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bôıte magique qui ouvrirait sur une part encore vierge et silencieuse du monde, un vaste
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Abstract

This thesis is devoted to the study of the properties of light emitted by a collection of
atomic scatterers distributed at random positions in Euclidean space. In this respect,
an ab initio theory of random lasing is formulated in terms of the statistical properties
of the so-called ‘Green’s matrix’. This matrix belongs to the family of Euclidean ran-
dom matrices (ERMs), for which we develop an analytic theory giving access to their
eigenvalue distribution.

First, we derive quantum microscopic equations for the electric field and atomic
operators, and show how the non-Hermitian Green’s matrix (a matrix with elements
equal to the Green’s function of the Hemholtz equation between pairs of atoms in the
system) emerges in the quantum formalism. We provide expressions for the intensity
and the spectrum of light in terms of the Green’s matrix, characterize quantum Langevin
forces, and reveal how the semiclassical random laser threshold is washed out by quantum
fluctuations (chapters 2 and 3).

A mesoscopic and semiclassical description of light scattered by pumped atoms is
the subject of chapter 4. We provide a microscopic derivation of the transport equation
in the presence of gain, reveal a mapping to ERMs, and analyze the lasing threshold
inferred from the transport equation.

In chapters 5 and 6, we develop an analytic theory for Hermitian and non-Hermitian
ERMs in the limit of large matrix size. We obtain self-consistent equations for the
resolvent and the eigenvector correlator of an arbitrary ERM and apply our results to
three different ERMs relevant to wave propagation in random media: the random Green’s
matrix, its imaginary part, and its real part. We are able to describe analytically with
reasonable precision the full probability distribution of decay rates of light emitted by
a large number of atoms, as well as of the collective frequency shift induced by the
light-matter interaction. The signatures of Anderson localization in the properties of the
Green’s matrix are also discussed.

Finally, we combine microscopic equations of motion of light-matter interaction with
our results for non-Hermitian ERMs to tackle the problem of random lasing (chapter
7). The lasing threshold and the intensity of laser emission are calculated analytically in
the semiclassical approximation, and the spectrum of light below threshold is computed
by taking into account quantum effects. Our theory applies from low to high density of
atoms.
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Résumé

Cette thèse présente une étude des propriétés de la lumière émise par des diffuseurs
atomiques distribués aléatoirement dans l’espace euclidien. Dans ce cadre, une théorie ab

initio des lasers aléatoires est formulée en terme des propriétés statistiques de la ‘matrice
de Green’. Cette dernière appartient à la famille des matrices aléatoires euclidiennes
(MAE) pour lesquelles nous développons une théorie analytique donnant notamment
accès à la distribution de probabilité de leurs valeurs propres.

Dans un premier temps, nous établissons les équations quantiques microscopiques
régissant la dynamique du champ électrique ainsi que celle des opérateurs atomiques, et
explicitons comment la matrice de Green (dont les éléments sont égaux à la fonction de
Green de l’équation de Helmholtz évaluée entre les différentes paires d’atomes constitu-
ant le milieu) émerge du formalisme quantique. Nous exprimons à la fois l’intensité et
le spectre de la lumière en termes de la matrice de Green, caractérisons les forces de
Langevin quantiques, et montrons de quelle manière le seuil semi-classique d’un laser
aléatoire est affecté par la prise en considération des fluctuations quantiques (chapitres
2 et 3).

Une description mésoscopique et semi-classique de la lumière diffusée par des atomes
soumis à une pompe externe est présentée dans le quatrième chapitre. Nous dérivons
une équation de transport obéie par l’intensité moyenne en présence de gain, établissons
un ‘mapping’ avec les MAE, et analysons la condition de seuil laser déduite de l’équation
de transport.

Dans les chapitres 5 et 6, nous développons une théorie générale des MAE, hermi-
tiennes et non hermitiennes, valide dans la limite de grande taille matricielle. Nous
obtenons des équations couplées pour la résolvante et le corrélateur des vecteur propres
d’une MAE arbitraire, puis testons la validité de nos résultats sur trois matrices jouant
un rôle important dans l’étude de la propagation des ondes en milieux désordonnés: la
matrice de Green, sa partie imaginaire, et sa partie réelle. Nous sommes ainsi capables de
décrire analytiquement avec une bonne précision la distribution de probabilité des taux
d’émission lumineux dus à un grand nombre d’atomes, ainsi que celle du déplacement
lumineux collectif dû à l’interaction lumière-matière. Les signatures de la localisation
d’Anderson dans les propriétés de la matrice de Green sont également discutées.

Finalement, nous combinons les équations microscopiques de l’interaction lumière-
matière avec nos résultats relatifs aux MAE non-hermitiennes afin de caractériser dans le
détail le comportement des lasers aléatoires (chapitre 7). Le seuil laser ainsi que l’intensité
au delà du seuil sont calculés analytiquement dans l’approximation semi-classique, et le
spectre de la lumière sous le seuil est évalué en prenant en compte les effets quantiques.
Notre théorie s’applique aussi bien à basse densité qu’à haute densité de diffuseurs atom-
iques.
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Chapter 1
Introduction: Random lasing in a nutshell

1.1 How can a laser be random?

A conventional laser is a device constructed from two essential elements: an active
medium that amplifies light by stimulated emission, and a cavity that provides feed-
back. If the gain is sufficient to exceed the losses (due to partial reflections on the
mirrors of the cavity, or absorption), the system reaches a threshold beyond which the
properties of the emitted light are radically different from what can be observed below
threshold. Three main signatures of laser light may be identified: (1) its high degree
of monochromaticity, (2) its directionality and brightness and (3) the Poisson statistics
of the number of emitted photons [1, 2]. These key properties of laser light follow from
the special way of generating it, and in particular from the fact that the gain medium is
placed in a cavity with a high quality factor. Narrow resonances of the cavity give rise to
well-defined lasing modes, ensuring small fluctuations of the emitted field (first-oder tem-
poral coherence). If the wave-front is well defined, light has also a good spatial coherence
that may give rise to high directionality, eventually limited by diffraction. In addition,
small fluctuations of the intensity (second-order coherence) are due to saturation of gain
induced by nonlinear effects beyond threshold.

Obviously, if we remove the cavity of a laser, feedback is suppressed and lasing stops.
A way to restore feedback is to introduce disorder in the active medium. We call ‘random’
a laser in which the feedback is provided by multiple scattering of light on the random
heterogeneities of the active medium and not by a well-defined cavity [3, 4]. A random
laser has completely open boundaries with strong coupling to the environment, and light
can escape from the medium via any point on the boundaries, see Fig. 1.1. It should
not be confused with chaotic cavity lasers which have well-defined reflecting boundaries
with a few openings, and are characterized by chaotic ray dynamics [5].

Since the pioneering work of Letokhov and co-workers in the 1960’s [6–8], lasing in
disordered media has been the subject of various theoretical and experimental studies,
with a resurgence of interest in the mid 1990’s because of a possible relation to the
phenomenon of Anderson localization [9]. The term ‘random lasing’ was actually intro-
duced in 1995 [10]. In the course of the last decade, random lasing has been observed in
different kinds of optically thick disordered materials: powders [11], polymer films [12],
clusters [13], ceramics [14], porous materials [15], or colloidal solutions of nanoparticles
[16, 17], and hence it can be regarded as a universal property of disordered structures

1



2 Introduction: Random lasing in a nutshell §1.1

Figure 1.1: In a random laser, feeedback is provided by multiple scattering of light on
the random heterogeneities (scatterers) of the amplifying medium.

(for a review see [3, 4]).
With the renewed experimental interest in random lasers, numerous attempts to

generalize laser theory to such systems have been undertaken. In particular, two ob-
servations, that seemed at first sight contradictory, stimulated the elaboration of new
theoretical models. On the one hand, the vast majority of experiments on random lasers
were performed in the weak scattering regime (diffusive or quasi-ballistic regime), mean-
ing that the modes (or resonances) of the passive disordered system strongly overlap,
in contrast with a high-Q cavity laser. And on the other hand, sharp laser peaks were
observed in the spectrum of light emitted by a random laser, that emerged one by one
when increasing the pump above threshold. The situation was confusing because the
common belief is that interference effects can be to some extent neglected in the diffusive
regime1, while the structure of sharp laser lines can be understood only if interferences
in the multiple scattering are considered [3]. Various exotic scenarios were therefore
originally proposed to explain the existence of sharp peaks. Most of them were based
on ‘rare events’ that break away from the diffusive picture. It was suggested that the
feedback is provided by closed trajectories formed by multiply scattered light [11]. Then,
this picture was developed and the probability of having ring-shaped resonators with
index of refraction higher than average (corresponding therefore to ‘prelocalized states’)
was calculated; it was shown to be substantially increased by disorder correlation due to
finite-size scatterers [18]. More recently, mechanisms involving breakdown of diffusion
[19], or spontaneously emitted ‘lucky photons’ that travel much longer distances than
the average ones [20] were put forward. As a result of the multiplication of the various
possible scenarios, a simple comprehensive picture of random lasing was lacking.

In order to clarify the situation, it may be useful to make the following comments:

• Saying that a disordered system is in a diffusive regime does not mean that the

1If we disregard effects due to weak-localization corrections, such as, e.g., coherent backscattering,
the dynamics of light is well described by a diffusion equation for the average intensity (see chapter 4).



§1.2 The first simple picture 3

underlying modes of the system are inaccessible or irrelevant.

• Among all the resonances of an open system, modes supported by rare events are
not a priori better candidates than modes giving rise to diffusion to explain both
the laser threshold and the existence of sharp peaks above threshold.

• Although all the scenarios mentioned above may effectively arise in a random laser,
identifying for each specific system the special configuration responsible for lasing
is not really satisfactory: we would prefer a unified picture that tells us when the
diffusion prediction is reliable and when and to which extent rare events need to
be considered. Such a picture is briefly introduced in the next section.

At the present time, it seems accepted that a random laser is potentially a multimode
system that has therefore to be treated within the framework of a complete multimode
lasing theory [21, 22].

From a broader perspective, random lasers are usually considered to be difficult to
describe analytically because several features must be treated with care: (1) saturation of
the gain medium and nonlinearities of the coupled matter-field equations, (2) openness of
the medium coupled to its environment, (3) interference effects that may play a role in all
regimes of disorder, (4) quantum nature of the light-matter interaction. The goal of this
thesis is to provide foundations of an ab initio analytic theory that correctly describes
these different aspects. In the standard laser theory [23], the situation is simplified for two
reasons: disorder is absent, and there is a well-defined cavity. Existence of the cavity has
deep consequences, inasmuch as it allows to decouple the treatment of features (1), (2),
and (4). Indeed, once a high-Q cavity is assumed, we already know almost everything
about the nature of the modes that will support laser action. Therefore, there is no
need for a refined description of the light-matter interaction, in the sense that both the
openness of the cavity and quantum fluctuations are well captured by the introduction
of a phenomenological bath for the laser modes (see [23] and section 2.2). This is in
sharp contrast with random lasers, for which a modal theory (semiclassical or quantum)
is still under construction [21, 22]. The result of our experience facing the problem
of constructing an analytic random laser theory is that features (1)-(4) must not be
considered as independent building blocks that we should properly adjust together. On
the contrary, all these features should be seen as manifestations of a single well-defined
problem: the light-matter interaction at a microscopic level. In this thesis, we shall see
that starting from the very bottom of light matter-interaction naturally leads to a proper
description of the openness of the system (and the non-Hermiticity that follows), as well
as of quantum fluctuations.2

1.2 The first simple picture

There are two alternative ways to deal with the problem of light interacting with an
arbitrary medium: either we pay attention to the light dynamics, and in that case we

2Complications may occur when trying to consider the problem the other way around. For example,
if we wish to define an appropriate basis of modes to quantize the field in an open medium, using the
Feshbach projection technique [24], we have to identify an interface between the open system and its
environment, which is in general difficult (think of atoms distributed in free space with an arbitrary
density), leading eventually to expressions for the modes that require a fair amount of computation to
be constructed explicitly [21, 24–27].
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attempt to work with a dynamical equation for the field or the intensity; or we focus
on collective excitations of the ‘light-matter’ system (see section 2.4). We believe that
keeping in mind these two faces of the light-matter coin — and confronting them as often
as possible — is very fruitful. Let us consider both of them to get a first insight in the
physics of random lasers, namely to study the laser transition.

In a standard laser, disorder is absent from the amplifying medium. Formally, this
means that the transport mean free path ltr is larger than the sample size R (see chapter
4). In that case, light propagation is described by the Helmholtz equation for the electric
field. Interaction with matter (the gain medium) can be described by a source term in
this equation that features polarization of the medium. Lasing starts when the gain (con-
tained in the polarization term) exceeds losses due to absorption (also contained in the
polarization) and to partial reflections on the mirrors of the cavity. Boundary conditions
used to find the solutions of the propagation equation determine the latter source of loss.
In this sense, the mode of the cavity that minimizes the loss is the first lasing mode.
When we remove the mirrors surrounding the gain medium and add impurities (disor-
der), description of light propagation needs to be reconsidered because beyond ltr the
propagation direction of an emitted photon is lost and its phase is scrambled (see sections
4.3 and 4.5). If disorder is ‘weak’ and R≫ ltr, transport is well described by a diffusion
equation for the average intensity. Again, a source term appears in this equation that
features the gain provided by the amplifying matrix where the impurities are embedded.
But contrary to the Helmholtz equation (which is time-reversal invariant), losses are now
directly encompassed in the structure of the diffusion equation, since attenuation of the
radiation occurs due to diffusion spreading. As realized by Lethokov a long time ago
[7], there exists a threshold at which the radiation losses are compensated by the gain.
If now we increase the strength of disorder, ltr eventually becomes of the order of the
wavelength of the propagating wave and the diffusive description breaks down. In oder to
find the lasing threshold in this new situation, we could repeat the previous procedure:
first establish a propagation-like equation, then look for its instability point. Rather
than following this line, we would like to mention an inherent drawback of the preceding
approaches used to determine the lasing threshold. The diffusion equation or any other
dynamic equation for the average intensity is based on some assumptions about disor-
der, and for this reason may miss certain features of light propagation, such as, e.g., the
existence of rare events. In addition, even if the diffusion equation may predict the laser
threshold properly in a certain regime of disorder, it cannot capture the mode structure
of a random laser. In this situation, we may wonder whether a description of lasing
valid for any realization of disorder exists. Such a description is precisely given by the
‘collective excitation’ picture (or ‘modal’ picture), that we now briefly discuss.

To be concrete, let us assume that the disordered medium is made of N scatterers of
negligibly small size, such as atoms, distributed at fixed positions ri in the gain medium.
A possible way to characterize collective excitations of this system below threshold is to
consider its scattering matrix. In a semiclassical description, we will show that the latter
is given by

S(ωL) ∼ 1

A(ωL)−1 −G(ωL)
, (1.1)

where ωL is the frequency of light, and the N × N non-Hermitian matrices A(ωL) and
G(ωL) are the ‘polarizability matrix’ and the ‘Green’s matrix’. The former is diagonal:
the element Aii(ωL) = α̃i(ωL) is proportional to the polarizability of the scatterer i
featuring the linear response to the field. And the element ij of G(ωL), Gij(ωL), is
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proportional to the Green’s function of the Hemholtz equation describing propagation
of light between atoms i and j.3 The general expression (1.1) applies for any number
and configuration of atoms, any dimensionality of space, any polarizability, and any
form of the Green’s matrix that, in particular, can account for an external cavity and
amplification or absorption of light in the space between the atoms. Very generally, the
linear description breaks down and lasing starts when the scattering matrix ‘diverges’, i.e.

when at least one eigenvalue of the matrix G(ωL)A(ωL) is equal to one.4 In the absence
of external cavity, the Green’s function has no resonance in the frequency domain where
atoms scatter strongly, that is in the vicinity of their atomic frequency ω0 (we assume
two-level atoms for simplicity). Hence, we can approximate G(ωL) by G(ω0).

5 Two
different cases may be considered.

• First, let us assume that the scatterers (atoms) are passive, meaning that the gain
is provided by their surrounding medium only. Then, Eq. (1.1) can be rewritten
as

S(ωL) ∼ 1

ωL −He(ω0)
, (1.2)

where He is the effective Hamiltonian of the system under study, simply related
to the Green’s matrix by He = (ω0 − iΓ0/2)IN − Γ0G(ω0)/2 (Γ0 is the natural
linewidth of the atomic transition, and IN is the identity matrix). In the absence
of pump, the eigenvectors of He [and therefore of G(ω0)] are the modes (or quasi-
modes, or quasi-bound sates) of the open system, and the corresponding complex
eigenvalues are its ‘resonances’. By virtue of causality, these resonances — that are
identical to the poles ωL ∈ C of the S-matrix (1.2) — are located in the lower half
of the complex plane. When gain is progressively added to the amplifying medium,
the form of the Green’s matrix is modified, and the eigenvalues of the effective
Hamiltonian He continuously shift in the complex plane. Lasing occurs when one
of these eigenvalues reaches the real axis. In this picture, it is reasonable to think
that the first lasing mode originates from the resonance that was the closest to the
real axis in the absence of pump. This corresponds to the eigenvalue of G(ω0) that
had the smallest imaginary part. Intuitively, the larger is the distance from the
real axis, the more it is necessary to pump in order to reach the threshold, and the
more the spatial structure of the lasing mode at threshold will differ from what it
was in the absence of pump [22]. The difficult task is therefore to understand, from
a statistical point of view, how the poles of the S-matrix (1.2), i.e. the eigenvalues
of G(ω0), are distributed in the complex plane. The analytic determination of this
distribution is one of the topics treated in this manuscript.

• A second interesting case is the situation where scattering and gain are not inde-
pendent, but due to the same atoms. For simplicity, let us assume that these atoms
are distributed in free space. Formally, this means that the gain is not implemented
in the Green’s matrix G(ω0) appearing in Eq. (1.1), but in the polarizability matrix

3We use here, for simplicity, a scalar approximation for the electromagnetic field. If the vector nature
of the field is taken into account, A(ωL) and G(ωL) are 3N × 3N matrices, see section 4.2.

4For a more rigorous statement, see section 4.2.
5Note that in the following chapters, G(ω0) will refer to the Green’s matrix without gain medium

between scatterers [the scalar Green’s matrix in three-dimensional space is then given by Eq. (6.101)],
while the Green’s matrix for atoms embedded in a gain medium will be denoted Ga(ω0) [Eq. (7.67)]. In
this introduction, we do not distinguish between G(ω0) and Ga(ω0).
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A(ωL), in contrast with the previous situation. If the pump providing the gain is
spatially uniform [Aii(ωL) = α̃(ωL) for i = 1, . . . , N ], Eq. (1.1) reduces to

S(ωL) ∼ 1

1/α̃(ωL) −G(ω0)
, (1.3)

showing that lasing starts when one of the eigenvalue Λn of the free-space Green’s
matrix G(ω0) satisfies Λn = 1/α̃(ωL). Now the gain [described by the polarizability
α̃(ωL)] is decoupled from geometry-dependent collective effects [quantified by the
eigenvalues of G(ω0)]. As a result, different types of modes can trigger the lasing
transition, depending on the specific model of polarizability. Quite strikingly, for
the polarizability models considered in this thesis, we shall see that lasing modes
are the eigenvectors of G(ω0) that have the largest imaginary part, i.e. those that
have, in the absence of pump, the largest decay rates. This situation is opposite to
what we predicted above for passive scatterers embedded in an amplifying medium.
Note also that the lasing modes [the eigenvectors of A(ωL)−1−G(ω0) at threshold]
are identical to the modes of the passive system [the eigenvectors of G(ω0)] only
if the pump is spatially uniform. Statistical properties of the free-space Green’s
matrix G(ω0) are studied in great details in chapter 6.

The modal picture presented above is perfectly adapted to describe the lasing thresh-
old from the semiclassical point of view. It is able to predict the spatial structure of the
modes, as well as their frequencies, whatever the density of atoms.6 On the other hand,
in order to characterize the nonlinear dynamics beyond threshold, as well as the quantum
aspects of the light-matter interaction, a microscopic model is required.

Among the recent theoretical studies of random lasing, we can distinguish three
different and complementary approaches. Vanneste, Sebbah, Cao and coworkers [22,
28, 29], as well as Jiang and Soukoulis [30], or Conti and Fratalocchi [31] investigated
the nature of lasing modes and nonlinear effects beyond threshold by solving numerically
Maxwell’s equations coupled to rate equations of a four-level atomic system. This method
is limited by the available computational resources and therefore mainly restricted to one-
or two-dimensional geometries. An alternative approach, promoted under the name of
‘ab initio self-consistent laser theory’, was proposed by Türecci, Stone, Ge and coworkers
[32–35]. It is based on the idea that lasing modes can be significantly different from the
modes of the system in the absence of pump (the ‘cold cavity’) and must be determined
self-consistently. The modes are found using an expansion on the so-called ‘constant-flux’
states that obey physical non-Hermitian boundary conditions. Neglecting population
pulsation of the active medium allows one to take into account nonlinear interactions
in all orders in the field intensity (see [22] for a recent review). The theory developed
in [32–35] applies for a given realization of disorder, and as such it does not make any
prediction about the statistical properties of random lasers. Statistical properties of
random lasers with strong radiative losses were first studied by Hackenbroich [36], and
then by Zaytsev, Deych and Shuvayev [37, 38] using a combination of ad hoc random
matrix models with the Feshbach projection technique developed by Hackenbroich and
coworkers [24–27, 36]. To some extent, these works were initially inspired by the study of

6Note that the spectral width of a mode above threshold is determined by the strength of the fluc-
tuations acting on this mode. Ultimately, these fluctuations are of quantum nature. Therefore, the
semiclassical picture without ‘noise’ predicts the spectral width which is zero, whatever the nature of the
mode.
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mode statistics in chaotic resonators [39]. For one-dimensional systems, modes following
from the Feshbach projection technique can be calculated with a reasonable effort; their
statistics was studied numerically in [40] (for a recent review see [21]).

All preceding approaches lack a proper statistical description of laser modes, their
frequencies, and decay rates. They do not provide any well justified analytic theory for
the statistical properties of a random laser. One goal of this thesis is to fill this gap.
In particular, the analytic theory developed in chapter 6 for arbitrary non-Hermitian
Euclidean random matrices, and illustrated with the problem of random lasing in chapter
7, is a priori applicable for any geometry or dimensionality of the problem.

1.3 Overview of the thesis

The physical system studied in this thesis is an ensemble of N atoms at random positions
interacting with the electromagnetic field. A microscopic quantum description of this
system is the subject of chapter 2, where coupled equations of motion for the electric
field operator and atomic operators are derived. A particular effort is made to distinguish
effects that are of purely quantum nature from those that may also arise in a simpler
semiclassical formalism. In this respect, we decided to work in the Heisenberg picture
rather than in the Schrödinger picture (section 2.2). We show, in particular, how the
Green’s function of the classical Helmholtz equation emerges in the quantum formalism.
The Green’s matrix, that couples different atoms and describes propagation of light
between atoms is introduced (section 2.4.1), and the recent works where this matrix has
already been encountered are reviewed (section 2.5).

The pump providing the gain necessary for lasing is introduced in chapter 3. Two
simple but well justified pumping mechanisms are considered (section 3.2). They allow
us to study in some details the intensity and the spectrum of light emitted by a cloud
of atoms. In the case of two incoherently pumped atoms at rest in free space, we derive
exact analytic solutions for both the intensity and the spectrum. While the semiclassical
treatment predicts the existence of a sharp laser threshold (section 3.4), the full quantum
treatment reveals that the semiclassical threshold is completely washed out (section 3.5).
At the same time, we identify signatures of the Green’s matrix in the spectrum of light.
Using the formal approach developed in section 3.1, and taking into account quantum
effects, we introduce a simple perturbative procedure to express the spectrum emitted
below the lasing threshold by an arbitrary number of atoms in terms of the eigenvalues
and eigenvectors of the Green’s matrix (section 3.6). Properties of the quantum Langevin
forces that naturally emerge in the equations of motion for the atomic operators are also
discussed in section 3.3.

Chapter 4 is devoted to the semiclassical description of the properties of light emitted
by an arbitrarily large number of pumped atoms randomly distributed in free space.
After deriving a universal lasing threshold condition valid for any configuration of atoms
(section 4.2), we present the statistical treatment of disorder. In particular, we provide
a microscopic derivation of transport equation in the presence of gain, a situation that
is not sufficiently well covered by the existing literature (section 4.5). Following the
original idea of Letokhov, we discuss the lasing threshold inferred from the transport
equation (section 4.6). Chapter 4 is the occasion to define and discuss familiar notions
of the mesoscopic transport theory (scattering cross-section, extinction, scattering, and
transport mean free paths, optical theorem, etc.). On the other hand, a mapping to the



8 Introduction: Random lasing in a nutshell §1.3

properties of Euclidean random matrices is presented, allowing to make a link between
diagrammatic techniques used in mesoscopic transport, and those developed in chapters
5 and 6 in the framework of random matrix theory (sections 4.4 and 4.6).

Facing the problem of characterizing analytically the statistical properties of the
Green’s matrix that belongs to the family of Euclidean random matrices (ERMs), we
develop in chapters 5 and 6 a theory for arbitrary Hermitian and non-Hermitian ERMs in
the limit of large matrix size. Since the eigenvalues of Hermitian matrices are constrained
to the real axis, in contrast with non-Hermitian matrices, the two cases are considered
separately. Self-consistent equations for the eigenvalue distribution of Hermitian ERMs
are derived using two different methods (sections 5.5 and 5.6), and are applied to Hermi-
tian ERMs that appear in the problem of wave propagation in three-dimensional random
media (sections 5.7 and 5.8). These results are then generalized to the non-Hermitian
case. We obtain self-consistent equations for the resolvent and the eigenvector correlator
of non-Hermitian ERMs (section 6.2), and illustrate our approach by applying it to the
three-dimensional free-space random Green’s matrix (sections 6.5 and 6.6). From the
physical point of view, we are able to describe analytically with a fair precision the full
probability distribution of decay rates of light emitted by N ≫ 1 atoms, as well as of
the collective frequency shift induced by the light-matter interaction. In addition, we
promote the idea that the eigenvalue distribution of the Green’s matrix (eventually com-
plemented with a distribution of the inverse participation ratio of the eigenvectors) can
serve as a ‘map’ on which signatures of various regimes of disorder can be distinguished
(ballistic, diffusive, localized, effective medium, and superradiance regimes), providing
therefore a simple ‘visual’ and unified picture of these regimes. The distribution of eigen-
values in the complex plane may also be used to test ‘visually’ various approximations
such as the diffusion approximation, a possibility that was never realized before.

Finally, we combine microscopic equations of motion introduced in chapters 2 and 3
with analytic results derived in chapter 6 for the random Green’s matrix to study the
problem of random lasing in a ensemble of a large number of identical atoms that both
scatter and amplify light (chapter 7). We obtain analytic results for the lasing threshold
(section 7.1) and the emitted intensity above threshold in the semiclassical limit, as well
as for the spectrum of light emitted below threshold taking into account quantum effects
(section 7.2.2). The case of more ‘standard’ random lasers in which scattering centers
are embedded in an amplifying homogenous medium is briefly discussed as well (section
7.3).

In this thesis, a special effort was made to confront, combine or merge different
concepts or theoretical tools shaped in various fields of physics (atomic physics and
quantum optics, mesoscopic and statistical physics of disordered systems, random matrix
theory, laser theory). Although we believe that the potential interest of this thesis comes
from the confrontation of these different ways to look at the same problem, it may
be helpful to suggest a ‘non-exhaustive’ way of reading this manuscript. For a reader
interested in random laser physics exclusively, in a spirit following the lines of section 1.2,
it is to some extent sufficient to read section 4.2 and chapter 7, eventually complemented
with section 6.4.2 where we point out the link between the statistical properties of the
Green’s matrix and those of effective Hamiltonian used to analyze open chaotic systems.
To get some insight into the properties of the Green’s matrix, we could suggest to read
sections 2.5, 6.5, and 6.6. In particular, we attract the attention of the reader to section
6.6, where we study the signatures of Anderson localization in the statistical properties
of the Green’s matrix. The reader more interested in quantum aspects of the light-matter
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interaction may find basic and more advanced notions in chapters 2 and 3. Although
chapters 5 and 6 are the most ‘mathematical’ chapters of this thesis, we try to introduce
the reader to the field of random matrix theory and emphasize simple physical pictures
whenever possible, as illustrated by the mapping to the Dyson gas (sections 5.3 and
6.3.1). Finally, inasmuch as the results discussed in this thesis are in some sense nicely
‘visual’, a lazy reader might still learn something by just looking at the figures of the
manuscript.
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Chapter 2
Light-matter interaction in a quantum

framework

2.1 General Hamiltonian

Before discussing in details the coupled dynamics of the electromagnetic field and atoms,
it is suitable to remind what are the cornerstones of electrodynamics that we will need.
All the work presented in this manuscript deals with a system of charged spinless parti-
cles interacting with the field in the non-relativistic limit, and described by the so-called
‘standard Lagrangian’ [41]. This Lagrangian is built in such a way that Lagrange equa-
tions exactly reproduce the Maxwell-Lorentz equations. Then, redundant degrees of
freedom are eliminated by fixing the gauge. For example, in the Coulomb gauge, the
component of the electric field parallel to the propagation wave-vector is not an inde-
pendent quantity. And finally, the identification of independent parameters allows to
proceed to a canonical quantization of the light-matter field.

The Hamiltonian associated with the standard Lagrangian in the Coulomb gauge
reads:

H =
∑

α

1

2mα
[pα − qαA(rα)]2 + V Coul +HR, (2.1)

where the sum runs over all the particles α in the system, of mass mα, charge qα, and
momentum pα. The first term, that in particular involves the magnetic vector potential
A, is the kinetic energy of the particles, whereas the second and the third are respectively
the energy of the longitudinal and the transverse components of the field:

V Coul =
∑

α


ǫCoulα +

1

8πǫ0

∑

β 6=α

qαqβ
|rα − rβ|


 , (2.2)

HR = ǫ0

∫
d3r

[
E2

⊥(r) + c2B2(r)
]

=
∑

kǫ

~ωk(a+
kǫ
akǫ +

1

2
). (2.3)

The Coulomb energy of each particle, ǫCoulα , formally diverges because the standard
Lagrangian fails to describe properly the interaction of the particles with the relativistic
modes of the field. Therefore, it is usually regularized with a cut-off ~ωc ≪ mαc

2.
Quantization is achieved by promoting the properly normalized independent variables to

11
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operators. Provided we impose standard equal-time commutation relations, Heisenberg
equations of motion of these variables lead to a quantum version of the Maxwell-Lorentz
equations. The choice of the independent variables used to quantize the field depends
very much on the geometry. For example, in free space (or in a cubic box of volume
V with periodic boundary conditions), it is convenient to promote the spatial Fourier
components of the field, which become the annihilation and creation operators, akǫ and
a+
kǫ

of the modes |k, ǫ〉. In such a basis, the energy of the transverse field has the standard
form (2.3), where ωk = c|k|.

So far, we have not specified how the charged particles are spatially distributed. We
will suppose that they are packed to form N identical atoms located at positions ri
(i = 1, ..., N), whose spatial extent (a few Bohr radii) is much smaller than both the
interatomic distance and the relevant wavelengths of the field that will propagate among
them later on. Thus, the interatomic Coulomb interaction in V Coul =

∑N
i=1 V

Coul
i +∑N

i6=j V
Coul
i,j , can be approximated by a dipole-dipole coupling:

V Coul
i,j ≃ V dip

i,j +
1

3ǫ0
Di · Djδ(ri − rj), (2.4)

where Di =
∑

αi
qαi(rαi − ri) is the dipole operator of the atom i. The delta function

carries the essential information about the actual finite charge distribution of the atoms.
Its purpose is to yield the correct volume integral of the electric field radiated by the
point-like dipoles [42].

To simplify further the problem, a unitary transformation U = e−i
PN

i=1 Di·A(ri)/~ is
usually applied to the resulting Hamiltonian [41]. It modifies pαi − qαiA(ri) in pαi , and
the transverse electric field E⊥(r) in E⊥(r) − P(r)/ǫ0, where P(r) is the polarization
operator :

P(r) =

N∑

i=1

Diδ(r − ri). (2.5)

Under this unitary transformation, the energy HR of the free field becomes

HR → HR −
N∑

i=1

Di · E⊥(ri) +

N∑

i=1

ǫdipi −
N∑

i,j<i

V dip
i,j +

2

3ǫ0

N∑

i,j<i

Di · Djδ(ri − rj). (2.6)

In this expression, ǫdipi is again a diverging quantity :

ǫdipi =
1

2ǫ0V
∑

kǫ

(ǫ · Di)
2 =

1

2ǫ0V
Di ·

∑

k

∆⊥
k Di =

1

3ǫ0
δ(0)D2

i , (2.7)

where we have used the properties of the k-transverse projector:

∆⊥
k = I − k ⊗ k

k2
=
∑

ǫ⊥k

ǫ ⊗ ǫ. (2.8)

Interestingly, the dipole coupling V dip
i,j appearing in Eq. (2.6) exactly compensates the

regular component of V Coul
i,j in Eq. (2.4).

Collecting all the remaining terms, the Hamiltonian (2.1) is finally simplified into
H = H0 + V , where
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H0 =

N∑

i=1

(
Hat
i + ǫdipi

)
+HR, (2.9)

V = −
N∑

i=1

Di · E⊥(ri) +
1

2ǫ0

∑

i6=j
Di · Djδ(ri − rj). (2.10)

In H0, H
at
i is the usual monoatomic Hamiltonian that contains external and internal

degrees of freedom of an atom: Hat
i = p2

i /2m+
∑

αi
(p2
αi
/2mαi +ǫ

Coul
αi

)+V Coul
i . Equations

(2.9) and (2.10) deserve three comments:

• In several textbooks and publications [43, 44], the δ contributions, ǫdipi in Eq. (2.9)
and the contact term in Eq. (2.10), are omitted. It is usually assumed that they
only give rise to either divergent contributions that somehow can be incorporated
in the Lamb shift, or do not play any physical role. In the following sections, we
will see that it is not always true, especially when many modes of the field have to
be taken into account to catch the relevant physics of light-matter interaction.

• Contrary to some common and naive belief, HR =
∑

kǫ
~ωk(a+

kǫ
akǫ+

1
2) in Eq. (2.9),

is not the observable that represents the energy of the free field. This was only true
in Eq. (2.1) before application of the unitary transformation. In the new picture,
the free field is represented by the observable (2.6), that seems to mix atomic and
electromagnetic degrees of freedom.

• In the same manner, the observable E⊥, which couples with the dipole i through
−Di · E⊥(ri), does not stand for the free electric field. The free field is

E(r) = E⊥(r) − 1

ǫ0
P(r). (2.11)

Despite the fact that E differs from E⊥ only at the atomic positions, it obeys a
very different dynamical equation, as we will show in section 2.3.1.

It is important to insist on the two latter points. Whereas it is true that the Hamil-
tonian (2.9) is the observable for the atomic and electromagnetic energies without inter-
action, adding the coupling (2.10) means that the unitary transform U has been applied,
and therefore Eq. (2.9) loses its simple interpretation. Saying that the interaction be-
tween field and atoms is represented by (2.10) is an oversimplified picture.

The state space E that supports the Hamiltonian given by Eqs. (2.9) and (2.10)
contains the internal and external degrees of freedom of the N atoms, as well as those

of the radiation, E = ⊗N
i=1

(
EA,ini ⊗ EA,exi

)
⊗ ER. Needless to say, we will explore only a

very tiny part of this space, whose structure is tremendously complex. Since the physical
motivation of this thesis is the comprehension of the emergence of a collective behaviour
in the light-matter interaction, we would like to avoid the detailed description of some of
the features of a realistic situation. We will mainly work within the following restrictions:

• We will treat the N atoms as distinguishable particles, and therefore disregard
their bosonic or fermionic statistics.
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• We will neglect effects due to atomic motion, such as the Doppler effect. This
can be achieved either by fixing the atoms in a solid matrix or a tight trap, or
by cooling the atoms to a sufficiently low temperature. Typically, for atoms with
rms velocity

√
〈v2〉 and interacting with light through a two-level transition of

frequency ω0 = ck0, this requires at least that k0

√
〈v2〉 ≪ Γ0, with Γ0 the natural

linewidth of the transition. We will also neglect the atomic collisions. In practice,
all external degrees of freedom will be disregarded.

• In the same spirit, the atomic structure will be assumed as simple as possible. We
will consider hydrogen-like atoms, whose dipoles have the simple form Di = −eRi,
with essentially two relevant levels g and e separated by a bare atomic frequency ω0.
For an atomic transition between a ground state g with angular momentum Jg = 0

and an excited state e with Je = 1, we can show that ǫdipi = δ(0)D2
i /3ǫ0 reduces

to (2d2δ(0)/3ǫ0~)|ei,m〉〈ei,m|, where m labels the magnetic quantum number of the
excited state, and d = 〈e||D||g〉/√2Je + 1 [45, 46]. Restricting further the excited
subspace to only one m value, |ei,m〉 ≡ |ei〉, we end up with an effective two-level
model without degeneracy that obeys:

Hat
i + ǫdipi = ~

(
ω0 + δω

(1)
0

)
|ei〉〈ei|, (2.12)

δω
(1)
0 =

2d2

3ǫ0~
δ(0). (2.13)

To allow for a laser effect in this two-level model, we will have to specify a mecha-
nism that creates a population inversion between the excited and the ground states.
To this end, we will introduce in chapter 3 an auxiliary third level. We will show
how such three-level atoms can nevertheless be reduced to effective two-level atoms.

2.2 Choice of a formalism

Consider N atoms at rest at random positions in free space, interacting with the elec-
tromagnetic field through the Hamitlonian given by Eqs. (2.9) , (2.10), and (2.12), and
eventually excited by an auxiliary pump (described in chapter 3). The naive question we
would like to address is formally well defined: what are the properties of the light emitted
by this atomic system? Because different physical communities have been dealing with
this question, it has a rather long and rich history.

In the ‘atomic physics’ community were developed, almost simultaneously in the
fifties, two ideas that give an answer to our question : the superradiance and the laser.
Indeed, the classical paper by Dicke on collective spontaneous emission [47] was published
in 1954. And in 1955, Townes proposed a new device producing coherent microwaves
based on the stimulated emission, the maser [48]. In their original forms these two new
concepts were not related to the problem of multiple scattering of light.

At about the same time, in the late fifties, much attention was paid to the multiple
scattering, not of light but of electrons in solids. In particular the concept of Anderson

localization emerged in 1958 [9]. Roughly speaking, it took then almost twenty years
for these new ideas related to multiple scattering to move from the ‘condensed matter
physics’ community to the ‘optical physics’ community. Although the multiple scattering
of light has become, since the eighties, an active area of research, the bridge with the
quantum ‘atomic physics’ is still under construction [49].
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The purpose of this section — and more generally of this manuscript — is to discuss
how we can merge into a single formalism the tools of quantum atomic physics and those
of mesoscopic physics. To fix the ideas, suppose we want to calculate the intensity I(t)
produced by the atomic cloud at time t. As we shall see in chapter 3, the intensity can
be expressed as a combination of atomic operators, generically denoted by OA(t). Hence,
the quantum expectation value of the intensity is obtained by tracing those operators
OA(t) over all the degrees of freedom in the space state E = EA ⊗ ER :

〈OA(t)〉 = TrA,R [σ(t)OA] = TrA [TrR[σ(t)]OA] = TrA [σA(t)OA] , (2.14)

where σ(t) is the density operator for the complete system ‘atoms+radiation’, and
σA(t) = TrR[σ(t)] is the reduced density operator for the atomic subsytem. Eq. (2.14)
shows us that, to infer the averaged intensity 〈I(t)〉, we simply need to calculate σA(t).

When the radiation can be regarded as a reservoir (or bath) containing many degrees
of freedom, σA(t) is usually calculated within the framework of the ‘system and bath’
formalism [50–53]. Generally speaking, this approach is well adapted if the reservoir
(here the radiation) R is not affected essentially by the presence of the atomic system A,
whereas A, subject to bath kicks, evolves at two different time scales: a relaxation time
TR associated with a damping due to the averaged kicks, and a much smaller correlation
time τc, characteristic of kick fluctuations. Formally, the dynamics has to fulfill the
condition:

τc ≪
∣∣∣∣
σA(t)

dσA/dt

∣∣∣∣ . TR. (2.15)

For a generic coupling of the form V = OAOR, τc is the typical width of the correlation
function g(t− t′) = 〈OR(t)OR(t′)〉, whereas a rough estimation of TR is [52]

TR ∼ ~
2

τc 〈V 2〉 . (2.16)

For example, for a single two-level atom interacting with the vacuum modes, τc ∼ λ0/c
and TR ∼ 1/Γ0. The condition (2.15) allows to perform the so-called Born-Markov

approximation, which is essentially a first-order expansion of the dynamics of σA(t) with
respect to the parameter

√
〈V 2〉τc/~. At the evolution time-scale of σA(t), all memory

concerning the fluctuating kicks should be lost (it is a Markov process), as well as all
quantum correlations with the bath (consequence of the Born approximation).

We would like to know if this density matrix approach can be used to describe a
random laser. To make the discussion clear, we will first show how this formalism applies
in both cases of collective spontaneous emission in the absence of pump (when the system
size is small compared with the atomic wavelength, this process is called superradiance),
and laser.

First, we consider N two-level atoms in free space, initially in their excited state,
in the presence of the field in its vacuum state. We do not impose any restriction on
the size of the volume containing the N atoms. The equation describing the transient
dynamics of the reduced density matrix σA(t) controlled by the Hamiltonian (2.9) and
(2.10) was derived, wihtin the Born-Markov approximation, in 1970, independently by
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Agarwal [54] and Lehmberg [55] :

dσA
dt

= −iω0

N∑

i=1

[
S+
i S

−
i , σA

]
− i

N∑

i6=j
∆ij

[
S+
i S

−
j , σA

]

−
N∑

i,j

Γij

(
S+
i S

−
j σA + σAS

+
i S

−
j − 2S−

j σAS
+
i

)
, (2.17)

where S+
i = |ei〉〈gi| and S−

i = |gi〉〈ei| are the atomic raising and lowering operators that
define the two-level dipole operators Di = di(S

+
i + S−

i ). This equation is rederived and
discussed in great details in two very instructive reviews, in 1974 again by Agarwal [43],
and in 1982 by Gross and Haroche [56]. In these publications, as well as in a couple
of following ones in the nineties (see, e.g., various papers studying in detail the case
N = 2 [57–59]) or even very recently in 2008 [60], the coupling term ∆ij is presented
as a dipole-dipole interaction arising from the virtual photon exchange between pairs of
atoms and Γij as a source of collective damping. Actually, as it will become transparent in
section 2.3, ∆ij is simply the real part of the free-space Green’s function of the Helmholtz
equation propagating the field from atom i to atom j, whereas Γij is its imaginary part
[61].

A natural question arises: is the Born-Markov approximation, used to derive Eq.
(2.17), valid for any number N of atoms and any size R or dimensionnality of the volume
where atoms are confined? In other words, is the condition (2.15) satisfied? In the small
sample limit k0R . 1 where ‘perfect’ superradiance occurs [47], since the maximum
energy available is N times the single-atom excitation ~ω0, the temporal width of the
transient superradiant (or superfluorescent) pulse must be inversionaly proportional to
N , TR ∼ 1/NΓ0. Actually, we can even show that min |σA/(dσA/dt)| ∼ 1/N2Γ0 [56].
Because τc ∼ λ0/c, the condition (2.15) becomes N .

√
c/λ0Γ0, which is still roughly

valid for k0R > 1, at least in a quasi-one-dimensional sample [56]. This imposes an upper
limit to the number of atoms of the order of 104 (λ0 ∼ 10−6 m, Γ0 ∼ 108 s−1).

Another severe restriction follows from (2.15) if we imagine that an intense and quasi-
monochromatic wave propagates or is generated in the atomic sample. For a coherent
wave of spectral width ∆ω and intensity I, we shall have τc ∼ 1/∆ω and TR ∼ 1/I,
leading to a breakdown of the Born-Markov approximation. Hence, at first sight, it
seems impossible to describe in such a way a laser, and a fortiori a random laser, where
coherent modes do exist. In fact, a laser description in a ‘system-bath’ approach can
still be achieved, provided we consider the laser modes as part of the system and not of
the bath. Suppose that we study an ensemble of N two-level atoms pumped by a strong
field and placed inside a cavity, the modes of which are well known. The Hamiltonian of
such a system can be formally written as H = Hsys +Hsys/bath, with

Hsys = Hat +Hmodes + V at/pump + V at/modes, (2.18)

Hsys/bath = HR + V at/R +HR′ + V modes/R′
. (2.19)

Hsys contains all degrees of freedom that we are interested in: those of atoms (Hat)
interacting with the optical pump (V at/pump) and the laser modes (Hmodes +V at/modes).
On the other hand, we have put in Hsys/bath all degrees of freedom that we want to trace
out: all cavity modes that do not participate in the lasing process and constitute a bath
(HR) acting on the atoms (V at/R), as well as a contribution that is purely phenomeno-
logical, a fictitious bath (HR′) coupled to the laser modes (V modes/R′

). Clearly, there is
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no such a term in the true ‘atoms-field’ Hamiltonian (2.9) and (2.10). It is introduced
by hand to take care of the net effect, mediated by the atoms, of the bath of cavity
modes on the laser field operators. The space state is therefore E = ES ⊗ ER ⊗ ER′

,
with ES = EA ⊗ Emodes. The dynamics of the density matrix reduced to ES , σS , is then
obtained again with a Born-Markov approximation:

dσS
dt

= − i

~
[Hsys, σS ] + LatσS + LmodesσS , (2.20)

where the Lindblad operators, Lat and Lmodes, are calculated as if the two baths were
independent [23, 52, 62]:

LatσS = −
N∑

i=1

Γ0

2

(
S+
i S

−
i σS + σSS

+
i S

−
i − 2S−

i σSS
+
i

)
, (2.21)

LmodesσS = −
M∑

m=1

κm
(
a+
ma

−
mσS + σSa

+
ma

−
m − 2a−mσSa

+
m

)
, (2.22)

with a±m the annihilation and creation operators of the M cavity laser modes, and κm
their respective damping rates. Within the master equation approach, Eqs. (2.20), (2.21),
and (2.22) are, still today, the cornerstones of multimode laser theories [63–65].

Can we generalize the superradiant and laser master equations, (2.17) and (2.20), to
describe a random laser? So far, we have formulated the following objections. First, we
can doubt that the Born-Markov approximation is valid for a large number N of atoms,
as we discussed for superradiance. Second, to apply this approach in the presence of
coherent and intense modes, we have to know their structure in advance, as it is the
case in a standard laser, where the modes are those of the cavity. In a random laser the
problem is that the nature of the modes cannot be guessed because there is precisely no
cavity. The introduction of a fictitious bath for hypothetic laser modes is a completely
uncontrolled procedure in this context.

A more general objection can be formulated against a master equation approach. In
general, the density matrix σA(t) is a huge mathematical quantity with 22N elements
(for two-level atoms), which gives the clue for the evaluation of any dipole correlation
at equal times. Actually, if we are only interested in the intensity, we do not need that
much information. Rather than writing the quantum expectation value of an atomic
operator in the form (2.14), we can also express it in the Heisenberg picture as

〈OA(t)〉 = TrA,R [σ(0)OA(t)] . (2.23)

Hence, we can settle for calculating OA(t). Interestingly, moving from Schrödinger to
Heisenberg picture is not as innocent as it may seem. Not only it will allow us to formu-
late random laser equations without any strong or uncontrolled approximations, but also
it will recast the problem in a form for which semiclassical approximation becomes very
intuitive. In this change of perspective, a simple equation for a complicated quantity,
σA(t), will be replaced by a set of coupled nonlinear equations for simple quantities, the
atomic dipoles. This alternative between Schrödinger and Heisenberg pictures, which
is to some extent similar to the duality between Fokker-Planck and Langevin equations
in classical physics, clearly appears in the laser [23, 50, 53], as well as in the super-
radiance litterature [56]. More recently, it was also discussed in the study of coherent
backscattering of light from cold atoms [66].
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Our plan will be, therefore, as follows. First, we will derive Heisenberg equations,
for the electric field as well as for atomic operators, that somehow generalize the well-
known Maxwell-Bloch equations. And then, we will try to solve them in the presence of
disorder, using tools developed either in mesoscopic or in statistical physics.

Before closing this section, it is important to mention a third option, different from
the master equation and Heisenberg approaches, that can be followed to calculate the
intensity radiated by the atomic system. It is the quantum scattering formalism, where
the concept of effective Hamiltonian emerges rigorously. This will be briefly discussed at
the end of section 2.4.2 .

2.3 Heisenberg equations of motion

In this section, we work with the Hamiltonian given by Eqs. (2.9), (2.10), and (2.12),
that describes the dynamics of N two-level atoms (without degeneracy) interacting with
the electromagnetic field, in the Coulomb gauge and the dipole approximation. We
reproduce its expression for the reader’s convenience:

H =

N∑

i=1

~

(
ω0 + δω

(1)
0

)
|ei〉〈ei| +

∑

k,ǫ

~ωk

(
a†kǫ

akǫ +
1

2

)

−
N∑

i=1

Di · E⊥(ri) +
1

2ǫ0

∑

i6=j
Di · Djδ(ri − rj), (2.24)

where the dipole operators have, in the two non-degenerate level approximation, the
simple form:

Di = D+
i + D−

i = di(S
+
i + S−

i ) = di(|ei〉〈gi| + |gi〉〈ei|), (2.25)

and the field operator E⊥ writes [41]:

E⊥(r) = i
∑

k,ǫ

Ek

(
akǫǫ e

ik·r − a†kǫ
ǫ e−ik·r

)
, (2.26)

where Ek =
√

~ωk

2ǫ0V with V the quantization volume, and ǫ a unit polarization vector

orthogonal to k (we drop the corresponding subscript to simplify the notation). Once
again, we stress that E⊥ is not the electric field. Instead, it stands for the electric dis-
placement operator ǫ0E⊥ [41], whereas the electric field is given by Eq. (2.11). Choosing
the modes of a box of volume V to quantize the field is very convenient when the physical
problem under study involves only a small number of these modes. This is particularly
the case when we study a laser in a plane parallel resonator (a Fabry-Perot). For confocal
resonators however, a quantization in terms of gaussian modes would be more appropri-
ate [1, 2]. A question immediately shows up: is there a suitable basis for the random
laser? In a naive picture, we can see the N atoms randomly distributed in space as a
collection of more or less small cavities of various shapes. Hence, we expect that many
modes |k, ǫ〉 participate in the random lasing process. And there is practically no way
to guess a basis that could be more adapted than another, since there is no spatial sym-
metry in the problem (see chapters 1 and 7 for a discussion about the modes of random
lasers).
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Therefore, the best strategy is, according to us, to abandon any modal decomposition
at this stage. In other words, rather than looking at the interaction of each atom with
each mode |k, ǫ〉, we can directly focus on the interaction of each atom with the total
electric field operator E. This procedure is detailed in section 2.3.2. In the same manner,
rather than looking at the dynamics of each mode separately, we can settle for the electric
field dynamics. As we pointed out in section 2.1, the commutation relations adopted in
the quantization procedure of the field are such that Heisenberg equations of motion
lead to a quantum version of the Maxwell-Lorentz equations. With this in mind, we
expect the field to obey a quantum version of the Helmholtz equation, with a source
term involving the polarization (2.5). The explicit derivation of such equation is the
subject of section 2.3.1.

2.3.1 Electric field dynamics

The idea consists in solving the Heisenberg equations of motion for operators akǫ,

dakǫ

dt
= − i

~
[akǫ(t),H] = −iωkakǫ(t) +

1

~

N∑

i=1

EkDi(t) · ǫe−ik·ri , (2.27)

in order to express the transverse field E⊥ defined by Eq. (2.26) in terms of atomic dipoles
only. By doing so in the frequency domain, the retarded transverse field, E⊥(r, ωL) =
limη→0+

∫∞
−∞ dtei(ωL+η)tE⊥(r, t), reads

E⊥(r, ωL) = E0(r, ωL)−1

~

N∑

i=1

∑

k,ǫ

E2
k

(
eik·(r−ri)

ωL − ωk + iη
+

e−ik·(r−ri)

−ωL − ωk − iη

)
[ǫk ⊗ ǫk]Di(ωL),

(2.28)
where E0(r, ωL) is the Fourier transform of the free component of the electric field. In
the absence of atoms, all modes contribute to the field E0(r, t), oscillating according to
their natural frequencies:

E0(r, t) = i
∑

k,ǫ

Ek

(
akǫǫ e

i(k·r−ωt) − a†kǫ
ǫ e−i(k·r−ωt)

)
. (2.29)

Inasmuch as we would like to show that the electric field is the solution of a propagation
equation, it is convenient to rewrite Eq. (2.28) in the form

E⊥(r, ωL) = E0(r, ωL) +
1

ǫ0

N∑

i=1

g⊥(r − ri, ωL)Di(ωL), (2.30)

with

g⊥(r, ωL) = −
∑

k,ǫ

ωk

2V

(
eik·r

ωL − ωk + iη
+

e−ik·r

−ωL − ωk − iη

)
[ǫk ⊗ ǫk]

=

∫
dk

(2π)3
eik·r

ωk

2

(
1

ωL − ωk + iη
+

1

−ωL − ωk − iη

)
∆⊥

k

=

∫
dk

(2π)3
eik·r

−k2

k2
L + iη − k2

∆⊥
k , (2.31)
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where kL = ωL/c and ∆⊥
k is the k-transverse projector (2.8). Anticipating what is

to come, we mention that g⊥ is the Green’s function of an equation satisfied by the
transverse field E⊥.

We are now able to infer the equation obeyed by the total electric field given, accord-
ing to Eq. (2.11), by:

E(r) = E⊥(r) − 1

ǫ0

N∑

i=1

Diδ(r − ri). (2.32)

Inserting the expression (2.30) of the transverse field into this equation leads us to in-
troduce a function g, similar to g⊥, such that

E(r, ωL) = E0(r, ωL) +
1

ǫ0

N∑

i=1

g(r − ri, ωL)Di(ωL). (2.33)

The spatial Fourier transform of the kernel function g is

g(k, ωL) = g⊥(k, ωL) − I

=
−k2

k2
L + iη − k2

∆⊥
k − I

=
−k2

L

k2
L + iη − k2∆⊥

k

. (2.34)

Since k2∆⊥
k behaves in the reciprocal k-space as does the operator ∇ × ∇× in real

space, Eq. (2.34) shows that g(r, ωL) is, as expected, the retarded Green’s function of
the Helmholtz equation:

(
−∇×∇× +k2

L + iη
)
g(r, ωL) = −k2

LI δ(r). (2.35)

It is relatively easy to show that the solution of Eq. (2.35) in three-dimensionnal space
reads

g(r, ωL) = −1

3
δ(r)I + k2

L

eikLr

4πr

[
P (ikLr)I +Q(ikLr)

r ⊗ r

r2

]
, (2.36)

with

P (x) = 1 − 1

x
+

1

x2
,

Q(x) = −1 +
3

x
− 3

x2
.

(2.37)

In particular, in the far-field, the radiation becomes r-transverse:

g(r, ωL) ∼
r→∞

k2
L

eikLr

4πr
∆⊥

r . (2.38)

Finally, combining the solution (2.33) with Eq. (2.35), we infer the dynamical equation
satisfied by the electric field operator:

∇×∇× E(r, t) +
1

c2
∂2
tE(r, t) = − 1

ǫ0c2
∂2
tP(r, t), (2.39)
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where P (r, t) is the polarization associated with the N atomic point-like dipoles, already
defined in Eq. (2.5). Note that Eq. (2.39) can equivalently be rewritten as

∆E(r, t) − 1

c2
∂2
tE(r, t) =

1

ǫ0c2
∂2
tP(r, t) − 1

ǫ0
∇⊗∇P(r, t). (2.40)

Interestingly, although the Green’s function g⊥ characterizing the transverse field E⊥
in Eq. (2.30) differs trivially from g, the dynamics of E⊥ is substantially different from
that of E. In particular, the source term in the equation for E⊥ does not involve any
temporal derivative of the polarization:

∆E⊥(r, t) − 1

c2
∂2
tE⊥(r, t) = − 1

ǫ0
∆P⊥(r, t), (2.41)

where P⊥ is the transverse component of the polarization:

P⊥(r, t) =

∫
dk

(2π)3
eik·r∆⊥

k P(k, t). (2.42)

Note also that the transverse field E⊥ does not coincide with the transverse component
of the electric field E, because the polarization, that makes the link between them in
Eq. (2.32), is not longitudinal.

The propagation equation (2.39) is the quantum version of the standard wave equa-
tion in classical optics [42]. In its full quantum form, it rarely appears in the literature,
presumably because the study of optical quantum properties in a medium without simple
spatial symmetry (like a regular cavity) is not a very popular topic. That said, equations
similar to (2.39) show up in some studies devoted, for example, to superradiance [56, 67]
(where E⊥ and E are often confused), to the quantized motion of atoms in laser field
[68], or to the propagation of quantum fields under conditions of the electromagnetically
induced transparency [69].

2.3.2 Dynamics of atomic variables

2.3.2.a Rotating wave approximation

To calculate the evolution of atomic variables we will slightly simplify the Hamiltonian
(2.24) by means of the so-called Rotating wave approximation (RWA). Its justification
requires decomposition of the electric field in its positive and negative frequency parts
[70, 71], E(r, t) = E+(r, t) + E−(r, t), with

E+(r, t) =

∫ ∞

0

dωL
2π

E(r, ωL)e−iωLt, (2.43)

and E−(r, t) = [E+(r, t)]
†
, or equivalently E−(r, ω) = [E+(r,−ω)]

†
since E is Hermitian.

In the same manner, we define E+
⊥ and E−

⊥, as well as E+
0 and E−

0 . We now observe
that, because of Eq. (2.29), the positive frequency part of the free field is given, in the
plane-wave basis, by

E+
0 (r, t) = i

∑

k,ǫ

Ekakǫǫ e
i(k·r−ωt). (2.44)

We will assume that such a relation also holds in the presence of atoms, which means
that

E+
⊥(r, t) = i

∑

k,ǫ

Ekakǫ(t)ǫ e
ik·r. (2.45)
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Furthermore, in Eq. (2.25) we introduced the atomic raising and lowering operators,
which, logically, define the raising and lowering components of the polarization (2.5):

P+(r, t) =

N∑

i=1

D+
i (t)δ(r − ri), (2.46)

and P−(r, t) = [P+(r, t)]
†
. Unfortunately, this notation does not coincide with the

definition of the frequency components that we used for the field. Actually, as it will soon
become clear from atomic Heisenberg equations, P+(r, t) turns out to be the negative
frequency component of the polarization. This is true when atoms evolve freely, and again
we will assume that this holds in the presence of interaction with the field. Therefore,
the positive frequency part of the total electric field (2.11) reads

E+(r, t) = E+
⊥(r) − 1

ǫ0

N∑

i=1

D−
i (t)δ(r − ri). (2.47)

Moreover, the positive frequency part of the propagation equation (2.39) leads to the
analog of Eq. (2.33):

E+(r, ωL) = E+
0 (r, ωL) +

1

ǫ0

N∑

i=1

g(r − ri, ωL)D−
i (ωL), (2.48)

where, we recall, g is the retarded Green’s function of the Helmholtz equation (2.35).
We are now able to introduce RWA. It consists in neglecting highly oscillatory terms

that appear in the two contributions (D+
i + D−

i ) ·
[
E+

⊥(ri) + E−
⊥(ri)

]
and (D+

i + D−
i ) ·

(D+
i + D−

i ) of the Hamiltonian (2.24). Provided that the typical frequencies ωL of the
field which will contribute to the random laser process are close to the atomic frequency
(|ωL−ω0| ≪ ω0), we can simplify the Hamiltonian (2.24) into a form where non-resonant
contributions have been disregarded:

H =

N∑

i=1

~

(
ω0 + δω

(1)
0

)
|ei〉〈ei| +

∑

k,ǫ

~ωk(a†kǫ
akǫ +

1

2
)

−
N∑

i=1

[
D+
i · E+

⊥(ri) + D−
i · E−

⊥(ri)
]
+

1

ǫ0

N∑

i6=j
D+
i · D−

j δ(ri − rj). (2.49)

It is worth noting that we did not made use of the RWA to derive the quantum wave
equation (2.39). If we selected only the resonant term of the positive frequency part
in Eq. (2.28), we would have found a solution of the form (2.48), but with the Green’s
function g replaced by its imaginary part. This means that non-resonant contributions
are essential as far as the field is concerned: without them we would not be able to
recover the standard wave equation in the semiclassical limit.

2.3.2.b Dipole and population imbalance dynamics

Internal degrees of freedom of N two-level atoms without degeneracy are entirely charac-
terized by a set of 2N operators. We can choose, for example, the dipole raising operator
and the population imbalance of each atom:

D+
i = diS

+
i = di|ei〉〈gi| = d D̃+

i = d d̃i|ei〉〈gi|,
Πi = |ei〉〈ei| − |gi〉〈gi|.

(2.50)
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When computing Heisenberg equations of motion for these operators we shall keep in
mind that, whereas any atomic operator commutes at equal time with the components
E±

⊥q of the transverse field (2.26), it is not always the case for the electric field (2.11):

[
D±
i (t),E±

⊥q(r, t)
]

= 0,
[
Πi(t),E

±
⊥q(r, t)

]
= 0,

[Di(t),Eq(r, t)] = 0, [Πi(t),Eq(r, t)] 6= 0, (2.51)[
D±
i (t),E±

q (r, t)
]
6= 0,

[
Πi(t),E

±
q (r, t)

]
6= 0.

Under the action of the Hamiltonian (2.49), the dipole raising operator of atom i oscillates
according to

dD+
i

dt
= i(ω0 + δω

(1)
0 )D+

i +
i

~
[di ⊗ di]E

−
⊥(ri)Πi −

i

ǫ0~
[di ⊗ di]

N∑

j 6=i
D+
j δ(ri − rj)Πi.

(2.52)

In this equation we can force the field E− to appear by expressing it through E−
⊥ using

Eq. (2.47). In this operation, a new diverging frequency shift δω
(2)
0 emerges:

dD+
i

dt
= i(ω0 + δω

(1)
0 + δω

(2)
0 )D+

i +
i

~
[di ⊗ di]E

−(ri)Πi, (2.53)

with

δω
(2)
0 = − d2

ǫ0~
δ(0). (2.54)

Note that we have chosen to write Eq. (2.53) in the normal order [71], namely with E−

appearing on the left side of Πi. Actually, as we will see in the following, this choice is
the most convenient to get the semiclassical limit of Heisenberg equations [72]. With the

antinormal order, the shift δω
(2)
0 would be replaced by its opposite in Eq. (2.53):

dD+
i

dt
= i(ω0 + δω

(1)
0 − δω

(2)
0 )D+

i +
i

~
Πi(di ⊗ di)E

−(ri). (2.55)

On the other hand, the Heisenberg equation satisfied by the population imbalance is

dΠi

dt
=

2i

~

[
D+
i · E+

⊥(ri) − E−
⊥(ri) · D−

i

]
+

2i

ǫ0~

N∑

j 6=i

(
D+
i · D−

j −−D+
j · D−

i

)
, (2.56)

which takes a simpler form if we express it in terms of the electric field :

dΠi

dt
=

2i

~

[
D+
i · E+(ri) − E−(ri) · D−

i

]
. (2.57)

Again, we choose here the normal order. However, although
[
D±
i (t),E±

q (r, t)
]
6= 0, this

equation looks formally the same in the antinormal order because the two commutators
compensate each other.

There are reasons for not being entirely satisfied by the dynamical equations of motion

(2.53) and (2.57). First, because we would like to get rid of diverging shifts δω
(1)
0 and

δω
(2)
0 . Second, because we would like to see explicitly the relaxation rate of atomic

operators that we are familiar with. In fact, all this information is implicitly contained
in the electric field, as we now show.
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2.3.2.c Own radiation field, Lamb shift and spontaneous emission

As it is clear from expression (2.33), the electric field contains a contribution generated
by the N atoms. In particular, each atom radiates a field towards all atoms including
himself. The latter contribution g(0)Di/ǫ0 is apparently pathologic since it diverges.
Because we want to emphasize its role in equations of motion, we define a ‘smoothed’
electric field:

Es(r, ωL) = E(r, ωL) − 1

ǫ0
g(0, ωL)

N∑

i=1

Di(ωL)δr,ri , (2.58)

so that, at the position ri of atom i, it becomes

E+
s (ri, ωL) = E+

0 (ri, ωL) +
1

ǫ0

N∑

j 6=i
g(r − ri, ωL)D−

j (ωL). (2.59)

Assuming that g(0, ωL) ≃ g(0, ω0) (which is consistent with RWA), we replace in
Eqs. (2.53) and (2.57) the field E(ri, t) by its decomposition inferred from Eq. (2.58).
We obtain

dD+
i

dt
= i

[
ω0 + δω

(1)
0 + δω

(2)
0 − d2

ǫ0~
g∗(0, ω0)

]
D+
i +

i

~
[di ⊗ di]E

−
s (ri)Πi, (2.60)

dΠi

dt
=

2i

~

[
D+
i · E+

s (ri) − E−
s (ri) · D−

i

]
− 2d2

ǫ0~
Im [g(0, ω0)] (Πi + 1) . (2.61)

We now take advantage of the relation between the singularity of the Green’s function,
g(0, ω0), and the monoatomic Lamb shift ∆ω0 and natural line width Γ0 calculated in
the gauge ‘A · p’ without the RWA [45, 52]:

− d2

ǫ0~
g∗(0, ω0) = ∆ω0 + i

Γ0

2
+ δω

(3)
0 , (2.62)

with

δω
(3)
0 =

d2

3ǫ0~
δ(0). (2.63)

Therefore, apart from the Lamb shift ∆ω0, the diverging contributions in Eq. (2.60) are

δω
(1)
0 , δω

(2)
0 and δω

(3)
0 . Their explicit expressions given by Eqs. (2.13), (2.54), and (2.63)

reveal that they nicely compensate each other:

δω
(1)
0 + δω

(2)
0 + δω

(3)
0 = 0. (2.64)

This is an indirect proof of the consistency of our approach. Thanks to the decomposition
(2.58) we evacuate all monoatomic quantum subtleties that could bother us later. We
finally obtain the atomic equations of motion in their useful form

dD+
i

dt
= i(ω0 + ∆ω0)D

+
i − Γ0

2
D+
i +

i

~
[di ⊗ di]E

−
s (ri)Πi, (2.65)

dΠi

dt
= −Γ0 (Πi + 1) +

2i

~

[
D+
i · E+

s (ri) − E−
s (ri) · D−

i

]
. (2.66)

We recall that these equations are written in the normal order. Equivalent equations
in the antinormal order look less intuitive. For example, Eq. (2.66) is formally the same
as

dΠi

dt
= Γ0 (Πi − 1) +

2i

~

[
E+
s (ri) · D+

i − D−
i · E−

s (ri)
]
, (2.67)
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where it seems that the population imbalance spontaneously diverges instead of decaying
as it is the case in Eq. (2.66). To clarify this point, let us consider the somehow trivial
situation where only one atom interacts with the field. In that case the smoothed field
reduces to its free component, E±

s = E±
0 . Suppose also the radiation initially in its

vacuum state |0R〉. Since, according to Eq. (2.29), 〈0R|E−
0 = 0 and E+

0 |0R〉 = 0, E±
0

does not contribute to the quantum expectation value of Eqs. (2.65) and (2.66) in the
vacuum state. Consequently, in the normal order picture, spontaneous emission as well
as the Lamb shift seem exclusively due to the own radiation field — as indicated by
Eq. (2.62) — and not to the ‘vacuum fluctuations’. However, this interpretation breaks
down in the antinormal order picture, where terms involving E±

0 do not vanish. For
example, in the expectation value of (2.67), the vacuum fluctuations (namely E±

0 ) are
primordial to restore the proper decay rate. As pointed out in [73], the two interpretations
are “merely two sides of the same quantum-mechanical coin, with each [...] being an
oversimplification motivated by the ordering scheme adopted”. We finally report that
in [72], Cohen-Tannoudji proposes to use neither the normal nor the antinormal but the
symmetric picture, where both the own radiation field and the vacuum fluctuations are
responsible for the Lamb shift and spontaneous emission.

Atomic equations of motion (2.65) and (2.66) — or Eqs. (2.53) and (2.57) — together
with Eq. (2.39) — or Eq. (2.59) — form a closed set that contains all the information
necessary to infer the dynamics of both the field and the internal atomic degrees of
freedom. Equations of this type are sometimes called ‘Maxwell-Bloch equations’ [56, 67].
We stress again that the field coupled to atoms in Eqs. (2.65) and (2.66) is not the total
electric field E that appears in the wave equation (2.39), but only its smoothed part
Es. In the computation of the atomic polarizability in chapter 4, we shall see that this
seemingly technical detail might have non trivial consequences. The physical content of
these coupled equations as well as the strategy to solve them is the subject of the next
section.

2.4 Microscopic and mesoscopic pictures

Generally speaking, when looking at the interaction between atoms and light, we can
adopt two points of view. In the perspective of mesoscopic transport, we focus on
light behavior without paying very much attention to matter, whereas in a microscopic
treatment we try to integrate out the radiative degrees of freedom to highlight atomic
excitations [49]. While in the first picture we wish to follow the light in its dynamics, in
the second we adopt a much more static glance that leads us to interpret manifestations
of the light-matter interaction in terms of many-body physics, emergence of collective
properties, or phase transitions. This alternative is somehow reminiscent of Lagrangian
and Eulerian specifications of a flow field: either we sit in the boat and drift down the
river, or we prefer its bank and watch the water pass. It is instructive to make a link
with our discussion of section 2.2 about Schrödinger and Heisenberg pictures. In the
master equation approach (Schrödinger picture), often used in atomic physics, we always
consider the radiation as a reservoir that we try to integrate out. In this perspective, the
master equation formalism clearly belongs to the microscopic picture. Situation is more
versatile in the Heisenberg picture for we are free to choose between mesoscopic and
microscopic points of view. Indeed, on the one hand we have the wave equation (2.39)
for the electric field operator, and on the other atomic equations of motion (2.65) and
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(2.66). At our convenience, we can formally eliminate the atomic or the field variables.

2.4.1 Microscopic excitations

First, we adopt the microscopic picture and eliminate the field variables. Rigorously, we
have to insert the smoothed field solution (2.59) rewritten in the time domain in atomic
Eqs. (2.65) and (2.66). One can verify that the resulting equations simplify provided that
the atomic level spacing is well defined (Γ0 ≪ ω0) and that the time of flight through
the sample of typical size R is negligible (Γ0 ≪ c/R). In that case we can simply replace
g(ri−rj , ωL) by g(ri−rj , ω0) in Eq. (2.59). Note that it is only possible because the free
space Green’s function g has no resonance in the frequency domain where atoms scatter
strongly (namely in the vicinity of ω0). If atoms were surrounded with a cavity of high
finesse, the frequency pattern of g would contain sharp peaks representing cavity modes,
and our simplification scheme would break down. Having said that, here we obtain

dD̃+
i

dt
=

(
iω0 −

Γ0

2

)
D̃+
i +

id2

ǫ0~

k3
0

6π
∆

‖
i

N∑

j

G∗
ij(ω0)D̃

+
j Πi +

id

~
∆

‖
iE

−
0 (ri)Πi, (2.68)

dΠi

dt
= −Γ0 (Πi + 1) − d2

ǫ0~

2k3
0

3π
Im


D̃+

i ·
N∑

j

Gij(ω0)D̃
−
j


− 4d

~
Im
[
D̃+
i · E+

0 (ri)
]
,

(2.69)

where we use a slightly loose operator notation ImO = (O−O†)/2i, and the Lamb shift

∆ω0 has been absorbed in the definition of the atomic frequency ω0; ∆
‖
i = d̃i⊗ d̃i is the

projection operator (on the dipole d̃i), and d̃i and D̃±
i are defined in Eq. (2.50). Finally,

the coupling coefficient Gij(ω0) is the dimensionless free space Green’s function:

Gij(ω0) =
6π

k3
0

(1 − δij)g(ri − rj , ω0). (2.70)

Next, thanks to the definition of the spontaneous decay rate,

Γ0 =
2π

~2

∑

k,ǫ

E2
k|d · ǫ|2δ(ω0 − ωk) =

d2k3
0

3πǫ0~
, (2.71)

Eqs. (2.68) and (2.69) reduce to

dD̃+
i

dt
=

(
i
ω0

Γ0
− 1

2

)
D̃+
i +

i

2
∆

‖
i

N∑

j

G∗
ij(ω0)D̃

+
j Πi −

i

2
∆

‖
iΩ

−
0 (ri)Πi, (2.72)

dΠi

dt
= − (Πi + 1) − 2Im


D̃+

i ·
N∑

j

Gij(ω0)D̃
−
j


+ 2Im

[
D̃+
i · Ω+

0 (ri)
]
, (2.73)

where the time is from now on in units of Γ−1
0 , and Ω±

0 is the dimensionless Rabi frequency
associated with the free field, Ω±

0 = −2dE±
0 /~Γ0 [52].

Equations (2.72) and (2.73) describe the matter-field dynamics in the microscopic pic-
ture. Quite interestingly, we did not need to make any strong approximation to get them.
Actually, we only used two simplifications: the RWA for internal degrees of freedom and
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the approximation Gij(ωL) ≃ Gij(ω0). Both of them can be relaxed: equations would
only look a bit more complicated, and would involve convolution products. In particular,
we emphasize that we did not invoke any approximation of the Born-Markov type, as it
it is necessary in the master equation approach.

It is also worth noting that equations similar to (2.72) and (2.73) were derived quite
a long time ago, in the seventies, by Lehmberg [55] and Agarwal [43]. Nevertheless
the spirit of their derivation differs substantially. Indeed, the key to our derivation
lies in the clear division of the matter-field dynamics into a wave equation (2.39) and
atomic equations (2.53) and (2.57), so that the origin of the coupling Gij in Eqs. (2.72)
and (2.73) is obvious. Conversely, the authors of [43, 55] looked at the interaction of
each atom with each mode of the field |k, ǫ〉 and then summed up the contributions of
all the modes. Because of this blurring summation (and also because the authors did
not use the complete Hamiltonian (2.24), and made no difference between E and E⊥),
they apparently overlooked the fact that the coupling tensor G was simply the Green’s
function of the Helmholtz equation. Having this point in mind clarifies the situation. For
example, it allows for a straightforward generalization of Eqs. (2.72) and (2.73) to the
case where atoms are embedded in a homogeneous medium or surrounded by a cavity.

Before discussing the physical content of equations (2.72) and (2.73), we would like
to show what they become when we neglect the vectorial nature of the field. In this
procedure, the dipolar coupling Di · E⊥(ri) in the Hamiltonian (2.24) is approximated
by dSiE⊥(ri), all summations over polarizations, like in Eq. (2.26), are omitted, and

projectors onto dipoles, ∆
‖
i = d̃i ⊗ d̃i, are simply replaced by the identity operator.

Moreover, the scalar electric field operator E obeys the scalar wave equation

∆E(r, t) − 1

c2
∂2
tE(r, t) =

1

ǫ0c2
∂2
t P (r, t). (2.74)

Its retarded Green’s function g in reciprocal space,

g(k, ωL) =
−k2

L

k2
L + iη − k2

, (2.75)

is nothing but the transverse component of the dyadic Green’s function g (2.34),

g(k, ωL) = −∆
‖
k + g(k, ωL)∆⊥

k . (2.76)

Finally, note that in the scalar approximation the value of the spontaneous emission rate
is different from (2.71):

Γ0 =
2π

~2

∑

k

Ekd
2δ(ω0 − ωk) =

d2k3
0

2πǫ0~
(scalar field). (2.77)

Hence, the scalar version of Eqs. (2.68) and (2.69) is

dS+
i

dt
=

(
i
ω0

Γ0
− 1

2

)
S+
i +

i

2
Πi

∑

j

G∗
ij(ω0)S

+
j − i

2
Ω−

0 (ri)Πi, (2.78)

dΠi

dt
= − (Πi + 1) − 2Im


S+

i

∑

j

Gij(ω0)S
−
j


+ 2Im

[
S+
i Ω+

0 (ri)
]
, (2.79)
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where Gij(ω0) is the ij element of a N ×N non-Hermitian matrix, which we will call in
this manuscript the scalar Green’s matrix :

Gij(ω0) =
4π

k3
0

(1 − δij)g(ri − rj , ω0). (2.80)

Note that the normalization coefficient is not the same as in Eq. (2.70). It is chosen
such that the average of Gij(ω0) over the solid angle dΩij = drij/r

2
ijdrij coincides with

Gij(ω0):
1

4π

∫
dΩijGij(ω0) = Gij(ω0). (2.81)

In three dimensional space, it has the form

Gij(ω0) = (1 − δij)
eik0|ri−rj |

k0|ri − rj |
. (2.82)

For future use, we also introduce the dimensionless smoothed field Ω+
s = −2dE+

s /~Γ0

and its scalar version Ω+
s = −2dE+

s /~Γ0. With Eqs. (2.59), (2.70), (2.71), (2.77), and
(2.80), we obtain

Ω+
s (ri, ωL) = Ω+

0 (ri, ωL) −
(
ωL
ω0

)3 N∑

j 6=i
Gij(ωL)D̃−

j (ωL), (2.83)

Ω+
s (ri, ωL) = Ω+

0 (ri, ωL) −
(
ωL
ω0

)3 N∑

j 6=i
Gij(ωL)S−

j (ωL). (2.84)

Coupled nonlinear quantum equations (2.78) and (2.79) deserve a few comments:

• Both of them contain three contributions: (1) a monoatomic part that corresponds
to the well-known Bloch equations of atomic physics [52], (2) a part due to inter-
atomic coupling, the kernel of which is the matrix G, (3) the action of the free
field E±

0 on each atom. The information about an eventual optical pump is not
contained in these operatorial equations but in the state of the field that we will
use to take their expectation value later on. If, for the time being, we average over
|0R〉, the terms containing Ω±

0 vanish. To some extent (that is detailed in section
3.3), and with respect to |0R〉, these terms behave as Langevin forces, and for this
reason are called quantum Langevin forces [52, 66, 74].

• Atom i is coupled to atom j through Gij that propagates the field from one to the
other. This is not surprising inasmuch as the same occurs for classical dipoles: Gij
is a classical quantity. Less trivially, this coupling does not vanish in the absence of
photons, given that vacuum expectation values of interatomic terms in Eqs. (2.78)
and (2.79) are nonzero. Just as the Lamb shift and the spontaneous decay rate are
related to the the own radiation field through gii — see Eq. (2.62) — a ‘collective
Lamb shift’ and van der Waals forces arise from the real and imaginary parts of the
interatomic coupling Gij . As they do not need the presence of external photons to
build up, they are sometimes said to be due to virtual photon exchange between
atoms [49, 52, 60, 75]. Note that the vacuum fluctuations depicted by the quantum
Langevin forces seem here not necessary to explain these effects. As we discussed
in section 2.3.2.c, this is only because Eqs. (2.78) and (2.79) are written in the
normal order.
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• As we will show later on, Eqs. (2.78) and (2.79) admit a semiclassical limit, where
quantum Langevin forces are disregarded and the remaining operators, S±

i and Πi,
are replaced by c-numbers. In this limit, Eqs. (2.78) and (2.79) feature the dynam-
ics of classical dipoles with long-range coupling coefficient Gij . They correspond
to an effective Hamiltonian — see, for example, Eq. (2.98) — which is strongly
reminiscent of the Hamiltonian of topologically disordered systems, such as spin
glasses. The latter are alloys in which magnetic impurities substitute atoms at
random positions. They are well described by a randomized version of the Ising
model such as the Sherrington-Kirkpatrick model [76]. The Hamiltonian of this
model is H = −∑i hiSi −

∑
i6=j JijSiSj , where hi is the local external magnetic

field and Jij is the interaction between impurities. In a metal, localized magnetic
moments interact indirectly via polarization of conduction electrons through the
Ruderman-Kittel-Kasuya-Yosida (RKKY) potential. In three dimensional space
the latter is of the form [77]

Jij = J
cos (2kF |ri − rj |)

|ri − rj |3
, (2.85)

where kF is the Fermi wave vector. Jij in a spin glass plays the same role as
Gij in an ensemble of atoms. Moreover, as we will see in chapter 3, the local
magnetic field for spins is well mimicked by the incoherent local pump for atomic
dipoles. Loosely speaking, we can therefore consider a random laser as a kind of
optical spin glass. Transposing to random lasers the rich physics of spin glasses,
as well as the theoretical toolbox promoted to describe them [76], is potentially
fruitful. For example, we can expect (at zero temperature) a phase transition to
occur depending on the respective strength of the pump and the interaction: this
is precisely the threshold of the random laser.

2.4.2 Toward mesoscopic transport

The formulation of matter-field interaction in terms of light transport consists in elimi-
nating the atomic degrees of freedom that appear in the coupled equations (2.39), (2.65),
and (2.66). Ideally, this could be achieved by expressing the polarization as a function of
the electric field only. However, contrary to the microscopic picture, such operation can-
not be performed exactly. To understand where the problem comes from, we reformulate
atomic equations (2.65) and (2.66) in the frequency domain:

D−
i (ωL) =

1

ωL − ω0 + iΓ0/2

∫
dω′

2π~
Πi(ωL − ω′) [di ⊗ di]E

+
s (ri, ω

′), (2.86)

Πi(ωL) = − 2iπΓ0

ωL + iΓ0
δ(ωL) +

2

ωL + iΓ0

∫
dω′dω′′

(2π~)2[
[di ⊗ di]E

−
s (ri, ω

′′) · Πi(ωL − ω′ − ω′′)E+
s (ri, ω

′)
ωL − ω′ + ω0 + iΓ0/2

+ h.c.(ω′ ↔ ω′′)

]
. (2.87)

With Eq. (2.86), the quantum wave equation (2.39) becomes

[
∇×∇×−k2

L

]
E+(r, ωL) =

∫
dω′

2πǫ0~

[
N∑

i=1

k2
LΠi(ωL − ω′)

ωL − ω0 + iΓ0/2
[di ⊗ di] δ(r − ri)

]
E+
s (r, ω′).

(2.88)
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Equations (2.87) and (2.88) form a closed set from which population imbalance Πi

cannot be easily eliminated. Simple observation of these equations reveals that popu-
lation imbalance is responsible for both inelastic scattering (ωL → ω′) and nonlinear
response of the atomic medium to the field. Despite these subtleties, if we assume
that a stationary regime exists in which the population imbalance is time independent,
Eq. (2.88) can be reduced to an effective propagation equation of the form

[
k2
L −Hf

]
E+(r, ωL) = 0, (2.89)

with

Hf = Hf
0 + V f = (∇×∇×) +

N∑

i=1

viδ(r − ri), (2.90)

where vi is an effective potential, the explicit form of which will be discussed and used in
chapter 4. In a standard manner, we can interpret E+(r) as the real-space representation
of a ket |E+〉 embedded in a fictitious Hilbert space Ef , and whose dynamics is governed
by the fictitious Hamiltonian Hf . In this framework, the elementary building block that
characterizes the behavior of the field is therefore the resolvent1 of the Hamiltonian Hf ,
Gf = 1/(k2

L − Hf ) = Gf0 + Gf0V fGf , with Gf0 = 1/(k2
L − Hf

0 ). In order to avoid any
confusion, we stress that 〈r|E+〉 is at the same time a component of |E+〉 in Ef , and
an operator that acts in the true Hilbert space E = EA ⊗ ER. Moreover, Hf should
not be confused with the matter-field Hamiltonian H (2.24) that we used to derive
Eqs. (2.89) and (2.90). In particular, Hf is not Hermitian, contrary to H. For the
study of light propagation in the presence of gain within the framework of mesoscopic
scattering formalism [using Eqs. (2.89) and (2.90)], we refer the reader to chapter 4.

Obviously, we can argue that the scattered field may also be computed by directly
using the resolvent G(z) = 1/(z−H) of the Hamiltonian H = H0+V given by Eq. (2.24).
In this approach, scattering of |E+〉 in Ef is replaced by scattering of matter-field ex-
citations |ψA〉|ψR〉 in E = EA ⊗ ER. It is a priori much more difficult to keep track of
|ψA〉|ψR〉 under the repeated action of V than of |E+〉 under the action of V f . This
explains why publications devoted to such quantum microscopic scattering formalism
restrict themselves to the study of propagation of a single photon |ψR〉 = |kǫ〉, in the
presence of N atoms in their ground state |ψA〉 = |N : g〉 [78–83]. It is interesting to
illustrate this fact because this provides an occasion to introduce the concept of effective
Hamiltonian properly. For this purpose, let us calculate the matrix element 〈O|T |I〉 of
the T operator, T = V + V GV , where |I〉 and |O〉 are eigenstates of H0 containing one
photonic excitation, |I〉 = |N : g〉|kinǫin〉 and |O〉 = |N : g〉|koutǫout〉:

〈O|T (EI + iη)|I〉 = 〈O|V G(EI + iη)V |I〉 = 〈O|V PG(EI + iη)PV |I〉, (2.91)

where EI = 〈I|H0|I〉 = ~ωin = ~ω0 (photon on resonance), and P is the projector on
the subspace formed by the eigenstates of H0 containing one atomic excitation:

P =

N∑

j=1

|j〉〈j| with |j〉 = |(N − 1) : g, j : e〉|0R〉. (2.92)

1In this manuscript we use the term ‘resolvent’ rather than ‘Green’s function’ to avoid any confusion
with the Green’s matrix (2.82).
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The projected resolvent PG(EI + iη)P appearing in Eq. (2.91) is given by a very general
expression that follows from simple algebra (see, for example, Ref. [84]):

PG(EI + iη)P =
P

EI + iη −He(EI + iη)
. (2.93)

The effective Hamiltonian He is nontrivial inasmuch as it is different from PHP :

He = PH0P + PR(EI + iη)P, (2.94)

with R(z) defined as

R(z) = V + V
Q

z −QHQ
V = V + V

∞∑

n=0

[
Q

z −QH0Q
V

]n Q

z −QH0Q
V, (2.95)

where Q = 1 − P . For the particular projector (2.92), we have to calculate Rjj =
〈j|R(EI+iη)|j〉 andRjj′ (j 6= j′). For simplicity we give them for a scalar field. According
to the explicit form of H0 and V — see Eq. (2.24) — they are

Rjj =
∑

k

VjkVkj
EI + iη − Ek

= ~∆ω0 − i~Γ0/2, (2.96)

Rjj′ =
∑

k

VjkVkj′

EI + iη − Ek
=

~Γ0

2

eik0|ri−rj |

k0|ri − rj |
, (2.97)

where the label k refers to states with a single photonic excitation, |k〉 = |N : g〉|k〉, or
|k〉 = |(N−2) : g, 2 : e〉|k〉 (non-resonant processes). Therefore, the effective Hamiltonian
(2.94) becomes

He =

N∑

i=1

~

(
ω0 − i

Γ0

2

)
|ei〉〈ei| −

~Γ0

2

N∑

i6=j
Gij(ω0)S

+
i S

−
j , (2.98)

where the Lamb shift has been absorbed in ω0 and Gij(ω0) is given by Eq. (2.82). We
emphasize that this effective Hamiltonian is a priori valid only with respect to the single-
excitation subspace characterized by the projector P (2.92), contrary to Eqs. (2.87) and
(2.88) valid for any quantum state of the matter-field. The eigenvalues of He define the
excitation spectrum for light coupled to scatterers. Incidentally, note that He is a non-
Hermitian operator, that must not be confused with the fictitious Hamiltonian Hf (2.90)
of the mesoscopic scattering approach. This effective Hamiltonian He was explicitly used
by several groups. Recently, in 2008, Akkermans et al. [79] used it to study the interplay
of photon localization and Dicke superradiance in a collection of atoms at rest at random
positions. And in 2009, Antezza and Castin [85] made used of He by taking into account
the vectorial nature of light, as well as external atomic degrees of freedom (each atom
harmonically trapped), to calculate the spectrum of light in a periodic structure (no
disorder).

Although we will not adopt the microscopic scattering approach in the rest of this
manuscript, we signal that the combination of equations (2.98) and (2.93) clearly allows
to solve the scattering problem (2.91).
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2.5 The Green’s matrix in the literature

Microscopic equations (2.72) and (2.73), or their mesoscopic version (2.87) and (2.88),
potentially contain an impressive amount of optical phenomena such as superradiance,
collective spontaneous emission, subradiance, laser, inelastic scattering, nonlinear optics,
quantum interferences, or Anderson localization. And in these equations, all information
about disorder and interaction, i.e. about positions of scatterers and the way they couple
to each other, is contained in Gij(ω0) defined in Eq. (2.70). This means that all classical
information related to the emergence of collective behavior is somehow hidden in the
properties of the Green’s matrix. In this section, we briefly review the recent works
where the Green’s matrix has been encountered. Most of them can be formulated and
understood as various simplifications of Eqs. (2.72) and (2.73).

2.5.1 Cooperative emission of large atomic samples

A basic problem of traditional and modern quantum optics is the ‘single-photon superra-
diance’: a photon is stored in an ensemble of (cold) atoms, and one studies the properties
(frequency, direction of propagation, etc.) of the photon re-emitted by the atoms at a
later time. It is a specific case of the superradiance protocol, with only one photon and
no restriction concerning the size of the system. Theoretically, this problem has been
addressed a long time ago, in 1969, by Ernst [86], but has been popularized only very
recently by the group of Scully [60, 75, 81–83, 87–90], as well as by Manassah and Fried-
berg (see for example [91] and references therein). The reason for this renewed interest
is probably the recent development of experimental setups where cooperative emission
can be observed without obscuring effects (e.g., Doppler effect or near field atom-atom
interactions), either with cold atoms or with ultrathin solid samples [92]. Another reason
is the development of memories based on storage of photons in atomic media [93, 94],
with in particular the implementation of quantum repeaters and long-distance quantum
cryptography networks [95, 96]. The theoretical framework of the underlying physics is
a linearized version of scalar equations (2.72) and (2.73), and is strictly equivalent to the
one-photon scattering formalism associated to the effective Hamiltonian (2.98). Namely,
Scully and coworkers study the dynamics, in the Schrödinger picture, of a pure state of
the form

|Ψ(t)〉 =

N∑

j=1

βj(t)|(N − 1) : g, j : e〉|0R〉 +
∑

k

γk(t)|N : g〉|k〉

+

N∑

i<j

∑

k

αijk|(N − 2) : g, i : e, j : e〉|k〉, (2.99)

where the last sum, that describes states with atoms i and j in their excited states in
the presence of one ‘virtual’ photon, is necessary to capture non-resonant processes that
give rise to the real part of the Green’s matrix2. The evolution equation for the vector
β = (β1, .., βN ) reads [88, 90]:

dβ

dt
= −β(t) + iG(ω0)β(t), (2.100)

2See sections 2.3.1, 2.3.2.a, or 2.4.2 for related discussions.
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where the time is in units of Γ−1
0 and G(ω0) is the scalar Green’s matrix (2.82). According

to this equation, an eigenvector of G associated with the eigenvalue Λk decays with a
rate Γ = Γ0(1 + ImΛk) and experiences a frequency shift −Γ0ReΛk. Both the decay
rate and the frequency shift were studied in [88, 90] in the limit of a very dense atomic
cloud (ρλ3

0 → ∞), where the summation [Gβ(t)]i =
∑N

j=1Gijβj(t) can be replaced by
integration in the last term on the r.h.s. of Eq. (2.100). It is important to realize
that replacing summation by integration is equivalent to averaging this equation over all
possible configurations {ri} of atoms. It leads, therefore, to the neglect of the statistical
nature of the initial problem. As a consequence, the authors of [88, 90] find deterministic
eigenvalues Λk. Besides, with this approximation all subradiant states of the Green’s
matrix, the importance of which was already pointed out in the original paper by Ernst
[86], are lost. This quite subtle effect seems to be overlooked by the authors of [88, 90],
presumably because they are essentially interested in superradiant states. For a detailed
discussion of this effect, we refer the reader to chapter 6. Moreover, although these
deterministic results are interesting, atomic clouds of moderate density ρλ3

0 . 1 are
readily created in modern laboratories (see, e.g., [97, 98]). It is therefore important to
extend the analysis to dilute atomic clouds. Such extension is discussed in great details
in chapters 6 and 7.

We also point out that in Ref. [79], Akkermans et al. claimed that properties of the
decay rate Γ can be understood, at least qualitatively, by dropping the real part of the
Green’s matrix, inasmuch as the latter is expected to be responsible for the collective
Lamb shift (or Van der Waals dephasing). We believe that this picture is not entirely
correct, because this shift is related to the real part of the eigenvalues of G, and not to
the real part of the matrix itself. Nevertheless, we will see in chapters 5 and 6 that in
certain regimes of disorder Λk(ImG) and ImΛk(G) have indeed some similarities. The
advantage of such approximation is that ImG is an Hermitian matrix, contrary to G,
and for this reason much easier to deal with. The authors of [79] observed that the decay
rate γ only depends on what they called the ‘disorder strength’, a quantity proportional
to the on-resonance optical thickness of the atomic cloud. We will properly justify this
dependence in chapter 5.

Finally, we mention the recent works of Pierrat and Carminati who studied the statis-
tics of the fluorescence decay rate of a single dipole emitter embedded in a strongly scat-
tering medium [99, 100]. The key quantity of their numerical approach is the 3N × 3N
vectorial Green’s matrix (2.70). Since the decay rate is proportional to the local density
of states, understanding its statistics is important to improve imaging techniques.

2.5.2 Anderson localization in an open medium

The phenomenon of Anderson localization is common for all waves in random media
[9, 101, 102]. It consists in a transition from extended (over the whole available sample
volume) to exponentially localized eigenstates of a wave (or Schrödinger) equation with a
randomly fluctuating potential, at a sufficiently strong randomness. A paradigm system
in which Anderson localization can be studied for classical waves is a random arrangement
of N identical point-like scatterers in a volume V . In such an open system of finite size
the wave energy can leak to the outside and one expects Anderson localization to have an
impact on decay of physical observables such as, e.g., the intensity of the wave emerging
from the random system.

Several authors studied the distribution of dimensionless decay rates γ = Γ/Γ0 in
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open random media and, in particular, promoted the idea of using its probability dis-
tribution p(γ) as a criterion for Anderson localization [103, 104]. To be precise, p(γ) is
expected to decay as 1/γ in the localized regime (see section 6.6.1). In point-like dipole
models, as it is clear from Eq. (2.100), the relevant decay rates are related to the imag-
inary part of the eigenvalues Λk of the non-Hermitian matrix G (2.82), γk = 1 + ImΛk
[105]. Pinheiro et al. [104] observed this decay p(ImΛ) ∝ 1/(1 + ImΛ) in numerical
simulations at high density and claimed that it was a signature of Anderson localization.
In chapter 6, we will provide some analytical and numerical evidence that this tendency
is actually present as soon as the regime of multiple scattering (large optical thickness)
is established, and does not seem to require Anderson localization.

In addition, motivated by the recent advances in the manipulation of ultracold gases,
Castin and coworkers [106, 107] numerically investigated the localization of a matter wave
in a disordered potential made of atoms pinned at random positions of an optical lattice.
The kernel of their calculation is, again, the Green’s matrix (2.82). The main difference
with optical waves is the possibility for the matter wave to have negative energy E, i.e.

discrete bound states that are trapped without being necessarily of Anderson type. In
particular in three dimensional systems, authors of Ref. [107] identify for E > 0 the
existence of a mobility edge for a positive effective scattering length of the order of the
mean distance between scatterers.

In chapter 6 we will identify eventual signatures of Anderson localization in the
spectrum of the eigenvalues of G, as well as in its eigenvectors. Two quantities that shall
manifest such signatures are the Thouless number and the inverse participation ratio
of eigenstates of G. For the reader who might be doubtful about the link between the
eigenvectors of H (2.24) (whose number is infinite) and those of the N × N matrix G,
we recall that most physical properties are sensitive not directly to the true Hermitian
HamiltonianH but to effective Hamiltonians, similar toHe defined in Eq. (2.98). And the
eigenstates |Ψα〉 of (2.98) are directly related to the eigenstates of G. Indeed, if we denote
Ψα = (Ψα1, ..,ΨαN ) where Ψαi = 〈(N − 1) : g, i : e|Ψα〉, the equation He|Ψα〉 = Eα|Ψα〉
becomes

~(ω0 − iΓ0/2)Ψα − ~Γ0GΨα/2 = EαΨα. (2.101)

Hence, the eigenstates of G coincide with those of He that evolve in the one-excitation
subspace defined by the projector P (2.92).

2.5.3 Optical instabilities and random lasers

Nonlinear disordered systems, such as the ensemble of atoms described by Eqs. (2.72)
and (2.73), can exhibit speckle instabilities: if the nonlinearity is strong enough, there is
no stationary state at long time so that the speckle patterns generated by point scatter-
ers fluctuate in time. Grémaud and Wellens investigated in [108] these instabilities by
considering an intensity-dependent scattering matrix

t(I) = −2iπ

k0

(
1 + eiνI

)
, (2.102)

where I is the intensity of light on the scatterer and ν is a phenomenological nonlinear
coefficient. For small ν, Eq. (2.102) reduces to a general χ(3) nonlinearity (Kerr effect),
and for real values of ν, the optical theorem is fulfilled, ensuring energy conservation (see
chapter 4). The atomic dynamics is described by a scalar and semiclassical version of
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Eqs. (2.65) and (2.66) where the population imbalance has been eliminated:

dS+
i

dt
= i

(
ω0

Γ0
− 1

2

)
S+
i − k0

8π
t(Is,i)Ω

−
s (ri). (2.103)

Here Ω−
s (ri) is the dimensionless electric field defined by Eq. (2.84), that also gives rise

to the intensity Is,i = |Ω+
s (ri)Ω

−
s (ri)|2. Stationary, time-independent solutions lose their

stability and the system starts to exhibit complex, spontaneous dynamic behavior when
the nonlinear coefficient ν exceeds a critical value νinst proportional to [1+min (ImΛk)]

3/2.
In chapter 6 we will see that eigenvalues of G with the smallest imaginary part belong
to spiral branches of the statistical distribution p(Λ) in the complex plane Λ. They are
not related to the diffusion of light in the bulk of the random sample but originate from
sub-radiant states localized on pairs of mutually close scatterers [108]. In chapter 6 we
will provide an analytic derivation of the statistical distribution p[1 + min (ImΛ)].

The average value 1 + 〈min (ImΛk)〉 was also studied numerically by Pinheiro and
Sampaio in the context of random lasers [109]. They considered an ensemble of point-
like scatterers randomly distributed in a volume filled with some continuous amplify-
ing medium that provides a constant amplification rate γampl. They assumed that
lasing should start when γampl becomes larger than the minimum loss rate γmin =
1 + min(ImΛk). Therefore, the average value of min(ImΛk) defines the average ran-
dom laser threshold: 〈γth

ampl〉 = 1 + 〈min(ImΛk)〉. It turns out that both this threshold
criterion and the physical interpretation of its value in terms of the diffusion theory of
light scattering might be incorrect. This will be discussed in chapters 6 and 7.
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Chapter 3
How much quantum is the radiation

process ?

3.1 Intensity and spectrum of light emitted by a cloud of
atoms

Let us consider a photodetector located at rd and illuminated by the light emitted by N
atoms, at rest in a volume of typical size R, described by the Hamiltonian H (2.24). The
probability for this detector (made of atoms itself) to be excited during the time interval
∆t can be calculated using the second order perturbation theory and reads [52, 71]

Pexc(∆t) =
1

~2

∫ ∆t

0
dt′
∫ ∆t

0
dt′′CD(t′ − t′′)CR(t′, t′′), (3.1)

where CD(t′ − t′′) and CR(t′, t′′) are the correlations function of the detector and the
radiation, respectively1. The explicit form of the latter is

CR(t′, t′′) = 〈E(rd, t
′) · E(rd, t

′′)〉 = TrE
[
ρ(0)E(rd, t

′) · E(rd, t
′′)
]
, (3.2)

where ρ is the density matrix of the coupled system ‘atoms+field’ that evolves in the
Hilbert space E = EA ⊗ ER. For the moment, external atomic degrees of freedom are
voluntarily disregarded: ‘disorder’ will be discussed later. The expression (3.2) is com-
monly simplified by decomposing the field into its positive and negative frequency parts.
Assuming the spectral width ∆ωD of the detector to be much larger than the characteris-
tic frequency difference ∆ωR for which the field correlation function decays significantly,
only one of the four resulting terms contributes significantly to Pexc, which then becomes
[52]

Pexc(∆t) = N
∫ ∆t

0
dt〈E−(rd, t) · E+(rd, t)〉, (3.3)

where the factor N quantifies the detector efficiency. Hence we can define a measurable
dimensionless light intensity

I(rd, t) = 〈Ω−(rd, t) · Ω+(rd, t)〉 = TrE
[
ρ(t)Ω−(rd, 0) · Ω+(rd, 0)

]
. (3.4)

1In the following we will not make use of the explicit form of CD. However, for a curious reader, we
indicate how it looks like for a simple model of detector —- an atom with a ground state |a〉 and excited

states |c〉: CD(t − t′) =
P

c |〈a|D|c〉|2e−iωca(t−t′), where ωca is the frequency difference between levels c
and a, and D the component of the dipole operator of the detector parallel to the incoming field [52].

37
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Here Ω±(r, t) is the dimensionless electric field operator:

Ω±(r, t) = −2dE±(r, t)

~Γ0
. (3.5)

The power spectrum S is usually calculated by assuming the field emitted by the atoms
to be a stationary random process. Then, it is related to the autocorrelation function
(3.2) by the Wiener-Khintchine theorem. Its main component is

S(rd, ωL) =

∫ ∞

−∞
dτe−iωLτ 〈Ω−(rd, ts + τ) · Ω+(rd, ts)〉. (3.6)

Here the time ts is large enough for the system to be in the stationary regime. Note
that assuming a steady spectrum is nontrivial: for a large assembly of atoms where light
dynamics may exhibit chaos or random lasing, this hypothesis cannot be always valid.

Our purpose is to calculate the spectrum (3.6) as well as the intensity (3.4) for an arbi-
trary number of atoms. As it is suggested by the two different but equivalent expressions
of the intensity in Eq. (3.4), we can use either the Schrödinger or the Heisenberg picture.
In the former, the forward time evolution operator U(t) that defines ρ(t) = U(t)ρ(0)U †(t)
is expressed as the Fourier transform of the retarded resolvent G(z) = (z−H + iη)−1, so
that the intensity reads

I(rd, t) =

∫ ∞

−∞

dω

2π

∫ ∞

−∞

d∆ω

2π
e−i∆ωtTrE

[
ρ(0)G†(ω − ∆ω

2
)Ω−

0 (rd) · Ω+
0 (rd)G(ω +

∆ω

2
)

]
.

(3.7)
This expression is formally equivalent to the square modulus of Eq. (2.91), and for
this reason can be reasonably calculated only for a few photons in the initial state
ρ(0) = ρA(0) ⊗ ρR(0). For one photon, i.e. for ρR(0) = |kinǫin〉〈kinǫin|, the inte-
grand of Eq. (3.7) is proportional to a sum of propagation kernels, the generic form of
which is TrEA

[
ρA(0)〈kinǫin|G(ω + ∆ω

2 )|kǫ〉〈k′ǫ′|G†(ω − ∆ω
2 )|kinǫin〉

]
. Such quantity can

be computed within a diagrammatic framework, where usually only ladder and maxi-
mally crossed diagrams are considered [78].

Another option is the Heisenberg picture, in which we have the possibility to choose
between the mesoscopic and the microscopic representations. As we have seen in sec-
tion 2.4, this corresponds to eliminate either the atomic variables or the field. The
mesoscopic representation is suitable if we can reduce the wave equation to the effec-
tive set of equations (2.89) and (2.90). In that case we write Ω±(rd, t) = 〈rd|Ω±(t)〉
with |Ω±(t)〉 that belongs to the fictitious Hilbert space Efdefined in section 2.4.2. The
intensity (3.4) takes a form similar to Eq. (3.7), where the integrand has to be re-
placed by 〈〈Ω+(ω− ∆ω

2 )|rd〉〈rd|Ω+(ω+ ∆ω
2 )〉〉. With the help of the Lippman-Schwinger

equation, the field |Ω+(ω)〉 is then expanded in terms of the resolvent Gf , |Ω+(ω)〉 =
|Ω+

0 (ω)〉 + Gf (ω)V f |Ω+
0 (ω)〉 (see section 2.4.2). Hence, again, the calculation reduces

to evaluating the intensity propagator kernel, 〈Gf (ω + ∆ω
2 ) ⊗ Gf†(ω − ∆ω

2 )〉, which now
involves the operator Gf rather than G. The dynamics of this quantity in the presence
of gain will be discussed in chapter 4.

In the present chapter we shall concentrate on the microscopic representation of the
Heisenberg picture. This is achieved by making use of the solution of the quantum wave
equation (2.39). According to Eq. (2.48), the solution for the dimensionless electric field
(3.5) is

Ω+(r, ωL) = Ω+
0 (r, ωL) −

N∑

i=1

G(r − ri, ωL)D̃−
i (ωL), (3.8)
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where all notations have been already defined in section 2.4.1. For future use we also
introduce the scalar version of Eq. (3.8),

Ω+(r, ωL) = Ω+
0 (r, ωL) −

N∑

i=1

G(r − ri, ωL)S−
i (ωL). (3.9)

As we did in section 2.4.1, in free space and with Γ0 ≪ ω0, c/R, we approximate the
Green’s function in (3.8) as G(r − ri, ωL) ≃ G(r − ri, ω0). Inserted into Eq. (3.4), this
leads to four terms of which the most interesting is the one that is nonzero in the absence
of photons (ρR(0) = |0R〉〈0R|):

I(rd, t) =

N∑

i,j

Tr(3)

[
G∗(rd − ri, ω0)〈D̃+

i (t) ⊗ D̃−
j (t)〉G(rd − rj , ω0)

]
, (3.10)

where Tr(3) indicates the dyadic trace of a 3 × 3 tensor. Because we would like to get
rid of all dependence on the position of the detector, we place the latter in the far-
field k0|rd − ri| ≫ 1, such that, with Eq. (2.38), G(rd − ri, ω0) ≃ 3∆⊥

rd
eik0|rd−ri|/2k0rd.

Intensity (3.10) becomes

I(rd, t) ≃
(

3

2k0rd

)2 N∑

i,j

eik0(ri−rj)·rd/rdTr(3)

[
∆⊥

rd
〈D̃+

i (t) ⊗ D̃−
j (t)〉

]
. (3.11)

Using Eq. (3.9), we also get the scalar version of Eq. (3.11),

I(rd, t) ≃
1

(k0rd)2

N∑

i,j

eik0(ri−rj)·rd/rd〈S+
i (t)S−

j (t)〉 (scalar field). (3.12)

After integrating over the direction of rd, we obtain

I(rd, t) ≃
4π

(k0rd)2

N∑

i,j

sin k0|ri − rj |
k0|ri − rj |

〈S+
i (t)S−

j (t)〉. (3.13)

Following exactly the same line, the spectrum (3.6) of a scalar field takes, in the far-field,
the form

S(rd, ωL) ≃ 8π

(k0rd)2

N∑

i,j

sin k0|ri − rj |
k0|ri − rj |

Re

[∫ ∞

−∞
dτe−iωLτ 〈S+

i (ts + τ)S−
j (ts)〉Θ(τ)

]
.

(3.14)
From now on, we will drop the geometric prefactor 4π/(k0rd)

2 that appears in I and S.
At this stage, we need to introduce a couple of notations. First, for future purpose,

we define new operators
s±i (t) = e∓iωatS±

i (t), (3.15)

where ωa is an auxiliary tunable parameter that will be useful in the next section to
move in the rotating frame of an optical pump. Moreover, it is convenient to introduce
two N ×N matrices

Sij =
sin k0|ri − rj |
k0|ri − rj |

, (3.16)

Cij(τ) = 〈s+i (ts + τ)s−j (ts)〉Θ(τ), (3.17)
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so that the spectrum (3.14) takes the compact form S(ωL) = 2Tr(N) [SRe C(ωa − ωL)].
It is worth noting that the presence of the matrix S in Eq. (3.13) or Eq. (3.14) is not in
any way related to the interactions between different atoms. It is simply a consequence
of the fact that signals are measured in the far-field, while the information about decay
rates is entirely, and only, contained in the dipole correlator 〈S+

i (ts + τ)S−
j (t)〉. We also

define a matrix Y of size N ′ ×N ,

Ykj(τ) = 〈xk(ts + τ)s−j (ts)〉, (3.18)

where xk designates the N operators s+i as well as any atomic operator coupled to them
in equations of motion. Hence N ′ > N . Furthermore, let us assume that this matrix
obeys a linear differential equation,

d

dτ
Y = MY + R, (3.19)

where M and R are time-independent matrices of sizes N ′×N ′ and N ′×N , respectively.
Then, using definitions (3.17) and (3.18), and Eq. (3.19), we readily obtain an expression
for the spectrum (in units of Γ−1

0 ) in terms of M, R and Y(0):

S(ωL) = − 2πTr(N)

[
SPRe

[
M(−1)R

]]
δ [(ωL − ωp)/Γ0]

+ 2 Tr(N)

[
SPRe

[
[i(ωL − ωp)IN ′/Γ0 −M]−1

[
Y(0) + M(−1)R

]]]
, (3.20)

where IN ′ is the N ′ × N ′ identity matrix and P is a N × N ′ matrix that represents
the projector on the subspace generated by the N operators S+

i . In this formula the
unknown quantities are Y(0), M and R. The first is defined in Eq. (3.18), and the two
others were supposed to characterize the dynamics of Y in Eq. (3.19). Such dynamics
exists if the quantum fluctuation-regression theorem is fulfilled [110, 111]. In that case
M is defined as the kernel of the evolution of the vector x = (〈x1〉, ..., 〈xN ′〉),

d

dτ
x = Mx + λ. (3.21)

The free parameter ωa that is contained in the definition of x is chosen such that the
matrix M is effectively time-independent. If it is not possible to write the dynamics of
x in the form (3.21), then the spectrum is not given by (3.20). The matrix R is related
to λ according to

Rkj = λk〈s−j (ts)〉. (3.22)

In order to infer the spectrum (3.20) we simply need to find the matrix M, and calculate
Y(0) and R from x(ts). This will be illustrated in the two following sections. Eq. (3.20)
nicely shows us that the N ′ eigenvalues of M are the resonances of the spectrum: imag-
inary parts give their frequencies and real parts their spectral widths. Besides, note that
the general structure (3.20) holds for a vectorial field as well. Indeed, it is sufficient
to replace the product of operators that appears in Eq. (3.13) by the tensor product of
Eq. (3.11). All matrices of size N ×N or N ′ ×N , like Y, become 3N × 3N or N ′ × 3N ,
and the matrix S reads now Sij = S(ri − rj), where

S(r) =
3 sin k0r

2k0r
∆⊥

r +
3

2(k0r)2

(
cos k0r −

sin k0r

k0r

)(
I − 3

r ⊗ r

r2

)
(3.23)
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is nothing but the imaginary part of the dyadic Green’s matrix Gij(ω0), see Eqs. (2.36)
and (2.70).

Signals (3.13) and (3.14) contain classical and quantum contributions. To emphasize
this fact we isolate the deviation of each quantum operator from its quantum expectation
value

S±
i = 〈S±

i 〉 + δS±
i , (3.24)

such that the correlation function of S+
i and S−

j can be written as a sum of ‘classical’
and ‘quantum’ contributions:

〈S+
i (t+ τ)S−

j (t)〉 = 〈S+
i (t+ τ)〉〈S−

j (t)〉 + 〈δS+
i (t+ τ)δS−

j (t)〉. (3.25)

Within the stationary spectrum hypothesis, classical terms give rise to the monochro-
matic contribution in Eq. (3.20), while quantum terms account for the second term on
its r.h.s. In the same manner, the classical part of the stationary intensity (3.13) is

Ic =

N∑

i,j

sin k0|ri − rj |
k0|ri − rj |

〈S+
i (ts)〉〈S−

j (ts)〉, (3.26)

and its quantum part Iq = I − Ic reads

Iq =

N∑

i,j

sin k0|ri − rj |
k0|ri − rj |

〈δS+
i (ts)δS

−
j (ts)〉. (3.27)

One goal of this chapter is to understand the role and the origin of these two contri-
butions. In particular, we would like to assess the importance of quantum interatomic
correlations, 〈δS+

i (t + τ)δS−
j (t)〉 for i 6= j, when we increase the number N of atoms.

Inasmuch as the answer very much depends on the pumping scheme, we will make a
distinction between coherent and incoherent pumps.

3.2 Introduction of a pumping mechanism

3.2.1 Coherent pump

Let us consider the light initially prepared in a coherent state, ρR(0) = |αp〉〈αp|, associ-
ated with the mode kpǫp [see Fig. 3.1 (a)]. In atomic physics it is well known [52] that
a unitary transform can be applied to the Hamiltonian (2.24) such that the initial state
becomes |0R〉 and the free field E+

0 (r, t) acquires a new component

E+
p (r, t) = Epǫpe

i(kp·r−ωpt), (3.28)

with Ep = αp
√

~ωp/2ǫ0V. Taking into account this new classical and coherent field, we
replace in equations of motions (2.72) and (2.73) the operator Ω±

0 (r, t) with Ω±
0 (r, t) +

Ω±
p (r)e∓iωpt, where Ω±

p (r) = −2dEpǫpe
±ikp·r/~Γ0. Moreover, terms that involve Ω±

0

behave now as Langevin forces since all quantum expectations values are taken with
respect to |0R〉 (see section 2.4.1 for details). Explicitly, in the rotating frame of the
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Figure 3.1: (a) Coherent optical pump (amplitude Ωp, frequency ωp = ω0 + Γ0∆p) near
resonance (|ωp − ω0| ≪ ω0). (b) Effective incoherent pump: the optical pump is on
resonance with an auxiliary level a, and Γae ≫ Γ0,Γ0Ωp.

pump, Eqs. (2.72) and (2.73) read now

d
˜̃
D

+

i

dt
= −

(
i∆p +

1

2

)
˜̃
D

+

i +
i

2
∆

‖
i

∑

j 6=i
G∗
ij(ω0)

˜̃
D

+

j Πi

− i

2
∆

‖
iΩ

−
p (ri)Πi + F

+
i (t), (3.29)

dΠi

dt
= − (Πi + 1) − 2Im


 ˜̃D

+

i ·
∑

j 6=i
Gij(ω0)

˜̃
D

−
j




+ 2Im

[
˜̃
D

+

i · Ω+
p (ri)

]
+ FΠ

i (t). (3.30)

Here
˜̃
D

±
i = e∓iωptD̃±

i , ∆p = (ωp − ω0)/Γ0, the time t is in units of Γ−1
0 , and Langevin

forces are

F
+
i (t) = − i

2
∆

‖
iΩ

−
0 (ri, t)Πi(t)e

−iωpt, (3.31)

FΠ
i (t) = iΩ−

0 (ri, t) · D̃−
i (t) − iD̃+

i (t) · Ω+
0 (ri, t). (3.32)

The scalar version of Eqs. (3.29) and (3.30) is straightforward to obtain from Eqs. (2.78)
and (2.79).

Before discussing the spectrum that we can infer from Eqs. (3.29) and (3.30), we
would like to show what these equations become when the pump is not coherent.

3.2.2 Incoherent pump

The first idea we can have to mimic an incoherent pump is to introduce a phenomeno-
logical stationary value of the atomic population imbalance Πeq

i 6= −1. Eqs. (2.65) and
(2.66) would transform into

dD+
i

dt
= iω0D

+
i − Γ0

2
D+
i +

i

~
[di ⊗ di]E

−
s (ri)Πi, (3.33)

dΠi

dt
= −Γ0 (Πi − Πeq

i ) +
2i

~

[
D+
i · E+

s (ri) − E−
s (ri) · D−

i

]
. (3.34)



§3.2 Introduction of a pumping mechanism 43

In the absence of interatomic interactions, Πeq
i is the stationary value of the population

imbalance controlled by the pump. This apparently reasonable procedure, which is
commonly used in the standard laser theory [23], and also in nonlinear optics [112],
does not lead to any contradiction as long as we work with a single atom. However,
already for two atoms, the solution of Eqs. (3.33) and (3.34) reveals that the quantum
expectation values 〈Πi〉 are no more restricted to [−1, 1], as they physically have to.
Therefore, to get rid of unphysical results, we shall proceed to a microscopic and well
controlled description of the incoherent pump.

The simplest microscopic scheme of an effective incoherent pump for a two-level atom
is a coherent field on resonance with an auxiliary third level |a〉 [see Fig. 3.1 (b)]. The
atomic response to such a pump was studied recently in details by Savels et al. within
the master-equation formalism [113, 114]. Here we use the Heisenberg picture. Dealing
with three-level atoms without degeneracy, description of internal degrees of freedom
requires to write the dynamical equations of motion for 5N operators (instead of 2N for
two-level atoms). Without giving their lengthy derivations, we present here the main
steps. First, we express the 5N Heisenberg equations of motion in terms of the total
electric field E, as we did in section 2.3.2.b. Next, we isolate the own radiation fields
to reveal the spontaneous decay rates. Third, we decompose the smoothed field Es in
three parts: its free component that features Langevin forces, a coherent classical field
Ep of type (3.28) associated with the coherent state of the pump, and the field radiated
by atoms — see Eq. (2.59). And finally, we simplify the resulting equations under the
following assumptions:

|ωp − ωag| ≪ ωag, (3.35)

Γag ≪ Γ0,Γ0Ωp ≪ Γae ≪ ωag, ωae, ω0. (3.36)

The assumption (3.35) indicates that the optical pump is quasi-resonant with the auxil-
iary level, and (3.36) means that all levels are not excessively broad and each excitation
generated by the pump from |g〉 to |a〉 is transferred to |e〉 almost instantaneously [see
Fig. 3.1 (b)]. With these assumptions, it is possible to reduce the 5N equations to
effective 2N equations that only involve the levels |g〉 and |e〉. The strength of the pump
on atom i is controlled by a single dimensionless parameter

Wi =
Γ0|Ωp,i|2

Γae
, (3.37)

where Ωp,i = −2dga,i ·E+
p (ri)/~Γ0 with dga,i the dipole moment for the |gi〉 → |ai〉 tran-

sition. In the leading order, the pump only affects the monoatomic parts of dynamical
equations: atomic interactions contained in the smoothed field (2.59) concern the two
level transition and thus are essentially unaffected by the pump that efficiently triggers
the auxiliary level only. Furthermore, as was the case for the coherent pump, all informa-
tion about photons that are initially injected into the atomic medium is transferred into
a classical pump field, meaning that quantum expectation values have now to be taken
with respect to |0R〉: action of the free field reduces to a Langevin force. Dynamical
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equations of motion (2.72) and (2.73) in the presence of incoherent pump become

dD̃+
i

dt
=

[
i
ω0

Γ0
− 1

2
(1 +Wi)

]
D̃+
i +

i

2
∆

‖
i

∑

j

G∗
ij(ω0)D̃

+
j Πi + F

+
i (ri, t), (3.38)

dΠi

dt
= − (1 +Wi) Πi +Wi − 1 − 2Im


D̃+

i ·
∑

j

Gij(ω0)D̃
−
j


+ FΠ

i (ri, t). (3.39)

Because the effective pump is incoherent, we do not need to move in the rotating frame
of the pump field. Consequently, the Langevin forces are defined by Eqs. (3.31) and
(3.32) with ωp = 0.

If we just look at the monoatomic part of Eqs. (3.38) and (3.39), the pump modifies
the Bloch equations in two ways. It changes the value of the population imbalance at
equilibrium, and it renormalizes the spontaneous emission rate of each atom:

Πeq
i =

Wi − 1

Wi + 1
, (3.40)

Γi = (1 +Wi)Γ0. (3.41)

For Wi = 1, the population imbalance vanishes at equilibrium, meaning that indepen-
dent atoms excited by such an incoherent process are transparent for external radiation.
However, this simple picture must be reconsidered as soon as we take into account inter-
atomic coupling.

In the following, we will sometimes neglect the vectorial nature of the field. In that
case, we shall work with equations similar to Eqs. (2.78) and (2.79), which become in
the presence of the pump

dS+
i

dt
=

[
i
ω0

Γ0
− 1

2
(1 +Wi)

]
S+
i +

i

2
Πi

∑

j

G∗
ij(ω0)S

+
j + F+

i (t), (3.42)

dΠi

dt
= − (1 +Wi) Πi +Wi − 1 − 2Im


S+

i

∑

j

Gij(ω0)S
−
j


+ FΠ

i (t), (3.43)

where the time t is in units of Γ−1
0 , and the Langevin forces are

F+
i (t) = − i

2
Ω−

0 (ri, t)Πi(t), (3.44)

FΠ
i (t) = iΩ−

0 (ri, t)S
−
i (t) − iS+

i (t)Ω+
0 (ri, t). (3.45)

Equations (3.38) and (3.39) — or their scalar version (3.42) and (3.43) — contain all
the information we need to describe an atomic random laser. The semiclassical threshold
depends on the respective strength of the pump parameters {Wi} and the interaction
coefficients {Gij}, while all quantum effects are embedded in the fact that operators do
not commute and in the quantum Langevin forces.

We also point out that it is not a priori straightforward to infer dynamical equations
of motion of 〈S+

i (t)〉 = 〈0R|S+
i (t)|0R〉 and 〈Πi(t)〉 from the previous equations. When

taking the quantum expectation value of those equations with respect to |0R〉, we do
not get a close set since 〈S+

i (t)〉 and 〈Πi(t)〉 are coupled to the unknown quantities
〈Πi(t)S

+
j (t)〉 and 〈S+

i (t)S−
j (t)〉. The quantum Langevin forces, the expectation value
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Coherent pump Incoherent pump

λ (0,−1, 0) (0,−1 +W, 0)

M −




iδp + 1
2

iΩp

2 0
iΩp

2 1 − iΩp

2

0 − iΩp

2 −iδp + 1
2


 −



− iω0

Γ0
+ 1+W

2 0 0

0 1 +W 0

0 0 iω0
Γ0

+ 1+W
2




Ic = 〈S+〉 〈S−〉 (1+4δ2p)Ω2
p

(1+4δ2p+2Ω2
p)2

0

I = 1+〈Π〉
2

Ω2
p

1+4δ2p+2Ω2
p

W
W+1

Iq = I − Ic
2Ω4

p

(1+4δ2p+2Ω2
p)2

W
W+1

Table 3.1: λ and M are quantities that are useful to compute the spectrum (3.20) of
light emitted by a single atom. x(ts) = −M(−1)λ = (x1, x2, x3), in terms of which
Y(0) = (1/2 + x2/2,−x3, 0) and R = x3λ. Different contributions of the stationary
intensiy depend only on x(ts): I

c = |x1|2 and I = (1 + x2)/2.

of which is zero, actually contain the information that is necessary to reconstruct the
complete dynamics. In this manuscript we call semi-classical the approximation that
consists in replacing the quantum expectation value of the product of any quantum
operators Xi and Yj by the product of their quantum expectations values:

〈0R|Xi(t)Yj(t)|0R〉 ≃ 〈0R|Xi(t)|0R〉〈0R|Yj(t)|0R〉. (3.46)

Intuitively, this approximation is expected to hold in the limit N → ∞. It is very useful
because now we only need 2N equations to close the set where appear

〈
S+
i (t)

〉
and

〈Πi(t)〉. But regarding spectrum properties, it amounts to neglecting quantum terms in
Eq. (3.25).

3.2.3 One atom spectrum: coherent vs incoherent pump

Let us calculate the spectrum of light in the simple case of a single atom placed at r = 0.
Then, the terms that couple different atoms in Eqs. (3.29) and (3.30), as well as in
Eqs. (3.38) and (3.39), disappear. The vector x defined in section 3.1 has only N ′ = 3
components, x = (〈s+〉, 〈Π〉, 〈s−〉), with ωa = ωp for the coherent pump and ωa = 0 for
the incoherent pump. In Table 3.1, we give explicit expressions for the vector λ and
the matrix M defined in Eq. (3.21). With a single atom, it is straightforward to verify
that the matrix Y defined in Eq. (3.18) obeys Eq. (3.19). It means that the quantum
fluctuation-regression theorem holds and, therefore, we can compute the spectrum from
Eq. (3.20).

The main features of the monoatomic emission spectrum induced by a coherent pump
are depicted in Fig. 3.2. On the one hand, the classical and monochromatic component
of (3.20) is elastic with respect to the incident field (ωL = ωp). It is used to define, at
small Ωp, the elastic cross-section. When the intensity of the incident field is increased,
the elastic response becomes nonlinear and is eventually suppressed at large Ωp [see Fig.
3.2(b)]. On the other hand, when we increase Ωp, the quantum contribution to the



46 How much quantum is the radiation process ? §3.3

15 10 5 0 5 10 15
0.0

0.1

0.2

0.3

0.4

0.5

Frequency (ω
L
-ω

0
)/Γ

0

S
p

ec
tr

u
m

  
 S

(ω
L

 )

In
te

n
si

ty
 I

 Ωp = 6

quantum

classical

quantum

classical

 δp  = 0

 δp = 0

(a) (b)

0 1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

Pump Ωp
2

Figure 3.2: Spectrum and intensity of light emitted by an atom in the field of a coherent
on-resonance pump (δp = 0). (a) Classical and quantum contributions of the spectrum
(3.20). (b) Stationary intensity I =

∫∞
−∞ dωLS(ωL)/2π. The classical and quantum

components, Ic and Iq, are defined by Eqs. (3.26) and (3.27).

spectrum (3.20) becomes more and more important. The three different eigenvalues of
the matrix M define three resonances that constitute the well-known ‘Mollow-triplet’
[115, 116]. The quantum contribution gives rise, therefore, to inelastic scattering.

The situation is completely different with the incoherent pump. Now, in the station-
ary regime atomic dipoles are zero, and thus the classical part of the spectrum vanishes.
Furthermore, eigenvalues of M give rise to only one fluorescence-like resonance centered
at ωL = ω0. As shown in Fig. 3.3(a), its width is controlled by Γ defined in Eq. (3.41). Fi-
nally, contrary to the coherent case, it is possible to get a population inversion (〈Π〉 > 1)
for W > 1, so that I = (1 + 〈Π〉)/2 > 0.5 [compare Figs. 3.2(b) and 3.3(b)].

In the prospect of a description of a random laser composed of a large number N
of atoms, there are reasons to prefer the incoherent scheme to the coherent one. First,
it is close to the historical description of the standard cavity laser [23]. Second, we
can properly define and detect a threshold as the point where classical dipoles become
nonzero in the stationary regime. Third, the quantum part of the spectrum is simpler,
inasmuch as we have only one monoatomic resonance and not three. This explains why,
from here on, we shall concentrate ourselves on the incoherent scheme. We will return
to the coherent pump later in chapters 4 and 7.

3.3 Properties of quantum Langevin forces

The purpose of this section is to present basic properties of the Langevin forces (3.44)
and (3.45) that are necessary to compute the spectrum emitted by N > 1 atoms.

First of all, using Ω+
0 |0R〉 = 0 and 〈0R|Ω−

0 = 0, we note that quantum expectation
values of the Langevin forces with respect to |0R〉 , as well as some of their time correlation
functions, are zero:

〈
F±
i (t)

〉
= 0,

〈
FΠ
i (t)

〉
= 0,〈

F±
i (t)F±

j (t′)
〉

= 0,
〈
F+
i (t)F−

j (t′)
〉

= 0,〈
F+
i (t)FΠ

j (t′)
〉

= 0,
〈
FΠ
i (t)F−

j (t′)
〉

= 0.

(3.47)

Other time correlation functions essentially depend on the two time commutator
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[
Ω+

0 (ri, t),Ω
−
0 (rj , t

′)
]
, where the vacuum field Ω±

0 = −2dE±
0 /~Γ0 is proportional to the

solution of the Helmholtz equation in the absence of atoms. Thus, by definition, corre-
lation properties of Ω±

0 are such that two points in space-time, (ri, t) and (rj , t
′), that

cannot be connected by light signals, are not correlated [52, 74]. Explicitly, with the
scalar version of Eq. (2.44), we get

[
Ω+

0 (ri, t),Ω
−
0 (rj , t

′)
]

=

(
2d

~Γ0

)2∑

k

E2
ke

i[k·(ri−rj)−ω(t−t′)]

=
2

Γ2
0

f(ri − rj , t− t′). (3.48)

The function f(r, τ) has two maxima at τ = ±r/c. In the frequency domain,

[
Ω+

0 (ri, ωL),Ω−
0 (rj , ω

′
L)
]

=
4π

Γ2
0

f(ri − rj , ωL)δ(ωL + ω′
L), (3.49)

with

f(ri − rj , ωL) = Γ(kL)
sin kL|ri − rj |
kL|ri − rj |

, (3.50)

and Γ(kL) = d2k3
L/2πǫ0~. For frequencies ωL such that |ωL−ω0| ≪ ω0, we use f(r, ωL) ≃

f(r, ω0), so that Eq. (3.48) becomes

[
Ω+

0 (ri, t),Ω
−
0 (rj , t

′)
]
≃ 2

Γ0

sin k0|ri − rj |
k0|ri − rj |

δ(t− t′). (3.51)

In the same approximation, we also have

[
S+
i (t),Ω−

0 (rj , t
′)
]

= 0, (3.52)
[
S+
i (t),Ω+

0 (rj , t
′)
]

= G⊥
ij(ω0)Πi(t)δt,t′ , (3.53)

[
Πi(t),Ω

+
0 (rj , t

′)
]

= −2G⊥
ij(ω0)S

−
i (t)δt,t′ , (3.54)

where G⊥
ij(ω0) = Gij(ω0) + δ(0)δij is the scalar form of the transverse Green’s function

defined by Eq. (2.34). A very simple way to derive Eqs. (3.52), (3.53), and (3.54) for
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t = t′ consists in expressing Ω+
0 (rj , t) in terms of the solution (2.30) of the propagation

equation for the transverse field Ω+
⊥(rj , t) = −2dE+

⊥(rj , t)/~Γ0:

Ω+
0 (rj , t) = Ω+

⊥(rj , t) +

N∑

l=1

G⊥
jl(ω0)S

−
l (t). (3.55)

For any atomic operator Xi(t), [Xi(t), ak(t)] = 0 and thus, according to Eq. (2.45),[
Xi(t),Ω

+
⊥(rj , t)

]
= 0. Eq. (3.55) yields

[
Xi(t),Ω

+
0 (rj , t)

]
= G⊥

ij(ω0)
[
Xi(t), S

−
i (t)

]
, (3.56)

from which we get Eqs. (3.52), (3.53) and (3.54) for t = t′. For t 6= t′, it is more suitable
to come back to the definition (2.44) of the field, as we did in Eq. (3.48).

It is now easy to evaluate time correlation functions that do not vanish:

〈
FΠ
i (t)FΠ

j (t′)
〉

=
〈
S+
i (t)Ω+

0 (ri, t)Ω
−
0 (rj , t

′)S−
j (t′)

〉

=
〈
S+
i (t)

[
Ω+

0 (ri, t),Ω
−
0 (rj , t

′)
]
S−
j (t′)

〉

≃ 2

Γ0

sin k0|ri − rj |
k0|ri − rj |

〈
S+
i (t)S−

j (t)
〉
δ(t− t′), (3.57)

where we have successively used Eqs. (3.52) and (3.51). In the same manner, we obtain
〈
F−
i (t)F+

j (t′)
〉

=
1

4

〈
Πi(t)Ω

+
0 (ri, t)Ω

−
0 (rj , t

′)Πj(t
′)
〉

≃ 1

4

〈
Πi(t)

[
Ω+

0 (ri, t),Ω
−
0 (rj , t

′)
]
Πj(t

′)
〉

≃ 1

2Γ0

sin k0|ri − rj |
k0|ri − rj |

〈Πi(t)Πj(t)〉 δ(t− t′), (3.58)

and
〈
FΠ
i (t)F+

j (t′)
〉

= −1

2

〈
S+
i (t)Ω+

0 (ri, t)Ω
−
0 (rj , t

′)Πj(t
′)
〉

≃ −1

2

〈
S+
i (t)

[
Ω+

0 (ri, t),Ω
−
0 (rj , t

′)
]
Πj(t

′)
〉

≃ − 1

Γ0

sin k0|ri − rj |
k0|ri − rj |

〈
S+
i (t)Πj(t)

〉
δ(t− t′). (3.59)

Here we have neglected the contributions due to Eqs. (3.53) and (3.54) that are domi-
nated, at t = t′, by the contribution (3.51). Not surprisingly, correlation functions (3.57),
(3.58), and (3.59) between operators corresponding to two different atoms i and j depend
on the distance between them.

3.4 Semiclassical treatment of two atoms

Before considering full quantum Eqs. (3.42) and (3.43) — or Eqs. (3.38) and (3.39) —
for N = 2 atoms, it is instructive to study their semiclassical approximation:

dS+
1

dt
=

[
i
ω0

Γ0
− 1

2
(1 +W1)

]
S+

1 +
i

2
Π1G

∗
12(ω0)S

+
2 , (3.60)

dΠ1

dt
= − (1 +W1) Π1 +W1 − 1 − 2Im

[
S+

1 G12(ω0)S
−
2

]
, (3.61)
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where all operators are now considered as simple c-numbers2. If we take into account
the vectorial nature of the field, we have to specify the orientation of the dipoles d1 and
d2 with respect to r12 = r1 − r2. For simple configurations it just amounts to replace
the Green’s function G12(ω0) in Eqs. (3.60) and (3.61) by an effective Green’s function

Geff12 (ω0). For example,

d1 = d2 ⊥ r12 =⇒ Geff12 (ω0) =
3

2

eik0r12

k0r12
P (ik0r12), (3.62)

d1 = d2 ‖ r12 =⇒ Geff12 (ω0) =
3

2

eik0r12

k0r12
[P (ik0r12) +Q(ik0r12)] , (3.63)

where P (x) and Q(x) are defined in Eq. (2.37).
If the interatomic distance is sufficiently large or the pump parameters W1 and W2

are sufficiently small, the stationary solutions of Eqs. (3.60) and (3.61) are unaffected
by the interatomic interaction:

S±
1 (ts) = 0, S±

2 (ts) = 0, (3.64)

Π1(ts) = Πeq
1 , Π2(ts) = Πeq

2 , (3.65)

with Πeq
i defined by Eq. (3.40). If now we increase the strength of the pump or if the

atoms get closer, we can look for an eventual lasing threshold. It is found from the
stability analysis of the nonlinear system formed by Eqs. (3.60), (3.61) and equations
obtained by the label inversion 1 ↔ 2. Following standard semiclassical theories [23],
we will associate the instability of its trivial solution with reaching the lasing threshold.
Formally, this system is of the form dZ/dt = F(Z) where Z =

(
S+

1 , S
+
2 , S

−
1 , S

−
2 ,Π1,Π2

)
.

We introduce δZ = Z − Z(0) where Z(0) is the stationary solution in the absence of
interaction and, since F(Z(0)) = 0, we obtain

d

dt
δZ =

∂F
∂Z

∣∣∣
Z(0)

δZ. (3.66)

Here the 6×6 Jacobian matrix ∂F/∂Z|Z(0) is block-diagonal. Hence, we restrict ourselves
to the study of the 2 × 2 block governing the time evolution of δS+ =

(
δS+

1 , δS
+
2

)
. It is

convenient to introduce a 2 × 2 matrix N defined by the relation

d

dt
δS+ =

(
i
ω0

Γ0
− 1

2

)
δS+ − i

2
N ∗δS+. (3.67)

According to Eq. (3.66), the matrix N is

N =

[
iW1 −Πeq

1 G12(ω0)
−Πeq

2 G12(ω0) iW2

]
, (3.68)

so that, in the absence of pump, it is identical to the 2×2 Green’s matrixG(ω0). If δS+(0)
is an eigenstate of N associated with an eigenvalue Λ, then δS+(t) ∼ e−Γ0(1+ImΛ)t/2. It
is thus clear that the linear description (3.67) breaks down and lasing starts when the
imaginary part of at least one of the two eigenvalues of N becomes less than −1. This
is possible if the condition Πeq

1 Πeq
2 < 0 is fulfilled, in agreement with [114]. Like for the

standard cavity laser, a population inversion is necessary to reach the threshold, but here

2For brevity, in this section the quantum expectation value of any operator 〈Xi〉 is denoted by Xi.
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Figure 3.4: Trajectories in the complex-Λ plane of the two eigenvalues of the matrix N
defined by Eq. (3.68), as interatomic distance k0r12 decreases from ∞ to 0. From (a) to
(d), the pump W1 of one atom is progressively increased, while the other atom is not
pumped.

only one of the two atoms has to be in this regime. In particular, if the two atoms are
excited with the same pump power, the lasing transition does not occur. This restriction
is specific to the case N = 2. In chapter 7 we will see that it is perfectly possible to get a
semiclassical threshold for a large number of atoms which are all excited with the same
pump power.

Figure 3.4 shows, for different pump parameters, the trajectories of the two eigenval-
ues of N when the interatomic distance r12 is progressively decreased. In the absence
of pump, the eigenvalues of N = G(ω0) are Λ± = ±G12(ω0). They are localized on two
hyperbolic spirals, |Λ| = 1/argΛ and its reflection through the origin. Λ+ and Λ−, which
are almost degenerated when the two atoms are far from each other, split into a subra-
diant and superradiant branches when the atoms get closer [Fig. 3.4 (a)]. This simple
picture is modified when we add pump [Figs. 3.4 (b), (c), (d)]. As soon as the condition
Πeq

1 Πeq
2 < 0 is satisfied, there exists a critical distance rc12 such that, for r12 < rc12, lasing

starts. The fact that only two scatterers can behave as a cavity is quite remarkable.
Naively we could think that such a bad cavity is too leaky. Here we recover a sufficient
quality factor because all modes of the field participate, through the free-space Green’s
function, to the scattering process. Actually, it is worth noting that there is no general
restriction for lasing to occur in a given medium, provided that we can bring enough
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Figure 3.5: Domain of existence of the laser solution in the pump parameter space
(W1,W2). (a) For a scalar field G12(ω0) = eik0r12

k0r12
. (b) For a vector field in the configu-

ration d1 = d2 ‖ r12, see Eq. (3.63). A necessary condition for lasing to occur is W1 > 1
(population inversion) and W2 < 1. Here the symmetric domain corresponding to the
label inversion 1 ↔ 2 is not shown.

gain. In Fig. 3.5 (a), we present contour lines of equal rc12 in the plane (W1,W2). Be-
cause k0r

c
12 < 1, it is important to compare these results with a rigorous treatment of

the vectorial nature of the field. From Fig. 3.5 (b), that corresponds to the situation
considered in Eq. (3.63), we conclude that the lasing threshold still exists, although the
results are quantitatively modified. For given values W1 and W2, the critical value k0r

c
12

is larger in the vectorial case than in the scalar one because, in the near field k0r12 < 1,
the interaction coefficient Geff12 (ω0) ∼ 1/(k0r12)

3 ≫ G12(ω0) ∼ 1/k0r12.

Let us now consider the dynamics above threshold. In the stationary regime, it is
possible to solve exactly the nonlinear system formed by Eqs. (3.60) and (3.61) and the
corresponding equations obtained by the label inversion 1 ↔ 2 . Stationary solutions are
of the form

S+
i (t) = sie

i(ωLt+φi), (3.69)

Πi(t) = Πi(ts). (3.70)

We remind that in our notation, ts is a time that is long enough for the system to reach
stationary regime. We found that the two dipoles oscillate at the same frequency given
by

ωL = ω0 −
Γ0

2

(1 +W1)(1 +W2)

2 +W1 +W2
tan (2φ12)

2

1 +
√

1 + 4(1+W1)(1+W2)
(2+W1+W2)2

tan (2φ12)
2
, (3.71)

where φ12 = arg [G12(ω0)]. In Fig. 3.6 we show this solution for W1 = 3 and W2 = 0.
Depending on the orientation of the atomic dipole moments, we get either a negative or
a positive frequency shift with respect to the atomic frequency. Expressions of si, φi,
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and Πi(ts) are lengthy and not particularly instructive. We shall simply illustrate them
in Figs. 3.8 and 3.9, where the solution for the semiclassical laser intensity (solid red
line) is compared with the full quantum solution.

Inasmuch as we found a laser threshold occuring at very short distance (k0r12 . 1),
there are good reasons to think that quantum correlations may strongly modify this
semiclassical result. A detailed comparison with the correct quantum description is
the subject of the next section. Nonetheless, the results that we have presented here
may still be valid for pairs of ‘mesoscopic’ dipoles, such as coupled quantum dots, for
which external dissipative effects may eventually destroy the quantum correlations. To
our knowledge, such a two-dipole laser, where all k-components of the field participate
efficiently (through the free-space Green’s function) to the lasing process, has not been
experimentally observed. For the incoherent scheme, we have seen that the laser exists
only when the pump is different for the two dipoles (W1 6= W2), which is a rather severe
experimental limitation, given a small distance r12 ≪ λ0 between them. However, we
will see in chapter 7 that another pumping scheme can lead to the two-dipole laser while
keeping the same pump power on each scatterer. Furthermore, we note that in the
absence of pump, resonances of pairs of scatterers have been experimentally reported in
[117]. It was shown that two resonant s-wave scatterers placed close together produce
two resonances in the spectrum of the combined system, a broad s-wave resonance and
an extremely narrow p-wave resonance. The latter was called ‘proximity’ resonance
[118, 119], and in our context, it corresponds to the lower branch of Fig. 3.4(a) [120].

3.5 Quantum treatment of two atoms

Let us now calculate the spectrum of light emitted by two atoms, pumped in the inco-
herent way (section 3.2.2). We follow the same procedure as the one proposed in section
3.2.3. First, we need to find the closed set of equations that contains the dipoles

〈
S+

1 (t)
〉

and
〈
S+

2 (t)
〉
. Simple observation of Eqs. (3.42) and (3.43) reveals that they are coupled
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to
〈
S+

1 (t)Π2(t)
〉

and
〈
S+

2 (t)Π1(t)
〉
. Dynamical equations for those quantities directly

follow from Eqs. (3.42) and (3.43):

d
(
S+

2 Π1

)

dt
= −1

2
(3 + 2W1 +W2)S

+
2 Π1 + (W1 − 1)S+

2 − ImG12(ω0)S
+
1 Π2

+
i

2
G12(ω0)S

+
1 + F+

2 Π1 + S+
2 FΠ

1 , (3.72)

and label inversion 1 ↔ 2 gives the equation for S+
1 Π2. Then we take the expectation

value of Eqs. (3.42) and (3.72) with respect to |0R〉. Using Eq. (3.52), we easily verify
that all terms that contain Langevin forces vanish. The vector x defined in section 3.1
has now N ′ = 4 components, x =

(
〈S+

1 〉, 〈S+
1 Π2〉, 〈S+

2 〉, 〈S+
2 Π1〉

)
, and the matrix M

defined in Eq. (3.21) reads

M =




iω0
Γ0

− 1+W1
2 0 0 i

2G
∗
12(ω0)

W2 − 1 −1
2(3 + 2W2 +W1)

i
2G12(ω0) −ImG12(ω0)

0 i
2G

∗
12(ω0)

iω0
Γ0

− 1+W2
2 0

i
2G12(ω0) −ImG12(ω0) W1 − 1 −1

2(3 + 2W1 +W2)


. (3.73)

Furthermore, the vector λ and the matrix R, introduced in Eqs. (3.21) and (3.22), are
zero. Real parts of the four eigenvalues of the block symmetric matrix M are strictly
negative for all values of the independent parameters W1, W2, and k0|r1 − r2|, ensuring,
in the stationary regime, x(ts) = 0. In particular, 〈S+

1 (ts)〉 = 0 and 〈S+
2 (ts)〉 = 0.

Consequently, the laser transition, defined here as the phase transition in the parameters
space between 〈S±

1,2(ts)〉 = 0 and 〈S±
1,2(ts)〉 6= 0, never occurs for two incoherently pumped

atoms. This is an importance difference with the semiclassical description formulated
in the previous section. To make the link with the perturbative semiclassical equation
(3.67), we define the matrix N q = −2iM∗ − iI4 (I4 is the 4 × 4 identity matrix), such
that Eq. (3.21) becomes

dx

dt
=

(
i
ω0

Γ0
− 1

2

)
x − i

2
N q∗x. (3.74)

Trajectories of the four eigenvalues of the matrix N q are represented in Fig. 3.7, where
we have chosen the same pump parameters, W1 and W2, as in Fig. 3.4. In the passive
case [Fig. 3.7 (a)], two extra branches appear with respect to the semiclassical case [Fig.
3.4 (a)]. When one atom is pumped, the two pairs of spirals interact with each other, in
such a way that lasing threshold does not occur, even for W1 > 1. Therefore Fig. 3.7
(d) is quite different from Fig. 3.4 (d).

Using Eq. (3.52), it is not difficult to verify that the quantum regression theorem
is satisfied, i.e. that the matrix Y defined in Eq. (3.18) obeys Eq. (3.19). In order to
compute the spectrum (3.20), we have to evaluate

Y(0) =




1+〈Π1(ts)〉
2 〈S+

1 S
−
2 (ts)〉

〈Π2(ts)〉+〈Π1Π2(ts)〉
2 −〈S+

1 S
−
2 (ts)〉

〈S−
1 S

+
2 (ts)〉 1+〈Π2(ts)〉

2

−〈S−
1 S

+
2 (ts)〉 〈Π1(ts)〉+〈Π1Π2(ts)〉

2


 , (3.75)

and therefore to find a closed set of equations for 〈Π1(t)〉, 〈Π2(t)〉, 〈Π1Π2(t)〉, 〈S+
1 S

−
2 (t)〉,
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Figure 3.7: Trajectories in the complex-Λ plane of the four eigenvalues of the matrix
N q = −2iM∗− iI4, with M given by Eq. (3.73), as interatomic distance k0r12 decreases
from ∞ to 0. From (a) to (d), the pump W1 of the first atom is progressively increased,
while the second atom is not pumped.

and 〈S−
1 S

+
2 (t)〉. From Eqs. (3.42) and (3.43), we obtain

d (Π1Π2)

dt
= −(2 +W1 +W2)Π1Π2 + (W2 − 1)Π1 + (W1 − 1)Π2

+ 2ImG12(ω0)
(
S+

2 S
−
1 − S+

1 S
−
2

)
+ FΠ

1 Π2 + Π1FΠ
2 , (3.76)

d
(
S−

1 S
+
2

)

dt
= −

(
1 +

W1 +W2

2

)
S−

1 S
+
2 +

1

2
ImG12(ω0)Π1Π2

+
i

4
[G∗

12(ω0)Π2 −G12(ω0)Π1] + F+
2 S

−
1 + S+

2 F−
1 . (3.77)

When taking the expectation value of these equations, the terms with the Langevin forces
vanish in Eq. (3.77) but not in Eq. (3.76). Indeed,

〈FΠ
1 (t)Π2(t)〉 = −i〈S+

1 (t)Ω+
0 (r1, t)Π2(t)〉

= −i〈S+
1 (t)

[
Ω+

0 (r1, t),Π2(t)
]
〉

= −2iG12(ω0)〈S+
1 (t)S−

2 (t)〉, (3.78)
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where we made use of the property (3.54). Similarly,

〈Π1(t)FΠ
2 (t)〉 = 2iG∗

12(ω0)〈S+
1 (t)S−

2 (t)〉. (3.79)

Hence, Eqs. (3.76) and (3.77) become

d〈Π1Π2〉
dt

= −(2 +W1 +W2)〈Π1Π2〉 + (W2 − 1)〈Π1〉 + (W1 − 1)〈Π2〉
+ 2ImG12(ω0)

(
〈S+

2 S
−
1 〉 + 〈S+

1 S
−
2 〉
)
, (3.80)

d〈S−
1 S

+
2 〉

dt
= −

(
1 +

W1 +W2

2

)
〈S−

1 S
+
2 〉 +

1

2
ImG12(ω0)〈Π1Π2〉

+
i

4
[G∗

12(ω0)〈Π2〉 −G12(ω0)〈Π1〉] . (3.81)

We clearly see here that quantum Langevin forces are essential to recover the correct
dynamics of 〈Π1Π2〉. In particular, they ensure that 〈Π1Π2〉 is real.

Using Eqs. (3.80), (3.81), and the expection value of Eq. (3.43), we found, after some
algebra, the analytical expressions for the stationary values that determine the intensity
defined in Eqs. (3.26) and (3.27). For two atoms,

I =
1 + 〈Π1(ts)〉

2
+

1 + 〈Π2(ts)〉
2

+ 2ImG12(ω0)Re〈S+
1 (ts)S

−
2 (ts)〉, (3.82)

where

〈Π1(ts)〉 =
(W1 −W2)f(W2,W1) + 2

[
W

2 − 1 + ImG2
12(ω0)

1−W
1+W

]
g(W2,W1)

f(W2,W1)g(W1,W2) + f(W1,W2)g(W2,W1)
,

(3.83)

Re〈S+
1 (ts)S

−
2 (ts)〉 =

ImG12(ω0)

8

(3W2 +W1)〈Π1(ts)〉 + (3W1 +W2)〈Π2(ts)〉
(1 +W )2 − ImG2

12(ω0)
, (3.84)

with

W =
W1 +W2

2
, (3.85)

f(W1,W2) = (1 +W )(1 +W1) + ImG2
12(ω0)

(
1 +

W2 −W1 − 2

1 +W

)
, (3.86)

g(W1,W2) = 1 +W1 +
ReG2

12(ω0)

1 +W
. (3.87)

From Eq. (3.83), and with the label inversion 1 ↔ 2, we also obtain 〈Π2(ts)〉. Solutions
(3.83) and (3.84) were obtained without any approximation. They characterize light-
matter interaction for any coupling G12(ω0), at arbitrary distance r12, and for any values
W1 and W2 of the pump. For a homogeneous pump, W1 = W2 = W , Eqs. (3.83) and
(3.84) take a simpler form:

〈Π1(ts)〉 =
(W − 1)

[
(W + 1)2 − ImG2

12(ω0)
]

(W + 1)3 + (W − 1)ImG2
12(ω0)

, (3.88)

Re〈S+
1 (ts)S

−
2 (ts)〉 =

W (W − 1)ImG12(ω0)

(W + 1)3 + (W − 1)ImG2
12(ω0)

. (3.89)



56 How much quantum is the radiation process ? §3.5

0 1 2 3 4 5
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
In

te
n
si

ty

k0r12

(a) Scalar field

W1 = 3

W2 = 0

0 1 2 3 4 5
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

k0r12

semiclassical

quantum 
monoatomic

quantum 

(b) Vector field

Figure 3.8: Stationary intensity emitted in the far field by two atoms excited with an
incoherent pump (W1 = 3 and W2 = 0), versus the interatomic distance. The dashed
line corresponds to the full quantum solution (3.82), the dot-dashed line to the first two
terms of Eq. (3.82), and the solid line to the semiclassical approximation (3.92). In (a)

the field is scalar, G12(ω0) = eik0r12

k0r12
, and in (b) the field is vectorial with the dipoles

parallel to r12 (d1 = d2 ‖ r12), see Eq. (3.63).

The coupling between atoms, described by the Green’s matrix G12(ω0), modifies
the stationary values of the population imbalances with respect to the situation in the
absence of interaction. For example, in the limit of k0r12 → ∞ we have

〈Π1(ts)〉 = Πeq
1 +2

(W2 −W1)ReG2
12(ω0) + (W1 +W2 − 2W1W2)ImG

2
12(ω0)

(1 +W1)2(1 +W2)(2 +W1 +W2)
+O(G4

12(ω0)),

(3.90)
where Πeq

1 is the solution (3.40) in the absence of interactions. And in the near-field
k0r12 ≪ 1, the two atoms become indistinguishable with the same population imbalance:

lim
k0r12→0

〈Π1(ts)〉 = lim
k0r12→0

〈Π2(ts)〉 =
(W1 +W2 + 1)2 − 9

(W1 +W2 + 3)2 + 7
. (3.91)

Quite remarkably, the limit (3.91) is independent of the Green’s matrix, and therefore
has no singularity, while G12(ω0) → ∞ for k0r12 → 0.

In Figure 3.8 we compare the full quantum solution (3.82) (dashed line) with its
semiclassical approximation (solid line):

Isc =
1 + 〈Π1(ts)〉sc

2
+

1 + 〈Π2(ts)〉sc
2

+ 2ImG12(ω0)Re
[
〈S+

1 (ts)〉sc〈S−
2 (ts)〉sc

]
, (3.92)

where the different terms were evaluated in section 3.4. At first sight, it seems that an
effect reminiscent of the semiclassical threshold persists in the quantum description too.
Indeed, the quantum intensity is substantially higher above the semiclassical threshold
than below, even if the average dipoles 〈S±

i 〉 are always zero within the quantum formal-
ism. Nevertheless, this interpretation is somehow suspicious because the semiclassical
laser phase precisely coincides with the near-field regime. Consequently, the growth of
the quantum intensity is essentially due to the divergence of the Green’s function G12(ω0)
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Figure 3.9: Stationary intensity emitted in the far field versus the pump W1 of the first
atom (W2 = 0). Solid, dashed, and dot-dashed lines are defined in Fig. 3.8.

in the limit k0r12 → 0. Fig. 3.9, that shows the dependence of the intensity on the pump,
reveals no clear and obvious signature of a threshold in the quantum intensity (dashed
line).

By comparing the dashed and dot-dashed lines in Fig. 3.8, we note that the inter-
atomic contribution — the third term of Eq. (3.82) — is responsible for a non-monotonic
decay of the intensity (long range tail). This effect is not simply related to the trivial
term ImG12(ω0) appearing in Eq. (3.82) — which is due to the fact that we consider
the far-field intensity averaged over a 4π solid angle, — but it is really due to the quan-
tum interatomic coupling 〈S+

1 (ts)S
−
2 (ts)〉. And, as it is clear from Eq. (3.84), this term

is roughly proportional to ImG12(ω0). This implies that purely quantum matter-field
correlations can subsist over relatively long ranges in an atomic system.

An analytical expression for the spectrum of emitted light can be obtain by substi-
tuting Eqs. (3.73), (3.75), (3.80), (3.83), and (3.84) for M and Y(0) into Eq. (3.20).
Figure 3.10(a) shows how the spectrum evolves when the interatomic distance k0r12 is
varied from ∞ to 0.1. The four eigenvalues of N q = −2iM∗ − iI4 control the central
frequencies and spectral widths of the four Lorentzians that contribute to the spectrum,
as illustrated in Fig. 3.10(b). And the matrix Y(0) determines their spectral weights.
A study of the spectral width as a function of the pump strength W does not reveal
a significant spectral narrowing at high pump, that could have been interpreted as a
signature of the semiclassical laser threshold.

More interestingly, we note that only two modes are well resolved in Fig. 3.10(a).
In the regime k0r12 & 1, these modes are controlled by the two lower branches of Fig.
3.10(b). It is worth recalling that these branches correspond, in the absence of pump,
to the eigenvalues of the Green’s matrix [see Figs. 3.4(a) and 3.7(a)]. This seems to
indicate that the spectral properties of the N ×N Green’s matrix somehow characterize
the main features of the spectrum. In the next section, we propose to develop this idea
in the large N limit.
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Figure 3.10: (a) Far-field angle-averaged spectrum emitted by two atoms, with W1 = 3
and W2 = 0, coupled by a scalar field. The interatomic distance k0r12 is varied from
∞ to 0.1. (b) Trajectories in the complex-Λ plane of the four eigenvalues of the matrix
N q = −2iM∗ − iI4, with M given by Eq. (3.73), as the interatomic distance k0r12
decreases from ∞ to 0. For each value of k0r12 chosen in (a), we indicate with open
circles (same color) the positions of the four corresponding eigenvalues Λ. Each of them
eventually gives rise to a Lorentzian centered at ωL = ω0 + Γ0ReΛ/2, with a width at
half-maximum of Γ0(1 + ImΛ).

3.6 Increasing the number of atoms

In the literature dedicated to the light emitted by a collection of N atoms in the absence
of cavity, the dynamics of atomic operators is most of the time described by a master
equation, such as (2.17). Then, unequal-time correlations of atomic operators are reduced
to equal-time expectation values by using the quantum fluctuation-regression theorem
[110, 111], and field correlations are calculated, usually numerically, from atomic corre-
lation functions. Quite strikingly, most of the papers deal with no more than two atoms,
exposed either to thermal [57, 121] or monochromatic field [58, 59, 122–125], and only
rarely analytical expressions are derived. The case of an incoherent pump is less popular.
It was numerically studied by Steudel for two and three atoms [126], and much more
recently for up to five atoms by Savels et al. [61]. The drawback of the master equation
approach is the necessity to inverse and diagonalize a 22N × 22N matrix, limiting its
practical use to a small number of atoms [61]. Moreover, an analytical inspection of the
main features of the spectrum is difficult to achieve with this approach. For example, we
know that the spectrum can be expressed as a sum of (2N)!/(N+1)!(N−1)! Lorentzians
[126], but their relative spectral weight are not really understood. As a consequence, no
clear picture has emerged so far about the essential features of the spectrum of light
emitted by N atoms in the large N limit.

In the previous sections we followed a different path and used quantum Langevin
equations. This allowed us to understand the role of quantum Langevin forces, to check
explicitly the validity of the quantum regression theorem, and to compare the quantum
results with the semiclassical approximation. For N > 2 atoms, rather than trying to
compute the spectrum exactly, with the same procedure as in section 3.5, we would like to
take advantage of the pleasant form of the Langevin equations to perform a perturbative
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expansion valid in the case where atoms are weakly coupled by the dipole interaction,
i.e. in the regime where |Gij(ω0)| . 1. This correspond to k0rij & 1, or in terms of
the density ρ = N/V , ρλ3

0 . 10. A similar approach was proposed by Grémaud et al.

in the study of the coherent backscattering by 2 atoms [66]. The authors treated the
electromagnetic field radiated by one atom onto the other as a perturbation with respect
to the incident laser field, thanks to an expansion of the stationary solutions for atomic
operators in powers of the Green’s function G12(ω0).

Let us consider Eqs. (3.42) and (3.43). The first correction with respect to the
situation where dipole interactions are zero, is obtained by replacing the operator Πi(t)
in Eq. (3.42) by its expectation value in the absence of interaction, Πeq

i . Within this
approximation, the equations for the N expectations values 〈S+

i (t)〉 form a closed set.
Therefore, by definition of x in Eq. (3.21), we have x = (〈S1〉+, ..., 〈SN 〉+), λ = 0, and

M = i
ω0

Γ0
IN −B + iAG(ω0)

∗, (3.93)

where we introduced N ×N diagonal matrices

A =
1

2
diag

(
Wi − 1

Wi + 1

)
, (3.94)

B =
1

2
diag (Wi + 1) , (3.95)

and IN is the N ×N identity matrix. Multiple scattering of light, such as independent
or dependent scattering (see chapter 4), is fully included in Eq. (3.93). What we neglect
are essentially field nonlinearities. We also stress that the expression (3.93) results only
from a perturbative expansion, and not from a semiclassical approximation. This ensures
that the present analysis can go beyond the semiclassical one.

The power spectrum (3.20) takes a simpler form

S(ωL) = 2 Tr(N)

{
S · Re

[(
i
ωL
Γ0

IN −M
)−1

· Y(0)

]}
, (3.96)

where the ij element of the N ×N matrix Y(0) is now

Yij(0) = 〈S+
i (ts)S

−
j (ts)〉. (3.97)

This matrix is also calculated perturbatively. Using again Eqs. (3.42) and (3.43), we
easily show that

〈S+
i (ts)S

−
i (ts)〉 =

1 + 〈Πi(ts)〉
2

=
1 + Πeq

i

2
+ O(G2(ω0)), (3.98)

〈S+
i (ts)S

−
j (ts)〉 =

iG∗
ij(ω0)Π

eq
i − iGij(ω0)Π

eq
j + 2ImGij(ω0)Π

eq
i Πeq

j

2(2 +Wi +Wj)
+ O(G2(ω0)),

(3.99)

in agreement, in the case N = 2, with Eqs. (3.83) and (3.84). Restricting ourselves to
the lowest order, we take

Y(0) ≃ 1

2
IN +A = diag

(
Wi

Wi + 1

)
. (3.100)
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In terms of the stationary intensity,

I =

∫
dωL
2π

S(ωL) = Tr(N) [S · Re [Y(0)]] , (3.101)

the approximation (3.100) is quite strong since it brings us back to the trivial solution
in the absence of interaction, I =

∑N
i=1(1 + Πeq

i )/2. However, as far as the spectrum is
concerned, Eq. (3.100) is sufficient to capture the dominant collective effects.

Equations (3.93), (3.100), and (3.96) yield an analytical expression for the power
spectrum, that is essentially controlled by the properties of the N × N Green’s matrix
G(ω0). Among the (2N)!/(N + 1)!(N − 1)! possible Lorentzians, we now have shown
that only N dominate the spectrum in the weak-scattering regime ρλ3

0 . 10. Note
that the quantum Langevin forces, discussed in section 3.3, do not play a dominant role
here to evaluate the quantum spectrum. This is radically different from standard laser
theory where phenomenological quantum Langevin forces for cavity modes are necessary
to compute the spectrum of light below and above threshold [23].

To check the validity of the perturbative expression (3.96), we can compare, for
N = 2, its prediction with the exact result calculated in section 3.5. Figure 3.11 shows
a good agreement as long as k0r12 & 1. Interestingly, this agreement is improved when
W1 and W2 get closer, and is almost perfect for W1 = W2. All this is not completely
obvious because (3.96) and the exact result do not have exactly the same perturbative
expansion in G12(ω0) in the limit k0r12 → ∞. Nevertheless, our result (3.96) is valid as
long as the dipole coupling is weak. In particular, since it is based on a linear expansion
in G(ω0), it is properly justified below an eventual random laser threshold. We will see
in chapter 7 that a description of the laser above threshold requires to keep at least the
terms cubic in G(ω0).

In the case of a uniform pump (Wi = W ), it is convenient to express the trace in
Eq. (3.96) in the bi-orthogonal basis of right Rn and left Ln eigenvectors of the non-
Hermitian matrix G(ω0):

G(ω0)Rn = ΛnRn and G(ω0)
†Ln = Λ∗

nLn. (3.102)

We normalize Rn and Ln such that

N∑

i=1

Li∗nR
i
m = δnm, (3.103)

and here Ln = R∗
n because G(ω0) is a symmetric matrix. Then, the spectrum (3.96)

becomes

S(ωL) =
2W

1 +W

N∑

n=1

Re

[
cn

i [(ωL − ω0)/Γ0 −A(W )ReΛn] +B(W ) −A(W )ImΛn

]
,

(3.104)
where

A(W ) =
1

2

W − 1

W + 1
, (3.105)

B(W ) =
W + 1

2
, (3.106)
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Figure 3.11: Far-field angle-averaged spectrum emitted by two atoms, with W1 = 3, and
W2 = 0 or W2 = 0.3. The perturbative result (3.96) (dashed line) is compared with the
exact formula of section 3.5 (solid blue line, see also Fig. 3.10) for k0r12 = 1, 2, and 5.

and the c-numbers cn depend on eigenstates Ln and Rn,

cn = 〈Ln|S|Rn〉 =

N∑

i,j

sin k0|ri − rj |
k0|ri − rj |

RinR
j∗
n . (3.107)

If Im (cn) ≪ Re (cn), S(ωL) is a sum of N Lorentzians centered at

ωn = ω0 +
Γ0

2

W − 1

W + 1
ReΛn, (3.108)

and having widths at half-maximum given by

Γn =
Γ0

2

(
W + 1 − W − 1

W + 1
ImΛn

)
. (3.109)

To illustrate how the spectrum (3.104) evolves withN , we considerN atoms randomly
distributed in a sphere of radius R, at a given density ρ = 3N/4πR3 such that ρλ3

0 = 1.
By numerical diagonalization, we find eigenvalues Λn and eigenstates Rn of G(ω0), and
use them to evaluate S(ωL). Results are presented in Fig. 3.12(a). In the regime
ρλ3

0 < 10, the modes strongly overlap, i.e. |ReΛn − ReΛn+1| ≪ |ImΛn|, so that they
cannot be distinguished in the spectrum. This is further illustrated in Fig. 3.12(b),
where we show the eigenvalues Λn that we used to evaluate S(ωL) for N = 1000. The
shape of the eigenvalue domain as well as the eigenvalue density of the Green’s matrix
will be discussed in great details in chapter 6. Here we just mention, as it is indicated
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Figure 3.12: (a) Far-field angle-averaged spectrum emitted by N atoms randomly dis-
tributed in a sphere, with Wi = 0.1 (i = 1, ..., N). N is varied from 1 to 1000 at fixed
density ρλ3

0 = 1. (b) Eigenvalues of the N×N Green’s matrix G(ω0) for a single random
configuration of N = 1000 points, used to compute the corresponding power spectrum
in (a) (dot-dashed line).

by Eqs. (3.108) and (3.109), that the spectral extent of the eigenvalue distribution
may control the shape of S(ωL). In particular, all modes contribute to the spectrum,
which is in contrast with the behavior above threshold, as we shall see in chapter 7. In
addition, we stress that the smooth curves of Fig. 3.12(a) were obtained for a single
spatial configuration of the N atoms, indicating that S(ωL) seems to be a self-averaging
quantity in the limit N → ∞.

Calculating analytically the quantum many-body quantity S(ωL) is a priori a com-
plicated task. Quite interestingly, we will see in chapter 7 that S(ωL) is related to the
resolvent associated with the Green’s matrix, for which we will develop a complete ana-
lytical theory in chapter 6. We therefore refer the reader interested in the random laser
physics to chapter 7, where theoretical tools developed in chapters 5 and 6 will find a
natural and elegant application.



Chapter 4
Multiple-scattering of light in the

presence of gain: a mesoscopic description

4.1 Fictitious Hamiltonian and scattering building blocks

4.1.1 Atomic polarizability

In the previous chapter, we provided a formulation of matter-field interaction in terms
of microscopic excitations. We are now interested in the alternative picture, where
atomic degrees of freedom are eliminated. We extend the ‘mesoscopic’ formulation briefly
introduced in section 2.4.2 to the case where atoms are excited by an optical pump. For
simplicity, we concentrate on the incoherent pumping scheme described in section 3.2.2.
The pump strength on atom i, Wi, is defined by Eq. (3.37). In the presence of pump,
Eqs. (2.86) and (2.87) become

D−
i (ωL) =

1

ωL − ω0 + i(1 +Wi)Γ0/2

∫
dω′

2π~
Πi(ωL − ω′) [di ⊗ di]E

+
s (ri, ω

′), (4.1)

Πi(ωL) =
2iπ (Wi − 1) Γ0

ωL + i (1 +Wi) Γ0
δ(ωL) +

2

ωL + iΓ0

∫
dω′dω′′

(2π~)2[
[di ⊗ di]E

−
s (ri, ω

′′) · Πi(ωL − ω′ − ω′′)E+
s (ri, ω

′)
ωL − ω′ + ω0 + i(1 +Wi)Γ0/2

+ h.c.(ω′ ↔ ω′′)

]
, (4.2)

where E+
s (ri, ω

′) is the smoothed field (2.59). With Eq. (4.1), the quantum wave equation
(2.39) reads

∇×∇× E+(r, ωL) − k2
LE

+(r, ωL) =
∫

dω′

2πǫ0~

[
N∑

i=1

k2
LΠi(ωL − ω′)

ωL − ω0 + i(1 +Wi)Γ0/2
[di ⊗ di] δ(r − ri)

]
E+
s (r, ω′). (4.3)

Quantum equations of motion (4.1), (4.2) and (4.3) were derived with almost no approxi-
mation: we used RWA for internal degrees of freedom (see section 2.3.2), and we omitted
the terms involving the values of atomic operators at the initial time (see the discussion
below). As it is known in the semiclassical laser theory, where similar equations for
classical fields show up [23, 32], such coupled equations can be solved in all orders in
the electric field only if we neglect the time dependence of the population inversion Πi.

63
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This is often well justified for lasers of interest, for which the polarization relaxes at a
phenomenological rate γ⊥ much greater than the relaxation rate γ‖ of the population
inversion. Such lasers are sometimes referred to as lasers of class B. The condition
γ⊥ ≫ γ‖ is not satisfied for independent atoms in free space, for which γ⊥ = Γ0/2 and
γ‖ = Γ0. Nevertheless, the situation can be radically modified by the pump and interac-
tions. In particular, we will show in chapter 7 that the inversion may be approximated
as stationary in the vicinity of the random laser threshold. Suppose, for the time being,
that such a stationary approximation is meaningful in our context:

Πi(ωL) ≃ 2πΠi(ts)δ (ωL) , (4.4)

where ts is a time that is long enough for the system to reach stationary regime. From
Eq. (4.2), we readily get

Πi(ts) =
Πeq
i

1 + si
, (4.5)

with Πeq
i the solution (3.40) in the absence of interatomic interactions, and si a saturation

parameter defined by

si = 2

∫
dω′dω′′

(2π~)2
[di ⊗ di]E

−
s (ri, ω

′′) · E+
s (ri, ω

′)

(ω′ − ω0)
2 + (1 +Wi)2Γ2

0/4
. (4.6)

Such a saturation parameter accounts for infinite-order nonlinear spatial ‘hole burning’.
It is well known in standard laser theory [23], and has attracted recent attention in the
context of multimode laser action in open and irregular systems [21, 22, 33].

Using the assumption (4.4) in Eq. (4.1), we find the atomic polarizability α(ωL) that
relates each dipole to the local electric field:

D−
i (ωL) = ǫ0αi(ωL)∆

‖
iE

+
s (ri, ωL), (4.7)

where ∆
‖
i = d̃i ⊗ d̃i is the projection operator (on the dipole d̃i), and the polarizability

reads

αi(ωL) =
d2

ǫ0~

(
1

1 + si

)
Πeq
i

ωL − ω0 + i(1 +Wi)Γ0/2
. (4.8)

For later convenience, we introduce the dimensionless polarizability,

α̃i(ωL) =
Πeq
i

1 + si

Γ0/2

ωL − ω0 + i(1 +Wi)Γ0/2
, (4.9)

such that, according to Eqs. (2.71), (2.77), and (4.8),

αi(ωL) =





6π
k3
0
α̃i(ωL) (vector field)

4π
k3
0
α̃i(ωL) (scalar field)

. (4.10)

It is worth noting that the polarizability defined in Eq. (4.7) relates the dipole D−
i not

to the total electric field E+(ri) but only to its smooth part E+
s (ri). This means that αi

features the response of atom i to the field radiated by all atoms except itself.
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4.1.2 Fictitious Hamiltonian

In order to obtain a closed equation for the the total electric field E+(r) from Eq. (4.3),
we have to express E+

s (ri) in terms of E+(ri). Using its definition (2.58) and the relation
(4.7), we find

E+
s (ri, ωL) = E+(ri, ωL) − 1

ǫ0
g(0, ωL)D−

i (ωL)

=
1

1 + g(0, ωL)αi(ωL)∆
‖
i

E+(ri, ωL). (4.11)

With the help of Eqs. (4.4) and (4.11), Eq. (4.3) can be rewritten as an effective propa-
gation equation: [

k2
L −Hf

]
|E+(ωL)〉 = 0, (4.12)

where we use the notation E+(r, ωL) = 〈r|E+(ωL)〉, with |E+(ωL)〉 that belongs to the
fictitious Hilbert space Efdefined in section 2.4.2. The fictitious Hamiltonian Hf is

Hf = Hf
0 + V f = (∇×∇×) +

N∑

i=1

vi, (4.13)

where vi is the effective potential1

vi = ṽi∆
‖
i δ(r̂ − ri), (4.14)

ṽi =
−k2

Lαi(ωL)

1 + g(0, ωL)αi(ωL)
. (4.15)

The fictitious Hamiltonian Hf is non-Hermitian because ṽi is a complex quantity.
Eq. (4.12) implies that all scattering is elastic. This is a direct consequence of the

approximation (4.4). Inelastic scattering induced by an eventual non-stationary value of
population imbalance in Eq. (4.3) must not be confused with the inelastic scattering of
purely quantum origin considered in the previous chapter. To make clear the difference,
it is sufficient to consider the spectrum of light emitted by a single atom. We recall
that for the incoherent pump, the only nonzero contribution to the spectrum of light
(3.20) is a term proportional to Y(0) = (〈S+(ts)S

−(ts)〉, 〈Π(ts)S
−(ts)〉, 〈S−(ts)S

−(ts)〉)
(see section 3.2.3 for details). Such a contribution, responsible for the ‘quantum’ part
of the spectrum, is not contained in Eqs. (4.1), (4.2) and (4.3), because we omitted in
those equations the values of atomic operators at time ts. Taking them into account
amounts to adding a new source term in the propagation equation (4.12), that does
not vanish in the approximation (4.4). It is exactly the idea that we used in section
3.6. Rigorously speaking, Eqs. (4.1), (4.2), (4.3), and (4.12), are exact provided that we
replace quantum operators with their expectation value with respect to |0R〉. This is the
semiclassical approximation that we defined in section 3.2.2, and it will be used in the
following. For brevity, we will keep the operator-like notation, i.e. for any operator A
acting in E , we note

〈0R|A|0R〉 ≡ A. (4.16)

1For simplicity, we add hats to operators that act in Ef only if confusion is possible. For example, we
note vi and Hf rather than v̂i and Ĥf .
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4.1.3 Atomic t-operator

Formally, the scattering amplitude ṽi that appears in Eq. (4.14) is zero because g(0, ωL)
in Eq. (4.15) is infinite. At first sight, the singularity of g(0, ωL) is problematic. However,
if we consider scattering quantities like the t-operator of a single atom, this divergence
disappears, as we now show. We define the retarded free-space Green’s operator associ-
ated with Hf

0 :

Gf0 =
1

k2
L + iǫ−Hf

0

. (4.17)

According to Eq. (2.35), in the r-representation, it is proportional to the free-space
Green’s function g (2.36):

〈r|Gf0 |r′〉 = − c2

ω2
L

g(r − r′, ωL). (4.18)

In terms of Gf0 , the t-operator of an atom i reads [127]

ti = vi + viGf0 ti
= vi + viGf0 vi + viGf0 viGf0 vi + . . . (4.19)

For a potential vi of the form (4.14) associated with point-like particles, the Born series
(4.19) can be easily summed exactly:

ti = t̃i∆
‖
i δ(r̂ − ri), (4.20)

t̃i =
ṽi

1 − ṽi〈r|Gf0 |r〉
, (4.21)

where 〈r|Gf0 |r〉 = −g(0, ωL)/k2
L is infinite. In the literature devoted to multiple scattering

by point scatterers (see, e.g., the two reviews [128] and [129]), 〈r|Gf0 |r〉 is often replaced
by a regularized function to retain a physical nonzero t-operator. We show here that
such a regularization is not necessary. Indeed, inserting the explicit expression (4.15)
into Eq. (4.21), we obtain

t̃i = −k2
Lαi(ωL) ≃





−6π
k0
α̃i(ωL) (vector field)

−4π
k0
α̃i(ωL) (scalar field)

, (4.22)

that has no singularity. To get the last equality of Eq. (4.22), we used Eq. (4.10) with
the very reasonable approximation kL ≃ k0 (|kL − k0| ≪ k0) for the prefactor. The
consistency of our approach comes from the fact that the polarizability in Eq. (4.7) is
rigorously related to the smoothed field and not to the total electric field. To recover
the same expression (4.22), authors of [128] and [129] first introduced a large-momentum
cutoff in the Green’s function, that is then phenomenologically related to the linewidth
Γ0.

2 The singularity of vi is not a problem because vi is not a physical observable. Gen-
erally speaking, all quantities related to multiple scattering among point-like scatterers
must contain, if they are properly calculated, ti and not vi as a building block.

2Note also that, ironically, if we make the incorrect choice ṽi = −k2
Lαi(ωL), and restrict the evaluation

of t̃i given by Eq. (4.19) to the unjustified second-order Born approximation, we also get the correct result
(4.22).
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Note finally that the monoatomic t-operator associated with Hf coincides with the
one associated with the Hamiltonian H (2.24). In the absence of pump, the proof is
straightforward; it is given by Eqs. (2.91), (2.93), and (2.98) where we set N = 1 (see
also [78]). However, as soon as several photons are considered, the microscopic scattering
approach becomes more involved (see, e.g., [130]).

4.1.4 Scattering cross-section and optical theorem

Let us now recall how the t-operator and the polarizability α are related to the monatomic
scattering cross-section, defined as the ratio between the scattered flux and the incoming
flux density (per unit of area) [49, 131]. For a single atom i located at r = 0 and
illuminated by an incident wave |E+

in(ωL)〉, Eq. (4.12) can be formally rewritten as the
Lippman-Schwinger equation

|E+(ωL)〉 = |E+
in(ωL)〉 + Gf0 vi|E+(ωL)〉, (4.23)

that becomes, with Eq. (4.19),

|E+(ωL)〉 = |E+
in(ωL)〉 + Gf0 ti|E+

in(ωL)〉. (4.24)

In the far-field, using the approximation (2.38) of the Green’s function, we obtain

E+(r, ωL) = E+
in(r, ωL) − t̃i

eikLr

4πr
∆

‖
i∆

⊥
r E+

in(0, ωL). (4.25)

For a scalar field, projectors ∆
‖
i and ∆⊥

r disappear. We can define a scattering amplitude

fi =





− t̃i
4π∆

‖
i∆

⊥
r (vector field)

− t̃i
4π (scalar field)

, (4.26)

from which we find the total scattering cross-section by integrating over the solid angle:

σi =

∫
dΩ|fi|2 =





|t̃i|2
6π ≃ 6π

k2
0
|α̃i|2 (vector field)

|t̃i|2
4π ≃ 4π

k2
0
|α̃i|2 (scalar field)

, (4.27)

where we used Eqs. (4.22) and (4.10) with kL ≃ k0 for the prefactors.

If energy is conserved, the so-called S-matrix of a single atom, Si = 1̂ + Gf0 ti, is
unitary. In optics, this result is known as the optical theorem [49, 132] and reads

|t̃i|2 =





− 6π
kL

Imt̃i (vector field)

− 4π
kL

Imt̃i (scalar field)
(if energy is conserved), (4.28)

which is simpler in terms of α̃i:

Im

[
1

α̃i(ωL)

]
= −1 (if energy is conserved). (4.29)

For the specific model (4.9), the optical theorem is fulfilled in the absence of pump
(Wi = 0) and field nonlinearities (si = 0), as it could be expected [113].
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4.2 A simple but universal semiclassical laser threshold

Now we would like to establish a very simple and general condition for lasing in any
system of point-like scatterers — atoms, in the present context. It is based on two basic
ingredients: on the one hand, the equation of propagation (2.39) that relates the field to
atoms (through the Green’s matrix), and on the other hand, the microscopic response of
atoms to the field (through the polarizability).

4.2.1 Threshold condition

Below threshold, we can assume linear response of atoms to the field. This implies that
the polarizability in Eq. (4.7) does not depend on the field. For instance, if we consider
the model (4.9) of incoherent pump, it amounts to take si = 0. We rewrite (4.7) in terms
of the dimensionless polarizability α̃i (4.8) and the dimensionless electric field Ω+

s (3.5):

D̃−
i (ωL) = −α̃i(ωL)∆

‖
iΩ

+
s (ri, ωL) (vector field)

S−
i (ωL) = −α̃i(ωL)Ω+

s (ri, ωL) (scalar field)

, (4.30)

and for later convenience, we define the diagonal matrix3

A(ωL) =





diag
[
α̃i(ωL)∆

‖
i

]
3N × 3N (vector field)

diag [α̃i(ωL)] N ×N (scalar field)

. (4.31)

On the other hand, the smoothed field, solution of the equation of propagation, is
given by Eqs. (2.83) and (2.84):

Ω+
s (ri, ωL) = −

(
ωL
ω0

)3∑N
j 6=i Gij(ωL)D̃−

j (ωL) (vector field)

Ω+
s (ri, ωL) = −

(
ωL
ω0

)3∑N
j 6=iGij(ωL)S−

j (ωL) (scalar field)

. (4.32)

Here the free component Ω+
0 of the field vanishes because, as explained in the previous

section, all operators considered in the present chapter are implicitly averaged with
respect to |0R〉.

It then follows immediately from the combination of Eqs. (4.30) and (4.32) that the
linear description breaks down and the lasing starts as soon as at least one eigenvalue
λk of the product of the Green’s matrix and A(ωL) is equal to (ω0/ωL)3:

lasing threshold:

(
ω0

ωL

)3

=





λk {G(ωL)A(ωL)} (vector field)

λk {G(ωL)A(ωL)} (scalar field)
. (4.33)

This condition contains no approximation. It is valid for any dimensionality of space,
any atomic polarizability, any number and configuration of atoms, and any form of the
Green’s matrix that, in particular, can account for an external cavity and amplification
or absorption of light in the space between the atoms.

3For a vector field, A(ωL) is (3 × 3)-block diagonal.
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The case of an ensemble of passive atoms embedded in an amplifying matrix will
be discussed in chapter 7. For the time being, suppose that the atoms are confined to
an empty volume of typical size R, without external cavity. As we discussed in section
2.4, for Γ0 ≪ ω0, c/R, we can safely replace G(ωL) by G(ω0), and (ω0/ωL)3 by one.
Obviously, we cannot replace ωL by ω0 in α̃i(ωL) because the latter has a resonance
in ω0. For N = 2 and the polarizability (4.9), the laser condition (4.33) becomes then
equivalent to the semiclassical lasing threshold found in section 3.4. From here on, we
will be interested in the large N limit. The simplest case that we can look at is the
situation where the pump is uniform (α̃i = α̃), and the dipoles d̃i are all oriented in the
same direction. The condition (4.33) is then rewritten only in terms of the eigenvalues
Λk of the Green’s matrix, either the 3N × 3N matrix G(ω0) (2.70) or the N ×N matrix
G(ω0) (2.80):

Λk(ω0) =
1

α̃(ωL)
. (4.34)

This equation illustrates that laser threshold results from an interplay of single-atom
properties (described by the polarizability α̃) and geometry-dependent collective effects
(quantified by the eigenvalues Λk of the Green’s matrix). If the N atoms are localized
at random positions, the Green’s matrix becomes a random matrix, and the threshold
the one of a random laser. Clearly, the most difficult task in evaluating analytically the
condition (4.34) is to compute the statistical properties of the eigenvalues Λk. To tackle
this problem we have developed an analytic theory for non-Hermitian Euclidean random
matrices that is presented in chapter 6. This theory will be applied to the case of the
Green’s matrix, and we will show, in chapter 7, that it is able to predict the random
laser threshold all the way from weak (ρλ3

0 ≪ 1) to strong (ρλ3
0 ≫ 1) scattering regime.

We point out that for the condition (4.34) to be physically consistent, eigenvalues Λk
necessarily have to satisfy the condition ImΛk > −1 for any dimensionality of space and
any number or configuration of atoms. The explanation is the following. We know from
Eq. (4.29) that the line Im (1/α̃i) = −1 in the complex plane corresponds to the domain
where no energy is brought to the atomic system. Thus, if one eigenvalue Λk could cross
this line, that would mean that lasing could occur without pump. Actually, as we shall
see later, the property ImΛk > −1 is a consequence of causality.

4.2.2 Polarizability models

An easy way to visualize the threshold condition (4.34) is to draw the two-dimensional
domain DΛ occupied by the complex eigenvalues of G (or G) and the region Dα spanned
by 1/α̃ when its free parameters — ωL and W in the case of Eq. (4.9) — are varied on
the complex plane. Lasing takes place when DΛ and Dα touch (threshold) or overlap.
This is illustrated in chapter 7 for N ≫ 1 atoms in a sphere of radius R≫ λ0, with two
gain mechanisms described by two different models of polarizability α̃.

The first gain mechanism is given by Eq. (4.9). It features optical pumping of a
three-level atom in a regime such that the latter can be reduced to an effective two-level
atom pumped by an incoherent process [see section 3.2.2 and Fig. 3.1 (b)]. For W > 1,
population inversion is achieved (Πeq > 0), so that the atom amplifies incident light
(Imt > 0).

The second gain mechanism is probably the most simple that we can imagine for
cold atoms. It involves a two-level atom (resonant frequency ω0) in the field of a strong
near-resonant coherent pump (Rabi frequency Ωp, frequency ω0+Γ0∆p), depicted in Fig.
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3.1 (a). The driving field induces a population inversion in the dressed-state basis [52],
so that a weak probe beam (frequency ωL = ω0 + ∆pΓ0 + δLΓ0) can be amplified. The
whole process can be also described in the bare-state basis by a three-photon transition
from the ground state to the excited state via absorption of two pump photons. This
phenomenon, first described by Mollow in 1972 [115] and observed soon afterwards [116],
is relevant for current experiments with cold atoms [65]. Equations of motion for this
system were introduced in section 3.2.1. Treating the probe as a perturbation with
respect to the pump, we can easily show that the relation (4.30) holds with α̃ given by
[65, 112, 115]

α̃(δL) = −1

2

1 + 4∆2
p

1 + 4∆2
p + 2Ω2

p

×
(δL + i)(δL − ∆p + i/2) − Ω2

pδL/(2∆p − i)

(δL + i) (δL − ∆p + i/2) (δL + ∆p + i/2) − Ω2
p (δL + i/2)

. (4.35)

Whereas we had, in the case of the incoherent gain (4.9), only two independent param-
eters (frequency of the probe ωL and intensity of the pump W ), we now have for the
coherent gain (4.35), three parameters (frequency of the probe ωL, intensity of the pump
Ωp, frequency of the pump ωp). The main amplification feature of (4.35) appears for a

pump-probe detuning δL = sgn(∆p)
√

∆2
p + Ω2

p.

We directly refer the reader interested in a discussion of the laser threshold using
the criterion (4.34) to chapter 7. In the present chapter, we would like to discuss the
random laser threshold in the terms used initially in 1968 by Letokhov [6], who was the
first to consider the possibility of a ‘photonic bomb’, in a regime where the size of the
system R exceeds the scattering mean free path. In the following sections we introduce
the general tools necessary to compute such a threshold. We believe that this description
has a double interest. First, it will present a derivation of a transport equation in the
presence of gain, a situation that is not sufficiently well covered by the existing literature.
Second, it will reveal explicitly all hypotheses that are necessary to evaluate the laser
threshold within the diffusion approximation, and will allow for a direct comparison
with the theoretical framework developed in chapter 6. In particular, a comparison of
diagrammatic techniques used in both cases will turn out to be fruitful.

4.3 Extinction mean free path in a gas of pumped atoms

In a random medium described by the fictitious Hamiltonian (4.13), a complete solution
of the wave equation (4.12) amounts to the knowledge of the Green’s operator

Gf =
1

k2
L −Hf

. (4.36)

Averaged over disorder, it gives information about the effective medium as seen by the
wave. Without pump, it exponentially decays in space, with a decay length defined as
the extinction mean free path le. Beyond a few le, the average of the field amplitude
vanishes. Transport dynamics are then contained in the second moment of Gf , the
average intensity. All this is correct if the effect of random scattering is effectively
captured by configurational averaging. We should keep two points in mind: first, such
a spatial average over many configurations is equivalent to infinite-time average only if
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the system is ergodic; and second, for any given configuration, the expected behavior
can deviate from the actual behavior. Such a deviation may be especially large when the
number of scatterings is small.

For simplicity, we will neglect in the following the vectorial nature of the field, and
assume that external degrees of freedom are the uncorrelated classical positions ri (i =
1, . . . , N). Average is performed by spatial integration over the volume V to which the
atoms are confined4:

〈. . . 〉 =

∫

V

N∏

i=1

ddri
V

(. . . ) . (4.37)

We also temporarily assume that the gain is uniform (ṽi = ṽ), so that the disorder
potential V f reads:

V f (r̂) = ṽ

N∑

i=1

δ(r̂ − ri). (4.38)

All information about 〈Gf 〉 is contained in the self-energy Σf defined by

〈Gf 〉 =
1

(Gf0 )−1 − Σf
= Gf0 + Gf0 Σf 〈Gf 〉. (4.39)

We can compute Σf in the |k〉- or |r〉- representations. The former is generally chosen if
we wish to highlight the elementary excitations generated during the scattering process.
In particular, V f (r̂) breaks the translational invariance, and generates new excitations
from an initial wave vector k. On the other hand, the |r〉-representation is advantageous

to keep track of the propagation in space, where changes of positions are induced by Gf0 ,
and not by the one-body potential V f (r̂). Indeed, V f (r̂) is necessarily local:

〈r|V f (r̂)|r′〉 = V f (r)δ(r − r′). (4.40)

Before calculating Σf , we will derive its relation to the extinction mean free path le.
To define properly the latter, some assumptions are necessary. First, we assume space
to be translationally invariant (it is true only in the limit V → ∞), so that Σf becomes
diagonal in k-space. Besides, 〈k|Σf |k〉 for point scatterers has only a weak dependence
on k, as we will see later. Neglecting this dependence, we write

〈k|Σf |k′〉 ≃ Σ0 δk,k′ , (4.41)

and in k-space, Eq. (4.39) becomes

〈Gf (k,k′)〉 = 〈〈k|Gf |k′〉〉 =
1

k2
L − k2 − Σ0

δk,k′ . (4.42)

We then define le by the relation

√
k2
L − Σ0 = k̃L +

i

2le
with k̃L > 0, (4.43)

4The same notation 〈. . . 〉 was used in previous chapters for the quantum expectation value with respect
to degrees of freedom of the field. In the present chapter, we recall that this averaging with respect to
|0R〉 has already been performed in section 4.1.1. Hence, we hope that no confusion is possible.
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so that, in three-dimensional space, the retarded Green’s function is

〈Gf (r, r′)〉 = −e
−|r−r′|/2le

4π|r − r′| e
ik̃L|r−r′|. (4.44)

Without pump, le is a positive decay length. However, in the presence of a gain mech-
anism, le may eventually become negative. In that case there is amplification5. For
|ReΣ0|, |ImΣ0| ≪ k2

L,

k̃L ≃ kL , and le ≃
−kL
ImΣ0

. (4.45)

Let us now evaluate Σf . Different diagrammatic strategies can be adopted. First,
in the limit ṽ → 0 obeyed by (4.15), we notice that all cummulants of (4.38) are zero,
except the second one [79]. Therefore, V f (r) can be assumed to be a Gaussian random
field. It is convenient to define

Ṽ f = V f − 〈V f 〉 = V f − ρṽ, (4.46)

and expand 〈Gf 〉 in series of the shifted propagator G̃f0 =
(
k2
L + 〈V f 〉 −Hf

0

)−1
:

Gf = G̃f0 + G̃f0 Ṽ f G̃f0 + G̃f0 Ṽ f G̃f0 Ṽ f G̃f0 + . . . (4.47)

The result of averaging Eq. (4.47), written in the |r〉-representation, can be expressed
through pairwise contractions

〈Ṽ f (r)Ṽ f (r′)〉 = ρṽ2δ(r − r′). (4.48)

The shifted self-energy Σ̃f = G̃f−1
0 − Gf−1 is the sum of all one-particle irreducible

diagrams (i.e. those that cannot be separated into two independent diagrams linked by

the propagator G̃f0 ) contained in G̃f−1
0 〈Gf 〉G̃f−1

0 . Selecting the simplest class of diagrams,
it is straightforward to get

〈r|Σ̃f |r′〉 = 〈Ṽ f (r)Ṽ f (r′)〉〈r|Gf |r′〉
= ρṽ2〈r|Gf |r〉δ(r − r′). (4.49)

This result is known as the self-consistent Born approximation. It it not satisfactory for
two reasons. First Eq. (4.49) is subject to the singularity of 〈r|Gf |r〉. Second, the result
for 〈Gf (r, r′)〉 = 〈〈r|Gf |r′〉〉 is expressed in terms of ṽ, that contains, for the case (4.15),
also a singularity. While the first singularity can probably be regularized by taking into
account more diagrams [133], the second one is more problematic. As we argued in the
previous section, all physical observable like 〈Gf 〉, must be expressed in terms of t̃ instead
of ṽ.

To see t̃ in the expansion of the self-energy, we must adopt another strategy. We
introduce the collective T f operator defined as

T f = V f + V fGfV f , (4.50)

= V f + V fGf0 T f . (4.51)

5Note that if we calculate 〈Gf (r, r′)〉 from Eq. (4.42), we only find the retarded solution

e−sgn(le)|r−r
′|/2leeik̃L|r−r

′|/4π|r − r
′|. The reason is that the other solution of the propagation equa-

tion, e−|r−r
′|/2leeik̃L|r−r

′|/4π|r − r
′| with le < 0, is not integrable, and thus its Fourier transform does

not exist.
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Σf  = N N(N-1)
2

+ N(N-1) +

+ ...N(N-1) +

Figure 4.1: Diagrammatic expansion of the self energy Σf in terms of 〈ti〉 = ⊠ = t̃/V .

A straight line represents the free-space Green’s function Gf0 , and dashed lines indicate
that scattering takes place from the same atom i.

Equations (4.50) and (4.39) show that

〈T f 〉 = Σf + ΣfGf0 〈T f 〉. (4.52)

Therefore, Σf is the sum of all one-particle irreducible diagrams contained in the expan-
sion of 〈T f 〉. We now take advantage of the form V f =

∑N
i=1 vi, to express T f in terms

of the ti’s (4.19) of individual atoms [127]

T f =
∑

i

ti +
∑

i

∑

j 6=i
tiGf0 tj +

∑

i

∑

j 6=i

∑

k 6=j
tiGf0 tjGf0 tk + . . . , (4.53)

and we proceed to average Eq. (4.53) according to the spatial integration (4.37). In the
case of a uniform pump (t̃i = t̃ ), irreducible diagrams are represented in Fig. 4.1. For a
dilute medium (ρλ3

0 ≪ 1), it is sufficient to truncate this expansion to the first order in
density:

Σf ≃ N⊠ = ρt̃ 1̂. (4.54)

This result is known as the independent scattering approximation (ISA)6. It is of the form
(4.41), meaning that Eqs. (4.43) and (4.44) are relevant. For ρλ3

0 ≪ 1, the approximation
(4.45) is valid, and with Eqs. (4.54) and (4.22), the extinction mean free path becomes

le ≃ − kL

ρImt̃
(4.55)

≃ k2
0

4πρ

1

Imα̃(ωL)
. (4.56)

Note that Eq. (4.55) is also true for a vector field. If we consider the incoherent pump
(4.9) on resonance, we get

le(ωL = ω0) =
k2

0

4πρ

(1 +W )2

1 −W
. (4.57)

As expected, the wave is amplified (le < 0) for W > 1 (population inversion).
In Fig. 4.1, terms different from (4.54) correspond to ‘dependent’ scattering, meaning

that the scattering from an atom depends on other atoms in its local environment [49].
This dependent scattering can be important when the particles scatter strongly, as it is
the case for atoms on resonance [133]. Whereas it is impossible to calculate all diagrams
exactly, it is feasible to take into account, without much extra effort, all higher order
terms of a certain class. Before discussing such an extension, we would like to make the
link between the scattering formalism and Euclidean random matrices, for which similar
diagrammatic will be performed in chapters 5 and 6.

6The same result can be obtained with the expansion (4.47), provided we shift the potential V f with
respect to ρt̃ rather than to 〈V f 〉, and take the lowest order Σ̃f = 0. This shift is sometimes used to
define the coherent potential approximation (CPA) [127].
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4.4 Mapping to the Green’s matrix properties

In the |r〉-representation with ti given by Eq. (4.20), the operator T f (4.53) becomes

〈r|T f |r′〉 =
∑

i

δ(r − ri)t̃i∆
‖
i δ(ri − r′) +

∑

i

∑

j 6=i
δ(r − ri)t̃i∆

‖
i 〈ri|G

f
0 |rj〉t̃j∆

‖
jδ(rj − r′)

+
∑

i

∑

j 6=i

∑

k 6=j
δ(r − ri)t̃i∆

‖
i 〈ri|G

f
0 |rj〉t̃j∆

‖
j 〈rj |G

f
0 |rk〉t̃k∆

‖
kδ(rk − r′) + . . .

(4.58)

This series is conveniently rewritten as

T f =

N∑

i=1

N∑

j=1

[
tm

I − Gm0 tm
]

ij

|ri〉〈rj |, (4.59)

where I is the identity matrix, and tm and Gm0 are given by

[tm]ij = δij t̃i∆
‖
i , (4.60)

[Gm0 ]ij = (1 − δij)Gf0 (ri, rj). (4.61)

These matrices are of size 3N × 3N for a vector field and N ×N for a scalar field (the

projector ∆
‖
i then disappears). In the same manner, combining Eqs. (4.50) and (4.59),

we express Gf in terms of the inverse of the Green’s matrix Gm0 :

〈ri|Gf |rj〉 =

[
1

(Gm0 )−1 − tm

]

ij

. (4.62)

It is worth noting that Eqs. (4.59) and (4.62) express T f and Gf , that both act in the
fictitious Hilbert space Ef of infinite dimension and both depend on disorder {ri}, only
in terms of a finite size matrix that is built from the free-space Green’s function. This is
a specific feature of the disordered system composed of point-like particles.

From here on, let us concentrate ourselves on uniformly pumped atoms (t̃i = t̃),
interacting with a scalar field. Equation (4.59) is simplified into

T f =

N∑

i=1

N∑

j=1

[
1

1/t̃− Gm0

]

ij

|ri〉〈rj |, (4.63)

= −4π

k0

N∑

i=1

N∑

j=1

[
1

1/α̃(ωL) −G(ω0)

]

ij

|ri〉〈rj |. (4.64)

We used ωL ≃ ω0 in Eq. (4.64). This equation deserves a few comments:

• In the absence of pump, the operator T f (4.64) coincides with the operator T of
the quantum scattering approach, given by Eqs. (2.91), (2.93) and (2.98). This is
intuitively what we might expect, if we think in terms of scattering of a weak probe.
However, it is not as trivial as it seems inasmuch as T f and T are associated with
two Hamiltonian, Hf and H, given by Eqs. (4.13) and (2.24) respectively, that
look quite different.
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• Expression (4.64) of T f can be used to simulate the scattering cross-section of the
atomic cloud numerically, since one simply needs to generate the Green’s matrix
G(ω0) (for a given configuation of points) and to invert 1/α̃(ωL) − G(ω0). Such
an approach was used recently by Sokolov et al. to study light scattering from a
dense ultracold atomic gas [80].

• The poles of the scattering matrix Sf = 1̂ + Gf0 T f coincide with the zeros of
1/α̃(ωL)−G(ω0). Hence, an eigenvector of G(ω0) that satisfies the laser threshold
condition (4.34) is also an eigenstate of Sf associated with an infinite eigenvalue.
Besides, in the absence of pump and according to causality, the poles ωL ∈ C of
Sf must be located in the lower half-plane. Using (4.29), we thus recover the fact
that the eigenvalues Λk of G(ω0) must satisfy ImΛk > −1.

We would like to make the link between scattering operators such as T f in the form
(4.63), and some mathematical quantities that we will study in chapters 5 and 6 within
the framework of random matrix theory. One of them is the averaged operator

OA(z) =

〈
N∑

i=1

N∑

j=1

[
1

z −A

]

ij

|ri〉〈rj |
〉
, (4.65)

where A is an arbitrary N × N Euclidean random matrix. By definition of such a
matrix, its elements are given by a deterministic function f of positions of pairs of
points: Aij = f(ri, rj) = 〈ri|Â|rj〉, where we introduced an operator Â associated with
the matrix A. Another object of interest is the resolvent

g(z) =
1

N

〈
Tr

1

z −A

〉
, (4.66)

where Tr designates the usual trace of a N ×N matrix. Taking the expectation value of
(4.65) with respect to |k〉, with 〈r|k〉 = eik·r/

√
V , we find a simple relation between g(z)

and OA(z):
ρg(z) = lim

k→∞
〈k|OA(z)|k〉. (4.67)

For Â = Gf0 , i.e. for A = Gm0 given by Eq. (4.61), and for z = 1/t̃, OA is equal to the
operator 〈T f 〉:

〈T f 〉 = OGm
0

(1/t̃) = −4π

k0
OG(ω0)(1/α̃) (4.68)

In addition, Eq. (4.52) shows that limk→∞〈T f (k,k)〉 = limk→∞ Σf (k,k), because limk→∞
Gf0 (k,k) = 0. Therefore, with A = Gm0 , Eqs. (4.67) and (4.68) yield

ρg(z) = lim
k→∞

Σf (k,k). (4.69)

Let us take advantage of the relation (4.68) to calculate 〈T f 〉 from OA(z). A standard
way to calculate OA(z) [Eq. (4.65)] is to use its series expansion in 1/z. Although this
series is only convergent in the vicinity of |z| → ∞, we can use its analytic continuation
in the holomorphic domain of OA(z), i.e. in the region of the complex plane z where A
has no eigenvalues. If A is Hermitian, its eigenvalues lie on segments of the real axis,
so that the analytic continuation allows us to reconstruct OA(z) for any z ∈ C. For
a non-Hermitian matrix A, however, the eigenvalues are complex and OA(z) loses its
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analyticity inside a two-dimensional domain D on the complex plane where eigenvalues
are concentrated. In our present context, A = Gm0 is non-Hermitian, and thus OA(z)
for z ∈ D cannot be assessed by the analytic continuation of its series expansion. In
particular, by virtue of Eq. (4.68), this also applies to 〈T f 〉: expansion presented in
Fig. 4.1 is not valid for 1/t̃ ∈ D. A consequence is that the expression for the self-
energy Σf , and therefore for the extinction mean free path le, might be dramatically
affected when 1/t̃ reaches D. The question then arises as to what the condition 1/t̃ ∈ D
physically means. Quite interestingly, the random laser threshold (4.34) shows that
it exactly corresponds to the domain where random lasing occurs. Furthermore, we
know that, in this regime, the linear model — given by Eq. (4.12) where the saturation
parameter si (4.6), implicitly contained in V f , is set to zero — breaks down, and field
nonlinearities come into play (see chapter 7 for a statistical treatment). For sure, this
will affect the self-energy and the extinction mean free path. However, we stress that it
is not the only change: to calculate Σf in this regime properly, adding nonlinearities to
the diagrams of Fig. 4.1 is not sufficient; we also have to take into account the breakdown
of holomorphic symmetry of 〈T f 〉. Technically, a way to circumvent this problem is to
duplicate the matrix size of operators like Σf . This point is discussed in details in chapter
6. For the time being, suppose we are interested in the regime below threshold. Then,
we use the solution found in chapter 5 for OA(z) restricted to its holomorphic domain
(z /∈ D):

OA(z) = ρ
g(z)

1 − g(z)T̂
, (4.70)

where T̂ = ρÂ, and the the resolvent g is given by

g(z) =
1

z − σ(z)
, (4.71)

σ(z) =
g(z)

N
Tr

T̂ 2

1 − g(z)T̂
. (4.72)

Here Tr designates the trace of an operator (and not of a N × N matrix). Choosing
A = Gm0 , Eq. (4.68) becomes

〈T f 〉 =
ρg(1/t̃)

1 − ρg(1/t̃)Gf0
, (4.73)

and the comparison with Eq. (4.52) gives us the self-energy

Σf = ρg(1/t̃)1̂. (4.74)

This result is consistent with Eq. (4.69). Eq. (4.72) reads now

σ(1/t̃) =
1

N
Tr
ρ2g(1/t̃)(Gf0 )2

1 − ρg(1/t̃)Gf0

=
1

V
Tr

Gf0 ΣfGf0
1 − ΣfGf0

=
1

V
Tr
[
Gf0 Σf 〈Gf 〉

]
, (4.75)
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Figure 4.2: Selection of diagrams in the series expansion of the self energy Σf , in the
limit N → ∞. Braces with arrows denote parts of diagrams that are the beginnings of
diagrammatic expansions of the quantities to which the arrows point. Other notations
are defined in Fig. 4.1.

where we used successively Eqs. (4.74) and (4.39). Inserting (4.75) into (4.71), the self-
energy (4.74) is finally expressed only in terms of scattering operators. With Eq. (4.39),
it forms the following closed set

〈Gf 〉 =
1

(Gf0 )−1 − Σf
, (4.76)

Σf =
ρt̃

1 − t̃
V Tr

[
Gf0 Σf 〈Gf 〉

] 1̂ ≡ Σ01̂. (4.77)

The non-perturbative result (4.77) goes beyond ISA. Contrary to (4.54), it is not re-
stricted to the low density regime ρλ3

0 ≪ 1, and takes into account dependent scattering
as we discuss below. Moreover, it was derived without any assumption about the volume
V . In particular we did not assume translational invariance7. In a sphere for example,
the trace appearing in Eq. (4.77) can be calculated exactly. It allows to find Σf and
therefore le without introducing an iterative and perturbative scheme. Moreover, no
divergency appears in this solution (see chapter 5).

It is now interesting to identify the diagrams of Fig. 4.1 that are necessary to recover
the result (4.77). We propose to consider the diagrams represented in Fig. 4.2. To
calculate explicitly their sum, we express Σf in the |r〉-representation. After summation
of diagrams that appear under each loop (dashed lines), we obtain

〈r|Σf |r′〉 = ρt̃

∫

V
ddr1δ(r − r1)

[
1 + 〈r1|Gf0 Σf 〈Gf 〉|r1〉 + 〈r1|Gf0 Σf 〈Gf 〉|r1〉2 + . . .

]
δ(r1 − r′)

=
ρt̃

1 − 〈r|Gf0 Σf 〈Gf 〉|r〉
δ(r − r′), (4.78)

and in the |k〉-representation, Eq. (4.78) becomes8

〈k|Σf |k′〉 = ρt̃

∫

V
ddr

e−i(k−k′)·r

1 − 〈r|Gf0 Σf 〈Gf 〉|r〉
. (4.79)

7In a finite volume V , operators such as Gf
0 are not diagonal in the |k〉-representation. For example,

in three dimensional space, Gf
0 (k,k′) = −

R

V

R

V
d3

rd3
r
′e−i(k·r−k

′·r′)eik0|r−r
′|/4π|r − r

′|.
8Note that the expression (4.79) is similar but not identical to the k-independent part of the self-energy

Σf discussed by van Tiggelen et al. [133].
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To recover (4.77) from (4.78), we have to replace 〈r|Gf0 Σf 〈Gf 〉|r〉 by Tr[Gf0 Σf 〈Gf 〉]/V .
This is rigorously exact only if we temporarily assume translational invariance (V → ∞).
This small difference with (4.78) comes from the Gaussian hypothesis used to derive
Eqs. (4.70), (4.71) and (4.72) in chapter 5. In this sense, (4.78) is a slightly better
estimate of Σf than (4.77).

Furthermore, we now understand which dependent scattering diagrams are not con-
tained in the result (4.77). They are all diagrams contained in Fig. 4.1 but not in
Fig. 4.2, and correspond to scattering by clusters of atoms. The simplest example is
the last diagram represented in Fig. 4.1, that corresponds to the scattering sequence
r1 → r2 → r1 → r2 → etc. It stands for a ‘cavity’ formed by only two atoms, associated
with the two resonances that we studied (non-perturbatively) in section (3.4) (see, in
particular, the two eigenvalues of the matrix N represented in Fig. 3.4). Other diagrams
correspond to the various sequences that can propagate in cavites formed by a number of
atoms larger than 2. All of them participate to the formation of ‘subradiant’ eigenstates
— of the Green’s matrix, and therefore also of the effective Hamiltonian (2.98), — that
may play a crucial role in the limit of large density ρλ3

0 ≫ 1. For further discussion about
these states we refer the reader to chapters 5 and 6. As soon as we take into account some
of these extra dependent scattering diagrams, 〈k|Σf |k〉 acquires a k-dependence [133].
It is not the case for Eqs. (4.77) and (4.79), because point-like scatterers do no exhibit
any typical length scale or geometric structure, as long as we stick to the ‘mean-field’
picture, which is not sufficient to describe scattering by clusters of particles of a typical
size λ0.

4.5 Transport equation in the presence of gain

4.5.1 Definition of notation

Let us reconsider the dimensionless light intensity that we introduced in chapter 3:

I(r, t) = 〈Ω−(r, t) · Ω+(r, t)〉, (4.80)

where Ω± is the dimensionless electric field (3.5). Although we use the same notation
as in Eq. (3.4), Eq. (4.80) is different from (3.4) because averaging in Eq. (4.80) is
defined with respect to external degrees of freedom, and not with respect to those of
the radiation. As explained earlier, we use here the semiclassical approximation (3.46)
together with the simplifying notation (4.16). To evaluate I(r, t), it is convenient to work
in the frequency representation:

I(r, t) =

∫
dωL
2π

d∆ωL
2π

e−i∆ωLtI(r, ω+
L , ω

−
L ), (4.81)

where

I(r, ω+
L , ω

−
L ) = 〈Ω+(r, ω+

L ) · Ω+(r, ω−
L )∗〉,

= 〈〈r|Ω+(ω+
L )〉 · 〈Ω+(ω−

L )|r〉〉, (4.82)

and ω±
L = ωL ± ∆ωL/2. According to Eqs. (4.12), (4.36), and (4.50), |Ω+(ωL)〉 is given

by

|Ω+(ωL)〉 = |Ω+
in(ωL)〉 + Gf (ωL)V f (ωL)|Ω+

in(ωL)〉, (4.83)

= |Ω+
in(ωL)〉 + Gf0 (ωL)T f (ωL)|Ω+

in(ωL)〉, (4.84)
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where |Ω+
in(ωL)〉 represents an incident wave packet, that we assume to be initially lo-

calized in space around rin. Far enough from the source (|r− rin| ≫ le), only the second
term of Eq. (4.83) contributes significantly to the average of the intensity (4.82). After
averaging, it is proportional to a sum of propagation kernels that have the generic form

I(r, r′,∆ωL) = 〈Gf (r, r′, ω+
L )Gf (r, r′, ω−

L )∗〉,
= 〈〈r|Gf (ω+

L )|r′〉〈r′|Gf (ω−
L )†|r〉〉.

(4.85)

It represents the intensity measured at point r due to a source at r′, and is the physical
quantity that we will study in the remainder of this chapter. In particular, we will
see that it obeys a transport equation9. We omit the dependence of I on the carrier
frequency ωL because the latter is fixed (elastic scattering), contrary to the modulation
frequency ∆ωL that is the Fourier conjugated variable of time t [see Eq. (4.81)]. The
stationary regime is recovered for ∆ωL → 0. To simplify further the expressions, we note

G+ = Gf (ω+
L ),

G− = Gf (ω−
L )†,

(4.86)

and for reasons that will become clear later, we will work in this section in the momentum
representation. We define succesively

Φkk′(∆k,∆k′,∆ωL) = 〈〈k+|G+|k′+〉〈k′−|G−|k−〉〉, (4.87)

Φk(∆k,∆k′,∆ωL) =
∑

k′
Φkk′(∆k,∆k′,∆ωL), (4.88)

I(∆k,∆k′,∆ωL) =
∑

k

Φk(∆k,∆k′,∆ωL), (4.89)

J(∆k,∆k′,∆ωL) =
∑

k

Φk(∆k,∆k′,∆ωL)k, (4.90)

where k± = k ± ∆k/2. The intensity (4.85) is simply the Fourier transform of (4.89):

I(r, r′,∆ωL) =
∑

∆k

∑

∆k′

ei(∆k·r−∆k′·r′)

V 2
I(∆k,∆k′,∆ωL). (4.91)

In the infinite medium with translational invariance, the intensity is nonzero if the mo-
mentum is conserved. It implies ∆k = ∆k′. Thus, it is clear from Eq. (4.91) that
|r − r′| → ∞ limit corresponds to |∆k| → 0.

In the following we will use standard notations for the outer product of two second-
rank tensors A and B [127]:

(A⊗B)injm = 〈in|A⊗B|jm〉
= 〈i|A|j〉〈m|B|n〉 (4.92)

= AijBmn,

9We could also express the intensity (4.82) in terms of the product of two operators T f in-
stead of two Green’s operators Gf , by using Eq. (4.84). We do not apply this procedure because
〈T f (r, r′, ω+

L )T f (r, r′, ω−
L )∗〉 does not obey a closed equation such as a transport equation, as we shall

see below.
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as well as for the inner product of two fourth-rank tensors:

(M : N)injm =
∑

lp

MinlpNlpjm, (4.93)

so that we have the following property:

(AB) ⊗ (CD) = (A⊗D) : (B ⊗ C). (4.94)

With these notations, we finally define the fourth-rank intensity tensor:

I(∆ωL) = 〈G+ ⊗ G−〉, (4.95)

related to the intensity (4.85) and to its equivalent in the momentum representation
(4.87) by

I(r, r′,∆ωL) = 〈rr|I(∆ωL)|r′r′〉, (4.96)

Φkk′(∆k,∆k′,∆ωL) = 〈k+k−|I(∆ωL)|k′+k′−〉. (4.97)

4.5.2 From Bethe-Salpeter equation to Boltzmann equation

In complete analogy with the self-energy defined for the averaged Green’s function in
Eq. (4.39), we introduce the irreducible vertex U(∆ωL) as

I(∆ωL) =
1

〈G+〉−1 ⊗ 〈G−〉−1 − U(∆ωL)
(4.98)

= 〈G+〉 ⊗ 〈G−〉 + 〈G+〉 ⊗ 〈G−〉 : U(∆ωL) : I(∆ωL). (4.99)

This equation is known as the Bethe-Salpeter equation. Formally, it looks like the Dyson
equation (4.39), but for fourth-rank tensors. In the study of point-like particles, we have
seen in section 4.3 that it is suitable to work with the expansion of T f rather than Gf ,
inasmuch as the physical building block is the t-operator of one atom. Therefore, in
analogy with 〈T f 〉 in Eq. (4.52), we also define the reducible vertex Γ(∆ωL) as

Γ(∆ωL) = U(∆ωL) + U(∆ωL) : 〈G+〉 ⊗ 〈G−〉 : Γ(∆ωL). (4.100)

Using the definitions (4.50), (4.99), and (4.100), we relate Γ(∆ωL) to 〈T + ⊗ T −〉 :

Γ(∆ωL) =〈G+〉−1G+
0 ⊗ G−

0 〈G−〉−1 :
[
〈T + ⊗ T −〉 − 〈T +〉 ⊗ 〈T −〉

]
: G+

0 〈G+〉−1 ⊗ 〈G−〉−1G−
0 ,

(4.101)

where G±
0 and T ± are defined as G± in Eq. (4.86). Γ(∆ωL) is not exactly equal to

〈T +⊗T −〉−〈T +〉⊗〈T −〉 because the propagator in the expansion of 〈Gf 〉 and 〈T f 〉 is G0,
whereas it is 〈G+〉⊗〈G−〉 for I and Γ. The latter is defined in the effective medium, while
the former is not. We will neglect this slight difference, and consider that U(∆ωL) is the
sum of all irreducible diagrams contained in the expansion of 〈T +⊗T −〉−〈T +〉⊗〈T −〉.10

10In a more rigorous treatment, we can introduce a new T -operator defined in the effective medium.
The main effect of this operation would be the dressing of the t-operator of each scatterer, as discussed
by Sheng [127]. It is called the coherent potential approximation (CPA).
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Leaving aside the calculation of U for the moment, let us discuss the physical meaning
of the Bethe-Salpeter equation (4.99). In the momentum representation, it becomes

Φk(∆k,∆k′,∆ωL) =
∑

k′
〈G+(k+,k′+)〉〈G−(k′−,k−)〉 +

∑

k1k2k3k4

〈G+(k+,k1)〉〈G−(k2,k
−)〉Uk1k2k3k4(∆ωL)Φk3+k4

2

(k3 − k4,∆k′,∆ωL),
(4.102)

where Φk(∆k,∆k′,∆ωL) is defined by Eqs. (4.88) and (4.97). Assuming the medium to
be infinite with translational invariance, we note

〈G±(k1,k2)〉 = 〈G±(k1)〉δk1,k2 ,

U
k+k−k

+
1 k

−
1
(∆ωL) = Ukk1(∆k,∆ωL)δ∆k,∆k1 , (4.103)

Φk(∆k,∆k′,∆ωL) = Φk(∆k,∆ωL)δ∆k,∆k′ ,

and rewrite Eq. (4.102) as

Φk(∆k,∆ωL) = 〈G+(k+)〉〈G−(k−)〉


1 +

∑

k1

Ukk1(∆k,∆ωL)Φk1(∆k,∆ωL)


 . (4.104)

We are interested in the behavior of the intensity
∑

k Φk in the limit of ∆ωL, |∆k| → 0,
that corresponds to the long-time and large-travel-distance limit. It is only in this regime
that we expect to obtain a transport equation. For the time being, let us expand only
the prefactor of Eq. (4.104), 〈G+(k+)〉〈G−(k−)〉, according to

〈G+(k+)〉〈G−(k−)〉 =
〈G+(k+)〉 − 〈G−(k−)〉

〈G−(k−)〉−1 − 〈G+(k+)〉−1
, (4.105)

≃ ∆Gk(∆k,∆ωL)

−2kL∆kL + 2k · ∆k + ∆Σk(∆k,∆ωL)
, (4.106)

where ∆Gk(∆k,∆ωL) = 〈G+(k+)〉−〈G−(k−)〉 and ∆Σk(∆k,∆ωL) = Σ+(k+)−Σ−(k−).
To obtain (4.106) from (4.105), we performed a Taylor expansion of the denominator of
(4.105) in the limit ∆ωL, |∆k| → 0, using 〈Gf (k)〉−1 = k2

L − k2 − Σf (k). At this
stage, a somehow technical but nevertheless important comment is necessary. If we
continue expanding (4.106) such that the fraction disappears, as it is done, for example,
in [129] in the r-representation, all terms proportional to Φk in Eq. (4.104) would also
be proportional to the irreducible vertex U , except for the l.h.s. of Eq. (4.104). On the
contrary, if we insert (4.106) into (4.104) without further approximation, we also get a
term of the form ∆ΣkΦk. The two approaches are equivalent in the absence of pump,
when the self-energy Σf and the irreducible vertex U are related by a Ward identity
(see below), but they are not equivalent when atoms are pumped. In our situation, it
is therefore important to avoid expanding the denominator of Eq. (4.106).11 Hence, the
Bethe-Salpeter equation (4.104) may be rewritten as

[−2kL∆kL + 2k · ∆k + ∆Σk(∆k,∆ωL)] Φk(∆k,∆ωL)

= ∆Gk(∆k,∆ωL)


1 +

∑

k1

Ukk1(∆k,∆ωL)Φk1(∆k,∆ωL)


 .

(4.107)

11This also justifies a posteriori the use of the k-representation and not of the r-representation. Using
r-representation is advantageous only when the denominator of Eq. (4.106) is further expanded in series
[129].
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This equation can be regarded as a generalized Boltzmann equation, where the building
block of the collision integral is the irreducible vertex U [49].

If we approximate Σf and U by their lowest order in density — ISA (4.54) for Σf

and Boltzmann approximation for U (see below) — all interferences are neglected. To be
consistent with energy conservation, all time correlations also have to be disregarded: it
amounts to neglect the width of the spectral function that is proportional to the source
term ∆Gk(∆k,∆ωL) [49]. The resulting equation is a Boltzmann equation for light, also
named the radiative transfer equation (RTE).

4.5.3 Diffusion equation

In the present study, we would like to avoid approximations that neglect spatial and time
correlations in the generalized Boltzmann equation, and keep Eq. (4.107) as general as
possible, by taking into account the fact that scattering is provided by point-like parti-
cles, eventually responsible for absorption or amplification. As usual with a microscopic
Boltzmann-like equation, we can derive a continuity equation for the intensity (4.89), as
well as a constitutive equation that makes the link between the current (4.90) and Φk.
To do so, on the one hand we sum Eq. (4.107) with respect to k, and on the other hand
we multiply (4.107) with k and sum over k. The continuity equation is:

− ∆kLI(∆k,∆ωL) +
∆k · J(∆k,∆ωL)

kL

− i
∑

k

[
1

le(k,∆k,∆ωL)
− 1

ls(k,∆k,∆ωL)

]
Φk(∆k,∆ωL) =

1

2kL

∑

k

∆Gk(∆k,∆ωL),

(4.108)

and the constitutive equation reads:

∆kLJ(∆k,∆ωL) + i
∑

k

Φk(∆k,∆ωL)k

le(k,∆k,∆ωL)
−
∑

k

∆k · k
kL

Φk(∆k,∆ωL)k

=
∑

k

[
− 1

2kL
∆Gk(∆k,∆ωL) + i

Φk(∆k,∆ωL)k

ls(k,∆k,∆ωL)

]
k. (4.109)

Here le and ls are the (generalized) extinction and scattering mean free paths, that
depend on the self-energy Σf and the irreducible vertex U , respectively:

1

le(k,∆k,∆ωL)
=

i

2kL
∆Σk(∆k,∆ωL), (4.110)

1

ls(k,∆k,∆ωL)
=

i

2kL

∑

k′
∆Gk′(∆k,∆ωL)Uk′k(∆k,∆ωL). (4.111)

It is clear from Eq. (4.108) that, in the absence of external pump, (4.110) and (4.111)
must be equal in the stationary regime ∆ωL → 0 to insure energy conservation at fixed
carrier frequency ωL (elastic scattering). This identity is called Ward identity [127].

We now simplify Eqs. (4.108) and (4.109) by assuming ∆Σk(∆k,∆ωL) ≡ ∆Σ0(∆ωL)
and Uk′k(∆k,∆ωL) ≡ U0(∆ωL) independent of the wavevectors k and k′. As far as the
self-energy is concerned, this simplification is correct for point-like particles at least as
long as we can neglect scattering by clusters of particles (see section 4.4). We expect the
same to be true for the irreducible vertex, if we disregard maximally crossed diagrams
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that account, in particular, for coherent backscattering (see below). The fact that Uk′k

is independent of the angle between k and k′ means that scattering is isotropic, which is
true for a single point-like scatterer. Consequently, le and ls become independent of k.
The continuity equation (4.108) is now given by

−
[
∆kL +

i

le(∆ωL)
− i

ls(∆k,∆ωL)

]
I(∆k,∆ωL)

+
∆k · J(∆k,∆ωL)

kL
=

1

2kL

∑

k

∆Gk(∆k,∆ωL), (4.112)

and by multiplying the constitutive equation (4.109) with ∆k, we obtain

∆k · J(∆k,∆ωL)

kL
=

∆k2
∑

k(∆̂k · k)2Φk(∆k,∆ωL)

k2
L[∆kL + i/le(∆ωL)]

, (4.113)

where ∆̂k = ∆k/∆k. Note that the r.h.s. of Eq. (4.109) is zero for isotropic scatterers,
so that ∆k · J(∆k,∆ωL) depends only on Σf through le and not on U . The last term of
the r.h.s. of Eq. (4.109) would bring a correction for anisotropic scatterers, responsible
for the difference between the transport mean free path ltr and the scattering mean free
path ls. In our context, ltr and ls are equal. We now replace Φk appearing in (4.113) by
its expansion in terms of irreducible moments [127] that can be inferred from (4.107),

Φk = Φ
(0)
k + Φ

(1)
k + . . . . The truncation of such an expansion to its first terms insures

that the continuity equation becomes a diffusion-like equation. It is the main difference

with a RTE-like equation where all moments are conserved. Φ
(1)
k is proportional to k

and thus does not contribute to (4.113). Φ
(0)
k is given by

Φ
(0)
k =

∆Gk(∆k,∆ωL)∑
k′ ∆Gk′(∆k,∆ωL)

I(∆k,∆ωL). (4.114)

Hence the numerator of the r.h.s. of Eq. (4.113) is proportional to

∑

k

(∆̂k · k)2∆Gk(∆k,∆ωL) =
1

3

∑

k

k2∆Gk(∆k,∆ωL), (4.115)

≃ k2
L

3

∑

k

∆Gk(∆k,∆ωL), (4.116)

where we used the fact that ∆Gk(∆k,∆ωL) has a resonance at k ≃ kL in the limit
|∆k|,∆ωL → 0. What remains in (4.113) is

∆k · J(∆k,∆ωL)

kL
=

∆k2I(∆k,∆ωL)

3[∆kL + i/le(∆ωL)]
. (4.117)

For simplicity, we set the source term of the continuity equation — the r.h.s. of Eq. (4.112)
— to 0, and insert (4.117) into (4.112). We obtain:

− ∆k2
LI(∆k,∆ωL) − i∆kL

[
2

le(∆ωL)
− 1

ls(∆k,∆ωL)

]
I(∆k,∆ωL)

+
∆k2

3
I(∆k,∆ωL) +

1

le(∆ωL)

[
1

le(∆ωL)
− 1

ls(∆k,∆ωL)

]
I(∆k,∆ωL) = 0. (4.118)
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We now have to be extremely cautious when further simplifying Eq. (4.118). The first
idea we could have is to neglect the term −∆k2

LI(∆k,∆ωL) in Eq. (4.118). It turns out
that this approximation leads to a diffusion equation in the presence of gain that predicts
unphysical results. A much better approximation consists in neglecting the second time
derivative of the ‘dressed’ intensity: Ĩ(∆k, t) = e−ct/lgI(∆k, t), where 1/lg = 1/ls− 1/le
is the gain length (lg < 0 in the case of absorption).12 Indeed, according to Eq. (4.118),
Ĩ obeys an equation that does not contain the extinction length le:

−∆k2
LĨ(∆k,∆ωL) − i∆kL

ls(∆k,∆ωL)
Ĩ(∆k,∆ωL) +

∆k2

3
Ĩ(∆k,∆ωL) = 0. (4.119)

The intensity Ĩ propagates as if there were no absorption or gain in the medium. Ne-
glecting ∆k2

LĨ(∆k,∆ωL) in Eq. (4.119), we obtain

− i∆kL
ls(∆k,∆ωL)

I(∆k,∆ωL) +
∆k2

3
I(∆k,∆ωL)

+
1

ls(∆ωL)

[
1

le(∆ωL)
− 1

ls(∆k,∆ωL)

]
I(∆k,∆ωL) = 0. (4.120)

Note the rather subtle but important difference with Eq. (4.118). Finally, we expand
1/le(∆ωL) and 1/ls(∆k,∆ωL) as 1/le(0)+∆kL∂∆kL

(1/le)(0)+O(∆ωL) and 1/ls(0, 0)+
∆kL∂∆kL

(1/ls)(0, 0) + O(∆k,∆ωL), respectively. Equation (4.120) takes now the form
of a diffusion equation:

− i∆ωLI(∆k,∆ωL) +D∆k2I(∆k,∆ωL) + v

[
1

le
− 1

ls

]
I(∆k,∆ωL) = 0, (4.121)

where le = le(0), ls = ls(0, 0), v is the transport velocity,

v =
c

1 + δ
, (4.122)

δ = ∂ i∆kL

(
1

ls

)
(0, 0) − ∂ i∆kL

(
1

le

)
(0), (4.123)

and D is the diffusion coefficient,

D =
1

3
lsv. (4.124)

δ can be interpreted as the ratio between the ‘dwell’ time and the scattering time ls/c
[49, 129]. For atoms on resonance (ωL = ω0) and without pump, we can verify, using ISA
(4.55) and le = ls, that the dwell time is roughly equal to the inverse of the spontaneous
decay rate Γ0, so that v ≃ Γ0ls [78]. According to Eqs. (4.110) and (4.111), le and ls are
given by

1

le
= − 1

kL
ImΣ0(∆ωL = 0), (4.125)

1

ls
=

V

4π
U0(∆ωL = 0). (4.126)

We recall that we did not make any assumption concerning Σ0(∆ωL) = Σk(∆k,∆ωL)
and U0(∆ωL) = Uk′k(∆k,∆ωL), except that they are independent of the wavevectors k

and k′. In the next section, we examine the irreducible vertex U and give expressions for
the laser threshold inferred either from the diffusion equation (4.121), or directly from
the Bethe-Salpeter equation (4.99).

12Here we temporarily omit the frequency dependence of le and ls. If we take it into account, we
should consider Ĩ(∆k, t) = e−vt/lgI(∆k, t), where v is the transport velocity (see below).
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U(Δω
L
)   = N + N(N-1) + N(N-1) ...+

Figure 4.3: Diagrammatic expansion of the irreducible vertex U(∆ωL). In the upper line
⊠ involves ti(ω

+
L ), and in the lower line ti(ω

−
L ). Other notations are defined in Fig. 4.1.

4.6 Laser threshold from transport equation

As announced above, U(∆ωL) is the sum of all irreducible diagrams contained in the
expansion of 〈T +⊗T −〉−〈T +〉⊗〈T −〉, where T + = T f (ω+

L ) and T − = T f (ω−
L )†. Using

the expansion (4.53) for T f , U(∆ωL) is given by the series represented in Fig. 4.3. In
the weak-scattering regime (ρλ3

0 ≪ 1), U(∆ωL) is commonly approximated by the first
term N〈⊠ ⊗ ⊠〉.13 In the momentum representation,

Ukk′(∆k,∆ωL) ≃ ρ
t̃(ω+

L )t̃(ω−
L )

V
(4.127)

is, as expected, independent of k, k′, and ∆k. The scattering mean free path (4.126) is
then given by

ls ≃
4π

ρ|t̃(ωL)|2 ≃ l0
|α̃(ωL)|2 , (4.128)

with l0 the on-resonance scattering mean free path in the absence of pump [see, e.g.

(4.9), with W = 0]:

l0 =
k2

0

4πρ
. (4.129)

Eq. (4.127) is known as the Boltzmann approximation, sometimes also called ‘ladder’
approximation because it leads to the reducible vertex (4.100) that looks like a sum of
ladders. It neglects interferences and corresponds to the same degree of approximation
as ISA (4.54) for Σf . With ISA and Boltzmann approximation, the albedo is

a =
le
ls

=
kL|t̃(ωL)|2

4πIm[t̃(ωL)]
= − 1

Im[1/α̃(ωL)]
, (4.130)

so that the Ward identity in the stationary regime, 1/le = 1/ls, reduces to the optical
theorem (4.29) obeyed by a single scatterer, and it is satisfied only in the absence of
pump. Combining Eqs. (4.56) and (4.128), the diffusion equation (4.121) now becomes

−∂tI(r, t) +D∆rI(r, t) = QI(r, t), (4.131)

with

D =
vl0

3|α̃(ωL)|2 , (4.132)

Q =
v

l0

[
|α̃(ωL)|2 − Im[α̃(ωL)]

]
. (4.133)

13By convention, each diagram is the outer product of the upper line read from left to right, and
the lower line read from right to left. After using the property (4.94), it becomes an inner product of
four-rank tensors read from left to right.
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Hence, we recover the diffusion equation discussed in [129], and implicitly used in the
recent literature [134].

The second term of Eq. (4.131) describes attenuation of the radiation due to diffusion
spreading, and the third term absorption and/or amplification. As pointed out already
by Letokhov in 1968, in his seminal paper about ‘generation of light by a scattering
medium with negative resonance absorption’ [6], there obviously exists a threshold at
which the radiation losses are compensated by the gain. To find this threshold, we write
the general solution of Eq. (4.131) in the basis of the eigenstates ψn of the Laplacian,
∆rψn(r) = −κ2

nψn(r), as

I(r, t) =
∑

n

anψn(r)e
−(Dκ2

n−Q)t, (4.134)

where an are constants determined by the distribution of intensity at t = 0. Therefore,
the first (linear) lasing mode ψn0 is the one associated with the eigenvalue κ2

n0
= min(κ2

n)
that satifies the threshold condition

Q

Dκ2
n0

= 1. (4.135)

Although we derived the diffusion equation (4.131) by assuming the medium to be infi-
nite with translational invariance, it is still possible to take into account the boundary
conditions. For example, if the region occupied by atoms is a sphere of radius R we have
to set ψn(R+ r0) = 0, where r0 is the extrapolation length [129, 135],

r0 =
2

3
ls

1

1 + 2ls/3R
,

=
R

1 + 3b0|α̃(ωL)|2/4 , (4.136)

with b0 = 2R/l0 the on-resonance optical thickness of the medium. κn0 is then given by

κn0 =
π

R+ r0
. (4.137)

The threshold condition is obtained by substituting Eqs. (4.132) and (4.133), together
with Eqs. (4.136) and (4.137), into (4.135):

√
3

2π
b0|α̃(ωL)|

√
|α̃(ωL)|2 − Imα̃(ωL)

(
1 +

1

1 + 3b0|α̃(ωL)|2/4

)
= 1. (4.138)

This condition, that involves only one disorder parameter, the optical thickness b0, ap-
plies for any polarizability α̃(ωL), and thus does not depend on a particular pumping
mechanism or atomic model. It was recently used to address the problem of achieving a
random laser with a cloud of cold atoms [134].

Let us now show how a threshold condition that is even more general than (4.138)
may actually be obtained without much effort. In section 4.2, we saw that the exact
laser threshold, valid for each spatial configuration of atoms, is given by Eq. (4.34). It
means that finding the threshold is equivalent, on average, to finding the boundary of
the support of the eigenvalue density for the Green’s matrix (4.61). In chapter 6, we
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Figure 4.4: Selection of diagrams in the series expansion of the irreducible vertex U(∆ωL),
in the limit N → ∞. Notations are defined in Figs. 4.2 and 4.3. We recognize in the
upper line Σ+ = Σf (ω+

L ) and in the lower line Σ− = Σf (ω−
L )†, with Σf given by the

diagrams of Fig. 4.2.

shall derive the following equation for the borderline z of the eigenvalue domain of the
Green’s matrix:

|g(z)|2
N

Tr

[
T̂

1 − g(z)T̂

T̂ †

1 − g(z)∗T̂ †

]
= 1. (4.139)

This has to be solved self-consistently with Eqs. (4.71) and (4.72). T̂ and g(z) are defined
in section 4.4. Combining this equation with the threshold condition z = 1/t̃ gives

|Σ0|2
N

Tr
[
〈Gf 〉〈Gf†〉

]
= 1, (4.140)

that has, in turn, to be solved self-consistently with Eqs. (4.76) and (4.77), where Σ0

is defined. To derive (4.140), we used the relation (4.74) that makes the link between
quantities defined for non-Hermitian matrices and scattering operators. A question shows
up immediately: can we recover the result (4.140) thanks to a direct analysis of the
Bethe-Salpeter equation (4.99)? According to the definition (4.98) of the irreducible
vertex U(∆ωL) the average intensity tensor I(∆ωL) diverges for

U(∆ωL) : 〈G+〉 ⊗ 〈G−〉 = 1̂ ⊗ 1̂. (4.141)

This condition can be interpreted as a generic random laser threshold for the average
intensity I(∆ωL). Better is the estimation of Σf and U , better will be the prediction for
the threshold. We propose to retain in Σf the diagrams represented in Fig. 4.2, leading
to the result (4.77). And as far as U is concerned, we consider the diagrams of Fig. 4.4,
where we recognize in the upper and lower lines, the outer product of diagrams identical
to those of Fig. 4.2. Consequently, in the momentum representation, the irreducible
vertex has now the form

Uk1k2k3k4(∆ωL) = U0(∆ωL)δk2−k1+k3−k4 ,

U0(∆ωL) =
1

N
Σ0(ω

+
L )Σ0(ω

−
L )∗.

(4.142)

Taking the trace of (4.141), in which we insert the result (4.142), we exactly recover,
in the stationary regime ∆ωL → 0, the threshold condition (4.140). This means that
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Eq. (4.139), derived in chapter 6, for the borderline of the eigenvalue domain of the
Green’s matrix can be interpreted in terms of the scattering events represented in Fig. 4.4.

The threshold equation (4.140) is more precise than (4.138) for three reasons. Firstly,
it goes beyond ISA and Boltzmann approximation by taking into account a special class of
dependent scattering discussed in section 4.4. It is thus not limited to the weak-scattering
regime ρλ3

0 ≪ 1. Secondly, it does not assume translational invariance. For instance, 〈Gf 〉
is not diagonal in the k-representation, and has to be found self-consistently. Thirdly, it
does not rely on any expansion that would correspond to the limit |∆k| → 0. Therefore,
it can be applied even outside the diffusive regime (R/ls ≫ 1). We refer the reader
interested in a quantitative evaluation of Eq. (4.140) to chapter 7, where it will be used
for atoms in a sphere, and compared with brute-force numerical analysis.

Let us conclude this chapter with two important comments. The expansion of the
irreducible vertex U(∆ωL) such as presented in Fig. 4.3 is not valid for all values of
the scattering amplitude t̃. As it was already pointed out in section 4.4, it is meaningful
only in the holomorphic domain of 〈T f 〉, i.e. below the laser threshold. Above threshold,
apart from nonlinearities, we have to take care of the holomorphic symmetry breaking.
This can be done by duplicating the dimensionality of the space in which the irreducible
vertex is defined (see chapter 6).

In addition, we mention that diagrams of Fig. 4.4 do not contain the so-called maxi-
mally crossed diagrams, like, e.g., the second diagram of Fig. 4.3. It is well known that
such diagrams are the microscopic building blocks that explain weak localization of light
[127, 131, 136]. We point out that it is a priori not difficult to include them in the
generic threshold condition (4.141), and thus also to check how they contribute to the
eigenvalue domain of the non-Hermitian Green’s matrix.



Chapter 5
Hermitian Euclidean random matrix

theory

Random matrix theory (RMT) is a powerful tool of modern theoretical physics [137].
Its main goal is to calculate the statistical properties of eigenvalues or eigenvectors for
large matrices. First introduced by Wishart in 1928 [138] and then used by Wigner in
1950’s to describe the statistics of energy levels in complex nuclei [139], random matrices
are nowadays omnipresent in physics [140–143]. The majority of works — including the
seminal papers by Wigner [139] and Dyson [144–146] — deal with Hermitian matrices.
Hermitian matrices are of special importance in physics because of the Hermiticity of
operators associated with observables in quantum mechanics.

A special class of random matrices are the so-called Euclidean random matrices
(ERMs) [147]. The elements Aij of a N ×N Euclidean random matrix A are given by a
deterministic function f of positions of pairs of points that are randomly distributed in a
finite region V of Euclidean space: Aij = f(ri, rj), i = 1, . . . , N . Hermitian ERM mod-
els play an important role in the theoretical description of supercooled liquids [147–153],
disordered superconductors [154], relaxation in glasses and scalar phonon localization
[155]. They have been used as a playground to study Anderson localization [156, 157]. A
number of analytic approaches were developed to deal with Hermitian ERMs [147–157].
The principal difficulties that one encounters when trying to develop a theory for ERMs
stem from the nontrivial statistics of their elements and the correlations between them.
Both are not known analytically and are often difficult to calculate. This is in contrast
with standard approaches [137, 141] in which the joint probability distribution of the
elements of the random matrix under study is the starting point of analysis.

The main goal of this chapter is to study eigenvalue distributions of various large
ERMs that appear in problems of wave propagation in random media. One of the
most interesting ERM in this context is probably the Green’s matrix G(ω0), that plays
a central role in many important physical situations already mentioned in section 2.5.
G(ω0) is non-Hermitian, its eigenvalues are complex, and their probability distribution is
difficult to access (see chapter 6). This is why in several works dealing with superradiance
[79, 82, 87, 88, 90] the imaginary part of the scalar Green’s matrix G(ω0), a matrix
with elements sin(k0|ri − rj |)/k0|ri − rj |, was considered. This real symmetric matrix
is much easier to study and in many situations it still contains some of the important
aspects of the full problem. Similarly, the real part of G(ω0), a matrix with elements

89
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cos(k0|ri−rj |)/k0|ri−rj |, is relevant for understanding the collective Lamb shifts in dense
atomic systems [83, 90]. Despite the importance of these matrices, little is known about
statistical properties of their eigenvalues. Some analytical results are available only in the
limit of high density of points ri, ρ = N/V → ∞, when the summation in the eigenvalue
equation

∑
j Aijψj = Λψi can be replaced by integration [87, 88, 90]. We would like to fill

this gap by considering eigenvalue distributions of the matrices above at finite densities
ρ, with the distances between neighboring points ri that are larger than, comparable, or
smaller than the wavelength λ0 = 2π/k0. This situation is of particular importance in the
context of wave propagation in random media because in order to observe phenomena due
to scattering of waves on the heterogeneities of the medium, the density of scattering
centers should be neither too low (in this case the scattering is negligible), nor too
high (in this case the medium responds as an effective homogeneous medium). The
most interesting phenomena for waves in an ensemble of point-like scattering centers are
known to take place at densities ρλ3

0 & 1, when interference effects become important,
eventually leading to Anderson localization [9, 101, 102].

The chapter is organized as follows. In section 5.1, we introduce well-known ensembles
of random matrices that play an important role in our context, the Gaussian and Wishart
ensembles. We also propose a representation of ERMs, that will be the cornerstone of
further treatments. In section 5.2, we define basic tools of RMT, such as the resolvent, the
Blue function, and the R-transform, and indicate how they are related to the statical
properties of random matrices. Then, we present four different methods to deal with
Hermitian ERMs: a mapping to the so-called Dyson gas (section 5.3), a field-theoretical
approach (section 5.4), a direct diagrammatic treatment (section 5.5), and a method
based on the free probability theory (section 5.6). We think that each of these methods
shines an original light on the problem, based on a deep and specific physical picture.
Comparison of these approaches clearly reveals the power of RMT1. Finally, we apply
the results presented in previous sections to the two ERMs ImG(ω0) (section 5.7) and
ReG(ω0) (section 5.8).

5.1 Random matrix ensembles of interest

5.1.1 Gaussian matrices

The best known random matrix ensembles are probably the Gaussian ensembles. They
are ensembles of N ×N Hermitian matrices A = A†, that have independent and identi-
cally distributed (i.i.d.) zero-mean Gaussian entries. The probability distribution of A
is

P (A) = CNe
−βN

4
TrA2

, (5.1)

where CN is a normalization constant, and β is the symmetry index, that counts the
number of degrees of freedom in the matrix elements.

For our purpose, it is sufficient to consider matrices A with entries being either real
or complex numbers (β = 1 or 2). Let us first analyze the case of complex elements,
for which β = 2. Since the transformation A → UAU−1, with U unitary, leaves P (A)
invariant, the ensemble is called ‘Gaussian unitary ensemble’ (GUE). From Eq. (5.1), we

1Obviously, the set of techniques developed in RMT includes many approaches that will not be used
in this manuscript. For instance, we will not deal with the method of orthogonal polynomials, which is
one of the oldest methods developed in RMT [137].
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easily verify that the second moments of Aij take the values

〈AijAkl〉 = 1
N δilδjk GUE (β = 2). (5.2)

On the other hand, if elements of A are reals numbers, β = 1, and the transformation
A → UAU−1 leaves P (A) invariant for U orthogonal. The ensemble is called ‘Gaussian
orthogonal ensemble’ (GOE), and the second moments are given by

〈AijAkl〉 = 1
N (δilδjk + δikδjl) GOE (β = 1). (5.3)

As we shall see later, the density of eigenvalues of a Gaussian matrix A converges,
in the limit N → ∞, to the so-called ‘semicircle’ law, first discovered by Wigner in the
1950’s [139].

5.1.2 Wishart matrices

Another ensemble of particular interest for us is the Wishart ensemble, that is as old as
RMT itself [138]. It is useful in many contexts, such as neural networks, image processing,
or wireless communications, where Wishart matrices naturally arise to characterize the
singular values of ‘channel matrices’ [143]. A N ×N Wishart matrix A is of the form

A = HH†, (5.4)

where H is a rectangular N ×M matrix, with columns that are zero-mean independent
real/complex Gaussian vectors with covariance matrix Σ [143]. In this chapter, we will
work with H complex and Σ proportional to the identity matrix IN . In this case,
entries of H are zero-mean i.i.d. complex Gaussian random numbers. The probability
distribution of the non-Hermitian matrix H is

P (H) = CN,Me
−NTrHH†

, (5.5)

so that the second-moments of H obey

〈HiαH
†
βj〉 =

1

N
δijδαβ = 〈H†

αiHjβ〉. (5.6)

For c = N/M < 1, Wishart showed that the probability distribution of (5.4) is given
by [138, 143]

P (A) = C ′
N,MdetAM−Ne−NTrA. (5.7)

Quite surprisingly, no such explicit formula was known for c > 1 (‘anti-Wishart case’)
until recently [158]. However, as far as the eigenvalue distribution of A is concerned, it is
straightforward to obtain the result for c > 1 from the one for c < 1 (see section 5.3.4).

In section 5.3.4, we will see that the eigenvalues distribution of A = HH† converges,
in the limit N,M → ∞ with c = N/M fixed, to the so-called ‘Marchenko-Pastur’ law. It
was first established in 1967 in a remarkable paper [159], and then rediscovered several
times [143].
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5.1.3 Euclidean random matrices

As explained in the introduction, ERMs are matrices with elements Aij defined with the
help of some deterministic function f of positions of pairs of points:

Aij = f(ri, rj) = 〈ri|Â|rj〉. (5.8)

Here the N points ri are randomly distributed inside some region V of d-dimensional
space with a uniform density ρ = N/V , and we introduced an operator Â associated with
the matrix A. Contrary to Gaussian or Wishart matrices, the probability distribution
P (A) is not known analytically. Averaging 〈. . . 〉 is not performed with respect to P (A),
but by spatial integration over the volume V where points are confined, according to
Eq. (4.37).

It is worth noting that the property
∑

j Aij = 0 is not imposed in our definition
(5.8). Such a condition is required when studying, for instance, vibration modes of an
amorphous solid, instantaneous normal modes of a liquid, or random master equations
[147]. It expresses global translational invariance (conservation of momentum in the
case of propagating excitations), and is encoded in the fact that a vector with identical
components is an eigenvector associated with zero eigenvalue. Such a property is absent
for ERMs relevant for wave propagation in random media.

We now propose a very useful trick to study statistical properties of (5.8), that consists
in changing the basis from {ri} to {ψα}, which is orthogonal in V . Inserting the closure
relation 1̂ =

∑
α |ψα〉〈ψα| into Eq. (5.8), we obtain for arbitrary V :

A = HTH†, (5.9)

where

Hiα =
1√
ρ
〈ri|ψα〉, (5.10)

Tαβ = ρ 〈ψα|Â|ψβ〉. (5.11)

In Eq. (5.10) and (5.11), the prefactor ρ is introduced for later convenience. In a rect-
angular box, for example, |ψα〉 = |kα〉 with 〈r|kα〉 = exp(ikαr)/

√
V , so that Tαβ are

simply the Fourier coefficients of f(ri, rj):

Tαβ = N

∫∫

V

ddri
V

ddrj
V

f(ri, rj) exp[−i(kα · ri − kβ · rj)]. (5.12)

The advantage of the representation (5.9) lies in the separation of two different sources
of complexity: the matrix H is random but independent of the function f , whereas the
matrix T depends on f but is not random.

Furthermore, we assume that

∫

V
ddr ψα(r) = 0, (5.13)

which in a box is obeyed for all α except when kα = 0. We readily find that Hiα are
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identically distributed random variables with zero mean and variance equal to 1/N :

〈Hiα〉 =
1√
ρ

∫

V

ddri
V

ψα(ri) = 0, (5.14)

〈HiαH
∗
jβ〉 =

1

ρ

∫∫

V

ddri
V

ddrj
V

ψα(ri)ψ
∗
β(rj) (i 6= j),

= 〈Hiα〉〈H∗
jβ〉 = 0, (5.15)

〈HiαH
∗
iβ〉 =

1

ρ

∫

V

ddri
V

ψα(ri)ψ
∗
β(ri) =

1

N
δαβ . (5.16)

Eq. (5.15) and (5.16) show thatH satisfies the property (5.6), reproduced here for clarity:

〈HiαH
†
βj〉 =

1

N
δijδαβ = 〈H†

αiHjβ〉. (5.17)

It means that the covariance matrix of the columns of H is Σ = IN/N . If Hiα were
Gaussian random variables, then the property (5.17) would be sufficient to conclude
that Hiα are independent. However, they are not Gaussian and hence not necessarily
independent. For example, the cumulant 〈AijAjiAij〉c is not zero. It turns out that
neglecting these complications and assuming Hiα Gaussian i.i.d. amounts to disregarding
the class of ‘dependent scattering’ events corresponding to the formation of ‘cavities’ by
clusters of points ri (see the discussion at the end of section 4.4).

In section 5.5, we will explicitly assume that Hiα are independent Gaussian random
variables. This assumption largely simplifies calculations but may limit applicability of
our results at high densities of points ρ, at least for certain types of Euclidean matrices,
as we will see later. Within this assumption, the only but crucial difference between
an ERM (5.9) and a Wishart matrix (5.4) is the matrix T that contains all information
about the function f defining the ERM. It can modify the eigenvalue distribution in a
non-trivial way and lead to transitions between topologically different supports D of the
eigenvalue density. Illustrations of such transitions are given by the examples considered
in sections 5.7 and 5.8.

5.2 Resolvent, Blue function, and R-transform

Eigenvalues Λn of a N ×N Hermitian matrix A are real. Their density,

p(Λ) =
1

N

〈
N∑

n=1

δ(Λ − Λn)

〉
, (5.18)

can be obtained from the (one-point) resolvent

g(z) =
1

N

〈
Tr

1

z −A

〉
=

1

N

〈
N∑

n=1

1

z − Λn

〉
. (5.19)

Using the standard relation limǫ→0+ 1/(Λ + iǫ) = P1/Λ − iπδ(Λ) (P is the Principal
value), Eq. (5.19) becomes

g(Λ + iǫ) = P

∫ ∞

−∞
dΛ′ p(Λ

′)
Λ − Λ′ − iπp(Λ), (5.20)
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so that p(z) may be reconstructed either from the imaginary part or the real part of
g(Λ + iǫ)2:

p(Λ) = − 1

π
lim
ǫ→0+

Img(Λ + iǫ), (5.21)

P

∫ ∞

−∞
dΛ′ p(Λ

′)
Λ − Λ′ = Re g(Λ + iǫ). (5.22)

To calculate p(Λ), Eq. (5.21) is much more popular than the integral equation (5.22).
However, the inversion of the latter — named Fredholm integral equation of the first
kind — sometimes gives the solution in a very efficient manner. Indeed, if p(Λ) has a
finite support [a, b], the solution of Eq. (5.22) is given by Tricomi’s theorem [160]:

p(Λ) =
1

π2
√

(Λ − a)(b− Λ)

[
π − P

∫ b

a
dΛ′

√
(Λ′ − a)(b− Λ′)

Λ′ − Λ
Reg(Λ′ + iǫ)

]
. (5.23)

Such an expression for p(Λ) turns out to be particularly useful within the framework of
the Dyson gas model (see section 5.3).

In order to compute g(z), we can rewrite it in different forms. Each of them is the
starting point of a specific analysis developed in the following sections. First, we note
that

N∑

n=1

1

z − Λn
= ∂z ln

[
N∏

n=1

(z − Λn)

]
, (5.24)

and express the resolvent (5.19) as

g(z) =
1

N
∂z 〈ln det(z −A)〉 . (5.25)

This expression will be used in the field-theoretical approach presented in section 5.4.
Another interesting expression for g(z) is a decomposition in terms of the moments of
p(Λ),

〈Λn〉 =

∫ ∞

−∞
dΛp(Λ)Λn =

1

N
〈TrAn〉 . (5.26)

For Hermitian matrices, g(z) is a holomorphic function of z ∈ C except for some cuts
of the real axis where eigenvalues of A are concentrated. Therefore, we can reconstruct
g(z) for all z by analytical continuation of its series expansion

g(z) =

∞∑

n=0

〈Λn〉
zn+1

, (5.27)

which is in general convergent only in the vicinity of |z| → ∞. We will work with the
representation (5.27) in section 5.5, to perform a diagrammatic computation of g(z). In
this perspective, it is also convenient to define the self-energy σ(z), that contains all
irreducible diagrams in Eq. (5.27):

g(z) =
1

z − σ(z)
. (5.28)

2Physically, g(Λ + iǫ) is the Fourier transform of the causal propagator e−iAtΘ(t), and therefore its
real and imaginary parts obey Kramers-Kronig relations.
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Other important objects for us are the functional inverse of g(z), also named Blue
function, and the R-transform:

B(z) = g−1(z), (5.29)

R(z) = B(z) − 1

z
. (5.30)

Both of them are fundamental objects of the free random variable theory, discussed in
section 5.6. In particular, R(z) is the generating function of the ‘free cumulants’ (see
section 5.6 for more details). According to Eq. (5.28), B(z) and R(z) are related to the
self-energy σ(z) by

σ(z) = R[g(z)], (5.31)

B(z) =
1

z
+ σ[B(z)]. (5.32)

Let us now mention a couple of properties useful for further analysis. The functions
g(z), B(z), and R(z) obey the following scaling relations:

gαA(z) =
1

α
gA(

z

α
),

BαA(z) = αBA(αz), (5.33)

RαA(z) = αRA(αz),

where α ∈ C
∗. Besides, the moments 〈Λn〉 can be obtained from g(z), B(z), and R(z).

Using Eqs. (5.27), (5.29), and (5.30), we easily show that

〈Λn〉 =
1

(n+ 1)!

dn+1g(z)

d(1/z)n+1

∣∣∣∣
z→∞

, (5.34)

〈Λn〉 =
1

(n+ 1)!

[
−B2(z)

B′(z)
d

dz

]n [
−B2(z)

B′(z)

]∣∣∣∣
z→0

, (5.35)

〈Λ〉 = R(0), (5.36)

varΛ = 〈(Λ − 〈Λ〉)2〉 = R′(z)|z→0, (5.37)

where B′(z) = dB(z)/dz and R′(z) = dR(z)/dz. Finally, we note that the boundaries
Λ∗ of the domain of existence of eigenvalues, p(Λ∗) = 0, are given by the following simple
relations [161]:

g′(Λ∗) = ∞, (5.38)

B′(Λ∗) = 0. (5.39)

5.3 Mapping to the Dyson gas

5.3.1 Dyson gas picture

Observing that the electric field created by a point charge in two dimensions is inversely
proportional to the distance from the charge, the resolvent (5.19) can be interpreted as
the electric field created, at point z in the complex plane, by charges (q = +1) situated at
positions Λn on the real axis. This suggests an analogy between the statistical properties
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of random matrices and those of a gas of charged particles restricted to move in one
dimension, the so-called Dyson gas [137, 144–146].

For a large class of random matrices A, the distribution of the eigenvalues Λn can
be seen as the equilibrium distribution of fictitious point charges repealing each other
by Coulomb interaction, and submitted to an external one-body potential determined
by the precise form of the probability distribution P (A). In particular, this statement is
true for the Wigner-Dyson ensemble defined as

P (A) = CNe
−βNTrV g(A), (5.40)

where V g(A) is arbitrary, provided existence of the partition function C−1
N . If V g is

quadratic, we recover the Gaussian ensemble (5.1). To justify the Dyson gas picture,
it is sufficient to consider the (joint) probability distribution of the eigenvalues (for the
proof, see section 5.3.2):

P ({Λn}) = C ′
Ne

−βHg({Λn}), (5.41)

Hg({Λn}) = N

N∑

n=1

V g(Λn) −
∑

n<m

ln |Λn − Λm|. (5.42)

We recognize the Boltzmann-Gibbs distribution of a classical gas in thermal equilibrium
at temperature T = 1/β. The logarithmic pair-wise repulsion

V int(z) = −
N∑

n=1

ln |z − Λn| (5.43)

is the Coulomb interaction in 2D, associated with the electric field g = (Reg, Img)
represented by the resolvent (5.19):

Ng(z = x+ iy) = −∇x,yV
int =

N∑

n=1

(
x− ReΛn
|z − Λn|2

,
y − ImΛn
|z − Λn|2

)
. (5.44)

For Hermitian matrices, the Dyson gas is a two-dimensional Coulomb gas, experiencing
the one-body potential V g, with the kinematic restriction that the charges move along
the real line (ImΛn = 0).3

The main advantage of the Dyson gas picture is that it allows to apply methods
of statistical mechanics to calculate distributions and correlations of eigenvalues, giv-
ing therefore a physical intuition about the statistical properties of the eigenvalues. In
particular, it is clear that the shape of the overall density will strongly depend on the
one-body potential V g, while the correlations in the relative positions of eigenvalues are
affected by the interaction V int and are generally insensitive to V g.

5.3.2 Brownian motion of eigenvalues

Before exploiting further the Dyson gas mapping, let us justify the form of P ({Λn})
(5.41) in two ways.

Mathematically, Eq. (5.41) can be obtained from (5.40) by changing the integration
variables from the independent matrix elements of A to parameters related to eigenvalues

3This kinematic restriction is suppressed for non-Hermitian matrices (see chapter 6).
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and eigenvectors of A. The Jacobian of the transformation contains, in particular, a
factor |V({Λn})|β, where

V({Λn}) =
∏

n<m

(Λn − Λm) (5.45)

is a Vandermonde determinant, that is the source of the logarithmic repulsion in Hg.
Integrating over the parameters related to the eigenvectors, one obtains Eqs. (5.41) and
(5.42) [137].

The distribution (5.41) can also be proved elegantly using physical arguments, in
the following way. Interpreting Eq. (5.40) as the stationary solution of a Fokker-Planck
equation [137, 162], it is easy to infer the associated Langevin equation that controls
the fictitious dynamics, parametrized by the fictitious time τ , of the independent matrix
elements Aη(τ)

4, as well as the drift and diffusion coefficients of the matrix elements Aη:

M1(Aη) = lim
∆τ→0

〈∆Aη〉
∆τ

= −NV g′(Aη), (5.46)

M2(Aη) = lim
∆τ→0

〈
∆A2

η

〉

2∆τ
=

1

2β

[
1 + δη,(m,m)

]
, (5.47)

where 〈...〉 denotes the ensemble-average over the fictitious Markov processes. This aver-
aging must not be confused with averaging over matrix elements or point positions (4.37).
The key point now is that we can calculate, by a second-order perturbative expansion at
time τ , how the eigenvalues are modified during ∆τ :

∆Λn = ∆Ann +
∑

m6=n

β−1∑

µ=0

∆A
(µ)2
mn

Λm − Λn
. (5.48)

Averaging (5.48) using Eqs. (5.46) and (5.47), and keeping only O(∆τ) terms, we find
〈∆Λn〉 and

〈
∆Λ2

n

〉
, and the related drift and diffusion coefficients for the eigenvalues :

M1(Λn) = −NV ′(Λn) +
∑

m6=n

1

Λm − Λn
, (5.49)

M2(Λn) =
1

β
. (5.50)

We recognize in the drift coefficient (5.49) the deterministic force driving the point charge
located at Λn. In particular, we understand in a new way the origin of the electrostatic
repulsion (5.43), since in the present context it arises from the second-order perturbative
term in Eq. (5.48). Finally, from the coefficients (5.49) and (5.50), it is straightforward
to reconstruct the Fokker-Planck equation obeyed by the fictitious time-dependent joint
probability density of the eigenvalues, and its stationnary solution is precisely the desired
result (5.41).

5.3.3 Mean field approximation

Once the probability distribution P ({Λn}) is known, the density of eigenvalues p(Λ)
can formally be recovered by integrating it (N − 1) times. Luckily, we can avoid this

4η labels independent elements of A. Alternatively, we can write Aη = A
(µ)
mn, with µ = 0, . . . , β − 1,

see Eq. (5.48).
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cumbersome calculation by taking advantage of the Dyson gas picture. In a naive mean-
field approach, the distribution of charges at equilibrium is found by minimizing the
energy Hg (5.42). This is expressed by

−∂ΛV
int(Λ) = N∂ΛV

g(Λ). (5.51)

Furthermore, since for Hermitian matrices ImΛn = 0, Eqs. (5.43) and (5.44) yield

N Reg(Λ + iǫ) =

N∑

n=1

1

Λ − Λn
= −∂ΛV

int(Λ), (5.52)

so that the combination of Eqs. (5.51) and (5.52) allows to relate Reg(Λ′ + iǫ) with the
one-body potential V g. Inserting the result into Eq. (5.23), we obtain

p(Λ) =
1

π2
√

(Λ − a)(b− Λ)

[
π − P

∫ b

a
dΛ′

√
(Λ′ − a)(b− Λ′)

Λ′ − Λ
∂Λ′V g(Λ′)

]
. (5.53)

Let us justify this mean-field result in a different way. In the large N limit, we can
perform a coarse-graining of the energy functional Hg (5.42):

Hg(p) ≃ N2

∫ ∞

−∞
dΛp(Λ)V g(Λ) − N2

2

∫∫ ∞

−∞
dΛdΛ′p(Λ)p(Λ′) ln |Λ − Λ′|. (5.54)

Rigorously, when changing the integration variables from {Λn} to the density ‘field’ p
in the partition function, a Jacobian appears, which physically takes into account the
entropy associated with the ‘field’ p. We neglect all corresponding sub-leading terms of
order lnN/N [162]5. The equilibrium of the Dyson gas is given by the extremum of this
functional. Note that we also have to take into account the normalization constraint of
p, which can be done by introducing a Lagrange multiplier c. We thus find:

V g(Λ) −
∫ ∞

−∞
dΛ′p(Λ′) ln |Λ − Λ′| + c = 0. (5.55)

Differentiating Eq. (5.55) with respect to Λ we get

P

∫ ∞

−∞
dΛ′ p(Λ

′)
Λ − Λ′ = ∂ΛV

g(Λ), (5.56)

which admits the solution (5.53) for p defined on the compact support [a, b], as expected.

The mean-field approach used to infer the eigenvalue distribution p(Λ) from the joint
probability distribution P ({Λn}) is general and can be applied to any ensemble, provided
that P ({Λn}) is known. Actually, P ({Λn}) can be found for a larger class of matrices than
the Wigner-Dyson ensemble (5.40). It is straightforward for any distribution P (A) that
is simply expressed in terms of the eigenvalues of A, e.g. through TrA or detA: P ({Λn})
is then obtained by multiplying P (A) by the Vandermonde-type Jacobian |V({Λn})|β
responsible for the logarithmic repulsion between eigenvalues.

5This is justified when the confining potential V g is ‘strong’. In the case of ‘weak’ confining potential
explicit examples of the failure of Eq. (5.54) can be found in [163].
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5.3.4 Examples of application

We start by considering the Gaussian ensemble (5.1), that corresponds to V g(x) = x2/4 in

(5.40). Using Eq. (5.53) with a = −b found by the normalization condition
∫ b
−b dΛp(Λ) =

1, we readily obtain the celebrated Wigner semicircle law6 [139]:

p(Λ) =
1

2π

(
4 − Λ2

)1/2
. (5.57)

It states that for large N and on average, the N eigenvalues lie within a finite inter-
val [−2, 2], sometimes referred to as the ‘Wigner sea’. Within this sea, the eigenvalue
distribution has a semicircular form.

The second example is the Wishart ensemble defined by Eqs. (5.4) and (5.5). Let us
focus on P (A) given by Eq. (5.7) that corresponds to the the case c = N/M < 1. As
explained above, P ({Λn}) follows by adding the Jacobian |V({Λn})|2 to (5.7):

P ({Λn}) = C ′′
N,Me

−2Hg({Λn}), (5.58)

Hg({Λn}) =
1

2

N∑

n=1

[NΛn − (M −N) ln Λn] −
∑

n<m

ln |Λn − Λm|. (5.59)

This result has the same form as Eqs. (5.41) and (5.42), with the one-body potential

V g(x) =
1

2

[
x−

(
1

c
− 1

)
lnx

]
, (5.60)

which is repulsive in the limit x → 0+. The linear and logarithmic contributions come
from TrA and detA in Eq. (5.7), respectively. Note the difference with H entering
in the definition of A = HH†, for which the joint distribution of eigenvalues exhibits
harmonic potential due to the term TrHH† in Eq. (5.5). Inserting the potential (5.60)
into Eq. (5.53), the eigenvalue density of A takes the form

p(Λ) =
1

2πΛ

√
(Λ+ − Λ)(Λ − Λ−), (5.61)

which is defined on the compact support [Λ−,Λ+] with

Λ± =

(
1√
c
± 1

)2

. (5.62)

This result was derived for c < 1. It is easy to find the solution for c > 1, by noting that,
according to its definition (5.19), g is the average of

Tr(N)
1

z −HH† = Tr(M)
1

z −H†H
+
N −M

z
, (5.63)

where we used the cyclic permutation of the trace operator. From Eq. (5.21), it is thus
clear that the case c > 1 is obtained by adding N −M zero eigenvalues to p(Λ). For
arbitrary c, the latter has the generic form7

p(Λ) =

(
1 − 1

c

)+

δ(Λ) +
1

2πΛ

√
(Λ+ − Λ)+(Λ − Λ−)+, (5.64)

6Note that if the quadratic V g is multiplied by an arbitrary constant α, the eigenvalue density is
found by a simple rescaling of variables: pα(Λ) =

√
αpα=1(

√
αΛ).

7If (5.5) is modified into Pα(H) = CN,Me−αNTrHH†

, a rescaling of variables shows that pα(Λ) =
α pα=1(αΛ).
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where x+ = max(x, 0). The result (5.64) is the famous Marchenko-Pastur law [143, 159].
It would be fruitful to apply the Dyson gas picture to ERMs. This requires to find

P ({Λn}) in a form similar to Eqs. (5.58) and (5.59). The problem is that, in order
to derive P ({Λn}) with standard tools of RMT, we need P (A), which is unfortunately
unknown for ERMs. However, as we discussed in section 5.1.3, any ERM A can be
rewritten as A = HTH†, with entries Hiα that approximately behave as i.i.d. Gaussian
random variables. The probability distribution of H is then given by Eq. (5.5). Hence,
following the original Wishart’s idea [138], we expect P (A) to be of the form

P (A) = CN,M (T )detAM−Ne−NTr(H T−1H†), (5.65)

where the size M of the matrix T can be arbitrary, and in fact it will be infinite for
the majority of function f(ri, rj). In Eq. (5.65), we assume N < M and CN,M (T ) is
a normalization coefficient that depends on the matrix T . For T = IM , we recover
the Wishart case (5.7). This shows that the eigenvalue density of the ERM associated
with the simplest matrix T yields already a non-trivial result, the Marchenko-Pastur law
(5.64). An explicit example of ERM that obeys this law is given in section 5.7. For
arbitrary T , inferring P ({Λn}) from Eq. (5.65) is a priori not easy, inasmuch as the
argument Tr(H T−1H†) cannot be expressed in terms of the eigenvalues of A. Therefore,
integration over the independent parameters related to the eigenvectors of A may be
complicated. At the time of writing this thesis, we have not found P ({Λn}). We believe,
however, that the Dyson gas picture is promising for ERMs, in particular to study more
complicated quantities than just the density of eigenvalues. P ({Λn}) could be used, for
example, to characterize two-point correlations of the eigenvalue density, that play a role
in the study of Anderson localization (see section 6.6.3).

We finally mention that the Dyson gas picture is also a powerful tool to study rare
events in the distribution of eigenvalues. For instance, considering the Gaussian ensem-
ble, the semicircle law provides only a global information about how the eigenvalues are
typically distributed. Unfortunately it does not contain enough information to answer a
number of questions about eigenvalues, like, for example: what is the probability that all
the eigenvalues are larger than, say, x? Using tools of statistical mechanics, we know that
it is equal to Z(x)/Z(−∞), where Z(x) =

∫∞
x

∏N
n=1 dΛne

−βHg({Λn}) ∝
∫
D[px]e

−βHg(px)

is the restricted partition function of the Dyson gas. Hg(px) is given by the coarse-
grained functional (5.54), where the unknown density ‘field’ px is such that it minimizes
the energy Hg(px), and satisfies px(Λ) = 0 for Λ < x. The field px obeys the integral
equation (5.56), where the lower bound of the integral is replaced by x. Inverting the
latter with Tricomi’s theorem, we can find px and Z(x). Such an approach was used
recently by Majumdar and coworkers to study large deviations of extreme eigenvalues of
Gaussian and Wishart matrices, in a series of interesting papers [164–167]. This reveals
once again the interest of developing the Dyson gas picture for ERMs, inasmuch as it
would allow us to characterize the statistics of rare events for a large variety of disordered
systems.

5.4 Field representation

In this section we discuss a field-theoretical representation of the resolvent g(z). The
starting point is the expression (5.25), that we rewrite as

g(z) = − 2

N
∂z

〈
ln det(z −A)−1/2

〉
. (5.66)
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The determinant det(z −A)−1/2 can be represented as a canonical partition function:

Z(z) = det(z −A)−1/2 =

∫
dφ1√
2π
...

dφN√
2π

exp

[
−1

2
ΦT (zIN −A) Φ

]
, (5.67)

where ΦT is the transpose of the vector Φ = (φ1, ..., φN ). In this way, we recast the
calculation of the resolvent g(z) into a statistical mechanics problem of N interacting
particles φi with a Hamiltonian

H(Φ, z) =
z

2

N∑

i=1

φ2
i −

1

2

N∑

i6=j=1

Aijφiφj . (5.68)

The corresponding Boltzmann-Gibbs distribution is

P (Φ, z) =
1

Z(z)
e−H(Φ,z), (5.69)

so that the resolvent (5.66) is proportional to the derivative of the average thermodynamic
free energy, − lnZ(z):

g(z) = − 2

N
∂z 〈lnZ(z)〉 = − 1

N

〈
N∑

i=1

〈
φ2
i

〉
z

〉
, (5.70)

where 〈...〉z denotes the field-average with respect to P (Φ, z) defined by Eq. (5.69). In
order to compute 〈lnZ(z)〉, we apply the replica method based on a smart use of the
identity

ln x = lim
n→0

xn − 1

n
. (5.71)

The idea is to compute the right-hand-side for finite and integer n and then perform the
analytic continuation to n→ 0.8 Eq. (5.70) becomes

g(z) = − 2

N
∂z

[
lim
n→0

1

n
〈Zn(z)〉

]
. (5.72)

The quantity that we now want to evaluate is 〈Zn(z)〉, that contains n copies (replicas)
of the original system (5.67):

〈Zn(z)〉 =

(
1

2π

)Nn/2 ∫
(dφ1

1...dφ
n
1 )...(dφ1

N ...dφ
n
N )

〈
exp

[
−1

2

n∑

α=1

ΦαT (zIN −A) Φα

]〉
.

(5.73)
In Eq. (5.73), the averarge 〈...〉 can be performed in different ways, depending on

what we know about A. In the standard RMT, P (A) is known and averaging is directly
performed over the distribution of A. Without entering into details, let us formulate the
two main steps of the calculation of (5.73) in this case. First, we perform two algebraic
manipulations: we integrate over the matrix elements (which is possible, in practice,
for Gaussian-like distributions), and we introduce auxiliary fields such that integration
over replica variables can be carried out. We thus get a new integral form that depends

8For some models, the analytic continuation may not be unique, and the replica trick may break
down. In a more rigorous treatment, we have to use the supersymmetric approach [168, 169].
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only on these new fields. Second, in the N → ∞ limit, we find the relevant values of
these fields by making a saddle point approximation. This method was originally applied
to the Gaussian ensemble (5.1) in Ref. [170] by Edwards and Jones who rederived the
semicircle law (5.57). More recently, it was also applied to Wishart matrices (5.4) (with
arbitrary covariance matrix), and the Marchenko-Pastur law (5.64) was recovered [171].

For Hermitian ERMs of the form f(ri, rj) = f(ri−rj), the field-theoretical approach
was first proposed by Mézard, Parisi and Zee in Ref. [147]. Let us review some details
of their approach. For Aij = f(ri − rj), Eq. (5.73) becomes:

〈Zn(z)〉 ∝

∫
(dφ1

1 . . .dφ
n
1 ) . . . (dφ1

N . . .dφ
n
N )

∫
ddr1

V
. . .

ddrN
V

exp


−z

2

n∑

α=1

N∑

i=1

(φαi )2 +
1

2

n∑

α=1

N∑

i,j=1

f(ri − rj)φ
α
i φ

α
j


. (5.74)

As explained just above, in order to perform the Gaussian integration over the replica
fields, we introduce two sets of auxiliary (bosonic) fields ψα and ψ̂α, i.e. we insert into
Eq. (5.74) the relation

∫ n∏

α=1

D[ψα] δF

[
ψα(r) −

N∑

i=1

φαi δ(r − ri)

]
, (5.75)

where δF stands for the functional Dirac delta:

δF [ψ] =

∫
D[ψ̂] exp

[
i

∫
ddr ψ(r)ψ̂(r)

]
. (5.76)

We then integrate out the φ variables to obtain a field representation of the partition
function

〈Zn(z)〉 =
1

zNn/2

∫
D[ψα, ψ̂α]ANeS0 , (5.77)

where

A =

∫
ddr exp

[
− 1

2z

n∑

α=1

ψ̂α(r)2

]
,

S0 = i

n∑

α=1

∫
ddr ψα(r)ψ̂α(r) +

1

2

n∑

α=1

∫
ddrddr′ψα(r)f(r − r′)ψα(r′). (5.78)

Finally, integrating out the ψ fields, we get an expression which is a good starting point
for different approximations:

〈Zn(z)〉 =

∫
D[ψ̂α]eS1 , (5.79)

with

S1 = N ln

[
z−n/2

∫
ddre−

1
2z

Pn
α=1 ψ̂

α(r)2
]

+
1

2

n∑

α=1

∫
ddrddr′ψ̂α(r)f−1(r − r′)ψ̂α(r′),

(5.80)
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and f−1 is the operator inverse of f considered as an integral operator:

∫
ddr′′f−1(r − r′′)f(r′′ − r′) = δ(r − r′). (5.81)

Suppose now that we can expand the logarithmic term in Eq. (5.80). We omit terms
independent of ψ and apply the Wick rotation ψ̂ → iψ̂, so that the action S1 becomes:

S1 ≃ ρz−n/2
∫

ddr exp

[
1

2z

n∑

α=1

ψ̂α(r)2

]
−1

2

n∑

α=1

∫
ddrddr′ψ̂α(r)f−1(r−r′)ψ̂α(r′). (5.82)

In the high density limit ρ = N/V → ∞, Mézard et al. proposed to expand the
exponential term of the action (5.82), at z/ρ fixed. Inserting the result into Eq. (5.79),
we obtain:

g(z) =
1

ρ

∫
ddk

(2π)d
1

z − ρf0(k)
, (5.83)

where

f0(k) =

∫
ddrf(r)eik·r (5.84)

is the Fourier transform of f(r). The corresponding density of eigenvalues (5.21) is

p(Λ) =
1

ρ

∫
ddk

(2π)d
δ [Λ − ρf0(k)] . (5.85)

Alternatively, this result can actually be derived from the following simple argument.
For any ERM A, we can always formally write:

∑N
j=1AijΦj(k) = Λi(k)Φi(k) with

Φi(k) = e−ik.ri and

Λi(k) =

N∑

j=1

eik·(ri−rj)f(ri − rj). (5.86)

Suppose now the density large enough that the phase ik · (ri − rj) does not oscillate
too much between neighboring points. This is roughly satisfied for k ≪ ρ1/d. The
sum in Eq. (5.86) can then be approximated by an integral, so that Λi(k) does not
depend anymore on i, becoming an eigenvalue of A, Λ(k) = ρf0(k), associated with the
eigenvector (e−ik·r1 , .., e−ik·rN ). Summing over the different eigenvalues labelled by k, we
reconstruct the spectrum (5.85).

In order to obtain an expression for the resolvent g(z) valid beyond the high density
regime, Mézard et al. [147] looked for the best quadratic action Sv that approximates
the full interacting problem (5.82):

Sv = −1

2

∫
ddrddr′Ψ̂T (r)K−1(r, r′)Ψ̂(r′), (5.87)

where Ψ̂T = (ψ̂1, ..., ψ̂n). The n × n matrix K−1(r, r′) is obtained by minimizing the
variational free energy Fv = 〈S1〉v − lnZv, where Zv =

∫
D[Ψ̂]eSv and 〈...〉v is defined

with respect to the measure Pv = eSv/Zv. This yields to the following self-consistent
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equations for the resolvent g(z) [147] 9:

g(z) =
1

z − σ(z)
, (5.88)

σ(z) =

∫
ddk

(2π)d
f0(k)

1 − ρf0(k)g(z)
. (5.89)

This result assumes implicitly that the function f(r) decays fast enough for large r,
to recover translational invariance in the limit V → ∞ at fixed density ρ = N/V .
Consequently, the resolvent g(z) and the density of eigenvalues p(Λ) depend only on the
density ρ. We shall see in the following that this assumption does not apply to ERMs
relevant for wave propagation in random media. In section 5.5 we will derive equations
for the resolvent that generalize Eqs. (5.88) and (5.89) to physical problems in which ρ
is not the only parameter that controls the shape of p(Λ). In addition, our (subjective)
belief is that the diagrammatic proof that we propose in section 5.5 is somewhat more
transparent than the field method discussed in the present section, inasmuch as it can be
entirely interpreted in terms of multiple scattering of waves by an ensemble of point-like
scattering centers.

5.5 Diagrammatic approach

5.5.1 From Gaussian and Wishart ensembles to ERMs

Before discussing in details the diagrammatic treatment of Hermitian ERMs, we briefly
review the results for Gaussian and Wishart matrices. The starting point of a diagram-
matic computation of the resolvent (5.19) is its series expansion (5.27). For Gaussian-like
ensembles, the result of averaging can be expressed through pairwise contractions, such
as (5.2). The different terms (diagrams) arising from this calculation are conveniently
collected in the self-energy σ(z) defined by Eq. (5.28). By construction, σ(z) is the sum
of all irreducible diagrams contained in the expansion of g(z), i.e. those that cannot
be separated into two independent diagrams linked by the propagator 1/z. Concerning
Gaussian and Wishart ensembles, we do not detail the diagrammatic representation of
σ(z), because these ensembles can be considered as special cases of ERMs, for which a
diagrammatic calculation is given below.

It is easy to show, using the pairwise contractions (5.2) for GUE and (5.3) for GOE,
that the self-energy σ(z) of the Gaussian ensemble (5.1) is given by

σ(z) = g(z). (5.90)

A detailed proof for GUE10 can be found, e.g., in Ref. [172]. Inserting (5.90) into
Eq. (5.28), we find the resolvent:

g(z) =
1

2

(
z −

√
z2 − 4

)
, (5.91)

which leads, via Eq. (5.21), to the semicircle law (5.57).

9Eqs. (5.88) and (5.89) do not appear explicitly in [147]. It is however straightforward to obtain them
from the results presented in [147].

10The GOE case is slightly more involved since (5.3) generates two types of diagrams rather than one
in (5.2). However, in the large N limit, the second term of (5.3) does not contribute to σ(z) because it
gives rise to non-planar diagrams only (for the definition of these diagrams, see section 5.5.3).
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The self-energy σ(z) of Wishart matrices (5.4) is obtained in a similar way. The main
difference with the Gaussian case is that we now have to distinguish, when manipulating
pairwise contractions (5.6), indices i = 1, . . . , N and α = 1, . . . ,M . For c = N/M < 1,
the self-energy is [172]:

σ(z) =
1

c

1

1 − g(z)
. (5.92)

Eqs. (5.28) and (5.92) lead to a quadratic equation for g(z), that has the normalizable
solution

g(z) =
1

2z

[
z + 1 − 1

c
−
√

(z − Λ+)(z − Λ−)

]
, (5.93)

with Λ± given by Eq. (5.62). From Eq. (5.21), we recover the Marchenko-Pastur function
(5.61).

Historically, neither the Wigner semicircle law (5.57) nor the Marchenko-Pastur law
(5.64) were derived by calculating diagrammatically the self-energy σ(z). Wigner’s orig-
inal proof [173] is based on an explicit calculation of the moments 〈Λn〉 that appear in
the series expansion (5.27) of the resolvent. This is somewhat surprising inasmuch as the
counting procedure required to evaluate the moments is more complicated than a direct
evaluation of the self-energy (5.90). Odd moments of the symmetric semicircle law are
zero, and even moments are the Catalan numbers:

〈Λ2p〉 =
(2p)!

p!(p+ 1)!
. (5.94)

A calculation of the Marchenko-Pastur law from its moments can also be performed
[174]. The procedure is quite tricky, as we can imagine by looking at the result for the
moments:

〈Λn〉 =
1

cn

n∑

k=0

n!(n− 1)!

(n+ 1 − k)!(n− k)! [(k − 1)!]2
ck−1

k
. (5.95)

The first six moments read explicitly :

〈Λ〉 = 1/c 〈Λ4〉 = (1 + 6c+ 6c2 + c3)/c4

〈Λ2〉 = (1 + c)/c2 〈Λ5〉 = (1 + 10c+ 20c2 + 10c3 + c4)/c5

〈Λ3〉 = (1 + 3c+ c2)/c3 〈Λ6〉 = (1 + 15c+ 50c2 + 50c3 + 15c4 + c5)/c6.

Undoubtedly, if we are interested in the full distribution p(Λ) the counting procedure for
evaluating the moments is less appropriate than a diagrammatic self-consistent calcula-
tion of the self-energy. The same remark holds for ERMs, as we will see shortly.

In the following analysis dedicated to Hermitian ERMs, we are interested in the
calculation of the following operator

Ô(z) =

〈
N∑

i=1

N∑

j=1

[
1

z −A

]

ij

|ri〉〈rj |
〉
, (5.96)

where A is an ERM. For later convenience, we also define

gk(z) =
1

ρ
〈k|Ô(z)|k〉,

=
1

N

〈
N∑

i=1

N∑

j=1

eik·(ri−rj)

[
1

z −A

]

i,j

〉
. (5.97)



106 Hermitian Euclidean random matrix theory §5.5

Since in the limit k → ∞ only terms i = j contribute significantly in Eq. (5.97), gk(z) is
related to the resolvent (5.19) by

g(z) = lim
k→∞

gk(z). (5.98)

Similarly to g(z), gk(z) admits the following series expansion in its holomorphic
domain:

gk(z) =

∞∑

n=0

〈Λn〉k
zn+1

, (5.99)

〈Λn〉k =
1

N

〈
N∑

i=1

N∑

j=1

eik·(ri−rj) [An]ij

〉
. (5.100)

The rest of this section is organized as follows. First, in subsection 5.5.2, we briefly
present a perturbative calculation, in the limit ρ → ∞, of the moments 〈Λn〉k, that
was developed in the pioneering works of Grigera, Parisi and coworkers [148–151, 153].
Unfortunately, the combinatory procedure proposed by the authors becomes involved
when high orders 1/ρn (n > 2) in the expansion of 〈Λn〉k have to be considered, as it is
the case for regimes of disorder relevant for wave propagation in disordered media. For
this reason, we have developed our own diagrammatic approach, in a spirit similar to the
self-consistent calculation of the self-energy for Gaussian and Wishart ensembles. This
is the subject of subsection 5.5.3.

5.5.2 ERM: high density expansion

The aim of this section is to present a perturbative calculation of the resolvent (5.97)
by a direct evaluation of the moments (5.100) for ERMs of the form Aij = f(ri, rj) =
f(ri − rj). This method is directly inspired by Refs. [149, 153]. Moments (5.100),

〈Λn〉k =
1

N

〈
N∑

i1=1

· · ·
N∑

in+1=1

eik·(ri1
−rin+1

)Ai1,i2Ai2,i3 . . . Ain−1,inAin,in+1

〉
, (5.101)

can be expressed as sums of n terms characterized by the number of repeating indices.
The term with all indices different is

〈Λn〉(n)
k = Nn

∫

V

ddr1

V
. . .

ddrn+1

V
eik·(ri1

−rin+1
)f(r1 − r2) . . . f(rn − rn+1)f(rn+1 − r1).

(5.102)
Assuming translational invariance, we can eliminate one integral in Eq. (5.102), showing

that 〈Λn〉(n)
k ∼ ρn. When two indices are equal in Eq. (5.101), we have a missing N factor

from the sum and a missing 1/V factor from the average, leading to 〈Λn〉(n−1)
k ∼ ρn−1.

Therefore, 〈Λn〉k has the following density expansion:

〈Λn〉k =

n∑

i=1

〈Λn〉(i)k with 〈Λn〉(i)k ∼ ρi. (5.103)

Let us compute explicitly the two first leading terms in the high density regime, 〈Λn〉(n)
k

and 〈Λn〉(n−1)
k . We replace all terms f(ri−rj) in Eq. (5.102) by

∫
ddkf0(k)e−ik·(ri−rj)/(2π)d,
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and perform the n spatial integrations. For points ri in a box (V = Ld), 〈Λn〉(n)
k becomes

〈Λn〉(n)
k =

Nn

(2π)nd

∫
ddk1 . . .d

dkn sinc

[
k − k1

2/L

]
. . .

sinc

[
kn−1 − kn

2/L

]
sinc

[
kn − k

2/L

]
f0(k1) . . . f0(kn), (5.104)

where sinc [k] = sinc [kx] sinc [ky] sinc [kz] (for d = 3). Assuming f0(k) centered around,
say, ka, with a width ∆ka such that kaL,∆kaL ≪ 1, we use sinc[(ki − kj)L/2] ≃
(2π)dδ(ki − kj)/L

d and obtain

〈Λn〉(n)
k = [ρf0(k)]n . (5.105)

Inserting this into Eq. (5.99), we obtain the crudest approximation that we can imagine
for the resolvent, gk(z) ≃ g0

k(z), where

g0
k(z) =

1

z − ρf0(k)
(5.106)

is the ‘bare’ propagator that does not capture any fluctuations of A (indeed, it means
that g(z) is approximated by g0(z) = limk→∞ g0

k(z) = 1/z). We then calculate the next

contribution 〈Λn〉(n−1)
k , which contains two equal indices. There are two differences with

the calculation of 〈Λn〉(n)
k . First, we can choose the two positions of the equal indices.

Second, for given positions such that we have β + 2 functions f between the two equal
indices11, we replace β + 1 sinc terms by δ-functions. The result reads

〈Λn〉(n−1)
k =

1

ρ

∑

α+β+γ=n−2

[ρf0(k)]α
[∫

ddq

(2π)d
[ρf0(q)](β+2)

]
[ρf0(k)]γ . (5.107)

Summing over n to get the corresponding resolvent (5.99), gk(z) ≃ g1
k(z), suppresses the

restriction imposed on α, β, γ :

g1
k(z) =

[
1

z − ρf0(k)

][
1

ρ

∫
ddq

(2π)d
1

z − ρf0(q)
[ρf0(q)]2

] [
1

z − ρf0(k)

]
, (5.108)

which is of the form g0
k(z)σ1(z)g0

k(z). The first irreducible diagram contained in the
self-energy σk(z) = 1/g0

k(z) − 1/gk(z) is therefore independent of k and reads

σ1(z) =
1

ρ

∫
ddq

(2π)d
[ρf0(q)]2 g0

q(z). (5.109)

If now we restrict the density expansion of the self-energy to the first order (5.109),
σk(z) ≃ σ1(z), the resolvent (5.97) is given by

gk(z) =
1

z − ρf0(k) − σ1(z)
, (5.110)

11β ∈ [0, n − 2] is an integer that should not be confused with the symmetry index defined in section
5.1.1.
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H  = 

H
iα Tαβ 

Hβj   =
Tα β ji

†

H  =
†

= =   1/N

x =  Nx, X =  Tr X

(a) (b)

Figure 5.1: (a) Diagrammatic representations of the matrices H, H†, and A = HTH†.
Full and dashed lines propagate in the bases {ri} and {ψα}, respectively, defined in
section 5.1.3; T̂ = ρÂ. (b) Diagrammatic notation for pairwise contractions (5.17) and
loop diagrams for any scalar x in the basis {ri}, and for any operator X̂ in an arbitrary
basis {ψα}.

and, from Eqs. (5.21) and (5.98), the density of eigenvalues takes the form

p(Λ) =
Imσ1(Λ + iǫ)

[Λ − Reσ1(Λ + iǫ)]2 + [Imσ1(Λ + iǫ)]2
. (5.111)

For |Λ| ≫ |Reσ1(Λ + iǫ)|, |Imσ1(Λ + iǫ)|, p(Λ) ≃ Imσ1(Λ + iǫ)/Λ2. Using the explicit
form (5.109) of σ1, we recover the result (5.85).12 This indicates that the more diagrams
we take into account into σk(z), the more accurate is p(Λ) at small |Λ|. Note also
that a simple way to improve the result (5.109) is to replace in this equation the bare
propagator g0

q(z) by gq(z). This improved form of the self-energy was used in Ref. [148]
to characterize the vibrational spectrum of topologically disordered systems.

Applying essentially the same procedure as for the calculation of σ1(z), it is also
possible to compute higher contributions σik (i > 1) of order 1/ρi to the self-energy
σk(z) = σ1(z) + σ2

k(z) + . . . , but the combinatorial rules presented in the very recent
literature [152, 153] seem quite involved. We present in the next subsection an efficient
diagrammatic representation of ERMs based on the identity (5.9), that has the advantage
to apply at any density ρ, and does not assume implicitly that ρ is the only relevant
parameter, as it is the case in the expansion (5.103).

5.5.3 ERM: self-consistent equations

The purpose of this section is to derive self-consistent equations for the operator (5.96),
using the representation A = HTH† for ERM Aij = f(ri, rj) = 〈ri|Â|rj〉. We recall
that the matrix H is random but independent of the function f , whereas the matrix T
depends on f but is not random (see section 5.1.3).

We start by expanding the resolvent (5.19) in series in 1/z:

g(z) =
1

N

〈
Tr

[
1

z
+

1

z
A

1

z
+

1

z
A

1

z
A

1

z
+ . . .

]〉
, (5.112)

where averaging 〈. . . 〉 is performed over the ensemble of matrices H. As explained in
section 5.1.3, we assume that H has i.i.d. complex entries distributed according to the

12Another way to recover Eq. (5.85) is to compute the series (5.27), with 〈Λn〉 ≃ 〈Λn〉(n) calculated

with the same procedure as for 〈Λn〉(n)
k

.
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g =

T

T+ T T+ + ...

  = + T T T T+ + + ...

Figure 5.2: Diagrammatic expansion of the resolvent g(z). A horizontal straight line
reprepresents the propagator 1/z.

Gaussian law (5.5). Using the properties of Gaussian random variables (such as the
Wick theorem), the result of averaging in Eq. (5.112) can be expressed through pairwise
contractions (5.17). To evaluate efficiently the weight of different terms that arise in the
calculation, it is convenient to introduce diagrammatic notations. The matrices H, H†,
and A will be represented as shown in Fig. 5.1(a).

Each contraction (5.17) brings a factor 1/N , and each loop corresponding to taking
the trace of a matrix brings a factor N , see Fig. 5.1(b). In the limit N → ∞, only the
diagrams that contain as many loops as contractions will survive. These diagrams are
those where full and dashed lines do not cross. Therefore, the leading order expansion of
the resolvent (5.112) involves only diagrams which are planar and look like rainbows, see
Fig. 5.2 where we show the beginning of the expansion of g(z). Note that the prefactor
1/N of Eq. (5.112) does not appear in Fig. 5.2 because it is compensated by the external
trace. An example of a non-planar diagram is represented in Fig. 5.3. It vanishes in the
limit N → ∞.

The self-energy σ(z) is the sum of all one-particle irreducible diagrams contained in
zg(z)z. The first dominant terms that appear in the expansion of σ(z) are represented
in Fig. 5.4. Under a pairwise contraction, we recognize g(z) depicted in Fig. 5.2. After
summation of all planar rainbow diagrams in the expansion of Fig. 5.4 and application
of ‘Feynman’ rules defined in Fig. 5.1(b), the self-energy becomes

σ(z) =
1

N
Tr

[
T̂

1 − g(z)T̂

]
(5.113)

=
TrT̂

N
+
g(z)

N
Tr

T̂ 2

1 − g(z)T̂
. (5.114)

where T̂ = ρÂ, and Tr denotes the trace of an operator. Inserting Eq. (5.113) into

T T T T   = Tr(     )T
4

z5N 
3

Figure 5.3: A typical non-planar diagram appearing in the expansion of the resolvent
g(z). Its value follows after application of ‘Feynman’ rules defined in Fig. 5.1(b). It does
not survive in the limit N → ∞.
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σ  = T + + ...T T TT T+ T T T+

{ {{

g g g

{

g

Figure 5.4: Diagrammatic expansion of the self-energy σ(z). Braces with arrows denote
parts of diagrams that are the beginning of the diagrammatic expansion of the resolvent
g(z).

Eq. (5.28), we obtain:

z =
1

g(z)
+

1

N
Tr

[
T̂

1 − g(z)T̂

]
, (5.115)

that allows one to solve for g(z) and p(Λ). Noting that13

TrT̂ = ρTrÂ = 〈TrNA〉 = N〈Λ〉, (5.116)

we conclude that TrT̂ /N in Eq. (5.114) leads to a shift in the distribution of eigenvalues
p(Λ).

Before commenting on the result (5.113), let us see how the operator (5.96) can be
expressed through the solution g(z) and T̂ . In the basis {ψα}, (5.96) reads

Oαβ = 〈ψα|Ô|ψβ〉 = ρ

N∑

i=1

N∑

j=1

H†
αi

[
1

z
+

1

z
A

1

z
+

1

z
A

1

z
A

1

z
+ . . .

]

ij

Hjβ, (5.117)

where we used the definition (5.10) of the matrix H. In Fig. 5.5, we represent the
beginning of the expansion of Oαβ/ρ with the diagrammatic notations of Fig. 5.1(a).
Note that all diagrams in Fig. 5.5 are irreducible. As it was the case for σ(z), we recognize
the expansion of g(z) under pairwise contractions. After summation of planar diagrams,
the operator Ô(z) is finally given by:

Ô(z) = ρ
g(z)

1 − g(z)T̂
(5.118)

= ρ
1

z − T̂ − σ(z)
. (5.119)

Equations (5.115) and (5.118) were derived for Hermitian ERMs. They also apply
for non-Hermitian ERMs as long as z belongs to the holomorphic (or analytic) domain
of g(z) and Ô(z). In section 4.4, the result (5.118) is applied to the scalar Green’s matrix
(2.80). In that case, Ô(z) is proportional to the average T f -operator of the scattering
problem (4.12), see Eqs. (4.50) and (4.68).

The solution (5.113) admits two simple limits. First, if the operator T̂ is identity,
i.e. if T = IM (M is the number of functions in the basis {ψα}), then we recover the
solution (5.92), that yields to the Marchenko-Pastur law (5.64). Second, without loss

13From here on, we denote by TrN the trace of a N × N matrix when confusion is possible with the
trace of an operator.
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Oαβ = T+ T T+ + ...1
ρ α β α αβ β
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{
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Figure 5.5: Diagrammatic expansion of Oαβ/ρ. Braces with arrows denote parts of
diagrams that are the beginning of the expansion depicted in Fig. 5.2.

of generality, let us assume that the diagonal elements of the matrix A are all equal,
Aii = 〈Λ〉. At low density ρ → 0, an approximation of the self-energy (5.113) can be
obtained by neglecting the term g(z)T̂ in the denominator14:

σ(z) ≃ Tr(T̂ )

N
+

Tr(T̂ 2)

N
g(z) = 〈Λ〉 + VarΛ g(z). (5.120)

The last equality of Eq. (5.120) follows from

Tr(T̂ 2) = ρ2

∫∫

V
ddr ddr′

∣∣f(r, r′)
∣∣2 = 〈TrN (A2)〉 − 〈TrN (A)〉2

N
= NVarΛ. (5.121)

The implication of Eq. (5.120) is that the eigenvalue density of any Hermitian ERM
Aij = f(ri, rj) is identical, in the low density regime, to the one of a Gaussian matrix15.
It obeys the Wigner semicircle law

p(Λ) =
1

2πVarΛ

√
4VarΛ − (Λ − 〈Λ〉)2, (5.122)

with the variance VarΛ given by Eq. (5.121).
Finally, let us show how the various approximations found in the previous sections,

for g(z), σ(z), and gk(z) associated with ERMs Aij = f(ri − rj), can be recovered from
Eqs. (5.113) and (5.118). We need to assume that

f(k,k′) = 〈k|Â|k′〉 =
1

V

∫∫

V
ddr ddr′e−i(k·r−k′·r′)f(r − r′) (5.123)

is diagonal, f(k,k′) ≃ 〈k|Â|k〉δkk′ ≡ f(k)δkk′ , which is not exact in a finite volume V .
In the momentum representation, Eqs. (5.113) and (5.119) read now

σ(z) ≃
∫

ddk

(2π)d
f(k)

1 − ρf(k)g(z)
, (5.124)

〈k|Ô(z)|k〉 = gk(z) ≃ 1

z − ρf(k) − σ(z)
, (5.125)

14For ERMs such as ReG(ω0) or ImG(ω0), it corresponds to the regime ρλ3
0 ≪ 1. Rigorously, this

condition is necessary but not entirely sufficient to justify the approximation (5.120): see, for example,
the study of ReG(ω0) in section 5.8.

15Some ‘pathological’ ERMs may not follow this prediction. Actually, an implicit assumption of our
proof is that the number m of non-zero eigenvalues of the operator T̂ is large, see section 5.6.3. An
example of ‘pathological’ ERM is Aij = cos k0|ri − rj |, for which m = 2.
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where f(k) = 〈k|Â|k〉 can be further approximated by f0(k) defined in Eq. (5.84). Hence,
Eq. (5.124) becomes identical to Eq. (5.89). If the integrand of Eq. (5.124) is expanded
in series in ρ, Eq. (5.125) becomes consistent with Eqs. (5.109) and (5.110). This means
that the approximate self-energy (5.109) corresponds to a truncation of the expansion
depicted in Fig. 5.4 after the second diagram.

5.5.4 Solving Eq. (5.115) in practice

The solution of Eq. (5.115) for a given matrix A can be greatly facilitated by a suitable
choice of the basis in which the trace appearing in this equation is expressed. In addition
to {r} and {k}, a basis of eigenvectors |Rα〉 of T̂ can be quite convenient. The eigenvector
|Rα〉 obeys

〈r|T̂ |Rα〉 = ρ

∫

V
ddr′f(r, r′)Rα(r′) = µαRα(r), (5.126)

where µα is the eigenvalue corresponding to the eigenvector |Rα〉. In this basis, Eq. (5.115)
becomes

z =
1

g(z)
+

1

N

∑

α

µα
1 − g(z)µα

. (5.127)

For matrices ImG(ω0) and ReG(ω0), with points ri distributed in a sphere, Eqs. (5.126)
and (5.127) can be solved exactly, see sections 5.7 and 5.8.

In the following, we will be particularly interested in ERMs Aij = f(|ri − rj |) with
points ri randomly distributed inside a three-dimensionnal space, either a cube of side
L, or a sphere of radius R. To evaluate integrals of type (5.121), we will make use of the
following auxiliary result:

∫∫

V

d3r

V

d3r′

V
H(|r − r′|) =





∫∫∫∞
−∞ dxdydzH

(
L
√
x2 + y2 + z2

)
w(x, y, z) (cube)

24
∫ 1
0 dxH(2Rx)s(x)x2 (sphere)

(5.128)
where H is an arbitrary function, and

w(x, y, z) = (1 − |x|)+(1 − |y|)+(1 − |z|)+, (5.129)

s(x) = 1 − 3x

2
+
x3

2
, (5.130)

with x+ = max(x, 0). To derive Eq. (5.128) for a sphere, we define new variables x =
(r−r′)/2R and y = (r+r′)/2R. The conditions r ≤ R, r′ ≤ R become x2+y2+2xyt ≤ 1,
with 0 ≤ t ≤ 1, so that

∫∫

V (R)

d3r

V

d3r′

V
(...) =

18

π

∫

V (1)
d3x

∫ 1

0
dt

∫ yM (t,x)

0
dy y2(...), (5.131)

where V (R) = 4πR3/3 and yM (t, x) =
√

1 + (t2 − 1)x2 − tx. Evaluation of all integrals
except one in Eq. (5.131) leads to Eq. (5.128). For points distributed in a cube, the proof
of Eq. (5.128) is straightforward. Note that w(x, y, z) is non-zero only within a cube of
side 2 centered at the origin.
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For example, the variance VarΛ of p(Λ), given by Eq. (5.121), reads now

VarΛ =





N
∫∫∫∞

−∞ dxdydz
∣∣∣f
(
L
√
x2 + y2 + z2

)∣∣∣
2
w(x, y, z) (cube)

24N
∫ 1
0 dx|f(2Rx)|2s(x)x2 (sphere)

. (5.132)

In order to derive Eq. (5.115), we assumed that the matrix H, entering in the repre-
sentation A = HTH†, has i.i.d. complex Gaussian entries. We investigate the role of the
Gaussian hypothesis in the next section, thanks to the powerful mathematical arsenal of
the so-called free random variable theory.

5.6 Free probability theory

5.6.1 Theoretical framework

The term ‘free probability theory’ designates a discipline founded by Voiculescu in the
1980’s [175, 176] in order to solve the following problem: can we say anything about the
spectral properties of the sum of of two matrices, X1 +X2, when the spectral properties
of the summands, X1 and X2, are known? Unless the two matrices commute, knowing
their eigenvalues is, in general, not enough to find the eigenvalues of the sum. However,
free probability identifies a certain sufficient condition, called asymptotic freeness, under
which this problem can be tackled, without involving the eigenvectors of the matrices.
The notion of asymptotic freeness is equivalent to the notion of statistical independence
that we are familiar with for random variables. It is a generalization of the latter to the
case where the variables — here, the matrices — do not commute.

Let us briefly recall basic properties of independent variables. We denote by px the
probability density of the variable x, by gx(z) ≡ 〈ezx〉 =

∑
n>0 〈xn〉 zn/n! its character-

istic function, and by rx(z) ≡ lngx(z) =
∑

n>0 cx,nz
n its cumulant generating function.

For two independent real random variables x1 and x2, the following relations hold:

〈x1x2〉 = 〈x1〉 〈x2〉 , (5.133)

px1+x2 = px1 ∗ px2 , (5.134)

rx1+x2 = rx1 + rx2 . (5.135)

We will see that these relations find their equivalents for asymptotically free matrices.

By definition, two Hermitian matrices X1 and X2 are asymptotically free if for all
l ∈ N and for all polynomials pi and qi (1 ≤ i ≤ l), we have [143]

〈pi(X1)〉Λ = 〈qi(X2)〉Λ = 0 ⇒ 〈p1(X1)q1(X2) . . . pl(X1)ql(X2)〉Λ = 0, (5.136)

where the expectation value 〈...〉Λ is defined as

〈X〉Λ =
1

N
〈TrX〉 . (5.137)

The interpretation of the formal definition (5.136) is the following: two matrices are free
if their eigenbases are related to one another by a random rotation, or said differently, if
their eigenvectors are almost surely orthogonal.
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From the definition (5.136), it is easy to compute various mixed moments of X1 and
X2. By considering the binomials X̃i = Xi − 〈Xi〉Λ that obey 〈X̃1〉Λ = 〈X̃2〉Λ = 0, we
obtain from Eq. (5.136):

〈X1X2〉Λ = 〈X1〉Λ 〈X2〉Λ . (5.138)

Note that this last condition is not enough to define asymptotic freeness, since matrices
do not commute. For example, from Eq. (5.136), forth moments read

〈X1X1X2X2〉Λ =
〈
X2

1

〉
Λ

〈
X2

2

〉
Λ
,

〈X1X2X1X2〉Λ =
〈
X2

1

〉
Λ
〈X2〉2Λ + 〈X1〉2Λ

〈
X2

2

〉
Λ
− 〈X1〉2Λ 〈X2〉2Λ . (5.139)

Free cumulants are defined such that the sum property (5.135) is preserved for the
generating function of the free cumulants, the so-called R-transform [143, 177]. Interest-
ingly, the R-transform is simply related, by Eq. (5.30), to the Blue function (5.29), the
latter being the functional inverse of the resolvent g(z)16. The R-transform of the sum
of two asymptotically free matrices X1 and X2 obeys:

RX1+X2(z) = RX1(z) + RX2(z). (5.140)

Hence, the problem of finding the eigenvalue distribution of the sum of two free random
matrices is straightforward. Applying successively Eqs. (5.29), (5.30), and (5.140), one
readily infers gX1+X2 from gX1 and gX2 . The steps of the algorithm are:

gXi → BXi → RXi → RX1+X2 → BX1+X2 → gX1+X2 . (5.141)

There is an analogous result for the product of free matrices, which involves the
so-called S-transform [143]. If we define χ(z) as a solution of

1

χ(z)
g

(
1

χ(z)

)
− 1 = z, (5.142)

then the S-transform is

S(z) =
1 + z

z
χ(z). (5.143)

Eqs. (5.142) and (5.143) are equivalent to the following implicit equation for S(z):

S(z)R[zS(z)] = 1. (5.144)

The S-transform of the product of two asymptotically free matrices X1 and X2 satisfies
[143]:

SX1X2(z) = SX1(z)SX2(z). (5.145)

Therefore, the S-transform plays a role analogous to the R-transform for products (in-
stead of sums) of free matrices. The recipe to find the eigenvalue density of X1X2 is
analogous to (5.141):

gXi → χXi → SXi → SX1X2 → χX1X2 → gX1X2 . (5.146)

16Note that g(z) plays the role of a free characteristic function, see Eq. (5.26) and (5.27). See also Ref.
[177] for a discussion about the relation between the free cumulants and the moments 〈Λn〉.
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5.6.2 Application 1: Gaussian and Wishart ensembles revisited

A good attitude when searching for the eigenvalue density of a given matrix, is to look
at a possible decomposition of the latter in a sum or product of free matrices, for which
resolvents are known. Let us apply this idea to recover in a new manner the now familiar
semicircle and Marchenko-Pastur laws.

Let us first consider a matrix A from the Gaussian orthogonal ensemble (GOE), with

the probability distribution P (A) = CNe
−N

4
Tr(A2). From Eq. (5.134), it is clear that the

distribution of the variable x1 + x2, where x1 and x2 are independent Gaussian random
variables of variance σ, is still Gaussian of variance

√
2σ. We can therefore decompose

any Gaussian matrix A in a sum of two independent rescaled matrices A1 and A2 that
obey the same law P , A = 1√

2
(A1+A2). In addition, two independent Gaussian matrices

are asymptotically free. Indeed, since the measure P (A) is invariant under orthogonal
transformation, rotation matrices O1 and O2, diagonalizing A1 and A2 respectively, are
random rotations over the orthogonal group. This means that the rotation O†

1O2 from
the eigenbasis of A1 to that of A2 is also random, which is precisely the intuitive definition
of asymptotic freeness (for a formal proof, see Ref. [143]). The additive property of the
R-transform and the scaling property (5.33) yield:

RA(z) = RA1√
2

(z) + RA2√
2

(z) =
√

2RA

(
z√
2

)
. (5.147)

A solution of this equation is RA(z) ∝ z. According to Eq. (5.37), R′(0) = 〈Λ2〉 =
〈TrA2〉/N = 1, so that

R(z) = z. (5.148)

This is, as expected, the R-transform of the semicircle law, see Eqs. (5.31) and (5.90).
Thus, we can claim that the semicircle law is the free counterpart of the Gaussian dis-
tribution in classical probability theory.

In order to use the the powerful arsenal of free probability for Wishart matrices, we
decompose the N ×N matrix A = HH† as:

HH† =

M∑

α=1

h(α)†h(α) with h(α) = (H∗
1α, . . . ,H

∗
Nα). (5.149)

The spectrum of each matrix h(α)†h(α) is simple because it has only one nonzero eigen-
value Λα = ‖h(α)‖2 =

∑N
i=1 |Hiα|2, associated with the eigenvector h(α)∗. The (N − 1)

other eigenvectors associated with zero eigenvalue form the basis of the hyperplane per-
pendicular to the vector h(α)∗. Since the vectors h(α) are uncorrelated, we can replace
the resolvent of the matrix h(α)†h(α) by:

gh(α)†h(α)(z) =
1

N

[
N − 1

z
+

1

z − 1

]
, (5.150)

where we used 〈Λ0〉 = 1 (〈|Hiα|2〉 = 1/N). Inverting this relation gives:

Rh(α)†h(α)(z) =
1

2z

(
z − 1 −

√
(z − 1)2 +

4z

N

)

=
1

N

1

1 − z
+ O

(
1

N2

)
. (5.151)
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For independent vectors h(α), that have independent entries with variances equal to 1/N
and identical means, it can be shown that the matrices h(α)†h(α) are asymptotically free
[143]. Thus,

RHH†(z) =

M∑

α=1

Rh(α)†h(α)(z) (5.152)

=
1

c

1

1 − z
, (5.153)

where c = N/M . This is the R-transform of the Marchenko-Pastur law, see Eqs. (5.31)
and (5.92). It is interesting to note that, if we were to take the Nth classical convolution
(by inverting the sum of cumulant-generating functions) of the distributions of the vari-
ables Λα, we would obtain asymptotically (N,M → ∞, at fixed c = N/M) the Poisson
distribution. However, the distribution that we obtain by taking the Nth free convolu-
tion (by inverting the sum of R-transforms) is the Marchenko-Pastur law. The latter
is therefore the free analog of the Poisson law in classical probability [143]. Another
simple proof of this law, based on a product decomposition of the matrix HH† and the
S-transform, can be found in Ref. [178].

5.6.3 Application 2: ERMs

From the previous result concerning the Wishart ensemble, it is straightforward to apply
the toolbox of free probability to ERMs. We start with the decomposition A = HTH†,
where the basis {ψα}, that defines Hiα in Eq. (5.10), is assumed to be the eigenbasis of
the operator T̂ , T̂ |ψα〉 = µα|ψα〉. The matrix A is conveniently rewritten as:

HTH† =

M∑

α=1

µαh
(α)†h(α), (5.154)

where h(α) is defined in Eq. (5.149). As explained above, the M matrices h(α)†h(α) are
asymptotically free, as long as the vectors h(α) are independent. Hence,

RHTH†(z) =

M∑

α=1

Rµαh(α)†h(α)(z) =

M∑

α=1

µαRh(α)†h(α)(µαz) (5.155)

=
1

N

M∑

α=1

µα
1 − µαz

=
1

N
TrM

[
T

1 − zT

]
(5.156)

=
1

N
Tr

[
T̂

1 − zT̂

]
(5.157)

=
1

cz

[
1

z
gT

(
1

z

)
− 1

]
. (5.158)

Eq. (5.155) follows from the properties (5.140) and (5.33), Eq. (5.156) — from the result
(5.151), and Eq. (5.158) — from gT (z) =

∑M
α=1 1/(z−µα)M . Using the definition (5.143)

of the S-transform, one also easily shows that Eq. (5.158) is equivalent to

SHTH†(z) =
1

z + 1/c
ST (cz). (5.159)
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For completeness, we now propose to derive the solution (5.159) by means of the
property (5.145). From the definitions of the resolvent g(z) and the S-transform, one
can check that, for arbitrary matrices A and B of size N ×M and M ×N , respectively,

SAB(z) =
z + 1

z + 1/c
SBA(cz). (5.160)

Applying this result for A = HT and B = H†, we obtain

SHTH†(z) =
z + 1

z + 1/c
SH†HT (cz),

=
z + 1

z + 1/c
SH†H(cz)ST (cz). (5.161)

Eq. (5.161) follows from the fact that the deterministic matrix T and the random matrix
H†H are asymptotically free. Besides, the combination of Eq. (5.144) with RH†H(z) =
RHH†(z/c)/c = c/(c− z) gives

SH†H(z) =
c

c+ z
. (5.162)

From Eqs. (5.161) and (5.162), we finally recover (5.159).
The result (5.159), or equivalently its operator form (5.157), is in perfect agreement

with the solution obtained by a diagrammatic approach in section 5.5.3. Indeed, the
self-energy σ(z) = R[g(z)] inferred from Eq. (5.157) is exactly the result (5.113). It is
worth recalling that (5.157) was obtained from the asymptotic freeness of the matrices
h(α)†h(α), that holds as long as the elements Hiα are i.i.d. with a finite second moment
[143]. In particular, it means that (5.113) is valid even if Hiα are not Gaussian variables:
the Gaussian hypothesis, that largely simplified diagrammatic calculations in section
5.5.3, is not essential17. In particular, this remark holds for the Wigner semicircle and
the Marchenko-Pastur laws18, and justifies their large degree of universality.

As far as ERMs are concerned, we conclude that the only assumption that may limit
the applicability of (5.113) at high density of points ρ is the independence of the vectors
h(α). We know that their covariance matrix is proportional to the identity (see section
5.1.3), but this is not enough to insure their independence, precisely because Hiα are not
Gaussian random variables. In the two following sections, we investigate the precision of
the result (5.113) in the limit N → ∞, with two examples of Hermitian ERMs that are
particularly important in the study of wave propagation in random media.

5.7 ERM ImG(ω0) in three-dimensional space

In this section, we study the real symmetric N×N Euclidean matrix S(ω0) = ImG(ω0)+
IN with elements defined through the cardinal sine (sinc) function:

Sij(ω0) = f(ri − rj) =
sin(k0|ri − rj |)
k0|ri − rj |

, (5.163)

17A rigorous diagrammatic proof of (5.113), by just assuming a finite second moment of Hiα, seems
nontrivial.

18We are not aware of a diagrammatic proof of the Wigner semicircle and the Marchenko-Pastur laws,
that would not invoke the Gaussian assumption.
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that may play an important role for understanding the cooperative emission of atomic
samples (see section 2.5.1).

A general property of the matrix S(ω0) is the positiveness of its eigenvalues: Λn > 0.
Indeed, the Fourier transform of the function f(∆r) in (5.163) is positive and hence
f(∆r) is a function of positive type. An Euclidean matrix defined through a function of
positive type is positive definite and hence has only positive eigenvalues. Note also that,
for each realization of S(ω0),

∑N
i=1 Λi = N , so that 〈Λ〉 = 1.

5.7.1 Approximate solution for the eigenvalue density

Let us assume that the vectors ri define positions of N randomly chosen points inside a
three-dimensional cube of side L. A convenient set of basis functions {ψα} is then given
by ‘plane waves’

ψα(r) =
1√
V
eikα·r, (5.164)

where kα = {kαx , kαy , kαz}, kαx = αx∆k with αx = ±1,±2, . . . (and similarly for kαy

and kαz), and ∆k = 2π/L. Tαβ is then simply a double Fourier transform of the function
f(ri, rj) in the box — see Eq. (5.12) — and the representation (5.9) stems from the
Fourier series expansion of f(ri, rj), without the harmonics corresponding to kα = 0.
Furthermore, the variance (5.132) of p(Λ) is given by:

〈Λ2〉 − 1 =
N

(k0L)2

∫∫∫ ∞

−∞
dxdydz

sin
(
k0L

√
x2 + y2 + z2

)2

x2 + y2 + z2
w(x, y, z) (5.165)

≃ 2.8N

(k0L)2
≡ γ. (5.166)

To obtain (5.166) from (5.165), we assumed k0L≫ 1.
Our goal is to calculate g(z), or equivalently B(z) or R(z) = σ[B(z)]. All these

quantities depend on the matrix T , see, e.g., Eq. (5.158). Unfortunately, it is impossible
to calculate the double integral (5.12) exactly in a box. In the limit of large volume V ,
the integrations over ∆r = ri−rj and ri+rj can be approximatively decoupled, yielding

Tαβ ≃ Tααδαβ ,

Tαα = ρf(kα) = N

∫∫∫ ∞

−∞
dxdydz w(x, y, z)

sin(k0∆r)

k0∆r
eikα·∆r, (5.167)

where f(kα) and w(x, y, z) are defined by Eqs. (5.123) and (5.129), respectively, and
(x, y, z) are the Cartesian coordinates of the vector ∆r/L.19 Eq. (5.167) is still too
involved to be useful. We propose in the following two different approximations of
Eq. (5.167).

First, we approximate the function w(x, y, z) by 1 for r in a sphere of radius L/2κ1,
with κ1 ∼ 1 a numerical constant to be fixed later, and 0 elsewhere:

Tαα ≃ ρ

∫

|∆r|<L/2κ1

d3∆r
sin(k0∆r)

k0∆r
eikα·∆r

= ρ
2π2

k0kα

L

2κ1π

{
sinc

[
(kα − k0)

L

2κ1

]
− sinc

[
(kα + k0)

L

2κ1

]}
. (5.168)

19If the volume V is infinite, Eq. (5.167) can be simplified using limL→∞ w(x, y, z) = 1.
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Figure 5.6: Probability density of eigenvalues of a square N ×N Euclidean matrix S(ω0)
with elements Sij(ω0) = sin(k0|ri − rj |)/k0|ri − rj |, where the N points ri are randomly
chosen inside a 3D cube of side L. Numerical results (blue solid lines) obtained for
N = 104 after averaging over 10 realizations are compared to the Marchenko-Pastur law
(5.171) (red dashed lines), and to the approximation (5.173) (green dot-dashed line),
with γ = 2.8N/(k0L)2 for several densities ρ of points (λ0 = 2π/k0).

In order to simplify this expression, we note that the second sinc function in Eq. (5.168)
is always smaller than 2κ1/k0L (because kα = |kα| > 0 and k0 > 0) and hence can
be dropped in the limit of large k0L ≫ 1 considered here. Furthermore, because the
first sinc function in Eq. (5.168) is peaked around qα = k0, we replace it by a boxcar
function Π[(kα−k0)L/2κ1π], where Π(x) = 1 for |x| < 1/2 and Π(x) = 0 otherwise. The
coefficient in front of (kα−k0) in the argument of Π is chosen to ensure that the integral
of the latter over kα from 0 to ∞ is equal to the same integral of the sinc function. We
then obtain

Tαβ ≃ ρ
2π2

k2
0

L

2κ1π
Π

[
(kα − k0)

L

2πκ1

]
δαβ , (5.169)

which is different from zero only for kα’s inside a spherical shell of radius k0 and thickness
2πκ1/L. In addition, for all kα’s inside the shell the value of Tαα is the same and equal
to c = N/M with M = κ1(k0L)2/π ≫ 1 the number of kα’s inside the shell:

T ≃ N

M
IM with M =

κ1(k0L)2

π
. (5.170)

Hence, the sinc matrix becomes a Wishart matrix: S ≃ cHH†. From Eqs. (5.153) and
(5.33), we find RA(z) = RcHH†(z) = 1/(1 − cz). By requiring that the variance of
the distribution, VarΛ = R′(0) = c, coincides with (5.166), c = γ, we fix the value of
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κ1 ≃ π/2.8 ≃ 1.12. RA(z) is the R-transform of the rescaled Marchenko-Pastur law:

p(Λ) =

(
1 − 1

γ

)+

δ(Λ) +

√
(Λ+ − Λ)+(Λ − Λ−)+

2πγΛ
, (5.171)

where Λ± = (1±√
γ)2 and x+ = max(x, 0). The distribution of eigenvalues of the matrix

(5.163) is therefore parameterized by a single parameter γ equal to the variance of this
distribution. To our knowledge, the fact that this distribution describes eigenvalues of
the Euclidean matrix S was never noticed before.

In Fig. 5.6 we present a comparison of (5.171) with the results of direct numerical sim-
ulations. The latter amount to generate N random points ri inside a three-dimensional
cube, to use these points to define a random N ×N matrix S according to Eq. (5.163),
and to diagonalize S using the standard software package LAPACK [179]. The procedure
is repeated several times and a histogram of all eigenvalues Λ is created. This histogram
approximates the eigenvalue distribution p(Λ). As we see from Fig. 5.6, the agreement
between numerical results and the Marchenko-Pastur law (5.171) (dashed-line) is good
for γ < 1, but (5.171) fails to describe p(Λ) when γ becomes larger than unity. The
reason for this is easy to understand if we go back to Eqs. (5.167), (5.168) and (5.169).
Indeed, when we approximate the result of integration in (5.167) by (5.169), we reduce
the infinite-size matrix T to a matrix of finite size M ×M . By definition, the rank of the
latter matrix is inferior or equal to M . The rank of S = HTH† cannot be larger than
the rank of T and hence is also bounded by M from above when we use Eq. (5.169).
When γ > 1, implying M < N , the representation (5.9) only gives us access to M of N
eigenvalues of S, which is not sufficient to reconstruct the probability density p(Λ). In
order to access the regime of γ > 1 one needs to find another approximation to (5.167)
than (5.169).

A second approximation to Eq. (5.167) consists in replacing w(x, y, z) by e−κ2r/L,
with κ2 ∼ 1 a numerical constant to be fixed later:

Tαα ≃ ρ

∫
d3∆r

sin(k0∆r)

k0∆r
e−κ2r/Leikα·∆r

= ρ
2π2

k0kα

κ2L

π

[
1

(kαL− k0L)2 + κ2
2

− 1

(kαL+ k0L)2 + κ2
2

]
. (5.172)

Inserting f(kα) = Tαα/ρ into Eq. (5.124), the R-transform R(z) = σ[B(z)] becomes,
after integration over kα,

R(z) =
2iκ2

κ−(z) − κ+(z)
, (5.173)

κ±(z) =

√
(k0L)2 − κ2

2 ± 2
√
κ2(2πNz − (k0L)2κ2). (5.174)

The mean and the variance of p(Λ) are thus given by

〈Λ〉 = R(0) = 1, (5.175)

VarΛ = R′(0) =
πN

κ2(k2
0L

2 + κ2
2)
. (5.176)

In the limit k0L ≫ 1, by requiring that the variance (5.176) is equal to γ defined by
Eq. (5.166), we obtain κ2 ≃ π/2.8 ≃ 1.12 (= κ1).
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In Fig. 5.6, p(Λ) following from Eq. (5.173) (dot-dashed line) is also compared with
the results of numerical simulations. We find the resolvent g(z) by solving 1/g(z) +
R[g(z)] = z numerically and then evaluate p(Λ) with the help of Eq. (5.21). Contrary to
Eq. (5.171) that applies only for γ < 1, Eq. (5.173) applies a priori for all γ. However,
it turns out that the probability distribution of eigenvalues inferred from Eq. (5.173) is
in less good agreement with numerical results than the Marchenko-Pastur law (5.171),
meaning that (5.168) is a better approximation of the elements of T than (5.172).

In the following we propose another method to solve Eq. (5.115) for the resolvent
g(z) exactly.

5.7.2 Exact solution for the eigenvalue density

As explained in section 5.5.4, a general way to solve Eq. (5.115) is to express the latter
in the eigenbasis of the operator T̂ . The resulting equation (5.127) is then formulated
only in terms of the eigenvalues µα of the integral equation (5.126). The latter may be
solved exactly if the volume V preserves the symmetry of its kernel f(|r − r′|). From
here on, we assume that the N points ri are randomly chosen inside a three-dimensional
sphere of radius R. In this case, the variance (5.132) becomes:

〈Λ2〉 − 1 =
6N

(k0R)2

∫ 1

0
dx sin (2k0Rx)

2 s(x)

=
9N

(k0R)2
32(k0R)4 − 8(k0R)2 + 4k0R sin(4k0R) + cos(4k0R) − 1

256(k0R)4
(5.177)

≃ 9N

8(k0R)2
≡ γ, (5.178)

where we assumed k0R≫ 1.
In order to solve the eigenvalue equation

ρ

∫

V
d3r′

sin(k0|r − r′|)
k0|r − r′| Rα(r′) = µαRα(r), (5.179)

it is convenient to decompose its kernel in spherical harmonics [180]:

sin(k0|r − r′|)
k0|r − r′| = 4π

∞∑

l=0

l∑

m=−l
jl(k0r)jl(k0r

′)Ylm(θ, φ)Ylm(θ′, φ′)∗, (5.180)

where θ and φ are the polar and azimuthal angles of the vector r, respectively, jl are
spherical Bessel functions of the first kind, and Ylm are spherical harmonics. Inserting
the decomposition (5.180) into Eq. (5.179), we readily find that

Rα(r) = Rlm(r) = Aljl(k0r)Ylm(θ, φ), (5.181)

µα = µl = 4πρ

∫ R

0
dr′jl(k0r

′)2r′2

=
3

2
N
[
jl(k0R)2 − jl−1(k0R)jl+1(k0R)

]
, (5.182)

where Al are normalization coefficients and α = {l,m}. Eigenvalues µl are (2l+1)-times
degenerated (m ∈ [−l, l]). Eq. (5.127) then becomes

z =
1

g(z)
+

1

N

∑

l

(2l + 1)µl
1 − g(z)µl

. (5.183)
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Figure 5.7: (a) Probability density of eigenvalues of theN×N ERM (5.163), where the N
points ri are randomly chosen inside a sphere of radius R. Numerical results (blue solid
lines) obtained for N = 103 after averaging over 100 realizations are compared to the
Marchenko-Pastur law (5.171) (red dashed lines), and to Eq. (5.183) (green solid lines),
with γ = 9N/8(k0R)2 for several densities ρ of points (λ0 = 2π/k0). (b) Eigenvalues µl,
given by Eq. (5.182) and used to compute p(Λ) from Eq. (5.183) [green solid line in (a)],
versus the index l. µl are non-zero for l . k0R. The range covered by the eigenvalues µl
is also indicated in (a) with braces.

In Figs. 5.7(a) and 5.8(a), p(Λ) following from Eq. (5.183) is compared with results
of numerical diagonalization, and with the Marchenko-Pastur law (5.171), where γ is
now given by Eq. (5.178).20 These figures deserve two comments:

• As long as γ < 1, results (5.183) and (5.171) are almost undistinguishable, and differ

20The reasoning leading to the representation (5.170) of the matrix T , for points distributed in a cubic
box, holds for points distributed in a sphere as well, provided that we replace L by 2R in Eq. (5.168).
The value of κ1 is modified, but the property N/M = VarΛ = γ still holds.
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Figure 5.8: Same as Fig. 5.7 but for higher densities ρλ3
0 = 10 and 50. For 2R/λ0 . 1,

the probability density p(Λ) splits into sectors centered around the eigenvalues µl of T̂ .

slightly from the numerical simulation. As explained above, for γ > 1, Eq. (5.171)
only gives us access to M of N eigenvalues of S, leading to a rough estimation [red
dashed-lines in Fig. 5.8(a)] of the large-Λ part of the spectrum, denoted as the
‘bulk’ in Fig. 5.8(a), while Eq. (5.183) is still in good agreement with numerical
results.

• For R/λ0 . 1, the numerical spectrum splits into several domains [solid blue line
of the lower panel of Fig. 5.8(a)]. To understand this effect, we have represented
in Figs. 5.7(b) and 5.8(b) the eigenvalues µl (5.182) used to compute p(Λ) from
Eq. (5.183) [green solid line in (a)]. We observe that µl are non-zero for l . k0R.
At low density ρλ3

0 . 10, the support of p(Λ) is larger than the range covered
by the eigenvalues µl, and does not necessarily overlap with the latter [see braces
in Fig. 5.7(a)]. At large density (ρλ3

0 & 10 corresponding here to R/λ0 . 1),
p(Λ) following from Eq. (5.183) splits into domains centered around some of the
smallest values µl 6= 0 (indicated with labels 1, . . . , 5 in Fig. 5.8). This splitting
appears also in the numerical results but at slightly smaller values of k0R: it is
present in the lower panel, but not in the upper panel of Fig. 5.8(a). In addition,
the widths of the islands found by numerical diagonalization are larger than those
predicted by Eq. (5.183) (note the logarithmic scale). Such a ‘smoothening’ of the
probability density of eigenvalues is typical of p(Λ) computed at finite N [137].
Therefore, we believe that the difference with numerical results should disappear
in the limit N → ∞ that we assumed to derive Eq. (5.183). The observed splitting
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of the eigenvalue domain means that, in the limit ρλ3
0 → ∞, the eigenvalues Λn of

the ERM S become equal to the eigenvalues µα = µl of T̂ , and the problem losses
its statistical nature.

We conclude that the result (5.183) is in fare agreement with numerical results at all
densities. In particular, it reveals that γ is not always the only parameter that governs
the shape of p(Λ). The density ρλ3

0 plays a role for γ & 1, while k0R is the relevant
parameter for k0R . 1. The drawback of (5.183) is that it does not give a compact
form for the resolvent g(z) or the distribution p(Λ). For example, it is not obvious from
Eq. (5.183) that the latter admits, with an excellent precision, the Marchenko-Pastur
solution (5.171) for γ < 1.

Finally, it is worth noting that the eigenvalue distribution of the matrix S has been
studied numerically by Akkermans et al. in the context of light propagation in atomic
gases (see figure 1 of Ref. [79]) without proposing any analytical approximation to it.
The parameter γ ∼ N/(k0L)2 has been introduced in that work as a ratio of the number
of atomsN to the number of transverse optical modesN⊥ ∝ (k0L)2. The same parameter
appeared in Refs. [83, 87, 88, 90] as a superradiant decay rate in a cold atomic gas (see
section 2.5.1 for more details). Hence the results of this section complement and extend
the works [79, 83, 87, 88, 90].

5.8 ERM ReG(ω0) in three-dimensional space

Let us now consider the N×N Hermitian ERM C(ω0) = ReG(ω0), with elements defined
using the cardinal cosine (cosc) function:

Cij(ω0) = f(ri − rj) = (1 − δij)
cos(k0|ri − rj |)
k0|ri − rj |

. (5.184)

This matrix is relevant, for example, for understanding the collective Lamb shift in atomic
samples (see section 2.5.1).

Contrary to the matrix S(ω0), the Fourier transform of the function f(∆r) is not
positive, and hence, the spectrum of C(ω0) is not bounded from below. Besides, for each
realization of C(ω0),

∑N
n=1 Λn = 0, so that 〈Λ〉 = 0.

5.8.1 Approximate solution for the eigenvalue density

We proceed exactly as in section 5.7.1. Assuming the points ri randomly distributed
inside a cube of side L, with k0L≫ 1, the variance (5.132) of p(Λ) is now given by:

〈Λ2〉 =
N

(k0L)2

∫∫∫ ∞

−∞
dxdydz

cos
(
k0L

√
x2 + y2 + z2

)2

x2 + y2 + z2
w(x, y, z) (5.185)

≃ 2.8N

(k0L)2
≡ γ. (5.186)



§5.8 ERM ReG(ω0) in three-dimensional space 125

In the plane wave basis {kα}, we use the approximation Tαβ = 〈kα|T̂ |kβ〉 ≃ Tααδαβ ,
with

Tαα = ρf(kα) = N

∫∫∫ ∞

−∞
dxdydz

cos(k0∆r)

k0∆r
w(x, y, z)eikα·∆r (5.187)

≃ ρ

∫

|∆r|<L/2κ3

d3∆r
cos(k0∆r)

k0∆r
eikα·∆r (5.188)

≃ ρ
4π

k0

1

k2
α − k2

0

{
1 − Π

[
(kα − k0)

L

2πκ3

]}
, (5.189)

where κ3 is a numerical constant that will be fixed later. To obtain Eq. (5.189) from
Eq. (5.188), we excluded a shell of thickness 2πκ3/L around kα = k0 where Tαα changes
sign rapidly [181]. On the other hand, the R-transform R(z) = σ[B(z)], that is given by
Eq. (5.114), is expressed in the basis {kα}, using TrT̂ = N〈Λ〉 = 0:

R(z) =
z

N

∑

kα

T 2
αα

1 − zTαα

≃ ρz

∫
d3kα

(2π)3
f(kα)2

1 − ρzf(kα)
. (5.190)

After inserting Eq. (5.189) into Eq. (5.190), the integral can be evaluated yielding

R(z) = − 2

π
arccoth

4π3γ

ρλ3
0

+
2

π

√
−1 − ρλ3

0

2π2
z

×


arctan

1 +
ρλ3

0
2π3γ√

−1 − ρλ3
0

2π2 z

− arctan
1 − ρλ3

0
2π3γ√

−1 − ρλ3
0

2π2 z

− π

2


 , (5.191)

that corresponds to the choice κ3 ≃ 4/2.8π ≃ 0.45 ensuring, in the limit k0L ≫ 1,
γ = VarΛ = R′(0) = 4N/κ3π(k0L)2.

Before discussing the result (5.191), let us briefly introduce a second possible approx-
imation of Eq. (5.187), where w(x, y, z) is replaced by e−κ4r/L:

Tαα ≃ ρ

∫
d3∆r

cos(k0∆r)

k0∆r
e−κ4r/Leikα·∆r

=
πρ
[
(kαL)2 − (k0L)2 + κ2

4

]

k2
0kα

[
1

(kαL− k0L)2 + κ2
4

− 1

(kαL+ k0L)2 + κ2
4

]
. (5.192)

The corresponding R-transform (5.190) reads now

R(z) =
κ4

k0L
+

1

2(k0L)3/2

[
p1(z) + ip2(z)

p+(z)
+
p1(z) − ip2(z)

p−(z)

]
, (5.193)

where the functions p1(z), p2(z), and p±(z) are defined as

p1(z) = (k0L)3 + 4πNz − k0Lκ
2
4, (5.194)

p2(z) =
πNz

[
(k0L)3 + 4πNz

]
− 2(k0L)4κ2

4 − πNk0Lκ
2
4z√

(k0L)4κ2
4 − π2N2z2

, (5.195)

p±(z) =

√
k0Lκ2

4 − (k0L)3 − 2πNz ± 2i
√

(k0L)4κ2
4 − π2N2z2. (5.196)
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Figure 5.9: Probability density of eigenvalues of a square N×N Euclidean matrix C(ω0)
with elements Cij(ω0) = (1 − δij) cos(k0|ri − rj |)/k0|ri − rj |, where the N points ri
are randomly chosen inside a 3D cube of side L. The left panel corresponds to the low-
density limit and is obtained using Eq. (5.197) with γ = 0.1, 0.5 and 5. The distributions
are symmetric and vanish for |Λ| > Λ∗ with Λ∗ given by Eq. (5.198). The right panel
illustrates our equation (5.199) obtained in the high-density limit for two densities ρλ3

0 =
20 and 50. For ρλ3

0 > 30.3905 the distribution develops a gap in between Λ1 and Λ2

given by Eq. (5.200) and (5.201), respectively.

Eq. (5.193) satisfies 〈Λ〉 = R(0) = 0 and, in the limit k0L ≫ 1, γ = VarΛ = R′(0) =
πN/κ4(k0L)2, so that κ4 ≃ π/2.8 ≃ 1.12 (= κ1 = κ2). Although the two approximations
(5.191) and (5.193) for the R-transform look quite different, they may exhibit universal
features in some limits.

Let us consider the low-density limit of Eq. (5.191), ρλ3
0 ≪ 1. For large box size

L≫ 1/k0 the arguments of arctan functions in Eq. (5.191) are close to −i. They can be
thus expanded in series in the vicinity of this point. In the resulting expression we take
the limits of ρλ3

0 → 0 and ρλ3
0/γ ∼ 1/k0L→ 0 to obtain

R(z) = − 1

π
ln

1 − π
2γz

1 + π
2γz

, ρλ3
0 ≪ 1. (5.197)

This expression has two important limits. For γ ≪ 1 we find R(z) = γz which is the
R-transform of the Wigner semi-circle law (5.122). In the opposite limit of γ ≫ 1 we
have R(z) = −i, which corresponds to the Cauchy distribution p(Λ) = 1/[π(1 + Λ2)].
Eq. (5.197) therefore describes a transition from the Wigner semi-circle law at γ ≪
1 to the Cauchy distribution at γ → ∞. The eigenvalue distribution following from
Eq. (5.197) is always symmetric with respect to Λ = 0 and vanishes for |Λ| > Λ∗ (see
the left panel of Fig. 5.9). The latter can be found by using Eq. (5.39):

Λ∗ =

√
γ

(
1 +

π2

4
γ

)
+

2

π
arccoth

√
1 +

4

π2γ
. (5.198)

This equation simplifies to Λ∗ = 2
√
γ for γ ≪ 1 and to Λ∗ = π

2γ for γ ≫ 1.
Another important limit of Eq. (5.191) is that of high density ρλ3

0 ≫ 1 of points in a
large box L ≫ 1/k0. In this limit, the arguments of arctan functions in Eq. (5.191) are
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small and we can put arctanx ≃ x. Taking the limit of ρλ3
0/γ ∼ 1/k0L → 0, we then

obtain

R(z) = i

√
1 +

ρλ3
0

2π2
z, ρλ3

0 ≫ 1. (5.199)

For ρλ3
0 below a critical value (ρλ3

0)c = 30.3905, the eigenvalue distribution corresponding
to Eq. (5.199) is asymmetric but bell-shaped, similarly to the case of low density. For
ρλ3

0 > (ρλ3
0)c, however, the distribution develops a gap: p(Λ) = 0 for Λ1 < Λ < Λ2, where

Λ1,2 = B(z1,2) with B(z) being the Blue function of the matrix C and z1,2 solutions of
B′(z) = 0 (see the right panel of Fig. 5.9). In the limit of ρλ3

0 ≫ (ρλ3
0)c we have

Λ1 ≃ −ρλ
3
0

2π2
− π2

2ρλ3
0

, (5.200)

Λ2 ≃ − 3

2π2/3
(ρλ3

0)
1/3 +

π2/3

2(ρλ3
0)

1/3
+

π2

6ρλ3
0

. (5.201)

Note finally that the result (5.199), valid in the limit of infinite volume k0L → ∞,
can also be recovered by approximating f(kα) in Eq. (5.187) by the Fourier transform
f0(kα) = 4π/k0(k

2
α − k2

0) of f(∆r).21 Inserting the latter into Eq. (5.190), we readily
obtain the solution (5.199), that depends only on the density ρλ3

0, as expected when
translational invariance is preserved (see the discussion in section 5.5.2).

In Fig. 5.10 we compare p(Λ) following from Eqs. (5.191) and (5.193) with the
results of numerical simulations. We find the resolvent g(z) by solving the equation
1/g(z) + R[g(z)] = z numerically. When γ → 0, the distribution p(Λ) tends to the
Wigner semi-circle law. In contrast, for large γ > 1 it resembles a Cauchy distribution.
A good agreement between numerical results and Eqs. (5.191) and (5.193) is observed
not only for γ < 1 (similarly to the case of sinc matrix in section 5.7) but for γ > 1
as well. The agreement is even better for the approximation (5.193) than for (5.191)
(green dot-dashed lines are almost undistinguishable from numerical results). Note that
in contrast to the Marchenko-Pastur law (5.171) parameterized by a single parameter
γ, the R-transform (5.191) or (5.193) and the corresponding probability distribution
depend on two parameters γ and ρλ3

0. At densities ρλ3
0 & 30, both expressions (5.191)

and (5.193) reduce to (5.199). The corresponding probability distribution develops a gap
(see Fig. 5.9) that is not present in numerical results (not shown). Interestingly, this gap
in the probability distribution appears at the same density ρλ3

0 ≈ 30 for all γ. In order
to find out whether this gap is an artefact of our approximations for R(z), we propose
to solve Eq. (5.115) exactly in the eigenbasis of the operator T̂ .

21This amounts to replacing w(x, y, z) by 1 in Eq. (5.187).
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Figure 5.10: Probability density of eigenvalues of a square N × N Euclidean matrix
C with elements Cij = (1 − δij) cos(k0|ri − rj |)/k0|ri − rj |, where the N points ri are
randomly chosen inside a 3D cube of side L. Numerical results (blue solid lines) obtained
for N = 104 after averaging over 10 realizations are compared to Eqs. (5.191) (red dashed
lines) and (5.193) (green dot-dashed lines) with γ = 2.8N/(k0L)2 for several densities ρ
of points (λ0 = 2π/k0).

5.8.2 Exact solution for the eigenvalue density

Proceeding as in section 5.7.2, we now assume that the N points ri are randomly dis-
tributed in a sphere of radius R≫ k−1

0 , so that the variance (5.132) reads:

VarΛ = 〈Λ2〉 =
6N

(k0R)2

∫ 1

0
dx cos (2k0Rx)

2 s(x),

=
9N

(k0R)2
32(k0R)4 + 8(k0R)2 − 4k0R sin(4k0R) − cos(4k0R) + 1

256(k0R)4
, (5.202)

≃ 9N

8(k0R)2
≡ γ. (5.203)

In order to solve Eq. (5.127), we have to find the eigenvalues µα of the operator T̂ ,
solutions of the integral equation

ρ

∫

V
d3r′

cos(k0|r − r′|)
k0|r − r′| Rα(r′) = µαRα(r). (5.204)
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For this purpose, we make use of the decomposition [180]

cos(k0|r − r′|)
k0|r − r′| = −4π

∞∑

l=0

l∑

m=−l
jl
[
k0min(r, r′)

]
nl
[
k0max(r, r′)

]
Ylm(θ, φ)Ylm(θ′, φ′)∗,

(5.205)
where θ and φ are the polar and azimuthal angles of the vector r, respectively, Ylm are
spherical harmonics, and jl and nl are spherical Bessel functions of the first and second
kind, respectively. Inserting Eq. (5.205) into Eq. (5.204), and using standard properties
of spherical harmonics and spherical Bessel functions [182], it is easy to show that the
eigenvectors of T̂ are necessarily of the form

Rα(r) = Rlmp(r) = Alpjl(κlpr)Ylm(θ, φ), (5.206)

where the coefficients κlp obey

κlp
k0

=
jl(κlpR)

jl−1(κlpR)

nl−1(k0R)

nl(k0R)
. (5.207)

Integer p labels the different solutions of this equation for a given l. κlp are either real
or imaginary numbers, and the corresponding eigenvalues

µα = µlp =
ρλ3

0

2π2

1

(κlp/k0)
2 − 1

(5.208)

are (2l + 1)-times degenerate (m ∈ [−l, l]). In terms of the solutions µlp of Eqs. (5.207)
and (5.208), Eq. (5.127) reads finally

z =
1

g(z)
+
g(z)

N

∑

l

∑

p

(2l + 1)µ2
lp

1 − g(z)µlp
. (5.209)

κlp, µlp, g(z) and p(Λ) are found numerically.
Figs. 5.11(a) and 5.12(a) show that Eqs. (5.191) and (5.209) are in good agreement

with the results of numerical diagonalization for all γ and for ρλ3
0 . 10. As expected,

the exact solution (5.209) is closer to numerical data than the approximation (5.191).
Furthermore, two distinct phenomena are observed. First, in the small sample limit
(R/λ0 . 1), the eigenvalue distribution splits into disjoint domains [see Fig. 5.12(a)].
As it was the case for the sinc matrix in section 5.7.2, each eigenvalue µlp of the operator

T̂ contributes to a part of the spectrum in the vicinity of Λ ≃ µlp. If eigenvalues µlp
are far from each other, the different parts do not overlap and a splitting is observed in
p(Λ). This effect can be observed in the tails of p(Λ) in Fig. 5.12(a), and is perfectly
captured by Eq. (5.209). However, another mechanism affects notably the distribution
p(Λ) at high density ρλ3

0 & 30. In the previous section we saw that p(Λ) following from
Eq. (5.191) develops a gap for ρλ3

0 > (ρλ3
0)c = 30.3905: p(Λ) = 0 for Λ1 < Λ < Λ2

[see the right panel of Fig. 5.9, and the dashed red lines in Fig. 5.12(a)]. This gap is
still present in p(Λ) following from Eq. (5.209) [solid green lines in Figs. 5.12(a)], but is
slightly different from [Λ1,Λ2] because there are solutions µlp belonging to the interval
[−ρλ3

0/2π
2, 0] ≃ [Λ1,Λ2].

22 The latter are enough to fill the gap only for ρλ3
0 . 30 [see Fig.

5.11(a)]. In contrast, this gap is never observed in numerical simulations, meaning that

22Solutions µlp ∈ [−ρλ3
0/2π2, 0] correspond to κlp ∈ iR, see Eq. (5.208).
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Figure 5.11: (a) Probability density of eigenvalues of the N × N ERM (5.184), where
the N points ri are randomly chosen inside a sphere of radius R. Numerical results
(blue solid lines) obtained for N = 103 after averaging over 100 realizations are com-
pared to Eq. (5.191) (red dashed lines), and to Eq. (5.209) (green solid lines), with
γ = 9N/8(k0R)2 for several densities ρ of points (λ0 = 2π/k0). (b) Eigenvalues µl,p,
given by Eq. (5.208) and used to compute p(Λ) from Eq. (5.209) [green solid line in (a)],
versus the index l. µl,p are non-zero for l . k0R. The range covered by the eigenvalues
µlp is also indicated in (a) with braces.

our theoretical prediction (5.127) does not describe properly p(Λ) for Λ ∈ [−ρλ3
0/2π

2, 0].23

To understand the origin of this difference, we analyze the degree of localization of the
eigenvectors Rn of the matrix (5.184), by computing their inverse participation ratio
(IPR):

IPRn =

∑N
i=1 |Rn(ri)|4[∑N
i=1 |Rn(ri)|2

]2 . (5.210)

An eigenvector extended over all N points is characterized by IPR ∼ 1/N , whereas an
eigenvector localized on a single point has IPR = 1. IPRn associated with the eigenvalues
Λn used to compute p(Λ) in Fig. 5.12(a) are represented in Fig. 5.12(b).24 Our numerical
analysis of IPR reveals that three types of states can contribute to the spectrum. At
low density ρλ3

0 . 10, IPR ≃ 2/N for all eigenvectors except eigenvectors that are
localized on pairs of points that are very close together, for which IPR ≃ 1/2. The

23Note also that the eigenvalues density following from Eq. (5.127) compensates for the existence of
the gap by larger values of p(Λ) near Λ ≃ 0, to satisfy the normalization condition

R

dΛp(Λ) = 1 [see the
lower panel of Fig. 5.11(a), and Fig. 5.12(a)].

24We do not not represent the average IPR(Λ) = 〈PN
n=1 IPRn δ(Λ − Λn)〉/Np(Λ) in Fig. 5.12(b)

because eigenvectors with very different IPRn and almost the same Λn coexist in the the spectrum.
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Figure 5.12: (a) Same as Fig. 5.11(a) but for higher densities ρλ3
0 = 10 and 50. For

R/λ0 . 1, the probability density p(Λ) splits into sectors centered around the eigenvalues
µlp of T̂ . (b) Inverse participation ratio IPRn (5.210) of eigenvectors Rn of the cosc matrix
(5.184), versus eigenvalues Λn associated to Rn. Λn are used to compute the numerical
spectrum p(Λ) in (a) (solid blue line).

latter correspond to eigenvalues roughly equal to those of the matrix (5.184) for N = 2,
Λ = ±C12. They are not described by our Eq. (5.127). The lack of these states in our
theory can be traced back to he assumption of statistical independence of the matrix
H in the representation A = HTH† of ERMs (see sections 5.1.3 and 4.4). At large
densities, the statistical weight of these states increases25, and since most of them are
associated with eigenvalues Λn < 0 [Fig. 5.12(b)], there is consequently no gap in p(Λ)
[Fig. 5.12(a)]. Finally, we note that IPR starts to grow in the vicinity of Λ = 0 for
ρλ3

0 & 10 [Fig. 5.12(b)]. Unfortunately, the part of the spectrum corresponding to those
localized states almost overlaps with the one associated with states localized on pairs (or
small cluster) of points. Hence, it is not very clear from Fig. 5.12(b) that two types of
localized states coexist in the spectrum. Interestingly, such a distinction is much easier
to make for non-Hermitian matrices, that have eigenvalues distributed in the complex
plane and not on the real axis. Inspired by the analysis of localization signatures in the
properties of the non-Hermitian Green’s matrix performed in chapter 6, we believe that
some states in the vicinity of Λ = 0, with IPR < 0.5, are localized due to disorder, and
not simply because they are associated to clusters of points behaving as small ‘cavities’
independent of their environment. Understanding the way in which the two types of
localized states influence each other requires a deeper analysis.

25More precisely, only the weight of the ‘lower branch’ −C12 increases. For further discussion of this
effect, we refer the reader to chapter 6.
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In conclusion, the eigenvalue density of the cosc matrix (5.184) following from Eq.
(5.209) is in good agreement with the numerical simulations for any γ (exhibiting, in
the limit ρλ3

0 ≪ 1, a transition from the Wigner semicircle law for γ ≪ 1 to the Cauchy
distribution for γ ≫ 1), for any k0R (exhibiting several splittings around the eigenvalues
µlp of the operator T̂ for R/λ0 . 1), and for ρλ3

0 . 30. At large densities (ρλ3
0 & 30),

Eq. (5.209) predicts the existence of a gap (different from those appearing at R/λ0 . 1),
that is absent in numerical simulations because of states localized on clusters of points
and associated with eigenvalues lying in the gap. These states are not described by our
theory, and exist a priori for any ERM Aij = f(ri, rj). However, their effect on the shape
of p(Λ) very much depends on the function f . In the case of the sinc matrix (5.163),
for example, all these states accumulate near Λ = 0, and therefore do not disturb the
spectrum p(Λ) too much even at high densities [see Fig. 5.8(a)].

5.9 Work in progress and perspectives

At the time of writing this thesis, we have in mind several extensions of the results
presented in this chapter. We would like to mention them briefly.

The main result of this chapter are Eqs. (5.115) and (5.118) that apply to any ERM
Aij = f(ri, rj) as long as the variable z belongs to the holomorphic domain of the resol-
vent g(z). In particular, Eq. (5.115) is useful to compute the density of eigenvalues p(Λ)
of Hermitian ERMs. We applied the latter to the matrices ReG(ω0) and ImG(ω0), where
G(ω0) is the free-space Green’s matrix that appears in problems of wave propagation
in three-dimensional random media. A natural and straightforward extension of this
study is to consider the same matrices but for propagation in two- and one- dimensional
space. This modifies not only the finite region V of Euclidean space where points ri are
randomly distributed but also the deterministic function f of position of pairs of points.
A second straightforward extension is to use Eq. (5.115) for others ERMs that appear
in various physical problems. We can mention the study of RKKY interaction described
by the ERM (2.85), or the relaxation in glasses described by an ERM Aij = e−|ri−rj |/ξ,
recently studied in the low density limit [155].

Eq. (5.115) was derived thanks to the representation A = HTH† by assuming uncor-
related disorder (uncorrelated ri). If disorder exhibits spatial correlations, the statistics
of the matrix H is modified. Interestingly, it seems feasible to include spatial correlations
in this representation — e.g., by taking the covariance matrix of the columns of H dif-
ferent from identity — inasmuch as results exist in the literature for correlated Wishart
matrices HH† [143, 159, 171]. The problem then reduces to the generalization of the
latter to the case where T is different from identity.

A great advantage of the representation A = HTH† is that more advanced quantities
than p(Λ) can be calculated without much extra effort. For example, imagine we are
interested in the mean square fluctuation of a physical quantity q(A) defined by the trace
of some function of A:

〈q(A)2〉 − 〈q(A)〉2 =

∫
dΛdΛ′pc(Λ,Λ

′)q(Λ)q(Λ′), (5.211)

with pc(Λ,Λ
′) the connected two-point correlation function:

pc(Λ,Λ
′) =

1

N2

〈
N∑

n=1

N∑

n′=1

δ(Λ − Λn)δ(Λ
′ − Λn′)

〉

c

, (5.212)
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where 〈xy〉c = 〈xy〉 − 〈x〉〈y〉 for any x, y. pc(Λ,Λ
′) can be computed from the two-point

resolvent

gc(z, z
′) =

1

N2

〈
Tr

1

z −A
Tr

1

z′ −A

〉

c

, (5.213)

=
1

N2
∂z∂z′

〈
Tr log(z −A)Tr log(z′ −A)

〉
c
, (5.214)

invoking the relation [183]:

pc(Λ,Λ
′) = − 1

4π2
[gc(+,+) + gc(−,−) − gc(+,−) − gc(−,+)] , (5.215)

where we introduced the shorthand notation gc(±,±) = gc(Λ ± iǫ,Λ′ ± iǫ′). Using an
elegant diagrammatic approach, Brezin and Zee showed in Ref. [184] that gc(z, z

′) can
be expressed as

gc(z, z
′) = − 1

N2
∂z∂z′ log

[
1 − U(z, z′)g(z)g(z′)

]
, (5.216)

where U(z, z′) is the irreducible vertex that contains the sum of all irreducible diagrams
contained in the expansion of gc(z, z

′).26 The authors also showed with simple arguments
that U(z, z′) for the Wigner-Dyson ensemble (5.40) is given by [172, 184]

UWD(z, z′) =
1

g(z)g(z′)
+
g(z) − g(z′)
z − z′

. (5.217)

For ERMs A = HTH†, by applying the diagrammatic method developed in section 5.5.3
it is quite easy to find U(z, z′) in the limit of large N where only planar rainbow-like
diagrams survive. We obtain

U(z, z′) =
1

N2
Tr


 T̂ 2

[
1 − g(z)T̂

] [
1 − g(z′)T̂

]


 , (5.218)

where g(z) is the solution of Eq. (5.115). Inserting Eq. (5.218) into Eq. (5.216) gives us
finally the two-point correlation function (5.215).

Last but not least, we mentioned at the end of section 5.3.4 our interest in developing
the very intuitive Dyson gas picture for ERMs. In a nutshell, this picture expresses that
eigenvalues Λn behave as a Coulomb gas submitted to a one-body potential determined
by P (A). On the one hand, finding P ({Λn}) for A = HTH† with i.i.d. elements
Hiα would give us the one-body potential V1 to which eigenvalues Λn are submitted; it
also would be useful to calculate n-point correlation functions. On the other hand, the
Dyson gas picture could help us to go beyond the assumption of independent Hiα. Our
reasoning is based on the following observations: 1) we briefly saw in the previous section
that an important effect that we neglect with the latter hypothesis is the existence of
eigenvectors of the N × N matrix A localized on clusters of very close points; 2) these
eigenvectors are associated with eigenvalues that seem to distribute on the real axis as

26It is somewhat surprising that the proof of the relation between gc and U for random matrices requires
a lengthy demonstration [184], while in the scattering theory studied in section 4.5 the relation between
the analogous quantities 〈T + ⊗ T −〉 − 〈T +〉 ⊗ 〈T −〉 and U directly results from simple definitions, see
Eqs. (4.98) and (4.100).
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if they were submitted to a one-body potential V2 similar to the one experienced by the
smallest eigenvalue of A for N = 2. Hence, a possible idea to go beyond the assumption
of independent Hiα would be to extract the potential V2 from the case N = 2, and add
it to V1. Using the mean-field approximation of section 5.3.3, we then could find the
modified distribution p(Λ).



Chapter 6
Non-Hermitian Euclidean random matrix

theory

Although the majority of works in RMT concern Hermitian random matrices, non-
Hermitian random matrices have also attracted considerable attention [177, 178, 185–
191]. They can be used to model such physical phenomena as scattering in dissipative
or open systems [192–195], dynamics of neural networks [196, 197], diffusion in random
velocity fields [198], or chiral symmetry breaking of the QCD Dirac operator [199, 200].

In contrast to Hermitian matrices, the eigenvalues of non-Hermitian matrices are
not constrained to lie on the real axis and may invade the complex plain. Consequently,
various methods developed for Hermitian matrices and based on the powerful constraints
of analytic function theory are no longer applicable and require non-trivial modifications
[177, 178, 186–188, 191].

Most of the literature on random non-Hermitian matrices has focused on Gaussian
randomness. A paradigmatic example is the ensemble of N × N matrices A generated
with the probability distribution P (A) = CNe

−NTrAA†
. Ginibre showed in 1965 that, in

the limit N → ∞, the eigenvalues of A are uniformly distributed within a disk of radius
unity on the complex plane [201]. Twenty years later, Girko generalized this result to
matrix elements Aij that are i.i.d. with zero mean and variance 1/N [202]. This is
commonly referred to as Girko’s law. In this chapter we would like to tackle the problem
of computing the density of eigenvalues of matrices that break away from this law: the
non-Hermitian Euclidean random matrices (ERMs). Non-Hermitian ERMs appear in
such important physical problems as Anderson localization of light [104, 105] and matter
waves [106, 107], random lasing [109], propagation of light in nonlinear disordered media
[108], and collective spontaneous emission of atomic systems [79, 86, 90]. However,
no analytic theory is available to deal with these matrices, and our knowledge about
their statistical properties is based exclusively on large-scale numerical simulations [104–
109, 181].

This chapter is organized as follows. In section 6.1 we introduce new mathematical
objects that allow to generalize the methods developed for Hermitian matrices to the non-
Hermitian case. A diagrammatic theory for the density of eigenvalues of an arbitrary
non-Hermitian ERM in the limit of large matrix size (N → ∞) is developed in section 6.2.
Alternative approaches are also briefly discussed (section 6.3). We illustrate our theory
by applying it to the scalar random Green’s matrix G(ω0) that previously appeared in

135
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Refs. [90, 104–109, 181] but was studied only numerically up to now (sections 6.5.1,
6.5.2, and 6.5.4). The difference between the statistical properties of G(ω0) and those
of effective Hamiltonians used to analyze open chaotic systems is pointed out in section
6.4, and the signatures of Anderson localization in the statistical properties of G(ω0) are
investigated in section 6.6. Note finally that we also consider the eigenvalue distribution
of the dyadic random Green’s matrix G(ω0) in section 6.5.3.

6.1 Foundations of the non-Hermitian random matrix the-
ory

This section is devoted to the introduction of basic definitions and relations useful in the
study of non-Hermitian matrices.

6.1.1 Eigenvalue density and Hermitization

Eigenvalues Λn of a N ×N non-Hermitian A are, in general, complex. Their density is
defined as

p(Λ) =
1

N

〈
N∑

n=1

δ(2)(Λ − Λn)

〉
, (6.1)

where we use the shorthand notation δ(2)(Λ−Λn) = δ(ReΛ−ReΛn)δ(ImΛ− ImΛn). The
relation between p(Λ) and the resolvent

g(z = x+ iy) =
1

N

〈
Tr

1

z −A

〉
=

1

N

〈
N∑

n=1

1

z − Λn

〉
(6.2)

can be found using ∂z∗(1/z) = πδ(x)δ(y), with the standard notation ∂z∗ = 1
2(∂x + i∂y)

for z = x+ iy. We obtain:

p(Λ) =
1

π
∂z∗g(z)

∣∣∣∣
z=Λ

(6.3)

=
1

2π
[∂xReg(z) − ∂yImg(z)]

∣∣∣∣
z=Λ

. (6.4)

Note that ∂yReg(z) = −∂xImg(z) because p(Λ) is real. The r.h.s. of Eq. (6.4) vanishes
if g(z) obeys the Cauchy-Riemann conditions, i.e., if it is an analytic function of the
complex variable z. In general, the eigenvalues Λn occupy, on average, a two-dimensional
domain D on the complex plane where g(z) is non-analytic, and p(Λ) describes the
location and the amount of non-analyticity.

We now recall that the resolvent g(z) can be interpreted as the electric field g(z)
[Eq. (5.44)] created, at point z in the complex plane, by charges (q = +1) situated at
positions Λn. Eq. (6.4) can thus be seen as the Gauss law p(z) = ∇x,y · g(z)/2π. Hence,
we readily obtain a new relation between p(Λ) and the logarithmic pair-wise repulsion
V int(z) defined by g(z) = −∇x,yV

int(z) [see Eq. (5.43)]:

p(Λ) = − 1

2πN
∆x,yV

int(z)

∣∣∣∣
z=Λ

, (6.5)
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where ∆x,y = 4∂z∂z∗ is the Laplacian in the coordinates x and y. Clearly, Eq. (6.5) may
be particularly useful within the framework of the Dyson gas model where V int may be
related to a one-body potential determined by the probability distribution P (A) (see
sections 5.3 and 6.3.1).

Inserting the explicit expression (5.43) of V int(z) into Eq. (6.5), we express p(Λ) in
an alternative form:

p(Λ) =
1

πN
∂z∂z∗

〈
Tr ln(z −A)(z∗ −A†)

〉∣∣∣∣
z=Λ

(6.6)

=
1

πN
∂z∂z∗

〈
ln det(z −A)(z∗ −A†)

〉∣∣∣∣
z=Λ

(6.7)

=
1

πN
lim
ǫ→0

∂z∂z∗ 〈ln det [HA(z) − iǫI2N ]〉
∣∣∣∣
z=Λ

, (6.8)

where I2N is the 2N × 2N identity matrix and HA is the 2N × 2N chiral Hermitian
matrix

HA(z) =

(
0 A− z

A† − z∗ 0

)
. (6.9)

Note that Eq. (6.6) can also be derived from Eq. (6.1) using ∂z∂z∗ lnzz
∗ = πδ(x)δ(y).

Eq. (6.8) is generally used in field-theoretical approaches (section 6.3.2). In addition,
since the matrix (6.9) is Hermitian, one can compute its resolvent with well-established
Hermitian techniques, from which it is still possible to recover the eigenvalue density of
A [188, 191]. This is the so-called ‘Hermitization method’. In the following, we will use
an alternative method which has various advantages: it is technically slightly simpler, it
reveals a relation between g(z) and the correlator of right and left eigenvectors of A, and
finally it allows for a generalization of free probability calculus.

6.1.2 Quaternions and the eigenvector correlator

If A is Hermitian, the eigenvalues Λn lie, on average, on some intervals (cuts) of the real
axis. Therefore, it is possible to reconstruct g(z) by analytic continuation of its series
expansion (5.27) performed in the vicinity of |z| → ∞. The eigenvalue distribution p(Λ)
follows from the discontinuities of g(z) on the real axis [see Eqs. (5.21) and (6.3)]. For
a non-Hermitian matrix A however, g(z) loses its analyticity inside the two-dimensional
domain D where Λn are concentrated, meaning that g(z) for z ∈ D cannot be simply
assessed by analytic continuation of its series expansion. A way to circumvent this
problem is based on the algebra of quaternions: while p(Λ) for an Hermitian A is obtained
by approaching the real axis from orthogonal directions (in the complex plane), p(Λ) for a
non-Hermitian A can be found by approaching two sides of D from directions ‘orthogonal’
to the complex plane (in the quaternion space) [177]. Doubling the size of the matrix
under study, we now work with a new 2N × 2N matrix,

AD =

(
A 0
0 A†

)
(6.10)

and a quaternion resolvent matrix,

G(Q) =
1

N

〈
TrN

1

Q⊗ IN −AD

〉
. (6.11)
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The 2 × 2 matrix Q is an arbitrary quaternion in matrix representation,

Q =

(
a ib∗

ib a∗

)
= x0I2 + ix · σ, (6.12)

where x = (x1, x2, x3), σ is the triplet of usual Pauli matrices, a = x0 + ix3, and
b = x1 + ix2. TrN in Eq. (6.11) denotes the block trace of an arbitrary 2N × 2N matrix
X. It is defined by separating X in four N × N blocks X11, X12, X21, X22 and taking
the trace of each of the latter separately:

TrNX = TrN

(
X11 X12

X21 X22

)

=

(
TrX11 TrX12

TrX21 TrX22

)
. (6.13)

Algebraic properties of the quaternions are useful to generalize the free probability theory
to non-Hermitan matrices (see section 6.3.3). However, if we wish to compute g(z) by a
diagrammatic approach, it is sufficient to consider the quaternion Q = Zǫ:

Zǫ =

(
z iǫ
iǫ z∗

)
. (6.14)

The generalized resolvent matrix G(Zǫ) is then safely equal to its series expansion in
1/Zǫ [177, 186, 203]. By evaluating the block trace in Eq. (6.11) explicitly, one readily
finds that

G(Zǫ) =

(
Gǫ11 Gǫ12
Gǫ12 Gǫ∗11

)
, (6.15)

with

Gǫ11 =
1

N

〈
Tr

z∗ −A†

(z −A)(z∗ −A†) + ǫ2

〉
, (6.16)

Gǫ12 = − iǫ

N

〈
Tr

1

(z −A)(z∗ −A†) + ǫ2

〉
, (6.17)

so that

lim
ǫ→0

G(Zǫ) =

[
g(z) c(z)
c(z) g(z)∗

]
. (6.18)

Interestingly, the off-diagonal elements c(z) = limǫ→0G
ǫ
12 yield the correlator of right

|Rn〉 and left |Ln〉 eigenvectors of A [204, 205]:

C(z) = − π

N

〈
N∑

n=1

〈Ln|Ln〉〈Rn|Rn〉δ(2)(z − Λn)

〉
= Nc(z)2. (6.19)

This shows that c(z) must vanish on the boundary δD of the support of the eigenvalue
density D. In order to obtain p(Λ), we can compute G(Zǫ) at finite ǫ ∈ R (by a dia-
grammatic or any other approach), then take the limit ǫ → 0 to extract g(z) from the
diagonal elements of (6.18), and finally apply Eq. (6.3).
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6.1.3 Bi-orthogonal basis of left and right eigenvectors

For the sake of completeness, we recall here basic properties of right |Rn〉 and left |Ln〉
eigenvectors of a non-Hermitian matrix A (or operator Â). By definition,

A|Rn〉 = Λn|Rn〉, (6.20)

〈Ln|A = Λn〈Ln| ⇐⇒ A†|Ln〉 = Λ∗
n|Ln〉, (6.21)

meaning that |Ln〉 are the right eigenvectors of A†. Obviously, A and A† have complex
conjugated eigenvalues for det(A−ΛnIn) = 0 = det(A†−Λ∗

nIn). Besides, |Ln〉 and |Rm〉
are necessarily orthogonal because 〈Ln|A|Rm〉 = Λn〈Ln|Rm〉 = Λm〈Ln|Rm〉. Assuming
that the eigenvalues Λn are not degenerate, we normalize |Rn〉 and |Ln〉 such that:

〈Ln|Rm〉 =

N∑

i=1

Li∗nR
i
m = δnm, (6.22)

Note that 〈Rn|Rm〉 6= δnm. Finally, the following properties hold

IN =
∑

n

|Rn〉〈Ln| =
∑

n

|Ln〉〈Rn|, (6.23)

TrX =
∑

n

〈Ln|X|Rn〉, (6.24)

where X is an arbitrary matrix.

6.2 Diagrammatic approach for non-Hermitian ERMs

Our goal is to derive equations for the resolvent g(z) and the correlator c(z) of an
arbitrary N × N non-Hermitian ERM Aij = f(ri, rj) = 〈ri|Â|rj〉 in the limit of N →
∞. For this purpose, we make use of the representation A = HTH† introduced in
section 5.1.3, with the assumption that H has i.i.d. complex Gaussian entries satisfying
the property (5.17). We recall that the Gaussian assumption simplifies diagrammatic
calculations but is not essential, contrary to the assumption of independent elements
that may limit the applicability of our results at high densities of points ρ (see the
discussion in section 5.6.3). Since diagrammatic calculations presented here generalize
those performed for Hermitian matrices, it may be helpful to read section 5.5.3 before
proceeding further.

6.2.1 Derivation of self-consistent equations

We start by expanding the 2×2 resolvent matrix G(Zǫ) defined by Eqs. (6.11) and (6.14)
in series in 1/Zǫ = (1/Zǫ) ⊗ IN :

G(Zǫ) =
1

N

〈
TrN

[
1

Zǫ
+

1

Zǫ
AD

1

Zǫ
+ . . .

]〉
. (6.25)

Inasmuch as Hiα are i.i.d. Gaussian entries, the result of averaging 〈. . . 〉 over the ensem-
ble of matrices H can be expressed through pairwise contractions (5.17) only. Diagram-
matic notations, already introduced in section 5.5.3 to evaluate efficiently the weight of
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H  = 

H  =

H
iα Tαβ 

Hβj  =
Tα β ji

A
D  = 

T

T( 0

0 ( †

†

†

= =   1/N

x =  Nx, X =  Tr X

(a) (b)

Figure 6.1: (a) Diagrammatic representations of the matrices H, H†, A = HTH†, and
AD. Full and dashed lines propagate in the bases {ri} and {ψα}, respectively (see section
5.1.3); T̂ = ρÂ. (b) Diagrammatic notation for pairwise contractions (5.17) and loop
diagrams for any scalar x in the basis {ri}, and for any operator X̂ in an arbitrary basis
{ψα}.

different terms arising in the calculation, are reproduced in Fig. 6.1(a) for clarity. The
‘propagator’ 1/Zǫ will be depicted by

1

Zǫ
=

(
1
z − iǫ

|z|2
− iǫ

|z|2
1
z∗

)
=

(
1 1 1 2

2 1 2 2

)
. (6.26)

Since each contraction (5.17) brings a factor 1/N , and each loop corresponding to
taking the trace of a matrix brings a factor N [see Fig. 6.1(b)], only the planar rainbow-
like diagrams, that contain as many loops as contractions, survive in the limit N → ∞.
Such diagrams appear, for example, in Fig. 6.2, where we show the beginning of the
expansion of the two independent elements of G(Zǫ) defined by Eq. (6.15).

In the standard way, rather than summing the diagrams for the resolvent, we intro-
duce the 2 × 2 self-energy matrix

Σ(Zǫ) = Zǫ −G(Zǫ)
−1 =

(
Σǫ

11 Σǫ
12

Σǫ
12 Σǫ∗

11

)
. (6.27)

It is equal to the sum of all one-particle irreducible diagrams contained in

ZǫG(Zǫ)Zǫ =
1

N

〈
TrN

[
AD +AD

1

Zǫ
AD + . . .

]〉
. (6.28)

The first dominant terms that appear in the expansion of the two matrix elements Σǫ
11

and Σǫ
12 are represented in Fig. 6.3. In the two series of Fig. 6.3 we recognize, under a

pairwise contraction, the matrix elements Gǫ11 and Gǫ12 depicted in Fig. 6.2, as well as
the two operators Σ̂ǫ

11 and Σ̂ǫ
12 defined in Fig. 6.4. Equations obeyed by the operators

G
11

 = T
1 1 1 1

T
1 2 2 1

+ + ...

G
12

 = T
1 1 1 2

T
1 2 2 2

+ + ...

1 1
+

1 2
+

 †

 †

Figure 6.2: Diagrammatic expansion of the two independent elements of the matrix
G(Zǫ).
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Σ
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  = T + + ...T T TT T+ T T T
1 1 1 2 2 1 1 12 2

+

Σ
12 

 = + ...T T TT T+ T T T
1 2 1 2 2 2 1 22 2

+

Σ
11

{ {

G
11

{

Σ
12

{

G
21 

= G
12

Σ
11

{ {

G
11

Σ
11

{ {

G
12

{

Σ
12

{

G
22 

= G
11

Σ
11

{ {
G

12

∗

 †  †

 †  †  †  †  †

Figure 6.3: Diagrammatic expansion of the two independent elements of the self-energy
Σ(Zǫ). Braces with arrows denote parts of diagrams that are beginning of diagrammatic
expansions of the quantities which the arrows point to.

Σ11  = + +

*Σ12  =

T Σ11 Tg Σ12 Tc

+Σ11 Tc Σ12 Tg
 †  †

Σ
11

 = Σ
11

Σ
12

 = Σ
12

Figure 6.4: The elements Σǫ
11 and Σǫ

12 of the matrix Σ(Zǫ) can be written as traces
of operators Σ̂ǫ

11 and Σ̂ǫ
12: Σǫ

11 = TrΣ̂ǫ
11/N and Σǫ

12 = TrΣ̂ǫ
12/N . Operators Σ̂11 =

limǫ→0+ Σ̂ǫ
11 and Σ̂12 = limǫ→0+ Σ̂ǫ

12 obey coupled equations, where g = limǫ→0+ Gǫ11 and
c = limǫ→0+ Gǫ12 [see Eq. (6.18)].

Σ̂11 = limǫ→0+ Σ̂ǫ
11 and Σ̂12 = limǫ→0 Σ̂ǫ

12 are obtained after summation of all planar
rainbow diagrams in the expansion of Fig. 6.3 and taking the limit ǫ → 0+.1 The
diagrammatic representation of these equations is shown in Fig. 6.4. Applying ‘Feynman’
rules defined in Fig. 6.1(b), we obtain:

Σ̂11 = (1 + g Σ̂11 + c Σ̂12)T̂ , (6.29)

Σ̂12 = (c Σ̂11 + g∗ Σ̂12)T̂
†, (6.30)

where T̂ = ρÂ. After some algebra2, Σ11 = TrΣ̂11/N and Σ12 = TrΣ̂12/N can be
expressed as:

Σ11 =
1

N
Tr

(1 − g∗T̂ †)T̂

(1 − g∗T̂ †)(1 − gT̂ ) − c2T̂ †T̂
, (6.31)

Σ12 =
c

N
Tr

T̂ †T̂

(1 − g∗T̂ †)(1 − gT̂ ) − c2T̂ †T̂
. (6.32)

1As usual in such a procedure, summation must be performed before taking the limit ǫ → 0. Hence, the
off-diagonal element of the propagator 1/Zǫ gives rise to non-vanishing terms after summation, although
it is zero in the limit ǫ → 0.

2Although [T̂ , T̂ †] 6= 0, this calculation is easily performed using cyclic permutations under the trace
operator.
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Furthermore, as follows from Eq. (6.18) and the definition (6.27) of the self-energy
matrix, g and c are simply related to Σ11 and Σ12 by

[
g(z) c(z)
c(z) g(z)∗

]
=

(
z − Σ11 −Σ12

−Σ12 z∗ − Σ∗
11

)−1

. (6.33)

Elimination of the self-energy from Eqs. (6.31), (6.32) and (6.33) leads to two self-
consistent equations for the resolvent g(z) and the eigenvector correlator c(z):

z =
g∗

|g|2 − c2
+

1

N
Tr

(1 − g∗T̂ †)T̂

(1 − g∗T̂ †)(1 − gT̂ ) − c2T̂ †T̂
, (6.34)

1

|g|2 − c2
=

1

N
Tr

T̂ †T̂

(1 − g∗T̂ †)(1 − gT̂ ) − c2T̂ †T̂
. (6.35)

At this final stage, it is convenient to define the following operators

Ŝ0 = Ŝ(g) =
T̂

1 − g T̂
, (6.36)

Ŝ1 = Ŝ(g + c2Ŝ†
0) =

(1 − g∗T̂ †)T̂

(1 − g∗T̂ †)(1 − gT̂ ) − c2T̂ †T̂
, (6.37)

in terms of which Eqs. (6.34) and (6.35) become

z =
g∗

|g|2 − c2
+

1

N
TrŜ1, (6.38)

1

|g|2 − c2
=

1

N
TrŜ1Ŝ

†
0. (6.39)

Because c(z) must vanish on the boundary δD of the support of the eigenvalue density
D, equations for z ∈ δD follow:

z =
1

g
+

1

N
TrŜ0, (6.40)

1

|g|2 =
1

N
TrŜ0Ŝ

†
0. (6.41)

6.2.2 Analysis of self-consistent equations

Equations (6.34), (6.35), (6.40) and (6.41) are the main results of this chapter. An
equation for the borderline of the support of the eigenvalue density of a non-Hermitian
ERM on the complex plane z = Λ follows from Eqs. (6.40) and (6.41) upon elimination
of g. The density of eigenvalues Λ inside its support D can be found by solving Eqs.
(6.34) and (6.35) with respect to g(z) and then applying Eq. (6.3).

Our analysis includes the result for Hermitian ERMs as a special case: if A is Hermi-
tian, the support of the eigenvalue density shrinks to a segment on the real axis, meaning
that c(z) = 0 for z ∈ C\R and Σ is diagonal. Indeed, from Eq. (6.32), Σ12 = 0. Equation
(6.40) then allows one to solve for g(z) with z ∈ C \R, in agreement with Eq. (5.115) of
the previous chapter.

At low density, we already know that, at least in the framework of our representation
A = HTH†, the eigenvalue density of any Hermitian ERM obeys the Wigner semicircle
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law; see Eq. (5.122).3 A similar result exists for non-Hermitian ERMs as well. Indeed,
using the approximation

Ŝ1 ≃ Ŝ0 ≃ T̂ (6.42)

valid at low densities, Eqs. (6.40) and (6.41) for the borderline of the eigenvalue domain
reduce to ∣∣∣∣z −

1

N
TrT̂

∣∣∣∣
2

=
1

N
TrT̂ T̂ †, (6.43)

and Eqs. (6.38) and (6.39) for g(z) and c(z) with z ∈ D become

g(z) =
z∗ − 1

NTrT̂ †

1
NTrT̂ T̂ †

, (6.44)

c(z) =
1

1
NTrT̂ T̂ †

[
|z − 1

NTrT̂ |2
1
NTrT̂ T̂ †

− 1

]
. (6.45)

The term TrT̂ /N that appears in Eqs. (6.43), (6.44), and (6.45), leads to a shift in the
eigenvalue distribution equal to

TrT̂

N
=

TrÂ

V
=

〈TrNA〉
N

= 〈Λ〉. (6.46)

We assume from here on that Aii = 0 (i = 1, . . . , N), so that, in particular, 〈Λ〉 = 0.
With this assumption, the term TrT̂ T̂ † reads:

Tr(T̂ T̂ †) = ρ2Tr(ÂÂ†) = ρ2

∫∫

V
ddr ddr′

∣∣f(r, r′)
∣∣2 , (6.47)

=
〈
TrN (AA†)

〉
=

〈
N∑

n=1

N∑

m=1

ΛnΛ
∗
m〈Ln|Lm〉〈Rm|Rn〉

〉
, (6.48)

≃
〈

N∑

n=1

|Λn|2〈Ln|Ln〉〈Rn|Rn〉
〉
, (6.49)

≃ 2

〈
N∑

n=1

|Λn|2
〉

= 2N
〈
|Λ|2

〉
. (6.50)

In Eqs. (6.49) and (6.50) we assumed that, at low densities, 〈ri|Ln〉 and 〈ri|Rn〉 behave
as Gaussian random variables. Note that Eq. (6.50) differs from the Hermitian case
(5.121) by a factor 2. This is because the eigenvector structure does not come into play
in Eq. (5.121). Introducing the shorthand notation

γ =
Tr(T̂ T̂ †)

2N
≃ 〈|Λ|2〉, (6.51)

we rewrite Eqs. (6.43), (6.44), and (6.45) as

|z|2 = 2γ (z ∈ δD), (6.52)

g(z) =
z∗

2γ
(z ∈ D), (6.53)

c(z) =
1

2γ

[ |z|2
2γ

− 1

]
(z ∈ D). (6.54)

3We exclude rare ERMs for which the operator T̂ has a small number of non-zero eigenvalues.
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This shows that, in the limit N → ∞ and ρ → 0 at fixed γ, the eigenvalues of an
arbitrary traceless non-Hermitian ERM are uniformly distributed within a disk of radius√

2γ. Within the disk, p(Λ) = 1/2πγ. This is the famous Girko’s law mentioned in
the introduction of this chapter and first found by Ginibre for the complex Gaussian
ensemble [201]. We recover this law because in the limit N → ∞ and ρ → 0, elements
of A essentially behave as i.i.d. variables. In that case, Σ11 = 0 and Σ12 = c(z)/2γ.

If the ERM is of the form Aij = f(|ri− rj |), where the vectors ri determine positions
of N randomly chosen points inside a three-dimensional cube of side L or inside a sphere
of radius R, γ is explicitly given by

γ =





N
2

∫∫∫∞
−∞ dxdydz

∣∣∣f
(
L
√
x2 + y2 + z2

)∣∣∣
2
w(x, y, z) (cube)

12N
∫ 1
0 dx|f(2Rx)|2s(x)x2 (sphere)

, (6.55)

where w(x, y, z) and s(x) are defined by Eqs. (5.129) and (5.130), respectively.
As was the case for Hermitian ERMs, the solution of Eqs. (6.34), (6.35), (6.40) and

(6.41) for a given matrix A can be greatly facilitated by a suitable choice of the basis in
which traces appearing in these equations are expressed. In addition to {r} and {kα}, a
bi-orthogonal basis of right |Rα〉 and left |Lα〉 eigenvectors of T̂ can be quite convenient.
We recall that the right eigenvector |Rα〉 obeys

〈r|T̂ |Rα〉 = ρ

∫

V
ddr′f(r, r′)Rα(r′) = µαRα(r), (6.56)

where µα is the eigenvalue corresponding to the eigenvector |Rα〉. The traces appearing
in Eqs. (6.40) and (6.41) can be expressed as

TrŜ0 =
∑

α

〈Lα|Ŝ0|Rα〉 =
∑

α

µα
1 − gµα

, (6.57)

TrŜ0Ŝ
†
0 =

∑

α,β

µαµ
∗
β〈Lα|Lβ〉〈Rβ|Rα〉

(1 − gµα)(1 − gµβ)∗
, (6.58)

respectively. Technically, the main difference with the study of Hermitian ERMs is that
we now have to know the eigenvectors of T̂ explicitly [compare Eqs. (6.58) and (5.127)].

6.3 Other approaches

6.3.1 Mapping to the Dyson gas

In this section we extend the mapping to the Dyson gas first discussed for Hermitian
matrices (section 5.3) to the non-Hermitian case. Let us first consider the class of non-
Hermitian random matrices originally introduced by Ginibre [201]. It is given by complex
matrices A with Gaussian probability density:

P (A) = CNe
−NTrAA†

. (6.59)

P (A) is invariant under all unitary transformations, but not under the similarity trans-
formation A → SAS−1 used to diagonalize A = S−1DS (D denotes a diagonal matrix
with elements Λn, n = 1 . . . N). Hence, P (A) depends explicitly on S and not only on
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the eigenvalues of A. This feature is the main difference with the Gaussian ensemble
(5.1) or the Wigner-Dyson ensemble (5.40). Hermitian matrices drawn from these two
latter ensembles can be diagonalized by unitary matrices, so that P (A) depends on Λn
only. In order to obtain the joint probability density P ({Λn}) from Eq. (6.59), we must
change variables from Aij to parameters related to eigenvalues and eigenvectors of A.
Since TrAA† depends on eigenvectors, the new variables have to be chosen carefully to
facilitate further manipulations. The result is the following [137, 201]:

P ({Λn}) = C ′
Ne

−βHg({Λn}), (6.60)

Hg({λn}) = N

N∑

n=1

V g(Λn) −
∑

n<m

ln |Λn − Λm|, (6.61)

β = 2, V g(z) =
|z|2
2
. (6.62)

This is the Boltzmann-Gibbs distribution of a Coulomb gas in thermal equilibrium at
temperature T = 1/β. These equations have exactly the same form as Eqs. (5.41) and
(5.42). As for Hermitian matrices, the logarithmic pairwise repulsion comes from the
Vandermonde-type Jacobian |V({Λn})|β.

In the limit N → ∞, we can perform coarse-graining of the energy functional Hg [see
Eq. (5.54)], and minimize it to obtain the equality

−∂zV int(z) = N∂zV
g(z), (6.63)

where V int(z) is the logarithmic pair-wise repulsion (5.43). Eq. (6.63) means that the
force N∂zV

g(z) experienced by each particle of the gas is compensated by the Coulomb
repulsion by all other particles. The eigenvalue distribution (6.5) reads now:

p(Λ) =
1

2π
∆x,yV

g(z)

∣∣∣∣
z=Λ

. (6.64)

Note the difference with the result (5.53) for Hermitian matrices: Eq. (6.64) is local; the
shape of the distribution at Λ depends on the profile of V g in the vicinity of Λ only, while
in Eq. (5.53) the shape of p(Λ) strongly depends on the boundaries of the distribution,
meaning that the influence of V g on p(Λ) is nonlocal. Note also that Eq. (6.64) contains
no information about the borderline of the support of eigenvalues. If V g is simple enough,
the borderline can be obtained by the normalization constraint

∫
dΛp(Λ) = 1.4 For

V g(z) = |z|2/2, we find that the eigenvalues are uniformly distributed [p(Λ) = 1/π]
inside a disk of radius 1. This is the celebrated Ginibre’s result [201].

Obviously, Eqs. (6.60) and (6.61) apply also to any normal matrix A ([A,A†] = 0)
with probability

P (A) = CNe
−NTrVg(AA†), (6.65)

where Vg is arbitrary, for A can be diagonalized by a unitary matrix. The one-body
potential appearing in Eq. (6.61) is then given by V g(z) = Vg(|z|2). A counter-intuitive
result is that solutions (6.60) and (6.61) may completely break down for most of non-
Hermitian matrices— i.e. for non-Hermitian matrices that are not normal or partially
normal [191, 206] — distributed according to (6.65). In Ref. [187], Feinberg and Zee

4For complicated cases, the borderline may be found by inspection of Eq. (5.55) that is still valid for
non-Hermitian matrices.
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proved the ‘single-ring theorem’. It stipulates that the shape of the eigenvalue distri-
bution is either a disk or an annulus, whatever polynomial the potential Vg is. This
is clearly in contradiction with what we could expect from Eqs. (6.60) and (6.61), that
tell us that the number of domains occupied by the eigenvalues on the complex plain
should grow with the number of minima of V g(z) = Vg(|z|2). The polynomial Vg ∼ AA†

that corresponds to the complex Gaussian ensemble (6.59) is actually the only polyno-
mial for which Eqs. (6.60) and (6.61) are valid whatever the matrix A obeying (6.65) is.
Remarkably, the authors of [187] also showed that the eigenvalue distribution of A can
nevertheless be found from the resolvent of the Hermitian matrix AA†. This resolvent
has already been known in the literature for arbitrary polynomial Vg [187].

As far as ERMs are concerned, comments given at the end of section 5.3.4 for Her-
mitian matrices still hold for non-Hermtian matrices. We believe that P ({Λn}) may
be found using the representation A = HTH†, with entries Hiα approximated by i.i.d.
Gaussian random variables. Although we have not been able to rigorously justify the
Dyson gas picture for ERMs, the latter may be helpful to understand qualitatively the
eigenvalue distribution obtained by numerical diagonalization. For example, in the study
of the Green’s matrix G(ω0) (section 6.5), we observe that the support D of p(Λ) de-
forms when the density is increased, going through a transition from a disk-like to an
annulus-like shape, and eventually splitting into multiple disconnected domains at high
density (see Fig. 6.6). It is difficult to refrain from interpreting such transitions as phase
transitions for the Dyson gas due to modifications of a hypothetic one-body potential
V g.

6.3.2 Field representation

Let us now briefly explain how to compute the eigenvalue distribution of a non-Hermitian
matrix A in the field-theoretical approach. We start with the expression (6.8) of p(Λ),
rewritten as:

p(Λ) = − 1

πN
lim
ǫ→0

∂z∂z∗ 〈lnZǫ(z)〉
∣∣∣∣
z=Λ

, (6.66)

where we have introduced the partition function

Zǫ = det

[
ǫIn i(z −A)

i(z∗ −A†) ǫIn

]
. (6.67)

In order to evaluate 〈lnZǫ(z)〉, we follow the same procedure as in section 5.4, namely,
we apply the replica trick,

〈lnZǫ(z)〉 = lim
n→0

〈Zǫ(z)n〉 − 1

n
, (6.68)

together with the representation

Zǫ(z) ∝

∫
dφ1 . . .dφNe

−H(Φ,z,ǫ), (6.69)

H(Φ, z, ǫ) =

N∑

i=1

φ†i (ǫI2 + ixσx − iyσy)φi − i

N∑

i,j=1

φ†i

(
Ahijσx −Asijσy

)
φi, (6.70)

where the N fields φi are pairs of complex variables, σx and σy are Pauli matrices,
z = x + iy, and we have written A = Ah + iAs, with Ah and As Hermitian matrices.
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This representation combined with the cavity method was used in the recent litera-
ture [207] to analyze the eigenvalue distribution of non-Hermitian sparse matrices. A
slightly different representation of p(Λ), also based on the replica trick, can be found in
a nice review of RMT [208], where the Girko’s law is easily recovered. As for Hermitian
matrices, 〈Zǫ(z)n〉 is found after integration over the matrix elements, introduction of
auxiliary fields, integration over replica fields φαi , and finally application of a saddle point
approximation (see section 5.4).

For non-Hermitian ERMs of the form f(ri, rj) = f(ri − rj), it seems feasible to gen-
eralize the field method proposed by Mézard, Parisi and Zee in Ref. [147] for Hermitian
ERMs. Basically, it amounts to make the same approximations, in the calculation of
〈Zǫ(z)n〉, as those presented in details in section 5.4. Although we have not performed
this calculation explicitly, we believe that it would lead to equations that have the same
degree of validity as Eq. (5.89) with respect to Eq. (5.113). For example, equations for
the borderline of the eigenvalue domain are expected to be of the form:

z =
1

g(z)
+

∫
ddk

(2π)d
f0(k)

1 − ρf0(k)g(z)
, (6.71)

1

|g(z)|2 =

∫
ddk

(2π)d
ρ|f0(k)|2

|1 − ρf0(k)g(z)|2 , (6.72)

where f0(k) is the Fourier transform of f(r). Eqs. (6.71) and (6.72) can be obtained from
Eqs. (6.40) and (6.41) by using the approximation 〈k|Â|k′〉 ≃ 〈k|Â|k〉δkk′ ≃ f0(k)δkk′ .
Contrary to Eqs. (6.40) and (6.41), Eqs. (6.71) and (6.72) depend on the density ρ = N/V
only.

6.3.3 Free probability

The extension of free probability theory, and in particular the generalization of the
concept of Blue function, to non-Hermitian matrices is natural in quaternion space. It
appeared recently in the mathematical literature [209]. The quaternion Blue matrix
BX(Q) of any matrix X is the functional inverse of the the quaternion resolvent matrix
(6.11):

GX [BX(Q)] = BX [GX(Q)] = Q, (6.73)

where Q is a quaternion defined by Eq. (6.12). For convenience, we also introduce the
quaternion R-transform:

RX(Q) = BX(Q) − 1

Q
. (6.74)

For Q = Zǫ given by Eq. (6.14), RX(Zǫ) is simply related to the self-energy matrix (6.27)
by

RX(Zǫ) = ΣX [BX(Zǫ)], (6.75)

and therefore RX(z) = limǫ→0RX(Zǫ) and ΣX(z) = limǫ→0 ΣX(Zǫ) are related through5

RX(z) = ΣX [BX(z)], (6.76)

where BX(z) is the usual Blue function (5.29). We now mention two important properties
of the matrices GX(Q) and RX(Q). First, GX(Q) and RX(Q) obey the following scaling

5To obtain Eq. (6.76), we use B[diag(z, z∗)] = diag[B(z),B(z∗)].
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relations [177, 209]:

GαX(Q) = GX

[(
1/α 0
0 1/α∗

)
Q

](
1/α 0
0 1/α∗

)
, (6.77)

RαX(Q) =

(
α 0
0 α∗

)
RX

[
Q

(
α 0
0 α∗

)]
, (6.78)

where α ∈ C
∗. Second, both GX(Q) and RX(Q) can be expressed in terms of the

resolvent gX(z) and the R-transform RX(z) only [177, 209]:

GX(Q) =
1

q − q∗

{
[qgX(q) − q∗gX(q∗)] I2 − [gX(q) − gX(q∗)]Q†

}
, (6.79)

RX(Q) =
1

q − q∗

{
[qRX(q) − q∗RX(q∗)] I2 − [RX(q) −RX(q∗)]Q†

}
, (6.80)

where q = x0 + i|x| and q∗ are two complex conjugated eigenvalues of Q.6

For arbitrary Q, we can use algebraic properties of the quaternions to show that the
following addition law holds [177, 209]:

RX1+X2(Q) = RX1(Q) +RX2(Q), (6.81)

where X1 and X2 are two non-Hermitian, asymptotically free random matrices.7 There-
fore, applying successively Eqs. (5.29), (5.30), (6.80), (6.74) and (6.73) for Q = Zǫ, we
can infer GX1+X2(Zǫ) from gX1(z) and gX2(z). The steps of the algorithm are:

gXi → BXi → RXi → RXi → RX1+X2 → BX1+X2 → GX1+X2 . (6.82)

The resolvent gX1+X2(z) and the eigenvector correlator cX1+X2(z) are finally given by
Eq. (6.18).

This algorithm is greatly simplified when we look for the eigenvalue distribution of
a non-Hermitian matrix X1 + iX2, where X1 and X2 are free Hermitian matrices with
known R-transforms. Jarosz and Nowak showed that the problem reduces to solving a
simple system of three equations with three unknown variables, complex u, v, and real t
[177, 209]:

RX1(u) = x+
t− 1

u
,

RX2(v) = y − t

v
, (6.83)

|u| = |v|,

where z = x + iy. From the two first equations, we express u and v via t, while t is
computed from the third equation. The resolvent and the correlator are then given by

gX1+iX2(z) = Reu− iRe v, (6.84)

cX1+iX2(z) = (Reu)2 + (Re v)2 − |u|2. (6.85)

6The relation (6.80) between RX(Q) and RX(q) holds also between BX(Q) and BX(q) because Q−1 =
Q†/qq∗.

7Surprisingly, a generalization of the concept of S-transform for non-Hermitian matrices — in such a
way that the property (5.145) could be preserved in quaternion space — does not seem to exist in the
current literature.
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Equation for the borderline z ∈ δD of the eigenvalue domain follows from cX1+iX2(z) =
0.8 From this simplified algorithm it is straightforward to recover the Girko’s law for
Gaussian Hermitian matrices X1 and X2 [R1(z) = R2(z) = z, see Eq. (5.90)]. A less triv-
ial application of this algorithm, with matrices X1 and X2 relevant for wave propagation
in random media, is given in section 6.4.

At this stage, we formally have all the ingredients to apply the free probability theory
to non-Hermtian ERMs. We briefly indicate how the R-transform of an arbitrary ERM
A could be obtained. The starting point is once again the representation A = HTH†,
rewritten as in Eq. (5.154):

HTH† =

M∑

α=1

µαh
(α)†h(α), (6.86)

where µα are the complex eigenvalues of the operator T̂ = ρÂ. We assume that the M
vectors h(α) are independent, such that the matrices h(α)†h(α) are free. Properties (6.81)
and (6.78) yield

RHTH†(Zǫ) =

M∑

α=1

Rµαh(α)†h(α)(Zǫ) (6.87)

=

M∑

α=1

(
µα 0
0 µ∗α

)
Rh(α)†h(α)

[
Zǫ

(
µα 0
0 µ∗α

)]
. (6.88)

We now have to use the relation (6.80), together with Rh(α)†h(α)(z) = 1/N(1 − z). We
expect that the diagonal and off-diagonal elements of RA(Zǫ) obey coupled equations,
that lead, in the limit ǫ → 0 and according to Eq. (6.76), to an expression of RA(z) =
ΣA[BA(z)] in agreement with the self-energy ΣA(z) given by Eqs. (6.31) and (6.32). As
was the case for Hermitian ERMs, this would show that Eqs. (6.31) and (6.32) are valid
even if elements Hiα are not Gaussian variables. The essential assumption that limits
the applicability of Eqs. (6.34), (6.35), (6.40) and (6.41) would then be the statistical
independence of the vectors hα.

6.4 Independent ReG(ω0) and ImG(ω0)

We start our study of non-Hermitian ERMs by the case of a N ×N matrix

Xij(ω0) = f(ri − rj) = (1 − δij)

[
cos(k0|ri − rj |)
k0|ri − rj |

+ i
sin(k0|r′i − r′j |)
k0|r′i − r′j |

]
, (6.89)

where {ri} and {r′i} are two different and independent sets of points. We recognize in the
real and imaginary parts of X(ω0) the two Hermitian ERMs studied independently in the
previous chapter, C(ω0) and S′(ω0). The matrix X(ω0) = C(ω0)+ i[S′(ω0)− IN ] defined
in this way is similar to the three dimensional free-space Green’s matrix G(ω0) defined
by Eq. (2.82) except that it has no correlation between its real and imaginary parts.

8If we are just interested in the borderline z ∈ δD, i.e. the boundary between the holomorphic and
non-holomorphic domains of gX1+iX2

(z), it is also possible to use a conformal transformation that maps
the cuts t ∈ R of gX1+X2

(t) onto δD. The equation z = f(t) follows from gX1+iX2
(z) = gX1+X2

(t), see
Refs. [177, 178].
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Using the definition (5.136) of asymptotic freeness [143, 176] it is easy to check that the
matrices Ĉ and Ŝ′ are asymptotically free, in agreement with the intuitive definition of
freeness as statistical independence.

One can easily show that for the same reason as the one that ensured positiveness
of the eigenvalues of the matrix S(ω0) in section 5.7, the complex eigenvalues Λn of the
matrix X(ω0) obey ImΛn > −1. Besides, for each realization of X(ω0),

∑N
n=1 Λn = 0,

so that 〈Λ〉 = 0.

6.4.1 Analytical solutions for the resolvent and the eigenvector corre-
lator

Since X(ω0) is of the form X1 + iX2, where X1 and X2 are two asymptotically free
Hermitian matrices, we can make use of Eqs. (6.83), (6.84) and (6.85) to calculate the
resolvent g(z) and the eigenvector correlator c(z) of X(ω0). In our case, X1 = C(ω0)
and X2 = S′(ω0) − IN . In the limit of γ ≪ 1, the R-transforms of X1 and X2 are
those of Gaussian and Wishart matrices, respectively: RX1(z) = γz (section 5.8.1) and
RX2(z) = 1/(1 − γz) (section 5.7.1). Solving Eqs. (6.83), (6.84) and (6.85), we find:

g(z = x+ iy) =
x

2γ
− i

2

[
y

γ(1 + y)
+

1

2 + y

]
, (6.90)

c(z = x+ iy) =

(
x

2γ

)2

+
1

4

[
y

γ(1 + y)
− 1

2 + y

]2

− 1

γ(1 + y)(2 + y)
. (6.91)

The correlator (6.91) must vanish on the borderline δD of the eigenvalue domain. We
therefore readily obtain an equation for the borderline z ∈ δD on the complex plane:

x2 +

(
y

1 + y
− γ

2 + y

)2

− 4γ

(1 + y)(2 + y)
= 0, (6.92)

The probability density inside this domain is

p(x, y) =
1

2π
[∂xRe g(z) − ∂yIm g(z)]

=
1

4π

[
1

γ
+

1

γ(1 + y)2
− 1

(2 + y)2

]
. (6.93)

A better model for the R-transform of the matrix X1 = C(ω0) is given by Eq. (5.197).
If we use this equation instead of RX1(z) = γz above, analytic calculation becomes im-
possible but we can still compute g(z) and c(z) numerically. The resulting borderline of
the eigenvalue domain is shown in Fig. 6.5 (dashed lines) together with the eigenvalue
distribution of the matrix X(ω0) = C(ω0) + i[S′(ω0) − IN ] found by the numerical di-
agonalization of a set of 104 × 104 random matrices. At the smallest density considered
ρλ3

0 = 0.01, the borderline found using Eq. (5.197) is very close to Eq. (6.92). At higher
densities the former describes numerical results much better than Eq. (6.92).

Eq. (6.92) predicts a splitting of the eigenvalue domain in two parts at γ = 8. The
more accurate calculation using Eq. (5.197) makes a similar prediction (see the lower
right panel of Fig. 6.5). However, the eigenvalues of the matrix X(ω0) do not show such
a splitting and form an ‘inverted T’ distribution on the complex plane instead. This is
due to the fact that the Marchenko-Pastur law (5.171) fails to describe the eigenvalue
distribution of the matrix S′(ω0) at γ > 1 and hence the R-transform 1/(1 − γz) that
we assumed for S′(ω0) is not a good approximation anymore.
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Figure 6.5: Density plot of the logarithm of the probability density of eigenvalues Λn of
a square N ×N Euclidean matrix X(ω0) with elements X(ω0)ij = (1 − δij)[cos(k0|ri −
rj |)/k0|ri − rj | + i sin(k0|r′i − r′j |)/k0|r′i − r′j |] at 4 different densities ρ of points ri, ri

′

per wavelength λ0 = 2π/k0 cube. 2N = 2 × 104 points ri and r′i (i = 1, . . . , N) are
randomly chosen inside a 3D cube of side L; γ = 2.8N/(k0L)2 [see Eqs. (5.166) and
(5.186)]. The probability distributions are estimated from 10 realizations of {ri} and
{r′i}. Dashed lines show the domain of existence of eigenvalues following from the free
probability theory.

6.4.2 Scattering matrix and effective Hamiltonian

It is worthwhile to note that the statistical properties of our matrix X(ω0) are strongly
reminiscent of those of effective Hamiltonians used to characterize open chaotic systems
[193, 195, 210, 211]. If we remind the physical meaning of the matrix under study, we
understand that this analogy is not an accident, as we now explain. The random matrix
model introduced by Mahaux and Weidenmüller for the M ×M scattering matrix of an
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open chaotic system is [210, 211]:

S(E) = IM − iaH† 1

E − H̃e
H, (6.94)

H̃e = H0 −
ia

2
HH†, (6.95)

where H0 is a Hermitian matrix that describes the closed part of the system under con-
sideration, E is the energy of the incoming wave, H is a N ×M matrix that contains
entries coupling the N internal states to the M external channels, and a > 0 is an overall
coupling parameter controlling the ‘degree of non-Hermiticity’ of the effective Hamilto-
nian H̃e. Eqs. (6.94) and (6.95) are a direct consequence of the general expression (2.93)
for the projection of an arbitrary resolvent. H0 is commonly drawn from the Gaussian
ensemble (5.1), and H is chosen such that HH† is a Wishart matrix. Randomness in H0

and HH† is assumed to be independent, meaning that H0 and HH† are asymptotically
free matrices. The eigenvalue distribution of H̃e was considered previously by Haake et

al. [192] (with the help of the replica trick), Lehmann et al. [212] (using the supersym-
metry method) and Janik et al. [178] (using the free probability theory). The splitting of
the domain of existence of eigenvalues in two parts was observed when a was increased.
This is slightly different from our matrix X(ω0) that has elements with equal variances
γ/N of real and imaginary parts (hence always the same degree of non-Hermiticity)
but that still exhibits the splitting of the eigenvalue domain when γ is increased. To
fully understand the origin of this similarity, let us consider a realistic scattering matrix
Sfαβ = δαβ + 〈ψα|Gf0 T f |ψβ〉 (α = 1, . . . ,M), describing the propagation of light among
N atoms with known polarizability (see chapters 2 and 3 for a microscopic derivation).
According to Eq. (4.59), it is given by

Sf (ωL) = IM + TH† 1

A(ωL)−1 −G(ω0)
H, (6.96)

G(ω0) = HTH†, (6.97)

where ωL is the frequency of light, ω0 the frequency of the active atomic transition, A(ωL)
is the polarizability matrix (4.31), and H is defined by Eq. (5.10). To be concrete, let
us now choose the polarizability (4.8) of a three-level atom under an incoherent pump.
Eq. (6.96) becomes

Sf (ωL) = IM + TH† Γ0

ωL −He
D(1)H, (6.98)

He = ω0IN + Γ0D
(1)ReG(ω0) −

iΓ0

2

[
−2D(1)ImG(ω0) + IN +D(2)

]
, (6.99)

where D(1) = diag[Πeq
i /2(1 + si)] and D(2) = diag[Wi]. In the absence of pump (Wi = 0)

and field nonlinearities (si = 0), the effective Hamiltonian (6.99) reduces to

He = ω0IN − Γ0

2
ReG(ω0) −

iΓ0

2
[ImG(ω0) + IN ] . (6.100)

As already noticed in section 4.4, this expression is identical to the effective Hamiltonian
(2.98) obtained with the quantum scattering formalism. On the other hand, He reveals
important differences with respect to the effective Hamitonian H̃e (6.95):
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• In Eq. (6.100), the Hermitian part accounting for the closed system, H0 = ω0IN , is
not random, contrary to H0 in Eq. (6.95), because we assumed that all atoms have
the same internal frequency ω0. Interestingly, we note that a random contribution
can neverthesless appear in H0 if we assume an inhomogeneous pump in such a
way that D(1) and D(2) become random matrices, see Eq. (6.99).

• The Hermitian part of Eq. (6.100) contains also the random matrix ReG(ω0). We
recall that it comes from non-resonant contributions (or ‘off-shell processes’) in the
light-matter interaction, and represents the ‘collective Lamb shift’ [75, 83, 88, 90].
The latter is lost if RWA is used in the derivation of the wave equation (see sections
2.3.1 and 2.3.2.a). This shift is absent in the model (6.95) because it is generally
assumed to be smaller than H0 and its effect is therefore neglected9 [210, 211].
In the study of multiple scattering, neglecting the real part of the Green’s matrix
largely simplifies the analysis of resonances but is not valid at high densities (see
section 6.5.4). Interestingly, in the limit γ ≪ 1, ReG(ω0) is well approximated by
a Gaussian matrix, mimicking therefore the random Hamiltonian H0 of Eq. (6.95).
However, if it is well justified to consider H0 independent from the anti-Hermitian
part of H̃e, it is clearly inaccurate to assume that ReG(ω0) and ImG(ω0) are
independent (compare Figs. 6.5 and 6.6).

• The anti-Hermitian part of Eq. (6.100) is the sinc matrix S(ω0) = ImG(ω0) +
IN , that is well approximated for γ < 1 by the Wishart matrix γHH†. Hence,
we recover the anti-Hermitian part of Eq. (6.95) with a = γ = N/M . This is
not surprising inasmuch as the model (6.95) is obtained with exactly the same
approximation as the one yielding to S(ω0) ≃ γHH†.10 This analogy suggests that
the model (6.95) should not be completely sufficient when the number N of internal
degrees of freedom exceeds the number M of channels. As discussed above, the
splitting observed in the eigenvalue distribution for large γ is a consequence of this
approximation. Hence, we believe that the splitting discussed in Ref. [178, 192,
212], and reported in the recent literature [211], is an artefact of the model (6.95)
that fails to describe the correct effective Hamiltonian of the system under study,
in all regimes of disorder11.

6.5 Eigenvalue density of the random Green’s matrix G(ω0)

Let us now illustrate the power of Eqs. (6.34), (6.35), (6.40), and (6.41) on the example
of the N ×N random Green’s matrix

G(ω0)ij = (1 − δij)
exp(ik0|ri − rj |)
k0|ri − rj |

, (6.101)

where k0 = 2π/λ0 and λ0 is the wavelength. We assume that the N points ri are chosen
randomly inside a three-dimensional (d = 3) volume V . This non-Hermitian ERM is of

9It amounts to neglecting the principal-value component of Rjj′ in Eq. (2.97).
10Starting from the representation (5.154), we recover S(ω0) ≃ γHH† by choosing µα ≃ ρf0(kα) =

2π2ρδ(kα − k0)/k2
0 (see also section 5.7.1). On the other hand, Eq. (6.95) is obtained from Eq. (2.97)

where the matrix V is nothing but the matrix H (up to a numerical prefactor).
11Note that splittings are, however, observed in the eigenvalue distribution of S(ω0) (section 5.7.2) or

G(ω0) (section 6.5.1). The crucial point is that they do not occur for γ ∼ N/(k0L)2 ∼ 1, but for k0L ∼ 1.
In particular, in the limit of very small sample k0L ≪ 1, the cloud of eigenvalues of G(ω0) with the
largest imaginary part describes the superradiance (see section 6.5.1).
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special importance in the context of wave propagation in disordered media because its
elements are proportional to the Green’s function of Helmholtz equation, with ri that
may be thought of as positions of point-like scattering centers. It previously appeared
in Refs. [86, 90, 104–106, 108, 109, 181], but was studied only by extensive numerical
simulations, except in Ref. [90] where analytic results were obtained in the infinite density
limit.

Similarly to the eigenvalues of X(ω0) defined by Eq. (6.89) and for the same reasons,
the eigenvalues Λn of the random matrix (6.101) obey, for each realization,

N∑

n=1

Λn = 0, ImΛn > −1. (6.102)

Very generally, the eigenvalue density of G(ω0) depends on two dimensionless parameters:
the number of points per wavelength cubed ρλ3

0 and the second moment of |Λ| calculated
in the limit of low density: 〈|Λ|2〉 = γ = Tr(T̂ T̂ †)/N [Eq. (6.51)]. Even though the latter
result for 〈|Λ|2〉 can be rigourously justified only in the limit of low density ρλ3

0 ≪ 1 [see
Eq. (6.50)], we checked numerically that it holds approximately up to densities as high
as ρλ3

0 ∼ 100. Eqs. (6.51), (6.50), and (5.121) show that the second moment of |Λ| is
related to the second moments of the eigenvalues of ReG(ω0) and ImG(ω0) according to

γ =
〈
|Λ|2

〉
G(ω0)

=
〈
(ReΛ)2

〉

G(ω0)
+
〈
(ImΛ)2

〉

G(ω0)

=
1

2

〈
Λ2
〉
ReG(ω0)

+
1

2

〈
Λ2
〉
ImG(ω0)

(6.103)

=
〈
Λ2
〉
ReG(ω0)

=
〈
Λ2
〉
ImG(ω0)

. (6.104)

Eq. (6.104) holds for k0R ≫ 1 and ρλ3
0 . 100, whereas Eq. (6.103) is also valid for any

k0R and arbitrary non-Hermitian traceless ERM [provided that Eq. (6.50) holds]. We
will see from the following that the two parameters ρλ3

0 and γ control different properties
of the eigenvalue density.

6.5.1 Borderline of the eigenvalue domain

We first focus on the borderline of the support of eigenvalues which is easier to visualize.
Our goal is to solve Eqs. (6.40) and (6.41). As was the case for the Hermitian matrices
ImG(ω0) and ReG(ω0), this can be done exactly if the volume V preserves the symmetry
of the function f(|r−r′|). In this section, we assume that the N points are chosen inside
a sphere of radius R. For arbitrary k0R, the parameter γ (6.55) is then given by

γ =
3N

(k0R)2

∫ 1

0
dxs(x) =

9N

8(k0R)2
. (6.105)

In Fig. 6.6 we present a comparison of the solutions of Eqs. (6.40) and (6.41) (see
below for explanation) with results of numerical diagonalization of the matrix (6.101) for
k0R≫ 1.

6.5.1.a Approximate solution at low density

Let us show how an explicit equation for the borderline of the support of eigenvalue
density of the random Green’s matrix (6.101) can be derived in the low-density limit.
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Figure 6.6: Density plots of the logarithm of eigenvalue density of the N × N random
Green’s matrix (6.101) obtained by numerical diagonalization of 10 realizations of the
matrix for N = 104. Points ri are randomly chosen inside a sphere of radius R. The
solid red lines represent the borderlines of the support of eigenvalue density following
from Eq. (6.117) in panels (a) and (b) and from Eqs. (6.135) and (6.136) in panels (c)
and (d). The dashed lines show the diffusion approximation (6.121).

On the one hand, traces appearing in Eqs. (6.40) and (6.41) in the |r〉-representation
read

TrŜ0 = Tr

(
T̂

1 − gT̂

)
= Tr

(
T̂ + gT̂ Ŝ0

)

= g

∫∫

V
d3r d3r′ T (r, r′)S0(r

′, r), (6.106)

TrŜ0Ŝ
†
0 =

∫∫

V
d3r d3r′

∣∣S0(r, r
′)
∣∣2 , (6.107)

where T (r, r′) = ρ〈r|Â|r′〉 = ρ exp(ik0|r − r′|)/k0|r − r′| and in Eq. (6.106) we used the
fact that TrT̂ = ρTrÂ = 0, as follows from Eq. (6.101). On the other hand, S0(r, r

′) =
〈r|Ŝ0|r′〉 obeys

S0(r, r
′) = T (r, r′) + g

∫

V
d3r′′T (r, r′′)S0(r

′′, r′), (6.108)
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as follows from the definition of Ŝ0. Noting that

(
∆r + k2

0 + iǫ
)
T (r, r′) = −4πρ

k0
δ(3)(r − r′), (6.109)

where ǫ→ 0+, we apply the operator ∆r + k2
0 + iǫ to Eq. (6.108) and obtain

∆rS0(r, r
′) + k2

0

[
1 + g

ρλ3
0

2π2
ΠV (r) + iǫ

]
S0(r, r

′) = −4πρ

k0
δ(3)(r − r′), (6.110)

where ΠV (r) = 1 for r ∈ V and 0 elsewhere. In the limit of low density ρλ3
0 → 0, an

approximate solution of this equation is obtained by neglecting ‘reflections’ of the ‘wave’
S0(r, r

′) on the boundaries of the volume V and thus setting ΠV (r) = 1 everywhere.
This yields

S0(r, r
′) ≃ ρ

exp [iκ(g)|r − r′|]
k0|r − r′| , (6.111)

κ(g) = k0

√
1 +

gρλ3
0

2π2
. (6.112)

We now plug the explicit expressions for T (r, r′) and S0(r, r
′) into Eqs. (6.106) and

(6.107) and use the auxiliary result (5.128). This yields

TrŜ0 = 2γNgh[−iκ(g)R− ik0R], (6.113)

TrŜ0Ŝ
†
0 = 2γNh[2Imκ(g)R], (6.114)

with

h(x) =

∫ 1
0 dus(u)e−2ux

∫ 1
0 dus(u)

=
1

6x4

[
3 − 6x2 + 8x3 − 3(1 + 2x)e−2x

]
. (6.115)

In the low-density limit, g can be eliminated from Eqs. (6.40) and (6.41) by neglecting
TrŜ0/N in Eq. (6.40) and substituting g = 1/z into Eq. (6.114). This gives

|Λ|2 = 2γh [2Imκ (1/Λ)R] . (6.116)

If the argument of the function h in Eq. (6.116) is expanded in series in ρλ3
0, Eq. (6.116)

becomes:

|Λ|2 ≃ 2γh

(
−8γ

ImΛ

3|Λ|2
)
. (6.117)

By comparing Eq. (6.117) with the exact solution (see section 6.5.1.c and Fig. 6.6), we
conclude that it is valid up to densities as high as ρλ3

0 ≃ 10.

For γ ≪ 1, the density of eigenvalues is roughly uniform within a circular domain
of radius

√
2γ, see Fig. 6.6(a). The domain grows in size and shifts up upon increasing

γ. At γ & 1 it starts to ‘feel’ the ‘wall’ ImΛ = −1 and deforms [Fig. 6.6(b)]. Before
considering the shape of the eigenvalue domain at higher densities, we would like to show
how the scattering theory discussed in chapter 4 can also be used to derive an equation
for its borderline.
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6.5.1.b Mapping to the scattering theory

In section 4.4 we introduced a mapping between the problem of multiple scattering of
waves by pointlike scatterers and the properties of the Green’s matrix. In the stationary
regime, the intensity at ri of a wave emitted by a point source located at rj is Iij = |Gfij |2,
where Gfij = 〈ri|Gf |rj〉 is the Green’s operator [see Eqs. (4.36) and (4.85)]. Let us

introduce I(t̃) =
∑

i6=j Iij , where we emphasize that I depends on t̃, the scattering
strength of an individual scatterer [Eq. (4.20)]. With the help of Eq. (4.62), we rewrite
I(t̃) as

I(t̃) = Tr
1

[t̃− (Gm0 )−1][t̃− (Gm0 )−1]†
, (6.118)

where the N ×N matrix Gm0 is proportional to the Green’s matrix, Gm0 = −k0G(ω0)/4π.
This is to be compared with the expression for the correlator of right and left eigenvectors
of an arbitrary matrix A, c(z) = limǫ→0+ Gǫ12, following from Eq. (6.17):

c(z) = − lim
ǫ→0+

iǫ

N

〈
Tr

1

(z −A)(z −A)† + ǫ2

〉
. (6.119)

For A = (Gm0 )−1 and z = t̃ we thus have

c(t̃) = − lim
ǫ→0+

iǫ

N
〈I(t̃)〉. (6.120)

This should become different from zero when t̃ enters the support of the eigenvalue
density of (Gm0 )−1 or, equivalently, when 1/t̃ enters the support of the eigenvalue density
of Gm0 . The only way to obtain c(t̃) 6= 0 for ǫ → 0+ is to make 〈I(t̃)〉 diverge. In
the framework of our linear model of scattering, this can be achieved by realizing a
random laser. We thus come to the conclusion that finding the borderline of the support
of the eigenvalue density p(Λ) of the N × N Green’s matrix (6.101) is mathematically
equivalent to calculating the random lasing threshold in an ensemble of N identical
point-like scatterers with scattering strength t̃ = −4π/k0Λ. This conclusion can also
be seen as a direct consequence of the more general threshold condition (4.34) valid
for each realization of the Green’s matrix, and not only on average. In the diffusion
approximation, for example, the threshold of such a random laser is given by Eq. (4.138)
with t̃ = −4πα̃/k0. This leads to the following equation for the borderline :

|Λ|2 =
8γ√
3π

√
1 + ImΛ

(
1 +

|Λ|2
|Λ|2 + 4γ

)
. (6.121)

We show this equation in Figs. 6.6(a) and (b) by dashed lines. As expected, it gives
satisfactory results only in the weak scattering regime ρλ3

0 . 10 and at large optical
thickness b = 2R/ls = 16γ/3|Λ|2 ≫ 1, where ls = 4π/ρ|t̃|2 is the scattering mean free
path [Eq. (4.128)]. In contrast, our Eqs. (6.40) and (6.41) apply at any ρλ3

0 and b. These
equations can therefore serve as a benchmark for theories of multiple scattering.

6.5.1.c Exact solution at any density

The approximate equation (6.116) for the borderline of the support of eigenvalue density
yields a closed line on the complex plane until ρλ3

0 ≃ 30, after which the line opens from
below. This opening is reminiscent of the gap predicted by Eq. (5.199) for the eigenvalue
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distribution of the matrix ReG(ω0). This signals that an important change in behavior
might be expected at this density. And indeed, we observe that a ‘hole’ opens in the
eigenvalue density for ρλ3

0 & 30. As we see in Fig. 6.6(c), this hole is perfectly described
by our Eqs. (6.40) and (6.41) which we now solve in the bi-orthogonal basis of right |Rα〉
and left |Lα〉 eigenvectors of the operator T̂ . These eigenvectors obey T̂ |Rα〉 = µα|Rα〉
and T̂ †|Lα〉 = µ∗α|Lα〉. In this basis, Eqs. (6.40) and (6.41) read

z =
1

g
+

g

N

∑

α

µ2
α

1 − gµα
, (6.122)

1

|g|2 =
1

N

∑

α,β

µαµ
∗
β〈Lα|Lβ〉〈Rβ|Rα〉

(1 − gµα)(1 − gµβ)∗
, (6.123)

where we made use of the fact that TrT̂ = 0 and therefore TrŜ0 = gTrT̂ Ŝ0 [see
Eq. (6.106)]. The problem essentially reduces to solving the eigenvalue equation

ρ

∫

V
d3r′

exp(ik0|r − r′|)
k0|r − r′| Rα(r′) = µαRα(r), (6.124)

where r ∈ V . As follows from Eq. (6.109), Rα(r) is also an eigenvector of the Lapla-
cian, ∆rRα(r) = −κ2

αRα(r), with κα = κ(1/µα). In a sphere of radius R, using the
decomposition of the kernel of Eq. (6.124) in spherical harmonics,

exp(ik0|r − r′|)
k0|r − r′| = 4iπ

∞∑

l=0

l∑

m=−l
jl
[
k0min(r, r′)

]
h

(1)
l

[
k0max(r, r′)

]
Ylm(θ, φ)Ylm(θ′, φ′)∗,

(6.125)
it is quite easy to find that [90]

Rα(r) = Rlmp(r) = Alpjl(κlpr)Ylm(θ, φ), (6.126)

where θ and φ are the polar and azimuthal angles of the vector r, respectively, jl are

spherical Bessel functions of the first kind, h
(1)
l are spherical Hankel functions, Ylm are

spherical harmonics, Alp are normalization coefficients, and α = {l,m, p}. Furthermore,
coefficients κlp obey [90]

κlp
k0

=
jl(κlpR)

jl−1(κlpR)

h
(1)
l−1(k0R)

h
(1)
l (k0R)

. (6.127)

Integer p labels the different solutions of this equation for a given l. Hence, eigenvalues

µlp =
ρλ3

0

2π2

1

(κlp/k0)2 − 1
(6.128)

are (2l + 1)-times degenerate (m ∈ [−l, l]).
In the limit k0R→ ∞, for l ≪ k0R and l ≪ κlpR, we can use asymptotic expressions

for the spherical functions in Eq. (6.127) to obtain

i

2
ln

(
κlp + k0

κlp − k0

)
= −κlpR+

(
l

2
+ p

)
π. (6.129)
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Figure 6.7: The solid red (green) line represents the borderline of the support of eigen-
value density following from Eq. (6.135) [Eq. (6.135) approximated by z ≃ 1/g, respec-
tively] and Eq. (6.136); N = 104. Blue points represent µlp − i, with µlp the eigenvalues
given by Eqs. (6.127) and (6.128). They are localized in the vicinity of a roughly cir-
cular black line following from Eq. (6.130). The horizontal dashed line corresponds to
ImΛ = −1.

In this limit, the eigenvalues µlp are therefore localized in the vicinity of a roughly circular
line12 in the complex plane given by

∣∣∣∣
κ(1/µ) − k0

κ(1/µ) + k0

∣∣∣∣
2 ∣∣∣e4iκ(1/µ)R

∣∣∣ = 1. (6.130)

Let us now study the eigenvectors. Using standard properties of spherical harmonics
and spherical Bessel functions [182], we can show that

〈R∗
lmp|Rl′m′p′〉 = (−1)mA2

lp

R3

2

[
jl(κlpR)2−jl−1(κlpR)jl+1(κlpR)

]
δl,l′δm,−m′δp,p′ . (6.131)

From the normalization condition 〈Llmp|Rl′m′p′〉 = δl,l′δm,m′δp,p′ , we find that Llmp(r) =
(−1)mRl(−m)p(r)

∗ and

Alp =

√
2

R3

1√
jl(κlpR)2 − jl−1(κlpR)jl+1(κlpR)

. (6.132)

On the other hand, we also have

〈Rlmp|Rl′m′p′〉 =
R2A∗

lpAlp′

κ2
lp′ − κ∗2lp

[
κ∗lpjl−1(κ

∗
lpR)jl(κlp′R) − κlp′jl−1(κlp′R)jl(κ

∗
lpR)

]
δl,l′δm,m′ ,

(6.133)

12An equation of a circle can be found from Eq. (6.130) by expanding κ(1/µ) in series in 1/ρλ3
0. The

resulting equation is (x + ρλ3
0/8π2)2 + (y − R/2 + 1)2 = R2 with R = 4γ/3W (4k0R), µ = x + iy, and

W (t) the Lambert function (the inverse relation of the function f(W ) = WeW ); W (t) ≃ lnt for |t| ≫ 1.
Hence, R ≃ 4γ/3ln(4k0R) for k0R ≫ 1.
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Figure 6.8: Same as Fig. 6.7 but for higher densities. Arrows indicate how the clouds
of eigenvalues Λn centered around µlp − i are moving along the roughly circular black
line [Eq. (6.130)] when the density is increased at fixed N = 104, i.e., when the size
k0R is decreased. Symbol S designates the cloud of eigenvalues that will give rise to
superradiance in the limit of small sample k0R→ 0.

and 〈Llmp|Ll′m′p′〉 = 〈Rlmp|Rlmp′〉δl,l′δm,m′ . It is now convenient to introduce a new
coefficient

Clpp′ =

4

[
κ∗

lpRjl−1(κ
∗
lpR)jl(κlp′R) − κlp′Rjl−1(κlp′R)jl(κ

∗
lpR)

]2

[
κ2

lp′R2 − κ∗2
lp R2

]2[
jl(κ∗

lpR)2 − jl−1(κ∗
lpR)jl+1(κ∗

lpR)

][
jl(κlp′R)2 − jl−1(κlp′R)jl+1(κlp′R)

] ,

(6.134)

in terms of which Eqs. (6.122) and (6.123) become

z =
1

g
+

g

N

∑

l

∑

p

(2l + 1)µ2
lp

1 − gµlp
, (6.135)

1

|g|2 =
1

N

∑

l

∑

p

∑

p′

(2l + 1)µlp′µ
∗
lpClpp′

(1 − gµlp′)(1 − gµlp)∗
. (6.136)

To find the borderline of the support of eigenvalue density of the matrix (6.101) —
shown in Figs. 6.6(c), 6.6(d), 6.7 and 6.8 — we apply the following recipe. (1) Find
solutions κlp of Eq. (6.127) numerically and then compute the corresponding µlp. (2)
Compute the coefficients Clpp′ using Eq. (6.134). (3) Find lines on the complex plane
1/g defined by Eq. (6.136) (solid green lines in Figs. 6.7 and 6.8). (4) Transform the
lines on the complex plane 1/g into contours on the complex plane z using Eq. (6.135).
The latter contours are the borderlines of the support of eigenvalue density p(Λ).

At high density the crown formed by the eigenvalues blows up in spots centered
around µα − i, where µα are the eigenvalues of T̂ , as we show in Fig. 6.6(d). When
the density is further increased, the clouds of eigenvalues of A turn clockwise along the
circular line given by Eq. (6.130) and shrink in size. The eigenvalues Λ eventually become
equal to µα − i (Fig. 6.8). They then fall on the circular line (6.130) and the problem
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Figure 6.9: Mean maximum value of the imaginary part of eigenvalues Λ of theN×N ran-
dom Green’s matrix G(ω0). Our analytic results (solid lines) following from Eqs. (6.135)
and (6.136) are compared with the results of numerical diagonalization for three differ-
ent matrix sizes N (symbols). Analytic results depend both on γ and ρλ3

0, except for
ρλ3

0 . 10 when they reduce to Eq. (6.117) (dot-dashed line). The dashed line represents
the prediction of the diffusion approximation (6.121).

looses its statistical nature. As follows from our analysis, the parameter γ controls the
overall extent of the support of eigenvalue density D on the complex plane, whereas its
structure depends also on the density ρλ3

0. At fixed γ, D goes through a transition from
a disk-like to an annulus-like shape, and eventually splits into multiple disconnected
spots upon increasing ρλ3

0. The transition from disk-like to the annulus-like shape is
reminiscent of the disk-annulus transition in the eigenvalue distribution of rotationally
invariant non-Hermitian random matrix ensembles [187] (see the discussion at the end
of section 6.3.1).

Quite remarkably, our formalism captures properly the transition to the continuous
medium regime (high density) and to the small sample regime (low k0R). To illustrate
this point, we calculated 〈max(ImΛ)〉 from Eqs. (6.135) and (6.136), and found excellent
agreement with numerical results at all values of parameters, including high densities
ρλ3

0, see Fig. 6.9.13 In addition, in the regime of high density, we are able to identify
the cloud of eigenvalues (symbol S in Fig. 6.8) that will give rise, in the limit k0R→ 0,
to superradiance, i.e. the eigenvalues that will have the largest decay rate ImΛ ≃ N
[82, 90]. This identification is possible because the different clouds of eigenvalues are
well separated and evolve smoothly and continuously when the density is increased. At
the present time, we have no physical interpretation for the trajectory followed by the
cloud S. It is somewhat compelling that eigenvalues with the smallest ImΛ evolve in
such a way that, at the end of the day, they have the largest ImΛ and are well separated,
in the complex plane, from all other (subradiant) states.

13We show max(ImΛ) because it is the quantity that controls the threshold of a random laser in an
ensemble of atoms in free space (see chapter 7). It is also worth noting that Eqs. (6.135) and (6.136) do
not give an accurate estimate of min(ImΛ), see section 6.5.2.
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6.5.2 Hyperbolic spiral branches and subradiant states

An important additional feature of the numerical results in Fig. 6.6 that is not described
by our Eqs. (6.40) and (6.41) is the eigenvalues that concentrate around the two hyper-
bolic spirals, |Λ| = 1/ arg Λ and its reflection through the origin. These spirals correspond
to the two eigenvalues ±A12 of the matrix (6.101) for N = 2. We already encountered
these spirals in the study of light emitted by two atoms, see Fig. 3.4(a) in section 3.4.
The eigenvectors corresponding to these eigenvalues are localized on pairs of very close
points |ri − rj | ≪ λ0. These are the super- and sub-radiant states of a pair of atoms. In
the limit of ρλ3

0 → ∞, we observe that the lower branch is much more populated than
the upper one. A rough model that partially mimics this behavior is given by the N ×N
matrix:

G̃(ω0) = G(ω0)12




0 1 . . . 1

1
. . .

. . .
...

...
. . .

. . . 1
1 . . . 1 0



, (6.137)

where G(ω0)12 = eik0|r1−r2|/k0|r1 − r2|, and r1 and r2 are randomly chosen points inside
the sphere of radius R. This matrix has two different eigenvalues: the non-degenerate
eigenvalue Λ = (N − 1)G(ω0)12 corresponds to the superradiant state (1, . . . , 1)/

√
N ;

and the (N − 1)-degenerate eigenvalue Λ = −G(ω0)12 corresponds to subradiant states
localized on pairs of points (1, 0, . . . , 0,−1, 0, . . . , 0)/

√
2. In the limit N → ∞, only

subradiant states contribute significantly to the eigenvalue distribution of G̃(ω0). Using
the definition (6.1) and Eq. (5.128), we easily show that the latter is then given by:

p(Λ) =
3

(k0R)3
1

|Λ|2 s
(

1

2k0R|Λ|

)
δ

(
argΛ +

1

|Λ|

)
, (6.138)

where s(x) is defined by Eq. (5.130). Loosely speaking, the true eigenvalue distribution
of the Green’s matrix G(ω0) is a superposition of Eqs. (6.34) and (6.35), and Eq. (6.138).
With the qualitative picture of the Dyson gas in mind, we could say that the lower
‘branch’ |Λ| = −1/ arg Λ plays the role of a channel for the gas of eigenvalues, through
which the latter can escape from the bulk predicted by our Eqs. (6.40) and (6.41). This
effect is more pronounced at high density because the eigenvalues accumulate near the
axis ImΛ = −1, so that the repulsive interaction between eigenvalues forces the latter to
flow into the lower branch. Strikingly, the vicinity of Λ = 0 on the complex plane is also
the place where some states start to become localized for ρλ3

0 & 10 (since these states are
localized due to disorder, they may be identified as ‘Anderson’ states, see section 6.6.2).
This indicates that two different types of localized states coexist in the spectrum near
Λ = 0, and therefore suggests that subradiance and Anderson localization might be two
competitive phenomena. The competition between Anderson localization and sub- and
superradiance was recently discussed in Ref. [79].

From numerical results for N ≤ 104, we estimate the statistical weight of subradiant
states to be important at large densities, of the order of 1 − const/(ρλ3

0)
p with p ∼ 1.

This is consistent with the estimation of the number of subradiant states in a large
atomic cloud by Ernst [86].14 At large densities, the absolute majority of the eigenvalues

14Physically, this seems to indicate that most of the states are localized due to subradiance in the
effective medium limit ρλ3

0 → ∞. This could be used for information storage on subradiant states in a
disordered and dense ensemble of atoms.
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Figure 6.10: Zoom of the density plot of the logarithm of eigenvalue density of the N×N
random Green’s matrix (6.101) obtained by numerical diagonalization of 10 realizations
of the matrix for N = 104 and ρλ3

0 = 40. Solid lines represent the pair of subradiant and
superradiant branches discussed in the text.

that lack in our model (6.38), (6.39), fall very close to the axis ImΛ = −1, in the ‘gap’
that opens in the eigenvalue distribution following from our theory on the left from
ReΛ = 0 [see Figs. 6.6(c), 6.6(d), 6.7, 6.8, and 6.10]. The same effect was observed for
the Hermitian matrix ReG(ω0), see section 5.8.2.

As explained earlier, the lack of the spiral branches of p(Λ) in our theory can be
traced back to the assumption of statistical independence of elements of the matrix H
in the representation A = HTH†. It does not affect the excellent agreement of the
borderline of the rest of the eigenvalue domain with numerical results.

An important implication of the existence of the hyperbolic spiral branches is that
quantities such as 〈min(ReΛ)〉 or 〈min(ImΛ)〉, that are a priori difficult to calculate,
can be found from 2-body interactions only. 〈min(ReΛ)〉 and 〈min(ImΛ)〉 are directly
related to physical observables. The former may control the threshold of a random laser
(see chapter 7), while the latter defines the average threshold for dynamic instabilities
in nonlinear media. Instabilities appear when the nonlinear coefficient ν defined in
Eq. (2.102) exceeds a critical value νinst (see section 2.5.3). In Ref. [108] it was found
numerically that the average value of the instability threshold scales as 〈νinst〉 ∝ [1 +
〈min (ImΛ〉)]3/2, with 1+ 〈min (ImΛ)〉 ∝ (Nρλ3

0)
−2/3. We now provide simple arguments

to derive the full distributions of min(ReΛ) and min(ImΛ) analytically, based on the
knowledge of the two eigenvalues Λ± = ±G12(ω0) of the 2 × 2 Green’s matrix. The
smallest values of ReΛ and ImΛ are achieved for small distance k0∆r = k0|r1 − r2| when
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minimum of the real and imaginary parts of the eigenvalues of the Green’s matrix (6.101).
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we can write

ReΛ− = −cos(k0∆r)

k0∆r
= − 1

k0∆r
+ O(k0∆r), (6.139)

ImΛ− = −sin(k0∆r)

k0∆r
= −1 − (k0∆r)

2

6
+ O(k0∆r

4). (6.140)

Hence, the statistical distributions of min(ReΛ) and min(ImΛ) are directly related to
the statistical distribution p(∆rmin) of the minimal distance ∆rmin between any 2 points
among N points in the sphere of radius R. The distribution p(∆rmin) is easily obtained
from the probability to find two points separated by a distance ∆r > xR:

p(∆r > xR) =

[
1 −

∫ xR

0
d∆r′p(∆r′)

]N(N−1)/2

=

[
1 − x3

(
1 − 9x

16
+
x3

32

)]N(N−1)/2

, (6.141)

where the probability to find two points separated by a distance ∆r′, p(∆r′) = 4(∆r′)2

s(∆r′/2R)/R3, follows from Eq. (5.128). The probability p(∆rmin) is then

p(∆rmin) =
1

R

d

dx
[1 − p(∆r > xR)] |x=∆rmin/R. (6.142)

The combination of Eqs. (6.139), (6.140), (6.141) and (6.142) yields the distributions
p[min(ReΛ)] and p[min(ImΛ)]. In the limit N → ∞ and k0R ≫ 1, these distributions
reduce to

p[min(ReΛ) = x] =
Nρλ3

0

4π2x4
exp

(
Nρλ3

0

12π2x3

)
, (6.143)

p[min(ImΛ) = y] =
9Nρλ3

0

2
√

6π2

√
y + 1 exp

(
−
√

6

2π2
Nρλ3

0(y + 1)3/2

)
, (6.144)

which both depend on the parameter Nρλ3
0 only. They are represented in Fig. 6.11.
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Figure 6.12: Mean minimum value of the real part (a) and the imaginary part (b) of the
eigenvalues of the N ×N random Green’s matrix (6.101). Analytic results (6.145) and
(6.146) (solid lines) are compared with the results of numerical diagonalization for three
different matrix sizes N (symbols). Analytic results are valid for ρλ3

0 . 10.

Their means are given by

〈min(ReΛ)〉 = −Γ(2/3)

(
Nρλ3

0

12π2

)1/3

, (6.145)

〈min(ImΛ)〉 = −1 + Γ(5/3)

(
2π2

√
6Nρλ3

0

)2/3

, (6.146)

where Γ(x) is the Gamma function. Contrary to min(ImΛ), min(ReΛ) presents large
fluctuations in the limit Nρλ3

0 → ∞. This can be seen in the variances:

Var[min(ReΛ)] = [Γ(1/3) − Γ(2/3)2]

(
Nρλ3

0

12π2

)2/3

, (6.147)

Var[min(ImΛ)] =

(
2π2

√
6Nρλ3

0

)4/3{
4

9
Γ(1/3) − Γ(5/3)2

+[2Γ(5/3) − 6

5
Γ(8/3)]

(√
6Nρλ3

0

2π2

)2/3


 . (6.148)

Analytic results (6.145) and (6.146) are compared with numerical simulations in Fig.
6.12. Good agreement is seen as long as ρλ3

0 . 10, confirming the scaling with Nρλ3
0. At

higher densities, 〈min(ReΛ)〉 and 〈min(ImΛ)〉 are smaller than predicted by Eqs. (6.145)
and (6.146), signaling that min(ReΛ) and min(ImΛ) are not dominated by the eigenvalues
corresponding to eigenvectors localized on pairs of points anymore. And indeed, we
observe in the numerical simulations at ρλ3

0 & 10 that 〈min(ImΛ)〉 is imposed by the lower
bound of the bulk of eigenvalues [see Fig. 6.6(b) and 6.12(b)]. Our equations (6.135) and
(6.136) that describe the bulk of eigenvalues seem not accurate enough to capture this
effect [note the logarithmic scale in Fig. 6.12(b)]. In fact, the bulk and the lower branch
cannot be considered independently for ρλ3

0 & 10. This can be inferred from Fig. 6.12(a)
where 〈min(ReΛ)〉 is smaller than predicted by Eq. (6.145) because eigenvalues from the



166 Non-Hermitian Euclidean random matrix theory §6.5

bulk invade the lower branch and therefore ‘push’ the eigenvalues from the branch away.
Further work is needed to explain these observations quantitatively.

The scalar random Green’s matrix (6.101) is the relevant matrix to study light prop-
agation in disordered media as long as the vector nature of the electromagnetic field can
be neglected. In particular, if points ri are in a near-field configuration k0|ri − rj | ≪ 1
— as it is the case when considering eigenvalues in the spiral branches — the scalar
approximation is not justified. Hence, the spiral branches of the scalar Green’s matrix
cannot quantitatively describe effects such as subradiance in the light-matter interaction.
We reconsider this problem in the next section by studying the eigenvalue distribution
of the Dyadic random Green’s matrix.

6.5.3 Dyadic random Green’s matrix

We now consider the 3N × 3N dyadic random Green’s matrix G(ω0). This matrix is
made of N2 blocks of size 3 × 3 defined as

Gij(ω0) =
3

2
(1 − δij)

exp(ik0rij)

k0rij

[
P (ik0rij)I3 +Q(ik0rij)

rij ⊗ rij

r2ij

]
, (6.149)

where rij = ri − rj , I3 is the 3 × 3 identity matrix, and P (x) and Q(x) are defined by
Eq. (2.37). We recall that G(ω0) emerges naturally from the description of light-matter
interaction (chapter 2). It is proportional to the Green’s function of the propagation
equation for the electric field; see Eqs. (2.36), (2.39), and (2.70). This matrix was
considered in chapter 3 to compute the spectrum of light emitted by a cloud of atoms,
and in chapter 4 to study elastic scattering in the presence of gain. In particular, we
recall that eigenvalues of G(ω0) control the lasing threshold according to Eqs. (4.33) and
(4.34).

We first want to show that the statistical properties of G(ω0) are related, in the
low-density regime ρλ3

0 . 10, to those of the scalar Green’s matrix (6.101) in a simple
way. For this purpose, we rexpress Gij(ω0) in terms of the entries of G(ω0) as:

Gij(ω0) = Gij(ω0)D(rij), (6.150)

where D is the 3 × 3 matrix:

D(r) =
3

2

[
P (ik0r)I3 +Q(ik0r)

r ⊗ r

r2

]
. (6.151)

On average, D(r) is equal to the identity matrix:

〈D(r)〉 =

∫

V

d3r

V
D(r) = I3. (6.152)

In view of Eq. (6.150), we propose to approximate G(ω0) as

G(ω0) ≃ G(ω0) ⊗D(r′1 − r′2), (6.153)

i.e. as the Kronecker product of the N ×N random matrix G(ω0) with the 3×3 random
matrix D(r′1 − r′2). The two points r′1 and r′2 are randomly chosen inside the volume
V , and in the limit N ≫ 1, they are assumed to be independent of the N points {ri}.
Eq. (6.153) means that the eigenvalues of G(ω0) and G(ω0) are related according to

ΛG(ω0) = ΛG(ω0)ΛD(r′1−r′2), (6.154)
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where the eigenvalues ΛD(r) of the matrix D(r) are

{ΛD(r)} =
3

2
{P (ik0r), P (ik0r), P (ik0r) +Q(ik0r)} . (6.155)

In the regime of low densities ρλ3
0 . 10, we showed that the borderline of the eigenvalue

domain of the scalar Green’s matrix (6.101) depends essentially on γ = 〈|ΛG(ω0)|2〉, see
Eq. (6.117).15 If we assume that this property holds for the dyadic Green’s matrix, the
problem reduces to calculate the second moment 〈|ΛG(ω0)|2〉. According to Eq. (6.154),
the latter is given by

〈
|ΛG(ω0)|2

〉
=
〈
|ΛG(ω0)|2

〉 〈
|ΛD(r′1−r′2)|2

〉
. (6.156)

For ρλ3
0 . 10 and k0R≫ 1, it is sufficient to take

{ΛD(r)} ≃ 3

2
{1, 1, 0} , (6.157)

so that Eq. (6.156) becomes

〈
|ΛG(ω0)|2

〉
≃ 3

2

〈
|ΛG(ω0)|2

〉
. (6.158)

Therefore, an equation for the borderline of the eigenvalue domain of G(ω0) follows
from equations derived in section 6.5.1.a by replacing the variance γ by 3γ/2. From
Eq. (6.117), we obtain:

|Λ|2 ≃ 3γh

(
−4γ

ImΛ

|Λ|2
)
. (6.159)

The borderline corresponding to Eq. (6.159) is compared with results of numerical diag-
onalization in Fig. 6.13. As expected, the agreement is satisfactory as long as ρλ3

0 . 10.

In Fig. 6.13, we also show two pairs of sub- and superradiant branches. They
correspond to the six eigenvalues of the 3N×3N matrix G(ω0) for N = 2. In this simple
case, the representation (6.153) is exact with r′1 = r1 and r′2 = r2. The eigenvalues of
G(ω0) follow therefore from the combination of Eqs. (6.154) and (6.155):

{ΛG(ω0)} = ±3

2

exp(ik0r12)

k0r12
{P (ik0r12), P (ik0r12), P (ik0r12) +Q(ik0r12)} . (6.160)

There are two different eigenvalues that are two-times degenerate, and correspond to
eigenvectors that can be seen as pairs of ‘dipoles’ oriented perpendicularly to r12, see
Fig. 6.13. The two other eigenvalues are located on a pair of subradiant and superradiant
branches, qualitatively similar to those of the scalar Green’s matrix. They are, however,
quantitatively different. In the limit k0∆r = k0r12 → 0, the subradiant branch Λ− =
−3eik0∆r(1/k0∆r − i)/(k0∆r)

2 is expanded in series as

ReΛ− = − 3

(k0∆r)3
+ O

(
1

k0∆r

)
, (6.161)

ImΛ− = −1 +
(k0∆r)

2

10
+ O(k0∆r

4). (6.162)

15In section 6.5.4 we will also show that γ controls the full distribution p(Λ) for ρλ3
0 . 10.
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Figure 6.13: Density plots of the logarithm of eigenvalue density of the 3N ×3N random
Green’s matrix (6.149) obtained by numerical diagonalization of 10 realizations of the
matrix for N = 2× 103. Points ri are randomly chosen inside a sphere of radius R. The
solid red lines represent the borderlines of the support of eigenvalue density following
from Eq. (6.159). The four branches follow from Eq. (6.160). Eigenvectors of G(ω0)
corresponding to eigenvalues situated in the branches are represented as pairs of dipoles
localized on pairs of points r1 and r2, with different orientation with respect to the
direction r1 − r2.

Note that [ImΛ− + 1]vector = 3
5 [ImΛ− + 1]scalar [see Eq. (6.140)]. The distributions

p[min(ReΛ)] and p[min(ImΛ)] of the 3N × 3N matrix G(ω0) follow from Eqs. (6.141),
and (6.142). In the limit N → ∞ and k0R≫ 1, we find

p[min(ReΛ) = x] =
Nρλ3

0

4π2x2
exp

(
Nρλ3

0

4π2x

)
, (6.163)

p[min(ImΛ) = y] =
5
√

10Nρλ3
0

4π2

√
y + 1 exp

(
−5

√
10

6π2
Nρλ3

0(y + 1)3/2

)
. (6.164)

The mean and the variance of min(ReΛ) are not defined, and the mean of min(ImΛ) is

〈min(ImΛ)〉 = −1 +
3

5
Γ(5/3)

(
2π2

√
6Nρλ3

0

)2/3

. (6.165)

6.5.4 G(ω0): eigenvalue density profile and projections

Let us now analyze the shape of the eigenvalue density p(Λ) of the N ×N scalar Green’s
matrix (6.101) inside its support D. This analysis can be done analytically by solving
Eqs. (6.38) and (6.39).

But before using Eqs. (6.38) and (6.39), we would like to mention an interesting
relation between the statistical properties of the non-Hermitian matrix G(ω0) and those
of the Hermitian matrices S(ω0) and C(ω0) studied in the previous chapter 5. Because
the matrices S(ω0) and C(ω0) represent the imaginary and real parts of the matrix
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Figure 6.14: Marginal probability density of the imaginary part of eigenvalues Λ of the
N × N random Green’s matrix (6.101) compared to the Marchenko-Pastur law (5.171)
with Λ replaced by ImΛ+1 and γ replaced by γ/2 (dashed red line). Points are randomly
chosen inside a cube of side L; γ = 2.8N/(k0L)2, see Eqs. (5.166) and (5.186).

G(ω0), respectively, one might expect some links between the probability distribution of
eigenvalues of S(ω0) and C(ω0) and the marginal probability distributions of the real and
imaginary parts of the eigenvalues of G(ω0), p[ReΛG(ω0)] and p[ImΛG(ω0)]. To elaborate
on this issue, we make two observations. First, at low densities ρλ3

0 . 1, the eigenvalue
distribution of G(ω0) depends on the second moment γ = 〈|Λ|2〉 only. It is thus also the
case for p[ReΛG(ω0)] and p[ImΛG(ω0)]. Second, Eqs. (6.103) and (6.104) suggest that

γ =
〈
Λ2
〉
ReG(ω0)

= 2
〈
(ReΛ)2

〉

G(ω0)
, (6.166)

=
〈
Λ2
〉
ImG(ω0)

= 2
〈
(ImΛ)2

〉

G(ω0)
, (6.167)

as long as k0R ≫ 1 and the density is not too high. We now recall that the eigenvalue
distributions of ImG(ω0) and ReG(ω0) depend as well on γ only, for ρλ3

0 . 1. It is
therefore reasonable to conjecture that p[ImΛG(ω0)] and p[ReΛG(ω0)] may be described
by equations for p[ΛImG(ω0)] and p[ΛReG(ω0)] with γ replaced by γ/2:

p
[
ImΛG(ω0), γ

]
≃ p

[
ΛImG(ω0),

γ

2

]
, (6.168)

p
[
ReΛG(ω0), γ

]
≃ p

[
ΛReG(ω0),

γ

2

]
. (6.169)

Figures 6.14 and 6.15 show, indeed, that numerical marginal distributions are nicely
described by the laws following from Eqs. (5.171) and (5.191) where we replaced γ by
γ/2. The marginal distribution p[ImΛG(ω0)] is well approximated by the Marchenko-
Pastur law (5.171) as long as γ/2 . 1 (Fig. 6.14), and Eq. (5.191) is a good estimate of
p[ReΛG(ω0)] for ρλ3

0 . 10 (Fig. 6.15).

Let us now investigate the shape of p(Λ) with the help of Eqs. (6.38) and (6.39).
Very generally, p(Λ) is roughly symmetric with respect to the line ReΛ = 0 and decays
with ImΛ. In the regime of low densities ρλ3

0 . 1, an approximation of Eqs. (6.38) and
(6.39) can be obtained by replacing the operator Ŝ1 by Ŝ0. This amounts to neglecting
the term c2T̂ T̂ † in the denominator of Eq. (6.37). Then, Eqs. (6.38) and (6.39) reduce to
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Figure 6.15: Marginal probability density of the real part of eigenvalues Λ of the N ×N
random Green’s matrix (6.101) compared to Eq. (5.191) with Λ replaced by ReΛ and γ
replaced by γ/2 (dashed red line). Points are randomly chosen inside a cube of side L;
γ = 2.8N/(k0L)2, see Eqs. (5.166) and (5.186).

two equations where the resolvent g(z) and the eigenvector correlator c(z) are decoupled:

g(z) =
z∗ − 1

NTrŜ†
0

1
NTrŜ0Ŝ

†
0

, (6.170)

c(z)2 = |g(z)|2 − N

TrŜ0Ŝ
†
0

. (6.171)

Assuming explicitly that the N points are distributed in a sphere of radius R, we can
make use of the results of section 6.5.1.a to compute traces in these equations, so that
Eqs. (6.170) and (6.171) become

g(z) =
z∗ − 2γg(z)∗h (iκ[g(z)]∗R+ ik0R)

2γh (2 Imκ[g(z)]R)
, (6.172)

c(z)2 = |g(z)|2 − 1

2γh (2 Imκ[g(z)]R)
, (6.173)

where the functions κ(g) and h(x) are defined by Eqs. (6.112) and (6.115), respectively.
We find the resolvent g(z) by solving Eq. (6.172) numerically and then evaluate the
eigenvalue density p(Λ) with the help of Eq. (6.4). Note that Eq. (6.172) applies only
within the eigenvalue domain D given by Eq. (6.116). Figure 6.16 shows the full distri-
bution p(Λ) obtained in this way for N = 104 and ρλ3

0 = 1, together with the result of
numerical diagonalization.
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Figure 6.16: Logarithm of the eigenvalue density of the N ×N random Green’s matrix
(6.101). Numerical results obtained by diagonalization of 10 realizations of the matrix for
N = 104 (left) are compared with the solution of Eq. (6.172) (right). Points ri are chosen
randomly inside a sphere of radius R; γ = 9N/8(k0R)2. For a quantitive comparison,
see Fig. 6.17.

The marginal probability distributions of the imaginary and real parts are finally
obtained after projection of p(Λ) on the imaginary and real axes. A good quantitative
agreement is found with numerical simulations presented in Fig. 6.17 for ρλ3

0 = 0.1
and ρλ3

0 = 1. At higher densities ρλ3
0 & 1, Eq. (6.172) is not a good approximation of

Eqs. (6.38) and (6.39) anymore. Eqs. (6.38) and (6.39) are difficult to solve exactly for

two reasons: g(z) and c(z) are coupled, and TrŜ1Ŝ
†
0 has no ‘simple’ expression in the

bi-orthogonal basis of eigenvectors of the operator T̂ , contrary to TrŜ0Ŝ
†
0 [see Eqs. (6.57),

(6.58), (6.135), and (6.136).] Further work is needed to be able to deduce the eigenvalue
distribution p(Λ) from Eqs. (6.38) and (6.39) at high densities ρλ3

0 & 1.

6.6 Green’s matrix and Anderson localization in a finite
and open medium

Rigorously, Anderson localization is a phenomenon that is well defined in an infinite
medium. In a three-dimensional system, in the absence of gain or absorption, and for
a given disorder strength, a wave is expected to be exponentially suppressed at a large
distance from its source (and therefore localized) if its frequency ωL is below the so-called
mobility edge ωc.

16 Said differently, and probably more precisely, all ‘modes’ (or states,
or eigenfunctions) are expected to be exponentially localized for ωL < ωc and delocalized
for ωL > ωc. From these two pictures have emerged two different types of criteria to
identify the Anderson localization.

First, we can look at the solution of the transport equation for the average intensity,
without invoking the underlying mode structure. One of the first microscopic theories of
Anderson localization is the diagrammatic self-consistent theory proposed in the 1980’s
by Volhardt and Wölfe [136]. To illustrate this theory, let us reconsider the elastic
scattering of light in a random arrangement of N identical point-like scatterers (atoms)
studied in chapter 4. In the simplest case, we can think of the Bethe-Salpeter equation
(4.104) in the absence of pump (le = ls) and for atoms on resonance (ωL = ω0), simplified

16A detailed consideration shows that there may be several (at least two for light, see Ref. [213])
mobility edges.
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Figure 6.17: Marginal probability density of the imaginary part (left column) and the
real part (right column) of eigenvalues Λ of the N ×N random Green’s matrix (6.101),
where the N points ri are randomly chosen inside a sphere of radius R; γ = 9N/8(k0R)2.
Results of numerical diagonalization (blue solid lines) obtained for N = 104 after aver-
aging over 10 realizations are compared to the solution of Eq. (6.172) (red dot-dashed
line).

with the ISA (4.54) and the Boltzmann approximation (4.127). It yields a diffusion
equation for the average intensity with a diffusion constant DB = l0v/3, where v is
the transport velocity and l0 the on-resonance scattering mean free path (4.129) [see
Eqs. (4.121), (4.124) and (4.128)]. Localization corrections to this result are obtained
by taking into account maximally crossed diagrams in the irreducible vertex depicted in
Fig. 4.3. The diffusion equation becomes self-consistently coupled to an equation for
the diffusion coefficient D. The latter involves the ‘return probability’, i.e. the average
intensity that goes back to the source [136]. In the ‘weak scattering’ regime k0l0 ≫ 1,
the diffusion coefficient reduces to

D ≃ DB

[
1 − 1

(k0l0)2

]
. (6.174)

This simple expression shows that transport cancels (D ≃ 0) for

k0l0 =
k3

0

4πρ
≃ 1 ⇐⇒ ρλ3

0 ≃ 20. (6.175)

This is the so-called Ioffe-Regel criterion for Anderson localization [101]. For k0l0 . 1,
interference effects are so strong that they occur during the scattering process and may
lead to localization of eigenstates.

An alternative picture consists in looking at the ‘modes’ of the disordered system
under study. As already discussed in sections 2.5.2, 4.4, and 6.4, the modes (or ‘quasi-
modes’ or ‘resonances’) of a system of N point-like scatterers interacting with light
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in a finite and open volume V are the eigenvectors of the effective Hamiltonian He

(6.100), which are also the eigenvectors Rn of the Green’s matrix G(ω0). In this context,
Anderson localization formally refers to the localized nature of eigenvectors Rn in space
due to disorder. We investigate the degree of localization of these eigenvectors in section
6.6.2. On the other hand, one also expects Anderson localization to have an impact on
the statistics of the eigenvalues En of He:

En = ωn − i
Γn
2
, (6.176)

ωn = ω0 −
Γ0

2
ReΛn, (6.177)

Γn = Γ0 (1 + ImΛn) , (6.178)

where Λn are the eigenvalues of the Green’s matrix G(ω0). Γn controls the decay rate of
physical observables, such as the intensity of the wave emerging from the random system.
Indeed, from the linear analysis of section 4.2, it is straightforward to write the positive
frequency part electric field measured at point r as

E+(r, ωL) =

N∑

n=1

an(r)

Γn/2 − i(ωL − ωn)
, (6.179)

where an(r) is a function that depends on the eigenvector Rn of the Green’s matrix and
the spatial distribution of the field at the initial time. Signatures of different transport
regimes may be traced back to the statistics of eigenvalues Λn in various ways. Two
options are considered in the following. In section 6.6.1 we study the behavior of p(Λ) as
a function of ImΛ, and in section 6.6.2 we concentrate on the behavior of the Thouless
number g. The latter is the ratio between the mean spectral width δω of the modes and
their mean level spacing ∆ω.17 Intuitively, one expects Anderson localization to occur
when the modes cease to overlap. This criterion,

g =
δω

∆ω
= gc ≃ 1, (6.180)

is known as the Thouless criterion for Anderson localization in a finite open medium
[101, 214]. δω−1 is called the Thouless time, and ∆ω−1 the Heisenberg time. The Thou-
less number g can be shown to be equal to the dimensionless conductance of a disordered
sample, and it is the only relevant parameter in the scaling theory of Anderson localiza-
tion [215]. In section 6.6.2 we present preliminary results concerning the calculation of
the scaling function β(g) from the eigenvalues Λn of the Green’s matrix.

6.6.1 Statistics of resonances of the random Green’s matrix

The generic behavior of the distribution of decay rates p(Γ) in a disordered open system
may be estimated thanks to the following simple argument [103, 104]. Loosely speaking,
the probability of finding a spectral width Γ′ smaller than Γ is

p(Γ′ < Γ) ∼ [R− r(Γ)]d

Rd
, (6.181)

17See section 6.6.2 for a precise definition of δω and ∆ω in terms of the eigenvalues Λn.
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where Rd is the typical volume of the d-dimensional system and r(Γ) is the typical
distance (from boundaries) travelled by the waves leaving the system in a time Γ−1.
Then, the distribution of decay rates is given by

p(Γ) =
d p(Γ′ < Γ)

dΓ′ = −dr(Γ)

dΓ
d

[
1 − r(Γ)

R

]d−1

∼ −dr(Γ)

dΓ
. (6.182)

For ballistic and diffusive motions, we obtain:

r(Γ) =
v

Γ
=⇒ p(Γ) ∼ 1

Γ2
(ballistic), (6.183)

r(Γ) =

√
D

Γ
=⇒ p(Γ) ∼ 1

Γ3/2
(diffusive). (6.184)

In the localized regime, modes are exponentially localized, |ψ(r)| ∼ e−r/ξ (ξ is the local-
ization length), so that leakage Γ ∼ |ψ(r)|2 is essentially due to states localized near the
system boundaries. This yields

Γ(r) ∼ e−2r/ξ =⇒ p(Γ) ∼ 1

Γ
(localized). (6.185)

It is worth noting that the three power laws (6.183), (6.184), and (6.185) apply for one-,
two-, or three-dimensional random media. The reason is that r(Γ) in Eq. (6.182) is
independent of the dimensionality of space.

Pinheiro et al. [104] studied numerically the marginal distribution p(ImΛ) of the
scalar Green’s matrix, and observed p(ImΛ) ∝ 1/(ImΛ + 1) at high densities of points.
Our numerical results also exhibit such a behavior (see Fig. 6.18). Based on the quali-
tative prediction (6.185), the authors of [104] conjectured that the power law p(ImΛ) ∝
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Figure 6.19: (a) Cuts of the eigenvalue density p(Λ) of the N×N Green’s matrix (6.101)
along the imaginary axis ReΛ = 0. N = 104 points ri are randomly chosen inside a
sphere of radius R; γ = 9N/8(k0R)2 . Results of numerical diagonalization (symbols)
are compared with the solution of Eq. (6.172) (solid red lines). (b) Marginal probability
density of the imaginary part of eigenvalues of (6.101). Solutions of Eq. (6.172) (solid
lines) at N = 104 (γ = 0.34), 106 (γ = 1.6), and 108 (γ = 7.4) for ρλ3

0 = 0.1 are compared
with the asymptotic law 1/(ImΛ + 1) (dashed line).

1/(ImΛ+1) was a signature of Anderson localization of waves in the corresponding point-
scatterer model. To test this conjecture, we analyze p(Λ) computed from Eq. (6.172) at
low densities ρλ3

0 . 1, for which no Anderson localization is expected, according to
the (qualitative) Ioffe-Regel criterion (6.175). In Fig. 6.19(a), we show cuts of p(Λ)
along the imaginary axis ReΛ = 0. We clearly observe that p(ReΛ = 0, ImΛ) decays
as 1/(ImΛ + 1), even though the density of points ρλ3

0 is too low to bring the system
to the Anderson localization transition. For γ . 1, although p(Λ) ∝ 1/(ImΛ + 1), the
marginal distribution p(ImΛ) follows the Marchenko Pastur law [see Fig. 6.14] due to the
circluar shape of the support of p(Λ). Incidentally, we now understand in a new fashion
why p(ImΛ) follows the Marchenko Pastur law for γ . 1: the latter can be seen as the
projection of a two-dimensional distribution p(Λ) on the imaginary axis ImΛ, provided
that p(Λ) is different from zero inside a circle of radius

√
2γ centered at (0, γ/2) and

that p(Λ) ∝ 1/(ImΛ + 1).18 The power-law decay becomes visible in the marginal distri-
bution p(ImΛ) [see Fig. 6.18] only when the support of p(ImΛ) is sufficiently wide, i.e.

for γ & 1. Because the condition γ & 1 can be obeyed at any, even very low density by
just increasing the number of points N , it seems that no direct link can be established
between the power-law decay of p(ImΛ) and Anderson localization. This also seems to
be confirmed by our theoretical prediction for p(ImΛ) computed at large values N > 104

(that are inaccessible for numerical simulations) and low density ρλ3
0 = 0.1, see Fig.

6.19(b).

Our conclusion is that it is not clear a priori if any sign of Anderson localization
should (and could) be visible in the density of eigenvalues p(Λ), in the marginal distribu-
tions p(ImΛ) and p(ReΛ), or in the modifications observed in the shape of the eigenvalue
domain when the density is increased (see section 6.5.1). To elaborate on this issue, we
analyze in the next section the eigenvectors of the matrix (6.101).

18Equation for a circle can be found from Eq. (6.116), and p(Λ) ∝ 1/(ImΛ + 1) from Eq. (6.172), in
the regime ρλ3

0 ≪ 1 and γ . 1.
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Figure 6.20: (a), (b) and (c) Density plots of the logarithm of the average inverse par-
ticipation ratio of eigenvectors of the Green’s matrix (6.101). For each of these plots,
we found eigenvalues of 10 different random realizations of 104 × 104 Green’s matrix nu-
merically (with points ri randomly chosen inside a sphere of radius R), computed their
IPRs using Eq. (6.186), and then determined IPR(Λ) by integrating Eq. (6.187) over a
small area (∆Λ)2 around Λ, for a grid of Λ’s on the complex plane. (d) Density plot
of the logarithm of the eigenvalue density of (6.101). The solid red line represents the
borderline of the support of eigenvalue density following from Eqs. (6.135) and (6.136).

6.6.2 Inverse participation ratio

To determine if an eigenvector Rn = {Rn(r1), . . . , Rn(rN )} of the Green’s matrix (6.101)
is localized or not, we compute its inverse participation ratio (IPR), already introduced
in section 5.8.2:

IPRn =

∑N
i=1 |Rn(ri)|4[∑N
i=1 |Rn(ri)|2

]2 . (6.186)

We recall that an eigenvector extended over all N points is characterized by IPR ∼ 1/N ,
whereas an eigenvector localized on a single point has IPR = 1. The average value of
IPR corresponding to eigenvectors with eigenvalues in the vicinity of Λ can be defined
as

IPR(Λ) =
1

Np(Λ)

〈
N∑

n=1

IPRn δ
2(Λ − Λn)

〉
, (6.187)
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where averaging is over all possible configurations of N points in a sphere. Our numerical
analysis of the average IPR defined by this equation reveals the following scenario. At
low density ρλ3

0 . 10, IPR ≃ 2/N for all eigenvectors except those corresponding to
the eigenvalues that belong to spiral branches [see Fig. 6.6(a) and (b) and section 6.5.2]
for which IPR ≃ 1

2 . These states are localized on pairs of points that are very close
together and correspond to proximity resonances [105] that do not require a large optical
thickness to build up. The prefactor 2 in the result for IPR of extended eigenvectors
is due to the Gaussian statistics of eigenvectors at low densities. For ρλ3

0 & 10 [Fig.
6.20(a) and (b)], IPR starts to grow in a roughly circular domain in the vicinity of Λ = 0
and reaches maximum values ∼ 0.1 at ρλ3

0 ≃ 30 [Fig. 6.20(c)]. Contrary to common
belief [105], neither localized states necessarily have ImΛ close to −1, nor states with
ImΛ ≃ −1 are always localized, as can be seen from Fig. 6.20(c). For ρλ3

0 > 30, the
localized states start to disappear and a hole opens in the eigenvalue density. As can be
seen from the comparison of Fig. 6.20(c) and (d), it is quite remarkable that the opening
of the hole in p(Λ) [Fig. 6.20(d)] proceeds by disappearance of localized states [i.e., of
states with IPR ≫ 1/N in Fig. 6.20(c)]. Further work is needed to give a definitive
physical interpretation of this scenario. At present, two speculative conjectures can be
formulated, that might be the two sides of the same coin. The opening of the hole
might be a signature of Anderson localization, meaning that the states localize due to
interference effects; or it could be interpreted as a signature of a transition towards an
effective medium regime, and in that case localized states could be reminiscent to those
that one can observe, e.g., inside a band gap of a periodic structure due to localized
defects.

6.6.3 Scaling theory and the Green’s matrix

The purpose of the scaling theory of Anderson localization is to capture features that
are important on macroscopic scales but insensitive to microscopic details of disorder.
In particular, it assumes that transport properties at large scales depend only on one
parameter, the Thouless number g = δω/∆ω. From Eq. (6.177), we can express the
mean level spacing ∆ω in terms of the properties of the Green’s matrix as

∆ω = 〈ωn−1 − ωn〉 =
Γ0

2
〈ReΛn − ReΛn−1〉 , (6.188)

where the eigenvalues Λn are ordered by their real part. On the other hand, it is worth
noting that the mean spectral width of the modes cannot be defined as δω = 〈Γn〉,
with Γn given by Eq. (6.178), because 〈ImΛn〉 = 0 (

∑N
n=1 Λn = 0 for each realization).

Therefore, we define δω as the inverse of the mean Thouless time:

δω =

〈
2

Γn

〉−1

=
Γ0

2

〈
1

ImΛn + 1

〉−1

. (6.189)

The definitions (6.188) and (6.189) are consistent with the very recent work of Wang and
Genack [216], that shows that it is experimentally possible to measure the set (ωn,Γn)
that define the modes of an open random medium. The authors assumed that the electric
field E+(r) has the decomposition (6.179) and found (ωn,Γn) from measurements of
microwave spectra at many points r. They could evaluate experimentally the Thouless
number g = δω/∆ω with ∆ω and δω defined as in Eqs. (6.188) and (6.189), and were
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able to compare its value to the ensemble average of the transmittance (the analog of
the dimensionless conductance for classical waves) [216].

The elegance of the scaling theory comes from the fact that universal features of
Anderson localization are captured by the simple scaling function

β(g) =
∂lng

∂ln k0R
. (6.190)

This function tells us how g evolves with system size R: β(g) < 0 means that increasing
the system size leads to exponentially small g, and therefore corresponds to the local-
ized regime, while for β(g) > 0, the ‘renormalization flow’ leads to delocalized regimes
(diffusive and ballistic regimes). In the strongly localized regime R ≫ ξ, g ∼ e−R/ξ and
β(g) ∼ lng, while in the diffusive regime R ≫ l0 , g(R) ∼ Rd−2 and β(g) ∼ d − 2. This
shows that all states are localized for d ≤ 2. Assuming that the shape of β(g) interpolates
smoothly between the two previous asymptotics, one predicts, for d ≥ 3, the existence of
an unstable fixed point gc defined by β(gc) = 0. To the critical point corresponds also a
critical frequency ωc. According to the Thouless criterion of localization (6.180), gc ∼ 1.
To be consistent with the Ioffe-Regel criterion (6.175), one also should have kcl0 ∼ 1.
Using the linearized form β(g) = ln(g/gc)/ν around the fixed point gc, we find after an
elementary calculation19 that the localization length diverges close to the transition for

19For a pedagogical introduction to scaling theory of Anderson localization, see, e.g., Ref. [217].
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Figure 6.22: (a) Thouless number g = δω/∆ω evaluated from the data of Fig. 6.21.
Curves for different N cross at the critical point k0l0 ≃ g ≃ 1. (b) Scaling function
β(g) = ∂lng/∂lnk0R computed from the results of (a). The slope at the critical point gc
yields the critical exponent ν ≃ 1.6.

ω0 < ωc as ξ ∼ |ω0 −ωc|−ν , and the diffusion constant vanishes algebraically for ω0 > ωc
as D ∼ (ω0 − ωc)

ν . The critical exponent ν is determined by the slope of the scaling
function β(g) at the transition. From extensive numerical simulations we know today
that ν = 1.58 ± 0.01 [218, 219]. Note that no analytic theory has been able to predict
this value so far.

Our goal is to revisit the scaling theory through the statistical properties of the
eigenvalues Λn of the Green’s matrix. In Fig. 6.21, we show numerical computations of
∆ω and δω. We diagonalized the Green’s matrix (6.101) for different matrix size N and
for different values of the disorder parameter k0l0 = 2π2/ρλ3

0, and evaluated ∆ω and δω
with Eqs. (6.188) and (6.189), respectively. We nicely observe that ∆ω and δω become
equal when k0l0 ≃ 1, meaning that the Thouless criterion (6.180) is perfectly consistent
with the Ioffe-Regel criterion (6.175) in an open three-dimensional medium. This is
further illustrated in Fig. 6.22(a), where we plot the Thouless number g as a function of
k0l0. Note that within the accuracy of our simulations, ∆ω remains roughly constant in
the considered range of k0l0, at a fixed N . From the results of Fig. 6.22(a) we evaluated
the scaling function (6.190), which is represented in Fig. 6.22(b). We clearly see that
β(g) is positive for g > gc ≃ 1.3, and takes values in agreement with the theoretical
prediction limg→∞ β(g) = d − 2 = 1. If we start increasing the size from some g > gc,
the ‘renormalization flow’ drives the system toward the stable fixed point g = ∞. On
the other hand, if we start with g < gc, the flow β(g) leads to the ‘insulating’ stable fixed
point g = 0. Moreover, β(g) behaves smoothly in the vicinity of the unstable fixed point
gc. From the slope at the critical point gc, we roughly estimated the critical exponent
of the Anderson transition as ν ≃ 1.6, which is consistent with the result of extensive
numerical simulations in other systems [218, 219]. Even if we found ν very close to the
expected result, it happened by chance. The quality of numerical results in Figs. 6.21
and 6.22 is clearly insufficient to estimate ν with acceptable precision.

In order to obtain a better estimate of the critical exponent ν, we could diagonalize
the N ×N Green’s matrix with N > 104, which is a painful numerical work. However,
our purpose was not to provide a precise numerical description of the scaling function
β(g), but rather to verify that the statistical properties of the Green’s matrix indeed
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contain information related to Anderson localization. In particular, our numerical anal-
ysis confirms that the scaling function can be computed from the definitions (6.188) and
(6.189). The challenge becomes therefore to calculate ∆ω and δω, and thus β(g), from
Eqs. (6.188) and (6.189) analytically. At the time of writing this thesis, we are working
in this direction. In principle, our analytical equations (6.38) and (6.39) allow to solve
for the eigenvalue density p(Λ), and therefore for the mean spectral width (6.189) as well.



Chapter 7
Euclidean matrix theory of random lasing

Recent theoretical models of random lasers rely on expansions of the laser field in terms
of overlapping modes of ‘random cavities’ formed by the heterogeneities of the active
medium [21, 32–34, 36, 40, 220]. Alternative approaches consist in solving Maxwell-Bloch
equations numerically [22, 28, 30, 31] or within the diffusion approximation [6, 134, 221].
The latter has the advantage of yielding a simple criterion for the lasing threshold (section
4.6) but it lacks rigorous justification, does not capture the mode structure of the random
laser, and breaks down in the strong scattering regime [3].

In the present chapter we develop a new approach to the problem of random lasing
that does rely neither on the expansion of the laser field in terms of cavity modes, nor on
the diffusion approximation. It is based on our analytic results for the random Green’s
matrix derived in chapter 6. To demonstrate the power of this new approach, we will
mainly consider random lasing in an ensemble of a large number N of identical atoms
in free space, a problem of recent interest [61, 65, 134]. Our microscopic starting point
is the dynamic equations of motion, derived in chapters 2 and 4, for N atoms that both
scatter and amplify light. We obtain analytic results for the lasing threshold (section 7.1)
and the average emitted intensity (section 7.2) in the semiclassical limit, thus achieving
an important progress with respect to previous works on similar systems by Savels et al.

(who treated lasing in ensembles of N ≤ 5 three-level atoms) [61] and Froufe-Pérez et

al. (who dealt with N ≫ 1 two-level atoms but in the diffusion approximation) [134].
The spectrum of light emitted below threshold is computed analytically in section 7.2.1
by taking into account quantum effects. Our approach can be extended to deal with
more ‘standard’ random lasers in which scattering centers (‘particles’) are embedded in
an amplifying homogeneous matrix (section 7.3).

7.1 Threshold in a cloud of cold atoms

7.1.1 Threshold condition

Let us first consider the incoherent pump model introduced in section 3.2.2. In this
model, a gas of N three-level atoms at random positions ri (i = 1, . . . , N) in free three-
dimensional space is subject to a strong external pump field resonant with the transition
from the ground state |gi〉 to the upper auxiliary level |ai〉 of each atom. The atoms
rapidly decay to the upper level |ei〉 of the laser transition at a rate Γae ≫ Γeg = Γ0 ≫ Γag
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[see Fig. 3.1(b)]. Interaction of atoms with the electromagnetic field which is near-
resonant with the transition from |ei〉 to |gi〉 (energy difference ~ω0) is described by 5N
equations of motion for atomic operators that are coupled to the quantum propagation
equation (2.39) for the electric field. After elimination of the electric field, these equations
can be reduced to Eqs. (3.42) and (3.43) for atomic raising operators Ŝ+

i = |ei〉〈gi| and

population imbalances Π̂i = |ei〉〈ei|−|gi〉〈gi| (see section 3.2.2 for details). We reproduce
these equations here for clarity:

dŜ+
i

dt
=

[
i
ω0

Γ0
− 1

2
(1 +Wi)

]
Ŝ+
i +

i

2
Π̂i

∑

j

G∗
ij(ω0)Ŝ

+
j + F̂+

i (t), (7.1)

dΠ̂i

dt
= − (1 +Wi) Π̂i +Wi − 1 − 2Im


Ŝ+

i

∑

j

Gij(ω0)Ŝ
−
j


+ F̂Π

i (t). (7.2)

Time t is in units of Γ−1
0 , Wi is the pumping rate (3.37) and G(ω0) is the N × N

Green’s matrix (6.101) that couples different atoms1. The Langevin forces F̂+
i (t) and

F̂Π
i (t) describe the quantum fluctuations of the vacuum field (see section 3.3). Equations

(7.1) and (7.2) are derived in the scalar approximation for the electromagnetic field and
assuming Γ0 ≪ ω0, c/R, where R is the size of the atomic cloud (see section 2.4.1). They
can be regarded as a generalization of the optical Bloch equation [41, 55] to an ensemble
of identical, incoherently pumped atoms. In the absence of coupling between atoms, they
describe an isolated atom and have the stationary solution

〈0R|Π̂i|0R〉 =
Wi − 1

Wi + 1
≡ Πeq

i , (7.3)

〈0R|Ŝ±
i |0R〉 = 0, (7.4)

where |0R〉 is the vacuum field state. This shows that population inversion Πeq
i > 0

can be achieved for Wi > 1. This threshold for achieving population inversion, as well
as the power broadening of the transition (the natural line-width Γ0 is increased by a
factor 1 +Wi), are due to sharing of the same ground state by the pump and the lasing
transitions.

Equations (7.1) and (7.2) provide a quantum description of the problem of random
lasing in an ensemble of three-level atoms. The intensity and the spectrum of the emit-
ted light can be obtained from quantum correlation functions 〈0R|Ŝ+

i (t)Ŝ−
j (t′)|0R〉 (see

section 3.1). In the present section we limit ourselves to the semiclassical picture that is
sufficient to analyze the lasing threshold and the average emitted intensity. The semi-
classical approximation of Eqs. (7.1) and (7.2) is obtained by replacing all operators Ô by
their quantum expectation values O = 〈0R|Ô|0R〉. In particular, Langevin forces vanish
in this approximation: FΠ

i = 0 and F+
i = 0, see Eq. (3.47). Equations (7.1) and (7.2)

become

dS+
i

dt
=

[
i
ω0

Γ0
− 1

2
(1 +Wi)

]
S+
i +

i

2
Πi

∑

j

G∗
ij(ω0)S

+
j , (7.5)

dΠi

dt
= − (1 +Wi) Πi +Wi − 1 − 2Im


S+

i

∑

j

Gij(ω0)S
−
j


 . (7.6)

1In this chapter, hats are explicitly added to quantum operators. Besides, we use the loose operator
notation ImÔ = (Ô − Ô†)/2i.
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When coupling between different atoms is at work, the stationary solution S±
i = 0

of Eqs. (7.5) and (7.6) may lose its stability for a sufficiently strong pump. Following
standard semiclassical laser theories [23], we will associate this instability with reaching
the lasing threshold. The stability analysis is identical to the one performed in section
3.4 for N = 2 atoms. Equations (7.5) and (7.6) are rewritten as dZ/dt = F(Z) where
Z =

(
S+

1 , . . . , S
+
N , S

−
1 , . . . , S

−
N ,Π1, . . . ,ΠN

)
. We introduce δZ = Z − Z(0) where Z(0) is

the stationary solution in the absence of interaction. δZ obeys

d

dt
δZ =

∂F
∂Z

∣∣∣
Z(0)

δZ. (7.7)

Since the 3N × 3N Jacobian matrix ∂F/∂Z|Z(0) is block-diagonal, we restrict ourselves
to the study of the N ×N block governing the time evolution of δS− =

(
δS−

1 , . . . , δS
−
N

)
.

It is convenient to introduce a N ×N matrix N defined by the relation

d

dt
δS− =

(
−i
ω0

Γ0
− 1

2

)
δS− +

i

2
N δS−. (7.8)

According to Eq. (7.7), the matrix N is

N =




iW1 −Πeq
1 G12(ω0) . . . −Πeq

1 G1N (ω0)

−Πeq
2 G21(ω0)

. . .
. . .

...
...

. . .
. . . −Πeq

N−1G(N−1)N (ω0)

−Πeq
NGN1(ω0) . . . −Πeq

NGN(N−1)(ω0) iWN



,

(7.9)
so that, in the absence of pump (Wi = 0), it is identical to the N × N Green’s matrix
G(ω0). If δS−(0) is a (right) eigenvector of N associated with an eigenvalue λ, then
δS−(t) ∼ e−Γ0(1+Imλ)t/2. This shows that the linear description (7.8) breaks down and
lasing starts when the imaginary part of at least one of the eigenvalues of N becomes
less than −1. For uniform pump Wi = W , this condition reduces to

2W

1 +W
ImΛn > (1 +W ) + ImΛn, (7.10)

where Λn is an eigenvalue of G(ω0). The left-hand side of this condition can be regarded
as gain that depends on both the pumping rate W and scattering (through Λn), whereas
the right-hand side contains pump-dependent losses due to spontaneous emission (1+W )
and leakage out of the system (ImΛn). As counterintuitive as it may seem, it follows
from Eq. (7.10) that random lasing takes place when ImΛn (that quantifies losses due to
open boundaries in the absence of pump) exceeds (1 +W )2/(W − 1) and W > 1.

It is worth noting that the threshold condition (7.10) is a specific case of the condition

Λn(ω0) =
1

α̃(ωL)
(7.11)

derived in section 4.2. In Eq. (7.11), α̃(ωL) is the dimensionless atomic polarizability
[Eq. (4.10)] at frequency ωL that may feature an arbitrary pumping scheme. If we
substitute the polarizability (4.9) (and neglect the field nonlinearities so that si = 0)
into Eq. (7.11), we recover Eq. (7.10). But Eq. (7.11) is more general than Eq. (7.10)
and is not restricted to lasing in a system of three-level atoms. We can also apply it,
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Figure 7.1: The domain Dα (hatched) spanned by 1/α̃ and the domain DΛ (blue area
delimited by the solid line) occupied by the eigenvalues Λ of the random Green’s ma-
trix (6.101). (a) Incoherent gain α̃(ωL,W ), see Eq. (4.9). (b) Coherent Mollow gain
α̃(δL,∆p,Ωp) [Eq. (4.35)] with ∆p = 1. Lasing occurs when Dα and DΛ overlap: regions
(1), (2), (3). The borderline of DΛ is given by Eq. (7.12) with the optical thickness
b0 = 40 in (a) and b0 = 140 in (b). The dashed lines show the borderline of DΛ following
from the diffusion approximation [Eq. (6.121)].

for example, to an ensemble of two-level atoms (resonant frequency ω0) in the field of a
strong near-resonant coherent pump (frequency ω0+Γ0∆p, Rabi frequency Γ0Ωp). When
illuminated by a weak probe light at a frequency ω0 + Γ0∆p + Γ0δL, each atom behaves
as if it had the effective polarizability (4.35) [see section 4.2.2 and Fig. 3.1(a)]. Optical
gain in such a system is sometimes referred to as ‘Mollow gain’ [115].

As explained in section 4.2.2, the threshold condition (7.11) is easily visualized by
drawing the two-dimensional domain DΛ occupied by the eigenvalues of G(ω0) and the
region Dα spanned by 1/α̃ when its free parameters — ωL and W in the case of Eq.
(4.9), and δL, ∆p, and Ωp in the case of Eq. (4.35) — are varied, on the complex
plane. Random lasing takes place when DΛ and Dα touch (threshold) or overlap. This
is illustrated in Fig. 7.1 for N ≫ 1 atoms in a sphere of radius R ≫ λ0. In this figure,
we adjusted the parameters for the random laser to be slightly above threshold: DΛ and
Dα barely overlap. Whereas Dα is easy to determine when α̃ is known as a function of
its parameters, finding DΛ is much less trivial. Here we make use of our results for the
eigenvalue distribution of the Green’s matrix (6.101) in the limit of large N (chapter
6). The distribution and the boundary of its support DΛ on the complex plane depend
on two dimensionless parameters: the number of atoms per wavelength cubed ρλ3

0 and
the on-resonance optical thickness b0 = 2R/l0, where ρ is the number density of atoms
and l0 = k2

0/4πρ is the on-resonance scattering mean free path in the absence of the
pump [see Eqs. (4.128) and (4.129)]. Note that b0 is proportional to the second moment
γ = 〈|Λ|2〉 of the eigenvalues of G(ω0), b0 = 16γ/3 [Eq. (6.105)]. At a moderate density
ρλ3

0 . 10, the eigenvalue domain DΛ consists of two parts: a (roughly circular) ‘bulk’ and
a pair of spiral branches (see section 6.5.1 and Fig. 6.6). Depending on the particular
model of atomic polarizability α̃, either the bulk or the branches may touch Dα, as we
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Figure 7.2: The minimal (critical) optical thickness b0cr necessary for lasing in the inco-
herent pump model, following from our Euclidean matrix theory (7.12) (solid line) and
from the diffusion approximation (4.138) (dashed line).

now discuss.

7.1.2 Threshold due to the ‘bulk’ of eigenvalues

We first focus on the lasing threshold due to the bulk of eigenvalues. Combining the
analytic equation (6.117) for the borderline of DΛ at low density ρλ3

0 . 10 and Eq. (7.11)
results in a threshold condition that depends on the optical thickness b0 but not on the
density ρλ3

0:
3

8
b0|α̃|2h

(
1

2
b0Imα̃

)
= 1, (7.12)

where h(x) is given by Eq. (6.115). Note that for both gain mechanisms considered
in this section, the threshold condition (7.12) involves the eigenvalue with the largest
imaginary part, as can be seen from Fig. 7.1. We calculated 〈max(ImΛ)〉 based on our
non-Hermitian random matrix theory (section 6.5.1.c) and found excellent agreement
with numerical results, see Fig. 6.9. It is quite remarkable that the agreement is present
at all values of parameters, including high densities ρλ3

0 ≫ 1 that were necessary to
reach large optical thicknesses b0 ≫ 1 in numerical calculations with moderate N ≤ 104.
Because it is 〈max(ImΛ)〉 that controls the laser threshold, we conclude that our theory
applies to random lasing all the way from weak (ρλ3

0 ≪ 1) to strong (ρλ3
0 ≫ 1) scattering

regime.

It is interesting to compare the threshold condition (7.12) with the one obtained
in the diffusion approximation. The latter amounts to solve the diffusion equation for
the average intensity of light in the presence of gain [see section 4.5, and in particular
Eq. (4.131)]. The threshold is reached when the solution diverges. This yields the
threshold condition (4.138). The latter is similar to our result (7.12) at large optical
thickness b = b0|α̃|2 ≫ 1 [Eq. (4.128)] but deviates significantly at b . 1, as can be seen
from Fig. 7.1. Consequently, the predictions of Eq. (4.138) for the laser threshold (that
is reached at b < 1, see Fig. 7.1) turn out to be inaccurate. In particular, our Eq. (7.12)
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Figure 7.3: (a) Eigenvalues Λ of a single random realization of the Green’s matrix G(ω0)
(dots) for a cloud of optical thickness b0 = 40, composed of N = 103 atoms. (b)–(d)
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of atoms (b), the mode with the largest ImΛ (c) and the mode corresponding to the
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positions of atoms ri and having radii equal to 1× (b), 100× (c), and 10 × |Rin|2 (d).

predicts that the minimum on-resonance optical thicknesses required for random lasing
are b0cr ≃ 35 for the incoherent (Fig. 7.2) and b0cr ≃ 110 for the coherent pump. This is
significantly less than 50 and 200, respectively, following from Eq. (6.121).

Analysis of the right eigenvectors Rn (modes) of the matrix G(ω0) shows that at all
densities ρλ3

0, the mode that reaches the threshold first is extended over the whole atomic
cloud [see Fig. 7.3(c), and Fig. 6.20 for a statistical analysis of the inverse participation
ratio], even when the system may support localized modes as well [see modes (b) and (d)
in Fig. 7.3, and Fig. 6.20]. This is specific for the models considered here in which, in
particular, scattering and gain are due to the same atoms, and in contrast with systems
where gain and scattering are independent and (pre-)localized modes may be better
candidates for lasing [18, 22, 222] (see also section 7.3).

In the high-density limit ρλ3
0 → ∞, the eigenvalues ofG(ω0) that have large imaginary

parts collapse on a line (Fig. 6.8) described by the simple equation (6.130) which,
combined with Eq. (7.11), yields the lasing threshold condition for a continuous medium
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with a refractive index n(α̃) = (1 + α̃ρλ3
0/2π

2)1/2:

∣∣∣∣
n(α̃) − 1

n(α̃) + 1

∣∣∣∣
2 ∣∣∣e4in(α̃)k0R

∣∣∣ = 1. (7.13)

In this limit the problem looses its statistical nature and the random laser turns into
a ‘standard’ laser with the feedback due to (partial) reflections at the boundaries of a
homogeneous amplifying medium.

7.1.3 Threshold due to the ‘subradiant branch’

Let us now analyze the role of the spiral branches of DΛ. As we illustrate in Fig. 7.3(b),
the eigenvalues belonging to these branches correspond to eigenvectors (modes) localized
on pairs of very close points |ri − rj | ≪ λ0 (see also Fig. 6.20). These are the super-
and subradiant states of a pair of atoms (section 6.5.2). For the uniform incoherent gain
(4.9), the branches do not overlap with Dα [Fig. 7.1(a)], whereas the lower, ‘subradiant’
branch overlaps with Dα for the coherent Mollow gain [Fig. 7.1(b), region (3)]. Thus, in
the latter case the solution S±

i = 0 of Eqs. (7.5) and (7.6) may lose its stability due to
the eigenvalue with the smallest real part belonging to this branch. In section 6.5.2, we
calculated 〈min(ReΛ)〉 and showed that the result [Eq. (6.145)] scales with (Nρλ3

0)
1/3,

in good agreement with numerical simulations as long as ρλ3
0 . 10 [Fig. 6.12(a)]. When

(−ReΛ) exceeds a critical value, a pair of closely located atoms on which the eigenvector
(mode) associated with the eigenvalue Λ is localized, starts to emit coherent light. On
average, the threshold for this effect is given by the condition 〈min(ReΛ)〉− i = 1/α̃ that
reduces to

−Γ(2/3)

(
Nρλ3

0

12π2

)1/3

=
1

α̃
+ i, (7.14)

where Γ(x) is the Gamma function. Formally, this emission of light by a pair of pumped
atoms may be called ‘laser’, especially given the fact that one-atom cavity lasers [223] and
few-atom random lasers [114] were already discussed in the literature. It is very different
from the collective laser mechanism leading to Eqs. (7.12) and (7.13) and associated
with eigenvectors extended over the whole atomic system. Whereas Eqs. (7.12) and
(7.13) are good estimates of the threshold even for a single atomic configuration, the
threshold for light emission by a pair of atoms is expected to fluctuate strongly around
its typical value given by Eq. (7.14) [see Fig. 6.11(a) and Eq. (6.147)]. In the full vector
model, fluctuations are even stronger than those predicted by Eq. (6.147), because the
spiral branches of the distribution are sensitive to the vector nature of light: taking into
account this correction yields the distribution (6.163) for min(ReΛ) (and therefore also
for the threshold), for which the variance is not defined. In addition, the light emission
is expected to be strongly affected by quantum effects that wash out the sharp threshold
obtained in the semiclassical framework, see section 3.5 and Fig. 3.9.

It is finally worthwhile to stress that lasing due to subradiant states cannot be pre-
dicted from the theory based on the diffusion approximation and leading to Eq. (4.138).
Because the emission of the subradiant laser is due to only two atoms, it remains to be
seen if this phenomenon can be detected in an experiment or if it will be overwhelmed
by the amplified spontaneous emission of the rest of the atomic cloud.
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7.2 Behavior below and above threshold

In this section, we briefly discuss the spectrum of light below threshold (subsection 7.2.1),
and then calculate the intensity of laser emission above threshold in the semiclassical
approximation (subsections 7.2.2, 7.2.3 and 7.2.4).

7.2.1 Spectrum below threshold

Our goal is to compute the spectrum of light (3.6) emitted by N incoherently pumped
atoms described by the quantum Langevin equations (7.1) and (7.2). In section 3.1, we
showed that a spectrum of the form (3.6) can formally be rewritten as (3.20), where the
matrices Y(0), M and R depend on the specific equations of motion of the system under
study. For equations of motion (7.1) and (7.2), we proposed, in section 3.6, a simple
perturbative scheme that allowed us to approximate the spectrum by

S(ωL) =
2W

1 +W

N∑

n=1

Re

[
cn

i [(ωL − ω0)/Γ0 −A(W )ReΛn] +B(W ) −A(W )ImΛn

]
,

(7.15)
where Λn are the eigenvalues of the Green’s matrix (6.101), and A(W ), B(W ), and cn are
defined bys Eqs. (3.105), (3.106), and (3.107), respectively. Since Eq. (7.15) was derived
by neglecting field nonlinearities, it is assumed to be valid below the random lasing
threshold and for moderate densities ρλ3

0. The result (7.15) is conveniently rewritten in
terms of the atomic polarizability α̃(ωL) [Eq. (4.9)] as:

S(ωL) = 2

(
1 +

1

Πeq

) N∑

n=1

Im

[
cn

1/α̃(ωL) − Λn

]
, (7.16)

where Πeq is the population imbalance in the absence of coupling between atoms [Eq.
(7.3)]. The result (7.16) is reminiscent of the scattering matrix (6.96) that describes
scattering of light by N atoms with polarizability α̃(ωL). This is not surprising because
both Eqs. (7.16) and (6.96) characterize the properties of the scattered light in a regime
where field nonlinearities are neglected. However, despite these similarities, it is worth
noting that Eq. (7.16) describes quantum inelastic scattering while Eq. (6.96) features
classical elastic scattering. We recall that the classical counterpart of the spectrum (7.16)
emitted by incoherently pumped atoms is zero in the stationary regime (see section 3.6),
while the non-vansihing quantum contribution to the spectrum (7.16) comes from the
term Y(0) in Eq. (3.96).

Expression (7.16) applies for arbitrary spatial configuration of the N atoms. We now
assume that N is large, and that the positions ri of the N atoms are randomly chosen
inside a sphere of radius R. In order to compute the average spectrum 〈S(ωL)〉, we
have to evaluate the coefficients cn that appear in Eq. (7.16) and are defined by Eq.
(3.107). We recall that the latter do not contain any information about the interaction
between atoms, but rather come from the fact that light signal is measured in the far-field
(see section 3.1). Besides, we numerically checked that coefficients cn are self-averaging
quantities in the limit N ≫ 1: cn ≃ 〈c〉. Therefore, we propose to focus our attention on
the following normalized spectrum, averaged over disorder:

〈s(ωL)〉 =
〈S(ωL)〉
N 〈c〉 . (7.17)
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Figure 7.4: Analytic prediction for the normalized average spectrum (7.17) emitted by
N incoherently pumped atoms (W = 0.1), randomly distributed in a sphere (k0R = 10).
Results following from Eqs. (7.18) and (7.20) at different densities ρλ3

0 = 10, 20 and 30
(solid lines) are compared with the spectrum in the absence of coupling between atoms
(dashed line).

According to Eq. (7.16), it is given by

〈s(ωL)〉 = 2

(
1 +

1

Πeq

)
Im

〈
1

N

N∑

n=1

1

1/α̃(ωL) − Λn

〉

= 2

(
1 +

1

Πeq

)
Im g

[
1

α̃(ωL)

]
, (7.18)

where g(z) is the resolvent (6.2) of the Green’s matrix (6.101). If 1/α̃(ωL) belongs to the
non-holomorphic domain D of the resolvent g(z), the latter is solution of Eqs. (6.38) and
(6.39); otherwise, g(z) can be found from Eq. (6.40). At moderate densities ρλ3

0, these
equations reduce to [see Eq. (6.172)]

g(z) =
z∗ − 2γg(z)∗h (−iκ[g(z)]R− ik0R)∗

2γh (2 Imκ[g(z)]R)
(z ∈ D), (7.19)

g(z) =
1

z − 2γg(z)h (−iκ[g(z)]R− ik0R)
(z /∈ D), (7.20)

where the functions κ(g) and h(x) are defined by Eqs. (6.112) and (6.115), respectively.
Solutions g(z) of Eqs. (7.19) and (7.20) are equal on the borderline z ∈ δD of the
eigenvalue domain of the Green’s matrix. Since on the one hand, Eq. (7.18) represents
the spectrum of light below the random laser threshold only, and on the other hand, the
condition 1/α̃(ωL) ∈ D refers to the regime above threshold, Eq. (7.18) can rigorously
be used to evaluate the spectrum only in the range of parameters where 1/α̃(ωL) /∈ D.

For the incoherent pump model (4.9), lasing may occur at some frequency ωL if both
the pumping rate W and the on-resonance optical thickness b0 are sufficiently large:
W > 1 and b0 & 35 (see section 7.1.2). We compute the spectrum (7.18) for W < 1,
ensuring that lasing never starts, whatever the density of atoms. Using the holomorphic
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solution g[1/α̃(ωL)] of Eq. (7.20), we find that the spectrum (7.18) depends on the density
ρλ3

0 but not on b0, if the system size is large enough (k0R & 10). This is somewhat
surprising for the spectral extent of the eigenvalue distribution of the Green’s matrix
depends on b0 only [see Eq. (6.117)]. In fact, the eigenvalues with large real parts |ReΛn|
also have small imaginary parts |ImΛn|, and therefore give rise to Lorentzian components
in the spectrum (7.15) that have small spectral weights. Note also that the spectrum
emitted by N uncoupled atoms is recovered if we approximate g(z) in Eq. (7.20) by 1/z.
Figure 7.4 shows that the exact solution differs notably from this non-interacting case for
ρλ3

0 & 1. The blue-detuning of the maximum of 〈s(ωL)〉 is reminiscent of the asymmetry
of the marginal probability density of ReΛ [see Fig. 6.15], that represents the probability
distribution of the ‘collective Lamb shift’ [75, 83, 88, 90].

7.2.2 Non-linear dynamics of laser emission and rate equations

Let us now study the dynamics of laser emission slightly above threshold. The questions
that we would like to address are: What is the intensity of laser emission in the stationary
regime? How many modes of the ‘passive’ cavity can coexist above threshold? To answer
these questions in the limit N ≫ 1, it is sufficient to limit ourselves to the semiclassical
picture, in which quantum operators are replaced by their quantum expectation values.
Our starting point is therefore the set of Eqs. (7.5) and (7.6). The simplest intensity
signal that we can compute is the square modulus of the smoothed electric field (4.32).
In the absence of external cavity, the latter is well approximated, in the time-domain,
by (see section 2.4.1 for details):

Ω+
s (ri, t) = −

N∑

j 6=i
Gij(ω0)S

−
j (t). (7.21)

In the following, we will use vector notations Ω = {Ω+
s (ri, ), . . . ,Ω

+
s (rN , )}, and S =

(S−
1 , . . . , S

−
N ), so that Eq. (7.21) reads Ω = −G(ω0)S.

In the vicinity of threshold, population imbalances Πi can be adiabatically eliminated
from Eqs. (7.5) and (7.6) because the dipoles (and therefore the field) evolve slowly
with respect to Πi. Indeed, slightly below threshold, S−(t) ∼ e−Γ0(1+Imλ)t/2, where the
eigenvalue λ of the matrix (7.9) satisfies Imλ ≃ −1 (by definition of the threshold), while
Πi(t) ∼ e−Γ0(1+Wi)t. The lowest-order non-linear approximation of Eqs. (7.5) and (7.6)
is then found by applying a standard iterative procedure [23]

Π
(0)
i (t) = Πeq

i , S
(0)−
i (t) = S−

i (0)e−iω0t → S
(1)−
i (t) → Π

(1)
i (t) → S

(2)−
i (t), (7.22)

meaning that at each step of the calculation, the solution Π
(j)
i (t) or S

(j)
i (t) is found by

inserting solutions found at the previous step into Eqs. (7.5) and (7.6).

The resulting equation for the field Ω(t) = −G(ω0)S
(2)(t) is

dΩ

dt
= −

[
i

(
ω0

Γ0
+G(ω0)A−G(ω0)C|Ω|2

)
+G(ω0)BG(ω0)

−1

]
Ω, (7.23)
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where we introduced N ×N diagonal matrices

A =
1

2
diag

(
Wi − 1

Wi + 1

)
, (7.24)

B =
1

2
diag (Wi + 1) , (7.25)

C = diag

[
Wi − 1

(Wi + 1)3

]
, (7.26)

|Ω|2 = diag[|Ωi|2]. (7.27)

Note that the eigenvectors of the linear kernel of Eq. (7.23) coincide with the right
eigenvectors Rk of the Green’s matrix G(ω0) that play the role of eigenmodes of the
‘cold cavity’ only if the pump is uniform: Wi = W .

Restricting further consideration to the latter case (Wi = W ), we express the field
in the basis of right eigenvectors Rk of G(ω0), Ω(t) =

∑N
n=1 bk(t)Rk. Since G(ω0) is a

symmetric matrix, left eigenvectors are Lk = R∗
k. The eigenvectors can be normalized

to satisfy

〈Lk|Rn〉 =

N∑

i=1

RikR
i
n = δkn, (7.28)

where Rik = 〈ri|Rk〉 are the components of Rn. Multiplying the component i of Eq. (7.23)
by Rik and summing over i, we obtain

dbk
dt

= −
[
i

(
ω0

Γ0
+AΛk

)
+B

]
bk + iCΛk

∑

m,n,l

αmnlkbmb
∗
nbl, (7.29)

where αmnlk =
∑N

i=1R
i
kR

i
mR

i∗
n R

i
l , and A, B and C are the elements of matrices defined

above (we keep the same notation for simplicity). We now introduce the ansatz bk(t) =
ak(t)e

−iωkt, where ‘envelopes’ ak(t) are weakly time dependent [23]. In other words, the
field is decomposed as

Ω(t) =

N∑

k=1

ak(t)e
−iωktRk with

∣∣∣∣
1

ak

dak
dt

∣∣∣∣≪ ωk. (7.30)

If we multiply Eq. (7.29) by b∗k, the last term of the r.h.s. of the resulting equation is
proportional to

∑

m,n,l

αmnlkbmb
∗
nblb

∗
k =

∑

m,n,l

αmnlkama
∗
nala

∗
ke

−i(ωm−ωn+ωl−ωk)t. (7.31)

In this sum, terms that are weakly time-dependent correspond to three different combi-
nations:

(1) ωm = ωn and ωl = ωk,

(2) ωm = ωk and ωn = ωl,

(3) ωm + ωl = ωn + ωk.

The case (3) represents ‘phase locking’ that can play an important role in standard lasers
where a few modes can coexist [23]. Such an effect may also occur in a random laser,
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but we will not considered it here, i.e. we will confine our analysis to a free-running
situation where phases of the oscillations are uncoupled. Hence, we multiply Eq. (7.29)
by b∗k〈Rk|Rk〉, and keep, in the sum (7.31), the terms of types (1) and (2) only. The
imaginary part of the resulting equation gives laser frequencies of modes k:

ωk = ω0 + Γ0AReΛk − 2Γ0C
∑

n

Re (Λkηnk) In, (7.32)

while the real part yields rate equations for mode intensities Ik = |ak|2〈Rk|Rk〉:

dIk
dt

= −2κkIk +
∑

n

WnkInIk, (7.33)

where

κk =
Γ0

2

(
W + 1 − W − 1

W + 1
ImΛk

)
, (7.34)

Wnk = −4Γ0
W − 1

(W + 1)3
Im(Λkηnk), (7.35)

ηnk =

∑N
i=1(R

i
k)

2|Rin|2∑N
i=1 |Rin|2

. (7.36)

The threshold for the mode k is given by the condition κk = 0 [we recover Eq. (7.10)] and
depends only on the eigenvalue Λk, whereas the mode competition above the threshold
involves the overlap of eigenvectors ηnk. It is worth noting that although rate equations
similar to Eq. (7.33) appeared in previous works on random lasers [21, 36, 40, 220],
loss rates κk and nonlinear couplings Wnk were most often assumed to follow from ad

hoc random matrix models [36–38], except in one-dimensional systems where they could
be calculated with a reasonable effort [40]. We, in contrast, provide explicit general
expressions for these quantities and show that they are determined by the eigenvalues
Λk and eigenvectors Rk of the random Green’s matrix. The link between κk, Wnk and
Λk, Rk is independent of the geometry or dimensionality of the problem.

7.2.3 Stationary solutions

Let us now analyze the stationary solutions of rate equations (7.33). In Eq. (7.33), the
sum over n runs from 1 to NL, where NL is the number of lasing modes that has to
be found self-consistently, requiring that all intensities Ik (k = 1, . . . , NL) are positive.
Before studying the general case of multimode lasing, it is instructive to consider the
single-mode situation, where only one mode k1 is excited (NL = 1). Then, the solution
of Eq. (7.33) is

Ik1 =
1

ηk1k1

(W + 1)2

4

(
1 − ym

ImΛk1

)
, (7.37)

ym =
(W + 1)2

W − 1
, (7.38)

where we assumed that ηk1k1 is real and positive (see below for explanation). The solution
(7.37) exists (Ik1 > 0) provided that ImΛk1 exceeds ym and W > 1. Intensity Ik is greater
when the mode is delocalized (large ηk1k1), or when ImΛk1 is far beyond the threshold
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ym (large ImΛk1 − ym). As we shall now discuss, this simple picture is strongly modified
in the multimode situation, where several modes compete for gain.

In the large N limit, we numerically checked that coefficients ηnk are self-averaging
quantities with negligibly small fluctuations around their means 〈ηnk〉. In addition, at low
atomic density ρλ3

0 . 10, Rik behave almost as independent Gaussian random variables
(see Fig. 6.20) and thus

〈ηnk〉 ≃
1

N
(1 + 2δnk) . (7.39)

Replacing ηnk in Eq. (7.33) by (7.39), we can express the stationary solutions for mode
intensities in terms of the inverse of the NL ×NL matrix η (with matrix elements ηnk):

(
η−1
)
nk

=
N

2

NL + 1

NL + 2
δnk −

N

2

1

NL + 2
(1 − δnk). (7.40)

This yields:

Ik = N
(W + 1)2

4

[
1

NL + 2
− ym

2

(
1

ImΛk
− 1

NL + 2

NL∑

n=1

1

ImΛn

)]
, (7.41)

where the number NL of lasing modes is still unknown.
Adapting standard analysis of mode competition [23, 36, 39], we introduce

y0 = min{k=1,...,NL} (ImΛk) , (7.42)

that corresponds to the less favorable lasing mode, i.e. the one that has zero intensity.
According to Eq. (7.41), y0 is given by

1

y0
=

1

NL + 2

(
2

ym
+

NL∑

n=1

1

ImΛn

)
. (7.43)

Besides, the number NL of lasing modes can formally be written as

NL =

N∑

k=1

∫ ∞

y0

dy δ(y − ImΛk). (7.44)

Our goal is to compute the intensity of the smoothed field,

I =

N∑

i=1

|Ωi|2 =

N∑

i=1

NL∑

k=1

NL∑

n=1

a∗kane
−i(ωn−ωk)tRi∗k R

i
n

≃
N∑

i=1

NL∑

k=1

|ak|2Ri∗k Rik =

NL∑

k=1

|ak|2〈Rk|Rk〉

≃
NL∑

k=1

Ik. (7.45)

For this purpose, we use Eq. (7.43) to reduce Eq. (7.41) to

Ik = N
(W + 1)2

8
ym

(
1

y0
− 1

ImΛk

)
. (7.46)
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Combining Eqs. (7.43), (7.45) and (7.46), we finally obtain a simple expression for the
intensity:

I = N
(W + 1)2

4

(
1 − ym

y0

)
. (7.47)

The fact that I is proportional to y0 − ym is somewhat surprising inasmuch as modes
with ImΛk < y0 do not participate in the lasing process. In this sense, we could have
expected I ∝ max(ImΛk) − y0. Note also that y0 is not equal to ym even for NL = 1.
Indeed, it is possible to recover Eq. (7.37) from Eqs. (7.43) and (7.47), with ηk1k1 = 3/N .

Equations (7.43), (7.44) and (7.47) apply for any realization of the Green’s matrix,
i.e. for any spatial configuration of the N atoms. Coupled equations (7.43) and (7.44)
can be solved iteratively to find y0 and therefore the intensity (7.47). In the next section,
we calculate the average intensity 〈I〉 and the average number 〈NL〉 of lasing modes with
the help of our analytic theory for the eigenvalue density p(Λ) of the Green’s matrix
(chapter 6).

7.2.4 Statistical treatment

We average Eqs. (7.43), (7.44) and (7.47) over all possible configurations of N atoms in
space and approximate 〈1/y0〉 by 1/〈y0〉 (this is reasonable since y0 has small fluctuations
around its mean):

1

〈y0〉
≃ 1

〈NL〉 + 2

(
2

ym
+N

∫ ∞

〈y0〉
dImΛ

p(ImΛ)

ImΛ

)
, (7.48)

〈NL〉 ≃ N

∫ ∞

〈y0〉
dImΛ p(ImΛ), (7.49)

〈I〉 ≃ N
(W + 1)2

4

(
1 − ym

〈y0〉

)
. (7.50)

To solve these equations, we need a model for p(ImΛ), the marginal distribution of the
imaginary part of the eigenvalues of the Green’s matrix. From here on, we assume that
the N atoms are randomly distributed in a sphere of radius R, at a moderate density
ρλ3

0 . 10. From the analysis of section 6.5, we know that p(ImΛ) vanishes for ImΛ = yM ,
with yM solution of [see Eq. (6.117)]

y2
M =

3

8
b0h

(
− b0

2yM

)
, (7.51)

where h(x) is given by Eq. (6.115). In addition, p(ImΛ) ∝ 1/(ImΛ + 1) for ImΛ < yM
[see Figs. 6.18 and 6.19]; and, by definition of G(ω0) [Eq. (6.101)], 〈ImΛ〉 = 0. The latter
properties combined with the normalization condition of p(ImΛ) yield

p(ImΛ) ≃ 1

(yM + 1)(ImΛ + 1)
for − 1 + (yM + 1)e−(yM+1) < ImΛ < yM , (7.52)

and p(ImΛ) = 0 elsewhere. Here we assumed that yM ≫ 1, which is satisfied because
lasing occurs for yM > 〈y0〉 > ym ≥ 8 [see Eq. (7.38)]. Inserting (7.52) into Eqs. (7.48)
and (7.49), we find that 〈y0〉 is solution of

1

〈y0〉
=

1

N ln
(
yM+1
〈y0〉+1

)
+ 2(1 + yM )

[
2(1 + yM )

ym
+N ln

(
yM
〈y0〉

)
−N ln

(
yM + 1

〈y0〉 + 1

)]
.

(7.53)
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Solving this equation allows to find the number of lasing modes

〈NL〉 =
N

1 + yM
ln

(
yM + 1

〈y0〉 + 1

)
, (7.54)

as well as the average intensity (7.50). A good approximation of Eq. (7.53) is found in
the limit N → ∞, where we have yM − 〈y0〉 ≪ 1. Expanding the logarithms in series in
Eq. (7.53), we obtain2

〈y0〉2
yM

− 2

[
(yM + 1)2

Nym
+ 1

]
〈y0〉 +

2

N
(yM + 1)2 = 0. (7.55)

In the limit N → ∞, the solution of Eq. (7.55) reads:

〈y0〉 = yM

[
1 −

√
2(yM + 1)2

N

(
1

ym
− 1

yM

)]
+ O

(
1

N

)
, (7.56)

Hence, for a given optical thickness b0 ≫ 1, yM −〈y0〉 scales as 1/
√
N , meaning that the

fraction of lasing modes, 〈NL〉/N , vanishes in the limit N → ∞. The intensity and the
number of modes are

〈I〉 = N
(W + 1)2

4

(
1 − ym

yM

)
+ O

(√
N
)
, (7.57)

〈NL〉 =
√

2N
yM

yM + 1

√
1

ym
− 1

yM
+ O (1) , (7.58)

where ym and yM are given by Eqs. (7.38) and (7.51), respectively. These results can be
compared with the intensity 〈I0〉 and the number of lasing modes 〈N0

L〉 that we would
have found in the absence of mode competition, when all modes with ImΛk > y0 = ym
participate in the lasing process. Repeating the reasoning of the previous section with
ηnk = cδnk/N instead of (7.39) yields

〈I0〉 =
N2

c

(W + 1)2

4

yM − ym
yM + 1

(
1 − ym

yM

)
, (7.59)

〈N0
L〉 = N

yM − ym
(yM + 1)2

. (7.60)

The scaling of 〈I〉 and 〈I0〉 with N can be qualitatively understood by expressing the
total intensity as a product of the number of lasing modes and the intensity of a typical
mode (yM − y0)/η (η ∼ 1/N):

〈I〉 ∼ 〈NL〉
yM − y0

η
with

〈NL〉
N

∼ yM − y0, (7.61)

〈I0〉 ∼ 〈N0
L〉
yM − y0

η
with

〈N0
L〉
N

∼ yM − y0. (7.62)

While yM − y0 ∼ 1 in the absence of mode competition (y0 = ym), yM − y0 ∼ 1/
√
N

when the modes couple between them.

2Eq. (7.55) can also be derived from Eq. (7.49) with p(ImΛ) ≃ 1/(yM + 1)2 for 〈y0〉 < ImΛ < yM .
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Figure 7.5: Numerical calculation of the intensity I(t) =
∑N

i=1 |Ωi(t)|2 following from
Eqs. (7.5), (7.6) and (7.21), for a typical random configuration of N = 103 atoms dis-
tributed in a sphere of radius R; b0 = 6N/(k0R)2 = 40. The pumping rate W is varied
from 2 to 5.5.

In order to test the validity of the result (7.57), we solved numerically the 2N equa-
tions (7.5) and (7.6) withN = 103 and b0 = 40, for different values of the pumpW , and 10
random configurations of the N atoms. The result for the intensity I(t) =

∑N
i=1 |Ωi(t)|2

[Ωi(t) is defined by Eq. (7.21)] of a typical configuration is shown in Fig. 7.5. For
W & 2, the number of lasing modes increases with the pumping rate. As a result, the
mean intensity in the stationary regime increases, and the profile of I(t) eventually be-
comes chaotic if the number of lasing modes is large enough. Fig. 7.6(a) shows that our
analytic solution (7.57) is in good agreement with the numerical solution of Eqs. (7.5)
and (7.6) averaged over 10 random configurations of atoms. We also illustrate in Fig.
7.6(b) how the number of lasing modes (7.58) evolves with W and b0. Note that 〈NL〉
is always bounded from above by

√
N/2, a value that is reached for W = 3 in the limit

b0 → ∞.

An interesting feature of lasing in a cloud of cold atoms illustrated by Figs. 7.5 and
7.6 is the halt of lasing at too strong pumps. This can be easily understood by noting
that random lasing requires both amplification and scattering to be sufficiently strong,
and that both of these important ingredients are provided by the same atoms. At low
pump [W . 2 in Figs. 7.5 and 7.6(b)], the scattering is strong, but the amplification
is not enough to lase. In contrast, when the pump is strong (W & 5), the scattering
strength decreases because the atomic transition starts to be saturated, and lasing stops.
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Figure 7.6: (a) The average stationary intensity 〈I〉 at b0 = 40 obtained from the nu-
merical solution of Eqs. (7.5) and (7.6) for N = 103 (ρλ3

0 = 32.23) after averaging over
10 random configurations of atoms (symbols). For each configuration and each W , we
averaged the numerical solution I(t) over t = (200–250)Γ−1

0 (see Fig. 7.5). The analytic
solution (7.57) is shown by the solid line. The dashed line corresponds to yM = 9.15 in-
stead of 8.93 [this value follows from Eq. (7.51)] for the solid line. (b) Average number of
lasing modes (7.58), i.e. of eigenvectors Rk of G(ω0) that have non-vanishing amplitudes
ak(t) in the expansion (7.30) of the field Ω, in the long-time limit.

7.3 Threshold for passive scatterers embedded in an am-
plifying medium

7.3.1 Threshold condition

Let us now consider lasing in an ensemble of N passive (i.e. not pumped) scatterers
embedded in an amplifying medium. Amplification is described by a polarization Pa in
the propagation equation for the electric field:

[
∆r +

ω2
L

c2

]
E(r, ωL) = − ω2

L

ǫ0c2
[P (r, ωL) + Pa(r, ωL)] , (7.63)

where P (r, ωL) =
∑N

i Di(ωL)δ(r−ri) is the polarization due to the N passive scatterers
[Eq. (2.5)]. For simplicity, we use the scalar description of the field. As discussed in
section 4.1, when population inversion in the amplifying medium is stationary, Eq. (7.63)
can be rewritten as

[
∆r +

ω2
L

c2
na(r, ωL)2

]
E(r, ωL) = − ω2

L

ǫ0c2
P (r, ωL), (7.64)

where na(r, ωL) is the refractive index of the amplifying medium. If the latter is made
of atoms of polarizability αa, the linear polarization is Pa(r, ωL) ≃ ǫ0ραa(r, ωL)E(r, ωL),
yielding

na(r, ωL) =
√

1 + ραa(r, ωL). (7.65)

Eq. (7.65) is valid if the size of the medium is smaller than the scattering mean free path
associated with the amplifying medium, and for |ραa| ≪ 1. Corrections to the expression
(7.65) can be obtained using the Lorentz-Lorentz formula [49]. From here on, we assume
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that the pump is uniform, so that amplification is entirely characterized by the refractive
index

na ≃ 1 + i Imna with Imna < 0. (7.66)

Eq. (7.64) shows that the N × N Green’s matrix that controls the lasing threshold
condition (4.33) is now given by

Ga(ω0)ij = (1 − δij)
exp(ik0na|ri − rj |)

k0|ri − rj |
. (7.67)

In addition, since the passive atoms are not pump their dimensionless polarizability α̃
satisfies the optical theorem (4.29). In terms of the eigenvalues Λk(ω0, na) of Ga(ω0), the
lasing threshold (4.33) becomes (ωL ≃ ω0):

ImΛk(ω0, na) = −1, (7.68)

meaning that lasing starts when at least one of the eigenvalue of Ga(ω0) has its imaginary
part smaller than −1. On average, this occurs when the two-dimensional domain DΛ

occupied by the eigenvalues of Ga(ω0) crosses the line ImΛ = −1 on the complex plane.
The next section is devoted to the determination of the domain DΛ.

7.3.2 Eigenvalue distribution of an amplifying Green’s matrix

The eigenvalue distribution and the eigenvector correlator of the non-Hermitian ERM
(7.67) can be found by solving Eqs. (6.34), (6.35), (6.40), and (6.41), with A = Ga(ω0).
Let us concentrate on the low density regime ρλ3

0 . 10, for which the reasoning of section
6.5.1.a can be easily adapted. Traces appearing in Eqs. (6.40) and (6.41) are expressed in
the |r〉-representation according to Eqs. (6.106) and (6.107), where T (r, r′) = ρ〈r|Â|r′〉 =
ρ exp(ik0na|r − r′|)/k0|r − r′| obeys

(
∆r + k2

0n
2
a

)
T (r, r′) = −4πρ

k0
δ(3)(r − r′). (7.69)

On the other hand, the unknown quantity S0(r, r
′) is the solution of the integral equation

(6.108). Applying the operator ∆r + k2
0n

2
a to Eq. (6.108) and making use of Eq. (7.69),

we obtain

∆rS0(r, r
′) + k2

0

[
n2
a + g

ρλ3
0

2π2
ΠV (r)

]
S0(r, r

′) = −4πρ

k0
δ(3)(r − r′), (7.70)

where ΠV (r) = 1 for r ∈ V and 0 elsewhere. At low densities, an approximate solution
of this equation is

S0(r, r
′) ≃ ρ

exp [iκa(g)|r − r′|]
k0|r − r′| , (7.71)

κa(g) = k0

√
n2
a +

gρλ3
0

2π2
. (7.72)

Then, we insert the explicit expressions for T (r, r′) and S0(r, r
′) into Eqs. (6.106) and

(6.107) and assume that the volume V is a sphere of radius R, so that Eqs. (6.40) and
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Figure 7.7: Density plots of the logarithm of eigenvalue density of the N × N random
Green’s matrix (7.67) obtained by numerical diagonalization of 100 realizations of the
matrix for N = 103, ρλ3

0 = 5 (k0R = 22.79), Imna = −0.02 (left panel) and Imna =
−0.057 (right panel). Points ri are randomly chosen inside a sphere of radius R. The
solid red line represents the borderline of the support of eigenvalue density following from
Eq. (7.78) [or equivalently, from Eq. (7.80)]; b0 = 6N/(k0R)2 and ba = −4k0RImna. The
dashed white line represents the borderline in the absence of amplification (Imna = 0).
The horizontal line Im = −1 corresponds to the laser threshold, and the hatched domain
indicates the part of the complex plane where eigenvalues Λ participate in the lasing
process.

(6.41) for the borderline z ∈ δD of the support of eigenvalues become

z =
1

g
+ 2γgh[−iκa(g)R− ik0naR], (7.73)

1

|g|2 = 2γh[2Imκa(g)R], (7.74)

where γ and h(x) are given by Eqs. (6.105) and (6.115), respectively; z ∈ δD is found
upon elimination of g. In addition, an explicit equation for the resolvent g(z) with z ∈ D
follows from Eq. (6.170):

g(z) =
z∗ − 2γgh[iκa(g)

∗R+ ik0n
∗
aR]

2γh[2Imκa(g)R]
, (7.75)

allowing to solve for the eigenvalue distribution p(Λ) with the help of Eq. (6.3). Finally,
the second moment of |Λ| evaluated from Eq. (6.50) reads

〈|Λ|2〉 ≃ Tr(T̂ T̂ †)
2N

= γh (2k0R Imna) . (7.76)

Note that h(x) is a monotonically decaying function that obeys h(0) = 1, and exponen-
tially diverges for x < 0, meaning that the second moment 〈|Λ|2〉 grows rapidly when
increasing the amplification parameter Imna < 0.

At low densities, an accurate approximation of Eqs. (7.73) and (7.74) is obtained by
replacing g by 1/z. This leads to a borderline equation

|Λ|2 = 2γh[2Imκa(1/Λ)R], (7.77)
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Figure 7.8: Same as Fig. 7.8 but for Imna = −0.1. The right panel presents a zoom of
the density plot of the left panel. It shows that most of the eigenvalues are concentrated
near Λ = 0 and in the vicinity of the ‘subradiant branch’.

that can be further simplified into

|Λ|2 = 2γh

(
2k0R Imna − 8γ

ImΛ

3|Λ|2
)
, (7.78)

where we assumed ρλ3
0 ≪ 1 and Imna ≪ 1. Despite these assumptions, the border-

line following from Eq. (7.78) is almost undistinguishable from the one inferred from
Eqs. (7.73) and (7.74) in the regime ρλ3

0 . 10 where these analytical predictions are
also in agreement with numerical simulations. As expected, Eq. (7.78) reduces to the
borderline equation (6.117) of the Green’s matrix G(ω0) for Imna = 0.

In Figs. 7.7 and 7.8, we compare the solution of Eq. (7.78) with results of numerical
diagonalization of the N × N matrix (7.67) for N = 103, ρλ3

0 = 5 (k0R = 22.79), and
na given by Eq. (7.66) with Imna = −0.02, −0.057, and −0.1. When the amplification
|Imna| is increased, the eigenvalue domain grows in size. It deforms near Λ = 0 for
small values of k0R|Imna| (Fig. 7.7), and becomes a circle |Λ|2 = 2γh(2k0R Imna)
(= 2〈|Λ|2〉) in the limit k0R|Imna| ≫ 1 (Fig. 7.8). Note that the subradiant branch Λ =
−Ga(ω0)12, that played the role of an ‘escape channel’ for the ‘gas’ of eigenvalues in the
case Imna = 0 (see sections 6.5.2 and 7.1.3), still preferentially attracts the eigenvalues
in the case Imna < 0, despite the fact that the borderline δD of the bulk goes beyond
−〈min[Ga(ω0)12]〉 (see the right panel of Fig. 7.8).

Physical implications relative to the lasing threshold are briefly investigated in the
next section.

7.3.3 Prediction for the lasing threshold

In order to discuss the random lasing threshold following from Eq. (7.78), it is convenient
to introduce the linear gain length lg. The latter is defined as the path length over which
light intensity is amplified by a factor e (provided that purely geometrical attenuation
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of the intensity is disregarded):

lg =
−1

2k0Imna
. (7.79)

By analogy with the on-resonance optical thickness b0 = 2R/l0, we also define a ‘gain
thickness’ ba = 2R/lg. In terms of b0 and ba, the borderline equation (7.78) reads:

|Λ|2 =
3

8
b0h

(
−ba

2
− b0

2

ImΛ

|Λ|2
)
. (7.80)

As we did in section 6.5.1.b for the free-space Green’s matrix, we can compare the
borderline equation (7.80) with the one obtained in the diffusion approximation. When
scatterers are embedded in a continuous amplifying medium, the diffusion equation for
the average intensity is still of the generic form (4.131), with D = vl0/3|α̃(ωL)|2, and
Q = v[|α̃(ωL)|2/l0−Imα̃(ωL)/l0+1/lg] [see Eq. (4.121)]. The dimensionless polarizability
α̃(ωL) of the scatterers can be arbitrary; in particular, we do not assume at this stage
that the scatterers are not pumped. The threshold condition (4.135) becomes

√
3

2π
b0|α̃(ωL)|

√
|α̃(ωL)|2 − Imα̃(ωL) +

ba
b0

(
1 +

1

1 + 3b0|α̃(ωL)|2/4

)
= 1, (7.81)

where ba/b0 = −4π2Imna/ρλ
3
0. As we explained in section 6.5.1.b, the diffusive prediction

for the borderline δD of the eigenvalue domain follows by replacing α̃(ωL) by 1/Λ in
Eq. (7.81):

|Λ|2 =

√
3

2π

√
1 + ImΛ +

ba
b0
|Λ|2

(
1 +

|Λ|2
|Λ|2 + 3b0/4

)
. (7.82)

For passive scatters, lasing starts when the condition (7.68) is obeyed. Since in the
absence of pump, all eigenvalues of Ga(ω0) satisfy ImΛk > −1, lasing is triggered by
the eigenvalue of Ga(ω0) that has the smallest imaginary part. On average, lasing starts
when the borderline δD crosses the line ImΛ = −1. Furthermore, the inverse of the
polarizability of passive scatterers is 1/α̃ = 2δL − i, where δL = (ω0 − ωL)/Γ0 [see, e.g.,
Eq. (4.9) for Wi = 0 and si = 0], so that the lasing frequency ωL = ω0 − Γ0δL can be
deduced from the abscissa 2δL of the intersection point of δD with the line ImΛ = −1. In
Fig. 7.9, we compare the borderline inferred from Eq. (7.80) (solid line) with the diffusive
prediction (7.82) (dashed line) in the regime of relatively large optical thickness b0 ≫ 1.
If Eq. (7.80) gives a better global estimate of the domain occupied by the eigenvalues of
Ga(ω0) on the complex plane (left pannel), Eq. (7.82) is undoubtedly more accurate than
Eq. (7.80) as far as far as the ‘bottom’ of the distribution is concerned (right pannel).
This demonstrates that Eq. (7.82) should yield a fairly good prediction for the lasing
threshold, as long as b0 ≫ 1 and ρλ3

0 . 10. At the time of writing this thesis, we are
trying to obtain a better approximation of Eqs. (6.40) and (6.41) than (7.80) that could
be as good as (7.82) to describe the bottom of the eigenvalue distribution of Ga(ω0).
Further work is also needed to investigate the eigenvalue distribution of Ga(ω0) in the
regime of high density ρλ3

0 > 10.

Preliminary results presented above demonstrate that our Euclidean matrix approach
is well adapted to calculate the random lasing threshold, not only for models where
scattering and gain are due to the same atoms (section 7.1), but also for systems where
gain and scattering are independent. Interestingly, the nature of the lasing modes in
the latter case is radically different from those in the former one. While lasing was
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Figure 7.9: Eigenvalues of theN×N random Green’s matrix (7.67) obtained by numerical
diagonalization of the matrix for N = 104, ρλ3

0 = 1 (k0R = 83.98) and Imna = −0.005.
Points ri are randomly chosen inside a sphere of radius R. The solid red line represents
the borderline of the support of eigenvalue density following from Eq. (7.80). The dashed
line shows the borderline following from the diffusion equation in an amplifying medium
[Eq. (7.82)].

triggered by the eigenvalues of the Green’s matrix G(ω0) with the largest imaginary part
ImΛ for both the incoherent gain and the coherent Mollow gain (section 7.1), it is now
controlled by the eigenvalues of Ga(ω0) that have the smallest ImΛ. In this sense, the
situation where gain and scattering are independent is much more intuitive because the
first lasing modes are those that have the smallest decay rates in the absence of pump.
Lasing modes may also differ by their degree of spatial localization. Indeed, contrary
to the modes with large ImΛ, eigenvectors of G(ω0) or Ga(ω0) with small ImΛ may be
localized over a small fraction of the N points ri (see Fig. 6.20). As we saw in section
7.2, this can have important consequences for the behavior of the random laser above
threshold.

7.4 Conclusion and perspectives

In this chapter, we applied our non-Hermitian Euclidean random matrix theory to the
problem of random lasing. It allowed us to find the lasing threshold without relying on the
diffusion approximation or transport theory. We predicted, for example, the possibility
of random lasing in a cloud of cold atoms for on-resonance optical thickness exceeding 35
for three- and 110 for two-level atoms (‘Mollow laser’). In addition, microscopic quantum
equations (7.1) and (7.2) for the dynamics of atomic operators in free space allowed us to
express the spectrum of light below threshold, as well as the intensity of laser emission
beyond threshold, in terms of the properties of the Green’s matrix. In particular, we
obtained the rate equations for the lasing modes without invoking a phenomenological
‘bath’ as in the standard laser theory [23], and without using the Feshbach projection
technique promoted by Hackenbroich and coworkers [24–27, 36]. Our equations have
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the advantage of being applicable for any geometry or dimensionality of the problem.
Performing a statistical analysis, we provided analytical expressions for the spectrum
below threshold that is reminiscent of the probability distribution of the ‘collective Lamb
shift’, as well as for the average intensity and the average number of lasing modes. We
showed that mode competition plays an important role in the random laser and leads to
the scaling of the number of lasing modes with

√
N (instead of N in the absence of mode

competition), where N is the number of atoms. At the same time, the laser intensity
scales with N (instead of N2).

Regarding random lasers where scattering and gain are due to the same atoms, various
extensions of the previous results may be considered. We showed that lasing is controlled,
in the case of uniform pump, by the modes of the Green’s matrix that have the largest
imaginary part. It would be interesting to characterize the nature of these modes, that are
delocalized over the whole system, in terms of transport or dynamic properties, and thus
to compare them to other types of peculiar modes that may occur in disordered or chaotic
systems (such as, e.g., necklace states or whispering gallery modes). Another extension
would be to study the full probability distributions of the intensity and of the number of
lasing modes, that seem to be accessible using the results of section 7.2.3 together with the
marginal distribution p(ImΛ). Finally, a more challenging problem is the characterization
of first- and second-order coherence of the random laser beyond threshold, taking into
account the quantum nature of the light-matter interaction. Second-order coherence
may be studied by considering the intensity-intensity correlation 〈I(t, r)I(t, r′)〉 or by
considering the mode-spacing statistics of the Green’s matrix.

Last but not least, we also have seen that lasing in an ensemble of passive scatterers
embedded in an amplifying matrix is triggered by the modes of the ‘amplifying’ Green’s
matrix Ga(ω0) that have the smallest imaginary part. At small amplification, these
modes do not differ much from those of G(ω0), meaning that they appear in a part of
the eigenvalue distribution where can coexist very different types of states: delocalized
states, states localized on small clusters of scatterers (they are states that belong to the
‘subradiant branch’), and Anderson-localized states. All of them may have an impact on
the lasing process. We hope that our Euclidean random matrix approach will help, in
the future, to clarify the respective role of these different states in the physics of random
lasers.
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This thesis is devoted to the study of the properties of light emitted by a collection of atomic scatterers
distributed at random positions in Euclidean space. In this respect, an ab initio theory of random lasing is
formulated in terms of the statistical properties of the so-called ‘Green’s matrix’. This matrix belongs to the
family of Euclidean random matrices (ERMs), for which we develop an analytic theory giving access to their
eigenvalue distribution.

First, we derive quantum microscopic equations for the electric field and atomic operators, and show how the
non-Hermitian Green’s matrix (a matrix with elements equal to the Green’s function of the Hemholtz equation
between pairs of atoms in the system) emerges in the quantum formalism. We provide expressions for the
intensity and the spectrum of light in terms of the Green’s matrix, characterize quantum Langevin forces, and
reveal how the semiclassical random laser threshold is washed out by quantum fluctuations (chapters 2 and 3).

A mesoscopic and semiclassical description of light scattered by pumped atoms is the subject of chapter 4.
We provide a microscopic derivation of the transport equation in the presence of gain, reveal a mapping to
ERMs, and analyze the lasing threshold inferred from the transport equation.

In chapters 5 and 6, we develop an analytic theory for Hermitian and non-Hermitian ERMs in the limit
of large matrix size. We obtain self-consistent equations for the resolvent and the eigenvector correlator of an
arbitrary ERM and apply our results to three different ERMs relevant to wave propagation in random media:
the random Green’s matrix, its imaginary part, and its real part. We are able to describe analytically with
reasonable precision the full probability distribution of decay rates of light emitted by a large number of atoms,
as well as of the collective frequency shift induced by the light-matter interaction. The signatures of Anderson
localization in the properties of the Green’s matrix are also discussed.

Finally, we combine microscopic equations of motion of light-matter interaction with our results for non-
Hermitian ERMs to tackle the problem of random lasing. The lasing threshold and the intensity of laser emission
are calculated analytically in the semiclassical approximation, and the spectrum of light below threshold is
computed by taking into account quantum effects. Our theory applies from low to high density of atoms.

Cette thèse présente une étude des propriétés de la lumière émise par des diffuseurs atomiques distribués
aléatoirement dans l’espace euclidien. Dans ce cadre, une théorie ab initio des lasers aléatoires est formulée en
terme des propriétés statistiques de la ‘matrice de Green’. Cette dernière appartient à la famille des matrices
aléatoires euclidiennes (MAE) pour lesquelles nous développons une théorie analytique donnant notamment
accès à la distribution de probabilité de leurs valeurs propres.

Dans un premier temps, nous établissons les équations quantiques microscopiques régissant la dynamique du
champ électrique ainsi que celle des opérateurs atomiques, et explicitons comment la matrice de Green (dont
les éléments sont égaux à la fonction de Green de l’équation de Helmholtz évaluée entre les différentes paires
d’atomes constituant le milieu) émerge du formalisme quantique. Nous exprimons à la fois l’intensité et le
spectre de la lumière en termes de la matrice de Green, caractérisons les forces de Langevin quantiques, et
montrons de quelle manière le seuil semi-classique d’un laser aléatoire est affecté par la prise en considération
des fluctuations quantiques (chapitres 2 et 3).

Une description mésoscopique et semi-classique de la lumière diffusée par des atomes soumis à une pompe
externe est présentée dans le quatrième chapitre. Nous dérivons une équation de transport obéie par l’intensité
moyenne en présence de gain, établissons un ‘mapping’ avec les MAE, et analysons la condition de seuil laser
déduite de l’équation de transport.

Dans les chapitres 5 et 6, nous développons une théorie générale des MAE, hermitiennes et non hermitiennes,
valide dans la limite de grande taille matricielle. Nous obtenons des équations couplées pour la résolvante et le
corrélateur des vecteur propres d’une MAE arbitraire, puis testons la validité de nos résultats sur trois matrices
jouant un rôle important dans l’étude de la propagation des ondes en milieux désordonnés: la matrice de Green,
sa partie imaginaire, et sa partie réelle. Nous sommes ainsi capables de décrire analytiquement avec une bonne
précision la distribution de probabilité des taux d’émission lumineux dus à un grand nombre d’atomes, ainsi
que celle du déplacement lumineux collectif dû à l’interaction lumière-matière. Les signatures de la localisation
d’Anderson dans les propriétés de la matrice de Green sont également discutées.

Finalement, nous combinons les équations microscopiques de l’interaction lumière-matière avec nos résultats
relatifs aux MAE non-hermitiennes afin de caractériser dans le détail le comportement des lasers aléatoires. Le
seuil laser ainsi que l’intensité au delà du seuil sont calculés analytiquement dans l’approximation semi-classique,
et le spectre de la lumière sous le seuil est évalué en prenant en compte les effets quantiques. Notre théorie
s’applique aussi bien à basse densité qu’à haute densité de diffuseurs atomiques.


