thumb pinch grip) along the entire movement. In the latter 

condition, participants reached and grasped the object using a precision grip with the same 

right hand.  Kinematic recording was used to compare the reaching phase of both actions. 

Visual-tactile interaction was measured online in both conditions, by asking participants to 

discriminate the elevation of tactile stimuli delivered on either the index finger (up) or thumb 

(down) of the acting hand while ignoring visual distractors embedded into the target object.  
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 6

 

< Insert Figure 1 about here > 

 

Materials and methods 

Participants 

Sixteen neurologically healthy participants (8 male, mean age 25 year old, ± 4) took part in 

the experiment. Participants had normal or corrected-to-normal visual acuity and reported 

normal tactile sensitivity. All participants gave their verbal informed consent to take part in 

this study, which was approved by the local INSERM U864 ethics board. 

 

Apparatus 

The target object was a wooden cylinder (7 cm height, 1.7 cm diameter) located at a distance 

of 47 cm from the starting position of the particip -level (Figure 1a). Two 

red LEDs were used to present visual distractor stimuli. These were embedded into the 

flash (200 ms) from either the top or bottom LED embedded into the cylinder, delivered 

concurrently with the electro-cutaneous stimulation (see below). A dot (1 cm diameter) was 

marked in the center of the cylinder (between the two LEDs) to serve as visual fixation 

(Figure 1a, upper circle). To ensure that subjects planned a new action on each trial, the 

cylinder was unpredictably rotated manually from behind the wooden panel into one of four 

different orientations: 18° or 36° from the vertical position, in clockwise or anti-clockwise 

directions, around the virtual axis perpendicular to the longitudinal axis of the cylinder and 

passing through the fixation point. Disposable neurology electrodes (700 15-K, Neuroline, 

Ambu) were used to present supra-threshold electro-cutaneous stimuli. Tactile target 

stimulation consisted of squared-wave single pulse (100 μs, 400 V) delivered through 
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 7

constant-current electrical stimulators (DS7A Digitimer Ltd., UK) either on the index finger 

(upper stimulation) or on the thumb (lower stimulation) of the right hand (Figure 1a, lower 

circle). With respect to the classical static studies adopting the cross-modal congruency task, 

here electrods were fixated on the acting hand and stayed attached to it during the duration of 

the action movement. Electro-cutaneous target intensities were set out individually for each 

subject and stimulated location, so that participants could detect 100% of the stimuli in a serie 

of ten trials for index finger and thumb [Thumb mean current (s.e.m.) = 11,0 mA (0.6); Index 

finger mean current 11,0 mA (0.5)]. Participants were instructed to respond to the tactile 

target as fast as possible by releasing one of two foot-pedals (Herga electric Ltd, England). 

The real- y means of an 

Optotrak 3020 system (Northern Digital Inc., sampling at 100 Hz, 0.01 mm 3D resolution at 

2.25 m distance). The infra-red emissions were sampled at 100 Hz. Two infra-red emitting 

diodes (IRED) were stuck on the lateral part of the nail of the thumb and index fingers and 

one was placed on the interior part of the wrist at the styloid process level. These markers 

were used to reconstruct the transport component of both actions (the change over time of the 

wrist marker position) and the grip component of the grasping action (the change over time of 

the distance between the index and the thumb). 

 

Design and Procedure 

Participants sat at a table in a quiet and dimly illuminated room, in front of the apparatus, with 

two response pedals under their right foot. They were instructed to maintain fixation on the 

the black dot painted in the middle of the target cylinder. Participants performed two 

concurrent tasks during each trial: The perceptual task (speeded tactile discrimination) and the 

motor task. Across blocks, the motor task consisted in grasping the cylinder along its 

longitudinal axis with the index and thumb (precision grip, Fig 1b, upper circle) or pointing 
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 8

the closed hand towards the centre of the cylinder longitudinal axis without opening the 

fingers (Fig 1b, lower circle). In this latter condition, participants were instructed to stop the 

movement in close vicinity of the object but avoid contact with it. Each trial started with an 

auditory warning signal. After a variable delay (1500  2200 ms) a second auditory signal 

constituted the GO for the motor task. The motor task was performed using the stimulated 

right hand in both the pointing and grasping blocks. Regardless of which action had to be 

performed, visuo-tactile stimulation was unpredictably delivered between trials: 1) before 

movement start (Static condition) or, 2) at the beginning of the movement (action Start 

condition) or, 3) during the execution of the movement (action Execution condition). At the 

beginning of each trial the tip of the thumb and the index finger of each hand were kept in a 

closed pinch-grip posture on the start-switches. Start-switch release was used to trigger the 

visuo-tactile stimulation in the Start (0 ms) and Execution condition (with a 200 ms delay). 

Each trial was started manually by the experimenter concealed behind the apparatus, after the 

dowel had been rotated into one of the four possible orientations. 

 

Results 

Multisensory remapping of space  

In a first ANOVA analysis, we contrasted all four factors: Action (Grasping vs. Pointing), 

Phase (Static vs. Start vs. Execution), Object Orientation (Anti-Clockwise vs. Clockwise) and 

Stimulation (Congruent vs. Incongruent). Briefly, we found a highly significant main effect of 

Stimulation [F(1,15)=15.57, p<.001], confirming the presence of the typical Cross-modal 

Congruency Effect (CCE, see Spence et al 2004a; Spence et al 2004b; Brozzoli et al, 2009): 

participants proved faster in responding to congruent (420 ms) than incongruent (469 ms) 

trials, with a similar pattern of results also for the accuracy score [95% for congruent vs. 85% 

for incongruent trials, F(1,15)=17.61, p<.001]. Hereafter, the dependent variable will thus be 
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 9

the CCE, calculated as the performance difference between incongruent and congruent trials, 

in that it quantifies the strength of the interaction between visual and tactile inputs. Unless 

otherwise specified, CCE will refer to the performance difference in terms of response times, 

which typically proved more sensitive in this type of experimental paradigms. However, we 

also examined the accuracy CCE (i.e., accuracy difference between congruent and 

incongruent trials) to exclude any speed-accuracy trade-offs. As a consequence, the following 

analyses only included Action (Grasping vs. Pointing), Phase (Static vs. Start vs. Execution) 

and Object Orientation (Anti-Clockwise vs. Clockwise) as variables. 

 A significant main effect of Phase [F(2,30)=16.18, p<.0001] showed the dependence 

of CCE on the phase of the action in which subjects received the visuo-tactile stimulation. As 

Figure 2 (upper panel) shows, an increase of the CCE was observed as soon as the stimulated 

hand started the action: the CCE was stronger when visuo-tactile stimuli were delivered at 

action Start (55 ms) than in the Static condition (26 ms; p<.001, Newman-Keuls post-hoc 

test). The increase of CCE was also observed during the Execution phase of the action (66 

ms; p<0.001 with respect to the Static condition). The same effect was present in the accuracy 

CCE [F(2,30)=4.43, p<0.05); 6% for the Static condition, 7% for the Start (p=.05 with respect 

to Static) and 9% for the Execution (p<.05 with respect to Static)]. Critically, the effect of the 

Phase was differently modulated as a function of the action that participants were performing, 

as witnessed by the significant Phase X Action interaction [F(2,30)=6.19, p<.01] in the CCE 

(Figure 2, upper panel). In the Grasping condition, the CCE increased significantly in the 

Start (55 ms) with respect to the Static condition (22 ms, p<.001); and increased even further 

in the Execution phase (79 ms, p<.001 with respect to Static and p<.01 with respect to Start 

condition). In the Pointing condition, the CCE was similarly increased in the Start (56 ms) 

with respect to the Static condition (29 ms, p<.01), but no further increase was observed 

during the Execution phase (53 ms, p<.01 only with respect to Static condition, see Figure 2, 
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 10 

upper panel). Finally, a direct comparison between the two types of action showed a 

significant difference in the level of CCE in the Execution phase, with stronger visuo-tactile 

interactions for the Grasping (79 ms) than the Pointing action (53 ms, p<.01). The post-hoc 

comparisons did not present any other significant difference between Grasping and Pointing, 

in the amount of the CCE in Static (22 and 29 ms respectively for Grasping and Pointing, 

p=.32) and Start (55 and 56 ms respectively, p=.89). A separate ANOVA performed only on 

Static and Start conditions confirmed this finding, revealing a significant effect of the Phase 

[F(1,15)=15.65, p<.01] but no interaction with the type of action [F(1,15)=0.56, p=.46]. 

When analysed in terms of accuracy CCE the interaction between Phase X Action was not 

significant, however a similar numerical trend was nonetheless evident excluding any speed-

accuracy trade-off in the interpretation of the RT CCE results. 

 

< Insert Figure 2 about here > 

 

Differences in kinematics between Grasping and Pointing 

Separate analyses were conducted on the kinematic parameters of reach-to-grasp and pointing 

movements recorded in 3D space throughout the study. This served the important purpose of 

assessing any possible parallel between the motor and the perceptual performance (see 

Figure 3 for a representative example from the Execution condition of one participant), in 

addition to documenting the difference between the two types of action. The following 

kinematic parameters of the movement were analysed: Acceleration, Velocity, Deceleration 

Peaks and relative Latencies since movement onset, Movement reaction time and Duration 

(up to the closing of the fingers on the object to be then extracted from its support to complete 

the required action). Each parameter was entered in an ANOVA with the following 

independent variables: Action (Grasping vs. Pointing), Phase (Static vs. Start vs. Execution), 
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 11 

Object Orientation (Anti-Clockwise vs. Clockwise) and Stimulation (Congruent vs. 

Incongruent). 

 

<Insert Figure 3 about here> 

 

 As expected, the two actions differed in the ending part of the reaching phase. As 

shown in Figure 2 (lower panel), the deceleration peak was influenced by the kind of action as 

a main effect [F(1,15)=14.72, p<.01]: when participants pointed to the object, their 

deceleration was more important (9668 mm/s2) than when they had to grasp it (8104 mm/s2). 

No modulation was observed for the Velocity and Acceleration Peaks of both Grasping and 

Pointing movements. The latencies of these kinematic peaks were only partially modulated by 

the different kinds of actions to be performed. Indeed, the kind of action impacted only on the 

Latency of Deceleration Peak, which occurred later in case of Pointing (434 ms) than in case 

of Grasping (424 ms) in all experimental conditions (p<.05 in all comparisons) with only two 

exceptions, where the same non-significant trend was present (movements towards anti-

clockwise tilted object in the Start condition and movements toward clockwise tilted object in 

the Execution condition). 

 

<Insert Table 1 about here> 
 

 
 
Influence of the perceptual task on kinematics 

Movement kinematics was partially affected by the different temporal coupling between the 

motor task and visuo-tactile stimulation. The incongruent trials presented delayed latencies of 

acceleration, velocity and deceleration peaks when stimulation occurred in Static (145 ms, 

310 ms and 434 ms, respectively for the three parameters) rather than Start (136 ms, 305 ms 

and 423 ms, p<.05) or Execution (136 ms, 304 ms and 428 ms, p<.05) conditions. This is 
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 12 

witnessed by the significant Phase X Stimulation interactions for Acceleration [F(2,30)=4.04, 

p<.05], Velocity [F(2,30)=7.00, p<.01] and Deceleration [F(2,30)=7.14, p<.01]. These 

modulations were present regardless of which action was performed, grasping or pointing. 

Among the peaks, only the Acceleration Peak showed to be marginally modulated by the 

stimulation [Phase X Stimulation interaction, F(2,30)=4.45, p<.05]: in case of congruent 

trials, Acceleration Peak resulted more important when stimulation occurred before (Static 

condition, 9411 mm/s2) than on (Start condition, 9059 mm/s2, p<.05) or after (Execution 

condition, 9101 mm/s2, p=.055) the movement onset. Again, this effect was present both in 

case of Grasping and Pointing movements. No modulation was present for Velocity and 

Deceleration Peak as a function of the Stimulation. Finally, neither movement time nor motor 

reaction times resulted affected by the perceptual task (Table 1). 

  

Discussion 

In a recent study we showed that, when performing an action, our brain updates the 

relationship between distal visual input and tactile information at the acting hand well before 

the hand contacts with the object (Brozzoli et al. 2009). This perceptual re-weighting occurs 

already at the very early stages of the action, when the hand has barely moved from its 

starting position. Furthermore, it is updated continuously as the action unfolds. This finding 

showed for the first time that the brain can update the interaction between initially separated 

visual and somatosensory inputs, as a function of the sensori-motor transformations required 

by the action itself and suggested a functional link between visuo-tactile peripersonal space 

and voluntary actions. 

 

Action-specific remapping of peripersonal space 
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In the present study, we took one step forward and contrasted the effects of two different 

actions, grasping and pointing, on visual-tactile interaction to assess any specificity in the 

modulation of peripersonal space as a function of the required action. For both actions,  

the interaction between task-irrelevant visual information on the target object and the tactile 

information delivered on the acting hand increased already at action start, thus providing 

further support to our original observation (Brozzoli et al., 2009). However, a different 

updating of the visuo-tactile interplay took place during the execution phase of the two 

different actions. While in the grasping action the magnitude of the CCE was further 

increased during the execution phase, in the pointing action the visuo-tactile interaction did 

not present any further increase during execution with respect to movement onset. In other 

words, during the actual approaching phase of the movement, grasping triggered stronger 

visual-tactile interaction than pointing.  

 This finding adds to our previous results by revealing not only that a continuous up-

dating of peripersonal space occurs during action execution, but also that this remapping 

varies with the characteristics of a given motor act. If (part of) the remapping of peripersonal 

space is already effective at the onset of the motor program, the perceptual modulation can be 

either further enhanced in case of a relatively complex object-oriented actions like grasping, 

or kept unchanged in case of simpler pointing actions. This on-line, motor-evoked 

pace opens the possibility of very fast modulations of the 

peripersonal space representation as a function of more ecological needs during actions 

execution. One could speculate that such rapid on-line updating, for instance, could parallel 

the fast, on-line motor corrections documented in motor control studies (Paulignan, 

MacKenzie, Marteniuk & Jeannerod 1991; Desmurget, Epstein, Turner, Prablanc, Alexander 

et al 1999; Pisella, Gréa, Tilikete, Vighetto, Desmurget 2000; Farnè, Roy, Paulignan, Rode, 

Rossetti, Boisson & Jeannerod 2003). Since deficits of the so-
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et al. 2000) have been documented after lesions o the posterior perietal cortex in humans, as 

well as in healthy subjects after parietal TMS (Desmurget et al 1999), one could suggest that 

the mechanism underlying the rapid remapping of peripersonal space could be damaged in 

research in our laboratory will help clarifying this hypothesis. 

 

Peripersonal space remapping is selectively modified by specific kinematic patterns  

The second main finding of the present study is that the kinematic results appeared 

remarkably associated with the perceptual modifications. We directly compared the transport 

component of the pointing and grasping actions. The overall kinematic structure of either 

pointing or grasping was not disrupted by the concurrent perceptual task. Whenever the tactile 

task affected some movement parameters both types of movement were affected similarly, 

thus showing that the visuo-tactile task did not differentially affected the kinematic pattern of 

pointing and grasping actions. Crucially, however, the opposite was not true, in that different 

kinematic patterns between pointing and grasping had a clear impact on the visuo-tactile task, 

which we used as a proxy of peripersonal space remapping. The only substantial difference 

appeared towards the end of the reaching component of the movement, during the 

deceleration phase. Namely, when subjects pointed towards the object, they needed to 

decelerate more than when they grasped it. This difference reflects the need for the subject to 

stop the movement before the collision with the object, with respect to the grasping, where 

deceleration is weaker due to the need of achieving a stable grip when the fingers contact the 

target. It is to worth noting the parallel between the kinematic evolution of the two actions 

and the perceptual modulation of the visuo-tactile interaction. When the visuo-tactile interplay 

was assessed in the phase of the movement that did not present kinematic differences between 

pointing and grasping (i.e., start phase), a similar remapping of peripersonal space was found 
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across the two different actions. By contrast, when the visuo-tactile interaction was assessed 

in the execution phase, i.e. when pointing and grasping differ from a kinematic point of view, 

the peripersonal space was also differently remapped. This parallel between the perceptual 

and the motor behaviour strengthens our proposal of a link between multisensory peripersonal 

space representation and the execution of voluntary actions. Moreover, the kinematic results 

allow us ruling out the possibility that peripersonal space remapping might be induced by the 

relative approaching velocity of hand and object. Indeed, the visual receptive fields of 

the velocity of an object approaching the corresponding tactile receptive field on the body 

(Fogassi et al. 1996). Thus, it would in principle be possible that the different increase of 

visuo-tactile interaction observed as a function of the required action might reflect differences 

in hand velocity between types of movement. However, no significant difference was 

observed between grasping and pointing velocities, with instead a tendency for the peak to be 

higher in the pointing with respect to the grasping action. If the perceptual remapping 

proaching velocity, we should expect higher 

visuo-tactile interactions in case of pointing rather than in the grasping. Instead, the opposite 

was observed, clearly supporting the notion that the remapping of peripersonal space we 

reported in this study is induced by the execution of a voluntary action towards the object and 

can be modified on-line as a function of the action requirements. 

 This functional role is not (see Brozzoli et al, 2009) in contrast with the view that 

peripersonal multisensory space serves involuntary defensive re-actions in response to objects 

approaching the body (Graziano & Cooke 2006; Graziano & Gross 1995; Makin et al, in 

press). However, here we considerably add to this view by showing that in humans such 

multisensori-motor interfaces may be functionally involved in voluntary control of actions 

that bring the body towards objects. In particular, the present findings show a specific 
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sensitivity of the peripersonal space to the kind of sensory-motor transformation that is 

required to execute an action. This fits well with the functional properties of visuo-tactile 

neurons documented in parieto-frontal circuits in the monkey, which code for peripersonal 

space. These neurons present spatially organised visual and tactile receptive fields (Rizzolatti 

et al 1981; Rizzolatti et al 1997, Fogassi et al 1996; Duhamel et al 1998; Graziano & Gross 

1995; Graziano 1999; Avillac, Denève, Olivier, Pouget & Duhamel 2005) allowing this 

bimodal circuitry to represent an object in a coordinate system centred on the body and to be 

continuously up-dated during bodily movements. Indeed, some bimodal neurons also respond 

when the arm is voluntarily moved within the reaching space (Gardner et al 2007; Galletti et 

al 2003; Gentilucci, Fogassi, Luppino, Matelli, Camarda et al. 1988; Fattori, Kutz, 

Breveglieri, Marzocchi & Galletti 2005; Marzocchi, Breveglieri, Galletti & Fattori 2008) and 

have been previously proposed to code goal-directed actions (Rizzolatti et al 1981; Rizzolatti 

1997; Gentilucci 1988). Neurophysiological studies in monkeys have additionally shown 

activation in the posterior parietal cortex during a grasping movement, in the early phase of 

the action, when the hand has not yet reached the object. This activation gradually shifts 

towards the somatosensory cortex when the hand enters in contact with the object (Gardner et 

al 2007). The on-line enlargement of the visual receptive fields of bimodal neurons in 

response to approaching objects (Graziano & Gross 1995) or tool-use (Holmes & Spence 

2004; Maravita, Spence & Driver,2003; Iriki, Tanaka & Iwamura 1996; Berti & Frassinetti 

2000; Farnè, Bonifazi & Làdavas 2005; Bonifazi, Farnè, Rinaldesi & Ladavas 2007; Farnè, 

Iriki & Làdavas 2005; Farnè, Serino & Làdavas 2005) converge in supporting the 

involvement of the bimodal system in the up-dating of the peripersonal space representation 

in dynamic conditions. 

 In conclusion, this study provides evidence that voluntarily acting on objects triggers 

specific remapping of multisensory perception as a function of action requirements, as 
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specified possibly by the motor complexity alone, or its coupling with spatial information 

about the target object. Future studies will ascertain whether such a remapping mainly 

depends upon intrinsic (vs. extrinsic) properties, or reach-to-grasp (vs. reach only) 

components of movement. Most important at this stage is the fact that by showing that such a 

remapping is similar when action starts, but differs according to the differential kinematics of 

grasping and pointing during execution, we additionally demonstrate that action-dependent 

remapping of space is regulated in real-time and linked to the kinematic characteristics of the 

action. The multisensory-motor neural machinery acting as an anticipatory interface between 

the body and nearby events may thus have been selected throughout evolution to drive 

voluntary approaching movements via a continuous monitoring of action space.
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Figure captions 

Figure 1. Experimental setup and tasks.  

both hands in a pinch-grip starting position (lower inset) on a desk. The cylinder was 

-

position. In the perceptual task, participants were asked to discriminate the elevation (i.e. up 

or down) of an electro-cutaneous target (yellow zap) delivered to the index finger (up) or 

thumb (down). A concurrent task-irrelevant visual distractor (yellow flash) could be presented 

from either the same (congruent) or different (incongruent) elevation (an incongruent instance 

is depicted in the insets), from one of two LEDs embedded into the cylinder extremities. (b)  

Participants were instructed to grasp the object with a precision grip (thumb-index, as shown 

in the upper inset), or to point to it (lower inset) 

 
Figure 2. Action specific remapping of visuo-tactile interaction 

Upper panel. Means and standard errors are shown for the amplitude of the CCE as function 

of action phase. Lower panel. Means and standard errors of the parameters of the reaching 

component for both actions: peaks of acceleration (left part), velocity (central part) and 

deceleration (right part). 

 

Figure 3. Temporal coupling of perceptual and motor task 

The graph illustrates the time-line of a representative Execution condition of one participant.  

Mean Velocity (green) and Acceleration (grey) profiles are plotted in the graph as bold lines, 

with 2 standard deviations intervals indicated by dashed lines. Interleaved with the kinematic 

profile, the blue zap indicates when during the kinematics the visuo-tactile stimulation 
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occurred. Means and standard errors of Reaction Times for Congruent (full blue vertical line) 

and Incongruent (dashed blue vertical line) stimulations are also plotted. 

 

Table 1. Means and standard errors for motor reaction time (ms) from the go signal, duration 

(ms) of movements and absolute reaction time (ms) to the perceptual visuo-tactile task in all 

experimental conditions. 
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Before 346 21 375 21 340 17 347 18
Start 395 24 387 18 384 20 402 19
Execution 389 20 398 27 394 18 389 20
Before 381 24 396 17 377 20 402 22
Start 398 22 383 18 397 21 377 20
Execution 392 22 380 19 395 21 399 26

Before 686 24 703 20 718 18 722 19
Start 724 25 707 27 723 18 725 19
Execution 731 24 728 24 733 21 743 18
Before 702 18 701 20 702 21 711 20
Start 717 23 725 25 723 28 726 25
Execution 733 24 726 22 722 31 728 25

Before 419 19 444 27 413 20 431 23
Start 463 24 516 32 453 23 509 32
Execution 401 18 478 31 403 18 483 30
Before 428 19 456 27 425 20 455 27
Start 438 21 500 31 435 24 484 30
Execution 384 15 427 28 377 19 440 27

Motor Onset (mean ms, s.e.m. )

C I C I

Grasping

Pointing

Inward Outward
Duration (mean ms, s.e.m. )

C I C I

C I

Grasping

Pointing

Inward Outward

Grasping

Pointing

Inward Outward

Visuo-Tactile RTs (mean ms, s.e.m. )

C I
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DISCUSSION





Main results

Aim of the first study was to test  the hypothesis of an involvement of the peripersonal space 

representation in the rapid detection of objects approaching the body for the preparation of 

involuntary defensive movements. In particular we measured how the excitability of the 

motor cortex in correspondence of the hand representation varied when an object become 

visible in the space around the hand. The series of experiments presented in this study showed 

that the motor cortex is very rapidly  provided with information concerning the representation 

of the visual space around a particular body-part. When an object is approaching the hand, the 

visual information is thus available to the motor cortex in order to react in the most adaptive 

way to the environment. This spatial representation is centred on the body, following more the 

hand rather than the eye position. The inhibition of cortical excitability  induced by an object 

approaching the hand is interpreted as a proactive inhibition in case of voluntary motor plans 

that are contradictory with the avoidance involuntary  reaction. We have also suggested that 

the source of such information is most likely to be individuated in the premotor cortex, 

although other multisensory regions may also contribute.

The second study tested, the involvement of the peripersonal space representation in the 

execution of voluntary actions toward an object, such as an everyday grasping action. The 

well-known phenomenon of visuo-tactile interference has been used as a measure of the 

integration of visual and somatosensory information and so as a measure of peripersonal 

space. The novel approach of co-registration of perceptual multisensory effect and kinematics 

of the movement allowed to establish possible parallels between the perceptual and the motor 

domain. Results of this study showed that the multisensory  link between visual information 

on a target  object and tactile information on the acting body-part is modulated by the action. 

A remapping of peripersonal space is indeed induced since the onset of the movement. 

Moreover, the effect appeared to be present for those conditions which revealed to be the most 

demanding from a kinematic point of view.
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Aim of the third study  was to more deeply investigate the link between motor demands and 

perceptual effects. Employing the same paradigm, we contrasted the peripersonal space 

remapping induced by a grasping an object with that induced by a less complex action such as 

a pointing towards (without contacting) the same object. The two kinds of action are known to 

share a transport component of the hand toward the target; they diverge, by contrast, for the 

additional presence in the grasping of a grip component where the hand needs to be adjusted 

to fit the intrinsic characteristics of the target and its spatial orientation. Results of this study 

showed that the remapping of peripersonal space induced by  a voluntary action is continuous 

and dependent on the sensori-motor transformations required by  the particular action in 

progress. Indeed, the two actions present a similar remapping at the on-set of the movement; 

however during the execution phase, when the actions kinematically  differ, they  induce a 

different remapping of peripersonal space.

 The following discussion will try to integrate the results of these studies in a general 

model of peripersonal space as an interface between the body and the external world.
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Peripersonal space: an interface for avoidance reactions

The neurophysiological studies on monkeys have shown the body-centred nature of the 

peripersonal space representation (Graziano and Gross 1995); the visual receptive fields are in 

spatial register with the tactile ones; the visuo-tactile neurons areas in the brain receive 

proprioceptive input in order to update the peripersonal space representation at each body 

movement. Indeed, as Graziano’s studies clearly showed, the visual receptive fields of 

bimodal visuo-tactile neurones follow the tactile receptive field, for example when the hand 

changes its position. Importantly, the visual receptive fields are also dynamic, as Fogassi and 

colleagues showed: an object approaching a body-part induces a modification of the visual 

receptive fields connected to the tactile ones on the same body-part, as a function of the 

approaching velocity.

 On the basis of these characteristics, Graziano proposed the peripersonal space 

representation as a “defensive space”, a sort of radar that, by anticipatorily detecting 

approaching objects can prevent  the body be hurt by the possible dangerous collisions by 

rapidly feeding this information to the motor system. Following this hypothesis, Graziano’s 

group collected data about defensive reactions in animals. They thus provided the only 

available link between peripersonal space representation and involuntary defensive reactions 

in animals, through the direct electrical microstimulation of bimodal visuo-tactile areas. 

However, they only  showed that such a stimulation induces patterns of movements 

compatible with defensive reaction.

 Our results of the first  study reported here are the first direct demonstration in humans 

that the peripersonal space coding may indeed make available such information to the motor 

system very rapidly, providing compelling evidence in favour of the role that peripersonal 

space can play in detecting approaching objects and thus in defensive reactions.

 Motor evoked potentials are a measure of the excitability  of the motor cortex and thus 

considered a measure of the “readiness” of the motor cortex to send the motor command for 

the required movement to be executed. Our results show that motor cortex excitability of the 

hand representation is reduced when a three-dimensional object  is approaching the hand 

rather than falling far from it. This means that motor cortex receives the information about the 
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presence of a visible object near the body. Furthermore, it  is worth noting that the location of 

the object  is coded in a reference frame centred on the body-part. Indeed, our results clearly 

showed that the effect is more dependent on the position of the hand in the action space than 

on the direction of visual fixation, or the orienting of attention. 

 We hypothesized that this early reduction of motor cortex excitability  might reflect the 

proactive inhibition of an undesirable response (Koch et al. 2006; Mars et al. 2007; van den 

Hurk et al. 2007; van Elswijk et al. 2007), consequence of the conflict between a voluntary 

motor response (to press the button) and an avoidance movement elicited by the approaching 

ball. Two arguments are directly  available from our results to support  this view. The first is 

the fact that after a voluntary inhibition of motor responses, we did not detect any hand-

centered modulation of MEP amplitudes with a general suppression of motor excitability. In 

other words this result  is compatible with the interpretation of the reduction in motor cortex 

excitability as an inhibition. Second, and more important, MEPs recorded from another 

muscle that  is not involved in the task-related motor response, did not show any modulation 

depending on the distance of the object with respect to the hand. Therefore, when competition 

between the avoidance and go responses is eliminated (or temporally desynchronised), no 

suppression of the avoidance response is required anymore. Our results therefore indicate an 

interaction between the motor consequences of the rapid visual processing of objects 

approaching the hand and the voluntary task-related motor plans for that hand. These results 

represent the first  evidence in humans in favour of the involvement of peripersonal space in 

serving defensive reactions.

A comparison with non-human primates studies

The results of this first study are compatible with an involvement of premotor cortex and 

posterior parietal areas in this phenomenon. M1 and premotor cortex are indeed densely 

interconnected, as described in the introduction, both in humans and in monkeys (Davare et 

al. 2008; Dum and Strick, 2005; Koch et al. 2006; O’Shea et al. 2007; Shimazu et al. 2004). 

A point worth of consideration is the on-set of corticospinal modulations at 70-80 ms 

following the appearance of the object, a very rapid transformation of visual information into 
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motor consequences. The modulation of motor cortex excitability with respect to approaching 

object may therefore reflect ongoing activity in the premotor cortex. In monkeys, neurons of 

premotor cortex have been found to be driven by visual stimulation at time periods similar to 

the ones we have described, and are thought to encode the significance of visual cues for 

response selection (Cisek and Kalaska, 2005). In humans, the premotor cortex has been 

shown to participate in visuomotor transformations required to configure hand posture with 

respect to objects (Davare et al. 2006). Furthermore, recent studies have shown a direct 

influence of premotor over primary motor cortex as early as 75 ms following a ‘Go’ signal 

(Koch et al. 2006; O’Shea et al. 2007).

 The other point in favour of an involvement of posterior parietal areas is the selectivity 

of the motor cortex excitability modulation with respect to the three-dimensional 

characteristics of the object. Indeed, when the real three-dimensional balls were replaced by 

virtually  bi-dimensional static LEDs, no effect was found of the body-centred modulation of 

the cortical excitability. As reviewed in the introduction, area AIP in the intraparietal sulcus of 

macaque monkeys shows a strong sensibility to three-dimensional objects with respect to bi-

dimensional ones. Since AIP and premotor cortex are densely interconnected, it is plausible to 

think of an involvement of posterior parietal areas in modulating motor cortex excitability 

when a three-dimensional object becomes suddenly visible near the hand.

 While any comparisons between data drawn from monkeys and humans using such 

different methods should be made with caution, given the timing and the spatial specificity of 

the above responses with respect to visual events, these mechanisms fit very well with our 

results, and suggest the involvement of human posterior parietal and premotor areas with the 

hand-centred coding of visual space.

 These data and considerations support the idea of a parieto-frontal network as the 

neurophysiological basis of the peripersonal space representations. This specialised system 

for transforming nearby sensory inputs into rapid and appropriate motor outputs is ideally 

suited to serve as a sensori-motor interface for driving defensive movements away from 

potentially harmful approaching objects.
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Peripersonal space: an interface for voluntary actions

When grasping an object, the brain updates the link between the visual information available 

on the target  object and the tactile information on the grasping body-part. The results we 

provided in the second and third studies clearly show that this up-dating arises and that 

peripersonal space is re-mapped since the on-set  of the execution of a grasping. When the 

hand starts to move - but well before it comes into contact with the object - visual inputs 

coming from the object are more strongly  interacting with tactile information on the body, 

with respect to a static situation. Furthermore, the finding that such visuo-tactile re-weighting 

was observed selectively when both perceptual and grasping tasks concerned the same hand 

not only confirms the hand-centred nature of the peripersonal space representation, but 

critically  extends this property  to ecological and adaptive dynamic situations of voluntary 

manipulative actions. Any interpretation solely based on an attentional account can be ruled 

out by our results. Indeed, performing the grasping with the left hand as in the second study 

(experiment 3), required the participants to allocate the same amount of attention on the 

object as in the right hand grasping condition. Another point worth to be underline is the fact 

that visual and tactile information in our paradigm were delivered simultaneously. While in 

most part of the CCE studies, the visual distractor preceded the tactile target, working more as 

an attentional cue, in our paradigm we tried to avoid it in order to reduce the attentional 

effects on the visuo-tactile interaction. These results thus constitute the first evidence in 

humans of an involvement of peripersonal space in the execution of voluntary actions.

 A crucial insight in these studies was gleaned from the kinematic analysis of the 

grasping movements. During the visuo-tactile and object-grasping task, movements of both 

hands were recorded kinematically. These findings ruled out the possibility that the effector-

specific increase in CCE reflected a difference between motor performances for the two 

hands, since they displayed comparable kinematic profiles. Furthermore, the kinematics 

analysis revealed possible parallels between the motor and perceptual performances, showing 

that a difference in the kinematic pattern was reflected by a difference in the perceptual 

domain. In particular, orientations of the target object that elicited kinematically  more 

demanding reaching movements (i.e., in terms of inward wrist rotation) also elicited stronger 

CCE. In a different experiment, when the kinematic difficulty of the movement was equalised 
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across different object orientations, the action also triggered comparable perceptual 

remapping across object orientations, thus showing a comparable amount of CCE when 

grasping actions were comparably difficult in kinematic terms. This parallel between the 

motor and perceptual performance strengthens the functional link between multisensory 

coding of hand-centred space and voluntary action.

The increase in CCE triggered by the action, even if already present at the very on-set 

of the movement, kept increasing during the early execution phase. That is, an even stronger 

interference of visual on tactile information was revealed, as the action unfolded in time and 

space. This suggests that performing a voluntary action triggers a continuous monitoring of 

action space, which keeps ‘assisting’ the motor execution of the action during its whole 

dynamic phase. This consideration is indeed supported by the results of the third experiment 

were two kinematically different actions were proved to elicit different remapping of 

peripersonal space. If part  of the remapping of peripersonal space is already effective at the 

onset of the motor program, the perceptual modulation can be either further enhanced in the 

case of relatively complex object-oriented actions like grasping, or kept unchanged in the case 

of simpler pointing actions. This on-line, motor-evoked “monitoring” of action space opens 

the possibility  of very fast modulations of peripersonal space representation as a function of 

more ecological needs during action execution. One could speculate that such rapid on-line 

updating, for instance, could parallel the fast, on-line motor corrections documented in motor 

control studies (Desmurget et al. 1999; Farnè et  al. 2003a; Paulignan et al. 1991; Pisella et al. 

2000). Since deficits of the so-called “automatic pilot” (Pisella et  al. 2001) have been 

documented after lesions of the posterior parietal cortex in humans, as well as in healthy 

subjects after parietal TMS (Desmurget et al. 1999), we suggest that the mechanism 

underlying the rapid remapping of peripersonal space could be damaged in these patients, thus 

depriving them from the “monitoring” of action space.

A comparison with non-human primates studies

What kind of mechanism could be responsible for the rapid on-line re-mapping of 

peripersonal space induced by the execution of a voluntary action?
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 It is plausible to suggest that a parieto-frontal network would be implied in the visuo-

tactile re-weighting described in these experiments. From neuroimaging investigations in 

humans, as reviewed earlier in this dissertation, both parietal and frontal areas are involved in 

the execution of reaching and grasping movements. Also investigations on multisensory 

visuo-tactile perception pointed out the role of parietal and premotor areas. This series of 

neuroimaging data has provided some evidence about the network of neural structures which 

appears to be involved in the multisensory representation of near space in humans, namely  the 

IPS and ventral premotor cortex. Activation in the posterior aspect of the medial IPS in 

humans has been shown to play a role in tasks requiring visuomotor coordination of hand 

movements with respect to targets (Chaminade and Decety, 2002; Simon et  al. 2002; Grefkes 

et al. 2004). The same area has been reported to show a topographic mapping of space both 

for saccades and for pointing to targets, which is updated with eye movements (Medendorp et 

al. 2003, 2005). According to Ehrsson et al. (2004), activity in the medial wall of the IPS 

reflects the seen position of the hand. Futhermore, IPS has been shown to be activated for 

objects near the hand rather than far from it (Makin et al. 2006). These findings support the 

potential role of posterior IPS as an area that integrates visual and spatial information in hand-

centered coordinates. The most anterior part  of the IPS showed, instead, a significant 

preference for objects near to the hand also when the hand is not visible. Consistent with 

properties featured by the macaque anterior intraparietal (AIP) area, the human possible 

analogue hAIP (Culham et al. 2006) is highly activated by visuomotor tasks such as visually 

guided grasping (Binkofski et al. 1998; Shikata et al. 2003) and also responds to hand 

manipulation without visual feedback (Stoeckel et al. 2003). Furthermore, Macaluso and 

colleagues (2003) found visuo–tactile integration in this area, in addition to activations 

correlated with motor responses. Also the ventral premotor area in humans appears to be 

related to visuo-tactile peri-hand space representation. It is worth noting that it could represent 

the homologue of the premotor cortical area recognised as a region containing perihand 

neurons in monkeys.

 Even if all monkey-human parallels require caution it is plausible to hypothesise a 

parieto-frontal circuit in humans corresponding to the posterior parietal-premotor cortex 
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circuit in monkeys (Rizzolatti et al. 1997; 2002) that could provide the representation of 

peripersonal space and a rapid remapping of it during action execution.
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CONCLUSIONS
AND

PERSPECTIVES





The spatial region where we can directly  interact  with objects has a limited extension. This 

simple consideration highlights the relevance of the region of space around the body. Indeed, 

a visually  available object close to the body not only represents visual information per se, but 

from this information the brain has to select among all the possible motor interactions that can 

occur between the object  and the body. When we see our mug of coffee next to us, for 

instance, not only can we appreciate its color and shape (which may be useful to recognise it 

as our own mug), but our brain is also translating the object into the movements required to 

grasp it and bring it to the mouth. Up to date, research partly  revealed the multisensory 

mechanisms that allow this translation process, in monkeys as well as in humans. In 

particular, the studies of this dissertation revealed that the brain directly  links the visual 

information available outside of the body with the tactile information on the body. Through a 

system of visuo-tactile neurons, the brain can relate visual information in the proximity of a 

body-part to the body-part itself, building a peripersonal space representation. Proprioceptive 

information also reaches this system, updating the link between visual and tactile information 

as each body-part moves. The brain has thus a multisensory interface between the body and 

the objects in the external world available for possible body-object interactions. In particular, 

we showed in humans that the action related properties of the peripersonal space 

representation feature the basic aspect necessary for allowing rapid avoidance reactions, i.e. a 

hand centred processing of proximal visual objects. We additionally  provide converging 

evidence that peripersonal space representations are intimately tighted, and possibly deserve, 

voluntary action execution on nearby objects. Remapping of the peripersonal space 

representation is time-locked with the onset of an action and continuously operates during its 

execution, as a function of the sensory-motor transformations required by the action 

kinematics.

 The two hypotheses (involuntary  and voluntary object-oriented actions) are not 

mutually  exclusive and one could speculate that, from a more primordial defensive function 

of this machinery, a more fine-grained and sophisticated function could have developed using 

the same, relatively  basic visuo-tactile spatial computational capabilities. This development 

could lead to its involvement in the control of the execution of voluntary actions towards 

objects. Some comparative data showed, for instance, that prosimian sensory areas 
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corresponding to the monkeys' parietal areas already present some approximate motor 

activity; however, the most represented movements are just very stereotyped limb retractions 

and defensive movements (Fogassi et  al. 1994; see also Kaas 2004 for an interesting 

comparative approach about parietal functions).

 The novel findings presented in this dissertation raise several important issues. First of 

all, a better knowledge about the homology of the involved areas in the human brain with 

respect to non-humans primates is necessary. Some interesting clues may come from parietal 

optic ataxic patients, who show a deficit in manual reaching of visual, but also somatosensory 

targets (Blangero et al. 2007). In particular, these patients are impaired in reaching with the 

contralesional hand toward both hemispaces (hand effect) and in reaching with both hands 

toward the contralesional hemispace (field effect). One possibility  could be that the parietal 

damage impairs the multisensory  interface normally available in healthy  people to help 

guiding voluntary  actions toward objects. The hypothesis could be made that the motor 

difficulties presented by optic ataxic patients parallel a lack of the action-triggered remapping 

of peripersonal space. In this respect, the novel perceptual and kinematic co-recording 

approach introduced in the experiments 2 and 3 presented here, appears as the best way  to 

investigate the link between an impaired motor performance and a possible deficit in the 

remapping of peripersonal space. Preliminary results recently collected show indeed a 

different pattern of visuo-tactile interaction during the execution of an action with respect to 

healthy participants.

 Other point worth discussing is how parietal and premotor areas interact in the 

modulation of peripersonal space. This is true for the functional involvement of peripersonal 

space both in defensive and voluntary actions, discussed in this thesis. A double pulse 

paradigm, with a first conditioning TMS pulse on parietal and/or premotor areas preceding the 

conditioned TMS pulse on the motor cortex, might be an interesting approach to study the 

timing of parietal and frontal areas interaction in the modulation of the MEPs.

 Another interesting point still un-investigated is how the different sectors of the 

peripersonal space may  interact. Everyday motor acts are rarely limited to a grasping without 

any other consequences; more often, in fact, we are confronted with complex series of motor 

acts which involve different parts of the body each with its respective peripersonal space 
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representation. When we answer the phone or when we grasp a pistachio, for instance, we 

nest bring the object to the ear or into the mouth (respectively!). These simple actions put in a 

dynamic relation the hand-centred and the head-centred peripersonal space representations. 

Among the possibilities that could be investigated, the brain may  use each representation in a 

serial way, as a function of the sequential mounting of the two motor components of the entire 

action: the hand-centred for the grasping and head-centred for the bringing-to-the-head 

movement. Alternatively, the brain might anticipate the consequences of the entire action, 

triggering a remapping of the head-centred representation already at the start of the hand 

movement toward the object.

 Nonetheless, when an object is grasped it can also follow a different destiny. I can 

grasp a telephone or a pistachio, following the previous example, in order to offer it to 

someone else. In this case, another order of interaction is required, that is a “social” 

interaction with someone else’s acting body. Recent research on monkeys showed that parietal 

visuo-tactile neurons can also have a representation of another individual’s body, matching 

the observer’s own body representation. This correspondence, first of all opens the possibility 

of a remapping of the peripersonal space of an observer during the simple observation of an 

action performed by someone else. Preliminary results from our laboratory support this view. 

A fourth studyexperiment has been indeed performed, where an observer was present beside 

the active participants. The observer was requested to perform the same perceptual task as in 

studies 2 and 3, however without executing any actions. At the same time, the observer could 

see the active participant to reach and grasp the object. Results show that the simple 

observation of an action can elicit  a remapping of peripersonal space also in the observer of 

the action. Secondly, this matching representation of peripersonal and other individuals’ 

peripersonal space could be useful both in case of competition in interacting with external 

object and in case of co-execution of actions. The peripersonal space appears thus to be the 

multisensory interface the brain developed to follow the dynamic relationship between the 

body and the world.
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