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Dans cette thèse, nous nous intéressons  d’abord à de possibilités d’application des 
structures déployables en architecture et dans l’industrie de construction. Le thème 
principale de la recherche a été l’étude des structures subissant de grandes 
déformations et en passent par état d’instabilité au cours d’un programme de 
chargement. Le but était la description générale du comportement mécanique d’un 
système  modèle d’une structure antiprismatique, auto-déployablée proposée par 
Hegedus. La plus grande importance a été mis sur exploitation du comportement de la 
structure au cours de son emballement, de qui a été examine en considérant différentes 
possibilités de contrôle de procédure. En utilisant des simulations numériques, dont les 
résultats ont été vérifiés par les approches analytiques, on a clarifié le comportement 
mécanique du système anti prismatique, et on a donné des formules simple permettant 
d’évaluer de principaux paramètres géométriques et mécaniques pour facilité le pré-
dimensionnement de la structure. L’importance de l'influence de l’intensité et de la 
fréquence du déplacement relatif interne généré brusquement au cours d’emballement a 
été également étudiée. Dans le cadre de la thèse on a analysé également les 
caractéristiques mécaniques d’une système différent de la structure d’origine. Pour les 
deux différent systèmes structuraux on a préparé des modèles physiques 
expérimentaux, dont les résultat ont conduit aux nouveaux types des structures, 
lesquelles sont les structures spatiales pliables á plat. On a proposé alors quelques 
idées et schémas pour la possibilité d’application architecturale de systèmes treillis 
antiprismatiques. 

 In this thesis, an extensive review on different transformable systems used in 
architecture and civil engineering is given. After the review, structures undergoing large 
displacements and instability phenomenon were highlighted. The main goal of the 
dissertation was to investigate the general behavior of a specific, immature self-
deploying system, the antiprismatic structure proposed by Hegedus. The emphasis was 
mainly taken to the analysis of the packing behavior. First, a simplified planar model was 
identified sharing similar, highly nonlinear packing behavior. For both the 2D and the 3D 
structures numerical simulation of the packing was performed with different type of 
controls and the results were confirmed by analytical investigations. The research 
clarifies the mechanical behavior of the chosen system, provides tools to simulate the 
packing of the structure, options for control, and gives very simple approximations for 
main mechanical characteristics of the antiprismatic system in order to facilitate 
preliminary design and verification of the numerical results. The significance of snap-
back behavior, occurring at the force-displacement diagram during packing was 
analyzed. Within the framework of the thesis a novel type of system, slightly deviating 
from the original one was also investigated. For the specific systems, small physical 
models were built and presented in this work, which led to the proposal of a novel type of 
expandable tube. An attempt was given to provide ideas for application of antiprismatic 
structures by combining the investigated system and different learnt existing systems 
from the architectural review. 
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ABSTRACT 
In the following thesis, an extensive review on different transformable systems used in architecture and civil 
engineering is given. After the review, structures undergoing large displacements and instability phenomenon 
were highlighted. The main goal of the dissertation was to investigate the general behavior of a specific, 
immature self-deploying system, the antiprismatic structure proposed by Hegedűs. The emphasis was mainly 
taken to the analysis of the packing behavior. First, a simplified planar model was identified sharing similar, 
highly nonlinear packing behavior. For both the 2D and the 3D structures numerical simulation of the packing 
was performed with different type of controls and the results were confirmed by analytical investigations. The 
research clarifies the mechanical behavior of the chosen system, provides tools to simulate the packing of the 
structure, options for control, and gives very simple approximations for main mechanical characteristics of the 
antiprismatic system in order to facilitate preliminary design and verification of the numerical results. The 
significance of snap-back behavior, occurring at the force-displacement diagram during packing was analyzed.  
Within the framework of the thesis a novel type of system, slightly deviating from the original one was also 
investigated. For the specific systems, small physical models were built and presented in this work, which led 
to the proposal of a novel type of expandable tube. An attempt was given to provide ideas for application of 
antiprismatic structures by combining the investigated system and different learnt existing systems from the 
architectural review. 
 
Keywords: deployable structures, retractable structures, antiprism, yoshimura pattern, snap-through analysis, 
post-critical analysis, transformable, pop-up structure 

RESUME 
Dans cette thèse, nous nous intéressons  d’abord à de possibilités d’application des structures déployables en 
architecture et dans l’industrie de construction. Le thème principale de la recherche a été l’étude des 
structures subissant de grandes déformations et en passent par état d’instabilité au cours d’un programme de 
chargement. Le but était la description générale du comportement mécanique d’un système modèle d’une 
structure anti prismatique, auto-déployablée proposée par Hegedus. La plus grande importance a été mis sur 
exploitation du comportement de la structure au cours de son emballement, de qui a été examine en 
considérant différentes possibilités de contrôle de procédure. Dans la première étape de l’étude, la structure 
spatiale a été remplacée par les études au cours d’emballement d’une structure planaire se comportant 
d’une manière semblable. En utilisant des simulations numériques, dont les résultats ont été vérifiés par les 
approches analytiques, on a clarifié le comportement mécanique du système anti prismatique, et on a donné 
des formules simple permettant d’évaluer de principaux paramètres géométriques et mécaniques pour facilité 
le pré-dimensionnement de la structure. L’importance de l'influence de l’intensité et de la fréquence du 
déplacement relatif interne généré brusquement au cours d’emballement a été également étudiée. Dans le 
cadre de la thèse on a analysé également les caractéristiques mécaniques d’une système différent de la 
structure d’origine. Pour les deux différent systèmes structuraux on a préparé des modèles physiques 
expérimentaux, dont les résultat ont conduit aux nouveaux types des structures, lesquelles sont les structures 
spatiales pliables á plat. On a proposé alors quelques idées et schémas pour la possibilité d’application 
architecturale de systèmes treillis anti prismatiques. 

 Mots-clé : structures déployables, antiprisme, yoshimura pattern, analyse postcritique, grandes 
déformations, grands déplacements  
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ABSZTRAKT 

A disszertáció a nyitható-csukható szerkezetek építészeti és építőmérnöki alkalmazásáról írt áttekintéssel 
kezdődik. Az áttekintett szerkezeti típusok közül, a nyitás/csukás közben nagy elmozdulást szenvedő és 
instabil állapoton átmenő szerkezeteket választottam fő kutatási témaként. Célként a még gyerekcipőben 
járó, antiprizmatikus, síkba hajtható kipattanó szerkezeti rendszer mechanikai viselkedésének leírását tűztem 
ki. A legnagyobb hangsúlyt az összecsomagolás közbeni viselkedés feltárása kapta, amelyet különböző 
vezérlési lehetőségek esetén is vizsgáltam. A térbeli szerkezet mechanikai vizsgálatát egy síkbeli, hasonlóan 
viselkedő modell összecsukási elemzésével kezdtem. Analitikus vizsgálatokkal is igazolt, numerikus szimuláció 
segítségével tisztáztam az antiprizmatikus rendszer mechanikai viselkedését és a tervezési fázis 
megkönnyítésére közelítő képleteket adtam a legfontosabb mechanikai és geometriai jellemzők becsléséhez. 
Megvizsgáltam a csomagolás közben fellépő, hirtelen közbenső relatív elmozdulások intenzitását és 
gyakorlati jelentőségét. A disszertáció keretein belül egy, az eredetitől eltérő szerkezeti rendszer mechanikai 
jellemzőit is elemeztem. A különböző rendszerekhez fizikai kísérleti modellek is készültek, amelyek egy új 
típusú, tágulással síkba hajtható térbeli szerkezethez vezettek. Az antiprizmatikus rácsszerkezet alkalmazási 
lehetőségeire vázlatokat, ötleteket mutattam be. 
 
Kulcsszavak: nyitható-csukható szerkezetek, antiprizma, yoshimura hajtogatási pattern, átpattanás, poszt-
kritikus vizsgálat, kipattanó szerkezet 
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1 INTRODUCTION 
 

Observing nature, several transformable structures can be found, like the extensible 
worm, deployable leaves and wing of insects [Vincent, 2001], expanding virus capsid [Kovács 
et al., 2004], not to mention the movable structure of our own, human body. For centuries 
several small-scale man-constructed deployable structures have been constructed too, such 
as umbrellas, chairs, fans etc. For the last four-five decades, advanced man-made structures 
have appeared mainly for spatial engineering applications like for booms, solar arrays, 
antennas, reflectors (e.g.: [Gantes, 2001; Pellegrino, 2001; Wada et al, 1988]), as the volume 
and the weight of a structure to be transported to space is crucial. On earth, until recent 
times, only smaller structures like tents, yurts and shelters had been constructed for 
architectural purposes. Confirming to the novel conceptions of the 21th century and due to 
available numerical and robotics technologies, advanced transformable structures are already 
applied in civil engineering and architecture. Structures used for off-shore industry and light 
deployable structures used for modern architecture can be mentioned among these. 

These structures are designed to undergo very large displacements and remain fully 
operational [Ibrahimbegovic, 2003]. Often the structures of that kind can integrate a 
multibody system (e.g. [Ibrahimbegovic and Taylor, 2003] or [Ibrahimbegovic and Schiehlen, 
2001] which facilitates a construction phase before being integrated in a structural assembly 
(e.g. [Gant, 1996]. Modeling of the component of 3D frame-type flexible structures of this 
kind is nowadays under control thanks to the geometrically exact beam model 
[Ibrahimbegovic and Taylor, 2002]; [Ibrahimbegovic and Mamouri, 2000] capable of 
representing large displacements and rotations, and solving the pertinent instability problems 
[Ibrahimbegovic and Al Mikdad, 2000]. 

With the help of these tools, the deployable structures undergoing instability 
phenomenon were investigated. First the analytical and numerical resolutions of some basic 
snap-through type lattice structures were carried out, starting with the static and dynamic 
analysis of a shallow truss and followed by the deployment analysis of the basic unit of the 
snap-through type structure of Zeigler which was scrutinized by Gantes. The behavior of 
these structures has been already examined before by several researchers, but it was a good 
start to familiarize with structures undergoing large displacements and instability 
phenomenon. 

Finally a specific system, namely the deployable antiprismatic lattice structure has been 
chosen for investigation, because its mechanical behavior has not yet been thoroughly 
analyzed. This cylindrical structure, derived from the well known yoshimura origami pattern 
and proposed by Hegedűs, is characterized by its pop-up deployment due to the energy 
accumulated from lengthening some bars during packing. Zero deployment-load corresponds 
both to the fully deployed and the compact configuration, the latter being an unstable 
equilibrium state corresponding to the maximal internal energy. It is true that the 
antiprismatic pop-up system has been proposed almost two decades ago, but due to the lack 
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of popularity no practical application has been offered yet. The main goal of the dissertation 
was to investigate the general behavior of the specific system to blaze a trail towards the 
architectural application of this system by providing designing tools, profound analysis of 
packing behavior, ideas of applications. 

The first step is already a challenge, to fully master the construction phases of a flexible, 
deployable structure which takes any structural component from initial (unstressed state) to 
a `deformed` yet equilibrium state. Naturally, the popping up of the structure requires a 
thorough dynamical analysis and vibration control. However, the packing of the structure ― 

even by smoothly controlling boundary displacements ― may also cause inertial effect that 
cannot be ignored due to intermediate snapping of the structure. 
 
 
The following thesis was organized in four larger blocks. 
 
In the first block (Chapter 2) an extensive but not exhaustive review on different 
transformable systems ― retractable roofs, deployable and retractable pantographic lattice 

systems, tensegrity structures, soft membrane structures and pneumatic systems ― used in 
architecture and civil engineering will be given. Though the main research topic of the 
authors within the theme of transformable structures is just a small slice, this study was 
carried out to explore earlier and current researches and technologies to demonstrate the 
wide range of available systems, their historical background and their potentials in the future. 
 
The second block (Chapter 3) introduces the problem of investigating packing behavior of the 
antiprismatic deployable structure through a simplified 2D structure possessing similar 
packing properties to that of the chosen specific system. The equilibrium paths of packing 
and the concerning difficulties (bifurcation of the path, snap-back phenomenon, singular 
configurations etc.) as well as the packing sequences will be revealed through analytical and 
numerical research. 
 
The third block (Chapter 4) deals with the same problem but already for the targeted 3D 
problem. The same analysis presented for 2D structures is carried out for two different type 
of antiprismatic systems. After analyzing the original structure offered by Hegedűs (further 
called as non-stiffened antiprismatic structure), a different system, slightly deviating from the 
original one (further called as alternately stiffened antiprismatic structure), was also investigated. 
The antiprismatic system proposed by Hegedűs is constructed from identical double 
antiprisms with an elastic middle polygon and rigid polygons in the boundaries. The modified 
model eliminates the rigid internal polygons; the pop-up column is constructed from 
continuously rotating elastic polygons with two rigid polygons on the top and on the 
bottom. In this chapter approximations for main mechanical characteristics were also 
provided from the analytical investigation that can serve as a tool for preliminary design and 
verification of the numerical results. 
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Finally, in the fourth block (Chapter 5), an attempt is given to provide ideas for application of 
antiprismatic structures by combining the ideas and characteristics of the available systems in 
Chapter 2 and the topology of the antiprismatic structure investigated in Chapter 5. The small 
physical models built for experimenting were also presented in this block. In this chapter, 
different applications and control systems were sketched without aiming to give detailed 
solutions. 
In the last chapter the thesis is summarized, highlighting the remarkable results of the thesis 
that can be considered as new scientific achievements. In this chapter the further research 
perspectives are also outlined.   
In the Annex the review on the kinematic determinacy of antiprismatic structures, 
methodologies used in the numerical calculations, investigation of snapping-through 
structures (shallow truss, and the basic unit of a snap-through type system), auxiliary 
calculations for investigated structural systems and some mentions on choosing constitutive 
model is attached to the dissertation. 
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2 ARCHITECTURAL BACKGROUND: TRANSFORMABLE STRUCTURES IN 

CIVIL ENGINEERING AND ARCHITECTURE 
 

‘If architects designed a building like a body, it would have a system of 
bones and muscles and tendons and a brain that knows how to respond. If a 
building could change its posture, tighten its muscles and brace itself against 
the wind, its structural mass could literally be cut in half…’ 

 
Guy Nordenson, Ove Arup and Partner [Fox] 

 
2.1 The history of architectural transformable structures 
 

The history of transformable structures goes back to centuries before [Walter]. 
Though possibly everybody is familiar with the light deployable nomad Indian tepees (Fig. 
2.1a) that could be transported by animals, only very few know that a part of the auditorium 
of the Roman Colosseum (Amfiteatro Flavio) (Fig. 2.1b-c) built in the first century had a 
convertible textile roof [Ishii, 2000]. The structure of the umbrella is an ancient structure as 
well, but its principle is used in modern adaptive architecture. 
 

a) b) c)  

Fig. 2.1: Early movable roof structures: a) Tepee tent from the Sioux Indians [Otto, 1971] (cited by 
[Walter]); b) Roman Colosseum [Escrig and Brebbia 1996] (cited by [Jensen, 2001] and c) the 

reconstruction of its convertible roofing system [Gengnagel, 2001] (cited by [Walter]) 

Obviously, higher scale transformable roof structures appeared only in the 20th 
century. With the growing demand of hosting sport venues, starting from the 1930s an 
increasing trend towards building retractable roofs can be observed. As cranes were already 
common at that time and standards were available for transport tracks, control and drive, 
the first constructions stem from the principles of crane technology [Ishii, 2000]. Thus, early 
designs mainly run on rails. The first retractable large span roof is said to be the Pittsburgh 
Civic Arena (see Fig.2.5 in Chapter 2.2) that was opened in 1961. 
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After the World War II ― parallel to the appearing of retractable roofs opened with 

rigid body movements ― significant pioneer works have to be mentioned regarding 
deployable/retractable lightweight structures. B. Fuller’s reinvention of the geodesic dome 
(Fig. 2.2a) and his lectures on 3D geometrical forms for architecture, space frames and 
structural efficiency [Fuller et al, 1975] inspired several researchers to further elaborate his 
ideas. The tensegrity system invented by K. Snelson [Snelson, 2009] and B. Fuller in 1949 is 
still the main topic of several ongoing research work that try to widen the application 
possibilities of these systems and to adapt them to deployable structures [Motro et al, 2001]. 
Furthermore the systematic research work of F. Otto on deployable and retractable 
structures [Otto et al, 1971] and his works in the field of tensile and membrane structures 
[Otto, 1973] led to a big variety of retractable membrane roof structure designs in the 
second half of the century (e.g. retractable roofs of Montreal Olympic Stadium, bullfighting 
arena in Zaragoza). Membrane structures can be combined with scissor-like deployable 
structures. E. P. Pinero’s movable theatre (Fig. 2.2b) presented in 1961 can be mentioned as 
pioneer work of this type [Pinero, 1961]. Though his deployable trellis design had major 
structural drawbacks, he motivated further pantographic deployable designs like Escrig’s 
deployable swimming pool [Escrig et al, 1996/1] and Zeigler’s pop-up dome [Zeigler, 1976, 
1977]. 
 

a)  b)  

Fig. 2.2: a) The US Pavilion for the 1967 World’s Fair, Montreal by B. Fuller [Hienstorfer, 2007]; b) Pinero 
with his movable theatre [Robbin, 1996] 

Transformability can be used not just for lightweight structures. In the last decades 
promising experiments were made with constructions using transformable systems to 
combat the main problem of concrete shell structures, namely the expensive, difficult and 
time-consuming production (e.g.: [Roessler and Bini, 1986]; [van Hennik and Houtman, 
2008]; [Dallinger and Kollegger, 2009]. 

In the second half of the 20th century, regarding deployable and inflatable structures 
developments were in first place achieved in spatial engineering [Pellegrino, 2001; Gantes, 
2001] for booms, solar arrays, antennas, reflectors, as the volume and the weight of a 
structure to be transported there is crucial. 

Current trends show a re-increasing interest in kinetic architecture due to the 
growing demand on provisory architecture [Kronenburg, 2008] and the need for sustainable 
technologies [Kibert, 2007, Friedman et al, 2011]. The rapidly decreasing natural resources, 
the global variation of the climate and the continuously incrementing population are all 
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insistent problems that are pushing structural development in a new direction that keeps not 
only economical but environmental and social aspects and development in mind (Fig 2.3) as 
well. This leads towards a sustainable engineering: towards a development that ’meets the 
needs of the present without compromising the ability of future generations to meet their 
own needs’ [United Nations, 1987]. Adequately, some very new issues were introduced in 
structural engineering and architecture, just a few of them are listed here: reducing 
environmental impact, recycling, reusability, material and energy efficiency, employment of 
inexhaustible energy resources, operation and maintenance optimization, minimal impact on 
human health, indoor environmental quality enhancement, waste and toxic reduction etc. 

 

 

Fig. 2.3: Scheme of sustainable development: at the confluence of three constituent parts [Friedman et al., 
2011/1] 

Aiming sustainable architecture there is a remarkable tendency towards adapting 
seminal ideas of the 60s and 70s [Sadler, 2005; Zuk and Clark, 1970] (cited by [Rosenberg, 
2010]) to create an indeterminate architecture that can conform to uncertainty and 
emergent situations, changing in occupant demand and energetic considerations [Rosenberg, 
2010]. 

Though not being a novel idea, involving motion systems to structural design seems 
to be a currently improving segment of civil engineering thanks to the available technologies 
that are just catching up with these ideas of the 1960s and 70s.  

More precisely, the recent actuality of research of transformable structures is due to 
the continuously improving computer, robotic and nanotechnologies, the ameliorated 
numerical methods (e.g. [Ibrahimbegovic, 2009]) and the progressive properties of novel and 
conventional building materials.  
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2.2 Transformable structures by the movement of rigid panels or 
structural segments 
 
As mentioned in the introduction, first designs for retractable covering of sport 

stadiums stem from the crane technology. F. Otto classified these convertible roofs by a 
movement matrix (Fig. 2.4). 
 

type of 
movement 

direction of movement 
parallel central circular peripheral 

sliding 

    

folding 

    

rotating 

    

Fig. 2.4: Classification of rigid retractable structures: the movement matrix [Otto et al, 1971] 

Fig. 2.4 shows that the retraction can be obtained by sliding, folding or rotating the panels in 
different directions. The panels can overlap while retracting or move independently. The first 
retractable dome structure is said to be the circularly sliding retractable roof of the 
Pittsburgh Civic Arena (Fig. 2.5) opened in 1961 and closed in 2010. The 127 m-span roof 
consists of eight 300 ton sections, six of which are able to rotate by five motors per panel. 
All panels are fixed on the top to a gigantic, 80 m tall steel truss cantilever. The roof could 
be opened in about two minutes [Ishii, 2000]. 
 

 
Fig. 2.5: Pittsburgh Civic Arena (architect: Mitchell and Ritchey) photo [Lorentz, 2008] and original blueprint 

[Helvenstone, 1959] 

The structural form of the civic arena is initially optimal as bending moments are minimal 
due to geometry. Unfortunately for retractability this optimal shape had to be sliced in parts, 
thus the cost was the huge cantilever that supports the panels, and the bigger structural 
height. A similar geometry was achieved by a more recent construction that did not apply an 
external structure to hold the panels. The Fukuoka stadium in Japan (Fig. 2.6) opened in 1993 

spans 222 m. The three parts of the roof ― two of which are rotatable ― are independent 
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frameworks, with remarkable bending moments. Though careful shape correction was 
performed for the geometry of individual parts (Fig. 2.7a) to avoid singularities in reaction 
forces at the inclination lines [Ishii, 2000], the structural height is still gigantic. Each panel is 
four meters thick, and the total roof weighs 12 000 tons. The sliding rotation of the two 
panels is enabled by 24 bogie wheel assemblies (Fig. 2.7b-c). It takes approximately 20 
minutes to open the roof. 
 

a)  b)  c)  

Fig. 2.6: Fukuoka stadium (architect: Takenaka Corp.) a) photo with closed [Yahoo, 2010] and b) with 
opened roof (Japan Atlas) c) structure [Ishii, 2000] 

a)   

b)  c)  

Fig. 2.7: Fukuoka stadium a) geometry of a roof panel b) roadbed section c) driving device [Ishii, 2000] 

A much more slender retractable structure was constructed in Oita, Japan, in 2001 
called the Oita Stadium or more commonly the “Big Eye” (Fig. 2.8). A large part of the 274 m 
diameter spherical roof is fix (Fig. 2.8b), only the top two panels are retractable that slide 
parallel on seven rails to the periphery of the dome. The sliding panels are covered with a 
special membrane containing a Teflon film that provides better transparency, thus even on 
rainy days natural lighting is provided [Ishii, 2000].  
 



HIGHLY FLEXIBLE DEPLOYABLE STRUCTURES ARCHITECTURAL BACKGROUND 

19 
 

a)  b)  c)  

Fig. 2.8: Oita Stadium (architect: Kisho Kurokawa) a) photo [Ezinemark, 2010]; b) fix structural part [Ishii, 
2000] and c) retractable top section [Ishii, 2000] 

To mention other motion systems for rigid retractable structures briefly just three 
different examples are shown. A parallel overlapping system was used for the 40 m span 
retractable roof of the Komjádi swimming pool in Budapest (Fig. 2.9.a), built in 1976. A more 
complex system of rigid systems is the roof of the Qi Zhong stadium in Shanghai (Fig. 2.9.b) 
that opened in 2005. The roof resembles to an opening flower, the eight sliding steel “petal” 
rotates to towards the perimeter in 8 minutes. Of course not every retractable roof can be 
clearly classified to the categories of the motion matrix shown in Fig. 2.4. For example, the 
roof of the Toronto Skydome (Fig. 2.10) is a nice example of a mixed system. The 213 m 
diameter roof is made up of 4 sections, one remains stationary while the two panes slides 
parallel and one circularly to achieve a high rate of retractability. 
 

a)  b)  

Fig. 2.9: a) Retractable roof of the Komjádi swimming pool [Komjádi]; b) Qi Zhong stadium (architect: 
Mitsuru Senda), [Ezinemark] 

a)  b)  c)  

Fig. 2.10: Toronto Skydome (architect: Rod Robbie) a) photo of closed and b) opened roof c) the structure of 
the retractable roof [Ishii, 2000] 

Deployablility can be achieved with more complex movements stemming from 
natural folding patterns like the ones of the leaves or of the wings of the insects [Vincent, 
2001; Hachem et al., 2004] or stemming from Origami, the traditional Japanese art of paper 
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folding. It is true that Origami’s history goes back to the 17th century AD, it has not just 
evolved into a modern art form, but also a challenging geometrical research topic and 
interesting chance of structural implementation (Fig. 2.11). Folding and packing patterns are 
primarily used for space structures like deployable solar cell arrays or reflector antennas 
(Fig. 2.12). Moreover, a remarkable tendency can be observed to apply these patterns for 
architecture, too (Fig. 2.13).  
 

 
 

Fig. 2.11: Foldable tube (exhibition object) and dome (paper model) with the Yoshimura pattern [Yoshimura] 

 
Fig. 2.12: Solid Surface Deployable Antenna and its wrapping fold pattern by the former Deployable 

Structures Laboratory by Guest and Pellegrino [DSL] 

 
Fig. 2.13: Cylindrical paper and laminated timber model with the Miura pattern [Buri and Weinand, 2008] 
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Fig. 2.14: Adaptive shading system of the Audencia Provincial, Madrid (by Hoberman and Fox+Partners) and 

the model of a hexagonal retractable panel [Hoberman] 

More and more recent architectural designs try to apply transformable systems only 
for achieving the variability of a shell or an envelope of the permanent structure. Though the 
motion of the building might not be as spellbound as those where whole massive structural 
parts are in motion, but can offer a nice solution for integrating structural efficiency and the 
adaptation to external excitation. This was the case with the adaptive sun shading system of 
the Audencia Provincial, Madrid (Fig. 2.14) designed by Hoberman. The hexagonal shading 
cells can completely cover the roof, but disappear when retracted into the structural profiles 
of the structure. The algorithm that controls the movement combines historic solar gain 
data with real-time sensing of light levels [Hoberman]. Hoberman designed several adaptive 
shading systems in accordance with his new patented technology using thin plates sliding on 
each other [Hoberman et al, 2009] (Fig.2.15) to enhance the architectural design of Foster + 
Partner’s buildings. Another example is the convertible shell design of the Aldar Central 
Market in Abu Dhabi (Fig. 2.16). 

 
Fig. 2.15: Details of patented adaptive shading system by Hoberman and Davis [2009] 

 

 
Fig. 2.16: Adaptive shading system of the Aldar Central Market in Abu Dhabi, 2010, Madrid (design by 

Hoberman and Fox+Partners) [Hoberman] 
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2.3 Transformable lattice structures 

2.3.1 Transformable structures by pantographic systems 

A large number of structures that can be opened and closed are based on the well-
known concept of the lazy tong system. The minimum component of this system is the so-
called scissor-like element (henceforth SLE). The SLE consists of two bars connected to each 
other with a revolute joint. By the parallel connection of SLEs the simplest 2D deployable 
structure, the lazy tong is constructed. Connecting at least three of SLEs through complete 
pin joints a ring is formed, providing a secondary unit of this frame structure (Figs 2.17a-d). 
By the further connection of secondary units almost all kind of 3D-shapes can be formed 
folding into bundle (Fig.  2.17e-h). Adding tension components like wire or membrane to its 
developed form, it becomes a 3D-truss and gets effective strength, thus towers, bridges, 
domes and space structures can be rapidly constructed [Atake, 1995]. 

 

a)  b)  c)  d)  

e) f) g)  h)  

Fig. 2.17: Some secondary units of scissor like deployable structures: a-b) pyramid type units and c-d) skew 
types; e-h) foldable shapes [Atake, 1995] 

2.3.2 Deployable structures folding into a bundle 

Pioneer works: movable theatre, deployable roof structure 

  

Fig. 2.18: Photo of Piñero with his movable theatre [Hunter] 

Using scissor-like deployable structures for architecture was pioneered by the 
Spanish engineer, E. P. Piñero. He presented a foldable theatre (Figs. 2.18-9) in 1961 [Piñero, 
1961], and elaborated several other deployable designs. The biggest drawbacks of his designs 
were the relatively heavy and big joints due to eccentric connections (Fig. 2.19) and 
necessary temporary support as the structure was stiffened by intermediate bars or tension 
elements that were added after the structure was deployed into the desired configuration 
[Gantes, 2010]. Despite of all the disadvantages of his structures, Piñero inspired several 
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researchers. This was the case with Professor F. Escrig, who designed the 30 m×60 m 
deployable roof for a swimming pool in Seville [Escrig, 1996] (Fig. 2.20). 

 

 a)  

b) c)  

Fig. 2.19: Details of Pinero’s reticular 3D structure patent: a) plan view of opened structure; b) fragmentary 
view; c) connection of three rods of the structure to an intermediate coupling [Piñero, 1965] 

 

Fig. 2.20: Deployable swimming pool (architect: Prof. Felix Escrig) [Escrig, 1996/2] 

Deployable structures stiffened by cables 

By piling up pyramid type structural units vertically (e.g. Fig. 2.21a-b) a basic 
pantographic structure is formed: a three-dimensional mast [Atake, 1995] The only internal 
degree of freedom of the deployable mast developed in the former Deployable Structures 
Laboratory is controlled by a single, continuous cable which runs over pulleys connected to 
the joints of the pantograph [Pellegrino et al., 1993] (Fig. 2.21a). One end of this cable is 
connected to a drum driven by an electric motor, and its route through the structure is in a 
manner that winding the cable onto the drum causes the structure to deploy. A series of 
short (initially loose) cables linking neighboring joints of the pantograph become taut when 
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the pantograph is fully deployed, and in this configuration, the continuous cable imparts a 
global state of pre-stress onto the whole structure. 
  

a)   b)  c)  

Fig. 2.21: a) Deployable mast controlled by active and passive cables by the former Deployable Structures 
Laboratory; b) foldable bridge and c) deployable dome by ATAKE Space Design Lab. Co. in the Hanamizuki 

Park, Japan [Atake] 

With the application of this vertical connection horizontally a foldable bridge can be formed, 
which is useful for its rapid construction [Atake, 1995]. Fig. 2.21b shows an example realized 
in the Hanamizuki Park, Japan. 
 The Fig. 2.21c shows the upper half of a semi-regular 32-polyhedron (soccer ball) 
providing foldable double layer dome. This is constructed by the horizontal connection of 
sliced octahedron units (48 identical scissors) and was also installed in the same Park [Atake, 
1995]. 

Self-locking deployable structures  

While pantograph structures discussed above all need additional stabilizing elements 
like cables or other locking devices, it is possible to design deployable structures that are 
self-stable in the erected configuration without any additional member with the application 
of a special geometric configuration [Gantes, 2001]. This can be achieved by adding inner 
SLEs to the initial secondary units shown in Fig. 2.17. These units are shown in Fig. 2.22. The 
inner SLEs deform while unfolding due to geometric incompatibilities resulting a self-locking, 
self-stabilizing mechanism that locks the structure in its opened configuration [Clarke, 1984] 
(cited by [Gantes, 2001]). The first dome structure of this type was introduced by T. Zeigler 
in 1974 [Zeigler, 1976]. Several pop-up displays and pavilions are constructed in accordance 
with his patents (e.g. Fig.  2.23). 

 

a)  b)  c)  d)  

Fig. 2.22: a-c) Self-stable deployable structures: secondary units for the planar and d) for spherical structures 
[Friedman et al., 2008] 
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Fig. 2.23:  Photo of pop up display and schematic presentation of its installation by Nomadic Display Corp. 
[Nomadic]  

Possible shapes with Zeigler’s first pop-up dome patent [Zeigler, 1976] are strongly limited 
because of strict geometric restrictions. However, the major disadvantage of the structure is 
that in the final configuration some members are not stress-free and remain curved. This 
residual stresses and the bent form leads to a decrease of load bearing capacity and makes 
these structures more susceptible to catastrophic failures due to member buckling [Gantes, 
2001]. Zeigler improved his initial structure by introducing sliding joints for some 
intermediate nodes and flexible connections at the end nodes by springs [Zeigler, 1977] 
(Fig. 2.24). 
 

 
Fig. 2.24: Zeigler’s patent for collapsible self-supporting structure: dome and scissor details [Zeigler, 1977] 

For the elimination of both of the above-mentioned problems ― namely external 

stabilization and residual stresses in the deployed configuration ― improved self-locking 
structures were investigated by A. Krishnapillai at the MIT [1985, 1986] (cited by [Gantes, 
2001]) and patented [1992]. By the satisfaction of certain geometric constraints, these 
structures can be stable in the deployed configuration having straight and stress-free 
members, except for dead weight and live load effects. During deployment, however, 
geometric incompatibilities result in the development of second order strains and stresses 
and a snap-through type of behavior that ‘locks’ the structure and assures its stability in the 
deployed configuration. About self-stable structures of this kind a practical and detailed 
design guide was published, written by Gantes [2001]. 
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2.3.3  Retractable pantograph structures 

The application of structures that can fold into bundle when continuous 
transformability needed could be difficult to get. The American engineer, C. Hoberman made 
a considerable advance in the design of retractable roof structures by the discovery of the 
simple angulated element [Hoberman, 1990, 1991]. By the refraction of the two straight 
rods of a single SLE the angulated element is formed (Fig. 2.25). This element is able to open 
and close while maintaining the end nodes on radial lines that subtend a constant angle 
[Pellegrino, 2001]. 

Considering a classic SLE (Fig. 3.9a) ― consisting of two identical straight rods, hinged 

together with a cylindrical joint at ܧ ― the relationship between ߙ, the angle subtended by 
the lines ܱܲ and ܱܳ defined by the endpoints of the rods (ܦ ,ܣ and ܤ, C) and ߛ, the angle 
between the two rods (deployment angle): 
 

2
tan

2
tan


AC

AECE 
  

(2.1) 
 

a)   b)  
 

Fig. 2.25: a) Classic SLE and b) the simple angulated element (illustrated in accordance with [You and 
Pellegrino 1997]) 

Thus ߙ varies with the deployment angle . By the refraction of the two straight rods the 
angulated element is formed (Fig. 2.25b). The simple angulated element consists of two 
identical angulated bars (ܧܣതതതത ൌ തതതതܧܤ ൌ തതതതܧܥ ൌ  തതതത). The connection between the deploymentܧܦ
angle  and  the above equation (1) will take the following modified form for Hoberman’s 
angulated element [You and Pellegrino, 1997]: 
 

AC

EF

AC

AFCF
2

2
tan

2
tan 






. 
(2.2) 



HIGHLY FLEXIBLE DEPLOYABLE STRUCTURES ARCHITECTURAL BACKGROUND 

27 
 

 
 
If the conditions 

AC

EF
CFAF arctan2,  

 
(2.3) 

are satisfied, the variation of  will not effect . Hence, if the scissor hinge at ܧ can be 
mobilized along the ܱܳ line, this element is able to open and close while maintaining the end 
nodes ܦ ,ܥ ,ܤ ,ܣ on radial lines that subtend a constant angle. Hoberman extended the 
above derivation also for a non-symmetric angulated element still consisting of two identical 
angulated rods (ܧܣതതതത 	ൌ ,തതതതܧܤ	 തതതതܧܥ 	ൌ  ) [Hoberman	തതതതܧܥ  is not necessarily equal to	തതതതܧܣ തതതത) butܧܦ	
1990, 1991]. 

Using angulated elements Hoberman created the retractable roof of the Iris Dome, 
shown in Fig. 2.26 at the EXPO 2000. The exhibition dome was formed by the connection of 
the angulated elements on concentric circles. Powered by four computer-controlled 
hydraulic cylinders, the 6.2 m tall and 10.2 m high retractable dome smoothly retracts 
toward its perimeter and unfolds [Hoberman]. One of the drawbacks of this design is that 
the structure does not maintain a constant perimeter, thus to connect it to a permanent 
foundation is quite a challenge especially in the case of a larger scale structure. On the other 
hand, for the construction of the relatively small span structure required more than 11 400 
machined pieces [Whitehead, 2000], which can cause potential problems with reliability and 
a laborious and expensive manufacturing. The complexity of the hinges is due to the special 
geometric configuration coming from the implementation of a 2D mechanism into a 3D 
structure. The main problem is that the angulated elements are arranged on the tangent 
planes of conical surfaces. Each ‘ring’ is situated on the tangent planes of different conical 
surfaces (the rings on the top are on a shallow conical surface while the ones on the bottom 
lie on a high one, see Fig. 2.27a-b). Each conical surface has its rotational axis coinciding with 
that of the retractable roof. This means that at the intersection of the neighboring angulated 
elements all four angulated element lie on different planes (see Fig. 2.27c). As the hinge axes 
have to be perpendicular to the plane of the scissor, the interconnecting hinges are realized 
by a rigid body of small extension connected to four simple scissor hinges with four different 
hinge axes [Kovács, 2004]. 
 

 
Fig. 2.26.: Iris dome designed by Hoberman, EXPO 2000 [Hoberman] 
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a)   

b) c)  

Fig. 2.27: a) Schematic model of Hoberman’s Iris dome during deployment; b) angulated element on the 
tangent plane of a conical surface and c) four non-identical hinge axis at the connection of angulated 

elements [Kovács, 2004/2] 

 Further developments were made by Z. You and S. Pellegrino [You and Pellegrino, 
1997] by generalizing the angulated elements to a large family of foldable building blocks and 
by introducing a new type of pantographic structure based on the so-called multi-angulated 
elements. With multi-angulated elements the number and complexity of elements and joints 
of retractable trellis structures can be reduced. Each multi-angulated element is composed of 
a number of bars, which are rigidly connected to each other (Fig. 2.28), instead of separate 
angulated elements as used by Hoberman. 
 

 
Fig. 2.28: Deployable sequence of a ring structure developed by Z. You and S. Pellegrino 

The 3D version of the multi-angulated element can be generated by a vertical projection of 
all hinges to a hemisphere. An example can be seen on Fig. 2.29. The retractable structure 
elaborated at the former Deployable Structures Laboratory made from two layers of multi-
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angulated elements connected only by cylindrical joints with all hinge axes perpendicular to 
the plane. Though the projected retractable dome by You and Pellegrino have less complex 
joints, its opened configuration forms a less aesthetic toroidal-like shape that is more 
susceptible to wind effects [Kovács, 2004/2]. 
 

 
Fig 2.29: 3D model of retractable dome by multi-angulated elements and its physical model at the former 

Deployable Structures Laboratory [Kovács, 2004/2] 

Further developed and very aesthetic retractable dome system was tested by 
Kokawa [2000], who identified a special geometry that enables all the joints to move on the 
sphere with scissor hinge axes pointing to the center point of the sphere. Unfortunately with 
this configuration during retraction there is a slight difference in the direction of hinge-axes 
and the hole axes thus either a loose hole or and embedded spherical roller bearing is 
needed [Kokawa, 2000] (Fig. 2.30). 
 

 
Fig. 2.30: Retractable dome opening on the spherical surface with telescopic ring, plan view and section of its 

scissor hinge [Kokawa, 2000] 

All the above-mentioned retractable dome models have the problem of variable 
perimeter radius. While Hoberman overcame this difficulty by supporting his Iris dome with 
a wide annulus on which the dome’s joints on the edge can slide radially, the model of the 
Deployable Structures Laboratory and the one by Kokawa is supported with a secondary 
mechanism, a pin jointed support. 

P. E. Kassabian succeeded to change the geometry of the Iris dome’s structure by 
rigid body rotation, so that the motion of each angulated element is a pure rotation about a 
fixed point, and thus allows the application of fixed support points [Kassabian 1997, 1999]. 
F. Kovács identified a new type of retractable iris dome combining simple scissor hinges and 
common hinges that has a fix outer ring as well [Kovács, 2000/2]. 
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a) b)   

Fig. 2.31: Cover of retractable structures with sliding panels by Hoberman: a) schematic model for covering 
the iris dome (Happold and Hoberman) and b) model of the dome of Abu Dhabi's international airport, 

United Arab Emirates, 2006 (Kohn Pedersen Fox Architects) [Hoberman] 

he second biggest difficulty regarding retractable domes is the problem of covering 
the lattice mechanism. An enclosure can be created by elastic/folding membrane or rigid 
plates, which are allowed to overlap in the retracted position. Several different designs have 
been proposed by Hoberman [Hoberman, 1991, 2004]. One example is the central part of 
the responsive dome (Fig. 2.31) that covers a major central courtyard of Abu Dhabi's 
international airport. The large operable oculus is covered by panels sliding towards the 
perimeter. The dome’s permanent structural part has an envelope that is also transformable 
varying its permeability. The system performs environmentally both to control light levels 
and air flows in the space [Hoberman]. Another cover is realized for the 10.7 m tall and 
21 m wide transforming curtain of the Olympic Medals Plaza (Fig. 2.32). 
 

 
Fig. 2.32: Cover solutions for retractable structures by Hoberman: transforming Olympic Arch for the 2002 

Winter Olympics (Salt Lake City, USA) designed by Hoberman [Hoberman] 

 For a different solution P. E. Kassabian has suggested a series of rigid cover elements 
attached to the multi-angulated elements [Kassabian, 1999] in a manner that the cover 
elements neither interfere nor overlap during motion while providing a continuous, i.e. gap 
free, covering surface in both the open and closed positions of the structure. Each cover is 
attached to a single angulated element so the motion of the structure is not inhibited. 
Several solutions were developed for finding optimal shape for these covers, with straight or 
curved inclination lines [Buhl and Jensen, 2004]. 
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2.3.4 Pantadome erection 

Not taking the construction of them into account, the 3D spatial structures are 
extremely efficient. However, the difficulties with installation (big amount of scaffolding, 
labor and time) often highly decrease this efficiency. This drawback can be significantly 
reduced with the unique structural system called the Pantadome System invented by M. 
Kawaguchi and will be herein explained in accordance with M. Kawaguchi [2002]. 

 
 

 

   

Fig. 2.33: Schema of the of the pantadome erection [Friedman et al., 2011/4] (in accordance with 
[Kawaguchi, 2002]) 

The principle of this structural system is to make a dome or a conical space frame 
kinematically unstable for a period of construction so that it is “foldable” during its erection. 
This can be done by temporarily taking out the members lying on a hoop circle (Fig. 2.33) 
then the dome is given a “mechanism”, like a 3D version of a parallel crank or a 
“pantograph”. 

 

 
Fig. 2.34: Erection of Namihaya Dome (Showa Sekkei Corp), Osaka, 1997 [Kawaguchi, 2002] 

 

Temporarily removed 
stabilizing elements 

air pressure or 
hydraulic jacks 
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Fig. 2.35: Erection of Namihaya Dome [Kawaguchi, 2002] 

Since such a dome is assembled in a folded shape near the ground level and the entire 
height of the dome during assembling work is very low compared with that after completion, 
thus the construction can be done safely and economically, and the quality of work can be 
assured more easily than in conventional erection systems. Not only the structural frame but 
also the exterior and interior finishings, electricity and mechanical facilities can be fixed and 
installed at this stage. The dome is then lifted up. Lifting can be achieved either by blowing 
inside the dome to raise the internal air pressure or by pushing up the periphery of the 
upper dome by means of hydraulic jacks. The major advantage of this system compared with 
different lifting solutions is that no guying cables or bracing elements are necessary for lateral 
stability. This is due to the fact that the mechanism of the system can be controlled with only 
one freedom of movement in the vertical direction. When the dome has taken the final 
shape, the hoop members which have been temporarily taken away during the erection are 
fixed to their proper positions to complete the dome structure. Several designs have been 
realized in accordance with the pantadome principle. One is the Namihaya Dome with 
diameter of 127m and 111m, whose erection and its lifting schema can be seen on Figs. 2.34 
and 35. 
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2.4 Tensegrity structures 
 

a)  b)  

Fig. 2.36: Some tensegrity systems: a) the tensegrity tripod b) expanded octahedron [Friedman et al., 
2011/4] 

Most of the deployable lattice systems are formed by scissor-like structures. However, there 
is a trend to apply also tensegrity systems when deployability is needed. This experimental 
system was born at the end of the 1940s from the artistic exploration of K. Snelson and 
Fuller’s goal of creating maximal efficiency structures [Snelson, 2009]. Snelson called his 
tensegrity sculptures the “floating compression” system. Nevertheless, it is worthwhile to 
mention that at the same time exactly the same system was patented by D. G. Emmerich, 
called the “self-tensioning system” [Emmerich, 1964]. The elements of this spatial truss 
system can be separated to purely compressed and purely tensile components. With this 
separation, the tensioned members can be as lightweight as current material technology 
allows, resulting extremely light, economical and visually less intrusive structures. Just as the 
authorship of the invention, the exact definition of tensegrity is still disputed [Motro, 2006]. 
Maybe the first clear definition of this kind of structure is the one that A. Pugh clarified: “A 
tensegrity system is established when a set of discontinuous compressive components 
interacts with a set of continuous tensile components to define a stable volume in space” 
[Pugh, 1976]. Clear definition is further investigated and refined by R. Motro [Motro, 2006]. 
The simplest tensegrity unit is the tensegrity tripod [Burkhardt, 1994] (Fig. 2.36a) and other 
tensegrity networks can be derived from geodesic polyhedra [Hugh, 1976] (Fig. 2.36b-c). By 
the assemblage of these units planar and spherical structures can be created, thus it can be 
used for walls, floors and roofs, or bridges. Fig. 2.37 shows the spherical assembly of tripods 
designed by B.R. Fuller, a recent design for a tensegrity roof and a realized, 470 m long 
tensegrity bridge with 128 m main span in Brisbane, Queensland, Australia. 

The idea to have only tendons connected to struts is probably the most innovative 
concept of this type of structures resulting extremely simple joints. Beyond the difficulty of 
form finding [Motro, 2006] the main problem of this type of non-conventional structure is 
the difficulty of manufacturing as the geometry of spherical and domical structures are pretty 
complex. Other big disadvantage, similarly to all tensile systems, is the poor load response 
(relatively high deflections and low material efficiency [Hanaor, 1987] as compared with 
conventional, geometrically rigid structures and the lack of resistance to concentrated loads. 
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Another big disadvantage is that conventional architectural structures cannot be applied for 
cladding and connecting structural elements. Consequently, it requires a complete innovation 
of complementary technologies. A big advance when comparing with other tension systems 
is that this tensegrity structures can encompass very large areas with minimal support at 
their perimeters, obviating the “heavy anchorage devices” needed for support with some 
cable-based technologies, or extensive support structures needed by some composite 
structures, mixing tensegrity systems and non-tensegrity technologies [Motro, 1987]. 
Deviating slightly from the canonical definition, R. Motro explored and tested many different 
tensegrity systems for architectural application [Motro, 2006]. 
 

a)     b)   
 

c)  

Fig. 2.37: Architectural applications: a) Geodesic tensegrity dome by Fuller, 1953 [Gengnagel, 2002] b) 
tensegrity roof design of ABDR Arch. Association [ABDR] c) Tensegrity Bridge (Kurilpa Bridge, Brisbane; 

designer: Cox Rayner Architects and Arup Engineers) [Anupam]  

A new type of deployable structure can be created due to the intrinsic property of 
tensegrity structures. Foldability can be easily obtained by changing the element lengths. This 
can be either the changing of strut length by using telescopic bars or the folding can be 
enriched by changing the length of the cable. The main difficulty of the former method is that 
in the folded configuration the cable is often creates an inextricable tangle, thus unfolding the 
system is often opposed. The later rather proved to be a usable method concerning 
assemblies. [Motro et al, 2001] 
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Fig. 2.38: Single-curved tensegrity grids for responsive architecture by A. Herder [Herder] 

The trend to design adaptive/responsive architectural applications turns the kinematic  
indeterminacy of tensegrity structures an advantage [Tibert, 2002]. This is due to the fact 
that only small quantity of energy is needed to change the configuration and thus the shape 
of the structure. One example of adaptive roof design is the actuated tensegrity of A. 
Herder [Herder], who used computational design tools to develop a load bearing simple 
curved tensegrity structure (Fig. 2.38) that is able to change its shape continuously. He used 
synchronized actuation in a regular tensegrity grid. 
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2.5 Other deployable lattice designs and mixed systems 
 
For architectural and special applications several deployable lattice systems were invented 
using ideas differing from the already mentioned pantographic or tensegrity systems and 
some use a mixture of the mentioned types. The categorization of these lattice systems is 
quite cumbersome as each invented system is very unique based on ingenious inventions 
[Pellegrino, 2001]. Herein only a few examples will be presented without scoping an 
exhaustive list.  
For instance, the coilable mast system invented by Mauch [Webb and Mauch, 1969] is 
derived from the idea that any elastic rod can be pushed to a helical shape [Love, 1944] 
(cited by [Pellegrino, 2001]). His lattice column is deployed through compressing the 
longitudinal elastic bars (called longerons) into a helical deformed shape. In the deployed 
configuration the stiffness is reached by bracing bars (battens) perpendicular to the 
longerons, and diagonal prestressed cables (Fig. 2.39a). 

 

a)  b)  

Fig. 2.39: Deployable masts: a) coilable mast by Mauch (Jet Propulsion Laboratory [JPL]) b) foldable mast by 
Hegedűs [1993] 

When released the coiled structure deploys due to the loaded energy in the folded 
system. Loaded energy can come from special joint configuration, too. This is the case with 
the deployable structure presented by Fanning and Holloway [1993] where the deployment 
is due to a spring embedded at the node, forcing the joint to rotate and consequently to 
deploy when releasing the structure [Raskin, 1998]. The deployment of the foldable column 
of Hegedűs [1993] also cumulates strain energy with lengthening the horizontal elastic bars 
while packing (dashed lines in Fig. 2.39b) which results in the structure to pop-up when 
released. This column consisting of rigid and elastic bars and rigid panels between segments 
― based on the Yoshimura folding pattern – folds with a snap-through-like behavior. 

Folding can be achieved by changing the length of the elements similarly to the 
examples mentioned at the tensegrity structures. Fig. 2.40 presented by Mikulas et al. [1992] 
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shows the three possibilities of deploying a planar truss with ܰ bays: by changing the length 
of the diagonal, the chord or the battens. 

 
Fig. 2.40: Deployment of planar truss with length-variation [Mikulas et al., 1992] 

Other foldable lattice designs use sliding joints for transformation. This is the case 
with the ancient structure of the umbrella. Similar but more recently published examples are 
shown in Fig. 2.41 presenting the 3D foldable lattice structure of Onoda et al. [1996] and of 
Krishnapillai et al. [2004]. The latter is based on the cable-strut systems of Liew et al. [2003]. 
 

a)   

b)  
  

Fig. 2.41: Deployable 3D truss units with sliding node:  a) unit by Onoda et al. [1996] (cited by Raskin 
[1998]) and b) pyramid in pyramid unit by Krishnapillai [Vu et al., 2006/1-2] 

For avoiding the defects of instantly deploying, snap-through type deployable 
structures [Krishnapillai, 2004] a new family of deployable units was introduced combining 
cable-strut systems with foldability features similar to the deployable tensegrity structures. 
One example was already demonstrated in Fig. 2.41b. A different category within this family 
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is the cable-stiffened pantographic systems shown in Fig. 2.42. These mixed systems ― based 

on the ‘deploy & stabilize’ method ― is rather applicable for terrestrial use as elements need 
post-stabilizing and consequently with these units structures cannot be instantly deployed, 
the on-site assembling is more laborious. The deployable cable truss systems were 
thoroughly analyzed by Vu et al. [2006/1-2]. Due to his paper the novel system proves a 
remarkable structural efficiency (calculating from the optimized structure’s total 
load/structural self-weight and the span/deflection ratios) that is even comparable with 
conventional non-deployable double layer lattice designs and it is also fast and easy to 
construct (comparing with conventional double layer structures) while the weight of the 
structures is still competitive. For an example of architectural application of cable-
pantographic elements, a deployable membrane structure was offered by Tran et al. [2006]. 
The two-wing butterfly membrane structure is supported by two deployable inclined arches 
(Fig. 2.43), for which parametric studies were carried out by the authors in the case of 30m 
spanning arches. 

 
 Fig. 2.42: Two types of cable stiffened pantographic system by Krishnapillai et al. [Vu et al., 2006/2]: 

stowed state, deployed state and the final, ‘locked’ configuration 

 
 

 
Fig. 2.43: Deployable arches by cable-strut-pantograph elements for a two-wing butterfly membrane 

structure: deployment of arches and the model of the structure [Tran et al., 2006] 
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2.6 Soft, membrane structures 
 
Similar to the structures opened by the movement of rigid panels, F. Otto classified the 
membrane convertible constructions also in a movement matrix (Figs. 2.44-45). He 
distinguished two different types; one with stationary supporting structure and another with 
movable supporting structure. Pneumatic structures can also be classified as deployable 
membrane structures. 
As mentioned in the introduction, these types of structures were already in practice in the 
very past history. However, it was just at the end of the second half of the last century when 
engineers began to apply textile as building material for large-span constructions. The 
pioneering works of Frei Otto motivated plenty of membrane designs throughout the world. 
 

type of 
movement 

direction of movement 
parallel central circular peripheral 

bunching 
    

rolling 

 

 

  

Fig. 2.44: Classification of membrane convertible constructions: the movement matrix of structures with 
stationary supporting structure [Otto, 1971] 

type of 
movement 

direction of movement 
parallel central circular peripheral 

sliding 

 

 

 

 

folding 

   

 

rotating   

 

 

Fig. 2.45: Classification of membrane convertible constructions: the movement matrix of structures with 
movable supporting structure [Otto, 1971] 
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2.6.1 Foldable membrane structures 

The main difficulty concerning deployable membrane structures is the stabilization of 
the membrane in all the possible configurations (folded, during deployment, opened 
configuration). In the extended position, the membrane can be secured with pretensioning, 
which can be achieved either by the drive system itself or by special tensioning devices at the 
edge of the roof. The flapping wind effect during deployment ― causing quite large 

deformations with small forces ― is one of the main difficulties. [Walter] 
 

 
Fig. 2.46: Olympic Stadium in Montreal (architect: Roger Taillibert) [Tolivero] and its original retractable 

membrane roof [Barnes, 2000] 

This difficulty occurred in the case of the Olympic Stadium in Montreal, Canada 
(Fig. 2.46). The stadium was to open for the 1976 Olympic Game, but the retractable roof 
was finished only in 1988. The 20 000 m2 PVC/Kevlar folding membrane roof which was to 
be opened and closed by the 175 m inclined tower, was repeatedly damaged by local failures 
due to aero-elastic instability. The structure was replaced with a non-retractable spatial steel 
roof structure. 

A similar but more successful design was evolved in 1988, Zaragoza, Spain for the 
roofing of the bullfighting Arena (Figs. 2.47-48). The roof was separated to a 83 m diameter 
fixed and a 23 m diameter central convertible membrane roof. For both parts a double 
spoked wheel system was used. The prestressed outer spokes span between an outer 
compression ring and two sets of inner tension rings held apart from each other by struts. 
The membrane of the permanent roof is draped over the lower set of radial cables. The 
retractable inner roof has similarly two sets of spokes between the inner tension rings and a 
central hub above the centre of the bullring. The two sets of spokes are connected by an 
electric spindle. The membrane is suspended to the lower layer of spokes by slides that can 
be moved by a stationary drive system. When the roof is open, it hangs bunched up in the 
centre, when is to be closed, 16 electric motors draw the bottom edge of the membrane 
out to the lower tension rim. Once the edge is secured to the rim, prestress is applied by 
rotating the top spinder (Fig. 2.48) at the central point, thus the retracted membrane is 
stabilized [Holgate, 1997; Walter]. Even a 63 m diameter retractable roof was constructed in 
accordance with this principle over the centrecourt in Hamburg Rothenbaum [Walter]. 
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Fig. 2.47: The retractable part of the Bullfighting Arena roof in Zaragoza (architect: J. Schlaich) [Sobek, 

1999] (cited by [Walter]) 

 
Fig. 2.48: Central spinder for prestressing the cables [Holgate, 1997] 

Different membrane folding can be evolved by the umbrella principle. A nice example 
is the convertible cover of the two courtyards of the Prophet’s holy Mosque in Madinah 
(Fig. 2.49a). The twelve large umbrellas (17 m x 18 m in the open configuration) are stem 
from the developed system of F. Otto [Otto, 1995]. These umbrellas ensure the shading 
during the day and the ventilation and cooling during the night. 
 

a)  b)  

Fig. 2.49: a) Architectural umbrellas in the courtyard of Mosque in Madinah [Otto, 1995] (cited by 
[Walter]), Foldable roof in the Rathaus, Vienna [Tillner, 2003] (cited by [Walter]) 

The openable roof installed in 2000 in the courtyard of the Rathaus, Vienna 
(Fig. 2.49b) is an example of a different convertible system where the membrane is retracted 
with sliding the cross-girders  [Walter; Tillner, 2003]. 

The ability to provide numerical simulations for increasingly complex membrane is 
advancing rapidly due to computer hardware development and the improved computational 
procedures of nonlinear structural systems. This sweepingly advanced development with the 
inventions in textile technologies is exploring the further architectural and technical 
potentials of these structures.  
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2.6.2 Pneumatic structures 

The supporting medium of pneumatic structures is compressed air or gas that creates 
tension forces on the elastic membrane, thus ensures the strength and the stability of the 
structure. Probably the balloon is the most well-known classical pneumatic structure. In 
construction practice the first inflatable structures appeared in the 1950’s. These were 
mainly shelters with single-wall inflatable “bubbles”, called air-supported structures 
constructed from a single layer  of pliable material that is supported by the internal 
compressed air. This internal air pressure slightly has to exceed the external pressure. 
Consequently, this system requires an air lock, a continuous pressurization system that 
balances the air leakage, and an anchorage that fixes the structure to the ground or to the 
substructure. 
Other inflatable designs use double-layer inflatable configurations. These air-inflated 
structures use tubular (air-beam structure) or cellular (air-cell building) shaped membrane 
skin with an internal pressurization that form together structural elements similar to the 
conventional ones. The skin takes the tension forces whereas the air is responsible for 
compression forces in a manner like the reinforced concrete. This new generation of 
inflatable structures has in general no steel, no aluminium, and no traditional supports and 
yet can handle large structural loads. 

a)   b)  

Fig. 2.50: a) Inflatable roof for Heathrow airport central bus station  (architect: D5) [Lindstrand, 2006]; b) 
19.5 m x 40 m Exhibition Hall with air-inflated elements (architect: Festo AG & Co) in Germany [Festo] 

Now, when fabric and computer technology are catching up with this concept, the 
possibilities of inflatable structures in commercial, military and special applications seem 
unlimited. Even cubic interior building can be constructed with the air-beam technology 
(Fig. 2.50b). While more expensive than comparable aluminum structures, inflatable beams 
save money on transportation and installation because of their small weight and packing size. 
Proving these facilities, the inflatable roof designed for covering the central bus station of the 
Heathrow airport (Fig. 2.50a) is an instructive example. The installation of the roof 
completed in one only night in 2006. Pneumatic design was chosen because the realization of 
the foundation of a conventional roof would have been run into obstacles as one of the 
airport’s Tube stations is just underneath the site [Linstrand, 2006]. 
 



HIGHLY FLEXIBLE DEPLOYABLE STRUCTURES ARCHITECTURAL BACKGROUND 

43 
 

2.7 Pneumatic systems for the erection of spatial structures 

2.7.1 Formwork for thin concrete shell structures 

Concrete shells are extremely material efficient structures as uniformly distributed loads 
mainly cause normal forces appearing in the cross sections while moments are insignificant. 
Moreover, these structures are also very popular for their attractive architectural 
appearance. Nevertheless, the time-consuming and expensive production with a 
conventional formwork is an important drawback of these structures. Similarly to the 
pantadome system used for lightweight 3D spatial structures, transformability can serve for 
combating this major problem of concrete shell designs. 
Three different pneumatic formwork methods are used for monolithic concrete shell 
structures [van Hennik, 2008]. If the membrane is inflated first, (Fig. 2.51) the concrete can 
be sprayed on the inner side or the outer side of the membrane. Evidently the 
reinforcement has to be placed before spraying the concrete. In the case of the shotcrete on 
the inside a special layer of polyurethane foam has to be sprayed on the membrane to hold 
the reinforcement. The membrane can be either taken off/out for reuse after the hardening 
of the concrete or can be left as a waterproof layer. 
 

a)  b)  c)  

Fig. 2.51: a) Inflation of formwork; b) shotcreteing on the inside of the membrane; c) irregular shape 
structure constructed with pneumatic formwork [Pirs SA.] 

The principle of the third method, invented by D.N. Bini, is to do all the constructional work 
on the ground in plane and then inflating the structure into 3D shape. The pneumatic lifting 
of the reinforcement and the freshly placed concrete can be achieved with a special sliding 
reinforcement system (Fig. 2.52a) consisting of conventional steel bars and extensible spirals. 
As the structure lifts and takes its shape, the spirals stretch and the reinforcing bars slide 
inside them to reach their final position in the structure [Roessler and Bini, 1986]. For 
Binishells two layers of membrane is used. The inner layer is attached to the ring beam being 
part of the foundation and the outer layer is placed after placing the reinforcement and the 
concrete on the inner layer. The concrete is vibrated after lifting the structure via an 
equipment that is attached to the centre of the outer membrane (Fig. 2.52b-c). After lifting 
the outer membrane can be removed and after hardening the inner layer can be deflated and 
reused for the next construction. 

Though pneumatic systems has already been applied for concrete shell structures 
since the 1960s, these systems seem to regain their popularity due to their aesthetic 
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appearance, improved technological background and renewed structural concepts. Even 
irregular shell shapes are constructed with pneumatic formwork [van Hennik, 2008]. 
 

a)  b)  c)  

Fig. 2.52: The binishell system: a) expandable reinforcement [Bini, 1972]; b) erection of the dome [Binishell 
System]; c) vibration of concrete after erection [Bini, 1972] 

2.7.2 Erection of segmented concrete or ice domes 

Two new and very efficient construction methods for hemispherical concrete shells 
have been developed at the Institute for Structural Engineering at Vienna University of 
Technology by J. Kolleger. The novel concepts were tested not just on large scale concrete 
but as well on ice domes. Both methods start with an initial plain plate that is subsequently 
transformed into a shell structure [Dallinger and Kolleger, 2009]. 
The principal step of the first method is to fragment the shell structure into a polyhedron 
enabling the use of planar precasted parts that can be easily produced at the factory, 
transported to the site and then quickly assembled. The elements kept together by radial 
and circumferential steel tendons (Fig. 2.53). The circumferential tendoms are tightened 
through winches and are instrumental for the assembly of the elements. The erection is 
achieved with a pneumatic formwork that lifts the structure into the desired position. 
[Dallinger and Kolleger, 2009] 
 

  
Fig. 2.53: Transformation of precast divided planar segments into a hemispherical dome [Dallinger and 

Kolleger, 2009] 

In the case of the second method the flat plate is divided into segments which are 
distorted uni-axially and lifted into the final position (Fig. 2.54) [Dallinger and Kolleger, 2009]. 
The transformation is controlled by one or more active cable(s) and by either a crane 
positioned in the centre or a pneumatic formwork placed under the structure [Kolleger et 
al., 2005]. 
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Fig. 2.54: Segment lift method [Dallinger and Kolleger, 2009] 

 

2.8  Summary of architectural background 
 

After a short summary of the historical background, an overview on transformable 
structures used in civil engineering and architecture have been presented. The feature of 
transformability in the case of architectural use can arouse from two different motivations. 
The first motivation is to create a fast and/or safe construction method and in some cases it can 
be also the need for a quick demounting process and the possibility of reusability. The second 
motivation is to adapt the structure to external excitations like functionality requirement or 
weather conditions. 

 
The motivation to create a fast constructional method resulted in exotic 

inventions that can be sub-classed to two categories: 
− Controlled mechanisms (e.g. by active cables, by pneumatic system) 
− Structures undergoing instability phenomenon 

 
Pantographic systems like the collapsible movable theatre of Piñero, the deployable mast 

of Pellegrino or the quickly retractable swimming pool cover of Escrig can be mentioned in 
the first category. The minimal material use Tensegrity systems also offer the possibility of 
foldability. Ongoing research works try to find a greater variety of possible architectural 
applications. Some soft membrane systems like cable-stiffened textile structures and pneumatic 
structure can be quickly installed too. F. Otto remarkable systematic study on foldable 
membrane structures with the recent available material and calculation technologies led to a 
wide variety of architectural membrane designs even used for big span permanent structures. 
Pneumatic systems can also serve as a supplementary system for the erection of 3D 
structures making the installation easier, faster and safer. The “pantadome” structural system 
invented by Momoru Kawaguchi, and some earlier and novel pneumatic formwork methods for 
constructing monolithic and precasted concrete domes can be mentioned among these 
systems. 

Self-deploying or self-stabilizing (bi-stable) structures can be constructed involving instability 
phenomenon during deployment. The pop-up systems like the coilable mast of Mauch or the 
antiprismatic cylindrical structure of Hegedűs can be mentioned among self deploying lattice 
systems. A nice example of a self-stabilized pantographic dome system is the one first 
offered by Zeigler. 
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Though these structures mentioned above still attract the military and provisory events 
in first place, a trend can be observed to apply them for permanent buildings where 
translucent or extremely light construction is needed. 

 
Structures that can move while in use can be designed, too.  

A common example is an off-shore industrial installations where transformability is needed 
because of functionality requirements. Less familiar structures are those where 
transformability is coming from energy-saving consideration or from the aim to ameliorate 
occupant comfort, raise the attraction of the building. 

The goal to design dynamic structures that are able to change 
morphological/mechanical/physical properties and behavior as a response to external 
excitations and requirements was first addressed in the 1960s and 1970s. 

Early transformable designs appeared in first place for housing sport venues. With the 
currently growing media focus on sport events the demand for retractable structures seems to 
be steadily increasing. Most of these designs use rigidly moving parts to retract the roof 
structure. In most of the cases the slicing of an ideal structural shape results in gigantic 
structural height, and mechanical instruments enabling retraction further increase the costs 
of these structures. With new generation roofs like the retractable pantograph structure of 
Hoberman and Pellegrino and the application of a retractable skin fixed to the permanent 
structure can rather count with economical aspects. Several research topics focus on 
adapting tensegrity and pantographic structures to adaptive architecture. Combining 
transformable structures with a highly distributed control system which is already available in 
today’s technology an intelligent responsive architecture is born. This possibility does not 
only prospect indoor environmental quality enhancement and better occupant comfort but a 
better use of natural energy resources and thus a rather sustainable design. 
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3 ANALYSIS OF A SIMPLIFIED PLANAR MODEL 
3.1 Aims and scope 
 

The snap-through type antiprismatic structures were aimed to be investigated. These 
structures undergo instability phenomenon during packing and deployment. The instability 
phenomena imply in general that a small perturbation of loading can lead to a disproportional 
amplification in computed response [Ibrahimbegovic, 2009]. The main challenge for civil 
engineers of analyzing these structures come from the fact that for conventional engineering 
structures the stability analysis stops at the calculation of the critical state, at the most, the 
nature of the post-critical range is needed. 

For the first step, basic procedures used for stability analysis, and for structures 
undergoing instable phases have been investigated. To better familiarize with geometrical 
instability problems, the analysis of a simple, snapping-through shallow truss and its force-
displacement diagram was analyzed with static and dynamical approach. This is presented in 
Annex B. In the beginning of the research, the investigation and refinement of existing 
research of the snap-through type lattice design, first presented by Zeigler [Zeigler, 1976], 
and later on thoroughly analyzed by several researchers [Krishnapillai, 1985, 1986; Gantes, 
2001], was targeted as main research field. By profoundly studying the general characteristics 
(advantages and disadvantages) of the system, and simulating the packing of the structure, the 
choice of changing the predefined research topic has been made. Nonetheless, a force 
displacement diagram obtained from the finite element simulation of the packing of a basic 
segment is also annexed (Annex C).  

 Similarly to the above mentioned snap-through type deployable structure, the self-
deployable (or pop-up) cylindrical structure proposed by Hegedűs undergoes instability 
problem during packing as well. But this system is rather immature, due to the lack of 
profound mechanical investigation and of ideas for practical application. 

To understand better the behavior of these antiprismatic lattice structures, first a 
simplified 2D model was identified and investigated manifesting similar properties to the 
targeted 3D structure. The simplified model consists of elastic horizontal bars of initial 
length lH0=2r0 and rigid bracing bars shown in Fig 3.1. The bracing is only connected to the 
horizontal bars with joints allowing free rotations. The bracings are not connected to each 
other at their crossing point, hence allowing free sliding on each other. The top horizontal 
bar and every second horizontal bar are rigid. A vertical packing can be obtained by 
stretching the elastic horizontal bars. 
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Fig. 3.1: Simplified planar deployable structure 

3.2 Analytical investigation 

3.2.1 Mechanical analysis of the basic segment 

Kinematical equations 
The basic unit (segment henceforth) of the planar structure consists of two rigid and 

one elastic horizontal bars and four rigid bracings shown in Fig. 3.2.  If the initial height of the 
segment is 2݄଴, the length of the bracing is: 

 

݈௕ ൌ ඥሺ2ݎ଴ሻଶ ൅ ሺ݄଴ሻଶ 
 

When packing the segment by pushing down the top rigid horizontal bar to the 
height 2h࣐, the middle elastic horizontal bar will stretch out. Assuming that the bracing is 
rigid enough, that is, uncompressible the stretched length can be calculated from the 
Pythagoras equation as follows: 

ඨቆ
݈ு
ఝ

2
൅ ଴ቇݎ

ଶ

൅ ሺ݄ఝሻଶ ൌ ݈௕ 

(3.1) 

݈ு
ఝሺ݄ఝሻ ൌ 2ඥሺ݈௕ሻଶ െ ሺ݄ఝሻଶ െ  ଴ݎ2

(3.2) 

 ଴ݎ2
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a)   

b)  

Fig. 3.2: a) Bottom segment of the simplified structure and its packing b)  asymmetric freedom of motion of 
planar structure  

And the stretching in function of the changed height ሺ݄ఝሻ or in function of the displacement 
 :of the top nodes is (ݑ)
 

ߣ ൌ
݈ு
ఝ

଴ݎ2
ൌ
2ඥሺ݈௕ሻଶ െ ሺ݄ఝሻଶ െ ଴ݎ2

଴ݎ2
ൌ ඨ4 ൅

ሺ݄଴ሻଶ െ ሺ݄ఝሻଶ

ሺݎ଴ሻଶ
െ 1 ൌ ඨ4 ൅

݄଴ݑ െ ଶݑ 4⁄
ሺݎ଴ሻଶ

െ 1 

(3.3) 
In the packed configuration all the bars lie in the same line, hence the final length and the 
stretching of the elastic bar (corresponding to the final, packed configuration) is: 
 

݈ு
ఝห

௛കୀ଴
ൌ 2݈௕ െ  ଴ݎ2

(3.4) 

௛കୀ଴|ߣ ൌ
݈ு
ఝห

௛കୀ଴

଴ݎ2
ൌ
݈௕
଴ݎ
െ 1 ൌ ඨ4 ൅ ൬

݄଴
଴ݎ
൰
ଶ

െ 1 

(3.5) 
As presented in Fig. 3.2.b, the structure has non-symmetrical freedom of motions as 

well, which is to be avoided in the case of a simple deployable mast. In the followings, the 
analysis will be restricted to movements symmetrical to the vertical symmetry axis of the 
structure only. It is to be mentioned that this is an important and large restriction. It involves 
the restriction of global buckling of the structure which should be also investigated in the 
future. 
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Equilibrium equation 

 

Fig. 3.3: Equilibrium of one segment of planar structure 

For packing the structure, applying a vertical force ܰ at the top horizontal bar with 
keeping the symmetry of the structure (Fig. 3.3), the elastic bar of the analyzed segment is 
tensioned by the four bracings; two coming from the top and two coming from the bottom. 
The tension force in the middle horizontal bar will be: 

 

ܵுሺ݄ఝሻ ൌ 2
݈ு
ఝሺ݄ఝሻ 2⁄ ൅ ଴ݎ

݄ఝ
∙
ܰ
2

 

(3.6) 
As it can be seen from equation (3.6), the equilibrium equation is not linear in the sense that 
it depends on the geometrical configuration that is on the actual height of the segment.  
 

Constitutive equation 
The constitutive equation depends on the actually used material. First, for simplifying 

the solution and to get a basic understanding of general behavior, for the analytic solution 
the hypothesis of linear elasticity will be assumed, that is, the connection between strains 
and stresses can is herein written by Hooke’s law. If the axial stress along the bar-length and 
the cross section ܣ is uniform, this can be written in the form: 
 

ߝ ൌ ߣ െ 1 ൌ
ܵுሺ݄ఝሻ
ܣܧ

 

 (3.7) 
where ߣ denotes the stretching, that is, the ratio of actual extended length and initial length 
of the elastic bar. 
 

Equilibrium path 
 Combining kinematic, equilibrium and constitutive equations the force-displacement 
diagram can be written in the form: 

ܰሺ݄ఝሻ ൌ
ܵு݄ఝ

݈ு
ఝ 2⁄ ൅ ଴ݎ

ൌ
ሺ݄ఝሻߣሾܣܧ െ 1ሿ݄ఝ

ሺ݄ఝሻߣ଴ሾݎ ൅ 1ሿ
ൌ
ܣܧ
଴ݎ

∙

ඨ4 ൅
ሺ݄଴ሻଶ െ ሺ݄ఝሻଶ

ሺݎ଴ሻଶ
െ 2

ඨ4 ൅
ሺ݄଴ሻଶ െ ሺ݄ఝሻଶ

ሺݎ଴ሻଶ

݄ఝ 
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(3.8) 
or in function of ݑ) ݑ ൌ 2݄଴ െ 2݄ఝ), the vertical displacement of the top nodes: 
 

ܰሺݑሻ ൌ
ܣܧ
଴ݎ

ۉ

ۈ
ۈ
ۇ
1 െ

2

ඨ4 ൅
݄଴ݑ െ ଶݑ 4⁄

ሺݎ଴ሻଶ ی

ۋ
ۋ
ۊ
ቀ݄଴ െ

ݑ
2
ቁ 

(3.9) 

 

Fig. 3.4: Equilibrium path of basic segment 

 It can be seen from the plotted equilibrium path of Fig. 3.4 that during packing the 
structure goes through a critical point. Before this critical point the first state is stable 
(drawn with continuous line) while the second state is unstable (drawn with dashed line). 
Both the initial (deployed) and the final (packed) configuration correspond to zero force, but 
the latter is an unstable equilibrium position. If the bars can cross each other, the equilibrium 
path continues similarly to the force-displacement diagram of a typical snapping-through 
structure (like a shallow truss) finding its stable, stress-free position in a downward 
reflection of the initial one (Fig. 3.5). The closed configuration corresponds to the maximal 
strain energy (Fig. 3.5), and consequently with a small perturbation the structure will 
disengage right away from this configuration towards a position corresponding to smaller 
strain energy. 
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Fig. 3.5: Equilibrium path and internal energy during closure of boundary bars for basic segment with the 
‘post-packed phenomenon’ 

 If trying to close a mast consisting of more than one segment and if the segments do 
not close simultaneously this phenomenon necessarily occurs preventing the structure from 
a complete packed configuration (see later). When designing packable structures, it is of 
principal interest that the packed volume is minimal. Consequently, in order to ensure 
complete closure this phenomenon is to be avoided. Furthermore we will call this behavior 
after closure a ‘post-packed phenomenon’. 
 

Calculation of critical state – nonlinear instability problem 
Assuming cyclic symmetrical folding, the planar structure’s motion can be written 

with one only geometrical parameter. Let that parameter be ݑ. The critical equilibrium state 
corresponds to the zero value of tangent stiffness that is: 
 

݀ܰ
ݑ݀

ൌ 0 

(3.10) 
Introducing the function: 
 

݃ሺݑሻ ≔ ඨ4 ൅
݄଴ݑ െ ଶݑ 4⁄

ሺݎ଴ሻଶ
 

(3.11) 

ܰሺ݃ሺݑሻ, ሻݑ ൌ
ܣܧ
଴ݎ
൬1 െ

2
݃ሺݑሻ

൰ ቀ݄଴ െ
ݑ
2
ቁ 

(3.12) 

݀ܰ
ݑ݀

ൌ
ܣܧ
଴ݎ
൤

2
݃ଶሺݑሻ

݃′ሺݑሻ ቀ݄଴ െ
ݑ
2
ቁ ൅ ൬

1
݃ሺݑሻ

െ
1
2
൰൨ ൌ

ܣܧ
଴ݎ
൥െ

1
2
൅

1
݃ଷሺݑሻ

ቆ
݄଴ െ ݑ 2⁄

଴ݎ
ቇ
ଶ

൅
1
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(3.13) 
where 
 

݃′ሺݑሻ ൌ
݀݃ሺݑሻ
ݑ݀

ൌ
1
2

1
݃ሺݑሻ

݄଴ െ ݑ 2⁄

ሺݎ଴ሻଶ
 

(3.14) 
Hence the critical values of ݑ can be calculated from the equation: 
 

݀ܰ
ݑ݀

ൌ 0 ⟹
1

݃ଷሺݑ௖௥ሻ
ቆ
݄଴ െ ௖௥ݑ 2⁄

଴ݎ
ቇ
ଶ

൅
1

݃ሺݑ௖௥ሻ
െ
1
2
ൌ 0 

(3.15) 
Substituting equation (3.11) in (3.15):  
 

൬
݄଴
଴ݎ
൰
ଶ

൅ 4 െ
1
2
ቈ4 ൅

݄଴ݑ௖௥ െ ௖௥ଶݑ 4⁄
ሺݎ଴ሻଶ

቉
ଷ/ଶ

ൌ 0 

 

⟹ ௖௥ݑ ൌ 2݄଴ േ ଴ඨ൬ݎ2
݄଴
଴ݎ
൰
ଶ

െ ቈ2 ൬
݄଴
଴ݎ
൰
ଶ

൅ 8቉
ଶ/ଷ

൅ 4 

(3.16) 
For instance, in the case of ݎ଴ ൌ ݄଴ ൌ 1 the results for the vertical displacement of the top 
joints will be:  

௖௥_ଵ,ଶݑ ൌ ቄ0.803
3.197

 

3.2.2 Mechanical analysis of multi-storey, ‘alternately stiffened’ structures 

Tracing equilibrium paths: uniform and bifurcated packing 
 By piling ݇ segments on top of each other we get a deployable mast shown on Fig. 
3.1. From now on, we call this type of masts ‘alternately stiffened’ as every second horizontal 
bar is rigid (see Fig. 3.1). The above analyzed segment is serially connected, and consequently 
in any of the horizontal sections of the basic segments the resultant force equals the force 
applied in the top facet.  Hence the equilibrium equation of the complex system will be 
falling into ݇  separate equations: 
 

ܰሺࢎఝሻ ൌ ௜ܰሺ݄ఝ௜ሻ ൌ ௜ܰሾ݄ఝ௜, ሺܣܧሻ௜. ሺ݄/ܴሻ௜ሿ			ሺ݅ ൌ 1. . ݇ሻ 

௜ܰ ൌ ܰ 
(3.17) 

where the functions ௜ܰሺ݄ఝ௜ሻ correspond to the function given in (3.8). To determine the 
force displacement diagram of the complex structure the cumulated relative displacements 
are needed from the segment heights. The relative displacement between the boundary-
facets, that is, the displacement of the top facet (if the bottom facet is fixed) is: 
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ݑ ൌ 2෍൫݄଴ െ ݄௜
ఝ൯

௞

௜ୀଵ

 

(3.18) 
 The force-displacement diagram in the case of uniform packing and ݇ ൌ 6 is shown in 
Fig, 3.6. The uniform packing can be mentioned as an ‘ideal’ and rather irrational equilibrium 
path as it is only possible when the segments are exactly identical and if the mass of the 
structure is ignored. In Fig. 3.6 the optional successively controlled deployment path is 
shown too, which can be realized by controlling the displacement of the end nodes of each 
rigid horizontal bar. 
 

 

Fig. 3.6: ‘Ideal’ (uniform) and successive packing of planar deployable mast of six segments 

The bifurcation of the equilibrium path can be easily visualized for two segments built 

on top of each other. In Fig. 3.7 the equilibrium equations ଵܰ൫ࢎଵ
ఝ൯ and ଶܰሺࢎଶ

ఝሻ in (3.17) are 
plotted for the two segments. Each equilibrium equation has only the actual height of the 
corresponding segment as variable, and consequently, the equilibrium surfaces in function of 

ଵࢎ
ఝ and ࢎଶ

ఝ will be cylindrical. The equilibrium path can be plotted from ଵܰ൫ࢎଵ
ఝ൯ ൌ ଶܰሺࢎଶ

ఝሻ,  
that is, it follows the intersection(s) of the two surfaces. The red line (assigned to path “a” 
and “b”) in Fig. 3.7 corresponds to the uniform packing when the closure takes effect 
simultaneously. The paths in black are the optional, bifurcated paths. This later path can be 
mentioned as typical due to the deviation of the physical and geometrical parameters in 
reality.  In this typical case (e.g. following the paths ‘c’ and ‘d’ on Fig. 3.7) one segment of the 
structure closes while ‘kicking out’ the other segment to its initial position. After the 
complete packing of one segment, if the ‘post-packed phenomenon’ (see Chapter 3.2) is 

restricted, the corresponding ௜ܰ൫ࢎ௜
ఝ൯ equilibrium equation can be ignored, assuming ࢎ௜

ఝ ൌ 0 
in the further analysis. With this restriction, if the mast is further pushed to closure, the 
‘kicked up’ segment can be packed as a single segment following the equilibrium path 
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calculated for that single segment (paths ‘f’ or ‘e’ on Fig 3.7). The restricted packing 
sequences following the different paths are shown on Fig. 3.8. 

 

 

Fig. 3.7: Restricted equilibrium paths in function of the actual height of the segments (ࢎ	ఝ) of planar 
deployable mast consisting two segments 

 
a-b (uniform) path 

 
a-d-f path 

 
a-c-e path 

Fig. 3.8: Different restricted packing sequences following different equilibrium paths  
(path names in accordance with Figure 3.7) 
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Fig. 3.9: Typical force-displacement diagram ― restricted packing of planar deployable mast of six segments 
(notations: H: total height, u: displacement of the top nodes, N: packing force) 

 Fig. 3.9 shows the typical force-displacement diagram which is the bifurcated case 
when no segments close together. As it is presented in this figure, the diagram can be 
plotted with the help of the curves corresponding to the uniform packing of a mast of 1-6 
segments. In the followings the function of the typical force displacement diagram and its 
general characteristics will be investigated. 

Let’s nominate the ante-critical phase of the force-displacement function in (3.8): 
 

N୳ሺuሻ ൌ 	N: Ωା 	→ R		with		Ωା ≔ ሼu|	u ൑ uୡ୰	ሽ 
(3.19) 

and its post-critical phase: 

N୮ሺuሻ ൌ 	N: Ωି 	→ R		with		Ωି ≔ ሼu|	uୡ୰ ൑ u ൑ 	2hሽ 
(3.20) 

with uୡ୰ being the critical relative displacement between the top and bottom polygonal 
facets, which is defined in (3.16). 
 

dNሺuሻ
du

ฬ
୳ୀ୳ౙ౨

ൌ 0, Nሺuୡ୰ሻ ൌ Nୡ୰ 

(3.21) 
Let’s nominate also the inverse of ante-critical and post-critical parts of the force-
displacement function (Fig. 3.10): 
 

N୳
ିଵሺu ൅ uୡ୰ሻ ⇒ uିሺNሻ 

(3.22) 

N଴
ିଵሺuሻ ⇒ uୟሺNሻ 

(3.23) 

N୮
ିଵሺu ൅ uୡ୰ሻ ⇒ uାሺNሻ 

(3.24) 

ାሺܰሻݑ

ାሺሺܰሻݑ

Force-displacement curves corresponding to the 
uniform packaging of two, three…six segments 

௨ܰ଴ 

௣ܰ଴ 

௨ܰଵ 

 ௖௥ݑ

ሺܰሻିݑ

ሺܰሻିݑ5

௣ܰଵ 
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Fig. 3.10: Nomination of inverse functions 

The first, uniform packing phase for the six-storey structure corresponds to the function 
(Fig. 3.9): 
 

N୳଴ ൌ Nቀ
u
6
ቁ 					0 ൑ u ൑ 6uୡ୰ 

(3.25) 
The inverse of the function of the force-displacement diagram of the second, post-critical 
phase is: 
 

N୮଴
ିଵሺuሻ ⇒ u୮୨ሺNሻ ൌ 		6uୡ୰ െ 5|uିሺNሻ| ൅ uାሺNሻ		 

(3.26) 
After the complete closure of the segment in the post-critical state the mast begins 
uniformly packing, which corresponds to the function: 
 

N୳ଵ ൌ N൬
u െ 2h
5

൰ 					2h ൑ u ൑ 5uୡ୰ ൅ 2h 

(3.27) 
This stable phase is again followed by an instable state. The inverse of this part of the force 
displacement diagram is: 
 

N୮ଵ
ିଵሺuሻ ⇒ 	u୮ଵሺNሻ ൌ 2h ൅ 5uୡ୰ െ 4|uିሺNሻ| ൅ uାሺNሻ		 

(3.28) 
 
In general, a self-deployable structure consisting of k	antiprismatic segments the function of 
the equilibrium path for the alternately repeating stable and instable phases will correspond 
to: 

N୳୨ ൌ N ൬
u െ j2h
k െ j

൰ 				j2h ൑ u ൑ ሺk െ jሻuୡ୰ ൅ j2h		ሺj ൌ 0. . k െ 1ሻ 

(3.29) 

N୮୨
ିଵሺuሻ ⇒ u୮୨ሺNሻ ൌ 	j2h ൅ ሺk െ jሻuୡ୰ െ ሺk െ j െ 1ሻ|uିሺNሻ| ൅ uାሺNሻ	 

 

ሺj ൌ 0. . k െ 1ሻ 

ሺܰሻିݑ

ାሺܰሻݑ
௔ሺܰሻݑ
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u୮୨ሺNሻ: Γ୮୨ → Ε୮୨	 
 

Γ୮୨ ≔ ሼN|0	 ൑ N ൑ Nୡ୰	ሽ		 
 

Ε୮୨ ≔ ൛u୮୨หminሼሾj2h ൅ ሺk െ jሻuୡ୰ሿ	,ሾሺj ൅ 1ሻ2hሿሽ ൑ u୳୨
൑ maxሼሾj2h ൅ ሺk െ jሻuୡ୰ሿ	,ሾሺj ൅ 1ሻ2hሿሽ	ൟ 

(3.30) 
As it has been demonstrated above, the connection of geometrically instable units 

typically leads to a successive packing; after the first segment having passed its critical state, 
the packing localizes to the weakened unit, while the rest of the segments are released. This 
is a very similar phenomenon to that of material instability. For example, a tension test of a 
bar with elastoplastic softening behavior is serves for a good analogy. Considering a 
displacement controlled tensile test, the part of the bar, where imperfections cumulate, will 
be the first to reach its critical, yield stress. The weakened element, which became plastic, 
will impose the reduction of stress value through softening phase of constitutive behavior in 
that element. Ones the softening starts in the weakened element, reducing the value of 
stress, the other elements which were still elastic, will simply unload [Ibrahimbegovic, 2009 
pp 497-499]. 

 

Snap-back behavior of bifurcated packing 
The force-displacement diagram of the complex structure not only has descending 

parts, but also manifests snap-back phenomenon, that is, the typical equilibrium path turns 
backwards after reaching the critical force. It can be seen from Fig. 3.9, that this 
phenomenon becomes more emphasized with the increment of segment numbers. If the 
force-displacement diagram of one segment was symmetrical, that is, 

 

|ାሺܰሻݑ| ൌ  |ሺܰሻିݑ|
(3.31) 

 
than the last but one instable packing phase would be a vertical line and consequently its 
inverse would be a constant function: 
 

௣ሺ௞ିଶሻሺܰሻݑ ൌ ሺ݇ െ 2ሻ2݄ ൅ ሺ݇ െ ݇ ൅ 2ሻݑ௖௥ െሺ݇ െ ݇ ൅ 1ሻ|ିݑሺܰሻ| ൅ ାሺܰሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥݑ
଴

ൌ ሺ݇ െ 2ሻ2݄ ൅  ௖௥ݑ2
(3.32) 

Nonetheless, the force displacement diagram of the basic unit is not symmetrical:  
 

|uାሺNሻ| ൐ |uିሺNሻ| 
(3.33) 
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To see whether the diagram will manifest a snap-back behavior or not, the sign of the 

first derivate of the inverse function of the instable phases are needed (u୮୨ሺNሻ). If the 
derivative is positive snap-back behavior will occur. The analytical investigation of the inverse 
of the function Nሺuሻ leads to a root-finding problem of a polynomial of order four. The 
explicit determination of theses roots are quite cumbersome. Instead of doing that let’s 
consider the general characteristics of Nሺuሻ in the domain: 

 

Ω ≔ ሼu|	0 ൑ u ൑ 2h	ሽ 
(3.34) 

Let’s shift and mirror the function	N (Fig.3.11) by letting 
 

f:	Ω୤ → R 
 
to be the function defined by the formula 
 

fሺxሻ ൌ 	െNሺx ൅ uୡ୰ሻ ൅ b 
 
on the domain 

Ω୤ ≔ ሼx| െ uୡ୰ ൑ x ൑ 2h െ	uୡ୰ሽ 
(3.35) 

 
Thus 

fሺuሻ ൐ 0		for	ݑ ് 0 
and 

fሺ0ሻ ൌ 0	 
 (3.36) 

And hence in particular f has a minimum at zero. Of course f is not invertible, but similarly as 
before, we have two local inverses of f: we have the functions ݄ାand ݄ି defined by the 
formulas (Fig. 3.11): 
 

݄ାሺݕሻ ൒ 0, ݂ሼ݄ାሺݕሻሽ ൌ  ݕ
and 

݄ିሺݕሻ ൑ 0, ݂ሼ݄ିሺݕሻሽ ൌ  ݕ
(3.37) 

 
holding for “small enough” positive values of y.  
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Fig. 3.11: Shifting and mirroring the force-displacement diagram 

In what follows we shall compute the limit 
 

lim
௬→଴

ቤ
	݄ାሺݕሻ
݄ିሺݕሻ

ቤ 

(3.38) 
without entering in particular details regarding the actual form of the function ݂. 
At first it may seem that such a computation is not possible without using our actual 

knowledge of the function ݂. Indeed, it is not difficult to see, that if ― regarding the function 

f ― only condition (3.36) is known, then the value of the above limit cannot be deduced. 
Infact, if ݂ was not the shifted version of our force-displacement function ܰ, but the function 
 

݂ሺݔሻ ≔ xଶ														if	x ൒ 0
ሺݐ	ݔሻଶ								if	ݔ ൏ 0

 

(3.39) 
 
where t is a fixed positive constant, then by a straightforward calculation we would have that 
 

lim
௬→଴

ቤ
	݄ାሺݕሻ
݄ିሺݕሻ

ቤ ൌ  ݐ

 
(3.40) 

showing that the value of (3.38) can be an arbitrary positive number t>0.  
However, the function used for this example, though once differentiable, is not twice 
differentiable at zero. On the other hand, our actual function, which is the shifted version of 
our force-displacement function ܰ, is smooth; in fact, it is clearly analytical in a 
neighborhood of zero (i.e. ܰ is analytical in a neighbourhood of uୡ୰). So let us see what we 
can deduce instead of using the actual, rather complicated form of ݂	by only taking account 
of condition (3.36) together with the analytical nature of ݂. 
 
Let us consider the Taylor expansion 

u 

ܰሺݑሻ ܰሺݑ ൅  ሻݔ௖௥ሻ ݂ሺݑ

x u 

݄ାሺ݂ሻ݄ିሺ݂ሻ
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fሺxሻ ൌ fሺ0ሻ ൅ f ᇱሺ଴ሻx ൅
1
2
f ᇱᇱሺ0ሻxଶ ൅

1
3
f ᇱᇱᇱሺ0ሻxଷ ൅ ⋯ 

(3.41) 
around the point zero. Since ݂ሺ0ሻ ൌ 0, the constant term is zero and actually, by the fact 
that ݂ has a minimum at zero we must have that the first nonzero term must be an even 
power of ݔ with a positive coefficient. Thus we must have that 
 

fሺxሻ ൌ a	xଶ୬ ൅ Οሺxଶ୬ାଵሻ 
(3.42) 

where ݊ is some positive integer, ܽ ൐ 0	is a positive real and Ο is an ordo-function i.e. that 
|ܱሺݐሻ/ݐ| remains bounded in a neighbourhood of ݐ ൌ 0. 
 
By the definitions of ݄ା and ݄ି, we have that 
 

a	ሺ݄ାሺݕሻሻଶ୬ ൅ Οሺሺ݄ାሺݕሻሻଶ୬ାଵሻ ൌ a	ሺ݄ିሺݕሻሻଶ୬ ൅ Οሺሺ݄ିሺݕሻሻଶ୬ାଵሻ 
(3.43) 

Dividing by both sides with a	ሺ݄ିሺݕሻሻଶ୬, we obtain 
 

ሺ݄ାሺݕሻሻଶ୬

ሺ݄ିሺݕሻሻଶ୬
ൌ 1 ൅

Οሺሺ݄ାሺݕሻሻଶ୬ାଵሻ െ Οሺሺ݄ିሺݕሻሻଶ୬ାଵሻ
a	ሺ݄ିሺݕሻሻଶ୬

 

(3.44) 
where the right hand side clearly tends to 1 as ݕ goes to zero. 
Thus 

ሺ݄ାሺݕሻሻଶ୬

ሺ݄ିሺݕሻሻଶ୬
ൌ ቆ

݄ାሺݕሻ
݄ିሺݕሻ

ቇ
ଶ୬

 

 
tends to 1 as y goes to zero, showing that 
 

lim
௬→଴

ቤ
ሻݕାሺݑ	
ሻݕሺିݑ

ቤ ൌ lim
௬→଴

ቤ
	݄ାሺݕሻ
݄ିሺݕሻ

ቤ ൌ 1 

(3.45) 
This means that in the infinitesimally small neighborhood of the critical displacement the 
force-displacement diagram will be heading to be symmetrical. Considering the inverse 
function of the equilibrium path of the instable phases in (3.30) in the ߝ neighborhood of ௖ܰ௥ 
 

௣௝ሺݑ ௖ܰ௥ሻ ൌ 	݆2݄ ൅ ሺ݇ െ ݆ሻݑ௖௥ 

௣௝ݑ∆ ൌ ௣௝ሺݑ ௖ܰ௥ሻ െ lim
ே→ே೎ೝ

௣௝ሺܰሻݑ ൌ 	 limே→ே೎ೝ
െሺ݇ െ ݆ െ 1ሻ|ିݑሺܰሻ| ൅  	ାሺܰሻݑ

(3.46) 
 
For the last but one instable phase ( ݆ ൌ ݇ െ 2): 
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௣௞ିଶݑ∆ ൌ 	 limே→ே೎ೝ
െ|ିݑሺܰሻ| ൅ ାሺܰሻݑ ൌ 0ା 

(3.47) 
This theoretically means that this descending phase of the force displacement diagram just 
after the pick is heading to be vertical, that is, its inverse is heading to be a constant. The 
positive sign in (3.41) the last term is due to (3.33), and means that the first descending part 
is not snapping back. However, for 	݆ ൌ ݇ െ 3: 
  

௣௞ିଷݑ∆ ൌ 	 limே→ே೎ೝ
െ2|ିݑሺܰሻ| ൅ ାሺܰሻݑ ൑ 0 

(3.48) 
This result means that the snap-back behavior of the structure occurs for segment-
number more than two. 
 

Due to fact that the structure undergoes instability phenomenon during packing, 
displacement control should be applied when smooth packing is targeted. Nonetheless, 
because of the snapping-back phenomenon, even with an incremental displacement control 
of the top facet of the column, the structure will manifest sudden internal displacements, 
resulting in non-negligible inertial and impact effects. In reality this effects get significant if the 
relative sudden displacement of the internal facets is more than the segment-height. The 
length of the sudden displacements grows with the increment of the segment-number, and 
reaches the length of the segment-height when: 

 

݆2݄ ൅ ሺ݇ െ ݆ሻݑ௖௥ ൌ ሺ	݆ ൅ 1ሻ2݄ 
(3.49) 

This means that in the descending phase, from the critical state until the complete closure of 
the currently weakened segment, negative displacements have to be applied, that is, the top 
nodes have to be displaced upwards to get the next configuration corresponding to zero 
force. In equation (3.49) ݆2݄ ൅ ሺ݇ െ ݆ሻݑ௖௥ represents the displacement of the top facet 
corresponding to theሺ݆ ൅ 1ሻth critical state, and ሺ	݆ ൅ 1ሻ2݄ is the displacement 
corresponding to the ሺ݆ሻth zero-force state. From equation (3.49) the critical segment 
number can be deduced: 

݇௖௥ ൌ
2݄
௖௥ݑ

 

(3.50) 
 Consequently the relation ݇௖௥ ൒ ݇ means that snap-back phenomenon necessarily 
occurs when no segments close together. If not, the structure might be able to be packed 
without any violent relative displacements if smooth displacement control of the top nodes 
are effectuated, but small sudden displacements can still occur. 
Substituting the equation in (3.16) into (3.50) the critical number of segments is: 
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݇௖௥ ൌ
1

1 െ ඨ1 െ ቈ2
଴ݎ
݄଴
൅ 8 ൬

଴ݎ
݄଴
൰
ଷ

቉
ଶ/ଷ

൅ 4 ൬
଴ݎ
݄଴
൰
ଶ

 

(3.51) 
 Equation (3.29) is plotted in Fig.3.12 in function of the ratio of the initial segment 
height and the length of elastic bars ሺ݄଴/ݎ଴ሻ. For example if this ratio is less then ~2.5, than 
in the case of three segments and typical packing path, the snap-back phenomenon will not 
only occur at the critical state, but the sudden internal displacement will be larger than the 
segment-height. Nonetheless, for ratios bigger than that, the snap-back phenomenon will still 
occur when the segment-number is larger than three, but the length of these displacements 
will not pass the segment-height.  

 

Fig. 3.12: Critical number of segments in function of ݔ ൌ
௛బ
௥బ

  

Packing path with ‘post-packed phenomenon’ 
 When the ‘post-packed phenomenon’ is not restricted, the structure will avoid the 
completely closed configuration, and disengage from the configuration corresponding to the 
maximal internal energy. In this case, the segment first to be closed will cross its bottom 
horizontal bar and pulls out the other segment to an extended configuration. When 
displacing the top nodes of the mast to the support line the mast will be one segment high 
(either in a reflected position or not, depending on which segment is the first to close), and 
consequently no further packing is possible. In order to visualize this behavior, the identical 
force-displacement diagrams of both units (relative displacement of top and bottom nodes) 
are plotted on Fig. 3.13 showing the current positions in the associated configurations. The 
two displacements summed together give the force-displacement diagram of the complex, 
two-storey structure (last diagrams in Fig. 3.13). One possible sequence in the non-restricted 
case is shown on Fig. 3.14.  The two diagrams for restricted and non-restricted packing can 
be compared by putting together the last diagram of configuration ‘VIII’ in Fig. 3.11, and the 
two last loops of the diagram in Fig. 3.9. It can be seen that the first part is identical until the 
closure of the first segment. Nonetheless, as the packed segment disengages from the closed 
configuration the structure has to be pulled back in order to smoothly push the top 

0 2 4 6 8 10
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3

4

5

6

ncr x( )

x
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horizontal bar until the bottom one. And still, the final configuration will not be a packed 
one; it will stop in a stable configuration corresponding to zero self-stresses and zero 
external force. 
 

 

 

Fig. 3.13: Constructing the force-displacement diagram of deployable mast of two segments from the 
individual diagrams of separated segments without preventing ‘post-packed phenomena’  

(see the packing sequence with the assigned configurations on Fig. 3.12, ho/ro=1) 

 Theoretically the restriction means taking out one of the equilibrium equations and 
fixing its variable to a constant value when the actual height has once reached zero value. To 
prevent ‘post-packed phenomenon’ physically, the two boundary horizontal bars has to be 
clicked together, which means additional and variable boundary conditions in the system. 
However, without this restriction we still have to stick to the already presented intersection 
paths presented in Fig. 3.7. In order to see the bifurcated paths the part of the equilibrium 
equation corresponding to the negative segment heights and the ones corresponding to the 
extended heights has to be also graphed. The non-restricted path is shown on Fig. 3.13. 
 

I. II. 

III. IV. 

V. VI. 

VII. VIII. 
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Fig. 3.14: Packing sequence of deployable mast of two segments without preventing ‘post-packed 
phenomenon’  

 

Fig. 3.15: Non-restricted equilibrium paths in function of the actual half-segment heights (ࢎ	ఝ) of the planar 
deployable mast of two segments 

Stability analysis 
 The paths where the increment of packing force leads to an increment of 
displacements is stable, the ones where the force has to be decreased in order to pack the 
structure smoothly is unstable.  
Due to the serial connection of the elements the resistant vertical force is the same in each 
segment, and depends only on the current height of the corresponding segment, 
consequently the critical state will be defined by the equation already given in (3.16): 
 

I. 

II. 

III. IV. 

V. VI VII. VIII. 

I. II. 

III. 

IV. V. 

VI. VII. 

VIII. 
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݀ܰሺࢎఝሻ

࣐ࢎ݀
ൌ 0 

 

߲ܰሺࢎఝሻ

࣐ࢎ߲
ൌ 0	 ⇒ 		݄௖௥

ఝ
௜ ൌ േݎ଴௜ඩቆ

݄଴௜
଴௜ݎ
ቇ
ଶ

െ ൥2 ቆ
݄଴௜
଴௜ݎ
ቇ
ଶ

൅ 8൩

ଶ/ଷ

൅ 4 

(3.52) 
And the corresponding critical force is: 
 

௖ܰ௥௜ ൌ
௜ܣܧ
଴௜ݎ

∙

ۏ
ێ
ێ
ێ
ێ
ۍ

1 െ
2

ඨ4 ൅
ሺ݄଴௜ሻ

ଶ െ ሺ		݄௖௥
ఝ
௜
ሻଶ

ሺݎ଴௜ሻ
ଶ

ے
ۑ
ۑ
ۑ
ۑ
ې

		݄௖௥
ఝ
௜ 

(3.53) 
The structure will get to the critical state at the smallest value of the critical force: 
 

௖ܰ௥ ൌ min	ሺ ௖ܰ௥௜ሻ 
(3.54) 

If all the mechanical parameters (axial stiffness, height/radius ratio) coincidences the critical 
state will be reached at the same time by the separate segments of the complex structure. 
However, in this case, the critical point is not only a limit point but a bifurcation point, as 
well. When the critical load is reached, the branch-choosing is random. The different 
branches correspond to different number of segments losing their stable states. 
 

Taking self-weight into account 
If the self-weight of the structure is not to be ignored then the vertical force acting 

on the structure is not identical in the segments, but still the mechanical behavior can be 
calculated from a separate analysis of the segments. 
If we consider only concentrated masses of magnitude ݉ in the end nodes of the rigid 
horizontal bars (see Fig. 3.16), the equilibrium paths corresponding to the upraising and 
descending phases have to be modified to functions with the following inverses: 

௨ܰ௝
ିଵሺݑሻ ⇒ ௨௝ሺܰሻݑ ൌ ෍ሼݑ௔ሾܰ ൅ ሺ݇ െ ݅ሻ݊݉݃ሿሽ

௞ିଵ

௜ୀ௝

െ ሺ݇݊݉݃ሻݑ െ 	݆2݄ 

ሺ݆ ൌ 0. . ݇ െ 1ሻ 
:௨௝ሺܰሻݑ Γ୳୨ ↦ Ε୳୨	 

Γ୳୨ ≔ ሼN|ሺ݆ െ ݇ሻ݊݉݃	 ൑ ܰ ൑ ௖ܰ௥ ൅ ሺ݆ െ ݇ሻ݊݉݃	ሽ		 
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Ε୳୨ ≔

ە
ۖ
۔

ۖ
ۓ

௨௝หݑ െ ሺ݇݊݉݃ሻݑ ൅ 2݆݄ ൑ ௨௝ݑ ൑ ሺ݇ െ ݆ሻݑ௖௥ െ෍ሼݑ௔ሾሺ݅ െ ݇ሻ݊݉݃ሿሽ ൅ 2݆݄

௞ିଵ

௜ୀ଴ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௎ೠೕ

	

ۙ
ۖ
ۘ

ۖ
ۗ

 

(3.55) 

௣ܰ௝
ିଵሺݑሻ ⇒ ௣௝ሺܰሻݑ	 ൌ 	ܷ௨௝ െ ቮ ෍ ሼିݑሾܰ ൅ ሺ݇ െ ݅ሻ݊݉݃ሿሽ

௞ିଵ

௜ୀ௝ାଵ

ቮ ൅ ାሾܰݑ െ ሺ݇ െ ݆ሻ݊݉݃ሿ 

:௣௝ሺܰሻݑ Γ୮୨ ↦ Ε୮୨	 

Γ୮୨ ≔ ሼN|ሺ݆ െ ݇ሻ݊݉݃	 ൑ ܰ ൑ ௖ܰ௥ ൅ ሺ݆ െ ݇ሻ݊݉݃	ሽ		 

Ε୮୨ ≔ ൛ݑ௣௝หmin൛ܷ௨௝	,ሾ2݆݄ െ ሺ݇݊݉݃ሻሿൟݑ ൑ ௨௝ݑ ൑ max൛ܷ௨௝	,ሾ2݆݄ െ  ൟ	ሺ݇݊݉݃ሻሿൟݑ
(3.56) 

 

 

Fig. 3.16: Planar deployable mast with self-weight 

It can be seen from the equilibrium equations plotted in Fig. 3.17 that the weight of 
the structure will eliminate the bifurcation point at the critical state, as the intersecting 
surfaces are vertically slid with the weight of one segment and consequently eliminating the 
possibility of uniform packing even in case of arbitrarily small weight. This is a good example 
to demonstrate that the initial potential energy function, corresponding to identical 
geometrical and physical constants in the segments, is not structurally stable, that is, by 
disturbing it with a sufficiently small smooth function will change the number or the type of 
its stationary points. This phenomenon can be also provoked by a slight deviation of the axial 
stiffness of the elastic horizontal bars. In both cases the packing will take place successively. 
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With self-weight, the bottom segment will be the first one to snap to the packed 
configuration followed from the bottom to the top, one by one (Fig. 3.18). If it is the axial 
stiffness that deviates, the segment with the weakest horizontal bar will be the first one to 
close followed by the stiffer segments. 
 

 

Fig. 3.17: Equilibrium paths in function of the half-heights of the segments (݄ଵ
ఝ: half-height of top segment, 

	݄ଶ
ఝ: half-height of bottom segment ) of planar deployable mast consisting of two segments taking into 

account the weight of the structure

 

Fig. 3.18: Packing sequences of the planar alternately stiffened mast taking into account the self-weight of 
the structure (restricted path) 

 The method of plotting the force-displacement diagram is similar to that one 
presented for the typical case, where the weights were not taken into account. However, in 
this case the individual force-displacement diagrams have to be plotted by sliding them 
vertically with ݅݉݃, that is, with the weight of the segments above. This is shown on the 
upper drawing on Fig. 3.17. For example the individual force-(relative) displacement diagram 
of the bottom segment is slid by 6݉݃, the one above the bottom by 5݉݃ etc. The first part 
of the diagram can be constructed (lower diagram on Fig. 3.19) by summing all the 
displacements corresponding to a certain level of packing force read from the slid diagrams. 
As mentioned above and can be seen from Fig.3.19, the bottom segment will be the first one 
to reach its critical state and consequently, when further squashed the post-critical behavior 
of this unit will impose the release of the rest of the structure. When the bottom segment is 
completely closed the segments above will be somewhat stretched. This stretching is more 

restricted path 

non-restricted path 
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intense in the top segment as the compressive force coming from the weight of the 
structure is less. When further packing the structure, the second segment from the bottom 
will close next releasing the segments above etc. 

Fig. 3.19: Constructing the force-displacement diagram ― restricted packing of planar deployable mast of 
six segments with self-weight 

(notations: H: total height, u: displacement of the top nodes, u0: initial displacement of the top nodes from the 
weight of the structure) 

3.2.3 Mechanical analysis of masts without intermediate stiffening 

Tracing equilibrium paths 
The behavior of the multi-storey alternately stiffened mast is already interesting to 

analyze and not perspicuous to understand well its general behavior, but still can be 
explained transparently from the behavior of one only segment. Now let’s consider a more 
complex structure, where there are no intermediate rigid bars, that is, all the horizontal bars 
are elastic (Fig. 3.20). 

Let us consider such a structure consisting of ݇ segments (the basic segment of pop-
up masts without intermediate stiffening is half of the one described for ‘alternately stiffened’ 
mast). For the sake of simplicity the equilibrium function will be written in the function of 
࣐࢘, that is, in function of the current half-length of the horizontal elastic bars. Here ࣐࢘ is a 
vector of ݇ ൅ 1 elements (see Fig. 3.20): 

 

࣐࢘ ൌ ௜ݎ
ఝ		ሺ݅ ൌ 0. . ݇ሻ, ଴ݎ		

ఝ ൌ ௞ݎ
ఝ ൌ  ଴ݎ

(3.57) 

௨ܰ଴ 

௣ܰ଴ 

௨ܰଵ 

௣ܰଵ 
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Fig. 3.20: Planar deployable mast without intermediate stiffening 

The actual height of the segments in function of the actual half-length of the elastic bars (Fig. 
3.21a): 
 

݄௜
ఝሺ࣐࢘ሻ ൌ ݄௜

ఝ൫ݎ௜
ఝ, ௜ିଵݎ

ఝ ൯ ൌ ට݈௕
ଶ െ ൫ݎ௜

ఝ ൅ ௜ିଵݎ
ఝ ൯

ଶ
 

(3.58) 

a) b)  

Fig. 3.21: a) Height of the non-stiffened mast from current bar-lengths and b) equilibrium of forces  

The stretching of the elastic bars: 

௜ሺ࣐࢘ሻߣ ൌ ௜ݎ௜൫ߣ
ఝ൯ ൌ

௜ݎ
ఝ

଴ݎ
 

(3.59) 
The ith elastic bar is stretched by the forces in the bracings coming from the upper and from 
the lower segments. This stretching force is (Fig. 3.21b): 
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ܵு௜ ൌ
ܰ
2
௜ݎ
ఝ ൅ ௜ିଵݎ
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(3.60) 
From (3.59) and from the linear constitutive equation in (3.7) the equilibrium equation: 
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(3.61) 
The force ܰ can be also written in function of the displacement of the top of the mast, 
which is: 

ݑ ൌ෍൫݄଴ െ ݄௜
ఝ൯

௞

௜ୀଵ

ൌ෍ට݈௕
ଶ െ ൫ݎ௜

ఝ ൅ ௜ିଵݎ
ఝ ൯

ଶ
௞

௜ୀଵ

 

(3.62)	 
Equation (3.60) is a system of ݇ െ 1 equations with ݇ െ 1 unknowns if the value of the force 
ܰ on the top level is known. The equilibrium equations (3.61) are presented in Figs. 3.22-23 
for ݇ ൌ 3 and ݇ ൌ 4. In the latter case (݇ ൌ 4), symmetrical behavior was assumed, that is, 

by supposing ݎଵ
ఝ ൌ ଷݎ

ఝ. 

 

Fig. 3.22: Equilibrium path in function of the half-lengths of the elastic horizontal bars in the case of ݇ ൌ 3, 
initial half-length: ݎ଴ ൌ 1 

 



HIGHLY FLEXIBLE DEPLOYABLE STRUCTURES  PLANAR STRUCTURE 

72 
 

 

Fig. 3.23: Equilibrium path in function of the half-lengths of the elastic horizontal bars in the case of ݇ ൌ 4, 
initial half-length: ݎ଴ ൌ 1 

 The equilibrium equations in this case will not be cylindrical any longer but doubly-
curved, as the tension force in the elastic bars depends not only on its own length but on the 
length of the neighboring elastic bars as well. 
 When analyzing mast of three segments the two equilibrium equations will be 
identical and consequently, Fig. 3.22 will be axis symmetrical. This necessarily means that the 
equilibrium path will follow the symmetry axis, which results in a uniform extension of the 
two elastic bars (Fig. 3.24). Though the elastic bars extend uniformly, the middle segment will 
close first as its bracings are attached to two extending bars while the ones of the top and 
bottom segment are connected to a rigid and an elastic one. 
 When analyzing mast of four segments and with the assumption of symmetrical 

folding (ݎଵ
ఝ ൌ ଷݎ

ఝ), the equilibrium equations written for the first and for the second elastic 
bar will not be the same and thus Fig. 3.23 will not be symmetrical. The upper we climb on 
the intersection path the more the asymmetry of the intersection-path develops and the 

faster the middle elastic bar (of length ݎଶ
ఝ) extends relative to the extension of  ݎଵ

ఝ, the 
upper bar (Fig. 3.25). The beginning of the packing sequence is shown on Fig. 3.25. 
 

 

Fig. 3.24: Packing sequence without intermediate stiffening for ݇ ൌ 3 
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Fig. 3.25: Packing sequence without intermediate stiffening for ݇ ൌ 4 

This can be presented with the equilibrium equations, too. The three equations assuming 
horizontal symmetry of the column are: 
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(3.63) 

And the equilibrium will be where: 

ܰ ൌ ଵܰ ൌ ଶܰ ⇒
ܣܧ
଴ݎ

ଶݎ
ఝ െ ଴ݎ

ଵݎ
ఝ ൅ ଶݎ

ఝ

݄ଶ
ఝ

െ
ܣܧ2
଴ݎ

ଵݎ
ఝ െ ଴ݎ

ଵݎ
ఝ ൅ ଴ݎ
݄ଵ
ఝ ൅

ଵݎ
ఝ ൅ ଶݎ

ఝ

݄ଶ
ఝ

ൌ 0 

݄ሺݎଵ
ఝ, ଶݎ

ఝሻ ൌ
ଶݎ
ఝ െ ଴ݎ

ଵݎ
ఝ ൅ ଶݎ

ఝ

݄ଶ
ఝ

െ 2
ଵݎ
ఝ െ ଴ݎ

ଵݎ
ఝ ൅ ଴ݎ
݄ଵ
ఝ ൅

ଵݎ
ఝ ൅ ଶݎ

ఝ

݄ଶ
ఝ

ൌ 0 

(3.64) 
This equation is shown on Fig. 3.26. 

 

Fig. 3.26: The equilibrium path in the parameter field for ݇ ൌ ݋ݎ/݄) 4 ൌ 1) 
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 Packing the structure further without restricting ‘post-packed phenomenon’ the path 
can only be seen if the equilibrium paths belonging to the pulling forces (corresponding to 
negative heights) are plotted too. The analytic identification of the general characteristic of 
the path gets quite difficult because of complicated surfaces and complicated intersections of 
paths (Fig. 3.27). Nevertheless, the three-storey structure was analyzed that can be 
completely packed even without restricting the ‘post-packed phenomenon’ (Fig. 3.28). The 
equilibrium path will draw a loop during packing and by repeating the first part of the loop 
the structure completely closes. 
 

 

Fig. 3.27: Equilibrium path in function of the half-lengths of the elastic horizontal bars in case of ݇ ൌ 3 with 
the ‘post-packed phenomenon’ 

 

Fig. 3.28: Complete packing sequence of three-storey mast without restricting ‘post-packed phenomenon’ 

 
 

ଵݎ
ఝ 

ଶݎ
ఝ 

ଵݎ
ఝ ݎଵ ଶ

ఝ  

ଵݎ
ఝ 

 

ଶݎ
ఝ 

ଵݎ
ఝ 

ଶݎ
ఝ 

ଶݎ
ఝ 

ଵݎ
ఝ 

ଶݎ
ఝ ݎଶ

ఝ 

ଵݎ
ఝ 

ଵ,ଶݎ
ఝ  



HIGHLY FLEXIBLE DEPLOYABLE STRUCTURES  PLANAR STRUCTURE 

75 
 

Stability analysis 
 To decide whether the equilibrium points are stable or not, the derivative of the 
equilibrium path(s) (ܰሺݑሻ) is (are) needed. In the case of the non-stiffened mast, even for 
smaller number of ݇, the equations, and to get explicit solution for the critical force as well, 
get quite cumbersome. Nonetheless, the stability analysis of the non-stiffened mast can be 
carried out with a numerical analysis. The energetic approach of the problem (see Appendix 
D) is easier to handle for the numerical investigation. For that, this analysis is later on 
explained at the numerical analysis chapter. 
 Fig 3.29 shows the influence of changing the ‘alternately stiffened’ mast to a ‘non-
stiffened’ one. While the surfaces in blue (light blue and dark blue) are the equilibrium paths 
(already presented in Fig. 3.23) corresponding to the equilibrium surfaces of the mast with 
݇ ൌ 4, the reddish (orange and red) surfaces are the ones corresponding to the ‘alternately 
stiffened’ mast consisting of two units (݇ ൌ 2)1. The equilibrium path of the ‘alternately 
stiffened’ mast is at the intersection of the two blue surfaces, the one of the ‘non-stiffened’ 
structure is at the intersection of the red and orange surfaces. It can be seen the maximum 
points of the two paths are different; the critical force of the ‘alternately stiffened mast’ is 
much larger (almost two times larger) than the one of the ‘non-stiffened’ one. 
 

  

Fig. 3.29: Comparing critical forces of ‘alternately stiffened’ and ‘non-stiffened’ structures by plotting 
equilibrium paths in function of the half-lengths of the elastic horizontal bars 

(The equilibrium path of the ‘alternately stiffened’ mast is at the intersection of the light blue and the dark 
blue surfaces, the one of the ‘non-stiffened’ structure is at the intersection of the orange and red surfaces, 

EA=100, ݄଴ ൌ 1, ଴ݎ ൌ 1, initial total height of the structure: ܪ ൌ 4݄଴)  

                                            
1 Note that the notation k for ’alternately stiffened’ and for ’non-stiffened’ masts are not identical. The basic 
segment of the ’alternately stiffened’ structure is the double of the one of a ’non-stiffened’ structure. 
Consequently, the compared structures are of equivalent total height. 

Critical force force for ’alternately stiffened’ mast Critical force for ’non- stiffened’ mast 
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3.3 Numerical analysis 

3.3.1 Methodology 

For the numerical analysis of the packing of the different pop-up masts two parallel 
analyses were carried out. The FEAP finite element software was used to present the 
general behavior of the structure and to trace the force displacement diagram. As some 
numerical difficulties were found and the verification of the results was sometimes rather 
cumbersome and ambiguous, a second, less sophisticated but more transparent simulation of 
the structure was developed in MAPLE. Fortunately the latter one confirmed the results of 
FEAP and hence the two programs together provided interesting results concerning the 
behavior of such structures. 

In order to be able graph the complete equilibrium path of the basic segment of the 
deployable mast a displacement control has to be applied because of the existence of 
instability phenomenon. In reality, as all the structure has to be kept symmetrical anyway 
(because of the asymmetrical freedom of motion of the structure), the evident packing 
procedure of the structure is of this type. 

However, in order to trace the complete force-displacement diagram of multi-storey 
structures, displacement control may not be sufficient if the number of segments is too large. 
In this case even by controlling smoothly the displacement of the top nodes (by fix 
incrementing values of ′ݑ′) the structure will ‘rattle’ down. This is due to the ‘snapping-back’ 
characteristic of the force-displacement diagram (Fig. 3.9, 3.17). Displacement control 
without snapping can be only effective if the displacement of all the nodes is controlled. The 
aim to trace the force-displacement diagram numerically dictates a different approach than 
force or displacement control. One of the available procedures is the arch-length method 
with an inherent additional equation controlling both the increments of displacements and 
the increments of force, which can be either a positive value or a negative one. This extra 
condition can be interpreted as a hyper-circle with a chosen radius. The computation in each 
increment will look for the intersection of this hyper-circle centered at an initial equilibrium 
point with the force-displacement diagram [Ibrahimbegovic, 2009, pp. 484-486]. The 
procedure starts with choosing the right parameter for the radius of this hyper-circle and 
the next step is to solve for both, the increment of the force and the increment of the 
displacements. 
In fact, the equilibrium path is just an abstract diagram as physically controlling both the 
packing force and the displacements is rather complicated. However, by possessing the 
complete force-displacement path an attempt can be given to pack smoothly the structure 
that is without any ‘rattle’ with the control of the displacement of the top nodes by 
somewhat pulling back the structure at the snapping-back points. Without doing so, violent 
internal snapping of the structure can be expected resulting in inertial forces that can 
damage the structure. Consequently, if the smooth control is not realizable, it is important 
to know the existence of snap-back phenomenon and if there is so, to put some additional 
instruments to dump the inertial forces and to control the vibration of the structure when 
proved necessary. 
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3.3.2 Software description 

 The FEAP (Finite Element Analysis Program) is a general purpose finite element 
analysis program which is designed for research and educational use. The analysis in this 
thesis was carried out with version 7.4. The FEAP program includes options for defining one, 
two, and three dimensional meshes, defining a wide range of linear and nonlinear solution 
algorithms, graphics options for displaying meshes and contouring solution values, an 
element library for linear and nonlinear solids, thermal elements, two and three dimensional 
frame (rod/beam) elements, plate and shell elements. Constitutive models include linear and 
finite elasticity, viscoelasticity with damage, and elasto-plasticity [FEAP, 2011]. Besides the 
wide range of built-in algorithms probably the best feature of FEAP is that the source code 
of the full program is available and changeable with a Fortran compiler. 
 For some verification, the MAPLE mathematical software package was used, using 
both its symbolic and numerical computational facilities. Some details about the performed 
simulation are attached in Annex D. 

3.3.3 Simulation of the packing of the basic unit 

 The first step to analyze the planar structure, was to simulate the packing of only one 
segment. This was executed with a very simple non-linear truss model. Though in FEAP rigid 
body options with joint interactions are implemented, this option is only available for solid 
elements within the available version which would just needlessly complicate the mesh 
generation. For a simpler solution in order to model the rigid rods the axial stiffness of the 
bracing was defined two orders higher than the axial stiffness of the elastic structure. This 
can be quite realistic for example in case of using steel for the bracings and a rubberlike 
material for the elastic bars. If this difference is to be defined much higher the tangent 
stiffness matrix will be bad conditioned resulting in the augmentation of the numerical 
errors. Certainly this is to be avoided. 
For the constitutive model, the hyper-elastic logarithmic stretch model was used. This model 
implemented in FEAP calculates the strain from: 
 

ߝ ൌ ln	ሺߣሻ 
(3.66) 

 is the vector of principal strains. In our case, that ߝ is the vector of principal stretches and ߣ
is, for simple truss model the engineering stress can be calculated from: 
 

ߪ ൌ  ߝ	ܧ
(3.67) 

The use of the logarithmic stretch seems to be a good choice, as it can fit well to the 
force-displacement diagram of a rubber-like material subjected to tensile test, and in the 
small-strain regime it gives identical results to that one calculated from ߝ ൌ ߣ െ 1 (Fig. 3.30). 
The fact that this model gives completely fallacious results in the large compression regime 
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can be ignored now, as the elastic bars of the planar mast are only subjected to tensile 
forces. 

 

Fig. 3.30: Comparison of logarithmic strain and the one used for small-strain measure for axial force 

 During packing, the bracings are subjected to high compression loads that can lead to 
the buckling of these rods. This local buckling phenomenon interacts with the global 
instability problem during packing. This possibility was ignored in the analysis for practical 
reasons with the assumption that the stiffness and the cross section of the bracings is such 
that the Euler critical force of the rods exceeds the maximum of compression force the 
bracings are subjected to. 
 The analysis of one segment was carried out with displacement control, by defining 
vertical boundary at the top two nodes and displacing it with the height of the segment with 
small increments. For each incremented value of displacement the necessary packing force 
and the corresponding displacements of the nodes were calculated using the Newton 
method, sometimes by an additional line search algorithm for better convergence. 

The numerical results of the simulation for the force-displacement diagram are 
presented in Fig. 3.31. It can be seen that the difference between the numerical and the 
analytical results is due to the different constitutive model. The larger the stretching of the 
elastic bar gets the larger the difference grows. Nevertheless, replacing the constitutive 
equation (3.7) to 

ߝ ൌ ln	ሺߣሻ ൌ
ܵுሺ݄ఝሻ
ܣܧ

 

 (3.68) 
and consequently the equilibrium equation (3.8) to 
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and plotting out the function on the same diagram (Fig. 3.31), it can be seen that this 
difference excludes large numerical errors, and hence the numerical simulation is more than 
satisfactory. 

 

Fig. 3.31: Verifying numerical results with analytical solution − packing of basic segment (numerical results 
with logarithmic strain, analytical results with small strain formulation and with logarithmic strain 

ܣܧ  ൌ 500, ݄଴ ൌ 1, ଴ݎ ൌ 1) 

3.3.4 Numerical analysis of ‘alternately stiffened’ multi-storey masts 

Unrestricted simulation 
 The ‘alternately stiffened’ multi-storey mast was modeled with horizontal boundaries 
at each rigid horizontal bar. These boundaries not only eliminate the possible deformation of 
these bars but also ensure the assumed symmetrical behavior of the structure. As presented 
above the uniform packing is not typical and if any physical or geometrical parameter of a 
segment is deviating from the others it is impossible. In fact the simulation works similar to 
reality, the only difference is that it is not the imperfections that control the behavior but 
the numerical errors. However, if a certain behavior is needed to be traced, it is better to 
ensure the wanted phenomenon by controlling it with predefined imperfections through the 
input. Accordingly, the following control procedures will be used to trace different paths 
(Fig. 3.32): 

 In order to trace the equilibrium path of the uniform and successive packing 
additional restraints are placed at the end of the rigid horizontal bars. The packing is 
simulated by controlling the vertical displacement of each horizontal bar with 
different proportional boundary displacements (Fig.3.32-33); 

 In order to trace the typical path the axial stiffness of the elastic bars are perturbed 
with a small imperfection in the finite element simulation. The order of the packing 
can be controlled by putting the smallest axial stiffness value for the elastic bar 
belonging to the segment to be closed first (Figs. 3.32, 3.35). In the MAPLE simulation 
the different bifurcated paths were traced by randomly perturbing the equilibrated 
variables before using them for the next iteration as initial values (see Annex D)  
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 Non-controlled paths are traced too, which is only governed by the numerical 
errors of the calculation (Figs. 3.35-36). 

 
 

 

Fig. 3.32: Numerical models with different packing controls (uniform control, successive control, imperfection 
control, the non-uniform controls pack the segments successively from the bottom to the top) ―ui is the 

proportional vertical displacement of the ith boundary in function of the pseudo time (t)  

 

Fig. 3.33: Uniform and successive packing of ‘alternately stiffened’ mast ―Reaction forces at the end nodes 
of the rigid horizontal bars (SR1-SR4: reaction forces from successive control respectively from the top to the 
bottom, UR1, UR4: reaction forces from the uniform control at the top and at the bottom nodes, downward 

forces are negative (ܣܧ ൌ 100, ݄଴ ൌ 1, ଴ݎ ൌ 1)2 

                                            
2 Note that for Fig. 3.32 the maximal packing force was ten times higher for the same geometrical configuration. The difference comes 
from two reasons. First the axial stiffness of the elastic bars is five times greater, second in Fig. 3.32 it is the total packing force that was 
diagrammed (two times the reaction force), while in Fig. 3.34 it is the reaction force at the top two boundary nodes. 
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Fig. 3.33 shows that with a successive or uniform control the structure can be closed 
smoothly without any ‘rattle’ and can be closed completely even without restricting ‘post-
packed phenomenon’. However, in practice this is only realizable if all the displacement of all 
the end nodes of the rigid horizontal bars is controlled. This might be possible for example 
by connecting them with two vertical telescopic-like devices. 
 

 

Fig. 3.34: Typical packing simulation of a two-storey planar mast without the restriction of ‘post-packed 
phenomenon’ controlled by the imperfection of axial stiffness values, downwards forces are negative 

ଵܣܧ) ൌ 100, ଶܣܧ	 ൌ 99.8, ݄଴ ൌ 1, ଴ݎ ൌ 1) 

   

Fig. 3.35: Typical packing simulation of a three-storey planar mast without the restriction of ‘post-packed 
phenomenon’ controlled by the imperfection of axial stiffness values, downwards forces are negative (ܣܧଵ ൌ

100, ଶܣܧ	 ൌ 99.8, ଷܣܧ ൌ 99.6	, ݄ ൌ 1, ଴ݎ ൌ 1) 

 In the case of only controlling the displacement of the tope nodes, the typical force-
displacement diagram can be traced for instance by perturbing the axial stiffness of the 
elastic bars. This is presented in Figs 3.34-35 for a two-storey and for a three-storey mast. It 
can be concluded that the drafted force-displacement diagram calculated from the analytical 
solution (3.11) and the one originating from the numerical simulations (Fig. 3.34) are in good 
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accordance and that the packing sequence demonstrated in Fig. 3.13 confirms the one 
received from the simulation. 
 In the numerical examples ― for facilitating the verification ― the initial height of the 
half-segment (݄଴) and the half-length of the elastic bars (ݎ଴) were chosen of unit length. The 
critical number of segment belonging to this initial geometry from (3.45) is two (݊௖௥ ൎ 2,5), 
which explains the large vertical part of the descending (on the figure incrementing) path of 
the force-displacement diagram of the three-storey structure in Fig. 3.35. Because of the 
poor convergence at the snapping-back part, a line search algorithm was used to be able to 
find the next equilibrium point after the critical state.  This simulation of the three-storey 
structure demonstrates well that, in case of structures whose packing is characterized by a 
snap-back phenomenon, the ‘exact’ equilibrium path cannot be plotted by simple 
displacement control. However, the simulation reflects well the reality; sudden internal 
snapping of a part of the structure may occur, and related inertial and impact effects should 
be carefully analyzed before realization. 
 As already mentioned above, the numerical simulation is somewhat similar to realistic 
behavior. While in case the of a real structure it is the geometrical and physical 
imperfections that governs the packing sequence, in the case of the numerical simulation it is 
the numerical errors that decide which segment will be the first one to close. This is 
demonstrated with the simulation of a five-storey mast, which was only controlled by the 
displacement of the top nodes, without any implemented imperfections (Fig. 3.36). It can be 
seen from the sequence shown on Fig. 3.36 that three segments from five close uniformly 
together 
To check whether the structure snaps-back or not in the case of simultaneous closing of 
several segments, the condition in (3.44) has to be modified to: 
 

ሺ݇ െ ݊௖௟ሻݑ௖௥ ൌ ሺ2݄଴ െ 		௖௥ሻ݇ݑ ⟹		
݇
݊௖௟

ൌ
2݄଴
௖௥ݑ

ൌ ݇௖௥ 

(3.70) 
with ݊௖௟ being the number of simultaneously closing segments. In the ‘non-controlled’ 

simulation ݊௖௟ ൌ 3 and accordingly, ݊௙௟/݇ ൌ 5/3 ൎ 1.67 ൏ ݇௖௥ ൎ 2.5 and smaller than two, 
as well. This means that the post-critical paths of the analyzed packing do not possess a 
snap-back behavior. This can be observed in Fig. 3.36. The breaking points on the diagram 
after the critical points are due to the ‘post-packed phenomenon’ which is manifested after 
each complete closure of a segment, and may result in sudden pulls of the rest of the 
structure. 
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Fig. 3.36: Packing sequence controlled by the numerical errors of planar pop-up mast consisting of five 
segments, with simulation without the restriction of ‘post-packed phenomena’ (ܣܧ ൌ 100, ݄଴ ൌ 1, ଴ݎ ൌ 1) 

 

Fig. 3.37: Force-displacement diagram of five-storey planar pop-up mast controlled by numerical errors 
without the restriction of ‘post-packed phenomenon’ (packing sequence in Fig. 3.36, ܣܧ ൌ 100, ݄଴ ൌ

1, ଴ݎ ൌ 1,	downward force is negative)  

Restriction of ‘post-packed phenomenon’ 
It have been demonstrated in the previous chapters that the ‘post-packed 

phenomenon’ may withhold the structure from complete closure. In case of a deployable 
structure this is to be avoided. 

By controlling the displacement of each end nodes of the horizontal bars this 
phenomenon is intrinsically has no importance. Nevertheless, when trying to close the mast 
by controlling only the displacement of the top nodes, the closed segments disengage from 
the closed configuration bringing unwanted sudden responses (see Figs. 3.36-37) into the 
packing behavior and troublesome geometrical configurations. In order to implement the 
restriction of the ‘post-packed phenomenon’ into the simulation contact elements have been 
added between the end nodes of the rigid horizontal bars (Fig. 3.38). A penalty approach was 
used to enforce the restraint between these nodes. The restraint force is governed by a 
penalty parameter and the distance in between the end nodes. When the two nodes 
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approach each other, the contact force increases, and keeps the segment from disengaging 
from the closed configuration to an upside-down one. If the penalty value is not large enough 
the restriction of the ‘post-packed phenomenon’ is not captured, and if it is too large, it 
turns the tangent stiffness matrix bad conditioned. For that, a careful adjustment of this 
parameter is necessary. 

 

Fig. 3.38: Restricting ‘post-packed phenomenon’ with contact forces 

 

Fig. 3.39: Force-displacement diagram of packing a two-storey mast: restricted simulation with contact forces 
between the end nodes of rigid horizontal bars and packing control by imperfection of axial stiffness values 

ଵܣܧ	) ൌ 100, ଶܣܧ ൌ 99, ݄଴ ൌ 1, ଴ݎ ൌ 1ሻ 

Fig. 3.39 shows that the restricted simulation confirms the behavior deduced from 
analytical assumptions; the force-displacement diagram from the numerical calculation is 
identical to the last two loops of the force-displacement diagram constructed in Fig 3.9. It is 
also presented in the figure that the contact forces between the end points of the horizontal 
bars are disproportional with the distance between them. Controlling the packing by 
inducing imperfection of physical parameters (in this case perturbing the axial stiffness) the 
bottom segment will be the one that closes first (ܣܧଵ ൐  ଶ). Parallel to the uniform closingܣܧ
in the first phase the contact forces grow simultaneously. Nevertheless, as the bottom 
segment reaches its critical height somewhat before the top segment ― because of its 

perturbed elastic bar ― it moves apart the boundaries of the top segment, resulting in the 
decrease of its contact forces. As the structure is further squashed, the extended segment 
starts closing again until the structures is packed into a completely closed configuration. 
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Fig. 3.40: Force-displacement diagram and the associated contact forces between the end nodes of rigid 
horizontal bars of packing two-storey mast with restricted simulation controlled by imperfection of axial 

stiffness, (	ܣܧଵ ൌ 100, ଶܣܧ ൌ 99, ଷܣܧ ൌ 98	݄ ൌ 1, ଴ݎ ൌ 1ሻ 

To capture the restraint for the three-storey structure is much more difficult 
because of the snap-back phenomenon. The simulation could only result a completely 
packed structure in case of extremely high penalty parameter. However, other than the bad 
converging part, after the first critical point (Fig. 3.40), the simulation gave back the expected 
force-displacement diagram and packing sequence. Despite of the apparent success of tracing 
the path, it is better to extend the analysis to one that takes the inertial effects into account. 
The results of the same example of the five-storey uncontrolled mast that was presented in 
Fig. 3.36-37 with the induced contact forces are shown on Fig. 3.41-42. It can be seen that 
the restriction of ‘post-packed phenomenon’ smoothes the sudden pull-backs. 
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Fig. 3.41: Packing sequence controlled by the numerical errors of planar pop-up mast consisting of five 
segments, with restricted simulation (ܣܧ ൌ 100, ݄଴ ൌ 1, ଴ݎ ൌ 1) 

 

Fig. 3.42: Force-displacement diagram of five-storey planar pop-up mast controlled by numerical errors 
(packing sequence in Fig. 3.41, ܣܧ ൌ 100, ݄଴ ൌ 1, ଴ݎ ൌ 1,	downward force is negative)  
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3.3.5 Numerical analysis of multi-storey masts without intermediate stiffening 

Unrestricted simulation 
Putting only elastic bars instead of the intermediate stiffen bars, the simulation of the 

mast is a little more difficult to verify for its less transparent behavior, but a try is given to 
analyze it in order to prepare further investigation of 3D antiprismatic structures. The three 
different packing methods explained for the numerical analysis of ‘alternately stiffened’ mast 
can be similarly applied, with the extinction of horizontal boundaries (Fig. 3.43). In case of 
the uniform and successive control vertical boundaries were added at each horizontal rod 
(Fig. 3.44). However, in contrary to the basic segments of the ‘alternately stiffened’ mast, the 
segments of the non-stiffened mast on top of each other are not identical which makes the 
successive displacement control being rather abstract. 

 

 

Fig. 3.43: Modeling the packing of non-stiffened mast by controlling only the displacement of the top nodes 

 
 

Fig. 3.44: Modeling the uniform and successive packing of a non-stiffened mast by controlling the 
displacement of every node 

Fig. 3.45 and Fig. 3.46 present the uniform packing sequence of a mast of three 
segments and the associated force-displacement diagram. As the segments are not identical, 
a uniform closure cannot be effectuated with uniform packing force, consequently, reaction 
forces equilibrating this difference will appear in the intermediate boundaries. The middle 
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segment is the less stiff, that is, it would be the first one to close, accordingly, this segment 
needed to be drawn out in order to get a uniform packing (Fig. 3.45). Though the presented 
packing sequence shows that such packing is possible, it can be seen from the force-
displacement diagram that it takes place under enormous packing forces which are of two 
times higher order than expected from the stiffness of the elastic bars. This augmentation of 
packing force means that for the packing the strains in the ‘theoretically’ rigid bars are 
needed too. If the bracings are assumed to be rigid the uniform packing cannot take place. In 
the further figures (Figs 3.47-3.49) it is presented that this behavior is characteristic of masts 
only with odd number of segments. 

When geometrical properties analyzed of mast of three segments, it is evident that it 
is not only the uniform packing but any kind of complete packing is impossible. The boundary 
segments will be closed only if the two elastic bars extend to the length 2ሺ݈௕ െ  ଴ሻ. But ifݎ
both boundary segments had been packed, the bracings of the middle segments should have 
lengthen to this length. Accordingly assuming completely rigid bracings, the boundary and the 
middle segments cannot close together except in case of ݈௕ ൌ  ଴, that is, a closed initialݎ2
configuration. 

In the case of different odd-storey masts this phenomenon also exists. Due to the 
rigid boundaries the completely packed pattern is pre-defined. This means every 
first elastic bar has to extend to the length 2ሺ݈௕ െ  ଴ሻ and every second one should regainݎ
its initial length 2ݎ଴. That is only possible for even number of segments. 

It can be concluded that the previous analytical investigation of non-stiffened 
structures ignored a very important detail when presuming packing behavior. This detail was 
hidden back-stage and the wrong assumption has not been first revealed as the numerical 
simulation gave back the presumed sequence of packing (Fig. 3.28). However, when analyzing 
the maximal packing forces, it turned out that the erroneously presumed sequence could be 
gained only due to the bracings being not rigid in the simulation. This backstage error, the 
complex domain of the equilibrium functions, can be revealed when rotating the equilibrium 
surfaces plotted in Fig. 3.27 to the right angle (Fig. 3.50). 

 

 

Fig. 3.45: Internal forces during packing: packing sequence of non-stiffened mast of three segments with 
uniform control (ܣܧ ൌ 100, ݄଴ ൌ 1, ଴ݎ ൌ 1ሻ 
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Fig. 3.46: Force-displacement diagram of packing a non-stiffened mast of three segments with uniform 
control (ܣܧ ൌ 100, ݄଴ ൌ 1, ଴ݎ ൌ 1ሻ 

 

Fig. 3.47: Packing sequence of a non-stiffened mast of four segments with uniform control (ܣܧ ൌ
100, ݄଴ ൌ 1, ଴ݎ ൌ 1ሻ 

 

Fig. 3.48: Force-displacement diagram of packing a non-stiffened mast of four segments with uniform control 
ܣܧ) ൌ 100, ݄଴ ൌ 1, ଴ݎ ൌ 1ሻ 
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Fig. 3.49: Packing simulation of a non-stiffened mast of five and six segments with uniform control (ܣܧ ൌ
100, ݄଴ ൌ 1, ଴ݎ ൌ 1ሻ, maximal reaction force at the top in case of five segments is ܴ௠௔௫௡ହ ൌ 361 and the 

one of six segments is ܴ௠௔௫௡ହ ൌ 5,95 

 

 

Fig. 3.50: Impossible closure of masts with odd number of segments ― equilibrium path in function of the 
half-lengths of the elastic horizontal bars in case of ݇ ൌ 3 with the ‘post-packed phenomenon’ 

 

The successive control of such a structure is rather awkward and ― due to the same 

reasons which keep the odd number of segments unpackable ― can be only achieved by 
changing the length of the bracings (Fig. 3.51). For that it seems a better possibility to control 
only the displacement of every second elastic bars, especially taking into account the fact 
that odd number of segments cannot lead to a complete compact configuration (Fig. 3.52). 
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Fig. 3.51: Fallacious packing simulation of non-stiffened mast of four segments with successive control ― 
reaction forces (ܣܧ ൌ 100, ݄଴ ൌ 1, ଴ݎ ൌ 1ሻ 

 

Fig. 3.52: Modeling successive packing of non-stiffened mast by controlling the displacement of every second 
node 

Nevertheless, if only every second elastic bar-ends are controlled then the ‘post-
packed phenomenon’ will necessarily occur (Fig. 3.53-54). First, when trying to close the 
bottom double-segment its middle, elastic bar extends and its upper elastic bar compresses 
(the compression of the latter results in the extension of the above elastic bar). This way the 
upper segment of this double unit will close first and when pushing further the upper elastic 
bar will duck through the middle one and accordingly, all the elastic bars will regain their 
initial geometry, while the height of the bottom segment turns only ݄଴  instead of the initial 
2݄଴ height. Afterwards, trying to close the upper double segment, almost until the very end 
of the packing, it will behave as the basic segment of the ‘alternately stiffened’ mast, but at 
the final stage this double unit disengages from the closed configuration as well. The large 
values of reaction forces at this final stage reflect that the complete sequence could be only 
achieved by changing the length of the bracings.   
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Fig. 3.53: Packing sequence from simulation of non-stiffened mast of four segments by successive control of 
double segments (ܣܧ ൌ 100, ݄଴ ൌ 1, ଴ݎ ൌ 1ሻ 
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Fig. 3.54: Packing simulation of non-stiffened mast of four segments by successive control of double 
segments ―reaction forces and stresses in the horizontal bars (ܣܧ ൌ 100, ݄଴ ൌ 1, ଴ݎ ൌ 1ሻ 

Fig. 3.55 shows the force-displacement diagram of packing a mast of six segments from an 
unrestricted simulation by controlling only the displacements of the top nodes. The nonzero 
value of the packing force at the final point reflects that no complete packing was achieved. 
The middle two segments closed first which was followed by the ‘post-packed phenomenon’ 
resulting in upward reaction forces at the top. If the symmetry (for example the axial 
stiffness of one of the middle elastic bars) had been violated than probably it would have 
been only one segment closing in the beginning.  
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Fig. 3.55: Non-restricted packing simulation of non-stiffened mast of six segments by controlling only the 
displacements of the top nodes (ܣܧ ൌ 100, ݄଴ ൌ 1, ଴ݎ ൌ 1ሻ 

Restriction of ‘post-packed phenomenon’ 
The restriction of the ‘post-packed phenomenon’ was modeled similarly to the case 

of ‘alternately stiffened’ mast. The difference is that in the non-stiffened mast contact 
elements have to be introduced between each node (Fig. 3.56). This was proved to be 
necessary before, in the section above, where the successive simulation controlling only 
every second node was presented. 

 

Fig. 3.56: Modeling the restriction of ‘post-packed phenomenon’ for non-stiffened masts 

The force-displacement diagram from the simulation of a mast of four segments and 
the associated stresses in the elastic bars are presented in Fig. 3.57. No perturbations were 
initialized and consequently the middle two segments could reach its critical height at the 
same state. These two middle segments closed first followed by the stiffer boundary 
segments. It is demonstrated in the diagram that contrary to the case of the ‘alternately 
stiffened’ mast, after the complete closure of a segment, its elastic bar does not stop 
changing length. 
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Fig. 3.57: Restricted packing of non-stiffened mast ―force-displacement diagram and stresses during 
packing (ܣܧ ൌ 100, ݄଴ ൌ 1, ଴ݎ ൌ 1ሻ 

The same simulation, but perturbing the axial stiffness of the bottom elastic bar 
results in an extra loop in the force-displacement diagram. This is presented with the 
associated stresses in the elastic bars in Fig. 3.58. It can be figured from the diagram that this 
perturbation caused a snap-back phenomenon that is after the first critical point some 
intermediate violent displacements occur. 

 

 

Fig: 3.58: Restricted packing of non-stiffened mast ―force-displacement diagram and stresses during 
packing (ܣܧ௜ ൌ 100; 		݅ ൌ ଷܣܧ	;1,2 ൌ 99;	݄଴ ൌ 1; ଴ݎ ൌ 1ሻ 
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Investigation of packing pattern and the critical force 
While the critical force of the ‘alternately stiffened’ mast was very simple to determine, to 
give the critical force of the alternately stiffened mast can only be numerically investigated. 
Fig. 59 shows the tendency of the critical force in function of the number of the segments. 

 

Fig. 3.59: Influence of segment number on the critical force of ‘non-stiffened’ masts for two different ratios 
of segment height and half-length of elastic bars (with logarithmic constitutive model, by FEAP) 

ܣܧ) ൌ 100;		݄଴ ൌ 1; ଴ݎ ൌ 1ሻ 

The same tendency is calculated with the self-developed MAPLE simulation which calculates 
with linear, elastic small strain constitutive model (see Appendix D, Fig D3). As presented in 
these figures, the mast gets softer with the increment of the segment number. By increasing 
the segment number, the critical value is heading to be the half of the critical force of the 
‘alternately stiffened’ mast.  

The pattern of the packing can be presumed from the numeric simulation carried out 
by uniform packing. From the intensity and the direction of the internal reaction forces, the 
softest segment can be extrapolated; the first segment to close will be possibly the one 
where the largest tension reaction forces occur. Nonetheless, in practice, the numerical 
experiments has shown that is it always the middle segments that close first in the 
simulation. 
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3.4 Summary of the investigation of simplified planar models 
 
For the preparation of investigating antiprismatic deployable structures, a two 

dimensional deployable structure having similar packing behavior was identified and analyzed.  
Firstly the packing of the basic segment of the mast was analyzed. Through the kinematical, 
equilibrium and constitutive equations the force-displacement diagram was deduced 
associated with the function: 
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The initial and the closed configurations both correspond to zero force. While the 

former being a stable state the latter is an unstable one. The given diagram exhibits an 
instability phenomenon, which occurs at the critical height: 
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After clarifying the mechanical behavior, the packing of the multi-storey masts were 

analyzed. Two different type of mast was defined. One is called ‘alternately stiffenened’ 
which is constructed by pilling the basic segment on top of each other and the other is called 
‘non-stiffened’ which is corresponds to the same topology but all the horizontal stiff bars are 
replaced by elastic ones. 

It was shown that the behavior of the ‘alternately-stiffened’ mast can be calculated 
from the behavior of its basic segments. In case of perfectly identical physical and 
geometrical parameters the mast can be packed with a uniform packing pattern, that is, the 
segments can close simultaneously. Nevertheless, this hypothesis is not realistic and 
consequently, the typical equilibrium path corresponds to a bifurcated one. A method to 
construct the typical force-displacement diagram is provided with and without taking the 
self-weight into account. 
From the construction method of the force-displacement diagram the critical segment 
number was deduced: 
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 If the number of analyzed segments was more than ݇௖௥ sudden intermediate nodal 
displacements, exceeding the initial height of the basic segment, is sure to take place during 
packing, assuming that no segments close simultaneously. However, smaller internal snapping 
already occurs for segment-number more than two. 

The ‘post-packed phenomenon’ was defined and presented which may withhold the 
structure from complete packing and consequently it is to be avoided. Packing sequences 
and equilibrium paths have been presented for both the restricted and the non-restricted 
case. The restricted simulation means restraining the model from disengaging from the 
completely closed configuration during packing, that is, with restricted simulation the 
structure is kept from the post-packed phenomenon. 

The basic segment of a ‘non-stiffened’ mast is half of the one of the ‘alternately 
stiffened’ one. It was proved that the ‘non-stiffened’ mast can only be completely packed in 
the case of even number of segments. 

Numerical simulations of the basic segment and the two types of multi-storey 
structures were carried out. Different control possibilities have been presented for the 
investigation of packing behavior. 

For ‘alternately stiffened’ masts, the uniform and the successive control were offered 
by guiding the boundary nodes of each segment. The typical path can be traced by 
introducing physical imperfections and controlling only the displacement of the top nodes. In 
the case of the latter option, restraining the structure from ‘post-packed phenomenon’ is 
necessary. This was simulated with a penalty method by pairing the end nodes of the rigid 
bars one under the other. The induced contact force is disproportional to the distance in 
between the paired nodes and keeps the segments from disengaging from the closed 
configuration. 

For ‘non-stiffened’ masts, the uniform packing control can be simulated by guiding all 
the nodes. This type of control is rather abstract, but served with some valuable results 
about the behavior of these structures. Firstly, it was revealed that non-stiffened masts can 
be only packed completely if the number of the segments is even.  Secondly, the internal 
reaction forces can give general idea about the softness of the different segments. The ones, 
which have to be drowned out during uniform packing is softer, the one that is compressed 
by these internal forces are stiffer. 

It is presented that the successive packing of the structure is only possible, when 
restraints are put in between each level of elastic horizontal bars. 

The influence on the critical force by the segment-number was also investigated. It 
was shown that by replacing the stiff horizontal bars with elastic bars, the structure is 
softened, that is, the critical force decreases. With the increment of the segment-number 
the critical force decreases. This decrement, with the increment of the number of the 
segments, is heading to a constant value, which is approximately the half of the critical force 
of the ‘alternately stiffened’ mast. 
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4 ANALYSIS OF ANTIPRISMATIC DEPLOYABLE LATTICE STRUCTURES 
4.1 General characteristics 

An antiprism is a polyhedron composed of two parallel, identical polygons connected 
by triangles. Antiprisms are similar to prisms except the two polygons are twisted relative to 
each other and thus the lateral faces are not quadrilaterals but triangles (Fig. 4.1a). A regular 
antiprism is formed with a 180/n degree of twisting angle between the two n-sided polygons. 
Concerning mechanical behavior of space truss systems generated from the edges of a 
regular antiprism the results are rather fascinating. Tarnai had shown that a space truss 
generated from even sided regular antiprism is a finite mechanism while the ones from odd 
sided antiprisms are rigid forms [Tarnai, 2001]. Nevertheless, by building stable truss units 
(formed from odd sided antiprisms) on top of each other, forming a cylindrical truss, small 
displacements of boundary joints at the bottom grow exponentially along the height 
[Hegedűs, 1986]. Consequently it is rather to be avoided to apply such regular antiprismatic 
trusses for conventional engineering applications without any additional stiffening. 
Nonetheless, this geometry can serve for the construction of a very interesting pop-up mast.  

 

a)  b)  

 Fig. 4.1: a) Regular pentagonal antiprism; b) deployable mast offered by Hegedűs [Farkas, Friedman et al., 
2011/7] 

The deployable cylindrical column offered by Hegedűs [1993], shown on Fig. 4.1b, 
consists of rigid panels (octagonal panels in the figure) and rigid and elastic bars (drawn with 
continuous and dashed lines respectively). The mast is packed with pushing the top polygonal 
panel in the vertical direction. With a uniform cyclic symmetric folding the elastic bars are 
stretching out and the parallel polygonal panels are pushed together. It is true that the 
structure cannot be controlled by a single axial force [Hegedűs, 1993], but with a careful 
symmetry control the structure can be packed to a theoretically planar truss. In this packed 
configuration the structure is in equilibrium without any external forces. This state of self-
stress is not a stable position, consequently with a small perturbation the structure can snap 
back to the initial, deployed, strain-free configuration. 
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4.2 Mechanical characteristics – analytical investigation 

4.2.1 Analysis of the basic unit 

Kinematical equations 

 

Fig. 4.2: Planar and side view of initial (deployed) configuration (on the left) and final (packed) configuration 
(on the right) 

Let’s consider one single deployable unit of the analyzed antiprismatic truss system 
built from two segments of height h, consisting of three, initially congruent regular n-gons 
with tangential circle of radius R. The length of each horizontal bar in the reference, 
deployed state is 

 

݈௣ ൌ 2ܴ sin߶ 
(4.1) 

with 

߶ ൌ 180°/݊ 
(4.2) 

The length of the rigid bracing bars is: 
 

݈௕ ൌ ඥ݄ଶ ൅ ܴଶ sinଶ ߶ ൅ ሺܴ െ ܴ cos߶ሻଶ	 ൌ ඥ݄ଶ ൅ 2ܴଶ ሺ1െ cos߶ሻ 
(4.3) 

Similarly to the planar model, the antiprismatic structure has an asymmetric freedom 
of motions as well [Hegedűs, 1993] (Fig. 4.3). Despite this fact, from now on, in the analysis 
only cyclic symmetrical packing will be considered. However, it is important to mention that 
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the results deduced herein are only true in case of being able to control the movement of 
the structure in a way that this assumption is not violated. 

 

 

Fig. 4.3: Asymmetric freedom of motion of antiprismatic structures 

During packing, the joints of the boundary polygons (the one on the top and the one 
on the bottom) are horizontally fixed, thus the length of their horizontal bars is constant. 
Furthermore, if we assume that the bracing bars are perfectly rigid (incompressible) and that 
the folding is uniform and has cyclic symmetry, the current length of the bars of the middle 
polygon stretches out during packing to: 

 

݈௣
ఝሺܴఝሻ ൌ 2ܴఝ sin߶ 

(4.4) 
where R஦ is the actual radius of the tangential circle of the middle, expanding polygon which 
can be determined with: 
 

ܴఝሺ݄ఝሻ ൌ ܴ cos߶ ൅ ට݈௕
ଶ െ ሺ݄ఝሻଶ െ ܴଶ sinଶ ߶

ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ
௕ക

ൌ ܴ cos߶ ൅ ඥ݄ଶ െ ሺ݄ఝሻଶ ൅ ܴଶሺ1 െ cos߶ሻଶ 
(4.5) 

The last term under square root corresponds to the length of bracing bars projected to the 

radius, and denoted with b஦ in Fig. 4.2. 
The stretching during packing is: 
 

ሺ݄ఝሻߣ ൌ
݈௣
ఝሺ݄ఝሻ

݈௣
ൌ
ܴఝሺ݄ఝሻ

ܴ
ൌ 	 cos߶ ൅ ඨ൬

݄
ܴ
൰
ଶ

െ ൬
݄ఝ

ܴ
൰
ଶ

൅ ሺ1 െ cos߶ሻଶ 

(4.6) 
In the completely packed configuration the bars of the middle polygon stretch out to the 
length: 

݈௣
ఝห

௛കୀ଴
ൌ 2݈௕ sin  ߛ

(4.7) 
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where 

ߛ ൌ 90°൅ ߶ െ acosሺ݈௣ 2݈௕⁄ ሻᇣᇧᇧᇧᇤᇧᇧᇧᇥ
ఉ

 

 
The last term refers to the angle between the fixed polygonal bars and the bracing bars 
(denoted with β on Fig. 4.2) in the completely packed configuration. 

 Equation (4.7) can also be written from equation (4.4) and (4.5) by substituting h஦ ൌ 0: 
 

݈௣
ఝห

௛കୀ଴
ൌ 2ܴఝ|௛കୀ଴ sin߶ ൌ 	2ܴ cos߶ sin߶ ൅ 2 sin߶ඥ݄ଶ ൅ ܴଶሺ1 െ cos߶ሻଶ 

(4.8) 
 
The final stretching of the polygonal bars: 

௠௔௫ߣ ൌ ௛കୀ଴|ߣ ൌ 	 cos߶ ൅ ඨ൬
݄
ܴ
൰
ଶ

൅ ሺ1 െ cos߶ሻଶ 

 (4.9) 
In practical design, when considering rational values of h/R, equation (4.9) can 

reasonably be simplified to a linear connection (Fig. 4.4). The value of ሺ1 െ cosφሻଶ is always 
small, and depends on the angle	φ that depends further on the number of the sides of the 
polygon, n (see equation (4.2)). It reaches its maximal value in the case of triangular 
antiprismatic segment. As for practical consideration triangular and even-sided antiprisms 
will be avoided, the maximum value is ሺ1 െ cosφሻଶ ൌ 0.036, which corresponds to a 
pentagonal unit. Let’s consider only a reasonable domain of h/R: 

 

0,5 ൑ ݄/ܴ ൑ 2 
(4.10) 

Even in the case of the minimal value of this domain, ሺh/Rሻଶ will be one order 
greater than ሺ1 െ cosφሻଶ. Accordingly, for a preliminary estimation the latter one can be 
neglected, which leads to a simple linear approximation (Fig. 4.4) of equation (4.9): 

 

መ௠௔௫ߣ ൌ 	
݄
ܴ
൅ cos߶ 

(4.11) 
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Fig. 4.4: Linear approximation for final stretching of elastic bars (ߣ`௠௔௫ ൌ  መ௠௔௫ ) of pentagonal (n=5)ߣ
antiprismatic unit in function of the height-radius ratio (x=h/R) 

(exact function (4.9) with continuous line (ߣ௠௔௫ሺݔሻ), approximation of stretching (4.11) with dotted line 
 (error of the approximation with dashed line ,(ሻݔ௠௔௫ሺ`ߣ)

The error of this estimation can be calculated from: 
 

ݎ݋ݎݎ݁ ൬
݄
ܴ
൰ ൌ ௠௔௫ߣ െ  መ௠௔௫ߣ

(4.12) 
The maximum value of (4.12) is at the lower boundary of the domain (see Fig. 4.4), that is at 
h/R ൌ 0.5, and obviously the more sides the polygon has the least the error is (see Table 4.1 
and Fig. 4.5)  
 

highest error of approximation (at h/R=0.5) 

n-gon max max approx error (max -max approx) error/max error/ 

5 1.344 1.309 0.035 2.62% 10.235% 

7 1.411 1.401 0.010 0.69% 2.365% 

9 1.443 1.440 0.004 0.25% 0.817% 

11 1.461 1.459 0.002 0.11% 0.355% 

13 1.472 1.471 0.001 0.06% 0.179% 

Table 4.1: Highest error of the linear approximation for final stretching of elastic bars (ߣመ௠௔௫ ) for different 
odd sided n-gons 

analyzed domain 
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Fig. 4.5: Highest (at ݄/ܴ ൌ 0.5)  error of the linear approximation for final stretching of elastic bars (ߣመ௠௔௫) 
for different odd sided n-gons 

This simplified linear equation can serve for the preliminary stage of design and for a good 
verification of results coming from the numerical analysis. Nevertheless, using the simplified 
equation in the case of small h/R ratio (smaller than 0.5) the stretching is highly 
underestimated. This error in case of pentagonal unit reaches 10% for h/R ൌ 0.1 which 
leads to a completely fallacious result giving compression in the bars instead of stretching. 
 

Equilibrium equation 
For packing the structure, a vertical force N is applied at the top horizontal polygon 

(Fig. 4.6) with a symmetrical distribution, that is, the load is N୮ ൌ N/n at each vertex.  The 
elastic bars of the middle polygon are tensioned by the rigid bracings coming from the top 
and bottom facet of the unit. With the assumption of cyclic symmetrical packing this tension 
force in the bars will be: 
 

ܵ௣ሺ݄ఝሻ ൌ
2ܰ
݊
∙
ܴఝሺ݄ఝሻ െ ܴ cos߶

݄ఝᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ
ௌೝ

∙
1

2 sin߶
 

(4.13) 
Where S୰ denotes the horizontal radial projection of the four compression forces coming 
from the bracings (Fig. 4.6). 
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Fig. 4.6: Equilibrium of basic deployable unit 

Constitutive equation 
Similarly to the methodology for 2D simplified model for the sake of simplicity only 

the hypothesis of linear elasticity will be assumed in the analytical approach, that is, the strain 
in the elastic polygonal bars is: 
 

ሺ݄ఝሻߝ ൌ ሺ݄ఝሻߣ െ 1 ൌ
ܵ௣ሺ݄ఝሻ
ܣܧ

 

(4.14) 
where λ denotes the stretching that is the ratio of actual extended length and initial length of 
the elastic bar. 
 

Equilibrium path 
Combining equilibrium (4.13) constitutive (4.14) and kinematic (4.5-6) equations, the 

force-displacement diagram can be written in the form: 
 

ܰሺ݄ఝሻ ൌ
݊ܵ௣ሺ݄ఝሻ݄ఝ sin߶
ܴఝሺ݄ఝሻ െ ܴ cos߶

ൌ
ሺ݄ఝሻߣሾܣܧ݊ െ 1ሿ݄ఝ sin߶

ܴఝሺ݄ఝሻ െ ܴ cos߶
 

ܰሺ݄ఝሻ ൌ ܣܧ݊
݄ఝ

ܴ
sin߶

ۏ
ێ
ێ
ۍ cos ߶ െ 1

ටቀ݄ܴቁ
ଶ

െ ቀ݄
ఝ

ܴ ቁ
ଶ

൅ ሺ1 െ cos߶ሻଶ
൅ 1

ے
ۑ
ۑ
ې
 

(4.15) 
 
Or in function of the displacement of the top nodes: 
 

ܰሺݑሻ ൌ ܣܧ݊ ൬
݄
ܴ
െ

ݑ
2ܴ
൰ sin߶

ۏ
ێ
ێ
ۍ cos ߶ െ 1

ටቀ݄ܴቁ ቀ
ݑ
ܴቁ െ

1
4 ቀ
ݑ
ܴቁ

ଶ
൅ ሺ1 െ cos߶ሻଶ

൅ 1

ے
ۑ
ۑ
ې
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This equilibrium path is plotted in Fig. 4.7, and the diagram proves that similarly to the 
simplified 2D model, the 3D antiprism goes through an instable phase during packing, that is, 
after reaching the critical force or the critical height the increment of displacement of top 
nodes corresponds to a decrement of force. In practice this means, if no displacement 
control is carried out, after the critical force, the structure snaps to the final packed 
configuration. 
 
 
 

  

Fig. 4.7: Equilibrium path of basic deployable unit 

Similarly to the planar structure the force-displacement diagram of the three 
dimensional deployable unit could theoretically be continued if the top segment is pushed 
further. This phenomenon is exactly of the same type as described for the planar structure; 
the structure ends up in a reversed, upside down version of its initial geometrical 
configuration which corresponds to zero force and is stable. This phenomenon is to be 
avoided because of the failure of complete packing. However, this kind of intersection of the 
elements during packing in practice is not really possible. Nonetheless, in the case of 
antiprismatic structures another freedom of motion appears at the completely packed 
configuration. The folded bracings can flip together up [Hegedűs, 1993] allowing the 
lengthened elastic bars relaxing (Fig. 4.8). This freedom of motion can not only happen 
theoretically but also in practice, consequently, careful joint design is to be performed to 
avoid this possibility. Analogously to the definition provided at the analysis of planar 
structures, these two phenomena (continuing in a reversed configuration and the flipping up 
of the bracings) will be furthermore called ‘post-packed phenomena’. 
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Fig. 4.8: Post-packed phenomenon: flipping up the bracings 

Calculation of critical state 
Assuming cyclic symmetrical folding, the 3D structure’s motion can be written with a 

single geometrical parameter. Let that parameter be h஦. The critical equilibrium state 
corresponds to the zero value of tangent stiffness that is: 
 

݀ܰ
݄݀ఝ

ൌ 0 

(4.16) 
Introducing the function: 
 

݃ሺ݄ఝሻ ≔ ඨ൬
݄
ܴ
൰
ଶ

െ ൬
݄ఝ

ܴ
൰
ଶ

൅ ሺ1 െ cos߶ሻଶ 

(4.17) 

ܰሺ݃ሺ݄ఝሻ, ݄ఝሻ ൌ
ܣܧ݊ sin߶

ܴ
∙
ሾcos߶ ൅ ݃ሺ݄ఝሻ െ 1ሿ݄ఝ

݃ሺ݄ఝሻ
 

(4.18) 

݀ܰ
݄݀ఝ

ൌ
ܣܧ݊ sin߶

ܴ
ቈ
ሾcos߶ ൅ ݃ሺ݄ఝሻ െ 1ሿ݃ሺ݄ఝሻ െ ሾcos߶ െ 1ሿ݄ఝ݃ᇱሺ݄ఝሻ

݃ଶሺ݄ఝሻ
቉ 

where 

݃′ሺ݄ఝሻ ൌ
݀݃ሺ݄ఝሻ
݄݀ఝ

ൌ
െ݄ఝ

ܴଶ݃ሺ݄ఝሻ
 

(4.19) 

݀ܰ
݄݀ఝ

ൌ
ܣܧ݊ sin߶

ܴ
∙ ቊ
ሾcos߶ െ 1ሿ݃ሺ݄ఝሻ

݃ଶሺ݄ఝሻ
൅
ሾcos߶ െ 1ሿ݄ఝଶ

ܴଶ݃ଷሺ݄ఝሻ
൅ 1ቋ 

 
Bringing the first two fractions in the parenthesis to common denominators and substituting 
equation (4.17) in the nominator: 
 

݀ܰ
݄݀ఝ

ൌ
ܣܧ݊ sin߶

ܴ
∙ ቊ
ሾcos߶ െ 1ሿሾ݄ଶ ൅ ܴଶሺ1 െ cos߶ሻଶሿ

ܴଶ݃ଷሺ݄ఝሻ
൅ 1ቋ 
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Hence the critical values of ݄ఝ can be calculated from the equation: 
 

݀ܰ
݄݀ఝ

ൌ 0 ⟹ ሺcos߶ െ 1ሻ ቈ൬
݄
ܴ
൰
ଶ

൅ ሺ1 െ cos߶ሻଶ቉ ൅ ݃ଷሺ݄ఝሻ ൌ 0 

(4.20) 
Substituting equation (4.17) in the last expression the critical height of the structure can be 
calculated from: 
 

௖௥ଶݔ ൌ ቆ
݄௖௥
ఝ

ܴ
ቇ
ଶ

ൌ ଶ൅ሺ1ݔ െ cos߶ሻଶ െ ሼሺ1 െ cos߶ሻሾݔଶ ൅ ሺ1 െ cos߶ሻଶሿሽଶ ଷ⁄  

with 

ݔ ൌ ݄/ܴ 
 (4.21) 

Similar to the case of approximating the final stretching we can assume that both ሺ1 െ
cos߶ሻଶ expressions can be neglected. In this case equation (4.21) can be simplified to: 
 

௖௥ෞݔ
ଶ ൌ ൬

݄
ܴ
൰
ଶ

൅ ሺcos߶ െ 1ሻଶ ଷ⁄ ൬
݄
ܴ
൰
ସ ଷ⁄

 

 (4.22) 
For a nicer and still rational approximation (Figs. 4.10-11) of the square root of equation 
(4.21) the critical height per radius ratio can be approximated with the Taylor formula up to 
the first order around the point ݄/ܴ ൌ 1 which gives the linear approximation:  
 

௖௥തതതതݔ ൌ ܽ ൅ ܾ
݄
ܴ

 

(4.23) 
 

Constants for linear approximation of critical height/radius ratio 
n-gon a b 

5 -0.1015 0.9362 
7 -0.0711 0.9624 
9 -0.0522 0.9739 
11 -0.0403 0.9802 
13 -0.0323 0.9843 
15 -0.0267 0.9870 
17 -0.0225 0.9890 
19 -0.0194 0.9905 

Table 4.2: Constants for linear approximation of critical height/radius ratio 

 
 



HIGHLY FLEXIBLE DEPLOYABLE STRUCTURES  ANTIPRISMATIC STRUCTURE 

110 
 

The constants ܽ and ܾ depend only on the angle ߶ that is on ݊, the number of vertex of the 
polygon and can be calculated from the equation (4.21) and its derivative: 
 

ܽ ൌ ௖௥|௫ୀଵݔ െ
௖௥ݔ݀
ݔ݀

ฬ
௫ୀଵ

; 			ܾ ൌ
௖௥ݔ݀
ݔ݀

ฬ
௫ୀଵ

 

(4.24) 
The values for constants ܽ and ܾ are listed on table 4.2 and plotted on Fig. 4.9. 

 

 

Fig. 4.9: Constants for linear approximation of critical height/radius ratio

  

Fig. 4.10: Approximation of critical height: critical height/critical radius (ݔ௖௥ ൌ ݄௖௥/ܴ) in function of initial 
height/initial radius (ݔ ൌ ݄/ܴ), for pentagonal segment ―   exact solution with continuous line, 

approximation in accordance with (4.22) with dotted line, approximation in accordance with (4.23) with 
dashed line 
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Fig. 4.11: Approximation of critical height: critical height/critical radius (ݔ௖௥ ൌ ݄௖௥/ܴ) in function of initial 
height/initial radius (ݔ ൌ ݄/ܴ), for 9-gonal segment  ―   exact solution with continuous line, approximation 

in accordance with (4.22) with dotted line, approximation in accordance with (4.23) with dashed line 

It can be seen from the two diagrams shown on Fig. 4.10-4.11 that depending on the actually 
analyzed geometry (that is, on ݊ and ݄/ܴ) in some cases it is the approximation described in 
4.22 and in some cases it is the one described in 4.23 that approximates better the exact 
value. Both equations underestimate the exact value. However, for domains described in 
(4.10) the offered linear equation gives an acceptable and simple preliminary estimation of 
the critical height. 
The critical force from equations (4.16) (4.17) and (4.19), (4.21):  
 

௖ܰ௥ሺݔ, ߶ሻ ൌ ܣܧ݊ sin߶ ∙ ቌඨ
െܿଶ

݄ܿ

య

൅ 1ቍට݄ܿ െ ሺܿ ∙ ݄ܿሻଶ ଷ⁄  

(4.25) 
where 

ܿ ൌ ሺ1 െ cos߶ሻ;		݄ܿ ൌ ሺݔሻଶ ൅ ሺ1 െ cos߶ሻଶ 
 (4.26) 

Plotting equation 4.25 (Fig. 4.12) it can be seen that considering only the domain given in 
(4.10) the critical force can be also estimated with a linear approximation. Linearizing with 
the help of the Taylor formula up to the first order around the point ݔ ൌ ݄/ܴ ൌ 1: 
 

௖ܰ௥തതതതത ൌ ሺ݀ܣܧ ൅  ሻݔ݁
(4.27) 

The constants ݀ and ݁ depend only on the angle ߶, that is, on the number of vertices of the 
polygon (݊), and can be calculated from the equation (4.25) and its derivative: 
 

݀ ൌ ௖ܰ௥|௫ୀଵ െ
݀ ௖ܰ௥

ݔ݀
ฬ
௫ୀଵ

; 			݁ ൌ
݀ ௖ܰ௥

ݔ݀
ฬ
௫ୀଵ

 

(4.28) 

analyzed domain 
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The values for constants ݀ and ݁ are listed and the error of the approximation at the 
boundaries of the analyzed domain are given in table 4.3 and plotted on Fig. 4.13.

Fig. 4.12: Approximation for the critical force: critical force ( ௖ܰ௥ሻ in function of initial height/initial radius 
ratio (ݔ ൌ ݄/ܴ), for pentagonal (on the left) and for 9-gonal segment (on the right) ―   exact solution with 

continuous line, linear approximation with dotted line (EA=100) 

Constants for linear approximation of critical force 

n-gon d e error at h/R=0,5 error at h/R=2,0 

5 -0.71760 2.36700 15.45% 3.44% 

7 -0.55125 2.68066 5.91% 1.74% 

9 -0.42549 2.82679 3.26% 1.10% 

11 -0.33863 2.90828 2.15% 0.79% 

13 -0.27736 2.95922 1.57% 0.61% 

Table 4.3: Constants for linear approximation of critical force and the error of approximation at the 
boundaries 

 

Fig. 4.13: Constants for linear approximation of critical force and the error of approximation at the 
boundaries 
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Fig. 4.14: Critical force ( ௖ܰ௥ሻ in function of the number of vertex of the polygon for ݄/ܴ ൌ 1 

 

4.2.2 Analysis of ‘alternately stiffened’ multi-storey structure 

The ‘alternately stiffened’ mast is built from cascading the basic units analyzed above 
(Fig. 4.15). The methodology to construct the equilibrium paths of the ‘alternately stiffened’ 
mast is identical to the one used for simplified planar structure. The force-displacement 
diagram of the uniform and successive packing is presented in Fig. 4.16 and the associated 
packing sequences is shown for a two-storey structure in Fig. 4.17. 
 

a) b)  

Fig. 4.15: 3D view of ‘alternately stiffened’ antiprismatic mast a)from the side and b) from the top  
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Fig. 4.16: Force-displacement diagram in the case of successive and uniform packing― restricted packing of 
antiprismatic deployable mast of six segments (notation: H: total height, u: displacement of the top nodes, N: 

packing force) 

 

Fig. 4.17: Uniform restricted packing of antiprismatic deployable mast of two segments 

The uniform packing is only possible for a perfect structure; the non-simultaneous 
closure can be mentioned as typical. The bifurcated equilibrium path is constructed in Fig. 
4.18 assuming that each antiprismatic unit closes separately. 
 
 
 
 

 

Fig. 4.18: Typical force-displacement diagram ― restricted packing of antiprismatic deployable mast of six 
segments (notations: H: total height, u: displacement of the top nodes, N: packing force) 

 

Force-displacement curves corresponding to the 
uniform packaging of two, three.. six segments 

௥௘௟ሺܰሻݑ௥௘௟ሺܰሻݑ

uniform packing successive packing 
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Fig. 4.19: Typical restricted packing sequences of antiprismatic deployable mast of two segments 

 The typical force-displacement diagram constructed in Fig. 4.18 somewhat differs 
from the diagram shown in Fig. 3.9 as the asymmetry of the force-displacement diagram of 
the herein analyzed structure is more emphasized. The already defined critical segment 
number (see equation (3.50)) can be calculated for antiprismatic structures, too.  
 

݇௖௥ ൌ
2݄
௖௥ݑ

ൌ
2݄

2ሺ݄ െ ݄௖௥
ఝ ሻ

ൌ
1

ሺ1 െ ݄௖௥
ఝ ݄⁄ ሻ

 

(4.29) 
Substituting equation (4.21) in (4.29): 
 

݇௖௥ ൌ
1

ሺ1 െ ݄௖௥
ఝ ݄⁄ ሻ

ൌ
1

1 െ ܴ
݄ ඥݔ

ଶ൅ሺ1 െ cos߶ሻଶ െ ሼሺ1 െ cos߶ሻሾݔଶ ൅ ሺ1 െ cos߶ሻଶሿሽଶ ଷ⁄
 

(4.30) 
or using the approximation in (4.23): 
 

݇௖௥തതതത ൌ
1

1 െ ቀܽ ܴ݄ ൅ ܾቁ
 

(4.31) 
which will give an exact value in the case of ݄/ܴ ൌ 1. The constants ܽ and ܾ are given in 
Table 4.2. For example, for an antiprismatic mast with ݄/ܴ ൌ 1 , the critical segment-number 
is: 
 

݇௖௥_௣௘௡௧ ൌ
1

1 െ ሺെ0.10377 ൅ 0.9362ሻ
ൌ 5.96	

(4.32) 
This practically means that if the number of the segments of these pentagonal units is more 
than two (see Chapter 3) than intermediate sudden displacements will take place during 

packing and if this number is more than five (݇௖௥_௣௘௡௧), that these sudden displacement will 
be larger than the height of the segment. Namely, the critical segment number only means 
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that if ݇ ൏ ݇௖௥, than after pushing through any critical point, upward displacement of top 
nodes is needed in order to get to the next state which corresponds to zero force.  
 

4.2.3 Analysis of a ‘non-stiffened’ k-storey structure 

Investigating a non-stiffened k-storey3 structure, the set of equations is now written 
in function of the current radii (Rφ), which is now a vector of	k ൅ 1 elements: 
 

࣐ࡾ ൌ ܴ௜
ఝ		ሺ݅ ൌ 0. . ݇ሻ, 		ܴ଴

ఝ ൌ ܴ௞
ఝ ൌ ܴ 

(4.33) 
The current height of the segments in function of the current radius of the horizontal 
polygons is: 
 

݄௜
ఝሺ࣐ࡾሻ ൌ ݄௜

ఝ൫ܴ௜
ఝ, ܴ௜ିଵ

ఝ ൯ ൌ ට݈௕
ଶെ൫ܴ௜ିଵ

ఝ sin߶൯
ଶ
െ ൫ܴ௜

ఝ െ ܴ௜ିଵ
ఝ cos߶൯

ଶ
 

(4.34) 
The current stretching of the elastic bars: 
 

ሻ࣐ࡾ௜ሺߣ ൌ ௜൫ܴ௜ߣ
ఝ൯ ൌ

ܴ௜
ఝ

ܴ
 

(4.35) 
The elastic polygonal bars are tensioned by the rigid bracings coming from the above and 
from the beneath segment. Still assuming cyclic symmetrical packing, the tension force in the 
bars are (see Fig.4.6): 
 

ሻ࣐ࡾሺ࢖ࡿ ൌ ܵ௣௜൫ܴ௜ିଵ
ఝ , ܴ௜

ఝ, ܴ௜ାଵ
ఝ ൯ ൌ

ܰ
݊
ቆ
ܴ௜
ఝ െ ܴ௜ିଵ

ఝ cos߶

݄௜
ఝ൫ܴ௜

ఝ, ܴ௜ିଵ
ఝ ൯

൅
ܴ௜
ఝ െܴ௜ାଵ

ఝ cos߶

݄௜ାଵ
ఝ ൫ܴ௜

ఝ, ܴ௜ାଵ
ఝ ൯

ቇ
1

2sin߶
 

(4.36) 
Combining equation (4.36) with the constitutive model in (4.14) and with the function of the 
stretching in (4.35), the equilibrium equation is: 
 

ܰ൫ܴ௜ିଵ
ఝ , ܴ௜

ఝ, ܴ௜ାଵ
ఝ ൯ ൌ ܣܧ2݊ sin߶

ܴ௜
ఝ െ ܴ

ܴ௜
ఝ െ ܴ௜ିଵ

ఝ cos߶
݄௜
ఝ ൅

ܴ௜
ఝ െܴ௜ାଵ

ఝ cos߶
݄௜ାଵ
ఝ

 

(4.37) 
which corresponds to the equilibrium equation in each level of the mast. 
 

                                            
3 Note, that similarly to the planar structure, one storey corresponds to the half of the basic unit of an 
’alternately stiffened mast. Consequently with the same h/R ratio, a k-storey ’alternately stiffened mast has the 
same total height as a 2k-storey non-stiffened mast 
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The force can also be written in function of the displacement of the top of the mast, which 
is: 

ݑ ൌ෍൫݄଴ െ ݄௜
ఝ൯

௞

௜ୀଵ

 

(4.38)	 

4.3 Mechanical characteristics – numerical analysis 

4.3.1 Numerical analysis of the basic unit, parameter analysis 

Basic assumptions, numerical model 
For the numerical model truss elements were used. The axial stiffness of the bracings 

was defined at least of two orders higher than the one of the elastic bars. The logarithmic 
constitutive model was used for both type of bars. In Appendix E, some information are 
annexed about the optional constitutive models.  

 

b)  

Fig. 4.20: Comparison of different constitutive models: stresses/E in function of the stretches analytical and 
numerical results (pentagonal unit, ܣܧ ൌ 500; ݄ ൌ 0,5; ܴ ൌ 0,5ሻ	

 
The force-displacement diagrams were calculated analytically with the two different 

constitutive models too. The results are all plotted from the different analytical solutions in 
Fig. 4.20. With both models, the force-displacement diagram deviates from the one 
calculated from small strain analysis, especially in the larger strain domains, but the character 
of the force-displacement diagram is identical to analytical results. It can be seen that the 
deviation is only due to the different constitutive model, the numerical errors are 
acceptable. The packing sequence from the simulation is plotted in Fig. 4.21. 

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0
0 0,2 0,4 0,6 0,8 1R

e
a
c
t
i
o
n

f
o
r
c
e

N
p

u/(2h)

Force-displacement diagram of antiprismatic deployable 
unit ― comparism of constitutive models

analytical results
(linear)

analytical results
(Green)

analytical results
(logarithmic)

numerical results



HIGHLY FLEXIBLE DEPLOYABLE STRUCTURES  ANTIPRISMATIC STRUCTURE 

118 
 

 

Fig. 4.21: Packing sequence of a pentagonal basic unit 

The simulation of the basic unit was carried out with displacement control; the top 
nodes were proportionally displaced till the bottom nodes with incremental analysis. 

 

Parameter analysis 
A parameter analysis was carried out to verify the analytical results. The influence of 

the geometrical parameters is shown on Figs. 4.22-4.25. Fig. 4.22 shows the force-
displacement diagram in the case of different n-gonal antiprismatic basic units. It can be seen 
from the figure that the asymmetry of the diagram grows with increasing number of vertices. 
This means that the critical segment number (݊௖௥) increases as well. Fig. 4.23 is in good 
accordance with the analytical solution plotted in Fig. 4.13. Figs 4.24 and 4.25 analyze the 
influence of the ݄/ܴ ratio on the force-displacement diagram and the deployment force. 
From Fig. 4.25 it can be seen that, as the ratio grows, the asymmetry of the force-
displacement diagram gets more emphasized, that is, the higher the critical segment number 
gets. Furthermore, Fig.4.25 proves that the linear approximation deduced from analytical 
results (Equation (4.27) and Fig. 4.12) is reliable.  
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Fig. 4.22: Force-displacement diagram of basic unit in the case of different n-gons 
ܣܧ) ൌ 500; ݄ ൌ 0.5; ܴ ൌ 0.5) 

 

Fig. 4.23: Influence of geometrical configuration ― deployment force (maximal reaction force multiplied by 
the number of vertices) of basic unit in case of different n-gons 

ܣܧ) ൌ 500; ݄ ൌ 0.5; ܴ ൌ 0.5) 
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Fig. 4.24: Influence of geometrical configuration ― force displacement diagram of basic unit in case of 
different h/R ratios 

ܣܧ) ൌ 500; ܴ ൌ 0.5	) 

 

Fig. 4.25: Influence of geometrical configuration on the deployment load in the case of different h/R ratios 
ܣܧ) ൌ 500; ܴ ൌ 0,5	ሺ݀݁ݎሻܴ ൌ 1ሺܾ݈݁ݑ) 
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4.3.2 Numerical analysis of ‘alternately stiffened’ multi-storey structure 

The packing modeling of the ‘alternately stiffened’ spatial structure was simulated with 
the same methodology that was used for planar alternately stiffened models. The 
deployment sequence of the uniform and the successive packing can be seen in Fig. 4.26. 

 

 

Fig. 4.26: Force displacement diagram of a three-storey ‘alternately stiffened’ antiprismatic mast 
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Fig. 4.27: Packing sequence of perturbation controlled unrestricted simulation 
ଵܣܧ) ൌ 10	000; ଶܣܧ ൌ 9	990; ଷܣܧ ൌ 9	980; 	ܴ ൌ 0,5; 	݄ ൌ 0,5)  

With controlling the displacement of the top nodes only, any equilibrium path is 
possible. The sequence depends on the numerical errors. To be sure to get a certain 
behavior, perturbations are to be introduced into the system. For example, Fig. 4.27 shows a 
three-storey pentagonal antiprismatic mast which was perturbed in a way that leads to a 
typical equilibrium path. The elastic bar of the bottom segment was defined to be the 
weakest―that is the bottom one is the chosen part to close first ― followed by the middle 
and finally the top unit. However, without restricting the ‘post-packed phenomenon’, the 
simulation can give awkward packing patterns. Fig. 4.27 is a nice example for such a 
phenomenon. The packing sequence obtained from the simulation is the following (Figs. 4.27-
28): first the mast begins packing uniformly but the bottom segment slightly overtakes the 
others (due to the fact that it has the weakest elastic bar), reaches its critical height and, 
accordingly, starts softening. When the bottom unit reaches its post-critical state, the rest of 
the mast straightens up and gets back to its initial, undeformed state by the time the bottom 
segment completely closes. From this point, due to the ‘post-packed phenomenon’, the 
packing is hard to keep track on. When further squashing, instead of the top segments 
starting to pack, the bottom segment disengages from its packed configuration and starts 
turning upside down with pulling the rest of the structure. When regaining its initial, but 
reversed configuration the whole structure is stress-free and corresponds to a stable 
equilibrium position. If further displacing the top nodes, the top two segments are squashed 
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and the reversed bottom unit is stretched. The middle segment reaches first its critical state 
and starts closing by straightening up the top unit. Further packing cannot be achieved as the 
top nodes reached the bottom nodes. 

 

Fig. 4.28: Force-displacement diagram of a three-storey pentagonal mast ― perturbation-controlled 
unrestricted simulation 

ଵܣܧ) ൌ 10	000; ଶܣܧ ൌ 9	990; ଷܣܧ ൌ 9	980; 	ܴ ൌ 0.5; 	݄ ൌ 0.5)  

 

Fig. 4.29: Perturbation-controlled unrestricted simulation of packing a three-storey pentagonal mast ― 
stresses in the elastic bars during packing 

ଵܣܧ) ൌ 10	000; ଶܣܧ ൌ 9	990; ଷܣܧ ൌ 9	980; 	ܴ ൌ 0.5; 	݄ ൌ 0.5)  

The restraint to restrict ‘post-packed phenomenon’ can be modeled with the same 
contact force induction as used for planar model. However, in the spatial model instead of 
modeling ݊ paired nodes per units, a different methodology was used. An additional node 
was defined (Fig. 4.30) in the center of each rigid polygon, fixed horizontally to the axis of 
the structure. Though there is no element connecting with these nodes, the center points 
were virtually linked in the vertical degree of freedom to the polygonal vertices of the 
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associated rigid polygons. The contact forces between the rigid polygons are ensured by 
pairing these additional nodes. Accordingly, contact forces are induced between the rigid 
polygons. The more the centers of two rigid polygons are approaching the more intense the 
contact force gets. 

With this methodology the complete packing of the same structure that was 
presented above can be simulated. This restricted simulation is presented in Figs 4.31-32.  

 

Fig. 4.30: Modeling restriction of ‘post-packed phenomenon’ 

 

Fig. 4.31: Force-displacement diagram of three-storey pentagonal mast ― perturbation controlled restricted 
simulation 

ଵܣܧ) ൌ 10	000; ଶܣܧ ൌ 9	990; ଷܣܧ ൌ 9	980; 	ܴ ൌ 0.5; 	݄ ൌ 0.5)  
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Fig. 4.32: Perturbation controlled restricted simulation of packing a three-storey pentagonal mast ― stresses 
in the elastic bars during packing 

ଵܣܧ) ൌ 10	000; ଶܣܧ ൌ 9	990; ଷܣܧ ൌ 9	980; 	ܴ ൌ 0.5; 	݄ ൌ 0.5) 
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Fig. 4.33: Packing sequence of a three-storey ’alternately stiffened’ mast with restricted simulation 

4.3.3 Numerical analysis of a ‘non-stiffened’ multi-storey structure 

The packing of non-stiffened multi-storey antiprismatic masts are rather fascinating to 
analyze. The uniform packing control of the structure was simulated by vertical boundary 
conditions applied at each node. Similarly to the planar case, the displacement of the 
boundaries was multiplied by different proportional functions depending on the pseudo time. 
This proportional function depends on which level the polygonal node is associated to. The 
functions are identical to the one described for planar structures (Fig. 3.44). 

Fig. 4.34 shows the reaction forces at the different levels of the antiprismatic mast. It 
can be seen on the diagram that each reaction force makes two loops separated by a 
configuration corresponding to zero forces in the intermediate boundaries. This state is 
shown in Fig. 4.36. It can be seen from the plan view (Fig. 4.36b) that the disputed 
configuration corresponds to the one where all the bracings lie exactly in an upright 
position. While in the beginning, all the polygons start expanding, after a critical force, every 
odd level (levels 1,3,5) keeps expanding and every even level (levels 2, and 4) starts first 
relaxing and then shrinking (Fig. 4.35). Consequently, in contrary to the planar structure, the 
elastic bars of the polygon are not always in tension. From this point, the constitutive model 
used is an important factor in the analysis. As mentioned before, the logarithmic stretch 
model gives fake results in the finite compression range. If that was not the case, the 
polygons on level 3 and 4 would start to compress more. But with logarithmic stretch model 
it takes lot of energy to compress the elastic bars and, consequently, it is rather the 
stretching of the bar that assures the closure. It should be mentioned that a linear model 
would be equally fake, as a realistic elastic bar would deflect before being compressed. 
Nonetheless, if we assume that around the elastic material a rigid material is installed (see 
later in next chapter) that doesn’t stretch with the material but active only for compression, 
than the hypothesis of logarithmic stretch behavior can be acceptable to be realistic. It can 
be concluded from the analyzed structure that the packing behavior of the spatial structure 
differs from the planar model due to the possibility of compression forces in the polygonal 
elastic bars. Compression force can occur in these bars if the difference between the 
expansions of the adjacent polygons is big enough to put the bracings in an upright position. 
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Fig. 4.34: Uniform packing of non-stiffened antiprismatic pentagonal mast with six segments ― reaction 
forces (ܣܧ ൌ 10	000; ܴ ൌ 0,5; 	݄ ൌ 0,5) 

 

Fig. 4.35: Uniform packing of non-stiffened antiprismatic pentagonal mast with six segments ― stresses in 
the elastic bars (ܣܧ ൌ 10	000; ܴ ൌ 0,5; 	݄ ൌ 0,5) 
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a) b)  
 

 

Fig. 4.36: Post-packed phenomenon with controlling only the displacements of every second level 

The same analysis used for the uniform packing of ‘alternately stiffened’ masts is not 
practical in the ‘non-stiffened’ case. Controlling only the displacement of every second level 
results in a ‘post-packed phenomenon’, namely, the non-controlled pentagons will travel 
through its adjacent (controlled) polygon and flip up or down the bracings (Fig. 4.36). The 
uniformly controlled packing simulation is useful for the prediction of packing pattern of only 
boundary displacement controlled structures; the softest segments of the mast are those 
that are being tensioned by the intermediate boundary restraints. This tensile force indicates 
that if the packing wasn’t uniformly controlled this segment would overtake the other 
segments with closing. 

In the analysis of ‘non-stiffened’ planar structures it was shown that the uniform 
packing in the case of odd number of segments is not possible without lengthening the rigid 
bars. To see whether an antiprismatic ‘non-stiffened’ mast with odd number of segments is 
packable, let’s analyze a mast of three segments. The packed geometrical configuration of the 
bottom and the top segment is predefined. The two boundary segments are drawn in Fig. 
4.37. The lengths between the endpoint of the bracings of the top segment and the one of 
the bottom are: 

 

݈௡௘௖ ൌ 2ܴ௠௔௫
ఝ sin ൬

߶
2
൰ 

(4.39) 
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Substituting equation (4.5) into (4.39) 
 

݈௡௘௖ ൌ 2ቆܴ cos߶ ൅ ට݈௕
ଶ െ ܴଶ sinଶ ߶ቇ sin ൬

߶
2
൰ 

(4.40) 
The antiprismatic mast of three segment is packable if ݈௡௘௖ ൌ ݈௕, that is, if: 
 

݇ܿܽ݌ ൬
݈௕
ܴ
൰ ൌ 2 ቎cos߶ ൅ ඨ൬

݈௕
ܴ
൰
ଶ

െ sinଶ ߶቏ sin ൬
߶
2
൰ െ

݈௕
ܴ
ൌ 0 

(4.41) 
and if 

݄݄ܿ݁ܿ݇ ൬
݈௕
ܴ
൰ ൌ

݈௕
ܴ
െ 2ሺ1 െ cosሺ߶ሻሻ ൐ 0 

(4.42) 
 
It can be seen from the diagram in Fig. 4.38 that the first zero point of (4.41) 

coincidences with the one of (4.42). This, similarly to the planar case, means the trivial 
solution: it is packable if the initial configuration is already packed. However, (4.41) has 
another solution which satisfies the condition (4.42). This means that with a specific 
geometric configuration, the spatial structure of odd number of segments can be packed in 
plane. 

 

Fig. 4.37: Checking packability of ‘non-stiffened’ antiprismatic masts of odd number of segments 
(continuous line: bottom segment, dashed line: top segment, dotted line: middle segment) 

 

ܴ௠௔௫
ఝ  

݈௡௘௖ ߶ 



HIGHLY FLEXIBLE DEPLOYABLE STRUCTURES  ANTIPRISMATIC STRUCTURE 

130 
 

 

Fig. 4.38: Checking packability of ‘non-stiffened’ antiprismatic masts of odd number of segments in case of 
݊ ൌ 5,7,9,11,13 

(packability functions (4.36 and 4.37) in function of ݈ݔ ൌ 	݈ܾ/ܴ) 

Fig. 39 and Fig. 40 show the packing of the pentagonal ‘non-stiffened’ mast with 
geometrical properties that does not satisfy equation (4.41). It can be seen that the sign of 
the forces (internal and external) change during packing. On Fig. 4.41 the packing of a three-
storey mast satisfying this equation is presented, which can be really packed to plane. 

 

 

Fig. 4.39: Fallacious packing of non-stiffened mast of three segments (݈ܾ ് ݈݊݁ܿ) 
ܣܧ) ൌ 10	000; ܴ ൌ 0.5; 	݄ ൌ 0.5) 
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Fig. 4.40: Fallacious packing of non-stiffened mast of three segments (݈ܾ ് ݈݊݁ܿ) 

 

Fig. 4.41: Packing of non-stiffened mast of three segments (݈ܾ ൌ ݈݊݁ܿ) 
ܣܧ) ൌ 10	000; ܴ ൌ 0.5; 	݄ ൌ 0.3931) 
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Contrary to the mast of even segments, under uniform control, the non-stiffened 
antiprismatic masts consisting of odd number of segments closes only by expanding its 
polygons.  

The same condition deducted for three segments also stands for masts with 
5,7,9..etc. segments. The mast consisting of odd number of segments can be closed by 

extending all its intermediate polygons to the radius ܴ௠௔௫
ఝ  if the length of the bracings is ݈௡௘௖. 

An example is shown for the packing of such structure in Figs. 4.42 and 4.43. Nonetheless 
this solution is not a unique one if the number of segments is more than three. For example 
a mast of five segments can be closed in the pattern shown in Fig. 4.44. 

 

 
 

 

Fig. 4.42: Packing of pentagonal, non-stiffened mast of five segments (݈ܾ ൌ ݈݊݁ܿ), packing sequence in Fig. 
ܣܧ) 4.44 ൌ 10	000; ܴ ൌ 0.5; 	݄ ൌ 0.3931) 
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Fig. 4.43: Packing of non-stiffened mast of three segments (݈ܾ ൌ ݈݊݁ܿ) 
ܣܧ) ൌ 10	000; ܴ ൌ 0.5; 	݄ ൌ 0.3931) 

This packing pattern is possible if: 

݈௡௘௖ଶ ൌ ܴଶ
ఝ sin ൬

߶
2
൰ 

 (4.43) 
with 

 

ܴଵ
ఝ ൌ ܴ௠௔௫

ఝ  
(4.44) 

ܴଶ
ఝ ൌ ܴଵ

ఝ cos߶ ൅ ට݈௕
ଶ െ ܴଵ

ఝଶ sinଶ ߶ 

(4.45) 
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A simulation of a five-storey antiprismatic mast with bracing-length  ݈௡௘௖ଶ is presented in Fig. 
4.45 

 

 

Fig. 4.44: Possible packing pattern of masts consisting of five segments or more (only in the case of odd 
number of segments) 

 

 

Fig. 4.45: Packing of pentagonal, non-stiffened mast of five segments (݈௕ ൌ ݈௡௘௖ଶ) 
ܣܧ) ൌ 10	000; ܴ ൌ 0.5; 	݄ ൌ 0.3931) 

Concerning a non-stiffened mast of seven segments, the mast can be packed to plane 
in the case of satisfying equation (4.41), but also if the geometry is such that ݈ܾ ൌ ݈௡௘௖ଶ. On 
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top of these possibilities, new schemas of packing are conceivable. Some theoretically 
possible packing patterns are shown on Fig. 4.46. 

 
 

 

Fig. 4.46: Theoretically possible packing patterns in the case of odd segment number (k=3,5,7) 

When the structure is only controlled by the displacement of the top facet, the 
packing patterns show a quite interesting chaotic system (Fig. 4.47). However, the 
investigations have shown that this pattern is chaotic though, but not completely stochastic. 
The simulation developed in MAPLE proved that in the case of certain geometrical 
parameters, there are certain number of possible patterns, among which the numerical 
errors (or in reality the imperfections) choose. However, these possibilities are not so 
numerous. The defined parameters were only investigated for a few parameters and segment 
numbers, but further study would be needed to really clarify the regularities in the system. 
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Fig. 4.47: Stochastic packing pattern of non-stiffened antiprismatic mast 

Fig. 4.48 shows the influence of the number of segments on the critical force. It can be seen 
that the difference between the critical force of the masts with odd number of segments 
(line in green) and the one of the masts with even number of segments (line in red) is getting 
smaller with the increment of segment number. 
 

 

Fig. 4.48: Influence of number of the segments on the critical force 
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4.3.4 Dynamic analysis of antiprismatic structures 

The major advantage of the antiprismatic column, proposed by Hegedűs, is that the 
structure is self-deployable, and consequently the installation of it can be very rapid. 
However, it has to be assured that the structure is neither damaged from inertial effects 
during deployment nor gets stuck in the packed configuration. Furthermore, it was shown 
above, that when packing, even with the smooth control of the displacements of the 
boundary facets, the intermediate elements might undergo large snapping. Accordingly, for 
both, the deployment and the packing, a profound dynamic analysis is inevitable. 

The dynamics of the flexible structures imposes several technical and numerical 
difficulties. First, the right choice of the time-integration schemes which are suitable for 
handling different deformation modes with potentially large difference in associated stiffness 
and natural frequencies – or what is referred to the stiff differential equations. The physics of 
the problem should play an important role in devising any such scheme. The right choice of 
damping, which can control vibrations and avoid unwanted inertial effects and at the same 
time is of true nature, is neither evident.  

Herein, only a first attempt is given to overcome these difficulties for the dynamic 
analysis of antiprismatic structures. 

The deployment of the antiprismatic mast was simulated with a packed initial 
configuration. Nonetheless, to avoid singularities, this configuration was not the completely 
packed one, that is, the initial state was determined with: 

 

݄௜௡
ఝ ൌ 0 ൅  ߝ

(4.39) 
where ߝ is an arbitrary small number. The elastic bars, in this quasi packed configuration are 
stretched: 

ሺ݄ఝሻ|௛കୀ௛೔೙ߣ
ക ൌ cos߶ ൅ ඨ൬

݄
ܴ
൰
ଶ

െ ൬
0 ൅ ߝ
ܴ

൰
ଶ

൅ ሺ1 െ cos߶ሻଶ ൎ

ൎ cos߶ ൅ ඨ൬
݄
ܴ
൰
ଶ

൅ ሺ1 െ cos߶ሻଶ 

(4.40) 
Accordingly these elastic bars in the initial configuration are pre-stressed. As the dynamic 
behavior was simulated in the finite element simulation defined by logarithmic stretch model, 
the prestress has to be calculated from this constitutive model. The logarithmic strain is: 
 

ሺ݄ఝሻ|௛കୀ௛೔೙ߝ
ക ൌ ln൫ߣ൫݄௜௡

ఝ ൯ െ 1൯ ൌ 	lnቌcos߶ ൅ ඨ൬
݄
ܴ
൰
ଶ

൅ ሺ1 െ cos߶ሻଶ െ 1ቍ 

(4.41) 
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And the necessary magnitude of prestress in order to achieve self-deployment is: 
 

௣௥௘_௠௜௡ߪ ൌ ሺ݄ఝሻ|௛കୀ௛೔೙ߝܧ
ക ൌE lnቌcos߶ ൅ ඨ൬

݄
ܴ
൰
ଶ

൅ ሺ1 െ cos߶ሻଶ െ 1ቍ 

(4.42) 
The numerical dynamic simulation was performed by assuming concentrated masses in the 
joints, and calculating transient solution with the Newmark integrations scheme. Fig. 4.49-
4.51 show the first try to simulate the deployment of an ‘alternately stiffened’ mast. It can be 
seen from the figures that without restricting the segments-crossing, the deployment gets 
quite messed. 
 

 

 

Fig. 4.49: Dynamic deployment of antiprismatic mast: deployment sequence without restriction of post-
packed phenomenon 
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Fig. 4.50: Dynamic deployment of antiprismatic mast: strain in the elastic bars during deployment 

 

 

Fig. 4.51: Dynamic deployment of antiprismatic mast: vertical displacement of polygonal nodes 
ܣܧ)  ൌ 10	000; ܴ ൌ 0.5; 	݄ ൌ 0.5), packing sequence in accordance with Fig. 4.49 

Experiencing the difficulties of the dynamic deployment-simulation and the complexity of 
verifying results, firstly the analysis of the deployment of a basic segment was carried out. 
The methodology to carry out the simulations follows the above mentioned methodology 
(packed initial configuration with self-stress), with the exception that the crossing of the 
polygons were attempted to be restrained with the penalty method described in Chapter 
4.3.2 (Fig. 4.30). However, deviating from the model, additional node was also defined in the 
center of the elastic polygon, and consequently two GAP elements were placed in the axis of 
the basic element. The deployment without any damping can be seen in Figs 4.52-53. The 
third figure in Fig. 4.52 reflects that the penalty parameter was not always large enough to 
capture the restraint.  
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Fig. 4.52: Dynamic deployment of the basic unit of pentagonal antiprismatic mast: deployment sequence 
with (poorly captured) restriction of segment intersection 

 

 

Fig. 4.53: Dynamic deployment of the basic unit of pentagonal antiprismatic mast: deployment sequence 
with (poorly captured) restriction of segment intersection 
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For damping the inertial effects and the vibration, two different approaches have been 
investigated. The most popular, and most importantly numerically easily applicable, damping 
is the one of Rayleigh.  
The solution of second order linear equations by the finite element method leads to the set 
of equations: 
 

ࡹ ሷ࢛ ሺݐሻ ൅ ࡯ ሶ࢛ ሺݐሻ ൅ ሻݐሺ࢛ࡷ ൌ  ሻݐሺࡲ
(4.43) 

Where ࡹ is the mass matrix, ࡯ is the damping, ࡷ is the stiffness matrix, ࡲ the force vector 
and ࢛ is the vector containing the nodal displacements. 
The damping defined as Rayleigh Damping is proportional to the mass and to the stiffness 
matrix: 
 

࡯ ൌ ൅ࡹܽ  ࡷܾ
(4.44) 

From this equation it can be deduced that: 
 

Φ୘۱Φ ൌ ࡹܽ	 ൅ ܾ઩ ൌ  ઩૚/૛ߞ2
(4.45) 

where Φ is the matrix with the eigenvector of the matrix ሺࡷ െ ߱ଶࡹሻ and ઩ is a diagonal 
matrix of the natural frequencies squared, and is the diagonal matrix with the damping ratios. 
If a specific damping ratio is targeted, the constants ܽ and ܾ in equation (4.44) can be 
calculated from the equations: 

ܽ ൌ ߞ2
߱௜ ௝߱

߱௜ ൅ ௝߱
 

ܾ ൌ ߞ2
ߞ2

߱௜ ൅ ௝߱
 

(4.46) 
Consequently, for a specific targeted damping ratio, by numerically checking the natural 
frequencies (optionally a minimal and a maximal value), the two constants can be 
determined. The first problem with damping the deployment of the basic segment, that it is 
only the desired effect that is known, but not the ratio. Further problem opposed from the 
fact, that during deployment the natural frequencies change. On top of that, numerical 
problems of simulating deployment with Rayleigh damping has been detected. 
Disconvergences were found, when (after passing the stress-free configuration) the bracings 
turn into an upright position. The failure of convergence could be solved by setting ܾ to 
zero. When the damping matrix is proportional to the mass matrix, though there was no 
failure of computation at this specific geometrical configuration, but as the bracings rotate 
inwards, the structure freezes in a position shown in Fig. 4.54. To optimize the damping in a 
way, that the structure’s oscillation around the stress-free position is smaller than the one 
needed to pass this critical configuration is quite cumbersome.  



HIGHLY FLEXIBLE DEPLOYABLE STRUCTURES  ANTIPRISMATIC STRUCTURE 

142 
 

Ideally the damping of the structure is such, that in the first phase of the deployment it does 
not make the structure to get stuck in the packed configuration, and allows the fast 
deployment of the structure. But at the same time, the chosen damping system should also 
assure that before the deployed configuration the structure smoothly stops.  
 

  

Fig. 4.54: Failure of damped deploying due to locking 
strain in the elastic bar (in green), nodal vertical displacements of the top facet (in blue) and of the middle 

polygon (in red) 

It can be seen from Fig. 4.55 that choosing a damping that dissipates the energy in function of 
the horizontal accelerations/or velocities, than the magnitude of the damping will take its 
maximal value just before the complete deployment of the structure which is ideal for the 
targeted behavior. In the computation this can be achieved for example by connecting the 
elastic polygonal nodes to a horizontal bar, that dissipates energy through a linear visco-
elastic or plastic constitutive model. However, similarly to the case of the Rayleigh damping, 
the optimal value of constitutive parameters are not so easy to find because of the locking 
phenomenon. An even more trivial damping of vibrations and controlling deployment of true 
nature could be the one controlled by the constitutive model of the flexible horizontal bars. 
The dissipative behavior of rubber-like materials are nicely presented by the rope, used for 
bunjy-jumping. The fast damping of oscillations might be of high importance for the investor.  
 

 

Fig. 4.55: Stretching in function of the current height 
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4.4 Summary of investigating antiprismatic deployable structures 
 

The analytical investigations were carried out to describe the mechanical behavior of 
the pop-up column offered by Hegedűs. The results deduced for the basic segment can serve 
for better understanding the basic characteristics of such structures, as well as for a tool to 
check numerical results before analyzing more complex structural solutions and for a 
method of preliminary design of optional architectural solutions (mast, framework, bridge, 
etc.). 

The function of the equilibrium path of the basic unit was defined which manifests 
instability phenomenon. The critical force and the critical height were explicitly given as well 
for linear constitutive model. For the representative values of the mechanical and packing 
behavior, approximations were recommended as a tool for a fast control of numerical 
results and for preliminary design of architectural applications.  

The force-displacement diagram of the multi-storey structure can be constructed 
from the one of the basic unit with the methodology described for planar structures. 
Similarly to the planar mast, the typical equilibrium path of the complex antiprismatic 
structure manifests snap-back phenomenon if the number of the segments is more than two. 
However, the asymmetry of the force-displacement diagram of the basic unit increases the 
critical segment number. This means, that though the sudden internal displacements can 
occur for three-storey structures, these displacements are only significant in the case of 
larger number of segments. For the critical number, an approximation and the exact explicit 
form for linear constitutive model has been determined. 

For the mechanical characteristics of the basic unit, a parameter study was carried 
out with finite element numerical simulation. It was shown that the increment of the ݄/ܴ 
ratio and the increment of the number of vertices of the polygon lead to a more emphasized 
asymmetry of the diagram. The more emphasized the asymmetry of the displacement 
diagram gets, the larger the critical segment number is. 

To simulate the packing of the multi-storey structures numerical models were built in 
FEAP and a self-developed program in MAPLE. The simulation was verified by the 
comparison of the results with the analytical ones. For the constitutive model of the finitel 
element analysis logarithmic stretch, for the simulation in MAPLE linear small strains were 
used. 

The finite element simulation of the multi-storey structures was carried out with 
different displacement controls. After giving examples for the uniform and successive control 
of the ‘alternately stiffened mast’ it was shown that by controlling only the displacement of 
the top nodes the problem of ‘post-packed phenomenon’ occurs. Two different motions 
were identified under this definition. The problem of the phenomenon was resolved by 
defining contact elements between the rigid polygons. This was effectuated by additional 
nodes placed in the center of the rigid polygons that were linked with a master&slave 
method to the vertices of the associated polygons. This restricted simulation was performed 
by controlling the order of the segment-closure with perturbing the axial stiffness of the 
elastic bars. 



HIGHLY FLEXIBLE DEPLOYABLE STRUCTURES  ANTIPRISMATIC STRUCTURE 

144 
 

In the MAPLE simulation, the typical equilibrium paths were traced by randomly 
perturbing the last converged solution before each increment of displacement. 

For the packing analysis of non-stiffened masts, only uniform control was analyzed. 
Through the analysis it was shown that if the antiprismatic spatial structure has-even sided 
segments the packing will take effect in two phases; in the first phase every polygon expands, 
in the second phase every first polygon compresses and every second polygon expands. The 
transition state is where the bracings turn to an upright position. 

For masts consisting of odd number of segments it was shown that in contrary to the 
planar structure, complete packing might be possible if specific geometry is defined. It was 
shown, that for a specific radius and n-gon, only one geometric packable configuration exists 
in the case of three segments. This type of mast is packed only by expanding the polygons. 
Nonetheless, as the number of the segments is increased, the number of the packable 
geometric configurations increases as well. 

When the non-stiffened mast is controlled only by the displacement of the top facet, 
the structure’s packing pattern for different number of segments is quite chaotic. However, 
it was found that the system is not completely stochastic. The geometrical configuration of 
the antiprismatic non-stiffened mast predefines some possible packing patterns. The effect of 
the number of the segments on the critical force was also investigated. 

The biggest advantage of the antiprismatic pop-up mast is the fast deployment of 
them. However to realize such installation, profound dynamical analysis is necessary. Only 
the methodology of some possible deployment and vibration controls were presented with 
emphasizing the problem of possible locking of the structure. This locking phenomenon can 
be avoided by height- or rotation-limitations in practice. 
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5 REALIZATION― EXPERIMENTS BY PHYSICAL MODELS, IDEAS FOR 

CONTROL AND APPLICATIONS 
 

5.1 Physical models 
 

 
Fig. 5.1: Physical models 
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For the verification of the results some physical models were built (Fig. 5.1). The rigid 
bars were either aluminum tubes or timber rods. For modeling the joints, silicon and rubber 
tubes were used. The stiff polygons were made of plastic. The elastic rods were made of 
textile covered rubber thread into a tubular stiff bar (Fig. 5.2). The first model confirmed that 
keeping symmetry, and controlling the displacements to restrain post-packed phenomenon is 
quite cumbersome without stiffening every second polygon (Fig. 5.2). With the model, the 
softening behavior was scarcely experimented during packing, which is due to the bending 
stiffness at the joints. The pop-up behavior even without the elastic bars can also be 
explained by this behavior. Unfortunately the model of non-stiffened mast was completely 
unpackable because of asymmetrical motions that locked the structure in a deployed 
configuration (Fig. 5.4). The asymmetrical freedom of motion is presented in Fig. 5.3 

 

 

 

 
Fig. 5.2: Difficult control of non-stiffened pentagonal unit 
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Despite the difficulties, with careful joint construction this problem might be handled. 
During modeling the non-stiffened version of the antiprismatic mast, a novel type of 
deployable structure was identified (Fig. 5.5). The expandable tube’s top and bottom 
boundaries are rigid polygons, while the resistance of the structure is assured by the bending 
stiffness of the joint models. This keeps the curved initial configuration. If the two rigid 
polygons kept parallel, the structure resists to torsional moments very well. 
 

 
Fig. 5.3: Asymmetrical freedom of motion 

 

               
Fig. 5.4: Non-stiffened pentagonal structure ― locking during packing 
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Fig. 5.5: Non-stiffened pentagonal structure ― novel type of deployable structure 

 
5.2 Ideas for control and application 
 

As a possible application, a pedestrian pop-out bridge application is proposed. The 
elastic stretchable bars could be of rubberlike material while the rigid bars of a more general 
stiff, lightweight material. In the deployed configuration the elastic bars should resist to 
compression forces, too. For that purpose the elastic material could be thread into a tubular 
stiff bar which is loose and can move freely along the elastic bars in the packed configuration. 
In the deployed configuration the corresponding joints tighten the stiff bar which has to click 
into its proper place to be integrated into the structure to ensure the necessary rigidity of 
the opened bridge. The efficiency of the structure can be raised by keeping it pretensioned in 
the deployed configuration. The self-stress state can be applied by the elastic bars being still 
stretched in the opened configuration and by additional longitudinal cables that could be of 
good help also for the packing control. 
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Fig. 5.6: Deployable bridge (graphical illustration by E. Kiss) 

 
To build a structure with rubber involved is quite delicate. The biggest problem with 

rubber is that its relaxation is not to be ignored, its moduli are extremely low and not to 
mention that with the ozone and UV waves around, its ageing is quite fast. These problems 
could be somewhat relieved by covering the rubber with a wicked textile that can protect 
the rubber and limit its lengthening which is also important because of safety considerations. 
By threading the elastic bars into a rigid stiff tube gives extra protection. However, it is true 
that these elements can not be prestressed really effectively because of the small moduli of 
rubber. 

The geometry of the antiprismatic masts is attractive even without making them a 
pop-up structure. If, for example, instead of the elastic bar, a cable is led through the 
polygon’s edges this cable can already effectively stiffen the structure by prestressing it, and 
at the same time it can serve for deploying the mast. These tensile elements could be either 
separate ones for each polygon or similarly to the deployable mast designed by Pellegrino, a 
single cable could be led through the structure that can control the deployment (Fig. 5.7). 
 

 

Fig. 5.7: Deployment control by one single cable (black stream: active cable, white strings: passive cables) 
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Unfortunately, the realization of such cable control is very difficult due to the friction 
at nodes. This was the case with the model in Fig. 5.7. Though the deployment was 
successful, during deploying asymmetrical motions has occurred because of the friction and 
the non-uniform tightening. Better joint construction and smoother cable surface could have 
resulted in better performance. Learning from the example of the concrete shell design 
construction that was mentioned in the second chapter, the cable could be tightened at 
several, not just one point to keep better the symmetrical conditions. 

As mentioned before, all the calculation carried out had the hypothesis of keeping 
cyclic symmetry of the structure. However, it was shown that even ‘alternately stiffened’ 
structures have asymmetrical liberty of motions (see Fig. 5.3). Instead of trying to restrain 
the structure from these motions it could be used as an advantage for adaptive architectural 
designs. Fig. 5.8 shows the high flexibility of an ‘alternately stiffened’ mast, an adaptive arm 
that can take infinite number of forms. 

Finally, some artistic exploration of possible applications of this geometry is 
presented in Fig. 5.9. 

 
 

Fig. 5.8: Shape morphing antiprismatic arm [Friedman et al., 2011/4]  
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Fig. 5.9: Artistic exploration of possible utilization  
(transom window, ventilation of dome, look-out tower by E. Kiss)
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6 SUMMARY, FURTHER RESEARCH PERSPECTIVES 
 

6.1 Summary 
 
In the following thesis, after a short historical outline an extensive but not exhaustive review 
on different transformable systems ― retractable roofs, deployable and retractable 
pantographic lattice systems, tensegrity structures, soft membrane structures and pneumatic 
systems ― used in architecture and civil engineering will be given. Though the main research 
topic of the authors within the theme of transformable structures is just a small slice, this 
study was carried out to explore earlier and current research and technologies to 
demonstrate the wide range of available systems, their historical background and their 
potential in the future in order to prove the actuality of the selected topic.  
After the architectural review, structures undergoing large displacements and instability 
phenomenon were highlighted in the research. First the analytical and numerical resolutions 
of some basic snap-through type lattice structures were carried out, starting with the static 
and dynamic analysis of a shallow truss and followed by the deployment analysis of the basic 
unit of the snap-through type structure of Zeigler which was scrutinized by Gantes. The 
behavior of these structures has been already examined before by several researchers, but it 
was a good start to familiarize with structures undergoing large displacements and instability 
phenomenon. Finally a specific system, namely the deployable antiprismatic lattice structure 
has been chosen for investigation, because its mechanical behavior has not yet been 
thoroughly analyzed. This cylindrical structure, derived from the well known yoshimura 
origami pattern and proposed by Hegedűs, is characterized by its pop-up deployment due to 
the energy accumulated from lengthening some bars during packing. Zero deployment-load 
corresponds both to the fully deployed and the compact configuration, the latter being an 
unstable equilibrium state corresponding to the maximal internal energy. 
It is true that the antiprismatic pop-up system has been proposed almost two decades ago, 
but due to the lack of popularity no practical application has been offered yet. The main goal 
of the dissertation was to investigate the general behavior of the specific system to blaze a 
trail towards the architectural application of this system by providing designing tools, 
profound analysis of packing behavior, ideas of applications. 
In this dissertation, the emphasis was mainly taken to the packing behavior. First, a simplified 
planar model was identified sharing similar, highly nonlinear packing behavior. For both the 
2D and the 3D structures numerical simulation of the packing was performed with different 
type of controls and the results were confirmed by analytical investigations. The research 
clarifies the mechanical behavior of the chosen system, provides tools to simulate the 
packing of the structure, and gives very simple approximations for main mechanical 
characteristics of the antiprismatic system in order to facilitate preliminary design and 
verification of the numerical results. Within the framework of the thesis a novel type of 
system (further called as not-stiffened antiprismatic structure), slightly deviating from the 
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original one (further called as alternately stiffened antiprismatic structure), was also investigated. 
The antiprismatic system proposed by Hegedűs is constructed from identical double 
antiprisms with an elastic middle polygon and rigid polygons in the boundaries. The modified 
model eliminates the rigid internal polygons; the pop-up column is constructed from 
continuously rotating elastic polygons with two rigid polygons on the top and on the 
bottom. 
For the specific systems, small physical models were built and presented in this work, which 
led to the proposal of a novel type of expandable tube. 
An attempt was given to provide ideas for application of antiprismatic structures by 
combining the investigated system and different learnt existing systems from the 
architectural review. Different ideas for applications and control systems were sketched. 
 
Concluding the remarkable results of the thesis that can be considered as new scientific 
achievements are herein concluded: 
 
1. Parametric analysis of basic antiprismatic and planar segment, proposal for 
approximations of main mechanical parameters for preliminary design [Friedman et al., 
2011/5] 
The general mechanical behavior and parameter analysis of the elementary segment of the 
alternately stiffened pop-up planar mast and the elementary segment of the alternately 
stiffened pop-up antiprismatic mast were analytically derived. It was shown that these 
structures are undergoing instability phenomenon during packing. The force-displacement 
diagram, the critical force and critical height of the mentioned structures were defined. For 
the antiprismatic pop-up system approximations were given for the following properties: 

 the maximal lengthening of the bars of the middle polygon for complete deployment; 

 the critical segment-height; 

 the critical packing force; 
Numerical parameter analysis was carried out with non-linear finite element simulation to 
define the influence of the different geometrical and mechanical parameters on the 
characteristic of the force-displacement diagram by supposing logarithmical strains. It was 
shown that the asymmetry of the force-displacement diagram depends on the number of the 
vertex of the polygons and on the ratio of the initial segment height and the radius of the 
polygons. By increasing the number of the vertex of the polygons or by increasing the ratio 
the asymmetry will be more significant, that is, the critical height/initial height ratio will 
decrease. 
 

2. Analysis of the complex alternately stiffened planar and antiprismatic structure 
[Friedman et al., 2011/6] 
The force-displacement diagram of the complex, multi-storey alternately stiffened 
planar and antiprismatic packable structure was derived from the force-displacement 
diagram of the elementary segment. These diagrams were investigated in the case of 
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different control possibilities. It was shown that the uniform packing of the analyzed 
structure is theoretically possible by only controlling the displacement of the boundary 
nodes. However it was also demonstrated that this path is not typical, and in reality 
should be rather mentioned as impossible. The packing of the alternately stiffened deployable 
structure can be controlled successively as well by closing the elementary segments one 
after the other. If only the displacement of the boundary nodes is controlled, the 
typical packing path is not uniform; the segments close in a random order. The 
analytical methodology to construct the typical diagram was determined in the case of 
ignoring the self-weight of the structure and with taking the self-weight into account as well. 
The results were confirmed by non-linear finite element simulations and also by a self-
programmed numeric simulation based on the minimal energy principal. The main 
complexity of the numeric simulation is to avoid the segment to turn upside-down after 
having been completely packed (herein called as post-closure phenomenon. This was 
modeled by defining contact forces in between the polygons in the finite element analysis and 
with eliminating the closed segment in the self-developed simulation. 
 

3. Non-smooth packing of the alternately stiffened structure [Friedman et al., 2011/6] 
Deriving from the methodology of constructing the force-displacement diagram of the 
alternately stiffened structure, it was shown that after a critical number of segments 
the typical packing of the structure is not smooth if it is only the displacement of the 
boundary polygons that is controlled. This is due to the snap-back phenomenon 
occurring in the force-displacement diagram of the complex, multi-storey 
structure. 
A new expression was deduced; namely the critical segment number. With the 
assumption that no segment closes simultaneously, if the number of the segments is 
more than critical sudden intermediate snapping will be sure to take place 
during packing. If the number of segments is less than critical, the length of the sudden 
displacement will be smaller than the initial height of the elementary segment. 
It is important to lay down that snap-back phenomenon may occur in the case of 
fewer segments than the critical number. It was shown that (independently to the 
geometry of the antiprism) this phenomenon already arouses when the number of 
the segments is more than two if no self-weight of the structure is taken into account. 
Nonetheless strong converging problem and, in reality, non-negligible inertial and impact 
effects occur when the sudden displacements are larger than the segment-height. 
 

4. Analysis of non-stiffened antiprismatic structures 
The mechanical behavior and packability conditions of the modified, non-stiffened 
antiprismatic mast were investigated. It was proven that the non-stiffened planar 
structure can be only packed if the number of the segments is even. In contrary, 
the existence of packable geometrical configurations was proved in case of odd number of 
segments for the spatial, not-stiffened antiprismatic structure. Deriving from the not-
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stiffened structure, a novel type of deployable structure was identified, a cylindrical 
lattice structure that can be packed to plane by expansion.  

5. Dynamic analysis of antiprismatic structures  
Different numerical and technical possibilities of controlling the deployment and generated 
vibrations of the basic unit were presented. It was shown that the main problem of 
deployment control is imposed by the locking phenomenon, occurring after passing the 
geometrical configuration corresponding to the bracings being in an up-right position. This 
phenomenon can be overtaken by limiting the rotations of bracings or the complete height 
of the segment. 
 

6.2 Further research perspectives 
 

The main target of the research carried out was to blaze a trail towards the 
architectural and industrial application of antiprismatic deployable systems. 

General mechanical behavior of the pop-up mast has been explored, but the 
calculations have been only verified for linear small strains and logarithmic strains. The effect 
of constitutive models of different realistic and applicable materials on the characteristics of 
these structures could be interesting to further investigate. 

It was shown that the packing of the non-stiffened antiprismatic mast shows a chaotic 
system, but still regularities can be observed. However, within the refines of the thesis, a 
compact explanation of the regularity has not yet been found. 
The main deficiency of the thesis is the uncompleted dynamic analysis and vibration control 
of the deployment, as well as of the snap-back phenomenon in the cases of structures with 
large sudden displacements. 

The research has resulted in a novel type of deployable structure, to which 
mechanical analysis and exploration of possible applications could be carried out. 

Another research interest of the author is the further investigation of possible 
architectural applications and packing/deploying control, and the evaluation of the given 
sketches by cost-benefit analysis and comparison with similar systems. 

During the research of controlling the deployment of antiprismatic structures with 
continuous, spirally driven cables, the idea to use this control for truss system derived from 
the inclined yoshimura pattern came up, which might be worthwhile to investigate. 
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APPENDIX A: STATIC AND KINEMATIC DETERMINACY OF ANTIPRISMATIC 

STRUCTURES4 
 

In accordance with the well-known Maxwell’s rule, the condition for stiffness of a spatial 
truss system is: 

ܾ ൌ 3݆ െ ܿ 
(A1)	

 
and for planar structures: 

ܾ ൌ 2݆ െ ܿ 
(A2)	

 
Where ܾ is the number of the bars, ݆ is the number of the joints and ܿ is the number of the 
constraints. 
Let’s consider the antiprismatic truss system shown in Fig. A1. In accordance to the 
Maxwell’s rule, the antiprismatic structure is rigid, as in the case of an n-gon the parameters 
are: 

ܾ ൌ 3݊ 
݆ ൌ 2݊ 
ܿ ൌ 3݊ 

(A2) 

 

Fig. A1: Antiprismatic truss structure 

Nonetheless, in the case of some unfortunate topological or geometrical reasons there can 
be structures that satisfy though the equation (A1/A2) but still prove to be not stiff. For 
example, the truss system in Fig. A2a satisfies the equation (A2), but by changing its 
geometry, the truss turns to be both statically and kinematically indeterminate (Fig. A2b). 
If the equilibrium equation of the antiprismatic truss can be written with the equation: 
 

࢙࡭ ൅ ࢗ ൌ ૙ 
(A3) 

                                            
4 The problem herein is explained on the bases of [Tarnai, 2001] 
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(where s is the vector composed of forces in the bars, and q is the vector of the 
components of loads at the nodes) 
 
than the static/kinematic determinacy of the structure is defined by the determinant of the 
matrix A. The satisfaction of the condition in (A1) assures that the number of the equations 
and the number of the unknowns are equal. However, this condition does not guarantees 
yet that these equations are independent and accordingly that the matrix A is not singular.  	

a) b)  

Fig. A2: Changing stiffness with changing geometry 

Without going into the details, the determinant of the matrix A is zero if the number of the 
vertices of the polygon is even, and non-zero if it is odd. While the structures formed from 
odd-sided pentagonal antiprisms are stiff, the ones formed from even-sided pentagonal 
antiprisms are finite mechanisms.  
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APPENDIX B: ANALYSIS OF THE SNAPPING-THROUGH OF A SHALLOW 

TRUSS 
 

Quasi static analytic and finite element formulation for tracing 
equilibrium path and for finding critical points 

 
Let’s consider a symmetrical shallow truss with height ‘h’ and initial bar length ‘l’ with cross 
sections ‘A’ loaded with a vertical force (Fig. B1), and supposing that the elastic constitutive 
behavior of each bar is described by Saint-Venant-Kirchoff material model with ‘E’ Young’s 
modulus. 
 
 

F

x

y v

b b

h
ll

 

Fig. B1: shallow truss and its force-displacement diagram 

 
Taking into account the symmetry of the structure the compressed (or tensioned) length of 
the bars in function of the vertical displacement of the middle joint (v) is: 
 

݈ሺݒሻ ൌ ඥܮଶ െ ݄ଶ െ ሺ݄ ൅ 	ሻଶݒ ൌ ඥܮଶ ൅ ݒ2݄ ൅  	ଶݒ
 
Thus the kinematic equation: 
 

ሻݒሺߝ ൌ 	
݈ሺݒሻ

	ܮ
െ 1 ൌ

ଶܮ√ ൅ ݒ2݄ ൅ 	ଶݒ

ܮ
െ 1 

 
The constitutive equations: 
 

ܵሺݒሻ ൌ ଵܵሺݒሻ ൌ ܵଶሺݒሻ ൌ ܣܧ ∙ ሻݒሺߝ ൌ ሺܣܧ
ଶܮ√ ൅ ݒ2݄ ൅ 	ଶݒ

ܮ
െ 1ሻ 

 
The equilibrium equation: 
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ሻݒሺܨ ൌ 	 ሺ ଵܵሺݒሻ ൅ ܵଶሺݒሻሻ ∙
ሺ݄ ൅ ሻݒ

݈ሺݒሻ
ൌ
ܣܧ2
ଷܮ

ሺ݄ ൅ ݒሻሺ݄ݒ ൅
ଶݒ

2
ሻ 

 
This gives the equilibrium path shown in Fig B1.b. 
The critical equilibrium states correspond to: 
 

ሻݒሺܨ߲

ݒ߲
ൌ 0 

where 
 

ሻݒሺܨ߲

ݒ߲
ൌ
ܣܧ2
ଷܮ

˙ሺቆ݄ݒ ൅
ଶݒ

2
ቇ ൅ ሺ݄ ൅ ሻݒ ∙ ሺ݄ ൅  ሻሻݒ

 
The zero points of the quadratic equation will be at 
 

௖௥ଵ,ଶݒ ൌ െ݄ሺ1 ∓
√3
3
ሻ 

 
That corresponds to the maximum and the minimum value of the load: 
 

௖௥,ଵܨ ൌ
ܣܧ2
ଷܮ

ሺ݄ ൅ ௖௥ଵሻݒ ቆ݄ݒ ൅
௖௥ଵଶݒ

2
ቇ ൌ

െ2√3ܣܧ
ଷܮ9

݄ଷ 

௖௥,ଶܨ ൌ
ܣܧ2
ଷܮ

ሺ݄ ൅ ௖௥ଶሻݒ ቆ݄ݒ ൅
௖௥ଶଶݒ

2
ቇ ൌ

ܣܧ3√2
ଷܮ9

݄ଷ 

 
Writing the weak form with the non-linear finite element formulation: 
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

 
The week form with the finite element formulation: 

K e( ) Km
e( ) Kg

e( ) Km
e( ) A

Le
HT xe de  E

A

Le
2

 xT dT  H Kg
e( )

A S11
e( )

Le
H

Lin re de   re de  K e( )u
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
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Numerical examples 
 

The aim of the analysis of the snapping-through shallow truss was to familiarize with 
the different procedures of treating instability phenomenon (linear and non-linear instability, 
direct calculation of critical point, arch-length method.. etc.).  

First the force-displacement diagram was traced (Fig. B2b) numerically with an 
incremental analysis, by controlling the displacement of the top node. For the analysis, a 
frame model was used, the joint was modeled with a master&slave method. It was shown, 
that a force-controlled simulation does not give back the equilibrium path because of the 
snap-back behavior of the structure (Fig. B2b). 

In reality, the snap-through occurs suddenly, causing non-negligible inertial effects (Fig 
B3) and vibration of the structure. For that, a mixed, static-dynamic approach was used for 
the simulation. Until the critical point, the arch-length method can be applied with an 
interactive control. When the tangent stiffness matrix turns singular, a switch is applied to 
dynamic analysis, giving a more realistic modeling of the structure.  

Without any damping, the structure keeps oscillating around the equilibrium point (Fig. 
B2a, pink line Fig. B2b, blue line). The magnitude of the damping controls this vibration after 
the snapping-through. 

 

a) b)  

Fig. B2 Force-displacement diagram with displacement control (in pink), with incremental force control (in 
yellow) and with additional damping (in blue) (a); Displacements in function of the time with (in brown) and 

without damping (in pink) with force control 
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Fig. B3 Inertial effect of snapping through with damping (in brown) and without damping (in yellow) and the 
imposed increasing force (in blue), and damping model used for the simulation. 

For facilitating the complexity of changing analysis during simulation, the snapping-through 
can be simulated by an only dynamical approach, if the increment of the force imposed in not 
too large. Fig. B4 shows the force-displacement diagram for forces with different speed of 
increment. 

  

Fig. B4 Force displacement diagram with only dynamical approach: simulation with three different speeds of 
force increment and the equilibrium path
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APPENDIX C: ANALYSIS OF THE BASIC UNIT OF A SNAP-THROUGH TYPE 

PANTOGRAPHIC DEPLOYABLE STRUCTURE 
 

As an example the force-displacement diagram of the basic element of self-locking 
deployable structures are herein presented that can be used for planar assemblies (Fig. C1). 
The outer SLEs would form a simple pantographic mechanism without the inner SLEs. The 
diagram was plotted from data gained from a numeric simulation (run by FEAP) with 
displacement control. The center bottom joint was fixed and the center top node was 
vertically displaced upwards until complete closure. It can be seen from Fig. A1 that no 
stresses occur in the outer SLEs, and that both, the deployed (u/h=0) and the closed (u/h=1) 
configurations correspond to zero force and a stress-free state. 

 

b)  

Fig. C1: Packing simulation of self-locking pantographic structures: force displacement diagram and the axial 
forces in the scissors 
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APPENDIX D: ENERGETICAL APPROACH FOR THE CALCULATION OF PLANAR 

AND ANTIPRISMATIVC SELF-DEPLOYABLE STRUCTURES 
 

D1. Calculation of the planar structure with energetic approach 
 

D1.1 Analysis of basic segment 
 
The total potential energy of the basic segment can be written in the form: 
 

Πୣ୶୲ሺ݄ఝሻ ൌ 	െ2ܰሺ݄଴ െ ݄ఝሻ 

Π୧୬୲ሺ݄ఝሻ ൌ ൅
1
2
௜ሺ݄ఝሻߣ଴ሾݎ2ܣܧ െ 1ሿଶ 

Πሺ݄ఝሻ ൌ ΠΠୣ୶୲ሺ݄ఝሻ ൅ Π୧୬୲ሺ݄ఝሻ ൌ െ2ܰሺ݄଴ െ ݄ఝሻ ൅ ௜ሺ݄ఝሻߣ଴ሾݎܣܧ െ 1ሿଶ 
(D1) 

The first derivative of the total potential energy: 
 

߲Πሺ݄ఝሻ
߲݄ఝ

ൌ 2ܰ ൅ ሺ݄ఝሻߣ଴ሾݎܣܧ2 െ 1ሿߣ`ሺ݄ఝሻ ൌ 2ܰ െ
ܣܧ2
଴ݎ

݄ఝ

ۏ
ێ
ێ
ێ
ێ
ۍ

1 െ
2

ඨ4 ൅
ሺ݄଴ሻଶ െ ሺ݄ఝሻଶ

ሺݎ଴ሻଶ ے
ۑ
ۑ
ۑ
ۑ
ې

 

(D2) 
where 
 

ሺ݄ఝሻ`ߣ ൌ
ሺ݄ఝሻߣ߲
߲݄ఝ

ൌ
1

ඨ4 ൅
ሺ݄଴ሻଶ െ ሺ݄ఝሻଶ

ሺݎ଴ሻଶ

െ݄ఝ

ሺݎ଴ሻଶ
 

(D3) 
At the equilibrium state the total potential energy has stationary point, which is at: 
 

߲Πሺ݄ఝሻ
߲݄ఝ

ൌ 0 ⟹ 	ܰሺ݄ఝሻ ൌ
ܣܧ
଴ݎ
݄ఝ

ۏ
ێ
ێ
ێ
ێ
ۍ

1 െ
2

ඨ4 ൅
ሺ݄଴ሻଶ െ ሺ݄ఝሻଶ

ሺݎ଴ሻଶ ے
ۑ
ۑ
ۑ
ۑ
ې

 

(D4) 
Equation (D4) corresponds to the equilibrium function already given in (3.8).  
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To decide whether the equilibrium state is stable or not, the sign of the second derivative of 
the total potential energy is needed. The second derivative is: 
 

߲ଶΠሺ݄ఝሻ

߲݄ఝଶ
ൌ െ

ܣܧ2
଴ݎ

ە
ۖ
۔

ۖ
ۓ

1 െ
2

ඨ4 ൅
ሺ݄଴ሻଶ െ ሺ݄ఝሻଶ

ሺݎ଴ሻଶ

െ
2ሺ݄ఝሻଶ

଴ଶݎ ൤4 ൅
ሺ݄଴ሻଶ െ ሺ݄ఝሻଶ

ሺݎ଴ሻଶ
൨
ଷ/ଶ

ۙ
ۖ
ۘ

ۖ
ۗ

 

(D5) 
 

In the critical point the second derivative turns zero: 
 

߲ଶΠሺ࣐ࢎሻ

߲݄௜
ఝଶ

ൌ 0	 ⇒ 		݄௜
ఝ
௖௥
ൌ ଴ඨ൬ݎ

݄଴
଴ݎ
൰
ଶ

െ ቈ2 ൬
݄଴
଴ݎ
൰
ଶ

൅ 8቉
ଶ/ଷ

൅ 4 

(D6) 
 
This gives identical solution to the critical height calculated for one single segment in 
equation (3.16). 

D1.2 Analysis of ‘alternately stiffened’ multi-storey structures 

Equations 
For multi-storey ࣐ࢎ is a vector of dimension ݇ containing the actual half-height of the units, 
that is, the current height of the mast is: 
 

ఝܪ ൌ 2෍݄௜
ఝ

௞

௜ୀଵ

 

(D7) 
The total potential energy will take the following form: 

Πୣ୶୲ሺ࣐ࢎሻ ൌ 	െ2ܰ෍൫݄଴ െ ݄௜
ఝ൯

௞

௜ୀଵ

 

Π୧୬୲ሺ࣐ࢎሻ ൌ ൅
1
2
௜൫݄௜ߣ଴෍ൣݎ2ܣܧ

ఝ൯ െ 1൧
ଶ

௞

௜ୀଵ

 

Πሺ࣐ࢎሻ ൌ Πୣ୶୲ሺ࣐ࢎሻ ൅ Π୧୬୲ሺ࣐ࢎሻ ൌ െ2ܰ෍൫݄଴ െ ݄௜
ఝ൯

௞

௜ୀଵ

൅ ௜൫݄௜ߣ଴෍ൣݎܣܧ
ఝ൯ െ 1൧

ଶ
௞

௜ୀଵ

 

(D8) 
If the axial stiffness of the elastic horizontal bars is not the same, the multiplier ܣܧ௜ has to be 
brought into the summing sign in the expression of the internal potential energy. The 
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stretching of the elastic bars only depend on the height of the segment they take place and 
accordingly, the equilibrium equation will fall to ݇ separate and identical equations with one 
only ݄ఝ௜ as unknown. The first derivative of the total potential energy: 

߲Πሺ࣐ࢎሻ

߲݄௜
ఝ ൌ 2ܰ ൅ ௜൫݄௜ߣ଴ൣݎܣܧ2

ఝ൯ െ 1൧ߣ`௜൫݄௜
ఝ൯ ൌ 2ܰ െ

ܣܧ2
଴ݎ

݄௜
ఝ

ۏ
ێ
ێ
ێ
ێ
ۍ

1 െ
2

ඨ4 ൅
ሺ݄଴ሻଶ െ ሺ݄௜

ఝሻଶ

ሺݎ଴ሻଶ ے
ۑ
ۑ
ۑ
ۑ
ې

 

(D9) 
where 

ఝ௜ሻࢎ௜ሺ`ߣ ൌ
ሻ࣐ࢎ௜ሺߣ߲

߲݄௜
ఝ ൌ

1

ඨ4 ൅
ሺ݄଴ሻଶ െ ሺ݄௜

ఝሻଶ

ሺݎ଴ሻଶ

െ݄௜
ఝ

ሺݎ଴ሻଶ
 

(D10) 
The stationary point is at: 

߲Πሺ࣐ࢎሻ

߲݄௜
ఝ ൌ 0 ⟹ 	ܰሺࢎ௜

ఝሻ ൌ
ܣܧ
଴ݎ
݄௜
ఝ

ۏ
ێ
ێ
ێ
ێ
ۍ

1 െ
2

ඨ4 ൅
ሺ݄଴ሻଶ െ ሺ݄௜

ఝሻଶ
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ۑ
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ې

 

 (D11) 
Obviously we get to the trivial solution that pushing the top segments down will result in a 

uniform packing with ݄ఝ ൌ ݄௜
ఝ where the equilibrium path will be the same as calculated for 

one single segment, consequently equation (D11) is identical to (D4). 
 To decide whether the equilibrium positions are stable or not, the signs of the 
eigenvalues of the Hessian matrix, containing the second derivatives of the total potential 
energy, are needed. The path is stable where all the eigenvalues are positive. The Hessian 
matrix of the alternately stiffened mast will take the very simple diagonal form, as the mixed 
partials will be zero, and each first derivative will be the same:  
 

ࡴ ൌ ௜௜ܪ			઩ࡱ ൌ 	Λ୧ 
(D11) 

In equation (D11) ࡱ is the matrix of unity and ઩ is the vector with the eigenvalues of the 
Hessian matrix, which is in this case equals the second derivative: 
 

Λ ൌ Λ୧ ൌ
߲ଶΠሺ࣐ࢎሻ

߲݄௜
ఝଶ

 

(D12) 
The half-height of the segments (݄ఝ௜) will take its critical value where the eigenvalues are 
zero: 
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߲ଶΠሺ࣐ࢎሻ
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ఝሻଶ
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െ
2ሺ݄௜

ఝሻଶ

଴ଶݎ ቈ4 ൅
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(D13) 

߲ଶΠሺ࣐ࢎሻ

߲݄௜
ఝଶ

ൌ 0	 ⇒ 		݄௜
ఝ
௖௥
ൌ ଴ඨ൬ݎ

݄଴
଴ݎ
൰
ଶ

െ ቈ2 ൬
݄଴
଴ݎ
൰
ଶ

൅ 8቉
ଶ/ଷ

൅ 4 

(D14) 
If the self-weight of the structure are not to be ignored then the vertical force acting 

on the structure is not identical in the segments, but still the mechanical behavior can be 
calculated from a separate analysis of the segments. 
If we consider only concentrated masses in the end nodes of the rigid horizontal bars (see 
Fig. 3.16) the external potential energy has to be modified to: 

Πୣ୶୲ሺ࣐ࢎሻ ൌ 	െ2ܰ෍൫݄଴ െ ݄௜
ఝ൯

௞

௜ୀଵ

െ 2݉݃෍෍൫݄଴ െ ௝݄
ఝ൯

௜

௝ୀଵ

ଵ

௜ୀ௞

 

(D15) 
and the derivative of the total potential energy written in (D9) will have to be modified with 
the derivative of the second term in (D15): 
 

െ߲ൣ2݉݃∑ ∑ ൫݄଴ െ ௝݄
ఝ൯௜

௝ୀଵ
௡
௜ୀଵ ൧

߲݄௜
ఝ ൌ ݅2݉݃ 

(D16) 

Methodology 
 
The tracing of the force displacement diagram of the ‘alternately stiffened’ mast can 

be programmed with a MAPLE code developed specially for these structures. The 
incremental analysis is carried out with numerically minimizing the total potential energy in 
(D8). The different bifurcated paths can be obtained by perturbing equilibrated variables with 
random positive and negative numbers, which will serve as the initial value for the minimum 
search (See Fig.D1). The random generation uses the time of the processor, as otherwise 
every calculation would use the same random numbers resulting in identical equilibrium 
paths. The restriction of ‘post-packed phenomenon’ can be handled by kicking out the 
segments from the calculation that are heading to be completely closed. 
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Fig. D1: methodology for tracing force-displacement diagram of multi-storey, ‘alternately stiffened’ masts 

 

D1.3 Analysis of ‘non-stiffened’ multi-storey structures 

Equations 
For the non-stiffened multi-storey structures, for the sake of simplicity, the total potential 
energy is herein written in the function of the current half-length of the horizontal elastic 
bars: 

Πୣ୶୲ሺ࣐࢘ሻ ൌ 	െܰ෍ൣ݄଴ െ ݄௜
ఝ൫ݎ௜

ఝ, ௜ିଵݎ
ఝ ൯൧

௞

௜ୀଵ

ൌ െܰ෍ቈ݄଴ െ ට݈௕
ଶ െ ൫ݎ௜

ఝ ൅ ௜ିଵݎ
ఝ ൯

ଶ
቉

௞

௜ୀଵ

 

Set initial geometric/mechanical parameters:

‐Segment height (ho)

‐ Half‐length of  elastic bars  (rfii=roi)

‐Number of segments (k)

‐Axial stiffness of elastic bars (EA)i

‐(intensity of concentrated mass at nodes (mgi))

Set total height for Hfi=Hfi‐du

Minimize total potential ernergy 
for Hfi (min(F8)

(start numeric surch at rfii)

Get current halflengths (rfii)

Calculate force (N) from equilibrium 
equation (F11)Randomly perturb current half‐

lengths

rfii=rfii+epsziloni

Set initial numerical parameters

‐Stepping parameter (du)

‐Maximal value for halflength (rmax)

(for avoiding complex result field)

Calculate initial geometric parameters

‐segment height (h)

‐Total height of structure (H=∑h)

Kick out rfii variable if 
 rfi i ≥rmax, 
fix it to rfi i =rmax, hfi i =0 
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Π୧୬୲ሺ࣐࢘ሻ ൌ ൅
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ଶ
቉

௞
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௜ݎ
ఝ
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(D17) 
 
The first derivatives of the total potential energy: 
 

߲Πሺ࣐࢘ሻ

௜ݎ߲
ఝ ൌ െܰ ቈ

௜ݎ
ఝ ൅ ௜ିଵݎ

ఝ

݄௜
ఝ൫ݎ௜

ఝ, ௜ିଵݎ
ఝ ൯

൅
௜ݎ
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ఝ
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ఝ ൯
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௜ݎ
ఝ

଴ݎ
െ 1ቇ 

(D18) 
In the equilibrium state the total potential energy has stationary points: 
 

߲Πሺ࣐࢘ሻ

௜ݎ߲
ఝ ൌ 0 ⟹ ܰ ൌ ௜ܰሺݎ௜ିଵ

ఝ , ௜ݎ
ఝ, ௜ାଵݎ

ఝ ሻ ൌ
௜ܣܧ2
଴ݎ

௜ݎ
ఝ െ ଴ݎ

௜ݎ
ఝ ൅ ௜ିଵݎ

ఝ

݄௜
ఝ ൅

௜ݎ
ఝ ൅ ௜ାଵݎ

ఝ

݄௜ାଵ
ఝ

 

(D19) 
This equilibrium equation corresponds to the equation already given in (3.61). 
To decide whether the equilibrium points are stable or not he Hesse matrix has to be 
calculated. In the case of non-stiffened mast, the Hesse matrix takes a more complex form 
than a diagonal one. In this case the hessian is a tridiagonal matrix as only the partials 
డమሺ࣐࢘ሻ

డ௥೔
കడ௥೔షభ

ക , డ
మሺ࣐࢘ሻ

డ௥೔
കమ ,

డమሺ࣐࢘ሻ

డ௥೔
കడ௥೔శభ

ക 	 are nonzero: 

 

߲ଶΠሺ࣐࢘ሻ

௜ݎ߲
ఝଶ

ൌ െܰ ൥
݄௜
ఝ െ ൫ݎ௜

ఝ ൅ ௜ିଵݎ
ఝ ൯݄`௜

ఝ

൫݄௜
ఝ൯

ଶ ൅
݄௜ାଵ
ఝ െ ൫ݎ௜

ఝ ൅ ௜ାଵݎ
ఝ ൯݄`௜ାଵ

ఝ

൫݄௜ାଵ
ఝ ൯

ଶ ൩ ൅
௜ܣܧ2
଴ݎ

 

(D20) 
 
where 

݄`௜
ఝ ൌ

߲ଶ݄௜
ఝ൫ݎ௜

ఝ, ௜ିଵݎ
ఝ ൯

௜ݎ߲
ఝଶ

ൌ
െ1
2

1

݄௜
ఝ 2൫ݎ௜

ఝ ൅ ௜ିଵݎ
ఝ ൯ 

߲ଶΠሺ࣐࢘ሻ

௜ݎ߲
ఝଶ

ൌ െܰ ൥
݄௜
ఝ െ ൫ݎ௜

ఝ ൅ ௜ିଵݎ
ఝ ൯݄`௜

ఝ

൫݄௜
ఝ൯

ଶ ൅
݄௜ାଵ
ఝ െ ൫ݎ௜

ఝ ൅ ௜ାଵݎ
ఝ ൯݄`௜ାଵ

ఝ

൫݄௜ାଵ
ఝ ൯

ଶ ൩ ൅
௜ܣܧ2
଴ݎ

 

 

߲ଶΠሺ࣐࢘ሻ

௜ݎ߲
ఝଶ

ൌ െܰ ൥
1

݄௜
ఝ ൅

൫ݎ௜
ఝ ൅ ௜ିଵݎ

ఝ ൯
ଶ

൫݄௜
ఝ൯

ଷ ൅
1

݄௜ାଵ
ఝ ൅

൫ݎ௜
ఝ ൅ ௜ାଵݎ

ఝ ൯
ଶ

൫݄௜ାଵ
ఝ ൯

ଷ ൩ ൅
௜ܣܧ2
଴ݎ
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߲ଶΠሺ࣐࢘ሻ

௜ିଵݎ߲
ఝ ௜ݎ߲

ఝ ൌ
߲ଶΠሺ࣐࢘ሻ

௜ݎ߲
ఝ߲ݎ௜ିଵ

ఝ ൌ െܰ ൥
1

݄௜
ఝ ൅

൫ݎ௜
ఝ ൅ ௜ିଵݎ

ఝ ൯
ଶ

൫݄௜
ఝ൯

ଷ ൩ 

߲ଶΠሺ࣐࢘ሻ

௜ାଵݎ߲
ఝ ௜ݎ߲

ఝ ൌ
߲ଶΠሺ࣐࢘ሻ

௜ݎ߲
ఝ߲ݎ௜ାଵ

ఝ ൌ െܰ ൥
1

݄௜ାଵ
ఝ ൅

൫ݎ௜
ఝ ൅ ௜ାଵݎ

ఝ ൯
ଶ

൫݄௜ାଵ
ఝ ൯

ଷ ൩ 

(D21) 
 
Using the equilibrium equation (D19) and introducing the function: 
 

௜݌ ൌ
଴ݎܰ
௜ܣܧ2

൥
1

݄௜
ఝ ൅

൫ݎ௜
ఝ ൅ ௜ିଵݎ

ఝ ൯
ଶ

൫݄௜
ఝ൯

ଷ ൩ ൌ
௜ݎ
ఝ െ ଴ݎ

௜ݎ
ఝ ൅ ௜ିଵݎ

ఝ

݄௜
ఝ ൅

௜ݎ
ఝ ൅ ௜ାଵݎ

ఝ

݄௜ାଵ
ఝ

൥
1

݄௜
ఝ ൅

൫ݎ௜
ఝ ൅ ௜ିଵݎ

ఝ ൯
ଶ

൫݄௜
ఝ൯

ଷ ൩ 

(D22) 
and the constant: 

ܿ௜ ൌ
௜ܣܧ2
଴ݎ

 

(D23) 
the Hesse matrix will take the following form: 
 

ࡴ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ܿ1ሺ݌ଵ ൅ ଶ݌ ൅ 1ሻ 	 0

	

⋱ 	 	

	
c୧ିଵሺ݌௜ିଵ ൅ ௜݌ ൅ 1ሻ c୧	݌௜ 	

	c୧݌௜ c୧ሺ݌௜ ൅ ௜ାଵ݌ ൅ 1ሻ c୧ାଵ݌௜ାଵ
	 c୧ାଵ݌௜ାଵ c୧ାଵሺ݌௜ାଵ ൅ ௜ାଶ݌ ൅ 1ሻ

	

	 	 ⋱

	

0 	 c୩ିଵሺ݌௞ିଵ ൅ ௞݌ ൅ 1ሻے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

(D24) 
 
 The determinant of a tridiagonal matrix can be computed recursively with the 
extended continuant theory, thus the cost is only linear in ݇ instead of the typical quadratic 
relationship. For example for a tridiagonal matrix ࡭ of order ݊ the determinant: 
 

detࡴ ൌ ௡,௡ܪ detࡴଵ..௡ିଵ െ ௡ିଵ,௡ܪ௡,௡ିଵܪ detࡴଵ..௡ିଶ 
(D25) 

where ࡴଵ..௜ is the ݅th principal minor. 
 The smallest unit of this type of mast, that is, the one consisting of two segments is 
identical to the basic unit of the ‘alternately stiffened’ mast. In this case the Hesse matrix will 
be a single scalar. If this scalar gives zero value, the analyzed equilibrium point will be critical. 
Though the Hessian matrix will take a simple tridiagonal form, to calculate analytically the 
exact result for critical points can be still quite cumbersome. Nevertheless, the numeric 
calculation of the critical points is possible. 
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Methodology 
 

The same methodology that was used for ‘alternately stiffened masts’ (Dig. F1) can be 
applied for non-stiffened masts as well. The main difference between the two methods is 
mainly that it is not possible to kick out closed segments from the calculation. This can not 
be done due to the possible length-changing of elastic bars after complete closure. For that, 
these calculations are only carried out until the first segment closure. The critical force can 
be determined from the program by calculating the determinant of the Hesse matrix in 
(D25) for every incremental step. 

 

Fig. D2: Methodology for tracing force-displacement diagram of multi-storey, ‘non-stiffened’ masts until the 
first segment closure 

Set initial geometric/mechanical parameters:

‐Segment height (ho)

‐ Half‐length of  elastic bars  (rfii=roi)

‐Number of segments (k)

‐Axial stiffness of elastic bars (EA)i

‐(intensity of concentrated mass at nodes (mgi))

Set total height for Hfi=Hfi‐du

Minimize total potential ernergy 
for Hfi (min(F17)

(start numeric surch at rfii)

Get current halflengths (rfii)

Calculate force (N) from equilibrium 
equation (F19)

Randomly perturb current half‐
lengths

rfii=rfii+epsziloni

Set initial numerical parameters

‐Stepping parameter (du)

‐Maximal value for halflength (rmax)

(for avoiding complex result field)

Calculate initial geometric parameters

‐segment height (h)

‐Total height of structure (H=∑h)

Calculate Hessian (F25) 

(if DetH=0 than critical 

state) 
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The simulation developed in MAPLE uses linear constitutive model. The results for the 
critical forces in case of different segment numbers can be seen in Fig. D3 for two different 
height per half-length ratios. 

 

Fig. D3: Influence of segment number on the critical force of ‘non-stiffened’ masts for two different ratios of 
segment height and half-length of elastic bars  
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D2. Calculation of the antiprismatic mast with energetic approach 

D2.1 Analysis of basic segment  
 
The total potential energy of the basic segment can be written in the form: 
 

Πሺ݄ఝሻ ൌ Πୣ୶୲ሺ݄ఝሻ ൅ Π୧୬୲ሺ݄ఝሻ ൌ െ2ܰሺ݄ െ ݄ఝሻ ൅
1
2
ܴܣܧ݊ 2sin߶ ሾߣሺ݄ఝሻ െ 1ሿଶ 

(D.26) 
The equilibrium of the structure will be where the total potential energy takes its minimal 
value: 

݀Πሺ݄ఝሻ

݄݀ఝ
ൌ 0 

݀Πሺ݄ఝሻ

݄݀ఝ
ൌ 2ܰ ൅ ܴܣܧ2݊ sin߶ ሾߣሺ݄ఝሻ െ 1ሿߣᇱሺ݄ఝሻ

ൌ 2ܰ െ ܣܧ2݊	 sin߶
݄ఝ

ܴ
ۏ
ێ
ێ
ۍ ሺcos ߶ െ 1ሻ

ටቀ݄ܴቁ
ଶ

െ ቀ݄
ఝ

ܴ ቁ
ଶ

൅ ሺ1 െ cos߶ሻଶ
൅ 	1

ے
ۑ
ۑ
ې
ൌ 0 

(D27) 

2ܰ ൌ ܣܧ2݊	 sin߶
݄ఝ

ܴ
ۏ
ێ
ێ
ۍ ሺcos ߶ െ 1ሻ

ටቀ݄ܴቁ
ଶ

െ ቀ݄
ఝ

ܴ ቁ
ଶ

൅ ሺ1 െ cos߶ሻଶ
൅ 	1

ے
ۑ
ۑ
ې
 

(D28) 
where ߣᇱሺ݄ఝሻ is the derivative of the equation (4.6): 

ᇱሺ݄ఝሻߣ ൌ
ሺ݄ఝሻߣ݀

݄݀ఝ
ൌ

െ݄ఝ

ܴଶටቀ݄ܴቁ
ଶ

െ ቀ݄
ఝ

ܴ ቁ
ଶ

൅ ሺ1 െ cos߶ሻଶ
 

(D29) 
 
The second derivative of the total potential energy: 

݀ଶΠሺ݄ఝሻ

݀ଶ݄ఝ
ൌ 	
ܣܧ2݊ sin߶

ܴ

ە
ۖ
۔

ۖ
ۓ

ۏ
ێ
ێ
ۍ ሺcos ߶ െ 1ሻ

ටቀ݄ܴቁ
ଶ

െ ቀ݄
ఝ

ܴ ቁ
ଶ

൅ ሺ1 െ cos߶ሻଶ
൅ 	1

ے
ۑ
ۑ
ې

൅ ݄ఝ
1
2
2݄ఝ

ܴଶ

ۏ
ێ
ێ
ێ
ۍ

ሺcos ߶ െ 1ሻ

ቈቀ
݄
ܴቁ

ଶ

െ ቀ݄
ఝ

ܴ ቁ
ଶ

൅ ሺ1 െ cos߶ሻଶ቉
ଷ/ଶ

ے
ۑ
ۑ
ۑ
ې

ۙ
ۖ
ۘ

ۖ
ۗ
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݀ଶΠሺ݄ఝሻ

݀ଶ݄ఝ
ൌ 	
ܣܧ2݊ sin߶

ܴ

ە
ۖ
۔

ۖ
ۓ
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݄
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െ ൬
݄ఝ
ܴ ൰

ଶ
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ܴଶ
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ଶ
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ఝ

ܴ ቁ
ଶ

൅ ሺ1 െ cos߶ሻଶ቉
ଷ/ଶ ൅ 1
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ۖ
ۘ

ۖ
ۗ

 

݀ଶΠሺ݄ఝሻ

݀ଶ݄ఝ
ൌ 	
ܣܧ2݊ sin߶

ܴ

ە
ۖ
۔

ۖ
ۓ

ሺcos߶ െ 1ሻ
݄ଶ ൅ ܴଶሺ1 െ cos߶ሻଶ

ܴଶ ቈቀ
݄
ܴቁ

ଶ

െ ቀ݄
ఝ

ܴ ቁ
ଶ

൅ ሺ1 െ cos߶ሻଶ቉
ଷ/ଶ ൅ 1

ۙ
ۖ
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 (D30) 
The critical state is where: 

݀ଶΠሺ݄ఝሻ

݀ଶ݄ఝ
ൌ 0 

⇒ ൬
݄ఝ௖௥
ܴ

൰
ଶ

ൌ ൬
݄
ܴ
൰
ଶ

൅ ሺ1 െ cos߶ሻଶ െ ቊሺ1 െ cos߶ሻ ቈ൬
݄
ܴ
൰
ଶ

൅ ሺ1 െ cos߶ሻଶ቉ቋ
ଶ/ଷ

 

(D31) 

D2.2 Analysis of ‘alternately stiffened’ multi-storey structures 
 
The methodology of analyzing the multi-storey structure is the same as explained for 

the planar case. It is only the equations that will be different. The current height of the mast 
is: 

ఝܪ ൌ 2෍݄௜
ఝ

௞

௜ୀଵ

 

(D32) 
The total potential energy will take the following form: 

Πୣ୶୲ሺ࣐ࢎሻ ൌ Πୣ୶୲൫݄௜
ఝ൯ ൌ 	െ2ܰ෍൫݄଴ െ ݄௜

ఝ൯

௞

௜ୀଵ

 

Π୧୬୲ሺ࣐ࢎሻ ൌ ൅
1
2
ܴܣܧ݊ 2sin߶෍ൣߣ௜൫݄௜

ఝ൯ െ 1൧
ଶ

௞

௜ୀଵ

 

Πሺ࣐ࢎሻ ൌ Πୣ୶୲ሺ࣐ࢎሻ ൅ Π୧୬୲ሺ࣐ࢎሻ ൌ െ2ܰ෍൫݄଴ െ ݄௜
ఝ൯

௞

௜ୀଵ

൅
1
2
ܴ݊ 2sin߶෍ܣܧ௜ൣߣ௜൫݄௜

ఝ൯ െ 1൧
ଶ

௞

௜ୀଵ

 

(D33) 
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The equilibrium equation will fall to ݇ separate and identical equations with one only ݄ఝ௜ as 
unknown. The first derivative of the total potential energy: 
 

߲Πሺ࣐ࢎሻ

߲݄௜
ఝ ൌ 2ܰ ൅ ௜ܴܣܧ݊ sin߶ ௜൫݄௜ߣൣ

ఝ൯ െ 1൧ߣ`௜൫݄௜
ఝ൯ ൌ

ൌ 2ܰ െ ௜ܣܧ2݊ sin߶
݄௜
ఝ

ܴ

ۏ
ێ
ێ
ێ
ێ
ۍ

ሺcos ߶ െ 1ሻ

ඨቀ݄ܴቁ
ଶ

െ ቆ
݄௜
ఝ

ܴ ቇ
ଶ

൅ ሺ1 െ cos߶ሻଶ

൅ 	1

ے
ۑ
ۑ
ۑ
ۑ
ې

 

(D34) 
 The stationary point is at: 

߲Πሺ࣐ࢎሻ

߲݄௜
ఝ ൌ 0 ⟹ 	ܰሺࢎ௜

ఝሻ ൌ ௜ܣܧ2݊ sin߶
݄௜
ఝ

ܴ

ۏ
ێ
ێ
ێ
ێ
ۍ

ሺcos߶ െ 1ሻ

ඨቀ݄ܴቁ
ଶ

െ ቆ
݄௜
ఝ

ܴ ቇ
ଶ

൅ ሺ1 െ cos߶ሻଶ

൅ 	1

ے
ۑ
ۑ
ۑ
ۑ
ې

 

 (D35) 
The elements in the diagonal of the Hessian matrix of the alternately stiffened mast are:  
 

ࡴ ൌ ௜௜ܪ			઩ࡱ ൌ 	Λ୧ 
(D36) 

 

Λ ൌ Λ୧ ൌ
߲ଶΠሺ࣐ࢎሻ

߲݄௜
ఝଶ

 

(D37) 
The half-height of the segments (݄ఝ௜) will take its critical value where the eigenvalues are 
zero: 

߲ଶΠሺ࣐ࢎሻ

߲݄௜
ఝଶ

ൌ
௜ܣܧ2݊ sin߶

ܴ

ە
ۖ
۔

ۖ
ۓ

ሺcos߶ െ 1ሻ
݄ଶ ൅ ܴଶሺ1 െ cos߶ሻଶ

ܴଶ ൥ቀ
݄
ܴቁ

ଶ

െ ቆ
݄௜
ఝ

ܴ ቇ
ଶ

൅ ሺ1 െ cos߶ሻଶ൩

ଷ/ଶ ൅ 1

ۙ
ۖ
ۘ

ۖ
ۗ

 

(D38) 

߲ଶΠሺ࣐ࢎሻ

߲݄௜
ఝଶ

ൌ 0	 ⇒ ቆ
݄௖௥
ఝ
௜

ܴ
ቇ

ଶ

ൌ

ൌ ൬
݄
ܴ
൰
ଶ

൅ ሺ1 െ cos߶ሻଶ െ ቊሺ1 െ cos߶ሻ ቈ൬
݄
ܴ
൰
ଶ

൅ ሺ1 െ cos߶ሻଶ቉ቋ
ଶ/ଷ
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(D39) 
If the self-weight of the structure are not to be ignored, considering only 

concentrated masses in the vertices of the rigid polygons the external potential energy has 
to be modified to: 

Πୣ୶୲ሺ࣐ࢎሻ ൌ 	െ2ܰ෍൫݄଴ െ ݄௜
ఝ൯

௞

௜ୀଵ

െ 2݊݉݃෍෍൫݄଴ െ ௝݄
ఝ൯

௜

௝ୀଵ

ଵ

௜ୀ௞

 

(D40) 
Taking the self-weight into account, the derivative of the total potential energy written in 
(D35) will have to be modified with the derivative of the second term in (D40): 
 

െ߲ൣ2݉݃∑ ∑ ൫݄଴ െ ௝݄
ఝ൯௜

௝ୀଵ
௡
௜ୀଵ ൧

߲݄௜
ఝ ൌ ݅2݉݃ 

(D41) 
 

D2.3 Analysis of ‘non-stiffened’ multi-storey structures 
 
Investigating a non-stiffened k-storey structure, similarly to the 2D deployable mast 

without intermediate stiffening, the set of equations will be written in function of the current 
radii (R஦), which is now a vector of	k ൅ 1 elements: 
 

࣐ࡾ ൌ ܴ௜
ఝ		ሺ݅ ൌ 0. . ݇ሻ, 		ܴ଴

ఝ ൌ ܴ௞
ఝ ൌ ܴ 

(D42) 
The current height of the segments in function of the current radius of the horizontal 
polygons: 

݄௜
ఝሺ࣐ࡾሻ ൌ ݄௜

ఝ൫ܴ௜
ఝ, ܴ௜ିଵ

ఝ ൯ ൌ ට݈௕
ଶെ൫ܴ௜ିଵ

ఝ sin߶൯
ଶ
െ ൫ܴ௜

ఝ െ ܴ௜ିଵ
ఝ cos߶൯

ଶ
 

(D43) 
And the actual stretching of the elastic bars: 

ሻ࣐ࡾ௜ሺߣ ൌ ௜൫ܴ௜ߣ
ఝ൯ ൌ

ܴ௜
ఝ

ܴ
 

(D44) 
The total potential energy: 

Πୣ୶୲ሺ࣐ࡾሻ ൌ 	െܰ෍ൣ݄଴ െ ݄௜
ఝ൫ܴ௜

ఝ, ܴ௜ିଵ
ఝ ൯൧

௞

௜ୀଵ

ൌ െܰ෍ቈ݄଴ െ ට݈௕
ଶെ൫ܴ௜ିଵ

ఝ sin߶൯
ଶ
െ ൫ܴ௜

ఝ െ ܴ௜ିଵ
ఝ cos߶൯

ଶ
቉

௞

௜ୀଵ
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Π୧୬୲ሺ࣐ࡾሻ ൌ ൅
1
2
2ܴܣܧ݊ sin߶෍ൣߣ௜൫ܴ௜

ఝ൯ െ 1൧
ଶ

௞ିଵ

௜ୀଵ

ൌ ܴܣܧ݊ sin߶෍ቆ
ܴ௜
ఝ

ܴ
െ 1ቇ

ଶ௞ିଵ

௜ୀଵ

 

Πሺ࣐ࡾሻ ൌ Πୣ୶୲ሺ࣐ࡾሻ ൅ Π୧୬୲ሺ࣐ࡾሻ 
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The first derivatives of the total potential energy: 
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The equilibrium equation: 
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(D47) 
The Hessian matrix has similar form to the one shown for the 2D structure in (D24), where 
the non-zero partials are: 
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 (D48) 

Fig. D4 shows one of the programs in MAPLE that calculates the equilibrium paths of the 
multi-storey, non-stiffened antiprismatic mast, with the same methodology explained for 
planar structures.  
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> with(Optimization): 
with (ExcelTools): 
> #randomize(); 
#Initial geometric, mechanic and numeric parameters 
> n:=5; #n-gon 
> m:=5; #segment number 
> EA:=1; #axial stiffness 
> mg:=0; #magnitude of mass/segment 
> Ro:=1; #initial radius 
> Rr:=1;  
> So:=1.175571; #length of the bracing 
> f:=Pi/n: 
> stepn:=100; 
> dh:=0.05; 
> R[0]:=Ro; R[m]:=Ro; #fix radius at bottom and top 
>  
#Caculation of segment height and total height 
> ht:=0: l:=0: 
> for j from 1 to m do 
> h[j]:=sqrt(So^2-(R[j-1]*sin(f))^2-(R[j]-R[j-1]*cos(f))^2): 
> ht:=ht+h[j]: 
> l:=l+ht: 
> od: 
>  
> #Caculation of internal potential energy 
> Er:=0: 
> for j from 1 to m-1 do 
> Er:=EA*sin(f)*n*((R[j]-Rr)/Rr)^2+Er: 
> od: 
>  
> #Total potential energy 
> Et:=Er+l*mg: 
>  
#Initialize parameters 
> x[0]:=Ro: 
> x[m]:=Ro: 
> F[0]:=0: 
>  
> for trial from 1 to 5 do   #for five different bifurcation path 
> inistate:=[seq(R[i]=1,i=1..m-1)]; 
> height:=evalf(eval(ht,inistate)); 
> InPoint:=inistate; 
> interface(screenwidth=20+25*(m-1)): 
> #excelmatrix:=Array(1..stepn,1..m); 
> #strainlimit:=evalf(cos(f) + sqrt( (1/Ro)^2+(1-cos(f))^2)): 
> #print(strainlimit); 
> limits:=seq(R[i]=1..10,i=1..m-1): 
>  
for j from 1 to stepn do 
>  
> for i from 1 to m-1 do 
> x[i]:=eval(R[i],InPoint): 
> y[i]:=x[i] + (-5+rand(11)())/(1000*Ro): 
> excelmatrix(j,i+1):=x[i]: 
> od: 
>  
> for i from 1 to m do 
> hhh[i]:=evalf(eval(h[i],InPoint)); 
> od: 
> #Calculate force from equilibrium state 
> for i from 1 to m-1 do 
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> FF[i]:=evalf( 
> (x[i]-Rr)/( ((x[i]-x[i-1]*cos(f))/hhh[i] )+  
> ((x[i]-x[i+1]*cos(f))/hhh[i+1])) 
> ); 
> od: 
>  
> F[j]:=FF[1]: 
> dF:=F[j]-F[j-1]: 
>  
> excelmatrix(j,1):=height: 
>  
#define initial value for minimization (randomly perturbed last result) 
> #print(InPoint); 
> InPoint:=[seq(R[i]=y[i],i=1..m-1)]: 
> #print(InPoint); 
>  
> eredmeny:=seq(R[i]=x[i],i=1..m-1): 
> print(h=height,eredmeny); 
>  
> #Start incremental analysis 
> height:=height - dh: 
> InPoint:=op(2, 
> Minimize(Et, 
> {ht=height},limits, 
> initialpoint=InPoint)): #Minimize strain energy 
>  
> #print out delta force values 
> #print(seq(hhh[i],i=1..m)); 
> print(j,delta_force=dF,force=F[j]); 
> od: 
>  
> sheet:=cat(trial,".lap"); 
>  
> od;  #end of creating several trials 
>  
> Export(excelmatrix,"proba.xls",sheet); 
>  
> quit; 

 

Fig. D4: Self-developed program in MAPLE for the calculation of equilibrium paths of antiprismatic, non-
stiffened structures
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ANNEX E: CHOOSING CONSTITUTIVE LAWS IN SMALL AND LARGE 

DISPLACEMENT DOMAIN 
 

 

 

Fig. E1: Different stress definitions for finite displacements 

Figs. E1 shows the difference between three different constitutive models; the stresses 
calculated from linear constitutive model (with blue line), and the stresses derived from two 
hyper-elastic models are shown: the Saint-Venant-Kirchoff constitutive model in terms of the 
Green-Lagrange deformation measure and the one in terms of logarithmic measure (with 
red line). For the former, both the Piola-Kirchoff stress (with green line) and the Cauchy 
stress (with pink line) are plotted. It is true, that these constitutive models are rather used in 
the small deformation regime, and for rubber-like materials the models defined also in terms 
of principal stretches (neo-Hookean, Ogden, Mooney-Rivlin) [van den Bogert and de Borst, 
1994] are more common (see a fitting with these models in Fig. E2). However, for the used 
uni-axial model the logarithmic strain measure might be an applicable choice in the specific 
strain domain for some polymers. The boundary of the domain depends on the used 
material. For example an experimental curve is shown in Fig. E2. It can be seen that after the 
inflexion point of the experimental curve, the logarithmic constitutive model cannot be 
anymore valid, which is around ߣ ൌ 1.6	 for that given polymer. For some rubber-like 
materials this turning-upwards of the diagram occur around 	ߣ ൌ 3. . 4	 (referring to a force-
stretch diagrams from tensile tests received from a polymer-factory in Szeged). Concluding, 
the constitutive model expressed in terms of logarithmic strains seems to be a rationale and 
acceptable choice.  
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b)  

Fig. E2: Force-stretch diagram of rubber-like material from different constitutive models and from 
experiments [van den Bogert and de Borst, 1994] 
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