N

N

Discrete Image Registration: a Hybrid Paradigm

Aristeidis Sotiras

» To cite this version:

Aristeidis Sotiras. Discrete Image Registration: a Hybrid Paradigm. Other. Ecole Centrale Paris,
2011. English. NNT: 2011ECAPO0046 . tel-00677442

HAL Id: tel-00677442
https://theses.hal.science/tel-00677442
Submitted on 8 Mar 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-00677442
https://hal.archives-ouvertes.fr

ECOLE CENTRALE PARIS

PHD THESIS

to obtain the title of

Doctor of Ecole Centrale Paris
Specialty : APPLIED MATHEMATICS

Defended by
Aristeidis SOTIRAS

Discrete Image Registration:
a Hybrid Paradigm

prepared at Ecole Centrale de Paris
defended on November 04, 2011

Committee:

Reviewers :  Daniel RUECKERT Imperial College London
William WELLS IIT - Harvard Medical School
Advisor : Nikos PARAGIOS - Ecole Centrale Paris
Examiners : Charles-Andre CUENOD Hopital Européen Georges Pompidou
Christos DAVATZIKOS University of Pennsylvania
Xavier PENNEC - INRIA - Sophia-Antipolis
Bertrand THIRION INRIA - Saclay






Acknowledgments

I’ll start by reciting the beginning of the once official in-office favorite poem:

When you set sail for Ithaca,
wish for the road to be long,
full of adventures, full of knowledge.

Well, the road was pretty long. Four years of PhD studies and in total five years at Ecole
Centrale Paris. There were the Lestrygonians and the Cyplopes as well as the Phoenician
markets and the Egyptian cities. All in all, it has been a nice journey. A journey that
would not be possible to come to an end, were it not the support of a great number of
people, whom I would like to sincerely thank.

First, I would like to express my gratitude to my advisor Prof. Nikos Paragios for his
trust, support and guidance during the whole course of this doctoral work. His invest-
ment was great and his door was always open to discuss any matter that preoccupied me,
be it personal, scientific or just the amazing performance of Panathinaikos. Without his
expertise and continuous encouragement this work would not be possible.

It was a great honor for me to have Prof. Charles-Andre Cuenod, Prof. Christos
Davatzikos, Dr. Xavier Pennec, Prof. Daniel Rueckert, Dr. Bertrand Thirion and Prof.
William Wells IIT as members of my thesis committee. I greatly appreciate their finding
time to travel to Paris to attend my defense despite their great work load and providing
me with insightful feedback. I am grateful to Prof. Daniel Rueckert and William Wells
III for their fruitful reviews on my thesis manuscript, their fairness,scrutiny and generous
enthusiastic remarks. It was a privilege to have such well-known researchers, whose work
has been an important source of inspiration, consider my work.

I would also like to thank Prof. Cristos Davatzikos for hosting me at the SBIA lab
in the University of Pennsylvania. My stay there was very inspiring, fruitful and fun. I
still remember the warmth with which people welcomed me that made my stay far more
easy. Many thanks to all SBIA members and especially to Evi, Ragini, Ying, Luke, Bilwaj,
Kayhan, Stathis K., Yangming, Guray, Steffen and Ali for the friendly atmosphere in the

3



lab and the time spent outside it. I should also thank Katerina F., AK, Scot, Rebekka,
Stathis A., Thanasis, Sevda and Selma for having shared lots of funny moments with me.

During this doctoral work, I had the honor and privilege to collaborate with a number
of people whose input enriched both the content of the work and me as person. I particu-
larly acknowledge Dr. Nikos Komodakis and Ben Glocker for discussions and for kindly
sharing their code. My thanks also go to Yangming Ou for the fruitful collaboration that
started at SBIA and all the energy that he put towards making our projects advance.

During the first steps of my thesis, I took great profit from the discussions with Georg. I
greatly enjoyed working with Radhouene who taught me a lot about research and literature.
Our collaboration was a great source for inside jokes. Working with Mickael was also fun.
I learned a lot about optical imaging and mice. I greatly appreciate his commitment and
his tireless efforts to understand the code I wrote and correct my precious bugs. My thanks
also go to Stavros A. for letting me play the boss though I was filled with disappointment
when the squirtle duo did not manage to eat all the food!

I am also grateful to the unofficial reviewers of my work. Ahmed, Loic, Stavros A. and
AK made sure to spot all typos, inconsistencies in the formulation while at the same time
made a number of recommendations that improved greatly the presentation of the content
of the thesis.

I would like to acknowledge the members of the Applied Mathematics Laboratory
of Ecole Centrale Paris for providing a nice environment to work. Many thanks to the
greatest Snoopy fan Sylvie and Annie for helping out with all administrative issues and
for their understanding and patience. Life in lab could be far more difficult if not for them.
Geraldine, Catherine and Christine were also of great help with numerous bureaucratic
issues related to the PhD thesis and of course the Greek army.

I am particular indebted to my colleagues that bore me in the same room during these
years: Panos (my precious debugger, debugging teddy bear and geek advisor), Loic (dou-
ble diplome, ecole normale, aggregation and above all papa of beautiful Lilah), Olivier
(Olifou that eats iron like koutalianos), Chaohui (our Chinese spy 007, Jiji - Xiao Jiji),
Salma (our office queen - Lela), Radhouene (Radadan show me the target), Ahmed (the
great pants terrorist), for supporting and enhancing my extreme sense of humor (Je chauffe
bien after all). They were my supporting vectors during the difficult moments and great
companions during the good ones. I feel lucky that I can consider them as true friends.

On a larger scale, I am thankful to all members of the computer vision and medi-
cal imaging team for injecting so much fun in a working environment. Basket, football,
blooby volley, armagetron, pranks, running sessions to the closest RER B station, long
discussions about Tibet and Taiwan, manga reading, eating exotic delicacies, were few of
the many extracurricular activities that we did together. All lab mates, Maxime, Noura,
Regis, Olivier J., Charlotte, Martin, Daniel, Sarah, Pierre-Yves, BoBo, Katerina, Nicolas,



Stavros T., Haithem, Fabrice, Fatima were a pleasure to be around on a daily basis. Fi-
nally, I do not forget people who passed a shorter period of time at the lab: Kostas who
always finds some time to treat me when I am in Athens, Mihai with whom we passed a
great time exploring Romania, Dimitris who always showed interest on what I was doing,
Rola, Jose, Thanos, Fahim, Wanping, Sylvain, Pascale, Samuel, Alexandros, Jean, Chris,
Olfa, Michalis and I hope I didn’t forget anyone.

Outside the scope of work, I enjoyed the support of many people that either brightened
my stay at Paris or made me feel still at home whenever back to Greece or sometimes both.
I would like to thank Maria for somehow managed to survive an overdose of some of my
most "interesting" work focused-on moments combined with a certain degradation of my
omnipresent jokes. One crevette would like to thank Francois, Komporis family and com-
pany. Life at Paris was fun due to the presence of the Italian mafia leaded by Mara, Valeria,
Alessandro, Paola and Laura that were kind to host me and show me some of Italy, Sylvia,
crazy Maria P., Nathalie, Nina, Patrick and Angeliki. All the parisaki friends, Manos, An-
thi and their young devils, Didi, the Unbeatable one, Alex, Foteini, Evi, Dimitris Geitonas,
Undo, Eleni, Varkouda & bro, Orestis, Pantelis M. & Eri for having explored the great va-
riety of french wines with me. Arctouros would like to thank Anastase, Vasw, Nikolas
and Dialecti. Christos, Marina, Michaela for the poem and chocolate sessions. George
and Georgia for many hours of many things that were sympa, the best duo of blog-writers,
poets and philosophers, sun and stars and the list goes on, Tolis, Kostas, Vasw, Panos,
Vagelis, Pantelis T., my distinguished Tripoli company and more and more that either
have heard me complain without stop or making jokes (frankly I am not sure which one is
worse). And as this thanks giving journey seems to take so long before passing to the next
stop, thank you my friends and sorry if I failed to write down everything here.

Last but not least, I would like to thank all my Greek family. And Greek in the sense
that family is considered really in its most extended sense. My cousins, aunts and uncles
that not only expressed their support, interest and love whenever I am back at Greece but
at many occasions traveled here to either help or share my joy. I really appreciate and
acknowledge their help throughout many years far exceeding the ones of the PhD. It goes
without saying that a tribute should be paid to my brother for his love and support and
my parents for all their sacrifices, unconditional love and trust and for so many things that
duly acknowledging goes beyond the scope of this section. To them goes my everlasting
gratitude.

This thesis is dedicated to my parents and brother.






Abstract

This thesis is devoted to dense deformable image registration/fusion using discrete meth-
ods. The main contribution of the thesis is a principled registration framework coupling
iconic/geometric information through graph-based techniques. Such a formulation is de-
rived from a pair-wise MRF view-point and solves both problems simultaneously while
imposing consistency on their respective solutions. The proposed framework was used
to cope with pair-wise image fusion (symmetric and asymmetric variants are proposed)
as well as group-wise registration for population modeling. The main qualities of our
framework lie in its computational efficiency and versatility. The discrete nature of the
formulation renders the framework modular in terms of iconic similarity measures as well
as landmark extraction and association techniques. Promising results using a standard
benchmark database in optical flow estimation and 3D medical data demonstrate the po-
tentials of our methods.

keywords: Markov Random Fields, registration, group-wise, iconic, geometric






Résumé

La présente these est consacrée au recalage et a la fusion d’images de fagon dense et dé-
formable via des méthodes d’optimisation discrete. La contribution majeure consiste en
un principe de couplage entre recalage géométrique et iconique via I’utilisation de méth-
odes dites graphiques. Une telle formulation peut étre obtenue a partir d’'un Champ de
Markov Aléatoire binaire et permet de résoudre les deux problemes simultanément tout en
imposant une cohérence a leurs solutions respectives. La méthodologie s’applique a la fu-
sion de paires d’images (dans ses versions symétrique et asymétrique), ainsi qu’au recalage
simultané de groupes d’images nécessaire a I’étude de populations. Les qualités princi-
pales de notre approche résident dans sa faible complexité algorithmique et sa versatilité.
Lutilisation d’une formulation discrete assure une grande modularité concernant tant la
mesure de similarité iconique que I’extraction et 1’association de points d’intérét. Les ré-
sultats prometteurs obtenus sur les bases de données de référence en flot optique et sur des
données médicales tridimensionnelles démontrent tout le potentiel de notre méthodologie.

mots clés: Champs de Markov Aléatoire, recalage, analyse simultanée, iconique, géométrique
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Chapter 1

Introduction

The present work lies at intersection of Computer Vision and Medical Image Analysis.
It aims to address the problem of establishing accurate dense correspondences between
images. When correspondences in space are considered, the problem is usually referred
to as image registration. This is a problem that arises predominantly in medical image
processing under three scenarios. Under the first scenario, we aim to establish correspon-
dences between successive exams of the same subject (longitudinal modeling). Under the
second scenario, the goal is to fuse different image modalities to perform better diagnosis.
Finally, under the third scenario, correspondences between different subjects are sought
towards population modeling. When correspondences in time are considered, the problem
is referred to either as optical flow or motion estimation. In this case, a sequence of im-
ages is given as input and the goal is to estimate the motion from one time instance to the
next under the assumption of preservation of intensity values over time. Correspondence
estimation, along with image segmentation, is one of the most important problems in the
field of image processing. Despite important advances, registration is still considered a
challenging problem.

In this introductory chapter, in section 1.1 we give a brief description of the context
of this work. Next, in section 1.2, after having introduced the main challenges posed
by the current technological and methodological advances, we present the main ideas of
this work. Section 1.3 concludes the chapter giving an overview of the work done in the
context of this thesis.

1.1 Thesis Context

There are many computer vision and medical imaging tasks that call for the estimation of
correspondences. The span of applications stretches from numerous clinical to industrial
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20 CHAPTER 1. INTRODUCTION

ones. It is by considering this extreme variety of applications that one can understand the
importance of the problem.

From the clinical point of view, one can imagine that the goal of automating medical
diagnosis with the aid of computers would be out of consideration unless reliable regis-
tration methods exist. Diagnosis may be assisted by permitting the doctors to quantify
the changes appearing to the patient’s anatomical structures on the course of time or in a
differentiation setting to compare a patient to a normal subject and localize the differences
of pathological origin. In the context of diagnosis, registration delivered quantified infor-
mation like myocardial strain estimation may be considered as an important biomarker for
the monitoring of cardiac diseases and the estimation of cardiac injuries.

Computer assisted diagnosis may be the most challenging objective sought in medical
imaging but still there exist numerous clinical applications upon which registration has
a great impact. Spatial normalization allows for longitudinal or population modeling of
anatomical structures extending our knowledge with respect the anatomical variability.
Knowing the normal anatomical variability allows for group studies that reveal statistical
significant regions influenced by pathogenies.

Image registration plays a vital role in treatment planning. One can imagine registra-
tion between healthy subjects and ones with brain tumors in order to localize important
brain structures to be taken into consideration for surgical planning. Registration is im-
portant even during the surgery itself as it allows for accurate localization of anatomical
structures accounting for position shifts induced by surgical operations. In terms of treat-
ment planning, we should also note the impact that registration has in radiotherapy by
localizing tumorous cells and thus limiting the destruction of healthy ones.

From the industrial point of view, motion estimation has been an important component
of many systems. Video surveillance systems constitute one of the most prominent direc-
tions to boost security. Cameras capturing video sequences are installed in sensitive public
areas towards automating the detection and tracking of activity. Both tasks rely heavily on
motion estimation.

Motion estimation is also important for more low-level video processing tasks. Vintage
film restoration can profit from motion estimation to restore a frame based not only on
spatial but also temporal information. That way artifacts or even subtitles can be removed
accurately. Two problems that are closely related to the hardware and can benefit from
motion estimation algorithms are the de-interlacing and frame interpolation ones. In the
first case, the recording device acquires the video with alternating fields of even and odd
lines and special care is taken to convert it to a signal that contains both. In the second
case, new frames are created by interpolating between two successive ones i.e. to match an
incoming video to the display’s refresh rate. Last but not least, in order to compress video
information to either store or transmit it efficiently, motion estimation is indispensable and
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currently an important component of MPEG encoding.

1.2 Thesis Statement

The vast range of the potential applications as well as the technological advances create a
dynamically changing environment that poses important challenges. Being mostly in the
front end of an application, correspondence estimation algorithms must be computational
efficient, operate even on real-time constraints, and highly versatile. Moreover, especially
in clinical settings the solution they provide should exhibit certain desired properties to
facilitate or even allow for reliable subsequent processing.

Two main reasons fuel the need for efficiency. On one hand, the volume of acquired
data grows with a fast rate. Video monitoring devices are installed constantly. Filming
videos is an important industry but also an everyday activity. Most importantly, medical
imaging has become standard clinical practice. On the other hand, the time constraints
imposed either in an industrial or a clinical setting become more and more important. One
can only imagine the importance of time during a surgical operation where the surgeon
needs spatially normalized data to perform the surgery.

A second challenge is revealed if we consider either the vast range of problems to be
tackled or the new imaging devices introduced in the clinical practice resulting in images
with different properties. In its essence, the problem is always the same, establishing
correspondences between two or more images. Thus, one should expect that an appropriate
solution to it should be versatile enough to be used for any of the previous applications
or image modalities. This underlines the need for modularity with respect to the main
components of the algorithms.

The broad purpose of this thesis is to develop novel methods to tackle the problem
of recovering correspondences between images, especially ones of medical interest, in an
efficient and modular way. To respond to the needs advocated earlier, efficient approximate
schemes have been devised to achieve a good balance for the important accuracy versus
efficiency trade off. In an effort to render the proposed algorithms both more efficient and
modular, discrete optimization techniques based on a Markov Random Field formulation
of the problem have been preferred. Finally, the particularities of the application of such
methods in statistical studies have been accounted for by thoughtful design of the proposed
algorithms.
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1.3 Thesis Roadmap

The remainder of this thesis is organized into four chapters. In Chapter 2 an extensive
state-of-the-art review of deformable registration is provided. Additional emphasis has
be given to techniques applied to medical images towards positioning this thesis while
demonstrating the important challenges of our work.

Chapter 3 covers the introduction of our novel hybrid registration framework. The
proposed method is able to provide diffeomorphic deformation fields by considering in a
coupled way both iconic and geometric information. The problem is solved in an efficient
one-shoot optimization.

Following, in Chapter 4 the previous method is extended and endowed with the sym-
metric property. In this setting, larger deformations can be recovered by allowing both
images to deform towards a common domain. Moreover, the result of the algorithm is the
same regardless the order the input images are given.

The previous symmetric algorithm is then extended in Chapter 5 to the group-wise
case, where a set of images are considered simultaneously and registered towards a com-
mon domain that is not explicitly chosen. That way, statistical studies may be performed
without caring for the bias that is introduced by the choice of a template domain.

The thesis is concluded in Chapter 6 with a discussion over the work presented in this
manuscript, while suggesting different research directions for the future.



Chapter 2

Deformable Registration: A Survey

2.1 Introduction

In general, in image registration two images are considered. One is usually referred to
as source or moving image, while the other is referred to as target or fixed image. In
this doctoral study, the source image is denoted by S : Qg C R? = R, while the target
image by T : Qr C R? — R, d = {2, 3}. The source image undergoes a transformation
T: QS — R,

The goal of registration is to estimate the optimal transformation. This is often achieved
by means of an energy minimization problem:

arg mein/\/l(T, SoT(0))+R(T(0)). (2.1)

The previous energy (Eq. 2.1) comprises two terms. The first term, M, quantifies the level
of alignment between a target image 7" and a source image S under the influence of trans-
formation 7 parametrized by 6. The notation So7 will be used interchangeably with Sou
to denote that a moving image is deformed. The second term, R, regularizes the transfor-
mation and accounts for the ill-posedness of the problem. In general, the transformation at
every position x € ) (€2 depicting the image domain) is given as 7 (x) = x + u(x) where
u is the deformation field. The velocity field, denoted as v, is defined as v = ,u+v’ Vu.
An effort to keep the notation consistent throughout the document has been made. Here-
after, vectors are denoted in bold, while the upper-script is used to index their components.
Due to the diversity of the models described, the meaning of some symbols may change.
Whenever a change occurs, the signification of the symbol will be stated explicitly.
Image registration involves three main components: (i) a deformation model; (ii) an
objective function; and (iii) an optimization strategy. Image registration is a problem that
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has been studied in great detail during the past few decades and many innovative ideas
regarding these three main aspects have been proposed. General reviews of the field may
be found in [2, 3, 4, 5, 6, 7, 8]. However due to the rapid progress of the field such reviews
are to a certain extent outdated.

The aim of this chapter is to provide a thorough overview of advances of the past
decade in deformable registration. Nevertheless, some classic papers that have greatly
influenced the advance of the ideas in the field are mentioned. Even though our primary
interest is deformable registration, for the completeness of the presentation, references to
linear methods are also included as many problems have been treated in this low degrees
of freedom setting before being extended to the deformable case.

The chapter is divided following the previous structural separation of registration al-
gorithms in three components: (i) a deformation model; (ii) an objective function; and
(iii) an optimization strategy.

2.2 Deformation Models

The choice of deformation model is of great importance for the registration process as
it entails an important compromise between computational efficiency and richness of de-
scription. The parameters that registration estimates through the optimization strategy
correspond to the degrees of freedom of the deformation model. Their number varies
greatly, from around 10, in the case of global linear transformations, to millions, when
non-parametric dense transformations are considered. The greater the dimension of the
state space, the richer the descriptive power of the model though at the cost of more chal-
lenging and computational demanding inference. Furthermore, the choice of the defor-
mation field often implies an assumption regarding the nature of the deformation to be
recovered.

The rest of the section is organized following the classification of deformation mod-
els given by Holden [9]. More emphasis is put on aspects that were not covered by that
review. According to [9], geometric transformations can be classified into two main cate-
gories:(i) those that are inspired by physical models; and (ii) those inspired by interpolation
and approximation theory.

Of great importance for biomedical applications are the constraints that may be applied
to the transformation such that it exhibits special properties. Such properties include, but
are not limited to, inverse consistency, symmetry, topology preservation and diffeomor-
phicity. The value of these properties was made apparent to the research community and
were gradually introduced as extra constraints.

e Inverse consistency: Despite common intuition, interchanging the order of input
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images could produce transformation changes, making the choice of template an
important task and biasing the subsequent statistical analysis. Moreover, the com-
position of the forward and backward transforms (or the transforms that we obtain
by interchanging the role of the images) is not the identity one. In some cases, the
transformations may not even be invertible. To account for that counter intuitive
result, inverse consistent algorithms have been developed.

e Symmetry: Taking one step further the previous idea, symmetric algorithms have
been conceived that guarantee that the result does not change by swapping the in-
puts. The distinction between symmetric and inverse consistent algorithms lies in
their primary aim. The first guarantee that the result is invariant to the order of the
images, while the second approximates symmetry by imposing the inverse consis-
tency constraint.

e Topology preservation: The previous properties are desired and are usually im-
posed as soft constraints. Thus, the resulting transformation is not always one-to-
one and crossings may appear in the deformation field. Such an effect in undesirable
because it is quite often the case (especially when dealing with normal subjects) that
we know that true correspondences can be obtained for every point of the image do-
main. What is more, the mapping from one anatomical structure to another should
conserve the relative positions of points. Such a demand has motivated topology
preserving algorithms whose deformation field is one-to-one or has a Jacobian de-
terminant that is not zero.

¢ Diffeomorphicity: On top of the topology preservation constraint, ensures that the
transformation field exhibits a certain level of smoothness.

In the following sections, the most important methods of the two classes are presented
with emphasis on the approaches that endow the model under consideration with the pre-
vious desirable properties. One subsection is devoted to methods that employ task-specific
constraints.

2.2.1 Geometric Transformations Inspired by Physical Models
Following [3], physical models can be further separated in five categories:

e Elastic model.

e Viscous fluid flow model.

e Diffusion model.
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e Curvature registration.

e Flows of diffeomorphisms.

Elastic Model

In this case, the image under deformation is modeled as an elastic body. The Navier-
Cauchy equation describes the deformation, or

pVu+ (p+A)V(V-u)+ F =0, (2.2)

where F(x) is the force that drives the registration based on an image matching criterion,
w refers to the rigidity that quantifies the stiffness of the material and A is Lamé’s first
coefficient.

Image grid was modeled initially as an elastic membrane in [10]. Two different types
of forces compete to reach an equilibrium. The external force tries to deform the image
such that matching is achieved while the internal enforces the elastic properties of the
material. The resulting equation is solved by deploying a finite difference scheme in an
iterative manner.

Bajcsy and Kovacic [11] extended this approach in a hierarchical fashion where the
solution of the coarsest scale is up-sampled and used as initialization for the finer one.
Linear registration is used at the lowest resolution.

The linear elastostatic problem can be formulated in a variational setting where the
displacement is given by minimizing:

1
E:—/a:edV—/F-udV—/t‘udS, (2.3)
2y 1% s

where € denotes the strain tensor, o the stress tensor and t the tractions that are distributed
over a surface S of a volume V. The inner product between two tensors is denoted as - : -.
The first term in the equation entails the internal forces while the other two, the external
body and surface ones.

In [12] the previous equation 2.3 was considered in a Bayesian setting allowing for
the computation of the uncertainty of the solution as well as for confidence intervals. The
Finite Element Method (FEM) is used where the displacements are inferred for the element
nodes and interpolated elsewhere.

Linear elastic models have been also used when registering brain images based on
sparse correspondences. In [13], a mapping between the cortical surface is established, two
images are brought into correspondence by estimating a global transformation modeling
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images as inhomogeneous elastic objects. The elasticity parameters vary as a function
of location in the brain image to compensate for the fact that certain structures tend to
deform more than others. In addition, a non-zero initial strain was considered so that some
structures expand or contract naturally.

In general, an important drawback of registration process is that when source and target
volumes are interchanged, the obtained transformation is not the inverse of the previous
solution. Christensen and Johnson [14] tried to overcome this shortcoming by estimat-
ing simultaneously both transformations while penalizing inconsistent transformations by
adding a constraint to the objective function. The regularization constraint is that of linear
elasticity though the transformation is parametrized by a 3D Fourier series.

To tackle the inconsistency problem Leow er al. [15] took a different approach. Instead
of adding a constraint that penalizes the inconsistency error, they proposed a unidirectional
approach that couples the forward and backward transformation and provides inverse con-
sistent transformations by construction. This method considers only the forward mapping
to minimize the symmetric energy:

E(T) = (2.4)
/Q 1S(T (%)) — T(x)||*dx + wR(T) +/ I1T(T H(x)) — S(x)||?dx + wR(T ).

Qs

[\ J/
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Minimizing the previous energy E(7) in a gradient descent fashion would lead to the
following update rule:

T—T+ 5771 + (57]2, T_l — T_l + (551 + 5&2 (25)

where § is the step, 7; and &; are the gradient descent directions of £; when considering
the forward and backward warping respectively. Similarly, 7, and &, are defined for Fj.
By taking into account that the composition of the two maps should give the identity, 7
can be expressed as:

2 = =V - (T(x))&((T(x)). (2.6)

The previous formulation permits to minimize the symmetric energy by considering only
the forward mapping but at the same time imposing that the transformation is inverse
consistent.

However, linear elastic models is are limited and can efficiently handle the case of
small deformations. In [16], a way to recover large deformations, that are inverse con-
sistent is given by considering a sequence of small deformation transformations. Each
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incremental transformation is modeled by a linear elastic model. A periodic sequence of
images is considered where the first (or last) and middle image are the source and target
respectively. Each incremental transformation maps an image of the sequence to the one
that proceeds it. The concatenation of all transformations maps one input image to an-
other. The objective function to be minimized is the summation of the intensity similarity
cost evaluated over two successive pairs of images.

A different way to produce inverse consistent transformations that can account for
large deformations is proposed in [17]. They modeled the deformation process through
the St Venant-Kirchoff elasticity energy:

R = /%TT((O’ — 1))+ gT'r(a ~ 1) 2.7)

Deformations that result in strain tensors that differ from the identity (or rigid transforma-
tion) are penalized by measuring the Euclidean matrix distance. Such an approach consid-
ers the trace of the squared difference of the strain tensor with the identity 7r((o — I)?).
However, the Euclidean metric has been proven not good for the tensor space while its
asymmetry results in the inverse-inconsistency problem. Such a limitation was dealt with
the use of log-Euclidean metrics in the place of the Euclidean ones, resulting in the Rie-
mannian elasticity energy which is inverse consistent:

R = }l/TT(log(cr)Q). (2.8)

In [18], fast diffeomorphic image registration was proposed based on either mem-
brane, bending or linear elastic energy. The velocity field is assumed to be constant over
time. The solution is thus given through integration over time by composing successive
solutions. Given a pair number of steps, this can be performed efficiently by a scaling
and squaring approach. Furthermore, the exponential of the flow field is considered to
guarantee that then the mapping is diffeomorphic. The energy is optimized by using the
Levenberg-Marquardt algorithm and a full multi-grid approach in order to compute effi-
ciently its update step.

Viscous Flow Model

In this case, the image under deformation is modeled as a viscous fluid. The transformation
is governed by the Navier-Stokes equation:

VA A+ (up+ A)V(V-v) +F = 0. 2.9)

Operating on velocities, such a model permits to recover large deformations. The first term
of the Navier-Stokes equation (Eq. 2.9), constrains neighboring points to deform similarly
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by spatially smoothing the velocity field. The second term allows structures to change in
mass while 1y and A are the viscosity coefficients.

Viscous fluid flow transformations were introduced in medical image registration in
[19, 20]. In [19], a template is modeled as a viscous fluid allowing for large magnitude
non-linear deformations. The Partial Differential Equation (PDE) is solved for small time
intervals and the complete solution is given by an integration over time. For each time
interval a successive over-relaxation scheme is used. The Jacobian is monitored and each
time its value falls under 0.5, the template is re-gridded and a new one is generated that is
subsequently used to estimate a transformation. The final solution is the concatenation of
all successive transformations occurring for each re-gridding step. That way, the topology
is guaranteed to be preserved. In a subsequent work [20], a hierarchical way to recover
the transformations for brain anatomy is presented. Initially, global affine transformation
is performed followed by a landmark transformation model. The result is refined by fluid
transformation preceded by an elastic registration step.

Computational inefficiency is the main drawback of viscous fluid models and the rea-
son they have not gained the popularity of the rest of transformation models. To cir-
cumvent this shortcoming, a massive parallel computer implementation has been pro-
posed in [19] while Bro ef al. [21] proposed a technique based on a convolution fil-
ter in scale-space. The filter is designed as the impulse response of the linear opera-
tor L = prAu+ (puy + Ap)V(V - v) defined in its eigen-function basis. A multi-grid
approach was proposed in [22] towards handling anisotropic data along with a multi-
resolution scheme opting for recovering first coarse velocity estimations and refining them
in a subsequent step.

An inverse consistent variant of fluid registration was proposed in [23] to register
Diffusion Tensor images. Symmetrized Kullback-Leibler (KL) divergence was used as
matching criterion. Inverse consistency was achieved by evaluating the matching and reg-
ularization criterion towards both directions. Fluid deformation models have also been
used to tackle multi-modal registration [24] or in an atlas-enhanced registration setting
[25].

Diffusion Model

In this case, the deformation is modeled by the diffusion equation:
Au+F =0, (2.10)

that corresponds to the following regularization energy:

d
R = /Z||Vuj(x)||2dx. (2.11)
j=1
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In the previous equation, the upper-script denotes order of the spatial dimension. Algo-
rithms based on this transformation model exploit the fact that the Gaussian kernel is the
Green’s function of the diffusion equation Eq. 2.10 to provide for an efficient regulariza-
tion step.

Thirion [26], inspired by Maxwell’s Demons, was the first to propose diffusion models
in image registration. In this work, object boundaries are modeled as membranes and the
image is diffused through it under the influence of the Demons placed inside the mem-
branes. The algorithm operates in two steps: (i) estimation of the displacements for every
point, and (ii) a regularization step. The Demon force is calculated by considering the
optical flow constraint that is valid for small displacements. Regularization is achieved
through Gaussian smoothing.

Demons, as initially introduced, is an efficient algorithm able to provide dense corre-
spondences but lacks a sound theoretical justification. Due to the success of the algorithm,
a number of papers tried to give theoretical insight into its workings. Fischer et al. [27]
gave a fast algorithm for image registration. The result was given as the solution of a
diffusion PDE. An efficient scheme for its solution was proposed while a connection to
Thirion’s Demons algorithm was drawn.

The most successful attempt to shed light on Demons is described in ef al. [28]. Image
registration is formulated as an energy minimization problem and the connection of the
Demons algorithm with gradient descent schemes is shown.

Vercauteren et al. [29] adopted the alternate optimization framework introduced by
Cachier [30] to relate symmetric Demons forces with the Efficient Second-order Mini-
mization (ESM)[31]. The transformation was computed by optimizing the global energy

E=M(T,Sou)+D(u,w)* +R(w). (2.12)

~
Matching
.

~
Regularization

Optimization can be achieved efficiently as the introduction of the auxiliary variable v
decouples the problem into two parts that can be solved separately very fast. Matching was
performed by minimizing the first term through ESM optimization while regularization
was achieved by Gaussian smoothing.

In [32] Thirion’s algorithm was endowed with the diffeomorphic property. Diffeomor-
phic transformations were parametrized by using stationary speed vector fields allowing
for a fast computation of exponentials based on the scaling and squaring method.

To further facilitate the use of the Demons algorithm in anatomical computational stud-
ies, Demons were provided with invertibility and symmetry properties in [33]. This was
achieved by representing the complete spatial transformation in the log-domain. A sym-



2.2. DEFORMATION MODELS 31

metric extension was also proposed by considering in the energy the difference between
the two images under the influence of the forward transform and its inverse.

Recently, efforts opting for a mathematical justification of the smoothing step in order
to enable for deformations bearing different physical properties [34, 35, 36] have been
considered.

Cahil et al. [34] showed that curvature and fluid registration can be formulated as
two coupled diffusion equations. Their stationary solution may be approached via suc-
cessive Gaussian convolutions, thus yielding a Demons algorithm for these cases. In a
subsequent work [35], they showed how to extend the curvature regularization to consider
local image gradient content. Again, a coupled PDE system was proposed whose station-
ary solution can be attained by consecutive convolutions with the Green’s function of the
diffusion equation. Another way to perform adaptive smoothing was presented in [37]
where a non-stationary diffusion filter was used exploiting available knowledge regarding
the deformability of tissues. In areas where greater deformations were expected, diffusion
was scaled down. On the contrary, inside objects where coherence should be preserved,
diffusion was scaled up.

Mansi et al. [36] introduced a physical constraint in the registration process to estimate
the myocardium strain from Cine-MRI. The logDemons algorithm [33] was endowed with
the incompressibility constraint by making the velocity field divergence-free. This was
achieved by solving the Poisson equation under 0-Dirichlet boundary conditions within a
subdomain of the image showing the myocardium.

A main drawback of this family of methods is that the Demons forces are usually
calculated based on a SSD criterion and thus are appropriate for mono-modal image reg-
istration. Numerous efforts have been made towards extending Demons for multi-modal
registration. Guimond et al. [38] proposed a method that alternates between Demons
based registration and intensity correction. Other efforts include the encoding of similar-
ity metrics such as Normalized Mutual Information [39, 40].

The application of the Demons algorithm is not limited to scalar images but has been
extended to diffusion tensor images [41], multi-channel ones [42] as well as different ge-
ometries [43]. In [41], Demons forces were derived by considering the squared difference
between each element of the Log-Euclidean transformed tensors while taking into account
the reorientation introduced by the transformation. Multi-channel Demons were consid-
ered to register 4D Time-Series of Cardiac Images by enforcing trajectory constraints in
[42]. Each time instance was considered as a different channel. In addition, the trans-
formation between successive channels was considered as given. Finally, the Demons
framework was employed to register cortical surfaces parametrized as spheres in [41]. To
generalize Demons on the sphere, a way to measure the distance between two transforma-
tions and to regularize the transformation was introduced.
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Curvature Registration

In this case, the deformation is modeled by the following equilibrium equation:
A*u+F = 0. (2.13)

The regularization part of the energy to be minimized in this specific case, is given by

R:/Z(Auj(x))de. (2.14)

The advantage of such a regularization scheme is that it does not penalizes affine linear
transformations thus removing the need for a an additional affine linear pre-registration
step.

Fischer and Modersitzki were the first to introduce this constraint in [44, 45]. To solve
equation Eq. 2.13, the Gateaux derivatives with respect to the data and regularization term
were calculated:

| B ) + A% v (), dx 215

To solve the resulting PDE a finite difference scheme was used by introducing an artificial
time parameter while the following boundary conditions were considered:

Vil (x) = VAW (x) =0, x €9Q, j=1,---d. (2.16)

The use of the previous Neumann boundary conditions was motivated by the fact that
the resulting matrix problem is highly structured and thus can be solved fast. While this
is true, the resulting underlying function space penalizes the affine linear displacements
as pointed out by Henn in [46]. Thus, Henn proposed to include second-order terms as
boundary conditions in the energy and applied a semi-implicit time discretization scheme
to solve the full curvature registration problem.

In [47], another way to solve the curvature based registration problem was proposed.
Instead of devising a numerical scheme to solve the PDE that results from the equilibrium
equation (Eq. 2.13), recursive convolutions with an appropriate Green’s function were
used following [21].

Flows of Diffeomorphisms

Last but not least, flows of Diffeomorphisms have been proposed to model the defor-
mation. In this case, the deformation is modeled by considering its velocity over time
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according to the Lagrange transport equation [19, 48, 49]. The regularization constraint
constrains the velocity field to be smooth:

1
R:/ |vel|3-dt. (2.17)
0

|||l is a norm on the space V' of smooth velocity vector fields defined as || f||v = || L f||z,»
where L is a differential operator and || - ||, is the standard L, norm of square integrable
functions. By letting the velocity field vary over time, it is feasible to estimate large
deformations [50].

The advantage of this framework, known as Large Deformation Diffeomorphic Metric
Mapping (LDDMM)), is that it allows for the definition of a distance between images or
sets of points [51, 52]. The distance is defined as a geodesic according to a metric and
can be used for studies of anatomical variability [53]. A number of theoretical aspects of
this framework and especially the ones related with computational analysis were further
developed in [54, 55, 56, 57, 58]. The interested reader is referred to [59] for an overview
of the evolutions and the corresponding equations.

The LDDMM framework has been proven extremely versatile and has been extended
to treat a number of problems, e.g. volume registration for scalar, vector- and tensor-
valued data [50, 60, 61, 62, 63, 64], point-matching [51], point-matching on spheres [65],
matching sets of unlabeled points [66, 67, 68], shape-matching [69, 70], curve-mapping
[71, 72,73, 74] and hybrid registration [75, 76].

Even though the LDDMM framework provides diffeomorphic transformations, it is
not symmetric. To encode the symmetric property a number of approaches have been
proposed [77, 60, 61]. Beg et al. [60] focused on providing symmetric data terms. Younes
also discussed ways to render the alignment process symmetric in [77] while a symmetric
LDDMM registration process driven by cross-correlation was presented in [61].

The mathematical rigorousness of the LDDMM framework comes at an important cost.
The fact that the velocity field has to be integrated over time results in high computational
and memory demands. Moreover, the gradient descent scheme that is usually employed
to solve the optimization problem of the geodesic path estimation converges slowly. More
efficient optimization techniques for the LDDMM have been investigated in [78, 79, 62].

Marsland et al. [78] formulated the problem in a PDE framework and a particle method
was used to solve for the diffeomorphism. A similar approach that involves a particle mesh
method was presented in [79] by Cotter et al. More recently, a Gauss-Newton implemen-
tation of the previous algorithm was given in [62]. These approaches are based upon the
fact that knowing the initial velocity field suffices to calculate the intermediate and final
deformation.

Instead of devising more sophisticated optimization schemes to calculate efficiently
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diffeomorphisms, one could simplify the problem by decreasing its degrees of freedom.
Stationary velocity fields [80] have been used towards this direction. Despite being limited
with respect to the diffeomorphisms that they can capture, stationary velocity fields are a
common choice among many researchers [18, 81, 82, 83]. Hernandez et al. followed
this approach and considered stationary Ordinary Differential Equations (ODEs) in the
LDDMM framework [84].

2.2.2 Geometric Transformations Inspired by Interpolation Theory

Rather than being motivated by a physical model, models of this class are derived either
by interpolation theory or approximation theory. In interpolation theory, displacements,
considered to be known for a restricted set of locations in the image, are interpolated
for the rest of the image domain. In approximation theory, we assume that there is an
error in the estimation of displacements. Thus, the transformation approximates smoothly
the known displacements rather than taking the exact same values. The success of these
models lies in the fact that they are rich enough to describe the transformations present in
image registration problems while having low degrees of freedom facilitating the inference
of the parameters.

Radial Basis Functions

One of the most important families of interpolation strategies are the Radial Basis Func-
tions (RBFs), where the value at an interpolation point x is given as function of its distance
r from the known sample p, or

N

u(x) =Y wio([x - pil)). (2.18)

=1

An evaluations study comparing RBFs used as transformation functions in non-rigid im-
age registration was first given in [85]. A more thorough presentation and an analysis
with respect to their property to preserve topology was given more recently in [86]. The
advantage of the RBFs is that they are able to interpolate a deformation field from irreg-
ularly placed known values. Their main disadvantage lies in the fact that they often have
a global support. As a result, knowing the displacement at one point influences the values
that points in the whole image domain will take. A behavior that is undesirable, especially
when local transformations are to be recovered.

One of the first RBFs that has been used in the field, and still of great importance,
is Thin-Plate Splines (TPS) [87, 88]. Given N control points p whose displacement is
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known, the displacement field is given by:

N
u(x) = Ax+b+ > &o([x - pil), (2.19)

i=1

where ¢(r) = r?logr in the 2D case and ¢(r) = r in the 3D case. r is the distance
r = ||x — p;||. The weighting factors &; as well as the matrices A and b are calculated by
solving a linear equations system. In the 2D case, TPS minimize the bending energy:

32
R = /8m2 &r@y e dmdy, (2.20)

assuming infinite boundary conditions.

TPS are known to exhibit certain shortcomings. The transformation from one image
domain to another is not inverse consistent. Moreover, their support is global not allowing
to recover local image warping. Furthermore, TPS do not take into consideration pos-
sible errors in the estimation of the displacements in the landmark positions. Lastly, as
the number of points increase, the interpolation becomes computationally demanding. A
number of researchers have worked towards lessening the importance of these drawbacks
[89, 90, 91, 92, 93].

In [89], Johnson and Christensen tackled the inverse inconsistency problem. They
considered the minimization of the energy Eq. 2.20 under cyclic boundary conditions in
an effort to account for the great consistency error that they observed in the boundary of
the images. Additionally, a term that penalizes the consistency error was introduced in the
objective function to render the registration inverse consistent.

The problem with the global nature of TPS was treated in [91]. TPS were constructed
in such a way that their support is restricted locally. In a subsequent work, Yang et al.
[92] defined the support of each point in an adaptive way by taking into consideration the
distribution of the points in the image domain.

Rohr et al. [90] proposed to take into consideration the landmark localization error
when estimating the dense deformation field through the use of approximating Thin-Plate
Splines. The proposed method is able to handle both isotropic and anisotropic errors in
the estimation of the landmark position.

Three ways to address the computational problems related with the presence of a great
number of landmarks were studied by Donato et al. [93]. The straightforward approach of
sub-sampling the points was compared to more elaborated ones that use either a subset of
the basis functions or matrix approximation techniques.

Clamped-Plate Splines [52, 94] minimize the same energy as TPS though under spe-
cific boundary conditions. Following the LDDMM framework, the energy is solved so
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that the resulting dense deformation field is diffeomorphic and thus this type of splines is
referred to as Geodesic Interpolating Splines [95]. An extension to combine them with
affine transformations was given in [96] while two ways to calculate them were presented
by Mills et al. [97].

Another family of RBFs that has global support is the multi-quadratics [98]

o(r) = (r* + d)

d is a parameter that controls the smoothness of the deformation and may vary for different
points allowing for an adaptive smoothness based on their spatial distribution. ;& a non-
negative scalar. The previous approach has been extended in the case that a rigid object is
present by Little ef al. [99].

Gaussian functions is another class of RBFs that can be used to parametrize the defor-
mation [100]. They are defined as:

I3
2

(2.21)

2

p(r) =e 2, (2.22)

Their advantage is that, despite having a global support, their spatial influence may be
controlled by choosing appropriately the Gaussian kernel o. By choosing a small size for
the Gaussian kernel, their influence can be restricted greatly and thus local displacements
may be recovered. A recent example of the use of this deformation model can be found in
[101], where it has been used in the brain registration problem.

An approximative method to create a dense deformation field from a set of sparse
displacements is by calculating their weighted average [85]. The weights at each interpo-
lation point for all control points sum to one. Their support is global, though by choosing
appropriately the function that determines the weights, the locality of their support can be
adapted.

In medical imaging it is pretty often the case that we search to recover local deforma-
tions. In such cases, the previous functions that have global support, and thus all landmarks
influence the estimation of the transformation, are not well suited. To be able to treat suc-
cessfully such cases, interpolation methods where control points have spatially limited
influence in the image domain are appropriate.

Fornefett er al. [102] investigated the use of Wendland functions [103, 104], that ex-
hibit the desired locality property, for elastic registration.

Other local support radial basis functions are the C? smooth Wu functions [105] or
the functions proposed by Buhmann [106]. Rohde et al. [107] applied the Wu functions
in image registration and derived bounds for the basis function’s coefficients so that the
Jacobian of the computed transformation remains positive.

More recently, a new radial basis function was proposed in [108]. It is defined by
using the cosine function and contrary to what claimed in the paper, it is not positive

Qw‘ 3
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definite [109]. Lowitzsch [110] introduced a special class of matrix valued RBFs that are
divergence free.

In [86], the previous locally constrained radial basis functions were compared using
transformations on random point sets, artificial images, and medical images. In most
cases, in the presence of both local and global deformation, the locally constrained TPS
and Buhmann functions were found to perform better than the rest.

Elastic Body Splines

Splines, though mainly inspired by interpolation and approximation theory, may also be in-
spired by physical models. Such is the case of Elastic Body Splines (EBS) that were intro-
duced by Davis et al. [111]. As the name implies, they are solutions of the Navier-Cauchy
equilibrium equation for an homogeneous isotropic elastic body subjected to forces. In the
case that the applied forces are either polynomial or rational one can solve analytically the
equation.

The previous work was extended in [112] by considering a different type of forces
acting upon the elastic body. Instead of assuming forces given as a polynomial or rational
function, a Gaussian function was considered. As a result, the transformation model can
cope better with local deformations. Moreover, the size of the kernel of the Gaussian can
be used to parametrize the compactness of the model’s support. Again, the authors were
able to obtain an analytic solution of the equilibrium equation.

Worz and Rohr further extended Gaussian Elastic Body Splines in [113]. Instead of
opting for an exact interpolation, an approximation strategy was employed to account for
errors in the landmark displacements. The PDE was extended to incorporate Gaussian
forces that were weighted by the localization uncertainty. The uncertainties, depending on
their isotropic or anisotropic nature, were represented as either scalar weights or matrices.
An analytic solution was obtained for the extended equation. The error-aware method
performed better than the two previous ones.

Free Form Deformations

Free-form Deformations (FFDs) is one of the most common transformation models in
medical imaging. A rectangular grid G = K x L is superimposed upon the image (size
M x N, K < M, L < N) that gets deformed under the influence of the control points.
The dense deformation is given as a summation of tensor products of univariate splines.
FFDs were first popularized in the computer graphics community [114, 115] but gained
vast acceptance in the medical imaging community when coupled with cubic-B splines
[116, 117,118, 119].
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The deformation in 2D is given as:

K L
Z Z Byi(1)By(v)dy, (2.23)

k=1 l=1

where d denotes displacement, k = [z/0,|, | = |y/d,], p = x/0, — La:/é |,and v =
y/6,—|y/d,]. B represents the [th basis function of the B-spline and 6, = 27,8, = 727
denote the control point spacing. The advantage of the transformation model hes in its
simplicity, smoothness, efficiency and ability to describe with few degrees of freedom
local deformations.

While in general the transformations that result from cubic B-spline FFDs are smooth,
the preservation of topology is not guaranteed. Rueckert ef al. [120] imposed the hard
constrains proven in [121] to produce diffeomorphic deformation fields. The required
condition is that the maximum displacement should not be greater than 0.4 the grid spac-
ing.

Many extensions of FFDs have been proposed in the literature. For example in [122],
an inverse consistent method based on FFDs is proposed that does not need the inversion
of the deformation field. Moreover, the fact that the gradient and Hessian can be computed
analytically in this framework can be exploited by the optimizer to achieve faster and more
accurate convergence. While, FFDs are usually uniform, non-uniform rational B-splines
have been used in medical image registration in an adaptive focus approach [123].

FFDs have been extended to treat multiple image registration where hard constraints
are employed to define a reference domain [124, 1, 125]. Last but not least, the trans-
formation model has been extended to the spatio-temporal domain [126, 127, 128] where
B-splines are also used for the temporal axis.

Basis functions from signal representation

Inspired by the mathematical tools that are available to represent and analyze signals,
many researchers have used Fourier and Wavelet analysis to model the transformation.
Maybe the most important reason to use them is the fact that they can provide naturally
a multi-resolution decomposition of the displacement field. A necessary property for the
coarse-to-fine schemes that are commonly applied in medical image registration to ease
the computations and handle large deformations.

Maybe one of the most well known registration algorithms that employs a Fourier
based transformation scheme is the consistent registration framework introduced by Chris-
tensen [14]. The advantage of the Fourier series representation of the transformation is that
it results in a simplification of the used linear elasticity constraint. Moreover, it allows for
an efficient numerical implementation.
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Fourier basis functions are well localized in the frequency domain. On the contrary,
they are not localized at all in the spatial domain. Wavelet basis functions, being localized
in both domains, bear the important advantage that they can model local deformations
often present in deformable image registration.

A wavelet is a square integrable function ¢) € L?(R) with zero mean | _Jri?ff WY(t)dt =0,
normalized ||¢/|| = 1 and centered at zero. A family of wavelet functions that generate an
orthonormal base in L?(R) can be obtained by scaling and translation. The construction
of this basis is related to the multi-resolution signal approximation that can obtained by an
orthogonal projection to a family of nested subspaces V1 C V}, such that V; ; @ W, =
V;, where W, is the necessary additional detail. V; and W, are created by projecting
the function to orthogonal scaling and wavelet functions. For higher dimensions, tensor
products of 1D wavelet functions are used.

Wu et al. [129] used a wavelet-based deformation model. The Cai-Wang wavelet was
employed to generate a multi-resolution description in Sobolev space yielding intrinsically
smooth deformations. Based on this model, the authors were able to treat global and local
information simultaneously in a coarse-to-fine approach. Gefen et al. [130] modeled
the deformation field by a finite-supported, semi-orthogonal wavelet. The Marquardt-
Levenberg optimization scheme was used to minimize a functional that comprises of two
terms. The first term penalizes surface distances while the second term regularizes the
deformation according to a linear elasticity model.

Musse et al. [131] presented a topology preserving multi-resolution approach. Non-
orthogonal Riesz basis of polynomial splines were used due to their compactness. The
topology was preserved by controlling the Jacobian through hard linear constraints. The
approach was extended to the 3D domain in [132] and was further validated in [133]. In
the 3D case, the same multi-resolution framework was used, though no linear constraints
can be derived to preserve the topology. To guarantee the desired property, a constrained
optimization problem, where the Jacobian is enclosed between two user-defined bounds,
was solved. Optimization was performed with a block-wise descent scheme. Cathier
[134] used the same wavelet basis as in [129] to decompose the transformation in a multi-
resolution fashion. An L, penalty on the wavelet coefficients was used to regularize the
registration problem. This regularization leads to sparse transformations with respect to
the wavelet basis and thus facilitates their storage in the disk.

Piecewise Affine

One of the simplest ways to deform an image is to consider a piecewise linear deformation
model. The image is mosaicked by a set of triangles or tetrahedra depending on its dimen-
sion. The deformation is parametrized by the nodes of the mesh and an affine interpolation
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takes place inside each region. Efficiency and invertibility are the main strengths of this
method, while lack of smoothness is its main limitation.

Some of the most recent approaches where a piecewise affine model was used include,
but are not limited to, the following. Hellier e al. [135] proposed a multi-resolution and
multi-grid approach. The image was partitioned adaptively to cubes and an affine transfor-
mation was inferred for each one. A regularization energy term encouraged neighboring
pairs to deform similarly. Zhang ef al. A similar approach was employed in [136] to tackle
diffusion tensor registration by taking into consideration tensor reorientation. The images
were separated into contiguous blocks and an affine transformation was recovered for each
one of them. Regularization on the interface of regions ensured the global smoothness of
the transformation.

Pitiot er al. [137] reconstructed 3D volumes of biological images by employing a
piecewise affine transformation model. The images were separated into independent com-
ponents through hierarchical clustering. In a subsequent step, affine registration was per-
formed for each pair of regions. The final transformation was estimated by considering the
affine transformation for each region and applying a non-linear interpolation in-between
the regions. A similar approach was presented in [138] with the difference that a regu-
larization step followed to improve the smoothness in the interpolated areas. The final
transformation was composed in such a way that its invertibility was ensured.

Two more recent application of piecewise affine model were presented in [139, 140].
Cootes [139] favored the use of piecewise affine transformations as they can be easily
inverted. Buerger er al. proposed a hierarchical framework to separate adaptively the
images in regions. Splitting was formulated as an energy minimization problem.

Most of the approaches that employ piecewise linear strategies, consider the affine
transformations independently. As a result, singularities may occur and the transformation
is not globally invertible. To account for the previous drawback, sophisticated methods
have been introduced. A transformation model that is affine at the center of a region and
reduces to identity as the distance from the center increases was introduced in [141]. The
novel transformation model has a closed form and can be computed efficiently. Moreover,
constraints were given in the form of bounds on the translation so that invertibility is
ensured.

Arsigny et al. [142] introduced a poly-rigid/affine transformation model. Based on a
finite set of points whose transformation is known, the global transformation at each point
is given by integrating over time a distance-weighted sum of infinitesimal velocities at the
known points. No closed form exists but a computationally more expensive integration
of ODEs is necessary. [143] extended the poly-affine transformation so that its inverse is
also poly-affine. Moreover, the fusion of affine transformations was rendered invariant to
affine changes of the coordinate system.
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2.2.3 Constraints

Image registration is principally an ill-posed problem as the number of unknowns is greater
than the number of available constraints. In order to account for that, regularization is nec-
essary. Moreover, regularization allows us to introduce any prior-knowledge we may have
for the physical properties of the underlying anatomical structure and helps optimization
to avoid local minima.

There are two possible ways to regularize the problem, either explicitly or implicitly.
Explicit regularization may be achieved through the addition of a smoothing term in the
energy that penalizes non-regular configurations. This is mostly the case when physically
motivated models are used. Implicit regularization may be achieved by parameterizing
the deformation field with smooth functions. That does not exclude the use of explicit
regularization but that may be used now to achieve complementary goals, usually tailored
for the specific problem at hand.

One of the most important properties that a registration algorithm should exhibit is
the preservation of topology. Apart from the framework of flows of diffeomorphisms
that delivers naturally such results, the rest of deformation models don not exhibit these
properties. In that case, smoothness and invertibility of the resulting deformation field may
be guaranteed through the use of constraints. The Jacobian of the deformation field is very
informative regarding the local properties of the deformation field. Thus, by tracking its
values, singularities may be avoided by creating intermediate templates and reinitializing
the process [19].

This technique is efficient but the way the preservation of topology is guaranteed seems
rather awkward. A more elegant way would be to incorporate an appropriate term acting
upon the Jacobian in the objective function. In [14], a term that penalizes small and large
Jacobian values for both the forward and backward transformation was added to the objec-
tive function. Similarly, Droske and Rumpf [144] used a regularization term that considers
the length, area and volume deformation. This approach has the disadvantage that it de-
pends greatly upon the way the different energy terms are weighted. If the weight for
the regularization term is not important enough, singularities may appear. Whereas, if the
weight for the regularization is too great, the optimization may be hindered.

A different and probably more appropriate strategy is to cast the problem as a con-
strained optimization problem. In [131], linear inequality constraints were derived so that
the topology is preserved. The optimization was solved by employing a fast method that
bears a resemblance to sequential linear programming. In its 3D variant [132], the energy
was optimized under the constraint that the Jacobian will stay in-between user specified
bounds. Interval analysis techniques were used in order to solve the optimization problem.
Inequality constraints were also used by Haber and Modersitzki [145]. A variant of a log-
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barrier method was used to solve the optimization problem. Instead of solving the initial
constrained problem, a sequence of unconstrained ones was considered. The weight for
the barrier terms increased gradually for each unconstrained problem that was optimized
by applying a variant of the Gauss-Newton’s method.

Sdika [119] also proposed a constrained optimization framework to ensure that the
transformation, parametrized by cubic B-splines, is invertible. Two constraints were pro-
posed. The first constrains the Jacobian of every pixel to be greater than a threshold. As
this constraint does not control the value of the Jacobian between the voxels, a second con-
straint was proposed that relates the Jacobian with its derivative. In that way, the Jacobian
is restricted to be within a range of values. Moreover, when approaching values close to
the bounds, its derivatives are constrained to be close to zero. In [146], a simpler penalty
was devised for the case of B-splines. The penalty takes into consideration the difference
between two adjacent nodes and is memory efficient.

In many applications, on top of ensuring that the topology will be preserved, we are
also interested in volume preservation. Such a constraint is of particular interest in cases
that we know that the imaged anatomical structure is not compressible and all changes are
due to either motion or intensity changes provoked by the action of a contrast agent. The
simplest case would be to consider a rigid part of the body such as bone structures. More
complicated cases would include deformable structures that preserve their volume such as
breast, myocardium and liver.

In [147], such a strategy was employed to register contrast-enhanced MR breast im-
ages. Along with the image matching term a second term that penalizes volume changes
was considered. The penalty integrates the absolute logarithm of the Jacobian determinant
and is zero only when local volume is preserved. A sequential approach was proposed
in [148]. First, a standard registration was performed. Based on its result, areas whose
volume should be preserved were identified. Once found, the displacement of the control
points of the FFD model that influence these areas were fixed to the mean of their previ-
ous ones and the registration was solved again for the rest of the variables. A constrained
optimization approach to preserve volume was presented by Haber ef al. [149]. An energy
comprising a matching and regularization term was minimized under the constraint that
the determinant of the transformation is equal to one (det(I + Vu) — 1 = 0). Staggered
grids were used to discretize the problem and Sequential Quadratic Programming to solve
it.

Another type of problems that call for an incompressibility constraint are those where
the deformation of the myocardium is studied as it is known to be a nearly incompressible
material. Bistoquet et al. [150] approximated the previous constraint by V - u = 0. This
constraint was enforced by the use of divergence-free radial basis functions as deformation
model [110]. In addition, a hard constraint was introduced in the objective function to pe-
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nalize deviations from incompressibility. The determinant of the Jacobian was constrained
to be close to one in a predefined region by using Lagrange multipliers in [151]. A differ-
ent approach was taken by Mansi ef al. [36] where the velocity field v was constrained to
be divergence-free. The method was based upon the fact that the integration over time of
divergence-free velocities results in incompressible deformations.

Last but not least, as in medical images rigid structures are present, it would be bene-
ficial for the quality of the registration result to incorporate rigidity constraints in order to
treat them according to its physical properties. Loeckx et al. [152] constrained locally a
non-rigid FFD registration method by penalizing deviations of the Jacobian from orthog-
onality. In [153] rigidity was imposed by introducing three conditions. The first condition
enforces the second derivatives of the transformation to be zero. The second condition
enforces the orthonormality of the rotation matrix while the third condition imposes the
determinant of the Jacobian to be equal to one. Local rigidity has also been considered
in a variational setting by Modersitzki [154]. Along with the matching and the regular-
ization term, a third one was introduced in the objective function. The third term controls
the rigidity of the transformation by enforcing its Jacobian to be linear, orthogonal and
orientation preserving. A Gauss-Newton optimizer was used.

2.3 Objective Functions

Images can be aligned either by evaluating a criterion based on intensities over the whole
image domain (iconic methods) or by establishing point correspondences (geometric meth-
ods).

2.3.1 Iconic Methods

Iconic registration methods offer accuracy by providing dense correspondences between
the considered image domains at the cost of considerable computational expense. Due
to the fact that all image points are considered equally, salient points might fail to get
the importance they deserve. In addition, initial conditions influence greatly the quality
of the obtained result. In the presence of large deformations, typical in longitudinal and
population studies, the quality of the solution is often degraded.
The matching term integrates the evaluation of a dissimilarity criterion over all image
elements:
M = p(SoT(x),T(x))dx. (2.24)
Qr
Devising an appropriate criterion p is an important and difficult task as the criterion should
be able to account for different physical principles behind the acquisition of the two images



44 CHAPTER 2. DEFORMABLE REGISTRATION: A SURVEY

and thus for the intensity relation between them. Moreover, the properties of the objective
function (e.g. its convexity) may influence the difficulty of the inference and thus the
quality of the obtained result. An ideal criterion would take low values, when points
belonging to the same tissue class are considered and great values, when points from
different tissue classes are compared. Moreover, it should be convex allowing for accurate
inference.

At this point, two cases should be discerned: 1) the mono-modal case, considering
images from one modality, and ii) the multi-modal case, considering images from multiple
modalities.

Mono-modal registration

The mono-modal case is the easiest one and historically the first to be studied. Since the
same imaging device is used to image both volumes it is often assumed that same anatomi-
cal structures correspond to similar intensity values. This assumption leads naturally to the
use of Sum of Squared or Absolute Differences (SSD and SAD respectively) as a match-
ing criterion. The choice between the two depends on the assumption on the noise that
corrupts the image intensities. In a more sophisticated setting when a linear relation is
assumed between the signal intensities, the optimal criterion is Cross Correlation (CCor)
and Correlation Coefficient (CCoef) [5, 155, 61].

Intensity information by itself is considered a poor feature that often leads to am-
biguous matching and is one of the main reasons for the presence of local minima in the
objective function. Trying to minimize the effect of these local minima and establish more
accurate correspondences, a number of researchers have proposed to increase the dimen-
sionality of the feature space by introducing local information through the use of attributes
that represent the geometric structure of the underlying anatomy. These approaches are
often referred to as feature- or attribute-based approaches.

In their seminal work, Shen and Davatzikos [101] proposed the use of an attribute
vector including Geometric Moment Invariants in an attempt to capture local anatomical
information at different spatial scales. The motivation is that a rich enough attribute vector
will be able to differentiate between voxels that would be considered the same based only
on their intensity information. Thus, fewer local minima will be present and better accu-
racy may be achieved. To further reduce the effect of the local minima, they proposed a
hierarchical scheme that approximates successively the objective function through the use
of an increasing number of voxels where the matching is evaluated.

The success and importance of the previous method becomes evident in view of the
number of approaches that have been proposed to improve its performance. One draw-
back of the previous method is that it requires a pre-segmentation step in order to intro-
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duce local spatial information. To remove the previous requirement, the use of Daubechies
wavelets to populate the attribute vector was proposed in [156]. The attribute vector was
constructed in a multiscale fashion and is translation and rotation invariant. It was shown
that the wavelet-based attribute vector is more discriminative when compared to the geo-
metric moments. Another approach to tackle the previous shortcoming is by using local
histograms and boundary information as attributes [157]. In [158], a learning approach
was proposed to improve the result in two ways. First, the optimal scale for the geometric
features for each voxel was determined leading to increased discriminative power. The
hierarchical scheme was improved by deciding upon which voxels drive the registration
process based on their saliency and the consistency of their description across the training
data.

Another way to incorporate local information using attribute vectors is through the use
of local frequency representations being the responses of Gabor filters [159, 160]. Gabor
features have proven successful for both mono-modal and multi-modal image registration
as they are able to capture information across different scales and orientations. Ou et al.
[159] optimized the Gabor features to be more distinctive and introduced the notion of
mutual saliency to let the most reliable points drive the registration process. Liao and
Chung [161] however argued that frequency spectrums of MRI brain images often exhibit
non-Gaussian behavior and thus the choice of Gabor filters is not optimal. They proposed
the use of symmetric alpha stable filters and showed experimentally that they outperform
Gabor features in non-rigid MRI brain registration. A new feature for non-rigid registra-
tion, named uniform spherical region descriptor, was proposed in [162]. It is invariant
with respect to rotation as well as monotonic gray-level transformation and thus is able to
account for the presence of bias field.

Multi-modal registration

Multi-modal registration is more challenging as the choice of an appropriate objective
function is harder a task. Two main approaches have been proposed to solve the problem:

1. Use information theoretic measures.
2. Reduction of multi-modal problem to a mono-modal problem by:

(a) simulating one modality from another, or
(b) mapping both modalities to a common domain.
Here, we are going to focus primarily on information theoretic approaches as they

constitute the most frequently used way to tackle the challenges posed by multi-modal
registration. Reduction techniques will also be briefly discussed.
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Information theoretic approaches: Information theoretic approaches were popularized
by Viola, Wells, Colignon and Maes [163, 164, 165, 166]. They proposed to use as objec-
tive criterion, the mutual information (MI):

I[(XY)=H(X)+H(Y) - H(X,Y). (2.25)

That is, the MI between two random variables X and Y is defined as the difference of their
marginal entropies H (X ) and H(Y") with their joint entropy H (X, Y"). The difference be-
tween the two approaches is the way entropy is estimated. In [163, 164] a non-parametric
estimator was used while in [165, 166] histograms were applied. The advantage of MI is
its generality since it does not assume any relationship between the image intensities. For
a survey on MI-based registration methods, the interested reader is referred to [167].

The widespread use and study of MI has revealed some of its shortcomings. One of the
main shortcomings is that it is not overlap invariant. Thus, in certain cases it may be pos-
sible for mutual information to be maximized when the images get misaligned. To remedy
that, a Normalized version of Mutual Information (NMI) was proposed in [168]. Recently,
Cahill and co-workers elaborated upon the idea of overlap invariance and showed that nei-
ther NMI, MI, CR, CCor nor CCoef are invariant to changes of overlap and introduced
appropriate invariant versions of the previous similarity measures in [169].

The success of MI paved the way for the introduction of an important number of statis-
tical criteria in image registration. Roche et al.. [170] argued that the generality of mutual
information can be a drawback when a reasonable hypothesis can be made regarding the
relationship between the intensities. They proposed to use the Correlation Ratio (CR) as
appropriate similarity measure when the assumption of functional dependence between
the image intensities is valid.

Pluim et al.. [171] compared the performance of a number of f-information measures
in medical image registration. Given two probability distributions P and (), the quantifica-
tion of their difference can be given by a measure of divergence. An f-divergence measure
is defined as: '

F(PIQ) = Zqif(%). (2.26)
For different functions f, different divergence measures may be defined. In the context of
registration, what is measured is the difference of the joint distribution of the intensities
with respect to the joint distribution that would arise when images are independent.

The idea to use divergence measures to compare joint intensity distributions has at-
tracted significant attention and numerous divergence measures have been proposed for
multi-modal image registration. Kullback-Leibler divergence (KLD) was used in [172,
173] to register multi-modal images. The joint intensity distribution is either learned from
aligned pairs of images or by segmenting corresponding anatomical structures. Images get
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aligned by minimizing the divergence between the observed and estimated distributions.
In a similar setting [174], in the sense that learned distributions are used, Jensen-Shannon
Divergence (JSD) was used and shown to be better that KLLD being symmetric, bounded

and true metric.
Another family of information theoretic approaches is built upon Renyi entropy (RE),
RE,(P) = ! log ¥ pf, a>0anda# 1. (2.27)

11—«

Based on this entropy, the Jensen-Renyi divergence can be defined. Its advantage lies in
the fact that it is symmetric and generalizable to any finite number of probability distribu-
tions. The Jensen-Renyi divergence is convex for a € (0,1) and is maximum when the
distributions are degenerate. Its use for image registration was proposed in [175, 176]. In
[177, 178], a Minimum Spanning Tree (MST) was used to estimate the RE and the opti-
mal transformation was estimated by minimizing it. Spanning graphs were also used by
Sabuncu and Ramadge [179]. The latter demonstrated the superiority of the entropic graph
estimator with respect to standard estimators. A generalization of KLD was introduced in
[180]. The new divergence measure is based on modified Bessel functions of the second
kind and allows for an efficient recursive computation. The generalization of KLD was
shown to perform better than the standard measures of divergence.

Most of the previous approaches share a common drawback; they are based upon a
single pixel joint probability model. As a consequence, by changing the positions of the
pixels in a random way and evaluating the statistical criterion, the same similarity is ob-
tained [181]. To rectify the previous shortcoming, local context should be introduced in
the used criterion.

One way to relax the global way the statistical criteria are considered is by means of
computing them locally and thus cope with the fact that the relation between the intensities
of the two images is non stationary. This approach was investigated by Hermosillo et
al. and Karacali. Hermossilo et al. [182] derived the Euler-Lagrange equations for MI,
CR and CCoef based on locally estimated probability distribution functions. Karacali
[183] followed a deterministic rationale to express in closed form mutual information,
joint entropy and the sum of marginal entropies over small spherical regions.

Local evaluation of mutual information has also been proposed by other researchers.
For instance, [184] introduced Regional Mutual Information (RMI). The proposed objec-
tive function is a linear weighted sum of local evaluations of MI and aims to reduce the
error caused by local intensity changes. Loeckx [185] et al. proposed to condition the
evaluation of MI upon the position. More recently, locally evaluated MI in combination
with standard global MI was used in [186]. Moreover, the local evaluation of the proba-
bility distribution function considers pixels relatively to their distance with respect to the
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FFD control points.

An alternative way to introduce local context is by inserting spatial information. This
has been mainly achieved by considering additional features that capture local geometric
information resulting in higher order entropic measures.

In one of the first attempts to exploit spatial information Pluim ef al. [187] used
intensity image gradient as an additional cue. The proposed algorithm sought not only
to maximize NMI but also intensity gradient information. This was simply achieved by
multiplying NMI with a measure that takes into consideration both the intensity gradient
magnitude and its orientation in an effort to encourage the alignment of strong intensity
gradients. Intensity gradient information drove the registration to more accurate results
but most importantly rendered it more robust.

Approximately at the same time, Rueckert er al. [181] proposed to use second-order
MI encoding local information by considering co-occurrences of intensities between neigh-
boring voxels. That approach requires a 4 D-histogram to estimate the information mea-
sures. To account for the high dimension of the histogram and the curse of dimensionality,
the number of bins was reasonably small. More robust and accurate registration with re-
spect to standard MI was obtained.

Russakoff et al. [188] introduced the Regional Mutual Information that pushed for-
ward the previous idea by considering co-occurrences between regions. Moreover, an
efficient way to deal with the curse of dimensionality was presented. Assuming a high-
dimensional distribution, the data points were transformed so that they were indepen-
dent in each dimension. Then, the entropy was estimated by summing the distributed
1D entropies. In [189], NMI between blocks of image elements was studied. The high-
dimensional NMI was estimated by using random lines and reducing the number of bins.

Instead of taking into account explicitly neighboring voxels, a more compact way to
consider local information would be by extracting features that describe concisely regional
characteristics. In [190], Gaussian scale space derivatives were employed and considered
as an additional information channel in a higher dimensional MI criterion. On top of the
intensity, one more channel of information was also used in [191] resulting in a multi-
dimensional NMI. A novel spatial field, named Maximum Distance-Gradient (MDG), was
introduced. First, a set of special points located in important gradient areas was created.
Based on that, a vector field that contained both local and global information was created.
For every voxel, in addition to the local gradient, the distance, the direction and the inten-
sity difference with respect to its source was retained. The magnitude of the MDG vector
field formed the supplementary channel while its orientation was used as a second element
in the objective function.

The curse of dimensionality is an important limitation of the previous approaches as
it hinders the evaluation of higher dimensional statistical criteria. To be able to handle
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such calculations, most researchers resort to crude implementation approximations such
as limiting the number of histogram bins. Nevertheless, ways to estimate high dimensional
entropies have been proposed and used to perform image registration.

In [192], spatial information through the construction of feature vectors was adopted.
The resulting high dimensional entropy was estimated with the use of the MST estima-
tor. Entropic graphs were also used in [193] to tackle high dimensional a-MI registration
of ultrasound images. Both previous approached coped with global linear registration.
Most recently, deformable registration of Cervical MRI using high-dimensional MI was
presented in [194]. Features were used to describe local geometric information and a
k-nearest neighbor graph to estimate the multi-dimensional MI.

Spatial information is not the only type of information that can be used to endow regis-
tration with increased robustness and accuracy. Assuming that a prior step of segmentation
has been performed, tissue classification information may also help disambiguate between
voxels that belong to different tissues but share common appearance properties.

In [195], regions were segmented by thresholding and connected component labeling.
The labels were used as an additional channel and the objective function considered the
difference between the three entropies and the joint entropy.

Knops et al. [196] performed a k-means clustering before registration. Based on this
clustering, voxels that share similar intensity profiles but belong to different anatomical
structures were mapped to different intensity bins during the construction of the histogram.
The new remapped intensities along with the initial one contributed to an NMI based
similarity criterion. The new objective function performed better than the standard MI
approach.

Voxel class probabilities were considered in the objective criterion by D’ Agostino et
al. [197] for the labeled-to-labeled and intensity-to-labeled image registration. For the
labeled-to-labeled case, KLD was used to compare the distribution of the joint classes
whereas for the intensity-to-label registration, a version of MI was used with the difference
that one of the features is a class probability and not intensity.

Reduction to mono-modal registration: An alternative way to proceed with multi-
modal registration is by reducing the problem to a mono-modal one where the solution
can be obtained in a simpler and more accurate way. There are two possible ways to per-
form such a task, either to simulate one modality from another so that at the end both
images come from the same modality, or to map them both to a third domain where the
registration will take place.

Simulating one modality from another can be achieved by taking advantage of the
knowledge that is available with respect to the physical properties of the imaging device
and trying to model the imaging process. An alternative way is to exploit available co-
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registered pairs of images and use machine learning techniques to capture the relation
between the intensities.

The first approach, that is task specific, was first proposed by Roche et al. [198] to-
wards registering rigidly US images to MR ones. In [198], US intensities are predicted
by exploiting MR intensities and MR gradient magnitude information. Complex phenom-
ena such as US signal attenuation and speckle are neglected, leading to images that only
roughly resemble to actual US images. A more sophisticated model was proposed in [199]
to tackle the problem of CT-to-US registration problem. Based on the physical principles
of ultrasound, the authors were able to simulate an US image that was then used along
with a locally evaluated statistical criterion to drive the registration.

In [200], mixture of experts were used to learn the conditional probability of the tar-
get intensity given a source patch. The conditional probability was then used to drive a
Markov Random Field to regularize the simulated image. An SSD criterion, evaluated by
considering the simulated and target image, was shown to outperform MI.

The most common approach out of the two is to map both modalities to a common
space. As both modalities image the same anatomical structure, it is logical to assume that
the local geometry would be helpful to establish meaningful correspondences. Thus, in
principle, most methods apply filters that extract geometrical information and then use it
in a mono-modal registration setting.

For instance, Maintz et al. [201] used morphological tools to create new gray-value in-
tensity images. Their method basically uses morphological opening and closing to extract
edge information and then cross-correlation to align the images. It resembles to a surface
registration with the difference that instead of having binary values, real ones are used.
Haber et al. [202] assumed that borders of anatomical structures correspond to intensity
changes and thus opted to exploit intensity gradient information. An intermediate image
domain was created by considering the normalized intensity gradient field that conveys
purely geometric information and accounts for the fact that the gradient magnitude may
vary among different modalities. As objective criterion, the difference in angles between
the normalized gradient vectors was considered. In [144], following the mathematical
morphology theory that states that an image can be characterized uniquely by the entity of
its level sets, the Gauss map of the images was considered as common space. The registra-
tion was formulated in a variational framework where a morphological, contrast invariant,
matching criterion was minimized under the influence of an appropriate regularization
term.

Butz et al. [203] also experimented with edge related information. They used an
edgeness operator that considers the local edge variance to map both images to a common
space. Mutual information driven registration was then performed coupled with a multi-
scale genetic optimization. Depending on the nature of the images, other operators may
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be applied. In [204], the probability of vessel presence was used along with normalized
cross-correlation to register MRI with ultrasound images.

Richer descriptions of local structure based on Gabor filtering can also be used to
perform registration [160, 159]. In [160], local frequency that is robust to edge strength
and contrast differences was used. It was estimated by calculating the local phase gradient
of the most significant Gabor filter response. Then, the integral squared error was chosen
as matching criterion. The responses of Gabor filters were used in [159] to construct a rich
vector descriptor. The images were aligned by minimizing a weighted sum of the vector
differences. In [205], the authors took a different direction to estimate the local frequency
information. Instead of using Gabor filters, the Riesz transform was used.

In [206], a pseudo-modality was created by remapping intensity values based on the
conditional distributions of the intensities. This step was performed in order to apply
simpler criteria than MI when the size of patches is small and its estimation compromised.
Recently, Wachinger et al. [207] proposed two techniques that derive from information
theory and manifold learning to create the intermediate structural representation. The first
one considered the entropy of a patch centered around the voxel to assign a new intensity
value. The second method used Laplacian Eigenmaps to embed the patches in a lower-
dimensional manifold that preserves local distances.

A supervised technique was presented in [208] to learn the similarity measure for
multi-modal image registration. The approach was formulated in a discriminative set-
ting where the goal is to optimize a similarity function so that correct correspondences
are assigned high values and erroneous ones low. Support vector machine regression was
employed to learn the metric. The optimal metric performed better than the standard NMI.

Another supervised technique was presented in [209, 210] to learn a similarity metric
that discerns between corresponding and non-corresponding points. This technique maps
both modalities to a Hamming metric space where true correspondences are more probable
to have the same code while wrong ones are not likely to. The embedding was constructed
by using AdaBoost. The proposed method was proven experimentally to outperform CR,
MI and NMI.

It should also be noted that some of the techniques that were previously presented un-
der the information theoretic class of methods learn a similarity measure. The difference
is that a generative framework is employed. Given co-registered data, the joint distribu-
tion of the intensities is learned. Then, either a maximum likelihood approach [211] or
a divergence criterion [172, 173, 174, 179] is used to compare the estimated and learned
distribution.
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2.3.2 Geometric Methods

Geometric registration establishes sparse correspondences between a subset of the im-
age voxels. The voxels are placed in salient image locations considered to correspond to
meaningful anatomical locations. The underlying assumption is that saliency in the im-
age level is equivalent to anatomical regions of interest. Geometric registration is able to
overcome some of the limitations of the iconic registration being robust with respect to the
initial conditions and the existence of large deformations. The solution of the registration
problem is obtained in a relative straightforward way once landmarks have been extracted.
However, locating reliable landmarks is an open problem and active field of research. Most
importantly, the sparse set of directly obtained correspondences gives rise to the need for
interpolation which results in decrease of the accuracy as the distance from the landmarks
increases. This, as well as the advance of technology permitting to meet both the memory
and computational demands of iconic registration have boosted research towards that di-
rection stripping off the geometric methods from the interest they enjoyed during previous
decades. Nevertheless, for some task specific applications geometric registration is the
most reliable choice.

Detecting points of interest

The first step in geometric registration is to detect points of interest. Images that contain
sufficient details facilitate point detection. Medical images are not as rich in details as
natural images. That is why, point detection has mainly drawn the interest of the computer
vision community and thus is well-studied in the case of 2D images and not in the case of
3D images mostly found in medical imaging.

A full overview of the point detectors that have been proposed for computer vision
related problems is out of the scope of this review. Nonetheless, let us give a brief descrip-
tion of the most important ones. Maybe the most well-known, point of interest detector is
the Harris corner detector proposed in [212]. Harris ef al. proposed to identify corners by
exploiting the information conveyed by the structure tensor A. Specifically, points of inter-
est are determined by considering the following quantity: det(A) — a Tr(A)?. In similar
lines, Shi and Tomasi [213] proposed the use of the minimal eigenvalue of the structure
tensor in order to tract points of interest.

Many extensions to the Harris detector have been proposed in the literature. Their main
aim is to impose a certain invariance. One may cite the approach proposed in [214] and
affine-invariant Harris and Hessian [215]. Affine invariance is important as it enables the
detection of points under affine transformations and a lot of efforts have been concentrated
in defining such detectors. An evaluation study comparing the most important methods
was presented by Mikolajczyk et al. [216]. A historical review of point detection methods
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can be found in [217, 214], while evaluation studies of point and corner detectors can be
found in [217] and [218], respectively.

An alternative way to determine point of interest is by performing scale-space analysis
and detecting blob-like regions. One of the first methods to perform such a task is the
Laplacian of Gaussian. The image is convolved with different scales of a Gaussian kernel
and at each level the Laplacian operator is applied. By tracking across scales the local
maxima/minima of its response, key-points are detected [219]. Lowe [220] proposed to
use the Difference of Gaussians that is an approximation of the Laplacian. From this scale-
space representation, local minima/maxima are extracted in order to detect feature points
and the local Hessian information is used to reject spurious ones. Lowe’s Scale Invariant
Feature transform has been proven extremely successful and has been extended in the 3D
domain so as to be applied in medical imaging in [221]. A more recent technique for blob
detection was proposed by Matas et al. [222]. Image regions, created by thresholding
in the intensity domain, are tracked and selected based on their area’s stability as the
threshold value varies.

In medical imaging, such generic approaches have not been explored. On the con-
trary, feature detection is performed in a task specific manner, usually as product of a
segmentation preprocessing step. In brain image registration, sulci information has been
used in [223, 73, 224, 225]. The cortical surface information has also served as feature in
[225, 226, 227].

Another case where geometric registration has been proven successful is the retina
image registration. In this case, intensities are homogeneous while important information
is conveyed by the vasculature. In [228] branching and crossover points of the blood vessel
structure were used as feature points. While Stewart et al. [229] used in addition the
centerlines of the segmented vasculature. For each centerline point, its location, tangent
direction and width were retained. Vascular structures are also important in brain sift
correction [230], pulmonary CT images [231] and liver registration [232]. That is why a
number of task-tailored detectors have been devised [233, 234, 235, 236].

In a more general setting, points of interest can be found based on the maximal re-
sponse of Gabor features weighted by a mutual saliency criterion in [237]. Lastly, mark-
ers that are often used in medical imaging such as fiducial ones can be used to guide
image registration. Some resent studies regarding the errors in the process are given in
[238, 239, 240].

Following the previous, two sets of points (K = {ky, -,k and A = {\, -+ A},
m > n) are created. The first contains points belonging to the source domain g, while
the second points that belong to the target one (2. These constitute the set of known
variables. The set of unknown variables usually comprises: 1) the correspondence, and
ii) the transformation. Based on how these variables are treated, three different classes of
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methods can be discerned:
e Methods that infer only the spatial transformation.
e Methods that infer only the correspondence.

e Methods that infer both variables.

Methods that infer only the spatial transformation

Two categories of methods should be considered. The first one assumes that the corre-
spondences are known in an exact or inexact way. This problem is known as exact or
inexact landmark matching. In the exact case, a smooth transformation is sought so that
the correspondence are respected exactly or a regularization energy is optimized under
correspondence constraints. In the inexact case, a compromise between matching and
smoothing the deformation is preferred.

Procrustes analysis is a popular method for shape analysis and is useful when homolo-
gies between point-sets are given [241, 242, 243, 139]. In Procrustes analysis, a least-
squares distance is minimized. Given the correspondences, an analytical solution, that
consists of translating, rotating and scaling [242], exists. In the affine case, the solution is
usually given by numerical optimization [244]. Recently, an algebraic way to solve for the
affine registration of planar sets based on complex numbers was presented in [245].

During the last decade, it became possible to estimate non-rigid transformation based
on point correspondences. As we saw in the previous section (Sec. 2.2.2), radial ba-
sis functions are able to produce dense deformation fields for any spatial distribution of
points. Moreover, inspired by approximation theory, non-interpolating splines are able to
account for the uncertainty in the estimated correspondences [90, 113]. What is more, both
the exact and inexact landmark matching have been solved for the case of diffeomorphic
deformations [246]. This is achieved by introducing a time parameter ¢ and considering
the transport equation:

OT (x,1)
ot
under the constraint that 7 (p;, 1) = q; or that the given correspondence is respected. The
previous method has been extended to the case where the domain is a sphere [65]. This is
of interest as surfaces are often mapped to spheres in order to facilitate their study.

The second subclass opts for estimating the transformation without concerning itself
with the establishment of correspondences. These methods are more robust to missing
correspondences and outliers. One of the most recent methods belonging to this category
is the one proposed in [247]. The point sets are transformed into their canonical forms by

=v(T(x,t),t), (2.28)
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considering second order statistics. This results in reducing the estimation of the affine
matrix to determining an orthonormal one which is subsequently estimated by using third
order moments. Affine transformation of point sets without correspondences can also be
achieved by considering the convex hull and Hausdorff distance. For instance, Gope et
al. [248] proposed to obtain an affine invariant representation of the point sets based on
the convex hull. The transformation was optimized based on a variant of the Hausdorff
distance that takes into consideration some pairing distance. Another way to perform such
a task is to consider robust ways to calculate the distance between the points [249].

Initially, such methods were able to estimate only linear transformations. Recently,
methodological advances have permitted the handling of non-rigid transformations. The
breakthrough was achieved by representing the point sets as probability distributions and
minimizing a distance measure between the two distributions. One of the first attempts
in that direction was proposed by Glaunes et al. [67]. The authors extended the large
diffeomorphic deformation framework in the case of distributions and unlabeled point
sets. Point sets were modeled as a weighted sum of Dirac measures and a kernel-based
error measure was used. Tsin and Kanade [250] proposed to register point sets based on a
measure called kernel correlation. The proposed measure is proportional to the correlation
of two kernel density estimates. A similar approach based on kernel density correlation
was presented in [251].

Gaussian Mixture Models (GMMs) are a common way to model distributions. In
[252], each point set was modeled using GMMs and a L, distance was used to compare
them. In [253], registration was recast as a probability density estimation problem. The
points of the first set were considered as the centroids of the GMMs which were fitted to
the data (or points of the second set) by likelihood maximization. Special care was taken
so that the centroids move in a coherent way. Roy et al. [254] modeled each feature of
each shape as GMM. A mixture model was used to represent the shape by assuming that
features are independent and identically distributed. A closed-form distance between the
two distributions was used along with a TPS parametrization of the transformation. A
similar model was used in [255] where the problem of the simultaneous registration of
multiple point sets is tackled. Jensen-Shannon divergence was used as similarity metric.
The drawback of this approach is that no closed-form solution exists. Thus, a computa-
tionally and memory demanding estimation based on the law of large numbers is required.
In a subsequent work, Wang et al. [256] alleviated the previous shortcoming by using
the generalized Lo-divergence that allows for a closed-form solution. Lastly, a GMM was
also used in [257] with the difference that the Gaussians are not isotropic. The Havrda-
Charvat-Tsallis (HCT) divergence was used along with directly manipulated free form
deformation.

It should be noted that another way to perform non-rigid registration of shapes and
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points without caring to establish correspondences, is to embed them in a higher dimen-
sional space and perform classic image-based registration there [66, 68, 258, 259].

Methods that infer only the correspondences

Inferring the correspondences or matching the features is a task that is inherently coupled
with the way the features are described. To better disambiguate between close potential
candidates rich descriptors should be used. Moreover, as the image undergoes some sort
of deformation, it is to be expected that the appearance of the features will vary between
images. To account for this fact, descriptors should be invariant to such changes.

Constructing rich invariant descriptors is an active field of research though mainly
oriented towards computer vision applications. We are going to present briefly some of
the most important feature descriptors that have been proposed and discuss briefly some of
the ones that have been applied in medical imaging. For a comparison of the performance
of different feature descriptors, the interested reader is referred to [260, 261].

Lowe in his seminar article [220] proposed a feature descriptor (SIFT) based on the
gradient information at the scale a point of interest was detected. For every pixel in a
neighborhood of the key-point the gradient magnitude is computed. Its value is weighted
depending on its distance from the key-point. From these values, gradient orientation his-
tograms are computed and normalized to account for photometric variations. Many vari-
ants of SIFT have been proposed. Among them PCA-SIFT [262], Gradient Location and
Orientation Histogram (GLOH) [260] and Speeded-Up Robust Features (SURF) [263].
For a comparison between the original SIFT and its variants see [264]. An affine invariant
version of SIFT was proposed by Morel and Guoshen [265]. Invariance is introduced by
simulating latitude and longitude angles, the two parameters of the camera for which the
original SIFT is not invariant.

A number of descriptors have been applied in medical imaging. The SIFT descriptor
for example has been used to match points in a hybrid registration framework in [266].
Gabor features have proven their value in a number of applications [159, 237]. Wavelet
filters and Steerable filters [267, 268] have been used in [156] and [269] respectively. The
list is not complete but indicative of the importance of the feature descriptors in medical
imaging.

Having established a discriminative and ideally deformation invariant description of
the key-points, correspondences may be established either by 1) relying solely on the close-
ness of the descriptions; or ii) by incorporating structural constraints.

In the first case, the information contained by the descriptor is used to determine the
correspondences. There is an implicit assumption that the descriptors are constructed so
that the use of the Euclidean distance is sufficient to rank potential matches. This con-
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struction can be achieved by appropriate rescaling of the feature vector values. Based on
an established ranking, different matching strategies may be considered. The simplest one
is by thresholding. The definition of the threshold can be achieved through ROC analysis.
A better strategy would be to assign each point to its closest candidate. As the probability
of detecting a false positive is significant, a threshold is still needed to control it. The
third strategy is to consider the ratio between the distance with the nearest and the second
nearest neighbor in the feature space. For an evaluation of these strategies, the interested
reader is referred to [260].

While being intuitive and efficient, the previous approaches discard any information
regarding the spatial location of the key-points in the image. The incorporation of such a
knowledge aims to constrain better the matching problem and reduce further the number
of erroneous correspondences.

A popular way to introduce structural constraints is by formulating the problem as
graph matching. Leordeanu et al. [270] proposed a spectral technique to solve the match-
ing problem. Pairwise constraints were used to preserve pairwise geometry. Berg et
al. [271] formulated the problem of recovering feature correspondences as an integer
quadratic programming problem. Changes in the length and the direction of vectors de-
fined by pairs of features were penalized. Pairwise constraints were also employed in [272]
to model local spatial coherence. Moreover, the authors showed that is possible to handle
outliers during the optimization. In medical imaging, [237] presented recently a method
to detect mutually-salient pairs in brain images.

Despite the success pairwise constraints have enjoyed in many applications, they are
limited with respect to the relations they can model. Recently, a number of researchers
have tried to tackle the graph matching problem with higher order constraints. The spectral
matching method of [270] was generalized to higher order constraints by Duchenne et al
[273]. A tensor power iteration method was employed to solve the matching problem. A
similar formulation was also proposed by Zass and Shashua in [274] favoring the use of a
different optimization method. Wang et al. [275] proposed a higher-order graph matching
formulation incorporating learned structural constraints in a segmentation framework. The
inference was performed by a dual decomposition based method [276].

Methods that infer both the correspondences and the transformation

The last class of methods aims to estimate the correspondences and the transformation at
the same time. This is usually performed in an iterative way, where one component is
estimated first and then, based on this estimation, the second is refined.

On of the most well known approaches is the Iterative Closest Point (ICP) method
[277]. The advantage of this algorithm lies is its simplicity and speed. Correspondences
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are defined based on a closest (in a geometric sense) neighbor principle. Based on this
estimation, the transformation is calculated. Then, a new closest neighbor is assigned to
each key-point and the process continues till convergence.

ICP has drawn a lot of attention and a number of researchers have tried to ameliorate
the method over the years ([278] presents an overview of the improvements over ICP).
The performance of the ICP depends greatly on the initial conditions. In general, a good
overlap of the two point-sets is necessary for the method to converge to a good minimum.
This stems from the assumption that the closest point is a good approximation of the true
correspondence. Thus, Sharp et al. [279] investigated the use of invariant features in
addition to the positional information in order to make the method more robust.

Penney et al. [280] also tried to improve on the precision and robustness of the al-
gorithm. To achieve that, Gaussian noise was added to the positions of the points in one
set before each iteration of the original ICP. The magnitude of the noise was decreased
as the process advanced. [281] tried to render the algorithm more robust by allowing for
anisotropic noise in both target and source point sets. The problem was cast in the form
of a Generalized Total Least Square problem. [278] improved on the robustness and ac-
curacy of the algorithm for free form deformation shapes by considering collinearity and
closeness constraints.

One of the most important works in the domain was introduced by Chui et al. [282].
The proposed TPS-RPM algorithm iterates between estimating the correspondence with
the softassign method and computing the transformation field with a TPS model. [225]
further refined the latter approach by iteratively solving a clustering and matching problem.
Stewart et al. [229] proposed a dual-bootstrap ICP method to register retinal images.
The method operates initially on small regions where accurate correspondences can be
obtained. Based on these correspondences low order transformations are estimated. In the
subsequent steps, the size of the regions as well as the order of the transformation model
are refined. The region refinement is based on the uncertainty of the transformation.

The iterative refinement between the estimation of the correspondences and transfor-
mation can be naturally formulated in an Expectation-Maximization fashion. In [283], an
approach named multi-scale EM-ICP was proposed. The method is similar to standard
ICP with a Mahalanobis distance. The principal difference lies in the estimation of the
transformation step where multiple matches weighted by Gaussian weights are consid-
ered. [284] aimed to render spectral methods for matching more robust to noise and out-
liers. Towards this end, the use of an extension of EM [285] along with a spectral method
to compute the correspondence probabilities was investigated. Finally, an EM approach
was presented in [286] where correspondences are found between scale-invariant salient
region features. Based on the set of all pairs of correspondences, a global transformation
is estimated. Then, the set of correspondences is refined by considering the increase of
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global aligned-ness.

As previously seen, Procrustes analysis is a useful tool when the correspondences are
known [241]. When that is not the case, iterative methods can be used to enhance the
performance of the Procrustes method. In [287], the use of the Dual-Step EM algorithm
is studied. Rangarajan et al. [288] proposed the softassign Procrustes method treating the
problem from an optimization point of view.

2.4 Optimization Strategies

While most research efforts have been concentrated on devising better similarity metrics
as well as transformation models and regularization terms, little attention has been paid
to the last component of registration, optimization. It is usually treated as a black-box
and techniques are used in a plug and play fashion. Even though few methods have been
designed specifically for the registration problem, it would not be an exaggeration to say
that almost all optimization methods have been tested to tackle it.

Optimization methods may be discerned based on the nature of the variables that try
to infer in two categories: 1) continuous, and ii) discrete. The first class of methods treats
real valued variables while in the second case, the variables take values from a discrete
set. The two previous classes of methods are constrained with respect to the nature of
the objective function as well as the structure to be optimized. Heuristic and metaheuristic
methods bear not the previous limitations. Following, some typical exemplars of each class
of methods that have found applications in image registration are going to be presented.
Particular emphasis will be put on Markov Random Field (MRF) formulations for image
registration. An approach that has gained significant attention during the past few years.

24.1 Continuous Optimization

Typically, continuous optimization methods are constrained to problems where the vari-
able take real values and the objective function is differentiable. In medical image reg-
istration, it is often the case that both the previous constraints are satisfied. Moreover,
being rather intuitive and easy to implement, continuous optimization methods have been
applied to numerous registration problems. Let @ denote the vector of parameters of the
transformation and ¢ index the number of iteration. Continuous optimization methods
estimate the optimal parameters following an update rule of the following form:

0111 = 0; + g (0;), (2.29)

where «a; is generally referred to as step size or gain factor, while g defines the search
direction.
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There are various ways to define the previous parameters. For example, the step size
may be constant, decrease with the iterations or so that it minimizes the objective function
along the search direction (exact or inexact line search). The search direction can be
specified by considering only first-order information or, for example, by also taking into
consideration second-order one. It is the choice with respect to the previous parameters
that discriminates different methods between them. The approaches the most frequently
used in medical image registration are:

e Gradient Descent (GD).

Conjugate Gradient (CG).

Powell’s conjugate directions.

Newton-type methods.
e [evenberg-Marquardt (LM).
e Stochastic gradient descent.

A comparison study between some algorithms of the previous categories along with their
description was presented in [289].

The simplest approach is to optimize the objective function by following the direction
that decreases the energy or its negative gradient. In other words, the direction is given as
g = —Vy(0). In [289], two variants of gradient descent are tested. The first employs a
decaying with the iterations function of the step size while the second is based upon the
inexact line search algorithm of Moré and Thuente [290]. Other line strategies include
keeping the step size fixed, monotone line search [291], line search and golden section
search [292]. Gradient descent has been used by numerous researchers to solve a registra-
tion problem. In the LDDMM framework, usually posed in a variational setting, gradient
descent is often used to solve the problem [50, 58, 63]. Johnson’s consistent registration
approach [293] as well as Rueckert’s FFD registration algorithm [117] were also based
upon a gradient descent optimization scheme. Without trying to give a full account for all
registration methods that employ gradient descent, a task that can be deemed impossible,
let us also cite two more variational approaches [144, 258] .

While gradient descent is intuitive and easy to compute it is known to suffer from slow
convergence. Therefore, techniques that have better convergence rates have been tested.
Conjugate gradient descent methods try to exploit the knowledge conveyed by the previous
gradients so that to proceed not down to the new gradient but instead, towards a direction
that is conjugate to the previous. Thus, the direction now is given as g, = f(Vy(60:),8:-1),
where f usually depicts a linear combination g; = Vy(0;) + 5;g;1. Different ways to
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define the weighting factor /3; have been proposed. Some examples of registration methods
that use conjugate gradient descent as an optimizer are [54, 294, 65, 295]. An interesting
tailored approach for FFD image registration using a preconditioned gradient scheme was
presented in [296].

A similar in spirit optimization approach that has been used in an important number of
registration problems is Powell’s or Direction Set method [292]. Powell’s method aims to
minimize the objective function by following conjugate directions but contrary to the pre-
vious method, no gradient information is used to produce them. The basic procedure that
Powell proposed sets the initial direction to the basis vectors g’ = €', i = 1,--- , N, op-
timizes along each parameter axis independently from the rest, performs the replacement
g! = g*1 while adding g¥ = 6,_, — 6, and iterates till convergence. Despite being less
efficient than the previous method, being gradient free, Powell’s method has been applied

in many registration tasks [166, 171, 172, 187, 191].

Another class of optimization methods that has been tested in an important number of
registration applications is the Quasi-Newton (QN) methods [292]. This class of methods,
like the two previous ones, aims to accumulate information from the previous iterations
and take advantage of it in order to achieve better convergence. More specifically, their
goal is to estimate the inverse Hessian matrix H (@) and use it to define the search
direction. Thus, the search direction is defined as g = —H ~(0)V,(8), where the"denotes
that an approximation is used (the true Hessian is used in the case of Newton’s or Newton-
Raphson method). Two main algorithms exist in this category, the Davidon-Fletcher-
Powell (DFP) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS). BFGS is considered
to be slightly better than DFP. A version of BFGS that uses less memory (L-BFGS) was
tested in [289]. Other efforts where researchers have experimented with Quasi-Newton
methods can be found in [255, 82, 185, 128]

An optimization method of the same family is the Gauss-Newton (GN) algorithm. It
is devised to solve optimization problems where sum of squared function values are con-
sidered. This is of particular interest for image registration as such objective functions are
common when aligning images from the same modality. The advantage of this algorithm
is that it does not require the computation of second derivatives. Instead, the Hessian is
approximated by ignoring derivatives higher than first order as H = 2J7J where J de-
notes the Jacobian. The search direction is now given as g = —(J7(0)J(0))71Vy(0).
The Gauss-Newton optimizer has been used in [62, 145, 154]. The Gauss-Newton algo-
rithm is the optimizer that is most frequently used in the demons registration framework
to tackle mono-modal registration [32, 29, 41, 81, 43]. In the demons registration set-
ting, an extension of Gauss-Newton [31] was employed to derive the symmetric demons
forces [33, 36]. This algorithm exploits more knowledge with respect to the problem at
hand. More specifically, it takes advantage of the fact that when the images are aligned,
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the gradient of the source can be approximated by the gradient of the target.

A related to the previous method that has been successfully applied to the problem of
image registration is the Levenberg-Marquardt algorithm. The search direction in this case
is given by: g = — <I:I*1(49) + CI) V(0). 1is the identity matrix and ( is a weighting
factor that regulates the performance of the optimizer with respect to its speed and stability.
By decreasing its value, greater speed may be achieved. At the limit, when ( equals to
zero, we fall to the previous algorithm. On the contrary, when its value increases, the
stability increases as well. For some applications of the LM approach the interested reader
is referred to [18, 118, 129, 130]. Based on the LM algorithm, Thevanez et al. [297]
proposed an efficient optimizer for mutual information driven registration. [118] compared
the LM algorithm with GD, GD with a quadratic step size estimation and CG to find that
it performs the best for a FFD registration task.

The previous techniques cover the deterministic gradient methods that are used most
often to solve the optimization problems that arise when tackling image registration. In
medical image registration, the computation of the derivative information can be com-
putationally demanding. Thus, in order to alleviate the computational burden, many re-
searchers have experimented with stochastic gradient approaches. The update rule for the
stochastic gradient approaches is based upon an approximation of the gradient,

0t+1 = Ot + Oétgt(et). (230)

The only difference with respect to the deterministic approaches is that an approximation
g,(0) of the gradient is used.

The variants of the stochastic gradient approach differ with respect to the way the
gradient is approximated. In [289], three approaches were considered. The first one, re-
ferred to as Kiefer-Wolfowitz (KW) [298], approximates the gradient by a finite difference
scheme. The second one, known as Simultaneous Perturbation (SP) [299], estimates the
gradient perturbing it not along the basis axis but instead along a random perturbation
vector A whose elements are independent and symmetrically Bernoulli distributed. The
last method that was studied is the one proposed by Robbins and Monro (RM) [300]. It
is more general, in the sense that it only assumes that an approximation of the gradient
exists. This method uses a step-size that decreases with time in order to decrease the in-
accuracy. [289] estimated the gradient by using a subset of the image voxels sampled
uniformly. Their conclusion is that the RM method performs better than the rest. This
method was extended in two subsequent works [301, 302] by considering adaptive image-
driven strategies. In [301], an adaptive step mechanism was presented while in [302] an
edge-driven importance sampling was proposed to improve the gradient approximation.
For some applications of stochastic gradient see [1, 164, 163, 194].
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All the previous approaches aim to solve an unconstrained optimization problem. As
we have seen in Sec. 2.2.3, constrained optimization problems often arise when trying to
impose task-specific conditions on the deformation field. The solution of such optimiza-
tion problems is more challenging. The optimization strategies that are usually employed
transform the constrained to an unconstrained one that can be solved efficiently. For exam-
ple, in [145], a log-barrier method was used. Most often, the transformation is achieved by
augmenting the dimensionality of the problem using the method of Lagrange multipliers
[149, 151].

2.4.2 Discrete Optimization

The main drawback of the previous methods is that they proceed by performing local
search in the parameter spacing. As a consequence, they are sensitive to the initial con-
ditions and tend to get trapped in local minima. Moreover, the fact that they rely on the
computation of the gradient of the objective function limits their use in two ways. On
the one hand, not all objective functions are differentiable. On the other hand, their prac-
tical use is hindered by the fact that they are not modular with respect to the objective
criterion and the transformation model. Last but not least, they are often computationally
inefficient.

On the contrary, discrete methods, performing a global search, are robust to initial con-
ditions while exhibiting better convergence rates in comparison to the continuous methods.
Furthermore, their modularity permits their use in various settings. Their limitation stems
from the quantization of the search space and the lack of precision that is thus introduced.
This implies an important precision versus computational efficiency trade-off. The more
densely the solution space is sampled, the better accuracy we may achieve, though at a
higher computational cost. We should also note that the quantization of the search space
allows us to introduce our knowledge with respect to where the solution should lie by
sampling appropriately. Such a control mechanism is not available in the continuous opti-
mization methods.

Let us attempt a brief historical overview of the methods used to solve the discrete
optimization problems arising from Markov Random Field (MRF) formulations that are
typically employed in the case of image registration. Even though a thorough presenta-
tion of all methods is neither possible nor of interest here, the principal classes of methods
along with their basic ideas are going to be traced. More emphasis will be put on the meth-
ods that were used in a registration framework and the registration methods themselves.

Before describing any methods, let us introduce some notation. In general, a graph G,
consisting of set of vertices )V and a set of edges £ (G = {V, £}), is going to be considered.
Depending on the case, the graph may be directed or undirected. The corresponding energy
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is the sum of all unary potentials 4, of the nodes p (i.e. data cost) along with the pairwise
potentials P, (i.e. regularization cost) modeled by the edges connecting nodes p and q.

Exipr = > Up(l) + > Prglly, 1y) (2.31)

peV pqeE

The random variables take values in a discrete label set £. Minimizing the previous energy
result in an optimal labeling 1* or in assigning to each random variable p a label [,,.

The first attempts to solve the difficult combinatorial problem were based on heuristic
and metaheuristic strategies. In the first case, one may cite Iterated Conditional Modes
(ICM) [303] and Highest Confidence First (HCF) [304, 305]. In the second case, a method
inspired by metallurgy, Simulated Annealing [306] should be referred. These methods
suffer from lack of optimality guarantees and slow convergence.

The interest on the field was revitalized during the nineties with the introduction of
the graph-cut [307] and belief propagation methods [308]. If we would like to class the
methods according to the techniques they employ, three different categories should be
discerned:

e Graph-based methods.
e Message passing methods.
e Linear-programming (LP) approaches.

The first class of methods is based on the max-flow min-cut principle [309] that states
that the maximum amount of flow that can pass from the source to the sink is equal to the
minimum cut that separates the two terminal nodes. The two terminal nodes are defined
as source and sink depending on the direction of their edges. The cost of a cut is given by
the sum of the weights of the edges that were removed.

Among the most efficient implementations one can distinct the push-relabel [310] and
the graph-cut method [307]. Of particular interest due to its application in medical image
registration is the a-expansion [311]. a-expansion is the extension to the multi-label case
of the method presented in [307]. In [307], it is shown how to calculate the exact maximum
a posteriori estimation for the case of the Ising model through a single graph cut compu-
tation. Boykov et al. [311] extend the previous technique in the multi-dimensional case
by iteratively applying binary graph cuts. The algorithm starts from an initial labeling and
then checks every label to see if the energy may be decreased by allowing any set of nodes
to change their label to the one under study. The optimal labeling is estimated each time
by performing a single graph cut. The method is guaranteed to finish in a finite number of
iterations though, most often, it terminates earlier as the energy stops decreasing.
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The advantage of these methods is their computational efficiency, especially when
regular grids are concerned. Unfortunately, they are limited with respect to the type of
energies that they can solve [312]. Several variants of these methods, like fusion moves
[313] or dynamic graph-cuts [314] were introduced to further improve convergence at the
expense of becoming problem specific.

In medical image registration, c-expansion is the optimizer used in [315, 316, 317,
318, 162]. A graph the size of the image is constructed assuming a 6-connectivity scheme
and the solution space is sampled densely resulting in a large set of candidate solutions.
The size of the graph as well as the large label set result in computational times that almost
prohibit the use of this method in any reasonable clinical setting. Moreover, the registration
setting that is used is not able to guarantee the diffeomorphicity of the transformation as
the regularization only penalizes the first derivatives of the transformation.

The second class of methods, the so-called belief propagation methods [308], is based
on local message exchange between the nodes of the graph and then backtracking towards
recovering the best solution to the problem. The message, a vector of size equal to the
cardinality of the set of solutions or labels, conveys the belief of a node regarding each
solution to its neighboring one. For each label, the message transmitted from a node p to a
node ¢ is equal to the minimum of an energy given the label. Belief propagation methods
can provide exact inference for chain and tree-structured graphs. Though such a property
is not true in the case of graphs that contain loops, they have been shown to converge to
satisfactory solutions [319, 320] (in this case, normally they are referred to as Loopy Belief
Propagation). Their main strength is their ability to copy with non-submodular pairwise
interactions.

Maybe, the most notable drawback of these methods is the computational burden of
the message calculation. To alleviate the computational burden, efficient techniques to
perform belief propagation were proposed in [321]. The most interesting of the proposed
techniques shows how to decrease the complexity of the message computation by reinter-
preting the process as a distance transform calculation. The methods proposed in [321]
apply to the linear and quadratic case of pairwise interactions. An extension to arbitrary
pairwise functions appropriate for parallel architectures was most recently introduced in
[322].

The previous methods are rather generic as they are appropriate for any MRF prob-
lem. On the contrary, Shekhovtsov et al. [323] proposed an efficient MRF deformation
model for non-rigid 2D image matching by decomposing the original graph into two lay-
ers. The latent variables of each layer model the displacement along each axis. Nodes
placed at corresponding positions at each layer are connected with an edge that models
the data matching term. In each layer, nodes are connected with each-other following a
4-connectivity scheme. These edges encode the regularization term. For this model, the
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operations needed to update the messages are greatly reduced.

In [324], the previous decomposed model was used along with loopy belief propaga-
tion to calculate the SIFT-flow. SIFT-flow, similarly to optical flow, aims to match SIFT-
descriptors along the flow vectors. Moreover, a combination of the techniques presented in
[321, 322] have been tested in graphical processing units to perform fast non-rigid image
registration.

More recently, techniques based on Linear Programming, endowed with better theoret-
ical properties, have been proposed to solve the optimization problem. These techniques
instead of trying to solve the original problem, that is in general N P-hard, opt for a solu-
tion of its LP relaxation. We are going to present briefly two methods that have been used
in registration tasks, Fast-PD [325, 326] and TRW-S [327].

Fast-PD casts the original problem as a linear integer program. Then, solutions are
derived based on the primal and dual LP relaxations so that the primal-dual gap decreases.
The advantages of this optimization technique lie in its generality (it only requires that the
pairwise potentials are non-negative), its optimality guarantees, the fact that it provides
per-instance approximation factors and, last but not least, its extreme speed.

TRW-S or sequential tree-reweighted message passing is also based on an LP relax-
ation. The algorithm aims to solve the dual of the relaxation that provides a lower bound
of the optimal MRF energy. Hence, the goal is to maximize this lower bound. The lower
bound in this case is given by a convex combination of trees. Practically, the algorithm first
decomposes the graph into a set of trees. Then, in a sequential order for every node, per-
forms belief propagation in each tree that contains it, followed by an averaging operation.
That way, the lower bound is guaranteed to increase. The algorithm iterates till the lower
bound ceases to increase (within some precision) or a user-defined maximum number of
iterations is reached.

FastPD was first used for image registration in [328]. There, it was used to infer the
displacements of a grid-based deformation model. Hard constraints on the set of solutions
imposed the diffeomorphic property on the deformation field despite the use of a simple
first-order regularization term. On top of the efficient optimizer, a computationally effi-
cient, though approximative scheme, was used for the calculation of the data cost. As a
consequence, it was made possible to obtain results for both intra- and inter-modal regis-
tration tasks in low computational times. Thereafter, the optimizer have been applied to
deformable registration with deformation priors [329], feature-based deformable registra-
tion [159] and linear registration [330].

TRW-S has also been used in a number of registration tasks. For example, it was
the optimizer that was preferred to optimize the efficient decomposed MRF deformation
model in [323]. Discrete graphical models and the algorithms that are used to perform
inference on them are efficient when first-order relations between the variables are consid-
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ered. On the contrary, their efficiency is more limited when more complex interactions are
concerned as that entails inference in higher-order graphs. Nevertheless, research efforts
have begun to bear fruit and registration algorithms with a higher-order spatial prior have
presented in [331, 332].

2.4.3 Miscellaneous

The previous methods are limited regarding to what objective function and structure they
can optimize. Heuristic and metaheuristic methods, on the contrary, are able to handle a
wide range of problems and explore large solution spaces. Nevertheless, they are not able
to provide any guarantee with respect to the optimality of the solution.

A heuristic often used in image registration is to make at each step the locally optimal
choice. This greedy strategy needs at each step the definition of a set of plausible solutions
and a score function. Being gradient free and intuitive, it has been applied to tackle the
problem of feature-driven image registration where the cost function is based on the com-
parison of feature vectors and thus is not differentiable. The candidate sets are constructed
in a multi-resolution fashion. Moreover, the features as well as the score function can also
be designed to reflect information at different resolutions. More information about the
practical implementation of this strategy can be found in [101, 156, 158, 157, 226].

Evolutionary algorithms is a strategy that has been used quite often in medical image
registration [333], though most of the times limited to linear registration. These algo-
rithms derive from the theory of evolution and natural selection. These algorithms start
from an initial set of solutions. The individual solutions are ranked according to a fitness
measure and a subset of them is chosen in a stochastic fashion to generate a new set of
solutions. The new set of solutions is generated by adapting the current set following a
nature-motivated strategy such as mutation. In [289], the covariance matrix adaptation
method was considered [334] and found to converge slowly. For a more elaborated pre-
sentation and comparison of state-of-the-art evolutionary methods for image registration
the interested reader is referred to [333].

2.5 Discussion

In this chapter, a detailed overview of the current image registration methods was given.
The previous analysis can act as a road map to guide our efforts towards proposing novel
registration algorithms with emphasis on computational efficiency and versatility.

Let us first discuss how our goals influence our choices regarding the deformation
model, the objective function and the optimization strategy. All three choices have an
impact upon the qualities of the resulting registration algorithm.
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Efficiency depends upon the number of deformation parameters, the computational
burden of the evaluation of the objective function and the convergence properties of the
optimization strategy. One could imagine that the fewer considered parameters, the lesser
the computational load to infer them would be. The complexity of the objective function
relates directly to the computational performance of the algorithm. Complex functions
requiring computationally expensive calculations will slow down the response. A fast
converging optimization strategy is required to restrict the number of cost evaluations.

Versatility is also conditioned upon the number of deformation parameters, the nature
of the objective function and the variety of energy forms the optimizer can handle. The
number of degrees of freedom bounds the expressive power of the deformation model
having a direct impact upon the deformations that may be recovered and thus restricts
the problems the registration algorithm can treat successfully. Different problems call
for different objective functions to account for the relation between different intensity
distributions. A universally applicable objective function does not exist. The optimization
method is constrained by the nature of the objective function it can handle. The ideal
optimizer should be able to deal with a variety of objective functions.

Let us postpone for now the choice of objective function and focus on the justification
of our choices regarding the deformation model and the optimization strategy. As far as
the deformation model is concerned, we favor interpolation based models. By control-
ling directly the parameterization of the deformation model, we can choose the minimum
number of degrees of freedom that is needed to recover the deformations of the problem
at hand. Thus, we can achieve the best compromise between computational efficiency and
versatility. In addition, the local spatial influence of the deformation parameters allows
for the design of efficient approximative schemes for the cost calculations. Finally, hard
constraints in grid-based models ensure the diffeomorphicity of the deformation, a key
property that we desire our algorithm to exhibit.

As far as the optimization strategy is concerned, we opt for discrete optimization meth-
ods. On the one hand, they exhibit good convergence rates. On the other hand, they are
modular with respect to the objective criterion enlarging the range of applications, the reg-
istration algorithm can cope with. Discrete optimization methods are limited with respect
to the structures they can optimize. Being able to cope only with discrete structures, they
may lack precision. Nonetheless, smart sampling of the solution space may alleviate this
precision issue while and in addition boost their efficiency.

In the following chapters, based on these two choices, we will derive novel registration
algorithms to tackle the pairwise and group-wise registration problems.



Chapter 3

Hybrid Registration

3.1 Introduction

While the generic lines regarding our choices with respect to the deformation model and
the optimization scheme have been drawn, the question of an appropriate objective func-
tion is still open.

The previous study enables us to draw two important conclusions. First of all, while
in the mono-modal case objective functions that model well the intensity relation between
pixels have been devised, that is not the case for multi-modal tasks. There, despite re-
cent advances based on machine learning approaches that come at the cost of being task-
specific, information theoretic metrics seem limited as they lack spatial context and their
estimation is problematic. Second, local evaluations of similarity measures are advan-
tageous as they render the optimization more robust to local intensity changes provoked
by imaging artifacts or the presence of a contrast agent. Our first remark urges us to be-
lieve that the matching criterion cannot be based only on intensity information. We firmly
believe that geometric information should also be taken into consideration along with spa-
tially localized intensity information. Thus, we opt for a matching strategy that considers
in a coupled way a weighted block-matching criterion and a geometric matching one. Such
a strategy allows us to deliver efficiently solutions under different settings.

In the remainder of this chapter, a review of the existing methods is presented in sec-
tion 3.2. Then, in section 3.3, we are going to discuss how to formulate the problem as
energy minimization by considering discrete deformation elements, while in section 3.4
we show how to optimize the previous energy in a discrete optimization setting. Then, the
experimental validation is presented in section 3.5. In section 3.6, a discussion concludes
the chapter.

69
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3.2 Prior Work

As stated in the previous chapter, both iconic and geometric registration methods bear cer-
tain advantages while suffering from some shortcomings. Hybrid methods try to capitalize
on their advantages by using both complementary information in an effort to get the best
of both worlds. Among the methods that belong to this class, the following distinct sub-
classes may be distinguished based on the way the geometric information is exploited, that
is:

e As initialization.
e As constraint.

e Coupled.

Geometric information as initialization

The first subclass treats each type of information separately and sequentially. Registration
is decomposed into two independent steps, each one acting principally on a different type
of information. Typically, geometric registration precedes providing a rough alignment of
the two images. Subsequently, iconic registration is performed to refine the result. Using
the same notation as in the previous chapter, the energy comprises two terms, a matching
term, M, and a regularization term, R, or:

Ehyb(T) = Mico(s o T o 7igeo: T) + Rico(T o 7;60)7 (31)

Notice that the estimate transformation 7 acts as an update upon the transformation 7,
that has been estimated in a preceding step.

Johnson and Christensen initialized their consistent intensity algorithm with the result
of a consistent landmark approach in [293]. The landmark and intensity registration were
solved independently in an iterative way till a criterion was met. Landmark information
was also used in [335] to provide a coarse registration that was used as initialization for a
multi-scale deformable image registration. In [226], a hybrid algorithm that combines sur-
face and volume information to register cortical structures was proposed. The algorithm
was initialized with the result of a volumetric approach [101] and was subsequently re-
fined using a surface warping method. Postelnicu ef al. [295] on the contrary, started from
the geometric registration, propagated the result to the whole volume using a biophysical
model of the brain and refined with a non-linear optical flow registration algorithm. Re-
cently, a similar approach was presented in [336]. Moreover, Auzias et al. in [76], tested
their diffeomorphic sulcal-based cortical registration (DISCO) in collaboration with an in-
tensity method (DARTEL [18]) in a sequential manner to further improve their results. In
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[337], geometric registration of anatomical structures preceded the iconic registration in
order to make CT-PET registration more robust to initialization and local minima. Similar
methods have also been proposed in the case of CT abdominal [338] and retinal [339]
images.

Geometric information as constraint

Using one type of information independently of the other to initialize the following step
usually results in an increase of the robustness of the registration procedure. However,
there is no guarantee that the correspondences that were established during the previous
step will be preserved. To overcome this limitation, a number of researchers have proposed
to use the correspondences that are recovered during a first step of geometric registration
as a constraint in the objective function that the iconic registration seeks to optimize. In
general, the objective function takes the following form:

Ehyb(T) - ./\/lico(S O T, T) + Rim(T) + D(T, 7;60), (32)

where 7y, denotes the geometric transformation that can be either sparse or dense and D
measures a distance between the two. The influence of the constraint varies from point-
wise to global.

Hellier and Barillot proposed to couple dense and landmark-based approaches for non-
rigid brain registration in [224]. In a first step, sulci were extracted and modeled as active
ribbons. Then, a matching point algorithm was used to establish geometric correspon-
dences that were subsequently used in a robust function as constraints with local spatial
support. In [340], sulcal constraints were also used. A robust point matching method
was used to account for outliers. The objective function was enhanced by an additional
term. The latter ensured that the estimated deformation field adhered to the point corre-
spondences as well as minimized the normalized mutual information. Normalized mutual
information combined with geometric cues was used to tackle brain registration in [341].
Two kinds of geometric cues were employed, landmarks and surfaces. The correspon-
dences for the landmarks were fixed while the surface correspondences were estimated in
an ICP fashion. The ratio between the iconic and geometric terms was calculated automat-
ically based on their derivatives.

Adherence to point correspondences was also considered by Rohr ef al.[342]. The
local correlation coefficient was combined with landmarks, detected using a model fitting
approach, to register pairs of electrophoresis images. The mean landmark distance was
also incorporated in a multi-modal diffeomorphic demons approach to tackle the problem
of diffusion weighted imaging distortion in [343]. Registration between preoperative and
intra-operative images has also been attempted with the use of hybrid approaches [344].
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Avants et al. [75] added a landmark inexact matching term in the LDDMM framework in
order to compare human and chimpanzee cortices. Landmarks were provided manually to
establish either anatomical or functional correspondences between the two species.

A dense deformation field was created in [345] by considering both landmark cor-
respondences and their localization uncertainties. The solution of the registration prob-
lem was a compromise between matching the image data, being regular and close to the
landmark-based deformation field. A similar approach was presented in [346]. The dif-
ference was that a local measure of mutual information was used as an intensity criterion.
A dense deformation field was also created from user provided landmark correspondences
and TPS interpolation in [347]. The transformation was given as an adaptive combination
of intensity- and landmark-fitting. Point information was weighted more in landmarks’s
vicinity. The advantage of this method is its ability to incorporate any intensity-based
algorithm though it cannot guarantee convergence.

While most methods establish geometric correspondences and then encourage the in-
tensity driven deformation field to comply with them without guaranteeing their preser-
vation, Joshi et al. [294] imposed geometric correspondences as hard constraints. First
correspondences were established between the cortical gray/white matter and gray/CSF
surfaces using sulcal constraints. The correspondences were then propagated to the whole
cortical volume with the use of an harmonic map. Following, the dense deformation field
was refined by considering image intensity information under the hard constraint that the
deformation is zero for the previously registered surfaces.

Coupled approach

The disadvantage of the previous approaches is that the flow of information is towards one
direction. By treating the problems in a decoupled way, iconic registration may profit from
geometric either by being initialized closer to the solution or by being driven by an extra
force of adherence to correspondences. However, the geometric registration, being treated
independently, does not benefit from the iconic one. In an ideal case, the two problems
should be considered in a unified way and solved by minimizing a single objective function
simultaneously. The advantage of such a setting would be a more consistent and accurate
registration relieved from the previous limitations and endowed with the advantages of
both classes of methods. A coupled registration objective function may be defined as
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follows:

Euni(7i‘c07 7;60) =
Mico(s o 7;c07 T) + 7efic0(7i—c:0) + H(7i‘c07 7’geo)1 + Mgeo<K o 7;607 A) + Rgeo(7—geo)7 (33)
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where K (respectively A) is the set of landmarks in the source S (respectively target 17)
image domain. H is a consistency term defined on 7i, and 7. It has the following form:

H(ﬁcm 7;60) = /Q(S(,]i‘co(x)a Eeo(x))dx- (34)
The minimization of the coupled objective function results in the estimation of both the
iconic and geometric registration, which should ideally be identical upon convergence.

Such a universal energy for the problem of deformable registration was first proposed
by Cachier et al. [223]. However, they considered a slightly different energy: the coupling
was performed through the introduction of an auxiliary smooth deformation field. The au-
thors proposed to extract sulci modeled as point distributions and use them in the coupled
formulation to solve brain registration. The previous universal formulation (Eq. 3.3) was
solved by iterating between three steps: 1) solve for the deformation that minimizes the
iconic criterion; ii) solve the geometric one by establishing correspondences between the
closest points of the geometrical structures; iii) and finally opt for a smooth deformation
that respects both iconic and geometric constraints.

In the same context, the method proposed by Joshi et al. [348] should also be referred
to. In surface registration, it is often the case that both surfaces are mapped to a common
domain, usually a sphere, where registration is performed. Joshi et al. proposed to also
map the interior brain volumes to the interior of the spheres through harmonic maps. Then,
correspondences may be established by considering the complete sphere domain or both
the surface and iconic information at the same time.

3.3 Continuous Domain

In this chapter, we opt for the universal approach as defined in Eq. 3.3 combined with our
previous choices, that is an interpolation-based transformation model and a discrete opti-
mization strategy. In this section, we introduce in the energy formulation the deformation
model and decompose the continuous problem in discrete entities. These entities are mod-
eled subsequently by an MRF and solved by an efficient discrete optimization technique.
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3.3.1 Iconic Registration

Let us first detail the iconic part of the registration algorithm which is based upon Glocker
et al.’s work [328]. As argued earlier, the use of an interpolation-based transformation
model is preferred. More specifically, a grid-based one is chosen. Let us consider a set of
k control points distributed along the image domain using a grid pattern. Furthermore, let
k be much smaller than the number of image points. The dense displacement field can be
defined as a linear combination of the control point displacements D = {d;, ..., d; }, with
d; € R, as

k
u(x) = Z%’(X)dz‘, (3.5)
i=1

and the iconic transformation 7., becomes:

k

Tico(X) = x + Z wi(x)d;. (3.6)

i=1

As we have seen in section 2.2.2, w; corresponds to an interpolation or weighting function
which determines the influence of a control point 7 to the image point x — the closer the
image point the higher the influence of the control point. The actual displacement of an
image point is then computed via a weighted sum of control point displacements. A dense
deformation of the image can thus be achieved by manipulating a few control points.

The parametrization of the deformation field leads naturally to the definition of a set of
discrete deformation elements. Instead of seeking a displacement vector for every single
image point, now, only the displacement vectors for the control points need to be sought.
If we take them into consideration, the iconic objective matching term (Eq. 2.24) can be
rewritten as:

k
Mico(s o 7;007 T) - % Z/Q djl<x) p(S © 71’00(X)7 T(X))dX, (37)
i—1 /s

where w; are weighting functions similar to the ones in Eq. 3.6.

Here, the weightings determine the influence or contribution of an image point x onto
the (local) matching term of individual control points. Only image points in the vicinity
of a control point are considered for the evaluation of the intensity-based dissimilarity
measure with respect to the displacement of this particular control point. This is in line
with the local support which a control point has on the deformation. The previous is
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valid when point-wise similarity criteria are considered. When an information theoretic

criterion is to be used, a different definition of w; is adopted,
. 1, ifwi(x) >0,
wi(x) ={ M) > (3.8)

0 otherwise.

Thus, in both cases the criterion is evaluated on a patch. The only difference is that the
patch is weighted in the first case. These local evaluations enhance the robustness of the
algorithm to local intensity changes. Moreover, they allow for computationally efficient
schemes.

The regularization term of the energy can also be expressed on the basis of the set of
control points as:

1 k
R =13 /Q (%) (T (X)), (3.9)
i=1 S

where 1) is a function that penalizes certain properties of the dense deformation field and
in practice, can be any of the functions that were studied in section 2.2.

3.3.2 Geometric Registration

As far as the geometric registration is concerned, the case where both the transformation
and the correspondences are sought is considered. On the one hand, the aim is to infer the
transformation that will establish correspondences between the two sets of landmarks A
and A such that a dissimilarity criterion based upon their appearances ¢ is minimized, or:

1 & ~
Mgeo(KOEemA) - 525(7—@0(&)7}\1) (310)
i=1
where B
)\i = argrr/l\i_n Q(Eeo(ni)akj)' (311)

J
In other words, the transformation will try to minimize the distance between a landmark
and the candidate that it is most similar in appearance to it. We remind that vectors (here
the Euclidean position of the landmarks A and ) are denoted in bold.
On the other hand, the transformation is required to be smooth or to preserve locally
the geometric distance between pairs of landmarks,

Reeo(Teeo) = ﬁ Z Z [(Teeo(ri) = Teeo(K5)) — (Ki — K5)]|- (3.12)

i=1 j=1,ji
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This implies the assumption that a linear registration step that has accounted for differences
in scales has been applied prior to the deformable registration.

It should be noted that the geometric matching and regularization terms are already in
discrete form as they are based on the finite set of landmarks.

3.3.3 Coupling Term

The transformation consistency term (Eq. 3.4) is of great importance as it will couple the
solutions of the previous two problems. It can be rewritten in a more efficient way solely
based on the landmarks as:

H( ico» geo - ZH’]:CO F"'z (’%)H (313)

If we now also consider a connection between control point displacements D and landmark
displacements, the previous relation can be rewritten as:

k
H( icos geo - Z HF-';Z + ugeo K,Z — K; — ij(li,L')de, (314)
j=1

where Uge,(k;) = XZ — K;, I.e. the displacement for the correspondence of the two land-
marks x; and Xl As a principle, we would like this displacement to be ideally equal to the
one that is given as a linear combination of the displacements of the control points at the
position of a landmark.

At this point, we should redefine with greater precision the goal of this section. The
goal is to decompose the energy terms into discrete deformation entities under a certain
constraint. Only first-order relations between the entities should arise. The reason behind
this constraint is that such a type of relations can be modeled with the use of first-order
MRFs and thus solved by standard discrete optimization algorithms. The previous term
(Eq. 3.14) includes more than two discrete entities and thus does not comply with the
previous constraint.

To account for that, we are going to approximate Eq. 3.14 by its upper bound. Let us
detail the calculation. By taking into account that the sum of the coefficients w; is equal to
one, Eq. 3.14 can be rewritten as:

1 n k k
,H(7i—c07 7éeo) = E Z || ijO{fi)ugeo(Ri) - ij(ni)djn
=1

i=1 j=1

= SIS ) () — ) (3.15)

i=1 j=1
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If we now apply the triangular inequality and exploit the fact that the coefficients w; are
positive, the coupling constraint is redefined as:

H(Tr Ty) < - D0 D ey (050 o) = )|

i=1 j=1

1 n k
< 3D wnlr) o) — . (3.16)

i=1 j=1

The above redefinitions allow us to introduce our main contribution which is the map-
ping of the deformable registration problem into a discrete labeling one. The discrete
entities of this problem are the set of control point displacements D, and the two sets of
landmarks K and A.

3.4 Discrete Domain

Having identified the discrete deformation elements of our problem, we need to map them
now to MRF entities, i.e. the graph vertices, the edges, the set of labels, and the potential
functions.

3.4.1 Iconic Registration

Let us first introduce a graph Gic, = (Vico, Eico) consisting of a set of vertices Vi, cor-
responding to the set of control point displacement updates V, i.e. |Vieo| = |AD| = k.
Further, we say that a label assignment [, € L., (with p € V) is equivalent to an update
Ad,, of the control point p, i.e. [, = Ad,. So, the label set for this set of variables is
Lico C R, i.e. a discrete version of the displacement space. We also introduce a neighbor-
hood system &, on the vertices, which follows a common 6-connected neighborhood in
case of 3D and a 4-connected one in 2D corresponding to the uniform grid like structure
of the transformation model.
According to Eq. 3.7 we define the unary potentials as:

U (ly) = /Q 5,(%) (S 0 Taou, (x), T(x)) dx, (3.17)

where 7;co,zp denotes the transformation where a control point p has been updated by ,,.
Region-based and statistical measures are again encoded in a similar way based on a local
evaluation of the similarity measure.
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Conditional independence is assumed between the random variables. As a conse-
quence, the unary potential that constitutes the matching term can only be an approxi-
mation to the real matching energy as the image deformation and thus the local similarity
measure depends on more than one control point since their influence areas do overlap.
Still, the above approximation yields very accurate registration. Furthermore, it allows an
extremely efficient approximation scheme which can be easily adapted for parallel archi-
tectures yielding extremely fast cost evaluations.

Actually, the previous approximation results in a weighted block matching strategy
encoded on the unary potentials. The smoothness of the transformation derives from
the explicit regularization constraints encoded by the pairwise potentials and the implicit
smoothness stemming from the interpolation strategy.

The evaluation of the unary potentials for a label [ € L, corresponding to an update
Ad can be efficiently performed as follows. First, a global translation according to the
update Ad is applied to the whole image, and then the unary potentials for this label and
for all control points are calculated simultaneously. This results in an one pass through
the image to calculate the cost and distribute the local energies to the control points. The
constrained transformation in the unary potentials is then simply defined as Tico,, (x) =
Tico(x) + 1,, where Tie,(x) is the current or initial estimate of the transformation.

The compact regularization term defined in Eq. 3.9 could be defined as well in the
above manner. However, this not very efficient since the penalties need to be computed on
the dense field for every variable and every label. If we consider an elastic-like regulariza-
tion, we can employ a very efficient discrete approximation of this term based on pairwise
potentials as:

H(dp + Adp) — (dq + Adq)” )

Pelastic,pq(lpa lq) = Hp _ qH

(3.18)

The pairwise potentials penalize deviations of displacements of neighboring control points
(p,q) € Eico which is an approximation to penalizing the first derivatives of the transfor-
mation. Recall that [, = Ad,. Note, we can also remove the current displacements d,, and
d, from the above definition yielding a term that only penalizes the updates on the defor-
mation. This would change the behavior of the energy from an elastic-like to a fluid-like
regularization.

Before moving to the geometric registration case, let us detail how the label set L, is
constructed so that the accuracy-efficiency trade-off mentioned in the previous chapter is
faced with success. We remind that a small set of labels is desirable so that inference can be
performed efficiently. The cost to pay is the decrease of the accuracy of the registration as
it is bounded by the range of deformation covered in the set of labels. As a consequence,
it is reasonable to assume that the registration result is sub-optimal. In order to tackle
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the previous shortcomings in an efficient way, we opt for an iterative labeling strategy
combined with a search space refinement one. At each iteration, the optimal labeling is
computed yielding an update on the transformation, i.e. [, = Ad,. This update is applied
to the current estimate, and the subsequent iteration continues the registration based on
the updated transformation. Thus, the error induced by the approximation stays small and
incorrect matches can be corrected in the next iteration. Furthermore, the overall domain
of possible deformations is rather bounded by the number of iterations and not by the set
of finite labels.

The iterative labeling allows us to keep the label set quite small. The refinement strat-
egy on the search space is rather intuitive. In the beginning we aim to recover large de-
formations and as we iterate, finer deformations will be added refining the solution. In
each iteration, a sparse sampling with a fixed number of samples s is employed. The total
number of labels in each iteration is then | Li,| =g - s + 1 including the zero-displacement
and ¢ is the number of sampling directions. We uniformly sample displacements along
certain directions up to a maximum displacement magnitude d,,. Initially, the maximum
displacement corresponds to our estimation of the larger deformation to be recovered. In
the subsequent iterations, it is decreased by a user-specified factor 0 < f <1 limiting and
refining the search space.

The number and orientation of the sampling directions g depends on the dimensionality
of the registration. One possibility is to sample just along the main coordinate axes, i.e. in
positive and negative direction of the x-, y-, and z-axis (in case of 3D). Additionally, we
can add samples for instance along diagonal axes. In 2 we commonly prefer a star-shape
sampling, which turns out to be a good compromise between the number of samples and
sampling density. In our experiments we found that also very sparse samplings, e.g. just
along the main axes, gives very accurate registration results but might increase the total
number of iterations needed until convergence. However, a single iteration is much faster
to compute when the label set is small. In all our experiments we find that small labels
sets provide an excellent performance in terms of computational speed and registration
accuracy.

3.4.2 Geometric Registration

Let us now introduce a second graph Geeo = (Veeo, eeo) for the geometric entities K, A.
We remind that they are two sets of landmarks having different cardinalities and we seek
the transformation which will bring each landmark into correspondence with the best can-
didate. Equivalently, we may state that we are trying to solve for the correspondence of
each landmark, which naturally results in a set of sparse displacements.

The second graph consists of a set of vertices Ve, corresponding to the set of land-
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marks extracted in the source image, i.e. [Vyeo| = |K|. A label assignment [, € Lo, := A
(where p € Vo) 1s equivalent to matching the landmark x, € K to a candidate point
I, = X € A. Assigning a label [, implicitly defines a displacement Ugeo;, (Kp) = A — Ky,
since r, is mapped on the landmark /,,.

According to Eq. 3.11, the unary potentials are defined as:

Useop(lp) = 0(kp, 1) (3.19)

The two different though equivalent ways to see the label assignment problem are depicted
in the previous equation. Assigning a label /,, can interpreted as applying a transformation
Tecol, = Kp + Ugeo, (k) or stating that the landmark «,, corresponds to the /,. Contrary to
the iconic case, the set of transformations that can be applied is specified by the candidate
landmarks and is sparse in its nature.

There is a number of ways to define the dissimilarity function p. As we have seen
in section 2.3.2, a common way is to construct descriptors that are able to capture local
geometric information and compare them in a point-wise manner. That would be the case
expressed by the previous equation (Eq. 3.19). Let us rewrite the equation taking into
account the descriptor information Desc:

Ugeop (1) = 0(Descg(kyp), Deser(l,)). (3.20)

A more robust way would be to consider neighborhood information. That can be easily
done by evaluating the criterion over a patch centered around the landmarks,

Z/{geo,p(lp) = /Q Q(S o Eemlp (X),T(X))dx, (321)

where (2g,, denotes a patch around the point x,,.
The regularization term defined in Eq. 3.12 can be encoded by the edge system &, of
the graph. In this setting, the regularization term can be expressed as:

Egeopg(lpy lg) = ||(7;6071p (Kp) — 7;607&1(""(1)) — (Kp — K&yl (3.22)

The pairwise potential will enforce an isometric constraint. Having performed an affine
registration step to account for scale differences as preprocessing, it is natural to suppose
that the geometric distance between homologous points in the two images does not vary
too much. Moreover, by considering the vector differences flipping of the point positions
is penalized. A similar graph has been proposed in [237] to tackle a different problem.
There, the aim is to decide which correspondences to keep in different parts of the image
so that the resulting transformation will be smooth.
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The previous edge system consists of edges between all nodes (complete graph). As
shown in [349], there is a certain redundancy in the information modeled by such graphs.
On top of that, the great number of edges adds computational burden. In [349], the authors
propose to obtain a more compact model by performing a clustering step [350] based on
shape map distances [351]. Here, we take a simpler approach and consider edges only
between a node and a user-specified number of its neighbors. The underlying assumption
is that close points (in terms of Euclidean distance belong most probably to the same
anatomical structure and thus are likely to undergo similar deformations.

3.4.3 Coupling Term

The last missing term of the universal registration energy is the coupling penalty (Eq.
3.16). We introduce a third set of edges &y, containing all possible connections between
the iconic random variables and the geometric variables. The pairwise label assignment
penalty on these coupling edges is then defined as:

Phyb,pa(lp lg) = wq(kyp) Hugeo,lp (kp) — (dg +1g)||, (3.23)
where p € Vyeo and ¢ € Vieo, I, € Lgeo and I, € Lico, and (p, q) € Enyp. Such a pairwise
term couples the displacements given by the two registration processes and imposes con-
sistency. The coupled registration objective function (Eq. 3.3) is finally represented by an
MREF graph Gpyb = (Veeo U Vico, Eaeo U Eico U Enyp) With its associated unary and pairwise
potential functions.

3.5 Experimental Validation

In order to validate the coupled geometric registration method and due to the dependence
of the performance of the proposed algorithm on a landmark extraction preprocessing
step, a multi-modal synthetic data set is used. In this setting, the ground truth deformation
is known allowing for a quantitative analysis of the registration performance regarding
both the dense deformation field accuracy and the quality of the established landmark
correspondences.

Starting from a co-registered pair of T1-T2 brain MRI images of size 256 x 256 x
48 and of physical resolution equal to 0.9375 x 0.9375 x 3mm, 10 target images were
generated from the 3D T2 MRI image. The deformation fields are created by composing
two different configurations of FFD grids. The first one has a control spacing equal to
48mm resulting in coarse deformations, while the second one, with a control spacing of
18mm, is responsible for more local deformations. The different configurations of the
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FFD grids are produced by moving randomly the grid nodes in all three dimensions. The
maximum displacement that the grid nodes can perform is bounded such that the resulting
deformation is diffeomorphic. That is, for the first grid it is equal to 19,2mm and for the
second one is 7,2mm. In each of the 10 generated images, 300 to 400 landmarks positioned
in salient image regions were manually selected. The landmark set /K consists of these
points. Given the deformation fields, for each point of interest in the target image domain
its homologous in the source image domain can be determined. Around each homologous
point, 9 points are selected randomly. These points along with the true correspondence
form the set of the candidate landmarks A.

In this experimental setting, the initial T1 image is used as source and is registered to
the generated T2 ones. Once the registration task is performed, the estimated deformation
field is compared to the one that was used to create the images. The difference between
the two deformation fields is quantified by measuring the end point and the angular error.
Voxels that belong to the background are ignored during these calculations. The end point
error (EP) is measured in millimeters and is simply the Euclidean distance between the two
3D motion vectors. The angular (AE) between the two motion vectors is the angle between
them. It can be computed by calculating the inner product between the normalized vectors
and then calculate the inverse cosine. The use of these errors measurements is common in
the literature of optical flow [352].

Given the multi-modal nature of the data, the mutual information is used as the iconic
criterion. Regarding the regularization term of the iconic graph, the diffusion regulariza-
tion with fluid-like behavior is preferred as it leads to faster computations. The pairwise
terms modeling the diffusion regularization are weighted by a factor of 0.01. As our main
interest is to outline the potential of the proposed coupled approach, the matching criterion
for the case of the geometric registration is based on the Euclidean distance between the
true correspondence and the point indexed by the label at hand. The unary potentials of the
geometric graph are multiplied by 10. Regarding the pairwise potential for the geometric
case, the one presented in (Eq. 3.22) is used as is. Last but not least, the weight for the
coupling term (Eq. 3.23) is set to 0.01.

Our implementation considers FFDs with cubic B-spline basis functions and control
points uniformly distributed over the image domain as the compact transformation model.
We employ a common hierarchical coarse-to-fine strategy where the resolution of both the
images and the FFD control grid is subsequently refined during the registration process.
For the images, we use Gaussian image pyramids with a scale factor of 2 and standard
deviation of 1. The initial control point spacing is set in millimeters according to the
expected maximum amount of deformation (here it was set to 60mm). With increasing
image resolution, we halve the FFD spacing by inserting new control points, which allows
us to recover larger deformations in the beginning and smaller, more subtle ones in later
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iterations. Each registration takes around 15 minutes on an Intel Xeon X5680 3.33 GHz
CPU.

Regarding the discrete displacement label space L., for the iconic part we used a
sparse sampling of the deformation space where samples are taken only along the positive
and negative main axes of the 3D coordinate system. We set the number of samples equal
to 5, yielding 31 labels in total (including the zero displacement). The initial maximum
displacement magnitude on each grid resolution level is coupled to the control point spac-
ing by a factor of 0.4. This is motivated by the fact that composing the single updates on
the transformation bounded to this maximum displacement yields diffeomorphic transfor-
mations. After each iteration, which corresponds to one MRF labeling computation, we
rescale the set of labels with a fixed factor of 0.66. On each level, we commonly per-
form five iterations before increasing the image and grid resolution. This strategy allows
for small label sets that can be optimized efficiently, whereas the successive refinement
allows sub-millimeter registration accuracy as demonstrated in the following experiments.

The goal of this experiment is to demonstrate the added value from considering ge-
ometric information on top of standard iconic one. Thus, a comparison of the proposed
framework with and without the geometric registration part takes place. Regarding the re-
sults, if we look at the registration accuracy in terms of end point and angular error (Table
3.1, 3.2), we see that our coupled iconic geometric registration method is able to further
improve the results of the iconic one. This is evident, as both the end point and angular
error have decreased by taking advantage of the geometric information.

As we expect the hybrid approach to be able to cope with large displacements better
than the pure iconic one, we repeated the experiments by decreasing the initial control
point spacing to 20mm and thus limiting the maximum amount of deformation that can
be handled. The results are also reported in Tables 3.1, 3.2. In this case, we can observe
a more significant difference between the performance of the two proposed approaches.
Therefore, we should conclude that the additional computational cost demanded by the
coupled approach can be compensated by the better quality of the results. Visual results
for one specific case are shown in Fig. 3.1. A checkerboard representation is created
by interchanging parts of the two images. It is evident from the difference between the
neighboring tiles that the images differ greatly before the registration. The continuity
of the patterns across neighboring tiles suggests that the images have been aligned. No
significant visual difference can be observed between the result obtained with the pure
iconic method and the one that is obtained by using the coupled approach.
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# Iconic (h=60mm) | Hybrid (h=60mm) | Iconic (h=20mm) | Hybrid (h=20mm)
mean std mean std mean std mean std
1 1.33 0.69 1.25 0.59 1.38 1.21 0.98 0.61
2 1.32 0.75 1.18 0.53 2.46 3.21 1.06 0.68
3 1.44 0.97 1.22 0.56 2.05 2.40 1.03 0.67
4 1.40 0.74 1.16 0.50 1.40 1.02 1.08 0.69
5 1.23 0.60 1.15 0.56 1.38 1.01 1.03 0.67
6 1.35 0.74 1.24 0.62 1.58 1.39 1.05 0.71
7 1.16 0.56 1.09 0.50 1.45 1.18 1.05 0.67
8 1.29 0.68 1.23 0.58 1.93 2.61 1.11 0.79
9 1.23 0.62 1.19 0.53 1.72 1.89 1.04 0.71
10 1.54 1.08 1.19 0.58 2.60 343 1.05 0.73

[all [ 1.33 011 | 119 005 [ 179 045 | 1.05 0.03 ]

Table 3.1: End point error (in millimeters) for the registration of the Synthetic MR
Dataset. The grid spacing is denoted by h.

# Iconic (h=60mm) | Hybrid (h=60mm) | Iconic (h=20mm) | Hybrid (h=20mm)
mean std mean std mean std mean std
1 8.70 6.66 8.18 6.16 8.25 8.92 6.08 5.12
2 6.85 4.37 6.43 4.32 13.89 23.73 5.13 393
3 10.40 10.52 8.50 7.76 14.02 17.12 7.34 7.29
4 14.46 11.50 11.69 10.24 14.61 14.34 11.49 11.72
5 7.65 7.79 7.23 7.93 8.31 9.32 6.17 6.97
6 8.20 7.08 7.21 6.16 9.85 13.64 6.13 6.13
7 10.19 11.20 9.50 10.19 12.01 15.06 8.67 9.69
8 8.67 9.75 8.01 8.49 10.87 15.14 6.69 7.58
9 9.60 9.19 8.84 8.014 13.62 19.06 8.03 8.95
10 | 13.12 14.43 11.03 12.64 17.42 20.26 9.24 11.15

[all [ 9.78 239 [ 8.66 1.68 [ 1229 297 [ 750 190 |

Table 3.2: Angular error (in degrees) for the registration of the Synthetic MR Dataset.
The grid spacing is denoted by h.
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Figure 3.1: Visual results before (left column) and after registration of image 2 using the proposed
iconic (middle column) and hybrid approach (right column). The results are given in the form of a
checkerboard where neighboring tiles come from different images.

3.6 Discussion

In this chapter, we proposed a framework to couple the point correspondence and the
dense registration problem into a unified objective function where the two problems are
solved simultaneously in a one-step optimization. A Markov Random Field formulation
was employed towards introducing individual costs for the family of parameters and their
interactions. The advantages of the proposed framework can be summed up to:

e Its ability to use any intensity-based criterion due to the discrete nature of the for-
mulation. To the best of our knowledge, only one other hybrid method can claim
that [347], but it cannot guarantee the convergence as a ping-pong effect is possible
between iterations.

e The diffeomorphicity of the obtained deformation field by controlling appropriately
the set of solutions.

e The influence of the landmarks is defined in a local way and in respect to the de-
formation model without introducing heuristics or any assumption on the number or
the nature of the landmarks.

The proposed framework exhibit some shortcomings. One of the limitations lies in the
use of an upper bound of the energy for the coupling term. This shortcoming was tackled in
[353] where the exact L, distance was used to couple the geometric and iconic information,
modeled by pairwise relations. The need for a global linear registration was alleviated
in [354] by using learned higher-order relations for the graph that models the geometric
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problem. Moreover, the landmarks are matched by using an optimized similarity metric.
Last but not least, the proposed registration algorithm is asymmetric. In the next chapter,
a symmetric extension of the previous algorithm is detailed.



Chapter 4

Symmetric Hybrid Registration

4.1 Introduction

The result of the previous algorithm depends upon the selection of the template. Swapping
the order of the images does not result in an inversion of the estimated deformation field.
This is not only counter-intuitive but also undesirable. To illustrate better the significance
of this effect, let us consider the case of a group study where voxel-wise comparisons
take place. By changing the template image, the failure to produce consistent deformation
fields would result in comparisons that are biased upon the choice of the template. Lastly,
in various cases symmetric algorithms have been shown to perform better than asymmet-
ric ones, even in the case where the asymmetric one delivers diffeomorphic results [33].
The above shortcomings lead us naturally to consider endowing our hybrid registration
algorithm with the symmetric property.

In the remainder of this chapter, a review of the existing methods is presented in sec-
tion 4.2. Following, in section 4.3, we discuss how to formulate the problem as energy
minimization by considering discrete deformation elements, while in section 4.4 we show
how to optimize the previous energy in a discrete optimization setting. Then, the exper-
imental validation is presented in section 4.5. In section 4.6, a discussion concludes the
chapter.

4.2 Prior Art

In the first chapter, we had the opportunity to come across some symmetric algorithms
in the course of the bibliographical study. In this section, we are going to attempt a more
detailed account of the symmetric methods available in the literature. On a side note, let us

87
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state that these algorithms are usually referred to as either inverse consistent or symmetric.
There is an important difference between the two. The first try to approximate symmetry
by incorporating penalty terms in the objective function, while the second aim to guarantee
the exact symmetry of the results. Here, we favor the use of the term symmetric in order
to put more emphasis on exact symmetry being the goal of this work. Moreover, this
term seems more appropriate as it is commonly applied in mathematics to describe similar
situations.

The interest towards symmetric registration algorithms was popularized by Chris-
tensen and Johnson’s seminal work [14]. There, both the forward and backward trans-
formation were estimated by minimizing an objective function comprising of terms eval-
uated on both source and target image domains. The two transformations were deduced
separately, while the coupling was achieved by imposing a constraint that penalized the
difference of one from the inverse of the other.

This framework has been proven of great importance and has been extended in various
registration settings. In [293], it was extended to the case where both landmark and inten-
sity information are considered. In [16], an extension of the algorithm that can account
for large deformations by considering a concatenation of transformations was provided.
Landmark-initialized, segmentation and intensity-based inverse-consistent linear elastic
image registration was investigated in [355]. In [356, 357], object matching by consider-
ing object boundary information and the enclosed intensity patterns has been investigated.
In a similar context, manifold registration that exhibits the inverse consistency and transi-
tivity properties was presented in [358]. In the case of multi-modal registration, an inverse
consistent algorithm driven by mutual information was presented in [359, 360] while an
FFD inverse consistent method was presented recently in [122].

Despite their success, this family of algorithms has a number of disadvantages. First
and foremost, the algorithms are only asymptotically symmetric when the weight given to
the inverse consistency penalty tends to infinity. Moreover, they require the computation
of an inverse transformation despite the fact that its existence is not ensured. A number of
methods were devised in order to ameliorate upon the previous algorithms.

In [101], in the hierarchical attribute matching algorithm forces are estimated from
the template to the subject and vice versa. Consistency is enforced only on the driving
voxels and not the whole volume by letting the inverse transformation act as an additional
constraint on the forward one. An ad hoc symmetrization of the image forces inspired by
the Newton’s action-reaction law was presented in [361].

In the symmetric log-domain diffeomorphic Demons framework [33], the force is ren-
dered symmetric by a simple projection of the forward and backward forces separately
calculated by exploiting a log-domain representation of the deformation fields. In the dif-
feomorphic framework proposed by Hernandez et al. [84], the authors symmetrize the
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cost by evaluating it over both image domains by considering the transformation and its
inverse, that now is guaranteed to exist. In a similar approach, in the LDDMM framework,
the cost was evaluated in both image domains by considering the transformation at time 1
and its inverse [68].

Leow et al. [15] consider only the forward and the backward transformation. No
inverse transformations are calculated but instead the backward transformation is con-
strained to be the inverse of the forward during the gradient descent optimization. The
previous algorithm and its embedded consistency constraint was extended in the fluid reg-
istration framework to tackle the registration of diffusion tensor images driven by an in-
formation theoretic criterion [23]. Another algorithm that imposes the inverse consistency
property during the optimization, claiming great efficiency, was presented most recently
in [362]. There, the consistency property is imposed explicitly. Each step of a gradient de-
scent based interleaved optimization that solves in turns for the forward and the backward
transformation is initialized by the inverse of the transformation that was estimated during
the previous step.

While adding an extra term evaluated in the second image domain is sufficient to sym-
metrize the energy, it is more computational demanding and more importantly does not
shed any light on the causes of the asymmetry. The need for a better insight into the reasons
of the inherent asymmetry of registration algorithms was fulfilled in [363, 364]. According
to these studies, there are four main sources of asymmetry: 1) Order non-preservation of
the energies due to the use of standard differential volume forms on the domain of the im-
ages. ii) Non-stable deformation space. iii) Local minima. iv) Numerical implementation
reasons.

Cachier and Rey [363], probably in the first work to study symmetry, restrict them-
selves in tackling the first reason. They propose the symmetrization of the energy with
the use of the Jacobian of the transformation. Regarding the regularization energy, they
propose to multiply the standard term with (1 + det#u)) As for the matching term, the mul-
tiplication with the quantity (1 + det(.J)) is recommended. Tagare et al. [364] based on a
thorough mathematical analysis conclude that the term that Cachier and Ray proposed for
the matching term is the optimal one. Moreover, they show how to guarantee numerically
the symmetry.

As for the regularization term, they show that the one proposed in [365, 366] and
defined as [(det(.J) — 1)log(det(J))dx satisfies the required mathematical properties.
Pennec et al. also presented a symmetric version of the elastic regularized in [17]. In
[367], a symmetric prior was devised for the triangles that govern the deformation of a 2D
image domain. The prior is based on the Jacobian of the determinant and the eigenvalues
of the deformation tensor.

While the previous showed how to construct order preserving energies defined in one



90 CHAPTER 4. SYMMETRIC HYBRID REGISTRATION

image domain assuming that only one of the images is deformed, there is a great body of
work in the diffeomorphic framework that has constructed such energies by letting both
images deform towards a common domain. Such algorithms require an inversion and a
composition step in order to provide the mapping from one image domain to another.

Joshi et al. proposed a method for unbiased atlas construction in the LDDMM frame-
work in [368]. When only two images are considered, they are deformed towards a com-
mon domain where the matching term is evaluated and each transformation is regularized
by a separate term. Having estimated two forward mappings towards the common do-
main, one of them has to be inverted and composed to the other in order to estimate the
full flow. To get the transformation from one image domain to another, an inversion and a
composition step are needed. An extension of the previous framework to the model based
multi-modal case is given in [369] while Avants et al. devise a similar algorithm using
Cross Correlation as a similarity metric [61]. The same framework has also been used
recently to register fibre orientation distributions in [370]. Tagare et al [364] argue that
the methods that are based upon a composition of different transformations lack a natural
geometric interpretation.

The previous methods consider two different flows, each from one image domain to
the common one. It is possible though to consider only one. In [60], two such symmetric
data terms were reported for the LDDMM framework. For the first data term, called
Consistent-Integral-Cost, the matching of the template is not only enforced to the target at
the end of the flow, but also at each point along the flow. The second data term is called
Consistent-Midpoint-Cost (CMC) (initially suggested and discussed in [77]) and suggests
that the matching takes place at the midpoint of the flow.

Studholme e al. [184] used a similar scheme to tackle serial brain MRI registration in
the presence of local tissue contrast change. The proposed regional Mutual Information
that is able to account for such local intensities changes was used to drive a viscous fluid
deformation model. The evaluation of the cost takes place at the common domain that is
placed halfway between the images. As a result, the number of parameters that have to be
estimated is equal to a standard asymmetric pairwise registration.

Inspired from the previous approach, Noblet et al. [371] proposed a similar strategy
for mono-modal registration. The difference is that an FFD deformation model is used
while the flows from the common domain towards the image ones are constructed so that
the topology is preserved. This is an important property that ensures that the whole flow
from one image to the other can be estimated.

In this chapter, we investigate the symmetric property in a hybrid registration frame-
work. To the best of our knowledge, little efforts have been exerted towards this direction.
Apart from Christiensen and his coworkers that have exploited both types of informa-
tion in the inverse consistency framework, we have not come across any other method
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performing a similar task. We have placed great emphasis on establishing accurate cor-
respondences without undermining the symmetric property of the overall approach. The
proposed method is formulated in a discrete setting and our effort was concentrated on
delivering an efficient and versatile algorithm. We have to remark that the iconic part of
our method bears a strong resemblance to the one proposed by Noblet [371]. The main
difference is the discrete nature of the proposed method that allows us to tackle both mono-
modal and multi-modal registration.

4.3 Continuous Domain

Similarly to the previous chapter, we are going to begin with the description of the objec-
tive function in the continuous domain. Subsequently, the symmetric energy for the iconic
part, the geometric and the coupling term are going to be given. The previous energy
will be mapped to discrete deformation elements to facilitate the description of the MRF
energy that will take place in the next subsection.

4.3.1 Iconic Registration

As we stated in the previous section, there is a number of ways to construct a symmetric
energy. The simplest is by considering both forward and backward transformation and
evaluating the cost function over both image domains:

Eico = Mico(s o 7i-co,STa T) + 7—\)fico<7i-co,ST) + Mico(T o 7i-co,T37 S) + Rico(’]i-co,TS)- (41)

The subscripts denote the direction of the transformation. In [14], the energy was mini-
mized separately for 7ico s7 and Tico s and two penalties were added to impose the inverse
consistency constraint (ICC):

ICC = D(Tio,s1, Tioo.rs) + P(Tieo,rss Tioys7)- (4.2)

D denotes a function that measures the difference between the two transformations. As
stated before, this framework is only asymptotically symmetric. A slight different strategy
would be to use as backward transformation directly the inverse of the forward, or

Eico - Mico(S o 7i—CO,ST7 T) + Rico(7i‘co,ST) + Mico(T o j(;)}STa S) + 7—\)fico( ic_o,IST)' (43)

In that way, the extra penalizing term is no longer needed.

The previous strategies are not able to serve our goal of efficiency. The major drawback
with respect to that end is that the computational burden has doubled due to the evalua-
tion of the criteria in both image domains. An ideal strategy would be one that would
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need a minimal amount of additional operations, when compared to the standard pairwise
registration, to calculate the cost function.

There are two possible schemes that lead to cost evaluations over one domain. The
first would be to eliminate the asymmetry by considering forms defined on the graph of
the warping function [363, 364], 1.e.

M i“’:/ (8 © To,s57(x) = T(x))*(1 + det(Jr, o)) dx. (4.4)
Qr

The disadvantage of this transformation is that we still need to calculate the Jacobian of
the transformation. The other plausible way is to let both images deform and evaluate the
matching term over the common domain €2 as done in [368, 61],

Mico - / P(S o 7i—co,SC’(X)7 To ﬂco,TC(X))dX' (45)
Q¢

On the one hand, this strategy restricts the evaluation of the matching criterion over only
the common domain. On the other hand, the number of parameters has doubled since two
transformations have to be estimated.

There are two possible ways to keep the number of parameters stable. The first one
is to consider one flow as proposed in [60, 77]. The second one is to employ two flows
that obey such a relation that permits us to consider them as one [371]. Here, we take an
approach similar to the one proposed in [371].

The symmetric energy is defined as follows:

Eico - Mico(S o 7?00,057 T o 7i—c0,CT> + 7—\)fico(,]i’co,C’,SV 7Tco,CT)' (46)

There are two important aspects of this scheme that have to be underlined. First of all, the
transformations from the common domain and back to the respective image domains are
considered. That is important as it will allow us under conditions to express the two flow
problem in terms of only one flow. The second regards a requirement upon the properties
of the mappings. They should be both invertible so that we can estimate at the end the
total mapping from one image to the other. In this setting, the matching component of the
energy can be expressed as

Mico = / P(S o 7;C07CS(X)7 To 7idco,C’T(X))an (47)
Qc
while the regularization one as
1
7?fico = 5 w(ﬂco,CS(X)) + w(,]i—co,CT(X))dX' (48)
Q¢
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Let us now introduce the deformation model and show how the previous remarks can be
taken into account before mapping the previous element to discrete deformation elements.

Similarly to the previous chapter and the registration algorithm proposed there, an
interpolation based transformation model is employed. The difference is that now two
transformations need to be estimated. As a consequence, two grids (G¢g and Geor), one
isomorphic to the other (copies of each other), are going to be used to model the trans-
formation. Again, each grid consists of £ control points distributed uniformly along the
image domain. The dense displacement field is given by Eq. 3.5. Thus, the transformation
fields are given in the following form:

Tico.cs(x) =x + Z w;(x)di,cs and Tio or(X) = x + Z w;(x)d;.cr- (4.9)

As the grids are isomorphic, the respective nodes of each grid have the same spatial sup-
port, hence the spatial weight w; is the same. Their displacements however are different.
The subscripts CT" and C'S are used to emphasize this difference.

As it has been discussed earlier, the requirement for invertibility can be easily satisfied
by imposing hard constraints on the maximum displacement grid nodes are allowed to
take. It is also with ease that we can halve the number of parameters to infer. The idea is
to impose that each point in the common domain is halfway from the corresponding points
in the image domains, or

Tico,cs(X) + Tico.or(X) = 0 = Uico,c5(X) + Uico,cr(X) =0 = d; cs = —d;cr. (4.10)

As the previous equation suggests, one parameter has to be estimated for each node and
depending on which deformation field is considered its positive or negative value will be
used.

Assuming the previous deformation model, the discrete entities of the problem are the
k pairs (d; cs, —d; cr). Expressing the symmetric matching term (Eq. 4.7) on the basis
of these discrete entities will result in the following equation

100 = k’ Z/ S o 7110 C’S( ) So 7i—co,CT(X))dX- (411)
Qc

As for the regularization term (Eq. 4.8), it is expressed as

1co = 2/€ Z/Q 1coCS( )) +¢( ICOCT( ))dX, (412)



94 CHAPTER 4. SYMMETRIC HYBRID REGISTRATION

or,

1 k
Rieo =72 / (%) ¥ (Treo 05 (x) ) dx. (4.13)
i=1 v S

4.3.2 Geometric Registration

Opting for a symmetric registration framework, the geometric registration algorithm should
also be endowed with such a property. Unfortunately, the scheme used in the previous
chapter is not symmetric and cannot easily be adapted to meet our ends. Thus, we have
to devise a new way to establish correspondences that will be independent of the order
of the input images without compromising the overall accuracy. Moreover, given that the
ultimate goal is to use the correspondences as an extra driving force for the hybrid registra-
tion, we request that they exhibit certain geometric constraints (smoothness of the implied
dense deformation and no flipping of positions) and that they are dispersed in image space.
Last but not least, only the most important correspondences should be kept, alleviating the
computational burden and boosting the efficiency.

Here, we detail a three-step algorithm that is able to deliver results that conform with
previous principles. The three steps that compose the proposed algorithm are 1) landmark
extraction; ii) matching by uniqueness constraints; and iii) refinement by considering ge-
ometric constraints.

Regarding the first step, for now, we are not going to concern ourselves with the de-
tection step. We are going to assume, as before, that two set of landmarks (K and A)
have been created either by employing a general-purpose algorithm such as SIFT [220] or
a task-specific segmentation algorithm. We assume again that these landmark are placed
in prominent locations that correspond to anatomical structures of interest. The detection
step is by construction symmetric as the same algorithm treats both images equally.

On the contrary, matching is asymmetric. To account for this fact, we consider the
following objective function

E = Mgeo(K © Tgeo, A) + Mgeo(A 0 Ty, K). (4.14)

Note that the transformation 7, maps points from the source image domain to the target
one. To compute it, a greedy search is employed. We first search exhaustively among the
candidates belonging to the set A to find the best match \* for each x € K. Then, in a
second pass, we search for the optimal matching «* for each A € A. At the end, we keep
only these pairs that constitute a unique matching in both forward and backward fashion
(uniqueness constraint). This strategy, apart from being symmetric, is robust to outliers.
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The most interesting and novel part of this three-step process is the last refining one. So
far, we have been able to establish correspondences by considering only a matching crite-
rion. Considering only appearance information may not be sufficient to tackle ambiguous
cases. To render the matching more robust, geometric information should be exploited.
The third step of the proposed aims to introduce such information in order to refine the
matching and keep the most reliable of the pairs.

The objective is threefold. First and foremost, we are interested in keeping only the
most reliable of the previous correspondences. Fewer pairs of points lessen the com-
putational load. Nonetheless, we have to ensure that meaningful correspondences are
distributed along the whole image domain to provide the necessary constraints that will
drive the registration. Last but not least, a geometric constraint to disambiguate erroneous
matches is considered. Assuming that no scale differences exist between the two images,
a distance preservation constraint is imposed.

The problem is cast as a clustering one. Let us assume that during the previous steps
( pairs have been retained composing the set Z = {z; = (k;, \;),i = 1,---,(}. The
goal is to choose a number of = cluster exemplars {05}55:1. Ideally, the number of clus-
ters should be determined automatically by the clustering algorithm itself. That can be
provided by state-of-the-art clustering algorithm such as Affinity-Propagation [372] and
Linear-Programming based stabilities algorithm [350]. Here, we are going to use the sec-
ond as its convergence is always guaranteed.

The problem is formulated as follows:

min (Z mgin d(z, ce) + i: (dB(cT,, ¢ + i: d"(c,, cs))> (4.15)
z€Z r=1 s=1

Eu{cﬁ}§:1

Each one of the three terms of the previous equation manifest a geometric constraint.

The first term, d*(p, c¢), requires all pairs belonging to the same cluster to be geomet-
rically close to the exemplar of this cluster, encouraging nearby landmark pairs to have
smooth displacements. It is defined as

1 1
(2, ce) = llke = Becll 4 SlIA = Acll + 1A = 82) = Aee = e (4.16)

The subscript indexes pairs of correspondence. The previous energy can be interpreted as
follows. Source points k. and k., between a pair z and its exemplar ¢, should be spatially
close. The same goes for the points belonging to the target domain, that is points A, and
A, for the previous case. Moreover, the displacements (X, — k) and (A, — k., ) that are
implied by a pair z and its exemplar ¢¢ should be similar.

The second term, d”(c,, c,), encourages cluster exemplars to be chosen as those pairs
having high similarities. The assumption is that higher similarity implies higher reliability
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for the matching and at the end is the most reliable correspondences that we would like to
keep. Therefore it is defined as

dP(cy,c,) = o(Ke,, Ae,). 4.17)

The third term, dr(cr, ¢s), encourages any two different exemplars ¢, and ¢4 to be
spatially distributed. To achieve such an effect, we opt to maximize their distance

1

d* (¢, cs) = )
(e ) PR

(4.18)

H (’QC’V‘ - ’q’cs)

Note that the number of clusters (hence the number of finally selected landmark pairs)
= is also optimized rather than being fixed. Contrary to the previous chapter that the iconic
and the geometric registration problem were treated simultaneously, here geometric reg-
istration precedes the iconic one providing a set of correspondences to act as constraints.
This set of correspondences, or displacements {7ge0¢,{ = 1,--- ,Z}, constitutes the set
of discrete elements. Next, we will see how such an information can be taken advantage
of during registration.

4.3.3 Coupling Term

Again, we would like to introduce the geometric correspondences as constraints to urge
the dense deformation field to be locally consistent with the sparse displacements. The
fact that now the correspondences are pre-estimated is a limiting factor. We argued that it
is important to let the solution of both problems interact and profit from each other. Thus,
it is important to add more degrees of freedom to our formulation to render it more robust
to erroneous correspondences. This can be achieved by letting the algorithm decide upon
whether to try to be consistent with the sparse correspondences or not.

Let us suppose = pairs of landmark correspondences have been established composing
aset 7% = {(k,A]),i = 1,--- ,E}. For ease of notation, » symbol will be dropped
hereafter. The displacements that occurred during the last step map a point in one image
to a point in the other one. In this framework though, we aim to estimate displacements
from the common domain to the image ones. Knowing the complete mapping and keeping
in mind that the common domain is halfway from the corresponding points in the two
images according to the Euclidean distance, the corresponding point i € ()¢ as well as
the displacements d,, . and d,, ., can be calculated.

_ A —
d. == > Handd,, = T“ (4.19)
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Keeping the previous in mind, the following holds

1 1

H(7i-007 7'geo) = 57—[(7;00,057 7;760,05) + §H(I7ICO,CT7 7'geo,CT) (420)

= H(feo,CSy 7;(-:0,05) = H(ﬂco,CT7 7Tgeo,CT>~

Thus, the coupling term can be defined as

1o |
H(7i-co,CSa 7-geo,CS) = = Z mln(”ﬁco,CS(Ni) - Eeo,CS(Mi) Ha T) (4-21)
=1

Equivalently, we can express the previous in terms of the transformation that maps from
the common to the target domain. In the previous equation, T stands for a threshold whose
goal is to discard those correspondences that are not at all consistent with the estimated
dense deformation field. Its value varies depending on our certainty upon the solution of
the previous geometric registration step.

Taking into account the grid-based transformation model, we can derive as previously
a relation that consists of only two discrete entities

1 .
H(Tico,cs, Teeo,cs) = = Z min (w;(1;) | Ugeo,cs(p;) — djosll, T) - (4.22)

i=1
The above allows us to map the symmetric hybrid deformable registration problem into
a discrete labeling one. The discrete entities of this problem are the set of control point

displacements D = (D¢g, Do), the set of correspondences Z* as well as the option to
consider a correspondence or not.

4.4 Discrete Domain

To sum up the previous section, the energy that is optimized is the following:
E = Mico(S o 7i—co,CSu To 7iico,CT) + 7eico,C’S(7iico,C5') + H(,]iico,C,SW 7’geo,CS>‘ (423)

The geometric registration is solved separately. In this section, the previously identified
discrete entities are going to be mapped to MRF entities.

4.4.1 Iconic Registration

Let us denote again as Gico, = (Vico, €ico) the graph modeling the symmetric iconic regis-
tration problem. The set of vertices V¢, corresponds again to the set of control point dis-
placement updates, that is |Vi.,| = |AD| = |(AD¢gs, AD¢cr)|. The assignment of a label
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l, € Lico, (With p € Vi) is equivalent to an update Ad,, s on the control point p € Gcg
as well as an update Ad,, o7 on the control point p € Ger, ie. I, = (Ad,cs, Ad, o)
(pcs = Adycs, l,or = Adycr). So, the label set for this set of variables is Li,, C
R? x R?, i.e. a discrete version of the displacement space for both transformations so that
the common space lies in equal distance from both image domains. The neighborhood
system &, on the vertices is the same as the one used in the previous chapter. According
to Eq. 4.7 we define the unary potentials as:

Uieo,(1,) = / (%) IS © Trocsiy s (0 T 0 Teocrt, on (X)) s (424)
Q¢

where Tico,05,, s denotes the transformation where a control point p € G has been
updated by [, cs. ﬁCO,CT,l%CT is defined similarly. In the same way as in the previous
chapter, region-based and statistical measures can be encoded based on local evaluation of
the similarity measure in the common domain.

It goes without saying that the random variables are assumed to be conditionally inde-
pendent resulting in the same efficient approximative scheme for the unary potential cost
calculation. The unaries can be seen as encoding an overlapping blocks matching strategy.
There is little difference with respect to the evaluation of the unary potential described in
the previous chapter. The evaluation of the unary potentials for a label | € £;, correspond-
ing to the updates Adcg and Adgr can be efficiently performed as follows. First, each
image is globally translated by applying the respective update. In the overlapping domain,
the unary potentials for this label and for all control points are calculated simultaneously.
This result in a one pass through the common domain to calculate the cost and distribute
the local energies to the graph nodes. The constrained transformation in the unary poten-
tials is then simply defined as Tico,c5,1, 5 (X) = Tico,c5(X) + Ip,c:s, Where Tico 0.5(x) is the
current or initial estimate of the transformation. From a computational point of view, the
extra load is minimal and results from the fact that both images are transformed simulta-
neously. As a result, the number of interpolation operations that are performed is doubled.
An insignificant cost to pay to symmetrize the algorithm.

If we compare Eq. 4.13 with Eq. 3.9, we will note that they are identical. That is why
the exactly same pairwise potentials that were used in the previous discrete model can be
used here too.

[(dp,cs + Adycs) — (dgos + Adges)|
Ip—d '

The fluid-like behavior can be obtained by adopting the following pairwise potential that
penalizes only the difference between the updates of the deformation field:

,Pelastic,CS,pqap; lq) = (425)

{ —1
,Pﬂuid,CS,pq(lpy lq) = H pﬁ’; — (Z“CSH . (426)
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Recall that [, 0 = Ad, ¢s.

Before moving to the coupling constraint, let us underline one more time the advan-
tage of controlling the solution space that this framework provides. In order to construct
the label set, the same iterative labeling scheme and search space refinement strategies
as the ones in the previous chapter were used. The difference is that now the estimated
transformations are required to be diffeomorphic. The control that we have over the so-
lution space allows us to comply with such a constraint in a straight-forward manner by
sampling displacements that don’t exceed 0.4 of the grid spacing. As it has been discussed
in various points in this manuscript, this is a sufficient hard constraint that guarantees that
the deformation is both smooth and invertible.

4.4.2 Coupling Term

In order to model the coupling constraint a second graph G, = (V,, &p) is considered.
The set of the vertices ), corresponds to the decision whether to keep the correspondence
or not (i.e. |V,,| = Z). Thus, the label set here is binary £, = {0,1}. Zero for no
correspondence and one for the contrary. If we were to design the graph, each vertex
would be placed in the location of its respective point x in the common domain.

Such a decision can be based solely on the difference between the geometric and iconic
transformation. Nonetheless, our certainty regarding the correspondence, as it is quantified
by the matching criterion, can be taken into account. This leads to the following unary
potential:

Ty if 1, =0,

4.27
0(kp, Ap) if L, = 1. 27

Z’{Cpm(lp) = {

The same edge system &, as in the asymmetric case, is employed to connect the iconic
random variables to the geometric ones. The coupling penalty (Eq. 4.22) can be modeled
by the following pairwise label assignment or:

o ifl, =0,

! (4.28)
we(ty) || Ugeocs(tr,) = (dgos + lgos)||  if L, = 1.

PCp,pq(lpa lq) = {

p € Vypand g € Vi, |, € L, and [, € Lico, and (p, q) € &,. Such a pairwise term cou-
ples the displacements given by the two registration processes and imposes consistency.
However, if the difference is greater than a threshold, it would prefer not to impose any
consistency and discard this correspondence. The coupled registration objective function
(Eq. 4.23) is finally represented by an MRF graph Gy, = (Vep U Vico, Eep U Eico) With its
associated unary and pairwise potential functions.
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4.5 Experimental Validation

Validating the performance of the proposed framework is accomplished through the use of
a commonly available database for optical flow!. This dataset contains image sequences
for which the flow between successive frames is known. There are three different cate-
gories of image sequences. The fist category comprises challenging real data. The estima-
tion of the ground truth flow is achieved through the use of hidden fluorescent texture. The
second category consists of data that were synthesized through computer graphic tech-
niques. The third category consists of modified stereo sequences. The interested reader
may find more information concerning the data set in [352]. Four typical image sequences
belonging to the data set along with the ground truth flow are depicted in Fig. 4.1.

4.5.1 Geometric Registration

As the geometric correspondence establishment is treated in an initial step and in a sense
separately from the subsequent dense correspondence establishment step, we present in
this section typical results obtained with our proposed framework.

Landmark detection is performed by using the SIFT detector [220]. Our choice was
motivated by the widespread acknowledgement that the specific algorithm has gained in
the Computer Vision community. Moreover, there is a number of efficient implementations
of the algorithm available online? facilitating experimentation. Regarding the clustering
step, a modified version of the Linear Programming clustering method presented in [350]
was used.

In the first step of our algorithm, key-points are detected in both image domains. Sub-
sequently, they are matched to their best candidate in the other image domain constructing
symmetrically the initial set of correspondences. In the first row of Fig. 4.2 and Fig. 4.3
the initial set of correspondences for 4 different images of the testing data set is shown.
The initial sets of correspondences comprise a great number of key-point pairs located in
the proximity of each other. Moreover, there is an important number of false correspon-
dences.

During the second step of the algorithm, we try to rid the set of correspondences from
the false ones. This is achieved by imposing the unique matching constraint. In the second
row of Fig. 4.2 and Fig. 4.3, the correspondences that have been kept after enforcing
the uniqueness constraint are shown. While an important number of erroneous correspon-
dences have been discarded, there are some that still remain. In the first row of the Fig. 4.2

http://vision.middlebury.edu/flow/
’http://www.vlfeat.org/~vedaldi/code/sift.html
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Figure 4.1: Four representative images of the data set. From left to right: the first frame of the
sequence, the second frame of the sequence and the ground truth flow.

and Fig. 4.3 we have marked with a red square some examples of false correspondences
that have been rejected during the second step of the process.

We remark that the correspondences that have remained after the previous step tend
to be localized in space. Therefore, there is a certain redundancy in the information that
is conveyed by the geometric correspondences. The third step of the proposed process
aims to discard this redundancy and keep the best (according to a matching criterion)
correspondences. The result of the clustering step is shown in the third line of Fig. 4.2 and
Fig. 4.3. Let us point-out that the clustering step assigns the outliers that were not rejected
after the second step to respective clusters. As the outliers are significantly different from
the rest of key-point pairs, there is no redundancy in the information they convey and thus
are treated as individual clusters. This fact motivates the use of a robust coupling term
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during the registration. In the third row Fig. 4.2 and Fig. 4.3 a red square has been used to
enclose some of the remaining erroneous correspondences.

(a) Dimetrodon (b) RubberWhale

Figure 4.2: The result of the proposed three-step process to establish geometric correspondences.
Top row: initial correspondences. Middle row: correspondences after enforcing the uniqueness
constraints. Bottom row: correspondences after the clustering step.

4.5.2 Coupled Registration

The goal of this experiment is twofold. First and foremost, we would like to demonstrate
the potential of including geometric information during the registration process. In other
words, we would like to show that a hybrid approach may achieve better results than a
purely iconic method even in this specific setting where iconic methods are known to
perform with extreme accuracy. Moreover, we would like to show that we are able to
discard erroneous correspondences through the proposed outlier handling strategy.

As the assumption that intensities are preserved in time is true in this specific case, we
chose the Sum of Absolute Differences as similarity criterion. The weight for the pairwise
term modeling the smoothness constraint was set equal to 30. The values the smoothing
pairwise potential can take were truncated to 0.4 in order to allow abrupt changes in the
labeling. This is essential due to the presence of different objects in the images that move
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(a) Urban2 (b) Venus

Figure 4.3: The result of the proposed three-step process to establish geometric correspondences.
Top row: initial correspondences. Middle row: correspondences after enforcing the uniqueness
constraints. Bottom row: correspondences after the clustering step.

independently from one another. The parameters were kept the same for both methods.
The weight for the pairwise potential encoding the coupling term was set to 17. The
threshold T, was defined in an adaptive way and was to 5 x the sampling step. Taking
into account that the SIFT pairs that were considered during the registration exhibited high
similarity, the term described in Eq. 4.27 was not used.

Cubic B-spline basis functions were used as interpolation functions in our grid-based
deformation model. A coarse-to-fine strategy was considered only for the deformation
grid. The initial spacing of the uniform grid was set equal to 16 and it was reduced to 8
and eventually 4 pixels as three levels were considered. The image resolution was kept to
its finest level so that the cost calculation could be carried out with the highest possible
precision.

As far as the label set is concerned, a dense sampling strategy was preferred and 10
samples were taken from zero to the maximum allowed displacement, resulting in a total
number of 441 labels. In the 2D optical flow case, we can easily use a dense sampling
strategy without being restricted by memory demands as opposed to the 3D case. There-
fore, it is logical to opt for such a strategy that will enable us to approach the true solution
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as much as possible. On each grid level, 5 iterations were performed considering different
label sets. Each label set was a rescaled version of the previous one. The scaling factor
that was used was set to 0.66.

As far as the results are concerned, the performance of the iconic method is in line
with the results presented in [373] and in [374]. [373] presents the asymmetric version
of the algorithm proposed here while [374] proposes an MRF formulation for the optical
flow problem. Given the results presented here and in [373], we have reason to believe that
they are close to the limit of accuracy one may expect for a parametric deformation model.
The errors are within sub-pixel accuracy and mainly in the border of areas that move in a
different sense. In these areas, the result of the algorithm is limited by the interpolation
strategy we have chosen.

As far as the performance of the coupled method is concerned, it performed slightly
better than the iconic method. In the cases where the intensity information was able to
guide the registration with accuracy, its performance was either slightly better or equiv-
alent to the performance of the iconic method. When that was not the case, the coupled
method was able to achieve a significant improvement over both angular and end point
error measures.

The difference between the quality of the solution of the two methods is evident in
Fig. 4.6 where the areas of erroneous flow in the lower part of the image has greatly
decreased. In Fig. 4.4, Fig. 4.5 and Fig. 4.7, we are not able to observe a notable
difference between the flow fields of the iconic and coupled method as their performance
is practically equivalent. The quantitative results for all image sequences are summarized
in Table 4.1. We should also remark that in all cases, the proposed coupled method was
able to discard the erroneous correspondences.

To conclude, geometric information may help improve the performance of a registra-
tion algorithm. Especially, in the cases where the iconic information fail partially to drive
the registration process towards the desired result. The optical flow benchmark that we
consider here may not be the best setting to evaluate the performance of the proposed ap-
proach as the errors are within a sub-pixel accuracy. We strongly believe that the impact of
the geometric information will be more significant in the case of 3D medical registration
where it could help remove the 3D ambiguity and recover large deformations.

4.6 Discussion

In this chapter, we proposed a framework that takes advantage of both geometric and
iconic information to tackle the registration problem in a symmetric way. The problem
was formulated as an energy minimization one and was modeled by a Markov Random
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Figure 4.4: Optical flow visualization (Dimetrodon). Left column: ground truth flow. Middle
column: flow obtained with the coupled method. Right column: flow obtained with the iconic
method.

Figure 4.5: Optical flow visualization (RubberWhale). Left column: ground truth flow. Middle
column: flow obtained with the coupled method. Right column: flow obtained with the iconic
method.

Field. The interest of the proposed algorithm lies in the following:

e Its extreme efficiency. The problem is formulated so that as little as possible compu-
tational burden is added with respect to the asymmetric case. Moreover, an efficient
approximation scheme and optimization strategy are used.

e Its versatility. Being based on a discrete framework the algorithm is modular with
respect to the matching criterion and transformation model.

e To the best of our knowledge, no other hybrid registration method is endowed with

v e
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Figure 4.6: Optical flow visualization (Urban2). Left column: ground truth flow. Middle column:
flow obtained with the coupled method. Right column: flow obtained with the iconic method.
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Figure 4.7: Optical flow visualization (Venus). Left column: ground truth flow. Middle column:
flow obtained with the coupled method. Right column: flow obtained with the iconic method.

Angular error (in degrees) End point error (in mm)
Image sequence Iconic Coupled Iconic Coupled
mean std | mean std | mean std | mean std
Dimetrodon 571 470 | 5.68 471 | 0.28 0.23 | 0.28 0.24
Grove?2 392 684 | 390 692 | 0.28 044 | 028 044
Grove3 788 1588 | 797 16.01 | 0.82 1.52 | 0.83 1.54
Hydrangea 373 6,55 | 3.63 645 | 033 049 | 033 0.51
RubberWhale | 6.65 12.70 | 7.05 1391 | 0.20 0.36 | 0.22 0.45

Urban2 795 12,60 | 746 1250 | 1.51 3.01 | 1.27 2.50
Urban3 9.82 2589 | 816 2238 | 143 3.11 | 1.21 254
Venus 9.00 16.80| 897 999 | 058 0.76 | 0.56 0.73

Table 4.1: Angular and end point error for the optical flow testing data set.

the symmetric property.
e The discrete formulation of the symmetric iconic registration is novel.

e The proposed strategy to establish geometric correspondences is novel itself and its
demonstrated qualities are of great interest. Of particular interest is the third step as:

— Decreases the number of correspondences keeping only the most important
ones.

— The number of the correspondences that are kept is not pre-defined but subject
to optimization.

— The chosen correspondences satisfy important geometric constraints (i.e. isom-
etry).
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— Last but not least, the correspondences are chosen so that the whole image
domain is covered in order to provide reliable guidance to the registration.

e The algorithm is robust to erroneous correspondences allowing for a decision upon
whether to consider a given correspondence or not.

Despite all the interesting qualities of this algorithm, it is not easily extended to the
case where a group of images is considered in order to perform a statistical study. In the
next chapter, such a group-wise registration algorithm is going to be detailed.
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Chapter 5

Group-wise Registration

5.1 Introduction

The previous algorithm is able to register pairs of images in an unbiased way. However,
quite often, groups of images should be considered either to perform a group study or
to learn a statistical model of anatomical variability. In such cases, a registration pre-
processing step is essential to establish correspondences between all images. This problem
is defined as population or group-wise registration.

Often, to solve the aforementioned problem, a reference frame is chosen and all popu-
lation members are mapped to this pose using pair-wise registration algorithms. As it has
been discussed already discussed in Chapter 4, the explicit selection of the reference im-
age biases inherently the registration towards the chosen reference frame and influences its
performance. Such a behavior goes in the opposite direction to the one expected towards
appropriate representation of the population. Therefore, we would also like to perform
such a task in an unbiased way. This chapter investigates the extension of the previous
algorithm in the case of group-wise registration.

In the remainder of this chapter, we present first a review of the existing methods in
section 5.2. Then, the proposed algorithm is detailed in two parts. In section 5.3, the first
part details the formulation of the problem as an energy minimization one along with its
decomposition to discrete deformation elements. Then, in the second part (section 5.4) the
previous energy is modeled by a Markov Random Field. The experimental validation is
presented in section 5.5, while section 5.6 concludes the chapter with a discussion.
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5.2 Prior Art

Methods that try to tackle the group-wise registration problem in an unbiased way can be
divided in two classes, template-driven and template-free ones.

The first class of methods can be further subdivided in two subclasses. In the first case,
one image is selected as a template, either randomly or based on a criterion, and the rest
of the population is registered to it. The template is initialized by the population but is
not optimized afterwards. The bias is reduced either by the appropriate selection of the
template or by post-processing the estimated deformation fields.

For example, Guimond et al. [375] register all images to a template belonging to
the group. Once all images have been registered, an averaging is performed to yield an
average deformation and an average intensity image. A model is constructed by applying
the average deformation to the mean intensity image. Christensen et al. [376] proposed
a variant of the previous method where inverse consistent pairwise registration is used
and no averaging of the intensities is performed. The approach proposed by Seghers et
al. [377] is closer in spirit to [375]. Instead of using only one image as a template, all
images are used as templates. For each template, the rest of the images are registered to it
resulting in a mean shape image after an averaging process. Then, all mean shape images
are averaged in order to generate an atlas with mean intensity and mean morphology.

Bhatia and coworkers [124] may not choose explicitly a spatial reference domain but
a member of the population is used as an intensity reference for the evaluation of an infor-
mation theoretic similarity measure. The reference domain is defined by constraining the
average deformation to be the identity transform.

The selection of the template can be performed in a more rigorous way than the one
used in the previous methods. Park ef al. [378] opt to decrease the bias by choosing the
least biased target. In order to achieve that, they perform all possible pairwise registra-
tions between the members of the population. Based on a distance defined as the bending
energy of the estimated transformation, multidimensional scaling is performed to find an
embedding of the data such that their distances are preserved. Then, the member of the
population that is closest to the mean geometry is chosen as the optimal template.

In a similar setting, Hamm ez al. [379] learn the empirical manifold that represents
anatomical variation by performing a registration between all pairs of images. Having
learned the manifold, the optimal template for group-wise registration can be defined as
the median of the geodesic distances. Then, registration may be performed by following
the geodesic path along the empirical manifold that connects the image with the template.

The choice regarding the template needs not be stable during the registration. In [94]
an iterative group-wise algorithm is presented. All images are registered to a template
with the use of polyharmonic clamped-plate splines transformation model. Then, based
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on the warping distances, a new template is selected and the process continues till conver-
gence. Clamped-plate splines were also used in [380] along with an Minimum Description
Length criterion to perform group-wise registration. There, the reference image selection
is regarded as a model choice.

In the second case, instead of choosing as template a member of the population, a
template is constructed during the process. In the simplest case, the template is a mean
model, however it can be more complex than that. These methods are based upon an
iterative scheme where model estimation and pairwise registrations are interleaved.

A typical method of this category is the one proposed by Joshi ef al. [368]. The
algorithm iterates between the Fréchet mean estimation and deforming each image towards
the template in the LDDMM framework. One drawback of this approach is that it is
based on the mean estimation that is not robust to outliers. To tackle this shortcoming,
the use of geometric median was proposed in [381]. A similar approach proposed by
Avants and coworkers [382] estimates the template geodesic averaging in the manifold of
diffeomorphisms. Instead of using a voxel-wise criterion to compare each image with the
template, an information theoretic one is proposed in [383]. There, the matching is driven
by the normalized mutual information between each image and the average intensity image
of the population.

A similar approach where the average template is constructed during the registration
process was proposed in [371]. Similar to [124], the reference domain is defined by en-
forcing the sum of all deformation fields to vanish as a hard constraint. The images are
considered as an ordered set and each one is aligned with the use of a symmetric algorithm
to the average intensity image of all the images that precede it. The previous scheme and
the fact that the pairwise symmetric algorithm ensures that the common domain is halfway
from the image domains guarantee that the constraint is satisfied.

One drawback of the previous approaches is that the constructed template is fuzzy.
This fact that may hinder the performance of the algorithm. In [384], a group-wise regis-
tration method guided by a sharp mean image is presented. The group mean is created by
adopting an adaptive weighting strategy where weights vary not only across subjects but
also across spatial locations. As a consequence, the constructed template is sharp. Once
it has been estimated, a minimum spanning tree is created with it as root and registration
is performed in a pairwise fashion following the path from the leafs to the root. This step
was inspired from [385] where shape instances were organized into a minimum spanning
tree. The tree is constructed so that similar shape instances are connected by edges. Group
correspondences can be estimated by performing fast and accurate pairwise registrations
between neighboring instances towards the root. A similar algorithm was presented in
[386] to tackle the diffusion tensor registration problem. The volume that is closest to the
population center is chosen as root.
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Apart from an intensity image, more complicated models may be used. In [387], an
algorithm for automatic construction of active appearance models is proposed. The aim
is to construct a model which can encode the set of images as efficiently as possible.
The algorithm now iterates between estimating the model parameters and fitting it to the
data. The model fitting takes account of the statistics of intensities and shapes across the
group. At the end, implicit correspondences have been defined across the data set. In
[139], similar to the previous, a model comprising appearance and shape information is
used. The model is updated across the iterations and each image is deformed to match the
model. In an earlier work, Cootes and coworkers [388] used a minimum message length
criterion. An image is chosen as reference. Each of the rest of the images is left out in turn
and a model is built by considering N — 1 images. Then the transformation that minimizes
the criterion is estimated and applied before the model is re-estimated.

Studholme et al. [389] inspired from multi-modal registration proposes to estimate
the joint intensity distribution of all images and an entropy-based matching criterion to
drive the registration. Moreover, geometric constraints penalizing displacement from the
average shape along with a regularization constraint are considered as additional terms in
the objective function.

One drawback of the previous methods lies in the selection of the template or model.
Methods that don’t require the explicit estimation of a model have been proposed in the
literature. Maybe the most well-known representative of this class of methods is the con-
gealing framework introduced in [390, 391]. There, the population of images is considered
as a stack and a pixel-stack entropy measure is minimized to bring into correspondences
the members of the population. In [392] the previous framework was applied to the group-
wise affine registration of 3D volumes. Balci et al. [1] extended the congealing framework
to the deformable case assuming a free-form deformation model. An efficient stochastic
gradient descent optimization scheme along with a multi-resolution technique to diminish
the computational burden were used. The univariate entropy was estimated with the use
of a Parzen estimator. In [393], attribute vectors were used to guide the registration pro-
cess. Huang et al. [394] also used richer descriptors (SIFT) to align complex images. Soft
clustering was used to decrease the dimensionality of the problem.

The congealing framework is not the only option to tackle the problem in a template
free fashion. For the problem of 3D ultrasound mosaicking, Wachinger et al. [395] pro-
posed a method for the simultaneous rigid registration of all images using multivariate sim-
ilarity measures defined by summing up bivariate ones. Later on, in [396] the definition
of multivariate similarity measures by considering all possible combination of bivariate
ones was studied further and connections to the congealing framework were drawn. The
Efficient Second Order [31] was used to optimize the proposed energy. A similar implicit
reference-based group-wise image registration algorithm was proposed by Geng ef al. in
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[397]. In their approach, the summation of the intensity difference between each pair of
deformed images is minimized.

In [398], group-wise registration is solved in a hierarchical iterative way. Images are
grouped and pair-wise registrations are performed between local neighbors. Once the
registrations are performed, each subject is warped along an average direction defined by
considering its neighbors. Then, clustering is performed, followed by pair-wise iterations.
At each step, subjects move towards a common domain. The algorithm iterates till only
one cluster is recovered or a maximum number of levels has been reached.

Baloch and Davatzikos in [399] proposed an approach to perform morphometric anal-
ysis based on a lossless descriptor comprising residual and transformation information.
Each image is registered first to a random set of intermediate templates which are then
mapped to a final one. For each registration, different parameters are used. This way,
anatomical equivalence classes are constructed for each member of the population by con-
sidering the morphological appearance manifold. The images are registered in a group-
wise fashion by moving along the manifolds while minimizing the group variance of the
morphological descriptor. This approach has been extended in [400] by using non-linear
approximations of the manifolds and allowing regionally optimal solutions. Another ex-
tension was presented in [401]. There, an affinity propagation clustering method was
performed to identify close members of the population. The difference with respect to
the previous methods lies in the suppression of random templates. Instead, representative
intermediate ones are used, while the final template is chosen by learning the empirical
manifold. This approach relies on a k-NN graph where any edge holds the geodesic dis-
tance between two images. Given this data structure, the template can be estimated as the
geodesic median.

While the previous methods investigate the establishment of dense correspondences,
there is also a growing literature on estimating sparse correspondences across a group of
point sets or shapes. Davies et al. [402] perform group-wise registration across a set
of shapes. The objective function is based upon the minimum description length prin-
ciple. The idea is that the quality of the correspondences can be judged by considering
the quality of the model built by these correspondences. A similar approach, for point-
correspondences was proposed by Langs et al. [403].

Regarding the simultaneous registration of multiple point-sets, there is a number of
methods that represent the point sets as finite mixtures of densities [255, 256, 404]. These
methods aim to register the point sets without establishing explicitly correspondences
through the minimization of a divergence measure upon the estimated densities. In [255]
the Jensen-Shannon divergence is used, in [256] the generalized Lo-divergence is used
while in [404] the Jensen-Renyi one. The last two bear the advantage to yield closed-form
solutions.
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As we have seen, most research efforts have been concentrated in the dense correspon-
dence group-wise problem while fewer, though in increasing number, concern the sparse
correspondence one. To the best of our knowledge, little attention have been paid in com-
bining intensity and geometric information in a group-wise setting. Moreover, some re-
marks should be made regarding the methods dealing with group-wise dense registration.
On the one hand, template-driven methods introduce bias to the process through the selec-
tion of the reference, and treat the examples of the population on an individual basis. On
the other hand, template-free population-registration methods suffer from the lack of mod-
ularity with respect to the registration criterion and the deformation model. In addition,
they are sensitive to initial conditions while being computationally inefficient.

In this chapter, we propose a graphical model approach to population registration.
The discrete nature of the problem formulation enables different deformation models and
matching criteria to be used in a straightforward manner. This fact allows us to introduce
a principled objective function that considers both geometric and iconic information. The
template-free method that is presented here bears resemblance with the methods proposed
in [397, 396]. The transformation model is grid-based and the geometric constraint that is
used to remove the bias is similar to the one used in [124, 1, 371].

5.3 Continuous Domain

As in the previous chapters, first we are going to describe the objective function in a
continuous setting. The group-wise objective function is composed of two terms. The
first term takes iconic information into account, while geometry is handled by the sec-
ond. The coupling of the two terms is carried out through an adaptive weighting of the
energy components. Once the energy construction is detailed, it will be mapped to discrete
deformation elements

5.3.1 Iconic Registration

In order to introduce the concept of our approach, it is necessary to introduce some notation
given that the nature of the problem is significantly different from the pairwise ones that
we have studied up to this point. Let us consider n images {11, ..., I, }. We can assume that
each image is described by intensity values /;(x;) for different image domains ;, x; € €;.
Without loss of generality, a common reference frame can be defined (one should note
that this assumption refers to the transformation domain definition and not to an image
template). The aim of the mutual population deformation is to determine a transformation
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T which maps corresponding points from the common domain €2 to all n image domains
T={Ti:x;=Ti(xc),i=1,...n} 5.1

such as an optimality criterion is satisfied. We are going to consider two optimality criteria
that can be used either simultaneously or separately.

Notation-wise, we should remark that in this chapter, we are not going to use different
subscripts to index the transformation for the iconic and the geometric case. The reason is
that we take here an approach that is substantially different from the ones in the previous
chapters. Instead of coupling the iconic and the geometric problem through a regulariza-
tion term, the linking is accomplished by considering a hybrid matching term. Therefore,
subscripts will be used only for the matching terms to differentiate them based on the type
of information they exploit.

Population-wise Global Comparisons: Inspired from the congealing framework [390,
3911, the first criterion that we consider is a global statistical one. Let 7(i(x)) be the dis-
tribution of the corresponding sample intensities of the deformed images at the reference
domain, or i(x) = {/; o T1(x), -+, I, o T,(x)}. In statistics, one can associate various
measures of compactness with this density. We introduce the following global measure-
ment towards population registration

Mglobal,ico(ﬂ7 e a7;l) = / ’y(ﬂ(i(X)))dX, (52)
Q¢

with v being a monotonic function inversely proportional to the compactness of the dis-
tribution at x. For example, we can consider the entropy being estimated by means of
histograms of intensity values.

The justification behind this criterion lies in the fact that as the images are mutually de-
formed towards alignment, the compactness of the probability distribution shall increase
and the intensity values at corresponding coordinate locations from all the images will
form a low entropy distribution. Examples of such global measurements can be the stan-
dard deviation, the skewness, the kurtosis, the Shannon entropy as considered in the case
of congealing, or more advanced statistical compactness measurements. We have to note
that employing this criterion requires a significant number of samples (images).

Pairwise Local Comparisons: The second criterion is based upon the comparison of
pairs of images. Let p; ;(-) be a similarity measurement between images /; and /; based
on their intensities. Then, if we consider for example pixel-wise measurements, the pair
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of deformations 7;, 7;, should minimize the distance between the two individual images
in the reference domain:

Mlocal.ico(7; 7;) - / pz,](Iz o Z(X), -[l o 7;(X))dX (53)
Q¢

This criterion simply measures the similarity for every point of the reference pose between
the two deformed images. It is actually the same matching criterion as the one that was
used in the previous chapter for the symmetric iconic registration (Eq. 4.7).

This criterion can be extended to deal with the case of a group of n images simply by
considering all possible pairs of images, or :

Miscaieo(T . To) = Y > Miscaieo (T2, T5). (54)

i=1 j>i

The intuition behind this term is that as the images are mutually aligned, the difference
between any pair of population members will decrease. This term will introduce consistent
pairwise deformations but will not introduce compactness in terms of statistical behavior
for the observations once brought to the reference pose. Similar approaches have been
investigated in [397, 396].

Likewise, the regularization term can be extended in the group-wise case in a straight-
forward manner:

R(Ti,-- , Tn) = Zwmz(x)) (5.5)

where 1), as previously, is a convex function imposing smoothness.

In order to map the previous energies to discrete deformation entities, a deformation
model needs to be introduced. It is our firm choice to consider interpolation based trans-
formation models. As a consequence, we opt for an extension of the grid-based model,
that was used for the pairwise problem, to the group-wise case. A grid G; superimposed
over the image /; will govern its deformation by manipulating the underlying mesh of k
control points (k is assumed to be much smaller than the number of image points). Thus,
the set of all grids G = {G;, -+ ,G,} is defined as the deformation model in this case.
The central idea of our approach is to deform the grids simultaneously by considering
different combinations of each grid’s control point displacements D; = {d;1,...,d;x}
so that the optimality criterion is minimized. In this case, the transformation of an image
pixel can be written as

k
Ti(x) =x+u;(x) =x+ Z w;(x)d; ;. (5.6)

=1
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We assume that the transformation is one-to-one and invertible. Moreover, to remove the
bias, the following constraint should hold [124, 1]

i T; = 0. (5.7
i=1

The deformation grids are by construction isomorphic. Thus, the previous equation is
equivalent to

k
Vi:) di;=0. (5.8)
j=1

The control point displacements form the set of discrete deformation elements. The ener-
gies can now be expressed by taking them into account.

Population-wise Global Comparisons: The criterion described in Eq. 5.2 depends on
the simultaneous deformation of all images resulting in higher-order relations between the
discrete entities.

1 k
Mglobal,ico(ﬂ;"' 77:1) = EZ/ (;Jj(X)’}/(ﬂ'(Il Oﬂ(X),"' 7[no7:l(X))dX. (59)
j=1 7%

The discrete entity here is the set of the n simultaneous displacements of the grid nodes
indexed by j in all deformation grids. Each node governs the displacement of the same
point x € ()¢ but for a different image.

Pairwise Local Comparisons: Mapping this criterion to discrete entities is straightfor-
ward. In the same way as in the previous chapter, the energy can be expressed as

1 n n k A
Mlocal,ico(ﬂa e 7771) = m Z Z Z /Q OJT(X) pi,j([i o 7;(X), [j © 7;(X))dX

i=1 j>i r=1
(5.10)
As for the regularization term, it is re-expressed as

R(Tie T == 33 [ a0 uTio)ix 511
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5.3.2 Geometric Registration

Establishing geometric correspondences between a group of images in an explicit way is
not a trivial task. That is why we adopt an approach where sets of points are aligned
without defining explicit correspondences between them. Such approaches have emerged
either by representing point sets as probability distributions [255, 256, 404] or by using
implicit functions [258, 259, 66, 68, 405].

There are numerous ways to represent geometric information. A popular one is to
embed it in in higher dimensional space using a distance transform. Without loss of gen-
erality, let us consider that the available geometric information is given at the form of a
shape. Then, the shape can be represented as

0, X €y,
(I)g(X) = _'_D(Xa g)a X € an (512)
-D(x,9), x€Q—Q,.

D refers to the minimum distance between the point x and the shape g, while 2, denotes
the region enclosed by the shape.

The advantage of such an embedding is that it makes standard iconic approaches well-
adapted to the geometric registration problem. Moreover, such an approach is robust to
outliers and missing parts. Last but not least, it can be easily adapted to the case of land-
marks or even more complex geometric information.

Figure 5.1: On the left, a slice of an MRI brain volume is depicted. In the middle, the correspond-
ing white matter mask is shown. On the right, one can see its distance transform representation.

Applying the previous transformation to the geometric component of every image of
the group will result in a second set of images ® = {®,---,®,} conveying all the
geometric information of the images. Then, similar to the iconic case, the group of the
geometric representation may be aligned simultaneously if we consider the pairwise local
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comparisons

Mceatgeo (5, T5) = / 0:5(D1 0 Ti(x), B; 0 T (x))dx. (5.13)

Qc

When considering all possible pairs of images and the discrete deformation elements (the
same deformation model as in the iconic case is employed), the previous equation is re-
written as

Mlocal,geo(ﬂa'” 77;L) - ’I’L— 1 ]{;ZZZ/ ng (I) OT( ) 7;(X))CZX

i=1 j>i r=1
(5.14)
Essentially, the previous equation projects the similarity cost to pairs of simultaneous node
displacements.
The global criterion could also be used here. Nonetheless, the nature of the cues and
especially the fact that information is degraded away from the geometrical features, make
its use inappropriate in this context.

5.3.3 Coupling Term

The two problems can be solved simultaneously, if the iconic and geometric terms are
considered simultaneously.

M = Mico + Mgeoa (515)

or

Mugs(Ti, -+ To) = n_lkzzz/ X)(pig 1 0 Ti(x), 1y 0 Ty )+

i=1 j>i r=1

0i5(®; 0 Ti(x), ®; 0 T;(x)))dx. (5.16)

There is nothing particularly wrong with the previous coupled energy. However, the dis-
tance transformation offers more information that can be exploited.

As we commented earlier, as the distance from the geometric feature increases, our
confidence regarding the distance information decreases. Thus, it is only natural to trust
more the geometric information in the vicinity of the geometric features or when the dis-
tance is close to zero. When the distance increases, more emphasis should be put on the
iconic information.
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We can account for this remark by deriving a weighted version of the previous equation
as follows

Mo (T1, -+, Tn) :n(n—il)k‘ Z Z Z/ﬂ Wr (%) (00(%) 05, (P; © Ti(x), ®; 0 Tj(x))+

i=1 j>i r=1

(1 = 0a(x))pij(Li o Ti(x), I; o Tj(x)))dx (5.17)

where J,(x) = J,(min(®; o T;(x), ®; o T;(x))) is a smooth indicator function. The
intuition behind the weighting scheme is that when at least one of the two pixels is close to
the geometric feature we can really count heavily on the geometric term of the energy to
drive the registration. In the rest of the cases, we assume that iconic information is richer
and more reliable so we let it drive the process. The proposed framework can be thought
of as a multi-channel registration one, where one channel contains intensity information
and the other geometric one. The formulation presented here bears a strong resemblance
to the approach we presented in [406] to fuse optical imaging and cinematic video.
Before proceeding with the discrete model, let us summarize this section. The group-
wise registration problem was formulated both for the iconic and the geometric case. As
far as the iconic case is concerned, two optimality criteria were discussed. The geometric
case was treated similarly to the iconic after having embedded the geometric information in
a higher dimensional space through a distance transformation. The coupling was achieved
through an adaptive weighting of the two terms. Last but not least, the complete energy

E(ﬂa 77;1) = Mhyb(ﬂa'“ 77;1) +Mglobal,ico(7-17"' 77;7,) +R<7-17 77;L) (518)

was expressed in terms of discrete deformation entities, that is the control point displace-

ments of all the grids D = {Dy,--- ,D,}.

5.4 Discrete Domain

In this section, we detail the MRF model for the group-wise case. Based on the previ-
ous analysis, we are going to explain how to construct a graph to model the group-wise
registration problem, what is the label set and how to the potential functions are defined.

5.4.1 Graph Construction

Our goal is to find which are the optimal displacements that should be applied to every
node of every grid so that the optimality criterion is satisfied. As the discrete entities are
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the same for both the iconic and the geometric case, a common graph G = (V, £) shall be
used. The question is how create this graph?

The most evident way would be to apply the approach taken in the previous chapter to
the group-wise case. In other words, create a graph whose vertices V correspond to the set
of control point displacements of all n deformation grids, or |V| = |AD|. The assignment
of a label [, € £ would correspond to an update Ad; ,, p € G;, © = 1,--- ,n. The label
set in this case is £ C R? x --- x R% or a discrete version of the displacement space of

n times
the transformations of all images. Moreover, it would even be possible to sample the space

so that every label satisfies the constraint Eq. 5.8,1.e. >  d;, = 0.

There is one important shortcoming regarding this product model. It is inefficient. In
order to sample the high dimensional space densely enough, a very large dataset has to
be created. This has a direct impact on the computational load of the pairwise potentials
calculations. Without loss of generality, let us consider the 2D case. Let us also assume
that the same number of displacements L is sampled for every image. As no member of
the population should be favored, this is a reasonable assumption. In this case the label set
will be defined as £ = L x --- x L. Given this label set, the complexity of the calculation

———

n times
of a pairwise potential is O(|L|*"). It is possible to reduce this complexity by considering

a decomposed model [323]. Let us note, however, that this advantage comes at the cost of
a weaker relaxation.

The decomposed model in [323] is introduced for the 2D pairwise registration prob-
lem. Here, we extended it to deal with the group-wise case. Let us now detail the graph
construction (see Fig. 5.2). The graph comprises n layers (as many as there are members
in the population). Every layer ¢ is composed of a set of nodes V;, with V; isomorphic to
G,. Thus, the set of vertices is defined as V = V; U ---V,. As far as the edge system
is concerned, there are two different types of edges that should be discerned, intra-layer
edges and inter-layer ones. The intra-layer edge system consists of edges between nodes
that belong to the same layer ¢ or set of vertices V;. It includes multiple copies of the
same neighborhood system. Each duplicate &; is the same as the edge systems used in the
previous chapters. The second type is composed of edges connecting nodes from different
set of vertices, &; = {(p,q)|p € Vi, ¢ € V;, p ~ ¢} (p ~ ¢ denotes that these elements
correspond to one another in the isomorphism ~). The complete edge system is given as
the composition of all the previous ones, or £ = (U2, &;) U (UL, U;s; &;). Last but not
least, the label set is defined as £ = L C R?. As a result, the constraint Eq. 5.8 cannot
be imposed through the construction of the solution set. To impose it, once the optimal
labeling is estimated, it will be projected to the constraint surface.
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Grids Gy

Figure 5.2: The node and the edge system of the constructed graph. With blue color the rela-
tionship between the grid nodes and the images is depicted (deformation model). The black edges
represent the smoothness terms while the red ones encode the local dissimilarity measure. The
global relationship between all the nodes at respective places in the grids is shown by the orange
edges. Solid lines represent relations between the latent variables while the dashed lines depict the
observed variables. (For clarity a fraction of the edges is shown.)

5.4.2 Iconic Criterion

Let us now define the unary and pairwise potentials that approximate the group-wise en-
ergy Eq. 5.18. First, we will explain how the global statistical compactness optimality
criterion can be handled. The criterion described in Eq. 5.9 depends on the simultaneous
deformation of all images resulting in higher-order relation between the discrete entities.

Inference in Markov Random Fields (MRFs) with higher order cliques is possible
and a lot of research efforts have been devoted recently to investigate it (see for exam-
ple [407, 408, 409]). However, the gain of the faithful modeling comes at the expense of
significantly increased computational burden.

In order to spare ourselves the inefficiency of higher-order MRFs we will limit our
approach to an approximation of the energy (Eq. 5.9). This approximation consists of
assuming that when one image is deformed the rest stay still or in other words, come from
a previous iteration. (Eq. 5.9). In practice, a semi-simultaneous scheme is employed.

Let us introduce a time variable ¢ in order to express the energy in terms of the discrete
entities while taking into account the previous assumption

1 n k A
Meiovatico (T -+ T - T = %ZZ /Q ) @ (x)y(r(i¥(x)))dx,  (5.19)

i=1 j=1

where i'(x) = {I; o T} (x),-- ,I; o T;{(x), -+ , I, o T,}"1(x)}. To ease the notation,
the time variable ¢ will be used only regarding this term. For the rest, we are able to derive
simultaneous schemes and thus we are going to assume that all the considered quantities
belong to the same iteration. The previous energy term can now be modeled with the use
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of unary potentials defined as

Uglobalico,ip(lp) = / ()Y (m(L o T (), - Lo T (%), Ly o Ty (x))dx.

Qc
(5.20)

We should remark that in order to derive the previous unary potential, the conditional
independence assumption has been extended to cover not only random variables within the
same layer but also variables from different layers. This results in a cruder, with respect to
the previous chapters, approximation. If the conditional independence was referring only
to random variables within the same layer that would have as a consequence a higher-order
relation between the random variables that belong to different layers. Whereas now, the
cost of a deformation depends only on the label of the node p.

It should be noted that this assumption is not restrictive and is made quite often in the
context of both group-wise registration and discrete optimization. On the one hand, in
iterative registration schemes, models derived from the previous iteration are used to drive
the (usually pairwise) deformation at the current iteration. In our case, the iterative scheme
is devised in order to lessen the computational burden and does not occur as a part of an
EM approach. On the other hand, in discrete optimization, it resembles the expansion
moves used to minimize graphical models.

The most important advantage of this assumption is that it allows for an efficient ap-
proximative scheme for the unary cost calculation. The computations are performed fol-
lowing a strategy similar to the one presented in Chapter 3. The computation of the unary
potentials of nodes belonging to the same layer is performed simultaneously. In order to
evaluate the cost for a label [ € L, the image that corresponds to the layer under consider-
ation is translated by the displacement Ad = [. For every image element, the stack-wise
statistical compactness measure is calculated. Then, the values, weighted by the @, (x) are
distributed to each control point p where they are summed to form the local energy. The
previous process is iterated for all layers.

According to the previous assumption, the constrained transformation in the unary
potentials is then simply defined as ﬁlp = 7T; + l,, where 7; is the current or initial
estimate of the transformation. Once more, the previous energy term can be interpreted
as a weighted block matching one. The blocks being matched to the population of the
images through the congealing framework. This term corresponds to the GGy graphical
model variables (see Fig. 5.2).

The case of the local matching criterion is easier to treat. Based on the Eq. 5.10, the
pairwise potentials modeling the local iconic matching can be defined as

Proanlloo) = [ @001 0 Ty (0, o Tig b))dx.— (521)

Q¢
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Thus, the matching cost is modeled by a pairwise relation, more specifically, by the inter-
layer edges. Pairwise potentials are usually employed in order to model regularization
terms. Nonetheless, there is no reason why they could not be used for a different purpose.
This term is identical to the unary term Eq. 4.24. In order to calculate them, we consider
the transformation 7}7111 = T;+l, and 7}71(1 = T;+l,. Images /; and I; are translated globally
by the displacements Ad; = [, and Ad; = [, respectively. The overlapping domain is
scanned calculating the cost that is then weighted and attributed to the respective edges.

5.4.3 Unified Criterion

The geometric term, also based on pairwise local comparisons (Eq. 5.14), is given by the
following MRF pairwise potentials

Peeo,pq(lp; ly) = / a’p(xmi,j(q)i ° 7;7lp (x), P o 7;’lq (x)))dx. (5.22)

Q¢

The pairwise potentials for the iconic and geometric case, Eq. 5.21 and Eq. 5.22,
are modeled by the same set of edges. If we also consider the adaptive weight, a single
pairwise potential can be used to model both

Phyb,pq(lm lq) — da (min(@i © 7;7lp (X)v P; o 7;,lq)))Pico,zmI(lpa lq)

+ 0o (min(®; 0 Try, (%), ®5 0 T34, ) Pacopq(lps Lg) (5.23)

The intra-layer edges model the regularization term Eq. 5.11. These pairwise poten-
tials are defined as

||lp_lq||

Piaza(lole) = 1 g

(5.24)

In the group-wise case we strongly encourage the use of this type of pairwise relation
instead of the ones that have an elastic-like performance,

(dip + 1) = (djq + 1)
Ip—d

Pelastic,pq(lpa lq) = (525)

This choice is dictated by memory and performance constraints. The former pairwise
function depends only on the label set. Thus, it is the same for all edges belonging to the
intra-layers. It can be computed only once and stored to be used for all such edges. On the
contrary, since the latter depends on the current displacements d; , and d; 4, it is specific
to each edge. In practice, we would face an important computational challenge if we were
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to compute these terms on the fly. And alternatively, storing pre-computed values would
pose serious memory issues.

To conclude, the total MRF energy that approximates the group-wise energy intro-
duced in the previous setting (Eq. 5.18) has the following form

Eyrr(l) = Z Z Usiobat ico,ip(lp) + Z Z Z Phyb,pg(lps 1g)

i=1 peV; i=1 j>i pg€&; ;

+ Z Z Phuidpg (Lp, lg)- (5.26)

1=1 pqg€&;

5.5 Experimental Validation

Our validation setting is constructed upon the comparison of the proposed framework with
the one proposed in [1]. The reason behind our choice is threefold. First, the entropy based
deformable group-wise framework is considered state-of-the-art and has demonstrated re-
peatedly its effectiveness in population analysis [410]. Second, the source code is publicly
available! allowing for a straightforward comparison. Third, it is based on a B-spline de-
formation model as our own framework. This is of utmost importance as it enables us to
draw fair conclusions.

Two different settings were considered to compare the performance of the two algo-
rithms. In the first place, a simulated data set was considered. The goal of the first set
of experiments was principally to familiarize ourselves with the congealing group-wise
framework in order to guarantee the fairness of the comparison. Thus, our discrete frame-
work utilized only the available iconic information for this experiment. The simulated
data set was constructed by applying random transformations to a T1-weighted brain MRI
image of size 256 x 256 x 128 and of physical resolution 0.9375 x 0.9375 x 1.5000mm.
The simulated data set is depicted in Fig. 5.3.

In the second set of experiments, a 3D brain MRI data set is used to validate the
performance of the proposed framework. The data set consists of 18 T1-weighted brain
volumes that have been positionally normalized into the Talairach orientation (rotation
only). The MR brain data set along with manual segmentations was provided by the Center
for Morphometric Analysis at Massachusetts General Hospital and are available online?.

The data set was rescaled and resampled so that all images have a size equal to 256 x
256 x 128 and a physical resolution of approximately 0.9375 % 0.9375 x 1.5000mm. Images

"http://www.insight-journal.org/browse/publication/173
http://www.cma.mgh.harvard.edu/ibsr/data.html
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Figure 5.3: Simulated data set. The central slice from each member of the population is depicted.

intensities were normalized by applying the midway histogram equalization method [411].
In Fig. 5.4 and Fig. 5.5 the data set before and after the preprocessing step is depicted.
The intensity normalization step is of great importance as it accounts for the great intensity
differences that are present in the data set. For the hybrid framework, we used the available
segmentation masks to derive a representation of the surface of white matter through the
use of implicit functions. The derived distance representation of the white matter surfaces
is shown in Fig. 5.6.

For all the experiments presented here, the Sum of Absolute Differences was used as
similarity criterion be it intensities or distance values that were considered. As far as the
regularization term is considered, as detailed in Sec. 5.4, the pairwise term with a fluid-
like behavior was used. The weighting between the data term and the regularization one
was set equal to 1.

As far as congealing group-wise method is concerned, stack-wise entropy was used as
similarity criterion, estimated with the use of a Parzen window of width equal to 10. The
default parameters that the authors of [1] propose were used. We experimented mainly
with the number of samples used to evaluate the objective criterion. The affine registration
step that precedes the deformable one was not used.

Cubic B-spline basis functions were used as interpolation strategy for our grid-based
deformation model. While other interpolation strategies have been implemented and tested,
the need to let the two competing methods share as many features as possible dictated this
choice. For both methods, an hierarchical coarse-to-fine strategy was employed. Despite
slight implementation differences, both methods start from coarse FFD control grids that
are refined during subsequent iterations. For the proposed framework, the initial grid was
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Figure 5.4: Data set before intensity normalization. The central slice from each member of the
population is depicted.

of size 6 x 6 x 5. Its size was approximately doubled at each finer level. For [1], a uniform
deformation grid of size 6 x 6 x 6 was employed. Its size was doubled at each finer level.
For both methods, three levels were considered in total.

A multi-resolution method based on image pyramids was employed by both methods.
The size of the images was scaled by a factor of 2 when passing from a coarse level to
finer one. In our case, a standard Gaussian image pyramid was created by convolving the
images with a Gaussian kernel with a standard deviation of 1. Both methods considered
three pyramid levels.

The same strategy to define the discrete label set as the one presented in Sec. 3.5 was
used. The deformation space was sampled sparsely along the positive and negative main
axes of the 3D coordinate system. 5 samples along each direction were taken resulting in
a total number of 31 labels. The maximum allowed displacement is sampled so that the
resulting transformation is diffeomorphic. At each level, we iterated 5 times by consider-
ing the previous solution and refined label sets before continuing with the next, finer level.
Each refined label set is created by rescaling the set of labels by a fixed factor of 0.66.

Let us first start with the results obtained for the simulated data set. In Fig. 5.7 the
result for [1] and the proposed framework are shown for the central slice of 6 different
volumes that were chosen randomly. For each volume, the respective central slice before
registration is depicted to facilitate the comparison. The visual assessment of the result
allows to conclude that both methods have achieved to register successfully the group
of images. To further comprehend the quality of the result, we depict the central slice
for both the mean intensity image and the standard deviation one for each case in Fig.
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Figure 5.5: Data set after intensity normalization. The central slice from each member of the
population is depicted.

5.8. The sharpness of the mean images suggests that both methods achieved a satisfactory
result. When comparing the standard deviation images, we observe that both methods have
improved with respect to the baseline. In general, [1] has achieved overall lower standard
deviation values. In our case, comparatively greater errors can be observed in the borders
of the object while lower ones in its interior. The differences are small and not significant.
We have to remark that [1] is able to achieve such results in lower computational time using
a low sampling rate for its stochastic gradient optimization scheme. Nonetheless, we have
to underline that there is a certain bias as the data set has been created assuming exactly
the same deformation model as in [1] rendering this experiment the best case scenario one
may hope for [1].

In our second experiment that is a realistic scenario, we have compared the perfor-
mance of the proposed framework (both iconic and unified variants) with [1] using two
different sampling rates. One is a low sampling rate similar to the one used for the previ-
ous experiment while the second considers all image domain (sampling rate equal to 1).
This case was considered towards rendering the comparison of the two methods unbiased
with respect to the used image information.

The results of the registration for 6 different volumes are shown in Fig. 5.9. The
first thing one can remark is that [1] with a low sampling rate fails to provide satisfactory
results. In particular, the results for the forth and sixth volume prove the validity of the
previous comment. Both volumes have been deformed in an unrealistic manner. In the
forth volume, important anatomical structures have disappeared while in the sixth volume
we observe a violent deformation of the skull. Increasing the sampling rate to consider
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Figure 5.6: Distance maps created from the available white matter segmentation mask. The central
slice from each member of the population is depicted.

all image domain did not produce unrealistic deformation fields but does not seem to
register the group of images towards a common domain. One can argue that the parameters
used for [1] were not the optimal ones which is probably true. Nonetheless, we kept the
parameters of the proposed framework and [1] during both experiments.

Regarding the proposed framework, we observe an improvement of the results when
taking into consideration the geometric information conveyed by the distance representa-
tion of the white matter surface. This improvement is more obvious when considering the
mean and standard deviation intensity images depicted in Fig. 5.10. The mean intensity
image of the result of our framework with the iconic criterion is sharper than the mean
intensity image produced by [1]. We should also underline the increase of the sharpness
of the mean intensity image when the unified criterion is used.

5.6 Discussion

In this chapter, we proposed an algorithm that exploits both iconic and geometric informa-
tion to towards guiding group-wise registration. The novel framework to unite a popula-
tion to an optimal (unknown) pose through their mutual deformation was cast as an energy
minimization problem.

The registration criterion comprises three terms. The first imposes compactness on
the appearance of the registered population at the pixel level. The second aspires to mini-
mize the individual distances between all possible pairs of images based on an adaptively
weighted hybrid criterion, while the last is a regularization one imposing smoothness on
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Figure 5.7: Central slice for 6 simulated volumes. Top row: images before registration. Middle
row: images after registration with [1]. Bottom row: images after registration with the proposed
framework.

the deformation fields. The problem is reformulated as a graphical model that consists
of hidden (deformation fields) and observed variables (intensities and distances). This
graphical model is expressed in the form of a first-order MRF.

The novelty of the approach lies principally in the formulation of the problem in a
discrete setting. Therefore, our approach is gradient free, modular in terms of the im-
age and smoothness components and can encode global population criteria and pair-wise
comparisons. This modularity allows to investigate with ease a hybrid formulation for the
group-wise registration problem.

Figure 5.8: Central slice for the mean (top row) and standard deviation intensity image (bottom
row). Left column: images before registration. Middle column: images after registration with [1].
Right column: images after registration with the proposed framework.
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Figure 5.9: Central slice for the mean (top row) and standard deviation intensity image (bottom
row). First row: images before registration. Second row: images after registration with [1] (low
sampling rate). Third row: images after registration with [1] (sampling rate equal to 1). Forth row:
images after registration with the proposed framework (only iconic criterion). Fifth row: images
after registration with the proposed framework (unified criterion).
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Figure 5.10: Central slice for the mean (top row) and standard deviation intensity image (bottom
row). First column: images before registration. Second column: images after registration with [1]
(low sampling rate). Third column: images after registration with [1] (sampling rate equal to 1).
Forth column: images after registration with the proposed framework (only iconic criterion). Fifth
column: images after registration with the proposed framework (unified criterion).



Chapter 6

Conclusion

We conclude this thesis by summarizing the majors contributions and drawing some po-
tential directions for future work.

6.1 Contributions

The principal contribution of this thesis is the mapping of the iconic/geometric deformable
registration problem into a unified discrete labeling one with interconnected variables. In
this doctoral work, we provided discrete formulations for the problem of symmetric and
group-wise registration. We detailed the construction of the graphical model for each case
and presented efficient ways to evaluate the cost functions.

The hybrid registration framework was formulated as a two-layer graphical model.
Intra-layer edges encoded smoothness constraints for each problem while inter-layer ones
imposed a consistency constraint between the two, resulting in a solution that is a com-
promise of both worlds. The resulting formulation inherits modularity and scalability.
Both the geometric and the iconic terms are modular in the sense that various detec-
tors/similarity metrics can be considered and addressed under a common optimization
framework.

The main message of this dissertation is twofold. On the one hand, the introduction
of geometric information in an iconic dense deformable registration framework renders
it more robust with respect to the initial conditions, large deformations and choice of
matching criterion. On the other hand, the discrete formulations coupled with efficient but
not restrictive approximate schemes could lead to powerful and versatile algorithms that
can tackle with accuracy the registration problem.

Apart from the previous major contribution, the careful inspection of the proposed
algorithms would reveal their advantages with respect to the state-of-the art. Such a dis-
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cussion has taken place at each chapter. Thus, reciting them here would be redundant.
Nonetheless, we would like to underline the interest of the geometric framework presented
in Chapter 4 for it states and solves a problem little studied.

6.2

Future Work

During this thesis we have provided promising responses, yet various extensions are under
consideration to push forward the scope of our work. Let us discuss briefly, three of them.

D)

)

1)

The success of our hybrid framework depends heavily on the quality of the geo-
metric information. Refining further the geometric part of the framework seems a
promising way to improve the obtained results. There are two possible extensions
that could be attempted. Machine learning techniques can be applied to improve the
localization of the points of interest. Better correspondences could be established by
either devising discriminative task-specific matching criteria and richer descriptors,
or by introducing more knowledge regarding the shape or the region of interest by
adopting higher-order interactions.

Combined segmentation and registration is another promising direction. Atlas-based
registration methods exhibit iconic similarity but fail to account for the expected ge-
ometric properties of the structure of interest. Such a constraint could be easily
introduced within our formulation. Shapes/Organs of interest could be represented
in the atlas space as point distribution models with pair-wise [349] or higher-order
interactions [275]. Such a models can be endowed with statistical behavior through
a learning step applied on their relative distances withing the training set. Segmen-
tation and tracking can be coupled then through an introduction of an additional
constraints that aims at maximizing the posterior of the point distribution model
according to the pair-wise/higher order distributions. Such an idea can be further
extended into a multi-atlas setting

Statistical interpretation of the results is another promising direction. Graph-based
optimization could produce measures of uncertainties [314]. Their statistical inter-
pretation could lead to more efficient ways of sampling the search space as suggested
in [329]. However, we can imagine even going further towards dynamic construc-
tion of the uncertainties map and its direct use to define the transformation itself.
In such a context, control-based deformations will refer to multi-dimensional Gaus-
sian functions and the optimal estimation of the transformation will correspond to
the mean and covariance matrix of this Gaussian. The use of kernel-density estima-
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V)

V)

tion methods with variable bandwidth can then be used as basis for the deformation
function.

Coupling linear registration with deformable fusion is another promising direction
of our work. Such a coupling requires the adoption of higher order interactions that
can be easily encoded at the level of geometric registration. One can imagine a
limited number of such interactions and a master-slave formulation for the resulting
MREF, where one of the sub-problems will correspond to the pair-wise registration
while the second to the higher order one. The aim of such a perspective will be
to further eliminate the bias of the initial alignment and improve the robustness of
the method. Such an action could also produce a natural separation between global
pose differences and local deformations, a necessary step when aiming statistical
modeling of variations within populations.

Finally, having conceived and realized unbiased registration algorithms, it is only
natural to conduct group studies where their properties would be exploited to the
maximum.
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