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Résumé

Les travaux présentés sont dédiés à la possibilité de faire de l’inférence statis-

tique à partir de données séquentielles. Le problème est le suivant. Étant

donnée une suite d’observations x1,...,xn,... , on cherche à faire de l’inférence

sur le processus aléatoire ayant produit la suite. Plusieurs problèmes, qui

d’ailleurs ont des applications multiples dans différents domaines des math-

ématiques et de l’informatique, peuvent être formulés ainsi. Par exemple,

on peut vouloir prédire la probabilité d’apparition de l’observation suivante,

xn+1 (le problème de prédiction séquentielle); ou répondre à la question de

savoir si le processus aléatoire qui produit la suite appartient à un certain en-

semble H0 versus appartient à un ensemble différent H1 (test d’hypothèse) ;

ou encore, effectuer une action avec le but de maximiser une certain fonction

d’utilité. Dans chacun de ces problèmes, pour rendre l’inférence possible il

faut d’abord faire certaines hypothèses sur le processus aléatoire qui produit

les données. La question centrale adressée dans les travaux présentés est la

suivante : sous quelles hypothèses l’inférence est-elle possible ? Cette ques-

tion est posée et analysée pour des problèmes d’inférence différents, parmi

lesquels se trouvent la prédiction séquentielle, les tests d’hypothèse, la clas-

sification et l’apprentissage par renforcement.
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Abstract

Given a growing sequence of observations x1,...,xn,... , one is required, at

each time step n, to make some inference about the stochastic mechanism

generating the sequence. Several problems that have numerous applications

in different branches of mathematics and computer science can be formulated

in this way. For example, one may want to forecast probabilities of the next

outcome xn+1 (sequence prediction); to make a decision on whether the

mechanism generating the sequence belongs to a certain family H0 versus it

belongs to a different family H1 (hypothesis testing); to take an action in

order to maximize some utility function.

In each of these problems, as well as in many others, in order to be able

to make inference, one has to make some assumptions on the probabilistic

mechanism generating the data. Typical assumptions are that xi are inde-

pendent and identically distributed, or that the distribution generating the

sequence belongs to a certain parametric family. The central question ad-

dressed in this work is: under which assumptions is inference possible? This

question is considered for several problems of inference, including sequence

prediction, hypothesis testing, classification and reinforcement learning.
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Chapter 1

Introduction

This manuscript summarizes my work on the problem of learnability in

making sequential inference. The problem is as follows. Given a grow-

ing sequence of observations x1,...,xn,... , one is required, at each time step

n, to make some inference about the stochastic mechanism generating the

sequence. Several problems that have numerous applications in different

branches of mathematics and computer science can be formulated in this

way. For example, one may want to forecast probabilities of the next out-

come xn+1 (sequence prediction); to make a decision on whether the mecha-

nism generating the sequence belongs to a certain familyH0 versus it belongs

to a different family H1 (hypothesis testing); to take an action in order to

maximize some utility function. In each of these problems, as well as in

many others, in order to be able to make inference, one has to make some

assumptions on the probabilistic mechanism generating the data. Typical

assumptions are that xi are independent and identically distributed, or that

the distribution generating the sequence belongs to a certain parametric

family. The central question addressed in this work is: under which assump-

tions is inference possible? This question is considered for several problems

of inference, including sequence prediction, hypothesis testing, classification

and reinforcement learning.

The motivation for studying such questions is as follows. There are
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numerous applications of the problems of sequential inference considered, in-

cluding the analysis of data coming from a stock market, biological databases,

network traffic, surveillance, etc. Moreover, new applications spring up reg-

ularly. Clearly, each application requires its own set of assumptions or its

own model: indeed, a model that describes well DNA sequences probably

should not be expected to describe a network traffic stream as well. At the

same time, the methods developed for sequential data analysis, for example,

for sequence prediction, are typically limited to a restricted set of models,

the construction of which is driven not so much by applications as by the

availability of mathematical and algorithmic tools. For example, much of the

non-parametric analysis in sequence prediction and the problems of finding

an optimal behaviour in an unknown environment is limited to finite-state

models, such as Markov or hidden Markov models. One approach to start

addressing this problem is to develop a theory that would allow one to check

whether a given model is feasible, in the sense that it allows for the existence

of a solution to the target problem of inference. Another question is how to

find a solution given a model in a general form. This manuscript summarizes

some first steps I have made in solving these general problems.

The most important results presented here are as follows. For the prob-

lem of hypothesis testing, I have obtained a topological characterization (nec-

essary and sufficient conditions) of those (composite) hypotheses H0⊂E that

can be consistently tested against E\H0, where E is the set of all stationary

ergodic discrete-valued process measures. The developed approach, which is

based on empirical estimates of the distributional distance, has allowed me

to obtain consistent procedures for change point estimation, process classifi-

cation and clustering, under the only assumption that the data (real-valued,

in this case) is generated by stationary ergodic distributions: a setting that

is much more general than those in which consistent procedures were known

before. I have also demonstrated that a consistent test for homogeneity

does not exist for the general case of stationary ergodic (discrete-valued) se-

quences. For the problem of sequence prediction, I have shown that if there
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is a consistent predictor for a set of process distributions C, then there is a

Bayesian predictor consistent for this set. This is a no-assumption result:

the distributions in C can be arbitrary (non-i.i.d., non-stationary, etc.) and

the set itself does not even have to be measurable. I have also obtained

several descriptions (sufficient conditions) of those sets C of process distri-

butions for which consistent predictors exist. For the problem of selecting an

optimal strategy in a reactive environment (perhaps, the most general infer-

ence problem considered) I have identified some sufficient conditions on the

environments under which it is possible to find a universal asymptotically

optimal strategy.

Organization of this manuscript

Each of the subsequent chapters is devoted to a specific group of inference

problems. These chapters are essentially constructed from the papers listed

below, which are streamlined and endowed with unified introductions and

notation. References to the corresponding papers follow the title of of each

chapter or section. While trying to keep the contents concise, I have decided

to include all proofs (in appendices to the chapters) to make the manuscript

self-contained. The contents of the Section 5.1 is extracted from my Ph.D.

thesis; the rest of the work is posterior.
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Chapter 2

Sequence prediction [R1, R3, R8]

The problem is sequence prediction in the following setting. A sequence

x1,...,xn,... of discrete-valued observations is generated according to some

unknown probabilistic law (measure) µ. After observing each outcome, it is

required to give the conditional probabilities of the next observation. The

measure µ is unknown. We are interested in constructing predictors ρ whose

conditional probabilities ρ(·|x1,...,xn) converge (in some sense) to the “true”

µ-conditional probabilities µ(·|x1,...,xn), as the sequence of observations in-

creases (n→∞). In general, this goal is impossible to achieve if nothing is

known about the measure µ generating the sequence. In other words, one

cannot have a predictor whose error goes to zero for any measure µ. The

problem becomes tractable if we assume that the measure µ generating the

data belongs to some known class C. The main general problems considered

in this chapter are as follows.

(i) Given a set C of process measures, what are the conditions on C under

which there exists a measure ρ that predicts every µ∈C? (Section 2.3)

(ii) Is there a general way to construct such a measure ρ? What form

should ρ have? (Section 2.2)

(iii) Given two process measures µ and ρ, what are the conditions on them
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under which ρ is a predictor for µ? (Section 2.4)

(iv) Given a set C of process measures, what are the conditions on C under

which there exists a measure ρ which predicts every measure ν that is

predicted by at least one measure µ∈C? (Section 2.5)

The last question is explained by the following consideration. Since a pre-

dictor ρ that we wish to construct is required, on each time step, to give

conditional probabilities ρ(·|x1,...,xn) of the next outcome given the past, for

each possible sequence of past observations x1,...,xn, the predictor ρ itself

defines a measure on the space of one-way infinite sequences. This enables

us to pose similar questions about the measures µ generating the data and

predictors.

The motivation for studying predictors for arbitrary classes C of processes

is two-fold. First of all, the problem of prediction has numerous applications

in such diverse fields as data compression, market analysis, bioinformatics,

and many others. It seems clear that prediction methods constructed for

one application cannot be expected to be optimal when applied to another.

Therefore, an important question is how to develop specific prediction al-

gorithms for each of the domains. Apart from this, sequence prediction is

one of the basic ingredients for constructing intelligent systems. Indeed, in

order to be able to find optimal behaviour in an unknown environment, an

intelligent agent must be able, at the very least, to predict how the environ-

ment is going to behave (or, to be more precise, how relevant parts of the

environment are going to behave). Since the response of the environment

may in general depend on the actions of the agent, this response is necessar-

ily non-stationary for explorative agents. Therefore, one cannot readily use

prediction methods developed for stationary environments, but rather has

to find predictors for the classes of processes that can appear as a possible

response of the environment.

To evaluate the quality of prediction we will mostly use expected (with

respect to data) average (over time) Kullback-Leibler divergence, as well as
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total variation distance (see Section 2.1 for definitions). Prediction in total

variation is a very strong notion of performance; in particular, it is not even

possible to predict an arbitrary i.i.d. Bernoulli distribution in this sense.

Prediction in expected average KL divergence is much weaker and therefore

more practical, but it is also more difficult to study, as is explained below.

Next we briefly describe some of the answers to the questions (i)-(iv)

posed above that we have obtained. It is well-known [11, 46] (see also Theo-

rem 2.2 below) that a measure ρ predicts a measure µ in total variation if and

only if µ is absolutely continuous with respect to ρ. This answers question

(ii) for prediction in total variation. Moreover, since in probability theory

we know virtually everything about absolute continuity, this fact makes it

relatively easy to answer the rest of the questions for this measure of per-

formance. We obtain (Theorem 2.31) two characterizations of those sets C

for which consistent predictors exist (question (i)): one of them is separa-

bility (with respect to total variation distance) and the other is an algebraic

condition based on the notion of singularity of measures. We also show that

question (iv) is equivalent two questions (i) and (ii) for prediction in total

variation. Perhaps more importantly, it turns out that whenever there is a

predictor that predicts every measure µ∈C, there exists a Bayesian predic-

tor with a countably discrete prior (concentrated on C) that predicts every

measure µ∈C as well. This provides an answer to question (ii). We show

(Theorems 2.7, 2.35) that this property also holds to prediction in expected

average KL divergence. In both cases (prediction in total variation and in

KL divergence) this is a no-assumption result: the set C can be completely

arbitrary (it does not even have to be measurable). We also obtain suffi-

cient conditions, expressed in terms of separability, that provide answers to

questions (i) and (iv) for prediction in expected average KL divergence. To

provide an answer to question (ii) we find a suitable generalization of the

notion of absolute continuity (a requirement which is stronger than local ab-

solute continuity, but much weaker than absolute continuity proper) under

which a measure ρ predicts a measure µ in expected average KL divergence
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(Section 2.4), and also use this condition to obtain another characterization

that addresses the question (i).

The content of this chapter is organized as follows. Section 2.1 pro-

vides notation, definition and auxiliary results. In Section 2.2 we show that

if there is a predictor that is consistent (in either KL divergence or total

variation) for every µ in C, then there exists a Bayesian predictor with a

discrete prior which also has this consistency property. Several sufficient

conditions on the set C for the existence of a consistent predictor are pro-

vided in Section 2.3. These conditions include separability of C (with respect

to appropriate topologies). In Section 2.4 we address the question of what

are the conditions on a measure ρ under which it is a consistent predictor for

a single measure µ in KL divergence. Some sufficient conditions are found,

that generalize absolute continuity in a natural way.

Finally, in Section 2.5 we turn to the non-realizable version of the se-

quence prediction problem (question (iv) above); we show that is different

from the realizable version if we consider prediction in KL divergence, and

obtain some analogues and generalizations of the results on the realizable

problem for the non-realizable version.

2.1 Notation and definitions

Let X be a finite set. The notation x1..n is used for x1,...,xn. We consider

stochastic processes (probability measures) on Ω:=(X∞,F) where F is the

sigma-field generated by the cylinder sets [x1..n], xi ∈X,n∈N and [x1..n] is

the set of all infinite sequences that start with x1..n. For a finite set A denote

|A| its cardinality. We use Eµ for expectation with respect to a measure µ.

Next we introduce the criteria of the quality of prediction used in this

chapter. For two measures µ and ρ we are interested in how different the µ-

and ρ-conditional probabilities are, given a data sample x1..n. Introduce the
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(conditional) total variation distance

v(µ,ρ,x1..n) :=sup
A∈F

|µ(A|x1..n)−ρ(A|x1..n)|.

Definition 2.1. Say that ρ predicts µ in total variation if

v(µ,ρ,x1..n)→0 µ a.s.

This convergence is rather strong. In particular, it means that ρ-condi-

tional probabilities of arbitrary far-off events converge to µ-conditional prob-

abilities. Recall that µ is absolutely continuous with respect to ρ if (by def-

inition) µ(A)> 0 implies ρ(A)> 0 for all A∈F. Moreover, ρ predicts µ in

total variation if and only if µ is absolutely continuous with respect to ρ:

Theorem 2.2 ([11, 46]). If ρ, µ are arbitrary probability measures on (X∞,F),

then ρ predicts µ in total variation if and only if µ is absolutely continuous

with respect to ρ.

Thus, for a class C of measures there is a predictor ρ that predicts every

µ∈C in total variation if and only if every µ∈C has a density with respect

to ρ. Although such sets of processes are rather large, they do not include

even such basic examples as the set of all Bernoulli i.i.d. processes. That

is, there is no ρ that would predict in total variation every Bernoulli i.i.d.

process measure δp, p∈[0,1], where p is the probability of 0 (see the Bernoulli

i.i.d. example in Section 2.2.2 for a more detailed discussion). Therefore,

perhaps for many (if not most) practical applications this measure of the

quality of prediction is too strong, and one is interested in weaker measures

of performance.

For two measures µ and ρ introduce the expected cumulative Kullback-

Leibler divergence (KL divergence) as

δn(µ,ρ) :=Eµ

n∑

t=1

∑

a∈X
µ(xt=a|x1..t−1)log

µ(xt=a|x1..t−1)

ρ(xt=a|x1..t−1)
, (2.1)
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In words, we take the expected (over data) average (over time) KL divergence

between µ- and ρ-conditional (on the past data) probability distributions of

the next outcome.

Definition 2.3. Say that ρ predicts µ in expected average KL divergence if

1

n
dn(µ,ρ)→0.

This measure of performance is much weaker, in the sense that it re-

quires good predictions only one step ahead, and not on every step but only

on average; also, the convergence is not with probability 1, but in expec-

tation. With prediction quality so measured, predictors exist for relatively

large classes of measures; most notably, [78] provides a predictor which pre-

dicts every stationary process in expected average KL divergence. A simple

but useful identity that we will need (in the context of sequence prediction

introduced also by [78]) is the following

dn(µ,ρ)=−
∑

x1..n∈Xn

µ(x1..n)log
ρ(x1..n)

µ(x1..n)
, (2.2)

where on the right-hand side we have simply the KL divergence between

measures µ and ρ restricted to the first n observations.

Thus, the results of the following sections will be established with respect

to two very different measures of prediction quality, one of which is very

strong and the other rather weak. This suggests that the facts established

reflect some fundamental properties of the problem of prediction, rather than

those pertinent to particular measures of performance. On the other hand,

it remains open to extend the results of this section to different measures of

performance (e.g., to those introduced in Section 2.4).

The following sets of process measures will be used repeatedly in the

examples.

Definition 2.4. Consider the following classes of process measures: P is
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the set of all process measures, D is the set of all degenerate discrete pro-

cess measures, S is the set of all stationary processes and Mk is the set of

all stationary measures with memory not greater than k (k-order Markov

processes, with B :=M0 being the set of all i.i.d. processes):

D :={µ∈P :∃x∈X∞ µ(x)=1}, (2.3)

S :={µ∈P :∀n,k≥1 ∀a1..n∈Xn µ(x1..n=a1..n)=µ(x1+k..n+k=a1..n)}, (2.4)

Mk :={µ∈S :∀n≥k ∀a∈X ∀a1..n∈Xn

µ(xn+1=a|x1..n=a1..n)=µ(xk+1=a|x1..k=an−k+1..n)}, (2.5)

B :=M0. (2.6)

Abusing the notation, we will sometimes use elements of D and X∞

interchangeably. The following (simple and well-known) statement will be

used repeatedly in the examples.

Lemma 2.5. For every ρ∈P there exists µ∈D such that dn(µ,ρ)≥nlog|X|
for all n∈N.

Proof. Indeed, for each n we can select µ(xn=a)=1 for a∈X that minimizes

ρ(xn=a|x1..n−1), so that ρ(x1..n)≤|X|−n.

2.2 If there exists a consistent predictor then

there exists a consistent Bayesian predic-

tor with a discrete prior [R3]

In this section we show that if there is a predictor that predicts every µ in

some class C, then there is a Bayesian mixture of countably many elements

from C that predicts every µ∈C too. This is established for the two notions
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of prediction quality that were introduced: total variation and expected

average KL divergence.

2.2.1 Introduction and related work

If the class C of measures is countable (that is, if C can be represented

as C := {µk : k ∈N}), then there exists a predictor which performs well for

any µ∈C. Such a predictor can be obtained as a Bayesian mixture ρS :=∑
k∈Nwkµk, where wk are summable positive real weights, and it has very

strong predictive properties; in particular, ρS predicts every µ∈C in total

variation distance, as follows from the result of [11]. Total variation distance

measures the difference in (predicted and true) conditional probabilities of

all future events, that is, not only the probabilities of the next observations,

but also of observations that are arbitrary far off in the future (see formal

definitions in Section 2.1). In the context of sequence prediction the measure

ρS (introduced in [93]) was first studied by [86]. Since then, the idea of taking

a convex combination of a finite or countable class of measures (or predictors)

to obtain a predictor permeates most of the research on sequential prediction

(see, for example, [18]) and more general learning problems (see [41] as well

as Chapter 4 of this manuscript). In practice, it is clear that, on the one

hand, countable models are not sufficient, since already the class {µp : p∈
[0,1]} of Bernoulli i.i.d. processes, where p is the probability of 0, is not

countable. On the other hand, prediction in total variation can be too

strong to require: predicting probabilities of the next observation may be

sufficient, maybe even not on every step but in the Cesaro sense. A key

observation here is that a predictor ρS =
∑
wkµk may be a good predictor

not only when the data is generated by one of the processes µk, k∈N, but

when it comes from a much larger class. Let us consider this point in more

detail. Fix for simplicity X={0,1}. The Laplace predictor

λ(xn+1=0|x1,...,xn)=
#{i≤n :xi=0}+1

n+|X| (2.7)
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predicts any Bernoulli i.i.d. process: although convergence in total variation

distance of conditional probabilities does not hold, predicted probabilities

of the next outcome converge to the correct ones. Moreover, generalizing

the Laplace predictor, a predictor λk can be constructed for the class Mk

of all k-order Markov measures, for any given k. As was found by [78], the

combination ρR :=
∑
wkλk is a good predictor not only for the set ∪k∈NMk

of all finite-memory processes, but also for any measure µ coming from a

much larger class: that of all stationary measures on X∞. Here prediction

is possible only in the Cesaro sense (more precisely, ρR predicts every sta-

tionary process in expected time-average Kullback-Leibler divergence, see

definitions below). The Laplace predictor itself can be obtained as a Bayes

mixture over all Bernoulli i.i.d. measures with uniform prior on the pa-

rameter p (the probability of 0). However the same (asymptotic) predictive

properties are possessed by a Bayes mixture with a countably supported

prior which is dense in [0,1] (e.g., taking ρ :=
∑
wkδk where δk,k∈N ranges

over all Bernoulli i.i.d. measures with rational probability of 0). For a given

k, the set of k-order Markov processes is parametrized by finitely many [0,1]-

valued parameters. Taking a dense subset of the values of these parameters,

and a mixture of the corresponding measures, results in a predictor for the

class of k-order Markov processes. Mixing over these (for all k∈N) yields,

as in [78], a predictor for the class of all stationary processes. Thus, for

the mentioned classes of processes, a predictor can be obtained as a Bayes

mixture of countably many measures in the class. An additional reason why

this kind of analysis is interesting is because of the difficulties arising in

trying to construct Bayesian predictors for classes of processes that can not

be easily parametrized. Indeed, a natural way to obtain a predictor for a

class C of stochastic processes is to take a Bayesian mixture of the class. To

do this, one needs to define the structure of a probability space on C. If

the class C is well parametrized, as is the case with the set of all Bernoulli

i.i.d. process, then one can integrate with respect to the parametrization.

In general, when the problem lacks a natural parametrization, although one
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can define the structure of the probability space on the set of (all) stochastic

process measures in many different ways, the results one can obtain will then

be with probability 1 with respect to the prior distribution (see, for exam-

ple, [43]). Pointwise consistency cannot be assured (see, for example, [29])

in this case, meaning that some (well-defined) Bayesian predictors are not

consistent on some (large) subset of C. Results with prior probability 1 can

be hard to interpret if one is not sure that the structure of the probability

space defined on the set C is indeed a natural one for the problem at hand

(whereas if one does have a natural parametrization, then usually results for

every value of the parameter can be obtained, as in the case with Bernoulli

i.i.d. processes mentioned above). The results of the present section show

that when a predictor exists it can indeed be given as a Bayesian predictor,

which predicts every (and not almost every) measure in the class, while its

support is only a countable set.

It is worth noting that for the problem of sequence prediction the case

of stationary ergodic data is relatively well-studied, and several methods of

consistent prediction are available, both for discrete- and real-valued data;

limitations of these methods are also relatively well-understood (besides the

works cited above, see also [5, 79, 63, 64, 1]). This is why in this chapter we

mostly concentrate on the general case of (non-stationary) sources of data.

After the theorems we present some examples of families of measures for

which predictors exist.

2.2.2 Results

Theorem 2.6. Let C be a set of probability measures on (X∞,F). If there is

a measure ρ such that ρ predicts every µ∈C in total variation, then there is

a sequence µk∈C, k∈N such that the measure ν :=
∑

k∈Nwkµk predicts every

µ∈C in total variation, where wk are any positive weights that sum to 1.

This relatively simple fact can be proven in different ways, relying on

the mentioned equivalence (Theorem 2.2) of the statements “ρ predicts µ in
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total variation distance” and “µ is absolutely continuous with respect to ρ.”

The proof presented below is not the shortest possible, but it uses ideas and

techniques that are then generalized to the case of prediction in expected

average KL-divergence, which is more involved, since in all interesting cases

all measures µ∈C are singular with respect to any predictor that predicts all

of them. Another proof of Theorem 2.6 can be obtained from Theorem 2.9

in the next section. Yet another way would be to derive it from algebraic

properties of the relation of absolute continuity, given in [70].

Proof. We break the (relatively easy) proof of this theorem into three steps,

which will make the proof of the next theorem more understandable.

Step 1: densities. For any µ∈ C, since ρ predicts µ in total variation, by

Theorem 2.2, µ has a density (Radon-Nikodym derivative) fµ with respect to

ρ. Thus, for the (measurable) set Tµ of all sequences x1,x2,...∈X∞ on which

fµ(x1,2,...)> 0 (the limit limn→∞
ρ(x1..n)
µ(x1..n)

exists and is finite and positive) we

have µ(Tµ)=1 and ρ(Tµ)>0. Next we will construct a sequence of measures

µk ∈ C, k ∈ N such that the union of the sets Tµk
has probability 1 with

respect to every µ ∈ C, and will show that this is a sequence of measures

whose existence is asserted in the theorem statement.

Step 2: a countable cover and the resulting predictor. Let εk :=2−k and

let m1 := supµ∈Cρ(Tµ). Clearly, m1>0. Find any µ1∈C such that ρ(Tµ1)≥
m1−ε1, and let T1=Tµ1 . For k>1 define mk :=supµ∈Cρ(Tµ\Tk−1). If mk=0

then define Tk :=Tk−1, otherwise find any µk such that ρ(Tµk
\Tk−1)≥mk−εk,

and let Tk :=Tk−1∪Tµk
. Define the predictor ν as ν :=

∑
k∈Nwkµk.

Step 3: ν predicts every µ∈ C. Since the sets T1, T2\T1,...,Tk\Tk−1,...

are disjoint, we must have ρ(Tk\Tk−1) → 0, so that mk → 0 (since mk ≤
ρ(Tk\Tk−1)+εk→0). Let

T :=∪k∈NTk.

Fix any µ∈C. Suppose that µ(Tµ\T )>0. Since µ is absolutely continuous
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with respect to ρ, we must have ρ(Tµ\T )>0. Then for every k>1 we have

mk=sup
µ′∈C

ρ(Tµ′\Tk−1)≥ρ(Tµ\Tk−1)≥ρ(Tµ\T )>0,

which contradicts mk→0. Thus, we have shown that

µ(T∩Tµ)=1. (2.8)

Let us show that every µ∈C is absolutely continuous with respect to ν.

Indeed, fix any µ∈C and suppose µ(A)>0 for some A∈F. Then from (2.8)

we have µ(A∩T )>0, and, by absolute continuity of µ with respect to ρ, also

ρ(A∩T )>0. Since T =∪k∈NTk, we must have ρ(A∩Tk)>0 for some k∈N.

Since on the set Tk the measure µk has non-zero density fµk
with respect

to ρ, we must have µk(A∩Tk)> 0. (Indeed, µk(A∩Tk) =
∫
A∩Tk

fµk
dρ > 0.)

Hence,

ν(A∩Tk)≥wkµk(A∩Tk)>0,

so that ν(A)>0. Thus, µ is absolutely continuous with respect to ν, and so,

by Theorem 2.2, ν predicts µ in total variation distance.

Thus, examples of families C for which there is a ρ that predicts every

µ ∈ C in total variation, are limited to families of measures which have a

density with respect to some measure ρ. On the one hand, from statistical

point of view, such families are rather large: the assumption that the proba-

bilistic law in question has a density with respect to some (nice) measure is

a standard one in statistics. It should also be mentioned that such families

can easily be uncountable. On the other hand, even such basic examples

as the set of all Bernoulli i.i.d. measures does not allow for a predictor that

predicts every measure in total variation. Indeed, all these processes are sin-

gular with respect to one another; in particular, each of the non-overlapping

sets Tp of all sequences which have limiting fraction p of 0s has probabil-

ity 1 with respect to one of the measures and 0 with respect to all others;
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since there are uncountably many of these measures, there is no measure ρ

with respect to which they all would have a density (since such a measure

should have ρ(Tp)> 0 for all p) . As it was mentioned, predicting in total

variation distance means predicting with arbitrarily growing horizon [46],

while prediction in expected average KL divergence is only concerned with

the probabilities of the next observation, and only on time and data aver-

age. For the latter measure of prediction quality, consistent predictors exist

not only for the class of all Bernoulli processes, but also for the class of all

stationary processes [78]. The next theorem establishes the result similar to

Theorem 2.29 for expected average KL divergence.

Theorem 2.7. Let C be a set of probability measures on (X∞,F). If there

is a measure ρ such that ρ predicts every µ ∈ C in expected average KL

divergence, then there exist a sequence µk ∈ C, k ∈N and a sequence wk >

0,k ∈N, such that
∑

k,∈Nwk = 1, and the measure ν :=
∑

k∈Nwkµk predicts

every µ∈C in expected average KL divergence.

A difference worth noting with respect to the formulation of Theorem 2.6

(apart from a different measure of divergence) is in that in the latter the

weights wk can be chosen arbitrarily, while in Theorem 2.7 this is not the

case. In general, the statement “
∑

k∈Nwkνk predicts µ in expected average

KL divergence for some choice of wk, k ∈ N” does not imply “
∑

k∈Nw
′
kνk

predicts µ in expected average KL divergence for every summable sequence

of positive w′
k,k∈N,” while the implication trivially holds true if the expected

average KL divergence is replaced by the total variation. This is illustrated

in the last example of this section.

The idea of the proof of Theorem 2.7 is as follows. For every µ and

every n we consider the sets T n
µ of those x1..n on which µ is greater than ρ.

These sets have to have (from some n on) a high probability with respect

to µ. Then since ρ predicts µ in expected average KL divergence, the ρ-

probability of these sets cannot decrease exponentially fast (that is, it has

to be quite large). (The sequences µ(x1..n)/ρ(x1..n), n∈N will play the role
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of densities of the proof of Theorem 2.6, and the sets T n
µ the role of sets Tµ

on which the density is non-zero.) We then use, for each given n, the same

scheme to cover the set Xn with countably many T n
µ , as was used in the proof

of Theorem 2.6 to construct a countable covering of the set X∞ , obtaining

for each n a predictor νn. Then the predictor ν is obtained as
∑

n∈Nwnνn,

where the weights decrease subexponentially. The latter fact ensures that,

although the weights depend on n, they still play no role asymptotically.

The technically most involved part of the proof is to show that the sets T n
µ

in asymptotic have sufficiently large weights in those countable covers that

we construct for each n. This is used to demonstrate the implication “if a set

has a high µ probability, then its ρ-probability does not decrease too fast,

provided some regularity conditions.”

The proof is deferred to Section 2.6.1.

Example: countable classes of measures. A very simple but rich example

of a class C that satisfies the conditions of both the theorems above, is any

countable family C= {µk : k ∈ N} of measures. In this case, any mixture

predictor ρ :=
∑

k∈Nwkµk predicts all µ ∈ C both in total variation and in

expected average KL divergence. A particular instance, that has gained

much attention in the literature, is the family of all computable measures.

Although countable, this family of processes is rather rich. The problem of

predicting all computable measures was introduced in [86], where a mixture

predictor was proposed.

Example: Bernoulli i.i.d. processes. Consider the class B= {µp : p∈
[0,1]} of all Bernoulli i.i.d. processes: µp(xk = 0) = p independently for all

k∈N. Clearly, this family is uncountable. Moreover, each set

Tp :={x∈X∞ : the limiting fraction of 0s in x equals p},

has probability 1 with respect to µp and probability 0 with respect to any

µp′ : p
′ 6= p. Since the sets Tp, p ∈ [0,1] are non-overlapping, there is no

measure ρ for which ρ(Tp)>0 for all p∈ [0,1]. That is, there is no measure

27



ρ with respect to which all µp are absolutely continuous. Therefore, by

Theorem 2.2, a predictor that predicts any µ∈B in total variation does not

exist, demonstrating that this notion of prediction is rather strong. However,

we know (e.g., [54]) that the Laplace predictor (2.7) predicts every Bernoulli

i.i.d. process in expected average KL divergence (and not only). Hence,

Theorem 2.29 implies that there is a countable mixture predictor for this

family too. Let us find such a predictor. Let µq : q ∈Q be the family of

all Bernoulli i.i.d. measures with rational probability of 0, and let ρ :=
∑

q∈Qwqµq, where wq are arbitrary positive weights that sum to 1. Let µp

be any Bernoulli i.i.d. process. Let h(p,q) denote the divergence plog(p/q)+

(1−p)log(1−p/1−q). For each ε we can find a q∈Q such that h(p,q)<ε.

Then

1

n
dn(µp,ρ)=

1

n
Eµp log

logµp(x1..n)

logρ(x1..n)
≤ 1

n
Eµp log

logµp(x1..n)

wqlogµq(x1..n)

=− logwq

n
+h(p,q)≤ε+o(1). (2.9)

Since this holds for each ε, we conclude that 1
n
dn(µp,ρ)→ 0 and ρ predicts

every µ∈B in expected average KL divergence.

Example: stationary processes. In [78] a predictor ρR was constructed

which predicts every stationary process ρ ∈ S in expected average KL di-

vergence. (This predictor is obtained as a mixture of predictors for k-order

Markov sources, for all k∈N.) Therefore, Theorem 2.7 implies that there is

also a countable mixture predictor for this family of processes. Such a predic-

tor can be constructed as follows (the proof in this example is based on the

proof in [80], Appendix 1). Observe that the family Mk of k-order stationary

binary-valued Markov processes is parametrized by 2k [0,1]-valued parame-

ters: probability of observing 0 after observing x1..k, for each x1..k∈Xk. For

each k∈N let µk
q , q∈Q2k be the (countable) family of all stationary k-order

Markov processes with rational values of all the parameters. We will show

that any predictor ν :=
∑

k∈N
∑

q∈Q2kwkwqµ
k
q , where wk, k∈N and wq,q∈Q2k ,

28



k∈N are any sequences of positive real weights that sum to 1, predicts every

stationary µ∈ S in expected average KL divergence. For µ∈ S and k ∈N

define the k-order conditional Shannon entropy hk(µ) :=Eµlogµ(xk+1|x1..k).
We have hk+1(µ)≥hk(µ) for every k∈N and µ∈S, and the limit

h∞(µ) := lim
k→∞

hk(µ) (2.10)

is called the limit Shannon entropy; see, for example, [32]. Fix some µ∈S.

It is easy to see that for every ε > 0 and every k ∈ N we can find a k-

order stationary Markov measure µk
qε , qε ∈Q2k with rational values of the

parameters, such that

Eµlog
µ(xk+1|x1..k)
µk
qε(xk+1|x1..k)

<ε. (2.11)

We have

1

n
dn(µ,ν)≤− logwkwqε

n
+
1

n
dn(µ,µ

k
qε)

=O(k/n)+
1

n
Eµlogµ(x1..n)−

1

n
Eµlogµ

k
qε(x1..n)

=o(1)+h∞(µ)− 1

n
Eµ

n∑

k=1

logµk
qε(xt|x1..t−1)

=o(1)+h∞(µ)− 1

n
Eµ

k∑

t=1

logµk
qε(xt|x1..t−1)−

n−k
n

Eµlogµ
k
qε(xk+1|x1..k)

≤o(1)+h∞(µ)−n−k
n

(hk(µ)−ε), (2.12)

where the first inequality is derived analogously to (2.9), the first equality

follows from (2.2), the second equality follows from the Shannon-McMillan-

Breiman theorem (e.g., [32]), that states that 1
n
logµ(x1..n)→ h∞(µ) in ex-

pectation (and a.s.) for every µ∈S, and (2.2); in the third equality we have

used the fact that µk
qε is k-order Markov and µ is stationary, whereas the

last inequality follows from (2.11). Finally, since the choice of k and ε was
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arbitrary, from (2.12) and (2.10) we obtain limn→∞
1
n
dn(µ,ν)=0.

Example: weights may matter. Finally, we provide an example that il-

lustrates the difference between the formulations of Theorems 2.6 and 2.7: in

the latter the weights are not arbitrary. We will construct a sequence of mea-

sures νk,k∈N, a measure µ, and two sequences of positive weights wk and w′
k

with
∑

k∈Nwk=
∑

k∈Nw
′
k=1, for which ν :=

∑
k∈Nwkνk predicts µ in expected

average KL divergence, but ν ′ :=
∑

k∈Nw
′
kνk does not. Let νk be a determin-

istic measure that first outputs k 0s and then only 1s, k∈N. Let wk=w/k
2

with w=6/π2 and w′
k=2−k. Finally, let µ be a deterministic measure that

outputs only 0s. We have dn(µ,ν)=−log(
∑

k≥nwk)≤−log(wn−2)=o(n), but

dn(µ,ν
′)=−log(

∑
k≥nw

′
k)=−log(2−n+1)=n−1 6=o(n), proving the claim.

2.3 Characterizing predictable classes [R3]

In this section we exhibit some sufficient conditions on the class C, under

which a predictor for all measures in C exists. It is important to note that

none of these conditions relies on a parametrization of any kind. The con-

ditions presented are of two types: conditions on asymptotic behaviour of

measures in C, and on their local (restricted to first n observations) be-

haviour. Conditions of the first type concern separability of C with respect

to the total variation distance and the expected average KL divergence.

We show that in the case of total variation separability is a necessary and

sufficient condition for the existence of a predictor, whereas in the case of

expected average KL divergence it is sufficient but is not necessary.

The conditions of the second kind concern the “capacity” of the sets

Cn :={µn :µ∈C}, n∈N, where µn is the measure µ restricted to the first n

observations. Intuitively, if Cn is small (in some sense), then prediction is

possible. We measure the capacity of Cn in two ways. The first way is to find

the maximum probability given to each sequence x1,...,xn by some measure

in the class, and then take a sum over x1,...,xn. Denoting the obtained

quantity cn, one can show that it grows polynomially in n for some important
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classes of processes, such as i.i.d. or Markov processes. We show that, in

general, if cn grows subexponentially then a predictor exists that predicts

any measure in C in expected average KL divergence. On the other hand,

exponentially growing cn are not sufficient for prediction. A more refined

way to measure the capacity of Cn is using a concept of channel capacity

from information theory, which was developed for a closely related problem

of finding optimal codes for a class of sources. We extend corresponding

results from information theory to show that sublinear growth of channel

capacity is sufficient for the existence of a predictor, in the sense of expected

average divergence. Moreover, the obtained bounds on the divergence are

optimal up to an additive logarithmic term.

2.3.1 Separability

Knowing that a mixture of a countable subset gives a predictor if there is one,

a notion that naturally comes to mind, when trying to characterize families

of processes for which a predictor exists, is separability. Can we say that

there is a predictor for a class C of measures if and only if C is separable? Of

course, to talk about separability we need a suitable topology on the space

of all measures, or at least on C. If the formulated questions were to have a

positive answer, we would need a different topology for each of the notions of

predictive quality that we consider. Sometimes these measures of predictive

quality indeed define a nice enough structure of a probability space, but

sometimes they do not. The question whether there exists a topology on

C, separability with respect to which is equivalent to the existence of a

predictor, is already more vague and less appealing. Nonetheless, in the case

of total variation distance we obviously have a candidate topology: that of

total variation distance, and indeed separability with respect to this topology

is equivalent to the existence of a predictor, as the next theorem shows. This

theorem also implies Theorem 2.6, thereby providing an alternative proof for

the latter. In the case of expected average KL divergence the situation is
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different. While one can introduce a topology based on it, separability with

respect to this topology turns out to be a sufficient but not a necessary

condition for the existence of a predictor, as is shown in Theorem 2.11.

Definition 2.8 (unconditional total variation distance). Introduce the (un-

conditional) total variation distance

v(µ,ρ) :=sup
A∈F

|µ(A)−ρ(A)|.

Theorem 2.9. Let C be a set of probability measures on (X∞,F). There is

a measure ρ such that ρ predicts every µ∈C in total variation if and only if

C is separable with respect to the topology of total variation distance. In this

case, any measure ν of the form ν =
∑∞

k=1wkµk, where {µk : k ∈N} is any

dense countable subset of C and wk are any positive weights that sum to 1,

predicts every µ∈C in total variation.

Proof. Sufficiency and the mixture predictor. Let C be separable in total

variation distance, and let D={νk :k∈N} be its dense countable subset. We

have to show that ν :=
∑

k∈Nwkνk, where wk are any positive real weights

that sum to 1, predicts every µ ∈ C in total variation. To do this, it is

enough to show that µ(A)> 0 implies ν(A)> 0 for every A∈F and every

µ∈C. Indeed, let A be such that µ(A)=ε>0. Since D is dense in C, there

is a k∈N such that v(µ,νk)<ε/2. Hence νk(A)≥µ(A)−v(µ,νk)≥ ε/2 and

ν(A)≥wkνk(A)≥wkε/2>0.

Necessity. For any µ∈C, since ρ predicts µ in total variation, µ has a

density (Radon-Nikodym derivative) fµ with respect to ρ. We can define

L1 distance with respect to ρ as Lρ
1(µ,ν) =

∫
X∞ |fµ−fν |dρ. The set of all

measures that have a density with respect to ρ, is separable with respect

to this distance (for example, a dense countable subset can be constructed

based on measures whose densities are step-functions, that take only rational

values, see, e.g., [53]); therefore, its subset C is also separable. Let D be any

dense countable subset of C. Thus, for every µ∈C and every ε there is a
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µ′∈D such that Lρ
1(µ,µ

′)<ε. For every measurable set A we have

|µ(A)−µ′(A)|=
∣∣∣∣
∫

A

fµdρ−
∫

A

fµ′dρ

∣∣∣∣≤
∫

A

|fµ−fµ′ |dρ≤
∫

X∞

|fµ−fµ′ |dρ<ε.

Therefore, v(µ,µ′)= supA∈F|µ(A)−µ′(A)|<ε, and the set C is separable in

total variation distance.

Definition 2.10 (asymptotic KL “distance” D). Define asymptotic expected

average KL divergence between measures µ and ρ as

D(µ,ρ)=lim sup
n→∞

1

n
dn(µ,ρ). (2.13)

Theorem 2.11. For any set C of probability measures on (X∞,F), separa-

bility with respect to the asymptotic expected average KL divergence D is a

sufficient but not a necessary condition for the existence of a predictor:

(i) If there exists a countable set D :={νk :k∈N}⊂C, such that for every

µ∈C and every ε>0 there is a measure µ′∈D, such that D(µ,µ′)<ε,

then every measure ν of the form ν =
∑∞

k=1wkµk, where wk are any

positive weights that sum to 1, predicts every µ∈C in expected average

KL divergence.

(ii) There is an uncountable set C of measures, and a measure ν, such

that ν predicts every µ ∈ C in expected average KL divergence, but

µ1 6=µ2 implies D(µ1,µ2)=∞ for every µ1,µ2 ∈C; in particular, C is

not separable with respect to D.

Proof. (i) Fix µ∈C. For every ε> 0 pick k∈N such that D(µ,νk)<ε. We

have

dn(µ,ν)=Eµlog
µ(x1..n)

ν(x1..n)
≤Eµlog

µ(x1..n)

wkνk(x1..n)
=−logwk+dn(µ,νk)≤nε+o(n).

Since this holds for every ε, we conclude 1
n
dn(µ,ν)→0.
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(ii) Let C be the set of all deterministic sequences (measures concentrated

on just one sequence) such that the number of 0s in the first n symbols is

less than
√
n. Clearly, this set is uncountable. It is easy to check that

µ1 6=µ2 implies D(µ1,µ2)=∞ for every µ1,µ2∈C, but the predictor ν, given

by ν(xn = 0) := 1/n independently for different n, predicts every µ ∈ C in

expected average KL divergence.

Examples. Basically, the examples of the preceding section carry over

here. Indeed, the example of countable families is trivially also an example

of separable (with respect to either of the considered topologies) family.

For Bernoulli i.i.d. and k-order Markov processes, the (countable) sets of

processes that have rational values of the parameters, considered in the

previous section, are dense both in the topology of the parametrization and

with respect to the asymptotic average divergence D. It is also easy to check

from the arguments presented in the corresponding example of Section 2.5.1,

that the family of all k-order stationary Markov processes with rational

values of the parameters, where we take all k∈N, is dense with respect to D

in the set S of all stationary processes, so that S is separable with respect to

D. Thus, the sufficient but not necessary condition of separability is satisfied

in this case. On the other hand, neither of these latter families is separable

with respect to the topology of total variation distance.

2.3.2 Conditions based on local behaviour of measures

Next we provide some sufficient conditions for the existence of a predictor

based on local characteristics of the class of measures, that is, measures

truncated to the first n observations. First of all, it must be noted that

necessary and sufficient conditions cannot be obtained this way. The basic

example is that of a family D of all deterministic sequences that are 0 from

some time on. This is a countable class of measures which is very easy

to predict. Yet, the class of measures on Xn, obtained by truncating all

measures in D to the first n observations, coincides with what would be
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obtained by truncating all deterministic measures to the first n observations,

the latter class being obviously not predictable at all (see also examples

below). Nevertheless, considering this kind of local behaviour of measures,

one can obtain not only sufficient conditions for the existence of a predictor,

but also rates of convergence of the prediction error. It also gives some ideas

of how to construct predictors, for the cases when the sufficient conditions

obtained are met.

For a class C of stochastic processes and a sequence x1..n∈Xn introduce

the coefficients

cx1..n(C) :=sup
µ∈C

µ(x1..n). (2.14)

Define also the normalizer

cn(C) :=
∑

x1..n∈Xn

cx1..n(C). (2.15)

Definition 2.12 (NML estimate). The normalized maximum likelihood es-

timator λ is defined (e.g., [54]) as

λC(x1..n) :=
1

cn(C)
cx1..n(C), (2.16)

for each x1..n∈Xn.

The family λC(x1..n) (indexed by n) in general does not immediately

define a stochastic process over X∞ (λC are not consistent for different n);

thus, in particular, using average KL divergence for measuring prediction

quality would not make sense, since

dn(µ(·|x1..n−1),λC(·|x1..n−1))

can be negative, as the following example shows.

Example: negative dn for NML estimates. Let the processes µi,

i ∈ {1,...,4} be defined on the steps n= 1,2 as follows. µ1(00) = µ2(01) =
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µ4(11)=1, while µ3(01)=µ3(00)=1/2. We have λC(1)=λC(0)=1/2, while

λC(00) = λC(01) = λC(11) = 1/3. If we define λC(x|y) = λC(yx)/λC(y), we

obtain λC(1|0)=λC(0|0)=2/3. Then d2(µ3(·|0),λC(·|0))=log3/4<0.

Yet, by taking an appropriate mixture, it is still possible to construct a

predictor (a stochastic process) based on λ, that predicts all the measures

in the class.

Definition 2.13 (predictor ρc). Let w := 6/π2 and let wk :=
w
k2

. Define a

measure µk as follows. On the first k steps it is defined as λC, and for

n > k it outputs only zeros with probability 1; so, µk(x1..k) = λC(x1..k) and

µk(xn=0)=1 for n>k. Define the measure ρc as

ρc=
∞∑

k=1

wkµk. (2.17)

Thus, we have taken the normalized maximum likelihood estimates λn for

each n and continued them arbitrarily (actually, by a deterministic sequence)

to obtain a sequence of measures on (X∞,F) that can be summed.

Theorem 2.14. For any set C of probability measures on (X∞,F), the pre-

dictor ρc defined above satisfies

1

n
dn(µ,ρc)≤

logcn(C)

n
+O

(
logn

n

)
; (2.18)

in particular, if

logcn(C)=o(n), (2.19)

then ρc predicts every µ∈C in expected average KL divergence.

Proof. Indeed,

1

n
dn(µ,ρc)=

1

n
Elog

µ(x1..n)

ρc(x1..n)
≤ 1

n
Elog

µ(x1..n)

wnµn(x1..n)

≤ 1

n
log

cn(C)

wn

=
1

n
(logcn(C)+2logn+logw). (2.20)
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Example: i.i.d., finite-memory. To illustrate the applicability of the

theorem we first consider the class of i.i.d. processes B over the binary

alphabet X={0,1}. It is easy to see that, for each x1,...,xn,

sup
µ∈B

µ(x1..n)=(k/n)k(1−k/n)n−k,

where k=#{i≤n :xi=0} is the number of 0s in x1,...,xn. For the constants

cn(C) we can derive

cn(C)=
∑

x1..n∈Xn

sup
µ∈B

µ(x1..n)=
∑

x1..n∈Xn

(k/n)k(1−k/n)n−k

=
n∑

k=0

(
n

k

)
(k/n)k(1−k/n)n−k≤

n∑

k=0

n∑

t=0

(
n

k

)
(k/n)t(1−k/n)n−t=n+1,

so that cn(C)≤n+1.

In general, for the class Mk of processes with memory k over a finite

space X we can get polynomial coefficients cn(Mk) (see, for example, [54] and

also Section 2.4). Thus, with respect to finite-memory processes, the condi-

tions of Theorem 2.14 leave ample space for the growth of cn(C), since (2.19)

allows subexponential growth of cn(C). Moreover, these conditions are tight,

as the following example shows.

Example: exponential coefficients are not sufficient. Observe that

the condition (2.19) cannot be relaxed further, in the sense that exponential

coefficients cn are not sufficient for prediction. Indeed, for the class of all

deterministic processes (that is, each process from the class produces some

fixed sequence of observations with probability 1) we have cn = 2n, while

obviously for this class a predictor does not exist.

Example: stationary processes. For the set of all stationary processes

we can obtain cn(C)≥2n/n (as is easy to see by considering periodic n-order

Markov processes, for each n∈N), so that the conditions of Theorem 2.14
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are not satisfied. This cannot be fixed, since uniform rates of convergence

cannot be obtained for this family of processes, as was shown in [78].

Optimal rates of convergence. A natural question that arises with

respect to the bound (2.18) is whether it can be matched by a lower bound.

This question is closely related to the optimality of the normalized maximum

likelihood estimates used in the construction of the predictor. In general,

since NML estimates are not optimal, neither are the rates of convergence

in (2.18). To obtain (close to) optimal rates one has to consider a different

measure of capacity.

To do so, we make the following connection to a problem in informa-

tion theory. Let P(X∞) be the set of all stochastic processes (probability

measures) on the space (X∞,F), and let P(X) be the set of probability dis-

tributions over a (finite) set X. For a class C of measures we are interested

in a predictor that has a small (or minimal) worst-case (with respect to the

class C) probability of error. Thus, we are interested in the quantity

inf
ρ∈P(X∞)

sup
µ∈C

D(µ,ρ), (2.21)

where the infimum is taken over all stochastic processes ρ, and D is the

asymptotic expected average KL divergence (2.13). (In particular, we are

interested in the conditions under which the quantity (2.21) equals zero.)

This problem has been studied for the case when the probability measures

are over a finite set X, and D is replaced simply by the KL divergence

d between the measures. Thus, the problem was to find the probability

measure ρ (if it exists) on which the following minimax is attained

R(A) := inf
ρ∈P(X)

sup
µ∈A

d(µ,ρ), (2.22)

where A⊂P(X). This problem is closely related to the problem of finding

the best code for the class of sources A, which was its original motivation.

The normalized maximum likelihood distribution considered above does not
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in general lead to the optimum solution for this problem. The optimum

solution is obtained through the result that relates the minimax (2.22) to

the so-called channel capacity.

Definition 2.15 (Channel capacity). For a set A of measures on a finite

set X the channel capacity of A is defined as

C(A) := sup
P∈P0(A)

∑

µ∈S(P )

P (µ)d(µ,ρP ), (2.23)

where P0(A) is the set of all probability distributions on A that have a finite

support, S(P ) is the (finite) support of a distribution P ∈P0(A), and ρP =
∑

µ∈S(P )P (µ)µ.

It is shown in [75, 33] that C(A) = R(A), thus reducing the problem

of finding a minimax to an optimization problem. For probability measures

over infinite spaces this result (R(A)=C(A)) was generalized by [39], but the

divergence between probability distributions is measured by KL divergence

(and not asymptotic average KL divergence), which gives infinite R(A) e.g.

already for the class of i.i.d. processes.

However, truncating measures in a class C to the first n observations, we

can use the results about channel capacity to analyse the predictive prop-

erties of the class. Moreover, the rates of convergence that can be obtained

along these lines are close to optimal. In order to pass from measures mini-

mizing the divergence for each individual n to a process that minimizes the

divergence for all n we use the same idea as when constructing the process ρc.

Theorem 2.16. Let C be a set of measures on (X∞,F), and let Cn be the

class of measures from C restricted to Xn. There exists a measure ρC such

that
1

n
dn(µ,ρC)≤

C(Cn)

n
+O

(
logn

n

)
; (2.24)

in particular, if C(Cn)/n→0, then ρC predicts every µ∈C in expected average

KL divergence. Moreover, for any measure ρC and every ε> 0 there exists
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µ∈C such that
1

n
dn(µ,ρC)≥

C(Cn)

n
−ε.

Proof. As shown in [33], for each n there exists a sequence νnk , k ∈ N of

measures on Xn such that

lim
k→∞

sup
µ∈Cn

dn(µ,ν
n
k )→C(Cn).

For each n∈N find an index kn such that

| sup
µ∈Cn

dn(µ,ν
n
kn)−C(Cn)|≤1.

Define the measure ρn as follows. On the first n symbols it coincides with

νnkn and ρn(xm = 0) = 1 for m > n. Finally, set ρC =
∑∞

n=1wnρn, where

wk =
w
n2 ,w = 6/π2. We have to show that limn→∞

1
n
dn(µ,ρC) = 0 for every

µ∈C. Indeed, similarly to (2.20), we have

1

n
dn(µ,ρC)=

1

n
Eµlog

µ(x1..n)

ρC(x1..n)

≤ logw−1
k

n
+
1

n
Eµlog

µ(x1..n)

ρn(x1..n)
≤ logw+2logn

n
+
1

n
dn(µ,ρn)

≤o(1)+C(C
n)

n
. (2.25)

The second statement follows from the fact [75, 33] that C(Cn)=R(Cn)

(cf. (2.22)).

Thus, if the channel capacity C(Cn) grows sublinearly, a predictor can

be constructed for the class of processes C. In this case the problem of

constructing the predictor is reduced to finding the channel capacities for

different n and finding the corresponding measures on which they are at-

tained or approached.

Examples. For the class of all Bernoulli i.i.d. processes, the channel ca-

pacity C(Bn) is known to be O(logn) [54]. For the family of all stationary
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processes it is O(n), so that the conditions of Theorem 2.16 are satisfied for

the former but not for the latter.

We also remark that the requirement of a sublinear channel capacity

cannot be relaxed, in the sense that a linear channel capacity is not sufficient

for prediction, since it is the maximal possible capacity for a set of measures

on Xn, achieved, for example, on the set of all measures, or on the set of all

deterministic sequences.

2.4 Conditions under which one measure is a

predictor for another [R8]

In this section we address the following question: what are the conditions

under which a measure ρ is a good predictor for a measure µ? As it was

mentioned, for prediction in total variation distance, this relationship is

described by the relation of absolute continuity (see Theorem 2.2). Here we

will attempt to establish similar conditions for other measures of predictive

quality, including, but not limited to, expected average KL divergence.

We start with the following observation. For a Bayesian mixture ξ of a

countable class of measures νi, i∈N, we have ξ(A)≥wiνi(A) for any i and

any measurable set A, where wi is a constant. This condition is stronger

than the assumption of absolute continuity and is sufficient for prediction

in a very strong sense. Since we are willing to be satisfied with prediction

in a weaker sense (e.g. convergence of conditional probabilities), let us make

a weaker assumption: Say that a measure ρ dominates a measure µ with

coefficients cn>0 if

ρ(x1,...,xn) ≥ cnµ(x1,...,xn) (2.26)

for all x1,...,xn.

The first question we consider in this section is, under what conditions

on cn does (2.26) imply that ρ predicts µ? Observe that if ρ(x1,...,xn)>0 for

any x1,...,xn then any measure µ is locally absolutely continuous with respect
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to ρ (that is, the measure µ restricted to the first n trials µ|Xn is absolutely

continuous w.r.t. ρ|Xn for each n), and moreover, for any measure µ some

constants cn can be found that satisfy (2.26). For example, if ρ is Bernoulli

i.i.d. measure with parameter 1
2

and µ is any other measure, then (2.26) is

(trivially) satisfied with cn=2−n. Thus we know that if cn≡c then ρ predicts

µ in a very strong sense, whereas exponentially decreasing cn are not enough

for prediction. Perhaps somewhat surprisingly, we will show that dominance

with any subexponentially decreasing coefficients is sufficient for prediction

in expected average KL divergence. Dominance with any polynomially de-

creasing coefficients, and also with coefficients decreasing (for example) as

cn=exp(−√
n/logn), is sufficient for (almost sure) prediction on average (i.e.

in Cesaro sense). However, for prediction on every step we have a negative

result: for any dominance coefficients that go to zero there exists a pair of

measures ρ and µ which satisfy (2.26) but ρ does not predict µ in the sense

of almost sure convergence of probabilities. Thus the situation is similar

to that for predicting any stationary measure: prediction is possible in the

average but not on every step.

Note also that for Laplace’s measure ρL it can be shown that ρL dom-

inates any i.i.d. measure µ with linearly decreasing coefficients cn = 1
n+1

;

a generalization of ρL for predicting all measures with memory k (for a

given k) dominates them with polynomially decreasing coefficients. Thus

dominance with decreasing coefficients generalizes (in a sense) predicting

countable classes of measures (where we have dominance with a constant),

absolute continuity (via local absolute continuity), and predicting i.i.d. and

finite-memory measures.

Another way to look for generalizations is as follows. The Bayes mixture

ξ, being a sum of countably many measures (predictors), possesses some

of their predicting properties. In general, which predictive properties are

preserved under summation? In particular, if we have two predictors ρ1 and

ρ2 for two classes of measures, we are interested in the question whether
1
2
(ρ1+ρ2) is a predictor for the union of the two classes. An answer to this
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question would improve our understanding of how far a class of measures

for which a predicting measure exists can be extended without losing this

property.

Thus, the second question we consider in this section is the following:

suppose that a measure ρ predicts µ (in some weak sense), and let χ be

some other probability measure (e.g. a predictor for a different class of mea-

sures). Does the measure ρ′ = 1
2
(ρ+χ) still predict µ? That is, we ask

to which prediction quality criteria does the idea of taking a Bayesian sum

generalize. Absolute continuity is preserved under summation along with its

(strong) prediction ability. It was mentioned in [80] that prediction in the

(weak) sense of convergence of expected averages of conditional probabilities

is preserved under summation. Here we find that several stronger notions of

prediction are not preserved under summation.

Thus we address the following two questions. Is dominance with decreas-

ing coefficients sufficient for prediction in some sense, under some conditions

on the coefficients (Section 2.4.2)? And, if a measure ρ predicts a measure

µ in some sense, does the measure 1
2
(ρ+χ) also predict µ in the same sense,

where χ is an arbitrary measure (Section 2.4.3)? Considering different cri-

teria of prediction (a.s. convergence of conditional probabilities, a.s. conver-

gence of averages, etc.) in the above two questions we obtain not two but

many different questions, for some of which we find positive answers and for

some negative, yet some are left open.

The rest of this section is organized as follows. Section 2.4.1 introduces

the measures of divergence of probability measures that we will consider.

Section 2.4.2 addresses the question of whether dominance with decreasing

coefficients is sufficient for prediction, while in Section 2.4.3 we consider the

problem of summing a predictor with an arbitrary measure.

43



2.4.1 Measuring performance of prediction

In addition to the measures of performance of prediction used in the previ-

ous sections (expected average KL divergence and total variation), here we

introduce several more.

For two measures µ and ρ define the following measures of divergence.

(δ) Kullback-Leibler (KL) divergence

δn(µ,ρ|x<n)=
∑

x∈X
µ(xn=x|x<n)log

µ(xn=x|x<n)

ρ(xn=x|x<n)
,

(d̄) average KL divergence d̄n(µ,ρ|x1..n)=
1

n
dn(µ,ρ)=

1

n

n∑

t=1

δt(µ,ρ|x<t),

(a) absolute distance an(µ,ρ|x<n)=
∑

x∈X
|µ(xn=x|x<n)−ρ(xn=x|x<n)|,

(ā) average absolute distance ān(µ,ρ|x1..n)=
1

n

n∑

t=1

at(µ,ρ|x<t).

Definition 2.17. We say that ρ predicts µ

(d) in (non-averaged) KL divergence if δn(µ,ρ|x<n)→0 µ-a.s. as t→∞,

(d̄) in (time-average) average KL divergence if d̄n(µ,ρ|x1..n)→0 µ-a.s.,

(Ed̄) in expected average KL divergence if Eµd̄n(µ,ρ|x1..n)→0,

(a) in absolute distance if an(µ,ρ|x<n)→0 µ-a.s.,

(ā) in average absolute distance if ān(µ,ρ|x1..n)→0 µ-a.s.,

(Eā) in expected average absolute distance if Eµān(µ,ρ|x1..n)→0.

The argument x1..n will be often left implicit in our notation. Recall

(definition 2.1) measure ρ converges to a measure µ in total variation (tv)
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if supA⊂σ(
⋃∞

t=nX
t)|µ(A|x<n)−ρ(A|x<n)| → 0 µ-almost surely. The following

implications hold (and are complete and strict):

δ ⇒ d̄ Ed̄

⇓ ⇓ ⇓
tv ⇒ a ⇒ ā ⇒ Eā

(2.27)

to be understood as e.g.: if d̄n → 0 a.s. then ān → 0 a.s, or, if Ed̄n → 0

then Eān→0. The horizontal implications ⇒ follow immediately from the

definitions, and the ⇓ follow from the following Lemma:

Lemma 2.18. For all measures ρ and µ and sequences x1..∞ we have: a2t ≤
2δt and ā2n≤2d̄n and (Eān)

2≤2Ed̄n.

Proof. Pinsker’s inequality [41, Lem.3.11a] implies a2t ≤2δt. Using this and

Jensen’s inequality for the average 1
n

∑n
t=1[...] we get

2d̄n =
1

n

n∑

t=1

2δt ≥
1

n

n∑

t=1

a2t ≥
(
1

n

n∑

t=1

at

)2

= ā2n (2.28)

Using this and Jensen’s inequality for the expectation E we get 2Ed̄n≥Eā2n≥
(Eān)

2.

2.4.2 Dominance with decreasing coefficients

First we consider the question whether property (2.26) is sufficient for pre-

diction.

Definition 2.19. We say that a measure ρ dominates a measure µ with

coefficients cn>0 iff

ρ(x1..n) ≥ cnµ(x1..n). (2.29)

for all x1..n.
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Suppose that ρ dominates µ with decreasing coefficients cn. Does ρ

predict µ in (expected, expected average) KL divergence (absolute distance)?

First let us give an example.

Proposition 2.20. Let ρL be the Laplace measure, given by ρL(xn+1 =

a|x1..n) = k+1
n+|X| for any a ∈X and any x1..n ∈Xn, where k is the number

of occurrences of a in x1..n (this is also well defined for n=0). Then

ρL(x1..n) ≥ n!

(n+|X|−1)!
µ(x1..n) (2.30)

for any measure µ which generates independently and identically distributed

symbols. The equality is attained for some choices of µ.

Proof. We will only give the proof for X={0,1}, the general case is analo-

gous. To calculate ρL(x1..n) observe that it only depends on the number of

0s and 1s in x1..n and not on their order. Thus we compute ρL(x1..n)=
k!(n−k)!
(n+1)!

where k is the number of 1s. For any measure µ such that µ(xn=1)=p for

some p∈ [0,1] independently for all n, and for Laplace measure ρL we have

µ(x1..n)

ρL(x1..n)
=

(n+ 1)!

k!(n− k)!
pk(1− p)n−k = (n+ 1)

(
n

k

)
pk(1− p)n−k

≤ (n+ 1)
n∑

k=0

(
n

k

)
pk(1− p)n−k = n+ 1,

for any n-letter word x1,...,xn where k is the number of 1s in it. The equality

in the bound is attained when p=1, so that k=n, µ(x1..n)=1, and ρL(x1..n)=
1

n+1
.

Thus for Laplace’s measure ρL and binary X we have cn=O( 1
n
). As men-

tioned in the introduction, in general, exponentially decreasing coefficients

cn are not sufficient for prediction, since (2.26) is satisfied with ρ being a

Bernoulli i.i.d. measure and µ any other measure. On the other hand, the

following proposition shows that in a weak sense of convergence in expected
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average KL divergence (or absolute distance) the property (2.26) with subex-

ponentially decreasing cn is sufficient. We also remind that if cn are bounded

from below then prediction in the strong sense of total variation is possible.

Theorem 2.21. Let µ and ρ be two measures on X∞ and suppose that

ρ(x1..n) ≥ cnµ(x1..n) for any x1..n, where cn are positive constants satisfy-

ing 1
n
logc−1

n → 0. Then ρ predicts µ in expected average KL divergence

Eµd̄n(µ,ρ)→0 and in expected average absolute distance Eµān(µ,ρ)→0.

Proof. For convergence in average expected KL divergence, using (2.2) we

derive

Eµd̄n(µ,ρ)=
1

n
Elog

µ(x1..n)

ρ(x1..n)
≤ 1

n
logc−1

n →0.

The statement for expected average distance follows from this and

Lemma 2.18.

With a stronger condition on cn prediction in average KL divergence can

be established.

Theorem 2.22. Let µ and ρ be two measures on X∞ and suppose that

ρ(x1..n)≥cnµ(x1..n) for every x1..n, where cn are positive constants satisfying

∞∑

n=1

(log c−1
n )2

n2
< ∞. (2.31)

Then ρ predicts µ in average KL divergence d̄n(µ,ρ)→0 µ-a.s. and in average

absolute distance ān(µ,ρ)→0 µ-a.s.

In particular, the condition (2.31) on the coefficients is satisfied for poly-

nomially decreasing coefficients, or for cn=exp(−√
n/logn).

The proof is deferred to Section 2.6.2.

However, no form of dominance with decreasing coefficients is sufficient

for prediction in absolute distance or KL divergence, as the following nega-

tive result states.
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Proposition 2.23. For each sequence of positive numbers cn that goes to 0

there exist measures µ and ρ and a number ε>0 such that ρ(x1..n)≥cnµ(x1..n)
for all x1..n, yet an(µ,ρ|x1..n)>ε and δn(µ,ρ|x1..n)>ε infinitely often µ-a.s.

Proof. Let µ be concentrated on the sequence 11111... (that is µ(xn=1)=1

for all n), and let ρ(xn =1)=1 for all n except for a subsequence of steps

n=nk, k∈ IN on which ρ(xnk
=1)=1/2 independently of each other. It is

easy to see that choosing nk sparse enough we can make ρ(11...1n) decrease

to 0 arbitrary slowly; yet |µ(xnk
)−ρ(xnk

)|=1/2 for all k.

Thus for the first question — whether dominance with some coefficients

decreasing to zero is sufficient for prediction, we have the following table of

questions and answers, where, in fact, positive answers for an are implied by

positive answers for δn and vice versa for the negative answers:

Ed̄n d̄n δn Eān ān an

+ + − + + −

However, if we take into account the conditions on the coefficients, we see

some open problems left, and different answers for d̄n and ān may be ob-

tained. Following is the table of conditions on dominance coefficients and

answers to the questions whether these conditions are sufficient for prediction

(coefficients bounded from below are included for the sake of completeness).

Ed̄n d̄n δn Eān ān an

logc−1
n =o(n) + ? − + ? −

∑∞
n=1

logc−1
n

n2 <∞ + + − + + −
cn≥c>0 + + + + + +

We know from Proposition 2.23 that the condition cn≥c>0 for convergence

in δn can not be improved; thus the open problem left is to find whether

log c−1
n =o(n) is sufficient for prediction in d̄n or at least in ān.

Another open problem is to find out whether any conditions on dom-

inance coefficients are necessary for prediction; so far we only have some
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sufficient conditions. On the one hand, the obtained results suggest that

some form of dominance with decreasing coefficients may be necessary for

prediction, at least in the sense of convergence of averages. On the other

hand, the condition (2.26) is uniform over all sequences which probably is

not necessary for prediction. As for prediction in the sense of almost sure

convergence, perhaps more subtle behavior of the ratio µ(x1..n)
ρ(x1..n)

should be

analyzed, since dominance with decreasing coefficients is not sufficient for

prediction in this sense.

2.4.3 Preservation of the predictive ability under sum-

mation with an arbitrary measure

Now we turn to the question whether, given a measure ρ that predicts a

measure µ in some sense, the “contaminated” measure (1−ε)ρ+εχ for some

0<ε<1 also predicts µ in the same sense, where χ is an arbitrary probability

measure. Since most considerations are independent of the choice of ε, in

particular the results in this section, we set ε= 1
2

for simplicity. We define

Definition 2.24. By “ρ contaminated with χ” we mean ρ′ := 1
2
(ρ+χ), where

ρ and χ are probability measures.

Positive results can be obtained for convergence in expected average KL

divergence. The statement of the next proposition in a different form was

mentioned in [80, 42]. Since the proof is simple we present it here for the sake

of completeness; it is based on the same ideas as the proof of Theorem 2.21.

Proposition 2.25. Let µ and ρ be two measures on X∞ and suppose that

ρ predicts µ in expected average KL divergence. Then so does the measure

ρ′= 1
2
(ρ+χ) where χ is any other measure on X∞.
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Proof.

0 ≤ Ed̄n(µ, ρ
′) =

1

n
E

n∑

t=1

∑

xt∈X
µ(xt|x<t) log

µ(xt|x<t)

ρ′(xt|x<t)
=

1

n
E log

µ(x1..n)

ρ′(x1..n)

=
1

n
E log

µ(x1..n)

ρ(x1..n)

ρ(x1..n)

ρ′(x1..n)
= Ed̄n(µ, ρ) +

1

n
E log

ρ(x1..n)

ρ′(x1..n)
,

where the first term tends to 0 by assumption and the second term is

bounded from above by 1
n
log2→0. Since the sum is bounded from below by

0 we obtain the statement of the proposition.

Next we consider some negative results. An example of measures µ, ρ

and χ such that ρ predicts µ in absolute distance (or KL divergence) but
1
2
(ρ+χ) does not, can be constructed similarly to the example from [45] (of a

measure ρ which is a sum of distributions arbitrarily close to µ yet does not

predict it). The idea is to take a measure χ that predicts µ much better than

ρ on almost all steps, but on some steps gives grossly wrong probabilities.

Proposition 2.26. There exist measures µ, ρ and χ such that ρ predicts

µ in absolute distance (KL divergence) but 1
2
(ρ+χ) does not predict µ in

absolute distance (KL divergence).

Proof. Let µ be concentrated on the sequence 11111... (that is µ(xn=1)=1

for any n), and let ρ(xn=1)= n
n+1

with probabilities independent on different

trials. Clearly, ρ predicts µ in both absolute distance and KL divergence.

Let χ(xn=1)=1 for all n except on the sequence n=nk=22
k
=n2

k−1, k∈IN on

which χ(xnk
=1)=nk−1/nk=2−2k−1

. This implies that χ(11..nk
)=2/nk and

χ(11..nk−1)=χ(11..nk−1
)=2/nk−1=2/

√
nk. It is now easy to see that 1

2
(ρ+χ)

does not predict µ, neither in absolute distance nor in KL divergence. Indeed

for n=nk for some k we have

1
2
(ρ+χ)(xn = 1|1<n) =

ρ(11..n) + χ(11..n)

ρ(1<n) + χ(1<n)
≤ 1/(n+1) + 2/n

1/n + 2/
√
n

→ 0.
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For the (expected) average absolute distance the negative result also

holds:

Proposition 2.27. There exist such measures µ, ρ and χ that ρ predicts

µ in average absolute distance but 1
2
(ρ+χ) does not predict µ in (expected)

average absolute distance.

Proof. Let µ be Bernoulli 1/2 distribution and let ρ(xn = 1) = 1/2 for all

n (independently of each other) except for some sequence nk, k ∈ IN on

which ρ(xnk
= 1) = 0. Choose nk sparse enough for ρ to predict µ in the

average absolute distance. Let χ be Bernoulli 1/3. Observe that χ assigns

non-zero probabilities to all finite sequences, whereas µ-a.s. from some n on

ρ(x1..n)=0. Hence 1
2
(ρ+χ)(x1..n)=

1
2
χ(x1..n) and so 1

2
(ρ+χ) does not predict

µ.

Thus for the question of whether predictive ability is preserved when an

arbitrary measure is added to the predictive measure, we have the following

table of answers.

Ed̄n d̄n δn Eān ān an

+ ? − − − −

As it can be seen, there remains one open question: whether this property

is preserved under almost sure convergence of the average KL divergence.

It can be inferred from the example in Proposition 2.26 that contami-

nating a predicting measure ρ with a measure χ spoils ρ if χ is better than

ρ on almost every step. It thus can be conjectured that adding a measure

can only spoil a predictor on sparse steps, not affecting the average.

2.5 Nonrealizable version of the sequence pre-

diction problem [R1]

In this section we generalize our approach to sequence prediction even fur-

ther. Instead of assuming that the measure µ generating the data belongs
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to some set C of measures, we would like to assume that the measure µ is

completely arbitrary. As we know, in this case we cannot hope to get the

error converge to zero. However, we can try to make the error as small as

the error of any predictor from a given set C.

Recall that a predictor ρ is required to give conditional probabilities

ρ(xn+1= a|x1,...,xn) for all possible histories x1,...,xn. Therefore, it defines

itself a probability measure on the space Ω of one-way infinite sequences.

In other words, a probability measure on Ω can be considered both as a

data-generating mechanism and as a predictor.

Thus, given a set C of probability measures on Ω, one can ask two kinds

of questions about C. First, does there exist a predictor ρ, whose forecast

probabilities converge (in a certain sense) to the µ-conditional probabilities,

if an arbitrary µ∈C is chosen to generate the data? Here we assume that

the “true” measure that generates the data belongs to the set C of interest,

and would like to construct a predictor that predicts all measures in C. The

second type of questions is as follows: does there exist a predictor that

predicts at least as well as any predictor ρ∈C, if the measure that generates

the data comes possibly from outside of C? Thus, here we consider elements

of C as predictors, and we would like to combine their predictive properties,

if this is possible. Note that in this setting the two questions above concern

the same object: a set C of probability measures on Ω.

Each of these two questions, the realizable and the non-realizable one,

have enjoyed much attention in the literature; the setting for the non-

realizable case is usually slightly different, which is probably why it has

not (to the best of the author’s knowledge) been studied as another facet of

the realizable case. The realizable case has been considered in detail in the

previous sections (Section 2.2–2.4).

The non-realizable case is usually studied in a slightly different, non-

probabilistic, setting. We refer to [18] for a comprehensive overview. It

is usually assumed that the observed sequence of outcomes is an arbitrary

(deterministic) sequence; it is required not to give conditional probabilities,
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but just deterministic guesses (although these guesses can be selected using

randomisation). Predictions result in a certain loss, which is required to be

small as compared to the loss of a given set of reference predictors (experts)

C. The losses of the experts and the predictor are observed after each round.

In this approach, it is mostly assumed that the set C is finite or countable.

The main difference with the formulation considered in this section is that

we require a predictor to give probabilities, and thus the loss is with respect

to something never observed (probabilities, not outcomes). The loss itself

is not completely observable in our setting. In this sense our non-realizable

version of the problem is more difficult. Assuming that the data generating

mechanism is probabilistic, even if it is completely unknown, makes sense in

such problems as, for example, game playing, or market analysis. In these

cases one may wish to assign smaller loss to those models or experts who

give probabilities closer to the correct ones (which are never observed), even

though different probability forecasts can often result in the same action.

Aiming at predicting probabilities of outcomes also allows us to abstract

from the actual use of the predictions (for example, making bets) and thus

from considering losses in a general form; instead, we can concentrate on

those forms of loss that are more convenient for the analysis. In this lat-

ter respect, the problems we consider are easier than those considered in

prediction with expert advice. (However, in principle, nothing restricts us

to considering the simple losses that we chose; they are just a convenient

choice.) Noteworthy, the probabilistic approach also makes the machinery

of probability theory applicable, hopefully making the problem easier. An-

other way to look at the difference between the non-realizable problems of

this manuscript and prediction with expert advice is as follows: the latter is

prequential (in the sense of [23]), whereas the former is not.

Let us further break the non-realizable case into two problems. The first

one is as follows. Given a set C of predictors, we want to find a predictor

whose prediction error converges to zero if there is at least one predictor in

C whose prediction error converges to zero; we call this problem simply the
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“non-realizable” case, or Problem 2 (leaving the name “Problem 1” to the

realizable case). The second non-realizable problem is the “fully agnostic”

problem: it is to make the prediction error asymptotically as small as that

of the best (for the given process measure generating the data) predictor in

C (we call this Problem 3). Thus, we now have three problems about a set

of process measures C to address.

In this section we show that if the quality of prediction is measured in

total variation, then all the three problems coincide: any solution to any

one of them is a solution to the other two. For the case of expected average

KL divergence, all the three problems are different: the realizable case is

strictly easier than non-realizable (Problem 2), which is, in turn, strictly

easier than the fully agnostic case (Problem 3). We then analyse which

results concerning prediction in total variation can be transferred to which

of the problems concerning prediction in average KL divergence. We will

extend the result of Section 2.2 about the existence of Bayesian predictor

from Problem 1 to the (non-realizable) case of Problem 2, for prediction in

expected average KL divergence. We do not have an analogous result for

Problem 3 (and, in fact, conjecture that the opposite statement holds true).

However, for the fully agnostic case of Problem 3, we show that separability

with respect to a certain topology given by KL divergence is a sufficient

(though not a necessary) condition for the existence of a predictor. This is

used to demonstrate that there is a solution to this problem for the set of

all finite-memory process measures, complementing similar results obtained

earlier in different settings. On the other hand, we show that there is no

solution to this problem for the set of all stationary process measures, in

contrast to a result of B. [78] that gives a solution to the realizable case of

this problem (that is, a predictor whose expected average KL error goes to

zero if any stationary process is chosen to generate the data). Finally, we

also consider a modified version of Problem 3, in which the performance of

predictors is only compared on individual sequences. For this problem, we

obtain, using a result from [77], a characterisation of those sets C for which
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a solution exists in terms of the Hausdorff dimension.

2.5.1 Sequence prediction problems

For the two notions of predictive quality introduced, we can now state for-

mally the sequence prediction problems.

Problem 1(realizable case). Given a set of probability measures C, find

a measure ρ such that ρ predicts in total variation (expected average KL

divergence) every µ∈C, if such a ρ exists.

This is the problem considered in Sections 2.2 (restated here to ease the

comparison). Problem 1 is about finding a predictor for the case when the

process generating the data is known to belong to a given class C. That

is, the set C here is a set of measures that generate the data. Next let us

formulate the questions about C as a set of predictors.

Problem 2 (non-realizable case). Given a set of process measures (predic-

tors) C, find a process measure ρ such that ρ predicts in total variation (in

expected average KL divergence) every measure ν∈P such that there is µ∈C
which predicts (in the same sense) ν.

While Problem 2 is already quite general, it does not yet address what

can be called the fully agnostic case: if nothing at all is known about the

process ν generating the data, it means that there may be no µ∈ C such

that µ predicts ν, and then, even if we have a solution ρ to the Problem 2,

we still do not know what the performance of ρ is going to be on the data

generated by ν, compared to the performance of the predictors from C. To

address this fully agnostic case we have to introduce the notion of loss.

Definition 2.28. Introduce the almost sure total variation loss of ρ with

respect to µ

ltv(µ,ρ) :=inf{α∈ [0,1] : lim sup
n→∞

v(µ,ρ,x1..n)≤α µ–a.s.},
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and the asymptotic KL loss

lKL(ν,ρ) :=lim sup
n→∞

1

n
dn(ν,ρ).

We can now formulate the fully agnostic version of the sequence predic-

tion problem.

Problem 3. Given a set of process measures (predictors) C, find a process

measure ρ such that ρ predicts at least as well as any µ in C, if any process

measure ν∈P is chosen to generate the data:

l(ν,ρ)−l(ν,µ)≤0 (2.32)

for every ν∈P and every µ∈C, where l(·,·) is either ltv(·,·) or lKL(·,·).
The three problems just formulated represent different conceptual ap-

proaches to the sequence prediction problem. Let us illustrate the difference

by the following informal example. Suppose that the set C is that of all

(ergodic, finite-state) Markov chains. Markov chains being a familiar object

in probability and statistics, we can easily construct a predictor ρ that pre-

dicts every µ∈C (for example, in expected average KL divergence, see [54]).

That is, if we know that the process µ generating the data is Markovian, we

know that our predictor is going to perform well. This is the realizable case

of Problem 1. In reality, rarely can we be sure that the Markov assumption

holds true for the data at hand. We may believe, however, that it is still a

reasonable assumption, in the sense that there is a Markovian model which,

for our purposes (for the purposes of prediction), is a good model of the

data. Thus we may assume that there is a Markov model (a predictor) that

predicts well the process that we observe, and we would like to combine the

predictive qualities of all these Markov models. This is the “non-realizable”

case of Problem 2. Note that this problem is more difficult than the first

one; in particular, a process ν generating the data may be singular with

respect to any Markov process, and still be predicted well (in the sense of
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expected average KL divergence, for example) by some of them. Still, here

we are making some assumptions about the process generating the data,

and, if these assumptions are wrong, then we do not know anything about

the performance of our predictor. Thus, we may ultimately wish to acknowl-

edge that we do not know anything at all about the data; we still know a

lot about Markov processes, and we would like to use this knowledge on our

data. If there is anything at all Markovian in it (that is, anything that can

be captured by a Markov model), then we would like our predictor to use

it. In other words, we want to have a predictor that predicts any process

measure whatsoever (at least) as well as any Markov predictor. This is the

“fully agnostic” case of Problem 3.

Of course, Markov processes were just mentioned as an example, while

in this section we are only concerned with the most general case of arbitrary

(uncountable) sets C of process measures.

The following statement is rather obvious.

Proposition 2.29. Any solution to Problem 3 is a solution to Problem 2,

and any solution to Problem 2 is a solution to Problem 1.

Despite the conceptual differences in formulations, it may be somewhat

unclear whether the three problems are indeed different. It appears that this

depends on the measure of predictive quality chosen: for the case of predic-

tion in total variation distance all the three problems coincide, while for the

case of prediction in expected average KL divergence they are different.

2.5.2 Characterizations of learnable classes for predic-

tion in total variation

As it was mentioned, a measure µ is absolutely continuous with respect to

a measure ρ if and only if ρ predicts µ in total variation distance. This

reduces studying at least Problem 1 for total variation distance to studying

the relation of absolute continuity. Introduce the notation ρ≥tv µ for this

relation.
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Let us briefly recall some facts we know about ≥tv; details can be found,

for example, in [70]. Let [P]tv denote the set of equivalence classes of P with

respect to ≥tv, and for µ∈Ptv denote [µ] the equivalence class that contains

µ. Two elements σ1,σ2∈ [P]tv (or σ1,σ2∈P) are called disjoint (or singular)

if there is no ν ∈ [P]tv such that σ1≥tv ν and σ2≥tv ν; in this case we write

σ1⊥tv σ2. We write [µ1]+[µ2] for [1
2
(µ1+µ2)]. Every pair σ1,σ2∈ [P]tv has a

supremum sup(σ1,σ2)=σ1+σ2. Introducing into [P]tv an extra element 0 such

that σ≥tv0 for all σ∈ [P]tv, we can state that for every ρ,µ∈ [P]tv there exists

a unique pair of elements µs and µa such that µ=µa+µs, ρ≥µa and ρ⊥tvµs.

(This is a form of Lebesgue decomposition.) Moreover, µa=inf(ρ,µ). Thus,

every pair of elements has a supremum and an infimum. Moreover, every

bounded set of disjoint elements of [P]tv is at most countable.

Furthermore, we introduce the (unconditional) total variation distance

between process measures.

Definition 2.30 (unconditional total variation distance). The (uncondi-

tional) total variation distance is defined as

v(µ,ρ) :=sup
A∈B

|µ(A)−ρ(A)|.

Known characterizations of those sets C that are bounded with respect

to ≥tv can now be related to our prediction problems 1-3 as follows.

Theorem 2.31. Let C⊂P. The following statements about C are equivalent.

(i) There exists a solution to Problem 1 in total variation.

(ii) There exists a solution to Problem 2 in total variation.

(iii) There exists a solution to Problem 3 in total variation.

(iv) C is upper-bounded with respect to ≥tv.
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(v) There exists a sequence µk∈C, k∈N such that for some (equivalently,

for every) sequence of weights wk∈ (0,1], k∈N such that
∑

k∈Nwk=1,

the measure ν=
∑

k∈Nwkµk satisfies ν≥tvµ for every µ∈C.

(vi) C is separable with respect to the total variation distance.

(vii) Let C+ := {µ∈P :∃ρ∈C ρ≥tv µ}. Every disjoint (with respect to ≥tv)

subset of C+ is at most countable.

Moreover, every solution to any of the Problems 1-3 is a solution to the other

two, as is any upper bound for C. The sequence µk in the statement (v) can

be taken to be any dense (in the total variation distance) countable subset of

C (cf. (vi)), or any maximal disjoint (with respect to ≥tv) subset of C+ of

statement (vii), in which every measure that is not in C is replaced by any

measure from C that dominates it.

Proof. The implications (i)⇐ (ii)⇐ (iii) are obvious (cf. Proposition 2.29).

The equivalence (iv)⇔ (i) is a reformulation of the result of Theorem 2.2.

(i)⇒ (ii) follows from the equivalence (i)⇔ (iv) and the transitivity of ≥tv;

(i)⇒ (iii) follows from the transitivity of ≥tv and from Lemma 2.32 below:

indeed, from Lemma 2.32 we have ltv(ν,µ) = 0 if µ≥tv ν and ltv(ν,µ) = 1

otherwise. From this and the transitivity of ≥tv it follows that if ρ≥tv µ

then also ltv(ν,ρ)≤ ltv(ν,µ) for all ν∈P. The equivalence of (v), (vi), and (i)

was established in Theorems 2.6 and 2.9. The equivalence of (iv) and (vii)

was proven in [70]. The concluding statements of the theorem are easy to

demonstrate from the results cited above.

The following lemma is an easy consequence of [11].

Lemma 2.32. Let µ,ρ be two process measures. Then v(µ,ρ,x1..n) converges

to either 0 or 1 with µ-probability 1.

Proof. Assume that µ is not absolutely continuous with respect to ρ (the

other case is covered by [11]). By Lebesgue decomposition theorem, the
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measure µ admits a representation µ=αµa+(1−α)µs where α∈ [0,1] and

the measures µa and µs are such that µa is absolutely continuous with respect

to ρ and µs is singular with respect to ρ. Let W be such a set that µa(W )=

ρ(W )=1 and µs(W )=0. Note that we can take µa=µ|W and µs=µ|X∞\W .

From [11] we have v(µa,ρ,x1..n)→ 0 µa-a.s., as well as v(µa,µ,x1..n)→ 0 µa-

a.s. and v(µs,µ,x1..n) → 0 µs-a.s. Moreover, v(µs,ρ,x1..n) ≥ |µs(W |x1..n)−
ρ(W |x1..n)|=1 so that v(µs,ρ,x1..n)→1 µs-a.s. Furthermore,

v(µ,ρ,x1..n)≤v(µ,µa,x1..n)+v(µa,ρ,x1..n)=I

and

v(µ,ρ,x1..n)≥−v(µ,µs,x1..n)+v(µs,ρ,x1..n)=II.

We have I→0 µa-a.s. and hence µ|W -a.s., as well as II→1 µs-a.s. and hence

µ|X∞\W -a.s. Thus,

µ(v(µ,ρ,x1..n)→0 or 1)

≤µ(W )µ|W (I→0)+µ(X∞\W )µ|X∞\W (II→1)=µ(W )+µ(X∞\W )=1,

which concludes the proof.

Remark. Using Lemma 2.32 we can also define expected (rather than almost

sure) total variation loss of ρ with respect to µ, as the µ-probability that

v(µ,ρ) converges to 1:

l′tv(µ,ρ) :=µ{x1,x2,···∈X∞ :v(µ,ρ,x1..n)→1}.

Then Problem 3 can be reformulated for this notion of loss. However, it is

easy to see that for this reformulation Theorem 2.31 holds true as well.

Thus, we can see that, for the case of prediction in total variation, all the

sequence prediction problems formulated reduce to studying the relation of

absolute continuity for process measures and those families of measures that

are absolutely continuous (have a density) with respect to some measure (a
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predictor).

2.5.3 Characterizations of learnable classes for predic-

tion in expected average KL divergence

First of all, we have to observe that for prediction in KL divergence Problems

1, 2, and 3 are different, as the following theorem shows. While the examples

provided in the proof are artificial, there is a very important example illus-

trating the difference between Problem 1 and Problem 3 for expected average

KL divergence: the set S of all stationary processes, given in Theorem 2.39

in the end of this section.

Theorem 2.33. For the case of prediction in expected average KL diver-

gence, Problems 1, 2 and 3 are different: there exists a set C1⊂P for which

there is a solution to Problem 1 but there is no solution to Problem 2, and

there is a set C2⊂P for which there is a solution to Problem 2 but there is

no solution to Problem 3.

Proof. We have to provide two examples. Fix the binary alphabet X =

{0,1}. For each deterministic sequence t=t1,t2,···∈X∞ construct the process

measure γt as follows: γt(xn= tn|t1..n−1) :=1− 1
n+1

and for x1..n−1 6= t1..n−1 let

γt(xn = 0|x1..n−1) = 1/2, for all n ∈ N. That is, γt is Bernoulli i.i.d. 1/2

process measure strongly biased towards a specific deterministic sequence,

t. Let also γ(x1..n)= 2−n for all x1..n ∈Xn, n∈N (the Bernoulli i.i.d. 1/2).

For the set C1 := {γt : t ∈X∞} we have a solution to Problem 1: indeed,

dn(γt,γ)≤1=o(n). However, there is no solution to Problem 2. Indeed, for

each t ∈D we have dn(t,γt) = logn= o(n) (that is, for every deterministic

measure there is an element of C1 which predicts it), while by Lemma 2.5

for every ρ∈P there exists t∈D such that dn(t,ρ)≥n for all n∈N (that is,

there is no predictor which predicts every measure that is predicted by at

least one element of C1).

The second example is similar. For each deterministic sequence t =

t1,t2,···∈D construct the process measure γt as follows: γ′t(xn=tn|t1..n−1) :=
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2/3 and for x1..n−1 6=t1..n−1 let γ′t(xn=0|x1..n−1)=1/2, for all n∈N. It is easy

to see that γ is a solution to Problem 2 for the set C2 :={γ′t :t∈X∞}. Indeed,

if ν∈P is such that dn(ν,γ′)=o(n) then we must have ν(t1..n)=o(1). From

this and the fact that γ and γ′ coincide (up to O(1)) on all other sequences

we conclude dn(ν,γ)=o(n). However, there is no solution to Problem 3 for

C2. Indeed, for every t∈D we have dn(t,γ′t)=nlog3/2+o(n). Therefore, if ρ is

a solution to Problem 3 then lim sup 1
n
dn(t,ρ)≤ log3/2<1 which contradicts

Lemma 2.5.

Thus, prediction in expected average KL divergence turns out to be a

more complicated matter than prediction in total variation. The next idea

is to try and see which of the facts about prediction in total variation can

be generalized to some of the problems concerning prediction in expected

average KL divergence.

First, observe that, for the case of prediction in total variation, the equiv-

alence of Problems 1 and 2 was derived from the transitivity of the relation

≥tv of absolute continuity. For the case of expected average KL divergence,

the relation “ρ predicts µ in expected average KL divergence” is not transi-

tive (and Problems 1 and 2 are not equivalent). However, for Problem 2 we

are interested in the following relation: ρ “dominates” µ if ρ predicts every

ν such that µ predicts ν. Denote this relation by ≥KL:

Definition 2.34 (≥KL). We write ρ≥KL µ if for every ν ∈ P the equality

lim sup 1
n
dn(ν,µ)=0 implies lim sup 1

n
dn(ν,ρ)=0.

The relation ≥KL has some similarities with ≥tv. First of all, ≥KL is also

transitive (as can be easily seen from the definition). Moreover, similarly

to ≥tv, one can show that for any µ,ρ any strictly convex combination αµ+

(1−α)ρ is a supremum of {ρ,µ} with respect to ≥KL. Next we will obtain a

characterization of predictability with respect to ≥KL similar to one of those

obtained for ≥tv.

The key observation is the following. If there is a solution to Problem 2

for a set C then a solution can be obtained as a Bayesian mixture over
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a countable subset of C. For total variation this is the statement (v) of

Theorem 2.31.

Theorem 2.35. Let C be a set of probability measures on Ω. If there is a

measure ρ such that ρ≥KL µ for every µ∈C (ρ is a solution to Problem 2)

then there is a sequence µk∈C, k∈N, such that
∑

k∈Nwkµk≥KLµ for every

µ∈C, where wk are some positive weights.

The proof is deferred to Section 2.6.3.

For the case of Problem 3, we do not have results similar to Theorem 2.35

(or statement (v) of Theorem 2.31); in fact, we conjecture that the opposite

is true: there exists a (measurable) set C of measures such that there is a

solution to Problem 3 for C, but there is no Bayesian solution to Problem 3,

meaning that there is no probability distribution on C (discrete or not) such

that the mixture over C with respect to this distribution is a solution to

Problem 3 for C.

However, we can take a different route and extend another part of The-

orem 2.31 to obtain a characterization of sets C for which a solution to

Problem 3 exists.

We have seen that, in the case of prediction in total variation, separabil-

ity with respect to the topology of this distance is a necessary and sufficient

condition for the existence of a solution to Problems 1-3. In the case of ex-

pected average KL divergence the situation is somewhat different, since, first

of all, (asymptotic average) KL divergence is not a metric. While one can

introduce a topology based on it, separability with respect to this topology

turns out to be a sufficient but not a necessary condition for the existence

of a predictor, as is shown in the next theorem.

Definition 2.36. Define the distance d∞(µ1,µ2) on process measures as fol-

lows

d∞(µ1,µ2)=lim sup
n→∞

sup
x1..n∈Xn

1

n

∣∣∣∣log
µ1(x1..n)

µ2(x1..n)

∣∣∣∣, (2.33)

where we assume log0/0:=0.
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Clearly, d∞ is symmetric and satisfies the triangle inequality, but it is

not exact. Moreover, for every µ1,µ2 we have

lim sup
n→∞

1

n
dn(µ1,µ2)≤d∞(µ1,µ2). (2.34)

The distance d∞(µ1,µ2) measures the difference in behaviour of µ1 and µ2

on all individual sequences. Thus, using this distance to analyse Problem 3

is most close to the traditional approach to the non-realizable case, which is

formulated in terms of predicting individual deterministic sequences.

Theorem 2.37. (i) Let C be a set of process measures. If C is separable

with respect to d∞ then there is a solution to Problem 3 for C, for the

case of prediction in expected average KL divergence.

(ii) There exists a set of process measures C such that C is not separable

with respect to d∞, but there is a solution to Problem 3 for this set, for

the case of prediction in expected average KL divergence.

Proof. For the first statement, let C be separable and let (µk)k∈N be a dense

countable subset of C. Define ν :=
∑

k∈Nwkµk, where wk are any positive

summable weights. Fix any measure τ and any µ∈C. We will show that

lim supn→∞
1
n
dn(τ,ν)≤ lim supn→∞

1
n
dn(τ,µ). For every ε, find such a k ∈N

that d∞(µ,µk)≤ε. We have

dn(τ,ν)≤dn(τ,wkµk)=Eτ log
τ(x1..n)

µk(x1..n)
−logwk

=Eτ log
τ(x1..n)

µ(x1..n)
+Eτ log

µ(x1..n)

µk(x1..n)
−logwk

≤dn(τ,µ)+ sup
x1..n∈Xn

log

∣∣∣∣
µ(x1..n)

µk(x1..n)

∣∣∣∣−logwk.

From this, dividing by n taking lim supn→∞ on both sides, we conclude

lim sup
n→∞

1

n
dn(τ,ν)≤ lim sup

n→∞

1

n
dn(τ,µ)+ε.
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Since this holds for every ε>0 the first statement is proven.

The second statement is proven by the following example. Let C be

the set of all deterministic sequences (measures concentrated on just one

sequence) such that the number of 0s in the first n symbols is less than
√
n, for all n∈N. Clearly, this set is uncountable. It is easy to check that

µ1 6=µ2 implies d∞(µ1,µ2)=∞ for every µ1,µ2∈C, but the predictor ν, given

by ν(xn = 0) = 1/n independently for different n, predicts every µ ∈ C in

expected average KL divergence. Since all elements of C are deterministic,

ν is also a solution to Problem 3 for C.

Although simple, Theorem 2.37 can be used to establish the existence of

a solution to Problem 3 for an important class of process measures: that of

all processes with finite memory, as the next theorem shows. Results similar

to Theorem 2.38 are known in different settings, e.g., [92, 76, 17] and others.

Theorem 2.38. There exists a solution to Problem 3 for prediction in ex-

pected average KL divergence for the set of all finite-memory process mea-

sures M :=∪k∈NMk.

Proof. We will show that the set M is separable with respect to d∞. Then

the statement will follow from Theorem 2.37. It is enough to show that each

set Mk is separable with respect to d∞.

For simplicity, assume that the alphabet is binary (|X|=2; the general

case is analogous). Observe that the family Mk of k-order stationary binary-

valued Markov processes is parametrized by |X|k [0,1]-valued parameters:

probability of observing 0 after observing x1..k, for each x1..k∈Xk. Note that

this parametrization is continuous (as a mapping from the parameter space

with the Euclidean topology to Mk with the topology of d∞). Indeed, for

any µ1,µ2∈Mk and every x1..n∈Xn such that µi(x1..n) 6=0, i=1,2, it is easy

to see that
1

n

∣∣∣∣log
µ1(x1..n)

µ2(x1..n)

∣∣∣∣≤ sup
x1..k+1

1

k+1

∣∣∣∣log
µ1(x1..k+1)

µ2(x1..k+1)

∣∣∣∣, (2.35)
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so that the right-hand side of (2.35) also upper-bounds d∞(µ1,µ2), implying

continuity of the parametrization.

It follows that the set µk
q , q ∈ Q|X|k of all stationary k-order Markov

processes with rational values of all the parameters (Q :=Q∩[0,1]) is dense

in Mk, proving the separability of the latter set.

Another important example is the set of all stationary process measures

S. This example also illustrates the difference between the prediction prob-

lems that we consider. For this set a solution to Problem 1 was given in [78].

In contrast, here we show that there is no solution to Problem 3 for S.

Theorem 2.39. There is no solution to Problem 3 for the set of all station-

ary processes S.

Proof. This proof is based on the construction similar to the one used in [78]

to demonstrate impossibility of consistent prediction of stationary processes

without Cesaro averaging.

Letm be a Markov chain with states 0,1,2,... and state transitions defined

as follows. From each sate k ∈N∪{0} the chain passes to the state k+1

with probability 2/3 and to the state 0 with probability 1/3. It is easy to

see that this chain possesses a unique stationary distribution on the set of

states (see, e.g., [84]); taken as the initial distribution it defines a stationary

ergodic process with values in N∪{0}. Fix the ternary alphabet X={a,0,1}.
For each sequence t= t1,t2,···∈{0,1}∞ define the process µt as follows. It is

a deterministic function of the chain m. If the chain is in the state 0 then

the process µt outputs a; if the chain m is in the state k>0 then the process

outputs tk. That is, we have defined a hidden Markov process which in the

state 0 of the underlying Markov chain always outputs a, while in other

states it outputs either 0 or 1 according to the sequence t.

To show that there is no solution to Problem 3 for S, we will show that

there is no solution to Problem 3 for the smaller set C := {µt : t∈{0,1}∞}.
Indeed, for any t∈{0,1}∞ we have dn(t,µt)=nlog3/2+o(n). Then if ρ is a

66



solution to Problem 3 for C we should have lim supn→∞
1
n
dn(t,ρ)≤ log3/2<1

for every t∈D, which contradicts Lemma 2.5.

From the proof of Theorem 2.39 one can see that, in fact, the statement

that is proven is stronger: there is no solution to Problem 3 for the set

of all functions of stationary ergodic countable-state Markov chains. We

conjecture that a solution to Problem 2 exists for the latter set, but not for

the set of all stationary processes.

As we have seen in the statements above, the set of all deterministic mea-

sures D plays an important role in the analysis of the predictors in the sense

of Problem 3. Therefore, an interesting question is to characterize those sets

C of measures for which there is a predictor ρ that predicts every individual

sequence at least as well as any measure from C. Such a characterization

can be obtained in terms of Hausdorff dimension, using a result of [77], that

shows that Hausdorff dimension of a set characterizes the optimal prediction

error that can be attained by any predictor.

For a set A⊂X∞ denote H(A) its Hausdorff dimension (see, for example,

[10] for its definition).

Theorem 2.40. Let C⊂P. The following statements are equivalent.

(i) There is a measure ρ∈P that predicts every individual sequence at least

as well as the best measure from C: for every µ∈C and every sequence

x1,x2,···∈X∞ we have

lim inf
n→∞

− 1

n
logρ(x1..n)≤ lim inf

n→∞
− 1

n
logµ(x1..n). (2.36)

(ii) For every α ∈ [0,1] the Hausdorff dimension of the set of sequences

on which the average prediction error of the best measure in C is not

greater than α is bounded by α/log|X|:

H({x1,x2,···∈X∞ : inf
µ∈C

lim inf
n→∞

− 1

n
logµ(x1..n)≤α})≤α/log|X|. (2.37)
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Proof. The implication (i)⇒(ii) follows directly from [77] where it is shown

that for every measure ρ one must have

H({x1,x2,···∈X∞ : lim inf
n→∞

− 1

n
logρ(x1..n)≤α})≤α/log|X|.

To show the opposite implication, we again refer to [77]: for every set

A⊂X∞ there is a measure ρA such that

lim inf
n→∞

− 1

n
logρA(x1..n)≤H(A)log|X|. (2.38)

For each α∈[0,1] defineAα :={x1,x2,···∈X∞ :infµ∈Clim infn→∞− 1
n
logµ(x1..n)≤

α}). By assumption, H(Aα)≤α/log|X|, so that from (2.38) for all x1,x2,···∈
Aα we obtain

lim inf
n→∞

− 1

n
logρA(x1..n)≤α. (2.39)

Furthermore, define ρ:=
∑

q∈QwqρAq , whereQ=[0,1]∩Q is the set of rationals

in [0,1] and (wq)q∈Q is any sequence of positive reals satisfying
∑

q∈Qwq=1.

For every α∈ [0,1] let qk∈Q, k∈N be such a sequence that 0≤qk−α≤1/k.

Then, for every n∈N and every x1,x2,···∈Aqk we have

− 1

n
logρ(x1..n)≤− 1

n
logρq(x1..n)−

logwqk

n
.

From this and (2.39) we get

lim inf
n→∞

− 1

n
logρ(x1..n)≤ lim inf

n→∞
ρqk(x1..n)+1/k≤qk+1/k.

Since this holds for every k∈N, it follows that for all x1,x2,···∈∩k∈NAqk=Aα

we have

lim inf
n→∞

− 1

n
logρ(x1..n)≤ inf

k∈N
(qk+1/k)=α,

which completes the proof of the implication (ii)⇒(i).
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2.6 Longer proofs

2.6.1 Proof of Theorem 2.7

The proof is broken into the same steps as the (simpler) proof of Theo-

rem 2.6, to make the analogy explicit and the proof more understandable.

Proof. Define the weights wk :=wk
−2, where w is the normalizer 6/π2.

Step 1: densities. Define the sets

T n
µ :=

{
x1..n∈Xn :µ(x1..n)≥

1

n
ρ(x1..n)

}
. (2.40)

Using Markov’s inequality, we derive

µ(Xn\T n
µ )=µ

(
ρ(x1..n)

µ(x1..n)
>n

)
≤ 1

n
Eµ

ρ(x1..n)

µ(x1..n)
=

1

n
, (2.41)

so that µ(T n
µ )→1. (Note that if µ is singular with respect to ρ, as is typically

the case, then ρ(x1..n)
µ(x1..n)

converges to 0 µ-a.e. and one can replace 1
n

in (2.40)

by 1, while still having µ(T n
µ )→1.)

Step 2n: a countable cover, time n. Fix an n ∈ N. Define mn
1 :=

maxµ∈Cρ(T
n
µ ) (since Xn are finite all suprema are reached). Find any µn

1 such

that ρn1 (T
n
µn
1
)=mn

1 and let T n
1 :=T

n
µn
1
. For k>1, let mn

k :=maxµ∈Cρ(T
n
µ \T n

k−1).

If mn
k > 0, let µn

k be any µ∈ C such that ρ(T n
µn
k
\T n

k−1) =mn
k , and let T n

k :=

T n
k−1∪T n

µn
k
; otherwise let T n

k :=T
n
k−1. Observe that (for each n) there is only a

finite number of positive mn
k , since the set Xn is finite; let Kn be the largest

index k such that mn
k>0. Let

νn :=
Kn∑

k=1

wkµ
n
k . (2.42)

As a result of this construction, for every n ∈ N every k ≤Kn and every
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x1..n∈T n
k using (2.40) we obtain

νn(x1..n)≥wk
1

n
ρ(x1..n). (2.43)

Step 2: the resulting predictor. Finally, define

ν :=
1

2
γ+

1

2

∑

n∈N
wnνn, (2.44)

where γ is the i.i.d. measure with equal probabilities of all x∈X (that is,

γ(x1..n)= |X|−n for every n∈N and every x1..n∈Xn). We will show that ν

predicts every µ∈C, and then in the end of the proof (Step r) we will show

how to replace γ by a combination of a countable set of elements of C (in

fact, γ is just a regularizer which ensures that ν-probability of any word is

never too close to 0).

Step 3: ν predicts every µ ∈ C. Fix any µ ∈ C. Introduce the param-

eters εnµ ∈ (0,1), n ∈ N, to be defined later, and let jnµ := 1/εnµ. Observe

that ρ(T n
k \T n

k−1) ≥ ρ(T n
k+1\T n

k ), for any k > 1 and any n ∈ N, by defini-

tion of these sets. Since the sets T n
k \T n

k−1, k ∈ N are disjoint, we obtain

ρ(T n
k \T n

k−1)≤ 1/k. Hence, ρ(T n
µ \T n

j )≤ εnµ for some j ≤ jnµ , since otherwise

mn
j = maxµ∈Cρ(T

n
µ \T n

jnµ
) > εnµ so that ρ(T n

jnµ+1\T n
jnµ
) > εnµ = 1/jnµ , which is a

contradiction. Thus,

ρ(T n
µ \T n

jnµ
)≤εnµ. (2.45)
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We can upper-bound µ(T n
µ \T n

jnµ
) as follows. First, observe that

dn(µ,ρ)=−
∑

x1..n∈Tn
µ ∩Tn

jnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)

−
∑

x1..n∈Tn
µ \Tn

jnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)

−
∑

x1..n∈Xn\Tn
µ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)

=I+II+III. (2.46)

Then, from (2.40) we get

I≥−logn. (2.47)

Observe that for every n∈N and every set A⊂Xn, using Jensen’s inequality

we can obtain

−
∑

x1..n∈A
µ(x1..n)log

ρ(x1..n)

µ(x1..n)
=−µ(A)

∑

x1..n∈A

1

µ(A)
µ(x1..n)log

ρ(x1..n)

µ(x1..n)

≥−µ(A)log ρ(A)
µ(A)

≥−µ(A)logρ(A)− 1

2
. (2.48)

Thus, from (2.48) and (2.45) we get

II≥−µ(T n
µ \T n

jnµ
)logρ(T n

µ \T n
jnµ
)−1/2≥−µ(T n

µ \T n
jnµ
)logεnµ−1/2. (2.49)

Furthermore,

III≥
∑

x1..n∈Xn\Tn
µ

µ(x1..n)logµ(x1..n)≥µ(Xn\T n
µ )log

µ(Xn\T n
µ )

|Xn\T n
µ |

≥−1

2
−µ(Xn\T n

µ )nlog|X|≥−1

2
−log|X|, (2.50)

71



where in the second inequality we have used the fact that entropy is maxi-

mized when all events are equiprobable, in the third one we used |Xn\T n
µ |≤

|X|n, while the last inequality follows from (2.41). Combining (2.46) with

the bounds (2.47), (2.49) and (2.50) we obtain

dn(µ,ρ)≥−logn−µ(T n
µ \T n

jnµ
)logεnµ−1−log|X|,

so that

µ(T n
µ \T n

jnµ
)≤ 1

−logεnµ

(
dn(µ,ρ)+logn+1+log|X|

)
. (2.51)

Since dn(µ,ρ) = o(n), we can define the parameters εnµ in such a way that

−logεnµ=o(n) while at the same time the bound (2.51) gives µ(T n
µ \T n

jnµ
)=o(1).

Fix such a choice of εnµ. Then, using µ(T n
µ )→1, we can conclude

µ(Xn\T n
jnµ
)≤µ(Xn\T n

µ )+µ(T
n
µ \T n

jnµ
)=o(1). (2.52)

We proceed with the proof of dn(µ,ν)=o(n). For any x1..n∈T n
jnµ

we have

ν(x1..n)≥
1

2
wnνn(x1..n)≥

1

2
wnwjnµ

1

n
ρ(x1..n)=

wnw

2n
(εnµ)

2ρ(x1..n), (2.53)

where the first inequality follows from (2.44), the second from (2.43), and

in the equality we have used wjnµ =w/(j
n
µ)

2 and jnµ =1/εµn. Next we use the

decomposition

dn(µ,ν)=−
∑

x1..n∈Tn
jnµ

µ(x1..n)log
ν(x1..n)

µ(x1..n)
−

∑

x1..n∈Xn\Tn
jnµ

µ(x1..n)log
ν(x1..n)

µ(x1..n)
=I+II.

(2.54)
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From (2.53) we find

I≤−log
(wnw

2n
(εnµ)

2
)
−

∑

x1..n∈Tn
jnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)

=(1+3logn−2logεnµ−2logw)+


dn(µ,ρ)+

∑

x1..n∈Xn\Tn
jnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)




≤o(n)−
∑

x1..n∈Xn\Tn
jnµ

µ(x1..n)logµ(x1..n)

≤o(n)+µ(Xn\T n
jnµ
)nlog|X|=o(n), (2.55)

where in the second inequality we have used −logεnµ = o(n) and dn(µ,ρ) =

o(n), in the last inequality we have again used the fact that the entropy is

maximized when all events are equiprobable, while the last equality follows

from (2.52). Moreover, from (2.44) we find

II≤ log2−
∑

x1..n∈Xn\Tn
jnµ

µ(x1..n)log
γ(x1..n)

µ(x1..n)
≤1+nµ(Xn\T n

jnµ
)log|X|=o(n),

(2.56)

where in the last inequality we have used γ(x1..n)= |X|−n and µ(x1..n)≤ 1,

and the last equality follows from (2.52).

From (2.54), (2.55) and (2.56) we conclude 1
n
dn(ν,µ)→0.

Step r: the regularizer γ. It remains to show that the i.i.d. regularizer γ

in the definition of ν (2.44), can be replaced by a convex combination of a

countably many elements from C. Indeed, for each n∈N, denote

An :={x1..n∈Xn :∃µ∈C µ(x1..n) 6=0},

and let for each x1..n ∈Xn the measure µx1..n be any measure from C such
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that µx1..n(x1..n)≥ 1
2
supµ∈Cµ(x1..n). Define

γ′n(x
′
1..n) :=

1

|An|
∑

x1..n∈An

µx1..n(x
′
1..n),

for each x′1..n∈An, n∈N, and let γ′ :=
∑

k∈Nwkγ
′
k. For every µ∈C we have

γ′(x1..n)≥wn|An|−1µx1..n(x1..n)≥
1

2
wn|X|−nµ(x1..n)

for every n∈N and every x1..n ∈An, which clearly suffices to establish the

bound II=o(n) as in (2.56).

2.6.2 Proof of Theorem 2.22

Proof. Again the second statement (about absolute distance) follows from

the first one and Lemma 2.18, so that we only have to prove the statement

about KL divergence.

Introduce the symbol En for µ-expectation over xn conditional on x<n.

Consider random variables ln=logµ(xn|x<n)
ρ(xn|x<n)

and l̄n=
1
n

∑n
t=1lt. Observe that

δn = Enln, so that the random variables mn = ln−δn form a martingale

difference sequence (that is, Enmn=0) with respect to the standard filtration

defined by x1,...,xn,... . Let also m̄n=
1
n

∑n
t=1mt. We will show that m̄n→0

µ-a.s. and l̄n→0 µ-a.s. which implies d̄n→0 µ-a.s.

Note that

l̄n =
1

n
log

µ(x1..n)

ρ(x1..n)
≤ log c−1

n

n
→ 0.

Thus to show that l̄n goes to 0 we need to bound it from below. It is easy

to see that nl̄n is (µ-a.s.) bounded from below by a constant, since ρ(x1..n)
µ(x1..n)

is a positive µ-martingale whose expectation is 1, and so it converges to a

finite limit µ-a.s. by Doob’s submartingale convergence theorem, see e.g. [84,

p.508].
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Next we will show that m̄n→0 µ-a.s. We have

mn = log
µ(x1..n)

ρ(x1..n)
− log

µ(x<n)

ρ(x<n)
− En log

µ(x1..n)

ρ(x1..n)
+ En log

µ(x<n)

ρ(x<n)

= log
µ(x1..n)

ρ(x1..n)
− En log

µ(x1..n)

ρ(x1..n)
.

Let f(n) be some function monotonically increasing to infinity such that

∞∑

n=1

(log c−1
n + f(n))2

n2
< ∞ (2.57)

(e.g. choose f(n) = logn and exploit (logc−1
n +f(n))2 ≤ 2(logc−1

n )2+2f(n)2

and (2.31).) For a sequence of random variables λn define

(λn)
+(f) =

{
λn if λn ≥ −f(n)
0 otherwise

and λ−(f)
n =λn−λ+(f)

n . Introduce also

m+
n =

(
log

µ(x1..n)

ρ(x1..n)

)+(f)

− En

(
log

µ(x1..n)

ρ(x1..n)

)+(f)

,

m−
n =mn−m+

n and the averages m̄+
n and m̄−

n . Observe that m+
n is a martin-

gale difference sequence. Hence to establish the convergence m̄+
n →0 we can

use the martingale strong law of large numbers [84, p.501], which states that,

for a martingale difference sequence γn, if E(nγ̄n)2<∞ and
∑∞

n=1Eγ
2
n/n

2<∞
then γ̄n→0 a.s. Indeed, for m+

n the first condition is trivially satisfied (since

the expectation in question is a finite sum of finite numbers), and the second

follows from the fact that |m+
n |≤ logc−1

n +f(n) and (2.57).

Furthermore, we have

m−
n =

(
log

µ(x1..n)

ρ(x1..n)

)−(f)

− En

(
log

µ(x1..n)

ρ(x1..n)

)−(f)

.
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As it was mentioned before, logµ(x1..n)
ρ(x1..n)

converges µ-a.s. either to (positive)

infinity or to a finite number. Hence
(
logµ(x1..n)

ρ(x1..n)

)−(f)

is non-zero only a finite

number of times, and so its average goes to zero. To see that

En

(
log

µ(x1..n)

ρ(x1..n)

)−(f)

→0

we write

En

(
log

µ(x1..n)

ρ(x1..n)

)−(f)

=
∑

xn∈X
µ(xn|x<n)

(
log

µ(x<n)

ρ(x<n)
+ log

µ(xn|x<n)

ρ(xn|x<n)

)−(f)

≥
∑

xn∈X
µ(xn|x<n)

(
log

µ(x<n)

ρ(x<n)
+ log µ(xn|x<n)

)−(f)

and note that the first term in brackets is bounded from below, and so for

the sum in brackets to be less than −f(n) (which is unbounded) the second

term log µ(xn|x<n) has to go to −∞, but then the expectation goes to zero

since limu→0ulogu=0.

Thus we conclude that m̄−
n → 0 µ-a.s., which together with m̄+

n → 0 µ-

a.s. implies m̄n→0 µ-a.s., which, finally, together with l̄n→0 µ-a.s. implies

d̄n→0 µ-a.s.

2.6.3 Proof of Theorem 2.35

Proof. This proof follows the same step as the proof of Theorem 2.7 (pre-

sented in Section 2.6.1) but is a bit more involved.

Define the sets Cµ as the set of all measures τ ∈P such that µ predicts τ

in expected average KL divergence. Let C+ :=∪µ∈CCµ. For each τ ∈C+ let

p(τ) be any (fixed) µ∈C such that τ ∈Cµ. In other words, C+ is the set of

all measures that are predicted by some of the measures in C, and for each

measure τ in C+ we designate one “parent” measure p(τ) from C such that

p(τ) predicts τ .
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Define the weights wk :=1/k(k+1), for all k∈N.

Step 1. For each µ∈C+ let δn be any monotonically increasing function such

that δn(µ)=o(n) and dn(µ,p(µ))=o(δn(µ)). Define the sets

Un
µ :=

{
x1..n∈Xn :µ(x1..n)≥

1

n
ρ(x1..n)

}
, (2.58)

V n
µ :=

{
x1..n∈Xn :p(µ)(x1..n)≥2−δn(µ)µ(x1..n)

}
, (2.59)

and

T n
µ :=Un

µ ∩V n
µ . (2.60)

We will upper-bound µ(T n
µ ). First, using Markov’s inequality, we derive

µ(Xn\Un
µ )=µ

(
ρ(x1..n)

µ(x1..n)
>n

)
≤ 1

n
Eµ

ρ(x1..n)

µ(x1..n)
=

1

n
. (2.61)

Next, observe that for every n ∈ N and every set A⊂Xn, using Jensen’s

inequality we can obtain

−
∑

x1..n∈A
µ(x1..n)log

ρ(x1..n)

µ(x1..n)
=−µ(A)

∑

x1..n∈A

1

µ(A)
µ(x1..n)log

ρ(x1..n)

µ(x1..n)

≥−µ(A)log ρ(A)
µ(A)

≥−µ(A)logρ(A)− 1

2
. (2.62)

Moreover,

dn(µ,p(µ))=−
∑

x1..n∈Xn\V n
µ

µ(x1..n)log
p(µ)(x1..n)

µ(x1..n)

−
∑

x1..n∈V n
µ

µ(x1..n)log
p(µ)(x1..n)

µ(x1..n)
≥δn(µn)µ(X

n\V n
µ )−1/2,

where in the inequality we have used (2.59) for the first summand and (2.62)
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for the second. Thus,

µ(Xn\V n
µ )≤

dn(µ,p(µ))+1/2

δn(µ)
=o(1). (2.63)

From (2.60), (2.61) and (2.63) we conclude

µ(Xn\T n
µ )≤µ(Xn\V n

µ )+µ(X
n\Un

µ )=o(1). (2.64)

Step 2n: a countable cover, time n. Fix an n ∈ N. Define mn
1 :=

maxµ∈Cρ(T
n
µ ) (since Xn are finite all suprema are reached). Find any µn

1 such

that ρn1 (T
n
µn
1
)=mn

1 and let T n
1 :=T

n
µn
1
. For k>1, let mn

k :=maxµ∈Cρ(T
n
µ \T n

k−1).

If mn
k > 0, let µn

k be any µ∈ C such that ρ(T n
µn
k
\T n

k−1) =mn
k , and let T n

k :=

T n
k−1∪T n

µn
k
; otherwise let T n

k :=T
n
k−1. Observe that (for each n) there is only a

finite number of positive mn
k , since the set Xn is finite; let Kn be the largest

index k such that mn
k>0. Let

νn :=
Kn∑

k=1

wkp(µ
n
k). (2.65)

As a result of this construction, for every n ∈ N every k ≤Kn and every

x1..n∈T n
k using the definitions (2.60), (2.58) and (2.59) we obtain

νn(x1..n)≥wk
1

n
2−δn(µ)ρ(x1..n). (2.66)

Step 2: the resulting predictor. Finally, define

ν :=
1

2
γ+

1

2

∑

n∈N
wnνn, (2.67)

where γ is the i.i.d. measure with equal probabilities of all x∈X (that is,

γ(x1..n)= |X|−n for every n∈N and every x1..n∈Xn). We will show that ν

predicts every µ∈C+, and then in the end of the proof (Step r) we will show

how to replace γ by a combination of a countable set of elements of C (in
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fact, γ is just a regularizer which ensures that ν-probability of any word is

never too close to 0).

Step 3: ν predicts every µ ∈ C+. Fix any µ ∈ C+. Introduce the pa-

rameters εnµ ∈ (0,1), n∈N, to be defined later, and let jnµ := 1/εnµ. Observe

that ρ(T n
k \T n

k−1) ≥ ρ(T n
k+1\T n

k ), for any k > 1 and any n ∈ N, by defini-

tion of these sets. Since the sets T n
k \T n

k−1, k ∈ N are disjoint, we obtain

ρ(T n
k \T n

k−1)≤ 1/k. Hence, ρ(T n
µ \T n

j )≤ εnµ for some j ≤ jnµ , since otherwise

mn
j = maxµ∈Cρ(T

n
µ \T n

jnµ
) > εnµ so that ρ(T n

jnµ+1\T n
jnµ
) > εnµ = 1/jnµ , which is a

contradiction. Thus,

ρ(T n
µ \T n

jnµ
)≤εnµ. (2.68)

We can upper-bound µ(T n
µ \T n

jnµ
) as follows. First, observe that

dn(µ,ρ)=−
∑

x1..n∈Tn
µ ∩Tn

jnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)

−
∑

x1..n∈Tn
µ \Tn

jnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)

−
∑

x1..n∈Xn\Tn
µ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)

=I+II+III. (2.69)

Then, from (2.60) and (2.58) we get

I≥−logn. (2.70)

From (2.62) and (2.68) we get

II≥−µ(T n
µ \T n

jnµ
)logρ(T n

µ \T n
jnµ
)−1/2≥−µ(T n

µ \T n
jnµ
)logεnµ−1/2. (2.71)
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Furthermore,

III≥
∑

x1..n∈Xn\Tn
µ

µ(x1..n)logµ(x1..n)

≥µ(Xn\T n
µ )log

µ(Xn\T n
µ )

|Xn\T n
µ |

≥−1

2
−µ(Xn\T n

µ )nlog|X|, (2.72)

where the first inequality is obvious, in the second inequality we have used

the fact that entropy is maximized when all events are equiprobable and in

the third one we used |Xn\T n
µ | ≤ |X|n. Combining (2.69) with the bounds

(2.70), (2.71) and (2.72) we obtain

dn(µ,ρ)≥−logn−µ(T n
µ \T n

jnµ
)logεnµ−1−µ(Xn\T n

µ )nlog|X|,

so that

µ(T n
µ \T n

jnµ
)≤ 1

−logεnµ

(
dn(µ,ρ)+logn+1+µ(Xn\T n

µ )nlog|X|
)
. (2.73)

From the fact that dn(µ,ρ) = o(n) and (2.64) it follows that the term in

brackets is o(n), so that we can define the parameters εnµ in such a way that

−logεnµ=o(n) while at the same time the bound (2.73) gives µ(T n
µ \T n

jnµ
)=o(1).

Fix such a choice of εnµ. Then, using (2.64), we conclude

µ(Xn\T n
jnµ
)≤µ(Xn\T n

µ )+µ(T
n
µ \T n

jnµ
)=o(1). (2.74)

We proceed with the proof of dn(µ,ν)=o(n). For any x1..n∈T n
jnµ

we have

ν(x1..n)≥
1

2
wnνn(x1..n)≥

1

2
wnwjnµ

1

n
2−δn(µ)ρ(x1..n)≥

wn

4n
(εnµ)

22−δn(µ)ρ(x1..n),

(2.75)

where the first inequality follows from (2.67), the second from (2.66), and in

the third we have used wjnµ =1/(jnµ)(j
n
µ+1) and jnµ =1/εµn. Next we use the
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decomposition

dn(µ,ν)=−
∑

x1..n∈Tn
jnµ

µ(x1..n)log
ν(x1..n)

µ(x1..n)
−

∑

x1..n∈Xn\Tn
jnµ

µ(x1..n)log
ν(x1..n)

µ(x1..n)
=I+II.

(2.76)

From (2.75) we find

I≤−log
(wn

4n
(εnµ)

22−δn(µ)
)
−

∑

x1..n∈Tn
jnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)

=(o(n)−2logεnµ+δn(µ))+


dn(µ,ρ)+

∑

x1..n∈Xn\Tn
jnµ

µ(x1..n)log
ρ(x1..n)

µ(x1..n)




≤o(n)−
∑

x1..n∈Xn\Tn
jnµ

µ(x1..n)logµ(x1..n)

≤o(n)+µ(Xn\T n
jnµ
)nlog|X|=o(n), (2.77)

where in the second inequality we have used −logεnµ= o(n), dn(µ,ρ)= o(n)

and δn(µ) = o(n), in the last inequality we have again used the fact that

the entropy is maximized when all events are equiprobable, while the last

equality follows from (2.74). Moreover, from (2.67) we find

II≤ log2−
∑

x1..n∈Xn\Tn
jnµ

µ(x1..n)log
γ(x1..n)

µ(x1..n)
≤1+nµ(Xn\T n

jnµ
)log|X|=o(n),

(2.78)

where in the last inequality we have used γ(x1..n)= |X|−n and µ(x1..n)≤ 1,

and the last equality follows from (2.74).

From (2.76), (2.77) and (2.78) we conclude 1
n
dn(ν,µ)→0.

Step r: the regularizer γ. It remains to show that the i.i.d. regularizer

γ in the definition of ν (2.67), can be replaced by a convex combination

of a countably many elements from C. This can be done exactly as in the

corresponding step (Step r) of the proof of Theorem 2.7 (Section 2.6.1).

81



Chapter 3

Statistical analysis of stationary

ergodic time series [R2, R4, R5, R11]

Numerous statistical inference problems can be formulated in the following

way: given a sample x1,...,xn (where the variables xi are possibly multi-

dimensional) we need to decide whether the (unknown) distribution that

generated this sample belongs to a family of distributions H0 versus it be-

longs to a family H1. This formulation encompasses a broad range of prob-

lems, that can roughly be grouped into two categories: model verification

and property testing. Model verification problems include goodness-of-fit

testing (the case when H0 consists of just one element H0={ρ0}), and test-

ing membership to various parametric families, e.g., to the set of all Markov

processes. Property testing problems include testing for homogeneity, com-

ponent independence, and many others.

Most of the research on these and related problems, even in non-parametric

settings, is traditionally concentrated on studying independent and identi-

cally distributed variables xi. Unlike on sequence prediction, the research

on hypothesis testing for general stationary ergodic processes is very scarce,

and for many problems it has still remained unclear whether they can be

solved in this setting. This is why in this chapter we concentrate on station-
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ary ergodic time series, and do not venture beyond this model. Restricting

our considerations to the set of stationary ergodic processes allows us to

benefit from the structure imposed on it by the distributional distance: the

space of all stationary process is separable with respect to it, and possesses

numerous other useful properties.

The presented contribution is as follows. A new methodology for con-

structing statistical inference procedures is proposed, which is based on es-

timating the distributional distance. The developed method is used to con-

struct consistent algorithms for such problems as time series classification,

change point estimation and time series clustering, for real-valued data, un-

der the only assumption that the sequences under study are generated by

stationary ergodic distribution. Using this method, for discrete-valued data,

a complete characterization (necessary and sufficient conditions) of those

hypotheses H0 ⊂ E for which there exist a consistent test against E\H0 is

proposed. Some generalizations of this results (e.g., to arbitrary families

H0,H1⊂E) are also considered.

In addition, it is shown that there is no consistent test for homogeneity

if the only assumption on the data is that it is stationary ergodic, and even

if one makes a slightly stronger assumption that the distributions are B-

processes. This result (for stationary ergodic data) has been claimed in

[69]; however, what is really proven in that work is only that there is no

consistent estimate of a certain process distance (d̄-distance) for stationary

ergodic processes; thus, the statement about homogeneity testing was only a

conjecture. A proof of a stronger version (for B-processes) of this conjecture

is presented in this chapter.

The rest of this chapter is organized as follows. Section 3.1 introduces

additional definitions and results that we need, including the definition of

distributional distance. Section 3.2 presents the proposed approach to sta-

tistical inference, which is based on empirical estimates of the distributional

distance. This approach is used to obtain consistent goodness-of-fit tests,

as well as change point estimates and a method for time series classifica-
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tion. All these algorithms are very simple and serve as an illustration of

the proposed approach; at the same time, these results are considerably

more general than those available before. Section 3.3 presents the criterion

for the existence of a consistent test for H0 ⊂ E against E\H0, and some

generalizations. Section 3.4 further extends the results of Section 3.2 to

obtain a consistent algorithm for time-series clustering. The computational

complexity of the proposed algorithm is also analyzed. Finally, Section 3.5

shows that there is no asymptotically consistent test for homogeneity for

B-processes (and hence for stationary ergodic processes).

3.1 Preliminaries

We are considering (stationary ergodic) processes with the alphabet A=R.

The generalization to A=Rd is straightforward; moreover, the results can

be extended to the case when A is a complete separable metric space. For

each k∈N, let Bk be the set of all cylinders of the form A1×···×Ak where

Ai ⊂A are intervals with rational endpoints. Let B= ∪∞
k=1B

k; since this

set is countable we can introduce an enumeration B={Bi : i∈N}. The set

{Bi×A∞ :i∈N} generates the Borel σ-algebra on R∞=A∞. For a set B∈B

let |B| be the index k of the set Bk that B comes from: |B|=k :B∈Bk.

For a sequence X ∈An and a set B ∈B denote ν(X,B) the frequency

with which the sequence X falls in the set B

ν(X,B) :=

{
1

n−|B|+1

∑n−|B|+1
i=1 I{(Xi,...,Xi+|B|−1)∈B} if n≥|B|,

0 otherwise
(3.1)

where X=(X1,...,Xn). For example,

ν
(
(0.5,1.5,1.2,1.4,2.1),([1.0,2.0]×[1.0,2.0])

)
=1/2.

As before, we use the symbol S for the set of all stationary processes on

A∞. A stationary process ρ is called (stationary) ergodic if the frequency of
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occurrence of each word B in a sequence X1,X2,... generated by ρ tends to

its a priori (or limiting) probability a.s.: ρ(limn→∞ν(X1..n,B) = ρ(X1..|B| =

B)) = 1. By virtue of the ergodic theorem (e.g. [10]), this definition can

be shown to be equivalent to the standard definition of stationary ergodic

processes (every shift-invariant set has measure 0 or 1; see e.g. [21]). Denote

E the set of all stationary ergodic processes.

Definition 3.1 (distributional distance). The distributional distance is de-

fined for a pair of processes ρ1,ρ2 as follows [36]:

d(ρ1,ρ2)=
∞∑

i=1

wi|ρ1(Bi)−ρ2(Bi)|, (3.2)

where wi are summable positive real weights (e.g., wk=2−k).

It is easy to see that d is a metric. Equipped with this metric, the

space of all stochastic processes is separable and complete; moreover, it is

a compact. The set of stationary processes S is convex closed subset of

the space of all stochastic processes (hence a compact too). The set of all

finite-memory stationary distributions is dense in S. (Taking only those that

have rational transition probabilities we obtain a countable dense subset of

S.) The set E is not convex (a mixture of stationary ergodic distributions is

always stationary but never ergodic) and is not closed (its closure is S). We

refer to [36] for more details and proofs of these facts.

When talking about closed and open subsets of S we assume the topology

of d.

Definition 3.2 (empirical distributional distance). For X,Y ∈ A∗, define

empirical distributional distance d̂(X,Y ) as

d̂(X,Y ) :=
∞∑

i=1

wi|ν(X,Bi)−ν(Y,Bi)|. (3.3)

Similarly, we can define the empirical distance when only one of the process
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measures is unknown:

d̂(X,ρ) :=
∞∑

i=1

wi|ν(X,Bi)−ρ(Bi)|, (3.4)

where ρ∈E and X∈A∗.

The following lemma will play a key role in establishing the main results.

Lemma 3.3. Let two samples X=(X1,...,Xk) and Y =(Y1,...,Ym) be gener-

ated by stationary ergodic processes ρX and ρY respectively. Then

(i) limk,m→∞d̂(X,Y )=d(ρX ,ρY ) a.s.

(ii) limk→∞d̂(X,ρY )=d(ρX ,ρY ) a.s.

Proof. For any ε>0 we can find such an index J that
∑∞

i=Jwi<ε/2. More-

over, for each j we have ν((X1,...,Xk),Bj)→ρX(Bj) a.s., so that

|ν((X1,...,Xk),Bj)−ρ(Bj)|<ε/(4Jwj)

from some step k on; define Kj :=k. Let K :=maxj<JKj (K depends on the

realization X1,X2,... ). Define analogously M for the sequence (Y1,...,Ym,... ).

Thus for k>K and m>M we have

|d̂(X,Y )−d(ρX ,ρY )|=∣∣∣∣∣

∞∑

i=1

wi

(
|ν(X,Bi)−ν(Y,Bi)|−|ρX(Bi)−ρY (Bi)|

)
∣∣∣∣∣

≤
∞∑

i=1

wi

(
|ν(X,Bi)−ρX(Bi)|+|ν(Y,Bi)−ρY (Bi)|

)

≤
J∑

i=1

wi

(
|ν(X,Bi)−ρX(Bi)|+|ν(Y,Bi)−ρY (Bi)|

)
+ε/2

≤
J∑

i=1

wi(ε/(4Jwi)+ε/(4Jwi))+ε/2=ε,
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which proves the first statement. The second statement can be proven anal-

ogously.

Considering the Borel (with respect to the metric d) sigma-algebra FS on

the set S, we obtain a standard probability space (S,FS). An important tool

that will be used in the analysis is ergodic decomposition of stationary

processes (see e.g. [36, 10]): any stationary process can be expressed as a

mixture of stationary ergodic processes. More formally, for any ρ∈S there

is a measure Wρ on (S,FS), such that

Wρ(E)=1, (3.5)

and ρ(B)=
∫
dWρ(µ)µ(B), for any B∈FA∞ .

3.2 Statistical analysis based on estimates of

distributional distance [R4]

In this section we present our approach to the problem of statistical analysis

of time series, when nothing is known about the underlying process generat-

ing the data, except that it is stationary ergodic. There is a vast literature on

time series analysis under various parametric assumptions, and also under

such non-parametric assumptions as that the processes is finite-memory or

has certain mixing rates. While under these settings most of the problems of

statistical analysis are clearly solvable and efficient algorithms exist, in the

general setting of stationary ergodic processes it is far less clear what can be

done in principle, which problems of statistical analysis admit a solution and

which do not. In this chapter we propose a method of statistical analysis

of time series, that allows us to demonstrate that some classical statisti-

cal problems indeed admit a solution under the only assumption that the

data is stationary ergodic, whereas before solutions only for more restricted

cases were known. The solutions are always constructive, that is, we present
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asymptotically accurate algorithms for each of the considered problems. All

the algorithms are based on empirical estimates of distributional distance,

which is in the core of the suggested approach. We suggest that the pro-

posed approach can be applied to other problems of statistical analysis of

time series, with the view of establishing principled positive results, leaving

the task of finding optimal algorithms for each particular problem as a topic

for further research.

Here we concentrate on the following three conceptually simple problems:

goodness-of-fit (or identity) testing, process classification, and the change

point problem. A somewhat more technical problem of time-series clustering

will be considered in Section 3.4.

Identity testing. The first problem is the following problem of hypothesis

testing. A stationary ergodic process distribution ρ is known theoretically.

Given a data sample, it is required to test whether it was generated by ρ,

versus it was generated by any other stationary ergodic distribution that

is different from ρ (goodness-of-fit, or identity testing). The case of i.i.d.

or finite-memory processes was widely studied (see e.g. [21]); in particular,

when ρ has a finite memory [81] proposes a test against any stationary er-

godic alternative: a test that can be based on an arbitrary universal code. It

was noted in [83] that an asymptotically accurate test for the case of station-

ary ergodic processes over finite alphabet exists (but no test was proposed).

Here we propose a concrete and simple asymptotically accurate goodness-

of-fit test, which demonstrates the proposed approach: to use empirical

distributional distance for hypotheses testing. By asymptotically accurate

test we mean the following. First, the Type I error of the test (or its size)

is fixed and is given as a parameter to the test. That is, given any α> 0

as an input, under H0 (that is, if the data sample was indeed generated by

ρ) the probability that the test says “H1” is not greater than α. Second,

under any hypothesis in H1 (that is, if the distribution generating the data

is different from ρ), the test will say “H0” not more than a finite number

of times, with probability 1. In other words, the Type I error of the test is
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fixed and the Type II error can be made not more than a finite number of

times, as the data sample increases, with probability 1 under any stationary

ergodic alternative.

Process classification. In the next problem that we consider, we again

have to decide whether a data sample was generated by a process satisfying

a hypothesis H0 or a hypothesis H1. However, here H0 and H1 are not

known theoretically, but are represented by two additional data samples.

More precisely, the probelm is that of process classification, which can be

formulated as follows. We are given three samples X = (X1,...,Xk), Y =

(Y1,...,Ym) and Z=(Z1,...,Zn) generated by stationary ergodic processes with

distributions ρX , ρY and ρZ . It is known that ρX 6=ρY but either ρZ=ρX or

ρZ=ρY . It is required to test which one is the case. That is, we have to decide

whether the sample Z was generated by the same process as the sample X or

by the same process as the sample Y . This problem for the case of dependent

time series was considered for example in [37], where a solution is presented

under the finite-memory assumption. It is closely related to many important

problems in statistics and application areas, such as pattern recognition.

Apparently, no asymptotically accurate procedure for process classification

has been known so far for the general case of stationary ergodic processes.

Here we propose a test that converges almost surely to the correct answer. In

other words, the test makes only a finite number of errors with probability 1,

with respect to any stationary ergodic processes generating the data. Unlike

in the previous problem, here we do not explicitly distinguish between Type

I and Type II error, since the hypotheses are by nature symmetric: H0 is

“ρZ=ρX” and H1 is “ρZ=ρY ”.

Change point estimation. Finally, we consider the change point prob-

lem. It is another classical problem, with vast literature on both parametric

(see e.g. [7]) and non-parametric (see e.g. [15]) methods for solving it. In

this section we address the case where the data is dependent, its form and

the structure of dependence is unknown, and, importantly, marginal dis-

tributions before and after the change may be the same. We consider the
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following (off-line) setting of the problem: a (real-valued) sample Z1,...,Zn is

given, where Z1,...,Zk are generated according to some distribution ρX and

Zk+1,...,Zn are generated according to some distribution ρY which is differ-

ent from ρX . It is known that the distributions ρX and ρY are stationary

ergodic, but nothing else is known about them.

Most literature on change point problem for dependent time series as-

sumes that the marginal distributions before and after the change point

are different, and often also make explicit restrictions on the dependence,

such as requirements on mixing rates. Nonparametric methods used in

these cases are typically based on Kolmogorov-Smirnov statistic, Cramer-

von Mises statistic, or generalizations thereof [15, 16, 35]. The main differ-

ence with our results is that we do not assume that the single-dimensional

marginals (or finite-dimensional marginals of any given fixed size) are dif-

ferent, and do not make any assumptions on the structure of dependence.

The only assumption is that the (unknown) process distributions before and

after the change point are stationary ergodic.

Methodology. All the tests that we construct are based on empirical es-

timates of the so-called distributional distance. For two processes ρ1,ρ2 a

distributional distance is defined as
∑∞

k=1wk|ρ1(Bk)−ρ2(Bk)|, where wk are

positive summable real weights, e.g. wk=2−k and Bk range over a countable

field that generates the sigma-algebra of the underlying probability space.

For example, if we are talking about finite-alphabet processes with the bi-

nary alphabet A={0,1}, Bk would range over the set A∗=∪k∈NA
k; that is,

over all tuples 0,00,01,10,000,001,... ; therefore, the distributional distance

in this case is the weighted sum of differences of probabilities of all possible

tuples. In this section we consider real-valued processes, A=R, so Bk can

be taken to range over all intervals with rational endpoints, all pairs of such

intervals, triples, etc.

Although distributional distance is a natural concept that, for stochas-

tic processes, has been studied for a while [36], its empirical estimates have

not, to our knowledge, been used for statistical analysis of time series. We
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argue that this distance is rather natural for this kind of problems, first of

all, since it can be consistently estimated (unlike, for example, d̄ distance,

which cannot [69] be consistently estimated for the general case of stationary

ergodic processes). Secondly, it is always bounded, unlike (empirical) KL

divergence, which is often used for statistical inference for time series (e.g.

[21, 81, 2, 20] and others). Other approaches to statistical analysis of sta-

tionary dependent time series include the use of (universal) codes [50, 81, 80].

Here we first show that distributional distance between stationary ergodic

processes can be consistently estimated based on sampling, and then apply

it to construct a consistent test for the three problems of statistical analysis

described above.

Although empirical estimates of the distributional distance involve taking

an infinite sum, in practice it is obvious that only a finite number of sum-

mands has to be calculated. This is due to the fact that empirical estimates

have to be compared to each other or to theoretically known probabilities,

and since the (bounded) summands have (exponentially) decreasing weights,

the result of the comparison is known after only finitely many evaluations

(see a more formal discussion on this in Section 3.4 on time-series cluster-

ing). Therefore, the algorithms presented can be applied in practice. On the

other hand, the main value of the results is in the demonstration of what is

possible in principle; finding practically efficient procedures for each of the

considered problems is an interestring problem for further research.

3.2.1 Goodness-of-fit

For a given stationary ergodic process measure ρ and a sampleX=(X1,...,Xn)

we wish to test the hypothesis H0 that the sample was generated by ρ versus

H1 that it was generated by a stationary ergodic distribution that is different

from ρ. Thus, H0={ρ} and H1=E\H0.

Define the set Dn
δ as the set of all samples of length n that are at least
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δ-far from ρ in empirical distributional distance:

Dn
δ :={X∈An : d̂(X,ρ)≥δ}.

For each n and each given confidence level α define the critical region Cn
α of

the test as Cn
α :=D

n
γ where

γ :=inf{δ :ρ(Dn
δ )≤α}.

The test rejects H0 at confidence level α if (X1,...,Xn)∈Cn
α and accepts it

otherwise. In words, for each sequence we measure the distance between

the empirical probabilities (frequencies) and the measure ρ (that is, the

theoretical ρ-probabilities); we then take a largest ball (with respect to this

distance) around ρ that has ρ-probability not greater than 1−α. The test

rejects all sequences outside this ball.

Definition 3.4 (Goodness-of-fit test). For each n ∈ N and α ∈ (0,1) the

goodness-of-fit test Gα
n :A

n→{0,1} is defined as

Gα
n(X1,...,Xn) :=

{
1 if (X1,...,Xn)∈Cn

α ,

0 otherwise.

Theorem 3.5. The test Gα
n has the following properties.

(i) For every α∈ (0,1) and every n∈N the Type I error of the test is not

greater than α: ρ(Gα
n=1)≤α.

(ii) For every α∈(0,1) the Type II error goes to 0 almost surely: for every

ρ′ 6=ρ we have limn→∞G
α
n=1 with ρ′ probability 1.

Note that using an appropriate randomization in the definition of Cn
α we

can make the Type I error exactly α.

Proof. The first statement holds by construction. To prove the second state-

ment, let the sample X be generated by ρ′∈E, ρ′ 6=ρ, and define δ=d(ρ,ρ′)/2.
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By Lemma 3.3 we have ρ(Dn
δ )→0, so that ρ(Dn

δ )<α from some n on; de-

note it n1. Thus, for n > n1 we have Dn
δ ⊂ Cn

α . At the same time, by

Lemma 3.3 we have d̂(X,ρ)> δ from some n on, which we denote n2(X),

with ρ′-probability 1. So, for n >max{n1,n2(X)} we have X ∈Dn
δ ⊂ Cn

α ,

which proves the statement (ii).

3.2.2 Process classification

Let there be given three samples X = (X1,...,Xk), Y = (Y1,...,Ym) and Z =

(Z1,...,Zn). Each sample is generated by a stationary ergodic process ρX , ρY
and ρZ respectively. Moreover, it is known that either ρZ =ρX or ρZ =ρY ,

but ρX 6=ρY . We wish to construct a test that, based on the finite samples

X,Y and Z will tell whether ρZ=ρX or ρZ=ρY .

The test chooses the sample X or Y according to whichever is closer to

Z in d̂. That is, we define the test G(X,Y,Z) as follows. If d̂(X,Z)≤ d̂(Y,Z)
then the test says that the sample Z is generated by the same process as

the sample X, otherwise it says that the sample Z is generated by the same

process as the sample Y.

Definition 3.6 (Process classifier). Define the classifier L :A∗×A∗×A∗→
{1,2} as follows

L(X,Y,Z) :=

{
1 if d̂(X,Z)≤ d̂(Y,Z)
2 otherwise,

for X,Y,Z∈A∗.

Theorem 3.7. The test L(X,Y,Z) makes only a finite number of errors

when |X|,|Y | and |Z| go to infinity, with probability 1: if ρX=ρZ then

L(X,Y,Z)=1
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from some |X|,|Y |,|Z| on with probability 1; otherwise

L(X,Y,Z)=2

from some |X|,|Y |,|Z| on with probability 1.

Proof. From the fact that d is a metric and from Lemma 3.3 we conclude

that d̂(X,Z)→0 (with probability 1) if and only if ρX =ρZ . So, if ρX =ρZ

then by assumption ρY 6=ρZ and d̂(X,Z)→0 a.s. while

d̂(Y,Z)→d(ρY ,ρZ) 6=0.

Thus in this case d̂(Y,Z)> d̂(X,Z) from some |X|,|Y |,|Z| on with proba-

bility 1, from which moment we have L(X,Y,Z) = 1. The opposite case is

analogous.

3.2.3 Change point problem

The sample Z=(Z1,...,Zn) consists of two concatenated partsX=(X1,...,Xk)

and Y =(Y1,...,Ym), where m=n−k, so that Zi=Xi for 1≤i≤k and Zk+j=Yj

for 1≤ j≤m. The samples X and Y are generated independently by two

different stationary ergodic processes with alphabet A=R. The distributions

of the processes are unknown. The value k is called the change point. It is

assumed that k is linear in n; more precisely, αn<k<βn for some 0<α≤β<1

from some n on.

It is required to estimate the change point k based on the sample Z.

For each t, 1≤ t≤n, denote U t the sample (Z1,...,Zt) consisting of the

first t elements of the sample Z, and denote V t the remainder (Zt+1,...,Zn).

Definition 3.8 (Change point estimator). Define the change point estimate

k̂ :A∗→N as follows:

k̂(X1,...,Xn) :=argmaxt∈[αn,n−βn]d̂(U
t,V t).
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The following theorem establishes asymptotic consistency of this estima-

tor.

Theorem 3.9. For the estimate k̂ of the change point k we have

|k̂−k|=o(n) a.s.

where n is the size of the sample, and when k,n−k→∞ in such a way that

α< k
n
<β for some α,β∈(0,1) from some n on.

The proof is deferred to Section 3.6.1.

3.3 Characterizing families of stationary pro-

cesses for which consistent tests exist [R2]

Given a sample X1,...,Xn, where, for the sake of this section, Xi are from a

finite alphabet A, we wish to decide whether it was generated by a distri-

bution belonging to a family H0, versus it was generated by a distribution

belonging to a family H1. The only assumption we are willing to make about

the the distribution generating the sample is that it is stationary ergodic.

A test is a function that takes a sample and gives a binary (possibly

incorrect) answer: the sample was generated by a distribution from H0 or

from H1. An answer i∈{0,1} is correct if the sample is generated by a distri-

bution that belongs to Hi. Here we are concerned with characterizing those

pairs of H0 and H1 for which consistent tests exist. There are several ways of

formalizing what is a consistent test, from which we consider two. For these

two notions of consistency we find some necessary and some sufficient con-

ditions for the existence of a consistent test, expressed in topological terms.

For one notion of consistency (asymmetric testing) considered, the necessary

and sufficient conditions coincide when H1 is the complement of H0, thereby

providing a complete characterization of the hypotheses for which consistent

tests exist.
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Examples. Before introducing the definitions of consistency, let us give

some examples motivating the general problem in question. Most of these

examples are classical problems studied in mathematical statistics and re-

lated fields, mostly for i.i.d. data, with much literature devoted to each of

them. (An incomplete survey of related work for non-i.i.d. data is given fur-

ther in this section.) The most basic case of the hypothesis testing problem

is testing a simple hypothesisH0={ρ0} versus a simple hypothesisH1={ρ1},
where ρ0 and ρ1 are two stationary ergodic process distributions (which are

assumed completely known theoretically). A more complex but more real-

istic problem is when only one of the hypothesis is simple, H0 = {ρ0} but

the alternative is general, for example H1 is the set of all stationary ergodic

processes that are different from ρ0. This is the goodness-of-fit problem that

we have considered in Section 3.2. One may also consider variants in which

the alternative is the set of all stationary ergodic processes that differ from

ρ0 by at least ε in some distance. The described hypotheses are variants of

the so-called goodness-of-fit, or identity testing problem. Another class of

hypothesis testing problems is presented by the problem of model verifica-

tion. Suppose we have some relatively simple (possibly parametric) set of

assumptions, and we wish to test whether the process generating the given

sample satisfies this assumptions. As an example, H0 can be the set of all

k-order Markov processes (fixed k ∈N) and H1 is the set of all stationary

ergodic processes that do not belong to H0; one may also wish to consider

more restrictive alternatives, for example H1 is the set of all k′-order Markov

processes where k′>k. Of course, instead of Markov processes one can con-

sider other models, e.g. Hidden Markov processes. A similar problem is

that of testing that the process has entropy less than some given ε versus

its entropy exceeds ε, or versus its entropy is greater than ε+δ for some

positive δ.

Yet another type of hypothesis testing problems concerns property test-

ing. Suppose we are given two samples, generated independently of each

other by stationary ergodic distributions, and we wish to test the hypoth-

96



esis that they are independent versus they are not independent. Or, that

they are generated by the same process versus they are generated by different

processes.

In all the considered cases, when the hypothesis testing problem turns

out to be too difficult (i.e. there is no consistent test for the chosen notion

of consistency) for the case of stationary ergodic processes, one may wish to

restrict either H0, H1 or both H0 and H1 to some smaller class of processes.

Thus, one may wish to test the hypothesis of independence when, for ex-

ample, both processes are known to have finite memory, or to have certain

mixing rates.

All the problems described above are special cases of the following general

formulation: given two sets H0 and H1 which are contained in the set of all

stationary ergodic process distributions, and given a sample generated by

a process that comes from either H0 or H1, we would like have a test that

tells us which one is the case: H0 or H1. The goal of this section is to

characterize those pairs of H0,H1 for which a consistent test exists. Ideally,

the characterization should be complete, that is, in the form of necessary and

sufficient conditions, that can be verified for at least most of the problems

outlined above. This goal is partially achieved: for two (rather natural)

notions of consistency, we find some necessary and some sufficient conditions,

that, for one of these notions of consistency, coincide in the case when H1 is

the complement of H0. We show that these conditions are indeed relatively

easy to verify for some of the considered hypotheses, such as identity testing,

model verification and testing independence.

In this section we will use the following notions of consistency of tests

(see Section 3.3.1 for formal definitions). The first one is the same that was

introduced in Section 3.2: the Type I error (level) is fixed and the probability

of Type II error is required to go to 0 as the sample size increases. To

distinguish it from other notions of consistency that we will consider, we

call it asymmetric consistency.

The second notion of consistency that we will consider is uniform consis-
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tency. For two hypothesis H0 and H1, a test is called uniformly consistent,

if for any ε>0 there is a sample size n such that the probability of error on

a sample of size larger than n is not greater than ε if any distribution from

H0∪H1 is chosen to generate the sample. Thus, a uniformly consistent test

provides performance guarantees for finite sample sizes.

Prior work. There is a vast body of literature on hypothesis testing for i.i.d.

(real- or discrete-valued) data (see e.g. [58, 49]). In the context of discrete-

valued i.i.d. data, the necessary and sufficient conditions for the two types

of consistency introduced are rather simple. There is an asymmetrically

consistent test if and only if the closure of H0 does not intersect H1, and

there is a uniformly consistent test if and only if the closures of H0 and H1

are disjoint, where the topology is that of the parameter space (probabilities

of each symbol), see e.g. [19]. Some extensions to Markov chains are also

possible [9, 6].

There is, however, much less literature on hypothesis testing beyond i.i.d.

or parametric models, while the question of determining whether a consistent

test exists, for different notions of consistency and different hypotheses, is

much less trivial. For a weaker notion of consistency, namely, requiring that

the test should stabilize on the correct answer for a.e. realization of the

process (under either H0 or H1), [50] constructs a consistent test for so-

called constrained finite-state model classes (including finite-state Markov

and hidden Markov processes), against the general alternative of stationary

ergodic processes. For the same notion of consistency, [65] gives sufficient

conditions on two hypotheses H0 and H1 that consist of stationary ergodic

real-valued processes, under which a consistent test exists, extending the

results of [25] for i.i.d. data. The latter condition is that H0 and H1 are

contained in disjoint Fσ sets (countable unions of closed sets), with respect

to the topology of weak convergence. In [62] some results are presented on

testing the hypothesis that the process has a finite memory, and some related

problems. Asymmetrically consistent tests for some specific hypotheses,

but under the general alternative of stationary ergodic processes, have been
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proposed in Section 3.2 above (see also references therein).

The results. Here we obtain some topological characterizations of the

hypotheses for which consistent tests exist, for the case of stationary ergodic

distributions. The obtained characterizations are rather similar to those

mentioned above for the case of i.i.d. data, but are with respect to the

topology of distributional distance. The fact that necessary and sufficient

conditions are obtained for one of the notions of consistency, indicates that

this topology is the right one to consider.

The tests that we construct are based on empirical estimates of distri-

butional distance. In particular, the uniform test ϕH0,H1 outputs 0 if the

given sample is closer to the (closure of) H0 than to the (closure of) H1, and

outputs 1 otherwise. The asymmetric test ψα
H0,H1

, for a given level α, takes

the smallest ε-neighbourhood of the closure of H0 that has probability not

less than 1−α with respect to any distribution in it, and outputs 0 if the

sample falls into this neighbourhood, and 1 otherwise.

This is a generalization of the goodness-of-fit procedure introduced in

Section 3.2.

For the case of testing H0 against its complement to the set E of all

stationary ergodic processes, we obtain the following necessary and sufficient

condition (formalized in the next section).

Theorem. There exists an asymmetrically consistent test for H0 against

H1 :=E\H0 if and only if H1 has probability 0 with respect to ergodic de-

composition of every distribution from the closure of H0. In this case, the

test ψα
H0,H1

is asymmetrically consistent too.

For the general case, as well as for the case of uniform consistency, we ob-

tain some necessary and some sufficient conditions, in the same terms. The

main results are illustrated with derivations of several known and some new

results for specific hypotheses. In particular, we show that any set of pro-

cesses which is continuously parametrized by a compact set of parameters,

and is closed under taking ergodic decompositions, can be tested with asym-

metric consistency against its complement to the set of all stationary ergodic
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processes. Such parametric families include k-order Markov processes and

k-state Hidden Markov processes.

3.3.1 Definitions: consistency of tests

A test is a function ϕ :A∗→{0,1} that takes a sample and outputs a binary

answer, where the answer i is interpreted as “the sample was generated by a

distribution that belongs to Hi”. The answer i is correct if the sample was

indeed generated by a distribution from Hi, otherwise we say that the test

made an error. A test ϕ makes the Type I error if it says 1 while H0 is

true, and it makes Type II error if it says 0 while H1 is true.

Call a family of tests ψα,α∈ (0,1) asymmetrically consistent if: (i)

The probability of Type I error is always bounded by α: ρ{X∈An :ψα(X)=

1}≤α for every ρ∈H0, every n∈N and every α∈ (0,1), and (ii) Type II

error is made not more than a finite number of times with probability 1:

ρ(limn→∞ψ
α(X1..n)= 1)=1 for every ρ∈H1 and every α∈ (0,1). (Abusing

the notation, we will sometimes call families of tests ψα,α ∈ (0,1) simply

tests.)

A test ϕ is called uniformly consistent if for every α there is an nα∈N

such that for every n≥nα the probability of error on a sample of size n is

less than α: ρ(X∈An :ϕ(X)= i)<α for every ρ∈H1−i and every i∈{0,1}.

3.3.2 Topological characterizations

The tests presented below are based on empirical estimates of the distribu-

tional distance d:

d̂(X1..n,ρ)=
∞∑

i=1

wi|ν(X1..n,Bi)−ρ(Bi)|,

where n∈N, ρ∈S, X1..n∈An. That is, d̂(X1..n,ρ) measures the discrepancy

between empirically estimated and theoretical probabilities. For a sample
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X1..n∈An and a hypothesis H⊂E define

d̂(X1..n,H)= inf
ρ∈H

d̂(X1..n,ρ).

For H⊂S, denote clH the closure of H (with respect to the topology of

d).

For H0,H1⊂S, the uniform test ϕH0,H1 is constructed as follows. For

each n∈N let

ϕH0,H1(X1..n) :=

{
0 if d̂(X1..n,clH0∩E)<d̂(X1..n,clH1∩E),
1 otherwise.

(3.6)

Since the set S is a complete separable metric space, it is easy to see that

the function ϕH0,H1(X1..n) is measurable provided clH0 is measurable.

Theorem 3.10 (uniform testing). Let H0,H1 be measurable subsets of E. If

Wρ(Hi) = 1 for every ρ∈ clHi then the test ϕH0,H1 is uniformly consistent.

Conversely, if there exists a uniformly consistent test for H0 against H1 then

Wρ(H1−i)=0 for any ρ∈clHi.

The proofs are deferred to section 3.6.

Construct the asymmetric test ψα
H0,H1

,α ∈ (0,1) as follows. For each

n∈N, δ>0 and H⊂E define the neighbourhood bnδ (H) of n-tuples around

H as

bnδ (H) :={X∈An : d̂(X,H)≤δ}.

Moreover, let

γn(H,θ) :=inf{δ : inf
ρ∈H

ρ(bnδ (H))≥θ}

be the smallest radius of a neighbourhood around H that has probability not

less than θ with respect to any process in H, and let Cn(H,θ) :=bnγn(H,θ)(H)

be a neighbourhood of this radius. Define

ψα
H0,H1

(X1..n) :=

{
0 if X1..n∈Cn(clH0∩E,1−α),
1 otherwise.
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Again, it is easy to see that the function ϕH0,H1(X1..n) is measurable, since

the set S is separable. We will often omit the subscript H0,H1 from ψα
H0,H1

when it can cause no confusion.

Theorem 3.11. Let H0,H1 be measurable subsets of E. If Wρ(H0)= 1 for

every ρ∈clH0 then the test ψα
H0,H1

is asymmetrically consistent. Conversely,

if there is an asymmetrically consistent test for H0 against H1 then Wρ(H1)=

0 for any ρ∈clH0.

For the case whenH1 is the complement ofH0 the necessary and sufficient

conditions of Theorem 3.11 coincide and give the following criterion.

Corollary 3.12. Let H0⊂E be measurable and let H1=E\H0. The following

statements are equivalent:

(i) There exists an asymmetrically consistent test for H0 against H1.

(ii) The test ψα
H0,H1

is asymmetrically consistent.

(iii) The set H1 has probability 0 with respect to ergodic decomposition of

every ρ in the closure of H0: Wρ(H1)=0 for each ρ∈clH0.

3.3.3 Examples

Theorems 3.11 and 3.10 can be used to check whether a consistent test

exists for such problems as identity, independence, estimating the order of a

(Hidden) Markov model, bounding entropy, bounding distance, uniformity,

monotonicity, etc. Some of these examples are considered in this section.

Example 1: Simple hypotheses, Identity. First of all, it is obvious that

sets that consisit of just one or finitely many stationary ergodic processes

are closed and closed under ergodic decompositions; therefore, for any pair

of disjoint sets of this type, there exists a uniformly consistent test. (In par-

ticular, there is a uniformly consistent test for H0={ρ0} against H1={ρ1}.)
A more interesting case is identity testing, or goodness-of-fit, introduced in
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Section 3.2: the problem here consists in testing whether a distribution gen-

erating the sample obeys a certain given law, versus it does not. Let ρ∈E,

H0= {ρ} and H1=E\H0. Then there is an asymmetrically consistent test

for H0 against H1. The conditions of Theorem 3.12 are easily verified for

this case, so that we recover Theorem 3.5.

As far as uniform testing is concerned, it is, first of all, clear that for

any ρ0 there is no uniformly consistent test for identity. More generally, for

any non-empty H0 there is no uniformly consistent test for H0 against E\H0

provided the latter complement is also non-empty. Indeed, this follows from

Theorem 3.10 since in these cases the closures of H0 and H1 are not disjoint.

One might suggest at this point that a uniformly consistent test exists if we

restrict H1 to those processes that are sufficiently far from ρ0. However, this

is not true. We can prove an even stronger negative result.

Proposition 3.13. Let ρ,ν ∈E, ρ 6=ν and let ε>0. There is no uniformly

consistent test for H0={ρ} against H1={ν ′∈E :d(ν ′,ν)≤ε}.

The proof of the proposition is deferred to the Section 3.6.2. What it

means is that, while distributional distance is well suited for characterizing

those hypotheses for which consistent test exist, it is not suited for formu-

lating the actual hypotheses. Apparently a stronger distance is needed for

the latter.

Example 2: Markov and Hidden Markov processes: bounding the

order. For any k, there is an asymmetrically consistent test of the hypoth-

esis Mk= “the process is Markov of order not greater than k” against E\Mk.

For any k, there is an asymmetrically consistent test of HMk=“the process

is given by a Hidden Markov process with not more than k states” against

H1=E\HMk. Indeed, in both cases (k-order Markov, Hidden Markov with

not more than k states), the hypothesis H0 is a parametric family, with a

compact set of parameters, and a continuous function mapping parameters

to processes (that is, to the space S). Weierstrass theorem then implies that

the image of such a compact parameter set is closed (and compact). More-
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over, in both cases H0 is closed under taking ergodic decompositions. Thus,

by Theorem 3.11, there exists an asymmetrically consistent test.

The problem of estimating the order of a (hidden) Markov process, based

on a sample from it, was addressed in a number of works. In the contest of

hypothesis testing, asymmetrically consistent tests for Mk against Mt with

t>k were given in [6], see also [9]. The existence of non-uniformly consistent

tests (a notion weaker than that of asymmetric consistency) for Mk against

E\Mk, and of HMk against E\HMk, was established in [50]. Asymmetrically

consistent tests for Mk against E\Mk were obtained in [80], while for the case

of asymmetric testing for HMk against E\HMk the positive result above is

apparently new.

Example 3: Smooth parametric families. From the discussion in the

previous example we can see that the following generalization is valid. Let

H0⊂S be a set of processes that is continuously parametrized by a compact

set of parameters. If H0 is closed under taking ergodic decompositions,

then there is an asymmetrically consistent test for H0 against E\H0. In

particular, this strengthens the mentioned result of [50], since a stronger

notion of consistency is used, as well as a more general class of parametric

families is considered.

Clearly, a similar statement can be derived for uniform testing: given two

disjoint sets H0 and H1 each of which is continuously parametrized by a com-

pact set of parameters and is closed under taking ergodic decompositions,

there exists a uniformly consistent test of H0 against H1.

Example 4: Independence. Suppose that A=A1×A2, so that a sample

X1..n consists of two processes X1
1..n and X2

1..n, which we call features. The

hypothesis of independence is that the first feature is independent from the

second: ρ(X1
1..t ∈ T1,X2

1..t ∈ T2) = ρ(X1
1..t ∈ T1)ρ(X2

1..t ∈ T2) for any (T1,T2)∈
An and any n ∈ N. Let I be the set of all stationary ergodic processes

satisfying this property. It is easy to see that Theorem 3.11 implies, that

there exists an asymmetrically consistent test for I∩Mk against E\I, for any

given k∈N. Analogously, if we confine H0 to Hidden Markov processes of a
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given order, then asymmetric testing is possible. That is, there exists an an

asymmetrically consistent test for I∩HMk against E\I, for any given k∈N.

As far as uniform testing is concerned, positive results can be obtained if we

restrict bothH0 andH1 to the corresponding subset of some set continuously

parametrized by a compact set of parameters, such as the sets of (Hidden)

Markov processes of given order.

The question of whether I can be tested against E\I is more difficult. It is

clear that the closure of I only contains processes with independent features.

It is not clear whether any of the limiting points of I has ergodic components

whose features are not independent. If there are none, this would prove that

there exists an asymmetrically consistent test for independence, for the class

of stationary ergodic process.

3.4 Clustering time series [R11]

In this section we use the approach developed in the previous sections to con-

struct an algorithm for clustering time-series data and show its consistency

under the general assumption that the time series are stationary ergodic.

Given a finite set of objects the problem to “cluster” similar objects to-

gether, in the absence of any examples of “good” clusterings, is notoriously

hard to formalize. Most of the work on clustering is concerned with par-

ticular parametric data generating models, or particular algorithms, a given

similarity measure, and (very often) a given number of clusters. It is clear

that, as in almost learning problems, in clustering finding the right similarity

measure is an integral part of the problem. However, even if one assumes

the similarity measure known, it is hard to define what a good clustering

is [52, 90]. What is more, even if one assumes the similarity measure to

be simply the Euclidean distance (on the plane), and the number of clus-

ters k known, then clustering may still appear intractable for computational

reasons. Indeed, in this case finding k centres (points which minimize the

cumulative distance from each point in the sample to one of the centres)
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seems to be a natural goal, but this problem is NP-hard [61].

In this section we consider the problem of clustering time-series data.

That is, each data point is itself a sample generated by a certain discrete-time

stochastic process. This version of the problem has numerous applications,

such as clustering biological data, financial observations, or behavioural pat-

terns, and as such it has gained a tremendous attention in the literature.

The main observation that we make here is that, in the case of clustering

processes, one can benefit from the notion of ergodicity to define what ap-

pears to be a very natural notion of consistency. This notion of consistency

is shown to be satisfied by simple algorithms that we present, which are

polynomial in all arguments.

With these considerations in mind, define the clustering problem as fol-

lows. N samples are given: x1=(x11,...,x
1
n1
),...,xN =(xN1 ,...,x

N
nN

). Each sam-

ple is drawn by one out of k different stationary ergodic distributions. The

samples are not assumed to be drawn independently; rather, it is assumed

that the joint distribution of the samples is stationary ergodic. The target

clustering is as follows: those and only those samples are put into the same

cluster that were generated by the same distribution. As is usual in the clus-

tering literature, the number k of target clusters is assumed to be known.

A clustering algorithm is called asymptotically consistent if the probability

that it outputs the target clustering converges to 1, as the lengths (n1,...,nN)

of the samples tend to infinity (a variant of this definition is to require the

algorithm to stabilize on the correct answer with probability 1). Note the

particular regime of asymptotic: not with respect to the number of samples

N , but with respect to the length of the samples n1,...,nN .

Similar formulations have appeared in the literature before. Perhaps the

most close approach is mixture models [85, 91]: it is assumed that there are k

different distributions that have a particular known form (such as Gaussian,

Hidden Markov models, or graphical models) and each one out of N samples

is generated independently according to one of these k distributions (with

some fixed probability). Since the model of the data is specified quite well,
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one can use likelihood-based distances (and then, for example, the k-means

algorithm), or Bayesian inference, to cluster the data. Clearly, the main

difference from our setting is in that we do not assume any known model of

the data; not even between-sample independence is assumed.

The problem of clustering in our formulation is close to the following two

classical problems of mathematical statistics. The first one is homogeneity

testing, or the two-sample problem. Two samples x1=(x11,...,x
1
n1
) and x2=

(x21,...,x
2
n2
) are given, and it is required to test whether they were generated

by the same distribution, or by different distributions. This corresponds

to clustering just two data points (N = 2) with the number k of clusters

unknown: either k=1 or k=2. As we show in Section 3.5, this problem is

impossible to solve for stationary ergodic (binary-valued) processes, which

is why we assume known k in this section. The second problem is process

classification, or the three-sample problem, that we have considered in detail

in Section 3.2.2: Three samples x1,x2,x3 are given, it is known that two

of them were generated by the same distribution, while the third one was

generated by a different distribution. It is required to find out which two

were generated by the same distribution. This corresponds to clustering

three data points, with the number of clusters k=2. The clustering algorithm

that we will present in this section is therefore a generalization of the simple

procedure of Section 3.2.2.

In this section we will also consider in some detail the question of cal-

culating empirical estimates of the distributional distance (on which all the

algorithms in this chapter are based). Although its definition involves infi-

nite summation, we show that it can be easily calculated.

3.4.1 Problem formulation

The clustering problem can be defined as follows. We are given N samples

x1,...,xN , where each sample xi is a string of length ni of symbols from A:

xi =X i
1..ni

. Each sample is generated by one out of k different unknown
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stationary ergodic distributions ρ1,...,ρk ∈ E. Thus, there is a partitioning

I={I1,...,Ik} of the set {1..N} into k disjoint subsets Ij,j=1..k

{1..N}=∪k
j=1Ij,

such that xj, 1≤j≤N is generated by ρj if and only if j∈Ij. The partitioning

I is called the target clustering and the sets Ii,1≤ i≤k, are called the target

clusters. Given samples x1,...,xN and a target clustering I, let I(x) denote

the cluster that contains x.

A clustering function F takes a finite number of samples x1,...,xN and an

optional parameter k (the target number of clusters) and outputs a partition

F (x1,...,xN ,(k))={T1,...,Tk} of the set {1..N}.

Definition 3.14 (asymptotic consistency). Let a finite number N of samples

be given, and let the target clustering partition be I. Define n=min{n1,...,nN}.
A clustering function F is strongly asymptotically consistent if

F (x1,...,xN ,(k))=I

from some n on with probability 1. A clustering function is weakly asymp-

totically consistent if

P (F (x1,...,xN ,(k))=I)→1.

Note that the consistency is asymptotic with respect to the minimal

length of the sample, and not with respect to the number of samples.

Since in this section we will be also interested in analysing computation

complexity of the proposed methods, we will use a slightly more detailed

definition of the distributional distance.

Definition 3.15. The distributional distance is defined for a pair of pro-
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cesses ρ1,ρ2 as follows

d(ρ1,ρ2)=
∞∑

m,l=1

wmwl

∑

B∈Bm,l

|ρ1(B)−ρ2(B)|,

where wj=2−j.

The clustering algorithm below is based on empirical estimates of d:

d̂(X1
1..n1

,X2
1..n2

)=
∞∑

m,l=1

wmwl

∑

B∈Bm,l

|ν(X1
1..n1

,B)−ν(X2
1..n2

,B)|, (3.7)

where n1,n2∈N, ρ∈S, X i
1..ni

∈Ani .

It is easy to check that Lemma 3.3 holds for this modified definition of

d as well.

3.4.2 Clustering algorithm

Algorithm 1 is a simple clustering algorithm, which, given the number k of

clusters, will be shown to be consistent under most general assumptions. It

works as follows. The point x1 is assigned to the first cluster. Next, find the

point that is farthest away from x1 in the empirical distributional distance

d̂, and assign this point to the second cluster. For each j=3..k, find a point

that maximizes the minimal distance to those points already assigned to

clusters, and assign it to the cluster j. Thus we have one point in each of the

k clusters. Next simply assign each of the remaining points to the cluster

that contains the closest points from those k already assigned. One can

notice that Algorithm 1 is just one iteration of the k-means algorithm, with

so-called farthest-point initialization [47], and a specially designed distance.

Proposition 3.16 (calculating d̂(x1,x2)). For two samples x1=X
1
1..n1

and

x2=X
2
1..n2

the computational complexity (time and space) of calculating the
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Algorithm 1 The case of known number of clusters k
INPUT: The number of clusters k, samples x1,...,xN .
Initialize: j :=1, c1 :=1, T1 :={xc1}.
for j :=2 to k do
cj :=argmax{i=1,...,N :minj−1

t=1 d̂(xi,xct)}
Tj :={xcj}

end for
for i=1 to N do

Put xi into the set Targminkj=1d̂(xi,xcj )

end for
OUTPUT: the sets Tj, j=1..k.

empirical distributional distance d̂(x1,x2) (3.7) is O(n2logs−1
min), where n=

max(n1,n2) and

smin= min
i=1..n1,j=1..n2,X1

i 6=X2
j

|X1
i −X2

j |.

Proof. First, observe that for fixed m and l, the sum

Tm,l :=
∑

B∈Bm,l

|ν(X1
1..n1

,B)−ν(X2
1..n2

,B)| (3.8)

has not more than n1+n2−2m+2 non-zero terms (assuming m ≤ n1,n2;

the other case is obvious). Indeed, for each i=0,1, in the sample xi there

are ni−m+1 tuples of size k: X i
1..m,X

i
2..m+1,...,X

i
n1−m+1..n1

. Therefore, the

complexity of calculating Tm,l is O(n1+n2−2m+2)=O(n). Furthermore,

observe that for each m, for all l> logs−1
min the term Tm,l is constant. There-

fore, it is enough to calculate Tm,1,...,Tm,logs−1
min , since for fixed m

∞∑

l=1

wmwlT
m,l=wmwlogs−1

min
Tm,logs−1

min+

logs−1
min∑

l=1

wmwlT
m,l

(that is, we double the weight of the last non-zero term). Thus, the

complexity of calculating
∑∞

l=1wmwlT
m,l is O(nlogs−1

min). Finally, for all m>

n we have Tm,l = 0. Since d̂(x1,x2) =
∑∞

m,l=1wm,wlT
m,l, the statement is
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proven.

Theorem 3.17. Let N ∈N and suppose that the samples x1,...,xN are gen-

erated in such a way that the joint distribution is stationary ergodic. If the

correct number of clusters k is known, then Algorithm 1 is strongly asymp-

totically consistent. Algorithm 1 makes O(kN) calculations of d̂(·,·), so that

its computational complexity is O(kNn2
maxlogs

−1
min), where nmax =maxki=1ni

and smin=minu,v=1..N,u6=v,i=1..nu,j=1..nv ,Xu
i 6=Xv

j
|Xu

i −Xv
j |.

Observe that the samples are not required to be generated independently.

The only requirement on the distribution of samples is that the joint dis-

tribution is stationary ergodic. This is perhaps one of the mildest possible

probabilistic assumptions.

Proof. By Lemma 3.3, d̂(xi,xj), i,j∈{1..N} converges to 0 if and only if xi

and xj are in the same cluster. Since there are only finitely many samples xi,

there exists some δ>0 such that, from some n on, we will have d̂(xi,xj)<δ

if xi,xj belong to the same target cluster (I(xi) = I(xj)), and d̂(xi,xj)>δ

otherwise (I(xi) 6=I(xj)). Therefore, from some n on, for every j≤k we will

have max{i=1,...,N : minj−1
t=1 d̂(xi,xct)}> δ and the sample xcj , where cj =

argmax{i=1,...,N : minj−1
t=1 d̂(xi,xct)}, will be selected from a target cluster

that does not contain any xci , i<j. The consistency statement follows.

Next, let us find how many pairwise distance estimates d̂(xi,xj) the

algorithm has to make. On the first iteration of the loop, it has to cal-

culate d̂(xi,xc1) for all i = 1..N . On the second iteration, it needs again

d̂(xi,xc1) for all i=1..N , which are already calculated, and also d̂(xi,xc2) for

all i= 1..N , and so on: on jth iteration of the loop we need to calculate

d(xi,xcj), i= 1..N , which gives at most kN pairwise distance calculations

in total. The statement about computational complexity follows from this

and Proposition 3.16: indeed, apart from the calculation of d̂, the rest of the

computations is of order O(kN).
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3.5 Discrimination between B-processes is im-

possible [R5]

Two series of binary observations x1,x1,... and y1,y2,... are presented se-

quentially. A discrimination procedure (or homogeneity test) D is a family

of mappings Dn :X
n×Xn →{0,1}, n∈N, X = {0,1}, that maps a pair of

samples (x1,...,xn), (y1,...,yn) into a binary (“yes” or “no”) answer: the sam-

ples are generated by different distributions, or they are generated by the

same distribution.

A discrimination procedure D is asymptotically correct for a set C of

process distributions if for any two distributions ρx,ρy ∈ C independently

generating the sequences x1,x2,... and y1,y2,... correspondingly the expected

output converges to the correct answer: the following limit exists and the

equality holds

lim
n→∞

EDn((x1,...,xn),(y1,...,yn))=

{
0 if ρx=ρy,

1 otherwise.

This is perhaps the weakest notion of correctness one can consider. Clearly,

asymptotically correct discriminating procedures exist for many classes of

processes, for example for the class of all i.i.d. processes (e.g. [58]) and

various parametric families.

We show that there is no asymptotically correct discrimination procedure

for the class of all B-processes (see the definition below), meaning that for

any discrimination the expected answer does not converge to the correct one

for some processes. The class of B-processes is sufficiently wide to include,

for example, k-order Markov processes and functions of them, but, on the

other hand, it is a strict subset of the set of stationary ergodic processes.

B-processes play important role in such fields as information theory and

ergodic theory [82, 67].

Previously, in [69] and [68] it was shown that consistent estimates of
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d̄-distance (defined below) for B-processes exist, while it is impossible to

estimate this distance outside this class. In [69] it is also claimed that

consistent discrimination procedure does not exist for the set of all stationary

ergodic processes; however, what is shown in that work is that consistent

estimate of d̄-distance do not exist for this set. The result of this section

is stronger than this claim: a consistent discrimination procedure does not

exist for a smaller set of processes, that of all B-processes.

Next we define the d̄ distance and B-processes (mainly following [69] in

our formulations) and give more precise formulations of some of the existing

results mentioned above.

For two finite-valued stationary processes ρx and ρy the d̄-distance d̄(ρx,ρy)

is said to be less than ε if there exists a single stationary process νxy on pairs

(xn,yn), n∈N, such that xn, n∈N are distributed according to ρx and yn

are distributed according to ρy while

νxy(x1 6=y1)≤ε. (3.9)

The infimum of the ε’s for which a coupling can be found such that (3.9) is

satisfied is taken to be the d̄-distance between ρx and ρy.

Definition 3.18. A process is called a B-process (or a Bernoulli process)

if it is in the d̄-closure of the set of all aperiodic stationary ergodic k-step

Markov processes, where k∈N.

For more information on d̄-distance and B-processes see [67]. As it was

mentioned, [69] constructs an estimator s̄n such that

lim
n→∞

s̄n((x1,...,xn),(y1,...,yn))= d̄(ρ1,ρ2) ρ1×ρ2–a.s. (3.10)

if both processes ρ1 and ρ2 generating the samples xi and yi respectively are

B-processes. In the same work it is shown that there is no estimator s̄n for

which (3.10) holds for every pair ρ1,ρ2 of stationary ergodic processes. Some

extensions of these results are given in [68].
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It is interesting to compare these results to those that are obtained for

the distributional distance. As we have shown (Lemma 3.3), this distance

can be consistently estimated. Moreover, based on its estimate, we can

also construct a consistent change point estimate, as was demonstrated in

Section 3.2 above. On the other hand, the results of the present section

implies that one cannot consistently tell whether there is a change in the

sample or not.

Summarizing, we can say that the stronger the distance the harder it

is to estimate: the distributional distance can be consistently estimated for

stationary ergodic processes, the d̄ distance can be consistently estimated

for B-processes but not for stationary ergodic processes, while the strongest

possible distance— the one that gives discrete topology, cannot be consis-

tently estimated for B-processes, as is shown in this section.

The main result of this section is the following theorem.

Theorem 3.19. There is no asymptotically correct discrimination procedure

for the set of all B-processes.

The proof, which we defer to Section3.6.3, is by contradiction. It is

assumed that a consistent discrimination procedure exists, and a process is

exhibited that will trick such a procedure to give divergent results. The

construction on which the proof is based uses the ideas of the construction

of B. Ryabko used in [78] to demonstrate that consistent prediction for

stationary ergodic processes is impossible (see also the modification of this

construction in [38]).

3.6 Longer proofs

3.6.1 Proof of Theorem 3.9

Proof. To prove the statement, we will show that for every γ, 0 < γ < 1

with probability 1 the inequality d̂(U t,V t)< d̂(X,Y ) holds for each t such
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that αk ≤ t < γk possibly except for a finite number of times. Thus we

will show that linear γ-underestimates occur only a finite number of times,

and for overestimate it is analogous. Fix some γ, 0<γ < 1 and ε> 0. Let

J be big enough to have
∑∞

i=Jwi < ε/2 and also big enough to have an

index j <J for which ρX(Bj) 6=ρY (Bj). Take Mε∈N large enough to have

|ν(Y,Bi)−ρY (Bi)|≤ ε/2J for all m>Mε and for each i, 1≤ i≤J , and also

to have |Bi|/m<ε/J for each i, 1≤ i≤J . This is possible since empirical

frequencies converge to the limiting probabilities a.s. (that is, Mε depends

on the realizations Y1,Y2,... ) (cf. the proof of Lemma 3.3). Find a Kε (that

depends on X) such that for all k>Kε and for all i, 1≤ i≤J we have

|ν(U t,Bi)−ρX(Bi)|≤ε/2J for each t∈ [αn,...,k] (3.11)

(this is possible simply because αn → ∞). Furthermore, we can select

Kε large enough to have |ν((Xs,Xs+1,...,Xk),Bi)−ρX(Bi)| ≤ ε/2J for each

s ≤ γk: this follows from (3.11) and the indentity ν((Xs,Xs+1,...,Xk) =
k

k−s
ν((X1,...,Xk)− s−1

k−s
ν(X1,...,Xs−1)+o(1).

So, for each s∈ [αn,γk] we have

∣∣∣∣ν(V
s,Bj)−

(1−γ)kρX(Bj)+mρY (Bj)

(1−γ)k+m

∣∣∣∣

≤
∣∣∣∣∣
(1−γ)kν((Xs,...,Xk),Bj)+mν(Y,Bj)

(1−γ)k+m −

(1−γ)kρX(Bj)+mρY (Bj)

(1−γ)k+m

∣∣∣∣∣+
|Bj|
m+γk

≤3ε/J,
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for k>Kε and m>Mε (from the definitions of Kε and Mε). Hence

|ν(X,Bj)−ν(Y,Bj)|−|ν(U s,Bj)−ν(V s,Bj)|
≥|ν(X,Bj)−ν(Y,Bj)|

−
∣∣∣∣ν(U

s,Bj)−
(1−γ)kρX(Bj)+mρY (Bj)

(1−γ)k+m

∣∣∣∣−3ε/J

≥|ρX(Bj)−ρY (Bj)|

−
∣∣∣∣ρX(Bj)−

(1−γ)kρX(Bj)+mρY (Bj)

(1−γ)k+m

∣∣∣∣−4ε/J

=δj−4ε/J,

for some δj that depends only on k/m and γ. Summing over all Bi, i∈N,

we get

d̂(X,Y )−d̂(U s,V s)≥wjδj−5ε,

for all n such that k>Kε and m>Mε, which is positive for small enough ε.

3.6.2 Proofs for Section 3.3

The proofs will use the following lemmas.

Lemma 3.20 (smooth probabilities of deviation). Let m> 2k > 1, ρ ∈ S,

H⊂S, and ε>0. Then

ρ(d̂(X1..m,H)≥ε)≤ρ
(
d̂(X1..k,H)≥ε− 2k

m−k+1
−tk

)
, (3.12)

where tk is the sum of all the weights of tuples longer than k in the definition

of d: tk :=
∑

i:|Bi|>nwi, and

ρ(d̂(X1..m,H)≤ε)≤ρ
(
d̂(X1..k,H)≤ m

m−k+1
ε+

2k

m−k+1

)
. (3.13)
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The meaning of this lemma is as follows. For any word X1..m, if it is far

away from (or close to) a given distribution µ (in the empirical distributional

distance), then some of its shorter subwords Xi..i+k is far from (close to) µ

too. By stationarity, we may assume that i=1. Therefore, the probability

of a δ-ball of samples of a given length is close to the probability of a δ-ball

of samples of smaller size. In other words, for a stationary distribution µ,

it cannot happen that a small sample is likely to be close to µ, but a larger

sample is likely to be far.

Proof. Let B be a tuple such that |B|<k and X1..m∈Am be any sample of

size m> 1. The number of occurrences of B in X can be bounded by the

number of occurrences of B in subwords of X of length k as follows:

#(X1..m,B)≤ 1

k−|B|+1

m−k+1∑

i=1

#(Xi..i+k−1,B)+2k

=
m−k+1∑

i=1

ν(Xi..i+k−1,B)+2k.

Indeed, summing over i= 1..m−k the number of occurrences of B in all

Xi..i+k−1 we count each occurrence of B exactly k−|B|+1 times, except for

those that occur in the first and last k symbols. Dividing by m−|B|+1, and

using the definition (3.1), we obtain

ν(X1..m,B)≤ 1

m−|B|+1

(
m−k+1∑

i=1

ν(Xi..i+k−1,B)|+2k

)
. (3.14)

Summing over all B, for any µ, we get

d̂(X1..m,µ)≤
1

m−k+1

m−k+1∑

i=1

d̂(Xi..i+n−1,µ)+
2k

m−k+1
+tk, (3.15)

where in the right-hand side tk corresponds to all the summands in the left-

hand side for which |B|>k, where for the rest of the summands we used
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|B|≤k. Since this holds for any µ, we conclude that

d̂(X1..m,H)≤ 1

m−k+1

(
m−k+1∑

i=1

d̂(Xi..i+k−1,H)

)
+

2k

m−k+1
+tk.

Therefore, for any X1..m ∈ Am, if d̂(X1..m,H) > ε then there is an index

i≤m−k such that d̂(Xi..i+k−1,H)>ε− 2k
m−k+1

−tk. Moreover, we have (by

the definition of stationarity)

ρ(d̂(Xi..i+k−1,H)>ε′)=ρ(d̂(X1..k,H)>ε′)

where ε′=ε− 2k
m−k+1

−tk. So we have

ρ
(
d̂(X1..k,H)≥ε′

)
≥ρ
(
d̂(X1..m,H)≥ε

)
,

proving (3.12). The second statement can be proven similarly; indeed, anal-

ogously to (3.14) we have

ν(X1..m,B)≥ 1

m−|B|+1

m−k+1∑

i=1

ν(Xi..i+k−1,B)− 2k

m−|B|+1

≥ 1

m−k+1

(
m−k+1

m

m−k+1∑

i=1

ν(Xi..i+k−1,B)

)
− 2k

m
,

where we have used |B|≥1. Summing over different B, we obtain (similar

to (3.15)),

d̂(X1..m,µ)≥
1

m−k+1

m−k+1∑

i=1

m−k+1

m
d̂k(Xi..i+n−1,µ)−

2k

m

(since the frequencies are non-negative, there is no tn term here), which,

using stationarity of ρ, implies (3.13).

Lemma 3.21. Let ρk∈S, k∈N be a sequence of processes that converges to
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a process ρ∗. Then, for any T ∈A∗ and ε>0 if ρk(T )>ε for infinitely many

indices k, then ρ∗(T )≥ε

Proof. The statement follows from the fact that ρ(T ) is continuous as a

function of ρ.

Proof of Theorem 3.11. To establish the first statement of Theorem 3.11,

we have to show that the family of tests ψα is consistent. By construction,

for any ρ∈clH0∩E we have ρ(ψα(X1..n)=1)≤α.

To prove the consistency of ψ, it remains to show that

ξ( lim
n→∞

ψα(X1..n)=1)

for any ξ∈H1 and α>0. To do this, fix any ξ∈H1 and let

∆:=d(ξ,clH0) := inf
ρ∈clH0∩E

d(ξ,ρ).

Since ξ /∈ clH0, we have ∆> 0. Suppose that there exists an α > 0, such

that, for infinitely many n, some samples from the ∆/2-neighbourhood of n-

samples around ξ are sorted as H0 by ψ, that is, Cn(clH0∩E,1−α)∩bn∆/2(ξ) 6=
∅. Then for these n we have γn(clH0∩E,1−α)≥∆/2.

This means that there exists an increasing sequence nk,k ∈ N, and a

sequence ρk∈clH0, k∈N, such that

ρk(b
nk

∆/2(clH0∩E))<1−α.

Since the set clH0 is compact (as a closed subset of a compact set S), we

may assume (passing to a subsequence, if necessary) that ρk converges to a

certain ρ∗ ∈ clH0. Using Lemma 3.20, (3.13), for every m large enough to

satisfy nm

nm−nk+1
δ/4+ nk

nm−nk+1
<δ/2 we have

ρm(b
nk

∆/4(clH0∩E))<1−α.
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Since this holds for infinitely manym, using Lemma 3.21 (with T=bnk

∆/4(clH0∩
E)) we conclude that

ρ∗(b
nk

∆/4(clH0∩E))≤1−α.

Since the latter inequality holds for infinitely many indices k we also have

ρ∗(lim sup
n→∞

d̂(X1..n,clH0∩E)>∆/4)>0.

However, we must have ρ∗(limn→∞d̂(X1..n,clH0∩E) = 0) = 1 for every ρ∗ ∈
clH0: indeed, for ρ∗∈clH0∩E it follows from Lemma 3.3, and for ρ∗∈clH0\E
from Lemma 3.3, ergodic decomposition and the conditions of the theorem

(Wρ(H0)=1 for ρ∈clH0).

This contradiction shows that for every α there are not more than finitely

many n for which Cn(clH0∩E,1−α)∩bn∆/2(ξ) 6=∅. To finish the proof of the

first statement, it remains to note that, as follows from Lemma 3.3,

ξ{X1,X2,.... :X1..n∈bn∆/2(ξ) from some n on}≥ξ
(
lim
n→∞

d̂(X1..n,ξ)=0
)
=1.

To establish the second statement of Theorem 3.11 we assume that there

exists a consistent test ϕ forH0 againstH1, and we will show thatWρ(H1)=0

for every ρ∈clH0. Take ρ∈clH0 and suppose that Wρ(H1)=δ>0. We have

lim sup
n→∞

∫

H1

dWρ(µ)µ(ψ
δ/2
n =0)≤

∫

H1

dWρ(µ)lim sup
n→∞

µ(ψδ/2
n =0)=0,

where the inequality follows from Fatou’s lemma (the functions under in-

tegral are all bounded by 1), and the equality from the consistency of

ψ. Thus, from some n on we will have
∫
H1
dWρµ(ψ

δ/2
n = 0)< 1/4 so that

ρ(ψ
δ/2
n =0)<1−3δ/4. For any set T ∈An the function µ(T ) is continuous as

a function of T . In particular, it holds for the set T :={X1..n :ψ
δ/2
n (X1..n)=0}.

Therefore, since ρ∈clH0, for any n large enough we can find a ρ′∈H0 such
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that ρ′(ψδ/2
n =0)< 1−3δ/4, which contradicts the consistency of ψ. Thus,

Wρ(H1)=0, and Theorem 3.11 is proven.

Proof of Theorem 3.10. To prove the first statement of the theorem, we will

show that the test ϕH0,H1 is a uniformly consistent test for clH0∩E against

clH1∩E (and hence for H0 against H1), under the conditions of the theorem.

Suppose that, on the contrary, for some α > 0 for every n′ ∈N there is a

process ρ∈clH0 such that ρ(ϕ(X1..n)=1)>α for some n>n′. Define

∆:=d(clH0,clH1) := inf
ρ0∈clH0∩E,ρ1∈clH1∩E

d(ρ0,ρ1),

which is positive since clH0 and clH1 are closed and disjoint. We have

α<ρ(ϕ(X1..n)=1)

≤ρ(d̂(X1..n,H0)≥∆/2 or d̂(X1..n,H1)<∆/2)

≤ρ(d̂(X1..n,H0)≥∆/2)+ρ(d̂(X1..n,H1)<∆/2). (3.16)

This implies that either ρ(d̂(X1..n,clH0)≥∆/2)>α/2 or ρ(d̂(X1..n,clH1)<

∆/2)>α/2, so that, by assumption, at least one of these inequalities holds

for infinitely many n∈N for some sequence ρn∈H0. Suppose that it is the

first one, that is, there is an increasing sequence ni, i∈N and a sequence

ρi∈clH0, i∈N such that

ρi(d̂(X1..ni
,clH0)≥∆/2)>α/2 for all i∈N. (3.17)

The set S is compact, hence so is its closed subset clH0. Therefore, the

sequence ρi, i∈N must contain a subsequence that converges to a certain

process ρ∗ ∈ clH0. Passing to a subsequence if necessary, we may assume

that this convergent subsequence is the sequence ρi, i∈N itself.

Using Lemma 3.20, (3.12) (with ρ=ρnm , m=nm, k=nk, and H=clH0),

and taking k large enough to have tnk
<∆/4, for every m large enough to
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have 2nk

nm−nk+1
<∆/4, we obtain

ρnm

(
d̂(X1..nk

,clH0)≥∆/4
)
≥ρnm

(
d̂(X1..nm ,clH0)≥∆/2

)
>α/2. (3.18)

That is, we have shown that for any large enough index nk the inequal-

ity ρnm(d̂(X1..nk
,clH0)≥∆/4) > α/2 holds for infinitely many indices nm.

From this and Lemma 3.21 with T = Tk := {X : d̂(X1..nk
,clH0)≥∆/4} we

conclude that ρ∗(Tk)>α/2. The latter holds for infinitely many k; that is,

ρ∗(d̂(X1..nk
,clH0)≥∆/4)>α/2 infinitely often. Therefore,

ρ∗(lim sup
n→∞

d(X1..n,clH0)≥∆/4)>0.

However, we must have

ρ∗( lim
n→∞

d(X1..n,clH0)=0)=1

for every ρ∗∈clH0: indeed, for ρ∗∈clH0∩E it follows from Lemma 3.3, and

for ρ∗∈clH0\E from Lemma 3.3, ergodic decomposition and the conditions

of the theorem.

Thus, we have arrived at a contradiction that shows that ρn(d̂(X1..n,clH0)>

∆/2) > α/2 cannot hold for infinitely many n ∈ N for any sequence of

ρn ∈ clH0. Analogously, we can show that ρn(d̂(X1..n,clH1)<∆/2)> α/2

cannot hold for infinitely many n∈N for any sequence of ρn∈clH0. Indeed,

using Lemma 3.20, equation (3.13), we can show that ρnm(d̂(X1..nm ,clH1)≤
∆/2)>α/2 for a large enough nm implies ρnm(d̂(X1..nk

,clH1)≤3∆/4)>α/2

for a smaller nk. Therefore, if we assume that ρn(d̂(X1..n,clH1)<∆/2)>α/2

for infinitely many n∈N for some sequence of ρn∈clH0, then we will also find

a ρ∗ for which ρ∗(d̂(X1..n,clH1)≤3∆/4)>α/2 for infinitely many n, which,

using Lemma 3.3 and ergodic decomposition, can be shown to contradict

the fact that ρ∗(limn→∞d(X1..n,clH1)≥∆)=1.

Thus, returning to (3.16), we have shown that from some n on there is

no ρ∈clH0 for which ρ(ϕ=1)>α holds true. The statement for ρ∈clH1 can
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be proven analogously, thereby finishing the proof of the first statement.

To prove the second statement of the theorem, we assume that there

exists a uniformly consistent test ϕ for H0 against H1, and we will show

that Wρ(H1−i)=0 for every ρ∈ clHi. Indeed, let ρ∈ clH0, that is, suppose

that there is a sequence ξi∈H0,i∈N such that ξi→ρ. Assume Wρ(H1)=δ>0

and take α :=δ/2. Since the test ϕ is uniformly consistent, there is an N∈N

such that for every n>N we have

ρ(ϕ(X1..n=0))≤
∫

H1

ϕ(X1..n=0)dWρ+

∫

E\H1

ϕ(X1..n=0)dWρ

≤δα+1−δ≤1−δ/2.

Recall that, for T ∈A∗, µ(T ) is a continuous function in µ. In particular,

this holds for the set T={X∈An :ϕ(X)=0}, for any given n∈N. Therefore,

for every n>N and for every i large enough, ρi(ϕ(X1..n)=0)<1−δ/2 implies

also ξi(ϕ(X1..n)=0)< 1−δ/2 which contradicts ξi∈H0. This contradiction

shows Wρ(H1)=0 for every ρ∈clH0. The case ρ∈clH1 is analogous.

Proof of Proposition 3.13. Consider the process (x1,y1),(x2,y2),... on pairs

(xi,yi)∈A2, such that the distribution of x1,x2,... is ν, the distribution of

y1,y2,... is ρ and the two components xi and yi are independent; in other

words, the distribution of (xi,yi) is ν×ρ. Consider also a two-state sta-

tionary ergodic Markov chain µ, with two states 1 and 2, whose transition

probabilities are

(
1−p p

q 1−q

)
, where 0<p<q<1. The limiting (and ini-

tial) probability of the state 1 is p/(p+q) and that of the state 2 is q/(p+q).

Finally, the process z1,z2,... is constructed as follows: zi=xi if µ is in the

state a and zi=yi otherwise (here it is assumed that the chain µ generates

a sequence of outcomes independently of (xi,yi). Clearly, for every p,q sat-

isfying 0<p<q < 1 the process z1,z2,... is stationary ergodic; denote ζ its

distribution. Let pn :=1/(n+1), n∈N. Since d(ρ,ν)>ε, we can find a δ>0

such that d(ρ,ζn)>ε where ζn is the distribution ζ with parameters pn and
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qn, where qn satisfies qn/(pn+qn)=δ. Thus, ζn∈H1 for all n∈N. However,

limn→∞ζn=ζ∞ where ζ∞ is the stationary distribution with Wζ∞(ρ)=δ and

Wζ∞(ν) = 1−δ. Therefore, ζ∞ ∈ clH1 and Wζ∞(H0)> 0, so that by Theo-

rem 3.10 there is no uniformly consistent test for H0 against H1.

3.6.3 Proof of Theorem 3.19

We will assume that asymptotically correct discrimination procedure D for

the class of all B-processes exists, and will construct a B-process ρ such that

if both sequences xi and yi, i∈N are generated by ρ then EDn diverges; this

contradiction will prove the theorem.

The scheme of the proof is as follows. On Step 1 we construct a sequence

of processes ρ2k, ρd2k+1, and ρu2k+1, where k=0,1,... . On Step 2 we construct

a process ρ, which is shown to be the limit of the sequence ρ2k, k ∈N, in

d̄-distance. On Step 3 we show that two independent runs of the process ρ

have a property that (with high probability) they first behave like two runs

of a single process ρ0, then like two runs of two different processes ρu1 and

ρd1, then like two runs of a single process ρ2, and so on, thereby showing

that the test D diverges and obtaining the desired contradiction.

Assume that there exists an asymptotically correct discriminating pro-

cedure D. Fix some ε∈(0,1/2) and δ∈ [1/2,1), to be defined on Step 3.

Step 1. We will construct the sequence of process ρ2k, ρu2k+1, and ρd2k+1,

where k=0,1,... .

Step 1.0. Construct the process ρ0 as follows. A Markov chain m0 is

defined on the set N of states. From each state i∈N the chain passes to the

state 0 with probability δ and to the state i+1 with probability 1−δ. With

transition probabilities so defined, the chain possesses a unique stationary

distribution M0 on the set N, which can be calculated explicitly using e.g.

[84, Theorem VIII.4.1], and is as follows: M0(0)= δ, M0(k)= δ(1−δ)k, for

all k∈N. Take this distribution as the initial distribution over the states.

The function f0 maps the states to the output alphabet {0,1} as follows:

124



f0(i) = 1 for every i∈N. Let st be the state of the chain at time t. The

process ρ0 is defined as ρ0=f0(st) for t∈N. As a result of this definition, the

process ρ0 simply outputs 1 with probability 1 on every time step (however,

by using different functions f we will have less trivial processes in the sequel).

Clearly, the constructed process is stationary ergodic and a B-process. So,

we have defined the chain m0 (and the process ρ0) up to a parameter δ.

Step 1.1. We begin with the process ρ0 and the chain m0 of the previous

step. Since the test D is asymptotically correct we will have

Eρ0×ρ0Dt0((x1,...,xt0),(y1,...,yt0))<ε,

from some t0 on, where both samples xi and yi are generated by ρ0 (that is,

both samples consist of 1s only). Let k0 be such an index that the chain m0

starting from the state 0 with probability 1 does not reach the state k0−1

by time t0 (we can take k0= t0+2).

Construct two processes ρu1 and ρd1 as follows. They are also based

on the Markov chain m0, but the functions f are different. The function

fu1 :N→{0,1} is defined as follows: fu1(i)=f0(i)=1 for i≤k0 and fu1(i)=0

for i>k0. The function fd1 is identically 1 (fd1(i)=1, i∈N). The processes

ρu1 and ρd1 are defined as ρu1=fu1(st) and ρd1=fd1(st) for t∈N. Thus the

process ρd1 will again produce only 1s, but the process ρu1 will occasionally

produce 0s.

Step 1.2. Being run on two samples generated by the processes ρu1 and

ρd1 which both start from the state 0, the test Dn on the first t0 steps

produces many 0s, since on these first k0 states all the functions f , fu1
and fd1 coincide. However, since the processes are different and the test is

asymptotically correct (by assumption), the test starts producing 1s, until

by a certain time step t1 almost all answers are 1s. Next we will construct

the process ρ2 by “gluing” together ρu1 and ρd1 and continuing them in such

a way that, being run on two samples produced by ρ2 the test first produces

0s (as if the samples were drawn from ρ0), then, with probability close to
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1/2 it will produce many 1s (as if the samples were from ρu1 and ρd1) and

then again 0s.

The process ρ2 is the pivotal point of the construction, so we give it in

some detail. On step 1.2a we present the construction of the process, and

on step 1.2b we show that this process is a B-process by demonstrating that

it is equivalent to a (deterministic) function of a Markov chain.

Step 1.2a. Let t1>t0 be such a time index that

Eρu1×ρd1Dk((x1,...,xt1),(y1,...,yt1))>1−ε,

where the samples xi and yi are generated by ρu1 and ρd1 correspondingly

(the samples are generated independently; that is, the process are based on

two independent copies of the Markov chain m0). Let k1 >k0 be such an

index that the chain m starting from the state 0 with probability 1 does not

reach the state k1−1 by time t1.

Construct the process ρ2 as follows (see fig. 3.1). It is based on a chain

Figure 3.1: The processes m2 and ρ2. The states are depicted as circles, the

arrows symbolize transition probabilities: from every state the process returns to

0 with probability δ or goes to the next state with probability 1−δ. From the

switch S2 the process passes to the state indicated by the switch (with probability

1); here it is the state uk0+1. When the process passes through the reset R2 the

switch S2 is set to either up or down with equal probabilities. (Here S2 is in the

position up.) The function f2 is 1 on all states except uk0+1,...,uk1 where it is 0;

f2 applied to the states output by m2 defines ρ2.
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m2 on which Markov assumption is violated. The transition probabilities

on states 0,...,k0 are the same as for the Markov chain m (from each state

return to 0 with probability δ or go to the next state with probability 1−δ).
There are two “special” states: the “switch” S2 and the “reset” R2. From

the state k0 the chain passes with probability 1−δ to the “switch” state S2.

The switch S2 can itself have two values: up and down. If S2 has the value

up then from S2 the chain passes to the state uk0+1 with probability 1, while

if S2=down the chain goes to dk0+1, with probability 1. If the chain reaches

the state R2 then the value of S2 is set to up with probability 1/2 and with

probability 1/2 it is set to down. In other words, the first transition from

S2 is random (either to uk0+1 or to dk0+1 with equal probabilities) and then

this decision is remembered until the “reset” state R2 is visited, whereupon

the switch again assumes the values up and down with equal probabilities.

The rest of the transitions are as follows. From each state ui, k0≤ i≤k1
the chain passes to the state 0 with probability δ and to the next state ui+1

with probability 1−δ. From the state uk1 the process goes with probability

δ to 0 and with probability 1−δ to the “reset” state R2. The same with

states di: for k0<i≤k1 the process returns to 0 with probability δ or goes

to the next state di+1 with probability 1−δ, where the next state for dk1
is the “reset” state R2. From R2 the process goes with probability 1 to the

state k1+1 where from the chain continues ad infinitum: to the state 0 with

probability δ or to the next state k1+2 etc. with probability 1−δ.
The initial distribution on the states is defined as follows. The probabil-

ities of the states 0..k0,k1+1,k1+2,... are the same as in the Markov chain

m0, that is, δ(1−δ)j, for j=0..k0,k1+1,k1+2,... . For the states uj and dj,

k0<j≤k1 define their initial probabilities to be 1/2 of the probability of the

corresponding state in the chain m0, that is m2(uj) =m2(dj) =m0(j)/2 =

δ(1−δ)j/2. Furthermore, if the chain starts in a state uj, k0<j≤k1, then

the value of the switch S2 is up, and if it starts in the state dj then the value

of the switch S2 is down, whereas if the chain starts in any other state then

the probability distribution on the values of the switch S2 is 1/2 for either
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Figure 3.2: The process m′
2. The function f2 is 1 everywhere except the states

uk0+1,...,uk1 , where it is 0.
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up or down.

The function f2 is defined as follows: f2(i)= 1 for 0≤ i≤ k0 and i > k1

(before the switch and after the reset); f2(ui) = 0 for all i, k0< i≤ k1 and

f2(di)=1 for all i, k0<i≤ k1. The function f2 is undefined on S2 and R2,

therefore there is no output on these states (we also assume that passing

through S2 and R2 does not increment time). As before, the process ρ2 is

defined as ρ2 = f2(st) where st is the state of m2 at time t, omitting the

states S2 and R2. The resulting process s illustrated on fig. 3.1.

Step 1.2b. To show that the process ρ2 is stationary ergodic and a B-

process, we will show that it is equivalent to a function of a stationary

ergodic Markov chain, whereas all such process are known to be B (e.g.

[82]). The construction is as follows (see fig. 3.2). This chain has states

k1+1,... and also u0,...,uk0 ,uk0+1,...,uk1 and d0,...,dk0 ,dk0+1,...,dk1 . From the

states ui, i=0,...,k1 the chain passes with probability 1−δ to the next state

ui+1, where the next state for uk1 is k+1 and with probability δ returns to

the state u0 (and not to the state 0). Transitions for the state d0,...,dk1−1 are

defined analogously. Thus the states uki correspond to the state up of the

switch S2 and the states dki — to the state down of the switch. Transitions

for the states k+1,k+2,... are defined as follows: with probability δ/2 to

the state u0, with probability δ/2 to the state d0, and with probability

1−δ to the next state. Thus, transitions to 0 from the states with indices
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greater than k1 corresponds to the reset R2. Clearly, the chain m′
2 as defined

possesses a unique stationary distribution M2 over the set of states and

M2(i)> 0 for every state i. Moreover, this distribution is the same as the

initial distribution on the states of the chain m0, except for the states ui and

di, for which we have m′
2(ui)=m

′
2(di)=m0(i)/2= δ(1−δ)i/2, for 0≤ i≤k0.

We take this distribution as its initial distribution on the states of m′
2. The

resulting process m′
2 is stationary ergodic, and a B-process, since it is a

function of a Markov chain [82]. It is easy to see that if we define the

function f2 on the states of m′
2 as 1 on all states except uk0+1,...,uk1 , then

the resulting process is exactly the process ρ2. Therefore, ρ2 is stationary

ergodic and a B-process.

Step 1.k. As before, we can continue the construction of the processes

ρu3 and ρd3, that start with a segment of ρ2. Let t2>t1 be a time index such

that

Eρ2×ρ2Dt2<ε,

where both samples are generated by ρ2. Let k2>k1 be such an index that

when starting from the state 0 the process m2 with probability 1 does not

reach k2−1 by time t2 (equivalently: the process m′
2 does not reach k2−1

when starting from either u0 or d0). The processes ρu3 and ρd3 are based on

the same process m2 as ρ2. The functions fu3 and fd3 coincide with f2 on all

states up to the state k2 (including the states ui and di, k0<i≤k1). After

k2 the function fu3 outputs 0s while fd3 outputs 1s: fu3(i)=0, fd3(i)=1 for

i>k2.

Furthermore, we find a time t3>t2 by which we have Eρu3×ρd3Dt3>1−ε,
where the samples are generated by ρu3 and ρd3, which is possible since D

is consistent. Next, find an index k3 > k2 such that the process m2 does

not reach k3−1 with probability 1 if the processes ρu3 and ρd3 are used to

produce two independent sequences and both start from the state 0. We

then construct the process ρ4 based on a (non-Markovian) process m4 by

“gluing” together ρu3 and ρd3 after the step k3 with a switch S4 and a reset
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R4 exactly as was done when constructing the process ρ2. The process m4

is illustrated on fig. 3.3a). The process m4 can be shown to be equivalent to

a Markov chain m′
4, which is constructed analogously to the chain m′

2 (see

fig. 3.3b). Thus, the process ρ4 is can be shown to be a B-process.

Figure 3.3: a) The processes m4. b) The Markov chain m′
4

s
✒
�

❅

❅❅

��
R2

f4=0

f4=1

f4=1

f4=1s❘
�

❅

❅❅

��
R4

f4=0

f4=1

f4=1

f4=1
...

❅❅

��

f4=0f4=1

f4=1 f4=1

f4=1

❅❅

��

f4=0f4=1

f4=1 f4=1

f4=1

�
❅ ...

❇
❇
❇❇

✂
✂
✂✂

f4=0

f4=1

a) b)

Proceeding this way we can construct the processes ρ2j, ρu2j+1 and ρd2j+1,

j ∈N choosing the time steps tj > tj−1 so that the expected output of the

test approaches 0 by the time tj being run on two samples produced by ρj
for even j, and approaches 1 by the time tj being run on samples produced

by ρuj and ρdj for odd j:

Eρ2j×ρ2jDt2j <ε (3.19)

and

Eρu2j+1×ρd2j+1
Dt2j+1

>(1−ε). (3.20)

For each j the number kj >kj−1 is selected in a such a way that the state

kj−1 is not reached (with probability 1) by the time tj when starting from

the state 0. Each of the processes ρ2j, ρu2j+1 and ρdj2+1, j∈N can be shown

to be stationary ergodic and a B-process by demonstrating equivalence to

a Markov chain, analogously to the Step 1.2. The initial state distribution

of each of the processes ρt,t∈N is Mt(k)= δ(1−δ)k and Mt(uk)=Mt(dk)=

δ(1−δ)k/2 for those k∈N for which the corresponding states are defined.

Step 2. Having defined kj, j∈N we can define the process ρ. The con-

struction is given on Step 2a, while on Step 2b we show that ρ is stationary
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ergodic and a B-process, by showing that it is the limit of the sequence ρ2j,

j∈N.

Step 2a. The process ρ can be constructed as follows (see fig. 3.4). The

Figure 3.4: The processes mρ and ρ. The states are on horizontal lines. The
function f being applied to the states of mρ defines the process ρ. Its value
is 0 on the states on the upper lines (states uk2j+1,...,uk2j+1

, where k ∈N)
and 1 on the rest of the states.

s
✒
�

❅

❅❅

��
R2

f =0

f =1

f =1

s❘
�

❅

❅❅

��
R4

f =0

f =1

f =1

s
✒
�

❅

❅❅

��
R6

f =0

f =1

f =1

...

construction is based on the (non-Markovian) process mρ that has states

0,...,k0, k2j+1+1,...,k2(j+1), uk2j+1,...,uk2j+1
and dk2j+1,...,dk2j+1

for j∈N, along

with switch states S2j and reset states R2j. Each switch S2j diverts the

process to the state uk2j+1 if the switch has value up and to dk2j+1 if it has

the value down. The reset R2j sets S2j to up with probability 1/2 and to

down also with probability 1/2. From each state that is neither a reset nor a

switch, the process goes to the next state with probability 1−δ and returns

to the state 0 with probability δ (cf. Step 1k).

The initial distribution Mρ on the states of mρ is defined as follows. For

every state i such that 0≤ i≤ k0 and k2j+1 < i≤ k2j+2, j = 0,1,... , define

the initial probability of the state i as Mρ(i)= δ(1−δ)i (the same as in the

chain m0), and for the sets uj and dj (for those j for which these sets are

defined) let Mρ(uj)=Mρ(dj) :=δ(1−δ)i/2 (that is, 1/2 of the probability of

the corresponding state of m0).

The function f is defined as 1 everywhere except for the states uj (for

all j∈N for which uj is defined) on which f takes the value 0. The process

ρ is defined at time t as f(st), where st is the state of mρ at time t.

Step 2b. To show that ρ is a B-process, let us first show that it is sta-

tionary. Recall the definition 3.2 of the distributional distance between (ar-

bitrary) process distributions. The set of all stochastic processes, equipped

with this distance, is complete, and the set of all stationary processes is its
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closed subset [36]. Thus, to show that the process ρ is stationary it suffices

to show that limj→∞d(ρ2j,ρ)=0, since the processes ρ2j, j∈N, are stationary.

To do this, it is enough to demonstrate that

lim
j→∞

|ρ((x1,...,x|B|)=B)−ρ2j((x1,...,x|B|)=B)|=0 (3.21)

for each B ∈X∗. Since the processes mρ and m2j coincide on all states up

to k2j+1, we have

|ρ(xn=a)−ρ2j(xn=a)|= |ρ(x1=a)−ρ2j(x1=a)|
≤
∑

k>k2j+1

Mρ(k)+
∑

k>k2j+1

M2j(k)

for every n∈N and a∈X. Moreover, for any tuple B∈X∗ we obtain

|ρ((x1,...,x|B|)=B)−ρ2j((x1,...,x|B|)=B)|

≤|B|



∑

k>k2j+1

Mρ(k)+
∑

k>k2j+1

M2j(k)


→0

where the convergence follows from k2j→∞. We conclude that (3.21) holds

true, so that d(ρ,ρ2j)→0 and ρ is stationary.

To show that ρ is a B-process, we will demonstrate that it is the limit

of the sequence ρ2k, k ∈ N in the d̄ distance (which was only defined for

stationary processes). Since the set of all B-process is a closed subset of

all stationary processes, it will follow that ρ itself is a B-process. (Observe

that this way we get ergodicity of ρ “for free”, since the set of all ergodic

processes is closed in d̄ distance, and all the processes ρ2j are ergodic.) In

order to show that d̄(ρ,ρ2k)→0 we have to find for each j a processes ν2j on

pairs (x1,y1),(x2,y2),... , such that xi are distributed according to ρ and yi are

distributed according to ρ2j, and such that limj→∞ν2j(x1 6=y1)=0. Construct

such a coupling as follows. Consider the chains mρ and m2j, which start in

132



the same state (with initial distribution being Mρ) and always take state

transitions together, where if the process mρ is in the state ut or dt, t≥k2j+1

(that is, one of the states which the chain m2j does not have) then the chain

m2j is in the state t. The first coordinate of the process ν2j is obtained by

applying the function f to the process mρ and the second by applying f2j
to the chain m2j. Clearly, the distribution of the first coordinate is ρ and

the distribution of the second is ρ2j. Since the chains start in the same state

and always take state transitions together, and since the chains mρ and m2j

coincide up to the state k2j+1 we have ν2j(x1 6= y1)≤
∑

k>k2j+1
Mρ(k)→ 0.

Thus, d̄(ρ,ρ2j)→0, so that ρ is a B-process.

Step 3. Finally, it remains to show that the expected output of the test

D diverges if the test is run on two independent samples produced by ρ.

Recall that for all the chains m2j, mu2j+1 and md2j+1 as well as for the

chain mρ, the initial probability of the state 0 is δ. By construction, if the

process mρ starts at the state 0 then up to the time step k2j it behaves

exactly as ρ2j that has started at the state 0. In symbols, we have

Eρ×ρ(Dt2j |sx0=0,sy0=0)=Eρ2j×ρ2j(Dt2j |sx0=0,sy0=0) (3.22)

for j∈N, where sx0 and sy0 denote the initial states of the processes generating

the samples x and y correspondingly.

We will use the following simple decomposition

E(Dtj)=δ
2E(Dtj |sx0=0,sy0=0)+(1−δ2)E(Dtj |sx0 6=0 or sy0 6=0), (3.23)

From this, (3.22) and (3.19) we have

Eρ×ρ(Dt2j)≤δ2Eρ×ρ(Dt2j |sx0=0,sy0=0)+(1−δ2)
=δ2Eρ2j×ρ2j(Dt2j |sx0=0,sy0=0)+(1−δ2)

≤Eρ2j×ρ2j+(1−δ2)<ε+(1−δ2). (3.24)
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For odd indices, if the process ρ starts at the state 0 then (from the

definition of t2j+1) by the time t2j+1 it does not reach the reset R2j; therefore,

in this case the value of the switch S2j does not change up to the time

t2j+1. Since the definition of mρ is symmetric with respect to the values up

and down of each switch, the probability that two samples x1,...,xt2j+1
and

y1,...,yt2j+1
generated independently by (two runs of) the process ρ produced

different values of the switch S2j when passing through it for the first time

is 1/2. In other words, with probability 1/2 two samples generated by ρ

starting at the state 0 will look by the time t2j+1 as two samples generated

by ρu2j+1 and ρd2j+1 that has started at state 0. Thus

Eρ×ρ(Dt2j+1
|sx0=0,sy0=0)≥ 1

2
Eρu2j+1×ρd2j+1

(Dt2j+1
|sx0=0,sy0=0) (3.25)

for j∈N. Using this, (3.23), and (3.20) we obtain

Eρ×ρ(Dt2j+1
)≥δ2Eρ×ρ(Dt2j+1

|sx0=0,sy0=0)

≥ 1

2
δ2Eρ2j+1×ρ2j+1

(Dt2j+1
|sx0=0,sy0=0)

≥ 1

2

(
Eρ2j+1×ρ2j+1

(Dt2j+1
)−(1−δ2)

)
>
1

2
(δ2−ε). (3.26)

Taking δ large and ε small (e.g. δ=0.9 and ε=0.1), we can make the

bound (3.24) close to 0 and the bound (3.26) close to 1/2, and the expected

output of the test will cross these values infinitely often. Therefore, we have

shown that the expected output of the test D diverges on two independent

runs of the process ρ, contradicting the consistency of D. This contradiction

concludes the proof.
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Chapter 4

Finding an optimal strategy in a

reactive environment [R7]

Many real-world “learning” problems (like learning to drive a car or playing

a game) can be modelled as an agent π that interacts with an environment

µ and is (occasionally) rewarded for its behaviour. We are interested in

agents which perform well in the sense of having high long-term reward,

also called the value V (µ,π) of agent π in environment µ. If µ is known,

it is a pure (non-learning) computational problem to determine the optimal

agent πµ := argmaxπV (µ,π). It is far less clear what an “optimal” agent

means, if µ is unknown. A reasonable objective is to have a single policy

π with high value simultaneously in many environments. We will formalize

and call this criterion self-optimizing later.

This problem generalizes dramatically the problem of sequence predic-

tion, as well as those of classification and (to a large extent) hypothesis

testing. For example, the problem of sequence prediction is a special case in

which actions have no impact on the environment. While being very general,

the problem of finding an optimal strategy in a reactive environment is also

very difficult; the results of this chapter present some first steps in attacking

this problem in full generality.
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Some related work. Reinforcement learning, sequential decision the-

ory, adaptive control theory, and active expert advice, are theories dealing

with this problem. They overlap but have different core focus: Reinforce-

ment learning algorithms [87] are developed to learn µ or directly its value.

Temporal difference learning is computationally very efficient, but has slow

asymptotic guarantees (only) in (effectively) small observable MDPs. Oth-

ers have faster guarantee in finite state MDPs [14]. There are algorithms [31]

which are optimal for any finite connected POMDP, and this is apparently

the largest class of environments considered. In sequential decision theory,

a Bayes-optimal agent π∗ that maximizes V (ξ,π) is considered, where ξ is

a mixture of environments ν∈C and C is a class of environments that con-

tains the true environment µ ∈ C [41]. Policy π∗ is self-optimizing in an

arbitrary class C, provided C allows for self-optimizingness [40]. Adaptive

control theory [57] considers very simple (from an AI perspective) or special

systems (e.g. linear with quadratic loss function), which sometimes allow

computationally and data efficient solutions. Action with expert advice

[24, 71, 72, 18] constructs an agent (called master) that performs nearly as

well as the best agent (best expert in hindsight) from some class of experts,

in any environment ν.

The difficulty in active learning problems can be identified (at least, for

countable classes) with traps in the environments. Initially the agent does

not know µ, so has asymptotically to be forgiven in taking initial “wrong”

actions. A well-studied such class are ergodic MDPs which guarantee that,

from any action history, every state can be (re)visited [40].

The results. The aim of this chapter is to characterize as general as pos-

sible classes C in which self-optimizing behaviour is possible (more general

than POMDPs). To do this, we need to characterize classes of environments

that forgive. For instance, exact state recovery is unnecessarily strong; it

is sufficient being able to recover high rewards, from whatever states. Fur-

ther, in many real world problems there is no information available about

the “states” of the environment (e.g. in POMDPs) or the environment may
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exhibit long history dependencies.

We propose to consider only environments in which, after any arbitrary

finite sequence of actions, the best value is still achievable. The performance

criterion here is asymptotic average reward. Thus we consider such environ-

ments for which there exists a policy whose asymptotic average reward exists

and upper-bounds asymptotic average reward of any other policy. Moreover,

the same property should hold after any finite sequence of actions has been

taken (no traps). We call such environments recoverable. If we only want to

get ε-close to the optimal value infinitely often with decreasing ε (that is,

to have the same upper limit for the average value), then this property is

already sufficient.

Yet recoverability in itself is not sufficient for identifying behaviour which

results in optimal limiting average value. We require further that, from

any sequence of k actions, it is possible to return to the optimal level of

reward in o(k) steps; that is, it is not just possible to recover after any

sequence of (wrong) actions, but it is possible to recover fast. Environments

which possess this property are called value-stable. (These conditions will

be formulated in a probabilistic form.)

We show that for any countable class of value-stable environments there

exists a policy which achieves best possible value in any of the environments

from the class (i.e. is self-optimizing for this class).

Furthermore, we present some examples of environments which possess

value-stability and/or recoverability. In particular, any ergodic MDP can

be easily shown to be value-stable. A mixing-type condition which implies

value-stability is also demonstrated. In addition, we provide a construction

allowing to build examples of value-stable and/or recoverable environments

which are not isomorphic to a finite POMDP, thus demonstrating that the

class of value-stable environments is quite general.

Finally, we consider environments which are not recoverable but still are

value-stable. In other words, we consider the question of what does it mean

to be optimal in an environment which does not “forgive” wrong actions.
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Even in such cases some policies are better than others, and we identify

some conditions which are sufficient for learning a policy that is optimal

from some point on.

It is important in our argument that the class of environments for which

we seek a self-optimizing policy is countable, although the class of all value-

stable environments is uncountable. To find a set of conditions necessary and

sufficient for learning which do not rely on countability of the class is yet an

open problem. However, from a computational perspective countable classes

are sufficiently large (e.g. the class of all computable probability measures is

countable). In view of the results of the previous chapters, in particular, of

the results on sequence prediction, countable classes of environments are a

natural first step to solve the general problem of characterizing learnability.

4.1 Problem formulation

The agent framework is general enough to allow modelling nearly any

kind of (intelligent) system. In cycle k, an agent performs action yk ∈Y

(output) which results in observation ok∈O and reward rk∈R, followed by

cycle k+1 and so on. We assume that the action space Y, the observation

space O, and the reward space R⊂IR are finite, w.l.g. R={0,...,rmax}. We

abbreviate zk :=ykrkok∈Z:=Y×R×O and xk=rkok∈X:=R×O. An agent is

identified with a (probabilistic) policy π. Given history z<k, the probability

that agent π acts yk in cycle k is (by definition) π(yk|z<k). Thereafter,

environment µ provides (probabilistic) reward rk and observation ok, i.e.

the probability that the agent perceives xk is (by definition) µ(xk|z<kyk).

Note that policy and environment are allowed to depend on the complete

history. We do not make any MDP or POMDP assumption here, and we

do not talk about states of the environment, only about observations. Each

(policy,environment) pair (π,µ) generates an I/O sequence zπµ1 zπµ2 ... . More

138



formally, history zπµ1..k is a random variable with probability

P
(
zπµ1..k = z1..k

)
= π(y1) · µ(x1|y1) · ... · π(yk|z<k) · µ(xk|z<kyk).

Since value maximizing policies can always be chosen deterministic, there is

no real need to consider probabilistic policies, and henceforth we consider

deterministic policies p. We assume that µ∈ C is the true, but unknown,

environment, and ν∈C a generic environment.

For an environment ν and a policy p define random variables (upper and

lower average value)

V (ν, p) := lim sup
m

{
1
m
rpν1..m

}
and V (ν, p) := lim inf

m

{
1
m
rpν1..m

}

where r1..m :=r1+...+rm. If there exists a constant V or a constant V such

that

V (ν, p) = V a.s., or V (ν, p) = V a.s.

then we say that the upper limiting average or (respectively) lower average

value exists, and denote it by V (ν,p) :=V (or V (ν,p) :=V ). If both upper

and lower average limiting values exist and are equal then we simply say

that average limiting value exist and denote it by V (ν,p) :=V (ν,p)=V (ν,p)

An environment ν is explorable if there exists a policy pν such that

V (ν,pν) exists and V (ν,p)≤ V (ν,pν) with probability 1 for every policy p.

In this case define V ∗
ν := V (ν,pν). An environment ν is upper explorable if

there exists a policy pν such that V (ν,pν) exists and V (ν,p)≤V (ν,pν) with

probability 1 for every policy p. In this case define V
∗
ν :=V (ν,pν).

A policy p is self-optimizing for a set of explorable environments C if

V (ν,p)=V ∗
ν for every ν∈C. A policy p is upper self-optimizing for a set of

explorable environments C if V (ν,p)=V
∗
ν for every ν∈C.

In the case when we we wish to obtain the optimal average value for any

environment in the class we will speak about self-optimizing policies, whereas

if we are only interested in obtaining the upper limit of the average value
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then we will speak about upper self-optimizing policies. It turns out that the

latter case is much more simple. The next two definitions present conditions

on the environments which will be shown to be sufficient to achieve the two

respective goals.

Definition 4.1 (recoverable). We call an upper explorable environment ν

recoverable if for any history z<k such that ν(x<k|y<k) > 0 there exists a

policy p such that

P (V (ν,p)=V
∗
ν |z<k)=1.

Conditioning on the history z<k means that we take ν-conditional proba-

bilities (conditional on x<k) and first k−1 actions of the policy p are replaced

by y<k.

Recoverability means that after taking any finite sequence of (possibly

sub-optimal) actions it is still possible to obtain the same upper limiting

average value as an optimal policy would obtain. The next definition is

somewhat more complex.

Definition 4.2 (value-stable environments). An explorable environment ν

is value-stable if there exist a sequence of numbers rνi ∈[0,rmax] and two func-

tions dν(k,ε) and ϕν(n,ε) such that 1
n
rν1..n→V ∗

ν , dν(k,ε)=o(k),
∑∞

n=1ϕν(n,ε)<

∞ for every fixed ε, and for every k and every history z<k there exists a pol-

icy p=pz<k
ν such that

P
(
rνk..k+n − rpνk..k+n > dν(k, ε) + nε | z<k

)
≤ ϕν(n, ε). (4.1)

First of all, this condition means that the strong law of large numbers

for rewards holds uniformly over histories z<k; the numbers rνi here can

be thought of as expected rewards of an optimal policy. Furthermore, the

environment is “forgiving” in the following sense: from any (bad) sequence

of k actions it is possible (knowing the environment) to recover up to o(k)

reward loss; to recover means to reach the level of reward obtained by the

optimal policy which from the beginning was taking only optimal actions.

140



That is, suppose that a person A has made k possibly suboptimal actions

and after that “realized” what the true environment was and how to act

optimally in it. Suppose that a person B was from the beginning taking

only optimal actions. We want to compare the performance of A and B

on first n steps after the step k. An environment is value stable if A can

catch up with B except for o(k) gain. The numbers rνi can be thought of as

expected rewards of B; A can catch up with B up to the reward loss dν(k,ε)

with probability ϕν(n,ε), where the latter does not depend on past actions

and observations (the law of large numbers holds uniformly).

Examples of value-stable environments will be considered in Section 4.4.

4.2 Self-optimizing policies for a set of value-

stable environments

In this section we present the main self-optimizingness result along with an

informal explanation of its proof, and a result on upper self-optimizingness,

which turns out to have much more simple conditions.

Theorem 4.3 (value-stable⇒self-optimizing). For any countable set C of

value-stable environments, there exists a policy which is self-optimizing for C.

A formal proof is given in Section 4.6; here we give some intuitive jus-

tification. Suppose that all environments in C are deterministic. We will

construct a self-optimizing policy p as follows: Let νt be the first environ-

ment in C. The algorithm assumes that the true environment is νt and tries

to get ε-close to its optimal value for some (small) ε. This is called an ex-

ploitation part. If it succeeds, it does some exploration as follows. It picks

the first environment νe which has higher average asymptotic value than νt

(V ∗
νe>V

∗
νt) and tries to get ε-close to this value acting optimally under νe. If

it can not get close to the νe-optimal value then νe is not the true environ-

ment, and the next environment can be picked for exploration (here we call
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“exploration” successive attempts to exploit an environment which differs

from the current hypothesis about the true environment and has a higher

average reward). If it can, then it switches to exploitation of νt, exploits it

until it is ε′-close to V ∗
νt , ε

′<ε and switches to νe again this time trying to

get ε′-close to Vνe ; and so on. This can happen only a finite number of times

if the true environment is νt, since V ∗
νt <V

∗
νe . Thus after exploration either

νt or νe is found to be inconsistent with the current history. If it is νe then

just the next environment νe such that V ∗
νe >V

∗
νt is picked for exploration.

If it is νt then the first consistent environment is picked for exploitation

(and denoted νt). This in turn can happen only a finite number of times

before the true environment ν is picked as νt. After this, the algorithm still

continues its exploration attempts, but can always keep within εk→0 of the

optimal value. This is ensured by d(k)=o(k).

The probabilistic case is somewhat more complicated since we can not

say whether an environment is “consistent” with the current history. Instead

we test each environment for consistency as follows. Let ξ be a mixture of

all environments in C. Observe that together with some fixed policy each

environment µ can be considered as a measure on Z∞. Moreover, it can be

shown that (for any fixed policy) the ratio ν(z<n)
ξ(z<n)

is bounded away from zero

if ν is the true environment µ and tends to zero if ν is singular with µ (in fact,

here singularity is a probabilistic analogue of inconsistency). The exploration

part of the algorithm ensures that at least one of the environments νt and νe

is singular with ν on the current history, and a succession of tests ν(z<n)
ξ(z<n)

≥αs

with αs→0 is used to exclude such environments from consideration.

Upper self-optimizingness. Next we consider the task in which our goal

is more moderate. Rather than trying to find a policy which will obtain

the same average limiting value as an optimal one for any environment in a

certain class, we will try to obtain only the optimum upper limiting average.

That is, we will try to find a policy which infinitely often gets as close as

desirable to the maximum possible average value. It turns out that in this

case a much simpler condition is sufficient: recoverability instead of value-
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stability.

Theorem 4.4 (recoverable⇒upper self-optimizing). For any countable class

C of recoverable environments, there exists a policy which is upper self-

optimizing for C.

A formal proof can be found in Section 4.6; its idea is as follows. The

upper self-optimizing policy p to be constructed will loop through all envi-

ronments in C in such a way that each environment is tried infinitely often,

and for each environment the agent will try to get ε-close (with decreasing

ε) to the upper-limiting average value, until it either manages to do so, or a

special stopping condition holds: ν(z<n)
ξ(z<n)

<αs, where αs is decreasing accord-

ingly. This condition necessarily breaks if the upper limiting average value

cannot be achieved.

4.3 Non-recoverable environments

Before proceeding with examples of value-stable environments, we briefly

discuss what can be achieved if an environment does not forgive initial wrong

actions, that is, is not recoverable. It turns out that value-stability can be

defined for non-recoverable environments as well, and optimal — in a worst-

case sense — policies can be identified.

For an environment ν, a policy p and a history z<k such that ν(x<k|y<k)>

0, if there exists a constant V or a constant V such that

P (V (ν,p) = V |z<k)=1, or P (V (ν,p) = V |z<k)=1,

then we say that the upper conditional (on z<k) limiting average or (respec-

tively) lower conditional average value exists, and denote it by V (ν,p,z<k):=

V (or V (ν,p,z<k):=V ). If both upper and lower conditional average limiting

values exist and are equal then we say that that average conditional value

exist and denote it by V (ν,p,(z<k)) :=V (ν,p,z<k)=V (ν,p,z<k)
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Call an environment ν strongly (upper) explorable if for any history z<k

such that ν(x<k|y<k) > 0 there exists a policy pz<k
ν such that V (ν,pz<k

ν )

(V (ν,pz<k
ν )) exists and V (ν,p,z<k)≤V (ν,pz<k

ν ,z<k) (respectively V (ν,p,z<k)≤
V (ν,pz<k

ν ,z<k)) with probability 1 for every policy p. In this case define

V ∗
ν (z<k) :=V (ν,pz<k

ν ) (respectively V
∗
ν(z<k) :=V (ν,pz<k

ν )).

For a strongly explorable environment ν define the worst-case optimal

value

W ∗
ν := inf

k,z<k:ν(x<k>0)
V ∗
ν (z<k),

and for a strongly upper explorable ν define the worst-case upper optimal

value

W
∗
ν := inf

k,z<k:ν(x<k>0)
V

∗
ν(z<k).

In words, the worst-case optimal value is the asymptotic average reward

which is attainable with certainty after any finite sequence of actions has

been taken.

Note that a recoverable explorable environment is also strongly explorable.

A policy p will be called worst-case self-optimizing or worst-case up-

per self-optimizing for a class of environments C if lim inf 1
m
rpν1m ≥W ∗

ν , or

(respectively) lim sup 1
m
rpν1m ≥W

∗
ν with probability 1 for every ν ∈C, where

r1..m :=r1+...+rm.

Definition 4.5 (worst-case value-stable environments). A strongly explorable

environment ν is worst-case value-stable if there exists a sequence of num-

bers rνi ∈ [0,rmax] and two functions dν(k,ε) and ϕν(n,ε) such that 1
n
rν1..n→

W ∗
ν , dν(k,ε)=o(k),

∑∞
n=1ϕν(n,ε)<∞ for every fixed ε, and for every k and

every history z<k there exists a policy p=pz<k
ν such that

P
(
rνk..k+n − rpνk..k+n > dν(k, ε) + nε | z<k

)
≤ ϕν(n, ε). (4.2)

Note that a recoverable environment is value-stable if and only if it is

worst-case value-stable.

Worst-case value stability helps to distinguish between irreversible ac-
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tions (or “traps”) and actions which result only in a temporary loss in per-

formance; moreover, worst-case value-stability means that a temporary loss

in performance can only be short (sublinear).

Finally, we can establish the following result (cf. Theorems 4.3 and 4.4).

Theorem 4.6 (worst-case self-optimizing). (i) For any countable set of

worst-case value-stable environments C there exist a policy p which is

worst-case self-optimizing for C.

(ii) For any countable set of strongly upper explorable environments C there

exist a policy p which is worst-case upper self-optimizing for C.

The proof of this theorem is analogous to the proofs of Theorems 4.3

and 4.4; the differences are explained in Section 4.6.

4.4 Examples

In this section we illustrate the applicability of the results of the previous

section by classes of value-stable environments. These are also examples of

recoverable environments, since recoverability is strictly weaker than value-

stability. In the end of the section we also give some simple examples of

recoverable but not value-stable environments.

We first note that passive environments are value-stable. An environment

is called passive if the observations and rewards do not depend on the actions

of the agent. Sequence prediction task provides a well-studied (and perhaps

the only reasonable) class of passive environments: in this task the agent is

required to give the probability distribution of the next observation given the

previous observations. The true distribution of observations depends only

on the previous observations (and does not depend on actions and rewards).

Since we have confined ourselves to considering finite action spaces, the agent

is required to give ranges of probabilities for the next observation, where the

ranges are fixed beforehand. The reward 1 is given if all the ranges are
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correct and the reward 0 is given otherwise. It is easy to check that any

such environment is value-stable with rνi ≡ 1, d(k,ε)≡ 1, ϕ(n,ε)≡ 0, since,

knowing the distribution, one can always start giving the correct probability

ranges (this defines the policy pν).

Obviously, there are active value stable environments too. The next

proposition provides some conditions on mixing rates which are sufficient for

value-stability; we do not intend to provide sharp conditions on mixing rates

but rather to illustrate the relation of value-stability with mixing conditions.

We say that a stochastic process hk, k ∈ IN satisfies strong α-mixing

conditions with coefficients α(k) if (see e.g. [12])

sup
n∈IN

sup
B∈σ(h1,...,hn),C∈σ(hn+k,... )

|P (B ∩ C)− P (B)P (C)| ≤ α(k),

where σ() stands for the sigma-algebra generated by the random variables

in brackets. Loosely speaking, mixing coefficients α reflect the speed with

which the process “forgets” about its past.

Proposition 4.7 (mixing and value-stability). Suppose that an explorable

environment ν is such that there exist a sequence of numbers rνi and a func-

tion d(k) such that 1
n
rν1..n→V ∗

ν , d(k)=o(k), and for each z<k there exists a

policy p such that the sequence rpνi satisfies strong α-mixing conditions with

coefficients α(k)= 1
k1+ε for some ε>0 and

rνk..k+n − E
(
rpνk..k+n | z<k

)
≤ d(k)

for any n. Then ν is value-stable.

Proof. Using the union bound we obtain

P
(
rνk..k+n − rpνk..k+n > d(k) + nε

)

≤ I
(
rνk..k+n − Erpνk..k+n > d(k)

)
+ P

(∣∣rpνk..k+n − Erpνk..k+n

∣∣ > nε
)
.

The first term equals 0 by assumption and the second term for each ε can
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be shown to be summable using [12, Thm.1.3]: for a sequence of uniformly

bounded zero-mean random variables ri satisfying strong α-mixing condi-

tions the following bound holds true for any integer q∈ [1,n/2]

P (|r1..n| > nε) ≤ ce−ε2q/c + cqα

(
n

2q

)

for some constant c; in our case we just set q=n
ε

2+ε .

(PO)MDPs. Applicability of Theorem 4.3 and Proposition 4.7 can be

illustrated on (PO)MDPs. We note that self-optimizing policies for (un-

countable) classes of finite ergodic MDPs and POMDPs are known [14, 31];

the aim of the present section is to show that value-stability is a weaker

requirement than the requirements of these models, and also to illustrate

applicability of our results. We call µ a (stationary) Markov decision pro-

cess (MDP) if the probability of perceiving xk∈X, given history z<kyk only

depends on yk ∈Y and xk−1. In this case xk ∈X is called a state, X the

state space. An MDP µ is called ergodic if there exists a policy under which

every state is visited infinitely often with probability 1. An MDP with a

stationary policy forms a Markov chain.

An environment is called a (finite) partially observable MDP (POMDP)

if there is a sequence of random variables sk taking values in a finite space

S called the state space, such that xk depends only on sk and yk, and sk+1

is independent of s<k given sk. Abusing notation the sequence s1..k is called

the underlying Markov chain. A POMDP is called ergodic if there exists

a policy such that the underlying Markov chain visits each state infinitely

often with probability 1.

In particular, any ergodic POMDP ν satisfies strong α-mixing conditions

with coefficients decaying exponentially fast in case there is a set H⊂R such

that ν(ri∈H)=1 and ν(ri=r|si=s,yi=y) 6=0 for each y∈Y,s∈S,r∈H,i∈IN .

Thus for any such POMDP ν we can use Proposition 4.7 with d(k,ε) a

constant function to show that ν is value-stable:
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Corollary 4.8 (POMDP⇒value-stable). Suppose that a POMDP ν is er-

godic and there exists a set H⊂R such that ν(ri∈H)=1 and ν(ri= r|si=
s,yi= y) 6=0 for each y∈Y,h∈S,r∈H, where S is the finite state space of

the underlying Markov chain. Then ν is value-stable.

However, it is illustrative to obtain this result for MDPs directly, and in

a slightly stronger form.

Proposition 4.9 (MDP⇒value-stable). Any finite-state ergodic MDP ν is

a value-stable environment.

Proof. Let d(k,ε)=0. Denote by µ the true environment, let z<k be the cur-

rent history and let the current state (the observation xk) of the environment

be a∈X, where X is the set of all possible states. Observe that for an MDP

there is an optimal policy which depends only on the current state. More-

over, such a policy is optimal for any history. Let pµ be such a policy. Let rµi
be the expected reward of pµ on step i. Let l(a,b)=min{n :xk+n=b|xk=a}.
By ergodicity of µ there exists a policy p for which El(b,a) is finite (and

does not depend on k). A policy p needs to get from the state b to one of

the states visited by an optimal policy, and then acts according to pµ. Let

f(n) := nrmax

logn
. We have

P
(∣∣rµk..k+n − rpµk..k+n

∣∣ > nε
)
≤ sup

a∈X
P
(∣∣E

(
r
pµµ
k..k+n|xk = a

)
− rpµk..k+n

∣∣ > nε)
)

≤ sup
a,b∈X

P (l(a, b) > f(n)/rmax)

+ sup
a∈X

P
(∣∣E

(
r
pµµ
k..k+n|xk = a

)
− r

pµµ
k..k+n

∣∣ > nε− 2f(n)
∣∣∣xk = a

)
.

In the last term we have the deviation of the reward attained by the optimal

policy from its expectation. Clearly, both terms are bounded exponentially

in n.

In the examples above the function d(k,ε) is a constant and ϕ(n,ε) decays

exponentially fast. This suggests that the class of value-stable environments
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stretches beyond finite (PO)MDPs. We illustrate this guess by the construc-

tion that follows.

A general scheme for constructing value-stable environment or re-

coverable environments: infinitely armed bandit. Next we present a

construction of environments which cannot be modelled as finite POMDPs

but are value-stable and/or recoverable. Consider the following environment

ν. There is a countable family C′={ζi : i∈IN} of arms, that is, sources gen-

erating i.i.d. rewards 0 and 1 (and, say, empty observations) with some

probability δi of the reward being 1. The action space Y consists of three

actions Y = {g,u,d}. To get the next reward from the current arm ζi an

agent can use the action g. Let i denote the index of the current arm. At

the beginning i = 0, the current arm is ζ0 and then the agent can move

between arms as follows: it can move U(i) arms “up” using the action u

(i.e. i := i+U(i)) or it can move D(i) arms “down” using the action d (i.e.

i := i−D(i) or 0 if the result is negative). The reward for actions u and d is

0. In all the examples below U(i)≡1, that is, the action u takes the agent

one arm up.

Clearly, ν is a POMDP with countably infinite number of states in the

underlying Markov chain, which (in general) is not isomorphic to a finite

POMDP.

Proposition 4.10. If D(i) = i for all i ∈ IN then the environment ν just

constructed is value-stable. If D(i)≡ 1 then ν is recoverable but not neces-

sarily value-stable; that is, there are choices of the probabilities δi such that

ν is not value-stable.

Proof. First we show that in either case (D(i)=i or D(i)=1) ν is explorable.

Let δ=supi∈INδi. Clearly, V (ν,p′)≤δ with probability 1 for any policy p′ . A

policy p which, knowing all the probabilities δi, achieves V (ν,p)=V (ν,p)=

δ=: V ∗
ν a.s., can be easily constructed. Indeed, find a sequence ζ ′j, j ∈ IN ,

where for each j there is i=:ij such that ζ ′j=ζi, satisfying limj→∞δij =δ. The

policy p should carefully exploit one by one the arms ζj, staying with each
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arm long enough to ensure that the average reward is close to the expected

reward with εj probability, where εj quickly tends to 0, and so that switching

between arms has a negligible impact on the average reward. Thus ν can

be shown to be explorable. Moreover, a policy p just sketched can be made

independent on (observation and) rewards.

Next we show if D(i) = i, that is, the action d always takes the agent

down to the first arm, then the environment in value-stable. Indeed, one

can modify the policy p (possibly allowing it to exploit each arm longer) so

that on each time step t (from some t on) we have j(t)≤
√
t, where j(t) is the

number of the current arm on step t. Thus, after any actions-perceptions

history z<k one needs about
√
k actions (one action u and enough actions

d) to catch up with p. So, (4.1) can be shown to hold with d(k,ε)=
√
k, ri

the expected reward of p on step i (since p is independent of rewards, rpνi
are independent), and the rates ϕ(n,ε) exponential in n.

To construct a non-value-stable environment with D(i)≡ 1, simply set

δ0=1 and δj=0 for j>0; then after taking n actions u one can only return to

optimal rewards with n actions (d), that is d(k)=o(n) cannot be obtained.

Still it is easy to check that recoverability is preserved, whatever the choice

of δi.

In the above construction we can also allow the action d to bring the

agent d(i)<i steps down, where i is the number of the current environment

ζ, according to some (possibly randomized) function d(i), thus changing the

function dν(k,ε) and possibly making it non-constant in ε and as close as

desirable to linear.

4.5 Necessity of value-stability

Now we turn to the question of how tight the conditions of value-stability

are. The following proposition shows that the requirement d(k,ε)= o(k) in

(4.1) can not be relaxed.
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Proposition 4.11 (necessity of d(k,ε) = o(k)). There exists a countable

family of deterministic explorable environments C such that

• for any ν ∈ C for any sequence of actions y<k there exists a policy p

such that

rνn..k+n = rpνk..k+n for all n ≥ k,

where rνi are the rewards attained by an optimal policy pν (which from

the beginning was acting optimally), but

• for any policy p there exists an environment ν∈C such that V (ν,p)<V ∗
ν .

Clearly, each environment from such a class C satisfies the value stability

conditions with ϕ(n,ε)≡0 except d(k,ε)=k 6=o(k).

Proof. There are two possible actions yi∈{a,b}, three possible rewards ri∈
{0,1,2} and no observations.

Construct the environment ν0 as follows: if yi=a then ri=1 and if yi=b

then ri=0 for any i∈IN .

For each i let ni denote the number of actions a taken up to step i:

ni :=#{j≤i :yj=a}. For each s>0 construct the environment νs as follows:

ri(a)= 1 for any i, ri(b)= 2 if the longest consecutive sequence of action b

taken has length greater than ni and ni≥s; otherwise ri(b)=0.

Suppose that there exists a policy p such that V (νi,p)=V
∗
νi

for each i>0

and let the true environment be ν0. By assumption, for each s there exists

such n that

#{i ≤ n : yi = b, ri = 0} ≥ s > #{i ≤ n : yi = a, ri = 1}

which implies V (ν0,p)≤1/2<1=V ∗
ν0

.

It is also easy to show that the uniformity of convergence in (4.1) can

not be dropped. That is, if in the definition of value-stability we allow

the function ϕ(n,ε) to depend additionally on the past history z<k then
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Theorem 4.3 does not hold. This can be shown with the same example as

constructed in the proof of Proposition 4.11, letting d(k,ε)≡ 0 but instead

allowing ϕ(n,ε,z<k) to take values 0 and 1 according to the number of actions

a taken, achieving the same behaviour as in the example provided in the last

proof.

Moreover, we show that the requirement that the class C to be learnt

is countable can not be easily withdrawn. Indeed, consider the class of all

deterministic passive environments in the sequence prediction setting. In

this task an agent gets the reward 1 if yi=oi+1 and the reward 0 otherwise,

where the sequence of observation oi is deterministic. Different sequences

correspond to different environments. As it was mentioned before, any such

environment ν is value-stable with dν(k,ε)≡1, ϕν(n,ε)≡0 and rνi ≡1. Ob-

viously, the class of all deterministic passive environments is not countable.

Since for every policy p there is an environment on which p errs exactly

on each step, the class of all deterministic passive environments can not be

learned. Therefore, the following statement is valid:

Proposition 4.12. There exist (uncountable) classes of value-stable envi-

ronments for which there are no self-optimizing policies.

However, strictly speaking, even for countable classes value-stability is

not necessary for self-optimizingness. This can be demonstrated on the class

νi : i > 0 from the proof of Proposition 4.11. (Whereas if we add ν0 to the

class a self-optimizing policy no longer exists.) So we have the following:

Proposition 4.13. There are countable classes of not value-stable environ-

ments for which self-optimizing policies exist.

4.6 Longer proofs

In each of the proofs, a self-optimizing (or upper self-optimizing) policy p

will be constructed. When the policy p has been defined up to a step k, an
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environment µ, endowed with this policy, can be considered as a measure

on Zk. We assume this meaning when we use environments as measures on

Zk (e.g. µ(z<i)).

Proof of Theorem 4.3. A self-optimizing policy p will be constructed as

follows. On each step we will have two polices: pt which exploits and pe

which explores; for each i the policy p either takes an action according to

pt (p(z<i)=p
t(z<i)) or according to pe (p(z<i)=p

e(z<i)), as will be specified

below.

In the algorithm below, i denotes the number of the current step in the

sequence of actions-observations. Let n=1, s=1, and jt= je=0. Let also

αs = 2−s for s∈ IN . For each environment ν, find such a sequence of real

numbers ενn that ενn→0 and
∑∞

n=1ϕν(n,ε
ν
n)≤∞.

Let ß : IN→C be such a numbering that each ν ∈C has infinitely many

indices. For all i>1 define a measure ξ as follows

ξ(z<i) =
∑

ν∈C
wνν(z<i), (4.3)

where wν∈R are (any) such numbers that
∑

νwν=1 and wν>0 for all ν∈C.

Define T . On each step i let

T ≡ Ti :=

{
ν ∈ C :

ν(z<i)

ξ(z<i)
≥ αs

}

Define νt. Set νt to be the first environment in T with index greater

than ß(jt). In case this is impossible (that is, if T is empty), increment s,

(re)define T and try again. Increment jt.

Define νe. Set νe to be the first environment with index greater than ß(je)

such that V ∗
νe>V

∗
νt and νe(z<k)>0, if such an environment exists. Otherwise

proceed one step (according to pt) and try again. Increment je.

Consistency. On each step i (re)define T . If νt /∈T , define νt, increment s

and iterate the infinite loop. (Thus s is incremented only if νt is not in T or
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if T is empty.)

Start the infinite loop. Increment n.

Let δ :=(V ∗
νe−V ∗

νt)/2. Let ε :=εν
t

n . If ε<δ set δ=ε. Let h=je.

Prepare for exploration.

Increment h. The index h is incremented with each next attempt of

exploring νe. Each attempt will be at least h steps in length.

Let pt=py<i

νt and set p=pt.

Let ih be the current step. Find k1 such that

ih
k1
V ∗
νt ≤ ε/8 (4.4)

Find k2>2ih such that for all m>k2

∣∣∣∣
1

m− ih
rν

t

ih+1..m − V ∗
νt

∣∣∣∣ ≤ ε/8. (4.5)

Find k3 such that

hrmax/k3<ε/8. (4.6)

Find k4 such that for all m>k4

1

m
dνe(m,ε/4)≤ ε/8,

1

m
dνt(m,ε/8)≤ ε/8 and

1

m
dνt(ih,ε/8)≤ ε/8. (4.7)

Moreover, it is always possible to find such k>max{k1,k2,k3,k4} that

1

2k
rν

e

k..3k ≥
1

2k
rν

t

k..3k + δ. (4.8)

Iterate up to the step k.

Exploration. Set pe = py<n
νe . Iterate h steps according to p= pe. Iterate

further until either of the following conditions breaks

(i)
∣∣rνek..i−rpνk..i

∣∣<(i−k)ε/4+dνe(k,ε/4),

(ii) i<3k.

154



(iii) νe∈T .

Observe that either (i) or (ii) is necessarily broken.

If on some step νt is excluded from T then the infinite loop is iterated.

If after exploration νe is not in T then redefine νe and iterate the infinite

loop. If both νt and νe are still in T then return to “Prepare for exploration”

(otherwise the loop is iterated with either νt or νe changed).

End of the infinite loop and the algorithm.

Let us show that with probability 1 the “Exploration” part is iterated

only a finite number of times in a row with the same νt and νe.

Suppose the contrary, that is, suppose that (with some non-zero prob-

ability) the “Exploration” part is iterated infinitely often while νt,νe ∈ T .

Observe that (4.1) implies that the νe-probability that (i) breaks is not

greater than ϕνe(i−k,ε/4); hence by Borel-Cantelli lemma the event that (i)

breaks infinitely often has probability 0 under νe.

Suppose that (i) holds almost every time. Then (ii) should be broken

except for a finite number of times. We can use (4.4), (4.5), (4.7) and (4.8)

to show that with probability at least 1−ϕνt(k−ih,ε/4) under νt we have
1
3k
rpν

t

1..3k≥V ∗
νt+ε/2. Again using Borel-Cantelli lemma and k>2ih we obtain

that the event that (ii) breaks infinitely often has probability 0 under νt.

Thus (at least) one of the environments νt and νe is singular with respect

to the true environment ν given the described policy and current history.

Denote this environment by ν ′. It is known (see e.g. [21, Thm.26]) that if

measures µ and ν are mutually singular then µ(x1,...,xn)
ν(x1,...,xn)

→∞ µ-a.s. Thus

ν ′(z<i)

ν(z<i)
→ 0 ν-a.s. (4.9)

Observe that (by definition of ξ) ν(z<i)
ξ(z<i)

is bounded. Hence using (4.9) we can

see that
ν ′(z<i)

ξ(z<i)
→ 0 ν-a.s.

Since s and αs are not changed during the exploration phase this implies
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that on some step ν ′ will be excluded from T according to the “consistency”

condition, which contradicts the assumption. Thus the “Exploration” part

is iterated only a finite number of times in a row with the same νt and νe.

Observe that s is incremented only a finite number of times since ν′(z<i)
ξ(z<i)

is bounded away from 0 where ν ′ is either the true environment ν or any

environment from C which is equivalent to ν on the current history. The

latter follows from the fact that ξ(z<i)
ν(z<i)

is a submartingale with bounded

expectation, and hence, by the submartingale convergence theorem (see e.g.

[30]) converges with ν-probability 1.

Let us show that from some step on ν (or an environment equivalent to

it) is always in T and selected as νt. Consider the environment νt on some

step i. If V ∗
νt>V

∗
ν then νt will be excluded from T since on any optimal for

νt sequence of actions (policy) measures ν and νt are singular. If V ∗
νt <V

∗
ν

than νe will be equal to ν at some point, and, after this happens sufficient

number of times, νt will be excluded from T by the “exploration” part of

the algorithm, s will be decremented and ν will be included into T . Finally,

if V ∗
νt =V

∗
ν then either the optimal value V ∗

ν is (asymptotically) attained by

the policy pt of the algorithm, or (if pνt is suboptimal for ν) 1
i
rpν

t

1..i <V
∗
νt−ε

infinitely often for some ε, which has probability 0 under νt and consequently

νt is excluded from T .

Thus, the exploration part ensures that all environments not equivalent

to ν with indices smaller than ß(ν) are removed from T and so from some

step on νt is equal to (an environment equivalent to) the true environment

ν.

We have shown in the “Exploration” part that n→∞, and so εν
t

n → 0.

Finally, using the same argument as before (Borel-Cantelli lemma, (i) and

the definition of k) we can show that in the “exploration” and “prepare for

exploration” parts of the algorithm the average value is within εν
t

n of V ∗
νt

provided the true environment is (equivalent to) νt. �

Proof of Theorem 4.4. Let ß:IN→C be such a numbering that each ν∈C

has infinitely many indices. Define the measure ξ as in (4.3). The policy p
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acts according to the following algorithm.

Set εs=αs=2−s for s∈IN , set j=1, s=n=1. The integer i will denote

the current step in time.

Do the following ad infinitum. Set ν to be the first environment in C

with index greater than ß(j). Find the policy pν which achieves the upper

limiting average value with probability one (such policy exists by definition

of recoverability). Act according to pν until either

∣∣∣∣
1

i
rpν1..i − V

∗
(p, pν)

∣∣∣∣ < εn (4.10)

or
ν(z<i)

ξ(z<i)
< αs. (4.11)

Increment n, s, i.

It can be easily seen that one of the conditions necessarily breaks. Indeed,

either in the true environment the optimal upper limiting average value for

the current environment ν can be achieved by the optimal policy pν , in which

case (4.10) breaks; or it cannot be achieved, which means that ν and ξ are

singular, which implies that (4.11) will be broken (see e.g. [21, Thm.26];

cf. the same argument in the proof of Theorem 4.3). Since ν equals the

true environment infinitely often and εn → 0 we get the statement of the

theorem.

Proof of Theorem 4.6 is analogous to the proofs of Theorems 4.3 and 4.4,

except for the following. Instead of the optimal average value V ∗
ν and upper

optimal average value V
∗
ν the values V ∗

ν (z<k) and V
∗
ν(z<k) should be used,

and they should be updated after each step k.
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Chapter 5

Classification [R9, R10]

The problem of classification (or pattern recognition) consists in assigning

a (discrete-valued) label Y for an object X, on the basis of a sample of

object-label pairs (X1,Y1),...,(Xn,Yn).

Classification is perhaps the one learning problem for which the question

of learnability is well-understood; at least, this is the case under the assump-

tion that the examples (Xi,Yi) are independent and identically distributed.

While this assumption is very strong, it may be considered reasonable for a

variety of applications (with some notable exceptions which we will consider

below). In this setting, the question of statistical learnability is effectively

solved by the Vapnik-Chervonenkis theory; those classes of functions f can

be learned (from finite samples) that have finite VC dimension [89]. In this

case, one can use empirical risk minimization as a learning rule.

The contribution to this area presented here is two-fold. First, it is shown

that the i.i.d. requirement on the distribution of samples is redundant, in

the sense that most of the learning algorithms developed to work under this

setting can be provably used in a more general (and, as it is argued below,

more natural for many applications) setting. These results (extracted from

my Ph.D. thesis) are presented in Section 5.1.

Second, it is demonstrated that the characterization of learnability pre-

sented by the VC theory is not quite complete, in the sense the number
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of samples required to learn a classification function increases from linear

in the VC dimension to arbitrary fast-growing functions, if one limits the

consideration to computable methods only. This result is presented in Sec-

tion 5.2.

5.1 Relaxing the i.i.d. assumption in classifica-

tion [R10]

As it was mentioned, the majority of methods developed for solving the

problem of classification rely on the assumptions that the examples are in-

dependent and identically distributed. This section is devoted to relaxing

this assumption.

Consider the following example, that helps to motivate this problem.

Suppose we are trying to recognise a hand-written text. Obviously, letters

in the text are dependent (for example, we strongly expect to meet “u” after

“q”). This seemingly implies that classification methods can not be applied

to this task, which is, however, one of their classical applications.

We show that the following two assumptions on the distribution of ex-

amples are sufficient for classification. First, that the dependence between

objects is only that between their labels and the type of object-label depen-

dence does not change in time. Second, the rate of occurrence of each label

should keep above some positive threshold.

These intuitive ideas lead us to the following model (to which we refer

as “the conditional model”). The labels y∈Y are drawn according to some

unknown (but fixed) distribution over the set of all infinite sequences of

labels. There can be any type of dependence between labels; moreover, we

can assume that we are dealing with any (fixed) combinatorial sequence of

labels. However, in this sequence the rate of occurrence of each label should

keep above some positive threshold. For each label y the corresponding

object x∈X is generated according to some (unknown but fixed) probability
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distribution P (x|y). All the rest is as in the i.i.d. model.

The main difference from the i.i.d. model is in that in the conditional

model the distribution of labels is arbitrary (apart from the frequency thresh-

old requirement).

In this section we provide a tool for obtaining estimations of probabil-

ity of error of a predictor in the conditional model from an estimation of

the probability of error in the i.i.d. model. The general theorems about

extending results concerning performance of a predictor to the conditional

model are illustrated on two classes of predictors. First, we extend weak

consistency results concerning partitioning and nearest neighbour estimates

from the i.i.d. model to the conditional model. Second, we use some results

of Vapnik-Chervonenkis theory to estimate performance in the conditional

model (on finite amount of data) of predictors minimising empirical risk,

and also obtain some strong consistency results.

These results on specific predictions methods are obtained as applications

of the following observation. The only assumption on a predictor under

which a predictor works in the new model as well as in the i.i.d. model

is what we call tolerance to data (a stability-kind condition): in any large

dataset there is no small subset which strongly changes the probability of

error. This property should also hold with respect to permutations. This

assumption on a predictor should be valid in the i.i.d. model. Thus, the

results achieved in the i.i.d. model can be extended to the conditional model;

this concerns distribution–free results as well as distribution–specific, results

on the performance on finite samples as well as asymptotic results.

Related work. Various approaches to relaxing the i.i.d. assumption in

learning tasks have been proposed in the literature. Thus, in [56, 55] the the

nearest neighbour and kernel estimators are studied in the setting of regres-

sion estimation with continuous regression function, under the assumption

that labels are conditionally independent given their objects, while objects

form any individual sequence (which is the opposite to what we do). There

are also several approaches in which different types of assumptions on the
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joint distribution of objects and labels are made; then the authors construct

a predictor or a class of predictors, to work well under the assumptions made.

Thus, in [34, 3] a generalisation of PAC approach to Markov chains with fi-

nite or countable state space is presented. There is also a track of research

on prediction under the assumption that the distribution generating exam-

ples is stationary and ergodic. The basic difference from our learning task,

apart from different probabilistic assumption, is in that we are only con-

cerned with object-label dependence, while in predicting ergodic sequences

it is label-label (time series) dependence that is of primary interest. On this

task see [78, 4, 64, 66] and references therein.

5.1.1 Definitions and general results

Consider a sequence of examples (x1,y1),(x2,y2),...; where each example zi :=

(xi,yi) consists of an object xi∈X and a label yi :=η(xi)∈Y. Here X is a

measurable space, Y :={0,1}, and η :X→Y is some deterministic function.

For simplicity, we made the assumption that the space Y is binary, but

all results easily extend to the case of any finite space Y. The notation

Z :=X×Y is used for the measurable space of examples. Objects are drawn

according to some probability distribution P on X∞ (and labels are defined

by η). Thus we consider only the case of deterministically defined labels

(that is, the noise-free model).

The notation P is used for distributions on X∞ while the symbol P is

reserved for distributions on X. In the latter case P∞ denotes the i.i.d.

distribution on X∞ generated by P . Correspondingly we will use symbols

E, E and E∞ for expectations over spaces X∞ and X.

The traditional assumption about the distribution P generating objects

is that examples are independently and identically distributed (i.i.d.) ac-

cording to some distribution P on X (i.e. P=P∞).

Here we replace this assumption with the following two conditions.
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First, for any n∈N and for any measurable set A⊂X

P(Xn∈A |Yn,X1,Y1,...,Xn−1,Yn−1)=P(Xn∈A |Yn) (5.1)

(i.e. some versions of conditional probabilities coincide). This condition

looks very much like Markov condition which requires that each object de-

pends on the past only through its immediate predecessor. The condition

(5.1) says that each object depends on the past only through its label.

Second, for any y∈Y, for any n1,n2∈N and for any measurable set A⊂X

P(Xn1 ∈A |Yn1 =y)=P(Xn2 ∈A |Yn2 =y) (5.2)

(i.e. the process is uniform in time; (5.1) allows dependence in n).

Note that the first condition means that objects are conditionally inde-

pendent given labels (on conditional independence see [22]).

Definition 5.1. Under the conditions (5.1) and (5.2) we say that objects are

conditionally independent and identically distributed (conditionally i.i.d).

For each y ∈Y denote the distribution P(Xn | Yn = y) by Py (it does

not depend on n by (5.2) ). Clearly, the distributions P0 and P1 define

some distributions P on X up to a parameter p∈ [0,1]. That is, Pp(A) =

pP1(A)+(1−p)P0(A) for any measurable set A⊂X and for each p∈ [0,1].

Thus with each distribution P satisfying the assumptions (5.1) and (5.2) we

will associate a family of distributions Pp, p∈ [0,1].

The assumptions of the conditional model can be also interpreted as

follows. Assume that we have some individual sequence (yn)n∈N of labels

and two probability distributions P0 and P1 on X, such that there exists

sets X0 and X1 in X such that P1(X1)=P0(X0)=1 and P0(X1)=P1(X0)=0

(i.e. X0 and X1 define some function η). Each example xn ∈X is drawn

according to the distribution Pyn ; examples are drawn independently of each

other.
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A predictor is a measurable function Γn :=Γ(x1,y1,...,xn,yn,xn+1) taking

values in Y (more formally, a family of functions indexed by n).

The probability of error of a predictor Γ on each step n is defined as

errn(Γ,P,z1,...,zn) :=P
{
(x,y)∈Z :y 6=Γn(z1,...,zn,x)

}

(zi, 1≤i≤n are fixed and the probability is taken over zn+1). We will some-

times omit some of the arguments of errn when it can cause no confusion;

in particular, we will often use a short notation P(errn(Γ,Z1,...,Zn)>ε) and

an even shorter one P(errn(Γ)>ε) in place of

P
{
z1,...,zn : errn(Γ,P,z1,...,zn)>ε

}
.

For a pair of distributions P0 and P1 and any δ∈(0,1/2) define

▽δ(P0,P1,n,ε) := sup
p∈[δ,1−δ]

P∞
p (errn(Γ)>ε) (5.3)

For a predictor Γ and a distribution P on X define

∆(P,n,z1,...,zn) := max
j≤κn; π:{1,...,n}→{1,...,n}

|errn(Γ,P∞,z1,...,zn)−

errn−j(Γ,P
∞,zπ(1),...,zπ(n−j))|.

Define the tolerance to data of Γ as

∆(P,n,ε) :=P n
(
∆(P,n,Z1,...,Zn)>ε

)
(5.4)

for any n ∈ N, any ε > 0 and κn :=
√
nlogn. Furthermore, for a pair of

distributions P0 and P1 and any δ∈(0,1/2) define

∆δ(P0,P1,n,ε) := sup
p∈[δ,1−δ]

∆(Pp,n,ε).

Tolerance to data means, in effect, that in any typical large portion of
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data there is no small portion that changes strongly the probability of error.

This property should also hold with respect to permutations.

We will also use another version of tolerance to data, in which instead of

removing some examples we replace them with an arbitrary sample z′j,...,z
′
n

consistent with η:

∆̄(P,z1,...,zn) := sup
j<κn;π:{1,...,n}→{1,...,n};z′n−j ,...,z

′
n

|errn(Γ,P∞,z1,...,zn)−errn(Γ,P
∞,ζ1,...,ζn)|,

where ζπ(i) :=zπ(i) if i<n−j and ζπ(i) :=z′i otherwise; the maximum is taken

over all z′i, n−j<i≤n consistent with η. Define

∆̄(P,n,ε) :=P n
(
∆̄(P,n,Z1,...,Zn)>ε

)

and

∆̄δ(P0,P1,n,ε) := sup
p∈[δ,1−δ]

∆̄(Pp,n,ε).

The same notational convention will be applied to ∆ and ∆̄ as to errn.

Various notions similar to tolerance to data have been studied in litera-

ture. Perhaps first they appeared in connection with deleted or condensed

estimates (see e.g. [74]), and were later called stability (see [13, 48] for

present studies of different kinds of stability, and for extensive overviews).

Naturally, such notions arise when there is a need to study the behaviour of

a predictor when some of the training examples are removed. These notions

are much similar to what we call tolerance to data, only we are interested in

the maximal deviation of probability of error while usually it is the average

or minimal deviations that are estimated.

A predictor developed to work in the off-line setting should be, loosely

speaking, tolerant to small changes in a training sample. The next theorem

shows under which conditions this property of a predictor can be utilised.

Theorem 5.2. Suppose that a distribution P generating examples is such
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that the objects are conditionally i.i.d, i.e. P satisfies (5.1) and (5.2). Fix

some δ∈ (0,1/2], let p(n) := 1
n
#{i≤n :Yi=1} and Cn :=P(δ≤ p(n)≤ 1−δ)

for each n∈N. Let also αn :=
1

1−1/
√
n
. For any predictor Γ and any ε>0 we

have

P(errn(Γ)>ε)≤C−1
n αn

(
▽δ(P0,P1,n+κn,δε/2)

+∆δ(P0,P1,n+κn,δε/2)
)
+(1−Cn), (5.5)

and

P(errn(Γ)>ε)≤C−1
n αn

(
▽δ(P0,P1,n,δε/2)

+∆̄δ(P0,P1,n,δε/2)
)
+(1−Cn). (5.6)

The proofs for this section can be found in Section 5.3.1.

The theorem says that if we know with some confidence Cn that the rate

of occurrence of each label is not less than some (small) δ, and have some

bounds on the error rate and tolerance to data of a predictor in the i.i.d.

model, then we can obtain bounds on its error rate in the conditional model.

Thus we have a tool for estimating the performance of a predictor on each

finite step n. In Section 5.1.3 we will show how this result can be applied to

predictors minimising empirical risk. However, if we are only interested in

asymptotic results the formulations can be somewhat simplified.

Consider the following asymptotic condition on the frequencies of labels.

Define p(n):= 1
n
#{i≤n :Yi=1}. We say that the rates of occurrence of labels

are bounded from below if there exist such δ, 0<δ<1/2 that

lim
n→∞

P(p(n)∈ [δ,1−δ])=1. (5.7)

As the condition (5.7) means Cn → 1 we can derive from Theorem 5.2

the following corollary.

Corollary 5.3. Suppose that a distribution P satisfies (5.1), (5.2), and
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(5.7) for some δ∈(0,1/2]. Let Γ be such a predictor that

lim
n→∞

▽δ(P0,P1,n,ε)=0 (5.8)

and either

lim
n→∞

∆δ(P0,P1,n,ε)=0 (5.9)

or

lim
n→∞

∆̄δ(P0,P1,n,ε)=0 (5.10)

for any ε>0. Then

E(errn(Γ,P,Z1,...,Zn))→0.

In Section 5.1.2 we show how this statement can be applied to prove weak

consistence of some classical nonparametric predictors in the conditional

model.

5.1.2 Application to classical nonparametric predictors

In this section we will consider two types of classical nonparametric predic-

tors: partitioning and nearest neighbour classifiers.

The nearest neighbour predictor assigns to a new object xn+1 the label

of its nearest neighbour among x1,...,xn:

Γn(x1,y1,...,xn,yn,xn+1) :=yj,

where j :=argmini=1,...,n‖x−xi‖.
For i.i.d. distributions this predictor is also consistent, i.e.

E∞(errn(Γ,P
∞))→0,

for any distribution P on X (see [27]).

We generalise this result as follows.
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Theorem 5.4. Let Γ be the nearest neighbour classifier. Let P be some

distribution on X∞ satisfying (5.1), (5.2) and (5.7). Then

E(errn(Γ,P))→0.

The proofs for this section can be found in Section 5.3.2.

A partitioning predictor on each step n partitions the object space X=

Rd, d∈N into disjoint cells An
1 ,A

n
2 ,... and classifies in each cell according to

the majority vote:

Γ(z1,...,zn,x) :=

{
0 if

∑n
i=1Iyi=1Ixi∈A(x)≤

∑n
i=1Iyi=0Ixi∈A(x)

1 otherwise,

where A(x) denotes the cell containing x. Define

diam(A) := sup
x,y∈A

‖x−y‖

and

N(x) :=
n∑

i=1

Ixi∈A(x).

It is a well known result (see, e.g. [26]) that a partitioning predictor is

weakly consistent, provided certain regulatory conditions on the size of cells.

More precisely, let Γ be a partitioning predictor such that diam(A(X))→0

in probability and N(X)→∞ in probability. Then for any distribution P

on X

E∞(errn(Γ,P
∞))→0.

We generalise this result to the case of conditionally i.i.d. examples as

follows.

Theorem 5.5. Let Γ be a partitioning predictor such that diam(A(X))→0

in probability and N(X)→∞ in probability, for any distribution generating
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i.i.d. examples. Then

E(errn(Γ,P))→0

for any distribution P on X∞ satisfying (5.1), (5.2) and (5.7).

Observe that we only generalise results concerning weak consistency of

(one) nearest neighbour and non-data-dependent partitioning rules. More

general results exist (see e.g. [28]), in particular for data-dependent rules.

However, we do not aim to generalise state-of-the-art results in nonparamet-

ric classification, but rather to illustrate that weak consistency results can

be extended to the conditional model.

5.1.3 Application to empirical risk minimisation.

In this section we show how to estimate the performance of a predictor min-

imising empirical risk (over certain class of functions) using Theorem 5.2.

To do this we estimate the tolerance to data of such predictors, using some

results from Vapnik-Chervonenkis theory. For the overviews of Vapnik-

Chervonenkis theory see [89, 26].

Let X=Rd for some d∈N and let C be a class of measurable functions

of the form ϕ :X→Y = {0,1}, called decision functions. For a probabil-

ity distribution P on X define err(ϕ,P ) :=P (ϕ(Xi) 6= Yi). If the examples

are generated i.i.d. according to some distribution P , the aim is to find a

function ϕ from C for which err(ϕ,P ) is minimal:

ϕP =argminϕ∈Cerr(ϕ,P ).

In the theory of empirical risk minimisation this function is approximated

by the function

ϕ∗
n :=argmin

ϕ∈C
errn(ϕ)

where errn(ϕ) :=
∑n

i=1Iϕ(Xi) 6=Yi
is the empirical error functional, based on a

sample (Xi,Yi), i=1,...,n. Thus, Γn(z1,...,zn,xn+1) :=ϕ
∗
n(xn+1) is a predictor
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minimising empirical risk over the class of functions C.

One of the basic results of Vapnik-Chervonenkis theory is the estimation

of the difference of probabilities of error between the best possible function

in the class (ϕP ) and the function which minimises empirical error:

P
(
errn(Γ,P

∞)−err(ϕP ,P )>ε
)
≤8S(C,n)e−nε2/128,

where the symbol S(C,n) is used for the n-th shatter coefficient of the class

C:

S(C,n) := max
A:={x1,...,xn}⊂X

#{C∩A :C∈C}.

Thus,

P (errn(Γ)>ε)≤Ierr(ϕP ,P )>ε/2+8S(C,n)e−nε2/512.

A particularly interesting case is when the optimal rule belongs to C, i.e.

when η∈C. This situation was investigated in e.g. [88]. Obviously, in this

case ϕP ∈C and err(ϕP ,P )=0 for any P . Moreover, a better bound exists

(see [89, 26])

P (errn(Γ,P )>ε)≤2S(C,n)e−nε/2.

Theorem 5.6. Let C be a class of decision functions and let Γ be a pre-

dictor which for each n∈N minimises errn over C on the observed exam-

ples (z1,...,zn). Fix some δ ∈ (0,1/2], let p(n) := 1
n
#{i ≤ n : Yi = 0} and

Cn :=P(δ≤p(n)≤1−δ) for each n∈N. Assume n>4/ε2 and let αn :=
1

1−1/
√
n
.

We have

∆(P0,P1,n,ε)≤16S(C,n)e−nε2/512. (5.11)

(which does not depend on the distributions P0 and P1) and

P(errn(Γ,P)>ε)≤I2err(ϕP1/2
,P1/2)>ε/2 (5.12)

+16αnC
−1
n S(C,n)e−nδ2ε2/2048+(1−Cn).
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If in addition η∈C then

∆(n,ε)≤4S(C,2n)2−nε)/8 (5.13)

and

P(errn(Γ,P)>ε)≤4αnC
−1
n S(C,n)e−nδε/16+(1−Cn). (5.14)

Thus, if we have bounds on the VC dimension of some class of classifiers,

we can obtain bounds on the performance of predictors minimising empirical

error for the conditional model.

Next we show how strong consistency results can be achieved in the

conditional model. For general strong universal consistency results (with

examples) see [60, 89].

Denote the VC dimension of C by V (C):

V (C) :=max{n∈N :S(C,n)=2n}.

Using Theorem 5.6 and Borel-Cantelli lemma, we obtain the following corol-

lary.

Corollary 5.7. Let Ck, k ∈ N be a sequence of classes of decision func-

tions with finite VC dimension such that limk→0infϕ∈Ckerr(ϕ,P )=0 for any

distribution P on X. If kn→∞ and V (Ckn )logn
n

→0 as n→∞ then

err(Γ,P)→0P−a.s.

where Γ is a predictor which in each trial n minimises empirical risk over

Ckn and P is any distribution satisfying (5.1), (5.2) and
∑∞

n=1(1−Cn)<∞.

In particular, if we use bound on the VC dimension on classes of neural

networks provided in [8] then we obtain the following corollary.
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Corollary 5.8. Let Γ be a classifier that minimises the empirical error over

the class C(k), where C(k) is the class of neural net classifiers with k nodes in

the hidden layer and the threshold sigmoid, and k→∞ so that klogn/n→0

as n→∞. Let P be any distribution on X∞ satisfying (5.1) and (5.2) such

that
∑∞

n=1(1−Cn)<∞. Then

lim
n→∞

errn(Γ)=0 P−a.s.

5.2 Computational limitations on the statisti-

cal characterizations of learnability in clas-

sification [R9]

In this section we investigate the question of whether finite-step performance

guarantees can be obtained if we consider the class of computable (on some

Turing machine) classification methods. To make the problem more realistic,

we assume that the target classification function η (that maps objects to

labels) is also computable. Two definitions of target functions are considered:

they are either of the form {0,1}∞→{0,1} or {0,1}t→Y for some t (which

can be different for different target functions).

We show that there are classes Ck of functions for which the number

of examples needed to approximate the classification problem to a certain

accuracy grows faster in the VC dimension of the class than any computable

function (rather than being linear as in the statistical setting, [89]). In

particular this holds if Ck is the class of all computable functions of length

not greater than k, in which case k is a (trivial) upper bound of the VC

dimension.

Importantly, the same negative result holds even if we allow the data to

be generated “actively,” e.g., by some algorithm, rather than just by some

fixed probability distribution.

To obtain this negative result we consider the task of data compression:
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an impossibility result for the task of data compression allows us to estimate

the sample complexity for classification. We also analyse how tight the

negative result is, and show that for some simple computable rule (based on

the nearest neighbour estimate) the sample complexity is finite in k, under

different definitions of computational classification task.

Related work. In comparison to the vast literature on classification,

relatively little attention had been paid to the “computable” version of the

task. There is a track of research in which different concepts of computable

learnability of functions on countable domains are studied, see [44]. Another

approach is to consider classification methods as functions computable in

polynomial time, or under other resource constraints. This approach leads

to many interesting results, but it usually considers more specific settings of

a learning problem, such as learning DNFs, finite automata, etc.

It may be interesting to observe the connection of the results for classi-

fication with another learning problem, sequence prediction. In one of its

simplest forms this task is as follows: it is required to predict the next out-

come of a deterministic sequence of symbols, where the sequence is assumed

to be computable (is generated by some program). There is a predictor

which can solve any such problem and the number of errors it makes is at

most linear in the length of the program generating the sequence (see, e.g.

[41], Section 3.2.3). Such a predictor is not computable. Trivially, there is

no computable predictor for all computable sequences, since for any com-

putable predictor a computable sequence can be constructed on which it

errs at every trial, simply by reversing the predictions. Thus we have linear

number of errors for non-computable predictor versus infinitely many errors

for any computable one; whereas in classification, as we show, it is linear

for a non-computable predictor versus growing faster than any computable

function for any computable predictor.
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5.2.1 Notation and definitions

By computable functions we mean functions computable on a Turing ma-

chine with an input tape, output tape, and some working tapes, the number

of which is supposed to be fixed throughout the section.

All computable functions can be encoded (in a canonical way) and thus

the set of computable functions can be effectively enumerated. Fix some

canonical enumeration and define the length of a computable function η as

l(η) := |n| where n is the minimal number of η in such enumeration. For an

introduction to the computability theory see, for example, [73].

From the set of all computable functions we are interested in labelling

functions, that is, in functions which represent classification problems. In

classification a labelling function is usually a function from the interval [0,1]

or [0,1]d (sometimes more general spaces are considered) to a finite space

Y := {0,1}. As we are interested in computable functions, we should con-

sider instead total computable functions of the form {0,1}∞→Y. However,

since we require that labelling functions are total (defined on all inputs)

and computable, it can be easily shown (e.g. with König’s lemma [51]) that

any such function never scans its input tape further than a certain position

independent of the input. Thus apparently the smallest meaningful class of

computable labelling functions that we can consider is the class of functions

of the form {0,1}t→Y for some t. So, we call a partial recursive function

(or program) η a labelling function if there exists such t=: t(η)∈N that η

accepts all strings from Xt := {0,1}t and only such strings. (It is not es-

sential for this definition that η is not a total function. An equivalent for

our purposes definition would be as follows: a labelling function is any total

function which outputs the string 00 on all inputs except on the strings of

some length t=: t(η), on each of which it outputs either 0 or 1.)

It can be argued that this definition of a labelling function is too restric-

tive to approximate well the notion of a real function. However, as we are

after negative results (for the class of all labelling functions), it is not a dis-
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advantage. Other possible definitions are discussed in Section 5.2.3, where

we are concerned with tightness of our negative results. In particular, all

the results hold true if a target function is any total computable function of

the form {0,1}∞→Y.

Define the task of computational classification as follows. An (unknown)

labelling function η is fixed. The objects x1,...,xn∈X are drawn according

to some distribution P on Xt(η). The labels yi are defined according to η,

that is yi :=η(xi).

A predictor is a family of functions ϕn(x1,y1,...,xn,yn,x) (indexed by n)

taking values in Y , such that for any n and any t∈N, if xi∈Xt for each i,

1≤ i≤n, then the marginal ϕ(x) is a total function on Xt. We will often

identify ϕn with its marginal ϕn(x) when the values of other variables are

clear. Thus, given a sample x1,y1,...,xn,yn of labelled objects of the same

size t a predictor produces a labelling function on Xt which is supposed to

approximate η.

A computable predictor is a total computable function from Xt×Y ×···×
Xt×Y ×Xt to {0,1}, where the arguments are assumed to be encoded into

a single input in a certain fixed (simple canonical) way.

We are interested in what sample size is required to approximate a la-

belling function η.

For a (computable) predictor ϕ, a labelling function η and 0<ε∈R define

δn(ϕ,η,ε) :=sup
Pt

Pt

{
x1,...,xn∈Xt :

Pt

{
x∈Xt :ϕn(x1,y1,...,xn,yn,x) 6=η(x)

}
>ε
}
,

where t= t(η) and Pt ranges over all distributions on Xt (i.i.d. on Xn
t ). As

usual in PAC theory we have two probabilities here: the Pt-probability over

a training sample of size n that the Pt-probability of error of a predictor ϕ

exceeds ε; then the supremum is taken over all possible distributions Pt.
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For any δ>0 define the sample complexity of η with respect to ϕ as

N(ϕ,η,δ,ε) :=min{n∈N :δn(ϕ,η,ε)≤δ}.

The number N(ϕ,η,δ,ε) is the minimal sample size required for a predictor

ϕ to achieve ε-accuracy with probability 1−δ when the (unknown) labelling

function is η, under all probability distributions.

With the use of statistical learning theory [89] we can easily derive the

following statement

Proposition 5.9. There exists a predictor ϕ such that

N(ϕ,η,δ,ε)≤ const

ε
l(η)log

1

δ

for any labelling function η and any ε,δ>0.

Observe that the bound is linear in the length of η.

In the next section we investigate the question of whether any such

bounds exist if we restrict our attention to computable predictors.

Proof. The predictor ϕ is defined as follows. For each sample x1,y1,...,xn,yn
it finds a shortest program η̄ such that η̄(xi) = yi for all i ≤ n. Clearly,

l(η̄)≤ l(η). Observe that the VC-dimension of the class of all computable

functions of length not greater than l(η) is bounded from above by l(η),

as there are not more than 2l(η) such functions. Moreover, ϕ minimizes

empirical risk over this class of functions. It remains to use the bound (see

e.g. [26], Corollary 12.4) supη∈CN(ϕ,η,δ,ε)≤max
(
V (C)8

ε
log 13

δ
,4
ε
log 2

δ

)
, where

V (C) is the VC-dimension of the class C.

5.2.2 Sample complexity explosion for computable

learning rules

The main result of this section is that for any computable predictor ϕ there

is no computable upper bound in terms of l(η) on the sample complexity of
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the function η with respect to ϕ:

Theorem 5.10. For every computable predictor ϕ and every partial com-

putable function β :N→N that has infinite domain and goes to infinity, there

are infinitely many functions η, such that for some n>β(l(η))

P{x∈Xt(η) :ϕ(x1,y1,...,xn,yn,x) 6=η(x)}>0.05,

for any x1,...,xn∈Xt(η), where yi= η(xi) and P is the uniform distribution

on Xt(η).

For example, we can take β(n)=2n, or 22
n
.

Corollary 5.11. For any computable predictor ϕ, any total computable

function β :N→N and any δ<1

sup
η:l(η)≤k

N(ϕ,η,δ,0.05)>β(k)

from some k on.

Observe that there is no δ in the formulation of Theorem 5.10. Moreover,

it is not important how the objects (x1,...,xn) are generated — it can be any

individual sample. In fact, we can assume that the sample is chosen in any

manner, for example by some algorithm. This means that no computable

upper bound on sample complexity exists even for active learning algorithms.

It appears that the task of classification is closely related to another

learning task — data compression. Moreover, to prove Theorem 4.3 we

need a similar negative result for this task. Thus before proceeding with the

proof of the theorem, we introduce the task of data compression and derive

a negative result for it. We call a total computable function ψ :X→X a

data compressor if it is an injection (i.e. x1 6=x2 implies ψ(x1) 6=ψ(x2)). We

say that a data compressor compresses the string x if |ψ(x)|< |x|. Clearly,

for any natural n any data compressor compresses not more than half of the

strings of size up to n.
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Next we introduce Kolmogorov complexity; for fine details see [59]. The

complexity of a string x∈X with respect to a Turing machine ζ is defined as

Cζ(x)=min
p
{l(p) :ζ(p)=x},

where p ranges over all binary strings (interpreted as partial computable

computable functions; minimum over empty set is defined as ∞). There

exists such a machine ζ that Cζ(x)≤Cζ′(x)+cζ′ for any x and any machine

ζ ′ (the constant cζ′ depends on ζ ′ but not on x). Fix any such ζ and define

the Kolmogorov complexity of a string x∈X as

C(x) :=Cζ(x).

Clearly, C(x)≤|x|+b for any x and for some b depending only on ζ. A string

is called c-incompressible if C(x)≥ |x|−c. Obviously, any data compres-

sor can not compresses many c-incompressible strings, for any c. However,

highly compressible strings (that is, strings with Kolmogorov complexity low

relatively to their length) might be expected to be compressed well by some

sensible data compressor. The following lemma shows that this cannot be

always the case, no matter what we mean by “relatively low”.

The lemma is proven using the fact that there are no non-trivial com-

putable lower bounds on Kolmogorov complexity; the lemma itself can be

considered as a different formulation of this statement. The proof of the

lemma is followed by the proof of Theorem 5.10.

Lemma 5.12. For every data compressor ψ and every partial computable

function γ :N→N which has an infinite domain and goes to infinity there

exist infinitely many strings x such that C(x)≤γ(|x|) and |ψ(x)|≥|x|.

For example, we can take γ(n)=loglogn.

Proof. Suppose the contrary, i.e. that there exist a data compressor ψ and

some function γ : N→ N monotonically increasing to infinity such that if
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C(x)≤γ(|x|) then ψ(x)< |x| except for finitely many x. Let T be the set of

all strings which are not compressed by ψ

T :={x : |ψ(x)|≥|x|}.

Define the function τ on the set T as follows: τ(x) is the number of the

element x in T

τ(x) :=#{x′∈T :x′≤x}

for each x∈T . Obviously, the set T is infinite. Moreover, τ(x)≤x for any

x∈T (recall that we identify X and N via length-lexicographical ordering).

Observe that τ is a total computable function on T and onto N. Thus

τ−1 :N→X is a total computable function on N. Hence, for any x∈T for

which γ(|x|) is defined we have, except for finitely many x:

C(τ(x))≥C(τ−1(τ(x))−c=C(x)−c>γ(|x|)−c, (5.15)

for a constant c depending only on τ , where the first inequality follows

from computability of τ−1 and the last from the definition of T . Since τ is

computable we also have C(τ(x))≤C(x)+c′ for some constant c′.

It is a well-known result (see e.g. [59]) that for any unbounded partial

computable function δ with infinite domain there are infinitely many x∈X

such that C(x)≤ δ(|x|). In particular, allowing δ(|x|) = γ(|x|)−c′−2c, we

conclude that there are infinitely many x∈T such that

C(τ(x))≤C(x)+c′≤γ(|τ(x)|)−2c≤γ(|x|)−2c,

which contradicts (5.15).
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5.2.3 Different settings and tightness of the negative

results

In this section we discuss how tight the conditions of the statements are and

to what extend they depend on the definitions.

Let us consider the question of whether there exists some (not necessarily

computable) total sample-complexity function

Nϕ(k,δ,ε) := sup
η:l(η)≤k

N(ϕ,η,δ,ε),

at least for some predictor ϕ.

Proposition 5.13. There exists a predictor ϕ such that Nϕ(k,δ,ε)<∞ for

any ε,δ>0 and any k∈N.

Indeed it is easy to see that the “pointwise” predictor

ϕ(x1,y1,...,xn,yn,x)=

{
yi if x=xi,1≤ i≤n
0 x /∈{x1,...,xn}

(5.16)

satisfies the conditions of the proposition.

It can be argued that probably this statement is due to our definition

of a labelling function. Next we will discuss some other variants of this

definition.

First, observe that if we define a labelling function as any total com-

putable function on {0,1}∗ then some labelling functions will not approxi-

mate any function on [0,1]; for example the function η+ which counts bitwise

sum of its input: η+(x):=
∑|x|

i=1xi mod 2. That is why we require a labelling

function to be defined only on Xt for some t.

Another way to define a labelling function (which perhaps makes la-

belling functions most close to real functions) is as a function which accepts

any infinite binary string. Let us call an i-labelling function any total re-

cursive function η :Y∞→Y. That is, η is computable on a Turing machine
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with an input tape on which one way infinite input is written, an output

tape and possibly some working tapes. The program η is required to halt on

any input. As it was mentioned earlier, in this case the situation essentially

does not change, since (as it is easy to show) for any i-labelling function η

there exist nη∈N such that η does not scan its input tape beyond position

nη. In particular, η(x) = η(x′) as soon as xi = x′i for any i ≤ nη. More-

over, it is easy to check that Theorem 5.10 holds for i-labelling functions

as well. Finally, it can be easily verified that Proposition 5.13 holds true if

we consider i-labelling functions instead of labelling functions, constructing

the required predictor based on the nearest neighbour predictor. Indeed, it

suffices to replace the “pointwise” predictor in the proof of Proposition 5.13

by the predictor ϕ, which assigns to the object x the label of that object

among x1,...,xn with whom x has longest mutual prefix (where the prefixes

are compared up to some growing horizon).

5.3 Longer proofs

5.3.1 Proofs for Section 5.1.1

Before proceeding with the proof of Theorem 5.2 we give some definitions

and supplementary facts.

Define the conditional probabilities of error of Γ as follows

err0n(Γ,P,z0,...,zn) :=P(Yn+1 6=Γ(z1,...,zn,Xn+1)|Yn+1=0),

err1n(Γ,P,z0,...,zn) :=P(Yn+1 6=Γ(z1,...,zn,Xn+1)|Yn+1=1),

(with the same notational convention as used with the definition of errn(Γ)).

In words, for each y∈Y={0,1} we define erryn as the probability of all x∈X,

such that Γ makes an error on n’th trial, given that Yn+1 = y and fixed

z1,...,zn.

For any y :=(y1,y2,... )∈Y∞, define yn :=(y1,...,yn) and pn(y) := 1
n
#{i≤
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n :yi=0}, for n>1.

Clearly (from the assumption (5.1)) the random variables X1,...,Xn are

mutually conditionally independent given Y1,...,Yn, and by (5.2) they are

distributed according to PYi
, 1≤ i≤ n. Hence, the following statement is

valid.

Lemma 5.14. Fix some n>1 and some y∈Y∞ such that P((Y1,....Yn+1)=

yn+1) 6=0. Then

P
(
erryn+1

n (Γ)>ε
∣∣ (Y1,...,Yn)=yn

)

=P n
p

(
erryn+1

n (Γ)>ε
∣∣ (Y1,...,Yn)=yn

)

for any p∈(0,1).

Proof of Theorem 5.2. Fix some n> 1, some y ∈Y and such y1 ∈Y∞

that δ≤pn(y1)≤(1−δ) and P((Y1,...,Yn)=y1
n) 6=0. Let p :=pn(y1). We will

find bounds on P
(
errn(Γ)>ε | (Y1,...,Yn)=y1

n

)
, first in terms of ∆ and then

in terms of ∆̄.

Lemma 5.14 allows us to pass to the i.i.d. case:

P
(
erryn(Γ,X1,y

1
1,...,Xn,y

1
n,Xn+1)>ε

)

=P n
p

(
erryn(Γ,X1,y

1
1,...,Xn,y

1
n,Xn+1)>ε

)

for any y such that P(Y1 = y11,...,Yn = y1n,Yn+1 = y) 6= 0 (recall that we use

upper-case letters for random variables and lower-case for fixed variables, so

that the probabilities in the above formula are labels-conditional).

Clearly, for δ≤p≤1−δ we have errn(Γ,Pp)≤maxy∈Y(err
y
n(Γ,Pp)), and if

errn(Γ,Pp)<ε then erryn(Γ,Pp)<ε/δ for each y∈Y.

Let m be such number that m−κm = n. For any y2 ∈Y∞ such that

|mpm(y2)−mp| ≤ κm/2 there exist such mapping π : {1,...,n} → {1,...,m}
that y2π(i) = y1i for any i≤ n. Define random variables X ′

1...X
′
m as follows:

X ′
π(i) :=Xi for i≤ n, while the rest κm of X ′

i are some random variables
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independent from X1,...,Xn and from each other, and distributed according

to Pp (a “ghost sample”). We have

P n
p

(
erryn(X1,y

1
1,...,Xn,y

1
n)>ε

)

=Pm
p

(
erryn(X1,y

1
1,...,Xn,y

1
n)−erryn(X

′
1,y

2
1,...,X

′
m,y

2
m)

+erryn(X
′
1,y

2
1,...,X

′
m,y

2
m)>ε

)

≤Pm
p

(∣∣erryn(X ′
1,y

2
1,...,X

′
n,y

2
n)−erryn(X1,y

1
1,...,Xn,y

1
n)
∣∣>ε/2

)

+P n
p

(
erryn(X

′
1,y

2
1,...,X

′
n,y

2
n)>ε/2

)
.

Observe that y2 was chosen arbitrary (among sequences for which |mpm(y2)−
mp|≤κm/2) and (X1,y

1
1,...,Xny

1
n) can be obtained from (X ′

1,y
2
1,...,X

′
my

2
m) by

removing at most κm elements and applying some permutation. Thus the

first term is bounded by

Pm
p

(
max

j≤κm; π:{1,...,m}→{1,...,m}
|errym(Γ,Z1,...,Zm)−

errym−j(Γ,Zπ(1),...,Zπ(m−j))|>ε/2
∣∣ |mp(m)−mp|≤κm/2

)

≤ ∆(Pp,m,δε/2)

P n
p (|mp(m)−mp|≤κm)

≤ 1

1−1/
√
m
∆(Pp,m,δε/2),

and the second term is bounded by 1
1−1/

√
m
Pm
p (errm(Γ)>δε/2). Hence

P n
p

(
erryn(X1,y

1
1,...,Xn,y

1
n)>ε

)

≤αn

(
∆(Pp,m,δε/2)+P

m
p (errm(Γ)>δε/2)

)
. (5.17)

Next we establish a similar bound in terms of ∆̄. For any y2
n ∈ Yn

such that |npn(y2)−np| ≤κn/2 there exist such permutations π1,π2 of the

set {1,...,n} that y1π1(i)
= y2π2(i)

for any i≤ n−δκn. Denote n−δκn by n′

and define random variables X ′
1...X

′
n as follows: X ′

π2(i)
:=Xπ1(i) for i≤ n′,

while for n′<i≤n X ′
i are some “ghost” random variables independent from
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X1,...,Xn and from each other, and distributed according to Pp. We have

P n
p

(
erryn(X1,y

1
1,...,Xn,y

1
n)>ε

)

≤P n+κn
p

(∣∣erryn(X ′
1,y

2
1,...,X

′
n,y

2
n)−erryn(X1,y

1
1,...,Xn,y

1
n)
∣∣>ε/2

)

+P n
p

(
erryn(X

′
1,y

2
1,...,X

′
n,y

2
n)>ε/2

)
,

Again, as y2 was chosen arbitrary (among sequences for which |npn(y2)−
np|≤κn/2) and (X1,y

1
1,...,Xny

1
n) differs from (X ′

1,y
2
1,...,X

′
ny

2
n) in at most κn

elements, up to some permutation. Thus the first term is bounded by

P n
p

(
sup

j<κn;π:{1,...,n}→{1,...,n};z′n−j ,...,z
′
n

|erryn(Z1,...,Zn)

−erryn(ζ1,...,ζn)|>ε/2
∣∣ |np(n)−np|≤κn/2

)

≤αn∆̄(Pp,n,δε/2),

and the second term is bounded by αnP
n
p (errn(Γ)>δε/2). Hence

P n
p

(
erryn(X1,y

1
1,...,Xn,y

1
n)>ε

)

≤αn

(
∆̄(Pp,n,δε/2)+P

n
p (errn(Γ)>δε/2)

)
. (5.18)

Finally, as y1 was chosen arbitrary among sequences y∈Y∞ such that

nδ≤pn(y1)≤n(1−δ) from (5.17) and (5.18) we obtain (5.5) and (5.6). �

5.3.2 Proofs for Section 5.1.2

The first part of the proof is common for theorems 5.4 and 5.5. Let us fix

some distribution P satisfying conditions of the theorems. It is enough to

show that

sup
p∈[δ,1−δ]

E∞(errn(Γ,Pp,Z1,...,Zn))→0
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and

sup
p∈[δ,1−δ]

E∞(∆̄(Pp,n,Z1,...,Zn))→0

for nearest neighbour and partitioning predictor, and apply Corollary 5.3.

Observe that both predictors are symmetric, i.e. do not depend on the

order of Z1,...,Zn. Thus, for any z1,...,zn

∆̄(Pp,n,z1,...,zn)= sup
j≤κn; π:{1,...,n}→{1,...,n},z′n−j ,...,z

′
n

|errn(Γ,Pp,z1,...,zn)−errn(Γ,Pp,zπ(1),...,zπ(n−j),z
′
n−j,...,z

′
n)|,

where the maximum is taken over all z′i consistent with η, n−j ≤ i ≤ n.

Define also the class-conditional versions of ∆̄:

∆̄y(Pp,n,z1,...,zn) := sup
j≤κn; π:{1,...,n}→{1,...,n},z′n−j ,...,z

′
n

|erryn(Γ,Pp,z1,...,zn)−erryn(Γ,Pp,zπ(1),...,zπ(n−j),z
′
n−j,...,z

′
n)|.

Note that (omitting z1,...,zn from the notation) errn(Γ,Pp)≤err0n(Γ,Pp)+

err1n(Γ,Pp) and ∆̄(Pp,n)≤ ∆̄0(Pp,n)+∆̄1(Pp,n). Thus, it is enough to show

that

sup
p∈[δ,1−δ]

E∞(err1n(Γ,Pp))→0 (5.19)

and

sup
p∈[δ,1−δ]

E∞(∆̄1(Pp,n))→0. (5.20)

Observe that for each of the predictors in question the probability of error

given that the true label is 1 will not decrease if an arbitrary (possibly large)

portion of training examples labelled with ones is replaced with an arbitrary

(but consistent with η) portion of the same size of examples labelled with

zeros. Thus, for any n and any p∈ [δ,1−δ] we can decrease the number of

ones in our sample (by replacing the corresponding examples with examples
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from the other class) down to (say) δ/2, not decreasing the probability of

error on examples labelled with 1. So,

E∞(err1n(Γ,Pp))≤E∞(err1n(Γ,Pδ/2|pn=δ/2))+Pp(pn≤δ/2), (5.21)

where as usual pn := 1
n
#{i≤n : yi =1}. Obviously, the last term (quickly)

tends to zero. Moreover, it is easy to see that

E∞(err1n(Γ,Pδ/2)|pn=n(δ/2))
≤E∞(err1n(Γ,Pδ/2)

∣∣|n(δ/2)−pn|≤κn/2
)
+E∞(∆̄1(Pδ/2,n))

≤ 1

1−1/
√
n
E∞(err1n(Γ,Pδ/2))+E

∞(∆̄1(Pδ/2,n)). (5.22)

The first term tends to zero, as it is known from the results for i.i.d. pro-

cesses; thus, to establish (5.19) we have to show that

E(∆̄1(Pp,n,Z1,...,Zn))→0 (5.23)

for any p∈(0,1).

We will also show that (5.23) is sufficient to prove (5.20). Indeed,

∆̄1(Pp,n,z1,...,zn)≤err1n(Γ,Pp,z1,...,zn)+

sup
j≤κn; π:{1,...,n}→{1,...,n},z′n−j ,...,z

′
n

err1n(Γ,Pp,zπ(1),...,zπ(n−j),z
′
n−j,...,z

′
n)

Denote the last summand by D. Again, we observe that D will not decrease

if an arbitrary (possibly large) portion of training examples labelled with

ones is replaced with an arbitrary (but consistent with η) portion of the

same size of examples labelled with zeros. Introduce ∆̃1(Pp,n,z1,...,zn) as

∆̄1(Pp,n,z1,...,zn) with κn in the definition replaced by 2
δ
κn. Using the same
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argument as in (5.21) and (5.22) we have

E∞(D)≤ 1

1−1/
√
n

(
E∞(∆̃1(Pδ/2,n))+E

∞(errn(Γ,Pδ/2)
)
+Pp(pn ≤ δ/2).

Thus, (5.20) holds true if (5.23) and

E∞(∆̃1(Pp,n,Z1,...,Zn))→0. (5.24)

Finally, we will prove (5.23); it will be seen that the proof of (5.24) is

analogous (i.e. replacing κn by 2
δ
κn does not affect the proof). Note that

E∞(∆̄(Pp,n,Z1,...,Zn))≤Pp

(
sup

j≤κn; π:{1,...,n}→{1,...,n},z′n−j ,...,z
′
n

∣∣errn(Γ,Pp,Z1,...,Zn) 6=errn(Γ,Pp,Zπ(1),...,Zπ(n−j),z
′
n−j,...,z

′)
∣∣
)
,

where the maximum is taken over all z′i consistent with η, n−j≤ i≤n. The

last expression should be shown to tend to zero. This we will prove for each

of the predictors separately.

Nearest Neighbour predictor. Fix some distribution Pp, 0 < p < 1 and

some ε>0. Fix also some n∈N and define (leaving x1,...,xn implicit)

Bn(x) :=P
n+1
p {t∈X : t and x have the same nearest neighbour among x1,...,xn}

andBn :=E(Bn(X)) Note that E∞(Bn)=1/n, where the expectation is taken

over X1,...,Xn. Define B :={(x1,...,xn)∈Xn :Bn≤1/nε} and A(x1,...,xn) :=
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{x :Bn(x)≤1/nε2}. Applying Markov’s inequality twice, we obtain

E∞(∆̄(Pp,n))≤E∞(∆̄(Pp,n)|(X1,...,Xn)∈B)+ε

≤E∞
(

sup
j≤κn; π:{1,...,n}→{1,...,n},z′n−j ,...,z

′
n

Pp

{
x : errn(Γ,Pp,Z1,...,Zn) 6=errn(Γ,Pp,Zπ(1),...,Zπ(n−j),z

′
n−j,...,z

′
n)

∣∣x∈A(X1,...,Xn)
}∣∣(X1,...,Xn)∈B

)
+2ε.

(5.25)

Removing one point xi from a sample x1,...,xn we can only change the

value of Γ in the area

{x∈X :xi is the nearest neighbour of x}=Bn(xi),

while adding one point x0 to the sample we can change the value of Γ in the

area

Dn(x0) :={x∈X :x0 is the nearest neighbour of x}.

It can be shown that the number of examples (among x1,...,xn) for which

a point x0 is the nearest neighbour is not greater than a constant γ which

depends only the space X (see [26], Corollary 11.1). Thus,

Dn(x0)⊂∪i=j1,...,jγBn(xi)

for some j1,...,jγ, and so

E∞(∆̄(Pp,n))≤2ε+2(γ+1)κnE
∞( max

x∈A(X1,...,Xn)
Bn(x)|(X1,...,Xn)∈B)

≤2κn
γ+1

nε2
+2ε,

which, increasing n, can be made less than 3ε. �
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Partitioning predictor. For any measurable sets B⊂Xn and A⊂X define

D(B,A) :=E∞
(

sup
j≤κn; π:{1,...,n}→{1,...,n},z′n−j ,...,z

′
n

Pp

{
x : errn(Γ,Pp,Z1,...,Zn) 6=errn(Γ,Pp,Zπ(1),...,Zπ(n−j),z

′
n−j,...,z

′
n)

∣∣x∈A
}∣∣(X1,...,Xn)∈B

)
+2ε.

and D :=D(Xn,X).

Fix some distribution Pp, 0<p<1 and some ε>0. Introduce

η̂(x,X1,...,Xn) :=
1

N(x)

n∑

i=1

IYi=1IXi∈A(x)

(X1,...Xn will usually be omitted). From the consistency results for i.i.d.

model (see, e.g. [26], Theorem 6.1) we know that En+1|η̂n(X)−η(X)|→ 0

(the upper index in En+1 indicating the number of examples it is taken over).

Thus, E|η̂n(X)−η(X)| ≤ ε4 from some n on. Fix any such n and let

B := {(x1,...,xn) :E|η̂n(X)−η(X)| ≤ ε2}. By Markov inequality we obtain

Pp(B)≥1−ε2. For any (x1,...,xn)∈B let A(x1,...,xn) be the union of all cells

An
i for which E(|η̂n(X)−η(X)||X ∈An

i )≤ ε. Clearly, with x1,...,xn fixed,

Pp(X∈A(x1,...,xn))≥1−ε. Moreover, D≤D(B,A)+ε+ε2.

Fix A := (x1,...,xn) for some (x1,...,xn)∈B. Since η(x) is always either

0 or 1, to change a decision in any cell A⊂A we need to add or remove

at least (1−ε)N(A) examples, where N(A) := N(x) for any x ∈ A. Let

N(n) :=E(N(X)) and A(n) :=E(Pp(A(X)). Clearly, N(n)
nA(n)

=1 for any n, as

EN(X)
n

=A(n).

As before, using Markov inequality and shrinking A if necessary we can

have Pp(
ε2nA(X)
N(n)

≤ε|X∈A)=1, Pp(
ε2nA(n)
N(X)

≤ε|X∈A)=1, and D≤D(B,A)+

3ε+ε2. Thus, for all cells A ⊂ A we have N(A) ≥ εnA(n), so that the

probability of error can be changed in at most 2 κn

(1−ε)εnA(n)
cells; but the

probability of each cell is not greater than N(n)
εn

. Hence E∞(∆̄(Pp,n)) ≤
2 κn

n(1−ε)ε2
+3ε+ε2. �
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5.3.3 Proofs for Section 5.1.3

Proof of Theorem 5.6. Fix some probability distribution Pp and some n∈N.

Let ϕ× be any decision rule ϕ∈C picked by Γn−κn on which (along with the

corresponding permutation) the maximum

max
j≤κn; π:{1,...,n}→{1,...,n}

|errn(Γ,z1,...,zn)−errn−j(Γ,zπ(1),...,zπ(n−j))|

is reached. We need to estimate P n(|err(ϕ∗)−err(ϕ×)|>ε).
Clearly, |errn(ϕ×)−errn(ϕ

∗)|≤κn, as κn is the maximal number of errors

which can be made on the difference of the two samples.

Moreover,

P n
(
|err(ϕ∗

n)−err(ϕ×)|>ε
)

≤P n
(
|err(ϕ∗

n)−
1

n
errn(ϕ

∗)|>ε/2
)

+P n
(
| 1
n
errn(ϕ

×)−err(ϕ×)|>ε/2−κn/n
)

Observe that

P n(sup
ϕ∈C

| 1
n
errn(ϕ)−err(ϕ)|>ε)≤8S(C,n)e−nε2/32, (5.26)

see [26], Theorem 12.6. Thus,

∆(Pp,n,ε)≤16S(C,n)e−n(ε/2−κn/n)2/32≤16S(C,n)e−nε2/512

for n>4/ε2. So,

P(errn(Γ,P)>ε)≤Isupp∈[δ,1−δ]err(ϕPp ,Pp)>ε/2

+16αC−1
n S(C,n)e−nδ2ε2/2048+(1−Cn).
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It remains to notice that

err(ϕPp ,Pp)= inf
ϕ∈C

(perr1(ϕ,Pp)+(1−p)err0(ϕ,Pp))

≤ inf
ϕ∈C

(err1(ϕ,P1/2)+err0(ϕ,P1/2))=2err(ϕP1/2
,P1/2)

for any p∈ [0,1].

So far we have proven (5.11) and (5.12); (5.13) and (5.14) can be proven

analogously, only for the case η∈C we have

P n(sup
ϕ∈C

| 1
n
errn(ϕ)−err(ϕ)|>ε)≤S(C,n)e−nε

instead of (5.26), and err(ϕPp ,Pp)=0. �

5.3.4 Proof of Theorem 5.10

Suppose the contrary, that is that there exists such a computable predictor ϕ

and a partial computable function β :N→N such that for any except finitely

many labelling functions η for which β(l(η)) is defined and all n>β(l(η))

we have

P{x :ϕ(x1,y1,...,xn,yn,x) 6=η(x)}≤0.05,

for some xi∈Xt(η), yi=η(xi), i∈N, where P is the uniform distribution on

Xt(η).

Define ε:=0.05. We will construct a data compressor ψ which contradicts

Lemma 5.12. For each y ∈X define m := |y|, t := plogmq. Generate (lexi-

cographically) first m strings of length t and denote them by xi, 1≤ i≤m.

Define the labelling function ηy as follows: ηy(x) = yi, if x starts with xi,

where 1≤ i≤m. Clearly, C(ηy)≥C(y)−c, where c is some universal con-

stant capturing the above description. Let the distribution P be uniform on

Xt.

Set n :=
√
m. Next we run the predictor ϕ on all possible tuples x=

(x1,...,xn)∈X n
t and each time count the errors that ϕ makes on all elements
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of Xt:

E(x) :={x∈Xt :ϕ(x1,y
1,...,xn,y

n,x) 6=ηy(x)}.

Thus E(x) is the set of all objects on which ϕ errs after being trained on x.

If |E(x)|>εm for all x∈Xt then ψ(y) :=0y.

Otherwise proceed as follows. Fix some tuple x= (x′1,...,x
′
n) such that

|E(x)|≤εm, and let H :={x′1,...,x′n} be the unordered tuple x. Define

κi :=





e if xi∈E(x)\H
c0 if xi∈H,yi=0

c1 if xi∈H,yi=1

∗ otherwise

for 1≤ i≤m. Thus, each κi is a member of a five-letter alphabet (a four-

element set) {e,c0,c1,∗}. Denote the string κ1...κm by K.

So K contains the information about the (unordered) training set and

the elements on which ϕ errs after being trained on this training set. Hence

the string K, the predictor ϕ and the order of (x′1,...,x
′
n) (which is not

contained in K) are sufficient to restore the string y. Furthermore, the

n-tuple (x′1,...,x
′
n) can be obtained from H (the un-ordered tuple) by the

appropriate permutation; let r be the number of this permutation in some

fixed ordering of all n! such permutations. Using Stirling’s formula, we have

|r| ≤ 2nlogn =
√
mlogm; moreover, to encode r with some self-delimiting

code we need not more than 2
√
mlogm symbols (for m> 3). Denote such

an encoding of r by ρ.

Next, as there are at least (1−ε− 1√
m
)m symbols ∗ in the m-element

string K (at most εm symbols e0 and e1, and n=
√
m symbols c0 and c1), it

can be encoded by some simple binary code σ in such a way that

|σ(K)|≤ 1

2
m+8(εm+n). (5.27)

Indeed, construct σ as follows. First replace all occurrences of the string
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∗∗ with 0. Encode the rest of the symbols with any fixed 3-bit encoding

such that the code of each letter starts with 1. Clearly, σ(K) is uniquely

decodable. Moreover, it is easy to check that (5.27) is satisfied, as there are

not less than 1
2
(m−2(εm+n)) occurrences of the string ∗∗. We also need to

write m in a self-delimiting way (denote it by s); clearly, |s|≤2logm.

We can define a monotone increasing function β′ with an infinite domain

on which it coincides with β. Indeed, this can be done by executing in

a quasi-parallel fashion β on all inputs and defining β′(k) = β(k) if β(k)

was found and β′(l)<β′(k) for all l on which β′ is already defined. Next

we can define a function β−1(n) with infinite domain such that β−1 goes

monotonically to infinity and such that β−1(β′(n)) = n. This can be done

by running in a quasi-parallel fashion β on all inputs m and stopping when

β(m)=n with m as an output.

Finally, ψ(y) = 1sρσ(K) and |ψ(y)| ≤ |y|, for m> 210. Thus, ψ com-

presses any (except finitely many) y such that n > β′(C(ηy)); i.e. such

that
√
m > β′(C(ηy)) ≥ β′(C(y)−c). This contradicts Lemma 5.12 with

γ(k) :=β−1(
√
k)+c.
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