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Thèse soutenue publiquement le ,
devant le jury composé de :
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Résumé

Cette thèse propose de relier des observations empiriques sur les fréquences de mots dans
des collections textuelles aux modèles probabilistes de Recherche d’Information (RI).
Concernant les modèles statistiques de fréquences de mots, nous portons notre attention
sur l’étude du phénomène de rafale (a rich get richer phenomenon). Nous établissons une
propriété sur les distributions de probabilité caractérisant leur capacité à modéliser ce
phénomène et nous montrons ensuite que la distribution Beta Négative Binomiale est un
bon modèle statistique pour les fréquences des mots.

Nous portons ensuite notre attention sur les modèles probabilistes de RI et leur pro-
priétés fondamentales. Nous introduisons une nouvelle famille de modèle probabiliste,
fondé sur la notion d’information de Shannon qui permet d’établir un lien conséquent en-
tre les propriétés importantes des modèles de RI et le phénomène de rafale. Ces nouveaux
modèles obtiennent des résultats comparables aux modèles de réference et les surpassent
avec la boucle de rétro pertinence.

Enfin, les meilleurs performances de nos modèles pour la rétro-pertinence nous ont
conduit à étudier empiriquement et théoriquement les modèles de rétro-pertinence. Nous
proposons un cadre théorique qui permet d’expliquer en partie leurs caractéristiques em-
piriques et leur performances. Ceci permet, entre autres, de mettre en avant les pro-
priétés importantes des modèles de retro-pertinence et de montrer que certains modèles
de référence sont déficients.

Abstract

The present study deals with word frequencies distributions and their relation to prob-
abilistic Information Retrieval (IR) models. We examine the burstiness phenomenon (a
rich get richer phenomenon) of word frequencies in textual collections. We propose to
model this phenomenon as a property of probability distributions and we show that the
Beta Negative Binomial distribution is a good statistical model for words frequencies.

We then focus on probabilistic IR models and their fundamental properties. We then
introduce a novel family of probabilistic models, based on Shannon information. These
new models bridge the gap between significant properties of IR models and the burstiness
phenomenon of word frequencies. These new models yield comparable performances to
state of the art IR models and outperform them when Pseudo Relevance Feedback is
used.

Lastly, the better performances of our models for Pseudo Relevance Feedback (PRF)
lead us to study empirically and theoretically PRF models. We propose a theoretical
framework which explain well the empirical behaviour and performance of PRF models.
Overall, this analysis highlights interesting properties for pseudo relevance feedback and
shows that some state-of-the-art model are inadequate.
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Résumé de la Thèse

Introduction

Si la recherche d’information (RI) sur le web est dominée par des systèmes apprenant
des fonctions d’ordonnancement à partir de log de données, la RI ad hoc est largement
dominée par des modèles probabilistes avec peu de paramètres à régler, comme Okapi,
les modèles de langues et les modèles DFR (Divergence from Randomness). Ces derniers
sont fondés sur plusieurs distributions de probabilité et hypothèses qui facilitent leur
déploiement en pratique. Si ces modèles semblent bien fondés d’un point de vue RI, les
distributions de probabilités sous-jacentes s’accordent mal avec les données empiriques
collectées dans les collections textuelles.

Il y a eu beaucoup d’études empiriques sur les distributions de fréquences de mots,
dont les modèles de recherche d’information pourraient bénéficier. Quelle connaissance sur
les lois régissant les fréquences de mots devrait être appliquée au problème de recherche
d’information ? On pourrait penser qu’un ’bon’ modèle statistique de fréquences de mots
devrait conduire à un ’bon’ modèle de RI. Il s’avère pourtant que ce n’est pas le cas
ainsi que le suggère l’état de l’art. C’est pourquoi nous nous demandons quelles sont les
propriètés des fréquences de mots qui pourraient être utiles en RI et s’ il serait possible
de concevoir un modèle probabiliste à la fois efficace, performant en RI et motivé par des
études statistiques sur le comportement des mots.

Nous nous interessons plus particulièrement à un phénomène important, observé par
Church et Gale [12] et d’autres, qui est celui du comportement en rafale, ou crépitement
(en anglais burstiness) des mots. Ce phénomène décrit le fait que les mots, dans un
document, tendent à apparâıtre par paquets. En d’autres termes, une fois que l’on a
observé une occurrence d’un mot dans un document, il est bien plus probable d’observer
de nouvelles occurrences de ce mot.

Pour résumer, nous nous posons donc les questions suivantes:

1. Comment le phénomène de rafale peut etre modélisé dans un cadre probabiliste ?

2. Pouvons nous trouver de ’meilleurs’ modèles probabilistes ?

3. Comment utiliser ces nouvelles distributions pour la RI ?

Résumé des Chapitres

Dans une premier temps, nous examinons dans le chapitre 2 les modèles proposés pour
modéliser les fréquences de mots, telles que le modèle 2-Poisson, Négative Binomiale et
Dirichlet Multinomial. Nous discuterons du phénomène de rafale et d’adaptation pour les
fréquences de mots et des contributions importantes de Katz et Church [45, 13]. Même
si le phénomène de rafale a été abordé dans differentes études et avec différentes dis-
tributions, notre approche se distingue par la volonté de caractériser les distributions
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qui peuvent naturellement prendre en compte ce phénomène. C’est pourquoi nous pro-
posons une définition formelle de loi de probabilité qui sont ’en rafale’, par extension avec
le phénomène que l’on veut modéliser. Cette définition est en fait équivalente à la log
convexité de la fonction de survie P (X > x) de la loi de probabilité considérée.

Ainsi, nous pouvons caractériser les distributions classiques de fréquences de mots
et montrer que la plupart sont inadéquates au regard du phénomène de rafale. Nous
avons alors étudié deux distributions afin de modéliser les fréquences de mots: la loi Beta
Negative Binomiale et la distribution Log-Logistique. Nous avons reconsidéré la distri-
bution Negative Binomiale, dont le comportement en rafale depend de ses paramètres,
pour obtenir une distribution de probabilité qui soit toujours en rafale. Nous montrons
ensuite comment et dans quels cas la distribution Log-Logistique peut être vue comme
une approximation continue de la distribution Beta Negative Binomiale.

Nous verifions ensuite l’adéquation de ces modèles aux données de fréquences à travers
plusieurs expériences et nous validons ainsi ces distributions. Ceci nous ensuite au
problème de l’application de ces lois de probabilités aux problèmes de RI.

Pour cette raison, nous passons en revue les modèles références de RI dans le chapitre
3. Nous rappelons les hypothèses principales des modèles BM25, des modèles de langues et
de modèles ’Divergence from Randomness’ (DFR). Nous examinons ensuites les propriètés
fondamentales des modèles de RI dans le chapitre 4, comme les effets et conditions sur
la croissance et concavité des fonctions de pondérations et l’effet IDF entre autres. Nous
montrons aussi que le premier principe de normalisation des modèles DFR est une des
conséquences du fait que les lois de probabilités sous-jacente ne sont pas en rafale. Plus
généralement, nous discutons de la relation entre la proprièté de concavité des modèles
de RI et la proprièté de rafale des lois de probabilités des modèles sous-jacents. Tous
les modèles de référence en RI sont des fonctions concaves avec les fréquence des mots
mais toutes les distributions de probabilités utilisées ne sont pas en rafale. On pourrait
considérer que le phenomène de rafale et la concavité des modèles de RI comme deux
versants différents du même problème, à savoir comment traiter et ne pas surévaluer ou
sous evaluer les fortes fréquences des mots.

Par conséquent, nous pensons que les modèles probabilistes de RI actuels ne sont
pas compatibles avec les distributions Beta Negative Binomiale et Log-Logistique et nous
introduisons donc une nouvelle famille de modèles probabilistes pour la RI, fondée sur la
notion d’information de Shannon. Lorsque la loi de probabilité sous-jacente est capable
de modéliser le phénomène de rafale, alors le modèle devient naturellement valide au sens
des propriètés fondamentales des modèles de RI.

Nous donnons l’exemple de deux modèles dans cette famille. Le premier modèle
repose sur une distribution log-logistique et le deuxième modèle sur une loi que nous
avons appelé Loi de Puissance Lissé (Smoothed Power Law). Ces deux modèles sont
évalués sur plusieurs collections de documents et offrent des performances similaires voire
identique aux modèles de références. Nous étendons ces modèles d’information au cadre
de retro-pertinence (Pseudo Relevance Feedback). Avec cette extension, les modèles que
nous avons proposé surpassent les modèles référence de rétro-pertinence sur plusieurs
collections.

Le bon comportement de nos modèles pour la retro-pertinence nous a amener à ex-
aminer en détail les caractéristiques qui les distingue des modèles classiques. Nous nous
sommes basés sur l’étude des propriètés fondamentales des modèles de RI pour l’étendre au
modèle de retro-pertinence. Nous dressons donc une liste de contraintes classiques avant
d’introduire une nouvelle contrainte pour les modèles de rétro-pertinence, contrainte liée
à la fréquence documentaire (DF) des mots dans l’ensemble de rétro-pertinence. Nous
analysons ensuite, d’un point de vue théorique, différents modèles de rétro-pertinence par
rapport à ces contraintes. Cette analyse montre que plusieurs modèles références ne sat-
isfont pas plusieurs contraintes au contraire des modèles d’information. Les contraintes
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que nous mentionnons sont validées empiriquement sur plusieurs collection afin de vérifier
leur bien fondé. Au final, nous avons établi un panorama des modèles de retro-pertinence
avec une théorie qui permet d’expliquer les résultats experimentaux de ces modèles.

Conclusion

Nous avons étudier des modèles probabilistes pour les fréquences de mots et pour la
recherche d’information. Puis, nous avons essayé de relier ces modèles dans le but
d’obtenir à la fois un ’bon’ modèle statistique des fréquences de mots et un ’bon’ modèle
de recherche d’information.

Nous avons proposé de modéliser le phénomène de rafale comme une proprièté des
distributions de probabilités caractérisant ainsi leur capacité à modéliser ce phénomène.
Ceci nous a amené à considérer de nouvelles distributions comme la Beta Négative Bino-
miale. Nous montrons que cette distribution est un relativement bon modèle statistique
pour les fréquences des mots et explique mieux les données que la plupart des distributions
de probabilités utilisées en recherche d’information.

Nous avons ensuite analysé les modèles de RI afin de mieux comprendre leur propriètés
fondamentales. Nous introduisons une nouvelle famille de modèles probabilistes pour la
recherche d’information, fondé sur la notion d’information de Shannon et qui permet
d’établir un lien conséquent entre les propriètés importantes des modèles de Recherche
d’Information et le phénomène de rafale. Par exemple, nous montrons une relation directe
entre entre la concavité des modèles de RI et le comportement en rafale des distributions
modelisant les fréquences des mots. Nos expériences montrent que ces nouveaux modèles
obtiennent des résultats comparables aux modèles de réferences et les surpassent avec la
boucle de rétro pertinence.

Enfin, les meilleurs performances de nos modèles pour la rétro-pertinence nous ont
conduit à étudier empiriquement et théoriquement les modèles de rétro-pertinence. Nous
proposons un cadre théorique qui permet ainsi d’expliquer en partie leurs caractéristiques
empiriques et leur performances. Ceci permet, entre autres, de mettre en avant les pro-
priètés importantes des modèles de retro-pertinence et de montrer que certains modèles
de référence sont déficients.

Ces nouveaux modèles fondés sur l’information sont performants, intuitifs, aisés à
mettre en oeuvre et ont été extensivement analysés d’un point de vue théorique et pra-
tique.
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Notations

Table 1: Notations

Notation Description
w A term, or term index
d A document, or document index
N Number of documents in the collection
M Number of indexing terms in the collection
xwd Number of occurrences of w in document d

xwq, qw Number of occurrences of w in query q
twd, or t(w, d) Normalized version of xwd

ld Length of document d
avgl Average document length
Fw Number of occurrences of w in collection:

Fw =
∑
d xwd

Nw Number of documents containing w:
Nw =

∑
d I(xwd > 0)

IDF(w) − log(Nw/N)
L Length of collection =

∑
w Fw

Xw Univariate discrete random variable for the frequencies of w
Tw Univariate continuous random variable for normalized frequencies of w
Xd Multivariate Random variable modelling a document.

P (X > x) Survival function
PRF Notation

n # of docs retained for PRF
F Set of documents retained for PRF:

F = (d1, . . . , dn)
tc TermCount: # of terms in F added to query

TF (w) =
∑
d∈F xwd

DF (w) =
∑
d∈F I(xwd > 0)



Chapter 1

Introduction

The beginning of Information Retrieval can be dated to Luhn’s works in the 50’s. Luhn, a
computer scientist working at IBM, had to deal with new problems raised by libraries and
documentation centers. Since then, information access techniques were developed in order
to face the information society advent. According to Manning et. al [54], Information
Retrieval (IR) can be defined as:

Information Retrieval. Information Retrieval is finding material (usually documents)
of an unstructured nature (usually text) that satisfies an information need from within
large collections (usually stored on computers).

Due to the large amount of information available on computers, users need efficient
methods to access and search various source of information. Information Retrieval orga-
nizes and models unstructured information as opposed to database systems. It enables
users to access a large collection of documents/information in diverse ways. As one of
the first media digitized was texts written in natural language, IR emerged naturally as
a sub-domain of Natural Language Processing (NLP).

The typical ad-hoc IR scenario confronts a user, with his information need expressed
in a given query language to a document representation given as an index. A function
matches the query to the document representation in order to return a ranked list of
objects to the user. An information retrieval system, as shown in figure 1.1, consists in 3
elements:

• A query model,
• A document model,
• A function, called Retrieval Status Value (RSV), matching queries and documents.

The bigger the function values are, the better documents are supposed to answer
the query.

The very first models in IR regarded words as first order logic predicates. From this
point of view, a document d was considered relevant if it entailed the query q according
to laws of logic.

RSV (q, d) =
{

1 if d⇒ q
0 otherwise (1.1)

Later, vectorial models represented queries and documents in Euclidean spaces. Each
dimension of the Euclidean spaces corresponds to a given word, or indexing term. Then,
the similarity between a document d and a query q can be calculated by the angle between
these two vectors:

RSV (q, d) = cos(~q, ~d) (1.2)

15
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Document Collection

Indexing Document

Index= Document 
Model

User

query

Query Model 

 
 Matching Function

Between queries and documents

Output = Rank Documents

Figure 1.1: Information Retrieval System Architecture. An Information Retrieval system
is composed by a query model, ie a query language/formalism, a component to index
documents and a function matching queries and documents. The output of an IR system
is in general a ranked list of documents.

Lastly, probabilistic models of IR considers queries and documents as the result of
random processes. Many IR problems are tackled with a probabilistic framework. One
way or another, all probabilistic IR models make an assumption which can be formulated
as follows:

Hypothesis. Words and their frequencies, in a document or a collection of documents,
can be considered as random variables. Thus, it is possible to observe and study word
frequencies as random events.

Hence, probabilistic models rely on the choice of probability distributions to model
documents and queries. Probabilistic models can be specified by 3 elements: a probability
distribution Pdoc modeling documents, a probability distribution Pquery modeling queries
and a function H matching these distributions.

Let D be the random variable modeling document d, Q the random variable modeling
query q, then an IR model can be defined as follows:

D ∼ Pdoc(.|λ)
Q ∼ Pquery(.|θ)

RSV (q, d) = H(Pquery(Q = q|θ), Pdoc(D = d|λ))

For example, if Multinomial distributions are chosen for both queries and documents
and if H is the Kullback-Leibler divergence, then the resulting model is equivalent to the
KL retrieval model defined in [46].

This PhD thesis adopts this probabilistic approach to Information Retrieval. We now
proceed to a short discussion on the research questions investigated.
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1.1 Research Questions

A general question raised by this retrieval framework deals with the choice of particular
word frequency distributions. There has been many statistical studies on word frequencies
whose probabilistic IR models could benefit from. What knowledge on word frequencies
can be transferred to the retrieval tasks ? If we were to think in terms of probability,
we would tend to believe that a ’good’ statistical model of word frequencies should yield
a valid and effective IR models. It is however not always the case in IR models, one of
the reason being the significant role of the H function previously mentionned. This is
why we wonder which are the properties of word frequencies that could be useful in IR
and whether it would be possible to design an effective IR model whose underlying word
frequencies distributions are valid or well motivated from statistical studies. Overall,
these questions implicitly address the feature representation errors in probabilistic IR
models.

Modeling word frequencies in documents is not a specific problem to IR. Many natural
language processing tasks do require a probability model for word frequencies. In addition,
word frequencies can also be studied solely from a statistical perspective, with the goal of
finding a good model of word frequencies where the notion of good model can be defined
in terms of mean squared error, χ2 statistic or any statistical measure.

Word frequency distributions can be studied from different perspectives. The very first
models of word frequency were typically interested in modeling the frequency spectrum
or grouped frequency distribution. With one or several documents, these models first
collect statistics on the number V (m) of different words that appear exactly m times and
fit a probabilistic model to these observed counts. For example, the number V (1) is the
number of words that appear only 1 time (hapax legomena). If the word probability and
retrieval both appear k times, then observing these two words in a text is considered as
the same statistical event: the observation of a word that appear k times. So, these models
group words by frequency in a text. This is typically what addresses the Yule-Simon, the
Waring-Herdan-Muller model and to some extent the Zipf Law [4].

However, this is not the kind of model we are interested in the present study. We
adopt the approach used in many IR or NLP tasks [37, 13] where each different word is
modeled independently. So, for each different word w, the distribution of the occurrences
of w in a corpus of documents is the object under study.

While this approach is common to many IR and NLP tasks, there does not seem to be
a consensus on the distributions to use in order to model word occurrences. Probabilistic
IR models typically rely on a mixture of 2-Poisson distribution (Okapi [72]), Multinomial
distributions (Language Models [46]) or Poisson and Geometric distributions in the Diver-
gence From Randomness framework [2]. But, Church [13], among others, emphasized one
peculiarities of word frequency : burstiness. Actually, burstiness was originally defined
by Katz by the following statement:

burstiness, i.e. multiple occurrences of a content word or phrase in a single
text document, which is contrasted with the fact that most other documents
contain no instances of this word or phrase at all”

Burstiness has then implications on the distributions to use and several studies high-
lighted that common distributions used in IR may not be appropriate to model correctly
word frequency data. In a nutshell, the common distributions used in IR are criticized for
their limited variance while several alternative distributions such as the Negative Binomial
[13] or the Dirichlet Compound Multinomial [53] can account for more variance.

A naive question could be the following: how come that state of the art model do not
account for burstiness ? Maybe one could think that burstiness is not important in IR
tasks and that it is not necessary to account for this phenomenon. Burstiness make large
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frequencies not such a rare event. Distributions with more variance can generally better
estimate the probability of a large number of occurrence, ie a large deviation from the
mean frequency. Hence, models accounting for burstiness are not so much ’surprised’ to
observe large frequencies.

How large frequencies are managed in IR models ? It turns out that IR models have
found a different way to address burstiness. All IR models are concave functions with
term frequency. Concavity in term frequency prevents IR models from assigning a too
large score to a document because of one large frequency in a document. Hence, IR
models are not so much ‘surprised’ to observe large frequencies.

Intuitively, burstiness and the IR model concavity in term frequency seem to be two
sides of the same coin.

This PhD thesis fits in with the probabilistic approach to Information Retrieval and
draw inspiration, at its beginnings, from Church seminal paper on Poisson mixtures [13].
First of all, we were primarily interested in finding better probabilistic models of words fre-
quency that address the burstiness phenomenon. Above all, we tackle this problem from
a different perspective compared to related works: we propose to characterize burstiness
as a property of probability distribution. Therefore, this property enable to distinguish
bursty probability distributions from non-bursty. In addition, the Negative Binomial pro-
posed by Church has been reconsidered and extended toward the Beta Negative Binomial
and the Log-Logistic distribution, a continuous counterpart. Both of these distributions
are bursty according to our definition of burstiness.

Having suggested new probability distributions, the remaining task was to apply these
models in IR or NLP tasks. It turns out this was not as straightforward as initially
thought. This is why we had to reexamine IR models foundations in order to better
understand the different aspects involved for ranking documents. In particular, the Di-
vergence From Randomness framework [2] caught our attention as a starting point for
our analysis. As the application of the proposed distributions in this framework revealed
problematic, we then introduced a new family of IR models, information-based models,
which require and rely on bursty distributions. This family can be seen as a simplification
of the Divergence From Randomness framework in order to comply with our proposed
distributions.

Finally, the good performance of information-based models for Pseudo Relevance Feed-
back (PRF) 1 lead us to experimentally and theoretically analyze PRF models. As a
result, we establish a list of axiomatic constraints for pseudo relevance feedback models
aiming at capturing ‘good’ properties of PRF models. Our theoretical analysis provide
an explanation on why the information-based models perform better than other models
in PRF settings.

In a nutshell, this PhD thesis investigated the following research questions:

1. How can burstiness be modeled in probabilistic models ?

2. Can we find better probabilistic model accounting for the burstiness phenomenon
of words frequencies ?

3. How could these new models be used for ad-hoc information retrieval ?

1.2 Contributions

We now proceed to a brief summary of the main contributions presented in this thesis.

1. Our first proposal is to define burstiness as a property of probability distributions:
1 Pseudo Relevance Feedback aims at automatically expanding the initial query with terms found in

the top retrieved documents.
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Burstiness. Let X a random variable defined on R with distribution P . The dis-
tribution P is bursty iff ∀ε > 0, the function gε defined by:

ε > 0, gε(x) = P (X ≥ x+ ε|X ≥ x)

is a strictly increasing function of x. A distribution which verifies this condition is
said to be bursty. The same definition applies to discrete distributions except that
ε ∈ N.

This definition directly translates the notion of adaptation: a word is bursty if it
is easier to generate it again once it has been generated a certain number of times.
Moreover, it enables to characterize most distributions proposed so far to model
word frequencies.

Then, we propose two models of word frequencies: the Beta Negative Binomial
distribution, a discrete model, and the Log-Logistic distribution a continuous one.
Finally, several experiments demonstrate the appropriate behavior of these distribu-
tions to model burstiness: the Beta Negative Binomial and the Log-Logistic distri-
butions are sound models of word frequencies: they enjoy good theoretical properties,
as bursty distributions, and they fit well word frequencies empirically.

2. Our second main contribution is the definition of novel family of IR model: information-
based model. We propose the family of IR models satisfying the following equation:

RSV (q, d) =
∑
w∈q
−qw logP (Tw > tw|λw)

where Tw is a random variable modelling normalized term frequencies and λw is a
set of parameters of the probability distribution modelling word w in the collection.
This ranking function corresponds to the mean information a document brings to
a query or, equivalently, to the average of the document information brought by
each query term. This model has interesting properties that connect the burstiness
property of probability distributions to important property of IR models. We then
propose two effective IR models within this family: the log-logistic and the smoothed
power law models. Regarding performances, both the log-logistic and smooth power
law models yield state of the art performance, without pseudo relevance feedback,
and significantly outperforms state of the art models with pseudo relevance feedback.

3. We have conducted a theoretical analysis of PRF models. First, we estbalish a
list of theoretical properties including a novel one, called the Document Frequency
constraint. Second, we have then investigated standard PRF models with respect
to these constraints. This theoretical study has revealed several important points:
a) several state-of-the-art model are deficient with respect to one or several PRF
theoritecal properties, b) information-based model satistfy all the PRF properties.
Thus it provides an explanation on why the information-based models perform better
than other models in PRF settings.

1.3 Outline

Chapter 2 surveys the main probabilistic models of word frequencies. Multinomial mod-
els, including topic models, are briefly reviewed before introducing the burstiness phe-
nomenon. 2-Poisson models, Negative Binomial models, the Katz-Mixture model and
Polya Urn schema are discussed in the context of burstiness. Then, we move on to a
formal definition of burstiness, which relates to the log-convexity of the survival function
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and which enables to characterize probability distributions as bursty or non-bursty. The
Negative Binomial model is reconsidered with the Beta Negative Binomial distribution
and the Log-Logistic model is proposed as a continuous counterpart. Finally, several
experiments are carried in order to validate of the proposed distributions.

Having introduced the Beta Negative Binomial and Log-Logistic models, we want to
tackle ad-hoc IR with these distributions. Chapter 3 examines the foundations of the
main probabilistic IR models. This chapter draws up a state of the art of probabilistic
IR models including the Probability Ranking Principle, Language models and Divergence
from Randomness models. Among the three families, it is the Divergence From Random-
ness framework that will retain our attention and which will serve us as a starting point
for a formal analysis of IR models hanks to retrieval heuristics constraints in chapter 4
and to the elaboration of a suitable framework for the BNB and Log-Logistic distribu-
tions. In particular, the role of the first normalization principle is shown to be directly
linked to a particular retrieval constraint, the concavity in term frequency. Finally, DFR
models are shown to be inappropriate when word frequencies are modeled with a Beta
Negative Binomial distribution. This will suggest that the DFR framework may not be
appropriate with our candidate distributions.

Chapter 5 introduces the family of information-based models for ad-hoc IR, which
can be seen as a simplification of the DFR framework. Two effective IR models are
proposed: the Log-Logistic and a novel probability distribution, the Smoother Power
Law. These models yield state of the art performance, without pseudo relevance feedback,
and significantly outperforms state of the art models with pseudo relevance feedback. We
have tested these models with different term frequency normalizations and extended them
with the beneficial use of the q-logarithm.

Finally, chapter 6 analyzes pseudo relevance feedback models in order to establish a list
of axiomatic constraints for pseudo relevance feedback. This chapter introduces conditions
PRF models should satisfy. These conditions are based on standard IR constraints, with
the addition of a Document Frequency (DF) constraint which we have experimentally
validated. We have then investigated standard PRF models wrt to these constraints.
The theoretical study we conduct reveals that several standard PRF models either fail
to enforce the IDF effect or the DF effect whereas the log-logistic and the smoothed
power law models satisfy all the PRF properties. Our theoretical analysis thus provide
an explanation on why the information-based models perform better than other models
in PRF settings.
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2.1 Introduction

Word frequency data are generally represented in a term-document matrix X = (xwd)
where rows stand for words and columns for documents. The term-document matrix
results from the preprocessing of a document collection, which is explained in the appendix
for readers unfamiliar with word frequency data.
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The very first models of word frequency were typically interested in modeling the
grouped frequency distribution: the number of different words that appear exactly k
times in a collection of documents. The grouped frequency distribution is not the object
of interest in IR or Natural Language Processing tasks, where documents or the occur-
rences of a word w are the object under study. For most probabilistic models, the different
terms w are supposed to be independent from each other so that most probabilistic mod-
els of word frequency are in general univariate distributions.

We will call Xw the random variable for the frequencies of word w. Each words w is
modeled with a distribution P (Xw|λw) in a collection, where λw is a set of parameters
for word w. All words in the collection are in general modeled with the same class of
distribution but with different parameters. For example, if one choose to model word
frequencies with a Poisson distribution, then each word is a represented with its own
Poisson distribution. In a way, these probabilistic models look at the data matrix by line.
We will call Xd the random variable for a document, a multivariate distribution where
each marginal is a word frequency random variable Xw.

This chapter review the main probabilistic model of word frequencies, namely the
probability distributions used to model the random variables Xw. We also present state
of the art probabilistic document models, which most of all rely on a Multinomial dis-
tribution to tie all words together in a multivariate distribution. First, several points
concerning the peculiarities of textual data are shortly discussed:

Discrete vs Continuous Word frequencies, ie observations are discrete. So most mod-
els are discrete probability distributions. Nevertheless, document differs in length:
some documents are longer than some others and a normalization of term frequencies
could be used as a preprocessing step. As most normalizations transform frequencies
in continuous values, continuous probability models can also be used.

High Dimensionality Textual data is high-dimensional as many documents and many
different words are observed. Typical IR test collections have sizes around several
hundred thousands documents and the number of different terms is even bigger. It
is common in IR collections that the number of indexing terms reach a million or
more different terms.

Sparsity The observations matrix X is very sparse. Indeed, most words do not occur in
most documents, they mostly occur in the subset of documents. Table 2.1 shows
the percentage of non-zero observations for two TREC collections. Furthermore,
there are a lot of rare words, which occur only a few times in the collection.

Table 2.1: Sparsity
Collection Non-Zeros Observations Percentage
TREC-7 3× 10−4

TREC-3 4× 10−4

Estimation Excepted naive models, probabilistic models of texts suffer from estimation
problems. Often being intractable, the estimation of documents models is approxi-
mated by a simpler function to optimize. Moreover, the high-dimensionality of data
makes the estimation even more costly in computation. Approximations are also
used to speed up the computation procedure due to the huge amount of data. Most
probabilistic models of texts are approximated one way or another.

In a nutshell, textual data is sparse high-dimensional and discrete which renders
models estimation difficult.
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In addition to these general features, the phenomenon of burstiness have been
shown to affect word frequencies, as shown by Church and Gale [13]. The term “bursti-
ness” describes the behavior of words which tend to appear in bursts, ie once they appear
in a document, they are much more likely to appear again.

The burstiness phenomenon is the connecting thread of this chapter. Section 2.2
will begin with Multinomial models of word frequencies, which have been criticized wrt
burstiness. Then, in section 2.3 the burstiness phenomenon is extensively discussed in
order to introduce other probabilistic models. We then propose a formal definition of
burstiness and suggest two distributions: the Beta Negative Binomial and the Log-Logistic
in section 2.4. The last section deals with experiments validating the Beta Negative
Binomial and Log-Logistic models.

2.2 Multinomial Document Models

2.2.1 Multinomial Model

The Multinomial model is a very popular model. It was first used with naive Bayes
categorization models ([57]) and later in IR through the so-called language models. The
Multinomial distribution is a multivariate generalization of the Binomial distribution and
its density function is as follows:

P (Xd|θ, ld) = P (Xd = (x1d, . . . , xMd)|θ, ld) =
ld!∏
w xwd!

∏
w

θxwdw

where ld is the document length and θ encodes the proportion of each word and its
statistical mean. The Multinomial model suppose the length of a document ld (in tokens)
is known beforehand and that words occurrences are independent from each other. The
independence of word occurrences is expressed by the product

∏
w, which in probability

theory means independence of events.
A document is simply seen as a bag of tokens, where words occurrences are independent

from each other. This means that different occurrences of the same term are statistically
independent. For example a document could be:

(soviet, president, US, soviet, cold, war)

So, the occurrence US and soviet are independent from each other. So are the multi-
ple occurrences of the word soviet. Drawing at random from multinomial distribution
amounts to drawing from a urn filled with balls of different colors as figure shown in figure
2.1.

The marginal random variables Xw are Binomial distributions whose mean and vari-
ance are:

E(Xw) = ldθw

V ar(Xw) = ldθw(1− θw)

So the variance of the distributions are essentialy controlled by its mean which is one of
the model limitations we will discuss later.

Moreover, the Multinomial distribution is very convenient because its estimation is
straightforward: the maximum likelihood estimator (mle) of θ is:

θ̂w =
xwd∑
w xwd

=
xwd
ld
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Figure 2.1: Bag of Word Analogy with a bag of balls. Different words are represented
with balls of different color with possible repetitions

This is simply the proportion of a given word in a sample. However, this estimator need
to be smoothed to take into account unobserved words. Well-known smoothing methods
include Laplace, Jelinek-Mercer and Dirichlet smoothing [57, 85]. Overall, Multinomial
models are simple but convenient. This may explain why they are so popular and why
they often serve as basic units in more complex models such as topic models

2.2.2 Topic Models

Topic models build on the idea of Latent Semantic Analysis [27] in a probabilistic way.
Topic models assume there are some underlying topic/themes in a collection of documents.
For example, a topic could deal with politics, another with science etc. Most topic
models assume a Multinomial distribution for a given topic. So, a topic is specified by a
distribution of words, corresponding to the θ parameter for Multinomials. For example,
words such as election, president, poll would have high probabilities for a topic dealing
with politics. These topics are estimated from a given set of documents, thanks to the
co-occurrences of words in documents as in Latent Semantic Analysis.

Then, the key idea is to model documents with a mixture of such topics. Figure 2.2
illustrates the principle of topic models. The figure represent topics by different colors
for words, ie blue, red, green to indicate which words are the most likely for this topic.
Recall that each topic has a probability distribution over words, so all words are possible
but some are more likely. So, this figure shows that 3 different topics that will be at
the basis of the document generation process. There are several ways to define mixture
models which correspond to different assumptions:
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 Topics

 generates

 Documents

Figure 2.2: Principle of a Mixture Model. Different latent topics/themes generate docu-
ments. This mixture model here is polythematic

Monothematic A document can only deal with a single topic. A document can speak
of Politics, or Science but not both at the same time. This correspond to the
mixture of multinomial proposed by Nigam [64]. If the mixture model in the figure
was monothematic, the resulting document would ideally only have either only blue
ball, only red balls or only green balls.

Polythematic A document can deal with several topics at the same time. This assump-
tion correspond to the probabilistic latent semantic analysis (PLSA) [40], and the
latent Dirichlet allocation (LDA) models [7]. The mixture model in the figure in
polythematic: the resulting documents has a combination of blue, red and green
’words’.

After this informal introduction to mixture models, we now move to a formal presen-
tation of Nigam mixture model [64] and the polythematic mixture models.

Mixture of Multinomial

A natural extension to the multinomial model is simply to consider a mixture of Multi-
nomials [64]. The idea underlying this model is to capture several topics or themes in a
collection of documents. These different topics are modeled with K multinomials and a
document is supposed to be monothematic: a document can cover only one topic.

P (Xd|θ1, . . . , θK , p1, . . . , pK , ld) =
ld!∏
w xwd!

∑
k

pk
∏
w

θxwdwk

where parameter θk is the multinomial distribution over words for topic k and pk the
proportion of topic k in the collection of documents. This multinomial mixture is in
general estimated by an EM algorithm [28] as many mixture models.
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Probabilistic Latent Semantic Analysis (PLSA)

The PLSA model goes back over the assumption of monothematicity of documents [40].
In this model, a document can thus express different topics. PLSA can also be thought
of as a probabilistic version of latent semantic analysis. Hoffman [40] regards the corpus
as a set of document-word couples and these couples are supposed to follow a mixture of
multinomials. This enables a document to use different themes to explain different words.
Let d be the index of a document and w the index of a word. Then, the model is defined
by:

P ((d,w)|α, β, p1, . . . , pK) =
∑
k

pkP (d|k, α)P (w|k, β) =
∑
k

pkαkdβkw

with P (d|k, α) and P (w|k, β) following multinomial distributions. The log-likelihood of
the corpus is defined by:

LL =
∑
w,d

logP ((d,w)|α, β)

To generate a pair (d,w), the PLSA model chooses first a topic k with probability pk
Then, one chooses a document d with probability αkd and a word w with probability
βkw. Conditionally to that topic k, the probabilities of the document and the word
become independent. Parameters βkw can be understood as the probability of word w
in the topic k. Parameters of the model can be estimated by a standard EM. Let Ikwd a
random variable indicating which topic was used for a given word-document pair. Then,
the EM equations are:

E-step: P (Ikwd = 1|(d,w), α, β) =
pkαkdβkw∑
k pkαkdβkw

M-step: αi+1
kd ∝

∑
w

xwdP (Ikwd = 1|(d,w), α, β)

βi+1
kw ∝

∑
d

xwdP (Ikwd = 1|(d,w), α, β)

pi+1
k ∝

∑
d,w

xwdP (Ikwd = 1|(d,w), α, β)

Hoffmann also present a tempered EM algorithm in order to boost convergence [40].
Gibbs Sampling methods can also be used to estimate the model parameters as shown in
[8] Note that PLSA is not a truly generative model of documents. Theoretically, it is not
possible to compute the probability of a theme given a new document in the collection.
In practice, a ’fold-in’ step is used to approximate this probability.

Latent Dirichlet Allocation (LDA)

LDA [7] is the generative counterpart of f PLSA: The generative process of LDA is the
following:

• For each document d, draw a variable θ following a Dirichlet, where θ stands for
the proportion of each topics in this document

• Do ld times

– Draw a topic k from a multinomial with parameter θ

– Draw a word w from topic k (multinomial with parameter βk)
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Recall that Dirichlet distribution models multivariate data θ on the unit simplex such
that

∑n
i=1 θi = 1. The Dirichlet probability density function is given by:

P (θ1, . . . , θK |α) =
Γ(
∑K
k=1 αi)∏K

k=1 Γ(αi)

K∏
k=1

θαk−1
k

The probability of a word given a topic is:

P (w|k, βk) = Multinomial(βk, 1) = βkw

Finally, the likelihood for a document is:

P (Xd|α, β, ld) =
∫
θ

Γ(
∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏
k=1

θαk−1
k ×

ld∏
w=1

(
∑
k

θkβkw)xwddθ

and the data log-likelihood.

LL =
∑
d

logP (Xd|α, β)

Estimation of these models is carried with variational methods or Gibbs Sampling algo-
rithm [7, 8]. A comparison of the different estimation methods is proposed in [3].

2.2.3 Summary

Multinomials models are very popular, relatively easy to extend to specific cases and
intuitively easy to understand thanks to their analogy to urn models. However, their
main drawback is the assumption of independence of word occurrences. We will
now examine several experiments and studies aiming at overcoming this limitation. In
particular, we will discuss the burstiness phenomenon which somehow invalidates the
multinomial assumption of independence.

2.3 Burstiness Phenomenon

We want to discuss here the phenomenon of burstiness adressed in many studies of word
frequencies. First of all, we recall Katz’s original definition of burstiness for word fre-
quencies. Then, several arguments against the multinomial model are presented. Several
probability distributions relevant to the bursty behavior of words are reviewed including:

• the 2-Poisson Model

• the Negative Binomial

• the K-Mixture

• the Pólya Urn Models

2.3.1 Definition of Burstiness

According to Church [13], Katz [45] was the first to introduce the term burstiness. He
distinguished two notions of burstiness which act at different scales:
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Figure 2.3: A news article. The occurrences of the ’keyword’ comète are highlighted

”The notion of burstiness is fundamental for the subject matter discussed
here. It will be used for characterization of two closely related but distinct
phenomena:
(a) document-level burstiness, i.e. multiple occurrences of a content word or
phrase in a single text document, which is contrasted with the fact that most
other documents contain no instances of this word or phrase at all; and
(b) within document burstiness (or burstiness proper), i.e. close proximity of
all or some individual instances of a content word or phrase within a document
exhibiting multiple occurrences. A within-document burst always indicate an
instance of a document-level burstiness, but not necessarily vice-versa”

In other words, Katz introduced concepts of burstiness at the document-level (case-
b) and the corpus-level (case-a). At the document level, it means that there is a close
agglomeration of word occurrences in a document. At the corpus level, it means that
there exists few documents with a large number of occurrences for a given term and
a lot of documents with few occurences. We try to illustrate this ’multiple occurrences’
phenomenon in figure 2.3, which shows a news article dealing with astronomy. We borrow
from [42] the figure 2.4 in order to mention that burstiness can also be observed in images
with visual words.

2.3.2 Against the Multinomial Model

Church and Gale in their seminal paper [13] stressed two important points:

1. The Poisson and Binomial are inappropriate to model text due to their inability to
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Figure 2.4: Illustration of the burstiness for visual keyword

model large deviations from the mean.

”It has been our experience that the observed variance of the frequency
of a word (or ngram) across documents is almost always larger than the
mean, and therefore, larger than what would be expected under either
the Binomial or the Poisson. The errors between the observed variance
and the Poisson prediction tend to be particularly noticeable for content
words in large and diverse collections.”

2. They borrow the concept of Adaptation from speech processing:

”We have found Pr(k ≥ 2|k ≥ 1) to be useful for modeling adaptation
[...] Under standard independence assumptions, it is extremely unlikely
that lightning would strike twice (or half a dozen times) in the same
document. But text is more like a contagious disease than lightning. If
we see one instance of a contagious disease such as tuberculosis in a city,
then we would not be surprised to find quite of few more. Similarly, if a
few instances of “said” have already been observed in a document, then
there will probably be some more.”

The analogy between texts and diseases by Church suggests that once a word appears
in a document, it is much more likely to appear again in this document. In a way, the
notion of adaptation here is closer to the notion of document-level burstiness of Katz,
except it does not encode the notion of proximity within the document. The behavior -
the more we have, the more we’ll get is likely to produce high frequency for a term but it
does not directly says a word does not appear in a lot of documents, namely the definition
of burstiness at the corpus level. Hence, there is not a direct alignment between the notion
of adaptation and burstiness even if they are intimately related. Burstiness, according
to Katz definition is a state of affairs, whereas, adaptation according to Church may be
one explanation of burstiness. Roughly speaking, burstiness and adaptation describe the
same phenomenon: words can have high frequencies, ie there are bursts of occurrences
in some documents and the concepts of adaptation and burstiness have somehow been
merged in the literature. Sometimes, it is not a useful distinction to stress, but it is
important to keep in mind the two level of burstiness: at the document level and at the
corpus level.
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Church’s experiments [12] brought the adaptation phenomenon to light. In a series of
experiments, some documents were split in two parts: from the beginning to the middle
part and from the middle part to the end of the document. This enables to measure the
proclivity of words to reappear in the second part of the document knowing they have
appeared in the first part. These experiments clearly demonstrated the inadequacy of the
binomial model as Church [12] explains:

”Repetition is very common. Adaptive language models, which allow prob-
abilities to change or adapt after seeing just a few words of a text, were
introduced in speech recognition to account for text cohesion. Suppose a doc-
ument mentions Noriega once. What is the chance that he will be mentioned
again? If the first instance has probability p, then under standard (bag-of
words) independence assumptions, two instances ought to have probability
p2, but we find the probability is actually closer to p/2. The first mention of
a word obviously depends on frequency, but surprisingly, the second does not.
Adaptation depends more on lexical content than frequency; there is more
adaptation for content words (proper nouns, technical terminology and good
keywords for information retrieval), and less adaptation for function words,
cliches and ordinary first names.”

In a way, Church upholds Harter’s experiments [37] in the 70s. Indeed, Harter showed
that content-bearing words are those which diverge the most from a Poissonian behavior.
Here, Church stresses that content-bearing words are the ones that tends to be repeated
the most: ”there is more adaptation for content words”.

To sum up, Multinomial distributions have a limited capacity to model over-dispersed
events (high variance) and seem inappropriate to model properly word frequency. We
will now review several distributions addressing the burstiness phenomenon. Somehow,
all these models address the limited variance problem encountered by a single Poisson or
a Multinomial distribution.

2.3.3 2-Poisson Model

Harter [37] observed that specialty, ie content words diverge the most from a Poisso-
nian behavior, whereas non-specialty words are close to a Poissonian behavior. Harter
employed a mixture of two Poisson distributions to model term frequency in a corpora.
The intuition of the 2-Poisson model can be explained in the following way: many words
appear with a relatively weak frequency in many documents and appear with a greater
frequency, or densely, only in one restricted set of documents. This last set is called the
Elite1 set (noted E) because it is supposed to contain the documents which treat mainly
of the word topic. The idea is thus to model the elite set by a Poisson distribution with
parameter λE , and the non-elite set by another Poisson distribution of parameter λG.
Implicitly, λE > λG. The 2-Poisson model is then a mixture of two Poisson distributions:

P (Xw = xw|α, λE , λG) = α
e−λEλxwE
xw!

+ (1− α)
e−λGλG

xw

xw!
(2.1)

Figure 2.5 shows 2 mixtures of 2-Poissons: the non-elite component is modeled with a
Poisson of mean 3 and the elite component by a Poisson of mean 10. These two mixtures
differs by their mixture parameter.
Eliteness here is directly related to the corpus-level definition of burstiness: there are few
documents that contains a lot of frequencies of a particular term. Hence, the 2-Poisson
mixture model is an attempt to capture burstiness at the corpus-level.

1 Elite is not the exact term proposed by Harter but it is the one used later on in the literature
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Figure 2.5: 2-Poisson Mixture Model

One of the first applications of information retrieval was the operation of indexing. The
operation of indexing consists in choosing the terms regarded as good descriptors of the
document: The general idea is the following one: a good descriptor of a document is a
word rather frequent in the document and relatively rare in the collection. Thus, it would
describe relatively well the content of a document and would be rather discriminating
compared to other terms in the collection. Harter used the 2-Poisson mixture model to
suggest indexing terms. The probability a document belongs to the elite set is :

P (d ∈ E|Xw = xw) =
P (X = xw, d ∈ E)
P (Xw = xw)

=
α
e−λEλxwE

xw!

α e
−λEλExw

xw! + (1− α) e
−λGλxwG
xw!

(2.2)

Harter used this quantity to sort words likely to be indexing terms. He then proposed
to measure a distance between the two Poissons with:

z =
λE − λG√
λE + λG

This measure is closely related to the t-test statistic when assessing the significance of the
difference between two sample means. This statistics encodes a measure of separability
of the two Poisson distributions. If the elite set is well distinguishable from the non-elite
set, then the word is likely to be a good descriptor. However, the 2-Poisson requires
to estimate 3 parameters for each word. Harter used a method of moments in order
to estimate these parameters (we describe the method in the appendix). However, this
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estimation raise some problems. Indeed, Harter propose one method which often has
degenerated cases. Sometimes, there is not enough observations to be able to distinguish
the two Poisson distributions.

Summary

To sum up, even if the 2-Poisson model assumptions are relatively simple, this model had
a significant influence in the development of IR models. It is at the heart of Okapi [72]
model and has inspired partly DFR models [2] as we will see in the chapter 3

2.3.4 Negative Binomial

In order to model word frequencies, the 2-Poisson model has been extended to the case of
n components by Margulis [56]. Then, Church and Gale were interested by the Negative
Binomial [13] which can be viewed as an infinite mixture of Poisson distributions. Church
and Gale compared the Binomial and Poisson distributions with mixtures of Poisson to
model word frequencies. Their results indicate that the Negative Binomial distribution,
which is an infinite mixture of Poisson distributions, fits the data better than a n-Poisson
mixture. The family of Negative Binomial distributions is a two parameter family, and
supports several equivalent parametrizations. A commonly used one employs two real
valued parameters, β and r, with 0 < β < 1 and 0 < r, and leads to the following
probability mass function:

P (Xw = x|r, β) =
Γ(r + x)
x!Γ(r)

(1− β)rβx

∀x = 0, 1, 2, · · · , where Γ is the gamma function

Whenever r is an integer, the Negative Binomial can be thought of as a generalization of
the Geometric distribution. It stands for the number of success in a sequence of Bernoulli
trial before r failure occur. We can also understand the Negative Binomial as a ’flatten’
Poisson distribution where the parameter r controls the distribution variance. Figure 2.6
shows the graph of several negative binomial distributions.
The Negative Binomial can also be viewed as an infinite mixture of Poisson distribution:
it can be derived from the following hierarchical model.

λ ∼ Gamma(r, β/(1− β)).
Xw|λ ∼ Poisson(λ)

(2.3)

Then, by integrating out the Gamma distribution:

P (Xw = x|r, β) =
∫ ∞

0

e−λλx

x!
λr−1 e

−λ 1−β
β

Γ(r)
(1− β)r

βr
dλ

=
(1− β)rβ−r

x! Γ(r)

∫ ∞
0

λr+x−1e−λ/βdλ︸ ︷︷ ︸
∝ Gamma(r+x,β)

=
(1− β)rβ−r

x! Γ(r)
βr+xΓ(r + x)

=
Γ(r + x)
x! Γ(r)

(1− β)rβx

So, the Negative Binomial can be seen as a compound distribution: a Poisson distribution
marginalized by a Gamma distribution. Several methods have been proposed in order
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Figure 2.6: Negative Binomial Distribution

to estimate the Negative Binomial parameters. Johnson and Kotz [65] introduced two
methods. The first one is the classical method of moments. The second one is a modified
method of moments, where the empirical variance is replaced by the inverse document
frequency. Church and Gale built on this method of modified moment and considered
also the empirical mean and 5 variability measures which are the variance, the IDF, the
entropy, a burstiness measure and an adaptation measure:

Mean E[P (Xw|r, θ)] = r β
1−β

Variance E[(P (Xw|r, θ)− E[P (Xw|r, θ)])2] = r β
(1−β)2

IDF − log2 P (Xw ≥ 1) = − log(1− (1− β)r)

Entropy −
∑+∞
x=0 P (Xw = x) log2 P (Xw = x)

Burstiness EP [Xw]
P (Xw≥1)

Adaptation P (Xw≥2)
P (Xw≥1)

Church credits Katz with the burstiness measure which is simply the mean frequency in
documents where the word appears at least once. The measure of adaptation: P (Xw≥2)

P (Xw≥1) =
P (Xw ≥ 2|Xw ≥ 1), which is the probability of observing at least 2 occurrences knowing
we observed at least one. To conclude on the estimation, Church observed, in practice,
that the generalized method of moments with IDF was more robust than the classical
method of moments.

Summary

The Negative Binomial is a generalization of the 2-Poisson mixture model. Church and
Gale argued that a single Poisson is not enough to model the bursts in frequencies (ie the
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elite set): one need an infinite number of Poisson. The good behavior of the Negative
Binomial distribution for text processing has also been observed in several recent works.
[32] uses respectively a binomial, a Poisson and a Negative Binomial distribution to model
the probability of words given classes in a Näıve Bayes classifier. Rigouste [69] reproduces
the experiments reported in [13] on different collections. The Negative Binomial is shown
to provide a better fit to the data. Church also showed that n Poissons is not enough to
model word frequencies. This may also suggest that n multinomials, as in topic models,
is not sufficient.

2.3.5 K-mixture

Katz, who introduced the concept of burstiness, proposed several models of word fre-
quencies, mainly based on Geometric distributions. The assumption of theses models is
to consider the ratio P (Xw=x+1)

P (Xw=x) to be a constant. We could say that he assumed that
adaptation does not depend on x. Let’s quote Katz [45] before introducing the K-mixture:

When a particular word is used topically, occurrence of its additional in-
stances, in the remainder of the document depends on whether or not there
is anything left to be said about the concept associated with this word, not
on how much has been said so far. Therefore, a high number of instances of
some word that have already occurred in a document would not necessarily
mean that occurring of additional instances is unlikely. For example, ten oc-
currences of a particular word or a phrase in one document is a very infrequent
event in comparison with two occurrences of the same word or phrase in one
document. But nine occurrences took place, the tenth occurrence does not
seem less likely than the third one,when only two have already occurred. [....]
Therefore, it would not be unreasonable to consider the conditional probabil-
ities of repeats in a burst P (k + 1|k) for k ≥ 2, as being independent of the
number k, of previously observed occurrences and approximate them by some
constant. The reasoning for that given above is by no means a proof of such
independence but only an argument that it is sensible approximation to en-
tertain, expecting that a good fit of the model, based on this approximation,
to the data, will justify it.

In a nutshell, Katz suggest to approximate the ratio P (x + 1|x) (with our notation)
by a constant, which implies the choice of the geometric distribution to model repetitions
of a word in a document (ie term frequencies greater than 1). Based on this assumption,
he expects to obtain a good fit to the data with the K-mixture. Formally, the K-mixture
is a mixture between a Dirac distribution and a Geometric distribution. The probability
of a number of occurrence x is given by:

P (Xw = x|α, β) = (1− α)δx,0 +
α

1 + β
(

β

β + 1
)x (2.4)

Methods to estimate the parameters of this distribution are presented in [13] and [55].
We do not detail them and simply give:

β =
Fw −Nw
Nw

α =
Nw

Fw −Nw
Fw
N

=
Nw
N

Fw
Fw −Nw
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Let’s look at the ratio β
β+1 :

β

β + 1
=

Fw −Nw
Nw

× 1
Fw−Nw
Nw

+ 1

=
Fw −Nw

Fw

β
β+1 is the parameter of the geometric distribution: it serves to model the extra-occurrences
in documents, where a word appears more than one time. It can be understood as the
average repetition rate when a word appears multiple times.

Summary

The K-mixture is based on a geometric distribution by assuming a constant adaptation
factor. The goal of Katz was to go beyond the 2-Poisson mixture model to obtain a better
word frequency model. According to Church and Gale [13], the K-mixture gives rather
similar fits to the Negative Binomial. And yet, this distribution is simpler to manipulate
and estimate than the Negative Binomial, which offer an interesting alternative to the
latter.

2.3.6 Pólya Urn Process and Dirichlet Compound Multinomial

The Pólya’s Urn model is a process where balls are drawn from an urn and new balls are
added gradually to the urn. The urn initially contains a black balls and b white balls. For
each draw, the drawn ball is returned to the urn with c balls of the same color. When c
is negative, then balls are removed from the urn. If c = 0, then this process amounts to
the Binomial model. If c = −1, then it is a sampling scheme without replacement, ie an
hypergeometric distribution.

We now consider the case where c is positive and l samples are drawn from this process.
Let Yi the ith drawn ball. Yi = 1 for black, 0 otherwise. Then, the probability of the
sequence Y1, .., Yl is given by:

P (Y1, .., Yl) =
a(a+ c)...(a+ (x− 1)c)× b(b+ c)...(b+ (l − x− 1)c)

(a+ b)(a+ b+ c)...(a+ b+ (l − 1)c)

where x =
∑
i yi, ie the number of black balls drawn after l draws. With the previous

equation, the probability of the sequence (1, 1, 1, 0, 0) can be shown to be equal to the
probability of observing (0, 0, 1, 1, 1). So, the joint distribution is invariant under a permu-
tation of the Yi. Hence Y is an exchangeable sequence. Let X =

∑n
i Yi, the probability

of X is:

P (X = x) =
l!

x!(l − k)!
a(a+ c)...(a+ (x− 1)c)× b(b+ c)...(b+ (n− x− 1)c)

(a+ b)(a+ b+ c)...(a+ b+ (l − 1)c)

These two equations differ only by the factor l!
x!(l−k)! , which accounts for the number

of possible sequences with x black balls.

Beta Binomial Model

When c = 1, the Polya Urn process becomes equivalent to the Beta-Binomial model. The
Beta-Binomial model is defined by the following hierarchical model:

π ∼ Beta(a, b)
X ∼ Binomial(π, l)



36 CHAPTER 2. PROBABILISTIC MODELS OF WORD FREQUENCIES

Marginalizing the Beta distribution:

P (X = x|a, b, l) =
∫ 1

0

P (π|a, b)P (X = x|π, l)dπ

=
l!

x!(l − x)!
B(x+ a, n− x+ b)

B(a, b)

=
l!

x!(l − x)!
Γ(a+ x)Γ(l − x+ b)

Γ(a+ b+ l)
Γ(a+ b))
Γ(a)Γ(b)

(2.5)

The Beta-Binomial model is more general than the Polya urn scheme in the sense that a
and b can have real values instead of integer ones, but it is more restrictive since it assumes
that c = 1. The Beta-Binomial model can be estimated by the methods of moments as
shown by Jansche [41]. First, a different parametrization is used [41]:

p =
a

a+ b

γ =
1

a+ b+ 1

The mapping to the previous parametrization is given by:

a = p
1− γ
γ

b = (1− p)1− γ
γ

The mean and the variance are then given by:

E(X|p, γ, l) = lp

V ar(X|p, γ, l) = lp(1− p)(1 + (n− 1)γ)

Given that the Binomial variance is lp(1 − p), this shows that the Beta Binomial model
can account for extra variance. Regarding estimation, the method of moments [41] gives:

p̂ =
∑
d xd∑
d ld

(2.6)

γ̂ =
∑
d(xd − ldp̂)2/(p̂(1− p̂))−

∑
ld∑

d(ld)2 −
∑
d ld

(2.7)

Furthermore, Jansche [41] proposed to use a mixture of a Dirac distribution modeling
the zeros and a BetaBinomial for the ’true’ occurrences.

Dirichlet Multinomial (DCM)

There exists a multivariate extension to the Beta Binomial model, known as the Dirichlet-
Multinomial distribution. Concerning text modeling, Madsen [53] proposed to use the
Dirichlet Multinomial (which they call Dirichlet Compound Multinomial (DCM) ) in order
to model burstiness in the context of text categorization and clustering. The Dirichlet
Multinomial is defined by:

θ ∼ Dirichlet([αw]) (2.8)
Xd|θ ∼ Multinomial(θ, ld)

P (Xd = |α, ld) =
ld!∏M

w=1 xw!

Γ(
∑M
w=1 αw)

Γ(
∑M
w=1 αw + xw)

M∏
w=1

Γ(xw + αw)
Γ(αw)
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The maximum likelihood estimator of α can be shown to follow the following fixed point
equation (cf Minka [59]):

αw = αw

∑
d Ψ(xwd + αw)−Ψ(αw)∑

d Ψ(xwd +
∑
w′ αw′)−Ψ(

∑
w′ αw′)

(2.9)

where Ψ is the digamma function. In practice, this estimator is quite slow to converge,
due to the presence of digamma function and to the fact that all dimensions of α are
tied together in the denominator of the previous function. Thus, there are M fixed point
equation to solve.

EDCM

To speed up learning time, Elkan [31] then approximated the DCM distribution by the
EDCM distribution , and showed the good behavior of the model obtained on different
text clustering experiments.

The motivation of the EDCM is the following: most αw values, estimated by maximum
likelihood, are closed to zero (0 < αw � 1). As,

lim
α→0

Γ(x+ α)
Γ(α)

− Γ(x)α = 0

the DCM distribution could be approximated by:

P (Xd|α, ld) ≈ ld!
Γ(
∑M
w=1 αw)

Γ(
∑M
w=1 αw + xw)

M∏
w=1

αw
xw

(2.10)

The right hand side of this equation is called the EDCM distribution. Elkan admits it is
not a proper distribution but believes that the approximation is good enough to consider
this function as a probability distribution. He then used a maximum likelihood method
to estimate the parameters of the EDCM ’distribution’. Let s =

∑M
w=1 αw, then s verifies

the following fixed-point equation:

s =

∑
w,d I(xwd > 1)∑

d Ψ(s+ ld)−NΨ(s)
(2.11)

Once s is known, the αw can be obtained directly by:

αw =
∑
d I(xwd > 1)∑

d Ψ(s+ ld)−NΨ(s)
(2.12)

Hence, the EDCM model is much faster to estimate: there is only one fixed point iteration.
Elkan then proposed a mixture of EDCM distribution to model a corpus and derive an
EM-like algorithm to estimate parameters.

Summary

The BetaBinomial model and its multivariate extension can be viewed as simple extension
of standard multinomial models by marginalizing a Beta prior. This lead to distributions
that can account for larger variance compared to the multinomial case. Nevertheless, we
did not find an explicit motivation or argument for the choice of such distributions in [53]
or[31] compared to the Negative Binomial, except that these distributions are supposed
to better fit textual data than multinomial distributions. Pólya urn behaviour, which
gradually reinforced the word probability, may lead to think that these distributions
account for the adaptation phenomenon.
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2.3.7 Summary

We have discussed in this section the 2-Poisson, Negative Binomial, K-mixture and Polya
Urn models. All these models are claimed to be better suited for the task of modelling
word frequencies and some of them explicitely aim at modelling word burstiness.

2.4 A Formal Characterization of Burstiness

In section 2.3.1, we discussed the notions of burstiness and adaptation . Recall that Katz
gave this definition:

document-level burstiness, i.e. multiple occurrences of a content word or
phrase in a single text document, which is contrasted with the fact that most
other documents contain no instances of this word or phrase at all

whereas Church [13] compared words to a contagious disease, a behavior he called adap-
tation. Our approach and goals are similar to the ones of Church [13], and Madsen [53]
but different from Sarkar [74], who studied within document burstiness. Our goal is to
obtain for each word a probability distribution for its occurrences in the collection, with
the requirement that these distributions account for burstiness. To do so, we propose
a definition of burstiness as a property of probability distributions. Then, we suggest a
discrete bursty distribution: the Beta Negative Binomial, and a continuous distribution:
the Log-Logistic distribution

2.4.1 Definition of Burstiness

Several models tried to take into account burstiness, but few formal definitions were
proposed. More formally, for a word probability distribution P (Xw), [13] measures its
burstiness through the quantity:

BP =
EP [Xw]

P (Xw ≥ 1)

where EP denotes the expectation with respect to P . This measure provides a way to
compare two different word distributions with respect to burstiness, but does not give
a clear measure on whether a given word distribution accounts or not for bursty and
non-bursty words.

To introduce our definition of burstiness, we first discuss an experiment by Manning
[55]. He looked at the term soviet and its successive ratio of P (Xw ≥ x)/P (Xw ≥ x+ 1).

P (Xw ≥ 0)/P (Xw ≥ 1) P (Xw ≥ 1)/P (Xw ≥ 2) P (Xw ≥ 2)/P (Xw ≥ 3)
23.4 2.38 1.63

His point is to criticize the K-mixture assumptions. According to K-mixture assump-
tion, this ratio should be constant. But, for the word soviet, this ratio decreases, ie its
inverse P (Xw ≥ x+ 1)/P (Xw ≥ x) increases.

Our definition of burstiness is also motivated by Church comparison of words to a
contagious disease [12].

”But text is more like a contagious disease [...]. If we see one instance
of a contagious disease such as tuberculosis in a city, then we would not be
surprised to find quite of few more”
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Hence, we want to capture behavior such as the more we have, the more we should
get. This lead us to the following definition:

Definition 1. [Discrete case] A discrete distribution P is bursty iff for all integers
(n′, n), n′ ≥ n:

P (X ≥ n′ + 1|X ≥ n′) > P (X ≥ n+ 1|X ≥ n)

This definition directly translates the fact that a word is bursty if it is easier to generate
it again once it has been generated a certain number of times. Note that this definition
can be seen as a generalization Church’s adaptation measure P (X ≥ 2|X ≥ 1) [13]. In
other words, adaptation is measured for all integers n and these adaptation rates should
be increasing for a word distribution to be bursty.

In practice, however, it is not always easy to compute P (X ≥ n + 1|X ≥ n) and de-
termine whether a particular word distribution can account for burstiness. The following
property can be used to do so:

Property 2. Characterization of Burstiness
Let P (Xw) be a frequency distribution for word w and let an = P (Xw=n+1)

P (Xw=n) .

(i) If an is increasing, then w is bursty under P

(ii) If an is decreasing, then w is not bursty under P

Proof We have: P (X ≥ n+ 1|X ≥ n) = P (X≥n+1)
P (X≥n) = 1

P (X=n)
P (X≥n+1) +1

But:
P (X ≥ n+ 1)
P (X = n)

= an + anan+1+ (2.13)

P (X ≥ n+ 1)
P (X = n)

= an + anan+1 + · · · ;
P (xi ≥ n+ 2)
P (X = n+ 1)

= an+1 + an+1an+2 + · · ·

P (X ≥ n+ 2)
P (X = n+ 1)

≥ P (X ≥ n+ 1)
P (X = n)

and hence: ∀n ∈ N,n ≥ n0, P (X ≥ n + 2|X ≥ n + 1) ≥ P (X ≥ n + 1|X ≥ n) which
establishes (i).
Similarly, for (ii) we obtain: ∀n ∈ N,P (X ≥ n + 2|X ≥ n + 1) ≤ P (X ≥ n + 1|X ≥ n)
which proves (ii).

We now generalize the discrete definition to the continuous case as follows :

Definition 3. [General case] Let X a random variable defined on R with distribution P .
The distribution P is bursty iff ∀ε > 0, the function gε defined by:

gε(x) = P (X ≥ x+ ε|X ≥ x)

is a strictly increasing function of x. A distribution which verifies this condition is said
to be bursty. (The same definition applies to discrete distributions except that ε ∈ N).

This translates the fact that, with a bursty distribution, it is easier to generate higher val-
ues of X once lower values have been observed. We can develop the continuous definition
of burstiness with the following equations:

gε(x) strictly increasing ⇐⇒ ∆ = log gε(x) strictly increasing
⇐⇒ ∆ = logP (X > x+ ε)− logP (X > x) is increasing
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We refer to ∆ as the successive difference in log probability. As ∆ < 0, absolute values
of successive difference ∆ decreases. Figure 2.7 shows the graph of two distributions: a
Log-Logistic 2 and a Gaussian distribution. Distributions are plotted with coordinates
(x, logP (X > x)). The vertical segments indicate absolute values of successive difference,
ie ∆. A condition for a distribution to be bursty is to be log-convex:

Theorem 4. Let P be a probability distribution of class C2. A necessary and sufficient
condition for P to be bursty is:

∂2 logP (T > t)
∂t2

> 0

Proof Let f(x) = logP (X > x). As the logarithm is an increasing function, the burstiness
property can be expressed as:

gε(x) strictly increasing ⇐⇒ log gε(x) strictly increasing

∀ x, ε > 0 the function f(x+ ε)− f(x) grows
∀ x, ε > 0 f ′(x+ ε)− f ′(x) > 0

f ′(x+ ε) > f ′(x)

ie f ′ grows ⇐⇒ f
′′
> 0 �

Under regularity assumptions, this conditions is necessary and sufficient and this convex-
ity condition can be observed on the plots.

Application of the Theorems

Using this property, it is easy to see that the Binomial, Poisson and Geometric distribu-
tions cannot account for burstiness.

•P (Xw) = Binomial(L, pw)

P (Xw = n) =
(
L
n

)
pnw(1− pw)L−n

∀n ≤ L, an =
(L− n)pw

(n+ 1)(1− pw)

an is strictly decreasing , which shows that the binomial distributions does not
account for burstiness as claimed in [31].

•P (Xw) = Poisson(λw)

P (Xw = n) = e−λw
λnw
n!

∀n, an =
λw
n+ 1

an is strictly decreasing so the Poisson is not bursty.

•P (Xw) = Geometric(pw)
P (Xw = n) = pw(1− pw)n

∀n, an = (1− pw)

an is constant. Hence Geometric distributions are neutral wrt burstiness.
2this distribution is detailed in section 2.4.3
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Figure 2.7: Geometrical Interpretation of burstiness: top figure shows a bursty distri-
bution (log-logistic) and bottom figure shows that the Gaussian(mean=5, std=1) is not
bursty
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Negative Binomial

∀n, an =
P (Xw = n+ 1)
P (Xw = n)

=
βw(rw + n)
n+ 1

an is strictly increasing iff rw < 1, strictly decreasing iff rw > 1 and constant else.
This shows that the negative binomial can account for bursty words and non-bursty
words, according to the value of r.

Interestingly, the Beta Binomial model is not guaranteed to be bursty as shown in
table 2.2 although it can account for more variance. We recall here the variance of the
Binomial and Beta Binomial distributions:

Binomial V ar(X|p, l) = lp(1− p)
Beta Binomial V ar(X|p, γ, l) = lp(1− p)(1 + (n− 1)γ)

So, extra-variability offered by the Beta-Binomial model does not always translate in
burstiness. However, with setting such as ld = 20, a = 0.0004, b = 0.005, the Beta
Binomial model seems to be bursty. A formal proof needs to be investigated in order to
find under which settings a Beta Binomial is bursty.

Table 2.2: The BetaBinomial is not guaranteed to be bursty. Beta Binomial with param-
eter n = 20 a = 3 b = 7

x P (x) P (x)/P (x− 1)
0 0.0230 -
1 0.0531 2.3077
2 0.0806 1.5200
3 0.1008 1.2500
4 0.1118 1.1087
5 0.1138 1.0182
6 0.1084 0.9524
7 0.0975 0.9000
8 0.0834 0.8553
9 0.0680 0.8148
10 0.0528 0.7765

Summary

To conclude, table 2.3 shows whether standard distributions for text are bursty or not
and the motivation of the previous definitions were:

1. to give a formal proof that state of the art models, such as Poisson and Binomial
models, are unable to model the burstiness phenomenon in a collection of docu-
ments.

2. to understand when a distribution is bursty or not according to its parameter.
For example, the Negative Binomial distribution [13] can be bursty or non-bursty,
depending on one parameter value.

3. to help designing new distributions for word frequencies by checking their burstiness
property.

Having introduced a formal definition of burstiness, we now present the Beta Negative
Binomial and the Log-Logistic distributions, which are two bursty distributions according
to our definition.
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Table 2.3: Burstiness of Probability Distributions
Distribution Burstiness

Poisson No
Binomial No

Geometric Neutral
Negative Binomial ([13]) Depends on Parameter (Yes if r < 1)

Dirichlet Compound Multinomial ([53]) Depends on Parameter
Log-Logistic Yes (when β = 1)
Exponential Neutral

Weibull Depends on Parameter
Pareto Yes

Beta Negative Binomial Yes

2.4.2 Beta Negative Binomial

Recall that the Negative Binomial distribution is given by:

NegBin(x|r, β) =
Γ(r + x)
x!Γ(r)

(1− β)rβx (2.14)

An interesting extension to the Negative Binomial distribution consists in considering that
the parameter β arises from a prior Beta(a, b) distribution. In this case, the resulting
distribution has the form:

P (Xw = x|r, a, b) =
Γ(r + x)Γ(a+ x)
x!Γ(r)Γ(a)Γ(b)

× Γ(a+ b)Γ(r + b)
Γ(a+ b+ r + x)

(2.15)

where x = 0, 1, 2, · · · , and a and b represent the two parameters of the prior Beta dis-
tribution. Assuming that this prior is uniform (ie a = b = 1), one obtains the following
one-parameter distribution, which we will refer to as the Beta Negative Binomial
distribution , or BNB in short3:

P (Xw = x|r) =
r

(r + x+ 1)(r + x)
(2.16)

Figure 2.8 displays the probability plot of a BNB for several values of r. Figure ??
compares a Poisson distribution with a BNB distribution, whose parameters are equal to
each other and where the power law behavior of the BNB can be observed: we can notice
that the Poisson law assigns little probabilities to large frequencies, which is not the case
of the BNB distribution.

Regarding the BNB distribution burstiness, an = r+n
r+n+2 is strictly increasing. So, the

BNB distribution can model burstiness.
The maximum likelihood method leads to a fixed point equation.

r̂ = argmaxrL(D, r) = argmaxr
∏
d

r

(r + xd)(r + xd + 1)

This likelihood can be rewritten in order to distinguish the contribution of zeros and

3This distribution is sometimes referred to as the Johnson distribution, inasmuch as it was studied by
N. Johnson in [43].
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Figure 2.8: Beta Negative Binomial Distribution

non-zeros observations:

L = (N −Nw) log(
1

r + 1
) +

∑
d,xd>0

[log r − log(r + xd)− log(r + xd + 1)]

∂ logL
∂r

= −N −Nw
r + 1

+
∑

d,xd>0

1
r
− 1
r + xd

− 1
r + xd + 1

∂ logL
∂r

= 0 ⇒

r =
Nw

N−Nw
r+1 +

∑
d,xd>0

1
r+xd

+ 1
r+xd+1

(2.17)

Estimators

The maximum likelihood of the BNB distribution lead to a fixed point equation. We
want to show here that this fixed point equation has a unique solution.
Let f the function defined by:

R+ → R+

r → Nw
N−Nw
r+1 +

∑
d,xd>0

1
r+xd

+ 1
r+xd+1

We can show that f is increasing and f(0) > 0 and Limr→+∞ f(r) = +∞
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Let F =
∑
d,xd>0 xd, then

1
r + xd

≥ 1
r + F∑

d,xd>0

(
1

r + xd
+

1
r + xd + 1

) ≥ Nw
r + F

+
Nw

r + F + 1

f(r) ≤ Nw
N−Nw
r+1 + Nw

r+F + Nw
r+F+1

(2.18)

This lead to the following upperbound on f :

f(r) ≤ 1
N−Nw
Nw(r+1) + 1

r+F + 1
r+F+1

f(r) ≤ 1
1

r+F + 1
r+F+1

But let’s define the function g by:

g(r) =
1

1
r+F + 1

r+F+1

=
1

r+F+1+r+F
(r+F )(r+F+1)

=
r2 + 2Fr + r + F 2 + F

2r + 2F + 1
(2.19)

Now we want to find a solution for g(r) = r:

r2 + 2Fr + r + F 2 + F = r(2r + 2F + 1) (2.20)
r2 + 2Fr + r + F 2 + F = 2r2 + 2Fr + r (2.21)

r2 = F 2 + F (2.22)

So, let r∗ =
√
F 2 + F , then

f(r∗) ≤ g(r∗) = r∗ (2.23)

As f is increasing, f(0) > 0 and Limr→+∞ f(r) = +∞, the previous inequality shows
that f will cross the identity function. Thus, there exists a unique fixed point to the BNB
maximum likelihood.

Note that the BNB distribution has not a finite mean nor variance. So, the methods of
moments can not directly be applied here and alternative methods are needed to estimate
the BNB distribution. Equating P (X ≥ 1) to the empirical mean document frequency
with a generalized method of moments, as proposed by Church for the Negative Binomial
(see section2.3.4), gives

Nw
N

= 1− P (0|r) = 1− 1
r + 1

(2.24)

which leads to the following estimator.

rw =
Nw

N −Nw
≈ Nw

N
as Nw � N for most words (2.25)

We have compared the maximum likelihood estimator and the mean document fre-
quency ones for two TREC collection. Figure 2.9 shows the comparison for the ROBUST
collection. Overall, there is not a significant difference between these two estimation
methods.
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Figure 2.9: Comparison of rw estimated by maximum likelihood to the generalized
method of moments proposed for all words of the ROBUST collection. Each dot corre-
spond to the estimated values for a given word. Correlation between the estimators is
= 0.986, the mean difference = 1.432e− 5 , and mean relative error = 1.3e− 3

Summary

Both the BNB distribution and DCM distribution are compound distributions. Table 2.4
shows the different distributions involved in these models. The difference between the
BNB and the DCM are:

• The DCM is a multivariate model whereas the BNB is not

• The base distribution is a Negative Binomial for the BNB whereas it is a Binomial
for DCM

• DCM takes into account document length on the contrary to the BNB.

DCM BNB
Base Distribution Multinomial Neg Binomial
Marginalized by Dirichlet( Multivariate Beta ) Beta

Table 2.4: Comparison between DCM and BNB distributions

Note that there exists a multivariate extension of the Negative Binomial distribution
known as Negative Multinomial [65]. The Negative Multinomial model is parametrized
by the analog of the parameter r in the Negative Binomial. This r parameter is common
for all words which prevents one from finely modeling the behavior of words. The second
parameter is a standard multinomial parameter (θ in the Negative Binomial).

2.4.3 Log-Logistic Distribution

In IR tasks, document length normalization is a key component of an effective retrieval
system. In IR models such as BM25 and DFR models, a normalized continuous term
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frequency is plugged in a discrete model. Normalization of term frequencies is a standard
preprocessing step and its role is to account for the different document lengths in a collec-
tion. As most normalizations transform the frequencies in continuous values, continuous
distributions seems to be more appropriate to handle word frequency data for several IR
tasks.

The log-logistic distribution is the probability distribution of a random variable whose
logarithm has a logistic distribution. It is similar in shape to the log-normal distribution
but has heavier tails. Its cumulative distribution function can be written in closed form,
unlike that of the log-normal [44]. The log-logistic distribution is defined ∀x ∈ [0,+∞)
by:

PLL(T < t|r, β) =
tβ

tβ + rβ

Figure 2.10 compares several Poisson distributions with several Log-Logistic distribu-
tions. Tthe figure shows the power-law behavior of the Log-Logistic model.

Setting β to 1 leads to a relation between the log-logistic and the BNB distribution:
∀x ∈ R+

PLL(t ≤ T < t+ 1|r) =
t+ 1

r + t+ 1
− t

r + t
=

r

(r + t+ 1)(r + t)
(2.26)

which is exactly the form of the BNB distribution. This show that the Log-Logistic can be
understood as a continuous variant of the BNB distribution. Furthermore, the following
equation shows that the log-logistic is bursty:

∀ε > 0, gε(x) = PLL(T > t+ ε|T > t, r) =
r + t

r + t+ ε

Given the relation with the BNB, we could simply estimate a log-logistic distribution by
β = 1 and r = Nw

N .
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Summary

The log-logistic can be seen as a continuous version of the BNB distribution, which in
turn is an extension of the Negative Binomial distribution proposed by Church. The use
of continuous distributions to model word frequencies in not entirely novel as Rennie [68]
proposed a LogLog model. However, continuous distributions are not common for that
purpose.

We proposed here a bursty distribution with a simple estimation procedure. Others
continuous distributions can model word frequencies such as the Pareto distribution for
example. The main benefit of continuous distributions is their ability to model normalized
continuous term frequencies as DFR normalized schemas [2] or pivoted length normaliza-
tion [77]. Then, the probabilistic IR model defined with continuous distributions handle
valid probability values as opposed to several IR models which plug in a normalized term
frequency in discrete models.

2.5 Experiments

The experiments presented here aim at assessing whether BNB and Log-logistic models
are indeed appropriate to model word frequencies. We want to show that their theoretical
properties (both distributions are bursty according to our definition) match empirical
data. So, we want to show that these distributions are able to capture the bursty behavior
of word frequencies. Criterion such as likelihood or χ2 statistic will be examined in
different experiments in order to validate the proposed models. A last experiment will
look at the burstiness phenomenon against the sample size in order to assess the relation
between variance and burstiness.

2.5.1 Comparison between Poisson, Katz-Mixture and BNB

Let µw = Fw
N the mean frequency of term w in a corpus. We want to illustrate here 3

different models of term occurrences:

Poisson Xw ∼ Poisson(µw)

Katz-Mixture Xw ∼ K-Mixture(αw, βw)

BNB Xw ∼ BNB(µw)

These 3 models have different burstiness capacity: non-bursty, neutral and bursty. αw
and βw refer to the parameter described in section 2.3.5 and correspond to the standard
estimation of the Katz-Mixture. For a word in collection, we consider the following
quantities:

Empirical Mean µw = Fw
N is the empirical mean of the number of occurrences.

Non-Zero Variance The empirical variance of the occurrences samples can be decom-
posed in two parts:

σ =
1

N + 1

(
(N −Nw)(0− µw)2 +

∑
d,xwd>0

(xwd − µw)2
)

(2.27)

We considered here the non-zero part of the empirical variance:

σ∗ =
1

N + 1

∑
d,xwd>0

(xwd − µw)2 (2.28)
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Non-Zero Likelihood For each of these models, the likelihood of non-zero observations
will be computed. Recall that the likelihood for these models can be written as :

L(θ) = (N −Nw) logP (Xw = 0|θ) +
∑

d,xwd>0

logP (Xw = xwi|θ)

Focusing on non-zeros observations, this leads to:

L∗(θ) =
∑

d,xwd>0

logP (Xw = xwi|θ)

Term Rank The rank of term is computed by sorting µw = Fw
N in decreasing order

We now want to explain why we choose to compute non-zero likelihoods and non-zero
variances. First, the Katz-mixture has a perfect fit by construction for the zero probabil-
ity. Given the predominant number of zeros observations, this may bias our conclusion
toward models fitting well the non-zero probability. As the burstiness phenomenon gen-
erates large frequencies, we want to capture the model performance for such events. This
is why we compute the non-zero variance, so that a large variance comes only from a
large frequency namely a large deviation from the mean
To sum up, 7 features can be computed for a word in a collection:

(rankw, µw, Nw, σ∗(w), L∗P , L
∗
G, L

∗
B)

where subscript of L∗ indicates the distribution (P=Poisson, G=Geometric, B=BNB).
Those 7 features were computed on different collections such CLEF 2003 Adhoc- Task

CLEF 2007 Domain Specific (GIRT) and the TREC ROBUST collection.
Figures 2.11, 2.13 and 2.15 show for a given collection the term rank against the log

of document frequency. A dot on these plots has coordinates (rankw, logNw) and a color
code indicates which non-zero likelihood is maximal for this word. If L∗B is the maximum
of the three likelihoods, then the point on this graph corresponding to the word has a black
color (respectively red for geometric and green for poisson). A corresponding graph also
displays the same information without the color code in 3 different subplots. These plots
shows that for similar ranks (ie a vertical line in the plot), words which are better modeled
with a BNB have a lower document frequency. Hence, for a similar mean frequency, these
words appear in less documents. They have relatively higher frequencies in documents
in which they appear than words explained by a Poisson or Geometric distribution for a
similar rank. This shows that the BNB distribution captures words that tend to appear
with high frequency in relatively few documents and suggests that the BNB distribution
is indeed appropriate to model the burstiness phenomenon.

A second phenomenon can also be observed on these figures. There exists different
statistical behaviors for words. Some words are better explained by a Poisson model,
others by a Geometric and others by a BNB distribution.

Figures 2.12, 2.14 and 2.16 show for a given collection the empirical mean against the
non-zero variance. For each word w, a dot of coordinates (x = log µw, y = log σ∗(w)) is
drawn. The color of this point shows which non-zero likelihood is maximal. The same
color code applies. (If L∗B is the maximum of the three likelihoods, then the point on
this graph corresponding to the word is black respectively red for geometric and green for
poisson). Theses plots show again that the 3 distributions tested capture different ranges
of variance for a fixed mean. For a similar empirical mean, words with larger non-zero
variance are better explain by a BNB distribution. Large deviations from the mean could
be explained by high frequencies, i.e. a bursty behavior of words in documents.
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Figure 2.11: CLEF
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Figure 2.12: CLEF
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Figure 2.13: GIRT
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Figure 2.14: GIRT



54 CHAPTER 2. PROBABILISTIC MODELS OF WORD FREQUENCIES

Figure 2.15: TREC-7 ROBUST
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Figure 2.16: TREC-7 ROBUST
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2.5.2 χ2 Test

We illustrate here the fact that the BNB and Log-Logistic distribution, unlike others
like the Poisson distribution, provides a good fit to the data. Instead or relying on the
likelihood as a fit measure, we computed the Chi-square statistics for each term under
both a Poisson hypothesis and a Log-Logistic one (figure 2.17). Our goal here is to
see what is the fit between experimental observations and the ones predicted by these
distributions: the Chi-square statistics provides us with a measure of this fit.

The Pearsonχ2 statistic is defined by:

χ2 =
∑
i

(Oi − Ei)2

Ei
(2.29)

where Oi is an observed frequency and Ei an expected frequency.
We restrict our study to terms appearing at least in 100 documents of the ROBUST’

TREC collection. For each selected term, we want to compare two candidate distributions
modeling the term frequencies in the documents, namely the Poisson and Log-Logistic
distributions. Furthermore, we assume that the parameters of these distributions are set
according to:

• Poisson: θ̂w = Fw
N

• Log-Logistic: r̂w = Fw
N

For each selected word w and document d, xwd is binned into one of the following in-
tervals: [0, 3), [3, 10) and [10, 100). These intervals correspond roughly to low, medium
and high frequency. The number of observations falling into each interval constitutes
statistics that the Chi-Square compares to an expected number predicted by the assumed
distribution. For each selected term, we then compute the Chi-square statistics under a
Poisson hypothesis and a Log-Logistic hypothesis4. . We then plotted the term rank 5

against the log of the Chi-Square statistics for both the Poisson and Log-Logistic distribu-
tions. Figure 2.17 shows the log of the Chi-square statistics against the term rank for the
ROBUST’ TREC collection. One dot with coordinate (x, y) on the graph corresponds to
a given word in the collection, where x is the term rank and y is the log of the Chi-square
statistics for the distribution considered. The horizontal line is the upper critical value
for the Chi-square test at the 0.05 confidence level. Note that the conditions required for
χ2 test are likely to be not satisfied for all words.

Concerning the Poisson plot, there are 2 main clouds of points. The upper left area
can be explained by words from the interval [10, 100): this is an extremely unlikely event
under a Poisson distribution with a very small mean (ex: 0.05). The second area, which
looks like a thick band, corresponds to words from the first two intervals only. As one
can note, the fit provided by the BNB/log-logistic distribution is good inasmuch as the
values obtained by the Chi-square statistics are small. These distributions can thus well
explain the behavior of words in all the frequency ranges. The same does not hold for the
Poisson, for which large values are observed over all the frequency ranges, many words
getting a value above the upper critical value.

Similar results also holds for other collections. Interestingly, we do not exactly ob-
served the same results than with the likelihood. For the likelihood method, some frequent
words were better modeled with a Poisson distribution which is not the case here. The
likelihood somehow computes a global behavior whereas the χ2 statistic is very sensitive

4Due to relation 2.26, the Chi-square statistics is the same for the BNB and the log-logistic distribu-
tions on the given intervals.

5To display the results, we first ranked the selected terms by their frequency in the collection in order
to get their term rank, as is done in Zipf’s Law
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to the observation of an unexpected event due to the factor 1
Ei

. For example, observing a
frequency of 15 under a Poisson distribution of mean 0.0001 is an unlikely event. This also
shows that the fit measure is an important parameter in order to evaluate word frequency
models. Of course, the Poisson distribution is known for a long time to provide a poor
fit to the data. It is however used in some IR models.

2.5.3 Asymptotic Behavior

The following experiments show the evolution of the average word likelihood under a
Poisson model or a BNB model. For n = 1 to 1000, we select n documents randomly
and compute non zero likelihoods. Finally, this experiment is repeated 30 times and the
non-zeros likelihoods are averaged. More formally, we compute the following quantities
for a set S of documents:

µw(S) =
∑
d∈S xwd

|S|
(2.30)

L∗Poisson(S) =
∑
d∈S

∑
w

I(xwd > 0) logPPoisson(xwd|µw(S)) (2.31)

L∗LL(S) =
∑
d∈S

∑
w

I(xwd > 0) logPLL(xwd|µw(S)) (2.32)

Figure 2.18 shows the difference of likelihood for three different collections. between
the Poisson model and the BNB model. Those figures show that a Poisson model is much
more appropriate for a small number of document, but a BNB model is more adequate
for a larger sample size. As the sample size increase, the number of zeros observations
also increases. It may also means that the burstiness phenomenon, described here only
occurs at large sample sizes. For small samples, Poisson would fit better the data in term
of non-zero likelihood. If we were to model a single document, then the best fit would
probably be provided by a Poisson or Binomial, hence justifying the idea of Language
Models. In the other hand, if we had to model the frequencies of a word in a collection,
then the bursty distributions would probably be better.

2.6 Conclusion

This chapter surveyed the main probabilistic models of word frequencies, which are sum-
marized in table 2.5. We mostly examined standard univariate distributions and their
compounds, paying less attention to non-parametric models like Dirichlet processes [79].
Burstiness was introduced in order to reveal limitations of multinomial assumptions, in
particular a limited variance range. Burstiness was discussed informally, with Katz defini-
tion and Church’s experiments. We then reviewed several models adressing the burstiness
phenomenon, including the Negative Binomial distribution and the Dirichlet Compound
Multinomial model.

Contrary to prior studies, we have proposed a definition of burstiness as a property
of probability distributions which relates to the log-convexity of the survival function.
This definition of burstiness is acan also help to determine when a distribution is bursty
or not according to its parameter values. Furthermore, it can guide the design of new
distributions for word frequencies by checking their burstiness property.

Then, we have extented the Negative Binomial model with the Beta Negative Binomial
distribution and the Log-Logistic model was proposed as a continuous counterpart. For
both distributions, we provided constant time estimation procedure as opposed to the
DCM and EDCM models. The resulting distributions provide a good fit to data compared
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Figure 2.17: Distribution of the Chi-square statistics for the Poisson and the BNB/log-logistic
distributions on the ROBUST Collection
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Figure 2.18: Number of Documents n against the difference of Likelihood between BNB
and Poisson for the GIRT, CLEF03 and ROBUST collection
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to Poisson and Katz-Mixture distributions. Overvall, the proposed models seem to have
a better fit to data than distributions used in standard IR models.

Nevertheless, two important experiments are missing in our experimental design and
are left for future work. First, it would be nice to compare the fit provided by a BNB
model to a DCM or BetaBinomial model. Second, Durot [30] proposed a statistical test
in order decide about the convexity/concavity of a survival function P (X > x). As
concavity is linked to the burstiness property, such a procedure is appealing because it
directly tests the burstiness nature of a data sample. Preliminary experiments indicate
that many words have concave empirical survival function, which suggest again that word
frequencies should be modeled with bursty distributions.

Having discussed the burstiness phenomenon and selected two probability distribu-
tions, the remaining task consist in applying our candidate distributions in IR. This is
why the next chapter reviews the main probabilistic IR models.
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Multinomial

- P (Xd = (x1d, . . . , xMd)|θ, ld) = ld!Q
w xwd!

∏
w θ

xwd
w

- θw = xwd
ld

2-Poisson

- P (Xw = x|α, λE , λG) = α
e−λEλxE

x! + (1− α) e
−λGλG

x

x!

- Method of Moments

Negative Binomial

- P (Xw = x|r, β) = Γ(r+x)
x!Γ(r) (1− β)rβx

- Generalized Method of Moments

K-Mixture

- P (Xw = x|α, β) = (1− α)δx,0 + α
1+β ( β

β+1 )x

- α = Nw
N βw = Fw

Fw−Nw

Beta Binomial

- P (Xw = x|l, a, b) = l!
x!(l−x)!

Γ(a+x)Γ(l−x+b)
Γ(a+b+l)

Γ(a+b))
Γ(a)Γ(b)

- Moment Estimators

Dirichlet Compound Multinomial

- P (Xd = [xw]|α) = ld!QM
w=1 xw!

Γ(
PM
w=1 αw)

Γ(
PM
w=1 αw+xw)

∏M
w=1

Γ(xw+αw)
Γ(αw)

- M Fixed Point Equations

EDCM

- P (Xd|α, ld) ≈ ld!
Γ(

PM
w=1 αw)

Γ(
PM
w=1 αw+xw)

∏M
w=1

αw
xw

- 1 fixed point equation

Beta Negative Binomial

- P (Xw = x|r) = r
(r+x+1)(r+x)

- Generalized Method of Moments: rw = Nw
N−Nw '

Nw
N

- Maximum Likelihood: Fixed Point Equation

Log-Logistic

- PLL(T < t|r, β) = tβ

tβ+rβ

- β = 1 rw = Nw
N−Nw '

Nw
N

Table 2.5: Main Word Frequencies Probability Distributions with their pdf and estimation
methods
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3.1 Introduction

All information retrieval systems include a query model, a document model and a function
to match queries and documents. These are the 3 required ingredients of an IR engine.
Figure 3.1 depicts the different components of an IR system. This chapter deals with
the function matching documents and queries in a probabilistic way. Despite the fact
that the machine learning approach to IR has been one of the major breakthrough in IR
recently, we do not give an overview of methods à la Learning to Rank such as RankSVM,
RankBoost, LambdaRank [83, 35, 81, 9]. We first focus on ad hoc retrieval since the
performance of ’generative’ and discriminative approaches are similar in ad hoc scenario
as shown in [61]. So, we review three families of probabilistic IR models: the Probabilitic
Ranking Principle, the Language models, and the Divergence From Randomness family,
which are state of the art ad hoc information retrieval models.

These three different information retrieval families rely on word probability distribu-
tions with their own specificities. In Okapi, for example, it is assumed that word frequen-
cies follow a mixture of two Poisson distributions. The Divergence from Randomness

63
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(DFR) framework proposed by Amati and van Rijsbergen [2] makes use of several distri-
butions, among which the geometric distribution, the Poisson distribution and Laplace
law of succession play the major role. Language models are, for themselves, built upon the
multinomial distribution, which amounts to consider binomial distributions for individual
words.

Among the three families, it is the Divergence From Randomness framework that
retained our attention fo reasons we will explain later. The DFR framework will serve
us as a starting point for a formal analysis of IR models in the next chapter and to the
elaboration of a suitable framework for the BNB and Log-Logistic distributions. Before
moving on to the detailed presentation of these three families of IR models, we give a
short description of the three main IR models families:

Probabilistic Ranking Principle (PRP): These models suppose the existence of a
class of relevant documents and a class of non-relevant documents for a query. This
idea results in ordering document with the estimated probability of relevance. This
principle will be presented in the part 3.2. The pre-eminent model in this family is
called BM25 or Okapi

Languages Models (LM): The core idea of languages models is to estimate the prob-
ability a query is generated from a document modle P (q|d). The language models
are nowadays very popular. These models will be the subject of section 3.3

Divergence From Randomness: These models try to quantify the importance of a
term in a document compared to its behavior in the collection. Thus, the weight
of a term in a document can be measured thanks to a function of the Shannon
information. These models will be presented in the section 3.4

3.2 Probability Ranking Principle

All the models based on the probability ranking principle [71] make the following assump-
tion:

Hypothesis. The relevance of a document to a query can be encoded by a random vari-
able. The benefit of this formulation is to reconsider certain deficiencies of the concept
of relevance; namely that the relevance is not easily definable and especially partially
observable.

This assumption deals with the function matching queries and documents. We will
note Rq the random variable of relevance specific to the request q. This assumption,
developed in the 70’s, had a considerable impact on information retrieval models. This
assumption results in ordering the documents by order of decreasing probability of rele-
vance. This principle is called Probability Ranking Principle [71]. This principle results
in sorting the documents for a request according to the probability P (R = 1|Xd) where
Xd = (xw) a representation of a document, in the form of a feature vector. In general Xd

is a vector of words where the component xwd represents the frequency/presence of the
word w in the document d. The Probability Ranking Principle can be stated as follows
[71]:

The probability ranking principle: If a reference retrieval system’s
response to each request is a ranking of the documents in the collection in
order of decreasing probability of relevance to the user who submitted the
request, where the probabilities are estimated as accurately as possible on
the basis of whatever data have been made available to the system for this
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Indexing Document

Index= Document 
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Between queries and documents

Output = Rank Documents

Figure 3.1: Information Retrieval System Architecture. An Information Retrieval system
is composed by a query model, ie a query language/formalism, a component to index
documents and a function matching queries and documents. The output of IR engine is
in general a ranked list of documents.

purpose, the overall effectiveness of the system to its user will be the best that
is obtainable on the basis of those data.

The probability ranking principle is a direct consequence of Bayes decision rule. Let
us suppose that the probability of making a bad decision is following form:

P (error|Xd) =
{
P (R = 1|Xd) if one chooses R=0
P (R = 0|Xd) if one chooses R=1

Then, if one decides R = 0 (document non-relevant) and that P (R = 1|Xd) > P (R =
0|Xd), this decision leads to an error larger than the decision opposite. Thus, it is
enough to choose the assumption which maximizes P (R|Xd) to minimize the probability
of error. By supposing that the documents are independent (statistically), this rule
results in ordering the documents by decreasing probability of relevance. Figure 3.2 tries
to illustrate the Probability Ranking Principle approach to IR.

One of the main limitations of the PRP is the assumption that one can calculate
the probabilities P (R|Xd) and this with a certain precision. This assumption is rather
problematic. In general, one does not know which are the relevant documents, nor their
number, or distribution. However, one could test guess these probabilities and, by test
and successive corrections , improve their estimation. Nevertheless, this principle can be
sub optimal as [36] shows, when probabilities are not properly calibrated.

In summary, these probabilistic models try to estimate the probability that a docu-
ment is relevant. By assuming that some relevant and irrelevant documents are known,
an assumed probabilistic model could estimate the probability that a new document is
relevant or not. After a first retrieval step, users can annotate documents and probability
of relevance can be updated.
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 Relevant Documents   Irrelevant Documents

?

 P(X | relevant)
  P(X |  not relevant)

 

  Decision Boundary

Figure 3.2: The Probability Ranking Principle. Two class of documents exists: relevant
and not relevant. For each class, a probability distribution models documents. When a
new document comes in, class probabilities are computed in order to decide which class
this document belongs to.

It turns out that the PRP can be reformulated in a simplified form after some as-
sumptions:

Sort Documents by decreasing order of: log(
P (Xd = x|R = 1)
P (Xd = x|R = 0)

)

This formulation will make possible to simplify this criterion by taking into account new
assumptions on the dependencies between the variables Xd and R. In particular, one
can suppose independence between the different terms of a document, which is similar
to suppose the orthogonality of the terms in the vectorial model. Then, P (Xd|R = r)
can be written like a product of probabilities and the function of score as a sum on the
common terms between the query and the documents. For example, Robertson centered
this function so that empty documents get a null score. Thus, it leads to consider the
following family of retrieval functions:

RSV (q, d) =
∑
w∈q∩d

log(
P (Xd

w = x|R = 1)
P (Xd

w = 0|R = 1)
P (Xd

w = 0|R = 0)
P (Xd

w = x|R = 0)
)

Nevertheless, it always remains to clarify the probability P (Xd|R), which we will do
for the forthcoming models.

3.2.1 Binary Independence Model (BIR)

The Binary Independence Retrieval (BIR) supposes that the weights of the terms in the
documents and request are binary (Xd = (1010 · · · 010 · · · )). Each term is characterized
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by a binary variable, Aw, which indicates the probability that the word appears in a
document. Moreover, each term is conditionally independent of each other given R. For
two words w1, w2, then P (Xd

w1
= x,Xd

w2
= y|R = r) = P (Xd

w1
= x|R = r)P (Xd

w2
=

y|R = r)
Let us note aw = P (Aw = 1|R = 1), probability that the word w appear in a relevant

document and b = P (Aw = 1|R = 0) probability that the word w appear in a non-relevant
document.

P (Xd = (x1, . . . , xM )|R = 1) =
∏
w

axww (1− aw)(1−xw)

P (Xd = (x1, . . . , xM )|R = 0) =
∏
w

bxww (1− bw)(1−xw)

In other words, the documents are modeled by independent Bernoulli laws. The fact
that a document is relevant or not, is described by different values from the parameters
of these probabilities (aw or bw). Under these assumptions, the PRP is expressed as:

RSV (q, d) =
∑
w∈q∩d

log(
P (Xd

w = 1|R = 1)
P (Xd

w = 0|R = 1)
P (Xd

w = 0|R = 0)
P (Xd

w = 1|R = 0)
)

Under these assumptions the ranking function is:

RSV (q, d) =
∑
w∈q∩d

log(
aw

1− aw
1− bw
bw

) (3.1)

The estimate of the probabilities aw and bw is done by an iterative processes:

1. Initial values are defined (for example a0
w = 0.5, b0w = Nw

N )

2. A retrieval step is performed with the parameter current values

3. Parameters are updated. If, V is the number of relevant document found at this
stage and Vw the number of relevant document containing w, then the re-estimation
of the parameters becomes:

aw =
Vw
V

, bw =
Nw − Vw
N − V

The advantages of this model are a theoretically well-founded and a clear concept of
relevance. Moreover, information retrieval is cast as an iterative process which involves
the user. However, the model is rather sensitive to the initial values and its major
disadvantage remains the binary representation of the occurrences of the words in the
documents, which limits largely its performance.

3.2.2 Okapi/BM25

The BM25 [72] model reconsiders certain deficiencies of the BIR model. First, BM25
supposes that the frequencies of the words are distributed according to a mixture of 2
Poisson distribution. Moreover, it makes the assumption that in the relevant set (R = 1),
the distribution of Poisson representing the Elite component has a weight stronger than
in the not-relevant class. More formally, these assumptions result in:

Xd = x|R = 1 ∼ 2Poisson(α, λE , λG) Xd = x|R = 0 ∼ 2Poisson(β, λE , λG)
α > β

Recall that λE > λG



68CHAPTER 3. REVIEW OF PROBABILISTIC INFORMATION RETRIEVAL MODELS

Let us recall reformulation of the PRP by Robertson:

RSV (q, d) =
∑
w∈q∩d

log(
P (Xd

w = x|R = 1)
P (Xd

w = 0|R = 1)
P (Xd

w = 0|R = 0)
P (Xd

w = x|R = 0)
)

which gives by adding the assumptions on the 2-Poisson model:

RSV (q, d) =
∑
w∈Q

log(
α e
−λEx

λE
w

xw! + (1− α) e
−λGx

λG
w

xw!

β e
−λEx

λE
w

xw! + (1− β) e
−λGx

λG
w

xw!

βe−λE + (1− β)e−λG

αe−λE + (1− α)e−λG
) (3.2)

This model suffers from same the problems as the 2-Poisson model, ie the difficulty in
estimating its parameters. Nevertheless, Robertson studies the properties of the following
weighting function:

h(xw) = log(
α e
−λEx

λE
w

xw! + (1− α) e
−λGx

λG
w

xw!

β e
−λEx

λE
w

xw! + (1− β) e
−λGx

λG
w

xw!

βe−λE + (1− β)e−λG

αe−λE + (1− α)e−λG
) (3.3)

Knowing that α > β, one can show that this function is an increasing function of the
frequency of the xw term. Moreover, the limit of h, when xw tends towards the infinite,
exists and takes the following value:

lim
x→+∞

h(x) = log(
α

β

(βe−λE+λG + 1− β)
(αe−λE+λG + 1− α)

) ≈ log(
α

β

1− β
1− α

) (3.4)

The approximation of this limit uses the fact that λE > λG The idea of Robertson and
Walker [72] was to find a function which would have similar properties of the function h.
Initially, he proposes to use a function of the type r(X) = X

x+K , which is increasing but
which tends towards 1. Then, he proposed to multiply this last function by the weights
which the model BIR would give, which is similar to the approximated limit of function
h.

h∗(xw) =
xw

xw +K
log(

P (Xd
w = 1|R = 1)

P (Xd
w = 0|R = 1)

P (Xd
w = 0|R = 0)

P (Xd
w = 1|R = 0)

)

h∗(xw) =
xw

xw +K
log(

aw
1− aw

1− bw
bw

) (3.5)

Again, aw and bw can be estimated repeatedly.
Lastly, Robertson and Walker make some modifications to the original model:

1. It is necessary to take into account the length of the documents in the renormal-
ization of the frequencies . Thus, instead of using a function of the type X

x+K , they
choose a function of the form

(k1 + 1)xwd
k1((1− b) + b ld

avgl ) + xwd

where ld is the length of document d and avgl the mean document length in the
collection. k1 is set by default to 1.2 and b to 0.75.

2. They renormalize the frequency of the words of the request in the following way:

(k3 + 1)qw
k3 + qw

By default, k3 = 1000
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Finally, with the initial default values of aw and bw, BM25 model can be written as:

RSV (q, d) =
∑
w∈Q

(k3 + 1)qw
k3 + qw

(k1 + 1)xwd
k1((1− b) + b ldm ) + xwd

log(
N −Nw + 0.5
Nw + 0.5

) (3.6)

The formula of BM25 is rather complex and involves 3 parameters (k1, k3, b) which
can be possibly optimized on particular dataset. This model appeared around the years
1995 and known a strong success in surveys like TREC. It is still regarded as a model of
reference.

3.2.3 Dirichlet Multinomial and PRP

Xu and Akella [82] proposed recently a retrieval model built upon the PRP with Dirichlet
Multinomial distributions . Xu and Akella first argued that the multinomial model is not
appropriate under the PRP paradigm and that a better model (the DCM) accounting for
burstiness should be used: If the class of relevant document is modeled by a multinomial
distribution with parameter θR and irrelevant class with parameter θN , then, the PRP
ranking function gives:

RSV (q, d) =
∑
w∈q

qwxwd log(
θRw
θNw

)

Then, Xu and Akella [82] explain that this model is inappropriate and that the DCM
distribution should be used:

Consequently, the multinomial distribution is not an appropriate distribution
for the probabilistic model. Because the multinomial distribution assumes
the independence of the word repetitive occurrences, it results in a score func-
tion which incorporates undesired linearity in term frequency. To capture
the concave property and penalize document length in the score function,
a more appropriate distribution should be able to model the dependency of
word repetitive occurrences (burstiness) that is if a word appears once, it is
more likely to appear again. The Dirichlet compound multinomial (DCM)
distribution [11, 10], which is motivated by the Polya urn scheme, is able to
capture word burstiness, and thus better addresses the need to capture score
function concavity and document length.

This is the motivation of the DCM distribution within the PRP. We now detail the
model. First, the irrelevant class is represented by the whole collection. A DCM model
with parameters (βw) is optimized to fit the collection. Then, the relevant class is modeled
with a DCM distribution whose parameters are (βw + qw), where qw are the query word
frequencies. In other words, query term frequencies increase the parameters of the relevant
distribution. The model assumptions can be summarized by:

γ > 0
Xd = x|R = 0 ∼ DCM((βw)w, ld) Xd = x|R = 1 ∼ DCM((β + γqw)w, ld)

The resulting IR model is then given by:

RSV (q, d) =
∑
w∈q∩d

xwd−1∑
j=0

log(1 + γ
qw

βw + j
)

−
ld−1∑
i=0

log(1 + γ
lq

i+
∑
w βw

) (3.7)
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Xu and Akella proposed several strategies to estimate β, either with the EDCM distri-
bution or with a leave one out likelihood for the DCM distribution. They also proposed
to approximate the relevant class with the set of documents containing all query terms
in order to optimize γ. Finally, they extended their model for pseudo relevance feedback.
This model has an higher computational cost than other state of the art models, coming
from the estimation of DCM distributions and the double sum (

∑∑
) in the matching

function. Overall, the ad-hoc model performs similarly to language models.
The presentation of the PRP under Dirichlet Multinomial models ends the part on

the models developed under the PRP auspices. We now will move to language models for
information retrieval.

3.3 Language Models

Language models comes from the speech processing community and were defined as a
probability distribution on a sequence of words

The core idea of language models in information retrieval is to rank documents by
the probability P (q|d)- the probability the query could be generated from a document
model d. Hence, most relevant documents would be the most likely to generate the
query. Analogies with the vectorial space model [73, 5] are straightforward. Instead
of representing a document by a vector, a document is represented by a probability
distribution; instead of computing euclidean distances, probabilities or KL-divergences
are computed. Figure 3.3 illustrates the principle of language models for IR. Thus, for
each document one need to associate a language model, namely a probability distribution.

Ponte and Croft [67] proposed the first language models for IR, which had then been
extended in many ways [38]. Zhai et al. give a good overview in the language modeling
approach in [85]. Most of theses models make the choice of the multinomial distributions
to model documents.

One of the fundamental assumptions of the language modeling approach is that for
each document there exists a document language model, namely θd such that

P (Xd = (xwd)|θd, ld) =
ld!∏n

i=1 xwd!

∏
w∈d

(θwd)xwd

The problem now is to estimate the document language model (θwd) for each docu-
ment. To do so, the maximum likelihood estimator (m.l.e) is often employed:

θ̂mlewd =
xwd∑
w xwd

=
xwd
ld

Then, the probability the query is generated by a document model d can be computed
as follows

RSV (q, d) = logP (q|θ̂d, lq) =
∑
w∈q

qw log( ˆθwd) + h(q) (3.8)

However, the m.l.e raises a major issue: if a query word does not appear in a document,
a zero probability is assigned for the document, so that the log probability is not defined.
To overcome theses issues, smoothing methods are employed to add some background
knowledge during the estimation of the document language model.

3.3.1 Smoothing Methods

The most popular smoothing methods are Dirichlet smoothing and Jelinek-Mercer smooth-
ing . An overview of smoothing methods for language models is presented in [85].
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 Query

 KL Divergence

 KL Divergence

 KL Divergence

Document b

Document c

Document a

KL(query,a)<KL(query,b)<KL(query,c)

Figure 3.3: The language modeling approach to Information Retrieval. Document are
represented by bag of words, ie multinomial distributions. Then, KL-Divergence serves
as a distance between queries and documents. In the figure, document a has a lower KL
divergence compared to other documents because it contains more query terms.

Jelinek-Mercer Smoothing
The collection of document can also be represented with a language model. Let C
be the collection of documents, then the (multinomial) language model is given by:

βw = P (Xw = 1|C) =
∑
d xwd∑
d ld

=
Fw
L

(3.9)

Jelinek-Mercer smoothing proceeds by interpolating the maximum likelihood esti-
mator (m.l.e.) of the document language model with the collection’s one.

θwd = α ˆθwd
mle

+ (1− α)βw (3.10)

which is sometimes noted in the literature as:

P (w|d) = αPmle(w|d) + (1− α)p(w|C)

Thus, α is a parameter of the model. Generally, α is set after maximizing some
performance measure on a given dataset.

The score of a document can be decomposed in two parts: the first part deals with
words that both belongs to the query and document. and the second one with words
which do not appear in the document. Hence, the latter words would be explained



72CHAPTER 3. REVIEW OF PROBABILISTIC INFORMATION RETRIEVAL MODELS

by the corpus language model. This lead to reformulate the model as:

RSV (q, d) =
∑
w∈q

qw log(θwd)

RSV (q, d) =
∑

w∈q,xdw>0

qw log(θwd) +
∑

w∈q,xdw=0

qw log(θwd)

RSV (q, d) =
∑

w∈q,xwd>0

qw log(αθmlewd + (1− α)βw) +
∑

w∈q,xdw=0

qw log((1− α)βw)

RSV (q, d) =
∑

w∈q,xdw>0

qw log(
αθmlewd + (1− α)βw

(1− α)βw
) +

∑
w∈q

qw log((1− α)βw)

RSV (q, d) =
∑

w∈q,xdw>0

qw log(1 +
αθmlewd

(1− α)βw
) + h(q) (3.11)

This formulation shows that the trade off between the document language model
and the corpus is set by the factor α

(1−α) . Finally, this formulation is also useful to
implement the model in an efficient way with an inverted index.

Dirichlet Smoothing
The next smoothing methods adopts a Bayesian view for the estimation of language
models. For each document language model, the following a priori is assumed:

θd|β, µ ∼ Dirichlet([µβw]) (3.12)

where βw is defined by equation 3.9. So, µ is the parameter which sets the strength
of this a priori. Knowing that the Dirichlet and Multinomial are conjugated, the
posterior distribution of θd. is given by:

θd|Xd, ld, β, µ ∼ Dirichlet([µβw + xwd]) (3.13)

Finally, the mean value of the posterior distribution is chosen as the language model
of the document.

ˆθwd = E(θd.|Xd, ld, β, µ) =
xwd + µβw
ld + µ

(3.14)

The bigger µ, the smaller the variance of θ and the less the observed frequency xwd
impacts the mean value of θwd. The decomposition of the score in two terms can
also be applied in the case of Dirichlet Smoothing:

RSV (q, d) =
∑

w∈q,xdw>0

qw log(
xwd + µβw
ld + µ

) +
∑

w∈q,xdw=0

qw log(
µβw
ld + µ

)

RSV (q, d) =
∑

w∈q,xdw>0

qw log(
xwd + µβw

µβw
) +

∑
w∈q

qw log(
µβw
ld + µ

)

RSV (q, d) =
∑

w∈q,xdw>0

qw log(1 +
xwd
µβw

) + lq log
µ

ld + µ
+ h(q) (3.15)

This formulation shows that µ appears as an a-priori score for a document (in
lq log µ

ld+µ ) Furthermore, the ratio ld
µ is the analog of α

1−α for Jelinek-Mercer smooth-
ing. As α, µ is optimized according to some performance criteria. Nevertheless, Zhai
[85] proposed to estimate µ as the optimal value of the leave one likelihood of the
document collection. This method is particularly interesting as relevance judgment
are not necessary to carry this estimation.
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Smoothing methods penalize common terms compared to rare terms: this was the
IDF effect in the vectorial model. So, smoothing is a key component of the language
modeling approach. Hence, smoothing sets the discrimination power between terms. In
the Dirichlet case, it also enables to add a prior score on documents.

3.3.2 KL Retrieval model

The basic language model for IR given by equation 3.8 consists in computing the query
likelihood for each document in the collection. This model can be generalized by consid-
ering the query as a sample from a random variable [46]. As for each document in the
collection, a query is considered as a sample from a multinomial distribution:

q|θq, lq ∼Multinomial(θq, lq)

Queries and documents can be compared with a probabilistic distance, the KL-divergence:

RSV (q, d) = −KL(θq, θd)

RSV (q, d) = −
∑
w

P (w|θq) log
P (w|θq)
P (w|θd)

RSV (q, d) =
∑
w

P (w|θq) logP (w|θd)−
∑
w

P (w|θq) logP (w|θq)

RSV (q, d) =
∑
w

θwq log θwd −
∑
w

θwq log θwq

RSV (q, d) =
∑
w∈q

θwq log θwd + h(q)

where h(q) is the entropy of the query language model. θq can be estimated by m.l.e.:

θwq =
qw∑
w qw

=
qw
lq

Then, the KL retrieval model becomes rank equivalent to the query likelihood mode when
the document and query model are multinomial distributions:

RSV (q, d) =rank
∑
w∈q

qw log θwd

So, the KL retrieval model is generalization of the likelihood model. When the query is
represented by a language model (a distribution over words), pseudo feedback and query
expansion methods become more natural, more valid from a theoretical perspective: the
query can then be considered as an incomplete information, which can be updated or
enriched with other sources.

3.3.3 Summary

Language models can easily be understood with a vector space model analogy. Docu-
ments are represented by probability distributions and and probabilities or divergences
are computed between documents and queries instead of distances. Besides, these di-
vergences seems to better fit textual data as language model retrieval model outperform
the cosine retrieval function or several tf-idf retrieval functions. Language models are
relatively easy to extend and to adapt to several problems in information retrieval.
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For example, the Poisson distribution is chosen instead of the multinomial [58]. Several
works extended the language modeling approach to cross-lingual IR [47, 63]. Lastly, some
works try to take into account the document neighborhood or to use topic models in
order to better smooth documents models. To sum up, there exists many extensions
of the language modeling approach. These models are the most popular in the field
nowadays.

3.4 Divergence From Randomness

Divergence From Randomness (DFR) models [2] reconsider the 2-Poisson underlying
idea. Instead of regarding a word as significant or not for a document, these models
try to quantify the importance of a word in a document. Harter and Church [37] [11]
basically observed that ’good keywords’ are far from a Poissonian behavior. The idea of
DFR models build on this observation in order to derive weights for words in documents.
The cornerstone of these model consists in using Shannon information to measure the
importance of a word in a document. and this is why all DFR models relies on a function
of a first information: Inf1 = − logP (Xw = xwd|λw) to weigh words in documents. As
P (Xw = xwd|λw) represent the probability of x occurrences of term w in a document
d according to parameters λw estimated on the collection, the information Inf1 has the
following interpretation:

• If P (Xw = xwd|λw) is low, then the distribution of w in d deviates from its distri-
bution in the collection, and w is important to describe the content of d. In this
case, Inf1 will be high and word w might be a good descriptor for a document d.

• On the contrary, if P (Xw = xwd|λw) is high, then w behaves in a documentd as
expected from the whole collection and, thus, does not provide much information
on d (Inf1 is low).

To sum up, Inf1 thus captures the importance of a term in a document through
its deviation from an average behavior estimated on the whole collection. Figure 3.4
illustrates the principle of Shannon Information to measure informative content.

Measuring word importance with Shannon information in this way is a powerful idea
but it contains 2 limitations that are further corrected in DFR models. These corrections
are called ’normalization principle’:

First Normalization Principle . It aims are renormalizing the first information quan-
tity: Inf1. The rationale for this normalization is somehow related to the burstiness
phenomenon. It is well known fact that many words do not follow Poisson distri-
bution. Although the Poisson distribution can help distinguishing good content
words, it can also overestimate the word importance in documents. For instance,
if a word occurs many times in a document, then the Poisson distribution will give
very high values for the information. Therefore, DFR models proceed with a sec-
ond probability model Prob2 which renormalizes the previous informative content
as follows:

(1− Prob2(twd))Inf1(twd)

Second Normalization Principle It aims at normalizing the number of occurrences of
words in documents by the document length, as a word is more likely to have more
occurrences in a long document than in a short one. The different normalizations
considered in the literature transform raw number of occurrences. DFR models
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P(X)
−log P(X)

Figure 3.4: Shannon Information Illustration. Probability model and its corresponding
information. When an observation is close to the mean/mode of the distribution, then
its information is low. On the contrary, an observation with a low probability gives a lot
of information

usually adopt one of the two following term frequency normalizations:

twd = cxwd
avgl

ld
(3.16)

twd = xwd log(1 + c
avgl

ld
) (3.17)

where avgl is mean document length and c parametrizes the normalization function.

It is important to stress that DFR models use these normalized term frequencies in
discrete distributions in order to compute the Inf1 and Prob2 quantities.

All in all, the resulting DFR models have the general form:

RSV (q, d) =
∑
w∈q∩d

qw(1− Prob2(twd))Inf1(twd)

We will discuss the different probability distributions used in DFR models either for
measuring the informative content or for modeling the risk of using a word as document
descriptor .

3.4.1 Inf1 Model

Geometric (G)
This model assumes that word frequencies are distributed in the collection according
to a geometric distribution: λw = Fw

N (ie the mean frequency)

Inf1(twd) = log2(1 + λw) + twd log2(
1 + λw
λw

) (3.18)
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Poisson (P)
Similarly with a Poisson law: λw = Fw

N (ie the mean frequency)

Inf1(twd) = − log2(
e−λwλtwdw

twd!
) (3.19)

Inf1(twd) ≈ twd log2(
twd
λw

) +
(
λw +

1
12twd

− twd
)

log2(e) + 0.5 log2(2πtwd)

The last approximation use Stirling approximation

3.4.2 Prob2 Model (First Normalization Principle)

Laplace (L)
The Laplace normalization consists in estimating the probability of observing one
more occurrence of a term in a document.

P (Xw = twd|Xw = twd − 1) ∼ Bernoulli(
twd

twd + 1
) (3.20)

Prob2(twd) =
twd

twd + 1
(3.21)

Binomial Ratio (B)

Let’s suppose the number of documents Nw where a word occurs is known. Then,
all the occurences of the term are suppose to be uniformly distributed among this
set of document. The occurrences follow a Binomial law with parameter 1

Nw
Then,

the probability to have xwd occurrences in a document is given by:

P (Xw = xwd|Nw, Fw) =
(
xwd
Fw

)
(

1
Nw

)xwd(
Nw − 1
Nw

)Fw−xwd (3.22)

Amati then considers the variation of probability when one extra occurrence is
added to a document.

P (Xw = xwd|Nw, Fw)− P (Xw = xwd + 1|Nw, Fw + 1)
P (Xw = xwd|Nw, Fw)

= 1− Fw + 1
Nw(xwd + 1)

(3.23)

Using the the normalized frequencies twd instead of xwd leads to the following nor-
malization:

Prob2(twd) = 1− Fw + 1
Nw(twd + 1)

(3.24)

3.4.3 Models

DFR models results from the choice of a first probability model Prob1 and renormalization
function Prob2. Most DFR models adopts the second term frequency normalization
given by equation 3.17. For example, the Geometric-Laplace model with the second
normalization (called officially GL2) is written as:

twd = xwd log(1 + c
avgl

ld
) (3.25)

λw =
Fw
N

RSV (q, d) =
∑
w∈q∩d

qw
1

twd + 1
(

log2(1 + λw) + twd log2(
1 + λw
λw

)
)

(3.26)
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Similarly, the Poisson-Laplace with the second normalization (PL2) is written as:

twd = xwd log(1 + c
avgl

ld
)

λw =
Fw
N

RSV (q, d) =
∑
w∈q∩d

qw
twd + 1

(
twd log2(

twd
λw

) + (λw +
1

12twd
− twd) log2(e) + 0.5 log2(2πtwd)

)
RSV (q, d) ≈

∑
w∈q∩d

qw(
twd log2( twdλw )
twd + 1

+
log2(e)(λw − twd)

twd + 1
+

0.5 log2(2πtwd)
twd + 1

)

Amati [2] proposed many others models following this principles such as, PB2, GB2,
I(n)B2, I(F)L2. In practice, these different models get very similar performance, even if
PL2 et I(n)L2 are among the most popular. For all these models, c is the parameter
which normalizes frequencies of word in documents. As most IR models, this parameter
is set empirically according to performance measures.

3.5 Conclusion

We have reviewed in this chapter the main families of probabilistic IR models. The BM25
model follow the Probability Ranking Principle and assume two poisson mixture models
for word frequencies. Language Models are based mostly on multinomial distributions
whereas DFR models involves Poisson or Geometric distributions for instances. All these
’basic’ retrieval models are often extended toward particular IR need, such as accounting
for document structure for instance and we have not mentionned here extensions of these
models as we choose to focus on the assumptions of the particular IR models.

A first conclusion of this chapter is that none of the leading IR model (except the DCM
model use within the PRP cf section 3.2.3 ) rely on bursty distributions. Therefore, our
goal will be to try to define well performing IR model relying on bursty distributions. The
BNB and Log-Logistic distributions, we have introduced in the previous chapter, model
term occurrences on the collection whereas language models rather look at what happens
at the document level. PRP models need to choose a distribution of occurrence in the
relevant class and we have no indication that the burstiness phenomenon still hold in
the relevant class. Overall, it is the Divergence From Randomness framework that seems
closer to our requirements. This is why we will discuss and analyze DFR models in the
context of burstiness in the next chapter.

Albeit probabilistic, these three families of IR models relies on a different framework
and the underlying probability laws modeling word occurrences also differs from one
family to another in most cases. However, all the resulting weighting functions do have
some properties in common as we will see in the next chapter. As well as performance,
the easiness to understand and extend an IR model, its assumptions adequacy are other
significant features of an IR model.
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4.1 Introduction

Although the main probabilistic IR models differentiate from each other, either by a
underlying theorical framework or by a distinct choice of a word frequency distribution,
all these well performing models share common properties which would allow one to
describe these models in a single framework. This is precisely the aim of retrieval heuristic
constraints , which were pioneered by Fang et al [33].

Heuristic constraints aim at describing formally some constraints that all IR models
share. Describing IR functions with constraints is referred to as the axiomatic approach to
IR. One can view these constraints as ’necessary’ conditions or as general properties that
can help us to understand, from a theoretical point of view, the behavior of IR models. As
an introduction to retrieval constraints, we give some examples of the properties captured
by the main retrieval constraints:

1. It is important that documents with more occurrences of query terms get higher
scores than documents with less occurrences (Term Frequency effect).

2. However, the increase in the retrieval score should be smaller for larger term fre-
quencies, inasmuch as the difference between say 110 and 111 is not as important as
the one between 1 and 2 since the number of occurrences has doubled in the second
case, whereas the increase is relatively marginal in the first case (Concave effect).
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3. In addition, longer documents, when compared to shorter ones with exactly the
same number of occurrences of query terms, should be penalized as they are likely
to cover additional topics than the ones present in the query (Document Length
effect).

4. Lastly, it is important, when evaluating the retrieval score of a document, to weigh
down terms occurring in many documents, ie which have a high document/collection
frequency, as these terms have a lower discrimination power (IDF effect).

This chapter is structured as follows: first, the retrieval heuristic constraints are pre-
sented. Then, Divergence From Randomness models are analyzed in order to better assess
the effect of their different components.

4.2 Analytical Formulation of Heuristic Constraints

Axiomatic methods were pioneered by Fang et al [33] and followed by many works in-
cluding [34, 26]. We first present in this section an analytical version of heuristic retrieval
constraints which underlie most IR models. We consider here retrieval functions noted
RSV which the following form:

RSV (q, d) =
∑
w∈q

a(qw)h0(xwd, ld, zw, θ)

where qw is the query term frequency, xwd is the number of occurrence of w in w, ld the
document length, zw a corpus statistic for word w and θ is a set of parameters.

The function h0, the form of which depends on the IR model considered, is assumed
to be of class1 C2 and defined over (R+)3×Ω. Ω represents the domain of the parameters
in θ. The function a is often the identity function.

In many cases, the above weighting function h0 can be written as:

h0(xwd, ld, zw, θ) = h(tzw, θ) where t(w, d) = t(xwd, ld)

where t is the normalized frequency associated to a given normalization function t(x, l).
Language models [86], Okapi [72] and Divergence from Randomness [2] models as well

as vector space models [73] all fit within the above form. For example, the Jelinek-Mercer
language model can be written as (cf section 3.3.1):

t(x, l) =
x

l
h(t, z = p(w|C), λ) = log(λt+ (1− λ)z)

Similarly, the InL2 DFR model can be written as :

t(x, l) = x log(1 + c
avgl

l
)

h(t, z =
Nw
N
,λ) = − t

t+ 1
log(z)

We recall here Fang’s criteria and provide an analytical version of them which leads
to conditions on h which can be easily tested.

The names of the different criteria are directly borrowed from Fang et al. The presenta-
tion of the conditions is quite short but dense in mathematical notations. Two conditions
deals with the behavior of the function h wrt t, ie the behavior wrt to term frequency.

1A function of class C2 is a function for which second derivatives exist and are continuous.
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These conditions are the criterion TFC1 and TFC2. One condition, TDC, encodes the
IDF effect of vectorial models. In addition, the LNC1 conditions ensures that longer
document get penalized compared to shorter ones. Lastly, the conditions TFLNC1 and
LNC2 regulates the interaction between the term frequency and the document length.

4.2.1 TF Effect

The first constraint is:
TFC1: Let qbe a query with only word w, ie q = w and two documents d1 and d2 such
that ld1 = ld2 (same length).

If xwd1 > xwd2, then RSV (d1, q) > RSV (d2, q)

TFC1 ⇐⇒ ∀(l, z, θ), n ∈ N∗, h0(n, l, z, θ) is increasing in n. A sufficient condition is:

∀(l, z, θ), ∂t(x, l, θ)
∂x

> 0 and
∂h(t, z, θ)

∂t
> 0 (TF Effect)

This constraint translates the fact that documents with more occurrences of query terms
get higher scores than documents with less occurrences and is illustrated in figure 4.1.
For example, the function log(1 +x) captures the increase in term frequency for language
models, whereas for DFR models, it is often a function with a pattern as x

x+1 .

4.2.2 Concave Effect

The next constraint presented by Fang is:
TFC2: Let q = w and 3 documents such that ld1 = ld2 = ld3 and xwd1 > 0.
If xwd2 − xwd1 = 1 and xwd3 − xwd2 = 1, then

RSV (d2, q)−RSV (d1, q) > RSV (d3, q)−RSV (d2, q)

TFC2 ⇐⇒ ∀(l, z, θ), n ∈ N∗, h0(n + 1, l, z, θ) − h0(n, l, z, θ) is decreasing. A sufficient
condition is:

∀(z, θ), ∂
2h(t, z, θ)
∂t2

< 0 (Concave Effect)

This constraint guarantees that the increase in the retrieval score should be smaller for
larger term frequencies and is illustrated in figure 4.2.

We propose to illustrate and to discuss further the implications of the concave effect
with the following developpement. Let a and b be two words with similar idf or collection
frequency, ie za = zb. Imagine that all documents in the collection have the same length
l, let s a constant, representing the number of occurences of word a and b, ie ta + tb = s.
We want to show that concave functions favor a uniform distribution of occurences in
documents. Let f the univariate function defined by f(t) = h(t, z, θ) Now, consider the
following optimization problem:

argmax A = f(t) + f(s− t)
subject to t ≥ 0 , t ≤ s

So, A gives the score of a document whose frequencies for word a and b are equal to ta = t
and tb = s− t. The solution of this problem gives the preferred repartition of frequencies
for both words in documents. The Lagrangian of this problem is then:

Λ = f(t) + f(s− t)− λt− δ(s− t)
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Figure 4.1: Illustration of TF Effect
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Figure 4.3: Illustration of the equipartition property of concave functions as opposed to
convex functions

The Kuhn-Tucker conditions then gives:

f ′(t)− f ′(s− t)− λ− δ = 0
λ ≤ 0
δ ≤ 0

λt+ δ(s− t) ≤ 0

Either the constraints are active and t = 0 or t = s, or they are inactive and λ = δ = 0,
which gives f ′(t) = f ′(s− t) and t = s

2 . Overall this gives the two possible solutions:

t =
s

2
A(t) = 2f(

s

2
)

t = 0 or t = s A(t) = f(0) + f(s)

As f is concave the optimal solution is t∗ = s
2 . Hence, concave functions favors the

equipartition of frequencies. In other words, concave functions favor documents with as
many occurrences of word a as word b that is to say documents that cover both aspects
of a query. On the contrary, if f was convex, it would favor the other solution, when we
choose only one word. In other words, convex functions favor documents with either word
a alone or word b alone. Note that these arguments are only valid for a fixed document
length l and a predetermined s and that they could be generalized with more than two
words. Figures 4.3 illustrates the equipartition property of concave functions.

4.2.3 Document Length Effect

The next constraint deals with penalizing longer documents:
LNC1: Let q = w be a query and d1, d2 two documents.
If, for a word w′ 6∈ q, xw′d2 = xw′d1 + 1 but for the query word w, xwd2 = xwd1, then:

RSV (d1, q) ≥ RSV (d2, q)

∀(x, z, θ), n ∈ N∗, Let bn = h0(x, n, z, θ)
LNC1 ⇐⇒ ∀(x, z, θ), n ∈ N∗, h0(x, n, z, θ) is decreasing. A sufficient condition is:
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∀(x, z, θ), ∂h0(x, l, z, θ)
∂l

< 0

which translates in the term frequency normalization function as:

∀(x, θ), ∂t(x, l, θ)
∂l

< 0 (Document Length Effect)

This constraint penalizes long documents compared to shorter ones. For example, lan-
guage models have a term frequency normalization of the form:

t(x, l) =
x

l

due to the constraint on the Multinomial parameter. DFR models rather choose a nor-
malization parametrized by the mean document length avgl and an additional parameter
c:

t(x, l) = x log(1 + c
avgl

l
)

whereas BM25 rely on the pivoted length normalization [77].

4.2.4 IDF Effect

The next constraint aims at capturing the IDF effect of vectorial models.
TDC: Let q a query and w1, w2 two query words.
Suppose that ld1 = ld2, xw1d1 + xw2d1 = xw1d2 + xw2d2.

If idf (w1 ) ≥ idf (w2 ) and xw1d1 ≥ xw1d2, then RSV (d1, q) ≥ RSV (d2, q).

A special case of TDC corresponds to the case where w1 occurs only in document d1 and
w2 only in d2. In such a case, the constraint can be written as:

speTDC: Let q a query and w1, w2 two words.
Suppose that ld1 = ld2, xw1d1 = xw2d2, xw1d2 = xw2d1 = 0.

If idf (w1 ) ≥ idf (w2 ), then RSV (d1, q) ≥ RSV (d2, q).

A sufficient condition for speTDC is:

∀(t, θ), h(0, z, θ) = 0 and
∂h(t, z, θ)

∂z
< 0 =⇒ speTDC (IDF Effect)

This constraint accounts for the IDF effect and is illustrated in figure 4.4. Note that
∂h(t,z,θ)

∂z < 0 alone is not a sufficient condition. For example, language models with
Jelinek-Mercer smoothing are such that ∂h

∂z > 0 even if it does verify the speTDC condi-
tion.

More generally, the situation of the TDC constraint is unclear, and in fact we show that
several state-of-the-art IR models do not comply with the general TDC constraint,
but do satisfy the speTDC one. We use a similar development to the one illustrating the
equipartition property of concave functions to do so. Let us consider the case where the
weighting function is a rank equivalent Jelinek-Mercer smoothing, namely :

h(t, zw, θ) = log(1 + θ
t

zw
)
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Figure 4.4: Illustration of IDF effect

with zw = p(w|C). Let a and b two words, let s > 0 a constant, representing the number
of occurences of words a and b, ie ta + tb = s as in the TDC condition. Consider the
following optimization problem:

argmax A = log(1 + θ
t

p(a|C)
) + log(1 + θ

s− t
p(b|C)

)

subject to t ≥ 0 , t ≤ s

So, A gives the score of a document whose frequencies for word a and b are equal to ta = t
and tb = s− t. The solution of this problem gives the preferred distribution of frequencies
for both words in documents. The Lagrangian of this problem is then:

Λ = log(1 + θ
t

za
) + log(1 + θ

s− t
zb

)− λt− δ(s− t)

The Kuhn-Tucker conditions then gives:

θ(
1

za + θt
− 1
zb + θ(s− t)

)− λ− δ = 0

λ ≤ 0
δ ≤ 0

λx+ δ(s− x) ≤ 0

which gives the following solution 2:

t∗ =
s

2
+
zb − za

2θ
and the corresponding distribution of frequencies for word a and b are:

t∗a =
s

2
+
zb − za

2θ
, t∗b =

s

2
− zb − za

2θ
2As za � t and zb � s− t, t > 0 and t < s if s is large enough
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Table 4.1: Pair of query terms (short query) below mean corpus language model
Collection m µ diff < m

robust 0.0003 500 62.2 %
trec1-2 0.0005 1000 62.2 %

Now let us consider a query q with two words (a and b) occurring only once, and let d1

and d2 be two documents of equal length. Let us furthermore assume that: za < zb, and:

tad1 = t∗a + ε, tbd1 = t∗b − ε
tad2 = t∗a, tbd2 = t∗b

for ε sufficiently small for all the quantities to be positive. In this case, all the conditions
of the TDC constraint are verified, and thus one should observe that RSV (q, d1) ≥
RSV (q, d2), which is in contradiction with the fact that the values for d2 are the ones
that maximize A which corresponds in this case to the retrieval status value. This shows
that the Jelinek-Mercer model is not compliant with the TDC constraint. However, it is
compliant with the speTDC constraint, which represents a stricter version of the TDC
constraint.

In addition, the Dirichlet language model was shown to agree with the TDC constraint
in [33] when:

µ ≥ xad1 − xbd2
p(b|C)− p(a|C)

Table 4.1 shows for several collections the mean value of p(w|C) for query terms (denoted
m), the optimal values obtained for the Dirichlet smoothing parameter µ and the per-
centage of pairs of query terms for which the corpus language model absolute difference
(|p(w′|C) − p(w|C)|) is below m (denoted diff < m). As one can note, in almost two
third of the cases, the numerator of equation 4.1 is very small. So, for the bound given in
the above equation to hold, one needs to rely on large values for µ (larger than 2,000 when
the numerator is one). As shown in table 4.1, we are far from these values in practice
and the Dirichlet language model is in general not compliant with the TDC constraint.
Furthermore, using the analytical formulation of the speTDC constraint, one can show
that the Dirichlet language model is compliant with the speTDC constraint.

To sum up, several state of the art IR models satisfy speTDC, a stricter version of the
TDC constraint to directly formalize the IDF effect but do not fulfill TDC. Because of the
good behavior of the models we have reviewed, we believe that the above development
suggests that the TDC constraint is too strong, and should be replaced with the speTDC
one.

4.2.5 Adjustement Conditions

The two following criterion aim at regulating the interaction between the term frequency
variable, namely x and the document length l.
LNC2: Let q be a query. ∀k > 1, if d1 and d2 are two documents such that ld1 = k× ld2

and for all words w, xwd1 = k × xwd2, then RSV (d1, q) ≥ RSV (d2, q).

LNC2⇐⇒

∀(z, θ), (x, l) ∈ N∗, k > 1, h0(kx, kl, z, θ) ≥ h(x, l, z, θ) (condition 5)
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TF-LNC: Let q = w be a query with only word w. If xwd1 > xwd2 and ld1 =
ld2 + xwd1 − xwd2, then RSV (d1, q) > RSV (d2, q).

According to Fang, the TF-LNC constraint captures the intuition that if the document
d1 is generated by adding more occurrences of a query term to document d2, then the
score of d1 should be higher than d2

TF -LNC ⇐⇒

∀(z, θ), (x, l, p) ∈ N∗, h0(x+ p, l + p, z, θ) > h0(x, l, z, θ) (condition 6)

These two constraints basically say that the increase in x always come with an increase
in l. As we want to promote the increase in x, the gain coming from the increase in x
should be superior to the loss incurred by a longer document. This could be formulated
as the variation in x should be bigger than the variation in l.

Moreover, Cummins et al. [26] introduce a new constraint which impacts the document
length penalty.

TFLNC4 Constraint ⇐⇒ ∀(q, d, w), w 6∈ q

|RSV (q, d+ w)−RSV (q, d)| < |RSV (q, d+ 2w)−RSV (q, d+ w)|

Cummins explains that

The above constraint avoids over penalizing longer documents by ensuring that
the normalization aspect (measured in repeated terms) is sublinear. Therefore,
as non-query terms appear in a document they should be penalized less with
successive occurrences. Essentially, the inverse of the score reduction due to
non-query terms being added should be sub-linear.

The concavity condition has a sublinear effect wrt to x whereas this constraint deals with
document length. Cummins et al. actually obtained from a Genetic Algorithm a normal-
ization of the form x×

√
(ml ) and found it effective on several collections. This constraint

was suggested by the analysis of the normalization found by the Genetic Algorithm.

4.2.6 Summary

To sum up, the main retrieval constraints are:

• TF Effect: h increases with t

• Concave Effect: h is concave with t

• Document Length Effect: h decreases with l

• IDF Effect : h increases with idf

Lastly, conditions 5 and 6 regulate the interaction between frequency and document
length, i.e. between the derivatives wrt to x and l. They allow to adjust the functions h
satisfying the above conditions. In the remainder, we will refer to the above conditions
as the form conditions and the remaining oness as the adjustment conditions. We
distinguish the two sets of conditions because we believe that form conditions capture a
more general behavior of weighting function whereas the adjustment conditions describe
a more subtil behavior.
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We now need to discuss the axiomatic approach to IR. Although most state of the
art algorithms do meet these constraints, it is possible to design IR ranking function that
meet all the previous conditions but that will perform poorly, or worst than some other
functions that do not meet one of the constraints. So, these axiomatic conditions could be
viewed as necessary conditions but not sufficient conditions. Therefore, these conditions
do not guarantee a good performance if they are satisfied. Despite these drawbacks, the
axiomatic approach to IR provide an unified framework in order to study retrieval models.
If the axiomatic theory has some limitations and might be only at its beginnings, we do
believe it remains an interesting framework that yield valuable insights when elaborating
new IR models.

4.3 Analysis of DFR Models

The Divergence From Randomness (DFR) framework p was introduced in the previous
chapter and defines a family of IR models such that:

RSV (q, d) =
∑
w∈q∩d

qw(1− Prob2(twd))Inf1(twd)

DFR models rely on two normalization principle and we will review them with respect
to the retrieval constraints we have defined First, we will drop notation subscripts here
because the context does not need such notations

• x refers to xwd (respectively for t and twd)

• l refers ld

• Here z means either Fw or Nw. It amounts to a corpus frequency.

4.3.1 The Second Normalization Principle

The second normalization principle aims at normalizing the number of occurrences of
words in documents by the document length, as a word is more likely to have more occur-
rences in a long document than in a short one. The different normalizations considered
in the literature transform raw number of occurrences DFR models usually adopt one of
the two following term frequency normalizations (c is a multiplying factor):

t = t(x, l) = xc
avgl

l

t = t(x, l) = x log(1 + c
avgl

l
)

These normalizations behave as standard normalizations, namely their derivatives
satisfies:

∂t(x, l)
∂x

> 0

∂t(x, l)
∂l

< 0

The important point about the second normalization principle is that, to be fully com-
pliant with these definitions, the probability distribution functions at the basis of DFR
models should be continuous distributions as the considered variables are continuous3.
This is not the case for DFR models proposed so far which rely on discrete distributions.

3Furthermore, as these variables are positive, the support of the distributions to be considered should
be ( or included in) [0;∞).
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4.3.2 The First Normalization Principle

The intuition behind Inf1 component is simple. Let P (t|θw) represent the probability of t
(normalized) occurrences of term w in document d according to parameters θw which are
estimated or set on the basis of a random distribution of w in the collection. If P (t|θw) is
low, then the distribution of w in d deviates from its distribution in the collection, and w
is important to describe the content of d. In this case, Inf1 will be high. On the contrary,
if P (t|θw) is high, then w behaves in d as expected from the whole collection and, thus,
does not provide much information on d (Inf1 is low). Inf1 thus captures the importance
of a term in a document through its deviation from an average behavior estimated on the
whole collection. The question which arises is why one should need to normalize it. In
other words, what is the role of the first normalization principle?

Amati and van Rijsbergen [2] consider several basic IR models for Prob1: the binomial
model, the Bose-Einstein model, which can be approximated by a geometric distribution,
the tf-idf model (denoted I(n)), the tf-itf model (denoted I(F)) and the tf-expected-idf
model (denoted I(ne)). For the last four models, Inf1 takes the form:

Inf1(t) =
{
t log(1 + N

z ) + log(1 + z
N )

t log( N+1
z+0.5 )

where the first line corresponds to the geometric distribution, and the second one to I(n),
I(F) and I(ne) (z being respectively equal to nw, Fw and nw,e, the latter representing the
expected number of documents containing term w). We assume in the remainder that t
is given either by equation 3.16 or 3.17. The conclusions we present below are the same
in both cases.

Were we to base a retrieval function on the above formulation of Inf1 only, then it is
straightforward to see that models I(n), I(F) and I(ne) meet the TF, Doc Length and
IDF effect and that the model for the geometric distribution verifies the TF condition ,
but only partly the IDF ones, as the derivative can be positive for some values of z, N
and t.

All models however fail the concave effect, in all cases, ∂2h(x,l,z,θ)
∂x2 = 0. Hence, Inf1

alone, for the geometric distribution and the models I(n), I(F) and I(ne), is not sufficient
to define a valid IR model4. One can thus wonder whether Inf2 serves to make the model
concave . We are going to see that this is indeed the case.

Two quantities are usually used for Prob2 in DFR models: the normalization L or the
normalization B. They both lead to the following form:

1− Prob2 =
a

t+ 1

where a is independent of t. Thus integrating Inf2 in the previous models gives:

h(t, z, θ) =


(
at
t+1 log(1 + N

z ) + log(1 + z
N )
)(

at
t+1 log( N+1

z+0.5 )
)

and :
∂2h(t, z, θ)

∂t2
= − b

(t+ 1)3

with b > 0, which shows that the models are now compatible with the concave effect.
The above development thus explains why the Inf1 models considered previously need to
be resized with an Inf2 model.

4The same applies to the binomial model, for which
∂2h(x,l,z,θ)

∂x2 > 0. For the sake of clarity, we do
not present here this derivation which is purely technical.
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So, the first normalization principle in DFR models is motivated by the retrieval
constraints. This enables to better understand the different components of DFR models.
To sum up, Inf1 only models comply with all the main retrieval constraint but concavity.
With the correction of the Prob2 model, the resulting model comply with all the main
IR constraints.

4.3.3 Experiments with the First Normalization Principle

After having analyzed DFR models, we want to better demonstrate the effect of the first
normalization principle in DFR models. To do so, we tested several variant of DFR
models on a CLEF collection. For example, we tested the Geometric Inf1 model with
and without the Laplace normalization.

For example, with only a Geometric distribution, the DFR model would be:

RSV (q, d) =
∑
w∈q

qw
(
twd log(

1 + λw
λw

) + log(1 + λw)
)

where λw is the parameter for the Geometric distribution for word w.
As one can see, this model is linear wrt twd so it is not concave with term frequen-

cies. The experiment will clearly test the concavity impact on the performances, as the
model without Laplace normalization is linear whereas the model is concave with Laplace
normalization.

In addition, we also test a BNB distribution as Inf1 model with and without the
Laplace normalization. For example, with the Laplace normalization for Inf2 and the
BNB distribution, the model would be:

RSV (q, d) =
∑
w∈q

qw
twd + 1

(
log(λw + twd) + log(λw + twd + 1)− log(λw)

)
One can see that the resulting model does not increase with the term frequency in the
document: it violates the TF effet previously mentioned.

Table 4.2 shows the results of the different models. The results shows that the Ge-
ometric ”only” model performs poorly, probably because it is linear. This experimental
result stresses how important the first normalization principle is for DFR models. An-
other interesting finding deals with the BNB model. The BNB distribution alone reaches
state of the art performances. However, the Laplace normalization severely degrades the
performances. The BNB Laplace model can be shown not to respect the TF effect, ie to
increase with larger term frequencies.

So, the DFR framework is not appropriate for bursty distributions as the BNB. Over-
all, the experiments shows that Inf1 and Prob2 models are not independent one from
another.

4.4 Conclusion

Axiomatic methods hold a central role in IR theory as retrieval constraints enable to
better understand, analyze and synthesize IR models. Even if this theory has limitations
such as the validation of theses constraints, one could think of these axiomas as necessary
conditions. We have reviewed these conditions, reformulated them into analytical criterion
to ease their use and showed that the general TDC contraint was not satisfied by several
IR models.

We then examined DFR models in the light of retrieval constraints in order to better
understand the role of the first normalization principle. The analysis revealed that the
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MAP P10

query-title

Geometric Laplace 0.3610 0.2833
Geometric 0.1661 0.1433
BNB Laplace 0.0865 0.0633
BNB 0.3617 0.2767

query-desc

Geometric Laplace 0.4905 0.3433
Geometric 0.2479 0.2000
BNB Laplace 0.1328 0.1183
BNB 0.4682 0.3327

Table 4.2: Mean average precision (MAP) and precision at 10 documents (P10) for the
different models on the CLEF2003 English corpus for short and long queries

first normalization principle ensures the model concavity . Inf1 models comply with all
the main retrieval constraint except concavity. With the correction of the Prob2 model,
the resulting model comply with all the main IR constraints. However, the correction of
the Prob2 model is harmful when using a BNB distribution as shown in the experiments.
It suggests that Inf1 and Prob2 model are dependent from each other.

Even if concavity and the burstiness property are both ways to better take into account
large frequencies either in a IR model or for a probability distributions, it seems that there
is no direct alignment between the concavity of IR models and the burstiness property of
the probability distributions used in IR models. Most state of the art models are concave
functions with term frequency but most of the distributions used are not bursty. It could
mean that current paradigms for IR models are not fully compatible with the bursty
distributions we want to use. In the next chapter, we will introduce information models
in order to correct several problems of DFR models and to reveal a connection between
the concavity of an IR model and the burstiness property of the probability distribution
modelling term frequencies.
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5.1 Introduction

The previous chapters reviewed the main probabilistic IR models and their significant fea-
tures described by axiomatic constraints. This chapter introduces the family of information-
based IR models as we want to find a suitable framework for the distributions we have
selected in chapter 2, the Beta Negative Binomial and the Log-Logistic distributions.

The most recent and widely used information retrieval models rely on word probability
distributions with their own specificities as we saw in chapter 3. In Okapi, for example,
it is assumed that word frequencies follow a mixture of two Poisson distributions, in both
the relevant and irrelevant sets. The Divergence from Randomness (DFR) framework
proposed by Amati and van Rijsbergen [2] makes use of several distributions, among
which the geometric distribution, the binomial distribution and Laplace law of succession
play the major role. Language models are, for themselves, built upon the multinomial
distribution, which amounts to consider binomial distributions for individual words.

93



94 CHAPTER 5. INFORMATION BASED MODEL

Empirical findings on how words behave in text collections however suggest that none
of the above distributions is appropriate for accurately describing word frequencies, as
shown in chapter 2. This legitimates the question whether one can define a well performing
IR model based on bursty distributions. Even if this question was addressed with the
use of the Dirichlet Compound Multinomial within the Probability Ranking Principle (cf
section 3.2.3), the formal framework we have developed lead us to a different solution.

Although none of the common distributions used in IR models seem appropriate to
model burstiness, the very same IR models are concave function with term frequency. As
we mentionned in the thesis introduction, burstiness and the IR model concavity in term
frequency seem to be two sides of the same coin. Such are the motivations for introducing
a new family of IR models. Above all, these models have a remarkable property: a direct
relationship between the burstiness property of the probability distributions used and the
concavity of the resulting IR model.

This chapter is structured as follows. First, information-based models are introduced
before presenting two models within this family: the Log-Logistic and the Smooth Power
Law models. Then, experiments validates the good behavior of these models. Finally,
several extensions of information models are discussed in section 5.

5.2 Information Models

Information models draw their inspiration from a long-standing hypothesis in IR, namely
the fact that the difference in the behaviors of a word at the document and collection levels
brings information on the significance of the word for the document. This hypothesis has
been exploited in the 2-Poisson mixture model, in the notion of eliteness in BM25, and
more recently in DFR models. By information, we refer to Shannon information [76]
when observing a statistical event. The informativeness of a word in a document has a
rich tradition in information retrieval since the influential indexing methods developed
by Harter ([37]). The idea that the respective behaviors of words in documents and in
the collection bring information on word type is, de facto, not a novel idea in IR. It has
inspired the 2-Poisson mixture model, the concept of eliteness in BM25 models and is at
the heart of DFR models.

Several researchers have observed that the distribution of significant, ”specialty” words
in a document deviates from the distribution of ”functional” words. The more the distri-
bution of a word in a document deviates from its average distribution in the collection,
the more likely is this word significant for the document considered. This can be easily
captured in terms of information:

Info(x) = − logP (X = x|λ) = Informative Content (5.1)

If a word behaves in the document as expected in the collection, then it has a high
probability P (X = x|λ) of occurrence in the document, according to the collection dis-
tribution, and the information it brings to the document, − logP (X = x|λ), is small.
On the contrary, if it has a low probability of occurrence in the document, according to
the collection distribution, then the amount of information it conveys is greater. In a
nutshell, information could be understood as a deviation from an average behavior.

We make use of this notion to define information-based IR models. Indeed, we consider
here the family of IR models satisfying the following equation:

RSV (q, d) = −
∑
w∈q

qw logP (Tw > twd|λw) (5.2)

where Tw is a random variable modeling normalized term frequencies and λw is a set of
parameters of the probability distribution considered. This ranking function corresponds
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to a mean information a document brings to a query or, equivalently, to the average of
the document information brought by each query term and is similar to the Inf1 part
of DFR models. We will refer to models in this family as information-based IR models.
Note that the retrieval function defined by equation 5.2, that words not occurring in a
document bring a null information1.

Few words are needed to explain the choice of the probability P (Tw ≥ twd) in the
information measure. Shannon information was originally defined on discrete probability
and the information quantity from the observation of x was measured with − logP (X =
x|Θ). As the normalized frequencies twd are continuous variables, we can not directly
apply Shannon information. Differential entropy extends the idea of Shannon entropy
to continuous random variables. Basically, differential entropy takes the expectation of
− log f(x) where f(.) is the probability density function. One problem with the differential
entropy and − log f(x) is that it can be either positive or negative as opposed to the
discrete case. Moreover, probability density functions are not bounded in general, so
comparing two pointwise differential informations from two different distributions might
be problematic due to differents scales.

A possible solution is to measure information on a probablility of the form P (twd−a ≤
Tw ≤ twd + b|λw). However, one has to choose values for a and b and we have chosen
a = 0 and b = +∞ for the natural handling of zeros and the relation with the burstiness
property as we will see later. We have to admit that we chose to measure the information
on the survival probability function because it seems convenient and work well in practice
and without considering too much theoretical aspects.

A question that can flash through the reader mind: is this definition of information can
still be understood as a deviation from an average behavior or a surprise measure ? First,
the mean frequency of most words is close to 0. Second, for any word large frequencies are
typically less likely than smaller frequencies on average. The larger the term frequency
is, the smaller P (Tw ≥ twd) is and the bigger − logP (Tw ≥ twd). Hence, the use of
the survival function P (T > t) seems compatible with the notion of information we
have discussed previously. Figure 5.1 illustrates a probability model given by its survival
function P (T > t) and the corresponding information we chose to represent.

Overall, the general idea of the information-based family is the following:

1. Due to different document length, discrete term frequencies (xwd) are renormalized
into continuous values twd = t(xwd, ld)

2. For each term w , we assume that the renormalized values twd follow a probability
distribution P on the corpus. Formally, Tw ∼ P (.|λw).

3. Queries and documents are compared through a measure of surprise, or a mean of
information of the form

RSV (q, d) =
∑
w∈q
−qw logP (Tw > twd|λw)

So, information models are specified by two main components: a function which nor-
malizes term frequencies across documents, and a probability distribution modeling the
normalized term frequencies. Information is the key ingredient of such models since in-
formation measures the significance of a word in a document.

5.2.1 Axiomatic Constraints

We have just introduced the family of Information-Based models but we need to check
that this family yield valid IR models from a theoretical point of view. To do so, we

1with probability distribution whose support is [0,+∞)
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Figure 5.1: Illustration of the Shannon information measure on the Survival function.
For small frequencies, then this information is low. On the contrary, for large frequencies,
ie a low probability gives a lot of information

analyze information models with respect to retrieval constraints presented in chapter 4.
We recall that the four main conditions for an IR model should satisfy deals with the
Term Frequency, the Convavity, the IDF and Document Length. This analysis will reveal
an important connection between burstiness and the concavity property of the IR model .

In the case of information models, the weighting function h corresponds actually to
the Shannon information computed on the Survival function:

RSV (q, d) =
∑
w∈q

qw

function h︷ ︸︸ ︷
(− logP (Tw > twd|λw)) (5.3)

An information models have two degrees of freedom, or two main components which
are: the term frequency normalization function and the probability distribution modeling
normalized term frequencies. Axiomatic constraints actually gives conditions on these
two components in order to define a valid IR model.

As far as term frequency normalization is concerned, we can show that if we
choose a term frequency normalization that is both increasing with term frequency and
decreasing in document length, then the resulting IR model satisfies the TF condition
and Document Length condition. More formally, P (T > twd|θw) is a decreasing function
of twd. So, as long as twd is an increasing function of xwd and a decreasing function of ld,
the TF and Document Length conditions are satisfied for this family of models.

The choice of the probability distribution is constrained by the concavity condition.
The concavity condition can be expressed for information models as:

∂2h(t, z, ω)
∂t2

< 0 ⇔ −∂
2 logP (T > twd)

∂(twd)2
< 0

(5.4)

In other words, the IR model is concave if and only if the survival function of the
distribution modeling normalized term frequencies is log-convex. This is exactly the
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characterization of bursty distributions we have given in section 2.4. We recall here this
theorem

Theorem 5. Let P be a probability distribution of class C2. A necessary and sufficient
condition for P to be bursty is:

∂2 logP (T > t)
∂t2

> 0

This means that if the distribution P is bursty, then the information model defined
with P is guaranteed to be concave. So, information models have a direct relationship
between the burstiness property of the probability distributions used and the concavity
of the resulting IR model. This relationship is not true for state-of -art- IR models, where
burstiness and concavity seem to be two sides of the same coin.

More formally, information models can be characterized by the following three ele-
ments:

1. Normalization function The normalization function t, function of xwd and ld (re-
spectively the number of occurrences of the word in the document and the length
of the document), satisfies:

∂t

∂xwd
> 0;

∂t

∂ld
< 0

2. Probability distribution The probability distribution at the basis of the model
has to be:

• Continuous, the random variable under consideration, twd, being continuous;
• Compatible with the domain of twd, i.e. if tmin is the minimum value of twd,

then P (Tw ≥ tmin|λw) = 1 (because of the first inequality above, tmin is
obtained when xwd = 0);
• Bursty according to our definition

3. Retrieval function The retrieval function satisfies equation 5.2, i.e.:

RSV (q, d) = −
∑
w∈q

qw logP (Tw > twd|λw)

= −
∑
w∈q∩d

qw logP (Tw > twd|λw)

where the second equality derives from the fact that the probability function verifies
P (Tw ≥ tmin|λw) = 1, with tmin obtained when xwd = 0. The above ranking
function corresponds to the mean information a document brings to a query (or,
equivalently, to the average of the document information brought by each query
term).

Hence, information models satisfy three (out of four) form conditions. The status of
the remaining conditions should be checked on each particular model.

5.2.2 Link with DFR

DFR models, as we saw in chapter 3, are specified by:

RSV (q, d) =
∑
w∈q∩d

qw

Inf2︷ ︸︸ ︷
(1− Prob2(twd)) Inf1(twd)
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The above form shows that DFR models can be seen as information models, as defined
by equation 5.2, with a correction brought by the Inf2 term. A first important difference
between the two models is that DFR models make use of discrete distributions for real-
valued variables, a conceptual flaw that information models do not have. Furthermore,
if Inf2(twd) was not used in DFR models, the models with Poisson, Geometric, Binomial
distributions would not be concave. In contrast, the use of bursty distributions in infor-
mation models, together with the conditions on the normalization functions, ensure the
concavity of the resulting IR model.

5.3 Two Power Law Instances

We present here two power law distributions which are bursty and lead to information
models satisfying all form conditions. The use of power law distributions to model bursti-
ness is not entirely novel, as other studies ([6, 10]) have used similar distributions to
model preferential attachment, a notion equivalent to burstiness.

5.3.1 The log-logistic model

The Log-Logistic (LL) distribution is defined by, for x ≥ 0:

PLL(T > t|λ, β) =
λβ

tβ + λβ

We consider here a restricted form of the log-logistic distribution where β = 1.
As explained previously, information models are specified by two main components:

a function which normalizes term frequencies across documents, and a probability dis-
tribution modeling the normalized term frequencies. A good candidate function for the
normalization is the second DFR normalization. Next, the log-logistic distribution is cho-
sen to model the normalized term frequencies. The log-logistic motivation resorts to its
relation with the Beta Negative Binomial. However, it parameter λ has to be estimate
for each word. The mean document frequency (NwN ) is chosen as parameter value. Such
a setting is motivated by the relation to the BNB distribution and the estimation proce-
dure proposed in section2.4.3. So, the log-logistic information model, we will call LGD,
is defined by:

twd = xwd log(1 + c
avgl

ld
)

λw =
Nw
N

RSV (q, d) =
∑
w∈q∩d

qw(log(λw + twd)− log(λw)) (5.5)

where c is the model parameter, controlling the term frequency normalization.

Relation to Language Models

The log-logistic model introduced has fortuitous connections with the Jelinek-Mercer
language model (cf section 3.3.1). Let L be the number of tokens in the collection.
Following [86], the scoring formula for a language model using Jelinek-Mercer smoothing
can be written as:

RSV (q, d) =
∑
w∈q∩d

qw log(1 + s

xwd
ld
Fw
L

) (5.6)
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Using the log-logistic model introduced previously with λw = Fw
N and the DFR1 length

normalization given by:

twd = t(xwd, ld) = cxwd
avgl

ld

We have:

RSV (q, d) =
∑
w∈q∩d

qw log(1 + c

xwd×avgl
ld
Fw
N

) (5.7)

Given that Fw
N = avgl × Fw

L , equation 5.6 is equivalent to equation 5.7. The LM model
with Jelinek-Mercer smoothing can thus be seen as a log-logistic model with a particular
length normalization

This result may seem surprising and contradictory with the research questions that
motivated this study. It seems that bursty distributions (a Log-Logistic) can be rank
equivalent with non-bursty distributions (Multinomial).

We have previously mentionned in the conclusion of Chapter 4 that there is not a there
is not a direct alignment between the concavity of IR models and the burstiness property
of the probability distributions used in IR models. This could be one explanation but not
the only one.

Thinking of this apparent paradox leads to claim that the language modelling approach
in information retrieval do account for the burstiness phenomenon on the contrary of
[53],[31], [60]. Although the multinomial distribution is not bursty in the sense of we
have defined, we could argue that estimating a parameter for each document amounts to
give to a memory to each document. This procedure seems similar to language model
estimation in speech processing where a fixed window around the current word enable to
adapt the language model. After estimation and smoothing, the probability that a word
reoccurs is higher if it was present in the document than if it was absent: Recall that the
Jelinek-Mercer smoothing model is given by:

P (w|d) = λP (w|θd) + (1− λ)P (w|C)

Hence, if a word has appear once in a document (and we have estimated the document
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language model), then it is much more likely to appear again since P (w|θd) is typically
larger than any P (w′|C).

Furthermore, language models in IR could be consider as non-parametric probabilistic
models on documents. The probability of having x occurences of word w from l draws
according to the language modelling assumptions in the collection could be written as
follows:

P (Xw = x|l, θ1, ..., θN ) =
N∑
d=1

P (d)P (Xw|l, θd)

Hence, the language modeling approach to IR could be considered to use a N mixture
binomial model with N very large, which is different from a single Binomial distribution.
Recall that the Negative Binomial can be viewed as as infinite mixture of Poisson distri-
butions. So this N mixture binomial can be thought as similar to the Negative Binomial
distribution and can account for more variance than a single Multinomial distribuion. For
a formal proof of burstiness, we would need to study the ratio P (Xw=x+1|l,θ1,...,θN )

P (Xw=x|l,θ1,...,θN ) , which
seems non-trivial.
Nevertheless, our experiments and previous studies showed that modeling P (w|C) with
a multinomial distribution is a ’bad’ modeling assumption. This ’error’ may be balanced
with the large number of multinomial distributions used in the mixture. These are po-
tential and tentative answers to this apparent paradox.

More generally, in the language modeling approach to IR, one starts from term dis-
tributions estimated as the document level, and smoothed by the distribution at the
collection level. In contrast, DFR and information-based models uses a distribution the
parameters of which are estimated on the whole collection to get a local document weight
for each term. Despite the different views sustaining these two approaches, the above
development shows that they can be reconciled through appropriate word distributions,
in particular the log-logistic one. Lastly, the above connection also indicates that term
frequency or length normalizations are related to smoothing.

So, the Jelinek-Mercer model can also be derived from a log-logistic model. However,
the Jelinek-Mercer language model and the LGD model differ on the following points:

1. The term frequency normalization:

2. The collection parameter (p(w|C) vs Nw
N )

3. The theoretical framework they fit in

It is because we adopted a new theoretical framework, the information-based family, that
we could easily use others term frequency normalizations or settings of λw. In fact,
a language model with the same term frequency normalization as LGD is clearly not
straightforward to obtain in the language modeling approach to IR when using multino-
mial distributions to model documents

5.3.2 Smoothed Power Law (SPL) Model

The second information-based model we are about to introduce draw its inspiration from
(again) DFR models. Despite of the poor assumption of word frequency distribution in
Inf1 model in DFR models, those models, once corrected by an Inf2 component, lead to
state-of the art performance. A legitimate question is then : are DFR models good models
of IR because they are good models of word frequencies ? In the following, we are going
to see that it is possible to approximate, interpret the InL DFR model with a probability
distribution. We call Smoothed Power Law, SPL in short, the distribution defined for
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Figure 5.3: Smoothed Power Law distribution vs Log-Logistic distribution with parameter
equal to 0.005

t ≥ 0 and parametrized by λ such that 0 < λ < 1 by:

f(t;λ) =
− log λ
1− λ

λ
t
t+1

(t+ 1)2

P (T > t|λ) =
∫ ∞
t

f(x;λ)dx =
λ

t
t+1 − λ
1− λ

(5.8)

where f notes the probability density function.
Figures 5.3 compares a log-logistic distribution with λ = 0.005 with an SPL distribu-

tion with λ = 0.005. The SPL distribution decrease near 0 is smaller than the log-logistic
distribution. Hence, the sharp decrease at 0 has been smoothed. This is what motivates
the name of smooth power law. The key component of the SPL distribution is the ratio
t
t+1 , which is reminiscent of factors in DFR models and is also close to the ratio t

t+K in
Okapi.

As for the log-logistic model, we use the same term frequency normalization to design
an IR model. However, the SPL parameter has to be set. We use the connection with
the InL2 model to set the parameter to a smoothed mean document frequency. So, the
SPL information model takes the form:

twd = xwd log(1 + c
avgl

ld
)

λw =
Nw

N + 0.5

RSV (q, d) =
∑
w∈q∩d

−qw log(
λ

twd
twd+1
w − λw

1− λw
) (5.9)
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Probability Transformation

Note that, the SPL distribution can be generalized with a different step for example.

f(t;λ, δ) =
1

1− exp( log(λ)
δ )

− log(λ)
(t+ δ)2

λ
t
t+δ

More generally, the SPL distribution can be seen as a probability transformation. Let Y
a random variable, then a transformation of Y can be obtained by:

P (T > t|λ, θ) =
λP (Y <t|θ) − λ

1− λ
(5.10)

The SPL model, we have derived is actually a change of random variable when one
considers a log-logistic distribution. Let Y ∼ LogLogistic(λ = 1), then P (Y < t) = t

t+1 ,
then the probability transformation gives:

P (T > t|λ) =
λ

t
t+1 − λ
1− λ

which is exactly the form of SPL model. This shows that the SPL model can be
generalized in many ways.

5.3.3 Comparison with DFR InL model

Figure 5.4 illustrates the behavior of the log-logistic model, the SPL model and the InL2
DFR model (referred to as INL for short). To compare these models, we used several
values of corpus frequencies (λw), ie several IDF values in order to compute term weight
obtained for term frequencies varying from 0 to 15. For information models, the weight
corresponds to the quantity − logP (Tw > twd)), whereas in the case of DFR models,
this quantity is corrected by the Inf2 part, leading to, with the underlying distributions
retained:

weight =


− log( λw

twd+λw
) (log-logistic)

− log(λ
twd
twd+1
w −λw

1−λw ) (SPL)
− twd
twd+1 log(Nw+0.5

N+1 ) (INL)

As one can note, the weight values obtained with the two information models are always
above the ones obtained with the DFR model, the log-logistic model having a sharper
increase than the other ones for low frequency terms. The plot illustrates that the SPL
distribution is very close to the INL models with low values of x, thus confirming that
the SPL model can be partly considered as an approximation of the InL model.

5.4 Experimental validation

We now proceed to the evaluation of the log-logistic and smooth power law models in an
adhoc scenario. To assess the validity of our models, we used standard IR collections, from
two evaluation campaigns: TREC (trec.nist.gov) and CLEF (www.clef-campaign.org).
Table 5.1 gives the number of documents (N), number of unique terms, average docu-
ment length and number of test queries for the collections we retained: ROBUST (TREC),
TREC3, CLEF03 AdHoc Task, GIRT (CLEF Domain Specific Task, from the years 2004
to 2006). For the ROBUST and TREC3 collections, we used standard Porter stemming.
For the CLEF03 and GIRT collections, we used lemmatization, and an additional decom-
pounding step for the GIRT collection which is written in German.
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Figure 5.4: Plot of Retrieval Functions with different values of corpus frequencies rw =
exp(−IDF (w))

Table 5.1: Characteristics of the different collections
#Docs #Distinct Words Avg Doc Length # Queries

ROBUST 490 779 992 462 289 250
TREC-3 741 856 668 648 438 50
CLEF03 166 754 79986 247 60

GIRT 151 319 179 283 109 75

We evaluated the log-logistic and the SPL model against language models, with both
Jelinek-Mercer and Dirichlet Prior smoothing, as well as against the standard DFR models
and Okapi BM25. The experimental design is the following:

1. For each dataset, we randomly split queries in train and test (half of the queries are
used for training, the other half for testing). We then performed 10 such splits on
each collection.

2. Learning best parameter (µ, c, k1) to optimize MAP or P10 on the training set.

3. Measure MAP or P10 on the 10 test sets and test difference with a t-test at 0.05
level.

As the term frequency normalization parameter c is not bounded, we have to define a set
of possible values from which to select the best value on the training set. We make use
of the typical range proposed in works on DFR models. The set of values we retained is:

{0.5, 0.75, 1, 2, 3, 4, 5, 6, 7, 8, 9}
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All our experiments were carried out thanks to the Lemur Toolkit [66]. In all the fol-
lowing tables, ROB-t represents the robust collection with query titles only, ROB-d the
robust collection with query titles and description fields,CL-t represent titles for the CLEF
collection, CL-d queries with title and descriptions and T3-t query titles for TREC-3 col-
lection. The GIRT queries are just made up of a single sentence. Table summarizes 5.2
the different notations for the results tables:

Table 5.2: Notations for the result tables
Collection query title query title and descriptions
ROBUST ROB-t ROB-d
TREC-3 T3-t -
CLEF03 CL-t CL-d

GIRT GIR -

5.4.1 Comparison with Jelinek-Mercer and Dirichlet language
models

As the smoothing parameter of the Jelinek-Mercer language model is comprised between
0 and 1, we use a regular grid on [0, 1] with a step size of 0.05 in order to select, on the
training set, the best value for this parameter. Table 5.3 shows the comparison of our
models, LGD and SPL, with the Jelinek-Mercer language model (LM). On all collections,
on both short and long queries, the LGD model significantly outperforms the Jelinek-
Mercer language model. This is an interesting finding as the complexity of the two models
is the same. Furthermore, as the results displayed are averaged over 10 different splits,
this shows that the LGD model consistently outperforms the Jelinek-Mercer language
model and thus yields a more robust approach to IR. Lastly, the SPL model is better
than the Jelinek-Mercer model for most collections for MAP and P10.

In order to assess the relative behaviors of the log-logistic and Jelinek-Mercer models
wrt to their parameter (λ for the Jelinek-Mercer model and c for the log-logistic one), we
display in Figure 5.5 the MAP scores obtained with different values of these parameters,
c being set to c = λ

1−λ , which allows one to compare the two models for any λ in [0, 1].
As one can note, with the exception of small values of λ, the log-logistic model dominates
the Jelinek-Mercer model, which again shows that the log-logistic model is consistently
better than the Jelinek-Mercer one.

Given the link between the Jelinek-Mercer language model and the log-logistic model,
such results indicate that the second DFR term frequency normalization is more efficient
than the one used in Jelinek-Mercer as the term frequency normalization is the most
discriminant factor between the two models.

For the Dirichlet prior language model, we optimized the smoothing parameter from
a set of typical values, defined by: {10, 50, 100, 200, 500, 800, 1000, 1500, 2000, 5000,
10000}. Table 5.4 shows the results of the comparison between our models and the
Dirichlet prior language model (DIR). These results parallel the ones obtained with the
Jelinek-Mercer language model on most collections, even though the difference is less
marked. For the ROB collection with short queries, the Dirichlet prior language model
outperforms in average the log-logistic model (the difference being significant for the
precision at 10 only). On the other collections, with both short and long queries and
on both the MAP and the precision at 10, the log-logistic model outperforms in average
the Dirichlet prior language model, the difference being significant in most cases. The
Dirichlet model has a slight advantage in MAP over the SPL model, but SPL is better for
precision. Overall, the information-based models compares favorably to language models.
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Table 5.3: LGD and SPL versus LM-Jelinek-Mercer after 10 splits; bold indicates signif-
icant difference

MAP ROB-d ROB-t GIR T3-t CL-d CL-t
JM 26.0 20.7 40.7 22.5 49.2 36.5

LGD 27.2 22.5 43.1 25.9 50.0 37.5
P10 ROB-d ROB-t GIR T3-t CL-d CL-t
JM 43.8 35.5 67.5 40.7 33.0 26.2

LGD 46.0 38.9 69.4 52.4 33.6 26.6

MAP ROB-d ROB-t GIR T3-t CL-d CL-t
JM 26.6 23.1 39.2 22.3 47.2 37.2
SPL 26.7 25.2 41.7 26.6 44.1 37.7
P10 ROB-d ROB-t GIR T3-t CL-d CL-t
JM 44.4 39.8 66.0 43.9 34.0 25.6
SPL 47.6 45.3 69.8 56.0 34.0 25.6

0.2 0.4 0.6 0.8

0.
21

5
0.

22
5

0.
23

5
0.

24
5

lambda

M
AP

LGD
LM−JK

0.2 0.4 0.6 0.8

0.
22

0.
24

0.
26

lambda

M
AP

LGD
LM−JK

Figure 5.5: MAP against lambda. ROB-t are plot on the top and ROB-d at the bottom
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Table 5.4: LGD and SPL versus LM-Dirichlet after 10 splits; bold indicates significant
difference

MAP ROB-d ROB-t GIR T3-t CL-t CL-d
DIR 27.1 25.1 41.1 25.6 36.2 48.5
LGD 27.4 25.0 42.1 24.8 36.8 49.7
P10 ROB-d ROB-t GIR T3-t CL-t CLF-d
DIR 45.6 43.3 68.6 54.0 28.4 33.8
LGD 46.2 43.5 69.0 54.3 28.6 34.5

MAP ROB-d ROB-t GIR T3-t CL-t CL-d
DIR 26.7 25.0 40.9 27.1 36.2 50.2
SPL 25.6 24.9 42.1 26.8 36.4 46.9
P10 ROB-d ROB-t GIR T3-t CL-t CL-d
DIR 45.2 43.8 68.2 52.8 27.3 32.8
SPL 46.6 44.7 70.8 55.3 27.1 32.9

Table 5.5: LGD and SPL versus BM25 after 10 splits; bold indicates best performance
significant difference

MAP ROB-d ROB-t GIR T3-t CL-t CL-d
BM25 26.8 22.4 39.8 25.4 34.9 46.8
LGD 28.2 23.5 41.4 26.1 34.8 48.0
P10 ROB-d ROB-t GIR T3-t CL-t CL-d

BM25 45.9 42.6 62.6 50.6 28.5 33.7
LGD 46.5 44.3 66.6 53.8 28.7 34.4

MAP ROB-d ROB-t GIR T3-t CL-t CL-d
BM25 26.9 24.2 38.5 25.3 35.1 47.3
SPL 27.1 25.4 40.5 26.8 34.5 47.0
P10 ROB-d ROB-t GIR T3-t CL-t CL-d

BM25 45.7 41.4 62.8 51.0 28.5 36.1
SPL 47.6 44.1 67.9 57.0 28.0 35.4

5.4.2 Comparison with BM25

We adopt the same methodology to compare information models with BM25. We choose
only to optimize the k1 parameter of BM25 among the following values: {0.3, 0.5, 0.8,
1.0, 1.2, 1.5, 1.8, 2, 2.2, 2.5}. The others parameters b and k3 take their default values
implemented in Lemur (0.75 and 7). Table 5.5 shows the comparison of the log-logistic
and SPL models with Okapi BM25. The log-logistic is either better (4 collections out of
6 for mean average precision, 3 collections out of 6 for P10) or on par with Okapi BM25.
The same thing holds for the SPL model, which is 3 times better and 3 times on par for
the MAP, and 4 times better, 1 time worse and 1 time on a par for the precision at 10
documents. Overall, information models outperform in average Okapi BM25 with such
parameter settings. Note that Okapi model could reach better performance by varying
the parameter b.
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Table 5.6: LGD and SPL versus INL after 10 splits; bold indicates significant difference
MAP ROB-d ROB-t GIR T3-t CL-t CL-d
INL2 27.7 24.8 42.5 27.3 37.5 47.7
LGD 28.5 25.0 43.1 27.3 37.4 48.0
P10 ROB-d ROB-t GIR T3-t CL-t CL-d
INL2 47.7 43.3 67.0 52.4 27.3 33.4
LGD 47.0 43.5 69.4 53.2 27.2 33.3

MAP ROB-d ROB-t GIR T3-t CL-t CL-d
INL 26.9 24.3 40.4 24.8 35.5 49.4
SPL 26.6 24.6 40.7 25.4 34.6 48.1
P10 ROB-d ROB-t GIR T3-t CL-t CL-d
INL 47.6 42.8 63.4 52.5 28.8 33.8
SPL 47.8 44.1 68.0 53.9 28.7 33.6

5.4.3 Comparison with DFR models

To compare our model with DFR ones, we chose, in this latter family, the InL2 model,
based on the Geometric distribution and Laplace law of succession, and the PL2 model
based on the Poisson distribution and Laplace law. These models have been used with
success in different works ([2, 14, 80] for example). All the models considered here make
use of the same set of possible values for c, namely: {0.5, 0.75, 1, 2, 3, 4, 5, 6, 7, 8, 9}. It
is however interesting to note that both PL2 and InL2 make use of discrete distributions
(Geometric and Poisson) over continuous variables (twd) and are thus theoretically flawed.
This is not the case of information models which rely on a continuous distribution.

The results obtained, presented in tables 5.6 and 5.7 are more contrasted than the ones
obtained with language models and Okapi BM25. In particular, for the precision at 10,
LGD and InL2 perform similarly (LGD being significantly better on GIRT whereas InL2
is significantly better on ROB with long queries, the models being on a par in the other
cases). For the MAP, the LGD model outperforms the InL2 model as it is significantly
better on ROB (for both sort and long queries) and GIRT, and on a par on CLEF. SPL
is better than InL2 for precision but on a par for MAP. Moreover, LGD and PL2 are on
a par for MAP, while PL2 is better for P10. Lastly, PL2 is better than SPL for MAP but
not for the precision at 10 documents.

Overall, DFR models and information models yield similar results. This is all the
more so interesting that information models are simpler than DFR ones: They rely on
a single information measure (see equation 5.2) without the re-normalization (Inf2 part)
used in DFR models.

5.4.4 Comparison between LGD and SPL

Table 5.8 compares the log-logistic to the smooth power law model in order to better
understand their difference. The log-logistic model tends to achieve better mean average
precision whereas the smooth power law model achieve better early precision. Having the
same term frequencies normalization, the two model differs mainly by their variation for
the t variable ie h(t). However, the SPL achieve better early precision consistently on
most collections. We can not explain this difference in behavior yet.



108 CHAPTER 5. INFORMATION BASED MODEL

Table 5.7: LGD and SPL versus PL2 after 10 splits; bold indicates significant difference
MAP ROB-d ROB-t GIR T3-t CL-t CL-d
PL2 26.2 24.8 40.6 24.9 36.0 47.2
LGD 27.3 24.7 40.5 24.0 36.2 47.5
P10 ROB-d ROB-t GIR T3-t CL-t CL-d
PL2 46.4 44.1 68.2 55.0 28.7 33.1
LGD 46.6 43.2 66.7 53.9 28.5 33.7

MAP ROB-d ROB-t GIR T3-t CL-t CL-d
PL2 26.3 25.2 42.8 25.8 37.3 45.7
SPL 26.3 25.2 42.7 25.3 37.4 44.1
P10 ROB-d ROB-t GIR T3-t CL-t CL-d
PL2 46.0 45.2 69.3 54.8 26.2 32.7
SPL 47.0 45.2 69.8 55.4 25.9 32.9

Table 5.8: LGD vs SPL after 10 splits; bold indicates significant difference
MAP ROB-d ROB-t GIR T3-t CL-t CL-d
LGD 28.2 25.5 41.0 25.1 32.9 48.1
SPL 27.0 25.6 40.9 25.8 32.3 45.4
P10 ROB-d ROB-t GIR T3-t CL-t CL-d
LGD 46.5 43.4 67.3 54.6 29.0 32.8
SPL 47.5 44.3 68.4 57.1 28.7 31.7

5.5 Extensions of Information Models

The applications and extensions of information models presented here aim at answering
the following questions:

• Can we use other term frequency normalization other than the second DFR nor-
malization ?

• Can we adjust the concavity/convexity of information models ?

5.5.1 Term Frequency Normalization

This section aims at assessing the dependency of information models to the second DFR
term frequency normalization . We want to test if others term frequency normalizations
achieve reasonable performances. These performances can be compared to the standard
log-logistic model (LGD) in table 5.9.

Pivoted Length Normalization

A naive normalization of term frequencies amounts to dividing by document length. The
corresponding pivoted length normalization [77] is then given by

twd = xwd
1

(1− c) + c ld
avgl

Table 5.10 shows the MAP for logistic model and smooth power law model with
pivoted length normalization. Except on the TREC-3 collection, this normalization does
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Table 5.9: Mean Average Precision for Log-Logistic Model with the second DFR normal-
ization , ie the LGD model

c ROB-d ROB-t GIRT CLEF-d CLEF-t T3-t
0.25 27.58 23.64 41.06 49.48 35.87 23.95
0.5 27.64 24.15 42.07 49.36 36.19 24.91
0.8 27.41 24.38 42.2 48.74 36.13 25.39
1 27.22 24.46 42.26 48.44 36.46 25.53
2 26.28 24.76 42.17 46.15 36.84 25.84
3 25.58 24.87 42.0 45.22 36.52 25.82
5 24.71 24.83 41.72 44.35 35.06 25.5
8 23.63 24.73 41.37 42.67 34.57 25.13
10 23.16 24.66 41.2 42.19 34.42 24.91

not improve significantly the results. For the SPL model, the pivoted length normalization
achieve a good precision at 10 but does not bring significant improvements. Cummins et
al. work [26] actually suggest we could correct the pivoted length normalization with

twd = xwd
1

(1− c) + c
√

ld
avgl

We will call this normalization SQRT-PLN as, square root PLN. Table 5.11 shows the
results with a corrected pivoted length normalization. This normalization is only inter-
esting for short queries, as the model performances are almost constant. However, such a
normalization severely degrades the performance with long-queries. Another normaliza-
tion of the pivoted length schema can be obtained by smoothing the variation thanks to
the logarithm: We will this normalization LOGPLN. Table 5.12 shows the results for a
log-logistic model with LOGPLN. Performances for short queries are relatively stable.

twd = xwd log(1 +
1

(1− c) + c ld
avgl

)

.
Tables 5.9, 5.10,5.11, 5.12, 5.13 show the MAP for a log-logistic model with different

term frequency normalizations. The pivoted length normalization gives similar results to
the LGD model for short queries but performs worse for long queries. The SQRTPLN
normalization perform poorly compared to the DFR normalization and the LOGPLN
behaves as the pivoted len normalization. Overall, these three normalizations do not
bring significant advantages over the LGD model.

Another Normalization

We propose to use this term frequency normalization noted TF3:

twd = xwd
c

c+ ld
avgl

(5.11)

We choose c in {0.1, 0.25, 0.5, 0.75, 1, 1.5, 3, 5, 7, 9}. We change values of c because this
normalization may needs values closer to 1. Tables 5.13 and 5.14 showa new the results of
this model. This term frequency normalization seems to be beneficial for the log-logistic
model. However, it severely degrades the performance with a smooth power law model.

This development showed that others term frequency normalization could be used
in information models even though theses new normalizations do not always provide
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Table 5.10: Mean Average Precision for Log-Logistic Model with Pivoted Length Nor-
malization

c ROB-d ROB-t GIRT CLEF-d CLEF-t T3-t
0.1 21.3 23.5 41.3 37.5 32.7 23.7
0.2 23.3 24.3 41.7 40.6 33.3 25.2
0.3 24.6 24.7 42.0 42.8 34.6 25.9
0.4 25.3 24.9 42.2 45.5 35.0 26.2
0.5 25.9 24.9 42.3 46.4 36.5 26.3
0.6 26.4 24.8 42.2 46.5 36.7 26.1
0.7 26.8 24.5 42.2 48.0 36.1 25.6
0.8 26.9 24.1 41.9 48.4 36.1 25.0
0.9 26.9 23.7 41.4 48.6 35.7 24.2

Best LGD 27.6 24.9 42.2 49.4 36.8 25.8

Table 5.11: Log-logistic Model with SQRTPLN normalization
c ROB-d ROB-t GIRT CLEF-d CLEF-t T3-t

0.1 19.73 24.21 39.61 39.37 34.67 22.39
0.2 20.68 24.3 40.23 40.11 34.84 22.63
0.3 21.16 24.35 40.53 40.38 34.96 22.75
0.4 21.37 24.38 40.68 40.72 34.97 22.82
0.5 21.43 24.39 40.74 40.77 34.98 22.84
0.6 21.37 24.38 40.68 40.72 34.97 22.82
0.7 21.16 24.35 40.53 40.38 34.96 22.75
0.8 20.68 24.3 40.23 40.11 34.84 22.63
0.9 19.73 24.21 39.61 39.37 34.67 22.39

Table 5.12: Log-logistic Model with LOGPLN normalization
c ROB-d ROB-t GIRT CLEF-d CLEF-t T3-t

0.1 20.9 23.24 41.52 37.15 32.59 22.98
0.2 22.81 24.04 41.96 39.34 32.98 24.79
0.3 24.02 24.5 42.15 41.95 33.5 25.58
0.4 24.96 24.81 42.37 43.09 34.63 26.02
0.5 25.6 24.98 42.5 44.61 34.86 26.38
0.6 26.03 25.02 42.61 46.17 35.33 26.51
0.7 26.42 25.01 42.56 46.7 36.52 26.54
0.8 26.76 24.91 42.59 48.32 36.7 26.33
0.9 27.05 24.71 42.48 47.95 36.85 26.0

spl
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Table 5.13: Mean Average Precision for a Log-Logistic Model with TF3 normalization
c ROB-d ROB-t GIRT CLEF-d CLEF-t T3-t

0.1 26.9 23.0 39.2 47.8 35.5 23.0
0.25 27.9 24.1 41.5 49.8 36.0 25.
0.5 27.8 24.7 42.5 49.4 36.7 26.2
0.75 27.3 25.0 42.6 48.8 36.7 26.6

1 26.8 25.0 42.7 47.2 36.5 26.7
1.5 26.0 25.0 42.6 45.9 35.2 26.6
3 24.4 24.6 42.2 42.3 33.7 25.8
5 23.0 24.2 41.7 39.7 33.0 25.0

Best LGD 27.6 24.9 42.2 49.4 36.8 25.8

Table 5.14: LGD vs LGD-TF3 after 10 splits: bold indicates statistical significance
MAP ROB-d ROB-t GIRT CLEF-d CLEF-t TREC-3

LGD-TF3 28.1 25.7 43.8 49.4 34.0 28.9
LGD 27.9 25.5 43.2 49.9 34.3 28.1

significant improvements. In particular , the TF3 normalization is the most interesting
with a Log-Logistic model . Finally, it shows that term frequency normalization is not
totally independent from the distribution modeling term frequencies in order to achieve
optimal performance.

5.5.2 Q-Logarithm

The purpose of this section is to add a parameter adjusting the concavity/convexity
a newof information models . Such a parameter enables to play with the analytical
properties of a weighting function. This parameter comes from a generalization of the
logarithm function: the q-deformed logarithm [62]. We change the notations here for
η-logarithm to avoid confusion with the query notation. The η-logarithm is defined by
∀t > 0:

lnη(t) =
1

1− η
(t1−η − 1) (5.12)

The interesting properties of this curved logarithm are:

• lnη(1) = 0

• ∂lnη(t)
∂t = 1

tη = t−η

• η = 1 leads to the familiar log function.

Figure 5.6 shows the graph of different η-logarithm.

We can define a generalized information model of the form:

RSV (q, d) =
∑
w∈q∩d

−qw lnη P (Tw > twd|λw) (5.13)

This model, noted QLN, has then two parameters:

• c which normalizes the term frequencies (twd = xwd log(1 + cavglld
))
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Figure 5.6: logη for η ∈ {0.9, 1, 1.1, 1.2}

• η which sets the curvature of the logarithm

The benefit of such model is the ability to play with the curvature of the model in
order to assess the role of concavity/convexity. Furthermore, there is no intrinsic reason
for the log function to have the best analytical properties in an IR setting. Let’s analyze
this model with analytical constraints. The weighting function of this model with a
log-logistic distribution is given by:

h(t, z, c, η) = − 1
1− η

((
λ

λ+ twd
)1−η − 1)

∂h

∂t
= −1− η

1− η
(

λ

λ+ twd
)−η(− 1

(λ+ twd)2
)

∂h

∂t
=

(λ+ twd)η−2

λη

∂2h

∂t2
= (η − 2)

(λ+ twd)η−3

λη

Within this family of IR models, it is possible to get concave and convex models. The
concavity condition implies that η must be inferior than 2. The case where η = 2 is the
case where the model is linear:

h =
λ+ twd

r
− 1

Whenever η < 1, the weight function h is bounded:

h =
1

1− η
(1− (

λ

λ+ twd
)1−η) ≤ 1

1− η

A first series of experiments was carried out to assess these new models. It turns out
that concave models do not always get better performance than convex models. Typically
for values of η < 1 or below 0.5, the weighting function saturates too quickly. We may
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suppose that the IDF effect is penalized by such functions. Experiments also showed
that the best values are obtained with η = 1.1 or η = 1.2 . We compared this model to
the log-logistic one in table 5.15. 10 random splits were used in order to optimize (c,η)
η ∈ {0.8, 0.9, 0.95, 1, 1.1, 1.2, 1.5} for both models. Table 5.16 compares the performance
to Okapi trained with two varying parameters (k1 and b), with the following settings:

QLN c ∈ {0.5, 2, 4, 7, 9} and η ∈ {1, 1.1, 1.2}

BM25 k1 ∈ {0.8, 1.0, 1.2, 1.5} and b ∈ {0.25, 0.5, 0.75, 0.85}

Table 5.15: Q-Log versus Log-Logistic after 10 splits: bold indicates statistical significance
MAP ROB-d ROB-t GIRT CLEF-d CLEF-t TREC-3
QLN 28.8 25.0 41.7 49.6 34.9 27.0
LGD 28.2 24.7 41.0 50.3 35.6 26.2
P10 ROB-d ROB-t GIRT CLEF-d CLEF-t TREC-3
QLN 46.2 43.5 67.9 35.6 27.1 53.9
LGD 45.8 43.2 66.2 36.0 27.6 52.4

Table 5.16: Q-Log versus BM25 after 10 splits: bold indicates statistical significance
MAP ROB-d ROB-t GIRT CLEF-d CLEF-t TREC-3
BM25 26.9 23.8 40.8 51.6 33.4 27.5
QLN 28.3 24.7 42.5 50.8 33.0 26.9

So, changing the curvature of the models allows one to obtain significant improvements
over the log-logistic model and BM25. It shows that analytical properties of a model are
very significant features.

5.6 Conclusion

We have presented the family of information models for adhoc IR. These models draw
their inspiration from a long standing idea in information retrieval, namely the one that a
word in a document may not behave statistically as expected on the collection. Shannon
information can be used to capture whenever a word deviates from its average behavior,
and we showed how to design IR models based on this information.

Information models are a simplification of DFR models in the light of retrieval con-
straints and burstiness The choice of the distribution to be used in such models was
crucial for obtaining valid retrieval models: we showed how burstiness relates to heuristic
retrieval constraints, and how it can be captured through power-law distributions.

We have defined two effective IR model within this family: the Log-Logistic IR model
and the Smoothed Power Law IR model. The Log-Logistic model can be related to
the Jelinek-Mercer language model whereas the Smoothed Power law can be seen as an
approximation of the INL2 DFR model. These information-based models satisfy the main
retrieval conditions as they rely on bursty distributions and use a valid term frequency
normalization. The experiments we have conducted on different collections illustrate the
good behavior of these models. Overall, our models yield similar performances to state-of
the art models. Moreover, we have discussed the impact of term frequency normalization
on these models and found that the TF3 normalization was the best for the log-logistic
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model. We also show that the use of q−logarithm to measure information was beneficial
to IR tasks.

One could ponder on the benefit of modeling burstiness if no extra-gain is obtained,
even if the strength of information models is to yield at the same time a valid model
of word frequencies and a valid IR model. These comparable performances could be
explained by the fact that information-based model and state-of-the-art models describe
very similar weighting functions albeit their different underlying hypothesis. This is
actually what the axiomatic theory tells about retrieval models: they all satisfy the
Term Frequency, Concavity, IDF and Document Length conditions and this is why many
retrieval models can be cast in a single theoretical framework.

The axiomatic theory provides valuable insight into IR models but it is not suffi-
cient enough to understand the subtility and precise behavior of certain IR models. For
example, the experiments comparing the log-logistic to the smooth power law and the
extension of information model with the η logarithm suggest that the performance of a
weighting function is related to its shape and analytical properties. Except the concav-
ity constraint, there is no constraint or analytical properties yet, able to explain these
differences of performance. It is tempting to say that analytical properties of a function
influence the capacity of a retrieval model. But the capacity of a retrieval model is not
formally defined on the contrary to classifiers in machine learning. Similarly, analytical
properties are a vague concept. Is it the behavior of the second or third derivatives wrt
to t which impacts the early precision ? These are still open questions that remain to be
investigated for a better understanding of retrieval constraints and weighting functions.

Nevertheless, modeling burstiness will turn out to be beneficial with pseudo relevance
feedback. The information models significantly outperform all the other models with
pseudo relevance feedback. We will discuss pseudo relevance feedback and explain this
good-behavior in the next chapter.
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6.1 Introduction

Pseudo Relevance Feedback (PRF) aims at automatically expanding the initial query with
terms found in the top retrieved documents and we first show how to extend information-
based models to suggest new query terms.

As we will see later in this chapter, our preliminary analysis shows that the extension
of information-model to PRF outperfom other models and the initial motivation of this
chapter was to better understand the good performance of information models in pseudo
relevance feedback. However, we would like to better understand the reasons of these
improvements and this is why we conducted an empirical analysis of PRF models.

We then link our empirical observations to the properties of PRF models so as to
understand from a theoretical standpoint the performance of PRF models. In a nutshell,
we extend the Axiomatic Theory for PRF. In particular, we formulate heuristic constraints
for PRF similar to the TF, Concave, Document Length and IDF effects reviewed in section
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4 with an additional constraints refer as DF effect, which is experimentally validated.
The theoretical study we conduct reveals that several standard PRF models either fail
to enforce the IDF effect or the DF effect whereas the log-logistic and the smoothed
power law models satisfy all the PRF properties. Our theoretical analysis thus provide
an explanation on why the information-based models perform better than other models
in PRF settings.

The remainder of the chapter is organized as follows. First, we give a short introduc-
tion to PRF in section 6.2. We show in Section 6.3 how to extend information-based model
for PRF and give in Section 6.4 some basic statistics on three PRF models, which reveal
global trends of PRF models. We then introduce in section 6.5 constraints PRF models
should satisfy, prior to reviewing standard PRF models according to their behavior wrt
these constraints in section 6.6.

6.2 Pseudo Relevance Feedback

The goal of PRF models is to expand queries to improve performances so as to improve
the user formulation of its information need. PRF methods can be seen as a semantic
enrichment process and usually consists in 4 steps:

1. Retain the top retrieved n document after an initial search.

2. Select the ’best’ tc word from this set of documents

3. Weight the words and add them to the new query

4. Do a search with the new query

The notations used for PRF are given in table 6.1. We note n the number of pseudo
relevant document used, F the feedback set and tc the number of term for pseudo relevance
feedback. An important change of notations concerns TF and DF which are in this
chapter related to the pseudo feedback set F .

Notation Description
n # of docs retained for PRF
F Set of documents retained for PRF:

F = (d1, . . . , dn)
tc TermCount: # of terms in F added to query

TF (w) =
∑
d∈F xwd

DF (w) =
∑
d∈F I(xwd > 0)

Table 6.1: PRF Notations

We want to give here an example of PRF model before proceeding to further con-
siderations. We briefly describe one popular PRF model within the language modeling
approach to IR. This model is known as Simple Mixture Model, or mixture model in short.

Following the language model principle, Zhai and Lafferty [84] proposed a generative
model for the set F. All documents in the feedback set are supposed to be i.i.d and
each document is generated from a mixture of a feedback model and the corpus language
model:

F ∼ Multinomial((1− λ)θF + λP (w|C))

P (F|θF , β, λ) =
V∏
w=1

((1− λ)P (w|θF ) + λP (w|C))TF (w) (6.1)
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where θFw = P (wθF ), λ is a “background” parameter set to some constant and TF (w)
is given in table 6.1 and corresponds to the total number of occurences of word w in the
set F . The idea underlying this model is that interesting words for the query would
be captured by the multinomial parameter P (w|θF ) which needs to be learned. θF is
learned by optimizing the data log-likelihood with an Expectation-Maximization (EM)
algorithm, leading to the following E and M steps at iteration (i):

E − step E(w)(i) = (1−λ)P (i(w|θF )
(1−λ)P (i)(w|θF )+λP (i)(w|C)

M − step P (i+1)(w|θF ) =
P
d∈F xwd)E(w)(i)P

w

P
d∈F xwdE(w)(i)

Once θF has been estimated, the best tc words are retain and the new query is obtained
by interpolating the (original) query language model with the feedback query model θF :

θq′ = αθq + (1− α)θF (6.2)

Note that this interpolation is controlled by the parameter α. PRF models have at least
3 parameters: n the number of top-retrieved document, tc the number of expansion terms
and a parameter to control the interpolation between the first and second query.

We now show an example of words chosen by this mixture model. We consider the
query 303 of the robust collection defined as ’Hubble Telescope Achievements’. The
preprocessed query is actually ’achiev telescop hubbl’ after stemming. If we choose to do
PRF with 10 documents and expand the query with 10 words, the mixture model find
that the most ’relevant’ words are:

test space nasa scientist mirror flaw optic shuttl telescop hubbl

We will review later several PRF models in section 6.6 when we will examine them
with axiomatic constraints since the goal of the above development is to briefly introduce
important concepts in PRF.

6.3 PRF with Information Models

After having introduced the main ideas of PRF, we want to show to perform PRF with
information models The key idea of information models is to measure the significance of
a word thanks to its informative content. There is natural and simple extension of this
principle to PRF where we measure the importance of a term in a set of documents with
the mean information of a word in this set. The average information this set brings on a
given term w can directly be computed as:

InfoF(w) =
1
n

∑
d∈F

− logP (Tw > twd|λw) (6.3)

where the mean is taken over all the documents in F. The original query is then modified,
following standard approaches to PRF, to take into account the words appearing in the
initial query as:

q′w =
qw

maxw qw
+ β

InfoF(w)
maxw InfoF(w)

(6.4)

where β is a parameter controlling the modification brought by F to the original query
and q′w denotes the updated weight of w in the query
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6.3.1 Evaluation

There are many parameters for pseudo-relevance feedback algorithms: the number of
document to consider n, the number of terms to add the query tc and the weight to give
to those new query terms (parameter β in equation 6.4). Optimizing all these parameters
and smoothing ones at the same time would be very costly. Many studies choose a fixed
parameter strategy either to compare PRF models or when submitting runs to evaluation
campaigns.

For each collection1, we choose the optimal smoothing parameters for each model
(c,µ,k1) on all queries. The results obtained in this case are given in table 6.2, where
LM+MIX corresponds here to the Dirichlet language model. They show, for example,
that on the ROBUST collection there is no difference between the baseline systems we
will use for pseudo-relevance feedback in terms of MAP. Overall, the precision at 10 is
very similar for the different systems, so that there is no bias, with the setting chosen,
towards a particular system.

We compare here the results obtained with the information models to two state-of-the-
art pseudo-relevance feedback models: Bo2, associated with DFR models ([1]) (cf section
6.6.3) , and the mixture model associated with language models ([84]) (described aboved
and in section 6.6.1). The experimental schema is the following:

1. Divide each collection in 10 splits training/test

2. Learn best interpolation weight (β, α) to optimize MAP on training set

3. Measure MAP on the 10 splits and test difference with a t-test

4. Change |F| = n and termCount tc to add to the queries

5. Go back to 2

For each collection, we average the results obtained over 10 random splits, the variation
of |F | and tc being made on each split so as to be able to compare the results of the
different settings.

For each setting, we optimize the weight to give to new terms: β (within {0.1, 0.25,
0.5, 0.75, 1, 1.5, 2}) in information and Bo2 models, α ( within {0.1, 0.2, . . . , 0.9}) in the
mixture-model for feedback in language models. In this latter case, we set the feedback
mixture noise to its default value (0.5). As before, we used Lemur to carry our experiments
and optimize here only the mean average precision.

Table 6.3 displays the results for the different models (as before, a two-sided t-test at
the 0.05 level is used to assess whether the difference is statistically significant, which is
indicated by a ∗). As one can note, the information models significantly outperform the
pseudo-relevance feedback versions of both language models and DFR models. The SPL
model is the best one for n = 5 and tc = 5, while the LGD model yields the best per-
formance in most other cases. Although DFR and information models perform similarly
when no feedback is used, their pseudo-relevance feedback versions do present differences,
information models outperforming significantly both language and DFR models in this
latter case.

We also performed a 5-fold cross-validation to learn all the feedback parameters at
the same time : the goal of these experiments is to answer the critics of a fixed parameter
strategy to compare PRF models, where one could argue that PRF models need different
parameter setting. We choose the parameters that provide the best performance from

1the same collection used to validate information models in the previous chapter
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Table 6.2: Performances of baseline setting for PRF (n = 0, tc = 0): bold indicates
significant difference

MAP ROB-t GIRT T3-t CLEF-t
LM+MIX 25.4 41.1 28.3 37.0

LGD 25.4 42.4 27.1 37.5
P10 ROB-t GIRT T3-t CLEF-t

LM+MIX 44.6 68.3 56.3 27.5
LGD 44.1 68.7 55.3 27.2

Table 6.3: Mean average precision of PRF experiments; bold indicates best performance,
∗ significant difference over LM and Bo2 models

Model n tc ROB-t GIR T3-t CL-t
LM+MIX 5 5 27.5 44.4 30.7 36.6
INL+Bo2 5 5 26.5 42.0 30.6 37.6

LGD 5 5 28.3∗ 44.3 32.9∗ 37.6
SPL 5 5 28.9∗ 45.6∗ 32.9∗ 39.0∗

LM+MIX 5 10 28.3 45.7∗ 33.6 37.4
INL+Bo2 5 10 27.5 42.7 32.6 37.5

LGD 5 10 29.4∗ 44.9 35.0∗ 40.2∗

SPL 5 10 29.6∗ 47.0∗ 34.6∗ 39.5∗

LM+MIX 10 10 28.4 45.5 31.8 37.6
INL+Bo2 10 10 27.2 43.0 32.3 37.4

LGD 10 10 30.0∗ 46.8∗ 35.5∗ 38.9
SPL 10 10 30.0∗ 48.9∗ 33.8∗ 39.1∗

LM+MIX 10 20 29.0 46.2 33.7 38.2
INL+Bo2 10 20 27.7 43.5 33.8 37.7

LGD 10 20 30.3∗ 47.6∗ 37.4∗ 38.6
SPL 10 20 29.9∗ 50.2∗ 34.3 39.7∗

LM+MIX 20 20 28.6 47.9 32.9 37.8
INL+Bo2 20 20 27.4 44.3 33.5 36.8

LGD 20 20 29.5∗ 48.9∗ 37.2∗ 41.0∗

SPL 20 20 28.8 50.3∗ 33.9 39.0∗

this set of ranges:

n ∈ {10, 20}
tc ∈ {10, 20, 50, 75, 100}
α ∈ {0.1, ..., 0.9}
λ ∈ {0.1, ..., 0.9}
β ∈ {0.01, 0.1, 0.25, 0.5, 0.8, 1, 1.2}

where α and β are interpolation parameter with the new query (cf section 6.6) and
λ is an additional noise parameter for the mixture model. It turns out that the log-
logistic model outperforms the mixture model with an average MAP of 29.6 againt 28.8
on ROBUST and 28.8 against 27.9 on TREC 1&2. Even if these differences in performance
may not be statistically significant, the difference in the number of terms (tc) used is in
fact significant. The Log-logistic model need only 20 news terms whereas the mixture
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model achieved its best performance with 100 new terms. This fact leads to us to study
the influence of the number of added terms c for different PRF models.

So, we decide to compare several PRF models and their performance for different
values of tc:

• the mixture model [84]

• the divergence minimization model [84]

• our log-logistic feedback model

• the recently proposed Geometric Relevance Model (GRM) [75]

These models are reviewed later in section 6.6, and their exact formulation is not
necessary here. For all models, the different parameter values (including the interpolation
weight) were optimized on all queries.

Figure 6.1 compares the best performance of these 4 different models when the num-
ber of feedback terms, tc, varies. The plots clearly indicate that the log-logistic model
outperforms the other models and that it does so with fewer terms.

To sum up, we have shown that the extension of information models for PRF yield
better performances. We have compared our models to several PRF baselines and through
different experiment methodologies such as full cross-validation or a fixed parameter strat-
egy. In both cases, our models seem to be more robust and are able to deliver significant
improvements.

Having observed that the information-based models outperforms state of the art model
with pseudo relevance feedack, we now want to better understand the reasons of these
improvements.

We could argue that these improvements are due to the bursty nature of the prob-
ability distributions we used. In fact, state-of-the-art PRF models rely on non-bursty
distributions. This is a theoretical argument and we should be able to explain empiri-
cally the reason of these improvements. This is why we will analyze PRF models results
in order to better understand the different aspects involved in PRF and to answer the
following questions:

1. Why does the log-logistic model perform well with few terms ?

2. Why do other models fail in the same cases ?

6.4 PRF Result Analysis

In order to better understand the behavior of PRF models, we raise the following questions
that will guide the experimental analysis of PRF results:

1. Do PRF models agree on the words to select ?

2. What is the profile of words extracted by a given PRF model ?

To answer these questions, we analyze the terms chosen by the previously mentioned
models when few terms are used, through two settings:

• setting A, with n = 10 and tc = 10

• setting B, with n = 20 and tc = 20
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Figure 6.1: MAP on all queries with tc ∈ {10, 20, 50, 75, 100, 150, 200} with best parame-
ters, ROBUST n = 10 top, TREC-1&2 n = 20 bottom
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Table 6.4: Statistics of the size of the Intersection
Collection n tc Mean Median Std

robust 10 10 5.58 6.0 1.60
trec-12 10 10 5.29 5.0 1.74
robust 20 20 12 12 3.05
trec-12 20 20 11.8 13 3.14

As the log-logistic feedback model outperform the other feedback models with fewer
feedback terms, we focus here on settings A and B, which will allow us to reveal several
interesting properties of the different feedback models.

In order to have an unbiased comparison, we use the same IR engine for the retrieval
step. Thus, all PRF algorithms are computed on the same set of documents. Once new
queries are constructed, we use either the Dirichlet language model (for the new queries
obtained with language model methods) or the log-logistic model (for the new queries
obtained with the mean log-logistic information model) for the second retrieval step, thus
allowing one to compare the performance obtained by different methods on the same
initial set of PRF documents.

We first focus on a direct comparison between the mixture model and the mean log-
logistic information model, by comparing the terms common to both feedback methods,
i.e. the terms in the intersection of the two selected sets. Table 6.4 displays the mean,
median and standard deviation of the size of the intersection, over all queries, for the
collections considered. As one can note, the two methods agree on a little more than half
of the terms (ratio mean by tc), showing that the two models select different terms.

We want to understand which ’kind’ of words each PRF model choose. For example,
do PRF models choose common words or rare words ? This is why we want to find the
typical profile of words that a method tends to choose. To have a closer look at the
terms selected by both methods, we first compute, for each query, the total frequency of
a word in the feedback set (i.e. TF (w)) and the document frequency of this word in the
feedback set (i.e. DF (w)). Then, for each query we can compute the mean frequency of
the selected terms in the feedback set as well as its mean document frequency, i.e. q(tf)
and q(df):

q(tf) =
tc∑
i=1

tf(wi)
tc

and q(df) =
tc∑
i=1

df(wi)
tc

We then compute the mean of the quantities over all queries.

µ(tf) =
∑
q

q(tf)
|Q|

and µ(df) =
∑
q

q(df)
|Q|

An average idf can be computed in exactly the same way. Table 6.5 displays the above
statistics for the three feedback methods: mixture model (MIX), mean log-logistic(LL)
information model and divergence minimization model (DIV). Regarding the mixture and
log-logistic models, on all collections, the mixture model chooses in average words that
have a higher TF, and a smaller DF. The mixture model also chooses words that are more
frequent in the collection since the mean IDF values are smaller. On the other hand, the
statistics of the divergence model and the geometric relevance models shows that these
models extracts very common terms, with low IDF and high DF, which, as we will see
later, is one of the main drawback of these models.

In addition to the term statistics, the performance of each PRF algorithm can also be
assessed with different settings.
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Table 6.5: Statistics of terms extracted by. Suffix A means n = 10 and tc = 10 while
suffix B means n = 20 and tc = 20

Settings Statistics MIX LL DIV GRM

robust-A
µ(tf) 62.9 46.7 53.9 52.33
µ(df) 6.4 7.21 8.55 8.4
µ(idf) 4.33 5.095 2.20 2.40

trec-1&2-A
µ(tf) 114 .0 79.12 92.6 92.27
µ(df) 7.1 7.8 8.77 8.72
µ(idf) 3.84 4.82 2.51 2.56

robust-B
µ(tf) 68.6 59.9 65.27 64.57
µ(df) 9.9 11.9 14.7 14.38
µ(idf) 4.36 4.37 1.66 1.93

trec-1&2-B
µ(tf) 137.8 100.0 114.9 114.8
µ(df) 12.0 13.43 15.17 15.23
µ(idf) 3.82 4.29 2.10 2.25

raw We first examine the performance of the feedback terms without mixing them with
the original queries, a setting we refer to as raw.

interse For each query, we keep only (new) terms that belong to the intersection of the
mixture (or divergence) and log-logistic models, but keep their weight predicted by
each feedback method. We call this setting interse.

diff A third setting, diff, consists in keeping terms which do not belong to the intersection.

interpo The last setting, interpo for interpolation, measures the performance when new
terms are mixed with the original query. This corresponds to the standard setting
of pseudo-relevance feedback

Table 6.6 displays the results obtained. As one can note, the log-logistic model per-
forms better than the mixture model. What our analysis reveals is that it does so because
it chooses better feedback terms, as shown by the performance of the diff setting. For the
terms in the intersection, method interse, the weights assigned by the log-logistic model
seem more appropriate than the weights assigned by the other feedback models.

Summary of Analysis

We have analyzed the words selected by several PRF models. This analysis has demon-
strated that the log-logistic model agrees with the mixture model on approximately 50%
of the words to choose. Furthermore, we have shown that the words only selected by the
log-logistic model tends to perform better than the words only selected by the mixture
model. The experiments have also demonstrated that:

1. The mixture, GRM and divergence models choose terms with a higher TF

2. GRM and the Divergence model select terms with a smaller IDF

Hence, the log-logistic model perform better because it chooses better words and these
words tends to have a lower TF and bigger DF in a feedback set

6.5 An Axiomatic Approach to PRF

Our previous experiments provide empirical explanations of the behavior of PRF models.
However, it would be interesting to link these observations to the properties of PRF models
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Table 6.6: Performance of different methods. Suffix A means n = 10 and tc = 10 while
suffix B means n = 20 and tc = 20

Settings FB Model MIX LL DIV

robust-A

raw 23.8 26.9 24.3
interse 24.6 25.7 24.1

diff 3 11.0 0.9
interpo 28.0 29.2 26.3

trec-1&2-A

raw 23.6 25.7 24.1
interse 24.2 24.5 23.4

diff 3 9 0.9
interpo 26.3 28.4 25.4

robust-B

raw 23.7 25.7 22.8
interse 25.3 26.2 22.6

diff 3.0 10.0 0.15
interpo 28.2 28.5 25.9

trec-1&2-B

raw 25.1 27.0 24.9
interse 26.1 26.5 24.7

diff 2.1 11.2 0.5
interpo 27.3 29.4 25.7

so as to understand from a theoretical standpoint the performance of PRF models.
Furthermore, several recently proposed PRF models seem to outperform the mixture

model as well, as models based on bagging, models based on a mixture of Dirichlet
compound multinomial distributions [24, 82]. The performance of models nevertheless
varies from one study to another, as different collections and different ways of tuning
model parameters are often used. It is thus very diffcult to draw conclusions on the
characteristics of models. What is lacking is a theoretical framework which would allow
one to directly compare PRF models, independently of any collection. This is the goal
we pursue in this section, where we want to build an axiomatic theory for PRF models.

Axiomatic methods were pioneered by Fang et al [33] and followed by many works
including [34, 26, 17] and we gave an description of these methods in chapter 4. In
a nutshell, axiomatic methods describe IR functions by constraints they should satisfy.
We build on the main conditions an IR function should satisty (cf chapter 4 ): the TF,
Concave, Doc Length and IDF effect.

In the context of PRF, the first two constraints relate to the fact that terms frequent
in the feedback set are more likely to be effective for feedback, but that the difference
in frequencies should be less important in high frequency ranges. The IDF effect is also
relevant in feedback, as one generally avoids selecting terms with a low IDF, as such terms
are scored poorly by IR system

Let FW (w; F,Pw) denote the feedback weight for term w, with Pw a set of parameters
dependent on w2. We use as shorthand FW (w) but it important to keep in mind that this
function depends on a feedback set and some parameters. We can formalize the above
considerations as follows:

[TF effect] FW increases the normalized term frequency twd; in analytical terms, this
constraint translates as:

∂FW (w)
∂twd

> 0

2The definition of Pw depends on the PRF model considered. It minimally contains TF (w), but other
elements, as IDF(w), are also usually present. We use here this notation for convenience.
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[Concavity effect] The above increase should be less marked in high frequency ranges,
which can be formulated as:

∀d ∈ F,
∂2FW (w)
∂t2wd

< 0

[IDF effect] Let wa and wb two words such that idf(wb) > idf(wa) and ∀d ∈ F, t(wa, d) =
t(wb, d).Then

FW (wb) > FW (wa).

[Document length effect] The number of occurrences of feedback terms should be
normalized by the length of docs they appear in.

∂FW (w)
∂ld

< 0

The form of the IDF effect retained here is dictated by the particular setting we place
ourselves in, namely the one of Pseudo-Relevance Feedback. In this setting, we want
to study the increase of the feedback weight wrt IDF, all other things being equal. This
forces the introduction of the condition on the distribution of frequencies over the feedback
documents.

We now introduce a PRF property which is based on the results reported in the
previous section. Indeed, as we have seen, the best PRF results were obtained with the
log-logistic models which favor feedback terms with a high document frequency (DF (w))
in the feedback set, which suggests that, all things being equal, terms with a higher DF
should receive a higher score:

[DF effect] Let ε > 0, and wa and wb two words such that:
(i) IDF(a) = IDF(b)
(ii) The distribution of the frequencies of wa and wb in the feedback set are given
by:

T (wa) = (t1, t2, ..., tj , 0, ..., 0)
T (wb) = (t1, t2, ..., tj − ε, ε, 0, ..., 0)

with ∀i, ti > 0 and tj − ε > 0 (hence, TF (wa) = TF (wb) and DF (wb) = DF (wa) +
1).

Then: FW (wa; F,Pwa) < FW (wb; F,Pwb)

In other words, FW is locally increasing with DF (w). The following theorem is
useful to establish whether a PRF model, which can be decomposed in the documents of
F, enforces the DF effect:

Theorem 6. Suppose FW can be written as:

FW (w; F,Pw) =
n∑
d=1

f(twd; P′w) (6.5)

with P′w = Pw \ tw,d and f(0; P′w) ≥ 0. Then:

1. If the function f is strictly concave, then FW enforces the DF effect.

2. If the function f is strictly convex, then FW does not enforce the DF effect.
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Proof If f is strictly concave then, the function f is subadditive (f(a+b) < f(a)+f(b)).
Let a and b be two words such as in the definition of the DF effect.

FW (a) = FW (t1, ..., tj︸ ︷︷ ︸
DF

, 0, ..., 0︸ ︷︷ ︸
n−DF

) (6.6)

FW (b)− FW (a) = f(tj − ε) + f(ε)− f(tj) > 0 (6.7)

which hold as the function f is subadditive. If f is convex, then f is superadditive as
f(0) = 0, which shows that FW (b)− FW (a) < 0. �

As one can note, as the sum of concave functions is concave, feedback functions of the
form given by equation 6.5 enforce both the concavity and the DF effects. However, as
we will see, there exist models which enforce the DF effect but not the concavity effect.

Prior to assess the validity of the DF constraint, we want to mention a last constraint,
which is introduced in [51] and which we will refer to as Document Score constraint. This
constraint, implemented in relevance models [48] and in the Rocchio algorithm [39], can
be formulated as follows:

PRF Constraint 1. [Document Score - DS]
When FW (w; F,Pw) explicitly depends on the documents of F in which w occurs, then
documents with a higher score (defined by RSV (q, d)) should be given more weight.

The importance of this constraint is however not fully clear, and the models which
explicitly integrate it do not count among the best PRF models. For example, in the study
conducted in [51], a simple mixture model outperforms models integrating document
scores. Furthermore, our modifications of the log-logistic model to take this constraint
into account did not lead to any significant improvement, so that we are not sure of the
status one should give to this constraint. As we will discuss in section 6.7, the strategies
consisting of resampling feedback documents, and proposed for example in [24] and [49],
may be effective and model-independent ways of integrating this constraint.

6.5.1 Validation of the DF Constraint

One way to assess the validity of the DF constraint is to determine whether DF values are
related with MAP scores in relevance feedback settings. Indeed, the DF constraint states
that, all other parameters being equal, terms with higher DF should be preferred. Thus, in
average, one should observe that terms with high DF scores yield larger increase in MAP
values. To see whether this is the case, we computed the impact on the MAP of different
terms selected from true relevance judgments, and plotted this impact against both TF
and DF values. Our relying on true relevant documents and not documents obtained from
pseudo-relevance feedback is based on (a) the fact that pseudo-relevance feedback aims at
approximating relevance feedback, an (b) the fact that it is more difficult to observe clear
trends in pseudo-relevance sets where the precision (e.g. P@10) and MAP of each query
have large variances. The framework associated with true relevance judgments is thus
cleaner and allows easier interpretation. In order to assess the impact of DF scores on the
MAP values independently of any IR model, we make use of the following experimental
setting:

• Start with a first retrieval with a Dirichlet language model;

• Let Rq denote the set of relevant documents for query q: Select the first 10 relevant
documents if possible, else select the top |Rq|(|Rq| < 10) relevant documents;

• Construct a new query (50 words) with the mixture model;
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• Construct a new query (50 words) with the log-logistic model;

• Compute statistics for each word in the new queries.

Statistics include a normalized DF , equal to DF (w)/|Rq|, and a normalized TF , first us-
ing a document length normalization, then using the transformation log(1+TF (w))/|Rq|
to avoid too important a dispersion in plots. Each word w is added independently with
weights predicted by the retained PRF model. For each word w, we measure the MAP
of the initial query augmented with this word. The difference in performance with the
initial query is then computed as: ∆(MAP) = MAP(q + FW (w)w)−MAP(q). We thus
obtain, for each term, the following statistics:

• ∆(MAP)

• log(1 + TF (w))/|Rq|

• DF (w)/|Rq|

Figures 6.2 and 6.3 display a 3D view of these statistics for all queries, based on Gnuplot
and two collections: TREC1&2 and ROBUST. In order to have a better view of the
patterns obtained, we have used a 30x30 grid, and two kernel smoothers. The use of a
kernel smoother K amounts to smooth the value at any point by the values obtained at
neighboring points:

∆(MAP)(x) =
p∑
i=1

∆(MAP)(xi)K(x, xi)

where i, 1 ≤ i ≤ p indexes the set of feedback terms. We use here both an asymmet-
ric, exponential kernel and a symmetric, gaussian kernel. As mentioned before, the TF
statistics was normalized to account for different lengths. The shape of the plots obtained
remains however consistent without any normalization or when standard normalizations
are used. The plots displayed in Figures 6.2 and 6.3 are based on the DFR normalization:

TF (w) =
∑
d∈Rq

xw,d log(1 + c
avgl

ld
)

As one can note, on all plots of Figures 6.2 and 6.3, the best performing regions
in the (TF,DF) space correspond to large DFs. Furthermore, for all TF values, the
increase in MAP parallels the increase in DF (or, in other words, ∆(MAP) increases
with DF for fixed TF), for both exponential and gaussian kernels. This validates the
DF constraint and shows the importance of retaining terms with high DF in relevance
feedback. Interestingly, the reverse is not true for TF. Indeed, for fixed DF, ∆(MAP)
does not increase nicely with TF, when using the exponential kernel (it does however on
the two collections with the gaussian kernel). This implies that if terms with large TF are
interesting, they should not be given too much weight. The results displayed in Table 6.5
suggest that the mixture model [84] suffers from this problem.

6.5.2 Validation of IDF Effect

We follow the previous approach to asses the IDF effect. From true relevance feedback,
we extract the following statistics:

• ∆(MAP)

• TF (w)/|Rq|

• IDF (w)
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Figure 6.2: (log(TF),DF) vs ∆ MAP on TREC-12; true relevant documents are used with
n = 10, tc = 50 and exponential (left) and Gaussian (right) kernel grids (15 × 15). Top
row: log-logistic model; bottom row: language model
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Figure 6.3: (log(TF),DF) vs ∆ MAP on ROBUST; true relevant documents are used with
n = 10, tc = 50 and exponential (left) and Gaussian (right) kernel grids (15 × 15). Top
row: log-logistic model; bottom row: language model
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Figures 6.4 and 6.5 show the 3D-view of these statistic for the Log-Logistic model and
the mixture model for both Gaussian and Exponential kernels. First of all, the plots on
the ROBUST collection look different from the figures for the TREC collection. Second,
the log-logistic plots are very different from the mixture model on the ROBUST collection
but very similar on the TREC collection.

On the ROBUST collection, the log-logistic statistic seem to support the IDF condi-
tion. Note that for the Gaussian Kernel figure, there is a low density region for high idf.
This can be explain by the fact it is not possible in general to have both a high idf and a
high TF, thus explaining why there is no word selected by the log-logistic model in this
area. The situation concerning the mixture model is puzzling at first sight and does not
support the IDF condition. This behavior can be explained by the fact that the mixture
model selects words with a high TF. Hence, among the 50 words selected by query, there
may not be many rare words, which explain why certain regions of the (TF,IDF) space
have a low density.

On the other hand, the figures for the other TREC collection suggest that it is im-
portant to penalize common words (low idf) and rare words (high idf). Then, the IDF
condition does not appear completely valid from these observations. It does capture the
fact that common words should be penalized but the data shows that rare words should
be penalized as well. However, the TF and DF effect do penalize rare words, which com-
pensate the deficiency of the IDF condition for rare words. Overall, the figures on the
two collections support the idea that common words should be penalized, thus justifying
the IDF condition. Even if the IDF condition is not fully valid alone, it becomes more
adequate with the TF and DF condition, which will be able to filter rare terms.

6.5.3 Validation of the different conditions with a TF-IDF family

In order to further validate the constraints, let us introduce the family of feedback func-
tions defined by:

twd = xwd log(1 + c
avg l

ld
)

FW (w) =
∑
d∈F

tkwdIDF(w) (6.8)

This equation amounts to a standard tf-idf weighting, with an exponent k which
allows one to control the convexity/concavity of the feedback model.

Because of the form of twd, and the way IDF(w) is taken into account, the above
family of functions satisfies the first, second and fourth CIR constraints. If k > 1 then
the function is strictly convex and, according to Theorem 6, does not satisfy the DF
constraint. Furthermore, ∀d ∈ F, ∂

2FW (w)
∂t2 > 0 so that the second CIR constraint is

not satisfied either. On the contrary, if k < 1, then the function is strictly concave and
satisfies the DF constraint as well as all the CIR constraints. The linear case, being both
concave and convex, is in-between.

One can then build PRF models from equation 6.8 with varying k, and see whether the
results agree with the theoretical findings implied by Theorem 6. We used the reweighting
scheme of equation 6.8 with equation 6.4.

Table 6.7 displays the term statistics (µ(tf),µ(df), mean IDF) for different values of
k. As one can note, the smaller k, the bigger µ(df) is. In other words, the slower the
function grows, the more terms with large DF are preferred.

Table 6.8 displays the MAP for different values of k. At least two important points
arise from the results obtained. First, convex functions (k > 1) have lower performance
than concave functions for all datasets, and the more a model violates the constraints,
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Figure 6.4: True Oracle (TF,IDF) vs ∆ MAP sur ROBUST n = 10 tc = 50. Exponential
(left) and Gaussian (right) Kernel Grid 15× 15. LG(top row) LM(bottom)
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Table 6.7: Statistics on TREC-12-A
Power k µ(tf) µ(df) Mean IDF

0.2 70.46 7.4 5.21
0.5 85.70 7.1 5.09
0.8 88.56 6.82 5.14
1 89.7 6.6 5.1

1.2 91.0 6.35 5.1
1.5 90.3 6.1 5.0
2 89.2 5.8 4.9

Table 6.8: MAP for different power function. Suffix A means n = 10 and tc = 10 while
suffix B means n = 20 and tc = 20

Power k robust-A trec-12-A robust-B trec-12-B
0.2 29.3 28.7 28.7 30.0
0.5 30.1 29.5 29.4 30.5
0.8 29.6 29.3 29.4 30.3
1 29.2 28.9 29.1 29.9

1.2 28.9 28.6 28.6 29.6
1.5 28.6 28.1 28.3 28.9
2 28.1 27.2 27.4 28.0

log-logistic 29.4 28.7 28.5 29.9

the worse it is. This confirms the validity of the constraints we have reviewed. Second,
the square root function (k = 0.5) has the best performance on all collections: it also
outperforms the standard log-logistic model. When the function grows slowly (k equals
to 0.2), the DF statistics is somehow preferred compared to TF. The square root function
achieves a different and better trade-off between the TF and DF information. This is an
interesting finding as it shows that the TF information is still useful and should not be
too downweighted wrt the DF one.

6.6 Review of PRF Models

We review in this section different PRF models according to their behavior wrt the char-
acterizations we have defined. We start with language models, then review the recent
model introduced in [82] which borrows from both generative approaches à la language
model and approaches related to the Probability Ranking Principle (PRP), prior to review
Divergence from Randomness (DFR) and Information-based models.

6.6.1 PRF for Language Models

PRF models within the language modeling (LM) approach to information retrieval as-
sume that words in the feedback document set are distributed according to a Multinomial
distribution, θF (the notation θF summarizes the set of parameters P (w|θF )). Once the
parameters have been estimated, PRF models in the LM approach proceed by interpo-
lating the (original) query language model with the feedback query model θF :

θq′ = αθq + (1− α)θF (6.9)

In practice, one restricts θF to the top tc words, setting all other values to 0. The different
feedback models then differ in the way θF is estimated. We review the main LM based
feedback models below.
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Mixture Model

Zhai and Lafferty [84] propose a generative model for the set F. All documents are i.i.d
and each document is generated from a mixture of the feedback query model and the
corpus language model:

P (F|θF , β, λ) =
V∏
w=1

((1− λ)P (w|θF ) + λP (w|C))TF (w) (6.10)

where λ is a “background” noise set to some constant. Finally θF is learned by optimizing
the data log-likelihood with an Expectation-Maximization (EM) algorithm, leading to the
following E and M steps at iteration (i):

E − step E(w)(i) = (1−λ)P (i(w|θF )
(1−λ)P (i)(w|θF )+λP (i)(w|C)

M − step P (i+1)(w|θF ) =
P
d∈F xwd)E(w)(i)P

w

P
d∈F xwdE(w)(i)

where E(w)(i) denotes the expectation of observing w in the feedback set; furthermore,
FW (w) = P (w|θF ). As one can note, none of the above formulas involve DF (w), neither
directly nor indirectly. The mixture model is thus agnostic wrt to DF, and thus does not
enforce the DF effect.

Regarding the other properties, one can note that the weight of the feedback terms
(P (w|θF )) increases with TF (w) (which is

∑
d∈F xw,d), decreases with IDF(w) (the argu-

ment for this is the same as the one developed in [33], a study to which we refer readers).
Thus, both TF and IDF effects are enforced.

Furthermore, even though counts are normalized by the length (in fact an approxima-
tion of it) of the feedback documents, all these documents are merged together, so that
the Document length effect is not fully enforced.

The situation wrt the Concavity effect is even less clear. In particular, if one approxi-
mates the denominator with the length of the feedback documents (such an approximation
being based on the fact that E(w)(i) corresponds to the expectation of w in the feedback
set), then the second partial derivative of P (w|θF ) wrt to t(w, d) is 0. This suggests that
this model does not fully enforce the Concavity effect, and thus that it gives too much
weight to high frequency words. This is indeed what we have observed in table 6.5: the
mixture model selects terms with a mean TF which is significantly higher than the mean
TF of the other models.

Divergence Minimization

In addition to the mixture model, a divergence minimization model:

D(θq|RF ) =
1
|n|

n∑
i=1

D(θF ‖ θdi)− δD(θF ||p(. ‖ C))

is also proposed in [84], where θdi denotes the empirical distribution of words in document
di. Minimizing this divergence gives the following solution:

P (w|θF ) ∝ exp
( 1

(1− δ)
1
n

n∑
i=1

log(p(w|θdi))−
δ

1− δ
log(p(w|C)

)
Here again, FW (w) = P (w|θF ). This equation corresponds to the form given in equa-
tion 6.5 with a strictly concave function (log). Thus, by Theorem 6, this model enforces
the DF effect. It also enforces the TF, Concavity and Document length effects.
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Our previous experiments, reported in table 6.6, as well as those reported in [51], show
that this model does not perform as well as other ones. Indeed, as shown in table 6.5, the
IDF effect is not sufficiently enforced, and the model fails to downweight common words.

Let us consider two terms wa and wb such that ∀d ∈ F t(wa, d) = t(wb, d) = td, and
let zb = p(wb|C) and za = p(wa|C) such that za < zb (we use z to ease notations). The
IDF effect stipulates that, in this case, FW (a) should be greater than FW (b). Using
Jelinek Mercer smoothing, FW (wa)− FW (wb) has the sign of:

∑
d∈F

{

>0︷ ︸︸ ︷
log(

(1− λ)t(d) + λza
(1− λ)t(d) + λzb

)−δ

<0︷ ︸︸ ︷
log(

za
zb

)} (6.11)

As one can note, the above quantity is not necessarily negative, especially when δ is
small, which can happen in practice as δ is optimized on an independent training set.
This shows that the divergence minimization model is not guaranteed to enforce the IDF
effect. Furthermore, if one considers two words wa and wb which occur in only 1 document
out of n, a necessary condition for the divergence minimization model to enforce the IDF
effect is n−1

n < δ, which shows again that δ values close to 1 are required (in practice,
typical values obtained are in the range of 0.1). This explains the small values displayed
in table 6.5 for the IDF statistic.

Other PRF Methods fo Language Models

A regularized version of the mixture model, known as the regularized mixture model
(RMM) and making use of latent topics, is proposed in [78] to correct some of the de-
ficiencies of the simple mixture model. RMM has the advantage of providing a joint
estimation of the document relevance weights and the topic conditional word probabil-
ities, yielding a robust setting of the feedback parameters. However, the experiments
reported in [51] show that this model is less effective than the simple mixture model
in terms of retrieval performance. We will thus not study it further here, but want to
mention, nevertheless, an interesting re-interpretation of this model in the context of the
concave-convex procedure framework [29] which we will discuss in section 6.7.

Another PRF model proposed in the framework of the language modeling approach
is the so-called relevance model, proposed by Lavrenko et al. [48], and defined by:

FW (w) ∝
∑
d∈F

PLM (w|θd)P (d|q) (6.12)

where PLM denotes the standard language model. Furthermore, it corresponds to the form
of equation 6.5 of Theorem 6, with a linear function, which is neither strictly concave nor
strictly convex. This model is neutral wrt the DF effect.

Regarding the IDF effect, Let wa and wb two words such that p(wa|C) > p(wb|C) and
∀d ∈ F t(wa, d) = t(wb, d) = td. Using Jelinek-Mercer smoothing, we have

FW (a)− FW (b) =
∑
d∈F

P (d|q)
(
(1− λ)td + λp(wa|C)− (1− λ)td − λp(wb|C)

)
=

∑
d∈F

P (d|q)λ(p(wa|C)− p(wb|C)) > 0

which shows that relevance models do not satisfy the IDF condition.
The relevance model has recently been refined in the study presented in [75] through

a geometric variant, referred to as GRM, and defined by:

FW (w) ∝
∏
d∈F

PLM (w|θd)P (d|q) (6.13)
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Let us consider this model with Jelinek-Mercer smoothing [86]: PLM (w|θd) = (1−λ)xwdld +
λFwL , . Let wa and wb be two words as defined in the DF effect, and let us further assume
that feedback documents are of the same length l and equiprobable given q. Then FW (wa)
and FW (wb) respectively differ on the two quantities:

(i) (

A︷ ︸︸ ︷
(1− λ)

xwa,dj
l

+ λ
Fwa
L

)(

B︷ ︸︸ ︷
λ
Fwb
L

)

(ii) ((1− λ)
xwa,dj−ε

l + λ
Fwa
L )((1− λ)

ε

l︸ ︷︷ ︸
ε′

+λFwbL )

The second quantity amounts to:

(A− ε′)(B + ε′) = AB + ε′(A−B)− (ε′)2

But A − B = (1 − λ)
xwa,dj

l , a quantity which is strictly greater than (1 − λ) εl = ε′ by
the assumptions of the DF effect. Thus, the GRM model enforces the DF effect when
Jelinek-Mercer is used. However, this model fails to enforce the IDF effect. Let wa and
wb two words such that p(wa|C) > p(wb|C) and ∀d ∈ F t(wa, d) = t(wb, d) = td.

FW (wa)− FW (wb) =sign
∑
d

P (d|q) log
λtd + (1− λ)p(wa|C)
λtd + (1− λ)p(wb|C)

> 0

which is strictly positive.This explains the results displayed in table 6.5, showing that the
GRM model selects terms with low IDF.

6.6.2 PRF under the PRP

In [70], the offer weight is proposed to perform PRF under the PRP:

FW (w) =
DF (w)
n

RSJ︷ ︸︸ ︷
log

DF (w) + 0.5
Nw −DF (w) + 0.5

n−DF (w) + 0.5
N −Nw − n+DF (w) + 0.5

The offer weight is simply the product of the Document frequency times the Robertson
Sparck Jones (RSJ) weight. Roberston explain in that the RSJ weight tends to favor too
much rare words and that the correction by the DF factor correct this problem and thus
improve performances. Checking the DF condition is not straightforward for this model
and is left for future work. If the RSJ weight can be assimilated to an IDF weight, the
above PRF model agrees with the IDF condition and the DF condition. However, it does
not consider the TF effect.

Xu and Akella [82] propose an instanciation of the Probability Ranking Principle
(PRP) in which relevant documents are assumed to be generated from a Dirichlet Com-
pound Multinomial (DCM) distribution, or an approximation of it, called eDCM and
introduced in [31]. The PRF version of this model simply assumes that the feedback doc-
uments are relevant. Terms are then generated according to two latent generative models
based on the (e)DCM distribution and associated with two variables, relevant zFR and
non-relevant zN . The variable zN is intended to capture general English words occur-
ring frequently in the whole collection, whereas zFR is used to represent terms occurring
in the feedback documents and pertinent to the user’s information need. The parame-
ters of the two components are estimated through rather time-consuming and complex
estimation procedures, typically based on gradient descent or the EM algorithm. [82]
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furthermore proposes two modifications of the EM algorithm to estimate the parameters
of the relevant component, in a way similar to the one followed by [78]. Disregarding the
non-relevant component for the moment, the weight assigned to feedback terms by the
relevant component is given by (M-step of the EM algorithm):

P (w|zFR) ∝
∑
d∈F

I(c(w, d) > 0)P (zFR|d,w) + λc(w, q)

This formula, being based on the presence/absence of terms in the feedback documents,
enforces the DF effect. We need to check the situation of the TF condition as it is involved
in E-step of the EM algorithm. That said, the higher the DF of a term, the higher its TF
is likely to be, so that can nevertheless indirectly select high frequency terms by selecting
terms with high DF.

We conjecture that this is the case with the (e)DCM model, which seems to behave
well in practice. Finally, the EM steps also suggest that this model satisfy the IDF
condition, as much as the mixture model does.

6.6.3 PRF in DFR and Information Models

In DFR and information models, the original query is modified to take into account the
words appearing in F according to the following scheme:

q′w =
qw

maxw qw
+ β

InfoF(w)
maxw InfoF(w)

(6.14)

where β is a parameter controlling the modification brought by F to the original query
and q′w denotes the updated weight of w in the query. In this case: FW (w) = Info(w,F).

Bo Models

Standard PRF models in the DFR family are the Bo models [1], which are defined by:

Info(w,F) = log2(1 + gw) + TF (w) log2(
1 + gw
gw

)

where gw = Nw
N in Bo1 model and gw = P (w|C)(

∑
d∈F ld) in Bo2 model. In other words,

documents in F are merged together and a geometric probability model (or a different
distribution, the choice of the distribution being irrelevant for our argument) is used to
measure the informative content of a word.

First, Bo models do account for the TF effect and IDF effect. Second, as this model
is DF agnostic it does not enforce the DF effect. Furthermore, when using the geometric
distribution, the Concavity effect is not enforced as the second derivative of FW (w) wrt to
TF (w) is null. Neither does it enforce the Document length effect, as feedback documents
are merged together.

Log-logistic Model

In information-based models, the average information brought by the feedback documents
on given term w is used as a criterion to rank terms, which amounts to:

FW (w) = Info(w,F) =
1
n

∑
d∈F

− logP (Xw > t(w, d))|λw)

where t(w, d) is the normalized number of occurrences of w in d, and λw a parameter
associated to w and set to: λw = Nw

N . Two instanciations of the general information-
based family are considered , respectively based on the log-logistic distribution and a
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smoothed power law (SPL). The log-logistic model for pseudo relevance feedback is thus
defined by:

twd = xwd log(1 + c
avg l

ld
)

FW (w) =
1
n

∑
d∈F

[log(
Nw
N

+ twd) + IDF(w)]

As the logarithm is a concave function, the log-logistic model enforces the DF effect by
Theorem 6. Furthermore, it is compliant with all the other properties as it based on the
general information formulation with a bursty distribution (as shown in [17]). Let wa
and wb, two words such as in the IDF condition. Let ra = Nwa

N and rb = Nwb
N such that

rb < ra, then:

FW (wa)− FW (wb) =
∑
d

log
(ra + td

ra

rb
rb + td

)
=

∑
d

log
rarb + rbtd
rarb + ratd

< 0

which is unconditionally negative.
The smoothed power law model (SPL) satisfy the TF, DF and Document Length

effect. The IDF effect is not straightforward to verify. The good performance obtained
previoulsy with few terms and the fact that the SPL aims at approximating the DFR
model InL2, where the IDF effect is clear, suggests that the SPL model satisfy the IDF
condition. Nevertheless, we checked the IDF statistic of the SPL model as in table 6.5.
The mean idf is 4.5 on robust-A and and 4.2 for trec-1&2-A, which suggest that the model
do penalize common words.

6.6.4 Summary

The above theoretical study has revealed the following elements for the PRF models we
have reviewed:

1. In the language modeling approach, the simple mixture model enforces neither the
DF effect nor the Document length effect. The divergence minimization model does
not unconditionally enforce the IDF effect. More surprisingly, the RM and GRM
models do not enforce the IDF effect.

2. Considering models related to the Probability Ranking Principle, the relevance
model proposed in [82] on the basis of the Dirichlet Compound Multinomial satisfies
most properties, including the DF effect.

3. In the Divergence from Randomness approach, Bo models fail to enforce the DF
effect, as well as the Concavity and Document length effects. In the family of
information-based models, both the log-logistic and SPL models satisfy all the PRF
properties.

Table 6.9 summarizes the previous analysis. These theoretical results provide a good
explanation of the statistics collected on two large collections and displayed in table 6.5.
They also provide an explanation for the good behavior of the log-logistic and SPL models
developed in the framework of the information-based family. These two models outper-
form the other models in PRF settings. The log-logistic model enforces all the PRF effects
we have reviewed, for all the admissible values of its parameter. The SPL model seems to
satisfy all conditions: even if the situation with respec to IDF effect is not proven, there
are good indications that this model do penalize common words.
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PRF Models vs Effects TF Concave Doc Length IDF Doc Score DF
Mixture X X
DivMin X X X X
EDCM ? X X

Bo Models X X
Relevance Model X X X
Geom Rel. Model X X X X X

Log-logistic X X X X X

Table 6.9: PRF Models versus the conditions they verify

6.7 Discussion

We have studied here the main characteristics of PRF reweighting schemes through several
constraints reweighting functions should satisfy. There are however a certain number of
additional elements that can be used to improve performance of PRF systems. The study
presented in [50], for example, proposes a learning approach to determine the value of
the parameter mixing the original query with the feedback terms. Interestingly, such
a parameter can be set on a query-dependent manner for improved performance. The
study presented in [52] focuses on the use of positional and proximity information in
the relevance model for PRF, where position and proximity are relative to query terms.
Again, this information leads to improved performance. It is not clear yet how one can
integrate such an information in the other PRF models we have reviewed, in particular
in the LL and SPL models, and this is an aspect one will have to investigate further.
Another kind of information that can successfully be exploited in PRF is the one related
to query aspects.

The study presented in [25] for example proposes an algorithm to identify query as-
pects and automatically expand queries in a way such that all aspects are well covered.
A similar strategy can be deployed on top of any PRF reweighting function, so as to
guarantee a certain aspect coverage in the newly formed query. Another comprehensive,
and related, study is the one presented in [23, 29]. In this study, a unified optimization
framework is retained for robust PRF. The constraints considered however differ from the
constraints we have defined, as they aim at capturing diversity through aspect coverage.
The general framework of concave-convex optimization (fully detailed in [22]) is never-
theless interesting and bridges several different models [29]. Lastly, several studies have
recently put forward the problem of uncertainty when estimating PRF weights [24, 49].
These studies show that resampling feedback documents is beneficial as it allows a better
estimate of the weights of the terms to be considered for feedback. Interestingly, these
approaches can be deployed with any PRF reweighting model and allow a simple and
neat integration of the DS constraint in any PRF model, as the resampling procedure is
based on the score of the document obtained in the first retrieval step.

6.8 Conclusion

This chapter has introduced conditions PRF models should satisfy. These conditions
are based on standard IR constraints, with the addition of a Document Frequency (DF)
constraint which we have experimentally validated. We have partially validated the IDF
condition and we have then investigated standard PRF models wrt to these constraints.
This theoretical study has revealed several important points.

First, the simple mixture and the divergence minimization models, are deficient as one
does not satisfy the DF constraint while the other does not sufficiently enforce the IDF
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effect. Second, relevance models and their geometric variant do not satisfy either the IDF
condition. Note that smoothing language models do enforce the IDF effect for ad-hoc
retrieval and we showed here that this is not always the case for PRF. Only two models
satisfy all the PRF constraints but the one related to the document score (DS). These
models are the log-logistic and the smoothed power law models of the information-based
family. Moreover, all these theoretical findings were experimentally illustrated. Overall,
this chapter provides an explanation on why the information-based models perform better
than other models in PRF settings.



Chapter 7

Conclusion

We have studied probabilistic models for word frequencies and for information retrieval.
Our goal was to link these probabilitistic models in order to have a good model of word
frequencies and a good IR model at the same time.

First of all, we have studied the problem of modeling word frequencies in a collection
with a major emphasis on the burstiness phenomenon and state of the art probabilistic
model such as the 2-Poisson mixture model, the Negative Binomial, the Beta Binomial
and its multivariate extensions DCM and EDCM were reviewed.

Even if the burstiness phenomenon is often mentionned in studies dealing with word
frequencies probabilistic models, its precise meaning is vague and is often poorly defined.
This is why we returned to the roots of the burstiness characterization as proposed by
Katz [45]. We then summarized the significant studies of Church [13, 12], who introduced
and validated empirically the notion of adaptation for word frequencies.

Overall, burstiness addresses the fact that for given word, its occurrences in a docu-
ment, are far from being independent from each other. Even if burstiness has been studied
extensively in several studies, each of which proposed a different probabilistic model, our
approach differentiate from others by tackling this phenomenon with a formal definition
of burstiness. This definition translates as a property of probability distributions, related
to the log-convexity of the survival function P (X > x). The benefits of this formal def-
inition enable to test whether a distribution can account or not for burstiness and can
guide the design of new probability distributions.

This formal definition of burstiness leads us to consider the family of power law distri-
butions as candidates for modeling word frequencies. We introduced two novel models of
word frequencies: the Beta Negative Binomial [14] distribution, a discrete model, and the
Log-Logistic distribution [16, 15], a continuous one. The Beta Negative Binomial build on
the Negative Binomial proposed by Church [13] as it can be viewed as an infinite mixture
of Negative Binomial distributions, which itself is an infinite mixture of Poisson distri-
butions. We then showed how particular instances of the Log-Logistic distributions can
be viewed as a continuous counterpart of the Beta Negative Binomial. For both distribu-
tions, we provided constant time estimation procedure on the contrary to the DCM and
EDCM models, either with a generalized method of moments that can be approximated
with the mean document frequency.

The Beta Negative Binomial and Log-Logistic were compared to Poisson distributions
and Katz-Mixture on several IR collections. We stressed that the burstiness phenomenon
is related to a variance problem. Experiments have validated the BNB and Log-Logistic
ability to capture word burstiness which besides suggest that the definition of burstiness
we proposed is indeed appropriate. In a nutshell, the Beta Negative Binomial and the Log-
Logistic distributions are sound models of word frequencies: they enjoy good theoretical
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properties, as bursty distributions, and they fit well word frequencies empirically.
Our second goal was to design IR model compatible with word burstiness as state-

of-the-art IR model do not rely on bursty distribution according to our definition. We
then have studied probabilistic information retrieval models and review the Probability
Ranking framework, the language modeling approach to IR and the Divergence From
Randomness models. Although these three probabilistic IR models differentiate from
each other, either by a underlying theorical framework or by a distinct choice of a word
frequency distribution, all these well performing models share common properties that
allow one to describe these models in a single framework. This is the approach advocated
by Fang [33] referred to as the axiomatic approach to IR. The main conditions that
an IR model should satisfy are the TF, the Concave, the Document Length and IDF
conditions. We gave an analytical version of these axiomatic constraints in order to ease
their applications to the analysis of IR models.

Among the three main families of probabilistic IR models, the Divergence From Ran-
domness framework seemed to be the best fit to the Beta Negative Binomial and Log-
Logistic requirements and this is why we analyzed Divergence From Randomness models
with the axiomatic conditions [15, 19]. Above all, this analysis revealed a link between
the first normalization principle of DFR model and a particular property of IR models,
namely the concavity in word frequencies. Overall, it seems that there is no direct align-
ment between the concavity of IR models and the burstiness property of the underlying
probability distributions. Most state of the art models are concave functions with term
frequency but most of the distributions used are not bursty. Therefore, burstiness and
the IR model concavity in term frequency seem to be two sides of the same coin and
this suggested that current paradigms for IR models are not fully compatible with the
bursty distributions we wanted to use. This is what seeded the idea of a novel IR family:
information-based models.

Information models [17, 19, 18] draw their inspiration from a long-standing hypothesis
in IR, namely the fact that the difference in the behaviors of a word at the document
and collection levels brings information on the significance of the word for the document.
Shannon information can be used to capture whenever a word deviates from its average
behavior, and we showed how to design IR models based on this information. Above all,
these models have a remarkable property: a direct relationship between the burstiness
property of the probability distributions used and the concavity of the resulting IR model.
In addition, information-based models enjoy good theoretical properties: they satisfy most
retrieval heuristic constraints when these models rely on bursty distributions and they
can be understood as a simplification of DFR models in the light of retrieval constraints
and burstiness.

We then have proposed two effective IR models within this family: the log-logistic
and the smoothed power law models. The experiments we have conducted on different
collections illustrate the good behavior of these models. These models yield state of the
art performance, without pseudo relevance feedback, and significantly outperforms state
of the art models with pseudo relevance feedback. We have tested these models with
different term frequency normalizations and extended them with the beneficial use of the
q-logarithm.

Furthermore, the good performance of information models for pseudo relevance feed-
back lead us to analyze theoretically and empirically several pseudo relevance feedback
algorithms [20, 21]. As a result, a list of pseudo feedback constraints was drawn up to
better characterize valid pseudo feedback algorithms. In particular, we formulate heuris-
tic constraints for PRF similar to the TF, Concave, Document Length and IDF effects
for IR models with an additional constraint refered to as Document Frequency effect. We
have analyzed the terms chosen by several PRF models, validated experimentally the DF
condition and we reviewed several models according to the PRF conditions. The theo-
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retical study we have conducted reveals that several standard PRF models either fail to
enforce the IDF effect or the DF effect. For example, the simple mixture in the language
modelling family is deficient as it does not satisfy the DF constraint and relevance mod-
els do not satisfy the IDF condition. On the contrary, the log-logistic and the smoothed
power law models satisfy all the PRF properties . This theoretical analysis thus provide
an explanation on why the information-based models perform better than other models
in PRF settings. All in all, we have proposed:

1. new probabilistic models of word frequencies: the Beta Negative Binomial and the
Log-logistic distribution.

2. new probabilistic models for IR: the information based models.

3. a theoretical analysis of PRF models

These new models were analyzed thoroughly and were proved to be theoretically and
empirically sound.

Future Work

There are several interesting questions, directions in order to pursue our study on word
frequencies and IR models. Are there other properties than burstiness characterizing
word frequencies that could be relevant to capture and to use in an IR model ? In others
words, as word frequencies data and IR models have distinct and common properties,
which are the general properties that should be preserved in an IR setting ? For example,
the grouped word frequencies exhibits a Zipfian distribution [4] and the Heap Law [5]
characterizes the relation between the size of the vocabulary and the collection lengh.
Does the LogLogistic IR model fully account for these phenomenon ? Should these
features be taken into account in an IR setting ?

Another question deals with the axiomatic approach to IR. The axiomatic constraints
describe general conditions which are not sufficient alone, as it is possible to design an IR
model meeting this constraints and which perform poorly empirically. Overall, the three
mainstream family of IR models performs similarly and this is why ideally we would like
to have a mathematical notion of equivalence between IR models or a notion of capacity
of a ranking function. For example, it would be interesting to formalize that the InL2
DFR model performs similarly to the log-logistic model on a given neighborhood of query
and document, which would be written as InL2 ∼V (q,d) LGD. The axiomatic constraint
could be understood as a weak form of equivalence between IR models.

The last direction we will mention would extend our study in a supervised setting
with learning to rank methods. Could we infer new axiomatic conditions from training
data which could be use more generally for several IR tasks ? Respectively, could/should
we learn an IR model compatible with some axiomatic constraints ?
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A1. PREPROCESSING 147

A1 Preprocessing

Many applications require a preprocessing step in order to extract the relevant informa-
tion from the raw content of a document. For most IR scenarios, the preprocessing of
documents consists in filtering words too frequent words (stopwords) like articles, and if
required standardize the surface form of the observed word (remove conjugations, plurals)
and to count for each term its number of occurrences in a document. For example, let’s
examine the following (famous) French verses from La Fontaine:

Mâıtre Corbeau, sur un arbre perché,
Tenait en son bec un fromage.

Mâıtre Renard, par l’odeur alléché,
Lui tint à peu près ce langage :

Hé ! bonjour, Monsieur du Corbeau.
Que vous êtes joli ! que vous me semblez beau !

Initially, the preprocessing filter stopwords like “ce”, “un”, . . . . Then, the occurrences
of the words are counted: the term Corbeau has a number of occurrences of 2 in this doc-
ument. In the same way, fromage occurs 1 times. One can thus represent a document by
a vector whose each dimension contains the frequency of a particular term. For example,
a preprocessing of the previous text can lead to the following vectorial representation:

~d =



maitre 2
corbeau 2
arbre 1
perche 1
tenait 1

bec 1
fromage 1

tint 1
langage 1
bonjour 1

joli 1
semblez 1

beau 1
. . . . . .

cigale 0
fourmi 0

. . . 0


Each dimension in the vector corresponds to a given index term, and the coordinates
corresponds here to the number of occurrences of the word in the document. Then, all
non-occurring terms have 0 occurences and are not explicitly represented in the previous
vector. The frequencies of the different words are supposed to be statistically independent.
For example, it will be supposed that the random variable for occurrences of fromage
is independent of the random variable for Corbeau. After preprocessing, the corpus of
documents can then be represented as a matrix: X = (xwd) where rows stand for words
and columns for documents.
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A2 Estimation of the 2-Poisson Model

The moment generating function for the 2-Poisson is given by:

m(t) = E(etx) = α

+∞∑
x=0

e−λEλxE
x!

etx + (1− α)
+∞∑
x=0

e−λGλG
x

x!
etx

= αe−λE
+∞∑
x=0

etxλxE
x!

+ (1− α)e−λG
+∞∑
x=0

etxλG
x

x!

= αeλE(et−1) + (1− α)eλG(et−1

The first three derivatives of m(t) are computed and then t is set to 0 which gives the 3
first moments of the distribution:

R1 = αλE + (1− α)λG (1)
R2 = α(λ2

E + λE) + (1− α)(λ2
G + λG) (2)

R3 = α(λ3
E + 3λ2

E + λE) + (1− α)(λ3
G + 3λ2

G + λG) (3)

Let M = R1, L = R2,K = R3 + 2R1 − 3R2.

M = αλE + (1− α)λG (4)
L = αλ2

E + (1− α)λ2
G (5)

K = αλ3
E + (1− α)λ3

G (6)

These equations shows that λE and λG are the roots of :

(M2 − L)λ2 + (K − LM)λ+ (L2 −MK) = 0 (7)

Finally, α can be estimated with:

α =
M − λG
λE ∗ λG

(8)
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[70] C S. Robertson, H. Zaragoza, Stephen Robertson, and Hugo Zaragoza. The proba-
bilistic relevance framework: Bm25 and beyond.

[71] S. E. Robertson. The Probability Ranking Principle in IR. Journal of Documentation,
33(4):294–304, 1977.



158 BIBLIOGRAPHY

[72] S. E. Robertson and S. Walker. Some simple effective approximations to the 2-
poisson model for probabilistic weighted retrieval. In SIGIR ’94: Proceedings of the
17th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 232–241, New York, NY, USA, 1994. Springer-Verlag
New York, Inc.

[73] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill, Inc., New York, NY, USA, 1983.

[74] Avik Sarkar, Paul H. Garthwaite, and Anne De Roeck. A bayesian mixture model
for term re-occurrence and burstiness. In Proceedings of the Ninth Conference on
Computational Natural Language Learning, CONLL ’05, pages 48–55, Stroudsburg,
PA, USA, 2005. Association for Computational Linguistics.

[75] Jangwon Seo and W. Bruce Croft. Geometric representations for multiple docu-
ments. In SIGIR ’10: Proceeding of the 33rd international ACM SIGIR conference
on Research and development in information retrieval, pages 251–258, New York,
NY, USA, 2010. ACM.

[76] Claude E. Shannon. A mathematical theory of communication. The Bell system
technical journal, 27:379–423, 1948.

[77] Amit Singhal, Chris Buckley, Mandar Mitra, and Ar Mitra. Pivoted document length
normalization. pages 21–29. ACM Press, 1996.

[78] Tao Tao and ChengXiang Zhai. Regularized estimation of mixture models for robust
pseudo-relevance feedback. In Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information retrieval, SIGIR ’06,
pages 162–169, New York, NY, USA, 2006. ACM.

[79] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes.
Technical Report 653, Department of Statistics, University of California at Berkeley,
2004.

[80] I. Ounis V. Plachouras, B. He. University of Glasgow at TREC 2004: Experiments
in web, robust and terabyte tracks with terrier, 2004.

[81] Jun Xu. A boosting algorithm for information retrieval. In In Proceedings of SI-
GIR’07, 2007.

[82] Zuobing Xu and Ram Akella. A new probabilistic retrieval model based on the dirich-
let compound multinomial distribution. In SIGIR ’08: Proceedings of the 31st annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 427–434, New York, NY, USA, 2008. ACM.

[83] Yisong Yue and Thomas Finley. A support vector method for optimizing average
precision. In In Proceedings of SIGIR’07, pages 271–278. ACM, 2007.

[84] Chengxiang Zhai and John Lafferty. Model-based feedback in the language modeling
approach to information retrieval. In CIKM ’01: Proceedings of the tenth interna-
tional conference on Information and knowledge management, pages 403–410, New
York, NY, USA, 2001. ACM.

[85] Chengxiang Zhai and John Lafferty. A study of smoothing methods for language
models applied to ad hoc information retrieval. In Proceedings of the 24th annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 334–342, New York, NY, USA, 2001. ACM.



BIBLIOGRAPHY 159

[86] Chengxiang Zhai and John Lafferty. A study of smoothing methods for language
models applied to information retrieval. ACM Trans. Inf. Syst., 22(2):179–214, 2004.




