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Abstract

In order to autonomously navigate in an environment, a robot has to per-

ceive its environment correctly. Rich perception information from the envi-

ronment enables the robot to perform tasks like avoiding obstacles, build-

ing terrain maps, and localizing itself. Classically, outdoor robots have

perceived their environment using vision or 2D lidar sensors. The intro-

duction of novel 3D lidar sensors such as the Velodyne device has enabled

the robots to rapidly acquire rich 3D data about their surroundings. These

novel sensors call for the development of techniques that efficiently exploit

their capabilities for autonomous navigation.

The first part of this thesis presents a technique for the calibration of 3D

lidar devices. The calibration technique is based on the comparison of ac-

quired 3D lidar data to a ground truth model in order to estimate the

optimal values of the calibration parameters. The second part of the thesis

presents a technique for qualitative localization and loop closure detection

for autonomous mobile robots, by extracting and indexing small-sized sig-

natures from 3D lidar data. The signatures are based on histograms of

local surface normal information that is efficiently extracted from the li-

dar data. Experimental results illustrate the developments throughout the

manuscript.
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Chapter 1

Introduction

Autonomous navigation in a mobile robotics context refers to the ability of a robot to

move from one position to another desired position without the intervention of a human

operator. Autonomous navigation ranges from simple tasks such as moving a few meters

in a straight line in a known environment, to complicated tasks such as navigating

autonomously in an a priori unknown environment for extended periods of time. A

very basic functionality for a robot in order to perform autonomous navigation is that

it should be able to perceive its surroundings and to localize itself in its environment, in

order to navigate in a safe and desirable manner. Robots use different kinds of sensors

in order to perceive their surroundings such as cameras, sonars, radars, and lidars. The

introduction of 3D lidar sensors (such as the Velodyne HDL-64E S2 (90)) in robotics

has revolutionized the way robots perceive their surroundings, as they provide rich 3D

data at a fast rate. The main contribution of this thesis is the exploitation of such

novel sensors in autonomous navigation. This includes a technique to calibrate them

and a technique for efficient qualitative localization of autonomous robots using their

data.

1.1 Context

1.1.1 Environment perception for outdoor mobile robots

An autonomous mobile robot necessarily has to perceive reliable and sufficient infor-

mation on its surrounding in order to perform any navigation task. The “autonomous”

nature of a robot makes it obligatory for the robot to rely entirely on its sensors in order

1



1. INTRODUCTION

to operate. This makes reliable environment perception crucial in autonomous robotics

in comparison to manually controlled robots. For instance a very basic function for

which reliable perception information is required during autonomous navigation is ob-

stacle avoidance: without being able to reliably detect obstacles, a robot cannot avoid

them.

Often autonomous mobile robots do not have a priori knowledge about the environ-

ment they are supposed to operate in. Therefore they have to create maps or models

of the environment as they move around in the environment. Robots use informa-

tion on their surroundings acquired by different sensors, to build such models of their

environment. Building such models in indoor environments is usually simpler than in

outdoor environments. Indoor environments are usually structured, having walls doors,

corridors etc, and mainly consist of flat grounds. Therefore while building an environ-

ment model indoors, a robot might take the above mentioned characteristics of indoor

environments for granted. Outdoor environments on the other hand are usually un-

structured or semi-structured at best – “semi-structured” refers to the urban outdoor

environments that contain structured objects like buildings as well as unstructured ob-

jects like trees etc. Moreover outdoor terrains are not systematically flat, and therefore

a robot must take the terrain elevation into account while building an environment

model. This makes outdoor environment modeling for autonomous navigation more

challenging than the indoor environment modeling and an autonomous robot operat-

ing outdoors has to acquire rich perception information form its surroundings to be

able to build an environment model.

In order to build spatially coherent environment models, a robot must also be

able to localize itself correctly. While it might be possible for an autonomous robot

to use localization aids like GPS (Global Positioning System) sensors, it is not always

possible or desirable to let an autonomous robot rely on such sensor for localization: the

precision of their position information is not good enough to build detailed environment

models from the acquired data, and multipath errors caused by buildings and other

structures yield erroneous position estimates. Therefore autonomous robots must rely

on the information perceived on the environment to localize themselves without any

external aid. A significant amount of work has been done on simultaneous localization

and mapping (SLAM) for autonomous robots in the last couple of decades. SLAM

refers to the autonomous navigation framework where a robot, as it starts to move

2



1.1 Context

in an a priori unknown environment, observes its surroundings and starts to build a

map of its environment along with keeping an estimate of its location (and orientation)

without the aid of localization sensors like GPS. In case a robot is a priori equipped

with a model of the environment in which it has to operate, the robot uses perception

information from the environment in order to localize itself in the environment by

comparing the perceived data with the given model of the environment (the so called

“map based localization” problem).

If an autonomous robot is capable of building a spatially coherent environment

model (in case it is not available a priori) and localizing itself with respect to that

model using the perception information, then it can autonomously navigate in that

environment, i.e. plan the best (e.g. the shortest) path to reach a goal position and

execute the planned path.

In a nutshell, it is imperative for a mobile robot to be able to acquire reliable and

sufficient perception information from its environment in order navigate autonomously.

1.1.2 Sensors

Robots use different types of sensors in order to perceive their surroundings. This

includes passive sensors such as cameras, and active sensors such as sonar (SOund

Navigation And Ranging), radar (RAdio Detection And Ranging), and lidar (LIght

Detection And Ranging). These sensors are listed below along with their basic charac-

teristics.

Cameras. Cameras/vision sensors have extensively been used in robotics. Indeed

They provide rich information about the environment, are low-cost, light and compact,

are easily available and have low power consumption. All these qualities have lead to

their extensive use in robotics.

Cameras are used in different forms including stereo-pairs, multiple camera rigs, as

catadioptric sensors for panoramic vision and even as catadioptric sensors for stereo-

panoramic vision e.g. (37) (cf. figure 1.2). A single cameras is a bearing only sensor

i.e. it only gives directional information about features in the scene but when used

as stereo-pairs or multi-camera rigs, the depth information can be also be extracted

from the scene using triangulation. Even though vision sensors can be employed to

extract depth information, the accuracy of the depth information acquired through

3



1. INTRODUCTION

Figure 1.1: A stereo camera pair (top). An eight camera rig from (33) (bottom).

triangulation decreases rapidly with the depth of features in the scene. This makes

vision sensors suitable for indoor navigation where the environments are structured

and thus abundant in distinctive features and the observed distances are short.

Another limitation of cameras is that as they are passive sensors, i.e. they do not

emit any kind of energy but detect the light present in the environment, and are thus

dependent on the illumination conditions in the environment. This in turn decreases

their robustness in robotic applications. For instance a vision based obstacle avoidance

system that works perfectly fine under normal lighting conditions will fail in dark or

even under very high illumination.

Sonars. Sonar sensors emit pulses of sound and listen for echos to detect and compute

the range of detected objects. Sonars are slower than most other types of sensors used

in robotics for perception purposes owing to the slower speed of sound in comparison

to light or radio waves. Nevertheless sonar sensors have been used in robotics because

they are simple to use and are relatively low-cost. Figure 1.3 (left) shows Millibot robot

from (59) fitted with a sonar sensor. However sonars have a large angular ambiguity,

and are not anymore used for the purpose of environment modelling and localisation –
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Figure 1.2: A single-camera-double-mirror catadioptric stereo sensor from (37): the
sensor (top-left), an acquired image (top-right) and the corresponding two unwrapped
panoramic images (bottom).

especially for outdoor robots, where their small range hinder their use.

Radars. Radars work on a similar principle as sonar sensors but use radio waves

instead of sound pulses in order to determine the position of objects present in the

scene. Radars have not been used as extensively in robotics as other active sensors

such as sonars and lidars. (87) and (70) present the use of custom built radar sensors

for environment perception in outdoor robotics.

Lidars Similar in principle to sonars and radars, lidar are active sensors that emit

infrared light pulses and measures the time its takes for the pulse to be reflected from

an object and return to the sensor in order to measure the depth of the object. Lidars

sensors are attractive for environment perception in robotics because unlike cameras

they readily provide depth information about the environment. Moreover the depth

information provided by lidar sensors is more accurate than that provided by stereo-

camera pairs. The conventional lidar sensors used in robotics consist of a single laser

beam that employs a rotational mechanism to scan the environment in 2D. These lidar

5



1. INTRODUCTION

Sonar 
sensor

Figure 1.3: Millibot robot from (59) fitted with a sonar sensor (left), a tilt unit with a
2D SICK lidar from (94) (middle), and the multi-beam lidar sensor Velodyne HDL-64E S2
(right).

sensors are sometimes fitted on a tilt unit in order to acquire depth data from the

environment in a solid angle (cf. figure 1.3 (middle) – such devices are often called “3D

scanners”).

Recently, the introduction of multi-beam lidar devices in robotics has enabled the

robots to acquire 3D depth information about their environments at a very fast rate.

Velodyne HDL-64E S2 is one such example (cf. figure 1.3 (right)). The device consists

of 64 laser beams located in a spinning head that can rotate at the speeds of 5-15Hz.

The device has a 360◦x27◦ field of view and it provides depth data at a rate of 1.33

million points per seconds. Figure 1.4 shows a sample scan acquired from the Velodyne

lidar device along with an aerial view of the perceived environment. The introduction

of such devices in robotics has revolutionized the way in which robots perceive their

environments but it also raises several challenges. The first one is the intrinsic calibra-

tion of such sensors. The position of each laser beam with respect to the lidar device is

defined by a set of geometrical parameters that must be known, and each laser beam

has its own additional and/or proportional distance correction factor that arises from

its internal electronics. Calibrating multiple parameters for multiple laser beams in

such devices simultaneously is a challenging task. Another challenge in exploiting such

sensors in robotics to their full potential is to develop techniques that can efficiently

process and utilize the rich and large amount of data generated by such devices. For

instance a great amount of work has been done on feature extraction from camera im-

ages but fast feature extraction techniques from rich and 3D data acquired but novel

3D lidar sensors are yet to be explored.
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Robot
position

Figure 1.4: A sample scan from the Velodyne HDL-64E S2 lidar device in a semi-
structured outdoor environment (units in meters).
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1.2 Main contributions

Single beam 2D lidar sensors have long been used for environment perception in robotics

but the fast multi-beam lidar sensors have only been introduced in robotics since 2006

when Velodyne introduced the HDL-64E lidar device. Since then such sensors have

successfully been employed in robotics but their potential for autonomous robot nav-

igation has not yet been explored as much as other perception sensors such as 2D

lidars or vision sensors. This thesis focuses on the exploitation of 3D lidar sensors for

autonomous outdoor navigation.

The contributions of this thesis are twofold. The first contribution is a method

for intrinsic calibration of multi-beam lidar devices. The calibration of any sensor is

of paramount importance for its successful exploitation for any task. In environment

perception in robotics for instance, a well calibrated sensor can be exploited to its full

potential during autonomous navigation whereas a badly calibrated sensor will provide

imprecise perception information which might lead to the a mission failure. Intrinsic

calibration of multi-beam lidar devices consists of estimating the geometrical parame-

ters that define the laser beam position and orientation inside the lidar device as well

as estimating the distance correction factors for individual beams. This thesis presents

a method for calibrating the geometrical parameters defining the laser beam orienta-

tion inside the multi-beam lidar devices as well as the estimation of distance correction

factor for the individual laser beams. The method is based on the optimization of

calibration parameters by comparison the acquired 3D data to the ground truth model

of the calibration environment.

The second contribution of the thesis is a method for the extraction of small-sized

global signatures from 3D lidar data for view-based localization. View-based localiza-

tion is performed either by extracting global signatures from the environment or by

extracting local features and representing the robots surrounding as a set of local fea-

tures. For instance an image captured by a robot can be encoded as a histogram of

color information to serve as a global signature, or a corner or edge detector can be

applied on the acquired image in order to extract local features from the surroundings

of a robot. This thesis presents a method for extraction of small-sized global signa-

tures from Velodyne lidar data. The global signatures are based on the local surface

normal information that can efficiently be extracted from the captured point clouds
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by exploiting the laser beam arrangement inside the Velodyne lidar device. The thesis

then presents a method for qualitative view-based localization using the defined global

signatures. “Qualitative” in the context of localization refers to the fact that the local-

ization information provided by the technique is not with respect to a metric map but

with reference to the places already visited by the robot.

1.3 Thesis structure

The thesis is divided into two parts, each consisting of two chapters.

• Part I of the thesis addresses the calibration of multi- beam lidar devices and is

structured as follows:

– Chapter 2 presents an overview of the use of lidar devices in robotics. The

chapter also presents the Velodyne HDL-64E S2 multi-beam lidar device and

gives an account of the usage of this and similar devices in robotics.

– Chapter 3 presents a method for the intrinsic calibration of multi-beam

lidar devices. The chapter also presents the calibration results for the Velo-

dyne HDL-64E S2 lidar device.

• Part II of the thesis addresses the exploitation of multi- beam lidar devices in

robot localization and is structured as follows:

– Chapter 4 describes the importance of localization for autonomous robots

and presents an overview of various solutions to the localization problem.

The chapter also presents the concept of view-based localization in robotics.

– Chapter 5 presents a technique for the extraction of local-surface-normal-

based global signatures from 3D lidar data. The chapter details how local

surface normal information can efficiently be extracted from 3D lidar data by

exploiting the arrangement of laser beams inside the Velodyne lidar device.

The chapter also presents a technique for qualitative view-based localization

of an autonomous robot using the aforementioned global signatures.

Finally Chapter 6 concludes the manuscript and discusses possible extensions to

the presented work.
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Part I

Lidar Calibration
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Chapter 2

Lidar in Robotics

Lidar sensors have been extensively used in robotics. They are active sensor that emit

and detect (usually infrared) light to estimate the distance of objects. This chapter

presents the principle of lidar operation and a short description of some lidar devices

used in robotics. The chapter also details the existing work on lidar calibration and

describes the functioning and applications the Velodyne HDL 64E S2 lidar device, which

we have been using throughout the thesis work.

2.1 Lidar devices used in robotics

The principle of operation of lidar sensors and some lidar devices used in robotics are

presented below.

2.1.1 Principle of operation

Lidar stands for ”LIght Detection And Ranging”, and work on the principle of time of

flight measurement. A laser diode emits an infrared (typically 905nm wavelength) laser

pulse which is collimated by a transmitter lens. The emitted laser beam hits a target

and a part of the reflected light hits a photodiode after passing through a receiver lens.

A precise clock is used to measure the time between transmitted and received signal

which in turn is used to compute the target distance from the device. The intensity

of the received signal is also used to measure target characteristics such as reflectivity.

This process is shown figure 2.1.
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Figure 2.1: Lidar principle of operation (from (67)).

Figure 2.2: Single laser with rotating mirror mechanism to cover an angular field of view
(from (89)).

The above principle can be extended in different ways to form more sophisticated

lidar sensors. This includes using multiple transmitter/receiver pairs and using rotation

mechanisms to increase the sensor field of view. Figure 2.2 shows a rotating mirror

mechanism typically employed with a single laser beam to cover a wide angular field of

view.

2.1.2 Lidar devices used in robotics

2.1.2.1 SICK LMS2xx

This is perhaps the most commonly used class of lidar devices used in robotics so far.

These lidar devices use a single laser beam and a rotating mirror to cover an angular field

of view of up to 180◦. The LMS200 variant is suited for indoor application. The device

can measure up to 80m range for high reflectivity targets but only up to 10m for targets
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Figure 2.3: SICK LMS200 (left) and LMS291 (right)

Figure 2.4: The Hokuyo UTM-30LX lidar

with 10% reflectivity. The LMS291 variant is suited for outdoor applications. It also

has 80m operational range but an enhanced 30m range for objects with 10% reflectivity.

The device also has a fog correction feature that enables it to work under harsh weather

conditions. Both types of devices can provide (selectable) angular resolutions of 0.25◦,

0.5◦ or 1◦ and 10mm measurement resolution. The LMS200 has a typical measurement

error of ±15mm and for the LMS291 this value is ±35mm (77). Both devices weigh

around 4.5 kg and are shown figure 2.3.

2.1.2.2 Hokuyo UTM-30LX

This is another lidar device for robotic applications with a range of 30m and 270◦

angular field of view. It has an angular resolution of 0.25◦ and ±50mm measurement

accuracy (29). The device weighs only 370g and is thus also suitable for small robots

(figure 2.4).
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Figure 2.5: The Ibeo LUX lidar

2.1.2.3 Ibeo LUX

Another lidar device conceived for applications in the automotive industry is the Ibeo

LUX ((23), figure 2.5). It has an average operational range of 200m, and 50m for

targets with 10% reflectivity. It has a vertical field of view of 3.2◦ and can scan the

environment with two or four layers with horizontal fields of view of 110◦ and 80◦

respectively. It has a horizontal angular resolution of 0.125◦ and distance measurement

resolution and accuracy of 4cm and 10cm respectively.

2.1.2.4 Velodyne HDL-xxE

These are very novel and promising lidar devices that scan the environment in 3D at

very high data rates. The device originated during DARPA Grand Challenge 2005

when the Velodyne TeamDAD used atop their autonomous vehicle a prototype of

what would become the Velodyne HDL-64E in future. The device had 64 lasers, and

it rotated at 10Hz and scanned the environment with a 360◦x20◦ field of view (27).

The device was 30cm in diameter and weighed around 45.3 kg (88). Velodyne then

marketed a more compact version of the device in 2006 as the HDL-64E and as HDL-

64E S2 in 2008 that weighs around 13 kg (90). The device also has 64 laser/detector

pairs and has a 360◦x27◦ field of view. It provides range measurements at a rate of

1.33 million points per second and can rotate at a user selectable speed between 5 to

15Hz. A detailed description of the device is presented in section 2.3. In 2010 Velodyne

introduced another smaller lidar device, the HDL-32E. It has 32 laser/detector pairs

and has a 360◦x40◦ field of view (91) and provides range measurements at a rate of

700,000 points per second. The device weighs less than 2 kg. Figure 2.6 shows the

Velodyne lidar prototype, the HDL-64E S2 and the HDL-32E models.
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Figure 2.6: The Velodyne lidar prototype (left), HDL-64E S2 (middle) and HDL-32E
(right).

Figure 2.7: MESA SwissRanger SR4000

2.1.2.5 Flash lidar devices

These devices are essentially 3D cameras that capture range and intensity information

of the scene lying in their field of view in a single shot, unlike conventional 3D lidar

devices that do it point by point. These devices emit a laser pulse in a solid angle and

the reflected light is detected by a pixel array of photodiodes. As these devices have no

mechanically moving parts, they have several advantages over conventional 3D lidars

such as their light weight and low power consumption. On the other hand these devices

typically have shorter operating ranges and fields of view compared to the conventional

lidar devices. One such device is the SwissRanger SR4000 from MESA Imaging ((54),

figure 2.7). It captures 3D images with a QCIF (176x144 pixels) resolution. It comes

in two measurement range versions of up to 5m and 10m and two field of view versions

of 43.6◦x34.6◦ and 69◦x56◦.
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Figure 2.8: Riegl LPM-321 (left) and Konica Minolta Range5 (right)

2.1.2.6 Industrial and survey lidars

Long range lidar devices are used for surveying and mining applications. One such

device is the Riegl LPM-321 which has a range of up to 6000m and a field of view

of 360◦x150◦ ((68), figure 2.8). It scans the environment at a rate of 1000 points

per second. Such devices are relatively slow, and employ high-precision and fragile

pan-tilt mechanisms in order to scan the environment: they are thus not suitable for

exteroceptive sensing in mobile robotics. These mechanisms are normally designed

for stationary operation of the device and thus are not rugged enough to be employed

onboard outdoor robots running around on rough terrains. Similarly some lidar devices

are conceived for 3D scanning of objects such as castings and archaeological items and

provide very accurate range measurements. These devices also have slow scan rates

and short measurement ranges which makes them infeasible for applications in mobile

robotics. One such device is the Konica Minolta Range5 which has a measurement

accuracy of ±80µm and a range of 450mm to 800mm ((38), figure 2.8).

2.2 Lidar Calibration

Calibration of exteroceptive sensors such as cameras and lidars consists of estimating its

intrinsic and extrinsic parameters. The intrinsic parameters represent the internal ge-

ometric properties of a sensor, whereas the extrinsic parameters represent the position

and orientation of the sensor in a robot-fixed frame and thus allow the transformation

of individual sensor readings to the robot-coordinate frame. For a camera for example,
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intrinsic parameters model its internal geometry and lens characteristics, whereas ex-

trinsic parameters model its position and orientation in a world-fixed frame (73). The

calibration is normally a two-step process i.e. modeling of the sensor parameters and

their estimation using direct or iterative methods (73). Usually in camera calibration

the camera is modeled as a pin-hole. This means that the camera aperture is a pin-hole

and thus all the light rays intersect at one point before being projected onto the image

plane. Some more generic calibration techniques also exist where a camera is modeled

as a collection of lines that do not intersect in one point (79). In this case camera cali-

bration boils down to the determination of coordinates defining these lines in a common

coordinate system ((73) present a comparison of different camera calibration methods).

(7) is a widely used toolbox for the calibration of intrinsic and extrinsic calibration of

cameras. Using the toolbox, several arbitrarily taken images of a planar checker-board

lead to the determination of the intrinsic calibration parameters of the camera.

Just like cameras, in lidar calibration the intrinsic parameters represent the internal

geometric properties of the device e.g. orientation of the emitted laser beam and the

properties of the receptor photo-diode. Similarly the extrinsic parameters represent the

position and orientation of the device with respect to the robot-fixed frame. Although

a lot of work has been done on the calibration techniques for cameras, calibration

techniques for laser and especially multi-laser systems have not been investigated to

that extent. Some techniques for extrinsic and intrinsic calibration of single and multi-

beam lidar devices are presented below.

(85) present a technique for extrinsic calibration of a Sick LMS-291 lidar mounted

on a mobile robot. In principle the technique consists of observing an environment

with known or partially known geometry and optimising the calibration parameters to

minimise the difference between observed data and the known geometry of the environ-

ment. A simple test environment is constructed consisting of flat ground and a vertical

pole covered with retro-reflective material shown figure 2.9. The retro-reflective mate-

rial eases the distinction between scan data from the ground and the pole, leading to

automatic segmentation of the two data. To quantify the similarity between scan data

and real environment a cost function c is defined consisting of two parts accounting for

the data from the pole and the ground. The cost for the pole data cpole is the average

squared perpendicular distance of scan points to the pole, where the pole is considered

to be located at the position defined by the mean of all the points in the pole data.

19



2. LIDAR IN ROBOTICS

Figure 2.9: Calibration environment (from (85))

Similarly the cost for the ground data cground is the average squared distance of the

ground points (taking only z−coordinates of ground points) to the ground plane where

the ground plane is represented by mean z value of all the points in the ground data.

The total cost c is the sum of cost values for the pole and ground data. The robot plat-

form fitted with the lidar device moves in the environment, and scans it from multiple

perfectly localized points of view. The scan data is then used for performing optimisa-

tion i.e. minimising the cost by adjusting the sensor extrinsic calibration parameters

and thus finding their optimal values. Figure 2.10 shows the pole data scanned from

multiple viewpoints before and after the calibration process (85).

The work from (85) is extended to incorporate multiple sensors including groups

of homogeneous and heterogeneous sensors in (86). The authors suggest that while

using multiple exteroceptive sensors on board a robot, if their extrinsic parameters are

calibrated separately a systematic contradiction might still exist while fusing the data

from different sensors and therefore the optimal way is to calibrate the sensors simul-

taneously. The simultaneous calibration of a group of four Sick lidars (homogeneous

sensors) and one Sick lidar and a radar (heterogeneous sensors) are presented in (86).

(78) present a procedure for calibration of the additive and proportional distance

correction factors for their Velodyne HDL-64E lidar device. The authors observed that

their lidar device added an error of 2.6cm for each 1m distance being measured. The

lidar device is calibrated by first calibrating a few lasers that have almost zero pitch
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Figure 2.10: Pole in the calibration environment seen from multiple viewpoints before
(left) and after (right) calibration (from (85)).

angles using indoor data sets with a vertical target at known distance from the device.

Once this subset of lasers is calibrated, several data sets are taken by mounting the

lidar device at 45◦ and scanning flat tall buildings. Using this data the two distance

correction parameters are calibrated for the uncalibrated lasers considering the data

from the previously calibrated lasers as the ground truth.

(6) mention the calibration of the distance correction parameters for a multi-laser

scanner by comparing its distance readings to those from a Sick lidar but do not provide

any details on the calibration procedure.

Similar “distance correction” calibration parameters have been reported for range

imaging using time-of-flight cameras. (34) calibrate these parameters by making a

look-up table for the operational range of device. (46) calibrate these parameters by

fitting a B-spline to the measurement errors made by camera at different distances in

the operational range.

(22) present a method for calibration of Velodyne HDL-64E S2. Six calibration

parameters (rotation and vertical correction angles, horizontal and vertical offsets, and

additive and proportional distance correction factors; described in detail in section

2.3.1) per laser beam for the device are calibrated using a planar feature based least

square adjustment. The calibration data set consists of sixteen scans captured from

two locations within a courtyard between four identical buildings. At each of the two

locations four sets of data are collected by first mounting the lidar device horizontally

and then by tilting it at an angle of 30◦. The authors mention that four sets of data at
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each mounting position consists of data taken at 0◦, 90◦, 180◦ and 270◦ azimuth but it

is not clear whether this means subsets (e.g. segmented planar surfaces) of a 360◦ scan

at these azimuth angles or four complete 360◦ scans by moving the lidar device through

these angular positions (in which case these four scans would be identical since the lidar

has a 360◦ field of view). Six unknown per scan location are also added to the total

number of parameters to be estimated as the locations from which the data are taken

are considered to be unknown a priori. The system is then constrained by holding the

rotation and vertical correction angles, and the horizontal and vertical offsets for one

laser beam, as well as the position and orientation of two scan locations constant. A

unit-length constrain is further added to the system for the unknowns parameters of

planes on which lidar points are conditioned. The least squares based adjustment is

then performed to obtain the optimal values for calibration parameters. The authors

report a three-fold improvement in RMSE for planar-misclosure in scan data.

(43) present a method for unsupervised calibration of multi-beam lidars. The tech-

nique is implemented for extrinsic and intrinsic (three intrinsic parameters i.e. rotation

and vertical correction angles and additive distance correction factor) calibration of a

Velodyne lidar. The technique is based on the assumption that points in space tend

to lie on contiguous surfaces. A robotic vehicle fitted with the lidar device moves and

scans data in an environment which is assumed to be static and containing 3D features

and not just flat ground. All scan data are accumulated using the local pose informa-

tion acquired from an GPS/IMU unit. The estimation of the calibration parameters

is based on an energy function which penalises the points from a specific laser beam

if they are far away from nearby points acquired by neighbouring beams. Using this

energy function, first the extrinsic calibration parameters are estimated, then the three

intrinsic calibration parameters are estimated for all the 64 lasers in three independent

steps. Although the authors present a generalised method for calibration of multi-beam

lidars such as the Velodyne, the results presented are only a qualitative comparison to

the calibration data provided by manufacturer for the Velodyne device used in experi-

mentation. The authors also present the calibration of intensity returns from each laser

by deriving a Bayesian model of the beam response to surfaces of varying reflectivity.
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Figure 2.11: Velodyne HDL-64E S2 (left) and sensor-fixed frame (right)

2.3 The Velodyne HDL-64E S2

The lidar device Velodyne HDL-64E S2 scans the environment in 3D with a 360◦

azimuthal and 26.8◦ vertical field of view. The device has 64 lasers distributed vertically

to cover 26.8◦ vertical field of view. The lasers are located in a spinning head that spins

at rates of 5 to 15 Hz, to cover 360◦ azimuthal field of view. The device outputs data

at a rate of 1.33 million points per second, the data rate being independent of the

rotational speed of lidar head. Therefore at lower spinning rates, the lidar scans the

environment with a higher spatial resolution and vice versa. An interesting point to

note is that the device only scans the environment when spinning at sufficiently high

speed. The lasers in the device are not fired when it is rotating at low speeds during

device start-up. (71) observed that after start-up, it takes around 7 seconds before the

device starts firing its laser beams and the time it takes for the device to attain stable

operational speeds of 5, 10 and 15 Hz is 11.5, 18.5 and 32 seconds respectively. The

device is class 1M eye safe and runs on a 12 V input drawing about 4 amps of current

during normal operation.

2.3.1 Geometric model

64 lasers inside the lidar device are grouped in two blocks, with 32 lasers located

in the upper block and remaining 32 in the lower block on the lidar spinning head.

Lasers in each block are further divided into two groups of 16 lasers each, with one

group located towards right and one towards left in each block on the lidar head.

Figure 2.12 from (81) shows the device without its enclosure. The figure shows four
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Figure 2.12: Velodyne lidar interior from (81): The figure shows four transmitter lenses
corresponding to the four laser groups each. For both the upper and the lower block, a
receiver lens is located between the transmitter lenses of right and left laser group of the
corresponding block.

transmitter lenses (corresponding to the four laser groups of 16 lasers each) and two

receiver lenses (corresponding to the upper and lower laser blocks) along with other

electronic components inside the device.

Figure 2.13 shows how the 64 lasers of the lidar device are spatially arranged to

cover a wide vertical field of view.

2.3.2 Sensor behaviour and characteristics

According to the Velodyne documentation (90), the max range for laser returns from

low reflectivity objects is 50m. The documentation also states that all returns less than

3 feet (around 0.9 meters) must be discarded. In practice if objects are located around

the device at very short distances (within a couple of feets), this results in false data

points at long ranges (around 120 meters). Figure 2.14 shows this phenomenon in a

data set that was taken in our lab. The blue data points present in the centre is the

real data spanning an area around 20 m long, and the red data points are all false and

actually do not exist in the scanned environment. Another characteristic of these false

data points is that they have high intensity values. These false data points can easily

be discarded as they lie far beyond the normal range of operation of the lidar device.

(6) also mention the sporadic existence of long range outliers for their Velodyne lidar

device which are perhaps similar long range phantom points.
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Figure 2.13: Velodyne HDL-64E S2: Four laser groups of 16 lasers each (units in cm).
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Figure 2.14: The real data (blue) and long range false data points (red), units in meters.
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Table 2.1: Change in intensity returns with incidence angle

Incidence angle (degrees) Average intensity value

0 45.6

20 42.1

40 39.4

60 33.6

70 30.1

The default calibration parameters provided by the manufacturer for each of the

64 lasers in the device are not very accurate. This is obvious in scan data if the

scanned environment contains objects with regular geometry. Figure 2.15 shows two

such examples. At top, the figure shows segmented view of a planar surface placed

at 3m distance from the lidar device. Each horizontal line in the scan shows the data

from a single laser, one can see that the data from all the lasers are not aligned to form

a rectangular planar surface: instead the data from different lasers are horizontally

misaligned, and the misalignment seems to be repeated between every two consecutive

lasers. As the distance between the device and the plane increases, the misalignment

first decreases until a distance of around 9m, and then increases but in the other

direction between consecutive lasers (but this change in misalignment is not linearly

proportional to distance). One possible explanation for this misalignment are the biases

arising from unprecise calibration data.

Figure 2.15 (bottom) shows the top view of a corner in a room. Ideally, if the

calibration parameters for all lasers were accurate and the sensor had lower noise, as

seen from the top, the walls should have looked much thinner and corners much sharper.

For every distance measurement, the device also returns an intensity value. The-

oretically the returned intensity value is a function of the emitted laser intensity, the

laser incidence angle with the target and the target reflectivity and distance from the

lidar device.

The intensity values returned by the Velodyne lidar device for a given object de-

crease as the incidence angle increases. Table 2.1 shows the change in intensity values

with respect to incidence angle for a planar object placed at 4m distance from lidar.
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Figure 2.15: Segmented view of a rectangular surface (top) and top view of a corner in
a room (bottom), units in meters.
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Figure 2.16: Phenomenon of intensity auto-adjustment (from (71))

At medium range in general (5m to 30m), the returned intensity values for a given

target increase with as the target distance increases. This seems counter-intuitive if

the intensity of the emitted laser beams is considered constant at all times. The device

actually uses some automated gain control techniques to adjust the emitted intensity

with respect to the distance observed in order to avoid saturations. This phenomenon

of intensity adjustment was also observed by (71) for their Velodyne HLD-64E. Figure

2.16 shows the image of the left and right edges of a planar surface being hit by Velodyne

laser beams. We can see that the intensity of emitted laser beams is higher when it

started hitting the planar surface (left edge) but it is adjusted to a lower value right

away. Table 2.2 shows the change in intensity value with respect to distance for a given

target object.

When highly reflective objects are viewed by the device, the distance measurements

returned by the lidar are not very accurate. These objects can show up at distances

far from their original positions or as other phantom points. (71) also observed some

phantom points because of highly reflective material attached to a planar surface being

scanned. The phantom points appear below ground at a position which is in fact mirror

of their actual location. The phenomenon is shown figure 2.17.

2.4 Velodyne lidar applications in robotics

As mentioned earlier the Velodyne HDL-64E S2 originated during DARPA Grand Chal-

lenge 2005 when the Velodyne TeamDAD developed a multi-beam lidar prototype for

their autonomous vehicle. The prototype device was conceived and designed to ease
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Table 2.2: Change in intensity returns with distance

Distance (m) Average intensity value

2 49

4 46

6 61

9 107

12 114

15 150

20 168

25 203

29 238

Figure 2.17: Phantom points because of very high reflectivity targets (from (71))
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robust terrain mapping and obstacle detection and avoidance compared to that done

using conventional single beam lidar and vision systems. The device had 64 laser, ro-

tated at 10Hz and scanned the environment with a 360◦x 20◦ field of view (27). The

device had an INS sensor mounted on it to provide precise roll and pitch for the unit

enabling any required corrections in lidar data used for autonomous navigation. Sun-

light was filtered out before analysing the laser returns making the device robust to be

used under all lighting conditions and the rotational mechanism of the device helped

spinning off rain water and dust from the device, thus helping a clearer visibility under

harsh weather conditions. Moreover the device rejected early laser returns in order

to get more accurate range measurements under rain or fog. Range returns from the

device were used to create a x, y, height − value terrain map enabling the vehicle to

determine size and distance of objects in view. No object classification was done and all

the visible objects were considered solid. The terrain map was in turn used for obstacle

avoidance and optimal road surface detection in accordance with the GPS way points

provided to the vehicle.

This innovative lidar concept and its successful usage in perception for autonomous

vehicle lead Velodyne to design and market a more compact version of the device i.e.

the HDL-64E in 2006 which was used by many contestants of the 2007 DARPA Urban

Challenge. Since then the device has increasingly been used in outdoor robotics in

general and especially for full-size autonomous vehicles in urban areas. The device has

also been used in maritime scenarios. An overview of the device usage in robotics and

some other applications is presented below.

During the 2007 DARPA Urban Challenge six teams successfully completed the

course and five of these used a HDL-64E as one of its exteroceptive sensors. Event

winners were the Tartan racing team with their vehicle called “Boss” (19) shown figure

2.18. The not only employed the HDL-64E but also Sick LSM-291, Continental ISF

172 and Ibeo Alasca lidar devices along with other Ma/Com and Continental ARS 300

radars and MobilEye vision system. Along with other sensors the data from HDL-64E

was used for tasks including (i) determining how safe is it to crossing and merging

at intersections, (ii) detection and localisation of other vehicles and keeping a safe

distance to them, (iii) estimation of road shape and lane locations and (iv) detection

of static obstacles. Moving obstacle fusion architecture consisted of three layers. A

“sensor” layer processed the data from each sensor independently and associated the
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Figure 2.18: Tartan racing team vehicle “Boss” for the 2007 DARPA Urban Challenge
(from (19))

measurements to the objects currently being tracked. A“fusion” layer then took the

associated and unassociated measurements from the “sensor” layer and applied them

to the global list of tracked objects. Then a “situation assessment” layer estimated

the intention of the tracked object. The architecture is shown figure 2.19. States of

moving obstacles were predicted and updated using Extended Kalman Filtering. Static

obstacle detection was done using cost map representing the traversability of the terrain

around the vehicle and the road-lane detection is done owing to the fact that the lidar

intensity returns from painted road lines is very high.

Stanford racing team placed second in the 2007 DARPA Urban Challenge with their

vehicle “Junior” (20) shown figure 2.20. Along with an HDL-64E the vehicle also used

two Sick and two Ibeo Alasca XT lidars, and five Bosch long range radars. HDL-64E

atop Junior was the primary obstacle detection sensor but had a blind spot behind

the vehicle where Sick and Ibeo lidars supplemented the HDL-64E data. Overhanging

objects like trees were filtered out by comparing their height with a ground model.

Sensor measurements were cached into local maps to cope with the blind spots in the

sensor fields of view. The maps were updated using a Bayesian framework for evidence

accumulation. Such a map for a parking lot is shown figure 2.21. Moving object

detection and tracking was done using a synthetic 2D scan of the environment which

was synthesised using data from lidar sensors. Synthetic scans allowed for efficient
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Figure 2.19: Three-layer moving obstacle fusion architecture of the vehicle “Boss” (from
(19)).
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Figure 2.20: Stanford racing team vehicle “Junior” for the 2007 DARPA Urban Challenge
(from (81))

computation owing to their compactness compared to raw lidar data and also provided

a single methodology for using data from Velodyne, Ibeo or Sick lidars or any of their

combinations. Details on the Junior vehicle detection and tracking algorithms can be

found in (64) and (65). (65) also describes how black objects (that are known to provide

very small or no laser returns) can be detected and tracked using HDL-64E data. The

logic used is that the absence of laser returns raises the presence of black objects, but

it only works within a range of about 25-30m for HDL-64E data. The process is shown

figure 2.22.

Similar accounts of Velodyne HDL-64E usage in the 2007 DARPA Urban Challenge

by the Ben Franklin racing team, Austin Robot Technology, The Golem group LLC

and team AnnieWay are presented in (6), (78), (48) and (35) respectively.

Research on autonomous vehicles has continued since the 2007 DARPA Urban Chal-

lenge and the primary perception sensor remains the Velodyne HDL-64E and its later

version HDL-64E S2. One example is the work going on at Autonomous Labs lo-

cated in Berlin, Germany. The enterprise is developing autonomous cars to be used

as driver-less taxis (5). Another example is Google autonomous vehicles project (25).

The motivation behind the development of autonomous vehicles is not only limited to

the ease of use but also safer and reliable driving as autonomous driving systems are

less prone to commit driving errors and thus reducing road accidents.

The Velodyne lidar can also be used in maritime applications such as obstacle

34



2.4 Velodyne lidar applications in robotics

Figure 2.21: Junior static obstacle map showing a parking lot. Yellow colour represents
tall obstacles, brown represents curbs and green represents overhanging objects (from (20)).
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Figure 2.22: Tracking of black objects: a black vehicle (top-left), very few laser returns
(top-right), virtual scan after black object detection (bottom-left), tracking of detected
vehicle (bottom-right) (from (81)).
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Figure 2.23: Maritime data acquisition using HDL-64E (from (28))

detection and avoidance for unmanned surface vehicles. (28) present the performance

evaluation of HDL-64E for such maritime applications. The authors report that boats,

kayaks and buoys can be detected using Velodyne data but it is not possible to detect

fully submerged rocks in the sea because the device lasers are unable to penetrate the

ocean surface at incidence angles that occur in normal maritime scenarios. Figure 2.23

shows a maritime image and lidar data taken in a similar scenario.

HDL-64E has also been used in surveying. (16) present one such system for road

and highway data collection analysis. The system can be used for fast data collection

about bridges, road clearances etc and thus eliminating the need to manually measure

these structures which not only takes more time and effort but also disturbs normal

flow of traffic.

Unrelated to robotics but interestingly a music video has even been made using 3D

data from HDL-64E and a structured light system from Geometric Informatics, without

the use of any conventional video camera (12).

2.5 Significance of lidar in robotics

Lidar sensors have long been used as exteroceptive sensors in robotics although they

are not the only exteroceptive sensors available: Other sensors like sonars, stereovision

and radar have also been used extensively. All these exteroceptive sensors are not only

used to map the environment around the robot but also for other short-term tasks like

obstacle detection, human presence detection, robot localization, etc.

Sonar sensors use sound for ranging purposes so they are slower compared to vision
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and lidar sensors which lead to a decrease in their usage except in underwater robotics

where they are still used. Stereovision sensors are very attractive in robotics because

they are light-weigh, low-cost, have low power consumption and are easily available.

These properties have lead to their extensive usage in robotics, but they also have

some disadvantages however. The accuracy of stereovision sensors decreases with the

square of increase in scene depth. This property in turn limits the efficacy of stereovision

sensors in mapping applications especially in outdoor environments where the distances

to be measured are typically longer compared to the indoor office or home environments.

Also, lighting conditions and lack of texture can hinder stereovision.

Unlike stereovision sensors, lidars have the ability of acquiring accurate range mea-

surements at short as well as longer distances. This property, and the fact that lidars

are not affected by light and texture conditions, are probably the main reasons why

they have continuously been used in robotics. The introduction of a multi-beam lidar

prototype by the Velodyne TeamDAD in DARPA Grand Challenge 2005 and its com-

mercialization in 2006 has redefined the way outdoor autonomous robots perceived their

environments, as confirmed by its successful exploitation in the 2007 DARPA Urban

Challenge. The potential of multi-beam lidar sensors to be employed in outdoor mobile

robotics is apparent from the numerous Velodyne HDL-64E applications presented in

section 2.4.

One of the challenges in the usage of multi-beam lidar devices in robotics is their high

cost. The introduction of multi-beam lidar devices simpler than the HDL-64E addresses

this issue to a certain extent. One such device is the Velodyne HDL-32E which does

not only cost less but is also lighter and has less laser-beams. (76) introduce the design

and calibration of a multi-beam lidar system that employs three SICK LMS-151 lasers

fitted on a rotating unit.

Radars have also been used as exteroceptive sensors in outdoor robotics because

they are more robust to bad weather conditions such as fog, whereas fog can affect the

performance of conventional lidar sensors. Note however that multiple echo detection

technology such as the one employed is SICK LMS5xx (1) lidar sensors tackle this issue

and make the lidar sensors robust to challenging weather conditions.

The advantages that lidar and especially multi-beam lidar devices offer and their

successful exploitation in the field of outdoor autonomous robotics over the last few

years proves their potential for the field in the years to come.
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Chapter 3

Velodyne lidar calibration

Calibration is a crucial aspect of any sensor system, as its performance highly depends

on the accuracy of the calibration. A well calibrated sensor can indeed be exploited

to its full capacity whereas a bad calibration can greatly compromise the utility of the

sensor. Calibration becomes even more crucial when it comes to the autonomy of any

type in a given system: an autonomous system independent of human control relies

on its sensors making the sensor performance a critical factor in system performance,

success and efficacy of any given task. Exteroceptive sensors in robotics are at the

heart of robot knowledge about its environment, which is the essential information

for the robot to move around or act in the environment. For example, the data from

well calibrated 3D exteroceptive sensors like lidars can be used to extract point, line

or planar features from the environment, whereas extraction of these features can be

difficult and unreliable or even impossible if the sensor is badly calibrated. Feature

detection and repeatability is very important in many SLAM (simultaneous localization

and mapping) systems and wrong matching of detected features can lead to a total

failure of the SLAM system. Similarly, imprecise calibration can result in inaccurate

digital terrain maps and thus erroneous interpretations of the sensed terrain, unreliable

obstacle detection, etc.

This chapter presents the technique we developed for the calibration of multi-beam

lidar systems. The calibration method is presented along with its implementation for

the intrinsic calibration of the Velodyne HDL-64E S2.
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3.1 Methodology

The principle lying behind the proposed calibration technique is the comparison of data

acquired from the lidar system and a ground truth to estimate the optimal values of

the calibration parameters thanks to an optimization technique. This process includes

defining a geometric model for the sensor, defining a calibration environment to enable

acquisition of scan data, defining a cost function to compare scan data and the ground

truth and finally performing optimization using the defined cost function. These steps

involved in the calibration process are depicted below.

3.1.1 Sensor modeling

A very basic requirement for the calibration process is the system modeling. This

includes defining the internal or external geometry and other physical characteristics of

the system. In the intrinsic calibration of cameras for instance, this step corresponds

to the choice of a pin-hole or any other model to represent the internal geometry of a

camera as explained section 2.2.

A multi-beam lidar system essentially consists of several laser beams. A laser beam

can be thought of as a half-ray originating from the laser emitter and extending to

infinity. In order to calibrate a lidar system, a set of parameters representing the

position and orientation of each laser beam has to be chosen. This choice depends on

the physical setting of the system at hand, but also on practical issues, like a priori

availability of coarse calibration data for the system: if one has a coarse calibration

for the device, one might decide to stick to the parametrization used by this coarse

calibration and improve it. Lets define this set of parameters by {M1, . . . ,Mn}.

At least five parameters are required to define one laser beam in a 3D coordinate

frame: two angles to define the direction of the associated line and three parameters to

define the origin point of the beam. If an additive and proportional distance correction

factor is required to correct the measurement made by the laser beam, the number of

calibration parameters goes to seven per laser beam.

In practice however the exact location of the laser beam origin is not required

and therefore the additive distance correction factor can be incorporated into the three

parameters defining the position of laser beam. For example, to incorporate an additive
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distance correction factor of 1m, the point of origin of laser beam can be considered

shifted 1m along the laser beam.

Another possibility to parametrize a laser beam is by using two angles and two

distance parameters defining an infinitely long line. A fifth parameter, an additive dis-

tance correction factor completes the knowledge for converting a raw lidar measurement

to a 3D point.

3.1.2 Calibration environment

The purpose of the calibration environment is to define a ground truth with respect to

which the acquired data is compared. The selection of a suitable calibration environ-

ment depends on a number of factors:

• The environment should be “rich” enough to enable the calibration of the system

at hand. For example a simple planar surface might be suitable for calibration

of the orientation of a laser beam but will not suffice for the estimation of its

position. The scenario changes if the edges of the scanned planar surface are also

taken into account: by introducing the fact that the edges must correspond to

straight lines, we can also optimize the position parameters of a laser beam.

• The selection of the calibration environment also depends on practicalities like

simplicity in its structure and construction. Simplicity in structure implies that

it is easy measure or extract ground truth data for the environment, whereas

simplicity in construction is a merely practical issue and implies that the envi-

ronment should be simple and easy to construct in a short time with minimum

human input.

• The environment should allow the definition of an objective/cost function which

can serve as a quantitative measure between the scan data and the ground truth.

3.1.3 Data segmentation

The calibration environment must contain geometrical objects that are used in cali-

bration, but it also might contain structures that are not useful. Data segmentation

consists of extracting, from the acquired scan data, the data that will actually be used
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during calibration. This data corresponds to the objects for which the ground truth is

known, enabling this data to be employed in the calibration process.

For example figure 2.15 (bottom) shows the top view of a region in a room. For the

three corner regions in the figure, it is very hard to segment the data, i.e. to associate

the data point to one or the other wall. The environment chosen for the calibration

process should be designed and made to ease the segmentation of data.

3.1.4 Optimization objective function

As mentioned above, an objective function C has to be defined that can provide a

quantitative measure of similarity between the scan data and the ground truth. This

function forms the basis of the optimization process.

C should provide higher costs if there is more difference between the acquired 3D

data and ground-truth environment, and lower costs as the match between acquired

3D scan data and real environment improves.

Another important requirement for C is that it should be sensitive to each of the

parameters M to be optimized. It means that the cost provided by this function must

vary with the values of the parameters to be optimized, and of course this increase or

decrease in the cost should be in accordance with the first criteria for C i.e. the cost

should be lower for better matches between the acquired 3D data and ground truth

and vice versa. The suitability of the cost function to perform a successful calibration

process can be analyzed by computing the partial derivatives of the cost function with

respect to the parameters to be optimized. In order for the cost function to be suitable,

these partial derivatives should generally be non-zero and non-constant.

∂C/∂Mi 6= constant (3.1)

3.1.5 Optimization

Optimization is the estimation of the optimal value(s) of one or more variables, where

“optimal” means the values that minimize or maximize a given function (known as

the “objective function”) as desired. If the values to be estimated are known to lie

is a given range (typically governed by a set of inequalities) the problem is known as

constrained optimization.

42



3.2 Implementation

Typically the optimization problems are solved by iterative methods that evalu-

ate either only function values or function values along with their Hessians or gradients

iteratively in order to estimate the optimal values for the variables to be estimated. Ex-

amples of these methods include Newton’s method, Sequential quadratic programming,

etc.

The optimization process is the main calibration step. Using the calibration objec-

tive function the calibration parameters M are optimized by minimizing the difference

between scans and ground truth. The optimization process during this step can be for-

mulated as a constrained or unconstrained problem depending on whether the calibra-

tion parameters are expected to lie in a given range or not. And then the optimization

problem is solved using a suitable mathematical technique among the ones available.

3.2 Implementation

The proposed calibration technique was implemented on a real multi-beam lidar device.

The device is the Velodyne HDL-64E S2 presented in detain in section 2.3.

This sections details different steps involved in the implementation including the

device model, calibration environment, the chosen objective function, and it’s suitability

for the calibration and the optimization process.

3.2.1 Geometric model

The geometric model defined in (90) was chosen for calibration implementation for the

Velodyne HDL-64E S2. The main reason for choosing this model for the implementa-

tion of the calibration technique is the availability of coarse calibration data that was

provided by the manufacturer along with the device. This geometric model is depicted

below.

64 lasers of the lidar device can be thought of as a set of 64 half-rays. Each half-

ray defines the position and orientation of the respective laser beam with respect to

a sensor-fixed coordinate frame. Each half-ray is specified by five parameters which

in turn are required to convert a raw laser return to a 3D point represented in the

sensor-fixed frame. These five parameters are briefly described below and their usage

is explained further.
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Distance Correction Dcorr: Each laser has a specific value that needs to be added to

the raw distanceDret value returned by the laser in order to get the correct distanceD of

the observed point from the laser origin. This correction value is Dcorr. As observed by

(71) and (78) a proportional distance correction is necessary for the previous Velodyne

model HDL-64E, but not for the current S2 version of the device, both according to

the device documentation and to our experimentation.

Vertical Offset Vo: This is the distance measured orthogonally to the laser beam,

representing the distance of laser beam from the origin in a vertical sense. The segment

OA represents this value in figure 3.1 where O is the origin of sensor-fixed frame.

Horizontal Offset Ho: This value is the horizontal counterpart of Vertical Offset.

The segment OB represents this in figure 3.2.

Vertical Correction Angle θ: This value represents how the 64 lasers are dis-

tributed vertically to cover the 27 degrees vertical field of view. It is the angle made by

the laser beam with the x− y plane, as shown in figure 3.1. E.g. for a laser beam lying

in the y−z plane, this would be the angle made by laser beam around the x axis. Seen

from the back of each laser point of origin, positive values of θ represent the deviation

of lasers upwards and vice versa.

Rotational Correction Angle α: This is the rotational counterpart of the Vertical

Correction Angle, i.e. the angle made by the laser beam with the y − z plane. Seen

from the back of each laser point of origin, positive values of α represent the deviation

of lasers toward left and vice versa.

As the lidar head spins, its current rotational angle is denoted as φ. Each laser has

a different value of α so an angle β can be defined such that β = φ - α. In this way

β represents the orientation of laser beam relative to the current rotational angle of

spinning lidar head.

Figure 3.1 shows the side view of the lidar. The blue rectangle represents the lidar

head, and O represents the origin of the fixed coordinate system of the lidar (physically

this origin is located at the bottom of lidar base but for the sake of simplicity it is

shown on the lidar head in the figure).
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Figure 3.1: Side view of the lidar.
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As mentioned earlier, segment OA represents the vertical offset value for the laser.

The laser is emitted and it hits the point P , and a distance value is returned by the

lidar for this point. Dcorr is added to this distance value to get the actual distance

between points A and P . This distance is denoted by D.

D = Dret +Dcorr (3.2)

The z-coordinate of point P can be calculated as follows:

Pz = D ∗ sin(θ) + Vo ∗ cos(θ) (3.3)

Figure 3.1 also shows Dxy which can be represented as:

Dxy = D ∗ cos(θ)− Vo ∗ sin(θ) (3.4)

Dxy will now further be used to find the x and y coordinates of point P .

Figure 3.2 shows the lidar head as seen from top. Segment OB represents the

horizontal offset for the laser. Pxy is the projection of point P in the x− y plane and is

at a distance of Dxy from point B. In this case the rotational correction angle for the

laser is positive as the laser beam (whose projection in x− y plane is seen here as line

BPxy) is oriented leftwards as seen from the back of the laser point of origin. For the

sake of simplicity, the figure shows the case with the lidar head rotational angle equal

to zero, which in turn makes β = −α. From the figure it can be seen that:

Px = Dxy ∗ sin(β)−Ho ∗ cos(β) (3.5)

Note that in this case β is negative and Px is also a negative value as point P lies

towards the −x axis. Similarly it can be seen that:

Py = Dxy ∗ cos(β) +Ho ∗ sin(β) (3.6)
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Figure 3.2: A top view of lidar.
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Figure 3.3: Robot Mana on the wooden ramp scanning the calibration target

3.2.2 Calibration environment

Keeping in view the environment selection issues discussed in subsection 3.1.2, a 4.40m

wide planar wall was used as the calibration environment. The wall was scanned by

placing the lidar at nine locations ranging from 3 to 22m from the lidar device. The

distribution of scan data over a range of distances is very important. Sufficiently

distributed data is necessary to ensure the estimation of calibration parameters to be

independent of any bias on a specific distance.

At each location five scans were taken with the sensor titled at different elevation

angles in order to get the planar scan data for all the 64 laser beams of the device. The

robot was tilted by moving it on a wooded ramp as shown in the figure 3.3. The figure

also shows the planar wall that was used as the calibration target. Figure 3.4 shows

three scans of the calibration target superimposed in a single plot.
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Figure 3.4: Three scans of the calibration target

3.2.3 Objective/Cost function

If it is possible to accurately align the planar calibration target to the axes of sensor−

fixedframe, the cost function C can be defined as the variance of 3D data along the

plane normal: if the calibration target is scanned with the y − axis of the sensor −

fixedframe aligned to the calibration target, the cost can be the average squared

difference between the x − coordinates of each point and the xmean. A similar cost

value can be defined if the calibration target is aligned to the x− axis of the sensor−

fixedframe by taking into account the y − coordinates of the scanned points.

In practice it is hard to accurately align the plane with the x or y of the sensor −

fixedframe. The cost function C was therefore chosen to be the sum of squared

perpendicular-distances of all points in a planar scan (of the calibration target) to a

plane that best fitted the scan, divided by the total number of points forming the plane.

The plane fitting was performed using principal component analysis (PCA) in Matlab.

C can be mathematically represented as:

C = Σ(Di,Perp)2/n (3.7)

where n is the total number of points in current scan of the plane (the calibration

target).
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3.2.4 Suitability Analysis

As mentioned in section 3.1.4, the suitability of the cost function for the optimization

depends on the cost function sensitivity to the variation of the parameters to be esti-

mated. As our chosen cost function depends on the distances of x, y and z coordinates

of 3D data, the suitability of chosen cost function can be ensured by finding the partial

derivatives of Px, Py and Pz with respect to each of the three calibration parameters

to be optimized, i.e. Dcorr, θ and α.

Using equations 3.5, 3.6 and 3.3, the partial derivatives with respect to Dcorr can

be computed as follows:

∂Px/∂Dcorr = ∂(Dxy ∗ sinβ −Ho ∗ cosβ)/∂Dcorr

= ∂(((Dret +Dcorr) ∗ cos θ − Vo ∗ sin θ) ∗ sinβ −Ho ∗ cosβ)/∂Dcorr

= ∂((Dret +Dcorr) ∗ cos θ sinβ)/∂Dcorr

= ∂(Dcorr ∗ cos θ sinβ)/∂Dcorr

= cos θ sinβ (3.8)

∂Py/∂Dcorr = ∂(Dxy ∗ cosβ +Ho ∗ sinβ)/∂Dcorr

= ∂(((Dret +Dcorr) ∗ cos θ − Vo ∗ sin θ) ∗ cosβ +Ho ∗ sinβ)/∂Dcorr

= ∂((Dret +Dcorr) ∗ cos θ cosβ)/∂Dcorr

= ∂(Dcorr ∗ cos θ cosβ)/∂Dcorr

= cos θ cosβ (3.9)

∂Pz/∂Dcorr = ∂(D ∗ sin θ + Vo ∗ cos θ)/∂Dcorr

= ∂((Dret +Dcorr) ∗ sin θ + Vo ∗ cos θ)/∂Dcorr

= ∂((Dret +Dcorr) ∗ sin θ)/∂Dcorr

= sin θ (3.10)

From ∂Px/∂Dcorr it is clear that the conditions that make the partial derivative

equal to zero are θ = 90◦ and β = 0◦. This makes intuitive sense as θ = 90◦ means that
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the laser is pointing upwards and in such a situation it is impossible to scan a plane

(calibration target) which is parallel to the laser. Similarly, as β defines the current

orientation of a laser beam, β = 0◦ means that the laser is parallel to y − axis of

lidar frame and therefore any variation in Dcorr would not affect Px for the point being

viewed as β remains 0◦. In the case of Velodyne HDL-64E S2, as the lidar head is

constantly rotating the value of β is constantly changing, and moreover the values for

θ for all lasers in the lidar are much smaller than 90◦.

Similarly, the conditions that make ∂Py/∂Dcorr equal to zero are θ = 90◦ and

β = 90◦. As with the previous case, the condition β = 90◦ is not a problem because

the lidar is constantly rotating as we acquire the data. The condition that makes

∂Pz/∂Dcorr equal to zero is θ = 0◦. This would mean that for lasers with zero pitch

angle, the z coordinates of data points will not play any role in the optimization process.

This does not pose any problem because the optimization process is based on 3D data

and not only on the z coordinates of data. Moreover for the system at hand, the pitch

angle for any laser beam is not exactly zero. This analysis leads to the conclusion

that our chosen cost function is suitable to be used for the estimation of Dcorr using

optimization.

Similarly using equations 3.5, 3.6 and 3.3, the partial derivatives of Px, Py and Pz

with respect to θ can be computed as follows:

∂Px/∂θ = ∂(Dxy ∗ sinβ −Ho ∗ cosβ)/∂θ

= ∂((D ∗ cos θ − Vo ∗ sin θ) ∗ sinβ −Ho ∗ cosβ)/∂θ

= ∂(D ∗ cos θ sinβ − Vo ∗ sin θ sinβ)/∂θ

= D ∗ (− sin θ) sinβ − Vo ∗ cos θ sinβ

= −D sinβ sin θ − Vo sinβ cos θ (3.11)
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∂Py/∂θ = ∂(Dxy ∗ cosβ +Ho ∗ sinβ)/∂θ

= ∂((D ∗ cos θ − Vo ∗ sin θ) ∗ cosβ +Ho ∗ sinβ)/∂θ

= ∂(D ∗ cos θ cosβ − Vo ∗ sin θ cosβ)/∂θ

= D ∗ (− sin θ) cosβ − Vo ∗ cos θ cosβ

= −D sin θ cosβ − Vo cos θ cosβ (3.12)

∂Pz/∂θ = ∂(D ∗ sin θ + Vo ∗ cos θ)/∂θ

= −D cos θ − Vo sin θ (3.13)

The conditions which make ∂Px/∂θ and ∂Py/∂θ equal to zero are β = 0◦ and

β = 90◦ respectively. As with the case for Dcorr, for the constantly rotating lidar,

these partial derivatives remain non-zero for the type of 3D datasets being used and

therefore the chosen cost function is suitable to be used for the estimation of θ using

optimization.

Similarly the partial derivatives of Px, Py and Pz with respect to α can be computed

as follows:

∂Px/∂α = ∂(Dxy ∗ sinβ −Ho ∗ cosβ)/∂α

= ∂(Dxy ∗ sin(φ− α)−Ho ∗ cos(φ− α))/∂α

= ∂(Dxy ∗ (sinφ cosα− cosφ sinα)−Ho ∗ (cosφ cosα+ sinφ sinα))/∂α

= (D ∗ cos θ − Vo ∗ sin θ) ∗ (− sinφ sinα− cosφ cosα)

−Ho ∗ (− cosφ sinα+ sinφ cosα) (3.14)

∂Py/∂α = ∂(Dxy ∗ cosβ +Ho ∗ sinβ)/∂α

= ∂(Dxy ∗ cos(φ− α) +Ho ∗ sin(φ− α))/∂α

= ∂(Dxy ∗ (cosφ cosα+ sinφ sinα) +Ho ∗ (sinφ cosα− cosφ sinα))/∂α

= (D ∗ cos θ − Vo ∗ sin θ) ∗ (− cosφ sinα+ sinφ cosα)

+Ho ∗ (− sinφ sinα− cosφ cosα) (3.15)
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∂Pz/∂α = ∂(D ∗ sin θ + Vo ∗ cos θ)/∂α

= 0 (3.16)

There are no conditions that make ∂Px/∂α and ∂Py/∂α equal to zero. ∂Pz/∂α how-

ever is zero. This makes intuitive sense, because a change in the rotational correction

angle α will not change the z−coordinate of the acquired 3D point. In other words if a

laser beam points slightly leftwards or rightwards, only the x and y coordinates of the

acquired 3D point will change. It suggests that the chosen cost function is suitable for

the estimation of α but only x and y coordinates of 3D points forming the calibration

target will contribute to the estimation.

3.2.5 Optimization

The optimization process was implemented using Matlab function fmincon (49). The

function uses sequential quadratic programming to solve a quadratic programming

problem at each iteration.

The computational cost of optimization process is not of a great concern because

the process is done offline and has to be done only once to calibrate the device. The

optimization process took several hours to complete on a normal laptop machine.

3.3 Results

This section presents some results from the calibration implementation presented in

section 3.2. Among the five calibration parameters for the Velodyne HDL-64E S2,

Dcorr, α and θ are the most important. This is because of the fact that errors induced

by a bad estimate of these parameters in the precision of 3D coordinates of acquired

data is magnified with the increase in distance of the scanned object. The errors

induced by imprecise calibration of Vo and Ho on the other hand do not depend on the

variation in the distance of scanned object. Therefore in the current implementation

only Dcorr, α and θ were calibrated for the HDL-64E S2 device at hand. The default

calibration data provided by the manufacturer along with the device was used as the

initial estimates of the parameters to be estimated during the optimization step of the

calibration process.
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Table 3.1: Standard deviations (in meters) in depth of planar data

Default Calibration Recalibration

4m 0.0234 0.0215

6m 0.0326 0.0291

8m 0.0170 0.0116

10m 0.0168 0.0105

12m 0.0186 0.0119

14m 0.0187 0.0128

3.3.1 Recalibrating a subset of lasers

In a first step only 16 of the 64 lasers having the low (near zero) pitch angles were

calibrated in order to validate the proposed calibration technique on a smaller scale

before calibrating all the 64 lasers in the device. This was done using the scans of the

calibration target taken at 2m steps between distance of 4m to 14m between the lidar

device and the calibration target. At each location the calibration target was scanned by

first roughly aligning it to the x−axis and then to the y−axis of the lidar sensor-fixed

frame. Figure 3.5 presents a result of improved calibration resulting from this step. At

top, the figure shows the scan of the rear of a vehicle computed using default calibration

data and at bottom it shows the same scan using optimized calibration parameters.

While the figure shows a qualitative comparison of the improvement in calibration it

is also important to quantitatively compare the default and new calibration data. One

way of doing it is by measuring the standard deviation of data forming a scanned plane

along the depth of the plane. Table 3.1 shows the improvement in standard deviations

in depth for a subset of planar data used in the recalibration process. Table 3.2 shows

the improvements in standard deviation in depth of some planar data that was not

used during the optimization step. The improvements in the standard deviation of

planar data and qualitative improvement shown in 3.5 validate the proposed calibration

technique.
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Figure 3.5: Comparing default (top) and optimized (bottom) calibration parameters for
16 laser beams with low pitch angles. Scans of rear of a vehicle

3.3.2 Recalibrating all 64 lasers

After the initial validation of the proposed calibration technique on 16 lasers, the tech-

nique was applied to recalibrate the Dcorr, α and θ parameters for all the 64 lasers

in the Velodyne HDL-64E S2 device simultaneously using the acquired scans of the

calibration target as explained in subsection 3.2.2.

Table 3.3 shows a comparison of the sum of squared differences error for different

scans of the calibration target computed with respect to the an ideal plane filled to the

corresponding scan of the calibration target. A marked decrease in the error can be

observed not only in the data used during optimization i.e. the scans taken from 3m

to 22m distances but also for the scans taken at 26m distance that were not used in

the optimization process.

To qualitatively analyze and compare the default and recalibrated parameters, dif-
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Table 3.2: Standard deviations (in meters) for data not used in optimization

Default Calibration Recalibration

16m 0.0210 0.0132

18m 0.0221 0.0142

Table 3.3: Sum of squared distance error for the scan points forming the plane

Elevation 1 Elevation 2 Elevation 3 Elevation 4 Elevation 5

Def Recal Def Recal Def Recal Def Recal Def Recal

3m 1.220 0.980 1.517 0.805 1.396 0.871 1.354 0.807 1.352 0.874

5m 1.867 0.939 1.178 0.687 1.051 0.488 0.944 0.503 0.792 0.485

6.7m 0.969 0.236 0.844 0.310 1.005 0.291 0.921 0.172 0.83 5 0.159

8.5m 0.478 0.230 0.663 0.324 0.856 0.184 0.701 0.098 0.70 3 0.088

10m 0.377 0.132 0.743 0.216 0.903 0.182 0.582 0.127 0.506 0.098

12.5m 0.392 0.112 0.954 0.389 0.858 0.160 0.537 0.106 0.4 96 0.077

15m 0.475 0.218 0.838 0.267 0.797 0.133 0.516 0.114 0.536 0.079

18.5m 0.378 0.101 0.732 0.189 0.849 0.089 0.574 0.094 0.7 30 0.056

22m 0.374 0.114 0.982 0.131 0.540 0.087 0.686 0.143 0.547 0.076

26m 0.462 0.152 0.826 0.238 1.161 0.207 0.867 0.134 0.736 0.087
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ferent views of 3D scan are presented below. Figure 3.6 shows the 3D view of a scan

using default and recalibrated parameters. Figure 3.7 the top view of the same scan.

To allow a more in-depth comparison of the default and recalibrated parameters, the

zoomed-in views of the areas highlighted by four red circles in 3.7 are presented and

analyzed as follows.

Figure 3.8 shows the zoomed-in view of the structure highlighted by circle-1 in the

figure 3.7. The structure is the planar wall that was also used as the calibration target

in the scans acquired and used during the recalibration process. Figure 3.8 (top) shows

the structure using the default geometrical parameters whereas figure 3.8 (bottom)

shows the structure using recalibrated geometrical parameters. A marked decrease in

the thickness of the planar structure can be seen between the top and the bottom

figures. Quantitatively the sum of squared distance error decreased from 3.620 to 1.718

for the structure shown in the figure. The figure also shows a displacement in the exact

location of the structure when using the default and recalibrated parameters. While

acquiring the scan, the distance of the planar structure from the lidar device origin was

measured by hand to be 8.16m. This distance in the shown scans in the figure turns

out to be 8.04m and 8.17m for the default and recalibrated parameters respectively.

The decrease in thickness and the closer confirmation of the location of the structure

to the ground truth measurement indicate the improvement in the device calibration.

Figure 3.9 shows the zoomed-in view of the area highlighted by circle-2 in the figure

3.7. The top figure shows the are using the default geometrical parameters and the

bottom figure shows the area using the recalibrated parameters. The figure shows the

decrease in thickness for the planar structures being scanned and thus indicating the

improvement in geometrical parameter calibration.

Figure 3.10 shows the zoomed-in view of the structure highlighted by circle-3 in the

figure 3.7. The planar structure shown in the figure is the face of a small tin-shed. The

comparison between the top and bottom figures show a slight decrease in thickness of

the planar data and thus as improvement in the device calibration.

Figure 3.11 shows the zoomed-in view of the structure highlighted by circle-4 in the

figure 3.7. Unlike the structures shown in figures 3.8, 3.9 and 3.10 the structure shown

in the figure 3.11 shows the increase in thickness of the planar walls. Quantitatively the

sum of squared distance error for the lower/horizontal planar-wall shown in the figure

increases from 1.782 to 3.303.
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3.3.2.1 Recalibration with an alternate geometric model

(22) use a slightly different geometric model for defining laser beam position and orien-

tation inside the Velodyne lidar device. Their model differs from the geometric model

presented in the subsection 3.2.1 in that the Vo and Ho are not measured orthogonally

to the laser beam but instead Vo is the height of the point of origin of the laser beam

from the x−y plane, and Ho is the distance of the point of origin of the laser beam from

the x − z plane (cf. figure 3.12). We also implemented the recalibration for Dcorr, α

and θ parameters for all the 64 laser beams in the Velodyne device using this geometric

model and it gave similar recalibration results as our geometric model. Figure 3.13

shows a qualitative comparison of recalibration results using the geometric model from

(22).

3.4 Conclusion

The calibration of novel multi-beam lidar devices such as the Velodyne HDL-64E S2 is

a complicated task. Such devices have multiple laser beams and each beam has a set

of geometric and distance correction parameters to be calibrated. This makes the total

number of parameters to be calibrated on the order of a few hundred. This chapter

presents a method for the calibration of orientation angles and distance correction

factor for such devices by optimizing the values of intrinsic parameters by comparing

the acquired point cloud to the ground truth geometry of a planar calibration target.

The results show that recalibration improves the acquired 3D point cloud data in terms

of the range measurement confirming to the ground truth distance of the objects from

the lidar device (cf. figure 3.8). The results also show that in most of the areas in the

acquired point cloud, the recalibration improves the 3D point cloud (qualitatively as

decrease in the thickness of planar structures seen from the top and quantitatively).

But in some areas of the acquired point cloud, the recalibration decreases the quality of

acquired data in terms of thickness of planar objects as seen from the top. In a nutshell

although the recalibration improves confirmation of range measurements to the ground

truth distances of objects, and increases the over all point cloud quality, there is still

room for improvement in such devices calibration.
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3.4 Conclusion

Figure 3.6: Comparing the default and recalibrated parameters. 3D view of a structured
outdoor environment. (units in meters)
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1
2

3

4

Figure 3.7: Top views of the scan shown in figure 3.6. Units in meters.
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Figure 3.8: Zoomed-in view of the structure highlighted by circle-1 in figure 3.7.
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Figure 3.9: Zoomed-in view of the structure highlighted by circle-2 in figure 3.7.
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Figure 3.10: Zoomed-in view of the structure highlighted by circle-3 in figure 3.7.
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Figure 3.11: Zoomed-in view of the structure highlighted by circle-4 in figure 3.7.
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3.4 Conclusion

Figure 3.12: Geometric model for Velodyne laser beams from (22): V i
o and Hi

o represent
the Vertical and Horizontal offsets respectively.
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Figure 3.13: Recalibration using the laser-beam geometric model used in (22).
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Part II

Qualitative Localization
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Chapter 4

The localization problem

“Localization” in a general sense is the determination of location information of an

object with respect to a frame of reference. In a mobile robotics context, localization

refers to the estimation of robot position and orientation in a reference frame along

with an estimate of the uncertainty or error in the position information.

The estimation of uncertainty, or in other words the confidence in location in-

formation is very important especially in the case of autonomous robotics. For the

autonomous operation of a robot in an environment it is imperative that the robot be

able to localize itself within a reasonable error bound, primarily for it’s own safety and

that of its environment. For instance figure 4.1 shows a scenario where a robot starts to

move towards its goal position at time t1 but at time t4 the uncertainty in its position

estimate is large enough to risk a collision while trying to pass through the open area.

In such a situation it is safer for the robot not to proceed after time t4 unless it can

perceive the open passage by using any exteroceptive sensors like camera or lidars.

4.1 Importance of localization, Why localize?

A very basic requirement for an autonomous mobile robot to be able to move around

in an a priori known or unknown environment is its ability to correctly localize itself.

Often in mobile robotics, robot missions are expressed in terms of localization. A

simple example is the classical “go-to (x,y)” task in which a robot has to move to the

position expressed by the coordinates x and y to perform any given operation there.

For example a servant robot moving indoors might need to go to a specific position
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Time = t
1

t
2

t
3

t
4

Goal

Figure 4.1: Importance of the estimation of error in localization: the robot must not
move forward after time t4 for safety as the uncertainty in robot position (shown as red
circles) is larger than the width of the available space to pass through in order to reach
the goal position.

where the refrigerator is placed in order to check for the presence of a certain drink, or

simply go to an electric socket to plug itself in for charging. Similarly an outdoor mobile

robot might need to go to a certain location to deploy or collect some material. In a

similar manner a robot mission might involve following a set of way-points or following

a predefined trajectory in addition to achieving a final goal location. For example if

a team of underwater robots is working collaboratively to explore the seabed, each

robot might need to follow a specific trajectory in order to communicate with other

underwater robots at predefined rendezvous locations.

Often during autonomous operation, a robot does not know its environment a priori.

In such cases the robot might have to build a model of its environment for performing

basic tasks such as obstacle avoidance and planning a path to a goal location. Build-

ing an environment model is even more useful and necessary when the robot has to

operate in that environment for longer amounts of time rather than just achieving a

goal location. As the robot moves and builds the environment model, a correct esti-

mate of robot location is necessary to ensure the spatial coherence of the environment

model. Wrong or imprecise robot localization might corrupt the environment model

constructed by the robot, which might lead to a failure in a task that the robot had

to perform in the environment. Figure 4.2 from (82) shows the importance of local-

ization for building environment models that are consistent with the real environment

the robot is operating in. The figure (left) shows a robot only using odometry dead

reckoning (cf. subsection 4.2.1) in order to localize itself and its localization estimate
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Figure 4.2: Effects of erroneous localization on environment model building, from (82).
Left: Robot localization estimate acquired only using odometry drifts significantly with
respect to the real environment. Right: The robot fails to recognize an already visited
area (the data association problem) which induces incoherencies in the environment model
being built.

drifts significantly with respect to its real movement in the environment. In such a

situation if the robot has been mapping the environment using the perception data it

acquired, the resulting model will be totally inconsistent with respect to the real en-

vironment. The figure (right) shows another instance of localization problem that can

lead to inconsistent environment models. The figure shows a scenario where a robot

uses odometry in order to localize itself, and as it approaches an already visited area

it fails to recognize that this area has already been visited and thus inducing spatial

incoherencies in the environment model being built.

4.2 Solutions to localization

Many solutions to the localization problem have been employed in robotics. Different

solutions require different sensing sensing capabilities and computational power, and

provide localization estimates with different characteristics. These solutions range from

localization using only wheel odometry to the absolute localization anywhere on the

globe using constellations of satellites revolving around earth. This section presents

solutions to the localization problem in robotics including (i) dead reckoning, (ii) si-

multaneous localization and mapping (SLAM), and (iii) absolute localization using an

a priori available map or a set of beacons.
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4.2.1 Dead reckoning

Dead reckoning is the estimation of one’s position by integrating the motion information

over time. The motion information is acquired mostly through proprioceptive sensors

like odometers, accelerometers and gyroscopes, but dead reckoning techniques using

exteroceptive sensors like cameras also exist (e.g. (61)). Regardless of the type of

sensors being used, dead reckoning in its raw form is an open loop process i.e. there is

no feedback from any other sensors to correct the estimated position. Because of this

lack of a feedback, the position errors grows constantly in dead reckoning. For a one

dimensional case, the growth in position error is directly proportional to the square root

of the motion variable but this error growth can be much larger when the robot can

move arbitrarily in two dimensions because of the lever arm effects. In other words, in

the two dimensional case a small drift in the angular measurement of the robot rotation

leads to a large drift in its position estimate over time.

Most basic type of dead reckoning in robotics is done using odometry. The rota-

tion of robot wheels is measured using shaft encoders and this rotation information is

integrated over time to estimate the robot position over time. In case of a differen-

tially driven robot with shaft encoders fitted on its wheels on both sides, the difference

between the rotation measurements from the wheels from opposite sides of the robot

indicates the change in robot orientation, and thus the robot orientation can also be

estimated by dead reckoning. In practice, even if the shaft encoders are very precise,

the position error grows quickly because of biases such as imprecise wheel radii and

other factors such as of wheel slippage, uneven ground surface etc.

Inertial sensors such as accelerometers and gyroscopes are also used for dead reckon-

ing in robot localization. Accelerometers are used to measure accelerations undergone

by a body and gyroscopes are used to measure its rate of rotation. These two in-

formation can be integrated in time in order to localize a robot with respect to its

initial position. The systems that use these sensors for dead reckoning are referred

to as “inertial navigation systems”. The advantage that inertial sensors offer in com-

parison to shaft encoders is that they do not suffer from wheel slippage. Nevertheless

inertial-sensor-based dead reckoning also suffers from continuous increase in localiza-

tion error because of measurement error integration over time. (11) and (62) present

dead-reckoning robot localization using fiber optic gyroscope data fused with the wheel
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odometry data. Many inertial navigation units for high grade localization solutions are

also available off the shelf for robotic purposes, one such example is the Applanix POS

LV (4) which not only uses inertial sensors for localization purposes but also fuses the

GPS data when it is available.

(75) presents dead-reckoning robot localization method using optical mouse sensors

pairs. An optical mouse sensor can detect the motion in two dimensions so they use

a pair of optical mouse sensors to sense robot motion in the two directions as well as

the change in its orientation. The data from optical mouse sensors is integrated over

time in order to perform dead reckoning. To make the technique more robust, they

also present the use of four optical mouse sensors, where sensor readings are compared

to detect and discard erroneous readings.

Another type of dead reckoning performed using cameras is the visual odometry.

In such techniques features are extracted from images, which are then matched with

features extracted from the succeeding images in order to estimate the difference in

position and orientation of the camera. (61) present a visual odometry technique for

monocular and stereo cameras that employs Harris corner feature extraction and match-

ing from camera images. (26) present a visual odometry technique using a three-camera

rig that employs extraction and matching of Förstner features from camera images.

Dead reckoning has also been applied for localization of walking robots, (69) is one

such example.

4.2.2 Simultaneous localization and mapping

Simultaneous localization and mapping (SLAM) is the problem of a robot being au-

tonomously able to build a map of an a priori unknown environment while simultane-

ously localizing itself in the environment.

While performing SLAM, a robot observes its environment and saves some sort of

perceived information from the environment. This constitutes the “mapping” part of

a SLAM process. While moving around, the robot keeps a track of it’s own location in

with reference to the environment map being built, this constitutes “localization” part

of the SLAM process.

A lot of work has been done on feature-based SLAM where some local features are

extracted from the data perceived from the environment. These local features are often

point features, but they can also be higher order features such as lines or planes. These
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(a) (b) (c) (d)

Figure 4.3: Feature based SLAM, from (39): (a) the robots observes its surroundings,
detects three point features (shown in red) and adds them to its map as landmarks. (b)
the robot moves and uncertainly in its position estimate grows. (c) the robot re- observes
its surroundings and again detects three point features shown in blue. (d) the robot
successfully associates the three newly observed to the landmarks in its map and updates
its own position (and orientation) estimate and that of the landmarks.

features serve as the landmarks for building the map of the environment. Figure 4.3

from (39) depicts the concept of feature based SLAM. The robot observes some point

features (shown in red) before it starts to move and adds them to its map of the envi-

ronment as landmarks (figure-a). The robot then moves and the uncertainty in position

estimate grows (figure-b). The robot then re-observes its surrounding and detects the

three point features shown in blue (figure-c). The robot then successfully associates

the newly observed features to the three landmarks in its map and and updates its own

position (and orientation) estimate in the map and that of the landmarks (figure-d).

While performing SLAM, robots update their own position estimate and that of the

landmarks using different probabilistic filtering techniques. Extended Kalman filtering

(EKF) is the most widely used probabilistic filtering technique to perform feature-based

SLAM. Some implementations of SLAM systems employing EKF can be found in (40),

(41) and (36). (56) introduced a Particle filtering based solution to the SLAM problem

where the robot pose is estimated by a particle filter while EKF is used for estimat-

ing the landmark locations. Since the introduction of Particle filtering in SLAM it

has also been widely used to perform feature-based SLAM. Some implementations of

SLAM using Particle filtering can be found in (18) and (17). Finally and more recently,

global optimization techniques have proved to solve the SLAM problem in a robust and

efficacious manner.
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A crucial aspect of the SLAM problem is the “loop closures”. A loop closure occurs

when while performing SLAM, a robot visits a location that it already visited earlier and

correctly detects this revisiting of the location (by correctly associating the observed

features to the landmark in the map). By correctly detecting a loop closure, the robot

can update any drift that has occurred in the estimates of its own position and that of

the landmarks over time. Loop closures are very important in SLAM because a wrong

loop-closure detection can lead to a completely corrupted map of the environment and

thus incorrect localization estimates in the already corrupted map.

SLAM has also been performed without explicitly extracting local features from

the environment perception data. Featureless SLAM techniques rely on the global

appearance information in the environment. The seminal work in this regard comes

from the computer vision community rather than the robotics community. (52) present

a technique for view-based navigation using omnidirectional image sequences. The idea

behind the work is that during a teaching run a robot memorizes the environment by

saving a sequence of omnidirectional images. Then during an autonomous run newly

acquired images are matched to the saved omnidirectional image sequence in order

to determine robot pose. A more recent and very efficient technique for appearance-

based SLAM is the FAB-MAP technique presented in (14). They use bag-of-words

technique to develop a vocabulary which is then used to describe image data perceived

at different locations in the environment and then Chow Liu trees are used to learn and

match different locations in the environment. (3) also present a technique that uses

bag-of-words technique for loop closure detection in SLAM.

4.2.3 Absolute localization

Read reckoning and SLAM presented in the last two subsections provide a localization

estimate with respect to the starting position of the robot. Absolute localization, on

the other hand, refers to the estimation of robot position and orientation with respect

an already defined map/model or coordinate frame. Absolute localization techniques

can further be divided into two categories i.e. beacon-based absolute localization, and

map-based absolute localization. The two categories are explained below.
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4.2.3.1 Beacon-based absolute localization

The principle lying behind the beacon-based localization techniques is “trilateration”

where the 3D position of a point can be calculated using the distance of the point in

question to four points with known positions in a reference frame.

An example of beacon-based localization are the global navigation satellite sys-

tems (GNSS) such as the American Global Positioning System (GPS) and the Rus-

sian GLONASS. Another GNSS that is in the phase of development is the European

“Galileo”. Such systems employ a number of satellites that revolve around earth in

order to provide position estimates to an arbitrary location on earth. GPS is by far the

most popular and widely used GNSS. GPS satellites constantly send out signals with

a time stamp which can be received by a GPS receiver on earth. Using the GPS sig-

nal time stamps, the receiver can calculate its distance from the visible GPS satellites

and thus estimate its location on earth represented in terms of latitude, longitude and

elevation values.

GNSS have widely being used in robotics because of their global availability and low-

cost sensing hardware. They however have a number of limitations and disadvantages.

First of all the GNSS signals are only available in the outdoor environments so they

cannot be be used for robot location in indoor environments. Even in the outdoor

environments, and especially the urban outdoor environments, tall buildings and similar

structures hinder the GNSS signals. Another problem in such environments is that the

GNSS signals are reflected from building and other structures and are received by

the GNSS receiver with a delay inducing error in the position estimation (multipath

issues). Secondly any GNSS availability can not be guaranteed at all times because

it can easily be jammed, or its availability might be ceased by the GNSS operator.

Another limitation of GNSS is that GNSS signals cannot penetrate into water and thus

cannot be used for underwater robotics.

Long range navigation (LORAN) is another example of beacon-based absolute lo-

calization. LORAN consists of radio signal transmitters around the world whose signals

can be received by a receiver which then uses its distance to the transmitters in order

to calculate its absolute position on earth. A signal from at least three LORAN trans-

mitters is required in order to calculate the position of a LORAN receiver. LORAN

has widely been used for maritime navigation.
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(59) present a technique for beacon based localization for a fleet of robots where at

all times any three of the robots within the fleet stay stationary and serve as beacons

for the other robots. The other robots in the fleet move while localizing themselves to

the three stationary robots. Then any other three robots from the fleet stop moving

and serve as beacons while rest of the fleet is free to move within the visibility range of

the current beacon robots. In this manner the whole fleet is free to move by following

a leap-frogging strategy.

Another example of beacon-based localization is the localization in wireless Eth-

ernet (WiFi) networks. In such systems WiFi transmitters serve and beacons and a

receiver estimates its location is a given coordinate frame by analyzing its connection

to the available WiFi transmitters and the corresponding signal strengths. Generally

in such techniques, a signal-strength map of the available beacons (called the ”finger-

print” map) is built for a given environment during a learning phase. The built map is

then used by robots to localize themselves in the environment by analyzing the signal

strengths from different beacons at any given location in the environment. It is im-

portant here to note that the beacons measurements are not directly used to produce

metric position estimates: indeed the distance estimated by the RSSI1 of WiFi access

points is extremely erroneous, especially in indoor environments where the signal prop-

agates hardly along a straight line. The “fingerprint” techniques are actually similar to

view-based localisation approaches (section 4.3). (30) present such a system where four

WiFi transmitters are used as beacons in an office environment, and using a fingerprint

map a robot is able to localize itself with an accuracy of up to 0.5m. Similar approaches

have also been applied to GSM cellular networks: (63) present a technique that uses

signal strength fingerprint maps of GSM cells, for absolute localization in multistory

buildings with a median accuracy of 0.5m.

4.2.3.2 Map-based approaches

Map-based localization in robotics refers to the problem of localizing an autonomous

robot in an environment whose map is a priori available to the robot. In map-based

localization a robot senses its surroundings using its exteroceptive sensors, and then

matches the perceived data to the available map in order to estimate its position in the

map and the associated uncertainty.
1Received Signal Strength Indication
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Simplest type of map-based localization techniques are the ones that rely on ar-

tificially placed markers or landmarks in the environment. Normally the artificial

landmarks are arranged in the environment is such a way that the robot can infer

a unique location in the environment by perceiving these landmarks. In other words

these techniques are applicable to the environments with no perceptual aliasing. Per-

ceptual aliasing occurs when two or more different locations in an environment lead

to the same perception data because of limited sensor capabilities, and thus creating a

confusion for the robot with no means to directly infer which one of the possible loca-

tion is its correct position. One example of such a map-based localization techniques

is presented in (8) where an autonomous underwater robot localizes itself using a grid

of coded pattern. The pattern consists of groups of 8 circles that can either be black

or grey. Five of these circles are used to encode position while the remaining three are

used to detect orientation of the robot. Encoding the position with five dots each of

which can take two colors leads to 32 possible unique patterns for the robot to infer

its location on the grid. The robot perceives the grid using a downward looking came

and infers its location and orientation on the grid. Figure 4.4 shows the robot and

the grid coded pattern used by (8). (72) present a marker-based localization technique

for indoor environments using coded patterns that can be hidden in the wallpapers or

floor tiles in the indoor environments. The usage of artificial landmarks makes this

set of localization techniques somewhat similar to the beacon-based absolute localiza-

tion techniques, however they can still be classified as map-based techniques because

the robot has to perceive its environment, match the perceived data with the a priori

available map and infer its position.

Another category in the map-based localization techniques are the ones that enable

robot localization in the environments that may have perceptual aliasing. In such tech-

niques the robot perceives its environment, matches the perceived data to the available

map, and probabilistically estimates its position in the environment. The initial po-

sition of the robot in the map might or might not be known to the robot and there

are different solutions to solve the localization problem for the two cases. In case of

a known initial position in the map, the robot starts to move in the environment and

continuously updates its position hypothesis by observing the environment and incor-

porating the difference in its predicted position and the position inferred by observing

the environment using a probabilistic filtering technique such as the Extended Kalman
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Figure 4.4: Localization of the autonomous underwater robot URIS using a pattern coded
grid from (8). The robot and its environment (left), and the pattern coded grid (right)
where three circles used to determine robot orientation are highlighted by red outlines in
the zoomed-in view and the remaining five are used to encode a position on the grid.

filtering (EKF). Such techniques are called “single hypothesis tracking” techniques. A

problem with single hypothesis tracking is that if because of some reason the robot

loses the track of its correct position completely then its position is permanently lost

and it cannot recover from the lost situation. Such situations can occur in case the

uncertainty in the robot position grows large enough to hinder correct matching of

perceived data to the map or if the robot is suddenly shifted to a new position in the

environment without any indication of change in position to its proprioceptive sensors

(referred to as the “kidnapped robot problem”). This problem is solved by the “mul-

tiple hypothesis tracking” techniques where a robot simultaneously keeps and updates

multiple hypotheses of its current position in the map and different weights are assigned

to each of these hypotheses depending on the likelihood of each one of them to be the

correct one. Such techniques are implemented using probabilistic filtering techniques

such as multi-hypothesis Kalman filtering or particle filtering.

(42) present a map-based localization implementation in urban outdoor environ-

ments using particle filtering. First a map of the environment is built using three Sick

laser scanners fitted on a vehicle along an inertial navigation system (with GPS) to

get the localization information for map building. The map that is generated is an

overhead infrared image capturing the road texture such as lane markings and also the
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vegetation near the roads. Using this map of the environment they are able to achieve

a localization accuracy of 10cm when the GPS is used to assess vehicle velocity. The

results are also provided for localization using lidar sensor and odometry data, and also

only using the lidar data. For a 499m run using only the lidar data the localization

error varies between 7cm to 35cm measured at five checkpoints along the 499m run.

(53) and (83) present map-based localization implementation for indoor environ-

ments using particle filters whereas (31) perform map-based localization in an indoor

environment using multi-hypothesis Kalman filtering. (21) and (58) provide excellent

reviews on map-based localization techniques in robotics.

In most of the map-based localization experimentation to date the maps of the

environments are generated before the localization experimentation phase. Nevertheless

another motivation for the research in map-based localization techniques is that often

the maps of environments in which a robot is intended to operate are available, for

example in the form of building architectural drawings for indoor environments and

city maps and models for outdoor environments. The development of more robust

and generic map- based localization techniques is surely a promising area for future

research.

4.2.4 Choice of a localization method

The three main types of localization solutions presented above are complimentary to

each other and each one has its own strengths and limitations. For example dead

reckoning does not require sophisticated sensing hardware or computational power but

the localization errors grows rapidly in dead reckoning. A robust SLAM systems can

enable a robot to perform a task in an environment which was completely unknown to

the robot a priori but a robust SLAM system requires rich sensing and high computa-

tional power. Beacon-based absolute localization methods enable a robot to accurately

localize itself in a environment without requiring high computational power. But for

beacon-based localization to work, the visibility of the beacons has to be guaranteed

at all times during robot operation. For instance it might be feasible to take GPS

availability for granted when developing a driverless taxi system for a city (civilian

application) but it would not be feasible to let any autonomous vehicle developed to

operate in the battle field to depend on GPS because the GPS availability cannot be

guaranteed in a battle field.

80



4.3 View-based localization

Simple sensing
(Proprioceptive 

sensing)

Rich sensing
(Proprioceptive &

Exteroceptive)

High computational
power

A priori map
required

Beacon visibility
required

Dead reckoning SLAM Beacon-based
localization

Map-based
localization

Localization estimate
drifts rapidly

Precise localization
estimation

Requirement

Localization
method

Localization
output

Figure 4.5: Comparison between different localization methods in terms of requirements
(sensory, computational etc.) and achieved localization estimate.

In a nutshell a localization solution for a robot can be chosen by taking into ac-

count the two main factors i.e. (i) the intended application (the level of navigational

autonomy required) and (ii) sensing and computational hardware at hand. Figure 4.5

shows a graphical representation of different localization methods in terms of sensory,

computational and other requirements and the type of localization estimate achieved.

4.3 View-based localization

View-based localization refers to the localization techniques where a robot, while mov-

ing in an environment, observes its surroundings and builds a database of appearance

information from its surroundings. As the robot continues to move, it continuously

observes its surroundings and matches the current appearance information to that in

the database. In this way the robot is able to localize itself in case it visits an area

whose appearance information is already in its database.
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View-based localization techniques find their roots in object classification where

different objects can be identified as belonging to a certain class if it is similar to

that class in appearance. (80) for instance, present a technique where appearance

information of an object is encoded as histograms of color information in the object.

These histograms are then used to identify a certain object in a given image.

View-based localization applies to two kinds of scenarios in robotics. First is the

map-based localization. While being manually driven in an environment, a robot builds

a database of appearance information of the environment. And later on the robot uses

this database to localize itself in the environment during an autonomous run. Second

is a scenario where a robot while autonomously moving around in an environment,

incrementally builds the database of the appearance information of its surroundings

and simultaneously uses this database to localize itself in the environment. In such a

scenario, view-based localization is very closely related to the “loop closure detection”

in SLAM. In other words when a robot localizes itself with respect to an already visited

location in view-based localization framework, a loop closure detection occurs in terms

of a SLAM framework.

Regardless of the type of two scenarios mentioned above, a view-based localization

framework consists of following three main steps:

• extraction of the appearance information for the environment

• indexation of the appearance information in the form of a database

• devising an appropriate and efficient technique to match the current appearance

information at a given time to the database in order to localize the robot

Extracting the appearance information from the environment is probably the most

crucial choice among the three steps mentioned above because during the next two

steps the form of the built database and the matching technique depend on the choice

of appearance information representation chosen in the first step.

On a broader level, there are two types of options for the extraction and represen-

tation of appearance information for view-based localization. One is the extraction of

“global attributes”. Global attributes encode the overall appearance information of the

scene at a given instant into a compact signature. This can be achieved for instance by

applying a mathematical transformation to the scene information such as the Principal
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Figure 4.6: Acquired image (left), greyscale image and selected sub-window (middle),
and the corresponding Image Array (right), from (55).

Figure 4.7: SIFT features: size of the circle is proportional to scale of the feature, from
(96).

Component Analysis (PCA), or by computing histograms of appearance information

such as color and scene depth etc. Figure 4.6 presents an instance of global signatures

called “Image Array” presented in (55). An image array is formed by taking a 640x480

image, converting it into greyscale, taking a 300x160 pixels sub-window at centre of the

image and then adding the pixel values in each column of the sub-window. The second

way of representing appearance information from the environment is by extracting “lo-

cal attributes” from the environment perception data. This includes the extraction of

point features such as Harris corners or SIFT (scale invariant feature transform (47))

etc. or higher order features such as lines or planes. For instance figure 4.7 from (96)

shows the SIFT features extracted from an image in an urban outdoor environment.

83



4. THE LOCALIZATION PROBLEM

4.3.1 Using global signatures

A seminal work in view-based localization is the work by (51) where they propose

a technique for robot localization in indoor environments. First during a learning

phase, a robot is manually driven through the corridors of a building. The robot is

equipped with a forward-looking camera which acquires 512 x 512 pixel images. The

images are resized to 32 x 32 pixel resolution in order to save computational power and

memory. Depending on how different the images are from each other, some of these

images are saved as global signatures representing the environment. Authors call this

memorized signature sequence the “View-Sequenced Route Representation”. Later on

during an autonomous phase, the robot moves in the environment and as it acquires new

signatures, it matches with the previously memorized signatures using image correlation

in order to localize the robot in the environment. In order to overcome the limitation of

a small field of view of a forward looking camera in this work, the authors extend this

technique to omnidirectional vision sensors in (52). In this work 512 x 512 pixel images

acquired using an omnidirectional vision sensor are transformed to an image of 128 x 32

image after a cylindrical projection (cf. figure 4.8). These transformed images are used

as global signatures for environment representation. During the autonomous run the

newly acquired global signatures are compared with the memorized signatures using

template matching in order to localize the robot in the environment. Omnidirectional

vision sensors are indeed very attractive for view-based localization because of their

360◦ field of view, and therefore they have extensively been used for such techniques.

(50) present another technique for view-based localization using omnidirectional

images. They use the omnidirectional images as global signatures. During a learning

phase the signatures from the environment are memorized by the robot. In order to

localize the robot, a newly acquired signature is compared with the signatures in the

database be computing correlation between pixels taken from five circles of different

radii in the signature images. The reason behind performing correlation at different

radii is that in omnidirectional images the pixels closer to the centre of the image

represent the areas closer to the robot whereas the pixels farther from the centre of the

image represent the areas farther form the robot. Therefore the pixels from circles at

shorter radii are expected to change more as the robot moves compared to the pixels

at larger radii.
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Figure 4.8: The omnidirectional-image-based global signatures from (52).

Instead of memorizing the raw omnidirectional images, one way of representing ap-

pearance information as a global signature is by applying Principal Component Analysis

on the omnidirectional images. (93) and (32) present two such view-based localization

techniques using omnidirectional sensors for indoor environments.

(24) present another method for extracting global signatures from omnidirectional

images for view-based localization in outdoor environments. Five characteristics are

empirically defined on the basis of Gaussian derivatives computed on the omnidirec-

tional images. The five resulting images are split into three rings each. The rationale

for splitting the images into rings, as mentioned earlier, is that small and large rings

correspond to areas nearer and farther from the robot respectively and thus the ap-

pearance information in smaller rings change faster than in the larger rings. For each

ring, a histogram is computed for the values of each of five defined Gaussian- derivative-

based characteristics. This set of histograms computed for each omnidirectional image

is used as a global signature to encode the appearance information. As the robot

moves, the acquired global signatures are indexed during a database building phase.

Later on during a recognition phase newly acquired signatures are compared with in-

dexed signatures in order to localize the robot. Signatures are compared using different

histogram distance measures including Histogram-intersection, Euclidean, Quadratic,

Mahalanobis, and Haussler’s distance and χ2 statistic. Authors have found χ2 statistic
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to perform the best. (84) encode the appearance information from color panoramic

images as global signatures by computing histograms of each of the three bands of HLS

(hue, luminance, saturation) and RGB (red, green, blue) color spaces. And thus global

signatures consisting of six histograms each are used for view-based localization.

4.3.2 Using local signatures

View based localization has also been performed by extracting local image features such

as interest points. (96) present a technique that uses SIFT key-points for view-based

localization. In a first phase, SIFT key-points are extracted from the images acquired

in an environment and are saved in a database. Later on during the recognition phase,

the SIFT key-points from a newly acquired image are matched with key-points in the

database in order to find a localization estimate. (2) present a technique that uses a

modified version of SIFT key-point extraction algorithm for local feature extraction in

order to perform view-based localization. This modified descriptor does not comply

to the inherent scale-invariance property of SIFT. Thus during the recognition phase

this results in feature matches only when the robot is in the vicinity of a mapped

location. (66) present a technique that uses descriptors for affine covariant regions

extracted from omnidirectional images for view-based localization. Omnidirectional

images are synthesized by rotating a camera with the help of a pan-tilt unit. Three

types of affine covariant region detectors i.e. Harris-Affine, Hessian- Affine and MSER

(Maximally Stable Extremal Regions) are used to extract feature regions from the

omnidirectional images. Constellations of the extracted features are used as signatures

to represent images. During the recognition phase a query signature is matched with

map signatures in order to localize the robot. (10) present a technique that uses

planar patches extracted form images to perform view-based localization. They use

a Graphical Processing Unit (GPU) to implement their technique in order to achieve

robot localization in real time.

Some techniques use the Bag-of-words (13) techniques to perform view-based lo-

calization. In such techniques an image or a location visited by the robot is described

in terms of a set of “visual words”. Visual words come from a “dictionary” of words

which is constructed by clustering similar visual descriptors extracted from the images

in the environment. In this way an acquired image can be represented by a set of words.

As the robot moves, the newly acquired images are continuously transformed into the
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bag-of-words description and robots current location is compared with previously vis-

ited locations in terms of “visual words” description and thus view-based localization

is performed. (3) and (14) present two such techniques.

4.4 Conclusion

The ability to reliably localize itself is imperative for autonomous operation of a mo-

bile robot. The main solutions employed by autonomous robots in order to localize

themselves have been reviewed in this chapter. They include dead reckoning, SLAM,

map-based and beacon-based absolute localization and the concept of view-based lo-

calization. Different localization solutions have their own sensory and computational

requirements and provide localization estimates with different properties and levels of

accuracy. A robot that has a combination of localization solution at its disposal can

indeed localize itself more reliably than using a single localization solution. This calls

for the integration of different localization solutions for robust autonomous navigation.

View-based localization, for instance, can provide a robot the means to localize itself

in a given environment and at the same time assist a SLAM system to detect loop-

closures. View-based localization using cameras has extensively been investigated in

the literature but such techniques for lidars, and especially the novel multi-beam lidar

sensors, have not been explored to the best of our knowledge. This is what the next

chapter is about: it presents a view-based localization technique using multi-beam lidar

data.
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Chapter 5

View-based localization using 3D

lidar

As explained in the previous chapter, being able to localize itself in an a priory unknown

environment is an essential property to endow a mobile robot with autonomy. The

introduction of novel 3D lidar devices, such as the Velodyne HDL-64E S2 (90), have

changed the way mobile robots perceive their environment. A sample scan acquired

from the Velodyne lidar device along with an aerial view of the environment has been

shown figure 1.4: this figure shows the ability of the device to provide rich 3D data

about the environment in a mere 200 ms acquisition time (the device is here set to spin

at 5 Hz).

This chapter presents a method for qualitative view-based localization using 3D

lidar data. “Qualitative” localization refers to the fact that the localization information

provided by the technique is not expressed in metric coordinates, but with respect

to the places already visited by the robot: the qualitative localisation here states to

which previously visited place the robot is the closest. The technique is based on the

indexing of global signatures extracted from 3D lidar data. The technique, on a broader

scale, applies to the view-based localization and place recognition frameworks for an

autonomous mobile robot. In a SLAM context, the presented technique can be used

to detect loop-closures, independently from the SLAM system, and thus assisting it to

perform loop-closures.

This chapter first presents the extraction of global signatures from 3D lidar data

along with some measures of calculating similarity between the extracted signatures.
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Then the application of these global signatures for loop-closure detection and view-

based qualitative localization are presented followed by results on real lidar data.

5.1 Global signatures for 3D lidar data

5.1.1 Local vs. global signatures

As explained in section 4.3, a basic choice in a view-based localization framework is the

choice of a method for extraction and representation of appearance information from

the environment. Appearance information from the environment can be extracted and

represented in two ways. One is the “global signatures” that encode overall scene

information into a compact representation e.g. by computing histograms of the scene

attributes such as scene depth and color, etc. The second way is to extract “local

signatures” from the environment such as interest points, lines or planes, and represent

the scene in terms of sets of extracted local signatures.

(92) present an extension of the classical 2D Harris corner detector to 3D for range

data. They present the interest point detection results for synthetic 3D data as well

as for 3D scans of miniature objects. Such 3D data have very low noise compared

to the 3D data acquired by the Velodyne lidar, and therefore applying such interest

point detectors to the Velodyne data is challenging. An interesting and innovative

work about the extraction of interest points from lidar data has been presented in

(44) and (45), where the Kanade- Tomasi corner detector on 2D and 3D lidar data

is applied by projecting the data into 2D images. 2D lidar data is converted into an

image by convolving it with a Gaussian kernel whose width is adjusted according to

sensor range noise as well as positional uncertainty of each scan point arising from scan

sampling/discretization. One advantage of this Gaussian smoothing is that at short

ranges it smoothes the scanned surface which might otherwise look noisy as a result

of range-measurement error. In order to rasterize 3D lidar data, the authors discretize

the scan into a 2D grid (in horizontal plane). Then in each cell, the maximum and

minimum height of present points is checked and their difference is calculated. An

image is then drawn based on this height difference value for each grid cell, and a

corner detection is applied to the image. The authors present results in both natural

and indoor environments for 2D data and outdoor 3D data (one 360◦ Velodyne scan)

and the method appears to perform well. (60) presents a comparison of line extraction
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algorithms for 2D Lidar data. These algorithms include Split and merge, RANSAC and

Hough-transform etc. But the implementation of these techniques on noisy 3D lidar

data such as from the Velodyne is yet to be investigated to the best of our knowledge.

(15) present a method for automated extraction of planes and calculation of trans-

formation parameters between 3D laser scans using the matching planar patches from

the scans. The method uses region growing for plane extraction which is computation-

ally very expensive and especially for high density 3D data captured at fast rates such as

from the Velodyne. (95) present a plane extraction algorithm for 3D point cloud data.

The algorithm discretizes the point cloud into rectangular blocks and then RANSAC

based plane extraction is applied to each rectangular block. Planes in each rectangular

block are merged by region growing. They also provide results on synthetic 3D data.

One of the challenges in applying this method to the Velodyne data is that it is hard to

define a size on which to discretize the environment for sensible plane extraction, and

another challenge is the computational cost to process the large amount of Velodyne

data.

Fast acquisition rate and noisy nature of the Velodyne lidar data makes it chal-

lenging and computationally demanding to extract robust local features from the lidar

data and then use them for view-based localization. This in turn calls for the need of

global signatures that are easy to be extracted and stored and are fast to be matched

in order to perform view-based localization. We therefore propose a global signature

that is based on local surface normal information extracted from lidar data. The local

surface normal information can be extracted efficiently by exploiting the arrangement

of the 64 laser beams in the Velodyne lidar device. The steps involved in the extraction

of these local-surface-normal-based signatures from the Velodyne data and a method

to compare and match the features is presented in detail in the following subsections.

5.1.2 Surface normal extraction

One way of extracting the local surface normals from a point clouds is to choose the

nearest neighbors of a given point in the point cloud and then perform a plane fitting

on this local neighborhood in order to find the surface normal at the point in question.

This is a computationally expensive process. But as the 64 laser beams in the Velodyne

device capture 3D data in a known sequence, it is possible to compute local surface

normals efficiently by exploiting the laser beam arrangement. Both these methods
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of extracting local surface normals from Velodyne data are presented below. Surface

normal extraction results for both the methods are also presented for the planar surface

shown in figure 5.1. The surface is a section of the planar wall shown in the figure 3.3.

5.1.2.1 Using plane fitting in local neighborhood

(43) present a method for extraction of local surface normals from accumulated Velo-

dyne point clouds. Point clouds captured by the Velodyne lidar are accumulated by

using the robot pose information from IMU (inertial measurement unit). For a given

point in the accumulated point cloud, its 20 nearest neighbors are selected from the

whole point cloud and a plane fitting is performed on this local neighborhood to find

the local surface normal at the point in question.

Figure 5.2 shows the surface normals extracted for the test planar surface using

this method. For clarity the surface normals are shown for 25% of the 3D points in

the point cloud chosen at random. For a given point, 50 of its nearest neighbors were

detected in the point cloud and PCA (principal component analysis) based plane fitting

was performed on the local neighborhood in order to compute the surface normal at

the point in question. The figure shows that most of the surface normals are normal to

the test planar surface and thus correct. The figure also shows some incorrect surface

normal estimates especially along the edges of the test plane. This happens because at

the edges of the planar surface the 50-point local neighborhood selected around a point

is not guaranteed to form a planar patch that is parallel to the test planar surface.

5.1.2.2 By exploiting sensor geometry

(57) present a method of approximating local surface normals by exploiting the geom-

etry of laser beam placement inside the Velodyne lidar device. For a given point four

neighboring points are chosen that lie above and below it, and towards its right and

left. Right and left neighbors are the points acquired by the same laser beam immedi-

ately before and after the point in question. Upper and lower neighbors are the nearest

points acquired by laser beams which are immediately above and below (i.e. having

higher and lower pitch angles respectively) the laser beam that acquired the point in

question. Once the four neighbors have been chosen, the local surface normal is esti-

mated by taking the cross products between the vectors formed by the given point and

the four neighbors, and then geometrically averaging the resulting cross products.
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3D View

Top View

Front View

Figure 5.1: The test planar surface for surface normal extraction (units in meters).
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3D View

Top View

Figure 5.2: Surface normal extraction by plane fitting in local neighborhood (units in
meters).
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As mentioned in subsection 2.3.2, there is a horizontal misalignment between the

laser groups lying on right and left-hand sides of the Velodyne lidar device (cf. figure

2.15 (top)). In terms of pitch angle, laser beams alternate between the laser groups on

right and left side laser groups. In other words, for a given laser beam, the lasers beams

two steps above and below it (in terms of pitch angle) belong to the laser-group located

on same side (i.e. right or left) of the lidar head. This fact makes the points from laser

beams two steps above and below a given point the best candidates for upper and lower

neighbors rather than the points from laser beams immediately above and below the

point in question (cf. figure 5.3 (top-left)). A naive choice for right and left neighbors

of a given point would be the points acquired by the same laser beam immediately

before and after the point in question (cf. figure 5.3 (top-left)). In practice however, a

more appropriate choice for right and left neighbors are the points acquired five steps

before and after the point in question (cf. figure 5.4 (top-left)). As the Velodyne data

is noisy, selecting right and left neighbors five steps away from a given point guarantees

that the vectors formed by the given point and its neighbors will lie parallel to the

planar surface in which the given point lies.

The local surface normal estimation process using the four-point neighbor hood is

shown in figure 5.5. Four vectors are drawn from the given point to its four neighbors.

If all four of these vectors measure less than a threshold value, it means that the point

in question is not lying on the edge of a surface and therefore a surface normal can be

estimated at the point. Cross products are computed between right and upper, upper

and left, left and lower, and lower and right vectors. The four cross product results are

shown as blue lines in figure 5.5. The geometrical average of the four cross products

(shown as the red line) is the estimated surface normal at the point in question. Figure

5.6 shows the surface normals extracted for the test planar surface of figure 5.1 using

this method. In contrast to the the surface normal extraction using plane fitting, one

advantage of the current method is that all the surface normals extracted for a surface

consistently point away from the planar surface on the same side of the planar surface.

Whereas in surface normal extraction using plane fitting, the extracted surface normal

can point away from the planar surface on either side of the surface. This fact is

apparent from the comparison of figures 5.2 and 5.6.

Figure 5.7 shows the surface normals extraction results for a single laser beam using

the presented method in a semi-structured outdoor environment. The figure also shows

95



5. VIEW-BASED LOCALIZATION USING 3D LIDAR

Figure 5.3: Choosing four neighbors of a given point (indicated by the black arrow), right
and left neighbors are the points acquired by the same laser beam immediately before and
after the point in question. Upper and lower neighbors are the nearest points acquired
by the laser beams two steps above and below the laser beam that acquired the point in
question (top-right). The resulting surface normals for a narrow planar patch (top-right
and bottom).
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Figure 5.4: Choosing the points acquired five steps before and after a given point (indi-
cated by the black arrow) as its right and left neighbors (top-left) and its effect on surface
normal estimation for a narrow planar patch (top-right and bottom).
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the aerial view of the environment.

The figures 5.3 and 5.4 show the effect of choosing the points only one step and

five steps away from a given point as its right and left neighbors. The figures show

the surface normal estimation results on a very narrow planar patch. It is clear that

the surface normals estimated using right and left neighbors five steps away (figure

5.4) leads to the correct surface normal estimation instead of choosing right and left

neighbors only one step away from the point in question (figure 5.3).

Among the two local surface normals extraction methods i.e. by plane fitting, and

by exploiting the laser beam arrangement, the latter was chosen for the implementation

of global signature presented later in this chapter because the method is not only more

efficient but it also provides more consistent and accurate surface normal estimates.

5.1.3 Signature definition

Once the local surface normals have been extracted from the lidar data, a way to

quantify the structure in the environment is by taking the dot product of normal

vectors with vertical ẑ. When the robot is moving on a sufficiently flat terrain, the

z − axis of the sensor − coordinateframe can be considered as the vertical. In case

the terrain is not flat, the robot roll and pitch information can be used to transform

the local surface normal vectors into a global − coordinateframe and then their dot

products can be computed with the ẑ of the global − coordinateframe. The value of

these dot products ranges between -1 and 1. Normal vectors that are parallel to the

x − y plane result in the dot product having low or nearly zero values whereas the

normal vectors parallel to z − axis result in dot products having values near -1 and 1.

For each 360◦ Velodyne scan, histograms of the above mentioned dot product re-

sults are computed after discretizing the range between -1 to 1 into 101 bins. These

histograms serve as the global signatures for each Velodyne scan. Figure 5.8 shows

three instances of such signatures extracted from outdoor lidar data. The figure also

shows corresponding lidar scans and an aerial view of the the environment indicating

where the corresponding scans were acquired. For the first two signatures (scans 1 and

1200) the higher values around histogram bins corresponding to the value “1” indicate

the presence of ground are in the acquired scan. In other words, the surface normals for

ground point in vertical direction and thus their dot product with ẑ results in values

around “1”. On the other hand the third signature in the figure (corresponding to
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Step 1 Step 2

Step 3 Result: The estimated surface normal

Figure 5.5: Surface normal estimation by exploiting Velodyne laser beam arrangement:
Four neighbors and the corresponding vectors (top-left), the four cross products shown as
blue lines (top-right), geometrical average of the four cross products shown as the red line
is the estimated surface normal (bottom-left), and the result shown in 3D (bottom-right).
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3D View

Top View

Figure 5.6: Surface normals extracted for the test planar surface of figure 5.1 by exploiting
the laser beams arrangement in the Velodyne device.
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Surface normals on ground

Figure 5.7: Surface normals (shown in red) for one laser beam along with the aerial image
of the environment. Surface normals on ground for one laser beam (bottom-left).
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scan 1320) has significantly lower values around the bins corresponding to value “1”

compared to the other two signatures. This is because of the fact that scan 1320 corre-

sponds to a closed space and therefore the ground area in this scan is smaller compared

to the other two scans shown in the figure.

When the Velodyne device is set to run at 5 Hz, a raw 360◦ scan has a size of

548,625 bytes. One histogram signatures consists of 101 double floats and thus sizes

808 bytes. This gives a data reduction ratio of 679:1 for a Velodyne scan. For extraction

of histogram signatures only the 3D points acquired within the depth range of 3m to

50m are used. The reason for discarding points less than 3m away from the sensor is

that practically speaking most of these points are returns from ground when the robot

is in an outdoor setting. The reason for discarding points beyond 50m range is that

the working range of the sensor for low reflectivity objects is 50m as mentioned in the

data sheet.

5.1.4 Comparing the signatures

An important and rather obligatory requirement after the definition of any kind of sig-

nature that encodes the appearance (or any other kind of) information is to devise a way

to quantitatively compare the signatures. As the signatures proposed in the previous

subsection are histogram based, a logical method to determine similarity/dissimilarity

between the signatures is by calculating the “histogram distance” between signatures.

(84) and (24) report the use of different histogram measures to compare their his-

togram signatures (extracted from omnidirectional image data) in order to perform

view-based localization. (84) have found “Jeffrey divergence” and χ2 measures to per-

form best for their signatures while (24) have also found χ2 measure to perform the

best. (9) gives an overview of different distance and similarity measures between two

histograms.

In our experimentation, among many possible candidates for histogram distance

measurement (including χ2, Euclidean, Sørensen, Lorentzian, Cosine, Fidelity and Jef-

freys distances etc.), the χ2 and Sørensen distance measures were found to be giving

consistent distance values for different similar and dissimilar histograms. The two his-
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Figure 5.8: Three histogram signatures (bottom) along with corresponding lidar scans
(middle) and an aerial view of the environment where the scans were acquired (top).
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Table 5.1: Histogram distances between the three example signatures shown in the figure
5.8.

Scans χ2 distance Sørensen distance

1 and 1200 14510.81 0.351

1 and 1320 17107.70 0.579

1200 and 1320 32038.13 0.654

tograms measures are defined as follows:

Dχ2 =
d∑
i=1

((Pi −Qi)2/(Pi +Qi + 1)) (5.1)

DSørensen =
d∑
i=1

|Pi −Qi|/
d∑
i=1

(Pi +Qi) (5.2)

where P and Q are the two histograms and d is the number of histogram bins.

Table 5.1 shows the histogram distances between the three example signatures

shown in figure 5.8. It can be seen that the histogram distances between scan-1320

signature and the two others (1 and 1200) is greater than the distance between 1 and

1200 themselves. This is intuitively correct because the signature for the scan 1320 is

very different compared to the other two especially at histogram bins around the value

“1” (i.e. pertaining to the ground surface normals).

Figure 5.9 shows the evolution of the two (χ2 and Sørensen) histogram distance

measures for the robot trajectory shown in figure 5.8. The figure shows that the two

histogram distance measures show slightly different characteristics (regions highlighted

by green circles). Therefore we suggest the use of both histogram distance measures

combined in order to compare any two signatures.

5.1.5 Key-signature selection

Since the acquisition rate of the lidar device at hand is fast1, the difference between two

consecutive scans acquired by the device is slight. In turn, the corresponding signatures

extracted from the scans are very similar, and thus comparing a signature to each and
1In our experiments, the Velodyne spins at 5 Hz.
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Figure 5.9: Evolution of χ2 and Sørensen histogram distance measures. Scan no. 1
from the robot trajectory shown in figure 5.8 is taken as the reference scan and distance
evolution is shown for proceeding 1504 scans acquired along the trajectory.
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Robot Ordinary signature Chosen as key-signatureBuilding

Figure 5.10: Key-signature selection: as the robot moves, some signatures are chosen as
key-signatures depending on how different they are from the last chosen key-signature.

every previously stored signature is not strictly required in order to perform loop-

closure detection or place recognition. For instance, when the Velodyne HDL 64E-S2

lidar device is set to run at 5 Hz, if the robot runs at a speed of 1m/sec, the distance at

with the two consecutive scans are acquired is only 20 cm. We therefore use the concept

of “key-signature selection”. When the robot starts to move, the signature extracted

from the first acquired scan is stored as the first key-signature. As the robot continues

and new scans are acquired, the χ2 distance between each newly extracted signature

and the last key-signature is computed. A new signature is stored as a key-signature

if the distance between the last key-signature and the current one is more than an

empirical threshold Tkey, and the process continues. The process is of key-signature

selection is shown figure 5.10 where red circles represent an extracted signature and

filled circles are the signatures chosen as key-signatures.

5.2 Loop closure detection

The small-sized global signatures for 3D lidar data defined in the previous section can

be used for fast and efficient “place recognition” or “loop-closure detection” during

autonomous robot navigation. “Fast and efficient” owes to the fact that the global

signatures extracted from the 3D lidar data are very small is size compared to the raw

lidar scans (679:1 data reduction ratio, cf. subsection 5.1.3) and the quick signature

comparison using histogram distance measures. This section presents a method of
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loop-closure detection using the defined signatures along with results on Velodyne lidar

data.

5.2.1 Methodology

As the robot moves in an environment and 3D lidar scans are acquired, their corre-

sponding extracted global signatures are stored. Some of these signatures are marked

as the key-signatures as explained in subsection 5.1.5.

At any time t, lets denote the signature extracted from the most recently acquired

3D scan by Scurr and each of the previously stored key-signatures by Sk−i where i

ranges from 1 to n, n being the total number of key-signatures stored up to time t.

The χ2 and Sørensen distances are computed between the current Scurr and Sk−i for

i ranging from 1 to n−m. m here is an arbitrary number which limits the histogram

matching to the scans that were acquired sufficiently earlier than the current scan.

In our experimentation we have set the value of m to 15. This value of m is just a

matter of choice and smaller values of m might result in loop closure detection for

the locations that the robot recently visited and therefore might not be of interest – a

better solution would be to rely on the motion estimates provided by other localisation

sensors or technique. For instance if the value of m is set to 2 and the robot is moving

in a straight line at a slow speed, the loop closure detection algorithm would signal

the detection of a loop closure just because the current histogram would match the

key-histograms very recently acquired, whereas in reality this is not a real loop closure

because the robot has not even left this area.

During the histogram matching step, if both χ2 and Sørensen distances between

histograms Scurr and Sk−i are smaller than the two threshold values Tχ2 and TSør a

“loop closure candidate” is registered. If this occurs at multiple key-locations i, all of

them are registered as loop closure candidates. The location i which has the minimum

Sørensen distance among all the loop closure candidates registered is taken as the loop

closure detection location for the current scan.

Figure 5.11 shows the above explained loop- closure detection process. As the robot

moves, some of the extracted signatures are chosen as key-signatures (shown as filled

red circles). At the current time instant, the currently extracted signature Scurr (shown

as the filled blue circle) is compared with previously stored key-signatures Sk−i for i

ranging from 1 to n−m. In this figure n i.e. the total number of key-signatures is 8 and
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m is set to 2. Therefore the Scurr is compared with key-signatures Sk−1 to Sk−6 and

a match is detected for Sk−1 and hence a loop closure is signaled between the current

robot position and position corresponding to Sk−1.

5.2.2 Results and discussion

The loop closure detection technique was implemented on a data set gathered by our

Velodyne sensor fitted on the robot Robufast shown in figure 5.12. The data set consists

of 1505 360◦ lidar scans which correspond to nearly five minutes of robot motion and

data acquisition. The Velodyne lidar device was set to run at 5 Hz during the data

acquisition and the length of robot trajectory is approximately 375m. The robot was

also fitted with centimeter accuracy D-GPS sensor in order to acquire the ground truth

localization information for the experiment.

Fig. 5.13 shows the an aerial view of the experiment environment along with the

robot trajectory (top) and the detected loop closures (bottom) shown as red lines

between the corresponding robot positions. The signature comparison threshold values

Tχ2 and TSør were set to 434 and 0.0391 respectively. The threshold value for key-

signature selection Tkey was set to 380 which lead to the selection of 255 (out of the

total 1505) signatures as the key-signatures. Key-signatures are shown as the filled blue

circles along the robot trajectory in the figure.

The robot starts to move and around the positions 893 its detects a loop closure

with position 312. This is in fact the first time the robot comes near an already visited

location. As the robot moves further, it detects more loop closures in this area. A

zoomed-in view of this area is shown in figure 5.14 (top-left). The figure (middle and

bottom) also shows the 3D scans and the corresponding signatures for one of the loop

closure instances in this area (between the positions 918 and 332). The loop closure

detection is shown as the black line in the figure (top-left).

As the robot continues to move, it detects a loop closure at the position 1056 with

the already visited position 754. This loop closure detection along the corresponding

3D scans and signatures is shown figure 5.15. The two 3D scans in the figure (bottom)

show that that scans are very similar in appearance with an approximately 190◦ shift

in orientation as the robot was heading in opposite directions when the scans 1056 and

754 were acquired.
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Figure 5.11: The loop closure detection process.
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Figure 5.12: The robot Robufast equipped with the Velodyne lidar device and other
sensors.

The robot continues to move and as it approaches position 1375, it detects a loop

closure with location 317. As the robot moves it again registers several loop closures

in this area. A zoomed-in view of the loop-closure detections in this area is figure 5.16

(top-left). The figure (middle and bottom) shows the 3D scans and the corresponding

signatures for one of the loop closure instances in this area (between the positions 1380

and 281). This loop closure detection is shown as the black line in the figure (top-left).

As the robot continues to move and approaches the position where it started, it

again registers several loop closure detections. Figure 5.17 (top-left) shows a zoomed-

in view of these loop closure detections at the start and finish positions of the robot

trajectory. The figure also shows the signatures (middle) and 3D scans (bottom) for

one of the loop-closure detections at this location. The two scans are very similar in

appearance as they essentially come from the same location in the environment.

Figure 5.18 (top-left) shows a zoomed-in view of the area in the experiment envi-

ronment where false positive loop closures were detected between the locations around

950 and 544. The figure also shows the extracted signatures (middle) and 3D scans

(bottom) for one of these loop- closure detections i.e. between the positions 952 and
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Figure 5.13: Aerial view of the environment along with the robot trajectory (top), and
the detected loop closures shown as red lines (bottom), key-signatures are represented as
filled blue circles along the robot trajectory.
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Figure 5.14: Loop closures as the robot moves through positions 893 through 919.
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Figure 5.15: Loop closures detection between the positions 1056 and 754.
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Figure 5.16: Loop closures detections as the robot moves from position 1375 through
1397.
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Figure 5.17: Loop closures detected at start and end positions of the robot trajectory.
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544 (shown as the black line in the zoomed-in view). The local-surface-normal-based

global signatures essentially encode the structure in the surroundings of the robot. One

reason for these false loop closure detections is that the two positions (between which

the false positive occurs) in the environment have similar structure i.e. similar amount

of walls and ground areas etc. This similarity in the amount of structure is apparent

from the two signatures shown in the figure (middle) which seem almost identical in

appearance.

5.3 Determining the robot orientation

The previous section presents a method for loop closure detection or place recognition

in a more general sense. This section presents a technique to efficiently determine the

difference in robot orientation between the current and the loop-closure location.The

technique is explained as follows.

Figure 5.19 shows the 3D point cloud acquired by one (out of 64) laser beam with

2◦ pitch angle at the positions 754 and 1056 of the 1505-scan data set presented in

subsection 5.2.2. The figure essentially shows a single-beam subset of the 3D scans

shown figure 5.15 (bottom). The robot orientation information from such single-beam

scans can be encoded into small orientation-signatures as follows. The 3D point cloud

acquired by the single-beam are converted from Cartesian (x, y, z) to cylindrical (θ, ρ, z)

coordinates. The points beyond 50m depth are discarded. The cylindrical-coordinate

data is then encoded into 360-bin signature for values of θ ranging from 0 to 360◦ where

each bin contains the mean ρ− coordinate of 3D points that lie within the values of θ

corresponding to that bin. The orientation-signatures for the scans of figure 5.19 are

shown in figure 5.20.

Let’s denote any two orientation-signatures from two nearby locations as Si and Sj .

In order to determine the difference in robot orientation between the two locations, the

sum of absolute difference between the two signatures is computed for 360 iterations as

follows. Si is kept stationary while Sj is moved by one bin in a circular fashion for 360

iterations, and a sum of element-to-element absolute differences is computed at each

iteration. The iteration which has the lowest sum result represents the rotation around

z − axis that scan corresponding to Sj has to undergo in order to be aligned with

scan corresponding to Si. Figure 5.21 shows the curve formed by performing the above
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Figure 5.18: False positive loop closures detection.
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x-axis

y-
ax
is

Figure 5.19: 3D point clouds for locations 754 and 1056 acquired by one (of the 64) laser
beam in the Velodyne lidar device.
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Figure 5.20: Orientation signatures for the single-beam scans shown in figure 5.19.

mentioned orientation-signature comparison for locations 754 and 1056. The curve has

its minimum value at 218◦. From the inspection of figure 5.19 it can be verified that

scan 1056 has to undergo an approximate 220◦ rotation around the z − axis in order

to be aligned to the scan 754.

Figures 5.22, 5.23 and 5.24 show the single-beam scans, the corresponding orientation-

signatures and the comparisons curves for the location pairs 332-918, 281-1380 and

82-1450 respectively. These three location pairs have already been shown in the loop-

closure detection context in the figures 5.14, 5.16 and 5.17. From inspection of the

figures 5.22, 5.23 and 5.24 it can be seen that the minima of the orientation-comparison

curves indicate correct orientation difference between the respective scan pairs.

Once the robot orientation difference is known, a one way of estimating a precise

3D transformation between two robot positions is by applying iterative closet point

algorithm or one of it’s variants such as Generalized-ICP presented in (74) to the point

cloud data from all or a subset of laser beams.

5.4 Discussion

The ability of a mobile robot to correctly localize itself is of paramount importance.

During autonomous operations, a robot has to build an environment model by perceiv-
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Figure 5.21: Comparison curve between the orientation-signatures for locations 754 and
1056. The curve has the minimum value at 218◦ implying that the scan 1056 has to undergo
a rotation of 218◦ around z-axis in order to be aligned to scan 754 (cf. figure 5.19).
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Figure 5.22: Determining the orientation difference between locations 332 and 918. The
comparison curve (bottom) has its minimum at 22◦.
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Figure 5.23: Determining the orientation difference between locations 281 and 1380. The
comparison curve (bottom) has its minimum at 204◦.
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Figure 5.24: Determining the orientation difference between locations 82 and 1450. The
comparison curve (bottom) has its minimum at 7◦.
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ing its surroundings and without reliable localization estimates the robot cannot build

spatially consistent environment models. Different solutions to the localization problem

have their own requirements and characteristics and hence need to be integrated for

robust localization during autonomous navigation.

This chapters has presented a technique for qualitative view-based localization us-

ing small-sized signatures extracted from rich multi-beam lidar data. The proposed

technique works in a two step process. The first step is essentially a “place recog-

nition” framework. It is performed by indexing global-signatures extracted from the

lidar data. As the robot moves, the newly extracted signatures are compared with the

indexed signatures in order to detect the locations that have already been visited by

the robot. Once the robot recognizes that it is in an already visited area, the rela-

tive orientation of the current and a previously visited robot position is determined by

comparing compact orientation-signatures for the two locations. This constitutes the

second step on the proposed technique.

On the one hand the proposed technique can act as an independent view-based

localization system during autonomous navigation. After place recognition and deter-

mination of relative orientation, iterative closest point algorithm can be employed in

order to estimate a precise 3D transformation between the current and the already

visited closest location. On the other hand the proposed technique can work in combi-

nation with a SLAM system running onboard a robot. While performing feature-based

SLAM, and especially while performing loop-closures, one of the most challenging prob-

lems is the data association. In order to perform loop-closures, a robot has to identify

that it is in fact in an already visited area and the features that it is observing belong

to the landmarks already present in its map at an already visited location. The view-

based localization technique presented in this chapter can assist the SLAM system by

identifying the potential loop-closure locations and thus easing the data association

problem for the SLAM system.

Integrating various solutions to the localization problem to work collaboratively

is the key to reliable localization during autonomous navigation. The view-based lo-

calization technique presented in this chapter in combination with other localization

solutions takes robust autonomous navigation one step forward.
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Chapter 6

Conclusions

The introduction of novel multi-beam lidar devices that quickly acquire dense 3D point

clouds has revolutionized the way robots perceive their surroundings. The introduction

of such devices calls for the development of techniques that exploit these sensors to

their full potential in robotics. This thesis addresses the topic of exploitation of such

devices in autonomous outdoor navigation. Specifically, the intrinsic calibration of such

devices and a technique for qualitative view-based localization by extracting small-sized

global signatures from rich lidar data have been presented in the thesis.

6.1 Summary

The first part of this thesis consists of chapters 2 and 3, and addresses the topic of multi-

beam lidar calibration. In chapter 2 an overview of lidar sensors used in robotics has

been presented. The chapter also introduces the multi-beam lidar device Velodyne

HDL-64E S2 and presents its use in outdoor autonomous robotics to date. We argue

that lidar sensors in general, and especially the novel-multi beam lidar sensors, have a

great potential for applications in robotics and especially in outdoor navigation because

of several advantages they offer over other exteroceptive sensors. These advantages

include fast and direct acquisition of 3D data with fairly long operational ranges (for

instance 50m for low reflectivity objects for the Velodyne HDL-64E S2) and superior

range measurement accuracy in comparison to stereovision for instance. We believe that

multi-beam lidar sensors have a great potential for autonomous outdoor navigation in

the the years to come.
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In order to exploit the perception ability of multi-beam lidar sensors, the most basic

requirement is their accurate calibration. In chapter 3 a technique for calibrating

the geometric and distance correction parameters for multi-beam lidar sensors has

been presented. The technique is based on the optimization of calibration parameters

by comparing acquired point cloud data to the ground-truth geometrical shape of a

calibration target (a planar wall). Results have been presented for the calibration of

orientation (rotational and vertical correction angles) and distance correction factors

for 64 laser beams of the Velodyne HDL-64E S2 lidar device. The results show that

in comparison to factory provided calibration parameters, recalibration improves the

acquired point cloud quality in terms of range measurements confirming to the ground

truth distance of objects from the lidar. Recalibration also improves the point cloud

sharpness (measured as the thickness of planar structures in the scene) in most of the

areas in the scene, but this is not the case for each and every object present in the

scene. Although the presented calibration technique brings improvement in the device

calibration in comparison to the factory calibration, there is still room for improvements

of the calibration of such devices.

The second part of this thesis consists of chapter 4 and 5 and addresses the topic of

qualitative localization using multi-beam lidar devices. In chapter 4 a discussion on

the importance of reliable localization during autonomous operation of mobile robots

has been presented. An overview of the various solutions employed to solve the local-

ization problem in autonomous robotics has also been presented including an overview

of view-based localization techniques using local and global signatures. A technique

for qualitative view-based localization by extracting small-sized global signatures from

multi-beam lidar data, such as from the Velodyne, has been presented in chapter 5.

Such sensors provide huge amounts of 3D data (1.33 million point per second for the

Velodyne) and therefore processing and storing all the 3D data in its raw form requires

a lot of memory and computation. This makes the extraction and use of small-sized

global signatures especially interesting. The said signatures are based on the histograms

of local surface normal information which can efficiently be extracted from the 3D data

by exploiting the arrangement of laser-beams inside the multi-beam lidar device. The

presented view-based localization technique is based on indexing and comparison of the

said global signatures. The technique consists of a first “place recognition” or “loop-

closure detection” step. This step is then followed by a second step that estimates the
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relative orientation between a current and a previously visited location. Experimental

results on Velodyne data have been presented that validate the proposed techniques.

6.2 Contributions

The principal area of contribution of this thesis is the exploitation of novel multi-

beam 3D lidar sensors for autonomous outdoor navigation. More specifically the thesis

contributions are:

• An analysis of the characteristics and behavior of the multi-beam lidar device

Velodyne HDL-64E S2.

• A technique for the calibration of geometric and distance correction parameters

of a multi-beam lidar device.

• A comparison of two methods for extracting local surface normal information from

multi-beam lidar data i.e. (i) by performing plane fitting in local neighborhoods

and (ii) by exploiting the arrangement of laser beams inside the lidar device.

• A technique for the extraction of small-sized (679:1 data reduction ratio) global

signatures from 3D point clouds, along with a method to quantitatively com-

pare them. The signatures are based on the histograms of local surface normal

information extracted from the point cloud.

• A technique for qualitative view-based localization by indexing and comparing the

above mentioned global signatures, complemented with an approach to determine

the relative orientation between two close robot positions.

6.3 Future work

Reliable autonomous outdoor navigation remains a very challenging task. It has been

a very active research area for decades, and it still is. The introduction of novel multi-

beam lidar devices with their fast and rich data acquisition has enabled outdoor robots

to perceive their surroundings like never before. The exploitation of these sensors to

their full potential remains an open area of research. Some possible extensions to
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the work presented in this thesis on the exploitation of these sensors for autonomous

navigation and listed below:

• Richer global signatures: The global signatures presented in chapter 5 are

based only on the local-surface-normal information. The signature definition can

be enriched by incorporating more information from the scene e.g. depth or height

of 3D points etc. Richer signature definition can increase the robustness of the

view-based localization performed using such signatures. The global signatures

defined in the thesis are rotation invariant. Directional information from 360◦

Velodyne scans can be incorporated into the signatures in order to readily esti-

mate relative orientation between two given scans while performing view-based

localization.

• Map-based localization: The global signatures presented in this thesis can

be used localize a robot within a map that is a priori available to the robot.

Using the map, one can pre-compute thanks to simulations the global signature

for numerous locations in the map. In this way the robot, at a given time, can

compare the currently extracted actual signature from the environment to the

simulated ones in order to localize itself within the map.

• Local feature extraction: The extraction of local features such as points, lines,

and planes from Velodyne data should be investigated. These local features can

be used for performing view-based localization or SLAM for instance. Planar

features can be especially interesting in an air-ground multi-robot context. The

planar features can be used to identify common landmarks seen by a ground robot

and by a UAV (unmanned aerial vehicle) while performing multi-robot SLAM for

instance.

• Lidar calibration: As mentioned in chapter 3, there is still room for improve-

ment in the techniques for multi-beam lidar calibration. The planar-calibration-

target-based calibration technique presented in chapter 3 can be extended to

automatic identification and segmentation of possible calibration targets that are

present in a point cloud. The technique can further be investigated for other

types of objects that can be used as calibration targets – poles and depth gradi-

ents along straight lines for instance.
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[24] José-Joel Gonzalez-Barbosa and Simon Lacroix. Rover localization in

natural environments by indexing panoramic images. In IEEE Interna-

tional Conference on Robotics and Automation, Washington DC, USA, May 2002.

85, 102

[25] Google. What we’re driving at [online]. Available from: http://googleblog.

blogspot.com/2010/10/what-were-driving-at.html [cited 22 August 2011]. 34

[26] Anders Hagnelius. Visual Odometry. Master’s thesis, Department of Comput-

ing Science, Ume̊a University, SE-901 87 Ume̊a, Swedenß, April 2005. 73

131

http://googleblog.blogspot.com/2010/10/what-were-driving-at.html
http://googleblog.blogspot.com/2010/10/what-were-driving-at.html


REFERENCES

[27] David S. Hall and Bruce S. Hall. Team DAD technical paper. Technical

report, Velodyne Acoustics Inc., August 2005. 16, 31

[28] Ryan Halterman and Michael Bruch. Velodyne HDL-64E LIDAR for

Unmanned Surface Vehicle Obstacle Detection. In SPIE Unmanned Sys-

tems technology XII, Orlando, Florida, USA, April 2010. x, 37

[29] Hokuyo. Scanning range finder UTM-30LX [online]. Available from: http:

//www.hokuyo-aut.jp/02sensor/07scanner/utm_30lx.html [cited 11 August

2011]. 15

[30] Andrew Howard, Sajid Siddiqi, and Gaurav S. Sukhatme. An Experi-

mental Study of Localization Using Wireless Ethernet. In The 4th Inter-

national Conference on Field and Service Robotics, July 2003. 77

[31] Patric Jensfelt and Steen Kristensen. Active Global Localisation for

a Mobile Robot Using Multiple Hypothesis Tracking. IEEE Transactions

on Robotics and Automation, 17(5):748–760, October 2001. 80
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December 2006. 74

[40] Thomas Lemaire, Cyrille Berger, Il-Kyun Jung, and Simon Lacroix.

Vision-Based SLAM: Stereo and Monocular Approaches. International

Journal of Computer Vision, 74:343–364, 2007. 74

[41] Thomas Lemaire and Simon Lacroix. SLAM with panoramic vision.

Journal of Field Robotics, 24:91–111, 2007. 74

[42] Jesse Levinson, Michael Montemerlo, and Sebastian Thrun. Map-

Based Precision Vehicle Localization in Urban Environments. In Robotics:

Science and Systems, Atlanta, GA, USA, June 2007. 79

[43] Jesse Levinson and Sebastian Thrun. Unsupervised Calibration for

Multi-beam Lasers. In 12th International Symposium on Experimental Robotics,

December 2010. 22, 92

[44] Yangming Li and Edwin B. Olson. Extracting general-purpose features

from LIDAR data. In IEEE International Conference on Robotics and Automa-

tion, May 2010. 90

[45] Yangming Li and Edwin B. Olson. A General Purpose Feature Extractor

for Light Detection and Ranging Data. Sensors, 2010. 90

133

http://www.konicaminolta.com/sensingusa/products/3D-Scanning/3D-Scanners/range5/specifications.html
http://www.konicaminolta.com/sensingusa/products/3D-Scanning/3D-Scanners/range5/specifications.html


REFERENCES

[46] M. Lindner and A. Kolb. Lateral and Depth Calibration of PMD-Distance Sen-

sors, 4292/2006 of Lecture Notes in Computer Science, pages 524–533. Springer

Berlin/Heidelberg, 2006. 21

[47] David G. Lowe. Object Recognition from Local Scale-Invariant Features.

In International Conference on Computer Vision, Corfu, Greece, 1999. 83

[48] Richard Mason, Jim Radford, Robert Walters, David Caldwell, Bill

Caldwell, and Dmitriy Kogan. DARPA Urban Challenge The Golem

Group LLC. Technical report, The Golem Group LLC, April 2007. 34

[49] The Mathworks Inc. Matlab Optimization Function: fmincon. 53

[50] Toshihiro Matsui, Hideki Asoh, and Simon Thompson. Mobile Robot

Localization Using Circular Correlations of Panoramic Images. In

IEEE/RSJ International Conference on Intelligent Robots and Systems, Taka-

matsu, Japan, 2000. 84

[51] Yoshio Matsumoto, Masayuki Inaba, and Hirochika Inoue. Visual Nav-

igation using View-Sequenced Route Representation. In IEEE Interna-

tional Conference on Robotics and Automation, Minneapolis, Minnesota, USA,

April 1996. 84

[52] Yoshio Matsumoto, Masayuki Inaba, and Hirochika Inoue. View-based

navigation using an omniview sequence in a corridor environment. Ma-

chine Vision Applications, 14:121–128, 2003. xi, 75, 84, 85

[53] Emanuele Menegatti, Mauro Zoccarato, Enrico Pagello, and Hiroshi

Ishiguro. Image-Based Monte-Carlo Localisation with Omnidirectional

Images. Robotics and Autonomous Systems, 48:17–30, 2004. 80

[54] MESA Imaging AG, Technoparkstrasse 1, 8005 Zurich, Switzerland. SR4000 Data

Sheet, May 2011. 17

[55] Michael Milford and Gordon Wyeth. Featureless vehicle-based visual

SLAM with a consumer camera. In Australasian Conference on Robotics and

Automation, Brisbane, Queensland, Australia, 2007. xi, 83

134



REFERENCES

[56] Michael Montemerlo, Sabestian Thrun, Daphne Koller, and Ben

Wegbreit. FastSLAM: A Factored Solution to the Simultaneous Lo-

calization and Mapping Problem. In AAAI National Conference on Artificial

Intelligence, pages 593–598, 2002. 74

[57] Frank Moosmann, Oliver Pink, and Christoph Stiller. Segmentation

of 3D lidar data in non-flat urban environments using a local convexity

criterion. In IEEE Intelligent Vehicles Symposium, June 2009. 92

[58] Andreu Corominas Murtra. Thesis Project: Active Map-based Local-

ization for Cooperative Mobile Robots and Urban Environments. Tech-
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