
HAL Id: tel-00675918
https://theses.hal.science/tel-00675918v1

Submitted on 2 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolic Testing Approach of Composite Web Services
Lina Bentakouk

To cite this version:
Lina Bentakouk. Symbolic Testing Approach of Composite Web Services. Other [cs.OH]. Université
Paris Sud - Paris XI, 2011. English. �NNT : 2011PA112348�. �tel-00675918�

https://theses.hal.science/tel-00675918v1
https://hal.archives-ouvertes.fr

Laboratoire de Recherche en Informatique

Thèse

Test symbolique de services Web composites

Présentée par:
Lina Bentakouk
pour l’obtention du

Doctorat du l’université Paris-Sud XI

Jury
Pr. Ana Rosa Cavalli IT/Télécom SudParis Rapporteur
Pr. Manuel Nunez Universidad Complutense de Madrid Rapporteur
Pr. Mohand-Said Hacid Université Claude Bernard Lyon 1 Examinateur
Pr. Philippe Dague Université Paris-Sud XI Examinateur
Pr. Marie-Claude Gaudel Université Paris-Sud XI Directrice de thèse
Dr. Fatiha Zaïdi Université Paris-Sud XI Co-Encadrant
Dr. Pascal Poizat Université Paris-Sud XI Co-Encadrant

1 décembre 2007 – 16 décembre 2011

vagneur
Texte tapé à la machine
Ecole doctorale Informatique de Paris-Sud

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

vagneur
Texte tapé à la machine

Résumé

L’acceptation et l’utilisation des services Web en industrie se développent de par leur
support au développement d’application distribuées comme compositions d’entités
logicielles plus simples appelées services. En complément à la vérification, le test
permet de vérifier la correction d’une implémentation binaire (code source non
disponible) par rapport à une spécification. Dans cette thèse, nous proposons une
approche boîte-noire du test de conformité de compositions de services centralisées
(orchestrations). Par rapport à l’état de l’art, nous développons une approche
symbolique de façon à éviter des problèmes d’explosion d’espace d’état dus à la large
utilisation de données XML dans les services Web. Cette approche est basée sur des
modèles symboliques (STS), l’exécution symbolique de ces modèles et l’utilisation
d’un solveur SMT. De plus, nous proposons une approche de bout en bout, qui
va de la spécification à l’aide d’un langage normalisé d’orchestration (ABPEL) et
de la possible description d’objectifs de tests à la concrétisation et l’exécution en
ligne de cas de tests symboliques. Un point important est notre transformation de
modèle entre ABPEL et les STS qui prend en compte les spécifications sémantiques
d’ABPEL. L’automatisation de notre approche est supportée par un ensemble d’outils
que nous avons développés.
Mots clès: services, orchestration, test formel, génération de cas de test, WS-BPEL,
système de transitions, exécution symbolique, SMT solver.

1

Abstract

Web services are gaining industry-wide acceptance and usage by fostering the devel-
opment of distributed applications out of the composition of simpler entities called
services. In complement to verification, testing allows one to check for the correctness
of a binary (no source code) service implementation with reference to a specification.
In this thesis, we propose black box conformance testing approach for centralized
service compositions (orchestrations). With reference to the state of the art, we
develop a symbolic approach in order to avoid state space explosion issues due to the
XML data being largely used in Web services. This approach is based on symbolic
models (STS), symbolic execution, and the use of a satisfiability modulo theory
(SMT) solver. Further, we propose a comprehensive end-to-end approach that goes
from specification using a standard orchestration language (ABPEL), and the possible
description of test purposes, to the online realization and execution of symbolic test
cases against an implementation. A crucial point is a model transformation from
ABPEL to STS that we have defined and that takes into account the peculiarities of
ABPEL semantics. The automation of our approach is supported by a tool-chain
that we have developed.
Keywords: services, orchestration, formal testing, test-case generation, WS-BPEL,
transition systems, symbolic execution, SMT solver.

3

Acknowledgments

I wish to take this opportunity to express my gratitude to my supervisors Fatiha
Zaïdi and PascalPoizat for their support, good guidance and their patience during
all these four years working on this thesis topic. Without their knowledge, valuable
suggestions and others efforts, this thesis would never been written.

Special thanks are dedicated to Marie-Claude Gaudel, Frédéric Voisin, Burkhart
Worlff and Delphine Longuet that have spent a great deal of their precious time
for given me advices, comments and positive attitude. It has been a great pleasure
to work with them. I would like to thank the people with whom I shared the office
specially Johan Oudinet and Abderrahmane Feliachi, they had always been very
supportive and helpful, we have had some great time together, and I am sure that
there is still a lot more to come.

Warm thanks go to all my friends for their support specially: Sonia Dahdouh,
Rania Khefifi, Vincent Armand, Boubacar Diouf. I would like to thank Sandrine-
Dominique Gouraud who introduced me to Fatiha Zaïdi. I am really thankful to
all the persons that I worked with. I am also grateful to all the administrative staff
for their help and their kindness.

Many thanks go to my reviewers and examiners as part of my PhD defense:
Ana Rosa Cavalli, Manuel Nunez, Marie-Claude Gaudel again, Philippe Dague
and Mohand-Said Hacid. It has been a great honor to have you all as part of the
examination committee.

My warmest thanks naturally go to my family, my parents Razika and Mohamed-
Chèrif for having always stood behind me through the good and the bad times. I
would probably not have gone so far in my studies without their encouragements
and the education that they gave me. It is their supporting love that have made me
who I am and brought me this far.

5

Contents

Contents 6

List of Figures 8

List of Tables 10

1 Introduction 11
1.1 Context . 12
1.2 Issues . 12
1.3 Contributions . 13
1.4 Outline . 13
1.5 Publications . 14

2 State of the Art on Web Services Verification 15
2.1 Web Services . 16
2.2 Basic Notions of Testing . 28
2.3 Specification for Web Services Orchestration 37
2.4 Formal Methods for Web Services 39
2.5 Verifying and Testing Web Services 43
2.6 Conclusion . 49

3 A Symbolic Approach for Composite Web Service Conformance
Testing 55
3.1 The Proposed Framework . 56
3.2 Composite Web Services specification 56
3.3 From Language to Model . 58
3.4 Deriving Symbolic Test Cases . 80
3.5 Conclusion . 89

4 Implementation and Tools support 91
4.1 Testing Architecture . 91
4.2 Conformance Testing of a Service Orchestrator 93

6

CONTENTS 7

4.3 Conclusion . 108

5 Conclusion 111
5.1 Contributions . 111
5.2 Perspectives . 112

A x-Loan Case Study 115
A.1 Specification . 115
A.2 WS-STS model . 117
A.3 Symbolic Execution Tree . 117
A.4 Symbolic Test Cases . 118

B E-Conference Case Study 123
B.1 Specification . 123
B.2 WS-STS model . 125
B.3 Symbolic Execution Tree . 127
B.4 Symbolic Test Cases . 128

C Appendix 129
C.1 The steps: . 129
C.2 Description of the functions . 130

D Appendix 137
D.1 WSDL of the xLoan Service Orchestrator 137
D.2 WSDL of the Black List Service . 139
D.3 WSDL of the Bank Service . 140

Bibliography 143

List of Figures

2.1 The SOA functional model . 17
2.2 SOAP message structure . 18
2.3 WSDL 1.1 structure . 20
2.4 Service choreography . 22
2.5 Service orchestration . 22
2.6 Overview of the xLoan services orchestration 29
2.7 Verification and test . 30
2.8 Evolution of the testing process . 31
2.9 Test abstraction . 32
2.10 Tests classification . 33
2.11 The formal specification based testing process. 33
2.12 Properties as a specification . 34
2.13 Formal models classification . 40
3.1 Overview of the proposed framework . 57
3.2 Transformation of P;Q sequence into an automata according to [87] . . . 66
3.3 Transformation rules for basic activities 67
3.4 Simple service with an anonymous message variable 68
3.5 Transformation rules for structured activities 69
3.6 Transformation rules for structured activities - suite 70
3.7 Catch construct of invoke activity . 74
3.8 The formal model of the xLoan orchestration 75
3.9 A test purpose with a * transition . 76
3.10 A test purpose for the xLoan orchestration 77
3.11 Rules of the product computation between B and TP 78
3.12 Product of the rule (i) where: e′ /∈ {τ, χ,]} 79
3.13 Product of the rule (i bis) . 79
3.14 Product of the rule (iii) where: e ∈ Ev? ∪ Ev! ∪ Ex ∪ {

√
} 80

3.15 Product of the rule (iv) where: e 6= e′ . 80
3.16 The product of the xLoan orchestration with the TP 81
3.17 WS-STS model . 84
3.18 SET generation . 84
3.19 The inclusion criterion . 85

8

List of Figures 9

3.20 Selection of a test case from the SET of xLoan example 87
3.21 Testing Architecture of a Service Orchestration 88
4.1 Overview of the tools chain . 92
4.2 In-the-large testing architecture . 93
4.3 Restricted testing architecture . 93
4.4 Creation of trees from variables types . 103
4.5 Creation of leaf variables for the trees . 104
4.6 Creation of new variables form the the subtrees 104
4.7 The structure of the w variable . 106
4.8 The Z3 input file for the example. 107
4.9 The Z3 solver response. 108
4.10 Variables realization . 108
4.11 Overview of the tools chain . 109
A.1 xLoan Example – Business process . 116
A.2 xLoan Example – Data and Service Architecture 117
A.3 xLoan Example – Orchestration Specification 118
A.4 xLoan Example – Symbolic Transition System 119
A.5 xLoan Example – Symbolic Execution Tree (k=10, τs not counted) . . 120
A.6 xLoan Example – Symbolic Execution Tree - Overview of the STS2SET

tool . 121
A.7 xLoan Example – a Sent and a Received Message (parts of) 122
A.8 xLoan Example – Execution of a test case 122
B.1 e-Conference example . 124
B.2 e-Conference Example – Data and Service Architecture (UML Extended) 124
B.3 e-Conference Example – Orchestration Specification (Inspired and ex-

tended from BPMN) . 125
B.4 e-Conference Example – Orchestration model (STS) 126
B.5 e-Conference Example - Test Purposes (STS) 126
B.6 e-Conference Example - Product (STS) 127

List of Tables

2.1 Related work on Web Services Testing 50
2.2 Related work on Web Services Testing - Suite 51
2.3 Related work on Web Services Testing - Suite 52
2.4 Related work on Web Services Testing - Suite 53
2.5 Related work on Web Services Testing - Suite 54

10

C
h

a
p

t
e

r

1
Introduction

Using computer systems in our daily lives has become almost instinctive. In order to
satisfy consumers’ requirements, software and hardware are becoming increasingly
complex. Such complexity raises doubts and trust issues about these systems.

Finding faults in a system, then correcting them avoids a waste of money for
enterprises and/or prevents any threat to the safety of consumers that use those
systems, e.g. the medical equipments, industrial systems (as medicines or food
production), planes, vehicle construction, etc.

To ensure the correctness and the correct behavior of complex systems, testing
remains an incontrovertible step in systems development. In the testing literature
there are several kinds of tests. Unit testing aims at checking independently all
the modules that constitute the system, integration testing aims at verifying the
integration of these modules, regression testing addresses the correctness of a system
after some change has occurred, etc. Further testing details will be provided in the
second chapter.

Conformance testing is the kind of test that interests us. It aims at verifying
whether an implementation is correct with regards to the specification of this system.
Our objective in this thesis is the conformance testing of an implementation of a
composite system with regards to its specification.

More precisely, we focus on the more recent architecture for systems composition
i.e. Web services. A Web service is a computer application that allows communication
and data exchanges between disparate systems via the Internet. A composition of
Web services allows one to implement a series of calls to these Web services and thus,
provides a complete business process to a client (or user), whether this is a human
being or another software system.

11

12 CHAPTER 1. INTRODUCTION

Through this manuscript, we will present our approach to automatically generate
and execute conformance test cases on a composition of Web services in order to
establish its conformance with regards to its specification.

In this chapter, we start by an introduction to the context of our research which
is related to the french ANR WebMov Project. Then we will explain the difficulties
of conformance testing approach for Web service compositions. The solution that we
propose to overcome these difficulties will be presented in the contribution section.
Afterward, we present the outline of the thesis manuscript and finally, we end with
our publications.

1.1 Context

During the last few years, the notion of software architecture based on services that
provide altogether a business process was largely widespread. Such an architecture
is called Service Oriented Architecture (SOA). Web services (WS) are software
applications that adhere to the SOA vision. A basic WS is an application which
provides functionalities to its user. WS can be composed into composite services in
order to provide more functionalities, or to base the ones they provide on simpler
sub-services.

This thesis has been carried out in the context of the ANR WebMov1 project.
This project focuses on the composition and the validation of WS. The objectives
of this project could be summarized as follows: testing interface and robustness for
WS, testing the behavioral aspects of their composition, developing a platform for
the verification of WS and finally, executing the proposed approaches on realistic
test cases. To achieve this, the WebMov project includes partners from research
laboratories and from the industrial field. Our focus within this project is on testing
of Web services composition.

1.2 Issues
The testing process aims at finding system faults. Applying test methods to composite
Web services raises several issues. The major issues that we face for testing such
systems are:

• Composition specification: How could we describe this composition ? In
other words, which specification language could we use ?

• Formal model: How could we represent this composition in a formal way
while respecting the features of the specification language ?

1http://webmov.lri.fr/

1.3. CONTRIBUTIONS 13

• Testing approach: Which testing method could we reuse/adapt for such
systems ?

• Rich data context: How are the tests generated and/or executed for data-
dependent systems, avoiding state space explosion issues ?

1.3 Contributions

We propose a comprehensive end-to-end approach for conformance testing of com-
posite WS, more especially orchestration i.e. centralized WS composition.
To do so, we begin by representing the functionalities expected from a composite WS
using the Abstract Business Process Execution Language (ABPEL), from which we
retrieve a formal model named Web Service Symbolic Execution Systems (WS-STS).
This model is obtained from our transformation rules that supports the main features
of the Business Process Execution Language (BPEL).
We also provide the possibility to describe a Test Purposes (TP) as a WS-STS model
allowing one to specify which scenarios she/he wants to test. In this case a product
of the WS-STS model representing the specification, i.e. the functionalities expected
from a composite WS, with the WS-STS of the TP is computed and yields a WS-STS
product model. From the latter, we apply Symbolic Execution (SE) in order to
generate a Symbolic Execution Tree (SET). The SE technique allows us to avoid
state space explosion problems in presence of unbounded data types, as used in
full-fledged BPEL.
Each path of the SET represents a symbolic test case. Resolving the constraints
of a SET path using the Z3 SMT solver allows us to generate concrete test cases
on-line while interacting with the implementation under test. Finally, a verdict on
the conformance of the composite service with regard to its specification is emitted.

1.4 Outline

Chapter 2 is an introduction to testing and to Web services. It also contains a
state of the art on the testing of Web services. Our symbolic approach for the
conformance testing of composite Web services, is exposed in Chapter 3. In Chapter
4, we present details on our framework and tool support that is used to generate and
then execute tests against an implementation of a composite service. Finally, we end
the manuscript by a conclusion and perspectives of our work.

14 CHAPTER 1. INTRODUCTION

1.5 Publications
• Lina Bentakouk, Pascal Poizat and Fatiha Zaïdi. A Formal Framework for
Service Orchestration Testing Based on Symbolic Transition Systems. In
Proceedings of the 21st IFIP WG 6.1 International Conference on Testing of
Software and Communication Systems and 9th International FATES Workshop
(TESTCOM ’09/FATES ’09). LNCS 5826, pages 16-32, Springer 2009

• Lina Bentakouk, Fayçal Bessayah, Mounir Lallali, Wissam Mallouli and Andrey
Sadovykh. A Framework for Modeling and Testing of Web Services Orchestra-
tion. In MDA4ServiceCloud 2010 - The 4th workshop on Modeling, Design,
and Analysis for the Service Cloud, Paris, France. 2010.

• Lina Bentakouk, Pascal Poizat and Fatiha Zaïdi. Checking the Behavioral
Conformance of Web Services with Symbolic Testing and an SMT Solver. In
TAP’11 Proceedings of the 5th international conference on Tests and proofs In
TAP’2011. LNCS 6706, pages 33-50 Springer 2011.

C
h

a
p

t
e

r

2
State of the Art on Web Services

Verification

With the ten last years, the concept of Service Oriented Architecture (SOA) has
emerged in the computer science area. The idea is to use or reuse existing services
to create new ones which offer more functionalities with a lower cost.

Web services are the most popular approach of SOA, where a Web service is
the elementary component which uses a standard communication infrastructure to
communicate through the Internet. The description of a Web service also known as
its interface is depicted using a WSDL file, and the messages exchanges are done
using the SOAP protocol. Web services can be composed in order to perform more
functionality. These latter constitute the business process.

The business process could also be expressed as a specification. Where a specifi-
cation describes the expectations of future users from a system. In the context of
some Web service, a specification describes the expectations of a user over this Web
service.

In this chapter, we present at first Web services and their composition. Next
we talk about the formal methods that are intended to express the Web services
formally to remove any ambiguity. Relying on a formal model we can now apply
various testing approaches (unit testing, functional testing, regression testing, etc).
We will explain what is a black box testing, a white box testing and the gray box
one. We will also discuss about existing works on testing and verifying Web services,
within a state of the art.

15

16 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

2.1 Web Services

As pointed before, Web services have become the cornerstone of the Service Oriented
Architecture (SOA). Web services provide goods and services to the customers, they
also allow the customers to search for services that match their needs. A Web service
is a loosely-coupled application that allows communication and data exchange with
its user via the Internet. The major advantage of Web service is that it could use
other web services regardless of their implementation (Java, C++,. . .), the underlying
architecture (J2EE, .NET,. . .) and the platform (Windows, Unix,. . .). A simple Web
service provides simple functionality such as booking a plane ticket, bank account
management, weather forecasting, while complex Web services (also called composite
Web services) combine those functionalities to offer a complete higher-order business.
Let us assume unifying the booking plane ticket service with a booking service for
hotel and another car rental service. This composition of web services named Travel
planning offers more functionalities to a costumer and saves him time and money
searching and invoking each service individually.

Two kinds of composition of web services exist: a centralized one called an
Orchestration of Web services, and a distributed one called a Choreography of Web
services. An orchestration of services implies the use of a web service which is in
charge to organize and harmonize the invocation of other Web services in order to
provide a business process. In a Choreography of Web services, each service must
satisfy a received request, with no or a partial information dealing with the next
invocations of partner services involved in achieving a business process.

Several languages for describing services composition exist. The forerunners
languages for composing Web services are the Web Service Business Process Execution
Language (WS-BPEL) [117] used for describing an orchestration of services, and the
Web Services Choreography Description Language (WS-CDL) [15] which describes a
choreography. Thereafter, other languages for service composition appeared, such as
the service modeling language SENSORIA Reference Modeling Language (SRML) [14]
or the Orc Programming Language [85].

2.1.1 Service Oriented Architecture

The Service-Oriented Architecture (SOA) [48], is a software architecture that describes
the system components and the interconnections that may exist in a high level way.
The idea of SOA is to use existing applications as an enterprise system that provides
services. Each service is self-described and aims to fulfill specific functionalities.
Those services can then be combined to realize a business process.

An SOA provides a standard framework to represent services interactions as
shown in Figure 2.1. A service provider publishes a description about his service in
a public registry. The service broker manages the registry that contains information

2.1. WEB SERVICES 17

Figure 2.1: The SOA functional model

on other services, and allows the service requestor to find the service that suits its
requests.

2.1.2 Presentation and features of Web Services

The main pillar of SOA is the use of Web services. They are widely deployed
and easily integrated into users lives. Web services are applications that can be
described, published, discovered and composed. They aim to provide goods and
services according to users needs. This popularity is due to the fact that Web services
are loosely coupled, Internet-enabled applications that process business activities
performed by a single service or by interacting with other web services in order to
fulfill the users demands.

The W3C1 defines a Web service as: A software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically Web Services Description
Language WSDL). Other systems interact with the web service in a manner prescribed
by its description using SOAP messages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related standards.

As we said previously Web services are loosely coupled. It means that they
interact with each other dynamically using Internet more freely. It also implies that
a change in the implementation of a web service functionality does not induce change
on the client program that invokes the Web service.

2.1.3 Involved Technologies

Testing a system means interacting with it, i.e., submitting input data to it then
analyzing its responses. To do so, we must know the basic features and conditions of
using this system. In the following we present the basic employed technologies for
web services:

1World Wide Web Consortium (W3C) http://www.w3.org/

18 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

• XML. The Extensible Markup Language (XML) is a prevailing markup lan-
guage that is used for transmitting structured data between applications. The
widely use of XML is also due to its validating format. It means that XML must
satisfies specific grammatical rules. XML Schema (also known as XSD for XML
Schema Definition [157]) is the most powerful describing XML language. In the
context of web services, XML documents allow services which are implemented
differently to communicate and share data using the XML Schema format.

• HTTP. The Hypertext Transfer Protocol (HTTP) [75] is the usually used
networking protocol for distributed and collaborative information systems.

• SOAP. The Simple Object Access Protocol (SOAP) [2] is a protocol specifi-
cation that allows exchanging XML-based messages representing operations
calls between the requester(s) and the Web service provider in decentralized
and distributed environment like Internet or a Local Area Network (LAN).
SOAP is not a new technological advancement it is just a simple way to codify
the usage of existing Internet technologies in order to standardize distributed
communications over the Internet. The structure of a SOAP messages is shown
in Figure A.7. The SOAP envelop, wraps the start and the end of the message.
The SOAP header part (with an optional contents) contains processing or
control information such as information about authentication, session manage-
ment, etc. The XML data that are exchanged between the applications are
detailed in the SOAP body part.

Figure 2.2: SOAP message structure

• WSDL. The Web Services Description Language (WSDL) [7], also known as
the static interface is an XML-based language that provides a description of the
functionalities of a Web service and how to access to it. A WSDL document
can be divided into two parts [129]:

2.1. WEB SERVICES 19

– a service-interface definition (or abstract section) that describes all the
operations, their parameters and the abstract data types used

– a service implementation (or concrete section) that binds the first part
(service interface definition) to a concrete network address with a specific
protocol and exchanging concrete data structures.

Figure 2.3 presents a WSDL document structure where:

– Types: the types element contains XML schema or external references
to XML schema that describe the data type used in the WSDL document

– Message: the message element is an abstract description of typed infor-
mation used to communicate information between the invoker and the
service.

– PortType: the portType element contains a set of operations. The
portType binds the operation to a transport protocol such as SOAP. It
represents the link between the service-interface and the service imple-
mentation

– Operation: represents the action exhibited by the service

– Binding: the binging element contains information that allows converting
abstract service (the portType element) into a concrete representation.
In other words, the binding element formats an operation and bounds it
to a specific protocol

– Service: the service element contains a collection of ports elements. It
associates an endpoint (such as an URL) with a WSDL binding element.

– Port: the port element defines an individual endpoint by specifying a
single address for a binding.

WSDL document represents an operation with an input and/or an output.
This representation induces four types of possible interactions with a service:

– One way operation: is an operation where the service receives a message
without sending back a response. This kind of operation is used when a
potential user of the service does not require an immediate response or
no response at all.

– Request/response operation: is an operation where the service re-
ceives a message then it returns a message in response

– Solicit-response operation: is an operation where the service sends a
message and expects to receive a replying message.

20 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

– Notification operation is an operation in which the service sends a
message without expecting to receive a response. This type of operation
could happen when a given service provides periodically a report to a
given user.

Figure 2.3: WSDL 1.1 structure

• UDDI. The Universal Description Discovery and Integration (UDDI) [6] is a
register which contains information about Web services. It works as a catalog
offering business functionalities and characteristics of different Web services.
Each Web service features is obtained from the WSDL description. UDDI
allows to [129]: (i) discover information about enterprises offering Web services,
(ii) find description of Web services and (iii) find technical information about a
Web service interface description. XMethods2 site is an example of an UDDI.

2XMethods. http://www.xmethods.net/ve2/index.po

2.1. WEB SERVICES 21

2.1.4 Web Services Composition

Many organizations adopted the concept of Web services (as E-Learning composition
services or the Travel Reservation Service), this interest is due to their benefits.
Indeed the idea with Web services, is to use or reuse existing services, it is also
possible to compose them in order to build a new system that meets a specific
business process.

A composition of services combines the use of multiple services in order to perform
a particular complex task. Those services communicate by exchanging messages in a
specific order. The procedure or sequence in which tasks are executed is known as
the business process.

Such composition of web services may itself be provided by another service.
Two approaches exist for designing a services composition the first one called a
Choreography also known as a Coordination and the second an Orchestration:

• A Choreography of Web services describes a collaborative communication be-
tween Web services in order to achieve a specific goal. Such configuration looks
like a distributed composition of systems. The global view that a choreography
provides is a communication without any dominance by a participating service.
The most popular language for service choreography is called Web Services
Choreography Description Language (WS-CDL) [15]. The Figure 2.4, inspired
from [99], depicts a graphic representation of a choreography.

• An Orchestration of Web services focuses on one Web service named service
orchestrator, which manages the interaction with other service partners in
order to accomplish a task. Such configuration of Web services represents
a centralized composition of systems. The Web Service Business Process
Execution Language (WS-BPEL) [117] is known as a standardized language for
orchestration and the most used for this kind of composition. The graphic view
associate to an orchestration, also inspired from [99], is presented in Figure 2.5.

Note that, among the services described within a choreography, it is possible to
find a service orchestrator as one of the collaborating services.
Our testing approach focuses on an orchestration of services based on Web Service
Business Process Execution Language (WS-BPEL). This language has emerged as
a cornerstone to develop added-value distributed applications out of reusable and
loosely coupled software pieces.
In the next part we present some features of the WS-BPEL to describe how an
orchestration of service is implemented.

22 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

Figure 2.4: Service choreography Figure 2.5: Service orchestration

2.1.5 Web Service for Business Process Execution Language

The Web Service for Business Process Execution Language (WS-BPEL) becomes the
de facto standard for Web service orchestration. The WS-BPEL models the workflow
of Web services composition by exporting and importing their functionalities, using
their exposed interfaces. The description provided by this language can be employed
in two ways. As an executable language that designs the exact behavior of the
business process. Or as an abstraction of the process that provides a high level
description in which roles of the services partners are depicted but details of concrete
operations are hidden. The asset offered by the WS-BPEL with its executable
and abstract process, advances the development of automated composition process.
However, with such popularity, verifying WS-BPEL correctness becomes a topical
issue, all the more because of BPEL complexity.

WS-BPEL (or simply BPEL) relies on WSDL, XML schema and XPath expres-
sions. The WSDL interface of services is used in the composition and the WS-BPEL
itself, offers a WSDL interface to describe the orchestration functionalities. The
XML schema data are handled using the XPath expressions.

A Business process is described within a process tags as shown below. The at-
tributes of the first process tag specify the name of the process, the target namespace
to identify the namespace in which new elements are created, and the namespace
that works as a reference to an element or a type.

1 <proce s s
2 name="BPELprocessName"
3 targetNamespace=" ht tp : // e n t e r p r i s e . netbeans . org / bpel / restOfURI"
4 xmlns=" ht tp : // docs . oa s i s−open . org /wsbpel /2 .0/ proce s s / executab l e "
5 . . .>
6 . . .
7 </ proce s s>

All the following tags will be nested inside the process tag. Let us begin with the

2.1. WEB SERVICES 23

import tag, as its name indicates, this activity is used to import the interface of the
service orchestrator i.e. the WSDL file.

1 <import importType=" ht tp : // schemas . xmlsoap . org /wsdl /"
2 l o c a t i o n=" BPELproces sServ i ce Inter face . wsdl "
3 namespace="URIlocat ion ">

The involved Web services in the composition are then specified. These partner
services are specified using the notion of partner link (partnerLink). Among the
attributes of a partnerLink, we find its name , the partner link type that represents the
functionality provided by the interaction between service orchestration and service
partner. The function of the business process is indicated using myRole and the one
of the partner using partnerRole keywords.

1 <partnerL inks>
2 <partnerLink name = " partner1 "
3 partnerLinktype="partnerLT"
4 myRole="BPELprocessRole"
5 partnerRole=" partner1Role "/>
6 <partnerLink name = " partner2 "
7 . . . />
8 . . .
9 <!−− other par tne r s −−>

10 </ partnerL inks>

In order to manipulate data, BPEL uses variables. These variables are used
whether internally in the process or in messages exchanges. As said before, WS-BPEL
relies on WSDL interface and this one handles data using XML schema. Conse-
quently, the data types of WS-BPEL variables will be the same as those of WSDL
messages, an XML schema element or an XML schema type (complex or simple types).

1 <va r i a b l e s>
2 <va r i ab l e name = " va r i ab l e 1 " messageType="ns:messageType" />
3 <!−− WSDL message type −−>
4 <va r i ab l e name = " va r i ab l e 2 " element="ns:elementName" />
5 <!−− XML schema element −−>
6 <va r i ab l e name = " va r i ab l e 3 " type="ns:complexType" />
7 <!−− complex type s p e c i f i e d with i t s namespace −−>
8 <va r i ab l e name = " va r i ab l e 4 " type=" s t r i n g " />
9 <!−− s imple type −−>

10 . . .
11 </ va r i a b l e s>

WS-BPEL describes the process workflow using activities. We can distinguish two
kinds of activities, the basic ones that describes atomic actions and the structured
activities that describe complex actions by combining the simple activities.

Among the basic activities we find the assign activity. This activity is used to
manipulate variables. Data stored within variables may be sent to a partner, received

24 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

from a partner or processed internally. This manipulation is done by storing a value
into a variable of the same type.

Depending on the structure of a variable which can be of: (i) WSDL message type
generally used for communicating activities with partners (these activities are the
invoke, receive and reply. We explain them later). (ii) The variables may reference to
an XML element. This element is mostly typed with a complex XML schema type.
(iii) or XML schema types. To browse through variables of complex type, WS-BPEL
uses XPath 1.0 expressions for that.

1 <as s i gn>
2 <copy>
3 <from va r i ab l e = "var1" />
4 <!−− var1 and var2 are o f the same type −−>
5 <to va r i ab l e= "var2" />
6 </copy>
7 <copy>
8 <from> $message/ns:subpart1/ns:subpart2 <from/>
9 <!−− from the XPath expr e s s i on to va r i ab l e 2 −−>

10 <to va r i ab l e= "var3" />
11 </copy>
12 </ as s i gn>

One of the important aspects of an orchestration is the communication between
Web services, for this matter simple activities were defined. The receive and reply
are activities used for receiving and sending back messages between one or more
services that have initiated the business process and the orchestrator. Among the
attributes of the receive activity, one is dedicated to create a new instance of the
process, the rest of them provide information about :

• partnerLink indicates the name of the partner link to use,

• portType indicates the WSDL port type in order to invoke the operation,

• operation indicates the operation to invoke,

• variable indicates the received variable.

1 <re c e i v e name = "nameOftheReceiveActibity "
2 c r e a t e In s t an c e="yes "
3 partnerLink="User"
4 operat i on=" operat ionUsed "
5 portType=" ns : s e rv i c ePor tType "
6 va r i ab l e=" inputVar iab l e ">
7 </ r e c e i v e>

In response to the received message the reply activity is used. Its attributes are
much like those of the receive activity, except for the values and the attribute for
instance creation which is no more needed.

2.1. WEB SERVICES 25

1 <rep ly name = "nameOftheReplyActibity "
2 partnerLink="User"
3 operat i on=" operat ionUsed "
4 portType=" ns : s e rv i c ePor tType "
5 va r i ab l e=" outputVar iable1 ">
6 </ rep ly>

The receive-reply activities are used for synchronous communication. The receive
plays the role of request when the reply activity plays the role of the response.
The asynchronous communications are done using the invoke activity which can be
followed directly or not by a receive activity.

Invoking another Web service using the invoke activity for a synchronous com-
munication implies the use of an input variable and an output variable. In this case
the invoke activity will block until a response is provided from the invoked service.
For an asynchronous communication only the input variable is used without need for
the output variable. Example sending a receipt message for the web service partner.

1 <invoke name = "nameOftheInvokeActibity "
2 partnerLink=" s e rv i c ePa r tn e r "
3 operat i on=" opera t i on "
4 portType=" ns : s e rv i c ePor tType "
5 inpuptVar iab le=" Var iab l e In "
6 outputVar iab le="VariableOut ">
7 </ invoke>

WS-BPEL defines also more complex activities named structured activities. The
structured activities describe the organization of other activities. In the following, the
described activities are those belonging to structured ones. To represent a sequential
execution, the activity sequence is used.

1 <sequence>
2 <!−− other a c t i v i t i e s nested i n s i d e −−>
3 </ sequence>

Parallel execution is represented using the flow activity. The flow activity is
using links to define a synchronization dependence, in this case WS-BPEL support
such constraint using source and target tags to satisfy the condition. For sake of
simplicity we do not exemplify such case (more information can be found in the
WS-BPEL standard [117]).
The next example describes the link “rendez-vous“ that specifies a relation between
the “task 1 “ as the source and the “task2 “ as the target. Nested within the ”task 1”
a synchronization between the first and the second services is required. Then the
receive activity will be executed.

1 <flow name=" flowActivityName">
2 <l i n k s>

26 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

3 <l i n k name= "rendez−vous" />
4 <!−− a l i n k had only one source and one t a r g e t −−>
5 </ l i n k s>
6 <sequence name=" task1 " >
7 <source linkname="rendez−vous"/>
8 <invoke name=" f i r s t S e r v i c e "/>
9 <invoke name=" secondServ i c e "/>

10 </ sequence>
11 <!−− an a c t i v i t y i n s i d e the f low may have source and ta r g e t f o r

s e v r a l l i n k s −−>
12 <sequence name=" task2 ">
13 <ta rg e t linkname="rendez−vous"/>
14 <re c e i v e name = " th i r dS e r v i c e "/>
15 . . .
16 </ sequence>
17 </ f low>

Repeated actions could be expressed using several activities like while, forEach,
or repeatUnitl. We exemplify the fist one i.e. while, that focuses on repeating the
nested activities as long as the condition is satisfied.

1 <whi le>
2 <cond i t i on> $variable==true </ cond i t i on>
3 <sequence>
4 <!−− do a c t i v i t i e s −−>
5 </ sequence>
6 . . .
7 </ whi le>

Selective actions are represented using the if and else activities.

1 <i f>
2 <cond i t i on> $variable==true </ cond i t i on>
3 <!−− do some a c t i v i t i e s −−>
4 <e l s e i f>
5 <cond i t i on> $variable2 > 100 </ cond i t i on>
6 <!−− do other a c t i v i t i e s −−>
7 </ e l s e i f>
8 <e l s e>
9 <!−− do a c t i v i t i e s −−>

10 </ e l s e>
11 </ i f>

However, WS-BPEL describe another sort of selective actions relying on message-
dependent branching (at least one message) and an optional timeout. Such behavior
is described using the pick activity. This activity describes the future behavior of
the process, according to the received message (onMessage). It is possible to specify
the waiting time for a receiving message using the onAlarm activity. This activity is
mostly used for asynchronous operations.

1 <pick c r e a t e In s t anc e="no">
2 <onMessage partnerLink="User"

2.1. WEB SERVICES 27

3 operat i on="op1Name"
4 portType="ns:userPortType1 "
5 va r i ab l e=" va r i ab l e 1 ">
6 <!−− a c t i v i t i e s −−>
7 </onMessage>
8 <onMessage partnerLink="User"
9 operat i on="op1Name"

10 portType="ns:userPortType2 "
11 va r i ab l e=" va r i ab l e 2 ">
12 <!−− a c t i v i t i e s −−>
13 </onMessage>
14 <onAlarm>
15 <fo r> ’P0Y0M0DT0H10M0S ’ </ f o r>
16 <!−− f o r a durat ion equ iva l en t e to 10 min −−>
17 <!−− then do a c t i v i t i e s −−>
18 </onAlarm>
19 </ pick>

Using the activity scope, it is possible to specify a collection of actions. As for
the other structured activities, simple or structured activities can be nested within a
scope. The scope allows to define a part of a service behavior, with its own local
variable, correlation and handlers.

1 <scope name ="scopeName">
2 <!−− do a c t i v i t i e s −−>
3 </ scope>

Once, the service orchestration is made available on the Internet, it can be used by
several users or services. Such scenario implies that there is a track for each process
initialized instance. For this purpose, WS-BPEL proposes to use parts of transmit-
ted data along with messages to correlate the exchanged messages for an instance.
A correlation had a unique name, associate attributes and is defined within corre-
lation set tag. The properties attributes are associated to operations in the WSDL file.

1 <co r r e l a t i o n S e t s>
2 <co r r e l a t i o nS e t name= " UserCorre l "
3 p r op e r t i e s="UserToken"/>
4 . . .
5 </ c o r r e l a t i o n S e t s>

With these main activities we stop our introduction to the BPEL elements, more
details are available on BPEL documentation [117]. We provide an example of an
orchestration of services in the next part.

2.1.6 The xLoan Case Study

To help the understanding of our approach we introduce our xLoan case study.

28 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

It is an extension of the well-known loan approval example presented in the BPEL
standard [117], which usually serves for demonstration purposes in articles on BPEL
verification.

The Figure 2.6 presents an overview of this services orchestration. Where a user
sends a loan request to the xLoan orchestrator service, this request includes the
amount asked for and user personal information. According to those information and
by invoking partner services, the xLoan service will provide an approval response
with loan proposals or a reject response.
The specified partner services respectively deal with loan approval (BankService) and
black listing (BlackListingService), with users not being blacklisted asking for low
loans (6 10000) getting loan proposals without requiring further approval. Yet, once
a loan is accepted, proposals may be sent to the requester. Further communication
then takes place, letting the requester select one proposal or cancel, which is then
transmitted to BankService. If the selected offer code is not correct the requester
is issued an error message and may try again (select or cancel). Timeouts are also
modeled, and the bank is informed about canceling if the requester does not reply in
a given amount of time (2 hours).
Our extensions are targeted at demonstrating our support for BPEL important
features: complex data types, complex service conversations including message
correlation, loops and alarms. Hence, more complex and realistic data types are
used, to model user information, loan requests and loan proposals.

2.2 Basic Notions of Testing

To ensure the good functioning and to increase trust in a system, the verification
and the validation activities are inescapable. These two activities are complementary
and jointly used all along the software development process (software requirements,
design and programing).

The verification activity focuses on proving the correctness of a specification
and/or an implementation of a system. To do so, the verification checks the specifi-
cation and/or the program by applying proof and test techniques. By contrast the
validation activity focuses on establishing that the system intends its requirements.
The query "Are you building the right thing?" is usually applied for the validation
and the query "Are you building it right?" is the one used for the verification.

2.2.1 Verification and Testing

Some researchers associate the testing process to the verification. Others claim a
distinction between verification and testing. The aim of verification, also known as
formal verification, is to proof the correctness of a system by analyzing one or more

2.2. BASIC NOTIONS OF TESTING 29

Figure 2.6: Overview of the xLoan services orchestration

properties of the system model. Still, testing is the process of executing a program
in order to find errors.

Among the main techniques of formal verification we cite the Model-checking
technique. The model checking algorithm takes as input an abstraction of the
behavior of a system (i.e., a transition system) and a formula of some temporal logic,
and responds whether or not the abstraction satisfies the formula. We then say that
the transition system is a model of the formula. The big advantage of model checking
is that it is completely automatic, and usually a counterexample is returned when

30 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

the property is not checked.
In a testing domain, Abran et al [17] define the testing process as follows:

Testing is an activity performed for evaluating product quality, and for improving
it, by identifying defects and problems. Software testing consists of the dynamic
verification of the behavior of a program on a finite set of test cases, suitably selected
from the usually infinite executions domain, against the expected behavior.
The testing process is also defined as the process that detects the system errors
regarding to its specification, and thus enhance the reliance in it (LAPRIE, J.C. [89]).

Figure 2.7: Verification and test

The Figure 2.7, provides a standard view of the verification and the testing
process. Since we are interested in finding errors due to a non conformance of
a composite Web service implementation regarding to its specification, the work
presented in this thesis focuses on the testing process of an orchestration of Web
services.

2.2.2 Levels of Testing

There are several levels of test, depending on the detail level of the system that
a tester wants to verify, such as: unit testing, integration testing, system testing,
etc. Furthermore, those tests could be applied at different levels of abstraction:
(i)Black box testing, consists in making tests on the external observable behavior of
the system without having implementation code knowledge. (ii)White box testing is
based on the internal details and the structure of the code. A third method that
mixes the previous ones is called (iii)Gray box testing. We provide more detail in
the following: It is possible to apply a test at different levels of details for a system
as depicted in the Figure 2.8:

• Unit testing: it verifies a small module (i.e. a class) of a software independently
of other modules. This kind of test is used with white box testing,

• Integration testing: it verifies that the interaction of two or more modules
belonging to the same system produces the expected results. It is used with
White or black box testing,

2.2. BASIC NOTIONS OF TESTING 31

• System testing: it verifies the entire behavior of the system. It includes other
kinds of testing such as: performance, stress, scalability testing, etc. Used with
Black box testing

• Acceptance testing: generally conducted by a customer. This testing verifies
that the system satisfies the acceptance requirements. It is used for Black box
testing

• Regression testing: this test is applied when new functionality are added to
the system. It uses all the previous tests applied and run them again to verify
that the new functionality does not affect the old ones,

Figure 2.8: Evolution of the testing process

As said above, performing a test depends also on the level of abstraction. In the
following paragraphs we provide a definition of the white an the black box testing.

• White box testing. Also referred as structural testing. It is a test method
that relies on the knowledge of the internal structure of the program, i.e. the
tester has access to the source code of the program. This method verifies
that a functionality is correct by using code coverage. Among the techniques
used in this method we cite: the Data-Flow testing that analysis whether the
variables of the program are bound to a value or not and how these variables
are used; the mutation testing aims to test faulty hypothesis by introducing
small transformation to the original program.

• Black box testing. Also referred as functional testing. It is a test method that
verifies that the functionalities of a program are in accordance with the user
requirement. Such test is done without any information on how the system
was created. In other words, the tester uses the black box testing to make sure
that the program behaves correctly by sending inputs data to the program and

32 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

comparing its outputs with those specified by the user.

The white and the black box testing are represented in Figure 2.9.

Figure 2.9: Test abstraction

When a tester chooses the testing type and the associate level of abstraction, he
aims to test a specific aspect or characteristic. We describe some aspects as follows:

• Conformance testing: it determines whether a system meets the functionalities
described in the specification,

• Robustness testing: it focuses on the resistance aspect of a system implementa-
tion against external events or unanticipated errors in the specification of this
system,

• Performance testing: it determines the performance of a system or checks
whether the announced performances in the specification are achieved,

• Security testing: it determines if the data and the functionalities of a system
are safe and well protected against any intrusion.

The Figure 2.10 is reused form Tretmans’s tests classification. It summarize the
kind of testing that one may perform.

In the next part we provide basic test notion in order to apply conformance
testing of an orchestration of services.

2.2.3 Conformance Testing

As mentioned before, conformance testing also called Compliance testing is process
of checking if the implementation of a system adheres to its specification. In other
words, the conformance notion is a formal relation between a specification and an
implementation of it. This relation evaluates whether the implementation satisfies
the properties described in the specification. The Figure 2.11 is an overview of the
conformance testing process for which we present the basic notions:

2.2. BASIC NOTIONS OF TESTING 33

Figure 2.10: Tests classification

Figure 2.11: The formal specification based testing process.

• Specification. A system specification is a formal or an informal description of
what the implementation should do. It is a way to express the properties of
the system (see Figure 2.12). Generally, the specification is established from
the user requirements it can be expressed as natural language e.g. French,
English, or as specialized description languages, e.g. LOTOS [ISO/IEC 8807]

34 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

or SDL [ITU-T]. The semantics of the specification can be represented using
Temporal Logic [127], algebraic specifications, extended finite state machines,
transition systems, etc. In the following we will use the same formalization as
J. Tretmans [146, 147] to express the notion of conformance.
Let SPECS denote the set of all valid expressions of formal specifications and
s a single specification such that s ∈ SPECS.

Figure 2.12: Properties as a specification

• Implementation. The Implementation Under Test (iut) represents the system
to be tested. The iut can be a piece of hardware like a single chip or a software
component like a piece of executable code.
Let IMPS denote the set of all possible implementations and iut is a one of
them such that iut ∈ IMPS.

• Conformance. To check the conformance of an implementation with respect to
its specification we need to find a formal relation between the implementation
and its specification. A correct implementation iut (iut ∈ IMPS) with respect
to its specification s (s ∈ SPECS) is represented with the following relation:

conform-to ⊆ IMPS × SPECS
However, whereas the specification s is represented formally, the implementation
under test iut is a real object. In order to formally reason about a concrete
implementation (iut), it is assumed that MODS is a set of all the possible
implementation models. We assume Iiut to be a formal model describing the
iut such that Iiut ∈MODS. In the testing theory domain, this assumption is
called test hypothesis [28, 67, 66]. The test hypothesis allows us to reason on
implementations under test as if they were formal implementations in MODS.
As described in Zinovieva thesis [176] we can express the test hypothesis in a
semi-formal manner as follows:

∀ iut ∈ IMPS ⇒ ∃ Iiut ∈MODS. Where iut is modeled by Iiut.

Once the implementation is represented formally, the conformance between
the model of the implementation and the specification could be expressed by a
formal relation called implementation relation:

imp ⊆MODS × SPECS.

2.2. BASIC NOTIONS OF TESTING 35

In other words, the implementation model Iiut is correct with respect to the
specification s if Iiut imp s

• Testing. Actually it exists two kinds of testing : active testing and passive
testing.

– Active testing implies performing experiments on an implementation under
test and observing the corresponding reactions,

– Passive testing also called monitoring, it implies observing then analyzing
the inputs and the outputs of an implementation under test without
disturbing its normal execution.

In our approach we are interested by the active testing, thus we will interact
with the implementation in order to check its response with regard to the
expected one.When a specification depicts a single experiment, it is called test
case and the process of its execution is called test execution. Let TESTS
denote the domain of all the experimentations and t a single one such that
t ∈ TESTS.
If the response observed from the system is the expected one then the imple-
mentation has passed the test. Otherwise, it is considered as an erroneous
response so, the implementation has failed. However, a third case may happen,
when the response is an unexpected one. It means that the response belongs
to another scenario depicted by the specification, in this case the verdict is
called inconclusive and the test case will be re-executed. Yet at the end of the
test the final verdict will be either a pass or a fail one.

For an implementation iut, we could express such observation as follows:
iut passes t for a successful test execution, iut fails t for unsuccessful one and
iut inconclusive t for an unexpected response observation. The extension of
this definition to a set of test cases called test suite T such that T ⊆ TESTS
so:

iut passes T ⇔ ∀ t ∈ T : iut passes t.

iut fails T ⇔ ∃ t ∈ T : iut fails t.

• Test generation. Producing tests from a specification for a given implementation
is called test generation or test derivation. It is expressed as:
SPECS → P (TESTS), where P (TESTS) is a function that refers to the set
of all subsets of TESTS.

• Conformance Testing. An implementation is conform to its specification if
the responses produced by the implementation during the test execution are
correct. This is formalized as:

36 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

∀ iut ∈ IMPS and ∀ T ∈ TESTS :

iut conform-to s⇔ iut passes T

This suggests that the test suite T is complete. The completeness requirement
means that all the possible test cases generate successful answers. Nonetheless,
in a realistic point of view, it is impossible to support an infinite number of test
cases. Therefore, a weaker requirement is posed: the test suite must be sound.

The soundness means that if an implementations is considered as conform to
its specification then these implementation must pass the test suite. Sill, it is
possible that some non-conform implementation pass the test suite and therefore
will also be considered as conform. In other word, if an implementation is
identified as non-conform to its specification it involves that it will not pass
the test suite but the contrary is not true.
The sound requirement is deducted by reading the completeness formula form
the left to the right:

∀ iut ∈ IMPS and ∀ T ∈ TESTS:

iut conform-to s⇒ iut passes T

Reading the other way, form the right to the left, is known to be the exhaus-
tiveness requirement. This means that the implementation that passes the
test suite is conform, and any non-conform implementation is detected. It
corresponds to :

∀ iut ∈ IMPS and ∀ T ∈ TESTS:

iut passes T ⇒ iut conform-to s

In a practical testing even the exhaustiveness property could not be applied
because it is not possible to execute an infinite number of tests in an amount
of time. Thus the property that must be hold is the one of soundness.

• Test Execution. As defined by Elena Zinovieva [176], it refers to the process
of interacting with the implementation under test iut (iut ∈ IMPS). This
interaction is described as : (1) submitting test cases to the iut, (2) observing
the produced response from the iut and (3) emitting a test verdict.
The execution process implies applying a test case t (t ∈ TESTS) on the model
representing the implementation under test Iiut (Iiut ∈MODS) which produces
a subset of observations OBS. A formal interpretation of an observation OBS
after an execution exec is represented as follows:

exec: TESTS ×MODS 7−→ P (OBS)

The verdict indicates if the implementation is conform or not to its specification,
i.e. if the implementation passes the tests then it is conform to the specification

2.3. SPECIFICATION FOR WEB SERVICES ORCHESTRATION 37

otherwise, it is not. We present vt as the verdict function, we represent it
formal as:

vt: OBS 7→ {Fail, Pass}
Finally, we formalize an execution e of a test cases t ∈ TESTS against an
implementation iut ∈ IMPS that may produce a fail or a pass verdict as
follows:

iut fails t⇐⇒ ∃ e ∈ exec(t, Iiut), vt(e) = Fail

iut passes t⇐⇒ ¬ (iut fails t)

The generalization of such rules to a test suit T ∈ TESTS is represented as:

iut fails T ⇐⇒ ∃ t ∈ T , iut fails t
iut passes T ⇐⇒ ¬ (iut fails T) ⇐⇒ ∀ t ∈ T , iut passes t

After this introduction to the conformance testing, in the next section we present
the existing specifications for an orchestration of services.

2.3 Specification for Web Services Orchestration
Composing Web services provides the possibility to accord and organize the function-
alities offered by these Web services. So one may achieve his purpose, without losing
time searching for which service satisfies his request. For this goal, an elaborate
description of those functionalities is required.

Different specifications in the context of Web services exist to depict the Web
service composition. The most popular language for specifying an orchestration
of services is the (WS-BPEL). This language is an executable one, it implies that
WS-BPEL describes code details on how the interactions between services are done. It
exists other languages more abstract to describe a specification of services composition
like: SENSORIA Reference Modeling Language (SRML) and the Business Process
Modeling Notation (BPMN) or the Unified Modeling Language for Service Oriented
Architecture (UML4SOA).

In the following we provide a brief description of those specification languages:

2.3.1 Unified Modeling Language for Service Oriented
Architecture

Relying on the standardized Unified Modeling Language (UML), the UML for Service
Oriented Architecture (UML4SOA) [111] is an extension that supports behavioral
description of Service Oriented Software (SOA). This model had been defined in
the context of the Software Engineering for Service-Oriented Overlay Computers

38 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

(SENSORIA) project [12]. Form UML4SOA specification model transformer are
used to generate executable code as WS-BPEL and WSDL files. The UML4SOA
profile allows its users to model an orchestration of services as UML2 diagrams in a
simple way using small set of model elements.

2.3.2 Business Process Modeling Notation

We can say that the Business Process Modeling Notation (BPMN) [8] is the most
popular specification used in the industrial fields due to its user friendly representation.
BPMN is a graphical representation of business process of a system. This notation
is considered as a standardized bridge between a business process design and a
process implementation. With the popularity of using services orchestrated, a lot of
work [160, 119, 9] focus on extending BPMN to supports the generation of executable
WS-BPEL code.

2.3.3 SENSORIA Reference Modeling Language

The SENSORIA Reference Modeling Language (SRML) [52, 18, 14] supports the
design of services at a high level of abstraction. It has also been defined for the
SENSORIA project [12]. SRML is inspired by the Service Component Architecture
(SCA) [11] composition. The SCA architecture provides several technologies in order
to model services components and the way to interact with them.
In addition to the functional properties of a service composition, SRML focuses also
on run-time discovery and services binding.

2.3.4 Discussion

In order to apply our conformance testing approach, we are interested in a specification
that describes the global conversation protocol (the business process) of services
orchestration. But also the operations used, the data exchanged between the services
and some special properties like the correlation that links the messages with the
appropriate process instance.

The UML4SOA model provides a complete description of the operations and
the messages exchanged within a service orchestration. However, the conversation
protocol that defines the ordering of those exchanged messages are still not well
represented. In contrast, the BPMN notation provides a good description of the
conversation process, but describes the data traffic using a high level of abstraction.
As for the SRML, the associate model for an orchestration supports the operations,
data exchanges description and the conversation protocol. Yet this description focuses
on the architectural aspect of the services components.

2.4. FORMAL METHODS FOR WEB SERVICES 39

For our approach we rely on the (A)BPEL which is an abstraction of the WS-
BPEL. The ABPEL describes the conversation protocol with the operations and the
exchanged data without details on the implementation code. Since the WS-BPEL
or the ABPEL do not have a graphical representation and for sake of pedagogy we
chose to use BPMN for graphic representation of BPEL process which is independent
form the tool used to describe a BPEL service orchestration. We extended the
BPMN notation to highlight the data handling in an orchestration. We also used
and extended the UML diagram in order to represent the structure of transfered
data.

In the following section, we present how based on a specification, a formal model
is used to represent an orchestration of services and then apply verification and
testing techniques in order to check its correctness.

2.4 Formal Methods for Web Services
A formal model allows the representation of behavioral characteristics of a system
according to precise rules, thus any ambiguity or repetitions are prevented. In
order to gain a thorough understanding and reliability by avoiding ambiguity or
misunderstanding of what Web services must provide, the services are expressed
using formal models.

This section provides an overview of the existing approaches to verify or test Web
services using formal models.

We can divide the methods of verifying Web services in two sorts: The control
flow verification and the data flow verification. The control flow verification uses
temporal logic model checking to prove properties of services, bi-simulation to check
the behaviors equivalence between two services or two versions of the same service,
simulation to check whether the behavior of a service is included within the behavior
of other interacting services, or execution traces of the service, to understand the
behavior of the service. The data flow verification uses data type checking, in the
case of LOTOS and other process algebras allowing data handling.

2.4.1 Models of Web Services

Within this part, we present the main models adopted in web services formalization
as shown in the Figure 2.13.

• Petri-Nets [167]. They are particularly useful for modeling concurrent systems
and asynchronous processing. A Petri-net is a directed bipartite graph in which
nodes are either "places" (represented by circles) or "transitions" (represented
by bars). A place represents a state or a condition to satisfy and a transition

40 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

Figure 2.13: Formal models classification

represents an action. Places may also contain tokens, these represent the
available resources. The token moves form a place to an other by executing
actions. The Petri-nets are widely used for modeling the control flow of Web
services composition [69, 72, 142, 154, 101]. In [69] the authors provide a Petri
net-based algebra, for modeling the control flows, as a necessary constituent of
reliable Web service composition process. The proposed algebra is expressive
enough to capture the semantics of complex Web service combinations. As
for Christian Stahl et al. [142, 121] they present a pattern-based Petri net
semantics for the Business Process Execution Language for Web Services (WS-
BPEL). This semantics is complete, and covers the standard behavior of BPEL
as well as the exceptional behavior (e.g. faults, events, compensation). The
tool BPEL2PN [142] is a parser that takes a BPEL process as an input, and
transforms it into a Petri net according to the associate Petri net semantics.
The output of the tool is a Petri net expressed as a data format of the model
checker LoLA [137].
Other research works propose the use of colored Petri nets, as the work of
Yingmin et al. [94] where they use colored tokens to represent the faults in a
BPEL process. Kang et al. [78] also use colored Petri net (CPN), their model
allows efficient composition of Web services and validates the correctness of
composition using formal verification methods. As for Timed Petri nets, they
were used by Valero et al. [132] to handle priorities and time constraint for
services choreography. Other works like [166] use hierarchical Petri nets for the
verification of composite services.

2.4. FORMAL METHODS FOR WEB SERVICES 41

• Process Algebra [144]. They describe a diverse family of related approaches to
formally model concurrent systems. Several process algebra are defined as: the
Calculus of Communicating Systems (CCS) [114], Communicating Sequential
Processes (CSP) [73], π-calculus, the Language Of Temporal Ordering Speci-
fication (LOTOS) [36], etc. The Algebra of Timed Processes (ATP) is used
in [108] to formally model the behavior of web services described in BPEL
language. Driven by the ATP rules the WSMod tool, in this work, produces
a model represented as a Label Transition System (LTS) which will be ana-
lyzed by model checking using the Construction and Analysis of Distributed
Processes (CADP) [10, 61] toolbox. CCS was used in [171] as a formal tool
to specify and model web services behavior using weak bi-simulation relation
to discover services that satisfies a given requirement. W.L. Yeung [168] uses
CSP to express the behavior of services composition either as a centralized
composition described using WS-BPEL or as distributed one described using
WS-CDL. The generated model is verified using the FDR2 [103] model-checking
tool. Foster et al. [53, 54] present an approach to specify, model, verify and
validate web services compositions. To do so, they proposed the use of Finite
State Processes (FSP) with the Labeled Transition System Analyzer (LTSA)
tool to produce and analyze Labeled Transition Systems (LTS). In [159] M.
Weidlich et al. present a partial formalization of BPEL using π-calculus for
process verification. Finally LOTOS and its CADP toolbox are used in several
work [134, 51] to verify the BPEL process.

• Automata. They consists of a set of states related by transitions that can
be labeled using labels from predefined set. Zhang et al. [173, 174] define an
automata-based model named Web Service Automaton (WSA) to capture the
most features of BPEL without handling complex data or predicates. The WSA
model is then transformed into input languages as PROcess MEta LAnguage
(Promela) or SMV for the model checker tools SPIN or NuSMV respectively,
to apply coverage criteria methods. The authors of [80, 81] model and analyze
time-related properties of a web service composition expressed using BPEL.
The formalism they choose for representing a BPEL process is called Web
Service Timed State Transition Systems (WSTTS). After that model checking
techniques are applied on WSTTS formalism to verify the BPEL composition.
Another automata called the annotated deterministic finite state automata
(aDFA) model is presented in [161] to allow discovering other web services. The
Annotated finite state automata (aFSA) model presented in [106], is used for
service discovery by indexing and matching the modeled business processes.
Pistore et al. [126] use a different automata model named the State Transition
System (STS). Given an STS obtained form the translation of BPEL and the
formalization of the requirements obtained using Extended Goal Language

42 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

(EaGLe) [86], the authors describe how to generate an STS that encodes a
process behavior which satisfies these requirements. The latter STS is then
transformed into an executable BPEL program. In order to trace faults when a
business process fails, the work presents in [123] proposes an automatic method
to model Web service behaviors and their interactions using model-based rea-
soning approaches on Discrete-Event Systems (DES).
In [59, 60] Bultan et al. present a set of tools and techniques for analyzing
interactions of composite web services which are specified in BPEL and com-
municate by exchanging asynchronous XML messages. To do so, the authors
first of all present a framework that translates BPEL into an intermediate
representation named Guarded Finite State Automata (GFSA) then into the
Promela verification language. The translation steps are done using their tool
named the Web Service Analysis Tool (WSAT). Finally, they use the generated
Promela with the SPIN tool for the verification of the BPEL composition. For
their part, Garcia-Fanjul et al. [63] were interested in transforming BPEL into
the Promela language then submit it to SPIN in order to derive a test suite for
the composition.
For a functional testing of service composition, M. Lallali [87] uses the Web
Service Timed Extended Finite State Machine (WS-TEFSM) model as the
formal description of a BPEL process. The WS-TEFSM model handles the
temporal activities, the termination and the exceptions expressed in the BPEL
process. Yuan et al. [170] define a graph structure to represent BPEL, then
search concurrent test paths with a matrix-based algorithm. This approach
defines an extension of Control Flow Graph (CFG) named BPEL Flow Graph
(BFG) that represents a BPEL program as a graphical model. Then concurrent
test paths can be generated by traversing the BFG model, and test data for
each path can be generated using a constraint solving method.

• Other formalisms exist, Butler et al. [37] described the Structured Activity
Compensation (StAC) language used to specify BPEL composition activities
in long running business transactions. StAC supports sequential and parallel
behavior as well as exception and compensation handling. Moreover, the
StAC language can also be combined with the B notation to specify the data
aspects of transactions. This combination provides a rich formal notation which
authorizes for succinct and precise specification of business transactions.

2.4.2 Discussion

As presented above numerous model-based verification and testing approaches have
been proposed for BPEL as translating BPEL to automata, Petri nets or process
algebras. These approaches are especially valuable to check if an orchestration

2.5. VERIFYING AND TESTING WEB SERVICES 43

specification is correct. Still, as far as the correctness of an implementation wrt. a
specification is concerned, these approaches fall short as, e.g., one may expect service
providers to publicize (Abstract) BPEL descriptions of what their services do, but not
how they do it. Here, testing comes as a solution to ensure (i) that some sub-service
used in an orchestration really conforms to its publicized behavioral interface, and
(ii) that the service orchestration itself conforms to the behavioral interface to be
publicized after its deployment.

With reference to the previous works, our interest was in a model that depicts
the control flow of a services orchestration and supports the rich XML-based data
types available in BPEL. This is achieved thanks to the STS model which has
already proven to be valuable, e.g., for UML [19], and is here used for services
orchestration. From ABPEL as specification language and using BPMN and UML
for a graphical representation of the business process and handled data, we compute
the associate Symbolic Transition System (STS) model according to process algebraic
transformation rules, more details are provided in the next chapter.

2.5 Verifying and Testing Web Services

Using formal models of Web services, several approaches and techniques are used
for testing and verifying them. However, before talking about such approaches, we
present some issues faced in the test community in order to test Web services.

2.5.1 Web Services Testing Issues

Web services are considered as a new challenge in the test field. The difficulty in
testing the Web Services is due to their complexity (for composition) and to the
notion of control and observability services. Inspired from [116] we describe these
challenges as follows:

• The activity of a Web service (publishing, finding, binding) makes it difficult
to test a service due to its dynamic aspect. Suppose a user who asks to have
a service that meets a specific request. For that a Web service WS1 can be
offered at time t1, and another Web service WS2 at time t2 because the service
WS1 is no longer available. Such a scenario makes testing WS1 according to
its activity difficult.

• The choice of the specification. Indeed, if we consider the point of view of
Specification-Based Testing, such issue is very relevant. From which spec-
ification, should a tester begin ? a static one (e.g., WSDL) or a dynamic
one. Moreover for the latter choice which language should the tester selects
(WS-BPEL, BPMN, SRML or UML for SOA, etc) ?

44 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

• The control and observability of Web services also complicates their test. In
general the web service provider does not expose their source code which is
understandable for a confidential and secure point of view. But testing a source
code with a formal white box approach is also important because it increases
the trust level of the service. Complementary to the white box testing the
black box testing will rely on the specification of the service to test it.

• Testing the composite Web services. Both for the black or the white testing
have to manage the complexity of composite services due to the multiple parties
involved in business process. This complexity also includes how to handle
complex data transmitted between the different services partner and how to
associate each exchanged message to its corresponding process instance.

2.5.2 How to Verify and Test Web Services ?

As pointed out before (in section 2.4), significant research effort have been produced
in the last years in order to propose formal models for orchestration verification
and testing. Numerous work in this area have addressed model-checking, to check if
properties are verified by an orchestration specification. Still, in presence of a black
box implementation, one cannot retrieve a model from it. To help establishing the
conformance wrt. a specification, testing should be used. However, to the contrary
of model-checking, testing is incomplete. One rather focuses on generating the good
test cases to search for errors. Testing enables one to ensure both that sub-services
participating to an orchestration conform to their publicized behavioral interface, and
that the orchestration itself conforms to the behavioral interface to be publicized after
its deployment. Orchestration testing has mainly been addressed from a white-box
perspective, assuming that the orchestration implementation source code is available.
In practice, the source code is often not available as it constitutes an added-value for
the service providers. In this section we present an overview of some works done in
Web Services verification and testing domain.

2.5.2.1 Unit Testing of Web Services

This is the most basic technique applicable to any system. Each individual component
of the system is verified independently. In the case of Web services each operation
can be considered as a basic unit. Unit testing of web service consists of sending and
receiving SOAP messages between the tester and the service under test. The message
exchange is done through information extracted from the WSDL file. Thus, this type
of test allows to verify the proper functioning of the operation and to check the WSDL
file. Automated testing tools exist for unit testing of Web services such as Parasoft
SOAtest [4], SOAPSonar [3], HP Service Test Software and Oracle Application
Testing Suite [1]. However, these tools do not automate all the testing process: a

2.5. VERIFYING AND TESTING WEB SERVICES 45

tester provides the test cases then the tools generate the appropriate SAOP message
for each test case. Unit testing was also addressed by the research community. Mayer
and Lubke [110] propose a framework for testing BPEL composition with a white box
testing method. This framework called BPELUnit [109] can replace participating
web services using service mocks, exchanging SOAP messages with other services
and collecting test results. BPELUnit also manages synchronous or asynchronous
BPEL process that interacts with several partners. Li et al. [96] propose another
approach for testing BPEL process. They present a BPEL4WSunit test framework
that includes an abstract model of a BPEL process, a test architecture and stub
process to simulate services partners.

2.5.2.2 Testing the Interface of Web Services

This refers to the test of WSDL file. To achieve this goal Salva et al. [135] propose
an automatic testing method of WSDL interface. This method allows the automatic
generation of test cases, and to verify the handling of sessions, exceptions and
operations existence. As well Bartolini et al. [24] define an automatic approach for
testing WSDL descriptions, which combines the coverage of WS operations with
data-driven test case generation. They use the popular tool soapUI [13] with their
developed tool named TAXI [23, 31, 32] to generate test suites. The TAXI tool
derives automatically XML instance from the XML schema. Their methodology
for the generation of test cases, uses basic coverage criteria and some heuristics.
Those heuristics aim to combine the generated instance elements in different ways,
and sometimes change the cardinalities and the data values used for the generated
instances. In [148], Troschutz provides a framework for testing Web services using
the Testing and Test Control Notation version 3 (TTCN-3) [5]. TTCN-3 is a
standardized test specification and implementation language dedicated to black-box
testing of computers and telecommunication systems. Using specific mapping rules,
an abstract test suite is derived from a WSDL description of a Web service then
executed against the Web service by the TTCN-3 tool. In [20], Bai et al. present an
automatic method for generating test cases form WSDL interface. They begin by
parsing WSDL in order to generate the corresponding DOM tree, then test cases
are derived from the messages data types and operation dependency. Bertolino et
al [30] focus on testing the interoperability between Web services. In this work, the
authors strengthen a WSDL description with a corresponding UML2.0 diagram and
Protocol State Machine (PSM) model. The PSM describes the required conditions
and how a customer can access to the service. From the PSM a Symbolic Transition
System (STS) is generated on which formal testing theory and tools are applied for
conformance evaluation.
Generally, the interface testing of Web services is included within the black box
testing approach. We apply such separation to distinguish between testing the

46 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

interface of Web services composition and testing their behavior.

2.5.2.3 Behavioral White Box Testing

Several works interested in structural testing of BPEL were performed. Liu et al. [98]
present a test model called WS-BPEL Control Flow Graph (BCFG) that represents
the control flow of a BPEL process. The test paths are then derived form the BCFG
model and path conditions are collected and analyzed to keep only satisfiable paths
and thus produce test cases to execute against the service composition.
Using the BPEL Graph Flow (BGF) model Yuan et al [170] generate concurrent
test paths then test data are obtained from a constraint solving method. The
produced test paths and test data are finally combined to produce complete test
cases. The eXtended Control Flow Graph (XCFG) model was used to represent a
BPEL program, and from it sequential test paths are generated, then combined to
form concurrent test paths, in the last step of this method a constraint solver named
BoNuS [172], which is an extension of a Boolean satisfiability checker, is used to
solve the constraints of these test paths and generate feasible test cases. Dong et
al. [46] analyze the structure of a service composition to generate the corresponding
High-level Petri Nets (HPN) model. Testing coverage and reduction techniques are
applied on the HPN model to generate test cases.

2.5.2.4 Behavioral Black Box Testing

The functional testing of Web services aims to verify the accordance of the services
with regard to the requirements of the specification. Based on the specification of a
service Kaschner et al. [79] introduce their approach that automatically generates
test cases in a purpose of conformance testing. From a specification expressed using
BPMN or abstract BPEL they translate it in an Open Work Flow Nets (oWFNs),
which is a particular class of Petri Nets. This approach focuses on detecting the
non existence of deadlocks between the different services partners. They consider
each service partner as a test case, i.e., if the specification describes the interaction
with a service partner, it must be the case in the implementation. In [55] Frantzen
et al. attend to the coordination protocol. First of all the authors use the UML
diagram representing the communication between a client and a Web service as a
specification, then the Symbolic Transition Systems (STS) is generated and testing
techniques are applied according to the ioco [145] conformance relation.

An offline approach for testing Web services is exposed by Frantzen et al. [56].
The authors present their tool named Jambition to test Web services modeled as
Symbolic Transition System (STS). Relying on the sioco testing relation, they provide
a random on-the-fly testing approach. This work is very close to ours, the main
differences are in the generation of test cases, while we do generate test cases then
execute them against the implementation, Frantzen et al. [56] do it on-the-fly. They

2.5. VERIFYING AND TESTING WEB SERVICES 47

execute random testing while we already support the test purposes and we use the
symbolic execution in order to avoid state space explosion problem.

A similar approach as our is described in Escobedo Del Cid [50] thesis. Where the
author focus on conformance testing of an orchestration in context. By the notion of
context the author presents a strongly coupled conformance relation with the testing
architecture. After that Escobedo uses the symbolic execution and a rule-based
online testing algorithm, in order to detect errors resulting from the interaction
between the tester and the orchestrator, according to a specific context. A second
contribution depicted within this work is to define Web service testing techniques,
and thus offering the possibility for one to determine if a Web service can interact
with the service orchestrator without leading this new composition into a deadlock
situation. As for the execution aspect, the author provides a prototype implementing
the online testing algorithm in order to apply contextual conformance testing on a
service orchestrator.

2.5.2.5 Testing Web Services Approaches

We report the main research works on testing Web service in the Table 2.5.
The first column refers to the authors of the work. Then the approach used for the
verification or the testing process is defined in the second column. The described
approach can be:

• Specification-Based, this approach resets on documents that describes a Web
service like WSDL, or Web Ontology Language for services (OWL-S). Where
the OWL-S is a semantic markup for composing Web services.

• Fault-base, it aims to prove the non existence of predefined errors

• Model-Based, is a technique for deriving test cases form formal models. Those
models represent the Web service or their composition.

The abstract testing level applied for the chosen approach is depicted in the third
column, where the white square represents the white box testing and the black one
represents the black box testing. The gray box testing is represented with a star.
Each approach aims to check a specific type or point of view, it could be unit testing,
robustness testing, model-checking, etc, as indicate in the fourth column. And each
type focuses on precise criterion, these criteria are indicated in the fifth column. The
next column points to the input specification used. The seventh column presents the
formal model used for the approach. Finally, if any of the mentioned research work
uses a tool, this is indicated in the last column.
We used abbreviations in the representation of the formal models, here are their
complete definition:
Petri-nets (PN), Timed Predicate Petri-Nets (TPPN), Unified Modeling Language

48 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

(UML), Web Service Automaton (WSA), WS-BPEL Control Flow Graph (BCFG),
eXtended Control Flow Graph (XCFG), BPEL Graph Flow (BGF), High-level Petri
Nets (HPN), Symbolic Transition System (STS), ASynchronous Extended Hierarchi-
cal Automata (ASEHA), Task precedence graph (TPG), Timed Labeled Transition
Systems (TLTS), XPath Rewriting Graph (XRG), Data Flow Diagrams (DFDs),
Timed Exetended Finite State Machine (TEFM), Test Ontology Model (TOM), Java
Interclass Graph, Protocol State Machine (PSM).

2.5.2.6 Discussion

Our objective is to apply conformance testing on an orchestration of services with
a black box approach. It means that we are interested in testing the behavior of
the service orchestrator, which implies that the order of services invocations and the
order of the called operations are very important, and not only its WSDL interface.

To do so, we formally represent the orchestration from an ABPEL specification.
We chose to use the Symbolic Transition System (STS), to support the data exchanged
between the involved services. As the work of Escobedo et al. [49], we reuse the
symbolic execution technique, to bypass the states explosion problem. Unlike the
works of Lallali et al. [88], Cao et al. [39], or Morales et al. [115] where they face this
kind of problem since they use concrete data in their approaches. However, as the
previous approaches we use test purpose criterion too. A test purpose aims to guide
and focus the generation of test cases on a specific aspect.

Nevertheless, the work of Escobedo et al. [49] and the one in Escobedo Del Cid
[50] thesis do not target the same goal as our. While, the authors focus on the
testing architecture for the conformance testing of an orchestration by simplifying
data exchanges, we are interested in handling the characteristics of an orchestration,
e.g., structured exchanged messages and correlation property, in order to instantiate
then execute test cases against the service orchestrator.

To provide the appropriate input data for testing the orchestration implementation,
we use an SMT solver during the generation of test cases. These data inputs are
submitted to the service orchestrator during the several interactions with it. According
to its replying messages, we check if the service is conform to its specification or not.

The added value of our work compared to the other conformance testing of BPEL
orchestration using a black box approach, is the fact that (i) it is a complete approach
(also called end to end approach). Where we begin by an ABPEL specification, until
the execution of the generated test cases.(ii) Within our STS model we also support
the exchanged data between the services and the correlation property. (iii) Using
the symbolic execution and an SMT solver we generate test cases with input data
that we use for testing the orchestration service.

2.6. CONCLUSION 49

2.6 Conclusion
In this chapter we introduced the context of our work. We presented the SOA, as
well as the main pillar of this architecture, which are web services. The composition
of web services allows one to produce more efficient and dedicated systems, but also
more complex and less secured ones. Software testing focuses on the detection of
errors that can occur using such systems. Through this chapter we have introduced
the main concepts of testing, with more details on conformance testing approach
which is our objective. We have presented existing specification of composed services,
formal models for Web services and testing approaches for them.

In the next chapter we deeply present our contribution for testing the orchestration
of web services. We will describe there the formal model of the orchestration, the
generation of test cases and the process of execution those test cases against the
orchestrator service.

50 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

A
ut
ho

rs
A
pp

ro
ac
h

B
/W

T
yp

e
C
ri
te
ri
on

Fr
om

M
od

el
T
oo

ls
us
ed

Sn
ee
d
an

d
H
ua

ng
[1
41
]

Specification-based

�
un

it
te
st
in
g

�
W

SD
L

�
W

SD
LT

es
t

B
ar
to
lin

ie
t
al
.[
27
,2

4]
�

te
st

da
ta

C
ov
er
ag
e
cr
it
er
ia

W
SD

L
?

W
S-
T
A
X
I

ge
ne
ra
ti
on

so
m
e
he
ur
is
ti
cs

M
a
et

al
.[
10
4]

�
te
st

da
ta

�
W

SD
L

M
od

el
fo
r

�
ge
ne
ra
ti
on

X
M
L
sc
he
m
a

B
ai

et
al
.[
20
]

�
te
st

da
ta

Fr
om

X
M
L
da

ta
W

SD
L

�
�

ge
ne
ra
ti
on

T
yp

es
an

d
de
pe

nd
en
cy

an
al
ys
is

Li
et

al
.[
95
]

�
te
st

da
ta

?
W

SD
L

�
W

ST
D
-G

en
ge
ne
ra
ti
on

H
an

na
an

d
M
un

ro
[7
0]

�
fa
ul
t-
ba

se
d

�
W

SD
L

�
ro
bu

st
ne
ss

O
ffu

tt
an

d
X
u
[1
18
]

�
fa
ul
t-
ba

se
d

D
at
a

W
SD

L
�

�
ge
ne
ra
ti
on

pe
rt
ur
ba

ti
on

H
ec
ke
la

nd
Lo

hm
an

n
[7
1]

�
in
te
ro
pe

ra
bi
lit
y

�
W

SD
L

U
M
L

�
�

co
nf
or
m
an

ce
X
u
et

al
.[
16
3]

�
Fa

ul
t-
ba

se
d

C
ov
er
ag
e
cr
it
er
ia

W
SD

L
tr
ee

m
od

el
�

M
ei

an
d
Zh

an
g
[1
12
]

�
Fa

ul
t-
ba

se
d

?
W

SD
L

�
�

M
ay
er

an
d
Lü

bk
e
[1
10
,1

09
]

Testing

�
un

it
te
st
in
g

�
B
P
E
L,

W
SD

L
�

B
P
E
LU

ni
t

C
ha

n
et

al
.[
40
]

�
un

it
te
st
in
g

M
et
am

or
ph

ic
M
et
am

or
ph

ic
�

�
in
te
gr
at
io
n

re
la
ti
on

s
se
rv
ic
e

T
sa
ie

t
al
.[
14
9]

�
in
te
gr
at
io
n

X
M
L-
ba

se
d

W
SD

L
�

C
oy
ot
e

P
ey
to
n
et

al
.[
12
4]

F
in
te
gr
at
io
n

�
SO

A
P,

W
SD

L
�

T
T
C
N
-3

T
sa
ie

t
al
.[
15
0]

�
co
lla

bo
ra
ti
ve

T
es
t
sc
ri
pt
s

U
D
D
I

Se
qu

en
ce

�
di
ag
ra
m

P
au

[1
6]

�
re
gr
es
si
on

�
�

vi
rt
ua

l
JO

pe
ra

Table 2.1: Related work on Web Services Testing

2.6. CONCLUSION 51

A
ut
ho

rs
A
pp

ro
ac
h

B
/W

T
yp

e
C
ri
te
ri
on

Fr
om

M
od

el
T
oo

ls
us
ed

de
A
lm

ei
da

an
d
V
er
gi
lio

[4
4]

Fault-based

�
�

D
at
a

SO
A
P

�
SM

A
T
-W

S
pe

rt
ur
ba

ti
on

M
ar
ti
n
et

al
.[
10
7]

�
�

?
W

SD
L

�
W
eb
So

b
Lo

ok
er

et
al
.[
10
2]

�
�

Fa
ul
t
in
je
ct
io
n

SO
A
P

fa
ul
t-
m
od

el
W

S-
F
IT

on
to
lo
gy

Si
bl
in
ia

nd
M
an

so
ur

[1
38
]

�
m
ut
at
io
n

M
ut
an

t
W

SD
L

�
�

op
er
at
or

Le
e
et

al
.[
90
]

�
m
ut
at
io
n

M
ut
an

t
O
W

L-
S

O
W

L-
S

�
op

er
at
or

W
SD

L
on

to
lo
gy

m
od

el
V
ie
ir
a
et

al
.[
15
5]

�
ro
bu

st
ne
ss

�
SO

A
P

�
�

be
nc
hm

ar
k

W
an

g
an

d
H
ua

ng
[1
58
]

�
m
ut
at
io
n

�
O
W

L-
S

W
SA

�
G
ar
cí
a-
Fa

nj
ul

et
al
.[
63
]

Model-based

�
m
od

el
T
ra
ns
it
io
n

B
P
E
L

P
ro
m
el
a

SP
IN

ch
ec
ki
ng

co
ve
ra
ge

m
od

el
Zh

en
g
et

al
.[
17
4]

an
d

�
m
od

el
C
ov
er
ag
e
cr
it
er
ia

B
P
E
L

W
SA

SP
IN

,
Zh

en
g
an

d
K
ra
us
e
[1
73
]

ch
ec
ki
ng

in
te
m
po

ra
ll
og
ic

N
uS

M
v

H
ua

ng
et

al
.[
76
]

�
m
od

el
C
he
ck

co
nc
ur
re
nc
y

O
W

L-
S

?
B
LA

ST
ch
ec
ki
ng

D
ai

et
al
.[
43
]

�
m
od

el
R
ea
ch
ab

ili
ty

B
P
E
L

T
P
P
N

M
C
T
4W

S
ch
ec
ki
ng

sa
fe
ty

B
et
in
-C

an
an

d
B
ul
ta
n
[3
3]

�
m
od

el
In
te
ra
ct
io
n

B
P
E
L

H
SM

Ja
va
P
at
hfi

nd
er
,

ch
ec
ki
ng

pr
op

er
ti
es
,

SP
IN

co
nf
or
m
an

ce
Fu

et
al
.[
59
,6

0]
�

m
od

el
LT

L
pr
op

er
ti
es

B
P
E
L

G
ua

rd
ed

SP
IN

ch
ec
ki
ng

R
am

so
ku

la
nd

So
w
m
ya

[1
31
]

�
m
od

el
in
te
ro
pe

ra
bi
lit
y

W
S
pr
ot
oc
ol
s

A
SE

H
A

m
od

el
SP

IN
an

d
ch
ec
ki
ng

co
nf
or
m
an

ce
au

to
m
at
a,

R
am

so
ku

la
nd

So
w
m
ya

[1
30
]

kr
ip
ke

st
ru
ct
ur
e

Sc
hl
in
gl
off

et
al
.[
13
6]

�
m
od

el
us
ab

ili
ty

w
it
h

B
P
E
L

P
N

Lo
la

ch
ec
ki
ng

A
T
L

T
sa
ie

t
al
.[
15
2]

�
m
od

el
da

ta
O
W

L-
S

Sw
is
s
C
he

es
e

�
ch
ec
ki
ng

se
le
ct
io
n

Table 2.2: Related work on Web Services Testing - Suite

52 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

A
ut
ho

rs
A
pp

ro
ac
h

B
/W

T
yp

e
C
ri
te
ri
on

Fr
om

M
od

el
T
oo

ls
us
ed

M
at
ee
sc
u
an

d
R
am

pa
ce
k
[1
08
]

Model-based

�
m
od

el
di
sc
re
te
-t
im

e
B
P
E
L

LT
S

W
SM

od
ch
ec
ki
ng

pr
op

er
ti
es

C
A
D
P

Y
eu
ng

[1
68
]

�
m
od

el
tr
ac
e

W
S-
C
D
L

C
SP

F
D
R
2

ch
ec
ki
ng

re
fin

em
en
t

B
P
E
L

Fo
st
er

et
al
.[
53
,5

4]
�

m
od

el
de
ad

lo
ck
s

B
P
E
L

LT
S

�
ch
ec
ki
ng

sa
fe
ty

pr
op

er
ty

W
ei
dl
ic
h
et

al
.[
15
9]

�
m
od

el
co
m
pa

ti
bi
lit
y

B
P
E
L

π
-c
al
cu
lu
s

A
B
C

-
ch
ec
ki
ng

co
ns
is
te
nc
y

ch
ec
ke
r

Sa
la
ün

et
al
.[
13
4]

�
K
az
ha

m
ia
ki
n
et

al
.[
80
,8

1]
m
od

el
ti
m
e

B
P
E
L

W
ST

T
S

�
ch
ec
ki
ng

re
qu

ir
em

en
t

K
an

g
et

al
.[
78
]

�
fo
rm

al
co
rr
ec
tn
es
s

B
P
E
L

C
P
N

�
ve
ri
fic
at
io
n

re
lia

bi
lit
y

O
uy

an
g
et

al
.[
12
0]

�
fo
rm

al
?

B
P
E
L

P
N

B
P
E
L2

P
N
M
L,

ve
ri
fic
at
io
n

W
of
B
P
E
L

D
on

g
et

al
.[
46
]

�
fo
rm

al
co
ve
ra
ge

an
d

B
P
E
L

H
P
N

P
os
e+

+
ve
ri
fic
at
io
n

re
du

ct
io
n
te
ch
ni
qu

es
X
u
et

al
.[
16
2]

�
fo
rm

al
so
un

dn
es
s

B
P
E
L

P
N

B
P
E
L2

P
N
M
L

ve
ri
fic
at
io
n

eff
ec
ti
ve
ne
ss

Lo
hm

an
n
et

al
.[
10
0]

�
fo
rm

al
co
nt
ro
lla

bi
lit
y

B
P
E
L

P
N

B
P
E
L2

oW
F
N
,

ve
ri
fic
at
io
n

op
er
at
in
g
gu

id
el
in
es

F
io
na

Y
an

g
et

al
.[
16
5,

16
6]

�
fo
rm

al
sy
nt
ac
ti
c
co
rr
ec
tn
es
s

B
P
E
L

P
N

C
P
N
T
oo

ls
ve
ri
fic
at
io
n

te
rm

in
at
io
n,

et
c

W
SC

I
Y
ia

nd
K
oc
hu

t
[1
69
]

�
fo
rm

al
�

B
P
E
L

P
N

C
P
N
T
oo

ls
ve
ri
fic
at
io
n

C
on

ro
y
et

al
.[
41
]

�
un

it
te
st
in
g

?
W

SD
L

�
�

Y
an

et
al
.[
16
4]

�
un

it
te
st
in
g

co
ve
ra
ge

cr
it
er
ia

B
P
E
L

X
C
FG

�
Li

et
al
.[
92
]

�
un

it
te
st
in
g

flo
w

an
al
ys
is

R
D
F
sc
he
m
a

R
D
F
gr
ap

h
W

S-
St
ar
G
az
e

us
in
g
P
ag
eR

an
k

W
SD

L
T
sa
ie

t
al
.[
15
1]

�
un

it
te
st
in
g

re
lia

bi
lit
y

W
SD

L
A
ST

R
A
R

�
in
te
gr
at
io
n

m
od

el
Li

et
al
.[
96
]

�
un

it
te
st
in
g

In
pu

t/
ou

tp
ut

B
P
E
L

A
B
P
E
L

�
bu

si
ne
ss

pr
oc
es
s

Table 2.3: Related work on Web Services Testing - Suite

2.6. CONCLUSION 53

A
ut
ho

rs
A
pp

ro
ac
h

B
/W

T
yp

e
C
ri
te
ri
on

Fr
om

M
od

el
T
oo

ls
us
ed

Le
nz

et
al
.[
91
]

Model-based

�
te
st

da
ta

�
�

E
xt
en
de
d
U
M
L

�
ge
ne
ra
ti
on

P
ar
ad

ka
r
et

al
.[
12
2]

�
te
st

da
ta

?
O
W

L-
S

IO
P
E

�
ge
ne
ra
ti
on

pa
ra
di
gm

B
la
nc
o
et

al
.[
35
]

�
se
ar
ch
-b
as
ed

sc
at
te
r
se
ar
ch

B
P
E
L

St
at
e
gr
ap

h
�

m
et
ho

ds
G
ua

ng
qu

an
et

al
.[
68
]

�
te
st

co
ve
ra
ge

cr
it
er
ia

B
P
E
L

U
M
L
2.
0

�
Y
ua

n
et

al
.[
17
0]

�
te
st

co
ve
ra
ge

cr
it
er
ia

B
P
E
L

B
FG

�
H
ou

et
al
.[
74
]

�
te
st

pa
th

ex
pl
or
in
g

B
P
E
L

M
SG

�
M
a
et

al
.[
10
5]

�
te
st

W
-m

et
ho

d
B
P
E
L

st
re
am

�
X
-m

ac
hi
ne
s

D
on

g
an

d
Y
U

[4
5]

�
te
st

fa
ul
t-
co
ve
ra
ge

W
SD

L
H
P
N

�
E
nd

o
et

al
.[
47
]

�
in
te
gr
at
io
n

co
ve
ra
ge

cr
it
er
ia

B
P
E
L

P
C
FG

C
V
al
id
B
P
E
L

M
ei

et
al
.[
11
3]

�
in
te
gr
at
io
n

re
w
ri
ti
ng

B
P
E
L

X
R
G

�
ru
le
s,

da
ta

flo
w

cr
it
er
ia

R
ut
h
an

d
T
u
[1
33
]

�
re
gr
es
si
on

co
ve
ra
ge

W
SD

L
C
FG

�
in
fo
rm

at
io
n

Li
n
et

al
.[
97
]

�
re
gr
es
si
on

R
T
S

W
SD

L
JI
G

�
te
ch
ni
qu

es
co
m
po

si
ti
on

la
ng

ua
ge

Fu
et

al
.[
58
]

�
ro
bu

st
ne
ss

fa
ul
t

Ja
va

?
�

in
je
ct
io
n

co
de

Sa
lv
a
an

d
R
ol
le
t
[1
35
]

�
ro
bu

st
ne
ss

W
SD

L
�

B
ai

et
al
.[
21
]

�
co
lla

bo
ra
ti
ve

C
on

st
ra
in
t-

O
W

L-
S

P
N

�
gu

id
ed

B
ar
to
lin

ie
t
al
.[
26
]

�
co
lla

bo
ra
ti
ve

co
ve
ra
ge

W
SD

L
se
qu

en
ce

�
in
fo
rm

at
io
n

di
ag
ra
m

Table 2.4: Related work on Web Services Testing - Suite

54 CHAPTER 2. STATE OF THE ART ON WEB SERVICES VERIFICATION

A
ut
ho

rs
A
pp

ro
ac
h

B
/W

T
yp

e
C
ri
te
ri
on

Fr
om

M
od

el
T
oo

ls
us
ed

B
ai

et
al
.[
22
]

Model-based

�
pa

rt
it
io
n
te
st
in
g

�
O
W

L-
S

T
O
M

T
C
G
en
4W

S
T
ar
hi
ni

et
al
.[
14
3]

�
in
te
ra
ct
io
n

re
lia

bi
lit
y

W
SD

L
T
P
G

�
T
LT

S
B
er
to
lin

o
an

d
P
ol
in
i[
29
]

�
in
te
ro
pe

ra
bi
lit
y

?
W

SD
L

U
M
L

�
U
D
D
I

P
SM

D
ai

et
al
.[
42
]

�
in
te
ro
pe

ra
bi
lit
y

?
O
W

L-
S

P
N

C
B
T
4W

S
Sm

yt
he

[1
40
]

�
in
te
ro
pe

ra
bi
lit
y

�
W

SD
L

U
M
L

�
Li

et
al
.[
94
],
Li

[9
3]

�
m
on

it
or
in
g

qu
al
it
y
of

se
rv
ic
e

B
P
E
L

C
P
N

�
P
en
co
le

et
al
.[
12
3]

�
m
on

it
or
in
g

�
B
P
E
L

D
E
S

�
co
nf
or
m
an

ce
B
ar
to
lin

ie
t
al
.[
25
]

�
co
nf
or
m
an

ce
co
ve
ra
ge

cr
it
er
ia

W
SD

L
D
F
D

�
K
as
ch
ne
r
an

d
Lo

hm
an

n
[7
9]

�
co
nf
or
m
an

ce
�

B
P
E
L

O
pe

n
ne
ts

�
Si
nh

a
an

d
P
ar
ad

ka
r
[1
39
]

�
co
nf
or
m
an

ce
pr
ed
ic
at
e
co
ve
ra
ge

W
SD

L-
S

E
F
SM

�
m
ut
at
io
n-
ba

se
d

te
st

pu
rp
os
e

La
lla

li
et

al
.[
88
],
La

lla
li
[8
7]

F
co
nf
or
m
an

ce
ti
m
ed

tr
ac
e

B
P
E
L

T
E
F
SM

B
P
E
L2

IF
,

eq
ui
va
le
nc

e
T
es
tG

en
-I
F

te
st

pu
rp
os
e

C
ao

et
al
.[
39
]

�
co
nf
or
m
an

ce
tr
ac
e
eq
ui
va
le
nc
e

B
P
E
L

T
E
F
SM

T
G
SE

te
st

pu
rp
os
e

W
SD

L
M
or
al
es

et
al
.[
11
5]

�
co
nf
or
m
an

ce
in
va
ri
an

t
B
P
E
L

T
E
F
SM

T
IP

S
pr
op

er
ti
es

te
st

pu
rp
os
e

B
er
to
lin

o
et

al
.[
30
]

�
co
nf
or
m
an

ce
IO

C
O
-

P
SM

ST
S

�
re
la
ti
on

U
M
L

Fr
an

tz
en

et
al
.[
56
]

�
co
nf
or
m
an

ce
SI
O
C
O

U
M
L

ST
S

Ja
m
bi
ti
on

E
sc
ob

ed
o
D
el

C
id

[5
0]

�
co
nf
or
m
an

ce
IO

C
O

�
ST

S,
LT

S
T
oo

lp
ro
to
ty
pe

in
co
nt
ex
t

te
st

pu
rp
os
e

O
ur

ap
pr
oa
ch

M
od

el
-b
as
ed

�
co
nf
or
m
an

ce
tr
ac
e
eq
ui
va
le
nc
e

A
B
P
E
L

ST
S

a
to
ol

ch
ai
n

te
st

pu
rp
os
e

W
SD

L

Table 2.5: Related work on Web Services Testing - Suite

C
h

a
p

t
e

r

3
A Symbolic Approach for

Composite Web Service
Conformance Testing

In this chapter, we present the theoretical aspects of our end to end symbolic testing
approach of a composite service. We clearly explain our steps, which start with the
definition of a formal model of the specification, namely the Web Service Symbolic
Transition System (WS-STS), by means of our transformation rules written in a
process algebraic style.

We also provide the possibility to use test purposes (TP). A TP allows us to focus
on a particular behavior to test. By computing a product between the specification
and the TP models, we obtain a WS-STS model that supports both the specification
behavior and the behavior to test. The product is computed according to our defined
rules. Using Symbolic Execution to avoid the unfolding of the model that would yield
state space explosion, we generate the Symbolic Execution Tree (SET). Each path of
the SET is a potential test case. We present an (online) algorithm that allows us to
interact with the Z3 SMT solver in order to realize and then execute the test cases
against the implementation service. Finally, depending on the response returned by
the service under test, a verdict is emitted indicating whether the service is correct
or not with regard to its specification.

55

56
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

3.1 The Proposed Framework
In this section, we present an overview of our formal framework for the testing of
service orchestrations.

While most model-based (for verification or testing) approaches targeted at or-
chestration languages either (i) ignore the retrieval of the formal model from the
orchestration specification, (ii) ignore or over-simplify the rich XML-based data
types of services, or (iii) do not tackle the execution of test cases against a running
service implementation, our approach follows a language-to-language (or end to end)
model-based testing framework that tackles the conformance testing process for a ser-
vice orchestration from the specification language until the execution of the test cases.

As described in the Figure 3.1, we start from the orchestration specification, which
is translated into a formal model, namely a Symbolic Transition System (STS) [128]
rather than on labeled transition systems (LTS) usually used, either directly or
indirectly from process algebraic or Petri net descriptions, as BPEL models.
The LTS are known to cause over-approximation or unimplementable test cases
(when data are simply abstracted away), and state explosion problems (when message
parameters or variables are flattened wrt. their infinite domains). Both are avoided
using STS. Besides, we handle the possibility of exploiting Test Purposes (TP) to
check a particular behavior. For this goal, a test purpose is modeled with the same
formal model as the specification one i.e. as an STS model. A product model is
computed based on the specification model and the test purpose model to obtain a
model that represents the orchestration behavior and handles test objectives.

Then, the Symbolic Execution (SE) technique [84] is applied to compute a
Symbolic Execution Tree (SET) from this STS. The SET represents (a finite subset
of) the STS execution semantics, while avoiding the usual state-explosion problem in
presence of unbounded data types, as used in full-fledged BPEL. This state explosion
is avoided using message parameters and variables as symbolic values instead of
concrete data. Given some criteria, we generate from the SET a set of execution
paths which are finally run by a test oracle against the orchestration implementation
and a verdict is produced.

3.2 Composite Web Services specification
As exposed before for service composition, we are interested in testing a WS-BPEL
service orchestration. This executable language describes the behavior of services
through the interactions of a centralized service with other ones, according to the
basis of an orchestration. Recall that WS-BPEL is based on basic activities and
structured activities. Among the basic activities we mention the ones that can
be used to communicate with other services by messages (invoke , receive, reply),

3.2. COMPOSITE WEB SERVICES SPECIFICATION 57

Figure 3.1: Overview of the proposed framework

manipulate data (assign), wait for some time (wait), indicate faults (throw), do
nothing (empty), or finish the entire process instance (terminate).
The structured activities can depict a sequential execution (sequence), parallel ex-
ecution (flow), data-dependent branching (switch), timeout or message-dependent
branching (pick), or repeated execution (while). The structured activity scope allows
to link activities and provides fault, compensation, and event handling.
However, for a black box testing approach its not allowed to use the source code
of WS-BPEL as a specification; and since our concern is on the behavior of an
orchestration, not on its execution details, we consider Abstract BPEL ((A)BPEL)
as our initial specification.

Abstract WS-BPEL as a Specification. (A)BPEL process shares a common
syntactic base with WS-BPEL, and it is not necessarily executable. It describes
the public interface of the orchestration and thus, it may hide some operational
requirements details by either omitting them or replacing them with opaque construct
(more details are available on the WS-BPEL manual [117]). (A)BPEL is used for
both describing in precise terms the behavior expected form the services partners and
expressing the constraints on the roles of each of them. In other words, an Abstract
BPEL publicize what a composed service do, but not how it do it.

58
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

3.3 From Language to Model
A formal model of a specification is a graphical representation of it. This representa-
tion must describe accurate details on the characteristics that one wants to test or
verify. In this section we first provide our formal model named Symbolic Transition
System (STS) for a service composition. Then, we present and explain the rules
which are used to obtain a service model from a (A)BPEL description.

3.3.1 Service Model

A Web service allows to specify the functionalities that it offers in order to exploit
them by other services or human clients. The service may expose information
at different interface description levels in order to support automatic discovery,
composition, verification and adaptation of Web services.

Two kinds of descriptions could be distinguished. The first one is the static
description or the interface (i.e. WSDL) which focuses on how to use the service
and the second one in the dynamic description or the conversation (i.e. (A)BPEL)
which focuses on how the service behaves. For a composition of Web services,
such descriptions are more complex due to interactions of several services expressed
through the static description, and their organization expressed through the dynamic
description. In order to support a precise description of an orchestration with its
static and dynamic aspects, and thus avoiding any misunderstanding or ambiguity,
we present how these two descriptions are taken into account using the STS formal
model.

3.3.1.1 Static Description

The static description provides information details on how to use and communicate
with a Web service. Since we are interested in an orchestration of web services, we
present the important definitions that describe how a service orchestrator works.

Signatures. The required information needed to interact with a services are provided
through the signature level.
The signature level for a Web service must describe the features that it provides
or requests. Among these features we find the used operations. Each operation
describes the messages that allow the data exchange for passing operation parameters
and getting result(s). A set of domains noted D can represent the allowed data type
specification.
In practice data types are declared in the WSDL file. The later do not propose a new
data type definition but, uses XML schema (XSD) to define canonical type system
and considers it as the fundamental type system. D includes simple data types as
integers, boolean, etc. However, WDSL also includes complex types. Complex types

3.3. FROM LANGUAGE TO MODEL 59

represent XML schema data structure. Within the context of Web services complex
data types are expressed using XPath expressions.

We suppose that the implicit semantics that we attribute to the data types
corresponds to the one used in the BPEL engine, and also used in the SMT solver
which we will call later. In other words we suppose domains convey a semantic
information so that we can apply evaluation and satisfaction solving. Example: the
int type for the BPEL engine corresponds to the Integer type for the SMT solver.

In order to hold this exchange, the signature must support a set of operations
and the required type of these data. Moreover, we associate three functions to the
set of operations. To get the input, the output and the fault message of an operation.
Another feature of a Web service deals with its set of properties. The properties,
together with property aliases and correlation sets, are important BPEL features
that support the definition of sessions (see [117] and below, Message Correlation).
In other words, the correlation represents the link between the message and the
corresponding instance of the process.

We also introduce a feature named π that specifies what two-way operations
in sub-services are supposed to do. π is a boolean formula relating the inputs and
outputs of an operation o, denoted as π(o), where o ∈ O and O is a set of operations.

The signature of a service corresponds to its description using a combination of
XML schema (exchanged data structures) and WSDL (operations and messages).
Formally we define signatures as follows:

Definition 3.3.1. (Signatures)
A signature is a tuple Σ = (D,O, in, out, err, π,P , ↓) where:

• D is a set of domains and dom(x) denotes the domain of x,

• O is a set of (provided) operations defined within the WSDL file.

• in, out, err : O → D ∪ {⊥} denote respectively the input, output, or fault
message of an operation,

• π is used to specify what two-way operations in sub-services are supposed to do:
π(o), o ∈ O, is a boolean formula relating o inputs and outputs.

• P is a set of property names,

• ↓ is used to define property aliases for messages: for a message type m, m ↓p
denotes the part in m messages that corresponds to property p.

Correlation is a specific property of BPEL business process. It aims to decide
which part of the exchanged message between several services, represents the identifier
(Id). Thus, each message is mapped correctly to its business process instance. For
example, when an employee applies for a loan, his Social Security number may be

60
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

regarded as its Id. This Id is then used to correlate messages exchanged during the
conversation between the employee and the service orchestrator.

The correlation consists of two parts: (i) a property which has a name and a type.
The property refers to parts of the exchanged messages during services conversation.
(ii) a correlation set which define a set of properties. The latter represents the
complete structure of the Id in our example.
⊥ corresponds to an undefined operation message, e.g. out(o) = err(o) =⊥ for

any one-way operation named o. In other words, if o is a one-way operation no reply
message (output message) is expected.

Example. The signature associate to the xLoan orchestration service is provide
in the Appendix D.1. Among the allowed operation we find :

• {tns:MT-requestIn,tns:MT-requestOut, tns:MT-selectIn, tns:MT-selectOut,
tns:MT-cancelIn, xsd:string, xsd:long, xsd:boolen, ns1:userInfo,
ns1:loanInfomation, ns1:loanRequest } ⊆ D

• {request, select, cancel} ⊆ O,

• in(resquest) = tns:MT-requestIn, out(request) = tns:MT-requestOut,
in(select)= tns:MT-selectIn, out(select)= tns:MT-selectOut,
in(cancel)=tns:MT-cancelIn,

• suppose a loan application with an amount lower than 10000 then
π = MT − approveIn/amount < 10000 ∧ rtr == true,

• P = LS-PROP, the name of the property is LS-PROP

• The correlation value corresponds to the fileNumber part for each sent or re-
ceived message variable as follows: requestOut ↓LS−PROP= ns : fileNumber,
selectIn ↓LS−PROP= ns : fileNumber, cancelIn ↓LS−PROP= ns : fileNumber

Partnership. One of the assets characterizing Web services is the fact that they are
loosely coupled applications. Thus a service can be used either as a single application
or it can be combined with other services. Generally, Web services are not executed
in isolation but they communicate with other services or users through a partnership.

A partnership, is a set of partner signatures, corresponding to required and
provided operations, including the signature of the service orchestrator itself. The
required operations are those needed by the service orchestrator to accomplish his
business process. They correspond to the signatures of the invoked Web services. On
the other hand, provided operations are the ones exposed by the service orchestrator.

For the need of our approach, we suppose, without loss of generality, that an
orchestration has only one of these partners, named USER. The USER will use the

3.3. FROM LANGUAGE TO MODEL 61

provided signature i.e. orchestrator signature, to interact with the service orchestrator.
As for the service orchestrator, it will uses the requested signatures to perform his
business process and thus, satisfy the USER request. Note that, each service partner
including the service orchestrator is recognized using a unique identifier.

Definition 3.3.2. (Partnership)
A partnership ρ is an ID-indexed set of signatures: ρ = {Σi}i∈ID, where ID is a set
of names and USER ∈ ID.

Two domains with the same name, including the namespace part, in two signatures
correspond to the same thing. More specifically, we suppose they have the same
formal semantics.

Example. The partnership of the xLoan includes the signatures of the USER,
the BlackList service and the Bank service.

3.3.1.2 Dynamic Description

The dynamic description depicts the behavior of the orchestration. This description
provides details on the order of the interactions between the service orchestrator and
the service partners involved in the orchestration.

Events. A stateful Web service or a service orchestrator interacts via conversation
protocol. This protocol specifies the order in which the operation calls must occur.
The semantics of a service conversation depends on message-based communication,
which is modeled using events denoted Ev. We can define an event for Web services
as an occurrence that take place at a significant point of time. This occurrence
could be an action with or without an associated condition, allowing to perform the
business process.

We classify these events as: input events denoted pl.o?x, output events denoted
pl.o!x, waiting for period of time denoted as a χ, or the event indicating an expected
termination of a conversation denoted

√
. We also discern another kind of event. It

corresponds to an internal event of the orchestration service denoted τ . From the
viewpoint of a USER partner, such internal events are non-observable, they represent
internal computations or conditions in the service orchestrator.
For the input event pl.o?x respectively the output event pl.o!x, pl corresponds to the
partner link used for the communication with the service, o is the operation used
and x is the exchanged message. Note that the operation must be defined by the
signature of the corresponding partner link, o ∈ ΣIDpl , and the message variable x
must correspond to the reception of the input message, dom(x) = in(o), respectively

62
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

an output message must correspond to an emission of a message, dom(x) = out(o) .

We highlight the fact that in our approach time constraints in services are
generally soft hence, discrete time is a valid abstraction.

A service call may also yield errors i.e. message faults. This is modeled with fault
input events, pl.o??x and fault output events, pl.o!!x, where dom(x) = err(o).

We omit BPEL port types here for simplicity reasons, the full event prefixes
would be, e.g. pl.pt.o?x for the first example above with input on the port type pt.

Ev? (resp. Ev!, Ev??, and Ev!!) is the set of input events (resp. output events,
fault input events, and fault output events). We note Ex to be the set of internal
fault events, that correspond to faults possibly raised internally (not in messages) by
the orchestration process.

Definition 3.3.3. (Events)
We define Ev as the set of events where Ev = Ev?∪Ev!∪Ev??∪Ev!!∪Ex∪{τ, χ,

√
}.

We also define hd as ∀∗ ∈ {?, ??, !, !!}, hd(pl.o ∗ x) = pl.o, and hd(e) = e for any
other e in Ev.

Example. When the xLoan service orchestrator receives a message from the
USER service, it is represented as follows:

USER︸ ︷︷ ︸. request︸ ︷︷ ︸ ?︸︷︷︸ vans2 : requestIn︸ ︷︷ ︸ /vns2 : requestIn := vans2 : requestIn︸ ︷︷ ︸
pl operation input event the received variable action associate

We use a transition system to model the orchestration behavior according to the
process algebra rules. We first of all, present a simple introduction to Labeled Tran-
sition Systems (LTS) model. Then we present the model that we use called Web
Service Symbolic Transition System (WS-STS). The WS-STS is a model very close
to the LTS. The difference between the two models is the addition of more details
concerning data exchanges in the WS-STS than in the LTS model.

An LTS is a structure connected by transitions. States represent the actual
state of the system, and transitions, which are labeled with actions, represent the
action that a system may perform. The formal presentation of the LTS as defined
by Tretmans [147] is provided in the following:

Definition 3.3.4. (Labeled Transition Systems)
A Labeled Transition Systems (LTS), is a tuple (S,L, T , s0), where:

• S is a finite and non empty set of states;

• L is a finite set of labels;

3.3. FROM LANGUAGE TO MODEL 63

• T ⊆ S × (L ∪ {τ})× S, with τ /∈ L, is the transition relation;

• s0 ∈ S is the initial state.

The idea associated with such representation is that the system evolves from a
state to another by executing an action. The representation s l−−→ s′ i.e. (s, l, s′) ∈ T
describes a transition labeled l from the state s to state s′.

We rely on the Mateescu and Rampacek [108] transformation, that defines a
formal semantic of BPEL. To represent the dynamic description of an orchestration
the authors use a discrete-time Labeled Transition Systems (dtLTS) model obtained
from their defined Algebra of Timed Processes (ATP) rules.

This formalism had a good coverage of the main BPEL language constructs. Its
process algebraic style for transformation rules enables a concise yet precise and
operational model, which is, through extension, amenable to symbolic execution.

With reference to the work of Mateescu and Rampacek [108], we reuse, extend
and add some of their transformation rules, in order to support data (in computation,
conditions and messages), message faults (enabling a service to inform its partners
about interval errors), message correlation (enabling BPEL engines to correlate
messages in-between service instances), flows (parallel processing) and the until
activity. More specifically, support for data yields grounding on (discrete time)
Symbolic Transitions Systems and their symbolic execution, rather than on (discrete
time) Labeled Transition Systems (dtLTS).

We need to reuse the information describing data structure and the interface of
the service orchestrator, i.e. the signature level of the service orchestrator, in order
to incorporate them in our WS-STS model. After, we apply the transformation rules
on an ABPEL specification we obtain the Web Service Symbolic Transition System
(WS-STS) model. We present the features of the WS-STS as follows:

Definition 3.3.5. (Web Service Symbolic Transition System)
A Web Service Symbolic Transition System (WS-STS), is a tuple (D,V , S, s0, T),
where:

• D is a set of domains,

• V is a set of variables with domain in D,

• S is a non empty set of states,

• s0 ∈ S is the initial state,

• T is a (potentially nondeterministic) transition relation,
T ⊆ S × TBool,V × Ev × seq(Act)× S, with:

64
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

– TBool,V denoting boolean terms possibly with variables in V, it represents a
guard i.e. the condition that must be satisfied,

– Ev a set of events represents the messages communication and internal
events. D and V are often omitted in when clear from the context (e.g. V
are variables used in transitions).

– seq(Act) is a sequence of actions denoting computation (data processing)
that will be executed in a sequential way (of the form v := t where v ∈ V
is a variable and t ∈ TD,V is a term).

The transition system is called symbolic as the guards, events, and actions may
contain variables. (s, g, e, A, s′) ∈ T is also written s

[g] e / A−−−−−−−−→T s′ or simply

s
[g] e / A−−−−−−−−→ s′ when clear from the context.
The WS-STS describes the behavior of an orchestration. Thus, the progress from

the state s to the state s′ is done when the event e occurs, the guard g is satisfied
and some actions are performed. In case, there is no guard (i.e. it is true) associate
to the transition, it is omitted. The same yields for the actions.

From the above definitions, we can represent an orchestration as a WS-STS model
representing the behavior of a service orchestrator and a set of partner services:

Definition 3.3.6. (Orchestration)
An orchestration Orch is a couple (ρ,B) where:

• ρ is a partnership,

• B is a WS-STS.

We impose that B is correct wrt. ρ, i.e. its set of events correspond to partner
links and operations defined in ρ, which can be syntactically checked.

Notice that each data type (structured or scalar) of BPEL corresponds to an
element of D and each variable of BPEL corresponds to a variable in V. STS have
been introduced under different forms (and names) in the literature [128], to associate
a behavior with a specification of data types that is used to evaluate guards, actions
and sent values. Transformation rules from BPEL to WS-STS are provided in the
following subsection.

3.3.2 (A)BPEL to STS Transformation Rules

In this subsection we present a syntactical abstraction of the BPEL activities as a
Backus Normal Form (BNF) that represent simple (or basic) and structured activities,
then we present the associate transformation rules.

3.3. FROM LANGUAGE TO MODEL 65

The BNF form that describes the main BPEL activities [117], is presented as
follows:

P,Q,R ::= basic | struct
basic ::= receive(pl,op,var) | reply(pl,op,var) | invoke(pl,op,inputvar[,outputvar])

| time | throw e | x[/path]:=Expr | empty | 0
struct ::= P;Q | if c then P[else Q] | while c {P} | repeat {P} until c

flow({Pi}) | scope(P,EHd) | pick(EHd)
EHd ::= [{((pli,opi,vari),Pi)},(d,Q),{(ej ,Rj)}]

Here, P , Q or R represent BPEL activities that could be either basic or structured
activities. As basic activities we can find:

• Communication activities (receive, reply, and invoke), such as the attributes pl,
op and var for respectively partnerLink, operation and variables are present
in the receive and reply activities.
Instead of the variable attribute, the invoke activity uses an input variable and
the optional (expressed using the square brackets) output variable. Remember
that an invocation can be execute as a one-way operation that why the output
variable is optional

• Time activities (timeouts or watchdogs) can be reduced to a time passing
activity, time, and the use of scopes

• Faults are raised using throw

• Assignment activities (:=), support data and computation, and operate between
an XPath [156] expression (a variable and an optional path over it) and any
expression (including a simple use of XPath)

• empty and 0 denote respectively an empty and a terminated process.

On top of these basic activities, BPEL defines workflow-based structuring activi-
ties:

• Sequence (;), where P;Q describes here that the P activity followed by the Q
activity

• Conditional using (if) to express if the constraint c is satisfied then execute P
else execute Q.

• Loops:

– The while loop verify the constraint c then executes P as long as the c is
satisfied

66
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

– However until execute at least once the activity P then verifies the satis-
faction of the condition c

• The flow describes the parallel execution of several P activities (P1, P2,...)

• scope(P,EHd) encapsulates an activity P with an event handler EHd. An event
handler is made up of sets of events, one for each type of event and associated
activities. The event could be associate to a reception, a time out our faults,
where received messages ((pli,opi,vari),Pi), timeouts related to a duration (d),
or faults (ej). These correspond respectively in BPEL to onEvent and onAlarm
in event handlers, and to fault handlers.
scope behaves as P if none of the events happens and as a given sub-activity
(some Pi, Q, or Rj) if the corresponding event happens.

• pick is treated as a scope. We abstract from concrete syntax differences,
e.g. between onMessage in a pick and onEvent in scopes

Transforming (A)BPEL into a state transition could be done directly with
structural BPEL to the state transition rules as in M. Lallali thesis [87].
Let us illustrate this with an example. Consider the sequence activity: P;Q where
the activity P must be followed by Q. The associate model will be as presented in
the Figure 3.2, where P-automata and Q-automata are the transformation of the
activities P and Q respectively.

P-automata Q-automataε

Figure 3.2: Transformation of P;Q sequence into an automata according to [87]

Such a kind of transformation becomes complex when we deal with structured
activities. Here an example: let us consider the flow activity. Its transformation
involves the product computation of all the automaton (activities) implied within
the flow process. Such computation quickly becomes difficult.

In order to avoid such complexity, we prefer the use of process algebra (PA)
semantics style that allows more expressiveness.
Let us back to the P;Q sequence example. We have to consider the case were P is a
structured activities, then P has to perform its nested activities before executing Q.
Using process algebra semantic, we express such case using rule hypothesis and rule
conclusion where:

3.3. FROM LANGUAGE TO MODEL 67

∀a ∈ Ev\{
√
}, P

[g] a / A−−−−−−−−→P ′

P ;Q
[g] a / A−−−−−−−−→P ′;Q

} Rule hypothesis
} Rule conclusion

When P activity ends its execution, or P is a basic activity, it is represented using
the
√
, then Q activity must be processed. The representation of this case is:

∀a ∈ Ev, P

√

−−→P ′∧Q
[g] a / A−−−−−−−−→Q′

P ;Q
[g] a / A−−−−−−−−→Q′

} Rule hypothesis
} Rule conclusion

Our transformation rules (BPEL to STS) are presented in the Table 3.3 for basic
activities. The Tables 3.5 and 3.6 contain transformation rules for structured ones.
Note that the ∗/+ symbols represent extended / added rules from Mateescu and
Rampacek [108] (BPEL to dtLTS) transformation.

Basic activities
BPEL STS

empty empty
√
−−→0

time p
χ−−→p

with p∈ {time,rec(pl,o,vin),send(pl,o,vout)}

assign+ p1:=p2
τ / p1:=p2−−−−−−−−−→empty

throw ∀e ∈ Ex throw e e−−→0

rec+ rec(pl,o,vin)
pl.o?vam / vin:=vam−−−−−−−−−−−−−−−→empty

with ∃o ∈ O(Σpl), in(o) = m

send+ send(pl,o,vout)
τ / vam:=vout−−−−−−−−−−−→ _

pl.o!vam−−−−−−→empty
with ∃o ∈ O(Σpl), out(o) = m

receive∗ receive(pl,o,vin) = rec(pl,o,vin)
reply∗ reply(pl,o,vout) = send(pl,o,vout)
invoke+ invoke(pl,o,vin) = send(pl,o,vin)

invoke(pl,o,vin,vout)= send(pl,o,vin);rec(pl,o,vout)

Figure 3.3: Transformation rules for basic activities

The transformation rules describe how the BPEL activities are represented in an
WS-STS model. In the following we explain transformation rules presented in the
Table 3.3.

The empty activity semantics is to do nothing, its execution in the WS-STS
will be represented as an event that terminates correctly. It implies that the out
transition associate to an empty event is labeled with a

√
(tick).

68
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

Time activity is transformed to represent a wait for a period of time denoted χ.
Meanwhile, the behavior of the orchestrator service does not change. In our model,
we treat time passing as discrete time.

Data manipulation are managed through the assign activity. This activity aims
at associating a value to a variable. It is represented as an internal event denoted τ
with the description of its associate action, i.e. p1 := p2.

An exception is raised in BPEL with the throw activity, such event is represented
in the WS-STS as a transition labeled with the name of the exception.

The transformation rules for receive and reply communication activities, were
established from the following reasoning. A message is received through the partner
link pl according to the operation o that manipulates the anonymous message variable
vam. The anonymous message variables are used to represent data exchange between
the orchestrator and partner services. The action associated with this input event
(receive activity) allows to attribute the incoming variable to the corresponding
orchestration variable.
The output event (reply activity) is executed in two steps, first an internal action (τ)
assigns the data of the orchestrator to the anonymous variable of the corresponding
partner. Then the message is sent according to the operation and the partner link of
the service.

We impose that variables used in the WS-STS transitions are variables from
ABPEL and we add anonymous variables used for interacting with other services.
As said before the anonymous message variables are used as intermediate variables
for data exchange between the service orchestrator and the other partner services
according to BPEL communication semantics.

Example. Consider a simple service which receives a variable increases it with 1
then returns the result. The model associate to this scenario is represented in the
Figure 3.4. This model describes the reception of the anonymous message variable
xa according to the operation named addition. The variable xa is copied into the
orchestration variable x, in order to be processed, then the result is returned via the
anonymous message variable xa.

s s1 s2 s3 s4

User.addition? xa�x := xa τ �x := x+ 1 τ �xa := y User.addition! xa

Figure 3.4: Simple service with an anonymous message variable

The Tables 3.5 and 3.6 describe transformation rules for structured activities.

3.3. FROM LANGUAGE TO MODEL 69

Intuitive rules were defined for the if, while and until activities. For these activities,
conditional branches are considered as internal events. If the associated condition (c)
is satisfied then business process will execute the correspondent activities else it will
preform the activities of the other branch.

Structured activities
BPEL STS
sequence∗ ∀a ∈ Ev\{

√
},

P
[g] a / A−−−−−−−−−→P ′

P ;Q
[g] a / A−−−−−−−−−→P ′;Q

∀a ∈ Ev,
P

√

−−→P ′∧Q
[g] a / A−−−−−−−−−→Q′

P ;Q
[g] a / A−−−−−−−−−→Q′

if∗ if c then P else Q
[c] τ−−−−−→P

if c then P else Q
[¬c] τ−−−−−−→Q

while∗ while c {P}
[c] τ−−−−−→P;while c {P}

while c {P}
[¬c] τ−−−−−−→empty

until+ repeat {P} until c = P;while c {P}
flow+

flow internals ∀a ∈ Ev\{χ,
√
},
∃j∈I, Pj

[g] a / A−−−−−−−−−→P ′j

flow({Pi,i∈I})
[g] a / A−−−−−−−−−→flow({Pi,i∈I\{j}}∪{P ′j})

flow termination
∀i∈I, Pi

√

−−→P ′i

flow({Pi,i∈I})
√

−−→empty

time passing
∃J 6=∅, J⊆I, ∀i∈J, Pi

χ−−→P ′i∧∀i∈I\J, Pi
√

−−→P ′i

flow({Pi,i∈I})
χ−−→flow({Pi,i∈I\J}∪{P ′i,i∈J})

Figure 3.5: Transformation rules for structured activities

The flow activity, supports the concurrent execution aspect of a business process.
All the activities included in the flow are executed simultaneously. The execution
of the flow activity implies the union of the execution of all sub activities. We can
distinguish 3 kinds of flow activity depending on event that will occur.
The internals flow transformation rule, describes the execution of the simultaneous
events, except for the termination

√
and the time passing χ events, each event will

be executed one after the other in the WS-STS. When the flow execution ends with a
flow termination (

√
), it leads him to an empty activity. Finally, if a time passing is

defined in the flow, it corresponds to a wait for an amount of time before continuing
its execution.

70
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

Structured activities – suite
BPEL STS
scope∗ let EHd =[{((pli, oi, vi), Pi)i∈I}, (d,Q), {(ej , Rj)j∈J}],

OI = {(pli, oi, vi)i∈I},
OI = {pli.oi | (pli, oi, vi) ∈ OI},
EJ = {ej,j∈J} in:

event handler ∀(pli, oi, vi) ∈ OI ,
∀a∈Ex∪{χ,

√
},¬(P

a−−→)

scope(P,EHd)
pli.oi?vam / vi:=vam−−−−−−−−−−−−−−−→Pi

with ∃oi ∈ O(Σpli), in(oi) = m

time passing ∀d > 1,

P
χ−−→P ′∧∀a∈Ex∪{τ,

√
},¬(P

a−−→)

scope(P,EHd)
χ−−→scope(P,EHd−1)

alarm P
χ−−→P ′∧∀a∈Ex∪{τ,

√
},¬(P

a−−→)

scope(P,EH1)
χ−−→Q

fault handler ∀ej ∈ EJ ,
P

ej−−→
scope(P,EHd)

τ−−→Rj

unsupported fault ∀e ∈ Ex\EJ ,
P

e−−→
scope(P,EHd)

e−−→0

scope termination P

√

−−→
scope(P,EHd)

√

−−→0
scope internals ∀a ∈ Ev,

hd(a)6∈({χ,
√
}∪Ex∪OI)∧P

[g] a / A−−−−−−−−−→P ′

scope(P,EHd)
[g] a / A−−−−−−−−−→scope(P ′,EHd)

pick pick(E) = scope(time,E)

Figure 3.6: Transformation rules for structured activities - suite

The scope(P,EHd) (see Table3.6) encapsulates an activity P with an event handler
EHd. An event handler is made up of sets of events, one for each type of event
–received messages, timeouts related to a duration (d), or faults (ej). These correspond
respectively in BPEL to onEvent and onAlarm in event handlers, and to fault handlers.
– and associated activities. scope behaves as P if none of the events happens and as a
given sub-activity (some Pi, Q, or Rj) if the corresponding event happens.

Finally, the pick activity is treated as a scope activity. We abstract from concrete
syntax differences, e.g. between onMessage in a pick and onEvent in scopes.

Other important features of composite Web services are the correlation and
the message faults. In the following we present how these two characteristics are

3.3. FROM LANGUAGE TO MODEL 71

represented within the formal model.
Transformation for message correlation. We support correlation as an exten-
sion of the transformation rules Tables. Firstly, we modify the orchestration model
to be (ρ,B, C) where C are correlation sets, i.e. a name and a set of associated
properties denoted with props. These are used to correlate messages in-between
service instances [117].

Sometimes a single property is used (e.g. an identifier), but more generally
this is a set (e.g. name and surname). A correlation value is a value of a struc-
tured domain with items corresponding to the properties. For each correlation
set c in C, we have two variables, the correlation value vcsc and the correlation
initiation vcscinit, among the set of variables belonging to the model B (V(B)).
The communication activities parameter lists (pl,o,v) (in receive, reply, invoke, pick
using onMessage and scope using onEvent) are extended to (pl,o,v,i,c) where c is
the correlation name and i corresponds to correlation initiation (yes, no, or join).
The STS semantics of communication activities is then extended in the following way:

On the initial transition we add action vcscinit := false. It means that the correlation
variable (vcscinit) is not initialized yet.
We also define the correlation consistency constraint (ccc) as a function that verifies
the property p of a received message vam with regards to it correlation set c.
Note that if the correlation set includes multiple properties all those properties must
be verified. Since the input message is received from an other service the associate
variable is an anonymous one. The formalization of this idea is expressed as follows:

ccc(c, vam) = (
∧
p∈props(c) vam/[m↓p]=vcsc/p).

Among the attributes of a correlation we find an attribute named initiate. As
said earlier, only three possible values may be assigned to this attribute a yes, no or
join.
The yes implies that the property of the first message that initiates the conversation
is the one that should be taken as the correlation of the process. The no implies that
the correlation is already defined. In such a case, if the value of the received message
property is no the same as the defined correlation then a fault is raised. The last
option is the join value. It implies that if a correlation set is not defined yet, then it
will corresponds to the property of the received message.

In our formal model (WS-STS) we represent the violation of these attribute with
a guard G. Consequently, we have three guards Gyes, Gno, and Gjoin that check the
correlation c according to the received message supporting the anonymous message
variable vam. Formally, we express the above guards as follows:

• Gyes
c (vam) = (vcscinit= true), the correlation guard with a yes attribute is

72
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

triggered when the instantiation variable had a true value instead of a false,

• Gno
c (vam) = (vcscinit = false ∨ ¬ccc(c, vam)), this guard implies that the

vcscinit variable had not a defined correlation yet, which should not be the
case because the no indicates that the process had already a defined correlation,
or that the correlation consistency constraint is not satisfied

• Gjoin
c (vam) = (vcscinit= true ∧ ¬ccc(c, vam)), the join guard is triggered when

the correlation is already defined however, the correlation consistency constraint
with the received message is not satisfied

When the correlation property is satisfied, it implies the execution of the some
actions associate to their corresponding attribute, where:

• Ayes
c (vam) = Ajoin

c (vam) = {vcsc/p := vam/[m ↓ p]}p∈props(c) ∪ {vcscinit :=
true}, when a correlation must be defined, i.e. yes attribute, or need to be
defined in case it is not done yet, i.e. join attribute, then (i) the correlation
variable vcsc will have the same value as the properties of the received message
vam, and (ii) the variable vcscinit will be set to true, thus indicating that the
correlation had been defined

• Ano
c (vam) = ∅, when a correlation do not have to be defined, then no action

will be executed.

From now on, in order to take into consideration the correlation, we replace each
transition s

pl.o∗vam / A−−−−−−−−−−→ s′ (∗∈{?, ??}) by:

s
pl.o∗vam / A−−−−−−−−−−→ s′′, the reception of a message or an exception,

s′′
[¬Gi

c(vam)] τ / Ai
c(vam)−−−−−−−−−−−−−−−−−→ s′, when the correlation is ok, then we execute the

associate action
and

s′′
[Gi
c(vam)] τ−−−−−−−−−→ throw bpel:correlationViolation, if the correlation guard is sat-

isfied, it implies a correlation error and thus a bpel exception must be thrown.

We also replace each transitions s
τ / A−−−−−→ s′

pl.o∗vam / A−−−−−−−−−−→ s′′ (∗∈{!, !!}) by:

s
τ / A−−−−−→ s′, assignment activity, where we allocate a variable value to the

anonymous variable to be send,

s′
[¬Gi

c(vam)] pl.o∗vam / A∪Ai
c(vam)−−−−−−−−−−−−−−−−−−−−−−−→ s′′, the correlation is ok, then we emit the

message after executing the transition actions and the actions of the correlation

3.3. FROM LANGUAGE TO MODEL 73

s′
[Gi
c(vam)] τ−−−−−−−−−→ throw bpel:correlationViolation, in this case the correlation

guard is satisfied, indicating a correlation error and thus a bpel exception must be
thrown.

Transformation for message faults. Faults may occur during the execution of a
business process. A fault indicates an abnormal behavior of the process. However,
we can distinguish three kind of faults:

• a fault raised during an interaction with a service partner, such a fault is known
as a WSDL faults,

• a fault raised by the BPEL engine due to an unsatisfied action, such as specifying
an incorrect XPath expression,

• a fault explicitly defined in the business process using the throw activity.

Faults are generally managed within the BPEL process. Nevertheless, it is possible
to communicate these errors to the client through the reply activity and message
faults.

As for correlation sets, we support messages faults with the extension of the rules
presented in the transformation Tables. The concerned activities are the reply and
the invoke.
For reply, we add the reply(pl,o,fn[,verr]) form, where fn is the fault name and verr is
an (optional) fault variable. This form is transformed as follows:

reply(pl,o,fn[,verr]) = send(pl,o,fn[,verr]), with
send(pl,o,fn[,verr])

τ / vm:=verr−−−−−−−−−→ _
pl.o!!fnvm−−−−−−−→empty with ∃o ∈ O(Σpl), err(o) = m.

Faults for synchronous invoke are represented by first sending the message to the
corresponding service partner then the reception of the answer. The synchronous
invoke is interpreted as follows:
invoke(pl,o,vin,vout)= send(pl,o,vin);rec+(pl,o,vout), where there are two rules for rec+:
one for the reception of a correct message, rec+(pl,o,vin) = rec(pl,o,vin), and one for
the reception of a fault message. The transformation rule is given as follows:

rec+(pl,o,vin)
pl.o??fnvm / vin:=vm−−−−−−−−−−−−−−→throw fn with ∃o ∈ O(Σpl), err(o) = m.

The catch construct of synchronous invoke (as in Figure 3.7) is not directly supported
but it can be simulated using a fault handler in a scope around the invoke.

Application on the xLoan case study: Using the transformation rules on
the xLoan orchestration we obtain the formal model depicted in Figure 3.8, where
tau (resp. tick, term) denote τ (resp. χ,

√
). The zoom corresponds to the while part.

74
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

Figure 3.7: Catch construct of invoke activity

One may notice states 16 (while condition test), 17/33 (pick), 34 (onAlarm timeout),
and 18/23 (correlation testing with the attribute no)

3.3.3 Test Purpose Model

In order to generate test cases for a service orchestrator, one may want to focus on a
particular aspect of the process behavior. A Test Purpose (TP) is a set of functional
properties allowed by the specification and that one is interested to test. Generally,
the formal model for TP follows the one used for the system specification. Hence,
LTS is the most popular model for TP. In our case, since STS are our formal model.
TP will be formalized as an STS.
Note that a TP could also be modeled using Linear Temporal Logic (LTL) to be
more abstract. The average user may prefer more user friendly notation e.g. MSC or
UML sequence diagrams [153, 175] that describe the interactions between system
components. In both case we can get back to transition system model: LTL can be
transformed in Buchï automata [64] while, MSC and UML sequence diagrams can
be transformed in LTS [125].

To formally represent requirements as a test purpose we were inspired by the
work of Jéron et al. [77]. However, the way to express a test purpose is simpler
because we don’t need reject states to specify an undesired behavior. Thus, the
WS-STS resulting from the product of the specification model B and the TP model,
contains only the paths that run through an accept state.
In our context TP models are defined according to the orchestration (specification)
models they refer to.

Definition 3.3.7. (Test Purpose)
Given an orchestration model B = (DB,VB, SB, s0B , TB), a TP for B is a WS-STS
TP = (DTP ,VTP , STP , s0TP , TTP).

TP may use a set of additional variables VI for expressiveness, disjoint from B
variables, i.e. using a variable in the TP model to limit the number of iterations
in a loop described by the specification model. VTP = VI ∪ VB where VI ∩ VB = ∅,
accordingly DTP ⊇ DB, with ∀t s

[g] e / v:=t−−−−−−−−−→ s′ ∈ TT P v ∈ VI . Assignments in

3.3. FROM LANGUAGE TO MODEL 75

Figure 3.8: The formal model of the xLoan orchestration

TP can only operate on VI .

The events labeling in the TP transitions correspond to the B ones. More
specifically, we impose for simplicity sake that variables used in message exchanges

76
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

(events of the form pl.op . . .) correspond to the ones in B. This constraint can be
lifted using substitutions.
TP also introduce a specific event, *. Transitions labeled with * may neither have a
guard, nor actions, and are used to abstract in TP one or several B transitions that
are not relevant for the expression of the requirement.

Example: The Figure 3.9 is a simplified example of using the * transition within
a specific TP. The focus of the test purpose is on the input and the output transitions,
all the other activities that may occur in between these two transitions are abstracted
using the *.

Figure 3.9: A test purpose with a * transition

A TP defines a specific set of states, Accept (Accept ⊆ STP), that denotes TP
satisfaction. In order to handle acceptance states, while we compute the WS-STS
product, we add transitions labeled by an event # in the TP model leading to the
accept states. Finally, we impose that TP is consistent with B, i.e. TP symbolic
traces are included in B ones. This can be checked using symbolic execution (see
Sect. 3.4), where we also have to check that the path condition corresponding for
the TP trace implies the path condition of the B trace.

Application on the xLoan case study: We provide the a Test purpose model
for the xLoan orchestration that imposes that the USER selects an offer and this
offer is proposed by service orchestrator as shown in Figure 3.10.

3.3.4 WS-STSs Product

We reached the point where we have the specification model on one side and the TP
model in another. The model of the specification, describes the complete expected
behavior of the service. The TP model represents only certain aspects of the behavior,
the one to test, the rest is abstracted using * transitions.

In order to, support the scenarios described by the TP during the generation of
test cases, we must compute a product between the specification model and the TP

3.3. FROM LANGUAGE TO MODEL 77

Figure 3.10: A test purpose for the xLoan orchestration

model. Thus, the generated test cases will be dedicated to aspects of the behavior
described in TP. The computed WS-STS product is defined as follows:

Definition 3.3.8. (WS-STSs Product)
Given a specification model B = (DB,VB, SB, s0B , TB), and a test purpose TP =
(DTP ,VTP , STP , s0TP , TTP), their product, Prod = B ⊗ TP, is the WS-STS (DProd,
VProd, SProd, s0Prod , TProd) where: DProd = DTP , VProd = VTP , SProd ⊆ SB × STP ,
s0Prod = (s0B , s0TP), and TProd is the transition relation.

Note that each state of the product model consists of a specification model state
and another of the TP model. The transition relation of the product (TProd) is
built using four rules. This (see Table in Figure 3.11) rules represent the different
scenarios that may happen either in the specification model B or in the test purpose
model TP , during the computation of the product. These rules describe how the
computation is done according to each transition.

The two first rules express the independent evolution of a behavior owing to a
non observable event. If the TP model of rule (i), as represented in Figure 3.12,
(resp. B model of the rule (ii)) had to perform an intern event (τ), wait of a period
of time (χ) or execute an action to achieve an accept state (]), then the resulting
product model will evolve with the same transition to achieve a new state. This
new state consists of the current state of the specification model B (resp. current
state of TP model) and of the new state of the TP model (resp. new state of the
specification model B).

Note that it may occur that both the TP and B models had an internal events
then each transition will be handled by combining the rule (i) and (ii) as shown in
Figure 3.13.

In the third rule, both the specification model and the TP model evolve with
the same event. Such case represents an event synchronization between B and TP .
However, an event synchronization did not implies to have the same constraints.

78
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

(i) ∀e ∈ {τ, χ,]},
sTP

[g] e / A−−−−−−−−→TP s
′
TP

(sB,sTP)
[g] e / A−−−−−−−−→Prod(sB,s

′
TP)

(ii) ∀e ∈ {τ, χ,]},
sB

[g] e / A−−−−−−−−→Bs′B
(sB,sTP)

[g] τ / A−−−−−−−−→Prod(s′B,sTP)

(iii) ∀e ∈ Ev? ∪ Ev! ∪ Ex ∪ {
√
},

sB
[gB] e / AB−−−−−−−−−→B s′B,

sTP
[gTP] e / ATP−−−−−−−−−−−→TP s

′
TP

(sB,sTP)
[gB∧gTP] e / ATP ;AB−−−−−−−−−−−−−−−→Prod(s′B,s

′
TP)

(iv) ∀e ∈ Ev? ∪ Ev! ∪ Ex ∪ {
√
},

sB
[gB] e / AB−−−−−−−−−→B s′B,

sTP
∗−−→TP s

′
TP ,

6 ∃ sTP
[gTP] e / ATP−−−−−−−−−−−→TP s

′
TP

(sB,sTP)
[gB] e / AB−−−−−−−−−→Prod(s′B,s

′
TP)

Figure 3.11: Rules of the product computation between B and TP

Indeed, guard for the product transition will consider the B guard and TP guard
(Figure 3.14). As for the actions, the actions of the product model will execute the
TP actions then the B actions.

Finally, in the last rule (iv), we handle the * semantic. Remember that the
* symbol is used in the TP model to represent abstraction of any or the rest of
transitions in the specification model. In (iv) rule, the transition of the product
model is the same as the one of the B, while the source state from which we compute
the product transition, does not satisfy any of the previous rules. In other words,
if this state had no output transition with a non observable event, or no possible
synchronization event then the transition of the product model is the same as the B
model (Figure 3.15).

To enforce the acceptance states semantics, the product is cleaned up by pruning
states (and related transitions) that are not co-reachable from acceptance states,
i.e. any s such that 6 ∃s′ = (s′B, s

′
TP) ∈ SProd . s −→ ∗s′ ∧ s′ ∈ Accept.

Notice that a cleaning of the WS-STS product is performed to keep only the paths
that pass through an accept state, it is for this reason that we do not need reject

3.3. FROM LANGUAGE TO MODEL 79

sTP

s′TP

sB

s′B

sB, sTP

sB, s
′
TP s′TP , sB

s′B, s
′
TP

[g
T
P

]τ�
A
T
P

[gB
]e ′�

A
B

[g
T
P

]τ�
A
T
P

[gB]e ′�
A
B

[gB]e ′�
A
B

[g
T
P

]τ�
A
T
P

Figure 3.12: Product of the rule (i) where: e′ /∈ {τ, χ,]}

sTP

s′TP

sB

s′B

sB, sTP

sB, s
′
TP s′B, sTP

s′B, s
′
TP

[g
T
P

]τ�
A
T
P

[gB
]τ�

A
B

[g
T
P

]τ�
A
T
P

[gB]τ�
A
B

[gB]τ�
A
B

[g
T
P

]τ�
A
T
P

Figure 3.13: Product of the rule (i bis)

80
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

sTP

s′TP

sB

s′B

sB, sTP

s′B, s
′
TP

[g
T
P

]e�
A
T
P

[gB
]e�

A
B

[g
T
P
∧
gB

]e�
A
T
P

;A
B

Figure 3.14: Product of the rule (iii) where: e ∈ Ev? ∪ Ev! ∪ Ex ∪ {
√
}

sTP

s′TP

sB

s′B

sB, sTP

s′B, sTP

∗

[g
T
P

]e�
A
T
P

[gB
]e ′�

A
B

[gB
]e ′�

A
B

Figure 3.15: Product of the rule (iv) where: e 6= e′

states.
Application on the xLoan case study: The STS product of xLoan orches-

tration is shown in Figure 3.16.

3.4 Deriving Symbolic Test Cases

In this section, we present how symbolic test cases (STC) are generated from the
WS-STS model. The first step consists in computing the Symbolic Execution Tree
(SET) using the Symbolic Execution (SE) approach and an SMT solver. The SET
represents the flattening view of the model, it means that each path of the tree
represents a behavioral scenario depicted by the model. The computed paths denote
possible test cases. However, with a repetitive behavior, as a loop in the WS-STS
model, a huge SET size can be produced. The second step, consists in using some

3.4. DERIVING SYMBOLIC TEST CASES 81

Figure 3.16: The product of the xLoan orchestration with the TP

criteria to circumscribe the generation of the SET. Note that TP could be used to
limit the generation of STC, unfortunately sometimes it would not be enough. The
final step consists in instantiating those test case and interacting with the orchestrator
service. In the following we present in detail, how these steps are accomplished.

82
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

3.4.1 Symbolic Execution and Symbolic Execution Tree

Symbolic execution [84] (SE) has been originally proposed to overcome the state
explosion problem when verifying programs with variables. SE represents values of
the variables using symbolic values instead of concrete data [82].
Consequently, SE is able to deal with constraints over symbolic values, and output
values are expressed as a function over the symbolic input values. More recently
these techniques have been applied to the verification of interacting/reactive systems,
including testing [82, 57, 65]. Using SE approach we present how we generate the
Symbolic Execution Tree (SET) from a WS-STS model.

Symbolic Execution Tree (SET). The SE of a program is represented by a
symbolic execution tree (SET). This SET represents the possible execution described
by the WS-STS model. SET consists of nodes connected by edges, where: NSET is a
set of nodes.
Each node corresponds to a tuple ηi = (s, π, σ) made up of the program counter s,
the symbolic values of program variables σ, and a path condition, π.

Let Vsymb be a set of (symbolic) variables (representing symbolic values), disjoint
from the program variables, V (V ∩Vsymb = ∅). σ is a map that associate to variable,
a symbolic variable : V → Vsymb. A path from the SET is a potential symbolic
test case with its associate path condition (PC). A PC is a Boolean formula with
variables in Vsymb. The PC accumulates constraints that the symbolic variables must
fulfill in order to follow a given path in the program.

Since we apply SE to an WS-STS, the program counter is an WS-STS state, and
V corresponds to the WS-STS variables (either simple, message type, anonymous,
or correlation variables from BPEL). The edges of the SET, ESET, are elements of
NSET × Evsymb ×NSET, may be non deterministic. The Evsymb corresponds to the
WS-STS events (Ev) with symbolic variables in place of variables.

SET edge computation. The SET is computed in a Breadth-First Search (BFS)
fashion as follows:
The root node is (s0, true, σ0) where s0 is the initial state of the WS-STS specification
model, or the WS-STS product model when a TP was specified. σ0 is the mapping of
a fresh symbolic variable for each variable of the WS-STS (σ0 : ∀v ∈ V , v 7→ newV ar)
and π0 = true.
Each transition of the WS-STS s

[g] e / A−−−−−−−−→ s′ then corresponds to an edge
(s, π, σ)

e′−−→ (s′, π′, σ′), where η = (s, π, σ) and η′ = (s′, π′, σ′). The new path
condition π′ consists of the previous path condition π and the symbolic computation
of the guard g, the event e, and the action(s) A from the WS-STS transition. σ′
however, is considered as an updating of σ with new mapping(s) between a variable

3.4. DERIVING SYMBOLIC TEST CASES 83

and a symbolic variable. Those steps are formally described as follows:

1. guard: πG = π ∧ gσ, the computation of the new path condition π′ begins
with the constraint associate to the guard πG. The latter is a conjunction
between π, the previous path condition, and the transition guard in which all
the variable are substituted by symbolic variable according to σ. If there is no
guard πG = π,

2. event: e′, σE =

{
pl.o?vs, σ[v → vs] if e = pl.o?v
e, σ otherwise

If the processing transition of the WS-STS indicates an input event, then
a new symbolic variable is created for the incoming input variable, with
vs = new(Vsymb, σ), and reported in on the σE mapping. Consequently, the
edge e′ of the SET will be labeled much like the event e of the WS-STS transi-
tion, but using the corresponding symbolic variables from σE. Otherwise, if
the processing transition is not an input event, then e′ will be labeled using
symbolic variables from σ.
If e is a service partner, other than the USER, invocation return (e = pl.o?vout
∧pl 6= USER), we set a constraint πE = π(o)[σE(vin)/in, vs/out], where
e = pl.o!vin is the label of the (unique) transition before the one we are deal-
ing with, to take into account the operation specification (π(o)). Else, πE = πG.

3. actions (A = {xi/pathi := ti}i,i∈{1,...,n}):
πAi = πAi−1 ∧ (vsxi/pathi = ti[σ

E(vj)/vj]vj∈vars(ti))

with ∆ = {x ∈ V | (x/pathi := ti) ∈ A}, {vsx}x∈∆ = new#∆(Vsymb, σ
E),

σ′ = σE{[vsx/x]}x∈∆, πA0 = πE, and π′ = πAn .

where vars denotes the variables in a term, newn(Vsymb, σ) denotes the creation of n
new (fresh) symbolic variables wrt. σ, t[y/x] denotes the substitution of x by y in t,
and σ[x→ xs] denotes σ where the mapping for x is overloaded by the one from x to
xs. ∆ is the set of variables that are modified by the assignments. For each of these,
we have a new symbolic variable. Note that we suppose without lost of generality
that in practice one assign with parallel instructions is executed sequentially.

We denote may(η), η ∈ NSET, the set {pl.o!v | ∃η L−−→ ∗η′ [g] pl.o!v / A−−−−−−−−−−→ η”}
with L a sequence of labels such that the corresponding word (keeping only the
event in labels), contains only non observable events or communication events with
partners ({τ, χ,

√
}∪ {pl.o ∗ v | ∗ ∈ {?, !}∧ pl 6= USER}). This set will be used later

on for the test verdict emission.
Example: Let us consider the simplified WS-STS presented in Figure 3.17. The

computation of its associate SET (Figure 3.18) is provided in the following: The set
of variables is V = {xa, x, ya, y}.

84
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

Figure 3.17: WS-STS model Figure 3.18: SET generation

η0=(s0, π0, σ0) where: π0 = true and σ0 = {xa → vs0, x→ vs1, ya → vs2, y → vs3}
η1=(s1, π1, σ1) where: π1 = π0 ∧ vs4 = 7 ∧ vs5 = vs4 and σ1 = {xa → vs4, x →
vs5, ya → vs2, y → vs3}
η2=(s2, π2, σ2) where: π2 = π1 ∧ vs5 < 10 and σ2 = σ1

η3=(s3, π3, σ3) where: π3 = π1 ∧ vs5 ≥ 10 and σ3 = σ1

η4=(s4, π4, σ4) where: π4 = π2 ∧ vs6 = 0 and σ4 = {xa → vs4, x → vs5, ya →
vs2, y → vs6}
η5=(s4, π5, σ5) where: π5 = π3 ∧ vs7 = vs5 and σ5 = {xa → vs4, x → vs5, ya →
vs2, y → vs7}
η6=(s5, π6, σ6) where: π6 = π4 ∧ vs8 = vs6 and σ6 = {xa → vs4, x → vs5, ya →
vs8, y → vs7}
η7=(s5, π7, σ7) where: π7 = π5 ∧ vs9 = vs7 and σ7 = {xa → vs4, x → vs5, ya →
vs9, y → vs7}
η8=(s6, π8, σ8) where: π8 = π6 and σ8 = σ6

η9=(s6, π9, σ9) where: π9 = π7 and σ9 = σ7

In order to reduce the size of an SET we present two possible methods to limit
the SET paths generation. Those methods are the pruning of infeasible paths and
the pruning of redundant paths.

Pruning infeasible paths. Edges with inconsistent path conditions may be cut
off while computing the SET. For this, we check when computing a new node η if
π(η) is satisfiable (there exists a valuation of variables in π such that π is true), if
not, we cut the edge off. This is known to be an undecidable problem in general.
Therefore, if the constraint solver does not yield a solution (or a contradiction) in a

3.4. DERIVING SYMBOLIC TEST CASES 85

given amount of time, we cut the edge off and we issue a warning specifying that the
test process is to be incomplete. We use the Z3 SMT solver to reduce the number of
infeasible paths. More details are provided in the next Chapter 4.

Pruning redundant paths. WS-STS may contain loops that would cause SET
unboundedness. To solve this issue out, we propose two techniques.

We take into account a path length criterion while computing the SET. Given
a constant k, we stop the SET computation at some node whenever this node is
at k edges from the SET root, this technique is inspired by the k bounded model
checking [34]. The user can re-start the SET computation process with k + 1 if he
wants more test cases.

A complementary approach is to use the inclusion criterion as proposed by [65].
Let us explain this principle helped with the Figure 3.19.

Figure 3.19: The inclusion criterion

Consider η = (s, π, σ), a reachable node in the SET. Solving the associate path
condition π means that it exists at least a value for each symbolic variable satisfying
the constraint with regards to the σ mapping (V → Vsymb). Such constraint allows
several interpretations (combinations of possible values). MV

η represents the set of
all the possible interpretations for the variables V of the node η.
Consider now, an other node η′ = (s, π′, σ′) which has the same state as η. We say
that η is included in η′ (η ⊆ η′), when MV

η ⊆ MV
η′ . That means that the set of

interpretations of the variables of V belonging to η′ is bigger than the one belonging
to η, so πσ =⇒ π′σ′. In such case if both nodes are on the same branch than we
stop the generation of the SET at the node η, else we stop the computation of the η
sub-tree and we create a reference from η to η′. We keep track of the prefix which is
related to the test of a different part and with the reference we have a link to the
rest of the path already computed.

86
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

Symbolic test case extraction. Symbolic test cases correspond to the SET paths.
However, it may be relevant to test only paths leading to orchestration termination
even if it is not mandatory for Web services since different instances are run for each
test case (excepted if the same correlation data are used). Due to our k path length
criterion in the SET computation, it follows that symbolic test cases have a length
n ≤ k. Notice that we can increase the value of k if we did not find errors during the
execution of tests.

Application on the xLoan case study: The Figure 3.20 presents the SET
of the xLoan example. The black path in the tree (also given on the top right
part) represents one of the test cases that we may pick and execute against the
implementation service. The associated path condition π305, in the end of the path
(node 305), is described in the top left part.

3.4.2 Online Testing Algorithm

In this part we present the (online) realization of symbolic test cases into concrete
test cases with the use of a constraint solving tool.
First, let us note that since Web services are reactive systems, test case realization
has to be performed step by step, by interacting with the Service Under Test (SUT).
This is to avoid emitting erroneous verdicts.
Take a path pl.o?x.pl.o!y, with σ = {x → vs0 , y → vs1} and π = vs0 > 2∧vs1 >vs0 .
Realization all-at-once would yield a realized path p?vs0 , p!vs1 with, e.g. {vs0 →
3, vs1 → 4}. Suppose now we send message p with value 3 to the SUT and that it
replies with value 5. We would emit a Fail verdict (5 6=4), while indeed 5 would be
a correct reply (5>3).

The online realization process is summarized in Figure 3.21. The tester (or the
oracle) is implemented as a reactive process that mirrors the observable behavior of
the test case. We begin with the PC in the last state of the SET path corresponding
to the test case. Whenever the tester has to send a message to the SUT (USER.o?
in the test case), PC is solved to get correct data values to send. Whenever the
tester has to receive a message from the SUT (USER.o! in the test case) a timeout
is run. If it ends before we receive the message there is an Inconclusive verdict.
If we receive the message from the SUT, data is extracted from it and the PC is
updated with a correspondence between the reception variable(s) and the data, and
PC is then checked to see if the data is correct or not. In both cases, we rely on a
constraint solving tool. Before using the Z3 solver, we used the UMLtoCSP [38] tool
to solve constraints. However, this solver required a very fine tuning of the variables’
domains. Moreover, a more complex model transformation between this tool and
ours was needed, which is no more the case with the Z3 SMT solver.

3.4. DERIVING SYMBOLIC TEST CASES 87

Figure 3.20: Selection of a test case from the SET of xLoan example

Online testing is presented in Algorithm 1. Its input is the SET with a distin-

88
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

Figure 3.21: Testing Architecture of a Service Orchestration

guished symbolic path we want to test. The algorithm then animates the path by
interacting, over messages for the USER partnerlink, with the SUT. Accordingly,
input (resp. output) events in the path correspond to messages sent (resp. received)
by the tester. Generation of data in sent messages and checking of data in received
messages is supported using constraint solving over a Path Condition (PC). Initially
PC corresponds to the path condition (π) in the last node of the path we test. The
treatment of the path labeled edges (li) is then as follows.

• Input events. The tester has to generate a message to be sent to the SUT.
For this, PC is solved (always succeeds, or the edge would have been cut off
in the SET computation). We use the instantiation of the event variable, xs,
to send the message, and to update the PC. If the sent message yields an
exception, we return a Fail verdict, else we pass to the next edge.

• Output events. The treatment of output events corresponds to message
reception in the tester. Whenever an emission by the SUT is foreseen, a timer,
TAC, is set up. Then three cases may occur. (i). If the timer elapses, we
return a Fail result. (ii). If we receive the expected message before this, we
update the PC with this new information and try to solve it. If it succeeds
we continue to the next edge. If it fails we return a Fail verdict. If we do not
get a result in a given amount of time we return an Inconclusive verdict (not
in the Algorithm for simplicity). (iii). If we receive an unexpected event, we
check in the SET if it is due to the specification non-determinism. If not, we
return a Fail verdict. If it is the case, we return an Inconclusive verdict and
the test path needs to be replayed in order to exhibit the behavior that this

3.5. CONCLUSION 89

Algorithm 1: Online Testing Algorithm
Data: SET + a distinguished path p, path p = n1l1n2l2 . . . lk−1nk ;
begin

π = πk; i := 1; rtr := Pass ;
while i < k and rtr = Pass do

switch li do
case USER.e?xs

val := (SOLV E(π)[xs]);
try { send (e(val)); π := π ∧ xs = val;}
catch (e ∈ Ex) { rtr := Fail; }

case USER.e!xs
start TAC;
try {receive (e(val)); π = π ∧ (xs = val);

if ¬SOLV E(π) then rtr := Fail; }
catch (timeout_TAC) {rtr := Fail;}
catch (receive e′) { if e′ ∈ may(ηi) then rtr := Inconclusive;

else rtr := Fail;}
case χ

wait(1 unit of time);
otherwise

skip;

i := i+ 1;
return rtr;

end

test path characterizes (for this we assume SUT fairness). Fault output events
are supported in the same way

• Time passing (χ) corresponds to the passing of one unit of time. Accordingly,
the tester waits for this time before going to the next event in the path. The
unit of time is computed from the specification (one hour in our example).
Other events are skipped.

3.5 Conclusion

In this chapter we have presented our symbolic approach for applying conformance
testing on an orchestration of Web services.

Our testing approach begins with modeling an orchestration service from an
ABPEL specification into a WS-STS model. This is achieved using our transformation

90
CHAPTER 3. A SYMBOLIC APPROACH FOR COMPOSITE WEB SERVICE

CONFORMANCE TESTING

rules. We also support the possibility of generating specific test cases using Test
Purposes (TP).
Indeed, we defined rules to compute the product between the specification and the
test purpose models and thus, the generated product model describes the behavior
of the composite service and handles the defined test purpose.

We used the Symbolic Execution (SE) on the model (or the product model), in
order to avoid the problem of state space explosion when dealing with concrete data.
The SE generates a Symbolic Execution Tree (SET) that represents the WS-STS
execution semantics. Each path of the SET had its path condition (PC) that must be
satisfied to execute the corresponding behavior. However, using the SE we generate
symbolic test cases, that we need to realize, in order to execute the concrete test
cases against the implementation service. For this aim, we presented an (online)
algorithm that describes: (i) the interactions between the tester and the Z3 SMT
solver, to instantiate the test cases and (ii) the interactions between the tester and
the service under test in order to execute the test cases. Finally, a verdict on the
conformance of the composite service with regard to its specification is emitted.

C
h

a
p

t
e

r

4
Implementation and Tools

support

In this chapter we start by presenting the test context also called testing architecture.
Then, The main part of the chapter is devoted to the presentation of the tool chain
that we have developed to support our approach.
The tool chain, as represented in Figure 4.11, includes: (i) The BPEL2STS tool that
performs the transformation of a specification written in ABPEL into a Symbolic
Transition System (WS-STS or STS for short) model. (ii) Whenever a Test Purpose
(TP) is given, the STSProd tool is used to compute the product between the specifi-
cation model and the test purpose model. Thus, the test purpose will be handled
in the generation of test cases. (iii) The STS2SET tool is used for the generation
of the Symbolic Execution Tree (SET) from which we will retrieve the test cases.
Finally, we describe the testing process of a the Service Under Test (SUT) and the
use of the Z3 SMT solver in order to generate the adequate input data needed for
the interaction with the service orchestrator.

4.1 Testing Architecture

In the testing process, the context and the conditions in which test cases are executed
against the implementation play an important role. With this information, also
called test architecture and a test context, a tester (oracle) is able to identify errors
and to know in which conditions these errors appear.

Since we are focusing on testing a service orchestration, we may distinguish two

91

92 CHAPTER 4. IMPLEMENTATION AND TOOLS SUPPORT

Figure 4.1: Overview of the tools chain

kinds of testing architecture: the in-the-large architecture and the restricted one.
As presented in the previous chapters, an orchestration of services consists of

a service orchestrator and other partner services. Among those services, we have
a specific one, the USER service which is the one that contributes in initiating the
conversation protocol with the service orchestrator. Note that a composite service
may have many USER services, for simplicity sake we specify only one.
Using an in-the-large testing architecture, a tester will simulate all the partner
services as shown in Figure 4.2. Such architecture is used when the tester obtains
the WSDL addresses of the partner services and then simulates them using dedicated
tools like soapUI.
By contrast, a restricted testing architecture focuses only on the USER service as
shown in Figure 4.3. In this kind of architecture, a testing hypothesis states that the
other partner services, are correct.

In our work we use a restricted testing architecture. Since we are interested in
checking if an implementation is consistent with its functional specification through
an observable behavior, we do not need to simulate the other service partners. It
would be interesting to use the in-the-large testing architecture for other sort of
testing, such the robustness testing, where the tester can simulate erroneous responses

4.2. CONFORMANCE TESTING OF A SERVICE ORCHESTRATOR 93

from the services partners and observe the behavior of the service orchestrator. This
is left as a perspective.

Figure 4.2: In-the-large testing architecture Figure 4.3: Restricted testing architecture

4.2 Conformance Testing of a Service Orchestrator
The Algorithm 2 represents the overall algorithm for the testing of service orchestra-
tion.

Algorithm 2: The complete testing process of a BPEL orchestration
Input: SpecB: ABPEL, TP :WS-STS, k:N, crit: SETinclusion, imp: WSDL@

Output: verdict:{pass, fail, inconc}
Variables: B: WS-STS, MT : WS-STS, T :SET1

Initialization: verdict:= pass, i:=02

B:=BPELtoSTS(SpecB)3

MT :=STSProd(B,TP)4

T :=STS2SET(MT , k)5

STC:=getPaths(T , crit)6

nbTest:= size(STC)7

while verdict 6= fail and i < nbTest do8

verdict := verdictResponse(verdict, onlineTest(STC[i], imp))9

i++10

end11

return verdict12

This algorithm takes as inputs, an ABPEL specification (SpecB), a test purpose
expressed as a WS-STS model (TP), an integer number (k) representing the maxi-
mum bound for the SET length, with the inclusion criterion (crit) and the WSDL
address of the implementation under test. By default the verdict is initialized to a
pass one.

94 CHAPTER 4. IMPLEMENTATION AND TOOLS SUPPORT

The first step, consists in the generation of the WS-STS specification model (B)
from the ABPEL specification using the BPEL2STS tool. In order to handle the
specification of test purpose, a product is computed between the WS-STS model
specification and the WS-STS of the test purpose, yielding a test model MT . The
next step is the computation of the SET. For that, the symbolic execution method is
applied to unfold the test model behavior up to depth k using the STS2SET tool.
Symbolic Test Cases (STC) are generated from the SET paths, according to the
specified inclusion criterion. Then each STC is realized and executed stepwise against
the implementation until a fail verdict is emitted or there are no more remaining STC.
For each STC execution a verdict is emitted and the global verdict is updated. The
global verdict is refreshed by taking into consideration the previous global verdict
and the last STC verdict.

Algorithm 3 explains how the new global verdict is computed. In this algorithm
the previous global verdict is represented by the verdictprev variable, the last STC
emitted verdict by verdictlast and the new global verdict by the response variable.
In case, the emitted verdict is a fail one, then the returned response will be also a
fail. A second possibility may occur when the emitted verdict is an inconclusive, in
that case the response will be inconclusive too. In principal, if such case occurs the
STC is re-executed against the implementation. The last case is the emission of pass
verdict.

Algorithm 3: verdictResponse
Input: verdictprev: {pass, fail, inconc}, verdictlast: {pass, fail, inconc}
Output: response:{pass, fail, inconc}
if verdictprev==fail or verdictlast==fail then1

response:= fail2

else3

if verdictprev==inconc or verdictlast==inconc then4

response:= inconc5

else6

response:= pass7

end8

end9

return response10

4.2.1 ABPEL to WS-STS transformation

To rigorously describe the behavior of an orchestration the BPEL2STS tool is used
to generate the corresponding formal model. From an ABPEL specification, the

4.2. CONFORMANCE TESTING OF A SERVICE ORCHESTRATOR 95

BPEL2STS tool generates the associated WS-STS model. This tool is an implementa-
tion of the transformation rules (presented in the Chapter 3, section 3.3.2). It had
been developed within the Project ANR Pervasive Service Composition1 (PERSO).

4.2.2 Test Purpose Support

One may want to guide the generation of test cases in order to focus on particular
functional aspects to be tested. The test purposes (TP), represent the specification
of a test scenario. In our approach a TP is described as a WS-STS model. To
incorporate a test purpose to the WS-STS specification model, a product of models
must be computed.

In this part we present how the theoretical rules, defined in Chapter3, of computing
the product between the specification model and the test purpose model, are executed.

Algorithm 4: WS-STS Computation
Input: B = (DB,VB, SB, s0B , TB): WS-STS,
TP = (DTP ,VTP , STP , s0TP , TTP): WS-STS
Output: MT = (D,V , S, s0, T): WS-STS
s0 = {(s0B , s0TP)}; D = DTP ; V = VTP ; T = ∅; E = s0; E = S1

while E 6= ∅ do2

take s ∈ E3

forall i ∈ {1, 2, 3, 4} do4

(Snew, Tnew) = Product-Rule i (B, TP, s)5

T = T ∪ Tnew6

E = E ∪ Snew7

S = S ∪ Snew8

end9

E = E − {s}10

end11

MT= coreach (MT)12

return (MT)13

In the Algorithm 4, the symbolic product is implemented according to our previous
four product computation rules. The algorithm takes the specification (B) model
and the TP model as input parameters and returns the computed product model
name the MT .
The computation of new states of MT is achieved using a temporary set of states E
that contains the MT states to be processed. For each state of E the computation

1PERSO Project: http : //www.lri.fr/ poizat/ANR_PERSO/

96 CHAPTER 4. IMPLEMENTATION AND TOOLS SUPPORT

Algorithm 5: Product-Rule 1
Input: B = (DB,VB, SB, s0B , TB): WS-STS,
TP = (DTP ,VTP , STP , s0TP , TTP): WS-STS,
s = (sB, sTP) ∈ SB × STP : State
Output: Snew: State set, Tnew: Transition set
Snew = Tnew = ∅1

forall sTP
[g] e / A−−−−−−−−→ s′TP ∈ TTP do2

if e ∈ {τ, χ,]} then3

snew = (sB, s
′
TP)4

Snew = Snew ∪ {snew}5

Tnew = Tnew ∪ s
[g] e / A−−−−−−−−→ snew6

end7

end8

return (Snew, Tnew)9

Algorithm 6: Product-Rule 2
Input: B = (DB,VB, SB, s0B , TB): WS-STS,
TP = (DTP ,VTP , STP , s0TP , TTP): WS-STS,
s = (sB, sTP) ∈ SB × STP : State
Output: Snew: State set, Tnew: Transition set
Snew = Tnew = ∅1

forall sB
[g] e / A−−−−−−−−→ s′B ∈ TB do2

if e ∈ {τ, χ,]} then3

snew = (s′B, sTP)4

Snew = Snew ∪ {snew}5

Tnew = Tnew ∪ s
[g] e / A−−−−−−−−→ snew6

end7

end8

return (Snew, Tnew)9

4.2. CONFORMANCE TESTING OF A SERVICE ORCHESTRATOR 97

Algorithm 7: Product-Rule 3
Input: B = (DB,VB, SB, s0B , TB): WS-STS,
TP = (DTP ,VTP , STP , s0TP , TTP): WS-STS,
s = (sB, sTP) ∈ SB × STP : State
Output: Snew: State set, Tnew: Transition set
Snew = Tnew = ∅1

forall sB
[gB] eB / AB−−−−−−−−−−→ s′B ∈ TB do2

forall sTP
[gTP] eTP / ATP−−−−−−−−−−−−−→ s′TP ∈ TTP do3

if eB = eTP then4

snew = (s′B, s
′
TP)5

Snew = Snew ∪ {snew}6

Tnew = Tnew ∪ s
[gB∧gTP] eB / AB;ATP−−−−−−−−−−−−−−−−→ snew7

end8

end9

end10

return (Snew, Tnew)11

of the following state(s) is performed according to the product rule 1, 2, 3 or 4 as
presented in the Algorithm 5, 6, 7, or 8 respectively.

The Algorithm 5 represents the execution of the rule (i) in Section 3.3.4. This
algorithm iterates over all the transitions of the TP and checks whether the transition
event is an internal event (e ∈ {τ, χ,]}). If it is the case then, a new state and
transition are built. The new state will be composed of the state of B (sB), and the
next state of TP model (s′TP). However, the new created transition has the same
labeling transition as the TP . The Algorithm 6 represents the execution of the rule
(ii) in Section 3.3.4. It is identical to the Algorithm 5 except that its reasoning
concerns a B transitions.

Algorithm 7 represents the synchronization of the transition B and TP on the
same event (eB = eTP). It results a new state for MT , composed by s′B and s′TP ,
and a new MT transition which is a combination of TB and TTP . This algorithm is
associate to the rule (iii) in Section 3.3.4.

Finally, the Algorithm 8 process the case in which the event of TTP is equal to *
(eTP = ∗). The first step is to check if there is a eTP that could be synchronized with
the eB. This verification is performed by using the boolean variable found. When
there are no synchronization, the second step consists in creating a new state and
transition for MT based on the TB. The Algorithm 8 is associate to the rule (iv) in
Section 3.3.4.

The Algorithm 9 aims to clean the MT model by keeping only the states and

98 CHAPTER 4. IMPLEMENTATION AND TOOLS SUPPORT

Algorithm 8: Product-Rule 4
Input: B = (DB,VB, SB, s0B , TB): WS-STS,
TP = (DTP ,VTP , STP , s0TP , TTP): WS-STS,
s = (sB, sTP) ∈ SB × STP : State
Output: Snew: State set, Tnew: Transition set
Snew = Tnew = ∅1

forall sB
[gB] eB / AB−−−−−−−−−−→ s′B ∈ TB do2

found := false3

forall sTP
[gTP] eTP / ATP−−−−−−−−−−−−−→ s′TP ∈ TTP do4

if eB = eTP then5

found:= true6

break7

end8

end9

if found = false then10

forall sTP
[gTP] eTP / ATP−−−−−−−−−−−−−→ sTP ∈ TTP and eTP = ∗ do11

snew = (s′B, sTP)12

Snew = Snew ∪ {snew}13

Tnew = Tnew ∪ {s
[gB] eB / AB−−−−−−−−−−→ snew}14

end15

end16

end17

return (Snew, Tnew)18

Algorithm 9: coreach function
Input: MT : WS-STS
Output: MT : WS-STS
foreach path ∈MT do1

if path contains a] transition label then2

M ′:= copy the path3

end4

MT := model construction from M ′ paths5

end6

return MT7

4.2. CONFORMANCE TESTING OF A SERVICE ORCHESTRATOR 99

transitions that leads to the acceptance states defined in the TP .

4.2.3 SET Computation

After generating the formal model M , we present through the Algorithm 10 its
unfolding process. This unfolding represents the semantic of the formal model execu-
tion.
Note that the formal model is the test model MT when a test purpose is specified
(M = MT). Otherwise it represents the specification model (M = B).

An SET is characterized by a set of nodes (NSET) and a set of edges (ESET). Each
node describes its associate WS-STS state (s), the path condition (π) that must
be satisfied in order to reach this node and the σ function that maps each variable
(v ∈ V) with its corresponding symbolic variable (vs ∈ Vsymb). An edge is a link
between two nodes. This link is label with a symbolic event.

To generate the SET, the first step of the Algorithm 10 consists in creating the
initial node η0. This node is made up of the s0 state from the WS-STS, the initial
condition which is true and the σ function which associates to each variable a new
symbolic variable.
The algorithm describes the use of two temporary set of nodes: nodeProcessing and
visitedNodes. The nodeProcessing set contains the unhandled nodes yet, such as
the initial node η0. A copy of the nodeProcessing is saved in visitedNodes. The
nodeProcessing is then emptied in order to receive new unhandled nodes.

While, it still exist unhandled nodes of (nodeProcessing) and the maximum
depth k is not reached yet, the algorithm continues the computation of the SET.
Each node η of the visitedNodes will be processed by extracting information about
the out transitions from the state parameter of this node. For each out transition
the Algorithm 11 is used to generate new node(s) and edge(s).

Once the path condition π′ of the new generated node is computed, it is sent
to the solver in order to check its satisfiability. If the solver can find at least one
concrete value for each symbolic variables, then it replies with sat. This implies that
the path condition is feasible and the unfolding of the WS-STS continues. However,
if the solver replies with an unsat response, this means that the unfolding stops and
then the algorithm processes the next unhandled node. If π′ is satisfiable then the
inclusion criterion is checked (line 24 of the algorithm), in order to detect repetitive
behavior and thus decide stopping or not the generation of the SET path. Finally,
the created node an edge are added to NSET and ESET respectively.

The creation of the new node (η′) and edge is depicted in the Algorithm 11.

100 CHAPTER 4. IMPLEMENTATION AND TOOLS SUPPORT

Algorithm 10: SET generation
Input: M = (D,V , S, s0, T): WS-STS, k: N, crit: SETinclusion
Output: T = (NSET, ESET): SET
Variables: vsi ∈ Vsymb, nodeProcessing: set of SET nodes, visitedNodes: set1

of SET nodes, edge =(NSET × Evsymb ×NSET) ∈ ESET, node ∈ NSET

Initialization: i = 0, depth = 02

while v ∈ V and i 6 size(V) do3

vsi:= createNewSymbVar(v)4

σ0:= (v, vsi)5

i+ +6

end7

π0:= true8

η0 := (s0, π0, σ0)9

NSET := {η0}10

nodeProcessing:= ({η0})11

while nodeProcessing 6= ∅ do12

visitedNodes := nodeProcessing13

depth++14

nodeProcessing:=∅15

if depth < k then16

foreach η ∈ visitedNodes do17

foreach t ∈ outTransitionStateOf(η) do18

(η′, edge):= createNewNodeAndEdge(η, t)19

// where η′:= (targetStateOf(t), πη′ , ση′)20

satisfiability := checkSat(πη′)21

if satisfiability==sat then22

foreach node ∈ NSET do23

if stateOf(η′) = stateOf(node) and πnode ⊆ πη′ then24

stop the unfolding of this path25

end26

end27

nodeProcessing:= nodeProcessing ∪{η′})28

NSET := NSET ∪ {η′}29

ESET := ESET ∪ {edge}30

end31

end32

end33

end34

end35

return T36

4.2. CONFORMANCE TESTING OF A SERVICE ORCHESTRATOR 101

Algorithm 11: Create new node and edge
Input: η=(η, π, σ) ∈ NSET, t= (s, geA, s′) ∈ WS-STS transition
Output: η′=(η′, π′, σ′) ∈ NSET, edge=(η, esymb, η

′) ∈ ESET,
η′:= (s′, πη, ση)1

if g 6= ∅ then2

πη′ := πη′ ∧ getGuardWithSymbVar(g, ση′)3

end4

if e is an input then5

create new symbolic Variables for received and assigned variables6

update ση′ with the created symbolic variables7

esymb := getEventWithSymbVar(e, ση′)8

else9

if e is an output then10

esymb := getEventWithSymbVar(e, ση′)11

else12

esymb:= e13

end14

end15

if A 6= ∅ then16

foreach a ∈ A do17

create new symbolic variables for the assigned variable18

update ση′ with the created symbolic variables19

aη′ := getActionWithSymbVar(A, ση′)20

πη′ := πη′ ∧ πaη′21

end22

end23

return (η′, edge)24

The state parameter of η′ is the target state of the transition t. The computation
of the constraint π′ associated to η′ represents a conjunction between the previous
node constraint, the constraints of the guard, the event (if it is an input event) and
the actions of the WS-STS transition. All of these constraints are expressed using
symbolic variables from σ′. The latter is updated with new symbolic variables when
a variable is received or for the assigned variables in the action part of the transition.
The new created edge (esymb) is label from the event of t, using symbolic variables as
mapped in sigma′

102 CHAPTER 4. IMPLEMENTATION AND TOOLS SUPPORT

4.2.4 Symbolic Test Cases

Each path in the SET represents a potential symbolic test case (STC). The path
condition (PC) associated to a path acts as a restriction on the possible data value,
thus the test scenario can be executed. This restriction is due to the interdependence
of the PC variables and the satisfaction of its specified conditions.

4.2.5 Online realization with a constraint solving tool

We presented the interactions between the tester (also called the oracle) and the
implementation service in the online testing of Web services (Chapter 3.Section 3.4.2)
trough the Algorithm 1.
In this subsection we explain the realization part that allows us to obtain concrete
data for the communication with the implementation. In other words, we present how
the solving of predicates, used in the SET computation (Chapter 3.Section 3.4.1),
and the online testing Algorithm 1 is achieved using the Z3 SMT solver. This is
achieved in four steps:

1. Computation of a tree representing the structure of each variable

2. Creation of a new variable for each tree leaf

3. Creation of a new variable for each node that plays a role in the predicate to
be solved

4. Dumping into Z3 format, launching Z3 and parsing results

The first algorithm (Algorithm 12) computes the tree structure of the variables.
The tree is created according to the variable type using the createTreeFromType
function as describes in the Appendix C (Algorithm 16). If the variable has a simple
type then a leaf is created. Otherwise, the tree structure is constructed according to
the variable type structure.

Example: Let us assume a variable x, a variable y and a complex type named
T1. T1 consists of a part a and another part b, both lead to an integer value. We
provide the following annotation for this complex type: T1 : {a : Int, b : Int}.
The variables x and y have the following types: x :: Int and y :: T1.

The corresponding tree for x will be reduced to an integer leaf and the one
associated to y is a tree with an integer leaf through edge label a and an integer leaf
through edge label b. We provide in Figure 4.4 a graphical view of the trees.

When the trees corresponding to variables with complex type are constructed, a
new variable is assigned to each leaf of the tree, as presented in the Algorithm 13.

4.2. CONFORMANCE TESTING OF A SERVICE ORCHESTRATOR 103

Algorithm 12: Creation of the associate tree for each variable of V
Input: a set of Variables V
Output: Creation of the trees for each variable of V
foreach v ∈ V do1

typev = typeOf(v)2

Tree t = createTreeFromType(typev)3

valueOf(v) = t4

variableOf(t) = v5

end6

h

x •
y
•a b

◦ ◦

Figure 4.4: Creation of trees from variables types

These new variables will be used as pointers when the instantiation of variables of
complex type will be performed. In fact, each path of the tree starting from the root
to a leaf is represented with a unique variable as shown in Figure 4.5 for the previous
example.

Algorithm 13: creation of new leaf variables
Input: a set of Variables V
Output: a set of variables V within the new leaf variables
V A := ∅1

foreach v ∈ V do2

if typeOf(v) 6= simpleType then3

V A = V A ∪ createNewLeafVars(v.type, v.value)4

end5

end6

return V ∪ V A7

Once the previous step is achieved, in the next one we process the predicate. A
predicate is a conjunction of clauses. Theses clauses may represent an equivalence
between variables or/and paths in trees (an XPath expression) as well as arithmetic
and logic operations.
Let us consider the same previous variables x and y and the following predicate:

104 CHAPTER 4. IMPLEMENTATION AND TOOLS SUPPORT

x •
y
•a b

v1• v2•

Figure 4.5: Creation of leaf variables for the trees

Algorithm 14: Creation of variables for clauses
Input: a set of Variables V , a constraint C
Output: a set of variables V within the new VC variables
foreach c ∈ clausesOf(C) do1

V = V ∪ createNewVCVars(V, leftPartOf(c))2

V = V ∪ createNewVCVars(V, rightPartOf(c))3

end4

return V5

x = 3 + 4 ∧ y/b = x.

The clause y/b = x expresses the equivalence between the value of the variable x
and the value of the location pointed by the path y/b.
In case the XPath expression leads to a leaf, then the path is replaced by its
associated variable. If the XPath expression y/b does not correspond to a leaf, but
to a sub-tree then a new variable is created to represent this sub-tree.
To demonstrate this, let us consider the variable z (in addition to x and y) and a
new complex type T2 where: T2 : {a : Int, b : T1} and z :: T2.
Let us also suppose we have: x = 3 + 4 ∧ y/b = x ∧ z/b = y

In such a case, a new variable will be created to represent z/b sub-tree. The
graphical view is given Figure 4.6

x •
y
•a b

v1• v2•

z •a b
v3•

v6•a b
v4• v5•

Figure 4.6: Creation of new variables form the the subtrees

The last step is to submit the predicate to the Z3 solver. For this, we re-
place the variables in it by variables created in previous steps, e.g. we solve:
x = 3 + 4 ∧ v2 = x ∧ v6 = y (given the structure of x, y, z, v2, v6)
However, the solver can not process the predicate as it is. A transformation of this

4.2. CONFORMANCE TESTING OF A SERVICE ORCHESTRATOR 105

predicate into an understandable format by the solver must be done.
For this purpose we defined a function that generates an SMT input file for Z3 solver.
This input file represents a problem to be submitted to Z3 and has to satisfy the
following BNF rules:

Problem ::= Prefix Theory Var-Declaration Constraint-Formula Suffix
Prefix ::= " (benchmark data "
Theory ::= Labels-Declaration String-Declaration Tree-Declaration
Var-Declaration ::= " :extrafuns (" (variableName variableType)+ ")"
Constraint-Formula ::= ":formula (and " variable-Structure constraintClauses")"
Suffix ::= ")"
Labels-Declaration ::= " :datatypes ((label " Labels∗ ") "
String-Declaration ::= " (String ("word+ | "noString)")
Tree-Declaration ::= "(tree (nil) (IntLeaf (val Int))

(RealLeaf (val Real))(StringLeaf (val String))
(BoolLeaf (val Bool))
(cons (firstChildLab label) (firstChild tree)
(siblingChilds tree))))"

A problem is divided into three main sub-parts: the Theory, the Var-Declaration
and the Constraint-Formula. We use the teletype font to indicate the part that
will appear as it is, in the Z3 input file.

The Theory is used to specify the string words allowed as a given database and
also to specify the structure of a complex type variable. The second part, i.e. the
Var-Declaration, allows to declare each variable and its type. The different types
can be: Int, Real, Bool or a tree type. We also support String using a set of
constructors.
Finally, the Constraint-Formula sub-part allows to represent at first the structure of
a complex variable type as specified by the theory (this corresponds to the "variable-
Structure" in the rules above). Secondly the predicate (or the constraint), presented
as a conjunction of clauses, will be written into a particular form (this corresponds
to the constraintClauses in the rules above).
To explain this last point, let us consider the following simple example: x = 3 + 4.
The corresponding constraint with the concrete syntax of Z3 will be written as
follows: (= x (+ 3 4)).

Labels∗ represent the set of tree labels of complex type variables, there is no
labels for simple type variables. The word+ item represents the words given as input
to the program. The Tree-Declaration defines a tree structure.

We give below an example of a tree given as an input to the solving function and
how we encode it with the concrete syntax of Z3. We also give a linear representation

106 CHAPTER 4. IMPLEMENTATION AND TOOLS SUPPORT

of the tree, with the label connected to its ancestor, its first child with its descendants
and all the siblings of this child and their descendants. The nil constructor represents
an empty tree.
To help the understanding of the constraints solving process, we present the follow-
ing example. Let us consider the variable w with a complex type: w :: T , where:
T1 : {d : Int, e : Int}, T2 : {f : Int, g : Int} and T : {a : Int, b : T1, e : T2}.

The tree structure of w is graphically represented in the left part of the Figure 4.7.
The associated description of w in the concrete syntax of Z3 as follows:

(= w (cons a (IntLeaf v0) (cons b (cons d (IntLeaf v1) (cons e (IntLeaf v2)
(nil)))(cons c (cons f (IntLeaf v3) (cons g (IntLeaf v4) (nil)))) (nil))))

The graphical representation of w as an input format for Z3 is given in the right
part of the Figure 4.7. The nil symbol, represented as ⊥, is associated to some nodes
to highlight the fact that those nodes do not have siblings, e.g. the root node w or
the node c.

w•
a b c

v0•
d e f g

v1• v2• v3• v4•

◦ ◦

w ⊥

a b c ⊥

d e ⊥ f g ⊥v0

v1 v2 v3 v4

Figure 4.7: The structure of the w variable

The generated Z3 input file is submitted to the solver. The latter, returns an
answer about the predicate satisfiability and/or an instantiation of variables. The
predicate could be satisfiable (sat) or an unsatisfiable answer (unsat). A third answer
could be given, which is the unknown response (unknown). The unknown answer is
emitted when the solver cannot give a response in a given amount of time.
When an instantiation of the variable is provided, a solving function is in charge of
retrieving those values then assigning them to the variables. If the variables have a
tree representation then the leaves variables will receive the different values and thus
complete the construction of trees. The instantiated variables will be used during
the test case execution.

The function that translates the predicate into an input file for the Z3 SMT
solver, can easily be modified to interact with different solving tools. All we need to

4.2. CONFORMANCE TESTING OF A SERVICE ORCHESTRATOR 107

add are some methods for the dumping of the problem to be solved in the syntax
accepted by the tool and also to add a method to retrieve the responses of this tool.

Here we present an example of how the interaction process with the Z3 solver.
Let us assume the following inputs for the solving function. T1 and T2 are complex
types: T1 : {a : Int, b : Real} and T2 : {a : String, b : T1}. The input variables x, y
and z have the following types: x :: Bool, y :: T1 and z :: T2.
Further, the predicate is : x = true∧y/a = 8.2+4.0∧z/b = y and {hello, everyone}
are possible string words.

The graphical view of the variables and their trees is the same as in the Figure 4.6.
The Z3 input file for this example is given in the Figure 4.8: the datatypes part
provides the name of the used labels the allowed string words and the theory that
describes a tree structure. The second part, the extrafuns, is used for variables
declaration and the specification of their types. Finally, the formula part contains a
description of the variables with a tree structure and the expressed predicate.

(benchmark data
:datatypes ((label a b)

(String hello everyone)
(tree (nil) (IntLeaf (val Int)) (RealLeaf (val Real))
(StringLeaf (val String)) (BoolLeaf (val Bool))
(cons (firstChildLabel label) (firstChild tree) (SiblingChild tree))))

:extrafuns ((x Bool) (y tree) (z tree) (v1 Int) (v2 Real) (v3 String)
(v4 Int) (v5 Real) (v6 tree))

:formula (and (= y (cons a (IntLeaf v1) (cons b (RealLeaf v2) nil)))
(= z (cons a (StringLeaf v3)(cons b (cons a (IntLeaf v4)
(cons b (RealLeaf v5) nil)) nil)))
(= v6 (cons a (IntLeaf v4) (cons b (RealLeaf v5) nil)))
(= x true)
(= v2 (+ 8.2 4.0))
(= v6 y))

)

Figure 4.8: The Z3 input file for the example.

As response to the input file, the Z3 solver provides a satisfiability response
preceded by an instance of the variables in case the predicate is sat. The response of
the solver for our example is given in Figure 4.9.

In our example the predicate is satisfiable that means that the solver finds for
each variable a corresponding value while respecting the conditions of the predicate.
For the variables that were not used by the predicate such as the integer variable v6

108 CHAPTER 4. IMPLEMENTATION AND TOOLS SUPPORT

x − > true
v2 − > 61/5
y − > (cons a(IntLeaf 0)(cons b(RealLeaf 61/5)nil))
v1 − > 0
z − > (cons a(StringLeaf hello)(cons b(cons a(IntLeaf 0)

(cons b(RealLeaf 61/5)nil))nil))
v3 − > hello
v4 − > 0
v5 − > 61/5
v6 − > (cons a(IntLeaf 0)(cons b(RealLeaf 61/5)nil))

//V ariable
//instantiation

sat // Satisfiability response

Figure 4.9: The Z3 solver response.

or the real (rational) variable v2 in our example the solver assigns a default value
depending on its type. At the end, we find (Figure 4.10) and returns: { x = true,
y = {a = 0, b = 61/5} and z = {a = hello, b = {a = 0, b = 61/5}}} .

x •
true
•

y
•a b

0
•

61/5
•

z •a b

hello
•

v6•a b

0
•

61/5
•

Figure 4.10: Variables realization

4.3 Conclusion
After the theoretical description of our approach in Chapter 3, within this chapter
we have presented some technical implementation detail and tool support associated
to our framework. We described the functionalities of the used tool chain using
algorithms all along the different steps of the approach.

We reuse the Figure 4.11 to summarize the different steps of our approach that are
supported by the tools. In step 1: from a specification represented as a BPEL file we
use the BPELtoSTS (4220 lines in Java) tool to generate an WS-STS model. Followed
by step 2: the produced model and a test purpose WS-STS (in the same format) are

4.3. CONCLUSION 109

Figure 4.11: Overview of the tools chain

provided as inputs files to our STSprod tool (436 lines in Java) that computes the
product. In step 3: the STS2SET (2098 lines in Python) tool takes as input the STS
product and uses the Z3 solver to compute the SET. We have implemented only the
path length criterion. Currently, we are working on implementing the STS2SET tool
as a java plugin for Eclipse. Finally in step 4: using the SET path we execute the
test cases as described in the test cases realization. This step is done manually. The
test cases are exercised against an implementation, the service under test (SUT),
which is not isomorphic to the specification.
In order to provide graphical representation of the STSs and the SET, we used
intermediate formats following the Aldebaran format (.aut) which supports a graphical
representation with the CADP tool [62].

C
h

a
p

t
e

r

5
Conclusion

The Service Oriented Architecture (SOA) paradigm is changing the style of developing
software applications. It allows more flexibility, especially with the use of loosely
coupled software modules. A widely used implementation of this paradigm are Web
services. The reliability of these systems is an imperative property that must be
considered as a standard. However, such a guaranty implies tedious and sometimes
expensive work. For these reasons, many research works explored the possibility of
automating the testing and verification activities.

In this thesis we have focused on testing the conformance of service orchestrations
with a black box approach. In the present chapter we present the achievements in
our work and discuss future work to perform and toolkit to improve.

5.1 Contributions

In chapter 2, we have presented our symbolic approach for the generation of sym-
bolic test cases, with the intention of applying conformance testing on a centralized
composite service.
Given an ABPEL specification of a service orchestration, we generate its associate
WS-STS model using our transformation rules. Then we compute the symbolic exe-
cution tree (SET) from the WS-STS using symbolic execution. The use of a symbolic
model together with symbolic execution enables us to avoid state explosion issues in
presence of data handled by Web services. Each path of the SET is associated to
a path condition thus, constituting a (symbolic) test case. The realization of these
symbolic test cases is achived thanks to the Z3 SMT solver. After that we execute

111

112 CHAPTER 5. CONCLUSION

test cases by interacting step by step with the orchestration implementation. At the
end, we emit a verdict about the conformance of the implementation regarding to its
specification.
In our approach, we also offer the possibility to guide the test cases generation by
supporting test purposes (TP). The specific behavior to be tested, depicted by the
TP, is incorporated to the specification model using a WS-STS product. Then, the
remaining testing process corresponding to the generation of the SET, the realization
of the test cases then their execution against the implementation stays unchanged.

The chapter 3 was a presentation of the tool chain that supports our approach.
The transformation of the ABPEL specification into a WS-STS model is done using
the BPEL2STS prototype. This prototype was developed within the Project ANR
Pervasive Service Composition1 (PERSO).
When a specific test scenario is defined then the STS-Product prototype computes
the product between the WS-STS specification and the WS-STS of the TP, thus
providing a new STS model which describes the specification while taking into
account the test purpose. The STS2SET tool is in charge of computing the SET tree
from which test cases are deduced. Another tool is used for the realization of the
test cases by interacting with the Z3 SMT solver.
For the moment, the last step that consists in executing the test cases is performed
manually by (i) using the soapUI tool, to interact with the implementation, and (ii)
the Z3 solver to check the satisfiability of the implementation response. This part is
currently being implemented. Finally a verdict is emitted on the conformance of the
implementation with regard to its specification. We applied our symbolic approach
on two medium size cases studies.

5.2 Perspectives

Besides the contribution presented above, some perspectives are still to be explored.
We can split those perspectives as research vs. tool perspectives.

Among the research perspectives, there is the support of additional activities
of BPEL, such as compensation and termination handlers. This may impact the
WS-STS model, and accordingly the transformation rules and the online testing
algorithm.
It would also be interesting, following the domain specification language paradigm, to
define a specific language for test purposes instead of providing them as STS models.
Another perspective that should be investigated is to consider the UML4SOA profile
modeling language or the SENSORIA Reference Modelling Language (SRML) to
specify service compositions.

1http : //www.lri.fr/ poizat/ANRPERSO/index.html

5.2. PERSPECTIVES 113

Since we have applied our approach on a restricted testing architecture, another
perspective is to apply it on an in-the-large testing architecture, where the tester
simulates the user(s) but also the service partners. This latter perspective would also
enable us to apply our approach on a choreography of services in which the business
process is no longer managed by a unique service.

A first tool perspective is the automation of the online test execution process
where the tester interacts with the service implementation. This is under process. A
second tool improvement would be the integration of a solver for String constraints
such as the Hampi [83] solver, which supports constraints over fixed-size String
variables, without requiring to given String constraints.

A
p

p
e

n
d

ix A
x-Loan Case Study

In this section we present our xLoan case study. It is a modified/extended version of
the Loan approval composition exposed within the WS-BPEL standard [117], which
usually serves for demonstration purposes in articles on BPEL verification. Our
extensions are targeted at demonstrating our support for BPEL important features:
complex data types, complex service conversations including message correlation,
loops and alarms. Hence, more complex and realistic data types are used, to model
user information, loan requests and loan proposals.

A.1 Specification

The specified sub-services respectively deal with loan approval (BankService) and
black listing (BlackListingService), with users not being blacklisted asking for low
loans (≤ 10, 000) getting loan proposals without requiring further approval. As-is,
these services resemble the ones proposed in [117]. Yet, once a loan is accepted,
proposals may be sent to the requester. Further communication then takes place,
letting the requester select one proposal or cancel, which is then transmitted to
BankService. If the selected offer code is not correct the requester is issued an error
message and may try again (select or cancel). Timeouts are also modelled, and the
bank is informed about cancelling if the requester does not reply in a given amount
of time (2 hours). The figure A.1 represent an overview of the xLoan conversation
protocol.

There is no official graphical notation neither for orchestration architectures
(WSDL interfaces and partner links), nor for the imported data types (XML Schema

115

116 APPENDIX A. X-LOAN CASE STUDY

Figure A.1: xLoan Example – Business process

files) or the service conversation (BPEL <process> definition). For the former ones
(Fig. A.2) we use the UML notation that we extend with specific stereotypes in order
to represent message types, correlations and properties. Moreover, XML namespaces
are represented with packages. Additionally, there is currently an important research
effort on relating the Business Process Modelling Notation (BPMN) with Abstract
BPEL or BPEL code. Therefore, concerning the graphical presentation of service
conversations, we take inspiration from BPMN, while adding our own annotations
supporting relation with BPEL. Communication activities are represented with the

A.2. WS-STS MODEL 117

Figure A.2: xLoan Example – Data and Service Architecture

concerned partnerlink (USER for the user of the orchestration, BK or BL
for the two sub-services), operation, input/output variables, and, when it applies,
information about message correlation.

Figure A.3 presents the orchestration specification. The overall process is pre-
sented in Figure A.3, upper part, while its lower part concerns the (potentially
looping) subprocess, GL&S (Get Loan and Select), for loan proposal selection.

A.2 WS-STS model
The STS obtained from the xLoan example presented is presented in Figure A.4
where tau (resp. tick, term) denote τ (resp. χ,

√
). The zoom corresponds

to the while part. One may notice states 16 (while condition test), 17/33 (pick), 34
(onAlarm timeout), and 18/23 (correlation testing).

A.3 Symbolic Execution Tree
The SET computed from the Figure A.4 STS is presented in Figure A.5 and in
Figure A.6. There are 10 leaves corresponding to termination (in gray). The zoom
presents the path (in black) we use for demonstration in the next Section. Its final
node is number 305, and its path condition, π305 is also given in the Figure.

118 APPENDIX A. X-LOAN CASE STUDY

Figure A.3: xLoan Example – Orchestration Specification

A.4 Symbolic Test Cases

In this part we present our online testing approach using the UML2CSP tool [38].
Our approach is automated by means of prototypes written in the Python language
that serve as a proof of concept. As far as constraint solving is concerned, we chose the
UML2CSP tool [38], which supports OCL constraint solving over UML class diagrams,

A.4. SYMBOLIC TEST CASES 119

Figure A.4: xLoan Example – Symbolic Transition System

that correspond to the constraints we have on XML schema data. Additionally,
UML2CSP is able to generate witness object diagrams when the constraints are
satisfiable. More precisely, in order to reuse this tool, we proceed as follows:

• we translate XML schema definitions into an UML class diagram, see Fig-
ure A.2. Additionally, domain limits are set up in UML2CSP according to
uniformity hypotheses, e.g., here we have set maxMonth:{12,24,36} and
maxPayment:[1000..100000]). This step is done only once.

• to check if some π is satisfiable before sending a message, an additional root
class (Root) is created wrt. the UML diagram, with as many attributes
as symbolic variables in π. The π constraint is translated in OCL. If π is
satisfiable, UML2CSP generates an object diagram. From it we get data for
the variable of interest to be sent (step val := (SOLV E(π)[xs]) in the online
Algorithm).

• to check if some π is satisfiable after receiving a message, we perform as before,

120 APPENDIX A. X-LOAN CASE STUDY

Figure A.5: xLoan Example – Symbolic Execution Tree (k=10, τs not counted)

but adding an OCL constraint enforcing that the symbolic variable of the
reception is equal to the data effectively received (steps π = π ∧ (xs = val) and
¬SOLV E(π) in the online Algorithm).

• cutting infeasible paths in the SET computation is a sub-case of satisfaction
before message sending (the generated object diagram is discarded).

• strings are treated as integers which represent an index in an enumerated type.
This corresponds to a set of specific string constants for the test.

For the time being, interaction with UML2CSP is manual. The automation of this
step is under process as part of an Eclipse plug-in we are developing.

Experiments have been applied on an implementation of xLoan which is not
isomorphic to its specification as, e.g., the BPEL code relies on additional boolean
variables rather than on the workflow structure to decide if the subprocess for loan
proposal selection or cancelling is applicable. The implementation size is 246 lines
long (186 XML tags). In order to demonstrate our online algorithm, we take one of
the 10 complete paths we have in the SET (see Fig. A.5). Due to lack of room we
focus on the first interaction steps of the path (loan request, loan reply). The first call

A.4. SYMBOLIC TEST CASES 121

Figure A.6: xLoan Example – Symbolic Execution Tree - Overview of the STS2SET
tool

to UML2CSP with the end path condition, π305, enables one to retrieve values for the
RequestIn message (id, name, income, amount, maxMonth, maxPayment), e.g., the
part of the path condition relative to the requested amount generates the Context
Root inv PC : not(self.vs30.req.amount<=10000) OCL constraint, and value
10001 for the request amount. We then generate the message data in Figure A.7,
left, and send it using SoapUI1. The corresponding received message is in Figure A.7,
right. We translate this data as an OCL constraint and solving it with UML2CSP
we are able to show that it is a correct output. We may then proceed generating
data for a correct offer selection (offerCode=1).

We also used the solver SMT Z3 with the xLoan examples as shown in Figure A.8.

1http://www.soapui.org/

122 APPENDIX A. X-LOAN CASE STUDY

<soapenv:Envelope xsi:...="http:... >
<soapenv:Body>
<ns2:RequestIn>

<ns3:uInfo>
<id>1</id>
<name>Simpson</name>
<income>10002</income>

</ns3:uInfo>
<ns3:req>

<amount>10001</amount>
<maxMonth>12</maxMonth>
<maxPayment>1000</maxPayment>

</ns3:req>
</ns2:RequestIn>
</soapenv:Body>
</soapenv:Envelope>

<soapenv:Envelope xsi:...="http:... >
<soapenv:Body>
<ns2:RequestOut>

<status>true</status>
<fileNumber>1</fileNumber>
<ns3:proposals>

<offerCode>1</offerCode>
<nbMonths>12</nbMonths>
<monthPayment>918</monthPayment>
<ns3:rate>

<type>fixed</type>
<value>10</value>

</ns3:rate>
</ns3:proposals>

</ns2:RequestOut>
</soapenv:Body>
</soapenv:Envelope>

Figure A.7: xLoan Example – a Sent and a Received Message (parts of)

Figure A.8: xLoan Example – Execution of a test case

A
p

p
e

n
d

ix B
E-Conference Case Study

In this section we present our e-Conference case study. This medium-size orchestrated
service provides functionalities to researchers going to a conference such as information
about the conference, flight booking and fees refunding. Parts of the orchestration,
e.g., the e-governance rules, correspond to reality. Other parts, e.g., the sub-service
used to book plane tickets, represent a simplified yet realistic version of it.

B.1 Specification

e-Conference is based on three sub-services: ConferenceService, FlightService, and e-
govService as presented in the Figure B.1. Its specification is as follows. A user starts
the process by providing the conference name and edition, together with personal
information (ordersSetup operation). Conference information is first retrieved using
ConferenceService then e-govService is invoked to check if any travel alerts exist in
the conference country. If there is one, the user is informed and the process stops. If
not, an orders id is asked to e-govService, a plane ticket is bought using FlightService
and all gathered information (orders id, conference and plane) is sent back to the
user who may then go to the conference. Upon return, the user may choose to be
refunded from either a fees or package basis (returnSetup operation). In both cases,
the user will end by validating the mission (validate operation) and e-Conference
will reply with refunding information. If fees basis has been chosen, the user will be
able to send information on fees (using addFee operation several times).

Figure B.2 exhibits our extension of the UML notation corresponding to the
e-Conference orchestration. Within this diagram we highlight the stereotypes for

123

124 APPENDIX B. E-CONFERENCE CASE STUDY

Figure B.1: e-Conference example

Figure B.2: e-Conference Example – Data and Service Architecture (UML Extended)

message types, correlations and properties to represent the orchestration architecture
and the imported data (XML schema files structured in namespaces nsx). Concerning
orchestration specification shown in Figure B.3, we take inspiration from BPMN,
while adding our own annotations supporting relation with BPEL. Communication
activities are represented with the concerned partnerlink (USER for the user, cS,
egovS, and fS for the sub-services), operation, input/output variables, and, when it
applies, information about message correlation.

B.2. WS-STS MODEL 125

Figure B.3: e-Conference Example – Orchestration Specification (Inspired and
extended from BPMN)

B.2 WS-STS model
From the e-Conference specification (see Figure B.3), we obtain the STS in Figure B.4
(49 states, 57 transitions) where tau (resp. term) denote τ (resp.

√
). The zoom

(grey states) corresponds to fees loop. One may notice states 39 (while condition
test) and 40 (pick). In states 41/45 it is checked if incoming messages (validate
or addFee) come from the same user than the previous ones in the conversation
(ordersSetup and returnSetup). When it is not the case (correlation failure) an
exception is raised (in state 26). Variables names, in our example are prefixed with
namespaces (e.g., vns5:VOut is the variable storing values of type ns5:VOut) to
help the reader.

B.2.1 Test purpose

Let us assume one wants to focus on testing refunding on a fees basis. Possible
TPs are given in Figure B.5. In the first TP, one may note the use of the addFee
transition, leading to an acceptance state (Labelled with #). This specifies addFee
must be part of the generated test cases. Several transitions in the specification
could be done before and after the addFee one, therefore, the two TP states are
equipped with a * loop. The * loop is interpreted as being the execution of any other
communication messages (including calls to sub-services), except those explicitly
expressed. The first TP requires that there is at least one addFee in the test cases.
One may want to take also into account the case where there are none. This can be

126 APPENDIX B. E-CONFERENCE CASE STUDY

Figure B.4: e-Conference Example – Orchestration model (STS)

specified as in the second TP. There, one relies on the returnSetup transitions that
carry user requests relative to the return mode (package or fees basis). In order to
specify it is the later which is required, a guarded transition is used (choice should
be different from ’package’). Note that the guard is put on a τ transition after the
reception in order to be consistent with (symbolic) execution semantics: the guard
can only be evaluated once the variable has been received. The last TP, used in the
sequel, is more realistic and demonstrates TPs expressiveness with four requirements:
(i) return is on a fees basis, (ii) each fee is greater or equal to 10, (iii) the total
amount for the mission is less than 1000, and (iv) there are at most N fees added.
The later requires to use a TP additional variable, n, to count addFee iterations.

Figure B.5: e-Conference Example - Test Purposes (STS)

B.3. SYMBOLIC EXECUTION TREE 127

Figure B.6: e-Conference Example - Product (STS)

B.2.2 The product model

The product of the orchestration (Figure B.4) with the third TP (Figure B.5) is
given in Figure B.6. It has 68 states and 85 transitions (89 states and 119 transitions
before pruning). Its set of symbolic traces is a subset of TP one (hence also of the
orchestration one). One may note for example that receiving addFee is possible
only if done less than N times (see guard [n<N] in the transition outsourcing from
state 45), and that the condition on fee values is also taken into account (states
48/54/61/67).

B.3 Symbolic Execution Tree

Among the 85 paths in the SET (k = 15) of the product STS (see Figure B.6), there
are 7 complete paths corresponding to the coverage of the last test purpose described
in Figure B.5. A path example is:

USER.ordersSetup?vs36 tau(x2) cS.getInfo!vs40
cS.getInfo?vs41 tau(x2) egovS.travelAlert!vs44
egovS.travelAlert?vs45 tau(x2) egovS.getOrdersId!vs47
egovS.getOrdersId?vs48 tau(x2) fS.book!vs51
fS.book?vs52 tau(x2) USER.ordersSetup!vs55
USER.returnSetup?vs58 tau(x5) USER.addFee?vs69

128 APPENDIX B. E-CONFERENCE CASE STUDY

tau(x4) USER.validate?vs74 tau(x3) USER.valivate!vs77
tau(x2) term.

B.4 Symbolic Test Cases
For the example e-Conference, we have defined five test purposes that allow to cover
the different functional behaviour of the service. One is related to a demand of a
user with a country having a high alert. Two others are related to an order with a
country with no alert and with either a fees or package refund. The two last are
related to orders with fees refund and a variation on the number of addfee. For each
test purpose, we have produced several test cases, and only one can be executed with
an uniformity hypothesis on the different values of the variables. To evaluate the
quality of our tests, we need to apply mutations on the implementations. We will in
our future work consider mutants in order to check if our test cases are able to kill
the mutants and hence evaluate the quality of our generated tests.

In this work, we focus on generating test cases and solving constraints in order
to first compute the SET then use the instantiate data returned by the solver to
interact with the implementation. The interaction with the implementation can be
done using the soapUI tool.

A
p

p
e

n
d

ix C
Appendix

In this appendix, we provide the algorithms for the generation of trees for the variable
and the interaction with the Z3 SMT solver using pseudo-code.

C.1 The steps:

The Z3problem allows :

1. Building trees for each given variable according to its type

2. Processing the constraint (giving as an input) to generate an input file for the
Z3 solver

3. Sending, then receiving the answer of the solver about the satisfiability of the
constraint and its variables

C.1.1 Inputs:

The Symbolic Web Service Testing (SWST) tool takes as inputs: a set of Variables
V and a Constraint C

The first parameter (V) is represented as an Array that contains the initial
variables (for the moment). The second parameter, (C) is represented as a conjunction
of clauses in which XPath expressions are used.

129

130 APPENDIX C. APPENDIX

C.1.2 Outputs:

As a result the SWST tool provides an answer about the satisfiability of the constraint
according to the variables types.
This result is represented as a couple (Response,M). Where the different responses
could be:

• Unsat, means that the Z3 solver could not find an instantiation of the variables
that satisfies the constraint

• Unknown, means that due to a lack of information

• Sat, means that the Z3 solver found at least one instantiation for the variables
in the way that satisfies the constraint

The M parameter contains the instantiation of the variables when the response
is Sat. Otherwise M is empty.

C.2 Description of the functions

C.2.1 The main functions

The Sequencing of our tool is : Creation of the trees for each variable, the new
leaf variables, then handling the creation of new variable clauses VC. For sake of
simplicity we only consider the basic type integer.

C.2.2 Defining the functions

Algorithm 15: Creation of the trees for each variable
Input: a set of Variables V
Output: Creation of the trees for each variable of V
foreach v ∈ V do1

typev = v.type2

Tree t = createTreeFromType(typev)3

v.value = t4

t.variable = v5

end6

C.2. DESCRIPTION OF THE FUNCTIONS 131

Algorithm 16: createTreeFromType
Input: Type t
Output: Tree
if t.name == ”IntType” then1

IntLeaf l = new IntLeaf()2

return l3

end4

else5

Node n = new Node()6

foreach st ∈ t.subTypes do7

SubTree sn = new SubTree()8

sn.field = st.field9

sn.subTree = createTreeFromType(st.subType)10

sn.parent = n11

sn.subTree.parent = sn12

n.children = n.children ∪ {sn}13

end14

return n15

end16

Algorithm 17: the new leaf variables
Input: a set of Variables V
Output: a set of variables V within the new leaf variables
V A = ∅1

foreach v ∈ V do2

if v.type.name 6= ”IntType” then3

V A = V A ∪ createNewLeafV ars(v.type, v.value)4

end5

end6

return V ∪ V A7

132 APPENDIX C. APPENDIX

Algorithm 18: createNewLeafVars
Input: Type t, Tree val
Output: a set of variables V A
V A = ∅1

if t.name = ”IntType” then2

Variable vnew = new Variable()3

vnew.name = ”v” + num4

num+ +5

vnew.type = t6

vnew.value = val7

val.variable = vnew8

t.toV ar = t.toV ar ∪ {vnew}9

V A = V A ∪ {vnew}10

end11

else12

foreach st ∈ t.subTypes do13

field = st.field14

nvtype = st.subType15

nvval = val.getSubTree(field, val)16

V A = V A∪ createNewLeafV ars(nvtype, nvval)17

end18

end19

return V A20

Algorithm 19: the new VC variables
Input: a set of Variables V , a constraint C
Output: a set of variables V within the new VC variables
foreach c ∈ C.clauses do1

V = V ∪ createNewV CV ars(V, c.leftPart)2

V = V ∪ createNewV CV ars(V, c.rightPart)3

end4

return V5

C.2. DESCRIPTION OF THE FUNCTIONS 133

Algorithm 20: createNewVCVars
Input: set of variables V , ALE e
Output: a set of variables : V
if e is an IntConstant then1

return V2

end3

else4

if e is an Operation then5

V = createNewV CV ars(V, e.leftPart)6

V = createNewV CV ars(V, e.rightPart)7

return V8

end9

else10

if e.path 6= 0 then11

if ¬hasV ariableForPath(e.vaiableRoot.value, e.paht) then12

Variable vnew = new Variable()13

vnew.name = ”v” + num14

num+ +15

vnew.type =16

computeV arTypeFromV arRoot(e.variableRoot.type, e.path)
vnew.type.toV ar = vnew17

vnew.value =18

computeV arV alueFromV arRoot(e.variable.value, e.paht)
vnew.value.variable = vnew19

e.varaiable = vnew20

return V ∪ {vnew}21

end22

else23

e.variable =24

findV ariableForPath(e.variableRoot.value, e.paht)
return V25

end26

end27

else28

e.variable = e.variableRoot29

return V30

end31

end32

end33

134 APPENDIX C. APPENDIX

Algorithm 21: hasVariableForPath
Input: Tree n, a list of paths p
Output: Boolean
if p = [] then1

return (n.variable 6= null)2

end3

else4

Node n′ = new Node()5

n′ = n.getSubTree(p[0], n)6

return hasV ariableForPath(n′, p− p[0])7

end8

Algorithm 22: computeVarValueFromVarRoot
Input: Tree n, a list of paths p
Output: Tree
if p = [] then1

return n2

end3

else4

Node n′ = new Node()5

n′ = n.getSubTree(p[0], n)6

return computeV arV alueFromV arRoot(n′, p− p[0])7

end8

Algorithm 23: computeVarTypeFromVarRoot
Input: Type t, a list of pahts p
Output: Type
if p = [] then1

return t2

end3

else4

ComplexType t′ = new ComplexType()5

t′ = t.getSubType(p[0], t)6

return computeV arTypeFromV arRoot(t′, p− p[0])7

end8

C.2. DESCRIPTION OF THE FUNCTIONS 135

Algorithm 24: findVariableForPath
Input: Tree n, a list of paths p
Output: Variable
if p = [] then1

return (n.variable)2

end3

else4

Node n′ = new Node()5

n′ = n.getSubTree(p[0], n)6

return findV ariableForPath(n′, p− p[0])7

end8

Algorithm 25: getSubType
Input: String f , ComplexType ct
Output: Type
foreach st ∈ t.subTypes do1

if st.field == f then2

return st.subType3

end4

end5

Algorithm 26: getSubTree
Input: String f , Node n
Output: Tree
foreach sn ∈ n.children do1

if sn.field == f then2

return sn.subTree3

end4

end5

A
p

p
e

n
d

ix D
Appendix

D.1 WSDL of the xLoan Service Orchestrator

1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>
2 <d e f i n i t i o n s name="LoanService " targetNamespace=" ht tp : // j 2 e e . netbeans . org /

wsdl / LoanService "
3 xmlns=" ht tp : // schemas . xmlsoap . org /wsdl /"
4 xmlns:wsdl=" ht tp : // schemas . xmlsoap . org /wsdl /"
5 xmlns:xsd=" ht tp : //www.w3 . org /2001/XMLSchema" xmlns : tns=" ht tp : // j 2 e e .

netbeans . org /wsdl /LoanService " xmlns:ns=" ht tp : //xml . netbeans . org /
schema/LS" xmlns:p lnk=" ht tp : // docs . oa s i s−open . org /wsbpel /2 .0/ plnktype
" xmlns:soap=" ht tp : // schemas . xmlsoap . org /wsdl / soap/" xmlns:vprop="
ht tp : // docs . oa s i s−open . org /wsbpel /2 .0/ varprop" xmlns:ns0=" ht tp : // j 2 e e
. netbeans . org /wsdl /BankService " xmlns:ns5=" ht tp : //xml . netbeans . org /
schema/BK" xmlns:ns1=" ht tp : //xml . netbeans . org /schema/RefSchemaLS">

6 <import l o c a t i o n=" . . /WEB−INF/wsdl /BankService /BankService . wsdl "
namespace=" ht tp : // j 2 e e . netbeans . org /wsdl /BankService "/>

7 <types>
8 <xsd:schema targetNamespace=" ht tp : // j 2 e e . netbeans . org /wsdl /

LoanService ">
9 <xsd: import namespace=" ht tp : //xml . netbeans . org /schema/LS"

schemaLocation="LS . xsd"/>
10 <xsd: import schemaLocation=" . . /WEB−INF/wsdl /BankService /BK. xsd"

namespace=" ht tp : //xml . netbeans . org /schema/BK"/>
11 <xsd: import schemaLocation=" . . / source /RefSchemaLS . xsd" namespace

=" ht tp : //xml . netbeans . org /schema/RefSchemaLS"/>
12 </xsd:schema>
13 </ types>
14 <message name=" reque s t In ">
15 <part name="part1 " element="ns:MT−r eque s t In "/>
16 </message>
17 <message name=" requestOut ">
18 <part name="part1 " element="ns:MT−requestOut "/>
19 </message>

137

138 APPENDIX D. APPENDIX

20 <message name=" cance l In ">
21 <part name="part1 " element="ns:MT−cance l In "/>
22 </message>
23 <message name=" s e l e c t I n ">
24 <part name="part1 " element="ns:MT−s e l e c t I n "/>
25 </message>
26 <message name=" se l e c tOut ">
27 <part name="part1 " element="ns:MT−s e l e c tOut "/>
28 </message>
29 <portType name="LoanServicePortType">
30 <operat i on name=" reque s t ">
31 <input name=" input1 " message=" tn s : r e qu e s t I n "/>
32 <output name="output1" message=" tns : r eques tOut "/>
33 </ operat i on>
34 <operat i on name=" cance l ">
35 <input name=" input2 " message=" tn s : c a n c e l I n "/>
36 </ operat i on>
37 <operat i on name=" s e l e c t ">
38 <input name=" input3 " message=" t n s : s e l e c t I n "/>
39 <output name="output2" message=" tn s : s e l e c tOu t "/>
40 </ operat i on>
41 </portType>
42 <binding name="LoanServiceBinding " type=" tns :LoanServicePortType ">
43 <soap :b ind ing s t y l e="document" t ranspor t=" ht tp : // schemas . xmlsoap . org

/ soap/http "/>
44 <operat i on name=" reque s t ">
45 <soap : ope ra t i on />
46 <input name=" input1 ">
47 <soap:body use=" l i t e r a l "/>
48 </ input>
49 <output name="output1">
50 <soap:body use=" l i t e r a l "/>
51 </output>
52 </ operat i on>
53 <operat i on name=" s e l e c t ">
54 <soap : ope ra t i on />
55 <input name=" input3 ">
56 <soap:body/>
57 </ input>
58 <output name="output2">
59 <soap:body/>
60 </output>
61 </ operat i on>
62 <operat i on name=" cance l ">
63 <input name=" input2 ">
64 <soap:body/>
65 </ input>
66 </ operat i on>
67 </binding>
68 <s e r v i c e name=" LoanServ i ceServ i c e ">
69 <port name="LoanServicePort " binding=" tns :LoanServ i ceBind ing ">
70 <soap :addre s s l o c a t i o n=" ht tp : // l o c a l h o s t : ${ HttpDefaultPort }/

LoanServ i ceServ i c e /LoanServicePort "/>
71 </port>
72 </ s e r v i c e>
73 <plnk:partnerLinkType name="LoanService ">
74 <!−− A partner l i n k type i s automat i ca l l y generated when a new port

type i s added . Partner l i n k types are used by BPEL pro c e s s e s .

D.2. WSDL OF THE BLACK LIST SERVICE 139

75 In a BPEL process , a partner l i n k r ep r e s en t s the i n t e r a c t i o n
between the BPEL proce s s and a partner s e r v i c e . Each
partner l i n k i s a s s o c i a t ed with a partner l i n k type .

76 A partner l i n k type c h a r a c t e r i z e s the c onve r s a t i ona l
r e l a t i o n s h i p between two s e r v i c e s . The partner l i n k type
can have one or two r o l e s .−−>

77 <p l n k : r o l e name="LoanServicePortTypeRole " portType="
tns :LoanServicePortType "/>

78 </plnk:partnerLinkType>
79 <!−− Part i e pour l a c o r r l a t i o n s e t −−>
80 <vprop :property name="LS_PROP" type=" xsd : l ong "/>
81 <!−− Part i e des property A l i a s −−>
82 <vprop :p rope r tyAl i a s propertyName="tns:LS_PROP" messageType="

ns0 : o f f e rOut " part="part1 ">
83 <vprop:query>ns5:fileNumber</vprop:query>
84 </ vprop :p rope r tyAl i a s>
85 <vprop :p rope r tyAl i a s propertyName="tns:LS_PROP" messageType="

tns : r eques tOut " part="part1 ">
86 <vprop:query>ns:fileNumber</vprop:query>
87 </ vprop :p rope r tyAl i a s>
88 <vprop :p rope r tyAl i a s propertyName="tns:LS_PROP" messageType="

t n s : s e l e c t I n " part="part1 ">
89 <vprop:query>ns:fileNumber</vprop:query>
90 </ vprop :p rope r tyAl i a s>
91 <vprop :p rope r tyAl i a s propertyName="tns:LS_PROP" messageType="

tn s : c a n c e l I n " part="part1 ">
92 <vprop:query>ns:fileNumber</vprop:query>
93 </ vprop :p rope r tyAl i a s>
94
95 </ d e f i n i t i o n s>

D.2 WSDL of the Black List Service

1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>
2 <d e f i n i t i o n s name=" BlackLi s t " targetNamespace=" ht tp : // j 2 e e . netbeans . org /wsdl

/ BlackL i s t "
3 xmlns=" ht tp : // schemas . xmlsoap . org /wsdl /"
4 xmlns:wsdl=" ht tp : // schemas . xmlsoap . org /wsdl /"
5 xmlns:xsd=" ht tp : //www.w3 . org /2001/XMLSchema" xmlns : tns=" ht tp : // j 2 e e .

netbeans . org /wsdl / BlackL i s t " xmlns:ns=" ht tp : //xml . netbeans . org /schema
/BL" xmlns :p lnk=" ht tp : // docs . oa s i s−open . org /wsbpel /2 .0/ plnktype "
xmlns:soap=" ht tp : // schemas . xmlsoap . org /wsdl / soap/">

6 <types>
7 <xsd:schema targetNamespace=" ht tp : // j 2 e e . netbeans . org /wsdl / BlackL i s t

">
8 <xsd: import namespace=" ht tp : //xml . netbeans . org /schema/BL"

schemaLocation="BL. xsd"/>
9 </xsd:schema>

10 </ types>
11 <message name=" checkIn ">
12 <part name="part1 " element="ns:MT−checkIn "/>
13 </message>
14 <message name="checkOut">
15 <part name="part1 " element="ns:MT−checkOut"/>
16 </message>
17 <portType name="BlackListPortType ">

140 APPENDIX D. APPENDIX

18 <operat i on name="check">
19 <input name=" input1 " message=" tn s : che ck In "/>
20 <output name="output1" message=" tns :checkOut "/>
21 </ operat i on>
22 </portType>
23 <binding name=" BlackListBinding " type=" tns :BlackLis tPortType ">
24 <soap :b ind ing s t y l e="document" t ranspor t=" ht tp : // schemas . xmlsoap . org

/ soap/http "/>
25 <operat i on name="check">
26 <soap : ope ra t i on />
27 <input name=" input1 ">
28 <soap:body use=" l i t e r a l "/>
29 </ input>
30 <output name="output1">
31 <soap:body use=" l i t e r a l "/>
32 </output>
33 </ operat i on>
34 </binding>
35 <s e r v i c e name=" B la ckL i s tS e rv i c e ">
36 <port name=" BlackLis tPort " binding=" tns :B lackL i s tB ind ing ">
37 <soap :addre s s l o c a t i o n=" ht tp : // l o c a l h o s t : ${ HttpDefaultPort }/

B la ckL i s tS e rv i c e / BlackLis tPort "/>
38 </port>
39 </ s e r v i c e>
40 <plnk:partnerLinkType name=" BlackLi s t ">
41 <!−− A partner l i n k type i s automat i ca l l y generated when a new port

type i s added . Partner l i n k types are used by BPEL pro c e s s e s .
42 In a BPEL process , a partner l i n k r ep r e s en t s the i n t e r a c t i o n between the

BPEL proce s s and a partner s e r v i c e . Each partner l i n k i s a s s o c i a t ed with
a partner l i n k type .

43 A partner l i n k type c h a r a c t e r i z e s the c onve r s a t i ona l r e l a t i o n s h i p between
two s e r v i c e s . The partner l i n k type can have one or two r o l e s .−−>

44 <p l n k : r o l e name="BlackListPortTypeRole " portType="
tns :BlackLis tPortType "/>

45 </plnk:partnerLinkType>
46 </ d e f i n i t i o n s>

D.3 WSDL of the Bank Service

1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>
2 <d e f i n i t i o n s name="BankService " targetNamespace=" ht tp : // j 2 e e . netbeans . org /

wsdl /BankService "
3 xmlns=" ht tp : // schemas . xmlsoap . org /wsdl /"
4 xmlns:wsdl=" ht tp : // schemas . xmlsoap . org /wsdl /"
5 xmlns:xsd=" ht tp : //www.w3 . org /2001/XMLSchema" xmlns : tns=" ht tp : // j 2 e e .

netbeans . org /wsdl /BankService " xmlns:ns=" ht tp : //xml . netbeans . org /
schema/BK" xmlns :p lnk=" ht tp : // docs . oa s i s−open . org /wsbpel /2 .0/ plnktype
" xmlns:soap=" ht tp : // schemas . xmlsoap . org /wsdl / soap/" xmlns:ns0=" ht tp :
// j 2 e e . netbeans . org /wsdl /LoanService " xmlns:ns6=" ht tp : // j 2 e e . netbeans
. org /wsdl / LoanService ">

6 <types>
7 <xsd:schema targetNamespace=" ht tp : // j 2 e e . netbeans . org /wsdl /

BankService ">
8 <xsd: import namespace=" ht tp : //xml . netbeans . org /schema/BK"

schemaLocation="BK. xsd"/>
9 </xsd:schema>

D.3. WSDL OF THE BANK SERVICE 141

10 </ types>
11 <message name="approveIn ">
12 <part name="part1 " element="ns:MT−approveIn "/>
13 </message>
14 <message name="approveOut">
15 <part name="part1 " element="ns:MT−approveOut"/>
16 </message>
17 <message name=" o f f e r I n ">
18 <part name="part1 " element="ns:MT−o f f e r I n "/>
19 </message>
20 <message name=" of f e rOut ">
21 <part name="part1 " element="ns:MT−o f f e rOut "/>
22 </message>
23 <message name=" conf i rmIn ">
24 <part name="part1 " element="ns:MT−conf i rmIn "/>
25 </message>
26 <message name=" cance l In ">
27 <part name="part1 " element="ns:MT−cance l In "/>
28 </message>
29 <portType name="BankServicePortType">
30 <operat i on name="approve">
31 <input name=" input1 " message=" tns :approve In "/>
32 <output name="output1" message=" tns:approveOut "/>
33 </ operat i on>
34 <operat i on name=" o f f e r ">
35 <input name=" input2 " message=" t n s : o f f e r I n "/>
36 <output name="output2" message=" tn s : o f f e rOu t "/>
37 </ operat i on>
38 <operat i on name=" conf i rm">
39 <input name=" input3 " message=" tn s : c on f i rmIn "/>
40 </ operat i on>
41 <operat i on name=" cance l ">
42 <input name=" input4 " message=" tn s : c a n c e l I n "/>
43 </ operat i on>
44 </portType>
45 <binding name="BankServiceBinding " type=" tns:BankServicePortType ">
46 <soap :b ind ing s t y l e="document" t ranspor t=" ht tp : // schemas . xmlsoap . org

/ soap/http "/>
47 <!−− <soap :b ind ing t ranspor t=" ht tp : // schemas . xmlsoap . org / soap/http "

s t y l e="document"/>−−>
48 <operat i on name="approve">
49 <soap : ope ra t i on />
50 <input name=" input1 ">
51 <soap:body use=" l i t e r a l "/>
52 </ input>
53 <output name="output1">
54 <soap:body use=" l i t e r a l "/>
55 </output>
56 </ operat i on>
57 <operat i on name=" o f f e r ">
58 <soap : ope ra t i on />
59 <input name=" input2 ">
60 <soap:body/>
61 </ input>
62 <output name="output2">
63 <soap:body/>
64 </output>
65 </ operat i on>
66 <operat i on name=" conf i rm">

142 APPENDIX D. APPENDIX

67 <input name=" input3 ">
68 <soap:body/>
69 </ input>
70 </ operat i on>
71 <operat i on name=" cance l ">
72 <input name=" input4 ">
73 <soap:body/>
74 </ input>
75 </ operat i on>
76 </binding>
77 <s e r v i c e name=" BankServ iceServ ice ">
78 <port name="BankServicePort " binding=" tns :BankServ iceBind ing ">
79 <soap :addre s s l o c a t i o n=" ht tp : // l o c a l h o s t : ${ HttpDefaultPort }/

BankServ iceServ ice /BankServicePort "/>
80 </port>
81 </ s e r v i c e>
82 <plnk:partnerLinkType name="BankService ">
83 <!−− A partner l i n k type i s automat i ca l l y generated when a new port

type i s added . Partner l i n k types are used by BPEL pro c e s s e s .
84 In a BPEL process , a partner l i n k r ep r e s en t s the i n t e r a c t i o n between the

BPEL proce s s and a partner s e r v i c e . Each partner l i n k i s a s s o c i a t ed with
a partner l i n k type .

85 A partner l i n k type c h a r a c t e r i z e s the c onve r s a t i ona l r e l a t i o n s h i p between
two s e r v i c e s . The partner l i n k type can have one or two r o l e s .−−>

86 <p l n k : r o l e name="BankServicePortTypeRole " portType="
tns:BankServicePortType "/>

87 </plnk:partnerLinkType>
88 <!−−
89 <vprop :property name="LS_PROP" type=" xsd : l ong "/>
90
91 <vprop :p rope r tyAl i a s propertyName="tns:LS_PROP" element="ns:MT−o f f e rOut ">
92 <vprop:query>ns : f i l eNumber</vprop:query>
93 </ vprop :p rope r tyAl i a s>
94
95 <vprop :p rope r tyAl i a s propertyName="tns:LS_PROP" messageType="

tn s : o f f e rOu t " part="part1 ">
96 <vprop:query>ns : f i l eNumber</vprop:query>
97 </ vprop :p rope r tyAl i a s>
98 <vprop :p rope r tyAl i a s propertyName="tns:LS_PROP" messageType="

tn s : c on f i rmIn " part="part1 ">
99 <vprop:query>ns : f i l eNumber</vprop:query>

100 </ vprop :p rope r tyAl i a s>
101 <vprop :p rope r tyAl i a s propertyName="tns:LS_PROP" messageType="

tn s : c a n c e l I n " part="part1 ">
102 <vprop:query>ns : f i l eNumber</vprop:query>
103 </ vprop :p rope r tyAl i a s>
104 −−>
105 </ d e f i n i t i o n s>

Bibliography

[1] Oracle application testing suite. URL http://www.oracle.com/technetwork/
oem/app-test/index.html. 44

[2] Soap version 1.2. http://www.w3.org/TR/2007/REC-soap12-part0-20070427/,
. URL http://www.w3.org/TR/2007/REC-soap12-part0-20070427/. 18

[3] Soapsonar, . URL http://www.crosschecknet.com/products/soapsonar.
php. 44

[4] Parasoft soatest, . URL http://www.parasoft.com/jsp/fr/products/
soatest.jsp. 44

[5] Testing and test control notation version 3 (ttcn-3). URL http://www.ttcn-3.
org/. 45

[6] Universal description discovery and integration (uddi). URL http://uddi.
org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm. 20

[7] Web services description language (wsdl). http://www.w3.org/TR/wsdl. URL
http://www.w3.org/TR/wsdl. 18

[8] Business process model and notation (bpmn), . URL http://www.omg.org/
spec/BPMN/2.0/. 38

[9] bpmn2bpel, . URL http://code.google.com/p/bpmn2bpel/. 38

[10] Construction and analysis of distributed processes (cadp). URL http://www.
inrialpes.fr/vasy/cadp/. 41

[11] Service component architecture. URL http://osoa.org/display/Main/
Service+Component+Architecture+Home. 38

[12] Software engineering for service-oriented overlay computers (sensoria). URL
http://www.sensoria-ist.eu/. 38

[13] soapui tool. URL http://www.soapui.org/. 45

143

http://www.oracle.com/technetwork/oem/app-test/index.html
http://www.oracle.com/technetwork/oem/app-test/index.html
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.crosschecknet.com/products/soapsonar.php
http://www.crosschecknet.com/products/soapsonar.php
http://www.parasoft.com/jsp/fr/products/soatest.jsp
http://www.parasoft.com/jsp/fr/products/soatest.jsp
http://www.ttcn-3.org/
http://www.ttcn-3.org/
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://www.w3.org/TR/wsdl
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://code.google.com/p/bpmn2bpel/
http://www.inrialpes.fr/vasy/cadp/
http://www.inrialpes.fr/vasy/cadp/
http://osoa.org/display/Main/Service+Component+Architecture+Home
http://osoa.org/display/Main/Service+Component+Architecture+Home
http://www.sensoria-ist.eu/
http://www.soapui.org/

144 BIBLIOGRAPHY

[14] Sensoria reference modeling language. URL http://www.cs.le.ac.uk/srml/.
16, 38

[15] Web services choreography description language version 1.0. URL http://www.
w3.org/TR/ws-cdl-10/. 16, 21

[16] JOpera: an agile environment for Web service composition with visual unit
testing and refactoring, 2005. doi: 10.1109/VLHCC.2005.48. URL http:
//dx.doi.org/10.1109/VLHCC.2005.48. 50

[17] Alain Abran, James W. Moore, Pierre Bourque, Robert Dupuis, and Leonard L.
Tripp. Guide to the Software Engineering Body of Knowledge (SWEBOK).
IEEE, 2004. 30

[18] Joao Abreu, Laura Bocchi, José Luiz Fiadeiro, and Antónia Lopes. Specifying
and Composing Interaction Protocols for Service-Oriented System Modelling. In
Proceedings of International Conference on Formal Methods for Networked and
Distributed Systems Special focus on Service Oriented Computing, volume 4574
of Lecture Notes in Computer Science, pages 358–373. Springer Verlag, 2007.
doi: 10.1007/978-3-540-73196-2_23. URL http://www.pst.informatik.
uni-muenchen.de:8080/Sensoria/DOWNLOAD/SRML_FORTE.pdf. 38

[19] Christian Attiogbé, Pascal Poizat, and Gwen Salaün. A Formal and Tool-
Equipped Approach for the Integration of State Diagrams and Formal
Datatypes. IEEE Transactions on Software Engineering, 33(3):157–170, 2007.
43

[20] Xiaoying Bai, Wenli Dong, Wei-Tek Tsai, and Yinong Chen. Wsdl-based
automatic test case generation for web services testing. In Proceedings of the
IEEE International Workshop, pages 215–220, Washington, DC, USA, 2005.
IEEE Computer Society. ISBN 0-7695-2438-9. 45, 50

[21] Xiaoying Bai, Yongbo Wang, Guilan Dai, Wei-Tek Tsai, and Yinong Chen. A
framework for contract-based collaborative verification and validation of web
services. In Proceedings of the 10th international conference on Component-
based software engineering, CBSE’07, pages 258–273, Berlin, Heidelberg, 2007.
Springer-Verlag. ISBN 978-3-540-73550-2. URL http://portal.acm.org/
citation.cfm?id=1770657.1770679. 53

[22] Xiaoying Bai, Shufang Lee, Wei-Tek Tsai, and Yinong Chen. Ontology-based
test modeling and partition testing of web services. In Web Services, 2008.
ICWS ’08. IEEE International Conference on, pages 465–472, sept. 2008. doi:
10.1109/ICWS.2008.111. 54

http://www.cs.le.ac.uk/srml/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/
http://dx.doi.org/10.1109/VLHCC.2005.48
http://dx.doi.org/10.1109/VLHCC.2005.48
http://www.pst.informatik.uni-muenchen.de:8080/Sensoria/DOWNLOAD/SRML_FORTE.pdf
http://www.pst.informatik.uni-muenchen.de:8080/Sensoria/DOWNLOAD/SRML_FORTE.pdf
http://portal.acm.org/citation.cfm?id=1770657.1770679
http://portal.acm.org/citation.cfm?id=1770657.1770679

BIBLIOGRAPHY 145

[23] C. Bartolini, A. Bertolino, Francesca Lonetti, Eda Marchetti, and Andrea
Polini. Taxi public page. URL http://labsewiki.isti.cnr.it/labse/
tools/taxi/public/main. 45

[24] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini. Towards Automated
WSDL-Based Testing of Web Services. In Proc. of ICSOC, volume 5364 of
LNCS, 2008. 45, 50

[25] Cesare Bartolini, Antonia Bertolino, Eda Marchetti, and Ioannis Parissis. Data
flow-based validation of web services compositions: Perspectives and examples.
In Rogério de Lemos, Felicita Di Giandomenico, Cristina Gacek, Henry Muccini,
and Marlon Vieira, editors, Architecting Dependable Systems V, volume 5135 of
Lecture Notes in Computer Science, pages 298–325. Springer Berlin / Heidelberg,
2008. URL http://dx.doi.org/10.1007/978-3-540-85571-2_13. 54

[26] Cesare Bartolini, Antonia Bertolino, Sebastian Elbaum, and Eda Marchetti.
Whitening soa testing. In Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering, ESEC/FSE ’09, pages 161–170,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-001-2. doi: http://
doi.acm.org/10.1145/1595696.1595721. URL http://doi.acm.org/10.1145/
1595696.1595721. 53

[27] Cesare Bartolini, Antonia Bertolino, Eda Marchetti, and Andrea Polini. WS-
TAXI: A WSDL-based Testing Tool for Web Services. Software Testing,
Verification, and Validation, 2008 International Conference on, pages 326–335,
2009. doi: http://doi.ieeecomputersociety.org/10.1109/ICST.2009.28. 50

[28] Gilles Bernot. Testing against formal specifications: a theoretical view. In Pro-
ceedings of the international joint conference on theory and practice of software
development on Advances in distributed computing (ADC) and colloquium on
combining paradigms for software development (CCPSD): Vol. 2, pages 99–119,
New York, NY, USA, 1991. Springer-Verlag New York, Inc. ISBN 0-387-53981-6.
URL http://portal.acm.org/citation.cfm?id=112287.112303. 34

[29] Antonia Bertolino and Andrea Polini. The audition framework for testingweb
services interoperability. In Proceedings of the 31st EUROMICRO Conference
on Software Engineering and Advanced Applications, EUROMICRO ’05, pages
134–142, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-
2431-1. 54

[30] Antonia Bertolino, Lars Frantzen, and Andrea Polini. Audition of web services
for testing conformance to open specified protocols. In Architecting Systems

http://labsewiki.isti.cnr.it/labse/tools/taxi/public/main
http://labsewiki.isti.cnr.it/labse/tools/taxi/public/main
http://dx.doi.org/10.1007/978-3-540-85571-2_13
http://doi.acm.org/10.1145/1595696.1595721
http://doi.acm.org/10.1145/1595696.1595721
http://portal.acm.org/citation.cfm?id=112287.112303

146 BIBLIOGRAPHY

with Trustworthy Components, number 3938 in LNCS. Springer-Verlag, 2006.
45, 54

[31] Antonia Bertolino, Jinghua Gao, Eda Marchetti, and Andrea Polini. Taxi–
a tool for xml-based testing. In Companion to the proceedings of the 29th
International Conference on Software Engineering, ICSE COMPANION ’07,
pages 53–54, Washington, DC, USA, 2007. IEEE Computer Society. ISBN
0-7695-2892-9. 45

[32] Antonia Bertolino, Jinghua Gao, Eda Marchetti, and Andrea Polini. Automatic
test data generation for xml schema-based partition testing. In Proceedings
of the Second International Workshop on Automation of Software Test, AST
’07, pages 4–, Washington, DC, USA, 2007. IEEE Computer Society. ISBN
0-7695-2971-2. 45

[33] Aysu Betin-Can and Tevfik Bultan. Verifiable web services with hierarchical
interfaces. In Proceedings of the IEEE International Conference on Web Services,
ICWS ’05, pages 85–94, Washington, DC, USA, 2005. IEEE Computer Society.
ISBN 0-7695-2409-5. doi: http://dx.doi.org/10.1109/ICWS.2005.128. URL
http://dx.doi.org/10.1109/ICWS.2005.128. 51

[34] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and
Yunshan Zhu. Bounded model checking. Advances in Computers, 58:118–149,
2003. 85

[35] Raquel Blanco, José García-Fanjul, and Javier Tuya. A first approach to test
case generation for bpel compositions of web services using scatter search.
In Proceedings of the IEEE International Conference on Software Testing,
Verification, and Validation Workshops, pages 131–140, Washington, DC,
USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3671-2. doi: 10.1109/
ICSTW.2009.24. URL http://portal.acm.org/citation.cfm?id=1547559.
1548245. 53

[36] Ed Brinksma. Specification modules in lotos. In FORTE, pages 101–115, 1989.
41

[37] Michael J. Butler, Carla Ferreira, and Muan Yong Ng. Precise modelling of
compensating business transactions and its application to bpel. J. UCS, 11(5):
712–743, 2005. 42

[38] Jordi Cabot, Robert Clarisó, and Daniel Riera. UMLtoCSP: a Tool for the
Formal Verification of UML/OCL Models using Constraint Programming. In
Proc. of ASE, 2007. 86, 118

http://dx.doi.org/10.1109/ICWS.2005.128
http://portal.acm.org/citation.cfm?id=1547559.1548245
http://portal.acm.org/citation.cfm?id=1547559.1548245

BIBLIOGRAPHY 147

[39] Tien-Dung Cao, Patrick Felix, Richard Castanet, and Ismail Berrada. Testing
web services composition using the tgse tool. In Proceedings of the 2009
Congress on Services - I, pages 187–194, Washington, DC, USA, 2009. IEEE
Computer Society. ISBN 978-0-7695-3708-5. doi: 10.1109/SERVICES-I.2009.42.
URL http://portal.acm.org/citation.cfm?id=1590963.1591549. 48, 54

[40] W. K. Chan, S. C. Cheung, and Karl. R. P. H. Leung. Towards a metamorphic
testing methodology for service-oriented software applications. In Proceedings
of the Fifth International Conference on Quality Software, QSIC ’05, pages
470–476, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-
2472-9. doi: http://dx.doi.org/10.1109/QSIC.2005.67. URL http://dx.doi.
org/10.1109/QSIC.2005.67. 50

[41] Kevin M. Conroy, Mark Grechanik, Matthew Hellige, Edy S. Liongosari, and
Qing Xie. Automatic test generation from gui-based applications for testing
web services. In In ICSM, 2007. 52

[42] Guilan Dai, Xiaoying Bai, Yongbo Wang, and Fengjun Dai. Contract-based
testing for web services. In Proceedings of the 31st Annual International
Computer Software and Applications Conference - Volume 01, COMPSAC ’07,
pages 517–526, Washington, DC, USA, 2007. IEEE Computer Society. ISBN
0-7695-2870-8. doi: http://dx.doi.org/10.1109/COMPSAC.2007.100. URL
http://dx.doi.org/10.1109/COMPSAC.2007.100. 54

[43] Guilan Dai, Xiaoying Bai, and Chongchong Zhao. A framework for model
checking web service compositions based on bpel4ws. In Proceedings of the
IEEE International Conference on e-Business Engineering, ICEBE ’07, pages
165–172, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-
7695-3003-6. doi: http://dx.doi.org/10.1109/ICEBE.2007.11. URL http:
//dx.doi.org/10.1109/ICEBE.2007.11. 51

[44] Lourival F. Junior de Almeida and Silvia R. Vergilio. Exploring perturbation
based testing for web services. In Proceedings of the IEEE International
Conference on Web Services, pages 717–726, Washington, DC, USA, 2006.
IEEE Computer Society. ISBN 0-7695-2669-1. doi: 10.1109/ICWS.2006.60.
URL http://portal.acm.org/citation.cfm?id=1172963.1173112. 51

[45] Wen-Li Dong and Hang YU. Web service testing method based on fault-
coverage. In Proceedings of the 10th IEEE on International Enterprise Dis-
tributed Object Computing Conference Workshops, EDOCW ’06, pages 43–,
Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2743-4. 53

[46] Wen-Li Dong, Hang Yu, and Yu-Bing Zhang. Testing bpel-based web service
composition using high-level petri nets. In Proceedings of the 10th IEEE

http://portal.acm.org/citation.cfm?id=1590963.1591549
http://dx.doi.org/10.1109/QSIC.2005.67
http://dx.doi.org/10.1109/QSIC.2005.67
http://dx.doi.org/10.1109/COMPSAC.2007.100
http://dx.doi.org/10.1109/ICEBE.2007.11
http://dx.doi.org/10.1109/ICEBE.2007.11
http://portal.acm.org/citation.cfm?id=1172963.1173112

148 BIBLIOGRAPHY

International Enterprise Distributed Object Computing Conference, pages 441–
444, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2558-
X. 46, 52

[47] André Takeshi Endo, Adenilso da Silva Simão, Simone do Rocio Senger de
Souza, and Paulo Sergio Lopes de Souza. Web services composition testing:
A strategy based on structural testing of parallel programs. In Proceedings
of the Testing: Academic & Industrial Conference - Practice and Research
Techniques, pages 3–12, Washington, DC, USA, 2008. IEEE Computer Society.
ISBN 978-0-7695-3383-4. doi: 10.1109/TAIC-PART.2008.9. URL http://
portal.acm.org/citation.cfm?id=1475701.1476366. 53

[48] Thomas Erl. Service-Oriented Architecture: A Field Guide to Integrating XML
and Web Services. Prentice Hall, April 2004. 16

[49] J.P. Escobedo, C. Gaston, P. Le Gall, and A. Cavalli. Testing web service
orchestrators in context: A symbolic approach. In Software Engineering and
Formal Methods (SEFM), 2010 8th IEEE International Conference on, pages
257–267, sept. 2010. doi: 10.1109/SEFM.2010.30. 48

[50] José Pablo Escobedo Del Cid. Symbolic test case generation for testing orches-
trators in context. These, Institut National des Télécommunications; Université
Evry Val d’Essonne, November 2010. 47, 48, 54

[51] Andrea Ferrara. Web services: a process algebra approach. In Proceedings of
the 2nd international conference on Service oriented computing, ICSOC ’04,
pages 242–251, 2004. ISBN 1-58113-871-7. URL http://doi.acm.org/10.
1145/1035167.1035202. 41

[52] José Luiz Fiadeiro, Antónia Lopes, and Laura Bocchi. A Formal Approach
to Service Component Architecture. Proceedings of Web Services and Formal
Methods (WSFM’07), 4184:193–213, 2006. doi: http://dx.doi.org/10.1007/
11841197_13. URL http://rap.dsi.unifi.it/sensoriasite/
41840193.pdf. 38

[53] Howard Foster, Sebastián Urrutia, Jeff Magee, and Jeff Kramer. Web service
compositions: From xml syntax to service models. In IDEAlliance XML
Conference, 2005. URL http://publicaciones.dc.uba.ar/Publications/
2005/FUMK05. 41, 52

[54] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Ltsa-ws: a
tool for model-based verification of web service compositions and choreography.
In ICSE ’06: Proceedings of the 28th international conference on Software

http://portal.acm.org/citation.cfm?id=1475701.1476366
http://portal.acm.org/citation.cfm?id=1475701.1476366
http://doi.acm.org/10.1145/1035167.1035202
http://doi.acm.org/10.1145/1035167.1035202
http://rap.dsi.unifi.it/sensoriasite/41840193.pdf
http://rap.dsi.unifi.it/sensoriasite/41840193.pdf
http://publicaciones.dc.uba.ar/Publications/2005/FUMK05
http://publicaciones.dc.uba.ar/Publications/2005/FUMK05

BIBLIOGRAPHY 149

engineering, pages 771–774, New York, NY, USA, 2006. ACM. ISBN 1-59593-
375-1. 41, 52

[55] L. Frantzen, J. Tretmans, and R. d. Vries. Towards Model-Based Testing of
Web Services. In A. Polini, editor, International Workshop on Web Services
- Modeling and Testing – WS-MaTe 2006, pages 67–82, Palermo, Italy, 2006.
URL http://www.cs.ru.nl/~lf/publications/FTdV06.pdf. 46

[56] L. Frantzen, M.N. Huerta, Z.G. Kiss, and T. Wallet. On-The-Fly Model-Based
Testing of Web Services with Jambition. In Proc. of WS-FM, volume 5387 of
LNCS, 2009. 46, 54

[57] Lars Frantzen, Jan Tretmans, and Tim A. C. Willemse. A Symbolic Framework
for Model-Based Testing. In Proc. of FATES/RV, volume 4262 of LNCS, 2006.
82

[58] Chen Fu, Barbara Ryder, Ana Milanova, and David Wonnacott. Testing of java
web services for robustness. In In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA, pages 23–34. ACM Press, 2004. 53

[59] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting bpel web
services. pages 621–630. ACM Press, 2004. 42, 51

[60] Xiang Fu, Tevfik Bultan, and Jianwen Su. Wsat: A tool for formal analysis of
web services. In the Proc. of 16th Int. Conf. on Computer Aided Verification
(CAV, pages 510–514. Springer, 2004. 42, 51

[61] Hubert Garavel, Radu Mateescu, Frédéric Lang, and Wendelin Serwe. Cadp
2006: A toolbox for the construction and analysis of distributed processes. In
CAV, pages 158–163, 2007. 41

[62] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. Cadp
2010: A toolbox for the construction and analysis of distributed processes. In
Parosh Abdulla and K. Leino, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems - TACAS 2011, volume 6605 of Lecture Notes in
Computer Science, pages 372–387. Springer Berlin / Heidelberg, 2011. ISBN
978-3-642-19834-2. 109

[63] José García-Fanjul, Javier Tuya, and Claudio de la Riva. Generating Test
Cases Specifications for BPEL Compositions of Web Services Using SPIN. In
Proc. of WS-MaTe, 2006. 42, 51

[64] Paul Gastin and Denis Oddoux. Fast LTL to Büchi Automata Translation. In
Proc. of CAV ’01, 2001. 74

http://www.cs.ru.nl/~lf/publications/FTdV06.pdf

150 BIBLIOGRAPHY

[65] Christophe Gaston, Pascale Le Gall, Nicolas Rapin, and Assia Touil. Symbolic
Execution Techniques for Test Purpose Definition. In Proc. of TESTCOM,
volume 3964 of LNCS, 2006. 82, 85

[66] M.-C. Gaudel. Testing can be formal, too. In TAPSOFT’95, International
Joint Conference, Theory And Practice of Software Development, volume 915
of Lecture Notes in Computer Science, pages 82–96, Aarhus, Denmark, 1995.
Springer Verlag. 34

[67] Marie-Claude Gaudel. Formal methods and testing: Hypotheses, and cor-
rectness approximations. In John Fitzgerald, Ian Hayes, and Andrzej Tar-
lecki, editors, FM 2005: Formal Methods, volume 3582 of Lecture Notes in
Computer Science, pages 597–597. Springer Berlin / Heidelberg, 2005. URL
http://dx.doi.org/10.1007/11526841_2. 34

[68] Zhang Guangquan, Rong Mei, and Zhang Jun. A business process of web
services testing method based on uml2.0 activity diagram. In Intelligent
Information Technology Application, Workshop on, pages 59–65, dec. 2007. doi:
10.1109/IITA.2007.83. 53

[69] Rachid Hamadi and Boualem Benatallah. A petri net-based model for web
service composition. In Proceedings of the 14th Australasian database conference
- Volume 17, ADC ’03, pages 191–200, Darlinghurst, Australia, Australia,
2003. Australian Computer Society, Inc. ISBN 0-909-92595-X. URL http:
//portal.acm.org/citation.cfm?id=820085.820121. 40

[70] Samer Hanna and Malcolm Munro. Fault-based web services testing. In
Proceedings of the Fifth International Conference on Information Technology:
New Generations, pages 471–476, Washington, DC, USA, 2008. IEEE Computer
Society. ISBN 978-0-7695-3099-4. 50

[71] Reiko Heckel and Marc Lohmann. Towards contract-based testing of web
services. Electronic Notes in Theoretical Computer Science, 82:2003, 2004. 50

[72] Sebastian Hinz, Karsten Schmidt, and Christian Stahl. Transforming bpel to
petri nets. In Proceedings of the International Conference on Business Process
Management (BPM2005), volume 3649 of Lecture Notes in Computer Science,
pages 220–235. Springer-Verlag, 2005. 40

[73] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
ISBN 0-13-153271-5. 41

[74] Shan-Shan Hou, Lu Zhang, Qian Lan, Hong Mei, and Jia-Su Sun. Gener-
ating effective test sequences for bpel testing. In Proceedings of the 2009

http://dx.doi.org/10.1007/11526841_2
http://portal.acm.org/citation.cfm?id=820085.820121
http://portal.acm.org/citation.cfm?id=820085.820121

BIBLIOGRAPHY 151

Ninth International Conference on Quality Software, QSIC ’09, pages 331–
340, Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-
0-7695-3828-0. doi: http://dx.doi.org/10.1109/QSIC.2009.50. URL http:
//dx.doi.org/10.1109/QSIC.2009.50. 53

[75] http. Hypertext transfer protocol (http). http://www.w3.org/TR/2009/WD-
HTTP-in-RDF10-20091029/. URL http://www.w3.org/TR/2009/
WD-HTTP-in-RDF10-20091029/. http://www.w3.org/Protocols/. 18

[76] Hai Huang, Wei-Tek Tsai, Raymond Paul, and Yinong Chen. Automated model
checking and testing for composite web services. In Proceedings of the Eighth
IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, ISORC ’05, pages 300–307, Washington, DC, USA, 2005. IEEE
Computer Society. ISBN 0-7695-2356-0. doi: http://dx.doi.org/10.1109/ISORC.
2005.16. URL http://dx.doi.org/10.1109/ISORC.2005.16. 51

[77] T. Jéron, V. Rusu, B. Jeannet, and E. Zinovieva. Symbolic Test Selection
based on Approximate Analysis. In Proc. of TACAS, volume 3440 of LNCS,
2005. 74

[78] Hui Kang, Xiuli Yang, and Sinmiao Yuan. Modeling and verification of
web services composition based on cpn. In Proceedings of the 2007 IFIP
International Conference on Network and Parallel Computing Workshops, NPC
’07, pages 613–617, Washington, DC, USA, 2007. IEEE Computer Society. ISBN
0-7695-2943-7. URL http://portal.acm.org/citation.cfm?id=1306873.
1306989. 40, 52

[79] Kathrin Kaschner and Niels Lohmann. Automatic Test Case Generation for
Interacting Services. In Proc. of ICSOC 2008 Workshops, volume 5472 of
Lecture Notes in Computer Science, 2009. 46, 54

[80] Raman Kazhamiakin, Paritosh Pandya, and Marco Pistore. Representation,
verification, and computation of timed properties in web services composition.
pages 497–504, 2006. doi: http://doi.ieeecomputersociety.org/10.1109/ICWS.
2006.112. 41, 52

[81] Raman Kazhamiakin, Paritosh K. Pandya, and Marco Pistore. Timed modelling
and analysis in web service compositions. In ARES, pages 840–846, 2006. 41,
52

[82] Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized
Symbolic Execution for Model Checking and Testing. In Proc. of TACAS,
volume 2619 of LNCS, 2003. 82

http://dx.doi.org/10.1109/QSIC.2009.50
http://dx.doi.org/10.1109/QSIC.2009.50
http://www.w3.org/TR/2009/WD-HTTP-in-RDF10-20091029/
http://www.w3.org/TR/2009/WD-HTTP-in-RDF10-20091029/
http://dx.doi.org/10.1109/ISORC.2005.16
http://portal.acm.org/citation.cfm?id=1306873.1306989
http://portal.acm.org/citation.cfm?id=1306873.1306989

152 BIBLIOGRAPHY

[83] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and Michael D.
Ernst. Hampi: A solver for string constraints, 2009. 113

[84] James C. King. Symbolic Execution and Program Testing. Communications
of the ACM, 19(7):385–394, 1976. 56, 82

[85] David Kitchin, Evan Powell, and Jayadev Misra. Simulation using orches-
tration (extended abstract). In José Meseguer and Grigore Roşu, editors,
Algebraic Methodology and Software Technology, volume 5140 of Lecture Notes
in Computer Science, pages 2–15. Springer, 2008. ISBN 978-3-540-79979-5.
doi: 10.1007/978-3-540-79980-1_2. 16

[86] Ugo Dal Lago, Marco Pistore, and Paolo Traverso. Planning with a language
for extended goals. In Eighteenth national conference on Artificial intelligence,
pages 447–454, Menlo Park, CA, USA, 2002. American Association for Artificial
Intelligence. ISBN 0-262-51129-0. URL http://portal.acm.org/citation.
cfm?id=777092.777163. 42

[87] Mounir Lallali. Modélisation et Test Fonctionnel de l’Orchestration de Ser-
vice Web. PhD thesis, Université d’Evry-Val d’Essone. Institut national des
télécommunications, 2009. 8, 42, 54, 66

[88] Mounir Lallali, Fatiha Zaïdi, Ana Cavalli, and Iwon Hwang. Automatic Timed
Test Case Generation for Web Services Composition. In Proc. of ECOWS,
2008. 48, 54

[89] J.C. LAPRIE. Guide de la sûreté de fonctionnement. Cepadues, 1996. 30

[90] Shufang Lee, Xiaoying Bai, and Yinong Chen. Automatic mutation testing and
simulation on owl-s specified web services. In Proceedings of the 41st Annual
Simulation Symposium (anss-41 2008), pages 149–156, Washington, DC, USA,
2008. IEEE Computer Society. ISBN 978-0-7695-3143-4. 51

[91] C. Lenz, J. Chimiak-Opoka, and R Breu. Model driven testing of soa–based soft-
ware. In Proceedings of the SEMSOA Workshop 2007 on Software Engineering
Methods for Service-Oriented Architecture, Hannover, 2007. 53

[92] Li Li, Wu Chou, and Weiping Guo. Control flow analysis and coverage
driven testing for web services. In Proceedings of the 2008 IEEE International
Conference on Web Services, pages 473–480, Washington, DC, USA, 2008. IEEE
Computer Society. ISBN 978-0-7695-3310-0. doi: 10.1109/ICWS.2008.104.
URL http://portal.acm.org/citation.cfm?id=1474549.1474764. 52

[93] Yingmin Li. "Modeling BPEL Web Services for Diagnosis: towards self-healing
Web Services". PhD thesis, UNIVERSITE PARIS SUD 11, December 2010. 54

http://portal.acm.org/citation.cfm?id=777092.777163
http://portal.acm.org/citation.cfm?id=777092.777163
http://portal.acm.org/citation.cfm?id=1474549.1474764

BIBLIOGRAPHY 153

[94] Yingmin Li, Tarek Melliti, and Philippe Dague. A colored petri nets model for
diagnosing data faults of bpel services. The 20th International Workshop on
Principles of Diagnosis (DX’09), 2009. 40, 54

[95] Zhong Jie Li, Jun Zhu, Liang-Jie Zhang, and Naomi M. Mitsumori. Towards a
practical and effective method for web services test case generation. In AST,
pages 106–114, 2009. 50

[96] Zhongjie Li, Wei Sun, Zhong Bo Jiang, and Xin Zhang. Bpel4ws unit testing:
Framework and implementation. In Proceedings of the IEEE International
Conference on Web Services, ICWS ’05, pages 103–110, Washington, DC, USA,
2005. IEEE Computer Society. ISBN 0-7695-2409-5. 45, 52

[97] Feng Lin, Michael Ruth, and Shengru Tu. Applying safe regression test selection
techniques to java web services. In Proceedings of the International Conference
on Next Generation Web Services Practices, pages 133–142, Washington, DC,
USA, 2006. IEEE Computer Society. ISBN 0-7695-2664-0. 53

[98] Chien-Hung Liu, Shu-Ling Chen, and Xue-Yuan Li. A ws-bpel based structural
testing approach for web service compositions. In Proceedings of the 2008
IEEE International Symposium on Service-Oriented System Engineering, pages
135–141, Washington, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-
7695-3499-2. 46

[99] Niels Lohmann. Correctness of services and their composition. PhD thesis,
Universität Rostock / Technische Universiteit Eindhoven, 2010. 21

[100] Niels Lohmann, Peter Massuthe, Christian Stahl, and Daniela Weinberg. An-
alyzing interacting bpel processes. In Proceedings of the 4th International
Conference on Business Process Management (BPM2006), volume 4102 of
Lecture Notes in Computer Science, pages 17–32. Springer-Verlag, 2006. 52

[101] Niels Lohmann, H.M.W. Verbeek, and Remco Dijkman. Petri net transforma-
tions for business processes - a survey. LNCS ToPNoC, II(5460):46–63, March
2009. Special Issue on Concurrency in Process-Aware Information Systems. 40

[102] Nik Looker, Binka Gwynne, Jie Xu, and Malcolm Munro. Determining the
dependability of service-oriented architectures, 2007. 51

[103] Formal Systems (Europe) Ltd. FDR (Failures-Divergence Refinement) is a
model-checking tool. URL http://www.fsel.com/. 41

[104] Chunyan Ma, Chenglie Du, Tao Zhang, Fei Hu, and Xiaobin Cai. Wsdl-
based automated test data generation for web service. Computer Science

http://www.fsel.com/

154 BIBLIOGRAPHY

and Software Engineering, International Conference on, 2:731–737, 2008. doi:
http://doi.ieeecomputersociety.org/10.1109/CSSE.2008.790. 50

[105] Chunyan Ma, Junsheng Wu, Tao Zhang, Yunpeng Zhang, and Xiaobin Cai.
Testing bpel with stream x-machine. In Proceedings of the 2008 International
Symposium on Information Science and Engieering - Volume 01, pages 578–582,
Washington, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3494-7.
doi: 10.1109/ISISE.2008.201. URL http://portal.acm.org/citation.cfm?
id=1493610.1493664. 53

[106] Bendick Mahleko and Andreas Wombacher. Indexing business processes based
on annotated finite state automata. In Proceedings of the IEEE International
Conference on Web Services, pages 303–311, Washington, DC, USA, 2006.
IEEE Computer Society. ISBN 0-7695-2669-1. doi: 10.1109/ICWS.2006.74.
URL http://portal.acm.org/citation.cfm?id=1172963.1173065. 41

[107] Evan Martin, Suranjana Basu, and Tao Xie. Automated testing and response
analysis ofweb services. Web Services, IEEE International Conference on, 0:
647–654, 2007. doi: http://doi.ieeecomputersociety.org/10.1109/ICWS.2007.49.
51

[108] Radu Mateescu and Sylvain Rampacek. Formal Modeling and Discrete-Time
Analysis of BPEL Web Services. In Advances in Enterprise Engineering I,
volume 10 of Lecture Notes in Business Information Processing, pages 179–193.
Springer, 2008. 41, 52, 63, 67

[109] Philip Mayer and Daniel Lübke. Bpelunit - the open source unit testing
framework for bpel. URL http://www.bpelunit.net/. 45, 50

[110] Philip Mayer and Daniel Lübke. Towards a bpel unit testing framework. In
Proceedings of the 2006 workshop on Testing, analysis, and verification of web
services and applications, TAV-WEB ’06, pages 33–42, New York, NY, USA,
2006. ACM. ISBN 1-59593-458-8. 45, 50

[111] Philip Mayer, Andreas Schroeder, and Nora Koch. A model-driven approach to
service orchestration. In Proceedings of the 2008 IEEE International Conference
on Services Computing - Volume 2, pages 533–536, Washington, DC, USA, 2008.
IEEE Computer Society. ISBN 978-0-7695-3283-7-02. doi: 10.1109/SCC.2008.
91. URL http://portal.acm.org/citation.cfm?id=1443230.1444290. 37

[112] Hong Mei and Lu Zhang. A framework for testing web services and its
supporting tool. In Proceedings of the IEEE International Workshop, pages
207–214, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-
2438-9. doi: 10.1109/SOSE.2005.1. URL http://portal.acm.org/citation.
cfm?id=1105001.1105566. 50

http://portal.acm.org/citation.cfm?id=1493610.1493664
http://portal.acm.org/citation.cfm?id=1493610.1493664
http://portal.acm.org/citation.cfm?id=1172963.1173065
http://www.bpelunit.net/
http://portal.acm.org/citation.cfm?id=1443230.1444290
http://portal.acm.org/citation.cfm?id=1105001.1105566
http://portal.acm.org/citation.cfm?id=1105001.1105566

BIBLIOGRAPHY 155

[113] Lijun Mei, W.K. Chan, and T.H. Tse. Data flow testing of service-oriented
workflow applications. In Proceedings of the 30th international conference on
Software engineering, ICSE ’08, pages 371–380, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-079-1. 53

[114] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1982. ISBN 0387102353. 41

[115] Gerardo Morales, Stéphane Maag, Ana R. Cavalli, Wissam Mallouli,
Edgardo Montes de Oca, and Bachar Wehbi. Timed extended invariants
for the passive testing of web services. In ICWS, pages 592–599, Washington,
DC, USA, 2010. IEEE Computer Society. ISBN 978-0-7695-4128-0. 48, 54

[116] Mark Harman Mustafa Bozkurt and Youssef Hassoun. Testing web services: A
survey. Technical Report TR-10-01, Department of Computer Science, King’s
College London, January 2010. 43

[117] Oasis. Web Services Business Process Execution Language (WSBPEL) Version
2.0, April 2007. URL http://docs.oasis-open.org/wsbpel/2.0/Primer/
wsbpel-v2.0-Primer.html. 16, 21, 25, 27, 28, 57, 59, 65, 71, 115

[118] Jeff Offutt and Wuzhi Xu. Generating test cases for web services using data
perturbation. SIGSOFT Softw. Eng. Notes, 29:1–10, September 2004. ISSN
0163-5948. 50

[119] C. Ouyang, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede.
Translating BPMN to BPEL. Technical Report BPM-06-02, BPM Center
Report, 2006. 38

[120] Chun Ouyang, Eric Verbeek, Wil M.P. van der Aalst, Stephan W. Breutel,
Marlon Dumas, and Arthur H.M. ter Hofstede. Wofbpel: A tool for automated
analysis of bpel processes. In Boualem Benatallah, Fabio Casati, and Paolo
Traverso, editors, Third International Conference on Service Oriented Com-
puting (ICSOC 2005), pages 484–489, Amsterdam, The Netherlands, 2005.
Springer. URL http://eprints.qut.edu.au/2918/. 52

[121] Chun Ouyang, Eric Verbeek, Wil M. P. van der Aalst, Stephan Breutel, Marlon
Dumas, and Arthur H. M. ter Hofstede. Formal semantics and analysis of
control flow in ws-bpel. Sci. Comput. Program., 67:162–198, July 2007. ISSN
0167-6423. doi: 10.1016/j.scico.2007.03.002. URL http://portal.acm.org/
citation.cfm?id=1274201.1274469. 40

[122] Amit M. Paradkar, Avik Sinha, Clay Williams, Robert D. Johnson, Susan Out-
terson, Charles Shriver, and Carol Liang. Automated functional conformance

http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.html
http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.html
http://eprints.qut.edu.au/2918/
http://portal.acm.org/citation.cfm?id=1274201.1274469
http://portal.acm.org/citation.cfm?id=1274201.1274469

156 BIBLIOGRAPHY

test generation for semantic web services. Web Services, IEEE International
Conference on, 0:110–117, 2007. doi: http://doi.ieeecomputersociety.org/10.
1109/ICWS.2007.48. 53

[123] Y. Pencole, Y. Cordier, M. -o. Grastien, Council Canada, M. o, Yuhong
Yan, Marie odile Cordier, Yannick Pencolé, and Alban Grastien. Monitoring
web service networks in a model-based approach. In In 3rd IEEE European
Conference on Web Services (ECOWS05, pages 14–16. IEEE Computer Society.
42, 54

[124] Liam Peyton, Bernard Stepien, and Pierre Seguin. Integration testing of
composite applications. In Hawaii International Conference on System Sciences,
2008. doi: 10.1109/HICSS.2008.212. 50

[125] Simon Pickin, Claude Jard, Thierry Jéron, Jean-Marc Jézéquel, and Yves Le
Traon. Test synthesis from uml models of distributed software. IEEE Trans.
Software Eng., 33(4):252–269, 2007. 74

[126] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Automated synthesis of
composite bpel4ws web services. In Proceedings of the IEEE International
Conference on Web Services, ICWS ’05, pages 293–301, Washington, DC, USA,
2005. IEEE Computer Society. ISBN 0-7695-2409-5. URL http://dx.doi.
org/10.1109/ICWS.2005.27. 41

[127] Amir Pnueli. Applications of temporal logic to the specification and verification
of reactive systems: A survey of current trends. Current Trends in Concurrency,
volume 224 of Lecture Notes in Computer Science, pages 510-584. Springer-
Verlag, 1986. 34

[128] Pascal Poizat and Jean-Claude Royer. A Formal Architectural Description
Language based on Symbolic Transition Systems and Modal Logic. Journal of
Universal Computer Science, 12(12):1741–1782, 2006. 56, 64

[129] Michael P.Papazoglou and Jean jacques Dubray. A survey of web service
technologies. Technical Report 586, University of Trento, July 2004. URL
http://eprints.biblio.unitn.it/archive/00000586/. 18, 20

[130] Pemadeep Ramsokul and Arcot Sowmya. Aseha: A framework for modelling
and verification ofweb services protocols. In Proceedings of the Fourth IEEE
International Conference on Software Engineering and Formal Methods, pages
196–205, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-
2678-0. doi: 10.1109/SEFM.2006.8. URL http://portal.acm.org/citation.
cfm?id=1158333.1158365. 51

http://dx.doi.org/10.1109/ICWS.2005.27
http://dx.doi.org/10.1109/ICWS.2005.27
http://eprints.biblio.unitn.it/archive/00000586/
http://portal.acm.org/citation.cfm?id=1158333.1158365
http://portal.acm.org/citation.cfm?id=1158333.1158365

BIBLIOGRAPHY 157

[131] Pemadeep Ramsokul and Arcot Sowmya. A sniffer based approach to ws
protocols conformance checking. In Proceedings of the Proceedings of The Fifth
International Symposium on Parallel and Distributed Computing, pages 58–65,
Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2638-1. 51

[132] Valentín Valero Ruiz, M.E. Cambronero, G. Díaz, and J.J. Pardo. Transforming
web services choreographies with priorities and time constraints into prioritized-
time petri nets. FLACOS 2007, 2007. 40

[133] Michael Ruth and Shengru Tu. A safe regression test selection technique for
web services. In Proceedings of the Second International Conference on Internet
and Web Applications and Services, pages 47–, Washington, DC, USA, 2007.
IEEE Computer Society. ISBN 0-7695-2844-9. doi: 10.1109/ICIW.2007.8. URL
http://portal.acm.org/citation.cfm?id=1260202.1260609. 53

[134] Gwen Salaün, Andrea Ferrara, and Antonella Chirichiello. Negotiation among
web services using lotos/cadp. In ECOWS, pages 198–212, 2004. 41, 52

[135] S. Salva and A. Rollet. Automatic web service testing from wsdl descriptions.
In 8th International Conference on Innovative Internet Community Systems
I2CS 2008, volume 2011 of Lecture Notes in Informatics (LNI), Schoelcher,
Martinique, 06 2008. Gesellschaft für Informatik (GI). 45, 53

[136] Holger Schlingloff, Axel Martens, and Karsten Schmidt. Modeling and
model checking web services. Electronic Notes in Theoretical Com-
puter Science, 126:3–26, 2005. ISSN 1571-0661. doi: DOI:10.1016/j.
entcs.2004.11.011. URL http://www.sciencedirect.com/science/article/
B75H1-4FKXPY9-F/2/611b9d32436c15382a1c01b62ee85090. Proceedings of
the 2nd International Workshop on Logic and Communication in Multi-Agent
Systems (2004). 51

[137] Karsten Schmidt. Lola: a low level analyser. In Proceedings of the 21st
international conference on Application and theory of petri nets, ICATPN’00,
pages 465–474, Berlin, Heidelberg, 2000. Springer-Verlag. ISBN 3-540-67693-7.
URL http://portal.acm.org/citation.cfm?id=1754589.1754619. 40

[138] Reda Siblini and Nashat Mansour. Testing web services. In AICCSA’05, pages
–1–1, 2005. 51

[139] Avik Sinha and Amit Paradkar. Model-based functional conformance testing of
web services operating on persistent data. In Proceedings of the 2006 workshop
on Testing, analysis, and verification of web services and applications, TAV-
WEB ’06, pages 17–22, New York, NY, USA, 2006. ACM. ISBN 1-59593-458-8.
54

http://portal.acm.org/citation.cfm?id=1260202.1260609
http://www.sciencedirect.com/science/article/B75H1-4FKXPY9-F/2/611b9d32436c15382a1c01b62ee85090
http://www.sciencedirect.com/science/article/B75H1-4FKXPY9-F/2/611b9d32436c15382a1c01b62ee85090
http://portal.acm.org/citation.cfm?id=1754589.1754619

158 BIBLIOGRAPHY

[140] Colin Smythe. Initial investigations into interoperability testing of web services
from their specification using the unified modelling language. In Antonia
Bertolino and Andrea Polini, editors, in Proceedings of International Workshop
on Web Services Modeling and Testing (WS-MaTe2006), pages 95–119, Palermo,
Sicily, ITALY, June 9th 2006. 54

[141] Harry M. Sneed and Shihong Huang. Wsdltest - a tool for testing web services.
In WSE’06, pages 14–21, 2006. 50

[142] Christian Stahl. A Petri Net Semantics for BPEL. Informatik-Berichte 188,
Humboldt-Universität zu Berlin, July 2005. 40

[143] Abbas Tarhini, Hacène Fouchal, and Nashat Mansour. A simple approach for
testing web service based applications. In IICS, pages 134–146, 2005. 54

[144] Maurice H. ter Beek, Antonio Bucchiarone, and Stefania Gnesi. Formal Methods
for Service Composition. Annals of Mathematics, Computing & Teleinformatics,
1(5):1–10, 2007. 41

[145] G.J. Tretmans. Test generation with inputs, outputs and repetitive quiescence,
1996. URL http://doc.utwente.nl/65463/. 46

[146] Jan Tretmans. Testing concurrent systems: A formal approach. In CONCUR,
pages 46–65, 1999. 34

[147] Jan Tretmans. Model based testing with labelled transition systems. In Formal
Methods and Testing, pages 1–38, 2008. 34, 62

[148] Stefan Troschütz. Web Service Test Framework with TTCN-3. PhD thesis,
The University of Göttingen - Germany, Germany, 2007. 45

[149] W. T. Tsai, Ray Paul, Weiwei Song, and Zhibin Cao. Coyote: An xml-based
framework for web services testing. In Proceedings of the 7th IEEE International
Symposium on High Assurance Systems Engineering, HASE ’02, pages 173–,
Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1769-2.
URL http://portal.acm.org/citation.cfm?id=795685.797694. 50

[150] W. T. Tsai, R. Paul, Z. Cao, L. Yu, A. Saimi, and B. Xiao. Verification of web
services using an enhanced uddi server. Object-Oriented Real-Time Dependable
Systems, IEEE International Workshop on, 0:131, 2003. ISSN 1530-1443. doi:
http://doi.ieeecomputersociety.org/10.1109/WORDS.2003.1218075. 50

[151] Wei-Tek Tsai, Yinong Chen, Raymond Paul, Hai Huang, Xinyu Zhou, and
Xiao Wei. Adaptive testing, oracle generation, and test case ranking for
web services. In Proceedings of the 29th Annual International Computer

http://doc.utwente.nl/65463/
http://portal.acm.org/citation.cfm?id=795685.797694

BIBLIOGRAPHY 159

Software and Applications Conference - Volume 01, COMPSAC ’05, pages
101–106, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-
7695-2413-3. doi: http://dx.doi.org/10.1109/COMPSAC.2005.40. URL http:
//dx.doi.org/10.1109/COMPSAC.2005.40. 52

[152] Wei-Tek Tsai, Xiao Wei, Yinong Chen, Ray Paul, and Bingnan Xiao. Swiss
cheese test case generation for web services testing. IEICE - Trans. Inf. Syst.,
E88-D:2691–2698, December 2005. ISSN 0916-8532. 51

[153] Sebastian Uchitel, Jeff Kramer, and Jeff Magee. Synthesis of behavioral models
from scenarios. IEEE Trans. Softw. Eng., 29(2):99–115, 2003. ISSN 0098-5589.
74

[154] Franck van Breugel and Maria Koshkina. Models and verification of bpel, 2006.
URL www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf. 40

[155] Marco Vieira, Nuno Laranjeiro, and Henrique Madeira. Benchmarking the
robustness of web services. In Proceedings of the 13th Pacific Rim International
Symposium on Dependable Computing, pages 322–329, Washington, DC, USA,
2007. IEEE Computer Society. ISBN 0-7695-3054-0. doi: 10.1109/PRDC.2007.
24. URL http://portal.acm.org/citation.cfm?id=1345534.1345824. 51

[156] W3C. XML Path Language (XPath) Version 1.0. Technical report, W3C, 1999.
65

[157] XML Schema. W3C recommendation. URL http://www.w3.org/XML/Schema.
18

[158] Rui Wang and Ning Huang. Requirement model-based mutation testing for
web service. In Next Generation Web Services Practices, 2008. NWESP ’08.
4th International Conference on, pages 71–76, oct. 2008. doi: 10.1109/NWeSP.
2008.20. 51

[159] Matthias Weidlich, Gero Decker, and Mathias Weske. Efficient analysis of bpel
2.0 processes using p-calculus. In APSCC, pages 266–274, 2007. 41, 52

[160] Stephen A. White. Using BPMN to Model a BPEL Process. 38

[161] Andreas Wombacher, Peter Fankhauser, and Erich Neuhold. Transforming
bpel into annotated deterministic finite state automata for service discovery.
In Proceedings of the IEEE International Conference on Web Services, ICWS
’04, pages 316–, Washington, DC, USA, 2004. IEEE Computer Society. ISBN
0-7695-2167-3. doi: http://dx.doi.org/10.1109/ICWS.2004.117. URL http:
//dx.doi.org/10.1109/ICWS.2004.117. 41

http://dx.doi.org/10.1109/COMPSAC.2005.40
http://dx.doi.org/10.1109/COMPSAC.2005.40
www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf
http://portal.acm.org/citation.cfm?id=1345534.1345824
http://www.w3.org/XML/Schema
http://dx.doi.org/10.1109/ICWS.2004.117
http://dx.doi.org/10.1109/ICWS.2004.117

160 BIBLIOGRAPHY

[162] Chunxiang Xu, Hanpin Wang, and Wanling Qu. Modeling and verifying bpel
using synchronized net. In Proceedings of the 2008 ACM symposium on Applied
computing, SAC ’08, pages 2358–2362, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-753-7. doi: http://doi.acm.org/10.1145/1363686.1364248. URL
http://doi.acm.org/10.1145/1363686.1364248. 52

[163] Wuzhi Xu, Jeff Offutt, and Juan Luo. Testing web services by xml perturba-
tion. In Proceedings of the 16th IEEE International Symposium on Software
Reliability Engineering, pages 257–266, Washington, DC, USA, 2005. IEEE
Computer Society. ISBN 0-7695-2482-6. doi: 10.1109/ISSRE.2005.44. URL
http://portal.acm.org/citation.cfm?id=1104997.1105254. 50

[164] Jun Yan, Zhongjie Li, Yuan Yuan, Wei Sun, and Jian Zhang. Bpel4ws
unit testing: Test case generation using a concurrent path analysis ap-
proach. In Proceedings of the 17th International Symposium on Software
Reliability Engineering, pages 75–84, Washington, DC, USA, 2006. IEEE
Computer Society. ISBN 0-7695-2684-5. doi: 10.1109/ISSRE.2006.16. URL
http://portal.acm.org/citation.cfm?id=1190616.1191224. 52

[165] YanPing Yang, QingPing Tan, and Yong Xiao. Verifying web services com-
position based on hierarchical colored petri nets. In Proceedings of the
first international workshop on Interoperability of heterogeneous informa-
tion systems, IHIS ’05, pages 47–54, New York, NY, USA, 2005. ACM.
ISBN 1-59593-184-8. doi: http://doi.acm.org/10.1145/1096967.1096977. URL
http://doi.acm.org/10.1145/1096967.1096977. 52

[166] Yanping Yang, QingPing Tan, Yong Xiao, Feng Liu, and Jinshan Yu. Transform
bpel workflow into hierarchical cp-nets to make tool support for verification.
In APWeb, pages 275–284, 2006. 40, 52

[167] Hsu-Chun Yen. Introduction to petri net theory. In Recent Advances in Formal
Languages and Applications, pages 343–373. 2006. 39

[168] W. L. Yeung. Mapping ws-cdl and bpel into csp for behavioural specification
and verification of web services. In Proceedings of the European Conference
on Web Services, pages 297–305. IEEE Computer Society, 2006. ISBN 0-7695-
2737-X. doi: 10.1109/ECOWS.2006.26. 41, 52

[169] Xiaochuan Yi and Krys J. Kochut. A cp-nets-based design and verification
framework for web services composition. In Proceedings of the IEEE Interna-
tional Conference on Web Services, ICWS ’04, pages 756–, Washington, DC,
USA, 2004. IEEE Computer Society. ISBN 0-7695-2167-3. doi: http://dx.doi.
org/10.1109/ICWS.2004.2. URL http://dx.doi.org/10.1109/ICWS.2004.2.
52

http://doi.acm.org/10.1145/1363686.1364248
http://portal.acm.org/citation.cfm?id=1104997.1105254
http://portal.acm.org/citation.cfm?id=1190616.1191224
http://doi.acm.org/10.1145/1096967.1096977
http://dx.doi.org/10.1109/ICWS.2004.2

BIBLIOGRAPHY 161

[170] Yuan Yuan, Zhongjie Li, and Wei Sun. A graph-search based approach to
bpel4ws test generation. In Proceedings of the International Conference on
Software Engineering Advances, pages 14–, Washington, DC, USA, 2006. IEEE
Computer Society. ISBN 0-7695-2703-5. doi: 10.1109/ICSEA.2006.6. URL
http://portal.acm.org/citation.cfm?id=1193212.1193784. 42, 46, 53

[171] Bensheng Yun, Junwei Yan, and Min Liu. Behavior-based web services match-
making. Network and Parallel Computing Workshops, IFIP International
Conference on, 0:483–487, 2008. doi: http://doi.ieeecomputersociety.org/10.
1109/NPC.2008.56. 41

[172] Jian Zhang. Specification analysis and test data generation by solving boolean
combinations of numeric constraints. Asia-Pacific Conference on Quality
Software, 0:267, 2000. doi: http://doi.ieeecomputersociety.org/10.1109/APAQ.
2000.883800. 46

[173] Yongyan Zheng and Paul J. Krause. Automata semantics and analysis of bpel.
2007. URL http://epubs.surrey.ac.uk/publcomp3/3. 41, 51

[174] Yongyan Zheng, Jiong Zhou, and Paul Krause. A model checking based test
case generation framework for web services. In ITNG, pages 715–722, 2007.
41, 51

[175] Tewfik Ziadi, Loïc Hélouët, and Jean-Marc Jézéquel. Towards a uml profile
for software product lines. In Proc. of Software Product-Family Engineering,
pages 129–139, 2003. 74

[176] Eléna Zinovieva-Leroux. Méthodes symboliques pour la génération de tests de
systèmes réactifs comportant des données. PhD thesis, Université de Rennes 1,
2004. 34, 36

http://portal.acm.org/citation.cfm?id=1193212.1193784
http://epubs.surrey.ac.uk/publcomp3/3

	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Issues
	Contributions
	Outline
	Publications

	State of the Art on Web Services Verification
	Web Services
	Basic Notions of Testing
	Specification for Web Services Orchestration
	Formal Methods for Web Services
	Verifying and Testing Web Services
	Conclusion

	A Symbolic Approach for Composite Web Service Conformance Testing
	The Proposed Framework
	Composite Web Services specification
	From Language to Model
	Deriving Symbolic Test Cases
	Conclusion

	Implementation and Tools support
	Testing Architecture
	Conformance Testing of a Service Orchestrator
	Conclusion

	Conclusion
	Contributions
	Perspectives

	x-Loan Case Study
	Specification
	WS-STS model
	Symbolic Execution Tree
	Symbolic Test Cases

	E-Conference Case Study
	Specification
	WS-STS model
	Symbolic Execution Tree
	Symbolic Test Cases

	Appendix
	The steps:
	Description of the functions

	Appendix
	WSDL of the xLoan Service Orchestrator
	WSDL of the Black List Service
	WSDL of the Bank Service

	Bibliography

