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Abstract

This Ph.D thesis work is dedicated to 3D facial surface analysis, processing as well
as to the newly proposed 3D face recognition modality, which is based on mapping
techniques.

Facial surface processing and analysis is one of the most important steps for 3D
face recognition algorithms. Automatic anthropometric facial features localization
also plays an important role for face localization, face expression recognition, face
registration ect., thus its automatic localization is a crucial step for 3D face proces-
sing algorithms. In this work we focused on precise and rotation invariant landmarks
localization, which are later used directly for face recognition. The landmarks are
localized combining local surface properties expressed in terms of differential geome-
try tools and global facial generic model, used for face validation. Since curvatures,
which are differential geometry properties, are sensitive to surface noise, one of the
main contributions of this thesis is a modification of curvatures calculation method.
The modification incorporates the surface noise into the calculation method and
helps to control smoothness of the curvatures. Therefore the main facial points can
be reliably and precisely localized (100% nose tip localization using 8 mm precision)
under the influence of rotations and surface noise. The modification of the curvatures
calculation method was also tested under different face model resolutions, resulting
in stable curvature values. Finally, since curvatures analysis leads to many facial
landmark candidates, the validation of which is time consuming, facial landmarks
localization based on learning technique was proposed. The learning technique helps
to reject incorrect landmark candidates with a high probability, thus accelerating
landmarks localization.

Face recognition using 3D models is a relatively new subject, which has been
proposed to overcome shortcomings of 2D face recognition modality. However, 3D
face recognition algorithms are likely more complicated. Additionally, since 3D face
models describe facial surface geometry, they are more sensitive to facial expression
changes. Our contribution is reducing dimensionality of the input data by mapping
3D facial models on to 2D domain using non-rigid, conformal mapping techniques.
Having 2D images which represent facial models, all previously developed 2D face
recognition algorithms can be used. In our work, conformal shape images of 3D
facial surfaces were fed in to 2D2 PCA, achieving more than 86% recognition rate
rank-one using the FRGC data set.

The effectiveness of all the methods has been evaluated using the FRGC and
Bosphorus datasets.

Keywords : 3D face landmarking, 3D face recognition, curvatures classification,
conformal mapping.





Résumé

Ce travail de thèse concerne l’analyse de surfaces faciales en 3D, ainsi que leur
traitement, dans le récent cadre de la modalité de reconnaissance de visages en 3D,
basé sur des techniques d’appariement.

Le traitement de la surface faciale et son analyse constituent une étape impor-
tante dans les algorithmes de reconnaissance de visage en 3D. La localisation de
points d’intérêt anthropométriques du visage joue par ailleurs un rôle important
dans les techniques de localisation du visage, de reconnaissance d’expression, de
recalage, etc. Ainsi, leur localisation automatique joue un rôle crucial dans les algo-
rithmes de traitement du visage 3D. Dans ce travail, nous avons mis l’accent sur la
localisation précise et invariante en rotation des points d’intérêt, qui seront utilisés
plus tard pour la reconnaissance de visages. Ces points d’intérêt sont localisés en
combinant les propriétés locales de la surface faciale, exprimées en termes de géo-
métrie différentielle, et un modèle global et générique du visage. Etant donné que la
sensibilité des courbures, qui sont des propriétés de géométrie différentielle, au bruit,
une des contributions de cette thèse est la modification d’une méthode de calcul de
courbures. Cette modification incorpore le bruit de la surface dans la méthode de
calcul, et permet de contrôler la progressivité des courbures. Par conséquent, nous
pouvons localiser les points d’intérêt de la surface faciale avec précision et fiabilité
(100% de bonnes localisation du bout du nez avec une erreur maximale de 8mm
par exemple) y compris en présence de rotations et de bruit. La modification de la
méthode de calcul de courbure a été également testée pour différentes résolutions de
visage, présentant des valeurs de courbure stables. Enfin, étant donné que donné que
l’analyse de courbures mène à de nombreux candidats de points d’intérêt du visage,
dont la validation est coûteuse, nous proposons de localiser les points d’intérêt grâce
à une méthode d’apprentissage. Cette méthode permet de rejeter précocement des
faux candidats avec une grande confiance, accélérant d’autant la localisation des
points d’intérêt.

La reconnaissance de visages à l’aide de modèles 3D est un sujet relativement
nouveau, qui a été propose pour palier aux insuffisantes de la modalité de recon-
naissance de visages en 2D. Cependant, les algorithmes de reconnaissance de visage
en 3D sont généralement plus complexes. De plus, étant donné que les modèles de
visage 3D décrivent la géométrie du visage, ils sont plus sensibles que les images 2D
de texture aux expressions faciales. Notre contribution est de réduire la dimension-
nalité des données de départ en appariant les modèles de visage 3D au domaine 2D
à l’aide de méthodes, non rigides, d’appariement conformal. L’existence de modèles
2D représentant les visages permet alors d’utiliser les techniques précédemment dé-
veloppées dans le domaine de la reconnaissance de visages en 2D. Dans nos travaux,
nous avons utilisé les cartes conformales de visages 3D en conjonction avec l’algo-
rithme 2D2 PCA, atteignant le score de 86% en reconnaissance de rang 1 sur la base
de données FRGC.



L’efficacité de toutes les méthodes a été évaluée sur les bases FRGC et Bosphorus.

Mots clés : Landmarking de visages 3D, reconnaissance de visage 3D, classifica-
tion de courbures, appariement conformal.
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Chapter 1

Introduction

1.1 Research Topic

From many proposed modalities for people identification and verification, face recog-
nition is one of the most acceptable techniques by a society. Human face is also a
valuable and rich physiological feature, used by humans to distinguish a person.

Face biometrics solutions have been developing for over 50 years, starting from
semi-automated systems for face recognition developed in 1960s and ending on multi-
modal solutions used nowadays. It is also an important alternative for selecting and
developing an optimal biometric system, without any sophisticated hardware and
need of physical contact with the device. The face recognition modality has now
matured into a science of sophisticated mathematical representations and matching
processes, where to achieve better accuracy, instead of 2D images, 3D face model-
based modality has been proposed.

Indeed, 3D face models contain more information which is very useful for pro-
cessing, analysis and face-based people recognition. Unlike 2D modality, 3D face
recognition has ability to overcome problems of face rotations as well as light vari-
ations, which are the main concerns with 2D facial images. Except texture, 3D
models also contain 3D face geometry properties which can be described in differen-
tial geometry forms like Mean or Gaussian curvatures. Having more properties, 3D
face models analysis is more complex, allows more variations and results in precise
solutions. It also leads to more sophisticated and complex face recognition algo-
rithms which gain better results than 2D counterparts, especially in case of lighting
changes.

Among all aspects of face analysis, we mainly focused on precise face landmarks
detection, without any change in the model’s structure, which is one of the pro-
posed contributions. Secondly, we used localized anchor points for one of 3D face
recognition techniques, which relies on 3D surface mapping to 2D domain, where
non-rigid mapping techniques are used. The mapping leads to creating 2D facial
images, embedding non-rigid surface deformations. This kind of mapping enables
all previously developed 2D face recognition algorithms to be used on 3D data.

1.2 Problems and Objective

Recently 3D face recognition modality has emerged as a major research direction
for face recognition. The 3D face recognition modality is theoretically insensitive to
illumination and rotations, which are the main factors imposing strong hurdles on



Chapter 1. Introduction

2D face recognition counterparts. Therefore, use of 3D face models, which contain
ample information on both geometry and texture, can improve the effectiveness of
face recognition systems.

While the problem of illumination changes in 3D face recognition can be solved
using different 3D models properties, like curvatures, etc., the rotation problem can
be fixed by pose normalization before 3D facial shape-based matching. Having many
degrees of freedom in 3D, most of the existing 3D facial surface registration tech-
niques rely on facial landmarks. The essence of the surface registration problem, is
how to bring two models together into a common coordinate system. One of the
solutions, is to find some key points and try to match them. In 3D, to fulfil all six
degrees of freedom (three degrees in rotations and three degrees in translations), one
needs at least three non-co-linear, labelled key points between two 3D models. On
3D facial models, the most marked-out facial points are the nose tip and two inner
eyes cavities, therefore a reliable localization of these facial feature points is signifi-
cant for further face surface registration/recognition algorithms. The key points can
be also used as reference points for recognition algorithms, where generally the nose
tip is used as the origin. Therefore the most important factor, influencing recog-
nition algorithm, is precision of the localized point. One of the objectives of this
thesis is to develop an algorithm which will be able to handle different face rotations
and resolution, achieving precise main facial landmarks in each condition.

3D face models are widely thought of as a major solution in dealing with the
problem of illumination changes as geometric features can be used instead of 2D
texture features. Very popular features, which can be projected onto 3D models are
features from differential geometry, for instance Gaussian or Mean curvatures which
characterize the intrinsic properties of a surface. However these features, while sim-
ple for the computation, are also very sensitive to surface noise. To achieve smooth
decomposition of those features on noisy models, noise filtering techniques like me-
dian or Gaussian filters can be used. The downside is that they also tend to remove
fine details, which can be useful for people identification (like scars or marks). There-
fore another objective of this thesis is to modify curvatures calculation technique to
control smoothness of curvatures and achieve their smooth decomposition without
filtering techniques.

While 3D face models capture accurately facial surfaces thereby offering pose
and lighting condition invariant geometric features, they are likely more sensitive to
facial expression changes as compared to their 2D counterparts. Higher dimensional
data, makes the whole processing algorithm more complex and sophisticated. On
the other hand, face recognition in 2D is well known and studied for many years.
Connecting all these facts together, a third objective of this thesis is to create 2D
images of 3D facial models, which will simplify the 3D recognition problem to 2D
while embedding facial expressions, thereby making applicable all the techniques
previously developed for face recognition in 2D.

2
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1.3 Our Approaches and Contributions

Increasing quality of 3D face models is a common part of all 3D face preprocess-
ing algorithms. Models suffer from holes and spikes which are the main quality
issues in nowadays laser-based scanning techniques. Removal of those artefacts is a
crucial step for further face analysis and recognition. Our first contribution is the
preprocessing method, which increases models quality without removing fine details
on facial surface. The method consists of adding simple threshold to the median
filtering technique, which helps to remove certain noise from processed models.

Nowadays, the most popular method for 3D face models analysis and processing,
relies on curvatures and their decomposition on facial models. While the process-
ing of the curvatures allows facial expressions analysis, landmarks localization, face
recognition, etc., their calculation method is very sensitive to the surface noise. One
of the solutions is to smooth out processed models before curvatures calculation.
This solution however influences also fine details on facial models, which can be
further used for face recognition purpose. Therefore our second contribution refers
to the curvatures calculation method. Simple change in the points neighborhood,
used for the curvatures approximation, affects the smoothness of the curvatures
decomposition. The smoothness of the curvatures relies on the size of the neigh-
borhood used for the curvatures approximation. Additionally, expressing the size of
the neighborhood in real units [mm], results in very stable curvature values across
different models’ resolutions and points density.

Subsequently the developed method was used for precise facial main points lo-
calization, which is our next contribution. In order to precisely localize the main
facial points, namely: nose tip and inner corners of eyes, a large neighborhood in the
Gaussian and Mean curvatures approximation method was used. Next, Gaussian
and Mean curvatures classification was used to localize possible regions of the nose
and eyes. To localize precise landmark points, the maximum Gaussian curvature
points in each region was localized. Analysis of the curvatures, calculated with a
large neighborhood, results in analysis of the main patches on faces, which refer to
the nose and eye cavities. Therefore reliable, accurate and precise landmarking al-
gorithm can be achieved. While the curvatures are insensitive to the rotations, their
correct analysis and validation method makes the algorithm also rotation invariant.

This kind of analysis generally leads to many facial anthropometric candidate
points. To identify the true main facial points, generally mean face model (expressed
for example in geometry or appearance) and its fitting error was used. While highly
effective, these kind of approaches are computationally expensive and suffer from
the exponential number of configurations of the candidate points. Alternatively,
the nose tip can also be localized using a data-driven approach, by creating point
signatures and thereby enabling fast statistical learning. Our next contribution is
in studies and comparison of four geometry based point properties namely Mean
and Gaussian curvatures, Shape Index and Curvedness in terms of descriptiveness
for the nose tip localization.

Face recognition is one of the most acceptable biometric identification modali-
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ties. As such, face recognition based on 2D images has been studied for many years.
Unfortunately, its performance drops drastically in case of inconsistent light con-
ditions and facial rotations. Therefore face recognition in 3D has been proposed.
However, the recognition algorithms are likely more complicated. Additionally, since
3D face models describe facial surface geometry, they are more sensitive to facial
expression changes. Our next contribution, is reducing dimensionality of the input
data by mapping 3D facial models onto 2D domain using non-rigid, conformal or
quasi-conformal mapping techniques. Since facial expressions introduce non-rigid
deformations of facial surface, those mapping techniques have the potential to deal
with them, reducing its influence on 2D images. Having 2D images which represent
facial models, all previously developed 2D face recognition algorithms can be used.

To achieve comparable 2D images, non-rigid, conformal mapping techniques re-
quire the surface topology as well as the surface boundary to remain unchanged.
The facial surface topology changes mainly due to large facial expressions, where
open mouth causes appearance of additional vertices between lips. To preserve sur-
face topology between expressions, open mouth detection and removal are necessary.
To remove open mouth, one can rely on manual or automatic landmarks, yet au-
tomatic landmarking of the non-rigid part is a very challenging task. Additionally,
removal of open mouth based on a few landmark points can be imprecise, causing
incorrect topology preservation. Our another contribution, relies on open mouth
detection based on curvatures analysis. Open mouth characterizes a large cavity
which can be easily detected using curvatures decomposition analysis. Analysis of
the principal curvatures permits to detect open mouth cavities. Additionally, the
multi-scale curvatures analysis permits to detect open mouth cavities with varying
size and position.

1.4 Organization of the Thesis

This thesis is organized as follows:
Chapter 2 focuses on face preprocessing and landmarking, where firstly we intro-

duce the background of the topic, showing different modalities of 3D face landmark-
ing techniques. Afterwards, we propose a modification of the spikes removal tech-
nique, which removes spikes without smoothing the whole 3D face models, thereby
preserving the fine details. Subsequently, we propose a modification of the curva-
tures calculation method, which excludes facial surface noise. Next, in section 2.3
curvatures calculation method was used for 2.5D facial models landmarking algo-
rithm. The proposed landmarking algorithm is able to precisely detect the main
facial landmarks under facial rotations and different models resolution. Since vali-
dation of the point candidates given by the analysis of the curvatures is very time
consuming, therefore in section 2.4 a data driven learning approach was proposed,
which can exclude incorrect nose tip candidates with a high probability. Addition-
ally in section 2.5 tests on stability of the modified curvatures calculation method
using models with a different resolution were performed and demonstrated stability
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of the curvatures values across different resolutions.
Chapter 3 covers 3D face recognition using non-rigid mapping techniques. First

we introduce the related work on mapping-based 3D face recognition techniques.
Section 3.4 shows dedicated models preprocessing for topology and boundary preser-
vation, which are the conditions to achieve comparable face maps. The face surface
topology is mainly affected by open mouth, therefore in this section we will focus
on automatic open mouth detection and removal. The last section of the chapter
(3.5) treats the problem of 3D face recognition based on 2D non-rigid mapping tech-
niques, which are used to simplify the 3D face recognition problem to 2D, thereby
making available all previously developed 2D face recognition algorithms. Addition-
ally, since facial expression introduces non-rigid facial surface deformations, mapping
techniques used are also non-rigid.

Finally chapter 4 concludes the thesis and gives hints and suggestions for the
future work.
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Chapter 2

2.5D Face Preprocessing, Analysis
and Landmarking

2.1 Introduction

A problem of 2.5D1 face preprocessing and analysis is common for all 3D face recog-
nition algorithms. While 3D face models are theoretically insensitive to lighting con-
ditions, the acquisition technique can be affected by the light [Bowyer et al. 2006].
The majority of scanning technologies are light based, where different, strong sources
of light can affect the model’s geometry (figure 2.1). Even under ideal illumination
conditions, it is common for artifacts like spikes or holes to appear in specular, oily
facial regions, the eyes and regions of facial hair (eyebrows, mustache or beard).
Therefore a reliable preprocessing algorithm is required for models quality improve-
ment, to exclude the impact of the quality on the recognition algorithm.

Figure 2.1: An example of incorrect shape caused by a strong source of light, pre-
sented in [Bowyer et al. 2006].

Rough 2.5D face models generally come without information about the face
position or rotation. Therefore analysis of 3D facial surfaces is very important for 3D
face recognition. Such an analysis gives the basic information about face position,
size or rotation relative to the camera. These information in general is deduced

1A 2.5D model is a three-dimensional model with a constraint that the surface is given as a
function f(x, y), which means that every point in the (x, y) plane has at most one depth (z) value.
2.5D models are also called depth maps or depth images (figure 2.5).
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Figure 2.2: Example of anthropometric points used for face recognition (left: color
image, right: range image).[Gupta et al. 2010]

from facial anchor points, which are fiducial points having consistent reproducibility
between faces even in adverse conditions. These stable points generally include: nose
tip, corners of eyes, corners of mouth, corners of nose, etc. (figure 2.2).

Accurately localized facial 3D landmarks, can be used for objectives like:

• mesh registration [Mian et al. 2007, Chang et al. 2006, Besl & McKay 1992,
Shi et al. 2006, Lu et al. 2006],

• face recognition [Soltana et al. 2010, Gupta et al. 2010],

• facial expressions recognition [Zhao et al. 2010, Niese et al. 2008],

• face tracking [Sun & Yin 2008a],

• reference points for parametrization [Bronstein et al. 2005],

• facial regions cropping [Faltemier et al. 2008a, Chang et al. 2006],

• face localization [Colombo et al. 2006, Nair & Cavallaro 2009],

• face pose estimation [Sun & Yin 2008b, Malassiotis & Strintzis 2005].

Automatic facial landmarks localization generally meets the challenges of illumi-
nation, facial expressions, occlusions but also head pose and face models resolution.
Additionally in the case of 2.5D scans, the head pose variations not only influ-
ence the facial appearance in the texture but also cause self-occlusions, where some
landmark points can be hidden. The texture can be also affected by variations of
lighting intensity or lighting source position, which change the facial appearance.
Therefore approaches using only the texture, to localize facial points, are affected
by its changes. Indeed, 3D facial models help to overcome the problems of lighting
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variations and face position only while landmarks are localized by facial geometry
analysis.

In this chapter, we focus on locating facial feature points on 2.5D face scans
without any reinforcement from the texture side.

2.2 Related Work on 2.5D Models Quality Improvement
and Landmarking

Preprocessing of 3D face meshes is a very important step in many applications,
especially in the 3D face recognition task, where 3D mesh quality is influenced by
noise, holes and movement of the subject. Like all classification techniques, the
3D face recognition requires the samples to be normalized and registered. The
normalization as well as the face localization for many face recognition algorithms is
based on the facial anthropometric points and is incorporated in the preprocessing
step. Therefore a common preprocessing part for all 3D face recognition algorithms
consists of: quality improvement, anchor points localization and face detection.

2.2.1 Quality improvement

As mentioned previously, actual scanning techniques are mainly based on the the
light response analysis. Those techniques are sensitive to specular, oily regions, the
eyes and regions of facial hair (eyebrows, mustache or beard), where in general some
scanning artifacts can be observed [Bowyer et al. 2006, Boehnen & Flynn 2005].
Removal of those artifacts is a crucial step in the models quality improvement.

2.2.1.1 Noise removal

Noise appears on models often in the acquisition step by noisy sensors or insufficient
environmental conditions. Such an impulse noise is called "spike" (figure 2.3) and
in general, it is a point lying far from a surface created by its neighbors. To remove
such a noise, its characteristic needs to be known. In 2.5D models, acquired by laser
scanners, the impulse noise creates only in the z direction. Removal of the spikes
artifacts can be divided in two groups: filtering and geometrical analysis.

Among the techniques frequently used to remove spike artifacts is
the median filter [Zhao et al. 2009b, Zhao et al. 2009a, Faltemier et al. 2008b,
Faltemier et al. 2008a, Faltemier et al. 2007, Mian et al. 2007]. Due to its simplic-
ity, it has been extensively used for impulse noise removal. Simply calculating the
median value from a neighborhood of a point and replacing its value by the calcu-
lated median, will lead to remove the spike noise from a processed model. Another
filtering technique was used in [Wang et al. 2009, Colombo et al. 2006], where the
Gaussian filter was used to remove the spikes and smooth data. Nevertheless these
filtering techniques are simple and effective in the impulse noise removal, they also
tend to remove fine details and change the whole model. Since the input models
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Figure 2.3: Example of spikes artefacts on 3D model acquired by laser based scan-
ners. [Mian et al. 2007, Bowyer et al. 2006]

may differ in terms of resolution, the control of the kernel matrix size is necessary
to adjust the strength of the filtering technique on the input model.

Another group of methods, are methods relying on geometrical properties anal-
ysis. Chang et al. in [Chang et al. 2006] analyzed angle between the optical axis
and the point’s local surface normal. If the angle was greater than a threshold value
(80◦), the point was considered as a spike. Another different technique was proposed
by Bronstein et al. in [Bronstein et al. 2005], where the authors used discrete gradi-
ent norm; a vertex which has a high value of the norm, was removed as a potential
spike. Mian et al. in [Mian et al. 2007, Mian et al. 2006] defined an outlier point as
the one, whose distance is greater than a threshold dt from any of its neighbors; dt
is calculated using the mean distance between neighboring points and its standard
deviation.

Clearly it is hard to say which method has better accuracy in the noise removal.
Ranking the methods according to the popularity, the most popular technique to
remove the impulse noise is the median filter. The characteristic of the noise which
appears only in the z direction, makes median filter a very effective technique to
remove such artifacts.

2.2.1.2 Holes removal

As it was mentioned before, a general way to acquire 3D models is by contact-less
laser techniques. The second type of artifacts, which are very often present on
3D facial models are holes. Holes, are mainly created in regions which absorb the
light, like: hair, eyebrows, mustache or pupil (see figure 2.4). This occurs, because
the eye is translucent and the light stripe is refracted instead of being reflected
[Queirolo et al. 2010].

Discontinuities on the 3D model caused by errors in the enrollment stage, can
be localized and filled by various methods. For those, who work with range im-
ages, holes are easy to find by scanning the range image for missing points which
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Figure 2.4: Example of holes on 3D models acquired by laser based scanner (marked
in green, better seen in color).[Faltemier et al. 2008a]

are surrounded by the valid neighbors. Localized hole can be filled by simply in-
terpolating x, y, z coordinates based on surrounding points [Faltemier et al. 2008b,
Faltemier et al. 2008a, Faltemier et al. 2007]. Different method, developed to local-
ize the holes on 2.5D models was presented in [Zhao et al. 2009b, Zhao et al. 2009a],
where the authors used morphological reconstruction to locate the holes and cu-
bic interpolation to fill them. The cubic interpolation has also been used in
[Mian et al. 2007].

The problem of holes on 2.5D face models (range images) is not complex and
can be resolved by simple interpolation. Holes can be localized by various methods
starting from missing points localization on range images, analysis of number of
connections between vertices or the number of triangles joining one edge.

2.2.2 Landmarks localization on 2.5D models

Face landmarking has gained increasing interest in resent years mainly because of
its diverse applications, for example in: face normalization, face registration, face
recognition etc.. To localize geometrically salient feature points such as a nose tip,
eye corners, etc., most of the existing work relies on facial geometry analysis. The
real-time solutions mainly base on point signatures, while precision on all landmarks
is mainly gained by careful deformable models fitting. Thus all the 2.5D landmarking
algorithms can be categorized by the tools used in facial points localization and are
grouped into different categories in the following sections.

2.2.2.1 Curvatures analysis for the main points localization

Since the input of 3D face recognition algorithms are 3D models, the natural way to
localize facial anthropometric points is by analysis of the facial surface. The most
popular way to analyze a 3D surface is by a method called HK-classification, which
in many cases, is the first step to reduce the number of candidate vertices for the
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The nose tip The inner corners of the eyes
False 0.2% 0.2%

Non-existence 0% 5.71%
Correct 99.8% 94.09%

Table 2.1: Some of the facial regions appearance presented in [Moreno et al. 2003]
using thresholded HK-classification, tested on 420 3D models.

anthropometric points.

Curvature analysis for the main landmark points localization and face de-
tection was used in [Colombo et al. 2006, Moreno et al. 2003, Chang et al. 2006,
Sun & Yin 2008b]. Usually, authors determine the three main anchor face points
as: the nose tip and the inner corners of the eyes. The first step in the algorithm is
to find the three main points candidates by a range image segmentation using the
HK-classification. Since the second derivatives of a bi-quadratic polynomial surface
approximation are very sensitive to noise, a smoothing filter on the range image was
applied before the curvature calculation. To isolate high curvature regions authors
used a thresholding process, discarding points with the low Mean and Gaussian
curvature. After the thresholding process, in each highly convex or concave re-
gion the nose tip and the eyes candidates are chosen respectively. The appearance
of the main facial regions after the thresholding was tested by Moreno et al. in
[Moreno et al. 2003] and is presented in table 2.1 (tested on a set of 420 3D facial
surfaces which contain different expressions and pose). The second, common part
is the validation process. Having many nose tip and inner eye corners candidates,
the authors in [Colombo et al. 2006] validated the correct three using PCA face re-
construction and reported 98.85% correct face localization using 140 face models.
Different analysis is proposed by [Chang et al. 2006], where the authors analyzed
the position of localized regions and reported 99.4% of successful localization of the
eye cavities and the nose tip; the approach was tested on 4485 3D face images. To
localize the inner eyes corners clusters, Sun et al. in [Sun & Yin 2008b] used clas-
sical decision tree method containing 5 steps. After the eyes regions are localized,
the nose tip is found by fitting a reference plane using points from the eyes regions,
the point which has the maximum distance to the reference plane became the nose
tip. The authors tested the approach on BU-3DFE [Yin et al. 2006] database and
achieved 92.1% correct face pose estimation using raw data.

Different curvature-based technique to localize expression-free facial points is
presented in [Bronstein et al. 2005]. The feature points detector first locates the
points corresponding to the local extrema of the Mean (H) and Gaussian (K) cur-
vature. Then candidate points are specified: for the nose tip, both H and K must
present a local maximum. Next the authors used a set of geometric relations to
choose the best set of the candidate points and reported failure rate of the feature
detector of less than 1%.
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Curvatures were used also by Malassiotis et al. in [Malassiotis & Strintzis 2005],
where the authors treated the problem of real-time 3D face head pose estimation.
To estimate the pose, the authors looked for a reference point which was the nose
tip. The nose tip was localized using principal curvatures k1 and k2. After face
localization the authors sub-sampled the central part of the face and chose points
which principal curvatures fell into the range k1 ∈ [0.1, 0.8], k2 ∈ [0.12, 0.25]. The
range was experimentally determined by examining several faces corresponding to
more than 20 individuals. The authors show that this procedure results in majority
cases in a single point corresponding to the nose tip.

2.2.2.2 Shape Index and Curvedness Index analysis

Another, more complete studies on facial landmarks are presented by Nair et al.
[Nair & Cavallaro 2009]. In this article the authors use curvatures, Shape Index,
Curvedness and Point Distribution Model for a face detection, facial landmarks lo-
calization and registration. In order to characterize the curvature property of each
vertex in the face mesh, authors computed two feature maps, namely the Shape
Index and the Curvedness. The authors used Shape Index which describes sub-
tle shape variations from concave to convex, providing a continuous scale between
salient shapes. Because the Shape Index decomposition does not give an indica-
tion of the scale of the curvature at a vertex, the authors additionally calculated
Curvedness, which describes how a surface is curved. The authors selected the cor-
rect three main points in two steps: in the first step, points which did not belong
to any triangle with acute angles were removed. The second step was to validate
the correct main three points by fitting a 3D points distribution model, the best
fit of the model indicated the main facial points. The authors reported detection
accuracy error by absolute mean distance in mm, for the nose tip: 8.83 mm, the left
and right inner corner of the eyes, respectively: 12.11 mm and 11.89 mm.

Another interesting article, treating the main facial points localization for 3D
face recognition, is the article of Lu et al. [Lu et al. 2006]. In this research work, the
authors used Shape Index to localize three labeled feature points and to calculate
the rigid transformation between facial models. Feature points were selected by
determining the local Shape Index at each point within the 2.5D scan. Using a
combination of the pose invariant Shape Index, the 3D coordinates and the texture
image, the authors developed heuristics to locate a set of candidate feature points.
The authors tested the algorithm on 113 facial scans and reported the error between
the manually selected points and automatically derived features equals 10mm with
a standard deviation of 17mm.

The Shape Index is one of the features which do not change while pose variations
[Colbry et al. 2005]. This property was used by Colbry et al. in [Colbry et al. 2005]
to design the fiducial anchor points detection algorithm, which will be rotation in-
variant. The authors localized the nose tip, which has a Shape Index value close
to zero and consistent values around, using an averaging mask in the shape index
space. The averaging mask identified the point with the largest average cup shaped
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curvature. The outer corner of an eye was localized by the authors by following the
rut that consistently runs along the bottom of the eye. Having a list of points can-
didates authors used relaxation algorithm to remove points which are not the main
triple, where the relaxation matrix was based on constraints, derived by analyzing
example scans. The authors tested the algorithm on 600 scans containing frontal,
full profile and expression models. The authors reported the localization rate 99.0%
for frontal faces with a neutral expression, 82.7% for profile faces with neutral ex-
pression and 75.0% for profile models with a smile expression. The authors also
reported that approximately 90% of the scans are below 20mm error.

2.2.2.3 Symmetry plane localization and slice analysis

Human faces are characterized by the symmetry. This property can be used to find
a symmetry plane going through the nose ridge and the nose tip.

This characteristic of the human face was used in the article of Faltemier et al.
[Faltemier et al. 2008b]. The authors used rotated profile signatures for a robust
3D feature points detection. From each 2.5D face scan input the authors created
37 profile signatures, used later for the nose tip verification. To create a single
profile signature, a 2.5D face was vertically rotated by a constant ∆Θ = 5 in a range
between 0◦ and 180◦. At each rotation, the right intersection of the model with
the background was taken as a profile signature which was compared later with two
manually extracted reference profile signatures (one extracted with 0◦ pitch face
rotation and the second with the 45◦ pitch face rotation). The authors tested the
approach using NDOff2007 [Faltemier et al. 2008b] 3D face data set, which contains
a total of 6911 non-frontal images and a single frontal neutral image for each of 406
distinct subjects. The authors reported almost 100% accuracy (in 10 mm precision)
of the nose tip localization in 0◦ Yaw rotation and Pitch rotation in the range of
< −90◦, 90◦ >.

Another type of algorithms is the symmetry plane localization [Tang et al. 2008,
Wang et al. 2008, Wang et al. 2009]. The main purpose of the algorithms was to lo-
calize the plane going through the nose ridge and the nose tip based on the symmetry
assumption. One of the articles [Wang et al. 2008] used a posture localization algo-
rithm, which was based on the facial central profile. The central profile is localized
using mirrored copy of the model with respect to some plane. After the mirroring
process, both the reference M model and the mirrored one M ′ are registered using
Iterative Closest Point algorithm. After the fitting process, points from the model
M became mirrored points on the model M ′. This correspondence allows to calcu-
late the facial symmetry plane. Since the article treats the face recognition problem,
the main points localization is only a part of the whole pipeline and the accuracy
of the main point localization is not reported.

Another technique, this time based on horizontal slices, for the nose tip lo-
calization is proposed by Mian et al. in [Mian et al. 2007, Mian et al. 2006,
Mian et al. 2005], where the authors used the localized nose tip to place and crop
the facial region. To localize the nose tip authors sliced a face horizontally at mul-
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tiple steps dv initially using a large value of dv to improve the speed. After the
nose tip was coarsely located the search is repeated in the neighboring region with a
smaller value of dv. Authors report the accuracy of the nose tip detection of 98.3%.
Authors also marked that the algorithm assumes that the input data contains a
frontal view of a single face with a small pose variation along the x and y axis.

2.2.3 Point signatures, local features

Another type of methods to identify the feature points, are methods which use
points signatures. The signature can be understood as a description, propriety or
characteristic of a point, which makes it distinguishable from other points.

A point signature has been also used by Xu et al. in [Xu et al. 2006], where
authors combined local features for a robust nose location. In this article the authors
used a cascade points filtering scheme. Combining rules to identify the nose tip
position, the authors reported 99.3% of correct detection rate on 3DPEF database
[Xu et al. 2006].

Another article, which treats feature points localization based on a points signa-
ture, is an article written by Conde et al. [Conde et al. 2005]. In this article, the au-
thors localized landmark points on a facial 3D surface using Spin Images and an SVM
classifier. The algorithm was tested on the FRAV3D data set [Conde et al. 2005],
which contains different facial expressions and rotations. The authors reported the
successful detection rate of the nose tip and the left and right eye inner corners at
98.65%.

A novel and pose invariant 3D shape descriptor was used by Pears in [Pears 2008].
In this article, the authors generated an implicit radial basis function (RBF) model
of a facial surface for the nose tip localization. According to the article, the proposed
descriptor is less affected by the noise than the Spin Image descriptor. The algorithm
was tested on 1121 manually marked face models. The author reported a successful
nose tip identification rate of 99.6% without mentioning about the precision of the
localization.

2.2.4 Linear Shape and Appearance Models

The face global similarity allows to construct facial statistical models, which
are non-linear, generative, parametric models of a certain visual phenomenon
[Matthews & Baker 2004]. Those models can enclose any information about the
points: position, texture, shape information, neighborhood appearance, movement,
etc. Statistical models such as: Active Shape Models (ASM), Active Appearance
Models (AAM), 3D Morphable Models (3DMM), Direct Appearance Model (DAM),
Statistical Facial feAture Models (SFAM) [Zhao et al. 2009b], Active Blobs (AB) are
extensively used for face analysis [Nair & Cavallaro 2009] and all of them belong to
the closely related linear shape and appearance models [Matthews & Baker 2004].

One of the statistical models for the facial anchor points localization is pre-
sented by Nair et al. in [Nair & Cavallaro 2009]. In this paper the author proposed
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a framework to accurately detect and segment 3D face as well as to localize facial
landmarks. The proposed algorithm is based on fitting of a Point Distribution Model
(PDM). The fitting was achieved through the transformation between the PDM and
candidate vertices, where the candidate vertices were extracted by curvatures anal-
ysis. Other landmark points were localized by PDM energy function minimization.
The authors reported absolute mean distance for the nose tip 8.83mm while for the
inner corners of the eyes around 12mm.

Another article, which makes use of a statistical model is an article of Zhao et
al. [Zhao et al. 2009b], where the authors applied a statistical model-based tech-
nique for 3D face landmarking. The statistical model was made from both: facial
geometry and texture. Points around facial landmarks were sampled to create scale-
free patches in range and texture. Using PCA algorithm the authors learned 2D
shape variations and 2D texture variation of the created scale-free patches. To test
the landmarks localization rate, the authors learned the models using half of the
FRGCv1 data set and tested learned models on the second part of FRGCv1 data set
as well as on randomly selected 1400 models from FRGCv2. The authors reported
100% of all 15 landmarks localizations in 20mm precision and 97% cases in precision
10mm.

Another method, presented by Dibeklioglu et al. [Dibeklioglu et al. 2008], used
statistical landmarks localization. The local features were extracted using depth
map and 7x7 neighborhood around each landmark to create 49-dimensional features.
The statistical method, for non-expression points like the nose tip and the inner
corner of the eye even in cross-database validation, achieved the accuracy close to
100%. In the case of the outer corner of the eye and the mouth corners the accuracy
is respectively 90.09% and 87.16% for the FRGCv1 database, and 95.05%, 67.26%
for the Bosphorus v1 database [Savran et al. 2008].

2.2.5 Multi-decision

To achieve higher accuracy and trustworthy results a few techniques can be com-
bined. Faltemier et al. in [Faltemier et al. 2007, Faltemier et al. 2008a] used con-
sensus of three methods: first curvature and Shape Index were used to find nose
tip candidates cn. The next method aligned the input image to a template, using
the ICP algorithm, where the position of the nose tip pn is the highest Z value in
the image. If the candidate nose tips was within 20mm distance, the average of
pn and cn was reported as the final nose tip. The authors tested the approach on
ND-2006 database [Faltemier et al. 2007] and achieved 98.4% of successful nose tip
localization in 20mm precision.

Another multi-decision technique was presented by D’Hose et al.
[D’Hose et al. 2007]. The authors used Gabor filter decompositions to am-
plify curvature information. The responses of the two orientations of the Gabor
filters were merged to obtain an image integrating both horizontal and vertical
curvature information. From these representations of the curvature, the authors
extracted the vertical and horizontal lines of the maximum positive curvature.
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The intersection between these two sets of lines resulted in a set of the nose tips
candidates. The ICP algorithm and an average nose tip shape were used to find the
nose tip. The authors tested the algorithm on the FRGCv1 data set and reported
the nose tip localization 99.89% with 20mm precision, 99.37% with 10mm precision
and 96.22% of eyes corners detection in 10mm precision.

2.2.6 Discussion

Face landmarking is a difficult problem, where the most important factor is the preci-
sion. Having many challenges like: face rotation, facial expressions, light variations,
occlusions, resolution changes, partial models, numerous techniques were developed,
starting from shape analysis through shape signatures, ending with sophisticated
statistical models. Each method is designed to fulfil some of the challenges but
yet none of them is able to meet all of the difficulties in automatic landmarking.
To design real time algorithms, able for example to detect the nose tip, authors
used some point signatures [Breitenstein et al. 2008, Xu et al. 2006]. Rotation in-
variance, which includes full profiles, can be handled by profile signatures, where the
nose tip is a prominent point [Bronstein et al. 2005, Faltemier et al. 2008b]. Local-
ization of the precise three main facial points (the nose tip and eyes inner corners)
as well as the face validation can be done by curvatures analysis and a popular
method called HK-classification [Colombo et al. 2006, Chang et al. 2006]. The pre-
cision of all landmark points is mainly achieved by careful statistical models fitting
[Zhao et al. 2009a, Zhao et al. 2009b, Nair & Cavallaro 2007]. Thus a combination
of the developed techniques is required to create a reliable landmarking system which
will be able to localize landmark points even in adverse conditions (an example of
such a system is presented in [Nair & Cavallaro 2007]).

Despite the increasing amount of related literature, current landmarking tech-
niques need to improve both accuracy and robustness, especially in the presence of
facial expressions, occlusions and rotation, thus the 3D face landmarking is still an
open problem. In this chapter, we propose a general framework for 3D face land-
marking which combines local surface properties expressed in terms of curvatures
and global facial generic model, used for a face validation.

2.3 Curvature-based Anchor Points Localization on
2.5D Models

Curvatures, are important geometric properties that come from differential
geometry and are widely applied in mesh processing. For 3D faces models, cur-
vatures have been used in fields like: face localization [Colombo et al. 2006],
landmarks localization [Chang et al. 2006, Nair & Cavallaro 2009], face
segmentation [Chang et al. 2006, Nair & Cavallaro 2009], face recognition
[Kakadiaris et al. 2007], point signatures calculation [Ceron et al. 2010], face
pose estimation [Sun & Yin 2008b], etc. Curvatures are very popular because they
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describe intrinsic as well as extrinsic surface properties. They are insensitive to
rotations, simple to calculate and their decomposition over face surfaces is similar
from one person to another. Curvatures describe local properties of a surface and
beside of the advantages, are also very sensitive to a local surface noise and a
change of a model resolution. In the following the curvatures calculation method,
as well as our contribution, making the method resolution and noise insensitive,
will be described. Next, the contribution in the curvatures calculation method will
be examined in case: of facial landmarks localization, points signatures calculation,
as well as stability in case of resolution changes.

2.3.1 Pre-processing of 2.5D face models

2.5D face models delivered so far by various scanning methods, are usually corrupted
by an impulse noise or holes. To reduce the influence of the face model quality on
a face landmarking algorithm, holes and spikes need first to be removed.

The most popular technique to remove an impulse noise (spikes) is the median
filter. This method removes the impulse noise, but also tends to affect fine details
in many cases. To avoid changes in correct vertices, in our work a decision-based
median filtering technique is used. The median filter is applied only on vertices clas-
sified as potential spikes after a thresholding operation. This method can efficiently
remove all the spikes, without touching properly scanned points.

Once all the spikes are removed, all holes are filled by fitting a mean square
surface to a border of a hole. The border of a hole is located by searching for vertices
having less than 8 neighbors. In comparison with linear or cubic interpolation, this
method takes into account all the directions of the surface changes, which is more
convenient for 3D models.

2.3.2 Curvatures calculation method on 2.5D models

Majority of 3D face datasets, recently used by the research community, are scanned
using laser based techniques. The laser based scanning technology produces so called
range maps (fig. 2.5), where the surface can be considered as a function z = f(x, y)
(2.5D models). Using this property of the scanned surface the Mean and Gaussian
curvature can be directly computed.

In this section we are going to describe one of the most popular
methods for the Mean and Gaussian curvature calculation at a certain
point. The method is based on a bi-quadratic surface equation approxi-
mation and was used for example in [Colombo et al. 2006, Chang et al. 2006,
Moreno et al. 2003, Sun & Yin 2008b]. There also exist different methods like:
the Normal Cycle [Cohen-Steiner & Morvan 2003, Morvan 2008], Integral Invariants
[Pottmann et al. 2007], Statistical Curvatures Estimation [Kalogerakis et al. 2007],
Tensor Voting [Tong & Tang 2005] and many more [Gatzke & Grimm 2006].

The method for the Mean and Gaussian curvature calculation at a certain point
is based on a bi-quadratic surface equation approximation [Colombo et al. 2006,
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Chang et al. 2006, Moreno et al. 2003, Sun & Yin 2008b]. The surface equation is
approximated using a local neighborhood of a point. Using the first and second
derivatives of the approximated equation the Mean and Gaussian curvature can be
calculated.

Let S be the surface defined by a C2 real valued function f : U2 → R, defined
on an open set U ⊆ R2:

S = {(x, y, z)|f(x, y) = z}. (2.1)

For every point (x, y, f(x, y)) ∈ S two curvature measures can be computed,
the Mean (H) and the Gaussian (K) curvature, which are given by equations
[Toponogov & Rovenski 2006]:

H =
EN +GL− 2FM

2(EG− F 2)
, (2.2)

K =
LN −M2

EG− F 2 , (2.3)

where E,F,G are coefficients of the first fundamental form of surface,
L,M,N are coefficients of the second fundamental form [Trucco & Verri 1998,
Toponogov & Rovenski 2006].

Figure 2.5: Range Maps created using models from the FRGC dataset, models
after preprocessing step, removing spikes and filling holes (pink color indicates the
background, photos show corresponding texture values).

The coefficients of the fundamental forms are given by following equations
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[Toponogov & Rovenski 2006]:

E = 1 + f2
x ,

F = fxfy,

G = 1 + f2
y , (2.4)

EG− F 2 = 1 + f2
x + f2

y ,

L = fxx√
1+f2

x+f2
y

,

M = fxy√
1+f2

x+f2
y

, (2.5)

N = fyy√
1+f2

x+f2
y

,

where fx, fy, fxy, fxx, fyy are the first and the second derivatives of a function in a
point (x, y).

Since surface representation is discreet, the partial derivatives must be estimated.
For each point (xi, yi) on the range image we consider a bi-quadratic polynomial
equation approximation of the surface:

f(xi, yi) = α+ βx+ γy + δx2 + εxy + ηy2, (2.6)

where: α, β, γ, δ, ε, η are equation coefficients, which can be localized by multiple lin-
ear regression algorithm using a local neighborhood of (xi, yi). Multiple linear regres-
sion attempts to model the relationship between two or more explanatory variables
and a response variable by fitting a linear equation to observed data [Bishop 2006].
The system can be further rewritten in the matrix form: JW = Y and the solution
is given by: W = (J tJ)−1J tY .

To create the system of equations at a point (xi, yi), a neighborhood needs to
be defined. Each point within the neighborhood is used to create one equation, and
further used for the estimation of the surface equation coefficients. One popular way
to define such a neighborhood around a point (xi, yi) consists of using its closest
vertices. Meanwhile, this solution is very sensitive to local noise. To solve this
problem, noise removal techniques like: median filter, Gaussian filter, etc. were
widely used. While those filtering methods exclude noise they also tend to remove
fine details and affect the whole model.

The following section 2.3.2.1 describes our contribution into the calculation
method, to make it: insensitive to local noise and stable across different model
resolutions. The proposed modification incorporates the noise reduction technique
into the surface approximation, which will exclude the need of smoothing and re-
moving fine details on the models.

Having estimated the continuous surface equation of a point (xi, yi), the partial
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derivatives can be computed:

fx = β + 2δxi + εyi,

fy = γ + εxi + 2ηyi,

fxx = 2δ, (2.7)

fxy = ε,

fyy = 2η.

Putting all equations together, the Gaussian and the mean curvatures (fig. 2.6)
can be calculated using following formulas:

H(xi, yi) =
(1+f2

y )fxx−2fxfyfxy+(1+f2
x)fyy

2(1+f2
x+f2

y )
3
2

, (2.8)

K(xi, yi) =
fxxfyy−f2

xy

(1+f2
x+f2

y )2 ,

Figure 2.6: Decomposition of the Mean and Gaussian curvatures over facial model,
computed using proposed method with 15mm neighborhood used for the surface
approximation.

2.3.2.1 Modification of the curvatures calculation method

The curvatures calculation method, presented in the previous section, relies on a
surface equation approximation. The method is very exposed to surface noise but
also to resolution changes because direct, local point’s neighborhood as well as the
function derivatives are both sensitive to a noise [Colombo et al. 2006] and resolution
changes. In this section, we define a geodesic distance-based neighborhood, for the
computation of curvatures, which does not require smoothing the model and achieves
better robustness in case of resolution changes.

One of the properties of 3D models is a real distance between vertices, which
is expressed in [mm]. The distance stays approximately constant between certain
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points under rigid deformations of a face as well as resolution changes. This property
is no more guaranteed when using range images, where distance unit is undefined,
thereby making it difficult to achieve consistent metric between models with a dif-
ferent resolution.

Figure 2.7: Models scanned from different distances from the scanner, resulting in
different resolution and size of range images. The red area was marked using 40mm
in geodesic distance from the nose tip, calculated on real x, y, z values of the models.

In our work we propose to keep 3D vertex coordinates and add the range coor-
dinates as a UV parameterization for each point. Using real x, y, z values, the [mm]
metric will be preserved even when the resolution will change. Using this metric one
can find approximately the same area of the neighborhood in different resolutions
(see fig. 2.7) because the size of the face will not change. The only difference is in
the number of points enclosed in the neighborhood (see fig. 2.8).

To achieve smooth curvatures decomposition, insensitive to noise and resolution
changes, we propose to use geodesic distance expressed in [mm] for the definition
of a neighborhood instead of the first-neighbors. For each point on a surface the
neighborhood will be taken using geodesic distance, which tends to preserve better
surface topology than Euclidean one. In certain cases, Euclidean distance will mark
incorrect points as those belonging to the neighborhood (see fig. 2.9). It happens due
to the fact that Euclidean distance is not taking into account the surface topology
and if the surface is rising very fast, for certain points the neighborhood can be
incorrect, resulting in incorrect approximated surface. The geodesic distance can be
computed using Dijkstra’s algorithm, where for a given source vertex, in the graph
(mesh), the algorithm finds the path with the lowest cost between the vertex and
the other vertex. The cost can be considered as the geodesic distance when the
weights between vertices are expressed in terms of Euclidean distance. The result
of the curvatures calculation under different neighborhood can be seen on figure
2.10, where the Shape Index decomposition was used. The Shape Index is curvature
description derived from the principal curvatures and will be further described in
more details as a feature used for face recognition.
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Figure 2.8: Difference in resolution, left image shows lower resolution sampling,
right one shows 2x higher sampling. The difference in resolution can happen due to
different distance from the scanner. As can be seen, between two certain points the
euclidean distance stays approximately the same.

2.3.3 2.5D facial landmarking method

Our algorithm for automatic feature point localization is based on facial curvature
analysis and makes use of a coarse-to-fine search strategy, consisting of two steps.
At a coarse search step, candidate points for the three most salient facial feature
points (nose tip and the two inner eye corners) are first identified based on curvature
analysis and generic model fitting. As a fine search step, a generic face model is
used to locate other feature points. But first of all, as 2.5D face scans are usually
noisy they need to be cleaned up in a preprocessing step. All steps can be seen on
figure 2.11.

2.3.3.1 Main points candidates - coarse search

The aim of this coarse search step is to localize feature point candidates on a 2.5D
face model. In order to achieve rotation invariant feature points localization, we
use Mean and Gaussian curvature analysis and classification [Besl & Jain 1986]. In
this step we are targeting the three most salient feature points from the geometric
perspective, namely the nose tip and the two inner eye corners. Indeed, the nose
tip appears as a convex point on a facial surface while the two inner eye corners are
concave points.

The range data of a 2.5D face model is thus first segmented into regions of
homogeneous shapes according to HK classification. The HK classification labels
each vertex into basic geometric shape classes (tab. 2.2, fig 2.12), using the sign of
the mean (eq. 2.2) and the Gaussian (eq. 2.3) curvature [Trucco & Verri 1998] (the
calculation method is described in the previous sections).

As it was introduced in section 2.3.2.1, noise sensitiveness can be reduced by

23



Chapter 2. 2.5D Face Preprocessing, Analysis and Landmarking

Figure 2.9: Difference in geodesic and euclidean distances. The images show the
case when the point’s (red point) neighborhood taken by geodesic distance is more
appropriate than the neighborhood taken using euclidean distance.

K < 0 K = 0 K > 0
H < 0 Hyperbolic Cyl. convex Ellip. convex
H = 0 Hyperbolic Planar Impossible
H > 0 Hyperbolic Cyl. concave Ellip. concave

Table 2.2: HK-Classification [Trucco & Verri 1998].

varying the extent of the neighborhood size. Figure 2.13 shows HK-Classification
results with a different neighborhood size considered. As we can see, a large neigh-
borhood used in a surface equation estimation hides the noise and also helps to find
most marked out points.

In our experiments we fix the neighborhood size to 25 mm in the geodesic dis-
tance, which is more appropriate in such computations because it takes into account
the facial surface topology. Recall that the geodesic distance between point A and
B is defined as the sum of the Euclidean distances between points in the shortest
path between points A and B on the underlying surface.

To localize the three most salient facial feature points candidates, namely the
nose tip and the two eye inner corners, the concave and the convex regions of the nose
and the eyes respectively are first searched. Each region can be localized according
to the HK-Classification. To reduce the number of regions, the Gaussian curvature
is thresholded with K > 0.001 for the nose and K > 0.00005 for the eyes regions
(figure 2.14b).

In each located region (figure 2.14b), the most representative point in term of
concavity or convexity is then identified. As can be seen in table 2.2, changes in
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Figure 2.10: Example of Shape Index (normalized shape description, Shape Index
scale represents numerous shapes starting from a spherical cup (0 value) ending
on spherical cap (1 value)) decomposition, calculated from curvatures estimated
using 5, 10, 15, 20, 25 mm in geodesic distance, note that estimation with a small
neighborhood used to calculate curvatures is influenced by surface noise.

Gaussian curvature result in shape changes and maximum Gaussian curvature in
each region gives the maximum convex or concave point. Such a point will be
labelled as a landmark candidate in the convex regions for the nose tip and in
the concave regions for the eye inner corners.

2.3.3.2 The three main point identification based on a Face Generic
Model

To select true main three points from points candidates a selection step needs to
be performed. The selection step is based on an error calculation between a generic
model in certain position and a face surface.

Our generic face model (figure 2.15) is built from 40 models selected from the
IV2 [Petrovska-Delacrétaz et al. 2008] dataset. The generic model is composed of 9
main face points whose positions have been calculated based on selected 2.5D facial
models. These models were first manually landmarked for 9 feature points. Next,
all models were translated and rotated to a frontal position having the nose tip
as the origin. The fusion of all models relays on calculation of mean main points
positions in the 3D space. The generic model is further normalized so that the
distance between the two eye inner corners is 1 mm.
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Figure 2.11: Algorithm schema for automatic main points localization.

The calculated generic face model is now used to sort out the true three main
feature points (the nose tip and the two inner eye corners) from the set of candi-
date landmarks, resulting from the curvature analysis. As our 2.5D face models
can be in an arbitrary position and we do not have any prior information about
it, the basic idea is to consider all combinations of any three landmark candidates
(the nose tip candidate and the inner corners of the eyes candidates). To calculate
the error between the generic face model and a facial surface, for each combination
of landmarks candidates (two points from the eyes candidates and one from the
nose candidates are always taken under consideration), we are moving the whole
generic face model above the face surface and calculating the sum of distances for
all generic face model points to the closest points on the face surface. The move-
ment is based on the rotation and the translation founded by SVD algorithm based
on the three main points from the generic face model (red points on fig. 2.15) and
landmarks candidates under consideration. Singular Value Decomposition algorithm
[Umeyama 1991, Eggert et al. 1997, Wen et al. 2006] is a matrix decomposition al-
gorithm which has been used iteratively in the ICP (Iterative Closest Point) algo-
rithm. The SVD algorithm allows us to find fine translation and rotation between
objects based on the covariance matrix between them. To be invariant to the scale,
the generic model has been scaled based on the distance between concave points
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Figure 2.12: HK-Classification dictionary: elliptical concave: red, elliptical convex:
green, hyperbolic concave: yellow, hyperbolic convex: blue) [Trucco & Verri 1998]

Figure 2.13: The HK-Classification with different neighborhood in the curvature
calculation between 5 mm(left top) and 40 mm(right bottom) (elliptical concave:
red, elliptical convex: green, hyperbolic concave: yellow, hyperbolic convex: blue).
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Figure 2.14: Main points localization algorithm: a) HK-Classification, b) nose and
eyes regions, c) (coarse localization) the nose tip point and the inner corners of eyes
points, d) generic model aligment, e) fine adjusting of points

Figure 2.15: Generic model made from 40 models from IV2 data set (x,y projection,
red points - main three points - inner corners of the eyes and the nose tip).
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(the eyes candidates) under the consideration.
The smallest error between the generic face model and a face surface, under

specific position, identifies the true main feature points thanks to the associated
manually labelled landmarks on the generic face model (fig. 2.14c).

2.3.3.3 Generic Face Model-based fine analysis

Once the three main feature points have been located, we proceed to localize the
other feature points from the generic face model (as showed on fig. 2.15). For
this purpose, we project these manually labeled feature points from the generic face
model onto a processed 2.5D face model, using the same rotation and translation
computed previously by SVD. The closest points on the 2.5D face model to the
generic model points will become the landmark candidates and obtain their labels
(figure 2.14d).

A coarse-to-fine search strategy is executed by a local search, to deliver the
accurate and precise location of the projected feature points. Indeed, the two corners
of the lips, the two outer nose corners and the inner eye corners can be characterized
as concave points within a certain neighborhood resolution. As we can see in figure
2.13, smaller neighborhood uncovers details on the surface like the lips corners or
the nose corners. To localize them precisely, we calculate curvatures using a smaller
neighborhood around these points in the surface approximation. In our work, 15
mm neighborhood size is chosen for the lips while 10 mm neighborhood size is chosen
for the eyes and the nose, figure 2.14e. The vertex having its maximum Gaussian
curvature gives us the most concave point in the concave region and is labelled as
the final anchor point.

2.3.4 Experimental results on landmarks localization

In this section the experimental setting and results will be introduced. In order
to assess the robustness of our method two face databases were used. From each
database the precision of localized points will be expressed as the mean localization
error expressed in the 3D Euclidean distance between a feature point automatically
located and its corresponding manually labelled landmark.

2.3.4.1 Datasets

In our experiment, we made use of the FRGC ver. 1.0 and ver. 2.0 datasets
[Phillips et al. 2005] as well as the Bosphorus dataset [Savran et al. 2008].

The first version of the FRGC dataset contains 953 face scans from 275 people,
captured under controlled illumination conditions, generally neutral expressions and
slight head pose and scale variations. The second version of the FRGC dataset con-
tains 4007 face scans from 466 persons. These 2.5D face scans were captured under
different illumination conditions and contain various facial expressions, including
happiness, surprise, etc.. Since the database does not have manual landmarks, all
faces have been manually landmarked by our research group with 15 feature points.
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Figure 2.16: Manual main points landmarking application used for landmarking of
the FRGC dataset.

As we can see in figure 2.17, these manually labelled anchor points include the eye
and lips corners, the nose corners and its tip, and also upper and lower points in
the eyelid and lips middle for future investigation. The landmarking application is
illustrated in figure 2.16.

The second database used for landmarks evaluation was the Bosphorus dataset
[Savran et al. 2008]. The Bosphorus Dataset is a dataset of 3D faces which includes
a rich set of expressions, systematic variations of poses and different types of occlu-
sions. The dataset contains 105 subjects in various poses, expressions and occlusion
conditions with 24 labelled facial landmarks each (figure 2.17). Facial data are ac-
quired using Inspeck Mega Capturor II 3D, which is a commercial structured-light
based 3D digitizer device. The sensor resolution in x, y and z (depth) dimensions are
0.3mm, 0.3mm and 0.4mm respectively, and color texture images are high resolu-
tion (1600x1200 pixels). The facial expressions are composed of judiciously selected
subset of Action Units as well as the six basic emotions, and many actors/actresses
are incorporated to obtain more realistic expression data.

2.3.4.2 Experimental results

Our 3D face landmarking solution was benchmarked on a significant subset from
FRGC ver. 1.0 and 2.0 as well as on a subset of the Bosphorus dataset. In the first
experiment we have chosen 9 prominent feature points from the curvature viewpoint
to assess our automatic 3D face landmarking solution. For this purpose, 1618 of
models from the FRGC datasets were randomly selected.

While many of these face models have facial expressions (FRGCv2), all of them
are in roughly frontal position. In order to test robustness of our solution as com-
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Figure 2.17: Manual landmark points on the Bosphorus (left) and FRGC (right)
datasets.

pared to rotation, each selected 3D face model was rotated randomly in yaw (from
-90 to 90 degrees), pitch (from -45 to 4 5degrees) and roll (from -30 to 30 degrees)
before applying our automatic 3D face landmarking.

Figure 2.18 shows the localization results by our algorithm. Accumulative pre-
cision is displayed together with localization accuracy rate given in mm precision.

For comparison purpose, we also applied to the testing set Statistical Facial
feAture Model (SFAM) method, developed within our team [Zhao et al. 2009b]. The
method was applied on 1400 frontal models for the FRGC v2 dataset. However, the
SFAM method was designed to achieve numerous facial feature points with high
precision, the method is not invariant to facial rotations. The rotation problem in
the SFAM is caused by the sampling method used to achieve patterns around each
landmark for the learning and testing stages. The method was designed to localize 15
landmark points, since only 9 landmark points can be used for comparison between
the two techniques since other facial feature points do not have prominent curvature
properties. Cumulative precision curves of the SFAM method are shown in figure
2.19.

To accomplish tests and prove the method independence of the data, the al-
gorithm was also tested on the Bosphorus data set. For this purpose, the first 46
subjects were selected from the Bosphorus data set. Since our landmarking method
is distinguished by high precision in the main facial points localization, in this test
only the main three points precision was examined (figure 2.20).

The whole results curves can be seen in figure 2.18. The best localization result
was achieved for the nose tip, where 100% accuracy was achieved in 8 mm precision
while the eye inner corners were localized with a 100% accuracy for left inner eye
corner in 12 mm precision and 13 mm precision for the right inner eye corner.
Therefore, the inner eye corners were located with more than 99% accuracy in a
10 mm precision. With an accuracy of 88.75% for left lips corner and 87.45% for
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Figure 2.18: Precision curves for the 9 points on the FRGC dataset, localized by
our method. Horizontal axis represents landmarks precision while vertical axis rep-
resents cumulative error distribution (better seen in color).

right lips corner with 20m precision, our algorithm displays the worst localization
results which are mainly caused by facial expressions, mouth movement, etc. Fair
localization is achieved for other feature points with respectively 99.62% and 99.87%
accuracies for the left and right eye outer corners in 20 mm precision, and 98.2%
and 99.0% accuracies for the left and right nose corners.

Figure 2.19 shows the precision curves achieved by the SFAM method
[Zhao et al. 2009b]. As we can see from the figure, the nose tip and inner cor-
ners of eyes, having each prominent geometric feature, are better localized by the
curvature analysis-based method. Since the SFAM method takes under the consid-
eration geometrical relationship, local topology and texture of each landmarks, the
method displays better precision in all other landmarks being also more complex.

2.3.4.3 Discussion

The major application of 3D face landmarking is 3D face registration and nor-
malization. Thus rotation robustness of a 3D face landmarking solution is im-
portant as it relaxes the constraints on the input 2.5D or 3D face model, mak-
ing 3D-based face processing techniques closer to realistic application require-
ments. In our work, such a rotation invariance was made possible thanks to
the curvature-based analysis and the use of a generic 3D Face Model. As com-
pared to [Faltemier et al. 2008b, D’Hose et al. 2007, Zhao et al. 2009b], our ap-
proach achieves higher precision in the main facial points localization while au-
tomatically providing up to nine 3D face landmarks.
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Figure 2.19: Precision curves for 15 manual landmarks localized by
[Zhao et al. 2009b] on the FRGC dataset.
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Figure 2.20: Precision curves for the three main points created based on first 46
subjects from the Bosphorus dataset. Points localized by our method. Horizontal
axis represents landmarks precision while vertical axis represents cumulative error
distribution (better seen in color).

Another analysis using our method, showing the frequency of localized landmarks
within each precision interval (displayed on the figure 2.21). As we can see, the
majority of localized nose tips are within 0-3 mm precision, the majority of eye inner
corners are localized within 2-6 mm precision. The reason, why the inner corners of
eyes are localized with smaller precision is the shape of nose and eyes cavities. The
maximum Gaussian curvature finds the maximum convexity of concavity points.
While the maximum convexity point always denotes the nose tip, the inner corners
of eyes are not always characterized by this property. To achieve higher precision
in the inner corners of eyes, further analysis of the neighborhood around localized
inner corners of the eyes is necessary.

While the method localizes precisely the main three facial landmarks, the other
landmarks, without prominent curvature properties are localized with low precision.
To localize the other landmarks precisely, more sophisticated analysis of the local
neighborhood of each landmark for example based on learning techniques can be
more helpful. Therefore, the two methods developed within our team are comple-
mentary. The Curvature analysis can be used to localize the three facial main points,
the face can be then normalized, subsequently the SFAM method [Zhao et al. 2009b]
can be used to localize other facial landmarks.

To relate the results to humans’ ability to manually localize facial landmarks,
ten people were asked to manually label the previously defined anchor points us-
ing 10 randomly selected 2.5D models from 10 subjects from the FRGC dataset.
Next, mean error and standard deviation were computed for each landmark which
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Figure 2.21: Landmarks frequency for the 3 main points on the FRGC dataset.
Horizontal axis shows landmarks precision while vertical axis shows localization
rate (better seen in color)

is summarized in table 2.3. As we can see from the table, the biggest manual errors
as expected were made on landmarks not precisely defined such as right and left
corners of nose while nose tip was among the anchor points labeled with the least
errors. This experiment shows that each feature point for different person does not
locate accurately at the same place, therefore an anchor point on a 3D face model
should be considered more as a region than an exact point.

2.3.5 Conclusion on landmarks localization using curvatures de-
composition

In this section we have presented our curvature-based method for automatic 2.5D
face landmarking. The proposed method consists of curvature calculation with
coarse-to-fine analysis. The coarse analysis is based on curvatures calculated using
large neighborhood to display only the main patches on the facial surface, thus
making the coarse analysis easier. The coarse analysis is performed to localize
the main three points on facial surface which later are used as a projection-base
for the other points from the Generic Facial Model. The method was tested on
more than 1600 2.5D facial models from the FRGC dataset and achieved, from
our knowledge, the highest precision for the nose tip and inner corners of the eyes
localization among all know nowadays 2.5D methods. The method is insensitive to
the lighting conditions as well robust to facial rotations since it uses geometrical
surface properties.

Since the other facial points, except the main: nose tip, inner corners of eyes,
are not characterized by prominent curvature properties, those cannot be localized
accurately using curvatures analysis method. To localize other facial landmarks
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Anchor point Mean error Standard deviation
Left Eye Left Corner 2.9531 1.4849

Left Eye Right Corner 2.4194 1.0597
Left Eye Upper Eyelid 2.0387 1.3744
Left Eye Bottom Eyelid 1.9424 0.8507
Right Eye Left Corner 2.0473 1.077

Right Eye Right Corner 2.7559 1.5802
Right Eye Upper Eyelid 2.108 1.6449
Right Eye Bottom Eyelid 1.8362 0.8105

Left Corner of Nose 3.8023 1.9839
Nose Tip 1.9014 1.0474

Right Corner of Nose 4.4974 2.1489
Left Corner of Lips 1.9804 1.1045

Right Corner of Lips 1.9891 1.1905
Upper Lip 3.0414 1.5292
Bottom Lip 2.0628 1.3052

Table 2.3: Mean error and Standard Deviation of manual anchor points based on
10 models and 10 samples per model (expressed in mm).

other technique, for example the SFAM technique [Zhao et al. 2009b], can be used.
Since SFAM method is not invariant to the facial rotations the both methods are
complementary. Curvatures analysis can be used for the main points localization
and thus for facial surface registration, afterwards the SFAM method can be used
for the other landmarks localization.

2.4 Reducing Complexity of Landmarks Localization by
a Learning Technique

Nose tip localization is often the basic step for 2.5D face registration and further
3D face processing and as such appears as a side problem of most research work on
2.5D or 3D face recognition. In this section, we carry out a comprehensive study
of four popular rotation invariant differential geometric properties, namely Mean
and Gaussian curvature, Shape Index and Curvedness, for the purpose of nose tip
localization.

Localization of nose tip often appears in the literature as a side work for fur-
ther 3D faces processing and generally makes use of a priori knowledge of nose
shape through convexity/concavity analysis of facial surface [Colombo et al. 2006,
Nair & Cavallaro 2009, Colbry et al. 2005]. However such an analysis generally
leads to many candidate points. To identify the true nose tip from the set of
candidate points, a mean face model fitting was used in [Nair & Cavallaro 2009],
face reconstruction error was considered in [Colombo et al. 2006]. While highly
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Figure 2.22: The nose tip localization, a) a face range image, b) the nose tip regions
(elliptical convex regions), c) the maximum Gaussian curvature points in each nose
tip candidate region.

effective, these approaches are computationally expensive and suffer from the expo-
nential number of candidate point configurations. Alternatively nose tip can also
be localized using a data-driven approach, by creating some point signatures and
thereby enabling fast statistical learning and classification [Breitenstein et al. 2008].
Interesting point signatures so far reported in the literature include curvature re-
lated descriptors [Ceron et al. 2010], Effective Energy, Spin Images, etc. and record
detection rates of 99.3% in [Xu et al. 2006], 98.65% in [Conde et al. 2005] or 99.6%
in [Pears 2008].

In this section we also investigate a data-driven approach and study the rele-
vance of using four rotation invariant curvature-based shape descriptors as a point
signature for the task of nose tip localization. For this purpose, we studied and com-
pared four differential geometry based point properties, namely Mean and Gaussian
curvatures, Shape Index and Curvedness in terms of descriptiveness for the nose tip
localization.

2.4.1 Detection of nose tip candidates

The nose tip is one of the most marked out points in the curvature space, with similar
curvature characteristics for all faces. This property can be used to localize its
candidate points. For this purpose, the input 2.5D face models are first preprocessed
in order to remove holes and large spikes. The main steps for locating nose tip
candidate points are summarized in figure 2.22. We first locate convex regions
thanks to the well known HK-Classification (table 2.2). Within each of the located
convex regions, a nose tip candidate is searched as a point having the maximum
Gaussian curvature. All these nose tip candidate points are then checked out using
an SVM classifier.

Having a 3D facial surface, the localization of local patches can be car-
ried out through a curvature analysis using a threshold [Trucco & Verri 1998,
Colombo et al. 2006, Chang et al. 2006]. While intuitive and simple, thresholding
can also lead to loss of the nose tip region which happens in case of a flat nose (for
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Figure 2.23: Left image: candidate regions for the nose tip (green) and inner corners
of the eyes (red); Right image: Vanishing nose tip region after thresholding HK-
Classification with different threshold used for the Gaussian curvature.

example Asian people), figure 2.23 shows how the nose tip region vanishes while
different thresholds are used.

In this work, we do not make use of curvature thresholding (in section 2.3, the
curvature thresholding was used to delimit the number of regions under considera-
tion). Instead, we look for all convex regions thanks to the HK-classification (figure
2.12) which permits to partition a range data into regions of homogeneous shapes,
called homogeneous surface patches based on the signs of Mean (H) and Gaussian
(K) curvatures [Trucco & Verri 1998]. As the approximation of the curvatures over a
range data generally is sensitive to noises [Colombo et al. 2006, Chang et al. 2006],
we used the method described in section 2.3.2 which incorporates the Gaussian noise
rejection in the curvature calculation method.

In this work, as illustrated in figure 2.22b, all the elliptical convex patches, thus
with H < 0 and K > 0, are considered as the nose tip candidate regions. In each of
these regions, the point having the maximum Gaussian curvature is then selected
and considered as the nose tip candidate point (figure 2.22c) for which we compute
a point signature which is further checked by the SVM classifier. Decomposition of
the Gaussian curvature can be seen on figure 2.24, where the nose tip is clearly seen.

2.4.2 Point signatures

Once the set of the candidate points for the nose tip is collected, as described in the
previous section, the SVM is invoked to further identify the true nose tip. For this
purpose, we simply compute a point signature which gathers several state-of-the-
art curvature-based descriptors [Colombo et al. 2006, Ceron et al. 2010], namely the
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Figure 2.24: Gaussian curvature decomposition on 3D face model, calculated with
25 mm neighborhood in surface approximation, showing the appearance of the nose
tip (max value - red, min value - pink).

Mean, Gaussian Curvatures, the Shape Index, Curvedness and study their discrim-
inative power for the task of the nose tip localization when they are used alone or
in combinations.

Curvatures for each nose tip candidate point are computed by a bi-quadratic
surface equation approximation using a neighborhood of 25mm (please refer to sec-
tion 2.3.2, where the curvatures calculation method is described), which proves to
be a reasonable compromise in removing noise while keeping the rough shape of the
local region.

2.4.2.1 Principal curvatures

Principal curvatures k1(p) and k2(p) (figure 2.25), can be extracted from equations
[Trucco & Verri 1998]:

k1(p) = H(p) +
√
H(p)2 −K(p), (2.9)

k2(p) = H(p)−
√
H(p)2 −K(p), (2.10)

where H and K are Gaussian and mean curvature at point p. The Principal Curva-
tures measure, how the surface bends by different amounts in different directions at
that point.

2.4.2.2 Shape Index

Shape Index (figure 2.26) is a normalized curvature representation in a certain
point of a surface within 2.5D image, proposed for example by Dorai and Jain
in 1995 [Dorai & Jain 1995]. The shape index (SI) of the face image is the quan-
titative measure of the shape of a surface at a point. This local curvature infor-
mation about a point is independent of the coordinate system. The Shape index
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Figure 2.25: Principal Curvatures decomposed on facial model.

S at point p is calculated using maximum (k1) and minimum (k2) local curvature
[Nair & Cavallaro 2009]:

S(p) =
1
2
− 1
π

tg−1 k1(p) + k2(p)
k1(p)− k2(p)

, (2.11)

where k1(p) and k2(p) are principal curvatures at point p of the surface S.

2.4.2.3 Curvedness

The curvedness (figure 2.27) of a surface at a vertex (v) can be calculated based on
equation [Nair & Cavallaro 2009]:

Curv(v) =

√
k2

1(v) + k2
2(v)

2
, (2.12)

where k1(p) and k2(p) are principal curvatures at vertex v of the surface S.
It describes how gently curved a surface is. The dimension of curvedness

is the reciprocal of length and ranges from negative infinity to positive infinity
[Yoshida et al. 2002].

2.4.3 Support Vector Machine for the nose tip localization

The experiments were carried out on the FRGC v2.0 dataset [Phillips et al. 2005]
using an SVM classifier with a standard Gaussian kernel function. We manually
labelled all the face scans from FRGC v2.0 with 15 landmarks, including the nose
tip and eye corners (described in section 2.3.4.1).
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Figure 2.26: Shape Index decomposition on face model and the dictionary of its
values [Yoshida et al. 2002].

Figure 2.27: Curvedness, represents how gently curved a surface is, image
source:[Yoshida et al. 2002].
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2.4.3.1 SVM Training

Support Vector Machine (SVM) was used to identify the true nose tip from the set
of nose tip candidate points. For this purpose, we made use of the publicly available
Matlab LIBSVM2 library.

For training, the manually marked nose tips were used as the positive sam-
ples while negative samples were randomly selected with proportion 1:1. For each
training sample, the four previously described curvatures: Mean and the Gaussian
curvature, Shape Index and Curvedness, were first calculated. They were fed alone
or in combination to the classifier, giving birth to 15 configurations regarding the
point signature (see table 2.4). To verify the localization rate by the SVM, we also
varied the learning dataset size, ranging from 100 to 3000 points (figure 2.24).

Each configuration of the system (different point signature + training set size)
was cross-validated 10 times, each time with different folds and reported results are
the mean values of all tests. For each cross validation the training set was selected
randomly while the remaining models formed the test set.

2.4.4 Experimental results

Once learned, the SVM is used for identifying the true nose tip among all the nose
tip candidates. If the SVM classifies a nose tip candidate point as a correct one,
this point is further checked with the manually labelled one. If the distance between
the predicted nose tip and the manually marked one is less than 10mm, the True
Acceptance Rate is increased.

Almost all configurations of the point signatures achieved very high True Ac-
ceptance Rate (TAR), close to 100%. The highest TAR with the lowest False Ac-
ceptance Rate (FAR) was achieved using together the Mean curvature, the Shape
Index and the Curvedness where the TAR was 99.9% and the FAR was 6.7%. The
lowest localization rate was achieved by single Gaussian Curvature where the TAR
was 30.7% and the FAR 3.3%.

Based on the figure 2.28, one can observe that in case of increasing number of
the training models the True Acceptance Rate as well as the False Rejection Rate
are stable, respectively in a range of 99.9% and 0.1%. The change in the number
(from 100 to 3000) of the training examples affects the True Rejection Rate and the
False Acceptance Rate, respectively the TRR changed from 85.3% to 93.29% and
the FAR changed from 14.7% to 6.71%.

2.4.5 Discussion

Looking at table 2.4 and figure 2.29, one can see that the True Acceptance Rate of
the nose tip points is very high for almost all curvature based features, except the
Gaussian Curvature which displays a 30.74% TAR for the nose tip. Meanwhile, this
result is in line with the conclusion of the state of the art, for instance the one by

2http://www.csie.ntu.edu.tw/c̃jlin/libsvm/
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Figure 2.28: Results of the best verified combinations of the curvature properties
(Mean curvature, Shape Index and Curvedness), horizontal axis represents number
of models used for SVM learning, the vertical axis represents the percentage of TAR,
FAR, TRR, FRR. (better seen in color)

Figure 2.29: The TAR and FAR for each combination of the point properties for the
shape signature, with 3000 models taken for the SVM learning. (C - Curvedness,
SI - Shape Index, H - Mean Curvature, K - Gaussian Curvature) 1)C, 2)SI, 3)SI+C,
4)K, 5)K+C, 6)K+SI, 7)K+SI+C, 8)H, 9)H+C, 10)H+SI, 11)H+SI+C, 12)H+K,
13)H+K+C, 14)H+K+SI, 15)H+K+SI+C. (better seen in color)
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Point Signature combination TAR [%] FAR [%]

C 99.39 16.72
SI 94.14 11.98
SI+C 99.19 7.87
K 30.74 3.35
K+C 98.58 16.45
K+SI 95.05 12.45
K+SI+C 99.19 8.52
H 99.90 12.49
H+C 99.90 12.42
H+SI 99.70 6.70
H+SI+C 99.90 6.71
H+K 99.70 12.88
H+K+C 99.70 12.94
H+K+SI 99.80 7.59
H+K+SI+C 99.90 7.15

Table 2.4: The obtained results (mean value of 10 cross-validations) for different
point properties combinations with the fixed number of the training models (3000),
(C - Curvedness, SI - Shape Index, H - Mean Curvature, K - Gaussian Curvature)

Ceron et al. [Ceron et al. 2010] who stated that the Gaussian Curvature has the
worst descriptiveness for discriminating facial feature points.

When studying the False Acceptance Rates (FAR) of all these curvature features
in table 2.4, one can see that the lowest FAR 6.7%, was achieved by the combination
of the Shape Index, Curvedness and the Mean Curvature which also displays the
highest 99.9% TAR. Very similar results were obtained from the configuration using
both the Shape Index and Mean Curvature, displaying a 99.7% TAR and a 6.7%
FAR respectively.

The False Acceptance Rate at the level of 6.7% means that the SVM classi-
fier incorrectly classified non-nose tip points from the candidate set as the correct
nose tips. Those mistakes generally happen when the point candidates have shapes
similar to the nose, which occurs sometimes on cloths or hair regions. To exclude
these incorrectly classified points one needs to consider further constraints or knowl-
edge. The method guaranties very high True Acceptance Rate (99.9%), which gives
reliability that the nose tip will not be missed.

2.4.6 Conclusion on landmarks localization by SVM algorithm

In this section, we have studied the relevance of four rotation invariant differential
geometric properties, namely Mean, Gaussian curvatures, Shape Index and Curved-
ness, for the purpose of nose tip localization. For each 2.5D facial model, the set of
nose tip candidate points was first automatically selected from a shape classification
using a priori knowledge of nose shape. An SVM classifier trained on a subset of the
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data set using the curvature features alone or with combinations was then invoked to
select the true nose tip from the set of candidate points. Extensive experiments were
carried out on the whole FRGC v2.0 dataset by varying the training dataset size.
For each training size 10 times cross-validation was used with a random selection of
the training set. The experimental results were evaluated in terms of the True Ac-
ceptance Rate (TAR) and the False Acceptance Rate (FAR) using manually labeled
nose tip point as ground truth and expressed as a mean value of all cross-validation
tests. 99.9% Nose Tip TAR with 6.7% FAR was achieved on the FRGCv2 dataset
when the Mean curvature, the Shape Index along with the Curvedness was used as
the input to the trained SVM classifier.

2.5 Curvatures Stability Across Different Model’s Reso-
lutions

Curvatures are used in many applications: face segmentation, facial landmarking,
face recognition, point signatures calculation etc. While the curvatures are popular
because of their rotation invariance, consistent repeatability over facial models and
the simplicity to calculate, its most popular calculation method is sensitive to the
noise and the model resolution changes.

In this section the stability of the modified curvature calculation method will be
investigated, while changing the model’s resolution and modifying the noise removal
methods.

2.5.1 Invariance of the resolution

The most popular method for the Mean and Gaussian curvature calculation
at a certain point is based on a bi-quadratic surface equation approxima-
tion [Colombo et al. 2006, Chang et al. 2006, Moreno et al. 2003, Sun & Yin 2008b,
Trucco & Verri 1998, Toponogov & Rovenski 2006]. The method uses a local
neighborhood of a point and the first and second derivatives of the approx-
imated surface equation to estimate the Mean and Gaussian curvature. Lo-
cal characteristic of the method exposes it to the surface noise and resolution
changes. To overcome the problem of the surface noise authors usually use noise
reduction techniques [Colombo et al. 2006, Chang et al. 2006, Moreno et al. 2003,
Sun & Yin 2008b]. The noise is usually removed by smoothing filters, which also
tend to remove fine details. Since filtering techniques relay on point’s neighborhood,
the strength of the filtering technique will be affected by model’s resolution. An-
other source of errors in curvature calculation is the fact that the algorithm is also
based on the point’s neighborhood. While the scanner’s resolution is constant, the
model’s resolution can change in case of the distance from the scanner, therefore
leading to changes of the curvature values.

To achieve smooth curvatures decomposition, insensitive to resolution changes
and noise, we propose to use geodesic distance expressed in [mm] for the definition
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of a neighborhood instead of the first-neighbors. For each point on a surface the
neighborhood will be taken using geodesic distance, which tends to preserve better
surface topology than Euclidean one. The curvature calculation method is described
in section 2.3.2.

We tested the proposed method for the computation of curvatures using models
with different resolutions from the FRGC data set [Phillips et al. 2005]. To ascer-
tain the stability of the curvature calculation, the curvatures were calculated and
compared using an original model and several other models having different reso-
lutions. We also tested the sensitivity of the proposed method with two different
settings regarding noise: without any preprocessing or with preprocessing to remove
noise.

2.5.1.1 Resolution change algorithm

To verify the stability of the curvature values in case of different resolution, the
nose tip point was selected and its curvature values were examined. This point was
selected as the one of the most salient points in the curvatures space, where its values
of curvatures should be constant across different resolution. Instead of acquiring
new models with lower resolution, the input model’s resolution was changed, to
assure that the position of the selected point will not change. Figure 2.30 shows
four models with different resolutions, changed using a grid with different intervals
between points.

The resolution change algorithm is based on a grid crossing 2.5D face model (fig.
2.30). The intersections of the grid lines create new points on the lower resolution
face model, while the depth values are estimated based on the neighboring points
from the model under change. The z value (depth), is calculated as a mean value
of all z coordinates of points which belong to the neighborhood of the grid point.

By changing the intervals d between the grid lines, one can change the resolution
of the model. If the neighborhood of the grid point contains the landmark point,
the new created point becomes a new landmark on the lower resolution model and
inherits the label.

2.5.2 Experimental results on curvature stability

Since the previous algorithms (based on first neighbors) for the curvature calculation
need a preprocessing method, which will remove all spikes and smooth out the
surface, additionally in our testing settings we have used noise rejection filters.

In our work we have tested the filters with different kernel matrix sizes as well
as different types of the neighborhood used for the surface equation approxima-
tion (including first neighbors neighborhood and the neighborhood based on [mm]
metric).

First tests were conducted using different neighborhood types. To verify the
curvature stability, one point (the nose tip) was selected over all facial models (the
most prominent in curvatures space). The reported values are the differences in the
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Figure 2.30: Example of different face model’s resolution, 1) 35024 vertices, 2) 17015
vertices, 3) 4267 vertices, 4) 1068 vertices, 5) shows the grid used for resolution
changes, by changing the intervals (d) between grid lines the resolution of the model
can be changed.
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values of the Mean and Gaussian curvature (please see fig. 2.31 and fig. 2.30) which
correspond to the model’s resolution.

Since the difference in the curvature values for the nose tip across different
resolutions is the smallest using neighborhood within 15 mm of geodesic distance,
for the next test we have compared it with different preprocessing algorithms. For
the preprocessing algorithm, Gaussian filter was used with different sizes of the
mask. Figure 2.32 shows the differences in curvatures between different resolutions
and Gaussian filter sizes as well as different neighborhood types. In this test the
1-neighbor neighborhood as well as 15 mm neighborhood were compared.

The final, designed test was performed to verify the curvatures stability over
the whole face. For this test, the high resolution models A were scaled to a lower
resolution B by the scaling algorithm, presented in section 2.5.1.1. The scaling
algorithm is able to obtain the dense correspondence between models A and B. To
verify the curvature stability over the whole face, curvatures were calculated on both
models (A and B). Using the correspondence, the difference over the whole model
was calculated. Figure 2.33 shows the difference of the curvature values featured as
a color decomposition on a few models obtained from the FRGC data set.

2.5.2.1 Discussion

Looking at figure 2.31 one can see that the most stable curvatures can be obtained
using 15 mm in the neighborhood for the surface approximation. Still the biggest
difference can be observed while comparing the highest resolution model with the
lowest one. In case of higher resolutions the 10 mm neighborhood gives the best
results, yet it has the biggest difference in case of a very low resolution. What
should be also observed is the fact that the Mean curvature characterizes bigger
difference than the Gaussian curvature. Looking further at the figure, one can
note that using simple one-neighbor neighborhood for the surface approximation is
affected by the resolution change. The difference between high and low resolution
models is very high, which will affect other algorithms, for example thresholding
HK-Classification. To summarize, the most stable curvatures can be obtained using
15 mm neighborhood for surface equation approximation.

Having chosen the best neighborhood for the surface approximation, later used
to calculate the curvatures, the next test was to examine the influence of the fil-
tering technique to the curvature stability. Looking closer at the figure 2.32 one
can notice that the usage of filtering technique gives worse results in case of the
curvatures stability using 15 mm neighborhood. This is due to the fact that the
filter was working on range image and was smoothing the surface in different scale
for different resolution. What should be noted is also the fact that while the filtering
technique does not help in case of neighborhood expressed in mm, it helps in case
of neighborhood expressed as a first-neighbor. Obtaining smoother surface helps to
achieve more constant curvature values yet the stability is far away from the results
obtained using [mm] metric.

The last test, figure 2.33, was carried out to verify the difference in curvatures
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Figure 2.31: a, b, c, d - Show the absolute differences for Mean and Gaussian curva-
tures values using point neighborhood within 25, 20, 15, 10 mm of geodesic distance
from the investigated point (the nose tip), e) shows the Mean and Gaussian curva-
tures calculated using "first neighbor" neighborhood for the surface approximation.
Test performed without preprocessing.
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Figure 2.32: The absolute difference in the Mean and Gaussian curvature values
using the reference model and smaller resolution models. The difference is con-
ducted using preprocessed models by Gaussian filter with different kernel matrix
size (indicated on left).
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Figure 2.33: Upper row - example of the scaling to illustrate the resolution differ-
ence, two last rows - difference between the Mean and Gaussian curvature repre-
sented by color decomposition (computed using 15mm neighborhood for the surface
approximation). Green color means no difference in the curvatures between different
resolutions.

between models with different resolution. What should be noted is the fact that
the Mean curvature is more pliant to resolution changes, where its decomposition
introduces some areas with higher difference. The high difference regions are mainly
the regions of fast surface changes, where the resolution change algorithm will modify
their appearance by replacing a few pixels by their mean value.

2.5.3 Conclusion on curvatures stability

In this section we carried out extensive verification of the most popular curvatures
calculation algorithm in case of model’s resolution changes. We showed, that the
most common method for the curvatures approximation, which is based on first-
neighbors neighborhood, is influenced by model’s resolution changes. To overcome
the problem, we proposed a modification of the method, which relays on a different
metric for selecting a neighborhood for a certain point. The modification allows us
to achieve stable curvature values across different model’s resolutions.
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2.6 Conclusion on 2.5D Face Pre-processing, Analysis
and Landmarking

In this chapter we have presented 2.5D face preprocessing method as well as the
modification of the curvature calculation method, which was later used for the main
facial points localization. Since the curvature calculation method is very sensitive
to local noise, we proposed to change its locality by enlarging the neighborhood
used for the curvature calculation. This change allows us to control the smoothness
of the curvatures decomposition and allows us to design precise and robust facial
main points localization algorithm. The algorithm achieved very high precision in
localization of the nose tip and inner corners of eyes (based on the state-of-the-
art presented in 2.2.2) . While the algorithm is rotation invariant, it can be used
for the main points localization and face registration. We have also compared the
algorithm to the other solution developed within our team, the SFAMmethod. Since
the SFAM method is not rotation invariant, both methods are complementary.

Our modification of the curvature calculation method is based on a real geodesic
distance expressed in mm, therefore the calculation method is invariant to the model
resolution changes, which was proved by a set of tests on different models resolutions.
To reduce the complexity of the main points validation, which is a bottleneck of
the landmarking method based on curvature analysis, we proposed a learning-based
technique, where a set of differential geometry descriptors was used. The test proved
that the non-nose tip candidate points can be excluded with a high probability from
the points candidates using SVM learning technique, thus reducing the time needed
for the main points validation.
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Chapter 3

Angle-preserving mapping-based
face recognition

3.1 Introduction

Face recognition is potentially the best biometrics modality for people identification
for it is: socially accepted, non-instructive and contactless. Unfortunately, face
recognition in 2D proves to be a very challenging task as intra-class variations,
due to factors as diverse as pose, lighting conditions, facial expressions, etc., are
often much greater than inter-class variations [Zhao et al. 2003]. Recent years have
witnessed 3D face models as a potential solution to deal with the two unsolved
problems in 2D face recognition, namely lightning conditions and pose variations
[Bowyer et al. 2006], thereby improving the effectiveness of face recognition systems.
While 3D face models are theoretically insensible to lighting condition changes, they
still require to be pose normalized before 3D facial shape-based matching.

A fundamental issue in 3D face recognition is 3D shape matching, which is
a challenging task in noisy and cluttered scenes. Moreover, as 3D face models
describe 3D facial shape, they are also more sensible to facial expression changes
as compared to their 2D counterpart. Generally, the crux of surface matching is
finding good shape representation, allowing to match two given free-form surfaces by
comparing their shape representations [Wang et al. 2006]. Since facial expressions
introduce non-ridig facial deformations, one of the shape representations, which has
potential to deal with non-rigid deformations, is conformal mapping. According to
conformal geometry theory, each 3D shape with disk topology can be mapped to
a 2D domain through a global optimization. Having conformal parameterization
of 3D shape, the problem of 3D shape matching can be simplified to a 2D image-
matching problem of conformal geometric maps, thus allowing all the previously
developed image matching techniques to work on 3D models. The conformal maps
are insensitive to resolution changes, robust to noise as well as integrate geometric
and appearance information onto 2D images. Therefore highly accurate and efficient
3D shape matching algorithms can be developped using conformal geometric maps
[Wang et al. 2006].
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3.2 Related Work on 3D Face Recognition Using Map-
ping Techniques

While 3D face models capture facial surface they are likely more sensitive to fa-
cial expression changes as compared to their 2D counterparts. Having higher
dimensional data the whole 3D face processing algorithm is more complex and
sophisticated. To deal with facial expressions, one of the first of 3D face
recognition algorithms used surface matching based on ICP algorithm and crop-
ping rigid facial parts [Amor et al. 2006, Chang et al. 2006] or using a combina-
tion of facial regions [Faltemier et al. 2008a]. More sophisticated algorithms used
points signatures matching [Huang et al. 2010] or different face representations
[Mpiperis et al. 2007, Samir et al. 2006].

The latest trend in 3D face recognition is based on removal of facial ex-
pressions. Expressions are removed by learning methods [Al-Osaimi et al. 2009,
Pan et al. 2010] or by mapping [Bronstein et al. 2007b, Kakadiaris et al. 2007,
Bronstein et al. 2005, Wang et al. 2006]. Additionally mapping techniques help to
reduce complexity by moving 3D data to 2D domain. In [Wang et al. 2006], Wang
et al. proposed conformal parameterization to reduce surface matching complexity.
They studied a family of conformal geometric maps for recognition purpose. The au-
thors projected Mean curvature on face images created by Least Square Conformal
Maps. Those Least Square Conformal Shape Images were compared using normal-
ized correlation coefficient, achieving 98.4% recognition rate at rank-one using 100
face models. Another, very interesting work is presented in [Kakadiaris et al. 2007],
where the authors align each input data with Annotated Face Model (AFM) and
create 2D geometry maps based on parametrization delivered by AFM. Reduction
of facial expression is done by the Annotated Face Model fitting, which is also a
bottleneck of the approach, making it more complex. Created 2D maps are then
compared using two different distance metrics. For evaluation purposes the authors
used the FRGCv2 data set and reported verification rate of 97.3% at 0.001 FAR.
Another work, where the authors propose expression invariant face representation
is presented in [Bronstein et al. 2007b]. In this work Bronstein et al. addressed the
problem of constructing and analyzing expression-invariant representation of faces.
In [Bronstein et al. 2007a] the authors demonstrate and experimentally justify a sim-
ple geometric model that allows to describe facial expressions as isometric deforma-
tions of the facial surface. This assumption is later used in [Bronstein et al. 2007b],
where the authors isometrically embed face into a low-dimensional space, which is
the core of their recognition system.

3.3 Discussion

Since facial expressions are known to be non-rigid, in our work we mainly focus on
reduction of facial expressions by conformal mapping techniques. Since conformal
mapping preserves angles, it can cope with non-rigid surface deformations. Like-
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wise mapping introduced in [Bronstein et al. 2007b], conformal mapping requires
the surface topology to be unchanged. Since surface topology is mainly affected by
open mouth, first, in section 3.4 we propose an open mouth detection algorithm,
which can be used later in conformal mapping technique. While Mean curvature
can have ambiguous values, in contrast to [Wang et al. 2006], to create conformal
face images we projected Shape Index, which is a normalized curvature represen-
tation. Unlike [Kakadiaris et al. 2007], where the authors used complex annotated
face model fitting algorithm to deal with facial expressions in our work we used
the Möbius transformation of UV conformal space to "compress" expression (sec-
tion 3.5). We have also examined face recognition using only rigid facial part and
conformal mapping which is presented in 3.6.

3.4 Dedicated Preprocessing for Conformal Maps Cal-
culation

While facial surface deformation during expression is assumed to be near-isometric,
open mouth significantly changes the surface topology and introduces anisometry.
Removal of the open mouth part provides more reliable data for further 3D face
processing pipeline, that requires consistently segmented faces and allows to treat
face deformations as near-isometric. In this section, an automatic curvature-based
open mouth detection algorithm is described.

Facial deformations can be modeled as near-isometric deformations of facial sur-
face [Bronstein et al. 2007b, Bronstein et al. 2006, Bronstein et al. 2005]. Bronstein
et al. [Bronstein et al. 2007b] presented an isometric model of facial expressions.
The isometric model is based on an intuitive observation that facial skin stretches
only slightly during expressions and all expressions of a face are assumed to be
intrinsically equivalent. Nevertheless, this intrinsicall equivalence can be assumed
only if the topology of the surface is preserved. Unfortunately open mouth, changes
the topology of the surface by virtually creating a "hole". To handle expressions
with open and closed mouth authors in [Bronstein et al. 2007b] proposed to fix the
topology of the surface, by restricting the mouth to be open, disconnecting the
lips in each case. A second method, to preserve the topology, enforces the mouth
to be closed by "gluing" the lips when the mouth is open. In this section we: a)
prove, using physically marked face, that the assumption to virtually close the open
mouth, preserves better near-isometric deformations on the facial surface during ex-
pressions than the method used in [Bronstein et al. 2007b], b) present an automatic
open mouth detection technique, c) propose modified geodesic distance to correctly
measure near-isometric face deformations. To examine the assumption that facial
deformations can be modeled as near-isometric, the distances between the nose tip
and manually marked points on the facial surface were examined under various ex-
pressions. The open mouth detection is based on multi-scale curvature analysis.
Correct metric preserving near-isometric deformations of the face is achieved by
modified geodesic metric based on Dijkstra’s algorithm, where the modification al-
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lows us to create zero distance "bridges" between the upper and the lower lip in
case of the open mouth detection.

3.4.1 The near-isometry hypothesis for open mouth expressions

An isometry is a distance-preserving map between metric spaces. Bronstein et al.
in [Bronstein et al. 2007b] presented a facial expression invariant model based on
the assumption that face expressions can be modeled as near-isometric. The near-
isomtry assumption was derived from a test, where authors analyzed the changes
of the geodesic distances between physically marked points during expressions. It
should be noted, that the points on the used face model cover large areas, which
undergo little or no motions during facial expressions, such as: forehead, nose ridge
or points in the near neighborhood of those regions.

To reanalyze the facial expression near-isometric hypothesis, proposed by Bron-
stein, a face was physically marked using 10 points covering only the jaw part of the
face, which moves the most during large expressions (fig. 3.1).

A subject was asked to introduce four expressions: neutral, small opening of the
mouth part, larger opening of the mouth part, very large opening of the mouth part.
For each 3D facial model the interior part of the mouth was removed to preserve
surface topology. Each manually marked point was selected for all expressions giving
nine traceable points (jaw part) and the nose tip (as a reference point) for each
scanned model. Afterwards the geodesic, Euclidean and modified geodesic (see
section 3.4.3) distances (dg, de, dmg) were calculated between the nose tip and all
the traceable points, to verify if the isometric or near-isometric assumption holds.
To verify the difference in the mentioned distances between facial expressions, the
neutral model was taken as the reference face. Please refer to fig. 3.1 which shows
differences in computed distances (dg, de, dmg) using reference model and models
with other expressions.

It should be noted that the differences of the distances between traceable points
and the nose tip are significantly reduced using modified geodesic distance. Smaller
difference in the distances between points will help to achieve more consistent metric
which will not be influenced by facial expressions.

3.4.2 Open mouth detection using high curvature edges

An analysis of Mean, Gaussian, principal curvatures, Shape Index and Curvedness
leads to the conclusion, that the open mouth region characterizes very high k1

curvature (fig. 3.2). In our research, a simple open mouth detection algorithm is
proposed.

3.4.2.1 Selection of allowed curvatures

The algorithm starts from calculation of k1 curvature using different neighborhood
size (please refer to section 2.3.2 for more details about the curvature calculation
method). To localize small and large open mouth regions, for each point pi of a
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Figure 3.1: Marked face and differences in the distances measured between the nose
tip and the traceable points using the neutral model and the models with other
facial expressions.
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Figure 3.2: a) Decomposition of the principal curvature k1 with 25mm neighborhood
size in the surface equation approximation. Please note that the high k1 curvature
values correspond to a ridge between the lips. b) Static face region, determined
based on three main points (light blue color), model with removed points which k1

curvature exceeded the maximum allowed values.

surface, k1 curvatures are calculated using different neighborhoods (10mm, 15mm,
20mm, 25mm, 40mm of geodesic distance from the investigated point pi). Having the
k1 curvatures calculated (five values for each point pi at different scale), localization
of the open mouth part can be done by defining simple thresholds (Tk110, Tk115,
Tk120, Tk125, Tk140). The thresholds are determined by the maximum k1 curvature
values on a rigid facial part.

Having the three main points, automatically selected by the algorithm previously
described in section 2.3.3, the rigid region can be localized by selecting points where
the sum of distances of which to the three main points is lower than the sum of
distances between the three points increased by 15% (value chosen empirically). Fig.
3.2 shows the rigid region marked by a light blue color. This type of calculation
leads to the selection of the static, rigid facial region, which is parametrized by the
distances between the three points, consequently invariant to the face size.

All points on the facial surface, which k1 curvature, at a certain scale, exceeds
the threshold (Tk110, Tk115, Tk120, Tk125, Tk140) can be considered as points of
open mouth part. In reality, those points also correspond to ridges between face
and hair parts (can be seen on fig. 3.2b).

3.4.2.2 Detection of the curvatures belonging to the open mouth

The high curvature regions (exceeding the allowed curvature thresholds), belong to
the open mouth part as well as appear on the side of facial surface, on cloths or hair
parts (fig. 3.2b). To detect those corresponding to the mouth part, the mouth po-
sition needs to be known. Since the most precise point, which can be automatically
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Figure 3.3: Virtual bridges between the upper and the lower lip (the colors from the
upper lip correspond to the colors on the lower lip).

detected, is the nose tip, the average distance (dl) and standard deviation (σ) from
it to the upper lip was calculated using manual landmarks on the FRGC dataset.

The open mouth detection is based on the assumption that a stripe followed
between the inner corners of the eyes and covering the upper lip position (dl+−σ),
will cross the high curvature region; we assume that this region belongs to the mouth
part. If the stripe will cross more than one region, the biggest one is selected as the
correct open mouth part.

3.4.3 Dealing with face near-isometric expression through a mod-
ified geodesic distance

To deal with face near-isometric expressions the open mouth part needs to be local-
ized. As showed in the section 3.4.1, surface topology can be better preserved while
moving the geodesic distance from upper lip to lower one. For this purpose, the Di-
jkstra’s algorithm can be used. For a given source vertex in the graph (mesh), the
algorithm finds the path with the lowest cost between that vertex and every other
vertex. The method can be extended to calculate the geodesic distances over the
whole facial surface, treating the euclidean distance between neighboring vertices as
the weights.

To be able to "glue" the upper and the lower lip in the case of open mouth,
the main modification of the Dijkstra’s algorithm was to add zero weight "bridges"
between the upper and the lower lip (fig. 3.3). The upper and lower lip were
localized analyzing the open mouth region. Those bridges "continue" the calculated
geodesic distance across the open lips and virtually glue them making the lower face
boundary consistent between expressions. Figure 3.4 shows the difference between
face cropping using geodesic distances calculated using virtual bridges between lips
and without them while figure 3.5 shows modified geodesic distance decomposition
on faces with neutral as well as non-neutral expressions.
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Figure 3.4: Difference between the modified geodesic and a standard geodesic face
cropping (the boundary of the models is based on 100mm geodesic distance from
the nose tip, the model from the Bosphorus data set [Savran et al. 2008]).

Figure 3.5: Modified geodesic distance on neutral and expression faces (marked as a
color decomposition). Please note how, the modified geodesic distance is moved
from the upper lip to the lower one (the models are from the FRGC data set
[Phillips et al. 2005]).
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3.4.4 Experimental results on open mouth detection

This research focuses on evaluation of the open mouth part localization. Since there
is no ground truth data on open mouth boundary, the localization will be expressed
in terms of the size as well as the frequency and position of the localized open mouth
parts. The size of the localized part will be expressed in case of marked expressions
on two publicly available 3D face datasets.

3.4.4.1 Test datasets

In our work we used two datasets: the FRGCv2 [Phillips et al. 2005] and Bospho-
rus [Savran et al. 2008] dataset. The FRGCv2 database contains 4007 3D images
from 466 subjects, acquired between 2003 and 2004. The Bosphorus Database is a
database of 3D faces which includes a rich set of expressions, systematic variations
of poses and different types of occlusions. The dataset contains 105 subjects in
various poses, expressions and occlusion conditions with 24 labeled facial landmarks
each.

3.4.4.2 Mouth part localization

For the two data sets: we calculated the size of the localized mouth region in the
case of expressions labeled in the data sets. In addition the mouth position was also
examined using Bosphorus data set.

Analyzing the results (fig. 3.7 and fig. 3.6) one can notice that expressions
influence the size of the localized region, as can be especially seen on the Bosphorus
data set, designed for facial expression recognition. At a closer look at the facial
action units and facial expressions from the Bosphorus data set, facial lower action
unit 27 has the biggest detected facial opening region. The neutral expression during
this experiment was placed near zero. It is worth noting that the "nonExpression"
models from FRGC data set contain some open mouth regions, possibly due to
errors in labeling.

The final test we have performed, was to investigate the detected open mouth
region position. In this case, each expression from the Bosphorus data set was
processed separately. Figure 3.8 shows the computed open mouth position and its
frequency over all expression models. The white area on the black square is the
frequency of appearance of the face shape. All faces were previously normalized
by translating the nose tip in to the center (the black dot in the center of each
image, there is no need to normalize rotations since the models are all frontal). One
can notice that specific expressions introduce the mouth opening region in a certain
position and shape on the facial model. Our method successfully computes these
positions and shapes.
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Figure 3.6: Size of the open mouth part (number of points) in case of expressions
from the Bosphorus data set.

Figure 3.7: Size of the open mouth part (number of points) in case of expressions
from the FRGCv2 data set.
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Figure 3.8: Bosphorus Expression Maps, created based on first 46 subjects. Left
column introduces the model expression while right column (black square) intro-
duces the expression map. The map shows mean face shape (white) with inner
black-white gradient showing the frequency of localized mouth opening part (darker
- more frequent)
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3.4.5 Conclusion

Open mouth detection and usage of the modified geodesic distance are able to
preserve near-isometric facial deformations and thus to provide more reliable data
for further processing. The algorithm is based on high curvature edges detection
and analysis of the rigid facial region. Such an analysis and removal of vertices,
the curvatures of which exceed the allowed values, permits the removal of ridges
between the facial surface and hair parts as well as the detection and removal of
the open mouth part. Detection of the open mouth part is a crucial point in near-
isometric facial cropping which later can be used for conformal face mapping. Based
on the performed tests, the designed algorithm is simple yet effective in open mouth
detection and can be ameliorated with additional verification step by mouth shape
learning techniques and analysis.

3.5 Face Recognition Based on Mapping Preserving
Non-rigid Surface Deformations

In this section, we propose to deepen conformal mapping-based approach for 3D face
recognition. The proposed approach makes use of conformal UV parameterization
for mapping purpose and Shape Index decomposition for similarity measurement.
The 3D facial surface matching problem is reduced to 2D image matching thanks
to the resulted 2D conformal geometric maps. To deal with facial expressions, the
Möbius transformation of UV conformal space is also used to "compress" face mimic
region. Rasterized images are used as an input for (2D)2PCA recognition algorithm
[Kukharev & Forczmanski 2004].

3.5.1 Conformal UV parameterization for face normalization

It can be proven that there exists a mapping from any surface with a disk topology to
a 2D unit disk [Haker et al. 2000], which is one-to-one, onto, and angle preserving.
This mapping is called conformal mapping and keeps the line element unchanged,
except for a local scaling factor [Floater & Hormann 2005]. Conformal maps have
many appealing properties: (1) If the parameterization is conformal, then the sur-
face is uniquely determined (up to a rigid motion) by the mean curvature with area
stretching factor defined on the parameter domain. (2) Conformal parameterization
depends on the geometry itself, not the triangulation of the surfaces. From a prac-
tical point of view, conformal parameterization is easy to control. Hence conformal
parameterization is crucial for 3D shape matching and recognition. Consider the
case of mapping a planar region S to the plane D.

Suppose S is a topological annulus, with boundaries ∂S = γ0 . γ1 as shown in
Figure 3.9. First, we compute a path γ2 connecting γ0 and γ1. Then we compute a
harmonic function f : S → R, such that:
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{ fγ0 = 0
fγ1 = 1.
∆f = 0

(3.1)

The level set of f is shown in Figure 3.9. Then ∇f is a harmonic 1-form.
We slice the surface along γ2 to get a new surface S̃ with a single boundary.

γ2 become two boundary segments γ+
2 and γ−2 on S̃. Then we compute a function

g0 : S̃ → R, such that:

{
g0|γ+

2
= 1

g0|γ−2 = 0
(3.2)

g0 takes arbitrary value on other vertices. Therefore ∇g0 is a closed 1-form
defined on S. Then we find another function g1 : S → R, such that ∇g0 +∇g1 is a
harmonic 1-form ∇.(∇g0 +∇g1) = 0.

Then we need to find a scalar λ, such that ∗∇f = λ(∇g0 +∇g1), where ∗ is a the
Hodge star operator (∗(fdx + gdy) = fdy − gdx, where fdx + gdy is a differential
one form). The holomorphic 1-form is given by:

ω = ∇f + iλ(∇g0 +∇g1). (3.3)

Let Img(
∫
γ0 ω) = k, the conformal mapping form S to a canonical annulus given

by:

Φ(p) = exp
2Π
k

∫ p
q
ω
, (3.4)

where q is the base point, the path form q to p is arbitrary chosen.
For more details about conformal parameterization please refer to

[Wang et al. 2006].
The result of conformal UV parameterization can be seen on Figure 3.10, where

inner face hole created in lips part has been mapped to inner circle and outer 3D
face boundary has been mapped to unit circle.

3.5.2 Process overview

The main idea underlying this approach is to transform a 3D facial shape match-
ing problem to a 2D one using conformal parameterization. Furthermore, to deal
with facial expression variations, we make use of Möbius transformation to "com-
press" the elastic facial region, leading to a 2D conformal map less sensitive to facial
expressions.

The overview of the whole pipeline to create conformal maps from 3D face models
can be seen on Figure 3.11. Following sections will describe each step in details.
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Figure 3.9: Harmonic 1-forms. Top row, the cut on the surface. Bottom row, the
level sets of the harmonic 1-form ∇f and its conjugate harmonic 1-form λ(∇g0 +
∇g1).
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Figure 3.10: Conformal Map created from parametrized UV coordinates, colors
represent Shape Index value. The mouth part has been mapped to the inner hole
while external face boundary to the boundary of circle (genus 0 surface, with a single
boundary).

Figure 3.11: Flowchart of the face recognition algorithm.
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Figure 3.12: Geodesic face cutting result with zero distance between lips in presence
of expression.

3.5.3 Generation of face conformal maps

3.5.3.1 3D Face preprocessing

Direct application of conformal mapping introduced in [Wang et al. 2006] is not
feasible on 3D face models as it requires surface with disk topology (genus 0 surface,
with a single boundary). For this purpose, we have "closed" the mouth region based
on manual landmarks, setting to zero the distance between the upper and the lower
lips.

Conformal mapping is also sensitive to outer boundary [Wang et al. 2006]. To
deal with this problem, faces are cropped using a fixed geodesic distance, 100 mm
in this work, from the nose tip.

Once this preprocessing is carried out, the 2D UV conformal parameterization
(section 3.5.1) of a 3D face model can be calculated according to [Wang et al. 2006].
Figure 3.12 shows the result of this preprocessing step. As we can see, "closing
the mouth" while using geodesic distance for cropping 3D faces leads to a more
consistent outer boundary, especially in the chin region, displaying roughly the same
border the mouth being opened or closed.

3.5.3.2 Shape Index

Since UV conformal parameterization transfers 3D model to 2D map, some 3D
property has to be moved over 2D face map. To deal with variations due to lighting
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conditions on texture images, we chose to project Shape Index values. Alternatively,
other geometric measures such as normal vectors, curvatures, etc. can be projected.

Shape Index (Figure 2.26) is a normalized curvature representation in a certain
point of a surface within 2.5D image (for more information please see section 2.3.2).

3.5.3.3 Conformal Map Normalization

Facial conformal maps generated by the harmonic energy minimization from 3D face
models can have different size and 2D rotation. To facilitate matching of 2D facial
conformal maps, they need to be size and rotation normalized.

For rotation normalization we make use of the two inner eyes corners mapped
on the conformal map then rotate the underlying conformal map so that both the
two inner eye corners lie at the horizontal line. Once the pose is corrected, the size
of the underlying conformal map is also normalized, using the radius min-max rule,
setting radius of conformal map to 50 units.

3.5.3.4 Compressing facial expression sensitive regions by Möbius trans-
formation

Variations by facial expressions are a major challenge in 3D face recognition. Facial
conformal maps so far generated have reduced a 3D shape matching problem to a
2D one while preserving facial topology. However, they are still facial expression
sensitive. In order to decrease such a sensibility, we propose to make use of Möbius
transformation to "compress" facial elastic regions, i.e. the lower part of a face
model. For this purpose, the center of a conformal map is moved to the nose tip of
the face. Then Möbius transformation is carried out on UV conformal coordinates,
using the following formula:

f(θ, z0, z) = eiθ
z − z0

1− z̄0z
, (3.5)

where z = (u+ iv) is a complex number within the unit disk (UV coordinates).
θ, z0 and z are parameters. The mapping will move z0 to the origin.

Figure 3.13 shows some results of this transformation on two facial conformal
maps. Finally conformal maps resulting from the Möbius mapping are rasterized.

3.5.4 (2D)2PCA recognition algorithm

In this work (2D)2PCA [Kukharev & Forczmanski 2004, Yang et al. 2004,
Chen et al. 2005], a variant of PCA with better performance, is used for fea-
ture dimension reduction and similarity computation.

Principal Component Analysis (PCA) is a well-known feature extraction and
data representation technique. However it has one serious drawback for 2D images,
because 2D image matrix has to be previously transformed to 1D vector by columns
or rows concatenation. This type of concatenation into 1D vector often leads to
a high-dimensional vector space, where it is difficult to evaluate covariance matrix
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Figure 3.13: Conformal maps (Figure 3.10) transformed by Möbius transformation
with center point in the nose tip.

accurately due to its large size and relatively small number of training samples
[Kukharev & Forczmanski 2004, Yang et al. 2004, Zhang & Zhou 2005]. Also eigen
decomposition of large covariance matrix is also very time-consuming.

To overcome those problems 2DPCA was proposed
[Kukharev & Forczmanski 2004, Yang et al. 2004]. 2DPCA technique computes
eigenvectors directly from so-called image covariance matrix, without conversion to
1D vector. 2DPCA is more efficient method than standard PCA what was reported
in [Kukharev & Forczmanski 2004, Yang et al. 2004].

As a standard 2DPCA method works in row directions, the alternative 2DPCA
works in columns directions of images, (2D)2PCA algorithm combines both of them
[Chen et al. 2005]. In more details 2DPCA optimal matrix X reflecting information
between rows of images, alternative 2DPCA learns optimal matrix Z reflecting in-
formations between columns of images. (2D)2PCA uses both matrixes X and Z to
create coefficient (feature) matrix C:

C = ZTAX, (3.6)

For classification the nearest neighbor classifier can be used [Yang et al. 2004]:

d(C,Ck) =‖ C − Ck ‖ . (3.7)

The method was tested on standard face image database along with PCA
and 2DPCA and gained higher accuracy with lower feature dimensionality. For
more details of the whole method please refer to [Kukharev & Forczmanski 2004,
Chen et al. 2005].
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I II III
ShapeIndex 86.43% 97.65% 69.38%
Mean Curv. 86.84% 94.29% 75.51%
Curvadness 86.23% 96.30% 70.91%

Kakadiaris 2007 PAMI[Kakadiaris et al. 2007] 97% - -
Wang 2006 CVPR[Wang et al. 2006] 95.7% - -

I - Neutral vs. All
II - Neutral vs. Neutral
III - Neutral vs. Expression

Table 3.1: Rank-1 recognition rate on 62 subjects of FRGCv2.0 data set.

3.5.5 Experimental results

3.5.5.1 Testing Data Set

To experiment our approach, 62 subjects were randomly selected from FRGCv2
database [Phillips et al. 2005]. FRGCv2 dataset contains 4007 3D scans of 466
persons. The data set contains also labeled expression variations like: NoExpression,
Disgust, Happiness, Sadness, Surprise, Other, used in different scenarios for face
recognition.

3.5.5.2 Experimental Settings

For each 3D face model, the corresponding facial conformal map is generated using
the whole process described above, including 3D face cropping, UV paramterization
calculation, normalization, Möbius transformation and rasterization. The resulting
2D conformal maps were used as input for (2D)2PCA algorithm for recognition,
keeping 99% of eigenvalues variation.

One model with neutral expression from each selected subject is taken for the
gallery and the remaining models according to labeled expression are used as a probe
in different scenarios: 1) Neutral vs. Neutral, 2) Neutral vs. Expression, 3) Neutral
vs. All. In case of first scenario probe models are selected within "NoExpression"
labels, in the second scenario probe models come from all models except those
marked "NoExpression", and finally in the last scenario we take all expression and
no-expression models as a testing probe.

3.5.5.3 Results and Analysis

Using this experimental setting, our approach has achieved 97.65% rank-one recog-
nition rate for scenario where models labeled as "NoExpression" are presented to
the system. All test scenarios and different combinations of curvatures are presented
in Table 2.4.
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For comparison reasons we have also projected different vertex features as color
maps. While the Shape Index is a normalized curvatures representation with value
in range < 0, 1 >, the mean curvature or curvedness have no range. To create
images with the same values range, average maximum and minimum values were
calculated using models form the Gallery.

As we can see in Table 3.1 Shape Index Maps achieved best performance in the
test Neutral vs. All at 97.65%, but Cuvardness Index is not far away with result
at 96.3%. While in case of Expressions Mean curvature maps outperforms Shape
Index maps with difference of 5%.

Comparing our approach to article [Wang et al. 2006] we have achieved around
9% lower performance in the scenario of Neutral-All, but our algorithm has been
tested on much bigger data set containing large expressions, while the tests made
in the previous article were made only on 100 models without any mention about
expressions. In [Kakadiaris et al. 2007] authors did not mention about recognition
results in different scenarios and no results are provided to evaluate the sensibility
of their algorithm with respect to expression variations. Their technique requires
first an ICP based accurate registration of 3D face scans which is exposed to facial
expressions and correct models cropping.

3.5.6 Conclusion

In this work we deepen the conformal geometry-based approach for face recogni-
tion proposed in [Wang et al. 2006], using mouth as the inner boundary and the
Möbius transformation to "compress" facial expression sensitive regions. The major
advantage of such an approach is to convert an initially 3D facial shape matching
problem to a 2D one, thus making available all the techniques so far developed in
2D for 3D face recognition. The algorithm has been tested on a subset of FRGCv2
database with different scenarios and achieved 86.43%, 97.65% and 69.38 rank-one
recognition rate in respectively Neutral vs. All, Neutral vs. Neutral and Neutral vs.
Expression scenarios.

3.6 Partial Face Biometry Using Shape Decomposition
on 2D Conformal Maps of Faces

While pose changes and lighting variance can be resolved by the use of third di-
mension, by pose normalization and lighting insensitive scanning techniques, the
expression changes is still a problem. In this work we avoid this problem by recog-
nition based only on the rigid part of the face, which cannot be severely affected
by muscles. To deal with the computational cost of 3D face recognition we utilize
conformal maps of 3D surface to a 2D domain, thus simplifying the 3D mapping
to a 2D one (for which all standard image classification methods are applicable).
While conformal maps requires a certain amount of computation, they have global
optimal solution unlike ICP which suffers from local minimums. Since face appear-
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Figure 3.14: Face maps creation flow chart.

ance is influenced by expressions in this research we explore the descriptiveness of
shape dissimilarity. We transform a 3D shape to a 2D domain using conformal
mapping and use shape decomposition as a similarity measurement. In this work
we investigate several classifiers as well as several shape descriptors for recognition
purposes.

3.6.1 Process overview

The principal issue addressed in this chapter is to create facial feature maps which
can be used for recognition by applying previously developed 2D recognition tech-
niques. Creation of 2D maps from 3D face surfaces can handle model rotation and
translation, and allows to use well known 2D recognition techniques.

To create face maps which are later used for recognition, we started with models
preprocessing (hole, spike removal). Next step was to segment the rigid part of a
face, which has less potential to change during expression [Amor et al. 2006]. Finally
we performed UV conformal parameterization as well as shape index calculation for
each vertex. To create a face map we combined UV parameters and Shape Index
values to construct a shape value distribution over the conformal parameterization
(the process can be seen on figure 3.14).
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Figure 3.15: Discriminative part of a face used for recognition. Cropped part, where
the sum of the distances from the nose tip and the left and right eye inner corners
is less than 50 mm (better seen in color).

3.6.1.1 Face discriminative part segmentation using 3 landmarks

To deal with expressions and to explore the field of partial face recogni-
tion [Drira et al. 2009]. We use the upper rigid part of a face defined by
[Amor et al. 2006] which is less influenced by expression than the lower part.

To crop this region of the face we used three main face landmarks, the nose tip
and the inner corners of eyes; in our experiments we used the manual points. We
crop the discriminative face part using the sum of Euclidean distances of each face
point to 3 landmarks and setting a threshold to 50 mm. The result of cropping can
be seen on figure 3.15.

3.6.1.2 3D face mapping to 2D space

Direct application of conformal mapping as introduced in [Wang et al. 2006] is not
feasible on 3D face models, as it requires a surface with disk topology (genus 0
surface, with a single boundary). For this purpose, we have made a small hole in
the face surface (by removing one vertex) in the center of the cropping region; later
this inner boundary will become the inner boundary of the conformal map and the
border of the face will become the outer boundary of the conformal map, as can be
seen on figure 3.16.

To create such a conformal face map, the UV conformal parameterization of a
3D face is used (section 3.5.1); each 3D vertex after parameterization has 2D UV
coordinates through which the whole model can be projected to 2D space.
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Figure 3.16: Projected 3D face model to a 2D space conformal mapped to a disc,
(better seen in color).

All conformal maps were also normalized for size and rotation using above men-
tioned manual landmarks, projected from the 3D space.

3.6.2 Face maps similarity computation

The previous step results in face map images which are the input for the recogni-
tion algorithm. In this work we used (2D)2PCA 1[Kukharev & Forczmanski 2004,
Yang et al. 2004, Chen et al. 2005], as well as nearest neighbor classifier with L1

and L2 norms.
For test purposes we randomly chose 231 subjects from The FRGC2.0 data set

[Phillips et al. 2005]. Table 3.2 shows all results for different neighborhood sizes
for Shape Index and Mean curvature, as well as different similarity measurement
methods.

3.6.3 Conclusion

In this work we proposed to combine the conformal geometry, partial face biometry
and differential geometry tools for recognition. 3D face recognition has many ad-
vantages, but a large computation cost. Using 3D data as an input and projecting
3D features to 2D maps has advantages of 3D invariance to lighting and pose like
also 2D similarity efficiency.

In our work we used the rigid face part from a subset of 231 subjects and 1249
models as a query, we achieved approximately 80% rank-one recognition rate; com-
pared to [Drira et al. 2009] where authors used nasal curves and achieved 76.1%

1(2D)2PCA - a variant of PCA with better performance, is used for feature dimension reduction
and similarity computation.
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I II III
(2D)2PCA

ShapeIndex 25mm 72.85% 81.65% 65.71%
ShapeIndex 20mm 75.34% 82.1% 69.46%
ShapeIndex 15mm 77.1% 82.78% 72.15%
ShapeIndex 10mm 76.14% 84.5% 68.86%
Mean Curv. 15mm 67.09% 72.8% 62.12%
Nearest Neighbor

L1

ShapeIndex 25mm 74.77% 82.27% 68.26%
ShapeIndex 20mm 75.26% 82.09% 69.31%
ShapeIndex 15mm 79.18% 84.5% 74.55%
ShapeIndex 10mm 77.42% 85.19% 70.65%

L2

ShapeIndex 15mm 75.74% 82.96% 69.46%
1 Loop ICP 70.21% - -

I - Neutral vs. All
II - Neutral vs. Neutral
III - Neutral vs. Expression

Table 3.2: Rank-1 recognition rate on 231 subjects from FRGCv2.0 data set.

rank-one recognition rate and [Gokberk et al. 2008] where authors achieved 75.3%
rank-one recognition rate using the shape index decomposition.

3.7 Conclusion on Conformal Mapping Based Face
Recognition

Face recognition in 3D has been proposed to overcome shortcomings of 2D face recog-
nition techniques. Having many advantages, 3D face recognition is more complex
thus making difficult real time applications. Furthermore, since 3D facial surface
describe facial geometry, those are more sensitive to facial expressions than 2D coun-
terparts. While facial expressions are know to be non-rigid, one of the solutions to
deal with non-rigid surface deformations is conformal mapping. Conformal mapping
is a non-rigid mapping technique, which preserves angles, moving 3D surface into
2D domain yet reducing the complexity of 3D surface matching to 2D image match-
ing. Conformal mapping-based 3D face recognition, while highly effective when used
with face models without prominent facial expression (97% recognition rate rank-
one) [Wang et al. 2006], suffers form drastical performance drops drastically when
facial expressions are present (86.7% recognition rate rank-one). The reason why
the conformal mapping performs worse in case of expressions is the boundary con-
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sistency as well as topology preservation condition. Large facial expressions cause
changes in the facial surface topology, where open mouth generates additional part
between open lips. Facial surface boundary is also a difficult problem, where be-
sides facial expressions additional factors like: hair style changes or partial occlusions
cause inconsistent boundary between models thus causing incorrect mappings. One
of the solutions to create illumination insensitive recognition system is to project
some facial surface properties on 2D conformal maps. Meanwhile those properties
are highly affected by facial expressions which change facial surface geometry thus
affecting recognition scores.

One of the solutions for the surface topology and boundary consistency preserva-
tion can be the open mouth detection algorithm, presented in section 3.4. Accurate
and reliable open mouth detection and removal can theoretically handle surface
topology changes but facial boundary preservation during expressions is still an
open problem. Having the two problems resolved, one can think about conformal
mapping as a tool which can deal with 3D facial expressions and complexity of 3D
surface matching.
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Conclusion and Future Work

This research work mainly addresses the problems of 3D face analysis, including fa-
cial feature points and open mouth localization as well as non-rigid mapping based
face recognition using differential geometry tools. The whole work can be combined
to create a full 3D face recognition system, starting from 3D face models prepro-
cessing, main points localization and mapping-based recognition.

In the following part of the thesis contributions, conclusions and perspectives
will be presented.

4.1 Contributions

• The new face recognition modality in 3D has been proposed to overcome short-
comings of 2D counterpart. Since nowadays 3D scanning techniques suffer
from scanning artefacts, one of our contributions relates to spikes removal
technique. Models suffer from holes and spikes which are the main quality
issues. Our first contribution refers to the preprocessing method, which in-
creases models quality without removing fine details on facial surface. The
method consists of adding simple threshold to the median filtering technique,
which helps to remove shot noise from processed models.

• The most popular method for 3D face models analysis and processing relies
on curvatures analysis. While the processing of the curvatures allows facial
expressions analysis, landmarks localization, face recognition, etc., their calcu-
lation method is very sensitive to the surface noise. Our second contribution
relies on modification of the curvatures calculation method, which incorporates
noise reduction and helps to control smoothness of the curvatures decompo-
sition. Additionally, the modification helps to achieve consistent curvatures
values across different models resolutions.

• Subsequently, the developed curvatures calculation method was used for pre-
cise facial main points localization. Our next contribution relies on analysis of
very smooth curvatures, where the main patches on facial surface can be dis-
tinguished thus excluding noise and small facial irregularities. The developed
method achieved the highest precision in the nose tip localization in adverse
conditions including face rotations and noise.

• While curvatures analysis generally leads to many facial anthropometric can-
didate points, our next contribution relies on fast incorrect candidate points
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rejection, based on differential geometry point signatures and a learning tech-
nique. The nose tip can be alternatively localized using SVM classifier and
geometry based point properties which were carefully examined by numerous
experiments.

• Face recognition, especially 2D modality, has been studied for many years.
Since face recognition in 3D is fairly new, we propose to map 3D facial models
to 2D domain, where all the previously developed face recognition techniques
can be used. Additionally, since the facial expressions are known to be non-
rigid, we propose to use non-rigid conformal mapping which has potential to
deal with facial expressions.

• The final contribution of this thesis relies on the specific preprocessing algo-
rithm needed to preserve surface topology as well as surface boundary, which
are the main conditions for conformal mapping to achieve comparable face
maps. Since the surface topology mainly changes due to large facial expres-
sions, where open mouth causes appearance of additional vertices between lips,
the open mouth part needs to be removed. The specific preprocessing consists
of face curvatures analysis and removal of incorrect vertices with curvatures
exceeding the maximum thresholds.

4.2 Perspectives for Future Work

Extensions of this work, that we envisage are presented in the following.
In this thesis curvatures analysis was used for the main facial points localization,

open mouth detection as well as for face recognition purposes. One of the bottlenecks
of the presented landmarks localization technique concerns the step of main facial
points validation. Numerous of the main points candidates constrain a long and
exhaustive verification process, which aim is to localize the true main facial points.
To reduce the complexity, we have proposed a learning technique which aim was a
fast rejection of incorrect points. Since many of the main points candidates were
localized on facial hair or cloths, face curvatures model could be helpful. The face
curvatures model can be used in a similar way as a face skin color model (forming a
cascade filtering), rejecting non-face vertices thus simplifying further calculations.

Another improvement may concern the time consumption of curvatures calcu-
lation method. A larger neighborhood used in the curvatures calculation method
causes significant increase in the time needed to estimate curvatures values. Since
proposed modification in the curvatures calculation method is invariant to resolu-
tion changes, the facial models’ resolution can be decreased. A large decrease of
facial models’ resolution has a small influence on curvatures values. Since we are
targeting only the main facial points (the nose tip and inner eyes corners), which
are still present even in a very small resolution, thus the resolution can be changed
probably without influence on the main points localization.
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Since open mouth significantly changes surface topology, its detection and re-
moval is a crucial step for face topology preservation. In our work we have used a
simple method for an open mouth detection relying on curvatures analysis. In this
point the simple method can be exchanged to a more sophisticated one relying for
example on open mouth shape learning-based and fitting techniques.

Since facial expressions are known to be non-rigid and significantly influence face
recognition based on 3D models, in our work we propose conformal mapping-based
3D face recognition. Conformal mapping algorithms map 3D surface to 2D domain
preserving angles thus have potential to deal with non-rigid surface deformations. To
create correct 2D conformal maps the surface topology as well as a surface boundary
needs to be preserved. For our future fork we plan to use the designed preprocessing
which aims to remove open mouth part (which changes significantly surface topol-
ogy), to create comparable 2D conformal maps. After removing open mouth part,
the upper and lower lip should be connected through correct triangulation.

Finally, an interesting research direction could be towards Active Curvatures
Face Models, which can be used for many purposes like: face localization, facial
landmarks extraction, open mouth detection, face analysis, face expressions recog-
nition, occlusions detection etc. Those models will be invariant to illumination
changes and since curvatures are rotation-invariant properties of 3D surfaces, the
model will also inherit rotation-invariance.
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The results obtained during my Ph.D study have been the subject of four publica-
tions at international conferences and two at a national conference. Moreover two
conference papers have been submitted to international conferences.
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1. P. Szeptycki, M. Ardabilian, L. Chen, W. Zeng, D. Gu, D. Samaras, "Partial
face biometry using shape decomposition on 2D conformal maps of faces",
International Conference on Pattern Recognition, Istanbul, Turkey, pp. 1-4,
2010;

2. P. Szeptycki, M. Ardabilian, L. Chen, W. Zeng, D. Gu, D. Samaras, "Confor-
mal mapping-based 3D face recognition", Fifth International Symposium on
3D Data Processing, Visualization and Transmission, Paris, France, pp. 1-8,
2010;

3. X. Zhao, P. Szeptycki, E Dellandréa, L. Chen, "Precise 2.5D Facial Landmark-
ing via an Analysis by Synthesis approach", IEEE Workshop on Applications
of Computer Vision (WACV 2009) , Snowbird, Utah, pp. 1-7, ISBN 978-1-
4244-5497-6, ISSN 1550-5790, 2009;

4. P. Szeptycki, M. Ardabilian, L. Chen, "A coarse-to-fine curvature analysis-
based rotation invariant 3D face landmarking", International Conference on
Biometrics: Theory, Applications and Systems, Washington, USA, 2009.
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1. P. Szeptycki, M. Ardabilian, L. Chen, "Is it a face? How to find and validate a
face on 3D scans?", COmpression et REprésentation des Signaux Audiovisuels,
Lyon, France, pp. 1-6, 2010;

2. P. Lemaire, P. Szeptycki, M. Ardabilian, L. Chen, "Reconnaissance de visages
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Submissions to International Conferences

1. P. Szeptycki, M. Ardabilian, L. Chen, "Nose Tip localization on 2.5D facial
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mouth detection for better near-isometric facial deformations preservation",
International Joint Conference on Biometrics, Washington, USA, 2011.
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