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L'acceptation et l'utilisation des services Web en industrie se développent de par leur support au développement d'application distribuées comme compositions d'entités logicielles plus simples appelées services. En complément à la vérification, le test permet de vérifier la correction d'une implémentation binaire (code source non disponible) par rapport à une spécification. Dans cette thèse, nous proposons une approche boîte-noire du test de conformité de compositions de services centralisées (orchestrations). Par rapport à l'état de l'art, nous développons une approche symbolique de façon à éviter des problèmes d'explosion d'espace d'état dus à la large utilisation de données XML dans les services Web. Cette approche est basée sur des modèles symboliques (STS), l'exécution symbolique de ces modèles et l'utilisation d'un solveur SMT. De plus, nous proposons une approche de bout en bout, qui va de la spécification à l'aide d'un langage normalisé d'orchestration (ABPEL) et de la possible description d'objectifs de tests à la concrétisation et l'exécution en ligne de cas de tests symboliques. Un point important est notre transformation de modèle entre ABPEL et les STS qui prend en compte les spécifications sémantiques d'ABPEL. L'automatisation de notre approche est supportée par un ensemble d'outils que nous avons développés.

Introduction

Using computer systems in our daily lives has become almost instinctive. In order to satisfy consumers' requirements, software and hardware are becoming increasingly complex. Such complexity raises doubts and trust issues about these systems.

Finding faults in a system, then correcting them avoids a waste of money for enterprises and/or prevents any threat to the safety of consumers that use those systems, e.g. the medical equipments, industrial systems (as medicines or food production), planes, vehicle construction, etc.

To ensure the correctness and the correct behavior of complex systems, testing remains an incontrovertible step in systems development. In the testing literature there are several kinds of tests. Unit testing aims at checking independently all the modules that constitute the system, integration testing aims at verifying the integration of these modules, regression testing addresses the correctness of a system after some change has occurred, etc. Further testing details will be provided in the second chapter.

Conformance testing is the kind of test that interests us. It aims at verifying whether an implementation is correct with regards to the specification of this system. Our objective in this thesis is the conformance testing of an implementation of a composite system with regards to its specification.

More precisely, we focus on the more recent architecture for systems composition i.e. Web services. A Web service is a computer application that allows communication and data exchanges between disparate systems via the Internet. A composition of Web services allows one to implement a series of calls to these Web services and thus, provides a complete business process to a client (or user), whether this is a human being or another software system. 12 CHAPTER 1. INTRODUCTION Through this manuscript, we will present our approach to automatically generate and execute conformance test cases on a composition of Web services in order to establish its conformance with regards to its specification.

In this chapter, we start by an introduction to the context of our research which is related to the french ANR WebMov Project. Then we will explain the difficulties of conformance testing approach for Web service compositions. The solution that we propose to overcome these difficulties will be presented in the contribution section. Afterward, we present the outline of the thesis manuscript and finally, we end with our publications.

Context

During the last few years, the notion of software architecture based on services that provide altogether a business process was largely widespread. Such an architecture is called Service Oriented Architecture (SOA). Web services (WS) are software applications that adhere to the SOA vision. A basic WS is an application which provides functionalities to its user. WS can be composed into composite services in order to provide more functionalities, or to base the ones they provide on simpler sub-services.

This thesis has been carried out in the context of the ANR WebMov 1 project. This project focuses on the composition and the validation of WS. The objectives of this project could be summarized as follows: testing interface and robustness for WS, testing the behavioral aspects of their composition, developing a platform for the verification of WS and finally, executing the proposed approaches on realistic test cases. To achieve this, the WebMov project includes partners from research laboratories and from the industrial field. Our focus within this project is on testing of Web services composition.

Issues

The testing process aims at finding system faults. Applying test methods to composite Web services raises several issues. The major issues that we face for testing such systems are:

• Composition specification: How could we describe this composition ? In other words, which specification language could we use ?

• Formal model: How could we represent this composition in a formal way while respecting the features of the specification language ?

1 http://webmov.lri.fr/ 1.3. CONTRIBUTIONS
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• Testing approach: Which testing method could we reuse/adapt for such systems ?

• Rich data context: How are the tests generated and/or executed for datadependent systems, avoiding state space explosion issues ?

Contributions

We propose a comprehensive end-to-end approach for conformance testing of composite WS, more especially orchestration i.e. centralized WS composition.

To do so, we begin by representing the functionalities expected from a composite WS using the Abstract Business Process Execution Language (ABPEL), from which we retrieve a formal model named Web Service Symbolic Execution Systems (WS-STS). This model is obtained from our transformation rules that supports the main features of the Business Process Execution Language (BPEL).

We also provide the possibility to describe a Test Purposes (TP) as a WS-STS model allowing one to specify which scenarios she/he wants to test. In this case a product of the WS-STS model representing the specification, i.e. the functionalities expected from a composite WS, with the WS-STS of the TP is computed and yields a WS-STS product model. From the latter, we apply Symbolic Execution (SE) in order to generate a Symbolic Execution Tree (SET). The SE technique allows us to avoid state space explosion problems in presence of unbounded data types, as used in full-fledged BPEL. Each path of the SET represents a symbolic test case. Resolving the constraints of a SET path using the Z3 SMT solver allows us to generate concrete test cases on-line while interacting with the implementation under test. Finally, a verdict on the conformance of the composite service with regard to its specification is emitted.

Outline

Chapter 2 is an introduction to testing and to Web services. It also contains a state of the art on the testing of Web services. Our symbolic approach for the conformance testing of composite Web services, is exposed in Chapter 3. In Chapter 4, we present details on our framework and tool support that is used to generate and then execute tests against an implementation of a composite service. Finally, we end the manuscript by a conclusion and perspectives of our work. C h a p t e r 2

State of the Art on Web Services Verification

With the ten last years, the concept of Service Oriented Architecture (SOA) has emerged in the computer science area. The idea is to use or reuse existing services to create new ones which offer more functionalities with a lower cost.

Web services are the most popular approach of SOA, where a Web service is the elementary component which uses a standard communication infrastructure to communicate through the Internet. The description of a Web service also known as its interface is depicted using a WSDL file, and the messages exchanges are done using the SOAP protocol. Web services can be composed in order to perform more functionality. These latter constitute the business process.

The business process could also be expressed as a specification. Where a specification describes the expectations of future users from a system. In the context of some Web service, a specification describes the expectations of a user over this Web service.

In this chapter, we present at first Web services and their composition. Next we talk about the formal methods that are intended to express the Web services formally to remove any ambiguity. Relying on a formal model we can now apply various testing approaches (unit testing, functional testing, regression testing, etc). We will explain what is a black box testing, a white box testing and the gray box one. We will also discuss about existing works on testing and verifying Web services, within a state of the art.
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Web Services

As pointed before, Web services have become the cornerstone of the Service Oriented Architecture (SOA). Web services provide goods and services to the customers, they also allow the customers to search for services that match their needs. A Web service is a loosely-coupled application that allows communication and data exchange with its user via the Internet. The major advantage of Web service is that it could use other web services regardless of their implementation (Java, C++,. . . ), the underlying architecture (J2EE, .NET,. . . ) and the platform (Windows, Unix,. . . ). A simple Web service provides simple functionality such as booking a plane ticket, bank account management, weather forecasting, while complex Web services (also called composite Web services) combine those functionalities to offer a complete higher-order business. Let us assume unifying the booking plane ticket service with a booking service for hotel and another car rental service. This composition of web services named Travel planning offers more functionalities to a costumer and saves him time and money searching and invoking each service individually.

Two kinds of composition of web services exist: a centralized one called an Orchestration of Web services, and a distributed one called a Choreography of Web services. An orchestration of services implies the use of a web service which is in charge to organize and harmonize the invocation of other Web services in order to provide a business process. In a Choreography of Web services, each service must satisfy a received request, with no or a partial information dealing with the next invocations of partner services involved in achieving a business process.

Several languages for describing services composition exist. The forerunners languages for composing Web services are the Web Service Business Process Execution Language (WS-BPEL) [START_REF] Oasis | Web Services Business Process Execution Language (WSBPEL) Version 2.0[END_REF] used for describing an orchestration of services, and the Web Services Choreography Description Language (WS-CDL) [START_REF]Web services choreography description language version 1.0[END_REF] which describes a choreography. Thereafter, other languages for service composition appeared, such as the service modeling language SENSORIA Reference Modeling Language (SRML) [START_REF]Sensoria reference modeling language[END_REF] or the Orc Programming Language [START_REF] Kitchin | Simulation using orchestration (extended abstract)[END_REF].

Service Oriented Architecture

The Service-Oriented Architecture (SOA) [START_REF] Erl | Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services[END_REF], is a software architecture that describes the system components and the interconnections that may exist in a high level way. The idea of SOA is to use existing applications as an enterprise system that provides services. Each service is self-described and aims to fulfill specific functionalities. Those services can then be combined to realize a business process.

An SOA provides a standard framework to represent services interactions as shown in Figure 2.1. A service provider publishes a description about his service in a public registry. The service broker manages the registry that contains information The SOA functional model on other services, and allows the service requestor to find the service that suits its requests.

Presentation and features of Web Services

The main pillar of SOA is the use of Web services. They are widely deployed and easily integrated into users lives. Web services are applications that can be described, published, discovered and composed. They aim to provide goods and services according to users needs. This popularity is due to the fact that Web services are loosely coupled, Internet-enabled applications that process business activities performed by a single service or by interacting with other web services in order to fulfill the users demands.

The W3C1 defines a Web service as: A software system designed to support interoperable machine-to-machine interaction over a network. It has an interface described in a machine-processable format (specifically Web Services Description Language WSDL). Other systems interact with the web service in a manner prescribed by its description using SOAP messages, typically conveyed using HTTP with an XML serialization in conjunction with other Web-related standards.

As we said previously Web services are loosely coupled. It means that they interact with each other dynamically using Internet more freely. It also implies that a change in the implementation of a web service functionality does not induce change on the client program that invokes the Web service.

Involved Technologies

Testing a system means interacting with it, i.e., submitting input data to it then analyzing its responses. To do so, we must know the basic features and conditions of using this system. In the following we present the basic employed technologies for web services:

• XML. The Extensible Markup Language (XML) is a prevailing markup language that is used for transmitting structured data between applications. The widely use of XML is also due to its validating format. It means that XML must satisfies specific grammatical rules. XML Schema (also known as XSD for XML Schema Definition [START_REF]W3C recommendation[END_REF]) is the most powerful describing XML language. In the context of web services, XML documents allow services which are implemented differently to communicate and share data using the XML Schema format.

• HTTP. The Hypertext Transfer Protocol (HTTP) [75] is the usually used networking protocol for distributed and collaborative information systems.

• SOAP. The Simple Object Access Protocol (SOAP) [2] is a protocol specification that allows exchanging XML-based messages representing operations calls between the requester(s) and the Web service provider in decentralized and distributed environment like Internet or a Local Area Network (LAN). SOAP is not a new technological advancement it is just a simple way to codify the usage of existing Internet technologies in order to standardize distributed communications over the Internet. The structure of a SOAP messages is shown in Figure A.7. The SOAP envelop, wraps the start and the end of the message.

The SOAP header part (with an optional contents) contains processing or control information such as information about authentication, session management, etc. The XML data that are exchanged between the applications are detailed in the SOAP body part. • WSDL. The Web Services Description Language (WSDL) [START_REF]Web services description language[END_REF], also known as the static interface is an XML-based language that provides a description of the functionalities of a Web service and how to access to it. A WSDL document can be divided into two parts [START_REF] Michael | A survey of web service technologies[END_REF]:

a service-interface definition (or abstract section) that describes all the operations, their parameters and the abstract data types used a service implementation (or concrete section) that binds the first part (service interface definition) to a concrete network address with a specific protocol and exchanging concrete data structures.

Figure 2.3 presents a WSDL document structure where:

-Types: the types element contains XML schema or external references to XML schema that describe the data type used in the WSDL document -Message: the message element is an abstract description of typed information used to communicate information between the invoker and the service.

-PortType: the portType element contains a set of operations. The portType binds the operation to a transport protocol such as SOAP. It represents the link between the service-interface and the service implementation -Operation: represents the action exhibited by the service -Binding: the binging element contains information that allows converting abstract service (the portType element) into a concrete representation.

In other words, the binding element formats an operation and bounds it to a specific protocol -Service: the service element contains a collection of ports elements. It associates an endpoint (such as an URL) with a WSDL binding element.

-Port: the port element defines an individual endpoint by specifying a single address for a binding.

WSDL document represents an operation with an input and/or an output. This representation induces four types of possible interactions with a service:

-One way operation: is an operation where the service receives a message without sending back a response. This kind of operation is used when a potential user of the service does not require an immediate response or no response at all.

-Request/response operation: is an operation where the service receives a message then it returns a message in response -Solicit-response operation: is an operation where the service sends a message and expects to receive a replying message.
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-Notification operation is an operation in which the service sends a message without expecting to receive a response. This type of operation could happen when a given service provides periodically a report to a given user. • UDDI. The Universal Description Discovery and Integration (UDDI) [START_REF]Universal description discovery and integration[END_REF] is a register which contains information about Web services. It works as a catalog offering business functionalities and characteristics of different Web services. Each Web service features is obtained from the WSDL description. UDDI allows to [START_REF] Michael | A survey of web service technologies[END_REF]: (i) discover information about enterprises offering Web services, (ii) find description of Web services and (iii) find technical information about a Web service interface description. XMethods2 site is an example of an UDDI.

Web Services Composition

Many organizations adopted the concept of Web services (as E-Learning composition services or the Travel Reservation Service), this interest is due to their benefits. Indeed the idea with Web services, is to use or reuse existing services, it is also possible to compose them in order to build a new system that meets a specific business process.

A composition of services combines the use of multiple services in order to perform a particular complex task. Those services communicate by exchanging messages in a specific order. The procedure or sequence in which tasks are executed is known as the business process.

Such composition of web services may itself be provided by another service. Two approaches exist for designing a services composition the first one called a Choreography also known as a Coordination and the second an Orchestration:

• A Choreography of Web services describes a collaborative communication between Web services in order to achieve a specific goal. Such configuration looks like a distributed composition of systems. The global view that a choreography provides is a communication without any dominance by a participating service. The most popular language for service choreography is called Web Services Choreography Description Language (WS-CDL) [START_REF]Web services choreography description language version 1.0[END_REF]. The Figure 2.4, inspired from [START_REF] Lohmann | Correctness of services and their composition[END_REF], depicts a graphic representation of a choreography.

• An Orchestration of Web services focuses on one Web service named service orchestrator, which manages the interaction with other service partners in order to accomplish a task. Such configuration of Web services represents a centralized composition of systems. The Web Service Business Process Execution Language (WS-BPEL) [START_REF] Oasis | Web Services Business Process Execution Language (WSBPEL) Version 2.0[END_REF] is known as a standardized language for orchestration and the most used for this kind of composition. The graphic view associate to an orchestration, also inspired from [START_REF] Lohmann | Correctness of services and their composition[END_REF], is presented in Figure 2.5.

Note that, among the services described within a choreography, it is possible to find a service orchestrator as one of the collaborating services. Our testing approach focuses on an orchestration of services based on Web Service Business Process Execution Language (WS-BPEL). This language has emerged as a cornerstone to develop added-value distributed applications out of reusable and loosely coupled software pieces. In the next part we present some features of the WS-BPEL to describe how an orchestration of service is implemented. The Web Service for Business Process Execution Language (WS-BPEL) becomes the de facto standard for Web service orchestration. The WS-BPEL models the workflow of Web services composition by exporting and importing their functionalities, using their exposed interfaces. The description provided by this language can be employed in two ways. As an executable language that designs the exact behavior of the business process. Or as an abstraction of the process that provides a high level description in which roles of the services partners are depicted but details of concrete operations are hidden. The asset offered by the WS-BPEL with its executable and abstract process, advances the development of automated composition process.

However, with such popularity, verifying WS-BPEL correctness becomes a topical issue, all the more because of BPEL complexity.

WS-BPEL (or simply BPEL) relies on WSDL, XML schema and XPath expressions. The WSDL interface of services is used in the composition and the WS-BPEL itself, offers a WSDL interface to describe the orchestration functionalities. The XML schema data are handled using the XPath expressions.

A Business process is described within a process tags as shown below. The attributes of the first process tag specify the name of the process, the target namespace to identify the namespace in which new elements are created, and the namespace that works as a reference to an element or a type. All the following tags will be nested inside the process tag. Let us begin with the import tag, as its name indicates, this activity is used to import the interface of the service orchestrator i.e. the WSDL file. The involved Web services in the composition are then specified. These partner services are specified using the notion of partner link (partnerLink). Among the attributes of a partnerLink, we find its name , the partner link type that represents the functionality provided by the interaction between service orchestration and service partner. The function of the business process is indicated using myRole and the one of the partner using partnerRole keywords. <p a r t n e r L i n k s> <p a r t n e r L i n k name = " p a r t n e r 1 " p a r t n e r L i n k t y p e=" partnerLT " myRole=" BPELprocessRole " p a r t n e r R o l e=" p a r t n e r 1 R o l e " /> <p a r t n e r L i n k name = " p a r t n e r 2 " . . . /> . . .

< !--o t h e r p a r t n e r s --> </ p a r t n e r L i n k s>

In order to manipulate data, BPEL uses variables. These variables are used whether internally in the process or in messages exchanges. As said before, WS-BPEL relies on WSDL interface and this one handles data using XML schema. Consequently, the data types of WS-BPEL variables will be the same as those of WSDL messages, an XML schema element or an XML schema type (complex or simple types). <v a r i a b l e s> <v a r i a b l e name = " v a r i a b l e 1 " messageType=" ns:messageType " /> < !--WSDL message type --> <v a r i a b l e name = " v a r i a b l e 2 " e l e m e n t=" ns:elementName " /> < !--XML schema e l e m e n t --> <v a r i a b l e name = " v a r i a b l e 3 " type=" ns:complexType " /> < !--complex type s p e c i f i e d with i t s namespace --> <v a r i a b l e name = " v a r i a b l e 4 " type=" s t r i n g " /> < !--s i m p l e type --> . . . </ v a r i a b l e s> WS-BPEL describes the process workflow using activities. We can distinguish two kinds of activities, the basic ones that describes atomic actions and the structured activities that describe complex actions by combining the simple activities.

Among the basic activities we find the assign activity. This activity is used to manipulate variables. Data stored within variables may be sent to a partner, received 24 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION from a partner or processed internally. This manipulation is done by storing a value into a variable of the same type.

Depending on the structure of a variable which can be of: (i) WSDL message type generally used for communicating activities with partners (these activities are the invoke, receive and reply. We explain them later). (ii) The variables may reference to an XML element. This element is mostly typed with a complex XML schema type. (iii) or XML schema types. To browse through variables of complex type, WS-BPEL uses XPath 1.0 expressions for that. One of the important aspects of an orchestration is the communication between Web services, for this matter simple activities were defined. The receive and reply are activities used for receiving and sending back messages between one or more services that have initiated the business process and the orchestrator. Among the attributes of the receive activity, one is dedicated to create a new instance of the process, the rest of them provide information about :

• partnerLink indicates the name of the partner link to use,

• portType indicates the WSDL port type in order to invoke the operation,

• operation indicates the operation to invoke,

• variable indicates the received variable. In response to the received message the reply activity is used. Its attributes are much like those of the receive activity, except for the values and the attribute for instance creation which is no more needed. <r e p l y name = " nameOft heReplyA ctibity " p a r t n e r L i n k=" User " o p e r a t i o n=" o p e r a t i o n U s e d " portType=" n s : s e r v i c e P o r t T y p e " v a r i a b l e=" o u t p u t V a r i a b l e 1 "> </ r e p l y>

The receive-reply activities are used for synchronous communication. The receive plays the role of request when the reply activity plays the role of the response. The asynchronous communications are done using the invoke activity which can be followed directly or not by a receive activity.

Invoking another Web service using the invoke activity for a synchronous communication implies the use of an input variable and an output variable. In this case the invoke activity will block until a response is provided from the invoked service. For an asynchronous communication only the input variable is used without need for the output variable. Example sending a receipt message for the web service partner.

<i n v o k e name = " n a m e O f t h e I n v o k e A c t i b i t y " p a r t n e r L i n k=" s e r v i c e P a r t n e r " o p e r a t i o n=" o p e r a t i o n " portType=" n s : s e r v i c e P o r t T y p e " i n p u p t V a r i a b l e=" V a r i a b l e I n " o u t p u t V a r i a b l e=" V a r i a b l e O u t "> </ i n v o k e> WS-BPEL defines also more complex activities named structured activities. The structured activities describe the organization of other activities. In the following, the described activities are those belonging to structured ones. To represent a sequential execution, the activity sequence is used.

<s e q u e n c e> < !--o t h e r a c t i v i t i e s n e s t e d i n s i d e --> </ s e q u e n c e> Parallel execution is represented using the flow activity. The flow activity is using links to define a synchronization dependence, in this case WS-BPEL support such constraint using source and target tags to satisfy the condition. For sake of simplicity we do not exemplify such case (more information can be found in the WS-BPEL standard [START_REF] Oasis | Web Services Business Process Execution Language (WSBPEL) Version 2.0[END_REF]). The next example describes the link "rendez-vous" that specifies a relation between the "task 1 " as the source and the "task2 " as the target. Nested within the "task 1" a synchronization between the first and the second services is required. Then the receive activity will be executed. <f l o w name=" f l o w A c t i v i t y N a m e "> < l i n k s> <l i n k name= " rendez -vous " /> < !--a l i n k had o n l y one s o u r c e and one t a r g e t --> </ l i n k s> <s e q u e n c e name=" t a s k 1 " > <s o u r c e linkname=" rendez -vous " /> <i n v o k e name=" f i r s t S e r v i c e " /> <i n v o k e name=" s e c o n d S e r v i c e " /> </ s e q u e n c e> < !--an a c t i v i t y i n s i d e t h e f l o w may have s o u r c e and t a r g e t f o r s e v r a l l i n k s --> <s e q u e n c e name=" t a s k 2 "> <t a r g e t linkname=" rendez -vous " /> <r e c e i v e name = " t h i r d S e r v i c e " /> . . . </ s e q u e n c e> </ f l o w> Repeated actions could be expressed using several activities like while, forEach, or repeatUnitl. We exemplify the fist one i.e. while, that focuses on repeating the nested activities as long as the condition is satisfied.

<w h i l e> <c o n d i t i o n> $ variable==true </ c o n d i t i o n>
<s e q u e n c e> < !--do a c t i v i t i e s --> </ s e q u e n c e> . . . </ w h i l e> Selective actions are represented using the if and else activities.

< i f> <c o n d i t i o n> $ variable==true </ c o n d i t i o n> < !--do some a c t i v i t i e s --> < e l s e i f> <c o n d i t i o n> $ variable2 &gt 100 </ c o n d i t i o n> < !--do o t h e r a c t i v i t i e s -->
</ e l s e i f> < e l s e> < !--do a c t i v i t i e s --> </ e l s e> </ i f> However, WS-BPEL describe another sort of selective actions relying on messagedependent branching (at least one message) and an optional timeout. Such behavior is described using the pick activity. This activity describes the future behavior of the process, according to the received message (onMessage). It is possible to specify the waiting time for a receiving message using the onAlarm activity. This activity is mostly used for asynchronous operations.

<p i c k c r e a t e I n s t a n c e=" no"> <onMessage p a r t n e r L i n k=" User " o p e r a t i o n="op1Name" portType=" n s : u s e r P o r t T y p e 1 " v a r i a b l e=" v a r i a b l e 1 "> < !--a c t i v i t i e s --> </ onMessage> <onMessage p a r t n e r L i n k=" User " o p e r a t i o n="op1Name" portType=" n s : u s e r P o r t T y p e 2 " v a r i a b l e=" v a r i a b l e 2 "> < !--a c t i v i t i e s --> </ onMessage> <onAlarm> <f o r> 'P0Y0M0DT0H10M0S ' </ f o r> < !--f o r a d u r a t i o n e q u i v a l e n t e t o 10 min --> < !--then do a c t i v i t i e s --> </ onAlarm> </ p i c k> Using the activity scope, it is possible to specify a collection of actions. As for the other structured activities, simple or structured activities can be nested within a scope. The scope allows to define a part of a service behavior, with its own local variable, correlation and handlers. <s c o p e name =" scopeName "> < !--do a c t i v i t i e s --> </ s c o p e> Once, the service orchestration is made available on the Internet, it can be used by several users or services. Such scenario implies that there is a track for each process initialized instance. For this purpose, WS-BPEL proposes to use parts of transmitted data along with messages to correlate the exchanged messages for an instance. A correlation had a unique name, associate attributes and is defined within correlation set tag. The properties attributes are associated to operations in the WSDL file. With these main activities we stop our introduction to the BPEL elements, more details are available on BPEL documentation [START_REF] Oasis | Web Services Business Process Execution Language (WSBPEL) Version 2.0[END_REF]. We provide an example of an orchestration of services in the next part.

The xLoan Case Study

To help the understanding of our approach we introduce our xLoan case study.

It is an extension of the well-known loan approval example presented in the BPEL standard [START_REF] Oasis | Web Services Business Process Execution Language (WSBPEL) Version 2.0[END_REF], which usually serves for demonstration purposes in articles on BPEL verification.

The Figure 2.6 presents an overview of this services orchestration. Where a user sends a loan request to the xLoan orchestrator service, this request includes the amount asked for and user personal information. According to those information and by invoking partner services, the xLoan service will provide an approval response with loan proposals or a reject response. The specified partner services respectively deal with loan approval (BankService) and black listing (BlackListingService), with users not being blacklisted asking for low loans ( 10000) getting loan proposals without requiring further approval. Yet, once a loan is accepted, proposals may be sent to the requester. Further communication then takes place, letting the requester select one proposal or cancel, which is then transmitted to BankService. If the selected offer code is not correct the requester is issued an error message and may try again (select or cancel). Timeouts are also modeled, and the bank is informed about canceling if the requester does not reply in a given amount of time (2 hours). Our extensions are targeted at demonstrating our support for BPEL important features: complex data types, complex service conversations including message correlation, loops and alarms. Hence, more complex and realistic data types are used, to model user information, loan requests and loan proposals.

Basic Notions of Testing

To ensure the good functioning and to increase trust in a system, the verification and the validation activities are inescapable. These two activities are complementary and jointly used all along the software development process (software requirements, design and programing).

The verification activity focuses on proving the correctness of a specification and/or an implementation of a system. To do so, the verification checks the specification and/or the program by applying proof and test techniques. By contrast the validation activity focuses on establishing that the system intends its requirements. The query "Are you building the right thing? " is usually applied for the validation and the query "Are you building it right? " is the one used for the verification.

Verification and Testing

Some researchers associate the testing process to the verification. Others claim a distinction between verification and testing. The aim of verification, also known as formal verification, is to proof the correctness of a system by analyzing one or more Among the main techniques of formal verification we cite the Model-checking technique. The model checking algorithm takes as input an abstraction of the behavior of a system (i.e., a transition system) and a formula of some temporal logic, and responds whether or not the abstraction satisfies the formula. We then say that the transition system is a model of the formula. The big advantage of model checking is that it is completely automatic, and usually a counterexample is returned when the property is not checked.

In a testing domain, Abran et al [START_REF] Abran | Guide to the Software Engineering Body of Knowledge (SWEBOK)[END_REF] define the testing process as follows: Testing is an activity performed for evaluating product quality, and for improving it, by identifying defects and problems. Software testing consists of the dynamic verification of the behavior of a program on a finite set of test cases, suitably selected from the usually infinite executions domain, against the expected behavior. The testing process is also defined as the process that detects the system errors regarding to its specification, and thus enhance the reliance in it (LAPRIE, J.C. [START_REF] Laprie | Guide de la sûreté de fonctionnement[END_REF]). The Figure 2.7, provides a standard view of the verification and the testing process. Since we are interested in finding errors due to a non conformance of a composite Web service implementation regarding to its specification, the work presented in this thesis focuses on the testing process of an orchestration of Web services.

Levels of Testing

There are several levels of test, depending on the detail level of the system that a tester wants to verify, such as: unit testing, integration testing, system testing, etc. Furthermore, those tests could be applied at different levels of abstraction: (i)Black box testing, consists in making tests on the external observable behavior of the system without having implementation code knowledge. (ii)White box testing is based on the internal details and the structure of the code. A third method that mixes the previous ones is called (iii)Gray box testing. We provide more detail in the following: It is possible to apply a test at different levels of details for a system as depicted in the Figure 2.8:

• Unit testing: it verifies a small module (i.e. a class) of a software independently of other modules. This kind of test is used with white box testing,

• Integration testing: it verifies that the interaction of two or more modules belonging to the same system produces the expected results. It is used with White or black box testing,

• System testing: it verifies the entire behavior of the system. It includes other kinds of testing such as: performance, stress, scalability testing, etc. Used with Black box testing

• Acceptance testing: generally conducted by a customer. This testing verifies that the system satisfies the acceptance requirements. It is used for Black box testing

• Regression testing: this test is applied when new functionality are added to the system. It uses all the previous tests applied and run them again to verify that the new functionality does not affect the old ones, As said above, performing a test depends also on the level of abstraction. In the following paragraphs we provide a definition of the white an the black box testing.

• White box testing. Also referred as structural testing. It is a test method that relies on the knowledge of the internal structure of the program, i.e. the tester has access to the source code of the program. This method verifies that a functionality is correct by using code coverage. Among the techniques used in this method we cite: the Data-Flow testing that analysis whether the variables of the program are bound to a value or not and how these variables are used; the mutation testing aims to test faulty hypothesis by introducing small transformation to the original program.

• Black box testing. Also referred as functional testing. It is a test method that verifies that the functionalities of a program are in accordance with the user requirement. Such test is done without any information on how the system was created. In other words, the tester uses the black box testing to make sure that the program behaves correctly by sending inputs data to the program and 32 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION comparing its outputs with those specified by the user.

The white and the black box testing are represented in Figure 2.9.

Figure 2.9: Test abstraction When a tester chooses the testing type and the associate level of abstraction, he aims to test a specific aspect or characteristic. We describe some aspects as follows:

• Conformance testing: it determines whether a system meets the functionalities described in the specification,

• Robustness testing: it focuses on the resistance aspect of a system implementation against external events or unanticipated errors in the specification of this system,

• Performance testing: it determines the performance of a system or checks whether the announced performances in the specification are achieved,

• Security testing: it determines if the data and the functionalities of a system are safe and well protected against any intrusion.

The Figure 2.10 is reused form Tretmans's tests classification. It summarize the kind of testing that one may perform.

In the next part we provide basic test notion in order to apply conformance testing of an orchestration of services.

Conformance Testing

As mentioned before, conformance testing also called Compliance testing is process of checking if the implementation of a system adheres to its specification. In other words, the conformance notion is a formal relation between a specification and an implementation of it. This relation evaluates whether the implementation satisfies the properties described in the specification. The Figure 2.11 is an overview of the conformance testing process for which we present the basic notions: • Specification. A system specification is a formal or an informal description of what the implementation should do. It is a way to express the properties of the system (see Figure 2.12). Generally, the specification is established from the user requirements it can be expressed as natural language e.g. French, English, or as specialized description languages, e.g. LOTOS [ISO/IEC 8807]

or SDL [ITU-T]. The semantics of the specification can be represented using Temporal Logic [START_REF] Pnueli | Applications of temporal logic to the specification and verification of reactive systems: A survey of current trends[END_REF], algebraic specifications, extended finite state machines, transition systems, etc. In the following we will use the same formalization as J. Tretmans [START_REF] Tretmans | Testing concurrent systems: A formal approach[END_REF][START_REF] Tretmans | Model based testing with labelled transition systems[END_REF] to express the notion of conformance.

Let SP ECS denote the set of all valid expressions of formal specifications and s a single specification such that s ∈ SP ECS.

Figure 2.12: Properties as a specification

• Implementation. The Implementation Under Test (iut) represents the system to be tested. The iut can be a piece of hardware like a single chip or a software component like a piece of executable code.

Let IM P S denote the set of all possible implementations and iut is a one of them such that iut ∈ IM P S.

• Conformance. To check the conformance of an implementation with respect to its specification we need to find a formal relation between the implementation and its specification. A correct implementation iut (iut ∈ IM P S) with respect to its specification s (s ∈ SP ECS) is represented with the following relation: conform-to ⊆ IM P S × SP ECS However, whereas the specification s is represented formally, the implementation under test iut is a real object. In order to formally reason about a concrete implementation (iut), it is assumed that M ODS is a set of all the possible implementation models. We assume I iut to be a formal model describing the iut such that I iut ∈ M ODS. In the testing theory domain, this assumption is called test hypothesis [START_REF] Bernot | Testing against formal specifications: a theoretical view[END_REF][START_REF] Gaudel | Formal methods and testing: Hypotheses, and correctness approximations[END_REF][START_REF] Gaudel | Testing can be formal, too[END_REF]. The test hypothesis allows us to reason on implementations under test as if they were formal implementations in M ODS.

As described in Zinovieva thesis [START_REF] Zinovieva-Leroux | Méthodes symboliques pour la génération de tests de systèmes réactifs comportant des données[END_REF] we can express the test hypothesis in a semi-formal manner as follows:

∀ iut ∈ IM P S ⇒ ∃ I iut ∈ M ODS.
Where iut is modeled by I iut .

Once the implementation is represented formally, the conformance between the model of the implementation and the specification could be expressed by a formal relation called implementation relation:

imp ⊆ M ODS × SP ECS.
In other words, the implementation model I iut is correct with respect to the specification s if I iut imp s

• Testing. Actually it exists two kinds of testing : active testing and passive testing.

-Active testing implies performing experiments on an implementation under test and observing the corresponding reactions, -Passive testing also called monitoring, it implies observing then analyzing the inputs and the outputs of an implementation under test without disturbing its normal execution.

In our approach we are interested by the active testing, thus we will interact with the implementation in order to check its response with regard to the expected one.When a specification depicts a single experiment, it is called test case and the process of its execution is called test execution. Let T EST S denote the domain of all the experimentations and t a single one such that t ∈ T EST S.

If the response observed from the system is the expected one then the implementation has passed the test. Otherwise, it is considered as an erroneous response so, the implementation has failed. However, a third case may happen, when the response is an unexpected one. It means that the response belongs to another scenario depicted by the specification, in this case the verdict is called inconclusive and the test case will be re-executed. Yet at the end of the test the final verdict will be either a pass or a fail one.

For an implementation iut, we could express such observation as follows: iut passes t for a successful test execution, iut fails t for unsuccessful one and iut inconclusive t for an unexpected response observation. The extension of this definition to a set of test cases called test suite T such that T ⊆ T EST S so:

iut passes T ⇔ ∀ t ∈ T : iut passes t.
iut fails T ⇔ ∃ t ∈ T : iut fails t. The soundness means that if an implementations is considered as conform to its specification then these implementation must pass the test suite. Sill, it is possible that some non-conform implementation pass the test suite and therefore will also be considered as conform. In other word, if an implementation is identified as non-conform to its specification it involves that it will not pass the test suite but the contrary is not true. The sound requirement is deducted by reading the completeness formula form the left to the right:

∀ iut ∈ IM P S and ∀ T ∈ T EST S: iut conform-to s ⇒ iut passes T
Reading the other way, form the right to the left, is known to be the exhaustiveness requirement. This means that the implementation that passes the test suite is conform, and any non-conform implementation is detected. It corresponds to :

∀ iut ∈ IM P S and ∀ T ∈ T EST S:

iut passes T ⇒ iut conform-to s
In a practical testing even the exhaustiveness property could not be applied because it is not possible to execute an infinite number of tests in an amount of time. Thus the property that must be hold is the one of soundness.

• Test Execution. As defined by Elena Zinovieva [START_REF] Zinovieva-Leroux | Méthodes symboliques pour la génération de tests de systèmes réactifs comportant des données[END_REF], it refers to the process of interacting with the implementation under test iut (iut ∈ IM P S). This interaction is described as : [START_REF]Oracle application testing suite[END_REF] The generalization of such rules to a test suit T ∈ T EST S is represented as:

iut fails T ⇐⇒ ∃ t ∈ T , iut fails t iut passes T ⇐⇒ ¬ (iut fails T ) ⇐⇒ ∀ t ∈ T , iut passes t
After this introduction to the conformance testing, in the next section we present the existing specifications for an orchestration of services.

Specification for Web Services Orchestration

Composing Web services provides the possibility to accord and organize the functionalities offered by these Web services. So one may achieve his purpose, without losing time searching for which service satisfies his request. For this goal, an elaborate description of those functionalities is required.

Different specifications in the context of Web services exist to depict the Web service composition. The most popular language for specifying an orchestration of services is the (WS-BPEL). This language is an executable one, it implies that WS-BPEL describes code details on how the interactions between services are done. It exists other languages more abstract to describe a specification of services composition like: SENSORIA Reference Modeling Language (SRML) and the Business Process Modeling Notation (BPMN) or the Unified Modeling Language for Service Oriented Architecture (UML4SOA).

In the following we provide a brief description of those specification languages:

Unified Modeling Language for Service Oriented Architecture

Relying on the standardized Unified Modeling Language (UML), the UML for Service Oriented Architecture (UML4SOA) [START_REF] Mayer | A model-driven approach to service orchestration[END_REF] is an extension that supports behavioral description of Service Oriented Software (SOA). This model had been defined in the context of the Software Engineering for Service-Oriented Overlay Computers (SENSORIA) project [START_REF]Software engineering for service-oriented overlay computers (sensoria[END_REF]. Form UML4SOA specification model transformer are used to generate executable code as WS-BPEL and WSDL files. The UML4SOA profile allows its users to model an orchestration of services as UML2 diagrams in a simple way using small set of model elements.

Business Process Modeling Notation

We can say that the Business Process Modeling Notation (BPMN) [START_REF]Business process model and notation (bpmn[END_REF] is the most popular specification used in the industrial fields due to its user friendly representation. BPMN is a graphical representation of business process of a system. This notation is considered as a standardized bridge between a business process design and a process implementation. With the popularity of using services orchestrated, a lot of work [START_REF] White | Using BPMN to Model a BPEL Process[END_REF][START_REF] Ouyang | Translating BPMN to BPEL[END_REF][START_REF]bpmn2bpel[END_REF] focus on extending BPMN to supports the generation of executable WS-BPEL code.

SENSORIA Reference Modeling Language

The SENSORIA Reference Modeling Language (SRML) [START_REF] Luiz Fiadeiro | A Formal Approach to Service Component Architecture[END_REF][START_REF] Abreu | Specifying and Composing Interaction Protocols for Service-Oriented System Modelling[END_REF][START_REF]Sensoria reference modeling language[END_REF] supports the design of services at a high level of abstraction. It has also been defined for the SENSORIA project [START_REF]Software engineering for service-oriented overlay computers (sensoria[END_REF]. SRML is inspired by the Service Component Architecture (SCA) [START_REF]Service component architecture[END_REF] composition. The SCA architecture provides several technologies in order to model services components and the way to interact with them.

In addition to the functional properties of a service composition, SRML focuses also on run-time discovery and services binding.

Discussion

In order to apply our conformance testing approach, we are interested in a specification that describes the global conversation protocol (the business process) of services orchestration. But also the operations used, the data exchanged between the services and some special properties like the correlation that links the messages with the appropriate process instance.

The UML4SOA model provides a complete description of the operations and the messages exchanged within a service orchestration. However, the conversation protocol that defines the ordering of those exchanged messages are still not well represented. In contrast, the BPMN notation provides a good description of the conversation process, but describes the data traffic using a high level of abstraction. As for the SRML, the associate model for an orchestration supports the operations, data exchanges description and the conversation protocol. Yet this description focuses on the architectural aspect of the services components.

For our approach we rely on the (A)BPEL which is an abstraction of the WS-BPEL. The ABPEL describes the conversation protocol with the operations and the exchanged data without details on the implementation code. Since the WS-BPEL or the ABPEL do not have a graphical representation and for sake of pedagogy we chose to use BPMN for graphic representation of BPEL process which is independent form the tool used to describe a BPEL service orchestration. We extended the BPMN notation to highlight the data handling in an orchestration. We also used and extended the UML diagram in order to represent the structure of transfered data.

In the following section, we present how based on a specification, a formal model is used to represent an orchestration of services and then apply verification and testing techniques in order to check its correctness.

Formal Methods for Web Services

A formal model allows the representation of behavioral characteristics of a system according to precise rules, thus any ambiguity or repetitions are prevented. In order to gain a thorough understanding and reliability by avoiding ambiguity or misunderstanding of what Web services must provide, the services are expressed using formal models.

This section provides an overview of the existing approaches to verify or test Web services using formal models.

We can divide the methods of verifying Web services in two sorts: The control flow verification and the data flow verification. The control flow verification uses temporal logic model checking to prove properties of services, bi-simulation to check the behaviors equivalence between two services or two versions of the same service, simulation to check whether the behavior of a service is included within the behavior of other interacting services, or execution traces of the service, to understand the behavior of the service. The data flow verification uses data type checking, in the case of LOTOS and other process algebras allowing data handling.

Models of Web Services

Within this part, we present the main models adopted in web services formalization as shown in the Figure 2.13.

• Petri-Nets [START_REF] Hsu-Chun Yen | Introduction to petri net theory[END_REF]. They are particularly useful for modeling concurrent systems and asynchronous processing. A Petri-net is a directed bipartite graph in which nodes are either "places" (represented by circles) or "transitions" (represented by bars). A place represents a state or a condition to satisfy and a transition [START_REF] Hamadi | A petri net-based model for web service composition[END_REF][START_REF] Hinz | Transforming bpel to petri nets[END_REF][START_REF] Stahl | A Petri Net Semantics for BPEL[END_REF][START_REF] Van Breugel | Models and verification of bpel[END_REF][START_REF] Niels Lohmann | Petri net transformations for business processes -a survey[END_REF]. In [START_REF] Hamadi | A petri net-based model for web service composition[END_REF] the authors provide a Petri net-based algebra, for modeling the control flows, as a necessary constituent of reliable Web service composition process. The proposed algebra is expressive enough to capture the semantics of complex Web service combinations. As for Christian Stahl et al. [START_REF] Stahl | A Petri Net Semantics for BPEL[END_REF][START_REF] Ouyang | Formal semantics and analysis of control flow in ws-bpel[END_REF] they present a pattern-based Petri net semantics for the Business Process Execution Language for Web Services (WS-BPEL). This semantics is complete, and covers the standard behavior of BPEL as well as the exceptional behavior (e.g. faults, events, compensation). The tool BPEL2PN [START_REF] Stahl | A Petri Net Semantics for BPEL[END_REF] is a parser that takes a BPEL process as an input, and transforms it into a Petri net according to the associate Petri net semantics. The output of the tool is a Petri net expressed as a data format of the model checker LoLA [START_REF] Schmidt | Lola: a low level analyser[END_REF].

Other research works propose the use of colored Petri nets, as the work of Yingmin et al. [START_REF] Li | A colored petri nets model for diagnosing data faults of bpel services[END_REF] where they use colored tokens to represent the faults in a BPEL process. Kang et al. [START_REF] Kang | Modeling and verification of web services composition based on cpn[END_REF] also use colored Petri net (CPN), their model allows efficient composition of Web services and validates the correctness of composition using formal verification methods. As for Timed Petri nets, they were used by Valero et al. [START_REF] Valero Ruiz | Transforming web services choreographies with priorities and time constraints into prioritizedtime petri nets[END_REF] to handle priorities and time constraint for services choreography. Other works like [START_REF] Yang | Transform bpel workflow into hierarchical cp-nets to make tool support for verification[END_REF] use hierarchical Petri nets for the verification of composite services.

• Process Algebra [START_REF] Beek | Formal Methods for Service Composition[END_REF]. They describe a diverse family of related approaches to formally model concurrent systems. Several process algebra are defined as: the Calculus of Communicating Systems (CCS) [START_REF] Milner | A Calculus of Communicating Systems[END_REF], Communicating Sequential Processes (CSP) [START_REF] Hoare | Communicating Sequential Processes[END_REF], π-calculus, the Language Of Temporal Ordering Specification (LOTOS) [START_REF] Brinksma | Specification modules in lotos[END_REF], etc. The Algebra of Timed Processes (ATP) is used in [START_REF] Mateescu | Formal Modeling and Discrete-Time Analysis of BPEL Web Services[END_REF] to formally model the behavior of web services described in BPEL language. Driven by the ATP rules the WSMod tool, in this work, produces a model represented as a Label Transition System (LTS) which will be analyzed by model checking using the Construction and Analysis of Distributed Processes (CADP) [START_REF]Construction and analysis of distributed processes (cadp[END_REF][START_REF] Garavel | Cadp 2006: A toolbox for the construction and analysis of distributed processes[END_REF] toolbox. CCS was used in [START_REF] Yun | Behavior-based web services matchmaking[END_REF] as a formal tool to specify and model web services behavior using weak bi-simulation relation to discover services that satisfies a given requirement. W.L. Yeung [START_REF] Yeung | Mapping ws-cdl and bpel into csp for behavioural specification and verification of web services[END_REF] uses CSP to express the behavior of services composition either as a centralized composition described using WS-BPEL or as distributed one described using WS-CDL. The generated model is verified using the FDR2 [START_REF]Formal Systems (Europe) Ltd. FDR (Failures-Divergence Refinement) is a model-checking tool[END_REF] model-checking tool. Foster et al. [START_REF] Foster | Web service compositions: From xml syntax to service models[END_REF][START_REF] Foster | Ltsa-ws: a tool for model-based verification of web service compositions and choreography[END_REF] present an approach to specify, model, verify and validate web services compositions. To do so, they proposed the use of Finite State Processes (FSP) with the Labeled Transition System Analyzer (LTSA) tool to produce and analyze Labeled Transition Systems (LTS). In [START_REF] Weidlich | Efficient analysis of bpel 2.0 processes using p-calculus[END_REF] M. Weidlich et al. present a partial formalization of BPEL using π-calculus for process verification. Finally LOTOS and its CADP toolbox are used in several work [START_REF] Salaün | Negotiation among web services using lotos/cadp[END_REF][START_REF] Ferrara | Web services: a process algebra approach[END_REF] to verify the BPEL process.

• Automata. They consists of a set of states related by transitions that can be labeled using labels from predefined set. Zhang et al. [START_REF] Zheng | Automata semantics and analysis of bpel[END_REF][START_REF] Zheng | A model checking based test case generation framework for web services[END_REF] define an automata-based model named Web Service Automaton (WSA) to capture the most features of BPEL without handling complex data or predicates. The WSA model is then transformed into input languages as PROcess MEta LAnguage (Promela) or SMV for the model checker tools SPIN or NuSMV respectively, to apply coverage criteria methods. The authors of [START_REF] Raman Kazhamiakin | Representation, verification, and computation of timed properties in web services composition[END_REF][START_REF] Raman Kazhamiakin | Timed modelling and analysis in web service compositions[END_REF] model and analyze time-related properties of a web service composition expressed using BPEL. The formalism they choose for representing a BPEL process is called Web Service Timed State Transition Systems (WSTTS). After that model checking techniques are applied on WSTTS formalism to verify the BPEL composition. Another automata called the annotated deterministic finite state automata (aDFA) model is presented in [START_REF] Wombacher | Transforming bpel into annotated deterministic finite state automata for service discovery[END_REF] to allow discovering other web services. The Annotated finite state automata (aFSA) model presented in [START_REF] Mahleko | Indexing business processes based on annotated finite state automata[END_REF], is used for service discovery by indexing and matching the modeled business processes. Pistore et al. [START_REF] Pistore | Automated synthesis of composite bpel4ws web services[END_REF] use a different automata model named the State Transition System (STS). Given an STS obtained form the translation of BPEL and the formalization of the requirements obtained using Extended Goal Language (EaGLe) [START_REF] Dal Lago | Planning with a language for extended goals[END_REF], the authors describe how to generate an STS that encodes a process behavior which satisfies these requirements. The latter STS is then transformed into an executable BPEL program. In order to trace faults when a business process fails, the work presents in [START_REF] Pencole | Monitoring web service networks in a model-based approach[END_REF] proposes an automatic method to model Web service behaviors and their interactions using model-based reasoning approaches on Discrete-Event Systems (DES).

In [START_REF] Fu | Analysis of interacting bpel web services[END_REF][START_REF] Fu | Wsat: A tool for formal analysis of web services[END_REF] Bultan et al. present a set of tools and techniques for analyzing interactions of composite web services which are specified in BPEL and communicate by exchanging asynchronous XML messages. To do so, the authors first of all present a framework that translates BPEL into an intermediate representation named Guarded Finite State Automata (GFSA) then into the Promela verification language. The translation steps are done using their tool named the Web Service Analysis Tool (WSAT). Finally, they use the generated Promela with the SPIN tool for the verification of the BPEL composition. For their part, Garcia-Fanjul et al. [START_REF] García-Fanjul | Generating Test Cases Specifications for BPEL Compositions of Web Services Using SPIN[END_REF] were interested in transforming BPEL into the Promela language then submit it to SPIN in order to derive a test suite for the composition. For a functional testing of service composition, M. Lallali [START_REF] Lallali | Modélisation et Test Fonctionnel de l'Orchestration de Service Web[END_REF] uses the Web Service Timed Extended Finite State Machine (WS-TEFSM) model as the formal description of a BPEL process. The WS-TEFSM model handles the temporal activities, the termination and the exceptions expressed in the BPEL process. Yuan et al. [START_REF] Yuan | A graph-search based approach to bpel4ws test generation[END_REF] define a graph structure to represent BPEL, then search concurrent test paths with a matrix-based algorithm. This approach defines an extension of Control Flow Graph (CFG) named BPEL Flow Graph (BFG) that represents a BPEL program as a graphical model. Then concurrent test paths can be generated by traversing the BFG model, and test data for each path can be generated using a constraint solving method.

• Other formalisms exist, Butler et al. [START_REF] Michael | Precise modelling of compensating business transactions and its application to bpel[END_REF] described the Structured Activity Compensation (StAC) language used to specify BPEL composition activities in long running business transactions. StAC supports sequential and parallel behavior as well as exception and compensation handling. Moreover, the StAC language can also be combined with the B notation to specify the data aspects of transactions. This combination provides a rich formal notation which authorizes for succinct and precise specification of business transactions.

Discussion

As presented above numerous model-based verification and testing approaches have been proposed for BPEL as translating BPEL to automata, Petri nets or process algebras. These approaches are especially valuable to check if an orchestration specification is correct. Still, as far as the correctness of an implementation wrt. a specification is concerned, these approaches fall short as, e.g., one may expect service providers to publicize (Abstract) BPEL descriptions of what their services do, but not how they do it. Here, testing comes as a solution to ensure (i) that some sub-service used in an orchestration really conforms to its publicized behavioral interface, and (ii) that the service orchestration itself conforms to the behavioral interface to be publicized after its deployment.

With reference to the previous works, our interest was in a model that depicts the control flow of a services orchestration and supports the rich XML-based data types available in BPEL. This is achieved thanks to the STS model which has already proven to be valuable, e.g., for UML [START_REF] Attiogbé | A Formal and Tool-Equipped Approach for the Integration of State Diagrams and Formal Datatypes[END_REF], and is here used for services orchestration. From ABPEL as specification language and using BPMN and UML for a graphical representation of the business process and handled data, we compute the associate Symbolic Transition System (STS) model according to process algebraic transformation rules, more details are provided in the next chapter.

Verifying and Testing Web Services

Using formal models of Web services, several approaches and techniques are used for testing and verifying them. However, before talking about such approaches, we present some issues faced in the test community in order to test Web services.

Web Services Testing Issues

Web services are considered as a new challenge in the test field. The difficulty in testing the Web Services is due to their complexity (for composition) and to the notion of control and observability services. Inspired from [START_REF] Harman | Testing web services: A survey[END_REF] we describe these challenges as follows:

• The activity of a Web service (publishing, finding, binding) makes it difficult to test a service due to its dynamic aspect. Suppose a user who asks to have a service that meets a specific request. For that a Web service WS1 can be offered at time t1, and another Web service WS2 at time t2 because the service WS1 is no longer available. Such a scenario makes testing WS1 according to its activity difficult.

• The choice of the specification. Indeed, if we consider the point of view of Specification-Based Testing, such issue is very relevant. From which specification, should a tester begin ? a static one (e.g., WSDL) or a dynamic one. Moreover for the latter choice which language should the tester selects (WS-BPEL, BPMN, SRML or UML for SOA, etc) ?

• The control and observability of Web services also complicates their test. In general the web service provider does not expose their source code which is understandable for a confidential and secure point of view. But testing a source code with a formal white box approach is also important because it increases the trust level of the service. Complementary to the white box testing the black box testing will rely on the specification of the service to test it.

• Testing the composite Web services. Both for the black or the white testing have to manage the complexity of composite services due to the multiple parties involved in business process. This complexity also includes how to handle complex data transmitted between the different services partner and how to associate each exchanged message to its corresponding process instance.

How to Verify and Test Web Services ?

As pointed out before (in section 2.4), significant research effort have been produced in the last years in order to propose formal models for orchestration verification and testing. Numerous work in this area have addressed model-checking, to check if properties are verified by an orchestration specification. Still, in presence of a black box implementation, one cannot retrieve a model from it. To help establishing the conformance wrt. a specification, testing should be used. However, to the contrary of model-checking, testing is incomplete. One rather focuses on generating the good test cases to search for errors. Testing enables one to ensure both that sub-services participating to an orchestration conform to their publicized behavioral interface, and that the orchestration itself conforms to the behavioral interface to be publicized after its deployment. Orchestration testing has mainly been addressed from a white-box perspective, assuming that the orchestration implementation source code is available.

In practice, the source code is often not available as it constitutes an added-value for the service providers. In this section we present an overview of some works done in Web Services verification and testing domain.

Unit Testing of Web Services

This is the most basic technique applicable to any system. Each individual component of the system is verified independently. In the case of Web services each operation can be considered as a basic unit. Unit testing of web service consists of sending and receiving SOAP messages between the tester and the service under test. The message exchange is done through information extracted from the WSDL file. Thus, this type of test allows to verify the proper functioning of the operation and to check the WSDL file. Automated testing tools exist for unit testing of Web services such as Parasoft SOAtest [START_REF]Parasoft soatest[END_REF], SOAPSonar [START_REF] Soapsonar | [END_REF], HP Service Test Software and Oracle Application Testing Suite [START_REF]Oracle application testing suite[END_REF]. However, these tools do not automate all the testing process: a tester provides the test cases then the tools generate the appropriate SAOP message for each test case. Unit testing was also addressed by the research community. Mayer and Lubke [110] propose a framework for testing BPEL composition with a white box testing method. This framework called BPELUnit [109] can replace participating web services using service mocks, exchanging SOAP messages with other services and collecting test results. BPELUnit also manages synchronous or asynchronous BPEL process that interacts with several partners. Li et al. [START_REF] Li | Bpel4ws unit testing: Framework and implementation[END_REF] propose another approach for testing BPEL process. They present a BPEL4WSunit test framework that includes an abstract model of a BPEL process, a test architecture and stub process to simulate services partners.

Testing the Interface of Web Services

This refers to the test of WSDL file. To achieve this goal Salva et al. [START_REF] Salva | Automatic web service testing from wsdl descriptions[END_REF] propose an automatic testing method of WSDL interface. This method allows the automatic generation of test cases, and to verify the handling of sessions, exceptions and operations existence. As well Bartolini et al. [START_REF] Bartolini | Towards Automated WSDL-Based Testing of Web Services[END_REF] define an automatic approach for testing WSDL descriptions, which combines the coverage of WS operations with data-driven test case generation. They use the popular tool soapUI [START_REF]soapui tool[END_REF] with their developed tool named TAXI [START_REF] Bartolini | Taxi public page[END_REF][START_REF] Bertolino | Taxia tool for xml-based testing[END_REF][START_REF] Bertolino | Automatic test data generation for xml schema-based partition testing[END_REF] to generate test suites. The TAXI tool derives automatically XML instance from the XML schema. Their methodology for the generation of test cases, uses basic coverage criteria and some heuristics.

Those heuristics aim to combine the generated instance elements in different ways, and sometimes change the cardinalities and the data values used for the generated instances. In [148], Troschutz provides a framework for testing Web services using the Testing and Test Control Notation version 3 (TTCN-3) [START_REF]Testing and test control notation version 3 (ttcn-3)[END_REF]. TTCN-3 is a standardized test specification and implementation language dedicated to black-box testing of computers and telecommunication systems. Using specific mapping rules, an abstract test suite is derived from a WSDL description of a Web service then executed against the Web service by the TTCN-3 tool. In [START_REF] Bai | Wsdl-based automatic test case generation for web services testing[END_REF], Bai et al. present an automatic method for generating test cases form WSDL interface. They begin by parsing WSDL in order to generate the corresponding DOM tree, then test cases are derived from the messages data types and operation dependency. Bertolino et al [START_REF] Bertolino | Audition of web services for testing conformance to open specified protocols[END_REF] focus on testing the interoperability between Web services. In this work, the authors strengthen a WSDL description with a corresponding UML2.0 diagram and Protocol State Machine (PSM) model. The PSM describes the required conditions and how a customer can access to the service. From the PSM a Symbolic Transition System (STS) is generated on which formal testing theory and tools are applied for conformance evaluation. Generally, the interface testing of Web services is included within the black box testing approach. We apply such separation to distinguish between testing the interface of Web services composition and testing their behavior.

Behavioral White Box Testing

Several works interested in structural testing of BPEL were performed. 

Behavioral Black Box Testing

The functional testing of Web services aims to verify the accordance of the services with regard to the requirements of the specification. Based on the specification of a service Kaschner et al. [START_REF] Kaschner | Automatic Test Case Generation for Interacting Services[END_REF] introduce their approach that automatically generates test cases in a purpose of conformance testing. From a specification expressed using BPMN or abstract BPEL they translate it in an Open Work Flow Nets (oWFNs), which is a particular class of Petri Nets. This approach focuses on detecting the non existence of deadlocks between the different services partners. They consider each service partner as a test case, i.e., if the specification describes the interaction with a service partner, it must be the case in the implementation. In [START_REF] Frantzen | Towards Model-Based Testing of Web Services[END_REF] Frantzen et al. attend to the coordination protocol. First of all the authors use the UML diagram representing the communication between a client and a Web service as a specification, then the Symbolic Transition Systems (STS) is generated and testing techniques are applied according to the ioco [START_REF] Tretmans | Test generation with inputs, outputs and repetitive quiescence[END_REF] conformance relation. An offline approach for testing Web services is exposed by Frantzen et al. [START_REF] Frantzen | On-The-Fly Model-Based Testing of Web Services with Jambition[END_REF]. The authors present their tool named Jambition to test Web services modeled as Symbolic Transition System (STS). Relying on the sioco testing relation, they provide a random on-the-fly testing approach. This work is very close to ours, the main differences are in the generation of test cases, while we do generate test cases then execute them against the implementation, Frantzen et al. [START_REF] Frantzen | On-The-Fly Model-Based Testing of Web Services with Jambition[END_REF] do it on-the-fly. They execute random testing while we already support the test purposes and we use the symbolic execution in order to avoid state space explosion problem.

A similar approach as our is described in Escobedo Del Cid [START_REF] José | Symbolic test case generation for testing orchestrators in context[END_REF] thesis. Where the author focus on conformance testing of an orchestration in context. By the notion of context the author presents a strongly coupled conformance relation with the testing architecture. After that Escobedo uses the symbolic execution and a rule-based online testing algorithm, in order to detect errors resulting from the interaction between the tester and the orchestrator, according to a specific context. A second contribution depicted within this work is to define Web service testing techniques, and thus offering the possibility for one to determine if a Web service can interact with the service orchestrator without leading this new composition into a deadlock situation. As for the execution aspect, the author provides a prototype implementing the online testing algorithm in order to apply contextual conformance testing on a service orchestrator.

Testing Web Services Approaches

We report the main research works on testing Web service in the Table 2.5. The first column refers to the authors of the work. Then the approach used for the verification or the testing process is defined in the second column. The described approach can be:

• Specification-Based, this approach resets on documents that describes a Web service like WSDL, or Web Ontology Language for services (OWL-S). Where the OWL-S is a semantic markup for composing Web services.

• Fault-base, it aims to prove the non existence of predefined errors

• Model-Based, is a technique for deriving test cases form formal models. Those models represent the Web service or their composition.

The abstract testing level applied for the chosen approach is depicted in the third column, where the white square represents the white box testing and the black one represents the black box testing. The gray box testing is represented with a star. Each approach aims to check a specific type or point of view, it could be unit testing, robustness testing, model-checking, etc, as indicate in the fourth column. And each type focuses on precise criterion, these criteria are indicated in the fifth column. The next column points to the input specification used. The seventh column presents the formal model used for the approach. Finally, if any of the mentioned research work uses a tool, this is indicated in the last column. We used abbreviations in the representation of the formal models, here are their complete definition: Petri-nets (PN), Timed Predicate Petri-Nets (TPPN), Unified Modeling Language (UML), Web Service Automaton (WSA), WS-BPEL Control Flow Graph (BCFG), eXtended Control Flow Graph (XCFG), BPEL Graph Flow (BGF), High-level Petri Nets (HPN), Symbolic Transition System (STS), ASynchronous Extended Hierarchical Automata (ASEHA), Task precedence graph (TPG), Timed Labeled Transition Systems (TLTS), XPath Rewriting Graph (XRG), Data Flow Diagrams (DFDs), Timed Exetended Finite State Machine (TEFM), Test Ontology Model (TOM), Java Interclass Graph, Protocol State Machine (PSM).

Discussion

Our objective is to apply conformance testing on an orchestration of services with a black box approach. It means that we are interested in testing the behavior of the service orchestrator, which implies that the order of services invocations and the order of the called operations are very important, and not only its WSDL interface.

To do so, we formally represent the orchestration from an ABPEL specification. We chose to use the Symbolic Transition System (STS), to support the data exchanged between the involved services. As the work of Escobedo et al. [START_REF] Escobedo | Testing web service orchestrators in context: A symbolic approach[END_REF], we reuse the symbolic execution technique, to bypass the states explosion problem. Unlike the works of Lallali et al. [START_REF] Lallali | Automatic Timed Test Case Generation for Web Services Composition[END_REF], Cao et al. [START_REF] Cao | Testing web services composition using the tgse tool[END_REF], or Morales et al. [START_REF] Morales | Timed extended invariants for the passive testing of web services[END_REF] where they face this kind of problem since they use concrete data in their approaches. However, as the previous approaches we use test purpose criterion too. A test purpose aims to guide and focus the generation of test cases on a specific aspect.

Nevertheless, the work of Escobedo et al. [START_REF] Escobedo | Testing web service orchestrators in context: A symbolic approach[END_REF] and the one in Escobedo Del Cid [START_REF] José | Symbolic test case generation for testing orchestrators in context[END_REF] thesis do not target the same goal as our. While, the authors focus on the testing architecture for the conformance testing of an orchestration by simplifying data exchanges, we are interested in handling the characteristics of an orchestration, e.g., structured exchanged messages and correlation property, in order to instantiate then execute test cases against the service orchestrator.

To provide the appropriate input data for testing the orchestration implementation, we use an SMT solver during the generation of test cases. These data inputs are submitted to the service orchestrator during the several interactions with it. According to its replying messages, we check if the service is conform to its specification or not.

The added value of our work compared to the other conformance testing of BPEL orchestration using a black box approach, is the fact that (i) it is a complete approach (also called end to end approach). Where we begin by an ABPEL specification, until the execution of the generated test cases.(ii) Within our STS model we also support the exchanged data between the services and the correlation property. (iii) Using the symbolic execution and an SMT solver we generate test cases with input data that we use for testing the orchestration service.

Conclusion

In this chapter we introduced the context of our work. We presented the SOA, as well as the main pillar of this architecture, which are web services. The composition of web services allows one to produce more efficient and dedicated systems, but also more complex and less secured ones. Software testing focuses on the detection of errors that can occur using such systems. Through this chapter we have introduced the main concepts of testing, with more details on conformance testing approach which is our objective. We have presented existing specification of composed services, formal models for Web services and testing approaches for them.

In the next chapter we deeply present our contribution for testing the orchestration of web services. We will describe there the formal model of the orchestration, the generation of test cases and the process of execution those test cases against the orchestrator service. In this chapter, we present the theoretical aspects of our end to end symbolic testing approach of a composite service. We clearly explain our steps, which start with the definition of a formal model of the specification, namely the Web Service Symbolic Transition System (WS-STS), by means of our transformation rules written in a process algebraic style. We also provide the possibility to use test purposes (TP). A TP allows us to focus on a particular behavior to test. By computing a product between the specification and the TP models, we obtain a WS-STS model that supports both the specification behavior and the behavior to test. The product is computed according to our defined rules. Using Symbolic Execution to avoid the unfolding of the model that would yield state space explosion, we generate the Symbolic Execution Tree (SET). Each path of the SET is a potential test case. We present an (online) algorithm that allows us to interact with the Z3 SMT solver in order to realize and then execute the test cases against the implementation service. Finally, depending on the response returned by the service under test, a verdict is emitted indicating whether the service is correct or not with regard to its specification.

CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE CONFORMANCE TESTING

The Proposed Framework

In this section, we present an overview of our formal framework for the testing of service orchestrations. While most model-based (for verification or testing) approaches targeted at orchestration languages either (i) ignore the retrieval of the formal model from the orchestration specification, (ii) ignore or over-simplify the rich XML-based data types of services, or (iii) do not tackle the execution of test cases against a running service implementation, our approach follows a language-to-language (or end to end) model-based testing framework that tackles the conformance testing process for a service orchestration from the specification language until the execution of the test cases.

As described in the Figure 3.1, we start from the orchestration specification, which is translated into a formal model, namely a Symbolic Transition System (STS) [START_REF] Poizat | A Formal Architectural Description Language based on Symbolic Transition Systems and Modal Logic[END_REF] rather than on labeled transition systems (LTS) usually used, either directly or indirectly from process algebraic or Petri net descriptions, as BPEL models. The LTS are known to cause over-approximation or unimplementable test cases (when data are simply abstracted away), and state explosion problems (when message parameters or variables are flattened wrt. their infinite domains). Both are avoided using STS. Besides, we handle the possibility of exploiting Test Purposes (TP) to check a particular behavior. For this goal, a test purpose is modeled with the same formal model as the specification one i.e. as an STS model. A product model is computed based on the specification model and the test purpose model to obtain a model that represents the orchestration behavior and handles test objectives.

Then, the Symbolic Execution (SE) technique [START_REF] King | Symbolic Execution and Program Testing[END_REF] is applied to compute a Symbolic Execution Tree (SET) from this STS. The SET represents (a finite subset of) the STS execution semantics, while avoiding the usual state-explosion problem in presence of unbounded data types, as used in full-fledged BPEL. This state explosion is avoided using message parameters and variables as symbolic values instead of concrete data. Given some criteria, we generate from the SET a set of execution paths which are finally run by a test oracle against the orchestration implementation and a verdict is produced.

Composite Web Services specification

As exposed before for service composition, we are interested in testing a WS-BPEL service orchestration. This executable language describes the behavior of services through the interactions of a centralized service with other ones, according to the basis of an orchestration. Recall that WS-BPEL is based on basic activities and structured activities. Among the basic activities we mention the ones that can be used to communicate with other services by messages ( invoke , receive, reply), The structured activities can depict a sequential execution (sequence), parallel execution (flow), data-dependent branching (switch), timeout or message-dependent branching (pick), or repeated execution (while). The structured activity scope allows to link activities and provides fault, compensation, and event handling. However, for a black box testing approach its not allowed to use the source code of WS-BPEL as a specification; and since our concern is on the behavior of an orchestration, not on its execution details, we consider Abstract BPEL ((A)BPEL) as our initial specification.

Abstract WS-BPEL as a Specification. (A)BPEL process shares a common syntactic base with WS-BPEL, and it is not necessarily executable. It describes the public interface of the orchestration and thus, it may hide some operational requirements details by either omitting them or replacing them with opaque construct (more details are available on the WS-BPEL manual [START_REF] Oasis | Web Services Business Process Execution Language (WSBPEL) Version 2.0[END_REF]). (A)BPEL is used for both describing in precise terms the behavior expected form the services partners and expressing the constraints on the roles of each of them. In other words, an Abstract BPEL publicize what a composed service do, but not how it do it.

From Language to Model

A formal model of a specification is a graphical representation of it. This representation must describe accurate details on the characteristics that one wants to test or verify. In this section we first provide our formal model named Symbolic Transition System (STS) for a service composition. Then, we present and explain the rules which are used to obtain a service model from a (A)BPEL description.

Service Model

A Web service allows to specify the functionalities that it offers in order to exploit them by other services or human clients. The service may expose information at different interface description levels in order to support automatic discovery, composition, verification and adaptation of Web services.

Two kinds of descriptions could be distinguished. The first one is the static description or the interface (i.e. WSDL) which focuses on how to use the service and the second one in the dynamic description or the conversation (i.e. (A)BPEL) which focuses on how the service behaves. For a composition of Web services, such descriptions are more complex due to interactions of several services expressed through the static description, and their organization expressed through the dynamic description. In order to support a precise description of an orchestration with its static and dynamic aspects, and thus avoiding any misunderstanding or ambiguity, we present how these two descriptions are taken into account using the STS formal model.

Static Description

The static description provides information details on how to use and communicate with a Web service. Since we are interested in an orchestration of web services, we present the important definitions that describe how a service orchestrator works.

Signatures. The required information needed to interact with a services are provided through the signature level. The signature level for a Web service must describe the features that it provides or requests. Among these features we find the used operations. Each operation describes the messages that allow the data exchange for passing operation parameters and getting result(s). A set of domains noted D can represent the allowed data type specification.

In practice data types are declared in the WSDL file. The later do not propose a new data type definition but, uses XML schema (XSD) to define canonical type system and considers it as the fundamental type system. D includes simple data types as integers, boolean, etc. However, WDSL also includes complex types. Complex types
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represent XML schema data structure. Within the context of Web services complex data types are expressed using XPath expressions.

We suppose that the implicit semantics that we attribute to the data types corresponds to the one used in the BPEL engine, and also used in the SMT solver which we will call later. In other words we suppose domains convey a semantic information so that we can apply evaluation and satisfaction solving. Example: the int type for the BPEL engine corresponds to the Integer type for the SMT solver.

In order to hold this exchange, the signature must support a set of operations and the required type of these data. Moreover, we associate three functions to the set of operations. To get the input, the output and the fault message of an operation. Another feature of a Web service deals with its set of properties. The properties, together with property aliases and correlation sets, are important BPEL features that support the definition of sessions (see [START_REF] Oasis | Web Services Business Process Execution Language (WSBPEL) Version 2.0[END_REF] and below, Message Correlation). In other words, the correlation represents the link between the message and the corresponding instance of the process.

We also introduce a feature named π that specifies what two-way operations in sub-services are supposed to do. π is a boolean formula relating the inputs and outputs of an operation o, denoted as π(o), where o ∈ O and O is a set of operations.

The signature of a service corresponds to its description using a combination of XML schema (exchanged data structures) and WSDL (operations and messages). Formally we define signatures as follows: • P is a set of property names,

• ↓ is used to define property aliases for messages: for a message type m, m ↓ p denotes the part in m messages that corresponds to property p.

Correlation is a specific property of BPEL business process. It aims to decide which part of the exchanged message between several services, represents the identifier (Id). Thus, each message is mapped correctly to its business process instance. For example, when an employee applies for a loan, his Social Security number may be regarded as its Id. This Id is then used to correlate messages exchanged during the conversation between the employee and the service orchestrator.

The correlation consists of two parts: (i) a property which has a name and a type. The property refers to parts of the exchanged messages during services conversation. (ii) a correlation set which define a set of properties. The latter represents the complete structure of the Id in our example.

⊥ corresponds to an undefined operation message, e.g. out(o) = err(o) =⊥ for any one-way operation named o. In other words, if o is a one-way operation no reply message (output message) is expected.

Example. The signature associate to the xLoan orchestration service is provide in the Appendix D.1. Among the allowed operation we find : • suppose a loan application with an amount lower than 10000 then π = M T -approveIn/amount < 10000 ∧ rtr == true,

• P = LS-PROP, the name of the property is LS-PROP

• The correlation value corresponds to the fileNumber part for each sent or received message variable as follows: requestOut ↓ LS-P ROP = ns : f ileN umber, selectIn ↓ LS-P ROP = ns : f ileN umber, cancelIn ↓ LS-P ROP = ns : f ileN umber

Partnership. One of the assets characterizing Web services is the fact that they are loosely coupled applications. Thus a service can be used either as a single application or it can be combined with other services. Generally, Web services are not executed in isolation but they communicate with other services or users through a partnership.

A partnership, is a set of partner signatures, corresponding to required and provided operations, including the signature of the service orchestrator itself. The required operations are those needed by the service orchestrator to accomplish his business process. They correspond to the signatures of the invoked Web services. On the other hand, provided operations are the ones exposed by the service orchestrator.

For the need of our approach, we suppose, without loss of generality, that an orchestration has only one of these partners, named USER. The USER will use the provided signature i.e. orchestrator signature, to interact with the service orchestrator. As for the service orchestrator, it will uses the requested signatures to perform his business process and thus, satisfy the USER request. Note that, each service partner including the service orchestrator is recognized using a unique identifier. Two domains with the same name, including the namespace part, in two signatures correspond to the same thing. More specifically, we suppose they have the same formal semantics.

Example. The partnership of the xLoan includes the signatures of the USER, the BlackList service and the Bank service.

Dynamic Description

The dynamic description depicts the behavior of the orchestration. This description provides details on the order of the interactions between the service orchestrator and the service partners involved in the orchestration.

Events. A stateful Web service or a service orchestrator interacts via conversation protocol. This protocol specifies the order in which the operation calls must occur. The semantics of a service conversation depends on message-based communication, which is modeled using events denoted Ev. We can define an event for Web services as an occurrence that take place at a significant point of time. This occurrence could be an action with or without an associated condition, allowing to perform the business process.

We classify these events as: input events denoted pl.o?x, output events denoted pl.o!x, waiting for period of time denoted as a χ, or the event indicating an expected termination of a conversation denoted √ . We also discern another kind of event. It corresponds to an internal event of the orchestration service denoted τ . From the viewpoint of a USER partner, such internal events are non-observable, they represent internal computations or conditions in the service orchestrator.

For the input event pl.o?x respectively the output event pl.o!x, pl corresponds to the partner link used for the communication with the service, o is the operation used and x is the exchanged message. Note that the operation must be defined by the signature of the corresponding partner link, o ∈ Σ ID pl , and the message variable x must correspond to the reception of the input message, dom(x) = in(o), respectively an output message must correspond to an emission of a message, dom(x) = out(o) .

We highlight the fact that in our approach time constraints in services are generally soft hence, discrete time is a valid abstraction.

A service call may also yield errors i.e. message faults. This is modeled with fault input events, pl.o??x and fault output events, pl.o!!x, where dom(x) = err(o).

We omit BPEL port types here for simplicity reasons, the full event prefixes would be, e.g. pl.pt.o?x for the first example above with input on the port type pt.

Ev ? (resp. Ev ! , Ev ?? , and Ev !! ) is the set of input events (resp. output events, fault input events, and fault output events). We note Ex to be the set of internal fault events, that correspond to faults possibly raised internally (not in messages) by the orchestration process.

Definition 3.3.3. (Events)

We define Ev as the set of events where Ev = Ev ? ∪Ev ! ∪Ev ?? ∪Ev !! ∪Ex∪{τ, χ, √ }. We also define hd as ∀ * ∈ {?, ??, !, !!}, hd(pl.o * x) = pl.o, and hd(e) = e for any other e in Ev.

Example. When the xLoan service orchestrator receives a message from the USER service, it is represented as follows: We use a transition system to model the orchestration behavior according to the process algebra rules. We first of all, present a simple introduction to Labeled Transition Systems (LTS) model. Then we present the model that we use called Web Service Symbolic Transition System (WS-STS). The WS-STS is a model very close to the LTS. The difference between the two models is the addition of more details concerning data exchanges in the WS-STS than in the LTS model.

An LTS is a structure connected by transitions. States represent the actual state of the system, and transitions, which are labeled with actions, represent the action that a system may perform. The formal presentation of the LTS as defined by Tretmans [START_REF] Tretmans | Model based testing with labelled transition systems[END_REF] is provided in the following: Definition 3.3.4. (Labeled Transition Systems) A Labeled Transition Systems (LTS), is a tuple (S, L, T , s 0 ), where:

• S is a finite and non empty set of states;

• L is a finite set of labels;

• T ⊆ S × (L ∪ {τ }) × S, with τ / ∈ L, is the transition relation;

• s 0 ∈ S is the initial state.

The idea associated with such representation is that the system evolves from a state to another by executing an action. The representation s l --→ s i.e. (s, l, s ) ∈ T describes a transition labeled l from the state s to state s .

We rely on the Mateescu and Rampacek [START_REF] Mateescu | Formal Modeling and Discrete-Time Analysis of BPEL Web Services[END_REF] transformation, that defines a formal semantic of BPEL. To represent the dynamic description of an orchestration the authors use a discrete-time Labeled Transition Systems (dtLTS) model obtained from their defined Algebra of Timed Processes (ATP) rules.

This formalism had a good coverage of the main BPEL language constructs. Its process algebraic style for transformation rules enables a concise yet precise and operational model, which is, through extension, amenable to symbolic execution.

With reference to the work of Mateescu and Rampacek [START_REF] Mateescu | Formal Modeling and Discrete-Time Analysis of BPEL Web Services[END_REF], we reuse, extend and add some of their transformation rules, in order to support data (in computation, conditions and messages), message faults (enabling a service to inform its partners about interval errors), message correlation (enabling BPEL engines to correlate messages in-between service instances), flows (parallel processing) and the until activity. More specifically, support for data yields grounding on (discrete time) Symbolic Transitions Systems and their symbolic execution, rather than on (discrete time) Labeled Transition Systems (dtLTS).

We need to reuse the information describing data structure and the interface of the service orchestrator, i.e. the signature level of the service orchestrator, in order to incorporate them in our WS-STS model. After, we apply the transformation rules on an ABPEL specification we obtain the Web Service Symbolic Transition System (WS-STS) model. We present the features of the WS-STS as follows: Definition 3.3.5. (Web Service Symbolic Transition System) A Web Service Symbolic Transition System (WS-STS), is a tuple (D, V, S, s 0 , T ), where:

• D is a set of domains, • V is a set of variables with domain in D,
• S is a non empty set of states,

• s 0 ∈ S is the initial state,

• T is a (potentially nondeterministic) transition relation, T ⊆ S × T Bool,V × Ev × seq(Act) × S, with: CONFORMANCE TESTING -T Bool,V denoting boolean terms possibly with variables in V, it represents a guard i.e. the condition that must be satisfied, -Ev a set of events represents the messages communication and internal events. D and V are often omitted in when clear from the context (e.g. V are variables used in transitions).

seq(Act) is a sequence of actions denoting computation (data processing) that will be executed in a sequential way (of the form v := t where v ∈ V is a variable and t ∈ T D,V is a term).

The transition system is called symbolic as the guards, events, and actions may contain variables. (s, g, e, A, s ) ∈ T is also written s

[g] e / A --------→ T s or simply

s [g] e / A
--------→ s when clear from the context. The WS-STS describes the behavior of an orchestration. Thus, the progress from the state s to the state s is done when the event e occurs, the guard g is satisfied and some actions are performed. In case, there is no guard (i.e. it is true) associate to the transition, it is omitted. The same yields for the actions.

From the above definitions, we can represent an orchestration as a WS-STS model representing the behavior of a service orchestrator and a set of partner services: Definition 3.3.6. (Orchestration) An orchestration Orch is a couple (ρ, B) where:

• ρ is a partnership, • B is a WS-STS.
We impose that B is correct wrt. ρ, i.e. its set of events correspond to partner links and operations defined in ρ, which can be syntactically checked.

Notice that each data type (structured or scalar) of BPEL corresponds to an element of D and each variable of BPEL corresponds to a variable in V. STS have been introduced under different forms (and names) in the literature [START_REF] Poizat | A Formal Architectural Description Language based on Symbolic Transition Systems and Modal Logic[END_REF], to associate a behavior with a specification of data types that is used to evaluate guards, actions and sent values. Transformation rules from BPEL to WS-STS are provided in the following subsection.

(A)BPEL to STS Transformation Rules

In this subsection we present a syntactical abstraction of the BPEL activities as a Backus Normal Form (BNF) that represent simple (or basic) and structured activities, then we present the associate transformation rules.

The BNF form that describes the main BPEL activities [START_REF] Oasis | Web Services Business Process Execution Language (WSBPEL) Version 2.0[END_REF], is presented as follows: 

P;Q | if c then P[else Q] | while c {P} | repeat {P} until c flow({P i }) | scope(P,EH d ) | pick(EH d ) EH d ::= [{((pl i ,op i ,var i ),P i )},(d,Q),{(e j ,R j )}]
Here, P , Q or R represent BPEL activities that could be either basic or structured activities. As basic activities we can find:

• Communication activities (receive, reply, and invoke), such as the attributes pl, op and var for respectively partnerLink, operation and variables are present in the receive and reply activities.

Instead of the variable attribute, the invoke activity uses an input variable and the optional (expressed using the square brackets) output variable. Remember that an invocation can be execute as a one-way operation that why the output variable is optional

• Time activities (timeouts or watchdogs) can be reduced to a time passing activity, time, and the use of scopes

• Faults are raised using throw

• Assignment activities (:=), support data and computation, and operate between an XPath [START_REF] W3c | XML Path Language (XPath) Version 1.0[END_REF] expression (a variable and an optional path over it) and any expression (including a simple use of XPath)

• empty and 0 denote respectively an empty and a terminated process.

On top of these basic activities, BPEL defines workflow-based structuring activities:

• Sequence (;), where P;Q describes here that the P activity followed by the Q activity

• Conditional using (if) to express if the constraint c is satisfied then execute P else execute Q.

• Loops:

-The while loop verify the constraint c then executes P as long as the c is satisfied
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-However until execute at least once the activity P then verifies the satisfaction of the condition c

• The flow describes the parallel execution of several P activities (P 1 , P 2 ,...)

• scope(P,EH d ) encapsulates an activity P with an event handler EH d . An event handler is made up of sets of events, one for each type of event and associated activities. The event could be associate to a reception, a time out our faults, where received messages ((pl i ,op i ,var i ),P i ), timeouts related to a duration (d), or faults (e j ). These correspond respectively in BPEL to onEvent and onAlarm in event handlers, and to fault handlers. scope behaves as P if none of the events happens and as a given sub-activity (some P i , Q, or R j ) if the corresponding event happens.

• pick is treated as a scope. We abstract from concrete syntax differences, e.g. between onMessage in a pick and onEvent in scopes Transforming (A)BPEL into a state transition could be done directly with structural BPEL to the state transition rules as in M. Lallali thesis [START_REF] Lallali | Modélisation et Test Fonctionnel de l'Orchestration de Service Web[END_REF]. Let us illustrate this with an example. Consider the sequence activity: P;Q where the activity P must be followed by Q. The associate model will be as presented in the Figure 3.2, where P-automata and Q-automata are the transformation of the activities P and Q respectively.

P-automata

Q-automata ε Figure 3.2: Transformation of P;Q sequence into an automata according to [START_REF] Lallali | Modélisation et Test Fonctionnel de l'Orchestration de Service Web[END_REF] Such a kind of transformation becomes complex when we deal with structured activities. Here an example: let us consider the flow activity. Its transformation involves the product computation of all the automaton (activities) implied within the flow process. Such computation quickly becomes difficult.

In order to avoid such complexity, we prefer the use of process algebra (PA) semantics style that allows more expressiveness. Let us back to the P;Q sequence example. We have to consider the case were P is a structured activities, then P has to perform its nested activities before executing Q. Using process algebra semantic, we express such case using rule hypothesis and rule conclusion where:

∀a ∈ Ev\{ √ }, P [g] a / A --------→P P ;Q [g] a / A --------→P ;Q

} Rule hypothesis } Rule conclusion

When P activity ends its execution, or P is a basic activity, it is represented using the √ , then Q activity must be processed. The representation of this case is:

∀a ∈ Ev, P √ --→P ∧Q [g] a / A --------→Q P ;Q [g] a / A --------→Q } Rule hypothesis } Rule conclusion
Our transformation rules (BPEL to STS) are presented in the Table 3.3 for basic activities. The Tables 3.5 and 3.6 contain transformation rules for structured ones. Note that the * / + symbols represent extended / added rules from Mateescu and Rampacek [START_REF] Mateescu | Formal Modeling and Discrete-Time Analysis of BPEL Web Services[END_REF] (BPEL to dtLTS) transformation. ------→empty

Basic activities BPEL STS empty

with ∃o ∈ O(Σ pl ), out(o) = m receive * receive(pl,o,v in ) = rec(pl,o,v in ) reply * reply(pl,o,v out ) = send(pl,o,v out ) invoke + invoke(pl,o,v in ) = send(pl,o,v in ) invoke(pl,o,v in ,v out )= send(pl,o,v in );rec(pl,o,v out )

Figure 3.3: Transformation rules for basic activities

The transformation rules describe how the BPEL activities are represented in an WS-STS model. In the following we explain transformation rules presented in the Table 3.3.

The empty activity semantics is to do nothing, its execution in the WS-STS will be represented as an event that terminates correctly. It implies that the out transition associate to an empty event is labeled with a √ (tick).
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Time activity is transformed to represent a wait for a period of time denoted χ. Meanwhile, the behavior of the orchestrator service does not change. In our model, we treat time passing as discrete time.

Data manipulation are managed through the assign activity. This activity aims at associating a value to a variable. It is represented as an internal event denoted τ with the description of its associate action, i.e. p1 := p2.

An exception is raised in BPEL with the throw activity, such event is represented in the WS-STS as a transition labeled with the name of the exception.

The transformation rules for receive and reply communication activities, were established from the following reasoning. A message is received through the partner link pl according to the operation o that manipulates the anonymous message variable va m . The anonymous message variables are used to represent data exchange between the orchestrator and partner services. The action associated with this input event (receive activity) allows to attribute the incoming variable to the corresponding orchestration variable. The output event (reply activity) is executed in two steps, first an internal action (τ ) assigns the data of the orchestrator to the anonymous variable of the corresponding partner. Then the message is sent according to the operation and the partner link of the service.

We impose that variables used in the WS-STS transitions are variables from ABPEL and we add anonymous variables used for interacting with other services. As said before the anonymous message variables are used as intermediate variables for data exchange between the service orchestrator and the other partner services according to BPEL communication semantics.

Example. Consider a simple service which receives a variable increases it with 1 then returns the result. The model associate to this scenario is represented in the Figure 3.4. This model describes the reception of the anonymous message variable x a according to the operation named addition. The variable x a is copied into the orchestration variable x, in order to be processed, then the result is returned via the anonymous message variable x a . Intuitive rules were defined for the if, while and until activities. For these activities, conditional branches are considered as internal events. If the associated condition (c) is satisfied then business process will execute the correspondent activities else it will preform the activities of the other branch.

Structured activities

BPEL STS sequence * ∀a ∈ Ev\{ √ }, P [g] a / A ---------→P P ;Q [g] a / A ---------→P ;Q ∀a ∈ Ev, P √ --→P ∧Q [g] a / A ---------→Q P ;Q [g] a / A ---------→Q if * if c then P else Q [c] τ -----→P if c then P else Q [¬c] τ ------→Q while *
while c {P} The flow activity, supports the concurrent execution aspect of a business process. All the activities included in the flow are executed simultaneously. The execution of the flow activity implies the union of the execution of all sub activities. We can distinguish 3 kinds of flow activity depending on event that will occur. The internals flow transformation rule, describes the execution of the simultaneous events, except for the termination √ and the time passing χ events, each event will be executed one after the other in the WS-STS. When the flow execution ends with a flow termination ( √ ), it leads him to an empty activity. Finally, if a time passing is defined in the flow, it corresponds to a wait for an amount of time before continuing its execution.

CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE CONFORMANCE TESTING

Structured activities -suite BPEL STS scope The scope(P,EH d ) (see Table3.6) encapsulates an activity P with an event handler EH d . An event handler is made up of sets of events, one for each type of event -received messages, timeouts related to a duration (d), or faults (e j ). These correspond respectively in BPEL to onEvent and onAlarm in event handlers, and to fault handlers.

* let EH d =[{((pl i , o i , v i ), P i ) i∈I }, (d, Q), {(e j , R j ) j∈J }], O I = {(pl i , o i , v i ) i∈I }, O I = {pl i .o i | (pl i , o i , v i ) ∈ O I }, E J = {e j,j∈J } in: event handler ∀(pl i , o i , v i ) ∈ O I , ∀a∈Ex∪{χ, √ }, ¬(P a --→) scope(P,EH d ) pl i .o i ?vam / v i :=vam ---------------→P i with ∃o i ∈ O(Σ pl i ), in(o i ) = m
-and associated activities. scope behaves as P if none of the events happens and as a given sub-activity (some P i , Q, or R j ) if the corresponding event happens.

Finally, the pick activity is treated as a scope activity. We abstract from concrete syntax differences, e.g. between onMessage in a pick and onEvent in scopes.

Other important features of composite Web services are the correlation and the message faults. In the following we present how these two characteristics are represented within the formal model. Transformation for message correlation. We support correlation as an extension of the transformation rules Tables. Firstly, we modify the orchestration model to be (ρ, B, C) where C are correlation sets, i.e. a name and a set of associated properties denoted with props. These are used to correlate messages in-between service instances [START_REF] Oasis | Web Services Business Process Execution Language (WSBPEL) Version 2.0[END_REF].

Sometimes a single property is used (e.g. an identifier), but more generally this is a set (e.g. name and surname). A correlation value is a value of a structured domain with items corresponding to the properties. For each correlation set c in C, we have two variables, the correlation value vcs c and the correlation initiation vcs c init, among the set of variables belonging to the model B (V(B)). The communication activities parameter lists (pl,o,v) (in receive, reply, invoke, pick using onMessage and scope using onEvent) are extended to (pl,o,v,i,c) where c is the correlation name and i corresponds to correlation initiation (yes, no, or join). The STS semantics of communication activities is then extended in the following way:

On the initial transition we add action vcs c init := f alse. It means that the correlation variable (vcs c init) is not initialized yet. We also define the correlation consistency constraint (ccc) as a function that verifies the property p of a received message va m with regards to it correlation set c. Note that if the correlation set includes multiple properties all those properties must be verified. Since the input message is received from an other service the associate variable is an anonymous one. The formalization of this idea is expressed as follows:

ccc(c, va m ) = ( p∈props(c) va m /[m ↓ p] = vcs c /p).
Among the attributes of a correlation we find an attribute named initiate. As said earlier, only three possible values may be assigned to this attribute a yes, no or join. The yes implies that the property of the first message that initiates the conversation is the one that should be taken as the correlation of the process. The no implies that the correlation is already defined. In such a case, if the value of the received message property is no the same as the defined correlation then a fault is raised. The last option is the join value. It implies that if a correlation set is not defined yet, then it will corresponds to the property of the received message.

In our formal model (WS-STS) we represent the violation of these attribute with a guard G. Consequently, we have three guards G yes , G no , and G join that check the correlation c according to the received message supporting the anonymous message variable va m . Formally, we express the above guards as follows:

• G yes c (va m ) = (vcs c init = true), the correlation guard with a yes attribute is triggered when the instantiation variable had a true value instead of a false,

• G no c (va m ) = (vcs c init = f alse ∨ ¬ccc(c, va m )), this guard implies that the vcs c init variable had not a defined correlation yet, which should not be the case because the no indicates that the process had already a defined correlation, or that the correlation consistency constraint is not satisfied

• G join c (va m ) = (vcs c init = true ∧ ¬ccc(c, va m ))
, the join guard is triggered when the correlation is already defined however, the correlation consistency constraint with the received message is not satisfied When the correlation property is satisfied, it implies the execution of the some actions associate to their corresponding attribute, where:

• A yes c (va m ) = A join c (va m ) = {vcs c /p := va m /[m ↓ p]} p∈props(c)
∪ {vcs c init := true}, when a correlation must be defined, i.e. yes attribute, or need to be defined in case it is not done yet, i.e. join attribute, then (i) the correlation variable vcs c will have the same value as the properties of the received message va m , and (ii) the variable vcs c init will be set to true, thus indicating that the correlation had been defined

• A no c (va m ) = ∅, when a correlation do not have to be defined, then no action will be executed.

From now on, in order to take into consideration the correlation, we replace each transition s pl.o * vam / A ----------→ s ( * ∈ {?, ??}) by: s pl.o * vam / A ----------→ s , the reception of a message or an exception,

s [¬G i c (vam)] τ / A i c (vam)
-----------------→ s , when the correlation is ok, then we execute the associate action and s

[G i c (vam)] τ
---------→ throw bpel:correlationViolation, if the correlation guard is satisfied, it implies a correlation error and thus a bpel exception must be thrown.

We also replace each transitions s

τ / A -----→ s pl.o * vam / A ----------→ s ( * ∈ {!, !!}) by: s τ / A
-----→ s , assignment activity, where we allocate a variable value to the anonymous variable to be send,

s [¬G i c (vam)] pl.o * vam / A∪A i c (vam)
-----------------------→ s , the correlation is ok, then we emit the message after executing the transition actions and the actions of the correlation

s [G i c (vam)] τ
---------→ throw bpel:correlationViolation, in this case the correlation guard is satisfied, indicating a correlation error and thus a bpel exception must be thrown.

Transformation for message faults. Faults may occur during the execution of a business process. A fault indicates an abnormal behavior of the process. However, we can distinguish three kind of faults:

• a fault raised during an interaction with a service partner, such a fault is known as a WSDL faults,

• a fault raised by the BPEL engine due to an unsatisfied action, such as specifying an incorrect XPath expression,

• a fault explicitly defined in the business process using the throw activity.

Faults are generally managed within the BPEL process. Nevertheless, it is possible to communicate these errors to the client through the reply activity and message faults.

As for correlation sets, we support messages faults with the extension of the rules presented in the transformation Tables. The concerned activities are the reply and the invoke. For reply, we add the reply(pl,o,fn[,v err ]) form, where fn is the fault name and v err is an (optional) fault variable. This form is transformed as follows:

reply(pl,o,fn[,v err ]) = send(pl,o,fn[,v err ]), with send(pl,o,fn[,v err ]) τ / vm:=verr ---------→ _ pl.o!! f n vm -------→empty with ∃o ∈ O(Σ pl ), err(o) = m.
Faults for synchronous invoke are represented by first sending the message to the corresponding service partner then the reception of the answer. The synchronous invoke is interpreted as follows: invoke(pl,o,v in ,v out )= send(pl,o,v in );rec+(pl,o,v out ), where there are two rules for rec+: one for the reception of a correct message, rec+(pl,o,v in ) = rec(pl,o,v in ), and one for the reception of a fault message. The transformation rule is given as follows:

rec+(pl,o,v in ) pl.o?? fn vm / v in :=vm --------------→throw fn with ∃o ∈ O(Σ pl ), err(o) = m.
The catch construct of synchronous invoke (as in Figure 3.7) is not directly supported but it can be simulated using a fault handler in a scope around the invoke.

Application on the xLoan case study: Using the transformation rules on the xLoan orchestration we obtain the formal model depicted in Figure 3.8, where tau (resp. tick, term) denote τ (resp. χ, √ ). The zoom corresponds to the while part. 

Test Purpose Model

In order to generate test cases for a service orchestrator, one may want to focus on a particular aspect of the process behavior. A Test Purpose (TP) is a set of functional properties allowed by the specification and that one is interested to test. Generally, the formal model for TP follows the one used for the system specification. Hence, LTS is the most popular model for TP. In our case, since STS are our formal model. TP will be formalized as an STS.

Note that a TP could also be modeled using Linear Temporal Logic (LTL) to be more abstract. The average user may prefer more user friendly notation e.g. MSC or UML sequence diagrams [START_REF] Uchitel | Synthesis of behavioral models from scenarios[END_REF][START_REF] Ziadi | Towards a uml profile for software product lines[END_REF] that describe the interactions between system components. In both case we can get back to transition system model: LTL can be transformed in Buchï automata [START_REF] Gastin | Fast LTL to Büchi Automata Translation[END_REF] while, MSC and UML sequence diagrams can be transformed in LTS [START_REF] Pickin | Test synthesis from uml models of distributed software[END_REF].

To formally represent requirements as a test purpose we were inspired by the work of Jéron et al. [START_REF] Jéron | Symbolic Test Selection based on Approximate Analysis[END_REF]. However, the way to express a test purpose is simpler because we don't need reject states to specify an undesired behavior. Thus, the WS-STS resulting from the product of the specification model B and the TP model, contains only the paths that run through an accept state. In our context TP models are defined according to the orchestration (specification) models they refer to. TP may use a set of additional variables V I for expressiveness, disjoint from B variables, i.e. using a variable in the TP model to limit the number of iterations in a loop described by the specification model. The events labeling in the T P transitions correspond to the B ones. More specifically, we impose for simplicity sake that variables used in message exchanges (events of the form pl.op . . .) correspond to the ones in B. This constraint can be lifted using substitutions. TP also introduce a specific event, *. Transitions labeled with * may neither have a guard, nor actions, and are used to abstract in T P one or several B transitions that are not relevant for the expression of the requirement.

V T P = V I ∪ V B where V I ∩ V B = ∅, accordingly D T P ⊇ D B , with ∀t s [g] e / v:=t ---------→ s ∈ T T P v ∈ V I . Assignments in
Example: The Figure 3.9 is a simplified example of using the * transition within a specific TP. The focus of the test purpose is on the input and the output transitions, all the other activities that may occur in between these two transitions are abstracted using the *. Figure 3.9: A test purpose with a * transition A TP defines a specific set of states, Accept (Accept ⊆ S T P ), that denotes TP satisfaction. In order to handle acceptance states, while we compute the WS-STS product, we add transitions labeled by an event # in the TP model leading to the accept states. Finally, we impose that T P is consistent with B, i.e. T P symbolic traces are included in B ones. This can be checked using symbolic execution (see Sect. 3.4), where we also have to check that the path condition corresponding for the T P trace implies the path condition of the B trace.

Application on the xLoan case study: We provide the a Test purpose model for the xLoan orchestration that imposes that the USER selects an offer and this offer is proposed by service orchestrator as shown in Figure 3.10.

WS-STSs Product

We reached the point where we have the specification model on one side and the TP model in another. The model of the specification, describes the complete expected behavior of the service. The TP model represents only certain aspects of the behavior, the one to test, the rest is abstracted using * transitions.

In order to, support the scenarios described by the TP during the generation of test cases, we must compute a product between the specification model and the TP ), and a test purpose TP = (D T P , V T P , S T P , s 0 T P , T T P ), their product, P rod = B ⊗ TP, is the WS-STS (D P rod , V P rod , S P rod , s 0 P rod , T P rod ) where: D P rod = D T P , V P rod = V T P , S P rod ⊆ S B × S T P , s 0 P rod = (s 0 B , s 0 T P ), and T P rod is the transition relation.

Note that each state of the product model consists of a specification model state and another of the TP model. The transition relation of the product (T P rod ) is built using four rules. This (see Table in The two first rules express the independent evolution of a behavior owing to a non observable event. If the T P model of rule (i), as represented in Figure 3.12, (resp. B model of the rule (ii)) had to perform an intern event (τ ), wait of a period of time (χ) or execute an action to achieve an accept state ( ), then the resulting product model will evolve with the same transition to achieve a new state. This new state consists of the current state of the specification model B (resp. current state of TP model) and of the new state of the TP model (resp. new state of the specification model B ).

Note that it may occur that both the T P and B models had an internal events then each transition will be handled by combining the rule (i) and (ii) as shown in Figure 3.13.

In the third rule, both the specification model and the T P model evolve with the same event. Such case represents an event synchronization between B and T P . However, an event synchronization did not implies to have the same constraints.
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(i) ∀e ∈ {τ, χ, },

s T P [g] e / A
--------→ T P s T P (s B ,s T P )

[g] e / A --------→ P rod (s B ,s T P )

(ii) ∀e ∈ {τ, χ, },

s B [g] e / A --------→ B s B (s B ,s T P ) [g] τ / A --------→ P rod (s B ,s T P ) (iii) ∀e ∈ Ev ? ∪ Ev ! ∪ Ex ∪ { √ }, s B [g B ] e / A B ---------→ B s B , s T P [g T P ] e / A T P -----------→ T P s T P (s B ,s T P ) [g B ∧g T P ] e / A T P ;A B ---------------→ P rod (s B ,s T P ) (iv) ∀e ∈ Ev ? ∪ Ev ! ∪ Ex ∪ { √ }, s B [g B ] e / A B ---------→ B s B , s T P * --→ T P s T P , ∃ s T P [g T P ] e / A T P -----------→ T P s T P (s B ,s T P ) [g B ] e / A B
---------→ P rod (s B ,s T P ) Figure 3.11: Rules of the product computation between B and T P Indeed, guard for the product transition will consider the B guard and T P guard (Figure 3.14). As for the actions, the actions of the product model will execute the T P actions then the B actions.

Finally, in the last rule (iv), we handle the * semantic. Remember that the * symbol is used in the T P model to represent abstraction of any or the rest of transitions in the specification model. In (iv) rule, the transition of the product model is the same as the one of the B, while the source state from which we compute the product transition, does not satisfy any of the previous rules. In other words, if this state had no output transition with a non observable event, or no possible synchronization event then the transition of the product model is the same as the B model (Figure 3.15).

To enforce the acceptance states semantics, the product is cleaned up by pruning states (and related transitions) that are not co-reachable from acceptance states, i.e. any s such that ∃s = (s B , s T P ) ∈ S P rod . s -→ * s ∧ s ∈ Accept. Notice that a cleaning of the WS-STS product is performed to keep only the paths that pass through an accept state, it is for this reason that we do not need reject

s T P s T P s B s B s B , s T P s B , s T P s T P , s B s B , s T P [g T P ]τ A T P [g B ]e A B [g T P ]τ A T P [ g B ] e A B [ g B ] e A B [g T P ]τ A T P Figure 3
.12: Product of the rule (i) where: e / ∈ {τ, χ, } 

s T P s T P s B s B s B , s T P s B , s T P s B , s T P s B , s T P [g T P ]τ A T P [g B ]τ A B [g T P ]τ A T P [ g B ] τ A B [ g B ] τ A B [g T P ]τ A T P

Deriving Symbolic Test Cases

In this section, we present how symbolic test cases (STC) are generated from the WS-STS model. The first step consists in computing the Symbolic Execution Tree (SET) using the Symbolic Execution (SE) approach and an SMT solver. The SET represents the flattening view of the model, it means that each path of the tree represents a behavioral scenario depicted by the model. The computed paths denote possible test cases. However, with a repetitive behavior, as a loop in the WS-STS model, a huge SET size can be produced. The second step, consists in using some Figure 3.16: The product of the xLoan orchestration with the TP criteria to circumscribe the generation of the SET. Note that TP could be used to limit the generation of STC, unfortunately sometimes it would not be enough. The final step consists in instantiating those test case and interacting with the orchestrator service. In the following we present in detail, how these steps are accomplished.

Symbolic Execution and Symbolic Execution Tree

Symbolic execution [START_REF] King | Symbolic Execution and Program Testing[END_REF] (SE) has been originally proposed to overcome the state explosion problem when verifying programs with variables. SE represents values of the variables using symbolic values instead of concrete data [START_REF] Khurshid | Generalized Symbolic Execution for Model Checking and Testing[END_REF]. Consequently, SE is able to deal with constraints over symbolic values, and output values are expressed as a function over the symbolic input values. More recently these techniques have been applied to the verification of interacting/reactive systems, including testing [START_REF] Khurshid | Generalized Symbolic Execution for Model Checking and Testing[END_REF][START_REF] Frantzen | A Symbolic Framework for Model-Based Testing[END_REF][START_REF] Gaston | Symbolic Execution Techniques for Test Purpose Definition[END_REF]. Using SE approach we present how we generate the Symbolic Execution Tree (SET) from a WS-STS model.

Symbolic Execution Tree (SET).

The SE of a program is represented by a symbolic execution tree (SET). This SET represents the possible execution described by the WS-STS model. SET consists of nodes connected by edges, where: N SET is a set of nodes. Each node corresponds to a tuple η i = (s, π, σ) made up of the program counter s, the symbolic values of program variables σ, and a path condition, π.

Let V symb be a set of (symbolic) variables (representing symbolic values), disjoint from the program variables, V (V ∩ V symb = ∅). σ is a map that associate to variable, a symbolic variable : V → V symb . A path from the SET is a potential symbolic test case with its associate path condition (PC). A PC is a Boolean formula with variables in V symb . The PC accumulates constraints that the symbolic variables must fulfill in order to follow a given path in the program.

Since we apply SE to an WS-STS, the program counter is an WS-STS state, and V corresponds to the WS-STS variables (either simple, message type, anonymous, or correlation variables from BPEL). The edges of the SET, E SET , are elements of N SET × Ev symb × N SET , may be non deterministic. The Ev symb corresponds to the WS-STS events (Ev) with symbolic variables in place of variables.

SET edge computation. The SET is computed in a Breadth-First Search (BFS) fashion as follows:

The root node is (s 0 , true, σ 0 ) where s 0 is the initial state of the WS-STS specification model, or the WS-STS product model when a TP was specified. σ 0 is the mapping of a fresh symbolic variable for each variable of the WS-STS (σ 0 : ∀v ∈ V, v → newV ar) and π 0 = true.

Each transition of the WS-STS s

[g] e / A --------→ s then corresponds to an edge (s, π, σ) e --→ (s , π , σ ), where η = (s, π, σ) and η = (s , π , σ ). The new path condition π consists of the previous path condition π and the symbolic computation of the guard g, the event e, and the action(s) A from the WS-STS transition. σ however, is considered as an updating of σ with new mapping(s) between a variable and a symbolic variable. Those steps are formally described as follows:

1. guard: π G = π ∧ gσ, the computation of the new path condition π begins with the constraint associate to the guard π G . The latter is a conjunction between π, the previous path condition, and the transition guard in which all the variable are substituted by symbolic variable according to σ. If there is no guard π G = π,

2. event: e , σ E = pl.o?v s , σ[v → v s ] if e = pl.o?v e, σ
otherwise If the processing transition of the WS-STS indicates an input event, then a new symbolic variable is created for the incoming input variable, with v s = new(V symb , σ), and reported in on the σ E mapping. Consequently, the edge e of the SET will be labeled much like the event e of the WS-STS transition, but using the corresponding symbolic variables from σ E . Otherwise, if the processing transition is not an input event, then e will be labeled using symbolic variables from σ. If e is a service partner, other than the USER, invocation return (e = pl.o?v out ∧pl = USER), we set a constraint

π E = π(o)[σ E (v in )/in, v s /out]
, where e = pl.o!v in is the label of the (unique) transition before the one we are dealing with, to take into account the operation specification (π(o)). Else, π E = π G .

3. actions (A = {x i /path i := t i } i,i∈{1,...,n} ):

π A i = π A i-1 ∧ (v sx i /path i = t i [σ E (v j )/v j ] v j ∈vars(t i ) ) with ∆ = {x ∈ V | (x/path i := t i ) ∈ A}, {v sx } x∈∆ = new #∆ (V symb , σ E ), σ = σ E {[v sx /x]} x∈∆ , π A 0 = π E , and π = π A n .
where vars denotes the variables in a term, new n (V symb , σ) denotes the creation of n new (fresh) symbolic variables wrt. σ, t[y/x] denotes the substitution of x by y in t, and σ[x → x s ] denotes σ where the mapping for x is overloaded by the one from x to x s . ∆ is the set of variables that are modified by the assignments. For each of these, we have a new symbolic variable. Note that we suppose without lost of generality that in practice one assign with parallel instructions is executed sequentially.

We denote may(η), η ∈ N SET , the set ---------→ η"} with L a sequence of labels such that the corresponding word (keeping only the event in labels), contains only non observable events or communication events with partners ({τ, χ,

{pl.o!v | ∃η L --→ * η [g] pl.o!v / A -
√ } ∪ {pl.o * v | * ∈ {?, !} ∧ pl = U SER})
. This set will be used later on for the test verdict emission.

Example: Let us consider the simplified WS-STS presented in Figure 3.17. The computation of its associate SET (Figure 3.18) is provided in the following: The set of variables is V = {x a , x, y a , y}. In order to reduce the size of an SET we present two possible methods to limit the SET paths generation. Those methods are the pruning of infeasible paths and the pruning of redundant paths.

Pruning infeasible paths. Edges with inconsistent path conditions may be cut off while computing the SET. For this, we check when computing a new node η if π(η) is satisfiable (there exists a valuation of variables in π such that π is true), if not, we cut the edge off. This is known to be an undecidable problem in general. Therefore, if the constraint solver does not yield a solution (or a contradiction) in a given amount of time, we cut the edge off and we issue a warning specifying that the test process is to be incomplete. We use the Z3 SMT solver to reduce the number of infeasible paths. More details are provided in the next Chapter 4.

Pruning redundant paths. WS-STS may contain loops that would cause SET unboundedness. To solve this issue out, we propose two techniques.

We take into account a path length criterion while computing the SET. Given a constant k, we stop the SET computation at some node whenever this node is at k edges from the SET root, this technique is inspired by the k bounded model checking [START_REF] Biere | Bounded model checking[END_REF]. The user can re-start the SET computation process with k + 1 if he wants more test cases.

A complementary approach is to use the inclusion criterion as proposed by [START_REF] Gaston | Symbolic Execution Techniques for Test Purpose Definition[END_REF]. Let us explain this principle helped with the Figure 3.19.

Figure 3.19: The inclusion criterion

Consider η = (s, π, σ), a reachable node in the SET. Solving the associate path condition π means that it exists at least a value for each symbolic variable satisfying the constraint with regards to the σ mapping (V → V symb ). Such constraint allows several interpretations (combinations of possible values). M V η represents the set of all the possible interpretations for the variables V of the node η. Consider now, an other node η = (s, π , σ ) which has the same state as η. We say that η is included in η (η ⊆ η ), when M V η ⊆ M V η . That means that the set of interpretations of the variables of V belonging to η is bigger than the one belonging to η, so πσ =⇒ π σ . In such case if both nodes are on the same branch than we stop the generation of the SET at the node η, else we stop the computation of the η sub-tree and we create a reference from η to η . We keep track of the prefix which is related to the test of a different part and with the reference we have a link to the rest of the path already computed.

Symbolic test case extraction. Symbolic test cases correspond to the SET paths. However, it may be relevant to test only paths leading to orchestration termination even if it is not mandatory for Web services since different instances are run for each test case (excepted if the same correlation data are used). Due to our k path length criterion in the SET computation, it follows that symbolic test cases have a length n ≤ k. Notice that we can increase the value of k if we did not find errors during the execution of tests.

Application on the xLoan case study: The Figure 3.20 presents the SET of the xLoan example. The black path in the tree (also given on the top right part) represents one of the test cases that we may pick and execute against the implementation service. The associated path condition π 305 , in the end of the path (node 305), is described in the top left part.

Online Testing Algorithm

In this part we present the (online) realization of symbolic test cases into concrete test cases with the use of a constraint solving tool. First, let us note that since Web services are reactive systems, test case realization has to be performed step by step, by interacting with the Service Under Test (SUT). This is to avoid emitting erroneous verdicts. Take a path pl.o?x.pl.o!y, with σ = {x → v s 0 , y → v s 1 } and π = v s 0 > 2∧v s 1 > v s 0 . Realization all-at-once would yield a realized path p?v s 0 , p!v s 1 with, e.g. {v s 0 → 3, v s 1 → 4}. Suppose now we send message p with value 3 to the SUT and that it replies with value 5. We would emit a Fail verdict (5 = 4), while indeed 5 would be a correct reply (5 > 3).

The online realization process is summarized in Figure 3.21. The tester (or the oracle) is implemented as a reactive process that mirrors the observable behavior of the test case. We begin with the PC in the last state of the SET path corresponding to the test case. Whenever the tester has to send a message to the SUT (USER.o? in the test case), PC is solved to get correct data values to send. Whenever the tester has to receive a message from the SUT (USER.o! in the test case) a timeout is run. If it ends before we receive the message there is an Inconclusive verdict. If we receive the message from the SUT, data is extracted from it and the PC is updated with a correspondence between the reception variable(s) and the data, and PC is then checked to see if the data is correct or not. In both cases, we rely on a constraint solving tool. Before using the Z3 solver, we used the UMLtoCSP [START_REF] Cabot | UMLtoCSP: a Tool for the Formal Verification of UML/OCL Models using Constraint Programming[END_REF] tool to solve constraints. However, this solver required a very fine tuning of the variables' domains. Moreover, a more complex model transformation between this tool and ours was needed, which is no more the case with the Z3 SMT solver. guished symbolic path we want to test. The algorithm then animates the path by interacting, over messages for the USER partnerlink, with the SUT. Accordingly, input (resp. output) events in the path correspond to messages sent (resp. received) by the tester. Generation of data in sent messages and checking of data in received messages is supported using constraint solving over a Path Condition (PC). Initially PC corresponds to the path condition (π) in the last node of the path we test. The treatment of the path labeled edges (l i ) is then as follows.

• Input events. The tester has to generate a message to be sent to the SUT.

For this, PC is solved (always succeeds, or the edge would have been cut off in the SET computation). We use the instantiation of the event variable, x s , to send the message, and to update the PC. If the sent message yields an exception, we return a Fail verdict, else we pass to the next edge.

• Output events. The treatment of output events corresponds to message reception in the tester. Whenever an emission by the SUT is foreseen, a timer, T AC, is set up. Then three cases may occur. (i). If the timer elapses, we return a Fail result. (ii). If we receive the expected message before this, we update the PC with this new information and try to solve it. If it succeeds we continue to the next edge. If it fails we return a Fail verdict. If we do not get a result in a given amount of time we return an Inconclusive verdict (not in the Algorithm for simplicity). (iii). If we receive an unexpected event, we check in the SET if it is due to the specification non-determinism. If not, we return a Fail verdict. If it is the case, we return an Inconclusive verdict and the test path needs to be replayed in order to exhibit the behavior that this rules. We also support the possibility of generating specific test cases using Test Purposes (TP). Indeed, we defined rules to compute the product between the specification and the test purpose models and thus, the generated product model describes the behavior of the composite service and handles the defined test purpose. We used the Symbolic Execution (SE) on the model (or the product model), in order to avoid the problem of state space explosion when dealing with concrete data. The SE generates a Symbolic Execution Tree (SET) that represents the WS-STS execution semantics. Each path of the SET had its path condition (PC) that must be satisfied to execute the corresponding behavior. However, using the SE we generate symbolic test cases, that we need to realize, in order to execute the concrete test cases against the implementation service. For this aim, we presented an (online) algorithm that describes: (i) the interactions between the tester and the Z3 SMT solver, to instantiate the test cases and (ii) the interactions between the tester and the service under test in order to execute the test cases. Finally, a verdict on the conformance of the composite service with regard to its specification is emitted.

Implementation and Tools support

In this chapter we start by presenting the test context also called testing architecture.

Then, The main part of the chapter is devoted to the presentation of the tool chain that we have developed to support our approach. The tool chain, as represented in Figure 4.11, includes: (i) The BPEL2STS tool that performs the transformation of a specification written in ABPEL into a Symbolic Transition System (WS-STS or STS for short) model. (ii) Whenever a Test Purpose (TP) is given, the STSProd tool is used to compute the product between the specification model and the test purpose model. Thus, the test purpose will be handled in the generation of test cases. (iii) The STS2SET tool is used for the generation of the Symbolic Execution Tree (SET) from which we will retrieve the test cases. Finally, we describe the testing process of a the Service Under Test (SUT) and the use of the Z3 SMT solver in order to generate the adequate input data needed for the interaction with the service orchestrator.

Testing Architecture

In the testing process, the context and the conditions in which test cases are executed against the implementation play an important role. With this information, also called test architecture and a test context, a tester (oracle) is able to identify errors and to know in which conditions these errors appear. Since we are focusing on testing a service orchestration, we may distinguish two As presented in the previous chapters, an orchestration of services consists of a service orchestrator and other partner services. Among those services, we have a specific one, the USER service which is the one that contributes in initiating the conversation protocol with the service orchestrator. Note that a composite service may have many USER services, for simplicity sake we specify only one. Using an in-the-large testing architecture, a tester will simulate all the partner services as shown in Figure 4.2. Such architecture is used when the tester obtains the WSDL addresses of the partner services and then simulates them using dedicated tools like soapUI. By contrast, a restricted testing architecture focuses only on the USER service as shown in Figure 4.3. In this kind of architecture, a testing hypothesis states that the other partner services, are correct.

In our work we use a restricted testing architecture. Since we are interested in checking if an implementation is consistent with its functional specification through an observable behavior, we do not need to simulate the other service partners. It would be interesting to use the in-the-large testing architecture for other sort of testing, such the robustness testing, where the tester can simulate erroneous responses
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Conformance Testing of a Service Orchestrator

The Algorithm 2 represents the overall algorithm for the testing of service orchestration.

Algorithm 2: The complete testing process of a BPEL orchestration Input: Spec B : ABP EL, T P :WS-STS, k:N, crit: SET inclusion , imp: W SDL @ Output: verdict:{pass, f ail, inconc} Variables: B: WS-STS, M T : WS-STS, T :SET This algorithm takes as inputs, an ABPEL specification (Spec B ), a test purpose expressed as a WS-STS model (T P ), an integer number (k) representing the maximum bound for the SET length, with the inclusion criterion (crit) and the WSDL address of the implementation under test. By default the verdict is initialized to a pass one.

CHAPTER 4. IMPLEMENTATION AND TOOLS SUPPORT

The first step, consists in the generation of the WS-STS specification model (B) from the ABPEL specification using the BPEL2STS tool. In order to handle the specification of test purpose, a product is computed between the WS-STS model specification and the WS-STS of the test purpose, yielding a test model M T . The next step is the computation of the SET. For that, the symbolic execution method is applied to unfold the test model behavior up to depth k using the STS2SET tool. Symbolic Test Cases (STC) are generated from the SET paths, according to the specified inclusion criterion. Then each STC is realized and executed stepwise against the implementation until a fail verdict is emitted or there are no more remaining STC. For each STC execution a verdict is emitted and the global verdict is updated. The global verdict is refreshed by taking into consideration the previous global verdict and the last STC verdict. Algorithm 3 explains how the new global verdict is computed. In this algorithm the previous global verdict is represented by the verdict prev variable, the last STC emitted verdict by verdict last and the new global verdict by the response variable. In case, the emitted verdict is a fail one, then the returned response will be also a fail. A second possibility may occur when the emitted verdict is an inconclusive, in that case the response will be inconclusive too. In principal, if such case occurs the STC is re-executed against the implementation. The last case is the emission of pass verdict.

Algorithm 3: verdictResponse

Input: verdict prev : {pass, f ail, inconc}, verdict last : {pass, f ail, inconc} Output: response:{pass, f ail, inconc} if verdict prev ==fail or verdict last ==fail then 

ABPEL to WS-STS transformation

To rigorously describe the behavior of an orchestration the BPEL2STS tool is used to generate the corresponding formal model. From an ABPEL specification, the BPEL2STS tool generates the associated WS-STS model. This tool is an implementation of the transformation rules (presented in the Chapter 3, section 3.3.2). It had been developed within the Project ANR Pervasive Service Composition1 (PERSO).

Test Purpose Support

One may want to guide the generation of test cases in order to focus on particular functional aspects to be tested. The test purposes (TP), represent the specification of a test scenario. In our approach a TP is described as a WS-STS model. To incorporate a test purpose to the WS-STS specification model, a product of models must be computed.

In this part we present how the theoretical rules, defined in Chapter3, of computing the product between the specification model and the test purpose model, are executed.

Algorithm 4: WS-STS Computation

Input:

B = (D B , V B , S B , s 0 B , T B ): WS-STS, T P = (D T P , V T P , S T P , s 0 T P , T T P ): WS-STS Output: M T = (D, V, S, s 0 , T ): WS-STS s 0 = {(s 0 B , s 0 T P )}; D = D T P ; V = V T P ; T = ∅; E = s 0 ; E = S 1 while E = ∅ do 2 take s ∈ E 3 forall i ∈ {1, 2, 3, 4} do 4 (S new , T new ) = Product-Rule i ( B, T P, s) 5 T = T ∪ T new 6 E = E ∪ S new 7 S = S ∪ S new 8 end 9 E = E -{s} 10 end 11 M T = coreach (M T ) 12 return (M T ) 13 
In the Algorithm 4, the symbolic product is implemented according to our previous four product computation rules. The algorithm takes the specification (B) model and the TP model as input parameters and returns the computed product model name the M T . The computation of new states of M T is achieved using a temporary set of states E that contains the M T states to be processed. For each state of E the computation The Algorithm 5 represents the execution of the rule (i) in Section 3.3.4. This algorithm iterates over all the transitions of the T P and checks whether the transition event is an internal event (e ∈ {τ, χ, }). If it is the case then, a new state and transition are built. The new state will be composed of the state of B (s B ), and the next state of T P model (s T P ). However, the new created transition has the same labeling transition as the T P . The Algorithm 6 represents the execution of the rule (ii) in Section 3.3.4. It is identical to the Algorithm 5 except that its reasoning concerns a B transitions.

Algorithm 7 represents the synchronization of the transition B and T P on the same event (e B = e T P ). It results a new state for M T , composed by s B and s T P , and a new M T transition which is a combination of T B and T T P . This algorithm is associate to the rule (iii) in Section 3.3.4.

Finally, the Algorithm 8 process the case in which the event of T T P is equal to * (e T P = * ). The first step is to check if there is a e T P that could be synchronized with the e B . This verification is performed by using the boolean variable f ound. When there are no synchronization, the second step consists in creating a new state and transition for M T based on the T B . The Algorithm 8 is associate to the rule (iv) in Section 3. transitions that leads to the acceptance states defined in the T P .

SET Computation

After generating the formal model M , we present through the Algorithm 10 its unfolding process. This unfolding represents the semantic of the formal model execution.

Note that the formal model is the test model M T when a test purpose is specified (M = M T ). Otherwise it represents the specification model (M = B).

An SET is characterized by a set of nodes (N SET ) and a set of edges (E SET ). Each node describes its associate WS-STS state (s), the path condition (π) that must be satisfied in order to reach this node and the σ function that maps each variable (v ∈ V) with its corresponding symbolic variable (vs ∈ V symb ). An edge is a link between two nodes. This link is label with a symbolic event.

To generate the SET, the first step of the Algorithm 10 consists in creating the initial node η 0 . This node is made up of the s 0 state from the WS-STS, the initial condition which is true and the σ function which associates to each variable a new symbolic variable. The algorithm describes the use of two temporary set of nodes: nodeP rocessing and visitedN odes. The nodeP rocessing set contains the unhandled nodes yet, such as the initial node η 0 . A copy of the nodeP rocessing is saved in visitedN odes. The nodeP rocessing is then emptied in order to receive new unhandled nodes.

While, it still exist unhandled nodes of (nodeP rocessing) and the maximum depth k is not reached yet, the algorithm continues the computation of the SET. Each node η of the visitedN odes will be processed by extracting information about the out transitions from the state parameter of this node. For each out transition the Algorithm 11 is used to generate new node(s) and edge(s).

Once the path condition π of the new generated node is computed, it is sent to the solver in order to check its satisfiability. If the solver can find at least one concrete value for each symbolic variables, then it replies with sat. This implies that the path condition is feasible and the unfolding of the WS-STS continues. However, if the solver replies with an unsat response, this means that the unfolding stops and then the algorithm processes the next unhandled node. If π is satisfiable then the inclusion criterion is checked (line 24 of the algorithm), in order to detect repetitive behavior and thus decide stopping or not the generation of the SET path. Finally, the created node an edge are added to N SET and E SET respectively.

The creation of the new node (η ) and edge is depicted in the Algorithm 11. The state parameter of η is the target state of the transition t. The computation of the constraint π associated to η represents a conjunction between the previous node constraint, the constraints of the guard, the event (if it is an input event) and the actions of the WS-STS transition. All of these constraints are expressed using symbolic variables from σ . The latter is updated with new symbolic variables when a variable is received or for the assigned variables in the action part of the transition. The new created edge (e symb ) is label from the event of t, using symbolic variables as mapped in sigma

Symbolic Test Cases

Each path in the SET represents a potential symbolic test case (STC). The path condition (PC) associated to a path acts as a restriction on the possible data value, thus the test scenario can be executed. This restriction is due to the interdependence of the PC variables and the satisfaction of its specified conditions.

Online realization with a constraint solving tool

We presented the interactions between the tester (also called the oracle) and the implementation service in the online testing of Web services ( Chapter 3.Section 3.4.2) trough the Algorithm 1.

In this subsection we explain the realization part that allows us to obtain concrete data for the communication with the implementation. In other words, we present how the solving of predicates, used in the SET computation (Chapter 3.Section 3.4.1), and the online testing Algorithm 1 is achieved using the Z3 SMT solver. This is achieved in four steps:

1. Computation of a tree representing the structure of each variable 2. Creation of a new variable for each tree leaf 3. Creation of a new variable for each node that plays a role in the predicate to be solved

Dumping into Z3 format, launching Z3 and parsing results

The first algorithm (Algorithm 12) computes the tree structure of the variables. The tree is created according to the variable type using the createT reeF romT ype function as describes in the Appendix C (Algorithm 16). If the variable has a simple type then a leaf is created. Otherwise, the tree structure is constructed according to the variable type structure.

Example: Let us assume a variable x, a variable y and a complex type named T 1 . T 1 consists of a part a and another part b, both lead to an integer value. We provide the following annotation for this complex type: T 1 : {a : Int, b : Int}. The variables x and y have the following types: x :: Int and y :: T 1 .

The corresponding tree for x will be reduced to an integer leaf and the one associated to y is a tree with an integer leaf through edge label a and an integer leaf through edge label b. We provide in Figure 4.4 a graphical view of the trees.

When the trees corresponding to variables with complex type are constructed, a new variable is assigned to each leaf of the tree, as presented in the Algorithm 13.

Algorithm 12: Creation of the associate tree for each variable of V Input: a set of Variables V Output: Creation of the trees for each variable of V foreach v ∈ V do These new variables will be used as pointers when the instantiation of variables of complex type will be performed. In fact, each path of the tree starting from the root to a leaf is represented with a unique variable as shown in Figure 4.5 for the previous example.

1 type v = typeOf (v) 2 Tree t = createTreeFromType(type v ) 3 valueOf (v) = t 4 variableOf (t) = v 5 end 6 h x • y • a b • •
Algorithm 13: creation of new leaf variables Input: a set of Variables V Output: a set of variables V within the new leaf variables

V A := ∅ 1 foreach v ∈ V do 2 if typeOf (v) = simpleT ype then 3 V A = V A ∪ createNewLeafVars(v.type, v.value) 4 end 5 end 6 return V ∪ V A 7
Once the previous step is achieved, in the next one we process the predicate. A predicate is a conjunction of clauses. Theses clauses may represent an equivalence between variables or/and paths in trees (an XP ath expression) as well as arithmetic and logic operations. Let us consider the same previous variables x and y and the following predicate: The clause y/b = x expresses the equivalence between the value of the variable x and the value of the location pointed by the path y/b. In case the XP ath expression leads to a leaf, then the path is replaced by its associated variable. If the XP ath expression y/b does not correspond to a leaf, but to a sub-tree then a new variable is created to represent this sub-tree. To demonstrate this, let us consider the variable z (in addition to x and y) and a new complex type T 2 where: T 2 : {a : Int, b : T 1 } and z :: T 2 . Let us also suppose we have:

x = 3 + 4 ∧ y/b = x ∧ z/b = y
In such a case, a new variable will be created to represent z/b sub-tree. The graphical view is given Figure 4 The last step is to submit the predicate to the Z3 solver. For this, we replace the variables in it by variables created in previous steps, e.g. we solve: x = 3 + 4 ∧ v 2 = x ∧ v 6 = y (given the structure of x, y, z, v 2 , v 6 ) However, the solver can not process the predicate as it is. A transformation of this

.6 x • y • a b v 1 • v 2 • z • a b v 3 • v 6 • a b v 4 • v 5 •
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predicate into an understandable format by the solver must be done. For this purpose we defined a function that generates an SMT input file for Z3 solver. This input file represents a problem to be submitted to Z3 and has to satisfy the following BNF rules: A problem is divided into three main sub-parts: the Theory, the Var-Declaration and the Constraint-Formula. We use the teletype font to indicate the part that will appear as it is, in the Z3 input file.

The Theory is used to specify the string words allowed as a given database and also to specify the structure of a complex type variable. The second part, i.e. the Var-Declaration, allows to declare each variable and its type. The different types can be: Int, Real, Bool or a tree type. We also support String using a set of constructors. Finally, the Constraint-Formula sub-part allows to represent at first the structure of a complex variable type as specified by the theory (this corresponds to the "variable-Structure" in the rules above). Secondly the predicate (or the constraint), presented as a conjunction of clauses, will be written into a particular form (this corresponds to the constraintClauses in the rules above). To explain this last point, let us consider the following simple example: x = 3 + 4. The corresponding constraint with the concrete syntax of Z3 will be written as follows: (= x (+ 3 4)).

Labels * represent the set of tree labels of complex type variables, there is no labels for simple type variables. The word + item represents the words given as input to the program. The Tree-Declaration defines a tree structure. We give below an example of a tree given as an input to the solving function and how we encode it with the concrete syntax of Z3. We also give a linear representation CHAPTER 4. IMPLEMENTATION AND TOOLS SUPPORT of the tree, with the label connected to its ancestor, its first child with its descendants and all the siblings of this child and their descendants. The nil constructor represents an empty tree. To help the understanding of the constraints solving process, we present the following example. Let us consider the variable w with a complex type: w :: T , where: 

(= w (cons a (IntLeaf v 0 ) (cons b (cons d (IntLeaf v 1 ) (cons e (IntLeaf v 2 ) (nil)))(cons c (cons f (IntLeaf v 3 ) (cons g (IntLeaf v 4 ) (nil)))) (nil))))
The graphical representation of w as an input format for Z3 is given in the right part of the Figure 4.7. The nil symbol, represented as ⊥, is associated to some nodes to highlight the fact that those nodes do not have siblings, e.g. the root node w or the node c. The generated Z3 input file is submitted to the solver. The latter, returns an answer about the predicate satisfiability and/or an instantiation of variables. The predicate could be satisfiable (sat) or an unsatisfiable answer (unsat). A third answer could be given, which is the unknown response (unknown). The unknown answer is emitted when the solver cannot give a response in a given amount of time. When an instantiation of the variable is provided, a solving function is in charge of retrieving those values then assigning them to the variables. If the variables have a tree representation then the leaves variables will receive the different values and thus complete the construction of trees. The instantiated variables will be used during the test case execution.

w • a b c v 0 • d e f g v 1 • v 2 • v 3 • v 4 • • • w ⊥ a b c ⊥ d e ⊥ f g ⊥ v 0 v 1 v 2 v 3 v 4
The function that translates the predicate into an input file for the Z3 SMT solver, can easily be modified to interact with different solving tools. All we need to add are some methods for the dumping of the problem to be solved in the syntax accepted by the tool and also to add a method to retrieve the responses of this tool.

Here we present an example of how the interaction process with the Z3 solver. Let us assume the following inputs for the solving function. T 1 and T 2 are complex types: T 1 : {a : Int, b : Real} and T 2 : {a : String, b : T 1 }. The input variables x, y and z have the following types: x :: Bool, y :: T 1 and z :: T 2 . Further, the predicate is : x = true ∧ y/a = 8.2 + 4.0 ∧ z/b = y and {hello, everyone} are possible string words.

The graphical view of the variables and their trees is the same as in the Figure 4.6. The Z3 input file for this example is given in the Figure 4.8: the datatypes part provides the name of the used labels the allowed string words and the theory that describes a tree structure. The second part, the extrafuns, is used for variables declaration and the specification of their types. Finally, the formula part contains a description of the variables with a tree structure and the expressed predicate. As response to the input file, the Z3 solver provides a satisfiability response preceded by an instance of the variables in case the predicate is sat. The response of the solver for our example is given in Figure 4.9.

In our example the predicate is satisfiable that means that the solver finds for each variable a corresponding value while respecting the conditions of the predicate. For the variables that were not used by the predicate such as the integer variable v 6 or the real (rational) variable v2 in our example the solver assigns a default value depending on its type. At the end, we find ( 

)nil)) v3 -> hello v4 -> 0 v5 -> 61/5 v6 -> (cons a(IntLeaf 0)(cons b(RealLeaf 61/5)nil))                                //V ariable //instantiation sat // Satisfiability response

Conclusion

After the theoretical description of our approach in Chapter 3, within this chapter we have presented some technical implementation detail and tool support associated to our framework. We described the functionalities of the used tool chain using algorithms all along the different steps of the approach.

We reuse the Figure 4.11 to summarize the different steps of our approach that are supported by the tools. In step 1: from a specification represented as a BPEL file we use the BPELtoSTS (4220 lines in Java) tool to generate an WS-STS model. Followed by step 2: the produced model and a test purpose WS-STS (in the same format) are provided as inputs files to our STSprod tool (436 lines in Java) that computes the product. In step 3: the STS2SET (2098 lines in Python) tool takes as input the STS product and uses the Z3 solver to compute the SET. We have implemented only the path length criterion. Currently, we are working on implementing the STS2SET tool as a java plugin for Eclipse. Finally in step 4: using the SET path we execute the test cases as described in the test cases realization. This step is done manually. The test cases are exercised against an implementation, the service under test (SUT), which is not isomorphic to the specification. In order to provide graphical representation of the STSs and the SET, we used intermediate formats following the Aldebaran format (.aut) which supports a graphical representation with the CADP tool [START_REF] Garavel | Cadp 2010: A toolbox for the construction and analysis of distributed processes[END_REF].

C h a p t e r 5

Conclusion

The Service Oriented Architecture (SOA) paradigm is changing the style of developing software applications. It allows more flexibility, especially with the use of loosely coupled software modules. A widely used implementation of this paradigm are Web services. The reliability of these systems is an imperative property that must be considered as a standard. However, such a guaranty implies tedious and sometimes expensive work. For these reasons, many research works explored the possibility of automating the testing and verification activities.

In this thesis we have focused on testing the conformance of service orchestrations with a black box approach. In the present chapter we present the achievements in our work and discuss future work to perform and toolkit to improve.

Contributions

In chapter 2, we have presented our symbolic approach for the generation of symbolic test cases, with the intention of applying conformance testing on a centralized composite service. Given an ABPEL specification of a service orchestration, we generate its associate WS-STS model using our transformation rules. Then we compute the symbolic execution tree (SET) from the WS-STS using symbolic execution. The use of a symbolic model together with symbolic execution enables us to avoid state explosion issues in presence of data handled by Web services. Each path of the SET is associated to a path condition thus, constituting a (symbolic) test case. The realization of these symbolic test cases is achived thanks to the Z3 SMT solver. After that we execute 111 CHAPTER 5. CONCLUSION test cases by interacting step by step with the orchestration implementation. At the end, we emit a verdict about the conformance of the implementation regarding to its specification. In our approach, we also offer the possibility to guide the test cases generation by supporting test purposes (TP). The specific behavior to be tested, depicted by the TP, is incorporated to the specification model using a WS-STS product. Then, the remaining testing process corresponding to the generation of the SET, the realization of the test cases then their execution against the implementation stays unchanged.

The chapter 3 was a presentation of the tool chain that supports our approach. The transformation of the ABPEL specification into a WS-STS model is done using the BPEL2STS prototype. This prototype was developed within the Project ANR Pervasive Service Composition1 (PERSO). When a specific test scenario is defined then the STS-Product prototype computes the product between the WS-STS specification and the WS-STS of the TP, thus providing a new STS model which describes the specification while taking into account the test purpose. The STS2SET tool is in charge of computing the SET tree from which test cases are deduced. Another tool is used for the realization of the test cases by interacting with the Z3 SMT solver. For the moment, the last step that consists in executing the test cases is performed manually by (i) using the soapUI tool, to interact with the implementation, and (ii) the Z3 solver to check the satisfiability of the implementation response. This part is currently being implemented. Finally a verdict is emitted on the conformance of the implementation with regard to its specification. We applied our symbolic approach on two medium size cases studies.

Perspectives

Besides the contribution presented above, some perspectives are still to be explored. We can split those perspectives as research vs. tool perspectives.

Among the research perspectives, there is the support of additional activities of BPEL, such as compensation and termination handlers. This may impact the WS-STS model, and accordingly the transformation rules and the online testing algorithm. It would also be interesting, following the domain specification language paradigm, to define a specific language for test purposes instead of providing them as STS models. Another perspective that should be investigated is to consider the UML4SOA profile modeling language or the SENSORIA Reference Modelling Language (SRML) to specify service compositions.

Since we have applied our approach on a restricted testing architecture, another perspective is to apply it on an in-the-large testing architecture, where the tester simulates the user(s) but also the service partners. This latter perspective would also enable us to apply our approach on a choreography of services in which the business process is no longer managed by a unique service.

A first tool perspective is the automation of the online test execution process where the tester interacts with the service implementation. This is under process. A second tool improvement would be the integration of a solver for String constraints such as the Hampi [START_REF] Kiezun | Hampi: A solver for string constraints[END_REF] solver, which supports constraints over fixed-size String variables, without requiring to given String constraints.

A p p e n d i x

A x-Loan Case Study

In this section we present our xLoan case study. It is a modified/extended version of the Loan approval composition exposed within the WS-BPEL standard [START_REF] Oasis | Web Services Business Process Execution Language (WSBPEL) Version 2.0[END_REF], which usually serves for demonstration purposes in articles on BPEL verification. Our extensions are targeted at demonstrating our support for BPEL important features: complex data types, complex service conversations including message correlation, loops and alarms. Hence, more complex and realistic data types are used, to model user information, loan requests and loan proposals.

A.1 Specification

The specified sub-services respectively deal with loan approval (BankService) and black listing (BlackListingService), with users not being blacklisted asking for low loans (≤ 10, 000) getting loan proposals without requiring further approval. As-is, these services resemble the ones proposed in [START_REF] Oasis | Web Services Business Process Execution Language (WSBPEL) Version 2.0[END_REF]. Yet, once a loan is accepted, proposals may be sent to the requester. Further communication then takes place, letting the requester select one proposal or cancel, which is then transmitted to BankService. If the selected offer code is not correct the requester is issued an error message and may try again (select or cancel). Timeouts are also modelled, and the bank is informed about cancelling if the requester does not reply in a given amount of time (2 hours). The figure A.1 represent an overview of the xLoan conversation protocol.

There is no official graphical notation neither for orchestration architectures (WSDL interfaces and partner links), nor for the imported data types (XML Schema 

A.2 WS-STS model

The STS obtained from the xLoan example presented is presented in Figure A 

A.3 Symbolic Execution Tree

The SET computed from the that correspond to the constraints we have on XML schema data. Additionally, UML2CSP is able to generate witness object diagrams when the constraints are satisfiable. More precisely, in order to reuse this tool, we proceed as follows:

• • to check if some π is satisfiable after receiving a message, we perform as before, • cutting infeasible paths in the SET computation is a sub-case of satisfaction before message sending (the generated object diagram is discarded).

• strings are treated as integers which represent an index in an enumerated type. This corresponds to a set of specific string constants for the test.

For the time being, interaction with UML2CSP is manual. The automation of this step is under process as part of an Eclipse plug-in we are developing.

Experiments have been applied on an implementation of xLoan which is not isomorphic to its specification as, e.g., the BPEL code relies on additional boolean variables rather than on the workflow structure to decide if the subprocess for loan proposal selection or cancelling is applicable. The implementation size is 246 lines long (186 XML tags). In order to demonstrate our online algorithm, we take one of the 10 complete paths we have in the SET (see Fig. A.5). Due to lack of room we focus on the first interaction steps of the path (loan request, loan reply). The first call √ ). The zoom (grey states) corresponds to fees loop. One may notice states 39 (while condition test) and 40 (pick). In states 41/45 it is checked if incoming messages (validate or addFee) come from the same user than the previous ones in the conversation (ordersSetup and returnSetup). When it is not the case (correlation failure) an exception is raised (in state 26). Variables names, in our example are prefixed with namespaces (e.g., vns5:VOut is the variable storing values of type ns5:VOut) to help the reader.

B.2.1 Test purpose

Let us assume one wants to focus on testing refunding on a fees basis. Possible TPs are given in Figure B.5. In the first TP, one may note the use of the addFee transition, leading to an acceptance state (Labelled with #). This specifies addFee must be part of the generated test cases. Several transitions in the specification could be done before and after the addFee one, therefore, the two TP states are equipped with a * loop. The * loop is interpreted as being the execution of any other communication messages (including calls to sub-services), except those explicitly expressed. The first TP requires that there is at least one addFee in the test cases.

One may want to take also into account the case where there are none. This can be <message name=" r e q u e s t I n "> <p a r t name=" p a r t 1 " e l e m e n t="ns:MT-r e q u e s t I n " /> </ message> <message name=" r e q u e s t O u t "> <p a r t name=" p a r t 1 " e l e m e n t="ns:MT-r e q u e s t O u t " /> </ message> <o p e r a t i o n name=" r e q u e s t "> <i n p u t name=" i n p u t 1 " message=" t n s : r e q u e s t I n " /> <output name=" output1 " message=" t n s : r e q u e s t O u t " /> </ o p e r a t i o n> 
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Figure

  Figure 2.1: The SOA functional model

Figure 2 . 2 :

 22 Figure 2.2: SOAP message structure

Figure 2 . 3 :

 23 Figure 2.3: WSDL 1.1 structure

Figure 2 . 4 :

 24 Figure 2.4: Service choreography Figure 2.5: Service orchestration
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 331 (Signatures) A signature is a tuple Σ = (D, O, in, out, err, π, P, ↓) where:• D is a set of domains and dom(x) denotes the domain of x,• O is a set of (provided) operations defined within the WSDL file.• in, out, err : O → D ∪ {⊥} denote respectively the input, output, or fault message of an operation,• π is used to specify what two-way operations in sub-services are supposed to do: π(o), o ∈ O, is a boolean formula relating o inputs and outputs.

  • {tns:MT-requestIn,tns:MT-requestOut, tns:MT-selectIn, tns:MT-selectOut, tns:MT-cancelIn, xsd:string, xsd:long, xsd:boolen, ns1:userInfo, ns1:loanInfomation, ns1:loanRequest } ⊆ D • {request, select, cancel} ⊆ O, • in(resquest) = tns:MT-requestIn, out(request) = tns:MT-requestOut, in(select)= tns:MT-selectIn, out(select)= tns:MT-selectOut, in(cancel)=tns:MT-cancelIn,

Definition 3 .

 3 3.2. (Partnership)A partnership ρ is an ID-indexed set of signatures: ρ = {Σ i } i∈ID , where ID is a set of names and USER ∈ ID.

P

  ,Q,R ::= basic | struct basic ::= receive(pl,op,var) | reply(pl,op,var) | invoke(pl,op,inputvar[,outputvar]) | time | throw e | x[/path]:=Expr | empty | 0 struct ::=

  with p∈ {time,rec(pl,o,v in ),send(pl,o,v out )} ,o,v in ) pl.o?vam / v in :=vam ---------------→empty with ∃o ∈ O(Σ pl ), in(o) = m send + send(pl,o,v out ) τ / vam:=vout -----------→ _ pl.o!vam
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 337 (Test Purpose) Given an orchestration model B = (D B , V B , S B , s 0 B , T B ), a TP for B is a WS-STS T P = (D T P , V T P , S T P , s 0 T P , T T P ).
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 38 Figure 3.8: The formal model of the xLoan orchestration
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 3 [START_REF]Service component architecture[END_REF] rules represent the different scenarios that may happen either in the specification model B or in the test purpose model T P , during the computation of the product. These rules describe how the computation is done according to each transition.
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1 Initialization: 3 M 4 T

 134 verdict:= pass, i:=0 2 B:=BPELtoSTS(Spec B ) T :=STSProd(B,T P ) :=STS2SET(M T , k) 5 STC:=getPaths(T , crit) 6 nbTest:= size(STC) 7 while verdict = f ail and i < nbT est do 8 verdict := verdictResponse(verdict, onlineTest(STC[i], imp))

1 response:= fail 2 else 3 if verdict prev ==inconc or verdict last ==inconc then 4 response

 134 

10

 10 

Algorithm 5 : 3 if e B = e T P then 4 s 5 S 6 T 8 end 9 end 10 return

 534568910 Product-Rule 1 Input: B = (D B , V B , S B , s 0 B , T B ): WS-STS, T P = (D T P , V T P , S T P , s 0 T P , T T P ): WS-STS, s = (s B , s T P ) ∈ S B × S T P : State Output: S new : State set, T new : Transition set S new = T new = ∅ forall s T P [g] e / A --------→ s T P ∈ T T P do if e ∈ {τ, χ, } then s new = (s B , s T P ) S new = S new ∪ {s new } T new = T new ∪ s [g] e / A --------→ s new end end return (S new , T new ) Algorithm 6: Product-Rule 2 Input: B = (D B , V B , S B , s 0 B , T B ): WS-STS, T P = (D T P , V T P , S T P , s 0 T P , T T P ): WS-STS, s = (s B , s T P ) ∈ S B × S T P : State Output: S new : State set, T new : Transition set S new = T new = ∅ forall s B [g] e / A --------→ s B ∈ T B do if e ∈ {τ, χ, } then s new = (s B , s T P ) S new = S new ∪ {s new } T new = T new ∪ s [g] e / A --------→ s new end end return (S new , T new ) Algorithm 7: Product-Rule 3 Input: B = (D B , V B , S B , s 0 B , T B ): WS-STS, T P = (D T P , V T P , S T P , s 0 T P , T T P ): WS-STS, s = (s B , s T P ) ∈ S B × S T P : State Output: S new : State set, T new : Transition set S new = T new = ∅ 1 forall s B [g B ] e B / A B ----------→ s B ∈ T B do 2 forall s T P [g T P ] e T P / A T P -------------→ s T P ∈ T T P do new = (s B , s T P ) new = S new ∪ {s new } new = T new ∪ s [g B ∧g T P ] e B / A B ;A T P ----------------→ s new 7 end (S new , T new ) 11 of the following state(s) is performed according to the product rule 1, 2, 3 or 4 as presented in the Algorithm 5, 6, 7, or 8 respectively.

98 CHAPTER 4 . 11 s 12 S 13 T 15 end 16 end 17 return 18 Algorithm 9 :

 984111213151617189 3.4. The Algorithm 9 aims to clean the M T model by keeping only the states and IMPLEMENTATION AND TOOLS SUPPORT Algorithm 8: Product-Rule 4 Input: B = (D B , V B , S B , s 0 B , T B ): WS-STS, T P = (D T P , V T P , S T P , s 0 T P , T T P ): WS-STS, s = (s B , s T P ) ∈ S B × S T P : State Output: S new : State set, T new : Transition set S new = T new = ∅ forall s B [g B ] e B / A B ----------→ s B ∈ T B do found := false forall s T P [g T P ] e T P / A T P -------------→ s T P ∈ T T P do if e B = e T P then found:= true break end end if found = false then 10 forall s T P [g T P ] e T P / A T P -------------→ s T P ∈ T T P and e T P = * do new = (s B , s T P ) new = S new ∪ {s new } new = T new ∪ {s [g B ] e B / A B ----------→ s new } 14 end (S new , T new ) coreach function Input: M T : WS-STS Output: M T : WS-STS foreach path ∈ M T do if path contains a transition label then M := copy the path end M T := model construction from M paths end return M T

CHAPTER 4 . 101 Algorithm 11 : 1 if g = ∅ then 2 π 3 end 4 if e is an input then 5 create new symbolic Variables for received and assigned variables 6 update σ η with the created symbolic variables 7 e 8 else 9 if e is an output then 10 e 12 e symb := e 13 end 14 end 15 if A = ∅ then 16 foreach a ∈ A do 17 create new symbolic variables for the assigned variable 18 update σ η with the created symbolic variables 19 a 20 π η := π η ∧ π a η 21 end 22 end 23 return

 41011112345678910121314151617181920212223 IMPLEMENTATION AND TOOLS SUPPORT Algorithm 10: SET generation Input: M = (D, V, S, s 0 , T ): WS-STS, k: N, crit: SET inclusion Output: T = (N SET , E SET ): SET Variables: vs i ∈ V symb , nodeProcessing: set of SET nodes, visitedNodes: set of SET nodes, edge =(N SET × Ev symb × N SET ) ∈ E SET , node ∈ N SET Initialization: i = 0, depth = 0 while v ∈ V and i size(V) do vs i := createNewSymbVar(v) σ 0 := (v, vs i ) i + + end π 0 := true η 0 := (s 0 , π 0 , σ 0 ) N SET := {η 0 } nodeProcessing:= ({η 0 }) while nodeProcessing = ∅ do visitedNodes := nodeProcessing depth++ nodeProcessing:=∅ if depth < k then foreach η ∈ visitedN odes do foreach t ∈ outTransitionStateOf(η) do (η , edge):= createNewNodeAndEdge(η, t) // where η := (targetStateOf(t), π η , σ η ) satisfiability := checkSat(π η ) if satisfiability==sat then foreach node ∈ N SET do if stateOf(η ) = stateOf(node) and π node ⊆ π η then stop the unfolding of this path end end nodeProcessing:= nodeProcessing ∪{η }) N SET := N SET ∪ {η } E SET := E SET ∪ {edge} Create new node and edge Input: η=(η, π, σ) ∈ N SET , t= (s, geA, s ) ∈ WS-STS transition Output: η =(η , π , σ ) ∈ N SET , edge=(η, e symb , η ) ∈ E SET , η := (s , π η , σ η ) η := π η ∧ getGuardWithSymbVar(g, σ η ) symb := getEventWithSymbVar(e, σ η ) symb := getEventWithSymbVar(e, σ η ) 11 else η := getActionWithSymbVar(A, σ η ) (η , edge) 24

Figure 4 . 4 :

 44 Figure 4.4: Creation of trees from variables types
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 45134534 Figure 4.5: Creation of leaf variables for the trees
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 46 Figure 4.6: Creation of new variables form the the subtrees

  Problem::= Prefix Theory Var-Declaration Constraint-Formula Suffix Prefix ::= " ( benchmark data " Theory ::= Labels-Declaration String-Declaration Tree-Declaration Var-Declaration ::= " :extrafuns (" (variableName variableType) + ")" Constraint-Formula ::= ":formula ( and " variable-Structure constraintClauses")" Suffix ::= " )" Labels-Declaration ::= " :datatypes ((label " Labels * " ) " String-Declaration ::= " (String ("word + | "noString)" ) Tree-Declaration ::= "(tree (nil) (IntLeaf (val Int)) (RealLeaf (val Real))(StringLeaf (val String)) (BoolLeaf (val Bool)) (cons (firstChildLab label) (firstChild tree) (siblingChilds tree))))"

T 1 :

 1 {d : Int, e : Int}, T 2 : {f : Int, g : Int} and T : {a : Int, b : T 1 , e : T 2 }. The tree structure of w is graphically represented in the left part of the Figure 4.7. The associated description of w in the concrete syntax of Z3 as follows:
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 47 Figure 4.7: The structure of the w variable

  everyone ) (tree (nil) (IntLeaf (val Int)) (RealLeaf (val Real)) (StringLeaf (val String)) (BoolLeaf (val Bool)) (cons (firstChildLabel label) (firstChild tree) (SiblingChild tree)))) :extrafuns ( (x Bool) (y tree) (z tree ) (v1 Int) (v2 Real) (v3 String) (v4 Int) (v5 Real) (v6 tree)) :formula ( and (= y ( cons a ( IntLeaf v1 ) ( cons b ( RealLeaf v2 ) nil ))) (= z ( cons a ( StringLeaf v3 )( cons b ( cons a (IntLeaf v4) (cons b (RealLeaf v5) nil )) nil ))) (= v6 ( cons a ( IntLeaf v4 ) ( cons b ( RealLeaf v5 ) nil ))) (= x true ) (= v2 ( + 8.2 4.0 ) ) (= v6 y )) )
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 48 Figure 4.8: The Z3 input file for the example.
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 1084 IMPLEMENTATION AND TOOLS SUPPORT x -> true v2 -> 61/5 y -> (cons a(IntLeaf 0)(cons b(RealLeaf 61/5)nil)) v1 -> 0 z -> (cons a(StringLeaf hello)(cons b(cons a(IntLeaf 0) (cons b(RealLeaf 61/5)nil)
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 49 Figure 4.9: The Z3 solver response.
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 411 Figure 4.11: Overview of the tools chain
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 1 Figure A.1: xLoan Example -Business process

Figure A. 3

 3 presents the orchestration specification. The overall process is presented in Figure A.3, upper part, while its lower part concerns the (potentially looping) subprocess, GL&S (Get Loan and Select), for loan proposal selection.

Figure A. 4

 4 STS is presented inFigure A.5 and in Figure A.6. There are 10 leaves corresponding to termination (in gray). The zoom presents the path (in black) we use for demonstration in the next Section. Its final node is number 305, and its path condition, π 305 is also given in the Figure.
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 4 Figure A.4: xLoan Example -Symbolic Transition System
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 5 Figure A.5: xLoan Example -Symbolic Execution Tree (k=10, τ s not counted)
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 6 Figure A.6: xLoan Example -Symbolic Execution Tree -Overview of the STS2SET tool
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 3 Figure B.3: e-Conference Example -Orchestration Specification (Inspired and extended from BPMN )
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 1 Appendix WSDL of the xLoan Service Orchestrator<? xml v e r s i o n=" 1 . 0 " e n c o d i n g="UTF-8" ?> < d e f i n i t i o n s name=" L o a n S e r v i c e " targetNamespace=" h t t p : // j 2 e e . n e t b e a n s . o r g / wsdl / L o a n S e r v i c e "xmlns=" h t t p : // schemas . xmlsoap . o r g / wsdl / " x m l n s : w s d l=" h t t p : // schemas . xmlsoap . o r g / wsdl / " x m l n s : x s d=" h t t p : //www. w3 . o r g /2001/XMLSchema" x m l n s : t n s=" h t t p : // j 2 e e . n e t b e a n s . o r g / wsdl / L o a n S e r v i c e " x m l n s : n s=" h t t p : // xml . n e t b e a n s . o r g / schema /LS" x m l n s : p l n k=" h t t p : // d o c s . o a s i s -open . o r g / wsbpel / 2 . 0 / p l n k t y p e " x m l n s : s o a p=" h t t p : // schemas . xmlsoap . o r g / wsdl / soap / " x m l n s : v p r o p=" h t t p : // d o c s . o a s i s -open . o r g / wsbpel / 2 . 0 / varp rop " x m l n s : n s 0=" h t t p : // j 2 e e . n e t b e a n s . o r g / wsdl / B a n k S e r v i c e " x m l n s : n s 5=" h t t p : // xml . n e t b e a n s . o r g / schema /BK" x m l n s : n s 1=" h t t p : // xml . n e t b e a n s . o r g / schema / RefSchemaLS "> <import l o c a t i o n=" . . /WEB -INF/ wsdl / B a n k S e r v i c e / B a n k S e r v i c e . wsdl " namespace=" h t t p : // j 2 e e . n e t b e a n s . o r g / wsdl / B a n k S e r v i c e " /> <t y p e s> <xs d:schema targetNamespace=" h t t p : // j 2 e e . n e t b e a n s . o r g / wsdl / L o a n S e r v i c e "> <x s d : i m p o r t namespace=" h t t p : // xml . n e t b e a n s . o r g / schema /LS" schemaLocation="LS . xsd " /> <x s d : i m p o r t schemaLocation=" . . /WEB -INF/ wsdl / B a n k S e r v i c e /BK. xsd " namespace=" h t t p : // xml . n e t b e a n s . o r g / schema /BK" /> <x s d : i m p o r t schemaLocation=" . . / s o u r c e / RefSchemaLS . xsd " namespace =" h t t p : // xml . n e t b e a n s . o r g / schema / RefSchemaLS " /> </ xsd: schema> </ t y p e s>
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 138 <message name=" c a n c e l I n "> <p a r t name=" p a r t 1 " e l e m e n t="ns:MT-c a n c e l I n " /> </ message> <message name=" s e l e c t I n "> <p a r t name=" p a r t 1 " e l e m e n t="ns:MT-s e l e c t I n " /> </ message> <message name=" s e l e c t O u t "> <p a r t name=" p a r t 1 " e l e m e n t="ns:MT-s e l e c t O u t " /> </ message> <portType name=" LoanServicePortType ">

  <o p e r a t i o n name=" c a n c e l "> <i n p u t name=" i n p u t 2 " message=" t n s : c a n c e l I n " /> </ o p e r a t i o n> <o p e r a t i o n name=" s e l e c t "> <i n p u t name=" i n p u t 3 " message=" t n s : s e l e c t I n " /> <output name=" output2 " message=" t n s : s e l e c t O u t " /> </ o p e r a t i o n> </ portType> <b i n d i n g name=" L o a n S e r v i c e B i n d i n g " type=" t n s : L o a n S e r v i c e P o r t T y p e "> <s o a p : b i n d i n g s t y l e=" document " t r a n s p o r t=" h t t p : // schemas . xmlsoap . o r g / soap / h t t p " /> <o p e r a t i o n name=" r e q u e s t "> <s o a p : o p e r a t i o n /> <i n p u t name=" i n p u t 1 "> <s o a p : b o d y u s e=" l i t e r a l " /> </ i n p u t> <output name=" output1 "> <s o a p : b o d y u s e=" l i t e r a l " /> </ output> </ o p e r a t i o n> <o p e r a t i o n name=" s e l e c t "> <s o a p : o p e r a t i o n /> <i n p u t name=" i n p u t 3 "> <s o a p : b o d y /> </ i n p u t> <output name=" output2 "> <s o a p : b o d y /> </ output> </ o p e r a t i o n> <o p e r a t i o n name=" c a n c e l "> <i n p u t name=" i n p u t 2 "> <s o a p : b o d y /> </ i n p u t> </ o p e r a t i o n> </ b i n d i n g> < s e r v i c e name=" L o a n S e r v i c e S e r v i c e "> <p o r t name=" L o a n S e r v i c e P o r t " b i n d i n g=" t n s : L o a n S e r v i c e B i n d i n g "> <s o a p : a d d r e s s l o c a t i o n=" h t t p : // l o c a l h o s t : ${ H t t p D e f a u l t P o r t }/ L o a n S e r v i c e S e r v i c e / L o a n S e r v i c e P o r t " /> </ p o r t> </ s e r v i c e> <p l n k : p a r t n e r L i n k T y p e name=" L o a n S e r v i c e "> < !--A p a r t n e r l i n k type i s a u t o m a t i c a l l y g e n e r a t e d when a new p o r t type i s added . P a r t n e r l i n k t y p e s a r e used by BPEL p r o c e s s e s .
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  t n e r l i n k type c h a r a c t e r i z e s t h e c o n v e r s a t i o n a l r e l a t i o n s h i p between two s e r v i c e s . The p a r t n e r l i n k type can have one o r two r o l e s .--> < p l n k : r o l e name=" L o a n S e r v i c e P o r t T y p e R o l e " portType=" t n s : L o a n S e r v i c e P o r t T y p e " /> </ p l n k : p a r t n e r L i n k T y p e> < !--P a r t i e pour l a c o r r l a t i o n s e t --> <v p r o p : p r o p e r t y name="LS_PROP" type=" x s d : l o n g " />

  <message name=" c h e c k I n "> <p a r t name=" p a r t 1 " e l e m e n t="ns:MT-c h e c k I n " /> </ message> <message name=" checkOut "> <p a r t name=" p a r t 1 " e l e m e n t="ns:MT-checkOut " /> </ message> <portType name=" B l a c k L i s t P o r t T y p e "> <o p e r a t i o n name=" check "> <i n p u t name=" i n p u t 1 " message=" t n s : c h e c k I n " /> <output name=" output1 " message=" t n s : c h e c k O u t " /> </ o p e r a t i o n> </ portType> <b i n d i n g name=" B l a c k L i s t B i n d i n g " type=" t n s : B l a c k L i s t P o r t T y p e "> <s o a p : b i n d i n g s t y l e=" document " t r a n s p o r t=" h t t p : // schemas .xmlsoap . o r g / soap / h t t p " /> <o p e r a t i o n name=" check "> <s o a p : o p e r a t i o n /> <i n p u t name=" i n p u t 1 "> <s o a p : b o d y u s e=" l i t e r a l " /> </ i n p u t> <output name=" output1 "> <s o a p : b o d y u s e=" l i t e r a l " /> </ output> </ o p e r a t i o n> </ b i n d i n g> < s e r v i c e name=" B l a c k L i s t S e r v i c e "> <p o r t name=" B l a c k L i s t P o r t " b i n d i n g=" t n s : B l a c k L i s t B i n d i n g "> <s o a p : a d d r e s s l o c a t i o n=" h t t p : // l o c a l h o s t : ${ H t t p D e f a u l t P o r t }/ B l a c k L i s t S e r v i c e / B l a c k L i s t P o r t " /> </ p o r t></ s e r v i c e> <p l n k : p a r t n e r L i n k T y p e name=" B l a c k L i s t "> < !--A p a r t n e r l i n k type i s a u t o m a t i c a l l y g e n e r a t e d when a new p o r t type i s added . P a r t n e r l i n k t y p e s a r e used by BPEL p r o c e s s e s . In a BPEL p r o c e s s , a p a r t n e r l i n k r e p r e s e n t s t h e i n t e r a c t i o n between t h e BPEL p r o c e s s and a p a r t n e r s e r v i c e . Each p a r t n e r l i n k i s a s s o c i a t e d with a p a r t n e r l i n k type . A p a r t n e r l i n k type c h a r a c t e r i z e s t h e c o n v e r s a t i o n a l r e l a t i o n s h i p between two s e r v i c e s . The p a r t n e r l i n k type can have one o r two r o l e s .--> < p l n k : r o l e name=" B l a c k L i s t P o r t T y p e R o l e " portType=" t n s : B l a c k L i s t P o r t T y p e " /> </ p l n k : p a r t n e r L i n k T y p e> </ d e f i n i t i o n s> D.3 WSDL of the Bank Service <? xml v e r s i o n=" 1 . 0 " e n c o d i n g="UTF-8" ?> < d e f i n i t i o n s name=" B a n k S e r v i c e " targetNamespace=" h t t p : // j 2 e e . n e t b e a n s . o r g / wsdl / B a n k S e r v i c e "xmlns=" h t t p : // schemas . xmlsoap . o r g / wsdl / " x m l n s : w s d l=" h t t p : // schemas . xmlsoap . o r g / wsdl / " x m l n s : x s d=" h t t p : //www. w3 . o r g /2001/XMLSchema" x m l n s : t n s=" h t t p : // j 2 e e . n e t b e a n s . o r g / wsdl / B a n k S e r v i c e " x m l n s : n s=" h t t p : // xml . n e t b e a n s . o r g / schema /BK" x m l n s : p l n k=" h t t p : // d o c s . o a s i s -open . o r g / wsbpel / 2 . 0 / p l n k t y p e " x m l n s : s o a p=" h t t p : // schemas . xmlsoap . o r g / wsdl / soap / " x m l n s : n s 0=" h t t p : // j 2 e e . n e t b e a n s . o r g / wsdl / L o a n S e r v i c e " x m l n s : n s 6=" h t t p : // j 2 e e . n e t b e a n s . o r g / wsdl / L o a n S e r v i c e "> <t y p e s> <xs d:schema targetNamespace=" h t t p : // j 2 e e . n e t b e a n s . o r g / wsdl / B a n k S e r v i c e "> <x s d : i m p o r t namespace=" h t t p : // xml . n e t b e a n s . o r g / schema /BK" schemaLocation="BK. xsd " /> </ xsd: schema> D.3. WSDL OF THE BANK SERVICE141 </ t y p e s> <message name=" a p p r o v e I n "> <p a r t name=" p a r t 1 " e l e m e n t="ns:MT-a p p r o v e I n " /> </ message> <message name=" approveOut "> <p a r t name=" p a r t 1 " e l e m e n t="ns:MT-approveOut " /> </ message> <message name=" o f f e r I n "> <p a r t name=" p a r t 1 " e l e m e n t="ns:MT-o f f e r I n " /> </ message> <message name=" o f f e r O u t "> <p a r t name=" p a r t 1 " e l e m e n t="ns:MT-o f f e r O u t " /> </ message> <message name=" c o n f i r m I n "> <p a r t name=" p a r t 1 " e l e m e n t="ns:MT-c o n f i r m I n " /> </ message> <message name=" c a n c e l I n "> <p a r t name=" p a r t 1 " e l e m e n t="ns:MT-c a n c e l I n " /> </ message> <portType name=" BankServicePortType "> <o p e r a t i o n name=" approve "> <i n p u t name=" i n p u t 1 " message=" t n s : a p p r o v e I n " /> <output name=" output1 " message=" t n s : a p p r o v e O u t " /> </ o p e r a t i o n> <o p e r a t i o n name=" o f f e r "> <i n p u t name=" i n p u t 2 " message=" t n s : o f f e r I n " /> <output name=" output2 " message=" t n s : o f f e r O u t " /> </ o p e r a t i o n> <o p e r a t i o n name=" c o n f i r m "> <i n p u t name=" i n p u t 3 " message=" t n s : c o n f i r m I n " /> </ o p e r a t i o n> <o p e r a t i o n name=" c a n c e l "> <i n p u t name=" i n p u t 4 " message=" t n s : c a n c e l I n " /> </ o p e r a t i o n> </ portType> <b i n d i n g name=" B a n k S e r v i c e B i n d i n g " type=" t n s : B a n k S e r v i c e P o r t T y p e "> <s o a p : b i n d i n g s t y l e=" document " t r a n s p o r t=" h t t p : // schemas . xmlsoap . o r g / soap / h t t p " /> < !--<s o a p : b i n d i n g t r a n s p o r t=" h t t p : // schemas . xmlsoap . o r g / soap / h t t p " s t y l e=" document " />--> <o p e r a t i o n name=" approve "> <s o a p : o p e r a t i o n /> <i n p u t name=" i n p u t 1 "> <s o a p : b o d y u s e=" l i t e r a l " /> </ i n p u t> <output name=" output1 "> <s o a p : b o d y u s e=" l i t e r a l " /> </ output> </ o p e r a t i o n> <o p e r a t i o n name=" o f f e r "> <s o a p : o p e r a t i o n /> <i n p u t name=" i n p u t 2 "> <s o a p : b o d y /> </ i n p u t> <output name=" output2 "> <s o a p : b o d y /> </ output> </ o p e r a t i o n> <o p e r a t i o n name=" c o n f i r m "> <i n p u t name=" i n p u t 3 "> <s o a p : b o d y /> </ i n p u t> </ o p e r a t i o n> <o p e r a t i o n name=" c a n c e l "> <i n p u t name=" i n p u t 4 "> <s o a p : b o d y /> </ i n p u t> </ o p e r a t i o n> </ b i n d i n g> < s e r v i c e name=" B a n k S e r v i c e S e r v i c e "> <p o r t name=" B a n k S e r v i c e P o r t " b i n d i n g=" t n s : B a n k S e r v i c e B i n d i n g "> <s o a p : a d d r e s s l o c a t i o n=" h t t p : // l o c a l h o s t : ${ H t t p D e f a u l t P o r t }/ B a n k S e r v i c e S e r v i c e / B a n k S e r v i c e P o r t " /> </ p o r t> </ s e r v i c e> <p l n k : p a r t n e r L i n k T y p e name=" B a n k S e r v i c e "> < !--A p a r t n e r l i n k type i s a u t o m a t i c a l l y g e n e r a t e d when a new p o r t type i s added . P a r t n e r l i n k t y p e s a r e used by BPEL p r o c e s s e s . In a BPEL p r o c e s s , a p a r t n e r l i n k r e p r e s e n t s t h e i n t e r a c t i o n between t h e BPEL p r o c e s s and a p a r t n e r s e r v i c e . Each p a r t n e r l i n k i s a s s o c i a t e d with a p a r t n e r l i n k type . A p a r t n e r l i n k type c h a r a c t e r i z e s t h e c o n v e r s a t i o n a l r e l a t i o n s h i p between two s e r v i c e s . The p a r t n e r l i n k type can have one o r two r o l e s .--> < p l n k : r o l e name=" BankServicePortTypeRole " portType=" t n s : B a n k S e r v i c e P o r t T y p e " /> </ p l n k : p a r t n e r L i n k T y p e> < !--<v p r o p : p r o p e r t y name="LS_PROP" type=" x s d : l o n g " /> <v p r o p : p r o p e r t y A l i a s propertyName="tns:LS_PROP" e l e m e n t="ns:MT-o f f e r O u t "> <v p r o p : q u e r y>n s : f i l e N u m b e r</ v p r o p : q u e r y> </ v p r o p : p r o p e r t y A l i a s> <v p r o p : p r o p e r t y A l i a s propertyName="tns:LS_PROP" messageType=" t n s : o f f e r O u t " p a r t=" p a r t 1 "> <v p r o p : q u e r y>n s : f i l e N u m b e r</ v p r o p : q u e r y> </ v p r o p : p r o p e r t y A l i a s> <v p r o p : p r o p e r t y A l i a s propertyName="tns:LS_PROP" messageType=" t n s : c o n f i r m I n " p a r t=" p a r t 1 "> <v p r o p : q u e r y>n s : f i l e N u m b e r</ v p r o p : q u e r y> </ v p r o p : p r o p e r t y A l i a s> <v p r o p : p r o p e r t y A l i a s propertyName="tns:LS_PROP" messageType=" t n s : c a n c e l I n " p a r t=" p a r t 1 "> <v p r o p : q u e r y>n s : f i l e N u m b e r</ v p r o p : q u e r y> </ v p r o p : p r o p e r t y A l i a s> --> </ d e f i n i t i o n s>
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  Liu et al.[START_REF] Liu | A ws-bpel based structural testing approach for web service compositions[END_REF] present a test model called WS-BPEL Control Flow Graph (BCFG) that represents the control flow of a BPEL process. The test paths are then derived form the BCFG model and path conditions are collected and analyzed to keep only satisfiable paths and thus produce test cases to execute against the service composition. Using the BPEL Graph Flow (BGF) model Yuan et al[START_REF] Yuan | A graph-search based approach to bpel4ws test generation[END_REF] generate concurrent test paths then test data are obtained from a constraint solving method. The produced test paths and test data are finally combined to produce complete test cases. The eXtended Control Flow Graph (XCFG) model was used to represent a BPEL program, and from it sequential test paths are generated, then combined to form concurrent test paths, in the last step of this method a constraint solver named

BoNuS

[START_REF] Zhang | Specification analysis and test data generation by solving boolean combinations of numeric constraints[END_REF]

, which is an extension of a Boolean satisfiability checker, is used to solve the constraints of these test paths and generate feasible test cases. Dong et al.

[START_REF] Dong | Testing bpel-based web service composition using high-level petri nets[END_REF] 

analyze the structure of a service composition to generate the corresponding High-level Petri Nets (HPN) model. Testing coverage and reduction techniques are applied on the HPN model to generate test cases.
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  .4 where tau (resp. tick, term) denote τ (resp. χ, √ ). The zoom corresponds to the while part. One may notice states 16 (while condition test), 17/33 (pick), 34 (onAlarm timeout), and 18/23 (correlation testing).

  we translate XML schema definitions into an UML class diagram, see Figure A.2. Additionally, domain limits are set up in UML2CSP according to uniformity hypotheses, e.g., here we have set maxMonth:{12,24,36} and maxPayment:[1000..100000]). This step is done only once. • to check if some π is satisfiable before sending a message, an additional root class ( Root) is created wrt. the UML diagram, with as many attributes as symbolic variables in π. The π constraint is translated in OCL. If π is satisfiable, UML2CSP generates an object diagram. From it we get data for the variable of interest to be sent (step val := (SOLV E(π)[x s ]) in the online Algorithm).

  e t b e a n s . o r g / wsdl / B l a c k L i s t " x m l n s : n s=" h t t p : // xml . n e t b e a n s . o r g / schema /BL" x m l n s : p l n k=" h t t p : // d o c s . o a s i s -open . o r g / wsbpel / 2 . 0 / p l n k t y p e " x m l n s : s o a p=" h t t p : // schemas . xmlsoap . o r g / wsdl / soap / ">

	<t y p e s>
	<xs d:schema targetNamespace=" h t t p : // j 2 e e . n e t b e a n s . o r g / wsdl / B l a c k L i s t
	">
	<x s d : i m p o r t namespace=" h t t p : // xml . n e t b e a n s . o r g / schema /BL"
	schemaLocation="BL . xsd " />
	</ xsd: schema>
	</ t y p e s>

</ v p r o p : p r o p e r t y A l i a s> </ d e f i n i t i o n s> D.2 WSDL of the Black List Service <? xml v e r s i o n=" 1 . 0 " e n c o d i n g="UTF-8" ?> < d e f i n i t i o n s name=" B l a c k L i s t " targetNamespace=" h t t p : // j 2 e e . n e t b e a n s . o r g / wsdl / B l a c k L i s t "

xmlns=" h t t p : // schemas . xmlsoap . o r g / wsdl / "

x m l n s : w s d l=" h t t p : // schemas . xmlsoap . o r g / wsdl / "

x m l n s : x s d=" h t t p : //www. w3 . o r g /2001/XMLSchema" x m l n s : t n s=" h t t p : // j 2 e e . n

World Wide Web Consortium (W3C) http://www.w3.org/

XMethods. http://www.xmethods.net/ve2/index.po

PERSO Project: http : //www.lri.f r/ poizat/AN R_P ERSO/
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i := i + 1; return rtr; end test path characterizes (for this we assume SUT fairness). Fault output events are supported in the same way • Time passing (χ) corresponds to the passing of one unit of time. Accordingly, the tester waits for this time before going to the next event in the path. The unit of time is computed from the specification (one hour in our example).

Other events are skipped.

Conclusion

In this chapter we have presented our symbolic approach for applying conformance testing on an orchestration of Web services.

Our testing approach begins with modeling an orchestration service from an ABPEL specification into a WS-STS model. This is achieved using our transformation 

A.4 Symbolic Test Cases

In this part we present our online testing approach using the UML2CSP tool [START_REF] Cabot | UMLtoCSP: a Tool for the Formal Verification of UML/OCL Models using Constraint Programming[END_REF]. Our approach is automated by means of prototypes written in the Python language that serve as a proof of concept. As far as constraint solving is concerned, we chose the UML2CSP tool [START_REF] Cabot | UMLtoCSP: a Tool for the Formal Verification of UML/OCL Models using Constraint Programming[END_REF] 

B E-Conference Case Study

In this section we present our e-Conference case study. This medium-size orchestrated service provides functionalities to researchers going to a conference such as information about the conference, flight booking and fees refunding. Parts of the orchestration, e.g., the e-governance rules, correspond to reality. Other parts, e.g., the sub-service used to book plane tickets, represent a simplified yet realistic version of it.

B.1 Specification

e-Conference is based on three sub-services: ConferenceService, FlightService, and e-govService as presented in the Figure B.1. Its specification is as follows. A user starts the process by providing the conference name and edition, together with personal information (ordersSetup operation). Conference information is first retrieved using ConferenceService then e-govService is invoked to check if any travel alerts exist in the conference country. If there is one, the user is informed and the process stops. If not, an orders id is asked to e-govService, a plane ticket is bought using FlightService and all gathered information (orders id, conference and plane) is sent back to the user who may then go to the conference. Upon return, the user may choose to be refunded from either a fees or package basis (returnSetup operation). In both cases, the user will end by validating the mission (validate operation) and e-Conference will reply with refunding information. If fees basis has been chosen, the user will be able to send information on fees (using addFee operation several times). specified as in the second TP. There, one relies on the returnSetup transitions that carry user requests relative to the return mode (package or fees basis). In order to specify it is the later which is required, a guarded transition is used (choice should be different from 'package'). Note that the guard is put on a τ transition after the reception in order to be consistent with (symbolic) execution semantics: the guard can only be evaluated once the variable has been received. The last TP, used in the sequel, is more realistic and demonstrates TPs expressiveness with four requirements: (i) return is on a fees basis, (ii) each fee is greater or equal to 10, (iii) the total amount for the mission is less than 1000, and (iv) there are at most N fees added. The later requires to use a TP additional variable, n, to count addFee iterations. 

B.3 Symbolic Execution Tree

B.4 Symbolic Test Cases

For the example e-Conference, we have defined five test purposes that allow to cover the different functional behaviour of the service. One is related to a demand of a user with a country having a high alert. Two others are related to an order with a country with no alert and with either a fees or package refund. The two last are related to orders with fees refund and a variation on the number of addfee. For each test purpose, we have produced several test cases, and only one can be executed with an uniformity hypothesis on the different values of the variables. To evaluate the quality of our tests, we need to apply mutations on the implementations. We will in our future work consider mutants in order to check if our test cases are able to kill the mutants and hence evaluate the quality of our generated tests.

In this work, we focus on generating test cases and solving constraints in order to first compute the SET then use the instantiate data returned by the solver to interact with the implementation. The interaction with the implementation can be done using the soapUI tool.

A p p e n d i x

C Appendix

In this appendix, we provide the algorithms for the generation of trees for the variable and the interaction with the Z3 SMT solver using pseudo-code.

C.1 The steps:

The Z3problem allows :

1. Building trees for each given variable according to its type 2. Processing the constraint (giving as an input) to generate an input file for the Z3 solver 3. Sending, then receiving the answer of the solver about the satisfiability of the constraint and its variables

C.1.1 Inputs:

The Symbolic Web Service Testing (SWST) tool takes as inputs: a set of Variables V and a Constraint C The first parameter (V ) is represented as an Array that contains the initial variables (for the moment). The second parameter, (C) is represented as a conjunction of clauses in which XP ath expressions are used.
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C.1.2 Outputs:

As a result the SWST tool provides an answer about the satisfiability of the constraint according to the variables types. This result is represented as a couple (Response, M ). Where the different responses could be:

• U nsat, means that the Z3 solver could not find an instantiation of the variables that satisfies the constraint • U nknown, means that due to a lack of information

• Sat, means that the Z3 solver found at least one instantiation for the variables in the way that satisfies the constraint

The M parameter contains the instantiation of the variables when the response is Sat. Otherwise M is empty.

C.2 Description of the functions

C.2.1 The main functions

The Sequencing of our tool is : Creation of the trees for each variable, the new leaf variables, then handling the creation of new variable clauses VC. For sake of simplicity we only consider the basic type integer. 

C.2.2 Defining the functions